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Abstract

A compact Riemannian bordism is a compact manifold M of dimension m, with
Riemannian metric g, whose boundary M is the digjoint union of two closed submani-
folds 0+ M and 0_ M, with absolute boundary conditions on 9y M and relative boundary
conditions on d_M. This thesis is concerned with the complex-valued analytic torsion
on compact Riemannian bordisms.

Consider E, a flat complex vector bundle over M, with a Hermitian metric h and
denote by Q(M; E), the space of E-valued smooth differential forms on M. The Ray—
Singer metric TER,Sg,hv defined with the use of self-adjoint Laplacians Ag g4, acting on
smooth forms satisfying the boundary conditions above, is a Hermitian metric on the
determinant line det(H (M, 0_M;E)) of the cohomology groups H(M,0_M; E).

Assume FE is endowed with a fiber-wise nondegenerate complex symmetric bilinear
form b. We denote by Bg 45 the nondegenerate bilinear form on Q(M; E) determined
by g and b. The complex-valued analytic torsion 7'575%17 considered as a nondegenerate
bilinear form on the determinant line was first studied by Burghelea and Haller on closed
manifolds in analogy with the Ray—Singer metric. In order to define TERZ’b one uses spec-
tral theory of not necessarily self-adjoint Laplacians Ag 4. In few words, one starts by
regarding Qa(M; E)(0) the generalized zero-eigenspace of Ag 45, a finite dimensional
cochain complex containing smooth forms only, which computes H(M,0_M; E). Then,
one defines a nondegenerate bilinear form 7 4,(0) on det(H(M,0-M; E)), by consid-
ering the restriction of Sg 4 as a nondegenerate bilinear form to Qa(M; E)(0). Thus,
7'5759713 is defined as the product of 7g 4(0) with the non-zero complex number obtained
as (-regularized determinant of Ag gy.

The variation of the torsion with respect to smooth changes of the Riemannian
metric and the bilinear form is encoded in the anomaly formulas. In order to obtain
these formulas, we use the coefficient of the constant term in the heat trace asymptotic
expansion for small time, associated to Ag 4;. Our method uses the anomaly formulas
for the Ray—Singer metric obtained by Briining and Ma.

CoEuler structures, the dual notion to Euler Structures of Turaev, were used by
Burghelea and Haller to discuss the anomaly formulas for the torsion on closed manifolds.
We extend the notion of coEuler structures to the situation of compact Riemannian
bordisms. The space of coEuler structures is an affine space modeled by the cohomology

group H™ (M, 0M:;C).






Introduction

We denote by (M, 0. M,d_M) a compact Riemannian bordism. That is, M is a com-
pact Riemannian manifold of dimension m, with Riemannian metric g, whose boundary
OM is the disjoint union of two closed submanifolds 94 M and 0_M. For E a flat com-
plex vector bundle over M, we study generalized Laplacians acting on E-valued smooth
differential forms on M satisfying absolute boundary conditions on 04 M and relative
boundary conditions on 0_M.

In this thesis, we study the complex-valued Ray—Singer torsion, or complex-valued
analytic torsion, on (M,04M,0_M). The complex-valued Ray—Singer torsion was in-
troduced and studied on closed manifolds by Burghelea and Haller in analogy to the
Ray-Singer metric in [BHO7|, [BHO8| and [BH10|. Our main result, Theorem
provides a variational formula, or anomaly formula, for the logarithmic derivative of
the complex-valued Ray—Singer torsion on (M,0+M,0_M) and its proof is based on
the work by Briining and Ma in [BMO6| for the Ray-Singer metric on manifolds with
boundary. As an intermediate step, we obtain anomaly formulas for the Ray—Singer
metric on (M, 01 M,d_M), which coincide with the corresponding formulas obtained by
Briining and Ma in their recent paper [BM11], by different methods.

The Ray-Singer torsion was defined and studied by Ray and Singer in [RST1],
[RS73a| and [RS73b], as a (-regularized product of all non-zero eigenvalues of a certain
self-adjoint Laplacian. Ray and Singer first studied their torsion for unitary flat vec-
tor bundles on closed manifolds, by investigating the problem of describing the Franz—
Reidemeister torsion (see [Re|, [Tu02] and [Ni03]) in analytic terms. In particular, Ray
and Singer proved that their torsion does not depend on the Riemannian metric. Later
on, in [BZ92|, Bismut and Zhang studied the analytic torsion for non necessarily unitary
flat vector bundles over closed manifolds and they considered it as a Hermitian metric
on certain determinant lines.

Let us first give some ingredients to recall the Ray-Singer metric, as it is done
in [BZ92| on closed manifolds, and also in [BMO06| and [BM11] on manifolds with
boundary. One starts by considering Hermitian Laplacians Ag gy on Q(M; E), the
space of F-valued smooth differential forms on a manifold M, constructed by using a
flat connection V¥, a Hermitian form h on E, and the Riemannian metric g on M.
By imposing absolute (resp. relative) boundary conditions on 04 M (resp. O_M) one
specifies an elliptic boundary value problem. Boundary ellipticity (with respect to a
cone), see for instance [Gi84| and [Gi04], permits one to extend Ag 45 as a self-adjoint,

vii



viii INTRODUCTION

densely defined and closed unbounded operator in the L2-norm, see [M[{i78]. One has a
de-Rham—Hodge Theorem for self-adjoint Laplacians on manifolds with boundary: the
kernel of Ag g, is of finite dimension and isomorphic to H (M, 0_M; E), the cohomology
of M relative to 0_M (with local coefficients in E), see [Mii78|, [Lii93], [BMO06] and
[BM11]. By means of this isomorphism, a Hermitian metric 75 4 5(0) on the determinant
line det H(M,0_M; E) of the cohomology H(M,0_M;E), is obtained. The Ray-Singer
metric, denoted by TER’Sg’h, is the Hermitian metric on det H(M,0_M; E) given by

_1)p
Tg,s%h 1= Tp,g,(0) - H (det’ (AE,g,h,p))( ) 7,
D

where det’ (Ag ) is the (-regularized product of all non-zero eigenvalues of the Lapla-
cian, see for instance see [Se69b|. The (real-valued) product above computes the ab-
solute value of the Reidemeister torsion, see [BZ92|. Moreover, in [BZ92] Bismut and
Zhang proved that the Ray-Singer metric is a Riemannian invariant in odd dimen-
sions and they computed corresponding anomaly formulas. The Ray—Singer metric on
manifolds with boundary has been studied by several authors, see for instance [RS71],
[Mi78], [Mii93], [Lii93], [DF00|, [BMO06], [BM11] and references therein. In partic-
ular, we are interested in the work of Briining and Ma in [BMO06|, where they computed
the variation of the analytic Ray—Singer torsion, with respect to smooth variations on
the underlying Riemannian and Hermitian structures.

Assume now F admits a fiberwise nondegenerate symmetric bilinear form b. The
complex-valued Ray-Singer torsion is defined as a bilinear form on det H(M,0_M; E)
and obtained in a very similar way as the Ray—Singer metric. Indeed, in this situation, a
generalized Laplacian Ag g1, on Q(M; E) is considered, which we call bilinear Laplacians.
We study these operators under absolute and relative boundary conditions as well as their
spectral properties, ellipticity and regularity statements. The operator Af ,; extends
to a, not necessarily self-adjoint, closed unbounded operator in the L?-norm, it has
compact resolvent and discrete spectrum, all its eigenvalues are of finite multiplicity,
its (generalized) eigenspaces contain smooth differential forms only. Also, the bilinear
form Bgp on Q(M; E) induced by g and b is nondegenerate and restricts to each of
eigenspaces as a nondegenerate bilinear form. In this context, we obtain in Proposition
3.3.11] a Hodge decomposition result for the bilinear Laplacian and in Proposition[3.3.12]
we see that generalized 0-eigenspace of Ap 4 is a sub-cochain complex in Q(M; E) that
computes (without necessarily being isomorphic to) relative cohomology H(M,0_M; E).
We follow the approach in [BHOT7], to obtain a nondegenerate bilinear form 7p 4;(0) on
the determinant line det(H (M,0_M;E)) by looking at the restriction of f,; to the
generalized 0-eigenspace of Af ;5 as a nondegenerate bilinear form. The (inverse square
of) the complex-valued Ray—Singer torsion for manifolds with boundary is defined by

Thyw = TEg5(0) - [ (det’ (Apgnp)) V7,
p
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where the product above is now a non zero complex number with det’ (AEg,gpp) being
the (-regularized product of all non-zero eigenvalues of Ag g,

Let us also mention certain related work on the complex-valued Ray—-Singer torsion.
On closed manifolds, see Proposition 10.5 in [SZO08|, the complex-valued Ray—Singer
torsion was compared, up to a phase, with the Ray—Singer metric by Su and Zahng,
by conveniently relating the underlying bilinear and Hermitian structures. On closed
manifolds of odd dimension, by using the odd signature operator, Braverman and Kap-
peler defined in [BKOT7a| and [BKOT7b| the refined analytic torsion, as a refinement of
the Ray-Singer torsion, and they proved that it computes, up to a phase, the Turaev
torsion (see [FT00] and [Tu90]). The refined analytic torsion was also compared with
the complex-valued Ray—Singer torsion by Braverman and Kappeler, see Theorem 1.4 in
IBKO7c]. The Ray-Singer analytic torsion has also been studied on the twisted (by an
odd degree closed differential form) de-Rham complex by Mathai and Wu in [MW11]
and Huang extended the refined analytic torsion on the twisted the de-Rham complex,
see [HulO|. In [SulO], the complex-valued Ray-Singer torsion on a twisted de-Rham
complex was defined by Su and also compared with the refined analytic torsion con-
structed by Huang. In [Ve09], Vertman gave a (slightly) different refinement for the
analytic torsion as the one in [BKO07a|] and [BKO7b]|, in order to study it on mani-
folds with boundary. Then in [Su09]|, by using techniques from [SZ08|, [Ve09| and
[IM1i78|, Su generalized the complex-valued analytic Ray—Singer torsion to the situation
in which ;M # 0 (or 9-M # 0) and he compared it with the refined analytic torsion
on manifolds with boundary defined in [Ve09].

The variation of the complex-valued Ray—Singer torsion on closed manifolds, with re-
spect to smooth changes of g and b has been computed in [BHO7|. Burghelea and Haller
used their anomaly formulas to obtain a geometric invariant, by introducing appropriate
correction terms to the torsion, see Theorem 4.2 in [BHO7|. Moreover, Burghelea and
Haller conjectured that this generalized complex-valued analytic torsion computes the
complex-valued Reidemeister torsion including its phase. Theorem 5.10 in [BHOT]| gives
a proof of this conjecture in some non-trivial cases by using analytic continuation from
known results in [Ch77],[Ch79|, [Mii78] and [BZ92]. Later on, this conjecture was
proved in full generality by Su and Zhang in [SZO08§|.

We are interested in the variation of the complex-valued Ray—Singer torsion on com-
pact bordisms. In odd dimensions and ;M # 0 (or O-M # ()), the complex-valued
analytic Ray—Singer torsion, does depend neither on smooth variations of the Riemann-
ian metric nor on smooth variations of the bilinear form, as long as these are compactly
supported in the interior of M, see [Su09].

Our anomaly formulas are presented in Theorem and they can also be found
in the preprint [Mal2]. On the one hand, our formulas generalize the ones obtained
by Burghelea and Haller in the closed situation, see [BHO7|. On the other hand, they
generalize those obtained by Su in odd dimensions, see [Su09|: they no longer require
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g and b to be constant in a neighborhood of the boundary and both kind of boundary
conditions are considered on complementary parts of the boundary respectively.

Structure of the thesis. The necessary background, notation, conventions and
specific results needed along the thesis are presented in Chapter [I] and Chapter 2]

In Chapter [I} we recall elementary concepts serving as a background for the whole
thesis. Since most of these notions are quite general, we do not include their proofs as
these can be found elsewhere in the given literature. In Section[I.1] we give basic algebraic
notions; in Section [I.2] we recall elements of Riemannian geometry; in Section [I.3] we
give well-known facts on operator theory, in particular on unbounded operators and in
section some notions of analysis on manifolds is presented. The reader not feeling
familiar with these subjects might find here some guide to further lecture. Otherwise,
the reader is invited to skip this chapter and start with Chapter [2], only.

In Chapter [2| we discuss elliptic boundary value problems. Although these concepts
account for much more general kind of boundary value problems, we restrict the pre-
sentation to boundary ellipticity (with respect to a cone) for operators of Laplace type
under local boundary conditions. We indicate the results we need, whose proofs can be
either found in the given literature or they are shortly presented for the sake of com-
pleteness. In Section 2.1} generalities on Laplace type operators and boundary operators
are recalled. In Section the notion of Shapiro-Lopatijusky condition and of that
of ellipticity with respect to a cone are given. From sections to [2.3.3] we present
results on the existence of elliptic estimates, notions of L2-realizations for an operator of
Laplace type (under elliptic boundary conditions) as well as results on the existence for
their resolvent.

In Chapter [3] we study spectral properties for the bilinear Laplacian under absolute
and relative boundary conditions on a compact Riemannian bordism, by using the ma-
terial presented in Chapter 2] We start this chapter with a motivation: in Section [3.1]
we give well-known Hodge-de-Rham decomposition results for the Hermitian Laplacian.
In Section we start by defining the generalized operator Ag 4. In Section we
specify our boundary value problem under absolute and relative boundary conditions.
In Section [3.2.2] we point out the role of the Hodge *-operator by making Poincaré-
Lefschetz duality between absolute and relative boundary conditions explicit. In Section
we give an explicit description of the boundary operators imposing absolute and
relative boundary conditions in terms of local computable tensorial objects. In Section
B.3] we use the results from Chapter [2] to derive a Hodge-De-Rham decomposition result
for the bilinear Laplacian on compact bordisms, see Proposition and Proposition
3312

In Chapter |4 we are interested in the coefficient of the constant term in the heat

trace asymptotic expansion:

Tr 2 (¥ exp(tAg)) ~ Z%(‘P, Ag)t=m)/2,

n=0
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when ¢ — 0, associated to Ap a Laplace type operator, such as the bilinear or Hermit-
ian Laplacian (under absolute and relative boundary conditions) and certain auxiliary
bundle endomorphism W. In Section [£.1.1] we present generalities about these coeffi-
cients. In particular, we give fundamental importance to the fact that these coefficients
are computed in terms of locally computable endomorphism invariants expressible as
polynomial functions in the jets of the symbols of the operators under consideration.
In Section [£.1.2] we recall how Weyl’s First Theorem of invariant theory, is used in
the current setting, to express the coefficients in the asymptotic expansion, as universal
polynomial in terms of locally computable geometric invariants. This is Proposition
and it is entirely based on the work by Gilkey in [Gi84], [Gi04] and references therein.
We use Proposition to prove Theorem leading to Theorem later on.
Alternatively, the use of invariant theory (i.e., Proposition in Lemma , can
be avoided see Remark [£.4.2] In Section [4.2] we compute the coefficients of the constant
terms for heat trace asymptotics for the Hermitian boundary value problem. We use
the results of Briining and Ma in [BMO6| in the case - M = (), Poincaré duality and
Proposition [£.1.5] to obtain the desired formulas when 9;M # 0 and O_M # 0, see
Theorem The formulas in Theorem were also obtained with different meth-
ods by Bruning and Ma in their recent work on the gluing formulas for the Ray—Singer
metric [BM11]. In Section we have Proposition giving the first key step to-
wards to the computation for the corresponding coefficients in the asymptotic expansion
for Ag gp. In few words, Proposition tells us how, for each point x € M, we are
able to construct a complex one-parameter family of bilinear boundary value problems
and a real one-paramenter family of Hermitian boundary value problems, which agree
in some small neighborhood of x for conveniently well-chosen values of the parameters.
Section presents Lemma [£.4.T] the second key step towards the computation for the
coefficient of the constant term in the asymptotic expansion for Ag 45, which exhibits
the holomophic dependance of these coefficients on a complex paramenter. Then, in
Theorem [£.4.3] we use these two key steps to compute the desired heat trace asymptotic
coefficients.

For the reader’s convenience, we sketch the main idea in the proof of Theorem {.4.3]
The heat trace asymptotic coefficients are obtained by integrating traces of endomor-
phism valued invariants over M. These invariants are in turn polynomials in tensorial
objects computable using the local geometry of M only. So, locally around each point
of M, the coefficients of the constant term of the heat trace asymptotic expansion for
the bilinear Laplacian are obtained by using the corresponding ones for the Hermitian
Laplacian and an argument of analytic continuation. The main point in this argument is
given as follows. We prove that for each point in M, there exist an open neigbourhood U,
a symmetric bilinear form band a flat complex fiberwise defined anti-linear involution v
on E|y, with the following feature: for certain well-chosen values z € C, with |z| small
enough, the one-parameter family of nondegenerate symmetric bilinear forms b, := b+zb
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can be considered, by means of v, as a real one-parameter family of Hermitian forms on
E|y. Thus, the known results from the Hermitian situation can be used. Finally, since
the obtained formulas depend holomorphically on z, they also hold for all z € C, with
|z| small enough; in particular, for z = 0.

In Chapter [5 we define the complex-valued analytic torsion on a compact bordism,
based on the results from Chapter [3|and we compute the corresponding anomaly with the
results from Chapter[d] In Section we recall some basic setting on finite dimensional
graded complexes and their determinant lines; we explain how a given nondegenerate
bilinear form on the complex determines a corresponding one on its determinant line. In
Section and Section we use the results from Chapter [3|to obtain (-regularized
determinants for the bilinear Laplacian. In Section we define the complex-valued
Ray—Singer torsion on a compact bordism. In Section Theorem is proved by
using the approach given already [BHO7|, in the case of a closed manifold. That is, the
computation of the logarithmic derivative of the complex-valued Ray—Singer torsion is
translated into the computation of the coefficient of the constant term in the heat kernel
asymptotic expansion corresponding to the bilinear Laplacian, from Chapter [

In Chapter 6] we define coEuler structures on (M, d4 M, d_ M), generalizing the work
by Burghelea and Haller in [BHO06a|, [BH06b| and [BHO7| on closed manifolds as dual
to Euler structures introduced by Turaev in [Tu90], see also [Tu02|. In order to define
the set of coEuler structures on a compact bordism, we need certain characteristic forms
on the boundary. These differential forms are constructed from those defined in [BMO6],
which first appear in the anomaly formulas for the Ray—Singer metric and that we then
used in Chapter |5l and Chapter ] to write the corresponding formulas for the complex-
valued Ray—Singer torsion. From Section to Section [6.1.8], we recall in some detail
how these characteristic forms were defined in [BMO06| and then we adapt them to
our situation. The necessary modification of these characteristic forms comes down to
considering the inward (resp. outward) point normal geodesic unit vector fields on 04 M
(resp. O—M). Then, from Section[6.2.3|to Section [6.2.1] we use these characteristic forms
to define coEuler Structures. We first consider the case x (M, 0_-M) = 0 to define coEuler
structures without base point. The space of CoEuler structures on (M,94M,0_M) is
seen as an affine space over the relative cohomology group H™ !(M,dM;C). Then, in
Section we study the case x(M,0_-M) # 0, to define coEuler structures with a
base point. Finally, in Section [6.3] as on closed manifolds, we use coEuler structures to
add correction terms to the complex-valued Ray—Singer torsion; these additional terms
cancel out the variation of the complex-valued Ray—Singer torsion given in Theorem
so that, as on closed manifolds, we obtain a generalized version Ray—Singer torsion
which depends on the flat connection, the homotopy class of the bilinear form and the
coEuler structure only.

Next problems. A natural next step continuing the work in this thesis is to investi-
gate the relation between the complex-valued Ray—Singer torsion and the combinatorial
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torsion, or Reidemeister torsion, in order to derive a Cheeger—Miiller (Bismut—Zhang)
type result (see [BZ92|, [Ch77], [Ch79| and [Mu78|) for the complex-valued Ray—
Singer torsion on a compact bordism. On closed manifolds, Burghelea and Haller formu-
lated this problem in terms of Conjecture 5.1 in [BHOT7|, which first was proved in the
same paper for special non-trivial cases by using an argument of analytic continuation
and then, in [BH10], for closed manifolds in odd dimensions, by extending the Witten—
Helffer-Sjostrand theory for the bilinear Laplacian and using the methods in [BFK96].
Later, Su and Zhang provided a proof of that conjecture in full generality, by adapt-
ing the methods from [BZ92] to the bilinear Laplacian. On manifolds with boundary,
with the assumption that the Hermitian metric is flat and the Riemannian metric has
product structure near the boundary, this comparison problem has been studied for the
Ray-Singer metric, see for instance [LR91|, [L{i93], [Vi95] and [Has98|, where also
gluing formulas were obtained, see Theorem 5.9 in [Lii193] and [Vi95]. More recently,
Briining and Ma obtained in [BM11], a Cheeger—Miiller Theorem, see Theorem 0.1 in
[BM11], for the the Ray—Singer metric on manifolds with boundary as well as gluing
formulas, see Theorem 0.3 and Theorem 0.4 in [BM11]; these results were obtained with-
out any assumption on the behavior of metric or Hermitian structure near the boundary,
by applying the results from [BZ94| and [BM11]. A first attempt is to obtain analog
formulas to those in (and in the generality of) Theorem 0.1 in [BM11] for the bilinear
situation. Once these formulas are established, we would lead to conclude (as in Remark
5.3 in [BHO7]| for closed manifolds), that the (generalized) complex-valued analytic tor-
sion is independent of the bilinear form, i.e., it depends on the flat connection V¥ and
the coEuler structure, only.






CHAPTER 1

Background

For the reader’s convenience, this chapter contains the background needed for this
thesis. The notions below are well-known and they can be found in several (under)-
graduate textbooks. We provide the corresponding references at the begining of each
section. These notions are recalled in the sake of completeness, as hints for further
reading. If desired, this chapter can be completely skipped and the reader may start
reading this thesis at Chapter

In Section [I.I we start with basic definitions, such as Hermitian and bilinear forms
on finite dimensional vector spaces, complex conjugate and complexification of a vec-
tor space and continue with some elements of supergeometry such as superalgebras,
supercommutators and supertraces. Section ends with the statement of the first
Theorem of Weyl’s invariant theory as it is needed in Chapter In Section [1.2] we
provide basics from Riemannian geometry. We recall the notion of associated bundles,
of a frame bundles, of structure group reduction and of orientation bundles. We deal
with vector-valued differential forms, connections on vector bundles and their curva-
tures and de-Rham differential. Furthermore, we recall the Levi—Civita connection and
Riemannian curvature, connection forms, curvature forms, the Christoffel symbols, the
second fundamental form, collared neighborhoods, geodesic and normalized coordinate
systems on manifolds with boundary, the volume form, the Hodge *-operator, Stokes’
Theorem, differential operators, their principal symbol and the notion of ellipticity. As
a very useful result we have Lemma which states how locally, in geodesic coor-
dinates, higher order derivatives of the Riemannian metric can be described in terms
of the curvature tensor and the second fundamental form. In Section we include
basic notions from operator theory dealing with bounded operators on Hilbert spaces
such as the very important class of compact operators and trace-clags operators. For
unbounded operators on Hilbert spaces, we mention the notion of extension, commuta-
tivity, closedness and operator with compact resolvent. In this section, Theorem [I.3.1]
provides a decomposition result for closed unbounded operators, used later in Chapter
Finally, in Section some notions from analysis on manifolds are given, such ash
Sobolev spaces (on manifolds with boundary) and generalized sections (or distributions),
kernels, smoothing operators and the Schwartz kernel Theorem.

1.1. Algebraic background

The notions in this section can be found, for instance, in [Br88|, [Hal74] and [La02].

1



2 1. BACKGROUND

1.1.1. Bilinear forms. Consider V a finite dimensional complex vector space with
a complex symmetric bilinear form b : V x V' — C and denote by V' := Hom(V, C) its
algebraic dual vector space with induced dual bilinear form . A bilinear form b on V
is nondegenerate if and only if the complex linear homomorphism b:V =V , defined
by l;(v) := b(v,+) : V — C, is an isomorphism; for simplicity, we still denote b by b.
Remark that b is nondegenerate if and only if o’ is nondegenerate. The bilinear form b
is degenerate if and only if there exists a non trivial vector vg € V with b(vg,v) = 0
for all v € V. For u,v € V, we write that u L v, if they are b-orthogonal (or simply
orthogonal), i.e., b(u,v) = 0. For each non-empty set S C V, we denote by Ste the
b-orthogonal subspace to S'in V, of all v € V with v 1 s for all s € S.

1.1.2. Hermitian forms. By a sesquilinear form on a complex vector space V/,
we mean amap h:V x V — C being complex linear on the first argument and complex
anti-linear on the second one. A Hermitian form on V is a sesquilinear form h, which
satisfies h(v,w) = h(w,v). An inner product on V is a Hermitian form h which is
positive definite: h(v,v) > 0 for all v € V and h(v,v) = 0 if and only if v = 0. If h
is an inner product on V', then V is naturally endowed with the metric associated to h,
which is called the Hermitian metric on V' (associated h).

1.1.3. Complex conjugate vector space. Let V be a complex vector space and
with Vg its underlying real vector space . The complex conjugate of V, denoted
by V, is the complex vector space having the same underlying real vector space as
that of V, that is Vg := Vg, but whose complex structure is obtained by complex
conjugating the one in V. More precisely, the complex multiplication - in V is defined
by i-v := iv = —iv, for all v € V. Equivalently, this can be described by means of
a complex anti-linear involution 7 : V' — V with 7(v) = v and 7(iv) = —ir(v); the
spaces V and V are isomorphic as real vector spaces, but as complex vector spaces, their
complex structures are intertwined by 7. Every complex linear map f : V — V can be
considered as a complex linear f : V — V as well. But, if g : V — V is a complex
anti-linear map, then, by using 7, g is in one-to-one correspondence with the complex
linear map g := 7og : V — V. In particular, every sesquilinear form h on V can be
considered as a complex bilinear map h: V x V — C.

1.1.4. Complexification. Let V be a complex or real finite dimensional vector
space and Vg its underlying real vector space. The complexification of V' is the complex
vector space obtained by the tensor product VC := Vg€ := Vg @g C. The complex
multiplication is given by a(v® ) := v ® (af) for all v € V and «, § € C. Equivalently,
the complexification VC of V' can be identified with space Vg @ Vi, seen as a complex
vector space, whose complex scalar multiplication is defined by

(a+bi)(v,w) := (av — bw, bv + aw)  for a,b € R;
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in particular, the multiplication by i is given by
i(v,w) = (—w,v).

In this picture, elements such as v + iw € VC are seen as couples (v,w) € Vg @ Vg and
the assignment v — (v, 0), provides the so-called R-linear standard embedding of Vi
into V'C.

1.1.5. Superalgebras, Z,-graded tensor product. Let A be a unital algebra
over C. We say that A is a superalgebra if its underlying vector space is a Zs-graded
vector space. That is,

A=A g Al
where the product “- “ respects the grading: A" - A7 ¢ A+)mod2 1 A and B are two
unital superalgebras, besides the standard tensor product A® B with product (a1 ® by) -
(a2 ® by) = ajas ® bibe, we have the notion of Zs-graded tensor product denoted by
A®B and defined as the superalgebra whose underlying vector space is also A ® B, but
with a Zs-graded product given by

(a1®b1) - (a2®bs) = (—1)deg(b1)deg(a2)a1a2 ® bybs.
The Zo-grading of ARB is given by
(A2B)" .= (A°@&B°) @ (A'®B')
and
(ARB)! = (A"®B") & (A'®B°).
1.1.6. Supercommutators, supertraces. For A a superalgebra, the bilinear map
] AX A= A Ja,b]i=a-b— (—1)del@dellp,
satisfying
[a,b] + (—1)%E@dE®)[p o] =0 and [a, [b,c]] = [[a,b], ] + (—1)%E@dEB)p [q (]]
defines a supercommutator on 4. The couple (A, [-,-]) is called a Lie superalgebra.

A Lie superalgebra A is supercommutative if [-,-] = 0. A supertrace on a Lie
superalgebra (A, [-,]) is a linear form Trg : A — C, satisfying

Trs([a, b]) = 0.

1.1.7. Wey!’s invariant theory. We recall Weyl’s first Theorem of invariants. We
adopt the approach and notation from Section 1.7 in [Gi04] and Section 2.5 in [Gi84],
where much more details can be found (see also [Pr07| and [FH91]). Let V be a
real vector space of dimension n, with a positive definite inner product g and denote
by GIL(V') the space of invertible linear maps from V into itself. Let O(V) C GL(V)
consisting of all invertible linear maps @ : V — V., which leave the inner product
invariant, ie.,g(Quv, Qw) = g(v,w), for all v,w € V. For V*¥ the k-fold cartesian vector
space product of V with the natural action of O(V), a polynomial map f: V**¥ — R
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is a real valued function on V¥ such that f(vi,...,v;) is polynomial in the variables
{vi|]l <@ < k}. In particular, a k-multilinear map is a polynomial map. A polynomial
map f is said to be invariant under the action of O(V), or orthogonal invariant,
if
f(Qui, -+, Qug) = f(ur,---,vg), forall (v, - ,vg) € 1%

and @ € O(V). The set of all such polynomial invariants is a real commutative unital
algebra and it is denoted by Ag(V). Among such orthogonal invariants, we have the
(symmetric) functions g;; := g(v;,v;) for 1 < 4,j < k. Furthermore, every orthogonal
invariant f € Ag(V) is expressible in terms of the invariants g;; for 0 <4, j < k. More
precisely, we have the following, see [We46].

Theorem 1.1.1. (Weyl’s first theorem of invariants) Let V be a real vector space
of dimension n, with a positive definite inner product g, and Ap(V') be the algebra of
polynomial invariants f : V¥ — R as above. For ./Zk(V) := R[gi;] the free polynomial
algebra generated by the the §(k(k + 1)) formal symmetric variables {gi; = gji}1<ij<k,
consider the evaluation map ev(gi;)(v1,--- ,vg) := g(vi,vj). Then, ev induces a natural

surjective algebra homomorphism ev : Ay(V) — Ap(V).

The relations among the generators of the algebra A (V') above are described by the
Second Fundamental Theorem of Weyl. Just in words, these relations determine
the kernel of the map ev in Theorem as an ideal in R[g;;] generated by certain
determinant functions. For instance, the space Zy v C Ay (V) of all multilinear maps f :
V>** 5 R can be completely described by using Theorem as Iy v = Span,ey, (Pk,o)
where Y, is the group of permutations of the set of indices o : {1,...,k} = {1,...,k}
and each py o (v1,. .., V%) = Go(1)o(2) """ Yo(k—1)o(k) 1S @ multilinear orthogonal invariant
map for each o € Y. Any invariant multilinear map is obtained by contraction of indices
in pairs, see Theorem 1.7.3 in [Gi04]. We omit the details describing these determinant
functions in general, but we refer the reader to section 1.7 in [Gi04], section 5, chapter
11 in [Pr07] and the original work of Weyl [We46|.

1.2. Riemannian geometry

In this thesis, M denotes a compact Riemannian manifold, by which is meant
a compact smooth manifold with Riemannian metric ¢ and smooth boundary OM. A
closed manifold is to be understood as a compact manifold without boundary. We
do not assume M to be orientable. The boundary M, seen as a closed Riemannian
submanifold of M, is endowed with the Riemannian metric ¢2 induced by that on M.
For the material in this section, we refer the reader to [AMRO02]|, [BGV92|, [Jo02],
[Gi04], [Mo01] and [Ni07].

1.2.1. Associated bundles. Here, we assume familiarity with the basic notions of
(smooth) fiber, vector and principal bundles, otherwise we refer the reader for instance
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to [BGV92|, [Jo02]| and [Mo01]. Let P be a principal bundle over M with structure
(Lie) group G. We simply refer to it as a principal G-bundle. Let E be a smooth
manifold endowed with p : G — Diff(E), a left action of G, where Diff(E) is the group of
diffeomorphic transformations of E into itself. Then, the associated bundle P xg F

given by
PxgE:=PxE/{(p-g,f) ~(p,p(9)f) for pePgeGandfeFE}

is a fiber bundle over M with fibre FE.

1.2.2. Frame bundles of vector bundles. Let P be a principal G-bundle. If £
is a vector space together with a linear representation of G, then P X ¢ E defines a vector
bundle over M. In general, every complex (resp. real), vector bundle of rank k over M
is obtained as an associated bundle for a certain principal bundle over M with structure
group GL(k, C) (resp. GL(k,R)); this principal bundle is called the frame bundle. More
precisely, for 7 : E — M a complex vector bundle over M of rank k, its frame bundle is
the principal bundle p : GL(E) — M, whose fibre is given by p~!(z) := GL(CF; 7! (x))
with structure group GL(k, C) specifying the action

(p-A)(v) :==p(A-v), for AecGL(k,C), p:CF = n(z) and v € C*

and FE being naturally isomorphic to GL(E) X gL(k;c) C* as vector bundles over M; see
for instance Proposition 1.4 in [BGV92]. As an important example, let us denote by

GL(M) := GL(T'M)

the frame bundle over M corresponding to the tangent bundle TM — M, with structure
group GL(m,R).

1.2.3. Structure group reduction. For P — M a principal G-bundle and H a
subgroup of G, P is said to be induced from a principal H-bundle, if there exists a
principal H-bundle @ such that @ x g G =2 P as principal bundles over M. For H C G a
subgroup of G and P — M a principal G-bundle over M with fiber F', if the associated
principal G-bundle is induced from a principal H-bundle, one says that the structure
group of the bundle can be reduced to H,

Let GL(m,R) be the group of real-valued invertible matrices of dimension m. Con-
sider P any principal GL(m,R)-bundle. For O(m;R) the orthogonal group of dimension
m, denote by Q(m,R) := GL(m,R)/O(m,R) the quotient group. Since Q(m,R) is con-
tractible, the bundle P Xgi(m Rr) Q(m,R) — M admits a section, or equivalently, the
principal GL(m,R)-bundle P is induced from an O(m;R)-bundle; that is, it admits a
structure reduction to O(m;R) and hence any real vector bundle admits an Euclidiean
metric. Analogously, every principal GL(m;C)-bundle admits a structure reduction to
U(m;C) and hence every complex vector bundle admits a Hermitian metric.
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1.2.4. Orientation bundle. If F is a real vector bundle over M, then FE is ori-
entable if and only if the structure group of its frame bundle can be reduced from
O(m,R) to SO(m,R). Consider GL(M) the frame bundle corresponding to the tangent
bundle of M. Then, the orientation bundle ©); over a compact manifold M is the
line bundle defined by © s := GL(M) X o(m;r) Z2, i-e., the fibered product of GL(M) as a
principal O(m;R)-bundle and (with fiber) the quotient group O(m;R)/SO(m,R) = Zs.

1.2.5. Vector-valued differential forms. For T'M the tangent bundle of M, we
denote by

X(M) :=T(M,TM)

the space of smooth vector fields on M, T*M — M the cotangent bundle of M,
A(T*M) — M the exterior bundle of M and by

Q(M) := D(M, A(T* M))

the space of smooth differential forms on M. These bundles are endowed with an inner
product, induced by the Riemannian metric g of M, and simply denoted by (-, ), indis-
tinctly when no confusion is expected. In a similar manner for 7 : £ — M a complex
vector bundles of rank k over M, with space of smooth sections I'(M; E), AT*M ® E is
the tensor product vector bundle of AT*M and E over M and

Q(M;E) :=T(M;AT*M ® FE)

its space of smooth sections or F-valued smooth forms. By choosing a Hermitian struc-
ture h on E and using the Riemannian metric g on M, Q(M; E) can be endowed with an
inner product (-,-)gn. The space Q(M; E) is isomorphic to Q(M) @cee(ar) ['(M; E) so
that it can be considered as C*°(M )-module or as a (M )-module. For a complex vector
bundle E, we denote by E' := End(E; C) its dual vector bundle and by End(E) 2 F'®Q E
its bundle of endomorphisms. On End(FE), the composition of endomorphisms is used
to wedge End(FE)-valued forms on M and Q(M;End(E)) can be regarded as a (graded)
algebra. Then, End(E)-valued forms can be considered as acting on E-valued forms so
that Q(M; E) can be considered as (graded) module over Q(M;End(E)) as well.

1.2.6. Pull-back vector bundles. For N a closed submanifold of M we consider
the bundles TN, T*N and A(T*N). Moreover, given a bundle 7 : E — M, we use the
canonical embedding iy : N — M, to pull E back over N: the pull-back along iy is

E|y :=inE :={(e,n) € E x N|in(n) =n(e)},

where 7|y :=iy7 : i)y E — N is seen as the restriction bundle of 7 to N. In particular,
for A(T*N) ® E|y — N, the space of smooth E|y-valued differentiable forms on N is
denoted by

Q(N; E|n) :==T(N; A(T"N) @ E|N).
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1.2.7. Linear connections. Let E be a complex vector bundle over M of rank k.
A (complex) linear connection on E is a C-bilinear map

VE . X(M)xT(M;E) - T(M;E), (X,s)— VE(s),

which is also C°°(M)-linear with respect to X(M) and satisfies the Leibniz rule on
['(M; E). The covariant derivative along a vector field X € X(M) is denoted by V£.
The connection V¥ induces a dual connection on E’ given by

VE (#)(s) = X(£'(s) — ' (VE(s),

for all s e I'(M; E), t' € T'(E’), and X € X(M) and also a connection on End(E) given
by
End(E
VD) () = VR(T() = (VK (5)),

forall X € X(M), T € I'(M;End(F)) and s € I'(M; E).

1.2.8. Curvature of a connection. The curvature R¥ € Q%(M;End(F)) corre-
sponding to the connection V¥ is defined by

RE(X,Y) := VRV = VEVE - Vi y,

where [X,Y] is the Lie bracket of vector fields X and Y in X(M). If RE is identically
zero, then V¥ is called a flat connection, and E a flat vector bundle . If F is a flat
vector bundle, then there exists a locally constant trivializing atlas, i.e., a vector bundle
atlas {Uj, ¢;}, whose transition functions are locally constant functions.

1.2.9. The De Rham differential. A connection V¥ on a complex vector bundle
E over M determines dg : I'(M;E) — QYM;E) a graded derivation on Q(M;E),
obtained by defining dg (s)(X) := VE(s), for X € X and s € ['(M; E), and uniquely
extending it to Q(M; E) by requiring the (graded) Leibniz rule

dp (@ Av) = daAv+ (—1)%@Da A dp (v)

to hold for a € Q(M) and v € Q(M; E). Moreover, if V¥ is flat, then dg defines a
differential on Q(M; E), also called the de Rham differential on E-valued smooth

forms.

1.2.10. Connection 1-form. Each connection V¥ can be uniquely locally de-
scribed over an open neighborhood U of M in terms of X € X(M) and s € I'(M; E),
by a straightforward use of the Leibniz rule. Let V£ (s)|y be the value of V£ (s) on U,
which depends on X and s over U only. Then, if X and s are defined on U only, it
makes completely sense to talk about V¥ (s)|yy as a section of the bundle E|y, with the

connection obtained by restricting VZ to U. For {s1,...,s;} a frame of E|y, we can
write V&s; = Zlle w;- (X)si, for any X € X(U), where w;- € Q(U) are differential forms

over U. By using the Leibniz identity only, the formulas above completely determine the

value of the connection on arbitrary sections of E over U. Then, the collection of all w;-

can be seen as a matrix w? := (w;)” € M(k; Q1(U)), called the connection 1-form
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{s1,..., 5%} of E|y. Now, for U’ another open set of M, {s|,...,s}} a frame of E over
U’, consider the corresponding connection 1-form (w)’. If h := (h;) denotes the matrix
of coordinate change between these frames, i.e. s, = Z;n:1 hésj over U NU’, then a di-
rect computation involving the use of the Leibniz rule and basic algebraic manipulations
leads to the transformation relation (w”) = (dg)h™* + hw®h~1.

1.2.11. Curvature 2-form. For U an open set of M, consider the bundle E|y with
{s1,...,s,} aframe of F|y and the corresponding induced connection. In a similar way,
the curvature RF can be described locally over U in terms of the chosen frame by

B(X,Y)s; = Zm (X,Y)s;,

where /{é- € Q%(U), for any X,Y € X(U). Then, the matrix ¥ := (fi;)” € M(k; Q2(U))
is the curvature 2-form of R” with respect to the frame {s,...,s;} of E over

U. For w¥ the connection 1-form over U, we have the relation
dw® = —wP A WP + kP,

Again consider for U’ another open set of M, {s,...,s}.} a frame of E over U and
(k¥)" the corresponding curvature 2-form. If h := (h’) denotes the matrix of coordinate
change between these frames, i.e. sj = 7" LR 4sj over UNU’, then (kF) = hrFh1
over U NU’. These relations translate exphc1t1y the fact that the curvature is globally
defined as an End(E)-valued smooth 2-form over M.

1.2.12. Levi-Civita connection and Riemann curvature. For a Riemannian
manifold M, there exists a unique a torsion free connection VI on TM that is com-
patible with the Riemannian metric. By being by a torsion free connection, we mean
(X,Y]=VIMYy — VIMX for all X,Y € X(M), and by being compatible with the Rie-
mannian metric, we mean X (g(Y,2)) = g(VxY,2)+g(Y,VxZ) forall XY, Z € X(M).
This is the Levi-Civita connection and entirely determined by the so-called Kozul for-

mula:
QQ(V)(Y, Z) = Xg(Y, Z)+Yg(Z,X)*Zg(X, Y)*Q(Xv [Y» Z])Jrg(Y’ [Z’ X])+9(Za [Xv Y])

The Levi—Civita connection naturally induces connections on T*M and on higher order
tensor bundles of mixed type, which be denoted by indistinctly by V (or V9), when no
confusion appears. Similarly, on the boundary, the Levi-Civita connection corresponding
to the metric ¢?, is denoted by V2. The Riemann curvature tensor, denoted by R,
is the curvature associated to V. The Riemann curvature tensor is the 4-tensor:

R(X,Y,Z, W) =g((VxVy —VyVx = Vixy]) Z,W)
satisfying, together with the relation

R(X,Y,Z,W)=R(ZW,X,Y)=—R(Y, X, Z,W),



1.2. RIEMANNIAN GEOMETRY 9
the Bianchi identity:
RIX,Y,ZW)+R(Y,Z, X, W)+R(Z,X,Y, W) =0.
Higher order covariant derivatives of R with respect to the the Levi-Civita connection,

are denoted by V*R.

1.2.13. Christoffel symbols and derivatives of the metric. Let us denote by
T = (a:l,‘-' , ')

a local coordinate chart of M. We denote by 9; := 8., and dz? = ¢(9j,-) for j €
{1,--+,m}, the corresponding local coordinate frames for TM and T*M respectively.
The components of the metric with respect to the given local frame on T'M are denoted
by gij = 9(9;,0;), while g indicate the components of the inverse matrix. In these
coordinates, the Levi-Civita connection on TM (resp. T"M) reads as

Vo,0; =50, (resp. Vo da' =T 1dy),
where
Lji = g(Vaj(‘)i,ak) and F?Z- = gklfjil
are the Christoffel symbols and satisfy the relations
I'h=g"Tju and T, =-Ty;"
Similarly, the components of the curvature tensor R relative to the local coordinate
frames 0; are given by
Rijki :== 9 ((ViVj = V;V;) 0k, 0) .
The Christoffel symbols are expressible in terms of first order derivatives (or 1-jets)
of the coeflicients of the Riemannian metric:

1
5@;‘9% + 0i9jk — Orgji)

and subsequently the curvature form for the Levi-Civita connection can be expressed in

Ljix =

terms of second order derivatives (2-jets) of the coefficients of the Riemannian metric
Rijil = Gal (airjka — 0T T30, — Pjﬂarikﬁ) .

1.2.14. Normal bundle. For M a manifold with boundary OM and i : OM — M
the canonical embedding, the normal bundle of OM in M is the vector bundle over
OM of rank 1, defined as the quotient

N(OM) := i*TM/ToM

where i*T'M = T'M |y is the restriction of TM to OM. Remark that this definition does
not require a Riemannian metric on M. However, if (M, g) is a Riemannian manifold,
then the metric can be used to regard N(OM) as a subbundle of T'M |z, by identifying
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N(OM) with T(OM)1s, the orthogonal complement of TOM in TM |y with respect to
g. In this situation, we have have a splitting

TM|opr = T(OM) @ T(OM)Le
with
T(OM)ts = N(OM) = M x R,

where 7@ : TM|gps — T(OM) and wts : TM|gps — T(OM)Ls are the corresponding
projections.

1.2.15. Second Fundamtental form. For XY € T'(OM,T(0M)), denote by
X,Y be arbitrary extensions to a neighborhood of M in M. If V is the Levi-Civita
connection on T'M, then with respect to the splitting explained in Section , \Y% Xi/
can be written as ViV = 1(VY) + 79(VY). Thus, the second fundamental
form is the bundle map

L:T(OM) x T(OM) — T(OM)*s, L(X,Y):=79(ViY):= g(V£Y, Gn) )

* Sin
M

where ¢, is the inwards pointing geodesic unit normal vector field to the boundaryﬂ.
In fact, this definition does not depend on the extensions of X and Y, and that L
is C°°(M)-bilinear and symmetric, in other words, L is symmetric (0,2)-tensor. The
vanishing of the second fundamental form is translated into M being totally geodesic
in M, ie., if the geodesics of (OM,¢%) are geodesics in (M,g) under the canonical
embedding ¢. In particular, if L vanishes, then the metric g is product-like near the
boundary.

1.2.16. Geodesic coordinates. Consider a compact Riemannian manifold (M, g).
For each o € M, the exponential map at x¢ is the map exp, : T M — M defined by
exp,, (X) := vx(1), where the curve vx : [0,00) — M indicates the geodesic starting at
xo, with constant velocity 7 (0) = X. The integral curve of X starting at z¢ is yx () =
expy, (tX). f B(0yy, €) C Ty M indicates the open ball in T;,) M centered at 0y, of radius
€ > 0, then there is an ¢ > 0, for which exp,, : B(0z,,€) — M, is a diffeomorphism on
its image and we set U := exp, (B(0z,,¢€)). With respect to the Riemannian metric, we
fix e = (e1,...,ep) an orthonormal basis of T,,M and its associated coordinate chart
(xl,--- ,2™). The local coordinate chart (U, z!,--- 2™) obtained in this way is called
a a geodesic coordinate chart. With respect to the local frame e, each X € T),, M is
written as X = zle; + -+ + 2", and therefore the geodesic curve at zo with velocity
X, is yx(t) := (tz!,--- ,tz™). In these coordinates, o € M is represented by (0,...,0),
gij(xo) = 64, Ffj(xo) = 0 and 0Okgij(xo) = 0. Moreover in these coordinates, higher
order derivatives of the Riemannian metric can be expressed in terms of higher order
derivatives of the curvature at zop € M (c.f. Lemma in Chapter [4).

1 Recall the Gauss formula: V;(f/‘a = V%Y +L(X,Y) where V? is the Levi-Civita connection
M

on the boundary.
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1.2.17. Collared neighborhood. Let M be a compact manifold with Riemannian
metric g and ¢, the inwards pointing geodesic unit normal vector field to M. For each
fixed point yo € OM consider the geodesic 7y, (t) starting at yo with velocity

d
&7110 (0) = Gin-
There is € > 0 such that for each yo, the map ,,(t) € M exists for each ¢t € [0,€) and

U D OM an open neighborhood of OM in M, over which the map
OM x [0,€) = U, (yo,t) = Yy (t)

is a diffeomorphism. The neighborhood U is called a collared neighborhood of OM
in M.

1.2.18. Normalized coordinate system of the boundary. Given a local coor-
dinate system (y!,--- ,y™~!) for M, the collared neighborhood induces a local coordi-
nate system x = (y!,--- ,y™ "1, ™) near the boundary, called normalized coordinate
system, where 2" measures the geodesic distance to the boundary. In these coordi-
nates, the curves 2™ — (y,2™) are unit speed geodesics orthonormal to the bound-
ary. The associated coordinates frames for the tangent and cotangent bundles of the
boundary are denoted by 0, := Oya and dy® = ¢(0a, ) respectively; here the greek
indices «, ,... € {1,--- ,m — 1}, whereas roman indices i,j... € {1,...,m}. Near
the boundary, we denote by e = {e1,--- , ey} an arbitrary orthonormal frame for T M
with ey, := ¢, and as usual we use the metric to fix the corresponding local orthonormal
coframe {e!,---,e™} on T*M. At the boundary, higher order derivatives for the com-
ponents of the Riemannian metric have a particular simplified form in these coordinates,
see Lemma [1.2.1]

1.2.19. Local expression for the second fundamental form. Let us choose a
local normalized coordinate chart around the boundary. The tensor field components of
the second fundamental form L, relative to this chart are

Lag :==9(Va,08,em) = Lagm.,
where o, 5 € {1,--- ,m — 1} and e, := G, is the inwards pointing geodesic unit normal
vector field to M. Since the curves t — (yo,t) are unit geodesics perpendicular to OM,
we have
V9,,0m =0, gmm(y,0)=1 and gam(y,0)=0.
In particular, the first derivative of the components of the metric along the normal
direction, on a tubular neighborhood is

8mgmm =0.

By using the formulas from [1.2.12] on the collared neighborhood, a straightforward com-

putations leads to
1
La,B = _5 mYa-
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1.2.20. Jets of the Riemannian metric in geodesic coordinates. Higher order
derivatives (or jets) of the Riemannian metric can be expressed in terms of geometric
objects such as the curvature tensor and the second fundamental form. The following
was originally proved by Atiyah-Bott and Patodi in [ABP75], see also Lemma 1.1.1 and
Theorem 1.1.3 in [Gi04] and Lemma 1.11.4 in [Gi01].

Lemma 1.2.1.  Let M be a compact Riemannian manifold and x¢ € Int(M) a point in

its interior. Let (z',--- ,2™) be a geodesic coordinate system centered at xg € M. Then
g,uz/(xO) 6;1,1/7
OoGuv(r0) = 0
ayaeg;w (1'0) = % (R/ﬂ/0'6 - R,ueua)
0y0e0agus(¥0) = 3 (aRuvoe — OaRycve)

More generally, (Oa, - - O, 9uv) (T0), arbitrarily higher order derivatives of the metric g

at xo, can be expressed as polynomials in the variables
{R,VR,V?R---},

i.e., higher order covariant derivatives of the curvature at xg. In order to account for
the boundary, let yo € OM and (y',--- ,y™ ') be a geodesic coordinate system at yo so
that (y,x™) is a local coordinate chart of M, where ™ is the geodesic distance to the

boundary. Then

9um (yO) 0,
Imm (o) = 1,
Guv(Yo) = O,
o9 (Yo) = 0,
amg;w (yO) = _2|-;w

and more generally, (O, - -+ Oa;9uv) (Y0), arbitrarily higher order derivatives of the metric

of g at yo, can be written as polynomials in the variables
(R, VR, V2R .- ,L, VL, VO°L...},

1.e., higher order covariant derivatives of the curvature and the second fundamental form
at yo.

1.2.21. Bundles of densities and volume forms. Let M be a compact manifold
of dimension m and s € R. By using the frame bundle GL(M) corresponding to the
tangent bundle of M, see Section [1.2.2] one can construct a vector bundle over M
associated to each linear representation of GL(m,R). Among these associated bundles,
we have the bundle of densities. The bundle |Ay/|* — M of s-densities over M is
defined as the associated bundle to the frame bundle GL(M) with respect to the one
dimensional representation A +— |det(A)|~* of GL(m,R). Sections of |Ays|® can be seen



1.2. RIEMANNIAN GEOMETRY 13
pointwise as functions
a: AT, M\{0} - R with a(AX)= |\ a(X)

for each A # 0, X € T, M and x € M. The bundle of s-densities is a trivializable bundle,
but there is no a canonical trivialization.

We denote by |Axs| := |Ap|' — M, the bundle of 1-densities, whose sections are
used for instegrating sections on non orientable manifolds: In order to do that, one uses
the 1-density voly(M), given locally in terms of a local chart (U, z1,...,xm) by

Volg(M)(Bay, - - ) = 1.

There is a unique real linear form [,, : T(M,[Ay|) — R, called the integral over M,
which is invariant under diffeomorphisms so that in local coordinates, exactly coincides
with the Lebesgue integral: for f := f - voly(M)(x) a smooth section of |Ap/| with
compact support contained in U,, we have

/f:: [ f(x) - voly, (M) = fo(z)dz! - dz™,
M Ua

Rm
see for instance Proposition 1.23 in [BGV92].

Another example of associated bundle to the frame bundle GL(M) is the bundle
of volume forms A™T*M, defined as the bundle associated to the one dimensional
representation A — det(A)~! of GL(m,R). There is a canonical line bundle isomorphism
D |Ay| = AMT*M ® Oy, defined in such a way that for each p € |Aps|, the map
O(p): TM x --- x TM — Oy, is the skew symmetric m-linear map pointwise given by

D(p)ler, ... em)s = (z,0(e1,....em)zpler, .- em)a),

where 0(eq, ..., en), is the orientation of T, M determined by the ordered set of linearly
independent vectors ey, ..., ey at T, M. We also denote by ® the corresponding map of
smooth sections. The bundle A"™T™ M is trivializable if and only if M is orientable. If M
is oriented, then |A | is canonically isomorphic to A™T™* M. The space of smooth sections
of the bundle A™T*M ® Oy — M is denoted by Q(M;0Oy;). These are also referred
as forms on M twisted by Ojs. There is a unique (twisted) De-Rham differential:
de,, : QF(M,0,) — QFL(M,0)) such that for v € QF(M,0)) a form on M with
values in Oy and v = a ® o, where ¢ is locally constant on a neighborhood U, then
de,,v :=da ® o on U, where d is the De-Rham differential on Q(M); for simplicity, we
still write d for dg,,, whenever no confusion appears.

In order to integrate (twisted) m-forms over M, we use the canonical isomorphism
of line bundles isomorphism ® above In view of ®, the integral of v € Q™(M; O,) is un-
derstood as the integral of the 1-density ®!(v) over M. This construction permits us to
identify the 1-density vol, (M) with the (twisted) top-form ®~!(vol,(M)) € Q™(M; O ),
called the volume form of (M,g). In the sequel we assume this identification to be
made when it comes to integrate m-forms over M. If {Xy,..., X,,} C T, M is a basis of
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T,M and {ei,...,en} an orthonormal basis of T, M, with the same orientation as the
one specified by {X1,..., X} at x, then the value of voly(M) at z is

Voly(M)o(X1.. ., Xm) := /det(ga(Xi, X))l A= A €™

1.2.22. Hodge x-operator. For a compact Riemannian manifold M with metric
g, and 0 < k < m, consider the bundles A¥T*M — M endowed with the corresponding
induced metrics (-,-)y. There exists a unique isometric isomorphism of vector bundles
*km—k @ ART*M — A™FT*M @ Oy, defined by a A xa/ = {(a,a/)gvol, (M), where
a,a’ € A*T*M. This operator is called the Hodge *-operator

1.2.23. Stokes Theorem. Let ©y); be the orientation bundle of OM and con-
sider ¢ : OM <— M the canonical embedding. In this thesis, the bundle *©,; is
identified with the bundle Oy — OM by using the following convention: Near the
boundary consider —X any outwards pointing normal vector field to OM. Then, a
section o € Q™ L(OM; Oyyy) is identified with the section —a Ao € Q™(M, Oy), where
a € QY(M,0)y) is a 1-form satisfying a(X) = 1, near the boundary. In this way, we say
that the (twisted) form o on OM is induced by —a A o and we identify O,7|sps with
©onr- The Stokes” Theorem for non (necessarily orientable) compact manifolds states
that [;, de,,v = [, v, for each v € Q(M;Oys). In particular, if M is orientable and
—a Ao defines an orientation on M, then this convention is in accord with the induced
orientation on dM, that is, the one specified by o as a (m — 1)-form on the boundary.

1.2.24. Differential operators. For F, G complex vector bundles over a compact
Riemannian manifold M and ®gemT™M the k-fold symmetric tensor product bundle
of T*M, we consider Hom(®j symT*M ® F;G) — M, the coefficient bundle over
M, with space of smooth sections I'(M; Hom(®y symT*M ® F';G)). With a connection
VI T(M;F) - T(M;T*M ® F) on F and the Levi-Civita connection on T*M seen
as derivations, consider corresponding the induced connection on ®;T*M ® F,

VO = VO MEF . DV @, T*M @ F) — T(M; Q1 T*M @ F)
and denote by
vEI®  D(M; F) — D(M; @, T*M @ F),

the composition V&-1T"MBF o ... o yT"MOF o gF where vFe? — Idp. A linear
differential operator D : I'(M; F) — I'(M; G) of order d > 0 from F to G is a linear
operator that can be written as

d
D=> aroVH", where a; € I(M;Hom(®emT"M ® F,G)).
k=0

This definition is independent of V¥ and the Riemannian metric g on M.
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1.2.25. Ellipticity. For F, G complex vector bundles over M, consider a differential
operator D : T'(M; F) — T'(M; G) of order d > 0 from F to G. The principal symbol
of D is the bundle map or(D) : "M — Hom(F, G), invariantly defined by

o1(D)() =it a(€® - @),
for £ € T*M. The symbolic spectrum of D is the set
Spec (D) :={A € C| 3¢ e T*M\{0} s.t. det(or(D)(§)— A) = 0}.

A differential operator D : I'(M; F') — I'(M; G) is elliptic if 0 ¢ Speci (D) or equivalently
if 07,(D)(§) € Hom(F, G) is an isomorphism for all £ € T*M\{0}.

1.3. Operator theory
The material in this section can be found in [Ka95| and [RS78|.

1.3.1. Bounded operators. Let H be a (complex separable) Hilbert space with
Hermitian inner product (-, )% and corresponding norm || - ||. A subset &€ C H is a
linear subspace in H, if for every u,v € £ and o € C, then u 4+ av € £. For a linear
subspace £, we denote by &£ := E”'”H , its closure in H. A linear subspace £ is complete
if and only if £ = &, that is, £ is a Hilbert subspace in H. For H; and H» two Hilbert
spaces, a linear operator A : H; — Hs is bounded if there exists a constant M < oo
such that ||Aul|, < M||u|y, and the operator norm of A, is defined by

Aul|y
Al 34 == sup | Aul,
uEH1;u#0 HUHH1

The set of bounded linear operators is denoted by B(H1, Hs2), but if H = H; = Ha, then
this is denoted by B(H) := B(H, H) and called the set of (linear) bounded operators
on H. Let Im(A) be the image of A and ker(A) its kernel. An operator A € B(H1, Ha)
is invertible, if ker(A) = {0} and Im(A) = Ha. If A € B(H1,H2) is invertible, by
the inverse mapping Theorem, there exists a unique linear operator A~! € B(Ha, H1)
such that A~1Av = v for all v € Hy and AA 'u = u for all u € Hy and one says
that A is an isomorphism (of Hilbert spaces). For each A € B(H1,H2), there exists a
unique A* € B(Ha, H1) satistying (Av,u)y, = (v, A*u)y, for each v € Hy and u € Ha
and called the adjoint to A. The space B(H) with operator norm || - || is an involutive

Banach algebra over C, the multiplication is the composition of operators, the involution
is given by the adjoint operation and the relation ||A*A| = ||A||? is satisfied, i.e., B(H)
is a C'*-algebra.

1.3.2. Projections and decomposition of Hilbert spaces. Let A be a bounded
operator on a Hilbert space H. A linear subspace £ is said to be invariant under A, if
AE C £. An operator P € B(H) satisfying P2 = P and P* = P is called an (orthogonal)
projection. If P is a projection, then I — P is a projection as well and there is a Hilbert
space decomposition H = Hp @ H;_p where Hp := Im(P) and H;_p := Im(I — P) are
Hilbert subspaces in H and invariant under P and I — P respectively. Conversely if ‘H
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decomposes as the direct sum of Hilbert subspaces H = H1 @ Ho, then there exists an
orthogonal projection P with H; = Im(P) and Ha = Im(I — P) respectively.

1.3.3. Unbounded operators. An unbounded linear operator from a Hilbert space
‘H1 to a Hilbert space Hs is a couple (T, D(T)), where D(T) C H; is a linear subspace
of H;, called the domain of definition of T, and T : D(T') — Hz is a linear map
satisfying

T(au+v) =aTu+Tv, forall w,veD(T) and aeC

Let (T,D(T)) and (S,D(S)) be two unbounded operators from H; to He. The
addition of 7" and S is the unbounded operator (1T'+ S,D(T + S)) where

D(T+ S):=D(T)ND(S)

and
(T+ S)u:=Tu+ Su foral weDT+S).

The composition of two unbounded operator is the unbounded operator (7'S, D(T'S)),
where
D(TS) :={u e D(S)|SueD(T)}

and

(T'S)u :=T(Su), forall uweDTS).
In general, the linear subspaces D(T + S) and D(T'S) are not necessarily closed and
they might consist of 0 only. If A € B(H1,H2), then D(T + A) = D(T') and D(AT) =
D(T). The commutator ([T, S],D([T,S])) of two unbounded operators (7, D(T')) and
(S,D(S)) on H is defined by

[T, S]u :=TSu— STu, forall weD(T,S5]),

where
D([T,S]) :={u e DT)ND(S)|Su € D(T) and Tu € D(S)}.
The operators (T, D(T')) and (S,D(S)) commute if T'Su = STu for all u € D([T, 5)).

1.3.4. Extensions of unbounded operators. One says that two unbounded op-
erators (7, D(T)) and (S, D(S)) from H; to Ha, define the same operator if D(T") = D(.S)
and Tu = Su, for each uw € D(T). If D(T) C D(S) and Tu = Su for all u € D(T'), then
(S,D(95)) is an extension of (T, D(T')) or, equivalently, (T, D(T)) is a restriction of
(S,D(S)), in which case one writes (7,D(T)) C (S,D(S)). An unbounded operator
T :D(T) — Ha is bounded on its domain D(T") C Hy, if there exists a constant M < oo
such that ||Tu||lp, < Mlully, for all w € D(T'). If T is bounded on its domain D(T),
then its operator norm is computed as the infimum of such M’s on D(T'). If T is an
unbounded operator but bounded on its domain D(T'), then T' admits a natural exten-
sion (T, D(T)), where D(T) := D(T) is the closure of D(T) in H and the operator T is
defined as follows: If u € D(T) then Tu := Tu. If u € D(T)\D(T), then, one chooses
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a sequence {u,} C D(T) converging to u in the || - |,-norm so that, the sequence Tu,,
converges v € Ha in the || - ||g,-norm, as T is bounded on D(T'), and then one sets
Twu := v. This definition does not depend on the choice of the sequence involved, as long
as T is bounded on D(T). In addition, if D(T) is dense in Hi, then T € B(H1, Hsa).

1.3.5. Closed operators. An unbounded operator (T,D(T)) from H; to Ho, is
closed if every sequence {uy,} in D(T') that converges to u in H; and that {Tu,} con-
verges to v in Ha, then v € D(T') and Tu = v. An unbounded operator 7" bounded on
its domain D(T), is closed if and only if D(T') is closed; in particular, every bounded
operator is closed. If (7,D(T)) is closed and (S,D(S)) bounded on its domain with
D(S) D D(T), then (T'+ S,D(T + 5)) is closed.

Consider Im(T") := {u € Ha| there is v € D(T) with u = T'w} the image of T and its
kernel ker(T) := {v € D(T)|Tv = 0}. An unbounded operator (T, D(T)) from H; to
Ho is invertible on its image if ker(7') = {0} and there exists a unique linear operator
(T~1, D(T71)) from Ha to Hy, with D(T1) = Im(T), Im(T—1) = D(T) such that their
composition satisfy T~1Tv = v for all v € D(T) and TT 'u = u for all u € D(T1).
If (T,D(T)) is invertible and closed, then (T, D(T~1)) is closed. If (T,D(T)) is an
unbounded operator from Hs to Hsz and (S, D(S)), an unbounded operator from H; to
Ha, are closed operators, and T—! € B(H3, Ha), then (T'S,D(T'S)), unbounded from H;
to Hs, is also closed.

1.3.6. Graph norm. Let (7,D(T)) be an unbounded operator from H; to Ha.
Consider the product Hilbert space Hi X Ho endowed with the norm

1y 0) s xes 2= lullFy, + ol3,)' 2.
The graph of (T, D(T)) is the linear subspace
G(T) :=A{(u,Tu)lu € D(T)} C H1 x Ha.

The operator (T, D(T)) is closed if and only if its graph G(T') is a closed linear subspace
in H1 x Ho with respect to the norm ||(+, *)||3y x 1o If (T, D(T)) is closed, then G(T) is
a Hilbert space, with inner product

<U7U>T = <u,v>7.[1 + <TU7TU>H2

for u,v € D(T'). The associated norm to (u,v)r is exactly the norm ||(-, )|/, xx, i
H1 x Ha restricted to the graph of T'. This is the graph norm associated to 1"

lullz = (lullf, + 1TulF,)"?

for u € D(T).
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1.3.7. Closeable operators. An unbounded operator (7, D(T)) from H; to Ha is
closeable , if it admits a closed extension (S, D(S5)); that is, if for every sequence {u, } in
D(T) converging to 0 in the || - ||3,-norm such that {T'u,} converges in the || - |3, -norm,
then we necessarily have lim,_,o ||Tun||7, = 0. T is closeable if and only if the closure of
G(T) with respect to the ||-||p-norm is itself a graph. If (T, D(T')) is closeable, then there
exists a unique operator (T, D(T')) whose graph G(T) is exactly the closure of G(T') with
respect to ||-||7. The operator (T, D(T)), called its closure (extension), is exactly the

Sy Il

smallest closed extension of (T,D(T)) and u € D(T) if and only if (u,Tu) € G(T)

In other words, u € D(T) if and only if there exists a Cauchy sequence u, € D(T)
converging to u such that (u,,Tu,) is a convergent sequence in H; X Hsg in the graph
norm. In this situation, one sets Tw = lim,_,o, Tu,. This notion generalizes that of

closure for an operator T bounded on its domain.

1.3.8. The adjoint. Consider un unbounded operator (7,D(T)) from H; to Ha
with D(T") dense in H;. The adjoint of T is the unbounded operator (7%, D(T*)) from
Hs to Hy, where D(T*) consists of all u € Hy for which there exists u* € Hj such that
(u*, vy, = (u, Tv)y, for all v € D(T') and T is defined by T*u := u* if uw € D(T™). The
condition of D(T') being dense in H; is necessary for 7™ to be well defined. The linear
subspace D(T™) could a priori be trivial, but if T" is closeable, then D(T™) is dense in
Ho. If (T, D(T)) is an unbounded operator on H, with domain D(T') dense in H, then
(T*,D(T*) is a closed operator with ker(T*) = Im(T)"*.

1.3.9. The resolvent and the spectrum. Let (T, D(T)) be a closed unbounded
operator on H. The resolvent set of T is the set p(7") consisting of all complex numbers
z € C such that (T' — z) is invertible with bounded inverse. In other words, z is in the
resolvent set of T if and only if ker(T — z) = {0}, Im(T — 2z) = Hz and (T — 2)~ ! is
bounded. Remark that the set p(7') is an open set in C. For z € p(T), the bounded
operator Ry(z) := (T — z)~! is called the resolvent of T at z and it provides a bijection
between ‘H and D(T"). The map z — Ry(z) is called the resolvent of 7. The resolvent of
T is holomorphic: for each z € p(T'), the function z — Ry(z) admits a Taylor expansion
in the operator norm. If 21, 29 € p(T) the operators (T —z1) ™! and (T — 22)~! commute.

The spectrum of T is the closed subset spec(T") := C\p(T) in C. Note that z €
spec(T') if and only if the operator (T'— z) is not injective or it is not surjective or it does
not admit a bounded inverse. A complex number A is an eigenvalue of (7,D(T)) if
Ju € D(T), u # 0, with Tu = Au. All eigenvalues of T" are contained in spec(T"). If A € C
is an eigenvalue of (T, D(T)), then Hp(A) := {u € D(T)|Tu = Au}, is the eigen-space
of T' corresponding to A.

1.3.10. Compact operators. Let Hq and Hy be two infinite dimensional Hilbert
spaces. An operator A € B(H1,H2) is called compact if for any bounded sequence
{vn} in H; the sequence {Av,} contains a subsequence which converges in Ho. The
space K(H1, Ha) of all compact operators from H; to Ha, is a closed (two sided) ideal in
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B(H1,Hz2). The spectrum of a compact operator K € K(H1,Hz) is either a finite subset
in C containing 0, or a countably infinite set in C with 0 as its only accumulation point.
Each X € spec(K), with A # 0, is an eigenvalue of K of finite multiplicity.

1.3.11. Fredholm operators. Let A € B(#H;,Hz2) be a bounded linear operator.
A is Fredholm if its kernel Ker(A) and its cokernel Hy/Im(A) are of finite dimension.
In particular Im(A) is closed in Hs. A bounded operator A is Fredholm if and only there
is S € B(Ha,H1) such that SA — Idy, € K(H1) and AS — Idy, € K(H2).

1.3.12. Trace class operators. An important class of compact operator is the so
called trace class operators. Let Hi,Ho be Hilbert spaces, T' € K(H1,H2) a compact
operator and 7™ its adjoint. Then, Spec(T™*T), the spectrum of T*T € K(H}), consists of
real nonnegative eigenvalues only. One says that the operator T' € K(H1, H2) is of trace
class if the formal series 3 cqoec(re) p/? converges. If T € K(H1, Hs) is of trace class
and B € B(Hz,H3) is a bounded operator, then the compact operator BT € K(H1, H3)
is also of trace class. Analogously, if B € B(#H1,H2) and T € K(H2, H3) is of trace class,
then TB € K(H1,Hs3) is of trace class as well.

1.3.13. Unbounded operators with compact resolvent. A more general class
of unbounded operators which possess similar properties as those in the bounded case are
the operators with compact resolvent . If (T, D(T)) is a closed operator from H; to
Ho with compact resolvent, that is if Rp(z) € K(H1,Ha), for some z € C, then spec(T")
consists of isolated eigenvalues with finite multiplicity only and Ry (z) is compact for all
z € p(T).

1.3.14. Commutativity and decomposition. Let (T, D(T)) be an unbounded
operator acting on ‘H and A € B(H) a bounded operator. We say that that 7" commutes
with the bounded operator A, if for each u € D(T') we have Au € D(T') and T Au = AT u.
Consider a decomposition of Hilbert spaces H = Hp @ H;_p with P € B(H,H;) the
bounded orthogonal projection on Hp. The operator (T,D(T)) is said to be decom-
posable according to the decomposition of H above, if T commutes with P, or in
other words, if PD(T) C D(T') and if T leaves invariant Hp and H;_p in the sense
that T(D(T) N Hp) C Hp and T(D(T) N Hi—p) C Hi—p. If (T, D(T)) is decompos-
able as above, then the restriction of T' to Hp, is denoted by (T%,,D(Tx,)), where
D(Ty,) = D(T) N Hp and Ty, u := Tu, for all u € D(Ty,,). The restriction of T' to
Hi—p is defined in the same way. If T is closed, then T3, and T3, , are closed. The
following result is Theorem 6.17 in [Ka95].

Theorem 1.3.1.  Let (T, D(T)) be a closed unbounded operator acting on a Hilbert space
H. Suppose that spec(T) splits into two disjoint parts spec(T)1 and spec(T)s2, such that
spec(T)1 is a bounded subset in C that can be enclosed in the interior of a simple closed
curve I' and spec(T)y in its exterior. Then, H decomposes as a direct sum of Hilbert

spaces Hi @ Ha in such a way that spec(T); = spec(Ty,) and spec(T)2 = spec(Ty,),
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where (Ty,, D(Ty,)) and (Ty,, D(Tx,)) are the restrictions of T to the spaces Hi and
Ha, respectively. Moreover Ty, € B(H1) and the (Riesz) projection corresponding to this
subspace is given by Py, : H — Hq the bounded operator given by

1 _
Py, o= —o— F(T—z) Yz H — Hi.

1.4. Analysis on manifolds

For the material in this section, we refer the reader to [BGV92|, [BW93|, |[H683|,
[Agr97|, [FJ98|, [Gi04], [HG83] and [Gru96|.

1.4.1. Sobolev spaces. We first recall Sobolev spaces on R". For s > 0, the
Sobolev space Hg(R™) of order s of square integrable functions on R is defined as the
Hilbert space

H,(R") := {f 'f e LX(R™) s.t. € — (14 [¢]?)%/? /Rn e @ f(z)dx € L2(R™) }

with Sobolev s-norm

1

Hf”s = W

£ (14 €22 / T f(a)da

]Rn

L2(Rn)

Then, every compact Riemannian manifold M of dimension m, with Riemannian metric
g and closed boundary M, can be embedded in an m-dimensional closed Riemannian
manifold M with Riemannian metric g). Let m: F — M be a complex vector bundle
over M of rank k and F'|sps the corresponding restriction bundle to the boundary. Let
h be a fiberwise positive definite Hermitian metric on F'. There exists a complex vector
bundle F over M with a fiberwise positive definite Hermitian metric ?L, such that the
sub-bundle of F |ar coincides with F' as bundles over M, and the Hermitian metric h
on F coincides with the restriction of h to F|y. We denote by L2(M F) the space
of square integrable sections obtained by completing F(M F) with respect to the
L2-norm associated to the inner product < -, - >=5 on F(M,F) induced by ¢ and h.
Recall that the L2-closure is independent on the underlying Riemannian and Hermitian
choices.

In analogy with an s-norm on R™, there is the notion of an s-norm on F(M 15)
Let ((7“52,1/)1) be a vector bundle trivializating atlas, that is, the data {( z,@)\@ :
7 YU;) — U; x CF} is a vector bundle trivialization of @ : F — M and ¢; : U; —
¥i(U;) € R™ an associated coordinate chart. Let {p;} be a subordinate partition of
unity. On each [7}, consider the function pr, o 51 o (piu) o zziil : {E,(ﬁz) — CF where
pry is the projection in the second factor of gz(u) The Sobolev s-norm of a section
4 € T(M; F) is defined by

~ - o~ o~
@3 = lIpra 0 di o (i) ovhi |12,
i
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where the s-norm on the right above is computed as for Sobolev spaces on R™, by using
the L2-norm induced by § and h.

The Sobolev spaces HS(]\AJ; F) of order s > 0 are obtained as completions of F(M; F),
with respect to the Sobolev s-norms || - ||s. In words, these spaces consist of all F-
valued L2-differential forms over M , which in local coordinates correspond to F-valued
H;-differential forms. Although the definition above is given in terms of vector bundle
trivializations atlases and subordinate partition of unity, the topologies generated by each
of these norms are equivalent. Finally, we point out here that HO(M; ﬁ) = L2(M; ﬁ),
T(M; F) = NyenHs(M; F) and T'(M; F) C Hy(M; F) C L2(M; F) for s > 0.

Now we look at the boundary. Since M is a closed Riemannian manifold, we use this
construction to define the spaces Hs(OM; F|gar). In order to define the spaces Hg(M; F')
we use the map rjy : HS(M; F) — Hy(M; F), taking sections u € HS(M, F) to ryu :=
u| s, their restrictions to M. Then we set Hg(M; F') := rprHs (]\7, ﬁ') . In this situation,
for s > 0, the relations I'(M; F) C Hy(M; F) C L2(M; F) and T'(M; F) = NgenHs(M; F)
hold as well.

1.4.2. Distributions. For F' a complex vector bundle over M, consider F’ its dual
bundle and denote by F}, := F’ ® |Ays| where The space of distributions I'"°°(M; F),
also called generalized sections of the vector bundle F', is defined as the topological
dual of the space of smooth sections I'(M; F},), endowed with the strong topology, i.e.
uniform convergence of sections and their derivatives.

There is a canonical embedding I'(M, F) — I'"°°(M, F), identifying each v €
['(M; F) with the functional p, :=< -,v >, where

< > (M F) x T(M5 F) — T(M: [A),

induced point-wise by the natural pairing F]’wy ® F, — C for each y € M, is given by

/M o) (w(y) voly (M) (1),
for all p € T'(M; F};) and w € T'(M; F).

1.4.3. Smoothing operators. For F and F' two complex vector bundles over M,
a bounded linear operator P : I'(M; E) — I'"°°(M; F) is called a generalized opera-
tor. Among generalized operators, we have smoothing operators, which in certain sense
allow us to turn generalized sections into smooth sections. More precisely, a generalized
operator P as above is smoothing if it takes values in I'(M; F') and if it extends as a
bounded linear map P : I'">°(M; E) — I'(M; F'). These operators can be described in
terms of their kernels, for which we first recall the following notion.

For ¢ = 1,2 consider the projection pr; : M x M — M of M x M into its i-factor
and define the bundle

FXE}, = priF @ prsE},
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as a vector bundle over M x M, called the big endomorphism bundle over M x M.
The fiber of F R E); at (x1,22) € M X M is F, ® E}Wm @ | Ans)zy-

1.4.4. Schwartz kernel. There is a one-to-one correspondence between the space
of generalized sections of F' X E,; and the space of generalized operators from I'(M; E)
to I'=°(M; F):

{K € T7°(M x M;F R E},)} +— {P:T(M;E) = I"°(M; F)},

Indeed, sections of T'(M x M; (F X Efw);wxM) can be regarded as section of the bundle
I'(M x M; F;; K E) and reciprocally: There is a canonical identification

(FREY) ) = FyRE

obtained by identifying |Ayrxas|, the density bundle of M x M, with |Ay/| ® |As| and
using that [Ax|” ® |An| = End(|Aas|) is canonically isomorphic with the trivial line
bundle.

Therefore, for each generalized section K € I'"°(M x M; FK E',), i.e. a continuous
map K : T'(M x M; F}; ® E) — C, one defines the generalized operator

Pg :T(M; E) = T7*(M;F) by Pr(9)¥):=K(y)©e),

for p e (M, E), v € (M, Fy;) and ¥ ® ¢ € T'(M x M; Fy; K E). In this manner, the
distribution K, associated to the generalized operator Pk, is called the kernel of Py.
This correspondence gives a characterization for smoothing operators, expressed in the
following result known as the Schwartz kernel Theorem, a proof which can be found for
instance at page 70 in [F.J98|.

Theorem 1.4.1. A generalized operator Px arising from a smooth kernel, i.c., K in
I'(M x M; FREY,), is exactly a smoothing operator, i.e., Pg : T=°(M; E) - T'(M; F)
15 a bounded linear operator; in other words, the assignment

I'MxM;FRE),) — {I"(M;E)—-T(M;F)}
K — Pg: gf) — PK¢
(Pr¢)(@) = [ye, (K (z,y)(y))voly(M)(y)

18 an isomorphism.



CHAPTER 2

Elliptic boundary value problems

This chapter contains the background for Chapter [3] and Chapter @] In Section
we discuss generalities of boundary value problems consisting of Laplace type operators,
under local boundary conditions. In Section [2.2] the notions of Lopatijnski-Shapiro
condition and boundary ellipticity (with respect to a cone), used to characterize boundary
ellipticity for boundary value problems, are recalled. In general, boundary ellipticity
is needed to obtain existence results for the solutions of a boundary value problem,
and it guarantees the existence of elliptic estimates, see Section In turn, elliptic
estimates are used to study regularity for the solutions of the boundary value problem. In
Section [2.3.2] elliptic estimates in order to study closed extensions of the corresponding
generalized Laplacian, as unbounded operator in certain Sobolev spaces, see Proposition
These extensions are called Sobolev realizations for the boundary value problem,
among which L2-realizations are the object of our attention. We are interested in studying
the spectral properties of L2-realizations for certain boundary value problems In Section
based on known results for the resolvent of these operators, see Proposition [2.3.5]
we obtain a characterization of the spectrum of these operators, see Proposition [2.3.7]

The material presented in this chapter can be found [Agr97|, [Agm65], [Se67],
BW93|, [Gi&4], [Gi04], [GreT1], [Gru96|, [H683], [Ki01] and [ShO1].

2.1. Operators of Laplace type and boundary operators

Let F,G be complex two complex vector bundles over a compact manifold M. Con-
sider

D:T'(M;F)|g — T'(M;G)

a differential operator acting on the space I'(M; F')|g of smooth sections of F' satisfying
appropriate boundary conditions. The data (D, '(M; F)|g) will be referred as a bound-
ary value problem. For given u € T'(M; F') one would like to know whether there is
a solution v in certain space of solutions, satisfying the specified boundary conditions
and Dv(z) = u(x) for x € M. Subsequently, this leads to ask whether D, regarded as
unbounded operator with domain of definition D(D), extends as a Fredholm operator
to certain conveniently well-chosen Sobolev spaces. To deal with this problem, it is not
enough to ask for D to be elliptic in the interior of M. In addition, one needs a lo-
cal condition on the behavior of the solutions along the normal direction, in a tubular
neighborhood, of M in M. This condition is given by the Lopatijnsky—Shapiro condi-
tion, in Section In this thesis, we are interested in elliptic boundary value problems

23
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consisting of Laplace type operators, under conveniently imposed absolute and relative
boundary conditions on different parts of the boundary. Before getting there, we recall
the reader known notions on generalized Laplacians and local boundary conditions.

Definition 2.1.1. Let M be a compact manifold and F' be a complex vector bundles
over M. A differential operator D : T'(M; F) — I'(M; F) of order d = 2 is of Laplace
type (or generalized Laplacian) if o1,(D)(§) = ||€||%idg, for every & € T*M, where idp
is the identity in F.

From its definition a Laplace type operator is elliptic. The following Lemma recalls
that an operator of Laplace type acting on smooth sections of a complex vector bundle
is entirely characterized by a linear connection and an endomorphism on the bundle.

Lemma 2.1.2. Let M be a compact Riemannian manifold and F a complex vector
bundle over M. Let D : T'(M; F) — I'(M; F') be an operator of Laplace type. Then, there

exists a unique connection VP on F and a unique endomorphism EP on F so that
(2.1) D = D(VP,EP) = —(Try (VP90 VP) + EP),

where VP9 4s the connection induced by VP on F and the Levi-Civita connection on V
onT*"M ® F so that

VP N
VPyoVP: F - T*MF — T*M QT*M @ F

and the map Try indicates the contraction of an element in I'(M;T*M ® T*M ® F)
with the metric g € D'(M;TM @ TM). If the local expression of D (with respect to local
coordinate and trivializing bundle charts in M) is D = —(¢g""idr0,0, + a0, +b), where
a*,b € T(M;End(F)), then the formulas for the 1-form connection w® associated to VP

and E are given by

ED = b g™ (0, +uPu - wPTS,)

where L'y, are the Christoffel symbols.
Proof. See for instance Section 1.2.2 of [Gi04]. O

2.1.1. Generalities on boundary operators. We endow the bundle F' with a
connection V¥ and denote by Vgn the covariant derivative along the inward unit geodesic
normal vector field ¢,. Let V := V5 & Vi — OM be the graded complex vector bundle
over OM, with V; := F|gps. Sections of V; — OM will be thought as arising from the
i-th normal covariant derivative of a section of the bundle F, for i € {0,1}. As an
additional graded complex vector bundle over OM, we consider W := Wy & W, — OM
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with rank(WW) = rank(F’). The boundary operators under consideration are given by
(2.3) B:=Bo¥y:I'(M;F)—=T(0OM;W)
where 7 is the so-called Cauchy data map given by
(2.4) ¥:I(M;F) — T(0M;Vya W),
u = ulom @ (VEw)|om

and the operator B is a smooth (tangential) differential operator on the boundary. More
precisely, in terms of the given grading B can be written as

B 0
(2.5) B:=| "% :T(OM; V) — T(OM; W),
By Bn

where B;; are differential operators such that
are differential operators of 0-th order for i € {0,1}, and
BlO : F(@M, Vb) — I‘(@M, Wl)
v o= biv+ Eﬁ;lbﬁovgv

is a differential operator of first order conveniently, where the coefficients b1, biwcan
be considered as 0-order differential operators on the boundary and Vfi are covariant
derivatives along tangential directions for i = 1 to m — 1. Then, the operator B in ([2.3)

can be more explicitly written as

B Boovlom
(2.6) Bv:= L = M1 1a P »
Blv biovlonr + 2a=y blo(Ve,v)loar + Bu((Vg, v)lom)-
The graded leading symbol of the operator B in (2.3)), is invariantly defined as
the map o3 (B) : T*(0M) — Hom(I'(OM; V'),I'(OM; W)), such that, if B;; is the entry
in the j-th row and ¢-th column of B, then

¥ _J ou(Bji)(¢) if order(Bj;)=j—i
74 (B1)(0) ._{ 00 o) = -

for ( € T*(OM), see [Gi04]. The graded principal symbol for a boundary operator B as

in (2.5) is given by

* Boo 0 Boo 0
2.7 B)¢ = B '
( ) JL( )C < or, (BIO) < Bll ) ( \/jlzzn;ll b%()(a Bll )

2.2. Elliptic boundary value problems

Let (D,T'(M; F)|) be a boundary value problem, where D is an operator of Laplace
type acting on smooth sections of a complex vector bundle F' and B a boundary operator
as in Section[2.1.1] The aim of this section is to recall the notion of boundary ellipticity
with respect to a conical set for (D,I'(M; F)|g), see Section [2.2.3]
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2.2.1. Conical subsets. A subset C of C is a conical subset in C, if A € C, then
th € C, for all t > 0. Some examples are the rays of direction 6
(2.8) Lo:={re® eC| r >0}
the closed angles, :
(2.9) Lyo={re“eC|O—-e<a<f+e andr >0} for § €[0,27] and € > 0,
where the amplitude € is typically taken small. More generally closed sectors :
(2.10) Co:=C\{AeC|—-0<arg(A) <0 and |\ > 0},for 6 € [0, 7];
In this thesis, we are interested in the cones
(2.11) Cr ={0} and Cy=C\(0,00).

2.2.2. Shapiro—Lopatijnski condition and boundary ellipticity. Let D be an
operator of Laplace type acting on smooth sections of a vector bundle F'. Let C denote
a conical subset of C. We expand D in a neighborhood of 0M, as

D(y, 2™ = Y pauly.a™ VEIVEE,
[(8,k)|<2
where = := (y,2™) with y := (y',...,y™1); for a = (B1,...,Bm_1,k), a m-tuple of
non negative integer numbers, we have written viP = Vfl A meilﬁm_l. Take
partial Fourier transform in the tangential variables only. In other words we replace the
tangential derivatives Vg_ g by (le)‘ﬁ 1¢8, and suppress the lower order terms. Consider
the differential operator (D) y,0) (¢, 0,) for each (y,0) € OM  and 0 # ¢ € T*(OM)
fixed. We want to solve the following ordinary differential equation

(2.12) (0L(D)(y,0) (C,i0n) = A) f(2™) =0,
such that the solutions f satisfy
(2.13) lim [f(z™)|=0 foreach (y,0)€0M, 0#(eT*(OM) and XeC

™M —00
Definition 2.2.1.  Let B : I'(M; F) — I'(W) be a boundary operator as in (2.6) and
C C C a conical set. The boundary value problem (D,I'(M; E)g) satisfies the Shapiro—
Lopatijnski condition if for any non zero ((,\) € T*(OM) x C and any w € W, there
exists a unique solution for the ODE in such that and the condition

(2.14) or(B)(y, O7f = w,

are satisfied, for every y € OM.

Definition 2.2.2.  Let B : I'(M; F) — I'(W) be a boundary operator as in (2.6) and
C C C a conical set. (D,T'(M; F)|g) is elliptic with respect to the cone C whenever
it satisfies the Shapiro—Lopatinjski condition from Definition and the symbolic
spectrum of D, see Section satisfies Spec| (D) C C\C.
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Remark 2.2.3.  In particular, if (D,T'(M; F)|p) is elliptic with respect to cone Cy from
([2.11)), then (D,T'(M; F)|g) is elliptic with respect to {0}.

2.2.3. Boundary ellipticity for operators of Laplace type. Since we are in-
terested in boundary value problems specified by operators of Laplace type, a character-
ization of boundary ellipticity (with respect to a cone) for such boundary value problems
is useful. This is the statement of the following Lemma.

Lemma2.24. LetD:T(M;F)— I'(M;F) be an operator of Laplace-type and B be a
boundary operator as (2.6). The boundary problem (D,I'(M; F)|g) is elliptic with respect
to the cone Cy = C\(0, 00) if and only if the operator b((, \) : I'(OM; Flapr) — T'(OM; W)
given by

L BOUU
(2.15) b(¢,\)(v) == ( VTon(Bio)Cv — Buy /[T = )
is an isomorphism for every (0,0) # (¢, \) € T*(0M) x Cp.

Proof. This is Lemma 1.4.8 in [Gi04] and its proof is a direct translation of what it
means for a boundary value problem, specified by an operator of Laplace type, to be

elliptic with respect to a cone. O

2.2.4. Example: Mixed boundary conditions. In order to illustrate the notions
above, we describe a type of boundary operators specifying so-called mixed boundary
conditions, which are used in fields of index theory, PDE’s theory, operator theory and
physics, further details and examples can be found in [BG92|, Section 1.5.3 in [Gi04],
and Sections 4.5 and 4.6 [KiO1].

Let F be a vector bundle with connection VI over a compact manifold M with
boundary dM and Riemannian metric g. Let Flgy := ¢*F be the pullback bundle
along the natural embedding ¢ : OM — M. Near the boundary, consider a collared
neighborhood U of OM in M and ¢, the inwards pointing geodesic unit normal vec-
tor field to the boundary. One starts by constructing an involution x on F over U:
Let x € End(OM; F|sp) be such that x? = idp),,, and use the normal geodesics to
the boundary to extend x to a bundle endomorphism of F' over U, with the condition
Vgnx = 0, so that x> = idp holds over U. Next, over the collar we look at the decom-
position of F' in terms of the eigenvalues of x, i.e., +1 and —1 and denote by Fy; the
(complementary) subbundles of F' corresponding to the +1-eigenvalues of x respectively,

with the corresponding spectral projections:

Hil = (IdF :EX) F— Fil-

1
2
Since Vgnx = 0, we have

M VE = VI Ty



28 2. ELLIPTIC BOUNDARY VALUE PROBLEMS

Then, fix a bundle endomorphism S;1 of Fi1|gons, which is first extended to a bundle
endomorphism S of Flgys, by setting 0 on F_q|gps and then this is parallel extended
along the normal geodesics, i.e. V;S =0, to F over the collar U, so that

SII4q = I144S,

that is, S respects the splitting of F' = F,1 & F_1 over U.

Definition 2.2.5.  Consider the involution x and endomorphism S together with the
projections 11y associated to the eigenvalues of x as explained above. A section v €
['(M; F) satisfies mixed boundary conditions if

BMU = (Hfl’U, H+1 (me - S)U) |8M

vanishes.

Remark 2.2.6. The operators imposing mixed boundary conditions given in Def-
inition above, are of the form given in (2.6)), since for v € I'(M;F), over the
tubular neighborhood U, we have (I1+v)|an = I (v]gar) so that (ILy1(VE —S)v)|on =
H+1(V§n — S)U’ajw).

Remark 2.2.7. Dirichlet boundary conditions are obtained when II;; = 0, Robin
boundary conditions when II_; = 0 and Neumann boundary conditions correspond to
the case II_1 =0 and S = 0.

Remark 2.2.8. Let F' be a complex vector bundle over a compact manifold M.
Consider the conical set Cy = C\(0, 00). Let (D,T'(F; E)g,,) be a boundary value problem
specified by an operator of Laplace type D acting on smooth sections of F' under mixed
boundary conditions. Then (D,I'(F; E)g,,) is elliptic with respect to the cone Cy. See
for instance, Lemma 1.5.3 in [Gi04] whose proof is a direct application of Lemma[2.2.4]

2.3. The resolvent and spectrum of an elliptic boundary value problem

Let (D,I'(M; F)|p) be a boundary value problem, where D : I'(M; F) — I'(M; F) is
an operator of Laplace type and

B:=(B°,B) :T'(M,F) — T'(0M; W) ® T(OM; W)

a boundary operator as in (2.6]), where Wy and W are vector bundles over OM and the
operators

B':T(M,F) —T(0M,W;)
are of order i € {0,1}. We are interested in the spectral theory of D, considered as an

(unbounded) operator in L?(M; F) with domain of definition specified by the imposed
boundary conditions in certain Sobolev spaces.
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2.3.1. Estimates for elliptic boundary value problems.

Lemma 2.3.1.  The operator D : T'(M; F) — T'(M; F) extends as a linear bounded

operator
(2.16) Ds := Dst2,5 : Hep2(M; F) — Hg(M; F),
for each s > 0. Each boundary operator B' extends as a linear bounded operator

S

(2.17) B, = B§+2,s+3/2—¢ Hspo (M, F) — Hs+%fi(aM’ Wi),
fori € {0,1}. In other words, the operator

A:T(M;F) — TI'(M;F)@eTI'(0OM;Wy) @ T'(0M; W)

2.18
(2.18) u > (Du, B, B'u)

extends as bounded operator as

As i Hspo(M5 F) = Hs(M;F) ® Hyp3/2(0M; Wo) © Hgpq/2(0M; Wh)

2.19
( ) U > (Dsu,Bgu,leu),

Proof. See for instance 20.1 in [H683] and Chapter 1 in [Agr97]. O

Ellipticity with respect to a cone permits one to answer the question whether or not
the operator A in (2.19)) is Fredholm. This is the following Lemma.

Lemma 2.3.2. Let D : I'(M;F) — I'(M; F) be an operator of Laplace-type and B
be a boundary operator as (2.6). Suppose that (D,T(M; F)|) is elliptic with respect to
the cone {0}. Then, for s > 0, the operator A in 18 Fredholm and there exists a

constant Cs > 0, for which the a priori estimate
lulls+2 < Cs (I Dsulls + 1 Bullsyayz + [Bsullsrayz + llullz2)

holds.
Proof. This follows from Theorem 6.3.1 in [Agr97| and Theorem 20.1.2 in [H683|. O

2.3.2. Regularity for an elliptic boundary value problem. Let (D,T'(M; F)|g)
be a boundary value problem, where D : T'(M; F') — I'(M; F') is an operator of Laplace
type and B := (B°,BY) : I'(M, F) — T'(OM; Wy) @ T'(0M; W1) a boundary operator as
in . The Hgs-realization of D with respect to the boundary conditions, specified by
the boundary operator B, corresponds to consider the operator D as unbounded operator
with domain of definition obtained as a convenient Sobolev closure of I'(M; F)|z. More
precisely, from Lemma the operator

Ds : Hopo(M; F) — Hy(M; F)
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is bounded for each s > 0. Now look at the same operator Dy, as unbounded opera-
tor from Hg(M; F) to Hg(M; F), with domain of definition given by || - ||s42-closure of
[(M;F)|g C T(M; F):

(DB,s;D(Dps)): Hs(M;F) — Hy(M;F)

Dpsu = Dsu,foru e D(Dgy),
s Ills
D(Dp,) = DO EF)g "
= {ueHy 2 (M;F)|Bu=0j.

(2.20)

We are particularly interested in the L2-realization of D:
(D5, D (D)) : L*(M;F) — L*(M;F)
Dpu := Du,for u € D(Dp),
D(Ds) = TOLF)s
= {ueHy(M;F)|Bu=0}.

(2.21)

Later on we simply write Dg for the L%-realization of (D,I'(M;F)|g), whenever the
domain of definition of Dg is unambiguously understood.

Proposition 2.3.3.  Consider (D,I'(M; F)|) a boundary value problem which is elliptic
with respect to the cone {0}, see Section[2.9, together with its Hy-realization as in (2.20).
Then, if u € D(Dp,s) is such that Dp su € Hgyo(M; F), then, in fact, u € D(Dp sy2), for
s > 0. In particular, if Dp su € I'(M; F), then uw € I'(M; F)|g. Moroever, the operator

Ds : D(DBs) C Ho(M; F) — Hy(M; F) is closed for all s> 0.

Proof. If w € D(Dp) is such that D su € Hgi2(M; F), then by the estimates from
Lemma [2.3.2) we have |Juls14 < Cs(||Ds sul|s2 + |lull12); that is, u € Hyp4(M; F). But
u € D(Dp,s42), since B is bounded on Hyy2(M; F) and Bu = 0, see (2.17)). In addition, if
Dpsu € I'(M; F)|, then by induction and Sobolev embedding, we have u € I'(M; F')|.
We now show that (Dgs, D(Dgs)) is closed on Hg(M; F). Let {u,} be a sequence in
D(Dp,s) converging to w in ||-||s-norm such that {Dp su,} converges to v in the ||-||s-norm
as well. First remark that u € D(Dg); indeed, the sequence {u,} is also Cauchy with
respect to the norm || ||s42 because of the estimates from Lemma [2.3.2] Therefore, since
the operator Dy : Hgyo(M; F) — Hg(M; F) is bounded, we can write

Dp st = Ds( Hm uny.j,,,) = Hm (Dsun)lyy, = v,

where lim (-), indicates the limit with respect to the Hs-norm. This finishes the
n—oo

proof. O

Remark 2.3.4. The generalized Laplacian can be considered as an unbounded opera-
tor (D, D(D)) : Hy(M; F) — Hy(M; F) with D(D) :=I'(M; F)|g C Hy(M; F) as domain
of definition. Because of Proposition [2.3.3] this operator is closeable in the || - ||s-norm.
Consider (D”,D(D°”)) the |- ||s-closure extension of (D, D(D)), with domain of definition
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D(D”). Recall that D(D”) formally consists of all w € Hy(M; F), for which there is a
sequence {wy,} in ['(M; F')|g converging to w in the Hs-norm such that Dw,, converges
to some v € Hg(M; F) in the Hg-norm. The operators (D°,D(D")) and (Dp.s, D(Dg,s))
in (2.20), coincide. This follows from the existence of the elliptic estimates in Lemma
for w € I'(M; F') the graph norm

[wllp,st2 := [[wlls + [[Dwls,

is equivalent to the norm || - ||s42 defining the Sobolev space Hs1o(M; F') as completion
of T(M; F).

2.3.3. The resolvent and spectrum of an elliptic boundary value problem.
Consider (D,T'(M; F)|g) the boundary value problem where D : T'(M; F) — I'(M; F) is
a generalized Laplacian and B := (B, BY) : T'(M, F) — T'(OM; Wy) @ T'(OM; W) is the
boundary operator in (2.6)).

Proposition 2.3.5.  For (D,T'(M; F)|g) the boundary value problem as above consider
(DB,s; D(DB,s)) its Hs-realization. Suppose that (D,T'(M; F')|g) is elliptic with respect to
the ray Ly,, see @), for some 0y € [0,27[. Then, there exist numbers ro, € > 0 such
that the resolvent Rpy ,(\) of Dp s exists for each X € Wy, ¢, where

Wioe :={A € C||A| =19 and |arg(X) — bp| < €}.
Moreover, if we write () := (1 + |u|>)"/2, where u = |A\|*/2, then, for each s > 0, there
exists Cs > 0 such that the following estimates hold

(2.22) (1) IRy, s(Null 2 + [IRos (Nullssz < Cs (1) llull 2 + [full),

uniformly in W, ., whenever u € D(Dp).

Proof. See Theorem 3.3.2 and Corollary 3.3.3 in [Gru96| (see also Remark 3.3.4 and
the discussion in section 1.5 of [Gru96]). O

Corollary 2.3.6.  Consider (D,T'(M; F)|g) the boundary value problem with its L2-
realization (D, D(Dg)). If (D,I'(M; F)|g) is elliptic with respect to C, a closed conical
subset of C, then there are constants C' > 0 and R > 0 such that for oll X € C with

|A| > R, we have
1

D —A) |2 < C—.
”( B ) ||L2 C|)\|

Proof. For s =0 in (2.22):
(1) Ros (Nullz2 < (1) Ros(Null 2 + [|Ros (Null2 < 2Co]lull 2.

That is,

Rpg (A <OC— <0~
H DB( )HL2 <M>2 ‘)\’



32 2. ELLIPTIC BOUNDARY VALUE PROBLEMS

0

Proposition 2.3.7.  Suppose that (D,T'(M;F)|g) is elliptic with respect to the cone
Co := C\(0,00). Then, the unbounded operator (Dg,D(Dg))is densely defined in the
space L2(M; F), possesses a non-empty resolvent set, its resolvent is compact and the
spectrum of Dg is discret and is described as follows. For every 0 > 0, there exists R > 0
such that Bgr(0), the closed ball in C centered at 0 with radius R, contains at most a
finite subset of Spec(Dg) and, more importantly, the remaining part of the spectrum is

entirely contained in the sector

(2.23) App:={z€C| -0 <arg(z). <0 and |z| > R}

Furthermore, for every X € Agr g large enough, there exists C > 0, for which
I(D5 =) iz < C/IAlL

Proof. The domain D(Dp) is dense in L?(M; F), because the space Q.(M; F), consisting
of smooth forms with compact support in the interior of M, is dense in L?(M; F') and that
Q.(M; F) Cc D(Dgp). Since (D,I'(M; F)|p) is elliptic with respect to the cone Cy, from
Proposition we know that the resolvent of Dp exists. The estimate for the norm
of the resolvent is given in Corollary We now show that the resolvent is compact
in L2(M; F). That is, if {v;} is a bounded sequence in Im(Dg — A) in the L2-norm, then
we need show that the sequence {(Dg — A)~!v;} admits a sub-sequence, which converges
in the L2-norm. Firstly, the sequence {(Dg — A)~!v;} is bounded in the Hy-norm as
well: since (Dg — \)~!v; € D(Dp), by using the elliptic estimates from Lemma m (see
also the proof of Proposition and that (Dg — A)~! is bounded in the L2-norm, one
obtains

1(D5 = N il < Ci(llvill 2 + (D5 — X) " will £2) < Cllwill 2

but the last term on the right hand side is bounded by assumption. Secondly, since
Ho(M; F) is compactly embedded in L2(M; F), the sequence {(Ds — A)~'v;}, must pos-
sess a sub-sequence, which converges in the L?-norm and so the resolvent is compact.
Compactness of the resolvent implies the discreteness of the spectrum, with only possi-
ble accumulation point at infinity, see Theorem 6.29, chapter III, section 6 of [Ka95].
Finally, the existence of the angle Ag g follows from Proposition [2.3.5] O



CHAPTER 3

Generalized Laplacians on compact bordisms

In this chapter we provide the necessary spectral theory for certain generalized Lapla-
cian in order to define the complex-valued analytic torsion in Chapter [5] We start with
the following definition, see [BFK99| and [Mi62].

Definition 3.0.8. A compact Riemannian bordism of dimension m is to be un-
derstood as the triplet

(M, 0, M,0_M),

where M is a compact connected smooth Riemannian manifold of dimension m, whose
boundary OM is the disjoint union of two closed submanifolds 0 M and 0_M. We
denote by

(M,0.M,0_M) = (M,0_M,d0,M)

the dual bordism to (M,0+M,0_M).

Given a compact Riemannian bordism (M, d;M,0_M), consider E a flat complex
vector bundle over M with flat connection V. Assume E to be endowed with a fiberwise
nondegenerate symmetric bilinear form b —this is the case if and only if the bundle is the
complexification of a real vector bundle. On closed manifolds, see [BHO7| and [BH10],
Burghelea and Haller introduced and studied generalized Laplacians Ag g constructed
by using the bilinear form b, the Riemannian metric g and the flat connection V. The
operator Ag g is also referred as the bilinear Laplacian. In this chapter we study
(the spectral theory of) Ag 45 acting on smooth sections of a flat complex vector bundle
over a compact manifold with boundary under absolute boundary conditions on 94y M
and relative boundary conditions on 0_M.

In Section as a motivating example, we recall the analog problem of a boundary
value problem specified by a self-adjoint Laplacian under absolute and relative boundary
conditions on a compact Riemannian bordism. In Section we review in some detail
the construction of the bilinear Laplacian. After proving that the bilinear Laplacian is
elliptic, see Lemma [3.2.3] we derive certain Green’s formulas, see Lemma [3.2.4} these
formulas provide correction terms accounting for the contribution from the boundary.
These boundary terms vanish, for instance, by imposing absolute and relative bound-
ary conditions, see Definition [3.2.5] In Section absolute and relative boundary
conditions are specified by the vanishing of certain boundary operators, see and
. In Section we indicate how the boundary valued problem consisting of the

33
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bilinear Laplacian on (M,0;M,0_M) under absolute (resp. relative) boundary con-
ditions can be interpreted as the dual boundary value problem specified by dual
bilinear Laplacian on the dual bordism (M, 0_M, 0+ M) under relative (resp. absolute)
boundary conditions, by means of Poincaré duality. In Section [3.2.3] we (locally) de-
scribe the operators imposing absolute and relative boundary conditions in terms of
invariant objects. In Section we study spectral properties for the bilinear Laplacian
on compact bordisms, where we use the results from Chapter 2] Although the bilinear
Laplacian is not necessarily self-adjoint, it still possesses spectral properties close to the
Hermitian Laplacian: for instance, in Proposition we see that the boundary value
problem studied in this thesis is an elliptic boundary value problem. In Section [3.3.3]
we consider the bilinear Laplacian as unbounded operator in the L2-norm with domain
of definition specified by the boundary conditions in certain Sobolev space. In Section
the spectrum of the bilinear Laplacian is precisely described as a countable set in
C having a similar behavior as the one corresponding to the bilinear Laplacian acting
on closed manifolds. In Section [3.3.5] we are concerned with generalized eigenspaces of
the bilinear Laplacian, in particular Proposition gives a characterization of each
of these as a finite dimensional vector spaces containing smooth forms only. In Section
we study the decomposition of the space of smooth forms, with respect to each
generalized eigenspace. In particular, in Lemma [3.3.6], we see that the restriction of the
bilinear Laplacian to the space of smooth forms satisfying boundary conditions in the
complement of each generalized eigenspace is invertible. Then, Section starts with
a Hodge decomposition result for the bilinear Laplacian on smooth forms, see Corol-
lary and Proposition Finally, Proposition is used to prove that the
space of smooth forms being in the generalized 0-eigenspace of the bilinear Laplacian still
computes relative cohomology: its inclusion into the space of forms satisfying relative
boundary conditions on 0_M induces an isomorphism in cohomology, see Proposition

3.3.121

3.1. Motivation: the Hermitian Laplacian

The construction of the analytic torsion, as first introduced by Ray and Singer on
[RS71], is based on spectral information of certain self-adjoint Laplacians. As a mo-
tivation, we recall some facts around these self-adjoint Laplacians. Keep in mind the
notation and notions from Section 2.2l

Let E — M a complex vector bundle over a compact Riemannian manifold M, with
flat connection V¥ and endowed with a Hermitian form » . The Riemannian metric ¢
on M and the Hermitian form h on E induce an inner product (v, w), on each fiber
which in turn defines by integration an inner product < -,- >, on Q(M; E), the space
of F-valued smooth differential forms on M, by the formula

<L v,w >>g,h::/ (v, w)p, gvolg M,
M
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for each v, w € Q(M; E). The de-Rham differential dg : Q(M; E) — Q(M; E), associated
to the connection V¥, possesses a unique formal adjoint with respect to < -, - >4 h;
which we denote by d; ;. This operator being a codifferential on Q(M; E) permits one
to consider the Hermitian Laplacian

(3.1) Apgn=dgdg g+ dg ,pde : QUM; E) = Q(M; E).

Now, for a compact Riemannian bordism (M, 04+ M,0_ M), we denote by Q(M; E)|?3 the
space of E-valued smooth differential forms satisfying absolute boundary conditions on
0+ M and relative boundary conditions on 0_ M. More precisely, if x, is the Hodge star
operator induced by g and h, we set

i *xpw =0, rw=0
(32) QB :=jweo(nB)| o id w0 [
b E'®On,9,h FhW =N, 1_Op g W=
where d, S indicates the formal adjoint to dgge,, with respect to the inner

product < -, >, 5 on Q(M; E'®©,/) with E being the dual of the complex conjugate
bundle of E endowed with the Hermitian form A’ dual to h. In the sense of Definition
[2.2.2from Chapter 2] the boundary value problem consisting of the Hermitian Laplacian
in under absolute and relative boundary conditions specified in and denoted
by

E,g,h
(3.3) (AaQB”(Mq,mMﬁ,M)’

is an elliptic boundary value problem. Therefore the operator
Apgn: QM; E)|f C L2(M; E) = Q(M; E) C L*(M; E)

extends in the L?-norm to a self-adjoint operator, denoted by App, with domain of
definition
D(Ass) = Q0GB
that is, the Ho-Sobolev closure of Q(M; E)|; for these facts see [Lii93], [Mii78|, [Gi&4]
and [Gi04].
Moreover, there exist well-known Hodge-decomposition results that we recall in the
following Theorem.

Theorem 3.1.1.  Consider the Hermitian boundary value problem in . Let
HAp (M E) = ker (Ap ) N QI(M; E)|E

be the space of q-Harmonic forms satisfying absolute boundary conditions on 0+ M and

relative boundary conditions on 0_M and set
O(M; E)[hy = {w e Q(M;E)‘ i s w =0, i*w=0 }
Then, every w € Q4(M; E)\go can be uniquely written as w = h 4+ vy + vo where

he HqAB(M5 E), vy € dp (qul(M;E)‘Z’U> and vy € d*E,g,h (QQH(M; E)]go) .
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Moreover, for H1(M,0_M; E) the q-cohomology group relative to O_ M, the isomorphism

q . o~ .
(3.4) HA,(M; E) = HY(M,0_M; E)
holds.
Proof. This is Theorem 1.10 in [Lii93], see also page 239 in [Mi78|. O

Then, as in the situation of a manifold without boundary, see [BZ92], the iso-
morphism in is the first step in defining the Ray-Singer torsion on manifolds
with boundary, under absolute and relative boundary conditions, as a Hermitian metric
on det(H(M,0_M; E)), the determinant line associated to H(M,0_M;E). The Ray—
Singer metric has been studied, by means of the Hermitian Laplacian, by many authors,
see for instance [RST1], [Lii93|, [Ch77|, [Ch79] [Mii78|, [DF00|. Also, in [BMO6|
Briining and Ma studied the case - M = () and later on in [BM11] the general one
d_M # 0.

3.2. Bilinear Laplacians and absolute/relative boundary conditions

We consider a flat complex vector bundle F over a compact manifold M with Rie-
mannian metric g. We denote by V¥ the flat connection on E. Assume E is endowed
with a fiberwise nondegenerate symmetric bilinear form b. The dual bundle of E is de-
noted by E’ and it is naturally endowed with the corresponding dual connection V'
and dual bilinear form '. In the situation of a closed manifold, see [BHOT|, generalized
Laplacians were constructed by using the data V¥ and ¢ but replacing a Hermitian
structure by the considered bilinear form b on E. We study this problem on compact
bordisms. With the use of b and g, one obtains the complex-valued bilinear form on
Q(M; E) given by

(3.5) Bon(v,w) := / by (v, w)voly (M),
M
where, for each z € M, we have on the fiber F, the nondegenerate symmetric bilinear
form
(3.6) by (a0 ®s,a® 8 ), = (g, al)g(2)b(x)(sz, sL),

where o ® s and o ® s’ are elementary sections of the bundle A*(T*M) ® E and (-, -),
indicates the fiberwise inner product on A*T*M induced by the metric g. In formula
the volume density associated to the Riemannian metric, vol,(M) € Q™(M;Ou),
is used to integrate over M. In analogy with the Hermitian situation, we have the
following.

Definition 3.2.1.  For 0 < k < m, the usual Hodge x-operator on smooth k-forms: %, :
AR(T*M) — A™=*(M;0)), together with b : E — E', the bundle isomorphism induced
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by the nondegenerate bilinear form on E, determine a C°(M)-linear isomorphism
(3.7) g = xgk @b QF(M;E) — QM F(M; B @ 0y),

which is also referred as the Hodge x-operator.

Lemma 3.2.2.  The bilinear form B, defined in 15 a nondegenerate symmetric
bilinear form on Q(M; E) that can be written as

(3.8) B0y w) = /M Tr(v A xyw),

where Oy is the orientation bundle of M and Tr : Q(M,E ® E' @ ©p1) — Q(M;0y)
is the trace map induced by the canonical pairing between E and E'. The bilinear form

Bgp continuously extends to a nondegenerate symmetric bilinear form on L2(M; E).

Proof. First, it is clear that §,; in is globally defined as a symmetric bilinear
form on Q(M; E). Moroever (3, is nondegenerate, since by is fiberwise nondegenerate.
Indeed, for each = € M and € > 0, choose f € C°(M), with f(x) # 0 and supp(f)
compactly contained in the interior of the closed ball B.(z), such that [, fvolg(M) = 1;
hence, for each v, w € Q(M; E), the following holds

‘bg,m(vrm f(x)wx) - /Bg,b(va fw)| = ’bg,x(vza fM U fw VOI (M)‘
= |bgur v, (@) ~ fBem o0, frw)voly (M) < e

Now suppose there is v € Q(M;FE), with v # 0, such that B4,(v,w) = 0, for all
w € Q(M;E). That is, there is v € Q(M; E) and 29 € M with vy, # 0 such that,
1bg,20 (Vag» Way)| < €/]f(x0)] for each w € Q(M; E) and € > 0. Since by 4, is nondegen-

(3.9)

erate on the fiber AT, M ® E,,, we obtain v;, = 0, a contradiction and hence 3 is
nondegenerate on Q(M; E)

Next, we show formula For v A xpw € Q(M; E ® E' ® O)r), by using that
a A *god = (o, )gvoly (M), for a, € Q(M;0,), and ( ., we immediately have
Tr(v A xpw) = by(v, w)voly(M), and hence By(v,w) = [,, Tr(v A xpw). Finally, By
continuously extends to a nondegenerate symmetric bilinear form on the L2-closure of

Q(M; E), since |Bgp(v, w)| < C|lv||2||w|| 2 for all v,w € Q(M; E) for C > 0. O

For E — M a complex vector bundle over a compact manifold M with Riemann-
ian metric g, with flat connection V¥ and a nondegenerate symmetric bilinear form b,
consider dg : Q*(M; E) — Q*T1(M; E) the de-Rham differential on Q(M; E) induced
by the flat connection V¥. Moreover, by looking at the dual bundle E’ of E, endowed
with the flat connection V', and the orientation bundle ©,; of M, with its canonic flat

connection, consider
dprge : U (M; E'®0) — QT (M; E' ® 9)

the associated De-Rham differential on the graded complex Q*(M; E' @ O).
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Lemma (Definition) 3.2.3.  Let d%gbq : QUM E) — QI Y (M;E) be the operator
given by

—1
(310) dﬁEy’b’q = (_1)(1 (*b,m—(q—l)) dE’®@M,m*Q*b7Q’

where (*b’m_(q_l))_l is the inverse of the operator %y ,_(q—1) from , s a codiffer-
ential on Q(M; E). In addition, the operators duEgb and dg permits one to define the

operator Ap gpq: QUM E) — QI(M; E) as
(3.11) Apghg = dpg1dy g, .+ di gy e1deg

Aggp is of Laplace type. In particular, if Spec (Ap,qyp) is the symbolic spectrum of
Ag.gp, See section then Spec (Ag,gp) C Ry. This generalized Laplacian is called
the bilinear Laplacian.

Proof. Since Ag 4 is a differential operator of order 2, so it remains to compute its
principal symbol. We use dg? = 0 to write Ag gb = (de+ dE a b) so that the principal
symbol or,(Aggp) = O'L(dE—}—dEh%b) OO-L(dE+dE7g7b)- We denote by exte, (resp. by intg),
the exterior (resp. the interior) product by £ € TXM in A*T)M ® E,, for each x € M.
Then

orldp +dy ) (x,€) = i(exte —int)) on A*TIM @ E,.
Since (exte — intg)? = —|[|¢]|?ld,, we obtain

oL(Apgp)(z, &) = i2(—|€|21d,) = [|€]°1d,  for all z € M.

That is, Ag 4 is of Laplace type. a

Lemma 3.24. (Green’s Formula). Let E — M be a complex vector bundle over a
compact manifold M with Riemannian metric g, endowed with a flat connection V¥ and

a nondegenerate symmetric bilinear form b. For v,w € Q(M; E), we have

(1) The operator dﬁE7g7b can be considered as the formal transposed to dg in Q(M; E)
with respect to the bilinear form B, from , More precisely,

Bya(dpv, w) — Byp(v, d% W) = /8M i*(Tr(v A xpw)).

(2) The bilinear Laplacian from can be considered as formal symmetric with
respect to the bilinear form By; from . More precisely, the difference
Bgp(Apv,w) — Bgp(v, Apw) is computed by the formula

Jons 7 (T( Egbv/\*bw — Jour 7 (Tr(w A %pdpv))
— Jour 7 (Tx( ﬁEgbw/\*bv + [ 7 (Tr(v A xpdpw)).

Proof. Let dg,, : Q*(M;0y) — Q*T(M;0)) be the (twisted) De-Rham exterior
derivative on Q(M;O)s) induced by the flat connection on ©;;. Remember that de,,
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and the differential

dpopeo,  C(M;E®@E ©0)y) - U (M;E® E' ®0y)
are compatible with trace map Tr: Q(M; E® E' ® ©p1) — Q(M;O) in the sense that
(3.12) Trodpgree, = de, o Tr,

where dpgpge,, is the differential associated to the connections VF'®Om and VF in-
duced by V¥ on the corresponding bundles. For vAx,w, where v, w are forms in Q(M; E)
of degree p — 1 and p respectively, we compute by using the Leibniz Rule,

dperpe, (VA xw) = dgv Axpw + (=P "o Adpge,, (aw);

remark that the second term on the right hand side of the last expression can be written

‘ g,
in terms of dﬂg,b'

dEero, (VAxpw) = dgv Axpw — v A *bdﬁE, b W-

®On,9,
Therefore, by taking the trace of the expression above, applying (3.12) on the left hand
side and integrating over M, leads to

/ d@M(Tr(v/\*bw)):/ Tr(dEv/\*bw)—/ Tr(v/\*bdﬁE,@@M%b/w).
M M M

We use Stokes’ Theorem (with the standard sign convention) on the left hand side and
Lemma to write the terms on right as

/a i (Tr(v A xpw)) = Bgp(dpv, w) — Bg,b(”vdﬁE,g,bw)'
M
The Formula in (2) follows from the one in (1) by using symmetry of £ . O

3.2.1. Absolute/relative boundary conditions on bordisms. Consider a com-
pact Riemannian bordism (M, 04+ M,0_M) and denote by iy : 0+ M — M the canonical
embeddinngs of 0+ M into M. As above we look at a flat complex vector bundle £ — M
with a flat connection V¥ and a symmetric nondegenerate bilinear form b. Let % be
the Hodge x-operator from Definition and d%jg’b the codifferential from Definition
We are interested in spectral properties of the bilinear Laplacian Ag g5. We first
need elliptic boundary conditions.

Definition 3.2.5. A smooth form w € Q(M; E) satisfies absolute /relative-boundary
conditions on the bordism (M,0+M,0_M) if w satisfies absolute boundary conditions
on 0+ M and relative boundary conditions on 0_M . More precisely, the space of forms
satisfying absolute/relative boundary conditions is given by

i e w =0, it w =0 }

3.13)  QM;E)|s:=qw € QM E)| '
(313) QM B)s {w M i g0 =0, 8%y =0

®Onr,9,b

The space Q(M; E)|p in Definition is described in terms of the vanishing set of
certain boundary operators, which we introduce as follows.
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Definition 3.2.6. Let E := i} E — 04 M the corresponding pull-back bundles along
each of the canonical embeddings i+. For 1 < ¢ < m, we define
(3.14)
Bpgy: QIME) — Q04 M;Ey) ® Q404 M; Ey)
® QO-M;E_)® QY o_M;E_)
w = (Biw,B_w),

where the operators

B_: QUM;E) — QIO_M;E_)® Qi Y (0_M;E")
w o~  (B2w,Blw)
(3.15)
By: QUM;E) — QI7Y0,M;Ey)® 00, M;Ey)
w o~ (Blw,Biw)

are respectively defined in terms of

Blw :=i*w Blw := i’id%gbw,
(3.16) and
0, — OM~1 (o T, oM=L (o gt
Biw = *p (z+ *p w) Biw = %y (z_,_dE/@@M%b/ *p W ) .

Notation 3.2.7. For a subspace X C Q(M; E), denote by
Xl := {w € X|Bw = 0}

the space of smooth forms in X which satisfy the boundary conditions specified by the
vanishing of the operator B € {BY, BL, By, B}. Set

X‘Bo = X|Bg N X‘Bg

Lemma 3.2.8.  Consider the spaces introduced in Notation[3.2.7]. Then the following
assertions hold
(a) X|s = X|go N X|gr N X[g1 and X|5 C X|go C X|po,
(b) dg leaves invariant the space Q(M; E)|go : dp(Q(M; E)|go ) C Q(M; E)|po,
(¢) dp(QUM; E)|5) C Q(M; E)|go, and diy ,,(QM; E)|5) C Q(M; E)| 0,
(d) If v € QM; E)|g and w € QM; E)|g then By4(dgv, df , yw) =0,
(¢) If v,w € QM; E)|o, then By p(dpv,w) = Byu(v, diy , yw),
(f) [f v, W € Q(Ma E)’B; then Bg,b(AE‘,g,bvyw) = Bg,b(va AE,g,bw)-

Proof. The assertions in (a) and (b) follow straightforward from the definition of these
spaces and that ¢* and dp commute. The rest of the proof is also straightforward, since
the boundary operators above have been defined in a way the integrants on the right of
formulas in Lemma vanish. We write this in detail.
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(c) We show the first inclusion. Remark that for v € Q(M; E)|g on the one hand
we have,
i (dgu) = dgi* (u) =0
and on the other
it (dpu) = i (ndp x5 ) = £ (A oy %) = 0;
hence dpu € Q(M; E)|po if u € Q(M; E)|g. We show the second inclusion. For
u € Q(M; E)|g, we have z"i(dﬁEgbu) = 0, but also
i Godly )= (o (0, dprge ,, x0)w)=%0% (dprge, , u) =t dpige ,, 7 (pu)=0,
which exactly means that dﬁEg Wy € QM E)|po if u € Q(M; E)|p.
2
(d) By Lemma [3.2.4| and dﬁﬂg,b =0, we have

Byw(dpv, dy , yw) = /8 y i*(v Ayl yw), for each v, w € Q(M; E).

Since OM is the disjoint union of 9_ M and 0+ M, the integral over the boundary
splits as

Sonr 7 WAspdly | yw)=[y 3, 0% (vAxdly ) )+ Jor, aa i (vAxpdly  w).
But, the integral over d_M vanishes, since v € Q(M; E)|go and the integral
over 04 M vanishes, since w € Q(M; E)|p implies i dprge g1y % w = 0 so that
it wdy =0,
(e) Again from Lemma we have

Bys(dgv,w) = Bap(v,diy ) (W) =[50, (v Axpw)
= Jo (0 ARW) + [5 5 7% (0 Axw).
for every v,w € Q(M;E). Now, if v,w € Q(M; E)|go, then the integral over
O0_M vanishes, because i* (v) = 0 and the integral over 04 M vanishes as well,
since % *, w = 0.
(f) This follows from (b), (¢) and symmetry of S, . See also proof of Lemma
U

Notation 3.2.9. Let (M,0.M,0_M) be a given compact bordism with Riemannian
metric g. Let E be a flat complex vector bundle with flat connection V¥ and a fiberwise
defined nondegenerate bilinear form b. The boundary value problem (Ag 44, Q(M; E)|g)
specified by the bilinear Laplacian Ap 44 acting on the space Q(M; E)|p in (3.13), char-
acterized by the vanishing of the operator Bg 44 in , will be denoted by

E,g,b
(3.17) A, QB}(]\zaJrM,a_M)'

In the same way, for B € {BY, BL, B+, B}, we denote by

E,g,b
(3.18) [Q%}(Aja_,_M,@_M)
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the space Q(M; E)|y defined in Notation corresponding to the data E,g,b and
(M, 0, M, d_M).

Remark 3.2.10. In particular, if 9, M = OM and d_M = ) (resp. O+ M = () and
O_M = OM), then [A, QB]?]\%?M,@)? (resp. [A, 93]5\’/[5]’6’78]\4)) denotes the boundary value
problem where only absolute (resp. relative) boundary conditions are imposed on the

boundary OM.

3.2.2. Relative cohomology and Poincaré—Lefschetz duality. We freely use
Notation Given a bordism (M,04+M,0_M) with Riemannian metric g, a flat
connection V¥ and a nondegenerate bilinear form on the bundle E, consider their dual
versions: the bordism (M, 0+ M,0_ M)’ with Riemannian metric g, the dual flat connec-
tion V" and the dual nondegenerate bilinear form ' on the bundle E’. We want to
relate the boundary value problems corresponding to the corresponding data, by using
the Hodge x-operator x, : QP(M; E) — Q™ P(M;E' ® ©)7). From the definition of
the corresponding spaces of forms satisfying absolute/relative conditions in Definition
(3-2.5)., it is clear that a form w € Q4(M; E) satisfies absolute/relative-boundary condi-
tions on the bordism (M, 04 M,0_M) if and only if xyw € Q™ 9(M; E' ® Oy) satisfies
absolute/relative-boundary conditions on the dual bordism (M, 04 M,0_M)'. Moreover,

since
*bd%,g,de = dE’®9MdﬁE/®®M,g,b’*b’
so that
*AE g0 = A0 ,,g,b/%b,

the operator %, intertwines the boundary value problems

E»Q,b E/®®1W7g7bl
[A, Q5] (M. Mo_M) 7 (A, Qp] (M, M,d_M)'*
Moreover, notice that [0 }Z\f’&r M0 M)’ when considered as a subcochain complex in

(QUM; E),dg), computes the relative cohomology groups H(M,0_M;E). In the same

way, [QBg]gfzj‘]{/}%{iM), as a subcochain complex in (Q(M; E'®© /), dprgo,,) computes

the relative cohomology groups H(M, 9 M; E' ® ©)7). Then, by computing the integral

/ Tr(v A *pw)
M

of representatives of relative cohomology classes v € QP(M; E) and w € QP (M; E'®@© ),
the operator x; induces a nondegenerate pairing in relative cohomology:

HP(M,0,M;E'"®©y) x H" P(M,0_M; E) — C,
In other words, we have an isomorphism

(3.19) HP(M,0,.M;E' ©©y) = H" P(M,0_M; E)’
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also referred as the Poincaré—Lefschetz duality (for bordisms) in cohomology. Much
more material on (co)bordism theory and Poincaré-Lefschetz duality can be found in
chapter VII in [D095] and chapter 5, section 2.8 in [GMS98], see also [Mi62], [BT82].

3.2.3. Invariant description of absolute/relative boundary conditions. We
give a description of absolute/relative boundary conditions in terms of the local geometry
around the boundary.

For simplicity we consider a manifold with boundary M without distinguishing the
roles of 01 M unless it is explicitly needed. Let E — M be a complex vector bundle over
M and V¥ a connection on E and denote by V = V¢ the Levi-Civita connection on
TM. In order to covariantly differentiate tensors of arbitrary type (i.e., elements in the
mixed tensor algebra generated by TM, T*M, E and E') we use the connection V9
obtained by extending the one on F by the Levi-Civita connection on T'M. For short, we
sometimes write F':= AT*M ® E. With ¢, the inwards pointing geodesic unit normal
vector field to the boundary, near the boundary we consider a collared neighborhood
U of OM in M and geodesic coordinates © = (z',...,2™ 1, 2™). That is Op = Gn

1

and the coordinates z',...,2™ ! define a coordinate system at the boundary, so that

{97! is a coordinate frame of TOM. We designate by {dz®}™~! the correspoding
dual coordinate coframe of T*OM so that {dz®}™' U {dz™} is coframe of T*M. We
use Finstein convention on repeated indices i,j,... # m and «, [, ... unless otherwise
indicated.

Certain involutions and splittings. Over the collar, the metric can be written
as

(3.20) 9(2) = gap(x)dz® @ daP + dz™ @ dz™.

For a € T*M, we use the left exterior operator ext(a) : AT*M — AT*F1 M
ext(a)(B) :=a A B for g€ AT*M,

and for X € TM, int(X) : AT*M — AT* ' M left interior operator defined by

int(X)(f) = 0, for feC>®(M),
int(X)(B1) = pi(X), for By € AIT*M,
int(X)(Bp A Bg) = int(X)(Bp) A By + (=1)PBp Aint(X)(5y),
for B, € APT*M and B, € AIT*M.
In particular, with the short notation
extj := ext(dz’) and int; := int(9;),
we have

) ) 1 ifi=j
3.21 ext;int; + Int;ext; =
( ) B (A { 0 else
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Over the collar U, since VY is compatible with Riemannian metric, we have
Viext =0 and Vint=0,
so that, for each i,j € {1,...,m}, the relations

V) ext; = ext(V} (da?)) = T/, exty,
(3.22)
Vj,int; =int(V§ (9;)) =T

k.
ij Intg

hold. In these coordinates, we have the decomposition
(3.23) A(T*M) = A(T*OM) ® A(T*OM)*,
as bundles over U, where
A(T*OM) = Span;(dz’) and A(T*OM)* = Span,(dz™ A dz?),

and I ={1<a1<a; <ag--- ap <m— 1} denotes a multi-index. Therefore, over the
collar, the bundle AT*M decomposes as

AT*M)|ly = (MT*OM)) v & (AT*OM)*) |u

(3:24) a — (ot aM)

where, in terms of ext and int, using (3.21)), one has

ot = intpext,o

(3.25)

a" = extyint,o.

That is, each form « can be locally written as

(3.26) a := (intexty, + extyint,)a = o' +dz"™ A a”.

Next, according to the decomposition in (3.24) and ({3.25)), over U one defines the invo-
lution

x: AT*M — AT*M

(3.27) . | t
a —  (intpext,, —extyint,)a =at —dz™ A a"

For V(%j X, the covariant derivatives of x along 9;, a direct computation using li
V4 (Om) =0 and 1} (that is, I",¢ ;=0 for i =m or j =m), leads to
(3.28) Vi x=0 and V§ x = 2Las(extgint, + extpintg),

(see also Lemma 1.5.4 in [Gi04]). Remark that, the formulas (3.28)) allows us to write
any covariant derivatives of x, with respect to Vga, along tangential direcctions, in terms
of the second fundamental form L and the endomorphisms int and ext.
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Next, we look at the eigen-values of x, i.e. +1 and —1, in order to consider the
corresponding decomposition of A(T*M) with spectral projections

My: T(M;A(T*M)) — T(M;(A(T*M))")
I, := % (1+ x) = intyexty,
(3.29)
IM,: T'(M;AN(T*M)) — T(M;(A(T*M))")

I, = 35(1—x)=extpint,

D=

respectively. Remark that
(3.30) int,, = int,,,II,, = Iliint,, and ext,,Il; = Il ext,,.
Since over the collar Vi, x = 0 holds, we have

(3.31) V) My =1LV)  and V) I, =TIV} .

m

Thus, by (3.28)), tangentinal derivatives of II, and II; can be invariantly described in
terms of the second fundamental form L, ext and int.

Invariant description for absolute/relative boundary conditions. For each
a € AT*M, we extend ext, : AT*M — AT*T'M and int, : AT*M — AT*~'M by the
the identity on E so that we denote by

exty = ext, @ ldp : AT*"M @ E — AT*""'M @ F
and

inty :=int, ® ldp : AT*"M @ E — AT* 'M @ E.
In this situation, we have
(3.32) VEP9ext = 0 = VEIint.
Also, over the collar, the map in induces an involution

X =x®Idg : AT"M @ E - AT*"M ® E.

Then with the we have
(3.33) Vi9x =0 and V5% = 2Lag(extgint,, + extnints) ® ldp,

so that x2 = lda7meE locally around the boundary. Therefore x allows to decomponse
AT*M ® E in terms of the subbundles corresponding to the eigenvalues +1 of x. We
still denote by Il; and II; the correspoding spectral projections. Remark that, over U,
we obtain analog relations in analogy with to .

The following Lemma gives an equivalent reformulation for the absolute boundary
operator acting on E-valued differential forms in terms of the operators and II,, and II;.
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Lemma 3.2.11.  Consider the operators By and B_ from . Then,

B+U =0 & (HnU,HndEU) ’6M = 0,

3.34
(3.34) Bv=0 & (HtU,thﬁE%bU)’aM =0,

respectively.

Proof. Let i : OM — M be the canonical embedding of OM into M. Remark that, for
each E-valued smooth form v, we have int,,v = 0 < Il v = 0 and hence

(3.35) i*inty,v =0 < *I,v = 0.
Let *g denote the operator induced by *2 and b on the boundary. By using
(3.36) * i¥int v = i* xp v

in the formula 1D defining the operator dﬁE®@
defined by (3.15) and (3.16)), as

(3.37) Biv = (i*intyv, (—1)7i%int,, (dgv)) for all v € QI(M; E).

vag.br WE can write the operator B

Then, the statement for B, follows from (3.37) and (3.35)) above. The statement for B_
is clear by its definition, since for each E-valued smooth form v we have ¢*Ilyv = i*v. U

Proposition 3.2.12.  We have the following desrcription of absolute/relative boundary

conditions in terms of (locally computable) tensorial objects.

(a) Absolute boundary conditions, specified by the vanishing of By in (3.15]), can be
described in terms of the involution x : A\T*"M QFE — AT*M ®FE and a (tangen-
tial) bundle endomorphism S,ps, locally computable on a (collared) neigbourhood
of OM in terms of derivatives of the Riemannian metric and the second funda-
mental form and extended over the collar with the condition V, Saps = 0. More
precisely,

(ILyw) loar =0 and
(Ht (vgm + Sabs) (U)) ‘BM = 0.

(b) Relative boundary conditions, specified by the vanishing of B_ in , can be
described in terms of the involution x : A\T"M @ E — AT*M ® E, the bundle
endomorphism b‘lvg:nb, and a (tangential) bundle endomorphism Sel, locally

(3.38) Biu=0 <=

computable on a (collared) neighourhood of OM in terms of derivatives of the
Riemannian metric and the second fundamental form and extended over the

collar with the condition Vp, Srel = 0. More precisely,

(ILtw) |gpr =0 and
3.39 B_u=0<+«—=
(3:39) u (I (VE 4 5-4(VE b) + Sya) )

bM:O
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Proof.

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(1) Consider the vanishing of B, in the proof of Lemma specifying
absolute boundary conditions. The (vanishing of the) second component of B
can be expressed, in geodesic coordinates over the collar U, by using

m
dg =Y da' NVyY,
i=1
with the help of the Einstein convention on repeated indexes (with the exception

of m), as
0 = id*intydpu
= ¢ (int,exty, Vg;gu> + int,,exty Vga’gu))
= (I VaEfu — extyint,, <Vg;gu )
= it (I (V5 7u) — extqinty, Il (vgfu))
= i (0 (V520u) ) =i (Teextainty (V5:7u) ).
whereas (the vanishing of) the first component in is equivalent to
0 = i*dg(intyu)
= it (exty (V57 (intmu) ) + exty (V59 (intmu)))
= i* (ext,, ng(intmu) + extq (Vg;gintm>u+intm(Vg(;gu))).
and therefore, after projecting on the tangential part, we have

i*T1; (extaintm(vgégu» = —i*II; (exta ((Vg(;gintm) u))

That is, all terms containing Vg:g, i.e., derivatives of u along tangential direc-

tions, can be entirely expressed pointwise as a linear operator on u. By using
the formulas we can express the term on the right in the last line in [3.42]
above in terms of the second fundamental form L, (c.f. Lemma 1.5.4 in [Gi04]):
—TII; (exta ((Vg;gintm> v)) = —Htextaintm(vg’gv)
= —IlLext,I',,, int;(v)
= —ILext Iy, ints(v)
= —ILTI,,, %extaint 11 (v)

and set
Sabs = *Ht (Famaextainto X IdE) Ht.

Remark that, since ext, commute with ext,,, with the relation in (3.32)) (c.f.
(3.22)), we obtain

Vg;;’gSabs = 07 HtSabs = SabSHt and Hnsabs = Saban — 0

Finally, we use 1’ to write the expressions containing Vgau on the right in
the last line of (3.40)) to get

(Ht (ng + S) u) |8M =0.
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(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

3. GENERALIZED LAPLACIANS ON COMPACT BORDISMS

That is exactly (3.38]).

Consider the dual bundle E’, with the dual connection VE" and dual bilinear
form ¥'. Let V¥ be the connection on F := A(T*M)® E'®0), induced by V¥’
and the Levi-Civita connection on TM. We denote by B/ the same operator

from (3.15)) and (3.16|) imposing absolute boundary conditions but associated to
the data F’, V¥ and ¥'. From Section recall that the Hodge %-operator,
intertwins absolute and relative boundary conditions. That is, the vanishing of

the operator B_, on a smooth E-valued form u, is equivalent to the vanishing
of B/, on the smooth E’ ® ©pr-valued form %u. Thus, in this setting, with

Iy = IL®ldpge,,
H; = I, ® IdE’®@Ma
X/ = X® IdE’®@M’
Sabs = —Hé (I‘am"intgexta & |dE’®@M) Hé

the computations performed above for (a) still hold; in particular, (3.38) reads
as

(H;] *p u) ’8M =0 and
(112 (V5 + Sans’) (o)) )BM ~0.
The spliting of A(T*M) in (3.23)) is intertwined by the action of , and hence,
over the collar, we have the bundle isomorphisms
*p ANT*OM)® E — A(T*@M)L ®FE ® Oy
xp: AMTOM)r®E — ANTOM)®E ®0y

B xpu=0 <=

and
II, = *glﬂg*b
I, = *;111’” *p .
From ({3.46)), it follows

I,y u =0 & x, 'TI xpu = 0 < Tu = 0.

Now, by using (3.44) and (3.46) we obtain

11} (Vgﬂ/1 + Sabs') (pu) =0 & *b_ll'ﬁ (Vg;z + Sabs/) (xpu) =0
& I, (glvg,; + *glsabs’) (xpu) =0
& 11, (ng + *;1(vgm*b) 4+ x1Saps"*p) u =0,
< 10, (ng + *gl(Vgn*b) + Srel) u =0,
where
Srel := —II,, (T,  intaext, @ Idg) 11,

encodes the tangential covariant derivatives in terms of the second fundamental

form. Finally, by (3.47) and (3.48), we obtain (3.39).
O
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Remark 3.2.13.  Recall Definition [2.2.5)in Section [2.2.4] On the one hand, Proposition
tells us exactly that the operator B, in specifies mixed boundary conditions.
On the other hand, assume ngb = (; this assumption guarantees that B_ specifies
mixed boundary conditions as well in the sense of Definition 2.2.5] In the general case,
if we drop the condition on b, we cannot longer expect that bil(VaEmb) is parallely
transported along the normal geodesics over the collar. This can already been seen
easily in the case F' = AT*M with the V%9, the Wittney connection, c.f. Lemma 1.5.5
in [Gi04]. However, this is not much of trouble for later considerations and we do not
assume VaEmb to vanish in general.

3.3. Hodge—De-Rham decomposition for the bilinear Laplacian

In general, the operator Ag 4, considered as unbounded operator in L2(M; E), with
domain of definition Q(M; E)|s, is not self-adjoint. However, Ag 3 being of Laplace
type and this being an elliptic boundary value problem, its spectrum still possesses sim-
ilar properties to that of a self-adjoint Laplacian. In fact, in this section we see that
Ap is densely defined in L2(M; E), possesses a non-empty resolvent set, its resolvent is
compact, its spectrum is discrete and therefore the generalized eigen-spaces of Ag are of
finite dimension. Elliptic estimates allow us to see that such spaces contain smooth forms
only. Moreover, the restriction of Ag to the space of smooth forms satisfying bound-
ary conditions and orthogonal complement of each generalized eigen-space, is invertible.
Then, we obtain a Hodge decomposition type result for the bilinear Laplacian action
on smooth forms. In turn, that permits us to conclude that the (relative) cohomology
of M can be computed by looking uniquely at the generalized 0-eigenspace of bilinear
Laplacian. That is, the first step to define the complex-valued Ray—Singer torsion in
Chapter [f

3.3.1. Boundary ellipticity for the bilinear Laplacian. In the sense of Sec-
tion the boundary value problem [A, Qg]g\’/i ’g+ MO is an elliptic boundary value
problem. More precisely, we have the following result.

Proposition 3.3.1.  The boundary value problem [A,QB](Ej\f’&M&M) is elliptic with
respect to the cone Co = C\ (0, 00).

Proof. Asin Section[3.2.3] near the boundary consider g, the inwards pointing geodesic
unit normal vector field to the boundary, together with a collared neighborhood U of
OM in M and geodesic coordinates z = (x!,..., 2™ 1 2™), such that, 9, = Gn, the
coordinates x', ..., 2™ ! define a coordinate system at the boundary, where {80(}2’:_11 is
a coordinate frame of TOM. Let {dz®}"=!U{dz™} be the corresponding dual coordinate
coframe. Let VE9 be the connection in A*(T*M) ® E, induced by V¥ and the Levi-

Civita connection V. Remember that, on the collar U, every & € Q(M; E) decomposes

as & = ' 4 dax™ A €, where £" and &' are tangential forms, see (3.23)) and (3.24).
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Since Apg g4 is an operator of Laplace type, by Lemma , the operators Ag g4
is elliptic with respect to the cone Cp, if and only if the operator b(¢, \), defined by
formula in terms of the graded leading symbol of B, is invertible for each A € C
with 0 # ((,\) € T*M x Cy. In order to prove that, remark that B is defined in terms
of By locally respectively around 0+ M, and denote by by the operators obtained by
formula corresponding to the boundary operators B, respectively. Since 01 M
are mutally disjoint closed submanifolds, invertibility of b({, A) is directly translated into
invertibility of by (¢, A) and b_({,A) on U, for each A € C with 0 # ({,\) € T*M x Cy.

So, let us start by describing the operator B4 on the collar U, by using formula

(13.37)), (c.f. proof of Lemma [3.2.11)): for u € Q4(M; E), we have locally over U
(3.50) Biu = (ifintu, (—1)7% int,, (dpu)).

Therefore, by using dg = >\, et A Vgi’g, the second component on the right hand side
in the equality (3.50|) can be developped as

(3.51) & intpdpu = ¢ (I (V5 u) — extainty, (V5 1)),

(c.f. (3.40)). In terms of (3.50) and (3.51), we can compute formula (2.15)) so that the

operator by ({, A) can be locally written as

b (¢, \)(u) = (intyu, £(—V—1¢C Aintu + /[C]2 — M),

Now, it is clear that, on the collar, b ({, A) is an isomorphism, whenever A € Cy. Indeed,
since the respective bundles have the same rank, it is enough to see that by ((,\) is
injective whenever A € Cy. But, by (¢, A\)u = 0 implies \/[|¢[|? — Au = 0 and int,,u = 0.
Since (¢, A) # (0,0) and A € Cp, this means u = 0.

Let us now describe the operator B_ on the collar U. In this case, we have,

(3.52) Bou = (i" Tyu, i* inty, (Tedf ).

The second component on the right hand side of (3.52)) can be written, by using formulas

E3), BA) and (B5), as
(3.53)  itintylldy,  yu=i"11, (vgr; — x Mlext,, (Vg;intm) sy + 4y ! (vgm*b)) u
Thus, the operator b_((, A) locally reads this time as

b_ (¢, \)(u) = (Thew, (—V—1¢ Aintyu + /|C[2 — MTLu)).

Note here that the term *b—lvgm*b appearing in is of order zero and hence it does
not contribute to the graded leading symbol of B_ needed in formula to compute
b_(¢,\). With the use of the same reasoning lines above the operator b_({, A) is an
isomorphism, whenever A € Cy. This completes the proof. 0
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3.3.2. Elliptic estimates for the bilinear Laplacian. We freely use the notation

and the results from Sections and By Proposition [3.3.1] for A a fixed complex
number, the boundary value problem (A — X\, Q(M; E)p) is also elliptic with respect to

the cone C\(0,00) and therefore with respect to the cone {0}. Then, for each fixed
A € C, the operator

A\ QUM E) — QI(M;E) @ QIOM; Elgy) ® Q11 (OM; E|ony),

3.54
( ) u = ((Aggp— Nu,Bggpu)

where the boundary operator

(3.55) Brgy = (Brgp Br.gs)
is the same as the one in with
By, QUM E) — QI0-M;E)® Q9 M;E)
u — (Blu,B%u)
is of order 0, and
B]l;’g’b : Q(M;E) — QY Oo_M;E)® Q0. M;E)

u — (Biu,Blu)

is of order 1 (c.f. Sections and [2.3.1). Then, by Lemma [2.3.1] for every s > 0, the

operator A in (3.54) admits an extension as bounded operator to each Sobolev space.
Moreover, Lemma tells us that that for each s > 0, the operator A in (2.19)
from Lemma [2.3.1]is Fredholm and there exists a constant Cs > 0 for which the a priori

estimate
(3.56) [ulls+2 < Cs (I(Ast2,s — Mulls + [Jullz2)

holds on the corresponding space of forms satisfying boundary conditions.

3.3.3. L%-realization for the bilinear Laplacian. We use the notation and re-
sults from Section . Consider the L2-realization of this elliptic boundary value prob-
lem, see . By Proposition the elliptic estimates for the bilinear Laplacian
implies that the unbounded operator

(3.57) Ap:D(Ag) C LA (M; E) — L*(M; E),
with domain of definition
(M;E)

(3.58) D(Ag) = QULE)s " ,

is closed in the L?-norm. The operator in (3.57)) with domain of definition given by (3.58))
coincides with the L2-closure extension of

Apgy: QM;E)|p C L2(M; E) — Q(M; E) C L*(M; E),

regarded as unbounded operator on L2(M; E), see Remark
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3.3.4. The spectrum of the bilinear Laplacian. From Proposition [2.3.7] the op-
erator Ag given in is densely defined in L2(M; E), possesses a non-empty resolvent
set, its resolvent is compact and its spectrum is discrete, which is described as follows.
For every 6 > 0, there exists R > 0 such that Br(0) (the closed ball in C centered at 0
and radius R), contains at most a finite subset of Spec(Ag) and the remaining part of
the spectrum s entirely contained in the sector

(3.59) Ape:={z€C|]—e<arg(z) < eand |z| > R}.
Furthermore, for every A € Ag . large enough, there exists C' > 0, for which

1A =X e < C/IAIL

3.3.5. Generalized eigenspaces and L2-decomposition. In view of discreteness
of the spectrum of Ap, for each A € Spec(Ap), we choose y(A) a closed counter clock
wise oriented curve surrounding A as the unique point in Spec(Ap) and consider the
Riesz Projection or spectral projection corresponding to A:

Pas(\): L2(M;E) — D(Ap) CLA(M;E),

3.60 N _
(3.60) w o~  —(2mi) lfv()\)(AB—N) Lwdp,

where the integral above converges uniformly in the L?-norm as the limit of Riemann

1

sums, since the function x — (Ap — x)~" is analytic in a neighborhood of (). Since

the resolvent of Ap is compact, the operator Pa,(\) is compact, hence bounded, on
L2(M; E).

Notation 3.3.2.  The image of Pa,(\) in L%(M; E) will be denoted by
(3.61) Qag (M5 E)(A) :=1Im (Pag(N)) := PAB()\)(L2(M;E))

Then, (Id — Pag(A)) : L2(M; E) — L2(M; E) is the complementary spectral projection
of Pag()\) in L2(M; E) with image

(3.62) Im (Id = Pag(A)) == (Id — PAB()\))(LQ(M; E))
and we set
(3.63) Im (Id = Pag(N))|5 := Im (Id = Pa,s (X)) ND(ApB),

where D(Ap) is the domain of definition of Ap in (3.58)).

Lemma 3.3.3.  Consider the spaces introduced in Notation [3.53.9. The operators Ap
and Pagz(N) commute: Pay(AN)Ap C AgPag(N); in other words, if u € D(Ag), then
Pags(ANu € D(Ap) and Pay,(N\)Apu = AgPay(N)u. The space L2(M; E) decomposes
Bg,p-0rthogonally

(3.64) L2(M; E) =2 Qa, (M; E)(N) @ Im (Id — Pag (V)
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such that
Pas(AD(AB) C D(Ap),
(3.65) AgQax(M;E)(A) C Qag(M; E)(N),
AB(Im(Id—PAB )|B) C Im(ld = Pay(N)|g-

The operator AB|QAB(M;E)()\) : Qag (M E)Y(X) = Qag(M; E)(N), that is, the restriction
of A to each Qa,(M; E)(X), is bounded on Qa,(M; E)(X\) and

Spec(Aglo, () (n) = {A}

The operator
(3.66) Apl Im(ld—Paz (V)| ° Im (Id = Pag(A))[g = Im (Id = Pas (X)),

i.e., the restricition of Ag to Im(Id — Pa,(N))|z C L2(M; E) is an unbounded operator
on L2(M; E). The spectrum of AB’Im(Id—PA )| is exactly Spec (Ap) \{A} or in other
B B
words the operator in (Ap — \)] im(Id—Pa; (V)| is invertible.
B B

Proof. This is a direct application of Theorem 6.17, page 178 in [Ka95|, presented as
Theorem [1.3.1]in Section The assertion for the 3, p-orthogonality of such a decompo-
sition follows from the Proposition below, since Q(M; E) is dense in L2(M; E) and
Bg,» extends continuously to a nondegenerate symmetric bilinear form in the L2norm. 0O

Proposition 3.3.4. Let Ag be the L%-realization of the bilinear Laplacian and \ €
Spec (Ag). Then, Qaz(M; E)(X) C Q(M; E)|p, that is, it contains smooth differential
only, which satisfy boundary conditions. The space Qa,(M; E)(X) is of finite dimension
and invariant under dg and dE b Moreover, the operator A — X\, when restricted to
Qagz(M; E)(N) is nilpotent, i.e.,

AN €N s.t. (Aggp—N)"w=0,Yn> N, for each w € Qaz(M; E)(X)

In particular, for each w € Qa,(M;E)(X), the form (Aggp — A)" w satisfies boundary

conditions for all n > 0.

Proof. Since the resolvent of Ap is compact and the operator Pa,(\) is bounded on
L2(M; E), the space Qa,(M; E)()), i.e. the image of the spectral projection, is of finite
dimension, see Theorem 6.29 in chapter III, Section 6 in [Ka95]. Now, from Lemma

the operator
Aploa im0 2 Qag(M; E)(A) = Qag(M; E)(X)

is bounded, its spectrum contains A only, Qa,(M;E)(\) is of finite dimension and
therefore (Ap — )\)|QAB(M;E)(>\) is nilpotent. We now show the space Qa,(M; E)(X)
contains differential forms only. Indeed, we know that Qa,(M;E)(X) C D(Ag) =
WHQ C Hy(M; E) but also, by Lemma that the operator Pa,(A) com-
mute with Ag on D(Ag) and that the space Qa,(M;E)(A) is invariant under Ag.



54 3. GENERALIZED LAPLACIANS ON COMPACT BORDISMS

Thus, if w € Qa,z(M; E)(A), then w € D(Ap) and Agw € D(Ag) C Hy(M;E) and
therefore, by Prop081t10n|__ 2.3.3] where elliptic estimates have been used, we conclude
w € D(Ap2) =QM;E)g = C Hy(M; E); then by iterating this argument, we have

w € Qa,(M; E)Y(\) € D(Apy) = QM E)g ™ for all s > 0,

that is,
Qag(M;E)(N) C QM; E)g C Q(M; E),

or in words, each generalized eigenspace contains smooth forms only. Now, if w €
Qag(M; E)(N), then we have P(A\)(Aggpw) = Aggp(PB(AN)w) = Apgpw so that
Apgpyw € Qa,z(M; E)(X) and in particular (Ag g5 — N)"w € Q(M E)|p for each n € Z.
We now show that Qa,(M; E)(X) is invariant under dp and dE b+ Since the space
Qagz(M; E)(A) contains differential forms only, it suffices to show that dgw satisfies the
boundary condition, whenever w € Qa,(M; E)(X). On 0. M, the absolute part of the
boundary, this immediately follows from d2E = 0. Let us turn to d_M, the relative
part of the boundary. The Riesz projections are well defined as bounded operators and
they commute with the Laplacian on its domain of definition, Lemma [3.3.3] That is,
Ag gpw lies in Qa,(M; E)(N) as well; in particular, it satisfies relative boundary con-
ditions on 0_M, so that i* (Ag 4pw) = 0. Together with iidﬁﬂg’bw = 0, this implies
it dy 9:b
responding statement for dg 9b follows by the duality between the absolute and relative

dpw = 0, hence dpw also satisfies relative boundary conditions. Finally, the cor-

boundary operators.
O

3.3.6. (Smooth) orthogonal complement for the generalized eigenspaces.
Proposition 4] above justifies the choice of the symbol ')’ in the notation for the
generalized eigenspaces in - The image of the projection Id — Pa,()) in L2(M; E)
does not only contain smooth forms. Here we are interested in smooth forms that are
also in the image of |d — Pa,(N).

Notation 3.3.5. 'We denote by

(3.67) Qaz(M; EYN) :=QM; E)Nim (Id — Pag(N)),

the space of smooth forms being in the complementary image of Pa,(A). Moreover, with
Notation [3.2.7, we set

(3.68) Qap(M; E)(N)°| = Qag(M; E)(N)® N QM; E)p,
to indicate the space of all smooth forms in Qa,(M; E)()\)€ satisfying boundary condi-
tions.

Lemma 3.3.6.  Consider the space Qa,(M; E)(N\)°| in (3.68). Then, the operator

(3.69) (A = A) o ,nsm) 02l © Qas(M; E)(N)°8 = Qag(M; E)(A)S,
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i.e., the restriction of (Ag — A) to Qa,(M; E)(N)€|p, is invertible.
Proof. We first show that the operator in (3.69)) is injective. It is clear from their
definitions, and , that
(3.70) Qag(M;E)(N)5 C Im(Id = Pag(N))]5-
From Lemma the operator

(3.71) (Ag— ) 2 1m (1d — Pag(\)] 5 = Im (1d — Pag ()

|Im(|dfPAB(A))’B
is invertible and hence the operator
(A = Al (rsmy0)els + Qas(M; E)(A)°5 = Im (Id = Pag (X))
is injective. But since
(Ap = A) (Qas(M; E)(N)|8) € Qag(M; E)(A)® CIm (Id = Pay(Y),

we conclude that the operator in (3.69)) is injective. We now show surjectivity. Again,
from Lemma the operator in is surjective. In particular, for each w €
Qay(M; E)(N), there is u € Im (Id — Pa, ()] 5 - But from Proposition [2.3.3] proved by
using elliptic estimates, it follows that v € Q(M; E), and hence u € Qa,(M; E)(N)¢|s,
so that the operator in is surjective. O

3.3.7. Hodge decomposition for the bilinear Laplacian on smooth forms.
For A € Spec(Ap) consider the corresponding spectral projection defined in ([3.60)
Pag(\) 1 L2(M; E) — Qa,(M; E)(N), with image Qa,(M; E)()), see (3.61), such that
Pas ()\)‘QAB(M;E)()\) = Id. From Proposition we know that

Qay(M; E)(A) C Q(M; E) C L*(M; B),
and hence
Qag(M; E)(X) C Pag(A) (QM; E)) C Pag(A) (L2(M; E)) = Qay(M; E)(N).
Therefore

(3.72) Qag(M; E)(N) = Pag(MN)(QM; E)).
Lemma 3.3.7. Let v,w € L2(M; E). Then Byus(Pas(N)v,w) = Byu(v,Paz(Nw).

Proof. Since, the bilinear form 3,; continuously extends to a nondegenerate bilinear
form on L2(M; E) and Q(M; E) is dense in this space, it is enough to prove the statement
on smooth forms. Then for v,w € Q(M; E), we can write, see (3.60))

Bap(Pag(Nv,w) = —(2mi) ™ By (fw(x)(AB—u)*lvd%w)'
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Since the integral defining Pa,(\) converges uniformly in the L%-norm, we are allowed
to take this integral out and write

Bop(PagNv,w) = —@2mi)~" [ Bop (Ap — p) ', w) dp,
Since y(\) N Spec(Ap) = 0, for each u € v(\), we have (Ag — u)"1w € D(Ag), so that
Bow (Ap — ) v, w) = Byu((Ap — 1) v, (A — ) (Ap — p) " tw).

But from Lemma both (Ag — p) v and (Ag — 1)~ 'w belong in fact to the space
Qagz(M; E)(N)€|B, so that we apply Lemma to obtain

Bab (A —p)rv,w) = Byp((Ap — 1) v, (Apgp — 1) (A — ) w)
= Bob (Apgp — 1) (Ap — p)~lv, (Ag — p) " w)
= Bgp (v, (A — ) tw) ;

that is
Bg,b(PAB(A)/Uv w) = _(27T)_1 / /Bg,b(vv (AB - M)_lw)dﬂ
¥(N)

and hence

ﬁg,b(PAB ()‘)U? w) = /Bg,b(va PAB ()‘)w)
O

Proposition 3.3.8.  The space Q(M; E) decomposes B, -orthogonally as the direct sum:
(3.73) Q(M; E) = Qag(M; E)(A) @ Qag(M; E)(N)S,

where Qa,(M; E)(X) is given by and Qa,(M; E)(N)€ by (5.67). In particular, if
A, 1o € Spec(Ag) with A # p, then

Qag(M; E) (1) L Qag(M; E)(N).

In particular, By restricts to each of these subspaces as nondegenerate symmetric bilinear
form. Furthermore, with Notation[3.2.77, we have the B4 y-orthogonal direct decomposition

(3.74) QM E)|go = Qap(M; E)(A) @ Qag (M3 E)(A)°|po
which is imwvariant under the action of dg.

Proof. Since Qa,(M;E)(\) C Q(M;E) C L2(Q(M, E)), the decomposition in (3.73))
follows from Lemma [3.3.3| and it only remains to show that

Qag(M; E)(A) Lg Qag(M; E)(N)°.
So, let us take v € Qa,(M; E)(\) and w € Qa,(M; E)(N)€, we have
Bgp(v,w) = By p(Pag(Nv,w) = By p(v, Pag(Mw) =0,

where the second equality follows from Lemma [3.3.7] and the last one is true because w
is in the image of the complementary projection of P, (A).
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Since Qa,z(M; E)(X) C Q(M; E)|go, the decomposition in 1) implies that [ -
orthogonal decomposition in (3.74) holds as well. We have already seen in Proposition
that Qa,(M; E)(N) is invariant under dg. But we have

d (s (M3 B)N) I ) € Qag(M: E)A) |0
as well. Indeed, take
v € Qayx(M;E)(N)go  and  w € Qaz(M; E)(N).
Then, by using the Green’s formulas from Lemma we obtain

Bgp(drv, w) = Byp(v, d%’gvbw) —1—/8 i*(Tr(v A *pw)).
M

But By (v, d%g’bw) = 0, since by Proposition d%%b leaves invariant Qa, (M; E)(A),
and

/8M *(Tr(v A xpw)) = /3+M it (Tr(v Axpw)) + /6M i (Tr(v A xpw)) = 0,

since i xpw = 0 and i* v = 0. Thus, By ;(dpv, w) = 0 and therefore, by /3, j-orthogonality

of (3.73), it follows that
dgv € Qa,z(M; E)(N)°.

Finally, since 7* commutes with dg, we have dgv € Qa,z(M; E)(X)°|go0 as well, O

Corollary 3.3.9.  With Notation[3.2.7, consider the space Qn,(M;E)(N)|go. Then,
we have

dp(Qas(M; E)(N)®|p0) Lg Qap(M; E)(N)
i (s (M B)A)[10) L Qs (M; B)(N)
Proof. If u € Qa,(M; E)(N) and v € Qa,(M; E)(N)€|p0, then
By, dpv) = Byp(dly  yu,v) =0,
because of Lemma invariance of Qa,(M; E)(\) under dﬁE,g,b as stated in Proposi-

tion and Proposition The proof of the statement for dﬁE’ b is analog. O

Corollary 3.3.10.  (Hodge decomposition) We have the B, ,-orthogonal decomposition

(3.75) QM; E) = Qay(M; E)(0) © Ap,g0(Qag (M; E)(0)° [5)-
Proof. This follows from Proposition [3.3.8 and Lemma [3.3.6 O

Proposition 3.3.11.  Consider Notation [3.2.7]. Then
(i) The space Q(M; E) decomposes Bqp-orthogonally as
QM E) = Qagz(M;E)0)
& dp(dy (s (M; E)(0) ) & i, (de(Qas(M; E)(0)° |5).
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(i4) The space Q(M; E)|go decomposes Bgp-orthogonally as
QM E)|ge = Qag(M;E)(0)
©  dp(Quas(M: E)(0)° |g0) @ dip o, (5 (M; E)(0) |5)-
(iii) The space Q(M; E)|go decomposes Bqp-orthogonally as
QM E)|gpe = Qag(M; E)(0)
®  dp(Qag(M; E)0)° [5) © diy ,,(Qas(M; B)(0)° |5).

Moreover, the restriction of By to each of the spaces appearing above is nondegenerate.

Proof. We prove (i). From Corollary [3.3.10} every u € Q(M; E) can be written as
U= ug + dE(dﬁE%bu) + dﬂEﬂ,b(dEU)
with
ug € Qagz(M;E)(0) and w e Qay(M; E)(0)C 5.
That
dio(dy (Vg (M BYOF 1)) Ls, , di, o(ds( Qs (M E)O |5)),
follows from Lemma, and d% = 0. To see that (ij) is a direct sum, we check that the
intersection of the last two spaces on the right of (if) is trivial. So, take
u € Qagz(M; E)(0)S,
and suppose there are
v,w € Qax(M;E)0)° g with w= dE(dﬁE’gbv) = dﬁE’%b(dEw).
Remark obviously that Ag 4yu = 0 but also that u € Qa,(M; E)(0), since
(*) itu= dE(i*_dﬁE,g’bv) = 0, as v satisfies boundary conditions,
() Z.*—d%,g,bu - Z.*—dﬁE,g,bdglg,dev =0,
(*) L xpu = j:dE(iidﬁE,@@ g *bw) =0, as w satisfies boundary condition,
(*) e gy b u = Fit %, dp(dpdy ) = 0.
Therefore, from Proposition w must vanish, so that the sum in ({i) is direct. This

decomposition is clearly 3, p-orthogonal.
Before heading to and , we introduce some simplyfing notation.

e Consider the operator
Go : Q(M; E) — Qg (M; E)0) |5
defined by
0 if we Qa,(M; E)(0)

Go(w) = ~1 _ .
(Apgslon,oumor)  w i w € Qay(M; E)(0)

Lthe signs + in front depend on the degree of the forms, but are not relevant in our considerations
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Notice that
ApgpGo=1—Pnag0),
so that
w = Pagz(0)(u) + Ag gp(Go(u)) for every w € Q(M;E)
and that (see Lemma and the isomorphism in (3.3.6]))

Gow € QAB(M§ E)(O
(3.76) diy ,yGow € Qay(M;E)(0
dEGow € QAB(M§ E)(O

) ‘Bv
)l C Qag(M;E)0) [0,
)l C Qag(M;E)(0) [0 -
Now, we show that Q(M; E)|gz and Q(M; E)|go decompose as stated. For 1' we need
check that
dpGow € QAB(M;E)(O)C ’B il we Q(M;E)‘B(l.
Indeed, if w € Q(M; E)|go , then
(*) i (dpGow) = 0 and i* (x,(dpGow)) = 0, since dpGow € Qayz(M; E)(0) |go.
(*) ii(d%'@)e%%b' *p (dpGow)) = 0, because of the definition of dﬁE’g’b and that
d3, =0.
(*)
i* (Y, deGow) = i* (Apgy — dpdy, ,)Gow)
= i ((Id = Pag(0))w — dgds; , ,Gow)
= *w—i* (Pag(0)w) —i* (dpdy,  ,Gow) =0
where we have used ([3.76)) and
(+) i*w = 0 because w € Q(M; E)|go -
() 7 (Pag(0)w) =0, because

Pas(0)w € Qay(M; E)(0) C Q(M; E)|po -
() i* (dpdy , ,Gow) =0, as Gow € Q(M; E)|p and i* (df; , ,Gow) = 0.
The decomposition in is proved similarly: In view of (3.76)), if w € Q(M; E)|go, then
(*) i’i(dﬁEyg?bGow) =0, and ii(*bdﬁE’gﬁGow) = 0, since
diy , ,Gow € Qa,(M; E)(0)° | po.

(*) clearly ii(d%7g7bdﬁE’g7bGow) =0.
(*) We have

P (dyge,, g0 *b A g yGow) = £i% (dpdy, | ,Gow)
= £ (0 (Apgp — dip g i) Gow)
= i (x5 (1d — P2y (0)w — mydy , ,dpGow) = 0

where the last equality follows from (3.76) and
(+) i% % w = 0, because w € Q(M; E)|go,
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(-) i (*xPag(0)w) = 0, because
Pas(0)w € Qay(M; E)(0) C Q(M; E)|po,
and

(-) it (dpge, * deGow) = dpge,, 1 (xpdeGow) = 0, as

dpGow € Q(M; E)|po.

Since Qaxz(M; E)(0)¢ |5 C Qayz(M; E)(0) |0 so that
dp(Qas(M; E)0) [5) C de(Qays(M; E)(0)° |0 ),

direct decomposition from follows from that of , 80 it is enough to check directness
of . This is done in the following steps

(a) By Proposition we have
g (25 (M: E)OFT ) € 2, (M: E)OFT g
thus
Qag(M; E)(0) N dp (Qag(M; E)(0)° |0 ) = {0}

(b) From Qa,(M;E)(0)¢ |g C Qa,(M; E)(0)¢ |g0, Corollary [3.3.9/and Proposition
, it follows

Qs (M; E)(0) N dfy ,,(Qay(M; E)(0)° |5) = {0},
(¢) We show
di (a5 (M: E)(0)° [0) N iy 5 (Qa5(M; E)0)° |5) = {0},
Suppose there is 0 # u € Qa,(M; E)(0)¢ such that
u=dgv for ve€ Qaz(M;E)(0) |z

and
u = dﬁEvg’bw for we duEyb(QAB(M; E)(0)° |g).

First, remark that
Apgyu=dpdy  ,d% dgw+dy dedpdy, v =0,

that is, u € ker(Ap4p). But also, we have

(*) i*u=1i"dgv = 0, since v € Qa,z(M; E)(0)° |05

(*) Z.idﬁ‘f,g,bu - iidﬁE,g,bd%,g,bw =0;

(*) Zi *p U = Zi *p dﬁE,g,bw = :tii *p *b_ldE/®@7ng/ *p W = iiidE’(X)@,g,b’ *p W =

+dgi’ (xpw) = 0, since w satisfies boundary conditions;
(*) iid%’(@@,g,b’ *p U = :|:7;*+ *p dE *b_l *pU = :|:i*+ *p dEu = :|:i*+ *p dEdE’U = 0.
These identities tell us that
u € Qa,z(M; E)(0)

as well, and therefore u = 0.
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It remains to show the statements about the nondegeneracy of By;. First, the same
discussion following display to prove that the defining formula of By, in (3.5)
defines a nondegenerate bilinear form on Q(M; E), holds to conclude that the f,; is
nondegenerate on Q(M; E)[g and Q(M; E)|go. Next, from Lemma the direct
decompositions in , and are f34p-orthogonal. Thus, 3, restricts to each space
appearing on the right hand side of , and as a nondegenerate bilinear form as
well. O

3.3.8. Hodge—De-Rham cohomology for bordisms. Recall Notation and
the results from Lemma . The cochain complex (2(M; E)|go ,dg) computes De-
Rham cohomology of M relative to O— M, with coefficients on E, see for instance [BT82].
Moreover, for A\ € Spec(Ag), consider the inclusion of cochain complexes

Qap(M; E)(A) = QM; E)|po -

Now, remark that for A # 0, the cohomology groups H*(Qa,(M; E)(A)) = 0. Indeed,
on the one hand, from Proposition we know that the spaces Qa,(M;E)(N) are
invariant under dg and dﬂE,g,b' Then, the operator Ag 4 is cochain homotopic to 0.
That is, the operator Ag 4 induces 0 in cohomology. On the other hand, for A # 0, the
operator Ap g is invertible on each sub-complex Qa,(M; E)(A) so that, it induces an
isomorphism in cohomology. Thus, for A # 0, we must have H*(Qa,(M; E)(X)) = 0.
In other words, every generalized eigen space corresponding to a non-zero eigenvalue is

acyclic. Tt remains to study the case A = 0.

Proposition 3.3.12.  The inclusion Qaz(M; E)(0) — Q(M; E)|go induces an isomor-
phism in cohomology: H*(Qa,(M; E)(0)) = H*(M,0_M,E).

Proof. Since Qa4 (M; E)(0) C Q(M; E)|go , the space Q(M; E)|go admits a decompo-
sition compatible with the decomposition of Q(M; E) in Corollary Thus, each
w' € Q(M; E)|go can be uniquely written as w’ = wg 4 w, where wy € Qa4 (M; E)(0)
and w belongs to the space

B.77)  Apgs(Qag(M;E)O0) [5) [po = Apgp(Qag(M; E)0)° |5) N QM; E)|go -

But the space in ([3.77)) is a cochain complex, since Ag g5( Qa4 (M; E)(0)° |g) is contained
in Qa,z(M; E)(0)° (see (3.69) in Lemma [3.3.6) and Q(M; E)|go is invariant under the
action of dg (see Proposition [3.3.8)). Thus, it is enough to show that every closed form

w taken in the space ([3.77) is exact. By Proposition [3.3.11] (i), there are

w1 € Qag(M; E)(0) g0 and  wz € Qax(M; E)(0)° |5

such that

w = dpwy + duth’wa.
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First, we claim that Bg,b(d%g yw2,v1) = 0, for all v; € Qa,(M; E)(0)¢ |po. Indeed, from
Proposition |3.3.11 , there exist

V2, U2 € QAB(M; E)(O>C |Ba
such that v; = dgve + dnEg pu2 and hence

(3.78)
/Bg,b(dﬁEjgvbw% dgva + dﬁE7g7bu2) = ﬁg,b(dﬁE,g,bw% dEUQ) + ng(dﬂE’g’waa dﬁE,g’bUQ) = 0.

Indeed, since ug, vo and wy satisfy boundary conditions, we have that dﬁE . pW2, dpva and

dﬁEgbug € Qagz(M; E)(0)° |go, see Lemma .(c); hence by Lemma .(e) and by

dﬁﬂg’b = 0, we obtain that ﬁg7b(d%7g7bw2, dpve) = 0. But Bg’b(dEdnEy’bwg, ug), the second
term on the right in l) also vanishes, because w being close implies dEdﬁE%wa = 0.
Finally, since dﬁE’g’wa belongs to Qa,(M; E)(0)¢ o as well, and that §, restricted to
this sub-space is also nondegenerate, see Proposition [3.3.11] from the claim above, we

have dﬂEg yw2 = 0. That is, w is exact.

O



CHAPTER 4

Heat trace asymptotics for generalized Laplacians

The aim of this chapter is to present the necessary material for the proof of the
anomaly formulas for the complex-valued the Ray—Singer analytic torsion in Chapter
Our main result, Theorem [£.4.3] The reader might skip temporary this chapter,
continue with Chapter [5 and then come back to this one when reading the proof of
Theorem However, the material and methods presented in the following sections
being quite general, we decided to discuss them independently at this point. We sketch
the structure of this chapter. In Section we recall the definition of the heat operator
agsociated to a boundary value problem and look at the heat trace asymptotic expansion
associated to an operator of Laplace type under elliptic boundary conditions. The work
by Gilkey in [Gi84] and [Gi04] is used to explain how first Weyl’s of invariants can be
applied to express the coefficients in the heat trace asymptotic expansion as universal
polynomials locally computable in (higher order) covariant derivatives of tensorial ob-
jects, see Proposition [£.1.5] Then, we use the material presented in Section to study
the coefficients of the constant term in the heat trace asymptotic expansion associated to
the bilinear Laplacian under absolute/relative boundary conditions (and certain bundle
endomorphism). We compute these coefficients, by using the corresponding ones for a
Hermitian Laplacian. In Section {.2] Proposition gives the infinitesimal version of
the anomaly formulas obtained by Briining and Ma in [BMO06] for a Hermitian Laplacian
with absolute boundary conditions only. In Proposition [£.2.5 we derive the correspond-
ing formulas for the dual problem, i.e., the self-adjoint Laplacian with relative boundary
conditions only. The proof of Proposition is based on Lemma which exhibits
the relation between these dual boundary value problems. Theorem provides the
formulas for the coefficients of the constant term in the heat trace asymptotic expan-
sion associated to a Hermitian Laplacian under absolute/relative boundary conditions.
These formulas coincide with those obtained by Briining and Ma in [BM11]. In Section
[4.3] Proposition gives the first key argument in the proof of Theorem In
few words, we prove that for each point in M, there exist an open neighourhood U, a
symmetric bilinear form b and a flat complex fiberwise defined anti-linear involution v
on F|y, with the following feature: for certain well-chosen values z € C, with |z| small
enough, the one-parameter family of nondegenerate symmetric bilinear forms b, := b+ zb
can be considered, by means of v, as a real one-parameter family of Hermitian forms on
E|y. Thus, the known results from the Hermitian situation can be used. Theorem [£.4.3]
relates the coefficients of the constant terms in the heat trace asymptotic expansions
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for bilinear boundary problems to the those corresponding to the Hermitian situation
given in Theorem In the proof of Theorem we also use Lemma [£.4.T], which
states in general that the coefficient in the heat trace asymptotic expansion depend holo-
morphically on a complex parameter z, as long as the bilinear metric does so. Finally
Theorem follows by a standard argument of analytic continuation, since the in-
volved formulas depend holomorphically on the parameter z and therefore they must
hold for all z € C with |z| small enough; in particular, for z = 0.

4.1. Heat trace asymptotics for generalized Laplacians

We recall the heat operator associated to a boundary value problem. We collect
some facts about the coefficients in the heat trace asymptotic expansion associated to
an operator of Laplace type with elliptic boundary conditions, see Proposition [4.1.2]
These coefficients are computable by integrating endomorphisms-valued invariants locally
computable as universal polynomials in higher order derivatives of the symbols of the
operators under consideration. We are particularly interested in the coefficient of the
constant term in the asymptotic expansion. In Section we use the work by Gilkey
based on [Gi84] and [Gi04], to explain how first Weyl’s of invariants, see Theorem
in Section [I.I.7] is used in the current situation, to express the endomorphisms
appearing in the asymptotic expansion as universal polynomials locally computable in
(higher order) covariant derivatives of tensorial objects, see Proposition [4.1.5]

4.1.1. Heat trace asymptotics. Let I’ be a complex vector bundle over a compact
manifold M and (D,T'(M; F')|g) a boundary value problem, where D is of Laplace type
acting on smooth sections of F', together B a boundary operator imposing local boundary
conditions such that (D,I'(M; F)|p) is elliptic with respect to the cone Cy := C\(0, 00).
Consider Dg the L2-realization of D, with domain of definition D(Dg) C L%(M; F), as
discused in Section 2.3.2]

Recall also the notions from Section By Theorem 2.5.2 in [Gre71]|, (see also
[Se69b], or more generally, for pseudo-differential boundary value problems, Chap-
ter 4 in [Gru96|), that for each u € I'(M; F) fixed, there exists a unique u(t,z) €
C®(Ry,T'(M; F)) providing a solution of the heat equation (J; + D) u(t, z) = 0 satis-
fying the boundary condition Bu(t,z) = 0 for all t > 0 and the initial condition u(0, ) = u
in the sense of distributions:

%i_I}I(l) (u(t,x), p(x))dx :/ (u(z), p(x))dx, forall peT(M;F’),
M M

where (-, ) is induced by the natural pairing between F' and its dual vector bundle F”.

Definition 4.1.1. Let (D,I'(M; F')|g) be an elliptic boundary value problem, where
D is of Laplace type acting on smooth sections of F, and B is a boundary operator
imposing boundary conditions such that (D,I'(M; F)|g) is elliptic with respect to the
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cone Cy := C\ (0, 00). For each t > 0, the operator
e”®Ps. T(M;F) — T-°(M;F),
u = u(t,)
is called the heat operator for the boundary value problem (D,T'(M; F)|g), that as-
sociates to each smooth section of ' a generalized section, or distribution, of F'. The

function u(t,x) is called the fundamental solution associated to (the heat equation
of) this boundary value problem.

Proposition 4.1.2.  Let (D,I'(M; F)|g) be a boundary value problem, where D is of
Laplace type acting on smooth sections of a vector bundle F' and B imposes boundary
conditions so that (D,T'(M; F)|g) is elliptic with respect to the cone Cy := C\(0,00).
Then following assertions hold.

(1) Fort > 0, the heat operator extends to a bounded operator on L2(M; F) and it
is of trace class in the L?-norm.

(2) The heat operator is a smoothing operator, i.e., the operator
e 5 . T7°(M; F) = T'(M; F)
is linear and bounded, with smooth kernel K;(D,B) € T'(M x M; F R F},) such
that for each u(t,-) € T=°(M; F) and K(D,B)(z,-) € I'(M; F};) we have

e Prultyr) = [ K(D.B)(w.v))(ul)voly (M)
M>y

for each x € M.
(8) For each ¢ € T'(M;End(F)), the function

Trea (ve ) = [ T, () (KD, B) ()] woly (M) (9

oy

admits a complete asymptotic expansion at t — 0 of the form
o0
(4.1) Tt (we*tDB) ~ 3" a(4, D, Byt /2,
n=0

where a,(1,D,B) are the heat trace asymptotic coefficients associated
to ¢ and Dg. The asymptotic expansion in s also referred as the heat
kernel asymptotic expansion associated to ¢ and Dg.

(4) There exist local endomorphism-valued invariants
(4.2) en(D) € I(M,End(F)) and e,1(D,B) € I'(OM,End(F|onr))

so that

an(y,D,B) = [y Tr (- en(D))voly (M)
Y020 Jons T (V546 €(D, B) ) volg (M),

where VT is a fived connection on F.



66 4. HEAT TRACE ASYMPTOTICS FOR GENERALIZED LAPLACIANS

(5) The quantities ¢, (x, D) are locally computable as universal polynomials in finite
order deriatives (jets) of the symbol of D with coefficients being smooth func-
tions of the symbol of D. The ¢, ;(y,D,B) are locally computable as universal
polynomials in finite order derivatives (jets) of the symbols of D and B with
coefficients being smooth functions of the symbols of D and B.

(6) The quantities e, (x,D) and e, 1 (y, D, B) satisfy

en(z,c?D) = c"ey(x,D)

4.4
(4.4) enk (Y, c’D,B) = c"*1*k6n7k(y, D,B), for k€ {0,...,n—1},

for each ¢ > 0.

Proof. The statements from (1) to (5) correspond exactly to Theorem 1.4.5 in [Gi04]
(see also Theorem 1.3.5 and Lemma 1.3.6 in [Gi04]). For the original proofs, we refer the
reader to Theorem 3 in [Se69b| and Lemma 1 and Lemma 2 in [Se69al (for (5) see also
displays (5) and (6) in [Se69a] concerning the invariants in the interior and displays (9)
and (10) in [Se69a] concerning the invariants on the boundary). For the case of a closed
manifold see Greiner [Gre71| and [Se67|. For (6), see Theorem 3.1.9 in [Gi04]. O

Notation 4.1.3. As in [BGV92|, for m the dimension of M, we denote by
LIM <Tr|_2 <¢e—tD6)) .= am (1), D, B)

the coefficient of the constant term in the heat trace asymptotic expansion associated

to ¢ and Dp in (4.1]) above.

4.1.2. Invariant theory and the heat trace asymptotic expansion. Remem-
ber the material in Section [I.I.7] in particular, the notion of a polynomial function
which is invariant under the action of the orthogonal group. We recall an example of a
first application of Weyl’s first theorem of invariants to characterize local invariants of a

Riemannian manifold.

Example: Invariants of the Riemannian metric. By using Lemma [1.2.1] any
local invariant of the Riemannian metric (obtained as polynomial in the higher order
derivatives of the Riemannian metric with coefficients being smooth functions of the
metric) can be expressed polynomially in terms of higher order covariant derivatives of
the Riemann curvature tensor R and the second fundamental form L (with respect to
V and V? respectively). This, originally proved by Atiyah-Bott-Patodi in [ABP75] by
using Weyl’s first theorem of invariants (see Theorem , is presented in great detail
in Section 1.7.2 in [Gi04], particularly see Lemmas 1.7.5 and 1.7.6 therein.

The invariant endomorphisms ¢, and ¢, ;. Let (D,I'(M; F)|g) be the boundary
valued problem, where D is an operator of Laplace type (like the bilinear or Hermitian
Laplacian) and B the operator imposing the boundary conditions in (associated to
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the bilinear of Hermitian structures respectively). Let VP be the connection on F' and
the bundle endomorphism EP € I'(M; End(F)) uniquely characterizing the operator of
Laplace type D, see Lemma We denote by RP the curvature of VP. Consider

(4.5) X, S, and wg :=b"'V2b €I(M,End(F))

the bundle endomorphisms characterizing the boundary operators B (imposing abso-
lute /relative boundary conditions), see Proposition [3.2.12]

Consider the endomorphism invariants e, (D) and e, (D, B) from (4.2)) in Proposition
Then, as for the invariants of the Riemannian metric in the Example above,
these local invariants can be expressed as universal polynomials in higher order covariant
derivatives (or jets) of R, RP, EP| x, S, w. and the second fundamental form L. This is
achieved again by using (Weyl’s first) Theorem . Let us somehow be more precise.

Notation 4.1.4. Let e := (e1,...,e,) be an orthonormal frame of TM locally over
some neighborhood of x € M, such that, at the boundary, e,, = ¢, is the inwards
pointing unit normal vector field on OM; we use the indices 7,5,k € {1,--- ,m} to index
this local frame. On the boundary, we consider the induced frame (e;--- ,en,—1) for
T (OM) over some neighborhood of y € M and use the indices a,b,c € {1,--- ,m — 1}.
In this way, R;ji; indicates the components of the curvature tensor R of the Levi Civita
connection and R?j the components of the curvature RP associated to the connection VP,
and Lgp := g(Ve,€p, €m) the components of the second fundamental form with respect to
this frame. Furthermore, multiple covariant differentiation of tensors T (of general type),
computed with respect to the connection VP and the Levi-Civita connection V on T'M,
is denoted by T;, that is, by using the symbol ’;" as subscript. Analogously, the Levi-
Civita connection V on &M and the connection VP permit to covariantly differentiate
tensors defined on M, along tangential directions, and in this case the notation ’:’ for
multiple covariant tangential differentiation is chosen.

Proposition 4.1.5.  For an operator of Laplace type D, consider its characterizing
connection VP and bundle endomorphism EP (see Lemma , For B the boundary
operator from Definition imposing absolute /relative boundary conditions, consider
X, S and wg, the characterizing endomorphism bundles from . As in Notatz'on
let R RD

ivi, A Laya, be the components of the Riemann curvature tensor R, the
curvature and of the second fundamental form L respectively computed with respect to
ture RP and of th d fund tal L tivel ted with tt

119213%4 5

an specified orthonormal frame e in T M and the symbol ’;’ indicates covariant differen-

tiation and ’:’ tangent covariant differentiation. Then, for the endomorphism invariants
en(D) and e, (D, B) from (4.4), we have

(1) The quantities ¢, (D) are locally computable as universal polynomials in the for-
mal variables R; iyizis;... RZ-Dm’._‘_, ED ;... and id.

(2) The quantities e, (D, B) are locally computable as universal polynomials in the

D

1 S D ;
formal variables Rzllgzgu;...; RiliQ;,_,; E P Lalag:...7 X;...aS;...aqu;“_ and id.
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Proof. We sketch the main ideas in the proof. For much more details, we refer the
reader to the books of Gilkey. More precisely, see Lemma 3.1.10 and Lemma 3.1.11 from
Section 3.1.8 in [Gi04], (see also Sections 1.7-1.8 and 2.2.4 in [Gi04] and Sections 1.7,
1.9 and 4.8 in [Gi84]).

Let us start with the invariants in the interior. Take into account Notation E.1.4l
For e a (local orthonormal) frame of T'M, consider the set

D D
(4'6) {Ri1i2i3i4;...a Riligg...’ E ,}
corresponding to the components of R, RP, EP and their multiple covariant derivatives,
D
11025000

nomial in the variables (4.6). These formal polynomials can be evaluated once a lo-

seen as of formal variables. Let ¢(D) = ¢(Rj ipizig;.... R ,EP...) be a formal poly-

cal orthonormal frame e is fixed. Then, ¢(D) is said to be invariant if the value of
¢(D)(e) € End(F) is independent of the frame e and only depends on R, RP, EP. Let
Em (D) the set of all these invariant polynomials and for each positive integer n, define

Weight(Ri1i2i3i4;i5...i") = 24n,
weight(RPlZ-Q;iS__in) = n,
weight(EP; .;) == 2+4n.

Let &,n(D) C &, (D) be the space of all elements in &, (D) which are invariant and
homogeneous of weight n. Then, from (Weyl’s) Theorem any polynomial invariant
endomorphism which is homogeneous of weight n belongs to &, (D). It remains to
explain why the quantities ¢, (D) appearing in belong to &y, (D) as well. In order
to see this, first remember that the symbol of D is a geometric invariant which does not
depend on the choice of orthonormal frames nor on the connection. So, for each xy € M,
choose geodesic coordinates centered at xg, in terms of which the jets of the metric at
xo can be computed in terms of the variables Ryji;..., see Lemma [[.2.1] Next, construct
a local frame of F' around zq in the following way. Choose vg to be a frame at the fiber
Fy over g, and, with respect to VP, parallely transport v along all the geodesic rays
leaving xo; this guarantees that, locally around zg, all covariant derivatives of wP, the
connection 1-form associated to VP, can be expressed in terms of Rijkis RPj and their
multiple covariant derivatives as well. From Lemma [2.1.2] we know that the symbol of D
can be described in terms of g;;, wP and EP. Thus, higher order derivatives of the symbol
of D are all expressible, locally around o, in the variables in[f.6] Now, By (5) and (6) in
Proposition we know that e, (D) are endomorphism invariants locally computable
as polynomials homogeneous of order n in the jets of the symbol of D. Henceforth each
¢n(D) is in turn expressible as a polynomial invariant homogenous of order n in the
variables ({1.6). Therefore by (Weyl’s) Theorem we have ¢, (D) € &, (D).

The treatment for the invariants e, (D, B) on the boundary is similar. By Propo-
sition these invariants are local computable as universal polynomial in the jets of
the symbols of D and B. Hence, in addition to the formal variables considered for the

invariants in the interior, in this case one also considers the formal variables coming from
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(higher order derivatives) of the second fundamental form L and the endomorphism ¥,
S and w, characterizing the absolute/relative boundary operator. Choose a geodesic
coordinate system on OM, with respect to g2 and extend it to a normalized coordinate
system on a collared neighborhood. The jets of the metric are written in terms of higher
order covariant derivatives of R and higher order tangential covariant derivatives of the
second fundamental form, see Lemma -remark also that higher order tangential
derivatives of x are related to the second fundamental form, see . On the bound-
ary, since the inwards pointing geodesic unit normal vector field has a distinguish role,
the structure group is reduced to O(m — 1,R). Let £2 (D, B) be the space of polynomial

invariant functions in the formal variables
D D
(47) {Ri1i2i3i4;...7 Rilig;...a E H) Lab:...7 Xseun S;...a Wcin;__.}'

Then, by setting the degree of homogeneity (or weight) for the additional variables
according with the relations for the polynomial invariants e, x(D,B) in (4.4) and by
(Weyl’s) Theorem of invariants, one has ¢, (D, B) € £2.(D, B). O

4.2. Heat trace asymptotics for the Hermitian Laplacian

We use the theory presented in Section to study the coefficient a,, (¢, Ag g 1, B)
of the constant term in the heat trace asymptotic expansion in associated to the
Hermitian Laplacian Ag 45 under absolute/relative boundary conditions, see Section
and certain well-chosen bundle endomorphism ). We first recall one of the main
results by Briining and Ma in [BMO6|, where the Hermitian Laplacian on a manifold
with boundary under absolute boundary conditions was studied. Then, we use Poincaré
duality to deduce the correspoding results for the Hermitian Laplacian on a manifold
with boundary under relative boundary conditions.

Notation 4.2.1.  (Briining—Ma) In order to read the formulas appearing in Proposi-
tion Proposition [£.2.5] Theorem [£.2.7)and Theorem we need some character-
istic forms appearing in the anomaly formulas from [BIMOG|. At this stage the specific
knowledge of these characteristic forms is not needed, but in Chapter [6| we give a detailed
construction of these forms. These forms are the Euler form e(M,g) € Q™(M;Oy)
associated to the metric g, and certain characteristic forms on the boundary such as
en(OM, g), B(OM,g) € Q™ 1(OM;©);) defined by the formulas (1.17), page 775 in
IBMOG6|, (see Definition in Chapter [6). But also certain secondary forms or of
Chern-Simons type €(M, go, g1) € Q™ 1(M;0)) and €,(OM, go, g1) € Q™ 2(OM; O y)
corresponding to {gs}s a smooth path of Riemannian metrics on M connecting the
Riemannian metrics go and gi, defined in (1.45), page 780 in [BMO6], (see in

Definition [6.1.12|in Chapter @

Proposition 4.2.2.  (Brining—-Ma) Keep in mind Notations |4.2.1| and |3.2.9. Lel

(M,0M,D) be a compact Riemannian bordism. Consider [A,QB](E]\’/[g’gM’@)

the Hermitian
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boundary value problem and denote by A,psp its L2-realization. Let us write Trg to

indicate the supertrace. For ¢ € T'(M,End(F)) we have

(48)  LIM (Tr, (e )) = / Te(p)e(M, g) — (—1)" / " Tr(¢)en(OM, g).
t—0 M OM

Moreover, for £ € T'(M,End(T'M)) a symmetric endomorphism with respect to the metric

g, we set
(4.9) Vo= D' — %TY({) € T(M, End(A*T* M),

where D*¢ € T'(M,End(A*T*M)) is obtained as the unique extension of & as a derivation
on AN*(T*M). For 7 € R taken small enough such that g + T7g€ is a nondegenerate

symmetric metric on T M, we have

(4.10)
LMo (Trs (—We™"Aasn)) = =2 [y, | &(M, 9,9+ 798) Aw(VF, )
-2 [50 %’Tzoéb(ﬁM,g,g +79€) Ni*w(VE )
+rank(FE) faM %‘T:O B(OM, g + 1¢£),
where w(VE, h) :== —L Tr(h='VEh) is a real valued closed one form.

Proof. We prove formula (4.8). First, each endomorphism ¢ € I'(M,End(E)) can be
uniquely written as ¢ = ¢ + i¢p'™ where ¢", ¢'™ are self-adjoint elements. Thus, it is
enough to prove the formula for ¢ self-adjoint. Now, suppose that ¢, := h;, 138% €
['(M,End(E)), where h, is a smooth one real parameter family of Hermitian forms on F
with hg = h. Then, formula exactly is the infinitesimal version of Briining and Ma’s
formulas, see Theorem 4.6 in Section 4.3 and expression (5.72) in Section 5.5 in [BMO06].
Next, suppose ¢ € I'(M,End(FE)) to be an arbitrary self-adjoint element. Then, for u
small enough, the family h, := h + wh¢ is a smooth family of Hermitian forms on E
and h; 1% = h; 'h¢ defines a smooth family of self-adjoint elements in I'(M, End(E)).
Therefore, by using again Briining and Ma’s formulas for

oh
1 u o
hO ( ou u:O) B ('b’

the proof of is complete. We now prove formula . Let g, be a smooth family
of Riemannian metrics on TM with gy = ¢g and denote by x, the Hodge *-operator
corresponding to g,. First, consider the case where £, = g;l%% € I'(M;End(TM))
and so, by formula , we obtain

109y 1 1094 _1 Oxy
L * 1Y Ju _ = 1¥YJu - _ 1 Y7 u
Yu=D (g“ ou ) 2 r <g" ou > *u By

considered as a smooth family in I'(M, End(A*T*M)), for the last equality above see
for instance Proposition 4.15 in [BZ92|. Then, formula (4.10) is the infinitesimal
version of Briining and Ma’s results, see Theorem 4.6 in Section 4.3 and expressions
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(5.74) and (5.75) in Section 5.5 in [BMO6|. In the general case, take a symmetric

¢ € I(M;End(TM)). Then, for u small enough the formula g, := g + ugé defines a

—199u
U Ou

family of symmetric elements in I'(M, End(T'M)). Hence we obtain a smooth family of

smooth family of nondegenerate metrics on T'M and hence g = g 1g¢ a smooth

symmetric endomorphisms — x;, ! % in T'(M, End(A*T*M)), for which we can use again

Briining and Ma’s formulas. In particular, they must hold for u = 0 for which we have
O%y,

— Ogu
9! (8% u:O) = ¢, so that
ou u:0>'

That is, formula (4.10)) holds. O

=D (6 - ;6 =+ (

The following uses Poincaré duality to relate boundary value problems under absolute
and relative boundary conditions.

Lemma 4.2.3.  Recall Notation , Let E' be the dual of the conjugated complex
vector bundle of E, endowed with the corresponding dual flat connection and dual Her-
mitian form. Consider the bordism (M,),0M) and its dual (M,0,0M) = (M,0M,0).
E.g.n with L2-realization de-

0,0M)

(M, ~
noted by Ave p, and the its dual Hermitian boundary value problem [A, QB]EM@)@@é‘i’[g)’,h ith
ez

We look at the Hermitian boundary value problem [A, Qp]

corresponding L2-realization AL If ¢, & and ¥ are as in Proposition then
7tAreI,h — (1™ ( ( * _tA;bs,h’>)
(4.11) LIM (Trs (¢e™"Sn)) = (—1)™ LIM ( Trs (6" :
where ¢* := hoh™!, and
(4.12) LIM Trg (e~ tAn) = (—1)"+1 LIM Tr, (\Ife*m;bs,h’) .
t—0 t—0

Proof. We consider the complex vector bundle isomorphism between E and E’ pro-
vided by the Hermitian metric on E (see page 286 in [BT82]), which we still denote
by h € Q°(M;End(E,E')). With respect to the induced connection on End(E, E'),
consider VEh € QY(M;End(E, E')). By considering the Hermitian metric on E and
the Riemannian metric on M, one obtains x;, :=x® h : Q(M; E) — Q(M; E' ® Oy) a

complex linear isomorphism used to define
d*E,g,h = (—]_)q *}:1 dE’@@M*h : Q‘I(M’ E) N qul(M; E),

this is the formal adjoint to dg with respect to the Hermitian product on Q(M; E). More-

over, the formula dg/gg, d = *pdp , , dp holds and therefore x,Ap gp =

%
E'®O 1,9, P
Apge,,.gn*h- Asin Section the operator %, intertwines E-valued forms satisfying
relative (resp. absolute) boundary conditions with E’-valued forms satisfying absolute

(resp. relative) boundary conditions. That is,

(4.13) Avetn = #3,  Alps j*h
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and therefore ¢exp(—tAren) = *;1¢* exp(—tA'abS,h,)*h, where ¢* := h¢h~!. Thus,
since the supertrace vanishes on supercommutators of graded complex-linear operators
and the degree of %, , is m — ¢, we obtain the formula

Trs<¢67tArel,h) — (_1)m Trs(d)*e_tA;bs,h’)
and hence ({.11)). We now turn to formula (4.12)). First, remark that
(4.14) g (D — $Tx(€)) %, 1 = —D*E + 5 Tr().

We prove , by pointwise computing *qD*g*;l. Since ¢ is a symmetric complex
endomorphism of T, M, we may choose an orthonormal frame {e; }7* such that {e; = \e;.
Then, for {e" A+ A€"}i< <...ci,<m a positive definite oriented frame for AT M, the
Hodge x-operator is given by %, (eil A A ei‘Z) =t Ao Aedmma € AMTITHF M, where
the ordered indices (ji,...,Jm—q) == (1,...,iA1,...,iA(],...,m) with 1 < 51 < ... <
Jm—q < m, are obtained as the unique possible choice of ordered indices complementary
to <41 < -+ <4 Therefore

kgD exg (TN NIM=) = kg D*E(eM1 A Aei)
= %4 221:1(61'1 /\.../\g(eil)/\.../\eiq)
= kg g Ay (€A AET A Net)
= YN (ejl /\...Aejqu)
= 27 (1 AAm=a) TN (el A Aeima)
= S (eh /\.../\ejm*q)_ ;1;(1(63'1 AN, ejl/\-~~/\ejqu)
= (Trg—D*g)(eh A.‘.Aejqu)
and we obtain , which in turn allows us to conclude
V() = (D765 Tr()@1) (xg®h) !
(4.15) = (2@ ((%e(DE—5 Tr(9))xg ') @1)
= (o) (D6 THO)o1)
= —(xq®h)"'L.

Finally, we use (4.15)) to pass to the complex conjugated; hence with (4.13) and duality
between these boundary value problems we obtain

Uexp (—tAwep) =V *fll exp (_tA;bs,h') *p, = — *}:1 \Ifexp(—tAng’h/) *,
thus, as for (4.11)), we have
Trs (¥ exp(—tAren)) = —(—1)™ Trg(¥ exp(—tAébs’h/))
O

Remark 4.2.4. The relations from Lemma were also computed by Briining
and Ma in Theorem 3.4 in [BM11], by a different approach, in which they do not
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use the complex conjugate bundle E. Instead, they consider the Hodge x-operator
*p, to relate the Hermitian Laplacian acting under absolute boundary conditions on
Q(M; E) to the Hermitian Laplacian acting under relative boundary conditions on the
space Q(M; E ® Oyr). To do so, they use the Hermitian form h, to identify F with its
dual. Then they split their proof into two cases according to the situation wether h is
flat or not.

Proposition 4.2.5.  Recall Notation and Notation [{.2.1. For the Riemannian
bordism (M,0,0M), consider the Hermitian boundary value problem [A, QB]EA’/[g’éLaM) with
its L?-realization denoted by Aveln. If ¢, & and ¥ are as in Proposition then

LIMy 0 (Trs (pe"8en)) = [} Tr(p)e(M,g) — [,y i* Tr(¢)en(OM, g)
and

LIM; o (Trs (—= e tAen)) = =2 [, 2| &(M,g,9+ 79¢) Aw(VE, h)
2= [ 2| en(0M, g, g+ Tg€) Ni*w(VE h)

+ (=1)™*rank(E) faM %‘TZOB@M,Q + 79€).

Proof. Recall that w € Q*(M;E) satisfies relative boundary conditions if and only
if the smooth form x,w € Q™ *(M; E' ® ©);) satisfies absolute boundary conditions
on OM. Thus, the first formula follows from formula in Lemma and the
results from Briining and Ma for the Hermitian Laplacian stated in Proposition
The second formula follows from Lemma formula in , Proposition and
w(VE h) = —w(VF' 1), see for instance Section 2.4 in [BHOT]. O

Lemma 4.2.6. Recall Notation [3.2.9. For the bordism (M,0M,0), consider the

Hermitian boundary value problem [A,Qg]g\f’gM 0) with its L2-realization Agpsp. For

(M,0,0M), consider the Hermitian boundary value problem [A7QB]5Q}(]:@%M) together

with its L2-realization Avep. For (M,04M,0_M), consider [A’QB}(E]\;’QJFMB,M) the

Hermitian boundary value problem L2-realization App. If we chose the endomorphism

Yy € I(M; End(A*(T*M) ® E)) in such a way that supp(y+) N OxM =0, then
—tA —tAqps
L 0 195) 3 (0 p2524)

and

LIM (Trs (p_e 25:1)) = LIM (Trs (¢p_e "Aretn)) .

t—0 t—0

Proof. This is a direct consequence of Lemma and disjointness of 04 M and 0_M.
O
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Theorem 4.2.7.  Recall Notation[3.2.9 and Notation[{.2.1. For the compact Riemann-

ian bordism (M,0M,0D), consider [A’QB]EZ\’/IQ,Q+M,8_M)’ the Hermitian boundary value
problem, with its corresponding L2-realization Agp. If ¢, & and ¥ are as in Proposition
then

(4.16)

LIM; o (Trs (gpe~t280)) = [}, Tr(¢)e(M, g) + (—1)™~1 Jo, 1 Tr(@)i% en(0M, g)

— Jo_ 2 Tr(¢)i* ep(0M, g).
and

LIM; o (Trs (—Wem"28n)) = =2 [\, & &(M, g, g +79€) Aw(VF, D)
— 2f8+M %’T:U it ep(OM, g, 9+ 19€) Aw(VE h)
+ rank(E) f8+M 8%‘7=0 it B(OM, g + 19§)
=2(=1)™ [o s 2=l —g 2 6(0M, g, g + Tg€) Aw(VE, h)

+(=1)"rank(E) [, A, %‘7:0 i* B(OM, g + 1g§).

Proof. This follows from the result by Briining and Ma in [BMO0G|, stated in terms
of Proposition above, Proposition [.2.5 and Lemma More recently, Briining
and Ma gave also a proof of this statement, see Theorem 3.2 in [BM11], based on the
methods developed in [BMOG]. O

4.3. Involutions, bilinear and Hermitian forms

In Section .4 we compute the coefficients of the constant term in the heat trace
asymptotic expansion associated to the bilinear boundary value problem, by using the
corresponding results from Section for the Hermitian boundary value problem. In
order to do that, we first need relate both boundary value problems by using, in certain
sense, a complex anti-linear involution on the bundle.

More precigely, we fix a Hermitian structure compatible with the bilinear as follows.
Since E is endowed with a bilinear form b, there exists an anti-linear involution v on F

satisfying

b(vei,ves) = b(ey,eq) forall ej,es € E
(4.17) and
b(re,e) >0 forall e E with e#0.

Indeed, the fiberwise nondegenerate symmetric bilinear form b provides a reduction of
the structure group of E to Ox(C), where k is the rank of E; the natural inclusion
Ok(R) — Og(C) is a homotopy equivalence and hence the structure group can further be
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reduced to Og(R); see for instance the proof of Theorem 5.10, in [BHO7|. The existence
of the complex anti-linear involution v on E with the desires properties in (4.17) follows.
In this way, we obtain a fiberwise positive definite Hermitian form on E:

(4.18) h(e1,e2) := b(e1,vea),

which is compatible with the bilinear form b, by means of the complex-antilinear invo-
lution v. Remark that, in general,

Y VER) =v (VI D)) v+ v H(VE D)
since we do not require VFv = 0.

Thus, for a specified involution v, we end up with a Hermitian form on Q(M; E') that
is compatible with 3, in the sense

(4.19) L v, W g p= Bgp(v, vw)

for v,w € Q(M; E). In [SZ08| and [Su09], given a bilinear form b, this involution has
been exploited to study the bilinear Laplacian in terms of the Hermitian one associated
to the compatible Hermitian form in , in both cases with and without boundary.
However, our approach is a little different since we do not use a Hermitian form globally
compatible with 845 on Q(M; E), but instead a local compatibility only, see section
below.

We now study the situation where v is parallel with respect to V.

Lemma4.3.1. Let us consider (M,0+M,0_M) the compact Riemannian bordism to-
gether with the complex flat vector bundle E as above. Suppose E admits a nondegenerate
symmetric bilinear form. Moreover, suppose there exists a complex anti-linear involution
v on E, satisfying the conditions in and VPv = 0. Let h be the (positive definite)
Hermitian form on E compatible with b defined by . Then, Aggp = Apgn and

BE,g,b = BEyg,h'

Proof. Consider < -,- >, the Hermitian product on Q(M;E) given by (4.19) and
ngh, the formal adjoint to dg with respect to this product, which in terms of the
Hodge x-operator can be written up to a sign as

d*E,g,h == *};1 dE *h .
Remark that VFy = 0 implies that dgr = vdg and hence, with *, = v o %, we have
(4.20) *E,g,h =+ *}71 dpxp, = *+ *gl V_ldEV*b ==+ *gl dpxp = dﬁE,g,b’

and therefore the Hermitian and bilinear Laplacians coincide. We turn to the assertion
for the corresponding boundary operators. On the one hand, the assertion is clear for
B_g . = B-p 4 because of (4.20) and (3.16). On the other hand, by using int, , the
(interior product) contraction along the vector field g, for v € QP(M; E) the identity

0k _ o M
*plyintg v =13 *y v
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holds. Therefore the operator specifying absolute boundary can be written, indepen-
dently of the Hermitian or bilinear forms, as

p+1;

By v = (iintg,v, (=1)Pilintg, (dpv)) = B4, 0.

That finishes the proof. (|

Lemma 4.3.2. Let (M, g) be a compact Riemannian manifold and E a flat complex
vector bundle over M. Assume E is endowed with o fiberwise nondegenerate symmetric
bilinear form b. For each x € M there exist an open neighborhood U of x in M, a
parallel anti-linear involution v on Ely and a symmetric bilinear form b on E such that,

for z € C, the family of fiberwise symmetric bilinear forms
(4.21) b. == b+ zb,

has the following properties.

(i) b, is fiberwise nondegenerate for all z € C with |z| < V2,
(i) bs_j(ver,ves) = bs_i(e1,e2), for all s € R and e; € Ely,
(iii) bs—i(e,ve) >0 forall s e R, |s| <1 and 0 # e € E|y.

Proof. Since flat vector bundles are locally trivial, there exists a neighborhood V of x
and a parallel complex anti-linear involution v on E|y. Moreover, since b is nondegener-
ate and v a complex antilinear involution, we can assume without loss of generality that
v can be chosen to be compatible with b at the fiber E, over x, such that

by(vei,vey) = by(er,eq) forall e; € E,

and

by(ve,e) >0 forall 0#ecE,.

Consider
bRe(ey, e9) := % (b(el,eg) + b(l/el,yeg)) ,
B'™(e1,e2) := 5 (b(e1,ez) — b(ve, V62)> ;

as symmetric bilinear forms on FE|y. In particular, note that by construction

(4.22) bly = bR +ib'™  with b'™|p, =0,

(4.23) bRe(vey, veg) = bR®(ey,ez) and  b'M(vey,vey) = b™ (e, e),

for all e; € E|y. Now, choose an open neighborhood U C V of z and a compactly
supported smooth function A : V' — [0, 1] such that Ay = 1. Thus, by extending A by
zero to M, we set

(4.24) b= '™,
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as a globally defined symmetric bilinear form on E. Remark here that b is not fiberwise
nondegenerate on F. Using

boily = (b (5 = 1B) Iy = blu + (5 = DH™|or = bRl + 6™
and (4.23) we immediately obtain (ii). In turn, (ii) implies
bs_i(ve,e) = bs_j(ve,e)

and hence bs_j(ve,e) is real for all s € R and e € E|y. Finally, by the formula (4.21)
defining b, at x, we have b'™|, = 0 and therefore

e b.|, is nondegenerate,

o bs_ilz(ve,e) =b|(ve,e) >0 forall 0 #e € Ey,
from which (i) (resp. (iii)) follows by taking |z| < v/2 (resp. |s| < 1) and then choosing

the support of A small enough around =. O

The following Proposition provides the key argument in the proof of Theorem §.4.3]

Proposition 4.3.3.  Recall Notation[3.2.9 For the bordism (M,d4M,0_M) consider
the boundary value problem [A, QB](E]\’/[g,g+]V[,6_A{) specified by the bilinear Laplacion under
absolute/relative boundary conditions. Then, for each x € M, there exist {b.}.cc a
family of fiberwise symmetric bilinear forms on E, and {hs}scr a family of fiberwise

sesquilinear Hermitian forms on E such that

(i) b, is fiberwise nondegenerate for all z € C such that |z| < V2.
(11) hs is fiberwise positive definite Hermitian form for all s € R with |s| < 1.

(111) For each s € R with |s| < 1, consider [A7QB]57/?,§;M,8_]V[) the corresponding
Hermitian boundary value problem. Then, there exists a neighborhood U of x
such that

Apgb, ilv =Apgnlv  and  Bggp, lv=Begn.lv-

Proof. By Lemma [£.3.2](i), for each z € M, there exists a globally defined fiberwise
symmetric bilinear form b on E such that the formula b, := b + 2b in defines a
family of fiberwise nondegenerate symmetric bilinear forms on F, satisfying the required
property in (i). In addition, we know that for each x € M, there exist an open neigh-
borhood V of z and a parallel complex anti-linear involution v on E|y. By Lemma
4.3.2|(i)-(ii), we also know that we can find U C V a small enough open neighborhood of
x, such that bs_; satisfies the conditions (i) and (ii) on E|y, for |s| < 1. Hence, by using
the formula in , we obtain a fiberwise positive definite Hermitian form compatible
with bs_; on Fl|y given by

hg(el, 62) = bS,i(llel, 62).

Now we extend hY to a (positive definite) Hermitian form on E as follows. We take h’
any arbitrary Hermitian form on E and consider the finite open covering {Uj, U7 ..., Upn}
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of M, with U} := U, together with a subordinate partition of unity {fj}UJ/_. If h) o= W'y,
then
N
he = fohY + " f;)
j=1
globally defines a fiberwise positive definite Hermitian form on FE, as the space of Her-
mitian forms on E is a convex space. This proves (ii). Then, (iii) follows from Lemma

3.1l O

4.4. Heat trace asymptotic expansion for the bilinear Laplacian

In this section we finally are able to compute the coefficient of the constant term
in the heat trace asymptotic expansion corresponding to the bilinear Laplacian under
absolute/relative boundary conditions.

Lemma4.4.1. Let O be an open connected subset in C and {z +— b.},cu a holomor-
phic family of fiberwise nondegenerate symmetric bilinear forms on E. Recall Notation
3.2.9. For the bordism (M,0+M,0_M) consider the family {[A, QB](EAX&M’&M)}ZE(), of
boundary value problems for the corresponding bilinear Laplacians under absolute/relative

boundary conditions, together with their L%-realizations denoted by Agy, . For each
Y € End(AT*M ® E) and Notation consider the coefficient of the constant term

in the heat trace asymptotic expansion associated to v and Ag. Then, the map
— LIM (T ~tABb
2 LIM (T, (e 50 ))

158 holomorphic on O.

Proof. The value of LIM;_,q (Trs (we*tAB»bz)) is computed by using the formula ,
which in turn requires the knowledge of the locally computable endomorphism invariants
em(AEgp,) and ey (Aggp., Begp. ). By compactness, we can assume without loss of
generality that 1 is compactly supported in the interior of a sufficiently small open set
U in M (or a collar neighborhood of M in M). For each z € O, we denote by V2
the connection on E and by E2 bundle endomorphism on E invariantly describing the
Laplace type operator A, := Ap ., see Lemma [2.1.2} whereas S, x. and w, . indicate
the bundle endomorphisms on AT*M ® E invariantly describing the absolute/relative
boundary operators B, := Bg 45, over a collar neighborhood near the boundary, see
Section , Proposition in Section and . Moreover we denote by
R the Riemann curvature tensor and by R2 the curvature of V2. Recall Notation
in Section [4.1.2] By Proposition [£.1.5] e, (A.) are locally computable as universal

polynomials in the variables Rjiyisiy,, RZAM27 E2 and finite number of their covariant
derivatives, whereas the endomorphisms e, (A, B.) are locally computable as universal

polynomial in the variables Rj iyi5is, Lab, RZAiliQ, E2, S, Xz, W, - and finite number
of their covariant derivatives. Now remark that for z € O, the function z — b7 ! is

holomorphic, since the bilinear form b, is nondegenerate and z — b, is holomorphic
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for z € O. Then, by construction of the bilinear Laplacian and the boundary operators
imposing absolute/relative boundary conditions, see Deﬁnition and Definition
the assignments z — Aggp. and z — Bggp, are holomorphic in z € O, since the
mappings z +— x ® b, z — VFb, and 2z — »~1 ® b7! are holomorphic. Therefore, the
coefficients of the symbols of these operators are holomorphic functions of z € O. In turn,
the quantities EZA7 S., Xz, Wg,,» and their covariant derivatives depend holomorphically

on the coefficients of the symbols of Ag 4. and Bg g, on O, see (2.2)), (3.27), (3.28),
1} 1} and 1D Thus, the family z — (EZA,XZ,SZ,W%Z) is holomorphic on O.

This shows that the mappings z — Tre,(em(V,A;),) and z — Tre,(en 1 (¥, AL, B.)2)
are holomorphic on O for each x € U. Finally, since the integral of a function depending
holomorphically on a parameter z, also depends holomorphically on z, the function
z +— LIMy_q (TI‘S (we_ml’ﬁ’vbz)) depends holomorphically on z € O; this is a consequence
of Morera’s Theorem, in the sense that uniform limits on compact sets of holomorphic
functions are holomorphic, see for instance Chapter IV, Section 6 in [Ga01]. O

Remark 4.4.2. The proof of Lemma [{.4.1] uses Proposition in which the coef-
ficients of the asymptotic expansion are locally computable as universal polynomials in
tensorial variables as the curvature, second fundamental form, etc. Proposition f.1.5 has
been proved by using invariance theory as by Gilkey in [Gi84] and [Gi04]. However one
could avoid the use of invariant theory completely by using immediately the results of
from [Se69a|, [Se69b] and [GreT1]|. Indeed, the heat trace asymptotic coefficients can
be computed inductively by using explicit formulas as a universal polynomial in terms
of (finite number of the derivatives of) the coefficients of the symbol of Ag 43 , when-
ever these are given in local coordinates around at x € M, see Theorem 3 in [Se69b],
formulas (3)-(6) and Lemma 1 in [Se69al, see also Section 2.6 in [Gre71]. In the same
way, since ey 1(Aggp., BE,gp.) are locally computable endomorphism invariants on the
boundary, the value of Trsy((ankz/J)y “emk(AEgb., BEgp.)y) is expressible, by solving
certain systems of ordinary differential equations inductively, as a universal polynomial
in terms of (finite number of the derivatives of) the coefficients of the symbols of Ag 44,
and Bg, g, , whenever these are given in local coordinates around at y € OM, see The-
orem 3 in [Se69b], formulas (9)-(14) and Lemma 2 in [Se69al, see also Section 2.6 in
[Gre71]. This is the way, we have proceed in [Mal2] in order to avoid the use of invari-
ant theory, providing a direct proof of Lemma [£.4.1] We express our acknowledgments
to the anonymous referees for having pointed this out. However, in this thesis we de-
cided to keep the use of invariant theory 4 la Gilkey to give a better understanding of
the structure of the coefficients in the heat trace asymptotic expansion in terms of the

geometric invariants involved in our problem.
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Theorem 4.4.3.  Recall Notations|3.2.9 and |4.2.1. For the bordism (M,0+M,0_M),

consider the boundary value problem [A, Qg]g\/lg’a Mo M) with its L?-realization Apy. If

¢, & and U are as in Proposition[{.2.5, then

LIM; 0 (Trs (e~ "282)) = [}, Tr(¢)e(M, g)

(4.25)
+(71)m_1 f8+MTr(¢)1’+eb aM g fa M fL eb(ang)a
and
LIM; o (Trs (=We"280)) = =2 [\, 2| &(M, 9,9 + 7€) Aw(VF,b)
=2 [y, 0 o lo_o 86 (0M, 9,9 + 7g€) Aw(VF, D)
(4.26) +rank(E) [y a a2],_o 13 B(OM, g + 7€)

—2=1)™ [y ar 2| o286 (OM, g, g + Tg8) Aw(VE, D)

+(=1)"*rank(E) f{LM 67}7 01t B(OM, g+ 1g§).

Proof. By compactness of M, it suffices to show that each point x € M admits a
neighborhood U so that the formulas above hold for all ¢ with supp(¢) C U and ¢ with
supp(§) C U. For each € M, choose

b, :b—i—zg, hs and U
as in Proposition [£.3.3] with supp(¢) C U. By Proposition [£.3.3] (iii), we obtain
_tAB’bsfi — _tAB,hs
T (924t ) = YT (g 200).

for all |s| < 1, for these quantities depend on the geometry over U only. From Theorem

we have

LIMi0 Ty (g0 28%1) = [ Tr(@)e(M, g) + (~1)™" [,y Te(6)i%en(0M, g)
— Jo_a Te(@)i* en (M, g)

for all |s| < 1. Now, since the function z — LIM;_,o Trg ((be’m&bz) depends holomorphi-
cally on z (see Lemma4.4.1), that the right hand side of the equality above is constant in
z, and that the domain of definition of z contains an accumulation point, these formulas

are extended by analytically continuation to

LIM¢ o Trs (pe™2802) = [}, Tr(g)e(M, g) + (1) " [, 1, Tr(9)i% en(OM, g)

= Jo_a Tr(9)i* en(0M, g),
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for all |z| < V2. After setting z = 0 we obtain the desired identity in (4.25). Similarly,
take & with supp(§) C U, using Proposition [£.3.3] (iii), we obtain

. I's | — @7 Ps—i e Ts (— e ,hs
4.27 LIMT e tABY LIM Tr, (—We t25h
t—0 t—0

for all |s| < 1, for these quantities depend on the geometry over U only. Then, we apply
Theorem to the right hand side of the equality above and (4.27)) is equivalent to

LIM 0 Try (—We "880et) = =2 [, &| _ 8(M, g, g+ 79€) A (T, bys)

=2 fo, 01 o lrg i3 86(OM, g, g + 7g€) Aw(VF, by_s)

(4.28) +rank(E) [5, 1 L it B(OM, g+ Tg¢)
=2(=1)"™ [ 1 2| _y " €n(0M, g, g+ 798 ANw(VE by;)

+(=1)™*rank(E ) Jo u 8T’T_Oi*_B(aM,g+7'gf)7

for all |s| < 1. Now, on the one hand the function z +— LIM;_,o Trg (gbe tAp bz) on the
left of (4.28} - depends holomorphically on z see Lemma“ On the other hand the long
expression on the right hand side of the equality above in is also a holomorphic
function in z € C with |z| < v/2, since it can be formally considered as the composition
of constant functions (in z) and the function

1
2 w(VEDL,) = —3 Tr(b; ' VFb,),

which is holomorphic, since by Proposition the bilinear form b, in (4.21)) is fiberwise
nondegenerate for |z| < v/2. Then the identity in 1} can be analytically extended to

LIM, o Tre (—xpe—m&bm) =2 [, 2| _&(M,g,g+79) Aw(VE b, )

=2 [y, 01 B lrg i3 86(OM, g, g+ 7g€) A w(V7, b, s)

(4.29) +rank(E f8+M 87’7- 0 i+ B(OM, g + Tg§)
=2(=D)™ [ 1 2|y 7" €p(0M, g, g+ Tg€) Aw(VF b._)

(=1 rank(E) [o_ 5 5 |,—o 1t BOM, g + Tg8),

for z € C with |2z — i| < V2. Finally (4.26) follows from setting z = i into (4.29) and
then by = b follows from (4.21)). O






CHAPTER 5

Complex-valued analytic torsions on compact bordisms

In this chapter we study the complex-valued Ray-Singer torsion on compact bor-
disms. We derive anomaly formulas expressing the variation of the torsion with respect
to infinitesimal variation of the Riemannian metric and bilinear form.

This chapter is organized as follows. In Section see Definition [5.1.1] we use
the theory developped in Section to define the complex-valued Ray-Singer tor-
sion on a compact bordism, as a nondegenerate bilinear form on the determinant line
det H(M,0_M; E). In fact, this is based on the main result from Section which
allows us to compute the (relative) cohomology groups H(M,0_M; E) by looking at the
generalized 0-eigen-space of Ag 45 and subsequently permits us to obtain a nondegen-
erate bilinear form on det H(M,0_M;E). In section we obtain anomaly formulas
for the complex-valued Ray—Singer torsion on a compact bordism, see Theorem
We prove this result with the approach already used in the case of a closed manifold in
[BHOT|. That is, the computation of the logarithmic derivative of the complex-valued
Ray—Singer torsion is based on the knowledge of the coefficient of the constant term
in the heat kernel asymptotic expansion corresponding to the bilinear Laplacian under
absolute /relative boundary conditions. These coefficients were computed in Theorem

in Chapter [

5.1. Torsion on compact bordisms

In Section the reader can find basic notions on finite dimensional graded com-
plexes and their determinant lines. Some linear algebra to define the complex-valued
analytic torsion is out-lined. We see how a given nondegenerate bilinear form on the
graded complex determines a nondegenerate bilinear form on its determinant line. In
Section [5.1.2)and Section [5.1.3] we use the results from Chapter [3to obtain (-regularized
determinants for the bilinear Laplacian. In Section see Definition we finally
extend the definition of the complex-valued Ray—Singer torsion to the situation of a
compact bordism.

5.1.1. Torsion on finite dimensional graded complexes. Let V be a finite
dimensional complex vector space with V’ := Hom(V;C) its dual. The determinant
line of V is the top exterior product detV := Ad™My  If v* = Dg=0V? is a finite
dimensional graded complex vector space, then its graded determinant is defined by
det V* := det V" ® (det VOdd)/, where VEven .= @q:oVQq and Vedd .— EBq:()VQq+1 are

83
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ungraded vectors spaces. We collect certain well-known facts. Further details, as well as
for determinant lines, can be found in [BKO7b|, [BK07a|, [BH10] and [KMT76].
Every short exact sequence 0 — U* — V* — W* — 0 of graded vector spaces,

provides a canonic isomorphism of determinant lines

(5.1) det U* @ det W* = det V™.
Moreover, there exists a canonic isomorphism

(5.2) det V* @ det V*T! = det V* @ (det V*) = C.

For C* a finite dimensional graded complex over C with differential d : C* — C*T1,
consider Z* and B* the sub-complexes of C* consisting of cocycles in C* and cobound-
aries in Z* respectively. Let H(C*) be the associated cohomology groups. The complex
C* gives rise to the short exact sequences

(5.3) 0—B*"—Z*"— H(C*)—0
and
(5.4) 0= 2" >0 % Bl 0.

It follows from (5.3]) and (5.1)) that

det B* @ det Z* = det H(C™)

and from (5.4) that

det Z* ® det C* = det B*.
From ([5.2)), one gets a canonical identification

(5.5) det C* = det H(C™).

In addition, consider (C*,b) a complex C* equipped with a a graded nondegenerate
symmetric bilinear form b: a nondegenerate symmetric bilinear form b, such that
its restriction to each homogenous component C? is a nondegenerate symmetric bilin-
ear form and different homogenous components are b-orthogonal. In turn, b induces a
nondegenerate bilinear form on det C* and by using the canonical isomorphism ,
one obtains a nondegenerate symetric bilinear form on det H(C*) called the torsion
associated to (C*,b) and denoted by 7= p.

5.1.2. Spectral cuts and Agmon’s angle for the bilinear Laplacian. For
6 € [0, 27], consider the complex ray Ry := {\ € Clarg(\) = 0}. From Lemma we
know for the symbolic spectrum Speci (Ag 45) C Ry, so that we can choose 6 € (0, 27)
with

(5.6) Ro N Spec (Aggp) = 0;

in other words, for such 6, the operator or,(Ag 4p) — A is invertible for each A € Ry. If 6
is chosen so that (j.6) is satisfied, then Ry is called spectral cut for or,(Aggp).
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The operator Ag, the L%-realization of A E,g,b» has compact resolvent and discrete
spectrum consisting of eigen-values A with finite algebraic multiplicity that accumulate
at infinity only. But, from Proposition we know more: for each € > 0, there is a
real number R > 0, large enough, with Br(0), the closed ball centered in 0 of radius R,
such that the set

Spec(Ag) NBr(0)
is finite and the rest of Spec(Ap) is entirely contained in the sector Ar., see .
Thus, there exist only finitely many points A € Spec(Ap) with Re(\) < 0 and they all
are contained in Br(0).

Then we can choose an angle 6 > 0 and a conical neighborhood Ry of Ry such that,
for each complex ray Ry contained in Ry, we have

Rg N Spec(Ap)\{0} =0
and, for each large enough S > R, there exists a constant Cr, > 0, for which
(A = A) |2 < Cr,, |A|7! for all 0 # X € Ry with [A| > S,

see for instance Proposition In the literature, see [Agm65|, [Se67| and [Se69b],
the ray Ry is called of minimimal growth and § an Agmon’s angle.

5.1.3. Complex powers and (-regularized determinants. Further material re-
lated to the facts below can be found in [Se69al, [Se69b| (see also [GreT1] and [Se67],
Section 8 in [Agr97] and more generally for Pseudo-differential operator, in Chapter 4,
Section 4 in [Gru96]).

As in the preceding section, let 8 € (0,27) be an Agmon angle for the operator Ag.
For A € C, consider its complex powers with respect to the spectral cut Ry; that is,
the complex-valued function A — Ay * := |A|7%¢*280(V) | where the argument arggy(\) €
(0 — 2m,0) has been continuously determined on C\Ry. In view of the discreteness of
the spectrum, we can fix a number R > 0 small enough such that there is no non-zero
eigenvalue of A in Br(0). Since we do not assume here injectivity of Ag, we need take
a bit of caution and we proceed as in [Se69b].

For the operator Ag, consider its generalized 0O-eigenspace Qa,(M; E)(0). We de-
note by Al the restriction of Ag to the space Qa,(M; E)(0)4# |g of smooth differential
forms which satisfy boundary conditions and are 3, -orthogonal to Qa,(M; E)(0), ac-
cording to Notation [3.2.7].

Then, for z € C with Re(z) > 0, complex powers of Aj; with respect to the
spectral cut Ry, can be defined by the formula

(5.7) n e ] oam e 2T (A =0T, on Qa, (M E)(0)1
' Bo - 0 on  Qa,(M;E)(0),
wtih the countour

Ly :={pe|oc > p = RYU{Re™|0 >t >0 — 21} U{pe’? 2R < p < o0}
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The operator A%e_l can be seen as a partial inverse of Ag on Qa,(M; E)(0)4: it
provides an inverse to Ag on Qa,(M; E)(0)1# and it vanishes on Qa,(M; E)(0). The
complex powers in have been defined by using functional calculus. The Cauchy
integral in converges in the L?-norm, because of the estimates for the resolvent in
the conical set Ry, see Proposition[2.3.7, Proposition[2.3.5land Corollary[2.3.6] Moreover,
as in the situation of a manifold without boundary, (see Proposition 10.1 in [Sh01]), these

estimates guarentee the semigroup property for the complex powers

(5.8) B.o = = Ay~ Apg -

for z,2" € C with Re(z) > 0 and Re(z") > 0 as well as
1 =k _ ( / —1)k
Bo = \PBo ;
for k € Z, see [Se69al and [Se69b| and Section 4.4 in [Gru96|. Moreover, for 6 €

(—2m,0) an Agmon angle for Ag and z € C with Re(z) > dim())/2, the operator in
(5.7) is of Trace class and the function

(5.9) 2= Tr Ay~

extends to a meromorphic function on the complex plane which is holomorphic at z = 0,
see [Se69al, [Se69b| and [Agr97| (see also Corollary 4.4.8 in [Gru96|, [Gre71], [Se67]|
and [Wo8T]).

Definition 5.1.1.  For Apg 434, the bilinear Laplacian in degree q, its (-regularized
determinant is defined by

0
det' (Ag gpq) = exp < P

Tr (( wx)) :

z=0

Remark 5.1.2. From Proposition the function det’ in Definition does not
depend on the choice of the Agmon’s angle, see for instance section 6.11 in [BKO07a] (see
also [Se67| and [ShO1]).

LemmaS5.1.3.  Consider Ag 44 4 the bilinear Laplacian in degree q. Then, the formula
—1)4
T, (det' (Ag gpq)) " =1

holds.

Proof. Fix § an Agmon’s angle and a corresponding spectral cut, but we drop 6 in the
notation. It is enough to prove that

> (—1)7log(det' (Ap g4)) = 0.

q
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The term on the left above can be written as

S, (~1)7log (det/ (Apgpy)) = =Y (—1)7 Z|._ T (A;iq—Z)
= -Z o Trs (A’B’qu)

Consider A); as unbounded operator on L?(M; E), with domain of definition D(Al).
We look at the Dirac operator D := dp + dﬂE 9b considered as a bounded operator from
Hi(M; E) to L2(M; E) and remark that

(i) The operator D? coincides with Al on D(A)),
(ii) The operator Aj commutes with ) on D(Aj).

Then, by using (5.8), (i) and (ii) above, for z € C with Re(z) > 0 large enough, we have

AT o= ApTTIAR
— A/g*Z*l]D)Q
= 1/2[A7'D,D)
— 1/2|A7 7D, A D).

For Re(z) > 0 large enough, each of the powers of Aj in the supercommutators in the
last line on the right above are Trace class operators in the L?-norm. Therefore, since
D is bounded, each of the terms in the supercommutators above, and hence the super-
commutator itself, are of Trace class. Finally, since Trg vanishes on supercommutators,
Trs(A %) = 0.

O

5.1.4. Complex-valued Ray—Singer Torsion on bordisms. In [BHO07|, a gen-
eralization of the Ray—Singer metric by considering a fiberwise nondegenerate symmetric
bilinear form on a flat complex vector bundle over a closed Riemannian manifold was
given by Burghelea and Haller. Here, we study the corresponding problem on the bor-
dism (M,d4M,0_M). With the work in Chapter 8] we are able to give a definition
for the complex-valued analytic Ray—Singer for bordisms. Remember that the inclusion
Q(M; E)|go C Q(M; E) computes relative cohomology H(M,0_M; E). By Proposition
the gpace Qag(M; E)(0) is a finite dimension subcomplex in Q(M; E)[go . The
restriction of By to Qa,(M; E)(0) is a nondegenerate symmetric bilinear form in view
of Proposition The linear algebra from Section now applies to obtain a
nondegenerate bilinear form on det H* (Qa,(M; E)(0)). Then, by Proposition
det H* (Qa,z(M; E)(0)) = det H* (M,0-M; E), and hence a nondegenerate symmetric
bilinear form

(5.10) (OG0, a0 apy * det H* (M, 0_M; E) x det H* (M, 0_M; E) — C

is obtained.
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Definition 5.1.4. Let (M,0,M,0_M) be a compact Riemannian bordism and E
be a complex flat vector bundle over M. Assume E is endowed with a fiberwise non-
degenerate symmetric bilinear form b. Consider the bilinear Laplacian Ag 45 acting

on smooth forms satisfying absolute/relative boundary conditions. Then, the complex-
valued Ray—Singer torsion is the bilinear form on det H(M,0_M; E) defined by

S E7 7b O E: 7b (_1)q
[ ](Mg,mM,a,M) = [T(O)](Mq,mM,a,M) : H (det’ (Ap,gb,0)) .
q

where det’ (Ag 4p,4) given in Definition |5.1.1 and [7(0)] %00 is the bilinear form

(M,01 M,0_ M)
in .

The complex-valued analytic torsion in Definition is defined by

E,g,b E,g,b —

1) SO o = UL o [T " (g,
q

where [7(7)]5\/? ’g+ .o 18 the induced bilinear form on det H (M,0_M; E) obtained this

time by considering the restriction of 3, to the finite dimension subcochain complex

(5.12) Qs(M;E)y) = D Qus(M;E)(N),
AEF(Sp(AB))

where
F1(Sp(Ag)) := Spec(Ap) N Int(y)

is the finite set containing all the eigenvalues of Ag lying in Int(y), the interior of a
simple closed curve v, around 0 and with Spec(Ag) N~y = 0.

Let Ag be the restriction of Ap to the space of smooth differential forms that are
Bg,p-orthogonal to and satisfy boundary conditions. Then the ((,~)-regularized
determinant of Ag 4 is defined by

o .
(5.13) det’(Apgp) := exp <— E Tr ((A}), ))
z=0
Lemma 5.1.5.  Let [TRS]g\’/ngﬁ_M) and [TRS(V)]éEA;Z§+M’3_M) be the complez-valued

bilinear forms given by Definition [5.1.4| and (5.11) respectively. Then

(5.14) [TRS]éE&ng,a_M) = [TRS(V)]EEAf,g+M,a_JVI)'

Proof. The (L2-realization for the) bilinear Laplacian on the compact Riemannian bor-
dism (M, 84 M,d_M) under absolute/relative boundary conditions, see (3.59)), possesses
the same spectral properties as the bilinear Laplacian on a closed manifold, studied by
Burghela and Haller. Therefore, the proof of Proposition 4.7 in [BHOT7| still holds in
this situation. O
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5.2. Anomaly formulas for the complex-valued Ray—Singer torsion

The following formulas generalize the ones obtained in [BHOT7| in the case without
boundary and they are based on the corresponding ones for the Ray—Singer metric in
[BMO0G6|. They also coincide with the ones obtained by Su in odd dimensions, but they
do not require that the smooth variations of g and b are compactly supported in the
interior of M, see [Su09].

Theorem 5.2.1.  (Anomaly formulas) Recall Notation [}.2.1) Let (M, 04 M,0_M) be
a Riemannian bordism and E be a complez flat vector bundle over M. Let g, be a smooth
one-parameter family of metrics on M and b, a smooth one-parameter family of fiberwise
nondegenerate symetric bilinear forms on E. We denote by g, := a%gu and by, = a%bu
the corresponding infinitesimal variations. Let [TRS](E]\’/%’EM’(?_M) the associated family
of complez-valued analytic torsions, see Definition [5.1.4) Then, we have the following
logarithmic derivative

2

) [TRS]?;C%’%@ M)
_— Ui ek = E
Ow|, \ [rRS]Egub E(bu, gu) + E(bu, 9u) + Blgu),
u (M, 84 M,0_ M)
where
E(buagu) = fM Tr(b;li)u)e(M, g) + (_1)m_1 f8+M Tr(bqjlbu)eb(an gu)
- fa_M Tr(b’gll};))eb((‘?M, Gu);
E(bua Gu) = —2 fM %‘t:(] e(M, gu, gu + tgu) A W(an bu)
~2f5.u B 1€b(OM, gu, gu + tgu) Aw(VE by)
_2(_1)m fa,M %’tzo Ziab(aM7 Gus Gu + tgu) A w(an bu)7
B(gu) = rank(E) [y s 5ili_o4BOM, g, gu + tdu)
+(=1)"rank(E) [, 1 &l 7 BOM, g, gu + tdu),
and

1
w(VE b) = —5 Tr(b ! VED)

15 the complex-valued Kamber-Tondeur form, for which o detailed presentation is given
in Section 2.4 in [BHOT]|.

To prove the theorem above, the same procedure from (49) to (54) in [BHOT| applies
step-by-step to the bilinar Laplacian on manifolds with boundary. This uses Proposi-
tion 9.38 in [BGV92| giving the variation formula for the determinant of generalized
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Laplacians, the telescopic sum cancellation by Ray and Singer in [RS71] and the same
reasoning on finite dimensional complexes, see (53) and section 3 in [BHO7|. This is
justified since the bilinear Laplacian with absolute/relative boundary conditions pos-
sesses the same spectral properties as the one on a closed manifold, see (see also
Proposition . For the convenience of the reader we out-line the proof of Theorem
b.2.1l

Proof. We want to compute the variation of the torsion with respect to smooth vari-
ation of g and b. Let U C R be an open subset and U € u + (gy, by) a smooth real
one parameter families describing smooth variations of the Riemannian metric and bi-
linear form. For each uw € U, we denote by =, the corresponding Hodge *-operator
associated to the Riemannian metric g and bilinear form b, and by 8, := By, s, the
associated non-degenerate symmetric bilinear form on Q(M; E). Let dﬁE, Jusb be the for-
mal operator transposed to the differential dr with respect to 8, and Ag g4, 5, be the
symmetric bilinear Laplacian. We impose elliptic boundary conditions over the bordism
(M,0+M,0_M) in such a way that w satisfies absolute/relative boundary conditions if
and only if w € Qp(M; E) := Qpg ., (M; E) for each u € U. Let Ag, be the asso-
ciated L%realization of the elliptic boundary value problem (Ag 4, ., BE.g,5,) for each
u € U. Let v be a simple closed curve around 0, such that the spectrum of Ag,, avoids
~ for all u € U. Finally, we denote by [TRS](EA’/%’JI:’]‘V[’ oM
torsion associated to (M,0+M,0_-M), E, g, and b, for each u € U.

By Definition the complex-valued Ray—Singer torsion [5.1.4] [TRS]fj\’féﬁlM o_ M)
structed as the product of [T(O)}f]\ﬁ%’f}L o.M (i.e., the restriction of the bilinear form g,

) the complex-valued Ray—Singer

18 con-

to the finite dimensional subspace Qa, (M; E)(0)) and the regularized product of all
non-zero eigenvalues of Ag,. Since the bilinear Laplacian is not necessarily self-adjoint,
the dimension of Qa . (M; E)(0) is not locally constant under smooth variations u € U.
Thus, in view of Lemma [5.1.5] instead of taking the defining expression for the torsion

in Definition we consider it as given by (5.11)), that is

RS E7 uybu E, uybu —1)4
](Jv?,mM,a,M) = [T(’Y)}(]\i&rM,a,M) H (det” (AE,g,b,q,u))( ) 7

q

[T

i.e., being constructed as the restriction of the bilinear form 3, to the finite dimensional
subcochain complex Qay ,(7) = Qag, (M; E)(7), see , obtained as the union of
the generalized eigen-spaces corresponding to the eigen-values in the interior of +. For a
fixed u € U, we compute the logarithmic derivative of the complex number

RS] E7gw 7bw
(M, 0y M,o_ M)

RS E;gu:bu ’
[T ](M,8+M,8_M)

[T
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with respect to the parameter w at u. That is, one needs to compute the logarithmic

derivatives of

E,gw,bw —
[rONar5, Ao an g o (det” (Apgpquw) "

E? u,bu —
[T('V)}(J\Z&FM,& M) Hq (det” (AE,g,b,q,u))( D

with respect to w at u. To compute the logarithmic derivatives of the numbers above,

we proceed as in the closed situation in [BHOT|. We start by considering specific linear
bundle endomorphisms on AT* M®FE. Fix ug € U, and for each u € U define a symmetric
bundle endomorphism G,, € I'(M, Aut(T'M)) by the condition

gu(Xa Y) = Guo (GuXa Y) = Guo (X7 GuY)

and denote by D*G,! its natural extension to I'(M,Aut(AT*M)). In the same way,
for each u € U, define a symmetric bundle endomorphism B, € T'(M,Aut(E)) by the

condition

bule, ) = bus(Bue, f) = buy (€, Buf).
Then for u € U define A,, € T'(M,Aut(AT*M ® E)) by the formula

Ay = det(G,)/*D*G;' ® B,.
Remark that, by construction, we get

/Bgu;bu ('U, w) = Bguoybuo (AU’U, w) - /Bguo,buo (U, Auw)7

for v,w € Q(M; E). We restrict now 3, to Qg (M; E) for u € U. This guarantees, see

Lemma , thatﬂ

-1
dh = A Ay,

s9u,bu yJug 7bu0
over Qg (M; E) for each u € U. In this way, we are interested in the bundle endomor-
phism A;'A, € I'(M;End (A*T*M ® E)) encoding the infinitesimal variation of the

metric and that of the bilinear form at u. More explicitly,
1 ¥ [ —1- 1 1. 1
(5.15) AVA, = — (D (9:790) =5 T (gulgu)> @1d+1d ® (bulbu> :

where D* (g, !, ) is the extension of g, ' g, € I'(M; End(T'M)) as a derivation on A*T* M
(e.g Section . Let P, denote the spectral projection on Qay ,(M; E)(y) and Q,
the spectral projection onto the generalized eigenspaces of Ag, corresponding to the
eigenvalues in the exterior of 4. Then, in terms of these operators and analogue to the
situation for the torsion on a closed manifold, see [BHOT]|, we have

s .
(5.16) 9 GLOMOAD ) = LIM Ty, (A7 AyPuet) |
oul, \ s =

(M8 M,0_ M)

IRemark here this identity still holds for w with ¢* w = 0 but also for such forms with compact

supported in the interior of M.
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and

(5.17)

9
ow |,

(H (det? <AE,g,b,q,w>><‘”qq> =TI Trs (4,1 AuQuete )
q

We out-line the proofs of (5.17) and (5.16). We start with (5.17). For |w —u| € R is
small enough, the projection Py|q,(y) : Qagu(y) = Qagw(y) is actually an isomorphism

of complexes. Then, the following diagram commutes

det Qapu(y) —= det H(Qa,u(v)) 228 det H (M, 8- M)
det(Pwlay, () l det(H(Pwlay, (v)) i det(H(Pwlny, () l
H-DR

det Qa, w(7) — det H(Qagw(Y)) — det H(M,0_M)

For |w — u| is small enough, the nondegenerate bilinear forms (P|q AB,u('Y))* BE,gu,be ad
BE,gu.be ]QAB () are considered as isomorphisms from Qay . (7) to its dual so that
-1
(BEgblon,.))” (Pulaay () BE.guwbe

is an automorphism of Qay (7). Thus, the change of the torsion is computed as the
induced nondegenerate bilinear form on the determinant line corresponding to the change

of the bilinear forms (Pw’QAB,u(’Y))*ﬁE,gw,bw and ,BE,gu,bu‘QAB’u(v) on Qagu(v):

[7RS] B gu-bu )
S Bt OSt ((BEgtls i)™ Pultsg.ut) Bruse )

Since for e, f € Qay,, (M; E)(y) we have Sy, p, (€, f) = By, b, (Aue; [) = By, b, (€, Auf),

we obtain

(BEgblony ) (Pulasy () BEgwbe = Pudy' AwPuloa, .t

Therefore,
a [TRS]E,gw,bw . 1 - .
w T JUsTU

for Trg P2 = const implies Trg P,P, = 0. That proves lb We sketch the proof of
. Consider the complementary orthogonal projection Q := Id — P,,. We use the
variation formula for the determinant of generalized Laplacians, see Proposition 9.38
[IBGV92| to compute the logarithmic derivative

25l (T, (et (A g00) ) = 52, (~1)%g (5 det(Aug))
= 5, (~1)% (LIM e Tr( A0 (Abg) ™ Qug XP(—#A8,u)))
= LIM; o (Trs(NA&u,q(AB,u,q)_lQu,q exp(_tAB,u,q))> )

where Nv = qu for each v € QI(M; E). By using Ag, = [dE,dﬁE’gu’bu], IN,dg] = dg,
de, Ayl = 0, [de,Qu] = 0, dﬁE,gu,bu = [dﬁﬂgmbu’Avleu]v and that Trg vanishes on
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supercommutators, we get

Trs(NAB 1, (AB.uq) ™ Qu.g eXP(—tAB uq))
= TrS(NdEd'ﬁE,gu’bu (ABug) ' Qug exp(—tABug))
+ Trs(Nd%’gu’bu dE(ABug) ' Qug exp(—tAB )
= Trg (dEd.ﬁE‘,gu,bu (AB,u,q) -1 Qu,q eXp(_tAB,u,q))
= Trs(dEdﬁE,gu,bu A Au(DB ) " Qug exp(—tAB )
— Trg(dp A, " Audly oy, (D5.0g) " Qug eXP(—tAR )
= Trs(A, ' Au(dpdyy 4, + d5 g, 5,38) (ABug) ™ Qug exP(—tAB )
= Trs(A; AuQug exp(—tAB ),

which proves (5.16). The contributions in (5.17) and (5.16)) add up together to compute
the total variation of the torsion [r(v)] 90 with respect to infinitesimal changes

. ™ (M, 04+ M,0_M)’
1m u. en
RS Eyguubw
0 [ ](M6+M8 M) 1j —tA
- ) yO— — - - B,u
(5.18) ow |, \ [rRS]Egubu I{EXITrS (A“ Aue )

(M, 84+ M,8_ M)

Formula generalizes formula (54) in [BHOT7| to manifolds with with boundary and
it tells us that the variation of the torsion is obtained as in the closed case, by computing
the term in the right hand side of the equality in ((5.18]). This term corresponds to the

coefficient of the constant term in the heat trace asymptotic expansion associated to
E.g,b

(M8 M,0_ M)
given in (5.15). The right hand side of the equality in (5.18)) is computed by using

Theorem where we set ¢ = b;lbu and € = g, g,

the boundary value problem [A, Q3] and the bundle endomorphism A;'A,

0






CHAPTER 6

CoEuler structures and the analytic torsion on bordisms

In this chapter we define coEuler structures on bordisms, generalizing in this way
the corresponding notion on closed manifolds in [BHO6a|, [BHO06b] and [BHO7]. We
use coEuler structures to encode the variation of the complex-valued analytic torsion on
compact bordisms.

In Section we give the background needed to define coEuler structures. In
[BMO6]|, Briining and Ma studied certain characteristic forms on the boundary of a
compact Riemannian manifold. These forms appear in the anomaly formulas for the
Ray-Singer metric (see Theorem 0.1 in [BMO06] and also Theorem 3.4 in [BM11]), and
then in the anomaly formulas for the complex-valued Ray—Singer torsion obtained in
Theorem in Chapter 5l From Section to Section we recall in some detail
how these characteristic forms are obtained and we slightly modify them to the situation
of a compact Riemannian bordism (M, 04+ M,0_M). The characteristic forms used to
define coEuler structures, have been obtained by slightly modifying those in [BMO0G6]: In
[BMO06], the vector field ¢, the inwards pointing geodesic unit normal vector field (to
each point at) the boundary, is used to construct the characteristic forms appearing in
their anomaly formulas, but those given in Definition [6.1.1T]are constructed instead with
a geodesic unit normal vector field ¢, which distinguishes the roles of 0_M and 04 M:
it points inwards on 84 M and outwards on O_M, see (6.10). We denote this vector
field by Gpn. In Definition [6.1.12] we define the relative Euler form on the bordism
(M,0,M,0_M), as the couple

e(M,0,M,0_M,g) := (e(M,g),es(0+M,0-M, g))

where e(M, g) is the Euler form associated to the metric g and eg(04M,0_M,g) is a
characteristic form on the boundary constructed by using ¢. Also with the help of ¢, in
Definition certain secondary (of Chern—Simons’ type) relative forms on bordisms
are defined. Lemma essentially proved in [BMOG6], presents some properties that
these forms satisfy. In Section [6.1.8] we recall the Gauss-Bonnet-Chern Theorem in
terms of the relative Euler form and we explain how this is obtained from Theorem
427

In Section we define coEuler structures. We split the presentation into two
parts. In Section we start with coEuler structures without a base point. To
do that, we assume x(M,04+M) = 0 (or equivalently x(M,0-M) = 0) so that the
set of coEuler structures on a closed Riemannian manifold is an affine space over the

95
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cohomology group H™~!(M; C) and in that situation, CoEuler structures are represented
by couples (a, g) consisting of a smooth differential form « and a Riemannian metric
g with da = e(M,g), under an equivalence relation defined by using the secondary
Chern-Simons’ forms. In our case, the space of CoEuler structures on (M,0+M,0_M)
is an affine space over the relative cohomology group H™ 1(M,dM;C), whose classes
are represented by couples (o, g), where « is in this case, a relative form (see Definition
6.1.1), with da = e(M,d;M,0_M, g), under an equivalence relation specified by using
this time secondary relative Chern—-Simons’ forms. A coEuler structure on the bordism
(M,01:M,0_M) is in a one-to-one correspondence with a coEuler structure on its dual
bordism (M,0_M,d+ M), by means of a so-called flip map, compatible with Poincaré
duality and affine over the involution (—1)™ in relative cohomology, see Section [6.2.2]
In Section we derive Proposition which gives the infinitesimal variation of
the integrals of the relative form a A w(V¥,b), where w(V¥,b) is the closed one-form
of Kamber-Tondeur, with respect to a smooth variations in the Riemannian metric
and bilinear structures. The variational formula from Proposition is used
in Section to cancel out the variation of the complex-valued Ray-Singer torsion.
In Section we study the case x(M,0+ M) # 0, by incorporating a base point. In
analogy with the situation on closed manifolds, we define base-pointed coFuler structures,
generalizing to this setting the results from Section In particular, Proposition
generalizes Proposition [6.2.5] by using a regularization procedure for the integral of a A
w(VE,b), where o is a relative form with a singularity in the interior; this regularization
is explained in subsection [6.2.5]

In Section [6.3], we define a generalized version for the complex-valued analytic torsion
on compact bordisms, by adding correction terms to the complex-valued Ray—Singer an-
alytic torsion, see Definition These correction terms, expressed in terms of coEuler
structures, are incorporated to cancel out the variation of the complex-valued Ray—Singer
torsion with respect to smooth variations of the Riemannian metric and bilinear struc-
tures, given in Theorem In analogy with the situation on closed manifolds, the
generalized complex-valued analytic torsion depends on the flat connection, the homo-
topy class of the bilinear form and on the coFuler structure only.

6.1. Background setting

Consider a compact connected Riemannian m-dimensional manifold M with bound-
ary OM, denote by ©js the orientation bundle of M and by @% its complexification
bundle.

6.1.1. Relative de-Rham cohomology: without base point. Consider the Z-
graded differential cochain complex

(6.1) Q(M,0M; %)) = &, Q4(M,0M; 05)),
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where

Q4(M,0M; ©F;) := Q4(M; OF,) & Q7' (0M; ;)
with the differential map d : Q4(M,0M; 05,) — QIT1(M,9M;6F,) given by
(6.2) d(o, ap) := (da,i*w — d%ap),

see page 78 in [BT82].
Definition 6.1.1.  Elements a := (a, ap) € Q4(M,dM;0F,) are called relative forms.

Definition is motivated by the fact that the complex in (6.1)) computes the
relative cohomology groups HY(M,0M;05,) in degree q.

Notation 6.1.2. For a € Q4(M,0M,0)s) and w € Q™" 9(M), we have the pairing

/ a/\w:—/ aAw—/ ag A itw,
(M,OM) M oM

which induces a nondegenerate pairing (-, -) in cohomology:
() : H*(M,0M,0%,) x H"*(M;C) - C
([(e; 00)], [w]) == [ias o) (s 0) Aw.
c.f. Section B.2.2
Lemma 6.1.3. Suppose M is a compact connected manifold. Then,
an <M, AM; @(}\34) ~ F(M;C) = C.

Proof. This follows from non-degeneracy from (-, -) (see Notation [6.1.2]) and connected-
ness of M, O

6.1.2. Relative de-Rham cohomology: with base point. For 2o € M\OM a
base point in the interior of M, consider

(6.3) M = M\{zo},

together with the inclusions

(6.4) OM C M c M,

and the vector spaces

(6.5) QI(M,0M;0%)) = Q4(M; 6%, & @1 (oM;e5)).

The space QI(M,dM; 0F,) endowed with the same differential map d as in 1} is also
a complex, whose cohomology groups are denoted by HY (M ,OM; @%).
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Lemma 6.1.4. Let M be a compact connected Riemannian manifold of dimension m
with boundary OM. For xqg € M\OM a base point in the interior of M, consider the

pointed space M in . Then
H™(M,0M;65,) 0
H™ Y (M,0M;65,) = H™Y(M,0M;65,).

I

Proof. We sketch the main ideas in the proof. First, if HC(M) indicates the coho-
mology of M with compact supports, then by Poincaré—Lefschetz duality, we have
H™(M,0M;0%,) = H™(M) = 0. In order to show the second equality above in the
statement, consider the long exact sequence in (top degree) cohomology, associated to
the inclusion of spaces in (6.4)), see[BT82]:

s H™=Y (M M)—H™ Y(M,0M)_ — H™ Y(M,0M)_ — H™(M,M) — H™(M,OM)—H™(M,0M)—0,
~—~ ~—~ ~—~

@ Om—1 b

where by simplicity, we have omitted writing the coefficient bundle 9(](\:/[. By Poincaré-
Lefschetz duality, we have H™(M,9M;05,) = H™(M) = C and for the local cohomol-
ogy groups, by excision, we have in general

C k=m

H"(M, M; ©f) = H*(C™,C™\{0}) :{ 0 else

Thus, since by exactness b is surjective, b is also a bijective by dimensional reasons.
Moreover, by exactness b being injective the map 0p,—1 is zero. Thus, since the local
cohomology group H™ (M, M; @%[) vanishes, a is bijective by exactness. This proves
the statement.

O

6.1.3. Berezin integral and Pfaffian. We adopt the notation from [BMO6| and
[BZ92], see also Section|1.1.5] For A and B two Z graded unital algebras, A®B denotes
their Zy-graded tensor product and set A := AR, B:=I®B and A := ®, such that

ANANB = ASB.

For W and V finite dimensional vector spaces of dimension n and [ respectively where
W is endowed with a Hermitian product (-,-) and V' the dual of V, the Berezin integral

o —

on elements of the Zs-graded tensor product AV’ A A(W') is

[PLAV AAWY) — AV @Oy
O[/\,B = CBBg,b(wlv'” 7U)n)057
where {w;}" ; is an orthonormal basis of W, Oy is the orientation bundle of W and

the constant Cp := (—1)""+1)/27=1/2 Let {w'}?_| be the corresponding dual basis in
W'. If K is an antisymmetric endomorphism of W, then it is identified with a unique
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element K := (-, K+) € A(W’) given by K := %Zléi,j<n<wi’ ij>1/u\i/\1/u;. The Pfaffian
of K/2m is then defined by

B
Pf (K/2m) ::/ exp(K/2m).

Remark that Pf (K/27) = 0, if n is odd. By standard fiberwise considerations the map
Pf is extended for vector bundles over M. In particular, we look at

B P
/ : F(M; AT M A AT*M) — F(M;AT*M & @M)

and

Banm _—
/ : F(@M; AT*OM A A(T*@M)) — F(@M; AT*OM ® eaM).

Thes Berezin integrals [ Ba and i Bor ahove can be compared by using the standard
convention for the induced orientation bundle on the boundary discussed in Section
so that the relation fBMV ABAen = g1/2 fBaMV A B holds, for v € Q(M) and
B € T(0M; A(T*(9M))).

6.1.4. Deformation spaces on manifolds with boundary. Let {g, := g7} g
be smooth families of Riemannian metrics on TM and {g? := g79M} g the induced
family of metrics on TOM. Let Vg := VQTSM and R; = RgTSM be the Levi-Civita connec-
tions and curvatures on T'M associated to the metrics g,, together with V? = VZ?@M
and R? := R§(§9M the Levi-Civita connections and curvatures on T'OM associated to the
metrics ¢. )

Consider the deformation space M := M x R with

WM:M—HRandpM:M%M,
its canonical projections and the deformation space OM = OM x R with
WW:W%RandpaM:é]\ViﬁﬁM

its canonical projections. If i=ixidg : OM — M is the natural embedding induced
by i: OM — M, then gz, = ﬂMoz

By construction, the fibers of 747 : M — R are compact and diffeomorphic to M
and those of w57, OM — R are compact and diffeomorphic to M.

Consider the pull-back of the tangent bundle TM — M along pys : M — M as a

subbundle of TM and denote it by
(6.6) TM :=piTM — M,

whereas its dual vector bundle is denoted by 7*M — M. Analogously, the pull-back of
the tangent bundle TOM — OM along pgps : OM — OM, seen as subbundle of TOM,
is denoted by

(6.7) TOM :=ply TOM — OM
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and dual T*OM — OM.
Let THM — M be a horizontal subbundle of TM — M such that

THM @ TM = TM, with THM =~ TR

as vector bundles over M. The (orientable) normal bundle to M in M, is identified
with the orthogonal complement of TOM in T'M. This is illustrated as follows

TM :=pjyTM T™
arMm
PMm
=M xR M

Pom

OM = OM x R oM

As explained in Section above, we identify the smooth sections

o —

D(M; A(T*M)) 3w +  wAleTl(M;A(T*M)AANT*M)),

and we set

—

@ =1Aw € T(M;AT*M) AAT*M)).

We endow the bundle T M in naturally with a Riemannian metric g7 such
that

(a) For each s € R, gTM‘MX{S}
TM

g and g, coincide.

= gs, that is, at each fiber M x {s}, the metrics

(b) The metric g7™ is compatible with the connection

o 1 0
68 TM = * s d A - — 717 s
(6.8) \ Py Vs +ds (as+295 asg>,
The curvature tensor associated to V7™ is denoted by
0 1 0
6.9 RTM = pi Ry +ds A [ = Vs — = [V, g5 ——gs
(6.9) pyuRs +ds <83V Q{V,gs 5.9 )

see section 1.5, (1.44) and Definition 1.1 in [BMO6], (see also (4.50) and (4.50) in
[BZ92]). In the same way TOM is equipped with the metric g7 %M compatible connec-
tion V7oM and curvature R7M,
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6.1.5. Normalized vector fields and adapted frames on bordisms. Consider
a compact Riemannian bordism (M,0+M,0_-M). Let g, denote the inwards pointing
unit normal geodesic vector field at the boundary and set

Gn on € 0+M

6.10 Sout := —Gin and ¢:= .
( ) out n { Cout  ON 68,M

For M = M x R, consider the vector bundle T M — M in 1@} endowed with the
Riemannian metric g7*. As in [BMO6], we consider {e;}J* local orthonormal frames of
TM and {e'}™ its dual frame on 7*M, with the property that near the boundary we
have
em(y,s) :=gn for each y € M and s € R.

so that {eq}1<a<m—1 is a local orthonormal frame for the vector bundle TOM — oM
in , where OM := OM x R, and {en}i<a<m—1 U {em} is a local orthonormal frame
of TM|z; — OM.

6.1.6. Certain characteristic forms on manifolds with boundary. Consider
a compact Riemannian bordism (M,0;M,0-M). Consider normalized orthonogonal
local frames {e’}, as in Section Consider the vector bundle TM — M endowed
with the connection V7'M in ( Then, the wsponding curvature RTM, see ,

considered as a smooth section of A2(T*M)AA2(T*M) — M, can be expanded in terms
of the frame above as
1 o~ ~
R™M .= 5 Z g™ (ex, RTMel) ek Ael.
1<k,l<m

The following definitions are inspired and strongly based on [BMO06].

Definition 6.1.5. Let 1) be a smooth unit normal vector field on the boundary. On

the boundary, we set

FRTM = 1 g M (g, i"RTMep)ek A el
1<k,i<m .
€ T(OM;A>(T*OM) A A2(T*M)),
RTM|, = 5 5 ¢Meq,i"RTMeg)ed Aeh
1<a,B<m—1 -
€ T(OM;A2(T*OM) A A2(T*(OM)))),
R7OM = 1 ¥ gTaM(ea’i*RTMeﬁ)ga/\éB
1<a,f<m—1 /\
€ T(OM;AX(T*OM) A A2(T*(OM)))).
(6.11)
m—1 /m—1 ~ — — —
Sy=1% > (Z gTM(VZ;Mz/J,eﬁ)ea> AeP € T(OM;T*OM A AY(T*(OM))).
B=1 a=1
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Remark 6.1.6. The form S, in Definition is slightly more general as the original
one considered in [BMO6|. For instance, think of ¥ to be taken +¢, or even g or ¢out
along the whole boundary OM. The definition of Sy, is compatible with the corresponding
one by Briining and Ma in [BMO0G6| and [BM11] in the following sense. If ¢ := g,, then
ng((‘?M) corresponds to S in [BM06] and [BMT1].

Definition 6.1.7. Let 1) be a smooth unit normal vector field on the boundary. Con-
sider the forms on the boundary from Definition and the Berezin integrals [ B

and fBaM, from Section . We set

e(M,VTM) .= fBM exp (—ARTM)
e(OM, vTBM) — fBDIM exp ( lRT8M) 7
__ 0 sk
ep,y(OM, VMY = (-1t fBaM exp ( %(RTMIBM)) > heo Fﬁ)
. 1 du rBon uSy,
By(0M,VTM) = o ST exp (‘%RT&M 282) 2= 2(r( 21)
In particular, the forms from Briining in Ma defined in [BMOG| are
. B / sk
eb(f)M, VTM) = (—1 m ! fBaM exXp ( (RTM,@M)) Zk 0 2[‘( +1)’
B(OM,VTM) = — [ldu fBou oy, (—%RT&M 282) 2 ke 5 uS,ngl)

Lemma 6.1.8.  Let ¢ be a smooth unit normal vector field (without singularities) on
the boundary. The forms from Definition [0.1.7 verify

epy(OM,VTM) = (—1)"ley, _,(dM,VTM)
By(0M,VTM) = (=1)""'B_,(0M,VTM)

Proof. First, note that Sy, = —S_,. We compute ebvw(W,VTM) by recalling that
Berezin integrals see top degrees terms only:

k
Ny ITMy —1 Boam 1L (RTM 00 S
Cb,(OM, VM) = (=)™ [ exp (=5 (R Mon)) Ek 0 3r(E11)’
L RTM k&k
_ 1 Banm =00 —3RTMgy)! (- )S
_ _1 m—1 fBBM ZOO *%(RTM\BM) (= 1)ksk
- 1,k=0 I QF( +1))
2041
_ ym= 1fBOJ\IZ —LRTM|pp)t (—1)m~ DS S @)
= =0 ! 2F(m (21+1)+1) )
me— 2041
_ ym— 1]‘361\42 —LRTM|gpp)t (1) 18T S @)
= =0 i 21"( (21+1)+1) )
m— (2041
_ Bon oo —5(RTMgp)! S_¢( )
- f Z =0 I 2F(m—(2l+l)+1)7
2
_ fBaMZ LRTM[5) S*,
a k=0 ' 2r (k1)

= (_1)m leb7_¢(8M, VTM)

and analogously for the forms Bw(él\vf, vTM). O
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Definition 6.1.9.  Given a bordism (M, 0+ M,0_M), define the functions Il : OIM —
R respectively by

1 ifyedsM 0 ifyeosM
(6.12) M (y) == . T and I (y) = . "
0 ifyeo_-M 1 ifyeo_M.

Let v := ¢ specified by the vector field in . By using the forms in Definition

we set

o0, M, 0_M,VTM) =% (eb,g(éﬂ,vTM)) T — it <eb,<(5JT4,vTM)) I,
eo(0- M, M, VM) 1= it (en, (DM, VM) ) Ty — i7 (en, - (OM, V7)) L4y

B(0+M,9: M, V™M) = B, (0M,VTM)
Lemma 6.1.10.  For the forms given in Definition the relations

eo(0LM,0_M,VTM) = (—1)mey(0_M,d,. M,VT™M)
B(O M,0_-M,NTM) = (=1)"'B(0_M,d,M,VTM)

hold.

Proof. This is clear from construction. O

Definition 6.1.11.  Let (M, 0, M,0_M) be a Riemannian bordism. Consider the forms
given in Definition and Definition[6.1.9 For each s € R, we set

e(M.g)) = (VM) .
e(OM,g) = e(OMNTM)|
epy(0M,gs) = eb,w(W,VTaM)’aMX{s}a
€00+ M,0_M,g,) = ep(dsM,0_M, vTM>\aMX{S},

B0y M,0_M,g,) = B(0,M,0_M, V™M)

Mx{s}

In particular, the forms from Briining in Ma defined in [BMO06| and used in Chapter[4
and Chapter [j to describe the anomaly formulas are

en(OM, g,) = eb(éﬁ,vm)‘m{s},

B@M.g) = B@MY™)|

see Definition
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6.1.7. Relative Chern—Simons forms on bordisms.

Definition 6.1.12.  Let (M, 0, M,0_M) be a Riemannian bordism. Consider the forms
from Definition [6.1.11l We define the relative Euler form

(613) Q(Ma 8+M7 0_M, g) = (e(Ma g)7e8(a+M7 a—M7g)) € Qm(Ma 8M7@M)

Moreover, with

S(M.gn.g) i= [ inel: (1 (£) (0T, ¥7M)) ds
e Q" YM,ey),
Gapy 8OO Mgog) = [T inel: (1(5) eo (9,303, VTM)) ds
€ Q" 2(OM,0y)
B (OMgnvgr) o= [ inel; (1 (£) ew OF,VT)) ds
€ QM 2(OM,0y)

where incl, : M — M is the inclusion map given by incly(z) = (x, s) for zo € M and
s € R, the relative form

&(M, 0, M,0_M, go,g,) € X" (M,0M; Or)
defined by
(615) E(Ma 8+M7 6*M7 90, g‘r) = (g (M7 90797) y 66 (8+Ma 87M7 90, gT))

where € (M, go, g-) and €y (04 M,0_M, go, g-) are the forms of Chern—Simons type given
in , will be called the secondary relative Euler form associated to the bordism
(M,0:M,0_M). In particular, the original secondary relative Euler forms from Briining
and Ma in [BMO6], is given by

(616) E(Ma 8M7 gOagT) = (g (M7 90797') y T Eb (aM, gOugT))

Lemma 6.1.13.  (Brining-Ma) The relative Euler form e(M,0+M,0_M,g) in
(6.13) associated to the metric g is closed in the relative cochain complez Q(M,OM; O )
and modulo exact forms, does not depend on the choice of g. In other words, its class in
cohomology

(6.17) le(M,0+M,0_-M)| := [e(M,0+M,0_M, g)]

is independent of g. The relative secondary Euler form €(M,0+M,0-M, go,g1) associ-
ated to a couple of Riemannian metrics go, g1 in M, see , does not depend on the
choice of the path of metrics, so that, it defines a secondary relative Fuler class in the
sense of Chern—-Simons. If {gs} is a smooth path of Riemannian metrics connecting go

to g1, then

(618) dE(M, 8+M, 6_M7 go, gl) = Q(M, 8+M7 8—M7 gl) - §(M7 8+M7 a—Ma gl)
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The secondary Euler form e(M,0+M,0_M, go, g1), modulo exact forms, does not depend
on the choice of the path of metrics, so that, it defines a secondary relative Euler class
in the sense of Chern—Simons. Moreoever, up to exact forms in relative cohomology, the

following relations hold

é(M7 6+M7 8—Ma 90797') = _E(Mv 8+M7 6—M7 gTago)
(6.19)
E(Mv a—i-Ma a—M) g0, gT) = E(Mv a‘i-M) 8—M7 90795) + E(Ma 8+M) 8—M7 s, g‘r)

Proof. Since 04 M and 04 M are disjoint closed submanifolds, the statements above are
exactly Theorem 1.9 in [BMO6]. The identities in (6.19)) follow straightforward from the
definition of €(M, 0+ M,0_M, go, g-) in (6.14). O

6.1.8. Gauss—Bonnet—Chern Theorem.

Theorem 6.1.14.  (Briining-Ma) Let (M;0.M,0_M) be a compact Riemannian
bordism of dimension m and metric g. Let x(M,0—M) be the Euler characteristic relative
to O_M. If e(M,0.M,0_M,g) is the relative Euler form given in (6.15), then

X(M,0-M) = f(M,@M) e(M,0,M,0-M, g)

Proof. Consider £ := M x C, the trivial bundle over M, with a Hermitian metric h
on C. Let Ag,y the Hermitian Laplacian acting on Q(M; E)|} the space of E-valued
smooth forms satisfying absolute/boundary conditions on the bordism (M, 0+ M,0_M),
see Section Let Apy, be the corresponding L2-realization for this boundary value
problem. Since Agy is self-adjoint, from the McKean-Singer Theorem we know that
the function Trs (exp(—tAgyp)), i.e., the supertrace corresponding to the heat operator
associated to Ap, is independent of ¢. Thus, for ¢ large, the heat operator exp(—tAg 4 q)
converges to the spectral projection onto the kernel of Ag}, , in each degree ¢, so that

lim Trg (exp(—tAgp)) = x(M,0-M).

t—o00

Therefore, for ¢ small, we must have

LIM (Tr, (exp(—tAg 1)) = x(M, 0 M).

t—0

By the local index Theorem, LIM;_,o (Trs (exp(—tAp))) can be analytically computed
as the integral of certain characteristic classes. In our case this is directely obtained by
setting ¢ = id in the first formula of Theorem (see also Theorem 3.4 in [BM11]).
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Therefore, by Lemma (see also Remark , we have

x(M,0— M)

Jar e(Mg)+(=1)™ f6+1\/[ i%ep,q, (OM,9)—[5_ itenq (0M.g)

= Sy eMg)=(=1)™ [o, x5 eb,6,(OM,g)=(=1)" 71 [5_ 1/ 1% b ¢ (IM,g)
= S eM9)=(=1)" fo 17 7% b, (OM9)=(=1)™ f5_ 111" (—€b o (IM.9))
= D[y eMg)= [y, yy it eo(0 MO-Mg)= [, 4 i* ep(9: M0 M,g))
= (=) ([ e(Mog)— [y e0(04 MO M.,g))

= ()" [y onn) ©(M.0: MO M.,g).

Remark also that if x(M, 0+ M) is the Euler characteristic relative to 04 M, then
X(MO-M)=(=1)"( [y e(M.9)= 5, €0 (01 M0 M,q))

(=)™ (=1)™( [y ©(M,9)— [, €8(0— M, 01 M,g))
(=1)™x(M, 04 M).

6.2. CoEuler structures

6.2.1. CoEuler structures without base point. We extend the notion of coEuler
structures in [BHOT]| to the case of compact Riemannian bordisms (M, 04 M,0_M).

Lemma 6.2.1.  Recall Definitions|6.1.12 and|6.1.11| together with the pairing (-,-) from

Notation , Let €(M,0.:M,0_M,g) be the relative form given in . Suppose
that x(M,04M) = 0, i.e. the Euler Characteristic relative to 0+ M vanishes. Then the

set

Q

(6.20) E*(M,0, M,0_M;C) := {(w)

a € QmY(Mm,oM;e5)
da = e(M,0.M,0_M,g)

is not empty, on which we define the following relation. We say that (g,a) ~°* (¢', )
in EX(M, 0. M,0_M;C), if and only if

o —a=¢eM,0,M,0_M,g,g") € Q" (M,0M;0F,)/dQ™*(M,0M; ©F)),

where €(M,0+M,0_M,g,q') is the secondary form defined in . The relation ~¢°
is an equivalence relation on E*(M,0,.M,0_M;C).

Proof. By Theorem[6.1.14] the relative Euler form e(M, 04 M,d_M, g) defined in (6.13)
satisties ([e(M,0+M,0_M,g)],[1]) = 0. Since (-,-) is nondegenerate, the relative form
e(M,04M,0_M,qg) is exact in relative cohomology. That is, there exists a relative
form o € Q™ 1(M,0M;0,) such that da = e(M,d, M,d_M,g). Hence the space
E*(M,0.:M,0_-M;C) is not empty. The relation ~° satisfies the reflexivity prop-
erty, since €(M,0+M,0_-M,g,g) = 0. Symmetry and transitivity of ~“ are implied
by Lemma [6.1.13 0
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Definition 6.2.2.  Let E*(M, 9, M,d_M;C) be the space defined in (6.20). The set
of coEuler structures on a compact Riemannian bordism (M, 0, M,0_M) is defined
as the quotient

(6.21) Cul* (M, 04 M,0-M;C) := E*(M, 04 M,0_M;C)/ ~;

the equivalence class of (g,a) will be denoted by [g, a].

Lemma 6.2.3. Let H™ Y(M,0M; 9%) the cohomology groups in degree m—1 relative
to OM and coefficients in @%4. For a closed relative form [ € Qm=1(M, 8M;@(§4),
denote by [B] its corresponding class in relative cohomology. Consider Y, the action

of H™ Y(M,0M;05,) on the space of coBuler structures €ul*(M,d, M,0_M;C) from
Definition [6.2.2, given by
T : H™ Y (M,0M;06%,) x €ul*(M,0,M,0_M;C) — €ul*(M,0+M,d_M;C)

Then, T is well defined, independent of each choice of representatives, free and transitive

on Cul*(M,0.M,0_M;C).

(6.22)

Proof. For [8] € H™ (M, 0M;©0Y,), a class in relative cohomology represented by the
closed relative form 3 € Qm=Y(M, oM, @(%4), consider its action on the coEuler structure
l9, @], represented by the couple (g,a). Remark the couple (g,a — 3) is an element is
E*(M,0:M,0_M;C), because

d(a - ) =da—df =da =e(M,0,M,0_M,g)

Let us prove that T does not depend on the choice of representatives. The map T is
independent of the choice of representative for the coEuler class. Indeed, let (¢',)
be representing the same class as (g,a) in Eul*(M,0+M,0_M;C) for which we have
Ts(g', o) = (¢, (&' = B)). Since (o —B) — (a— ) = (¢/ —a) =&(M,0,M,0-M,g,9)
modulo relative exact forms, we have

Ts(lg, a]) = Ts(lg', ).

The map Y is also independent of the choice of the representative for the class in co-
homology [3]. Indeed, different choices for the cohomology class of 3 are obtained by

adding coboundaries in Q™1 (M, 0, M; @%), that is 8 + dﬁ’. But for these forms we
have

Ts(lg,a]) = T§+dg/([gjg])7

since the equivalence relation ~¢ is given up to relative exact forms only, see Lemma

So, we have proved T is well defined and independent of every choice of represen-
tatives.
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The same argument is used to see that the group H™ Y(M,d0,M,d_M; @%) acts
freely on €ul*(M,04M,0_M;C). Indeed, if 8 is such that [g,a — 3] = [g,a], then

ézé(Mﬂa-l-M’a—Mvg?g) +dﬁ/7

but, since the first term on the right hand side in the equality above vanish, the relative
form f3 is necessarily exact. We show this action is transitive on &ul*(M, 0, M,0_M;C):
for two classes [g, o] and [¢/, /], we can choose the relative form

Bi=(a—o)+eM,0,M,0-M,g,4")
By Lemma the relative form f3 is closed:
dg = e(M,0,M,0-M,g) —e(M,0,M,0_-M,q") +de(M,0,M,0_M,g,q")
=0
Finally by construction, we have Yg([g,a]) = [9,a — f] = [¢',a]. O

6.2.2. The flip map for coEuler Structures. Consider a compact Riemannian
bordism (M, 04 M,0_M) together with its dual (M,0_M, 0, M) and the corresponding
spaces of coEuler structures Eul*(M,0+M,0+M;C), see Definition In view of
Lemma there is a natural involution
v: Gul*(M,04M,0_-M;C) — ¢&ul*(M,0_-M,0,M;C)

l9.a] — [g,(=1)"a)]

which is affine over the involution in relative cohomology

(6.23)

(=1)™-id : H™Y(M,0M; 05;) — H™ Y(M,oM;05)).

Remark 6.2.4. If M is a closed Riemannian manifold, i.e., both 0. M and 0_M are
empty, then €ul*(M, 0, }; C), affine over H™1(M;OY,), coincides with Eul*(M;C), the
set of coEuler structures on a manifold without boundary (see [BHO7| and [BHO6al). If
M is closed and of odd dimension, then the involution v, being affine over —id, possesses
a unique fixed point in Eul*(M; C), which corresponds to the canonic coEuler structure

*

€can = [gv (Oécan =0,0p = 0)]

where acan = 0, because for odd dimensional closed manifolds e(M,g) = 0 and forms
ay = 0, see section 2.2 in [BHOT].

6.2.3. Variation formulas for coEuler structures without base point. The
following result generalizes the formula (56) in [BHO7| and it used to encode the variation
of the complex-valued analytic torsion on bordisms, see Section [6.3]

Proposition 6.2.5.  Let (M,0+M,0_-M) be a compact Riemannian bordism. Assume
X(M,0+M) =0. Consider {(gu,a,)}u @ smooth real one-parameter family of Riemann-
ian metrics g, and relative forms a,,, representing (g, q,] € Cul*(M,0;+M,0_M;C),
i.e., the same coFEuler structure. For g, consider the forms e(M,0.M,0_-M,g,) €
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Q™(M,0M;0Oy) and B(0+M,0_M,g,) € Q" 1(OM;0Oy) from Definition as
well as the relative Chern-Simon’s form €(M, 0, M,0_M, gy, g,) € QX" 1(M,0M;Oyr)
from Definition[0.1.19 Let E be a complez flat vector bundle over M with flat connection
VE, endowed with a smooth family of nondegenerate symmetric bilinears forms by,. Let
w(VE b,) == =2 Tr(b;*VED,) € QY(M;C) be the Kamber—Tondeur form associated
to by and VE. Recall the integral f(M’aM) from Notation . Then, the formulas
(6.24)
% (M,oM) 20 Aw(VE b )

= (=)™ firsonn ©(M, 0. M, 0_M, g,) Tx (b;16u>
+ 2 f(M,aM) $‘720 (M, 04 M,0-M, gu, gu + TGu) A W(VEa bu)

and
0 0 )
(6.25) — B(0+M,0_-M, g,) = — B(0+M,0_-M, g+ Tgu).
ou Jonr om 0T |—g
hold.

Proof. First, remark that

&
®
I

| (e
’ e(Md+Md M?.‘]uvgw)

o
e
o
ow
| &(M,04 M0 M,gu,gu+73u),

and analogously

B BO+M0-Mgu)= 5| B0+ M- Mg+74u).

Also, we have, see [BHOT|:

Tr(by 'VEby) = Tr(—by  buby VEb, )+Tr(by ' VED,)

% (=0
= Tr(—by  (VEb)by by )+Tr(by ' VED,)
(

= Tr((VEby )by )+Tr(by ' VEb,)
= Tr(VE(bulbu))
= dTr(by'by).

Therefore, since for each u, the couple [gy, o, | represents the same coEuler structure, we

obtain, modulo exact relative forms

o Jons.onr) 20, Aw(VF bu)
=Jiar,onry Owlu(, )A20(VF bu)+ [0 oary Qo NOw lu(— Tr(by' VEby))
=2 [(m,0m) = ]O§(M,8+M,8_ M, gu,gu+7gu) Ao (V' bu)+ [ s o) —a, AdTr(by b );

(%)
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with a,, = (o, 04), da,, = €(M, 9. M,0_M, g,,) and Stokes’ Theorem, the second term
on the right above becomes

(= (1 (g o (b )= (S 1 (e (B3 60)) = g (i (b 752)) )
=—(=1)™( [y dovu Tr(by "bu ) — [0, (% u—dP 0 )i* Tr(by 'by) )
=—(=1" foar,00r) de Tr(by bu)
=—(=1)™ firr.0nr) €(M.04 M- M,gu) Tr(by 'bu).-

The proof is complete. O

6.2.4. CoEuler structures with base point. We drop the conditions on the
relative Euler characteristics x(M, 01 M) to define coEuler structures. As in the case of
a closed manifold, we do this by considering a base point and defining the set of coEuler
structures based at a point.

Consider (g, a), where a € Q™ 1(M,dM;0Y,), see , and define

(6.26) E; (M,0.M,0_M;C) := {(g,a)

a € Q" YM,0M;e5)
dg = 9(M78+M78—Mag) .

In view of H m(M ,OM; @%) ~ (0, see Lemma , these sets are non-empty. Then, as
for the case without base point, (g,a) ~* (¢,a/) in E} (M,0, M,0_M;C) if and only
if
(6.27)

o —a=¢6M,0,M,0_M,g,¢") in Q" YM,oM;0%,)/d0"2(M,oM;05,).

The relation in (6.27) is an equivalence relation for the same reasons as in the case
without base point. The corresponding quotient space

(6.28) Gult, (M,d, M,d_M;C) := B3 (M, 0, M,0_M;C)/ ~*

is called the space of coEuler structures based at xy on (M,04M,0_M) and an
equivalence class is denoted by [g, a]. Furthermore, the action of H™ (M, 9M;©Y,) on
Culy (M,04M,0_M;C) defined by
(6.29)
Y : H"Y(M,0M;05;) x €uly (M,0,M,0_M;C) — €ul}, (M,0,M,0_M;C)
(81,19, a]) = 9,2 — B
is well defined and independent of each choice of representatives, see Lemma [6.2.3} this
action also is free and transitive since H™ '(M,0M) = H™ '(M,dM), sce Lemma
Finally, the flip map
v @€uly (M,0,M,0_M;C) — ¢&uly (M,0-M,0,M;C)
[Q,Q] = [ga (_1)mg)]

intertwines the spaces €uly (M,0+M,0+M;C) and it is affine over the involution in

(6.30)

relative cohomology

(=1)™id : H™ Y (M, 0M;0Y,) — H™1(M,0M; 05,).
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6.2.5. Variational formula for coEuler structures with base point. The main
of this section is to give an analog to Proposition in the case of coEuler structures
with base point. Let a € Q" 1(M; 0%,) be a smooth differential form on M, with
possible singularity xo € int(M), the interior of M and M := M\{zo}. For w a closed 1-
form on M, we make sense of integrals of the type [, aAw, by means of a regularization
procedure as described in the remaining of this section.

The local degree of « at the singularity xg, see for instance section 11 in [BT82],
is given by

(6.31) deg, () := lim i,

020 Jomm (6:2)
where O(B™(6,x)) indicates the boundary of the m-dimensional closed ball B™ (0, x)
centered at zo and radius § > 0. With the standard sign convention involved in Stokes’

Theorem, O(B™ (4, x)) is oriented with respect to the unit outwards point vector field
normal to B™ (4, z).

Lemma 6.2.6. Let o be a smooth form in Q" 1(M;0%,) such that da and ap are
smooth and without singularities in M. For w a smooth closed 1-form on M, choose a
smooth function f € C°°(M) such that the 1-form

W i=w—df

1s smooth on M and vanishes on a small neighborhood of xo. Then the complex-valued

function

(6.32) &mwjy:/

aAw + (—1)m/ da A f — f(wo)deg,, (o),
(M,&M)

(M,0M)

does not depend on the choice of f and satisfies the following assertions.

(1) If B € Qm=Y(M,0M;65%,)), i.e., without singularities, then

S(B,w) = /(M,aM)ﬁ/\w'

In particular, S(dvy,w) =0 for all v € Qm=2(M,0M;65,).
(2) S(w,a) is linear in o and in w.
(3) S(a,dh) = (—1)™ f(M,aM) da A h — h(z)deg, (o).

Proof. Without loss of generality assume X(a) = {x}. We want to know how the
function f(M,aM)Q/\ w’ changes, with respect to f. Let us take fi, fo € C*°(M) two
functions as above, such that the corresponding one forms w/,w) vanish on a small open
neighborhood of xg, so that d(fo — f1) = 0 locally around xo; that means fo — fi is
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constant[] on a small neighborhood of xg. Now, consider the variation

A= f(M,aM) an(wy—wh)
f]\/l\{w} an(wh—wl)— [ coNi* (wh—wh)

= = Jan\ oy @NA(f2=F1)+ [ co N (d(f2— f1)),

We develop both terms on the right of the last equality above. The first one, the integral

over M, can be re written as
= Jan\ gy @Nd(f2=f1) == (=171 [y 1oy da(fa=f)) A0 [of (0 dan(f2—F1),
whereas the second one, the integral over the boundary becomes

Jong @and?i (f2—f1) = (=1)™72 [, d%(aani* (fa—f1)) —=(=1)™ 72 [, d2apNi* (fa—f1)
=0
(=11 fons dPapNi*(F2—f1)

and therefore
A= (0" (fan oy AU F0) = o oy DOAF2=F1) = [yg P00 Ai* (f2—f1))
= —(-nm! (fM\{z} d(a(f2=f1))=[or dan(fo—f1)=fop d2aoni* (fg_fl)>,
where we have used
Jan(oy dan(f2=f1)= [y dan(f2—f1),

since by assumption, the form da does not have singularities on M. Hence, to make
sense of A, we now make sense of the integral fM\{x} d(a(fa — f1)). This integral can be
computed as the limit:

Jan\ g2y da(f2=F1))=lims 0 Sy g(s,2) d@(f2—f1))

where B(6,x) is the closed ball centered at zg of radius § > 0 and with boundary
O(B(d, x)) endowed with the orientation specified by the unit outwards pointing vector
field normal to B(d,x). Then, by using Stokes’ Theorem with the standard convention,
the limit above can be computed as

f]\/f\{z} d(a(f2—f1))

limso0 [yn\p(s,e) d@(f2—f1))
= limg_,o fa(l\{\]ﬁé(é,z)) i*(a(fQ_fl))
= limso <f3M i*(a(f2_f1))+ffa(]3rr1(5,z>) i (Oé(f2_f1)))
= fa]w [ (a(f2_f1))+hm5—>0 f,a(]]gm@’m)) o (a(f2—f1))7
where —0(B" (4, x)) indicates the sphere with opposite orientation as 9(B(d, z)).Now, we

look at the second term on the right of the equality above. Since fo — f1 is constant on
a small neighborhood of zy, we have, for §' > 0 small enough,

lims 0 La(Bm((s,z» i*(a(fe—rf1)) (fQ_fl)(x/) lims_0 ffa(]Bm((S,z)) i*a  for all x’EIB((S’,x),

= (=1)™(f2—f1)(z)deg,, (a),

11f we choose f2 (z) = f1(z) =0, then fo — f1 = 0 around xo.
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m

where the sign (—1)" above comes from the standard convention taken for the Stokes’

Theorem. Hence

Jan gy de(fa=F1))=[o5 7" (a(fo— 1))+ (=1)"(fa—f1) (w)deg,, (o).
Therefore the variation A becomes

A= () [y i (@(fam ) (D)™ (fa—f1) (@)degy () — [y dan(fa—f1)—fpp, dPaani* (f2—f1)]
= (D) [ (Fa—dPap) it (fa— 1)~ [y dan(fa— i) + (—1)™ (fo—f1) (@) deg, ()]
=~ = Siaronn QAU f)H(=D)™ (fa— f1) (@) deg, ()]

= (D™ faronn dOA(f2= 1)~ (fo= F1)(@)degs, (@),
and so
Spy(aw)=Spy (@w) =B+ ((=D™ firr orr) dOAf2=1) = (f2—f1) (@)deg, (@)
=0,

so S¢(a,w) does not depend on the choice of f. Remark that linearity of S(a,w) with
respect to w immediately follows also from its the independence of f. The remaining
assertions in (1) and (2) follow from similar considerations as above, we omit the details.
Let us turn to assertion (3). For a smooth function h, we compute

Sf (va"'dh) = f(}wya]\/j) Q/\(w"’dh_df)"'(_l)m f(}VI,B]W) dg/\f—f(:co)degzO (O‘)v

f(M,aM) aN(w+d(h—f))+(=1)™ f(M,aM) (dan(f—h)+danh)
—(f(wo)—h(z))deg, (a)—h(z)deg, (),

f(MA,aM) anN(w—d(f—h))+(-1)™ f(M,aM) daA(f—h)—(f—h)(z)deg,, ()+
(=D™ [ar,0nr) d2Ah—h(z)deg, (a),

= Sp-n(@w)+(=D™ [iar,00r) danh—h(z)deg, ().
that is,
(=™ fear,oar) denh—h(z)deg, (o) = Sp(aw+dh)—Sy_p(aw)

= Sp(awtdh)—Sf(a,w)
= Syladh)
= S(a,dh),

where the second equality above holds, since S is independent of f and the third one

because S is linear on w. O

Corollary 6.2.7.  Let « be as in Lemma[6.2.6 Then, we have the formula

degyy@) = (-1" [ da.

(M,OM)
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Proof. Let w, f, @ and X' («) be as above and consider fy to be a constant function on
M. Then we compute

Sf+f0 (a,w) :f(]w’a]u) anw'+(=1)™ f(k{,a]\/[) danf+(=1)"fo f(]\/j’(')]y{) dg—(f(wo)degzo (a)+f0degzo (a)):

=Sf(aw)+fo ((*Dm f(M.aM) da—deg, (a)).

But, from Lemma above, we know Sy ¢, (a, w) = S¢(,w), and hence the last term
on the right above vanishe, so that the desired relation between the total degree of the
form o and « follows. O

The formula obtained Corollary computes the total degree of « in terms of the
relative form a. We use this formula to conclude the following, which generalizes formula

(6.24)) in Proposition [6.2.5]

Proposition 6.2.8. Consider a compact Riemannian bordism (M,0.M,0_M), to-
gether with the relative Euler form e(M,0;M,0_M,g) as defined in (6.15). For xg €
int(M), a base point in the interior of M, consider the space €uly (M, M,0_M;C)
of coBuler structures based at xo, see (6.28). Let ¢* € €uly (M,d,M,d_M;C) be repre-
sented by (g, ), where o := (a, ) is a relative form with o € Q"1 (M;05,) having a
unique singularity at xo. Assume da and ag are smooth, i.e. without singularities in M.
For w € QY(M), a smooth closed 1-form on M, choose a smooth function f € C°(M)
such that the 1-form W' == w — df € QY(M) and vanishes on a small neighborhood of x.
Then

Si(a,w) = f(MﬁM)g/\w’%— (=)™ f(MﬁM) e(M,0LM,0_M,g) N f

(6.33)
—f(wo)x(M,0-M)

In particular, if ¢* is represented by (g,a) and (¢, ), then

(6.34) S(a,w) — S(a,w) = / S(M, 0. M,0_M,g,4) A
(M,0M)

Proof. Under these assumption, from Corollary we have

degzO ()=(-1)™ f(]\/[,a]u) da=(-1)" f(]\[’a]\/j) e(M,04 M,0_M,g)=x(M,0_M),

where the last equality follows from Gauss—Bonnet—Chern Theorem. Therefore, (6.33)

follows from the definition of S in (6.32)). Finally, formula (6.34) follows from (6.33]) and
the defining relation (6.27)).

g

6.3. Generalized complex-valued analytic torsion

In this section, we extend Theorem 4.2, in [BHOT| to the situation of a compact
bordism. The generalized complex-valued Ray—Singer torsion on closed manifolds was
constructed in Theorem 4.2, in [BHO7|, by adding appropriate correction terms to the
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complex-valued torsion in order to cancel out the infinitesimal variation to the complex-
valued analytic torsion. These correction terms were introduced using coEuler structures,
once the anomaly formulas for the torsion was computed. The procedure in the situation
on a compact bordism is carried out in a similar fashion. In fact, the required correction
terms are constructed by using this time the notion of coEuler structures on compact
bordisms, from Section and the anomaly formulas obtained in Theorem [5.2.1]

Theorem (Definition) 6.3.1.  Let (M,04+M,0_M) be a compact Riemannian bordism
with Riemannian metric g. Suppose x(M,0_M) =0 (or equivalently x(M,0_M) =0).
Let ¢* € €ul*(M,0+M,0_M;C) a the coEuler structure (without base point), see Section
[6.2.1 Let E be a complex flat vector bundle over M, with flat connection VE. Assume
E is endowed with a complex nondegenerate symmetric bilinear form b. As a bilinear
form on det(H(M,0_-M)), we define
(6.35)

E,¢*,[b] _ E,g,b
[T](IL;,8+A/I,6_J\4) = [TRS](Aia+AI,a_NI)’EXp<2 f(M,aM) arw(E,b)—rank(E) [5, B(8+M78—M79))

where

° [TRS]QI%QM,@_M) is the complez-valued Ray—Singer torsion on (M,0+M,0_M),
see Definition|5.1.J

e the couple (g,a), for a € Q™1 (M,0M;05,), represents the coEuler structure
¢* € Cul*(M,0LM,0_M;C),

e B(01M,0_M,g) is the characteristic form given in Definition [6.1.11)

o [b] indicates the homotopy class of b,

e w(E,b) € QY (M;Oyy) is the Kamber—Tondeur form associated to VE and b.

o ho 10 (6.35) is indeed well defined, ie., it is

independent of the choice of representatives for the coEuler structure and it depends on

Proof. We have to prove that [7]

V¥ and the homotopy class [b] of b only.

Let {(guw,a,,)} be a real one-parameter smooth path (of Riemannian metrics g,
on M and of relative forms a,, € Q™ 1(M,0M;06%,)) representing the same coEuler
structure ¢* € Cul*(M,0+M,0_M;C). Let {b,} be a one real parameter smooth path
of nondegenerate symmetric bilinear forms on E. Consider the corresponding family

[T] f]\’/f(ga’%]“v}’gf M) of bilinear forms given by the formula in (6.35[), for which its logarithmic

derivative with respect to w vanishes. Indeed, this derivative consists of two contribu-
tions: the variation of the exponential depending on the coEuler structures, computed in
Proposition and the variation of the complex-valued analytic torsion, computed in
Theorem but these two contributions cancel each other out Remark here that the
terms appearing in the anomaly formulas in Theorem [5.2.1] use the original characteristic
forms in [BMOG6|. But the only difference between using the forms B(0.M,0-M,g),
ey(04M,0_M,g) and €5(0+M,0_M, g) instead of B(OM, g), es(OM, g) and €5(0M, g)
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respectively, is that by construction certain signs (—1)" are suppressed, as it can easily
be checked. O

6.3.1. Direct sums. Consider the bordism (M, d; M,d_ M), two flat complex vec-
tor bundles Fy and Fs over M, endowed with the fiberwise nondegenerate symmetric
bilinear forms by and by respectively and the E7 @ E5 the flat sum vector bundle endowed
with connection VF19F2 and nondegenerate complex symmetric bilinear form b; @ by.
In this situation, look at the bilinear Laplacian Ag, ¢ E, g,p@b, acting on By @ Ez-valued
smooth forms over M, under absolute/relative boundary conditions. Since

Q(M; By @ Ea) = Q(M; Er) ® Q(M; Ey)
and
Q(M; E1® Ey)p = Q(M; E1)g @ QUM; Eq)p
we have
AR, eEy.gbhiaby = DB, g0 © AR, by

as well as for their L2-realizations

E1®E27g7b1®b2 _ E17g7b1 E27gzb2
[Asl(ara, a0 an = 1Bl ara, aro an © 1Al 16, ao

and hence
det’ (Ap, @B, g5,00,) = det’ (Apg, gp,) - det’ (Ag, g, ) -

Thus, with the canonic isomorphism of complex lines
det H*(M,0_M; E1 & Ey) =2 det H*(M,0_M; Ey) ® det H*(M,0_M; E5),

and the identity
WE1 G Ea,g,b1®b2 = WE1,9,b1 T WE3,g,b25
for the corresponding Kamber—Tondeur forms, see Section 2.4 in [BHO7|, we obtain

E160FE 79*7[17 @b } o E 72*7[17 } K ,E*,[b }
(6.36) [TTovronro any = Tlararso v @ Tlaiarato -

6.3.2. Generalized complex-valued analytic torsion and Poincaré duality.
Let (M,01M,0_M)' be the dual bordism of (M, 04 M,0_M) and E’ the dual bundle of
E endowed with the dual connection and o’ the nondegenerate symmetric bilinear form
dual to b on E. By Poincaré—Lefschetz duality, see , there is a canonic isomorphism
of determinant line bundles

(6.37) det (H (M,0-M;E' ® ©))) = (det (H(M, an;E)))(—l)m“ ’

see for instance [KM76|, [Mi62]| and [Mi66]. The bilinear Laplacians Ag g3, and
AE' 90,90, m—q, as well as the corresponding boundary conditions are intertwined by
the isomorphism *x;, ® b : QI(M;E) — Q™ 9(M;E" ® ©)). This implies that their
L2-realizations Apg and AB;n—q are isospectral, and therefore

(6.38) det/(AE’g@q) = det/(AE’®®M,g,b’,m—q> .
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By definition of the torsion in (6.35]), the isomorphism in (6.38)), the identity in (6.37)),

the formula II, (det’(AEyg,b,q))(fl)q = 1 proved in Lemma|5.1.3] the relation between the
forms B(0+M,0_-M, g) and B(0_-M,04+M,g) from Lemma [6.1.10}, and

(6.39) W(E' ® Oy, b)) = —w(E,b),

see Section 2.4 in [BHOY|, we obtain

9

(6.40) [ ]E'®@M»V(e*)a[b’] — (] ]E’,e*,[b} (=1)mHt
' Tl mo-my = \UTl(ao, 0,0 M)

where v : Eul*(M,0LM,0_M;C) — Eul*(M,0_M,0,M;C) is the map in (6.23), in-
tertwining the corresponding coEuler structures. The formula in (6.40)) exhibits the
behavior of generalized complex-valued torsion on the bordism (M, 0+ M,0_M) under

Poincaré—Lefschetz duality, generalizing this situation in the case without boundary, see
formula (31) in [BHO7].

6.3.3. Without conditions on x(M,04:M). Let (M,04M,0_M) be a compact
Riemannian bordism and E a complex flat vector bundle over M with flat connection
VE. We assume it is endowed with a complex nondegenerate symmetric bilinear form b
and consider w(E,b) the Kamber—Tondeur form. For xy € int(M), let

e, € €ul’ (M,d,M,d_M;C)

be a coEuler structures based at xg, see (6.28)), represented by (g, ), where o := (a, @)

is a relative form with
ae QY M;05,) and M= M\{x}.

Let b(detE )= x(M.0_31) be the induced bilinear form on (det E,, ) X(M:9-M)  Consider
z

TE,Sg,b the complex-valued Ray-Singer torsion on (M,0.M,0_M), see and S the
function regularizing |, (M,OM) studied in Proposition We define

RS 25(a,w(E,b))—rank(E) [4,, B(8+M,0_M,qg) Qb

an ._ .
(6.41) TE,e;O,[b} =Tpgp € (det By ) X0 M)

regarded as a bilinear form on det(H (M, 0_M)) ® (det E,, ) X(M.0-M)

Theorem 6.3.2.  The bilinear form in is independent of the choice of represen-
tative for the coEuler structure and depends on the connection and the homotopy class
[b] of b only.

Proof. On the one hand, if b is fixed and we only look at changes of the metric, then
the variation of TZ{:(g’(Qﬁ))’b with respect to the metric compensates the variation of the
function S(a, w(F,b)), which is explicitly given by formula in Proposition
On the other hand, when g and ¢ are kept constant and we allow b to smoothly change
from b; to by, then the variation of the Kamber—Tondeur form is given by

w(E,b2)—w(E,b1)=—3 det((b 'ba)1)ddet(by 'by)=—Sdlogdet((b; 'b2) 1),
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where the last equality holds, since by and by are homotopic and therefore the function
det((byba)™1) : M — C\{0},
is homotopic to the constant function 1, which in turn allows to find a function
logdet((b; 'b2) 1) : M — C,
with
dlogdet((b; 'b2)™1) = det((by *ba) " )d det(by tbo).
This, with f = Tr((b; 'b2) ') and Lemma [6.2.6] implies that

285 (,w(Byba))—28  (a,w(E b1 ) =28y (g,dlog det((bl—lbz)‘l))
=—(=1)™ fiar.0nr) ©(M.04 M,0_M,g) log det((b;1b2)’1>+log det ((b;le)’l) (z0)x(M,d_ M)

=—(=1" fiar,onr) €M+ M0 M,g) Tr (b 02) ™) +Tx (b7 b2) ™" ) (wo)x(M,0- M),

where the additional term Tr((by 'be) ') (x0)x(M,d_M) cancels the variation of the
induced bilinear form on (det F,, ) X(M:9-M) given by

—x(M,o_M) = det(b;le)—x(M,a,M).

1
(bl(det Exo)ﬂ‘(M‘a— M)) b2(det Eqxq)



Zusammenfassung

Ein kompakter riemannscher Bordismus ist eine (differenzierbare) kompakte Man-
nigfaltigkeit M der Dimension m mit riemannscher Metrik g, deren Rand OM genau die
disjunkte Vereinigung der zwei geschlossenen Mannigfaltigkeiten 0, M und d_ M ist, mit
absoluten (bzw. relativen) Randbedingungen auf 0, M (bzw. 0_M). Diese Dissertation
befasst sich mit der komplexwertigen analytischen Torsion auf kompakten Bordismen.

Sei E ein flaches komplexes Vektorbiindel iiber M und A eine hermitische Metrik auf
FE. Um die Ray—Singer Metrik TER,Sg,h als eine hermitische Metrik auf dem Determinan-
tenbiindel det(H (M,0_M; E)) der De-Rham Komologie H(M,0_M; E) zu definieren,
studiert man selbstadjungierte Laplace-Operatoren Apg 4 die auf E-wertigen glatten
Differentialformen Q(M; E), mit den obigen Randbedingungen, wirken. Nun nehmen
wir an, dass F mit einer faserweisen nicht-ausgearteten komplexen symmetrischen Bi-
linearform b ausgestattet ist. Sei Sg 4, die von b und g induzierte Bilinearform auf
Q(M; E). Die komplexwertige Ray—Singer Torsion TER,Sg,b ist eine nicht-ausgeartete kom-
plexe Bilinearform auf dem Determinanten-Linienbiindel det(H (M,0_M;E)), die von
Burghelea und Haller auf geschlossenen Mannigfaltigkeiten in Analogie zu der Ray—Singer
Metrik eingefiithrt wurde. Um TER:Sg,b zu definieren, betrachten wir nicht-selbstadjungierte
Laplace-Operatoren Ag 45 Wir erhalten ein Hodge-De-Rham Zerlegungsresultat, das
besagt, dass der verallgemeinerte Nulleigenraum des Laplace-Operators Apg 4 endlich
dimensional ist, nur glatte Formen enthélt und uns erlaubt die Kohomologie Gruppen
H(M,0_M; E) zu berechnen. Dann induziert die Einschrankung von f,; auf dem ver-
allgemeinerten Nulleigenraum des Laplace-Operators Ag 4 eine nicht-ausgeartete kom-
plexe symmetrische Bilinearform 7g 45(0) auf det(H (M, 0-M; E)). Dann wird TER’ngb als
das Produkt von 7 4(0) mit der (-regularisierten Determinante von Ag ,; definiert.

Die Variation der Torsion TER’SM, bezogen auf glatte Verdnderungen der Metrik und
der Bilinearform, ist als Anomalienformel bezeichnet. Fiir die Berechnung dieser Formel
braucht man die Koeffizienten des konstanten Terms in der asymptotischen Expansion
fiir die Wéarmeleitung des Operators Ag ;. Wir berechnen diese Koeffizienten, indem
wir die von Briining und Ma gefundenen Formeln fiir die Ray—Singer Metrik benutzen.

Schlieklich definieren wir coEuler Strukturen auf einem kompakten riemannschen
Bordismus. Im Rahmen einer geschlossenen Mannigfaltigkeit sind CoEuler Strukturen
von Burghelea und Haller studiert worden. In unserem Fall wird der Raum von coEuler
Strukturen als ein affiner Raum iiber die Gruppe H™ '(M,0M;C) definiert. Diese
konnen als duale Objekte fiir die Euler-Strukturen von Turaev angesehen werden.
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