
DISSERTATION

Titel der Dissertation

Analysis of Collaboration and Agility in Internet Traffic
for Malware Detection

Verfasser

Dipl.-Ing. Andreas Berger

angestrebter akademischer Grad

Doktor der technischen Wissenschaften (Dr. techn.)

Wien, 2013

Studienkennzahl lt. Studienblatt: A 786 880
Dissertationsgebiet lt. Studienblatt: Informatik
Betreuer: Assoz. Prof. Dipl.-Ing. Dr. Wilfried Gansterer, Privatdoz.

Abstract

Internet criminals have proven to be highly creative when it comes to inventing novel ways
to extort money from their victims, and can deploy them in short time. This is largely re-
lated to the fact that most criminal Internet activity builds upon a vivid ecosystem, which
offers readily available service platforms for running new malicious operations. Therefore,
malicious Internet activity often shows community structure, e.g., when multiple hosts are
instructed to attack the same target at the same time, or when one physical server is reused
by multiple malicious services. We refer to such structured activity as collaboration pat-
terns, which are indicative for malicious service platforms. Similar to benign services, these
platforms are designed to be highly scalable, as more reliable operations for a multitude of
victim hosts translate directly into more revenue for the criminals. However, miscreants
are confronted with continuous countermeasures by governmental institutions and network
security enterprises. In order to compensate for server takedowns and access blocking by
network operators, their service infrastructure has to be always “on the move”, and needs to
employ a certain level of agility in its operations. For instance, malware services change the
domain names under which they are reachable, and use different physical servers over time.
Furthermore, malware uses Peer-to-Peer communication topologies which are continuously
dynamically reorganized and therefore compensate automatically for hosts which are taken
offline. This thesis addresses the problem of revealing collaborating groups of services and
hosts which jointly engage in such evasive operations.

I describe two complementary approaches which consider different types of agility:
(i) The analysis of Domain Name System (DNS) traffic addresses the lookup of malicious
services. We derive an efficient modeling apparatus which describes the DNS mappings
between domain names and IP addresses, and update the derived model automatically over
time. Any mappings which do not match the model represent agile variations and are there-
fore candidates for evasive actions. We reveal collaboration patterns in these variations,
and reliably expose domain names and IP addresses which relate to malicious activity.
(ii) Large-scale profiling of end-to-end Internet connections captures the typical Internet
usage patterns of each individual monitored host. The detection approach is based on a
statistical, data-adaptive description of the network resources which are contacted by these
hosts, and reveals unusual, rare connections, independently of any higher-layer information
as, e.g., the actual protocol or packet payload. Both approaches ultimately map suspicious,
agile Internet activity to graphs, which can then be efficiently mined for substructures which
relate to malicious service platforms. In addition to revealing the individual malware sites
themselves, the structural information represented by these graphs allows a human analyst
to understand which elements of the malicious infrastructure are vital for its functioning,
and should therefore be blocked preferentially.

Being driven by the idea of revealing patterns of malicious collaboration, a sufficiently
large number of monitored hosts is required. Therefore, the proposed analysis approach
is designed to scale to large networks, with possibly hundreds of thousands of hosts. It is
lightweight in terms of processing requirements, and the main analysis components typi-
cally run in real-time. A prototype implementation was evaluated using multiple traffic data
sets from large networks. The DNS analysis component revealed several previously un-

i

known malicious sites, with a false positive rate of less than 0.0001%. It is more sensitive
than similar approaches and requires less data at the same time. The complementary analy-
sis of end-to-end connections is able to reduce the complexity of Internet connection graphs
by up to four orders of magnitude, and proved to be an important enabler for graph-based
malware detection, which allowed us to detect, e.g., injected malware traffic with perfect
precision (1.0) and high recall (0.9). Finally, we demonstrate how one can jointly use both
analysis approaches to reveal additional malicious activity.

Kurzfassung

Internet-Kriminelle sind äußerst kreativ im Entwickeln neuer Einkommensmöglichkeiten
und können diese in kürzester Zeit einsetzen. Dies wird durch ein lebendiges Ökosystem an
kriminellen Diensten ermöglicht, auf das neue Angriffe kurzfristig aufsetzen können. Die
Wiederverwendung solcher Diensteplattformen führt dazu, daß der dadurch verursachte In-
ternet Verkehr oft Zeichen von Kollaboration aufweist, z.B. wenn ein Ziel von mehreren
Rechnern gleichzeitig angegriffen wird, oder wenn ein bestimmter Server von mehreren
kriminellen Diensten verwendet wird. Ähnlich wie gutartige Dienste sind diese Plattformen
hochskalierbar ausgeführt, da hohe Verfügbarkeit für möglichst viele Opfer von Internet-
kriminalität sich direkt in höheren Erträgen ausdrückt. Jedoch sind Kriminelle mit dauern-
den Gegenmaßnahmen von Regierungseinrichtungen und Unternehmen für Internetsicher-
heit konfrontiert. Um dadurch verursachte Serverausfälle und Zugriffseinschränkungen zu
kompensieren, müssen diese kriminellen Plattformen ständig “in Bewegung” bleiben, und
eine gewisse Agilität aufweisen. So ändern kriminelle Dienste etwa regelmäßig die Domain
Namen unten denen sie erreichbar sind und wechseln die verwendeten Server. Außerdem
werden oftmals Peer-To-Peer Kommunikationstechnologien eingesetzt die dafür sorgen daß
einzelne Ausfälle automatisch ausgeglichen werden. Diese Arbeit beschäftigt sich mit dem
Problem der Erkennung von Gruppen von Internet Diensten und Hosts die gemeinsam an
solchen ausweichenden Manövern teilnehmen.

Ich beschreibe im folgenden zwei komplementäre Ansätze die verschiedene Typen von
Agilität addressieren: (i) Die Analyse von Verkehrsdaten des Domain Name Systems (DNS)
zielt auf die Namensauflösung von kriminellen Diensten ab. Es wird ein Mechanismus zur
effizienten Modellierung von Zusammenhängen zwischen Domain Namen und IP Addres-
sen entwickelt, der regelmäßige Aktualisierungen explizit unterstützt. Neue DNS Informa-
tionen, die nicht dem Modell entsprechen, werden als agile Variationen interpretiert und
sind daher Kandidaten für kriminelle Aktivitäten. Das vorgeschlagene System analysiert
derartige Aktivitäten weiterer Folge auf Zeichen von Kollaboration und ist in der Lage kri-
minelle Diensteplattformen zuverlässig zu identifizieren. (ii) Mittels Profiling von Ende-zu-
Ende Verbindungen im Internet werden typische Aktivitätsmuster aller betrachteter Hosts
extrahiert. Das System zur Erkennung von krimineller Aktivität baut auf einer statischen,
Daten-adaptiven Beschreibung der Netzressourcen die von diesen Hosts kontaktiert werden
auf, und erkennt ungewöhnliche oder seltene Verbindungen, ohne dabei auf Information
von höheren Protokollschichten, wie z.B. das verwendete Applikationsprotokoll oder die
tatsächlichen Nutzdaten, zurückgreifen zu müssen. Beide Ansätze stellen verdächtige In-
ternetaktivität als Graphen dar und finden Sub-Strukturen die auf kriminelle Aktivitäten
zurückzuführen sind. Zusätzlich zu der Erkennung der einzelnen kriminellen Dienste er-
möglicht diese Darstellung ein Verständnis für die Kommunikationsanforderungen eines
bestimmten solchen Dienstes, und unterstützt dadurch Experten bei kontrollierten Gegen-
maßnahmen gegen essentielle Elemente dieser Infrastruktur.

Die Erkennung solcher krimineller Kollaboration erfordert zwangsläufig die Analyse
der Verkehrsdaten einer ausreichend hohen Anzahl von Internet Hosts. Der vorgeschlagene
Ansatz ist daher für die Überwachung von großen Netzen, mit bis zu mehreren hundert-
tausend Hosts, entwickelt. Die einzelnen Analyseschritte weisen eine niedrige Komplexität

iii

auf und erfüllen dadurch Echtzeitanforderungen. Der entwickelte Prototyp wurde mit Ver-
kehrsdaten von großen Netzen evaluiert. Die DNS Analyse hat dabei zur Erkennung einer
Anzahl verschiedener krimineller Aktivitäten geführt, wobei die False Positive Rate un-
ter 0.0001% lag. Das System reagiert dabei empfindlicher als vergleichbare Ansätze und
benötigt gleichzeitig weniger Informationen. Die komplementäre Analyse von Internet Ver-
bindungen ist in der Lage die Komplexität der zu analysierenden Verbindungsgraphen um
bis zu vier Zehnerpotenzen zu reduzieren. Dadurch konnte z.B. injizierte kriminelle Inter-
net Kommunikation mit perfekter Precision (1.0) and hohem Recall (0.9) detektiert werden.
Schlussendlich wird die gemeinsame Verwendung beider Analyseansätze diskutiert und die
Erkennung zusätzlicher krimineller Aktivität diskutiert.

Acknowledgements

Ideally, a PhD thesis is the final result of a process in which motivation and commitment
meet a great environment. I was lucky enough to have had the opportunity to work in such
an environment, and there are numerous people who contributed in one or another way to
this thesis. I would like to thank Marcin Davies, Sebastian Egger, and Matthias Baldauf
for lots of cheerful moments which assured that I’d maintain the sanity of my mind while
working on tough problems and being under deadline pressure (Wii Tennis!). This was
complemented by the immense fun I had with the (vast!) Italian community at FTW, who
were always ready to teach me new swearwords in some obscure Italian dialect. Grazie
mille, non lo dimenticherò mai!

There is one person who supported me more than anybody else in my work over the last
years. Alessandro D’Alconzo was never tired to discuss technical details and was always
the best devil’s advocate a PhD student could wish for. Thanks a million Ale!

I’d like to thank Wilfried Gansterer and Fabio Ricciato for being great supervisors, who
gave me the freedom to work on the topics I liked and were always available to help me out
with their experience and insight. And while I met Stefan Rührup only towards the end of
my PhD, we had several inspiring discussions, for which I’m truly grateful. I’d also like to
thank Eduard Natale and Mirko Schiavone, who were skilled (and patient!) enough to deal
with weekly changes in implementation requirements, while we were developing the DNS
analysis system.

Thanks to the open-source community, in particular to the developers of Linux, LATEX,
Python, NetworkX, Matplotlib, and Gephi, you’ve made my life a lot easier!

Last, but by no means least, I would like to thank Verena for plenty of moral support in
bleak moments, as well as for encouragement and patience. Thank you so much!

v

Contents

I Introduction and Background 1

1 Introduction 3
1.1 Terminology . 6
1.2 Published Work . 8

2 The Internals of Internet Crime 11
2.1 Malware Communication Examples . 13

3 Methodology and Scope 17
3.1 Methodology . 19
3.2 Evaluation of Results . 21
3.3 Outline . 22

4 State of the Art 23
4.1 Malware Detection . 23

4.1.1 Network-based Malware Detection 25
4.1.2 DNS-based Malware Detection 27

4.2 Complex Networks . 29
4.2.1 Terminology . 30
4.2.2 Structural Properties and Community Detection 31
4.2.3 Graph-based Malware Detection 33

4.3 Evaluation of Malware Detection Results 36
4.4 Summary . 38

II DNS Analysis 41

5 Problem Definition 43

6 How Agile are DNS Mappings? 47
6.1 Methodology . 49

6.1.1 Implementation . 50
6.2 Experimental Evaluation . 52

6.2.1 1:1 Stability . 52
6.2.2 k:j Stability . 53
6.2.3 1→GEO Stability . 54

6.3 Discussion . 55

7 The DNSMap Approach 57
7.1 Methodology . 58

7.1.1 Measuring FQDN Similarity . 58
7.1.2 Modeling DNS Activity . 59

vii

7.2 System Overview . 63
7.2.1 Parameters and Tuning . 64

8 System Evaluation 67
8.1 Performance . 67
8.2 Benign Service Agility . 68

9 Malware Detection 75
9.1 Graph Analysis . 75

9.1.1 Agile Group Features . 76
9.1.2 Graph Analysis Parameters . 78
9.1.3 Analysis Workflow . 78

9.2 Experimental Evaluation . 79
9.2.1 Results with Limited Training . 80
9.2.2 Targeted Whitelisting . 81
9.2.3 Malware Detection Scenarios . 82

9.3 Discussion . 86
9.3.1 Limitations . 87
9.3.2 Evasion Strategies . 87

9.4 Summary . 88

III Connection Analysis 89

10 Problem Definition 91

11 Analysis Approach 95
11.1 Methodology . 97

11.1.1 Preliminaries: Order Statistics . 98
11.1.2 φ-α Quantiles . 99
11.1.3 2D Density . 100
11.1.4 Confidence Bounds . 101

12 System Design and Architecture 103
12.1 Reduction I: Connection Scoring . 104
12.2 Reduction II: Graph Analysis . 105
12.3 System Design . 105

13 Experimental Evaluation 107
13.1 Validation Tests . 107
13.2 Malware Detection . 110

13.2.1 Botnet Emulation . 110
13.2.2 Dye-Pumping . 111

13.3 Discussion and Limitations . 112
13.4 Summary . 113

IV Joint Analysis and Final Remarks 115

14 Joint Analysis 117
14.1 Experimental Evaluation . 117

14.1.1 DNS Analysis Results . 118
14.1.2 Connection Analysis Results . 120

viii

14.1.3 Joint Analysis Results . 120
14.2 Discussion . 121

15 Conclusion and Outlook 123

A φ-α Quantiles: Algorithm Details and Analysis 125

B Database Schema 129

Curriculum Vitae 131

Index 133

Bibliography 135

ix

Part I
Introduction and Background

1

CHAPTER 1
Introduction

The Internet is today the dominant medium for information access and distribution world-
wide, and hosts everything from tiny, private sites to gigantic, commercial service networks.
Large popular sites like Google and Facebook maintain enormous amounts of data and use
it in rich Internet applications offered to their users. Governments increasingly employ
electronic administrative services to ease the communication with, and the information of,
their citizens. Financial transactions are established in the Internet as well, and the number
of online banking users is steadily increasing. The advent of smart phones further boosted
the Internet’s importance as these “always-on, always-online” devices are deeply interwo-
ven with our day-to-day life and business. Hundreds of thousands of “apps” for all kind
of purposes are in everyone’s hands, and are naturally integrated in our daily routines. The
ubiquitous availability of fast Internet connections is a key enabler for all these services,
and is continuing to be less and less the deal breaker for even more advanced applications.
For both fixed line (Fibre to the home – FTTH) and mobile networks (Long Term Evolution
– LTE) the large-scale deployment of new technologies is around the corner, and brings
data rates in the order of hundreds of Mbit/s to everyone. The boundaries between “lo-
cal” and “remote” are therefore increasingly blurred, which led to the widespread usage of
web-based applications (e.g., Google Docs) and cloud services for storing user data. Even
traditionally sealed-off networks with restrictive perimeter security employ these technolo-
gies, and see themselves slowly adapting to previously unthinkable paradigms like “Bring-
Your-Own-Device” (BYOD), where employees connect their privately owned devices to
company infrastructure. Internet service providers react to this development and try to get
their share from this market, thereby avoiding the destiny of becoming simple “bit-pipes”
with limited opportunities for future revenue. Sumptuous standardization efforts led to the
development of service frameworks like the IP Multimedia Subsystem (IMS), a highly com-
plex architecture that enriches the traditional operator infrastructure with enhanced service
capabilities (e.g., video calls with guaranteed quality of service). Conceptually similar to
BYOD, also this is achieved by opening up the core networks and providing interfaces for
end-user applications.

These technological advances enable networked services which almost completely per-
vade our daily lives. Naturally, this development comes also with disadvantages, and along
with legitimate services, crime prospers in the Internet. Specifically developed malicious
software (malware) is a key driver for criminal activities. A recent report by Norton esti-
mates the global annual cost of cyber crime as 110 Billion US$, with 556 million victims
per year [4]. As a direct effect of the increasing usage of Internet services, the dependency
on them increased equally, leaving us more vulnerable to adversarial actions. The secure
operation and usage of these services therefore requires an apt understanding of criminal
activities, as well as suitable analysis and detection mechanisms. As a motivation for this
thesis, the following (incomplete) list summarizes several prominent cyber crime activities,

3

and illustrates the severity of the problem.

• Distributed Denial of Service (DDoS) attacks flood victim hosts with requests, to
the effect that the service becomes unreachable for everyone due to resource exhaus-
tion. DDoS is today enough of a commonality for cyber warfare that even small
and medium sized business are regularly being targeted (e.g., pizza delivery sites in
Germany1). Over the last years, DDoS evolved from simple attacks like TCP SYN
flooding to attacks on web applications, as the impact per request is significantly
higher. In a recent report it was found that prices for DDoS attacks start from 2 US$
per target and hour, depending on the desired sophistication of the attack, and the
countermeasures of the defenders, with discounts for longer attacks [3]. Also attacks
on fixed line and mobile phones are possible now, and can be ordered for around 5
US$ per hour2.

• Spam evolved from an annoyance to a multi-million dollar business in the last years,
and in 2007 it was found that 95% of all emails are Spam [13]. Thereby, in particular,
the money spent on defense mechanism is enormous. Anderson et al. estimate the
worldwide expenditures on Spam prevention in 2011 to exceed 1 Billion US$, while
the estimated income of the group of criminals who are responsible for a third of the
worldwide Spam was estimated as 2.7 million US$ in the same year [8].

• Information theft is a wide-spread issue on the Internet today. The most prominent
target is probably credit card information which created an estimated loss of 135 mil-
lion £ in the UK alone [8]. There exists a vital market for such data in underground
forums, with prices reportedly ranging from 10 cents to 25$, depending on the quality
of the provided information (e.g., the credit card limit) [150].

A related threat is stealing of online banking login information directly from the
users’ computers, e.g., by means of keylogger tools, or using advanced software that
takes screenshots of displayed keypads as they are clicked by the user. The “Euro-
grabber” malware infected mobile devices to intercept Transactions Numbers (TANs)
sent via SMS, to steal 47 million US$ from bank accounts3.

Also software licence keys are often stolen from malware-infected hosts, and are
further being sold online. Less obviously, even account credentials for social network
sites like Facebook are at risk. They are, e.g., being used for malware distribution via
these channels, and thereby abuse the trusted relationships which are linked to these
accounts.

• Click Fraud describes a variety of activities for abusing advertisement services on
the Internet [49, 154]. Advertisers mandate advertisement networks to host certain
ads. Websites act as publishers and display them to their visitors. For every click on
a particular ad, the advertisers pay the advertisement networks, who in turn give a
share of the money to the publishing website. Automatized clicks, based on malware
installations, can quickly deplete the advertisers’ campaign budget without any return
of investment for them. Competitors take advantage in this case, as from this moment
on, only their ads are being displayed. Furthermore, by using websites under the
control of the fraudster, significant amounts of money can be earned.

1http://www.h-online.com/security/news/item/Botnet-attacks-pizza-
delivery-service-1330816.html

2http://ddos.arbornetworks.com/2012/07/ddos-attacks-targeting-
traditional-telecom-systems/

3http://www.informationweek.com/security/attacks/zeus-botnet-
eurograbber-steals-47-millio/240143837

4

http://www.h-online.com/security/news/item/Botnet-attacks-pizza-delivery-service-1330816.html
http://www.h-online.com/security/news/item/Botnet-attacks-pizza-delivery-service-1330816.html
http://ddos.arbornetworks.com/2012/07/ddos-attacks-targeting-traditional-telecom-systems/
http://ddos.arbornetworks.com/2012/07/ddos-attacks-targeting-traditional-telecom-systems/
http://www.informationweek.com/security/attacks/zeus-botnet-eurograbber-steals-47-millio/240143837
http://www.informationweek.com/security/attacks/zeus-botnet-eurograbber-steals-47-millio/240143837

• Phishing is a technique to trick Internet users into handing out sensitive information
like credit card numbers and online banking credentials by impersonating trusted en-
tities. Criminals send bulk emails blindly to a large number of addresses, hoping that
some recipient would respond, and thereby get “fished”. Researchers estimate that
0.4% of the Internet population fall victim to phishing [62]. A variant of this concept
called “spearphishing” consciously targets certain persons of which the criminals ex-
pect higher revenue in case of response. The FBI investigated 400 such cases in 2011
and found that 85 million US$ were stolen [144].

• Blackmailing of Internet services is common today. Typically, site operators are
threatened with DDoS attacks to extort money. Often, online gambling sites are
targeted by these attacks4. A more recent addition to this field is “Ransomware”.
Malware installs on the victims’ computers, encrypts the users’ files, and requests
a ransom to be paid before access is restored. A variant of this scheme displays a
fake copyright infringement message on the screen, seemingly originating from a law
enforcement agency. The user is expected to pay a fine (e.g., 200 US$), and is threat-
ened with being arrested in case of noncompliance. Symantec estimated the monthly
income for a single piece of ransomware they analyzed as 394,000 US$ per month
[71].

All these criminal activities have in common that rather short-term actions are meant
to lead to quick financial gains. In contrast, researchers witnessed recently a new family
of criminal endeavors which aim at long-term, stealthy operation to extract confidential in-
formation from, and disrupt operations of, high-profile targets. This type of activities was
termed “Advanced Persistent Threats” (APTs). The level of sophistication of these mal-
ware, and the “mission-like” character of their activities suggest involvement of military
bodies, and therefore governments/nations. For example, “Stuxnet” was generally believed
to target Iranian nuclear facilities, and was then described as the most sophisticated mal-
ware. It was specifically developed to attack Siemens industrial software and exploited
four different Windows vulnerabilities that were previously unknown [109]. In 2012, the
“Flame” malware forced Iranian officials to order “the disconnection of six of its main oil
terminals from the internet, to stop the worm spreading”5. Kaspersky labs stated that they
consider Flame twenty times more complex than Stuxnet, and that a full analysis would
probably take ten years6.

It is not only the diversity of attacks and the technical sophistication, but also the com-
plexity of these operations as a whole which is staggering. Just as legitimate services,
malware evolved from rather simple tools to complex, diverse infrastructures. The tradi-
tional idea of a single, highly skilled hacker who breaks into a corporate site no longer
holds. Rather, there exists an entire underground economy with different “professions”
(e.g., developers, operators, affiliates) and “services” (e.g., hosting, client infection, credit
card trading). Just as for legitimate services, there is competition between different groups,
and there are tenders for malicious activities. Customers expect a certain quality of service
from their purchases, e.g., a site targeted by a DDoS attack should indeed become unreach-
able. Suppliers which are not able to live up to these expectations are publicly discredited,
and will sooner or later be excluded from the market.

The backbone of many malicious services are therefore reliable network infrastructures,
e.g., well-reachable servers, which can scale to large numbers of involved Internet hosts.

4See e.g. http://www.sophos.com/en-us/press-office/press-releases/2006/10/
extort-ddos-blackmail.aspx

5http://www.guardian.co.uk/world/2012/may/28/computer-worm-iran-oil-
w32flamer

6http://www.wired.com/threatlevel/2012/05/flame/

5

http://www.sophos.com/en-us/press-office/press-releases/2006/10/extort-ddos-blackmail.aspx
http://www.sophos.com/en-us/press-office/press-releases/2006/10/extort-ddos-blackmail.aspx
http://www.guardian.co.uk/world/2012/may/28/computer-worm-iran-oil-w32flamer
http://www.guardian.co.uk/world/2012/may/28/computer-worm-iran-oil-w32flamer
http://www.wired.com/threatlevel/2012/05/flame/

The dominant “platforms” for various malicious Internet activities are botnets. Botnet . A robot des-
ignates an Internet host that runs an instance of a particular malware, which is remotely
controllable by an adversary. The malware is typically installed without the explicit con-
sent of the machine’s owner, by exploiting a security vulnerability of the operating system,
or tricking the owner to install it. Botnets constitute of thousands of such bots, and there-
fore possess an enormous amount of cumulative bandwidth and processing power, which
is available to adversaries at no cost. Additional attack techniques are rolled out on these
platforms via updates, plugins, and new releases, and thereby resemble professional (le-
gitimate) software development. A botnet is therefore equivalent to a high-performance
supercomputer, connected to the Internet with tremendous bandwidth, and in possession of
all kind of sensitive user data, that is either available directly on the controlled machine,
or can be retrieved from third-party services (e.g., online banking) by abusing the users’
credentials. Analogous to “Software-as-a-Service”, researchers coined the term “Malware-
as-a-Service” (MaaS) to emphasize the notion of malware platforms, that can be rented on
a daily basis for a variety of nefarious purposes [124].

A particularly interesting category of malware communication is Botnet Command-and-
Control (C&C). C&C , which constitutes an essential puzzle piece in this ecosystem. C&C is used
to instruct bots to perform a certain task (e.g., “send 1000 Spam emails using template x”
or “install latest update from URL y”) and enables advanced control over the bot operation
(e.g., by returning status reports after a task has been completed). C&C infrastructures are
becoming increasingly complex and employ, e.g., strong cryptography for ensuring message
authenticity and confidentiality. Likewise, redundant hosting strategies and load balancing
are being used for hosting core services, as e.g., a Phishing site. We summarize such activity
as Malicious Hosting. Malicious

Hosting

. These do not necessarily have to be related to C&C, but share the
same requirements for high availability. The efforts that criminals put into making their
infrastructure more robust underline the importance that these mechanisms have for the
entire ecosystem.

In this thesis, I investigate methods for detecting malware infrastructures by monitoring
and analyzing network communication. Such techniques are highly valuable, as they can
be used to better understand, e.g., botnet communication, and enable taking down the entire
attack platform, instead of mitigating only single attacks. Ideally, they can even lead to the
initiation of countermeasures before any malicious action has been carried out. Therefore,
such approaches are both sustainable and proactive, and can equally serve academia and
industry, as, e.g., network operators and hosting providers.

1.1 Terminology

This thesis is concerned with the analysis of data exchanges on the Internet, and is therefore
rooted in the theory of computer networks. The main objective of such networks is the es-
tablishment of connectivity. Connectivity among a set of computers [132]. In general, a computer network
consists of nodes (i.e., computers) and links (e.g., coaxial cables), and enables the establish-
ment of connectivity between any pair of nodes. As there cannot exist links between all
nodes on the Internet, most computers are indirectly connected and links are shared for car-
rying the data exchanges of many nodes. Peterson and Davie further distinguish between
nodes which use the network (hosts). Host and nodes which implement the network (switches)
[132]. Internet hosts communicate by exchanging packets. Packet and are in the focus of this thesis.

A fundamental prerequisite for establishing connectivity is the ability to uniquely iden-
tify each host. For this purpose, each host gets assigned an Internet Protocol address (IP
address). IP Address . The dominant IP address version in use is IP Version 4 (IPv4), which uses four-
Byte Integer values as addresses. Typically, these addresses are displayed in the decimal
Dotted-Quad notation, in which each of the four Bytes is represented separately by a dec-

6

imal value, e.g., 1.2.3.4. Groups of hosts in the same network share the same address
prefix, e.g., 1.2.3.. Classless Inter-Domain Routing (CIDR) defines a notation for speci-
fying the particular prefix length, and enables the addressing of such networks. For example,
1.2.3.0/24 specifies the network range which contains 256 host addresses which start
with the 24-bit (i.e., 3 Byte) prefix 1.2.3 . IP Network. Finally, note that one or more network ranges
which are operated by the same organization are called Autonomous Systems (ASes) . AS.

By means of IP addresses, switches can identify the source and the destination of pack-
ets, and forward them accordingly. Such information is contained in the so-called packet
header. In contrast, the actual message to be carried from one host to the other is called the
packet payload. For example, the payload of a packet issued by an Internet user’s computer
might contain the request for a particular Internet site, as, e.g., Google’s main web site.
The response of the addressed Google host would consist of a packet with a payload which
contains the content of this site, i.e., the text and the images which should be displayed to
the user. This model of data exchanges is called client-server communication, where the
user’s computer is the client, and the Google host is the server.

Many different usages of the Internet exist, and each one has its own communication
requirements. Therefore, different procedures for exchanging data were introduced. These
procedures are called protocols and define a certain message syntax as well as the sequence
of message exchanges for a particular purpose. Protocols are organized in protocol layers,
where each layer has a particular function. The transport layer is responsible for enabling
data exchanges between two processes running on two Internet hosts, where each exchange
may consist of multiple packets being transmitted [132]. The two main transport layer pro-
tocols in use are the Transmission Control Protocol (TCP) and the User Datagram Protocol
(UDP) . TCP, UDP. For being able to address different processes on the same Internet host, TCP and
UDP carry port numbers (ports) . Portin the header.

At the top of the protocol layer stack are application layer protocols. The most promi-
nent example is probably the Hypertext Transfer Protocol (HTTP), which mainly defines a
procedure for transferring webpages between Internet hosts [60]. Another application layer
protocol of fundamental importance for the Internet (and for this thesis) is the Domain
Name System (DNS) protocol . DNS, which relieves human Internet users from remembering IP
addresses for being able to use the Internet [112]. For this purpose, the global DNS infras-
tructure implements a distributed database with the main purpose of translating Fully Qual-
ified Domain Names . FQDN(FQDNs) to IP addresses. Specifically, DNS clients send a query (Q)
for an FQDN (e.g., www.google.com) to a recursive resolver (RDNS) which is usually
run by the local network operator. By interfacing with the global DNS infrastructure, the
resolver then attempts to find a matching address record (A-Record) for the queried FQDN.
The IP address included in the A-Record finally enables the client to contact the requested
site. We refer to these relations between FQDNs and IP addresses as DNS mappings . DNS Mapping.

FQDNs are in the format A.B.C.D, where D is called the Top-Level Domain (TLD),
C the 2nd-Level Domain (2LD), B the 3rd-Level Domain (3LD), etc. DNS implements do-
main name aliases, i.e., there can exist a sequence of mappings from a name to a canonical
name (CNAME). In any case, a single name can map to multiple A-Records, which usually
all map to the same redundant service. Each of these A-Records includes a Time-To-Live
(TTL) value after which the RDNS must delete it from its local cache, and repeat the recur-
sive fetching as soon as a new request for this domain arrives. Note that DNS clients are
not forced to query the RDNS of their local network, but can use any publicly available one
in the Internet.

The following example shows a typical DNS request response. As the requested FQDN
www.google.com could successfully be resolved to a set of IP addresses, this represents
a so-called NOERROR response. NOERROR responses contain mappings between FQDNs
and hosting IP addresses, and are the foundation of our approach.

7

www.google.com
A.B.C.D
www.google.com

Example DNS Query Response
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 3584
;; flags: qr rd ra; QUERY: 1, ANSWER: 5, AUTHORITY: 0

;; QUESTION SECTION:
;www.google.com. IN A

;; ANSWER SECTION:
www.google.com. 110 IN A 173.194.113.176
www.google.com. 110 IN A 173.194.113.179
www.google.com. 110 IN A 173.194.113.180
www.google.com. 110 IN A 173.194.113.177
www.google.com. 110 IN A 173.194.113.178

As shown in the example, www.google.com resolves to many (i.e., five) addresses.
Furthermore, these addresses often change over time. Consequently, the actual A-record
returned to the requesting host depends not only on the query, but also on the time. This
simple procedure enables redundant hosting of Internet services. Instead of using only a
single server address, the site’s content is replicated, and is therefore available at many
addresses. Therefore, there is no single machine at risk to be overloaded by many requests,
and the load is balanced between many servers. This strategy is often being implemented
by Content Distribution Networks (CDNs). CDN , which provide professional hosting for a large
variety of services on their IP addresses. As a consequence of this ambiguity, it is in general
not possible to relate a packet to a specific service, just by looking at the IP address.

As links are typically shared, the communication of large numbers of computers can
be captured by installing probes on these links, which are the basic foundation of network
monitoring. Network

Monitoring

[18]. Probes capture packets and forward them to an analysis system which
extract a set of traffic features and infer, e.g., basic communication statistics like latency
and loss. More complex analyses implement common communication protocols and are
therefore able to read and understand (i.e., decode) the packets’ payload. This procedure is
commonly called Deep Packet Inspection. However, protocol decoding is costly, and there-
fore the maximum packet rate which can be processed in real-time is inherently limited.
Furthermore, Internet criminals conceal their communication by using custom protocols
which cannot be decoded by the analyzers, or encrypt the packet payload.

An alternative to packet-based monitoring is flow analysis [38]. Instead of processing
each packet, only overall statistics of a series of packets between two hosts (i.e., a flow. Flow) are
considered. E.g., a simple flow information could contain only the source and destination
address of the corresponding packets, as well as the number of exchanged packets. Clearly,
a significant amount of traffic information is being lost by considering only flows. However,
this combination of filtering and aggregation enables monitoring of large networks and is
therefore widely supported by standard network equipment [37].

1.2 Published Work

Several parts of the work presented in this dissertation have appeared in the following pub-
lications:

• Andreas Berger and Eduard Natale. Assessing the real-world dynamics of DNS. In
Proceedings of the 4th international workshop on Traffic Monitoring and Analysis
(TMA), pages 1–14, Vienna, Austria, 2012

• Andreas Berger and Wilfried N. Gansterer. Modeling DNS agility with DNSMap.
In Proceedings of IEEE INFOCOM Workshop on Traffic Monitoring and Analysis
(TMA), pages 387–392, Turin, Italy, April 2013

8

www.google.com

• Andreas Berger, Alessandro D’Alconzo, Wilfried N. Gansterer, and Oliver Jung. Lo-
cality matters: Reducing internet traffic graphs using location analysis. In Proceed-
ings of the Performance and Dependability Symposium (PDS) at the 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
pages 1–12, Budapest, Hungary, June 2013

• Andreas Berger, Alessandro D’Alconzo, Wilfried N. Gansterer, and Antonio Pescapè.
Detecting malware activity from agile DNS mappings using graph analysis. 2013.
Submitted to IEEE Transactions on Dependable and Secure Computing

For clarity, the individual publications are noted again in the introductions of the corre-
sponding parts of this thesis, i.e., in §II (see page 41) and §III (see page 89).

The following publications are not contained in this thesis, but led to the shaping of the
fundamental ideas and consider several related aspects.

• Andreas Berger, Ivan Gojmerac, and Oliver Jung. Internet security meets the IP multi-
media subsystem: An overview. Security and Communications Networks, 3:185–206,
2009

• Andreas Berger and Mohamed Hefeeda. Exploiting SIP for botnet communication.
In Proceedings of the 5th Workshop on Secure Network Protocols (NPSEC), pages
31–36, Princeton, NJ, 2009

• Andreas Berger, Jacopo Cesareo, and Alessandro D’Alconzo. Collaborative network
defense with minimum disclosure. In Proc. of the IEEE Global Telecommunications
Conference (GLOBECOM), pages 1–6, Houston, TX, 2011

• Stefan Ruehrup, Pierfrancesco Urbano, Andreas Berger, and Alessandro D’Alconzo.
Botnet detection revisited: theory and practice of finding malicious P2P networks via
internet connection graphs. In Proceedings of the INFOCOM workshop on Traffic
Monitoring and Analysis (TMA), pages 435–440, Turin, Italy, 2013

9

CHAPTER 2
The Internals of Internet Crime

Over the last years, Internet crime underwent significant changes. The progressing com-
plexity of the individual steps in the criminal value chain led to an increasing specialization
of the involved parties. Franklin et al. were the first who studied this underground economy,
and investigated the demand and offerings on this market [67]. They found many different
“products” (e.g., credit card numbers) and “services” being traded there, which require a
complex “industry” behind. This study was complemented by the work of Sood and En-
body who survey the commoditization of using Crimeware-as-a-service (CaaS) offerings
in the underground market [146]. In the following, the fundamental purposes and require-
ments of this ecosystem are discussed. The network footprint of the involved techniques
motivates the detection approaches presented in this thesis.

Malware Infection Many criminal activities start with the compromise of an Internet
user’s computer. Traditional, direct attacks against exposed, vulnerable services are nowa-
days often avoided due to the prevalence of firewalls and Network Address Translation
(NAT), which causes the targeted hosts to be unreachable from the Internet [132]. Today,
the dominant infection vectors are therefore drive-by downloads. Drive-by downloads oc-
cur when users visit Internet sites which host, or link to, malicious code, which is in turn
downloaded to the users’ machines (see [136] for a detailed study). Such unintentional
downloads are facilitated by software exploits, which typically target vulnerabilities in the
user’s Internet browser, or in common third-party plugins like Flash, Java, and Adobe PDF.
Once run, they cause the download and installation of a certain piece of executable malware,
which in turn initiates some kind of criminal activities.

The development of exploits is today a “profession” on its own, with significant revenue
for the developers1. Exploits are often bundled in so-called exploit kits and are being sold
on the underground market. For example, current prices for the Phoenix exploit kit start
at 2,200 US$ [108]. Optionally, buyers can also order a hosting plan, with prices for the
infamous Blackhole exploit kit starting at 50 US$ per hour, with the seller taking care
of server maintenance and exploit updates [69]. Grier et al. conducted a detailed study
of these exploit-as-a-service offerings and found that 47% of an initial set of malicious
domains lead, via redirects, to a site running an exploit kit. The median uptime of these
sites was only 2.5 hours, after which these domains were not reachable anymore [74]. It
is important to note here that the sites in the redirect chain are not necessarily knowingly
participating in this plot. For example, recently the highly popular site www.mysql.com
was compromised, and redirection code was embedded to infect visiting hosts2. The more
sites are compromised, the more Internet hosts are redirected to the exploit kit. Single

1http://krebsonsecurity.com/2013/01/new-java-exploit-fetches-5000-per-
buyer/

2http://www.pcworld.com/article/240609/mysqlcom_hacked_to_serve_malware

11

www.mysql.com
http://krebsonsecurity.com/2013/01/new-java-exploit-fetches-5000-per-buyer/
http://krebsonsecurity.com/2013/01/new-java-exploit-fetches-5000-per-buyer/
http://www.pcworld.com/article/240609/mysqlcom_hacked_to_serve_malware

sites which are cleaned from the redirection code can be quickly replaced by new ones,
for maintaining a steady stream of new victims. The final exploit site, however, requires
reliable hosting as its availability directly translates into money.

Another “profession” deals with using these exploits to install malware on Internet
hosts. These are in general neither the same criminals who developed the exploits, nor
the ones who actually later command the malware. Rather, there exist Pay-per-install (PPI)
programs as platforms for trading such services. Clients order installs of a particular piece
of malware, and pay a certain sum, typically per 1,000 installs [32]. Conversely, PPI af-
filiates sell their install services via these sites. A variety of methods exist, from sending
Spam that includes links to exploit sites, to direct installs on vulnerable computers, to pack-
aging with illegal software downloads [74]. A recent variant, Traffic-PPI, aims at steering
traffic to sites running exploit kits, and criminals are being payed per successful installa-
tion. For example, Wondracek et al. conducted a study on platforms for trading traffic for
adult Internet offerings. They found that by spending 160 US$ for traffic being redirected
to their servers, they could have infected 20,000 hosts [155]. The security measures of the
traffic trading sites they investigated were low in general, and mostly non-existing. For
example, no checks were made whether the site to which users are directed via embedded
advertisements was actually safe.

Malware requires this infrastructure not only for hosting exploit kits, but in addition
also for many other nefarious purposes. Konte et al. studied the dynamics of scam hosting
infrastructures (used, e.g., for Phishing campaigns) [98]. Scam links are usually distributed
via email Spam or other unsolicited communication, and are rather short-lived. The authors
found that the IP addresses to which the scam sites resolve change rather quickly over time.
However, IP addresses are being reused by multiple site names, and therefore reappear
often. In a related effort, Stone-Gross et al. discuss the underground economy of fake
antivirus software [147]. They note that a functional hosting infrastructure is vital for these
criminals, as the victims must be able to reach a website for making their purchase.

Command and Control The initial infection of large numbers of Internet hosts with any
kind of malware is often only the first step. Ultimately, criminals aim at extracting informa-
tion (e.g., login credentials, credit card data) or rent infected hosts out to other parties (e.g.,
for DDoS campaigns) in return for a rental fee. This implies that some kind of communi-
cation channel, between the infected hosts and the criminal controlling them, is required.
As introduced in the previous section and in accordance with previous work, we refer to
such hosts as bots, and call their controller botmaster. A group of related bots is thus com-
monly called a botnet, and their communication channel with the botmaster is known as
Command-and-Control (C&C). As C&C enables reconfigurations, updates, launching of
new attacks, and reporting, it is of tremendous importance to botmasters.

Dagon et al. provide a taxonomy of botnet communication and define three metrics
[46]: (i) the size, i.e., the number of bots; (ii) the diameter, i.e., the average communica-
tion path length between two bots; and (iii) the redundancy, i.e., the alternative means of
communication a botnet has available. The more alternative paths Pi a botnet can use, the
more resilient it is to mitigation actions, i.e., blocking of individual paths. Given a detection
probability εi for each path, the authors define an upper bound for the probability that all n
paths can be detected, and further blocked, as

n∏
i=1

εi ≤ (1− α)n

where α is the probability that all communication nodes in a path are cleaned. Im-
proved detection techniques let α increase, and botmasters therefore attempt to increase n
in order to maintain the botnet’s resilience. However, a large number of paths requires more

12

(a) Centralized botnet topology (b) P2P botnet topology

Figure I.1: Common botnet topologies.

maintenance effort, and a large diameter increases the communication latency. The C&C
structure has therefore a direct impact not only on the resilience and robustness, but also
on the botnet’s utility. This is further being described in term of effectiveness, efficiency,
and robustness in [45], and was extended later by Zhang et al., who note that also the cost
for botnet construction and maintenance, as well as the scalability of the C&C model is
important [161]. Dagon et al. found diurnal changes in malware activity, due to the fact
that victim machines are typically turned off during night [47]. Malware communication
therefore also needs to be robust against these constant changes.

Two main C&C models exist [50]. By far the most prevalent is centralized C&C, where
all bots connect to a particular C&C server (Fig. I.1a). The main advantage of this scheme
lies in the high effectiveness and efficiency, which also entails a low command latency.
The limited robustness against mitigation actions has been addressed by using redundant
central servers, which often change quickly over time. This is often done by rotating DNS
mappings of C&C servers, and is called “Fast-Flux”, which we further discuss in §4.1.2.
The second existing C&C model is based on Peer-To-Peer (P2P) networking (Fig. I.1b).
Although being highly robust against counteractions, it entails a high maintenance effort
due to P2P churn: bots which are joining or leaving require the continuous reorganization
of the P2P overlay. The command latency is higher due to the longer average path length
(as compared to the centralized C&C model), and a botmaster runs the risk that an infected
machine is switched off again by its owner before a bot could receive new commands.

2.1 Malware Communication Examples

The following examples illustrate several techniques used for malware communication. Al-
though this list is not exhaustive, it serves as a motivation for the following chapters.

The Srizbi botnet originally contacted C&C server IP addresses that were hardcoded
in the malware binary. After a takedown attempt by the security firm FireEye, the bots
fell back to generating domain names using a built-in algorithm that was seeded with the
current time of day, and started querying the DNS for these names. Knowing in advance
which domains are going to be queried, the botmaster registered some of these domains,
and reestablished Srizbi’s C&C communication [114].

The estimated number of hosts infected with the Rustock malware was 1.1 to 1.7 million
in 2010. The botnet was responsible for 48% of the worldwide Spam, before it was taken
down in a concerted action [104]. Rustock used two tiers of C&C servers, of which one with
26 different proxies was relaying the communication between bots and the actual servers.
The malware resolved C&C server addresses using DNS, and fell back to a set of hardcoded

13

IP addresses when this failed [31]. Note that Rustock did not contact the IP addresses
returned via DNS, but rather used them as seed for a specially crafted algorithm to generate
the actual C&C server IP addresses.

The Storm malware was mainly used for email spamming, phishing, and DDoS attacks
[83]. It used a customized version of the Overnet P2P file-sharing protocol for communi-
cation, using randomly selected UDP ports. The messages between individual bots were
encrypted. A new command (e.g., containing new Spam templates) could be published by
any of the hosts in the P2P network, and was then automatically distributed throughout the
botnet. In addition, Storm used Fast-Flux, for further increasing the resilience to counter-
measures.

The Conficker botnet received much attention by both scientific and non-scientific pub-
lications, especially in the beginning of 2009, and even led to the formation of a dedicated
working group3. The botnet’s size was then estimated to be somewhere between 500,000
and 9,000,000 individual bots. The criminals behind Conficker released several revisions
of the malware, which are known as Conficker.{A,B,C,D,E}. All variants use centralized
C&C, although later versions implement a P2P protocol used exclusively for bot software
updates. The notable difference to Storm is here, that Conficker does not possess an initial
list of peers, but requires probing for finding other bots. The ports used for P2P communica-
tion are randomized4. The C&C messages are sent on ports 80 (HTTP) and 445 (Microsoft
CIFS), clearly chosen so that the botnet’s traffic is hidden in the vast amount of legitimate
communication using these ports. Conficker makes extensive use of Fast-Flux and uses
fresh DNS mappings every few hours. The details of this procedure offer an excellent in-
sight into the rationale of botnet design [135].

Zhang et al. provide an in-depth analysis of botnet communication and design a “hard-
ened” botnet [161], which is highly robust against countermeasures which aim at disrupting
its communication. Their approach, Bot-Enclave, provides a decentralized, hierarchical
C&C control structure with three types of botnet nodes, namely commanders, sub-leaders,
and bots. The proposed structure changes over time, i.e., commanders are replaced by
newly infected machines and new sub-leaders are regularly chosen. On the network layer,
Bot-Enclave nodes are assumed to be connected using P2P or random topology models.
Sub-leaders control groups of bots, which may overlap for redundancy reasons. All com-
munication in the botnet is authenticated and encrypted, and commands need to be received
from multiple sub-leaders before they are executed, in order to anticipate that particular sub-
leaders can be captured and manipulated. However, while this approach is highly effective
and robust, Bot-Enclave causes plenty of traffic due to regular reorganization, authentica-
tion, re-keying, and command redundancy.

For completeness, note that malware communication is under continuous development,
and criminals are highly creative when it comes to inventing new, unconventional mecha-
nisms. For example, some botnets abuse Twitter for C&C5. Nagaraja et al. speculate about
more advanced techniques and investigate botnet communication via probabilistically unob-
servable channels [115]. Their Stegobot uses steganography for hiding messages in images,
which are then delivered via (existing) social network services. As another example, we
discuss the potential abuse of Voice over IP (VoIP) infrastructures for botnet communica-
tion in [24]. At the core of these platforms is the Session Initiation Protocol (SIP). SIP is
a versatile and generic mechanism for looking up communication peers, and is expected to
play a key role in next-generation telecommunication services [23]. Botnets could abuse
these readily available infrastructures, and take advantage of using a highly reliable, dis-
tributed platform for free. As this kind of communication requires no network traffic to be

3http://www.confickerworkinggroup.org
4The randomizer is seeded with the local IP address and the current time of day.
5http://ddos.arbornetworks.com/2009/08/twitter-based-botnet-command-

channel/

14

http://www.confickerworkinggroup.org
http://ddos.arbornetworks.com/2009/08/twitter-based-botnet-command-channel/
http://ddos.arbornetworks.com/2009/08/twitter-based-botnet-command-channel/

exchanged directly between two bots (or a bot and the botmaster), it cannot be revealed eas-
ily by network monitoring. Detection and mitigation of this kind of communication should
therefore be done by the respective service provider (e.g., Twitter), and is considered out of
scope for this thesis.

15

CHAPTER 3
Methodology and Scope

Defensive approaches against misapplications of the Internet are being researched since the
beginnings of computer networking [52]. In general, we differentiate host-based counter-
measures and network-based ones. Host-based approaches are installed directly on the host
to be protected (e.g., virus scanners). Network-based systems analyze the Internet traffic
to and from the host, and, e.g., block illegitimate communication (using firewalls). In this
thesis, I focus on the latter approaches, and base my work on two main observations about
malware communication requirements, to which I refer to as collaboration and agility in
the following.

1. Collaboration: . Collaborationthe perilousness of Internet malware stems from the collaboration of
a large number of hosts in a common task, and their ability to dynamically commence
new tasks. Most prominently, botnets require coordination among the bots, and com-
munication of C&C commands and statistics. Bots are therefore linked either directly
(using P2P networking), or indirectly (using centralized C&C servers). The analysis
of such collaboration patterns can therefore support botnet C&C detection. Similar
collaboration patterns can be observed for other types of malware, e.g., when many
victim hosts contact the same Phishing site. From the viewpoint of the criminals,
these hosts “collaborate” for the success of the Phishing campaign, and are therefore
characterized by a specific networking profile. Likewise, multiple external hosts can
collaborate in hosting the same malicious FQDNs.

2. Agility: . Agilitymalware needs to strike a balance between stable “service” availability, and
continuous reconfiguration. Modern malware activities are based on service plat-
forms, and need therefore to be able to evade detection mechanisms and sustain
take-down actions by legal authorities. Static configurations are doomed to fail as
soon as critical components (e.g., the only C&C server) are blocked, and bots be-
come uncontrollable. Therefore, criminal Internet activities employ a certain level of
agility, which involves different aspects of their communication patterns. Examples
include the quick rotation of FQDNs of C&C servers (“Fast-Flux”, see §II), peer-to-
peer (P2P) techniques that constantly reconfigure the overlay network, and redundant
malware hosting strategies with different server IP addresses being used at different
times. Measuring agility patterns addresses the basic need of malware to communi-
cate, while being forced to constantly change its networking footprint.

The basic idea is therefore to use network monitoring to (i) reveal traffic patterns which
represent a certain degree of agility, and (ii) further discover groups of hosts that are directly
or indirectly linked via such connections. However, there is a hitch: some benign Internet
traffic is highly agile itself. The prevalent use of Content Distribution Networks (CDNs) and
cloud services has replaced the previously dominant strong relation between a service (e.g.,

17

external hosts

monitored hosts
100.101.23.67

192.0.0.57

...

...

network
edge

Figure I.2: Scenario overview: connections between monitored (internal) hosts and external
hosts are observed. Traffic data is captured at the network edge, and is further analyzed for
signs of malware communication.

Google search) and the network resources (i.e., IP addresses) hosting it. Hosting a service
using CDNs implies that there is no such relation anymore, as services are dynamically
assigned to IP addresses based on availability and current load conditions. Therefore, even
for benign services, there are regular changes in the relations between FQDNs and external
hosts. The notion of agility is therefore not a binary but rather a continuous one, which
depends on the particular service and IP addresses in question. A fundamental requirement
for a detection approach is therefore a modeling apparatus, that is able to describe the
normal level of agility to expect for a specific service/IP address, and thereby enables the
detection of agility deviations.

Detection of patterns of collaboration further requires that sufficient malware samples
are available in the monitored network, so that group activity patterns can be observed. In-
ternet service providers (ISPs) suggest themselves for this kind of network monitoring, as
they both possess the required technical means as well as an adequate customer population.
Furthermore, the main reason for the flourishing of malware is the fact that the criminals
can operate mostly without limits. They are not confined to any legislative boundaries
and are truly international in their activities. It is so far unclear who has the responsibil-
ity (and the authority!) to monitor, and eventually disrupt, e.g, botnet operations. While
there are examples of elaborate, concerted counteractions1,2 [133], typically they focus on
the “server-side” infrastructure of botnets, and do not affect the bots themselves. Recently
established initiatives in Germany3 and Australia4 are supported by the respective govern-
ments and a large number of local ISPs. They exploit the unique monitoring opportunities
of ISPs, as well as their established, trusted customer relationships, to inform users about
potential malware infections and offer remediation tools and technical support. A study
by Wood and Rowe suggests that customers are even willing to pay for security protection
plans [157], which could make it profitable for ISPs to take over this responsibility.

Therefore, ISP networks are defined as the intended deployment scenario for the analy-
sis approaches presented in this thesis. In particular, I consider network monitoring archi-
tectures as shown in Fig. I.2, where an ISP monitors the communication between monitored
hosts. Monitored Host (i.e., customers) and external hosts (i.e., “the Internet”), and is therefore able to “see”
all communication that traverses the network edge.

1http://www.securityfocus.com/brief/855
2http://nakedsecurity.sophos.com/2011/03/24/one-week-later-rustock-

and-pharmacy-express-still-flatlined
3www.botfrei.de
4http://www.icode.net.au

18

http://www.securityfocus.com/brief/855
http://nakedsecurity.sophos.com/2011/03/24/one-week-later-rustock-and-pharmacy-express-still-flatlined
http://nakedsecurity.sophos.com/2011/03/24/one-week-later-rustock-and-pharmacy-express-still-flatlined
www.botfrei.de
http://www.icode.net.au

Monitored Host

FQDN
External Host

maps to

contacts

resolves

DNS Mappings Graph

Connections Graph

1 2 3

1

2

3

1

2

3 4

5

Figure I.3: Basic concept: we consider relations between Internet entities (FQDNs, inter-
nal/external hosts). Changes in these relations represent a certain degree of agility, which
we analyze structurally as graphs for revealing evidence of collaboration.

3.1 Methodology

In the following, I sketch the fundamental methodology applied for this work, which sets
the scene for further in-depth discussion in §II and §III. The basic foundation of my ap-
proach is the exclusive analysis of traffic features which can be readily extracted, and do not
require sophisticated extraction techniques like Deep Packet Inspection (DPI). These suffer
from performance limitations which make them unfit for the intended, ISP-based monitor-
ing scenario. Furthermore, and this being the main reason for sticking with simple traffic
features, higher level traffic data as, e.g., HTTP payload is often obfuscated or encrypted,
and botnets can be easily reconfigured to hide from detection approaches which depend on
such corresponding patterns.

Based on a careful evaluation of the existing literature (see §4), I identify two traffic
features which represent now the main pillars of this thesis. On the one hand, the analysis
of DNS traffic (see §II) is feasible even for vast numbers of monitored hosts, and cannot be
obfuscated without impairing its function. Just as many other Internet services, malicious
services make extensive use of the DNS, and may therefore be detected. On the other hand,
I consider the communication endpoints of Internet connections (i.e., IP addresses) (see
§III), a traffic feature that is equally hard to manipulate as these addresses are fundamentally
required for forwarding packets on the Internet.

The relations between (monitored and external) Internet hosts on the one side, and
FQDNs and (external) Internet hosts on the other side, can be described by graphs. The
nodes of the graph represent Internet hosts and FQDNs while the graph’s edges describe
different kinds of relations between these nodes. Note that these graphs contain static snap-
shots of the aggregated traffic exchanges of a particular monitoring epoch, e.g., one hour.

Fig. I.3 illustrates this basic concept. Monitored hosts resolve the FQDNs for certain
services by issuing DNS queries. The DNS infrastructure responds with one or more IP ad-
dresses which map to this FQDN (at this moment in time). Ultimately, the monitored hosts
contact the services by establishing a connection to these IP addresses. The representation
of this information as graphs enables us to reveal groups of hosts and FQDNs which are
densely connected to each other, and therefore form a graph community. Members of the
same community are therefore involved in an activity which shows collaboration patterns,
as they occur when multiple hosts are contacting the same malware platform.

However, also monitored hosts contacting benign services result in the same collabo-
ration patterns. For example, many hosts resolving and contacting a popular web site like

19

www.google.com would likely end up being assigned to the same community. There-
fore, we require a technique to filter these graphs, so to remove benign services, and reveal
only patterns of malicious collaboration.

For being able to make this distinction, we exploit the fact that malware activity im-
plements dynamic methods for evading detection and mitigation measures. For example,
Botnet C&C infrastructure is often located in networks which are normally not contacted
by a particular host, and therefore these connections stand out when, e.g., a particular server
is suddenly contacted by many hosts which previously did not contact this location. Like-
wise, due to the platform-like character of malicious services, a changing set of different
malicious FQDNs maps to the same external hosts. In the graph representation, this results
in the appearance of new nodes and edges over time. We summarize these dynamics as
network traffic agility.

By monitoring the Internet traffic from the vantage point of a network operator, we
can track significant changes in this graph, and thereby find both agile DNS mappings,
as well as agile IP connections. As illustrated in Fig. I.3, we address these two analysis
problems separately. First, in §II, we describe a DNS-based malware detection system that
analyzes the relations between FQDNs and hosting IP addresses. Secondly, we propose a
detection approach for IP-level communication in §III. The structure of the corresponding
(sub-)graphs (see Fig. I.3) reveals structural patterns of collaboration, as they appear, e.g.,
when one FQDN maps to multiple IP addresses over time, or when multiple hosts contact
the same set of C&C servers. This allows us to identify monitored hosts which are victims
of Internet crime. Furthermore, it provides an understanding of the network-level activity
patterns and logical connections between different malicious sites, and therefore enables
targeted countermeasures which consider the actual infrastructure components.

Note that it is not necessarily required that each monitored host engages in DNS activity
and IP-level communication with a particular external host. For example, monitored host
“3” in Fig. I.3 does not resolve any FQDN and still contacts external host “2”. Likewise,
monitored host “1” resolves FQDN “3”, but does not contact IP address “2” to which this
FQDN maps. Some malware activity is detectable only either in the DNS mappings graph
or the connections graph, while other malicious activity can be revealed because of the
combination of DNS requests to suspicious sites and peculiar IP connections.

As a fundamental principle, the design of the presented approaches acknowledges the
always-changing nature of Internet traffic, and continuously updates the derived models of
“normality”. It implements therefore the change detection paradigm, where changes are
reported once and are then integrated in the model building process. Note that this implic-
itly assumes that malware activity is more agile than legitimate one, and therefore triggers
recurrent change events, which make the malware detectable by the following collabora-
tion analysis. The presented techniques go to great lengths to assure that “normality” in
legitimate Internet traffic is well represented, and that a priori assumptions about what is
normal are as limited as possible. Rather, the system should adapt to variations, and adjust
its working point as it goes on.

The design is driven by the idea to provide evidence for the existence of malware plat-
forms as a whole, and focuses less on the detection of every single infected machine. We
envision a system that is able to provide an early first alarm, that already includes a topo-
logical overview of the suspicious connections. Such systems, which favor broad coverage
over detailed, per-host analysis, should consider the integration of a human analyst in the
detection process. Following this first alarm, targeted investigation should then be initiated,
which is out of scope for this work.

20

www.google.com

3.2 Evaluation of Results

The detection of criminal Internet activity requires the differentiation of benign and mali-
cious traffic patterns, and is thus a classification problem. For evaluating the results of our
proposed detection systems we therefore employ the standard measures for classification
system evaluation. In particular we consider binary classification tasks and data sets which
include events that are either relevant (i.e., malicious) or not relevant (i.e., not malicious).
For example, an event can correspond to a TCP packet being observed by a network probe
or to a DNS request response being captured.

In particular, we distinguish the following types of classification results:

• True Positives (TP): the number of events which are relevant and which were cor-
rectly classified as relevant.

• False Positives (FP): the number of events which are not relevant but were wrongly
classified as relevant.

• True Negatives (TN): the number of events which are not relevant and which were
correctly classified as not relevant.

• False Negatives (FN): the number of events which are relevant and which were
wrongly classified as not relevant.

Note that the assessment of these figures requires the availability of ground truth, i.e.,
the knowledge about the correct classification of any single event in a considered data set.
This is often difficult to achieve for real-world problems, and is further being discussed for
network-based malware detection problems in §4.3.

Building on these measures, two important concepts are commonly used for evaluating
classification results. The specificity or True Negative Rate (TNR) of a classifier is defined
as TN/(TN+FP). Similarly, the sensitivity or True Positive Rate is defined as TP/(TP+FN).
Another important concept is the fallout or False Positive Rate (FPR) which is defined as
FP/(FP+TN), and which is among the most commonly used concepts for evaluating and
comparing the performance of malware detection systems. Together, these concepts are
used for creating Receiver Operating Characteristic (ROC) curves (see, e.g., [58]) which
show the overall classification performance. ROC curves are graphical plots which compare
FPR (on the X-axis) and TPR (on the Y-axis) for several parameter configurations (e.g.,
classification threshold settings). Ideally, a classifier would yield TPR=1.0 and FPR=0.0
for adequate parameter configurations, in which case the ROC curve would pass through
the upper left corner of the plot.

However, as discussed by Davis and Goadrich, ROC curves have limitations for highly
skewed data sets [51]. They show that Precision and Recall (PR) plots generally give a
more informative picture of a classifier’s performance. Precision is defined as TP/(TP+FP)
and the definition of Recall is equivalent to sensitivity. Similar to ROC curves, PR plots
compare Recall (on the X-axis) with Precision (on the Y-Axis). Ideally, both Precision
and Recall equal to 1.0 for adequate parameter configurations, in which case the PR curve
passes through the upper right corner of the plot.

Furthermore, Axelsson noted an important aspect of using FPR for assessing network
traffic classification results [14]. He pointed out that, for practical reasons, the absolute
number of false positives is often more important than FPR in this context. Even very low
FPRs may correspond to a high number of false positives. Therefore, Axellson suggests
that traffic analysis systems should be tuned such that the absolute number of FPs is low
enough in order to enable the (manual) investigation of the results by a human operator in
realistic time.

21

3.3 Outline

In §4, the current state-of-the-art of malware detection and complex network analysis is
discussed. This serves as a motivation for the two main parts of the thesis, §II and §III. In
the first main part §II, we discuss the analysis of DNS agility, with a particular focus on
the agility of benign DNS activity. Based on this analysis, a novel, versatile, and highly
sensitive detection system is proposed, which allows for revealing malware activity in real-
time using graph analysis. The second main part §III describes a novel idea for large-scale
malware detection, based on an efficient, data-adaptive profiling technique for capturing
the normal, baseline activity of Internet hosts. Similarly to the DNS analysis approach, we
employ graph analysis for revealing malicious, collaborative activity. Finally, we discuss
the joint usage of both systems in §IV. Throughout the thesis, the proposed approaches are
evaluated in an extensive set of experiments using large traffic data sets from ISP networks.

22

CHAPTER 4
State of the Art

In this chapter, the related work from the fields of malware detection and complex network
theory is discussed. First, a review of a variety of malware detection approaches is provided
in §4.1, which ultimately motivates the focus on network-based detection approaches. One
of the main objectives of this thesis is the investigation of the analysis of collaboration
patterns using graph representations. Therefore, I review the available literature of complex
networks in §4.2, in order to identify the properties and limitations of relevant graph analysis
algorithms. Finally, the evaluation of network-based detection approaches is discussed in
§4.3. The remainder of this thesis is based on the findings of these analyses, and is driven by
the idea of a two-step detection system, where the initial network-based detection approach
is specifically designed with the following graph analysis in mind.

4.1 Malware Detection

Ever since the first appearance of malware, detection approaches have been proposed, so
to avoid its installation on the victim host, or enable its removal. A basic requirement for
any such system is the reliable differentiation of malware and legitimate software. This
initially led to the development of signatures which are today still a cornerstone of many
detection approaches. For example, virus scanners analyze code binaries and match them
against a large corpus of semi-automatically generated signatures. These signatures can
be derived using static analysis of malware binaries, i.e., analysis of the malware program
without executing it. Often, this requires the use of disassembler tools for deriving a human-
readable representation of the instructions that comprise the malware program. However,
malware developers and distributors reacted to these techniques by obfuscating the binaries
and introducing ambiguity in the code that heavily complicates static analysis [113]. For
example, the execution path of a malware sample can depend on system parameters like the
current time or the operating system version. Today, the dominant obfuscation technique are
so-called packers [77]. These tools encrypt the actual malware payload and decrypt it only
in-memory on the victim machine. By regularly changing the encryption keys, it becomes
impossible to identify a given malware sample without decrypting it, and the generation of
reliable signatures becomes significantly more complex. A related challenge for detection
systems is malware polymorphism, i.e., code which changes its syntactic form, but not the
execution semantics [66], and therefore avoids malware signatures very effectively1.

The limitations of static analysis led to the development of alternative approaches. Dy-
namic analysis executes malware and extracts distinct activity patterns from its runtime
behavior. Thereby, it benefits from being able to observe the actual execution of the pro-

1http://www.nist.gov/itl/upload/Symantec-Comments-to-BotNet-FRN-11-14-
11.pdf

23

http://www.nist.gov/itl/upload/Symantec-Comments-to-BotNet-FRN-11-14-11.pdf
http://www.nist.gov/itl/upload/Symantec-Comments-to-BotNet-FRN-11-14-11.pdf

gram. While static analysis can only provide signatures that are based on the syntax of the
code, dynamic approaches can therefore rely on its semantics, i.e., the actual operations
it performs while running. Several systems have been developed (e.g., Norman sandbox2,
bitblaze3, and ether4), and have demonstrated their potential in a great many of research
publications. For example, Bayer et al. give a comprehensive overview of current malware
behavior [17]. They describe how they use their “Anubis” system for automatic analysis
of Windows binaries. Each received binary is analyzed for five minutes at most. During
this time, the invocation of system calls and network traffic is recorded and is afterwards
compared to other traces. The authors note that this type of analysis executes malware in a
virtualized environment and is therefore computationally expensive.

Numerous dynamic analysis approaches have been presented, many of which address
highly specific problems of these systems which often stem from the fact that there exists
an arms race between miscreants and security researchers. Analysis systems like Anubis
are built on top of system emulators or virtual machines, and is has been demonstrated
that software is able to detect that it is running in a such environments [137, 128]. Con-
sequently, malware authors implemented these checks and do not commence malicious
activities in suspected analysis environments, or even initiate misleading behaviour so to
distract researchers. Malware has also been observed to deliberately delay its execution,
as it is widely known that analysis frameworks have only limited time available for each
binary they process. Execution-stalling code introduces delays before the actual malicious
operations are initiated, and is therefore difficult to detect [97]. A complete summary of
the large field of dynamic malware analysis is out of scope for this thesis, and the reader is
referred to the comprehensive survey of Egele et al. [55].

In addition to being used by security specialists for dissecting malware operations, dy-
namic analysis can also be deployed directly on the Internet end host to be protected, simi-
larly to the widely deployed virus scanner products. Kolbitsch et al. propose such a system
in [96]. They extract behavior graphs from the system call activity of a malware instance,
and show that these graphs can be used to build accurate malware profiles. Their system
efficiently matches the actual runtime activity of unclassified software against the profiles,
and determines if it corresponds to known malware activity. This system therefore relies
on semantic signatures, as opposed to the typically used syntactical ones. It introduces a
certain overhead though (between 5% and 39% in the initial experiments presented in [96]),
and, being running on the end-host, suffers from the fact that malware might compromise
the analysis system itself.

Another branch of related detection approaches focuses on the execution of malware in
a controlled analysis environment to extract communication models [99, 140]. For exam-
ple, Cho et al. manually reversed the C&C protocols of the MegaD botnet, and infiltrated
its communication [35]. They revealed the underlying network architecture and found that
multiple servers are being used for different purposes. While this kind of analysis is highly
valuable, it is also very costly in terms of time spent for understanding the protocol, and
is therefore suitable only for specific malware instances which infected a large number of
hosts, and are persistent over time. Therefore, Wondracek et al. propose an automatic sys-
tem for protocol reverse engineering [156]. A more advanced system was later proposed
by Wurzinger et al. [158]. The authors employ change point detection strategies to dis-
cover significant alterations in the outgoing traffic of a particular host (e.g., an increase in
connections as observed during a scanning procedure or a large number of SMTP packets
as seen during a spamming attack), represented as feature vectors and called the behavior
profile of a host. In particular, the CUSUM algorithm is used to detect relevant deviations

2http://www.normanshark.com
3http://bitblaze.cs.berkeley.edu
4http://ether.gtisc.gatech.edu

24

http://www.normanshark.com
http://bitblaze.cs.berkeley.edu
http://ether.gtisc.gatech.edu

of the normal, expected networking behavior. When a change point is detected, the system
analyzes the incoming traffic to the particular host, which was recorded in the n seconds
before this change happened (20s ≤ n ≤ 100s). By clustering multiple of these traffic
“snippets”, common token sequences are found, which are then used to generate command
models. Together with the response models, created by computing the average of the indi-
vidual behavior profiles, bot signatures are derived. The system relies on visible networking
activity immediately after a command was received. Randomized delays or “time-bombs”
can therefore circumvent this approach. Jacob et al. further progressed in a similar di-
rection, and complement host-based analysis with network communication analysis [89].
Based on a set of labeled malware connections, their “JackStraws” system can infer C&C
message templates. As host-based execution patterns are known, non-malicious communi-
cation, initiated by the malware binary, can be excluded from the results. An interesting
addition to such systems is the work by Neugschwandtner et al. [118]. Their approach aims
at triggering failover C&C strategies by blocking access to the primary C&C servers. Mal-
ware binaries are run in a contained environment, and multiple execution paths are revealed
by continuously evaluating the effects of blocking certain communication. Finally, Perdisci
et al. execute malware binaries in a contained environment and focus on automatic cluster-
ing of HTTP communication patterns, which enable the generation of traffic signatures for
each identified malware family [131].

Both dynamic analysis of the malware binary, and malware execution in contained envi-
ronments have their own shortcomings. First of all, one has to possess a particular malware
binary before being able to analyze it. This is a challenging task, given the appearance of
large numbers of malware binaries every day, due to, e.g., do-it-yourself development kits
which allow for the quick creation of a new, custom piece of malware [123]. Besides in-
herent performance limitations of the analysis platforms, another main problem lies in the
fact that these approaches rely on the assumption that an executed malware binary behaves
exactly as if it would be installed on a victim machine. This is not always the case, and
criminals are implementing strategies for detecting such analysis environments. Further-
more, such analysis approaches cannot provide an assessment of the malware activities at
large, as, e.g., in a particular operator network. This is, however, required for, e.g., un-
derstanding how many hosts are infected, and which countermeasures should be deployed
for protecting the victim users. Finally, the execution of malware binaries raises ethical
questions, and requires tight containment strategies which can impair the analysis [99]. In
the following, we therefore discuss network-based detection approaches, which are based
on passively monitoring malware “in the wild”, and enable an understanding of the “big
picture” of malware activities of potentially thousands of hosts, over extended periods of
time.

4.1.1 Network-based Malware Detection

In contrast to the previously discussed approaches, purely network-based detection systems
have no control of, and no insight in, the execution flow of the malware binary. Therefore,
such systems are in general less precise, and are prone to misclassify the network activity
of individual hosts. The strength of network-based approaches rather lies in their ability
to reveal large-scale malware activity, as, e.g., a massive botnet with thousands of hosts.
Rather than, e.g., identifying the precise C&C protocol in use, such systems are better used
for understanding that there exists some suspicious activity in the network, and therefore
enables a suitable reaction, as, e.g., targeted mitigation actions or more costly in-depth
analysis, if required. The following literature review focuses on such approaches.

A number of systems focus on malware communication via particular protocols/ports.
Goebel and Holz analyze Internet Relay Chat (IRC) data and reveal nicknames which are
related to malware activity [72]. IRC servers are often used for botnet C&C, where each

25

bot joins a certain chat channel on a particular server, for uploading status information and
receiving new commands. Strayer et al. gave a comprehensive overview of the state of
the art [148] of botnet communication detection, and presented a novel detection approach.
While their own work and experiments were targeted exclusively at the detection of central-
ized C&C botnet communication using the IRC protocol, especially the discussion of their
classifier and correlation stages are universally relevant, and laid the ground for later ap-
proaches. The system clusters traffic data using flow characteristics (e.g., the protocol type
and the flow duration) and employs machine learning for revealing groups of malicious
hosts. However, the system can be defeated by bots which mimic benign traffic features
when communicating.

Gu et al. propose “BotSniffer” [76], a detection system for botnet C&C traffic over IRC
and HTTP. The system is based on spatial-temporal correlation and similarity of the traf-
fic patterns of Internet hosts, as they occur when many hosts contact the same set of C&C
servers using, e.g., equally sized messages, or when they attack the same victim hosts using
DDoS. The authors consider homogeneous crowds of hosts, which exchange the same mes-
sages with a certain server. Benign services with similar traffic patterns are being removed
using a set of whitelists. Another proposal by Gu et al. is “Botminer” [75]. Their core con-
tribution is the correlation of both results from the analysis of the botnet activity (A-plane –
e.g., sending Spam emails) and the C&C traffic (C-plane). Based on that, their proposal can
detect IRC, HTTP, and P2P botnets. The core input data in use are so called C-flows, con-
sisting of several average numbers for the number of flows per hour, the number of packets
etc. The proposed system does not take sequences of events into account, but considers
each one in an isolated manner. This was later addressed by host-based approaches like the
one of Wurzinger et al., which we discussed in the previous section [158].

Karasaridis et al. discuss the challenges of detecting C&C communication in [93]. They
present a detection system which is based on flow data (as opposed to packet data) and is
therefore suitable for deployment in large (ISP) networks. Based on initial, labeled data,
e.g., from Spam analysis, the proposed system reveals C&C servers and infected hosts. The
approach builds on the assumption that the same malware binary would behave similarly
on different hosts (e.g., use the same port numbers). The authors note that botnet activity is
highly dynamic, and bots switch to new C&C servers every few days.

Wang and Yu develop a system for detecting botnet communication by using traffic ag-
gregation [152]. Their approach focuses on botnets with centralized C&C topologies which
communicate via TCP protocols. In order to improve the detection results, a number of
high-volume flows (like email traffic) are not taken into consideration, as they are not com-
monly used for botnet communication. Furthermore, flows with high data rates (like HTTP
downloads) are filtered out, as large file downloads are assumed to not represent typical
botnet behavior. To further improve the results, both static and dynamic whitelists are used.
The system aggregates the remaining m traffic flows and classifies them according to desti-
nation address and port. Accordingly, the normalized compression distance (NCD) is used
to find similarities in the payloads of the analyzed traffic. From the resultingm-dimensional
distance matrix, Wang and Yu compute a weighted variant of the local clustering coefficient
for each node and thus find clusters of flows with similar payloads. Similarly, to address
encrypted traffic, the flows are clustered according to the sequences of packet sizes and
packet interarrival times. Those groups of flows showing high values for both clustering
coefficients are finally suspected to originate for botnet communication. However, the ap-
proach has a number of deficiencies. As the authors note themselves, encryption paired
with randomized message padding and random idle periods between two messages would
seriously impair the detection results.

Gao et al. present an online approach to measure the number of outgoing connections
(i.e., the outdegree) of a large number of hosts to a set of destinations during a given time
window [70]. They call such hosts stealthy spreaders and demonstrate how they can reliably

26

quantify large-scale scanning events when the number of flows that relate to scanning ac-
tivities accounts for more than 2% of all flows. The presented approach specifically targets
distributed, collaborative scanning events, where each host only scans a moderate number
of destinations and which are typical for botnet activity. The system has an extremely low
memory footprint of only 24 kB for monitoring 1 million distinct source addresses and oper-
ates fast enough to be used for online traffic analysis. However, the presented system comes
with a number of limitations. Although the authors recognize the dynamics of Internet traf-
fic and employ change detection strategies to detect anomalous outdegree variations, they
employ only two consecutive time intervals for their analysis. Also, there is no continuous
retraining intended, as the proposed system uses a static set of training data. Finally, the
focus on scanning activity and the restricted view on unsuccessful connections only, limit
the applicability of this approach for this thesis. Especially the decision not to store source
information in favor of efficient counting hinders the usage for malware countermeasures,
as the system’s result can only tell that there is some suspicious activity in the network, but
cannot provide information which allows one to investigate the details of this activity.

The “DISCLOSURE” system by Bilge et al. is based on the analysis of Netflow data,
which is readily available in many large networks, and therefore allows for straight-forward
deployment in real-world environments [26]. It benefits from observing multiple malware
specimens of the same kind, whose correlated activity patterns may disclose their existence.
The approach requires no insight into the actual payload of the malware communication,
and is rather based on overall statistical information, as, e.g., the flow sizes and the connec-
tion inter-arrival times. Similarly, the “CoCoSpot” system by Dietrich et al. is mainly based
on message length sequences [54]. Both systems require labeled traffic data for training the
detection algorithm, and are therefore restricted to the detection of malware activity which
is similar to labeled data. This is a general restriction of approaches which are based on ma-
chine learning techniques, and requires a thorough understanding of the quality of the used
data set, as well as a careful configuration of the system parameters [145]. Furthermore, the
usage of obfuscation techniques (e.g., random packet padding [54]) or randomization of the
activity of individual bots, so to achieve desynchronization of the botnet’s activity [26], are
rather simple to deploy and may have a significant impact on the detection performance.

4.1.2 DNS-based Malware Detection

Many malware detection approaches exploit the availability of malware binaries or employ
labeled traffic data. This information is used to “seed” the analysis systems which then
project the knowledge about a limited number of Internet hosts involved in malware activ-
ity on a larger host population, and therefore reveal, e.g., large-scale botnets. An alternative
seed is DNS traffic, which can be observed for various malware “services” (e.g., when the
initial exploit triggers the download of a malware binary, or when a bot resolves the do-
main name of a C&C server). In contrast to most other malware communication, one can
take advantage from being able to decode the communication protocol (i.e., DNS), as its
specification is publicly available and DNS traffic is not (and will not be [12]) encrypted.
While such DNS traffic is not malicious by itself, knowing which FQDNs represent mali-
cious services, and on which IP addresses they are hosted, enables, e.g., the straight-forward
extraction of all hosts contacting these services. In the following, we provide an overview
of the existing approaches in this field.

DNS-based malware detection is based on revealing the inherent agility in such DNS
traffic [125, 81, 9, 129]. Internet criminals need to guarantee reliable hosting of their “ser-
vices”, but are constantly facing countermeasures, e.g., by network operators or hosting
providers. This implies that a particular FQDN cannot remain mapping to a certain IP ad-
dress, but must rather change the IP address from time to time, so that the service remains
reachable when the IP address is being blocked. Extremely quick changes to these map-

27

pings, with possibly hundreds of IP addresses being used for a single FQDN within, e.g.,
only one day, are known as Fast-Flux [117]. Similarly, one service is often identified by
multiple FQDNs, in case an FQDN ends up on a DNS blacklist, and therefore becomes
unreachable. These FQDNs do typically change over time, and are often based on Do-
main Generation Algorithms (DGAs) which dynamically generate the FQDN to be queried,
based, e.g., on the current time of day [160].

Villamarin-Salomón and Brustoloni presented an early approach for DNS-based botnet
detection [151]. Their system focuses on the detection of Fast-Flux. Based on the expec-
tation that large botnets would cause exceptionally high DNS request rates, the employed
methodology considers the request and reply rates of DNS servers. A modified form of
the Mahalanobis distance is used to represent the difference between normal and anoma-
lous network behavior. The authors were however not successful in reliably distinguishing
regular DNS queries from those caused by bots, which resulted in many false positive clas-
sifications.

Most existing systems build on DNS data collected by a network operator. Antonakakis
et al. propose a dynamic reputation system for domain names, called “Notos” [9]. The
system processes DNS query responses from a passive DNS (pDNS) database and extracts
a set of 41 features from observed FQDNs and IP addresses. A labeled training set of both
benign and malicious FQDNs is used to derive eight domain classes (five benign, three
malicious) by clustering the FQDNs according to their feature vectors. After this initial
training, subsequently seen FQDNs are then assigned to one of these classes, according to
their features. Ultimately, Notos derives a dynamic reputation score for each observed do-
main name. In a similar spirit, Bilge et al. present their “EXPOSURE” system [27], which
requires less features (15) and less training data (1 week), but has no notion of the relations
between domains mapping to the same set of IP addresses. Both Notos and EXPOSURE
employ the Alexa list5 for whitelisting popular domains. Both systems are rather complex
and require careful tuning of the (significantly many) analysis parameters. Furthermore,
both systems are based on machine learning, and therefore require significant amounts of
labeled training data. Similar to the approaches discussed in the previous section, even in
case such data is available, such systems require a thorough understanding of the specifics
of these data for attaining meaningful results (see also [145]).

A number of approaches target specific aspects of malicious DNS activity. Yadav et
al. discuss the detection of algorithmically generated domain names [160] using string
analysis. Similarly, Jiang et al. investigate the failed DNS queries for such domain names,
and reveal groups of hosts which share a particular failure pattern, and are therefore infected
with the same malware instance [90]. As these systems are limited to a subset of malicious
activity, they are complementary to the more generic approaches discusses above.

Other approaches aim exclusively at detecting Fast-Flux activity, and are therefore nar-
rower in scope than the system we develop in this thesis [129]. Most recently, Perdisci et al.
proposed “FluxBuster” [130]. The system performs a sequence of four steps: (i) All infor-
mation collected about a domain name d in an epoch ε = 1 day is aggregated. (ii) Domains
that are unlikely to represent flux activity are removed. More precisely, FluxBuster removes
domains with a high average TTL, less than three IP addresses, and a low IP address diver-
sity (i.e., IP addresses which do not belong to a large number of different /16 networks).
(iii) The system finds clusters of domains which share a significant number of IP addresses.
(iv) Finally, a supervised statistical classifier algorithm labels domains as flux or non-flux.
At the end of an evaluation epoch, a set of 13 features is computed for each cluster. A C4.5
decision tree classifier, trained using a four months long training set and tuned with an extra
one month of data, ultimately decides whether the domains and IP addresses in a cluster are
related to malicious flux services. The authors state that the detection of flux domains can

5www.alexa.com

28

www.alexa.com

take up to 30 hours, which prevents real-time detection. Furthermore, the system requires a
minimum of 30 IP addresses per domain cluster per day to detect flux activity, which limits
the sensitivity of this approach.

Another branch of approaches bases on data collected at a top-level domain’s (TLD)
operator. Hao et al. study DNS lookup patterns by analyzing lookups to the TLDs .com
and .net [80]. Thereby they concentrate on the distribution of queries from recursive
resolvers, so to assess the cumulative DNS activity of entire networks. They find that mali-
cious domains are more likely to be queried from a dynamic set of networks, and that many
domains are either entirely legitimate or malicious. A related effort is described in [10].
This kind of analysis is restricted to detecting malicious activity using a subset of the ex-
isting domains, which are hierarchically directly “below” the TLD (e.g., example.com).
Furthermore, it can observe only a small share of the queries of the actual clients, as most
DNS answers are available at the recursive resolvers, and are therefore absorbed by them.
These approaches are therefore complementary to the approaches presented in this thesis.

Choi and Lee propose “BotGAD”, a system which targets the DNS group activity pat-
terns of the monitored (client) hosts [36]. The approach is based on the idea that malware
infected hosts would periodically query the same (malicious) domains. The authors evaluate
the approach experimentally and reveal 20 previously unknown botnets.

Hu et al. analyze the global IP usage patterns of Fast-Flux botnets by conducting mea-
surements from 240 geographically distributed network locations [85]. They mainly aim
at differentiating malicious “fluxy” activity from legitimate CDNs. Therefore, they con-
tinuously query a set of 5,169 suspicious domains to see how the returned DNS mappings
develop over time. Most notably, they find that legitimate CDNs are trying to mostly re-
turn an IP address that is geographically close to the querying client, addresses involved in
malicious activity are much more uniformly distributed over the world.

Virtually all analysis approaches use publicly available blacklists6 for result verifica-
tion and algorithm training. However, these lists include domain names from a variety of
sources, and the domain’s activity must therefore not necessarily be related to dynamic DNS
usage. Therefore, although a malicious domain is detected by a system, it is unclear if it was
found because there is any observable dynamics in its activity, or just because the classifier
was wrongly trained. Conversely, Alexa’s list of popular domains7 is often used for training
machine learning algorithms or whitelisting. However, as only second-level domains are
listed, the granularity at which sites are differentiated is rather low (i.e., a.example.com
and b.example.com are considered the same). Due to the fact that the quality and pre-
cision of such lists is therefore unclear, the approach presented in this thesis avoids using
them where possible.

4.2 Complex Networks

The discussion of malware detection systems demonstrates a rich variety of available tools.
In the focus of this thesis are network-based approaches, which have been used in the past
with a large number of features extracted from traffic data. The envisioned analysis of
collaboration patterns using graphs is mostly hindered by the vast sizes that these graphs
usually attain. The number of graph nodes corresponds to the number of observed hosts and
can quickly grow to millions for ISP networks. This section is therefore devoted to a review
of relevant graph analysis techniques from complex network theory. The properties and
limitations of these techniques define the requirements that have to be imposed on the data
extraction and preprocessing steps of network monitoring systems. For a more complete
overview of complex networks I refer the reader to the excellent book by Newman [121].

6E.g., www.malwaredomainlist.org
7http://www.alexa.com/

29

example.com
a.example.com
b.example.com
www.malwaredomainlist.org
http://www.alexa.com/

4.2.1 Terminology

Complex network theory studies the structural characteristics of graphs. Graph G(V,E), where
V = {v1, v2, . . . } is a set of vertices (or nodes) and E = {e1, e2, . . . } are the edges
connecting them. The terms “network” and “graph” are often used interchangeable. In this
thesis, I use “graph” to avoid confusion with computer networks. Edges have in general no
direction, i.e., the edge between vi and vj equals the edge between vj and vi ((vi, vj) =
(vj , vi)). In contrast, the edges of directed graphs (DiGraphs) have defined start and end
nodes (i.e., (vi, vj) 6= (vj , vi)). The edges of weighted graphs are annotated with weights
w, and are used to characterize application dependent properties (e.g., the communication
bandwidth between two Internet nodes). Another important class are bipartite graphs. They
consist of two sets of nodes, and contain no edges between nodes from the same set. A
subgraph of any type of graph consists of a subset of the graph’s nodes and edges. An
induced subgraph is built from a subset s ⊂ V , and contains all edges of the original graph
for which both start and end node are contained in s.

A graph is fully described by an adjacency matrix with dimensions |V | × |V |, that con-
tains the weightsw of the edges between two nodes. In case of non-weighted graphs, it con-
tains zeros and ones only, where ones indicate the presence of an edge between two nodes
and zeros indicate the absence of an edge between two nodes, conversely. The number of
outgoing edges of a node v is called the node’s outdegree, and the number of incoming
edges is called indegree, respectively. The degree of a node corresponds therefore to the
sum of indegree and outdegree. The degree distribution is an important means for char-
acterizing a graph, as it provides a simple evaluation of the overall structure, and thereby
reveals the type of graph one is dealing with. Several different types exist, and a multitude
of complex network models have been proposed for describing them. Of particular interest
for monitoring Internet connections and relations between hosts is the Watts-Strogatz graph
[153]. Their small-world model is related to Milgram’s famous experiment which is now
widely known by the phrase “six degrees of separation” [111] – on average, the distance
between two US citizens in a graph describing their social relationships is six. Many com-
plex networks have been found to follow the small-world paradigm, including the relations
between sites in the World-Wide-Web (WWW) [6]. Small-world networks are therefore
well connected, i.e., almost all nodes are quickly reachable from all others.

The Watts-Strogatz model assumes that the node degree follows a Poisson distribution,
with a certain characteristic average degree. In contrast, Barabási and Albert found that
many large networks show a degree distribution that follows a power-law, and coined the
term scale-free networks for them [15]. The fundamental concept behind such networks
is the existence of relatively few hubs with a large degree, and a large number of nodes
with a low degree (i.e., a long tail distribution [7]). In the context of monitoring Internet
traffic, a prime example is the popularity of Internet sites: a vast number of hosts contact
highly popular sites like Google and Facebook, while the majority of the remaining sites
are contacted by only few hosts [107]. A graph representation of these connections between
Internet hosts and services therefore resembles the scale-free model.

A variety of other graph characterization metrics, besides the degree distribution, exist.
A core concept is the traversal of a graph, by following the edges starting from a particular
start node. These traversals are called walks, and are often used to characterize the graph’s
structure. A random walk is a graph traversal where every next hop is chosen randomly, by
selecting a route via a random one of the edges of the current node. Another important char-
acterization metric is the clustering coefficient. It evaluates the number of “triangles” (i.e.,
three nodes that are each connected to the two others), and thereby measures the overall ten-
dency to cluster together. Furthermore, advanced algorithms like PageRank [127] and HITS
[94] annotate nodes with a value that corresponds to their “importance” in the graph, and
thereby, e.g., allow for identifying the most important ones. The survey by Costa et al. [44]

30

Figure I.4: Example graph with three communities.

gives an excellent overview of the field of existing measurements for the characterization of
complex networks.

4.2.2 Structural Properties and Community Detection

A fundamental task for many applications, including Internet traffic monitoring, is the iden-
tification and characterization of sub-structures in a graph. The most simple scenario con-
cerns graphs consisting of disconnected groups of hosts, i.e., where there exist pairs of
nodes for which no walk between them exists. These groups are called connected com-
ponents . Connected

Components

, and can be found in linear time (in terms of |V | and |E|) [84]. However, in the
context of network monitoring, many graphs represent the scale-free, small-world nature of
the Internet. They often consist of only a single, giant connected component, which con-
tains all nodes [91]. The further separation of this component poses a significantly harder
problem than finding connected components.

These sub-divisions of graph components are called communities, and the respective
field concerned with finding them is referred to as community detection [44]. This problem
is hard as, in general, the number of communities is a priori unknown. Furthermore, the
very definition of what constitutes a community is dependent on the actual application.
Fundamentally, we require a quality metric that allows us to identify where to “cut” a graph
such to retrieve “meaningful” communities. Fig. I.4 illustrates the basic problem: how can
we describe the relation between the nodes in the graph such that we can understand that
they separate in three communities?

We require a method for deciding whether a group of nodes constitutes a community,
or represents just a random graph density fluctuation. This is achieved by establishing a
null model as a reference. A standard null model is a random graph, i.e., a graph that
includes edges between nodes with equal probability, and by definition does not contain
any communities. Newman adopts this model and defines the modularity Q of a given
partition of a graph as

Q =
∑
i

(
eii − a2i

)
where ai =

∑
j eij and i, j are indexes for graph communities [119]. The edges eii

therefore connect nodes in the same community, while eij is the fraction of edges connect-
ing two different communities i and j. In case the number of internal edges eii is not better
than random, the modularity of the analyzed graph separation is low. High values of Q
(approaching the maximum value of one) indicate a good partition in communities.

31

The modularity metric provides an intuitive understanding of the quality of the result
of a particular community detection algorithm. However, there is more to it. By trying
different community configurations (i.e., graph partitions) and evaluating their modularity,
one can find the maximum modularity, and therefore the optimal partition. This family of
community detection approaches is based on the idea of optimization of a certain metric,
which was first shown for modularity by Newman and Girvan [120]. However, Brandes et
al. found that this problem is NP-complete, and is not practically usable for large networks
(e.g., the Internet) [30]. Therefore, approximate solutions for modularity optimization have
been proposed [39, 119].

A particularly remarkable approximative solution is the “Louvain method”. Louvain Method , which is
widely used for a multitude of different graph community detection applications [28]. A
particular merit of the Louvain method is its ability to process huge networks – the authors
report a runtime of 152 minutes for a graph with 118 million nodes. The algorithm starts
by assigning each node to a separate community, and then continues with the following
two main steps: first, for all neighbors i and j in the graph, the gain (in terms of Q) of
putting i in j’s community is evaluated. Node i is then placed in the community for which
the highest gain was observed, or remains in its current community if no gain could be
observed. This step is repeated until no further changes to the partition are being made, i.e.,
when a local modularity maximum has been found. Secondly, a new meta-graph is being
created, where the previously identified communities are represented as nodes. The same
procedure as before is repeated, so to identify communities of communities, until no further
improvement of Q can be observed. The result is an approximate solution to finding the
partition with maximum modularity.

While the Louvain method provides excellent approximations for the maximum mod-
ularity of many different graphs, it was found that the definition of modularity itself has
a drawback. As modularity describes the quality of a partition of the entire graph, it is
by definition a global metric. It has been shown that there exists a resolution limit, that
has a particular negative impact for large graphs with many, differently sized communities
[65]. Therefore, any modularity optimization approach has the tendency to merge small
sub-communities, even though these should intuitively be reported as separate ones. Al-
though several approaches try to “repair” this deficiency [138, 11], it was later shown that
there is no general solution for this problem: increasing the resolution inevitably leads to
the opposite problem of erroneously splitting larger communities [101]. In fact, the authors
point out that the problem is not restricted to the definition of modularity alone, but probably
affects all global quality metrics.

Another restriction of modularity optimization was discussed by Good et al. [73]. There
exists a large number of local maxima for modularity, which are very close to the absolute
maximum. Furthermore, the number of local maxima increases exponentially with the size
of the graph. Therefore, it is relatively easy to find a graph partition that represents one
of these, but it is in general hard to tell which is going to be found, given the intrinsic
randomness of many community detection approaches. Two runs of the same algorithm,
using the same input data and configuration, are therefore highly likely to produce different
results, although each of them may individually be a high-quality approximation for the
maximum modularity. Nevertheless, and despite these limitations, modularity optimization
(and the Louvain method in particular) remains being used in many applications.

Lancichinetti et al. propose an alternative approach that is based on local optimization
of a quality metric [103]. Their approach employs statistical features of communities to dif-
ferentiate random fluctuations from real communities. The proposed system is called Order
Statistics Local Optimization Method (OSLOM), and an implementation by the authors is
available at www.oslom.org. OSLOM is applicable to directed and weighted graphs,
and can reveal hierarchical community structure. However, the approach requires a signifi-
cant number of iterations to produce high quality results, and is therefore not suited for very

32

www.oslom.org

large graphs. The authors mention though that it still can be employed as a refinement step
in these cases, e.g., after a first pass of the Louvain method.

Another alternative method was proposed by Rosvall and Bergstrom [141]. Their ap-
proach is based on the concept of relating graphs to geographical maps, and is accordingly
called “Infomap”. The authors point out that good maps strike a balance between abstrac-
tion of minor details and conservation of important aspects. Likewise, a good (compressed)
representation of a graph abstracts groups of densely connected nodes to communities. In-
fomap uses random walks on a graph, and assigns labels to the visited nodes. The choosing
of these labels is based on information-theoretic concepts, and constitutes the main inno-
vation of the approach: each community receives a separate label, but the individual node
labels are being reused across the different communities. By virtue of this trick, the av-
erage description length for the node labels (i.e., the required number of bits) can be kept
low. The best partition of a graph is then given when the description length of a random
walk, constituting of a sequence of node labels, is minimal. In other words, Infomap re-
veals structures in which a random walk persists for longer times, until it eventually jumps
to the next structure. This method has proven to be highly accurate for many applications
[100]. However, as the original authors note themselves, it is not suited for all community
detection scenarios. In particular, for finding community structures that consist of pairwise
relations (as opposed to patterns of movement among nodes), other methods, like global
modularity maximization, may provide better results.

A recent additional method is based on consensus clustering [102]. The authors base
their idea on the observation that many community detection techniques involve a certain
degree of randomness, and therefore produce different partitions with every run. The pro-
posed approach implements a greedy strategy to reveal the median partition from a set of
found graph partitions, i.e., the partition that is (on average) most similar to all others. While
this system is not a standalone community detection approach, it addresses a fundamental
drawback of most proposed techniques, and has shown to provide significant improvements.

4.2.3 Graph-based Malware Detection

Complex network theory naturally recommends itself for being employed for a variety of
applications in the context of studying Internet traffic. The topological aspects of the rela-
tions of Internet entities complement the traditional analysis of point-to-point communica-
tion. Traditional network monitoring extracts information from single packets and flows,
and matches these data against predefined models, reveals anomalies, and finds correla-
tions. The notion of structure represents an orthogonal dimension. Collins discusses the
application of graph analysis to network security monitoring, and provides an overview of
the basic concept [41].

The basic idea is the detection of large groups of connected hosts, independently of the
availability of concrete packet payload. In general, however, the sheer amount of informa-
tion that can be extracted by network monitoring inhibits that all that information can be
contained “as-is” in the graph. In order to enable efficient graph analysis, standard tech-
niques limit either the number of hosts considered (i.e., the number of nodes in the graph)
[159], or the monitoring time window (e.g., to a few minutes) per graph representation [105].
Both these approaches impair the scope of the analysis, though, and cannot be used for the
analysis of rather slowly developing processes in large networks (e.g., P2P botnet communi-
cation). Alternatively, the analysis can be restricted to a subset of information that is known
to be relevant a priori, e.g. by considering only certain port numbers, or flows with a par-
ticular packet inter-arrival time [87]. This has been shown to work well if a communication
pattern, e.g. the usage of certain protocols and ports, is known. In the context of malware
detection this is often not possible, as malware patterns are usually disguised as legitimate
traffic, e.g. by using standard ports. Finally, in most cases it is in practice rather difficult

33

to use any information from a packet’s payload for filtering, due to exceeding cost of such
deep packet inspection operations in large networks, and the increasing usage of encryption
techniques. With respect to these techniques, malware is therefore often indistinguishable
from legitimate traffic.

Nagaraja et al. present a system for detecting the topology of P2P botnets independent
of exchanged data [116]. Their approach is based on the analysis of the connection graph
structure, using a set of sophisticated methods involving clustering and random walks to
identify densely connected subgraphs. Since no a priori distinction between legitimate and
malicious connections is made, the system has to deal with the complexity problem of
handling entire connection graphs and can benefit greatly from the graph reduction method
proposed in this thesis.

Francois et al. propose a similar approach called “BotTrack” [68] in which they use a
modified version of the PageRank algorithm to identify peer-to-peer structures. The sys-
tem uses NetFlow records as input, and is thus immediately compatible with standard large
network installations, which usually export this type of monitoring data. It processes ex-
clusively the IP addresses it receives, and is in this regard closely related to the approach
presented in this thesis. The main difference to our work lies in the fact that BotTrack
analyzes the topological information only, without taking into account the individual dif-
ferences between the graph’s nodes (i.e., the hosts). This implies that the system has to
process the entire connection graph, without any way to remove legitimate activity prior
to the analysis. The authors evaluate their system using a large trace with synthetically in-
jected “malicious” traffic, and report true positive rates between 38% and 97% depending
on the injected botnet topology. The false positive rate varies between 1.9% and 6% for the
different scenarios.

Coskun et al. propose a system for detecting neighbors in a P2P botnet, which they call
“Friends of an Enemy” [43]. Their approach requires as additional input a start node, (i.e.,
the “enemy”) which is known to be involved in malicious communication (e.g., a honeypot).
The concept is based on the analysis of mutual contacts of the monitored hosts in a network.
Two hosts have a mutual contact (and are therefore “friends”), if they contact the same
destination IP. A mutual contacts graph contains then such nodes where the corresponding
hosts are internal to the monitored network, and edges indicate the presence of a mutually
contacted external host. Once a start node has been selected, their so-called “Dye-Pumping”. Dye-Pumping

algorithm distributes an initial confidence value (“dye”) iteratively to adjacent nodes in the
mutual contacts graph. Nodes with a certain dye level are suspected of being in the same
P2P network as the start-bot. In order to control the graph complexity, the authors propose
to remove a set of whitelisted nodes (e.g., those belonging to Google, Facebook, . . .) and
to remove destinations with large in-degree.

Fontugne et al. propose in [63] a method for comparing the output of different traffic
analysis approaches in order to discover common results. They use a 15-minutes trace from
the MAWI archive and analyze it using the sketch-based anomaly detection approach from
[53] as well as with another approach based on image processing. From the analysis results,
the authors construct a graph in which the nodes represent the specifically detected events
(e.g. in time period t IP x sent data from source port p). The edges of the constructed graph
correspond to detections by multiple analysis algorithms, i.e., when algorithms A and B
both yield an event for the same traffic situation, the corresponding events are connected.
The weight of these links depends on the overall similarity of events as detected by the in-
dividual algorithms. I.e., when an algorithm detects an event iff the other algorithms detect
it too, the weight of the link between the events is set to the maximum value 1. The au-
thors use a fast agglomerative community detection algorithm to identify those events in the
graph that correspond to the same network activity. The algorithm maximizes modularity
and is scalable enough to cope with huge graphs, but is prone to find local maxima only.
The proposed system is interesting as it can deal with multiple granularities of monitoring

34

data (e.g. packets, flows) and is able to analyze network activity from different vantage
points. However, it remains unclear how the system performs when traces longer than 15
minutes are used.

Related to the detection of malicious traffic is the large field of traffic classification ap-
proaches, i.e., systems that attempt to derive the specific applications by analyzing traffic
features. A particularly interesting approach is BLINC by Karagiannis et al. [92], which
achieves highly accurate classification results even without using port numbers and pay-
loads as sources of information. BLINC analyzes communications on the social (who talks
to whom), the functional (client or server), and the application level (network flow charac-
teristics). The latter considers so-called graphlets of communications, i.e., graphical visual-
izations of how a specific source IP address interacts with other IP addresses and which/how
many ports are used in a specific time interval (here: 5 minutes). BLINC matches traffic
patterns against a database of (manually derived) graphlets and thereby supports their clas-
sification. A set of thresholds controls the system and allows for manual adaptation to a
specific network environment. A particular amenity of BLINC is that it is able to identify
service farms, i.e., different IP addresses that provide the same service. The authors men-
tion the potential applicability of BLINC for detecting malicious flows, but consider this
mainly a possible additional use. Specifically, they differentiate malicious and legitimate
flows only by exploiting highly visible peaks in some volume-based traffic statistics as well
as by detection of perfect cliques, i.e., groups of hosts which all exclusively communicate
with the exactly same set of other hosts (which botnets usually do not do).

Iliofotou et al. exploit the dynamicity in Traffic Dispersion Graphs (TDGs) . TDGto identify
different application layer protocols in backbone traffic [87]. Their approach requires no
specific information about used ports and is able to detect protocols that try to hide in other
applications (polymorphic blending – e.g., a filesharing application that communicates via
HTTP). The vertices in their TDGs correspond to the active IP addresses during a measure-
ment window, while the edges between them represent interaction between the vertices. The
authors use edge filters to define what is considered an interaction in a specific context (e.g.,
an edge could stand for the fact that at least three TCP packets on port 25 were exchanged).
They employ traffic features from both single monitoring snapshots (unary features – e.g.
the average degree) and, in addition, take feature changes over time into account. For the
latter, they compare two TDGs and call the corresponding comparison values binary fea-
tures (e.g., the presence of an edge in both graphs). Machine learning techniques are used
to automatically find the dominant features that provide the best separation between the in-
dividual application layer protocols. The ground truth for the required training procedures
is obtained by using a combination of signature-based and port-based filters with a set of
(partially public) traffic traces. The actual classification distinguishes then between client-
server and collaborative applications, and separates these two classes in a first step. For
this, the authors find that two unary features (average degree and whether nodes have both
incoming and outgoing connections) are sufficient for successful separation. Further sepa-
rating the collaborative applications to find those using P2P protocols is harder and requires
binary features (edge consistency and volatility) for sufficient accuracy. The final result of
the presented approach is a manually derived classification tree, that separates collaborative
and client-server protocols at the topmost level and then goes on to use other features for
further separation in different application-layer protocols. To this end, a set of thresholds is
used, which works equally for all employed traffic traces and correctly classifies 92% of the
P2P traffic in the used traffic traces. Furthermore, the authors are successful in discovering
Gnutella traffic in standard Web traffic (HTTP/HTTPS), using different pollution intensities
and deviation thresholds. Although this work is focusing on traffic classification, it shares
many of the challenges of graph-based malware detection. Similarly to our ideas, it employs
structural traffic features to reveal the type of application layer protocol, irrespective of the
payload and the actual ports being used. This reveals, e.g., P2P filesharing traffic injected

35

in a dataset containing web traffic, even when both types of traffic use port 80.
Jin et al. discuss Traffic Activity Graphs (TAGs) in [91]. A TAG represents connec-

tions between Internet hosts (i.e., IP addresses), but is restricted to a pre-defined set of
service ports (e.g., TCP ports 80 and 443 represent an HTTP TAG). The authors propose
orthogonal nonnegative matrix tri-factorization (tNMF) for analyzing the resulting adja-
cency matrices, and revealing the core host interaction patterns. Similar to the community
detection approaches discussed in the previous section, tNMF finds clusters of hosts in the
adjacency matrix which are strongly connected. This work addresses the problem of the
vast complexity of Internet connection graphs, and provides a procedure for finding the
dominant characteristics. It thereby enables visualization and further analysis of the corre-
sponding, network-wide communication patterns. The “focusing” procedure includes two
steps, which both aim at reducing the graph complexity: first, one has to define the pro-
tocols one wants to investigate. Clearly, this has a significant impact, but may be harmful
in the context of malware detection, where multiple ports could be used on purpose, so to
conceal the criminal activities. Secondly, the tNMF procedure requires a set of parameters
which control the granularity of the found clusters, and therefore needs to be tuned for each
selection of service ports. These properties hinder the direct application of the system for
malware detection, as typically no a priori knowledge about the specific network activity
patterns can be assumed.

4.3 Evaluation of Malware Detection Results

As anticipated already in §3.2, a general problem for the evaluation of network-based mal-
ware detection approaches is the unavailability of ground truth for the analyzed network
traffic data sets. Primarily the vast sizes of such data sets prohibit manual labeling of the
contained traffic events. Furthermore, traffic data sets often contain privacy-sensitive in-
formation and are thus subject to non-disclosure agreements. It is therefore typically not
possible to directly compare ones own results to the results of previous works, as the used
data sets are not available. This fundamental problem is long known and there were attempts
for deriving manually labeled, public data sets for enabling the comparison of analysis re-
sults [1]. However, the quality of such data sets has been questioned [149]. Furthermore, it
strongly depends on the particular context whether an event constitutes an attack [110].

In practice, network traffic data analysis suffers from the additional problem that, in
general, not all data can be collected which would be required for being able to reveal the
ground truth. On the one hand, this is rooted in technological limitations as, e.g., packet loss
of the network probes and limited storage capabilities. Likewise, encrypted traffic prevents
the investigation of the packets’ payload. On the other hand, data privacy legislation (see,
e.g., [57]) forbids the broad collection of privacy-sensitive information.

However, note that collecting more traffic data typically supports revealing the ground
truth, but is not always ultimately sufficient. For example, no part of a single packet which
arrives at an Internet host which is under DDoS attack does necessarily differ from any other
benign packet. The data which would be required to label such a packet would therefore
needed to be collected at the origin, i.e., at the Internet host which sent the packet. It could
consist, e.g., of the actual application which relates to this communication (e.g., an Internet
browser vs. a DDoS tool). In the extreme case, this would mean that we would have to
assess the intentions of the human operator of an Internet host for establishing ground truth.

Therefore, most proposed detection systems are evaluated using non-public data sets
which include only a small subset of the full traffic information (e.g., in our case, only
FQDNs and IP addresses). Typically used strategies for assessing the classification results
include the following:

36

• Usage of publicly available classification results as, e.g., whitelists and blacklists
[27, 9, 130, 26] In the context of malware detection, whitelists are often derived from
online services which list highly popular web sites (e.g., www.alexa.com). The
IP address ranges hosting these sites are often considered benign, and are therefore
considered not relevant for the classification task. Conversely, blacklists are derived
from web sites listed in Spam emails8, from services which list Phishing sites9, or
from web site reputation systems10. They contain FQDNs or IP addresses which
are considered malicious. By labeling ones own data set using these lists, once can
establish (partial) ground truth.

The main problem with this approach is that one can usually not infer why a specific
site was white-/blacklisted. This is important, as the classification often results from
a subjective impression of a specific analysis in a particular context. Indeed, for a
fair comparison with the results of another detection approach, the very same activity
should be present in one’s own data set. E.g., in the context of detection of malicious
DNS activity, it often makes a difference if a certain FQDN was observed one time
or 10,000 times, depending, e.g., on the number of malware-infected hosts in the
monitored network. Furthermore, any site could indeed represent malicious activity,
but may still be out of scope for a particular detection system, which aims at detecting
a very specific type of malicious activity. Whitelists and blacklists typically come
without any context information and should therefore used only with their limitations
in mind.

• (Semi-)manual results verification [130]. For some traffic analysis approaches, the
number of true positives and false positives can be found by manually checking the
classification results. This can be facilitated by looking up additional information for
a limited number of results as, e.g., the packet payload of selected packets. Such
information can then be compared to third-party resources, as, e.g., malware binary
analysis reports. Typically, due to the large sizes of traffic data sets, the number
of false negatives cannot be assessed, though. Furthermore, this type of analysis
typically requires a human analyst who is an expert in the particular field.

• Injection of known traffic patterns [116, 43, 68], i.e., blending labeled traffic data
in unlabeled data sets. This approach has the advantage that partial ground truth is
available, and one knows exactly that the injected pattern should be reported as sig-
nificant by the classifier. However, this technique ideally requires data sets which are
entirely free of any malicious activity. Guaranteeing this is virtually impossible for
large traffic data sets. Furthermore, the characteristics of the injected traffic patterns
have to be carefully chosen in order to ascertain that these patterns indeed resemble
realistic malicious activity.

All of these techniques have shortcomings which should be taken into account for re-
sults verification. Besides the focus on evaluating the classifier itself, one practical aspect
of network-based malware detection approaches needs to be considered. As noted in §2,
criminal Internet activities have certain communication requirements. For example, mali-
cious services are often hosted on multiple IP addresses for redundancy. Not being able
to fulfill these requirements has a significant impact on the utility of the malware infras-
tructures, and therefore on the criminals’ revenue. The parametrization of the detection
approaches influences the sensitivity for malicious activity and goes hand-in-hand with the
evaluation of the classifier. Highly sensitive parameter settings limit the degrees of freedom

8E.g., http://www.joewein.net
9E.g., http://www.phishtank.com

10E.g., Google Safe Browsing

37

www.alexa.com
http://www.joewein.net
http://www.phishtank.com

of malicious activity for going undetected and thereby constrain the utility of the malware
platform. Consequently, and in line with [14] (cf. §3.2), we aim therefore at designing
detection systems which yield low absolute numbers of false positives even for highly sen-
sitive configurations. Furthermore, our approaches operate on graphs and therefore provide
a structured representation of the relations between detected events, which supports further
analyses.

Finally, note that the unavailability of ground truth represents a significant challenge
for malware detection approaches based on (supervised) machine learning, and limits the
applicability of these approaches in real-world deployments. This is discussed in great
detail by Sommer and Paxson [145]. The detection approaches presented in this thesis take
these limitations into account, and are designed to operate in absence of labeled training
sets.

For evaluating our results, we employ a mix of all three strategies which we introduced
above. Specifically, as we will further discuss in §9, we analyze our DNS detection results
manually using publicly available blacklists and a variety of malware analysis sites on the
Internet. Due to the discussed limitations, we consider fully automatic results evaluation
potentially harmful (see §9.2 for an example), and therefore continue collecting evidence
from multiple sources until a expert human analyst is convinced about the true nature of a
specific event. Although this clearly entails more manual work and still does not completely
match, in general, the actual ground truth, we consider this the best option we have given
this difficult environment. Furthermore, we employ injection of known traffic patterns for
the experiments in §13, for evaluating our system’s ability to reveal the injected community
patterns in a large connection graph.

4.4 Summary

We envision a malware detection system which scales to ISP networks and reveals patterns
of unusually agile collaboration, which lead to the detection of service infrastructures used
for Internet crime. The design of the system should not require the availability of pre-labeled
data, which is often difficult to obtain. Furthermore, it should not be restricted to malware
communication via certain protocols or assume the availability of clear-text traffic payload.
An analysis procedure based on DNS analysis fulfills these requirements, and we can build
upon an existing body of work (see §4.1.2) for detecting unusually agile DNS, and further
contribute to the improvement of these techniques. On top of that, we aim at introducing
graph-based collaboration analysis of agile DNS mappings, based on community detection
algorithms. As we will show later, this can significantly improve the sensitivity of the
analysis and the detection accuracy.

However, not all malware activity involves the usage of DNS. Most notably, C&C pro-
tocols based on P2P communication require a complementary analysis approach. Inspired
by previous work (see §4.2.3), we contribute a novel approach for graph-based detection
of such patterns of malicious collaboration. In particular, our work addresses the vast di-
mension of graphs representing Internet traffic, which severely impacts the applicability of
costly analysis procedures.

The detection of collaboration patterns using graph analysis is a main goal of both our
detection components. Despite many advances in the recent years, community detection
in (large) graphs is still an open problem [64]. In particular, most existing approaches are
not efficient enough to deal with the giant graphs we are facing in network monitoring,
and/or are not reliable enough to find a large variety of differently sized communities with-
out a priori knowledge. Especially for the purpose of detecting malicious sub-communities
in Internet traffic, the problem of correctly classifying overlapping communities is rele-
vant. Malicious Internet activity involves infected host machines (i.e., bots), which contact

38

legitimate and malicious sites, and overlapping communities are therefore commonplace.
Furthermore, it is not obvious what a graph community actually is, and what its distinc-
tive features are which it make unambiguously clear that a group of vertices represents a
community. Consequently, and based on the review of community detection algorithms, we
design preprocessing techniques which aim at making the graph analysis problem as simple
as possible, and thereby avoid performance limitations and results ambiguity.

The main complexity is therefore in the reliable detection of patterns of agile Internet
activity, both in DNS and in the IP-level connections of Internet hosts. The better our system
can understand which activity is normal by itself, the less data needs to enter the graph
analysis stage. This reduction of the graph complexity is essential, as malware activity
changes quickly, and we therefore require detection results in (close to) real time for being
able to initiate countermeasures.

Malware activity often involves many different “professions” and “services” (see §2),
which all may cause a different network traffic footprint. For example, a victim user might
click on a link in a Spam email, which triggers an DNS request for a malicious site, from
which the victim (unknowingly) downloads a malware binary. After installation, this binary
causes some deviation in the network activity of the victim host, e.g., by resolving more
malicious domain names, or initiating P2P communication. Ultimately, our goal is the joint
analysis using both detection components, so to address the network communication of
malware activity as a whole, which we discuss in §IV.

39

Part II
DNS Analysis

In comparison to other network-based malware detection approaches, the analysis of DNS
traffic combines two main advantages which are highly relevant for deployments in large
networks. On the one hand, DNS traffic contains relatively few private information (as,
e.g., opposed to HTTP payload), and is rather low in volume. On the other hand, it al-
lows for considering the entire host population for the analysis, instead of, e.g., sampling
a subset thereof. As criminal activities in the Internet often involve the usage of DNS (see
§4.1.2), the combination of these two properties enables a lightweight analysis with a broad
coverage of monitored hosts.

In the following, a system for analyzing DNS data in real-time is being discussed, which
allows for immediate detection of malicious (agile) activity. The system is highly sensitive,
and can, in contrast to other approaches (as, e.g., [130]), detect also moderately agile mal-
ware activity with a very low number of false alarms. This is enabled by an in-depth analysis
of benign DNS activity. We design a system which is able to understand the inherent DNS
mapping agility per particular site, and thereby avoids large numbers of false positive re-
ports caused by highly agile, benign services. Only significant violations of the previously
derived DNS activity model for a particular IP range undergo a further analysis, in which
we further exploit the fact that many malware activity shows signs of collaboration, which
we detect using lightweight graph analysis. We evaluate the system using network traffic
data from a large operator network, and discuss various interesting findings.

Individual parts of this work have appeared in the following publications:

• Andreas Berger and Eduard Natale. Assessing the real-world dynamics of DNS. In
Proceedings of the 4th international workshop on Traffic Monitoring and Analysis
(TMA), pages 1–14, Vienna, Austria, 2012

• Andreas Berger and Wilfried N. Gansterer. Modeling DNS agility with DNSMap.
In Proceedings of IEEE INFOCOM Workshop on Traffic Monitoring and Analysis
(TMA), pages 387–392, Turin, Italy, April 2013

• Andreas Berger, Alessandro D’Alconzo, Wilfried N. Gansterer, and Antonio Pescapè.
Detecting malware activity from agile DNS mappings using graph analysis. 2013.
Submitted to IEEE Transactions on Dependable and Secure Computing

41

CHAPTER 5
Problem Definition

In principle, malware uses the DNS infrastructure in the identical way as legitimate clients
and services, with the only difference that the contacted servers host a malicious service,
i.e., a C&C server. From that alone, it is impossible to reliably classify such DNS activity
as malicious, due to the lack of any clear signal that is indicative for malware. In other
words, we simply cannot distinguish a malicious service from any other benign service
if there is no difference in the DNS usage patterns. However, due to the improvements
made with detection and mitigation strategies, malicious services were forced to introduce
a certain degree of agility in their DNS usage [9]. Malware cannot use the same FQDNs
and IP addresses over extended periods of time, as sooner or later these would be detected,
and further be blocked or be taken offline. Malware services are therefore always “on the
move”, to escape countermeasures and therefore continue being profitable.

The most aggressive type of DNS mapping agility is Fast-Flux, which is typically used
for enabling reliable, centralized C&C communication, and may involve hundreds of dif-
ferent IP addresses in many different networks, for hosting only one FQDN [85]. The basic
functioning of Fast-Flux is illustrated in Fig. II.1. Malware-infected clients query the global
DNS infrastructure for the FQDN of a C&C server. These queries resolve to a changing set
of IP addresses of other infected clients (flux agents), which serve as proxies to one or more
C&C servers. This agility in the DNS mappings can be observed using traffic monitoring.

However, not all malware services require the additional obfuscation layer introduced
by flux agents, but have other operational constraints. As we pointed out in §3, many mali-
cious services require reliable hosting of certain services, which are not necessarily related
to C&C. These services often “flux” less, but use only a small set of IP addresses for re-
dundant hosting, and share these IP addresses with other malicious services. For example,
a Phishing campaign would typically try to “phish” using many different FQDNs, which
resemble the names of the targeted sites (e.g., gmai.com instead of gmail.com, and
facebok.com instead of facebook.com). Therefore, this activity does not stand out
because of a large number of IP addresses being used over time, but rather due to the fact
that an inhomogeneous set of new FQDNs are jointly using a set of IP addresses. Typically,
these IP addresses are either new, or have been used for hosting different FQDNs previously.
Therefore, the signal we are looking for when considering malware activity detection, is a
certain degree of DNS mapping agility, which is caused by the fact that, for malicious ser-
vices, the mappings between FQDNs and IP addresses are typically undergoing continuous
changes, with some changing faster and some slower.

A fundamental feature being used by many malware detection approaches (see, e.g., [27,
82]) is the number of IP addresses being used per FQDN. However, many benign sites also
use large numbers of IP addresses, for reasons of load balancing and hosting redundancy.
The particular characteristics of a particular FQDN, as well as of an IP address, depends
on the specific service. This is illustrated in Fig. II.2. Small sites do often reuse the same

43

DNS Resolver

Clients

DNS

Queries

DNS Query

Responses

DNS

Infrastructure

Recursive

Queries

NS Record

Authoritative Nameserver

A Records

C&C Servers

Figure II.1: Basic functionality of Fast-Flux. A set of malware-infected clients resolves
FQDNs of their C&C infrastructure via DNS. The connections are proxied by a second
set of malware-infected clients (flux agents), which quickly change over time, and hide the
actual locations of the C&C servers.

IP address for multiple, low-volume services (e.g., the web and the mail server). Medium
sites often operate multiple FQDNs (e.g., one per each country in which the company is
active), and use multiple IP addresses, which often are in the same network range or even
are neighbors in the IP space. In contrast, large sites typically operate multiple FQDNs for
a variety of services (e.g., “example” and “sample”) and use large pools of IP addresses for
hosting them. These IP addresses are often in different networks, and belong, e.g., to the
Content Distribution Network (CDN) (e.g., Akamai) which was charged with hosting this
site.

The hosting strategies of malware and benign services are therefore often highly sim-
ilar. In fact, this is not surprising, as both address the same problem of guaranteeing high
availability under (possibly) high load. However, the DNS activity of benign services is
based on (long-term) contractual agreements, e.g., between a large service (like Facebook)
and a CDN (like Akamai). Therefore, the DNS mapping agility of such sites may involve
hundreds of IP addresses, in many different networks, as well as a large number of dif-
ferent FQDNs, but it is still constrained. Conversely, malware activity needs to change
FQDNs and IP addresses often, and typically operates in different networks than large be-
nign services. Therefore, we aim at characterizing the typical DNS usage per IP range, and
identify the FQDNs and IP addresses which were either not seen at all before, or represent
a significant change. By aggregating such changes over longer periods of time, we reveal
groups of FQDNs and IP addresses which represent such changes, and therefore probably
relate to malware activity. We represent such FQDNs and IP addresses as graphs and aim
at revealing collaboration patterns which enable us to detect these malicious groups.

44

www.example.com

1.2.3.4

mail.example.com

(a) Small site.

example.at

1.2.3.4 1.2.3.5

example.de

example.it

(b) Medium site.

...
example

.at .de .it .com

sample
.at .de .it .com

1.2.3.10
1.2.3.20

5.6.7.100

5.6.7.200

...

(c) Large site.

Figure II.2: DNS usage of differently sized sites.

45

CHAPTER 6
How Agile are DNS Mappings?

In general, existing approaches strive to detect malicious activity by finding certain agility
in DNS traffic, which can be differentiated from benign traffic. In [25], we investigate the
same from the opposite direction: our aim is to find out to what degree benign DNS activity
is stable. We conduct an extensive set of experiments on a DNS trace from a large operator
network with several 100,000 customers. Over two weeks, we extracted and aggregated
information from DNS NOERROR responses, i.e., successful DNS query responses that
provided an IP resolution for the requested domain name and thereby a FQDN-to-IP map-
ping as described in §1.1. As a first step, we investigated the DNS activity for variety of
sites manually, and report interesting findings for the individual results below, which under-
line the pronounced agility of benign services and demonstrate the differences between the
individual requirements and deployment strategies.

Google Google’s main search site is reachable under a number of FQDNs with the format
www.google.{SUFFIX}, where SUFFIX can be com or almost any country code (e.g.,
de, fr, it, . . .). However, all of these names are a CNAME alias of www.l.google.com1.
This CNAME then finally resolves to a number of IP addresses, usually between one and
six. In a two-hour time window, we find 71 different IP addresses being used, which are
from 17 different /24 networks (resp. from five /16 networks). One day later, only 14 new
IP addresses are used in addition. This indicates that it might be possible to automatically
learn the set of IP addresses used for a service, given enough time. But Google search is not
the only service hosted at these IP addresses. Within the same two hours, Google’s image
search site images.l.google.com use 31 of the same IP addresses, plus two different
ones in addition. A malware detection approach must be able to cope with these “natural
dynamics”, so not to wrongly classify these services as malicious, just because a large pool
of IP addresses is used for many different domain names.

Another interesting detail is that the site www.youtube.com (which is also owned
by Google) maps to the CNAME youtube-ui.l.google.com, thereby following the
same naming scheme as shown above. However, it resolves to 44 IP addresses that are not
overlapping with the other IP pool identified before, and usually there are only between
one and four IP addresses advertised per query. Still, all of the IP addresses belong to the
AS “Google Inc.”, i.e., Google seems not to host these services at some third-party hosting
provider. In this case, knowing that a set of similar queries (i.e., *.l.google.com) is
exclusively hosted in a single AS, could support DNS traffic classification.

Finally, a reverse lookup of the DNS name of any of the Google IP addresses always
returns a DNS name in the format {X}.1e100.net (e.g., fx-in-f147.1e100.net).

1Sometimes, also www{X}.l.google.com is used, where X is in [2,3,4,5].

47

www.google.{SUFFIX}
www.l.google.com
images.l.google.com
www.youtube.com
youtube-ui.l.google.com
*.l.google.com
{X}.1e100.net
fx-in-f147.1e100.net
www{X}.l.google.com

Apparently, Google implemented a common naming scheme for all their services, which
might help to identify some site as belonging to this family of services2.

Facebook Within two hours, we observed 54,691 different FQDNs with the format {X}.
{Y}.channel.facebook.com, where X and Y are always numbers (e.g., 01371354742.
67.channel.facebook.com). However, they map to only 28 IP addresses in three
different /24 networks. One day later, we observe 80,416 new domain names with the
same format, still mapping to the same 28 addresses. Facebook seems here to “abuse” the
DNS system for short-lived, extremely dynamic service identification, using some form of
wildcard FQDN-to-IP mapping (i.e., *.channel.facebook.com). While it would be
easy to whitelist this particular phenomenon, a universal detection approach for malicious
domains must be designed such that these short-lived domains are recognized as normal,
benign activity.

Amazon Amazon shows a two-fold face: on the one hand, their main site www.amazon.
com maps to only three different IP addresses in two hours, all from their own AS “Ama-
zon.com, Inc.”. In strong contrast to Google, their European branches (.de, .fr, .it, . . .) map
to a small set of IP addresses in the AS “Amazon EU DC AS”. This activity is therefore
highly stable. However, for Amazon’s cloud services, the observed activity is completely
different. Within two hours, we observe 5,830 FQDNs of the format {X}.profile.
{Y}.cloudfront.net3 on 3,903 different IP addresses. Each name usually maps to
8 different IP addresses, all of them belonging to either AS “Amazon.com Tech Telecom”,
“Amazon EU DC AS”, or “Amazon.com, Inc.”.

Akamai Akamai operates one of the largest CDNs, therefore a large service diversity
is to be expected. Within two hours, we observe 3,168 CNAME aliases with the format
a{X}.{Y}.akamai.net, where X is a number (roughly in [1, 2000]), and Y is a short
string (e.g., a1254.w7.akamai.net). In total, these CNAMEs map to 1,729 differ-
ent IP addresses. Additionally we find 20 CNAMEs with the similar format a{X}.{Y}.
akamai.net.0.1.cn.akamaitech.net. While almost all of these IP addresses be-
long to the AS “Akamai Technologies European AS”, we find 31 other ASes of backbone
operators and Internet providers. Simply counting the number of different ASes to which a
domain name is associated with over time and expecting to find just malicious activity over
a certain threshold, is therefore misleading.

In addition, for understanding the complications of these configurations, consider the
following example: The domain name js2.wlxrs.comwas found to be hosted in the AS
“Akamai Technologies European AS”, specifically on a set of servers that follow the naming
scheme introduced above. It is a CNAME alias of login.live.com, the login site of
Microsoft’s Live service. Within the same two hour time window however, this site maps
much more often to the CNAME alias login.live.com.nsatc.net, and points to
an IP in AS “Microsoft Corp”. In summary, we have to deal here with a popular service that
maps to multiple CNAME aliases and points to different IP addresses in different networks.
This activity is prone to be misclassified as Fast-Flux, and poses a significant challenge to
malware detection approaches.

No-IP.org As a final example, we consider the popular dynamic DNS provider No-IP.org,
which operates authoritative nameservers for a number of domains. Sub-domains of these
can be registered by anybody at no cost. Within two hours, we observe 109 FQDNs of the
format {X}.no-ip.org that resolve to 74 unique IP addresses in 52 different ASes. This

21e100, or 1 · 10100, is called a “Googol” by mathematicians.
3E.g., a5e0129bd6b7bd4ef1e4f83b979a1216e.profile.dub2.cloudfront.net

48

{X}.{Y}.channel.facebook.com
{X}.{Y}.channel.facebook.com
01371354742.67.channel.facebook.com
01371354742.67.channel.facebook.com
*.channel.facebook.com
www.amazon.com
www.amazon.com
{X}.profile.{Y}.cloudfront.net
{X}.profile.{Y}.cloudfront.net
a{X}.{Y}.akamai.net
a1254.w7.akamai.net
a{X}.{Y}.akamai.net.0.1.cn.akamaitech.net
a{X}.{Y}.akamai.net.0.1.cn.akamaitech.net
js2.wlxrs.com
login.live.com
login.live.com.nsatc.net
{X}.no-ip.org
a5e0129bd6b7bd4ef1e4f83b979a1216e.profile.dub2.cloudfront.net

corresponds to 69 different /24 networks, and resp. 61 different /16 networks. Clearly, such
domains can be easily taken for malicious ones when looking only at their distribution over
the networked world. Given that such free, disposable domains names seem like a perfect
way for a miscreant to host a C&C server, malware detection approaches need to find a way
to distinguish such legitimate agile DNS usage from malicious one.

6.1 Methodology

Many of the given examples exhibit different agile DNS features at the first glance, although
they represent highly stable, benign services. Thus, DNS stability means different things
for different services. In the following, we define a flexible metric to qualitatively assess
the degree of stability of a particular service. We use the following notation: Q and P are
the sets of domain names and IP addresses, respectively. We defineMQ as the set of tuples
〈q ∈ Q,P∗〉, where P∗ ⊆ P is defined by {p ∈ P s.t. q resolves to p}. Similarly,MP is
the set of tuples 〈Q∗, p ∈ P〉, where Q∗ ⊆ Q is defined by {q ∈ Q s.t. q resolves to p}.

The simplest form of a stable, unidirectional mapping is then given when for a tu-
ple 〈q,P∗〉 there exists only a single element in P∗ (and analogously for tuples 〈Q∗, p〉).
Therefore, a stable, bidirectional mapping is given when any q maps to a single p, and p
exclusively maps to this q. For simplicity, we refer to this as 1:1 stability in the following.
The set S of 1:1 stable mappings is thus defined as S :=Ms

Q∩Ms
P , whereMs

Q ⊆MQ :=
{〈{q},P∗〉 s.t. |P∗| = 1} andMs

P ⊆ MP := {〈Q∗, {p}〉 s.t. |Q∗| = 1}. Conversely,
two FQDNs which map to the same IP address are colliding, and the corresponding DNS
mappings are therefore not stable.

For clarity, consider the following real-world example of a 1:1 mapping: the FQDN
www.ftw.at points always to the IP address 213.235.244.145, and no other FQDN
than www.ftw.at ever points to 213.235.244.145. These types of mappings are
extremely common, and should clearly never be reported by a malware detection approach.
Would another FQDN also map to 213.235.244.145, then it would collide with www.
ftw.at, and both mappings would not be 1:1 stable.

In order to address more complex types of mapping stability, we define the following
relaxations: k − LD(query) specifies the k-level domain name of query, e.g., 2-LD(www.
ftw.at) is ftw.at. Similarly, j−NW (IP) gives the /j-network of an IP address, e.g.,
24-NW(213.235.244.145) is 213.235.244.0/24. This is motivated by the fact
that both the name and the address can vary at different degrees, while still representing the
same service. I.e., large Internet sites assign a network segment to single services instead of
a single IP and, on the other hand, often more than one name points to a single IP address.
And as we can see clearly for, e.g., the various Google services, both name and address vary
often at the same time. Still, they do not vary arbitrarily: multiple IP addresses for a service
are often in the same network segment, and multiple FQDNs frequently share a common
suffix.

The set of stable mappings S is derived analogously as shown above. The names and
addresses in the input sets Q and P are now the results of applying k-LD(query) and j-
NW(IP). For simplicity, we refer to k − LD : j −NW mappings as k : j, e.g., a 2-LD:24-
NW mapping is abbreviated as 2:24. As an additional convention, and in line with the 1:1
mapping defined above, we use 1 for describing the case when we do not apply k-LD or
j-NW at all4. I.e., a 1:24 mapping describes a single domain name that is exclusively hosted
by an /24 network. Conversely, a 3:1 mapping describes all services that share the same
3-LD suffix and are exclusively hosted at the same IP address. Also note that 1:32, ∞:1,
and∞:32 are equivalent to 1:1.

4For practical reasons, it makes little sense to consider 1-LD (i.e., TLD) names or /1 networks (i.e., half
the Internet) anyhow, so we accept this contradiction here.

49

www.ftw.at
213.235.244.145
www.ftw.at
213.235.244.145
213.235.244.145
www.ftw.at
www.ftw.at
www.ftw.at
www.ftw.at
ftw.at
213.235.244.145
213.235.244.0/24

www.example.

com
*.example.com

x.x.x.0 x.x.x.255

x.x.x.128/25x.x.x.0/26 x.x.x.96/32

mail.example.com

Figure II.3: Illustration of the possible usage of the /24 network from x.x.x.0 to
x.x.x.255.

For illustration, consider Fig. II.3. Given the shown IP address usage, we would find
three different stable mappings in this range: mail.example.com is 1:1 stable, www.
example.com is 1:26 stable, and all FQDNs ending on example.com are 1:25 stable.

The introduced bidirectional definitions are strong in the sense that they allow for only
little variation of a domain’s name and the IP addresses hosting them. Conversely, every-
thing that is considered stable according to any of these definitions exhibits extremely little
agility, and does therefore not match the malware model. However, as our analysis of benign
sites above shows, many of them are not considered stable according to these definitions.
Many of these sites share a common reason for that, namely the fact that they use a set
of IP addresses from different networks for one or more domain names. Identifying a net-
work mask that matches all these mappings but no others is therefore in general impossible.
However, we can exploit the stability of the geographical position of these IP addresses,
as many different ranges of a single organization are often registered at the same location.
We define this additional type of stability as 1 → GEO stability, i.e., a domain name is
considered stable when it always resolves to an IP address at the same longitude/latitude.

6.1.1 Implementation

The basic idea is to find the set of stable mappings in a DNS trace by testing each mapping
against each definition of stability as defined in the previous section. As the processing
of the trace proceeds, new stable mappings are added and those contradicting the partic-
ular definition of stability are removed. Once a k-LD name or a j-NW network has been
removed from the stable set, no other mapping that contains either of them can be consid-
ered stable. We implement this by using two Bloom Filters [29] for efficiently storing the
already removed domain names (bfd) and addresses (bfa). The entire procedure is shown
in Algorithm 6.1. Note that BloomFilter.add(x) also removes x from the set of sta-
ble mappings. BloomFilter.rel_add(x) additionally adds all related entries, i.e.,
those mappings that were stored previously. For example, if stables contains the mapping
www.example.com:1.2.3.4 and a DNS record with www.example.com:5.6.7.8
is observed, then www.example.com, 1.2.3.4, and 5.6.7.8 are removed from sta-
bles and are added to the Bloom Filters.

As Bloom Filters are probabilistic data structures, false positives may be reported. That
is, the filter wrongly reports a certain element to be stored, while it is not. The false positive
rate is a function of the filter size, the number of hash functions used, and the number of
inserted elements. Knowing the total number of unique FQDNs in our trace (1,444,735),
and therefore the maximum required filter size, we set the number of hash functions for
bfd to 34 to guarantee a maximum false positive rate of ≤ 0.01%. Using again 34 hash
functions, we set the filter size of bfa to 700,000 to achieve the same false positive rate.
During the experiments, the maximum number of IP addresses stored in one instance of bfa

50

mail.example.com
www.example.com
www.example.com
example.com
www.example.com
1.2.3.4
www.example.com
5.6.7.8
www.example.com
1.2.3.4
5.6.7.8

Algorithm 6.1: Find-k:j-mappings
input : DNS-Records, k, j
output: stables, bfd, bfa

stables← Map(); bfd← BloomFilter(); bfa← BloomFilter();1
foreach record r in DNS-Records do2

dname← k-LD(r.name, k);3
addrs← Get_IP addresses(r.A-Records);4
if dname in bfd then // this domain name is known to be not5
stable

bfa.rel_add(addrs);6
continue;7

end8
foreach a in addrs do9

ip← j-NW(a.ip, j);10
if ip in bfa then // this IP address is know to be not stable11

bfa.add(addrs);12
bfd.rel_add(dname);13
break;14

end15
if dname not in stables and ip not in stables then // a new stable16
mapping

stables.add(dname,ip);17
continue;18

end19
if stables [dname]=ip and stables [ip]=dname then // we saw exactly20
this mapping before

continue;21
end22
if stables [dname]6= ip then // known FQDN, used other IP before23

bfa.add(addrs);24
bfd.rel_add(dname);25
break;26

end27
if stables [ip]6= dname then // known IP, used by other FQDN28
before

bfd.add(dname);29
bfa.rel_add(addrs);30
break;31

end32
end33

end34

was 313,863 (for experiment 2:1). The filters are stored after each run of the experiment, so
that we can stack them together in different ways for quickly getting different views on the
data, that depend on the order of the individual experiments. However, note that due to the
non-zero false positive rate we occasionally misclassify single mappings.

For the 1→GEO experiment we slightly modified Algorithm 6.1 to consider 〈longitude,
latitude〉 tuples instead of IP addresses. Note that we do not check for collisions of geo-
graphical locations, i.e., arbitrarly many FQDNs can map to the same location for being
considered stable. However, any of these FQDNs is considered not stable if it maps to any
other location in addition. We used MaxMind’s free version of their GeoIP City database5

for retrieving the geographical location of IP addresses.

5http://www.maxmind.com/app/city

51

http://www.maxmind.com/app/city

Figure II.4: 1:1 stable mappings: changes over time.

6.2 Experimental Evaluation

We analyzed the aforementioned DNS trace which was created by capturing and parsing all
packets on UDP port 53 in a large European Internet provider’s network. The trace includes
all DNS activity from 2010-11-21, 21h to 2010-12-5, 21h (i.e., 14 days). We extract from
these data the DNS “NOERROR” query responses and aggregate them on two-hour time
bins using the queried name as a key. That is, for every two hours we output a list of queried
FQDNs together with the number of queries they received and the list of IP addresses in the
responses’ A-Records. During processing, we then remove those records that received less
than three queries. Furthermore, we remove the prefix www. from all queries, and therefore
treat www.X.com the same as X.com6. In total, taking into account these measures, we
observe 1,444,872 unique queried names which are hosted in 21,968 different autonomous
systems and for which we received 1,025,858,834 individual DNS queries.

6.2.1 1:1 Stability

We found 310,788 stable 1:1 mappings in our trace, which represent 21% of the unique
FQDNs in the entire trace. In other words, more than one fifth of the sites host only a
single service on a single IP address. Most likely, these are small companies or private
websites, that do neither require redundant hosting nor multiple services on the same IP.
However, this set is constantly evolving. Figure II.4 shows the changes of the number of
stable mappings over time. For better visibility, we also provide a zoom-in on the tail of the
results (from 2010-11-29 to the end of the trace). After the first day of analysis, the number
of newly found stable mappings decreases as popular 1:1 stable sites are already known by
then. However, it is interesting to note that even at the end of the trace, i.e., after almost two
weeks, the set of stable mappings grows at least by a few hundred in every time bin. Note
that this set could theoretically also shrink, given there would be more mappings removed
than new ones are introduced, which is not the case. In other words, there are always more
entirely new mappings, than new FQDN or address conflicts (due to reuse) being found.

Of course, it is possible that a new mapping is considered stable in one time bin, but
gets removed again in a subsequent one. Therefore, we assessed the number of persistent

6Many sites use the same mapping for both, as users often do not use the www.-prefix.

52

www.
www.X.com
X.com

j |stables| |bfd| |bfa| ∆ j |stables| |bfd| |bfa| ∆

31 263,945 1,180,927 205,031 715 27 123,756 1,321,116 144,004 182
30 227,344 1,217,528 189,549 496 26 96,629 1,348,243 127,371 112
29 190,168 1,254,704 176,142 356 25 73,996 1,370,876 110,793 58
28 155,741 1,289,131 160,276 295 24 55,689 1,389,183 94,504 45

Table 1: 1:j results.

mappings at each time bin t, i.e., those that are first seen at time t, and are still considered
1:1 stable at the end of the experiment, after two weeks of traffic data. Interestingly, the
number of new, persistent mappings decreases rather slowly. This suggests that a system
for detecting malicious domains should be designed such that it can adapt to these dynamics,
i.e., purge historic, inactive mappings to avoid future FQDN-IP conflicts, and learn at the
same time about new ones. For many malware detection approaches, e.g., those based on
machine learning, this implies that continuous retraining should be considered.

6.2.2 k:j Stability

After having identified the set of 1:1 stable mappings, we continue by gradually relaxing our
definition of stability. We conduct three separate experiments: first we analyze the special
cases 1:j and k:1. Then, we investigate several other combinations of k:j mappings (i.e.,
with k,j 6= 1).

1:j This experiment targets FQDNs that exclusively use a set of IP addresses instead of
a single one. We define the set of netmasks as J = {31, 30, 29, 28, 27, 26, 25, 24}, and
run one experiment for each j ∈ J . We start with the largest value (31) and continue with
30, 29, etc. By addressing more and more addresses, our definition of stability gradually
“widens”. Note that, as soon as it gets too wide so that other services “pollute” the IP range,
1:j stability is not given anymore. Table 1 shows the results, adopting the terminology
from Algorithm 6.1. The number of stable mappings decreases from one experiment to the
next, due to overlaps in network ranges from different services. Conversely, the number of
elements in bfd increases steadily, due to more and more address conflicts. The elements
stored in bfa are in this case /j networks, hence the number of blocked IP addresses also
steadily increases. In addition, we compute the number of new stable mappings ∆ from one
step to the next. As a first reference we use the results from the 1:1 experiment, and find that
1:31 matched 715 new domain names. 1:30 finds then 496 as compared to 1:1∪1:31 etc.
Note that the found domain names use the individual IP ranges exclusively, which represent
in total 42,558 IP addresses. Many of them are larger services like europe.battle.
net, an online gaming site, which is found to be 1:24 stable.

k:1 Similarly, we define the set of domain levels to analyze as K = {6, 5, 4, 3, 2}, so to
target FQDNs that share are common suffix but are all exclusively hosted at the same IP, and
run one experiment for each k ∈ K. We report in the following the number of new stable
mappings ∆ from experiment to experiment. As before, we use the set of 1:1 mappings
as a first reference, and compute the number of changes in the order of decreasing k. The
results are {3, 6, 296, 563, 2, 526}, i.e., in total we find 3,394 k:1 stable mappings. Note
that the number of mappings is not equal the number of matched domains here, as k-LD
represents a not-unique domain pattern. As it is considered new compared to 1:1, there
must at least be two FQDNs matching each. The total FQDNs matched per k−LD pattern
are {9, 19, 10, 267, 3, 386, 8, 257}. The high count of 10,267 domains is almost exclusively

53

europe.battle.net
europe.battle.net

0

50

100

150

200

250

300

350

400

450

500

6 5 4 3 2

#k
-L

D
 N

am
es

Domain Levels k

/24
/25
/26
/27
/28
/29
/30
/31

/24

/25

/26

/27

/28

/29

/30

/31

1x /30

2x /30
1x /29
1x /28
1x /24

68x /31
60x /30
93x /29
68x /28
65x /27
36x /26
26x /25
20x /24

10x /31
18x /30
13x /29
16x /28
18x /27
10x /26

6x /25
7x /24

(a) k-LD names count

0

200

400

600

800

1000

1200

1400

1600

6 5 4 3 2

#D
o

m
ai

n
 N

am
es

Domain Levels k

/24
/25
/26
/27
/28
/29
/30
/31

2x /30

10x /30
4x /29
2x /28

716x /24

37x /31
66x /30
49x /29
50x /28
50x /27
30x /26
12x /25
15x /24

/24

/25

/26

/27

/28

/29

/30

/31

207x /31 156x /30
335x /29 372x /28
252x /27 112x /26

81x /25 56x /24

(b) Domain names count

Figure II.5: k:j mappings: number of additional stable mappings per k,j configuration.

due to a large number of {X}.webim{Y}.webim.myspace.com. Furthermore, we
find 643 FQDNs {X}.jim{Y}.mail.ru that are 3:1 stable.

k:j Finally, we run a set of 40 experiments using all combinations for k ∈ K, j ∈ J .
The individual number of changes is shown in Figure II.5. On the right, the number of
new k-LD patterns is shown (e.g, *.example.com), while on the left we show the num-
ber of FQDNs matching the individual patterns. We compute the number of changes in
a similar way as before, using as a first reference the set of stable mappings found by all
previous experiments. Following our idea of gradually widening the definition of stabil-
ity, we proceed in the following order: 6:31→ 6:30 → . . .→ 5:31 → . . . 2:24. In gen-
eral, the set of found domains is rather diverse, with no single, dominant service. The
largest share of domains is in 4:24 and is exclusively caused by 716 FQDNs with the format
*.profile.sin2.cloudfront.net.

6.2.3 1→GEO Stability

In total, we find 1,391,251 1→GEO mappings, i.e., 96% of the unique mappings in our
trace. Out of that, 1,053,657 were not already found by the k:j experiments. Among those
are 291,977 unique *.channel.facebook.com and 9,402 unique *.cloudfront.
net. The only two similar domain names not in this set are 0.53.channel.facebook.
com, which appear in two different ASes (US, Ireland), and the 716 domains *.profile.
sin2.cloudfront.net which were already found previously by the 4:24 experiment.

It is quite surprising that 1→GEO stability is given for such a large number of map-
pings. However, this is clearly a rather coarse measure compared to the other definitions of
stability. In particular, note that 1→GEO stability is not sensitive to IP address reuse, i.e.,
assigning multiple domain names to the same IP address. In order to get an intuition of how
many legitimate sites are among these mappings, we tried to resolve their domain names
again. Given that since the recording of the DNS trace almost one year passed, we reasoned
that any domain name that would still be resolvable to an IP address, is most likely legit-
imate7. We randomly selected 105,365 (i.e., 10%) FQDNs from the set of mappings that
were exclusively found by 1→ GEO and found that 103,464 still resolved to an IP address.

7Note that due to DNS domain parking we might wrongly assume that a site is still active, as we would
be redirected to a default site. The majority of sites does not implement this though, so we consider this bias
acceptable.

54

{X}.webim{Y}.webim.myspace.com
{X}.jim{Y}.mail.ru
*.example.com
*.profile.sin2.cloudfront.net
*.channel.facebook.com
*.cloudfront.net
*.cloudfront.net
0.53.channel.facebook.com
0.53.channel.facebook.com
*.profile.sin2.cloudfront.net
*.profile.sin2.cloudfront.net

1,901 (i.e., 1.8%) domains were not resolvable anymore. We conclude that the majority of
1→GEO domains is therefore legitimate.

Finally, we built a set of stable mappings from the individual results of all experiments
which contains 1,391,256 entries, i.e., 96% of all unique queried FQDNs are considered sta-
ble. Interestingly, these correspond to only 492,730,776 out of the 1,025,858,834 individual
queries in our trace, i.e., 48%.

6.3 Discussion

The experiments show that a significant share of 21% of all mappings are 1:1 stable. In
addition, only∼1% meet any of our more relaxed k:j definitions of stability. This is surpris-
ing, as we would have assumed that more network ranges are exclusively used by a certain
domain suffix, e.g., those by small and medium enterprises who would use a certain portion
of a larger network. The most interesting point of learning is therefore that this is not the
case, and that network masks are no reliable units of separation of Internet services. This is
mostly due to the widespread use of CDNs and professional hosting providers. In contrast
to traditional hosting strategies, such operators reuse IP addresses for multiple services,
and thereby cause FQDN collisions. Furthermore, even small sites using such services em-
ploy redundant hosting, and therefore the associated FQDNs can map to many different IP
addresses in multiple networks.

However, 96% of all FQDNs in our data set were found to be 1→GEO stable. This
definition of DNS mapping stability is more loose and does not require the absence of
FQDN collisions. Therefore, it provides a simple way for discovering services that are not
entirely stable, but are at least not hosted in multiple, geographically distributed networks.
We consider 1→GEO stability a lower bound for stability of particular DNS mappings,
which demonstrates that, despite the widespread usage of CDNs, the vast of majority of
DNS mappings show some stability. This does not go without saying, as many services
are, e.g., hosted by Akamai, who use a highly distributed set of servers, many of which are
located directly in the Internet service providers’ networks [122]. In these cases, the DNS
resolution of a particular service depends on the current load of the network and the Akamai
servers, and is therefore expected to fluctuate over time. The fact that these fluctuations
do not occur for the majority of DNS mappings in our data set is promising, as malware
services are expected to employ (and require!) significantly more agile mappings. As we
are not able to observe FQDN collisions though, we need to further improve our definitions
of DNS mapping stability, in order to retrieve a tighter bound than 1→GEO can offer. This
would enable us to detect IP reuse of changing sets of malicious FQDNs, as it occurs, e.g.,
for Phishing campaigns or botnet C&C.

The 4% of remaining sites which were not caught by any of our definitions of stability
use highly agile DNS mappings and attract the lion’s share of the traffic. We found 53,616
such FQDNs in 3,837 ASes. Among those, the two most popular sites www.google.com
and www.facebook.com alone received 45,941,330 and 23,813,897 queries, respec-
tively. The top-{10,30,50,100} FQDNs received {154,129,864, 224,851,245, 320,273,845,
373,019,662} queries. The top-10 ASes hosting these 53,616 domains were Microsoft
Corp, Peer 1 Network Inc., Layered Technologies, Inc. (two separate ASes), Akamai Tech-
nologies European AS, 1&1 Internet AG, Internet Systems Consortium, Inc., Georgia Insti-
tute of Technology, MX Logic, Inc., and Deutsche Telekom AG. In total, the top-10 ASes
hosted one or more IP addresses of 54% of the found domains, which attracted 57% of
all individual queries. As mentioned previously, this is indeed not surprising, as it is well
known that large services (e.g., Google, Facebook, Microsoft) as well as CDNs (e.g., Peer
1, Layered Technologies, Akamai) operate data centers at multiple geographical locations,
and dynamically assign IP addresses depending, e.g., on the current load and the commu-

55

www.google.com
www.facebook.com

nication latency. The appearance of “Georgia Institute of Technology” among these other,
very large networks stands out though. By manually inspecting the sites hosted there, we
found 2,565 random-looking FQDNs. Apparently they belong to a botnet that was caught
by Georgia Tech’s honeynet research project8, or was sinkholed there. This serves as a first
confirmation that DNS analysis can indeed reveal malware activity, although in this case it
has been already detected and contained.

Finally, an important point of learning from our experiments is the high degree of dy-
namics in Internet DNS traffic. Due to the multitude of different and evolving services, the
DNS is constantly changing. New FQDNs and new IP addresses appear and disappear on a
daily basis. The specifics of this activity depend on the type of operator that hosts a given
service. A direct implication for a detection system based on modeling this activity is there-
fore the requirement to regularly flush information derived from old activity, else the model
would represent a considerable amount of outdated mappings9. Equally important, yet less
obvious, are two phenomena to which we refer to as limited visibility and DNS wildcards,
and which we explain in the following:

Limited Visibility The popular blogging platform Tumblr assigns to its users domain
names following the pattern {account-name}.tumblr.com. Despite the fact that
there are millions of accounts, of course not all of them are frequently queried from within
the monitored network, and therefore we simply rarely see them. Instead of storing a con-
tinuously changing list of Tumblr domains mapping to Tumblr’s IP addresses, and con-
tinuously reporting changes, we rather want to extract the more useful information that
<something>.tumblr.com is using this IP range.

Wildcards The case of Facebook demonstrated that benign Internet services sometimes
use random prefixes for FQDNs (e.g., {X}.{Y}.channel.facebook.com). Clearly
there is no value in keeping track of all these domains, but rather we want to understand the
pattern which these domain names follow. Ideally, we would like to derive automatically the
wildcard DNS mapping (i.e., *.channel.facebook.com) that Facebook most likely
uses for these IP addresses, and not report such FQDNs as suspicious, agile activity.

These learnings serve as the basis of the modeling approach for DNS mappings de-
scribed in the next chapter, which ultimately enables us to build the malware detection
system discussed in §9.

8http://users.ece.gatech.edu/owen/Research/HoneyNet/HoneyNet_home.htm
9See also Hao et al. [80], who found 5,711,602 new domains in only two months, although their investiga-

tion was restricted to the TLDs .com and .net.

56

{account-name}.tumblr.com
<something>.tumblr.com
{X}.{Y}.channel.facebook.com
*.channel.facebook.com
http://users.ece.gatech.edu/owen/Research/HoneyNet/HoneyNet_home.htm
.com
.net

CHAPTER 7
The DNSMap Approach

Based on the insights presented in the previous discussion, we propose DNSMap, a system
which automatically extracts the dominant patterns of domain names for an IP range from
DNS query responses captured from the wire, and takes the problems of limited visibility
and DNS wildcards into account [22]. Furthermore, DNSMap merges neighboring IP ad-
dresses when they seem to host similar services, in order to provide an aggregated view on
which family of services uses which range of IP addresses in a network. It can therefore
represent arbitrary IP ranges and is not restricted to ranges which can be represented by
netmasks. Therefore, DNSMap can be used for “zooming-in” on a particular service in a
larger network.

On top of that, we present an approach that allows for detecting significant changes in
the global DNS zones, i.e., such mappings that differ significantly from the previous ones
according to a divergence metric we define. Fig. II.6 shows an example of the information
our system derives. In this case (created from a real-world data set), the system’s output
conveys the information that on three subsequent IP addresses a set of related domain names
is hosted. These domains cluster in four groups, for which the system derives group labels.
Would we now observe a new domain name mapping to this IP range, that does not “fit”
to any of the identified groups, the system would report this as an unusual event. On the
other hand, domain names that differ only slightly from the ones seen before, are absorbed
by DNSMap, and are not reported.

209.85.173.103 - 209.85.173.105

blogsearch.google.de:

blogsearch.google.de

p2.byjnp4.sc4wn5kavq.52645.i1.v4.ipv6-exp.l.google.com:

[≥111 domains]

p2.hmiwdpvgwkvtq.7cpjrhozxzvtldnb.388388.i2.ds.ipv6-exp.l.google.com:

p2.hmiwdpvgwkvtq.7cpjrhozxzvtldnb.388388.i2.ds.ipv6-exp.l.google.com

scholar.google.com:

www.print.google.com, scholar.google.com.tr, www.google.com,

scholar.google.es, www.scholar.google.com, scholar.google.com.ua,

reader.google.com

Figure II.6: Example for an “IPBlock”, DNSMap’s basic representation of DNS mappings.
Shown are the domain names that mapped to this range of IP addresses, grouped by domain
name similarity. The system derives a label for each group, shown in bold letters.

57

7.1 Methodology

As we have shown in §6, the level of DNS mapping agility of benign Internet services varies
widely. Websites of small companies are hosted on the same IP addresses for years, while
large enterprises host their services on many different addresses. Both of them typically
use sets of FQDNs which are somewhat similar to each other, following, e.g., the pattern
*.example.com. In contrast, CDNs and hosting providers reuse the same IP address
for a large variety of different sites, while in access networks sometimes dynamic (DHCP)
addresses host, e.g., private websites using dynamic DNS providers. The level and the type
of DNS agility therefore depends on the specific site (i.e., FQDN) and the IP address we are
looking at, and is usually limited. Even large companies do only use IP addresses in a certain
set of networks, though this set may be large. Private customers may use many different
IP addresses due to DHCP, but these typically all belong to the same network. Malicious
sites have different constraints: they need to change both FQDNs and IP addresses often, so
to avoid mitigation actions and react to new “business” requirements (e.g., a new Phishing
campaign which requires a different FQDN).

DNSMap’s main objective consists of characterizing this agility. Instead of just count-
ing, e.g., the number of IP addresses for a given FQDN, we infer the real “unusualness”
of these DNS mappings from evaluating how normal this FQDN appears for a specific IP
address. In the following, we derive a system that scales to large volumes of DNS data and
enables almost instantaneous detection of highly agile activity.

7.1.1 Measuring FQDN Similarity

Our work is based on the assumption that a certain degree of “redundancy” can be found in
DNS mappings. That is, we expect that colliding domain names are often similar, and that
neighboring IP addresses host similar sets of domain names. As a first step to modeling this,
we require a measure of similarity for domain names. Many related approaches directly use
the structure of domain names, and group them hierarchically by domain suffix (e.g., [134]).
While this is sufficient to discover that www.example.com and www2.example.com
are somewhat similar, it remains unclear how similar they are, and how close, e.g., mail.
example.com is. Furthermore, www.example.org would not even fall into the same
group, as already the TLD “org” falls in a different group than “com”, although the domains
are obviously highly similar.

Therefore, we define the Domain Divergence (DD) ∈ [0, 1] between two FQDNsX and
Y . Let Xλ be the λ-LD of X and |Xλ| be its length (Yλ, |Yλ| resp.). Let |X| be the number
of domain levels in X (|Y | resp.). For each domain level λ > 1 we first compute a weight
wλ, based on (i) the hierarchical “importance” of λ (i.e., more significant levels with lower
λ receive more weight), and (ii) related to the length of the currently compared domain
level. The dampening constant α controls the rate of decrease of wλ with increasing λ.
Based on our experience, the setting α = 1 is a good choice, which we use throughout this
thesis. For each domain level, we further compute a partial domain divergence ddλ between
Xλ and Yλ, using the Levenshtein Ratio (LR) which is based on counting the necessary
edit operations (i.e., add, delete, replace1) for transforming one string into another [106].
Precisely,

ddλ =

{
1 if λ > MIN (|X|, |Y |)
(1− LR (Xλ, Yλ)) · wλ else

(7.1)

1For our experiments, we use a Python implementation of the Levenshtein ratio, which assigns a cost of 2 to
the replacement operation, i.e., one “replace” is considered to consist of one “delete” and one “add”. LR(s1,s2)
is then defined as 1− #OP

|s1|+|s2| , where #OP is the weighted sum of operations, and |s1| and |s2| are the lengths
of the two compared strings.

58

*.example.com
www.example.com
www2.example.com
mail.example.com
mail.example.com
www.example.

www.example.

com

www2.example.co.uk

videos.example.com

www.great-videos.com

x.x.x.128-255x.x.x.1-63 x.x.x.96

mail.example.com

x.x.x.0/24

Figure II.7: Example for the information we contain in DNSMap: three IPBlocks holding
five FQDNs in total.

where wλ = lλ · 1/ (α+ λ) and lλ = MAX (|Xλ|, |Yλ|). The Domain Divergence DD
is then defined as

DD := MIN

(∑MAX(|X|,|Y |)
λ=2 ddλ

Ω
+ δ · β, 1.0

)
[0, 1] (7.2)

where Ω =
∑MAX(|X|,|Y |)

λ=2 wλ and δ is 0 when the TLDs of X and Y are identical, else
δ = 1. I.e., we assign a penalty β when X and Y have different TLDs. We set β = 0.05
for all following experiments.

7.1.2 Modeling DNS Activity

The detection of malicious DNS agility requires an up-to-date understanding of the his-
toric DNS mappings for a particular range of IP addresses. In our approach, the basic
components for holding this information are IPBlocks, which describe continuous ranges
of IP addresses and the set of FQDNs mapping to these IP addresses. Fig. II.7 shows
an (imaginary) example: in the /24-network from IP address x.x.x.0 to x.x.x.255, three IP-
Blocks are identified. IP addresses 1-63 exclusively host www.example.com, IP 96 hosts
mail.example.com, and IP addresses 128-255 host Example’s UK webserver (www2.
example.co.uk), and a video site which is reachable via videos.example.com and
www.great-videos.com.

However, keeping track of all FQDNs mapping to an IPBlock is only the first step.
Ultimately, we aim at understanding which FQDN patterns are being used per IPBlock, so
to be able to quickly evaluate how different subsequently seen FQDNs are. In general, a
particular IP range may be used by several classes of very different FQDNs. Therefore, we
cluster the FQDNs according to their Domain Divergence, and store them in the IPBlock.
For each cluster ck, we derive a label Lk. By construction, DD(Lk, fi) ≤ Θ, where
the domain divergence threshold Θ ∈ [0, 1] is a system parameter. Any new FQDN-to-
IP mapping is then compared to the cluster labels, and is either accepted as “sufficiently
similar”, or represents a change which requires that a new cluster is created to contain it.
Note that this strategy enforces that for all FQDNs fj mapping to an IPBlock there exists a
cluster for which DD(Lk, fj) ≤ Θ. Also note that this is far more efficient than comparing
a new FQDN to all FQDNs seen previously at this IPBlock. We discuss the details of the
approach in the following.

Deriving FQDN cluster labels As a first step, we require a technique for computing
labels for a set of domain names D. We derive the generalized median strings [33] sep-
arately for each domain level, and concatenate them to build the DOMAINMEDIAN of
D, which we call the label L of D. For example, the label of the FQDNs f1=www2.

59

www.example.com
mail.example.com
www2.example.co.uk
www2.example.co.uk
videos.example.com
www.great-videos.com
www2.example.co.uk
www2.example.co.uk

Algorithm 7.1: DomainCluster
input : fqdns, θ
output: clusters

clusters← List();1

label←DomainMedian (fqdns);2

good← all d ∈ fqdns where DD (label,d)≤ θ;3

bad← all d ∈ fqdns where DD (label,d)> θ;4

if good is empty then5

// not a single FQDN is well-represented by this label
bad 1,bad 2← k-Means (fqdns, k=2);6

clusters←clusters + DomainCluster (bad 1);7

clusters←clusters + DomainCluster (bad 2);8

end9

else if bad is empty then // found label for all FQDNs10

clusters←clusters + {(label, good)};11

end12

else // recursively cluster “good” and “bad”13

clusters←clusters + DomainCluster (good);14

clusters←clusters + DomainCluster (bad);15

return clusters;16

example.co.uk, f2=videos.example.com, and f3=www.great-videos.com
from Fig. II.7 is www.example.com. This is intuitive, as the dominant substrings for
each domain level across these three FQDNs are www, example, and com, while each
of the substrings videos, great-videos, and co.uk appears only once. However,
www.example.com is a rather poor label for representing these three FQDNs. This can
be seen by computing the domain divergences, i.e., DD(L, f1)=0.09, DD(L, f2)=0.39, and
DD(L, f3)=0.58. Especially for f3, the divergence between the label and the FQDN is large.

Rather than computing an arbitrary label for D, we want to derive a set of good labels,
such that for each domain d ∈ D the divergence between at least one label and d is below a
certain divergence threshold θ ∈ [0, 1]. Therefore, we need to derive clusters of D, where
each cluster has a label L.

FQDN clustering procedure Algorithm 7.1 shows an unsupervised algorithm for deriv-
ing the clusters cj for a set of domains. The algorithm does not require the full distance
matrix for all domains, and therefore needs only to perform few computations of DD. It
rather continues to evaluate the distances to an intermediate domain label and proceeds in
a divide-and-conquer manner. Note line 6: when we cannot further divide the problem us-
ing this strategy, we use k-Means (with k=2) to derive two disjoint subsets of FQDNs and
continue for each subset separately. When even that fails, i.e., when one returned subset is
empty and the other one therefore contains all FQDNs, we return separate clusters for each
of the remaining FQDNs (not shown in Algorithm 7.1). In this case, we still maintain the
main requirement that for each FQDN f there exists a label L for which DD(f,L) ≤ θ.
The algorithm does not require us to specify the number of clusters a priori, but rather con-
tinues to further subdivide inhomogeneous (“bad”) FQDNs and returns as many clusters as
are needed to derive a “good” label for each FQDN (i.e., with DD≤ θ). An example result
using real data is shown in Fig. II.8.

Note that our objective here differs from many other clustering applications. For ex-
ample, the widely used DBSCAN clustering algorithm reveals dense regions (i.e., clusters)
of arbitrary shape [56]. It is driven by the idea of assigning related elements to the same

60

www2.example.co.uk
www2.example.co.uk
videos.example.com
www.great-videos.com
www.example.com
www.example.com

groups.google.at,

desktop1.google.com,

safebrowsing-cache.google.com,

groups.google.hu,

scholar.google.hu,

 fusion.google.com,

tools.google.com,

scholar.google.at

scola.google.com

desktop1.google.com,

scholar.google.hu,

fusion.google.com,

tools.google.com,

scholar.google.at

groups.google.at,

safebrowsing-cache

.google.com,

groups.google.hu

schol.google.com

groups.google.at,

groups.google.hu

groups.google.a

safebrowsing-cache

.google.com

safebrowsing-cache

.google.comgroups.google.a

good

good

bad bad

safebrowsing-cache

.google.com

safebrowsing-cache

.google.com

good

Final

Clusters

Figure II.8: Domain clustering example. The text in bold print are the labels of the corre-
sponding group of FQDNs.

cluster, where “related” has a transitive meaning. I.e., an element which is close to another
element in a particular cluster, should also be assigned to this cluster. As a consequence,
such clusters can have a stretched shape, and their center does not necessarily represent
the contained elements well. In contrast, our algorithm requires that this is the case. All
FQDNs need to be related to their corresponding cluster’s label, and our notion of “related”
is therefore intransitive.

Recall that some services use DNS wildcards, for which we therefore see a large number
of domains mapping to the same set of IP addresses. As these FQDNs are by definition
similar, the clustering procedure will assign them to the same cluster2. Whenever a cluster
grows larger than the maximum allowed cluster size MCL, we “collapse” the cluster, i.e.,
we remove all FQDNs from it and remember that no domains should be further added to it.
This avoids that we bloat the DNSMap representation with a large number of these FQDNs,
but still retains their characteristic pattern as cluster label.

Data processing DNSMap represents the global state of DNS mappings, as visible to our
monitoring system. It provides a data structure to hold IPBlocks, which are keyed on their
start IP address. In order to efficiently store, remove, and search for IPBlocks, we use a set
of RBTrees (one per /8 network) [16]. The main advantage of such trees in our scenario
is their ability to find the IPBlock that contains a certain IP address in logarithmic time
(w.r.t. the total number of IPBlocks per RBTree), even when the requested IP is not a key
in the RBTree. Additionally, the DNSMap maintains a list of contained FQDN, which are
referenced by the individual blocks. Note that this ensures that there exists only one global
instance for each stored FQDN, which vastly reduces the memory requirements. In the
following, we discuss the main procedure of DNSMap, which is responsible for processing
DNS mappings extracted from traffic data.

A new DNS mapping fqdn:ip is added by using the ADDMAPPING procedure (shown
in Algorithm 7.2), which returns a status code and a score that describe how well it “fits”
to previously seen mappings. The individual steps are the following. First, we lookup
the IPBlock which contains ip (line 1). If exactly the same mapping is already stored in
DNSMap, we return a zero score, indicating a perfect match (line 8). Else, we find the

2The number of clusters being created depends on the value of θ. In any case, the number of created
clusters should be small, else this would contradict the assumption that the FQDNs are similar.

61

Algorithm 7.2: AddMapping
input : fqdn, ip
output: STATUS, dd

ipb← DNSMap.GETCONTAININGBLOCK(ip);1

if not ipb then // IP not seen recently2

ipb← IPBlock();3

ipb.ADDCLUSTER([fqdn]);4

return (NEW, 1.0);5

end6

if ipb.ACCEPTSFQDN(fqdn) then // DNS mapping is known7

return (OK, 0.0);8

end9

closestCluster, dd← ipb.FINDCLOSESTCLUSTER(fqdn);10

if dd ≤ θ then // new FQDN, similar to prev. FQDNs11

closestCluster.ADD(fqdn);12

return (OK, dd);13

end14

if ipb.ISFULL then // this IPBlock reached max. capacity15

return (FULL, dd);16

end17

ipb.ADDCLUSTER([fqdn]);18

return (NEW, dd);19

cluster to which fqdn fits best (line 10). If it does not fit well enough (w.r.t. Θ) (line 11),
and if we can create yet another cluster for this IPBlock3 (line 15), we consider this mapping
to represent a significant DNS change (line 19).

With time, the number of clusters per IPBlock would steadily increase (lines 4 and 18),
and therefore the system as a whole would become less and less sensitive to DNS changes.
Therefore, we provide a periodically run MAINTENANCE procedure which takes care of
reclustering the contained FQDNs (using Algorithm 7.1) and removing outdated ones (i.e.,
FQDNs which were not recently queried from the monitored network). This is further
discussed in §7.2.

7.1.2.1 IPBlocks: Merge&Split

Up to now, we considered fixed size IPBlocks, which statically represent a certain number
of IP addresses. We initialize each new IPBlock using a single IP, and therefore require
a procedure for growing IPBlocks such that they represent a range of IP addresses. This
is accomplished by merging neighboring IPBlocks, given that we find that they host sim-
ilar FQDNs. Conversely, we provide a splitting procedure for reverting previous merge
operations, so to be able to reflect DNS changes over time. A required key concept is the
similarity σ between two IPBlocks, which we define in the following.

Consider two IPBlocks A and B, which contain mA and mB domains, respectively.
From all clusters in A, we select the subset of clusters cAk with labels LAk which satisfy
DD(LAk , LBj)≤ Θ, for at least one cluster cBj of B. The relative share of domains of A that

“fit” to the cluster configuration of B is then σA,B =
∑

k
|cAk |
mA

, which we call the similarity
measure of two IPBlocks.

3We restrict the maximum number of clusters for performance reasons, see §7.2.1.

62

Definition 1 (MERGECONDITION) Two IPBlocks A and B are merged iff (i) they are
direct neighbors in the IP address space, (ii) they contain IP addresses from the same Au-
tonomous System, and (iii) σA,B > γ and σB,A > γ.

In other words, we merge two IPBlocks when at least a percentage γ of FQDNs of each
IPBlock are in clusters which are similar to the neighboring IPBlock’s clusters. We set
γ = 50%, i.e., merging requires at least a simple majority of similar domains.

Conversely, consider two IPBlocks A and B that were created from a third IPBlock Z
such that A represents the first half of Z’s IP addresses and B the second half. For each
cluster in each IPBlock, we keep track of the IP addresses which were recently used by any
of the FQDNs in a particular cluster4. A cluster is therefore active on a certain IP range
when any of the FQDNs in this cluster used any of the IP addresses in this IP range. Let A
contain all those domains of Z where the containing cluster was active inA’s IP range (and
for B respectively).

Definition 2 (SPLITCONDITION) An IPBlockZ is split iffA andB do not satisfy MERGE-
CONDITION.

7.2 System Overview

The set of IPBlocks as a whole is a representation of “what maps where”, and constitutes
the foundation of our approach. In the following, we discuss a system which uses the
DNSMap construction to model Internet-wide DNS activity from captured traffic data. The
system constantly updates the contained IPBlocks (using the previously defined split and
merge operations) to keep track of configuration changes and newly appearing services,
and regularly removes outdated information.

Data Processing & Output The system receives DNS traffic (UDP port 53) from a mon-
itoring probe, which discards responses for which no query was observed, in order to avoid
traffic injections, and extracts NOERROR query responses, i.e., those responses that were
answered by a DNS resolver and contain one or more DNS mappings. A preprocessing
module removes duplicate DNS mappings within a time window of 1,800 seconds, as du-
plicates contain no additional information that would be relevant to our system, but would
only increase the processing load. Each queried name and each corresponding IP address
(i.e., each mapping) is added to the DNSMap by calling the main ADDMAPPING routine.
Every call to ADDMAPPING which returns the status code NEW, triggers the textual output
of the following information:

〈timestamp〉 〈FQDN〉 〈IP〉 〈score〉 〈count〉
For example: 1321469613 static.ak.facebook.com 77.67.4.40 0.614 65.
The 〈count〉 field holds the number of IPBlocks to which 〈FQDN〉 mapped at the time

〈timestamp〉 of the DNS change. This can be found by a simple table lookup, and is
being used later by the malware detector described in §9. Note, however, that 〈count〉 is a
lower bound for the real number of occurrences of 〈FQDN〉, due to the fact that we limit the
storage capacity per IPBlock (line 15 in Algorithm 7.2).

We stress again that these changes by themselves are not exclusively indicative for mal-
ware, as most DNS changes represent completely normal Internet activity. Note that in ad-
dition to real changes (e.g., newly emerging services), we also register perceived changes,
which are related to services that possibly existed for long time, but were never queried

4This can be trivially implemented with a bit field of length n, where n is the number of IP addresses
represented by an IPBlock. In this field, a value of one means that the corresponding IP address was recently
used by the cluster, while a value of zero means that it was not used.

63

from the monitored network, i.e., on which we have limited visibility. Therefore, we typi-
cally receive several 100,000 change events per day.

Maintenance operations We run asynchronous maintenance operations at configurable
time intervals. In order to compress the DNS mapping information and to find continuous
IP ranges which host similar services, we evaluate MERGECONDITION for all IPBlocks
after every time interval ∆Mg. We recluster each IPBlock using Algorithm 7.1 in advance,
to ensure that the cluster labels of any two IPBlocks were created at the same time. This
is important, as cluster labels can also be created by Algorithm 7.2 (lines 4 and 18). The
FQDN which happens to be observed first becomes the label of the newly created cluster,
and any similar FQDNs seen later are added to this cluster without changing its label. For
another IPBlock, the order in which FQDNs are seen may be different, and therefore the
cluster labels may differ as well. Reclustering addresses this issue, as the order in which the
FQDNs were seen is irrelevant for Algorithm 7.1. Note, however, that only those IPBlocks
need to be reclustered for which Algorithm 7.2 created a new cluster during ∆Mg.

Furthermore, we run cleanup operations after each time interval ∆Ma, to remove out-
dated information from DNSMap. More precisely, the following sequence of actions is
performed. First, we remove all IPBlocks which do not contain any FQDN clusters. Sec-
ondly, for each IPBlock, we remove all empty clusters. And finally, we remove all FQDNs
from all clusters from all IPBlocks. This implements the following removal strategy. All
FQDNs are removed at most ∆Ma after they were observed. Clusters which are not re-
populated with any FQDNs during ∆Ma, are removed, and therefore “live” longer than
∆Ma. IPBlocks are removed only when they do not contain any clusters, which can happen
at earliest 2 ·∆Ma after their creation.

Following the cleanup operations, we evaluate SPLITCONDITION for all IPBlocks.
Note that splitting and merging implicitly implements a divide-and-conquer scheme for it-
eratively finding the optimal IPBlock configuration. However, this procedure will of course
only converge to stable IPBlocks if the analyzed DNS information by itself “stabilizes”. In
general we assume that this is not the case, therefore the IPBlocks configuration should con-
stantly evolve, dependent on the observed DNS data and the resulting clusters per IPBlock,
i.e., depending on domain divergence threshold θ.

7.2.1 Parameters and Tuning

We summarize DNSMap’s parameters and the settings we use in Table 2. The settings of
∆Mg, MCL, and MSZ mostly affect the degree of loss of the system’s DNS information
compression. More aggressive settings (i.e., lower ∆Mg and higher MCL and MSZ) con-
sume more system resources (i.e., CPU and memory), and create more accurate DNSMap
representations. We set ∆Mg to six hours, which we found to be a good tradeoff between
computational overhead (merging is costly) and memory requirements (aggregating IP ad-
dresses saves space). Our experiments (discussed in §8) revealed that the limits imposed
by MCL and MSZ are reached for less than 0.1% of the IPBlocks and clusters, and have
therefore limited impact. The most critical parameters are the divergence threshold Θ and
the maintenance interval ∆Ma. We provide guidance for tuning them in the following.

7.2.1.1 DD Threshold Θ

The configuration of Θ controls DNSMap’s ability to absorb FQDN changes, and heavily
influences the system’s performance. High settings (i.e., closer to 1.0) make the system
more “permissive”, and lead to a lower number of change events. Furthermore, the over-
all number of clusters is reduced, which leads to a lower memory footprint, and to faster
processing times. Low settings (i.e., closer to 0.0) have the opposite effects, and make the

64

Param. Description Setting
Θ DD threshold [0.25,0.30,0.35,0.4,0.45]

∆Ma maintenance interval 2 days
∆Mg merge interval 6 hours

MCL

an IPBlock of n IP
addresses can store at
most (1 + log(n))·MCL

clusters

50

MSZ
max. number of FQDNs
per cluster to store

30

Table 2: DNSMap parameters.

d1 d2 d3 d4 d5
d1=www.example.com 0.0 0.3 0.09 0.39 0.58
d2=mail.example.com 0.3 0.0 0.35 0.31 0.75
d3=www2.example.co.uk 0.09 0.35 0.0 0.44 0.63
d4=videos.example.com 0.39 0.31 0.44 0.0 0.77
d5=www.great-videos.com 0.58 0.75 0.63 0.77 0.0

Table 3: Examples for domain divergences in Fig. II.7.

system more sensitive to differences between two given FQDNs. In the following, we inves-
tigate how low we can set Θ while still allowing for small variations in the DNS mappings.

The Domain Divergence provides a numerical measure for the similarity of two FQDNs
which aims at reflecting the intuitive interpretation of a human analyst. Table 3 shows the
domain divergences between the FQDNs from Fig. II.7, and gives a first “hands-on” idea of
the behavior of this measure. For our application, we definitely want to consider, e.g., d1 and
d2 similar, which requires Θ ≥ 0.30. On the other hand, we clearly want to differentiate,
e.g., d3 and d5, therefore Θ < 0.63.

For a more formal analysis, let us now consider the comparison of two FQDNs consist-
ing only of two domain levels each. The maximum editing budget for two similar FQDNs
X and Y , where |X| = |Y | = 2 and X1 = Y1, is given as Θ · (|X2|+ |Y2|) (based on
the definition of the Levenshtein Ratio LR). As one replacement operation consumes two
editing “credits”, this allows, e.g., one different character if |X2| = |Y2| = 6 and Θ = 0.30
(0.30 · (6 + 6) = 3.6→ 3.6/2 ' 1). This leaves only limited degrees of freedom for mal-
ware FQDNs trying to evade the detection threshold. Of course, the number of “credits” is
proportional to the length of the FQDN. Longer FQDNs provide more freedom, at the cost
of having to contain longer stable patterns.

By construction, the weight of the Levenshtein ratio diminishes with increasing domain
level λ (see Eq. (7.1) on page 58). Therefore, we investigate the comparison of two FQDNs
which differ only w.r.t. 3-LD. The influence of the unweighted string difference dd3/ω3 on
DD depends on the fixed w3, as well as on the relative length of 3-LD. Therefore, we define
this length as ζ = l3/ (l2 + l3). Fig. II.9 illustrates the influence of a string difference
on 3-LD on the total domain divergence DD between two FQDNs, assuming that both
contain three domain levels and do not differ at all w.r.t. 1-LD and 2-LD. For example,
in order to consider www.exampledomain.com and mail.exampledomain.com
similar, we would need to set Θ ≥ 0.19 (dd3/ω3 = 1.0, ζ = 4/17 = 0.24). On the other
hand, xxxxxx.example.com and yyyyyy.example.com would require Θ ≥ 0.39
(dd3/ω3 = 1.0, ζ = 6/13 = 0.46).

Based on this initial analysis, we evaluate the results for Θ = [0.25, 0.30, 0.35, 0.4, 0.45]

65

www.exampledomain.com
mail.exampledomain.com
xxxxxx.example.com
yyyyyy.example.com

0.0 0.2 0.4 0.6 0.8 1.0
dd3/ω3

0.0

0.2

0.4

0.6

0.8

1.0

D
D

ζ=0.1
ζ=0.2
ζ=0.3

ζ=0.4
ζ=0.5
ζ=0.6

ζ=0.7
ζ=0.8

ζ=0.9
ζ=1.0

Figure II.9: Domain divergences DD for FQDNs with three domain levels which differ only
w.r.t. 3-LD. Note that ζ = 1.0 is an unreachable upper bound (as always l2 > 0).

in the following experiments. Lower settings are to be preferred, as long as they do not
severely impact the performance and number of false positives.

7.2.1.2 Maintenance Interval ∆Ma

The maintenance interval setting controls DNSMap’s inertia to changes, as well as the mem-
ory consumption. The less often we remove old DNS mappings, the more memory we need
and the longer we remember that (benign) FQDNs have been seen. At the same time, it
becomes more likely that we exceed the FQDN storage limit of the IPBlock, and are there-
fore forced to ignore a DNS mapping. Also, this causes the system to be less sensitive to
changes, as more stored FQDNs per IPBlock increase the chance that a new FQDN is sim-
ilar to one of them. Therefore, for high detection sensitivity, we want to set ∆Ma to a low
value. However, due to the diurnal periodicity of Internet activity, a lower limit for ∆Ma

is one day – more aggressive cleanup would prematurely remove, e.g., peak-hour activity.
During our experiments we found that some IP addresses of popular services are used even
less often than once per day. We therefore set ∆Ma =2 days for the following experiments.

66

CHAPTER 8
System Evaluation

We evaluate DNSMap using data set DNS–DS1 from a large network operator (see Table 4).
It contains two weeks of DNS queries, with ∼13 million unique FQDNs and ∼1.6 million
unique IP addresses. We pursue two main goals: first, we analyze the performance of
DNSMap and investigate if it is able to cope with large amounts of DNS data. Second, we
evaluate the quality of DNSMap’s output, and discuss its ability to model DNS mappings.
All experiments are done with a Python implementation of DNSMap and a standard desktop
PC with 16 GB of main memory.

8.1 Performance

Fig. II.10 shows the performance of DNSMap for processing DNS–DS1, using different
settings for Θ. For 48 hours of DNS data we require only ∼1-2 hours of processing time,
with a linear trend throughout the entire two weeks. Interestingly, and in contrast to our
initial expectations, the system does not necessarily run slower with lower Θ. We found
that often the main difference in running times originates from the time required for the
evaluation of SPLITCONDITION. This can be seen from the marked regions in Fig. II.10,
which show a relative drift happening every two days of trace time, which corresponds to
∆Ma. Higher values of Θ cause more IPBlocks to be merged over time, and therefore
reduce the overall required number of evaluations of SPLITCONDITION. However, larger
IPBlocks may also have more clusters, and therefore the time required by call increases.
Overall, the setting of Θ has only limited effect on the processing time, and easily allows
for realtime processing.

Next, we investigate the volume of DNSMap’s output in terms of IPBlocks and change
events over time. Fig. II.11 shows the results for Θ = 0.35. After an initialization period
of 48 hours, the system reaches a stable working point which, from then on, only adapts
to changes in traffic volume (i.e., the number of IP addresses seen) depending on the time
of day. The stable number of IP addresses also explains the linear trend in processing
performance. Note that the number of IPBlocks is not significantly lower, which indicates
that the vast majority of IP addresses in the Internet do not host similar services as their
neighbors. The number of change events also depends on the time of day, and is relatively

Name Time frame
Total

Mappings
Unique
FQDNs

Unique
IP addresses

Unique
Clients

DNS–DS1
11/22/2010–
12/05/2010 3.2B 13M 1.6M ∼500k

DNS–DS2
11/15/2011–
11/21/2011 2.4B 5.4M 1.2M ∼1M

Table 4: Data sets from large access provider.

67

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Processing time [hours]

0
24
48
72
96
120
144
168
192
216
240
264
288
312
336

T
i
m
e
i
n
t
r
a
c
e
[
h
o
u
r
s
]

Θ=0.25
Θ=0.30
Θ=0.35
Θ=0.40
Θ=0.45

Figure II.10: Processing time for DNS–DS1, using different Θ.

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336
Time in trace [hours]

0

2

4

6

8

10

IP
s/

IP
Bl

oc
ks

1e5

#IPs
#IPBlocks

0

5

10

15

20

25

30

Ev
en

ts

1e4

#events
#events@new IP

Figure II.11: Number of IP addresses/IPBlocks/events created by DNSMap over time, for
DNS–DS1, with Θ = 0.35. By configuration, the first events are produced after 48 hours.
Note the double scale.

stable throughout the entire two weeks of data. Around a third of all changes relate to new
IP addresses (i.e., IP addresses which were at this time not contained in DNSMap), which
underlines the high dynamicity of Internet DNS traffic.

8.2 Benign Service Agility

The main objective in the design of DNSMap is the ability to describe the agility of IP
address ranges, and to find a set of labels for the FQDNs which map there. Ideally, most IP
ranges would host similar FQDNs over time, and can therefore be distinguished from highly
agile malware activity. In the following, we evaluate this using our data set DNS–DS1 (see
Table 4). We set Θ = 0.35 and analyze DNSMap’s output from processing the entire two
weeks of DNS data.

A first indication of the overall DNS agility is given by the final number of clusters
per IPBlock. Many clusters would indicate many dissimilar FQDNs per IP, which would

68

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336
Time in trace [hours]

1

2

3

4

5

6

7

8

Cl
us

te
rs

 p
er

 IP
Bl

oc
k

(a) Clusters per IP over time

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336
Time in trace [hours]

1

2

3

4

5

6

7

8

9

Cl
us

te
rs

 p
er

 IP
Bl

oc
k

(b) Clusters per IPBlock over time

Figure II.12: Mean number of clusters per IP address (left) and IPBlocks (right) for pro-
cessing DNS–DS1 with θ=0.35. The error bars show the (positive) standard deviation.

contradict with the assumption that we can extract stable FQDN patterns per IPBlock. After
processing the entire two weeks of data, DNSMap stored ∼850k IPBlocks and ∼3.4M
FQDNs. The mean number of clusters per IPBlock was 2.2, with a 95th’s percentile of 6.0
clusters. Therefore, only 5% of the IPBlocks required more than six clusters for containing
all FQDNS mapping to them in (at least) the last four days (2 ·∆Ma). 75% of all IPBlocks
just had a single cluster. The detailed development of the number of clusters over time is
shown in Fig II.12. Overall, there is evidently significant stability in the extracted FQDN
patterns.

We use DNSMap for analyzing the service deployment strategies for a set of selected
ASes. We cover large services (Google, Facebook), CDNs (Akamai, Level 3, Peer 1),
a cloud provider (Amazon), a hosting provider (Hetzner), and a large online dating site
(VKontakte). The IPBlock representation and the Domain Divergence metric allow us to
compare the difference of IPBlocks within an AS, and ultimately find out which IP ranges
are used for hosting similar FQDNs. Two IPBlocks A and B are similar if they contain
similar cluster labels. For each cluster label in A (B) we find the label in B (A) such that
the DD between the two labels is minimal. The difference score forA and B is then defined
as the mean of these divergences. For the sake of better representation, we restrict ourselves
to 100 consecutive IPBlocks per AS. Fig. II.13 shows the results, with the number of IP
addresses per shown AS being shown in the captions of the figures. The diagonal represents
the difference of each IPBlock to itself, and is therefore always zero. Note that high num-
bers of IP addresses implies that large IP ranges host similar services, and were therefore
merged to single IPBlocks.

The differences between the individual plots reveal the different hosting purposes and
requirements of the considered networks. Google (a) hosts a rather homogeneous set of
services, and therefore the differences between the IPBlocks are low. Note the various blue
spots in the figure, which indicate similar IPBlocks that are not immediately consecutive to
each other. This behavior is expected from a large service as Google, which typically hosts
FQDNs following a certain pattern (i.e., *.google.com). The only exception is the
small region in the upper left (IPBlock 1-10), which appears to partially host a completely
different set of FQDNs. Indeed, these are single IP addresses inside Google’s range which
host a variety of small, third-party sites. This is interleaved with single IP addresses hosting
Google’s DNS servers (i.e., ns{N}.google.com).

Similarly to Google, Facebook (b) mostly hosts a homogeneous set of FQDNs (e.g.,

69

*.google.com
ns{N}.google.com

www.facebook.com). However, there are exceptions. The dark blue square at the upper
left hosts a number FQDNs following the patterns outmail00{N}.snc4.facebook.
com and outcampmail00{N}.snc4.facebook.com. Furthermore, the two IPBlocks
58 and 59 host hphotos-ash2.fbcdn.net.

The CDN providers Level 3 (e) and Peer 1 (f), as well as the hosting provider Hetzner (g)
host a rather diverse set of services, which is expected from such networks. The notable
exception is Akamai (c), which partially contains a surprisingly homogeneous set of IP-
Blocks. We found that these ranges are exclusively used by large services (Facebook, Twit-
ter, Symantec).

Amazon (d) is a particularly interesting case, which shows a two-fold face. The large
(mostly) blue square exclusively contains FQDNs with the format *.cloudfront.net
and represents Amazon’s cloud services. The remaining IPBlocks host a highly diverse
set of FQDNs, and resemble CDN or hosting provider activity. Note the high number of
3,532 IP addresses which are represented by these 100 IPBlocks. This indicates that the
system was able to successfully merge many neighboring IPBlocks with hosted similar
(CloudFront) FQDNs.

VKontakte (h) almost exclusively hosts FQDNs with the suffix vkontakte.ru.
Some of the few exceptions are, e.g., IPBlocks 53 and 55, which both host the single FQDN
vk.cc. Note the large number of 2,384 IP addresses, which again indicates successful
merging of a large number of IPBlocks.

Apparently, even in large networks, there exist subranges with a distinct hosting profile,
and DNSMap is able to reveal and model them. However, so far we investigated DNSMap’s
status at a particular moment in time. Therefore, we discuss in the following the develop-
ment of the representation of a number of particularly busy IP ranges over time. In particu-
lar, we pick the /24 network of each of the ASes considered above, for which we observed
the most IP addresses being used. We define the difference between two IP addresses as
the average DOMAIN DIVERGENCE between the cluster labels of the containing IPBlocks.
We show one comparison per IP-address pair, and the difference between two IP addresses
from the same IPBlock is therefore zero.

Fig. II.14a shows the differences for Akamai, w.r.t. the hosted FQDNs, after six days of
DNS-DS11. The diagonal represents the difference of each IP to itself, whitespace indicates
that the corresponding IP has not been seen by DNSMap. Three different sub-ranges are
clearly visible, which are all rather homogeneous by themselves, but quite dissimilar from
each other: (A:10-80) addresses ending on 10-80 host a large variety of different FQDNs
of smaller services; (B:105-160) host various Facebook services, plus a small set of other
(large) sites (e.g., Symantec); (C:200-250) almost exclusively host Facebook sites. This
apparent dissimilarity indicates again that we are able to identify sub-ranges with specific
hosting patterns. Fig. II.14b shows the same information after processing all 14 days with
DNSMap. Interestingly, the relative differences between the IP addresses are almost un-
changed. Note, however, that some slightly larger blocks appeared along the diagonal: the
availability of more DNS data over time apparently caused DNSMap to merge neighboring
IP addresses. Finally, Fig. II.14c shows the difference between both snapshots. We find
the containing IPBlocks for each IP at both times, and compute their differences. Block
A shows some limited variation in the hosted FQDNs, which is expected for a range of
smaller sites which are observed rarely. Still, most IP differences are well below Θ = 0.35,
therefore most of these services would not trigger a change event. Blocks B and C are
remarkably stable. Even after eight days, the cluster labels are highly similar.

Analogously, the same results are shown for the other analyzed networks in Fig. II.15
to Fig. II.19. In the following, we discuss the most relevant findings.

1We chose six days to allow for some initial training for more representative results.

70

www.facebook.com
outmail00{N}.snc4.facebook.com
outmail00{N}.snc4.facebook.com
outcampmail00{N}.snc4.facebook.com
hphotos-ash2.fbcdn.net
*.cloudfront.net
vkontakte.ru
vk.cc

0 20 40 60 80

0

20

40

60

80

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Google (148 IP addresses)
0 20 40 60 80

0

20

40

60

80

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Facebook (221 IPs)
0 20 40 60 80

0

20

40

60

80

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) Akamai (247 IPs)

0 20 40 60 80

0

20

40

60

80

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d) Amazon (3532 IPs)
0 20 40 60 80

0

20

40

60

80

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(e) Level 3 (100 IPs)
0 20 40 60 80

0

20

40

60

80

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(f) Peer 1 (104 IPs)

0 20 40 60 80

0

20

40

60

80

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(g) Hetzner (100 IPs)
0 20 40 60 80

0

20

40

60

80

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(h) VKontakte (2384 IPs)

Figure II.13: Difference scores for 100 consecutive IPBlocks of selected ASes.

In Google’s /24 network (Fig. II.15), we find only six IPBlocks, representing 120 IP ad-
dresses in total. The IPBlocks host similar services, and there are no significant differences
between the snapshots after six and 14 days, respectively. Facebook’s range (Fig. II.16)
appears similar, although far less (i.e., 36) IP addresses are being used.

Hetzner’s address range shows a completely different picture (Fig. II.17). Apparently,
not a single IPBlock contains more than one IP address. Again, this is expected from a
hosting provider, serving many small sites. While there is some difference between the
six and the 14 days snapshot, it is still limited, and for most of the IP addresses below
θ = 0.35. Note again that the difference in time between the two snapshots is 8 days, and
that the problem of limited visibility (see §6.3) is especially pronounced for such hosting
providers. Still, there exists some stability in the DNS activity, which can be revealed by
DNSMap.

For VKontakte (Fig. II.18), our system created a single IPBlock with 253 IP addresses.
As all IP addresses are in the same IPBlock, the difference between them is zero for both
snapshots. However, there is some (limited) difference between the snapshots, as the clus-
ter labels changed over time. Precisely, while the IPBlock after six days contained the

71

0 50 100 150 200 250
Last IP Address Byte

0

50

100

150

200

250

La
st

 I
P

Ad
dr

es
s

By
te

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

(a) 6 days

0 50 100 150 200 250
Last IP Address Byte

0

50

100

150

200

250

La
st

 I
P

Ad
dr

es
s

By
te

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

(b) 14 days

0 50 100 150 200 250
Last IP Address Byte

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

IP
 D
if
fe
re
nc
e

(c) Difference 6 days vs. 14 days

Figure II.14: The figures (a) and (b) represent the status of the DNSMap representation at
6 days (resp. 14 days) into the data set. Shown are the differences between the observed
IP addresses of the /24-network 92.122.212.0 of Akamai for which we saw the most IP
addresses (102 out of 255) being used. We show the differences of all pairs of IP addresses
in this range, w.r.t. to the FQDNs they host. Figure (c) shows the difference over time.

0 50 100 150 200 250

0

50

100

150

200

250 0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0 50 100 150 200 250
Last IP Address Byte

0

50

100

150

200

250

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

2
5
0

(a) 6 days

0 50 100 150 200 250

0

50

100

150

200

250 0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0 50 100 150 200 250
Last IP Address Byte

0

50

100

150

200

250

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

2
5
0

(b) 14 days

0 50 100 150 200 250
0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 50 100 150 200 250
Last IP Address Byte

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

I
P
D
i
f
f
e
r
e
n
c
e

0 50 100 150 200 250
Last IP Address Byte

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

I
P
D
i
f
f
e
r
e
n
c
e

(c) Difference 6 days vs. 14 days

Figure II.15: Google, 120 IP addresses (173.194.18.0/24).

0 50 100 150 200 250

0

50

100

150

200

250 0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

0 50 100 150 200 250
Last IP Address Byte

0

50

100

150

200

250

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

2
5
0

0

(a) 6 days

0 50 100 150 200 250

0

50

100

150

200

250 0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 50 100 150 200 250
Last IP Address Byte

0

50

100

150

200

250

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

2
5
0

(b) 14 days

0 50 100 150 200 250
0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 50 100 150 200 250
Last IP Address Byte

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

I
P
D
i
f
f
e
r
e
n
c
e

0 50 100 150 200 250
Last IP Address Byte

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

I
P
D
i
f
f
e
r
e
n
c
e

(c) Difference 6 days vs. 14 days

Figure II.16: Facebook, 36 IP addresses (66.220.147.0/24).

label cs1254.vkontakte.ru, the IPBlock representing the same range after 14 days
carried the labels cs12465.vkontakte.ru and cs12465.vk.com. DNSMap re-
acted to new FQDNs which mapped to this range, and adjusted the labels to reflect this
new activity. Similarly, also Amazon (Fig. II.19) contains only one IPBlock. The differ-
ences between the cluster labels of the two snapshots again originates from newly observed
mappings, to which DNSMap reacted accordingly. We show the cluster labels of both snap-
shots in Table 5. For this IP range, we observe both the problem of DNS wildcards (i.e.,
*.profile.iad2.cloudfront.net) as well as limited visibility (i.e., small sites

72

cs1254.vkontakte.ru
cs12465.vkontakte.ru
cs12465.vk.com
*.profile.iad2.cloudfront.net

0 50 100 150 200 250

0

50

100

150

200

250 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50 100 150 200 250
Last IP Address Byte

0

50

100

150

200

250

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

2
5
0

(a) 6 days

0 50 100 150 200 250

0

50

100

150

200

250 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50 100 150 200 250
Last IP Address Byte

0

50

100

150

200

250

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

2
5
0

(b) 14 days

0 50 100 150 200 250
0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250
Last IP Address Byte

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

I
P
D
i
f
f
e
r
e
n
c
e

0 50 100 150 200 250
Last IP Address Byte

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

I
P
D
i
f
f
e
r
e
n
c
e

(c) Difference 6 days vs. 14 days

Figure II.17: Hetzner, 151 IP addresses (213.133.104.0/24).

0 50 100 150 200 250

0

50

100

150

200

250 0.060.040.030.010.0000.0150.0300.0450.060

0 50 100 150 200 250

150

200

250 0.00

0.04

0.08

0.12

0.16

0 50 100 150 200 250
Last IP Address Byte

0

50

100

150

200

250

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

(a) 6 days

0 50 100 150 200 250

0

50

100

150

200

250 0.060.040.030.010.0000.0150.0300.0450.060

0 50 100 150 200 250

150

200

250 0.00

0.04

0.08

0.12

0.16

0 50 100 150 200 250
Last IP Address Byte

0

50

100

150

200

250

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

(b) 14 days

0 50 100 150 200 250
0.1585

0.1590

0.1595

0.1600

0.1605

0.1610

0.1615

0.1620

0 50 100 150 200 250
Last IP Address Byte

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

I
P
D
i
f
f
e
r
e
n
c
e

0 50 100 150 200 250
Last IP Address Byte

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

I
P
D
i
f
f
e
r
e
n
c
e

(c) Difference 6 days vs. 14 days

Figure II.18: VKontakte, 253 IP addresses (95.142.201.0/24).

0 50 100 150 200 250

0

50

100

150

200

250 0.060.040.030.010.0000.0150.0300.0450.060

0 50 100 150 200 250

150

200

250 0.00

0.04

0.08

0.12

0.16

0 50 100 150 200 250
Last IP Address Byte

0

50

100

150

200

250

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

(a) 6 days

0 50 100 150 200 250

0

50

100

150

200

250 0.060.040.030.010.0000.0150.0300.0450.060

0 50 100 150 200 250

150

200

250 0.00

0.04

0.08

0.12

0.16

0 50 100 150 200 250
Last IP Address Byte

0

50

100

150

200

250

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

(b) 14 days

0 50 100 150 200 250

0.3035

0.3040

0.3045

0.3050

0.3055

0.3060

0.3065

0 50 100 150 200 250
Last IP Address Byte

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

I
P
D
i
f
f
e
r
e
n
c
e

0 50 100 150 200 250
Last IP Address Byte

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

I
P
D
i
f
f
e
r
e
n
c
e

(c) Difference 6 days vs. 14 days

Figure II.19: Amazon, 254 IP addresses (216.137.33.0/24).

like static.udmserve.net), which introduce some agility. Still, DNSMap is able to
keep up with these changes and reports only significant changes.

Finally, even the DNS activity in the IP ranges of the two CDNs Level 3 (Fig. II.20a)
and Peer 1 (Fig. II.20a) is highly stable over time. Despite their overall hosting diversity
(see Fig. II.13), these particular ranges host a highly stable set of services.

Summary DNSMap enables us to “zoom-in” on large networks, and reveals substructures
that are used for similar services. The plots represent DNSMap’s status after analyzing two
weeks of DNS data, and show that even large CDNs use DNS mappings which are stable to
a certain extent. We can use the DNSMap representation to exactly pinpoint the IP ranges
for which an FQDN is considered normal, and assign anomaly scores that depend on both
the FQDN and the IP address, respectively. In contrast to other approaches [27][9], we

73

static.udmserve.net

6 days 14 days
a06cd02a1d5fb04c951b7.profile.iad2.cloudfront.net aec2738be30f2d7a350c1.profile.iad2.cloudfront.net

a9b16142569117d98020b.profile.iad2.cloudfront.net af0680d79e50b165a5b9c31a3.profile.iad2.cloudfront.net
a5711c0f3e7e15a73825da.profile.iad2.cloudfront.net a134a6660bff6915189f4228949cbffcd.profile.iad2.cloudfront.net

ace4c235d3341e43144932af71cea8.profile.iad2.cloudfront.net a00cbbcd4cce13b66800a108a62ae759e.profile.iad2.cloudfront.net
a485e7be7f03e0fd99f98a4aa886ede90.profile.iad2.cloudfront.net a655139e3b106b71572156d18415b3626.profile.iad2.cloudfront.net

a7c349373de5c55c8b43140aaeea88e76.profile.iad2.cloudfront.net a035643db0906600760226041031156345.profile.iad2.cloudfront.net
a43a2597623514040028bc6804d5b72220c.profile.iad2.cloudfront.net d2313l3iac0f56.cloudfront.net

static.socialvi.be static.socialvi.be
static.sp-ask.com static.sp-ask.com

adweb.hornymatches.com adweb.hornymatches.com
static01.flirtfair.de d6vb69kil3yqp.cloudfront.net

universal-ma.sundayskylb1.com cdn.udmserve.net
pxml1.4publishers.com widgets.sodahead.com

static.udmserve.net

Table 5: Cluster labels for Amazon’s 216.137.33.0/24 network. For convenience, similar
cluster labels are arranged side-by-side. Significant changes after 14 days are highlighted
in bold print.

0 50 100 150 200 250

0

50

100

150

200

250 0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0 50 100 150 200 250
Last IP Address Byte

0

50

100

150

200

250

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

2
5
0

(a) 6 days

0 50 100 150 200 250

0

50

100

150

200

250 0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

0 50 100 150 200 250
Last IP Address Byte

0

50

100

150

200

250

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

2
5
0

(b) 14 days

0 50 100 150 200 250
0.05

0.00

0.05

0.10

0.15

0.20

0.25

0 50 100 150 200 250
Last IP Address Byte

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

I
P
D
i
f
f
e
r
e
n
c
e

0 50 100 150 200 250
Last IP Address Byte

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

I
P
D
i
f
f
e
r
e
n
c
e

(c) Difference 6 days vs. 14 days

Figure II.20: Level 3, 62 IP addresses (195.122.131.0/24).

0 50 100 150 200 250

0

50

100

150

200

250 0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 50 100 150 200 250
Last IP Address Byte

0

50

100

150

200

250

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

2
5
0

(a) 6 days

0 50 100 150 200 250

0

50

100

150

200

250 0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 50 100 150 200 250
Last IP Address Byte

0

50

100

150

200

250

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

L
a
s
t
I
P
A
d
d
r
e
s
s
B
y
t
e

2
5
0

(b) 14 days

0 50 100 150 200 250
0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 50 100 150 200 250
Last IP Address Byte

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

I
P
D
i
f
f
e
r
e
n
c
e

0 50 100 150 200 250
Last IP Address Byte

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

I
P
D
i
f
f
e
r
e
n
c
e

(c) Difference 6 days vs. 14 days

Figure II.21: Peer 1, 61 IP addresses (65.39.176.0/24).

would therefore be able to detect that, e.g., www.google.com mapping to a Facebook IP
is anomalous. DNSMap produces change event messages in these cases, which we further
investigate in the following.

74

www.google.com

CHAPTER 9
Malware Detection

After investigating DNS mapping stability in §6 we developed in §7 an efficient modeling
apparatus and evaluated the proposed system in §8. Finally, we can now address the original
problem of DNS-based malware detection.

In contrast to many other systems [27, 10, 130, 129], our approach is based solely on the
mappings between FQDNs and IP addresses. We use DNSMap for tracking which FQDNs
map to which IP addresses, and therefore establish an understanding of what represents
“normal” DNS activity w.r.t. a specific FQDN and IP. The resulting profiles are the ba-
sis of our detection approach. Any DNS mapping which involves an FQDN that does not
“fit” to the profiles is considered suspicious, and enters the second analysis stage. There,
we represent all suspicious mappings in a certain epoch as a bipartite graph, where nodes
are FQDNs and IP addresses respectively, and edges indicate the existence of a suspicious
mapping between them. The structural properties of these graphs relate to the agility of
the underlying DNS activity. For example, high-degree IP address nodes host many differ-
ent FQDNs, while high-degree FQDN nodes imply that the respective FQDN maps to many
different IP addresses. This allows us to apply standard graph analysis techniques to quickly
identify likely malicious sites. E.g., graph components which involve just one FQDN and
a single IP are probably not malicious. Conversely, a component which contains mappings
between a single FQDN and hundreds of IP addresses, all of which are considered suspi-
cious, represents well the targeted malware model, and is therefore more likely malicious.
Most importantly, graph analysis also finds transitive connections between FQDNs and IP
addresses, and can therefore find groups of graph nodes which by themselves may seem of
little interest, but jointly appear suspicious.

The final analysis system comprises four main stages, shown in Fig. II.22. The Parser
reads DNS traffic data (from the wire/from a dump file), and further processes DNS NO-
ERROR request responses. Any queries for an FQDN which were answered with one or
more IP address records are extracted, and are forwarded to the Duplicates Filter. Recall
that our approach is based solely on DNS mappings, therefore there is no added value in
multiple evaluations of the same mapping within short time. The filter consequently re-
ports each mapping only once, and ignores any further occurrences within a time interval
filtWindow. The remaining mappings are then processed by DNSMap, which in turn
produces a series of change events. All events within a certain evaluation epoch ε are then
processed by the Graph Analysis module which produces the final output. We discuss the
latter component in the following.

9.1 Graph Analysis

DNSMap provides a stream of change events, most of which represent natural, non-malicious
DNS activity. In the following, we apply graph analysis techniques for mining these events,

75

Parser
Duplicates

Filter
DNSMap

timestamp:FQDN:IP1,IP2,...

Θ

DNS
traffic

filtWindow

FQDN_1

IP_1

Graph

Analysis

ALL NEW CHANGES AGILE GROUPS

ε query parameters

MALICIOUS

MAPPINGS

timestamp:FQDN:IP:score:count

ΔMa

Figure II.22: System overview.

and find the ones which match the malware model. Our approach is based on the observa-
tion that malicious DNS agility maps to group activity patterns in a graph.

We consider the sets of FQDNs F and IP addresses I for which we received a change
event within an evaluation epoch ε (e.g., 1 day). These events are represented as a bipartite
graph G(V,E) with vertices V and edges E, where V = F ∪ I and each e ∈ E indicates
the existence of a mapping between an FQDN and an IP. DNS changes are reported almost
instantaneously when the corresponding DNS traffic is observed, and the graph analysis
procedure we propose in the following is lightweight. This allows us to implement ε as
a sliding window, and create a new graph, using an updated list of change events, every
few minutes. This ensures that newly collected evidence is quickly integrated in the graph,
which potentially allows for almost immediate detection.

As a first analysis step, we partition the graph and find the set of connected components,
i.e., subgraphs which are not connected to each other [44]. This reveals groups of FQDNs
and IP addresses which are (directly or indirectly) related to each other over time, and which
were found to represent a significant change. Note that this partitioning is enabled in the
first place by DNSMap. A direct representation of DNS mappings to graphs would yield
giant connected components, where the majority of services is connected to many others,
due to the widespread use of CDNs. DNSMap accomplishes the omission of graph edges
which represent activity that is sufficiently similar to previously seen one, and therefore
makes the graph separable.

As a second step, we remove all components which contain only one FQDN and one
IP address (in the following: singles), as such mappings do not represent any kind of agile
activity. In our experiments, this always had a dramatic effect and removed ∼99% of all
components. The following analysis focuses on the remaining components, to which refer
to as agile groups.

Agile groups are subject to filtering rules, which are based on a set of features we
describe in the following section. The remaining subgraph then represents the final output
of our system, which we prune for a list of malicious FQDNs and IP addresses.

9.1.1 Agile Group Features

We classify the individual agile groups according to the following features, all of which are
exclusively based on DNSMap’s output and do not require any kind of active probing or
elaborate processing. These features are later used to formulate queries, which return the
FQDNs and IP addresses of those agile groups which match the activity patterns encoded
in the queries.

φ1 The number of FQDNs per agile group. Malware reuses IP addresses for multiple
different FQDNs, in which case this number is high.

76

φ2 The number of IP addresses per agile group. Malware hosts FQDNs on multiple IP
addresses over time, in which case this number is high.

φ3 The number of different Autonomous Systems (ASes) per agile group. We find the
AS for an IP using MaxMind’s freely available database1.

φ4 Although a benign FQDN might be known to map to N IP addresses, the graph
analysis module may receive events indicating suspicious activity of the same FQDN
onM IP addresses, often withN >> M . We therefore remove all events that involve
FQDNs for which we have significantly more reason to believe that they are benign,
than malicious. The maximum 〈count〉 value Cmax for a reported FQDN indicates
on how many IPBlocks this FQDN was active during ε in total. We compute the
ratio φ4 = M/Cmax, and consider FQDNs with φ4 < 0.3 as likely benign. For our
experiments, we do not consider such FQDNs for further analysis. Note, however,
that this does not necessarily imply that the entire agile group is ignored.

φ5 Hosting providers often allocate a set of IP addresses in a sub-network to a large set of
(very different) FQDNs. These IP addresses often form dense groups, i.e., they differ
only by a small (integer) value. In contrast, malicious hosting is less organized, and
uses IP addresses that are scattered over multiple networks. This has been recognized
also by other authors, and was often addressed by computing entropy-based measures
from the set of used IP addresses [130]. Entropy does however not consider the
distance between IP addresses, and cannot capture the difference between dense and
sparse groups of IP addresses. In the following, we therefore derive a score describing
this “scatteredness”. For each /24-network per agile group, we find the lowest (x1)
and the highest (xn) of the Integer representation of n IP addresses, and compute the
average distance µ = (xn − x1) /n between them. We weight µ logarithmically and
derive ρ ∈ [0, 1]. Additionally, ν conveys on how many addresses µ is based, and
therefore expresses the confidence level of ρ.

ρ = − log2

(µ

255

)
/8 ν = − log2

(n

255

)
/8

For each /24-network, we compute a score σi ∈ [0, 1] and define the agile group’s
“scatteredness” φ5 as the mean of these scores.

σi = ρ+ (1− ρ) · ν [0, 1]

φ5 = MEAN(σi)

Fig. II.23 shows the values of σi for different µ and n. In order to reach φ5 ≤ 0.7, a
malicious component must on average either use ≥ 21 IP addresses per /24-network,
or use at least six IP addresses (per /24-network) which are direct neighbors, or im-
plement a trade-off between these two extremes. This is hard to achieve for malware
using agile DNS, which aims at always being “on the move” to evade countermea-
sures. In our experiments, we remove all agile groups with φ5 ≤ 0.7 Note that this is
a conservative setting, as we typically observed φ5 > 0.9 for malicious components.

1http://dev.maxmind.com/geoip/geolite

77

http://dev.maxmind.com/geoip/geolite

0 50 100 150 200 250 300
Number of IPs per /24

0.0

0.2

0.4

0.6

0.8

1.0

∆

6 21

0.7

Figure II.23: IP distance scores σ for different numbers of IP addresses per /24-network
seen, and different mean distances µ between them. The dashed lines indicate theoretical
values which cannot be reached (e.g., there cannot be 100 IP addresses with a mean distance
of 20 in a single /24-network).

We stress that one could easily define more features (e.g., based on [27, 10, 130, 129]),
with the additional advantage of being able to exploit the graph’s structural connection in-
formation. However, we did not consider this necessary during our experiments, as the
detection results were excellent, and a lower number of features can be tuned more intu-
itively.

9.1.2 Graph Analysis Parameters

The final analysis stage requires as input a set of six parameters. The settings of φ4 and
φ5 were already discussed in §9.1.1. The features φ1,φ2, and φ3 intuitively quantify the
FQDN/IP/AS-diversity per graph component over an evaluation period ε. In order to be
able to detect even moderately agile malware [95], we aim at setting ε as large as possible,
i.e., ε=1 week for DNS–DS1 and ε=4 days for DNS–DS2 (see Table 4). Together, the
settings for ε and φ1, φ2, and φ3 define the lower bound for the rate of agility we are able
to detect.

In our experiments, we mainly focus on two extreme cases. On the one hand, Fast-Flux
networks use many (potentially hundreds) of IP addresses in many different ASes over time
(large φ2, φ3), but only a limited number of FQDNs (small φ1). On the other hand, graph
components representing (agile) malicious hosting typically use several FQDNs (large φ1),
but often only a small set of IP addresses in a low number of ASes (small φ2, φ3).

9.1.3 Analysis Workflow

As noted already in §4.3, we consider it essential to integrate a human expert in the analysis
procedure, in particular for the evaluation of the results. As the Internet as a whole is
constantly evolving, we cannot assume a stable system configuration at which a malicious
activity is always detected accurately without many false positives. The FQDNs of new,
large, benign services do resemble agile, malicious patterns, and should undergo a manual
inspection. Therefore, the system’s results should be continuously evaluated, and should
result in configuration updates. This basic workflow is illustrated in Fig. II.24.

Updating the configuration implies either changes to the parameters discussed in §9.1.2,
or providing additional information. We found that providing information about only few

78

Results

Evaluation

Configuration
Update

Analysis

Figure II.24: Basic workflow of our system. A human analyst regularly evaluates the de-
tection results and updates the system’s configuration if needed, which in turn leads to
improved analysis results in the next iteration.

FQDNs which are actually benign had a dramatic impact on the detection performance.
We therefore integrate a whitelisting procedure in our system, which we further discuss
in §9.2.2. Note that the derived whitelist is not static and therefore evolves over time to
consider new benign activity which resembles malicious one.

9.2 Experimental Evaluation

In the following, we discuss the configuration of the graph analysis stage and the detected
malware activity. Again, all experiments were done on a standard PC (Intel i5@3.1 GHz)
with 16 GB of main memory, of which we used at most 9 GB during our tests. The data sets
(see Tab. 4) were prefiltered with filtWindow=1800 seconds before processing them, so
to not let disk I/O and the DNS parser dominate the processing time.

We now turn to the evaluation of DNSMap’s change events for detecting malware ac-
tivity. We consider an agile group as malicious if we were able to confirm that at least
one FQDN in this group is malicious. Indeed, in our trials we found such evidence for a
significant share of FQDNs in each group. Note that we exclusively investigate the FQDNs
contained in the change events as output by DNSMap. One may want to retrieve the list of
all FQDNs mapping to an IP, as soon as it was found to host malicious services, given the
availability of such data ex post. It is however not immediately obvious where to stop with
such an analysis, as one might then also consider to retrieve the IP addresses which were
used by FQDNs which mapped to a malicious IP (etc.), therefore we leave such an analysis
for future work.

As noted already in §4.3, the evaluation of our results is a challenging task, as there
exists no reliable ground truth. Similar to [27, 10, 130], we use publicly available blacklists
for assessing the quality of our results. Note, however, that we never found all detected
malicious FQDNs in any single blacklist we used. This is not only because of limitations of
the underlying analysis systems, but also due to the fact that blacklists are based on different
data sets (i.e., Spam emails) from other networks. Typically we do not know what specific
techniques were used to flag a domain name as malicious, nor can we say with absolute
certainty if the blacklisted domains are actually malicious.

As an example, we consider the blacklist from exposure.iseclab.org. The un-
derlying analysis is based on [27], which is conceptually similar to our approach. We down-
loaded the list on Nov. 22, 2011, i.e., one day after the end of DNS–DS22. Out of ∼60,000
domains in the blacklist, only 478 were also present in DNS–DS2. Only 16 of them were

2The blacklist service was not available for the time frame of DNS–DS1.

79

exposure.iseclab.org

Blacklist URL Note
BL1 https://zeustracker.abuse.ch
BL2 https://spyeyetracker.abuse.ch
BL3 https://palevotracker.abuse.ch
BL4 https://amada.abuse.ch Discontinued
BL5 https://www.malwaredomainlist.com
BL6 http://exposure.iseclab.org Last update on 2012/07/09
BL7 https://www.dshield.org
BL8 http://joewein.net/bl-log/bl-log.htm

Table 6: Public blacklists used for evaluating our results.

reported as changes by DNSMap, and entered the second analysis stage, which resulted in
zero final alerts. We manually checked all 16 domains, and could not find any evidence that
they were related to malware activity. In fact, most of the sites are still online (1.5 years
after the data set was recorded), which indicates that they are actually benign. Out of the
remaining 462 domains, 426 were first observed during the initial two-days training phase
of our system, and were therefore correctly classified as representing no DNS change later
on. The remaining 36 domains were seen the first time afterwards. Nevertheless, for 304
out of the 426 we found the same group of eight IP addresses hosting 103 other domains
during our experiments, which were not found by [27]. Viewing this activity as an agile
group enabled us later to understand that this was a single cluster of botnet sinkhole IP ad-
dresses. We checked both the 122 other domains and the remaining 36 domains manually,
using other blacklists (see Table 6) and online services (see below), and found no evidence
for malicious activity. The automated comparison with existing blacklists can therefore be
grossly misleading, in particular for evaluating the number of false negatives. In our ex-
ample, we detected all malware-hosting IP addresses reported by [27] without any false
positives, while a simple comparison would have yielded 478 false negative FQDN reports.

Consequently, we employ a semi-automatic approach for evaluating our results. We
rely on a set of eight publicly available blacklists, shown in Table 6, and on online services3

for assessing the quality of our detection results in terms of true/false positives. For several
domains, we were only able to finally verify them as being malicious by running manual
Google searches, which typically led us to a variety of malware analysis sites. Still, for some
domains we were not able to find any information online, despite the fact that their activity
would definitely deserve a closer look. Due to lack of ground truth, we cannot reliably
quantify the number of false negatives. We compensate for that by choosing highly sensitive
configurations, and show that even these settings yield extremely few false positives (see
discussion in §4.3).

First, we demonstrate that our system can provide valuable results even with minimal
training. Then, we discuss a selective whitelisting procedure, which targets only a small set
of highly specific FQDN patterns. Finally, we show a variety of different groups of malware
activity we discovered.

9.2.1 Results with Limited Training

In contrast to state-of-the-art approaches [9, 27, 130], our system is able to provide reliable
results even with minimal training. To demonstrate that, we analyze the change events of
the third day (ε=1 day) in our data set DNS–DS1, i.e., after two days of initial training. We
set Θ = 0.35 and received 332,606 change events, out of which 181,822 singles and 17
likely benign FQDNs could immediately be discarded.

3phishtank.com, projecthoneypot.org, virustotal.com.

80

https://zeustracker.abuse.ch
https://spyeyetracker.abuse.ch
https://palevotracker.abuse.ch
https://amada.abuse.ch
https://www.malwaredomainlist.com
http://exposure.iseclab.org
https://www.dshield.org
http://joewein.net/bl-log/bl-log.htm
phishtank.com
projecthoneypot.org
virustotal.com

First, we targeted groups of agile FQDNs sharing a set of IP addresses (Malicious Host-
ing) and discarded all components with φ1 < 10, φ2 < 2, and φ3 < 2. The remaining
199 FQDNs were split in 11 agile groups: the largest one represented four sinkhole IP ad-
dresses for botnet mitigation, which hosted 51 random-looking FQDNs. 28 FQDNs hosted
on five IP addresses in three ASes clearly represented malware, which we call the jailcoach
cluster (see §9.2.3.2). Another group of 10 FQDNs related to online pharmacy Spam (e.g.,
bargaincapsules.ru). The remaining eight groups with 110 FQDNs in total repre-
sented benign sites using a small set of different hosting providers, which were previously
requested not often enough to be known to the system.

Second, we targeted sites which quickly jump from one IP to the next (Fast-Flux)
and required that φ1 ≥ 1, φ2 ≥ 20, and φ3 ≥ 5. After filtering the original graph,
only eight FQDNs in three groups were left. The first one contained the malicious Fast-
Flux domain ttcuhdwk.biz (mapping to 38 IP addresses in 28 ASes). The FQDN
36c9f6794ed2d07d.outpostwastes.com and five similar others mapped to 39 IP
addresses in 32 ASes. While we could not find any information on these domains, we
suspect that this represented a DNS cache poisoning attack [2]. The remaining FQDN
irc.efnet.org on 21 IP addresses in 20 ASes was a false alarm. A manual investiga-
tion revealed that this FQDN was not requested at all during the first two days. Although
this represented no malicious activity, it therefore still represents the kind of agile DNS
which we aim to detect.

9.2.2 Targeted Whitelisting

The case of irc.efnet.org showed that certain benign DNS activity is indistinguish-
able from malware. This is an intrinsic limitation of DNS analysis, which also affects other
approaches. We explicitly acknowledge this, and integrate a fine-grained procedure for tar-
geted whitelisting in our system. That is, in contrast to other approaches which remove
large numbers of domains a priori [27, 10, 130, 129], we identify those which are truly
indistinguishable from malware, and remove only them.

We take advantage from the representation of DNS mappings as graph: some agile
groups may be large and contain, e.g., thousands of FQDNs and IP addresses, and therefore
it is not immediately clear which of these FQDNs should be checked for potentially being
whitelisted. For every agile group, we find the FQDN node with the maximum normalized
node betweenness [44]. This indicates that it lies on many shortest paths between two
other nodes, and is therefore important for the component’s connectivity. After checking
manually that the FQDN is actually benign, we create a new whitelist entry and rebuild the
graph without considering this FQDN. This often causes the group to fall apart, and the
individual parts are then removed by the filtering rules. Fig. II.25 shows a simple example.

In other cases, there is no single FQDN responsible for a group of sites being reported.
One such service is NTP, which involves a large number of different IP addresses around
the globe, which are used for many FQDN aliases (see also [130]). Another example is
CoralCDN, which uses FQDNs like PREFIX.nyud.net, where PREFIX is an FQDN of
an existing website. A cached copy of PREFIX is located in a large peer-to-peer network,
and the IP of the allocated server is returned to the requesting host. In other words, a large
number of IP addresses serves an ever changing set of FQDNs, which resembles malware
activity. In this case, there exists an FQDN pattern which we should whitelist. Therefore, we
find the popularity of FQDN suffixes for each group, and can quickly identify the dominant
one, which we then whitelist eventually. Table 7 shows the entire set of highly specific
whitelist patterns we derived, and which we use for all following experiments.

81

bargaincapsules.ru
ttcuhdwk.biz
36c9f6794ed2d07d.outpostwastes.com
irc.efnet.org
irc.efnet.org
PREFIX.nyud.net

www.de.kernel.org rsync.europe.gentoo.org

Figure II.25: Whitelisting example: the relative node betweenness of
rsync.europe.gentoo.org is 92%, and it is therefore by far the most impor-
tant node in this component. Removing it after a manual investigation causes this
component to fall apart and disappear from the results. Note that we collapse several IP
addresses from the same AS for better visualization (yellow nodes).

Whitelist

NTP
*.ntp.org; de.pool.ntp.arcor-ip.net
time.mk.cc; ntp.pch.at

CoralCDN *.nyud.net; *.nyucd.net

Other

cf.www.directadserver.com; grey-area.mailhostingserver.com
cf.www.forwardizm.com; pool.sks-keyservers.net
*.files.wordpress.com; liveupdate.symantecliveupdate.com
safebrowsing-cache.google.com; www.apple.com
rsync.europe.gentoo.org

Table 7: Whitelist used for experiments.

Θ=0.25 Θ=0.30 Θ=0.35 Θ=0.40 Θ=0.45

DNS–DS1
FF 4/14 4/13 4/13 3/10 2/9
MH 9/42 9/33 9/29 7/27 6/26

DNS–DS2
FF 9/21 9/21 9/20 9/19 9/18
MH 4/19 4/16 4/14 4/10 3/8

Table 8: Results for different selections of Θ and two detection scenarios (FF, MH). Shown
is the relation between confirmed malicious agile groups vs. the total number of reported
agile groups.

9.2.3 Malware Detection Scenarios

As discussed in §9.1.2, the agile group parameters allow us to encode queries for targeting
specific malicious hosting strategies. First, we address Fast-Flux (FF) activity by requiring
that φ1 ≥ 1, φ2 ≥ 20, and φ3 ≥ 5. This configuration resembles the goals of [130], but is
more sensitive and allows for much quicker detection. Second, we find Malicious Hosting
(MH) patterns by setting φ1 ≥ 50, φ2 ≥ 4, and φ3 ≥ 2. For our experiments, we consider
the last week of DNS–DS1 (i.e., ε=1 week), and the last four days of DNS–DS2 (i.e., ε=4
days). For each data set and each detection scenario, we investigate the agile groups which
are reported for Θ = [0.25, 0.30, 0.35, 0.4, 0.45]. Table 8 shows the overall results, which
demonstrate that even for low settings of Θ the number of false positives is still small. In
the following, we discuss the results for Θ=0.35 in detail. As shown in Table 8, this setting
consistently revealed all malicious agile groups that were found using lower Θ, and returned
less false positives.

82

xsushvcg.biz

ttcuhdwk.biz

geebuhkc.biz

Figure II.26: Group of Fast-Flux sites. Again, multiple IP addresses (red nodes) from the
same AS are collapsed to yellow nodes for better visualization.

9.2.3.1 Fast-Flux

For DNS–DS1, we retrieve 291 FQDNs in 13 agile groups, which we sort according to the
number of IP addresses per group. The top four groups include three confirmed malicious
ones, and none of them contained less than 50 IP addresses. The largest group contains
the FQDNs xsushvcg.biz, geebuhkc.biz, and ttcuhdwk.biz (which we found
already in §9.2.1), and 365 IP addresses in 155 ASes (see Fig. II.26). The three other
malicious groups contained 16/86/152 FQDNs and 136/50/23 IP addresses, respectively.
The remaining 9 groups with 34 FQDNs in total were misclassified benign, yet highly agile,
sites (e.g., connect.facebook.net). Note that this corresponds to a false positive rate
of less than 0.0001% of all unique FQDNs seen during one week, even when we assume
that the number of false negatives is 10,000 times higher than the number of false positives.
We maintain this false positive rate for all following experiments.

For DNS–DS2, we retrieve 321 FQDNs in 20 agile groups. A group with two FQDNs on
288 IP addresses in 125 ASes represented malicious Fast-Flux. Less obviously, a group of
12 FQDNs (34 IP addresses/12 ASes) was used for hosting malware (e.g., the Cycbot trojan
on fdg45e.nl.ai). Interestingly, seven other groups contained only one FQDN and
exactly 20 IP addresses in 15-20 different ASes each. All these FQDNs were subdomains
of syringemexican.com, and used domain prefixes which appeared to be randomly
generated. While we did not find any reference to these domains online, we consider this
activity to most probably relate to malware. The remaining ten agile groups represented
benign activity. Note, however, that the initial training period for DNS–DS2 was only two
days and ε=4 days, which was the reason for misclassifying some popular services (e.g.,
YouTube).

9.2.3.2 Malicious Hosting

For DNS–DS1, we find 29 agile groups with 3,409 FQDNs, of which 9 groups with 892
domains in total represented malicious hosting activity. One particularly interesting group
is shown in Fig. II.27 (the jailcoach cluster). It contains 147 FQDNs (8 IP addresses, 5
ASes), out of which we found 76 FQDNs in blacklists which were derived from Email
Spam. Note that neither the number of IP addresses per FQDN nor the number of ASes
is excessively high. Rather, the overall agility of the FQDNs and IP addresses as a group
stands out, which made them detectable. The fact that a subset of these FQDNs were found
also by the analysis of Spam emails underlines the complementarity of these approaches.

83

xsushvcg.biz
geebuhkc.biz
ttcuhdwk.biz
connect.facebook.net
fdg45e.nl.ai
syringemexican.com

foolishchance.com

roadclock.com

fieldgoat.com

blackapproval.com

earbirth.com

certainflame.comyqklr.fastslip.ru

imuad.hjntkdi.ru

bulbfly.com

Cheonan Broadcast Corporation

mousejump.com

errorbasket.com

fightevery.com

hjuhefs.rublackboiling.com

www.rolex.com.corkflat.com

hnkby.segjoml.ru

220.196.42.138
cordglove.com

peepknock.ru

managree.ru

tracehate.ru

mourndelay.ru

ivkyn.dxdukek.ru

pedalstrip.ru

guajt.hookdress.ru

hittow.ru

rgezx.gripblink.ru

sawtrot.ru

utptq.groansave.ru

pinechoke.ru

tracking.msadcenter.msn.www.blackboiling.com

bufzp.jogtime.ru

anygovernment.com

202.165.176.133

ohlgn.filmclose.ru zqzja.hpxrzip.ru

chaserub.ru

antbody.com

apparatusbulb.com

icetrust.ru

lockwhine.ru

looktwist.ru

chieffield.com

glutuel.ru

listearn.ru

languageenough.commihfl.jailscare.ru

ewodm.hateukp.ru

www.rolex.com.breadfor.com

offerkiss.ru

jellyslow.com

tracking.msadcenter.msn.cowonly.com

gardenkettle.com knotyoung.com

www.watches-cheaper.com

i.divehover.rugeneralcough.com
enginejudge.com

officebread.com

Pacswitch Globe Telecom Limited

jailcoach.ru

www.joinsmile.ru
boastheal.ru

hjntkdi.ru

hateukp.ru

www.longextend-penis.com

mugpark.ru

fightisland.com

www.rolex.com.cottonawake.com

Figure II.27: The jailcoach cluster: a group of malware sites, most of which seem to be
generated by concatenating two English words (e.g., jailcoach.ru). Few sites relate to selling
of fake watches (e.g., www.rolex.com.SUFFIX); others follow a different naming pattern
(e.g., hjuhefs.ru). We removed ∼ 2/3 of the original graph for better visualization.

Spam-based blacklists are typically highly accurate, but are limited in scope. On the other
hand, DNS-based analysis is less precise, but is able to provide the big picture for malware
activity, which goes beyond the detection of network resources hosting Spam content.

We identified a malicious group of 123 FQDNs (7 IP addresses, 5 ASes) (see Fig. II.28a).
Most of these FQDNs seemed to relate to pharmacy Spam and 12 FQDNs were found by
the Spam blacklist BL8. However, other FQDNs using the same IP addresses followed a
completely different naming scheme (e.g., igfh.ru) and were not listed by BL8.

Another particularly interesting example is a group of 86 FQDNs (50 IP addresses, 28
ASes) (see Fig. II.28b). Most of the FQDNs have the format <PREFIX>.youngand<WORD>
1.comwhere 〈PREFIX〉was a random string and 〈WORD〉 an English word (e.g., girls).
37 of these FQDNs were found by blacklist BL8. Other sites hosted on the same IP ad-
dresses do not appear in any blacklists though (e.g., ulqsibydur.com). We suspect that
these domains were used for a different purpose, and were therefore not seen by the Spam
analyzers.

For DNS–DS2 we find 14 groups with 1399 FQDNs, of which 408 domains in four
groups were indeed malicious. For example, Fig. II.29 shows a group of 85 malicious
FQDNs which are hosted on 12 IP addresses in 8 ASes. Again, many sites map to only one
IP address, and are still being detected. Note that the vast majority of non-malicious groups
we found related to adult content offerings, which use a highly agile set of domain name
aliases to attract more customers.

9.2.3.3 Other Findings

As the graph analysis module is decoupled from DNSMap, one can quickly query the sys-
tem for a variety of different malware activity patterns, and thereby enable explorative,
curiosity-driven network data analysis. In the following, we exemplify several interesting
findings.

Some malware domains neither use an excessive number of IP addresses, nor do they
share these addresses with other domains. As these sites often use redundant hosting, our

84

igfh.ru
<PREFIX>.youngand<WORD>1.com
<PREFIX>.youngand<WORD>1.com
ulqsibydur.com

canadianvetmeds.ruwyfsy.ru

discountrxdrugs.net

zpbko.ruwww.storetabletspharmacy.com

mymedicationsstore.ru

www.drugmegamart.net

ff3rrfxeel6w.devadaruz.com

jgfh.ru

igfh.ru

dietpillshoppe.com

gujh.ru

shybviccev.com

(a) “Pharma” group

wffkw1b.youngandhot1.com

3o5mnnx.youngandgo1.com

lb52jo8.youngandgirls1.com
xsvcqi.youngandwet1.com

mamev.asofydewop.com

ufhaqe.ulqsibydur.com

(b) “YoungAnd” group

Figure II.28: Two groups of malicious sites found in DNS-DS1. We removed parts of
the revealed groups for better visualization and highlighted several illustrative examples of
FQDNs. Black nodes represent IP addresses, yellow ones ASes, and gray ones FQDNs.

rjypuhzudj.com

Monyson Grup S.A.

pharmsoulless.com

patientscaretablet.com

deficitmedicare.com

www.drugstorehealthcaremeds.net

badgeslevitra.com

healthcareims.com

landrieucialis.com

dfdg.ru

rxpharmacytreatments.eu

griesebner.icsj.ru

www.hindujaharmherbal.com

drugdestroypillsrx.ru
drugstorewellbeing.ru

techmedsphysic.ru

medsdisease.com

pillsfitnessdrugstore.net
drugstorewalgreens.com

quvytjajri.com
rxdrugspills.com

treatmentstabletspills.netthojfyfojym.com

healthpharmacypatients.com

wikiherbaltreatment.be

medinning.com

nuifg.ru

jeanlevitra.be

nuihj.ru

www.tablethoneycomb.com

olheoxwowru.com

patientslnesscare.com

tablethealthxoom.com

23VNET Ltd.

walcher.icsj.ru

www.cialistpassword.com

www.drugssviagra.com

cialissunspace.com

hankaghaz.com

ommapharmacytablets.ru

malariaprescription.com
www.drugstoreremediesrx.net

pillhealthcarehealth.com

www.drugtorefitnesspharmacy.eu

nuiwq.ru

pharmacytabletshealthdrugstore.net

rxdrugstoremedicines.eu

tabletsdrugsdrugstore.net

taxmedicaretablet.com

qukypdix.com

F.P.C. VIALON SRL

medicalmedicineprescription.com

www.medrxgroup.com

uaxjilked.com

genericpharmacydrugstore.com
huiw.ru

ubedacqugg.com

drugstoreclaytabletsrx.net

ezlubbag.com

hyofgickodd.com

techmedicinephysic.ru

freerxtablets.ru

syndromedicinewiki.be
taxpharmedicare.be

zenfsgracialis.com

prescriptionpatients.com

COMTEL Supernet srl

tabdietgalaxy.com

techmedsmedicine.ru

canadianharmcanada.com
www.boogaardrugstore.com

counterpunchrx.com

myhealthpills.com
healthcarepclinical.com

receptormed.com

www.tabletpatients.com

icsj.ru

www.rxtabletsnutrition.net

www.petraeuslispharmacy.com

caloriepill.com

drugenericspill.com

pillsleboogaard.be

medicalrxhiv.com

jihkivvea.com

www.nummipharmacy.com

techmedicinepills.ru

viagrawalgreens.com

www.zenfspills.com

viagralevitratestosterone.com

Figure II.29: A group of malicious sites found in DNS–DS2.

system can be tuned to detect them. We set ε=1 second and required that φ1 ≥ 1, φ2 ≥ 5,
and φ3 ≥ 5. This allowed us to find, e.g., the Phishing site flickr.loginformm.org
immediately when it was requested the first time, 3.3 days into DNS–DS14. Running this
analysis for an entire day of DNS–DS1 yielded only 10 distinct FQDNs, of which three
related to malware. Note that the strength of the system is here to not report a vast number
of benign sites (each mapping to many IP addresses), as the system understood that these
represent no significant changes. Therefore, we can use a highly sensitive configuration,
without introducing many false positives.

Another group of Phishing sites was found in DNS–DS2. All domains followed the for-
mat PREFIX.com.net, where PREFIX was identical or similar to a well-known service
name (e.g., facebook, googele). This underlines the importance of keeping a human
analyst in the loop, who can differentiate this particular activity from a benign one (e.g.,
NTP, see §9.2.2).

4http://www.phishtank.com/phish_detail.php?phish_id=1084355

85

flickr.loginformm.org
PREFIX.com.net
facebook
googele
http://www.phishtank.com/phish_detail.php?phish_id=1084355

Our analysis of DNS–DS1 revealed the two domains ssh.bl4ze.info and sw.
maximum-irc.info, which mapped to five IP addresses in five ASes. We found a
malware binary analysis report from Feb. 2011 which stated that these domains hosted
C&C services for a ZeuS botnet at that time5. Our analysis would have found this activity
much earlier (Dec. 2010), and would therefore have enabled early countermeasures. We
found several other domains used for botnet C&C, both in DNS–DS1 and DNS–DS2. For
example, ncbcyety2j4h5g.com related to the Torpig malware and was detected despite
the fact that it used only two IP addresses in two ASes6.

As a final example, we report the detection of ltbowyndzv.ce.ms in DNS–DS2.
We found an entry on Google Safebrowsing7 in May 2013, stating that this site hosted
malware within the last 90 days, i.e., 1.5 years after the data set was recorded. Our graph
analysis module also reported ckrmrku.ce.ms in the same agile group, which was how-
ever not detected by Google.

9.3 Discussion

In our experiments we found various kinds of malicious activity, ranging from Fast-Flux
(probably used for Botnet Command-and-Control), over Phishing and exploit sites, to do-
mains used in Email spam. Even moderate agility patterns are detected, and many of them
relate to malware activity. Our parameter settings force malware to reduce its agility pat-
terns significantly for going undetected. However, this highly sensitive configuration comes
at the cost of misclassifying certain benign activity as malicious. We argue that such ac-
tivity should be reported though, as DNS analysis alone is not able to differentiate it from
malicious services, when both show similar levels of agility. A targeted, in-depth analysis
is enabled by the low number of misclassified domains, and supported by the structural
representation of our approach (see §9.2.2).

We consider the representation of the system’s output as graphs as highly valuable.
Many times we were able to understand immediately if an agile group is indeed involved
in malicious activity. Often, well-known domains (e.g., reddit.com) were connecting
several benign sites, and whitelisting them caused an entire misclassified group to disappear
from the results. Conversely, for some groups, only the existence of a small number of
obviously dubious sites raised our suspicion about a group of domains which by themselves
mostly appeared inconspicuous. We believe that it is essential to keep the human analyst in
the loop, as many patterns are difficult to reveal in an automatic manner.

An important feature of our system is its ability to reveal malware domains independent
of the number of requests. This allows us to detect new outbreaks early, and enables timely
reactions (e.g., blocking). In a real-world deployment, the number of requests may be used
as an additional feature, to quantify the popularity of a particular detected site. However, it
is not strictly required by the system. Likewise, one would construct more complex graph
queries than we used in our experimental evaluation, by logically combining settings for
different scenarios (e.g., Fast-Flux OR malware hosting).

Our approach bases on the high stability in DNS mappings of benign services (see §8.2).
Popular sites require more hosting resources (i.e., IP addresses), and appear therefore more
agile, and require more training data for being properly modeled. An interesting property
of this essential modeling step results from the fact that sites which are requested often are
better modeled than less popular ones. We emphasize that DNSMap by design reports all
DNS mappings which involve a new IP address, and such activity is therefore guaranteed

5http://www.exposedbotnets.com/2011/02/swmaximum-ircinfobotnet-hosted-
in.html

6http://www.threatexpert.com/report.aspx?md5=6412ba5583756b80557020197981c401
7http://google.com/safebrowsing/diagnostic?site=ltbowyndzv.ce.ms

86

ssh.bl4ze.info
sw.maximum-irc.info
sw.maximum-irc.info
ncbcyety2j4h5g.com
ltbowyndzv.ce.ms
ckrmrku.ce.ms
reddit.com
http://www.exposedbotnets.com/2011/02/swmaximum-ircinfobotnet-hosted-in.html
http://www.exposedbotnets.com/2011/02/swmaximum-ircinfobotnet-hosted-in.html
http://www.threatexpert.com/report.aspx?md5=6412ba5583756b80557020197981c401
http://google.com/safebrowsing/diagnostic?site=ltbowyndzv.ce.ms

to be detected if sufficiently many addresses (in our trials: 4-20/week) are being used. We
can detect such moderate fast flux activity due to the thorough understanding of the activity
of benign sites. Large services like Google may use many more IP addresses, but they use
the same ones over time, and they do not change the FQDN patterns.

9.3.1 Limitations

The proposed system is heavily based on the concept of guilt by association, i.e., if one
FQDN or IP in a graph component is found to be malicious, then all are considered mali-
cious. The advantage of being able to reveal also malware activity which does not stand out
by itself, comes with the drawback that also legitimate sites may wrongly be classified as
malicious. In fact, in our experiments we occasionally found sites which appeared benign,
but happened to map to IP addresses used by malware. We consider this tradeoff to be
inherent to DNS-based analysis though, which is unable to observe the actual data transfer
between IP addresses.

DNSMap stores information about every single IP address it observes, and therefore
benefits to a certain extent from the relatively small size of the IPv4 address space. With the
migration to IPv6, and the omission of the requirement to reuse IP addresses for multiple
services, the number of observed addresses will likely increase vastly, and our system may
have trouble in keeping track of all these IPBlocks. However, not all IP addresses are
equally often seen, therefore a caching solution with a database backend might solve this
problem.

Also note that the DNSMap representation of DNS activity is valid for a single vantage
point only, and cannot be trivially transferred to other networks. This is because the map-
pings between FQDNs and IP addresses often depend on the geographical location of the
requesting host, so to optimize the data transfer performance between server and client.

9.3.2 Evasion Strategies

In general, an adversary has two main options for evading our system: either escaping
DNSMap’s change detection, or going unnoticed w.r.t. the corresponding graph features,
i.e., use only few FQDNs, IP addresses, and ASes per agile group. This comes at a cost,
as fewer IP addresses being used per FQDN impacts the reliability of the malware service.
Knysz et al. discuss fast-flux evasion strategies in [95], and derive models describing the
relation between the number of online malware IP addresses and the availability of the
corresponding malware sites. They consider a minimum number of 100 unique IP addresses
per week and FQDN, which results (according to their model) in an average of 2.89 online
IP addresses and a connection loss probability of 71.1%. Although this would already
result in poor malware connectivity, this kind of activity is still far beyond the sensitivity
limits of our system. In fact, we would have revealed any Fast-Flux activity which involves
≥ 20 IP addresses per week and agile group (as opposed to a single FQDN). Therefore,
we can easily detect malware activity even when all the proposed evasion techniques are
implemented, and the overall malware utility is already considered poor.

Therefore, the adversary might try the second option, i.e., avoid that malware activity
results in DNS change events in the first place. All new IP addresses being used are re-
ported always, therefore the challenge lies in using only IP addresses which are known
to DNSMap, and use FQDNs which are similar (i.e., DD < Θ) to the corresponding
IPBlocks’ cluster labels. Less than φ1 new FQDN “families” on < φ2 IP addresses in
< φ3 ASes can be introduced per epoch ε for going undetected. As shown in §7.2.1.1,
our selection for Θ leaves only limited degrees of freedom, and forces the adversary to
use stable patterns for constructing FQDNs which appear similar (e.g., by using a com-
mon suffix). This strategy can not be changed for at least ε, i.e., one week in our case.

87

In other words, the adversary is forced to use a less agile mapping procedure, which is
the opposite of what was originally intended. This leaves significant time for other de-
tection approaches (e.g., malware binary analysis) for revealing this pattern, and derive a
corresponding blacklist entry (e.g., *〈SUFFIX〉). Furthermore, these restrictions have a
severe impact on malware activity which requires flexibility in the choice of FQDNs for
various reasons, e.g., Phishing FQDNs which should mimic the structure of the target site
(e.g., www.example-bankk.com), or sites which aim at appearing benign (see, e.g.,
Fig. II.27).

9.4 Summary

We discussed a malware detection system which is exclusively based on DNS FQDN-to-
IP mappings. We extract these mappings from traffic data, and find profiles describing
typical FQDN patterns for arbitrary-length IP ranges. Malware uses DNS for combining
high service availability with resilience to countermeasures. This agile DNS activity results
in changes to the DNS profiles, which we further investigate using graph analysis. In a
number of experiments we showed how different malware activity can be targeted, and
discussed the difficulties of evading our system.

In particular, we made the following main contributions:

1. We discussed the design of an analysis system which processes large amounts of DNS
traffic data in real time. It produces valuable output already after two days of initial
training, and continuously adapts over time without requiring a retraining phase. In
contrast to most other approaches, the system does not require any prelabeled traffic
data and no a prior whitelisting. As FQDN whitelists often contain many, unspecific
entries as, e.g., *.SUFFIX, our system therefore allows more control about the ac-
tually ignored FQDNs. The set of analysis parameters is small, and can be intuitively
tuned for new deployments.

2. The basis of our approach is a new methodology for assessing the level of agility of
DNS FQDN-to-IP mappings. Our approach, called DNSMap, tracks the mappings
between FQDNs and IP addresses, and stores them efficiently. In contrast to existing
work [27, 10], we always consider the entire FQDN instead of only a suffix, and are
therefore able to provide more specific results.

3. On top of DNSMap, we employ graph analysis for analyzing sets of suspicious DNS
mappings, in order to address the distributed (CDN-like) nature of malicious net-
works. We proposed a set of graph analysis features, and demonstrated that even
conservative settings reveal malware activity reliably.

4. Conceptually, DNS traffic analysis cannot provide an ultimate verdict of the mali-
ciousness of domain names and IP addresses, without considering any actual payload
exchanged with a site. Our approach enables almost instantaneous detection, so to
enable such an analysis at the time when a malicious site is still active. Furthermore,
it provides an intuitive way to assess the overall suspiciousness of groups of FQDNs
and IP addresses, which allows the analyst to quickly focus on highly suspicious
activity.

5. We use significantly less data than other approaches and our system is more sensitive
to malware activity. It can be easily tuned to reveal different kinds of malware activity,
and is therefore not restricted to Fast-Flux detection. Therefore, it is more versatile
than previous work [130, 129].

88

*.SUFFIX

Part III
Connection Analysis

Network-based malware detection is heavily complicated by the fact that malware develop-
ers introduce obfuscation and encryption techniques [126]. The analysis of such commu-
nication is difficult, as, in general, many traffic features do not contain information which
exclusively relates to malicious activity. Malware mimics benign traffic by using the same
protocols, and infected hosts typically engage in (malware-initiated) criminal communica-
tion, as well as in (user-initiated) benign one. Telling those types of communication apart is
challenging, as the criminals behind the malware are free to introduce new measures which
prevent successful analysis, or at least delay it long enough to make revenue.

Among the few traffic features which cannot be easily obfuscated are the identifiers of
the communication endpoints, i.e., the IP addresses of source and destination of a packet.
The analysis of connection graphs built from such information has been explored previously
(see §4.2.3), and it was found that malicious sub-structures in such graphs can be revealed.
However, these graphs are typically extremely large, and existing analysis procedures can-
not cope with them in real time (see §4.2.2). Furthermore, Internet hosts which fell victim
to criminal activity engage in both benign and malicious network communication. Connec-
tion graph analysis which considers these connections only, cannot differentiate these two
types, and is prone to consider benign sites as part of a criminal plot, just because they were
contacted by hosts which also contacted malicious sites.

The work presented in the following is driven by the idea of identifying the set of net-
work locations which are normally contacted by a specific host. Each anomalous connection
of each monitored host is further analyzed, and patterns of collaboration between moni-
tored hosts are revealed. We evaluate the prototype implementation using traffic data from
a network operator, and show that the size of the network graphs to be analyzed can be
significantly reduced, and malware activity can be revealed reliably.

This work has appeared in the following publication:

• Andreas Berger, Alessandro D’Alconzo, Wilfried N. Gansterer, and Oliver Jung. Lo-
cality matters: Reducing internet traffic graphs using location analysis. In Proceed-
ings of the Performance and Dependability Symposium (PDS) at the 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
pages 1–12, Budapest, Hungary, June 2013

89

CHAPTER 10
Problem Definition

The premise of graph-based malware detection approaches is that Internet hosts which fell
victim to the same Internet crime would contact the same hosts. For example, victims of
a Phishing attack would contact the same servers, and therefore be indirectly connected to
each other, via these servers. In case of, e.g., botnet C&C communication based on P2P
protocols, the infected hosts would even connect directly. In general, the precise type of
connections required by a specific malicious activity is unknown a priori. Nevertheless,
there is often some degree of connectivity among and between victim hosts and malicious
servers. We summarize all these different levels of connectivity as patterns of collaboration
among a set of Internet hosts, which represent sub-structures in a graph representation of
Internet traffic.

In accordance with the existing literature [88], we adopt the term “Traffic Dispersion
Graph” (TDG) for describing connections between Internet hosts as graphs. Specifically,
we consider static TDGs (as defined by [88]), which represent the aggregated connections
over a certain time interval (i.e., an epoch). As discussed already in §4.2.3, the main prac-
tical problem of such approaches are the vast sizes of TDGs, which hinder the analysis of
the underlying traffic information. As one does not know in advance which hosts are in-
volved in malicious activities, it is necessary to consider as many hosts as possible in the
graph, so to increase the chances of detection of collaboration patterns of a subset thereof.
Furthermore, a single graph should represent a sufficiently long period of time, as malicious
activity is, in general, not synchronous. I.e., although two hosts may be infected with the
same malware instance, they may contact a malicious server at different moments in time,
because of, e.g., simply the fact that the infected machines were not switched on simulta-
neously. Therefore, no collaboration patterns would appear in the TDG if the chosen time
interval is chosen too short to contain the communication of both hosts. Finally, one cannot
know in advance which protocols are being used by a specific type of malicious activity.
Therefore, it is, in general, not possible to preprocess the TDG such that only a specific
type of communication is included, as, e.g., only packets with payloads which contain a
specific keyword. Consequently, the graph representation should be independent of the ac-
tual payload, but rather allow the detection of any specific type of collaboration, regardless
of the communication protocol in use.

These three main requirements are illustrated in Fig. III.1. Any two requirements can
be fulfilled rather trivially. For example, an analysis system can easily consider all packets
of all monitored hosts, if the time window is being kept small. Likewise, it is possible to
build graphs representing the communication of many hosts over long periods of time, if
only highly specific packets are considered (e.g., only HTTP packets containing a certain
keyword). Meeting all three requirements is significantly harder, and is addressed in the
following.

91

Long
Time

Many
Hosts

Independent
of Payload

Goal

Figure III.1: Illustrating the problem of graph analysis of Internet connections.

Filtering is a standard data reduction technique. In the context of network anomaly de-
tection, connections to a set of services, which are considered out of scope for the particular
detection task, as, e.g., www.google.com, would often fall in this category. This concept
is commonly called whitelisting and usually causes a significant reduction of the graph com-
plexity, due to the high share of Internet traffic that these sites attract. This simple approach
has significant drawbacks though: (i) The increasing usage of CDNs and cloud comput-
ing platforms make it hard to decide which IP address represents which service at which
time. Any IP address can be used for a variety of services. Should therefore all connections
to/from an IP address in, e.g., Google’s AS be removed? Similarly, should we whitelist all
connections to CDNs (e.g., Akamai) and cloud providers (e.g., Amazon EC2), which are
also commonly used by large services? The more broad the filtering for a specific service is
being configured, the more other services are unintentionally being removed together with
it. (ii) This concept of service-based whitelisting is intrinsically a technique that assumes a
uniform level of confidence in the decision to filter a certain site, independent from the in-
dividual host contacting this site. It is therefore quite possible that a connection to a popular
IP address is in fact anomalous for a particular host.

In summary, this problem poses a number of challenges: (i) Highly popular “good” sites
should be removed early, to avoid false positives and unnecessarily high load on the graph
analysis algorithms (many are NP-complete); (ii) The packets’ payload cannot be consid-
ered for preprocessing; (iii) The graph reduction technique needs to scale to thousands of
monitored hosts, as usually no evident structure can be identified from the analysis of only
few hosts; And (iv), the graph should represent connections during a time window wide
enough to catch asynchronous, but still related, communication of multiple hosts.

Basic Concept

We are interested in deriving reduced TDGs while retaining the suspicious traffic patterns
of individual monitored hosts. That is, instead of focusing only, e.g., on connections which
involve specific packet payloads, we aim at deriving a system which is able to understand
which connections are anomalous for each of the monitored hosts, based on these hosts’
previous activity. Any such preprocessing must be scalable, and therefore cannot employ
any information that is expensive to extract, as, e.g., using deep packet inspection. Similar
to the presented DNS analysis approach (see §II), we aim at exploiting the inherent agility
of malicious Internet activity. In contrast to benign services, malicious services are hosted
on a changing set of server resources, and the set of hosts which are contacted by a victim of

92

www.google.com

REDUCTION I REDUCTION II

Monitored
Host

External
Host

INJECT

KNOWLEDGE

COLLABORATION

DETECTION

Figure III.2: The four main steps of the connection analysis approach. Starting from a
complete TDG which contains all traffic data, we derive a reduced TDG which can be
analyzed efficiently.

Internet crime is therefore expected to vary over time. Hence, we consider only such agile
connections for inclusion in the TDG to be analyzed. The envisioned approach involves a
series of four main steps which are illustrated in Fig. III.2. We discuss these steps in the
following.

Reduction I: We observe that there exist specific distributions of the (external) contacts
for each monitored host, since users tend to consume the same Internet services over time.
However, each host has a specific distribution of contacts, which does not allow to use a one-
fits-all pattern to distinguish normal from anomalous or suspicious connections. Therefore,
we focus on a per-host traffic description, which is compact in terms of memory consump-
tion and adaptive to the observed traffic data per host, while still being able to represent
typical traffic patterns with high accuracy. Any deviations to a particular host’s previous
activity are retained, while connections which are known to be typical for this host are not
further considered, and the corresponding edges are deleted from the TDG. Note that this
may disconnect single nodes, which are then also removed from the graph.

Reduction II: Following the removal of individual nodes and edges, we consider the
topological structure of the remaining graph for further reduction. This is based on the
observation that certain sub-structures are not relevant for finding collaborating malicious
hosts. For example, nodes representing external hosts which have a node degree of one,
are destinations of only one suspicious connection, and are therefore unlikely to represent a
popular malicious server.

Inject Knowledge: We rely on external information for identifying a set of malicious
hosts which serve as a seed for the detection of malicious collaboration. Such information

93

can be retrieved, e.g., from malware binary analysis (see §4), from public blacklists, or from
other detection approaches like the DNS analysis presented in §II.

Collaboration Detection: Finally, we use graph-based community detection approaches
to identify the hosts which collaborate with the malicious seed hosts, and which therefore
are likely malicious themselves.

94

CHAPTER 11
Analysis Approach

In the context of malware detection, a standard approach for reducing the complexity of
the Internet traffic data to be analyzed is the omission of any data which refers to well-
known, benign services like www.google.com. However, as discussed in §8.2, due to
the widespread use of CDNs and cloud computing platforms, there exists in general no
bijective mapping between service names and IP addresses. In other words, a single IP
address usually hosts a multitude of different services, and the mapping between a service’s
name and an IP address rotates quickly depending on the time of day and the current load.
As TDGs represent communications between hosts which are identified by IP addresses,
service-based whitelisting requires us to understand precisely which IP address corresponds
to which service at which time. Alternatively, one could whitelist entire ASes. This is
however a rather coarse measure, and potentially removes many “interesting” connections
together with the popular ones.

Instead of completely ignoring large IP ranges or entire ASes, just because a single
popular site is occasionally being hosted there, we envision a technique that is able to re-
move those edges from a connection graph that represent activity that is considered normal
for a particular host. We propose to use Points of Presence (PoPs) as a trade-off between
IP address and AS information. PoPs are physical locations where a set of network hosts
accumulate, e.g., the location of a particular data center or the city in which an Internet
customer lives. Considering a PoP instead of an IP address has the advantage that PoPs
absorb a certain amount of the fluctuation caused by CDNs. Instead of trying to untangle
the mappings between service names and IP addresses, we rather present a methodology
that directly infers the PoPs which a host contacts regularly, and which are therefore not
considered anomalous for this particular host.

Fig. III.3 shows the considered scenario: a network operator observes connections be-
tween monitored hosts and groups of external hosts at a number of different PoPs. For being
able to apply “Reduction I” (as introduced in the previous chapter), we aim at deriving an
automatic procedure which finds those PoPs that are regularly contacted by a particular host.
Consequently, we would then disregard connections of this host to hosts at these PoPs, and
thereby achieve a reduction of the TDG.

Certainly, this is still a rather coarse measure, as we exclusively use IP address infor-
mation for deciding about the unusualness of a connection. Therefore, we do not claim
that we would find each and every suspicious connection, but rather hope to find enough
ones to identify the malicious activity. To illustrate this, consider the following (simplified)
example: assume that a new malware infects a large number of monitored hosts, and starts
contacting IP addresses at a number of different PoPs, e.g., to download additional data
or report back to a control server. Some monitored hosts would probably have contacted
some of these PoPs before, and therefore this activity would seem normal for them. How-
ever, some other hosts would have never contacted a subset of these PoPs, and therefore

95

www.google.com

external hosts

monitored hosts
100.101.23.67

192.0.0.57

...

...

PoP 1 PoP 2 PoP 3

network
edge

Figure III.3: The basic scenario we consider: a network operator monitors the connections
between a set of internal hosts and a (much larger) set of external hosts at one or more edge
routers.

these connections would stand out and are consequently considered in the reduced TDG.
By knowing that at least one of the involved hosts is malicious, we can find the community
of hosts which are involved in this malicious activity. Upon this first alert, a network oper-
ator can then conduct an analysis that focuses on the newly found contacted IP addresses,
and eventually find the specific type of malicious activity.

Limitations This approach is obviously not perfect though. An immediate argument that
speaks against the usage of PoPs is that whitelisting a PoP (for a particular monitored host)
is equivalent to ignoring all services hosted at the same PoP. This is obviously true, but we
argue that we cannot do much better than that. In general, we cannot learn from connection
information only, if a new IP address at a known PoP represents a known, “good” service, or
a new, “bad” one. At the same time, we cannot use significantly more data and still capture
the activity of all hosts. However, we combine per-host profiles and graph analysis. By that,
we do observe connections of hosts which never consumed any service at this PoP, which
makes the PoP appear in the graph, and makes it accessible to the subsequent structural
analysis of connection patterns.

There are other constraints of more practical nature. The mapping between an IP ad-
dress and its PoP can be efficiently found using a variety of (commercial) databases. For our
system, the granularity of these databases is highly important, as it defines the achievable
resolution of the envisioned per-host traffic description. Note that the accuracy of the loca-
tion information for a particular IP is less crucial for our approach. As we aim at detecting
changes in the set of PoPs being contacted by a particular host, the true location of a PoP is
of secondary importance.

We preliminary evaluate the granularity of such databases in as follows. For this work,
we use MaxMind’s freely available GeoCityLite database1. It contains 144,335 PoP lo-
cations with registered IP addresses, which we show in Fig. III.4. Note that no map is
underlying this plot. Apparently the coverage spans almost all populated areas, and the
granularity of the data is sufficiently high even to recognize coastlines.

Next, we evaluate the advantage of using PoPs instead of AS information. Fig. III.5
shows the cumulative distribution of the number of PoPs per AS. Out of 33,406 ASes, 40%
use more than one PoP location, around 20% use three or more, and some reach thousands
of locations. The ASes with most locations are mostly ISPs (e.g., one AS belonging to
AT&T maps to 6,455 PoPs). Hence, PoPs consistently differentiate Internet hosts better
than AS information. Furthermore, the quality of our representation further improves with
better location resolution in the database.

1http://dev.maxmind.com/geoip/

96

http://dev.maxmind.com/geoip/

Figure III.4: Locations with registered IP addresses, based on Maxmind’s GeoLite City
database from Dec. 2011.

101 102 103 104

Number of Locations

0.6

0.7

0.8

0.9

1.0

Figure III.5: CDF of number of PoP locations per AS.

11.1 Methodology

The main challenge consists in characterizing the normal activity of each monitored host.
Fig. III.6 illustrates this basic idea: PoPs that a monitored host contacted often in the past
and which are therefore in “high density areas” are “normal”, PoPs in “low density areas”
are suspicious. The figure also illustrates a fundamental problem: using a fixed grid for
defining the areas is imprecise. Rather than describing each possible area with the same
resolution, we want to concentrate it on high density regions, and thereby provide a more
accurate approximation of the hosts’ activity.

Our goal is the efficient modeling of the distribution of PoPs which were contacted by a
specific monitored host in a certain epoch ε. We consider in the following two-dimensional
distributions of PoP locations (i.e., longitude and latitude). We propose a technique that
compresses these data, by approximating these distributions. The approach is based on or-
der statistics and leverages their ability to capture the approximate shape of a distribution
without requiring any a priori assumptions. We found that this is a fundamental feature in
our context, as individual distributions vary heavily depending on the services a monitored
host consumes, as well as with the time of day. In the remainder of this section, we first re-
visit order statistics of unidimensional samples and sketch the basic idea. We map this then
to the two-dimensional case and show how we can derive scores for individual connections.

97

low density area

high density area

PoP

Figure III.6: Examples of PoPs contacted by a monitored host and a possible (though subop-
timal) partitioning in geographical regions. For the sake of better visualization we assume
here that all locations have been contacted equally often.

11.1.1 Preliminaries: Order Statistics

Order statistics are an established, parameter-free, and simple technique to describe any
empiric unidimensional distribution D. Given an ordered set P of N samples P := {p1 ≤
p2 ≤· · · ≤ pN}, then pρ is the ρ-th order statistic and ρ is called the rank of pρ. We call
k = ρ/N ∈ [0, 1] the relative rank and ηk the (sample) k-quantile. Order statistics provide
a non-parametric way to compute estimate quantiles ηk of the distribution D underlying
the set of samples, without making any assumptions about the nature of D. Note that there
are several different ways to define a quantile [86]. We are particularly interested in the
non-interpolating definition, where the estimate is an element of P . These quantiles can
be derived from a data sample in O (N · logN) time for sorting, plus O (K · logN) for
deriving K quantiles.

The relation of the distances between two relative ranks and their corresponding quan-
tiles relates to the relative density of D in this range. Therefore, K quantiles implicitly
provide K− 1 estimates for the Probability Density Function (PDF) of D. This enables ba-
sic comparisons of currently observed samples with a previously observed set of quantiles:
if the value falls in a dense region of the PDF, similar values were observed when computing
the quantiles. However, simply choosing a fixed, large set of relative ranks for computing
quantiles for whatever set of samples, with the expectation that this would provide a highly
precise approximation of the PDF, is misleading. For few samples, the estimation of the
PDF can be only a coarse one, with a high degree of uncertainty in the accuracy of the
computed quantiles. Therefore, the set of relative ranks needs to be data-adaptive, i.e., it
must depend on the available number of samples.

To address this issue, we propose to compute for each set of relative ranks the minimum
number of samples such that the confidence bounds of the corresponding quantiles do not
overlap. Hence, the less samples are available, the less quantiles are being estimated, mak-
ing the concept adaptive to N . The Clopper-Pearson confidence interval [40] requires as
input the number of samplesN , a confidence level γ ∈ (0, 1), and k, to compute the interval[
ρ−k , ρ

+
k

]
, where ρ−k and ρ+k are the ranks of the lower and the upper bound for ηk. Starting

from a maximal set KMAX, we derive different combinations Km ⊂ KMAX. By sorting the
elements of Km such that {k1 < k2 < · · · < ki < . . . } we find those Km for which every
ki ∈ Km : ρ−ki > ρ+k(i−1)

and ρ+ki < ρ−k(i+1)
. I.e., we find combinations Km for which the

confidence bounds of the quantiles to be computed do not overlap.
The Clopper-Pearson interval for a quantile estimate can be efficiently computed as

98

ρ+k =

(
1− BetaInv

(
1− γ

2
, N − ρ, ρ+ 1

))
·N

ρ−k =

(
1− BetaInv

(
1− 1− γ

2
, N − ρ+ 1, ρ

))
·N

(11.1)

where BetaInv is the inverse Beta distribution [34]. The (extended) algorithm for se-
lecting relative ranks based on the number of samples is shown in Table 11.1, and will be
further discussed in §11.1.4.

11.1.2 φ-α Quantiles

Given the two-dimensional nature of our problem, i.e., distributions of locations defined
by longitude and latitude of the contacted PoPs, we present in the following a solution
that applies the previously introduced ideas. Computing exact two-dimensional quantiles
is computationally expensive [42] and does not scale to the envisioned scenario with thou-
sands of Internet hosts and millions of connections. Therefore we rely on an approximate
solution, which has the advantage of having similar computational complexity as determin-
ing unidimensional quantiles. The idea is based on the concept of dominance.

Definition 3 A point p dominates a point q if p has higher rank in both dimensions x and
y: p � q := ρx(p) > ρx(q) ∧ ρy(p) > ρy(q).

Definition 4 Given a set P of N points in the plane. The dominance set of a point p ∈ P is
defined by dom(p) := {q ∈ P | p � q}. Its weight is defined as w(dom(p)) :=

∑
q∈dom(p)

|q|,

where |q| is the number of occurrences of q.

Note that these definitions are analogous to unidimensional quantiles. Cormode et al.
[42] suggest a fast approach to compute so-called φ-α quantiles, which are sets of point es-
timates for multidimensional quantiles. We replicate in the following the basic formulation,
and refer the reader to their paper for further details. We developed an efficient algorithm
for computing φ-α quantiles which we discuss (including a proof of its correctness) in the
appendix (see §A). The computational complexity of our solution scales like O(N · logN)
where N is the number of unique points.

Definition 5 The φ-Dominance φ(p) of p is w(dom(p))/N . The set Pφ contains all points
p ∈ P where φ(p) ≤ φ.

Definition 6 The α-Dominance αp of p is ρy(p)/(ρx(p) + ρy(p)). The set Pα contains all
points p ∈ P where αp ≤ α.

Definition 7 The φ-α quantile ηφ,α is the point p ∈ Pφ ∩ Pα with the maximum ρy. In
case many points share the same maximum ρy, the one with the maximum ρx is selected.

Example: In Fig. III.7 we plot the φ− α quantiles for N=100 synthetic samples from a
uniform-uniform distribution, using φ ∈ Φ := {0.1, 0.5, 0.9} and α ∈ A := {0.4, 0.5, 0.6}.
The solid lines connect point estimators with the same φ, and the dashed lines the ones
with the same α, respectively. On the lower left, we highlight the region that the quantile
ηφ=0.1,α=0.5 dominates. The points in that region comprise the set dom(η(0.1,0.5)). Includ-
ing η(0.1,0.5) itself there are nine points in this region, therefore w(dom(η(0.1,0.5))) = 9.
The quantile’s φ-value is therefore 9/100 = 0.09, which is the closest approximation to the
requested φ = 0.1 that the algorithm was able to find using α = 0.5.

99

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure III.7: φ − α quantiles example for 100 random samples from a uniform-uniform
distribution.

11.1.3 2D Density

For characterizing the density of the two-dimensional distribution we adopt the ideas intro-
duced in §11.1.1. Given the sorted sets Φ := {φ1 ≤ φ2 · · · } and A := {α1 ≤ α2 · · · }, we
can construct polygons defined by the points

{
ηφi,αj

, ηφi,αj+1
, ηφi+1,αj+1

, ηφi+1,αj

}
. We

refer to such polygons in the following as polyφi,αj
. The area covered by these polygons

is equivalent to the distances between unidimensional quantiles, and therefore relates to the
PDF of the two-dimensional distribution. However, the interpretation is not as straightfor-
ward as before: due to the construction of φ − α quantiles, the individually covered areas
differ even for the uniform-uniform distribution, as Pφ grows exponentially with linearly
increasing φ.

We solve this by relating the derived PDF to a null model, in which each point is equally
probable. Specifically, we compare the areas of the observed φ − α polygons to the cor-
responding areas of the uniform-uniform distribution. Consider a uniform-uniform distri-
bution of an infinite number of samples. We can compute the theoretical values (x, y) for
every ηφ,α = (x, y) by solving the following equations, derived from the definition of φ−α
quantiles in [42]:

x =
√
φ/α− φ; y = φ/x

This allows for computing the area covered by each polygon polyφi,αj
. Let δ be the

result of subtracting the area of polyφi,αj
of the uniform-uniform distribution from the actual

result of the corresponding polyφi,αj
, extracted from a set of samples from an unknown

distribution which we normalized to [0,1]. We derive the final score σ ∈ [0, 1] associated
with this polygon as follows.

σ :=

(1 +

√
−δ2 + 2 · δ)/2 for δ > 0

(1−
√
−δ2 − 2 · δ)/2 for δ < 0

0.5 for δ = 0

(11.2)

By definition, a score of 0.5 represents an activity that is “neutral”, i.e., neither normal
nor anomalous, as it is completely in line with the uniform-uniform distribution. Scores

100

1.0 0.5 0.0 0.5 1.0
Normalized Area Difference δ

0.0

0.2

0.4

0.6

0.8

1.0

Co
nn

ec
tio

n
Sc

or
e
σ

Figure III.8: Scoring function.

Figure III.9: Comparison of the φ−α quantiles of 10,000 uniform-uniform (left) and 10,000
normal-normal samples (right).

lower than 0.5 represent high-density regions of the two-dimensional distribution, i.e., the
lower a score the more “normal” the observed activity. Conversely, scores higher than 0.5
represent more anomalous observations. σ is defined such to magnify deviations of δ from
zero, so that the minimum and maximum scores (0.0, and 1.0) are approached quickly (see
Fig. III.8).

Example: Fig. III.9 shows the φ − α quantiles of two synthetic sets of samples drawn
from a uniform-uniform (u-u), and from a normal-normal (n-n) distribution (with MEAN =
STDDEV = 1), respectively, normalized to [0,1]. For both sets we compute the identical
φ− α quantiles, where Φ := {1, 5, 25, 50, 90}% and A := {10, 20, · · · , 90}%. The areas
covered by the polygons of u-u indicate, by definition, uniform probability, i.e., in a set of
samples that produces these quantiles, no event is more likely than another. For the n-n
distribution, this does of course not hold true, and consequently the polygons representing
the identical combinations of φ and α are differently shaped and have a different size. We
highlight one example for such a polygon in the figure. Notice the much smaller size of the
right-hand polygon, which indicates the much higher density of the n-n distribution in this
area, leading to a small σ (< 0.5).

11.1.4 Confidence Bounds

Next, we derive a two-dimensional equivalent to the confidence intervals introduced in
§11.1.1. Recall that we aim at deriving sets Φm ⊂ ΦMAX such that the confidence in-
tervals of all φk ∈ Φm do not overlap given a certain confidence level α and the number

101

Algorithm 11.1: MinNumSamples
input : Φ, γ
output: N

N ← 1;1

while True do2

bounds← List();3

foreach φ in Φ do4

ρ−,ρ+← ConfidenceBounds (φ, γ, N);5

bounds.append((ρ−,ρ+));6

end7

if not Overlap (bounds) then8

return N ;9

end10

N ←N +1;11

end12

Φm[%] 90% 95% 99%
1,50,90 38 45 71

1,30,50,90 126 166 282
1,30,50,70,90 135 176 287

1,20,30,50,70,90 355 486 802
1,20,30,50,70,80,90 399 552 905

1,20,30,50,60,70,80,90 491 675 1142

Table 9: Minimum number of samples for various Φm, with γ = {90%, 95%, 99%}. The
φk printed in bold highlight the changes to the preceding Φm.

of samples N . Note, however, that for a two-dimensional distribution there are, in general,
infinitely many different selections for ρx(p) and ρy(p) such that φ(p) < φk. Therefore,
we select a number of choices for φk,x from the interval [φk, 1], and compute the corre-
sponding confidence bounds ρ+k,x and ρ−k,x for each, using Eq. (11.1). In other words, we
sweep over the range of possible combinations for ρx and ρy, following the same concept as
implemented by using different selections for α, to derive confidence bounds for different
quantile estimates with the same φ. The more intermediate steps in [κ, 1] we take, the more
accurate is the representation. In our experiments, we used 10 equidistant choices for φk,x.
Then, we compute the means of all ρ+k,x and all ρ−k,x and accept these two values as the
average confidence bound for φk.

For finding the sets Φm to be used by our system, we run the simple iterative algorithm
MINNUMSAMPLES (see Algorithm 11.1) for a number of candidate sets Φc. Specifically,
we select all combinations Φc ⊂ ΦMAX for which |Φc| ≥ 3 and use MINNUMSAMPLES

to retrieve the minimum number of samples required so that the confidence bounds do not
overlap. For each set cardinality in {3, 4, . . . , |ΦMAX|} we select the corresponding Φc

which yielded the minimum number M(Φc) of required samples. The selected candidates
Φm are then stored in a lookup table which is further used for finding the set of φ−α quan-
tiles to be computed given a certain number of available samples (i.e., locations contacted
by a single monitored host in a certain epoch). Note that this entire procedure needs to
performed only once, as it does not depend on the particular samples themselves, but only
on their number. Table 9 shows some examples for various Φm and different confidence
levels γ.

102

CHAPTER 12
System Design and Architecture

Putting together the puzzle pieces we developed so far, we can now design a system which
enables us to derive reduced TDGs for further analysis. The system builds on the following
main steps:

1. Processing of traffic data and extraction of the set of PoPs Ps contacted per each
monitored host s. We aggregate this information over an evaluation epoch ε and
track the number of times each PoP ∈ Ps has been contacted by s (i.e., the weight of
each PoP). The sum of all weights gives the number of location samples N ε(s) of s
in ε. We then repeat the following steps for each host s.

2. We identify the sets Φm where M(Φm) ≤ N ε(s) and select the set ΦX with maxi-
mum M(Φm) (see §11.1.4).

3. Computation of the φ− α quantiles of Ps using their weights and ΦX (see §11.1.2).

4. Construction of polygons polyφi,αj
and computation of a score σ for each, according

to Eq. (11.2).

5. The set of polygons and associated scores represent the activity profile of a host s in
ε. We store these profiles for future reference of the activity of a particular host in
this epoch of time.

Let SRC be the set of all monitored hosts (sources) and DST be the set of all external
hosts (destinations) in a given traffic data set. The activity profile of a monitored source
host s ∈ SRC in an epoch εi relates to the destination addresses d ∈ DST which were
contacted by s, or more precisely, to their geographical locations. Each observed packet
of s gives one sample of the distribution of locations contacted by s. Note that we require
stable identifiers for the monitored source hosts, in order to be able to relate their network
activity to the stored profiles. We address this practical problem in §13.

Each profile relates to a particular epoch and comprises a set of polygons, which are
defined by φ − α quantiles, and where each polygon has an associated score σ. Locations
which were contacted often receive a higher weight, and thereby influence the φ-α quantiles.
Therefore, popular areas are automatically framed tightly by the corresponding polygons,
and receive low scores. Note that for each host there exist many such profiles, namely one
for each epoch ε in which the host was active.

In the following, we show how we employ these profiles to build an anomaly detec-
tion system that adapts to diverse, dynamically changing host activity, and continuously
updates each host’s set of profiles. First, we show how to use these profiles to compute
scores for individual end-to-end connections, to derive an intermediate reduced TDG by
removing connections with score lower than the detection threshold Θ. Second, we discuss

103

Figure III.10: Example for the regions found by computing φ-α quantiles for the TCP
connections of one host in a time window of eight hours.

a set of simple graph analysis techniques to find groups of suspicious hosts, for deriving a
further reduced TDG. And finally, we describe a complete anomaly detection system that
implements these approaches

12.1 Reduction I: Connection Scoring

Scoring individual connections between a monitored and an external host enables us to ap-
ply the first reduction (i.e., “Reduction I” in Fig. III.2) to the original TDG. Consider a
connection from source s to destination d with location (dlon, dlat) (i.e., longitude and lat-
itude). In order to find the score for this connection w.r.t. to a single activity profile, we
need to find out in which polygon of this profile (dlon, dlat) falls. The problem of deciding
whether a polygon contains a certain point is known as “Point in Polygon”. Multiple so-
lutions with a computational complexity of O(n) exist, where n is the number of polygon
edges [79]. Note that in our approach always n ≤ 4.

Once the polygon is found, we immediately learn the corresponding score (see §11.1.3).
In case no polygon is found, we assign the maximum score 1.0. For polygons that are col-
lapsed to a single point, and therefore represent a maximum density region with only one
location, we assign a score of zero. Note that in this case the representation is equiva-
lent to the exact one, i.e., it is certain that exactly this location was highly popular for the
considered source s, and hence represents normal activity.

Example: Figure III.10 visualizes the profile extracted for a host from a real network,
for one epoch εi. The φ − α polygons are clearly visible, and are colored according to the
score that a connection of that host to a destination inside a certain polygon would cause.
E.g., all black regions in the figure represent highly unusual locations for this host. Note
that for the sake of demonstration we picked a “scattered” profile here. We observed that
typically the covered regions are significantly smaller, but are less suitable for illustrating
the concept. In fact, many polygons typically collapse to single points, or describe small,
high-density regions. We show this analytically in §13.

The connection score w.r.t. to all activity profiles of s is then found by computing
the mean of the ψ smallest scores. This is motivated by the findings of other anomaly
detection approaches (see, e.g., [48]): the network activity of a host depends on the time
of day and varies on weekday, weekends, and festivity days. Furthermore, it is influenced
by special events like sports broadcasts. Instead of trying to take all that into account,

104

General configuration
ε - Length of epoch (seconds)
ΦMAX - Maximal set of φκ, i.e., {1, 5, 10, . . . , 90, 95, 99}%
A - Fixed set of αi, i.e., {10, 20, · · · , 90}%
γ - Confidence level for MINNUMSAMPLES (0,1)

Reduction I: Connection Scoring
Θ - Scoring threshold [0, 1]
ψ - Number of profiles to consider [1,∞)
L - Maximum number of profiles per user to keep [1,∞)

Reduction II: Graph Analysis
θ1 - Minimum destination degree threshold [0,∞)
θ2 - Community threshold [0,∞)

Table 10: System Parameters

e.g., by comparing the activity on festivity days only to weekends, we rather search for
epochs in which the host activity was most similar to the current one. Any activity that is
still significantly different, is considered an anomaly. Note that this search can be aborted
as soon as the running mean is lower than the detection threshold Θ, which significantly
reduces the computation time. Also note that this has to be done only once per epoch ε, i.e.,
independent of the number of packets between s and d.

All connections with a score lower than the detection threshold Θ are considered normal
for the particular monitored host, and are therefore ignored. The remaining connections
define the (intermediate) reduced TDG.

12.2 Reduction II: Graph Analysis

The reduced TDG is a weighted digraph G := {V,E}, where V ⊂ (SRC ∪ DST) and
E is the set of (suspicious) connections between them. The ultimate goal of the system is
to derive groups of connected hosts, as, e.g., botnets. Therefore, we aim to reveal popular
destinations that receive a significant number of suspicious, i.e., highly scored, connections.
For this reason, we apply a second reduction step (i.e., “Reduction II” in Fig. III.2), based
on TDG’s structure.

We process the graph as follows: first, we remove all d ∈ DST with an in-degree less
than θ1. Then we remove all sources that are disconnected now, i.e., all s with a degree
of zero. Finally we use the Louvain method [28] to find the best partition of G, i.e., the
set of communities that maximizes the modularity metric (see §4). We remove all those
communities from G which do not contain a single destination node with an in-degree≥ θ2.
In our experiments, these two steps proved to be highly efficient even for low threshold
settings (e.g., θ1 = θ2 = 3), as they removed many connections that appeared individually
suspicious for only single hosts, which is not representing the type of large-scale anomalies
we are hunting for. Note that this last step is similar to other approaches [116, 43]. However,
instead of sampling the graph, or whitelisting a certain set of connections, we take advantage
of the reduced representation, that takes individual host activity into account.

12.3 System Design

The system requires as input tuples of aggregated connection information in the form
〈timestamp〉, 〈sourceIP〉, 〈destinationIP〉, 〈protocol〉, 〈packetCount〉
This information is typically exported by standard network equipment like routers, e.g.,

as NetFlow or IPFIX messages.

105

Spatial

Database

‘Activity’

buffer

‘Suspicious’

buffer

Input

Tuples

if score>Θ

CONNECTION

SCORING

Scoring Queries Profile Updates

GRAPH

ANALYSIS

Output

Graph

For each

tuple
At time Δi

Figure III.11: System Overview.

The overall concept is illustrated in Fig. III.11 and the system’s parameters are sum-
marized in Table 10. We use a spatial database [143] for storing and querying the hosts’
activity profiles (i.e., the polygons and the associated scores). The “activity” and “suspi-
cious” buffers are initially empty. Upon receipt of a new tuple, the system resolves the
geographical location (i.e., longitude and latitude) of destinationIP, and computes a score
σ according to the procedure described in §12.1. Connections with a score > Θ are addi-
tionally kept in the “suspicious” buffer. Then it stores the location together with rest of the
tuple in the “activity” buffer, and continues with the next tuple. At the end of each epoch εi,
the system applies the simple graph analysis procedure “Reduction II” on the connections
in the “suspicious” buffer, to find groups of individually suspicious hosts (see §12.2).

Finally, the system computes for each observed sourceIP s the φ − α quantiles of the
contacted locations in the “activity” buffer. Specifically, it requests the quantiles with α ∈ A
(which is a system parameter) and φ ∈ Φm, such that |Φm| is maximal while still guaran-
teeing that the corresponding confidence bounds do not overlap (as given by the procedure
described in §11.1.4, and depending on the number of packets per source host). The newly
derived profiles are then stored in the database. At the same time the oldest set of pro-
files is removed, to maintain the invariant that the length of the sliding window holding the
reference profiles is equal to L. Then both buffers are emptied, and the system continues
with processing the next epoch. For each epoch εi, the system outputs the reduced TDG of
individually suspicious connections.

106

CHAPTER 13
Experimental Evaluation

For the following experiments we use a data set that is based on a network trace captured at
a router that connects around 700 residential broadband customers to the Internet. The trace
includes the RADIUS accounting information [139], which allows us to relate the dynami-
cally changing customer IP addresses to their fixed customer identities. For each IP packet
in the trace, the customer IP address was replaced with a 32-bit (pseudonymous) value,
computed from hashing the customer identity with a secret key, which was not available
to us and therefore protected the customers’ true identities. The total length of the trace
is three weeks, of which we extracted tuples (〈timestamp〉, 〈srcIP〉, 〈dstIP〉, [tcp,
udp], 〈packetCount〉). We used only the uplink traffic, i.e., the packets sent by the cus-
tomers, and compute separate profiles for TCP and UDP connections. In the following, we
refer to the first two weeks of these data as data set CONN–DS1 and to the last week as
CONN–DS2.

For all following experiments we setA := {10, 20, · · · , 90}%, γ = 95%, and ΦMAX :=
{1, 5, 10, . . . , 90, 95, 99}%. Note that this implicitly eliminates outliers in the distribution
of locations per monitored host s (<1%, >99%). We resolved the geographical locations
for IP addresses using MaxMind’s database introduced in §11. All analysis tools are imple-
mented in Python.

13.1 Validation Tests

Accuracy As a first validation of the proposed system, we evaluate how “tightly” the
location profiles describe the monitored hosts’ activity. We set ε = 28, 800 seconds and
extracted all host profiles for CONN–DS1. For each monitored host s, we then randomly
selected 10,000 locations from the MaxMind database, and computed TCP and UDP scores
for them. As the locations were selected randomly, the system was expected to detect many
deviations from the previously derived profiles, and the scores should be high. In case the
derived profiles were too “loose”, the scores would be expected to be low. The distribution
of the mean scores per host s are shown in Fig. III.12. The scores are high in general,
with more UDP than TCP connections being reported as “normal”. Note that this implicitly
shows also that location does matter, i.e., that the hosts’ network activity is not completely
scattered across the world. Our approach makes no assumptions about which locations these
are though, but rather derives them automatically.

Next, we evaluate the opposite: how well do the extracted profiles represent the actual
network activity? We compute scores for each connection in CONN–DS1, using the ac-
tivity profiles as references, and thereby test CONN–DS1 against itself. If the extracted
profiles are accurate, the scores should therefore be low. Again we compute the mean score
per host s and show the distribution of all mean scores in Fig. III.13. We find that 97% of all
mean TCP scores are lower than 0.003. For UDP, 90% are lower than 0.03. This indicates

107

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Mean Score

0.0

0.2

0.4

0.6

0.8

1.0

TCP
UDP

anomalous

normal

Figure III.12: CDF of mean scores for 10,000 random locations per monitored host.

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0.90

0.92

0.94

0.96

0.98

1.00

TCP
UDP

anomalous

normal

Figure III.13: CDF of mean scores for testing CONN–DS1 against itself.

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0.90

0.92

0.94

0.96

0.98

1.00

TCP
UDP

anomalous

normal

Figure III.14: CDF of mean scores for testing CONN–DS2 against CONN–DS1.

that many scores are in fact zero, i.e., the system automatically found single, highly popular
locations for a host, that caused the quantiles defining the polygon to collapse to a single
point. We conclude that our system is able to extract typical per-host activity.

As a final accuracy evaluation, we test the persistence of the activity profiles, i.e., we
evaluate if previous activity is indeed indicative for future one. We again set ε=28,800
seconds, load the profiles extracted from CONN–DS1, and run the system with CONN–
DS2 as input. Fig. III.14 shows the results, which are similar to the previous test, and
indicate that there is indeed stability in the locations contacted by a host. That is, monitored
hosts do contact the same PoPs over time, despite the widespread use of CDNs.

Graph Complexity Reduction Recall that our main objective is to reduce the overall
complexity of the connection graph (i.e., the number of nodes and edges), while keeping
the connections to anomalous locations. Therefore, we evaluate the influence of applying
different settings for Θ (on the edge weights), and θ1 (on the node in-degree) on the resulting
graph.

First, we evaluate the impact that our method has on complexity of the graph when using
the same data set as input that was used for generating the activity profiles. Note that this
is similar to the results shown in Fig. III.13, but considers also the impact of the structural
analysis using θ1, as well as the effects of the changing set of available activity profiles as
the analysis goes on. We set ε = 28, 800 and extract all host profiles for CONN–DS1.
Then, we apply the scoring procedure to the same CONN–DS1, using the activity profiles

108

0 5 10 15 20 25
Minimum Destination Degree

102

103

104

105

106

N
u
m
b
e
r
o
f
N
o
d
e
s

Θ=0.0

Θ=0.1

Θ=0.2

Θ=0.3

Θ=0.4

Θ=0.5

Θ=0.6

Θ=0.7

Θ=0.8

Θ=0.9

Θ=0.95

Θ=0.99

(a) TCP Nodes

0 5 10 15 20 25
Minimum Destination Degree

103

104

105

106

107

N
u
m
b
e
r
o
f
E
d
g
e
s

Θ=0.0

Θ=0.1

Θ=0.2

Θ=0.3

Θ=0.4

Θ=0.5

Θ=0.6

Θ=0.7

Θ=0.8

Θ=0.9

Θ=0.95

Θ=0.99

(b) TCP Edges

0 5 10 15 20 25
Minimum Destination Degree

102

103

104

105

106

107

N
u
m
b
e
r
o
f
N
o
d
e
s

Θ=0.0

Θ=0.1

Θ=0.2

Θ=0.3

Θ=0.4

Θ=0.5

Θ=0.6

Θ=0.7

Θ=0.8

Θ=0.9

Θ=0.95

Θ=0.99

(c) UDP Nodes

0 5 10 15 20 25
Minimum Destination Degree

102

103

104

105

106

107

N
u
m
b
e
r
o
f
E
d
g
e
s

Θ=0.0

Θ=0.1

Θ=0.2

Θ=0.3

Θ=0.4

Θ=0.5

Θ=0.6

Θ=0.7

Θ=0.8

Θ=0.9

Θ=0.95

Θ=0.99

(d) UDP Edges

Figure III.15: Evaluating CONN–DS1 against itself; ε = 28, 800.

as references. We expect that the output graph is significantly smaller than the original
connection graph, as we use the same data for training and testing. Fig. III.13 shows the
resulting graph complexity for different choices of Θ and θ1, both for TCP and UDP. Note
that we plot the complexity of the entire connection graph for these two weeks of traffic.
Also note that we remove disconnected nodes from the resulting reduced TDG. The data
points for Θ = 0, θ1 = 0 show the original size of the graph, i.e., around 1 million nodes
and edges for TCP, and around 10 million for UDP, respectively. For TCP, our technique
is able to reduce the graph’s complexity in terms of number of nodes by up to three orders
of magnitude, even for very moderate setting for Θ and θ1 (e.g., Θ = 0.5, θ1 = 10). The
results for UDP are even better, with a complexity reduction of four orders of magnitude,
for even more conservative parameter settings (e.g., Θ = 0.5, θ1 = 5).

Next, we repeat the experiment for data set CONN–DS2, using the activity profiles
extracted from CONN–DS1. Fig. III.16 shows the resulting graph complexity in terms of
number of nodes and edges, for both TCP and UDP. Again, we observe a reduction of three
to four orders of magnitude in terms of the number of nodes, for similar parameters. The
number of edges is being reduced by two orders of magnitude for TCP, and by three orders
of magnitude for UDP, respectively. Even settings of Θ ≤ 0.5, i.e., below the designed
demarcation between normal and anomalous (see Eq. (11.2)) have a significant effect. Note
that setting θ1 to very high values has little impact on the graph complexity. This indicates
that low values should be preferred, which enable the detection of suspicious destinations d
even when they are considered suspicious for only few monitored hosts s.

109

0 5 10 15 20 25
Minimum Destination Degree

102

103

104

105

106

N
u
m
b
e
r
o
f
N
o
d
e
s

Θ=0.0

Θ=0.1

Θ=0.2

Θ=0.3

Θ=0.4

Θ=0.5

Θ=0.6

Θ=0.7

Θ=0.8

Θ=0.9

Θ=0.95

Θ=0.99

(a) TCP Nodes

0 5 10 15 20 25
Minimum Destination Degree

104

105

106

N
u
m
b
e
r
o
f
E
d
g
e
s

Θ=0.0

Θ=0.1

Θ=0.2

Θ=0.3

Θ=0.4

Θ=0.5

Θ=0.6

Θ=0.7

Θ=0.8

Θ=0.9

Θ=0.95

Θ=0.99

(b) TCP Edges

0 5 10 15 20 25
Minimum Destination Degree

102

103

104

105

106

107

N
u
m
b
e
r
o
f
N
o
d
e
s

Θ=0.0

Θ=0.1

Θ=0.2

Θ=0.3

Θ=0.4

Θ=0.5

Θ=0.6

Θ=0.7

Θ=0.8

Θ=0.9

Θ=0.95

Θ=0.99

(c) UDP Nodes

0 5 10 15 20 25
Minimum Destination Degree

101

102

103

104

105

106

107

N
u
m
b
e
r
o
f
E
d
g
e
s

Θ=0.0

Θ=0.1

Θ=0.2

Θ=0.3

Θ=0.4

Θ=0.5

Θ=0.6

Θ=0.7

Θ=0.8

Θ=0.9

Θ=0.95

Θ=0.99

(d) UDP Edges

Figure III.16: Evaluating CONN–DS2 against CONN–DS1; ε = 28, 800; L = 3 ·14 (i.e.,
14 days with three profiles per day).

13.2 Malware Detection

We conducted two experiments for evaluating the system’s ability to detect malicious ac-
tivity. First, we show that we are able to heavily reduce the TDG’s complexity while still
retaining malicious traffic patterns. Then, we discuss the system’s detection performance
after injecting partial knowledge about one malicious host and running an algorithm for col-
laboration detection. These two steps complete the system description as shown in Fig. III.2
(i.e., “Inject Knowledge” and “Collaboration Detection”).

13.2.1 Botnet Emulation

We used the CORE network emulator1 to run 15 instances of the popular Zeus malware2.
The bots connect to their Command-and-Control infrastructure at regular time intervals, to
download new commands and report back their latest activity. We selected 15 out of around
300 monitored hosts that were active during a time period of one hour, and overlaid the
malware traffic to the first hour of CONN–DS2. Furthermore, we assumed the following
scenario: Fast-Flux botnets usually contact several different proxies (which are themselves
infected hosts) to reach their hidden C&C server. We assume three different locations for
these proxies (namely Moscow, Rome, and Vienna), and let the bots pick one of these con-

1http://cs.itd.nrl.navy.mil/work/core/
2http://www.symantec.com/security_response/writeup.jsp?docid=2010-

011016-3514-99

110

http://cs.itd.nrl.navy.mil/work/core/
http://www.symantec.com/security_response/writeup.jsp?docid=2010-011016-3514-99
http://www.symantec.com/security_response/writeup.jsp?docid=2010-011016-3514-99

Moscow Rome

Vienna

Figure III.17: Botnet emulation results: the reduced TDG as output by the system.

nections randomly whenever they want to send something. Note that given our trace from
a European operator, these locations are tough choices for our algorithm, as also legitimate
traffic is being sent there. We loaded the profiles extracted from CONN–DS1, and set
Θ = 0.5 and θ1 = 2. Note that these settings are very conservative. Fig. III.17 shows the
system’s output: the three C&C servers as well as all 15 “bots” are visible in the graph,
and the structure of the botnet emerges clearly. In addition, a few benign connections are
considered suspicious, and therefore appear in the graph. Note, however, that all of them
would, e.g., be removed when setting θ1 = 4, without any impact on the botnet subgraph,
and without increasing Θ.

13.2.2 Dye-Pumping

For our second experiment we revisit the ideas presented by Coskun et al. (see [43] and our
discussion in §4.2.3) and relate them to the so-called “confessions of a botnet operator”,
as recently reported in the news3. A botmaster decided to publish some details about his
daily “business”, and answered questions online. Apparently he employs the Tor network4

for exchanging C&C messages. We decided to evaluate the performance of our system in
a scenario based on this assumption. We retrieved the publicly available list of Tor nodes,
and randomly picked 100 out of ∼3,000. Similarly as in the previous experiment, we then
picked 30 random monitored hosts in our trace. We assume that each bot would on average
send only 1 packet per minute, each to a random out of the 100 Tor nodes, so to operate
in a stealthy manner. We overlaid this communication to the network trace, and ran our
detection system for one hour to produce a graph of suspicious connections. We selected a
random bot node as the seed node for our implementation of the dye-pumping algorithm.

We repeated the experiment with different thresholds Θ, trying to find the mutual con-
tacts graph of bots, and evaluated the detection accuracy in terms of precision and recall.
Fig. III.18 clearly shows that both precision and recall are significantly better for the re-
duced TDG, than for the not reduced one (i.e., when Θ = 0), at all settings for Θ. The
precision is lower for higher thresholds as such aggressive removal of graph edges also
removes malicious connections. Note that we achieve perfect precision for Θ around 0.5
(with a recall of 90%), and that even very aggressive filtering (with Θ ≥ 0.8) does still leave
enough malicious connections in the graph to detect almost all bots with few false positives.

3http://h-online.com/-1574453
4https://www.torproject.org

111

http://h-online.com/-1574453
https://www.torproject.org

0.0 0.2 0.4 0.6 0.8
Scoring Threshold Θ

0.75

0.80

0.85

0.90

0.95

1.00

Precision
Recall

anomalous

normal

Figure III.18: Dye-Pumping results.

13.3 Discussion and Limitations

The system can reliably detect large-scale deviations from the reference profiles. However,
due the limited traffic information we employ, certain types of anomalies can never be as
accurately identified as with, e.g., signature-based systems. A flash crowd for example,
would most likely be indistinguishable from a massive botnet. Also, we emphasize that
we do not claim to detect all individual suspicious connections. In particular, our system
is unable to detect suspicious connections of monitored hosts which always contact a vast
number of different locations (i.e., powerusers). The value of the presented approach is
therefore clearly in enabling structural analysis of network connections and raising a first
alert when a change in the collective traffic patterns is observed, that should then be subject
to further investigation. We are convinced that thereby the topological information our
system provides in the form of a graph of suspicious links, each with its individual score, is
invaluable.

However, large networks with many thousand monitored hosts may require more ag-
gressive graph reduction than we demonstrated here. This can be achieved by parameter
tuning. Obviously, smaller ε cause less data to be represented per TDG. Likewise, higher
Θ result in more individual connections to be removed. For detecting large-scale malware
outbreaks, tuning of the graph analysis parameters θ1 and θ2 should be considered. Larger
values of these setting cause the system to remove connections which are not considered in-
dividually suspicious and are directed to a popular destination. Furthermore, the analysis of
such graph communities using more advanced techniques like [116, 43, 68] is an interesting
direction of future research.

Note that the system’s ψ parameter represents the sensitivity to connection agility. The
higher it is set, the more profiles are considered for computing a connection score, and
the longer it takes until new, persistent activity patterns are finally considered “normal” for
a particular host. Conversely, lower settings of ψ cause this new activity to be reported
initially, but accept it as new, “normal” pattern rather quickly, and therefore exclude it in
the reduced TDG. Ultimately, the parameter settings depend on the specifics of the activity
which should be detected. In this thesis, we focus on the detection of highly agile connection
patterns and therefore prefer low settings for ψ, which we further discuss in §IV.

Our system strictly requires stable identifiers for the monitored hosts. We realize that
this information is often difficult to retrieve, but we do not consider it a fundamental hand-
icap. In networks where client IP addresses are frequently reassigned, one could, as an
alternative to RADIUS information, use the IMSI in mobile networks [48], or the MAC
address in LANs.

112

13.4 Summary

We presented a method to assess the degree of anomaly of Internet connections solely based
on the analysis of the geographical locations of IP addresses that a particular host contacts
over time. We developed a profiling tool that is robust to changes in traffic volume, and
which does not assume any predefined malware communication model. This is in contrast to
existing systems (see §4.2.3), which are, e.g., limited to detecting malicious communication
which uses specific protocols or focus on revealing particular, predefined C&C topologies.
Our system is designed for monitoring large (ISP-size) networks, and the main processing
routine for extracting reference profiles scales like O(n log n) where n is the number of
unique locations contacted per host and time bin. The evaluation using a trace from a live
network showed that large-scale anomalies can be detected already using very conservative
threshold settings. In two experiments we verified that injected botnet traffic can be reliably
detected, while keeping the output graph of suspicious connections extremely compact. In
particular, we achieved the automatic omission of connections to highly popular, benign
services without having to whitelist certain IP ranges manually. In our experiments we
observed excellent detection results for the injected botnet traffic with perfect precision
(1.0) and high recall (0.9), for adequate threshold settings.

Our specific contributions are the following:

1. We studied the activity of Internet users w.r.t. the geographical locations (i.e., PoPs)
they contact. We discussed the usage of two-dimensional quantiles (φ− α quantiles)
for representing the per-host profiles and showed their ability to reliably characterize
“normal” networking activity.

2. We showed how to adaptively generate φ−α quantiles in order to cope with the vari-
ance in the available data. This makes the approach scalable to potentially thousands
of monitored hosts and adaptive to natural Internet traffic variations.

3. We defined a scoring framework for quantifying the degree of anomaly for end-to-
end Internet connections based on per-host profiles. Being based on the previously
derived φ − α quantiles, the scoring procedure is highly efficient and scales like
K ·O(N) where N is the number of points per derived polygon (in our case: N ≤ 4)
and K is the number of polygons per monitored host and time interval.

4. We integrated the approach into a malware detection system, and evaluated its per-
formance using a real-world network trace.

113

Part IV
Joint Analysis and Final Remarks

In this thesis, two complementary network-based malware detection approaches have been
proposed. The DNS analysis presented in §II yields highly accurate results, and is able to
identify hosts which serve malicious content in real-time. The analysis of Traffic Dispersion
Graphs (TDGs) presented in §III considers all types of communication between Internet
hosts and is therefore not restricted to specific protocols.

In the following, we discuss the joint analysis of network traffic data, using both ap-
proaches at the same time. In particular, we demonstrate how the DNS results can be used
to seed the analysis of the reduced TDG derived in §III, in order to find groups of hosts
which relate to a particular type of Internet crime. For this purpose, we use a data set which
contains both TCP and DNS information of 1.7 million monitored hosts over a period of 15
days.

115

CHAPTER 14
Joint Analysis

The analysis of DNS traffic provides agile groups of FQDNs and IP addresses which are
involved in malware activity. As soon as a monitored host establishes a connection to one
such IP address, this connection appears in the TCP data set. Therefore, we can use these
IP addresses as seeds for the TCP connection analysis to find additional malicious commu-
nication in the reduced TDG. In the following, we directly apply the previously developed
techniques and discuss our experimental results. First, we provide an overview of the ex-
perimental setup. Second, we briefly discuss the individual results of the DNS analysis
(§14.1.1) and the TCP connections analysis (§14.1.2). Finally, we present an example for
joint analysis in detail (§14.1.3) and discuss the merits and the limitations of our approach
in §14.2.

14.1 Experimental Evaluation

For our experiments, we have two separate data sets (DNS–DS3 and CONN–DS3) from
the same monitored network available, which connects ∼1.7 million monitored hosts to
the Internet. Both data sets represent the same period of 15 days, from 2013/04/15 to
2013/04/30. Data set DNS–DS3 contains DNS mappings (see §7.2), while data set CONN–
DS3 contains TCP connection information (see §13). The decision about which part of
which data set to use for training and evaluating our system is non-trivial, and depends on
the systems’ parametrizations. Our configuration is illustrated in Fig. IV.1 and is further
discussed in the following.

2013/04/15 2013/04/30

Training

Training

Connection
Analysis

DNS
Analysis

2 weeks 8 hours

Evaluation

1 week + 16 hours

Evaluation

8 hours

Not used

1 week

Figure IV.1: Usage of data sets for joint analysis.

117

We begin with the parametrization of the connection analysis approach and refer the
reader to Table 10 on page 105 for an overview of the parameters. Note that we use in the
following εDNS and εCONN instead of ε, to distinguish the corresponding evaluation epochs.
Likewise, we use ΘDNS and ΘCONN instead of Θ, to distinguish the corresponding detection
thresholds.

For the connection analysis, we again set εCONN = 28, 800 seconds (i.e., eight hours).
As in §13, we set L = 14 · 3 to maintain a sliding training window of 14 days (i.e., three
εCONN per day). Therefore, the first reduced TDG is produced after 14 days and eight
hours into the data set. However, these last eight hours fall into night (i.e., 00:00h – 08:00h)
and contain only low traffic activity. We therefore consider the following eight-hour-epoch
for our evaluation, as shown in Fig. IV.1.

For the DNS analysis approach, we consider all activity in the last week of our data set
DNS–DS3, i.e., εDNS=7 days. Recall that the detection of malicious, agile DNS activity
benefits from longer evaluation periods, as this allows us to collect more evidence of ma-
licious activity. In particular, this enables the detection of IP addresses which host many
different malicious services over time, and which therefore probably belong to a malware
platform. As in §9, we set ΘDNS = 0.35 and all other parameters as shown in Table 2 on
page 65.

Implementation Improvements The large volume of traffic information contained in our
data sets required further improvements to the prototype implementation. While the exist-
ing DNS analysis prototype could be used without modification, the connection analysis
implementation had to be improved. The main challenge was the storage of the vast num-
ber of activity profiles which are computed by our approach. Assuming that each of the
1.7 million monitored hosts would be active in each considered epoch εCONN (i.e., eight
hours) over the entire training length (i.e., two weeks), an upper bound for the number for
the number of activity profiles is 1.7 · 106 · 3 · 14 = 71.4 million. Recall that each of these
profiles contains multiple polygons. These profiles would not fit into the main memory of
the machine we used for our experiments, and therefore we employed the PostGIS spatial
database1 for storing the profiles to disk. The database schema is shown in Appendix B.
These improvements enabled us to process our data set in acceptable time (see §14.1.2).

Note that the lookup time for finding the polygon which contains a particular point (see
§12.1) can be further improved by using an adequate data structure for storing the set of
polygons. In particular, Quadtrees [61] may be considered. Instead of testing each polygon
(of a single activity profile of a particular host) for point containment, one can quickly find
the subset of candidate polygons using such tree structures, and test only them. However,
these improvements are out of scope for this thesis.

14.1.1 DNS Analysis Results

In order to capture both “Fast-Flux” and “Malicious Hosting” activity we consider all agile
groups (AGs) with (φ1 > 1 and φ2 > 50 and φ3 > 5) or (φ1 > 50 and φ2 > 7 and
φ3 > 5). Using a slightly extended whitelist (created using the procedure discussed in
§9.2.2) with 31 entries, we retrieve 16 agile groups. By manual inspection, we found that
four out of these 16 groups do indeed represent malicious activity and show them in detail
in Table 11. Note again that each of these malicious agile groups would have been detected
using a much lower analysis sensitivity (i.e., higher limits for φ1, φ2, φ3, e.g., φ3 > 12).
Despite the sensitive configuration, the absolute number of false positives is remarkably low
and amounted to only 1,203 false positive FQDNs (in 12 groups) out of 6.6 Million FQDNs
in εDNS, while 99 malicious FQDNs were found in total.

1http://postgis.net

118

http://postgis.net

Number of
IP addresses

Number of
ASes

FQDNs

AG1 526 177
serv4.cloudstoreservice.ru, bano4eva.com, tguniverse.com,
techinformationgate.com, hecked-by-brain-krebs.biz,
32v235235n645645435.org

AG2 68 13

com-businesstimesblog.net, losebellyfat-now1.com,
www.askmenow.com, com-the-financial-news.net,
topwaystoloseweightquick.com, com-standartdaily.net,
howicloseweightfastwithoutexercise.com, apps.facfbook.com,
finance-reports.abc15news.net, . . . (66 more)

AG3 66 44 kbitdsdt.com, wuhttkdi.biz

AG4 60 40

www.datinglalibta.ru, datingtisuvle.ru, ns1.ns01fonofni.ru,
www.datinglafomvu.ru, www.datingsabipgu.ru,
www.datingdugiksi.ru, www.datingtalugpi.ru,
www.datingmerikdo.ru, aortnaa.ru, . . . (7 more)

Table 11: Malicious agile groups found in DNS–DS3.

For evaluating our results, we again used the blacklists from Table 7 on page 82, various
online services (e.g., www.virustotal.com), as well as manual Google searches. Note
again that, due to our whitelisting procedure described in §9.2.2, we were not required to
manually check all 1,203 false positive FQDNs. Rather, after the evaluation of a few tens
of them, the corresponding agile groups fell apart, and the leftovers were removed by the
graph analysis procedure, based on the configured limits for φ1, φ2, φ3.

The evidence of malicious activity we found differed for each agile group, and under-
lines the importance of letting a human expert assess the results. The FQDNs of AG1 were
partially listed in blacklist BL1 (cf. Table 7). Several FQDNs of AG2 were found by online
services2. The FQDN kbitdsdt.com of AG3 was found to have been registered with 24
other FQDNs following the same naming scheme (i.e., eight random letters) on the same
day, which were not present in our data set, but were found by others to partially repre-
sent malicious activity3. Finally, the FQDNs of AG4 were used in Spam emails and were
partially listed in blacklist BL8 (cf. Table 7).

Recall that our analysis approach works independently of the number of queries and the
number of unique monitored hosts querying the FQDNs. While this is an advantage of our
system in general, our results do not immediately reveal the impact of a particular malicious
activity on a monitored host population. Therefore, for the detected malicious groups we
manually checked how many monitored hosts queried at least one FQDN in a group during
the evaluation period of the connection analysis approach (i.e., eight hours). For AG1, we
found two monitored hosts, for AG2 we found 18 monitored hosts, for AG3 we found zero
monitored hosts, and for AG4 we found three monitored hosts.

Overall, the number of monitored hosts querying the identified malicious FQDNs was
low in the considered evaluation period of eight hours. From the viewpoint of a traffic
analyst, this is unfortunate as it is hard to identify a dominant group activity behavior given
that few samples. Therefore, the detection of further malicious activity therefore poses
a significant challenge. In the following, we focus on the malicious agile group which
attracted the most monitored hosts, i.e., AG2, and use the IP addresses in this group as
seeds for the connection analysis.

2E.g., https://www.virustotal.com/en/domain/howicloseweightfastwithoutexercise.
com/information/

3https://www.virustotal.com/en/ip-address/96.9.160.68/information/

119

www.virustotal.com
kbitdsdt.com
https://www.virustotal.com/en/domain/howicloseweightfastwithoutexercise.com/information/
https://www.virustotal.com/en/domain/howicloseweightfastwithoutexercise.com/information/
https://www.virustotal.com/en/ip-address/96.9.160.68/information/

14.1.2 Connection Analysis Results

For the connection analysis, we first processed the entire training period of our data set
CONN–DS3. Despite the large volume of our data set and the requirement to store the
computed activity profiles to the PostGIS database (i.e., to disk), our prototype implemen-
tation required less than two weeks of time for processing the two weeks of training data.
The total volume of activity profiles of 1.7 million monitored hosts amounted to only ∼ 60
GB of disk space. This demonstrates that the system is practically usable for monitoring
even large networks.

Subsequently, we configured the system for processing the eight-hours evaluation pe-
riod, i.e., we set the parameters for the two graph reduction steps (see §10 and Table 10).
Given the vast size of our data set, we set ΘCONN = 0.9 in order to focus on highly suspi-
cious connections only. Furthermore, we set ψ = 3, i.e., we considered the activity profiles
which yielded the lowest three scores for computing the final score for a connection of a
particular host. Finally, due to the small number of monitored hosts querying the FQDNs in
AG2, we set θ1 = 1 and θ2 = 2. In other words, we remove only graph communities which
contain nodes representing external hosts which all have an in-degree of one. Given the low
number of querying hosts, high in-degrees are not to be expected, and higher settings for
θ1, θ2 would likely remove the corresponding connections from the reduced TDG. Note that
it would certainly be much easier to find large communities of hosts involved in malicious
activity, as (slightly) higher settings for θ1, θ2 are expected to have a significant impact on
the complexity of the reduced TDG and would remove many small communities (see, e.g.,
Fig. III.16 on page 110). However, given the DNS analysis results of our particular data set,
the assumption that such activity existed for AG2 would be unsubstantiated.

Using these settings, we processed the selected evaluation period εCONN of our data set
CONN–DS3, using the previously extracted activity profiles as a reference. The scoring of
individual connections was significantly slower than the extraction of activity profiles, and
required about one day for processing one hour of data. As we used a standard desktop
machine for our experiments, the large number of disk accesses for retrieving the activity
profiles for scoring the individual connection, severely slowed down our system. However,
as mentioned previously, the total volume of all activity profiles amounted to only∼ 60 GB
of disk space. Besides the suggested improvements to the data representation (see §14.1),
one can the improve the system’s performance by using more main memory resources.
Professional server systems can easily be configured with 60 GB of main memory, in which
case the performance is expected to improve vastly. Therefore, we do not consider this as a
significant limitation of our system.

The original (i.e., not reduced) TDG for the evaluation period had 2,8 million nodes and
36 million edges. In comparison, the reduced TDG produced by our system had 302,540
(i.e., 11%) nodes and 1,226,450 (i.e., 3.3%) edges. We proceed with the analysis of the
reduced graph by using the previously collected DNS analysis results.

14.1.3 Joint Analysis Results

In the following, we use the DNS analysis results as a seed for further analyzing the reduced
TDG. In particular, we consider all IP addresses in AG2 as malicious and thereby inject
partial knowledge (as defined in §10) of malicious activity. Our goal consists of finding the
graph community to which these IP addresses belong, i.e., the group of hosts with which
the malicious hosts collaborate. From this structural connection information, we hope to be
able to reveal further malicious activity which the DNS analysis was unable to detect.

Primarily, this is therefore a community detection problem as defined in §4.2, which
we solve as follows. First, as a preprocessing step, we find the connected components in
the TDG and identify the component C to which the seeds belong. Recall that connected

120

components provide only a coarse partition of the original graph, but can be found very
efficiently. Therefore, we further process C using the Louvain method, to find the commu-
nities of C. However, as discussed in §4.2, the Louvain method suffers from a resolution
limit which causes small communities in large graphs to be merged. Therefore, we continue
with finding the (sub-) communities of the community to which the seeds belong, until any
two seeds end up in two different communities. As we know that any two of our seeds
are related to each other (i.e., are member of the same agile group of malicious sites), their
assignment to different communities would be contradicting, and would indicate that the
resulting resolution is too high. Note the simplicity of this technique, which is enabled only
by the previously conducted data reduction procedure.

As a preparatory step, we had to identify the seeds for this particular analysis which
were actually contained in the reduced TDG. Out of the 68 IP addresses in AG2, only 27
addresses appeared in CONN–DS3 during the evaluation period. This is not surprising, as
the DNS analysis considered a significantly longer epoch of time (i.e., one week). Further-
more, one DNS NOERROR response may contain multiple IP addresses for the queried
FQDN, and monitored hosts usually contact only one of these addresses. We found that 16
of the 27 IP addresses were contacted only by a single monitored host, and were therefore
removed by the connection analysis’ “Reduction II” procedure. Out of the remaining 11
IP addresses, seven addresses were removed by our approach’s “Reduction I” procedure.
After a manual investigation, we found that the main reason for their removal was that these
IP addresses belonged to address ranges of popular hosting providers. In particular, the
most often contacted IP address belonged to “Hetzner”, a large German hosting provider.
As expected, connections to these IP address ranges are considered normal for many of the
monitored hosts, and were thus removed from the TDG. The remaining three IP addresses
were present in the reduced TDG, and were used as seeds for our analysis.

Our results for AG2 were the following: the first analysis step yielded 274 connected
components. One of them was a giant component which contained 99.7% of all nodes
of the entire reduced TDG. All seeds belonged to this giant component. We applied the
Louvain method and retrieved 73 communities. All seeds belonged to the same community
with 13,151 nodes and 22,578 edges. We applied the Louvain method again, and retrieved
133 (sub-)communities. Once again, all seeds belonged to the same community with only
6 nodes and 5 edges. A further iteration of the Louvain method would have assigned the
seeds to different communities. Therefore, we stopped at this point and considered this
community the final result.

The identified graph community is shown in Fig. IV.2. It contains all three seeds, plus
the additional IP address 195.3.145.94, which was not contained in DNS–DS3 and could
therefore not be found by our DNS analysis system. We found evidence that this IP address
relates to malicious services4. Besides the actual detection of this additional malicious host,
it is interesting to note which connections in CONN–DS3 were not represented in the re-
duced TDG. During the evaluation period, the two remaining monitored hosts in Fig. IV.2
contacted 155 and 54 external hosts, respectively. If all these connections would have been
represented in the reduced TDG, it would have been significantly harder to isolate the ma-
licious community and find the additional malicious host. Instead, the connection analysis
approach enabled us to focus on the connections which are atypical for the corresponding
monitored hosts, and allowed us to successfully identify the malicious community.

14.2 Discussion

DNS analysis provides reliable results independent of the number of queries and the num-
ber of requesting monitored hosts. This enables us to detect even malicious activity that

4https://www.virustotal.com/en/ip-address/195.3.145.94/information/

121

https://www.virustotal.com/en/ip-address/195.3.145.94/information/

Monitored_Host_1

Monitored_Host_2

195.3.145.94
Seed_1

Seed_2Seed_3

Figure IV.2: Community of hosts involved in malicious activities.

affects only a small number of monitored hosts. This is complemented by the connection
analysis approach which provides heavily reduced connection graphs (TDGs) for further
analysis of “who-contacted-whom”. As we showed in our experiments, this allows us to
find additional hosts which are involved in malicious activities. A clear merit of our system
is thereby the use of minimal traffic information. On the one hand, this allows us to consider
large numbers of monitored hosts without limiting the analysis to specific traffic features
(e.g., payloads with a particular length or content) a priori, which may be altered or con-
cealed by Internet criminals. Any (third-party) analysis approach, based on arbitrary traffic
features, can therefore potentially provide seed information which can be used for better
understanding the connections of individual, malicious hosts. This is particularly useful for
the approaches discussed in §4.2.3.

The proposed joint analysis approach identifies both malicious FQDNs and the IP ad-
dresses hosting them, as well as the victim hosts. However, the system was not built for
revealing any single malicious connection, but rather provides the big picture of the activ-
ity of platforms used for Internet crime. Due to the lack of application layer information
(e.g., HTTP payloads), we cannot immediately learn from our analysis the details of ac-
tual activity, as, e.g., which particular attack is carried out. Instead, we provide topological
connection information which enable the detection of sub-communities of hosts which are
involved in malicious activity, irrespective of the specifics (e.g., protocols) of the malicious
communication (cf. §2). Once this information is known to the network operator, addi-
tional analyses of the communication of these hosts can be initiated. A rich variety of
analysis systems exists, which usually suffer from the problem that the vast amount of traf-
fic data prevents a targeted application of these tools. Our approach addresses this problem
of “finding the needle in the haystack” and complements existing systems.

We demonstrated this concept in §14.1.3 and showed that even a very simple analysis
procedure (i.e., repeated runs of the Louvain method) is able to provide additional insight
into malicious traffic activity. Due to the availability of reduced TDGs, each run of the
Louvain method completes in under one minute, which makes our system practically usable
for real-world monitoring of large networks. For the entire analysis procedure, we do not
assume that any particular IP address (or range thereof) is benign a priori, as it is often
done by other approaches, e.g., by using whitelists. With the increasing usage of CDNs
and cloud services, IP addresses are more and more being used for multiple services. It
is therefore becoming increasingly difficult to label a particular IP address as benign, as it
potentially may be used by a malicious service in the next second. Our approach addresses
this problem by considering all those connections as suspicious which involve PoPs that
have not been contacted by the specific monitored host in question. Therefore, it becomes
irrelevant which service used an IP address in the past. Rather, we analyze if a particular
host is well-known to contact IP addresses at this PoP, and we derive an individual score.
This enables the detection of communities of hosts which collaboratively engage in agile
network activity.

122

CHAPTER 15
Conclusion and Outlook

In this thesis, two complementary approaches for network-based malware detection have
been proposed. We focused on the detection of malicious service platforms which are com-
monly used for a variety of different “services” in the ecosystem of Internet crime. Both
the DNS analysis and the connection analysis approach are driven by the idea of accurately
modeling normal traffic activity patterns, and are able to detect deviations from these mod-
els. We explicitly take the inherent dynamics of (benign) Internet traffic into account, and
continuously update the models automatically and efficiently over time. Individual suspi-
cious relations among IP addresses and between IP addresses and FQDNs are represented
as graphs. These graphs reveal the platform-like character of many different types of ma-
licious activity, as we discussed in §2, §5, and §10. Our experiments with each separate
analysis component (see §9 and §13) were conducted using traffic data from ISP networks
and demonstrated the practical utility of the developed approaches. As a final evaluation,
we discussed the joint usage of both approaches in §IV and showed their complementarity.

This work focused on the problem of collecting evidence for the presence of malicious
service infrastructures in large networks. We consider the main challenge in such scenarios
to consist of “finding the needle in the haystack”. Massive amounts of network monitoring
data are available for collection, but it is highly difficult to decide where to look first and
which data should be considered at all for any analysis. Malicious Internet activity tries
to blend in benign traffic and adapts its network footprint such that it is indistinguishable
from benign traffic, w.r.t. higher layer traffic data. In the extreme case, encrypted criminal
network communication exposes no application layer information which could be accessed
by network-based analysis approaches, and would therefore be indistinguishable from be-
nign traffic. However, given sufficient time, other analysis approaches as, e.g., dynamic
analysis of malware binaries (see §4.1), are able to reveal that particular Internet hosts are
involved in malicious activities. In view of that, malicious Internet services migrate from
one Internet host to the next over time, in order to evade their detection and, consequently,
their blocking. As we showed in this thesis, these evasive actions appear as agile relations
in graphs extracted from traffic data, and are thus detectable.

Therefore, we consider our contributions as puzzle pieces in a larger framework of
malware detection approaches. Together with these approaches, we are able to “corner”
criminal activity and, ideally, limit its degrees of freedom to a point where it is not profitable
anymore (see, e.g., §9.3.2). For this purpose, an essential design goal of our approach is
the timely detection of malicious activity. Extensive processing delays would often result
in analysis reports when it is already to late, and when a malicious service is not active
anymore or moved on to a new host. The approaches proposed in this thesis require only
minimal traffic data and are often able to report malicious activity only minutes after the
corresponding traffic data was observed. The more agile the malicious activity patterns are,
the faster we are able to detect them. Less agile activity requires more time for detection,

123

but results in less reliable malicious service operation.
As our experiments showed, some benign activity is indistinguishable from malicious

one, and any fully automatic alerting system would be prone to misclassify such events.
Therefore, the detection framework should integrate a human analyst who is able to assess
the detection results, and who can initiate further analyses when needed. Our proposed sys-
tem is designed with the human analyst in mind, and provides structured detection results
(graphs) which are better accessible than long lists of individual alerts and therefore enable
the identification of entities which are central for a group of related events (see, e.g., §9.2.2).

Internet crime cannot be defeated by technology alone. Even the best detection sys-
tems are useless if, e.g., the process of issuing takedown notices for the detected malicious
services is inefficient and comes into effect only long after the malicious activity was de-
tected. The individual Internet stakeholders and, in particular, large organizations and ISPs
need to share more information in order to detect malicious activity earlier and counter-
act more efficiently. Technological advances are required as supporting instruments, and
should mainly address the privacy-preserving exchange of traffic analysis results (see, e.g.,
our own proposal [19]) as well as the exchange of incident reports (see, e.g., IETF work-
ing group on Managed Incident Lightweight Exchange (MILE)1). Above all, political ac-
tions are required for fostering the collaboration of victims, defenders, and legal authorities.
The foundation of institutions like the European Network and Information Security Agency
(ENISA) as well as the recently published Internet security strategy of the European Union
[5] are important steps in this direction.

1http://tools.ietf.org/wg/mile/

124

http://tools.ietf.org/wg/mile/

APPENDIX A
φ-α Quantiles: Algorithm Details

and Analysis

The complexity of computing profiles is dominated by calculating the φ-dominance values
for N locations. A naïve implementation needs O(N2) operations, which makes this ap-
proach unusable for large data sets with many monitored hosts. Güting et al. [78] gave an
optimal algorithm for the 2D dominance counting problem matching the lower bound of
Ω(N logN) by a divide-and-conquer approach. We present here an easy-to-implement al-
gorithm for the weighted case with the same asymptotic complexity, which scales with the
number n ≤ N of unique points, where the number of occurrences of a point corresponds
to its weight.

The main algorithm is shown in Algorithm A.3, and the pseudo-code for the encoun-
tered sub-problems is presented in Algorithms A.1 and A.2. A complete complexity analy-
sis is provided in the following, using the notation in Table 12.

Theorem 1 Given a set of points sorted according to max{ρx(·), ρy(·)}, the DOMINANCE

algorithm in Algorithm A.2 correctly determines the weighted dominance w(dom(p)) of
each point p.

Proof: For two points pi and pj sorted in increasing order according to max{ρx(·), ρy(·)}

Input data and parameters:
P - ordered set of unique points
A - set of α-values
Φ - set of φ-values

Lookup tables and data structures:
ρx(·), ρy(·) - ranks in both dimensions
w(·) - weight of points
φ(·) - phi-dominance values for all points
Tx, Ty - binary indexed trees (BIT) for both dimensions

with operations INSERT and GETCUMUL
Q(·, ·) - returns a φ-α-value

Variables:
p - currently processed point
c - cumulative weight of points dominated by p
α - α-value (skewness) of the current point
w - sum of weights of all points processed so far
W - sum of all weights

Table 12: Parameters and variables.

125

Algorithm A.1: Algorithm PREPROCESS.
input : P , w
output: P , ρx, ρy, W

W ← 0;1

sort P w.r.t. x-coordinate;2

for i← 1 to |P| do3

ρx (P [i])← i;4

W ←W + w (P [i]);5

end6

sort P w.r.t. y-coordinate;7

for i← 1 to |P| do8

ρy (P [i])← i;9

end10

sort P w.r.t. max (ρx, ρy);11

return P , ρx, ρy, W12

Algorithm A.2: Algorithm DOMINANCE.
input : P , ρx, ρy, w, W
output: Φ

w← 0;1

foreach p ∈ P do2

w← w + w (p);3

if ρx (p) > ρy (p) then4

C ← w (p) + GETCUMUL (Ty,ρx (p));5

end6

else if ρx (p) < ρy (p) then7

C ← w (p) + GETCUMUL (Tx,ρx (p));8

end9

else10

C ← w;11

end12

INSERT (Tx,p,w (p));13

INSERT (Ty,p,w (p));14

Φ (p)← C /W ;15

end16

return Φ17

with indices i and j holds: if i > j then max{ρx(pi), ρy(pi)} > max{ρx(pj), ρy(pj)}.
This implies that, given a fixed pi, for all previous elements pj the following holds:

∀pj with j < i : ρx(pi) ≥ max{ρx(pj), ρy(pj)}
∨ ∀pj with j < i : ρy(pi) ≥ max{ρx(pj), ρy(pj)}

In other words, pi’s rank is maximal in either dimension or in both dimensions. If
ρx(pi) > ρy(pi), we know that ρx(pi) is the search key and from the considerations above
follows that ρx(pi) is the maximum x-rank among all previous elements. For all next el-
ements pk with k > i holds that they have a higher x-rank than pi or a higher y-rank;
otherwise it would contradict the sorting order. Thus, in order to obtain the number of el-
ements dominated by pi, it is sufficient to count the number of elements with lower y-rank
than pi. This is done by the counting query GETCUMUL.

126

Algorithm A.3: Algorithm φ/α-QUANTILES.
input : P , Φ, A
output: Q
P , ρx, ρy, w, W ← PREPROCESS (P , w);1

Φ← DOMINANCE (P , ρx, ρy, w, w, W);2

foreach p ∈ P do3

α← ρx (p)/(ρx (p)+ρy (p));4

foreach (a, b) ∈ Φ ×A do5

if Φ (p) < a and α < b then6

if Φ (p) > Q (a,b) then7

Q (a,b)← p;8

end9

end10

end11

end12

return Q13

If ρx(pi) < ρy(pi), similar arguments apply for the other dimension. In the special
case ρx(pi) = ρy(pi), pi has both maximum x-rank and y-rank, thus it dominates all pre-
vious points pj and its dominance is given by the overall weight of all points up to index i,
including its own weight.

Lemma 1 DOMINANCE requires O(n log n) time and O(n) space.

Proof: Querying the cumulative weight GETCUMUL from a binary indexed tree (BIT) as
well as the INSERT operation both require O(log n) time [59]. Both operations are called
for each point of the data set (in each step of the foreach-loop) which results in an overall
complexity of O(n log n) for the DOMINANCE function.

The BITs can be implemented as arrays [59], which require linear space.

Theorem 2 φ/α-QUANTILES requires O(n log n) time and O(n) space.

Proof: PREPROCESS (Algorithm A.1) first sorts the data w.r.t. x-coordinate, then w.r.t.
y-coordinate. This takes time O(n log n) and linear space. Then the ranks ρx, ρy can be
obtained in a single pass over the sorted data for each dimension (linear time). The ranks are
then used for sorting the data w.r.t. max{ρx, ρy}, i.e. in the order in which the DOMINANCE

function processes the points. This sorting step takes again O(n log n) time. Storing ranks
in a lookup table requires n elements to be stored for each dimension.

By Lemma 1, DOMINANCE (Algorithm A.2) calculates φ values for each element and
needs O(n log n) and linear space.

In the final iteration over the data set, for each point p we perform a constant number
of checks (depending on the input parameter setsA,Φ) in order to determine the maximum
for each φ-α-quantile. This last iteration takes n · A · Φ ∈ O(n) time and no additional
space.

Thus the complexity is dominated by PREPROCESS and DOMINANCE and requires
O(n log n) time and O(n) space.

127

APPENDIX B
Database Schema

We store the activity profiles extracted by the connection analysis approach (see § III) in a
PostGIS database1, using the following simple table structure. The “user_data” table allows
us to quickly lookup the timestamps of the evaluation epochs at which a specific monitored
host was active, and for which we created an activity profile, consequently. For each epoch,
we create one table “geom_data_〈timestamp〉” which stores all profiles of all hosts which
were active in this epoch.

User Table Schema
CREATE TABLE user_data (
user_data_id serial primary key,
user_id bigint,
timestamp integer
);

Profiles Table Schema
CREATE TABLE geom_data_<timestamp> (
gid serial primary key,
polygon geometry,
weight real,
user_id bigint
);

Note that at the end of each epoch, we create a lookup index for the newly created
“geom_data_〈timestamp〉” table, and recreate the index on the “user_data” table. This
greatly improves the lookup performance of the activity profiles of individual hosts, and
therefore enables quicker computation of the score for a particular connection.

Indexing Commands
CREATE INDEX user_idx ON user_data (user_id);
CREATE INDEX geom_data_idx_<timestamp>
ON geom_data_<timestamp> (user_id);

1http://postgis.net

129

http://postgis.net

Curriculum Vitae

• Experience

3/2007 – Researcher
Communication Networks Group
Forschungszentrum Telekommunikation Wien (FTW)

2/2009 – 5/2009 Visiting Researcher
Network Systems Lab, Simon Fraser University, Vancouver, Canada

• Education

2004 – 2007 MSc Program Telematik
Graz University of Technology

2000 – 2004 BSc Program Telematik
Graz University of Technology

1989 – 1997 Bundesgymnasium Werndlpark, Steyr

131

Index

Agility, 17, 20, 27, 92
AS, 7

Botnet, 6

C&C, 6, 12
CDN, 8
Collaboration, 17, 19, 93
Community, 31
Connected Component, 31
Connectivity, 6

DDoS, 4
Deep Packet Inspection, 8
DNS, 7
DNS Mapping, 7
Dye-Pumping, 34, 111

External Host, 18

Fast-Flux, 28, 43
Flow, 8
FQDN, 7

Graph, 30

IP Address, 6
IP Network, 7

Louvain Method, 32

Malicious Hosting, 6, 83
Monitored Host, 18

Network Monitoring, 8

Payload, 7
Port, 7
Protocol, 7

TCP, 7
TDG, 35

UDP, 7

133

Bibliography

[1] KDD cup 1999 data. Available from: http://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.html.

[2] Multiple DNS implementations vulnerable to cache poisoning. Available from:
http://www.kb.cert.org/vuls/id/800113.

[3] Hacker intelligence initiative, monthly trend report #12. Technical report, Imperva,
September 2012. Available from: http://www.imperva.com/download.
asp?id=31.

[4] Norton cybercrime report. Technical report, Norton, 2012.

[5] Cybersecurity strategy of the european union: An open, safe and secure cyberspace.
Technical report, European Commission, 2013.

[6] Lada A. Adamic. The small world web. In Proceedings of the Third European
Conference on Research and Advanced Technology for Digital Libraries (ECDL),
pages 443–452, London, UK, 1999.

[7] Chris Anderson. The long tail: Why the future of business is selling less of more.
Technical report, Hyperion, 2006.

[8] Ross Anderson, Chris Barton, Rainer Böhme, Richard Clayton, Michel van Eeten,
Michael Levi, Tyler Moore, and Stefan Savage. Measuring the cost of cybercrime. In
Proceedings of the 11th Workshop on the Economics of Information Security (WEIS),
Berlin, Germany, June 2012.

[9] Manos Antonakakis, Roberto Perdisci, David Dagon, Wenke Lee, and Nick Feam-
ster. Building a dynamic reputation system for DNS. In Proceedings of USENIX
Security, pages 273–290, Berkeley, CA, 2010.

[10] Manos Antonakakis, Roberto Perdisci, Wenke Lee, Nikolaos Vasiloglou, and David
Dagon. Detecting malware domains at the upper DNS hierarchy. In Proceedings of
USENIX Security, page 27, Washington, DC, 2011.

[11] Alex Arenas, Alberto Fernandez, and Sergio Gomez. Analysis of the structure of
complex networks at different resolution levels. New J. Phys., 10, 2008.

[12] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS Security Introduc-
tion and Requirements. Request for Comments. IETF, March 2005. Available from:
http://www.ietf.org/rfc/rfc4033.txt.

[13] Matt Asay. Study: 95 percent of all e-mail sent in 2007 was spam. Available from:
http://news.cnet.com/8301-13505_3-9831556-16.html.

135

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://www.kb.cert.org/vuls/id/800113
http://www.imperva.com/download.asp?id=31
http://www.imperva.com/download.asp?id=31
http://www.ietf.org/rfc/rfc4033.txt
http://news.cnet.com/8301-13505_3-9831556-16.html

[14] Stefan Axelsson. The base-rate fallacy and its implications for the difficulty of intru-
sion detection. In Proceedings of the 6th ACM conference on computer and commu-
nications security (CCS), pages 186–205, New York, NY, 1999.

[15] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks.
Science, 286:509–512, October 1999.

[16] Rudolf Bayer. Symmetric binary b-trees: Data structure and maintenance algorithms.
Acta Informatica, 1(4):290–306, December 1972.

[17] Ulrich Bayer, Imam Habibi, David Balzarotti, Engin Kirda, and Christopher Kruegel.
A view on current malware behaviors. In Proceedings of the 2nd USENIX Workshop
on Large-Scale Exploits and Emergent Threats (LEET), page 8, Boston, MA, 2009.

[18] Richard Bejtlich. The Tao of network security monitoring: beyond intrusion detec-
tion. Addison-Wesley, Boston, MA, 2004.

[19] Andreas Berger, Jacopo Cesareo, and Alessandro D’Alconzo. Collaborative network
defense with minimum disclosure. In Proc. of the IEEE Global Telecommunications
Conference (GLOBECOM), pages 1–6, Houston, TX, 2011.

[20] Andreas Berger, Alessandro D’Alconzo, Wilfried N. Gansterer, and Oliver Jung. Lo-
cality matters: Reducing internet traffic graphs using location analysis. In Proceed-
ings of the Performance and Dependability Symposium (PDS) at the 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
pages 1–12, Budapest, Hungary, June 2013.

[21] Andreas Berger, Alessandro D’Alconzo, Wilfried N. Gansterer, and Antonio
Pescapè. Detecting malware activity from agile DNS mappings using graph anal-
ysis. 2013. Submitted to IEEE Transactions on Dependable and Secure Computing.

[22] Andreas Berger and Wilfried N. Gansterer. Modeling DNS agility with DNSMap.
In Proceedings of IEEE INFOCOM Workshop on Traffic Monitoring and Analysis
(TMA), pages 387–392, Turin, Italy, April 2013.

[23] Andreas Berger, Ivan Gojmerac, and Oliver Jung. Internet security meets the IP mul-
timedia subsystem: An overview. Security and Communications Networks, 3:185–
206, 2009.

[24] Andreas Berger and Mohamed Hefeeda. Exploiting SIP for botnet communication.
In Proceedings of the 5th Workshop on Secure Network Protocols (NPSEC), pages
31–36, Princeton, NJ, 2009.

[25] Andreas Berger and Eduard Natale. Assessing the real-world dynamics of DNS. In
Proceedings of the 4th international workshop on Traffic Monitoring and Analysis
(TMA), pages 1–14, Vienna, Austria, 2012.

[26] Leyla Bilge, Davide Balzarotti, William Robertson, Engin Kirda, and Christopher
Kruegel. Disclosure: detecting botnet command and control servers through large-
scale NetFlow analysis. In Proceedings of the 28th Annual Computer Security Ap-
plications Conference (ACSAC), pages 129–138, New York, NY, 2012.

[27] Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Balduzzi. EXPOSURE:
finding malicious domains using passive DNS analysis. In Proceedings of the Net-
work and Distributed System Security Symposium (NDSS), San Diego, CA, February
2011.

136

[28] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.
Fast unfolding of communities in large networks. Journal of Statistical Mechanics:
Theory and Experiment, 2008(10), October 2008.

[29] Burton H Bloom. Space/Time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13:422–426, 1970.

[30] U. Brandes, D. Delling, M. Gaertler, R. Goerke, M. Hoefer, Z. Nikoloski, and
D. Wagner. Maximizing modularity is hard. physics/0608255, August 2006.

[31] Peter Bright. How operation b107 decapitated the rustock botnet. Available
from: http://arstechnica.com/information-technology/2011/
03/how-operation-b107-decapitated-the-rustock-botnet/.

[32] Juan Caballero, Chris Grier, Christian Kreibich, and Vern Paxson. Measuring pay-
per-install: the commoditization of malware distribution. In Proceedings of USENIX
Security, pages 13–13, San Francisco, CA, 2011.

[33] F. Casacuberta and M.D. de Antoni. A greedy algorithm for computing approximate
median strings. In Proceedings of National Symposium on Pattern Recognition and
Image Analyis, pages 193–198, Barcelona, Spain, 1997.

[34] Djalil Chafai and Didier Concordet. Confidence regions for the multinomial pa-
rameter with small sample size. Journal of the American Statistical Association,
104(487):1071–1079, September 2009.

[35] Chia Yuan Cho, Juan Caballero, Chris Grier, Vern Paxson, and Dawn Song. Insights
from the inside: a view of botnet management from infiltration. In Proceedings of
the 3rd USENIX conference on Large-scale exploits and emergent threats: botnets,
spyware, worms, and more (LEET), Washington, DC, 2010.

[36] Hyunsang Choi, Heejo Lee, and Hyogon Kim. BotGAD: detecting botnets by cap-
turing group activities in network traffic. In Proceedings of the fourth International
ICST conference on communication system software and middleware (COMSWARE),
page 2, New York, NY, 2009.

[37] B. Claise. Cisco Systems NetFlow Services Export Version 9. Request for Com-
ments. IETF, October 2004. Available from: http://www.ietf.org/rfc/
rfc3954.txt.

[38] B. Claise. Specification of the IP Flow Information Export (IPFIX) Protocol for the
Exchange of IP Traffic Flow Information. Request for Comments. IETF, January
2008. Available from: http://www.ietf.org/rfc/rfc5101.txt.

[39] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. Finding community struc-
ture in very large networks. Phys. Rev. E, 70, 2004.

[40] C. J. Clopper and E. S. Pearson. The use of confidence or fiducial limits illustrated
in the case of the binomial. Biometrika, 26(4):404–413, 1934.

[41] M.P. Collins. Graph-based analysis in network security. In Proceedings of the mil-
itary communications conference (MILCOM), pages 1333–1337, Baltimore, MD,
2011.

[42] Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Srivastava. Summariz-
ing two-dimensional data with skyline-based statistical descriptors. In Proceedings
of the International Conference on Scientific and Statistical Database Management
(SSDBM), pages 42–60, Hongkong, China, 2008.

137

http://arstechnica.com/information-technology/2011/03/how-operation-b107-decapitated-the-rustock-botnet/
http://arstechnica.com/information-technology/2011/03/how-operation-b107-decapitated-the-rustock-botnet/
http://www.ietf.org/rfc/rfc3954.txt
http://www.ietf.org/rfc/rfc3954.txt
http://www.ietf.org/rfc/rfc5101.txt

[43] Baris Coskun and Sven Dietrich. Friends of an enemy: Identifying local members of
peer-to-peer botnets using mutual contacts. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC), pages 131–140, Austin, TX, December
2010.

[44] Luciano da F. Costa, Francisco Rodrigues, Gonzalo Travieso, and P. R. Villas Boas.
Characterization of complex networks: A survey of measurements. Adv. Phys.,
56:167–242, 2007.

[45] David Dagon and Guofei Gu. A taxonomy of botnet structures. In Proceedings of
the Annual Computer Security Applications Conference (ACSAC), pages 325–339,
Miami Beach, FL, 2007.

[46] David Dagon, Guofei Gu, Cliff Zou, Julian Grizzard, Sanjeev Dwivedi, Wenke Lee,
and Richard Lipton. A taxonomy of botnets. Proceedings of CAIDA DNS-OARC
Workshop, 2005.

[47] David Dagon, Cliff Zou, and Wenke Lee. Modeling botnet propagation using time
zones. In Proceedings of the 13th Network and Distributed System Security Sympo-
sium (NDSS), pages 2–13, San Diego, CA, 2006.

[48] Alessandro D’Alconzo, Angelo Coluccia, Fabio Ricciato, and Peter Romirer-
Maierhofer. A distribution-based approach to anomaly detection for 3G mobile net-
works. In Proceedings of the IEEE Global Communication Conference (GLOBE-
COM), pages 1–8, Honolulu, HI, 2009.

[49] Neil Daswani and Michael Stoppelman. The anatomy of Clickbot.A. In Proceed-
ings of the workshop on Hot Topics in Understanding Botnets (HotBots), page 11,
Cambridge, CA, 2007.

[50] David Dittrich and Sven Dietrich. Command and control structures in malware:
From Handler/Agent to P2P. USENIX :login:, 32(6), December 2007.

[51] Jesse Davis and Mark Goadrich. The relationship between precision-recall and ROC
curves. In Proceedings of the 23rd international conference on Machine learning
(ICML), pages 233–240, New York, NY, 2006.

[52] D.E. Denning. An intrusion-detection model. IEEE Transactions on Software Engi-
neering, SE-13(2):222 – 232, February 1987.

[53] Guillaume Dewaele, Kensuke Fukuda, Pierre Borgnat, Patrice Abry, and Kenjiro
Cho. Extracting hidden anomalies using sketch and non gaussian multiresolution
statistical detection procedures. In Proceedings of the workshop on Large Scale
Attack Defense (LSAD), pages 145–152, Kyoto, Japan, 2007.

[54] Christian J. Dietrich, Christian Rossow, and Norbert Pohlmann. CoCoSpot: clus-
tering and recognizing botnet command and control channels using traffic analysis.
Computer Networks, 57(2):475–486, February 2013.

[55] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. A survey
on automated dynamic malware-analysis techniques and tools. ACM Comput. Surv.,
44(2):6:1–6:42, March 2008.

[56] Martin Ester, Hans-Peter Kriegel, Jörg S, and Xiaowei Xu. A density-based algo-
rithm for discovering clusters in large spatial databases with noise. In Proceedings
of the Second International Conference on Knowledge Discovery and Data Mining
(KDD), pages 226–231, Portland, OR, 1996.

138

[57] European Parliament and the Council of the European Union. Directive 95/46/EC of
the european parliament and of the council of 24 october 1995 on the protection of
individuals with regard to the processing of personal data and on the free movement
of such data. Official Journal of the European Union, L 281:31–50, 1995.

[58] Tom Fawcett. ROC graphs: Notes and practical considerations for data mining re-
searchers. Technical Report HPL-2003-4, HP Laboratories, 2003.

[59] Peter M. Fenwick. A new data structure for cumulative frequency tables. Software:
Practice and Experience, 24(3):327–336, 1994.

[60] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol - HTTP/1.1. Request for Comments. IETF, June
1999. Available from: http://www.ietf.org/rfc/rfc2616.txt.

[61] R. A. Finkel and J. L. Bentley. Quad trees: a data structure for retrieval on composite
keys. Acta Informatica, 4(1):1–9, 1974.

[62] Dinei A. F. Florêncio and Cormac Herley. Evaluating a trial deployment of password
re-use for phishing prevention. In Proceedings of the eCrime Researchers Summit,
pages 26–36, 2007.

[63] Romain Fontugne, Pierre Borgnat, Patrice Abry, and Kensuke Fukuda. Uncover-
ing relations between traffic classifiers and anomaly detectors via graph theory. In
Proceedings of the 2nd international Workshop on Traffic Monitoring and Analysis
(TMA), pages 101–114, Zurich, Switzerland, 2010.

[64] Santo Fortunato. Community detection in graphs. Physics Reports, 486:75–174,
2010.

[65] Santo Fortunato and Marc Barthélemy. Resolution limit in community detection.
Proceedings of the National Academy of Sciences, 104(1):36–41, January 2007.

[66] Marc Fossi. Internet security threat report, trends for 2010. Technical report, Syman-
tec, April 2011.

[67] Jason Franklin, Vern Paxson, Adrian Perrig, and Stefan Savage. An inquiry into the
nature and causes of the wealth of internet miscreants. In Proceedings of the 14th
ACM conference on Computer and communications security (CCS), pages 375–388,
Alexandria, VA, 2007.

[68] Jérôme François, Shaonan Wang, Radu State, and Thomas Engel. BotTrack: tracking
botnets using NetFlow and PageRank. In Proceedings of the 10th international IFIP
TC 6 conference on Networking, pages 1–14, Valencia, Spain, 2011.

[69] Howard Fraser. Exploring the blackhole exploit kit. Available from: http:
//nakedsecurity.sophos.com/exploring-the-blackhole-
exploit-kit/.

[70] Yan Gao, Yao Zhao, R. Schweller, S. Venkataraman, Yan Chen, Dawn Song, and
Ming-Yang Kao. Detecting stealthy spreaders using online outdegree histograms.
In Proceedings of the 15th IEEE International Workshop on Quality of Service
(IWQoS), pages 145–153, Evanston, IL, 2007.

[71] Gavin O’Gorman and Geoff McDonald. Ransomware: A growing menace. Technical
report, Symantec, November 2012.

139

http://www.ietf.org/rfc/rfc2616.txt
http://nakedsecurity.sophos.com/exploring-the-blackhole-exploit-kit/
http://nakedsecurity.sophos.com/exploring-the-blackhole-exploit-kit/
http://nakedsecurity.sophos.com/exploring-the-blackhole-exploit-kit/

[72] Jan Goebel and Thorsten Holz. Rishi: identify bot contaminated hosts by IRC nick-
name evaluation. In Proceedings of the first conference on First Workshop on Hot
Topics in Understanding Botnets (HotBots), page 8, Cambridge, CA, 2007.

[73] Benjamin H. Good, Yves-Alexandre de Montjoye, and Aaron Clauset. The perfor-
mance of modularity maximization in practical contexts. Phys. Rev. E, 81, 2010.

[74] Chris Grier, Lucas Ballard, Juan Caballero, Neha Chachra, Christian J. Dietrich, Kir-
ill Levchenko, Panayiotis Mavrommatis, Damon McCoy, Antonio Nappa, Andreas
Pitsillidis, Niels Provos, M. Zubair Rafique, Moheeb Abu Rajab, Christian Rossow,
Kurt Thomas, Vern Paxson, Stefan Savage, and Geoffrey M. Voelker. Manufacturing
compromise: the emergence of exploit-as-a-service. In Proceedings of the ACM con-
ference on computer and communications security (CCS), pages 821–832, Raleigh,
NC, 2012.

[75] Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke Lee. BotMiner: clustering
analysis of network traffic for protocol- and structure-independent botnet detection.
In Proceedings of USENIX Security, pages 139–154, San Jose, CA, 2008.

[76] Guofei Gu, Junjie Zhang, and Wenke Lee. BotSniffer: detecting botnet command and
control channels in network traffic. In Proceedings of the Network and Distributed
System Security Symposium (NDSS), San Diego, CA, 2008.

[77] Fanglu Guo, Peter Ferrie, and Tzi-Cker Chiueh. A study of the packer problem and its
solutions. In Proceedings of the 11th international symposium on Recent Advances
in Intrusion Detection (RAID), pages 98–115, 2008.

[78] Ralf-Hartmut Güting, Otto Nurmi, and Thomas Ottmann. Fast algorithms for direct
enclosures and direct dominances. Journal of Algorithms, 10(2):170–186, 1989.

[79] Eric Haines. Graphics gems IV. page 24–46. Academic Press Professional, Inc., San
Diego, CA, 1994.

[80] Shuang Hao, Nick Feamster, and Ramakant Pandrangi. An internet wide view into
DNS lookup patterns. Technical report, VeriSign Incorporated, 2010.

[81] Shuang Hao, Nick Feamster, and Ramakant Pandrangi. Monitoring the initial DNS
behavior of malicious domains. In Proceedings of the 2011 ACM SIGCOMM confer-
ence on Internet measurement conference (IMC), pages 269–278, Berlin, Germany,
2011.

[82] Thorsten Holz, Christian Gorecki, Konrad Rieck, and Felix C Freiling. Measuring
and detecting fast-flux service networks. In Proceedngs of the Network and Dis-
tributed System Security Symposium (NDSS), San Diego, CA, 2008.

[83] Thorsten Holz, Moritz Steiner, Frederic Dahl, Ernst Biersack, and Felix Freiling.
Measurements and mitigation of peer-to-peer-based botnets: a case study on storm
worm. In Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and
Emergent Threats (LEET), pages 1–9, San Francisco, CA, 2008.

[84] John Hopcroft and Robert Tarjan. Algorithm 447: efficient algorithms for graph
manipulation. Commun. ACM, 16(6):372–378, June 1973.

[85] Xin Hu, M. Knysz, and K. G Shin. Measurement and analysis of global IP-usage
patterns of fast-flux botnets. In Proceedings of the Annual IEEE International Con-
ference on Computer Communications (INFOCOM), pages 2633–2641, Shanghai,
China, 2011.

140

[86] Rob J Hyndman and Yanan Fan. Sample quantiles in statistical packages. American
Statistician, 50(4):361–365, 1996.

[87] Marios Iliofotou, Michalis Faloutsos, and Michael Mitzenmacher. Exploiting dy-
namicity in graph-based traffic analysis: techniques and applications. In Proceed-
ings of the 5th international conference on Emerging networking experiments and
technologies (CoNEXT), pages 241–252, Rome, Italy, 2009.

[88] Marios Iliofotou, Prashanth Pappu, Michalis Faloutsos, Michael Mitzenmacher,
Sumeet Singh, and George Varghese. Network monitoring using traffic dispersion
graphs (TDGs). In Proceedings of the 7th ACM SIGCOMM conference on Internet
measurement (IMC), pages 315–320, San Diego, CA, 2007.

[89] Gregoire Jacob, Ralf Hund, Christopher Kruegel, and Thorsten Holz. JACK-
STRAWS: picking command and control connections from bot traffic. In Proceed-
ings of USENIX Security, page 29, San Francisco, CA, 2011.

[90] Nan Jiang, Jin Cao, Yu Jin, Li Erran Li, and Zhi-Li Zhang. Identifying suspicious
activities through DNS failure graph analysis. In Proceedings of the 18th IEEE In-
ternational Conference on Network Protocols (ICNP), pages 144–153, Kyoto, Japan,
2010.

[91] Yu Jin, Esam Sharafuddin, and Zhi-Li Zhang. Unveiling core network-wide com-
munication patterns through application traffic activity graph decomposition. In Pro-
ceedings of the eleventh international joint conference on measurement and modeling
of computer systems, pages 49–60, Seattle, WA, 2009.

[92] Thomas Karagiannis, Konstantina Papagiannaki, and Michalis Faloutsos. BLINC:
multilevel traffic classification in the dark. In Proceedings of the 2005 conference
on Applications, technologies, architectures, and protocols for computer communi-
cations, pages 229–240, Philadelphia, PA, 2005.

[93] Anestis Karasaridis, Brian Rexroad, and David Hoeflin. Wide-scale botnet detection
and characterization. In Proceedings of the first Workshop on Hot Topics in Under-
standing Botnets (HotBots), Cambridge, MA, 2007.

[94] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM,
46(5):604–632, September 1999.

[95] M. Knysz, Xin Hu, and K.G. Shin. Good guys vs. bot guise: Mimicry attacks against
fast-flux detection systems. In Proceedings of the Annual IEEE International Con-
ference on Computer Communications (INFOCOM), pages 1844–1852, Shanghai,
China, 2011.

[96] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin Kirda,
Xiaoyong Zhou, and XiaoFeng Wang. Effective and efficient malware detection at
the end host. In Proceedings of USENIX Security, pages 351–366, Montreal, Canada,
2009.

[97] Clemens Kolbitsch, Engin Kirda, and Christopher Kruegel. The power of procrasti-
nation: detection and mitigation of execution-stalling malicious code. In Proceedings
of the 18th ACM conference on computer and communications security (CCS), pages
285–296, Chicago, IL, 2011.

[98] Maria Konte, Nick Feamster, and Jaeyeon Jung. Dynamics of online scam hosting
infrastructure. In Proceedings of the 10th International Conference on Passive and
Active Network Measurement (PAM), pages 219–228, Seoul, South Korea, 2009.

141

[99] Christian Kreibich, Nicholas Weaver, Chris Kanich, Weidong Cui, and Vern Paxson.
GQ: practical containment for measuring modern malware systems. In Proceedings
of the 2011 ACM SIGCOMM conference on Internet measurement conference (IMC),
pages 397–412, Berlin, Germany, 2011.

[100] Andrea Lancichinetti and Santo Fortunato. Community detection algorithms: a com-
parative analysis. Physical Review E, 80, 2009.

[101] Andrea Lancichinetti and Santo Fortunato. Limits of modularity maximization in
community detection. Physical Review E, 84, 2011.

[102] Andrea Lancichinetti and Santo Fortunato. Consensus clustering in complex net-
works. Scientific Reports, 2, March 2012.

[103] Andrea Lancichinetti, Filippo Radicchi, Jose’ Javier Ramasco, and Santo Fortunato.
Finding statistically significant communities in networks. PLoS One, 6(4), 2011.

[104] Alex Lanstein. An overview of rustock. Technical report, FireEye.
Available from: http://www.fireeye.com/blog/technical/botnet-
activities-research/2011/03/an-overview-of-rustock.html.

[105] Do Quoc Le, Taeyoel Jeong, H. Eduardo Roman, and James Won-Ki Hong. Traffic
dispersion graph based anomaly detection. In Proceedings of the Second Sympo-
sium on Information and Communication Technology (SoICT), pages 36–41, Hanoi,
Vietnam, 2011.

[106] Vladimir Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[107] Geoffrey Mack. The alexa blog: Why does my alexa rank jump around? a: The long
tail, April 2009. Available from: http://blog.alexa.com/2009/04/why-
does-my-alexa-rank-jump-around-the.html.

[108] MalwareIntelligence. Inside phoenix exploit’s kit 2.8 mini version, October
2011. Available from: http://malwareint.blogspot.com.es/2011/
10/inside-phoenix-exploits-kit-28-mini.html.

[109] A. Matrosov, E. Rodionov, D. Harley, and J. Malcho. Stuxnet un-
der the microscope. Technical report, ESET, January 2011. Available
from: http://www.eset.com/resources/whitepapers/Stuxnet_
Under_the_Microscope.pdf.

[110] John McHugh. Testing intrusion detection systems: a critique of the 1998 and 1999
DARPA intrusion detection system evaluations as performed by lincoln laboratory.
ACM Trans. Inf. Syst. Secur., 3(4):262–294, November 2000.

[111] Stanley Milgram. The small world problem. Psychology Today, 1:61–67, May 1967.

[112] P.V. Mockapetris. Domain names - concepts and facilities. Request for Com-
ments. IETF, November 1987. Available from: http://www.ietf.org/rfc/
rfc1034.txt.

[113] A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware detec-
tion. In Proceedings of the 23rd Annual Computer Security Applications Conference
(ACSAC), pages 421–430, Miami, FL, 2007.

142

http://www.fireeye.com/blog/technical/botnet-activities-research/2011/03/an-overview-of-rustock.html
http://www.fireeye.com/blog/technical/botnet-activities-research/2011/03/an-overview-of-rustock.html
http://blog.alexa.com/2009/04/why-does-my-alexa-rank-jump-around-the.html
http://blog.alexa.com/2009/04/why-does-my-alexa-rank-jump-around-the.html
http://malwareint.blogspot.com.es/2011/10/inside- phoenix-exploits-kit-28-mini.html
http://malwareint.blogspot.com.es/2011/10/inside- phoenix-exploits-kit-28-mini.html
http://www.eset.com/resources/whitepapers/Stuxnet_Under_the_Microscope.pdf
http://www.eset.com/resources/whitepapers/Stuxnet_Under_the_Microscope.pdf
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1034.txt

[114] Atif Mushtaq and Alex Lanstein. Srizbi control regained by original owner. Tech-
nical report, FireEye, 2008. Available from: http://blog.fireeye.com/
research/2008/11/its-srizbi-trun-now.html.

[115] Shishir Nagaraja, Amir Houmansadr, Pratch Piyawongwisal, Vijit Singh, Pragya
Agarwal, and Nikita Borisov. Stegobot: a covert social network botnet. In Proceed-
ings of the 13th international conference on Information hiding (IH), pages 299–313,
Prague, Czech Republic, 2011.

[116] Shishir Nagaraja, Prateek Mittal, Chi-yao Hong, Matthew Caesar, and Nikita
Borisov. BotGrep: finding P2P bots with structured graph analysis. In Proceedings
of USENIX Security, pages 95–110, Washington, DC, 2010.

[117] Jose Nazario and Thorsten Holz. As the net churns: Fast-flux botnet observations. In
Proceedings of the 3rd International Conference on Malicious and Unwanted Soft-
ware (MALWARE), pages 24–31, Alexandria, VA, 2008.

[118] Matthias Neugschwandtner, Paolo Milani Comparetti, and Christian Platzer. Detect-
ing malware’s failover C&C strategies with squeeze. In Proceedings of the 27th An-
nual Computer Security Applications Conference (ACSAC), pages 21–30, Orlando,
FL, 2011.

[119] M. E. J. Newman. Modularity and community structure in networks. Proceedings of
the National Academy of Sciences, 103(23):8577–8582, June 2006.

[120] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in
networks. Physical Review E, 69(2), 2004.

[121] Mark Newman. Networks: An Introduction. Oxford University Press, USA, 2010.

[122] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. The akamai network: a
platform for high-performance internet applications. SIGOPS Oper. Syst. Rev.,
44(3):2–19, 2010.

[123] Gunter Ollmann. The botnet vs. malware relationship. Technical report, Damballa,
2009.

[124] Gunter Ollmann. Behind today’s crimeware installation lifecycle: How advanced
malware morphs to remain stealthy and persistent. Technical report, Damballa, May
2011. Available from: http://www.damballa.com/downloads/r_pubs/
WP_Advanced_Malware_Install_LifeCycle.pdf.

[125] Gunter Ollmann. Blacklists & dynamic reputation understanding why the evolving
threat eludes blacklists. Technical report, Damballa, 2011.

[126] Gunter Ollmann. The evolution of network antivirus. Technical report, Damballa,
October 2012.

[127] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank
citation ranking: Bringing order to the web. In Proceedings of the 7th International
World Wide Web Conference (WWW), Brisbane, Australia, 1998.

[128] Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo Bruschi.
A fistful of red-pills: how to automatically generate procedures to detect CPU em-
ulators. In Proceedings of the 3rd USENIX conference on offensive technologies
(WOOT), page 86, Montreal, Canada, 2009.

143

http://blog.fireeye.com/research/2008/11/its-srizbi-trun-now.html
http://blog.fireeye.com/research/2008/11/its-srizbi-trun-now.html
http://www.damballa.com/downloads/r_pubs/WP_Advanced_Malware_Install_LifeCycle.pdf
http://www.damballa.com/downloads/r_pubs/WP_Advanced_Malware_Install_LifeCycle.pdf

[129] Emanuele Passerini, Roberto Paleari, Lorenzo Martignoni, and Danilo Bruschi.
FluXOR: detecting and monitoring fast-flux service networks. In Proceedings of
the 5th international conference on Detection of Intrusions and Malware, and Vul-
nerability Assessment (DIMVA), pages 186–206, Paris, France, 2008.

[130] R. Perdisci, I. Corona, and G. Giacinto. Early detection of malicious flux networks
via large-scale passive DNS traffic analysis. IEEE Transactions on Dependable and
Secure Computing, 9(5):714–726, October 2012.

[131] Roberto Perdisci, Davide Ariu, and Giorgio Giacinto. Scalable fine-grained be-
havioral clustering of HTTP-based malware. Computer Networks, 57(2):487–500,
February 2013.

[132] Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems Approach.
Morgan Kaufmann, 2007.

[133] Dave Piscitello. Conficker summary and review. Technical report, ICANN, May
2010. Available from: http://icann.org/en/security/conficker-
summary-review-07may10-en.pdf.

[134] David Plonka and Paul Barford. Context-aware clustering of DNS query traffic. In
Proceedings of the ACM SIGCOMM conference on Internet measurement (IMC),
pages 217–230, Vouliagmeni, Greece, 2008.

[135] Phillip Porras, Hassen Saïdi, and Vinod Yegneswaran. A foray into conficker’s logic
and rendezvous points. In Proceedings of the 2nd USENIX conference on Large-scale
exploits and emergent threats: botnets, spyware, worms, and more (LEET), Boston,
MA, 2009.

[136] Niels Provos, Panayiotis Mavrommatis, Moheeb Abu Rajab, and Fabian Monrose.
All your iFRAMEs point to us. In Proceedings of USENIX Security, San Jose, CA,
2008.

[137] Thomas Raffetseder, Christopher Kruegel, and Engin Kirda. Detecting system em-
ulators. In Juan A. Garay, Arjen K. Lenstra, Masahiro Mambo, and René Peralta,
editors, Proceedings of the 10th international conference on Information Security
(ISC), pages 1–18, Valparaiso, Chile, 2007.

[138] Jörg Reichardt and Stefan Bornholdt. Statistical mechanics of community detection.
Physical Review E, 74(1), 2006.

[139] C. Rigney, S. Willens, A. Rubens, and W. Simpson. Remote Authentication Dial In
User Service (RADIUS). Request for Comments. IETF, June 2000. Available from:
http://www.ietf.org/rfc/rfc2865.txt.

[140] Christian Rossow, Christian J. Dietrich, Herbert Bos, Lorenzo Cavallaro, Maarten
van Steen, Felix C. Freiling, and Norbert Pohlmann. Sandnet: network traffic analy-
sis of malicious software. In Proceedings of the First Workshop on Building Analysis
Datasets and Gathering Experience Returns for Security (BADGERS), pages 78–88,
Salzburg, Austria, 2011.

[141] Martin Rosvall and Carl T. Bergstrom. Maps of random walks on complex net-
works reveal community structure. Proceedings of the National Academy of Sciences,
105(4):1118–1123, January 2008.

144

http://icann.org/en/security/conficker-summary-review-07may10-en.pdf
http://icann.org/en/security/conficker-summary-review-07may10-en.pdf
http://www.ietf.org/rfc/rfc2865.txt

[142] Stefan Ruehrup, Pierfrancesco Urbano, Andreas Berger, and Alessandro D’Alconzo.
Botnet detection revisited: theory and practice of finding malicious P2P networks via
internet connection graphs. In Proceedings of the INFOCOM workshop on Traffic
Monitoring and Analysis (TMA), pages 435–440, Turin, Italy, 2013.

[143] Shashi Shekhar and Sanjay Chawla. Spatial databases : a tour. Prentice Hall, Upper
Saddle River, NJ, 2003.

[144] Gordon Snow. Cyber security: Threats to the financial sector, Septem-
ber 2011. Available from: http://financialservices.house.gov/
UploadedFiles/091411snow.pdf.

[145] Robin Sommer and Vern Paxson. Outside the closed world: On using machine learn-
ing for network intrusion detection. In Proceedings of the IEEE Symposium on Se-
curity and Privacy, pages 305–316, Oakland, CA, 2010.

[146] Aditya K. Sood and Richard J. Enbody. Crimeware-as-a-service—A survey of com-
moditized crimeware in the underground market. International Journal of Critical
Infrastructure Protection, 6(1):28–38, 2013.

[147] Brett Stone-Gross, Thorsten Holz, Gianluca Stringhini, and Giovanni Vigna. The un-
derground economy of spam: a botmaster’s perspective of coordinating large-scale
spam campaigns. In Proceedings of the 4th USENIX conference on Large-scale ex-
ploits and emergent threats (LEET), Boston, MA, 2011.

[148] W. Strayer, David Lapsely, Robert Walsh, and Carl Livadas. Botnet detection based
on network behavior. In Botnet Detection, volume 36 of Advances in Information
Security, pages 1–24. 2008.

[149] M. Tavallaee, E. Bagheri, Wei Lu, and A.A. Ghorbani. A detailed analysis of the
KDD CUP 99 data set. In Proceedings of the IEEE Symposium on Computational
Intelligence for Security and Defense Applications (CISDA), Ottawa, Canada, 2009.

[150] Rick van Luvender. Fraud trends in 2010: Top threats from a growing underground
economy. Technical report, FirstData, April 2010.

[151] R. Villamarin-Salomon and J.C. Brustoloni. Identifying botnets using anomaly de-
tection techniques applied to DNS traffic. In Proceedings of the 5th IEEE Consumer
Communications & Networking Conference (CCNC), pages 476–481, Las Vegas,
NV, 2008.

[152] Tao Wang and Shun-Zheng Yu. Centralized botnet detection by traffic aggregation. In
Proceedings of the International Symposium on Parallel and Distributed Processing
with Applications, pages 86–93, Chengdu, China, 2009.

[153] DJ Watts and SH Strogatz. Collective dynamics of small-world networks. Nature,
393(6684):409–10, 1998.

[154] Kenneth C. Wilbur and Yi Zhu. Click fraud. Marketing Science, 28(2):293–308,
March 2009. Available from: http://mktsci.journal.informs.org/
content/28/2/293.

[155] Gilbert Wondracek, Thorsten Holz, Christian Platzer, Engin Kirda, and Christopher
Kruegel. Is the internet for porn? an insight into the online adult industry. In Pro-
ceedings of the 9th Workshop on the Economics of Information Security (WEIS),
Cambridge, MA, 2010.

145

http://financialservices.house.gov/ UploadedFiles/091411snow.pdf
http://financialservices.house.gov/ UploadedFiles/091411snow.pdf
http://mktsci.journal.informs.org/content/28/2/293
http://mktsci.journal.informs.org/content/28/2/293

[156] Gilbert Wondracek, Paulo Milano, Christopher Kruegel, and Engin Kirda. Auto-
matic network protocol analysis. In Proceedings of the 15th Annual Network and
Distributed System Security Symposium (NDSS), pages 1–14, San Diego, CA, 2008.

[157] Dallas Wood and Brent Rowe. Assessing home internet users’ demand for security:
Will they pay ISPs? In Proceedings of the workshop on the Economics of Information
Security (WEIS), Fairfax, VA, 2011.

[158] Peter Wurzinger, Leyla Bilge, Thorsten Holz, Jan Goebel, Christopher Kruegel, and
Engin Kirda. Automatically generating models for botnet detection. In Proceedings
of the 14th European conference on research in computer security (ESORICS), pages
232–249, Saint Malo, France, 2009.

[159] Kuai Xu, Feng Wang, and Lin Gu. Network-aware behavior clustering of internet end
hosts. In Proceedings of the Annual IEEE International Conference on Computer
Communications (INFOCOM), pages 2078–2086, Shanghai, China, 2011.

[160] Sandeep Yadav, Ashwath Kumar Krishna Reddy, A.L. Narasimha Reddy, and
Supranamaya Ranjan. Detecting algorithmically generated malicious domain names.
In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement
(IMC), pages 48–61, Melbourne, Australia, 2010.

[161] Zonghua Zhang, Ruo Ando, and Youki Kadobayashi. Hardening botnet by a rational
botmaster. In Information Security and Cryptology, pages 348–369. 2009.

146

	I Introduction and Background
	Introduction
	Terminology
	Published Work

	The Internals of Internet Crime
	Malware Communication Examples

	Methodology and Scope
	Methodology
	Evaluation of Results
	Outline

	State of the Art
	Malware Detection
	Network-based Malware Detection
	DNS-based Malware Detection

	Complex Networks
	Terminology
	Structural Properties and Community Detection
	Graph-based Malware Detection

	Evaluation of Malware Detection Results
	Summary

	II DNS Analysis
	Problem Definition
	How Agile are DNS Mappings?
	Methodology
	Implementation

	Experimental Evaluation
	1:1 Stability
	k:j Stability
	1GEO Stability

	Discussion

	The DNSMap Approach
	Methodology
	Measuring FQDN Similarity
	Modeling DNS Activity

	System Overview
	Parameters and Tuning

	System Evaluation
	Performance
	Benign Service Agility

	Malware Detection
	Graph Analysis
	Agile Group Features
	Graph Analysis Parameters
	Analysis Workflow

	Experimental Evaluation
	Results with Limited Training
	Targeted Whitelisting
	Malware Detection Scenarios

	Discussion
	Limitations
	Evasion Strategies

	Summary

	III Connection Analysis
	Problem Definition
	Analysis Approach
	Methodology
	Preliminaries: Order Statistics
	- Quantiles
	2D Density
	Confidence Bounds

	System Design and Architecture
	Reduction I: Connection Scoring
	Reduction II: Graph Analysis
	System Design

	Experimental Evaluation
	Validation Tests
	Malware Detection
	Botnet Emulation
	Dye-Pumping

	Discussion and Limitations
	Summary

	IV Joint Analysis and Final Remarks
	Joint Analysis
	Experimental Evaluation
	DNS Analysis Results
	Connection Analysis Results
	Joint Analysis Results

	Discussion

	Conclusion and Outlook
	- Quantiles: Algorithm Details and Analysis
	Database Schema
	Curriculum Vitae
	Index
	Bibliography

