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Abstract

The field of cavity quantum optomechanics is now established as one of the newest
branches of quantum optics. Utilising electromagnetic radiation circulating inside an
optical resonator, the research field exploits optical forces for the precise control and
high precision measurement of the motion of micro- and nano-fabricated mechanical
oscillators. With a broad scope, the field has significant potential to contribute to
applied science, e.g. by improving weak force sensing or the development of hybrid-
quantum-system quantum-information applications, and fundamental science, e.g.
by ultimately probing the existence of gravitationally induced wavefunction collapse
or other quantum gravitational phenomena.

The research summarised in this cumulative dissertation was conducted over a
period of approximately five years (March 2008 to January 2013), and made both
theoretical and experimental developments towards the preparation of a non-classical
motional state of a mechanical resonator. The main optomechanical system studied
here is a deformable Fabry-Pérot cavity that has one large rigid input mirror, and
a second mechanically compliant micro-scale back mirror, which can move simply
under the reflection of light.

During the first two years, this research concentrated on experiments with a con-
tinuous interaction between an optical field and a mechanical element. We made
improvements to cooling the mechanical thermal motion of a high quality factor me-
chanical oscillator by combining cryogenics and laser sideband cooling; and we also
performed the first experimental demonstration of normal mode splitting between
the cavity field and the mechanical motion, which emerges given sufficiently strong
coupling. A complementary line of research also performed during this time was
to study mechanical geometry dependent clamping losses, i.e. how the shape and
vibrational profile of a mechanical resonator affects the mechanical quality factor by
unwanted phonon coupling into the surrounding thermal bath.

In the latter three years, this research changed course from a continuous inter-
action and pioneered the regime of pulsed quantum optomechanics. As is detailed
below, a pulsed interaction that is much shorter in duration than a mechanical pe-
riod provides a number of opportunities that are not available with a continuous
interaction. These include a mechanical position measurement precision that can
surpass the standard quantum limit, and the ability to perform optomechanical ex-
periments that investigate dynamics rather than the steady-state, to list two primary
advantages. We theoretically developed the framework to conditionally prepare a
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squeezed state of mechanical motion using a pulsed measurement, and, importantly,
proposed a technique for motional quantum state tomography. These concepts were
then experimentally implemented, where the position uncertainty was reduced to
less than 20 pm in addition to performing full motional state tomography. A fur-
ther theoretical work in this direction was to exploit the optical nonlinearity of
the optomechanical interaction to allow for strong mechanical displacement squared
measurements.

Using a time-domain approach also allows one to develop experimental protocols
comprising several (coherent) pulsed interactions. Within this research, two proto-
cols utilising a sequence of four pulsed optomechanical interactions were developed.
Both protocols exploit a geometric phase, i.e. a phase resulting from a closed loop in
phase space, albeit for quite different purposes. Our first scheme is an experimental
proposal to probe quantum gravity using the tools of quantum optomechanics. The
scheme uses a geometric phase imparted to the light after the four interactions to
infer the mechanical commutation relation between the position and momentum. In
various models of quantum gravity, including string theory for example, this commu-
tation relation is modified to accommodate a minimum length scale in the universe.
The second proposal, where the roles of light and the mechanical oscillator are re-
versed, uses a closed loop in optical phase space to impart a nonlinear, i.e. state
dependent, phase shift onto the mechanical resonator for deterministic quantum
state engineering.

Finally, an additional theoretical project was completed during the final year of
this research that explored the regime between a continuous and a pulsed interac-
tion. This project developed the theoretical framework to manipulate a mechanical
resonator at the single phonon level by introducing a tool that can perform a con-
trollably weighted superposition of phonon addition, subtraction and the identity
operation. Our framework is applicable to other physical systems, such as trapped
ions and spin ensembles, and can be used to perform arbitrary quantum state engi-
neering and for mechanical resonator based quantum information applications.
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Zusammenfassung

Das Feld der Resonator-Quanten-Optomechanik ist heute einer der neuesten eta-
blierten Zweige der Quantenoptik. Die Nutzung von elektromagnetischer Strahlung,
die in einem optischen Resonator zirkuliert, erlaubt die Strahlungsdruck Interak-
tion für hochpräzise Messung und präzise Kontrolle der Bewegung von mikro- und
nano-fabrizierten mechanischen Resonatoren zu nutzen. Das Feld hat eine weite
Bandbreite, und damit signifikantes Potential angewandte Forschung, so wie zB.
hoch-sensitiven Kraftsensoren oder die Entwicklung von hybriden Quantensystemen
für Anwendungen in der Quanteninformation, und fundamentale Forschung, zB um
die Existenz von Schwerkraft-induziertem Kollaps der Wellenfunktion oder anderen
Quanten-Schwerkraft Phänomenen, voranzutreiben.

Die Forschung, die in dieser Kumulative Dissertation zusammengefasst ist, wurde
über eine Periode von fünf Jahren (März 2008 bis Jänner 2013) durchgeführt, und
beinhaltet sowohl theoretische als auch experimentelle Fortschritte zur Herstellung
von nicht-klassischen Bewegungszuständen von mechanischen Resonatoren. Das
opto-mechanische System das die Grundlage dieser darstellt ist ein verformbarer
Fabry-Pérot Resonator mit einem fixen Spiegel, und einem zweiten, mechanisch ver-
formbaren mikro-Skalen Spiegel, der auf eingestrahltes Licht reagiert.

Die Forschung der ersten zwei Jahren war auf Experimente mit kontinuierlicher
Interaktion zwischen optischen Feldern und einem mechanischen Element fokussiert.
Wir haben Tieftemperatur mit Laser Seitenband Kühlung kombiniert um die Küh-
lung der mechanisch-thermischen Bewegung eines mechanischen Resonators mit ho-
hem Qualitätsfaktor zu verbessern. Ebenso haben wir zum ersten Mal Normalmod-
entrennung zwischen dem Resonator Feld und der mechanischen Bewegung exper-
imentell demonstriert, ein Effekt der bei ausreichend starker Kopplung entsteht.
Komplementär dazu haben wir in dieser Zeit mechanische, Geometrie abhängige
Klemmungsverluste untersucht, d.h. den Einfluss von Form und dem Vibrationspro-
fil von mechanischen Resonatoren auf ihren Qualitätsfaktor durch ungewollte Pho-
nonen Kopplung mit dem thermischen Umgebungsbad.

In den folgenden drei Jahren vollzogen wir einen Kurswechsel von kontinuierlichen
Interaktionen hin zu Pionierarbeit im Bereich der gepulsten Optomechanik. Gepul-
ste Interaktion auf Zeitskalen unterhalb der mechanischen Schwingungsperioden öff-
nen eine Anzahl an neuen Möglichkeiten die im kontinuierlichen Regime nicht zur
Verfügung stehen. Diese beinhalten, unter anderem, die zwei beträchtlichen Vorteile,
mechanische Positionsmessungen mit Präzision jenseits des Standard Quantenlim-
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its, und die Fähigkeit, opto-mechanische Experimente durchzuführen, die Dynamik
anstatt nur stationäres Verhalten untersuchen. Wir haben theoretische Grundla-
gen entwickelt die es erlauben gequetschte Zustände mechanischer Bewegung durch
gepulste Messungen herzustellen, und eine Methode für die Tomographie von be-
weglichen Zuständen vorgestellt. Diese Methoden wurden von uns experimentell
implementiert, mit dem Resultat dass ein neuer Rekord für die Quetschung von ther-
mischen Rauschen mit einer Reduktion in der Unsicherheit von Positionsmessungen
unterhalb von 20 pm unter gleichzeitiger Bewegungszustands Tomographie erreicht
wurde. Weitere theoretische Arbeit in diese Richtung nutzte die Nichtlinearität der
opto-mechanischen Interaktion für starke quadratische Positionsmessungen.

Das Studium der Zeitdomäne hat uns erlaubt experimentelle Protokolle zu en-
twickeln die aus mehreren (kohärenten) gepulsten Interaktionen bestehen. Im spe-
ziellen haben wir zwei Protokolle entwickelt die eine Sequenz von vier gepulsten
opto-mechanischen Interaktionen ausnützen. Beide Protokolle beruhen auf einer ge-
ometrischen Phase, d.h. einer Phase die aus einer geschlossenen Kurve im Phasen-
raum entsteht, allerdings für unterschiedliche Zielsetzung. Das erste Schema ist ein
experimenteller Vorschlag um Quantenschwerkraft mit den Werkzeugen der Quan-
ten Optomechanik zu testen. Das Schema erlaubt es, vom der geometrischen Phase,
die Licht nach vier Wechselwirkungen erfährt, auf die mechanische Kommutator Re-
lation von Position und Impuls zurückzuschließen. In verschiedenen Modellen der
Quantenschwerkraft, zB der Stringtheorie, wird diese Relation modifiziert um eine
minimale Längenskala des Universums zu beinhalten. Unser zweiter Vorschlag, in
dem die Rolle des Lichts und des mechanischen Resonators vertauscht sind, nutzt
eine geschlossene Kurve im optischen Phasenraum um einen nichtlinearen, d.h. zu-
standsabhängigen, Phasenschub in dem mechanischen Resonator zu induzieren und
dadurch deterministische Kontrolle des Quantenzustands zu ermöglichen.

Ein weiteres theoretisches Projekt, das im letzten Jahr dieser Arbeit fertiggestellt
wurde, befasste sich mit der Domäne zwischen einer kontinuierlichen und gepul-
sten Interaktion. Wir entwickelten theoretische Grundlagen um einen mechanischen
Resonator im Einzel-phonon Bereich zu manipulieren, durch eine Methode die kon-
trollierte, gewichtete Überlagerungen von Phononen Addition, Subtraktion, und der
Identitätsoperation erlaubt. Unsere Resultate können generell Anwendungen für
Quanteninformationsprotokolle die auf mechanischen Resonatoren beruhen finden,
und im speziellen benutzt werden um beliebige Quantenzustände herzustellen, und
weiters auf andere Systeme so wie zB in Fallen gefangenen Ionen und Spinensembles
angewendet werden.
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1 Introduction

1.1 Optomechanics and Radiation Pressure

Radiation pressure – the force per unit area exerted by electromagnetic radiation
on a surface – is the term that refers to a broad class of forces, e.g. optical gradient
forces, the force due to the reflection or absorption of light, and even radiometric
(light induced thermal) forces. It was realized in the early 17th century that optical
radiation could exert such forces by Kepler who (correctly) believed that radiation
pressure from solar radiation played a role in comet tail formation. More than a
century later in 1871 Maxwell provided a rigorous theoretical description of radiation
pressure due to the reflection of light, which was experimentally observed by Nichols
and Hull [1, 2] and Lebedev [3] in the early 1900s. Shortly after these experiments
came the dawn of relativity and quantum mechanics and research on, or utilizing,
radiation pressure did not actively continue until the late 1960s. At that time,
radiation pressure became one of the key tools of atomic, molecular and optical
(AMO) physics for the trapping and cooling of atoms and particles [4, 5, 6].

With the exception of chapter 10, the research in this thesis utilizes radiation
pressure from the reflection of light. The key to understanding the origin of a force
from a reflection is that light itself carries momentum. A pulse of light with energy
E carries momentum E/c, where c is the speed of light in vacuum, and a reflection,
due to conservation of momentum, will transfer 2E/c momentum to the surface. The
force, or momentum transfer per unit time, is then F = 2P/c, where P is the optical
power. Note that the radiation pressure force is halved for the case of absorption of
the light by the surface.

Radiation pressure is the central interaction in the field of optomechanics, which
uses light to measure and manipulate the motion of mechanical objects. The basic
optomechanical system has a mechanical element that has been engineered to be
sufficiently low mass and compliant to move even under the feeble force of radiation
pressure. As radiation pressure is such a weak force optomechanical setups often
employ an optical resonator to enhance the radiation pressure force. A typical and
conceptually simple configuration is a Fabry-Pérot cavity that has one massive rigid
mirror and one end mirror that is small and vibrates in a (typically harmonic) po-
tential. Such a system is of considerable practical interest because the mechanical
oscillator is susceptible to weak external forces that can be measured with high preci-
sion via the optical readout. Moreover, and of particular interest of this thesis, such
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1 Introduction

a system offers an attractive experimental route to prepare and investigate quantum
mechanical behavior of the motion of the macroscopic mechanical resonator. In such
a regime, i.e. quantum optomechanics, the quantum noise on the intensity of light
causes a significant change to the mechanical resonator’s momentum. In this regime,
the momentum carried by each photon will transfer momentum 2~k = 2~ω/c.

1.1.1 Some History and Motivation of Quantum Optomechanics

The field of quantum optomechanics has a history about half as long as quantum
mechanics itself, i.e. four to five decades. For much of that time, research on
optomechanics came under numerous different guises and it was only quite recently
that such research became a field in its own right. It is not the purpose of this
cumulative dissertation to provide a thorough review of the developments of the field
and the reader is instead directed to the review articles, Refs. [7, 8, 9, 10, 11, 12].

The main line of research from which quantum optomechanics emerged is grav-
itational wave detection via optical interferometry [13, 14]. There, the stochastic
back-action forces imparted to the interferometer mirrors by the reflected optical
fields placed a limit (the standard quantum limit) on the sensitivity of the device
and a quantum mechanical treatment of the radiation pressure interaction between
the optical field and the motion of the mirrors was important [15]. Much of the
discussion and thoughts of that time on the quantum optical aspects of radiation
pressure can be found in the collection of conference contributions in Ref. [16]. A
particularly important development of that time was that methods were conceived
to circumvent the standard quantum limit, which gave rise to the concepts of back-
action evading or quantum non-demolition (QND) measurements [17]. The QND
concept now plays a key role throughout all of quantum optics. Both the standard
quantum limit and the concept of QND measurement were developed by V. B. Bra-
ginsky [18] and undoubtedly Braginsky is the father of optomechanics. His book
‘Quantum measurement’ [19] has perhaps had the strongest influence on the field
and despite being published in 1995 ‘Quantum measurement’ still serves to describe
many of optomechanics’ main current research directions.

Another line of research that contributed to the birth of quantum optomechanics
is nonlinear optics. The field of nonlinear optics is primarily concerned with the de-
velopment and study of materials or systems that permit an optical field to interact
with itself or other optical fields. In most cases the influence of light on a material
is very weak and it is challenging to find a system that exhibits a sufficiently strong
non-linearity to allow light-light interaction at low optical intensities. An optome-
chanical cavity, due to its length dependence on the optical intracavity intensity,
has now become a prime example of a nonlinear optical system. For a fixed laser
frequency incident upon an optomechanical cavity, the amount of light entering the
cavity depends upon the cavity length, and in turn the cavity length depends upon
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1.1 Optomechanics and Radiation Pressure

the optical intensity. This type of radiation pressure induced (Kerr) nonlinearity was
observed in an early and elegant experiment by Dorsel and colleagues [20]. In their
experiment a laser field with a fixed frequency was incident upon a Fabry-Pérot
cavity with one large rigid mirror and a smaller low mass suspended mirror. By
slowly scanning the incident optical intensity initially from a low power to a higher
power and then back down, Dorsel et al. observed a sudden jump in the transmitted
intensity with a hysteresis cycle that demonstrated bistability in the optomechan-
ical system – a characteristic feature of Kerr media. Following this experiment it
was considered by Mancini and Tombesi [21] and Fabre et al. [22] that for inci-
dent intensity levels close to bistability the nonlinearity can be utilised to squeeze
the quantum fluctuations of the optical field. Such ponderomotive squeezing, i.e.
optical squeezing resulting from a radiation pressure interaction, was recently ex-
perimentally observed with an optomechanical system of trapped cold atoms inside
an optical cavity [23, 24, 25]. A potential application of such ponderomotive squeez-
ing is that it can provide low frequency squeezing (below 1 kHz) with a spectrum
well suited for injection into gravitational wave detectors [26, 27, 28].

In present day quantum optomechanics, research focus has broadened and con-
siderable efforts are now made towards the preparation of non-classical motion of
the mechanical element itself. Many of the quantum-state-engineering techniques
now being employed build upon methods previously developed in cavity quantum
electrodynamics [29], spin ensemble [30], trapped ion [31], and quantum optical ex-
periments [32]. However, there are directions in quantum optomechanics that are
distinctly different from established quantum optics research programs. An early
notable theoretical proposal for quantum state preparation of mechanical motion
using a quantum state of light and radiation pressure is that by Bose, Jacobs, and
Knight [33, 34], where an optical field inside an optomechanical cavity is prepared
in a quantum superposition of the vacuum and a single photon. The radiation pres-
sure interaction between this non-classical optical field and the mechanical resonator
generates a light-mechanical resonator ‘Schrödinger’s-cat-like’ entangled state, which
can be used to investigate mechanisms of quantum decoherence. Another notable
work is that by Mancini, Manko, and Tombesi [35] who also considered preparing
‘Schrödinger’s-cat-like’ states between light and the motion of a mechanical element.
Building upon these ideas Marshall et al. [36] and Armour et al. [37] developed
schemes to probe such entanglement in optomechanics and electromechanics, re-
spectively. Experiments that realize these proposals will be able to probe so called
‘collapse models’ of the wavefunction [38, 39, 40, 41] that consider modifications
to quantum dynamics for macroscopic systems that result in a degradation of large
spatial superposition states. Other notable works include schemes for teleportation
from an optical field to mechanical motion [42] and entanglement between two me-
chanical elements [43, 44, 45]. Recently the author, together with colleagues M.
Aspelmeyer and M. S. Kim, proposed a technique to allow manipulation of mechan-
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1 Introduction

ical motion at the single phonon level that can be used for arbitrary quantum state
preparation and quantum information applications [46]. At the time of writing this
thesis it is certainly an exciting time in the field of quantum optomechanics. The first
signs of quantum motion of mechanical resonators have been observed [47, 48, 49]
and there are still numerous intriguing questions to answer both theoretically and
experimentally.

1.1.2 The Cavity Optomechanical System

A cavity optomechanical system is shown schematically in Fig. 1.1. The system
consists of a large rigid mirror and a smaller mechanically compliant mirror that is
able to move under the influence of radiation pressure. Such a deformable Fabry-
Pérot cavity is a common configuration for optomechanics experiments and also
serves to provide a conceptually simple picture to understand and model most cavity
optomechanical systems. In this thesis, and in the majority of cavity optomechanical
schemes, just a single optical longitudinal mode of the cavity, here described by field
operator a where [a, a†] = 1, is excited. The cavity has a mean length L and hence a
mean resonance frequency 〈ωc〉 = πcn/L, where n is the longitudinal mode number.
The cavity is driven by an external field in a coherent state, which may be detuned
from the cavity resonance frequency, through the larger rigid cavity mirror. This
mirror has a lower reflectivity than the mechanical mirror that allows the light to
enter and exit through this mirror with minimal transmission through the mechanical
mirror, i.e. the cavity is ‘single-sided’. The mechanical mirror is harmonically bound
with angular frequency ωM . An important property of the mechanical oscillator is
its quality factor Q = ωM/γM , where γM is the mechanical amplitude decay rate.
When the mechanical oscillator moves away from the equilibrium position xM = 0
this causes a time-dependent modulation to the cavity resonance frequency, i.e.

ωc(xM ) =
πcn

L

1
1 + xM/L

' 〈ωc〉(1− xM/L). (1.1)

This expression is a convenient point to determine the quantized Hamiltonian for
the optomechanical system. The form of the optomechanical Hamiltonian has been
known in the quantum optics community for quite some time and an early pub-
lication that explicitly utilizes the Hamiltonian is the work by Pace, Collett, and
Walls [50]. A more rigorous analysis and derivation of the optomechanical Hamilto-
nian can be found in the work of Law [51]. First the mechanical position is quantized,
i.e

〈ωc〉(1− xM/L)→ 〈ωc〉
(

1− x0

L
(b+ b†)

)
, (1.2)

where the mechanical field operator b with commutation relation [b, b†] = 1 has been
introduced to describe the center of mass motion; x0 =

√
~/2mωM is the standard

8



1.1 Optomechanics and Radiation Pressure

deviation of the mechanical ground-state width; and m is the mechanical effective
mass. To arrive at the full Hamiltonian we then consider the sum of the mechanical
energy, the mechanical position dependent energy of the intracavity optical field,
and the external drive. In a frame rotating at the drive frequency the Hamiltonian
is then

H

~
= ωMb

†b+ ∆a†a− g0a†a(b+ b†) + iE(a† − a), (1.3)

where ∆ is the detuning between the external drive and the mean cavity resonance
frequency and E quantifies the drive strength where the phase of the drive was chosen
to give a real intracavity amplitude. An important parameter introduced here is the
optomechanical coupling rate g0 = 〈ωc〉x0/L, which quantifies the rate at which the
mechanical oscillator is displaced per photon, and concurrently, the rate at which
the light accumulates a phase shift for a given mechanical displacement.

Figure 1.1: Schematic for a cavity optomechanical system. The mechanical oscil-
lator, which forms one end mirror of a Fabry-Pérot cavity with mean
length L, is described by field operator b, elongates the cavity by dis-
placement xM , and has an amplitude decay rate γM . The intracavity
field is described by field operator a and has an amplitude decay rate of
κ.

1.1.3 System Dynamics

Before proceeding to discuss the equations of motion that describe the dynamics and
stochastic processes of such an optomechanical system it is instructive to connect
the above Hamiltonian description to the classical radiation pressure force described
in section 1.1. Applying Hamilton’s equations to the interaction term the force is

F = −∂Hint

∂x
=

~〈ωc〉a†a
L

. (1.4)

As the optical power inside the cavity is enhanced in proportion to the cavity finesse
F = πc/2Lκ, where κ is the optical amplitude decay rate, the force is then written
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1 Introduction

as

F =
2~〈ωc〉a†aFκ

πc
=

2Pcav

c
, (1.5)

where the intracavity power Pcav has been introduced.
Returning now to the quantised Hamiltonian (1.3) we can write the stochastic

differential equations of motion that describe the time evolution of the optical field
inside the cavity and the mechanical field operator, i.e. the Langevin equations

da
dt

= −i
(

∆− g0(b+ b†)
)
a+ E − κa+

√
2κain,

db
dt

= −iωMb+ ig0a
†a− γMb+

√
2γMbin,

(1.6)

where the noise operators ain and bin have been introduced. These noise operators
describe any classical, e.g. thermal, noise if present and the ubiquitous quantum
noise that is present in all quantum systems and is responsible to maintain the
commutation relations. (An excellent text that greatly assisted the research in this
thesis is Quantum Noise by Gardiner and Zoller [52].) Firstly, it should be noted
that these are coupled equations, i.e. a depends on b and vice-versa, and secondly,
the equation for a is non-linear, i.e. the optical dynamics depend upon the optical
intensity and not the amplitude. For these two reasons, most works in the field
of optomechanics linearise these equations, see Refs. [53, 54] and chapters 5, 6, 2,
and 3, for more detail. By contrast, in chapter 8 this linearisation approximation
is not made and the optical non-linearity is exploited to yield a route for a strong
measurement of the mechanical position squared.

The mechanical resonator when in thermal equilibrium with its surrounding en-
vironment at temperature T has a mean thermal occupation described by Bose
statistics

n̄ =
1

exp(~ωM/kBT )− 1
' kBT

~ωM
, (1.7)

where the approximation made on the right is accurate for large thermal occupation,
i.e. n̄� 1. It should also be noted that a particular form of mechanical bath coupling
is assumed in (1.6) where the noise affects the position and momentum equally. The
noise has zero mean, i.e. 〈bin〉 = 〈b†in〉 = 0 and for high Q mechanical oscillators it
is delta correlated, i.e. the noise is white

〈
b†in(t)bin(t′)

〉
= n̄δ(t− t′) and

〈
bin(t)b†in(t′)

〉
= (n̄+ 1)δ(t− t′). (1.8)

Similarly, the optical input vacuum noise has zero mean and is delta correlated,
however, has zero thermal occupation so 〈a†in(t)ain(t′)〉 = 0 and 〈ain(t)a†in(t′)〉 =
δ(t− t′).
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1.2 This Thesis

Finally, to obtain the output optical field as it decays out of the cavity, as is
required to determine the field at an external detector, one applies the input-output
relation

aout =
√

2κa− ain. (1.9)

While the system and dynamics may be concisely summarized in these two sub-
sections all the diversity and richness of the field of optomechanics stems from these
equations and small variations thereof.

1.2 This Thesis

To summarize the direction of this research with a single sentence: This thesis
worked, both experimentally and theoretically, towards the preparation and state
reconstruction of non-classical motional states of a macroscopic mechanical resonator
to experimentally investigate quantum decoherence, develop quantum information
and quantum-physics-enhanced sensing technologies, and ultimately experimentally
probe potential quantum gravitational phenomena.

In the first two years of this research, from the beginning of 2008, we focussed on a
continuous interaction between the optical field and the mechanical element. During
this period we further developed cooling of mechanical motion by simultaneously
employing cryogenic and laser cooling techniques, see chapter 2. Furthermore, by
using large amplitude optical driving fields we were able to observe normal-mode
splitting between the intracavity field and the harmonic mechanical motion. These
experimental efforts built upon prior work performed by Gigan, Böhm, et al. [55]
and many of the technical details are outlined in Hannes Böhm’s thesis [56]. For
further details and discussion, in particular on the improvements to the mechanical
resonators and the optical setup used for the cooling and strong coupling, see the
thesis of Simon Gröblacher [57].

Monitoring the position of a mechanical resonator continuously is fundamentally
limited to a measurement precision set by the standard quantum limit. This limit to
the precision of position read-out needs to be surpassed in order to resolve features
in the mechanical position probability distribution smaller than the ground state
extension, which is important for quantum state reconstruction. An experimental
technique able to perform quantum state reconstruction of the mechanical motional
state is yet to be realized and developing such a technique was a primary goal of
this thesis. To this end, in late 2008 we considered a pulsed optomechanical inter-
action of duration much shorter than a mechanical period to surpass the standard
quantum limit. Such an interaction was first considered in the seminal works by
Braginsky [58, 19] for an improved force detection scheme. We utilized the pulsed
interactions to develop a fully quantum mechanical protocol for the preparation of
squeezed states of motion via measurement and, importantly, for quantum state
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1 Introduction

tomography by measurement of all the mechanical quadratures. In this theoreti-
cal proposal, discussed in chapter 6, we use an initial pulse for mechanical state
preparation and then a second pulse made at a later time for mechanical state
reconstruction. Prior to this proposal being published we began implementing this
technique in the laboratory and a proof-of-concept experiment, using a relatively low
frequency mechanical cantilever, was completed at the end of 2012. Details of this
experiment are provided in chapter 7. This theoretical proposal and experimental
implementation form the primary project of this thesis.

In parallel to work on the experiment, further exploration down this path with
short optical pulses led to novel schemes to prepare quantum states of motion of
the mechanical element. In particular, chapter 8 discusses a scheme to perform a
measurement of the square of the mechanical position, which can be used to generate
position superposition states via measurement. Other techniques using a dispersive
interaction were known at the time to perform such measurements, however, the
approach offered here provides a significantly stronger measurement strength and
is therefore considerably more feasible to implement experimentally. Furthermore,
the mechanical state tomography mentioned above can be readily implemented in
this scheme and thus a complete framework for quantum state preparation and
reconstruction can be implemented.

Using a pulsed approach not only has the advantage that the standard quantum
limit can be surpassed it also allows one to consider various protocols involving more
than one pulse in time. Our first idea in this direction was to use a sequence of four
optomechanical interactions separated by quarter periods of mechanical motion to
probe the canonical commutator between the mechanical position and momentum,
see chapter 9. Our primary motivation to experimentally investigate the mechani-
cal commutation relation is that numerous models of quantum gravity predict the
existence of a minimum length, of order of the Planck length, and thus a modifica-
tion to the Heisenberg uncertainty relation. By inferring the value of the canonical
commutator using this four pulsed scheme one may then, given an experimental pre-
cision, detect or place limits on such a potential quantum gravitational modification
to regular quantum mechanics. The other idea in this direction was to again use
a sequence of four optomechanical interactions, however, displace the optical field
between the interactions in a closed loop in phase space. In this manner the mechan-
ical oscillator gains a state dependent phase shift and can be used for unconditional
quantum state preparation, see chapter 10.

There is a third regime for the optomechanical interaction time-scale that is be-
tween the continuous interaction, which looks at the steady-state of the system,
and the short pulsed case, which probes and manipulates the mechanical dynam-
ics. This third case uses optical pulses that are much longer than the mechanical
period, which allows optical sidebands to be generated due to the modulation from
the mechanical motion but can still be used in multi-pulse time-based protocols. In
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1.2 This Thesis

mid 2008 we conceived a scheme that uses single photon detection on the optical
sidebands to perform phonon addition or subtraction. Later we further developed
this to allow for a controllable coherent superposition of these two operations and
used this to form a continuous-variable quantum state orthogonalizer that may have
future applications in quantum information and quantum state engineering. See
chapter 5 for details. These three regimes of interaction time-scales are compared
in the section below.

1.2.1 Three Temporal Interaction Regimes

To clarify and contrast the three temporal interaction regimes interactions explored
in this thesis, Fig. 1.2 provides a comparison.

Continuous

Light:

Mechanics:

PulsedLong Pulsed

Figure 1.2: The three temporal interaction regimes explored in this thesis. In order
of increasing interaction time τ (left to right) there is the continuous
regime, the long pulsed regime, and the pulsed regime, respectively. The
optical drive amplitude is compared to the mechanical oscillation period.
In the continuous regime the interaction occurs for many mechanical
periods and the steady state is analyzed. In the long pulsed interaction
regime the optomechanical interaction again proceeds for many periods,
so that the optical sidebands are generated by the modulation provided
by the motion of the mechanics, however, the light may be switched
on and off so that the state of the mechanics immediately after the
interaction can be analyzed. In the pulsed regime the interaction is
much faster than a mechanical period and the mechanical position is
essentially a constant during the interaction. No optical sidebands are
produced in this regime.
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1 Introduction

As will be detailed in the publications included in the chapters below, in the
continuous and long pulsed regime one typically detunes the optical drive by one
mechanical frequency away from cavity resonance. Provided that the cavity am-
plitude decay rate κ is much smaller than the mechanical frequency ωM the drive
then creates a sideband at the cavity resonance frequency only, i.e. the sideband at
2ωM away from resonance is suppressed and the situation is accurately described
using a rotating-wave-approximation. In this regime, when the incident drive has a
frequency lower than the cavity resonance an optomechanical beam-splitter interac-
tion occurs, i.e. Hint ∝ ab† + a†b, and when the drive has a higher frequency the
two-mode-squeezing interaction occurs, i.e. Hint ∝ ab+ a†b†.

By contrast, in the pulsed regime, as there is no interplay between mechanical
evolution and the radiation pressure interaction, regardless of the detuning the in-
teraction is always Hint ∝ a†aXM , which may be linearised to Hint ∝ XLXM , where
XL describes the optical amplitude quadrature.

1.2.2 List of Publications

The following is a list of publications in chronological order resulting from the re-
search performed during this thesis. A complete list of publications by the author
may be found in the curriculum vitae provided at the end of this thesis.

1. Demonstration of an ultracold micro-optomechanical oscillator in a
cryogenic cavity
Simon Gröblacher, Jared B. Hertzberg, Michael R. Vanner, Garrett D. Cole,
Sylvain Gigan, Keith C. Schwab, and Markus Aspelmeyer
Nature Physics 5, 485 (2009)

2. Observation of strong coupling between a micromechanical resonator
and an optical cavity field
Simon Gröblacher, Klemens Hammerer, Michael R. Vanner, and Markus
Aspelmeyer
Nature 460, 724 (2009)

3. Phonon-tunnelling dissipation in mechanical resonators
Garrett D. Cole, Ignacio Wilson-Rae, Katharina Werbach, Michael R. Van-
ner, and Markus Aspelmeyer
Nature Communications 2, 231 (2011)

4. Pulsed Quantum Optomechanics
M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, C. Brukner, K. Hammerer,
G. J. Milburn, and M. Aspelmeyer
Proc. Natl. Acad. Sci. USA 108, 16182 (2011)
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5. Selective Linear or Quadratic Optomechanical Coupling via Mea-
surement
Michael R. Vanner
Phys. Rev. X 1, 021011 (2011)

6. Probing Planck-scale physics with quantum optics
Igor Pikovski, Michael R. Vanner, Markus Aspelmeyer, Myungshik Kim,
and Caslav Brukner
Nature Physics 8, 393 (2012)

7. Quantum State Orthogonalization and a Toolset for Quantum Op-
tomechanical Phonon Control
M. R. Vanner, M. Aspelmeyer, and M. S. Kim
Phys. Rev. Lett. 110, 010504 (2013)

8. Quantum state preparation of a mechanical resonator using an op-
tomechanical geometric phase
K. E. Khosla, M. R. Vanner, W. P. Bowen, and G. J. Milburn
New J. Phys. 15, 043025 (2013)

9. Cooling-by-measurement and mechanical state tomography via pulsed
optomechanics
M. R. Vanner, J. Hofer, G. D. Cole, and M. Aspelmeyer
Nature Communications 4, 2295 (2013)

1.2.3 How This Thesis May Be Read

After reading this introduction there are various ways to navigate the following chap-
ters. Each subsequent chapter in this cumulative dissertation provides a project syn-
opsis and the published journal article. Each chapter could be read independently,
however, in Fig. 1.3 a reading guide is given, as some chapters build upon and follow
naturally from earlier chapters.

Although not shown in Fig. 1.3 there are, of course, connections between all of
the three temporal interaction regimes; ‘Continuous’, ‘Long Pulsed’, and ‘Pulsed’,
and it has been insightful to compare these three regimes, which is discussed in the
publications in chapters 5, 6 and 7.
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1 Introduction

1. Introduction

2. Sideband Cooling

Continuous Pulsed

Long Pulsed

5. Quantum Optomechanical
    Phonon Control

3. Strong Coupling

4. Geometry Dependent
    Mechanical Damping

6. Pulsed Quantum
    Optomechanics

7. Experimental Pulsed
    Quantum Optomechanics

8. Strong Displacement
    Squared Measurement

9. Probing the Planck-Scale

10. Optically Induced
       Mechanical Non-Linearity

Figure 1.3: How this thesis may be read. Lines with arrows indicate recommended
routes. The three temporal interaction regimes; ‘Continuous’, ‘Long
Pulsed’, and ‘Pulsed’ are shown from left to right, respectively, where the
optomechanical interaction time-scale τ is compared to the mechanical
period of motion 2π/ωM .
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2 Sideband Cooling of Mechanical
Motion

For quantum state preparation of the motion of a mechanical oscillator it is impor-
tant that the oscillator have a low entropy initial state so that any non-classical
motion is not ‘washed away’ by the thermal or incoherent contribution. To this end,
a significant amount of research is spent on developing and improving techniques to
cool the motion to low thermal occupation.

Sideband or laser cooling is now a well established approach to achieve such low
entropy states and has been successfully demonstrated in a number of physical sys-
tems. The approach is implemented by injecting electromagnetic radiation with a
detuning below the cavity resonance frequency so that the radiation scattered by the
motion of the mechanical system is preferentially scattered into a higher frequency
sideband. Scattering radiation into a higher frequency mode requires energy, which
in this case, is obtained from the mechanical motion itself due to conservation of
momentum. Experimentally such cooling will be seen as an increase in the me-
chanical damping and importantly a reduced noise power, i.e. the integral over all
frequency components of the noise power spectrum. For a narrow linewidth cav-
ity, i.e. κ � ωM the optimum detuning is approximately equal to the mechanical
frequency and we can then understand this type of cooling as a result of the beam-
splitter interaction resulting in a partial state transfer from the low entropy optical
field onto the mechanical resonator.

This technique was first experimentally demonstrated by Braginsky in 1970 [59]
to cool the motion of a mechanical oscillator and it is closely related to the in-
dependently studied cooling of the motion of trapped ions [60]. Following these
experiments, modern cavity optomechanics based laser cooling experiments were
initiated by Refs. [61, 55, 62].

The contribution covered in this thesis [63] combined a number of technical im-
provements that resulted in cooling a MHz scale mechanical resonator to a final
thermal occupation of n̄ ' 30, which set the state-of-the-art at the time. We im-
plemented a two-field experiment with a weak ‘signal’ kept on resonance with the
cavity for mechanical position monitoring via optical homodyne interferometry and
a stronger ‘cooling’ field with an intensity and detuning that could be controlled
independently from the signal field. A second improvement was to employ high me-
chanical Q oscillators comprising a thin mechanically compliant silicon-nitride base
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2 Sideband Cooling of Mechanical Motion

with a high reflectivity dielectric mirror. My specific contributions to this inter-
disciplinary team project were: align and optimize the homodyne interferometers;
develop the calibration procedure; work together on the experimental runs for data
collection; and write the software for and together complete the data analysis.

After this work performed in 2008/2009, the thermal ground state, i.e. n̄ <
1, has now quite recently been observed in both electro-mechanical [47, 64] and
opto-mechanical [65] systems, marking a convenient starting point for experiments
towards the observation of non-classical mechanical motion.
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Demonstration of an ultracold micro-
optomechanical oscillator in a cryogenic cavity
Simon Gröblacher1,2, Jared B. Hertzberg3,4, Michael R. Vanner1,2, Garrett D. Cole1,5, Sylvain Gigan6,
K. C. Schwab3* andMarkus Aspelmeyer1†

Preparing and manipulating quantum states of mechanical
resonators is a highly interdisciplinary undertaking that now
receives enormous interest for its far-reaching potential in
fundamental and applied science1,2. Up to now, only nanoscale
mechanical devices achieved operation close to the quantum
regime3,4. We report a new micro-optomechanical resonator
that is laser cooled to a level of 30 thermal quanta. This is
equivalent to the best nanomechanical devices, however, with
a mass more than four orders of magnitude larger (43 ng
versus 1 pg) and at more than two orders of magnitude higher
environment temperature (5K versus 30mK). Despite the
large laser-added cooling factor of 4,000 and the cryogenic
environment, our cooling performance is not limited by
residual absorption effects. These results pave the way for
the preparation of 100-µm scale objects in the quantum
regime. Possible applications range from quantum-limited
optomechanical sensing devices to macroscopic tests of
quantum physics5,6.

Recently, the combination of high-finesse optical cavities
with mechanical resonators has opened up new possibilities for
preparing and detecting mechanical systems close to—and even
in—the quantum regime by using well-established methods of
quantum optics. Most prominently, the mechanism of efficient
laser cooling has been demonstrated7–13 and has been shown to be
capable, in principle, of reaching the quantum ground state14–16.
A particularly intriguing feature of this approach is that it can be
applied to mechanical objects of almost arbitrary size, from the
nanoscale in microwave strip-line cavities13 up to the centimetre
scale in gravitational-wave interferometers11. In addition, whereas
quantum-limited readout is still a challenging development step
for non-optical schemes3,17,18, optical readout techniques at the
quantum limit are readily available19.

Approaching and eventually entering the quantum regime
of mechanical resonators through optomechanical interactions
essentially requires the following three conditions to be fulfilled:
(1) sideband-resolved operation; that is, the cavity amplitude decay
rate κ has to be small with respect to the mechanical frequency
ωm; (2) both ultralow noise and low absorption of the optical
cavity field (phase noise at the mechanical frequency can act as a
finite-temperature thermal reservoir and absorption can increase
themode temperature and even diminish the cavity performance in
the case of superconducting cavities); and (3) sufficiently small cou-
pling of the mechanical resonator to the thermal environment; that

1Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria, 2Faculty of
Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria, 3Department of Physics, Cornell University, Ithaca, New York 14853, USA,
4Department of Physics, University of Maryland, College Park, Maryland 20742, USA, 5The Center for Micro- and Nanostructures (ZMNS), Vienna
University of Technology, Floragasse 7, A-1040 Vienna, Austria, 6Laboratoire Photon et Matière, Ecole Superieure de Physique et de Chimie Industrielles,
CNRS-UPRA0005, 10 rue Vauquelin, 75005 Paris, France. *Permanent address: Department of Applied Physics, Caltech, Pasadena, California 91125, USA.
†e-mail: markus.aspelmeyer@quantum.at.

is, low environment temperature T and large mechanical quality
factor Q (the thermal coupling rate is given by kBT/~Q, where kB
is the Boltzmann constant and ~ is the reduced Planck constant).
So far, no experiment has demonstrated all three requirements
simultaneously. Criterion (1) has been achieved10,13,20; however, the
performancewas limited in one case by laser phase noise10 and in the
other cases by absorption in the cavity13,20. Other, independent, exp-
eriments have implemented only criterion (2)11,12,19,21. Finally, cri-
terion (3) has been realized in several cryogenic experiments4,13,21,22,
however not in combination with both (1) and (2).

We have designed a novel micro-optomechanical device that
enables us to meet all requirements at the same time. Specifically,
we have fabricated a Si3N4 micromechanical resonator that carries a
high-reflectivity, ultralow-loss Bragg mirror (Fig. 1a), which serves
as the end mirror of a Fabry–Pérot cavity. We designed the
system to exhibit a fundamental mechanical mode at relatively high
frequency (of the order of 1MHz; Fig. 1b) such that sideband-
resolved operation (criterion (1)) can be achieved already with a
medium-finesse cavity. Criterion (2) can first be fulfilled because
our solid-state pump laser used for optical cooling exhibits low
phase noise (laser linewidth below 1 kHz). Second, absorption in
the Bragg mirror is sufficiently low to prevent residual heating in
the mechanical structure. Absorption levels as low as 10−6 have
been reported for similar Braggmirrors23 and recent measurements
suggest even lower values of 4× 10−7 for the specific coatings
used in this experiment (R. Lalezari, private communication). In
addition, although absorption in Si3N4 is comparable to silicon,
the transmission mismatch of the two cavity mirrors (∼10:1)
and the resulting low transmission through the Bragg mirror
prevents residual heating of the resonator as has been observed
for cryogenically cooled silicon cantilevers24. Finally, criterion
(3) requires low temperature and high mechanical quality. The
mechanical properties of our design are dominated by the Si3N4,
which is known to exhibit superior performance in particular at low
temperatures, where Q-factors beyond 106 have been observed at
millikelvin temperatures25.

We operate our device, a 100 µm× 50 µm× 1 µm microres-
onator, in a cryogenic 4He environment at 10−7 mbar and in direct
contact with the cryostat cold finger. To measure the mechanical
displacement, the frequency of a 7 µW continuous-wave Nd:YAG
laser is locked close to resonance of the cryogenic Fabry–Pérot
cavity (length L≈ 25mm), which consists of a fixed macroscopic
mirror and the moving micromechanical mirror. The optical
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Figure 1 |High-quality micro-optomechanical resonator. a, Scanning electron micrograph of the basic mechanical system, which is formed by a doubly
clamped Si3N4 beam. A circular, high-reflectivity Bragg mirror is used as the end mirror of a Fabry–Pérot cavity. The Bragg mirror is made of
low-absorption, alternating dielectric stacks of Ta2O5/SiO2. The magnified section in the inset shows the stacking sequence. b, Micromechanical
displacement spectra shown as noise power spectra of the readout-beam phase quadrature for a locked and an unlocked cavity. The fundamental mode at
ωm= 2π×945 kHz and all higher mechanical modes are identified by finite element simulation. For the cases that involve large Bragg mirror
displacements, we provide the simulated mode profile.

cavity of finesse F ≈ 3,900 achieves moderate sideband resolution
(κ ≈ 0.8ωm), which in principle would allow cooling to a final
occupation number 〈n〉min= (κ2/4ω2

m)≈ 0.16, that is, well into the
quantum ground state14,15. The experimentally achievable tempera-
ture is obtained as the equilibrium state of two competing processes,
namely the laser cooling rate and the coupling rate to the thermal
(cryogenic) environment. In essence, laser cooling is driven (in the
ideal resolved-sideband limit and at detuning ∆= ωm) at a rate
Γ ≈ G2/(2κ) (G is the effective optomechanical coupling rate, as
defined in ref. 16), whereas mechanical relaxation to the thermal
environment at temperature T takes place at a rate (kBT/~Q). The
final achievable mechanical occupation number is therefore, to first
order, given by nf≈ (1/Γ )×(kBT/~Q). Amore accurate derivation
taking into account effects of non-ideal sideband resolution can be
found, for example, in refs 14–16, 26. Our experimental parameters
limit the minimum achievable mode temperature to approximately
1mK (nf ≈ 30). The fact that we can observe this value in the
experiment (see below) shows that other residual heating effects
are negligible. The micromechanical flexural motion modulates
the cavity-field phase quadrature, which is measured by optical
homodyning. ForQ� 1 its noise power spectrum (NPS) is a direct
measure of themechanical position spectrum Sq(ω), as described in
ref. 16. We observe a minimum noise floor of 2.6×10−17 mHz−0.5,
which is a factor of 4 above the achievable quantum (shot-noise)
limit, when taking into account the finite cavity linewidth, the cavity
losses and the non-perfect mode-matching, and due to the residual
amplitude noise of the pump laser at the sideband frequency of
our mechanical mode. We observe the fundamental mechanical
mode at ωm= 2π×945 kHz with an effective mass meff= 43±2 ng
and a quality factor Q ≈ 30,000 at 5.3 K (Q ≈ 5,000 at 300K).
These values are consistent with independent estimates based on
finite-element method simulations yieldingωm=2π×945 kHz and
meff=53±5 ng (see Supplementary Information).

Optomechanical laser cooling requires driving of the cavity
with a red-detuned (that is, off-resonant), optical field6–13. We
achieve this by coupling a second laser beam—detuned by ∆ in
frequency but orthogonal in polarization—into the same spatial
cavity mode (Fig. 2a). Birefringence of the cavity material leads to
both an optical path length difference for the two cavity modes
(resulting in an 800 kHz frequency difference of the cavity peak

positions) and a polarization rotation of the outgoing fields. We
compensate both effects by an offset in∆ and by extra linear optical
phase retarders, respectively. A change in detuning ∆ modifies
the mechanical rigidity and results in both an optical spring effect
(ωeff(∆)) and damping (γeff(∆)), which is directly extracted by
fitting the NPS using the expressions from ref. 16. Figure 2b shows
the predicted behaviour for several powers of the red-detuned
beam. The low-power curve at 140 µWis used to determine both the
effective mass of the mechanical mode, meff, and the cavity finesse,
F . For higher powers and detunings closer to cavity resonance, the
onset of cavity instability prevents a stable lock (see, for example,
ref. 16). All experimental data are in agreement with theory and
hence in accordancewith pure radiation-pressure effects15.

The effective mode temperature is obtained through the
equipartition theorem. For our experimental parameter regime,
Q � 1 and 〈n〉 � 0.5, the integrated NPS is also a direct
measure of the mean mechanical mode energy and hence, through
the equipartition theorem, of its effective temperature through
Teff= (meff ω

2
eff/kB)

∫
+∞

−∞
NPS(ω) dω. Note that, for the case of strong

optomechanical coupling, normal-mode splitting can occur and has
to be taken into account when evaluating the mode temperature27.
In our present case, this effect is negligible because of the large
cavity decay rate κ . The amplitude of the NPS is calibrated by
comparing the mechanical NPS with the NPS of a known frequency
modulation applied to the laser (see, for example, ref. 28). For a
cold-finger temperature of 5.3 K, we obtain a mode temperature
T = 2.3K, which is consistent with an expected moderate cooling
due to slightly off-resonant locking of the Fabry–Pérot cavity (by
less than 3% of the cavity intensity linewidth). The locking point
is deliberately chosen to be on the cooling side to avoid unwanted
parametric mechanical instabilities. The mean thermal occupancy
was calculated according to 〈n〉 = kBTeff/~ωeff. We note, however,
that Bose–Einstein statistics will have a dominant role as one
approaches the quantum ground state.

Figure 3a showsmechanical noise power spectrawith the cooling
beam switched off and with maximum cooling beam pump power
at 7mW. For a detuning ∆ ≈ ωm, we demonstrate laser cooling
to a mean thermal occupation of 32± 4 quanta, which is more
than 2 orders of magnitude lower than previously reported values
for optomechanical devices10 and is comparable to the lowest
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Figure 2 | Experimental set-up and characterization of optomechanical radiation-pressure interaction. a, The laser is split at a polarizing beamsplitter
(PBS) into a weak locking field (red) tuned near cavity resonance ωc and the cooling field (blue) tuned off-resonant with an acousto-optical modulator
(AOM) to ωc+∆≈ωc−ωm. An electro-optical modulator (EOM) in the weak field is used to generate a Pound–Drever–Hall error signal for cavity locking.
The beams are recombined on a PBS into the same spatial mode at orthogonal polarization before they enter the cavity comprising an input mirror (IM)
and the micro-mechanical mirror. The phase quadrature of the locking beam is measured in a homodyne detection scheme (BS: beamsplitter; LO: local
oscillator; Φ: local oscillator phase; SA: spectrum analyser). Φ is stabilized in a separate proportional–integral–derivative controller (PID). A combination
of a Faraday rotator (FR) and a half-wave plate (λ/2) separates the reflected from the original signal. b, The effective frequency ωeff and damping γeff of the
micro-mechanical motion for different detuning and power settings. All power levels follow the theoretical predictions for pure radiation-pressure interac-
tion. The symbols are experimental data, and the solid lines are simulations based on ref. 16. The inset shows the data set taken at 140 µW optical power.
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Figure 3 |Optomechanical laser cooling inside a cryogenic cavity. a, Calibrated noise power spectra for the fundamental mechanical mode at 5.3 K
environmental temperature with small cavity cooling (top) and at maximum cooling (bottom). The thermal energy is reduced from≈53,000 quanta at
7 µW laser power to 32±4 quanta at 7 mW. The vertical axes in both plots are logarithmic. The change in the technical noise floor is due to different
locking levels of the local oscillator phase Φ in the homodyne detection. b, Plot of the calibrated effective temperature Teff versus the observed damping
γeff for various power and detuning values of the cooling beam. No deviations from the theoretically expected power-law dependence (red solid line) can
be observed. The inset shows the mean thermal occupation 〈n〉 as a function of detuning for maximal laser power. Cavity instability prevents detunings
arbitrarily close to resonance. The red solid curve is a simulation based on ref. 16 that uses only experimentally obtained parameters.

reported temperature of 25 quanta for nano-electromechanical
systems4 (NEMS). In contrast to previous experiments10,13, the
achieved cooling performance is not limited by optical absorption
or residual phase noise, but follows exactly the theoretically
predicted behaviour (Fig. 3b). This agrees with the expected device

performance: a fraction of approximately 10−6 of the intra-cavity
power is absorbed by the Bragg mirror (∼13 µW at maximum
cooling) and a maximum of 1% of the transmitted power is
absorbed by the Si3N4 beam29 (∼14 µW at maximum cooling and
taking into account the impedancemismatch of the cavity mirrors).
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The cryogenic cooling power of the cryostat used is orders of
magnitude larger than the maximum heat load expected on the
micromechanical structures. The absence of absorption can also
be seen from the inferred mode temperature Teff, which decreases
with the mechanical damping rate γeff in strict accordance with the
power law Teff ∝ γ

−1
eff . This relation follows immediately from the

simple expression for the mechanical occupation nf given above
(nf ∝Γ−1) and from the fact that the laser cooling rate Γ is to first
approximation equivalent to the effective mechanical damping γeff,
at least for all data points of our experiment. Both heating and the
onset of normal-mode splitting for strong coupling27 would result
in a deviation of this behaviour.

The remaining obstacle that prohibits us from reaching the
quantum ground state is the intrinsic phonon coupling to the
thermal environment at rate kBT/~Q≈ 1.4×107 Hz. By reducing
the reservoir temperature to that of NEMS experiments (20mK),
this coupling will significantly reduce, not only owing to the
lower bath temperature but also because Si3N4 resonators markedly
improve in mechanical Q with decreasing temperature. For
example, thermal heating rates as low as 3× 103 Hz have been
observed for Si3N4 at 300mK (ref. 25), which would place our
effective mode temperature already well into the quantum ground
state using otherwise unchanged parameters.

In summary, we have demonstrated optical cooling of the
fundamental mode of a 100 µm scale mechanical resonator in
a cryogenic cavity to a thermal occupation of only 32 ± 4
quanta. This is comparable to the performance of state-of-the-
art NEMS devices. In contrast to previous approaches, the large
laser cooling rates attained are no longer limited by residual
absorption or phase-noise effects. This is achieved by a new micro-
optomechanical resonator design with exceptionally low intrinsic
optical absorption and both high optical and mechanical quality.
This leaves the reduction of the thermal coupling, for example, by
further decreasing the environment temperature to those available
in conventional 3He cryostats, as the only remaining hurdle to
prepare themechanical quantumground state. Our approach hence
establishes a feasible route towards the quantum regime of massive
micromechanical systems.

Methods
Micro-mirror fabrication. Ourmicro-mechanical oscillator is made of 1-µm-thick
low-stress Si3N4 deposited on a Si substrate and coated through ion beam sputtering
with a high-reflectivity Bragg mirror. Standard photolithography and plasma
etching is used for forming, in subsequent steps, the mirror pad and the
micro-mechanical resonator, which is finally released from the Si substrate in a
XeF2 atmosphere. The mirror stack, designed and deposited by ATFilms, comprises
36 alternating layers of Ta2O5 and SiO2 with an overall nominal reflectivity of
99.991% at 1,064 nm. The measured finesse of 3,900 is consistent with an input
coupler reflectivity of 99.91% and with extra diffraction losses due to a finite size
of the cavity beam waist.
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SUPPLEMENTARY INFORMATION

Effective Mass 

We have estimated the effective mass of the fundamental mode of our micromechanical 

structure using both analytic models and FEM analysis. The experimentally observed value of 

43 ± 2 ng agrees to within 10% with the estimated value of 53 ± 5 ng. 

The total mass of the dielectric Bragg mirror (radius 5.05.24 ±≈R  µm) made of 36 

alternating layers of Ta2O5 ( 8200≈ρ  kg/m3, 4.126=t  nm) and SiO2 ( 2200=ρ  kg/m3, 

6.179=t  nm) is 45 ± 5 ng, not taking into account the lateral etch and tapering of the mirror 

pad. The large error stems from the uncertainty in the exact value of the Ta2O5 density, which 

can vary between 6800 and 8300 kg/m3. The mass of the Si3N4 resonator ( 3000=ρ  kg/m3, 

approximate dimensions of 150100 ××  µm3) is approx. 11 ng, resulting in a maximum total 

mass of 56 ± 5 ng for the full optomechanical device. 

The mode mass, i.e. the actual mass contributing to the motion of the Si3N4 resonator 

fundamental mode, is approx. 74% of the total mass of the Si3N4 resonator (see any standard 

literature on elasticity theory, for example [S1]). This would result in a total mode mass of the 

optomechanical resonator (Si3N4 beam plus micromirror) of approx. 53 ± 5 ng. However, 

because of the flat-top mode shape of our actual device (see the FEM simulation shown in 
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Figure S1), this value is only a conservative lower bound. A more realistic value that takes 

into account the actual mode shape can be obtained directly from FEM simulation and is 

approx. 56 ± 5 ng (see below).  

Finally, to calculate the effective mass one has to take into account the mode overlap between 

the mechanical resonator mode and the mode of the optical probe beam (for a detailed 

analysis on the calculation of the effective mass see for example [S2]). Based on the 

experimentally obtained optical finesse, which is limited by intensity losses due to a finite 

mirror size, we can provide an upper bound on the cavity beam waist at the micromirror 

position of 8 ± 2 µm. If we assume a mechanical mode shape of an ideal doubly-clamped 

beam of dimensions 150100 ××  µm3 we would calculate an effective mass (see e.g. [S2,S3]) 

of 50 ± 5 ng, Again, the actual flat-top mode shape of our device results in a decreased mean 

square displacement (by approx. 6%) compared to the ideal doubly-clamped beam. Taking 

this into account yields a final effective mass of 53 ± 5 ng, which agrees to within 10% with 

the experimentally observed value of 43 ± 2 ng. 

The abovementioned FEM simulations make use of the exact geometry and material data for 

our resonator. The main idea is to impose a force on the structure and have the FEM 

simulation calculate the deflection. Using Hooke's law one can then extract the spring 

constant k of the device. The mode mass can be extracted by using em mk mod=ω . For our 

specific device the FEM solver provides us with a spring constant of 2196 N/m and a 

fundamental mode at 9452 ×= πωm  kHz, which results in 557mod ±=em  ng. 

 

Figure S1: FEM simulation of our 
optomechanical device. Shown is the side-
view of the fundamental resonance mode at 
its maximum displacement (below). The 
cylindrical mirror pad on top of the Si3N4

beam induces a flat-top mode shape (inset). 
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Error Analysis 

The error associated with the noise power spectra peak areas, which provide the mechanical 

mean square displacement, can be estimated as follows: Assuming that the NPS comprises a 

sequence of N  independent data points ),( ii yx  (with Ni K1= ) with measurement 

uncertainty ),( ii yx δδ  one can calculate the area underneath the NPS by Riemann integration 

as ( )∑
−

=
+ −=

1

1
1

N

i
iii yxxA with an uncertainty ( ) ( )∑

−

=
+ −=

1

1

22
1

N

i
iii yxxA δδ , which is obtained by 

Gaussian error propagation and neglecting the uncertainty in x . The strongly cooled NPS 

shown in Figure 3a is given by a data set of 5000=N  points with 1001 =−+ ii xx  Hz and with 
34101 −×≈iyδ  m2 Hz-1 for all i. We obtain 2810780.3 −×=A  m2 (by numerically integrating the 

data set), δA ≈ 100×N  Hz 34101 −××  m2 Hz-1 31101.7 −×=  m2 and an integrated noise floor 

of 100×N  Hz 34103.7 −××  m2 Hz-1 281065.3 −×=  m2. This results in an integrated “real 

thermal noise” of 2810)65.378.3( −×−  m2 29103.1 −×=  m2 with an overall error of approx. 

31103.72 −××  m2 30101 −×≈  m2, i.e. with an error of approx. 8%. The SNR of our 

measurement is therefore sufficient to support our result of 32=n  and accounts for an 

uncertainty of 5.1±=nδ . 

Other possible sources of experimental uncertainty are: an uncertainty related to the absolute 

displacement amplitude calibration (amounting to approx. 12% relative uncertainty), an 

uncertainty related to determining the mechanical resonance frequency (known up to an error 

of approx. 5%) and an uncertainty related to the absolute power calibration of the intracavity 

optical pump field (known up to an error of approx. 10%). These additional experimental 

uncertainties add up to an overall error of approx. 25%. All errors are conservatively 

estimated and finally result in 432 ±=n . 

Shot-Noise 

The noise floor of our measurement is limited by optical shot-noise. The corresponding 

displacement noise can be calculated according to [S4] as 
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Our experimental parameters (finesse 3900=F , input power 14=P  μW, 1064=λ  nm, 

9452 ×= πωm  kHz, 7702 ×= πκ  kHz, input coupler transmission 900=T  ppm, overall 

intra-cavity losses 620=l  ppm, optical input power (corrected for imperfect mode-matching) 

7=MMP  μW) result in a minimal noise-floor of 18106 −×=Shotxδ  m Hz-0.5. 

 

[S1] D. A. Harrington and M. L. Roukes, Caltech Technical Rep. No. CMP-106 (1994). 
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[S3] S. Gigan et al., Self-cooling of a micromirror by radiation pressure, Nature 444, 67-71 

(2006). 

[S4] T. Briant, Caractérisation du couplage optomécanique entre la lumière et un miroir: bruit 

thermique et effets quantiques, PhD thesis, l’Université Paris VI (2003). 



3 Optomechanical Normal Mode
Splitting

An important line of research in quantum optics is the development of the ability
to coherently exchange quantum states from one system to another. A prominent
application of this research is quantum memory [66] where a a travelling light field,
which carries the quantum information to be stored, interacts with a stationary
quantum system and coherently transfers its quantum state onto the stationary
system for later retrieval. In order for such a transfer to occur, the coherent or
reversible dynamics must proceed faster than any of the irreversible dynamics, e.g.
damping and decoherence. This parameter regime has been explored in the cavity
quantum electrodynamics community [67, 68] for light interacting with atoms inside
a cavity and is now of vital importance for the research in that field.

A key step towards meeting this goal in optomechanical systems is to achieve nor-
mal mode splitting [69, 70], i.e. a splitting of the mechanical noise power spectrum
due to the emergence of hybrid light-mechanical modes brought about by their mu-
tual interaction. This is observable when g = g0α > κ, γM , i.e. the coupling is larger
than the optical and mechanical damping rates, and the situation then resembles
two coupled masses on springs. When the central spring that couples the two masses
is sufficiently stiff the motion of each mass strongly influences the other mass and
they will then tend to move either in phase or out of phase – the two normal modes
of the system.

As a natural extension to our sideband cooling work, we used the same experimen-
tal setup to observe optomechanical normal mode splitting [71]. We implemented
some key changes to our setup, however, that allowed us to enter the required pa-
rameter regime. Foremost, improvements were made to the cavity that increased
the finesse from approximately 4 000, which was used for our sideband cooling work,
to 14 000. These challenging improvements were implemented by the excellent work
of Simon Gröblacher that reduced the amplitude decay rate from κ/2π ' 770 kHz
to κ/2π ' 214 kHz. My specific contribution in the laboratory remained largely
the same as our sideband cooling project. I worked in the lab to align a second
homodyne interferometer to measure the stronger cooling beam in addition to the
signal beam. (It was realized during our theoretical modeling of the experiment that
better performance could be attained by measuring this stronger field.) In addition,
I worked together to complete the data analysis and played an active role in under-
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3 Optomechanical Normal Mode Splitting

standing the theory of this phenomena and gauging the experimental feasibility in
the early stages of planning the experiment.

Following this experiment, which to the best of our knowledge is the first demon-
stration of optomechanical normal-mode splitting, this parameter regime has been
attained for electro-mechanics [72] and has also been attained in an optomechanical
system with simultaneous low thermal excitation showing signs of coherent coupling
between the light and a mechanical resonator [73].
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LETTERS

Observation of strong coupling between a
micromechanical resonator and an optical cavity field
Simon Gröblacher1,2, Klemens Hammerer3,4, Michael R. Vanner1,2 & Markus Aspelmeyer1

Achieving coherent quantum control over massive mechanical
resonators is a current research goal. Nano- and micromechanical
devices can be coupled to a variety of systems, for example to single
electrons by electrostatic1,2 or magnetic coupling3,4, and to photons
by radiation pressure5–9 or optical dipole forces10,11. So far, all such
experiments have operated in a regime of weak coupling, in which
reversible energy exchange between the mechanical device and its
coupled partner is suppressed by fast decoherence of the individual
systems to their local environments. Controlled quantum experi-
ments are in principle not possible in such a regime, but instead
require strong coupling. So far, this has been demonstrated only
between microscopic quantum systems, such as atoms and photons
(in the context of cavity quantum electrodynamics12) or solid state
qubits and photons13,14. Strong coupling is an essential requirement
for the preparation of mechanical quantum states, such as squeezed
or entangled states15–18, and also for using mechanical resonators in
the context of quantum information processing, for example, as
quantum transducers. Here we report the observation of opto-
mechanical normal mode splitting19,20, which provides unambigu-
ous evidence for strong coupling of cavity photons to a mechanical
resonator. This paves the way towards full quantum optical control
of nano- and micromechanical devices.

A common feature of all coupled quantum systems is that their
dynamics are dominated by the competition between the joint coup-
ling rate and the rates at which the coupled systems decohere into
their local environments. Only for sufficiently strong coupling can
the effects of decoherence be overcome. This so-called ‘strong coup-
ling regime’ is, in all cases, indispensable for the experimental invest-
igation of a manifold of quantum phenomena. Nano- and micro-
optomechanical oscillators are currently emerging as a new ‘textbook’
example for coupled quantum systems. In this case, a single electro-
magnetic field mode is coupled to a (nano- or micrometre sized)
mechanical oscillator. In analogy to cavity quantum electrodynamics
(cQED), one can identify strong coupling as the regime where the
coupling rate g exceeds both the cavity amplitude decay rate k and
the mechanical damping rate cm—as required, for example, in refs 15–
17. Another class of proposals requires the weaker condition of ‘large
cooperativity’, that is, gw

ffiffiffiffiffiffiffiffi
kcm

p
(refs 18, 21). Strong coupling, ideally

in combination with the preparation of zero entropy initial states (for
example, by ground-state cooling of the mechanical resonator), is
essential to obtain (quantum) control over this new domain of
quantum physics. Whereas ground state preparation is a goal of con-
tinuing research (in which much progress has been made, in particular
by using optical laser cooling techniques22), here we demonstrate
strong optomechanical coupling using state-of-the-art micromecha-
nical resonators.

Consider the canonical situation in which a mechanical resonator is
coupled to the electromagnetic field of a high-finesse cavity via

momentum transfer of the cavity photons (Fig. 1). The system naturally
comprises two coupled oscillators: the electromagnetic field at cavity
frequency vc (typically of the order of 1015 Hz) and the mechanical
resonator at frequency vm (,107 Hz). At first sight, the large discre-
pancy in the oscillator frequencies seems to inhibit any coupling; it is,
however, alleviated by the fact that the cavity is driven by a laser field at
frequency vL, which effectively creates an optical oscillator at frequency
D 5 vc 2 vL 2 drp (in a reference frame rotating at vL; drp is the mean
shift of the cavity frequency due to radiation pressure). Each of the two
oscillators decoheres into its local environment: the optical field at the
cavity amplitude decay rate k and the mechanics at the damping rate cm.
Entering the desired strong coupling regime requires a coupling rate
g>k, cm.

The fundamental optomechanical radiation-pressure interaction
Hint 5 2"g0ncXm couples the cavity photon number nc to the position
Xm of the mechanics (" is h/2p, where h is Planck’s constant). On the
single-photon level, this interaction provides an intrinsically non-

linear coupling, where the coupling rate g0~
vc

L

ffiffiffiffiffiffiffiffi
B

mvm

q
(L, cavity

length; m, effective mass) describes the effect of a single photon on
the optomechanical cavity. In all currently available optomechanical
systems, however, g0 is well below 100 Hz. Because the corresponding
cavity decay rates are typically much larger than 10 kHz, the effect is
too small to exploit the strong coupling regime on the single-photon
level. For our experiment g0 5 2p3 2.7 Hz, which is smaller than both
k (2p3 215 kHz) and cm (2p3 140 Hz). To circumvent this limita-
tion, we use a strong optical driving field (l 5 1,064 nm), which shifts
the optomechanical steady state by means of radiation pressure from
vacuum to a mean cavity amplitude a (mean cavity photon number
nch i~a2) and from zero displacement to a mean mechanical displace-

ment b. The resulting effective interaction is obtained by standard
mean-field expansion, and resembles two harmonic oscillators that
are coupled linearly in their optical and mechanical position quadra-
tures Xc 5 (ac 1 ac

{) and Xm 5 (am 1 am
{), respectively. This strongly

driven optomechanical system is then described by equation (1)
(see Supplementary Information):

H~
BD

2
X2

c zP2
c

� �
z

Bvm

2
X2

mzP2
m

� �
{BgXcXm ð1Þ

The effective coupling strength g 5 g0a is now enhanced by a factor of

a~
ffiffiffiffiffiffiffiffi
nch i

p
. Note that this enhancement comes at the cost of losing the

nonlinear character of the interaction. Although there exist proposals
that do require strong nonlinear coupling at the single-photon level16,
the majority of schemes for quantum optomechanical state manipu-
lation work well within the regime of linear albeit strong coupling.
They rely on the fact that linear interactions allow for protocols such as
quantum state transfer and readout23, generation of entanglement15,17,
conditional preparation of states via projective measurements on
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light18,21, and so on, a fact which is well established in the fields of
quantum optics and quantum information. In our experiment, by
using external optical pump powers of up to 11 mW, we are able to
achieve an increase in coupling by more than five orders of magnitude,
sufficient to reach the desired strong coupling regime.

An unambiguous signature of strongly coupled systems is the
occurrence of normal mode splitting, a phenomenon known to both
classical and quantum physics. In the simplest case, two independent
harmonic oscillators coupled via an additional joint spring will
behave as a pair of uncoupled oscillators—so-called normal
modes—with shifted resonance frequencies compared to the indi-
vidual resonators. For the particular case of resonators with equal
bare frequencies, a sufficiently strong coupling will introduce a spec-
tral splitting of the two normal modes that is of the order of the
coupling strength g. Normal mode splitting has been observed in a
number of realizations of cQED, where it is also known as Rabi-
splitting, with photons coupled either to atoms24,25,26, to excitons in
semiconductor structures27,28,29 or to Cooper pair box qubits in cir-
cuit QED14. In case of the strongly driven optomechanical system
described by equation (1), the normal modes occur at frequencies

v2
+~ 1

2
(D2zv2

m+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(D2{v2

m)2z4g 2vmD
q

) and exhibit a splitting

of v1 2 v2 < g. In the given simple expression for normal mode
frequencies, cavity decay and mechanical damping are neglected. A
more careful analysis is carried out in the Supplementary Information,
and shows that normal mode splitting occurs only above a threshold
g>k (refs 19, 20) for our damped optomechanical system. The

Hamiltonian can be re-written in terms of the normal modes and
one obtains:

H~
Bvz

2
X2

zzP2
z

� �
z

Bv{

2
X2

{zP2
{

� �
ð2Þ

For the resonant case D 5 vm, equation (2) describes two uncoupled
oscillators with position and momentum quadratures

X+~
ffiffiffiffiffiffiffiffiffiffi
vm+g

2vm

q
Xc+Xmð Þ and P+~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vm

2 vm+gð Þ

q
Pc+Pmð Þ. These new

dynamical variables cannot be ascribed to either the cavity field or
the mechanical resonator, but are true hybrid optomechanical degrees
of freedom. The overall system energy spectrum Em,n is therefore given
by the sum of the energies of the two normal modes, that is,
Em,n 5 "(mv1 1 nv2). The degeneracy of the uncoupled energy
levels is lifted, and normal mode splitting of adjacent levels occurs
with a separation that is equivalent to the coupling strength g. In the
presence of decoherence, the spectral lines are broadened to a width of
(k 1 cm) and the splitting can therefore only be resolved for g>k, cm,
that is, for strong coupling.

We observe normal mode splitting via direct spectroscopy of the
optical field emitted by the cavity. Emission of a cavity photon can in
general be understood as a transition between dressed states of the
optomechanical system, that is, between mechanical states that are
dressed by the cavity radiation field. The structure of the opto-
mechanical interaction only allows for transitions that lower or raise
the total number of normal mode excitations by one (see Sup-
plementary Information). Photons emitted from the cavity therefore
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Figure 1 | Experimental set-up and characterization of the uncoupled
mechanical and optical oscillator. a, Our micromechanical resonator with a
high-reflectivity mirror pad (R . 0.99991) that forms the end-face of a 25-
mm-long Fabry–Pérot cavity (magnified view circled, bottom right). A
strong continuous-wave Nd:YAG laser is used to drive the optomechanical
system (purple beam). By splitting off a faint part (15 mW) of the drive laser,
the laser frequency is actively locked to the Fabry–Pérot cavity frequency
(orange beam). Locking is achieved by phase-modulation (electro-optical
modulator, EOM) and by obtaining a Pound-Drever-Hall error signal
required for feedback with a proportional–integral–derivative controller
(PID). Acousto-optical modulators (AOM) control the relative frequency
detuning D and thus allow for off-resonant driving of the cavity. Data
presented here have been taken by varying the detuning D and the power of
the drive beam. Both beams are coupled to the Fabry–Pérot cavity via the
same spatial mode but orthogonal in polarization. The measured cavity
linewidth (full-width at half-maximum, FWHM) 2k < 2p3 430 kHz
corresponds to an optical finesse F < 14,000. The fundamental mechanical

mode of the microresonator at vm 5 2p3 947 kHz has a natural linewidth
(FWHM) of cm < 2p3 140 Hz (mechanical quality factor Q < 6,700) at
room temperature. With k/vm < 0.2, these parameters place us well into the
resolved sideband regime k/vm= 1. The effective mass of 145 ng was
obtained by direct fitting of the optomechanical response at low driving
powers. After interaction with the optomechanical system, both (drive and
lock) beams are separated by a polarizing beamsplitter and Faraday rotators
(FR) and are each independently measured by optical homodyning
(Supplementary Information). Each homodyne phase can be either scanned
or locked to a fixed value by actuating a piezo-driven mirror. b, Mechanical
noise power spectrum obtained by homodyne detection of the lock beam.
Red line, fit to the data assuming an ideal harmonic oscillator in thermal
equilibrium. c, Intensity of the drive beam that is reflected off the
Fabry–Pérot cavity when scanning its detuning D, which provides direct
access to the cavity transfer function. Dashed red line, Lorentzian fit to the
data.

NATURE | Vol 460 | 6 August 2009 LETTERS

725
 Macmillan Publishers Limited. All rights reserved©2009



have to lie at sidebands equal to the dressed state frequencies v6

relative to the incoming laser photons of frequency vL, that is, they
have to be emitted at sideband frequencies vL 6 v1 or vL 6 v2.
Homodyne detection provides us with direct access to the optical
sideband spectrum, which is presented in Fig. 2a for the resonant case
D < vm. For small optical pump power, that is, in the regime of weak
coupling, the splitting cannot be resolved and one obtains the well-
known situation of resolved sideband laser cooling, in which Stokes
and anti-Stokes photons are emitted at one specific sideband fre-
quency. The splitting becomes clearly visible at larger pump powers,
which is unambiguous evidence for entering the strong coupling
regime. Indeed, at a maximum optical driving power of ,11 mW,
we obtain a coupling strength g 5 2p3 325 kHz, which is larger than
both k 5 2p3 215 kHz and cm 5 2p3 140 Hz and which corre-
sponds to the magnitude of the level crossing shown in Fig. 2b. As
is expected, for detunings D off resonance, the normal mode frequen-
cies approach the values of the uncoupled system.

These characteristics of our strongly driven optomechanical sys-
tem are reminiscent of a strongly driven two-level atom, and indeed a
strong and instructive analogy exists. If an atom is pumped by a
strong laser field, optical transitions can only occur between dressed
atomic states, that is, atomic states ‘dressed’ by the interaction with
the laser field. For strong driving, any Rabi splitting that is induced by
strong coupling is effectively of order G0

ffiffiffiffiffiffiffiffiffi
nLh i

p
(nL, mean number of

laser photons; G0, electric dipole coupling) and one therefore obtains
an equally spaced level splitting, fully analogous to the coupled opto-
mechanical spectrum. From this point of view, the optomechanical
modes can be interpreted in a dressed state approach as excitations of
mechanical states that are dressed by the cavity radiation field. The
origin of the sideband doublet as observed in the output field of the
strongly driven optomechanical cavity corresponds to the resonance
fluorescence spectrum of a strongly driven atom, in which strong

coupling gives rise to the two side-peaks in the so-called Mollow
triplet. It is interesting to note that the analogy even holds for the
single-photon regime, in which both systems are close to their
quantum ground state. For both cases (that is, the atom–cavity sys-
tem and the cavity–optomechanical system), a sufficiently strong
single-photon interaction g0 would allow one to obtain the well-
known vacuum Rabi splitting as well as state-dependent level spa-
cing, which is due to intrinsic nonlinearities in the coupling.

We should stress that normal mode splitting alone does not establish
a proof for coherent dynamics, that is, for quantum interference effects.
With the present experimental parameters, such effects are washed out
by thermal decoherence and normal mode splitting has a classical
explanation in the framework of linear dispersion theory30. Still, the
demonstration of normal mode splitting is a necessary condition for
future quantum experiments.

We finally comment on the prospects for mechanical quantum
state manipulation in the regime of strong coupling. One important
additional requirement in most proposed schemes is the initializa-
tion of the mechanical device close to its quantum ground state.
Recent theoretical results show that both ground state laser cooling
and strong coupling can be achieved simultaneously, provided that
the conditions kBT

BQ
=k=vm are fulfilled20,22. Thus, in addition to

operating in the resolved sideband regime, a thermal decoherence
rate that is small compared to the cavity decay rate is required.
Cryogenic experiments have demonstrated thermal decoherence
rates as low as 20 kHz for nanomechanical resonators for a 20 mK
environment temperature9. For our experiment, temperatures below
300 mK would be sufficient to combine strong coupling with ground
state cooling.

We have demonstrated strong coupling of a micromechanical
resonator to an optical cavity field. This regime is a necessary pre-
condition to obtaining quantum control of mechanical systems.
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Figure 2 | Optomechanical normal mode splitting and avoided crossing in
the normal-mode frequency spectrum. a, Emission spectra of the driven
optomechanical cavity, obtained from sideband homodyne detection on the
strong driving field after its interaction with the optomechanical system (see
Supplementary Information). The power levels from top to bottom (0.6, 3.8,
6.9, 10.7 mW) correspond to an increasing coupling strength of g 5 78, 192,
260 and 325 kHz (g 5 0.4, 0.9, 1.2, 1.5 k). All measurements are performed
close to resonance (D 5 1.02 vm). For strong driving powers a splitting of the
cavity emission occurs, corresponding to the normal mode frequencies of
true hybrid optomechanical degrees of freedom. This normal mode splitting
is an unambiguous signature of the strong coupling regime. All plots are
shown on a logarithmic scale. Green dashed lines are fits to the data

assuming two independent Lorentzian curves, red solid lines are the sum
signal of these two fits. b, Normal mode frequencies obtained from the fits to
the spectra as a function of detuning D. For far off-resonant driving, the
normal modes approach the limiting case of two uncoupled systems. Dashed
lines indicate the frequencies of the uncoupled optical (diagonal) and
mechanical (horizontal) resonator, respectively. At resonance, normal mode
splitting prevents a frequency degeneracy, which results in the shown
avoided level crossing. Error bars, s.d. Solid lines are simulations (see
Supplementary Information). For larger detuning values, the second normal
mode peak could no longer be fitted owing to a nearby torsional mechanical
mode. c, Normal mode spectra measured off resonance.
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Together with the availability of high-quality mechanical resonators
operated at low temperatures, which minimizes thermal decoherence
of the mechanics, strong optomechanical coupling provides the basis
for full photonic quantum control of massive mechanical resonators.
We suggest that future developments will eventually also allow strong
coupling to be achieved in the nonlinear regime, that is, at the single-
photon level11,16, to exploit optomechanical vacuum Rabi splitting.
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I. NORMAL MODE FREQUENCIES AND
DAMPING RATES

As shown in [1–3] the linearized Hamiltonian for a
driven cavity mode coupled via radiation pressure to a
harmonically bound mirror is

H =
∆
2
(X2c + P 2c ) +

ωm
2
(X2m + P 2m)− gXcXm

(S1)

with an opto-mechanical coupling rate g = g0α =
2
L


Pκωc

mωm(κ2+∆2) (following [3]) for an input power P of
the driving laser (L, ωc and κ are cavity length, reso-
nance and amplitude decay rate respectively, m the ef-
fective mass of the mechanical oscillator). For a two-sided
cavity with decay rate κ through the input-coupler and
κ̄ through the oscillating mirror, this formula generalizes
to g = 2

L


Pκωc

mωm((κ+κ̄)2+∆2) .

It is convenient to define RT = (Xc, Pc, Xm, Pm) and
express the Hamiltonian as H = 

2
RTM R where

M =



∆ 0 g 0
0 ∆ 0 0
g 0 ωm 0
0 0 0 ωm


 .

The transformation to normal modes RNM =
(X+, P+, X−, P−) is achieved with a linear
transformation RNM = S R, where S fulfills
M = STdiag(ω+, ω+, ω−, ω−)S and is symplectic,
i.e. it obeys J = SJST where

J =



0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


 .

The latter property guarantees that canonical com-
mutation relations are conserved, i.e. [Ri, Rj ] =
[RNMi , RNMj ] = iJij . The explicit form of S can in prin-
ciple be determined, but is quite involved and does not
give much insight. As will become clear in a moment,
the normal mode frequencies ω± can be easily calculated
without constructing S and are given by

ω2± =
1
2


∆2 + ω2m ±


(∆2 − ω2m)2 + 4g2ωm∆


. (S2)

The canonical operators evolve according to

̇R(t) = i[H, R(t)]−DR(t)−
√
2DRin(t)

= (JM −D)R(t)−
√
2DRin(t), (S3)

where we included damping of the cavity field and the
mechanical resonator with D = diag(κ, κ, γ0m, γ0m) and
Langevin forces Rin(t) = (xin, pin, fXm

, fPm). For white
vacuum noise input to the cavity and a thermal white
noise bath coupling to the mechanical system, all first
moments vanish R(t) ≡ 0 and the only non-zero two
time correlation functions are

xin(t)xin(t) = pin(t)pin(t) =
1
2
δ(t− t),

fXm
(t)fXm

(t) = fPm(t)fPm(t) =


n̄+
1
2


δ(t− t),

(S4)

where n̄  kT
ωm .

From Eq. (S3) it is clear that eigenfrequencies and ef-
fective damping rates of the system are given by, respec-
tively, the imaginary and real parts of the eigenvalues of
i(JM −D). The eigenvalues occur in complex conjugate
pairs and the imaginary parts of the ones in the upper
half plane determine eigenfrequencies. For the undamped
system, D = 0, the eigenvalues are purely complex and
one arrives at expression (S2) for the normal mode fre-
quencies. For the damped system, D = 0, the eigenvalues
of i(JM −D) will in general be complex and thus deter-
mine normal mode frequencies ω± and effective damp-
ing rates γ± of normal modes, as exemplified in Fig. S1.
The theoretical values of the normal mode frequencies
ω± in Fig. 2a of the main text were as well determined
in this way. While normal mode splitting (NMS) occurs
for any non-zero coupling g in an undamped system, a
threshold of g  κ has to be surpassed to observe NMS
[2, 4]. Effective damping rates behave complementary
and merge above the same threshold. Comparison of the
normal mode damping rates γ± to the effective mechan-
ical damping rate γm = γ0m +

2g2κ∆ωm
[κ2+(∆−ωm)2][κ2+(∆+ωm)2]

,
as derived in the theory for cavity-assisted cooling [1, 3],
shows that the condition for resolving the normal mode
peaks is g  κ, γm.
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FIG. S1: (a) Normal mode frequencies ω± for undamped system (red) and damped system (blue) for varying power of driving
laser. (b) Same for effective normal mode damping γ±. (c) Effective damping rates of normal modes (blue), cavity amplitude
decay rate κ (red) and effective mechanical decay rate γm (green) for varying detuning. Not shown is the natural mechanical
damping rate as γ0

m/κ  10−3. Parameters are as in the main text, ωm = 2π × 947 kHz, γ0
m = 2π × 140 Hz, m = 145 ng,

L = 2.5 cm, ωc = 1.77× 1015 Hz, κ = 2π × 172 kHz and κ̄ = 2π × 43 kHz. In (a) and (b) ∆ = ωm and in (c) P = 10.7 mW.

II. CAVITY EMISSION SPECTRUM

A. Dressed States and Exact Diagonalization

In terms of normal mode operators the linearized
Hamiltonian (S1) is given by H = ω+

2 (X2
+ + P 2

+) +
ω−

2 (X2
− +P 2

−). It can be expressed also in terms of cre-
ation and annihilation operators a± = (X±+iP±)/

√
2 as

H = ω+


a†+a+ + 1

2


+ ω−


a†−a− + 1

2


. The Eigen-

states and -energies are thus H|n,m = En,m|n,m,
where

|n,m = 1√
n!m!

(a†+)
n(a†−)

m|0, 0,

En,m = ω+(n+
1
2
) + ω−(m+

1
2
).

Emission of a cavity photon is in general accompa-
nied by a transition of the opto-mechanical system from
one eigenstate to another by changing a single excitation,
|n,m ↔ |n− 1,m and |n,m ↔ |n,m− 1. The energy
splitting between these states is En,m − En−1,m = ω+

and En,m − En,m−1 = ω− respectively. Photons emit-
ted from the cavity have to carry away this energy ex-
cess/deficiency relative to the incoming laser photons of
frequency ωL, i.e. they have to have frequencies ωL±ω+

or ωL ± ω−. Transitions between the dressed opto-
mechanical states and the associated emission dublett is
illustrated in Fig. S2.
In order to compare the low-energy part of the opto-

mechanical spectrum to the one of the Jaynes Cummings
system, as shown in Fig. 2 of the main text, we give
here the exact eigenstates and -values of the non-linear
radiation pressure Hamiltonian

H = ωma†mam + ∆a†cac − g0a
†
mam(ac + a†c).

It is straight forward to check that H|ψk,n = Ek,n|ψk,n

with

|ψk,n = exp


g0n
ωm
(am − a†m)


|km|nc,

Ek,n = 

ωmk +∆n+ g20

ωm
n2


.

That is, the eigenstates are shifted Fock states of the un-
coupled system and the energy spectrum is anharmonic
with a quadratic dependence in the photon number. The
”opto-mechanical Rabbi splitting” is thus g20

ωm
, see also

Fig. S2.

B. Emission Power Spectrum

The power spectral density of light emitted by the cav-
ity is explicitly determined as follows: In frequency space
[R(ω) =


dω R(t) exp(iωt)/

√
2π] the steady state solu-

tions to the equations of motion (S3) are

R(ω) =
1

iω + JM −D

√
2DRin(ω). (S5)

With the quantum optical cavity input-output relations
it follows that

Rout(ω) =
√
2DR(ω) + Rin(ω)

=
√

2D
1

iω + JM −D

√
2D + 1


Rin(ω),

where Rout(ω) = (xout, pout, fXm,out, fPm,out).
(xout, pout) are quadratures for the cavity output
field which are subject to homodyne detection. In order
to calculate their stationary properties we formally in-
troduce also ”phononic output fields” fXm,out, fPm,out).
The spectral correlation functions can be collected
in a Hermitean spectral 4 × 4 correlation matrix
γout

ij (ω, ω) = (Rout(ω))i(Rout(ω))j. Straight forward
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3

FIG. S2: Energy spectrum of a driven opto-mechanical cav-
ity. For a degenerate, uncoupled system (left), ωm = ∆,
g0 = 0, the spectrum consists of equidistant multipletts of
energy Nωm and degeneracy N (: Planck’s constant; N :
number of excitations; ωm: mechanical resonance frequency).
For a coupled system (right), g0 = 0, the degeneracy is bro-
ken. In the strongly driven regime, where the cavity is in a
coherent state with mean number of photons nc, the levels
in each N -multiplett split up by g = g0


nc into dressed

states |m,n with m + n = N . Emission of a cavity pho-
ton is accompanied only by transitions |m,n ↔ |m − 1, n
or |m,n ↔ |m,n − 1 between dressed states. Accordingly,
emitted photons have to lie at sideband-frequencies ωL+ω±.
This gives rise to a doublet structure in the sideband spec-
trum (bottom) with a splitting ω+ − ω− ≈ g. The observed
normal-mode splitting is shown in Figure 2 of the main text.
In the single photon coupling regime, the fundamentally an-
harmonic nature of the spectrum becomes important, with

a splitting between dressed states scaling like
g20n

2
c

ωm
(shown

is the ”opto-mechanical vacuum Rabi-splitting” for nc = 1).
In the present experiment we cannot access this nonlinear
regime, which would require a large single photon coupling
g0  κ, γm.

calculation yields γout(ω, ω) = δ(ω + ω)Γ(ω) where

Γ(ω) =
√

2D
1

iω + JM −D

√
2D + 1


N

×
√

2D
1

−iω + JM −D

√
2D + 1

T

and N = diag
�

1
2 , 1

2 , n̄+ 1
2 , n̄+ 1

2


. If losses through the

second mirror with amplitude decay rate κ̄ are taken into

account, the last expression generalizes to

Γ(ω) =
√

2D
1

iω + JM −D − D̄

√
2D + 1


N

×
√

2D
1

−iω + JM −D − D̄

√
2D + 1

T

+
√

2D
1

iω + JM −D − D̄


2D̄


N̄

×


2D̄
1

−iω + JM −D − D̄

√
2D

T

, (S6)

where D̄ = diag(κ̄, κ̄, 0, 0) and N̄ = diag(1
2 , 1

2 , 0, 0).
Finally, the spectral density S(ω) is defined as

S(ω)δ(ω + ω) = a†out(ω)aout(ω) where the ampli-
tude operator for the cavity output field is aout(ω) =
(xout(ω) + ipout(ω))

√
2. It follows from the definition of

the spectral correlation matrix given above that

S(ω) =
1
2
[Γ11(ω) + Γ22(ω) + i(Γ12(ω)− Γ21(ω))] .

This expression gives the spectral density of sideband
modes at a frequency ωL + ω. In homodyne detection
of sideband modes we do not distinguish sideband fre-
quencies ωL±ω and extract only the overall noise power
spectrum at a sideband frequency |ω|, which is given by
SNPS(ω) =


S(ω)2 + S(−ω)2 and shown in Fig. S3.

The simple consideration in terms of dressed state tran-
sitions as given above shows good agreement with the
exact calculated positions of spectral peaks, which are
in turn in excellent agreement with measured data pre-
sented already in Fig. 2b of the main text.

III. HOMODYNE DETECTION OF OPTICAL
AND MECHANICAL QUADRATURES

We obtain the generalized optical and mechanical
quadratures Xc and Xm via two independent, simulta-
neous optical homodyne measurements. Homodyne de-
tection requires the mixing of a strong local oscillator
field with the signal beam at a symmetric beamsplit-
ter and a balanced photodetection at the beamsplitter
output ports. The difference photocurrent then pro-
vides a direct measure of the generalized quadrature
X(φ, t) = a(t)eiφ + a†(t)e−iφ of an optical beam (φ: lo-
cal oscillator phase), where X(φ = 0, t) and X(φ = π

2 , t)
are the well-known amplitude and phase quadratures, re-
spectively. To measure Xc, homodyning was performed
on the driving beam after its interaction with the cavity.
The second homodyning measures the locking beam af-
ter its resonant interaction with the cavity. Because of
the weak interaction (we choose the power of the lock
beam such that g  κ) the cavity field phase quadrature
adiabatically follows the evolution of the mechanics and
hence provides direct access to Xm. The local oscilla-
tor phase in the homodyne measurement of the locking
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(a) (b)

FIG. S3: (a) Emission spectrum SNPS(ω) of opto-mechanical system for varying detuning (colors refer to a logarithmic scale
of arbitrary units). Peak positions are well described by the normal mode eigenfrequencies ω± (black lines). For comparison
we reproduce also the measured data of presented in Fig. 3b of the main text. Parameters are as in S1, the input input power
was P = 10.7 mW. Expression (S6) was used to evaluate the spectrum with a cavity decay rate through the input-coupler
κ = 2π × 172 kHz and at rate κ̄ = 2π × 43 kHz through the oscillating mirror. (b) Same for a power value P = 3.8 mW just
below threshold for normal mode splitting, cf. Fig. S1a.

field was always actively stabilized to detect the locking
beam phase quadrature. Each of the two difference pho-
tocurrents was recorded independently by a high-speed
analogue-to-digital converter (14 bit, 10 MSample sec−1).

The mechanical and optical noise power spectra from Fig-
ures 1b and 2a, respectively, were directly inferred from
these recorded time traces. In that case, the local oscil-
lator phase of the drive field was locked to a fixed value.
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4 Geometry Dependent Mechanical
Clamping Losses

In both optomechanics experiments and applications employing mechanical oscilla-
tors the mechanical quality factor Q is often a primary performance limitation. For
instance, fundamental physics experiments that aim to explore non-classical prop-
erties of mechanical motion must minimize decoherence by sufficiently isolating the
mechanical oscillator from the surrounding environment. This requires n̄/Q � 1,
where n̄ is the thermal occupation of the oscillator when in thermal equilibrium,
and thus higher quality factors are desired. As a second prominent example, the
sensitivity of mechanical oscillator based force sensors improves with an increasing
mechanical quality factor. Because of this there is currently a significant amount
of physics and engineering based research spent on improving the quality factor of
mechanical resonators.

The mechanical quality factor in any given implementation is determined by a
number of physical mechanisms, e.g. material losses, thermoelastic damping, and
viscous damping from any surrounding gas or fluid. Each of these mechanisms will
independently increase the damping rate and hence the overall quality factor is
determined via

1
Q

=
1
Q1

+
1
Q2

+
1
Q3

+ ... , (4.1)

where the subscripts label each damping mechanism.
In this work [74] we experimentally studied mechanical clamping losses [75], oth-

erwise known as phonon tunneling, where damping occurs due to the mechanical
resonator coupling to the surrounding support or substrate. This damping mecha-
nism is strongly dependent on the shape of the mechanical resonator that determines
the profile of each particular mechanical flexural mode. Because of this geometry
dependence careful design and fabrication can thus minimize this deleterious damp-
ing mechanism. To this end, we studied the change in mechanical Q for a controlled
change in its geometry and developed a numerical solver to estimate the clamping
loss contribution for a given geometry. My specific contribution to this project was
to design and build a fiber based optical setup to probe the mechanical motion.
The fiber based interferometer proved to have excellent phase stability and mechan-
ical position sensitivity that the design developed for this work was used again,
with modifications, to implement the pulsed optomechanics experiment discussed in
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microscale and nanoscale mechanical resonators have recently emerged as ubiquitous devices 
for use in advanced technological applications, for example, in mobile communications and 
inertial sensors, and as novel tools for fundamental scientific endeavours. Their performance 
is in many cases limited by the deleterious effects of mechanical damping. In this study, we 
report a significant advancement towards understanding and controlling support-induced 
losses in generic mechanical resonators. We begin by introducing an efficient numerical solver, 
based on the ‘phonon-tunnelling’ approach, capable of predicting the design-limited damping 
of high-quality mechanical resonators. Further, through careful device engineering, we isolate 
support-induced losses and perform a rigorous experimental test of the strong geometric 
dependence of this loss mechanism. our results are in excellent agreement with the theory, 
demonstrating the predictive power of our approach. In combination with recent progress on 
complementary dissipation mechanisms, our phonon-tunnelling solver represents a major step 
towards accurate prediction of the mechanical quality factor. 
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Mechanical coupling of a suspended structure to its sup-
ports is a fundamental energy loss mechanism in micro-
mechanical and nanomechanical resonators1. Referred to 

variously as clamping2 or anchor loss3, this process remains signifi-
cant even in devices fabricated from high-quality materials operated 
in vacuum and at cryogenic temperatures, and is in fact unavoidable 
in any non-levitating system. Although much progress has been 
made towards the understanding of mechanical dissipation at the 
microscale and nanoscale 2,4, obtaining reliable predictions for the 
fundamental design-limited quality factor, Q, remains a major chal-
lenge while direct experimental tests are scarce5–7. At the same time, 
the implementation of high-quality micromechanical and nanome-
chanical systems is becoming increasingly important for numerous 
advanced technological applications in sensing and metrology, with 
select examples including wireless filters3,8, on-chip clocks9, micro-
scopy10–13 and molecular-scale mass sensing14,15, and recently for a 
new generation of macroscopic quantum experiments that involve 
mesoscopic mechanical structures16–23. Here, we introduce a finite-
element-enabled numerical solver for calculating the support-
induced losses of a broad range of low-loss mechanical resonators. 
We demonstrate the efficacy of this approach via comparison with 
experimental results from microfabricated devices engineered to 
isolate support-induced losses by allowing for a significant variation 
in geometry, while keeping other resonator characteristics approxi-
mately constant. The efficiency of our solver results from the use of a 
perturbative scheme that exploits the smallness of the contact area, 
specifically the recently introduced ‘phonon-tunnelling’ approach24. 
This results in a significant simplification over previous approaches 
and paves the way for CAD-based predictive design of low-loss 
mechanical resonators.

The origins of mechanical damping in microscale and nanoscale 
systems have been the subject of numerous studies during the last 
decades, and several relevant mechanisms for the decay of acoustic 
mechanical excitations, that is, phonons, have been investigated2,4. 
These include: (i) fundamental anharmonic effects such as pho-
non–phonon interactions4,25, thermoelastic damping (TED)4,25–28 
and the Akhiezer effect4,25; (ii) viscous or fluidic damping involving 
interactions with the surrounding atmosphere or the compression 
of thin fluidic layers29–31; (iii) material losses driven by the relaxation 
of intrinsic or extrinsic defects in the bulk or surface of the resona-
tor32–37 for which the most commonly studied model is an environ-
ment of two-level fluctuators38,39 and (iv) support-induced losses, 
that is, the dissipation induced by the unavoidable coupling of the 
resonator to the substrate3,7,8,40,41, which corresponds to the radia-
tion of elastic waves into the supports5,6,24,42–44. This last mechanism 
poses a fundamental limit, as vibrations of the substrate will always 
be present.

These various dissipation processes add incoherently such that 
the reciprocals of the corresponding Q-values satisfy 1/Qtot = Σi1/Qi, 
where i labels the different mechanisms. Thus, in a realistic set-
ting, care must be taken to isolate the contribution under scrutiny. 
In contrast to all other damping mechanisms (i–iii), which exhibit 
various dependencies with external physical variables such as pres-
sure and temperature, support-induced dissipation is a tempera-
ture- and scale-independent phenomenon with a strong geometric 
character that is present in any suspended structure. Moreover, its 
scale independence implies that the same analysis can be applied to 
both microscale and nanoscale devices. We exploit this geometric 
character to isolate the support-induced contribution and obtain a 
direct experimental test of phonon-tunnelling dissipation.

The numerical solver we introduce provides a new technique 
to efficiently model support-induced losses for a broad class of 
mechanical structures. Previous approaches have relied on either 
the direct solution of an elastic wave radiation problem involving 
the substrate6,7,42–44 or the simulation of a perfectly absorbing arti-
ficial boundary5,41, with systematic tests as a function of geometry  

limited to a few specific cases5–7. In contrast, our technique repre-
sents a substantial simplification in that it reduces the problem to 
the calculation of a perfectly decoupled resonator mode together 
with free elastic wave propagation through the substrate in the 
absence of the suspended structure. A key feature of our method 
is to combine a standard finite-element method (FEM) calcula-
tion of the resonator mode together with the use of an extended  
contact at the support. This allows us to treat complex geometries, 
taking proper account of interference effects between the radiated 
waves.

In summary, we develop and test an efficient method for calcu-
lating the clamping loss of high-Q mechanical resonators. Our anal-
ysis includes a thorough experimental verification of this theoretical 
framework by employing resonators that are specifically designed to 
isolate the clamping-loss contribution to the total dissipation 1/Q. 
The measured damping in these structures matches the theoretical  
predictions and demonstrates in a direct manner the strong  
geometric character of this fundamental dissipation channel.

Results
Phonon-tunnelling approach. In analogy to radiation tunnelling 
in photonics and electron tunnelling in low-dimensional structures, 
we adopt a ‘phonon tunnelling’ picture to describe the support-
induced losses24. In this picture, the mechanical resonance of interest, 
characterized by frequency ωR, is regarded as a phonon cavity that 
is weakly coupled to the exterior by a hopping process, whereby 
the elastic energy leaks out of the resonator through the narrow 
contact areas from which it is suspended. Within this framework, 
one can start from the harmonic Hamiltonian associated with the 
elastic scattering eigenmodes of the entire structure, including the 
substrate, and derive a quantum model for the Brownian motion 
experienced by each resonance of the suspended structure.

The corresponding weak tunnel couplings can be obtained to 
lowest order in the small parameter kRd, where 1/kR is the charac-
teristic length scale over which the resonator mode varies appre-
ciably and d is the characteristic dimension of the contact area S 
from which the resonator is suspended. For typical structures that 
exhibit high-Q mechanical resonances, kRd1 is comfortably satis-
fied. This justifies the weak coupling approximation and leads to a 
general expression for the associated dissipation 1/Q in terms of the 
‘overlaps’ between the scattering modes and the resonator mode. In 
the limit d→0, the leading contribution is obtained by replacing the 
scattering modes by the free (unperturbed) modes of the supports, 
which yields24 
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Here, sR
′  and uR

′  are the stress and displacement fields asso-
ciated with the normalized resonator mode, sq

( )0  and uq
( )0  are the  

analogous fields for the continuum of support modes labelled by q 
(eigenfrequencies ω(q)), and ρs and ρR are, respectively, the densi-
ties of the substrate and resonator materials. The resonator mode 
should satisfy either (i) free or (ii) clamped boundary conditions at 
the contact area, S, depending on the behaviour of the eigenmode 
when S is small, whereas the unperturbed support modes should 
satisfy the converse. These homogeneous boundary conditions cor-
respond, respectively, to d RS ⋅ =s ′ 0 and uR

′ = 0  so that only one of 
the two terms in the surface integral is finite. In general, the decom-
position between ‘resonator volume’ and ‘supports’ consistent with 
the weak coupling condition need not be unique. Examples of case 
(i) are pedestal geometries, such as microspheres, microdisks or 
microtoroids, when the pedestal is included in the support24. It is 
worth noting that for these geometries, if the pedestal is assumed 



ARTICLE   

�

nATuRE CommunICATIons | DoI: 10.1038/ncomms1212

nATuRE CommunICATIons | 2:231 | DoI: 10.1038/ncomms1212 | www.nature.com/naturecommunications

© 2011 Macmillan Publishers Limited. All rights reserved.

to have perfect impedance match with the substrate, equation (1) 
leads to a particularly simple result for the Q of an axially symmetric 
resonance7,24, which has been verified in ref. 7 for the radial breath-
ing mode of microtoroid structures. On the other hand, examples 
of case (ii) include the planar structures investigated here, when the 
resonator volume consists of the portion of the structure that is free-
standing.

A rigorous derivation of equation (1) is given in ref. 24. Alterna-
tively, if one uses a decomposition of the displacement field in terms  
of the unperturbed support modes and the discrete modes of the 
resonator volume, equation (1) follows simply from applying Fer-
mi’s Golden rule to phonon decay, with the interaction Hamiltonian 
between the resonator volume (labelled  < ) and the surrounding sup-
ports (labelled  > ) given by 

S
S u∫ ⋅ ⋅> <d s  for case (i) and − ⋅ ⋅∫ < >S

S ud s   
for case (ii). Within this framework, it is straightforward to realize 
that the validity of equation (1) is more general than the condition 
kRd1 and will also apply to any resonance, for which the sup-
port-induced frequency shift is small compared with the relevant 
mode spacing (that is, the free spectral range at the corresponding  
resonant frequency) so that the weak coupling assumption is  
warranted. For our case, the use of this master formula is completely  
equivalent to previous intuitive approaches based on forcing the 
substrate with the stress source generated by the resonator mode6,42–

44, as can be shown rigorously by using—for the elastic Green’s 
function of the substrate—a spectral decomposition in terms of 
its free modes. In the presence of mode coupling5,7 not induced 
by disorder, our treatment remains valid provided that the mode 
mixing is not dominated by support-induced interactions, which 
includes the case where it is accounted for by FEM assuming per-
fect clamping and excludes cases where symmetry breaking induced  
by the support is relevant. Finally, one should note that in the  
weak-coupling regime, it is straightforward to incorporate mode 
coupling not accounted for by the FEM into our phonon-tunnelling 
formalism.

Q-solver. Though the aforementioned framework is completely 
general, to investigate the predictive power of our approach, we 
focus specifically on the flexural modes of a symmetric plate geom-
etry of thickness t that is inscribed in a circle of radius R, with the 
contact area S corresponding to the outer rim of an idealized cir-
cular undercut (undercut distance of Lund). To calculate the theo-
retical Q-values of such devices via equation (1), we have developed  
a numerical solution technique that determines the normalized res-
onator eigenmode and eigenfrequency via FEM (with uR

′ = 0  at S)  
and is based on a decomposition into cylindrical modes for the  
support, which is approximated by the substrate modelled as  
an isotropic elastic half-space. The latter approximation is expected 
to be quantitatively precise for the low-lying flexural resonances 
when the underetched gap between the suspended structure and 
the substrate satisfies h < R (where h is the gap height), and the 
largest resonant wavelength for elastic wave propagation in the 
substrate is smaller than the relevant length scales characteriz-
ing the mounting of the sample (see below). The aforementioned 
weak-coupling condition, kRd1, follows in this case from tR. 
From equation (1), exploiting the fact that the eigenmodes of  
an elastic half-space are given by straightforward analytical 
expressions45, we obtain (see Methods section for details of this 
derivation) 
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with n = 0,  ± 1,  ± 2, …. The different types of relevant plane-wave 
modes u rq ,

( ) ( , )g n0
s  of the half-space45 (that is, longitudinal (l), trans-

verse vertical (t) and surface acoustic waves (s) given that transverse 
horizontal waves do not contribute) are labelled by γ = l, t, s with cγ, 
the corresponding speed of sound—as determined by the density ρs, 
Poisson ratio νs and Young’s modulus Es of the substrate. We adopt 
spherical coordinates for the incident wave vector q  with polar 
angle θ and cylindrical coordinates for the position r . The squared 
displacements | ( , ) |, ;

( )uq zg n0 20 s  are given by analytical expressions, 
that only depend on γ, cosθ and νs

24,45, which lead to straightforward  
integrals for the functions  u qn, ( , )g n≠s s  detailed in the Methods section.

If one considers low frequency modes that are symmetric with 
respect to both the x − z and y − z planes so that fz,0≠0 and ωRcγ/R 

γ, one can approximate the series in equation (2) by the n = 0 term 

with the un,g  evaluated at q = 0. For a Poisson ratio νs = 1/3, this 
yields the following approximation 
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where fz,0 corresponds to the total force applied on the contact  
area S. For the typical micromechanical resonators analysed 
here (see below), this approximation deviates from equation 
(2) by 20%. Finally, we highlight that it is straightforward to 
generalize the above to in-plane modes and the rim need not be  
continuous, as in cases where the resonator volume makes contact 
with the support at a disjoint set of small areas (for example, a bridge 
geometry with no undercut).

Free–free design. To experimentally verify our solver, we have 
developed ‘free–free’ micromechanical resonators consisting 
of a central plate (resonator) of length L and width w suspended  
by four auxiliary beams as depicted in Figure 1a. These struc-
tures are etched from a high-reflectivity monocrystalline distrib-
uted Bragg reflector (DBR)—as described in the Methods section,  
suited for Fabry–Perot-based optomechanical systems46. The devices  
used in this study constitute a variant of the previously demon-
strated free–free flexural design in which auxiliary beams with 
widths wsw and lengths Ls = λt/4 (where λt is the resonant 
wavelength for the propagation of torsional waves) placed at the  
nodes of the central resonator mode provide noise filters to suppress 
support-induced losses3. A major drawback with the λt/4-beam 
design is that the resulting auxiliary beam length can be exces-
sive. In fact for the eigenfrequencies investigated in this work, the  
corresponding beam length ( > 400 µm at 1.7 MHz) leads to proli-
feration of low-frequency flexural resonances that compromise the 
stability of the optical cavity and render mode identification diffi-
cult. We circumvent this issue by utilizing instead a reduced length 
Lsλt/4 chosen to avoid spectral overlap between the free–free  
resonance and flexural resonances of the auxiliary beams.

The free–free design provides an ideal platform to isolate and 
measure phonon tunnelling dissipation: first, by altering the attach-
ment position of the auxiliary beams, this design allows for a signi-
ficant variation of geometry, while approximately preserving the 
frequencies and effective surface-to-volume ratios of the resona-
tors. As these characteristics are kept constant, one can rule out the 
influence of additional damping mechanisms (specifically those 
driven by internal losses and surface effects) on the variation in Q 
and hence isolate support-induced losses in the measured devices. 
Second, the free–free resonators provide an intuitive illustration of 
the strong geometric character of the support-induced dissipation. 
Heuristically, the clamping loss will be proportional to the elastic 
energy radiated through the auxiliary beams, which should approx-
imately scale as the squared deflection of their contacts with the 
central resonator (see Fig. 1b,c). Thus, varying the contact position ˆ , ,Rys bsa b a b

R R=



ARTICLE

��

nATuRE CommunICATIons | DoI: 10.1038/ncomms1212

nATuRE CommunICATIons | 2:231 | DoI: 10.1038/ncomms1212 | www.nature.com/naturecommunications

© 2011 Macmillan Publishers Limited. All rights reserved.

of the auxiliary beams results in a characteristic modulation of the 
damping rate, which approximately maps out the central resonator 
mode shape (Fig. 1b). As expected, the minimum-loss design corre-
sponds to the geometry in which the auxiliary beams are attached at 
the nodes of the fundamental resonance of the central resonator. It 
is interesting to note that the theoretical clamping loss limit 1/Qth for 
nodal positioning is always finite as described in Figure 1c. In turn, 
for generic placement away from the nodal points, one obtains for 
the improvement in Q with respect to the clamped–clamped con-
figuration the heuristic relation Qf − f/Qc − c~(w/2ws)2, which assumes 
that ωR and the effective mass mR are the same for both configura-
tions and ωR lies away from the flexural resonances of the auxilliary  
beams. This figure of merit can be derived from equation (3), if one 
uses the approximate scalings | | / /,f E t wk mz 0

3 3 6c c R R R R− ∼ r  and 
| | / /,f E t w k mz 0

3 3 3f f R s R R R− ∼ r , which follow from neglecting  
the undercut, using thin-plate elasticity, and exploiting the fact that  
wsL to analyse the elastic wave propagation in the auxilliary beams24.

Measured dissipation. To identify the mechanical modes of our 
microfabricated resonators (see Figure 2a for an example of a 
completed device), we compare the optically measured resonator  

frequencies, as a function of the auxiliary beam position, with the 
theoretical eigenfrequency variation. The simulated values are gen-
erated using the geometric parameters determined via careful anal-
ysis of the completed resonators (see Supplementary Method). As 
can be seen in Figure 2b, in addition to the symmetric free–free res-
onance, there is also an antisymmetric eigenmode with comparable 
frequency. We observe no mode coupling between these resonances, 
which is consistent with the specific mirror symmetries of the struc-
ture. The frequencies are accurately reproduced by the FEM simula-
tion, if we allow for frequency offsets that are solely dependent on 
the mode parity (262 kHz offset for the free–free mode and 89 kHz 
offset for the antisymmetric mode). We attribute these shifts to a 
material-related dissipation mechanism involving both surface and 
bulk contributions (see Supplementary Method for further details).

All dissipation measurements have been performed at high vac-
uum (10 − 7 mbar) and at cryogenic temperatures (20 K) to suppress 
fluidic and thermoelastic damping in the devices  (Fig. 2c,d). Under 
these conditions, we record quality factors spanning 1.4×104 to 
5.1×104, with the minimum Q corresponding to the free–free mode 
of devices with an auxiliary position of 62.5 µm and R = 116 µm, and 
with the maximum Q to the geometry closest to nodal positioning 
(37.4 µm) for the same radius and type of mode (see Fig. 3). For 
the symmetric mode, we readily observe the expected characteris-
tic modulation in Q as a function of the placement of the auxil-
iary beams with a relative variation of ∆Qexp/Qexp~260% (~80%) for 
R = 116 µm (R = 131 µm). At the same time, the use of the free–free 
geometry ensures that the frequency variation is kept small, with 
a range of ∆f/f~20% (~10%). In contrast, the Q-values for the 
antisymmetric mode are nearly constant with Q≈2.1×104 (Fig. 3c). 
This is expected as the theoretical support-induced loss for this 
mode is negligible. Additionally, as this resonance involves mainly 
deformations of the auxiliary beams, its dissipation is not correlated 
with the mode shapes of the central resonator. The damping of this 
mode is instead dominated by other sources of dissipation, most 
likely by the material-related losses that are also responsible for the 
frequency shifts. Thus, we obtain an independent corroboration 
that the characteristic Q-variation observed for the free–free mode 
is indeed induced by the modification of the geometry rather than 
by the small frequency variation present in the devices.

Discussion
To quantitatively compare the measurements with our numerical 
predictions, two issues must be considered: (i) our model only cap-
tures support-induced losses, although other loss mechanisms may 
still contribute to the overall damping in the devices and (ii) the 
parameters for the half-space model of the substrate must be prop-
erly chosen. Consideration (i) together with the fact that we have 
designed sets of resonators for which the frequencies and effective 
surface-to-volume ratios are kept approximately constant implies 
that any additional damping mechanism that is relevant at low 
temperatures and high vacuum, but is insensitive to the variation 
in geometry, should contribute a constant offset 1/Q* in the meas-
ured dissipation 1/Qtot. Consideration (ii) is non-trivial given the 
long-wavelength nature of the elastic waves radiated into the sub-
strate. For an average resonator frequency of 2.12 MHz, estimates of 
the maximum wavelength for the freely propagating elastic waves 
yield a value of 2.5 mm, which largely exceeds the wafer thickness 
(300 ± 25 µm). Thus, the mechanical material parameters for the 
substrate should be determined by the properties of the underlying 
stage and positioning mechanism in the cryostat rather than those  
of the chip itself. Hence, we assume for the half-space the mechani-
cal properties of polycrystalline commercially pure (grade 2)  
titanium (see the caption of Figure 3 for more details), of which the 
bulk of the structure beneath the resonator consists. Taking all of 
this into account, the theory shows remarkable agreement with the 
measured dissipation (as shown in Fig 3). It is important to note that 

Figure 1 | Mapping out phonon-tunnelling dissipation in a free–free 
resonator. (a) schematic diagram of the resonator geometry. (b) normalized 
squared centre of mass displacement of a single auxiliary-beam central-
resonator contact calculated via FEm (the inset shows the profile of the 
free–free mode as approximated by Euler–Bernoulli theory). (c) simulated 
dissipation (see equation (2)) as a function of the auxiliary beam’s y-
coordinate (ya). Values corresponding to eight discrete geometries were 
calculated here with t = 6.67 µm, ws = 7 µm, w = 42 µm, L = 132 µm, R = 116 µm 
and Lund = 27 µm—the line is simply a guide for the eye. The FEm-calculated 
mode shapes correspond to the three extreme examples of the resonator 
design, from left to right: auxiliary beams near the resonator centre 
(ya = 13 µm), beams near the ideal nodal position (ya = 37.4 µm) and beams 
attached at the ends (ya = 62.5 µm). The theoretical clamping loss limit 1/Qth 
for nodal positioning is always finite with the geometry closest to this position 
(indicated by the arrow) yielding 1/Qth≈2×10 − 7.
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the only free parameter used in the model of the free–free mode 
is a constant offset of 1/Q* = 2.41×10 − 5. Although the exact nature 
of the corresponding dissipation mechanism is currently unknown, 
we assume that it arises from material losses in the resonator  
epi-structure.

It should be noted that most commercially viable resonators 
operate in a regime where TED dominates, and in some instances, 
intuitive understandings of the support-induced damping3,8,40 have 
allowed for its suppression below other limiting damping mecha-
nisms. Nonetheless, if current efforts to minimize TED in such 
structures at room temperature are successful28, support-induced 
losses may pose the next challenge for maximizing Q. On the other 
hand, in fundamental research thrusts employing high vacuum and 
cryogenic systems, support-induced losses can become a dominant 
factor7,41. For example, the free–free designs explored here provide 
a route to minimize support-induced losses for application in opto-
mechanical experiments utilizing the micromechanical resonator as 
an end mirror in a high-finesse Fabry–Perot cavity46. To gauge the 
relevance of our ‘free–free’ micromirror design in this context, it 
is instructive to compare the fundamental limit at nodal position-
ing Qth≈5×106 and the maximum measured Q-value of 5.1×104  
with the corresponding results for the fundamental flexural mode 
of a clamped bridge of comparable dimensions. In fact, for the  
typical dimensions considered, as required for integration in a 

high-performance Fabry–Pérot cavity, we obtain a theoretical limit 
Qc − c~103 in line with previous measurements on monocrystalline 
DBR optomechanical structures47.

Given the scale-independent nature of support-induced losses, 
our solver can be applied equally well to nanoscale mechani-
cal devices. We find that for a recent demonstration of a nano-
mechanical doubly clamped beam coupled to a superconducting  
qubit at milliKelvin temperatures48, the measured values for the  
resonator’s maximum Q (≈6×104) can be understood solely via the 
phonon-tunnelling loss model (beam geometry of 0.3×0.18×6 µm; 
M. LaHaye, private communication), which predicts a Q-value  
of 5.4×104, in excellent agreement with the experimental value. In 
addition, the phonon-tunnelling framework is also applicable to 
prestressed nanoresonators such as Si3N4 strings34 or membranes 
and has recently been experimentally verified for the latter49.

In conclusion, we have developed an efficient FEM-enabled  
numerical method for predicting the support-induced dissipation in  
microscale and nanoscale mechanical resonators. In combination with  
existing models for other relevant damping channels (for example, 
fluidic and TED27,28), our ‘phonon-tunnelling’ solver makes further 
strides towards accurate prediction of Q. Furthermore, we provide a 
stringent experimental test of the corresponding theory using resona-
tors engineered to isolate support-induced losses. Our results unam-
biguously demonstrate that phonon-tunnelling plays a significant 

Figure 2 | Characterization of the completed free–free resonators. (a) optical micrograph of the 5×5 mm chip containing the batch-fabricated 
microresonators as well as an electron micrograph highlighting a single suspended structure; the scale bar in this image is 20 µm. (b) simulated (left) and 
measured (right) eigenfrequencies as a function of the auxiliary beam y-coordinate. The measured values (discrete points) show excellent agreement 
with the simulated data set, albeit with a slight offset dependent on the parity of the mode. The fitting lines in the right plot correspond to a mean 
frequency offset of 262 kHz for the symmetric (sym) free–free modes and 89 kHz for the neighbouring antisymmetric (antisym) modes (inset images 
show  the FEm-derived mode shapes). Lower panels—examples of the fitting techniques utilized for Q-value extraction including: (c) Lorentzian fitting 
of the free–free resonance (captured on a spectrum analyser) for a device with R = 116 µm and ya = 29 µm resulting in Q = 4.5×104 and (d) ringdown fitting 
of the same device using linear regression of the natural log of the mean square of the free-ringdown signal captured single-shot with a high-speed 
oscilloscope yielding Q = 4.46×104. The inset includes the residuals to the linear fit showing an excellent agreement with the expected exponential decay.
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role in the mechanical dissipation of these devices and illustrate the 
strong geometric character of this fundamental damping mechanism. 
Finally, we note that as the weak-coupling approximation underly-
ing our treatment is more general than the condition of small contact  
area, our numerical solver can in principle be extended to other  
relevant scenarios such as phononic-band-gap structures41.

Methods
Numerical calculation of Q-values. To derive equation (2) from equation (1),  
we adopt for the free elastic half-space45, modelling the decoupled support,  
a decomposition into eigenmodes u rq n, , ,

( ) ( )q g
0  (with n = 0,  ± 1,  ± 2, …) that have 

axial symmetry with respect to z (see Fig. 1). These are related to the plane  
wave eigenmodes u rq ,

( ) ( )g
0  by 

  
u r i u rq n

n
n

q q, , ,
( )

( , , ),
( )( ) ( ) ( )q g p

p j
q j gp

j0 0

2
= −

−∫ d ei
 

(4)

where we adopt spherical coordinates for the incident wavevector 
q q q( , , ) (sin cos ,sin sin ,cos )q j q j q j q=  (θ = π/2 for γ = s and θ ≤ π /2 otherwise). 

We note that for the suspended plate geometry considered, the appropriate resona-
tor mode satisfies uR

′ = 0  at the contact S so that we need to evaluate the second 
term in equation (1).

The thin-plate condition tR directly allows us, given the flexural nature of the 
modes of interest, to neglect stresses at S that are parallel to the substrate, with the 
possible exception of bending-moment contributions45—this also applies if there 
are small transverse dimensions comparable to t. However, the bending-moment 
contributions also become negligible in the limit t/R→0, as can be shown by using: 
(i) that, given ωRcγ/R γ, we can Taylor expand u rq n, , ,

( ) ( )q g
0  at the origin in the 

integral over S, (ii) that we can assume relevant stresses to be concentrated around 
the ends of the auxiliary beams so that the bending moments at S are mostly ori-
ented along y, (iii) the reflection symmetries with respect to the y − z (operator  
R̂x

) and x − z (operator R̂y ) planes and (iv) that, barring interference effects, 
these bending-moment contributions are at most of relative order24 kRt—here 
k E tR R R R= ( / ) //12 1 4r w  is the resonant wavevector for the propagation of 

flexural waves. Thus, we find that for all mode types other than  −  +  (antisymmet-
ric (symmetric) with respect to R̂x  (R̂y )), the correction associated to neglecting 
the bending moments scales as ∆Q/Q~(kRt)2, whereas for  −  +  modes, it scales 
as ∆Q/Q~(kRt) (note that L~R). In turn, we find that the relative error in using 
equation (1), arising from the weak-coupling approximation, scales in this case 
as ∆Q/Q~|∆ωR|/ωR~|∆I(ωR)|/2ωR~(kRt)3, where the phonon-tunnelling-induced fre-
quency shift ∆ωR is approximated by ∆ I I( )/ ( / ) ( )/w p w w wR d2 1

0
≈ −

∞
∫  where I(ω) 

is the environmental spectrum24.
Hence, we can assume d RS z⋅s ′  ˆ and neglect the variation of u rq n, , ,

( ) ( )q g
0  

across the thickness t (that is, the z-dependence at S), so that the support modes 
only enter into equation (1) through u rq n z z, , , ;

( ) ( ) |q g
0

0= . To determine the latter, we  
adopt cylindrical coordinates r r r z= ( cos , sin , )f f , exploit that reflection at the  
free surface preserves the tangential component of the wavevector implying 

 
u r u eq q z z q q z

rq
( , , ), ;

( )
( , , ), ;
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q f j0
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0 0
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and use the Bessel integral 
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 Thus from equations (4–6), we obtain 
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where we have also used that uq q z( , , ), ;
( ) ( )q j g
0 0  is independent of ϕ. Subsequently, 

substitution of equation (7) into equation (1) leads to equation (2) after  
using that here 
  

q
n

dq q∫ ∑∫ ∫→ −( ) +
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where dγ is the dimensionality (that is, dγ = 3 for γ≠s and dγ = 2 for γ = s), performing 
the substitution ω = cγq (for each γ ), and integrating over ω. Finally, substitution 
of the explicit expressions for the plane wave eigenmodes u rq ,

( ) ( )g
0  (see for example 
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Figure 3 | Compiled dissipation results displaying excellent agreement 
between the theory and experiment. (a,b) Comparison of experimental 
measurements at T = 20 K, with theoretical dissipation values for the free–
free mode of resonators with measured central dimensions of 132×42 µm 
and radius R = 116 µm and R = 131 µm, respectively. Panel (a) includes sEm 
images of the three extreme designs (for R=116 µm) with overlaid CAD 
models of the resonator geometry. Both ringdown and spectrally-derived 
data are included, with values averaged over two nominally identical chips 
(error bars denote a confidence interval of 99%). We include both raw 
simulated data as well as fitted data (continuous lines are a guide to the 
eye) incorporating a constant offset 1/Q* = 2.41×10 − 5. For the effective 
substrate, we utilize the mechanical properties of Ti, which is the main 
constituent of the positioning system on which the chips are mounted 
(ρ = 4,540 kg m − 3, Es = 116 GPa and νs = 0.34). (c) measured dissipation for 
the antisymmetric (antisym) mode of the same structures exhibiting a lack 
of geometric dependence.
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structure as obtained from a weighted average between the relative content of 
GaAs and AlAs (46.37% GaAs/53.63% AlAs). The corresponding parameters are: 
C11 = 119.6 GPa, C12 = 55.5 GPa, C44 = 59.1 GPa and ρR = 4,483 kg m − 3. The resonator 
axes are aligned along 〈100〉 (zinc-blende structure). Note that we ignore the 6° 
misorientation of the germanium substrate, as we have checked that it has a negli-
gible impact (error of 0.3%) on the simulated frequency response of the resonators. 
Finally, as a non-trivial check, we have applied our numerical method to bridge 
geometries with no undercut for which a simple analytic expression is valid in  
the limit of large aspect ratio (see Supplementary Method).

Epitaxial material structure and resonator fabrication procedure. The layer 
structure for our high reflectivity resonators consists of 40.5 periods of alternating 
quarter-wave GaAs (high index) and AlAs (low index) grown lattice-matched 
to an off-cut monocrystalline germanium substrate. The ideal total thickness of 
the heterostructure is 6,857.6 nm, with individual layer thicknesses of 77.6 and 
91.9 nm for the GaAs and AlAs, respectively, yielding a nominal peak reflectivity 
at 1,064 nm, as with our previous optomechanics experiments47. With this design, 
the germanium substrate enables the use of a high-selectivity gas-phase etching 
procedure, based on the noble-gas halide XeF2, to rapidly and selectively undercut 
the underlying germanium substrate. Thus, we realize a free-standing epitaxial 
Bragg mirror via a simple and fast-turnaround fabrication procedure. The details 
of both the epitaxial material design and microfabrication procedure are covered 
in ref. 50.

Measurement technique. To characterize the frequency response of our micro-
resonators, we utilize a custom-built optical fibre interferometer featuring a con-
tinuous flow 4He cryostat as the sample chamber51. High-sensitivity displacement 
resolution is achieved in this system via optical homodyne interferometry. Cryo-
genic testing of these devices is necessitated because of the limitations imposed by 
TED at room temperature. Estimation of the magnitude of TED is possible using 
the analytical and finite element models developed previously26–28, which predict 
a Q-value of ~4,000 for the current DBR composition and thickness at 1.8 MHz 
and 300 K—consistent with performed measurements. To avoid TED, our cryostat 
enables interrogation down to 20 K (resulting in an estimated TED limited Q of 
9.9×108); the minimum temperature is currently limited by the large view-port 
above the sample stage. Additionally, this system is capable of vacuum levels down 
to 2.5×10 − 7 mbar at cryogenic temperatures, removing any additional damping 
induced by fluidic or squeeze film effects29–31. The eigenmodes of the resonator are 
excited by driving a high-frequency (10 MHz) piezo disc soldered to a copper stage 
in thermal contact with the cold finger. For spectral characterization, the piezo  
disc is driven with white noise and the resonator frequency response is recorded  
on a spectrum analyser. For the free-ringdown measurements, the decay of a  
resonantly excited device is recorded in a single shot on a high-speed oscilloscope 
(see Supplementary Method for further details). 
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Appendix A in ref. 24) and ν = cosθ into the definition of  u qn, ( , )g ns  allows us  
to obtain: 
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where we use the ratio α≡(ct/cl)2 = (1 − 2νs)/2(1 − νs) for the supports’ material  
(νs is the corresponding Poisson ratio). In turn, ξ(α) is the ratio of the propagation 
velocity of surface waves to ct, which is always less than unity45, and 
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The sum in equation (2) can be reduced to a sum over n≥0 by noting that 
J − n(x) = ( − 1)nJn(x) and that as the resonator mode is real, the linear stress Fourier 
components satisfy f fz n z n, ,

*
− = . Furthermore, the length of the central resona-

tor L is comparable to the radius R, and we focus on low-lying resonances of the 
suspended structure so that the aforementioned condition ωRcγ/R γ is always 
satisfied. This implies | / |, ,Σ Σg g g g  u um n 1 for m > n and Σg gun, ≠ 0, which  
can be understood by considering the behaviour of the Bessel functions for small 
arguments. Thus, we find that in equation (2), the sum over the index n is domi-
nated by the first non-vanishing term as determined by the reflection symmetries 
R̂x,R̂y . The latter also imply (n = 0, 1, 2, …): 
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where the resonator mode of type α,β satisfies ˆ , ,Rxs asa b a b
R R=  and  

ˆ , ,Rys bsa b a b
R R= . To efficiently extract the above from the FEM simulation, we 

convert them into volume integrals using an adequate Gaussian weight so that, for 
example, for a fully symmetric mode, we have 
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where we again use cylindrical coordinates and V denotes the resonator volume. In 
addition, we exploit that the reflection symmetries naturally allow to perform the 
FEM simulation on a single quadrant. Thus, numerical evaluation can be conven-
iently performed using a fixed a* and a mesh size M such that (V/4 M)1/3 < a*t. We 
have checked the convergence and estimate the numerical error to be of order 5%.

Numerical simulations of the resonator mode are performed with the aid of 
COMSOL multiphysics. Accurate three-dimensional CAD models representing the 
resonator geometry are generated using Solidworks (matched with high-quality 
scanning electron microscope images as described in Supplementary Method),  
and the bidirectional interface between the two programs is exploited to perform  
a parametric sweep of the auxiliary beam contact position for determining the 
pertinent information about the relevant mode, namely its eigenfrequency, linear 
stress Fourier components fz,n and normalization constant. In this instance, a single 
CAD file is used with a global variable incorporated to control the lateral position 
of the auxiliary beams with respect to the centre of the central resonator. We use 
for the mechanical properties of our single-crystal resonators an anisotropic  
material model incorporating the elastic stiffness matrix for the epitaxial  

(8)(8)

ˆ , ,Rys bsa b a b
R R=

ˆ , ,Rys bsa b a b
R R=

ˆ , ,Rys bsa b a b
R R= ˆ , ,Rys bsa b a b

R R=

ˆ , ,Rys bsa b a b
R R=

ˆ , ,Rys bsa b a b
R R=

ˆ , ,Rys bsa b a b
R R=ˆ , ,Rys bsa b a b

R R=
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Supplementary Methods

A: Numerical verification with bridge geometries

Our generic symmetric inscribed structure includes the particular case of bridge geome-

tries with no undercut for which a simple variant of the method used in Ref. [24] allows us to

obtain an analytical approximation for the Q-value of the fundamental mode Qc−c valid for

3πt/2L� 1. Our scenario differs from the one considered in Ref. [24] in two ways: (i) there

is now a single half-space support instead of two and (ii) its free surface is oriented parallel

to the beam’s axis instead of perpendicular to it. Thus, for the fundamental flexural mode

as the resonant wavelength in the support is much larger than the bridge length L, to lowest

order in (t/L)2 the stresses at both clamping points add coherently so that the overall effect

of (i) is to double the dissipation. In turn (ii) implies that the roles of the dimensionless

displacements for compression and bending are interchanged so that the dissipation of the

vertical bending modes are further corrected by a factor of ũc/ũv. Thus if we consider that

the support and resonator are made of the same material characterized by a Poisson ratio

ν = 1/3 we obtain

Qc−c =
0.92L5

π4wt4
. (S1)

Hence as a non-trivial check we have applied our numerical method to the fundamental mode

of clamped-clamped square beam monolithic geometries with no undercut, ν = 1/3, and

aspect ratios L/t ranging from 15 to 40 and compared the results with those corresponding

to Eq. (S1). We find a discrepancy ε that decreases monotonically from 20% to 4% which is

consistent with the rough heuristic estimate ε ∼ 3πt/2L.

B: Analysis of Completed Devices

The resonator layout we have designed features 16 devices on chip, each with identical

central resonator dimensions (nominally 130 × 40µm2). The 16 devices are divided into

two sub-units featuring different outer radii (116 um and 131 um respectively), which are

included in order to probe the effects of the auxiliary beam length on the dissipation. Finally,

each of the two subsets contains 8 variations of the auxiliary beam contact position, varying

from the center to the extreme outer edge of the central beam, with a single design chosen
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to match the theoretically calculated node position (auxiliary beam positions of 13, 21, 29,

37.4, 44, 50, 56, and finally, 62.5µm). To ensure a thorough investigation of each geometry,

two separate but nominally identical chips are measured.

Central to this study is an accurate determination of the geometric properties of the

optomechanical resonators. Thus, we employ a variety of analytical techniques for the

characterization of these devices as detailed below. We find that the actual thickness of the

DBR is 6.67µm, the central resonator dimensions are enlarged by 1µm at each free edge as

compared with the nominal design values, and finally, Lund is destructively measured post

characterization and found to be on average 27µm. In turn the microfabrication procedure

detailed Ref. [50] entails h ∼ Lund.

Thickness: In order to accurately determine the physical thickness of the resonators, we

rely on measurements of the DBR reflectance spectrum. This procedure begins by recording

the reflectance of the mirror stack (on wafer) as a function of wavelength via spectropho-

tometry. A transmission matrix model is then used to fit the measured high-reflectivity

stop-band; the individual layer thicknesses are adjusted assuming constant (fixed percent-

age) growth errors for the constituent films. Note that the wavelength of peak reflectivity

of the mirror is highly sensitive to variations in layer thickness. In fact for this structure, a

1 nm variation in the individual layer thickness shifts the wavelength of peak reflectivity by

approximately 10 nm. Relying on accurate knowledge of the room temperature refractive

index of the binary films, we realize a minimum wavelength resolution of ±1nm; thus, the

thickness accuracy is better than 20 nm for the DBR. From this analysis we have determined

that the actual thickness of the DBR is slightly shorter than desired at 6.67µm with a peak

on-wafer reflectance near 1060 nm at room temperature (ideal target thickness of 6.86µm,

corresponding to a peak wavelength of 1078 nm at 300 K). The thickness is further verified

by scanning probe measurement of the DBR following the anisotropic etch of the epitaxial

layers. The profilometer provides an upper limit to the DBR thickness, as additional etching

arising from surface sputtering of the Ge substrate is unavoidable. These measurements yield

a conservative thickness estimate between 6.7µm and 6.8µm, verifying the more accurate

spectrophotometer derived value.

Resonator Dimensions: The lateral dimensions of the resonators are determined by ob-

taining high resolution micrographs of each individual structure in a field emission scanning

electron microscope (Zeiss Gemini). Image analysis shows that the lateral dimensions of the
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resonators have expanded by +1µm on each edge, with the following results: reducing the

nominal external support diameter by 2± 0.3µm, increasing the auxiliary beam width from

5µm to 7 ± 0.3µm, and increasing the overall lateral dimensions of the resonator by 2µm

to 132±0.3µm and 42±0.3µm. Additionally, a combination of process non-idealities (non-

optimized exposure or development times) during lithography result in the formation of a

3-µm-radius fillet of at each corner of the device. These results are fed back into the CAD

model of the resonator in order to generate the true resonator geometry for simulation. An

overlay of the simulated resonator geometry and micrographs obtained via scanning electron

microscopy can be seen in Fig. 3(a). Note that the resonators used in this study were not

subject to potentially damaging energetic processes beyond the required plasma etching,

including both SEM and FIB (as described below), until all dissipation measurements had

been completed.

Undercut: In order to perform measurements of the support undercut distance, a dual

beam SEM/FIB (Zeiss Gemini) is utilized to mill a window through the DBR and expose

the underlying germanium. Because the GaAs/AlAs heterostructure is opaque to visible

light, it is not possible to simply view the undercut distance with an optical microscope.

This method allows for an accurate determination of the lateral etch distance below the

supports. Image analysis yields an average distance of 27 µm for the structures. Note that

multiple chips of identical geometry were released simultaneously in a single process run, in

order to ensure repeatability in the resonator dimensions. Selected measurements across the

chip verify that the undercut length is constant for the resonators studied here (measured

values fall between 26.5 and 28.2µm).

C: Q-value and frequency measurements

We utilize two options for driving and characterizing the resonance of interest: (i) by

applying broadband white noise to the piezo disc for extraction of the mechanical frequency

spectrum (simultaneously driving all modes within the system bandwidth), and (ii) by excit-

ing a desired mode resonantly with a sinusoidal voltage input, abruptly shutting off the drive,

and then recording the free-ringdown of the structure. In the first method, Q is extracted

by measuring the width of the resonance of interest, while in the latter, the single-shot

amplitude decay time of the ringing structure provides the damping rate of the resonator.
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For data analysis, we employ a combination of spectral fitting with a Lorentzian function,

with linear-regression-based fitting of a decaying exponential in the case of the ringdown

data. The envelope of the raw ringdown signal is created by first squaring the dataset (in

order to utilize both the positive and negative components of the decaying sinusoid) and

then averaging over a 10-20 period window (it is important to note that a typical ringdown

dataset contains more than 1.5 × 103 periods of oscillation). Finally, to linearize the data,

we simply take the natural logarithm of the mean-squared amplitude. In contrast to the

single-shot ringdown datasets, the spectral measurements require multiple averages for a

clean signal (typically ∼ 50 − 100). The Lorentzian fit parameters include the amplitude,

center frequency, and full width at half maximum (FWHM), with the latter two used for

calculating Q from their ratio. The fast Fourier transform (FFT) of the ringdown signal

can also be used to determine the eigenfrequency, while the 1/e decay time τ allows for the

extraction of the resonator quality factor via the relation τ = Q/πf .

Mode identification is realized by comparing the resonator frequency response as a func-

tion of geometry with the simulated eigenfrequency values. The modes are further distin-

guished by the relative geometric-induced nonlinearity at resonance. The desired free-free

mode remains linear to the limits of our piezoelectric-based inertial drive. On the other

hand, the neighboring anti-symmetric mode exhibits a significant hardening spring Duff-

ing response and can readily be driven into a bistable regime as shown in Supplementary

Figure S1. Care is taken to drive this mode below the threshold for bistability to avoid

complications in dissipation extraction. This marked difference in the responses of these

two types of modes is consistent with their free-free versus clamped-clamped nature4.

To each dissipation mechanism there is an associated dispersive effect induced by the

interactions with the corresponding environment that shifts the resonant frequencies. For a

given resonance (ωR) this shift can be positive or negative depending on whether the envi-

ronmental spectrum is dominated, respectively, by modes with frequencies lower or higher

than ωR. In turn, the two types of modes have markedly different surface-to-volume ratios,

larger for the antisymmetric resonance and smaller for the symmetric one; exhibit a positive

shift which is substantially larger for the symmetric mode, and a “background” dissipation

that is larger for the antisymmetric one (cf. Fig. 3). These facts can be reconciled by assum-

ing that two materials-related dissipation mechanisms contribute to the “background”: a

bulk one leading to an overall positive shift which is the same for both types of modes, and a
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surface one leading to a smaller negative shift that naturally scales as the surface-to-volume

ratio. In turn, theoretical estimates for the phonon-tunneling induced shift yield a negligible

negative shift that should also follow the mode profile leading to a significant modulation

that is not observed. Likewise, mode coupling between the different resonators would also

be incompatible with a constant shift.

Currently, the nature of the background dissipation mechanism in these resonators is

unknown. It is important to point out that these devices are grown using a heteroepitaxial

materials platform: in this implementation the GaAs/AlAs DBR is grown on an off-cut

germanium substrate50. The advantage of the germanium substrate is that it significantly

simplifies processing (enabling the use of a gas-phase release process via XeF2), resulting

in an extremely high yield and excellent geometric control — ideal characteristics for our

dissipation study. Unfortunately, as discussed in Ref. [50], the materials quality is compro-

mised in this implementation due to the slight lattice mismatch between Ge and GaAs/AlAs.

Here misfit dislocations and residual anti-phase boundaries in the bulk of the resonator lead

not only to a reduced surface quality (with an RMS roughness value exceeding 30Å), but

also an enhanced background dissipation level. In comparison, we have fabricated nominally

identical resonators (i.e. utilizing the same lithographic mask) from a homoepitaxial AlGaAs

Bragg stack grown on a binary GaAs substrate51. The improved surface roughness measured

for this structure (∼ 6Å) points towards a significantly reduced defect density; this is also

supported by the increased maximum quality factor, Q, which is measured to be > 8× 104

at cryogenic temperatures51.

We have additionally investigated the temperature dependence of the quality factor,

albeit over a limited range. As mentioned in the Methods Section, at room temperature

thermoelastic (TED) damping limits the achievable Q to < 104. In Supplementary Figure S2

we include the temperature dependence of Q in the range 20−80 K for a resonator dominated

by the background dissipation given that the auxiliary beams are placed near the nodal

positions. By 80 K, the theoretical TED limited Q exceeds 5× 105, at this point the device

becomes limited by the aforementioned background damping channel. As the temperature

decreases, the device exhibits a reduced dissipation with a local maximum in Q near 50 K,

potentially corresponding to the zero-crossing of the thermal expansion in GaAs as previously

observed in Ref. [52].The large viewport in our cryostat as well as the thermally-insulating

piezoelectric disc, limit the minimum realizable temperature to ∼ 15 K. It appears that with
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further cooling it would be possible to realize even higher quality factors.
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5 A Toolset for Quantum
Optomechanical Phonon Control

In this work [46] we introduced a method to control the motion of a mechanical
resonator at the single phonon level. Specifically, we theoretically developed a tech-
nique to allow for an arbitrary superposition of phonon subtraction, addition, and
the identity operation, which provides considerable versatility for mechanical non-
Gaussian quantum state engineering and continuous variable quantum information
applications. Utilising this tool, we introduced the concept of a quantum state or-
thogonalizer Υ⊥ that generates a state that is orthogonal to the input state, i.e.
〈ψ|Υ⊥|ψ〉 = 0.

Experimentally, quanta subtraction and addition processes have been used to
great success on traveling light fields, with leading examples being superposition
state preparation via photon subtraction from squeezed vacuum [76, 77] and non-
classical state preparation by photon addition [78]. Also, optical phonon addition
and subtraction has recently been experimentally performed to a bulk lattice vibra-
tional mode in diamond [48, 49]. Our theoretical proposal brings these operations to
the field of quantum cavity optomechanics. Applying such operations to a stationary
mechanical system has the advantage that one can more easily repeat the process to
coherently and controllably perform multi-quanta operations. Using this fact, our
work also introduced a protocol how to transform a known initial pure state into
any other desired target pure state, i.e. quantum state transformation.

My specific contributions to this project were: in late 2008, during discussion
with Markus Aspelmeyer in Vienna, I conceived how to perform phonon addition
and subtraction; then during discussion with Myungshik Kim at Imperial College
London we realized that these operations can be performed in a coherent super-
position and Myungshik had the insight that such a superposition could be used
for quantum state orthogonalization; I later conceived the arbitrary quantum state
transformation protocol; and I played the leading role performing the calculations,
preparing the manuscript, and working through the peer review process.

This work uses the long pulse interaction regime and thus, although this project
was completed during the latter stages of my PhD, this chapter bridges the contin-
uous and pulsed regimes, see Fig. 1.2.
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We introduce a method that can orthogonalize any pure continuous variable quantum state, i.e.,

generate a state jc?i from jc i where hc jc?i ¼ 0, which does not require significant a priori knowledge

of the input state. We illustrate how to achieve orthogonalization using the Jaynes-Cummings or

beamsplitter interaction, which permits realization in a number of physical systems. Furthermore, we

demonstrate how to orthogonalize the motional state of a mechanical oscillator in a cavity optomechanics

context by developing a set of coherent phonon level operations. As the mechanical oscillator is a

stationary system, such operations can be performed at multiple times providing considerable versatility

for quantum state engineering applications. Utilizing this, we additionally introduce a method how to

transform any known pure state into any desired target state.

DOI: 10.1103/PhysRevLett.110.010504 PACS numbers: 03.67.�a, 03.65.Ta, 42.50.Ct, 42.50.Dv

A qubit basis formed by a pair of orthogonal quantum
states is central to quantum information processing.
Currently there is considerable effort towards implement-
ing quantum information processing with two-level sys-
tems. For such systems, an intriguing and fundamental fact
is that quantum mechanics prohibits the construction of a
universal-NOT gate that would produce an orthogonal qubit
from any input qubit [1]. This quantum mechanical prop-
erty is closely related to the quantum no-cloning theorem
[2]; however, faithful cloning can be achieved probabilisti-
cally provided that the set of input states is linearly inde-
pendent [3]. Similarly, using such an input set of states, it
is possible to construct a probabilistic NOT operation for
qubits [4]. A qubit basis may, however, also be formed
using two orthogonal continuous variable states. Thus far,
efforts to construct such a basis have mainly concentrated
on using a superposition of coherent states [5]. Also,
recently a qubit basis was realized using photon subtrac-
tion from squeezed vacuum [6].

In this Letter, we introduce a method for quantum state
orthogonalization for continuous variable quantum sys-
tems. Notably, the method only requires knowing the angle
# made by the state’s mean amplitude hbi ¼ jhbijei# ,
where b is the annihilation operator, and hence the scheme
is magnitude independent. Furthermore, our method is
readily extended to generate an arbitrary superposition of
the initial state and an orthogonal counterpart to allow the
encoding of quantum information. The orthogonalizer
�? / be�i� þ byei� is formed by a linear superposition

of the bosonic annihilation and creation operators, and
generates a state orthogonal to any pure state jc i, i.e.,
hc j�?jc i ¼ 0, when � ¼ # þ �=2. Thus, �? is a quad-
rature operator that is perpendicular to # [7].
The orthogonalizer can be realized with interactions that

are available inmany physical systems; e.g., to realize�? in
cavity quantum electrodynamics [8,9], one prepares an input
qubit in the stateAjgi þ Bjeiwhich thenweakly interacts via
the Jaynes-Cummings Hamiltonian H=@ ¼ �i�ðb�þ �
by��Þ, where� is the coupling rate and�þ;� are the raising

and lowering operators. A controllably weighted superposi-
tion of addition and subtraction is achieved by projective
measurement of the qubit onto B�jgi � A�jei following the
interaction. The measurement operator is then �QED ¼
ðhgjB � hejAÞ½1 � ��ðb�þ � by��Þ�ðAjgi þ BjeiÞ ¼
��ðA2b þ B2byÞ, see Fig. 1(a). With this interaction, opti-
cal [8] or microwave [9] fields in a cavity, or the motional
state of trapped ions [10] can be orthogonalized by appropri-
ately setting A and B. Similarly, a pure state of a traveling
optical field can be orthogonalized by interaction on a beam
splitter and thenmeasurement of an optical qubit comprising
a superposition of zero and one photons [11], see Fig. 1(b).
As these interactions are common throughout quantum op-
tics, adaptations of this orthogonalization protocol to other
physical systems can be readily achieved.Moreover, a differ-
ent scheme to perform a superposition of photon subtraction
and additionwas recently proposed [12], which could also be
used to realize state orthogonalization.
The tools we introduce for orthogonalization can also

be utilized for quantum state engineering applications.
Currently, single quanta manipulation techniques per-
formed on traveling light fields [13] have prepared super-
position states via photon subtraction [14], observed
the bosonic commutation relation [15], and engineered
arbitrary quantum states up to the two-photon level [16].
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Much progress has also been made for arbitrary quantum
state preparation of the motion of trapped ions and micro-
wave field states [17]. Asmechanical elements are now also
considered for quantum applications, experimental tools
are required for the coherent manipulation of phononic
modes. Examples of progress in this direction are the obser-
vation of low thermal excitation [18–20], steps towards
single-phononmanipulation by coupling to a superconduct-
ing phase qubit [18], strong coupling [21], and mechanical
mode thermometry via sideband asymmetry [22]. Also,
recently the lattice vibrations of two diamonds were
entangled by coherently distributing one quanta across the
two vibrational modes [23].

Coherent phonon manipulation.—In this sectionwedem-
onstrate how to perform an arbitrary coherent superposition
of phonon subtraction, addition, and the identity operation to

a mechanical oscillator using cavity optomechanics. The
prototypical optomechanical system is a Fabry-Perot cavity
where one of the mirrors is sufficiently compliant that the
reflection of light can modify the mirror momentum via
radiation pressure. Concurrently, the motion of the moving
mirror modulates the optical phase and generates sidebands.
To realize phonon subtraction (addition) one can optically
drive an optomechanical cavity at the red (blue) sideband,
and then perform single photon detection on the field scat-
tered onto cavity resonance. Provided that the sidebands are
well resolved and the optical phase shifts are small allowing
linearization, the red-detuned drive gives rise to a beamsplit-
ter interaction and the blue-detuned drive gives rise to a
two-mode-squeezing interaction. This linearization proce-
dure was discussed for optomechanics in Ref. [24], where
quantum state transfer between light and mechanics was
proposed. Drive on the blue sideband has also been consid-
ered for continuous-variable teleportation from light to the
mechanics [25]. Some other applications utilizing these
sidebands are reviewed in Ref. [26].
Our proposed setup for coherent phonon control uses

two orthogonally polarized optical fields to interact with
themechanical resonator, see Fig. 1(c).We consider a pulsed
protocol where the conditional mechanical state following
the pulsed interaction and measurement is determined. The
optomechanical Hamiltonian [27] for the two independent
optical modes in the optical rotating frame at the drive
frequencies is

H

@
¼!Mb

ybþX

i

½�ia
y
i ai�g0a

y
i aiðbþbyÞ�þHd

@
; (1)

where Hd=@ ¼ P
i

ffiffiffiffiffiffiffiffiffiffiffi
2�Ni

p ðE�
i ai þ Eia

y
i Þ is the drive term,

the subscripts label the two orthogonally polarized modes
i 2 fh; vg, and a (b) is the cavity (mechanical) annihilation
operator. (!M mechanical angular frequency; � optical
detuning; g0 optomechanical coupling rate; � cavity ampli-
tude decay rate; N photon number per pulse; E drive ampli-
tude, where

R
dtjEj2 ¼ 1.) Neglecting mechanical damping

and input noise, as the interaction time can be made shorter
than the decoherence time scale,we compute the dynamics in
a similar manner to Ref. [24]. The mechanical evolution
is computed via the Hamiltonian, and the cavity field is

computed via the Langevin equation _ai ¼ �iai½�i �
g0ðbþ byÞ� þ ffiffiffiffiffiffi

2�
p ðain;i � i

ffiffiffiffiffiffi
Ni

p
EiÞ � �ai, where ain is

the optical input noise. We enter a displaced frame to follow
the mean of the operators, i.e., ai !

ffiffiffiffiffiffi
Ni

p
�i þ ai and b !

�þ b. Provided that the intracavity intensity varies much
slower than the mechanical frequency, the mechanical mean
amplitude is � ’ g0

!M

P
iNij�ij2. This displacement, due to

the optical steady state intensity, shifts the mean cavity
length. Introducing�0

i ¼ �i � 2g0�, the intracavity ampli-

tude is �i ’ �i
ffiffiffiffiffiffi
2�

p
Ei=ði�0

i þ �Þ, where it has been
assumed that E varies much slower than�. In the proceeding
discussion this change to the detuning is neglected as the
effect is small and can be readily compensated by frequency

FIG. 1 (color). A continuous variable pure state can be orthogo-
nalized bycouplingwith a qubit via the Jaynes-Cummings (a) or the
beamsplitter (b) interaction and then measurement of the qubit.
Alternatively, simultaneously using the beamsplitter and two-
mode-squeezing interactions can be used for state orthogonaliza-
tion. This can be realized with cavity optomechanics to coherently
manipulate the quantum state of motion of a mechanical oscillator
(c). (PBS, polarizing beam splitter; FR, Faraday rotator). One of
the drive fields is blue detuned and gives rise to a phonon-number-
increasing process, whereas the other is red detuned and gives rise
to a phonon-number-reducing process. This is shown in (d); a
truncated energy level diagram of the optomechanical system
where the left kets describe the intracavity photon number and
the right kets describe the mechanical phonon number. Each drive
generates a sideband at cavity resonance, which is shown in (e), an
example optomechanical spectrum. Thus, after erasure of the
polarization information, photon detection at the cavity resonance
frequency causes the mechanical element to undergo a coherent
superposition of phonon addition and subtraction.
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stabilization and/or appropriate predetuning. We turn now to
the noise operators, and for brevity discuss the dynamics for a
single drive frequency. We enter the mechanical and optical
rotating frames via a ! ae�i�t and b ! be�i!Mt, respec-
tively. Assuming � � !M, we make the rotating-wave ap-

proximation and obtain _a ¼ ig0
ffiffiffiffi
N

p
�bð ;yÞ þ ffiffiffiffiffiffi

2�
p

ain � �a

and _b ¼ ig0
ffiffiffiffi
N

p
�ð�; Það ;yÞ, where the brackets in the super-

scripts are used to describe the two detunings we consider

(� ¼ þ!M, � ¼ �!M), respectively. For g0
ffiffiffiffi
N

p
� � �,

we use the adiabatic solution a ’ i g0�
ffiffiffiffi
N

p
�bð ;yÞ þ � , where

�ðtÞ ¼ ffiffiffiffiffiffi
2�

p R
t
�1 dt0e��ðt�t0Þainðt0Þ. The photon number

scattered by the optomechanical interaction is n ¼R
�
0 dta

y
outaout, which has been approximated to include de-

tection up to the drive duration � � ��1, and aout ¼ffiffiffiffiffiffi
2�

p
a� ain is the cavity output. For the h polarization

driving the beamsplitter interaction (� ¼ þ!M), hnhi¼
ð1�e�2Gh�Þhby0b0i, where Gi ¼ g2

0

� Nij�ij2 and b0 is the

mechanical field operator at the beginning of the interaction,
time t ¼ 0. For thev polarization (� ¼ �!M), which drives

the two-mode-squeezing interaction hnvi ¼ ðe2Gv� � 1Þ�
hb0by0 i.Wenowconsiderweakdrive such that the probability

of more than one quanta being scattered is negligible. In this
case, from the scattered photon number expectations, we
introduce an effective beamsplitter parameter 	

2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2Gh�

p
and an effective squeezing parameter r ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2Gv�
p

[28], and

we describe the interaction using the effective unitaryUeff ¼
1þ ð	2 ayhbe�i� � rayvbyei’ � H:c:Þ [29]. Here, � and ’

are the beamsplitter and two-mode-squeezer phases, respec-
tively, which can be controlled via the phase of the drives.
The fields at cavity resonance generated viaUeff are spatially
combined and filtered from the drive fields. Next, to control
the weighting of identity in the operation, a weak displace-
ment of amplitude 
 is performed [30]. Doing this to the

h polarization, Ueff!1þð	2ayhbe�i��rayvbyei’þ
ayh�
H:c:Þ. At this point the polarization of a scattered photon
reveals how the phonon number changed. The field then
passes through a wave plate that performs ah ! 1ffiffi

2
p ðah þ

avÞ and av! 1ffiffi
2

p ðav�ahÞ, and is then incident upon a polar-
izing beam splitter to conceal this information and allow for a
quantum superposition. Conditioned on an h photon detec-

tion, the resultingmechanical state is�out
M ¼�h�

in
M�

y
h=PrðhÞ,

where PrðhÞ ¼ TrMð�y
h�h�MÞ is the probability of photon

detection and

�h ¼ 1ffiffiffi
2

p ð	2be�i� þ rbyei’ þ
Þ: (2)

A v photon detection gives a measurement operator of the
same form, however, with a � phase shift on the identity.

Applications.—�h provides a method to prepare and
manipulate quantum coherence between the mechanical
energy levels. Setting 
 ¼ 0, 	2 ¼ r, and �¼’¼#þ�=2

we obtain the quantum state orthogonalizer �? ¼
r½be�ið#þ�=2Þ þ byeið#þ�=2Þ�= ffiffiffi

2
p ¼ rPð#Þ

M . This quadrature

is depicted in Fig. 2 as is its action on a displaced squeezed
state. Such orthogonalization is heralded by the detection

of a single photon that occurs with probability PrðhÞ ¼
r2hðPð#Þ

M Þ2i, which is greater than zero for all physical states
[31]. We also note here that for states with zero phase space
mean, i.e., hc jbjc i ¼ hc jbyjc i ¼ 0, one can see that
quanta subtraction or addition to the state jc i yields a state
which is orthogonal to jc i. Addition alone can orthogonalize
all such states with a heralding probability of r2ðhbybi þ
1Þ=2, whereas subtraction alone has a heralding probability
of ð	2Þ2hbybi=2. We thus further note that the operations

b� � and by � �� can orthogonalize all pure states with
hbi ¼ �. These operationsmay be simpler to experimentally
implement; however, they are less versatile, as complete
information of the state’s mean is required as opposed to
the partial knowledge required by�?. Returning to Eq. (2),
one can now form a superposition of orthogonalization and

identity�h ¼ 
=
ffiffiffi
2

p þ�? to prepare a superposition of the
initial state and an orthogonal state, i.e., a qubit, see Fig. 2(d).
A mechanical resonator is a stationary system that

allows �h to be conveniently performed at multiple times.
Moreover, as the superposition weightings can be changed
between applications, this provides considerable versatility
for quantum state engineering and quantum control proto-
cols. For instance, one could realize the protocol by Dakna
et al. [32] to synthesize an arbitrary mechanical motional
state. As another application, here we show that with N
applications of �h, one can transform the state jc i ¼P

N
n c njni into any target state j�i ¼ P

N
n �njni, i.e., arbi-

trary quantum state transformation. Our method uses only
the subtraction and identity components of �h [33] and
proceeds in a manner similar to Ref. [32] and generalizes
the scheme presented in Ref. [34]. Specifically, by apply-

ing � ¼ Q
N
j¼1ð
j þ �jbÞ=

ffiffiffi
2

p ¼ P
N
i¼0 Cib

i, where � ¼
	
2 e

�i�, to the state jc i one can obtain j�i provided that

the set of coefficients Ci is such thatP
N�n
i¼0 Cic iþn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðiþ nÞ!=n!p ¼ �n. Determining Ci can be

readily achieved via matrix inversion, and a solution exists

FIG. 2 (color). An equally weighted superposition of quanta
addition and subtraction can orthogonalize any pure quantum
state. (a) The orthogonalizer �? is a quadrature perpendicular to
the angle # made by the input state’s mean in phase space. The
Wigner function (blue-cyan, positive; red-yellow, negative;
larger ticks mark the origin and they increment by unity) of a
displaced squeezed state (b), which has been orthogonalized (c).
A superposition of an initial state with an orthogonal state may
be prepared to create a qubit from any initial pure state. In
(d) such a superposition is shown by action with �? þ
j
je�i�=2=

ffiffiffi
2

p
, where j
j ¼ r.
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provided that c N � 0 [29]. For the initial state having
hbi ¼ 0, the probability of successful quantum state trans-
formation is

Q
N
i¼1½ð	2Þ2i hbybii þ j
ij2�=2, where hbybii is

the phonon number expectation prior to the ith pulse. This
probability may seem low; however, the experiment can
readily be performed with a megahertz repetition rate using
a �100 MHz mechanical oscillator, and thus a practical
number of heralding events can be attained in a reasonable
time. Also, if the target state has a larger (smaller) dimen-
sion than the initial state, one can apply creation (annihi-
lation) as many times as necessary in order to make the
dimensions the same prior to using �.

An experimental approach.—There are numerous real-
izations of optomechanical systems and much progress has
been made that can be built upon; the most pertinent being
Refs. [23,35] where phonon addition and subtraction were
realized as separate operations. Combining these opera-
tions into a coherent superposition can be achieved with
the setup in Fig. 1(c). Here we present an alternative route
to fulfill the requirements of our proposed scheme using a
mechanical element with a bulk-acoustic-wave vibration
that forms an end mirror of a Fabry-Perot cavity [36]. This
configuration has the advantage that the cavity decay can
be controlled independently of the mechanical properties,
and such vibrational modes offer high mechanical reso-
nance frequencies [37]. Moreover, simultaneous high re-
flectivity and high mechanical quality can be realized with
multilayer crystalline reflectors [38]. A 40
m diameter
and several micrometer thick mirror has a mechanical
resonance !M=2� ¼ 200 MHz with a 20 ng effective
mass. With a finesse of 5� 104, to achieve resolved side-
band operation, i.e., !M=� ¼ 10, a 75
m cavity length
can be used. For a drive laser with wavelength 1064 nm and
a pulse duration of 100 mechanical periods, an optical
power during the pulse of 1.3 mW is needed to achieve
r2 ¼ 0:01. During the interaction the mechanical resonator
also interacts with its thermal environment. To neglect the
effects of environmental coupling we require that  ¼
ð �n=QÞð�!M=2�Þ � 1, where �n is the mechanical phonon
occupation in thermal equilibrium andQ is the mechanical
quality factor. For Q ¼ 105 and a 100 mK bath, which can
be readily achieved using dilution refrigeration,  ’ 10�2.
Following the interaction the sideband needs to be sepa-
rated from the drive field(s) prior to photon detection. For
higher mechanical frequencies the filtering requirements
simplify. However, it is possible to achieve sufficient filter-
ing even for a 200 MHz mechanical frequency using an
optical displacement and spectral filtering [39]. Realizing
the displacement with optical fiber-based components,
which provide excellent spatial mode matching, one can
achieve an interferometric visibility of 99.99% that
suppresses the drive by 104. The remaining drive can
be further reduced by filtering with a cavity that has the
same resonance frequency as the optomechanical cavity.
To achieve a drive transmission 102 times smaller than

sideband transmission, a filter cavity amplitude decay
rate of 2 kHz is required [40]. We would also like to
emphasize that our scheme is robust against optical loss,
and inefficient detection as an optomechanically scattered
photon that goes undetected does not trigger�h; hence, the
primary effect of loss is to merely reduce the heralding
probability [41]. To characterize the mechanical motional
state, as the parameter regime considered here is suited
for the beamsplitter interaction, quantum state transfer of
the mechanical motional state to the light [24,42] can be
performed followed by optical homodyne tomography.
This interaction following action(s) with �h to the sta-
tionary mechanical element, also provides a route to pre-
pare optical continuous variable qubits or to synthesize
arbitrary quantum states of a traveling optical field.
Conclusions.—A superposition of quanta addition and

subtraction can orthogonalize any pure continuous-variable
quantum state with known angle made by the mean of the
state’s amplitude in phase space. Such a superposition in
combination with a controllable amount of the identity
operation provides extensive control for quantum state engi-
neering and quantum information applications. For station-
ary systems it is convenient to apply this tool multiple times,
which we have utilized to illustrate how to perform arbitrary
quantum state transformation. As the interactions we have
used are available in many of the facets of quantum optics
[43], the tools we introduce can be realized in numerous
physical systems.
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A. Determining the Effective Unitary Interaction

Central to our discussion in the main text is the mea-
surement operator Υh , which is used to describe the
operation to the mechanical resonator via the optome-
chanical interaction and then single photon detection.
Υh = 〈1, 0|Ueff |0, 0〉, where the ket is the initial state of
light at the cavity resonance for the two orthogonal polar-
izations used, the bra describes a h-polarization photon
detection with no v photon detection, and Ueff is the ef-
fective optomechanical interaction including the manipu-
lations to the optical field made after interaction with the
mechanical resonator. In this supplementary we provide
a discussion how Ueff is obtained.

The time evolutions described in Eq. (2) of the main
text are generated by the beam-splitter and two-mode-
squeezing effective interaction Hamiltonians. In the for-
mer case a accumulates correlation with b and in the lat-
ter case a accumulates correlation with b†. For vacuum
on the input of mode a, the expectation of the number
operator in the output of mode a for the beam-splitter
and two-mode-squeezing interactions are

sin2 θ
2 〈b†b〉, and sinh2r 〈bb†〉,

respectively, where sin2( θ2 ) is the (intensity) reflectivity
of the beam-splitter and r is the squeezing parameter.
In the optomechanical scheme we have considered, the
mean photon number scattered by the optomechanical
interaction for the beam-splitter and two-mode-squeezing
interactions are

〈nh〉 = (1−e−2Ghτ )〈b†0b0〉, and 〈nv〉 = (e2Gvτ −1)〈b0b†0〉,

respectively. For small θ
2 , r, and Gτ we then have

θ
2 =

√
2Ghτ , and r =

√
2Gvτ ,

for the effective optomechanical beam-splitter and two-
mode-squeezing parameters, respectively. It is noted
here that computing the mean number output in mode
b can also be performed to yield these parameters. As
both the beam-splitter and two-mode-squeezing pro-
cesses are driven simultaneously, we expect that the
effective optomechanical unitary take the form Ueff =
exp

[
− i

~ (HBS +HSQ)τ
]
, where HBS ∝ a†b + ab† and

HSQ ∝ ab + a†b† are the beam-splitter and two-mode-
squeezing Hamiltonians respectively. To first order in

the beam-splitter and squeezing parameters the effective
unitary describing the cavity optomechanical interaction
is then

Ueff = 1 + ( θ2a
†
hbe
−iφ − ra†vb†eiϕ −H.c.).

Finally, to obtain the effective unitary used for the mea-
surement operator, the polarization manipulations to the
optical fields, as discussed in the main text, must be per-
formed.

B. Arbitrary Quantum State Transformation

In the main text we introduced a scheme for arbitrary
quantum state transformation that generates a target
state from a known input state. Here we further dis-
cuss our protocol and provide a specific quantum state
transformation example.

The protocol works as follows. For a known initial
state

|ψ〉 =
N∑

n=0

ψn |n〉 ,

which has no excitation beyond N quanta (or has been
approximated by truncation at this level), any target
state of the form

|φ〉 =
N∑

n=0

φn |n〉 ,

can be generated by applying a controllably weighted su-
perposition of identity and subtraction N times, i.e.

Φ =
N∏

j=1

(µj + νjb)/
√

2 =
N∑

i=0

Cib
i. (B.1)

Applying this operation to the initial state we have

Φ |ψ〉 =
N∑

i=0

N∑

k=0

Ciψk

√
k!

(k − i)! |k − i〉 ,

where we have used b |n〉 =
√
n |n− 1〉.

The operation Φ is a non-unitary process and the un-
normalized matrix elements of the state after application
of Φ are

〈n|Φ |ψ〉 =
N−n∑

i=0

Ci ψi+n

√
(i+ n)!
n!

. (B.2)



2

The target state |φ〉 is reached when 〈n|Φ |ψ〉 = φn.
Provided that ψN 6= 0 a set of coefficients Ci fulfilling
〈n|Φ |ψ〉 = φn can be determined via matrix inversion.
Once a set of coefficients Ci is determined, a set of com-
plex coefficients µj and νj that satisfy (B.1) can also
readily be determined via matrix inversion.

We now provide a specific example of a quantum state
transformation. Starting with an initial state |ψ〉 = |4〉
we wish to reach the target state |φ〉 = (|1〉 + |4〉)/

√
2.

This target state can be reached with three applications
of identity and subtraction. Solving (B.2) we find that
C0 =

√
24C3 and C1 = C2 = 0. As identity has been

used with each application we set µ = 1 and obtain

ν1 + ν2 + ν3 = 0,
ν1ν2 + ν1ν3 + ν2ν3 = 0,

ν1ν2ν3

√
24 = 1.

These equations can be readily solved exactly to pro-
vide the relative amplitudes between identity and sub-
traction to produce the target state. Numerical approxi-
mations to the solutions and the intermediate states dur-
ing the quantum state transformation process are shown
in Fig. B.1.

FIG. B.1: An example quantum state transformation. Shown are Wigner functions (blue-cyan: positive, red-yellow: negative,
larger ticks mark the origin and they increment by unity) of an initial Fock state (left) to a target state (right). The target
state is reached by a sequence of three operations of a controllably weighted superposition of identity and subtraction. The
relative amplitude between identity and subtraction for each step is shown.





6 Pulsed Quantum Optomechanics

An important tool in the field of quantum optics is quantum state tomography
(QST). When implemented, such a tool provides an experimentalist the ability to
completely characterize a quantum state and thus explore the state’s coherences
and complimentary properties. QST has been utilized to characterize quantum me-
chanical behaviour in a number of physical systems such as light [32, 79], molecular
vibration [80], trapped ions [81], and spin ensembles [82], however is yet to be ex-
perimentally realized for mechanical resonators.

In this theoretical work [83] we proposed a method for QST of a mechanical
resonator utilizing a pulsed optomechanical interaction with optical pulses much
shorter in duration than a mechanical period of motion. During the short interac-
tion the mechanical position is essentially constant and so the back-action associated
with the optomechanical interaction, i.e. the momentum transfer to the mechan-
ical oscillator, does not evolve into mechanical position noise thus allowing for a
back-action-evading measurement of the mechanical position. Such a measurement
is not constrained by the standard quantum limit and so mechanical position fea-
tures smaller than the ground state width can then be observed, which is vital for
quantum state tomography. After mechanical state preparation at a known time,
our QST protocol is to perform a pulsed position measurement after a controlled
time of mechanical free harmonic evolution to sample that quadrature. This is then
repeated numerous times for a large set of mechanical quadratures. Histograms of
the measurement outcomes are then constructed and this set of histograms can then
be used to determine a phase-space (quasi-)probability distribution by a numerical
inversion process such as the inverse Radon transformation.

Performing a pulsed measurement of the mechanical position can significantly
reduce the uncertainty of this observable below the width of a mechanical thermal
state or even the ground state of motion. The conditional mechanical state, i.e. the
state after updating the mechanical probability distribution, is therefore a squeezed
state of motion that is an asymmetric Gaussian in phase-space with a narrow position
width and large momentum width. The increase in knowledge of the mechanical
state also results in a reduction in the entropy, which, as explained in the publication
below, can be conveniently expressed in terms of effective thermal occupation. In
addition to QST, we considered utilizing the pulsed measurements to conditionally
prepare a low entropy squeezed state of motion and then a subsequent pulse can be
used for QST, therefore providing a complete framework.

65



6 Pulsed Quantum Optomechanics

My specific contributions to this project were: in mid 2008 I conceived the re-
search direction; I realised that a pulsed interaction could conditionally prepare a
mechanical squeezed state of motion and I conceived the protocol for QST; I per-
formed the calculations together with Igor Pikovski; and refined our ideas together
with all co-authors. This was my first theoretical project and I tremendously enjoyed
learning many of the mathematical tools of quantum optics.

To the best of our knowledge this work is the first quantum optomechanical pro-
tocol that uses a short optical pulses as defined in Fig. 1.2. This theoretical proposal
formed the backbone for three further theoretical projects and we also completed a
proof-of-principle experiment, which form the following four chapters.
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Studying mechanical resonators via radiation pressure offers a
rich avenue for the exploration of quantum mechanical behavior
in a macroscopic regime. However, quantum state preparation
and especially quantum state reconstruction of mechanical oscilla-
tors remains a significant challenge. Here we propose a scheme
to realize quantum state tomography, squeezing, and state purifi-
cation of a mechanical resonator using short optical pulses. The
scheme presented allows observation of mechanical quantum fea-
tures despite preparation from a thermal state and is shown to be
experimentally feasible using optical microcavities. Our framework
thus provides a promising means to explore the quantum nature of
massive mechanical oscillators and can be applied to other systems
such as trapped ions.

optomechanics ∣ quantum measurement ∣ squeezed states

Coherent quantum mechanical phenomena, such as entangle-
ment and superposition, are not apparent in the macroscopic

realm. It is currently held that on large scales quantum mechan-
ical behavior is masked by decoherence (1) or that quantum
mechanical laws may even require modification (2–5). Despite
substantial experimental advances, see for example ref. 6, probing
this regime remains extremely challenging. Recently however, it
has been proposed to utilize the precision and control of quantum
optical fields in order to investigate the quantum nature of
massive mechanical resonators by means of the radiation-pres-
sure interaction (7–13). Quantum state preparation and the
ability to probe the dynamics of mechanical oscillators, the most
rigorous method being quantum state tomography, are essential
for such investigations. These important elements have been
experimentally realized for various quantum systems, e.g., light
(14, 15), trapped ions (16, 17), atomic ensemble spin (18, 19),
and intracavity microwave fields (20). By contrast, an experiment
realizing both quantum state preparation and tomography of
a mechanical resonator is yet to be achieved. Also, schemes
that can probe quantum features without full tomography [e.g.,
(9, 10, 21)] are similarly challenging. In nanoelectromechanics,
cooling of resonator motion and preparation of the ground state
have been observed (22, 23) but quantum state reconstruction
(24) remains outstanding. In cavity optomechanics significant
experimental progress has been made towards quantum state
control over mechanical resonators (11–13), which includes clas-
sical phase-space monitoring (25, 26), laser cooling close to the
ground state (27, 28), and low noise continuous measurement of
mechanically induced phase fluctuations (29–31). Still, quantum
state preparation is technically difficult primarily due to thermal
bath coupling and weak radiation-pressure interaction strength,
and quantum state reconstruction remains little explored. Thus
far, a common theme in proposals for mechanical state recon-
struction is state transfer to and then read-out of an auxillary
quantum system (32–35). This technique is a technically demand-
ing approach and remains a challenge.

In this paper we introduce an optomechanical scheme that
provides direct access to all the mechanical quadratures in order
to obtain full knowledge about the quantum state of mechanical
motion. This quadrature access is achieved by observing the

distribution of phase noise of strong pulses of light at various
times throughout a mechanical period. We show that the same
experimental tools used for quantum state tomography can also
be used for squeezed state preparation and state purification,
which thus provides a complete experimental framework. Our
scheme does not require “cooling via damping” (11–13) and
can be performed within a single mechanical cycle thus signifi-
cantly relaxing the technical requirements to minimize thermal
contributions from the environment.

Using a pulsed interaction that is very short compared to the
period of an oscillator to provide a back-action-evading measure-
ment of position was introduced in the seminal contributions of
Braginsky and coworkers (36, 37), where schemes for sensitive
force detection were developed. In our work, the quantum nature
of a mechanical resonator is itself the central object of inves-
tigation. Here, the pulsed interaction is used to provide an ex-
perimentally feasible means to generate and fully reconstruct
quantum states of mechanical motion. The proposed experimen-
tal setup is shown in Fig. 1. A pulse of duration much less than the
mechanical period is incident upon an optomechanical Fabry-
Pérot cavity which we model as being single sided. Due to the
entanglement generated during the radiation-pressure interac-
tion, the optical phase becomes correlated with the mechanical
position while the optical intensity imparts momentum to the
mechanical oscillator. Time-domain homodyne detection (15) is
then used to determine the phase of the field emerging from the
cavity, and thus to obtain a measurement of the mechanical posi-
tion. For each pulse, the measurement outcome PL is recorded,
which for Gaussian optical states has mean and variance

hPLi ¼ χhX in
Mi; σ2PL

¼ σ2
Pin
L
þ χ2σ2

X in
M
; [1]

respectively. X in
M is the mechanical position quadrature immedi-

ately prior to the interaction and Pin
L describes the input phase of

light. The position measurement strength χ is an important para-
meter in this work as it quantifies the scaling of the mechanical
position information onto the light field. A derivation of Eq. 1
including an optimization of χ by determining the input pulse
envelope to gain the largest cavity enhancement is provided in
the Appendix.

In order to describe and quantify the pulse interaction and
measurement we use the nonunitary operator Υ that determines
the new mechanical state via ρoutM ∝ ΥρinMΥ†. This operator is
mechanical state independent and can be determined from the
probability density of measurement outcomes

PrðPLÞ ¼ TrMðΥ†ΥρinMÞ: [2]

For pure optical input, it takes the form
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Υ ¼ ðπ2σ2
Pin
L
Þ−1

4 exp
�
iΩXM −

ðPL − χXMÞ2
4σ2

Pin
L

�
; [3]

where Ω quantifies the momentum transfer to the mechanics due
to the pulse mean photon number. Υ can be readily understood
by considering its action on a mechanical position wavefunction.
This operator selectively narrows the wavefunction to a width
scaling with χ−2 about a position which depends upon the mea-
surement outcome. Moreover, the quantum non-demolition-like
nature of Υ allows for back-action-evading measurements of XM ,
i.e., the back-action noise imparted by the quantummeasurement
process occurs in the momentum quadrature only*. Other meth-
ods, such as the continuous variational measurement scheme
(38), which has recently been considered for gravitational-wave
detectors (39, 40), also allow for back-action-evading measure-
ments. However, using short pulses offers a technically simpler
route for quantum state tomography and is readily implementa-
ble, as will be discussed below.

In the following, we consider coherent drive i.e., σ2
Pin
L
¼ 1∕2.

We first address the important challenge of how to experimen-
tally determine the motional quantum state of a mechanical
resonator. We then discuss how such a measurement can be used
for quantum state preparation and finally we provide details for
a physical implementation and analyze a thorough list of poten-
tial experimental limitations.

Mechanical Quantum State Tomography
Of vital importance to any experiment aiming to explore quantum
mechanical phenomena is a means to measure coherences and
complementary properties of the quantum system. Such measure-
ment is best achieved by complete quantum state tomography,
which despite being an important quantum optical tool has
received very little attention for mechanical resonators†. Any
measurement made on a single realization of a quantum state
cannot yield sufficient information to characterize that quantum
state. The essence of quantum state tomography is to make mea-
surements of a specific set of observables over an ensemble of
identically prepared realizations. The set is such that the mea-
surement results provide sufficient information for the quantum
state to be uniquely determined. One such method is to measure
the marginals hX je−iθnρeiθnjXi, where n is the number operator,
for all phase-space angles θ, see refs. 14, 15, 42 and e.g., ref. 43.

Our scheme provides a means for precision measurement
of the mechanical quadrature marginals, thus allowing the me-
chanical quantum state to be determined. Specifically, given a
mechanical state ρinM , harmonic evolution of angle θ ¼ ωMt pro-
vides access to all the quadratures of this mechanical quantum
state which can then be measured by a subsequent pulse. Thus,
reconstruction of any mechanical quantum state can be per-
formed. The optical phase distribution Eq. 2, including this
harmonic evolution, becomes

PrðPLÞ ¼
Z

dXMffiffiffi
π

p e−ðPL−χXM Þ2hXM je−iθnρinMeiθnjXMi; [4]

which is a convolution between the mechanical marginal of inter-
est and a kernel that is dependent upon χ and the quantum phase
noise of light. The effect of the convolution is to broaden the
marginals and to smooth any features present.

Let us consider the specific example of a mechanical resonator
in a superposition of two coherent states, i.e., jψδi ∝ jiδi þ j − iδi.
The XM marginal of this mechanical Schrödinger-cat state
contains oscillations on a scale smaller than the ground state.
The convolution scales the amplitude of these oscillations by
expð− 2δ2

χ2þ1
Þ and thus for small χ they become difficult to resolve

in the optical phase noise distribution. Shown in Fig. 2 are
marginals of the mechanical state jψδi and the optical phase
distributions that would be observed according to Eq. 4. Scaling
the phase distribution by using the variable PL∕χ provides an
approximation to the mechanical marginals, which becomes more
accurate with increasing χ and may even show the interference
features in a superposition state. Indeed, the limiting case of in-
finite χ corresponds to a von-Neumann projective measurement
of the mechanical position, such that the distribution obtained
for PL∕χ becomes identical to the mechanical marginals. How-
ever, the mechanical marginals can be recovered even for small
measurement strength χ. This recovery is achieved as follows:
First, by fixing the length of the cavity the optical phase distribu-
tion can be observed without contributions from mechanical
position fluctuations. This rigidity allows measurement of the
convolution kernel for a particular χ (determined by the proper-

A B

Fig. 1. (A) Schematic of the optical setup to achieve measurement based
quantum state engineering and quantum state tomography of a mechanical
resonator. An incident pulse (in) resonantly drives an optomechanical cavity,
where the intracavity field a accumulates phase with the position quadrature
XM of a mechanical oscillator. The field emerges from the cavity (out) and
balanced homodyne detection is used to measure the optical phase with a
local oscillator pulse (LO) shaped to maximize the measurement of the me-
chanical position. (B) Scaled envelopes of the optimal input pulse, its corre-
sponding intracavity field and the optimal local oscillator as computed in the
Appendix.

Fig. 2. The scheme presented here provides an experimentally feasible
means to obtain direct access to the marginals of a quantum state of a me-
chanical resonator. Shown are complementary quadrature marginals of the
mechanical coherent state superposition jψδi ∝ jiδi þ j − iδi, for δ ¼ 1.5 (blue
dashed lines with fill, plotted with XM). The mechanical ground state is
shown for comparison in gray dashed lines. The two population components
are seen for the quadrature angle θ ¼ π∕2 and the quantum interference
fringes for θ ¼ 0. A coherent optical pulse is used to probe the mechanical
state where its phase quadrature becomes the convolution between the
intrinsic phase noise, with variance scaling with χ−2, and the mechanical
marginal (red solid lines, plotted with PL∕χ where χ ¼ 2), see Eq. 4. The con-
volution kernel can be observed by using a fixed length cavity, shown in the
θ ¼ 0 plot (red dashed line with fill, fixed length with XM ¼ −4), which allows
for accurate recovery of the mechanical marginals even for a weak measure-
ment strength χ.

*No mechanical position noise is added as our measurement operator commutes with the
mechanical position. This is because the mechanical evolution can be neglected during
the short optomechanical interaction.

†During the submission process of this manuscript a scheme to perform tomography of the
motional state of a trapped particle using a time-of-flight expansion was proposed (41).
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ties of the mechanical resonator of interest, cavity geometry, and
pulse strength, see Eq. 14). With χ and the kernel known one
can then perform deconvolution to determine the mechanical
marginals. The performance of such a deconvolution is limited
by experimental noise in the calibration of χ and the measure-
ment of PrðPLÞ. However, it is expected that these quantities
can be accurately measured as quantum noise limited detection
is readily achieved.

Mechanical Quantum State Engineering and
Characterization
We now discuss how the measurement affects the mechanical
state. First, we consider Υ acting on a mechanical coherent state
jβi. By casting the exponent of Υ in a normal ordered form, one
can show that the resulting mechanical state, which is conditioned
on measurement outcome PL, is NβΥjβi ¼ SðrÞDðμβÞj0i. Here,
Nβ is a β-dependent normalization, D is the displacement opera-
tor for μβ ¼ ð ffiffiffi

2
p

β þ iΩþ χPLÞ∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðχ2 þ 1Þ

p
, and S is the squeez-

ing operator, which yields the position width 2σ2XM
¼ e−2r ¼

ðχ2 þ 1Þ−1.
In most experimental situations, the initial mechanical state

is in a thermal state ρn̄ ¼ 1
πn̄ ∫ d

2βe−jβj2∕n̄jβihβj, quantified by its
average phonon occupation number n̄. The marginals of the
resulting state after the action of Υ are

hXM je−iθnΥρn̄Υ†eiθnjXMi ∝ exp
�
−
ðXM − hXθ

MiÞ2
2σ2θ

�
; [5]

where

hXθ
Mi ¼

χPL

χ2 þ 1
1þ2n̄

cosðθÞ − Ω sinðθÞ;

σ2θ ¼
1

2

cos2ðθÞ
χ2 þ 1

1þ2n̄

þ 1

2
ðχ2 þ 1þ 2n̄Þ sin2ðθÞ [6]

are the mean and variance of the resulting conditional state,
respectively. For large initial occupation (provided thermal fluc-
tuations are negligible during the short interaction), the resultant
position quadrature of the mechanics has mean hXθ¼0

M i≃ PL∕χ
and width 2σ2θ¼0 ≃ χ−2. Thus, squeezing in the XM quadrature
below the ground state is obtained when χ > 1 and is independent
of the initial thermal occupation of the mechanics. We have thus
shown how the remarkable behavior of quantum measurement
(also used in refs. 18–20, 44–47) can be experimentally applied
to a mechanical resonator for quantum state preparation.

There is currently significant interest in the preparation of
low entropy states of mechanical resonators as a starting point
for quantum experiments, e.g., refs. 22, 23, 27, 28. The two main
methods being pursued in optomechanics (11–13) are “passive
cooling” which requires the stable operation of a (usually cryo-
genically compatible) high-finesse cavity, and “active cooling”
which requires precision measurement and feedback. Closer in
spirit to the latter, our pulsed measurement scheme provides a
third method to realize high-purity states of the mechanical re-
sonator. We quantify the state purity after measurement via an
effective mechanical thermal occupation n̄eff , which we define

through 1þ 2n̄eff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4σ2θ¼0σ

2
θ¼π∕2

q
. When acting on an initial

thermal state, the measurement dramatically reduces uncertainty
in the XM quadrature, but leaves the thermal noise in the PM

quadrature unchanged: use of Eq. 6 for n̄ ≫ 1 yields n̄ð1Þeff≃ffiffiffiffiffiffiffiffiffiffiffiffi
n̄∕2χ2

p
. The purity can be further improved by a second pulse,

which is maximized for pulse separation θ ¼ ωMt ¼ π∕2, where
the initial uncertainty in the momentum becomes the uncertainty
in position. Such a sequence of pulses‡ is represented in Fig. 3,
where the resulting state was obtained akin to Eq. 5. The effective
occupation of the final state after two pulses is

n̄ð2Þeff ≃
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

χ4

s
− 1

�
; [7]

which is also independent of initial occupation. For χ > 1, n̄ð2Þeff
is well below unity and therefore this scheme can be used as
an alternative to “cooling via damping” for mechanical state pur-
ification.

Following state preparation, one can use a subsequent “read-
out” pulse after an angle of mechanical free evolution θ to per-
form tomography. During state preparation however, the random
measurement outcomes will result in random mechanical means
Eq. 6. This randomness can be overcome by recording and utiliz-
ing the measurement outcomes. One can achieve unconditional
state preparation with use of appropriate displacement prior to
the read-out pulse. Or, use postselection to analyze states pre-
pared within a certain window. Alternatively, one may com-
pensate during data analysis by appropriately adjusting each
measurement outcome obtained during read-out. We now look
at the latter option and consider a Gaussian mechanical state pre-
pared by a prior pulsed measurement. The position distribution
has variance σ2 to be characterized and has a known mean hX ðpÞ

M i,
which is dependent upon the random measurement outcome.
The read-out pulse will then have the distribution PrðPLÞ ∝
exp½ð−ðPL − χhX ðpÞ

M iÞ2Þ∕ð1þ χ22σ2Þ�. For each read-out pulse,
by taking PLjp ¼ PL − χhX ðpÞ

M i one can obtain the conditional
variance σ2PL jp for all θ to characterize the noise of the prepared
Gaussian state. We note that this concept of compensating for
a random but known mean can also be used to characterize
non-Gaussian states.

Experimental Feasibility
We now provide a route for experimental implementation, dis-
cussing potential limitations and an experimentally feasible para-
meter regime. To ensure that the interaction time be much less
than mechanical time scales the cavity decay rate κ must be much
larger than the mechanical frequency. To this end, we consider
the use of optical microcavities operating at λ ¼ 1;064 nm, length
4λ and finesse of 7,000, which have an amplitude decay rate
κ∕2π ≃ 2.5 GHz. Such short cavity devices incorporating a micro-

Fig. 3. Wigner functions of the mechanical state (above) at different times
(indicated by arrows) during the experimental protocol (below). From left:
Starting with an initial thermal state n̄ ¼ 10, (this is chosen to ensure the fig-
ure dimensions are reasonable,) a pulsed measurement is made with χ ¼ 1.5
and outcome Pð1Þ

L ¼ 4χ obtained, which yields an XM quadrature squeezed
state. The mechanical state evolves into a PM quadrature squeezed state fol-
lowing free harmonic evolution of 1∕4 of a mechanical period prior to a sec-
ond pulse with outcome Pð2Þ

L ¼ −3χ yielding the high-purity mechanical
squeezed state. The effective thermal occupation of the mechanical states
during the protocol is indicated. The final state’s occupation can be reduced
below unity even for large initial occupation, see Eq. 7 of the main text.
Dashed lines indicate the 2σ-widths and the dotted lines show the ground
state (n̄ ¼ 0) for comparative purposes. The displacement Ω is not shown.

‡We note that strong squeezing of an oscillator can also be achieved by using rapid
modifications to the potential at quarter period intervals (48). However, we would like
to emphasize that the squeezing we are discussing here does not arise from a parametric
process, see e.g., ref. 49, rather it is due to the nonunitary action of measurement.
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mechanical element as one of the cavity mirrors have previously
been fabricated for tunable optical filters, vertical-cavity surface-
emitting lasers and amplifiers (see for example ref. 50), but are
yet to be considered for quantum optomechanical applications.
Typically, these devices employ plane-parallel geometries, which
places a severe constraint on the minimum lateral dimensions of
the suspended mirror structure in order to minimize diffraction
losses (51). Geometries using curved mirrors are required to re-
duce diffraction losses for the practical realization of high-finesse
cavities. Presently, all realizations use a curved suspended mirror,
see e.g., refs. 52, 53. However, in order to allow for enhanced
freedom in the construction of the mechanical resonator, parti-
cularly with respect to the development of ultra-low loss mechan-
ical devices (54), a flat suspended mirror is desired. In Fig. 4 our
proposed fabrication procedure for such a device is shown. The
small-mode-volume cavity considered here provides the band-
width necessary to accommodate the short optical pulses and
additionally offers a large optomechanical coupling rate. One
technical challenge associated with these microcavities is fabri-
cation with sufficient tolerance to achieve the desired optical re-
sonance (under the assumption of a limited range of working
wavelength), however this can be overcome by incorporating
electrically controlled tunability of the cavity length (50, 52, 53).

For a mechanical resonator with eigenfrequency ωM∕2π ¼
500 kHz and effective mass m ¼ 10 ng, the mechanical ground-
state size is x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ∕mωM

p
≃ 1.8 fm and optomechanical cou-

pling proceeds at g0∕2π ¼ ωcðx0∕
ffiffiffi
2

p
LÞ∕2π ≃ 86 kHz, where ωc

is the mean cavity frequency and L is the mean cavity length. The
primary limitation in measurement strength is the optical inten-
sity that can be homodyned before photodetection begins to sa-
turate. Using pulses of mean photon numberNp ¼ 108, which can
be homodyned, yields Ω≃ 104 for the mean momentum transfer§

and χ ≃ 1.5. For this χ, the action of a single pulse on a large ther-
mal state reduces the mechanical variance to σ2XM

≃ 0.2, i.e., less
than half the width of the ground state. With a second pulse after
mechanical evolution the effective occupation [7] is n̄ð2Þeff ≃ 0.05.

In order to observe mechanical squeezing, i.e., σ2XM
< 1∕2, the

conditional variance must satisfy σ2PL jp < σ2
Pin
L
þ χ2∕2, where addi-

tional noise sources that do not affect the mechanical state, e.g.,
detector noise, can be subsumed into σ2

Pin
L
. It is therefore neces-

sary to have an accurate experimental calibration of χ to quantify
the mechanical width. (Similarly, Ω must also be accurately
known to determine the conditional mean, see Eq. 6). This cali-
bration can be performed in the laboratory as follows: For a fixed
length cavity and a given pulse intensity, the length of the cavity is
adjusted by a known amount (by a calibrated piezo for example)
and the proportionality between the homodyne measurement
outcomes and the cavity length is determined. The pulses are
then applied to a mechanical resonator and χ is determined with
knowledge of x0 of the resonator. With χ known Ω can then also
be measured by observing the displacement of the mechanical
state after one-quarter of a period.

Finally we discuss practical limitations. Firstly, finite mechan-
ical evolution during the interaction decreases the back-action-
evading nature of the measurement, which is described in the
Appendix. Such evolution is not expected to be a severe limitation
in the proposed implementation considered here as ωM∕κ ≃
10−4. Secondly, the optical measurement efficiency η, affected
by optical loss, inefficient detection, and mode mismatch, yields
a reduced measurement strength χ →

ffiffiffi
η

p
χ. And thirdly, in many

situations coupling to other mechanical vibrational modes is
expected. This coupling contributes to the measurement out-

comes and yields a spurious broadening of the tomographic
results for the mode of interest. In practice however, one can
minimize these contributions by engineering mechanical devices
with high effective masses for the undesired modes and tailoring
the intensity profile of the optical spot to have good overlap with
a particular vibrational profile (55).

Coupling to a Thermal Bath
For our tomography scheme the mechanical quantum state must
not be significantly perturbed during the time scale ω−1

M . To
estimate the effect of the thermal bath following state prepara-
tion we consider weak and linear coupling to a Markovian bath of
harmonic oscillators. For this model, assuming no initial correla-
tions between the mechanics and the bath, the rethermalization
scales with n̄γM , where γM is the mechanical damping rate. It
follows that an initially squeezed variance ðχ > 1Þ will increase
to 1∕2 on a time scale

τ ¼ Q
n̄ωM

1

2

�
1 −

1

χ2

�
: [8]

A

B

C

D

E

F

G

H

Fig. 4. Our proposed design and fabrication procedure for high-finesse op-
tomechanical microcavities: Using microcavities provides optomechanical
coupling rates many orders of magnitude larger than current millimeter
or centimeter length scale implementations of optomechanical Fabry-Pérot
cavities and can provide sufficient radiation-pressure interaction to resolve
the small scale quantum properties of the mechanical resonator. (A) Cross-
sectional view with a quarter of the device removed. Uppermost (colored
green) is the mechanical resonator supported by auxiliary beams as was con-
sidered in ref. 54. The optical field is injected into the device from below
through a transparent handle (colored blue) and the curved rigid input mir-
ror (colored pink) and then resonates in the vacuum-gap between this and
the mechanical device before being retroreflected. The design is a layered
structure, fabricated in the following steps: (B) The base consists of a
high-reflectivity distributed Bragg reflector (DBR) and an etch stop layer de-
posited on a suitable handle substrate. (C) First, a sacrificial film is deposited
atop the DBR. (D) Next, a microlens pattern is transferred into the sacrificial
layer through a reflow and reactive ion etching process. The radius of cur-
vature of this structure is designed to match the phase front of the optical
mode to minimize diffraction loss. (E) Following the microlens fabrication
process a high reflectivity dielectric DBR is deposited over the sample surface.
(F) The structure is then flipped and bonded to a transparent handle using a
suitable low-absorption adhesive (e.g., spin on glass or UV-curable epoxy). (G)
After mounting, the original growth substrate and etch stop are removed via
chemo-mechanical etching. (H) Finally, the mechanical resonator is patterned
and subsequently released via selective removal of the underlying sacrificial
film. We remark that these integrated structures provide a platform for
“on-chip” hybridization with other quantum systems.

§This momentum is comparable to the width of a thermal state, i.e., Ω∕
ffiffiffī
n

p
< 10 for room

temperature. Thus the mechanical motion remains harmonic.
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Thus, for the parameters above and mechanical quality
Q ¼ ωM∕γM ≃ 105 a temperature T ≲ 1 K is required for the
observation of squeezing during one mechanical period.

The state purification protocol, as shown in Fig. 3, is affected
by rethermalization between the two pulsed measurements. This
thermal process increases the effective thermal occupation and
[7] is modified to

n̄ð2Þeff ðTÞ≃
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

χ4
þ πn̄
Qχ2

s
− 1

�
: [9]

For the above system parameters n̄ð2Þeff ðT ¼ 1 KÞ≃ 0.15. Thus,
mechanical state purification by measurement is readily attain-
able even at a modest bath temperature.

Moreover, we note that the position measurements of this
scheme can be used to probe open system dynamics and thus
provide an empirical means to explore decoherence and bath
coupling models (56).

Conclusions
We have described a scheme to overcome the current challenge
of quantum state reconstruction of a mechanical resonator, which
provides a means to explore quantum mechanical phenomena on
a macroscopic scale. Our experimental protocol allows for state
purification, remote preparation of a mechanical squeezed state,
and direct measurements of the mechanical marginals for quan-
tum state reconstruction, thus providing a complete experimental
framework. The experimental feasibility has been analyzed and
we have shown that with the use of optomechanical microcavities
this scheme can be readily implemented. The optomechanical
entanglement generated by the pulsed interaction may also be
a useful resource for quantum information processing. Moreover,
the framework we have introduced can be built upon for further
applications in quantum optomechanics and can be generalized
to other systems, such as nanoelectromechanics and supercon-
ducting resonators, or used with dispersive interaction to study
the motional state of mechanical membranes, trapped ions, or
particles in a cavity.

Appendix
Model. The intracavity optomechanical Hamiltonian in the
rotating frame at the cavity frequency is

H ¼ ℏωMb†b − ℏg0a
†aðbþ b†Þ; [10]

where a (b) is the optical (mechanical) field operator. The cavity
field accumulates phase in proportion to the mechanical position
and is driven by resonant radiation via the equation of motion

da
dt

¼ ig0ðbþ b†Þa − κaþ
ffiffiffiffiffi
2κ

p
ain; [11]

where κ is the cavity decay rate and ain describes the optical
input including drive and vacuum. During a pulsed interaction
of time scale κ−1 ≪ ω−1

M the mechanical position is approximately
constant. This constancy allows decoupling of Eq. 11 from the
corresponding mechanical equation of motion and during the
short interaction we have db∕dt≃ ig0a†a, where we neglect
the mechanical harmonic motion, mechanical damping, and noise
processes. We write ainðtÞ ¼

ffiffiffiffiffiffi
Np

p
αinðtÞ þ ~ainðtÞ, where αinðtÞ is

the slowly varying envelope of the drive amplitude with
∫ dtα2in ¼ 1 and Np is the mean photon number per pulse and si-
milarly a ¼ ffiffiffiffiffiffi

Np
p

αðtÞ þ ~aðtÞ. Neglecting ig0ðbþ b†Þ~a and approx-
imating α as real, Eq. 11 becomes the pair of linear equations:

dα
dt

¼
ffiffiffiffiffi
2κ

p
αin − κα; [12]

d~a
dt

¼ ig0
ffiffiffiffiffiffi
Np

q
ðbþ b†Þαþ

ffiffiffiffiffi
2κ

p
~ain − κ ~a: [13]

After solving for ~aðtÞ, the output field is then found by using the
input-output relation ~aout ¼

ffiffiffiffiffi
2κ

p
~a − ~ain.

The mechanical position and momentum quadratures are
XM ¼ ðbþ b†Þ∕ ffiffiffi

2
p

and PM ¼ iðb† − bÞ∕ ffiffiffi
2

p
, respectively, the

cavity (and its input/output) quadratures are similarly defined
via ~a (~ain∕~aout). The statistics of the optical amplitude quadrature
are unaffected by the interaction, however, the phase quadra-
ture contains the phase dependent upon the mechanical posi-
tion. The output phase quadrature emerging from the cavity is
Pout
L ðtÞ ¼ g0

κ

ffiffiffiffiffiffi
Np

p
φðtÞX in

M þ 2κe−κt∫ t
−∞dt

0eκt0Pin
L ðt0Þ − Pin

L ðtÞ, where
φðtÞ ¼ ð2κÞ32e−κt∫ t

−∞dt
0eκt0αðt0Þ describes the accumulation of

phase, X in
M is the mechanical position prior to the interaction, and

the last two terms are the input phase noise contributions. Pout
L is

measured via homodyne detection, i.e., PL ¼ ffiffiffi
2

p
∫ dtαLOðtÞPout

L ðtÞ.
To maximize the measurement of the mechanical position the lo-
cal oscillator envelope is chosen as αLOðtÞ ¼ NφφðtÞ, where Nφ

ensures normalization. The contribution of X in
M in PL scales with

χ ¼ ffiffiffi
2

p
1
Nφ

g0
κ

ffiffiffiffiffiffi
Np

p
, which quantifies the mechanical position

measurement strength. The mean and variance of PL are given
in Eq. 1 for pure Gaussian optical input and together with Ω
and Eq. 2 are used to determine Υ, as given in Eq. 3. We have
thus arrived, for our physical setting, at an operator which is
known from generalized linear measurement theory (see for
example ref. 57). Also, we note that Eq. 3 is equivalent to
Υ ¼ eiΩXM hPLjeiχXLXM j0i, though the nonunitary process of
cavity filling and decay is not explicit. We also remark that the
construction of Υ can be readily generalized to include non-
Gaussian operations.

Themaximum χ is obtained for the input drive αinðtÞ ¼
ffiffiffi
κ

p
e−κjtj.

This maximization can be seen by noting that N−2
φ ¼ ∫ dtφ2ðtÞ,

which in Fourier space isN−2
φ ∝ ∫ dωðω2 þ κ2Þ−2jαinðωÞj2. Hence,

for such cavity-based measurement schemes, the optimal drive
has Lorentzian spectrum. This drive, αðtÞ obtained from Eq. 12
and the local oscillator are shown in Fig. 1B. The resulting
optimal measurement strength is given by

χ ¼ 2
ffiffiffi
5

p g0
κ

ffiffiffiffiffiffi
Np

q
; [14]

and the mean momentum transfer due to α2 is Ω ¼ 3ffiffi
2

p g0
κ Np.

We note that this optimization of the driving field may also
be applied to cavity-enhanced pulsed measurement of the spin
of an atomic ensemble (18, 19, 58) or the coordinate of a trapped
ion/particle (59–61). Particularly in the latter case, this approach
will broaden the repertoire of measurement techniques available
and may lead to some interesting applications.

Finite Mechanical Evolution During Interaction. In the model used
above we have assumed that the mechanical position remains
constant during the pulsed optomechanical interaction. Including
finite mechanical evolution, the intracavity field dynamics Eq. 13
must be determined simultaneously with the mechanical dy-
namics. In the mechanical rotating frame with the conjugate
quadratures XM;PM these dynamics are solved to first order in
ωM∕κ resulting in the input-output relations:

Pout
M ¼ Pin

M þ ΩþN1χXC1;

Xout
M ¼ X in

M −
ωM

κ
ξ1Ω −

ωM

κ
χN2XC2;

PL ¼ Pin
L þ χðX in

M þ ωM

κ
ξ2P

in
MÞ þ χ

ωM

κ
ξ3Ωþ χ2

ωM

κ
N3XC3;[15]

where PL still represents the measurement outcome, N1;2;3 and
ξ1;2;3 are input drive-dependent dimensionless parameters of or-
der unity, the former normalizing the nonorthogonal amplitude
quadrature temporal modes XC1;2;3. The main effects of the finite
mechanical evolution can be seen in PL. (i) The mechanical quad-
rature measured has been rotated, which in terms of the nonro-
tating quadratures is eXM ≃ XM þ ωM

κ ξ2PM . Such a rotation poses
no principle limitation to our scheme however this must be taken
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into account for the measurement of a particular mechanical
quadrature. (ii) Each pulsed measurement now has a nonzero
mean proportional to Ω. This mean can be experimentally char-
acterized and appropriately subtracted from the outcomes. (iii)
PL now includes a term proportional to the optical amplitude
noise. This term decreases the back-action evading quality of
the measurement and has arisen due to mechanical momentum
noise gained from the optical amplitude quadrature evolving into
position noise. The conditional variance of the rotated mechan-
ical quadrature including these effects, for large initial occupa-
tion, is

σ2~XM
≃ 1

2

�
1

χ2
þ ζ2χ2

�
ωM

κ

�
2
�
; [16]

where ζ is another drive-dependent parameter of order unity.
The two competing terms here give rise to a minimum variance
of ζωM∕κ when χ2 ¼ κ∕ðζωMÞ. Experimentally reasonable values

of χ will lie much below this optimum point, however, as κ ≫ ωM

for the parameters we consider, the broadening due to finite
evolution is small and strong squeezing can be achieved.
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7 Experimental Pulsed Quantum
Optomechanics

Prior to publishing our pulsed quantum optomechanics proposal discussed in the
previous chapter we were sufficiently confident of the proposal’s feasibility to start
an experiment and enter this experimentally unexplored direction. We began a
room-temperature cavity-free experiment, where the pulse of light simply reflects
from the mechanical resonator. This type of cavity-free interaction is qualitatively
identical to the cavity description in section 1.1 above and, for small phase shifts,
the input-output to the mechanics and the temporal mode of the pulse is accurately
described by an Hint ∝ XLXM interaction.

After approximately two years, including a complete shift and re-setup of the
experiment on a second new blank optical table, an experimental implementation of
our theoretical proposal was completed in late 2012 [84], albeit at a level where the
measurement precision is above the mechanical ground state width. This included
state tomography and reconstruction of mechanical motional states prepared by one
or two pulses for position variance reduction and entropy reduction, respectively.
In addition, we performed state reconstruction on a displaced, phase randomized,
mechanical state as an example of a (classical) non-Guassian state of motion.

Details of the experimental setup listing the parts used is shown in Fig. 7.1 and
a photograph of the setup is shown in Fig. 7.2. One of the main challenges of
the experiment was to minimize classical phase noise in the interferometer output
signal so that the quantum noise on the optical pulses could be observed in the
time-domain. This is important because if classical noise dominates the statistics of
the measurement outcomes then one can no longer decrease the width of the me-
chanical conditional state by increasing the optical power. This was achieved in our
experiment by (i) using appropriate transimpedance amplification of the photocur-
rent output of the homodyne circuit, see Fig. 7.3 for more detail, (ii) locking the
interferometer phase with appropriate low-pass filtering to minimize high frequency
classical phase noise, and (iii) hunting down and eliminating the numerous sources
of (mainly electronic) noise that contaminated the signal. It should be noted at
this point, however, that our protocol itself, which utilizes the correlation between
pulses, significantly relaxes the requirements to minimize low-frequency phase noise.

My specific contributions to this project were: I designed and built the fiber based
optical interferometer building upon knowledge gained during the experimental com-
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7 Experimental Pulsed Quantum Optomechanics

ponent discussed in chapter 4; together with Garrett Cole we put together the 4 K
cryogenic compatible vacuum chamber with encoded nanopositioning stages; I de-
signed and built the electrical homodyne circuit; I wrote the LabVIEW code that
ran the experiment and babysat the experiment on the late night data runs; together
with Joachim Hofer, who joined the project when the setup was completed, we de-
veloped the calibration procedure and performed the data analysis; and I played the
leading role in writing the manuscript, with valuable input from all co-authors, and
working through the peer review process.
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Figure 7.1: Experimental setup. (a) A continuous wave Nd:YAG laser operating at
1,064 nm is collimated and passed through a free space optical isola-
tor. A small and controllable amount of light (MISC) is picked off by
a polarizing beam splitter (PBS) for use on other experiments on the
table. The light is then phase modulated by an electro-optic modulator
(EOM) for Pound-Drever-Hall frequency stabilisation to a filter cavity
using a PID controller (Toptica) to reduce laser frequency and ampli-
tude noise. In our pulsed experiment reported in this chapter the filter
cavity was not used as only optical phase quadrature measurements were
performed. (b) The light is then coupled into optical fibre and split by
a tunable beam splitter (Newport) to form the signal (SIG) and local
oscillator (LO) paths. In each path another tunable beam splitter is
used to independently control the optical powers. (c) The signal field is
injected into an optical intensity modulator (JenOptik), which is a polar-
ization dependent device and so the polarization is first adjusted using
fiber paddles (ThorLabs). Pulses are generated by driving the modu-
lator with an arbitrary waveform generator (Agilent). (d) The pulses
of light are then sent into a 4 K cryogenic compatible vacuum chamber
and are focussed onto the micro-mechanical oscillator by a fiber focuser
(OzOptics). The field is retroreflected and separated from the incoming
light using a fibre-based polarizing beam splitter (Advanced Fiber Re-
sources). (e) The signal and local oscillator are then mixed on another
tunable beam-splitter used to perform balanced homodyne detection. (f)
The difference photo current is amplified and also used to stabilise the
phase in the optical interferometer using a commercial fiber stretcher
(Optiphase).
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7 Experimental Pulsed Quantum Optomechanics

(a)

(b)

(c)

Figure 7.2: Photograph of the experimental setup in the Institute for Quantum Op-
tics and Quantum Information (IQOQI) shortly before we shifted labs to
The University of Vienna. (a) The laser and free space optics can be seen
on the left of the optical table with a vacuum chamber holding the filter
cavity behind. (b) The fiber-based optical amplitude modulator for pulse
generation. (c) The optical fiber-based Mach-Zehnder interferometer.
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Figure 7.3: Homodyne photocurrent amplification. A 1 kOhm resistor is used to
pick off a small amount of the photocurrent that is then passed through
a low gain transimpedance amplifier (102 V/A). This signal is sent to a
PID controller and is used to stabilize the phase of the interferometer.
When the lock is stable and the photocurrent is close to zero amps, a
high gain transimpedance amplifier (105 V/A) is activated that provides
a signal containing the optical quantum noise that can be observed in the
time domain on an oscilloscope. The amplifiers used are variable-gain
high-speed transimpedance amplifiers model DHCPA-100 manufactured
by FEMTO.
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action, we demonstrate state preparation and full state tomography of the mechanical

motional state. We have reconstructed states with a position uncertainty reduced to

19 pm, limited by the quantum fluctuations of the optical pulse, and we have performed

‘cooling-by-measurement’ to reduce the mechanical mode temperature from an initial 1,100
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E
xperiments are now beginning to investigate non-classical
motion of massive mechanical devices1–3. This opens
up new perspectives for quantum-physics-enhanced

applications and for tests of the foundations of physics. A
versatile approach to manipulate mechanical states of motion is
provided by the interaction with electromagnetic radiation,
typically confined to microwave or optical cavities. Such cavity-
optomechanics experiments4–8 have thus far largely concentrated
on high-sensitivity continuous monitoring of the mechanical
position9-14. Because of the back-action imparted by the probe
onto the measured object, the precision of such a measurement is
fundamentally constrained by the standard quantum limit
(SQL)15,16, and therefore only allows for classical phase-space
reconstruction9,17,18. In order to observe quantum mechanical
features that are smaller than the mechanical zero-point motion,
back-action-evading measurement techniques that can surpass
the SQL19-22 are required. Following the early insights of
Braginsky and Khalili15, beating the SQL ‘can be achieved only
in one way: design the probe so it ‘sees’ only the measured
observable’. Such back-action-evading techniques were first
realized for the detection of optical quadratures23–25 and have
now also been used for precision measurement of atomic
ensemble spin26–30 and quantum non-demolition microwave
photon counting31. In optomechanics, to perform a back-action-
evading measurement of the mechanical position, a time-
dependent measurement scheme is required. One prominent
example is the so-called ‘two-tone approach’22,32, which uses a
probe with an intensity that oscillates at twice the mechanical
frequency. The field probes the mechanics periodically and the
back-action imparted to the mechanical motion by the optical
probe does not affect the measurement of the mechanical
amplitude. This is closely analogous to a stroboscopic
measurement of the mechanical motion22. Using the two-tone
approach with a microwave probe field, a back-action-evading
interaction was recently realized to measure a single quadrature
of a nanomechanical resonator33.

Here we take a different tack to perform position measure-
ments of a mechanical oscillator using single optical pulses. Our
experimental approach employs optical pulses that have a
duration much shorter than a mechanical period of motion. This
provides a back-action-evading interaction for measuring the
mechanical position because the interaction leaves the position
unchanged, perturbing only the mechanical momentum, and was
first suggested by Braginsky et al.34 The precision of this pulsed
measurement process is no longer limited by the SQL but is
ultimately limited by the quantum optical phase noise. We
implement a pulsed protocol35, where one or two pulses are used
to prepare a motional state ‘by measurement’ and then a
subsequent pulse is used for state tomography. Mechanical state
preparation ‘by measurement’ is achieved by utilizing the
information gained from the pulsed measurement to update the
probability distribution that describes the motional state. The
experiments reported here have been performed in the weak
interaction regime, where the backaction itself is negligible;
however, the pulsed measurements have a dramatic effect on the
mechanical thermal state and the measurement precision we
achieved was limited by the quantum optical phase noise. We
therefore require a quantized description of the optical field;
however, it is important to note that at this stage all the
mechanical motional states presented here are classical, that is,
they can be described by an incoherent mixture of mechanical
coherent states. Our protocol can be used to prepare mechanical
states independent of the initial mechanical thermal occupation
and thus, no initial cooling of the mechanical motion is required.
Moreover, by contrast to continuous schemes, our pulsed
protocol has considerable resilience against the surrounding

mechanical thermal bath, as it can be performed on short time
scales35. Employing our pulsed approach, mechanical dynamics
rather than the steady-state can be conveniently probed and non-
equilibrium mechanical behaviour can be characterized. Also note
that pulsed quantum optomechanics operates fully in the so-
called ‘non-resolved sideband regime’, in which the cavity decay
rate is much larger than the mechanical frequency. Indeed,
all results reported here were obtained without the use of an
optical cavity.

Results
Experimental protocol. Our experimental setup is shown sche-
matically in Fig. 1a. Optical pulses are injected into a Mach-
Zehnder interferometer that has a micromechanical oscillating
mirror in one of the two interferometer paths. The pulses are first
divided by a beam-splitter that forms one intense beam that
acts as a local oscillator (LO) and one weak beam that we will
henceforth refer to as the signal. The signal is focussed onto and
reflects from a micromechanical oscillator (Fig. 1b). During the
reflection of the short optical pulse, changes to the position of the
mechanical oscillator are negligible. The coherent optical pulse
gains a phase shift in proportion to the mechanical position,
which is accurately described by a phase quadrature displace-
ment, as the mechanical position fluctuations are small. Con-
currently, the radiation-pressure force of the reflection imparts
momentum to the mechanical resonator. This momentum can be
decomposed into a classical component due to the mean photon
number and a component dependent upon the photon number
fluctuations. Quantitatively, this optomechanical interaction is
described by the input–output relations:

Xout
L ¼ Xin

L ; Pout
L ¼ Pin

L þ wXin
M;

Xout
M ¼ Xin

M; Pout
M ¼ Pin

Mþ wXin
L þO ð1Þ

Here, the subscripts label the light (L) and mechanics (M); X and
P are the dimensionless amplitude (position) and phase
(momentum) quadratures for the light (mechanics); w ¼
4px0

ffiffiffiffi
N
p

=l quantifies the quadrature information exchanged
between the light and the mechanics and determines the strength
of the mechanical position measurement and O ¼ 8px0N=l is
the classical momentum transfer to the mechanical oscillator
(N, mean photon number per pulse; l, optical wavelength;
x0 ¼ ð�h=2meffoMÞ1=2, mechanical ground state width; meff,
mechanical effective mass; and oM, mechanical angular fre-
quency). After the optomechanical reflection, the signal then
overlaps and interferes with the LO pulse on a 50/50 beam-
splitter, where the (mean) phase between the LO and signal
beams is set to be p/2. The intensities of both beam-splitter
outputs are measured by photodiodes, and the photocurrents are
subtracted to implement homodyne detection of the optical phase
quadrature. A typical difference current time trace is shown in
Fig. 1c, where the measurement outcome PL is the time integral
over the pulse duration of the difference current.

After the pulsed measurement, the mechanical state of motion
is changed as our knowledge of the mechanical position has
increased. For an initial thermal state of the mechanical resonator
with a large thermal occupation, that is, w2ð1þ 2�nÞ41, the means
and variances of the mechanical quadratures, upon obtaining the
measurement outcome PL are as follows35:

hXout
M i ’ PL=w; hPout

M i ¼ O;

s2
Xout

M
’ 1=ð2w2Þ; s2

Pout
M
¼ ðw2þ 1þ 2�nÞ=2; ð2Þ

where �n ’ kBT=�hoM is the mean occupation of the mechanical
mode when in thermal equilibrium with the environment at
temperature T4�hoM=kB. Notably the information gained from
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the measurement reduces the mechanical position variance from
�n to 1/(2w2), which does not depend on the initial occupation.
The resultant state of mechanical motion, following such a
measurement, is no longer in thermal equilibrium with the
surrounding environment and has a reduced effective thermal
occupation �neff ¼ ðs2

XM
s2

PM
Þ1=2� 1=2 ’ ð�n=ð2w2ÞÞ1=2. Moreover,

a subsequent pulse performed after one quarter of a period of
mechanical harmonic evolution can measure the mechanical
momentum at the time of the first pulse to further reduce the
effective occupation. This ‘cooling-by-measurement’ method for
entropy reduction, that is, obtaining mechanical position and
then momentum information on the initial state, is rapid and has
considerable tolerance to both the initial thermal occupation and
the surrounding thermal bath35. With future experimental
improvements, this scheme allows for the generation of high
purity and quantum-squeezed states of mechanical motion ‘by
measurement’. Owing to the resilience against mechanical
thermal noise, this scheme may provide a more feasible route
to quantum squeezing than parametric modulation9,17, which can
be combined with continuous measurement and feedback36.

In our experiment, one or two pulses are used to prepare
a mechanical state at a known time. Then a read-out pulse is
made after time y/oM of mechanical harmonic evolution to
sample the mechanical probability distribution of the y-rotated
quadrature, that is, a marginal. Repeating this process many
times and obtaining the marginals for a large number of
mechanical phase-space angles y is sufficient to uniquely
determine the mechanical quantum state of motion37. Quantum

state tomography by measurement of the marginals was first
realized with optical fields using homodyne interferometry38 and
has now become an indispensable tool in the field of quantum
optics39 being applied to other physical systems such as molecular
vibration40, spin ensembles41 and microwave fields42. Here we
implement such mechanical state tomography by utilizing the
pulsed measurement outcome probability distribution PrðPLÞ ¼R

dXMp� 1=2 exp½ � ðPL� wXMÞ2�PrðXM; yÞ that contains the
mechanical marginals PrðXM; yÞ ¼ XMh jrin

MðyÞ XMj i, where
rin

MðyÞ is the mechanical input state to be reconstructed after
time y/oM of harmonic evolution. In this experiment, we prepare
and reconstruct mechanical motional states with features that are
not smaller than w� 1 and hence, unless otherwise noted, we use
the optical measurement outcome distribution as an
approximation for the mechanical distribution using the scaled
outcome PL/w.

Mechanical state preparation and reconstruction. The
mechanical resonator used for this experiment is a micro-mirror
cantilever constructed from an epitaxial AlxGa1� xAs crystalline
multilayer, see Fig. 1b. The use of such a monocrystalline material
structure allows for a significant reduction of the mechanical
damping of the resonator when compared with dielectric
reflectors43 and simultaneously provides high optical reflectivity.
The crystalline material used here is nominally identical in
composition and individual layer thickness to structures used
previously44 and is designed for maximum reflectivity at our
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Figure 1 | Experimental setup. (a) Schematic of the experimental setup used to perform state tomography and state preparation of the motional state

of a mechanical resonator. In addition to the optical pulses, a weak continuous field is used to stabilize the interferometer phase using the

homodyne output passed through a low-pass filter with cutoff frequency below the mechanical frequency. (b) Colourized optical micrograph of the

high-reflectivity micro-mechanical cantilever fabricated for this experiment. The head of the cantilever, where the signal beam is focussed,

is 100mm in diameter. (c) Example time trace of the homodyne output for a pair of 4ms pulses. (For clarity, the pulse rising and falling edges are

not shown.) The measurement outcome PL is the time integral of the homodyne output (indicated by the shaded region). Time resolved

optical quantum noise is visible during the pulse.
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optical wavelength of 1,064 nm. The multilayer Bragg mirror
comprises 40.5 layer pairs in order to minimize transmission
losses. The cantilever was etched from a 6.88-mm thick multilayer
and is 1.45 mm in length with a cantilever arm 5mm in width
with a circular head 100mm in diameter, where the optical signal
beam is focussed. For details of the microfabrication procedure
see Cole45. Note that the resonator is etched directly from the
multilayer mirror material and is therefore equally reflective at all
points along the structure with an (intensity) reflectivity of
99.982%. This cantilever has a fundamental out-of-plane
vibrational mode with frequency oM/2p¼ 984.3 Hz, effective
mass meff¼ 260 ng (see the methods section), ground state width
x0¼ 5.7� 10� 15 m and a mechanical quality of Q¼ 3.1� 104 in
vacuum (10� 5 mbar) and at room temperature measured via
mechanical ringdown.

Our optical setup (Fig. 1a) was constructed from optical-fibre-
based components that provides good phase stability and
excellent spatial mode matching. Indeed, when the optical powers
in the two arms of the interferometer are balanced, we observed
an interference visibility exceeding 99.9%. We use a continuous
laser source and generate optical pulses of duration 1ms
(excluding the pulse edges) with a fibre-based intensity
modulator. The mean photon number in a signal pulse was up
to 107 and in order to provide a homodyne signal well above the
electronic noise, we use a large LO to signal ratio with up to 1010

photons per LO pulse. (These photon numbers were determined
via optical power measurement during continuous wave opera-
tion.) The signal pulses are directed onto the cantilever head
using an antireflection-coated fibre focuser and are then retro-
reflected. To calibrate the proportionality between the measure-
ment outcomes and the mechanical position, we reflect the signal
beam from a rigid mirror adjacent to the mechanical resonator
and scan the mirror position using a calibrated piezoelectric
actuator, recording both the piezo scan positions and pulse
measurement outcomes (see the methods section). For our
mechanical resonator ground state width (x0¼ 5.7� 10� 15 m),
this photon number per pulse yields a measurement strength w of
order 10� 4 and a momentum transfer O of order unity. The
radiation pressure backaction from the reflection of the pulse is
smaller than the mechanical thermal noise and is not observed;
however, as will be detailed in the following, this measurement
strength has a strong effect on the mechanical thermal noise.

After a pulsed measurement is performed to sample a
mechanical marginal, the mechanical state is reinitialized by first
allowing it to return to equilibrium with the environment and
then the mechanical state is reprepared. This process is repeated
many times to accumulate sufficient data to characterize the
statistical properties of the mechanical motion. The marginal
distributions were then obtained by constructing a histogram
from the many measurement outcomes recorded for each
mechanical phase-space angle y. As the states studied here are
symmetric about the XM and PM axes, we measure a set of many
marginals with angles between y¼ 0 and y¼ p/2 to fully
characterize the state of motion. The phase-space probability
distribution W(XM, PM) is then obtained by using the inverse
Radon transformation on the set of marginals.

The measurement results we obtained for motional state
preparation and reconstruction are summarized in Fig. 2. In
Fig. 2a a reconstruction of an initial thermal state that is driven by
white noise up to a mode temperature of 1,100 K that has width
sx¼ 1.2 nm is shown. This temperature was obtained using the
equipartition theorem kBTeff ¼ meffo2

Ms2
x , where the mechanical

position variance s2
x was obtained from the calibrated measure-

ment outcome distribution after subtracting the optical noise
contribution. A single pulsed measurement made on this initial
thermal state generates a motional state that has a reduced position

uncertainty (Fig. 2b). The observed momentum distribution of this
state, however, is unchanged as the back-action to the mechanical
momentum made by the reflection of the optical pulse is
much smaller than the mechanical thermal noise. Each
pulsed measurement generates a mechanical state with a
random but known mean due to the random measurement
outcome, see Equation (2). By making the transformation
PðrÞ

L
-PðrÞ

L
� Pðp1Þ

L cosy, where the superscripts (r) and (p1) indicate
read-out and preparation, respectively, this random mean is
subtracted and the distribution of the mechanical state can be
characterized. We would like to emphasize here that no ‘post
selection’ is performed and all measurement outcomes are used in
this process. Furthermore, our experimental pulsed technique
demonstrates the back-action-evading feature of measurement
repeatability, that is, a subsequent measurement is not affected by a
prior measurement19–22. Specifically, in our case the measurement
results of the read-out pulse made a short time after the
preparation pulse are the same as the preparation pulse to within
the optical quantum noise. The plots for Fig. 2a,b were generated
from the same data set, where the statistics of the preparation pulse
alone characterizes the unconditional initial thermal state and the
read-out pulse characterizes the conditional mechanical state. A
1,100 K thermal state (which has a root-mean-square (RMS)
amplitude less than a factor of two larger than a thermal state at
300 K) was used to increase the mechanical contribution to the
optical phase noise over the relevant B DC to MHz bandwidth for
our pulses to improve the signal-to-noise ratio for mechanical
conditional state preparation.

In Fig. 2c the reconstruction of a mechanical state of motion
prepared via two pulsed measurements separated by one quarter
of a mechanical period is shown. The width of the mechanical
phase-space distribution has been significantly reduced in both
the position and momentum quadratures compared with the
initial thermal state (Fig. 2a) and hence the effective mode
temperature has significantly decreased. This method of cooling is
rapid as it takes place well within a single mechanical period and
is, to the best of our knowledge, yet to be experimentally reported
elsewhere. For this pulse sequence the read-out pulse outcome is
transformed using PðrÞ

L
-PðrÞ

L
� Pðp2Þ

L
cos yþ Pðp1Þ

L
sin y, where y is

the angle of mechanical evolution made between the second
preparation pulse and the read-out pulse. Ideally, for this
mechanical state, the width of the mechanical marginals should
be constant for all y; however, in our experiment the phase
correlation between the pulses reduces with increasing pulse
separation as low frequency noise, due to imperfect phase locking,
enters the signal. This results in a broadening of the conditional
mechanical marginals as y increases. The effective temperature

Teff ¼ meffo2
Msðy¼0Þ

x sðy¼p=2Þ
x =kB observed for this state is 16 K,

which depends on the product of the standard deviations of the
position and momentum quadratures. Were the pulses to remain
correlated to within the quantum noise, the effective temperature
that could be reached for this measurement strength, taking the
effects of mechanical rethermalization into account, would be 4.4 K
(ref. 35). We would like to highlight here that rethermalization
contributes to less than 1% of this value. To summarize the observed
effects of single- and two-pulse mechanical state preparation
discussed above, Fig. 2e provides a plot of the measured mechanical
widths with y for the initial thermal state and the two mechanical
conditional states. In this plot, the mechanical widths were
determined from the calibrated pulse outcome distributions after
subtracting the optical noise contributions that were measured
independently. The data for both of the mechanical conditional states
were taken with the same signal pulse powers and for each phase-
space angle 300 pulses were recorded to construct the histograms.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3295

4 NATURE COMMUNICATIONS | 4:2295 | DOI: 10.1038/ncomms3295 | www.nature.com/naturecommunications

& 2013 Macmillan Publishers Limited. All rights reserved.



As an example of a non-Gaussian state of motion, we have
reconstructed a driven thermal state (Fig. 2d) that was generated
by applying a sinusoidal drive on resonance with the mechanical
eigenfrequency. Note that the two peaks in the mechanical
marginals are narrower than the broad thermal state in Fig. 2a, as
this state was prepared at room temperature without the white
noise drive. Even though this state of motion and the thermal
state are rotationally invariant in phase space, many marginals are
measured for their reconstruction. On the other hand, the

conditional mechanical states of motion are not rotationally
invariant in phase-space as the time of the preparation pulse(s)
sets the time for y¼ 0. Note that this pulse-based tomography
scheme does not measure the angle y¼ 0 as the read-out pulse is
temporally separated from the preparation pulse(s). The lack of
this marginal angle causes the rippling near XM¼ 0 in the
reconstructed phase-space distributions. By employing shorter
pulses and measuring the marginals at smaller angles this rippling
can be reduced.
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Figure 2 | Mechanical motional state preparation and full state reconstruction using optical pulsed quantum measurement. The uppermost row shows

the pulse protocols (pink - preparation, red - tomography). The two rows below show a subset of the measured probability distributions of the

mechanical quadratures Pr(x,y) and the reconstructed phase-space distributions W(XM,PM), respectively. The phase-space distributions were

reconstructed using nine marginal angles up to y �p/180¼90� (with a larger number of bins used than that shown for the marginals). For our current

measurement strength, that is, wo1, all the mechanical motional states reconstructed here can be described classically. (a) In the first column, tomography

and reconstruction of an initial mechanical thermal state driven by white noise up to a mode temperature of 1100 K is shown. The red dashed

circle has a radius equal to 2s of the initial thermal distribution. (b) A single pulsed measurement reduces the mechanical position variance, but leaves

the momentum distribution unchanged. (c) ‘Cooling-by-measurement’ performed with two pulses separated by one quarter of a mechanical period

rapidly reduces the mechanical state’s entropy. The effective temperature of the mechanical state reconstructed here has been reduced

to 16 K. (d) State reconstruction of a non-Gaussian mechanical state of motion generated by resonant sinusoidal drive. (e) The (one s.d.) width of

the position distribution observed for states (a–c) with phase-space angle y. The thermal state (red points) shows a position width approximately

twice of that when at room temperature (dashed line). State (b) has a reduced position width for small phase-space angles (purple points).

The position width of state (c) is reduced for all phase-space angles (blue points). The solid lines are theoretical fits obtained using Equation

(2) generalized for all y as well the two-pulse-preparation case. (f) Plot of the conditional mechanical width with pulse strength obtained using two

pulses separated by 5� of mechanical evolution. The dashed line is a theoretical fit with a model using two units of optical quantum noise and finite

mechanical evolution. The solid line is the inferred conditional mechanical width immediately after the preparation pulse. The vertical line indicates the

pulse strength used for states (a–c). The error bars on (e) and (f) indicate a one s.d. uncertainty.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3295 ARTICLE

NATURE COMMUNICATIONS | 4:2295 | DOI: 10.1038/ncomms3295 | www.nature.com/naturecommunications 5

& 2013 Macmillan Publishers Limited. All rights reserved.



To demonstrate the scaling of our measurement strength in
Fig. 2f, the conditional mechanical width observed by a read-out
pulse made after 5� of mechanical free evolution is plotted with
increasing pulse amplitude. For this pulse separation, the two
pulses are well correlated and the width of the conditional
mechanical state is limited by the optical quantum noise in the
measurement (see the methods section for more details). As the
signal pulse strength is increased, the standard deviation of
the conditional mechanical position distribution decreases with
N� 1/2, which is a result of the optical number-phase uncertainty
relation. The dashed line in the plot is a theoretical prediction
including the two units of optical shot noise, one each for the
preparation and read-out pulses, and the small contribution from
the mechanical evolution between the two pulses. The relative
amplitudes for the data points were measured precisely and scaled
by a free fitting parameter into units of square-root photon
number, where the photon number per pulse obtained is
consistent with measurements of the optical power made during
continuous wave operation. For the largest optical pulse strength
used the statistics of the read-out pulse demonstrate a conditional
mechanical width (after the preparation pulse) of sx¼ 19 pm
corresponding to a measurement strength of w ¼ 2:1�10� 4.

Discussion
The techniques developed in this work provide the ability to
experimentally perform quantum optomechanics in the time
domain. This offers significant potential for optomechanics-based
quantum information and quantum metrology applications by
providing the framework for quantum state preparation of a
mechanical resonator via quantum measurement46. One may
then also envision combining such measurement based state
preparation with feedback to implement full quantum control47.
One exciting example of mechanical dynamics that can be probed
by pulsed optomechanics has been recently theoretically
discussed by Buchmann et al.48, where pulsed measurements, as
now realized in this work, are considered for the observation of
quantum tunnelling of a mechanical oscillator in a double-well
potential. Another example for quantum state preparation is that,
even though the optomechanical interaction used here is linear
with the mechanical position, by exploiting the optical non-
linearity, XM

2 measurements with a strength significantly larger
than that attainable with dispersive optomechanics can be
performed49. An X2

M measurement can be used to conditionally
prepare highly non-Guassian mechanical superposition states and
experimentally characterizing the decoherence of such states is
important to determine the feasibility of using mechanical
elements for coherent quantum applications and can also be
used to empirically test collapse models50–53. The pulsed
measurements performed here may also be utilized for a
quantum non-demolition measurement-based light-mechanics
quantum interface54. Furthermore, a sequence of four pulsed
optomechanical interactions can be used to generate non-classical
mechanical states of motion via an optomechanical geometric
phase55 and can even be used to experimentally explore potential
quantum-gravitational phenomena56.

For this experiment, to prepare a quantum-squeezed state of
mechanical motion, the measurement strength needs to be
increased to w41. An effective route to meet this requirement
would be to employ an optical cavity to enhance the
optomechanical interaction. Using the experimental parameters
achieved in this work, a cavity finesse of 104 is sufficient.
As such a cavity simultaneously requires a high finesse, as well as
a large bandwidth to accommodate a short optical pulse, this
is best achieved with an optomechanical microcavity35. Such
improvements to the measurement sensitivity will not only enable

Wigner reconstruction with significant negativity but, owing to
this pulsed protocol’s resilience against mechanical thermal noise,
may also allow the generation of non-classical mechanical states
in the regime of room temperature quantum optomechanics.

Methods
Verification of optical quantum noise. To verify that the measurement scheme
used here is optical quantum noise limited, we measured the phase quadrature
conditional variance of a pair of optical pulses with increasing total photon
number, that is, the sum of the signal and LO photons per pulse, while keeping the
signal to LO ratio fixed, see Fig. 3. As with our calibration procedure, the signal
beam is focussed onto a rigid mirror adjacent to the mechanical oscillator to
prevent coupling to the mechanical motion. The pulse separation used for this
measurement was 14.1 ms, which would correspond to 5� of mechanical free
evolution, and is the same as that used for the data set shown in Fig. 2f. With this
pulse separation the conditioning is essentially the second pulse outcome minus the
first pulse outcome. The quantum noise components of these two temporal modes
are uncorrelated; however, the lower frequency classical noise components vary
slowly between the two pulses and are thus suppressed by the conditioning.
Quantum mechanics predicts a linear dependence for the variance with total
photon number; however, had classical phase noise been the dominant
contribution, a quadratic dependence with the total photon number per pulse
would have been observed. (For a discussion on experimental aspects of observing
optical quantum noise, see Bachor and Ralph57). During this measurement, we
were limited to a total photon number of 1010 as the phase lock performance
dramatically reduced beyond this point. Were we able to measure beyond this
optical power the classical phase noise would have eventually become the dominant
noise and the conditional mechanical variance that could have been achieved
would have saturated.

The data points for Fig. 3 were obtained from Gaussian fits to histograms of the
conditional outcomes. The error bars indicate a one s.d. uncertainty as determined
from the fit. The observed conditional variance shows a linear dependence with the
total photon number with a ‘goodness of fit’ parameter R2¼ 0.97, taking the error
bars into account. This demonstrates that, up to a total photon number of order
1010, the conditional variance is quantum noise limited.

Also included in Fig. 3 is the measured electronic noise, that is, the conditional
variance observed using no light. This contribution is 19.5 dB smaller than the
observed optical quantum noise at the data point with the highest optical intensity
(NTOT¼ 9.5� 109).

Effective mass measurement. The optically probed effective mass of a
mechanical vibrational mode depends upon the geometry and material properties
of the mechanical structure as well as the intensity profile of the incident optical
beam. The mass associated with the mechanical displacement mode shape, that is,
the modal mass, is in general less than the total mass of the structure; however, the
optically probed effective mass can have a strong dependence on the position and
profile of the optical beam. We estimate the optically probed effective mass of the
cantilever in our experiment using a combination of measurements and finite
element analysis. Using the established values for the relevant elastic constants
averaged over the crystalline multilayer (C11¼ 119.6, C12¼ 55.5, C44¼ 59.1 GPa)
and the average material density 4,476 kg m� 3, the lateral geometry of the
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simulated resonator is adjusted until minimal error is found between the measured
and simulated eigenfrequencies for the first four out-of-plane mechanical modes,
see Fig.4a. (Note that the lowest frequency vibrational mode for our cantilever is an
in-plane mode as the cantilever used is slightly thicker than wide.) A mean dis-
crepancy between the measured and simulated frequencies of 6.1% was obtained by
reducing the feature linewidth by 0.875 mm with respect to the lithographic mask.
Note that the thickness of the free-standing mirror material was not used as a
fitting parameter as it was accurately determined from the reflectance spectrum of
the mirror58 and found to be 6.88 mm. Once the geometry is determined, the
effective mass is calculated via the volume integral59

meff ¼
r
R R R

dxdydzðu2 þ v2 þw2Þ
D2

ð3Þ

Here, r is the material density; u, v and w are the displacements of the body along
the x, y, and z directions, respectively, and the optically probed displacement D is
the overlap between the mechanical deflection and the optical Gaussian intensity
profile, that is

D ¼ 1
2pr2

0

Z Z
dxdywðx; y; z ¼ 0Þ exp � x2 þ y2

2r2
0

� �
ð4Þ

where r0 is the standard deviation of the Gaussian optical intensity profile and the
coordinate axis used for x, y and z has its origin in the centre of the cantilever head,
see Fig. 4b. The antireflection-coated fibre focuser used in our experiment provides
an optical beam diameter (4r0) of 10.6 mm, which is much smaller than the nominal
cantilever head diameter of 100 mm (as fabricated diameter of 98.25 mm). Thus, for
the fundamental out-of-plane mode, there is only a weak optical beam position and
width dependence on the effective mass. (In this case, the effective mass is
approximately equal to the intrinsic modal mass.) We have determined that the
fundamental out-of-plane mechanical mode utilized in our experiment, which
oscillates at 984.3 Hz, has an effective mass of 260 ng and thus a spring constant of
0.01 N m� 1. For the higher order modes of the structure; however, lateral
displacement of the beam leads to a rapid change in the effective mass. To mini-
mize the contribution from these higher mechanical modes it is necessary to
carefully position the optical beam. Assuming careful alignment, the geometry of
our mechanical structure is such that the contributions from higher order modes
are further suppressed as the effective mass rapidly increases with mode number.
Indeed, the unconditional RMS amplitudes of modes no. 4, 8 and 10 are 2.4%, 0.4%
and 0.1% that of mode no. 2, respectively.

Calibration procedure. We have used a two-step calibration procedure to deter-
mine the proportionality between the pulsed homodyne measurement outcomes
and the mechanical displacement. During this procedure the signal beam is focused
onto the chip edge, that is, a rigid unpatterned part of mirror material adjacent to
the mechanical resonator, to prevent mechanical motion contributing to the signal.
First, we calibrate the displacement of a piezoelectric actuator, which our fabricated
structure containing the mechanical oscillator is placed upon, in response to a
known drive voltage. We then drive the piezo and record the pulse measurement

outcomes during the controlled actuation in order to calibrate the pulsed inter-
ferometer. Each step is detailed below in the next two subsections, respectively.

Piezo calibration. To calibrate the piezoelectric actuator, we applied a sinusoidal
drive voltage and used a continuous signal beam to monitor the piezo motion. The
frequency of the drive was chosen such that the piezo mechanical response was
either in or out of phase with the drive voltage. (Experimentally, care was needed to
find a suitable drive frequency as the piezo does not have a flat spectral response.)
During this procedure, the phase between the signal and LO beams does not
require locking, and the piezo drive was at a higher frequency than the phase noise
components in the interferometer. We then adjusted the drive amplitude such that
the peak-to-peak piezo motion was one half of the optical wavelength. This can be
done precisely as the difference current output of the interferometer has separate
turning points occurring at the same level for this modulation depth and is then
proportional to cos½j0 þp sinot�, see Fig. 5, here j0 is the (unlocked) slowly
varying phase in the interferometer and o is the piezo drive angular frequency. As
j0 slowly changes this merely shifts the level of the turning points. In our
experiment, we used a drive frequency of 1.06 kHz and exploited a resonance of the
piezo to achieve a peak-to-peak scan of 532 nm using 4.6 Vpp.

Pulse calibration. Using the same piezo drive frequency as above, and using the
piezo actuator calibration value (metres per Volt) obtained, the actuator was
scanned with a reduced amplitude so that the optical phase shifts are small. (It was
verified that the piezo responds linearly with the applied Voltage over our range
of interest.) Then, during the piezo scan, pulsed position measurements are
performed and both the voltage applied to the piezo at the time of the measure-
ment and the pulsed measurement outcomes are recorded. The proportionality
between these recorded values is used to obtain the outcome per metre calibration.
This calibration value is optical amplitude dependent and had to be measured for
several optical amplitudes for the measurement shown in Fig. 2f.
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8 Enhanced Strength Displacement
Squared Measurement

The generation of non-Gaussian quantum superposition states of a mechanical res-
onator is one of the primary motivations in quantum optomechanics. Reaching this
goal is experimentally challenging as the radiation pressure interaction is linear in
the mechanical field operator, see Eq. (1.3), and the radiation pressure coupling to
single photon level fields is presently unobservable. An interesting route to reaching
this goal is to engineer an optomechanical interaction (and optical field measurement
strategy) so that a quantum measurement of the mechanical displacement squared
instead of displacement itself is performed. In this case the measurement does not
reveal whether the position is positive or negative and a coherent superposition of the
two can be prepared. This approach was first theoretically considered for mechanical
resonators by Jacobs et al. [85], where measurements are performed on a qubit that
is quadratically coupled to the position of an electro-mechanical resonator.

In optomechanics an interaction to the mechanical displacement squared, i.e.
Hint ∝ a†aX2

M , is available in the membrane-in-the-middle geometry [86], where
a mechanical element is placed at an intensity maximum in a standing wave inside
an optical resonator. Mechanical displacement squared fluctuations have been ob-
served for an optomechanical system realized with a cloud of trapped cold atoms
inside a Fabry-Pérot resonator [87], however, as this type of coupling is inherently
weak no such observations have been performed for a rigid mechanical oscillator.

This solo author theoretical work [88] overcomes this problem of weak coupling
and introduces a method to perform strongX2

M measurements. Rather than utilizing
the weak X2

M coupling offered by the membrane-in-the-middle geometry, the method
introduced here exploits the underlying optical non-linearity of ‘reflective’ optome-
chanics and mechanical X2

M measurements are achieved by measuring the changes to
the optical amplitude quadrature. It was quite surprising to find that this approach
offers a coupling that is, remarkably, a factor of the optical cavity finesse, which can
be up to 105, times stronger than that available with the membrane-in-the-middle
geometry. Furthermore, simply by changing a phase in the optical readout inter-
ferometer one can also measure displacement itself. Therefore, by combining the
strong X2

M measurements with state tomography technique discussed in chapters 6
and 7 one can prepare and reconstruct a non-Gaussian quantum superposition state
of a mechanical resonator.
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resulting square-displacement measurement strength is compared to that attainable in the dispersive case

that has a direct interaction with the mechanical-displacement squared. An experimental protocol and

parameter set are discussed for the generation and observation of non-Gaussian states of motion of the

mechanical element.
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I. INTRODUCTION

Currently the main approaches to cavity optomechanics
[1] can be divided into two categories—reflective and
dispersive. In each approach the mechanical and optical
degrees of freedom are coupled via radiation pressure and
the dependence of the cavity resonance frequency on the
mechanical position. The first approach is depicted in
Fig. 1(a), where the optical field is reflected from a me-
chanical element and the change in cavity frequency and
hence interaction Hamiltonian are linearly proportional to
the mechanical position. Optomechanical realizations of
this approach include deformable Fabry-Perot cavities and
optical whispering-gallery-mode resonators, which are dis-
cussed in Ref. [1]. The second approach is depicted in
Fig. 1(b), where a mechanical element is positioned within
an optical field and partial reflection from both sides gives
rise to a dispersive interaction. In this arrangement, the
cavity frequency varies periodically with mechanical dis-
placement. This can be used to give a linear or quadratic
position-dependent change in the cavity frequency if the
mechanical element is positioned at an antinode or node of
the field, respectively. The flexibility to select between
linear or quadratic displacement coupling provides consid-
erable versatility and thus dispersive optomechanics
is an exciting candidate to observe and explore quantum-
mechanical phenomena of macroscopic resonators.
Optomechanical realizations of this approach utilize a
dielectric membrane [2] or trapped cold atoms [3], posi-
tioned within an optical cavity, and experimental work is
underway to realize this with an optically trapped micro-
sphere [4]. The quadratic mechanical-position coupling
offered by dispersive optomechanics provides a route to

observe quantization in mechanical energy [2]. Moreover,
such quadratic coupling can also be used for cooling and
squeezing of the mechanical element [5] and it can be
enhanced by using additional optical spatial modes, which
even allows for quartic interaction [6].
In this paper, a scheme is presented that allows measure-

ment of the mechanical displacement squared using an
optomechanical interaction that is linear with the mechani-
cal position. Here, optical pulses that are short compared to
a mechanical period are used and the square-displacement
coupling is obtained by exploiting the nonlinear optical
dependence of the interaction. This interaction has been
linearized in much of the present literature, but continuous
nonlinear optomechanical interaction has recently been
studied resulting in nonclassical states of light [7] and of
the mechanical oscillator [8]. Also, working beyond the
linear regime has been proposed for non-Gaussian
quantum-state preparation of a collective spin variable [9].
The optomechanical setup considered here is shown in
Fig. 1(c), where an optical pulse in a coherent state interacts
with an optomechanical system and is then measured via
homodyne detection. Following the interaction, Wigner
reconstruction of the optical subsystem of the optomechan-
ical entangled state, would yield a ‘‘scimitar state’’ shown
in Fig. 1(d). The form of this optical state can be understood
as the mechanical position fluctuations (including quantum
fluctuations) rotate the optical field. For small rotations, one
sees from Fig. 1(d) that measurement of the optical phase
quadrature allows for a measurement of the mechanical
position. However, of particular interest here, measurement
of the amplitude quadrature may give outcomes that could
have resulted from two distinct mechanical positions. This
is due to an effective displacement-squared coupling, which
can be used for non-Gaussian state preparation. In Ref. [10]
it was discussed how measurement of the optical phase
quadrature can be used to perform quantum-state tomog-
raphy of the motional state of the mechanical resonator
and generate conditional squeezed mechanical states.
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Thus, the possibility to select between displacement and
displacement-squared measurements provides the tools to
generate non-Gaussian quantum states of the mechanical
resonator and perform state reconstruction simply by
choosing the phase in the homodyne interferometer as is
shown in Fig. 1(e).

II. MODEL

The optomechanical Hamiltonian with linear mechani-
cal position coupling in the optical rotating frame at the
cavity frequency including a coherent resonant drive is

Hlin

@
¼ !Mb

yb� glin
ffiffiffi
2

p
ayaXM � i

ffiffiffiffiffiffiffiffiffiffiffiffi
2�Np

q
�inða� ayÞ;

(1)

where the optomechanical-coupling rate, which is realiza-
tion dependent, is of the form glin ¼ !Lx0=L. The cavity
field’s resonance frequency, annihilation operator, and am-
plitude decay rate are !L, a, and �, respectively, and L is
the cavity length. The mechanical zero-point extension is

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=2m!M

p
, where !M, b, m, and XMðPMÞ are the

mechanical element’s eigenfrequency, annihilation opera-
tor, effective mass, and position (momentum) quadrature
(operator), respectively, where a single mechanical mode is
considered. The input pulse has mean photon number Np

and is described by �in, the normalized envelope, i.e.,R
dt�2

inðtÞ ¼ 1, which is assumed real.

During the interaction, which is short with respect to a
mechanical period, thus requiring � � !M, the mechani-
cal position is considered constant and the optical and
mechanical equations of motion can be solved indepen-
dently of one another. Immediately after the pulse interac-
tion, the mechanical position is unchanged, i.e.,
Xout
M ¼ Xin

M; however, optomechanical entanglement is
generated and correlations are established between the

mechanical momentum and the optical intensity, Pout
M ¼

Pin
M þ ffiffiffi

2
p

glin
R
dtaya.

The intracavity field evolves during the nonlinear opto-
mechanical interaction according to

da

dt
¼

�
iglin

ffiffiffi
2

p
XM � �

�
aþ ffiffiffiffiffiffi

2�
p � ffiffiffiffiffiffiffi

Np

q
�in þ ain

�
; (2)

where the field is rotated in proportion to the mechanical
position and ain is the optical input noise. This can be
immediately solved exactly [11], however, in this work
the solution is approximated as the rotation is assumed
small and the mean of the field is

haðtÞiffiffiffiffiffiffiffi
Np

p ’ �0ðtÞ þ i
glin
�

�1ðtÞhXMi � g2lin
�2

�2ðtÞhX2
Mi; (3)

where the dimensionless temporal mode functions �0;1;2

are introduced [12]. The phase quadrature of the intra-
cavity field contains information on the mechanical
displacement, and the amplitudequadrature carries informa-
tion of the mechanical-displacement squared [Fig. 1(e)].
Measurements of these quadratures can be performed by

time-domain homodyne detection of the output field aout ¼ffiffiffiffiffiffi
2�

p
a� ain. Homodyning the amplitude quadrature is

described by QX ¼ ffiffiffi
2

p R
dt�LOðtÞXout

L ðtÞ, where Xout
L ¼

2�1=2ðaout þ ayoutÞ (similarlyQP describes phase-quadrature
detection). For an optimal measurement of X2

M, (XM)

FIG. 1. Cavity optomechanics is currently realized using
(a) reflective and (b) dispersive approaches. The interaction in
the former is proportional to mechanical displacement XM, how-
ever, in the latter the interaction can be tuned to being proportional
to XM or X2

M. Pulses of light may be used to probe and manipulate
the motional state of the mechanical resonator. The optical setup
considered here (c) is a pulse incident upon an optomechanical
system with an interaction proportional to XM and then an optical
quadrature measurement performed via homodyne detection.
Following the interaction, the Wigner function of the optical
field (d) is scimitar shaped due to mechanical-position-induced
optical rotations. The distribution of the initial coherent state is
indicated by the dashed circle. (The parameters for this plot
were chosen to exaggerate the curvature.) For small rotations,
the phase quadrature QP is proportional to XM and the amplitude
quadrature carries X2

M information. The amplitude-quadrature
measurement outcome indicated by the red dashed line may
have originated from two distinct mechanical positions, which
provides a means for superposition preparation. By choosing the
phase in (e) homodyne detection one can use the amplitude
quadrature for X2

M measurements and quantum-state preparation
or use the phase quadrature for XM measurements to perform
quantum-state tomography.
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one chooses the local oscillator pulse �LO to have an
amplitude directly proportional to �2, (�1). The mean

of the amplitude-quadraturemeasurement is hQXi ¼ Qð0Þ
X �

�XhX2
Mi, where the first term is the contribution from�0 and

�X is the square-displacement measurement strength. For
convenience, the outcome of the homodyne measurement is

rewritten as �QX ¼ Qð0Þ
X �QX. The optimal single-pulsed

measurement of XM is achieved with an input drive with a
Lorentzian spectrum, which matches the natural decay of
the cavity [10]. The square-displacement measurement
strength is optimal when �2

inð!Þ¼ð3�Þ�18�5=ð�2þ!2Þ3,
which is not Lorentzian due to the higher-order nature

of the interaction considered here. This gives �X ¼ffiffiffiffiffiffiffiffiffiffiffiffi
42Np

p
g2lin=�

2.

This kind of pulsed interaction and measurement is well
suited to being described with the use of measurement
operators as outcome probabilities, and conditional me-
chanical states can be readily determined [13]. Homodyne
detection of the amplitude quadrature has the outcome

probability density Prð�QXÞ ¼ TrMð�y
X�X�

in
MÞ, where

�X is the corresponding measurement operator. In this
pulsed regime �QX has mechanical dependence only on

XM, which allows �y
X�X to be interpreted as an outcome

probability density conditioned on a mechanical position.
For the coherent optical drive considered here one obtains

�XðXM;�QXÞ ¼ ��1=4ei�linXM exp½�1
2ð�QX � �XX

2
MÞ2�;

(4)

where the mean momentum transfer is �lin ¼
ð5 ffiffiffi

2
p

=3ÞNpglin=�.

III. COMPARISON TO THE DISPERSIVE
QUADRATIC INTERACTION

Before proceeding to a discussion of the mechanical
states of motion that can be prepared with �X, the
square-displacement measurement scheme introduced
above is compared with the dispersive case. The
Hamiltonian from Ref. [2] for optomechanical systems
with a dispersive element positioned so that the cavity
frequency varies quadratically with the position of the
element, in the optical rotating frame at resonance, includ-
ing the drive is

Hsq

@
¼ !Mb

ybþ gsqa
yaX2

M � i
ffiffiffiffiffiffiffiffiffiffiffiffi
2�Np

q
�inða� ayÞ; (5)

where the quadratic-optomechanical coupling rate is

gsq ¼ ð16�2cx20=L�
2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� rÞp
, r is the (field) reflectivity

of the dispersive element, and � is the optical wavelength.
The phase quadrature of an optical pulse incident upon such
an optomechanical system will be displaced in
proportion to X2

M, and it is readily shown that for a homo-
dyne measurement of the phase quadrature with outcome

QP the measurement operator is �sq ¼ ��1=4e�i�sqX
in
MXM�

exp½� 1
2 ðQP þ �sqX

2
MÞ2�, which has recently been

used in Ref. [14]. After pulse-shape optimization, �sq ¼
3Npgsq=� and �sq ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
10Np

p
gsq=�. Comparing the mea-

surement strengths for the dispersive direct X2
M interaction

and the effectiveX2
M coupling from the linear interaction for

identical Np and � gives

�X

�sq
’ 1

�

F 2
lin

F sq

x2lin
x2sq

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� rÞp ; (6)

where the cavity finesses and mechanical zero-point exten-
sions are distinguished by subscripts for the two optome-
chanical cases. Remarkably, using the optomechanical
interaction that is linearly proportional to XM and optical
amplitude-quadrature measurements allows for X2

M mea-
surements that are stronger than that availablewith the direct
X2
M interaction in dispersive optomechanics by approxi-

mately the cavity finesse. This, in combination with the
measurement-based selectability between linear or qua-
dratic couplings offered here, is the main result of this work.

IV. EXPERIMENTAL PROTOCOL
AND DISCUSSION

Jacobs and colleagues discussed the preparation of su-
perposition of the position of a mechanical resonator via
X2
M measurements [15]. This work has recently been ex-

tended to include feedback control of the superposition
separation [16]. Such benchmark quantum states show
striking differences between classical and quantum behav-
ior and are thus highly sought experimentally to study the
quantum-mechanical properties of macroscopic objects
[17–19]. In the following, an experimental protocol and a
parameter set are discussed to prepare and observe the
spatial superposition of a massive mechanical resonator
using the nonlinear interaction and measurement �X. A
measurement on a variety of experimentally accessible
initial states is considered, and the resulting conditional
and unconditional mechanical states of motion are
determined.
As the spectrum of measurement outcomes is continu-

ous, it is not experimentally possible to postselect from
many experimental runs on a single measurement outcome.
Instead, a window must be used. The mechanical state
conditioned on outcomes occurring in the window �QX �
w=2 (labeled by w) is

�ðwÞ
M ¼ 1

PrðwÞ
Z
w
d�Q0

X�Xð�Q0
XÞ�in

M�
y
Xð�Q0

XÞ; (7)

where PrðwÞ ¼ R
w d�QX Prð�QXÞ is the probability of

obtaining an outcome in the window. The mean measure-
ment outcome for a mechanical thermal state with thermal
occupation �n is h�QXi ¼ �Xð1=2þ �nÞ. As the mean is
greater than zero, some insight is gained into the form of
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Prð�QXÞ, which is a non-Gaussian function with a large
wing for positive outcomes that increases for a larger
mechanical position variance.

In Fig. 2 the action of �X is considered on three me-
chanical Gaussian states: the ground state, a thermal state,
and a momentum-squeezed state. One may suspect that
quite a narrow window for conditioning must be used in
order to achieve significant coherence between the super-
position components, however, conditional mechanical
states, prepared from high-purity initial states, show strong
quantum coherence even for relatively large conditioning
windows. For example, the conditional mechanical state
shown in Fig. 2(b) exhibits strong Wigner negativity even
for w ¼ 0:8, which allows the use of 15% of the measure-
ment outcomes. This plot also reveals the interesting fea-
ture that the negative regions are ‘‘curled around’’ positive
regions, a feature which is not seen in the more commonly
studied superposition of coherent states. This arises due to
the population components having an asymmetric distri-
bution about their peaks, specifically, there is a broader

wing nearer XM ¼ 0 and a sharper edge on the other side.
This form of the population components is more clearly
seen in Fig. 2(e), which is the conditional mechanical state
starting from a low-occupation thermal state. When the
population components have a more symmetric XM distri-
bution about their peak, the interferences no longer curl as
strongly, as is seen in Fig. 2(h), the conditional state
starting from a squeezed state.
Since a measurement of the optical amplitude quadra-

ture erases all the linear-displacement information gained
during the interaction and h�QXi> 0, the unconditional
(i.e., all measurement outcomes are ignored) mechanical

state, �out
M ¼ R1

�1 d�QX�X�
in
M�

y
X, is also non-Gaussian,

however, mixed.
The superposition separation � is defined as the distance

between the maxima of the two population components.
This depends on the initial mechanical distribution, the
measurement outcome, and the square-displacement mea-
surement strength. For Gaussian initial mechanical states
with a standard deviation � in their position spread, the
superposition separation is

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�QX�X � ��2

p
�X

: (8)

Experimental progress in optomechanics is steadily ap-
proaching the regimewhere the important parameter glin=�,
which quantifies the mechanical momentum displacement
by a single photon (for � � !M), approaches unity. In this
work �X scales with the square of this parameter and the
pulsed position-measurement strength for mechanical
quantum-state tomography [10] scales linearly with this
parameter. In present-day experiments [20], glin=� � 1,
which this work overcomes by utilizing large coherent
amplitudes in order to achieve sufficient coupling to pre-
pare and observe non-Gaussian mechanical states of mo-
tion. To ensure a short interaction, the cavity decay rate is
chosen as � ¼ 103!M, which for a desired finesse sets the
cavity length required. In Table I a list of parameters is
provided for a deformable Fabry-Perot optomechanical
system with a kHz-scale mechanical resonator.
The protocol for quantum-state preparation and

quantum-state tomography comprises three steps: (i) an
initialization stage of mechanical precooling and/or
squeezing. Since � � !M is required here and low-
frequency mechanical resonators are considered, active-
feedback cooling is most suitable [21,22]. Alternatively,
in this regime, squeezing and purification can be achie-
ved with the use of conditional measurements [10].
Additionally, squeezing can be achieved by applying a
parametric modulation to the mechanical device [23].
(ii) Following this, an optical pulse is injected into the
optomechanical cavity to realize �X and the measurement
outcome is recorded. At this point, the mechanical oscil-
lator has gained the momentum �lin, which after one
quarter of a period of free evolution shifts the cavity

FIG. 2. Mechanical Wigner functions of initial states (left),
conditional states (center), and unconditional states (right).
(XM is the horizontal axis, PM is the vertical axis. The plot
range is�5 for all axes. Color scale: black is for zero magnitude,
blue for positive values, and red for negative values.) The initial
states are the ground state, �n ¼ 0 (a), a thermal state with
�n ¼ 2 (d), and a momentum-squeezed vacuum state with squeez-
ing parameter r ¼ 0:5 (g). Conditional states prepared with �X

acting on the corresponding initial states with �X ¼ 1, �QX ¼
1:5, w ¼ 0:8 are shown in (b) and (e) and �QX ¼ 6:4 has been
used in (h). The probabilities of obtaining an outcome in the
windows used above are: (b) 14.9%, (e) 14.5%, and (h) 1.1%.
Note the disappearance of negativity—a quantum-to-classical
transition—for initial thermal occupation (e) and if the measure-
ment outcomes are ignored (c), (f), (h).
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resonance frequency by�!� ¼ glin
ffiffiffi
2

p
�lin. As this can be

much larger than � any subsequent pulse will not reso-
nantly drive the cavity. In order to overcome this, a two-
pulse preparation sequence can be used where a second
pulse follows after half a mechanical period of free evolu-
tion to cancel the mean momentum gained by the resona-
tor. In this case, one applies�X twice where both outcomes
are recorded, thus strengthening the measurement of X2

M.
This procedure requires a good degree of optical amplitude
stability, which is necessary for�X measurements anyway.
During the free evolution, the appropriate master equation
is solved to determine the mechanical state immediately
prior to the second measurement. However, as discussed
below, given the parameters considered here, the coupling
to the mechanical bath is not expected to play a strong role
during this time scale. (iii) With the resonator state near the
origin of phase space, quantum-state tomography, as dis-
cussed in Ref. [10], is now performed. This is achieved by
later injecting a subsequent pulse with the local oscillator
phase switched to measure the optical phase quadrature as
in Fig. 1(e). Repeating this protocol many times and post-
selecting the measurement outcomes �QX within the de-
sired window provides a powerful experimental platform
to generate and fully reconstruct a non-Gaussian state of
motion of a mechanical resonator.

In order to prepare mechanical superposition states with
�X there needs to be a sufficient mechanical-displacement-
induced optical rotation such that two distinct positions
give the same amplitude-quadrature outcome. This is best
achieved if the mechanical mean position gives zero rota-
tion. For mechanical states that have a nonzero mean,
which could have been conditionally prepared with a prior
pulse [10], non-Gaussian state preparation and tomography
can be performed by providing a feedback phase shift
[indicated by the arrow in Fig. 1(c)] to rotate the optical
scimitar to be centered about the QX axis, as in Fig. 1(d).
Additionally, it is noted that for optical rotation beyond
that considered in (3), existing experimental calibration
procedures and the interpretation of optical phase mea-
surements will require modification to take the optome-
chanical nonlinearity into account.

Studying the decoherence of quantum superposition in a
mechanical resonator is important to determine the feasi-
bility of optomechanical systems as components for
quantum-information applications. Proposals for such ap-
plications are numerous and include quantum memory
[24], optomechanically mediated qubit-light transduction
[25], and coherent optical wavelength conversion [26], to
name a few. There is much literature on the topic of
environmental coupling and decoherence [27], so no de-
tailed discussion will be provided here. However, in the
context of this proposal, what is important is the parameter
�n=Q, where Q is the mechanical quality factor. This pa-
rameter quantifies the rate of rethermalization normalized
to the mechanical frequency and must be much less than
unity for studying the evolution of quantum-mechanical
phenomena over the time scale !�1

M . A temperature of
25 mK accessible with dilution refrigeration and a Q ¼
5� 106 give �n=Q ¼ 0:05 using the mechanical frequency
above. With the full quantum-state tomography available
here, this scheme allows the dynamics of mechanical
superposition states to be measured, which may be
used to characterize the couplings responsible for decoher-
ence, thus allowing for improved mechanical device
engineering.
Furthermore, the significant mass involved in the spatial

superposition offers a parameter regime that allows for an
experimental test of collapse models. Very recent pro-
posals in matter-wave interferometry [14,28], which also
consider the use of filtering-type operations to generate
superposition, may provide the ability to test continuous
spontaneous localization [29]. The mechanical resonator
parameters considered here are not suitable for testing
continuous spontaneous localization predominantly
because the superposition separation is small [30].
However, the separation can be larger than the distribution
of the mass contained within the nucleus and so this can be
used to test gravitational collapse [31]. For example, using
the parameters above (� ¼ 2:0, x0 ¼ 10 fm) the separation
is approximately 28 fm and the diameter of a 28Si nucleus
is approximately 8 fm. It may be useful in such an inves-
tigation to start with an initial squeezed mechanical state,
as is considered in Figs. 2(g)–2(i), as one can study a larger
range of superposition separations as the probability den-
sity of measurement outcomes is broader.

V. CONCLUSION

This work has provided a means to measure the dis-
placement or displacement squared of a mechanical reso-
nator using the optomechanical interaction linearly
proportional to the mechanical displacement by simply
changing the phase in optical homodyne measurement.
Displacement-squared measurements have so far been
predominantly considered in dispersive optomechanics;
however, the optimal square-displacement measurement
strength obtained in the scheme introduced here can be

TABLE I. An experimentally accessible set of parameters to
achieve unity square-displacement measurement strength.

Optical wavelength: � 1064 nm

Mechanical effective mass: m 40 ng

Mechanical eigenfrequency: !M=2� 2 kHz

Cavity finesse: F 5� 104

Photon number per pulse: Np 1:7� 109

Cavity length: L 750 	m
Mechanical ground-state size: x0 10 fm

Optomechanical coupling: glin=2� 3.8 kHz

Single-photon strength: glin=� 1:9� 10�3

Separation ( �n ¼ 0, �QX ¼ 1:5): � 2.0
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significantly stronger than that available in dispersive op-
tomechanics as it scales more favorably with the cavity
finesse. This opens the possibility that optomechanics
with an interaction Hamiltonian that is linear with the
mechanical position may also provide a route to observe
mechanical-energy quantization, as was considered in [2].
Moreover, as was proposed in [15], with an X2

M coupling to
a mechanical resonator one can prepare a superposition of
positions via measurement. This, applied to the X2

M cou-
pling achieved here and combined with the ability to
perform mechanical state tomography with time [10], pro-
vides an alternative to Refs. [17,19] to generate the super-
position of a mechanical resonator without the need for
large single-photon mechanical displacement glin=�.
Such mechanical superposition states are important to
investigate experimentally in order to determine the feasi-
bility of mechanical resonators as elements in quantum-
information applications and to explore decoherence
mechanisms arising from environment interaction or, for
example, gravitationally induced collapse.
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9 A Scheme to Probe Planck-Scale
Modifications to the Canonical
Commutation Relation

For several decades now modern physics has been unable to unify general relativity
with quantum mechanics. The challenge of this endeavour is made more difficult
by the lack of experimental observations of quantum gravitational phenomena that
would provide important road signs to a theory of quantum gravity - as was of
paramount importance for the development of quantum theory itself. While the
Planck energy (EP = 1.2 × 1019 GeV), Planck length (LP = 1.6 × 1035 m), and
Planck time (tP = 10−44 s) are at present out of reach to experimentally explore
directly, while a great challenge, it is not unreasonable to expect to be able to probe
quantum mechanical phenomena at the scale of the Planck mass (mP = 22 µg).
Cavity quantum optomechanics may provide such a route to do this as mechanical
oscillators with vibrational modes of masses of order mP are readily fabricated and
early signs of quantum mechanical behaviour are now being observed.

A common feature of many current models of quantum gravity is the existence of a
minimum length scale in the universe. Excitingly, such a quantity yields experimen-
tally testable phenomena. Such a minimum length may be described theoretically by
a modification to the quantum mechanical Heisenberg uncertainty relation [89] and
thus a deformation to the commutation relation between position and momentum.
There are a variety of such deformations currently under consideration that yield a
minimum length scale, see e.g. Refs [90, 91], and also deformations that also yield
a maximum momentum [92, 93].

This theoretical project [94] proposed a method, using quantum optomechanics
and the pulsed interaction studied in chapter 6, to probe for such commutator defor-
mations. The key result of our scheme is a sequence of four pulsed optomechanical
interactions that allows for a highly sensitive inference of mechanical commutator
with a precision many orders of magnitude better than any existing scheme.

This project emerged from discussion, with very clever input from Myungshik Kim
and Igor Pikovski, how to generate optomechanical phases of a geometric nature and
how to infer the commutator between the position and momentum of a mechanical
oscillator at a quantum mechanical level. It was well within the project’s devel-
opment that we realized that the quantum gravitational commutator deformations

97



9 A Scheme to Probe Planck-Scale Modifications to the Canonical Commutation Relation

could be tested. In addition to participating in the project’s early discussions, my
specific contributions to this project were to conceive the optical setup that allows
for the four pulsed optomechanical interactions followed by a measurement of the
optical phase shift, and to, together with all co-authors, determine the parameter
sets to test three different commutator deformations and analyze the experimental
feasibility.
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Probing Planck-scale physics with quantum optics
Igor Pikovski1,2*, Michael R. Vanner1,2, Markus Aspelmeyer1,2, M. S. Kim3* and Časlav Brukner2,4

One of the main challenges in physics today is to merge quantum theory and the theory of general relativity into a unified
framework. Researchers are developing various approaches towards such a theory of quantum gravity, but a major hindrance
is the lack of experimental evidence of quantum gravitational effects. Yet, the quantization of spacetime itself can have
experimental implications: the existence of a minimal length scale is widely expected to result in a modification of the
Heisenberg uncertainty relation. Here we introduce a scheme to experimentally test this conjecture by probing directly the
canonical commutation relation of the centre-of-mass mode of a mechanical oscillator with a mass close to the Planck mass.
Our protocol uses quantumoptical control and readout of themechanical system to probe possible deviations from the quantum
commutation relation even at the Planck scale. We show that the scheme is within reach of current technology. It thus opens a
feasible route for table-top experiments to explore possible quantum gravitational phenomena.

It is at present an open question whether our underlying conceptsof space–time are fully compatible with those of quantum
mechanics. The ongoing search for a quantum theory of gravity

is therefore one of the main challenges in modern physics. A
major difficulty in the development of such theories is the lack
of experimentally accessible phenomena that could shed light on
the possible route for quantum gravity. Such phenomena are
expected to become relevant near the Planck scale, that is, at
energies on the order of the Planck energy EP = 1.2× 1019 GeV
or at length scales near the Planck length LP = 1.6× 10−35 m,
where space–time itself is assumed to be quantized. However,
such a minimal length scale is not a feature of quantum theory.
The Heisenberg uncertainty relation, one of the cornerstones of
quantummechanics1, states that the position x and themomentum
p of an object cannot be simultaneously known to arbitrary
precision. Specifically, the indeterminacies of a joint measurement
of these canonical observables are always bound by �x�p≥ h̄/2.
Yet, the uncertainty principle still allows for an arbitrarily precise
measurement of only one of the two observables, say position,
at the cost of our knowledge about the other (momentum). In
stark contrast, in many proposals for quantum gravity the Planck
length constitutes a fundamental bound below which position
cannot be defined. It has therefore been suggested that the
uncertainty relation should be modified to take into account such
quantum gravitational effects2. In fact, the concept of a generalized
uncertainty principle is found in many approaches to quantum
gravity, for example in string theory3,4, in the theory of doubly
special relativity5,6, within the principle of relative locality7 and
in studies of black holes8–10. A generalized uncertainty relation
also follows from a deformation of the underlying canonical
commutator [x,p] ≡ xp− px (refs 11–15), as they are related via
�x�p≥ (1/2)|〈[x,p]〉|.

Preparing and probing quantum states at the Planck scale
is beyond today’s experimental possibilities. Current approaches
to test quantum gravitational effects mainly focus on high-
energy scattering experiments, which operate still 15 orders of
magnitude away from the Planck energy EP, or on astronomical
observations16,17, which have not found any evidence of quantum

1Vienna Center for Quantum Science and Technology (VCQ), Boltzmanngasse 5, A-1090 Vienna, Austria, 2Faculty of Physics, University of Vienna,
Boltzmanngasse 5, A-1090 Vienna, Austria, 3Quantum Optics and Laser Science (QOLS) group, Blackett Laboratory, Imperial College London, SW7 2BW,
UK, 4Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria.
*e-mail: igor.pikovski@univie.ac.at; m.kim@imperial.ac.uk.

gravitational effects as of yet18,19. Another route would be to
perform high-sensitivity measurements of the uncertainty relation,
as any deviations from standard quantum mechanics are, at least
in principle, experimentally testable13–15. However, with the best
position measurements being of order�x/Lp∼1017 (refs 20,21), at
present sensitivities are still insufficient and quantum gravitational
corrections remain unexplored.

Here we propose a scheme that circumvents these limitations.
Our scheme allows one to test quantum gravitational modifications
of the canonical commutator in a novel parameter regime, thereby
reaching a hitherto unprecedented sensitivity in measuring Planck-
scale deformations. The main idea is to use a quantum optical
ancillary system that provides a directmeasurement of the canonical
commutator of the centre of mass of a massive object. In this way
Planck-scale accuracy of position measurements is not required.
Specifically, the commutator of a very massive quantum oscillator
is probed by a sequence of interactions with a strong optical field
in an optomechanical setting, which uses radiation pressure inside
an optical cavity22,23. The sequence of optomechanical interactions
is used to map the commutator of the mechanical resonator
onto the optical pulse. The optical field experiences a measurable
change that depends on the commutator of the mechanical
system and that is nonlinearly enhanced by the optical intensity.
Observing possible commutator deformations thus reduces to a
measurement of the mean of the optical field, which can be
performed with very high accuracy by optical interferometric
techniques. We show that, already with state-of-the art technology,
tests of Planck-scale deformations of the commutator are within
experimental reach.

Modified commutation relations
A commonmodification of theHeisenberg uncertainty relation that
appears in a vast range of approaches to quantum gravity2–4,24,25
is �x�p ≥ h̄(1 + β0(�p/(MPc))2)/2. Here, β0 is a numerical
parameter that quantifies the modification strength, c is the speed
of light andMP�22 μg is the Planckmass. Theminimalmeasurable
length scale appears as a natural consequence with �xmin= LP

√
β0

(Fig. 1). Such a modification alters the allowed state-space and can
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Figure 1 | The quantum uncertainty relation and a quantum gravitational
modification. The minimum Heisenberg uncertainty (red curve) is plotted
together with a modified uncertainty relation (dashed blue curve) with
modification strength β0. MP and LP are the Planck mass and Planck length,
respectively. The shaded region represents states that are allowed in
regular quantum mechanics but are forbidden in theories of quantum
gravity that modify the uncertainty relation. The inset shows the two curves
far from the Planck scale at typical experimental position uncertainties
�x	�xmin. An experimental precision of δxδp is required to distinguish
the two curves, which is beyond experimental possibilities at present.
However, this can be overcome by our scheme, which allows one to probe
the underlying commutation relation in massive mechanical oscillators and
its quantum gravitational modifications.

be seen as amanifestation of a deformed canonical commutator, for
example of the form12

[x,p]β0 = ih̄

(
1+β0

(
p

MPc

)2
)

(1)

So far, no effect of a modified canonical commutator has been
observed in experiments. At present the best availablemeasurement
precision (Table 1) allows one to put an upper bound on the
magnitude of the deformation of β0 < 1033 (ref. 13). For theories
that modify the commutator this rules out the existence of an
intermediate fundamental length scale on the order of x∼ 10−19 m.
Note that the Planck-scale modifications correspond to β0∼ 1 and
are therefore untested. Furthermore, the above modification of
the commutator is not unique and experiments can, in principle,
distinguish between the various theories. In particular, a generalized
version of the commutator deformation is11

[x,p]μ0 = ih̄

√
1+2μ0

(p/c)2+m2

M 2
P

(2)

Here, m is the rest mass of the particle and μ0 is again a free
numerical parameter. For small masses m
 p/c ∼< MP, and for
μ0 = β0, the above modified commutator reduces to equation (1).
However, an important difference is that the commutation relation
in equation (2) depends directly on the rest mass of the particle.
In the limit p/c
m ∼<MP, the commutator reduces to [x,p]μ0 ≈
ih̄(1+μ0m2/M 2

P ), which can be seen as a mass-dependent rescaling
of h̄. It is worth noting that a modified, mass-dependent Planck
constant h̄ = h̄(m) also appears in other theories, some of
which predict that the value of Planck’s constant can decrease
with increasing mass (h̄→ 0 for m	 MP), in contrast to the
prediction above. Such a reduction would also account for a
transition to classicality in massive systems or at energies close to
the Planck energy6,10.

Table 1 |Current experimental bounds on quantum
gravitational commutator deformations.

System/experiment β0,max γ0,max References

Position measurement 1034 1017 20,21
Hydrogen Lamb shift 1036 1010 13,15
Electron tunnelling 1033 1011 13,15

The parameters β0 and γ0 quantify the deformation strengths of the modification given in
equation (1) and of the modification given in equation (3), respectively. For electron tunnelling
an electric current measurement precision of δI∼ 1 fA was taken.

Among the various proposals for different commutator
deformations, we choose as a last example the recently proposed
commutator14 which also accounts for a maximum momentum
that is present in several approaches to quantum gravity5,6

[x,p]γ0 = ih̄

(
1−γ0

p
MPc

+γ 2
0

(
p

MPc

)2
)

(3)

Here, γ0 is again a free numerical parameter that characterizes
the strength of the modification. Experimental bounds on γ0
are more stringent than in the case of equation (1) and were
considered in ref. 15. The best bound at present can be obtained
from Lamb shift measurements in hydrogen, which yield γ0 ∼< 1010
(Table 1).

The strength of the modifications in all the discussed examples
depends on the mass of the system. For a harmonic oscillator
in its ground state the minimum momentum uncertainty is
given by p0 = √h̄mωm, where m is the mass of the oscillator
and ωm is its angular frequency. The deformations are therefore
enhanced in massive quantum systems. We note that theories of
deformed commutators have an intrinsic ambiguity as to which
degrees of freedom it should apply to for composite systems
(see Supplementary Information). For the centre of mass mode,
the mass dependence of the deformations suggests that using
massive quantum systems allows easier experimental access to the
possible deformations of the commutator, provided that precise
quantum control can be attained. Optomechanical systems, where
the oscillator mass can be around the Planck mass and even
larger, therefore offer a natural test-bed for probing commutator
deformations of its centre of mass mode.

Scheme tomeasure the deformations
In the following we will outline a quantum optical scheme
that allows one to measure deformations of the canonical
commutator of a mechanical oscillator with unprecedented
precision. For simplicitywe use dimensionless quadrature operators
Xm and Pm. They are related to the position and momentum
operators via x = x0Xm and p = p0Pm, where x0 = √h̄/(mωm)
and p0=√h̄mωm.

The scheme relies on displacements of the massive mechanical
oscillator in phase space, where the displacement operator is
given by26 D(z/

√
2)= ei(Re[z]Xm−Im[z]Pm). The action of this operator

displaces the mean position and momentum of any state by Im[z]
and Re[z], respectively. In quantum mechanics, two subsequent
displacements provide an additional phase to the state, which
can be used to engineer quantum gates27–29. Here we consider
displacements of the mechanical resonator that are induced by an
ancillary quantum system, the optical field, with an interaction
strength λ. A sequence of four optomechanical interactions is
chosen such that the mechanical state is displaced around a loop in
phase space, described by the four-displacement operator

ξ = eiλnLPme−iλnLXme−iλnLPmeiλnLXm (4)
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In classical physics, after the whole sequence, neither of the two
systems would be affected because the four operations cancel
each other. However, for non-commuting Xm and Pm there is
a change in the optical field depending on the commutator
[Xm,Pm] = iC1. We can rewrite equation (4) using the well-known
relation30 eaXmPme−aXm =∑∞

k=0(i
kak/k!)Ck , where iCk = [Xm,Ck−1]

and C0 = Pm. This yields ξ = exp(−iλnL∑k(λnL)
kCk/k!), which

depends explicitly on the commutation relation for the oscillator,
but not on the commutator of the optical field. For the quantum
mechanical commutator, that is C1 = 1, we obtain ξ = e−iλ

2n2L . In
this case, the optical field experiences a self-Kerr nonlinearity, that
is an n2L operation, and the mechanical state remains unaffected.
However, any deformations of the commutator would show in ξ ,
resulting in an observable effect in the optical field.

As an example we consider the modification given by
equation (1). To first order in β ≡ β0h̄ωmm/(MPc)2 
 1 one
obtains C1 = 1+βP2

m, C2 ≈ β2Pm, C3 ≈ 2β and Ck ≈ 0 for k ≥ 4.
Equation (4) thus becomes ξβ = e−iλ

2n2L e−iβ(λ
2n2LP

2
m+λ3n3LPm+(1/3)λ4n4L)

(this approximation has the physical meaning that one can neglect
contributions which are higher order in β for the observables
considered below). As one can see immediately, a deformed
commutator affects the optical field differently owing to non-
vanishing nested commutators Ck , k > 1. In addition to a Kerr-type
nonlinearity the optical field experiences highly non-Gaussian n3L
and n4L operations. The additional effect scales with β and therefore
allows a direct measure of the deformations of the canonical
commutator of the mechanical system via the optical field. To see
that explicitly, let us denote the optical field by aL, with the real
and imaginary parts representing its measurable amplitude and
phase quadratures, respectively. Also, for simplicity, we restrict
the discussion to coherent states |α〉 with real amplitudes of the
optical input field and we neglect possible deformations in the
commutator of the optical field during read-out31,32 as those are
expected to be negligible compared with the deformations of the
massive mechanical oscillator (see refs 33,34 for schemes that can
probe the non-commutativity of the optical field). For a large
average photon numberNp	1, and for a mechanical thermal state
with mean phonon occupation n̄
 λNp, the mean of the optical
field becomes (for |	|
 1):

〈aL〉� 〈aL〉qme−i	 (5)

where 〈aL〉qm = αe−iλ
2−Np(1−e−i2λ2 ) is the quantum mechanical value

for the unmodified dynamics. The β-induced contribution causes
an additional displacement in phase space by

	(β)� 4
3
βN 3

p λ
4e−i6λ

2

(6)

The resulting optical state is represented in Fig. 2. We note
that the magnitude of the effect is enhanced by the opti-
cal intensity and the interaction strength. For the μ- and the
γ -deformation of the commutator, referring to equations (2)
and (3), respectively, the effect on the optical field is simi-
lar, but shows a different scaling with the system parameters
(see Table 2 and Supplementary Information for the derivation).
Probing deviations from the quantum mechanical commuta-
tor of the massive oscillator thus boils down to a precision
measurement of the mean of the optical field, which can be
achieved with very high accuracy via interferometric means, such
as homodyne detection.

Experimental implementation
We now discuss a realistic experimental scenario that can attain
sufficient sensitivity to resolve the deformation-induced change
in the optical field even for small values of β0, μ0 and γ0,
that is in a regime that can be relevant for quantum gravity.

Im [aL]

Re [aL]

〈aL〉 qm

⏐ 〉  out

ΦΘ

⏐ 〉α

αξ σ

Figure 2 | Changes to the optical field following the pulsed
optomechanical interactions. The effect of the four-displacement
operation ξ onto an optical state for the experimentally relevant case λ
 1.
In this case, an initial optical coherent state |α〉 is rotated in phase-space
through an angle 
. A part 	 of the rotation is due to a possible quantum
gravitational deformation of the canonical commutator of the mechanical
resonator (see equation (6)). Measuring the mean of the optical field 〈aL〉
and extracting the 	-contribution allows one to probe deformations of the
canonical commutator. Optical interferometric schemes can provide a
measurement of the overall mean rotation with a fundamental imprecision
δ〈
〉= σout/

√
NpNr, (Nr: number of measurement runs, Np: number of

photons, σout: quadrature width of the optical state, which remains very
close to the coherent state value 1/2). To resolve the 	-contribution, the
measurement imprecision must fulfill δ〈
〉< 	, which we show can be
achieved in quantum optomechanical systems even for deformations on
the Planck scale.

The optomechanical scheme proposed here can achieve such a
regime: it combines the ability to coherently control large masses
with strong optical fields. From a more general perspective,
optomechanical systems provide a promising avenue for preparing
and investigating quantum states of massive objects ranging
from a few picograms up to several kilograms22,23. Significant
experimental progress has been recently made towards this goal,
including laser cooling of nano- and micromechanical devices into
their quantum ground state35,36, operation in the strong-coupling
regime37–39 and coherent interactions39,40. Owing to their high
mass they have also been proposed for tests of so-called collapse
models41,42, which predict a breakdown of the quantummechanical
superposition principle for macroscopic objects. For our purpose
here, which is the high-precision measurement of the canonical
commutator of a massive oscillator, we focus on the pulsed regime
of quantum optomechanics43.

We consider the set-up depicted in Fig. 3, where a mechanical
oscillator is coupled to the optical input pulse via radiation
pressure inside a high-finesse optical cavity. This is described
by the intra-cavity Hamiltonian44 H = h̄ωmnm− h̄g0nLXm, where
nm is the mechanical number operator and g0 = ωc(x0/L) is the
optomechanical coupling rate with the mean cavity frequency
ωc and mean cavity length L. For sufficiently short optical
pulses the mechanical harmonic evolution can be neglected and
the intracavity dynamics can be approximated by the unitary
operation U = eiλnLXm (ref. 43). Here, the effective interaction
strength is (see Supplementary Information) λ� g0/κ = 4Fx0/λL,
where κ is the optical amplitude decay rate, F is the cavity
finesse and λL is the optical wavelength. To realize the desired
displacement operation in phase-space it is also required to achieve
a direct optomechanical coupling, with the same optical pulse,
to the mechanical momentum (equation (4)). Such a momentum
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Table 2 | Experimental parameters to measure quantum
gravitational deformations of the canonical commutator.

[Xm,Pm] Equation (2) Equation (3) Equation (1)

|�| μ0
32h̄F2mNp

M2
Pλ

2
Lωm

γ0
96h̄2F3N2

p

MPcλ
3
Lmωm

β0
1024h̄3F4N3

p

3M2
Pc

2λ4Lmωm

F 105 2× 105 4× 105

m 10−11 kg 10−9 kg 10−7 kg
ωm/2π 105 Hz 105 Hz 105 Hz
λL 1,064 nm 1,064 nm 532 nm
Np 108 5× 1010 1014

Nr 1 105 106

δ〈
〉 10−4 10−8 10−10

The parameters are chosen such that a precision of δμ0∼ 1, δγ0∼ 1 and δβ0∼ 1 can be achieved,
which amounts to measuring Planck-scale deformations.

coupling could be achieved for example via the Doppler effect
by using mirrors with a strongly wavelength-dependent optical
reflectivity45. A more straightforward route is to use the harmonic
evolution of the mechanical resonator between pulse round-
trips (for example, ref. 43), which effectively allows Xm and Pm
to be interchanged after a quarter of the oscillator period. In
this case, the contribution from the commutator deformation
has a different pre-factor, but remains of the same form (see
Supplementary Information), and part of the phase-space rotation
in the optical field is of classical nature. This has no effect on
the ability to distinguish and observe the rotation due to the
deformed commutator. After the four-pulse interaction has taken
place the optical field can be analysed in an interferometric
measurement, which yields the phase information of the light with
very high precision.

As in previous approaches to measure possible modifications
of the canonical commutator13,15, the relevant question is which
ultimate resolution δβ0, δμ0, δγ0 the experiments can provide. In
the case of a null result, these numbers would set an experimental
bound for β0, μ0, γ0 and hence provide an important empirical
feedback for theories of quantum gravity. We restrict our analysis
to the experimentally relevant case λ < 1, for which the effect of
a deformed commutator resembles a pure phase-space rotation
of the optical output state by angle 
 (Fig. 2). The inaccuracy
δ
 of the measurement outcome depends on the quantum
noise σout of the outgoing pulse along the relevant generalized
quadrature and can be further reduced by quantum estimation
protocols46. For our purposes we only require to measure the mean
optical field, equation (5). The precision of this measurement is
not fundamentally limited and is enhanced by the strength of
the field and the number of experimental runs Nr via δ〈
〉 =
σout/

√
NpNr, from which one directly obtains the fundamental

resolutions δβ0, δμ0, δγ0. For each of the discussed deformations
it is possible to find a realistic parameter regime (Table 2) with
markedly improved performance compared with existing bounds.
In particular, we assume a mechanical oscillator of frequency
ωm/2π = 105 Hz and mass m = 10−11 kg, and an optical cavity
of finesse F = 105 at a wavelength of λL = 1,064 nm, which is
in the range of current experiments37,47–50. To test a μ-modified
commutator (equation (2)), a pulse sequence of mean photon-
number Np = 108 is sufficient to obtain a resolution δμ0 ∼ 1
already in a single measurement run (Nr = 1). For the case
of a γ -modified commutator (equation (3)), the same sequence
would result in δγ0 ∼ 109. By increasing the photon-number to
Np = 5× 1010, the finesse to F = 2× 105 and the number of
measurement runs to Nr = 105 (this would require stabilizing the
experiment on a timescale of the order of seconds) one obtains
δγ0 ∼ 1. Note that this would improve the existing bounds for γ0

Reference

EOM

Delay line

/4

[X m, Pm] = ?

In H
PBS

First: HH
V

V
Outnth: H

VLast: V

Interferometric
measurement

aL

Xm
λ

Figure 3 | Proposed experimental set-up to probe deformations of the
canonical commutator of a macroscopic mechanical resonator. An
incident pulse ‘In’ is transmitted through a polarizing beam splitter (PBS)
and an electro-optic modulator (EOM) and then interacts with a
mechanical resonator with position Xm via a cavity field aL. The optical field
is retro-reflected from the optomechanical system and then enters a delay
line, during which time the mechanical resonator evolves for one quarter of
a mechanical period. The optical pulse, now vertically polarized, is rotated
by the EOM to be horizontally polarized and interacts again with the
mechanical resonator. This is repeated for a total of four interactions, such
that the canonical commutator of the resonator is mapped onto the optical
field. Finally, the EOM does not rotate the polarization and the pulse exits in
the mode labelled ‘Out’, where it is then measured interferometrically with
respect to a reference field such that the commutator deformations can be
determined with very high accuracy.

(ref. 15) by ten orders of magnitude. To obtain similar bounds for
a β-modification is more challenging. The pulse sequence with the
previous parameters yields δβ0∼ 1012, which already constitutes an
improvement by about 20 orders of magnitude compared with the
current bound for β0 (ref. 13). This can provide experimental access
to a possible intermediate length-scale or a meaningful feedback
to theories of quantum gravity in the case of a null result. By
further pushing the parameters toNp= 1014,Nr= 106,F = 4×105,
m=10−7 kg and λL=532 nm it is even possible to reach δβ0∼1, that
is, a regime where Planck-scale deformations are relevant and 33
orders of magnitude beyond current experiments. To achieve such
experimental parameters is challenging, but is well within the reach
of current technology.

The above considerations refer to the ideal case in which
experimental noise sources can be neglected. Effects such as
mechanical damping and distortions of the effective interaction
strength impose additional requirements on the experimental
parameters, which are discussed in detail in the Supplementary
Information. In summary, being able to neglect the effects of
pulse shape distortion and optical loss requires that the mechanical
mode is optically cooled close to a thermal occupation of about
n̄< 30. Similarly, decoherence effects are negligible when the whole
mechanical system is in a bath of temperature T < 100mK for
resonators with a quality factor of Q> 106, which can be achieved
with dilution refrigeration. In general, the scheme is very robust
against many noise sources, as it relies on the measurement of the
mean of the optical field and the noise sources can be isolated by
independent measurements. We also note that contributions from
a modified commutator scale in a different way with the system
parameters as compared with deleterious effects. It is therefore
possible to distinguish these by varying the relevant parameters,
such as optical intensity and the oscillator mass. The proposed
scheme thus offers a feasible route to probe the possible effects
of quantum gravity in a table-top quantum optics experiment
and hence to provide important empirical feedback for theories
of quantum gravity.
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Probing Planck-scale physics with quantum optics

A Alternative Commutator deformations

In this section we compute the change in the optical field for the two alternative commutator deformation
theories considered in the main text, i.e. for the μ- and the γ-deformation given by Eqs. 2 and 3,
respectively. For the case [x, p]μ0

≈ i�
(
1 + μ0m

2/M2
P

)
the four-displacement operator becomes ξμ =

e−iλ2n2
L(1+μ), where we defined μ ≡ μ0m

2/M2
P . The resulting mean of the optical field is thus 〈aL〉 =

αe−iλ2(1+μ) e
−NP

(
1−e−i2λ2(1+μ)

)
. In the limit μ � 1 and NP � 1, it reduces to 〈aL〉 � 〈aL〉qm e−iΘ

with the deformation-induced contribution Θ(μ) given by

Θ(μ) � 2μNpλ
2e−i2λ2

. (A.1)

For a γ-deformation of the commutator we define γ ≡ γ0

√
�mωm/MP c 	 1 and the four-displacement

operator becomes ξγ = e−iλ2n2
L eiγ(λ2n2

LPm+ 1
2
λ3n3

L) to first order in γ. In the limit NP � 1, this results
in the additional contribution to the quantum mechanical mean of the optical field given by

Θ(γ) � 3
2
γN2

p λ3 e−i4λ2
. (A.2)

Finally, we note that theories with a modified commutator have an intrinsic ambiguity as to which
particles or degrees of freedom of a composite system the deformations should apply to. For exam-
ple, a system consisting of N particles with identical mass and each with position xi and momentum
pi has the center of mass degrees of freedom given by xcm =

∑N
i xi/N and pcm =

∑N
i pi. If

the β-modified commutation relation as given by Eq. 1 is applied to each single particle individually
(rather than to the center of mass itself), the commutator of the center of mass becomes [xcm, pcm] =
i�

(
1 + β0

∑N
i p2

i /(M2
P c2N)

)
= i�

(
1 + β0

M2
P c2N

(
p2

cm −
∑N

i �=j pipj

))
. This result differs from a di-

rect deformation of the center of mass mode. Depending on the state of the system, in particular on the
pairwise correlations between the constituent particles, the difference in the commutator deformation
can be approximated by the substitution β0 → χβ0 where χ lies between 1/N (for vanishing pairwise
correlations) and 1/N2 (for all pairs being equally correlated).

B Modified harmonic evolution

For the implementation utilizing free harmonic evolution between the pulsed interactions, it is necessary
to take a deformed evolution due to a deformation of the commutator into account. Here we consider
the β-deformation as given by Eq. 1. Keeping the quantum mechanical canonical commutation relation
and modifying the momentum operator to Pm → Pm

(
1 + 1

3βP 2
m

)
incorporates the deformation to first

order in β [13]. It is therefore necessary to solve for Xm(t) for a modified evolution governed by the
effective Hamiltonian H = 1

2�ωm

(
X2

m + P 2
m

)
+ 1

3�ωmβP 4
m ≡ H0 + H ′. These correspond to the

unitary evolutions U0 and U ′, respectively. In a frame rotating at frequency ωm, the time evolution of the
operators X ′

m = U0XmU †0 and P ′m = U0PmU †0 is generated by H ′(P ′m). This yields P ′m(t) = P ′m(0)
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and X ′
m(t) = X ′

m(0) + 4
3βωmtP ′3m . In the original frame, the result is thus

Xm(t) = Xm(0) cos(ωmt)− Pm(0) sin(ωmt) +
4
3
βωmt (Pm(0) cos(ωmt) + Xm(0) sin(ωmt))3 .

(B.1)
Using four interactions separated by a quarter mechanical period, the four-displacement operator be-
comes ξ = eiλnL(Pm−2βπX3

m)eiλnL(−Xm−4βπP 3
m/3)eiλnL(−Pm+2βπX3

m/3)eiλnLXm . This expression can
be simplified using the Zassenhaus formula [30] exp(X + Y ) = exp(X) exp(Y )

∏∞
i=1 exp(Zi), where

Z1 = − [A, B] /2, Z2 = [A, [A, B]] /6+[B, [A, B]] /3, Z3 = − ([B, [A, [A, B]]] + [B, [B, [A, B]]]) /8−
[A, [A, [A, B]]] /24 and Zk, k > 3 are functions of higher nested commutators. To leading order in nL,
the four-displacement operator becomes

ξ � e−iλ2n2
L eiβπ 5

3
λ4n4

L . (B.3)

The optical field due to this operation is of the same form as in Eq. 5 with a modified numerical strength.
The modified dynamics therefore does not alter the main conclusions.

C Additional requirements due to deleterious effects

In the following we analyze the experimental parameters necessary to overcome some additional dele-
terious effects in the opto-mechanical system. We analyze the cavity dynamics and its influence on the
effective interaction, the effect of varying interaction strengths for each pulse round trip and the influence
of mechanical decoherence. We neglect additional contributions from a modified commutator since these
will be less prominent than that considered in the ideal case.

The Hamiltonian H = �ωmnm − �g0nLXm refers to the interaction between the optical field and
the mechanics within the cavity [44]. To quantify the effects of cavity filling and decay for a short pulse
we solve the optical Langevin equation

daL

dt
= (ig0Xm − κ)aL +

√
2κ

(
a

(in)
L +

√
Npαin

)
(7)

with the boundary condition a
(in)
L + a

(out)
L =

√
2κaL for the input and output optical fields and the

incident cavity drive αin that is normalized to the mean photon number per pulse, i.e.
∫
dt α2

in = 1. Since
the mechanical motion can be neglected in the short pulse regime the overall effect on both the optical
field and the mechanical oscillator can be described by the effective unitary operator U = eiλnLXm .
The coupling strength λ depends on the intra-cavity field envelope and can be determined via the total
momentum transfer onto the mechanics by the optical pulse 〈Pm〉 = g0

∫
dt 〈nL(t)〉, where nL(t) is

obtained from Eq. 7. This yields λ = ζ g0/κ with ζ =
∫

dte−2κtκ2
[∫ t
−∞dt′ eκt′αin(t′)

]2
for the effective

unitary operator.
In general, the pulse shape of the output optical field is altered by the cavity. When such a distorted

pulse is directed back for the i-th time into the cavity, the effective interaction time within the cavity
will be different and will give rise to a modified opto-mechanical interaction strength λi. To minimize
the distortion, one requires that the pulse duration τ is much longer than the intra-cavity lifetime, i.e.
ωm 	 τ−1 	 κ, where κ is the cavity bandwidth. This ensures that the optical pulses are short
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compared to the mechanical period and that the cavity is empty in between the pulsed interactions. In
this regime we have ζ � 1 such that λ � g0/κ.

An additional effect that distorts the interaction strength λ from pulse to pulse is the loss of light.
To include both loss and pulse shape change in the effective interaction, we define an overall distortion
parameter η. With this parameter, the opto-mechanical interaction strength λi for the i-th interaction is
approximately given by λi+1 = ηλi. We note that in the regime considered here the loss of light will be
dominant and we assume a value of η ∼ 0.9.

The effect of varying interaction strengths modifies the four-displacement operator to ξη = eiλ4nLPm×
e−iλ3nLXme−iλ2nLPmeiλ1nLXm . Using λ = λ1, it can be written as

ξη = ξ′0 eiηλ(1−η2)nLPm eiλ(1−η2)nLXm , (8)

where ξ′0 is the four-displacement operator as considered previously, but with modified interaction strengths:
For the β-, γ- and μ-deformations, the interaction strength is reduced to λ4 → η7λ, λ3 → η5λ and
λ2 → η3λ, respectively. For η ∼ 0.9 the Θ−contribution to the optical mean by the β-modified com-
mutator would therefore be reduced by a factor ∼ 0.5, the contribution by the γ-modified commutator
would be reduced by ∼ 0.6 and the contribution by a μ-modified commutator would be reduced by
∼ 0.7. Additionally, Eq. 8 contains a strong dependence of the outgoing optical field on the mechanical
state. Given a thermal distribution of the mechanical center-of-mass mode with mean phonon occupation
n̄, the optical mean is reduced by e−n̄λ2(1−η2)(1−η4)/2. For η ∼ 0.9 and λ ∼ 1, the mechanics therefore
needs to be damped to n̄ � 30. This can be achieved by optical cooling of the mechanical mode, which
has recently been demonstrated in Refs. [35, 36].

Finally, we discuss mechanical decoherence in between pulse interactions due to coupling of the
mechanical mode to other degrees of freedom in the oscillator. We consider a linear coupling to an
infinite bath of harmonic oscillators, which can be described by the interaction Hamiltonian

Hint =
∑

i

νi

(
bi e

−iωit + b†i eiωit
)

Xm , (9)

where bi are operators for the i-th bath mode with frequency ωi that interact with the mode of interest
with interaction strength νi. Using the notation B(t) =

∑
i νi

(
bi e

−iωit + b†i eiωit
)

, the solutions for the
position and momentum operators become

Xm(t) = X(0)
m (t, t0)−

∫ t

t0

dt′B(t′) sin(ωm(t− t′))

Pm(t) = P (0)
m (t, t0) +

∫ t

t0

dt′B(t′) cos(ωm(t− t′)) ,

(10)

where X
(0)
m (t, t0) = Re[A(t0)eiωm(t−t0)] and P

(0)
m (t, t0) = Im[A(t0)eiωm(t−t0)] are the position and mo-

mentum operators without decoherence, respectively, with the initial value A(t0) = Xm(t0) + iPm(t0).
For a bath that is initially uncorrelated with the mechanical mode of interest, the ξ-operator changes to

ξB = ξ0 eiλnLB3 eiλnLB2 eiλnLB1 (11)

where ξ0 is the operator without decoherence as given in Eq. 4 and the bath degrees of freedom en-
ter through the operators B1 =

∫ π/2ωm

0 dtB(t′) cos(ωmt), B2 =
∫ π/ωm

0 dtB(t′) sin(ωmt) and
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B3 = −
∫ 3π/2ωm

0 dtB(t′) cos(ωmt). We consider a Markovian bath with negligible bath correlation
times such that 〈B(t)〉 = 0 and 〈B(t)B(t′)〉 = γm coth(�ωm/2kBT )δ(t − t′), where the mechanical
damping can be written in terms of the mechanical quality factor as γm = ωm/Q. To first order in T/Q
the mean of the optical field becomes

〈aL〉B � 〈aL〉0 (1− λ2 kBT

�ωmQ
) , (12)

where 〈aL〉0 is the mean of the optical field without decoherence. For Q = 106 one therefore requires
T � 100 mK to keep the decoherence sufficiently weak. Such parameters can be achieved for kHz-
resonators with dilution refrigeration.

© 2012 Macmillan Publishers Limited.  All rights reserved.





10 Optically Induced Mechanical
Non-Linearity

A challenge faced throughout quantum optics is how to engineer quantum systems
that that have significant non-linearity at the single quanta level. As an example,
such non-linearity is important for photonic quantum science to allow deterministic
quantum logic operations between photonic qubits. Within quantum optomechanics,
generating mechanical non-linearity, i.e. mechanical state dependent dynamics, will
open a vast experimental research avenue for the deterministic generation of non-
classical motional states but is yet to be experimentally attained.

In this work [95], we theoretically proposed a technique how to produce signifi-
cant non-linearities in the motion of a mechanical resonator by exploiting a geometric
phase generated by a sequence of four pulsed optomechanical interactions. Building
upon the work in chapter 6, the pulse sequence takes place over a time-scale much
shorter than a mechanical period of motion and the position of the oscillator is a con-
stant of motion. Simply put, the non-linearity generated by our scheme arises from
the mechanical position information acquired by the early pulses coherently inter-
fering with the latter pulses, yielding a mechanical position dependent change to the
mechanical momentum. Using the optomechanical interaction Hint ∝ a†aXM one
obtains a time evolution operator of the form U = exp[−iχ2

1X
2
M ], which can be used

for deterministic motional squeezed state preparation. Here, χ2
1X

2
M is the enclosed

area made in optical phase space during the protocol. We also considered the inter-
action Hint ∝ a†aX2

M , which is available in membrane-in-the-middle geometry [86],
and the resultant time evolution operator is of the form U = exp[−iχ2

2X
4
M ]. This

type of non-linearity causes a mechanical position cubed dependent change to the
mechanical momentum and when applied to a low temperature mechanical thermal
state will generate a non-Gaussian quantum state exhibiting Wigner negativity.

Although this work is quite similar in spirit to the four pulsed protocol used in
chapter 9 it was conceived quite independently. The leading creative contributor to
this project was Gerard Milburn who adapted his prior work on geometric phase
based ion trap quantum computing [96, 97]. My specific contribution to this project
was to refine Gerard’s optomechanical scheme by considering short optical pulses
instead of the sideband based scheme Gerard initially had in mind. Using this in-
teraction regime allowed us to achieve the X4

M evolution and, owing to its speed,
provides resilience against mechanical decoherence thus improving experimental fea-
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sibility. In addition to this creative contribution, I guided Kiran Khosla, at that time
an honours student, during a visit he made to Vienna in the summer of 2011, and
together we completed the bulk of the calculations for this project.
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Abstract. We theoretically show that a geometric phase, generated by a
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1. Introduction

The geometric phase is a phase imparted on the wavefunction of a quantum state by driving a
system about a circuit [1]. Within quantum optics this phase has been widely used to create logic
gates for quantum computing [2–4], but has received little attention in optomechanics. Some
notable exceptions come from recent proposals that have considered the effect of a geometric
phase involving mechanical oscillators coupled to a qubit [5] or light [6], however not for
mechanical state engineering. In this paper we consider an optomechanical system [7–12] with
a time dependent optical drive [9, 12, 13] that, via the optomechanical interactions, traverses a
closed loop in phase space thus imparting a geometric phase onto the mechanical element.

In an optomechanical system, the radiation pressure force due to light in an optical
resonator can be used to accelerate a mechanical resonator. Driving the optical resonator with
a suitable sequence of laser pulses can be used to manipulate the motion of the mechanics.
In our scheme, strong mechanical nonlinearity is generated with a sequence of four pulsed
optomechanical interactions in a measurement free process. During this sequence the optical
field makes a circuit in phase space and the mechanical oscillator obtains a phase proportional
to the area enclosed within the loop [1], i.e. a Berry phase. It is shown how this phase
produces an effective nonlinear potential for the mechanical resonator from the otherwise
linear optomechanical radiation pressure interaction. We then discuss how this mechanical
nonlinearity can be used for quantum state preparation of the mechanical oscillator. Our full
protocol takes place within a small fraction of one period of the mechanical oscillator, and is
hence robust against rethermalization and decoherence (similar to [12]).

2. Model

We model the optomechanical system as an optical cavity coupled linearly to the position
of a mechanical element. The interaction Hamiltonian for such a system is given by HI =

h̄g0a†a
√

2XM, where g0 is the interaction rate, h̄ is the reduced Planck’s constant, a, (a†) and
b, (b†) are the annihilation (creation) operators of the optical and mechanical field respectively.
The

√
2 arises from our definition of XM = (b + b†)/

√
2.

The Langevin equation of motion for a is given by ȧ(t) = −ig0a(t)XM − κa(t) +√
2κain(t) where ain is the field entering the cavity and κ is the cavity decay rate. For the

following the intracavity field is taken to be on resonance and κ is taken to be large compared to
the mechanical frequency. The optical field is written as a noise operator ā about a coherent
amplitude α(t) = 〈a(t)〉, such that a(t) = α(t) + ā(t). The coherent amplitude follows the
classical equation of motion for a field in a cavity with input αin(t), α̇ = −κα(t) +

√
2καin(t).4

The mechanical period TM is assumed much larger than the pulse envelope α(t), so the dynamics
of the mechanical oscillator may be neglected, i.e. XM(t) = XM. The noise operator follows the
equation of motion

˙̄a(t) = −ig0[α(t) + ā(t)]XM − κ ā(t) +
√

2κ āin(t). (1)

For the rest of this work, the optomechanical system is taken to be in the weak coupling
regime, g0 � κ . In this limit coupling between the mechanical element and optical vacuum field

4 If the pulse were detuned from the cavity resonance, the coherent amplitude inside the cavity would be smaller,
reducing the optomechanical interaction.
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(the ā(t)XM term) is negligibly weak and is dropped. The Hamiltonian that gives the simplified
equation of motion is given by

HI/h̄ = g0|α(t)|2 XM + g0|α(t)|(eiθ ā† + e−iθ ā)
√

2XM, (2)

where θ is the phase angle of the coherent amplitude. For a single pulse θ may be taken to be
arbitrary but it is kept here as it will become important when considering multiple pulses. The
first term generates a classical momentum imparted to the oscillator, PM → PM − g0

∫
dt |α(t)|2,

where the integral is over the duration of the pulse and therefore proportional to the input pulse
intensity. The unitary operator for the quantum interaction in equation (2) is given by

U (X θ
L) = exp

[
−iχ XM X θ

L − ig0

∫
dt |α(t)|2 XM

]
, (3)

where χ =
√

2g0

∫
dt |α(t)| and X θ

L = (ā e−iθ + ā† eiθ)/
√

2 is an arbitrary optical quadrature. In
calculating this unitary operator we have used the assumption that the mechanical period TM is
large compared to the temporal width (σ ) of the pulse.

We now consider a sequence of four pulsed optomechanical interactions. The same
pulse is recycled and undergoes four separate interactions. After each interaction the pulse
is displaced in optical phase space such that each interaction has a different phase angle
X θ

L. Let the four optical quadratures used be {XL, PL, −XL, −PL}, with XL = (ā + ā†)/
√

2,
PL = (ā − ā†)/(

√
2i). For each interaction the pulse has been taken to have the same temporal

profile. This is valid as long as the pulse width is much larger than the cavity decay rate
σ � κ−1. Under this assumption the cavity filed follows the input pulse, α(t) = αin(t)

√
2/κ .

The Baker–Campbell–Hausdorff formula [14] is used to calculate the effective unitary operator
for the four interactions

Ueff = U (−PL)U (−XL)U (PL)U (XL)

= exp[−iχ2 X 2
M] exp

[
−4ig0

∫
dt |α(t)|2 XM

]
. (4)

The first exponential in Ueff is a geometric phase dependent on the position quadrature
of the mechanical oscillator. The second exponential is the dynamical phase [15] which
would be present in the corresponding classical system. The dynamical phase is simply a
sum of the momentum displacements the mechanical oscillator receives from each pulsed
interaction. The geometric phase can be seen as a momentum displacement proportional to
the mechanical position, U †

eff PMUeff = PM − χ2 XM − 4g0

∫
|α(t)|2dt . The momentum of the

oscillator is displaced and becomes correlated with the position, resulting in a squeezed
quadrature in the final mechanical state.

One may show more generally that the area of an arbitrary closed circuit will appear in
this exponential. The proof (also discussed in [5]) goes as follows: consider an arbitrary closed
curve in phase space made by a sequence of optomechanical interactions. One may break this
sequence into a series of small but finite phase space displacements and then write the overall
unitary operator as a product of each displacement. Converting the product of displacements
to a single operator will generate a phase depending on each successive displacement. Taking
the continuum limit where the number of displacements becomes infinite, one may convert the
phase term into an integral and then use Stokes theorem to show the integral to be the area
enclosed by the path.

New Journal of Physics 15 (2013) 043025 (http://www.njp.org/)
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Figure 1. (a) A schematic for an experimental protocol to realize mechanical
nonlinearity via an optomechanical geometric phase. The required pulse
sequence is shown entering the beamsplitter. The first two pulses cool the
mechanical oscillator close to the ground state. The initial pulse enters the
large fiber cavity via the highly reflective beamsplitter. The following three
displacement pulses only displace the coherent amplitude of the pulse inside
the large fiber cavity, leaving the noise operator unchanged, effectively meaning
the noise operator of the first pulse interacts with the mechanics four times.
(b) The evolution of the optical field in phase space. The solid lines show the
coherent drive, with the dashed lines (each of length χ XM) representing the
optomechanical interaction. The geometric phase arises due to a sequence of four
optomechanical interactions, hence it is the area enclosed by these mechanical
position dependent optical phase shifts (dashed lines) that generate the geometric
phase. The coherent optical amplitude drives the optomechanical system and
gives rise to the dynamical phase, i.e. the momentum transfer to the mechanical
resonator from each optical pulse.

3. Experimental scheme

Figure 1(a) shows a schematic of one possible experiment to realize the geometric phase. Two
pulses separated by one quarter of a mechanical period are used to cool the mechanical element
(as outlined in [12]), leaving it in a thermal state with a mean phonon occupation lower than
that of the bath. Following the cooling pulses, a coherent laser pulse of temporal width σ

enters a large fiber cavity with round trip time τ via a highly reflective beamsplitter. The pulse
interacts with the mechanical oscillator via evanescent coupling from a toroidal cavity [16]
with decay rate κ before exiting the toroidal cavity back into the large fiber cavity. As the
pulse passes the highly reflective beamsplitter, its coherent amplitude is displaced in optical
phase space leaving the noise operator fixed. The optical displacement is performed at the
highly reflective beamsplitter using a second, phase controlled laser pulse to displace away
the coherent amplitude, and displace up in an orthogonal quadrature. The pulse then repeats the
optomechanical interactions and displacement three more times to give the four pulses sequence.
Figure 1(b) shows the field inside the toroidal cavity over the experimental protocol.

The first pulse correlates the phase quadrature of the light, PL, with the position of the
mechanics, XM. The first optical displacement changes the coherent amplitude of the pulse
from the XM to the PL quadrature, before the second optomechanical interaction. For the
second interaction, XL is correlated with the mechanical position as it used to be PL before the

New Journal of Physics 15 (2013) 043025 (http://www.njp.org/)
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Figure 2. (a)–(d) Effect of a sequence of four optomechanical interactions
on the Wigner function of the mechanical oscillator, initially prepared in the
ground state. The squeezed quadrature (X θ

M) is marked by a line in each graph.
This quadrature is maximally squeezed at an angle tan θ =

√
χ4 + 1 − χ2 to the

XM quadrature. (e)–(h) The probability amplitude for the squeezed quadrature
compared to the ground state value (shown in gray).

displacement. During the second interaction the back action of XL on the mechanical resonator
effectively correlates the momentum of the oscillator with its position. As the position does
not change over these interactions, correlating the momentum with the position produces a
mechanical squeezed state. At this point the optical field is still correlated with the mechanical
state, however, after the following two pulsed interactions, the correlation is undone such that the
final optical pulse is uncorrelated with the mechanical state, leaving the final state disentangled.
A readout pulse can now be sent into the cavity to measure the mechanical element and verify
the mechanical state.

To generate the geometric phase we require κ−1 < 4σ < τ�TM. Setting κ−1 < 4σ ensures
the field inside the toroid follows input field. Constraining 4σ < τ ensures that each successive
pulse decays out of the cavity prior to the next pulse entering. Consequently interference
between successive pulses can be neglected. Finally requiring τ�TM means the mechanics
remains near motionless during the four pulse protocol. The mechanical Q must be high enough
such that on average much less than 1 phonon is exchanged with the bath over the time scale of
the protocol.

Figure 2 shows the effect of the four pulse sequence on a mechanical oscillator initially
prepared in the ground state, demonstrating how correlating XM and PM leads to a squeezed
mechanical state of motion. Increasing the coupling strength χ benefits the protocol in two
ways. Firstly it increases the effect of squeezing in the oscillator. Secondly it rotates the state so
the squeezed quadrature aligns closer with the position quadrature, so that less time is required
before the state can be verified (see section 4), and therefore the degradation in the squeezing
due to thermalization will be reduced.

4. Experimental parameters

The previous section showed that under ideal conditions the geometric phase can be used to
produce squeezed mechanical states. In this section we will consider experimental technicalities

New Journal of Physics 15 (2013) 043025 (http://www.njp.org/)
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such as thermalization of the mechanical oscillator, optical losses and possible non-closing of
the optical phase space loop. Each of these effects will have a detrimental effect on the squeezing
of the mechanical oscillator.

Optical losses effect this protocol in two ways. Firstly, classical attenuation from the
beamsplitter will result in the phase space loop remaining unclosed after the four pulse
sequence. This can be corrected by changing either the amplitude or phase of each subsequent
displacement to counteract the attenuation. Secondly, optical losses will also add amplitude-
noise back action on the momentum of the mechanics. In the absence of vacuum noise entering
each cycle, any back action on the momentum in the XL (PL) pulse will be reversed by
the −XM (−PM) pulse. However when vacuum noise is introduced at the beamsplitters, the
amplitude noise in the −XM pulse will no longer perfectly cancel the amplitude noise from the
XM pulse. Unlike the attenuation of the classical amplitude this mechanism cannot be easily
corrected for in the protocol.

For a beamsplitter with 99:1 reflectivity for the optical displacement, we expect 1 −

0.992
≈ 2% vacuum noise to be imparted onto the oscillator from each of the XL, −XL and

PL, −PL pulse pairs. Quantifying the total loss over a single cycle (beamsplitter, fiber loss,
input–output coupling etc—modeled as an effective beamsplitter with vacuum input) by η, then
1 − η2 vacuum noise would be introduced to the oscillator. The square arises from the fact the
pulse must circulate twice before it cancels the noise, e.g. the noise imparted from the XM

pulse will only be canceled two cycles later from the −XM pulse. Even after correcting for
the effect of losses, classical fluctuations in the pulse intensities could result in non-closure
of the phase space loop. If the loop is not closed after the four pulse sequence, the effective
geometric phase5 unitary operator is given by U = exp[−iXM

∑
j χ j X

φ j

L − iχ 2 X 2
M], where here

χ2
=

∑ j=4
j=1, j<k≤4 χ jχk[Xφk

M , X
φ j

M ]/(2i) and χi = 4g0

√
Niσi

√
π/2/κ for a Gaussian pulse with

temporal width σi and Ni photons. The second term in the above operator is the geometric
phase. The first term leaves the mechanical element in an entangled state with the light after the
interaction. This can be viewed as a momentum displacement on the mechanics that depends

on the optical field, D(−iχfin Xφfin

L ), where χfin is the displacement in the Xφfin

L quadrature that
defines the final optical state. If χfin and φfin are unknown, the final state must be averaged
over possible values, reducing the squeezing. A homodyne measurement of the light lost from
the beamsplitter will give an estimate of χfin and φfin, meaning this error can be accounted for
retrospectively. Note laser phase noise will change the direction of each displacement pulse
which may result in non-closure of the optical phase space loop. Figure 3 shows how χfin

6= 0
changes the squeezed state. Note for when χfin is small, the squeezing is only slightly affected.

Even if classical drifts in the optical displacements are corrected for, vacuum noise
introduced by losses in the feedback loop can cause non-closure resulting in a mixed mechanical
state. For a single pass efficiency in the fiber loop η, the cancellation of noise between pairs of
displacement measurements (e.g. XM and −XM) will be degraded by a factor 1 − η2, leading
to a loop non-closure of 2 − 2η. For realistic inefficiencies in the range of 10% (corresponding
to 2 − 2 × 1.8 = 0.2—i.e. 20% vacuum noise) the loop non-closure due to non-cancellation of
noise is negligible, i.e. χfin

= 4g0

√
0.2σ

√
π/2/κ � 1. Hence the squeezing is not significantly

affected by the addition of vacuum noise.
The following considers the effect of thermalization on the mechanical squeezed state.

Thermalization can have two detrimental effects. Firstly, phonon exchange with the bath during

5 I.e. ignoring the dynamical phase.
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Figure 3. Effect of non-closure of the loop on the squeezed state for a fixed
χ2

= 1. χ loss is the magnitude of non-closure in an unknown quadrature X
φloss
L .

Once the variance of the squeezed state goes above one, squeezing becomes
impossible as the amount of noise added from the non-closure of the loop is
larger than the ground state variance.

the four pulse sequence will render the dynamics over the pulse sequence non-unitary and
change the final mechanical state. Secondly phonons that enter during the time scale required
for the squeezed quadrature to rotate into the measurable position quadrature will degrade the
squeezing. The first of these effects can be neglected since the four pulses can be very closely
spaced with only a short delay between them. For example, for a mechanical oscillator with
resonance frequency ωM = 24 kHz, and quality factor Q = 105, the pulse duration should be
σ ' 10−8 s, such that the time for four pulses (on the order of 10−7 s), is much smaller than the
time scale for one phonon to enter the oscillator, 1/(0 N̄ ) ≈ 10−5 s at 1 K. Consequently, only
thermal phonon exchange after the state has been prepared will be considered. The mechanical
oscillator was modeled as an oscillator with noised added only on the momentum quadrature.
For small times t�ω−1

m one may neglect the oscillator decay. The equation of motion was then
solved to find the variance 〈12 XM〉 = 〈X 2

M〉 − 〈XM〉
2 of the position as a function of time

〈12 XM〉 = [〈X 2
M(0)〉 cos2(ωt) + 〈PM

2(0)〉 sin2(ωt)]

+ 〈XM(0)PM(0) + PM(0)XM(0)〉 sin(ωt) cos(ωt)

+ 0

(
N̄ +

1

2

) [
t

2
−

sin(2ωt)

4ω

]
, (5)

where 〈X 2
M(0)〉= N̄ + 1

2 , 〈P2
M(0)〉=(N̄ + 1

2)(1 + 4χ4) and 〈XM(t)PM(0) + PM(0)XM(0)〉= −4χ2

(N̄ + 1
2) are the expectation values after the geometric phase has been applied.

To minimize the initial phonon number before the four pulse sequence we envisage cooling
via pulsed measurement as outlined in [12]. In this protocol, two pulses separated by 1/4 of the
mechanical period are used to measure the oscillator in two orthogonal quadratures, leading to
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a low entropy state. The result in [12] shows an effective thermal phonon number of

N̄ eff '
1

2

√
1 +

1

χ4
+

π N̄

Qχ2
− 1

 , (6)

where χ = 4g0

√
Npσ

√
π

2 /κ (the same χ used elsewhere). This gives N̄ eff ' 10 for a 1 mm,

24 kHz SiN resonator with Q ≈ 105 and photon number Np = |α|
2
≈ 106. Using the SiN string

mechanical oscillators considered in this paper, the effective phonon number is achievable for
resonance frequencies of ωM < 70 kHz and length L < 5 mm with a maximum incident photon
flux of Ṅ p = 1016 Hz (≈2 mW at 630 nm). Although this is the initial phonon occupation, the
bath occupation remains at N̄ ≈ 105.

SiN strings present a particularly attractive mechanical oscillator, high mechanical quality
factors of up to 7 × 106 have been observed, and the mechanical resonance frequency may be
tuned via tensioning [17, 18]. The protocol requires the mechanical period to be large compared
to all other characteristic time scales. From this constraint we will limit the following analysis
to low frequency, ωm = 1–70 kHz, SiN strings. From [18], the expected Q factor of a stressed
SiN string of dimensions L × h × w is

Q =

[
(nπ)2 Eh2

12SL2
+ 1.0887

√
E

S

h

L

]−1

QBending (7)

with E = 241 ± 4 GPa the Young’s modulus of SiN, QBending = 17 000 the quality factor related
to bending damping mechanisms and S = 4ω2

mL2ρSiN the tensile stress of SiN (with density
ρSiN) in the high stress limit.

The optomechanical coupling rate g0 is calculated from evanescently coupled SiN string
coupling rate G = 200 MHz nm−1 [19] and the oscillators zero point motion: g0 = Gx0 =

G
√

h̄/(2mωM) with m the effective mass of the mode. The pulse width and optical cavity decay
rate are defined by Tm = 10−3σ = 5/κ to satisfy the experimental requirements.

After preparing the mechanical quantum state with the four pulse sequence, it may be
characterized with a measurement pulse. Figures 4(a) and (b) show the temporal progression of
the variance over various time scales after the four pulse sequence. Figure 4(c) shows a plot of
〈12 XM〉 as a function of length and resonance frequency of a SiN string at 1 K with cross section
157 nm × 3 µm. These two parameters may be chosen independently by tensioning the string to
the desired frequency. The dashed line of Q = 7 × 106 is just larger than the highest observed
Q in a SiN string [18]. This figure shows it is experimentally feasible to achieve quantum
squeezing for a wide range of geometries with the best squeezing of 12 XM ≈ 10−2 predicted
for a 3.5 mm long oscillator with 20 kHz resonance frequency and Q = 5 × 106. For all points in
this figure, the initial state had an effective phonon number of Neff = 10 phonons; the maximum
intracavity photon number to achieve such cooling was 106 photons which is readily achieved.

The X 2
M appearing in the unitary operator is a result of the geometric phase changing

a linear optomechanical interaction into an effective quadratic potential. If the mechanics
was instead quadratically coupled to the light field [10, 16, 20, 21] (HI = g0h̄a†a X 2

M), the
result would be a factor X 4

M in the unitary operator—increasing the nonlinearity present in
the Hamiltonian to fourth order. In this case we may view the interaction as a position-
cubed dependent displacement, U = exp[−iχ2 X 4

M] = D(−iχ2x3) correlating the momentum
of the oscillator with the cube of its position. With large enough quadratic coupling, this
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Figure 4. Progression of the variance of the mechanical oscillator over two
time scales: (a) free evolution immediately after the four pulse sequence,
(b) explicitly showing the squeezed region and (c) experimentally observable
squeezing generated via a geometric phase of an oscillator initially cooled to
Neff = 10. The color scale gives the variance in the position quadrature over one
decay time of the oscillator. A value less than 0.5 indicates squeezing below the
ground state variance. The plot color axis is truncated at 0.5.

Figure 5. Wigner functions of the mechanical state after a geometric phase
interaction on the mechanical ground state of motion with a quadratically
coupled mechanical oscillator for values of (a) χ2

= 0, (b) χ 2
= 0.066, (c) χ2

=

0.133, (d) χ2
= 0.2. The momentum becomes correlated with the cube of the

position—this can be seen in the Wigner function follows a profile proportional
to −x3 with negativity arising in the concave sections of the curve.

provides an avenue to generate quantum states of the oscillator involving significant Wigner
negativity, see figure 5. Wigner negativity is an unambiguous and sufficient indicator of non-
classicality [22, 23]. Exploring such states experimentally is of vital importance to determine the
feasibility of mechanical oscillators as elements in quantum applications and to gain a deeper
empirical understanding of the quantum-to-classical transition.

5. Conclusion

In summary, we have proposed an experiment that uses a geometric phase to generate
nonlinearity and non-classical motional states of a mechanical resonator. This provides a new
tool in optomechanics for quantum state engineering of mechanical oscillators. We have shown
our method to be both experimentally feasible and robust to optical and mechanical noise
sources.
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Conclusions

The research conducted during this thesis advanced the field of quantum optome-
chanics by making both conceptual and technical contributions. Foremost, building
upon the seminal work of V. B. Braginsky, this research introduced and pioneered
the regime of pulsed quantum optomechanics. This pulsed regime provides an ex-
perimentally feasible route to conditionally prepare quantum states of motion, and
protocols to prepare squeezed and quantum superposition states of motion have been
introduced here. Furthermore, pulsed quantum optomechanics provides an answer
to the important question of how to perform state tomography of the motion of a
mechanical resonator that would allow the reconstruction of non-Gaussian quantum
features such as Wigner negativity. Conditional thermal noise squeezing was demon-
strated by a back-action-evading cavity-free experiment that reduced the mechanical
position uncertainty to less than 20 pm. Full state tomography for motional state
reconstruction was also performed.

A pulsed interaction also opens a research avenue for protocols that utilise a se-
quence of multiple pulses. In this direction, this thesis introduced a scheme how
to deterministically introduce mechanical non-linearity by exploiting an optome-
chanical geometric phase generated by a sequence of four pulsed optomechanical
interactions. In addition, we proposed an experiment that also used a sequence of
four pulsed optomechanical interactions to infer the canonical commutation relation
between the mechanical position and momentum. Primarily, this proposal aims to
probe consequences of Planck-scale phenomena by observing potential deformations
to the quantum mechanical commutation relation due to a minimum length scale in
the universe. Excitingly, the outcomes of our analysis indicate that an experiment
implementing our protocol can probe the commutator deformation parameter space
by several orders of magnitude deeper than the current experimental best.

Using a continuous interaction between the optical cavity field and the motion
of the mechanical system we achieved sufficiently strong coupling to be the first
to observe optomechanical normal mode splitting. Achieving this level of coupling
is crucial to implement a unitary state-swap operation between the optical and
mechanical states. In addition, we made improvements to cooling the mechanical
motion by a combination of cryogenic and laser cooling techniques. We also stud-
ied both theoretically and experimentally the dependence between the mechanical
quality factor and the shape of the mechanical resonator due to phonon tunneling.
This study will be of vital importance to minimize mechanical clamping losses that
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reduce the mechanical quality factor and thus increase quantum decoherence that
can hinder and limit efforts to generate a non-classical mechanical motional state.

Bridging the pulsed and continuous interaction regimes, this research introduced
a technique how to perform an arbitrary superposition of phonon addition, phonon
subtraction and the identity operation. This tool offers considerable potential for
quantum state engineering of the mechanical motional state and by using a super-
position of the addition and subtraction components we introduced the concept of a
quantum state orthogonalizer that can be used to generate a new type of continuous-
variable qubit.
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Peters, and M. Aspelmeyer
23rd IEEE International Conference on Microelectromechanical Systems, Hong Kong SAR,
China, 2428 January 2010, TP133

2. Fabrication of three-dimensional void photonic crystals using ultrafast-laser-driven
microexplosion in a solid polymer material
Guangyong Zhou, Michael J. Ventura, Michael R. Vanner and M. Gu
Proc. SPIE 5635, 129 (2005).

Conference
Contributions

1. 2nd Gordon Research Conference on Mechanical Systems in the Quantum Regime, 21-26 March
2010, Galveston, TX, USA
Experimental study of phonon tunneling dissipation in micromechanical resonators
(Poster Presentation)
G. D. Cole, I. Wilson-Rae, Katharina Werbach, Michael R. Vanner, and M. Aspelmeyer

2. Spring Meeting of the German Physical Society (DPG), 8-12 March 2010, Hannover, Germany
Quantum state tomography and squeezed state preparation of a mechanical oscil-
lator (Talk)
Michael R. Vanner, Igor Pikovski, M. S. Kim, Nikolai Kiesel, Klemens Hammerer, Caslav
Brukner, Gerard J. Milburn, and Markus Aspelmeyer
Minimizing phonon tunneling losses in optomechanical resonators (Talk)
G. D. Cole, I. Wilson-Rae, M. R. Vanner, S. Gröblacher, J. Pohl, M. Zorn. M. Weyers, A.
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