
MASTERARBEIT
Titel der Masterarbeit

“The splitting number and some of its

neighbors ”

Verfasserin

Anda-Ramona Tănasie, BSc
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Abstract

Diese Masterarbeit ist eine Zusammenstellung von Konsitenzresultaten im Bezug auf

die Begrenzungs- und die Aufspaltungszahl. Im ersten Teil der Arbeit, ist ihre Un-

abhängigkeit bewiesen:

• Bezüglich der Aussage Con(s = ℵ1 < b = κ), presentiert diese Arbeit drei ver-

schiedene Argumente. Alle verwenden das Hechler Modell ( [3], [2] und [7]).

• Das “proper forcing“, dessen abzählbar unterstützte Iteration, das Resultat Con(b =

ℵ1 < s = ℵ2) ergibt, wurde von Shelah in [19] entdeckt. Auf der zweiten Ko-

ordinate der Mathias Bedingungen, hat Shelah eine zusätzliche kombinatorische

Struktur eingefügt, in Form eines logarithmischen Maßes, dessen Eigenschaften, die

beinahe ωω-Begrenzbarkeit und die Existenz einer unaufgespalteten reellen Zahl

gewährleisten.

Der zweite Teil der Arbeit bezieht sich auf eine Methode, die beliebige Werte der Invari-

anten ergibt, und zwar die Konstruktion von Matrix Iterationen. Diese Iterationen bildet

man mit Hilfe der Shelah-Technik ([5]) für Erweiterung eines gegebenes Ultrafilters, unter

Beibehaltung der vollständigen Einbettbarkeit und einer zusätzlichen kombinatorischen

Eigenschaft:

(1) Con(b = ℵ1 < s = c = κ) erhält man, wenn man mit einer endlich unterstützten Co-

hen Iteration anfängt und sicherstellt, dass die hinzugefügte reelle Zahl unbegrenzt

erhalten wird. Längere Iterationen ergeben immernoch b = ℵ1.

(2) Con(b = a = κ < s = c = λ) erhält man, wenn man mit einer endlich un-

terstützten Iteration des forcings, das maximale fast-disjunkte Familien einfügt,

anfängt. Die kombinatorische Eigenschaft, die erhalten werden soll, bezieht sich

auf fast-Disjunktheit.

(3) Con(b = κ < s = a = c = λ) ist nur unter der Annahme, dass ein messbare Kardi-

nalzahl existiert bekannt. Dann kann man die “ultrapower“ einer partiellen Ordnung

bilden. Diese Konstruktion spielt eine wichtige Rolle, weil sie die maximalen fast-

disjunkte Familien zerstört, und deswegen a steigt. Die Iteration unterscheidet sich

von (1) dahingehend, dass diese Konstruktion in jedem dritten Schritt gemacht wird.





Abstract

This thesis is a survey on consistency results involving the bounding number and the

splitting number. In the first part of the thesis, their independence is showed:

• For Con(s = ℵ1 < b = κ), this thesis gives three different arguments that appear in

the literature (in [3], [2] and [7]), all involving the Hechler model.

• The proper forcing notion whose countable support iteration gives Con(b = ℵ1 <

s = ℵ2) was developed by Shelah in [19]. On the pure part of the Mathias conditions,

Shelah added an additional combinatorial structure, in form of a logarithmic mea-

sure, whose properties ensure, that the almost ωω-bounding property is satisfied,

and that an unsplit real is added.

The second part of the thesis is concentrated on the method used towards obtaining

arbitrary spread between these cardinal invariants, namely, the construction of matrix

iterations. These iterations are constructed using Shelah’s technique ([5]) of extending

a given ultrafilter, while preserving the complete embeddability and some combinatorial

property:

(1) Con(b = ℵ1 < s = c = κ) is obtained by starting with a finite support iteration

(of length ℵ1) of Cohen forcing and then ensuring that the added unbounded real

remains unbounded. Longer iterations still keep b = ℵ1. For sidestepping this

problem, the almost disjointness number is involved ([10]), since b ≤ a is provable

in ZFC.

(2) Con(b = a = κ < s = c = λ) is obtained by starting with a finite support iteration

of a forcing adding m.a.d. families, and preserving a combinatorial property related

to the almost disjointness.

(3) Con(b = κ < s = a = c = λ) is only known above a measurable cardinal, where the

ultrapower of a partial order exists. Raising the poset to the ultrapower plays an

important role, since big m.a.d. families are destroyed, and therefore, a is increased.

One proceeds as in (1), with the only difference, that every third step, the partial

order is raised to its ultrapower.
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Chapter 1

Introduction

Cardinal invariants of the continuum are cardinal numbers describing

combinatorial properties of the real line, in various models. The first the-

orem about cardinal invariants is the theorem of Cantor, which says that

the continuum is strictly larger than the cardinality of a countable infinite

set, i.e. 2ℵ0 > ℵ0. This theorem has various applications, especially in real

analysis, where often interesting properties of countable sets, which cannot

be extended to sets of cardinality c, are studied. A cardinal invariant, also

called cardinal characteristic, is the minimal cardinal number for which

such a property of countable sets, becomes false. Clearly, these invariants will

take values between ℵ1 and c, so they are uninteresting under the Continuum

Hypothesis. Actually, the interesting part is the study of relationships be-

tween these cardinal numbers.

The rest of this chapter will be a short exposition of historical notes, gen-

eralities and basic facts on forcing, and some easy ZFC provable inequalities

between the cardinal invariants b, its dual d, s and a.
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The splitting number s is the minimal cardinality of a splitting family,

the bounding number b is the minimal cardinality of an unbounded family,

d is the minimal cardinality of a dominating family and a is the minimal

cardinality of an infinite maximal almost disjoint family.

The second chapter will contain three different arguments for Con(s < b),

all three involving the Dominating forcing (also called Hechler forcing).

After some generalities on proper forcing and an introduction to Mathias

forcing, the third chapter of the thesis presents the first creature forcing that

appeared in the literature. S.Shelah obtained this proper forcing notion by

adding an additional combinatorial structure on the pure part of the Math-

ias conditions, in form of a logarithmic measure. Using the properties of

this logarithmic measure, it is shown that this forcing still adds an unsplit

real (as Mathias forcing does), but moreover, its countable support iteration

keeps b small (which is not true in the Mathias model). With this forcing

construction, the consistency of b = ℵ1 < s = ℵ2 is settled, and hence, the

independence of the invariants b and s.

Until the end of the thesis, the goal of obtaining arbitrary large values for

these invariants will be set.

The fourth chapter is concerned with the absoluteness of maximal an-

tichains, especially in case of non-definable forcing notions. The central

result of this section is due to Blass and Shelah, and gives the construc-

tion of an ultrafilter for Mathias Prikry forcing, extending a given ultrafil-

ter and preserving a given unbounded real unbounded. This construction

is the basis for the matrix iteration presented in the fifth chapter, witness-

ing Con(b = ℵ1 < s = κ). However, a higher iteration would not witness
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Con(ℵ1 < b < s = κ).

To get b larger than ℵ1, the cardinal invariant a plays an important role.

This is because of the ZFC-provable inequality b ≤ a (presented in section

1.3 of this thesis). The model obtained in the sixth chapter (using a ma-

trix iteration) witnesses κ = a ≤ b and s = λ. Therefore, we are to be

able to conclude Con(b = a = κ < s = λ). The construction is similar to

the one presented in Chapter 4, the arguments generalize nicely, but instead

of an unbounded real, some other combinatorial property has to be preserved.

For the consistency of b = κ < s = a = λ, the construction of the matrix

iteration is done above a measurable cardinal µ, where the ultrapower of a

partial order can be constructed. Taking the ultrapower destroys maximal

almost disjoint families of cardinality ≥ κ (this suffices since κ = b ≤ a),

thus, the final model will witness µ < b = κ < a = s = λ.

There are still open questions concerning this matter, for example, if the

last consistency result can be obtained without the measurable cardinal as-

sumption, or if strict inequality can be obtained between the three invariants

(of course, regarding the ZFC-provable inequality b ≤ a). Thus, there is

space for future research.
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1.1 Historical notes and the method of forc-

ing

The Continuum Hypothesis (CH) is a hypothesis presented by the Ger-

man mathematician Georg Cantor in 1878, saying that every set of reals is

either countable or has the cardinality c of the real numbers. It is easy to see

that c = 2ℵ0 , namely:

• c ≥ 2ℵ0 , since the Cantor set is a set of reals of cardinality 2ℵ0 .

• c ≤ 2ℵ0 , since the set of rational numbers Q is a countable dense subset

of R (every real r is the supremum of all smaller rational numbers, thus

c ≤ |P(Q)|).

Proving or refuting CH is the first of Hilbert’s 23 problems presented

in 1900. Cantor had the idea to study perfect sets, hoping that this would

be sufficient to determine the validity of CH. He managed to show that

every perfect set has the same cardinality as the reals, but later, Bernstein

constructed an uncountable set, with the property that neither it nor its com-

plement contains a perfect set. Thus, studying the perfect sets was clearly

not enough for deciding CH.

Many other mathematicians studied various combinatorial structures on

the reals, giving rise to cardinal invariants. For example, in 1899, René Baire

studied the meager sets and showed that countably many meager sets can-

not cover the real line. In 1909, Felix Hausdorff studied maximal linearly

ordered subsets of (NR, <∗), where <∗ is the eventual domination ordering

(see definition 1.1 in this thesis), showed that these have the cardinality of the

continuum and established his main result, namely, the existence of (ω1, ω1)-

gaps. These famous results gave rise to the invariants cov(M) and b. The

4



splitting number s appeared as an algebraic characterization of sequential

compactness (i.e. 2λ is sequentially compact iff λ < s). Recall that a topolog-

ical space is sequentially compact if every infinite sequence has a convergent

subsequence. For metric spaces compactness and sequential compactness are

equivalent.

In 1963, Paul Cohen introduced the method of forcing and used it to

show that AC is independent of ZF and that CH is independent of ZFC.

Solovay then extended his method to a general flexible technique for obtain-

ing models of large finite fragments of ZFC which satisfy some additional

axioms. The main idea is to start with M , a countable transitive model of

ZFC called ground model, and to adjoin a new set G, a generic set, such that

the obtained model M [G], called generic extension of M , is still a countable

transitive model of ZFC and moreover, some additional statements are sat-

isfied. Precisely which statements are satisfied is sensitive to the properties

of the forcing notion.

In the ground model M , forcing notions are partially ordered sets (P,≤)

(i.e. ≤ is a reflexive, transitive relation on P). Without loss of generality, one

only considers posets with a largest element 1. The elements of the forcing

notion are called conditions. If p ≤ q we say that p is stronger than q.

Intuitively, p contains at least as much information as q.

For any two conditions p and q, if there is a common extension r, then

they are compatible, otherwise incompatible.

An antichain is A ⊂ P with the property that any two conditions in A

are incompatible.

A dense set is a set D ⊂ P, such that every condition in P has an

extension in D and a predense set is a set D ⊂ P, such that any condition
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in P is compatible with a condition in D.

A set D is predense below p if any condition in P extending p is com-

patible with a condition in D.

A filter is F ⊂ P, nonempty, closed under weaker conditions and with

the property that any two elements of F have a common extension in F .

A P-generic filter over M is a filter G which intersects all dense sets in

M (or equivalently, every maximal antichain or every predense set in M).

The generic extension will be the minimal extension of M to a count-

able transitive model containing the same ordinals and a chosen P-generic

filter G. Whenever the partial order P is non-atomic (i.e. any condition has

incompatible extensions), G /∈M , so the extension is a proper extension.

The extension, usually denoted by M [G], contains all the evaluations with

respect to G of P-names in M .

P-names are defined inductively as σ := {< τ, p >: τ is a P-name and

p ∈ P}.

The evaluation of the name σ with respect to G is defined recursively as

σG := {τG : ∃p ∈ G such that< τ, p >∈ σ}.

Hence, M [G] = {σG : σ is a P-name in M}.

Intuitively, these P-names describe how the objects in M [G] are con-

structed from G by applying processes definable in M . M sees the construc-

tion, but knowing the exact object requires knowledge about the generic G

and, as stated before, in all interesting cases G /∈M .

To argue that M [G] extends M , there are some special names, indepen-

dent of the generic filter, called standard names:
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for all x ∈M , x̌= {<y̌ ,1 >: y ∈ x}.

The generic filter G is in M [G], since Γ = {<p̌, p >: p ∈ P} is a P-name

for G.

The forcing relation 
 is a relation between elements of the partial order

and statements in the forcing language. p 
 ψ means that for all filters G

which are P-generic over M , if p ∈ G then ψ is true in M [G].

The two most important facts about forcing are that the forcing relation


 is definable in M and that all statements true in the generic extension are

forced by some condition in the generic filter. The later is known as the forc-

ing theorem. One can see this theorem as an analog to Gödel’s completeness

theorem: an equivalence between semantics and syntax.

In [16], one can find the following important properties of forcing:

• p 
 ϕ and q ≤ p then q 
 ϕ

• no condition forces both ϕ and¬ϕ

• if ϕ is a sentence, then for every p there is a q ≤ p deciding ϕ(i.e q 
 ϕ

or q 
 ¬ϕ)

(this is the same as saying that {p : p 
 ϕ or p 
 ¬ϕ}

is dense).

• p 
 ¬ϕ iff for no q ≤ p: q 
 ϕ

• p 
 ϕ ∧ ψ iff p 
 ϕ and p 
 ψ

• p 
 ∀xϕ iff p 
 ϕ(ȧ) for every P-name ȧ over M

• p 
 ϕ ∨ ψ iff ∀q ≤ p∃r ≤ q(r 
 ϕ or r 
 ψ)
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• p 
 ∃xϕ iff ∀q ≤ p∃r ≤ q∃ȧ ∈MP(r 
 ϕ(ȧ))

• If p 
 ∃xϕ then for some P-name ȧ, p 
 ϕ(ȧ)

1.2 Preserving cardinals

A basic fact in set theory is that being a cardinal is not an absolute prop-

erty. When doing forcing one needs to ensure that cardinals are preserved to

be able to get the desired results.

Forcing notions satisfying the countable chain condition, shortly writ-

ten c.c.c. (i.e. every antichain is countable) preserve all cofinalities, and thus,

all cardinals. Moreover, the c.c.c. property is preserved under finite support

iterations (f.s.i).

Examples of c.c.c. forcing notions are the countable forcing notions and

the σ-centered forcing notions. It is well known that Cohen forcing is count-

able and in fact, any countable forcing notion is forcing equivalent with Cohen

forcing (See section 1.4).

Recall that P and Q are forcing equivalent if they give rise to the same

generic extensions, that is, for every P generic filter G, there is a Q-generic

filter H such that V [G] = V [H], and vice versa.

P is called centered if any finitely many elements of P have a common

extension, and it is σ-centered if it can be written as a countable union of

centered posets (i.e. P =
⋃
n∈ω Pn where Pn are centered).

A wider class of forcing notions preserving cardinals are the proper forc-
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ing notions. A forcing notion is proper if for all uncountable cardinals λ,

∀S ∈ [λ]ω, stationary set in V , S remains stationary in the generic extension

of V . The properness is preserved under countable support iterations (c.s.i.)

of length ≤ ω2, but a c.s.i of length > ω2 of non-atomic proper forcing no-

tions collapses c. As an example of a well known open problem which seems

to require c ≥ ℵ3 is the consistency of s being a singular cardinal.

If, for some regular cardinal θ, the forcing notion satisfies the θ−c.c. (i.e.

all antichains have cardinality < θ), then cofinalities and cardinals ≥ θ are

preserved. But this property does not say anything about cardinals and

cofinalities < θ.

If the forcing notion is θ-closed , then cofinalities and cardinals ≤ θ are

also preserved. We say P is θ-closed if for any decreasing sequence of con-

ditions 〈pξ : ξ < γ〉 for some γ < θ there exists a condition p ∈ P, such that

p ≤ pξ ∀ξ < γ.

1.3 Basic definitions and ZFC-provable inequal-

ities

As mentioned in the introduction, this paper gives the arguments for the

independence of the bounding and the splitting number, but also involves

the almost disjointness number for the purpose of obtaining arbitrary spread.

Since they are the main object of study, the definitions of b, s and a are intro-

duced at this point, along with some simple ZFC-provable relations between

these characteristics.
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Recall that ωω is the set of all functions from natural numbers to natural

numbers, [ω]ω is the set of all infinite subsets of ω and [ω]<ω is the set of all

finite subsets of ω.

Definition 1.1 .

For f, g ∈ ωω, f is eventually dominated by g, written as f ≤∗ g iff

∃k∀n ≥ k : g(n) ≤ f(n).

F ⊆ ωω is a dominating family if for every f ∈ ωω there is g ∈ F with

f ≤∗ g.

B ⊆ ωω is an unbounded family if no f ∈ ωω dominates all functions

in B.

The bounding number b is the minimal cardinality of an unbounded

family.

The dominating number d is the minimal cardinality of a dominating

family.

Definition 1.2 .

For a, b ∈ [ω]ω, let a ⊆∗ b (a is almost included in b) iff a \ b is finite.

A splitting family is a family S ⊆ [ω]ω with the property that ∀a ∈

[ω]ω∃b ∈ S, such that both a ∩ b and a \ b are infinite.

The splitting number s is the minimal cardinality of a splitting family.

Dually the reaping number r is the minimal cardinality of an unsplit-

table family(i.e. a family with the property that no single infinite subset of ω

splits all members of the family).
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Definition 1.3 .

Two sets a, b ∈ [ω]ω, are almost disjoint if |a ∩ b| < ℵ0.

A family A ⊆ [ω]ω is an almost disjoint family if any two distinct

members of the family are almost disjoint.

A is a m.a.d. family ( maximal almost disjoint family) if it is maximal

with respect to the above property, or equivalently, if for any C ∈ [ω]ω, there

is some A ∈ A such that |C ∩ A| = ω.

The almost disjointness number b is the minimal cardinality of an

infinite m.a.d. family.

For the rest of this section, we concentrate on ZFC-provable inequalities

between the cardinal invariants b, d, a and s. The article [4] is a very good

survey on ZFC-provable inequalities between cardinal invariants.

• ℵ1 ≤ b

Proof:

One has to show that, given countably many functions in {gn ∈ ωω :

n ∈ ω}, there is always an f ∈ ωω dominating all of them.

Define f(n) := maxi≤ngi(n).

• b ≤ cf(d)

Proof:

Given D a dominating family of size d, it can be decomposed as

D =
⋃
{Dξ : ξ < cf(d)}, where ∀ξ : |Dξ| < d.

Since d is the minimal cardinality of a dominating family, ∀ξ : Dξ is not

dominating, i.e ∀ξ ∃fξ not dominated by any g ∈ Dξ. If {fξ : ξ < cf(d)}
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is bounded, say by f , then @g ∈ D : f ≤∗ g, contradicting the fact that

D is dominating. Thus, {fξ : ξ < cf(d)} has to be unbounded.

• b is regular.

Proof:

One has to argue that cf(b) = b.

Let B be an unbounded family of size b and assume towards a contradic-

tion, b is singular. By the above characterization of singular cardinals,

B =
⋃
ξ<cf(b)Bξ, where ∀ξ < cf(b) : |Bξ| < b. Thus, each Bξ is

bounded, say by fξ.

If {fξ : ξ < cf(b)} would be bounded by g, then the same function g

would also bound B, which is a contradiction. Thus, b is regular.

Notation: ω↑ω denotes the set of increasing functions in ωω

• s ≤ d and dually b ≤ r

Proof:

The statement follows from the existence of functions Ψ : ω↑ω → [ω]ω

and Φ : [ω]ω → ω↑ω, such that Φ(A) ≤∗ f ⇒ Ψ(f) splits A.

For A ∈ [ω]ω and n ∈ ω, let

Φ(A)(n) := min(A \ n) + 1

For f ∈ ω↑ω, define

– f 0(0) = 0,

– fk+1(0) = f(fk(0)).

12



Let Ψ(f) :=
⋃
k[f

2k(0), f 2k+1(0)], the union of the even numbered in-

tervals.

The functions Φ and Ψ are even continuous.

Assuming Φ(A) ≤∗ f one has to show Ψ(f) splits A.

By definition of ≤∗, it follows that for almost all n, Φ(A)(n) ≤ f(n), and

thus, taking n := fk(0), one gets Φ(A)(fk(0)) ≤ f(fk(0)) = fk+1(0).

Hence, Ψ(f) splits A, since A has nonempty intersection to all intervals

[fk(0), fk+1(0)].

• b ≤ a.

Proof:

One has to show that, given any m.a.d. family of size a, there exists an

unbounded family of the same size.

Let A ⊆ [ω]ω be a m.a.d. family, |A| = a.

Select {Cn : n ∈ ω} to contain any countably many members of A and

denote by A′ the rest of A.

Without loss of generality (by only making finite changes) one can as-

sume:

– ∀n,m ∈ ω, n 6= m→ Cn ∩ Cm = ∅ and

–
⋃
n∈ω Cn = ω.

Hence, w.l.o.g, the C ′ns form a partition of ω.

Organize the sets Cn on ω × ω (using a suitable bijection between ω

and ω × ω) such that each Cn is the column {n} × ω.
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Every A ∈ A′ is almost disjoint from all Cn’s, thus only finitely many

of its elements appear on each column. Thus, it makes sense to define

fA ∈ ωω to be the function whose graph is the upper boundary of A.

Assume towards a contradiction, there is a function g ∈ ωω, eventually

dominating all the fA’s. Then its graph is almost disjoint from all

A ∈ A′ and all Cn : n ∈ ω. But this is impossible, since it would

contradict the maximality of the a.d. family A.

So, the fA’s constitute an unbounded family of size a.

1.4 An easy example: Cohen Forcing

Let M be a countable transitive model of ZFC. For I, J ∈ M let

Fn(I, J) be the set of all finite partial functions from I to J , ordered by

reverse inclusion and let G be a Fn(I, J)-generic filter. For I an arbitrary,

infinite set and J containing more than one element, fG =
⋃
G is a total

surjective function fG : I → J and for J countable Fn(I, J) is c.c.c.

Since G /∈ M , fG /∈ M , otherwise the set E = {p : p * fG} would also

be in M , which is impossible because E would be a dense set in M , disjoint

from G. However, fG ∈M [G] by absoluteness of the union operation.

Fn(ω, ω1) adds a surjective function fG : ω → ω1 and thus, in the exten-

sion ω1 becomes countable. This is an example of a forcing notion collapsing

a cardinal.

Cohen forcing is CI := Fn(I, 2). In particular, for I = ω, C = Fn(ω, 2)
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adds a new subset of ω called a Cohen real. Cohen forcing is clearly count-

able.

Recall that, for P and Q partial orders, i : P→ Q is a dense embedding

if

• ∀p, p′ ∈ P : p ≤P p′ → i(p) ≤Q i(p′),

• ∀p, p′ ∈ P : p⊥Pp′ → i(p)⊥Qi(p′) and

• i′′P is a dense subset of Q.

If a dense embedding between two partial orders P and Q exists, then

they are forcing equivalent. The existence of a dense embedding is sufficient,

but not necessary.

Example : There is no dense embedding between Fn(ω, ω) and 2<ω

(there is not even an embedding satisfying the first two conditions).

Proof:

Assume towards a contradiction, there is i : Fn(ω, ω) → 2<ω dense. In

Fn(ω, ω), let s be the condition sending 0 to 0 and 4 to 0, and t the condition

sending 2 to 0 and 3 to 0. They are compatible.

Assume their images are also compatible, which in case of 2ω is the same

as comparable.

Assume i(s) ≤ i(t) (the other case follows the same argument). But there

exists s′ ≤ s, s′⊥t (for example the condition sending 0 to 0, 2 to 1 and 4 to

0). Since s′ ≤ s, it follows i(s′) ≤ i(t), but s′⊥t implies that the images are

incomparable, a contradiction.

Even if there is no dense embedding between them, Fn(ω, ω) and 2<ω are

equivalent, by the following fact:

15



Fact Any countable, non-atomic partial order P is forcing equivalent with

C.

Proof:

To conclude this fact, it suffices to show the existence of a dense embedding

from {p ∈ Fn(ω, ω) : dom(p) ∈ ω} onto P.

In case P = Fn(ω, ω), the inclusion is a dense embedding.

In the general case, one first looks at the conditions with domain 1 and

maps them onto a countable (maximal) antichain in P. Then, one maps

the conditions with domain 2 to extensions of the conditions of the previous

antichain (possible since P is non-atomic), and so on.

The result is a dense embedding.

Thinking of C as forcing with ω<ω, one can prove the following fact:

Fact: The Cohen real c is unbounded over the ground model reals (i.e.

∀f ∈ ωω ∩ V : c �∗ f).

Proof:

For f ∈ ωω ∩ V and n ∈ ω, the sets

Df,n = {t ∈ ω<ω : ∃m ≥ n t(m) > f(m)} are dense.

Given any condition s ∈ ω<ω, one can find an extension in Df,n in the

following way:

Choose m larger than max(|s|, n) and t ∈ ω<ω an extension of s of length

m+ 1 with t(m) = f(m) + 1.

Thinking of C as forcing with 2<ω, one can prove the following fact:

Fact: The Cohen generic real splits all the ground model infinite subsets

of ω.

Proof:
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Let A ∈ [ω]ω ∩ V be arbitrary, n ∈ ω. The sets

EA,n = {t ∈ 2<ω : ∃m0,m1 ∈ A \ n : t(m0) = 0 and t(m1) = 1} are dense in

V.

Thus, by genericity, the Cohen real splits A.

Definition 1.4 An iteration 〈Pβ : β < α〉 is nontrivial if

∀β < α 
Pβ Qβ has a pair of incompatible conditions.

Fact: Cohen reals are always added in nontrivial finite support itera-

tions at limit stages of countable cofinality.

Proof:

We show that Pω adds a Cohen generic subset of ω.

By the fact that the iteration is nontrivial, there are ṗn and q̇n, such that

they are forced in Pn to be incompatible conditions in Qn.

In Pω there is a condition p′n with support n+ 1, such that p′n(n) = pn.

If G is Pω generic, then {n ∈ ω : p′n ∈ G} is Cohen generic.

Other facts: Cohen forcing does not add dominating reals, since un-

bounded families remain unbounded in the extension, and does not add un-

split reals.
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Chapter 2

Arguments for

Con(s = ω1 < b = λ)

As suggested in the title, the main goal of this chapter is to construct

a model where the bounding number is λ, for some regular, uncountable

cardinal λ, while the splitting number remains ℵ1. One can increase b by

repeatedly adjoining dominating functions over a model of GCH via finite

support iteration of a c.c.c. forcing notion. The first forcing notion that

comes to mind for this purpose is Hechler forcing, for obvious reasons, also

called Dominating forcing. One still has to argue why the resulting Hech-

ler model has s = ω1.

This consistency result was actually first mentioned by B.Balcar, J.Pelant

and P.Simon in their 1980 paper ”The space of ultrafilters on N covered

by nowhere dense sets”. They not only use a different argument than the

ones that will be presented in this thesis, but also they use a different forcing

notion, namely the random forcing. Their argument goes backwards, starting

with a model of MA + ¬CH, such that all invariants are large, and then ℵ1
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random reals are added. Since ωω of the extension is dominated by ωω of the

ground model(i.e. the random forcing is ωω-bounding), b remains large. On

the other hand, s will be ℵ1, since the random reals form a set of positive

outer measure, and thus, a splitting family.

2.1 Suslin forcing

In 1988, Shelah and Judah gave a general argument for the fact that s = ω1

in the Hechler model. Their result states that the ground model infinite sub-

sets of ω always form a splitting family in the extension by a finite support

iteration of a Suslin c.c.c. forcing notion (see [2]). This result not only says

that the Hechler model has s = ω1, it says the same for Cohen, Random and

Amoeba models as well. Since we need b to be large, we add dominating re-

als, hence, the Hechler forcing catches our attention. This particular forcing

even has a stronger property, called ”strong preservation of splitting”, which

will also be presented in this thesis, in section 2.2.1.

Definition 2.1 A partial order P is called Suslin c.c.c. if it is c.c.c. and

• P ⊆ ωω

• ≤ ⊆ ωω × ωω

• ⊥P ⊆ ωω × ωω

are analytic (Σ1
1) sets.

Note that if P is Borel, then incompatibility is actually Borel. It is au-

tomatically also Π1
1, since the order is Σ1

1 and elements are incompatible if

there is no common extension. The definition also requires it to be Σ1
1, and
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thus, ⊥ is actually ∆1
1, which is the same as Borel.

Examples of Suslin c.c.c. forcing notions are Cohen forcing C, Hechler

forcing D, Amoeba forcing A and Random forcing B. Recall that Amoeba

forcing consists of open subsets of 2ω of measure < 1
2

ordered by reverse inclu-

sion and Random forcing consists of Borel subsets of 2ω (or [0, 1]) of positive

measure, ordered by inclusion.

Note that, by Σ1
1 absoluteness, the statements ”p ∈ P”, ” q ≤P p” and

”q⊥Pp” are absolute. Suslin c.c.c. forcing notions have even more nice prop-

erties, for example, being a maximal antichain is an absolute property, and

therefore, genericity is downwards absolute.

Remark: Σ1
n-classes are upwards absolute (i.e. when Π1

n−1 is absolute

in both directions then Σ1
n is absolute) and Π-classes are downwards ab-

solute(in the analogous sense). Also note that Σ1
1-absoluteness implies Π1

1-

absoluteness.

Lemma 2.2 (See [6]) Let M ⊆ N |= ZFC and P ∈M a Suslin c.c.c. forcing

notion. Then the property of being a maximal antichain can be written as ϕ∧ψ

where ϕ is a Σ1
1 formula and ψ is a Π1

1 formula. Therefore, this property is

absolute between M and N .

Proof:

Since P is c.c.c., antichains are countable and coded by reals.

Thus, let A := {xn : n ∈ ω} ⊆ P.

A is a maximal antichain iff

• ∀m 6= n : xn⊥xm (⊥ is Σ1
1 by definition of Suslin forcing) and
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• ∀y either y /∈ P or ∃n, such that y and xn are compatible ⇔ ¬∃y : y ∈

P ∧ ∀n(y⊥xn)(Π1
1)

Note that for P Borel, being a maximal antichain is actually Π1
1, thus, the

property of being a maximal antichains itself becomes Π1
1.

(Recall that the analytic sets correspond to statements with an existential

quantifier over ωω, however there may be arbitrary quantification over ω).

Corollary 2.3 (Downwards absoluteness of genericity) Let M ⊆ N |=

ZFC and P ∈M a Suslin c.c.c. forcing notion.

If G is PN -generic over N then G ∩M is PM -generic over M .

Proof:

Let G be a generic filter over N .

Given A a maximal antichain in M , by the previous theorem, it remains

maximal in N , so it has nonempty intersection with G(∈ N). Therefore,

G ∩M(= G ∩ PM) is generic over M .

The following result states the connection between Suslin c.c.c. forcing

notions and the cardinal invariant s, namely, that in every extension by a

finite support iteration of Suslin c.c.c. forcing notion, the splitting number

will remain small.

Theorem 2.4 (Judah, Shelah, 1988) Let λ be regular, uncountable and

Pλ be a finite support iteration of Suslin ccc forcing notions. Then the ground

model infinite subsets of ω form a splitting family in the generic extension

VPλ.

In [2], one can find the following theorem:
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Theorem 2.5 (Judah, Shelah, 1988) Let P be a Suslin c.c.c. forcing no-

tion. Then the ground model infinite subsets of ω form a splitting family in

the generic extension VP.

Remark 2.6 This theorem does not imply the more general result stated

in the preceding paragraph, since f.s.i of Suslin c.c.c. forcing notions

is obviously not Suslin c.c.c.: one of the conditions in the definition of

Suslin forcing notions was that the forcing can be coded by reals, thus, it

must have size less than the continuum c of the ground model. Clearly a

finite support iteration of length λ, where λ is regular, uncountable, does not

have size ≤ c. But Theorem 2.4 holds, since the finite support iteration of

Suslin c.c.c. forcing notions is in some sense ”almost Suslin”, meaning that

all the properties needed in the proof of the Theorem 2.5 (for one Suslin c.c.c.

forcing notion) also hold for the finite support iteration of Suslin c.c.c. forcing

notions, and thus, the proof generalizes trivially.

The following lemmas can be found in [2] and conclude the proof of The-

orem 2.5:

Lemma 2.7 Given P a c.c.c. forcing notion and {xα : α < ω1} a family of

ω1 almost disjoint subsets of ω, let ẋ be a P-name for a subset of ω, such that


P ∃α < ω1 ẋ ⊆ xα.

Then there exists an α < ω1, such that 
P |ẋ ∩ xα| < ℵ0.

Proof: For each α choose, if possible, pα, such that pα 
 |ẋ ∩ xα| = ℵ0.

Since {xα : α < ω1} is a family of almost disjoint sets, the pα’s are incom-

patible:

Assume towards a contradiction two of them were compatible, say pα and

pβ, for α 6= β. We know pα 
 |ẋ ∩ xα| = ℵ0 and pβ 
 |ẋ ∩ xβ| = ℵ0.
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Since 
P ∃γ < ω1 : ẋ ⊆ xγ, we can extend the conditions to decide γ.

But xα and xγ are almost disjoint, thus, α = γ. The almost disjointness

of xβ and xγ gives β = γ as well, thus, α = β is the only case allowing pα and

pβ to be compatible.

Thus, {pα : α < ω1} is an antichain.

Since P is c.c.c., the antichain is countable. Therefore, there must be an

index α < ω1, such that ẋ ∩ xα is finite.

The following lemma, characterizing meager sets, can be found in [2]:

Lemma 2.8 (Characterization of meager sets)

Whenever F ⊆ 2ω is meager, there exists xF ∈ 2ω and fF ∈ ωω, such that

F ⊆ {x ∈ 2ω : ∀∞n : x � [fF (n), fF (n+ 1)] 6= xF � [fF (n), fF (n+ 1)]}

For the proof, see 2.2.4 in [2]

Lemma 2.9 Given a countable model M , there is a family {cα : α < ω1} ⊆

[ω]ω, such that the cα’s are ω1 many almost disjoint Cohen reals over M .

Claim: Since M is countable, the set of Cohen reals over M is comeager.

Proof of Claim

Look at the Cohen algebra C = Borel/M, where M is the σ-ideal of

meager. Let Co(M) be the set of Cohen reals over M . Then Co(M)=

2ω \
⋃
{X ∈ M coded in M}. Since M is a σ ideal, the countable union

of Borel meager sets is also meager, thus, Co(M) is comeager.
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Proof of Lemma

By the above claim, the set of Cohen reals over M is comeager.

Using the characterization of meager sets stated above and considering

intervals, it follows that there are xM and {Is : s ∈ 2<ω} pairwise disjoint,

such that x is Cohen generic over M if x and xM are equal on infinitely many

intervals.

For s ∈ 2ω define cs ∈ 2ω, by:

cs(i) =

xM(i) if ∃n, such that i ∈ Is�n

0 otherwise

Clearly these are all Cohen reals and almost disjoint (since {n : cs(n) =

cs′(n) = 1} is finite ∀s 6= s′).

Proof of Theorem 2.5

Recall what we have to show:

For every P-name ẋ, there is y ∈ V ∩ [ω]ω, such that 
 neither ẋ ⊆∗ y nor

ẋ ⊆∗ ω \ y.

Assume towards a contradiction, there is a a P-name ẋ for an infinite

subset of ω in the extension, such that none of the ground model reals splits

ẋ. Thus ∀y ∈ [ω]ω ∩ V , 
 ẋ ∩ y or ẋ ∩ ω \ y is finite.

Taking M a countable elementary substructure of H(κ) containing P

and ẋ (here κ is large enough to have the desired properties), by the previous

lemma, we find a family {cα : α ∈ ω1} of ω1 almost disjoint Cohen reals over

M .

24



Lemma 2.7 gives us the existence of c, a Cohen real over M such that,


 |ẋ ∩ c| < ℵ0.

Let M1 be the extension of M by this Cohen real c. Cohen Extension

Let G be a P-generic filter over V .

Since P is Suslin ccc, we also know G ∩M1 is P-generic over M1, since

genericity is absolute for every c.t.m containing P, so also for M1.

Therefore, the evaluations of ẋ are the same with respect to G,G∩M and

G ∩M1.

Let M2 be M1[G ∩M1]. Extension by the Suslin forcing

Then M2 |= ẋG∩M1 ⊆∗ c and therefore, M1 |= ”
P ẋ ⊆∗ c”.

Think of Cohen forcing C as forcing with 2<ω. Thus, there exists s ⊆ c,

such that

M |= ”s 
C ”
P ẋ ⊆∗ ċ ” ”

where ċ is a canonical name for a Cohen real.

Choose c′ Cohen over M , such that s ⊆ c′ and ω\(c∪c′) finite and extend

M by c′.

Then M [c′] |= ”
P ẋ ⊆∗ ċ′ ”.

Using again the absoluteness of genericity for the Suslin forcing P, G ∩

M [c′] is P generic over M [c′] and ẋG ∩M [c′] = ẋG .

Thus, extending M [c′] by G ∩M [c′] we get a model for ” ẋG ⊆∗ c′ ”.

The above arguments say that in V [G], ẋG ⊆∗ c, ẋG ⊆∗ c′ and ω \ (c ∪ c′)

is finite.
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But this means that ẋ cannot be infinite, contradicting our assumption.

The proof generalizes to finite support iterations of Suslin c.c.c. forcing

notions, since the only property needed is the absoluteness of genericity. Al-

though the finite support iteration of Suslin c.c.c. forcing notions is not Suslin

c.c.c., this property is preserved under finite support iterations, making the

generalization trivial.

For the particular case when Pλ = Dλ, even a stronger property, called

strong preservation of splitting, will be satisfied. Since for the scope of this

thesis, other Suslin c.c.c. forcing notions are not relevant, we will also treat

the stronger preservation result.

2.2 Hechler forcing

This section will contain the definition of the Hechler forcing and its

basic properties. The Hechler model is the model obtained by iterating this

forcing notion with finite support over a model of GCH.

Definition 2.10 The Hechler forcing is

D := {(s, f) : s ∈ ω<ω; f ∈ ωω; s ⊆ f},

ordered by:

(s, f) ≤ (t, g) iff

• t ⊆ s,

• f dominates g everywhere and

• ∀i with |t| ≤ i < |s| : g(i) ≤ s(i)
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Facts:

• D is σ-centered, thus, has the countable chain condition (c.c.c.).

Proof:

The sets Ds = {(s, f) : f ∈ ωω, s ⊆ f} are centered, since conditions

with the same stem are compatible. It is easy to see that D = ∪n∈ωDs,

thus D is σ-centered.

• Forcing with D adds a new function in ωω which eventually dominates

all the ground model functions (a dominating real).

Proof:

If G is a D-generic filter, then d = ∪{s : (s, f) ∈ G for some f} is a

dominating real, since

Df = {(s, g) : ∃n ≤ |s|, such that f(m) < g(m)∀m ≥ n} is dense.

• Hechler forcing also adds a Cohen real.

Proof:

If d is the Hechler real, then c defined by c(n) := d(n) mod 2 is Cohen

generic.

• Hechler forcing is Suslin c.c.c.

Proof:

To see that D is Suslin, identify (s, f)→ (|s|, f) (since ω × ωω ∼= ωω ).

The order is a closed relation.
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Incompatibility is a union of clopen relations(s and t are incomparable

or one extends the other and t(n) < f(n) for some n).

Recall:

The basic clopen sets are Ns = {x ∈ ωω : s ⊆ x}.

Incomparability of s and t translates into disjointness of Ns and Nt,

while s ⊆ t is equivalent to Ns ⊇ Nt.

Also, recall that when we have an universal quantifier over the natural

numbers followed by a clopen relation, the result is only closed.

The Hechler model is the model obtained by a finite support iteration

of length λ of Hechler forcing over a model of GCH, for some regular, un-

countable cardinal λ. The main theorem of the previous section says that

extensions via f.s.i. of Suslin forcing, thus, also the Hechler model, have

s = ℵ1. Since Hechler forcing adjoins a dominating real, the Hechler model

will have b large, thus, Con(s = ℵ1 < b = c = λ) is obtained.

2.2.1 Strong preservation of splitting

As mentioned before, in the particular case of Hechler forcing, even a

stronger property than ”the ground model reals form a splitting family” is

preserved during iterations. This result is known as ”strong preservation of

splitting” and can be found in [7].

When doing forcing, one does not only have to adjoin a real with certain

properties, but also to ensure that undesired properties are not satisfied by
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the added reals. The latter is known as a preservation theorem and usually

require two separate proofs, namely:

• the proof for the single-step forcing, sensitive to the forcing notion,

• the proof for the limit step, a general argument, showing that if all Pα ,

α < δ, have a certain property, then so does Pδ. This does not depend

at all on the forcing notion we are iterating.

A different representation of the Hechler forcing consists of pairs (s, ϕ),

such that s ∈ ω<ω and ϕ : ω<ω → ω with the same order. It is not known if

the two forcing notions are forcing equivalent, but the finite support iterations

have the same combinatorial properties.

This representation is more convenient to work with for the proof of fol-

lowing lemma:

Lemma 2.11 (Main Lemma) (see [7]) Assume Ȧ is a D-name for an infinite

subset of ω.

There are countably many ground model subsets of ω, say Ai , i ∈ ω, such

that, whenever B ∈ [ω]ω splits all the Ai’s , then 
D B splits Ȧ.

Proof:

This lemma is proved using a rank argument.

Such rank arguments were introduced by Baumgartner and Dordal and are

common for establishing combinatorial properties of forcing notions adding

dominating reals (for example, Hechler and Laver forcing). The original ar-

gument can be found at a later stage in this chapter, in the section treating

the preservation of eventually narrow sequences in extensions by a single or

a f.s.i. of Hechler forcing.
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For s ∈ ω<ω and n ∈ ω, say that s favors k to be the n-th element of Ȧ

if there is no condition with first coordinate s, which forces that ”k is not the

n-th element of Ȧ”.

Define rankn(s) by recursion on the ordinals, as follows:

• rankn(s) = 0 if for some k, s favors k to be n-th element of Ȧ;

• for α > 0: rankn(s) = α if

– there is no β < α, such that rankn(s) = β and

– there are infinitely many l, such that rankn(sal) < α.

Claim: rankn(s) is defined for all s ∈ ω<ω and n ∈ ω, and thus, in par-

ticular, rankn(s) < ω1.

Proof of the claim :

Assume rankn(s) is undefined for some s and some n.

Notice that for any s ∈ ω<ω, if rankn(s) is undefined, then rankn(sal) is

undefined for almost all l.

This allows us to recursively construct a function ϕ : ω<ω → ω, such

that whenever s ⊆ t and t(i) ≥ ϕ(t � i) for all i ∈ |t| \ |s|, then rankn(t) is

undefined.

Consider the condition (s, ϕ).

Find (t, ψ) ≤ (s, ϕ) and k, such that (t, ψ) forces that k is the n-th element

of Ȧ.

Then clearly rankn(t) = 0.

However, by the preceding paragraph, rankn(t) is undefined, giving the

contradiction.
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If s is such that rankn(s) = 0 for infinitely many n, one can find kn ≥ n,

such that s favors that kn is the n-th element of Ȧ.

Let As := {kn : kn is favored by s to be the n-th element of Ȧ}.

If s and n are such that rankn(s) = 1, there are infinitely many l, such

that rankn(sal) = 0. Then, as before, for each such l we may find kl, such

that sal favors that kl is the n-th element of Ȧ.

Define As,n := {kl : kl is favored by sal to be the n-th element of Ȧ}.

It is easy to see that for each k, the set {l : kl = k} must be finite, since

otherwise, k would witnesses rankn(s) = 0.

In particular, the collection As,n of such kl must be infinite.

Claim: If B splits all As and all As,n, then B is forced to split Ȧ.

Let (s, ϕ) be condition and let m ∈ ω.

We need to find an extension (t, ψ) ≤ (s, ϕ) and m0,m1 ≥ m, such that

m0 ∈ B, m1 /∈ B, and (t, ψ) forces both m0 and m1 to belong to Ȧ.

Since the construction of m0 and m1 is analogous, it suffices to produce

one of them.

• First assume there are infinitely many n such that rankn(s) = 0.

Since B ∩ As is infinite, we find m0 ≥ m in this intersection.

By definition of As, there is some n, such that s favors that kn = m0 is

the n-th element of Ȧ, and thus, there is (t, ψ) ≤ (s, ϕ), such that (t, ψ) 
D
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m0 ∈ Ȧ.

• Next assume rankn(s) > 0 for all but finitely many n.

Choose n ≥ m such that rankn(s) > 0.

Claim: One can extend s to t such that t(i) ≥ ψ(t � i) for all i ∈ |t| \ |s|

and rankn(t) = 1.

One proves, by induction on rankn(s), that this can be done:

• If rankn(s) = 1, put t = s.

• If rankn(s) > 1, then we can find l , by the definition of rankn, such

that l ≥ ϕ(s) and 1 ≤ rankn(sal) < rankn(s).

By the induction hypothesis, one finds t ≤ sal as required:

Since B ∩ At,n is infinite, we find l ≥ ϕ(t) and k = m0 ≥ m, such that

m0 ∈ B ∩ At,n. Thus, tal favors that m0 is the n-th element of Ȧ.

Hence, we can find a condition (u, ψ) ≤ (s, ϕ), such that tal ⊆ u and

(u, ψ) 
D m0 ∈ Ȧ.

As stated before, the preservation at the limit step does not depend on

the particular forcing notion. It is a general result, simply saying that, if a

property holds for every α < δ, then it also holds for δ.

Denote the following property by (∗α):

(∗α): Whenever Ȧ is a Pα-name for an infinite subset of ω, there are

countably Ai , i ∈ ω, such that whenever B ∈ [ω]ω splits all the Ai’s , then


α B splits Ȧ.
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Lemma 2.12 (Preservation at limit step) (see [7])

If δ is a limit ordinal and 〈Pα, Q̇α : α < δ〉 is a finite support iteration of

c.c.c. forcing notions, such that for all α < δ, the property (∗α) holds, then

(∗δ) also holds.

Proof:

Since during finite support iterations of c.c.c. forcing notions, no reals are

added at limit stages of uncountable cofinality, we may assume w.l.o.g that

cf(δ) = ω.

Since the argument below generalizes to any cardinal of countable cofinal-

ity, we may assume, for simplicity, that δ = ω.

Let Ȧ be a Pω-name for an infinite subset of ω and fix n ∈ ω.

In V Pn , there is a decreasing sequence of conditions pk = pn,k in the

quotient forcing Pω \ Pn, such that pk decides the k-th element of Ȧ.

Say pk 
[n,k) ”lk is the k-th elem of Ȧ”.

Denote the set of all values by An, hence, An = {lk : k ∈ ω}.

Since An ∈ V Pn , in the ground model V , there is a P- name for it, say Ȧn.

We also know, by hypothesis, that for each n ∈ ω, the property (∗n) holds.

Thus, there are countably many An,i : i ∈ ω, such that whenever B splits all

An,i, i ∈ ω, then 
n ”B splits Ȧn”.

After unfixing n, we get there are countably many {An,i : i ∈ ω, n ∈ ω}

Claim: Whenever B splits all An,i, i, n ∈ ω, then 
n ”B splits Ȧ”

Proof of Claim:

Let p ∈ Pω and m ∈ ω.

We need to find q ≤ p and m0,m1 ≥ m, such that m0 ∈ B,m1 /∈ B, and
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q 
ω m0,m1 ∈ Ȧ.

As for the successor step, it suffices to find m0.

Fix n, such that p ∈ Pn and work in V Pn .

We know that B splits An, thus, there is m0 ≥ m, such that m0 ∈ B∩An.

There is k such that m0 = lk and pk 
[n,ω) m0 ∈ Ȧ.

In V , we have Pn -names ṁ0 for m0 and ṗk for pk.

By strengthening p ∈ Pn if necessary, we may assume p decides ṁ0 to be

m0 and ṗk to be pk , a partial function with domain [n, ω), so that q = papk

is a condition. Then q 
ω m0 ∈ Ȧ.

2.2.2 Preservation of eventually splitting sequences

Definition 2.13 A descending ⊆∗-sequence is a sequence 〈aξ : ξ < λ〉,

such that if ξ < η then aη ⊆∗ aξ but not aξ ⊆∗ aη.

A sequence 〈aξ : ξ < λ〉 is an eventually narrow sequence if ∀a ∈

[ω]ω∃ξ < λ, such that ∀η > ξ : a \ aη is infinite.

A sequence 〈aξ : ξ < λ〉 is an eventually splitting sequence if ∀a ∈

[ω]ω∃ξ < λ∀η > ξ : a ∩ aη and a \ aη are both infinite.

It is very easy to observe that 〈aξ : ξ < λ〉 is eventually splitting if and

only if the sequence 〈bξ : ξ < λ〉 is eventually narrow, where b2ξ := aξ and

b2ξ+1 := ω \ ξ.

In their 1985 paper ”Adjoining Dominating Functions”(see [3]), J.E.Baumgartner

and P.Dordal presented an argument for Con(s = ℵ1 < b = λ). They argued

that the Hechler forcing preserves eventually narrow sequences during finite

support iterations of length λ (for λ regular, uncountable), therefore, they
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also preserve an eventually splitting sequence of length ω1. This sequence

contains the Cohen reals added by the Hechler forcing. It is well known and

was proved in the previous chapter, that the Cohen real splits the ground

model subsets of ω. Hence, V Dω1 contains an eventually splitting sequence

of length ω1. The main difficulty is to prove the preservation of eventually

narrow sequences during the iterations of Hechler forcing. Knowing this, the

result follows trivially, since any eventually splitting sequence is eventually

narrow.

J.E.Baumgartner and P.Dordal defined the derivatives of a dense open

sets D ⊆ D. Their argument can also be seen as a rank function on IS as

follows:

For s ∈ IS, define rD(s) the rank of s as:

• rD(s) = 0 if there is f , such that (s, f) ∈ D

• else rD(s) = min{α : ∃m∃{sk : k ∈ ω} ∈ IS ∩ ωm, such that rD(sk) <

α, s ⊆ sk and sk(|s|) > k}

Note that the rank is defined for every s ∈ IS. The proof is analog to the

rank argument presented in the previous section, for the strong preservation

of splitting.

Theorem 2.14 (see [3]) Any eventually narrow sequence remains eventually

narrow in V Dλ.

Proof: We distinguish two steps:

The successor step:
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Assume 〈aξ : ξ < λ〉 is eventually narrow in V but is not preserved to be

eventually narrow in V D. Thus, there is a condition (s, f) ∈ D and a name ȧ

for an infinite subset of ω, such that:

(s, f) 
 ∀ξ < λ ∃η > ξ : ȧ ⊆∗ aη.

Let N be a countable elementary submodel of H(κ) containing D, f and

ȧ, for some κ large enough such that D ∈ H(κ). Since N is countable and

the sequence 〈aξ : ξ < λ〉 is eventually narrow, there is a witness ξ < λ, such

that whenever c ∈ N ∩ [ω]ω, c \ aη is infinite.

Because in the extension, the sequence is not eventually narrow, there

has to be some n0 ∈ ω such that, extending (s, f) if necessary, the following

holds:

(s, f) 
 ∀j ≥ n0, if j ∈ ȧ then j ∈ aη.

Take ḣ to be a canonical name, 
 ḣ enumerates ȧ in increasing order.

Clearly, since it is definable from ȧ, ḣ ∈ N and 
 h(i) ≥ i for all i.

For each t ∈ IS such that (t, f) ≤ (s, f) and each i ≥ n0, let:

Zt(i) := {j : ∀g ∈ ωω∃(t′, g′) ≤ (t, g) such that (t′, g′) 
 ḣ(i) = j}

Claim: By an induction on the rank of the dense open set D = {p ∈ D : ∃j

such that p 
 ḣ(i) = j} one can prove that Zt(i) 6= ∅ ∀i ≥ n0 and thus, in

particular, Zs(i) nonempty ∀i ≥ n0.

Proof of Claim

Fix i ≥ n0 and let D = {p ∈ P : ∃j such that p 
 ḣ(i) = j}.

Then D is open dense, so we may define the rank prove the lemma by an

induction on the rank of the dense open set. Since the rank is defined for all

t ∈ IS, this will suffice.
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If t ∈ D0, the lemma is trivial.

For limit ordinals a we are also done immediately, since Dα =
⋃
{Dβ :

β < α}.

The successor case is the only one requiring some work:

Suppose t ∈ Dα+1, (t, f) < (s, f), and t /∈ Dα.

Then there exists a countable sequence 〈tn : n ∈ ω〉 of elements of Dα,

such that for some m we have:

• |tn| = m for all n and

• tn(|t|) ≥ n for all n.

Since such a sequence must exist in H(κ), without loss of generality

〈tn : n ∈ ω〉 ∈ N .

Case 1: For some j, j belongs to infinitely many of the Ztn(i).

Then clearly j ∈ Zt(i) and we are done.

Case 2. Otherwise, assume no such j exists. We claim that this case

cannot occur.

Fix jn ∈ Ztn(i) minimal. Then by the assumption for this case J = {jn :

n ∈ ω} is infinite.

But also we may take J ∈ N , since J may be defined from 〈tn : n ∈ ω〉,

and 〈tn : n ∈ ω〉 ∈ N .

Now by the choice of aξ we know that J \ aξ, is infinite.

Choose n large enough so that jn ≥ n0, n ≥ f(m− 1), and jn /∈ aξ.

Then (tn, f) ≤ (t, f) ≤ (s, f), and since jn ∈ Ztn(i), there is some (u, g) ≤

(tn, f) such that (u, g) 
 ḣ(i) = jn.
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But then, since (s, f) 
 (∀i ≥ n0), if j ∈ ȧ holds, then j ∈ aξ must hold

as well, so we must have j ∈ aξ, a contradiction.

Choose ki ∈ Zs(i), ∀i ≥ n0 (say the minimal one), and let K := {ki : i ≥

n0}.

It is easy to see that K is infinite, since ki ≥ i ∀i ≥ n0, and that K ∈ N ,

since it is defined form s. Thus, K − aξ has to be infinite (recall that ξ was

witnessing this for all infinite subsets of ω in N , so, in particular for K).

Looking at the definition of Zs(i), one sees

ki ∈ K \ aξ ⇒ ∃g ∈ ωω,∃s′ ⊇ s : (s′, g) ≤ (s, f) and (s′, g) 
ḣ(i)

This just says (s′, g) 
 ki ∈ȧ\n0, and it is a contradiction, since it would

have to also be in aξ.

Thus, eventually narrow sequences remain eventually narrow in the ex-

tension by Hechler forcing.

The limit step:

Let α be a limit ordinal. W.l.o.g. cf(α) = ω, otherwise no reals are

introduced by Dα. Therefore, there is an increasing sequence 〈αm : m ∈ ω〉,

cofinal in α.

Assume again, there is a sequence which is eventually narrow in all pre-

vious models, but it is not preserved to be eventually narrow in V Dα . Thus,

there must be some condition p ∈ D and a name ȧ, such that p 
 ȧ is infinite
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and ∀ξ < λ∃η ≥ ξ : ȧ ⊆∗ aη.

Let Gα a Dα generic filter over V and p ∈ Gα. Then Gβ = Gα ∩Dβ is Dβ
generic ∀β < α.

For each ξ < λ, fix, if possible, pξ ∈ Gα and nξ ∈ ω, such that

pξ 
 ∀i ≥ nξ(i ∈ ȧ ⇒ i ∈ aξ).

It will be possible to define them for ξ ∈ B for some B cofinal set

in λ. Moreover, since Dα is the direct limit of 〈Dβ : β < α〉, we have

∀ξ ∈ B : pξ ∈ Gαm for some m. Hence, there is A ⊆ B also cofinal in λ

and there are fixed m,n such that, ∀ξ ∈ A : pξ ∈ Gαm and nξ = n (i.e. A can

be determined in V [Gαm ]).

Let b :=
⋂
{aξ \n : ξ ∈ A}. Since 
 ȧ\n ⊆ b, we can conclude that b must

be infinite. But b − aξ = ∅, thus, finite for all ξ ∈ A, contradicting the fact

that 〈aξ : ξ < λ〉 is eventually narrow in V [Gαm ].

Since eventually splitting sequences are eventually narrow, they are also

preserved. The argument for the fact that s = ω1 in the Hechler model is

now finished:

One uses the fact that the Hechler forcing also adds a Cohen real. There-

fore, in V Dω1 , there is an eventually splitting sequence of length ω1 containing

these Cohen reals (recall that Cohen reals are splitting reals). The above re-

sult ensures that this sequence will remain eventually splitting in V Dλ for λ

regular, uncountable.
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Chapter 3

Shelah’s forcing for

Con(b = ω1 < s = ω2)

As stated in the introduction, this thesis gives the arguments for the in-

dependence of b and s. The previous chapter presented three ways to obtain

Con(s < b). The other direction of the inequality is the difficult one. In

1985, Shelah modified the Mathias forcing argument by adding an additional

combinatorial structure on the pure part of the conditions, and obtained a

proper forcing notion, whose countable support iteration of length ω2 gives

Con(b = ω1 < s = ω2) and Con(b = ω1 < a = ω2). This is the first appear-

ance of a creature forcing in the literature.

There are limitations to Shelah’s forcing, namely, that being proper, it

can’t be used to make the continuum arbitrarily large, only c = ℵ2 can be

achieved.

To increase the splitting number s one has to cofinally often add reals not

split by the ground model reals. The first forcing notion that comes to mind
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for this purpose is Mathias forcing. It is proper, so the usual way to iterate

it is with countable support. The problem is not only that, being proper,

c ≥ ℵ3 cannot be achieved, but this forcing notion also adds a dominating

real, and thus, a countable support iteration will also make b = c = ω2.

Thus, Mathias model will not witness the desired consistency result. Since

Shelah modified the Mathias forcing to get a more complicated forcing notion,

whose iteration keeps b small, being familiar with Mathias forcing helps a lot

in following the arguments. Therefore, the first sections of this chapter will

deal with generalities on proper forcing and the Mathias forcing.

3.1 Properness

The notion of properness was introduced and developed by S.Shelah, as

a common property of forcing notions that can be iterated with countable

support and do not collapse ω1. This new concept was needed, since there

are limitations of finite support iterations of c.c.c. forcing notions, namely:

• there may be no c.c.c. forcing notion with the desired combinatorial

properties

• it may be required that no Cohen reals are added, and we know that

Cohen reals are always added at limit stages of countable cofinality in

finite support iterations of c.c.c. forcing notions, no matter what the

particular forcing is.

Moreover, if one iterates with finite support a forcing notion that is not

c.c.c., ℵ1 is collapsed, hence, a new iteration method was implicitly needed.

The countable support iteration first appeared in Jensen’s consistency

proof of CH and in Laver’s paper on the Borel Conjecture. As the name

suggests, the idea of such an iteration is that the support is countable. This
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is equivalent to postulating that direct limits are taken at limit stages of

uncountable cofinality, and inverse limits at the ones of countable cofinality

(recall that in f.s.i., direct limits were taken at all limit stages).

There are many equivalent definitions of the notion of properness (see [3]),

this thesis will only give two of them.

Definition 3.1 Let κ be a regular, uncountable cardinal.

A set C ⊂ κ is called closed unbounded (club) if C is unbounded

and contains all its limit points less than κ ( i.e. sup(C ∩α) ∈ C for all limit

ordinals α < κ ).

A set S ⊂ κ is stationary if S ∩ C 6= ∅ for all C ⊂ κ club.

A set S ⊂ κ is closed if any decreasing sequence of length less than κ

of elements of C has a limit in C.

The ”club” property is an absolute property, however, being stationary is

not. This leads to the following definition of properness:

Definition 3.2 A forcing notion P is said to be proper if ∀κ uncountable

cardinal and ∀S ⊆ [κ]≤ℵ0 stationary, S remains stationary in the extension.

The above definition is nice and short, but not very useful in applications.

Therefore, an equivalent, model-theoretical definition will be introduced, a

definition which proved itself to be, by far, the most useful one.

Recall that H(χ) = {x : |trcl(x)| < χ}, the collection of sets, hereditarily

of size < χ. It is a basic fact that for regular χ, H(χ) |= ZFC−(ZFC without

the power set axiom).

Let χ be a ”large enough” regular cardinal (such that H(χ) encapsulates

the relevant statements for the forcing construction) and N a countable ele-

mentary submodel of H(χ) containing the forcing notion P.
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Definition 3.3 A condition q ∈ P is called (N,P)-generic if for all dense

D, D ⊆ P ∩N , D ∩N is predense below q (i.e. any condition stronger than

q is compatible with some condition in D ∩N).

A forcing notion P is called proper if for all large enough regular cardinals

χ, for all countable models N , N ≺ H(χ) containing P and for all conditions

p ∈ P ∩N , there is an extension q of p, which is (N,P)-generic.

Note that an equivalent definition of (N,P)-generic conditions would be

obtained if ”dense” would be replaced by ”maximal antichain‘”, ”predense”

or ”dense open” and that extensions of (N,P)-generic conditions are (N,P)-

generic as well.

Fact: All c.c.c. forcing notions are proper.

Proof:

Claim: If P satisfies c.c.c., 1P is (N,P)-generic and thus, by the above

remark, all conditions are (N,P)-generic.

Take A a m.a.c, A ∈ N .

Since N is countable, A has to be the range of a function in N with domain

ω, thus, A ⊆ N .

(as f ∈ N and ∀n ∈ ω∩N , also f(n) ∈ N for all n, so A = ran(f)

⊆ N)

Since A is also a m.a.c., 
P A ∩N ∩G 6= ∅. So, 1P is (N,P)-generic

Fact: The ω-closed forcing notions are also proper.

Proof:

Having p ∈ P ∩ N , enumerate the dense subsets of P that are in N by 〈Di :

i ∈ ω〉.
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Recursively construct pi such that:

• p0 := p,

• Let pi+1 ≤ pi, such that pi+1 ∈ Di ∩N .

Since P is countably closed, the sequence 〈pi : i ∈ ω〉 has a lower bound q.

This q is (N,P)-generic since q 
 ∀i : pi ∈ Ġ.

Thus, P is proper.

A particular case(A = ω1 ∩ V ) of the following lemma gives the fact that

ω1 is always preserved when forcing with a proper forcing notion.

Lemma 3.4 Every countable set A of ordinals in the extension is covered

by a countable set of ordinals in the ground model. (i.e. For all A ∈ V [G]

countable, there is B ∈ V , also countable, covering A.)

Proof:

Let Ȧ be a name for a countable set of ordinals A in the extension.

Thus, there must be a countable sequence of names 〈α̇n : n ∈ ω〉 for

elements in Ȧ.

For all n, take An to be a m.a.c. deciding α̇n.

We will show that for any condition, there is an extension, forcing the

existence of a countable set B covering A (which is the same as proving the

density of the set of conditions forcing this statement).

Given p ∈ P and N ≺ H(χ) countable, containing P, p and 〈An : n ∈ ω〉,

let q ≤ p be (N,P)-generic.

Define B :=
⋃
n∈ω{β : ∃r ∈ An ∩N with r 
 αn = β}.
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B is countable since An is countable and the genericity of q implies that

A ⊆ B.

Properness is preserved under countable support iterations, and thus, ω1

is not collapsed. Moreover, if the iteration has length ≤ ω2 and all iterands

have size ≤ ℵ1, then all cardinals are preserved, since the limit satisfies the

ℵ2-cc.

However, the iterations of length > ω2 are known to collapse the contin-

uum, therefore, using proper forcing, models with c ≥ ℵ3 cannot be obtained.

This is a big impediment, since there are consistency results that require

larger continuum (for example a model where s is singular).

Another property preserved by countable support iterations of proper forc-

ing notions is the ωω-bounding property, i.e. the property that no un-

bounded reals are added, every real in the extension is dominated by one of

the ground model reals.

Since the previous lemma says that proper forcing notions preserve ω1,

the most obvious example of a forcing notion which is not proper is the one

collapsing ω1, namely (Fn(ω, ω1),⊇).

James Baumgartner introduced the property called Axiom A, an extension

of c.c.c. and countably closed, but not covering all proper forcing notions.

It is a very useful property, since many well known proper forcing notions

satisfy it.
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Definition 3.5 A forcing notion (P, <) satisfies Axiom A if there is a

collection of partial orderings {≤n}n of P such that

i) p ≤0 q ⇒ p ≤ q and ∀n: p ≤n+1 q ⇒ p ≤n q

ii) for every fusion sequence (i.e. {pn}n with pi+1 ≤i pi) there exists q, the

fusion of the sequence(i.e. q ≤n pn ∀n)

iii) for every D ⊆ P dense, ∀p ∈ P, ∀n ∈ ω there is p′ ≤n p and D0 ⊆ D

countable, with the property that D0 is predense below p′.

To see that all c.c.c. forcing notions satisfy this property, put p ≤n q iff

p = q for all n > 0. In case of countably closed forcing notions, it suffices to

take the same order ≤n=≤ for all n ∈ ω. Thus, this is an alternative way of

proving that c.c.c. and countably closed forcing notions are proper.

Some other important facts are that no new reals are added during count-

able support iterations at limit stages of uncountable cofinality and that in

countable support iterations of length ω2 of proper forcing notions, any set

of reals of cardinality ω1 is added at some initial stage of the iteration.

Lemma 3.6 If the length of a countable support iteration has uncountable

cofinality, every real in the final model already appears in some intermediate

extension.

Proof:

Let δ be a limit ordinal with cf(δ) > ω, ḟ a Pδ-name for a real and p ∈ Pδ
an arbitrary condition.

Let N ≺ H(χ) for large enough χ, containing p, ḟ .
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Since Pδ is proper, there is an extension q of p which is (N,P)-generic.

Define α := sup(δ ∩N).

Claim: q 
 ḟ ∈ V Pα

For all n let An be the maximal antichain deciding ḟ(n).

Then An ∈ N and q 
 G ∩ An ∩ N 6= ∅. But conditions in An ∩ N have

support included in α, therefore, knowing Gα is enough for deciding ḟ(n).

3.2 Mathias forcing

Definition 3.7 The Mathias forcing is

M = {(s, A) : s ∈ [ω]<ω, A ∈ [ω]ω,max s < min A}.

with the extension relation

(s1, A1) ≤ (s2, A2) if s2 ⊆ s1, A1 ⊆ A2, s1 \ s2 ⊆ A2.

The finite set s is called stem and the infinite set A is called pure part of

the Mathias condition (s, A). An extension which does not change the stem

is a pure extension.

Fact: (See [7]) M satisfies Axiom A , so it is proper.

Proof:

Identify infinite sets A with the increasing enumeration of their elements

{ai : i ∈ ω} and define a decreasing sequence of partial orders {≤n}n on M

by:

• ≤0=≤

• (t, B) ≤i (s, A) iff
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– the conditions have the same stem (t = s) and

– the first i elements of A and B are the same.

It is clear that every fusion sequence contains conditions with the same

stem, hence, let 〈(s, Ai)〉i be such that (s, Ai+1) ≤i (s, Ai).

Let A :=
⋂
iAi.

For all i, the condition (s, A) satisfies (s, A) ≤i (s, Ai), thus, it is the fu-

sion of the given sequence.

Proving iii) is a bit more complicated.

Let N ≺ H(χ) be countable (for χ large enough) and (s, A) ∈M.

Let Dn be an enumeration of (some of) the dense open sets in N and

denote by Bi = {bj : j > i}(all elements of B with after the i-th element).

Claim: There is a pure extension (s, B) ∈M such that ∀i, whenever n <

i and t ⊆ {bj : j < i}, the following holds:

if (s ∪ t, Bi) has a pure extension in Dn, then itself is already in Dn.

Note: This is the idea behind the preprocessed conditions treated later,

so it should be kept in mind.

The condition (s, B) extending the given condition (s, A) is obtained as

the fusion of a sequence Ai, so as long as one defines the Ai’s in a convenient

way, (s, B) will have the desired properties.

Let A0 = A.

The infinite set Ai+1 will be constructed from Ai in the following way:

List all the pairs (n, t) with n < i+1 and t ⊆ {aji : j < i+1} (i.e. elements

of t are between the first i+ 1 elements of Ai), say indexed by k < l.
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Ai+1 := Ai,l where Ai,k’s are decreasing and defined recursively on k < l.

• Ai,0 := Ai

• Ai,k+1 := {aji : j < i+ 1}∪C if there is C ⊆ Ai,k such that (s∪ tk, C) ∈

Dn,

Ai,k+1 := Ai,k otherwise.

Hence, (s, Ai+1) ≤i (s, Ai) and for n < i, t ⊆ {aji : j < i}, if (s∪t, Aii) has an extension in Dn

then (s ∪ t, Aii) ∈ Dn, so the fusion (s, B) will be as required.

Since the above argument says that there is always such an extension

(s, B) obtained as the fusion of a fusion sequence, the set D0 containing the

conditions of the form (s∪ti, Aii) will be countable and predense below (s, B).

If the enumeration contains all dense open sets then (s, B) is (N,M)-

generic.

Fact: M adds a real not split by the ground model reals.

Thus, a countable support iteration over a model of CH produces an ex-

tension with s = c = ℵ2

Proof:

Considering any A ∈ [ω]ω ∩V and p = (s, B) ∈M, either B∩A or B∩Ac

is infinite, and thus,

DA = {(s, B) : B ⊆ A or B ⊆ Ac} is dense.

To see this, let p = (s, C) be any condition.

One has to find an extension q ≤ p : q ∈ DA.
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By the above remark, either C ∩ A or C ∩ Ac has to be infinite. Let C ′

be the one that is infinite and take q = (s, C ′).

If G is a M generic filter over M , let

UG =
⋃
{s : ∃B such that (s, B) ∈ G}

Since any two conditions in G are pairwise compatible, UG ⊆∗ B for all B

which appears as a pure part in Mathias conditions.

Mathias forcing is known in the literature to add an ultrafilter. But this

is the same thing with adding an unsplit real:

An infinite set A ⊆ ω makes an ultrafilter on the family S ⊆ [ω]ω if

∀B ∈ S: either A ⊆ B or A ⊆ Bc. S is a splitting family if and only if no A

makes an ultrafilter on S.

At the end of the previous section, an important fact about countable

support iterations of length ω2 of proper forcing notions was stated, namely

that any set of reals of cardinality ω1 is added at some initial stage during

the iteration. This implies the fact that s can’t be ℵ1 in the final model, since

any splitting family of size ℵ1 is destroyed at the next stage, when a set A

making an ultrafilter is added.

Fact: M also adds a dominating real , i.e. a real that dominates all

ground model reals. Therefore, a countable support iteration of length ω2

will yield an extension with b = ω2.

Proof:
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For every A ∈ [ω]ω, denote by fA the enumerating function of A, namely

fA(j)= the j-th element of A.

Claim: The enumerating function of UG, denoted fG, dominates all the

ground model reals.

To see this, let f ∈ ωω be any ground model function. One has to show

that the set

Df = {(s, A) : ∀l ∈ ω A(l) > f(|s|+ l)} is dense.

Let p = (s, B) ∈M be any condition.

Recursively one can find an A ⊆ B infinite, (s, A) ∈ Df .

Assuming (s, f) ∈ G ∩ Df , it is clear that s is an initial segment of UG

and UG \ s ⊆ A.

Thus, ∀l ∈ ω : fG(|s|+ l) ≥ A(l) and A(l) ≥ f(|s|+ l). Hence, f ≤∗ fG.

3.3 Shelah’s proper forcing

Since the Mathias forcing not only adds an unsplit real, but also a dom-

inating real, the Mathias model will not witness Con(b < s). Just by adding

an additional combinatorial structure on the pure part of Mathias conditions,

Shelah obtains a proper forcing notion that still adds a real not split by the

ground model reals, but which is also almost ωω-bounding and hence, keeps b

small. The combinatorial structure added is given in the form of a logarithmic

measure on [ω]<ω. This forcing is the first creature forcing that appeared in

the literature. Excellent expositions of the material presented in this section

are [1] and [12].
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Definition 3.8 A forcing notion P is called weakly ωω bounding if the

ground model reals remain an unbounded family in any extension by P, i.e.

∀f ∈ ωω ∩ V [G],∃g ∈ ωω ∩ V such that {n ∈ ω : f(n) ≤ g(n)} is infinite.

Example: Cohen forcing is weakly ωω bounding.

Proof:

To see this, recall that Cohen forcing is countable and thus, its conditions

can be enumerated as {cn : n ∈ ω}. Given ḟ a name for a function, one

should find a function g ∈ V such that {n ∈ ω : ḟ(n) ≤ g(n)} is infinite.

Defining g(i) such that some extension of ci forces ḟ(i) = g(i), one gets

the desired result.

The problem with this property is that it is not preserved during iterations.

Note that the ωω-bounding property is preserved, since ≤ is transitive.

In case of weakly ωω bounding, the infinite sets can even be disjoint.

A simple example where this property is not preserved, since a dominating

real is added, is to first add ℵ1 Cohen reals and then to do Hechler forcing with

conditions in V . Cohen forcing is weakly bounding and, although Hechler

forcing adds a dominating real, it is also weakly bounding since every name

for a real is already in some initial model V C�α for some α < ω1.

Thus, a stronger notion of unboundedness is needed to ensure that a

witness for b = ω1 is preserved during iterations.

Definition 3.9 P is called almost ωω bounding if for every P-name ḟ for

a function in ωω and every condition p ∈ P there is a ground model function

g ∈ ωω, such that for every A ∈ [ω]ω, there is qA ≤ p with

qA 
 ∃∞k ∈ A(ḟ(k) ≤ ǧ(k) )
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Note that, by interchanging ∃g ∈ ωω ∩M and ∀A ∈ [ω]ω, one gets the

weaker notion of weakly ωω bounding.

Example: The Cohen forcing is almost ωω bounding.

Proof:

Since Cohen forcing is countable, one can enumerate its conditions as

C = {cn : n ∈ ω}.

Fix ḟ a C-name for a function in ωω and cn a condition in C.

One needs to define a ground model function g ∈ ωω satisfying:

∀A ∈ [ω]ω∃cm ≤ cn such that cm 
 ∃∞k ∈ A : (ḟ(k) ≤ ǧ(k)).

Define g(n) := maxm≤n(min{k : ∃q ≤ cm(q 
 ḟ(n) = k)}) + 1.

To see that this function works, it is enough to consider A = ω.

Assume towards a contradiction, ∃cm ∈ C and n ≥ m such that

cm 
 g(k) < ḟ(k) for all k ≥ n,

in particular, cm 
 g(n) < ḟ(n).

Then, by definition of g(n), we know g(n) ≥ min{k : ∃q ≤ cm(q 
 ḟ(n) =

k)}+ 1.

Let q be the extension of cm forcing the minimal value k. Then q 
 ḟ(n) =

k < g(n).

But this is a contradiction, since q, as an extension of cm, has to force

g(n) < ḟ(n).

Lemma 3.10 If P is weakly bounding and Q is almost ωω bounding, then

P ∗Q is weakly bounding. Therefore, the countable support iteration of almost

ωω bounding forcing notions is weakly bounding.
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Proof:

Let ḟ be a P ∗Q-name and (p, q) ∈ P ∗Q be a condition forcing that ḟ is

a function in ωω.

One needs to show that in any extension by a P ∗Q generic filter containing

(p, q), there is a h ∈ ωω ∩ V weakly bounding ḟ .

Take G to be a P -generic filter containing p.

In the extension by this filter, ḟ is a Q-name for a real.

Since Q is almost ωω bounding, given any q′ ∈ Q, q′ ≤ q, there is g ∈ V [G]

almost bounding ḟ , i.e. for every A ∈ [ω]ω, there is qA ≤ q′ with qA 
 ∃∞k ∈

A(ḟ(k) ≤ g(k)).

The hypothesis also says that P is weakly ωω-bounding, thus, for this

g ∈ V [G] there is h ∈ V such that B = {n ∈ ω : g(n) ≤ h(n)} is infinite in

V [G].

If H is a Q-generic filter over V [G] containing q′, then there is an infi-

nite B0 ⊆ B with f(n) ≤ g(n) ∀n ∈ B0. Thus, ḟ is weakly bounded by h ∈ V .

Assuming CH, Shelah found a proper, almost ωω bounding forcing notion

of size ℵ1 such that in every generic extension there is an infinite subset of ω

not split by the ground model reals.

Definition 3.11 Let s ∈ [ω]<ω and h : P(s)→ ω.

The function h is a finite logarithmic measure on s if whenever

x ⊆ s with x = x0 ∪ x1 then h(x0) ≥ h(x) − 1 or h(x1) ≥ h(x) − 1, unless

h(x) = 0.

The value h(s) is called the level of the logarithmic measure h.

A set e ⊆ s is said to be h-positive if h(e) > 0.

Definition 3.12 Shelah’s proper forcing notion :
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Let Q be the set of all pairs (u, T ) where u ∈ [ω]<ω and T = 〈(si, hi) : i ∈

ω〉 is a sequence of finite logarithmic measures such that:

i) max u<min s0

ii) max si < min si+1

iii) the sequence of the levels 〈hi(si) : i ∈ ω〉 is unbounded(or strictly in-

creasing)

The underlying subset of ω is int(T ) =
⋃
i∈ω si.

Let Tl = 〈tli : i ∈ ω〉 where tli = (sli, h
l
i) for l = 1, 2. Then (u2, T2) ex-

tends (u1, T1), written (u2, T2) ≤ (u1, T1) if

i) u2 ⊇ u1, u2 \ u1 ⊆ int(T1) and int(T2) ⊆ int(T1)

Note that this is just the extension relation as Mathias conditions for

(u, int(T )).

ii) There is a sequence 〈Bi : i ∈ ω〉, where ∀i ∈ ω : Bi ∈ [ω]<ω such that

– max u2 < min s1j for j := minB0

– max Bi < min Bi+1

– s2i ⊆
⋃
{s1j : j ∈ Bi}

iii) for every e ⊆ s2i which is h2i -positive, there is j ∈ Bi such that s1j ∩ e is

h1j -positive.

A condition with u = ∅ is called a pure condition and, as before, exten-

sions that do not change the stem are called pure extensions.
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For proving that Shelah’s forcing notion is proper and has the almost ωω-

bounding property, the notion of preprocessed conditions is needed.

Definition 3.13 Let D ⊆ Q be a dense open set, k ∈ ω and p = (u, T ) ∈ Q.

The condition p is preprocessed for D and k if ∀v ⊆ k : v ⊇ u, if

(v, 〈tj : j > k〉) has a pure extension is D then (v, 〈tj : j > k〉) is already in

D.

Lemma 3.14 Any extension of a preprocessed condition is also preprocessed

for the same D and k.

Proof:

Let D ⊆ Q be a dense open set, k ∈ ω and p = (u, T ) ∈ Q a condition

preprocessed for D and k. Let q = (w,R) ∈ Q such that q ≤ p arbitrary.

To show: q is also preprocessed for D and k.

Let v ⊆ k, end-extending w such that (v, 〈rj : j > k〉) has a pure extension

in D.

We need to show (v, 〈rj : j > k〉) ∈ D.

The extension relation in Q implies that v also end-extends u and that

〈rj : j > k〉 extends 〈tj : j > k〉. Therefore, any pure extension of (v, 〈rj :

j > k〉) is also a pure extension of (v, 〈tj : j > k〉). Since p = (u, T ) is

preprocessed for D and k, (v, 〈tj : j > k〉) ∈ D.

D is open, i.e closed under extensions, therefore, (v, 〈rj : j > k〉) ∈ D.

Lemma 3.15 The forcing notion Q is Axiom A, thus, proper.

Proof:

For i) one has to find a decreasing sequence {≤n}n∈ω of suborders on Q .

Define:
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• ≤0=≤

• (u2, T2) ≤n+1 (u1, T1) if u1 = u2, (u2, T2) ≤n (u1, T1) and ∀i ≤ n : t1i =

t2i

(i.e. (u2, T2) is a pure extension of (u1, T1) and the first n measures and

sets coincide).

It is clear that ≤n⊂≤m ∀m < n.

For ii) one has to show that for every fusion sequence {pn}n∈ω, the fusion

of the sequence exists. By i), the stem has to be the same for every condition

in the fusion sequence. So, if pn = (u, Tn), then p = (u, 〈ti : i ∈ ω〉) with

ti = ti+1
i is the fusion of the sequence (p takes the measure ti that is common

to all conditions that have indexes above i).

For iii) some results on preprocessed condition are needed.

Lemma 3.16 Let D ⊆ Q be a dense open set and k ∈ ω. Any condition in

Q has a ≤k+1 extension that is preprocessed for D and k.

Proof of lemma Let p = (u, T ) ∈ Q, where T = 〈ti : i ∈ ω〉 be any

condition and enumerate by {vi : i < j} all subsets of k end-extending u.

Define 〈tli : i > k〉 inductively on l ≤ j in the following way:

• t0i := ti

For 1 ≤ l ≤ j:

• if (vl, 〈tl−1i : i > k〉) has a pure extension in D then 〈tli : i > k〉 is the

pure part of this extension

• otherwise tli := tl−1i
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Clearly (u, 〈tji : i ∈ ω〉) ≤k+1 (u, T ) where for i < k : tji := ti.

Claim: this condition is also preprocessed for D and k.

Let v ⊆ k, end-extending u. Suppose that (v, 〈tji : i > k〉) has a pure

extension in D and show it is already in D.

Since the enumeration {vi : i < j} contains all subsets of k end-extending

u, then v must be one of them. Say v = vl for some l ≤ j. Thus, at stage

l, the condition (vl, 〈tl−1i : i > k〉) had a pure extension in D and we defined

this pure extension as (vl, 〈tli : i > k〉) ∈ D. Since D is open and 〈tji : i >

k〉 ≤ 〈tli : i > k〉, it follows that the pure extension (v = vl, 〈tji : i > k〉) ∈ D.

Thus, (u, 〈tji : i ∈ ω〉) is preprocessed for D and k.

Lemma 3.17 Given D ⊆ Q be a dense open set, any condition p ∈ Q has

an extension which is preprocessed for D and all k ∈ ω.

Proof of lemma

For every k ∈, the previous lemma gives us the existence of a ≤k+1 exten-

sion, preprocessed for D and k. Thus, we can find a fusion sequence {pk}k∈ω(

p0 = p), where each pk+1 is preprocessed for D and k.

Take q to be the fusion of the sequence {pk}k∈ω. Then ∀k ∈ ω : q ≤k+1

pk+1, in particular, q ≤ pk+1, and since pk+1 is preprocessed for D and k, so

is q. Hence, q is an extension of p, preprocessed for D and all k ∈ ω

Back to Proof of iii):

Given D ⊆ Q be a dense open set and p ∈ Q arbitrary, by the above

lemma, there is always a pure extension q ≤ p preprocessed for D and any

i ∈ ω.

Moreover, ∀i ∈ ω : q ≤i p.
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Let D0 := {p ∈ Q with p = (v, 〈tj : j > i〉) for i ∈ ω, v ⊆ i, v extends u}.

Clearly D0 is a countable subset of D.

It remains to show that D0 is predense below q, i.e any extension of q is

compatible with a condition in D0.

Consider (v,R) any extension of q.

Since D is dense, there is (v ∪ w,R′) ≤ (v,R), (v ∪ w,R′) ∈ D. But for

some k ∈ ω, k ⊇ w: (v ∪ w,R′) ≤ (v ∪ w, 〈tj : j ≥ k〉).

We know (v ∪ w, 〈tj : j ≥ k〉) ∈ D since q is preprocessed for D and k.

In particular, (v ∪ w, 〈tj : j ≥ k〉) ∈ D0 and compatible with (v,R). So,

D0 is indeed predense below q.

Lemma 3.18 Q adds a real which is not split by the ground model reals.

Proof:

Claim 1: Let T = 〈(si, hi) : i ∈ ω〉 be a pure condition and A ∈ [ω]ω any

infinite set. Then one of the sequences 〈hi(si ∩ A)〉i∈ω or 〈hi(si ∩ Ac)〉i∈ω is

unbounded.

Proof:

Recall that, if (x, h) is a logarithmic measure, h(x) > 0 and x is partitioned

into x0 ∪ x1, then, by definition, either h(x0) ≥ h(x)− 1 or h(x1) ≥ h(x)− 1.

Define

I0 = {i ∈ ω : hi(si ∩ A) ≥ hi(si)− 1} and

I1 = {i ∈ ω : hi(si ∩ Ac) ≥ hi(xi)− 1}.

By (iii) in the definition of the forcing notion Q, the sequence of levels is

unbounded. Therefore, the Pigeonhole principle ensures that, at least one of
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the sets is infinite, and so, either < hi(xi ∩ A) >i∈ω or < hi(xi ∩ Ac) >i∈ω is

unbounded.

Claim 2 : DA = {(u, T ) : int(T ) ⊆ A or int(T ) ⊆ Ac} is dense.

Proof:

To see this, fix A any infinite set. One has to show that, given T a pure

condition, there exists T ′ = 〈(h′i, s′i)i∈ω〉 ≤ T : T ′ ∈ DA.

By Claim 1, 〈hi(si ∩A)〉i∈ω or 〈hi(si ∩Ac)〉i∈ω is unbounded. Say 〈hi(si ∩

A)〉i∈ω is unbounded (the proof is the same for the complement). So, for every

l ∈ ω, there is an i ∈ ω such that hi(si ∩ A) ≥ l.

By induction, we define s′j, h
′
j and Bj in the following way:

In B0, put an arbitrary i, s′0 = s0 ∩ A and h′0 = hi.

Assume we have already define s′j, h
′
j and Bj, and we want to define

s′j+1, h
′
j+1 and Bj+1. We assumed that 〈hi(si ∩ A)〉i∈ω is unbounded so, for

every l = h′j(s
′
j) (which is equal to hi(si ∩ A) for i ∈ Bj), there is an k ∈ ω

such that hk(sk ∩ A) ≥ l. Then put k in Bk+1, take s′j+1 = sk ∩ A and

h′j+1 = hk.

Clearly, the obtain condition is an extension of T with underlying set in-

cluded in A, so the density of DA is established.

Claim 3: The density of DA implies that Q adds an unsplit real.

Proof:
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First remark that, if (u, T ) is a condition in Q, then (u, int(T )) is a Math-

ias condition.

For a Q-generic filter G, let UG :=
⋃
{u : (u, T ) ∈ G for some T}.

Since the elements of the generic filter are pairwise compatible, int(UG) ⊆∗

int(T ) for every T that appears as a pure part of a condition in G. Hence,

the generic real is an unsplit real.

As specified before, the reason why b remains small in the extension of

a model of CH obtained by iterating (with countable support, for ω2 steps)

the forcing notion Q, is that this forcing notion is almost ωω-bounding .

For proving this, measures induced by positive sets play an important role.

Definition 3.19 Let P ⊆ P(s) be upwards closed (i.e. if a ∈ P, a ⊆ b then

b ∈ P ).

The logarithmic measure h induced by P is defined in the following way:

• h(e) ≥ 0 for every e ∈ P(s)

• h(e) > 0 iff e ∈ P (the elements of P are called positive sets )

• For every l ≥ 1,

h(e) ≥ l + 1 iff |e| > 1 and whenever e = e0 ∪ e1, then h(e0) ≥ l or

h(e1) ≥ l

Then h(e) = l iff l is the maximal natural number such that h(e) ≥ l.

An induced logarithmic measure is said to be atomic if there is a singleton

{n} with h({n}) > 0.

From this point on, we will only consider non-atomic measures.

The following condition is sufficient for the measure induced by P to take

arbitrary high values:
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For every decomposition of ω into n pieces ω =
⋃
j<nAj, there is a piece Ai

with the property that P(Ai) ∩ P 6= ∅ (i.e. Ai contains a positive set).

The induced measure than takes arbitrary high values, since the above

condition implies that for every k ∈ ω and for every decomposition ω =⋃
j<nAj, there is an i < n and some e ⊆ Ai such that h(e) ≥ k. This impli-

cation can be prooved by induction. One assumes that the conclusion does

not hold for the (k + 1)-th step and uses König’s Lemma to contradict the

induction hypothesis.

For D a dense open set, k ∈ ω and T = 〈tl : l ∈ ω〉 a pure condition

preprocessed for D and k, denote by Pk(T,D) the family of all finite subsets

x ⊆ int(T ) such that for some l ∈ ω the following hold:

• x∩ int(tl) is a positive set

• ∀v ⊆ k,∃w ⊆ x such that (v ∪ w, T ) ∈ D

The fact that the measure induced by Pk(T,D) takes arbitrary high values

is used for proving the following lemma, which can be found in [1] and [12],

and is the main technical tool for proving that Q is almost ωω bounding.

Lemma 3.20 Let ḟ be a Q-name for a function in ωω and p = (u, T ) an

arbitrary condition in Q. Then there is a pure extension q = (u,R) ≤ p, with

R = 〈ri = (xi, gi) : i ∈ ω〉 such that:

∀i ∈ ω,∀v ⊆ i end-extending u and ∀s ⊆

xiwhich is gi-positive, there is wv ⊆ s such that (v ∪ wv, 〈rj : j ≥ i〉) 
 ḟ(i) =

k for some k ∈ ω.

The proof can be found in [1].

Theorem 3.21 (see [1]) The proper forcing notion Q is almost ωω-bounding.

62



Proof:

Let ḟ be an Q-name for a function in ωω. One has to show

∃g ∈ V ∩ ωω such that ∀A ∈ [ω]ω∃qA ∈ Q with qA 
 ∃∞k ∈ A(ḟ(k) ≤ g(k)).

By the previous lemma, p has a pure extension q = (u,R), R = 〈ri =

(xi, gi) : i ∈ ω〉 with ∀i ∈ ω,∀v ⊆ i end-extending u and ∀s ⊆ xi which is gi-positive, there is wv ⊆

s such that (v ∪ wv, 〈rj : j ≥ i〉) 
 ḟ(i) = k for some k ∈ ω.

For all i ∈ ω let g(i) := max {k : ∃v ⊆ i,∃w ⊆ xi : (v ∪ w, 〈rj : j ≥

i+ 1〉) 
 ḟ(i) = k}.

Consider A ∈ [ω]ω arbitrary and let qA = (u, 〈rj : j ∈ A〉).

Clearly qA extends q, so it suffices to show that qA 
 for infinitely many

k ∈ A : ḟ(k) ≤ g(k).

Let n ∈ ω and (v,R′) an arbitrary extension of qA.

Thus, by the extension relation is Q, there is i ∈ A, i ≥ n such that

v ⊆ i and s = int(R′) ∩ xi is gi-positive.

Using the previous lemma for s, let w ⊆ s be such that (v∪w, 〈rj : j ≥ i〉)

decides a value for ḟ(i).

Then (v ∪ w,R′) extends (v,R′) and (v ∪ w, 〈rj : j ≥ i〉), thus, it makes

the same decision.
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Chapter 4

Extending ultrafilters: towards

matrix iterations

4.1 General result: preservation of embed-

dability

Embeddability issues are studied with the scope of comparing forcing

extensions.

Fix M a countable transitive model of ZFC, P and Q two partial orders

and an embedding i : P→ Q in M . If i is a complete embedding and H is a

Q-generic filter, then i−1(H) is P-generic over M and forcing with Q gives a

bigger extension than forcing with P(i.e. M [i−1(H)] ⊂M [H]).

Definition 4.1 For P and Q partial orders, i : P → Q is a complete

embedding if

i) i preserves the order, i.e. ∀p, p′ ∈ P(p′ ≤ p→ i(p′) ≤ i(p))

ii) i preserves incompatibility, i.e. ∀p, p′ ∈ P(p′⊥p→ i(p′)⊥i(p))
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iii) for all q ∈ Q there is p ∈ P a reduction of q to P, i.e. such that

∀p′(p′ ≤ p→ (i(p′)||q).

It is easy to see that any extension of a reduction is a reduction, so it is

clearly not unique.

For P and Q partial orders, if such a complete embedding i : P → Q

exists, one says P is completely embedded into Q and writes P < ◦ Q. In

most applications, the particular case i = id will appear.

Note: P < ◦ Q⇔ all maximal antichains of P are maximal antichains of

Q.

An often used and well known result concerning the preservation of

complete embeddability is the following (see [6]) :

Lemma 4.2 Let P,Q be partial orders, P < ◦ Q, Ȧ a P-name for a partial

order, Ḃ a Q-name for a partial order such that 
Q Ȧ ⊆ Ḃ and all maximal

antichains of Ȧ in V P are maximal antichains of Ḃ in V Q.

Then P ∗ Ȧ < ◦ Q ∗ Ḃ.

An application of this lemma is the preservation of embeddability when

forcing with a Suslin c.c.c. forcing notion. We know that maximal antichains

remain maximal antichains, therefore, applying the previous lemma for the

particular case that A and B are the same Suslin c.c.c. forcing notion, one

gets the following result:

Corollary 4.3 Let P,Q be partial orders, P < ◦ Q, Ȧ a P-name for a Suslin

c.c.c. forcing coded in V P.

Then P ∗ (Ȧ)V
P
< ◦ Q ∗ (Ȧ)V

Q
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Proof: ( of Lemma)

It suffices to show that all maximal antichains of P ∗ Ȧ are maximal in Q ∗ Ḃ

Hence, let {(pα, ȧα) : α < κ} be a maximal antichain of P ∗ Ȧ and assume

towards a contradiction, it is not maximal in Q∗Ḃ, i.e there exists a condition

(q, ḃ) ∈ Q ∗ Ḃ which is incompatible with all elements of the given antichain.

We know P < ◦ Q, so for every Q-generic filter G there is a P -generic H

such that V [H] ⊆ V [G] (here H ⊆ G ∩ P, so H ⊆ G).

Let Ω̇ be a P-name such that 
 Ω̇ = {α : pα ∈ Ḣ}.

CLAIM: 
 {ȧα : α ∈ Ω̇} is a m.a.c of Ȧ.

Proof of the claim

It is an antichain:

Assume towards a contradiction it is not an antichain. Thus, at least two

of the conditions are compatible, say ȧα1||ȧα2 .

pα1||pα2 since they have to be both in the filter H, therefore, it follows that

(pα1 , ȧα1)||(pα2 , ȧα2) contradicting the fact that (pα, ȧα) formed an antichain.

So, 
 {ȧα : α ∈ Ω̇} is an antichain of Ȧ.

Maximality :

Assume towards a contradiction 
 {ȧα : α ∈ Ω̇} is not maximal in Ȧ.

Then there is a condition p ∈ P and a P-name ȧ such that p 
 ∀α(α ∈ Ω̇→

ȧ⊥ȧα).

Since (p, ȧ) ∈ P∗ Ȧ and {(pα, ȧα) : α < κ} is a maximal antichain of P∗ Ȧ,
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there must be an α < κ such that (p, ȧ) is compatible with (pα, ȧα). Denote

their common extension by (p′, ȧ′).

Thus, p′ 
 (ȧ′ ≤ ȧ and ȧ′ ≤ ȧα).

Since p′ ≤ pα it follows that p′ 
 α ∈ Ω̇

So we have p′ 
 ”α ∈ Ω̇ and ȧ and ȧα are compatible”, a contradiction

with the choice of ȧ (we had p 
 ∀α(α ∈ Ω̇→ ȧ⊥ȧα) and p′ ≤ p).

Let b = ḃ[G], aα = ȧα[G] = ȧα[H](for α such that pα ∈ H) and Ω =

Ω̇[G] = Ω̇[H] = {α : pα ∈ H}.

The claim says that {aα : α ∈ Ω} is a m.a.c. of A , so by the hypothesis,

it is also a m.a.c of B(in V [G]), so there is α ∈ Ω such that b is compatible

with aα.

We know that we can choose G in such a way that q ∈ G (given any

condition, there is always a generic filter containing this condition).

Recall that (q, ḃ) was the witness for the fact that {(pα, ȧα)} is not a m.a.c.

of Q ∗ Ȧ.

Hence, there is a common extension of pα and q in G, say q′, which forces

α ∈ Ω̇ and ḃ, ȧα to be compatible (pα ∈ G since pα ∈ H and H ⊆ G and any

two elements of the generic set G are compatible).

Letting ḃ′ to be a Q-name for the common extension of ḃ and ȧα, it follows

that (q′, ḃ′) is a common extension of (q, ḃ) and (pα, ȧα).

This is a contradiction since (q, ḃ) should be incompatible with all (pα, ȧα)’s.

67



The following lemma just says that the complete embeddability is pre-

served in finite support iterations:

Lemma 4.4 Assume 〈P0µ, Q̇0
µ : µ < ξ〉 and 〈P1µ, Q̇1

µ : µ < ξ〉 are finite support

iterations with the property that P0µ < ◦ P1µ for all µ < ξ.

Then P0ξ < ◦ P1ξ.

Proof:

Clearly P0ξ ⊆ P1ξ and incompatibility is preserved.

Let p ∈ P1ξ be any condition. One has to find a reduction of p to P0ξ .

Since P1ξ is the finite support iteration, there is an η < ξ such that p ∈ P1η.

The induction hypothesis P0η < ◦ P1η gives the existence of a reduction

q ∈ P0η of p (as an element of P1η) to P0η.

Claim: q is a reduction of p (as an element of P1ξ) to P0ξ .

For this, one has to show that any extension of q is compatible with p.

Thus, let r ≤ q be a in P0ξ arbitrary.

One can write r as r0 ∪ r1, where r0 ∈ P0η and r1 has support in [η, ξ).

Since q ∈ P0η, there must be the case that r0 ≤ q and thus, since q is a

reduction of p to P0η, r0 and p are compatible.

Denoting their common extension by r′0, one gets that r′0∪r1 is a common

extension of r and p.

Since r was arbitrary, it follows that q is a reduction of p to P0ξ .
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4.2 Mathias Prikry forcingMF and Laver Prikry

forcing LF

We now look at the non-definable c.c.c. context and we seek the necessary

and sufficient conditions for maximal antichains to remain maximal for these

forcing notions. In this study, we follow [6] and [20].

Simple non-definable c.c.c. forcing notions are the ones related to ultra-

filters:

• MF (Mathias-Prikry forcing) and

• LF ( Laver-Prikry forcing).

Definition 4.5 Mathias Prikry forcing:

MF = {(s, A) such that s ∈ [ω]<ω, A ∈ F , max s < min A}

Ordered by (t, B) ≤ (s, A) if

• t ⊇ s,

• t \ s ⊆ A and

• B ⊆ A.

Some important properties of Mathias Prikry forcing are the following:

• MF is σ-centered, thus has the countable chain condition.

• MF adds a pseudo-intersection to F , i.e. mF ⊆∗ A ∀A ∈ F , namely

mF =
⋃
{s : for some A, (s, A) ∈MF}.

So, Mathias-Prikry forcing MF adjoins, via finite approximations a new

infinite subset of ω which is eventually contained in all members of the filter F .
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For carefully chosen filters, one can assure that the extension has certain

properties, like for example the fact that no dominating real is added (see

later), or the contrary, that dominating reals are added: if the ultrafilter U is

either rapid, or not a P-point then MF adds a dominating real (this result is

due to Canjar).

Definition 4.6 Laver Prikry forcing, denoted LF consists of trees T ⊆

ω<ω such that

• there is a stem, denoted stem(T ) (i.e. for every node t, either t ⊆

stem(T ) or stem(T ) ⊆ t)

• for all nodes t ∈ T with stem(T ) ⊆ t: succT (s) ∈ F .

The order is inclusion.

Recall that succT (t) = {n : tan ∈ T} is the set of successors of the node

t.

Properties:

• LF is σ-centered, thus, has the countable chain condition.

• For G generic filter, LF adds a dominating real

lF =
⋃
{stem(T ) : T ∈ G}

with the property that ran(lF) ⊆∗ A ∀A ∈ F (i.e. ran(lF) is a pseudo-

intersection of F).

Thus, both MF and LF canonically increase s.

Proposition 4.7 If U is Ramsey, then MU ∼= LU .
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We are interested to solve the following problem:

Given M ⊆ N two models of ZFC and filters F ∈M , G ∈ N , F ⊆ G we

want to know when any maximal antichain A ⊆ MF (respectively LF) in M

is maximal antichain of MG (respectively LG) in N .

We look at non-trivial cases, namely at filters G properly extending F .

4.3 Absoluteness for Laver Prikry forcing

For Laver forcing, the condition F and G have to satisfy is a simple one,

thus, the absoluteness of maximal antichains is much easier to obtain than

for Mathias forcing.

Theorem 4.8 (see [6])

The following are equivalent:

1. Every F-positive set in M is G-positive in N .

2. Every m.a.c. of LF in M is m.a.c of LG in N .

We use the notation LF < ◦M LG to express the fact that every m.a.c. of

LF in M is m.a.c of LG in N .

Note that this statement differs from complete embeddability since m.a.c.

of LF are in M , not in N .

Recall some basic definitions concerning filters:

For a filter F denote by F∗ the dual ideal, i.e. F∗ = {ω \X : X ∈ F}.

A set X is F-positive if it is F∗-positive, i.e. X is not in the dual ideal.
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In other words, F -positive sets are not complements of any set in F , they

intersect all the sets in the filter F .

Proof: 2.⇒ 1.

Assume every m.a.c. of LF in M is m.a.c of LG in N , but there is X an

F -positive set in M that is not G-positive in N .

Because X is F-positive, X intersects all sets in F , therefore, the set

D = {T ∈ LF : stem(T )(|stem(T )| − 1) ∈ X} is dense in LF .

Since X is not G-positive in N , we have ω \X ∈ G.

Therefore, the uniform tree with splitting in the complement S := (ω \

X)<ω is a Laver tree in LG and it is incompatible with all elements of D.

Thus, no maximal antichain A ⊆ D of M remains a maximal antichain of

LG in N (S ⊥ T , for all T ∈ A).

1.⇒ 2.

We know that every F -positive set in M is G-positive in N and need to

show that every m.a.c. of LF in M is m.a.c of LG in N .

We show this using a rank argument.

The rank argument was introduced by J.E Baumgartner and P Dordal in

their paper ”Adjoining dominating functions” and was applied it to Hechler

forcing in Chapter 2 of this thesis.

Let A ∈M be a maximal antichain in LF .

By recursion on α < ω1 , define in M for s ∈ ω<ω when rank(s) = α:

rank(s) = 0 if ∃T ∈ A such that stem(T ) ⊆ s ∈ T .
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rank(s) = α if there is no β < α with rank(s) = β, and {n : rank(san) <

α} is F -positive.

CLAIM: for every s ∈ ω<ω, rank(s) is defined (and thus, < ω1).

Proof of claim Assume towards a contradiction rank(s) undefined for some

s. Then the set {n : rank(san) is undefined} ∈ F .

Recursively build tree S ∈ LF such that stem(S) = s and for all t ⊃ s ∈ S,

rank(t) is undefined.

Let T ∈ A be compatible with S with common extension U .

Then stem(T ) ⊆ stem(U) ∈ U ⊆ T so that rank(stem(U)) = 0 and also

stem(S) ⊆ stem(U) ∈ U ⊆ S so that rank(stem(U)) undefined.

Recall that, by hypothesis, we know that every F -positive set in M is

G-positive in N and we need to show that every m.a.c. of LF in M is m.a.c

of LG in N .

Let S ∈ N be a condition in LG(arbitrary).

Put s = stem(S).

By induction on rank(s), show there is T ∈ A compatible with S.

This implies that A (which was an arbitrary m.a.c. of LF ∈ M) remains

m.a.c. of LG in N .

if rank(s) = 0:

there is T ∈ A such that stem(T ) ⊆ s ∈ T . Compatibility is straightforward.
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if rank(s) > 0:

Consider {n : rank(san) < rank(s)}.

This set is F -positive and, by assumption, still G-positive.

Hence, there is n ∈ succS(s) with rank(san) < rank(s) and we know that

the induction hypothesis is true for smaller ranks. Thus, considering S[san] =

{t ∈ S : t ⊆ s or san ⊆ t}. (or both san), we get a sub-tree of S with stem

of smaller rank, namely san.

By induction hypothesis, there is T ∈ A compatible with Ssan. But then T

is also compatible with S.

Corollary 4.9 (Shelah) If U is an ultrafilter in M and V is an ultrafilter

in N extending U then every m.a.c. of LU in M is still m.a.c of LV in N .

Proof:

U is an ultrafilter, so for every set X, either X or its complement ω \X

is in U . In this case U -positive means ∈ U .

4.4 Absoluteness for Mathias Prikry forcing

The same theorem as for Laver forcing is not true, even the special case in

the corollary fails:

Remark 4.10 Given M ⊆ N be models of ZFC, if U is not Ramsey and ∃c

Cohen in N over M , then there are V ⊇ U and a m.a.c. of MU that is not

maximal of MV .

What we do know is the following:

74



Lemma 4.11 (Blass, Shelah) (See [20]) Given M ⊆ N be models of ZFC,

an ultrafilter U and c ∈ N ∩ ωω unbounded over M, there exists an ultrafilter

V extending U such that any maximal antichain A ⊆ MU in M is maximal

antichain of MV in N and for all ḟ MU -names for a function in ωω, 
MV

c �∗ ḟ

Remark 4.12 :

• ”for all ḟ MU -names for a function in ωω, 
MU c �∗ ḟ means that c

is still unbounded in N over M [mU ], where mU is the MU -generic real

constructed from the MV-generic real mV .

• U ⊆ V implies MU ⊆MV .

• antichains remain antichains since ≤ and ⊥ agree for MU and MV , so

the only point is the maximality.

• However, the fact that maximal antichains are preserved (denotedMU< ◦M
MV) does not imply complete embeddability MU < ◦ MV , only implies

that MU -names in M are still MV-names in N (both in N would be < ◦

).

• the proof of this lemma gives the construction of an ultrafilter V such

that 
MV ”MU does not add a dominating real”.

• because no dominating real is added it is clear that V is not rapid and a

”p-point” relative to the corresponding models (namely for any count-

able A ⊆ U in M , there is a pseudo-intersection B ∈ V , B ∈ N).

Proof:

Work in N :

75



For A ⊆MU maximal antichain A ∈M and s finite subset of ω one says:

C ⊆ ω is forbidden by A, s if (s, C) is incompatible with all conditions

in A.

These sets will assure that maximal antichains remain maximal antichains,

in the sense that whenever we have a counterexample to the maximality of

an antichain in M , it will be such a forbidden set in N .

Having ḟ an MU -name for a function in M , there are maximal antichains

Bḟ
n and functions gḟn : Bḟ

n → ω such that for each p ∈ Bḟ
n : p 
MU ḟ(n) =

gḟn(p). The function gḟn gives a partition of the antichain.

For t ∈ [ω]<ω, we say D ⊆ ω is forbidden by ḟ , t if ∀n (t,D) is incom-

patible with all conditions p ∈ Bḟ
n satisfying gḟn(p) < c(n).

Intuitively: (t,D) 
MV for all n ḟ(n) ≥ c(n), but this definition is not

possible at this stage since the ultrafilter V was not defined yet. This type

of forbidden sets will assure that c is still unbounded in the corresponding

extensions, in the sense discussed in the remark.

Take I the ideal generated by the forbidden sets (in N).

CLAIM N |= U ∩ I = ∅

Claim ⇒ Lemma.

Using Zorn’s Lemma one can construct V an ultrafilter extending U and

still having empty intersection with I.

Recall Zorn’s Lemma: Suppose a partially ordered set P has the property

that every totally ordered subset has an upper bound in P . Then the set P
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contains at least one maximal element.

Clearly V is a filter.

Claim: V is an ultrafilter

Proof:

Assume towards a contradiction V is not an ultrafilter, i.e. ∃X ⊆ ω such

that X /∈ V and ω \X /∈ V .

We also have the ideal I, so either X ∈ I or X /∈ I.

If X /∈ V and X /∈ I then X ∩ U = ∅ for some U ∈ V (this has to be the

reason why is not in V).

But then U ⊆ ω \X, thus, ω \X ∈ V , a contradiction.

If X ∈ I then ω \ X /∈ I, so we can do the above argument with ω \ X

instead of X and we get X ∈ V , again a contradiction.

Note that, to conclude ω \X /∈ I given that X ∈ I, we used the fact that

I is an ideal, only taking the forbidden sets would have not been enough.

Also note that the above is just the proof that maximal filters are the same

as ultrafilters, with the additional case distinction for the ideal.

Proof of Claim:

Assume towards a contradiction that U ∩ I 6= ∅.

This implies that there are forbidden sets Ci : i < k and Dj : j < k such

that if E := (
⋃
i<k Ci)∪(

⋃
i<kDi), we must have that E is in U ∩M . Without
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loss of generality, we take the same number of sets k. We only need the fact

that these are finitely many to be able to apply the compactness argument.

The fact that the sets Ci’s and Di’s are forbidden is witnessed, say by Ai

and si resp. ḟi and ti.

Without loss of generality:

• Ci’s and Di’s are pairwise disjoint (this fact is needed for building the

partition).

• min(E) > max(si) and min(E) > max(ti) for all i.

Given t ∈ [ω]<ω, (s, C) a condition in MU and A ⊆MU we say that

• t is permitted by (s, C) if s ⊆ t ⊆ s ∪ C.

• t is permitted by A if there is a condition in A that permits t.

The following subclaim only mentions objects in M and is absolute, there-

fore, we argue in M .

Subclaim: There is a function h ∈ ωω in M , with h(n) > n such that

whenever E ∩ [n, h(n)) is partitioned into 2k many pieces, at least one piece

(name it r) has the following properties:

• ∀i < k there is t ⊆ r such that si ∪ t is permitted by Ai.

• ∀i < k there is t ⊆ r such that ti ∪ t is permitted by some p in the

antichain Bḟi
n with gḟin (p) < h(n).
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Proof: of subclaim:

Assume towards a contradiction there is a counterexample to the sub-

claim, say n. This means there is no no h(n) satisfying the conditions above.

We will choose for this arbitrary n, h(n) in such a way that the conditions

in the subclaim are satisfied, therefore, we get a contradiction.

Consider E \ n.

By a compactness argument or equivalently König’s Lemma, we could par-

tition E \ n into 2k pieces, none satisfying the conclusions of the subclaim,

since:

Knowing that for all possible values for h(n) there is one partition of

E ∩ [n, h(n)) into 2k many pieces such that no piece of the partition satisfies

the conditions in the subclaim, applying the compactness argument, we get

the existence of a partition of E \ n into 2k many pieces, none satisfy the

conditions in the subclaim (a coherent partition).

Whenever we have a partition of E \ n, one of the pieces must be in the

ultrafilter U , since we know E ∈ U . The fact that E ∈ U implies E \ n ∈ U

since E ∩ n is not in U , and we know that, whenever we decompose a set in

the ultrafilter as the disjoint union of two other sets, one of them must also

be in the ultrafilter. Denote the piece which is in U by X.

Ai is m.a.c. in M , therefore, (si, X) is compatible with one of the con-

ditions, say p in Ai, i.e. there is a common extension. But this just means

there is t ⊆ X such that si ∪ t is permitted by p.
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Also, Bḟi
n is m.a.c. in M , therefore, (ti, X) is compatible with one of its

elements, say q. Thus, there is t ⊆ X such that ti ∪ t is permitted by q.

Note that we need h(n) large enough such that the finite piece r as in the

subclaim is in E ∩ [n, h(n)) and ḟ(n) < h(n). X could be infinite, but we can

choose r a finite subset of X satisfying the same requirements since we only

have to cover 2k many sets and to dominate k many values ḟ(n).

Therefore, choosing h(n) large enough, E∩ [n, h(n)) has the desired prop-

erties.

To conclude the Claim :

Fix n.

Consider the partition given by {Ci∩ [n, h(n)), Di∩ [n.h(n)) : i < k} (this

is where the pairwise disjointness assumption is needed).

Consider a piece of the form Ci ∩ [n, h(n)).

There is no t ⊆ Ci ∩ [n, h(n)) with si ∪ t permitted by Ai, since (si, Ci)

is incompatible with all members of Ai (recall that Ci’s were forbidden by

Ai, si).

So, such a piece does not have the properties of r in the subclaim.

Therefore, there must be a piece of the form Di ∩ [n, h(n)) as in the sub-

claim.
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Subclaim implies there is t ⊆ Di ∩ [n, h(n)) such that ti ∪ t is permitted

by some p in the antichain Bḟi
n such that gḟin (p) < h(n).

On the other hand, (ti, Di) is incompatible with all conditions q in the

antichain Bḟi
n such that gḟin (q) < c(n). Since p is not such a q, we have

gḟin (p) ≥ c(n).

This two last results imply c(n) < h(n), so after unfixing n the unbound-

edness of c over M is contradicted.
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Chapter 5

The matrix iteration for

Con(b = ℵ1 < s = κ)

The goal of this chapter is to prove the following theorem:

Theorem 5.1 The Blass-Shelah model, (See [20])

Let κ = κω be a regular, uncountable cardinal. It is consistent that s =

c = κ and b = ℵ1.

The idea of the proof is to start with a finite support iteration on length

µ = ℵ1 of Cohen forcing, and then, in the obtained model, to iterate Mathias

Prikry forcing with finite support, for some appropriate ultrafilters. Actually,

at each level γ < ω1 there will be a finite support iteration of Mathias Prikry

forcing. The ultrafilters U̇γα in this iteration will be the ultrafilters given by

Lemma 4.11 in previous chapter. Such non-linear iterations are called matrix

iterations.

We will start by explaining what happens in the successor step in the

matrix iteration described above.
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5.1 Zoom into the iteration - the successor

step

The method of matrix iterations appeared in the literature in the 1989 pa-

per ”Ultrafilters with small generating sets”, written by S.Shelah and A.Blass.

In this paper, they established Con(u = κ < d = λ) for arbitrary regular,

uncountable cardinals κ and λ, where u is the invariant called ”the ultrafilter

number”. A.Blass specifies in the paper that the presented technique was

actually developed by Shelah in 1984 and that his contribution was to fill in

the details and write the paper.

Recall the general result about preservation of complete embeddability

(Lemma 4.2), presented in the previous chapter:

Given P,Q be partial orders, P < ◦ Q, Ȧ a P-name for a partial order, Ḃ

a Q-name for a partial order such that 
Q Ȧ ⊆ Ḃ and all maximal antichains

of Ȧ in V P are maximal antichains of Ḃ in V Q we can conclude P∗Ȧ < ◦ Q∗Ḃ.

The main lemma of the previous section gave the construction of an ultra-

filter V extending U (which implies MU ⊆MV), such that maximal antichains

of MU in M are preserved to be maximal antichains of MV in N (denoted by

MU < ◦M MV).

So we can plug ṀU and ṀV as Ȧ and Ḃ in the above lemma to get the

following:
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MV
N = V Q −→ N [mV ]

Q Q ∗MV
c ∈ N ◦ ◦ c remains unbounded

unbounded over M ∨ ∨ over M [mU ]

P P ∗MU
MU

M = V P −→ M [mU ]

The main lemma also assures that the given unbounded real c remains

unbounded over the extension by the MU -generic real mU constructed from

the MV-generic real mV . Thus, starting with P < ◦ Q, we can add a Cohen

real over V P just by choosing Q to be the Cohen forcing.

Considering M = V P and N = V Q, the crucial lemma in tells us that,

given any ultrafilter U ∈M = V P, we can construct an ultrafilter V ∈ N = V Q

such that, when we do the two step iteration with the corresponding Mathias

Prikry forcing, we preserve the complete embeddability (P∗MU < ◦ Q∗MV)

and the unbounded real c.

For the first step we take P to be the trivial forcing {1}, Q to be the

Cohen forcing C, and U an arbitrary ultrafilter in V P. We will construct an

ultrafilter V .

For the second step, P will be the old Q and the new Q will again be Co-

hen forcing C and the starting ultrafilter will be the V we just constructed.

Thus, we vertically do a finite support iteration of Cohen forcing and we build
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an ascending sequence of ultrafilters with the property that the two step it-

eration with Mathias Prikry with the corresponding ultrafilters preserve the

complete embeddability and the Cohen reals unbounded.

The fact that we still have complete embeddability an unbounded reals

allows us to repeat the process. Thus, we can choose in M [mU ] another ultra-

filter containing mU and apply the above again. Thus, horizontally we will do

a finite support iteration, every time forcing with MU for the corresponding

ultrafilter.
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5.2 The iteration for Con(b = ℵ1 < s = c = κ)

∗MU0 ∗MU1 ∗MU2 ∗MUβ ∗MUα ∗MUκ
P0 − P1 − P2 −−− Pβ − Pα −−− Pκ               

∗MUγ0 ∗MUγ1 ∗MUγ2 ∗MUγβ ∗MUγα ∗MUγκ
Pγ0 − Pγ1 − Pγ2 −−− Pγβ − Pγα −−− Pγκ     

∗MUδ0 ∗MUδ1 ∗MUδ2 ∗MUδβ ∗MUδα ∗MUδκ
Pδ0 − Pδ1 − Pδ2 −−− Pδβ − Pδα −−− Pδκ               

∗MU1
0

∗MU1
1

∗MU1
2

∗MU1
β

∗MU1
α

∗MU1
κ

P10 − P11 − P12 −−− P1β − P1α −−− P1κ     
∗MU0

0
∗MU0

1
∗MU0

2
∗MU0

β
∗MU0

α
∗MU0

κ

P00 − P01 − P02 −−− P0β − P0α −−− P0κ
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Recall the theorem we want to prove:

Let κ = κω be regular, uncountable. It is consistent that s = c = κ and

b = ℵ1.

Proof:

Recall the Idea : matrix iteration with ℵ1×κ and ultrafilters given by the

crucial lemma.

Let κ = κω be regular, uncountable.

Add ℵ1 many Cohen reals cγ : γ < ω1 over V ( via Cℵ1 , the finite support

iteration of Cohen forcing of length ℵ1), since we need to have the unbounded

reals that are going to be preserved unbounded when applying lemma.

For γ < ω1, denote by Vγ the model resulting after adding the first γ many

of the Cohen reals (i.e. Vγ = V [ {cδ : δ < γ} ] and V0 = V ).

In the model Vω1 , perform a finite support iteration 〈Pα, Q̇α : α < κ〉 such

that

for all α, 
α ”Q̇α
∼= ṀUα for some appropriate U̇α”.

Actually, for each γ < ω1 we also have, in Vγ, a finite support iteration

〈Pγα, Q̇γ
α : α < κ〉 such that

for all α, 
γα ”Q̇γ
α
∼= ṀUγα for some appropriate U̇γα”,

in such a way that:

(1) Pα 
 ”U̇α is the increasing union of U̇γα” ,

(2) for α ≤ κ, γ < ω1, maximal antichains of Pγα in Vγ are maximal of Pω1

in Vω1 and
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(3) for α ≤ κ, γ < ω1, in Vω1 ,whenever ḟ ∈ Vγ is a Pγα-name for a function

in ωω, we have 
α cγ �∗ ḟ .

Recursion on α:

a) α = 0. There is nothing to show.

b) α = β + 1:

Assume we have Pβ and Pγβ satisfying (1.)− (3.).

(2) for β implies the downwards absoluteness of genericity:

if Gβ is Pβ-generic over Vω1 , it is also Pγβ-generic over Vγ for

all γ.

Work in Vω1 [Gβ].

Recursively build ultrafilters Uγβ in Vω1 [Gβ].

– γ = 0 :

Let U0
β be an arbitrary ultrafilter of V0[Gβ].

– γ = δ + 1

Apply the lemma giving the construction of an ultrafilter with

M = Vδ[Gβ] and N = Vδ+1[Gβ].

The assumption (3) for β states that cδ ∈ N is still unbounded

over M .

Hence, the lemma gives the existence of an ultrafilter Uγβ (= U δ+1
β )

extending U δβ such that maximal antichains of MUδβ in M remain

maximal antichains of MUδ+1
β

in N and for all ḟ MUδβ -name for a

real in M , 
MUγ
β

cδ �∗ ḟ .
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– For γ limit:

If cf(γ) ≥ ω1, then Uγβ =
⋃
δ<γ U δβ .

Claim: This is again an ultrafilter.

Proof of claim:

Assume we have X such that neither X nor its complement ω \X

is in U̇α.

Note that we can go down to Uγα , since we know that every

real in the final model can be found in an intermediate model, since

no new reals are added at limit stages of uncountable cofinality(

V µ
α ∩ ωω =

⋃
γ<µ V

γ
α ∩ ωω).

But surely either X or its complement ω \X is in Uγα , since Uγα is

an ultrafilter.

Therefore, it is in Uα.

If cf(γ) = ω, then extend
⋃
δ<γ U δβ to an ultrafilter Uγβ in

Vγ[Gβ] such that:

∀δ < γ all m.a.c. A ⊆ MUδβ , A ∈ Vδ[Gβ] are maxi-

mal in MUγβ .

This time it is not an ultrafilter anymore since new reals

may be added, so we can not go down to some Uγα as before. The

argument for the fact that we can always extend it to an ultrafilter

is similar to crucial lemma, but simpler.

This completes the construction of Uγβ , thus, of Qα for successor α.
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It remains to argue that (2) and (3) hold.

For (2): If Gβ ∗ H is Pβ ∗ Q̇α-generic over Vω1(that is Pα-generic over

Vω1) then, by construction, it is also Pγα-generic over Vγ for all γ < ω1.

Similar argument for (3).

c) α limit, then:

if cf(α) ≥ ω1, then there is nothing to show:

Given a m.a.c A ⊆ Pγα in Vγ, there is a β < α such that A ⊆ Pγβ (we

know the forcing is c.c.c., thus, A is countable) and A is a maximal an-

tichain in Pβ (by induction hyp. (2)), therefore, A is maximal in Pα too.

Similar argument for (3).

Case cf(α) = ω.

Let A ⊆ Pγα be a m.a.c. in Vγ. We need to show that A is still a m.a.c.

of Pα.

Consider any condition p ∈ Pα ∩ Vω1 .

We know there is a β < α such that p ∈ Pβ (just by def. of f.s.i: the

support is finite, bounded by α, therefore, ∃β < α with p ∈ Pβ).

We can look at the iteration using the quotient forcing and see Pγα as

Pγβ ∗ Ṙ
γ
[β,α) .

Thus, conditions in Pγα can thus, be seen as pairs (q, ṙ) in Pγβ ∗ Ṙ
γ
[β,α).

Let Aβ := {q : ∃ ṙ such that (q, ṙ) ∈ A} (the projection of A to Pγβ).

90



Then Aβ ⊆ Pγβ ∩ Vγ is predense (it is not necessary an antichain, but

maximal).

The induction hypothesis for (2) says that m.a.c. are preserved, there-

fore, in particular, predense sets are preserved predense. Thus, just by

definition of predense, there is q ∈ Aβ with q||p.

Choose p′ ∈ Pβ to be their common extension.

Let ṙ be such that (q, ṙ) ∈ A. We see (p′, ṙ) is a common extension of

(q, ṙ) and p = (p, 1).

Thus, A still m.a.c. in Pα.

We still need to show that c remains unbounded.

Let ḟ be a Pγα name for a real in Vγ.

For β < α we have a Pγβ-name ḟβ in Vγ, such that


γβ ∃ 〈ṙnβ : n ∈ ω〉 decreasing, ṙnβ ∈ R
γ
[β,α) such that ṙnβ 


γ
β,α

ḟβ � n = ḟ � n.

By induction hypothesis for (3): 
β cγ �∗ ḟβ.

Assume towards contradiction, there are p ∈ Pα and n0 ∈ ω such that

p 
α cγ(n) ≤ ḟ(n) for all n ≥ n0.

Choose β < α such that p ∈ Pβ.

By the above we find n ≥ n0 and q ∈ Pβ such that q ≤ p and q 
β

cγ(n) > ḟβ(n).

Then, q 
β ”ṙn+1
β 
β,α ḟ(n) = ḟβ(n) < cγ(n)”.

Note that (q, ṙn+1
β ) ≤ p, but they force contradictory statements.
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This shows (3) for α.

Let U =
⋃
α<κ Uα in Vω1 [Gκ].

b = ℵ1 is witnessed by the ℵ1-many Cohen reals and s = κ by construc-

tion. The proofs are similar to the ones presented in Chapter 6, in Lemma

6.15.

One may ask why we could not get Con(b = λ < s = κ) for λ < κ

arbitrary regular, uncountable cardinals using the above arguments. The

problem is that Cohen reals are added in limit stages of countable cofinality

during finite support iterations, so b = ℵ1 is witnessed, even if the iteration

is longer.
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Chapter 6

The matrix iteration for

Con(b = a = κ < s = λ)

This consistency result first appeared in 2011, in the paper ”Mad families,

splitting families, and large continuum”, written by V. Fischer and J. Brendle

([10]). The result holds in a model, constructed using a matrix iteration. The

idea of the construction is a generalization of the extension of the ultrafilters

for Mathias forcing, presented in the previous chapter. There, it was argued

that an iteration longer than ℵ1 can’t be used to get Con(b = κ < s = λ), for

κ, λ regular, uncountable cardinals. To be able to get this result, the cardinal

invariant a, called the almost disjointness number, must be treated as well.

b ≤ a is a ZFC result, while a ≤ b will hold in the constructed model.

6.1 A forcing notion for adding a mad family

The forcing notion presented in this section was developed by S. Hechler

in 1971 (see [14]) . He used it to show the existence of models with arbitrary

large maximal almost disjoint families.
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Definition 6.1 Let Pγ := {p : Fp × np → 2, where Fp ∈ [γ]<ω and np ∈ ω},

ordered by: p ≤ q iff q ⊆ p and ∀i ∈ nq \ np : |q−1(1) ∩ Fp × {i}| ≤ 1.

Lemma 6.2 Pγ is ccc.

Proof:

Assume towards a contradiction, an uncountable antichain exists, i.e. un-

countably many incompatible conditions {pi : i < ω1}, therefore, one has

uncountably many domains Fp × np.

W.l.o.g we can refine to the same n, since there are only countably many

n ∈ ω, so the incompatibility must be related to the Fp’s.

Therefore, we have Fpi ’s form an uncountable family of finite subsets of

ω.

By the ∆-system Lemma this family of finite sets has an uncountable

subfamily such that the sets in the subfamily intersect to a finite F .

For the conditions to be incompatible, they have to have different values

on F , which is impossible, since there aren’t uncountably many possible val-

ues. So an uncountable antichain cannot exist.

Let G be a Pγ-generic filter. Then, for all α < γ, define

Aα := {i : ∃p ∈ G : p(α, i) = 1}.

Definition 6.3 The Quotient forcing:

Let γ < δ be an ordinal and let G be a Pγ generic filter over the ground

model V .

In V [G], define P[γ,δ) to be the poset of all pairs (p,H), where

• H is a finite subset of γ
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• p : Fp × np → 2 , where Fp ∈ [δ \ γ]<ω and np ∈ ω.

The order: (q,K) ≤ (p,H) if

• q ≤Pδ p

• H ⊆ K

• ∀α ∈ Fp, β ∈ H and i ∈ nq \ np :, if i ∈ Aβ, then q(α, i) = 0

(i.e. for all α ∈ Fp, β ∈ H, then p 
 Ȧα ∩ Ȧβ ⊆ np).

Remark 6.4 Pδ = Pγ ∗ Ṗ[γ,δ), i.e. Pδ is forcing equivalent with the two step

iteration of Pγ and Ṗ[γ,δ).

Fact: 1.) if p ∈ Pγ, then for all α ∈ Fp (p 
 Ȧα � np = p � {α} × np)

Fact: 2.) for all α, β ∈ Fp(p 
 Ȧα ∩ Ȧβ ⊆ np).

Lemma 6.5 Let G a Pγ-generic filter and for all α < γ, let Aα be as before.

Then:

1) Pγ adds an a.d. family, namely, Aγ := {Aα : α < γ}.

2) for γ ≥ ω1, regular, Aγ is a m.a.d. family.

Proof:

1). The almost disjointness:

Assume towards a contradiction that the Aγ family is not almost disjoint.

Hence, ∃p ∈ G a condition and α, β ∈ Fp such that p 
 Aα∩Aβ is infinite.

Thus, for all n, in particular, for np, we know p 
 ∃i > np : i ∈ Aα ∩ Aβ.

By a basic property of forcing, there must be an extension q ≤ p and

i0 > np such that

q 
 i0 ∈ Aα ∩ Aβ.

95



Choose q ∈ G such that q(α, i0) = q(β, i0) = 1.

Since p and q are both in the generic filter G, they have to be compatible,

therefore, a common extension, say r ∈ G, has to exist.

Since r ≤ q one gets r(α, i0) = r(β, i0) = 1, but α, β ∈ Fp and i0 > np,

thus, |r−1(1) ∩ Fp × {i0}| ≥ 2, contradicting r ≤ p.

2).The maximality for γ ≥ ω1:

Let G be a Pγ-generic filter over V.

One has to show that for all Pγ-names Ċ for infinite subsets of ω: |Ċ ∩

Ȧα| = ω for all α < γ.

Since γ ≥ ω1 is regular (by assumption), Ċ is actually a Pδ-name, for

some δ < γ.

Since Pγ = Pδ ∗ Ṗ[δ,γ), we can consider V Pγ as the ground model and only

look at the quotient, thus G may be assumed to be a P[δ,γ)-generic. Thus, we

have to show:

∀C ∈ V : V [G] |= |C ∩ Ȧα| = ℵ0 for some α < γ

∀C ∈ V : ∃p ∈ G : p 
 |C ∩ Ȧα| = ℵ0 for some α < γ.

Since the set

DC,α,k := {q ∈ Pγ : ∃i ∈ nq, i ≥ k such that C � [i, nq] = q � [i, nq]× {α}}

is dense, any C infinite subset of ω, will meet all Aα’s infinitely often and

thus, in particular, the almost disjoint family is maximal.
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6.2 Another crucial lemma

The aim of this section is to define an analogous of the crucial lemma

related to the extension of ultrafilters for Mathias forcing, presented in the

previous chapter. Recall that this lemma gave a construction of an ultrafilter

V extending any given ultrafilter U , in such a way that any maximal antichain

A ⊆ MU in M is maximal antichain of MV in N and, moreover, a given

unbounded real c ( c ∈ N , unbounded over M) remains unbounded over

M [mU ], where mU is the MU -generic real constructed from the MV-generic

real mV .

In this section, following [10], we will also be interested to preserve another

combinatorial property, this time related to the almost disjointness number

a, to ensure both b and a are small, while s is increased.

Definition 6.6 Let M ⊆ N be models of ZFC, B = {Bα : α < γ} ⊆

M ∩ [ω]ω, A ∈ N ∩ [ω]ω.

Then

(
∗
M,N

B, A

)
holds if for every h : ω× [γ]<ω → ω, h ∈M and for every

m ∈ ω, there are n ≥ m and F ∈ [γ]<ω, such that [n, h(n, F ))\
⋃
α∈F Bα ⊆ A.

Lemma 6.7 Let M ⊆ N be models of ZFC, B = {Bα : α < γ} ⊆ M ∩ [ω]ω

and A ∈ N ∩ [ω]ω.Let I(B) be the ideal generated by the finite sets and the

elements of B.

If

(
∗
M,N

B, A

)
holds and B ∈M ∩ [ω]ω, B /∈ I(B), then |A ∩B| = ℵ0.

Proof: Assume towards a contradiction, there is B /∈ I(B) with |A∩B| < ℵ0.

Hence, there must be an n ∈ ω such that A ∩B ⊆ n.

Let m ≥ n and F a finite subset of γ.

The union
⋃
α∈F Bα consists of finitely many sets in the ideal I(B), so it

is itself in the ideal.
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Since I(B) was defined as the ideal generated by sets in B and the finite

sets, whenever X is a set in I(B), Y ⊆∗ X implies that Y is also in I(B).

Thus, since our hypothesis says that B /∈ I(B), it follows that B can’t be

almost included in a set in the ideal, in particular, B *∗
⋃
α∈F Bα. But this

just means B \
⋃
α∈F Bα is infinite, hence, it has an element grater than the

given m.

Denote this this element by km,F .

Define h(m,F ) :=

km,F + 1 for all m ≥ n and for all F ∈ [γ]<ω

0 if m < n

The function h is in M and clearly [m,h(m,F )) \
⋃
α∈F Bα * A for all

m ≥ n, F ∈ [γ]<ω, contradicting

(
∗
M,N

B, A

)
. Thus, A ∩B can’t be finite.

The following lemma states, that the Aα added by Pγ satisfy the ∗-

property, in the following sense:

Lemma 6.8 Let Gγ+1 be Pγ+1-generic filter, Gγ = Gγ+1∩Pγ and Aγ = {Aα :

α < γ}, where for all α < γ, Aα := {i : ∃p ∈ G : p(α, i) = 1}.

Then

(
∗
V [Gγ], V [Gγ+1]

Aγ , Aγ

)
holds.

Proof:

Let h : ω × [γ]<ω → ω in V [Gγ]

Let (p,H) be a condition in P[γ,γ+1] and let m be a natural number.

Then dom(p) = γ × np, where np ∈ ω.

Define an extension (q,K) ≤P[γ,γ+1]
(p,H):

Let n be a natural number, grater than both np and m.

The condition q will have nq := h(n,H) and, as finite subset, {γ}.

Thus, dom(q) = {γ} × nq.
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Let K = H.

Define q(γ, i) :=



p(γ, i) if i < np

0 if i ∈ [np, n)

1 if i ∈ [n, nq) and i /∈
⋃
α∈H Aα

0 if i ∈ [n, nq) and i ∈
⋃
α∈H Aα.

The condition (q,K), as defined above, is an extension of (p,H) and

moreover,

(q,K) 
 [n, h(n,H)) \
⋃
α∈H Aα ⊆ Aγ.

(Just by the definition of the quotient forcing).

Recall the crucial lemma for the extension of ultrafilters in Blass Shelah’s

model:

Lemma (Blass, Shelah)

Given M ⊆ N be models of ZFC, an ultrafilter U and c ∈ N ∩ ωω

unbounded over M, there exists an ultrafilter V extending U such that

1. any maximal antichain A ⊆ MU in M is maximal antichain of MV in

N

2. for all ḟ MU -names for a function in ωω, 
MV c �∗ ḟ .

In analogy, J.Brendle and V.Fischer stated and proved the following lemma:

Lemma 6.9 (Brendle, Fischer, 2011) Given M ⊆ N be models of ZFC,

an ultrafilter U , a family B = {Bα : α < γ} ⊆ M ∩ [ω]ω and A ∈ N ∩ [ω]ω

such that

(
∗
M,N

B, A

)
holds, there exists an ultrafilter V extending U such that:
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1. any maximal antichain A ⊆ MU in M is maximal antichain of MV in

N

2.

(
∗
M [G], N [G]

B , A

)
holds, where G is MV-generic over N

Proof:

Work in N :

For A ⊆MU maximal antichain A ∈M and s finite subset of ω one says:

C ⊆ ω is forbidden by A, s if (s, C) is incompatible with all conditions

in A.

These sets will assure that maximal antichains remain maximal antichains,

in the sense that whenever we have a counterexample to the maximality of

an antichain in M , it will be such a forbidden set in N .

Having ḟ an MU -name for a function in M , there are

• m.a.c. Bḟ
n,F ⊆MU and

• functions gḟn,F : Bḟ
n,F → ω (the function gḟn,F is partitioning the an-

tichain)

such that for each p ∈ Bḟ
n,F : p 
MU ḟ(n, F ) = gḟn,F (p).

For t ∈ [ω]<ω, we say D ⊆ ω is forbidden by ḟ , t if

for all n and F : (t,D) is incompatible with all conditions p ∈ Bḟ
n,F

satisfying [n, gḟn,F (p)) \
⋃
α∈F Bα ⊆ A.

Intuitively: (t,D) 
MV for all n, F : [n, ḟ(p)) \
⋃
α∈F Bα * A.

This is just an intuition, since, at this stage, the above does not make

sense: the ultrafilter V was not defined yet.
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This type of forbidden sets will ensure the ∗-property in the corresponding

extensions.

Take I the ideal generated by the forbidden sets (in N).

CLAIM N |= U ∩ I = ∅.

Claim ⇒ Lemma.

Using Zorn’s Lemma one can construct V an ultrafilter extending U and

still having empty intersection with I.

Clearly V is a filter.

Claim: V is an ultrafilter.

Proof:

Assume towards a contradiction V is not an ultrafilter, i.e. ∃X ⊆ ω such

that X /∈ V and ω \X /∈ V .

We also have the ideal I, so either X ∈ I or X /∈ I.

If X /∈ V and X /∈ I, then X ∩ U = ∅ for some U ∈ V (this has to be the

reason why is not in V).

But then U ⊆ ω \X, thus, ω \X ∈ V , a contradiction.

If X ∈ I, then ω \X /∈ I, so we can do the above argument with ω \X

instead of X and we get X ∈ V , again a contradiction.

Proof of Claim:

Assume towards a contradiction that U ∩ I 6= ∅.
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This implies that there are forbidden sets Ci : i < k and Dj : j < k such

that if E := (
⋃
i<k Ci)∪(

⋃
i<kDi), we must have that E is in U ∩M . Without

loss of generality, we take the same number of sets k. We only need the fact

that these are finitely many to be able to apply the compactness argument.

Denote by Ai and si the witnesses, for the fact that the sets Ci and are

forbidden, and by ḟi and ti the witnesses for Di.

Without loss of generality:

• Ci’s and Di’s are pairwise disjoint (we will build a partition) and

• min(E) > max(si) and min(E) > max(ti) for all i.

Given t ∈ [ω]<ω, (s, C) a condition in MU and A ⊆MU we say that

• t is permitted by (s, C) if s ⊆ t ⊆ s ∪ C.

• t is permitted by A if there is a condition in A that permits t.

The following subclaim only mentions objects in M and is absolute, there-

fore, we argue in M .

Subclaim:

There is a function h : ω × [γ]<ω → ωin M , with h(n, F ) > n such that

whenever E ∩ [n, h(n, F )) is partitioned into 2k many pieces, at least one

piece (name it r) has the following properties:

• ∀i < k there is t ⊆ r such that si ∪ t is permitted by Ai.
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• ∀i < k there is t ⊆ r such that ti ∪ t is permitted by some p in the

antichain Bḟ
n,F with gḟn,F (p) < h(n, F ).

Proof: of subclaim:

First note that p is compatible with (t,D) iff there is u ⊆ D such that p

permits t ∪ u.

Assume towards a contradiction there is a counterexample to the sub-

claim, say (n, F ). This means, there is no h(n, F ) satisfying the conditions

above.

We will choose, for this arbitrary pair (n, F ), the value h(n, F ) in such

a way that the conditions in the subclaim are satisfied, therefore, we get a

contradiction.

Consider E \ n.

By a compactness argument or equivalently König’s Lemma, we could par-

tition E \ n into 2k pieces, none satisfying the conclusions of the subclaim,

since:

Knowing that for all possible values for h(n, F ) there is a partition of

E ∩ [n, h(n, F )) into 2k many pieces such that no piece of the partition satis-

fies the conditions in the subclaim, applying the compactness argument, we

get that there is a partition of E \ n into 2k many pieces such that no piece

of the partition satisfies the conditions in the subclaim.

Whenever we have a partition of E \ n, one of the pieces must be in the

ultrafilter U , since we know E ∈ U . The fact that E ∈ U implies E \ n ∈ U

since E ∩ n is not in U , and we know that, whenever we decompose a set in
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the ultrafilter as the disjoint union of two other sets, one of them must also

be in the ultrafilter. Denote the piece which is in U by X.

Ai is m.a.c. in M , therefore, (si, X) is compatible with one of the con-

ditions, say p in Ai, i.e. there is a common extension. But this just means

there is t ⊆ X such that si ∪ t is permitted by p.

Also, Bḟ
n,F is m.a.c. in M , therefore, (ti, X) is compatible with one of its

elements, say q. Thus, there is t ⊆ X such that ti ∪ t is permitted by q.

Note that we need h(n, F ) large enough such that the finite piece r as in

the subclaim is in E ∩ [n, h(n, F )) and has the required property. X could be

infinite, but we can choose r a finite subset of X satisfying the same require-

ments.

Therefore, choosing h(n, F ) large enough, E ∩ [n, h(n, F )) has the desired

properties.

To conclude the Claim :

Fix n and F .

Consider the partition given by {Ci∩ [n, h(n, F )), Di∩ [n, h(n, F )) : i < k}

(this is where the pairwise disjointness assumption is needed).

Consider a piece of the form Ci ∩ [n, h(n, F )).

There is no t ⊆ Ci ∩ [n, h(n, F )) with si ∪ t permitted by Ai, since (si, Ci)

is incompatible with all members of Ai (recall that Ci’s were forbidden by
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Ai, si).

So, such a piece does not have the properties of r in the subclaim.

Therefore, there must be a piece of the form Di ∩ [n, h(n, F )) as in the

subclaim.

Subclaim implies there is t ⊆ Di∩ [n, h(n, F )) such that ti∪ t is permitted

by some p in the antichain Bḟ
n,F such that gḟn,F (p) < h(n, F ).

On the other hand, (ti, Di) is incompatible with all conditions q in the

antichain Bḟ
n,F such that [n, gḟn,F (q)) \

⋃
α∈F Bα ⊆ A. Since p is not such a q,

we have [n, gḟn,F (p)) \
⋃
α∈F Bα * A.

Unfixing n and F ,

(
∗
M,N

B, A

)
is contradicted, so the assumption was false.

Lemma 6.10 Let M ⊆ N be models of ZFC, P a poset, P ⊆ M and G a

P-generic filter over M (thus, G is also P-generic over N).

If c ∈ N ∩ ωω unbounded over M , then c( which is also in N [G]) is un-

bounded over M [G].

Proof:

Assume towards a contradiction c, as an element of N [G] is not unbounded

over M [G]. Thus, there is d ∈ ωω ∩ M [G] such that ∀m ∈ ω ∃n ≥ m :

N [G] |= c(n) < d(n).

Let ḋ be a P-name for d.

We want to construct a function f0 in N , such that ∀m ∈ ω ∃n ≥ m :

c(n) < f0(n).
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For the P-name ḋ, there are conditions pn deciding the values kn ∈ ω of

ḋ(n), i.e. pn 
 ḋ(n) = kn.

In M , define f0 as follows:

f0(n) :=

0, if n < m,

kn, if n ≥ m.

The function f0 contradicts the fact that c, as an element of N was un-

bounded over M , thus, the assumption was false.

Lemma 6.11 Let M ⊆ N be models of ZFC, P a poset, P ⊆ M and G a

P-generic filter over M (thus, G is also P-generic over N). For B = {Bα :

α < γ} ⊆M ∩ [ω]ω and A ∈ N ∩ [ω]ω:

if

(
∗
M,N

B, A

)
holds, then

(
∗
M [G], N [G]

B , A

)
holds as well.

Proof:

Assume towards a contradiction,

(
∗
M,N

B, A

)
holds, but

(
∗
M [G], N [G]

B , A

)
does not.

If

(
∗
M [G], N [G]

B , A

)
fails, then there are h ∈M [G], h : ω × [γ]<ω → ω and

m ∈ ω, such that ∀n ≥ m, ∀F ∈ [γ]<ω: N [G] |= [n, h(n, F )) \
⋃
α∈F Bα * A.

Let ḣ in M be the P-name for the function h above.

Let p be a condition in G and m ∈ ω such that

p 
N ∀n ≥ m,∀F ∈ [γ]<ω : [n, ḣ(n, F )) \
⋃
α∈F Bα * A

However for all n ≥ m, F ∈ [γ]<ω, there are pn,F ≤ p (in M ) and kn,F ∈ ω

such that pn,F 
M ḣ(n, F ) = kn,F .

Then pn,F 
N ([n, kn,F )\
⋃
α∈F Bα * A) and so, N |= ([n, kn,F )\

⋃
α∈F Bα *

A).
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In M define h0 : ω × [γ]<ω → ω as follows:

• h0 � m× [γ]<ω = 0 and

• for all n ≥ m,F ∈ [γ]<ω, let h0(n, F ) = kn,F .

Then h0 gives a contradiction to

(
∗
M,N

B, A

)
.

Lemma 6.12 Given 〈P0n, Q̇0
n : n ∈ ω〉 and 〈P1n, Q̇1

n : n ∈ ω〉 finite support

iterations with the property that P 0
n < ◦ P 1

n for all n ∈ ω

For c ∈ V 1
0 ∩ ωω, if for all n ∈ ω, c, as an element of V 1

n , is unbounded

over V 0
n , then c, as an element of V 1

ω , is unbounded over V 0
ω

The proof is similar to the one for the following lemma.

Lemma 6.13 Given 〈P0n, Q̇0
n : n ∈ ω〉 and 〈P1n, Q̇1

n : n ∈ ω〉 finite support

iterations with the property that P 0
n < ◦ P 1

n for all n ∈ ω.

For Aγ = {Aγ : γ < α} ⊆ V 0
0 ∩ [ω]ω and A ∈ V 1

0 ∩ [ω]ω:

if

(
∗
V 0
n , V

1
n

Aγ, A

)
holds for all n ∈ ω, then

(
∗
V 0
ω , V

1
ω

Aγ , A

)
holds as well.

Proof:

Assume towards a contradiction

(
∗
V 0
n , V

1
n

Aγ, A

)
holds, but

(
∗
V 0
ω , V

1
ω

Aγ , A

)
does

not.

Let h : ω × [α]<ω → ω be a function in V 0
ω such that for some m ∈ ω, for

all n ≥ m and for all F ∈ [α]<ω

V 1
ω |= [n, h(n, F )) \

⋃
γ∈F Aγ * A.
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Then there are a P 0
ω -name ḣ, p ∈ P 1

ω such that p 
 [k, ḣ(k, F ))\
⋃
γ∈F Aγ *

A for all k ≥ m and F ∈ [α]<ω . Since p has finite support, there is n ∈ ω

such that p ∈ P 1
n .

Let G1
n be a P 1

n -generic filter containing p and let h = h/G0
n be the

quotient name, where G0
n = G1

n ∩ P 0
n .

Let Rl,n
ω be the quotient poset P l

n/G
l
n in V l

n = V [Gl
n].

Then h′ ∈ V 0
n and for all k ≥ m, F ∈ [α]<ω

V 1
n |=R1,n

ω
[k, h′(k, F )) \

⋃
γ∈F Aγ * A.

Then for all for all k ≥ m, F ∈ [α]<ω , find pk,F a condition in the quotient

R0,n
ω and xk,F ∈ ω, such that pk,F 
 h′(k, F ) = xk,F .

Let h0 � m× [α]<ω = 0.

Then h0 ∈ V 0
n and

[k, h0(k, F )) \
⋃
γ∈F Aγ * A for all k ≥ m, F ∈ [α]<ω ,

contradicting

(
∗
V 0
n , V

1
n

Aγ, A

)
.

6.3 The matrix for b = a = κ < s = λ

Take f : {η < λ : η = 1 mod 2} → κ onto with the property that ∀α < κ :

f−1(α) is cofinal in λ.

Using recursion, one defines a matrix consisting of finite support iterations

〈〈Pαζ : α ≤ κ, ζ ≤ λ〉〈Q̇α
ζ : α ≤ κ, ζ < λ〉〉.

For all α ≤ κ, ζ ≤ λ, let V α
ζ be the extension of the ground V by Pαζ .

During the construction, we want the following properties to be satisfied:
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1) for all ζ ≤ λ, for all β < α ≤ κ: Pβζ < ◦ Pαζ

2) for all ζ ≤ λ, for all α < κ :

(
∗
V α
ζ , V

α+1
ζ

Aα, Aα

)
.

• ζ = 0, then

for all α ≤ κ:

let Pα0 is the poset for adding an a.d. family Aα = {Aβ : β <

α}(see Definition 6.1 and (1) in Lemma 6.5).

Recall that for α ≥ ω1, the family Aα is maximal in V α
0 , by (2)

in Lemma 6.5.

By Remark 6.4, for all β < α, Pα0 can be written as the two step

iteration of Pβ0 and the quotient forcing, thus, Pβ0 < ◦ Pα0 .

By Lemma 6.8, the sets {Aβ : β < α} added by Pα0 satisfy the

∗-property, hence,

(
∗
V α
0 , V

α+1
0

Aα, Aα

)
holds.

• ζ = η + 1

Suppose that for all α ≤ κ, Pαη has been defined and satisfies the

required properties (1) and (2) as above.

– ζ = 1 mod 2, then 
Pαη Q̇
α
η = MU̇αη , where U̇αη is a Pαη -name for an

ultrafilter, with the property that for all β < α, U̇αη is forced in Pαη
to extend U̇βη .

More precisely:

if α = 0, then:

Let U̇0
η be a P0

η-name for any ultrafilter, containing the reals

added by the previous Mathias Prikry forcing notions (except for
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η = 0, where any ultrafilter can be chosen) and let Q̇0
η be a P0η-

name for MU̇0
η
.

Then define P0ζ to be P0η ∗ Q̇0
η.

If α = β + 1,

Let U̇αη be a Pαη -name for an ultrafilter forced in Pαη to extend

the already defined ultrafilter U̇βη .

This extension is constructed in the crucial lemma 6.9, to

have the required properties, namely:

(i) for all β < α ≤ κ : 
Pαη U̇βη ⊆ U̇αη ,

(ii) m.a.c of MU̇βη in V β
η remain m.a.c of MU̇αη in V β

α and

(iii)

(
∗
V β
ζ , V

β+1
ζ

Aβ, Aβ

)
holds (recall that V β+1

ζ = V α
ζ ).

Then Pαζ = Pαη ∗ Q̇α
η , where 
Pαη Q̇

α
η = MU̇αη .

One also has Pβζ < ◦ Pαζ , where Pβζ = Pβη ∗ Q̇β
η , by Lemma 4.2.

If α is a limit ordinal:

Assume ∀β < α U̇βη has been defined and 
Pβη Q̇
β
η = MU̇βη .

cf(α) > ω, then take U̇αη to be a Pαη -name for the union⋃
β<α Uβη , which is again an ultrafilter (see previous chapter).

Let Pαζ := Pαη ∗ Q̇α
η , where 
Pαη Q̇

α
η = MU̇αη .

cf(α) = ω, then extend the union
⋃
β<α Uβη to an ultrafilter,

as in the matrix iteration for Con(b = ω1 < s = κ) presented in

the previous chapter, namely, such that:
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(i) ∀β < α : 
Pαη U̇βη ⊆ U̇αη

(ii) m.a.c. of MU̇βη in V β
η remain m.a.c. of MU̇αη in V α

η .

Note that for all β < α: Pβζ < ◦ Pαζ , by Lemma 4.2.

– ζ = 0 mod 2:

if α ≤ f(η) just take Q̇α
η to be the trivial forcing.

if α > f(η) take Q̇α
η to be a Pαη -name for the dominating

forcing DV
f(η)
η .

Take Pαζ := Pαη ∗ Q̇α
η .

One still has to argue that for all β < α: Pβζ < ◦ Pαζ .

Three cases are distinguished:

If α < β ≤ f(η)

then Pαζ = Pαη and Pβζ = Pαη .

Thus, by induction hypothesis, Pαζ < ◦ P
β
ζ .

If α ≤ f(η) < β,

then Pαζ = Pαη .

One has Pαζ < ◦ P
β
ζ , since Pαζ = Pαη < ◦ Pβη < ◦ Pβη ∗ Q̇β

η = Pβζ .

If f(η) < α < β,

then Pαζ < ◦ P
β
ζ holds by Lemma 4.2.

Lemma 6.11 gives that for all α ≤ κ

(
∗
V α
ζ , V

α+1
ζ

Aα, Aα

)
holds as well.

• If ζ is a limit ordinal and Pαη and Q̇α
η were defined for all η < ζ, then
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for all α ≤ κ, one takes Pαζ be the finite support iteration 〈Pαη , Q̇α
η :

η < ζ〉.

Lemma 4.4 gives Pαζ < ◦ P
β
ζ , and Lemma 6.13 gives

(
∗
V α
ζ , V

α+1
ζ

Aα, Aα

)
for all α ≤ κ.

Note that in the constructed matrix iteration Pαζ < ◦ Pβη holds for all

α < β ≤ κ and all η < ζ ≤ λ.

Lemma 6.14 Given ζ ≤ λ, one has that:

(1) For all p ∈ Pκζ ∃α < κ such that p ∈ Pαζ .

(2) For all Pκζ -name for a real ḟ ∃α < κ such that ḟ is a Pαζ -name.

Proof:

The proof is done by simultaneous induction on ζ.

First note that, since κ is a regular, uncountable cardinal and Pκζ is ccc,

(2) follows from (1).

• Assume ζ = 0. Then (1) follows from the fact that Pκ0 can be written

as a two step iteration, since Pκ0 is the forcing for adding a mad family

introduced in 6.1.

• Assume ζ = η + 1, a successor ordinal and p ∈ Pκζ . Then p = (p0, ṗ1),

for some p0 ∈ Pκη and ṗ1 such that 
Pκη ṗ1 ∈ Q̇κ
η .

– If ζ ≡ 1 mod 2, then Q̇κ
η is a name for the Mathias forcing, there-

fore, ṗ1 is a name for a Mathias condition (s, Ȧ), where s ∈ [ω]<ω

and 
Pκη Ȧ ∈ U̇κη .

– If ζ ≡ 0 mod 2, then Q̇κ
η is either a name the trivial forcing, thus,

ṗ1 is trivial, or a name for the dominating forcing, and therefore,
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ṗ1 is a name for a Hechler condition (s′, ḟ), where s′ ∈ ω<ω and ḟ

a Pκη-name for a function in ωω.

In either case, the induction hypothesis (2) implies the existence

of some α1 < κ, such that ṗ1 is a Pα1
η -name, and the hypothesis

(1) implies the existence of an α0 < κ, such that p0 ∈ Pα0
η .

Taking α :=max{α0, α1}, one can conclude p = (p0, ṗ1) ∈ Pαη .

• Assume ζ is a limit ordinal and p a condition in Pκζ .

Since p has finite support, p must actually be a Pκη-condition, for some

η < ζ. For this Pκη-condition, one can now apply the induction hy-

pothesis and conclude the existence of some α < κ, such that p ∈ Pαη .

Therefore, in particular, p ∈ Pαζ .

Lemma 6.15 In V κ
λ , b = a = κ and s = λ.

Proof:

• a ≤ k

Claim: The family Aκ = {Aα : α < κ} ∈ V κ
0 remains maximal in V κ

λ .

Proof:

Assume towards a contradiction that the above family is not maximal

in V κ
λ . Hence, there is B an infinite subset of ω in V κ

λ , almost disjoint

from all the members of the family, i.e. ∀α < κ : |B ∩ Aα| < ω.

Since B ∈ [ω]<ω ∩ V κ
λ , one can find, by the previous lemma, an α < κ,

such that B ∈ [ω]<ω ∩ V α
λ .

However, B /∈ I(Aα) and

(
∗
V α
λ , V

α+1
λ

Aα, Aα

)
hold, thus, |B ∩ Aα| = ω, by

Lemma 6.7, contradicting the assumption.
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• b ≥ k

Let B ⊆ ωω ∩ V κ
λ be a family of reals, of cardinality < κ.

Claim: B is not unbounded.

Proof:

Since B ⊆ ωω ∩ V κ
λ , by the previous lemma, there is α < κ and ζ < λ

such that B ⊆ ωω ∩ V α
ζ .

The function f was chosen in such a way, that f−1(α) is cofinal in λ,

thus, for ζ, there is ζ ′ > ζ, with f(ζ ′) = α. But then, Pα+1
ζ′+1 adds a real

dominating ωω ∩V α
ζ′ . Since V α

ζ ⊆ V α
ζ′ , the same real dominates ωω ∩V α

ζ

and, therefore, B can’t be unbounded.

By combining the two results above with the ZFC result b ≤ a, we can

conclude κ ≤ b ≤ a ≤ κ, therefore, b = a = κ holds in V κ
λ .

• s = λ

Assume S ⊆ V κ
λ ∩ [ω]ω is a family of cardinality < λ.

Claim: S is not splitting.

Proof:

Since S ⊆ V κ
λ ∩ [ω]ω, there is ζ < λ a successor ordinal, say ζ = η + 1,

ζ ≡ 1 mod 2, such that S ⊆ V κ
η ∩ [ω]ω. But then, at this stage of the

iteration, a Mathias real not split by S is added, and therefore, S can’t

be splitting.

114



Chapter 7

Prequisites for

Con(b = κ < s = a = λ) above a

measurable cardinal

7.1 Measurable cardinals

A principal filter on a set S is a filter F with the property that there

is X0 ⊆ S, X0 6= ∅ such that F = {X ⊆ S : X0 ⊆ X}.

A filter F is κ-complete if it is closed under intersections of less than κ

many sets, i.e. whenever, for some γ < κ, {Xα : α > γ} is a family of subsets

of S, such that Xα ∈ F for all α < κ, then the intersection of the family⋂
α<γ Xα is also in F .

Definition 7.1 An uncountable cardinal κ is called measurable if there

exists a κ-complete nonprincipal ultrafilter on κ.

Note that, if U is a κ-complete nonprincipal ultrafilter on κ, then every

set in U has cardinality at least κ, since otherwise, it could be written as a

union of ≤ κ many singletons.
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Theorem 7.2 Every measurable cardinal is inaccessible.

Proof:

(i) Every measurable is regular.

Otherwise one contradicts the κ-completeness: a cardinal κ can always be

written as a union of cf(κ) many sets, each of cardinality < κ.

Recall that a cardinal κ is singular if it can be written as the union of

< κ many sets, each of cardinality < κ (which implies that cf(κ) < κ).

(ii) Every measurable is a strong limit.

Assume towards a contradiction there is a measurable cardinal, which is

not a strong limit, i.e. there must be an λ < κ such that 2λ ≥ κ. We want to

get a contradiction.

Consider S a set of functions f : λ → 2 of cardinality κ (such S exists

since 2λ ≥ κ).

For every α < λ, since U is an ultrafilter, either {f ∈ S : f(α) = 0} ∈ U

or {f ∈ S : f(α) = 1} ∈ U .

Denote by Xα the one that is in U and by εα the value of f(α)(either 0

or 1).

Let X :=
⋂
α<λXα.

The κ-completeness implies X ∈ U . But X has exactly one element, the

function f with f(α) = εα.

This is a contradiction with the fact that U is nonprincipal.

Definition 7.3 If j is an elementary embedding, the critical point of j is

the least α such that j(α) > α, if it exists.

Lemma 7.4 If U is a κ-complete ultrafilter on a regular cardinal κ, then the

critical point of the corresponding elementary embedding is κ.
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Definition 7.5 A filter D is a normal filter if any regressive function

defined on a filter-set is constant on a filter-set (i.e ∀A ∈ F and ∀f : A→ κ,

f(α) < α ∀α ∈ A \ {0} there is α < κ with f−1[α] ∈ F ).

Lemma 7.6 Any normal ultrafilter on κ is κ-complete.

Thus, ”κ is a measurable” is equivalent with ”there exists an elementary

embedding with critical point κ” and also equivalent with ”there exists a nor-

mal ultrafilter on κ.”

7.2 Ultrapowers of partial orders

In 1999, Shelah made the ingenious observation, that given κ a measur-

able cardinal, witnessed by the κ-complete ultrafilter D, µ > κ a regular car-

dinal and P a forcing notion adding µ dominating reals by finite support(e.g.

Hechler forcing), then forcing with the ultrapower Pκ/D destroys any m.a.d

family in the intermediate extension via P. In the ccc case we have P < ◦

Pκ/D, so we can look at the ultrapower as first forcing with P and then with

the quotient. But forcing with the ultrapower also preserves the witnesses for

b = d = µ introduced by P. Thus, Shelah obtained Con(d < a) by raising

the posets to the ultrapower λ times, for λ > µ regular cardinal.

For the material in this chapter, we follow [8], [9], [14] and [10].

Assume P is a partial order and κ a measurable cardinal, witnessed by

the κ-complete ultrafilter D.

One can define an equivalence relation on the class of functions in Pκ, by

identifying functions that agree on an ultrafilter set (i.e. f =D g iff {α < κ :

f(α) = g(α)} ∈ D).
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Definition 7.7 The ultrapower of the poset P is

Pκ/D := {[f ] : f ∈ Pκ},

where [f ] = {g ∈ Pκ : {α < κ : f(α) = g(α)} ∈ D} is the equivalence

class of f .

The order on Pκ/D is: [f ] ≤ [g] iff {α < κ : f(α) ≤ g(α)} ∈ D and does

not depend on the representatives chosen.

7.3 P versus Pκ/D

In this section we want to study the relations between the forcing poset

P and its ultrapower poset Pκ/D. We start with an easy remark, namely that

raising a partial order to the ultrapower is only interesting, when |P| ≥ κ

(since otherwise P ∼= Pκ/D), and we continue by studying complete embed-

dability issues and the connection between the chain condition of P and the

chain condition of its ultrapower Pκ/D.

Remark 7.8 If |P| < κ, then P ∼= Pκ/D.

Proof:

To show P ∼= Pκ/D, one has to find a one-to-one function between P and its

ultrapower Pκ/D, containing the equivalence classes of functions f : κ→ P.

Fix f such a function.

For each p ∈ P , we can define the set Dp = {α < κ : f(α) = p}.

Then κ =
⋃̇
p∈PDp (κ is written as the disjoint union of < κ many sets).

Thus, ∃!p ∈ P : Dp ∈ D. This p exists since κ ∈ D, and whenever we

write a set in the ultrafilter as a disjoint union of < κ many sets, exactly one

has to be in the ultrafilter. So, for the fixed f we found a unique p.
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W.l.o.g. (only changing the values on a small set), the function can be

taken to be the constant function f(α) = p ∀α ∈ κ. So, the one-to-one

function is the function p 7→ [f ].

Lemma 7.9 For P a poset and Pκ/D its ultrapower the following hold:

i) P ⊆ Pκ/D.

Proof:

Identify p ∈ P with the class [f ] of constant functions f(α) = p ∀α < κ.

This function is an injective function from P into Pκ/D.

ii) P < ◦ Pκ/D iff P is κ-cc.

Note: Having P < ◦ Pκ/D, we know any generic of Pκ/D defines a

generic for P, and we can see Pκ/D as a two step iteration P∗ Q̇. Recall

that P < ◦ Pκ/D iff m.a.c. of P remain m.a.c. of Pκ/D.

Proof:

⇒

Assume P < ◦ Pκ/D, but P is not κ-cc. Thus, there is a maximal

antichain of size > κ, say {pα : α < λ}, for some λ ≥ κ. Define the

function f : κ→ P by f(α) = pα.

Verify [f ]⊥pα for all α < λ.

⇐

Assume P is κ-cc but P ≮ ◦ Pκ/D.
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First note that the antichains of P remain antichains in Pκ/D, since

≤Pκ/D � P =≤P and p ⊥P q entails p ⊥Pκ/D q. Therefore, the only point

is the maximality.

For λ < κ, let A = {pα : α < λ} be a maximal antichain in P. Assume

A is not maximal in Pκ/D. Then we could find [f ] such that [f ]⊥pα for

all α.

Defining Aα := {β : f(β)⊥pα} for all α, by κ-completeness,
⋂
αAα ∈ D,

so, in particular, nonempty, contradicting the maximality of A in P.

iii) P is µ− cc for µ < κ⇒ Pκ/D is also µ− cc.

In particular, if P is ccc ⇒ Pκ/D is also ccc.

Proof:

Fix µ. Assume Pκ/D is not µ − cc, i.e. there are [fγ] : γ < µ, µ-many

incompatible conditions in Pκ/D.

For γ, δ < µ, γ 6= δ define:

Yγ,δ := {α : fγ(α)⊥fδ(α)} ∈ D.

By κ-completeness of the ultrafilterD, the intersection Y =
⋂
γ,δ<µ Yγ,δ ∈

D.

If α ∈ Y , then α ∈
⋂
γ,δ<µ Yγ,δ, thus, {fγ(α) : γ < µ} is an antichain of

length µ in P, contradicting the fact that P has µ-cc.

Note that if P is κ-cc but not µ− cc for µ < κ⇒ Pκ/D is not κ-cc.
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7.4 The c.c.c. case

The case we are interested in, is when P is ccc, thus, Pκ/D also ccc, and

moreover, we know Pκ/D = P ∗ Q̇. We want to understand better what the

quotient forcing Q̇ is, namely what kind of reals it adds and under which

hypotheses.

The first question we ask is how m.a.c. in Pκ/D connect to m.a.c in

P.

Take {[fn] : n ∈ ω} a maximal antichain in Pκ/D.

Look at {α : {fn(α) : n ∈ ω} m.a.c. in P}.

The set {α : {fn(α) : n ∈ ω} m.a.c. in P} is in D, so changing the values

of fn(α) on only a small set, we can assume w.l.o.g. that ∀α : {fn(α) : n ∈ ω}

m.a.c. in P.

The second thing we look at is how P-names for reals in ωω relate to

the Pκ/D-names for reals.

Given ḟ a P-name for a real in ωω, by the ccc, there are {pn,i : n, i ∈ ω}

and {kn,i : n ∈ ω}, such that :

• {pn,i : i ∈ ω} is a (countable) maximal antichain of P, for all n ∈ ω and

• pn,i 
P ḟ(n) = kn,i.

This completely describes ḟ .

Taking {pαn,i : n, i ∈ ω and α < κ} ⊆ P and {kαn,i : n, i ∈ ω and α < κ} ⊆ ω

such that {pαn,i : i ∈ ω} is a maximal antichain for all n and α, one gets P-

names ḟα.
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Form

[pn,i] = {pαn,i : α < κ}/D ∈ Pκ/D and

kn,i = [kn,i] = {kαn,i : α < κ}/D ∈ ωκ/D = ω.

Using the fact that D is κ-complete, in Pκ/D {[pn,i] : i ∈ ω} is a maximal

antichain for all n ∈ ω.

Therefore, one can construct a Pκ/D-name for a real [ḟ ], which is in some

sense, the mean of the P-names ḟα, such that [pn,i] 
Pκ/D [ḟ ](n) = kn,i.

Sometimes, one writes [ḟ ] = 〈ḟα : α < κ〉/D.

Every Pκ/D-name is actually of the above form:

In the ultrapower, which is again ccc, let [ḟ ] be a Pκ/D-name. As above,

one gets {[pn,i] : i, n ∈ ω} and {kn,i = [kn,i] : i, n ∈ ω}.

Defining kαn,i := kn,i, p
α
n,i = pn,i(α) and A := {α : {pαn,i : i ∈ ω} is m.a.c.

for all n}, one gets A ∈ D, therefore, w.l.o.g. ∀n, α : {pn,i(α) : i ∈ ω} m.a.c.

in P.

The values forced for [ḟ ](i) may be assumed to be the same, since they

are the same on an ultrafilter set.

Hence, we may assume [pn,i] = {pαn,i : α < κ}/D ∈ Pκ/D and kn,i =

[kn,i] = {kαn,i : α < κ}/D ∈ ωκ/D = ω have been constructed as above.

Given the Pκ/D-name [ḟ ], one actually has κ-many P-names ḟα, given by

stipulating pn,i(α) 
P ḟα(i) = kn,i.

So, [ḟ ] = 〈ḟα : α < κ〉/D, i.e. the names and the sequences are in direct

correspondence.

Lemma 7.10 Preservation of unbounded reals under taking ultrapowers

Let P < ◦ Q, c ∈ V Q such that ∀f ∈ V P ∩ ωω: 
P c �∗ f .
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Then ∀f ∈ V Pκ/D ∩ ωω: 
Qκ/D c �∗ f .

Proof: Assume towards a contradiction, there is ḟ a Pκ/D-name for a real

and [q] a condition in Qκ/D, such that ∃k ∈ ω with the property that

∀i ≥ k: [q] 
Qκ/D ċ(i) ≤ ḟ(i).

As argued before, there are {[pn,i] : n, i ∈ ω} and {kn,i : n, i ∈ ω} ⊆ ω,

such that

• {[pn,i] : i ∈ ω} is a m.a.c for all n ∈ ω and

• ∀n, i ∈ ω : [pn,i] 
Pκ/D ḟ(i) = kn,i.

By the above arguments, in P, for all α < κ, there are m.a.c. {pαn,i :

i ∈ ω} such that [pn,i] = 〈{pαn,i : α < κ〉/D, and a P-name ḟα such that

pαn,i 
P ḟ
α(i) = kn,i.

The set A := {α : q(α) 
Q ċ(i) ≤ ḟα(i)} is in D, thus, nonempty.

Let α ∈ A. Then one gets a contradiction with the unboundedness of

c over V P, since ḟα is a P-name for a real with the property that ∀i ≥ k:

q(α) 
Q ċ(i) ≤ ḟα(i).

123



Lemma 7.11 Preservation of compete embeddability under taking ultra-

powers

Given P,Q two ccc forcing notions, P < ◦ Q. Then Pκ/D < ◦ Qκ/D.

Q − > Qκ/D

◦ ◦

∨ ∨

P − > Pκ/D

Proof:

Because P,Q are ccc, so are Pκ/D and Qκ/D, so antichains are all count-

able.

We have to show that m.a.c. of Pκ/D are m.a.c. of Qκ/D.

We know P < ◦ Q, so in each coordinate, the maximal antichain is pre-

served by this complete embedding( m.a.c of P are m.a.c. of Q).

On an ultrafilter set of coordinates, it is maximal, thus, remains maximal.

( Loś )

7.5 Destroying big m.a.d. families

The following lemma says that no family which is almost disjoint in V P

and has cardinality bigger than κ will be m.a.d. in V P
κ/D. In particular, even

if the a.d. family is maximal in the extension by P, surely it is not maximal

in the extension by Pκ/D.

Thus, if P 
 ”a ≥ κ”, then no m.a.d. family of V P will be m.a.d. in V P
κ/D

:
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a ≥ κ means that all m.a.d families have size at least κ, so applying the

lemma, we know that all these m.a.d. families are destroyed.

Lemma 7.12 If P 
 ”Ȧ is an a.d. family and |Ȧ| ≥ κ”, then Pκ/D 
 Ȧ is

not m.a.d”.

Proof:

Let µ ≥ κ and Ȧ a P-name for an a.d. family Ȧ = {Ȧα : α < µ}.

The idea of the proof is to look at the first κ-many names 〈Ȧα : α < κ〉

and to take the mean of these P-names, namely to define the Pκ/D-name

[Ȧ] := 〈Ȧα : α < κ〉/D. Then, one can show that this Pκ/D-name [Ȧ] is

almost disjoint from all Ȧα : α < µ.

For all α < µ, identify the sets Ȧα with their characteristic function.

Thus, as before, Ȧα is decided by P-conditions pαn,i and values kαn,i ∈ 2, where

{pαn,i : i ∈ ω} is a maximal antichain, for all n ∈ ω, α < µ.

Hence, the following hold:

pαn,i 
 n ∈ Ȧα iff kαn,i = 1,

pαn,i 
 n /∈ Ȧα iff kαn,i = 0.

Define

• [pn,i] := 〈pαn,i〉/D ∈ Pκ/D and

• [kn,i] = 〈kαn,i〉/D ∈ 2κ/D = 2.

We know {[pn,i] : i ∈ ω} is a m.a.c. in Pκ/D.

Let Ȧ := 〈Ȧα : α < κ〉/D be the corresponding Pκ/D-name.

The following claim establishes that the family is not maximal in Pκ/D:
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Claim 
Pκ/D |[Ȧ] ∩ Ȧβ| < ω for all β < µ.

Proof of Claim

Fix β < µ and denote Ȧβ by Ḃ.

For all α < κ, except for possibly one (β), there are

• m.a.c. {qαi : i ∈ ω} ⊆ P and

• {nαi : i ∈ ω} ⊆ ω.

such that qαi 
P Ḃ ∩ Ȧα ⊆ nαi .

Define

• [qi] := 〈qαi 〉/D ∈ Pκ/D and

• [ni] := 〈nαi 〉/D ∈ ωκ/D = ω.

Since {[qi] : i ∈ ω} is a m.a.c, it suffices to show [qi] 
Pκ/D [Ȧ] ∩ Ḃ ⊆ ni.

Assume otherwise. Then one can find i, l ≥ ni and [r] ≤ [qi] such that

[r] 
Pκ/D l ∈ [Ȧ] ∩ Ḃ.

W.l.o.g., there is j such that [r] ≤ pl,j and kl,j = 1.

Say [r] = 〈rα〉/D.

Since {α : rα ≤ qαi , r
α ≤ pαl,j, k

α
l,j = 1, nαi = ni and rα 
P l ∈ Ḃ} ∈ D, it is,

in particular, nonempty. Choose α in this set. Since rα ≤ pαl,j and kαl,j = 1,

we know rα 
P l ∈ Ȧα ∩ Ḃ. But this is a contradiction, since rα ≤ qαi , nαi ≤ l

and qαi 
P Ḃ ∩ Ȧα ⊆ nαi .
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Chapter 8

The matrix for

µ < b = κ < s = a = λ

Take f : {η < λ : η = 1 mod 3} → κ onto with the property that ∀α < κ :

f−1(α) is cofinal in λ.

Following [10], as in Chapter 6, one defines a matrix consisting of finite

support iterations

〈〈Pαζ : α ≤ κ, ζ ≤ λ〉〈Q̇α
ζ : α ≤ κ, ζ < λ〉〉.

For all α ≤ κ, ζ ≤ λ, let V α
ζ be the extension of the ground V by Pαζ .

During the construction, we want the following properties to be satisfied:

1) for all ζ ≤ λ, for all β < α ≤ κ : Pβζ < ◦ Pαζ

2) for all ζ ≤ λ, for all α < κ : (∗V α
ζ , V

α+1
ζ , cα+1)

• ζ = 0, then

for all α ≤ κ let Pα0 to be the c.c.c. poset for adding α Cohen reals

{cγ}γ<α, namely, a finite support iteration of Cohen forcing. Thus, the

property (1) above holds.
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Recall that the Cohen reals are unbounded, so the (2) holds as

well.

• If ζ = η + 1

Suppose that for all α ≤ κ, Pαη has been defined and satisfies the

required properties.

– If ζ = 1 mod 3, then define Q̇α
η as before, by induction on α:

if α = 0, then

Let U̇0
η be a P0η-name for any ultrafilter and Q̇0

η be a P0η-name

for MU̇0
η
.

Then P0ζ := P0η ∗ Q̇0
η.

If α = β + 1,

Let U̇αη be a Pαη -name for an ultrafilter forced in Pαη to extend

the already defined ultrafilter U̇βη .

This extension is constructed in the crucial lemma 4.11, to

have the required properties, namely:

(i) for all β < α ≤ κ : 
Pαη U̇βη ⊆ U̇αη

(ii) m.a.c of MU̇βη in V β
η remain m.a.c of MU̇αη in V β

α and

(iii) (∗V β
ζ , V

β+1
ζ , cβ+1) holds (recall that V β+1

ζ = V α
ζ ) .

Then 
Pαη Q̇
α
η = MU̇αη and Pαζ := Pαη ∗ Q̇α

η .

One also has Pβζ < ◦ Pαζ , by Lemma 4.2.

If α is a limit ordinal:

Assume ∀β < α U̇βη has been defined and 
Pβη Q̇
β
η = MU̇βη .
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cf(α) > ω, then take U̇αη to be a Pαη -name for the union⋃
β<α Uβη , which is again an ultrafilter.

Let Pαζ := Pαη ∗ Q̇α
η , where 
Pαη Q̇

α
η = MU̇αη .

cf(α) = ω, then , as before, extend
⋃
β<α Uβη to an ultrafilter,

such that:

(i) ∀β < α : 
Pαη U̇βη ⊆ U̇αη

(ii) m.a.c. of MU̇βη in V β
η remain m.a.c. of MU̇αη in V α

η .

Note that for all β < α: Pβζ < ◦ Pαζ , by Lemma 4.2.

– ζ = 2 mod 3, then

if α ≤ f(η) just take Q̇α
η to be the trivial forcing.

if α > f(η) take Q̇α
η to be a Pαη -name for the dominating

forcing DV
f(η)
η .

Take Pαζ := Pαη ∗ Q̇α
η

One still has to argue that for all β < α: Pβζ < ◦ Pαζ .

Three cases are distinguished:

If α < β ≤ f(η)

then Pαζ = Pαη and Pβζ = Pαη .

Thus, by induction hypothesis, Pαζ < ◦ P
β
ζ .

If α ≤ f(η) < β

then Pαζ = Pαη .

One has Pαζ < ◦ P
β
ζ , since Pαζ = Pαη < ◦ Pβη < ◦ Pβη ∗ Q̇β

η = Pβζ .

If f(η) < α < β
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then Pαζ < ◦ P
β
ζ holds by Lemma 4.2

Lemma 6.10 gives that for all α ≤ κ, (∗V α
ζ , V

α+1
ζ , cα+1) holds as well.
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• ζ = 0 mod 3, then take ultrapowers .

for all α ≤ κ, let Q̇α
η be a Pαη -name for the quotient poset of

((Pαη )µ)/D and Pαη and define Pαζ := Pαη ∗ Q̇α
η .

The property (1) holds by induction hypothesis and Lemma 7.11, which

says that the complete embeddability is preserved under raking ultra-

powers.

For (2), one applies the inductive hypothesis and Lemma 7.10, which

says that the unbounded reals are preserved under taking ultrapowers.

• If ζ is a limit ordinal and Pαη and Q̇α
η were defined for all η < ζ, then

for all α ≤ κ, one takes Pαζ be the finite support iteration 〈Pαη , Q̇α
η :

η < ζ〉.

Lemma 4.4 gives Pαζ < ◦ P
β
ζ and Lemma 6.12 gives (∗V α

ζ , V
α+1
ζ , cα+1)

∀α ≤ κ.

Lemma 8.1 In the matrix iteration above, the following hold:

(1) For all p ∈ Pκζ ∃α < κ such that p ∈ Pαζ .

(2) For all Pκζ -name for a real ḟ ∃α < κ such that ḟ is a Pαζ -name.

Proof:

• Assume ζ = 0. Then (1) follows from the fact that Pκ0 can be written

as a two step iteration, since Pκ0 is the forcing for adding κ Cohen reals
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• Assume ζ is a limit ordinal and p a condition in Pκζ .

Since p has finite support, p must actually be a Pκη-condition, for some

η < ζ. For this Pκη-condition, one can now apply the induction hy-

pothesis and conclude the existence of some α < κ, such that p ∈ Pαη .

Therefore, in particular, p ∈ Pαζ .

• Assume ζ = η + 1, a successor ordinal and p ∈ Pκζ . Then p = (p0, ṗ1),

for some p0 ∈ Pκη and ṗ1 such that 
Pκη ṗ1 ∈ Q̇κ
η .

– If ζ ≡ 1 mod 3, then Q̇κ
η is a name for the Mathias forcing, there-

fore, ṗ1 is a name for a Mathias condition (s, Ȧ), where s ∈ [ω]<ω

and 
Pκη Ȧ ∈ U̇κη .

– If ζ ≡ 2 mod 3, then Q̇κ
η is either a name the trivial forcing, thus,

ṗ1 is trivial, or a name for the dominating forcing, and therefore,

ṗ1 is a name for a Hechler condition (s′, ḟ), where s′ ∈ ω<ω and ḟ

a Pκη-name for a function in ωω.

In either case, the induction hypothesis (2) implies the existence

of some α1 < κ, such that ṗ1 is a Pα1
η -name, and the hypothesis

(1) implies the existence of an α0 < κ, such that p0 ∈ Pα0
η .

Taking α :=max{α0, α1}, one can conclude p = (p0, ṗ1) ∈ Pαη .

– ζ = 0 mod 3,

This is the only case that is different from Lemma 6.14, corre-

sponding to the step where the ultrapowers are taken.

Assume [f ] ∈ (P κ
η )µ/D. Then [f ] = 〈f(γ) : γ < µ〉/D, where for

all γ < µ : f(γ) ∈ Pκη .
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By the induction hypothesis and the fact that κ is regular κ > µ,

one can conclude the existence of an α < κ, with f(γ) ∈ Pαη , for

all γ < µ. Thus, [f ] is in the ultrapower of Pαη , but (Pα
η )µ/D = Pαζ ,

hence, [f ] ∈ Pαζ .

Lemma 8.2 b = κ and a = s = λ hold in V κ
λ .

Proof:

• b = κ.

Proof:

Let ḟ ∈ ωω∩V κ
λ . Then ∃ζ < λ, α < κ such that f is actually in ωω∩V α

ζ .

Since (∗V α
ζ , V

α+1
ζ , cα+1) holds, in V α+1

ζ , cα+1 �∗ f , therefore, the same

holds in V κ
λ . Hence, in V κ

λ , {cα+1 : α < κ} is unbounded, yielding b ≤ κ

If B is a family of cardinality < κ, B ⊆ V κ
λ ∩ ωω, one can again find

ζ < λ, α < κ such that B is actually a subset of ωω ∩ V α
ζ .

By the fact that f−1(α) is cofinal in λ, ∃ζ ′ > ζ with f(ζ ′) = α.

But then, Pα+1
ζ′+1 adds a real dominating ωω ∩ V α

ζ′ . Since V α
ζ ⊆ V α

ζ′ , the

same real dominates ωω ∩ V α
ζ and, therefore, B can’t be unbounded,

yielding b ≥ κ.

Therefore, in V κ
λ , b = κ.

• a = λ.

By the above and the ZFC result b ≤ a, we can conclude a ≥ κ in V κ
λ .
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Claim: If for some γ, κ ≤ γ < λ, A ⊆ V κ
λ ∩ [ω]ω is an almost disjoint

family of cardinality γ, then it can’t be maximal.

Proof:

Assume A ⊆ V κ
λ ∩ [ω]ω as above, maximal almost disjoint. We know

there is ζ < λ, ζ = η + 1, ζ = 0 mod 3 such that A is actually a subset

of V κ
η ∩ [ω]ω. At this stage, the ultrapower of the poset is taken.

Then, by Lemma 7.12, we know that such a family cannot be maximal

in V κ
ζ , since taking ultrapowers destroys big m.a.d. families.

Thus, there is a infinite subset of ω in V κ
ζ having infinite intersection

with all the members of the family A, contradicting its maximality.

• s = λ.

Assume S ⊆ V κ
λ ∩ [ω]ω is a family of cardinality < λ.

Claim: S is not splitting.

Proof:

Since S ⊆ V κ
λ ∩ [ω]ω, there is ζ < λ a successor ordinal, say ζ = η + 1,

ζ ≡ 1 mod 3, such that S ⊆ V κ
η ∩ [ω]ω. But then, at this stage of the

iteration, a Mathias real not split by S is added, and therefore, S can’t

be splitting.

The matrix iteration techniques have various other applications, they do

not only apply to the cardinal invariants presented in this thesis. As an ex-

ample, one can consider Diego Mejia’s paper ” Matrix iterations and Cichon’s

diagram ”, where the author constructs a non-linear iteration in the study
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of measure and category, with the scope of obtaining different values for the

cardinals in Cichon’s diagram. It might also be interesting to consider an

analogue of the matrix iteration of a higher dimension.

Even taking only the cardinal invariants b, a and s into consideration, one

can see that the subject is open to further research. There are still interesting

open questions, like obtaining the consistency of the strict inequalities b <

a < s and b < s < a, or obtaining Con(b < s = a) without the measurable

cardinal assumption.
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