
MASTERARBEIT

Titel der Masterarbeit

Adaptive Large Neighborhood Search for the
Curriculum-Based Course Timetabling Problem

Verfasser

Alexander Kiefer, Bakk.rer.soc.oec.

angestrebter akademischer Grad

Master of Science (MSc)

Wien, 2013

Studienkennzahl lt. Studienblatt: A 066 915

Studienrichtung lt. Studienblatt: Masterstudium Betriebswirtschaft

Betreuer: O.Univ.Prof. Dipl-Ing. Dr. Richard F. Hartl

Acknowledgement

I would like to thank the people at the chair of Production and Operations Man-
agement of the University of Vienna for their support. In particular I want to
thank my supervisor O.Univ.Prof. Dipl.-Ing. Dr. Richard F. Hartl for giving
me the opportunity to write the thesis at his chair, Alexander Schnell, MSc for
his advices and his critical review of the thesis and Mag. Attila Kovacs for his
suggestions regarding the improvement of the algorithm’s performance. Moreover
I want to thank Prof. Andrea Schaerf from the University of Udine for giving me
insights about the problem structure. Last but not least I would like to thank my
family and friends.

II

Contents

List of Figures VI

List of Tables VII

List of Algorithms VIII

1 Introduction 1

2 Literature Review 3

2.1 Graph Coloring . 4

2.2 Metaheuristics . 6

2.3 Integer Programming . 9

3 Problem Description 9

3.1 Timetabling Competitions . 10

3.2 Formulations . 12

3.3 Instances . 14

4 Mathematical Model 17

4.1 ITC-2007 Formulation . 17

4.1.1 Notation and Decision Variables 17

4.1.2 Objective Function . 19

4.1.3 Hard Constraints . 20

4.1.4 Soft Constraints . 21

4.2 Extensions . 22

4.2.1 Students’ Minimum and Maximum Day-Load 22

4.2.2 Room Suitability . 23

4.2.3 Windows . 24

4.2.4 Travel Distance . 25

4.2.5 Double Lectures . 26

4.3 Results . 27

III

5 Solution Approach 29

5.1 Adaptive Large Neighborhood Search 30

5.1.1 Algorithm . 30

5.1.2 Operator Selection . 32

5.1.3 Destroy Limit . 33

5.1.4 Acceptance Scheme . 34

5.1.5 Infeasible Solution Allowance 36

5.2 Destroy Operators . 38

5.2.1 Related Removal . 38

5.2.2 Random Removal . 39

5.2.3 Worst Removal . 39

5.2.4 Random Penalty Removal 41

5.2.5 Random Period Removal . 41

5.2.6 Room Day Removal . 41

5.2.7 Isolation & Capacity Removal 41

5.2.8 Spread & Stability Removal 42

5.2.9 Curriculum Removal . 42

5.2.10 Teacher Removal . 43

5.3 Repair Operators . 43

5.3.1 2-Stage Operators . 43

5.3.2 Priority Rules . 43

5.3.3 Lecture-Period Assignment 45

5.3.4 Backtracking Procedure . 47

5.3.5 Lecture-Room Assignment 48

5.3.6 Example: Evaluation . 49

5.3.7 Initial Solution . 52

5.3.8 1-Stage Operators . 52

6 Computational Experiments 56

6.1 Parameter Tuning . 56

6.2 Results . 58

6.3 Additional Experiments . 63

IV

7 Conclusion 68

Bibliography 70

Abstract 76

Zusammenfassung 77

Curriculum Vitae 78

V

List of Figures

1 Conversion: Graph coloring - timetabling 5

2 Structurally different neighborhoods 31

3 Destroy limit as a function of iterations 34

4 Example: Current schedule . 50

5 Example: Destroy and repair . 52

6 Solution convergence . 62

7 Progression of the operators’ weights 65

8 Benefit of different destroy limits 67

VI

List of Tables

1 Formulations of the curriculum-based course timetabling problem . 14

2 Characteristics of the Instances . 16

3 Notation of the mathematical model 18

4 Results of the integer programs of the ITC-2007 instances 28

5 Example: Course attributes . 50

6 Example: Insertion cost . 51

7 Parameter setting . 57

8 Average results for the CB-CTT ITC-2007 instances 60

9 Statistics of the intermediate solutions 61

10 Operator statistics . 63

11 Comparison of operator selection rates 66

VII

List of Algorithms

1 Large Neighborhood Search . 30

2 Adaptive Large Neighborhood Search 30

3 Related removal . 39

4 Worst removal . 40

5 Lecture-period assignment . 44

VIII

1 Introduction

Timetabling problems are eminently relevant in practice. Petrovic and Burke

[2004] state that these problems can be found in various fields, including edu-

cational timetabling, nurse rostering, timetabling of public transport systems and

timetabling of sport events. In the context of educational timetabling, Schaerf

[1999a] defines the problem as scheduling lectures that involve teachers and stu-

dents in a prefixed period of time, while taking different constraints into account.

Schaerf [1999a] subdivides educational timetabling into school timetabling, ex-

amination timetabling and course timetabling. Basically, school timetabling aims

to find a weekly timetable for classes, such that no teacher and no class has two

lectures at the same time. In examination timetabling and course timetabling

overlaps between events with common students should be avoided. A typical ob-

jective of exam timetabling is a good distribution of exams for the students over

time. The considered time period of course timetabling might be a week, while for

exam timetabling it depends on the examination session. Occasionally, minimizing

the length of the examination session is part of the objective, as it is the case for

some tests by Carter et al. [1996].

A very basic problem of finding a feasible school timetable is considered by

Even et al. [1976]. They prove its NP-completeness when teachers and classes

might be unavailable at some periods by a polynomial reduction of the 3-SAT

problem. Moreover, the authors present a polynomial time algorithm for the spe-

cial case where every teacher has only two available periods. They state that

without unavailabilities a feasible solution always exists and can be found in poly-

nomial time.

Cooper and Kingston [1996] show the NP-completeness of educational time-

tabling problems in five different ways. For the practically relevant case where

teachers have a fixed workload due to their labor contract and the number of lessons

varies between subjects, the NP-completeness is shown by a reduction from the

bin packing problem. Finding feasible course and exam timetables is NP-complete

due to a reduction of graph coloring. The authors note that this connection only

requires that the students are free to choose which courses or exams, respectively,

they want to attend. These choices result in conflicts between courses, such that

1

they must not be scheduled at the same time to ensure that students are able to

attend all of their choices. Possible teacher or room constraints are not essential

for the NP-completeness. The connection between graph coloring and timetabling

has already been studied before, e.g. by Welsh and Powell [1967].

The complexity results suggest that solving large educational timetabling prob-

lems by exact approaches might be impossible in reasonable time. Therefore a

metaheuristic approach is implemented in the context of this theses. In partic-

ular an Adaptive Large Neighborhood Search (ALNS) approach is used. ALNS

proposed by Ropke and Pisinger [2006] and Pisinger and Ropke [2007] has been

originally used for tackling vehicle routing problems and is an extension of Large

Neighborhood Search by Shaw [1998]. The algorithm aims to iteratively improve

the solution by repetitive destruction and reparation of relatively large fractions

of the timetable.

Two variants of course timetabling have been formulated for the second inter-

national timetabling competition (ITC-2007)1, including Post Enrollment Course

Timetabling (PE-CTT) and Curriculum-based Course Timetabling (CB-CTT).

A detailed description of these problems is given in the technical reports by

McCollum et al. [2007a] and Di Gaspero et al. [2007], respectively.

The input for PE-CTT includes data of the students’ enrollments to courses.

The conflicts between courses are based on the enrollment data. On the contrary

for CB-CTT curricula are known in advance and courses have to be scheduled,

such that for each period at most one course per curriculum takes place. Other

hard constraints that have to be satisfied to achieve a feasible solution require that

all lectures are scheduled, the assignment of at most one lecture to a room at the

same time and further version-dependent features.

The solution quality is measured in terms of violations of soft constraints rep-

resenting favorable characteristics of the timetable, e.g. rooms should meet the

capacity requirements of the assigned lectures and the schedule of courses of the

same curriculum should be compact such that students do not have to wait between

lectures. The theses has its focus on the CB-CTT. In particular, the algorithm is

tested on the benchmark instances for the CB-CTT track of the ITC-2007.

1http://www.cs.qub.ac.uk/itc2007/

2

http://www.cs.qub.ac.uk/itc2007/

The outline of this theses is as follows. Section 2 gives a literature review with

a focus on algorithms that have been implemented for the ITC-2007 and more

recent approaches that have been proposed for CB-CTT and benchmarked on the

ITC-2007 instances. Furthermore graph coloring approaches and general concepts

for metaheuristics will be described, as subsequent sections refer to these meth-

ods. In section 3 the content of the three international timetabling competitions

is sketched. Additionally, the ITC-2007 formulation of CB-CTT and its bench-

mark instances are described in detail. Also some extensions to the problem are

mentioned. A mathematical model based on the integer programming (IP) formu-

lations of Lach and Lübbecke [2012] and Burke et al. [2011] is presented in section

4. The mixed integer programming (MIP) solver CPLEX is used for solving the

ITC-2007 instances to test the effectiveness of the exact approach. Furthermore, it

is explained how extensions can be incorporated into the IP formulation. Section

5 describes a solution approach for CB-CTT based on Adaptive Large Neighbor-

hood Search (ALNS) by Ropke and Pisinger [2006]. Computational results for the

ITC-2007 benchmark instances are presented in section 6. A conclusion is given

in section 7.

2 Literature Review

Schaerf [1999a] surveys automated timetabling in general, i.e. approaches without

human intervention. Besides stating basic timetabling models, practically rele-

vant variants and solution approaches, the author sketches the history of solution

techniques for timetabling problems. Early approaches aim to extend a partial

timetable by scheduling one lecture after another until a complete timetable is

found. These methods typically prioritize lectures that are very constrained, with

regard to a particular measure. They basically imitate human manual scheduling.

Thus Schaerf [1999a] calls them direct heuristics. Later approaches are based on

integer programming, network flow techniques and graph coloring methods. Even

more recently constraint satisfaction and metaheuristic approaches are applied.

Some new techniques hybridize several metaheuristic concepts, e.g. Müller [2009]

and Abdullah et al. [2012].

3

A more recent survey by Qu et al. [2009] has its emphasis on examination

timetabling, while Lewis [2008] focuses on metaheuristics for university timetabling

problems. Qu et al. [2009] suggest to classify solution approaches into graph based

sequential techniques, constraint based techniques, local search based techniques,

population based algorithms, multi-criteria techniques, hyper-heuristics and decom-

position/clustering techniques. Other types are mentioned by Petrovic and Burke

[2004], including case-based reasoning and approaches based on mathematical pro-

gramming. Hereafter, only approaches, which are either relevant for the under-

standing of the operators embedded in the algorithm of this theses or used for

comparison in the results section, are described.

2.1 Graph Coloring

The reduction of a university course timetabling problem to graph coloring is

described by several authors, e.g. De Werra [1985]. The lectures of each course

have to be assigned to periods, in a way that no student has two lectures at the

same time. In order to construct a graph each lecture of each course is represented

by a node. Two nodes are connected by an edge whenever there is at least one

student who wants to attend both of the associated lectures. In particular all

lectures of the same course have to be connected with each other. Edges have to

be introduced either due to the enrollment data or due to the curricula. Finding a

feasible timetable with k periods corresponds to solving a graph coloring problem

with k colors, i.e. coloring the nodes in such a way that connected nodes have

different colors and only k colors are used in total. The conversion from a graph

coloring solution to the final timetable is visualized in Figure 1, borrowed from

Lewis [2008]. Each color corresponds to a different period of the timetable.

Other conflicts between courses can be incorporated by introducing additional

edges between the corresponding nodes, e.g. if there are courses held by the

same teacher. De Werra [1985] shows how unavailabilities and previously fixed

assignments can be taken into account. In this case one additional node has to be

introduced for each period. Edges have to be added to connect these period-nodes

with each other. Whenever a course c has an unavailability at period p edges have

to be introduced between all lecture-nodes of c and the period-node of p. On the

4

1 2

3 4 5

6 7 8

9 10

Periods

1 2 3 4 5

Event Event Event Event Event

1 4 3 7 6

Event Event Event Event

10 9 5 8

Event

2

Figure 1: Conversion: Graph coloring - timetabling (Lewis [2008])

other hand, if course c is preassigned at period p edges between the lecture-nodes

of c and all other periods q 6= p have to be added.

Carter et al. [1996] analyze algorithmic strategies based on graph coloring for

the examination timetabling problem. According to the authors these algorithms

typically sort the events in descending order with respect to their assignment dif-

ficulty first. Then events are scheduled in a conflict-free way one at a time. Some

algorithms have also a backtracking procedure implemented, meaning that already

scheduled events can be removed from the timetable to insert another event with-

out causing conflicts. The authors note that whether the initial ordering affects

the final outcome cannot be answered in general for all data sets and different

researchers come to divergent answers to this question.

Several criteria used for sorting events are listed by Carter et al. [1996]. Ac-

cording to the largest degree rule used by Broder [1964] events with the largest

number of conflicts with other events are scheduled first. The saturation degree

rule proposed by Brélaz [1979] prioritizes events with the smallest number of re-

maining periods for scheduling. For the course timetabling problem Lü and Hao

[2010] suggest to adapt the saturation degree rule in a way that it takes the number

of unscheduled lectures of a course into account. Three other rules are described

by Carter et al. [1996]. The random rule arranges events randomly, the largest

weighted degree rule weights conflicts by the number of affected students and for

the largest enrollment rule events are sorted in descending order with respect to

the number of enrolled students. Wood [1968] uses a rule similar to largest enroll-

5

ment. Events are sorted in ascending order according to the number of rooms that

satisfy their capacity requirements and the largest degree rule is used to break ties.

2.2 Metaheuristics

Lewis [2008] classifies metaheuristic methods into one-stage optimization algo-

rithms, two-stage optimization algorithms and algorithms that allow relaxations

and explains their strengths and weaknesses. The difference between one-stage

and two-stage optimization techniques is that the the latter decomposes the prob-

lem in a way that a feasible solution satisfying all hard constraints is found first

while the solution quality with respect to the soft constraints is improved in the

second stage. Allowing relaxations refers to relaxing some features of the problem,

e.g. temporary assigning events without a feasible period to an artificial period

and reducing the number of extra periods later.

One-stage optimization algorithms tackle hard and soft constraints at once

and thereby allowing the violation of any constraint. According to Lewis [2008]

these approaches typically make use of a weighted sum objective function with

sufficiently high penalties for hard constraint violations. Setting the weights in the

objective function appropriately seems to be critical for navigating well through

the search space. The author highlights the advantages and disadvantages of one-

stage optimization. Its benefits include its flexibility, the easy implementation

and the possibility to embed it in any technique. However, one-stage optimization

techniques might be inappropriate if it is absolutely essential to find a feasible

solution, particularly if only few feasible solutions exist. As a possible reason for

this, Lewis notes that incorporating soft constraints in the objective function when

feasibility is not achieved yet, might direct the search away from feasible regions

by trying to reduce soft constraint violations.

Schaerf [1999b] adjusts the infeasibility weight dynamically in his local search

algorithm for high school timetabling. After each segment of ten moves the weight

might be adjusted depending on the number of infeasible solutions. If all solu-

tions have been infeasible the weight is increased. On the contrary the weight is

decreased if all solutions have been feasible.

6

Bellio et al. [2013] propose a one-stage Simulated Annealing (Kirkpatrick et al.

[1983]) approach, incorporating and extending the ideas by Bellio et al. [2012] and

Ceschia et al. [2012]. The cost function is a weighted sum of the penalties for soft

constraint violations and high penalties for violations of some hard constraints.

The neighborhoods are specified by the operators lecture move and lecture swap.

An important aspect of their work is the statistical method for the parameter

tuning, aiming to find either fixed parameter values that suit all instances or cor-

relations with the instances’ features in order to predict the parameter values for

each instance individually. In particular, the statistical analysis is performed only

on a set of artificial instances. The parameter setting is then predicted automati-

cally for the benchmark instances.

Two-stage optimization algorithms try to find a feasible solution first and re-

duce soft constraint violations while maintaining feasibility afterwards. As noted

by Lewis [2008], no weights for infeasible assignments have to be specified. These

approaches might be beneficial if feasibility is very important. On the other hand,

two-stage algorithms might be inefficient and ineffective when the search space

is very constrained because these algorithms are only allowed to move in feasible

regions. To overcome the disadvantages when facing very constrained problems,

Lewis [2008] suggests to take shortcuts by allowing infeasible solutions. Further-

more, if a feasible solution is barely achievable and some hard constraint violations

are accepted, one-stage optimization algorithms are probably a better choice in or-

der to incorporate a trade-off between soft and hard constraint violations.

Lewis [2008] concludes that each principle has its benefits and drawbacks

and neither is generally superior. However, he notes that the first international

timetabling competition might have influenced researches towards two-stage algo-

rithms. The reason for this is that only algorithms were accepted that were able

to generate feasible solutions for all benchmark instances, as stated on the com-

petition’s website1. The scores for ranking the algorithms were based on the soft

constraint violations.

An example for two-stage algorithms is the hybrid approach by Müller [2009].

He is the winner of the ITC-2007 of the tracks about CB-CTT and examination

timetabling and performed well on the PE-CTT track. The results and the order-

1http://www.idsia.ch/Files/ttcomp2002/oldindex.html

7

http://www.idsia.ch/Files/ttcomp2002/oldindex.html

ing of the five best participants are available on the competition’s website1. His

construction algorithm schedules events one at a time, where events that are hard

to schedule are prioritized. Moreover the algorithm allows the removal of already

scheduled events to avoid conflicts. In the improvement phase a Hill Climbing

algorithm, a Great Deluge algorithm (Dueck [1993]) and a Simulated Annealing

approach alternate. Several neighborhood operators are implemented, including

time move, room move and event move and also some tailor-made operators for

the different tracks.

Lü and Hao [2010] also propose a two-stage algorithm. They are ranked second

on the CB-CTT track of the ITC-2007. To construct an initial solution a sequential

heuristic with priority rules is used. The second stage combines an intensification

phase and a diversification phase based on Iterated Local Search (Lourenço et al.

[2003]). The former alternately exploits two neighborhoods with Tabu Search

(Glover and Laguna [1997]). The diversification phase is performed whenever the

Tabu Search cannot improve the solution any further. The depth of the Tabu

Search and the perturbation strength are adapted dynamically.

The two-stage approach by Abdullah et al. [2012] for university course time-

tabling makes use of the construction algorithm by Landa-Silva and Obit [2008]

to build a feasible in three phases. First a largest degree heuristic is performed.

As long as feasibility is not achieved, neighborhood search and Tabu Search are

alternately applied. The improvement phase combines a multi-start Great Del-

uge algorithm with an electromagnetic-like mechanism (Birbil and Fang [2003]),

whereas the latter is used for calculating the decreasing rate of the Great Deluge

algorithm’s level.

Abdullah and Turabieh [2012] generate a population of solutions with a satu-

ration degree heuristic. The second stage makes use of a tabu-based memetic ap-

proach. The selection of parents is based on a roulette wheel principle. Crossover

and mutation operators are then applied while maintaining feasibility. After-

wards the new solutions are improved by using a neighborhood structure that

is not in the tabu list. The implemented neighborhood structures are adapted

from Abdullah et al. [2007c], whereas some of which describe large neighborhood

structures. The algorithm has been tested on exam timetabling and CB-CTT

1http://www.cs.qub.ac.uk/itc2007/winner/finalorder.htm

8

http://www.cs.qub.ac.uk/itc2007/winner/finalorder.htm

problems. Other algorithms for university timetabling problems that make use of

large neighborhood structures have been proposed by Abdullah et al. [2007b] and

Abdullah et al. [2007a].

Petrovic and Burke [2004] criticize that typically metaheuristics incorporate

many parameters and the performance often depends on an appropriate setting.

In practice, tuning the parameters is likely to be too challenging for a timetabling

officer who is not an expert of the particular algorithm. To overcome this problem

the authors suggest to use a simple Great Deluge algorithm that makes use of

only two parameters, including the time limit and an estimate of the objective

value. Both of them are easy to determine for the timetabling officer. An analysis

of the algorithm’s performance on course timetabling problems can be found in

Burke et al. [2003].

2.3 Integer Programming

Lach and Lübbecke [2012] tackle the CB-CTT problem by a decomposition-based

approach. In the first stage lectures are assigned to periods and in the second

stage the room assignment is performed. Each stage is solved by integer program-

ming. To ensure feasibility the number of available rooms is taken into account

in the first stage. As a consequence of the decomposition the solution is not nec-

essarily a global optimum. A similar integer programming formulation is used by

Burke et al. [2011], who propose a branch-and-cut procedure for CB-CTT.

3 Problem Description

The formulation of the curriculum-based course timetabling problem and the

benchmark instances the algorithm is tested on are those of the ITC-2007. They

have been used by the competition participants and many other authors to build

their algorithms and to conduct their computational experiments. Therefore it is

reasonable to compare the results with respect to the competition’s instances. Con-

sequently, the timetabling competitions, course timetabling formulations and prob-

lem instances are presented in this section with a focus on the second timetabling

competition.

9

3.1 Timetabling Competitions

Schaerf [1999a] points out that several variants of the university timetabling prob-

lem exist in the literature. This can be explained by distinct requirements of

the institutions for which the formulations and solution approaches have been de-

veloped. Schaerf criticizes that the results of the solution approaches that have

been published in this field are often solely compared with manual solutions and

are not surprisingly superior to them. Therefore, he emphasizes the need of a

common definition and benchmark instances, so that different algorithms can be

compared conclusively.

According to McCollum et al. [2010] the first international timetabling compe-

tition (ITC-2002) has successfully generated a common ground for the timetabling

field by stating a problem formulation that has been widely accepted by researchers

and proposing benchmark instances. The ITC-2002 was organized by the Meta-

heuristics Network. Information about the ITC-2002 can be found on its website1.

The timetabling problem of the ITC-2002 designed by Ben Paechter consists of

scheduling a set of lectures with certain requirements and attended by a number of

students to periods and rooms. A timetable is called feasible if all events have been

placed, each student has at most one lecture at a time, each lecture takes place in

a room that meets its requirements in terms of capacity and other features and at

most one lecture takes place in a room at a time. Soft constraints are violated if

a student has either a lecture in the last period of a day, more than two lectures

in a row, or only one lecture on a day.

McCollum et al. [2010] describes the differences between the ITC-2002 and the

ITC-2007. The second competition was divided into three tracks. Each track fo-

cused on different problems of university timetabling, including exam timetabling,

post-enrollment course timetabling and curriculum-based course timetabling. The

PE-CTT formulation is closely related to the one used for the ITC-2002. In the

ITC-2007 constraints were incorporated that better reflect real world problems.

The benchmark instances used for the ITC-2007 CB-CTT are derived from

real timetabling problems of the University of Udine. Even though it was one

of the objectives to reduce the gap between theory and practice, the formulated

1http://www.idsia.ch/Files/ttcomp2002/

10

http://www.idsia.ch/Files/ttcomp2002/

problems are still simplifications. Di Gaspero et al. [2007] list eight additional

features that are used at the University of Udine for their actual formulation,

most notably lunch breaks for students, maximum daily course loads for students,

room unavailabilities for some periods, room suitabilities for courses and penalties

for course assignments to far too big rooms. A reduced number of features has the

advantage of preserving the generality of the formulation.

Each track of the ITC-2007 has its own technical report available the compe-

tition’s website1. Other things provided on the website include a detailed descrip-

tion of the competition rules, the list of the five best-performing algorithms of each

track and a benchmarking tool for computers to indicate how long an algorithm

can be run on a machine within the competition’s time limit. Depending on the

machine, the time limit might be in the range 300 to 500 seconds for a single core

computer that has been modern at the time of the competition.

21 instances were used to benchmark the algorithms for the CB-CTT track.

They were classified into early instances, late instances and hidden instances,

whereas the late instance set was released two weeks before the competition’s

deadline and the hidden instances were released after the closure and were used

by the organizers to rank the best participants. Therefore these hidden instances

could not be used for tuning the algorithms.

As explained in the technical report by McCollum et al. [2007a] the exam

timetabling problem of the ITC-2007 consists of scheduling exams into periods

of a predefined session while hard constraints have to be satisfied and solution

quality is measured as a weighted sum of soft constraint violations. Students that

are individually enrolled to exams must not have two exams at the same time.

Furthermore, the room capacities and period lengths have to be respected. There

might be also additional constraints, such as one exam has to take place before

another exam or predefined room requirements. One distinct feature of exami-

nation timetabling compared to course timetabling is that there might be several

exams in the same room at the same time, as long as the capacity is not exceeded.

Soft constraints address the exam distribution for students over the session, the

number of exams with different durations scheduled in the same room at the same

1http://www.cs.qub.ac.uk/itc2007/

11

http://www.cs.qub.ac.uk/itc2007/

time, the number of larger exams scheduled in the later part of the timetable and

some other period and room related features.

The details of the PE-CTT problem of the ITC-2007 are stated by Lewis et al.

[2007]. It extends the ITC-2002 formulation in a way that courses might not

be available at some periods and precedence requirements of courses have to be

respected. In contrast to the PE-CTT, where students have to enroll for courses,

the conflicts of the CB-CTT are specified by the curricula, in a way that overlaps

of courses of the same curriculum are prohibited. A detailed description of the CB-

CTT track of the ITC-2007 is given by Di Gaspero et al. [2007] and is explained

in the following subsection.

The third international timetabling competition (ITC-2011) had its focus on

high school timetabling. Post et al. [2013] describe the details of the competition

and how the problem is modeled.

3.2 Formulations

The CB-CTT problem consists of scheduling lectures of courses to periods and

rooms, as described in the technical report by Di Gaspero et al. [2007]. The work-

ing days of a week are split into periods for which a timetable has to be found. A

period may correspond to one hour. However, it could be more natural to interpret

a period as two hours, for example, if the university’s lectures are always held in

blocks of two hours.

For each course the number of lectures and the number of attending students

are known in advance, as well as the teacher who holds the course. Furthermore,

each course is a member of one or more curricula, that are also fixed. Student

conflicts are based on these curricula.

Feasible timetables have to satisfy hard constraints, including all lectures have

to be scheduled (Lectures), at most one lecture can take place in a room at a time

(RoomOccupancy), at most one course of the same curriculum or taught by the

same teacher can be held at the same time (Conflicts) and availabilities of teachers

have to be respected (Availability). The availability constraint is represented by a

set of periods for each course where a lecture of the course must not take place.

12

Soft constraints represent features that are nice to have. Consequently, the so-

lution quality is measured in terms of a weighted sum of the soft constraint penal-

ties. One soft constraint addresses the room capacity (RoomCapacity). Whenever

a lecture takes place in a room with a capacity less than the course’s number of

students, each student above the capacity limit counts as one violation. In addi-

tion to the capacity requirements, lectures of the same course should preferably

take place in the same room (RoomStability). Each additional room used by a

course corresponds to one violation. Another soft constraint aims at spreading the

lectures of each course over a predefined number of working days (MinWorking-

Days). Each day less than the required spread is counted as one violation. Finally,

curricula should be as compact as possible (IsolatedLectures). For each curricu-

lum a lecture that is not adjacent to any other lecture of the same curriculum is

counted as one violation.

In addition to the basic formulation of the ITC-2007, Bonutti et al. [2012]

describe more sophisticated formulations, that are summarized in Table 1, where

UD2 refers to the ITC-2007 formulation. H indicates a hard constraint, while a

number represents the penalty of the corresponding soft constraint violation. If a

feature is not incorporated it is expressed by a hyphen.

The curriculum compactness can alternatively be formulated as Windows soft

constraint, that takes the actual waiting time between lectures of the same cur-

riculum into account. For each curriculum each period of waiting time between

two lectures on the same day counts as one violation.

It might be favorable if the daily course load of students is within a given range.

Therefore, the soft constraint StudentMinMaxLoad computes the distance to the

desired daily load for each curriculum and each day as the number of lectures less

or above the range, whereas each of these lectures counts as one violation.

At some universities it might be the case that lecture rooms are located in dif-

ferent buildings that are geographically spread over a certain area. Consequently,

students should not have to attend courses that are scheduled in adjacent periods

and located in different buildings. This circumstance is taken into account by

TravelDistance, such that for each curriculum each occurrence of two temporally

adjacent lectures in different buildings counts as one violation.

13

Formulation UD1 UD2 UD3 UD4 UD5

Lectures H H H H H

Conflicts H H H H H

RoomOccupancy H H H H H

Availability H H H H H

RoomCapacity 1 1 1 1 1

MinWorkingDays 5 5 - 1 5

IsolatedLectures 1 2 - - 1

Windows - - 4 1 2

RoomStability - 1 - - -

StudentMinMaxLoad - - 2 1 2

TravelDistance - - - - 2

RoomSuitability - - 3 H -

DoubleLectures - - - 1 -

Table 1: CB-CTT formulations (Bonutti et al. [2012])

Some course may require rooms that satisfy certain features. The scheduling

of courses to suitable rooms (RoomSuitability) can be incorporated in terms of a

hard constraint or as a soft constraint, in a way that each assignment of a lecture

to a unsuitable room is counted as one violation.

In addition to the curriculum compactness it may be required by some courses,

that their lectures are scheduled adjacently and in the same room, given that they

are held on the same day (DoubleLectures). Each lecture that is non-grouped in

that sense counts as one violation.

3.3 Instances

The benchmark instances for CB-CTT that were used at the ITC-2007 are avail-

able on the competition’s website1 and are called comp01,. . . ,comp21. Several re-

searchers tested their algorithms on their basis, e.g. Abdullah et al. [2012], Müller

[2009] and Lü and Hao [2010].

1http://www.cs.qub.ac.uk/itc2007/Login/SecretPage.php

14

http://www.cs.qub.ac.uk/itc2007/Login/SecretPage.php

In addition to the ITC-2007 instance set, further instances are available on the

CB-CTT website of the Timetabling Research Group at the University of Udine1,

whereas some of them are described by Bonutti et al. [2012]. Four instances called

test1,. . . ,test4 were used by Di Gaspero and Schaerf [2003]. The comp and test

instance sets are real world problems mainly from the University of Udine. The

instances DDS1,. . . ,DDS7 proposed by Bonutti et al. [2012] are derived from real

world cases of various institutions. Furthermore, a small toy instance is available

that is meant to be used for debugging. More recently, four large instances of the

University of Erlangen provided by Moritz Mühlenthaler, nine new Udine instances

and twelve new problems from other Italian institutions were published.

Besides the instance sets and their characteristics the CB-CTT website also

provides some additional features. Researchers can upload their solutions and

lower bounds. Therefore the best known solutions can probably be found on the

website. Furthermore, tools are provided including a solution validator and an

instance generator to create artificial instances for testing proposes.

Bonutti et al. [2012] state a number of characteristics of the comp instances,

shown in Table 2. Some of those are indicators of the problem size, as the number

of courses (C), the number of lectures (L), the number of rooms (R), the number

of periods (P) and the number of days (D). Other characteristics describe how

constrained a problem is. Cu denotes the number of curricula. Co shows the

average percentage of conflicting lectures, TA represents the average availability

of a teacher per lecture and RO denotes the room occupation in percent.

Let kc denote the number of conflicts of a lecture of course c with other lectures.

Consequently, each conflicting course counts as much as its number of lectures.

Conflicts between courses arise if they have a teacher or curricula in common.

Every other lecture of the same course counts as one conflict too. Furthermore, let

lc denote the number of lectures of course c, C the set of all courses and l :=
∑

c∈C lc

the total number of lectures. The conflict percentage of a single lecture is then

computed as kc
l−1

and the average conflict percentage Co as

Co =

∑

c∈C(kc · lc)

l · (l − 1)

1http://satt.diegm.uniud.it/ctt/

15

http://satt.diegm.uniud.it/ctt/

Instance C L R P D Cu Co TA RO

comp01 30 160 6 6 5 14 14.26% 93.1% 88.9%

comp02 82 283 16 5 5 70 8.26% 76.9% 70.8%

comp03 72 251 16 5 5 68 8.43% 78.4% 62.8%

comp04 79 286 18 5 5 57 5.56% 81.9% 63.6%

comp05 54 152 9 6 6 139 22.15% 59.6% 46.9%

comp06 108 361 18 5 5 70 5.40% 78.3% 80.2%

comp07 131 434 20 5 5 77 4.80% 80.8% 86.8%

comp08 86 324 18 5 5 61 4.67% 81.7% 72.0%

comp09 76 279 18 5 5 75 6.79% 81.0% 62.0%

comp10 115 370 18 5 5 67 5.59% 77.4% 82.2%

comp11 30 162 5 9 5 13 15.18% 94.2% 72.0%

comp12 88 218 11 6 6 150 14.28% 57.0% 55.1%

comp13 82 308 19 5 5 66 5.21% 79.6% 64.8%

comp14 85 275 17 5 5 60 7.28% 75.0% 64.7%

comp15 72 251 16 5 5 68 8.43% 78.4% 62.8%

comp16 108 366 20 5 5 71 5.36% 81.5% 73.2%

comp17 99 339 17 5 5 70 5.81% 79.2% 79.8%

comp18 47 138 9 6 6 52 13.34% 64.6% 42.6%

comp19 74 277 16 5 5 66 7.59% 76.4% 69.3%

comp20 121 390 19 5 5 78 5.31% 78.7% 82.1%

comp21 94 327 18 5 5 78 6.61% 82.4% 72.7%

Table 2: Characteristics of the Instances

For each course c unavailabilities are represented by a set of periods when the

course must not take place. Let uc denote the number of unavailable periods of

course c. Given the number of daily periods p and the number of days d, the

availability percentage of a single lecture of course c is defined as ac := 1 − uc

p·d
.

Consequently, the average availability TA is computed as

TA =

∑

c∈C(ac · lc)

l

16

Finally, let r denote the number of rooms. The room occupation RO is then

computed as the total number of lectures divided by the total number of rooms in

all periods, i.e.

RO =
l

r · p · d

4 Mathematical Model

The model for the CB-CTT problem presented in this section is based on the

integer programming formulation proposed by Lach and Lübbecke [2012]. Since

they use a model for a decomposition approach, slight adaptations are made for

an integer programming formulation of the whole problem. A very similar model

is stated by Burke et al. [2011].

4.1 ITC-2007 Formulation

4.1.1 Notation and Decision Variables

The notation used in the model is summarized in Table 3. D denotes the set of

days for the timetable. Each day is divided into periods, where the set of periods

is denoted by P . In each period the same set of rooms R is available. The set of

courses is denoted by C. Each course c has lc lectures that need to be scheduled.

These lectures should be spread over a minimum number of days specified by mc.

Each course belongs to one or more curricula and is held by one teacher. The set

of curricula is denoted by CU and the set of courses belonging to a curriculum cu

is denoted by Kcu. T denotes the set of teachers and Lt the set of courses being

held by teacher t.

For each course c the set of the day-period pairs the course must not be assigned

to is denoted by Uc. On the other hand, A(p,d) denotes the set of courses that can

be scheduled at period p on day d. Each room’s capacity and each course’s number

of students is known. Consequently one can compute the capacity shortage sc,r

for assigning course c to room r. The penalties are denoted by pTYPE with the

corresponding superscript.

17

Symbols Description

P set of periods

D set of days

R set of rooms

C set of courses

CU set of curricula

Kcu set of courses of curriculum cu

T set of teachers

Lt set of courses taught by teacher t

Uc unavailabilities: Uc = {(p, d) : p ∈ P, d ∈ D, c unavailable in (p, d)}

A(p,d) set of available courses at (p, d), i.e. A(p,d) = {c ∈ C : (p, d) /∈ Uc}

sc,r capacity shortage if course c takes place at room r

lc number of lectures of course c

mc minimum spread over working days of course c

pCAP penalty for violating the room capacity

pSTAB penalty for violating the room stability

pDAYS penalty for violating the minimum spread over working days

pCOMP penalty for violating the curriculum compactness

Table 3: Notation of the mathematical model

The timetable is represented by the binary variable xc,d,p,r. It takes the value

1 if a lecture of course c is scheduled at period p on day d in room r. xc,d,p,r is

defined only for day-period pairs for which course c is available. Therefore, the

formulation takes the availability constraint implicitly into account.

Additional binary and integer decision variables are needed in order to formu-

late the soft constraints. vcu,p,d is used to identify isolated lectures of curriculum

cu. yc,r shows whether at least one lecture of course c takes place in room r. Simi-

larly, zc,d indicates if a lecture of course c is held on day d. If the minimum spread

over working days is not satisfied, wc counts the difference to the required number.

The decision variables are precisely defined as follows.

18

xc,d,p,r =

1 if course c is scheduled at period p on day d in room r

0 otherwise

∀d ∈ D, p ∈ P, c ∈ A(p,d), r ∈ R

vcu,p,d =

1 if curriculum cu has an isolated lecture at period p on day d

0 otherwise

∀cu ∈ CU, p ∈ P, d ∈ D

yc,r =

1 if course c takes place in room r at least once

0 otherwise
∀c ∈ C, r ∈ R

zc,d =

1 if course c has at least one lecture on day d

0 otherwise
∀c ∈ C, d ∈ D

wc number of days less than mc, integer, ≥ 0 ∀c ∈ C

Due to the objective function and the corresponding soft constraints that will

be explained later, it would suffice to set the bounds of the decision variables wc,

zc,d and vcu,d,p correctly without enforcing their integer and respectively binary

properties explicitly.

4.1.2 Objective Function

According to the UD2 formulation (Bonutti et al. [2012]) a well created timetable

should fulfill certain properties, as described in section 3.2. While hard constraints

have to be satisfied to achieve feasibility, soft constraints reflect favorable charac-

teristics of the timetable. These convenient features include that students should

have a seat in their lectures, waiting times between lectures of the same curricu-

lum should be avoided and lectures of the same course should be spread over a

predefined number of days and should possibly take place in the same room. The

objective is to minimize the weighted sum of the corresponding penalty terms.

19

min
∑

d∈D,p∈P,c∈A(p,d),r∈R

xc,d,p,r · sc,r · p
CAP

︸ ︷︷ ︸

capacity penalty

+
∑

c∈C

(
∑

r∈R

yc,r − 1

)

· pSTAB

︸ ︷︷ ︸

room stability penalty

+

+
∑

c∈C

wc · p
DAYS

︸ ︷︷ ︸

min days penalty

+
∑

cu∈CU,p∈P,d∈D

vcu,p,d · p
COMP

︸ ︷︷ ︸

curriculum compactness penalty

(1)

The sum over the schedule variable xc,d,p,r weighted by the penalty pCAP times

the respective capacity shortage sc,r for assigning course c to room r yields the

capacity penalty term. By employing the decision variable ycr indicating whether

a lecture of course c is held in room r, one can easily compute the number of

rooms used by the course and hence the corresponding room stability penalty. The

penalty term for not satisfying the minimum spread over working days is computed

as the number of days less than the requirement times the respective weight.

Similarly, for determining the penalty term for the curriculum compactness, one

has to calculate the number of isolated lectures weighted by pCOMP.

4.1.3 Hard Constraints

The availability constraint is implicitly respected by the definition of xc,d,p,r. The

other hard constraints can be formulated as follows.

∑

p∈P,d∈D,(p,d)/∈Uc,r∈R

xc,d,p,r = lc ∀c ∈ C (2)

∑

r∈R,c∈Lt∩A(p,d)

xc,d,p,r ≤ 1 ∀p ∈ R, d ∈ D, t ∈ T (3)

∑

r∈R,c∈Kcu∩A(p,d)

xc,d,p,r ≤ 1 ∀p ∈ R, d ∈ D, cu ∈ CU (4)

∑

c∈A(p,d)

xc,d,p,r ≤ 1 ∀r ∈ R, p ∈ P, d ∈ D (5)

Constraint 2 makes sure that all lectures of the courses are scheduled. Due to

constraint 3 each teacher holds most one lecture at the same time. Constraint 4

20

guarantees that two lectures of the same curriculum are not held in parallel. In

particular, two lectures of the same course will not take place at the same point in

time, since lectures of the same course are also members of the same curriculum.

Finally, constraint 5 respects that a room can accommodate at most one lecture

at a time.

4.1.4 Soft Constraints

The following constraints link the decision variables representing favorable charac-

teristics of the timetable in the objective function with the schedule variable xcdpr.

∑

r∈R,p∈P,(p,d)/∈Uc

xc,d,p,r

︸ ︷︷ ︸

number of lectures of c on d

−zc,d ≥ 0 ∀c ∈ C, d ∈ D (6)

∑

d∈D

zc,d + wc ≥ mc ∀c ∈ C (7)

∑

c∈Kcu∩A(p,d),r∈R

xc,d,p,r

︸ ︷︷ ︸

=1 if cu has a lecture at (p,d)

−
∑

q∈{p−1,p+1},c∈Kcu∩A(q,d),r∈R

xc,d,q,r

︸ ︷︷ ︸

∈{1,2} if cu has at least one lecture at adjacent periods

−vcu,p,d ≤ 0

∀cu ∈ CU, p ∈ P, d ∈ D (8)

∑

d∈D,p∈P,(p,d)/∈Uc

xc,d,p,r

︸ ︷︷ ︸

number of lectures of c in r

−M · yc,r ≤ 0 ∀c ∈ C, r ∈ R (9)

Constraint 6 links zc,d with xc,d,p,r in a way that zc,d can indicate, whether a

course takes place on a particular day. zc,d can only be set to 1 if there is at least

one lecture of course c held on day d. For each course, zc,d and wc are connected

by constraint 7, such that wc counts the number of days less than the required

spread. Note, that due to the objective function and the link with wc, the variable

zc,d will be set to 1 if it is allowed by constraint 6 and if the required spread is not

reached yet. On the other hand, if the spread over days is greater than required,

21

there is no guarantee that each respective zc,d is set 1, because wc can be set to 0

even without considering every day. Consequently, one cannot directly interpret

the values assigned to zc,d. If this feature is demanded, one can overcome this

problem by adding the constraint
∑

r∈R,p∈P,(p,d)/∈Uc
xc,d,p,r −M · zc,d ≤ 0 for each

c ∈ C and each d ∈ D to the model.

Constraint 8 is used to identify isolated lectures, represented by the variable

vcu,p,d. The first term of the inequality constraint takes the value 1 if a lecture of

the corresponding curriculum is held at the particular time and 0 otherwise. The

second term represents the schedule of the previous and the subsequent periods.

If at least one lecture of the same curriculum takes place in an adjacent period,

either 1 or 2 is subtracted and vcu,p,d can take the value 0. Otherwise an isolated

lecture with respect to curriculum cu is identified and vcu,p,d is set to 1. Note, that

for the first and the last period of each day the second term has to be adapted in

a way that the previous and respectively the last period have to be omitted.

Finally, constraint 9 links xc,d,p,r with yc,r. M denotes a large number, whereby

the total number of lectures of the respective course is sufficiently large. The

variable yc,r is set to 1 if at least one lecture of course c is held in room r.

4.2 Extensions

In addition to a model for the UD2 formulation, Lach and Lübbecke [2012] de-

scribe how extensions to the problem can be incorporated, including lunch breaks

for students, curriculum dependent maximum daily loads of lectures, room un-

availabilities and appropriate room sizes. In this subsection it is explained how

the constraints corresponding to the UD3-UD5 formulations can be added to the

previously described model.

4.2.1 Students’ Minimum and Maximum Day-Load

It might be favorable that students have a well balanced timetable, such that they

have at least a few lectures on each day. On the other hand, the students’ daily

load of lectures should not exceed an upper bound. These bounds are denoted

by mmax and mmin, respectively. They could be easily defined in a curriculum-

dependent way, if it is required by the actual situation. The students daily load

22

is represented by the number of lectures of the corresponding curriculum on the

particular day. If the daily load is outside the preferred range, each lecture below

mmin or beyond mmax is penalized by pLOAD.

Given, that the reasonable assumption mmin ≤ mmax holds and that lectures

below mmin are penalized the same as lectures beyond mmax, one non-negative

integer variable ncu,d is sufficient to add this feature to the model, since a daily

load less than mmin excludes an overload and vice versa. ncu,d counts the number

of lectures of curriculum cu on day d less than mmin or greater than mmax and

is defined for each curriculum cu ∈ CU and each day d ∈ D. The following two

constraints link ncu,d with xc,d,p,r.

∑

p∈P,r∈R,c∈Kcu∩A(p,d)

xc,d,p,r

︸ ︷︷ ︸

number of lectures of cu on d

−ncu,d ≤ mmax ∀cu ∈ CU, d ∈ D (10)

∑

p∈P,r∈R,c∈Kcu∩A(p,d)

xc,d,p,r

︸ ︷︷ ︸

number of lectures of cu on d

+ncu,d ≥ mmin ∀cu ∈ CU, d ∈ D (11)

Finally, the following term has to be added to the objective function

∑

cu∈CU,d∈D

ncu,d · p
LOAD

4.2.2 Room Suitability

Courses might have certain requirements regarding the rooms’ equipment, such

that for each course c the set of suitable rooms Rc ⊆ R is given. This circumstance

can be treated either as a soft constraint or a hard constraint. In the former case

assigning a course to a room that does not meet its requirements causes a penalty

of pSUITABLE. Consequently one has to add the sum over all course assignments to

inappropriate rooms weighted by the penalty pSUITABLE to the objective function.

∑

d∈D,p∈P,c∈A(p,d),r∈R\Rc

xc,d,p,r

︸ ︷︷ ︸

assignments to unsuitable rooms

·pSUITABLE

23

In the other case, where room suitability is obligatory, the decision variable

xc,d,p,r has to be defined only for suitable rooms, as it is done for available periods.

Consequently, all constraints have to be adapted accordingly.

4.2.3 Windows

Instead of penalizing isolated lectures as in the curriculum compactness constraint,

one could take the actual waiting time between two lectures of the same curriculum

into account. Each period the students have to wait between lectures is penalized

by pWINDOW. In order to count the waiting time on a particular day, one has to

identify the starting time of the first course and the finishing time of the last course

on that day by the use of two non-negative integer decision variables. bcu,d denotes

the starting time of the first course and fcu,d denotes the finishing time of the last

course of curriculum cu on day d. The relation between the new decision variables

and xc,d,p,r is specified by the following three constraints.

∑

c∈Kcu∩A(p,d),r∈R

xc,d,p,r · (p−M) +M

︸ ︷︷ ︸

= starting time, if a c of cu scheduled at (p, d)

= M , otherwise

≥ bcu,d ∀cu ∈ CU, d ∈ D, p ∈ P (12)

∑

c∈Kcu∩A(p,d),r∈R

xc,d,p,r · (p+ 1)

︸ ︷︷ ︸

= finishing time, if c of cu at (p, d)

= 0, otherwise

≤ fcu,d ∀cu ∈ CU, d ∈ D, p ∈ P (13)

∑

p∈P,c∈Kcu∩A(p,d),r∈R

(xc,d,p,r · p)

︸ ︷︷ ︸

= 0, if no lecture of cu on day d

≥ bcu,d ∀cu ∈ CU, d ∈ D (14)

The term
∑

r∈R xc,d,p,r · p represents the starting time of course c, given that

course c is scheduled on day d at period p. Since each lecture lasts one period,

the finishing time is represented by
∑

r∈R xc,d,p,r · (p + 1). bcu,d and has to be less

or equal than the starting time of each course of curriculum cu scheduled on day

d, specified by constraint 12. Analogously, fcu,d has to be greater or equal than

24

the finishing time of each course of curriculum cu scheduled on day d, as stated in

constraint 13. The adjusted objective function will guarantee that the variables

take the values equal to the starting time of the first course and the finishing time

of the last course, respectively.

M in constraint 12 denotes a large number, whereby the number of periods on

a day is sufficiently large. The formulation with M is needed because if no lecture

is scheduled at a period, the term
∑

r∈R xc,d,p,r · p is equal to 0. However, bcu,d

should not be constrained if no lecture is scheduled at that time. Whenever there

is no lecture of curriculum cu scheduled on day d at all, bcu,d and fcu,d are set to

0, due to the constraints 14 and 13, respectively, resulting in a penalty of 0.

The difference between the finishing time of the last lecture and the starting

time of the first lecture on that day indicates the time a student has to stay at

the university. Subtracting the number of lectures yields the waiting time on that

day. Hence, the following penalty term has to be added to the objective function.

∑

cu∈CU,d∈D

(

fcu,d − bcu,d −
∑

p∈P,c∈Kcu∩A(p,d),r∈R

xc,d,p,r

︸ ︷︷ ︸

number of lectures on day d
︸ ︷︷ ︸

waiting time on day d for students of curriculum cu

)

· pWINDOW

4.2.4 Travel Distance

At some universities, lecture rooms are located in different buildings that might

be geographically spread. In this case one has to take the travel distance between

those buildings into account. Consequently, lectures that are members of the same

curriculum and take place in different buildings should not be temporally adjacent.

Violations are penalized by pTRAVEL. The set of buildings is denoted by B and for

each building b ∈ B its set of rooms is denoted by Rb.

The binary decision variable gcu,d,p keeps track of adjacent lectures of the same

curriculum taking place in different buildings. gcu,d,p has to be defined for all

periods but the first on each day. If a lecture of curriculum cu starts at period

p− 1 and another lecture of the same curriculum starts in the subsequent period

on the same day, the variable gcu,d,p has to be set to 1. This is guaranteed by the

following constraint.

25

∑

c∈Kcu∩A(p−1,d),r∈Rb

xc,d,p−1,r

︸ ︷︷ ︸

=1 if c of cu in b at p− 1

+
∑

c∈Kcu∩A(p,d),r∈R\Rb

xc,d,p,r

︸ ︷︷ ︸

=1 if c of cu in different building at p

−gcu,d,p ≤ 1

∀cu ∈ CU, d ∈ D, p ∈ P \ {1}, b ∈ B (15)

Finally, the number of violations weighted by the corresponding penalty has to

be added to the objective function, described by the following term.

∑

cu∈CU,d∈D,p∈P\{1}

gcu,d,p · p
TRAVEL

4.2.5 Double Lectures

In addition to the compactness of a curriculum, it might be favorable that lectures

of the same course are blocked if they are held on the same day, i.e. they should

be temporally adjacent and located in the same room. This feature may be only

required by a subset of courses N ⊆ C.

The binary variable hc,d,p identifies lectures of course c on day d at period p

without lectures of the same course in adjacent periods in the same room and is

defined only for courses that require double lectures. The non-negative integer

variable uc,d counts the actual number of non-blocked lectures, given that multiple

lectures of course c are scheduled on day d, which in turn is inversely indicated by

the binary variable ac,d.

The following constraints have to be added to the model.

xc,d,p,r −
∑

q∈{p−1,p+1},(q,d)/∈Uc

xc,d,q,r

︸ ︷︷ ︸

≥ 1 if c in adjacent period in same room

−hc,d,p ≤ 0 ∀c ∈ N, d ∈ D, p ∈ P, r ∈ R (16)

∑

d∈D,p∈P,(p,d)/∈Uc,r∈R

xc,d,p,r

︸ ︷︷ ︸

number of lectures of c on day d

−M · (1− ac,d) ≤ 1 ∀c ∈ N (17)

26

∑

p∈P

hc,d,p −M · ac,d ≤ uc,d ∀c ∈ N, d ∈ D (18)

In constraint 16 xc,d,p,r is equal to 1 if a lecture of course c is scheduled at (p, d)

in room r. If there is also a lecture of the same course scheduled at an adjacent

period in the same room, represented by the second term, the lectures are blocked

and hc,d,p can take the value 0. Otherwise a non-blocked lecture of course c on day

d at period p is identified and hc,d,p is set to 1. The second term of constraint 16

has to be adapted adequately for the first and the last period of a day.

If course c has two or more lectures scheduled on day d, the variable ac,d is set

to 0 due to constraint 17, otherwise it can take the value 1. In the constraints 17

and 18 M denotes a large number, whereby the total number of lectures of the

respective course is sufficiently large.

In constraint 18 the first term counts the daily number of non-blocked lectures

of the particular course. If only one lecture of course c is scheduled on day d a

large number is subtracted. Consequently, single non-blocked lectures on a day

will not be counted by uc,d. If there are multiple lectures of course c on day d the

number of non-blocked lectures will be represented by uc,d.

The number of non-blocked lectures weighted by pDOUBLE has to be added to

the objective function.

∑

c∈N,d∈D

uc,d · p
DOUBLE

4.3 Results

In this subsection the solutions of the integer programs of the ITC-2007 instances

are reported. The programs are solved with CPLEX 12.5. The constraints of

the UD2 formulation are used, as described in subsection 4.1. The computational

experiments are conducted on a modern Linux PC with a Intel Core i5-3550 CPU

running at 3.30GHz and 8 GB memory. The stopping criteria for CPLEX for

solving a program is set to 1000 seconds. This is significantly more than the time

allowance of the ITC-2007.

27

The results are presented in Table 4. The column IP shows the results of the

integer programs. In the column Best the best known solutions are given. Bold

numbers indicate optimal solutions. The best known solutions are basically those

that are reported on the CB-CTT website1. The best solutions of the instances

comp05 and comp12 have been found by the proposed ALNS approach.

Instance IP Best

comp01 5 5

comp02 174 24

comp03 162 66

comp04 35 35

comp05 394 284

comp06 1353 27

comp07 2788 6

Instance IP Best

comp08 54 37

comp09 146 96

comp10 64 4

comp11 0 0

comp12 468 298

comp13 128 59

comp14 114 51

Instance IP Best

comp15 187 66

comp16 115 18

comp17 168 56

comp18 118 62

comp19 83 57

comp20 4507 4

comp21 204 74

Table 4: Results of the integer programs of the ITC-2007 instances

Only three instances are solved to optimality. For all other instances CPLEX

returns the best solution found after reaching the stopping condition. Some of the

solutions are far from the best known solutions, even though the time limit is much

higher than the one of the ITC-2007. Furthermore, one has to note that the UD2

formulation incorporates only few features. In practice universities might impose

additional requirements to the timetable, as it is the case for the actually used

formulation at the University of Udine (Di Gaspero et al. [2007]). That would

probably make the problem even harder to solve exactly.

One might conclude that an exact approach is inappropriate for large problems

whenever a timetable is needed within relatively short time. This is in accordance

with Burke et al. [2011] who state that the runtime of the CPLEX MIP solver

limits the suitability of their branch-and-cut procedure for large instances.

1http://satt.diegm.uniud.it/ctt/ [accessed: 2013-09-02]

28

http://satt.diegm.uniud.it/ctt/

5 Solution Approach

The fact that timetabling problems are typically NP-hard and the observations

in the previous section suggest to use heuristic methods to solve the CB-CTT

problem, if a good solution has to be found in reasonable time. Therefore, a

heuristic approach is applied, in particular an Adaptive Large Neighborhood Search

(ALNS) based on the papers by Ropke and Pisinger [2006] and Pisinger and Ropke

[2007]. Its features are described in this section.

ALNS has been developed by Ropke and Pisinger to solve vehicle routing prob-

lems, for which it performs very well. Basically, ALNS repetitively destroys and

repairs an incumbent solution and thereby leading to a gradual improvement. It

is an extension of Large Neighborhood Search proposed by Shaw [1998] and is very

similar to the Ruin and Recreate method by Schrimpf et al. [2000].

Since it is usually too time-consuming in practice to search NP-hard problems

explicitly, some solution approaches explore only subsets of the search space, so-

called neighborhoods. In the survey by Ahuja and Orlin [2002] techniques are dis-

cussed that make use of neighborhoods that grow exponentially in problem size or

are too large to be searched explicitly in reasonable time. The authors call this class

of methods Very Large-Scale Neighborhood Search (VLSN). In their survey VLNS

techniques are categorized into variable-depth methods, network flow based im-

provement algorithms and special cases that are solvable in polynomial time. Even

though LNS does not fit well into either of these categories, Ropke and Pisinger

[2006] argue that it belongs to VLNS because its neighborhoods are to large to be

searched explicitly.

Ahuja and Orlin [2002] notes that locally optimal solutions are generally of bet-

ter quality if the considered neighborhood is larger. However, this gain in quality

comes at the cost of requiring more computation time to explore the neighborhood.

Consequently fewer iterations can be performed within the same amount of time.

In this section term period is used instead of day-period pair to facilitate read-

ability. More precisely, each distinct pair (d, p), where d denotes a day and p

denotes a period in terms of the previously stated model, is simply called period.

29

5.1 Adaptive Large Neighborhood Search

5.1.1 Algorithm

Algorithm 1 describes the LNS method. First, an initial solution has to be created.

In each iteration, parts of the incumbent solution are destroyed and subsequently

repaired to improve the solution gradually, as shown in line 4. New solutions are

accepted according to a certain criterion to become the new incumbent solution

(lines 5 and 6). The algorithm keeps track of the best solution and in the end the

best solution found is returned.

Algorithm 1 LNS (Pisinger and Ropke [2010], p. 407)

1: input: a feasible solution x
2: xb = x
3: repeat

4: x′ = r(d(x))
5: if accept (x′, x) then
6: x = x′

7: end if

8: if c(x′) < c(xb) then
9: xb = x′

10: end if

11: until stop criterion is met
12: return xb

ALNS extends LNS in a way that the selection of destroy and repair operators

is biased towards the best-performing ones, as shown in Algorithm 2. Initially,

the weights of all operators are set to 1 (line 3). Hence, each operator has the

same selection probability until weights are recomputed. In each iteration, a de-

stroy operator and a repair operator are selected separately by a roulette wheel

mechanism (line 5). After applying the operators to the incumbent solution the

corresponding weights are updated depending on their performance (line 13).

Algorithm 2 ALNS (Pisinger and Ropke [2010], p. 409)

1: input: a feasible solution x
2: xb = x
3: wd = (1, . . . , 1), wr = (1, . . . , 1)
4: repeat

5: select destroy and repair methods
d ∈ D, r ∈ R, using wd and wr

6: x′ = r(d(x))
7: if accept (x′, x) then

8: x = x′

9: end if

10: if c(x′) < c(xb) then
11: xb = x′

12: end if

13: update wd and wr

14: until stop criterion is met
15: return xb

30

The algorithm makes use of several destroy and repair operators, where basi-

cally the destroy operators are responsible for releasing parts of the search space

that are subsequently explored by a repair heuristic. Pisinger and Ropke [2010]

point out that combinations of destroy and repair operators correspond to neigh-

borhoods Ni that might be structurally different, as shown in Figure 2. These

neighborhoods do not necessarily overlap, since different repair heuristics might

direct the search towards different regions of the solution space.

x

N1

N2

N4

N3

N5

N ∗

Figure 2: Structurally different neighborhoods (Pisinger and Ropke [2010], p. 412)

Pisinger and Ropke [2010] highlight similarities of ALNS with other approaches

that operate on different neighborhoods too. Variable Depth Neighborhood Search

methods make use of neighborhoods that differ only with respect to their depth,

i.e. without loss of generality the k neighborhoods Ni can be ordered such that

N1 ⊂ · · · ⊂ Nk. Variable Neighborhood Search (VNS) by Mladenović and Hansen

[1997] also operates on different neighborhoods that might be structurally different.

Given an ordered set of k neighborhoods {N1, . . . ,Nk}, VNS basically explores one

neighborhood Ni and whenever being trapped in a local optimum the algorithm

continues with the next neighborhood Ni+1. Each time a better solution is found

VNS jumps back to the first neighborhood N1.

31

5.1.2 Operator Selection

A very important feature of ALNS is the operator selection mechanism and par-

ticularly the adjustment of the operators’ selection probabilities according to their

performance. Ropke and Pisinger [2006] suggest to select the operators based on a

roulette wheel principle. This is done for destroy and repair operators separately.

Given that there are k operators with weights wi, i ∈ {1, . . . , k}, operator j is

selected with the probability
wj

∑k
i=1 wi

.

At the end of each iteration a value σ is added to the score of the destroy and

repair operators that have been used. This value depends on the solution quality.

σ =

σ1 if the solution is a new global best

σ2 if the solution is better than the current one and not accepted before

σ3 if accepted, worse than the current solution and not accepted before

This mechanism encourages operators that find solutions that have not been

accepted as a new incumbent solution before. The value added to the score de-

pends on the solution quality. Remarkably, even finding a deteriorating solution

is rewarded if the solution is completely new, because the operator might help

to direct the algorithm to regions of the search space that have not been visited

before.

The search process of the algorithm is divided into segments of size s. Each

time the algorithm has performed s iterations, the end of the segment is reached

and the weights are recomputed based on the operators’ scores achieved during

the last segment. Given the old weight wold
j of operator j the formula to compute

the new weight wnew
j is given by

wnew
j = wold

j · (1− r) + r ·
πj
φj

where r ∈ [0, 1] denotes the reaction factor, πj denotes the the score achieved

during the last segment and φj denotes the number of times operator j has been

called in the last segment.

32

5.1.3 Destroy Limit

In each iteration n lectures are removed from the current schedule and reinserted by

a repair heuristic, whereas the other lectures are fixed on their current positions. n

is an integer that is randomly drawn from the interval [1, nmax], where nmax denotes

the destroy limit, i.e. the maximum number of lectures that can be removed. The

reference destroy limit nmax
0 is equal to d percent of the total number of lectures.

Pisinger and Ropke [2007] suggest to use an upper bound for the maximum number

of destroyed events. Therefore, in case that nmax
0 exceeds an upper bound u, it is

set to u.

The destroy limit is gradually decreased, such that in the last iteration only
1
δ
of the reference destroy limit nmax

0 can be destroyed at most. Therefore, the

destroy limit is particularly low when the iteration limit m is close. At this stage

it is rather unlikely that destroying very large fractions of the solution will lead to a

better solution immediately and deteriorating solutions are unlikely to be accepted

by the acceptance scheme. A motivation for decreasing the iteration limit based

on computational tests is given in section 6.

In each iteration the destroy limit nmax(t) is computed based on the function

Nmax(t) := nmax
0 − tx of the current iteration t. Setting Nmax(m) = 1

δ
· nmax

0 for

the last iteration m leads to

nmax(t) =
⌊

Nmax(t)
⌋

=
⌊

nmax
0 − tlogm(

δ−1
δ

·nmax
0)

⌋

=
⌊

nmax
0 − t

ln((δ−1)·nmax
0)−ln(δ)

ln(m)

⌋

A plot of the destroy limit as a function of iterations is shown in Figure 3

for an reference destroy limit of 110, an iteration limit of 200,000 and a decrease

parameter δ = 4.

The destroy limit might be reset to its initial level whenever the algorithm was

not able to improve the globally best solution for a number of iterations, indicating

that more diversification is needed. In this case the particularly high destroy limit

in the very beginning of the search is useful to escape from the local optimum.

This feature will be described in the following subsection in more detail.

The decreasing destroy limit significantly increases the number of iterations

within a given time limit, since fixing smaller parts of a solution typically requires

less computation time. On the other hand, by destroying less lectures one could

33

20

40

60

80

100

120

0 50000 100000 150000 200000

d
e
s
t
r
o
y

l
i
m
i
t

iterations

Figure 3: Destroy limit as a function of iterations

potentially loose diversification which in turn could outweigh the gain in perfor-

mance caused by the larger number of iterations. Consequently, when setting the

decreasing parameter δ this trade-off has to be taken into account.

5.1.4 Acceptance Scheme

Ropke and Pisinger [2006] suggest to embed this algorithm in a Simulated An-

nealing framework, developed by Kirkpatrick et al. [1983]. A new solution s′ is

accepted with the probability e−
f(s′)−f(s)

T , where f denotes an evaluation function,

s the current solution and T the temperature. Consequently, all solutions being

equal or better than the current solution are accepted, and eventually also worse

solutions. The starting temperature is defined implicitly, such that in the begin-

ning a solution that is ψ-percent worse than the initial solution is accepted with

a probability of 50%. The respective formula to compute the initial temperature

Tstart is given by

Tstart = −
ψ · f(s0)

ln 0.5

34

where s0 denotes the initial solution. In the end of each iteration the temperature

is decreased by the factor ρ, representing the cooling rate.

The cooling rate is calculated for each instance individually with regard to the

instance’s total number of iterations. The reason is that due to the time limit of

the ITC-2007, the number of iterations varies significantly between instances. The

parameter ρ is set for a reference value of 200,000 iterations. Given an instance-

specific iteration limit m the respective cooling rate is calculated as ρ
200000

m .

The temperature is reheated with regard to the soft penalties of the current

solution, whenever h consecutive iterations have not found a new globally best solu-

tion. Temperature reheats have already been used by other authors, e.g. Connolly

[1992]. This feature helps to escape from local optima.

Even though the search is guided by the current solution, a criterion for re-

heating on the basis of accepted current solutions seems less appropriate, since

for course timetabling problems it is likely that there are many solutions with the

same objective value. Moreover, some of these solutions can probably be reached

by small changes of the current solutions. Consequently, reheats would be unlikely

even if the algorithm was trapped in a particular region.

Additionally, whenever the temperature is reheated the destroy limit is set to

its initial level. The decreasing speed of the destroy limit and the cooling rate are

adjusted to the number of remaining iterations.

Clearly, there exist more elaborate rules for reheating than simply setting one

iteration limit that has to suit all instances and all phases in the search. Since the

convergence of the solution is mainly controlled by the cooling rate, which in turn

is computed for each instance individually and is recomputed after each reheat,

one might argue that the reheat limit should be set on the basis of the remaining

iterations after each reheat as well. It turns out that applying this rule would lead

either to an undesirable high reheat limit in the beginning of the search or to very

short intervals of reheating in the end, though.

Alternatively one could think about a rule on the basis of the number of so-

lutions within an certain range of the best solution. This best solution refers to

the best solution found since the last reheat, because in the new region of the

search space it might be the case that the solution does not converge to the glob-

ally best one. On the one hand, this rule would guarantee that the solution had

35

sufficient time to converge. But on the other hand, even regions would be searched

intensively, where the solution would converge to a relatively weak one.

5.1.5 Infeasible Solution Allowance

The algorithm does not prohibit infeasible solutions. Benefits and drawbacks of

allowing infeasible solutions are discussed in section 2.2, referring to Lewis [2008].

An obvious advantage is that the algorithm is able to make shortcuts by traversing

infeasible regions of the search space. Furthermore, forcing repair heuristics to find

feasible solutions would be time consuming, in particular when large portions of

the solution have been destroyed. Alternatively, one could reject all infeasible

solutions. In this case, however, one might waste good intermediate solutions.

On the other hand, maneuvering the search through infeasible regions involves

some risk. For problems with a very constrained search space it might be difficult

to find a feasible solution again when the algorithm has entered highly infeasible

regions, i.e. when many lectures have been left unscheduled. However, it could be

especially important to allow infeasible solutions when facing lots of constraints,

since without shortcuts the algorithm might hardly be able to reach different areas.

Consequently, there are conflicting requirements on the penalty function of

infeasible solutions. While the former issue would ask for high infeasibility penal-

ties, the latter would urge for low penalties. During the implementation phase it

turned out that in case of low penalties the algorithm performs poorly on very con-

strained instances because occasionally it generated mainly infeasible intermediate

solutions for these instances. This indicates that the first issue might be dominant.

Furthermore, it is coherent with the intuition that reaching different regions of a

very constrained search space might be less problematic when using large neigh-

borhood structures. Therefore, the used penalty function for unassigned lectures

is proportional to a measure that indicates how constrained an instance is.

The penalty p(t) for each unscheduled lecture is calculated as a function of the

current iteration t as

p(t) =

(

α1
u

l
+ α2

k

l

)

·
r

l
·
f(s0)

l
︸ ︷︷ ︸

constant

+pmax
t
m

36

The first part does not depend on the current iteration.
(
α1

u
l
+ α2

k
l

)
· r

l
is a

measure of how constrained the problem is, where α1 and α2 are parameters that

can be increased if weights should be set differently or unassigned lectures are

less desired in general. u
l
indicates the average number of unavailable periods per

lecture, where u denotes the number of unavailabilities weighted by the affected

number of lectures and l denotes the total number of lectures. k
l
represents the av-

erage number of conflicts with other lectures. k denotes the sum over each lecture’s

number of conflicts with other lectures, where both teacher conflicts and curricu-

lum conflicts are taken into account. Using the same notation as for computing

the average availability percentage TA and the average conflict percentage Co in

section 3.3, the respective formulas are u =
∑

c∈C(uc ·lc) and k =
∑

c∈C(kc ·lc). The

terms have individual weights α1 and α2 since they affect the search differently.

More precisely, unavailable periods of some lectures probably restrict the problem

more heavily than an additional curriculum does.

The sum of these terms is multiplied by r
l
indicating the room occupation,

where r denotes the total number of rooms available in the timetable, computed

as the number of rooms times the number of daily periods times the number of

days. This incorporates that a large number of conflicts and many unavailabilities

might be less problematic if rooms are only sparsely occupied.
f(s0)

l
represents the average penalty per lecture of the initial solution s0, ne-

glecting penalties for unscheduled lectures. This term is incorporated, since the

unassigned penalty should be proportional to the regular penalties that are typi-

cally caused by a lecture at the respective instance.

The last term of the function depends on the current iteration. pmax denotes the

worst case penalty for scheduling a single lecture. It corresponds to the maximum

sum over all potential soft penalties, including the room stability penalty, the

capacity penalty for assigning the lecture to the smallest room and the curriculum

compactness penalty assuming that the lecture is isolated with respect to all of its

curricula. The penalty for violating the minimum spread over days is excluded,

since scheduling an additional lecture can only improve the solution in terms of

the required spread. t
m

describes the fraction of the current iteration t over the

iteration limit m. Hence, the last term is very low in the beginning, in order

to accept infeasible solutions more frequently. However, in the last iteration an

37

unscheduled lecture causes a particularly high penalty, such that all alternative

assignments would be preferred.

The globally best solution in the algorithm refers to the feasible solution with

the least soft penalties. In case no feasible solution has been found, the solution

with the least soft penalties among the solutions with the smallest number of

unscheduled lectures is taken. However, the incumbent solution is identified on

the basis of the sum over soft penalties and penalties for unassigned lectures.

5.2 Destroy Operators

5.2.1 Related Removal

The related removal operator aims to remove similar lectures and is borrowed from

Shaw [1998]. The relatedness measure between two courses i and j is defined as

R(i, j) := β ·
min(oi, oj)

max(oi, oj)
+

kij
gi + 1

where oi denotes the number of students taking course i, kij denotes the number of

conflicts between the courses i and j taking into account curriculum and teacher

conflicts, gi denotes the number of curricula of course i and β denotes a weight.

Consequently, the first term shows the relatedness with respect to the number of

students. The rationale behind this is that courses with similar capacity require-

ments might be easily swapped without causing capacity violations. The second

term describes a conflict ratio between the two courses. The reason for adding this

term is that moving a course to another period requires the removal of conflicting

courses. Due to the conflict term the relatedness matrix might be asymmetric.

Also note, that the relatedness measure is the same for all lectures of a course.

The operator is described in Algorithm 3. It starts with randomly selecting a

scheduled lecture and adding it to the set B, that represents the set of lectures that

will be removed from the timetable. As long as the cardinality of the set is less

than the number of lectures to remove, a lecture b is randomly drawn from B. The

function c(b) in line 8 maps a lecture b to its course c(b). The list of all scheduled

lectures that are not in B and do not belong to the same course of b is denoted by

A and is sorted in descending order with respect to the relatedness to b. A lecture

38

is drawn from A by computing its index as ⌊|A| · υκ1⌋, where υ denotes a random

number in [0, 1) and κ1 denotes a parameter to adjust the selection probabilities

of related lectures. If κ1 is large it is very likely to select the most related lecture.

On the other hand, if κ1 = 1 each lecture has the same selection probability. The

drawn lecture is then added to B and the process is repeated.

Algorithm 3 Related removal (Shaw [1998])

1: input: requested removals n ∈ N,
schedule S, parameter κ1 ∈ R

2: set of lectures to remove B = ∅
3: set F containing all lectures in S
4: select random lecture f ∈ F
5: B = B ∪ {f} F = F \ {f}
6: while |B| < n do

7: select random lecture b ∈ B

8: list A = F \ {f ∈ F |c(f) = c(b)}
9: sort A in descending order with re-

spect to relatedness to b
10: draw random number υ ∈ [0, 1)
11: a = A[integer(|A| · υκ1)]
12: B = B ∪ {a}, F = F \ {a}
13: end while

14: remove all lectures in B from S

The reason for excluding other scheduled lectures of the same course from being

selected is that otherwise this procedure would most likely remove all lectures of the

same course before proceeding with another course, since each course is obviously

most related to itself. However, the operator is supposed to remove single lectures

instead of whole courses.

5.2.2 Random Removal

The random destroy operator removes lectures from the schedule at random.

Ropke and Pisinger [2006] also employ a random removal heuristic. They note

that the random removal can be seen as a special case of the related removal

operator used by Shaw [1998].

5.2.3 Worst Removal

Ropke and Pisinger [2006] suggest to use a destroy operator that removes highly

penalized assignments with a high probability, since reinserting these events may

improve the solution. However, it is hard to directly associate single lectures with

certain penalties. For example, if a course has two lectures and they take place in

different rooms, one does not know which lecture actually caused the penalty for

39

violating the room stability constraint. Consequently, one cannot unambiguously

determine which lecture should be removed to make an improvement most likely.

The association of penalties with courses is easier and can be done straightfor-

ward for violations of the capacity constraint, the minimum spread and the room

stability. The curriculum compactness constraint is interpreted such that lectures

that are isolated with respect to a curriculum are rated as being responsible for the

corresponding penalty, even though the violation could be removed by scheduling

another lecture of the same curriculum at an adjacent period.

The worst destroy algorithm is shown in Algorithm 4. It is very similar to the

one proposed by Ropke and Pisinger [2006] but with the slight difference that this

version operates on the course level for the previously mentioned reason, while the

original worst destroy algorithm by Ropke and Pisinger selects individual requests

for removal.

Algorithm 4 Worst removal (Ropke and Pisinger [2006])

1: input: requested removals n ∈ N,
schedule S, parameter κ2 ∈ R

2: list of all courses A
3: sort A by descending penalty
4: while n > 0 do

5: draw random number υ ∈ [0, 1)

6: a = A[integer(|A| · υκ2)]
7: A = A \ {a}
8: remove all la lectures of a from S
9: n = n− la
10: end while

Courses are sorted in descending order with respect to their associated penal-

ties. As long as the requested number of removals is not reached, a course is

selected by computing its index in the list (line 6) and all its lecture are removed

from the schedule. The selection mechanism is similar to the one proposed by

Shaw [1998] for the related removal. It incorporates some randomness to avoid

the same outcome of different calls of the operator with the same input. In terms

of removals each destroyed course counts as much as its number of scheduled lec-

tures. It is likely that the requested number of removals is occasionally exceeded.

For example this could happen when the algorithm requests only one removal but

a course with two scheduled lectures is selected. In general the limit might be

exceeded whenever destroy operators are applied that remove multiple lectures at

once.

40

5.2.4 Random Penalty Removal

The random penalty destroy operator randomly selects lectures of courses with

a positive penalty value in the sense of the worst removal operator and removes

them from the schedule. In case that all of these lectures are removed and the

requested number of removals is not reached other lectures are removed at random

up to the limit.

5.2.5 Random Period Removal

The random period destroy operator randomly selects a period, or more precisely

a day-period pair, and removes all its scheduled lectures. Each destroyed period

counts as much as its number of scheduled lectures in terms of removals.

Rescheduling the lectures within a particular period allows changing their room

assignments without affecting the curriculum compactness and the spread over

days. Therefore, the operator might be particularly useful to improve the solution

with respect to room related constraints, i.e. the room stability constraint and the

capacity constraint.

5.2.6 Room Day Removal

The room day removal operator selects a day and a room at random. All lectures

that are assigned to the room on that day are removed from the schedule. The

operator continues with removing lectures from other day-room pairs until the

requested number of removals is either reached or exceeded.

Removing all lectures from a particular room on a particular day enables them

to get reassigned to different periods on that day while preserving the penalty level

of the room-related constraints and the spread over days. Thereby the operator

focuses on improving the curriculum compactness.

5.2.7 Isolation & Capacity Removal

The penalties caused by capacity violations and isolated lectures can be associated

with individual lectures. The isolation & capacity destroy heuristic is very similar

to the worst removal operator by Ropke and Pisinger [2006] shown in Algorithm 4

41

but instead of removing whole courses, individual lectures are selected for removal.

Furthermore only a subset of all penalties is considered by this operator, such

that the list of potentially removable lectures is sorted in descending order with

respect to their capacity and compactness penalties. The parameter κ3 allows to

adjust whether high penalty lectures should be selected almost certainly or more

randomly.

5.2.8 Spread & Stability Removal

The spread & stability removal operator focuses on the penalties that are neglected

by the isolation & capacity operator, i.e. the penalties for violating the required

spread over days and the room stability. For tackling these violations it is reason-

able to remove whole courses from the schedule because of the difficulty of making

single lectures responsible for penalties of these types. The algorithm is essentially

the same as the worst removal operator by Ropke and Pisinger [2006] described

in Algorithm 4. The ordering of the removable courses is based only on the penal-

ties for violating the day spread and the room stability, though. The selection is

controlled by the parameter κ4.

5.2.9 Curriculum Removal

The curriculum destroy algorithm is basically the same as worst removal operator

by Ropke and Pisinger [2006] given in Algorithm 4, however curricula are selected

instead of courses. Destroying a curriculum corresponds to removing all of its

lectures from the timetable. The removable curricula are sorted in descending

order with respect to their curriculum compactness penalties. All other penalties

are ignored. The corresponding selection parameter is called κ5.

This operator aims to reduce the curriculum penalties. Furthermore, lectures

might be moved to periods that have been formerly forbidden due to curriculum

conflicts. Consequently the operator might be particularly useful for instances

that are very constrained with regard to the curricula.

42

5.2.10 Teacher Removal

The teacher destroy operator is used to ease restrictions due to teacher conflicts.

Teachers are randomly selected and all of their lectures are removed from the

schedule. Thereby a lecture might be moved to a period that has been previously

blocked by another lecture taught by the same teacher.

5.3 Repair Operators

The algorithm makes use of several repair operators. They can be categorized into

2-stage and 1-stage heuristics. The 2-stage heuristics assign lectures to periods

first and find a room schedule in the second stage. The 1-stage heuristics evaluate

period and room assignments at once and scheduling is performed either in a greedy

way or on a regret basis.

5.3.1 2-Stage Operators

The procedure that assigns lectures to periods is summarized in Algorithm 5. The

algorithm receives a vector v as input, where each element corresponds to a course’s

number of lectures that have to be scheduled. Courses are ordered according to

a priority rule and the lectures of the course that is in line are scheduled at their

best position with respect to an evaluation criterion. In case no feasible insertion

position is left, conflicting lectures can be removed from the schedule that is under

construction. In the end the algorithm returns a schedule Sp for each period p and

a list of lectures U for which no assignment has been found. Details are described

in the following subsections.

5.3.2 Priority Rules

In the beginning of the lecture-period assignment the courses that have to be

scheduled are ordered with descending difficulty according to a certain rule, either

saturation degree (SD), largest degree (LD) or random. These priority rules are

summarized in Carter et al. [1996]. Even though there are further rules mentioned

in the literature, only LD, SD and random are used because the priority rules do

not seem to be critical for the algorithm, as shown in section 6.3. The rule selection

43

Algorithm 5 Lecture-period assignment

1: input: vector v of lectures to assign,
vc: # lectures to assign of course c

2: list of unscheduled lectures U = ∅
3: list of courses C = {c : vc > 0}
4: schedule Sp = ∅ ∀ periods p ∈ P
5: sort C according to priority rule
6: compute potential insertion posi-

tions Pc for each c ∈ C
7: initialize list of periods from which

course c can remove lectures Rc = Pc

8: while C 6= ∅ do

9: select first course c1 = C[1]
10: while vc1 > 0 do

11: if Pc1 6= ∅ then

12: evaluate all p ∈ Pc1

13: determine best period pbest
14: Spbest = Spbest ∪ {l(c1)}
15: // l(c1): lecture of c1
16: Rc1 = Rc1 \ {pbest}
17: update Pc for each c ∈ C
18: else if Rc1 6= ∅ then

19: evaluate all p ∈ Rc1

20: determine best period pbest
21: conflicting courses K in pbest
22: Spbest = (Spbest\l(K))∪{l(c1)}
23: // l(K): conflicting lectures

in pbest that belong to K
24: vk = vk + 1 ∀k ∈ K
25: place K at beginning of C
26: Rc1 = Rc1 \ {pbest}
27: update Pc for each c ∈ C
28: else

29: U = U ∪ {l(c1)}
30: end if

31: vc1 = vc1 − 1
32: end while

33: C = C \ {c1}
34: if saturation degree rule then

35: reorder C according to rule
36: end if

37: end while

38: check if any lecture in U can be
scheduled due to removed lectures

39: return U , Sp ∀ periods p ∈ P

is based on a roulette wheel principle. The selection probabilities are computed by

using performance scores in combination with the previously described adaptive

mechanism.

The largest degree rule used by Broder [1964] prioritizes events with the largest

number of conflicts with other lectures. Since this number is the same for all

lectures of a course, sorting lectures corresponds to sorting their courses. The

saturation degree rule, proposed by Brélaz [1979], arranges lectures in ascending

order with respect to their number of available periods for scheduling. Again, this

number is the same for all lectures of the same course, therefore only the courses

have to be sorted. The number of available periods has to be adjusted dynamically

during the scheduling process. More precisely, each time all lectures of a course are

scheduled the saturation degree of the remaining courses has to be recomputed.

44

The random rule simply orders events randomly. To be consistent with the other

rules, the random ordering is again applied to the courses.

Even if a repair operator is called with the same settings and the same re-

quested insertions, the heuristic should produce different schedules. Therefore the

saturation degree and the largest degree are perturbed by some random number.

More precisely, whenever the saturation degree or the largest degree is computed a

random number drawn from [−ν, ν] is added, where ν denotes a parameter. Incor-

porating perturbation is not a new feature for ALNS. In fact Ropke and Pisinger

[2006] show that perturbation is important for the algorithm’s performance.

5.3.3 Lecture-Period Assignment

As soon as the courses are sorted, all conflict-free insertion positions of the course

that is in line are evaluated and one lecture of the course is placed at its best

position. Note, that in the first stage all hard constraints can be taken into account,

i.e. curriculum conflicts, teacher conflicts and each period’s number of available

rooms. Basically two operators for resolving the first stage are implemented, i.e.

2-stage best and 2-stage mean. When evaluating the periods for insertion one has

to bear in mind, that only parts of the schedule are destroyed in each iteration

and therefore some lectures remain scheduled and occupy rooms. Moreover, one

has to consider that the first stage aims to find a period assignment, consequently

it is hard to incorporate room related penalties accurately.

The 2-stage best heuristic evaluates the periods in the following way. If as-

signing the lecture to the considered period will lead to isolations with respect to

curricula, the curriculum compactness penalty is added as many times as the com-

pactness will be violated by the assignment. On the other hand, the assignment

may remove an isolation of an already scheduled lecture, which reduces the inser-

tion cost. Whenever the required spread over days of the corresponding course is

not reached and no other lecture of the same course has been scheduled on the

considered day, the respective penalty is subtracted, since the solution will be im-

proved. If some lectures of the course have already been scheduled and none of

the rooms where these lectures take place are available in the considered period,

a new room will be used by the course and consequently the penalty for violating

45

the room stability is added. Finally, the capacity penalty can only be roughly

estimated. It is reasonable to assume that if the lecture has the xth most students

of all courses that are assigned to the period but do not have a room yet, will get

the xth largest available room in the second stage. The resulting capacity penalty

is added to the insertion cost. Ties between the lowest cost insertion positions are

broken randomly, as it is done also for the other repair operators.

The penalties for violating the minimum spread over days, the room stability

and the curriculum compactness are incorporated by the 2-stage mean heuristic

in the same way as before, the capacity penalty is treated differently, though.

The idea is that in the first stage it is favorable to achieve an even spread of

the courses over periods with respect to the number of students and the capacity

of the available rooms. First, a reference utilization of the room capacities u

is calculated by dividing the sum of the number of students of all lectures that

have to be scheduled Σl by the sum of the capacities of all available rooms Σr,

i.e. u = Σl

Σr
. Then a capacity limit is computed for each period individually as

η ·u·Σp, where Σp denotes the sum of the capacities of the available rooms in period

p and η denotes a parameter that controls the penalty-free number of students.

The capacity penalty added to the insertion cost is proportional to the number

of students of the assigned lectures exceeding the capacity limit of the particular

period. Even though one might argue, that a good spread over periods does not

only depend on the mean but also on other moments, incorporating the variance

has not improved the performance of the operator.

Ropke and Pisinger [2006] suggest to perturb the insertion cost by adding a

random number. Therefore, two additional operators are implemented, 2-stage

best noise and 2-stage mean noise, that are based on the previously described

heuristics, but each time a period is evaluated a noise value is added to the inser-

tion cost. The noise value is drawn randomly from [−µ · pmax, µ · pmax], where µ

denotes a parameter and pmax denotes the worst case insertion cost of one lecture

as described in subsection 5.1.5. Compared to the original operators, which are

only indifferent between equally best insertion positions, the noise feature leads to

additional diversification. On the other hand, the noise operators might achieve

slightly worse results if suboptimal insertion positions are selected.

46

5.3.4 Backtracking Procedure

After a lecture is scheduled at its best position, the algorithm continues with

the same course if there are still lectures that need to be scheduled. Otherwise

it proceeds with the next course according to the order. In case a course is in

line that cannot be scheduled conflict-free, a backtracking mechanism is applied.

Carter et al. [1996] describe a backtracking procedure and note that such proce-

dures have been used by several authors before. In general backtracking corre-

sponds to removing one or multiple events from the schedule in order to assign an

event that could not be scheduled otherwise due to conflicts. These procedures

have to incorporate rules to decide about the insertion position and to prohibit

cycles.

The implemented backtracking mechanism is similar to the one described by

Carter et al. [1996]. Only lectures that do not belong to the fixed part of the

current schedule can be removed. Let Rc denote the set of periods from where the

considered course c is allowed to remove lectures. Each insertion position p ∈ Rc

is then evaluated in the following way. Let Bp denote the set of all lectures that

have to be removed from period p in order to schedule a lecture of course c at that

time. Furthermore, let Ap denote the set of lectures that have to be removed from

period p but do not have an alternative conflict-free insertion position left.

The first criterion for the insertion period selection is preferring the period

with the smallest number of lectures to remove that do not have any alternative

conflict-free insertion positions left, i.e. selecting p : |Ap| ≤ |Aq| ∀q ∈ Rc. The

rationale behind this is that removing these lectures will lead to large disruptions.

Ties are broken by choosing the period with the smallest number of lectures that

have to be removed in total, i.e. p : |Bp| ≤ |Bq| ∀q ∈ Rc. Each of these lectures

has been scheduled according to an evaluation criterion and hence each alternative

assignment is probably worse than the current one. In case the procedure is still

indifferent, the period with the lowest insertion cost for the considered course is

chosen. A more precise calculation of the effects of removing courses in terms of

the evaluation criterion is most likely not worth the computational effort, not least

because the method is not exact anyway.

47

The courses of the removed lectures are reinserted in the queue in a way that

they are next in line for being scheduled, whereby courses without any potential

conflict-free assignment are prioritized the most. However, in case of the saturation

degree rule the order is still dynamically adjusted. To avoid cycles, a course that

has a lecture assigned to a period once must not remove events from the same

period at a later time. Note that this mechanism does not necessarily lead to a

feasible solution even if such a solution exists.

5.3.5 Lecture-Room Assignment

The first stage heuristic stops when either all lectures are assigned to periods or

only lectures remain that cannot be scheduled conflict-free and are not allowed

to remove lectures from any period due to the condition that prohibits cycles.

In the second stage lectures are assigned to rooms. At this stage only the room

stability penalty and the capacity penalty can be affected, whereas the penalties

corresponding to the curriculum compactness and the spread over days are pre-

determined by outcome of the first stage. Furthermore, the final schedule will be

free of teacher and curriculum conflicts due to the first stage heuristic.

The room assignment is performed either by the greatest heuristic or the match

heuristic. The operator selection is based on the adaptive mechanism described in

subsection 5.1.2. Without interdependencies between periods it would be optimal

for each period to assign the lecture with the most students to the largest room, the

lecture with the second most students to the room with the second largest capacity

and so on. The room stability constraint makes the evaluation more difficult. In

particular the assignment is not independent of the order in which the periods are

processed anymore. Therefore, both operators find schedules heuristically.

The greatest heuristic selects a period randomly. Its lectures are sorted in

descending order with respect to their number of students and are scheduled one

after another. Each available room in the period is evaluated, taking the capacity

penalty and the rooms where other lectures of the same course are scheduled into

account. The room stability penalty is added in case no other lecture of the course

takes place in the considered room in any other period. The lecture is assigned

to the room with the lowest insertion cost. Ties are broken by preferring rooms

48

with the larger capacity. If there are several rooms with the lowest insertion cost

and the equally largest capacity, one of these rooms is selected at random. The

rationale for selecting the room with the largest capacity is that lectures with many

students are processed first. Even though assigning lectures with fewer students

to large rooms does not affect the capacity violation, it might be beneficial to use

smaller rooms with regard to the room stability. In case all lectures of a period

are scheduled the heuristic proceeds with the next randomly selected period. The

heuristic stops when all lectures of each period are scheduled.

The match heuristic processes one period after another in a random order and

for each period also the lectures are processed randomly. The evaluation of the

available rooms is performed in the same way as for the greatest heuristic, however,

ties are broken by selecting the room with the smallest capacity. The reason is

that since lectures are scheduled in a random order, there might be lectures left

that require large rooms. This is particularly important for the ITC-2007 problem

formulation, where a significant mismatch between capacity and the number of

students might dominate all other penalty terms.

5.3.6 Example: Evaluation

The following example illustrates the 2-stage best operator, in particular its period

evaluation. Assume that a timetable has to be found for eight courses with their

attributes given in Table 5. The column Teacher indicates the courses’ teachers

and Curricula shows the curricula to which the courses belong to. Students shows

each course’s number of students. The number of lectures of the courses is given

in Lectures. Spread shows the number of days over which the lectures have to

be spread at least, such that the corresponding constraint is not violated. The

timetable consists of four days d1, . . . , d4 with three periods p1, . . . , p3 each and

three rooms r1, . . . , r3. Room r1 has a capacity of 100 students, room r2 can

accommodate 50 students and room r3 has seats for 20 students. Teacher t4 is not

available on day d4 therefore lectures of course c4 must not be scheduled then.

The solution shown in Figure 4 is the current solution that shall be improved

by the removing and reinserting lectures. Obviously some assignments violate

soft constraints, e.g. course c1 scheduled at (d1, p1, r1) is isolated with respect

49

Course Teacher Curricula Students Lectures Spread

c1 t1 cu1 89 3 2

c2 t2 cu2 32 4 3

c3 t3 cu1, cu2 57 2 2

c4 t4 cu3 24 3 2

c5 t3 cu3 18 4 3

c6 t3 cu3 16 3 2

c7 t5 cu4 54 3 3

c8 t1 cu4 35 3 3

Table 5: Example: Course attributes

to curriculum cu1, the room capacity is exceeded by course c2 at (d1, p2, r3), the

required spread over days is not reached by course c7 and c2 violates the room

stability constraint. These assignments are marked gray in the figure.

p1

p2

p3

d1 d2 d3 d4

r1 r2 r3 r1 r2 r3 r1 r2 r3 r1 r2 r3

c1

c1

c1c2 c2c2

c2

c4

c4

c4

c3

c3

c5

c5

c5

c5

c6

c6c6 c7

c7

c7

c8

c8c8

Figure 4: Example: Current schedule

Assume that the random destroy operator removes the lectures from (d1, p1, r1),

(d2, p1, r1), (d2, p3, r1), (d3, p2, r1) and (d3, p3, r2), as shown in Figure 5a. Next,

lectures are assigned to periods by the 2-stage best operator in the random order

c1 → c8 → c7 → c3. The room assignment is performed by the greatest operator.

50

Starting with course c1 the 2-stage best heuristic evaluates all its potential periods

for insertion. Due to curriculum conflicts course c1 must not be assigned to (d1, p3)

and (d4, p2). The period (d4, p3) is blocked since another course held by the same

teacher is scheduled then. Finally, all rooms at (d2, p2) are already occupied. All

other periods are available and are therefore evaluated.

The insertion costs for scheduling c1 at the potential insertion positions are

given in Table 6, where the notation for the penalties of section 4.1 is used. For

example, scheduling a lecture of c1 at (d1, p1) leads to an isolation of the lecture

with respect to curriculum cu1. On the other hand, 2-stage best assumes that

c1 will get the largest available room r1 and therefore the capacity constraint is

satisfied. r1 is the only room that is already in use by a scheduled lecture of course

c1. Since this room is still available at that time the room stability penalty is not

added either. Furthermore, an assignment on that day reduces the penalty for

violating the required spread over days.

A negative example for insertion is (d4, p1). Scheduling c1 at that period will

lead to an assignment to a too small room in the second stage. Furthermore, the

penalty for violating the room stability is added. The isolation of c1 in the next

period is removed, though.

Position Cost

(d1, p1) pCOMP − pDAYS

(d1, p2) −pCOMP − pDAYS

(d2, p1) pCOMP − pDAYS

(d2, p3) pCOMP − pDAYS

Position Cost

(d3, p1) 39 · pCAP + pSTAB + pCOMP − pDAYS

(d3, p2) pCOMP − pDAYS

(d3, p3) pCOMP − pDAYS

(d4, p1) 39 · pCAP + pSTAB − pCOMP

Table 6: Example: Insertion costs of course c1

According to the evaluation shown in Table 6, (d1, p2) is the best insertion

position for course c1 and therefore one of its lectures is scheduled then. Since

there are still lectures of c1 that need to be scheduled, the algorithm continues

with c1. The insertion position (d1, p1) is now the best choice. Due to the lecture

of c1 that has just been scheduled in the next period, the insertion at (d1, p1)

does not violate the curriculum compactness anymore. The lectures of the other

courses are scheduled accordingly. The final timetable after scheduling all lectures

51

is shown in Figure 5b. Compared to the initial timetable the solution has been

improved by removing four compactness violations and one spread violation.

p1

p2

p3

d1 d2 d3 d4

r1 r2 r3 r1 r2 r3 r1 r2 r3 r1 r2 r3

c1

c1

c1c2 c2c2

c2

c4

c4

c4

c3

c3

c5

c5

c5

c5

c6

c6c6 c7

c7

c7

c8

c8c8

(a) Gray: Lectures to remove

→

p1

p2

p3

d1 d2 d3 d4

r1 r2 r3 r1 r2 r3 r1 r2 r3 r1 r2 r3

c1c1

c1

c2 c2c2

c2

c4

c4

c4c3 c3

c5

c5

c5

c5

c6

c6c6 c7c7c7

c8

c8

c8

(b) Gray: Reinserted lectures

Figure 5: Example: Destroy and repair

5.3.7 Initial Solution

The initial solution is generated by applying the 2-stage best heuristic in combi-

nation with the SD rule. The room assignment is found by the greatest heuristic.

The initial solution is not necessarily feasible, however for the ITC-2007 instance

set the 2-stage best heuristic is typically able to find a feasible one.

5.3.8 1-Stage Operators

Ropke and Pisinger [2006] employ a greedy heuristic and regret heuristics within

their ALNS framework. Accordingly, a greedy and a regret heuristic are used as

1-stage operators for the algorithm of this theses.

For each course c ∈ H , where H denotes the set of courses with lectures

that have to be scheduled, the greedy heuristic evaluates all its potential insertion

positions Gc = {(d, p, r) ∈ D×P ×R | assignment c to (d, p, r) is feasible} by the

function f(c, g) that maps the assignment of a lecture of course c to position g ∈ Gc

onto its insertion cost. A lecture of the course cbest = argminc∈H ming∈Gc
f(c, g),

i.e. the course with the lowest insertion cost, is then scheduled at its best position

gbest = argming∈Gcbest
f(cbest, g).

52

On the contrary, the regret heuristic decides on the basis of regret values,

which lecture is scheduled next at its best position. The regret value indicates

the opportunity cost for not assigning a lecture to its currently best position.

The insertion positions gi,c of course c are sorted in ascending order with respect

to their insertion cost, i.e. i < j ⇒ f(c, gi,c) ≤ f(c, gj,c). The regret value

r(c) of the k-regret heuristic is computed for each course c ∈ H as the sum of

the differences between the course’s best insertion position g1,c and the i-th best

insertion positions gi,c, i = 2, . . . , k, i.e. r(c) =
∑k

i=2 |f(c, g1,c) − f(c, gi,c)|. A

lecture of the course cbest = argmaxc∈H r(c), i.e. the course with the largest regret

value, is then scheduled at its best position g1,cbest .

Since the insertion cost is the same for all lectures of a course, the evaluation

is performed only for courses. The assignment to periods and to rooms is done at

once, hence it is easier to calculate the penalties than for two-stage approaches.

The penalties regarding the curriculum compactness, the spread over days and the

room stability depend on lectures that have already been scheduled, including the

lectures that belong to the fixed part of the schedule and those that have been

assigned by the heuristic previously.

Each room-period pair is evaluated in the following way. The capacity penalty

is computed as the number of students exceeding the room’s capacity weighted

by the corresponding penalty. For each curriculum of the considered course the

adjacent periods are checked whether a lecture of the same curriculum is held.

If the assignment isolates the lecture with respect to curricula, the respective

penalty is added as many times as there are isolations. On the other hand, in case

an isolation of another lecture is removed, the curriculum penalty is subtracted.

The room stability penalty is added if lectures of the same course have already

been scheduled and none of them takes place in the considered room. Finally, if

the required spread over days is not reached yet and no lecture of the same course

has been scheduled on the considered day, the penalty for violating the minimum

spread is subtracted.

The heuristics’ performance can be improved slightly by further encouraging

the spread over days. The penalty for violating the spread constraint is added, if

another lecture of the same course takes place on the considered day, regardless of

the satisfaction of the required spread. The reason for this could be that it is hard

53

for the algorithm to satisfy the minimum spread condition. Penalties resulting

from violations of other constraints might be more easily handled. For example,

if a destroy operator removes all lectures of the same period these lectures can be

rearranged, such that the room related penalties can be reduced without affecting

other constraints. Another example would be the removal of all lectures scheduled

on the same day in the same room. In this case the repair procedure can focus

only on the curriculum compactness without worsening any other penalty. On the

contrary, the minimum spread condition cannot be treated separately.

There is no backtracking mechanism implemented in the 1-stage heuristics and

the scheduling order does not depend on the number of available insertion positions

so far. To avoid too many unscheduled lectures, courses with few periods left

for insertion are encouraged by adjusting the evaluation function of the greedy

heuristic and the computation of the regret value.

In the greedy heuristic the penalty for unassigned lectures of the current itera-

tion, computed as stated in subsection 5.1.5, is added to the insertion cost of the

considered position if the number of available periods is greater than the number

of the course’s unscheduled lectures. Therefore, the insertion costs of courses with

their number of available periods being less or equal than their number of lectures

to schedule tends to be lower than the insertion costs of other courses. Since the

penalty for unassigned lectures increases over iterations, this gap gets larger as

the algorithm proceeds. Note that the decision of whether the unassigned penalty

term should be added depends on the number of available periods instead of room-

period pairs. The reason is that lectures of the same course require distinct periods

due to conflicts with each other.

In case of the regret heuristic an adaption of the evaluation function is not

needed since for each decision the k best alternatives are considered. If less than k

positions are available the insertion costs of the missing alternatives are represented

by the unassigned penalty of the current iteration. Therefore, one has to set k in

a way that sufficiently many insertion positions are taken into account to penalize

a lack of alternatives appropriately. Here, a 5-regret heuristic is employed.

As suggested by Ropke and Pisinger [2006] two additional noise operators are

implemented, denoted by greedy noise and regret noise. The evaluation of the

insertion positions is perturbed in the same way as for the 2-stage operators. Each

54

time an alternative is evaluated a random number drawn from [−µ · pmax, µ · pmax]

is added to the insertion cost, where µ denotes a parameter and pmax the worst

case insertion cost.

It turns out that the reparation phase of the algorithm is typically responsible

for approximately two thirds of the total computational effort for most of the

ITC-2007 instances. Compared to the other repair heuristics, the regret heuristics

require significantly more computation time. Clearly, there is no linear relationship

between the problem size and the additional computation time needed by the regret

heuristics. For most of the ITC-2007 instances the regret heuristics take on average

about three to five times as long as the greedy heuristics to repair a solution and

even slightly more compared to 2-stage heuristics.

Two measures are set to overcome this imbalance. First, insertion positions,

whose insertion costs are much worse than the actual penalty for unscheduled

lectures, are disregarded for the respective courses. In particular, an insertion

position is discarded if the capacity penalty of the considered position minus the

best possible benefit by scheduling the lecture, i.e. removing compactness penalties

of all of its curricula and improving the spread over days, is greater than the penalty

for not scheduling the lecture. Consequently, less alternatives have to be sorted

and the computation time is reduced. On the other hand, infeasible solutions

become more likely.

Pisinger and Ropke [2007] suggest to normalize the operators’ scores by their

computational effort in case of strongly varying computation times of the employed

heuristics, in order to achieve a good trade-off between quality and time. Hence,

the second measure is to update the repair heuristics’ selection probabilities with

respect to their computation times. More precisely, the average computation time

of 2-stage best is treated as a reference computation time. Each time the repair

heuristics’ weights are updated, the respective score is multiplied by the average

computation time t2stagebest of 2-stage best and divided by the average computa-

tion time tj of the considered repair heuristic j. Using the same notation as in

subsection 5.1.2 the formula to compute the weights wnew
j is modified to

wnew
j = wold

j · (1− r) + r ·
πj
φj

·
t2stagebest

tj

55

Each time a segment’s end is reached, the average computation times are up-

dated by computing

tnewj = toldj · (1− r) + r ·
τj
φj

where r denotes the same reaction factor as before, tnewj denotes the new average

computation time of heuristic j, toldj denotes the previous average computation

time of operator j and τj denotes the sum of the computation times of operator j

in the last segment. As before, φj denotes the number of calls of operator j in the

last segment. As a consequence, the selection probabilities of the regret heuristics

are reduced.

6 Computational Experiments

In this section computational results are presented. The algorithm is tested on the

ITC-2007 CB-CTT instances that are described in section 3 and compared with

other algorithms. Further experiments include the analysis of the importance of

each operator with regard to the solution quality and the effects of disabling certain

features of the algorithm. The plots are generated with Octave v.3.6.2.

6.1 Parameter Tuning

The algorithm incorporates several parameters. The parameter tuning as well as

the selection of operators for the final algorithm are based on the average solution

quality of the instances comp01,. . . ,comp14. It seems reasonable to make decisions

on the basis of these instances, since they have been available for the participants

of the ITC-2007 for tuning their algorithms. This allows a fair comparison in

particular with Müller [2009], the winner of the CB-CTT track of the ITC-2007.

Initial parameter values have been either found during the implementation

phase or are borrowed from Ropke and Pisinger [2006]. For setting the parameters

appropriately, the algorithm’s change in performance is evaluated when altering

one value at a time and keeping the others fixed. This is done for all parame-

ters in parallel, though. Typically a slightly greater and a slightly lower value is

56

checked for each parameter. The average penalty over 5 runs on the instances

comp01,. . . ,comp14 is computed. The iteration limit basically corresponds to the

time limit of the ITC-2007 adjusted to the computational power of the machine.

After each parameter value has been evaluated, the parameters are set to the values

that performed best. This new setting is the basis for the next round. After the

second round there are no significant differences observable, therefore the tuning

is stopped at this point. The final parameter setting is given in Table 7.

Parameter Value Description

ψ 6% SA: Initially accept ψ-percent worse solution with 50%

ρ 0.999959 SA: Cooling rate for reference of 200,000 iterations

h 50000 SA: Reheat after h iterations

σ1 30 ALNS: Score for new global best

σ2 15 ALNS: Score for new, accepted, better than current

σ3 18 ALNS: Score for new, accepted, worse than current

s 50 ALNS: Segment size

r 0.1 ALNS: Reaction factor for weight adjustment

α1 0.35 Infeasibility penalty: Unavailability weight

α2 0.05 Infeasibility penalty: Conflict weight

d 30% Destroy limit: Maximum destroy percentage

u 110 Destroy limit: Upper bound destroy events

δ 4 Destroy limit: Decrease parameter

β 1 Relatedness measure: Number of students weight

κ1 5 Related removal: Selection probability

κ2 8 Worst removal: Selection probability

κ3 10 Isolation & capacity removal: Selection probability

κ4 5 Spread & stability removal: Selection probability

κ5 3 Curriculum removal: Selection probability

η 1.3 2-stage mean: Factor for penalty-free extra capacity

ν 6 Noise: Priority rule, noise ∈ [−ν, ν]

µ 0.04 Noise: Insertion cost, noise ∈ [−µ · pmax, µ · pmax]

Table 7: Parameter setting

57

It might be more precise to base decisions on the average of 10 runs. Further-

more combinations of different values of several parameters could be evaluated,

instead of altering just one at a time. This would take interdependencies between

parameters into account, which might be particularly important for parameters

that are obviously connected, e.g. the scores for adapting the selection proba-

bilities. However, such an exhaustive tuning would be very time consuming for

that many parameters. Moreover, for most of the parameters the algorithm does

not react very sensitive on slight alterations of their values. A significant gain in

performance is particularly possible by setting the cooling rate carefully, though.

6.2 Results

In this subsection the algorithm’s performance on the ITC-2007 CBB-CTT in-

stances is presented. In order to generate comparable results, the algorithm’s time

limit has to be set according to the benchmarking tool provided on the competi-

tion’s website1. However, since several parameters and functions of the algorithm

make use of the iteration limit, the benchmarking tool is used to determine the

iteration limit for each instance, which in turn is used as stopping condition. Due

to the fact that ALNS incorporates some randomization, the actual computation

time of a single run might slightly deviate from the requested time limit.

To set the iteration limits adequately a computer with an AMD Turion X2

Ultra Dual-Core Mobile TM-82x2 processor, 4 GB memory and an Ubuntu 13.10

64-bit operating system is used. Since the benchmarking tool and the algorithm

are supposed to run on a single processor machine, one core is switched off, i.e.

starting with the boot option maxcpus=1. This leads to a time limit of 480 seconds.

For determining the iteration limit the 5 runs’ average is computed and rounded.

Setting the iteration limit according to the average over 5 runs is also done by

Clark et al. [2008] who rank fifth on the competition’s CB-CTT track. Bellio et al.

[2013] use an iteration limit as stopping criterion as well.

Even when using a time limit instead of an iteration limit as stopping criterion,

an iteration limit has to be set anyway. Among others, the iteration limit is used

to compute the destroy limit in each iteration, which has a significant influence on

1http://www.cs.qub.ac.uk/itc2007/index_files/benchmarking.htm

58

http://www.cs.qub.ac.uk/itc2007/index_files/benchmarking.htm

the runtime. Consequently, whenever the iteration limit has been determined, it

has to be checked whether it coincides with the employed iteration limit. As long

as they deviate from each other, the employed iteration limit has to be adjusted

and one has to rerun the process.

The final results are generated on a more modern computer with a Intel Core

i5-3550 CPU running at 3.30GHz, 8 GB memory and a Linux Mint release 14 64-bit

operating system by making use of the previously generated iteration limits. This

PC is clearly able to generate results faster. Its new hardware makes it probably

inappropriate for determining the iteration limits, though.

The final results on the instances comp01,. . . ,comp21 are shown in Table 8,

where ALNS is compared with the algorithms by Abdullah and Turabieh [2012],

Bellio et al. [2013], Abdullah et al. [2012] and the two best algorithms of the ITC-

2007, i.e. the algorithms by Müller and Lü and Hao. The results are either those

of the competition or borrowed from the respective papers, as stated in the table’s

footnotes.

In column ALNS avg. the algorithm’s average results over 10 runs with random

seeds are presented, while ALNS best shows the respective best outcome of these

runs. In this context one has to note, that these best results do not necessarily

correspond to the overall best results found by ALNS. In particular, according to

the CB-CTT website1 the algorithm found new best solutions for the instances

comp05 and comp12 during the tuning phase with slightly different run times,

though.

The results that correspond to the competition’s algorithms and the one by

Abdullah et al. [2012] are also averages over 10 runs, while Abdullah and Turabieh

[2012] apply 11 runs and Bellio et al. [2013] use 31 runs. Cells that are marked

gray indicate that the corresponding algorithm performs best compared to the

other ones on the respective instance. The column Best refers to the best known

solutions, whereas bold numbers indicate proven optimality.

ALNS is superior to the others on six instances and clearly outperforms the

best algorithms of the ITC-2007. The algorithm by Abdullah and Turabieh [2012]

performs best overall, though. The algorithm is typically able to find the optimal

solution for the instances comp01 and comp11 and occasionally also for comp04.

1http://satt.diegm.uniud.it/ctt/ [accessed: 2013-09-02]

59

http://satt.diegm.uniud.it/ctt/

Inst. Abd.1
ALNS

Bellio2 Müller3 Abd.4 LüHao3 Best5
avg. best

comp01 5.00 5.00 5 5.16 5.00 5.00 5.00 5

comp02 36.36 47.10 41 55.93 61.30 53.90 61.20 24

comp03 74.36 75.80 69 80.87 94.80 84.20 84.50 66

comp04 38.45 36.20 35 39.48 42.80 51.90 46.90 35

comp05 314.45 311.40 297 340.87 343.50 339.50 326.00 284*

comp06 45.27 54.00 48 55.64 56.80 64.40 69.40 27

comp07 12.00 18.10 9 28.68 33.90 20.20 41.50 6

comp08 40.82 43.10 40 45.03 46.50 47.90 52.60 37

comp09 108.36 105.10 100 106.96 113.10 113.90 116.50 96

comp10 8.36 17.10 12 23.26 21.30 24.10 34.80 4

comp11 0.00 0.00 0 0.00 0.00 0.00 0.00 0

comp12 320.27 326.50 316 337.80 351.60 355.90 360.10 298*

comp13 64.27 67.60 62 74.70 73.90 72.40 79.20 59

comp14 64.36 57.00 53 58.51 61.80 63.30 65.90 51

comp15 72.73 76.90 69 79.93 94.80 88.00 84.50 66

comp16 23.73 36.50 30 39.54 41.20 51.70 49.10 18

comp17 76.36 78.70 72 79.29 86.60 86.20 100.70 56

comp18 75.64 70.90 65 80.90 91.70 85.80 80.70 62

comp19 66.82 66.70 60 67.80 68.80 78.10 69.50 57

comp20 13.45 38.90 24 47.74 34.30 42.90 60.90 4

comp21 100.73 103.40 93 104.19 108.00 121.50 124.70 74

Avg. 74.37 77.90 71.43 83.44 87.22 88.13 91.13 63.29

1 Tabu-based memetic approach, Abdullah and Turabieh [2012]
2 Simulated annealing, Bellio et al. [2013]
3 http://www.cs.qub.ac.uk/itc2007/winner/finalorder.htm
4 Multi-start Great Deluge, Abdullah et al. [2012]
5 http://satt.diegm.uniud.it/ctt/ [accessed: 2013-09-02]
* New best solution found by ALNS during the tuning phase

Table 8: Average results for the CB-CTT ITC-2007 instances

60

http://www.cs.qub.ac.uk/itc2007/winner/finalorder.htm
http://satt.diegm.uniud.it/ctt/

Statistics about the generated results are presented in Table 9. All numbers

correspond to the average over the 10 runs. The column Limit refers to the

iteration limits of the instances. Found shows the iteration when the best solution

was found as percentage of the iteration limit. In this context one has to note that

the relatively small numbers for comp01 and comp11 can be explained by the early

findings of the respective optimal solution.

Inst. Limit Found Inf. Accept 2-stage Greedy Regret Reh.

comp01 710k 44.34% 10.01% 47.08% 0.88% 3.71% 34.22% 8.4

comp02 310k 77.22% 10.05% 41.89% 11.23% 8.00% 12.83% 1.9

comp03 350k 78.04% 5.30% 45.79% 4.90% 4.84% 7.62% 2.3

comp04 300k 63.22% 0.64% 45.97% 0.50% 0.67% 0.96% 1.8

comp05 560k 67.05% 6.01% 50.00% 5.98% 5.62% 6.90% 5.0

comp06 270k 73.05% 3.76% 35.39% 2.59% 3.43% 6.63% 0.9

comp07 220k 77.61% 3.96% 43.44% 3.65% 3.12% 5.91% 0.5

comp08 260k 65.36% 2.81% 42.64% 2.15% 2.60% 5.03% 1.8

comp09 300k 78.33% 2.90% 42.22% 2.15% 2.81% 5.60% 0.6

comp10 220k 90.69% 3.95% 42.22% 4.46% 3.40% 4.54% 0.6

comp11 190k 18.28% 0.25% 32.81% 0.00% 0.00% 1.11% 2.7

comp12 370k 65.87% 2.20% 33.00% 1.09% 1.63% 6.49% 2.2

comp13 290k 63.89% 0.43% 43.81% 0.25% 0.47% 0.93% 1.7

comp14 280k 60.62% 2.16% 48.16% 2.29% 1.60% 3.42% 1.8

comp15 360k 69.18% 5.23% 47.37% 4.93% 4.82% 7.15% 2.4

comp16 250k 78.08% 4.13% 43.15% 3.78% 3.87% 5.72% 1.0

comp17 230k 70.52% 3.41% 44.75% 3.44% 2.86% 4.61% 0.8

comp18 520k 63.05% 0.12% 9.26% 0.01% 0.03% 0.72% 5.2

comp19 360k 69.68% 5.04% 42.94% 4.05% 4.78% 8.39% 1.9

comp20 210k 83.86% 11.12% 37.79% 12.02% 6.01% 19.14% 0.5

comp21 250k 74.38% 6.07% 43.53% 6.09% 5.02% 8.73% 0.9

Table 9: Statistics of the intermediate solutions

Inf. indicates the percentage of produced infeasible solutions. In Accept the

number of accepted infeasible solutions is given as a percentage of all infeasible

solutions. 2-stage, Greedy and Regret correspond to the percentage of infeasi-

61

ble solutions generated by 2-stage repair operators, greedy heuristics and regret

heuristics, respectively. It is interesting to note that neither the 2-stage repair

operators nor the greedy operators are generally superior with respect to the num-

ber of generated infeasible solutions. This is particularly remarkable because only

the 2-stage repair operators have a backtracking mechanism implemented. Con-

sequently, prioritizing lectures by means of the evaluation function proves to be

sufficient to generate mainly feasible solutions for these instances. Unsurprisingly,

the regret operators generate more infeasible solutions because it discards highly

penalized insertion positions.

Finally, the column Reh. shows how often the temperature was reheated. Since

the reheating parameter is set independently of the actual iteration limit, only some

instances have enough iterations in total to reheat the temperature several times.

Still, the feature of reheating the temperature is very useful. Disabling this feature

would lead to an deterioration of 3.04% of the solution quality. This comparison

is based on the average over all instances with 10 runs each. The iteration limits

were adjusted for the algorithm without reheating, however the parameter settings

were kept.

Figure 6 shows how reheating affects the developments of the current solution

and the best solution. The left figure refers to a run of comp05. The peaks of

the series indicate reheats and hence the acceptance of worse solutions. The right

figure shows a run of comp06 without reheats.

200

400

600

800

1000

1200

1400

0 100000 200000 300000 400000 500000

o
b
j
e
c
t
i
v
e

v
a
l
u
e

iterations

best solution
current solution

(a) comp05

0

100

200

300

400

500

600

700

800

0 50000 100000 150000 200000 250000

o
b
j
e
c
t
i
v
e

v
a
l
u
e

iterations

best solution
current solution

(b) comp06

Figure 6: Solution convergence

62

6.3 Additional Experiments

The tests of this subsection are based on the instances comp01,. . . ,comp21 with 10

runs on each instance. Furthermore, the parameters are always set to the values

that are stated in subsection 6.1, even though slight adjustments might be required

to achieve the best results. Unless specified otherwise, the same iteration limits

are used as in the previous subsection.

In Table 10 operator statistics are listed indicating which operators are essential

for a good performance. The column Selection presents the average selection

frequencies of the operators in percent. Deter. indicates the average deterioration

of the solution quality, given that the respective operator is removed while keeping

all other operators. One has to note that 10 runs per instance might be insufficient

to draw conclusions from very small deviations.

Operator Selection Deter.

Random 14.91% 0.72%

Rand. penalty 11.91% 1.74%

Rand. period 13.58% 2.90%

Curriculum 2.66% 0.34%

Teacher 5.98% 0.82%

Worst 6.23% 0.92%

Related 10.03% 1.48%

Iso. & cap. 15.21% 2.00%

Spread & stab. 7.06% 2.03%

Room day 12.42% 1.97%

Greatest 19.49% 1.11%

Match 19.85% 1.25%

Operator Selection Deter.

2-stage best 26.18% 0.54%

2-stage mean 3.42% 1.41%

Greedy 38.31% 2.36%

Regret 16.19% 1.94%

2-stage best n. 7.47% 1.63%

2-stage mean n. 2.27% 0.90%

Greedy noise 4.31% 1.58%

Regret noise 1.85% 1.25%

SD 14.04% 0.08%

LD 14.48% 1.40%

Random order 10.82% 0.85%

Table 10: Operator statistics

With regard to the destroy operators there is a tendency observable that oper-

ators which remove single lectures (e.g. random penalty, isolation & capacity) are

more valuable than the ones that remove whole courses (e.g. curriculum, worst).

Furthermore the operators random period and room day prove to perform well,

63

as these operators are able to improve the solution with respect to particular soft

constraints, while preserving the solution structure regarding other constraints.

Greedy is the most important repair operator. However, regret might gener-

ate solutions of even better quality, its selection rate is reduced due to its high

computation time, though. On the contrary to the findings of Ropke and Pisinger

[2006], adding noise to the evaluation function does not seem to be very critical

for the algorithm’s performance. Even without the use of any noise operator the

deterioration amounts to only 0.67%. The reason for this might be that the differ-

ent operators lead to a sufficient diversification even without employing additional

perturbation. The room assignment operators perform equally well. The priority

rule LD tends to be more important than the other ones. The smaller selection

rate of the random rule may be explained by the fact that SD and LD already

incorporate a noise term, which makes a completely random ordering less relevant.

Table 11 compares the average operator selection rates of the instances comp05

and comp08, where the former is characterized by a large number of curricula and

many unavailabilities. The results indicate that for problems with different charac-

teristics the selection rates deviate significantly for some operators. For example,

the curriculum operator is applied more regularly for comp05, since resolving cur-

riculum conflicts is probably critical for this highly constrained instance. However,

the more evenly distributed selection rates of comp05 might be partly explained by

its large number of reheats, leading to higher acceptance rates and thus to larger

scores for all operators.

The development of the operators’ weights over iterations is shown in Figure

7 for single runs of the instances comp05 and comp08. The series of all operators

but the noise repair operators are represented. The peaks of the repair operators’

series may be explained by short computation times of the respective operators in

some segments, which in turn leads to higher weights. The increase in the destroy

operators’ weights of comp05 at some points correspond to reheats, which leads

to higher acceptance rates and hence to larger scores. The series of comp08 show

that the weights of some operators converge to zero relatively fast. This is in

accordance with the small selection rates of the corresponding operators, shown

in Table 11.

64

0

10

20

30

40

50

0 100000 200000 300000 400000 500000

w
e
i
g
h
t
s

iterations

2-stage best
2-stage mean

greedy
regret

(a) Destroy operators: comp05

0

2

4

6

8

10

12

14

0 100000 200000 300000 400000 500000

w
e
i
g
h
t
s

iterations

random
random penalty
random period

curriculum
teacher

(b) Repair operators: comp05

0

2

4

6

8

10

12

14

0 100000 200000 300000 400000 500000

w
e
i
g
h
t
s

iterations

worst
related

isolation capacity
room day

(c) Repair operators: comp05

0

5

10

15

20

0 50000 100000 150000 200000 250000

w
e
i
g
h
t
s

iterations

2-stage-best
2-stage-mean

greedy
regret

(d) Destroy operators: comp08

0

2

4

6

8

10

12

14

0 50000 100000 150000 200000 250000

w
e
i
g
h
t
s

iterations

random
random penalty
random period

curriculum
teacher

(e) Repair operators: comp08

0

2

4

6

8

10

12

14

0 50000 100000 150000 200000 250000

w
e
i
g
h
t
s

iterations

worst
related

isolation capacity
room day

(f) Repair operators: comp08

Figure 7: Progression of the operators’ weights

65

Destroy Operator comp05 comp08

Random 12.75% 18.48%

Random penalty 11.74% 10.45%

Random period 11.46% 17.44%

Curriculum 7.46% 2.15%

Teacher 10.98% 4.37%

Worst 7.80% 4.49%

Related 9.81% 10.80%

Iso. & cap. 10.66% 10.41%

Spread & stab. 7.28% 7.38%

Room Day 10.06% 14.03%

Repair Operator comp05 comp08

2-stage best 25.64% 25.95%

2-stage mean 8.66% 1.90%

Greedy 23.78% 45.99%

Regret 12.82% 14.23%

2-stage best n. 10.38% 6.38%

2-stage mean n. 5.66% 1.41%

Greedy noise 9.42% 3.23%

Regret noise 3.63% 0.91%

Table 11: Operator selection rates for comp05 and comp08

An ordinary LNS with an uniformly distributed operator selection and adjusted

iteration limits performs 1.78% worse than ALNS. However, by removing the noise

operators LNS can be improved such that ALNS and LNS perform approximately

equally well. This improvement does not come as a surprise, since discarding the

noise operators barely affects the average performance of ALNS, as already noted.

Furthermore, the noise operators are among those with the smallest selection rate

in ALNS and are thus overrepresented in LNS.

Figure 8 shows the effects of destroying different numbers of lectures with

regard to accepted solutions and new best solutions. The histograms are based on

the average over 10 runs of comp06 without reheating and without decreasing the

destroy limit. Similar patterns can be observed for other instances. The x-axis of

each plot refers to the value that is passed to the destroy operator as the requested

number of removals. This value might slightly deviate from the actual number of

destroyed lectures, as noted previously. The y-axis indicates either the number of

accepted solutions or the number of new best solutions resulting from repairing

a partial solution with the respective number of removals. The search is split

into segments, each corresponding to one third of the total number of iterations.

Histograms are plotted for each segment.

66

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100

n
u
m
b
e
r

a
c
c
e
p
t
e
d

events destroyed

(a) Accepted solutions in [0, 90000]

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100

n
u
m
b
e
r

a
c
c
e
p
t
e
d

events destroyed

(b) Accepted solutions in (90000, 180000]

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100

n
u
m
b
e
r

a
c
c
e
p
t
e
d

events destroyed

(c) Accepted solutions in (180000, 270000]

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100

n
u
m
b
e
r

n
e
w

b
e
s
t

events destroyed

(d) New best solutions in [0, 90000]

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100

n
u
m
b
e
r

n
e
w

b
e
s
t

events destroyed

(e) New best solutions in (90000, 180000]

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100

n
u
m
b
e
r

n
e
w

b
e
s
t

events destroyed

(f) New best solutions in (180000, 270000]

Figure 8: Benefit of different destroy limits, comp06

67

Unsurprisingly, the figures indicate that it is comparatively unlikely that re-

moving a large number of lectures will lead to a new best solution immediately.

However, these solutions are also barely accepted in later stages of the search.

Therefore, destroying a large number of lectures cannot contribute much to the

solution quality as the search proceeds. On the other hand, repairing partial solu-

tions with many unscheduled lectures is relatively costly in terms of computational

effort. Consequently the destroy limit is reduced as a function of the iterations.

Discarding the feature of reducing the destroy limit over iterations leads to a

deterioration of 7.54%, given that the iteration limits are adjusted and the param-

eter setting is kept. However, one has to note that in this context it is likely that

the algorithm requires a retuning of some parameters. In particular, the param-

eter d that specifies the maximum destroy percentage might have to be reduced.

Furthermore, the reheat parameter h has to be adjusted to the new iteration limits.

The evaluation functions of the greedy and regret heuristics incorporate an

extra penalty for assigning lectures to days with scheduled lectures of the same

course. Disabling this feature leads to a deterioration of 0.44%.

Without the measure to improve the regret heuristics’ computation times, i.e.

discarding very weak alternatives, and without taking the computation time for

calculating the repair operators’ weights into account, the solution quality is on

average 1.85% worse, given that the iteration limits are adjusted appropriately.

7 Conclusion

The presented method for solving the Curriculum-Based Course Timetabling prob-

lem is based on the Adaptive Large Neighborhood Search by Ropke and Pisinger

[2006]. Additional features are implemented, including a reduction of the destroy

limit over iterations, reheating the temperature for simulated annealing, allowing

infeasible solutions and taking the repair operators’ computation times into ac-

count when adjusting their weights. Most notably it turns out that destroying

large portions of the solution is less beneficial as the search proceeds. On the con-

trary to the insights of Ropke and Pisinger, adding perturbation to the evaluation

of possible insertion positions does not improve the performance significantly.

68

The algorithm incorporates several destroy and repair operators. Some of which

are adapted versions of the ones that have been used by Ropke and Pisinger [2006],

while additional operators tackle the structure of timetabling problems. The de-

stroy operators that have proven to be most effective are those that remove single

lectures instead of whole courses and operators that focus on certain constraints

while preserving solution characteristics with respect to other constraints.

The function for evaluating lectures’ insertion positions performs slightly better

in case of an additional encouragement of the spread over days. Perhaps the algo-

rithm’s performance can be improved further by identifying favorable attributes

of intermediate solutions and adjusting the evaluation function accordingly.

The proposed approach is able to generate competitive results for the bench-

mark instances of the second international timetabling competition. Moreover it

outperforms the competition’s best algorithms. New best solutions for two in-

stances have been found during the execution of computational tests.

Despite of the algorithm’s good performance, it might have shortcomings when

it comes to the practical implementation. In case a university specifies desired char-

acteristics of a timetable differently than suggested by the competition’s formula-

tion, incorporating additional constraints can be done by manipulating evaluation

functions and keeping track of the new solution characteristics. Perhaps addi-

tional operators are required to tackle the modified structure in order to exploit

the algorithm’s full potential, though. Moreover, some parameters might have to

be adjusted. All that requires a profound knowledge of the method and possibly

overcharges the timetable officer.

69

References

S. Abdullah and H. Turabieh. On the use of multi neighbourhood structures within

a tabu-based memetic approach to university timetabling problems. Information

Sciences, 191:146–168, 2012.

S. Abdullah, S. Ahmadi, E. Burke, and M. Dror. Investigating Ahuja-Orlin’s large

neighbourhood search approach for examination timetabling. OR Spectrum, 29

(2):351–372, 2007a.

S. Abdullah, S. Ahmadi, E. K. Burke, M. Dror, and B. McCollum. A tabu

based large neighbourhood search methodology for the capacitated examina-

tion timetabling problem. Journal of the Operational Research Society, 58(11):

1494–1502, 2007b.

S. Abdullah, E. K. Burke, and B. McCollum. Using a randomised iterative im-

provement algorithm with composite neighbourhood structures for the univer-

sity course timetabling problem. In K. F. Doerner, M. Gendreau, P. Greis-

torfer, W. Gutjahr, R. F. Hartl, and M. Reimann, editors, Metaheuristics,

volume 39 of Operations Research/Computer Science Interfaces Series, pages

153–169. Springer US, 2007c.

S. Abdullah, H. Turabieh, B. McCollum, and P. McMullan. A hybrid metaheuristic

approach to the university course timetabling problem. Journal of Heuristics,

18(1):1–23, 2012.

K. Ahuja and J. B. Orlin. A survey of very large-scale neighborhood search tech-

niques. Discrete Applied Mathematics, 123(1-3):75–102, 2002.

R. Bellio, L. Di Gaspero, and A. Schaerf. Design and statistical analysis of a

hybrid local search algorithm for course timetabling. Journal of Scheduling, 15

(1):49–61, 2012.

R. Bellio, S. Ceschia, L. Di Gaspero, A. Schaerf, and T. Urli. Feature-based tun-

ing of simulated annealing applied to the curriculum-based course timetabling

problem. Unpublished manuscript, 2013.

70

Ş. İ. Birbil and S.-C. Fang. An electromagnetism-like mechanism for global opti-

mization. Journal of Global Optimization, 25(3):263–282, 2003.

A. Bonutti, F. De Cesco, L. Di Gaspero, and A. Schaerf. Benchmarking curriculum-

based course timetabling: Formulations, data formats, instances, validation and

results. Annals of Operations Research, 194(1):59–70, 2012.

D. Brélaz. New methods to color the vertices of a graph. Communications of the

ACM, 22(4):251–256, 1979.

S. Broder. Final examination scheduling. Communications of the ACM, 7(8):

494–498, 1964.

E. K. Burke, Y. Bykov, J. Newall, and S. Petrovic. A time-predefined approach

to course timetabling. Yugoslav Journal of Operations Research, 13(2):139–151,

2003.

E. K. Burke, J. Mareček, A. J. Parkes, and H. Rudová. A branch-and-cut procedure

for the Udine course timetabling problem. Annals of Operations Research, 194

(1):71–87, 2011.

M. W. Carter, G. Laporte, and S. Y. Lee. Examination timetabling: Algorithmic

strategies and applications. Journal of The Operational Research Society, 47(3):

373–383, 1996.

S. Ceschia, L. Di Gaspero, and A. Schaerf. Design, engineering, and experimen-

tal analysis of a simulated annealing approach to the post-enrolment course

timetabling problem. Computers & Operations Research, 39(7):1615–1624, 2012.

M. Clark, M. Henz, and B. Love. QuikFix— A repair-based timetable solver. In

Proceedings of the Seventh International Conference on the Practice and Theory

of Automated Timetabling, Montreal, Canada, 2008.

D. Connolly. General purpose simulated annealing. Journal of the Operational

Research Society, 43(5):495–505, 1992.

71

T. B. Cooper and J. H. Kingston. The complexity of timetable construction prob-

lems. In E. Burke and P. Ross, editors, Practice and Theory of Automated

Timetabling, volume 1153 of Lecture Notes in Computer Science, pages 281–

295. Springer Berlin Heidelberg, 1996.

D. De Werra. An introduction to timetabling. European Journal of Operational

Research, 19(2):151–162, 1985.

L. Di Gaspero and A. Schaerf. Multi-neighbourhood local search with application

to course timetabling. In E. K. Burke and P. De Causmaecker, editors, Practice

and Theory of Automated Timetabling IV, volume 2740 of Lecture Notes in

Computer Science, pages 262–275. Springer Berlin Heidelberg, 2003.

L. Di Gaspero, B. McCollum, and A. Schaerf. The second international timetabling

competition (ITC-2007): Curriculum-based course timetabling (track 3). Tech-

nical Report QUB/IEEE/Tech/ITC2007/CurriculumCTT/v1.0, Queen’s Uni-

versity, Belfast, United Kingdom, 2007.

G. Dueck. New optimization heuristics the great deluge algorithm and the record-

to-record travel. Journal of Computational Physics, 104(1):86–92, 1993.

S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicom-

modity flow problems. SIAM Journal on Computing, 5(4):691–703, 1976.

F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Norwell,

MA, USA, 1997.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated an-

nealing. Science, 220(4598):671–680, 1983.

G. Lach and M. E. Lübbecke. Curriculum based course timetabling: New solutions

to Udine benchmark instances. Annals of Operations Research, 194(1):255–272,

2012.

D. Landa-Silva and J. H. Obit. Great deluge with nonlinear decay rate for solving

course timetabling problems. In Proceedings of the 2008 IEEE Conference on

Intelligent Systems (IS 2008), pages 8.11–8.18. IEEE press, 2008.

72

R. Lewis. A survey of metaheuristic-based techniques for university timetabling

problems. OR Spectrum, 30(1):167–190, 2008.

R. Lewis, B. Paechter, and B. McCollum. Post enrolment based course timetabling:

A description of the problem model used for track two of the second international

timetabling competition. Cardiff Working Papers in Accounting and Finance

A2007-3, Cardiff Business School, Cardiff University, 2007.

H. Lourenço, O. Martin, and T. Stützle. Iterated local search. In Handbook of

Metaheuristics, pages 321–353. Springer New York, 2003.

Z. Lü and J.-K. Hao. Adaptive tabu search for course timetabling. European

Journal of Operational Research, 200(1):235–244, 2010.

B. McCollum, P. McMullan, E. K. Burke, A. J. Parkes, and R. Qu. The second in-

ternational timetabling competition: Examination timetabling track. Technical

Report QUB/IEEE/Tech/ITC2007/Exam/v4.0/17, Queen’s University, Belfast,

2007a.

B. McCollum, P. McMullan, B. Paechter, R. Lewis, A. Schaerf, L. Di Gaspero,

A. Parkes, R. Qu, and E. Burke. Second international timetabling competition,

2007b. URL http://www.cs.qub.ac.uk/itc2007/. [accessed 2013-09-21].

B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, A. J. Parkes,

L. Di Gaspero, R. Qu, and E. K. Burke. Setting the research agenda in au-

tomated timetabling: The second international timetabling competition. IN-

FORMS Journal on Computing, 22(1):120–130, 2010.

N. Mladenović and P. Hansen. Variable neighborhood search. Computers & Op-

erations Research, 24(11):1097–1100, 1997.

T. Müller. ITC-2007 solver description: A hybrid approach. Annals of Operations

Research, 172(1):429–446, 2009.

B. Paechter, L. M. Gambardella, and O. Rossi-Doria. First internationl timetabling

competition, 2002. URL http://www.idsia.ch/Files/ttcomp2002/. [accessed

2013-09-21].

73

http://www.cs.qub.ac.uk/itc2007/
http://www.idsia.ch/Files/ttcomp2002/

S. Petrovic and E. Burke. University timetabling. In J. Y.-T. Leung, editor, Hand-

book of Scheduling: Algorithms, Models, and Performance Analysis, chapter 45.

Chapman Hall/CRC Press, 2004.

D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Com-

puters & Operations Research, 34(8):2403–2435, 2007.

D. Pisinger and S. Ropke. Large neighborhood search. In M. Gendreau and J.-Y.

Potvin, editors, Handbook of Metaheuristics, volume 146 of International Series

in Operations Research & Management Science, pages 399–419. Springer US,

2010.

G. Post, L. Di Gaspero, J. H. Kingston, B. McCollum, and A. Schaerf. The third

international timetabling competition. Annals of Operations Research, pages

1–7, 2013.

R. Qu, E. K. Burke, B. McCollum, L. Merlot, and S. Lee. A survey of search

methodologies and automated system development for examination timetabling.

Journal of Scheduling, 12(1):55–89, 2009.

S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the

pickup and delivery problem with time windows. Transportation Science, 40(4):

455–472, 2006.

A. Schaerf. A survey of automated timetabling. Artificial Intelligence Review, 13

(2):87–127, 1999a.

A. Schaerf. Local search techniques for large high-school timetabling problems.

IEEE Transactions on Systems, Man, and Cybernetics— Part A: Systems and

Humans, 29(4):368–377, 1999b.

A. Schaerf, L. Di Gaspero, S. Ceschia, and T. Urli. Timetabling research group

at the University of Udine, Italy, 2004. URL http://satt.diegm.uniud.it/.

[accessed 2013-09-02].

74

http://satt.diegm.uniud.it/

G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and G. Dueck. Record breaking

optimization results using the ruin and recreate principle. Journal of Computa-

tional Physics, 159(2):139–171, 2000.

P. Shaw. Using constraint programming and local search methods to solve vehicle

routing problems. In M. Maher and J.-F. Puget, editors, Principles and Practice

of Constraint Programming - CP98, volume 1520 of Lecture Notes in Computer

Science, pages 417–431. Springer Berlin Heidelberg, 1998.

D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic number of a

graph and its application to timetabling problems. The Computer Journal, 10

(1):85–86, 1967.

D. C. Wood. A system for computing university examination timetables. The

Computer Journal, 11(1):41–47, 1968.

75

Abstract

The task of generating timetables for universities consists of assigning courses

involving teachers and students to periods and rooms. Additionally certain con-

straints have to be satisfied depending on the particular problem. Curriculum-

based Course Timetabling (CB-CTT) is a variant of university course timetabling,

which in turn is a category of educational timetabling. The main characteristic

of CB-CTT is, that courses of the same curriculum have students in common.

Consequently these courses must not be scheduled at the same time.

Typically, universities define their own requirements on a timetable. As a

result, algorithms were designed for specific problems of single universities. Con-

sequently the algorithms’ performances were hard to compare. Therefore, the

international timetabling competitions (ITC) in 2002 and 2007 tried to build a

common ground for comparison by defining simplified problem formulations and

releasing benchmark instances.

Generating university timetables is typically NP-hard. Therefore, it requires

heuristic approaches to solve large problems in reasonable time. The solution

method presented in this theses is based on Adaptive Large Neighborhood Search

(ALNS). In each iteration a relatively large fraction of the solution is destroyed

and subsequently repaired. The algorithm makes use of several destroy operators.

The resulting neighborhoods can be explored by different repair operators. The

selection of the destroy and repair operators is based on their performance in pre-

vious iterations. As a result, the algorithm adapts itself to the particular problem

instance. New solutions are accepted according to Simulated Annealing.

ALNS proves to be very effective for CB-CTT. The algorithm generates com-

petitive results for the benchmark instances. In particular, ALNS outperforms the

best algorithms of the ITC-2007.

76

Zusammenfassung

Bei der Erstellung der Stundenpläne für Universitäten besteht die Aufgabe darin,

Kurse, die Vortragende und Studenten betreffen, Perioden und Räume zuzuweisen.

Zusätzlich müssen problemabhängige Nebenbedingungen berücksichtigt werden.

Curriculum-based Course Timetabling (CB-CCT) kann als Variante des University

Course Timetabling verstanden werden, das wiederum Educational Timetabling

zuzuordnen ist. Die besondere Charakteristik von CB-CCT ist jene, dass Kurse

desselben Curriculums teilweise von denselben Studenten besucht werden und de-

shalb nicht zeitgleich stattfinden dürfen.

Üblicherweise hat jede Universität ihre eigenen Anforderungen an deren Stun-

denpläne. Aus diesem Grund wurden ursprünglich Algorithmen speziell für das

vorliegende Problem der jeweiligen Universität entwickelt. Entsprechend war ein

Vergleich der Algorithmen im Bezug auf deren Leistung kaum möglich. Die Inter-

national Timetabling Competitions (ITC) von 2002 und 2007 versuchten deshalb

mittels vereinfachter Problemformulierungen und Vergleichsinstanzen eine allge-

meine Basis zu begründen.

Stundenpläne für Universitäten zu erstellen ist typischerweise NP-schwer. De-

shalb werden heuristische Verfahren benötigt, um große Probleme in vernünftiger

Zeit lösen zu können. Die hier vorgestellte Lösungsmethode basiert auf Adap-

tive Large Neighborhood Search (ALNS). Hierbei wird in jeder Iteration ein relativ

großer Teil der Lösung zerstört und anschließend wieder repariert. Der Algorith-

mus verwendet mehrere Zerstörungsoperatoren. Die resultierende Umgebung der

Teillösung kann durch verschiedene Reparaturoperatoren untersucht werden. Die

Auswahl der Zerstörungs- und Reparaturoperatoren basiert auf dem Erfolg der

Operatoren in früheren Iterationen. Der Algorithmus kann sich dadurch an die

jeweilige Probleminstanz anpassen. Neue Lösungen werden anhand von Simulated

Annealing akzeptiert.

ALNS erweist sich als leistungsstark für CB-CCT. Der hier beschriebene Al-

gorithmus führt zu konkurrenzfähigen Ergebnissen bei den Vergleichsinstanzen.

Insbesondere übertreffen die Resultate jene der besten Algorithmen der ITC-2007.

77

Curriculum Vitae

Personal data

Name Alexander Kiefer

Date of birth January 11, 1986

Citizenship Austria

Education

since 10/2011 University of Vienna, Austria

Master’s program: Business Administration

majoring in Production and Logistics

Thesis: Adaptive Large Neighborhood Search for the

Curriculum-Based Course Timetabling Problem

10/2006 - 06/2011 University of Vienna, Austria

Bachelor’s program: Economics

Thesis: Should Monetary Policy Respond to Asset Prices

and Asset Bubbles?

Thesis: Social Security: Systems and Reforms

Degree: Bakkalaureus der Sozial- und

Wirtschaftswissenschaften

since 10/2005 Vienna University of Technology, Austria

Diploma program Mathematics

majoring in Economics and Business

09/2000 - 06/2004 Upper secondary education, BRG Laa/Thaya, Austria

graduation with honors

general qualification for university entrance

78

International experience

11/2010 Mines Paris Tech., Paris, France

Athens student exchange program

08/2009 - 02/2010 University of Groningen, The Netherlands

Erasmus student exchange program

Work experience

10/2011 - 09/2013 Study assistant at University of Vienna, Austria,

at chair of Production and Operations Management

08/2010 - 10/2010 Internship at DTU Aqua, National Institute

of Aquatic Resources, Copenhagen, Denmark

Additional skills

German native

English fluent

Dutch basic

Russian basic

Programming C++, MATLAB

IT skills LATEX, MS Office, IBM CPLEX, Xpress, SAP

79

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Literature Review
	Graph Coloring
	Metaheuristics
	Integer Programming

	Problem Description
	Timetabling Competitions
	Formulations
	Instances

	Mathematical Model
	ITC-2007 Formulation
	Notation and Decision Variables
	Objective Function
	Hard Constraints
	Soft Constraints

	Extensions
	Students' Minimum and Maximum Day-Load
	Room Suitability
	Windows
	Travel Distance
	Double Lectures

	Results

	Solution Approach
	Adaptive Large Neighborhood Search
	Algorithm
	Operator Selection
	Destroy Limit
	Acceptance Scheme
	Infeasible Solution Allowance

	Destroy Operators
	Related Removal
	Random Removal
	Worst Removal
	Random Penalty Removal
	Random Period Removal
	Room Day Removal
	Isolation & Capacity Removal
	Spread & Stability Removal
	Curriculum Removal
	Teacher Removal

	Repair Operators
	2-Stage Operators
	Priority Rules
	Lecture-Period Assignment
	Backtracking Procedure
	Lecture-Room Assignment
	Example: Evaluation
	Initial Solution
	1-Stage Operators

	Computational Experiments
	Parameter Tuning
	Results
	Additional Experiments

	Conclusion
	Bibliography
	Abstract
	Zusammenfassung
	Curriculum Vitae

