
DISSERTATION

Titel der Dissertation

On the Computational Power of
Quantum Computers

verfasst von

Dipl.-Ing. Martin Schwarz

angestrebter akademischer Grad

Doktor der Naturwissenschaften (Dr. rer. nat.)

Wien, 2013

Studienkennzahl laut Studienblatt: A 091 411

Dissertationsgebiet laut Studienblatt: Physik

Betreuer: Univ.-Prof. Dr. Frank Verstraete





Contents

Zusammenfassung 5

Abstract 7

Acknowledgements 9

Introduction 11

1 Preparing Projected Entangled-Pair States on a Quantum Computer 17
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 Definitions and Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.1 Bounding the transition probabilities . . . . . . . . . . . . . . . . . . . . 23

1.4.2 Bounding the convergence rate . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.3 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5 Contracting tensor networks on a quantum computer . . . . . . . . . . . . . . . . 26

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Preparing Topological Projected Entangled-Pair States on a Quantum Computer 29
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 An Information-Theoretic Proof of the Constructive Commutative Quantum Lovász
Local Lemma 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Moser’s classical algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 The quantum algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3



3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6.1 Detailed algorithm and proof . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6.2 Proof of Theorem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.3 Upper bound on N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Simulating Quantum Circuits with Sparse Output Distributions 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Main results: statements and discussion . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Proof outline and organization of the paper . . . . . . . . . . . . . . . . . . . . . 74

4.4 Approximate sparseness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.2 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.3 Sparse distributions have large coefficients . . . . . . . . . . . . . . . . . 77

4.5 Additively approximable probability distributions . . . . . . . . . . . . . . . . . 78

4.5.1 Definition and basic properties . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.2 Estimating large coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 Algorithm for additively approximable, approximately sparse distributions . . . 81

4.7 Classical simulation of CT states . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8 Proofs of main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8.1 Proof of Theorem 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8.2 Proof of Theorem 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.8.3 Proof of Theorem 22 and Theorem 23 . . . . . . . . . . . . . . . . . . . 86

4.8.4 Proof of Theorem 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.9 Further research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.10 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.10.1 Proof of lemma 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.10.2 Proofs of lemmas 32 and 33 . . . . . . . . . . . . . . . . . . . . . . . . . 89

Conclusions and Outlook 91

Bibliography 93

Lebenslauf 101

4



Zusammenfassung

Diese Dissertation beschäftigt sich mit der Frage, wie viel Rechenkraft Quantencomputer bie-

ten können. Diese Frage geht in ihrer allgemeinsten Form weit über die aktuellen Möglich-

keiten und Methoden der Komplexitätstheorie hinaus. Dennoch liefert die Komplexitätstheo-

rie Beispiele von Problemen, die sogar für Quantencomputer als nicht effizient lösbar gelten.

Andererseits können Quantencomputer vermutlich nicht effizient von klassischen Computern

simuliert werden. Wir wollen mit dieser Arbeit zum Verständnis des dazwischen liegenden Be-

reichs von Problemen, die effizient auf Quantencomputern, aber nicht effizient auf klassischen

Computern berechnet werden können, beitragen. Um besseren Einblick in die Fragestellung

zu erlagen, entwickeln wir in dieser Dissertation klassische und quantenmechanische Algo-

rithmen zur Lösung von Problemen, die unter einschränkenden Annahmen a priori als nicht

effizient lösbar geltende Probleme dennoch effizient lösen. Wir erforschen in diesem Sinne al-

so die Grenzen des auf Quantencomputern und klassischen Computern Machbaren, in dem wir

Annahmen identifizieren, die dazu geeignet sind grundsätzlich als schwer geltende Probleme in

den Bereich des Machbaren zu bringen. Im Speziellen entwickeln wir einen Quantenalgorith-

mus, der sogenannte Projective Entangled-Pair States (PEPS) effizient herstellen kann, sobald

Injektivität und Wohlkonditierung des PEPS gegeben ist. In einem zweiten Schritt erweitern wir

diesen Algorithmus auf sogenannte G-injektive PEPS, einer wesentlich allgemeineren Klasse

von Quantenzuständen, die auch die exotische Eigenschaft der topologischen Ordnung besitzen

können. Weiters entwickeln wir einen Quantenalgorithmus, der das im Allgemeinen für Quan-

tencomputer als schwer geltende Problem den Grundzustand von lokalen Hamiltonoperatoren

zu erzeugen löst, sofern diese die Voraussetzungen des (nicht-konstruktiven) Quanten-Lovász-

Local-Lemma erfüllen und die Operatoren kommutieren. Unser Quantenalgorithmus kann in

diesem Fall auch als unabhängiger, konstruktiver Beweis des Quanten-Lovász-Local-Lemmas

betrachtet werden. Um die Grenze zu klassischen Computern zu erforschen, entwickeln wir

einen klassischen Algorithmus, der das sehr allgemeine Problem Quantenschaltkreise zu simu-

lieren unter gewissen Annahmen effizient lösen kann. Wäre es in voller Allgemeinheit lösbar,

würden Quantencomputer keinen Vorteil bieten. Unser Algorithmus kann Quantenschaltkrei-

se simulieren, die in ihrer Struktur jener des Quantenalgorithmus von Shor zur Faktorisierung

ganzer Zahlen, der als exponentiell schneller als der schnellste bekannte klassische Faktorisie-

rungsalgorithmus gilt, sehr ähnlich sind. Weiters treffen wir die Annahme, dass die erzeugte

Wahrscheinlichkeitsverteilung annähernd dünn-besetzt ist. Unser Ergebnis impliziert daher,

dass die von Algorithmen dieser Struktur erzeugte Wahrscheinlichkeitsverteilung notwendi-

gerweise dicht-besetzt sein muss, um einen exponentiellen Geschwindigkeitsvorteil erzielen

zu können.
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Abstract

In this thesis we make progress in our understanding of the computational power made avail-

able by quantum computers. While answering this question in full generality in the framework

of computational complexity theory appears beyond the reach of current methods, research in

this direction has identified certain problems that are conjectured to be hard even for quantum

computers, such as the Local Hamiltonian problem, or more general quantum state preparation

problems. On the other hand, the generic problem of simulating quantum computers is conjec-

tured to be hard for classical computers. We make progress in understanding the delineations

among the classical and quantum models of computation by designing algorithms that explore

these borders by identifying critical assumptions that allow us to efficiently solve certain prob-

lems which otherwise would be considered intractable. More specifically, towards exploring

the power of quantum computers, we present a quantum algorithm that efficiently prepares

quantum states specified by so-called projected entangled-pair states (or PEPS). While this

problem is known to be hard in general even for quantum computers, assuming the PEPS is

injective and well-conditioned allows us to prepare it efficiently. In a second step, we gener-

alize this algorithm to efficiently prepare quantum states with topological order as specified

by well-conditioned G-injective PEPS. A third quantum algorithm presented in this thesis pre-

pares the zero-energy ground state of a certain class of Local Hamiltonians characterized by the

non-constructive Quantum Lovász Local Lemma. While the lemma guarantees the existence of

such a state, we present a quantum algorithm to efficiently prepare it assuming commutativity

of the local projector terms. Finally, we explore the opposite direction towards the power of

classical computers. We present a classical algorithm to simulate quantum circuits of a specific

structure that is similar to Shor’s integer factorization quantum algorithm (which is exponen-

tially faster than any known classical factoring algorithm). Assuming approximate sparseness

of the output distribution produced by quantum circuits of this structure allows us to simulate

them classically. Thus we have discovered a region where quantum computers cannot retain

their presumed computational advantage. Moreover, this result implies that no exact quan-

tum algorithm of this structure can offer exponential speed-up, and that output distributions of

such quantum circuits must necessarily have super-polynomially large support and must have

additional structure (e.g. group structure) to allow for an exponential speed-up.
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Introduction

The informal yet fundamental question that motivates this work is:

How powerful is a quantum computer?

In particular,

1. What can a quantum computer compute more efficiently than a classical computer?

2. For what kinds of problems should we expect quantum computers to have an advantage?

One approach towards these questions is computational complexity theory [Arora and Barak,

2009]. Complexity theory classifies (yes/no) decision problems into complexity classes, some

of which are known to be tractable whereas others are conjectured to be intractable. For the

sake of discussion, let us introduce informally some well-known classical complexity classes

• P – problems decidable deterministically in time polynomial in the input size (things we

can do on an ordinary computer)

• BPP – problems decidable probabilistically with bounded error in time polynomial in

the input size (things we can do on an ordinary computer with the help of randomness)

• NP – problems with solutions that are verifiable by a deterministic computer in time

polynomial in the input size given a bit string as a proof (solutions are easy to check)

• PP – for an NP-complete problem, count whether more than one half or at most one half

of all possible variable assignments are indeed solutions (not only if there is a solution)

While it is standard in computer science to assume P=BPP (e.g. [Impagliazzo and Wigderson,

1997]), a proof (or disproof) of the common conjecture about P ≠ NP is worth $1.000.000
[Clay Mathematics Institute, 2000] and considered well beyond the reach of current methods

(as are proofs of many other conjectured complexity class separations). Notably, constraint

satisfaction problems (CSPs) over integer domains are contained in NP (e.g. finding a ground

state of classical Ising spin glasses in three dimensions is NP-complete [Barahona, 1982]).

Throughout the past two decades, computational complexity theory has been extended to

quantum computational complexity theory [Bernstein and Vazirani, 1993, Watrous, 2008], and

quantum analogues of the relevant complexity classes have been defined:
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• BQP – problems decidable by a quantum computer with bounded error in time poly-

nomial in the input size (contains BPP, since quantum computers can easily simulate

reversible classical computers)

• QMA – problems with solutions that are verifiable by a quantum computer in time poly-

nomial in the input size given a quantum state as proof (e.g. given a ground state, measure

its energy)

A formal complexity theoretic version of our fundamental question thus reads

BPP
?
≠ BQP

As with many complexity class separation conjectures, a formal proof of this conjecture is con-

sidered beyond the reach of current methods. Nevertheless, formal evidence exists supporting

the conjecture: if one assumes that the input is only available in the form of a black box that

answers yes/no questions (“queries”), it is indeed possible to show an exponential advantage

in terms of the number of queries we need to ask between quantum and classical computers

[Simon, 1997]. Let us discuss further relations among these classes: Since it is known that

quantum computers can efficiently simulate (deterministic and probabilistic) classical comput-

ers [Bernstein and Vazirani, 1993], it is clear that P ⊆ BPP ⊆ BQP and NP ⊆ QMA. Similar

to the classical case, one conjectures BQP ≠ QMA. Furthermore, it is known that QMA ⊆ PP
[Marriott and Watrous, 2005].

A complete problem for QMA is the Local Hamiltonian problem [Aharonov and Naveh,

2002, Kitaev et al., 2002], which asks to decide whether the ground state energy of a quantum

Hamiltonian on a spin system specified by local interaction terms is below some low-energy

bound or above some high-energy bound. Given a low-energy eigenstate of the Hamiltonian as

witness, a quantum computer can indeed measure and thus verify the energy (e.g. using phase

estimation [Nielsen and Chuang, 2000]). On the other hand, preparing such a ground state is

considered hard even for a quantum computer, unless BPQ=QMA.1 Since preparing ground

states of quantum Hamiltonians is considered hard, this already demonstrates a “ceiling” for

the type of problems for which a quantum computer may be expected to be useful. On the other

hand, designing quantum algorithms that are nevertheless able to prepare such ground states

(under certain additional assumptions) appears to us as a worthwhile endeavor exploring the

upper limits of what a quantum computer can do efficiently.

While the complexity-theoretic approach tries to answer the fundamental question in full

generality, another approach to gain insight – which we will pursue in this thesis – is to ex-

plicitly design efficient quantum algorithms solving problems for which no efficient classical

counterpart is known. Since only rather few (classes of) quantum algorithms outperforming
1The statement is conjectured to be true even for classical Local Hamiltonians, unless NP ⊆ BQP, even though

quantum computers have a quadratic advantage over classical computers in this case due to Grover’s algorithm

[Grover, 1996].
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classical ones are known [Jordan, 2013], any fundamentally new algorithm that is not ob-

viously related to the known ones may allow us to gain further intuition about the types of

problems where quantum computers may excel.

Historically the field of quantum computing has thrived because of two important examples

of quantum algorithms (and their generalizations) that outperform their best known classical

counterparts: Shor’s algorithm for integer factorization [Shor, 1999], and Grover’s algorithm

for unstructured search problems [Grover, 1996]. Ultimately, the investment required to con-

struct real large-scale quantum computers will only be justified by the applications they enable

(if these are expected to remain beyond the reach of classical techniques for the foreseeable

future.) Clearly, to identify novel applications, novel algorithms are required.

Many quantum algorithms known today simply yield faster quantum algorithms for solving

classical problems. But then, there are distinctly quantum problems that almost by definition

only a quantum computer may solve, e.g. producing a particular quantum state as output.

Quantum computers can receive quantum states as input and produce quantum states as output.

Since a classical computer can neither receive nor produce a (non-classical) quantum state in

principle (and simulating quantum computers in general appears to be hard), we consider this

a particularly interesting non-classical feature of the quantum model of computation, which

leaves behind the paradigm of classical decision problems, and thus may have the potential to

shed new light on our fundamental question.

Of course, a reductionist might argue that any quantum state that a quantum algorithm

may prepare, must be eventually measured producing a classical outcome in order to be useful.

Therefore, quantum computers do not really leave the paradigm of classical input/classical

output behind. In contrast, we think that by not considering quantum states as meaningful

output in their own right (i.e. without specifying any particular measurement a priori, but

leaving the doubly exponential number of efficient measurement choices open to the user of the

algorithm), such a reduction misses out on a potentially important opportunity to demonstrate

the utility of a quantum computer. Immediate further questions arise: what are interesting

quantum states to prepare? How should they be specified? Are there complexity-theoretic

limitations to the class of states we may expect a quantum computer to prepare? Certainly,

Richard Feynman’s original idea [Feynman, 1982] of using quantum computers to efficiently

simulate quantum mechanics – the very reason he invented the concept of a quantum computer!

– suggests that the capability to prepare physically relevant quantum states in order to study

their properties by measuring arbitrary observables is certainly useful to, e.g. chemists, material

scientists, or the pharmaceutical industry.

While the discussion above focuses on the utility of quantum computers, considering our

fundamental question it is equally important to investigate the opposite direction: are quantum

computers always hard to simulate or can we identify situations where quantum computers

lose their conceived advantage? In what situations can classical computers efficiently simulate

quantum computers? This question has been addressed by a series of works that identify re-
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strictions on quantum circuits that render them classically simulable (e.g. [Gottesman, 1999,

Valiant, 2002, Van den Nest, 2010, 2011, 2012] and several others). Of special interest are

simulation methods capable of simulating circuits with structures like those found in quantum

algorithms with expected exponential advantage over classical ones (e.g. Shor’s). By trying to

simulate these specific quantum algorithms we hope to get closer to discovering the root cause

of the exponential advantage of quantum computers.

Outline and Summary of the results

We address our fundamental question by presenting three novel quantum algorithms prepar-

ing classes of quantum states which a priori might have been considered hard to prepare for

a quantum computer, thus demonstrating the power of quantum computers. Furthermore, we

present a classical simulation algorithm which is able to simulate a certain large class of quan-

tum circuits under an additional assumption on the output state produced by the algorithm,

yielding a surprising demonstration of the power of classical computation. On the other hand

this means the discovery of a region where quantum computers cannot retain their presumable

advantage. Figure 1 illustrates these results.

Chapter 1: In this chapter we present a quantum algorithm to prepare injective Projected

Entangled-Pair States, or PEPS, on a quantum computer. Open tensor networks representing

quantum states such as PEPS [Verstraete and Cirac, 2004] have been proposed as a class of

quantum states especially suited to describe the ground states of local Hamiltonians in quan-

tum many-body physics. PEPS are a higher-dimensional generalization of the one-dimensional

Matrix Product States [Rommer and Östlund, 1997], or MPS, for which local expectations val-

ues can be efficiently calculated classically, and which can be efficiently generated on a quan-

tum computer. For PEPS, on the other hand, much less is known. [Verstraete et al., 2006]

ask whether such states could be even created on a quantum computer. Since an algorithm

that would allow to prepare any PEPS would allow for the solution of PP-complete prob-

lems [Schuch et al., 2007], it is unlikely that this is possible without any additional restrictions.

We resolve this question in the positive for the special case of injective, well-conditioned PEPS

projectors. In particular, the run-time of our quantum algorithm scales polynomially with the

inverse of the minimum condition number of the PEPS projectors and, essentially, with the

inverse of the spectral gap of the PEPS’ parent Hamiltonian.

Chapter 2: In this chapter we extend the results of Chapter 1 to include states with topologi-

cal order. While injective PEPS are inherently unable to represent topologically ordered states,

we consider the more general class of G-injective PEPS [Schuch et al., 2010] to overcome this

limitation. ‘G-injectivity’ is a substantially weaker requirement than injectivity, which ex-

plicitly allows for topological order. We show that any G-injective PEPS can be prepared
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on a quantum computer in polynomial time, when the spectral gap of the associated parent

Hamiltonian scales at most inverse-polynomially in the system size. A compelling example of

the significance of this result is the very recently proven fact that the resonating valence bond

(RVB) state in the Kagome lattice (conjectured to be a topological spin liquid), is a Z2-injective

PEPS, with numerical evidence that the gap assumption is also verified [Poilblanc et al., 2012].

Our result therefore gives one way in which the RVB state (and other topological states) can be

prepared efficiently on a general quantum simulator.

Chapter 3: In this chapter we present a quantum algorithm to prepare the zero-energy ground

state of a certain class of Local Hamiltonians characterized by the Quantum Lovász Local

Lemma (QLLL) [Ambainis et al., 2012], a quantum generalization of the well-known Lovász

Local Lemma. It states that, if a collection of subspace constraints are “weakly dependent”,

there necessarily exists a state satisfying all of the constraints. It implies e.g. that certain

instances of the k-QSAT problem are necessarily satisfiable, or that many-body systems with

“not too many” interactions are never frustrated. However, the QLLL only asserts existence;

it says nothing about how to find the quantum state that satisfies the constraints. Inspired

by Moser’s breakthrough classical result [Moser, 2009], we present a constructive version of

the QLLL in the setting of commuting constraints, proving that a simple quantum algorithm

efficiently prepares the sought quantum state.

Chapter 4: In this chapter we show that several quantum circuit families can be simulated

efficiently classically if it is promised that their output distribution is approximately sparse i.e.

the distribution is close to one where only a polynomially small, a priori unknown subset of the

measurement probabilities are nonzero. Classical simulations are thereby obtained for quantum

circuits which — without the additional sparsity promise — are considered hard to simulate.

Our results apply in particular to a family of Fourier sampling circuits (which have structural

similarities to Shor’s factoring algorithm [Shor, 1999]) but also to several other circuit fami-

lies, such as IQP circuits [Shepherd and Bremner, 2009], with the assumption of sparsity. Our

results provide examples of quantum circuits that cannot achieve exponential speed-ups due

to the presence of too much destructive interference i.e. too many cancelations of amplitudes.

The crux of our classical simulation is an efficient algorithm for approximating the significant

Fourier coefficients of a class of states called computationally tractable states [Van den Nest,

2011]. The latter result may have applications beyond the scope of this work. In the proof

we employ and extend sparse approximation techniques, in particular the Kushilevitz-Mansour

algorithm [Kushilevitz and Mansour, 1991], in combination with probabilistic simulation meth-

ods for quantum circuits.
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Figure 1: A graphical guide to this thesis. We depict the complexity classes introduced in this section.
Classes indicated by boxes higher up contain the complexity classes further below and are conjectured
to be strictly harder than those below them. We are especially interested in the power of BQP. We give
examples of algorithms right at the borders of BQP in the following sense. In Chapter 1 we introduce
a quantum algorithm for preparing PEPS. While the general problem of preparing PEPS is known to be
PP-complete, we show that the (quite generic) assumptions of injectivity and well-conditioning suffice
to put the problem of preparing PEPS into BQP. In Chapter 2 we extend the previous result and show
that the even weaker assumption of G-injectivity suffices (together with well-conditioning) to prepare
the larger class of topologically ordered G-injective PEPS. In Chapter 3 we consider the border to QMA
and find that the quantum satisfiability problem (Quantum SAT), a special case of the Local Hamiltonian
problem, can be solved in BQP, if the local terms commute and do not overlap too much (i.e. they
satisfy the so-called QLLL conditions). Finally, in Chapter 4 we move on to examine the power of
BPP and find that quantum circuits with a structure similar to Shor’s algorithm can indeed be simulated
classically, if one makes a crucial approximate sparseness assumption about the output distribution.



Chapter 1

Preparing Projected Entangled-Pair
States on a Quantum Computer

Synopsis:

We present a quantum algorithm to prepare injective PEPS on a quantum computer, a class

of open tensor networks representing quantum states. The run-time of our algorithm scales

polynomially with the inverse of the minimum condition number of the PEPS projectors and,

essentially, with the inverse of the spectral gap of the PEPS’ parent Hamiltonian.

Based on:

M. Schwarz, K. Temme, and F. Verstraete,

Phys. Rev. Lett. 108, 110502 (2012)

Changes compared to published version:

Section 1.5 has not been published due to the journal’s length restrictions.
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1.1 Introduction

Projected Entangled Pair States, or PEPS [Verstraete and Cirac, 2004], have been proposed

as a class of quantum states especially suited to describe the ground states of local Hamil-

tonians in quantum many-body physics. PEPS are a higher-dimensional generalization of the

one-dimensional Matrix Product States [Rommer and Östlund, 1997], or MPS, for which many

interesting properties have been proven: For example, MPS provably approximate the ground

state of 1D local Hamiltonians with constant spectral gap [Hastings, 2007, Verstraete and Cirac,

2006], exhibit an area law [Hastings, 2007] as well as an exponential decay of two-point corre-

lation functions. Furthermore, for each MPS with the injectivity property [Perez-Garcia et al.,

2008], a parent Hamiltonian can be constructed with this MPS as its unique ground state. MPS

can also be prepared efficiently on a quantum computer [Schön et al., 2005]. PEPS however

form a much richer class of states, and can e.g. represent critical systems and systems with

topological quantum order [Verstraete et al., 2006]. It is conjectured that all ground states of

gapped local Hamiltonians in higher dimensions can be represented faithfully as PEPS, and

although there are strong indications for this fact, this has not been proven. What is clear,

however, is the fact that one can also construct parent Hamiltonians for them [Perez-Garcia

et al., 2008], and the PEPS will be the unique ground states of those Hamiltonians if the PEPS

obeys the so-called injectivity condition [Perez-Garcia et al., 2008]. Many physically relevant

classes of PEPS on lattices are known to be almost always injective, including e.g. the 2D

AKLT state [Perez-Garcia et al., 2008]. A particularly interesting subclass of PEPS is the one

that consists of all those states whose parent Hamiltonian have a gap that scales at most as an

inverse polynomial as a function of the system size: in that case, a local observable (i.e. the lo-

cal Hamiltonian) allows to distinguish the state from all other ones, as the ground state always

has energy zero by construction. It was an open problem [Verstraete et al., 2006] whether such

states could however be even created on a quantum computer, as an algorithm that would allow

to prepare any PEPS would allow for the solution of PP-complete problems [Schuch et al.,

2007].

In this article we show how well-conditioned injective PEPS can be prepared on a quantum

computer efficiently. The key idea of our approach is to grow the PEPS step by step. We de-

mand that not only our final PEPS is the unique ground state of its parent local Hamiltonian, but

also that there exists a sequence of partial sums of the local terms of the parent Hamiltonian,

such that each partial sum has a unique ground state of its own. Based on this assumption,

the algorithm starts with a physical realization of the valence bond pairs as its initial state and

iteratively performs entangling measurements on the virtual particles to map virtual degrees of

freedom to physical ones, just as in the definition of the PEPS. The PEPS is called injective, iff

this map is (left) invertible which can only be the case if the dimension of the physical space

is actually at least as large as the dimension of the virtual space at each vertex. Preparing

a PEPS by measurements may seem to require post-selection to project onto the right mea-



1.2 Definitions and Result 19

surement outcome. To overcome this issue we use the Marriott-Watrous trick [Marriott and

Watrous, 2005, Nagaj et al., 2009] of undoing a measurement based on Jordan’s lemma [Jor-

dan, 1875] and combine it with the uniqueness property of injective PEPS [Perez-Garcia et al.,

2008] to prepare the required eigenstates. A key element that contributes to the success of this

algorithm is the fact that the measurements are not done locally, such as in the framework of

dissipative quantum state engineering [Verstraete et al., 2009], but globally by running a phase

estimation algorithm that singles out the ground subspace; a similar approach was used in the

context of the quantum Metropolis sampling algorithm [Temme et al., 2011]. Alternatively,

methods for eigenpath traversal [Aharonov and Ta-Shma, 2007, Boixo et al., 2010] can also be

applied [Boixo, 2011].

1.2 Definitions and Result

Before stating the result, we review the definition of PEPS and their essential properties. Recall

[Perez-Garcia et al., 2008, Verstraete and Cirac, 2004] that PEPS are quantum states defined

over an arbitrary graph G = (V,E) such that quantum systems of local dimension d are as-

signed to each vertex. We construct the PEPS by assigning to each edge e ∈ E a maximally

entangled state ∑Di=1 ∣ii⟩. In this way, a vertex v ∈ V with degree k gets associated with k vir-

tual D-dimensional systems. Finally, a map A(v) ∶CD ⊗CD ⊗⋯CD ↦Cd is applied to each

vertex, taking the k virtual D-dimensional systems to a single physical d-dimensional system.

The linear map A(v) is usually called the PEPS “projector” and is parameterized by tensors

A
(v)
i as follows:

A(v) =
d

∑
i=1

D

∑
j1,...,jk=1

A
(v)
i,j ∣i⟩⟨j1, . . . , jk∣ (1.1)

where A(v)
i is a tensor with k indices. The PEPS can now be written as

∣ψ⟩ =
d

∑
i1,...,in=1

C[{A(v)
iv

}v] ∣i1, . . . , in⟩ (1.2)

where C means the contraction of all tensors A(v)
i according to the edges of the graph. In the

most general case the virtual index dimensionD as well as the physical index dimension dmay

also depend on the edges e and vertices v of the interaction graph, but we suppress this detail

in favor of simplicity. Note, that w.l.o.g. A(v) ≥ 0 may be assumed, since for arbitrary Ã(v) we

can choose a local basis by performing a polar decomposition, i.e.

Ã(v) = U (v)A(v) (1.3)

with U (v) unitary and A(v) ≥ 0.

A PEPS ∣ψ⟩ is called injective [Perez-Garcia et al., 2008], if each PEPS projector A(v) has

a left inverse. For some PEPS this may only be true, after some local contractions of a constant
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number of PEPS tensors A(v) according to the interaction graph of the PEPS forming new

projectors Â(v) for which the condition above holds. Since this blocking can be performed

efficiently for constant degree graphs, we may assume for the remainder of this paper, that it

has already been performed, such that each individual A(v) in our input is already injective by

itself. Note, that the existence of a left inverse allows us to strengthen the assumption A(v) ≥ 0
w.l.o.g. to A(v) > 0 for all v.

For injective PEPS, there is a simple construction [Perez-Garcia et al., 2008] of a 2-local

parent Hamiltonian, such that the injective PEPS is its unique, zero-energy ground state. This

construction gives a parent Hamiltonian for a quantum system consisting of n particles with

d-dimensional Hilbert spaces.

Definition 1. Let H be a Hermitian matrix with λ0 < λ1 its smallest and second smallest

eigenvalues. Then we call ∆(H) = λ1 − λ0 the spectral gap of H . For any matrix A, the

condition number κ(A) is defined as κ(A) = σmax(A)

σmin(A)
, where σmax(A) and σmin(A) are the

largest and smallest singular values of A, respectively.

We are now in a position to state the performance of our algorithm as our main theorem:

Theorem 2. Let G = (V,E) be an interaction graph with bounded degree and some total

order defined on V . Let {A(v)}v∈V
[t]

be a set of injective PEPS projectors of dimension d×Dk

associated with each v in V up to vertex t (according to the total vertex order) describing a

sequence of PEPS ∣ψt⟩, and let κ = max
v∈V

κ(A(v)) be the largest condition number of all PEPS

projectors. Let ∆ = mint∆(Ht), where ∆(Ht) is the spectral gap of the parent Hamiltonian

Ht of the PEPS ∣ψt⟩. Then there exists a quantum algorithm generating the final PEPS ∣ψ∣V ∣⟩
with probability at least 1 − ε in time Õ( ∣V ∣2∣E∣2κ2

ε∆ + ∣V ∣kd6).

1.3 The Algorithm

Conceptually, PEPS are constructed by first preparing entangled pair states ∣ψ⟩ = ∑i ∣ii⟩ for

each edge of the interaction graph describing the PEPS, and then projecting the k virtual in-

dices associated with each vertex to a single physical index. While this construction is usually

considered only a theoretical device, the proposed algorithm is indeed simulating the above

construction for the case of injective PEPS with gapped Hamiltonians. This entails making the

virtual indices physical as well.

Figure 1.1 presents our algorithm in pseudo-code. We proceed by explaining each step

in detail. PEPS construction starts in step 2 by distributing maximally entangled states of the

desired bond dimension according to the interaction graphG = (E,V ). The resulting system is

the zero-energy ground state of a simple Hamiltonian H0 consisting purely of terms projecting

onto He = 1 − 1
d ∑

d
i,j=1 ∣ii⟩⟨jj∣ for each edge of the interaction graph (step 3). Note, that this

simple Hamiltonian is gapped.
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Input: Interaction graph G = (V,E) with degree bound k and total vertex order. For each

v ∈ V , d ×Dk-matrices A(v) as PEPS projectors. Acceptable probability of failure ε.

Output: PEPS ∣ψ⟩ with probability at least 1 − ε.

1. t← 0

2. ∣ψt⟩ ← entangled pair for each edge e ∈ E.

3. Ht = ∑e∈EHe

4. For each v ∈ V according to total order:

(a) Ht+1 ←Ht

(b) For each neighbor v′ ∈ V of v:

• remove term H
(v,v′)
t from Ht+1

• compute parent Hamiltonian term H
(v,v′)
t+1 using A(v)

• add term H
(v,v′)
t+1 to Ht+1

(c) Add H(v)
phy = c(1 − P

(v)
phy) to Ht+1

(d) ∣ψ(⊥)

t+1⟩ ← measure Ht+1 on ∣ψt⟩

(e) While measured energy nonzero:

i. ∣ψ(⊥)

t ⟩ ← measure Ht on ∣ψ(⊥)

t+1⟩

ii. ∣ψ(⊥)

t+1⟩ ← measure Ht+1 on ∣ψ(⊥)

t ⟩

(f) t← t + 1

Figure 1.1: Algorithm constructing injective PEPS

We now describe the main iteration of the algorithm (step 2), which is illustrated in figure

1.2. In steps 4a-4c, after having selected the next vertex v of the interaction graph according

to the total vertex order, we construct a new Hamiltonian Ht+1 from Ht: First, we select a

d-dimensional “physical” subspace from the Dk dimensional space at each vertex v. This

subspace is represented by projector P (v)
phy. Then we remove for each neighboring vertex v′ of

v the term H
(v,v′)
t . These are either trivial He terms or temporary boundary terms (see below).

Next we compute the new parent Hamiltonian terms H(v,v′)
t+1 according to [Perez-Garcia et al.,

2008] and add them to Ht+1 reflecting the application of A(v). Restricted to the “physical”

subspace P (v)
phy, eachH(v,v′) is simply a sum of 2-local terms over all edges e from v to vertices

v′. Note, that parent Hamiltonian terms H(v,v′) towards any open “virtual index” v′ are only

temporary boundary terms which are computed in exactly the same way just as those for any

other vertex by assuming the identity as the applicable PEPS map. Since the identity is trivially

invertible, each intermediate PEPS is also injective and thus the unique ground state of the
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Figure 1.2: In each step, the algorithm processes one vertex v: Ht is grown into Ht+1 by removing
all existing terms referring to v, before the 2k-local parent Hamiltonian terms are added implementing
PEPS projectorA(v) at v. Note, that terms around v connecting to an open “virtual” index v′ (bonds with
dotted border) are only temporary and are removed in later steps of the algorithm. All terms constraining
a vertex v only restrict the physical subspace P (v)phy , while degrees of freedom in the orthogonal subspace

(1 − P (v)phy) are eliminated with an additional penalty term H
(v)
phy that is added per vertex.

intermediate Hamiltonian Ht+1. Since the “physical” d-dimensional space is just a subspace

of the Dk “virtual” space that is in fact also implemented physically in this algorithm, H(v)

is actually a sum of 2k-local projectors. In order to ensure we produce a state with a single

d-dimensional local space associated to each vertex v in the final PEPS, we add an extra term

H
(v)
phy = c(1−P

(v)
phy) in this step. This term penalizes the orthogonal complement of the chosen

subspace with some energy c≫ ∆.

Note, that prior to the execution of step 3, the system is in the ground state ∣ψt⟩ of Ht by

construction. This ground state is unique by the injectivity assumption we make for each inter-

mediate PEPS ∣ψt⟩ prepared in each iteration. In order to transition to the ground state ∣ψt+1⟩
of Ht+1, we run the phase estimation [Nielsen and Chuang, 2000] algorithm for Hamiltonian

Ht+1, perform a binary measurement to project ∣ψt⟩ onto the zero/non-zero energy subspaces

of Ht+1, and uncompute the phase estimation (step 3). This step requires an inverse eigenvalue

gap ∆−1 between these two subspaces that scales with O(poly(∣V ∣)) for the phase estimation

to be efficient and precise enough [Berry et al., 2007]. We assume that such a gap exists for

each intermediate parent Hamiltonian Ht that we construct according to the total vertex order

defined on the interaction graph.

If the measurement results in the projection onto the zero-energy subspace of Ht+1 we

proceed to the next iteration (step 4). By Lemma 3, this event occurs with probability at

least κ(A(v))−2, where κ(A(v)) is the condition number of PEPS projector A(v) associated

with vertex v. Note, that the injectivity property of the PEPS assures, that each κ(A(v)) is

a positive constant. If the measurement projects onto the excited subspace of Ht+1, we undo

the measurement by measuring Ht again (step 5). If this second measurement results in a
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projection on the ground state, we have exactly undone the (unsuccessful) measurement of

Ht+1, otherwise the system is in the excited subspace of Ht. In both cases the projection onto

the ground state ofHt+1 can now be attempted again, with success probabilities κ(A(v))−2 and

1 − κ(A(v))−2, respectively (step 6). By Lemma 4, the inner loop will succeed in projecting

onto the ground state of Ht+1 with probability at least 1− 1
2es after at most κ2s attempts, with s

chosen as s = ∣V ∣

2eε . Once all ∣V ∣ vertices have been covered, the outer loop terminates with the

PEPS ∣ψ⟩ in its output register with probability at least 1 − ε, as shown in Theorem 2.

1.4 Analysis

1.4.1 Bounding the transition probabilities

As a first step in our analysis, we need a lower bound on the transition probability from ∣ψt⟩ to

∣ψt+1⟩. To this end we proof the following lemma.

Lemma 3. Let ∣ψt⟩ = 1√
Zt

∣At⟩ be the normalized PEPS ∣At⟩, where ∣At⟩ is the unnormalized

partial PEPS resulting from the contraction of PEPS projectors A(v) for all vertices v pro-

cessed in the algorithm up to step t and let Zt = ⟨At∣At⟩. Let ∣At+1⟩ = At+1 ∣At⟩ where At+1 is

the PEPS projector of time step t + 1. Then ∣⟨ψt+1∣ψt⟩∣2 ≥ 1
κ(At+1)2 > 0.

Proof. A simple calculation shows

⟨ψt+1∣ψt⟩ =
1√
Zt

1√
Zt+1

⟨At∣A†
t+1 ∣At⟩ (1.4)

≥ 1√
Zt

1√
Zt+1

⟨At∣A†
t+1At+1 ∣At⟩

σmax(At+1)
(1.5)

= 1√
Zt

1√
Zt+1

Zt+1
σmax(At+1)

(1.6)

= 1
σmax(At+1)

(Zt+1
Zt

)
1
2

(1.7)

where the inequality follows from the operator inequalities At+1 ≥ 0 and At+1
σmax(At+1)

≤ 1. This

implies

∣⟨ψt+1∣ψt⟩∣2 ≥
1

σmax(At+1)2
Zt+1
Zt

(1.8)

But

Zt+1 = ⟨At∣A2
t+1 ∣At⟩ ≥ σmin(At+1)2⟨At∣At⟩ (1.9)

= σmin(At+1)2Zt. (1.10)

Thus Eq. 1.8 and Eq. 1.10 yield the claim

p = ∣⟨ψt+1∣ψt⟩∣2 ≥ ( σmin(At+1)
σmax(At+1)

)
2
= 1
κ(At+1)2 (1.11)

Finally, the injectivity assumption of PEPS ∣ψt+1⟩ implies left invertibility of At+1 for each v,

thus κ(At+1) is finite, therefore p > 0.
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1.4.2 Bounding the convergence rate

In this section we analyze the termination probability of the loop at step 4.

Lemma 4. Let Ht,Ht+1 be Hamiltonians with unique zero-energy ground states ∣ψt⟩ and

∣ψt+1⟩, respectively. Let s be a positive integer. If the system is in state ∣ψt⟩ initially, then

the measurement process alternatingly measuring Ht+1 and Ht and stopping once ∣ψt+1⟩ is

reached, takes the system to state ∣ψt+1⟩ with probability at least 1 − 1
2es after at most s/p

alternations, where p = ∣⟨ψt+1∣ψt⟩∣2.

Proof. LetP,Q be the ground state projectors ofHt andHt+1, respectively, and letP ⊥ = 1 − P ,

Q⊥ = 1 −Q. By Jordan’s Lemma, there exists an orthonormal basis in which the Hilbert space

decomposes into (1) two-dimensional subspaces Si invariant under both, P andQ, and (2) one-

dimensional subspaces Tj on which PQ is either an identity- or zero-projector [Nagaj et al.,

2009].

Since we know that ∣ψt⟩ and ∣ψt+1⟩ are the unique 1-eigenstates of P and Q with overlap
√
p, exactly one Si is relevant to our analysis. This two-dimensional subspace is spanned by

both, ∣ψt⟩ and some ∣ψ⊥t ⟩, as well as by ∣ψt+1⟩ and some ∣ψ⊥t+1⟩. Among these four vectors, we

have got the following relationships [Marriott and Watrous, 2005]:

∣ψt⟩ = −
√
p ∣ψt+1⟩+

√
1 − p ∣ψ⊥t+1⟩ (1.12)

∣ψ⊥t ⟩ =
√

1 − p ∣ψt+1⟩+
√
p ∣ψ⊥t+1⟩ (1.13)

∣ψt+1⟩ = −
√
p ∣ψt⟩+

√
1 − p ∣ψ⊥t ⟩ (1.14)

∣ψ⊥t+1⟩ =
√

1 − p ∣ψt⟩+
√
p ∣ψ⊥t ⟩ (1.15)

Considering these symmetrical relations, we see that alternating measurements of Ht and Ht+1

generate a Markov process among these four states. Since the process terminates whenever it

hits ∣ψt+1⟩, the only histories which can keep the process from terminating are those with an

initial transition ∣ψt⟩ → ∣ψ⊥t+1⟩ and which then keep repeating either one of the following two

pairs of transitions

∣ψ⊥t+1⟩ → ∣ψt⟩ → ∣ψ⊥t+1⟩ (1.16)

∣ψ⊥t+1⟩ → ∣ψ⊥t ⟩ → ∣ψ⊥t+1⟩ , (1.17)

which occur with probabilities (1 − p)2 and p2, respectively. Thus the process terminates after

at most 2m + 1 measurements with probability

pterm(p,m) = 1 − (1 − p)(p2 + (1 − p)2)m. (1.18)

To lower-bound this probability we upper-bound pfail(p,m) = 1 − pterm(p,m) as

pfail(p,m) ≤ (1 − p)exp(−2mp(1 − p)) (1.19)

which follows from (1 − q)m ≤ e−qm, for 0 ≤ q ≤ 1 and m ≥ 0. Finally we choose m as a

multiple of 1
p and find pfail(p, s/p) ≤ 1

2es , which can be seen by straightforward calculus.
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1.4.3 Proof of Theorem 2

Proof of Theorem 2. We complete the proof of Theorem 2 by using Lemma 4 for bounding the

failure probability pfail of the inner loop to derive a lower bound on the success probability of

the outer loop over all vertices in V . That is, we have to show that

(1 − pfail)∣V ∣ ≥ 1 − ε. (1.20)

Since

(1 − pfail)∣V ∣ ≥ 1 − ∣V ∣pfail (1.21)

by truncating higher-order terms from the binomial series and assuming ∣V ∣ > 1 it suffices to

show

∣V ∣pfail ≤ ε. (1.22)

Using Lemma 4, we find the first inequality of

∣V ∣pfail ≤
∣V ∣
2es

≤ ε, (1.23)

while the second inequality is satisfied by choosing

s ≥ ∣V ∣
2eε

. (1.24)

Thus, for the algorithm to succeed with at least probability 1 − ε we have to choose m ≥ s
p ≥

∣V ∣

2peε . Since we know from Lemma 3 that p ≥ 1
κ2 , choosing

m ≥ κ
2∣V ∣
2eε

≥ ∣V ∣
2peε

(1.25)

suffices.Thus the inner loop performs at most 2m + 1 ≤ κ2∣V ∣

eε measurements. The outer loop

iterates over ∣V ∣ vertices, thus the total number of measurements is less than κ2∣V ∣
2

eε +∣V ∣. Book-

keeping of the active Hamiltonian terms in the outer loop requires a total time ofO(∣V ∣k) using

simple arrays as data structures, and O(∣V ∣kd6) to compute all parent Hamiltonian terms, both

of which are dominated by the O(∣V ∣2) time of the inner loop for small d. Finally, since each

phase estimation step requires Õ(∣E∣2/∆) [Berry et al., 2007, Nagaj et al., 2009, Nielsen and

Chuang, 2000], where Õ(⋅) suppresses more slowly growing factors such as exp(
√

ln(∣E∣/∆))
[Harrow et al., 2009], we find a total runtime of

Õ( ∣V ∣2∣E∣2κ2

ε∆
+ ∣V ∣kd6). (1.26)

This completes the proof of Theorem 2.
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Figure 1.3: A generic tensor A can be split into a PEPS projector A′ and an associated diagonal ob-
servable consisting exclusively of phases eiφ.

1.5 Contracting tensor networks on a quantum computer

Once an injective PEPS has been prepared, any local observable might be estimated. This is

considered the primary application of our algorithm.

More generally, PEPS are a special class of open tensor networks. In [Arad and Landau,

2010] a quantum algorithm has been developed to compute an additive approximation of the

contraction value of a (closed) tensor network under certain conditions. One might wonder,

whether a general tensor network could be related to a PEPS and whether measuring an ob-

servable on such a PEPS could be used to approximate the contraction value of the tensor

network as well. Indeed, under certain conditions such an approach seems feasible as we will

sketch below.

Consider a generic tensor network T consisting of tensors {A}. The contraction value

C(T ) of tensor network T can now be related to the expected value of an observable on a PEPS

by doubling each index of each A as shown in Figure 1.3 for three indices i, j, k, thus mapping

T = {A} ↦ {A′} = T ′. Note, that each A′ is diagonal by construction. We take the square-root

of the absolute value of A′ as our PEPS projector and Ô = A′

∣A∣
yields a diagonal observable

consisting entirely of phases eiφ. Let ∣ψ⟩ be a state consisting of entangled pairs joining up the

indices of tensor network T and let Ã′ be the tensor product of all A′ of T ′, then an estimation

of

⟨Ô⟩ =
⟨ψ∣ ∣Ã′∣

1
2 Ô ∣Ã′∣

1
2 ∣ψ⟩

⟨ψ∣ ∣Ã′∣ ∣ψ⟩

approximates C(T ) = ⟨Ô⟩ ⟨ψ∣ ∣Ã′∣ ∣ψ⟩. The normalization factor ⟨ψ∣ ∣Ã′∣ ∣ψ⟩ is an unknown

quantity, which can be approximated by Monte Carlo methods avoiding the sign problem since

∣Ã′∣ > 0. In this way, this approach splits the problem into a quantum part to be performed

on a quantum computer, and a tractable classical part. The procedure yields an efficient algo-

rithm to approximate C(T ), if the ratio is bounded by a polynomial in the system size. While

this will not be the case in general, the method may yield polynomial scaling in interesting

instances, similar to the situation of Metropolis sampling. We leave a more detailed analysis
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and comparison to [Arad and Landau, 2010] to future work.

1.6 Conclusion

In this Letter we have shown how to construct quantum states described by injective PEPS in

polynomial time by first reducing the problem to the generation of a sequence of unique ground

states of certain Hamiltonians and then preparing that sequence. In future work we will focus

on extending the class of preparable PEPS and possible performance improvements following

from the results of [Boixo and Somma, 2010, Boixo et al., 2010, Somma and Boixo, 2013].

This work has been supported by Austrian SFB project FoQuS F4014.
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Chapter 2

Preparing Topological Projected
Entangled-Pair States on a Quantum
Computer

Synopsis:

Simulating exotic phases of matter that are not amenable to classical techniques is one of

the most important potential applications of quantum information processing. We present an

efficient algorithm for preparing a large class of topological quantum states – the G-injective

Projected Entangled Pair States (PEPS) – on a quantum computer. Important examples include

the resonant valence bond (RVB) states, conjectured to be topological spin liquids. The run-

time of the algorithm scales polynomially with the condition number of the PEPS projectors,

and inverse-polynomially in the spectral gap of the PEPS parent Hamiltonian.

Based on:

M. Schwarz, K. Temme, F. Verstraete, D. Pérez-García, T. S. Cubitt,

Phys. Rev. A 88, 032321 (2013)

Changes compared to published version: minor corrections.
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2.1 Introduction

Creating and studying exotic phases of matter is one of the most challenging goals in con-

temporary physics. The increasingly sophisticated simulation abilities of systems such as cold

atoms in optical lattices, trapped ions or superconducting qubits make this accessible by means

of Feynman’s original idea of using highly controllable quantum systems to simulate other

quantum systems. Among those exotic phases, non-abelian topologically ordered states and

topological spin liquids – such as resonating valence bond (RVB) states in frustrated lattices

– are probably the holy grails of this area of quantum state engineering. Progress on the cre-

ation of such exotic phases in various experimental systems has accelerated rapidly in recent

years, including cold atoms [Bloch et al., 2012], ion traps [Blatt and Roos, 2012], photonic

devices [Aspuru-Guzik and Walther, 2012] and superconducting devices [Houck et al., 2012].

Recently [Schwarz et al., 2012], a very general way of constructing quantum states on a

quantum computer was proposed. The wide applicability of the method lies in the fact that

there is a variational class of quantum states, called Projective Entangled Pair States (PEPS)

[Verstraete and Cirac, 2004], which has a simple local description but is nonetheless complex

enough to approximate the low-energy sector of local Hamiltonians. (A review of the analyt-

ical and numerical evidence for this can be found in [Schuch et al., 2010] and the references

therein.) However, a crucial technical assumption in the main result of [Schwarz et al., 2012],

called ‘injectivity’, excludes any possibility of constructing quantum states with topological

order.

The main aim of this article is to significantly extend these results to include exotic topo-

logical quantum phases, by proving:

Main result Any G-injective PEPS can be prepared on a quantum computer in polyno-

mial time, when the spectral gap of the associated parent Hamiltonian scales at most inverse-

polynomially in the system size.

‘G-injectivity’, introduced only recently in [Schuch et al., 2010] (and explained more fully

below), is a substantially weaker requirement than injectivity, which explicitly allows for topo-

logical order. A compelling example of the significance of this result is the very recently

proven fact that the resonating valence bond (RVB) state in the Kagome lattice (conjectured

to be a topological spin liquid), is a Z2-injective PEPS, with numerical evidence that the gap

assumption is also verified [Poilblanc et al., 2012]. Our result therefore gives one way in which

the RVB state (and other topological states) can be prepared efficiently on a general quantum

simulator. A large class of topological states is captured by quantum-double models [Kitaev,

2003]. These are equivalent to G-isometric PEPS [Schuch et al., 2011] and easy to prepare

[Aguado and Vidal, 2008], which is related to the fact that the terms of the respective parent

Hamiltonians always commute. G-injective PEPS generalize G-isometric PEPS and capture an

even larger class of topological quantum states which are ground states of parent Hamiltonians
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with non-commuting terms for which no efficient preparation procedure has been known be-

fore. Engineering exotic quantum states by quantum simulation complements research aimed

at finding materials that directly exhibit topological behavior, and is already beginning to bear

fruit experimentally [Aspuru-Guzik and Walther, 2012, Blatt and Roos, 2012, Bloch et al.,

2012, Houck et al., 2012].

In the following section, we summarize basic notions of PEPS required in this work, and

introduce the class of G-injective PEPS which includes many of the important topological

quantum states. We then briefly review the algorithm of Ref. [Schwarz et al., 2012] for prepar-

ing injective (non-topological) PEPS, before proceeding to show how this algorithm can be

extended to the much larger class of G-injective PEPS, thereby allowing efficient preparation

of many exotic topological quantum states. Finally, we close with some concluding remarks

and open questions.

Projected Entangled Pair States For simplicity, we will focus on PEPS defined on a square

lattice, but the results can be generalized to other lattices. An (unnormalized) PEPS can be

described as follows. Place maximally entangled states of dimension D along all edges of the

lattice. To each vertex ν, apply a linear mapAν ∶ (CD)⊗4 →Cd to the fourD-dimensional sys-

tems labeled l, t, r, b (for ‘left’, ‘top’, ‘right’ and ‘bottom’), whereAν = ∑i;l,t,r,bAνi;ltrb ∣i⟩⟨ltrb∣.
The resulting vector is the unnormalized PEPS. Since local unitaries do not change the com-

plexity of preparing a state, for the purposes of this work we can assume without loss of gen-

erality that A is positive-semidefinite, by taking its polar decomposition. When A is left-

invertible, we call the PEPS injective [Schuch et al., 2010].

A particularly interesting class of PEPS is the class of G-isometric PEPS, defined for any

finite group G as follows. Take a semi-regular representation of G [Schuch et al., 2010] – that

is, a representation Ug = ⊕αV α
g ⊗ 1rα having at least one copy of each irrep α. Note that the

regular representation is exactly the one for which rα is the dimension dα of the irrep V α
g for

all α. We can define the re-weighting map

∆ = ⊕α (dα
rα

)
1
4
1dα ⊗ 1rα (2.1)

which is real, diagonal, commutes with Ug and satisfies Tr ∆4Ug = ∣G∣δg,e. (For the regular

representation ∆ = 1.) The PEPS is then defined by taking, for all ν:

Aν = 1
∣G∣ ∑g∈G

∆Ūg ⊗∆Ūg ⊗∆Ug ⊗∆Ug. (2.2)

G-isometric PEPS were originally defined in [Schuch et al., 2010] only for the regular rep-

resentation, and shown to be exactly the quantum-double models of Kitaev [Kitaev, 2003].

We use the argument described in [Schuch et al., 2010] for the Toric Code and RVB states,

generalized here to arbitrary G-isometric PEPS, to see that the G-isometric PEPS for any semi-

regular representation is equivalent to the one for the regular representation. Let us start with a
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semi-regular representation Ug of a group G, and let

B = 1
∣G∣ ∑g

∆Ūg ⊗∆Ūg ⊗∆Ug ⊗∆Ug . (2.3)

We will show how B can indeed be seen as the G-isometric PEPS corresponding to the regular

representation – possibly composed with an isometry which embeds the initial Hilbert space

into a sufficiently large one. The latter can be prepared efficiently on a quantum computer by

other means [Aguado and Vidal, 2008], which will be discussed in more detail in Sec. 3.2.

(a)

(b)

B A

A

A

A

A A

A

C

1 2
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Figure 2.1: (a) illustrates the decomposition of the original tensor in the tensors A. We mark in white
the bonds in which we have Ug and in black those in which we have Ūg . (b) illustrates the new way of
grouping the tensors to get a G-isometric PEPS, called C. The bonds of this new tensor are numbered
clockwise as in the figure.

To show this, we decompose the tensorB into two tensors of the formA = (
√

∣G∣)−1∑g ∆Ug⊗
∆Ug ⊗ ∣g⟩ (where Ug and Ug are interchanged as needed, as shown in Fig. 2.1(a)). By regroup-

ing these new tensors, we obtain a new PEPS decomposition of the same state, where now the

bond dimension is ∣G∣ (Fig. 2.1(b)). The resulting tensor C (Fig. 2.1(c)), as a map from the

virtual to the physical indices, is given by

C ∶ ∣g1g2g3g4⟩ ↦
1

∣G∣2
∆2Ug1g−1

2
⊗∆2Ug2g−1

3
⊗∆2Ug4g−1

3
⊗∆2Ug1g−1

4
.

(2.4)
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By calling g = g−1
1 g′1 and using Eq. 2.1 it is straightforward to see that

⟨g′1g′2g′3g′4∣C†C ∣g1g2g3g4⟩

= 1
∣G∣4

2
∏
r=1

Tr(∆4Ugrg−1
r+1g

′

r+1g
′−1
r

)
4
∏
r=3

Tr(∆4Ugr+1g−1
r g′rg

′−1
r+1

) (2.5)

equals 1 if and only if there exist g such that gig = g′i for all i. Otherwise, the expression is

identically zero.

Therefore C†C = (∣G∣)−1∑gR⊗4
g for the regular representation Rg, hence the new PEPS

C is the G-isometric PEPS corresponding to the regular representation.

If, on top of a G-isometric PEPS, we apply a further invertible (and w.l.o.g. positive-

definite) linear map Aν ∶ Cd → C
d, we obtain a ‘G-injective’ PEPS [Schuch et al., 2010].

(Here, d is the dimension of the symmetric subspace associated with the group.) The parallel

with plain injective PEPS is clear. Both are defined by invertible maps on top of a G-isometric

PEPS. In the case of injective PEPS, the group is the trivial one and the representation is simply

1d (d copies of the left-regular representation of the trivial group).

G-isometric PEPS have very nice properties, coming from their topological character,

which are inherited by the more general G-injective PEPS. For instance, for each G-isometric

PEPS ∣ψ⟩ there exists a local frustration-free Hamiltonian (called the PEPS “parent Hamilto-

nian” [Schuch et al., 2010]), consisting of commuting projectors and having as ground space

the subspace (over-)spanned by {∣ψ;K⟩ ∶ K = (g, h), [g, h] = 0}. (Here, ∣ψ;K⟩ is the PEPS

obtained by the same maps A, except that we first apply an additional U⊗V
g to exactly one ver-

tical strip V and U⊗H
h to exactly one horizontal strip H in the initial collection of maximally

entangled states [Schuch et al., 2010]). This generalizes to G-injective PEPS, except that the

local Hamiltonian terms are no longer necessarily commuting projectors.

We will denote by ∣A1⋯At⟩ the G-injective PEPS defined by applying the mapAj to vertex

j for j = 1, . . . , t (and identity to the rest of the vertices) on top of the G-isometric PEPS, and

define the states ∣A1⋯At;K⟩ analogously to above, which again (over-)span the ground space

of a frustration-free local parent Hamiltonian Ht.

2.2 Algorithm

Preparing injective PEPS We first briefly review the algorithm of [Schwarz et al., 2012] for

preparing injective PEPS on a quantum computer. Let Ht be the parent Hamiltonian of the

partially constructed state ∣A1⋯At⟩. The algorithm starts at t = 0 with maximally entangled

states between all pairs of adjacent sites in the lattice, and proceeds by successively projecting

onto the ground states of Ht for t = 1 . . .N until the final state ∣A1⋯AN ⟩ is reached.

Since the ground state Pt of Ht is a complex, many-body quantum state, it is not immedi-

ately clear (i) how to efficiently perform the projective measurement {Pt, P ⊥t } onto the ground
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state. Furthermore, measurement in quantum mechanics is probabilistic, so even if this mea-

surement can be performed, it is not at all clear (ii) how to guarantee the desired outcome

Pt.

The answer to (i) is to run the coherent quantum phase estimation algorithm [Knill et al.,

2007, Nielsen and Chuang, 2000] for the unitary generated by time-evolution underHt. (Time-

evolution under the local HamiltonianHt can be simulated efficiently by standard Hamiltonian

simulation techniques [Berry et al., 2007].) If ∑k αk ∣ψk⟩ is the initial state expanded in the

eigenbasis of Ht, then the phase estimation entangles this register with an output register con-

taining an estimate of the corresponding eigenvalue: ∑k αk ∣ψk⟩ ∣Ek⟩. Performing a partial

measurement on the output register to determine if its value is less than ∆t (the spectral gap of

Ht) completes the implementation of the measurement {Pt, P ⊥t }. (See [Schwarz et al., 2012]

for full details.)

The solution to (ii) is more subtle, and makes use of Camille Jordan’s lemma of 1875 on

the simultaneous block diagonalization of two projectors, which we first recall:

Lemma 5 (Jordan [Jordan, 1875]). LetR andQ be projectors with rank sr and sq respectively.

Then both projectors can be decomposed simultaneously in the form

R =
sr

⊕
k=1

Rk and Q =
sq

⊕
k=1

Qk, (2.6)

where Rk,Qk denote rank-1 projectors acting on one- or two-dimensional subspaces. The

eigenvectors ∣rk⟩ , ∣r⊥k⟩ and ∣qk⟩ , ∣q⊥k ⟩ of the 2 × 2 projectors Rk and Qk are related by

∣rk⟩ =
√
dk ∣qk⟩+

√
1 − dk ∣q⊥k ⟩

∣r⊥k⟩ = −
√

1 − dk ∣qk⟩+
√
dk ∣q⊥k ⟩

∣qk⟩ =
√
dk ∣rk⟩−

√
1 − dk ∣r⊥k⟩

∣q⊥k ⟩ =
√

1 − dk ∣rk⟩+
√
dk ∣r⊥k⟩ .

Ref. [Schwarz et al., 2012] shows that if the current state is in the 2 × 2 block containing

the ground state of Ht, then the PEPS structure guarantees the probability of a successful

projection onto Pt+1 is at least κ(At+1)−2, where κ(At+1) is the condition number of the matrix

At+1. Assume for induction that we have already successfully prepared the (unique) ground

state of Ht. We first attempt to project from this state onto the unique ground state of Ht+1

by measuring {Pt+1, P
⊥
t+1}. If this fails, we attempt to project back to the state we started

from by measuring {Pt, P ⊥t } (a technique introduced by Marriott and Watrous [Marriott and

Watrous, 2005] in the context of QMA-amplification). If this “rewind” measurement succeeds,

then we’re back where we started and can try again. What if the “rewind” measurement fails?

By Lemma 5, we must be in the excited state from the same 2 × 2 block, so we can still try

to project “forwards” with the same lower bound on the success probability. Thus iterating

forwards and backwards measurements until success generates a Markov chain with successful
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Algorithm 1 Preparing a G-injective PEPS. Ht (t = 1 . . .N ) is the parent Hamiltonian for the

G-injective PEPS ∣A1 . . .At⟩, Pt the projector onto its ground state subspace. Note that by

specifying Av, we are implicitly selecting a particular semi-regular representation of G.
Input: G-injective Av defined on an N -vertex lattice; ε > 0.

Output: ∣ψ⟩ ∈ span ∣A1, . . . ,At;K⟩ with probability ≥ 1 − ε.

1: Prepare corresponding G-isometric PEPS

2: for t = 1 to N do
3: Measure {Pt+1, P

⊥
t+1} on ∣ψ⟩.

4: while measurement outcome is P ⊥t+1 do
5: Measure {Pt, P ⊥t }.

6: Measure {Pt+1, P
⊥
t+1}.

7: end while
8: end for

projection onto the ground state of Ht+1 as the unique absorbing state. Moreover, the success

probability in each step is bounded away from zero, so this process converges in polynomial

time to the ground state of Ht+1.

Preparing G-injective PEPS Consider the algorithm of the preceding section from the per-

spective of G-injective PEPS. An injective PEPS can always be viewed as a G-injective PEPS

for the representation 1 of the trivial group. The algorithm starts from the state consisting

of maximally-entangled pairs between each site, and transforms this into the desired state by

projecting onto the ground states of a sequence of injective parent Hamiltonians. But the ini-

tial state is none other than the G-isometric PEPS corresponding to the representation 1 of the

trivial group. This hints at a generalization of the algorithm to G-injective PEPS for arbitrary

groups G: start by preparing the corresponding G-isometric PEPS, and successively transform

this into the desired G-injective PEPS by projecting onto the ground states of the sequence of

G-injective parent Hamiltonians (see Fig. 1).

There are, however, two obstacles to implementing this approach. (i) The initial G-isometric

PEPS can be a substantially more complicated many-body quantum state than the trivial prod-

uct of maximally-entangled pairs we must prepare in the injective case. (ii) Since G-injective

parent Hamiltonians are topological, they have degenerate ground state subspaces. But the

Marriott-Watrous “rewinding trick” [Marriott and Watrous, 2005] relies on the measurement

projectors being 1-dimensional; it breaks down in general for higher-dimensional projectors.

There is a direct solution to (i). Ref. [Schuch et al., 2010] proves that, for any group G,

the parent Hamiltonian of the G-isometric PEPS for the regular representation corresponds

precisely to a quantum-double model [Kitaev, 2003, Schuch et al., 2011]. But Ref. [Aguado

and Vidal, 2008] shows that ground states of quantum-double models can be generated exactly
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by a polynomial-size quantum circuit. We can therefore use this circuit to efficiently prepare

the G-isometric PEPS for the regular representation of G. Even though the argument above

only applies to regular representations of G, we have shown in Sec. 2.1, that a G-isometric

PEPS for any semi-regular representation is equivalent to the one for the regular representation

(up to local isometries), by simply regrouping the tensors. Thus the argument generalizes

straightforwardly.

The second obstacle (ii) is more delicate. As described above, the Marriott-Watrous “rewind-

ing” used in the injective case [Schwarz et al., 2012] works because the Hamiltonians Ht and

Ht+1 at each step have unique ground states, so that the back-and-forth measurement process

is confined to a single 2 × 2 block. However, in the G-injective case, the Hamiltonians no

longer have unique ground states, and there are multiple 2 × 2 blocks corresponding to differ-

ent ground states. Thus when we “rewind” a failed measurement, the backwards measurement

could project us back into any superposition of states from any of the blocks corresponding to

the ground state subspace. Now,At+1 is only invertible on theG-symmetric subspace, so it nec-

essarily has some zero eigenvalues. Hence κ(At+1) = ∞ and the lower bound κ(At+1)−2 = 0
on the probability of a successful forward measurement is useless. Although there may still ex-

ist some ground state ∣ψ1
t ⟩ ofHt which has positive probability of successful forward transition

to a ground state of Ht+1, this does not rule out existence of another ground state ∣ψ2
t ⟩ of Ht

for which the probability of a successful forward transition is 0. In the worst case, if a forward

measurement fails and we end up in a state ∣ϕ⊥t+1⟩, the rewinding step could have probability 1

of transitioning back to ∣ψ2
t ⟩, so that we remain stuck forever bouncing back and forth between

∣ψ2
t ⟩ and ∣ϕ⊥t+1⟩.

To overcome this, we must show that if we start from the G-isometric state, then the struc-

ture of G-injective PEPS ensures that this situation can never occur. To prove this, we need the

following technical lemma, which generalizes Lemma 2 of [Schwarz et al., 2012].

Lemma 6. Let Pt and Pt+1 denote two projectors on the ground state subspace of the partial

PEPS parent Hamiltonians Ht and Ht+1 for ∣A1 . . .At⟩ and ∣A1 . . .At,At+1⟩. The overlap

dk between Pt and Pt+1 (cf. Lemma 5) is lower-bounded by dmin ≥ κ(At+1∣SG)−2, where

κ(At+1∣SG) ∶= σmax(At+1∣SG)/σmin(At+1∣SG) is the condition number restricted to the G-

symmetric subspace SG.

Proof. The minimum overlap dmin between projectors Pt and Pt+1 is given by

dmin = min
∣ψt⟩

max
∣ψt+1⟩

∣⟨ψt∣ψt+1⟩∣2 , (2.7)

where ∣ψt⟩ and ∣ψt+1⟩ are states in the respective ground state subspaces kerHt and kerHt+1.

Now, kerHt is spanned by the partially constructed PEPS ∣A1, . . . ,At;K⟩, with different

boundary conditions K giving different ground states. Thus we can decompose any ∣ψt⟩ ∈
kerHt as a linear combination of partial PEPS: ∣ψt⟩ = ∑ ck ∣A1, . . . ,At;Kk⟩.
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Figure 2.2: The sequence of outcomes of the binary measurements {Pt, P ⊥t } and {Pt+1, P
⊥

t+1}. We
start in an eigenstate ∣ψt⟩ of Pt, and want to transition to a state in the subspace Pt+1. With non-zero
probability, the first measurement succeeds with outcome Pt+1. If it fails, we have prepared a state
in the P ⊥t+1 subspace. We “unwind” the measurement by measuring {Pt, P ⊥t } again. Upon repeating
the {Pt+1, P

⊥

t+1} measurement, we again have a non-zero probability of successfully obtaining the Pt+1

outcome. This is repeated until success.

Ht+1 is obtained from Ht by replacing all the G-isometric local Hamiltonian terms at one

vertex with the G-injective terms. So applying At+1 to any ∣A1, . . . ,At;K⟩ takes us to the next

ground state subspace. Therefore, the state

∣ϕt+1⟩ =
At+1 ∣ψt⟩√

⟨ψt∣A†
t+1At+1 ∣ψt⟩

(2.8)

is contained in kerHt+1. Choosing ∣ψt+1⟩ = ∣ϕt+1⟩ in Eq. (2.7), we obtain the lower bound

dmin ≥ min
∣ψt⟩

∣⟨ψt∣ϕt+1⟩∣2 ≥ min
∣ψt⟩

∣⟨ψt∣At+1 ∣ψt⟩∣2

⟨ψt∣A†
t+1At+1 ∣ψt⟩

. (2.9)

It is immediate from the definition of G-injective PEPS that the ground states of Ht are

symmetric, so that the projector Pt is supported on the symmetric subspace SG. Thus the

minimization is over symmetric states and, recalling that w.l.o.g. At is positive-semidefinite,

we obtain the claimed bound

dmin ≥ min
∣ψt⟩

⟨ψt∣ At+1∣SG ∣ψt⟩2

⟨ψt∣ A2
t+1∣SG ∣ψt⟩

≥
σmin (At+1∣SG)

2

σmax (At+1∣SG)
2 , (2.10)

by the variational characterization of eigenvalues.

2.3 Analysis

Runtime We are now in a position to establish the runtime of the algorithm given in Fig. 1.

We start by bounding the failure probability of growing the partial PEPS by a single site. The

proof of the following lemma is closely analogous to Lemma 3 in [Schwarz et al., 2012] and

reproduced below.

Lemma 7. The measurement sequence depicted in Fig. 2.2 with the two projective measure-

ments {Pt, P ⊥t } and {Pt+1, P
⊥
t+1} has a failure probability bounded by

pfail(m) < 1
2 dminm

(2.11)
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after m-subsequent measurement steps, where dmin = mink dk is the minimal overlap between

the eigenstates of Pt and Pt+1.

Proof. Let Q1 = Pt+1, Q0 = P ⊥t+1 and R1 = Pt, R0 = P ⊥t , in accordance with the notation

in Lemma 5. Hence Q1 projects on to the new ground state subspace, whereas R1 is the

projector on to the old ground state subspace. If we start in some state ∣ψ⟩ = R1 ∣ψ⟩, the prob-

ability of failure of the measurement sequence depicted in Fig. 2.2 after m steps is pfail(m) =
∑s1,...,sm Tr(Q0RsmQ0 . . .Rs1Q0 ∣ψ⟩⟨ψ∣Q0Rs1 . . .Q0RsmQ0). Note that [Q0RsQ0,Q0RpQ0] =
0 for all s, p. We can therefore rearrange this to express pfail(m) as the sum

m

∑
k=0

(m
k
) ⟨ψ∣ (Q0R0Q0)2k (Q0R1Q0)2(m−k) ∣ψ⟩

= ⟨ψ∣ ((Q0R0Q0)2 + (Q0R1Q0)2)m ∣ψ⟩ .

If we work in the eigenbasis of Q1, the individual 2 × 2 block matrices take the form

Qk1 =
⎛
⎝

1 0
0 0

⎞
⎠
, Rk1 =

⎛
⎝

dk
√
dk(1 − dk)√

dk(1 − dk) 1 − dk

⎞
⎠
. (2.12)

Since ∣ψ⟩ is left invariant by R1, we have that ∣ψ⟩ = ∑k ck ∣rk⟩, where in this basis every

∣rk⟩ = (
√
dk

√
1 − dk)T by Lemma 5. We are therefore left with

pfail(m) = ∑
k

∣ck∣2 (1 − dk) (1 − 2dk(1 − dk))m , (2.13)

with dk ∈ [0,1] and ∑k∣ck∣2 = 1.

Since (1 − x) ≤ e−x, we may bound (1 − dk)(1 − 2dk(1 − dk))m ≤ (1 − dk)e−2mdk(1−dk).

Furthermore, we have that (1 − dk)e−2mdk(1−dk) ≤ 1/2mdk by Taylor expansion. If we now

choose the largest factor (2mdk)−1 ≤ (2mdmin)−1, we can bound the total failure probability

by Eq. (2.11).

We can use this to bound the overall runtime.

Theorem 8 (Runtime). LetAv beG-symmetric tensors defining a PEPS on anN -vertex lattice.

A state in the subspace spanned by the corresponding G-injective PEPS ∣A1 . . .AN ;K⟩ can

be prepared on a quantum computer with probability 1 − ε in time O(N4κ2
G∆−1ε−1), with

additional classical processing O(Nd6). ∆ = mint(∆t) is the minimal spectral gap of the

family of parent Hamiltonians Ht for ∣A1 . . .At⟩ (t = 1 . . .N ), and κG = maxt κ(At∣SG).

Proof. The algorithm in Fig. 1 first prepares the initial G-isometric PEPS, which can be done

exactly in time O(N logN) [Aguado and Vidal, 2008], and then transforms this step by step

into the G-injective PEPS, with one step for each of the N vertices of G. Each step has a

probability of failure pfail(m) if we repeat the back-and-forth measurement scheme m times.

We need to ensure that the total success probability is lower-bounded by (1−pfail(m))N ≥ 1−ε.
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Since (1 − x)N ≥ 1 −Nx, we can use Lemma 7 to bound (1 − pfail(m))N ≥ 1 − N
2mdmin

, so

we want N/2mdmin ≤ ε. Since dmin ≥ κ−2
G by Lemma 6, we choose m ≥ Nκ2

G/2ε at each

step. We therefore need to perform O(N2κ2
Gε

−1) quantum phase estimation procedures, each

of which has runtime Õ(N2/∆−1) to ensure that we are able to resolve the energy gap of the

parent Hamiltonian [Harrow et al., 2009]. (Note that the notation Õ(⋅) suppresses more slowly

growing terms such as exp(
√

lnN/∆).) The classical bookkeeping required to keep track of

the Hamiltonians is the same as in [Schwarz et al., 2012]. Putting all this together, we arrive at

the total runtime stated in the theorem.

2.4 Conclusion

We have shown how the Marriott-Watrous rewinding technique combined with the unique

structure of G-injective PEPS can be used to transition from one state to the next (see Fig. 1),

successively building up the desired quantum state, even when the state has topological order

and the ground states are degenerate. A number of alternative techniques could potentially be

substituted for the measurement rewinding approach used here. In each case, the key to proving

an efficient runtime is our Lemma 6. In many cases the existing results in the literature assume

non-degenerate ground states, so would need to be generalized before they would apply to the

topologically degenerate ground states considered here.

Standard adiabatic state preparation requires a polynomial energy gap along a continuous

path joining the initial Hamiltonian with the final one. But the ‘jagged adiabatic lemma’ of

Ref. [Aharonov and Ta-Shma, 2007] shows that such a path connecting a discrete set of gapped

Hamiltonians always exists if the ground states are unique, and each has sufficient overlap with

the next. This is precisely what we prove in Lemma 6. For the ‘injective’ case of [Schwarz

et al., 2012], this is sufficient to show that adiabatic state preparation is an efficient alternative

to the “rewinding” technique. Our results suggest it may be possible to generalize the jagged

adiabatic lemma to degenerate ground states.

More general are the methods of [Boixo et al., 2010], which subsume the jagged adiabatic

lemma and the Marriott-Watrous technique. The results in [Boixo et al., 2010] do not imme-

diately apply to degenerate ground states, but if they can be generalized they could potentially

improve the polynomial dependence on the required error probability to a logarithmic one.

Similarly, the quantum rejection sampling technique of [Ozols et al., 2012] gives a quadratic

improvement over Marriott-Watrous rewinding by a clever use of amplitude amplification. Fi-

nally, the spectral gap amplification technique of [Somma and Boixo, 2013], which cites injec-

tive PEPS preparation [Schwarz et al., 2012] as a potential application, may also be applicable.

In all three cases, the techniques would first need to be generalized to handle degenerate ground

states. Our Lemma 6 would then imply efficiency of the resulting algorithm.

The conditions required for efficient preparation in Theorem 8 (inverse-polynomial scaling

of the spectral gaps of the partial parent Hamiltonians, and polynomial scaling of the condition
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numbers of the PEPS projectors) are reminiscent of the conditions (local gap and local topolog-

ical quantum order) required for stability of the spectral gap of local Hamiltonians [Michalakis,

2012]. It is also conjectured that the spectral gap of the parent Hamiltonian should be closely

related to the condition number of the PEPS projectors. It would be interesting to understand

better the relationships between these various conditions.

The technique introduced in this letter, of constructing a complex many-body quantum state

by starting from an easily-constructible state and successively transforming it into the desired

state, is very general. Although we have applied it here to G-injective PEPS, as a class of

states including many important topological quantum states, our algorithm can be generalized

to other classes of tensor network states, such as string-net models [Schuch, 2012] and models

constructed from Hopf algebras [Buerschaper et al., 2013].

Acknowledgements DPG and TSC thank the Centro de Ciencias Pedro Pascual and the

Petronilla facility, Benasque, where part of this work was done. They were funded by Span-

ish grants QUITEMAD, I-MATH, and MTM2008-01366. TSC was supported by a Juan de

la Cierva fellowship, MS by Austrian SFB grant FoQuS F4014, KT by an Erwin Schrödinger

fellowship and Austrian FWF: J 3219-N16, FV by EU grants QUERG, and Austrian FWF SFB

grants FoQuS and ViCoM.



Chapter 3

An Information-Theoretic Proof of the
Constructive Commutative Quantum
Lovász Local Lemma

Synopsis:

The Quantum Lovász Local Lemma (QLLL) [Ambainis et al., 2012] establishes non-

constructively that any quantum system constrained by a local Hamiltonian has a zero-energy

ground state, if the local Hamiltonian terms overlap only in a certain restricted way. In this

paper, we present an efficient quantum algorithm to prepare this ground state for the special

case of commuting projector terms. The related classical problem has been open for more than

34 years. Our algorithm follows the breakthrough ideas of Moser’s [Moser, 2009] classical

algorithm and lifts his information theoretic argument to the quantum setting. A similar result

has been independently published by Arad and Sattath [Arad and Sattath, 2013] recently.

Based on:

M. Schwarz, T.S. Cubitt and F. Verstraete,

e-print arXiv:1311.6474, 2013, submitted
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3.1 Introduction

In 1973 László Lovász proved a remarkable probabilistic lemma nowadays known as Lovász

Local Lemma (LLL) [Erdős and Lovász, 1975, Spencer, 1977] . Informally, it says that when-

ever events in a set of probability events are only locally dependent (i.e. each event depends

on at most a constant number of other events), then with positive probability none of them

occurs. This probability might be extremely small, nevertheless the lemma shows that such an

event exists. Lovász and Erdős applied this lemma with great success to prove the existence of

various rare combinatorial objects, an approach which came to be known as the probabilistic

method [Alon and Spencer, 2000]. Their method has one drawback: even though the LLL

shows the existence of certain objects, it doesn’t provide any clue of how to construct such ob-

jects efficiently – the lemma is non-constructive. Things started to change when in 1991 Beck

was the first to give an efficient algorithm to construct such objects, but only under assump-

tions stronger than the LLL [Beck, 1991]. After a sequence of improvements on Beck’s work,

Moser’s breakthrough in 2009 finally gave us a constructive and efficient proof of the LLL

under the same assumptions as the original one [Moser, 2009]. First, he proved a widely used

variant called the symmetric LLL, and then jointly with Tardos gave a fully general constructive

and efficient proof of the LLL [Moser and Tardos, 2010]. The symmetric LLL considers the

special case, where the probabilities of all of the dependent events are bounded by the same

constant, and can be stated as follows:

Lemma 9 (Symmetric Lovász Local Lemma). Let A1,A2, ...,Am be a set of events such that

each event occurs with probability at most p. If each event is independent of all others except

for at most d − 1 of them, and

epd ≤ 1,

then

Pr [ A1 ∩A2 ∩ ... ∩Am ] > 0.

The symmetric LLL is often used in the context of constraint satisfaction problems (CSPs)

to prove the existence of an object specified by a list of local constraints. In this case one

considers, say, n bit strings X chosen uniformly at random. The events are given by the

local constraint functions Ai = fi(X), where each function fi is k-local in the sense that

it depends only on k of the n bits; the event occurs if the constraint is satisfied. If these

Ai meet the constraints of the symmetric LLL, the LLL implies that an x satisfying all the

constraints exists, and Moser’s algorithm can be used to construct such an x efficiently. In this

way the LLL also implies that the set of k-SAT instances, where each variable occurs in at

most d < 2k/ek clauses, is always satisfiable. (Without this restriction on variable occurrence,

deciding satisfiability is of course the archetypical NP-complete problem.)

During the STOC 2009 presentation of his result, Moser presented a beautiful information-

theoretic argument, valid under very slightly stronger conditions, which underlies the more
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complicated but tight result in [Moser, 2012]. It is this argument that the present paper gener-

alizes to the quantum setting.

The non-constructive proof of the LLL has recently been generalized to the quantum case

by Ambainis, Kempe, and Sattath [Ambainis et al., 2012]. In this setting, events are replaced by

orthogonal projectors of rank 1 (or rank r in general) onto k-local subsystems, and the authors

achieve a non-constructive proof of a Quantum Lovász Local Lemma (QLLL) with exactly the

same constants as in the classical version.

Lemma 10 (Symmetric Quantum Lovász Local Lemma [Ambainis et al., 2012]). Let {Π1, ...,Πn}
be a set of k-local projectors of rank at most r. If every qubit appears in at most d < 2k/(e ⋅r ⋅k)
projectors, then the instance is satisfiable.

In this paper, we generalize Moser’s algorithm to the quantum setting in the special case

of commuting projectors, yielding an efficient proof of Lemma 10 for this case. While all

of our projectors are diagonal in a common basis, the basis vectors will in general be highly

entangled quantum states. The (classical) constructive LLL does not immediately apply in

the diagonal basis. Indeed, the preparation of such highly entangled ground states is far from

trivial and subject to active research in the field of quantum Hamiltonian complexity theory

[Aharonov and Eldar, 2011, 2013, Bravyi and Vyalyi, 2005, Hastings, 2013, Osborne, 2012,

Schuch, 2011, Schwarz et al., 2013].

Furthermore, we improve upon Moser’s argument and make it tight up to the assumptions

of the non-constructive symmetric (Q)LLL. Of course, this also implies a tight algorithmic

result for the classical special case. Our argument relies on a simple universal method to com-

press a binary classical bit sequence, which yields the tight result. In the process of generalizing

the result to the quantum setting, we explicitly bound the run-time and error probabilities using

(a tight special case of) the strong converse of the typical subspace theorem [Winter, 1999] as

an indispensible ingredient, which is a fundamental result of quantum information theory.

More precisely, we prove the following efficient symmetric Quantum Lovász Local Lemma

for commuting projectors with the same parameters as the original LLL and QLLL. Our proof

is a quantum information-theoretic argument, but by restricting to classical constraints our

argument immediately specializes to a tight classical information-theoretic proof.

Theorem 11 (Efficient symmetric commutative QLLL). Let Π1,Π2, ...,Πm be a set of com-

muting k-local projectors of rank at most r acting on a system of n qubits. If each projector

intersects with at most d− 1 of the others, where d ≤ 2k
re , then for any ε > 0 there exists a quan-

tum algorithm with run-time O(m + log(1
ε)) that returns a quantum state σ with probability

1 − ε, such that σ has energy zero, i.e. ∀i,1 ≤ i ≤m ∶ tr(Πiσ) = 0.

It might be interesting to note that for non-commuting projectors our proof still implies that

the algorithm terminates within the same run-time bound, but the argument about the energy

of the state returned (Lemma 16) is no longer applicable. Lemma 12 (see also Lemma 16) is

the crucial and only place in the proof where commutativity of the projectors is used.
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In Section 3.2, we fix the notation and review Moser’s classical algorithm. In Section 3.2.2

we present the key ideas of our quantum generalization, and give a simple quantum information-

theoretic analysis in Section 3.3 which leads to the main result. (A manifestly unitary variant

of the recursive algorithm, complete with technical details, is given in Section 3.6.1.) We

conclude in Section 3.4.

3.2 The Algorithm

In this section we describe our quantum version of Moser’s algorithm. Before we do so, we

quickly review Moser’s classical original algorithm. We will start by setting up some notation,

where we try to keep the notational differences between the quantum and classical case at a

minimum.

The input to the classical (quantum) algorithm consists of a k-(Q)SAT instance. Each k-

(Q)SAT instance is defined on n (qu)bits and consists of m clauses (projectors of rank at most

r) {Πi}1≤i≤m. Each clause (projector) is k-local, i.e. it acts non-trivially only on a subset of k

(qu)bits and as the identity on the n−k remaining qubits. Given an instance {Πi}, the exclusive

neighborhood function Γ(Πi) returns an ordered tuple of projectors sharing at least one qubit

with Πi. Furthermore we define the inclusive neighborhood function Γ+(Πi) = Γ(Πi) ∪ Πi.

The jth neighbor of Πi is then defined as Γ+(Πi)j . To simplify the notation, we sometimes

write Γ+(i, j) instead of Γ+(Πi)j . In the special case of a k-QSAT instance where all {Πi} are

diagonal in the standard basis, it reduces to a classical k-SAT instance and projectors reduce to

clauses. All logarithms in this paper use base 2.

3.2.1 Moser’s classical algorithm

We will now quickly review Moser’s classical algorithm to set the scene for our quantum gen-

eralization. In Algorithm 2 we assume a classical k-SAT instance as input. The algorithm

operates on a register of n bits sampled from a uniformly random source. The main procedure

solve_lll() iterates over the clauses Π1,Π2, . . . ,Πm and calls subroutine fix(Πi) on each. Pro-

cedure fix(Πi) checks if Πi is satisfied, records the outcome to a logging register L (“the log”)

and returns if it is. Otherwise fix() resamples the bits of the unsatisfied clause from the uni-

formly random source and recurses on all neighbors in Γ+(Πi) in turn. Throughout the paper

fixing a clause or fixing a projector will mean entering such a recursion. Whenever we observe

a clause not to be satisfied, we say the measurement of the clause has failed (or succeeded oth-

erwise.) In the quantum case, whenever a projective measurement {Πi, (1−Πi)} has outcome

Πi we say it has failed (or succeeded if the outcome is (1 −Πi).)

Moser’s key insight was to understand Algorithm 2 as a compression algorithm, that draws

entropy from a uniformly random source and compresses it into the log register L. He shows

that the random initial state of n bits and all entropy drawn from the source during execution of
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Algorithm 2 Classical and quantum information-theoretic LLL solver
1: procedure solve_lll(Π1,Π2, . . . ,Πm)

2: W ← n uniformly random bits ▷ initial state

3: R ← kN uniformly random bits ▷ source of randomness

4: t← 0, L← 0...0 ▷ book keeping registers

5: for i← 1 to m do
6: fix(Πi)
7: end for
8: return (SUCCESS, W)

9: end procedure
10: procedure fix(Πi)

11: measure Πi on W

12: append the binary result to the execution log, L

13: if Πi was violated then
14: swap subsystem of Πi with block t in R

15: apply Ui to rotate the state of the swapped subsystem in R

16: t← t + 1
17: for all Πj ∈ Γ+(Πi) do
18: fix(Πj)
19: end
20: end if
21: end procedure

the algorithm can be losslessly compressed into the log and the output state. By showing that

each failed measurement yields a tighter bound on the entropy of the system, he argues that the

algorithm must terminate with high probability after O(m) measurements, as otherwise the

entropy of the system was compressed below the entropy drawn from the source. Furthermore,

each time fix() returns, one more projector is satisfied. Thus, once the algorithm terminates, all

projectors are satisfied and the output state must therefore have energy zero.

In Moser’s algorithm the log is introduced merely as a bookkeeping device to facilitate

the correctness proof of the algorithm. It is not necessary to produce the log in “real world”

implementations; the log is merely a proof device to allow one to argue about the entropy of

the system by constructing a reversible compression scheme. Since a quantum algorithm in

the standard quantum circuit model is unitary, thus in particular reversible, and the concept

of reversible lossless compression is central to Moser’s proof, this proof approach is a natural

fit, and an ideal starting point to develop an efficient quantum algorithm for the QLLL based

on a quantum information-theoretic argument. Once unitarity is required, the log is no longer

an optional, fictitious device. Instead, it becomes a natural and necessary by-product of any

unitary (or even reversible) implementation.
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3.2.2 The quantum algorithm

Although we have to modify the analysis somewhat, our quantum algorithm is just a coherent

version of the original classical algorithm of Algorithm 2. In this section, we show how a

beautifully simple quantum information-theoretic analysis of this coherent algorithm gives the

desired result. A fully detailed version of the proof based on a manifestly unitary version of

Algorithm 2 (i.e. Algorithm 3) is given in Section 3.6.1.

Unsurprisingly, the quantum algorithm operates on four registers: an n-qubit work register

W , an T -qubit log register L consisting of qubits labeled j1, ..., jT , a kN -qubit randomness

register R, and a logN -qubit register t counting the number of failed measurements.1 Hence-

forth, jl will denote the lth qubit of L, and Rt will denote the tth block of k qubits in R. We

will use Wi to denote the k qubits in W on which the ith projector acts non-trivially. We use

Πi to denote both the projector on Wi, and the projector Πi ⊗ 1 extended to the whole of W ;

when not indicated explicitly, it will be clear from context which we mean. We initialize the

quantum registers to the state

∣ψx,y0 ⟩ = ∣x⟩W ∣y⟩R ∣01, ...,0T ⟩L ∣0⟩t (3.1)

where x, y are uniformly random bit strings of sizes n and kN , respectively. Algorithm 2 pro-

ceeds by coherently measuring projectors on the work register and appending the measurement

outcomes to the log register. More precisely, a “coherent measurement” of Πi is the following

unitary operation between the work register and the next unused qubit in the log register.2:

Ci = ΠWi ⊗Xjl + (1 −Πi)Wi ⊗ 1jl . (3.2)

If l − 1 measurements have been performed so far, the next coherent measurement writes its

outcome to the lth qubit in the log register L.

As is well known [Nielsen and Chuang, 2000, Wilde, 2013], when applied to an arbitrary

state of the work register W and a ∣0⟩jl in the log register jl, the unitary Ci prepares a coher-

ent superposition of the two measurement outcomes in the log register jl, entangled with the

corresponding post-measurement state in the work register. The square-amplitudes of the two

components are the probabilities of the corresponding measurement outcomes.

If a projector Πi is violated (outcome “1”), we know that the state of the subsystem Wi

is contained in the subspace Πi. In this case, we proceed by taking the next k qubits from

the randomness register, and swapping them with the k work-qubits we’ve just measured. The

state of the measured qubits must be in the r-dimensional subspace projected onto by Πi. We

can therefore apply a unitary Ui to rotate the measured qubits (which are now in the random-

ness register) into a fixed r-dimensional subspace which is independent of the particular Πi

1The algorithm will also have to store some additional data for classical book-keeping, which however we

neglect here as it isn’t important in the analysis. Full details are given in Section 3.6.1.
2The algorithm necessarily keeps track of the index of the next unused log register qubit, as part of the classical

bookkeeping implicit in Algorithm 2.
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measured. We identify this subspace with the rank-r projector Pr = diag(1, ...,1,0, ...,0). The

unitary Ui can be computed classically for each i by diagonalizing Πi, i.e. UiΠiU
†
i = Pi ≤ Pr

with equality if rk(Pi) = rk(Pr) = r. Let us denote this sequence of unitary swap-and-rotate

operations as Ri. Note that the measured, swapped, and rotated k qubits ∣ϕi⟩ have support on

subspace Pr only, since

UiΠi ∣ϕi⟩R = UiΠiU
†
i Ui ∣ϕi⟩R = PrUi ∣ϕi⟩R (3.3)

The following partial isometry implements this swap-and-rotate procedure (it can be extended

to a unitary in the usual way):

Ri = ∣1⟩⟨1∣jl ⊗ (1Wi ⊗URti ⋅UWiRt
SWAP) + ∣0⟩⟨0∣jl ⊗ 1WiRt . (3.4)

We will always apply Ri immediately after each coherent measurement, so for brevity we refer

to the whole isometry RiCi as a “measurement operation”. Whenever we get a violation, we

increment the count register t.

The recursive algorithm now proceeds analogously to the classical algorithm Algorithm 2.

The only differences are that we interpret Πi as commuting projectors (not necessarily diagonal

in the computational basis), and that ‘measure’ in Line 11 is interpreted as a coherent measure-

ment causing the state (and thus the control flow) to split into a superposition depending on the

measurement outcomes.1

Note that any computational basis state describing a sequence of measurement outcomes

uniquely determines the next measurement to perform; i.e. there is a deterministic function

f ∶ {0,1}∗ ↦ {[m],�} from finite sequences j1, . . . , jl−1 of previous measurement outcomes

to the index il of the next measurement (i.e. il = f(j1, . . . , jl−1)). If there is no further mea-

surement to perform (�), the measurement sequence terminates (i.e. f(. . . ,�) = �). It is not

difficult to see that this function can be computed efficiently classically. By linearity, we can

extend this to a unitary operation on arbitrary superpositions of a specific number of measure-

ment outcomes.

Apart from the measurement operations, the rest of the algorithm involves purely classical

processing to determine the next measurement, and thus is diagonal in the computational basis.

Furthermore, each measurement operation acts on a fresh log qubit. Thus orthogonal states of

the log remain orthogonal for the rest of the computation. This allows us to view the execution

of the algorithm as a coherent superposition of histories, which may be analyzed independently.

Lemma 14 in Section 3.6.1 makes this precise, and shows that after T coherent measurements,

the state (essentially) has the form

∣ψx,yT ⟩ = ∑
j1,...,jT ∈{0,1}

P
⊗tj1,...,jT
r ∣ϕj1,...,jT ⟩W,R ∣j1, . . . , jT ⟩L ∣tj1,...,jT ⟩t . (3.5)

1For an explicit, manifestly unitary description that includes all the classical bookkeeping in the quantum

description, see Algorithm 3 in Section 3.6.1.
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Henceforth, we refer to any term in Eq. (3.5) indexed by j1, . . . , jT as a history. Note the tensor

product structure among the registers in each history.

We let the algorithm run for a total of T =m+Ndmeasurement steps, for someN chosen in

advance. If the recursion in Algorithm 2 has reached a maximum of N failed measurements or

terminates early, the algorithm (coherently) does nothing for the remaining steps. Finally, after

running for this many steps, we measure the log register L in order to collapse the superposition

of measurement outcomes to a particular measurement sequence.

3.3 Analysis

To show that our algorithm efficiently finds a state in the kernel of all Πi with high probability,

we need to prove two properties captured in Lemma 12 and Lemma 13, that together imply the

desired result:

1. If the sequence of measurement outcomes terminates, the corresponding state of the work

register is in the kernel of all Πi (Lemma 12).

2. The probability that the measurement sequence terminates goes exponentially to 1 for

N >m/(k − log(der)) (Lemma 13).

Lemma 12. Let ∣ϕl⟩W = ∣ϕj1,...,jl⟩W be the state of registerW in a history where the algorithm

has obtained a failure in the lth measurement outcome, thereby starting a recursion. Assuming

that the recursion eventually terminates, let ∣ϕm⟩ = ∣ϕj1,...,jm⟩ be the state of register W when

the algorithm has just returned from that recursion after measurement m ≥ l + k. Then

1. all satisfied projectors Πi stay satisfied, i.e. if Πi ∣ϕl⟩ = 0, then also Πi ∣ϕm⟩ = 0. ,

2. the originally unsatisfied projector Πl is now satisfied, i.e. if Πl ∣ϕl⟩ = ∣ϕl⟩, then Πl ∣ϕm⟩ =
0.

Proof. We prove Lemma 12 by induction on the recursion level s. Let Πs be the projector that

shall be fixed in the level s.

Base case: Consider the deepest level of recursion, which necessarily exists since, by

assumption, the recursion eventually terminates. After the failed Πl measurement, the algo-

rithm performs the swap-and-rotate operation followed by measurements of all projectors in

Γ+(Πl) on the state Πl ∣ϕl⟩. These must succeed, since the algorithm is already at the deepest

level of recursion. Thus the algorithm returns yielding the state ∣ϕm⟩. Since Πl ∈ Γ+(Πl)
and all Πl commute, 2 follows. To show 1, note that all previously satisfied Πi ∈ Γ+(Πl)
clearly stay satisfied, i.e. ∀Πi ∈ Γ+(Πl) ∶ Πi ∣ϕm⟩ = 0. For all other Πi ∉ Γ+(Πl), notice that

Πi commutes with the swap-and-rotate operation as they act on disjoint subsystems, yielding

∀Πi ∉ Γ+(Πl) ∶ Πi ∣ϕm⟩ = 0, which proves the base case.
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Inductive step: As induction hypotheses, assume 1 and 2 are true for any originally un-

satisfied projector Πs+1 after the algorithm returns from recursion level s + 1. At level s of

the recursion, after a failed measurement Πl the algorithm performs the swap-and-rotate oper-

ation followed by measurements of all projectors in Γ+(Πl) on the state Πl ∣ϕl⟩. For any failed

measurement, the algorithm will recurse to level s + 1 and return with 1 and 2 satisfied by the

induction hypothesis. Thus, after returning from the recursion, one additional Πi ∈ Γ+(Πl) is

satisfied. For any successful measurement, again one additional Πi is satisfied due to commu-

tativity of the Πi. Thus, once the iteration over the neighborhood is complete, the algorithm

returns the state ∣ϕm⟩ with all Πi ∈ Γ+(Πl) satisfied. Since Πl ∈ Γ+(Πl), 2 follows. To see that

1 also holds, note that all previously satisfied Πi ∈ Γ+(Πl) stay satisfied, i.e. ∀Πi ∈ Γ+(Πl) ∶
Πi ∣ϕm⟩ = 0. For all other Πi ∉ Γ+(Πl), notice that Πi commutes with the swap-and-rotate

operation as they act on disjoint subsystems, yielding ∀Πi ∉ Γ+(Πl) ∶ Πi ∣ϕm⟩ = 0. This

establishes the inductive step, and the lemma follows.

Property 1 follows from Lemma 12 and the fact that the algorithm measures each projector Πi

once at the top level of the recursion. Property 2 is the content of the following lemma.

Lemma 13. If we let the algorithm run for T = m +Nd steps, the probability that the mea-

surement sequence terminated within this number of steps is ≥ 1 − 2−N(k−log der)+m+logN .

Proof. The proof rests on three simple facts: (i) The initial state is maximally-mixed on n+kN
qubits (tensor a pure state on the rest). (ii) The algorithm is unitary. (iii) If a total of M

violations occurred, the information stored in the log register L can be compressed to m +
M log(de) qubits.

Consider a computational basis state ∣σ⟩L ∣M⟩t of the log and count registers, describing

a particular (classical) history σ with a total of M violations. Since the count register is in-

cremented each time the algorithm measures a violation, σ must contain exactly M 1s. By

encoding σ as the index ι(σ;M) of σ in the lexicographically-ordered set of length-N bit

strings that contain exactly M ones, we could losslessly and deterministically compress σ to

m+M log(de) bits [Cover and Thomas, 2006, Ch. 13.2]. (Note that we do not need to actually

perform this compression step as part of the algorithm; it is sufficient that it is possible.) By

linearity, we can extend this lossless compression to a unitary operation on the log and count

registers L and t:

UC ∣σ⟩L ∣M⟩t = ∣ι(σ;M)⟩∣0⟩⊗(T−m−M log(de))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
L

∣M⟩
°
t

. (3.6)
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Furthermore, since M violations occurred, each of the M subsystems of k qubits in the

register R only has support on the r-dimensional subspace Pr (in the respective subsystem) by

Eq. (3.3). Given this, if we apply UC to the state of the log and count registers L and t, the

following projector projects onto measurement histories with M = N :

PN = U†
CPUC , (3.7)

where

P = 1⊗n
±
W

⊗ Pr
⊗N

´¹¹¹¹¸¹¹¹¹¶
R

⊗1⊗m+N log de ⊗ ∣0⟩⟨0∣⊗(T−m−N log de)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
L

⊗1⊗ logN

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
t

. (3.8)

Meanwhile, from Eq. (3.1), the initial state of the registers is

ρ0 =
1

2n+kN ∑x,y
∣ψx,y0 ⟩⟨ψx,y0 ∣ = 1W

2n
⊗ 1R

2kN
⊗ ∣0⟩⟨0∣L ⊗ ∣0⟩⟨0∣l ∣0⟩⟨0∣t . (3.9)

Let U denote the overall unitary describing the algorithm. The probability of measuring PN on

the final state of the algorithm is then1

Tr[PNUρ0U
†] = 2−n−kN Tr [PUCU(1WR ⊗ ∣0⟩⟨0∣L,l,t)U

†U†
C]

≤ 2−n−kN TrP = 2−N(k−log der)+m+logN .
(3.10)

Now, any measurement sequence where less than N measurements failed must have ter-

minated early, since the total number of measurement steps T = m +Nd is clearly sufficient

to return from any recursion with less than N failed measurements (cf. Algorithm 2). Thus

the projector 1 − PN projects onto histories in which the sequence of measurement outcomes

terminated, and the lemma follows.

Choosing N = O ( m+log( 1
ε
)

k−log(der)) in Lemma 13 suffices to produce the desired output state in

register W with success probability 1 − ε. Together with Lemma 12, this proves Properties 1

and 2, and hence Theorem 11.

3.4 Conclusions

We have presented a quantum generalization of Moser’s algorithm and information-theoretic

analysis to efficiently construct a zero-energy ground state of certain local Hamiltonians. The

existence of such ground states has been established by the non-constructive Quantum Lovász

Local Lemma [Ambainis et al., 2012]. Our algorithm requires the additional assumption that

the Hamiltonian is a sum of commuting projectors. In fact, for this special case, our algorithm

is a constructive proof of the Quantum Lovász Local Lemma, as our argument does not depend
1Note that this inequality is none other than a sharp version of the strong converse of the typical subspace

theorem [Winter, 1999, Lemma I.9], for the simple case of the maximally mixed state.
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on the non-constructive result of [Ambainis et al., 2012]. After completion of this work, we

have learned about a similar result of Arad and Sattath [Arad and Sattath, 2013]. Their proof

uses an entropy-counting argument, which is arguably even simpler, but yields only constant

probability of success.

The obvious open question is whether Theorem 11 can be generalized to the non-commuting

case. The crucial (and only) place in our proof where commutativity is used and where the ar-

gument fails is Lemma 12 (see also Lemma 16 in Section 3.6.1). If the quantum algorithm

is executed with non-commuting projectors, the present proof still shows that the algorithm

terminates, i.e. the final measurement will project with high probability onto a subspace of

terminated histories after the stated number of iterations. But we are not able to show that the

state returned by the algorithm has low energy. Without commutativity, because measurements

disturb quantum states, subsystems already checked at higher levels of the recursion may be

messed up when fixing lower levels.

A further open question is whether Moser and Tardos’ combinatorial proof [Moser and Tar-

dos, 2010] of the Lovász Local Lemma for the more general, asymmetric case can be general-

ized to the quantum setting. It is interesting to note, that the dissipative algorithm of [Verstraete

et al., 2009] is precisely the quantum analogue of Moser and Tardos’ algorithm for the general,

asymmetric Lovász Local Lemma written in the language of CP-maps. Thus, [Verstraete et al.,

2009] already gives a way to prepare the ground state implied by the non-constructive QLLL

[Ambainis et al., 2012]. What is missing is an argument supporting a polynomial-time con-

vergence rate of the given CP-map. A first attempt in this direction for the case of commuting

projectors has been made by the first and second author in [Cubitt and Schwarz, 2011]. While

the specific argument has an unresolved gap in the proof, the general framework based on dis-

sipative CP-maps still appears as a promising approach and might lead to a complete proof in

the future.
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3.6 Appendix

3.6.1 Detailed algorithm and proof

We are now ready to introduce the more detailed quantum Algorithm 3. Algorithm 3 is a mani-

festly unitary version of Algorithm 2 expanding all quantum registers necessary for bookkeep-

ing, unrolling the recursion into a unitary loop, and uncomputing auxiliary variables whenever
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necessary for the rigorous argument. Furtheremore, we explicitly bound the number of iter-

ations necessary, such that with high probability all relevant histories in superposition have

actually returned from the (unrolled) recursion and terminated individually.

As already mentioned, our goal is to construct a unitary version of Moser’s algorithm. Since

projective measurements are not unitary and can only be performed at the end of a standard

quantum circuit, our approach is to replace them by coherent measurements [Wilde, 2013,

Ch. 5.4]. A coherent measurement of a binary observable {Π0
i ,Π1

i }, with Π0
i + Π1

i = 1, on a

subsystem will correlate the state of a target qubit with the two possible measurement outcomes

in a unitary way. This coherent measurement operation is performed by the following operator

that is easily checked to be unitary:

Ci = Π0
i ⊗ 1 +Π1

i ⊗X (3.11)

where X is the Pauli matrix σx.

Algorithm 3 operates on a quantum system consisting of registerW,R,L,F, term,S, s, l, t, live

summarized in Table 3.1 at the end of the paper. We assume registersW,R are initialized in the

completely mixed state. Register W is the work register in which our algorithm will prepare a

state σ satisfying the symmetric QLLL conditions. Register R is the source of randomness that

is fed into the work register by the algorithm appropriately. Register L is called the log register

holding an array of qubits ∣j1, . . . , jT ⟩ that store the binary coherent measurement outcomes

for a chosen projector Πi in each iteration of the algorithm. Register F is an array recording

whether a recursion level has terminated. While the information in this register is strictly re-

dundant (relative to L), we find it necessary to first compute and later uncompute the contents

of this register to achieve an efficient unitary implementation of the algorithm that is provably

correct up to the symmetric QLLL condition simultaneously. Register term is an array of

qubits used to signal the termination of a measurement history in the coherent superposition

of histories. Once the qubit term[l] is set to ∣1⟩ in iteration l in a particular history, further

iterations will just be idle in that history until the overall algorithm terminates. The stack S is

an array of pairs of registers, proj and nbr. At recursion level i, register S[i].proj refers to the

projector πS[i].proj being fixed in level i, where S[i].nbr indicates the index (relative S[i].nbr)

of the neighboring projector currently being verified (0..k − 1). To simplify the presentation of

the algorithm, we treat the top-level of the recursion by pretending that some fiduciary clause

had failed that intersected with all clauses. In this way we can deal with the top-level iteration

just like with any other level. To this effect we initialize the content of register S[0].proj = 0
and define the special projector Π0 to act non-trivially on all n qubits intersecting with all pro-

jectors {Πi}1≤i≤m. This defines the top level of the recursion. Register s is the stack pointer

referring to the current recursion level. Register l is the log pointer, indicating the current it-

eration of procedure iteration() and the target qubit L[l] for the coherent measurement in that

iteration. Register t is the randomness pointer. It counts the number of failed measurements in a

particular measurement history and points to the next available block of k random qubits start-
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ing at R[tk]. Finally, register live is a parameter to procedure iteration() controlling whether

operations among the W subsystem and the rest of the system should be performed (live = 1)

or skipped (live = 0). This is used to facilitate uncomputation of redundant information in the

above registers.

We will now describe the operation of Algorithm 3 in detail. It consists of two procedures.

The main procedure QLLL_solver() (Line 1), and procedure iteration() (Line 19), which is

called from QLLL_solver(). QLLL_solver() starts by executing procedure iteration() T times

in the forward and T times in the reverse direction, as indicated by the dagger symbol in

Line 10. In the forward direction procedure iteration() (invoked with live = 1) applies a co-

herent measurements of one of the k-QSAT projectors to the assignment register W and stores

the coherent measurement outcome at the current position l in the log register L. Based on

the measurement outcome, the stack and other bookkeeping registers are updated coherently as

well. During the uncomputation phase we invoke procedure iteration() with parameter live set

to 0 such that all bookkeeping registers are uncomputed, except the log L itself as the coherent

“unmeasurements" are skipped. Indeed, the contents of the large F and term registers has been

completely uncomputed, as they can be reconstructed from L alone. Note, that after the com-

pletion of the reverse iterations (before executing Line 12), all registers are back to their initial

states, except the W , L, and R registers. Once all redundancy in the bookkeeping registers

has been removed by uncomputation, procedure compress() compresses the R,L, t registers as

explained in more detail in the next section. The function will return with the quantum state

of register t recomputed. Finally a projective measurement on the subspace of histories with

t < N failed measurements is performed, in which case the algorithm returns SUCCESS and

the subsystem W of quantum state (1 − PN)σ(1 − PN), or FAILURE otherwise.

We will now describe the procedure iteration(). Unless the algorithm has terminated (or

the function is not called with live = 1) each iteration of the algorithm performs exactly one

coherent measurement (Line 22) and all necessary update actions on the state variables to

simulate the recursive procedure of Moser’s algorithm. Since the measurement is coherent, the

execution splits into a superposition of two possible measurement outcomes whenever this line

of the algorithm is executed, unless all projectors are classical. In the case that the measurement

fails (and iteration() is called with live = 1) the procedure swap_and_rotate() (Line 26) is

invoked, denoted Ri below.

We are free to restrict our analysis to one particular history ∣j1, . . . , jl⟩ since the quantum

state is just a superposition of all possible such histories. To see this, we proof the following

Lemma 14. For any initial state

∣ψx,y0 ⟩ = ∣x⟩W ∣y⟩R ∣01, . . . ,0T ⟩L ∣0⟩l ∣0⟩t∣0⟩F,S,s,live,term (3.12)

with randomly chosen bit strings x, y, the quantum state produced by Algorithm 3 after T > 0
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iterations has the following structure:

∣ψx,yT ⟩ =
T

∑
t=0
P⊗t
r ∑

j1+⋅⋅⋅+jT =t
ji∈{0,1}

∣ϕj1,...,jT ⟩
W,R ∣j1, . . . , jT ⟩L ∣T ⟩l ∣t⟩ ∣zj1,...,jT ⟩

F,S,s,live,term (3.13)

= ∑
j1,...,jT ∈{0,1}

P
⊗tj1,...,jT
r ∣ϕj1,...,jT ⟩

W,R ∣j1, . . . , jT ⟩L ∣T ⟩l ∣tj1,...,jT ⟩ ∣zj1,...,jT ⟩ (3.14)

where tj1,...,jT = ∑Ti=1 ji, and where P⊗t
r acts only non-trivially on the first kt qubits of register

R. That is, the state can be written as a (non-uniform) superposition of 2T orthogonal states

enumerating all T -bit computational basis states ∣j1, . . . , jT ⟩ in the L register, each of which

is entangled with some quantum state ∣ϕj1,...,jT ⟩ in the W and R registers, and computational

basis states in the t, F,S, s, live, and term registers. Furthermore, the R-register components

of this state live in a subspace of rank at most rk(P⊗t
r ) = rt, where t = ∑Ti=1 ji.

Proof. The proof proceeds by induction over T . The initial state of the algorithm (i.e. T = 0
iterations) is

∣ψ0⟩ = ∣x⟩W ∣y⟩R ∣01, . . . ,0T ⟩L ∣0⟩l ∣0⟩t∣0⟩F,S,s,live,term (3.15)

We claim that after 1 ≤ l ≤ T iterations the state has the following slightly more general

structure:

∣ψl⟩ =
l

∑
t=0
P⊗t
r ∑

j1+⋅⋅⋅+jl=t
ji∈{0,1}

∣ϕj1,...,jT ⟩
W,R ∣j1, . . . , jl,0l+1, . . . ,0T ⟩L ∣l⟩ ∣t⟩ ∣zj1,...,jl⟩

F,S,s,live,term

(3.16)

Clearly, for l = T the lemma follows. To prove the base case l = 1, notice that after the first

iteration the state evolves to

∣ψ1⟩ = R0C0 ∣ψ0⟩ = R0C0 ∣x, y⟩W,R ∣01, . . . ,0T ⟩L ∣0⟩l ∣0⟩t∣0⟩F,S,s,live,term (3.17)

= R0Π0
0 ∣x, y⟩

W,R ∣01,02 . . . ,0T ⟩L ∣1⟩l ∣0⟩t ∣z0⟩ (3.18)

+R0Π1
0 ∣x, y⟩

W,R ∣11,02 . . . ,0T ⟩L ∣1⟩l ∣1⟩t ∣z1⟩

= R0 ∣ϕ0⟩W,R ∣01,02 . . . ,0T ⟩L ∣1⟩l ∣0⟩t ∣z0⟩ (3.19)

+R0 ∣ϕ′1⟩
W,R ∣11,02 . . . ,0T ⟩L ∣1⟩l ∣1⟩t ∣z1⟩

= ∣ϕ0⟩W,R ∣01,02 . . . ,0T ⟩L ∣1⟩l ∣0⟩t ∣z0⟩ (3.20)

+ Pr ∣ϕ1⟩W,R ∣11,02 . . . ,0T ⟩L ∣1⟩l ∣1⟩t ∣z1⟩

= P⊗0
r ∣ϕ0⟩W,R ∣01,02, . . . ,0T ⟩L ∣1⟩l ∣0⟩t ∣z0⟩ (3.21)

+ P⊗1
r ∣ϕ1⟩W,R ∣11,02, . . . ,0T ⟩L ∣1⟩l ∣1⟩t ∣z1⟩

=
1
∑
t=0
P⊗t
r ∑

j1=t
j1∈{0,1}

∣ϕj1⟩
W,R ∣j1,02 . . . ,0T ⟩L ∣1⟩l ∣t⟩ ∣zj1⟩ . (3.22)
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where in Eq. (3.18) we expand the coherent measurement C0 using Section 3.6.1. We denote

classical bookkeeping states in registers F,S, s,L, live, term collectively as ∣zi⟩ henceforth.

Note that the projectors act on W while 1 and X act on qubit l = 0 in L, respectively. We see

that the state splits into a superposition of two states, with orthogonal states in qubit ∣j1⟩. In

Eq. (3.19) we label the projected states by Π0
0 ∣x, y⟩ = ∣ϕ0⟩, and Π1

0 ∣x, y⟩ = ∣ϕ′1⟩. In Eq. (3.20)

we apply the swap_and_rotate() operation R0, which acts at the identity on the first term. On

the second term, the projected qubits are swapped from the W into the R register and then

rotated into the Pr subspace, transforming the state into

∣ϕ1⟩ = UR0
0 ⋅UW0R0

SWAP ∣ϕ′1⟩ = U
R0
0 ⋅UW0R0

SWAP Π1
0 ∣x, y⟩ = PW0

r UR0
0 ⋅UW0R0

SWAP ∣x, y⟩ . (3.23)

which follows from Eqs. (3.3) and (3.4). Furthermore, this also implies that ∣ϕ1⟩ = PR0
r ∣ϕ1⟩, so

we are justified in explicitly extracting the projector Pr in Eq. (3.20). In Eq. (3.21) we insert the

fiducial projector P⊗0
r = 1 in order to rewrite the equation into a sum of the desired structure

in Eq. (3.22). Thus, the state ∣ψ1⟩ has the required structure with l = 1, which proves the base

case.
In subsequent iterations, we denote the operations of Algorithm 3 by operators Cj1,...,jl

(coherent measurement), and Rj1,...,jl (swap_and_rotate), respectively. These are controlled
by the content of the L and l registers. All further bookkeeping operations are to be considered
to be part of Rj1,...,jl . We need to show that the state has the structure of Eq. (3.16) for all l.
This is indeed the case, since

∣ψl+1⟩ = Rj1,...,jl
Cj1,...,jl

∣ψl⟩ (3.24)

= Rj1,...,jl
Cj1,...,jl

l

∑
t=0
P⊗t
r ∑

j1+⋅⋅⋅+jl=t
ji∈{0,1}

∣ϕj1,...,jT
⟩W,R ∣j1, . . . , jl,0l+1, . . . ,0T ⟩L ∣l⟩ ∣t⟩ ∣zj1,...,jl

⟩

(3.25)

= Rj1,...,jl

l

∑
t=0
P⊗t
r ∑

j1+⋅⋅⋅+jl=t
ji∈{0,1}

(Π0
j1,...,jl

∣ϕj1,...,jl
⟩W,R ∣j1, . . . , jl,0,0l+2 . . . ,0T ⟩L ∣l + 1⟩ ∣t⟩ ∣zj1,...,jl

⟩

+Π1
j1,...,jl

∣ϕj1,...,jl
⟩W,R ∣j1, . . . , jl,1,0l+1 . . . ,0T ⟩L ∣l + 1⟩ ∣t + 1⟩ ∣zj1,...,jl

⟩)
(3.26)

= Rj1,...,jl

l

∑
t=0
P⊗t
r ∑

j1+⋅⋅⋅+jl=t
ji∈{0,1}

( ∣ϕj1,...,jl,0⟩
W,R ∣j1, . . . , jl,0,0l+2 . . . ,0T ⟩L ∣l + 1⟩ ∣t⟩ ∣zj1,...,jl

⟩

+ ∣ϕ′j1,...,jl,1⟩
W,R ∣j1, . . . , jl,1,0l+1 . . . ,0T ⟩L ∣l + 1⟩ ∣t + 1⟩ ∣zj1,...,jl

⟩) (3.27)

=
l

∑
t=0
P⊗t
r ∑

j1+⋅⋅⋅+jl=t
ji∈{0,1}

( ∣ϕj1,...,jl,0⟩
W,R ∣j1, . . . , jl,0,0l+2 . . . ,0T ⟩L ∣l + 1⟩ ∣t⟩ ∣zj1,...,jl

⟩

+PrRt ∣ϕj1,...,jl,1⟩
W,R ∣j1, . . . , jl,1,0l+1 . . . ,0T ⟩L ∣l + 1⟩ ∣t + 1⟩ ∣zj1,...,jl

⟩) (3.28)
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=
l+1
∑
t=0
P⊗t
r ∑

j1+⋅⋅⋅+jl+1=t
ji∈{0,1}

∣ϕj1,...,jl,jl+1⟩
W,R ∣j1, . . . , jl, jl+1,0l+2 . . . ,0T ⟩L ∣l + 1⟩ ∣t⟩ ∣zj1,...,jl

⟩ (3.29)

where, again, in Eq. (3.26) we expand the coherent measurement Cj1,...,jl using Section 3.6.1,

where the projectors act on W while 1 and X act on qubit l in L, respectively. We see

that the state splits into a superposition of two states orthogonal in the state of this qubit.

Register l is increased by one in both states. In Eq. (3.27) we label the projected states by

Π0
j1,...,jl

∣ϕj1,...,jl⟩ = ∣ϕj1,...,jl,0⟩, and Π1
j1,...,jl

∣ϕj1,...,jl⟩ = ∣ϕ′j1,...,jl,1⟩. In Eq. (3.28) we apply

the swap_and_rotate() operation Rj1,...,jl , which acts at the identity on the first term. On the

second term, the projected qubits are swapped from the W into the R register and then rotated

into the Pr subspace, transforming the state into

∣ϕj1,...,jl,1⟩ = U
Rt
i ⋅UWiRt

SWAP ∣ϕ′j1,...,jl,1⟩ = U
Rt
i ⋅UWiRt

SWAP Π1
0 ∣ϕj1,...,jl⟩ = P

W0
r URti ⋅UWiRt

SWAP ∣ϕj1,...,jl⟩ .
(3.30)

which follows from Eqs. (3.3) and (3.4). Furthermore, this also implies that ∣ϕj1,...,jl,1⟩ =
PRtr ∣ϕj1,...,jl,1⟩, thus we are justified in explicitly extracting the projector Pr in Eq. (3.20).

Finally, in Eq. (3.29) we rewrite the state by adding the binary index jl+1 in the inner sum.

Furthermore, we sum t up to l + 1 accommodating the additional measurement. Evidently, the

state has now the form claimed for ∣ψl+1⟩. By induction, the state has the required form of

Eq. (3.13) for all 1 ≤ l ≤ T , yielding the lemma.

3.6.2 Proof of Theorem 11

Proof. By Lemma 14 we know that after T iterations of Algorithm 3 the state has the form

∣ψx,yT ⟩ =
T

∑
t=0
P⊗t
r ∑

j1+⋅⋅⋅+jT =t
ji∈{0,1}

∣ϕj1,...,jT ⟩
W,R ∣j1, . . . , jT ⟩L ∣T ⟩l ∣t⟩ ∣zj1,...,jT ⟩

F,S,s,live,term (3.31)

After uncomputing the redundant registers, this simplifies to

∣ψx,yU ⟩ =
T

∑
t=0
P⊗t
r ∑

j1+⋅⋅⋅+jT =t
ji∈{0,1}

∣ϕj1,...,jT ⟩
W,R ∣j1, . . . , jT ⟩L ∣T ⟩l ∣t⟩ ∣0⟩F,S,l,s,live,term (3.32)

One way to view state ∣ψx,yU ⟩ is as a superposition of all possible measurement histories j1, . . . , jT ,

which were the result if we had performed projective rather than coherent measurements. By

the principle of deferred measurement [Nielsen and Chuang, 2000], we can still measure all

qubits in L to project onto one of these histories. Consequently, we call each term in the sum

of Eq. (3.31) a history and identify histories by the outcomes ∣j1, . . . , jT ⟩ in register L.

Let us make a few observations about each history ∣j1, . . . , jT ⟩L. If j1, . . . , jT contains t

failed measurement outcomes, we know from Lemma 14 that Algorithm 3 has projected the

first t blocks of k qubits in R into the subspace P⊗t
r . Line 30 enforces that t ≤ N ≤ (T −m)/d,
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i.e. a maximum numberN of failed measurements, which we will choose later on. Thus by ter-

minating execution once the maximum admissible number of N failed measurements has been

reached, we accept that some histories in superposition in ∣ψx,yT ⟩may not have returned from the

recursion. On the other hand, for all histories with t < N it is clear that they must have returned

to the top-level of the recursion and terminated at iteration T = m + dt, since to the m top-

level measurements exactly d more measurements are added for each of the t failed outcomes.

Therefore, within the T bits of L at most t bits are in state ∣1⟩. Thus the Shannon entropy of bit

string j1, . . . , jT relative to t is at most log (m+dt
t

) ≤m+log (dt
t
) ≤m+log (dett )t =m+t log(de)

bits. By encoding L by the index of j1, . . . , jT in the lexicographically ordered set of bit strings

of length T with t ones we can achieve compression of L to the above bound, relative to t

[Cover and Thomas, 2006, Ch. 13.2]. This classical compression is performed reversibly in

Line 12 by procedure compress(j1, . . . , jT , t) for each history ∣j1, . . . , jT ⟩, in superposition.1

Let us denote the state after the compression as

∣ψx,yC ⟩ = Ucompress ∣ψx,yU ⟩ =

=
T

∑
t=0
P⊗t
r ∑

j1+⋅⋅⋅+jT =t
ji∈{0,1}

∣ϕj1,...,jT ⟩
W,R (∣Lj1,...,jT ⟩ ∣0⟩

⊗(T−m−t log(de)))
L
∣t⟩ ∣0⟩ (3.33)

where Lj1,...,jT = compress(j1, . . . , jT , t). We formalize our knowledge about ∣ψx,yC ⟩ by con-

structing a projector PM onto the subspace with t ≥M :

PM = (3.34)

1
⊗n

±
W

⊗P⊗M
r ⊗ 1⊗(N−M)k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R

⊗1⊗m+M log(de) ⊗ (∣0⟩⟨0∣)T−m−M log(de)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
L

⊗(
N

∑
τ=M

∣τ⟩⟨τ ∣)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
t

⊗ ∣0⟩⟨0∣
²

F,S,s,l,live

We now show that for M > Ω (m+log(N)

k−log(der)) the probability of successfully projecting the state

ρC = 1
2n+Nk

2n−1
∑
x=0

2Nk−1
∑
y=0

∣ψx,yC ⟩⟨ψx,yC ∣ (3.35)

i.e. ∣ψx,yC ⟩ mixed over all x, y, onto PM is very low. Clearly, mixing over x, y injects n +Nk
bits of initial entropy. Let V = UcompressU

†T
0 UT1 , and since ∣ψx,yC ⟩ = V ∣ψx,y0 ⟩, we have

ρC = 1
2n+Nk

2n−1
∑
x=0

2Nk−1
∑
y=0

V ∣ψx,y0 ⟩⟨ψx,y0 ∣ V † (3.36)

= 1
2n+Nk

2n−1
∑
x=0

2Nk−1
∑
y=0

V (∣x⟩⟨x∣W ∣y⟩⟨y∣R ∣0⟩⟨0∣L,l,t,F,S,s,live,term)V † (3.37)

= 1
2n+Nk

V (1⊗ ∣0⟩⟨0∣)V † (3.38)

1Note a minor technicality: at the instant compress(L,t) is invoked, the t register has actually been uncomputed

(like all other auxiliary variables) and must be recomputed within the function by simply counting the t ≤ N ones

in each ∣j1, . . . , jT ⟩. It could also have been copied before uncomputation. The recomputed value of t remains in

the register as the function returns as the compression ∣j1, . . . , jT ⟩ is relative to ∣t⟩.
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We now apply the following simple special case of the strong converse of the typical subspace

theorem [Winter, 1999] to get an upper bound for the overlap of ρC with PM . Note, that the

following bound for this special case is slightly stronger than the original bound of [Winter,

1999].

Lemma 15. Let Q be a projector on any subspace of (C2)⊗(n+m) of dimension at most 2nR,

where R < 1 is fixed and 1

2n ⊗ (∣0⟩⟨0∣)m a completely mixed state with pure ancillas. Then,

Tr(Q ( 1
2n

⊗ (∣0⟩⟨0∣)⊗m)) ≤ Tr(Q 1

2n
) = 2−nTr(Q) ≤ 2−n+nR (3.39)

Proof. The proof is immediate in Lemma 15.

Thus we achieve the bound

Tr(PMρC) = 2−(n+Nk) Tr(PMV (1⊗ ∣0⟩⟨0∣)V †) (3.40)

≤ 2−(n+Nk) Tr(PM) (3.41)

≤ 2m+log(N)−M(k−log(r)−log(de)) (3.42)

≤ 2m+log(N)−M(k−log(der)) (3.43)

On the other hand when N =M we conclude, that the projector (1 − PN) onto histories with

t < N has overlap exponentially close to 1 with ρS . In other words, Algorithm 3 returns

SUCCESS in Line 14 with

Pr[SUCCESS,σ] ≥ 1 − 2m+log(N)−N(k−log(der)) (3.44)

It follows that choosing N such that

N ≥
m + log(1

ε)
k − log(der)

+ log(N)
k − log(der)

(3.45)

suffices to push the error below 1−ε. But this bound forN is not yet explicit. To get an explicit

bound we define c = (k − log(der))−1, and d = m+log( 1
ε
)

k−log(der) , and set (Line 4)

N = d + 3c(log(d) + 1) (3.46)

or, equivalently but more verbosely,

N =
m + log(1

ε)
k − log(der)

+
3(log( m+log( 1

ε
)

k−log(der)) + 1)
k − log(der)

(3.47)

satisfying Eq. (3.43) as shown in Lemma 17 in the appendix. Thus we conclude that after

T =m +Nd (Line 5) iterations of Algorithm 3,

Pr[SUCCESS,σ] ≥ 1 − ε (3.48)

as claimed.
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In summary, we have shown that either the algorithm achieves a compression of its state

below the entropy of the initial state, which is unlikely, or in all histories in superposition

the number of failed measurements is upper bounded by N and thus the histories must have

terminated in the state returned by Algorithm 3. Furthermore, the probability of the latter

outcome can be pushed exponentially close to 1. All that is left to show is that the state, once

projected into the (1 −PN) subspace, satisfies the symmetric QLLL condition. By Lemma 16

shown below we know that each terminated history j1, . . . , jT is correlated to a state ∣ϕj1,...,jT ⟩
with energy exactly zero. Thus it follows that the W subsystem of state (1 − PN)ρC(1 − PN)
returned by Algorithm 3 is just a mixture of zero energy states and has thus energy zero itself,

which completes the proof, i.e. formally let

ρP = (1 − PN)ρC(1 − PN)
1 −Tr(PNρC)

(3.49)

where the denominator is exponentially close to 1 due to Eq. (3.40). Then, expanding the

definition of ρC and recognizing that the projector on 1 − PN just changes the upper bound of

the sum over t (and t′) from T to N , we have

TrW,R(ρP ) ∝TrW,R((1 − PN)ρC(1 − PN)) (3.50)

=TrW,R((1 − PN) ∣ψx,yS ⟩⟨ψx,yS ∣ (1 − PN)) (3.51)

= 1
2n+Nk

2n−1
∑
x=0

2Nk−1
∑
y=0

N

∑
t=0

∑
j1+⋅⋅⋅+jN=t
ji∈{0,1}

N

∑
t′=0

∑
j′1+⋅⋅⋅+j

′

N=t
′

j′i∈{0,1}

(3.52)

TrW,R(∣ϕj1,...,jN ⟩⟨ϕj′1,...,j′N ∣W,R (∣L′j1,...,jN ⟩⟨L′j′1,...,j′N ∣ ∣0⟩⟨0∣)L∣t⟩⟨t′∣ ∣0⟩⟨0∣)

= 1
2n+Nk

2n−1
∑
x=0

2Nk−1
∑
y=0

N

∑
t=0

∑
j1+⋅⋅⋅+jN=t
ji∈{0,1}

∣ϕj1,...,jN ⟩⟨ϕj1,...,jN ∣W,R (3.53)

Tr(∣L′j1,...,jN ⟩⟨L′j1,...,jN ∣)Tr(∣0⟩⟨0∣)Tr(∣t⟩⟨t∣)Tr(∣0⟩⟨0∣)

= 1
2n+Nk

2n−1
∑
x=0

2Nk−1
∑
y=0

N

∑
t=0

∑
j1+⋅⋅⋅+jN=t
ji∈{0,1}

∣ϕj1,...,jN ⟩⟨ϕj1,...,jN ∣W,R (3.54)

where in Eq. (3.53) we distribute the partial trace over the tensor factors. Since orthogonal

states evaluate to zero in each factor, only terms of factors with matching indices survive in the

sum, in which case these factors happen to be projectors of trace 1. Thus Eq. (3.54) follows,

which is clearly a mixture of states ∣ϕj1,...,jN ⟩ as claimed. Since every ∣ϕj1,...,jN ⟩ is a state

associated to a terminated history, we know the recursion of Algorithm 3 has returned to the

top level, in which all m initial projectors Πi have been measured. Thus by Lemma 16 we

conclude that Π1
i ∣ϕj1,...,jN ⟩ = 0 for all histories j1, . . . , jN .

Note that the following lemma is the crucial (and only) place in the proof where commutativity

of the projectors {Πi} is assumed.
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Lemma 16. According to Lemma 14, consider a history ∣j1, . . . , jl⟩ in the superposition after

l coherent measurements

∣ψl⟩ = ∣ϕj1,...,jl⟩
W,R ∣j1, . . . , jl,0l+1, . . . ,0T ⟩L ∣l⟩ ∣tj1,...,jl⟩ ∣zj1,...,jl⟩

F,S,s,live,term (3.55)

where the last measurement has failed, i.e jl = 1. In this state Algorithm 3 has started a new

recursion level and will coherently measure all projectors Πk ⊆ Γ+(Π1
j1,...,jl

) in subsequent

iterations. For some iteration m ≥ l + k, let

∣ψm⟩ = ∣ϕj1,...,jm⟩W,R ∣j1, . . . , jm,0m+1, . . . ,0T ⟩L ∣m⟩ ∣tj1,...,jm⟩ ∣zj1,...,jm⟩F,S,s,live,term (3.56)

be an extension of history ∣ψl⟩ (i.e. with matching j1, . . . , jl) where Algorithm 3 has just re-

turned from that recursion. Then

1. all satisfied projectors Π1
i stay satisfied, i.e. if Π1

i ∣ϕj1,...,jl⟩ = 0, then also Π1
i ∣ϕj1,...,jm⟩ =

0.

2. the originally unsatisfied projector is now satisfied, i.e. Π1
j1,...,jl

∣ϕj1,...,jm⟩ = 0.

Proof. We first prove Item 1 by induction on the stack level s of Algorithm 3, starting from the

deepest level, which must exist because the algorithm returns by assumption.1 The recursive

call can only return if all Π1
i ∈ Γ+(Π(s)) are satisfied, i.e. Π1

i ∣ϕj1,...,jm⟩ = 0. For all Π1
q ⊈

Γ+(Π(s)) with Π1
q ∣ϕj1,...,jl⟩ = 0, we have

Π1
q ∣ϕj1,...,jm⟩ ∣ξ′⟩ = Π1

q ∏
i∈Γ+

Π0
iRj1,...,jlΠ

1
j1,...,jl

∣ϕj1,...,jl⟩ ∣ξ⟩ (3.57)

= ∏
i∈Γ+

Π0
iRj1,...,jlΠ

1
j1,...,jl

Π1
q ∣ϕj1,...,jl⟩ ∣ξ⟩ = 0 (3.58)

where we expand ∣ϕj1,...,jm⟩ by the action of Algorithm 3 in the first equality, where ∣ξ′⟩
represents the state of subsystems other than W,R. In the second equality we commute

Π1
q through, which is possible, because Π1

q and all Πi commute by assumption, and Π1
q and

Rj1,...,jlΠ1
j1,...,jl

commute because they act on different subsystems. Finally, the last equation

follows since Π1
q ∣ϕj1,...,jl⟩ = 0 is the precondition under which we need to prove Item 1 of

Lemma 16. This proves the base case of the induction. The inductive step follows from ex-

actly the same arguments, thus Item 1 follows. To show Item 2 of Lemma 16, it suffices to

note that Π1
j1,...,jl

∈ Γ+(Π1
j1,...,jl

), thus Π1
j1,...,jl

∣ϕj1,...,jm⟩ = 0 is true since the algorithm just

returned from a recursive call on a failed measurement of Π1
j1,...,jl

by assumption: i.e. in the

iterations < m just before the algorithm has returned, all Π1
q ∈ Γ+(Π1

j1,...,jl
) had been mea-

sured to be satisfied (or fixed and then satisfied by Item 1). Since all Π1
q commute, this implies

Π1
j1,...,jl

∣ϕj1,...,jm⟩ = 0.

1 In the main algorithm we apply this lemma only to histories in the subspace (1−PN), where we have already

shown that all histories terminate.
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3.6.3 Upper bound on N

In this section we compute an upper bound for N defined implicitly by

N = log(N)
k − log(der)

+
m + log(1

ε)
k − log(der)

(3.59)

Lemma 17. Define a = (k − log(der))−1, b = m+log( 1
ε
)

k−log(der) , and N = t + a log(t), then

N ≤ b + a(log(a + 1) + log(b + a log(a + 1))) ≤ b + 3a(log(b) + 1) (3.60)

Proof. We start with Section 3.6.3 as the implicit definition of N to derive the upper bound.

Expanding the substitutions reduces Section 3.6.3 to

t + a log(t) = a log(t + a log(t)) + b (3.61)

Then we bound log(t) ≤ t coarsely on the r.h.s., which yields

t + a log(t) ≤ a log(t(a + 1)) + b (3.62)

t + a log(t) ≤ a log(a + 1) + a log(t) + b (3.63)

t ≤ a log(a + 1) + b (3.64)

Thus

N ≤ b + a(log(a + 1) + log(b + a log(a + 1))) (3.65)

which can be evaluated explicitly. Relaxing the bound further yields

N ≤ b + 3a(log(b) + 1) (3.66)

As asymptotic bounds we also have N ≤ m+log( 1
ε
)

k−log(de) + O(log(m + log(1
ε))) or N ≤ O(m +

log(1
ε)).
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Algorithm 3 Quantum information-theoretic QLLL solver
1: procedure QLLL_solver
2: a ∶= 1/ log(k − de)
3: b ∶= (m + log(1/ε))/ log(k − de)
4: N ∶= b + 3a(log(b) + 1)
5: T ∶=m +Nd

6: for l ∶= 0 to T − 1 do
7: iteration(live = 1)
8: end for
9: for l ∶= T − 1 to 0 do

10: iteration†(live = 0)
11: end for
12: compress(L, t)
13: if measure({PN ,1 − PN})=(1 − PN ) then
14: return SUCCESS, W
15: else
16: return FAILURE
17: end if
18: end procedure
19: procedure iteration (live)
20: if not term[l] then
21: if live then
22: L[l] ← measure_coherently(Γ+(S[s].proj, S[s].nbr))
23: end if
24: if L[l] then
25: if live then
26: swap_and_rotate(Γ+(S[s].proj, S[s].nbr),R[tk])

27: end if
28: t← t + 1
29: if t = N then
30: term[l + 1] ← term[l + 1] + 1
31: end if
32: S[s + 1].proj ← S[s + 1].proj + Γ+(S[s].proj, S[s].nbr)
33: s← s + 1
34: else
35: if s = 0 then
36: S[s].nbr ← S[s].nbr + 1 mod m
37: if [s].nbr = 0 then
38: term[l + 1] ← term[l + 1] + 1
39: end if
40: else
41: S[s].nbr ← S[s].nbr + 1 mod k
42: if S[s].nbr = 0 then
43: F [l] ← F [l] + 1
44: end if
45: end if
46: if F [l] then
47: s← s − 1
48: S[s + 1].proj ← S[s + 1].proj − Γ+(S[s].proj, S[s].nbr)
49: end if
50: end if
51: else
52: term[l + 1] ← term[l + 1] + 1
53: end if
54: end procedure



3.6 Appendix 63

register description size (qubits) initial value comment

W work register n 1/2n random initial as-

signment

R randomness register Nk 1/2Nk source of entropy

L recursion log register m +Nd ∣0 . . . ,0⟩ indicates a failed

measurements and

thus the start of

recursion

F return flag register m +Nd ∣0 . . . ,0⟩ indicates return from

recursion

term termination register m +Nd ∣0 . . . ,0⟩ indicates no further

operations need to

be performed

S stack register 2 log(N) log(m) ∣0,0⟩ . . . ∣0,0⟩ log(N) pairs

of registers labeled

(S[i].proj, S[i].nbr)
used to indicate the

projector we’re

fixing and the cur-

rent neighbor we’re

checking

s stack pointer log(N) ∣0⟩ indicates the recur-

sion level.

l log pointer log(N) ∣0⟩ indicates the next

empty record.

t randomness pointer log(N) ∣0⟩ indicates the next

available block

of k random bits,

also the number

of failed coherent

measurements.

live modify W,R? 1 ∣0⟩ indicates if changes

to W,R are executed

(1) or skipped (0).

Table 3.1: The quantum registers and the initial state of Algorithm 3
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Chapter 4

Simulating Quantum Circuits with
Sparse Output Distributions

Synopsis:

We show that several quantum circuit families can be simulated efficiently classically if it

is promised that their output distribution is approximately sparse i.e. the distribution is close to

one where only a polynomially small, a priori unknown subset of the measurement probabilities

are nonzero. Classical simulations are thereby obtained for quantum circuits which—without

the additional sparsity promise—are considered hard to simulate. Our results apply in par-

ticular to a family of Fourier sampling circuits (which have structural similarities to Shor’s

factoring algorithm) but also to several other circuit families, such as IQP circuits. Our re-

sults provide examples of quantum circuits that cannot achieve exponential speed-ups due to

the presence of too much destructive interference i.e. too many cancelations of amplitudes.

The crux of our classical simulation is an efficient algorithm for approximating the significant

Fourier coefficients of a class of states called computationally tractable states. The latter re-

sult may have applications beyond the scope of this work. In the proof we employ and extend

sparse approximation techniques, in particular the Kushilevitz-Mansour algorithm, in combi-

nation with probabilistic simulation methods for quantum circuits.

Based on:

M. Schwarz, M. Van den Nest,

e-print arXiv:1310.6749, 2013, submitted

Changes compared to published version: minor corrections.
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4.1 Introduction

In this paper we present classical algorithms for the simulation of several related classes of

quantum circuits containing blocks of Quantum Fourier Transforms (QFTs). In particular,

we consider n-qubit circuits with a QFT-Toffoli-QFT−1 block structure followed by a (par-

tial) measurement immediately after the final QFT. Circuits of this kind are used in various

quantum algorithms, most notably Shor’s factoring algorithm. Whereas the circuits consid-

ered in this paper are unlikely to have an efficient classical simulation in general, the aim

of this work is to analyze under which additional conditions an efficient classical simulation

becomes possible. This provides an approach to identify features which are essential in the

(believed) superpolynomial speed-ups achieved by, say, the factoring algorithm. In this paper

we will in particular place restrictions on the output distribution of the circuit. In short, our

results are as follows: given the promise that the output distribution is approximately sparse

(or “peaked”)—in the sense that only O(poly(n)) of the O(2n) probabilities have significant

magnitude of Ω(1/poly(n))—then an efficient classical simulation algorithm is provided. Not

unexpectedly, Shor’s algorithm does not satisfy such sparseness promise i.e. its output dis-

tribution is “superpolynomially flat”. Our results thus imply that the approximate sparseness

promise alone suffices to bring down the (believed) superpolynomial speed-up achieved by the

factoring algorithm to the realm of a classically simulatable quantum computation. Below we

provide a discussion of how our findings shed light on the factoring algorithm (see Section 4.2).

The implications of our results are twofold. First, they pose restrictions on the design of

fast quantum algorithms. For example, our results show that any exact quantum algorithm

adopting the QFT-Toffoli-QFT−1 block structure (or more generally the structures considered

in Theorems 20-23) which has as its output state a single computational basis state contain-

ing the answer of the problem, can never achieve an exponential quantum speed-up. Given

the generality of the class of circuits considered, we believe that these classical simulation re-

sults may provide useful insights for the quantum algorithms community. Second, the present

results have conceptual implications as follows: the exponential speed-up found in quantum

algorithms is often related to the availability of interference of probability amplitudes in this

model. Indeed in several quantum algorithms, first a superposition of states is created using a

QFT, then amplitudes are manipulated in some nontrivial way using reversible (classical) gates,

such that in a final QFT, by means of interference, only desired basis states survive whereas the

amplitudes for undesired states cancel out. Our results imply that this qualitative picture has to

be refined, since too much cancelation leading to only a few classical output states (let alone

a single one!) can in fact be simulated efficiently classically, and thus cannot offer exponen-

tial speed-up. Indeed, our results imply that the final probability distribution must necessarily

have super-polynomially large support (e.g. in the same order as the full state space), in order

to allow for exponential speed-up. Finally, since only polynomially many measurements can

be performed efficiently on the output state—and thus only a small fraction of the necessarily
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large number of states can be sampled—the output distribution must have a special structure

such that meaningful information can be recovered from just a few measurements. Notably, the

coset state produced by Shor’s algorithm (and its generalizations) has group structure which is

indeed exploited in the classical post-processing step to recover the entire state space from just

a few measurements (cf. Section 4.2).

The proof techniques we use to obtain our results are twofold. First, we use random-

ized classical simulation methods for Computationally Tractable (CT) states as developed

in [Van den Nest, 2011]. Furthermore the latter methods are combined with algorithms for

sublinear sparse Fourier transforms (SFTs), which have been pioneered in seminal work by

Goldreich-Levin [Goldreich and Levin, 1989] and Kushilevitz-Mansour [Kushilevitz and Man-

sour, 1991] and which have been refined throughout the last two decades [Akavia, 2010, Akavia

et al., 2003, 2006, Gilbert et al., 2005, 2002, Hassanieh et al., 2012a,b, Iwen, 2010, Mansour,

1995]. Our work also provides further extensions of the above sparse approximation tech-

niques.

Whereas to our knowledge this is the first paper which analyzes the effect of (approximate)

sparseness of the output distribution on the classical simulability of quantum circuits, from a

more general point of view several works are related to the present paper (e.g. in terms of the

class of quantum circuits considered or in terms of the techniques used). For example, a rel-

evant series of papers regards [Aharonov et al., 2006, Browne, 2007, Yoran and Short, 2007],

that all focus on efficient classical simulation of the QFT with the aim of understanding bet-

ter the workings of Shor’s factoring algorithm. In the latter context, see also [Bermejo-Vega

and Nest, 2012, Van den Nest, 2012] for classical simulations of a class of circuits involving

QFTs over finite abelian groups supplemented with a particular family of group-theoretic op-

erations (Normalizer circuits). Classical simulation of CT states were considered in [Van den

Nest, 2011] by one of us. In the latter work, the algorithms from Goldreich-Levin [Goldreich

and Levin, 1989] and Kushilevitz-Mansour [Kushilevitz and Mansour, 1991] were applied in

the context of classical simulation, albeit in a rather different context compared to the present

paper, namely to analyze the role of the classical postprocessing for quantum speed-ups (more

particularly in Simon’s algorithm). Further work on CT states is done in [Stahlke, 2013]; the

latter work also analyzes the role of interference effects in quantum speed-ups (although from a

different perspective then the present paper). Below we will also make statements about classi-

cal simulability of IQP (Instanteneous Quantum Polynomial-time) circuits. In [Bremner et al.,

2011] it was shown (roughly speaking) that general IQP circuits cannot be simulated efficiently,

unless the polynomial hierarchy collapses. In contrast, here we show that IQP circuits with an

additional sparseness promise on the output distribution, are efficiently simulable classically.

Finally, in [Montanaro and Osborne, 2010] the authors consider and generalize prior work on

SFTs in a different direction i.e. unrelated to classical simulation issues; they prove a quantum

Goldreich-Levin theorem and use it for efficient quantum state tomography for quantum states

that are approximately sparse in the Pauli product operator basis.
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4.2 Main results: statements and discussion

We prove four theorems, all similar in spirit, about efficient classical simulability of classes

of quantum circuits with a promise on the (approximate) sparseness of the output distributions

and/or the output states. We call a probability distribution over 2n events t-sparse, if only

t probabilities are nonzero, and ε-approximately t-sparse if the probability distribution is ε-

close in `1-distance to a t-sparse one. Throughout this paper we will work with qubit systems

and sometimes indicate where generalizations of definitions and results to d-level systems are

possible. The computational basis states of an n-qubit system are denoted by ∣x⟩ where x =
x1⋯xn is an bit string. The set of n-bit strings will be denoted by Bn.

A key concept we build upon in this work are computationally tractable states introduced

in [Van den Nest, 2011], which capture two key properties of simulable quantum states:

Definition 18 (Computationally Tractable (CT) states). An n-qubit state ∣ψ⟩ is called ‘compu-

tationally tractable’ (CT) if the following conditions hold:

1. it is possible to sample in poly(n) time with classical means from the probability distri-

bution P = {px ∶ x ∈ Bn} defined by px = ∣⟨x∣ψ⟩∣2, and

2. upon input of any bit string x, the coefficient ⟨x∣ψ⟩ can be computed in poly(n) time on

a classical computer.

The definition of CT states is straightforwardly generalized to states of systems of qudits.

Several important state families are CT: matrix product states with polynomial bond dimension,

states generated by poly-size Clifford circuits, states generated by poly-size nearest-neighbor

matchgate circuits, states generated by bounded tree-width circuits (where all aforementioned

circuits act on standard basis inputs). For definitions of these classes and proofs that they are

CT states, we refer to [Van den Nest, 2011]. Further examples of CT states are states generated

by normalizer circuits over finite Abelian groups (acting on coset states) [Bermejo-Vega and

Nest, 2012, Van den Nest, 2012].

Example 19. For our purposes it will be especially useful to point out that the following classes

of states are CT [Van den Nest, 2011].

(i) Let ∣x⟩ be an arbitrary n-qubit computational basis state, let F denote the quantum

Fourier transform over Z2k for some k ≤ n (acting on any subset of k qubits) and let

T be a poly-size circuit of classical reversible gates (e.g. Toffoli gates), then the state

T F∣x⟩ is CT.

(ii) Let f ∶ Bn → {1,−1} be a classically efficiently computable function, then the state

∣ψf ⟩ = 1√
2n ∑ f(x)∣x⟩, where the sum is over all n-bit strings x, is CT.
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One may also consider a notion of CT states in the presence of oracles (see also [Brandão

and Horodecki, 2013]). We say that an n-qubit state ∣ψ⟩ is f -CT given access to an oracle

f ∶ {0,1}m → {0,1} (with m = poly(n)) if conditions (a)-(b) in Definition 18 hold when

allowing, instead of poly-time classical computations, poly-many queries to the oracle. For

example, if the function f in (ii) is given as an oracle, the state ∣ψf ⟩ in Example 19 is trivially

f -CT.

Based on these definitions, we are now ready to state our main results.

Sparse output distributions

Theorem 20. Consider a unitary n-qubit quantum circuit composed of two blocks C = U2U1

with input state ∣ψin⟩. Suppose that the following conditions are fulfilled:

(a) the state U1∣ψin⟩ obtained after applying the first block is CT;

(b) the second block U2 is a QFT (or QFT−1) modulo 2k, for some k ≤ n, applied to any

subset S of k qubits. The circuit is followed by a measurement of the qubits in S in the

computational basis, giving rise to a probability distribution P .

(c) The distribution P is promised to be ε-approximately t-sparse for some ε ≤ 1/6 and for

some t (and otherwise no information about P is available).

Then there exists a randomized classical algorithm with runtime poly(n, t,1/ε, log 1
δ ) which

outputs (by means of listing all nonzero probabilities) an s-sparse probability distribution P ′

where s = O(t/ε); with probability at least 1 − δ, the distribution P ′ is O(ε)-close to P .

Furthermore, it is possible to sample P ′ on a classical computer in poly(n, t,1/ε) time.

Thus, if the sparseness t is at most polynomially large in n, if the error ε is at worst poly-

nomially small in n, and if δ = 2−poly(n), then the classical simulation is efficient i.e. it runs in

poly(n) time, and the probability of failure is exponentially small.

We emphasize that, apart from the promise (c), no information about the structure of P is a

priori available. For example, suppose that P is promised to be approximately 1-sparse, where

a distribution is 1-sparse if there exists a single bit string x∗ which occurs with probability 1

and all other bit strings have probability 0. Then, crucially, we do not assume knowledge of the

bit string x∗, i.e a priori all (potentially exponentially many in n!) bit strings are equally likely.

Perhaps surprisingly, Theorem 20 implies that a good approximation of P can nevertheless be

efficiently computed.

Since several circuit families satisfy condition (a) (recall examples above and see [Van den

Nest, 2011]), Theorem 20 yields an efficient classical simulation of various types of circuits.

For example, letting ∣ψin⟩ be an arbitrary computational basis input, the block U1 may be e.g.

any poly-size Clifford circuit, nearest-neighbor matchgate circuit or bounded-treewidth circuit.

A particularly interesting class of circuits, denoted by AShor, is depicted in Figure 4.1. Note
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Figure 4.1: Shor’s algorithm [Shor, 1999] consists of (1) a quantum Fourier transform (QFT) on a

subset of qubits, (2) a block of reversible gates (a modular exponentiation circuit), and (3) an inverse

QFT on the same subset qubits. Note that the state ∣ψ⟩ obtained after the first QFT is a computationally

tractable (CT) state. Thus conditions (a) and (b) of Theorem 20 are satisfied. However the output

distribution of Shor’s algorithm is not sparse in general, as required by our algorithm (cf. condition

(c)).

that Shor’s factoring algorithm belongs to the classAShor. It is easily verified that, for anyAShor

circuit, the state of the quantum register immediately before the second QFT is CT (recall Ex-

ample 19 (i) from above). Thus any circuit in AShor which, in addition, satisfies the sparseness

condition (c) of Theorem 20 can be simulated efficiently classically. Upon closer inspection

of Shor’s factoring algorithm, one finds that its output distribution PShor generally contains

super-polynomially many nonzero probabilities and thus (non-surprisingly) Theorem 20 does

not yield an efficient classical simulation of the factoring algorithm. More precisely, the size of

the support of the flat distribution PShor equals the multiplicative order r of a randomly chosen

integer x modulo N . For a general integer N , the order is conjectured to be Ω(N/ log(N)) on

average over all N [Arnold, 2005, Kurlberg and Pomerance, 2013]. In the case of RSA, with

N = pq, the primes p and q might be chosen such that w.h.p. r ≈ N/4 [Shor, 2011]. Neverthe-

less it is interesting that the mere promise of (approximate) sparsity of the output distribution

suffices to arrive at an efficient classical simulation for all AShor circuits, without otherwise re-

stricting the allowed operations. This implies that the feature that PShor is sufficiently flat is an

essential ingredient in the (believed) superpolynomial speed-up achieved by Shor’s factoring

algorithm.

Another observation is the following. Any quantum circuit A satisfying (a)-(b) in The-

orem 20 (for example any AShor circuit) which, when implemented on a quantum computer,

aspires to deliver a superpolynomial speed-up over classical computers, must generate a dis-

tribution P which cannot be well-approximated by a poly(n)-sparse distribution. At the same
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time, at most poly(n) repetitions ofA are allowed if the total computational cost is to be poly-

nomially bounded, yielding only poly(n) samples of P . In other words, one only has access

to ‘few’ samples of a distribution which has support on a ‘large’ number of outputs. Yet some-

how these few samples should contain sufficient information to extract the final result of the

computation with high probability (working within the standard bounded-error setting). This

point is nicely illustrated by considering again the factoring algorithm (or more generally the

abelian hidden subgroup algorithm). Here the output distribution is (close to) the uniform dis-

tribution over an unknown group H (and determining this group is essentially the goal of the

algorithm) and the final measurement only yields a small set of O(log ∣H ∣) randomly chosen

elements of H . However, since such a small set of randomly generated group elements is with

high probability a generating set of the group, a small number of measurements indeed suffices

to determine the entire group H .

Theorem 20 can be extended by allowing the block U2 to comprise tensor product opera-

tions, instead of the QFT:

Theorem 21. The conclusions of Theorem 20 also apply if condition (b) is replaced by

(b’) the second block U2 is an arbitrary tensor product unitary operation U2 = u1 ⊗ ⋯ ⊗
un. The circuit is followed by a measurement of an arbitrary subset of qubits S in the

computational basis, giving rise to a probability distribution P .

In addition, the conclusions of Theorem 20 also apply when U2 is a tensor product operation

as in (b’), but now for quantum algorithms operating on the Hilbert spaceH =Cd1 ⊗⋯⊗Cdn

with di = O(1) but otherwise arbitrary, i.e. H is a system of n qudits of possibly different

dimensions.

A first example of the setting considered in Theorem 21 regards the family of IQP circuits

(Instantaneous Quantum Polynomial time [Shepherd and Bremner, 2009]). Here the input is

an n-qubit computational basis state ∣x⟩ and the circuit consists of gates of the form exp[iθT ]
where θ is an arbitrary real parameter and where T is a tensor product of the form T = T1⊗⋯⊗
Tn with Ti ∈ {I,X}. Since X = HZH , every IQP circuit C can be written as C = H⊗nC′H⊗n

where C′ is obtained by replacing each gate exp[iθT ] by exp[iθT ′] where T ′ = T ′1 ⊗⋯⊗ T ′n
with T ′i =HTiH . Thus T ′ is a tensor product of Z operators and identity gates and hence each

gate eiθT
′

is diagonal in the computational basis. Setting U1 ∶= C′H⊗n and U2 ∶= H⊗n we find

that conditions (a)-(b’) of Theorem 21 are fulfilled; indeed it is straightforward to show that

C′H⊗n∣x⟩ is a CT state. Thus Theorem 21 shows that any IQP circuit with an approximately

sparse output distribution can be simulated efficiently classically. This result is particularly

interesting when compared to a hardness-of-simulation result obtained for general IQP circuits

(i.e. without sparseness promise) in [Bremner et al., 2011]. In the latter work it was shown

that an efficient, approximate classical simulation of IQP circuits (w.r.t. a certain multiplicative

approximation) would imply a collapse of the polynomial hierarchy.
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A second example of the setting considered in Theorem 21 is the following. Consider

a finite, possibly non-abelian group G given as a direct product of n individual groups, G =
G1×⋯×Gn where the order of eachGi isO(1). Define a Hilbert spaceHG with computational

basis vectors ∣g⟩ = ∣g1⟩ ⊗ ⋯ ⊗ ∣gn⟩ labeled by group elements g = (g1, . . . , gn) ∈ G. The

spaceHG is naturally associated with a tensor product of n individual spaces, each of constant

dimension. We may now consider quantum circuits of the following kind. The total Hilbert

space isHG⊗Hn whereHn is an n-qubit system. In analogy to Figure 4.1, we consider circuits

of the block structure C = A3A2A1 where A1 is the QFT over G acting on the registerHG, A2

is an arbitrary poly-size circuit of classical reversible gates acting on the entire system and A3

is the inverse QFT over G. The input is ∣1G,0n⟩ where 1G is the neutral element in G and 0n
denotes the all-zeros n-bit string; the circuit is followed by measurement of the system HG in

the basis {∣g⟩}. Circuits of this kind are of interest in the context of quantum algorithms for the

(non-abelian) Hidden subgroup problem (see e.g. [Alagic et al., 2007, Lomont, 2004]). For a

definition of the QFT over a finite group we refer to e.g. [Moore et al., 2006]; here it suffices

to mention that the QFT over a product group G = G1 × ⋯ ×Gn is a tensor product operator.

Furthermore it is easily verified (recall also the discussion on CT states above) that condition (a)

in Theorem 20 is satisfied with U1 ≡ A2A1. Thus Theorem 21 implies that any quantum circuit

of this kind which has an approximately sparse output distribution can be simulated classically.

This gives an example of a quantum circuit family comprising non-abelian QFTs (albeit of

a restricted kind) which can be simulated classically. For other examples of simulations of

non-Abelian QFTs we refer to [Bermejo-Vega, 2011].

Sparse output states

Let us present two more results regarding quantum circuits of the kinds considered in Theo-

rem 20 and Theorem 21, when promised that the output state is approximately sparse. In this

case we show how an approximation of the latter output state can be efficiently determined by

means of a classical randomized algorithm.

An n-qubit state ∣ϕ⟩ is called ε-approximately t-sparse if there exists a state ∣ϕ′⟩ which is

ε-close to ∣ψ⟩ and for which at most t amplitudes ⟨x∣ϕ′⟩ (with ∣x⟩ computational basis states)

are nonzero (see also section 4.4).

Theorem 22. Consider a unitary n-qubit quantum circuit composed of two blocks C = U2U1

with input state ∣ψin⟩. Suppose that the following conditions are fulfilled:

(a) the state U1∣ψin⟩ obtained after applying the first block is CT;

(b) the second block U2 is the QFT modulo 2n or its inverse.

(c) The final state ∣ψout⟩ = C∣ψin⟩ is promised to be
√
ε-approximately t-sparse for some

ε ≤ 1/6 and some t.
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Then there exists a randomized classical algorithm with runtime poly(n, t,1/ε, log 1
δ ) which

outputs (by means of listing all nonzero amplitudes) an s-sparse state ∣ψ⟩ which, with proba-

bility at least 1 − δ, is O(
√
ε)-close to ∣ψout⟩, where s = O(t/ε).

Theorem 23. The conclusions of Theorem 22 also apply if condition (b) is replaced by

(b’) the second block U2 is an arbitrary tensor product unitary operation U2 = u1 ⊗⋯⊗ un.

In addition, the conclusions of Theorem 22 also apply when U2 is a tensor product operation

as in (b’), but now for quantum algorithms operating on the Hilbert spaceH =Cd1 ⊗⋯⊗Cdn

with di = O(1) but otherwise arbitrary.

Theorem 22 and Theorem 23 are closely connected to an important result in theoretical

computer science, namely the Kushilevitz-Mansour (KM) algorithm [Kushilevitz and Man-

sour, 1991]: if one has oracle access to a Boolean function f ∶ Bn → {1,−1} which is promised

to have an approximately sparse Fourier spectrum, it is possible to compute a sparse approxi-

mation of f in polynomial time. We connect our result to Kushilevitz-Mansour by considering

Theorem 23 for an n-qubit system where

∣ψin⟩ ≡ ∣ψf ⟩ =
1

2n/2∑x
f(x)∣x⟩ (4.1)

is a CT state, U1 ≡ I and U2 ≡H⊗n where H is the Hadamard gate. Then Theorem 23 implies

that if H⊗n∣ψf ⟩ is promised to be approximately sparse, then a sparse approximation of the

latter state can be computed efficiently. This is effectively (a version of) the KM result, stated

in the language of quantum computing. Similarly, Theorem 22 relates to a version of the KM

result [Mansour, 1995] considered for transformations of Boolean functions under the Fourier

transform over Z2n . The proof method of the KM theorem, suitably generalized to our setting

at hand, will be an important tool for us.

Computing significant weights

Whereas Theorems 20 to 23 involve a promise about the approximate sparseness of the output

distributions/states, our final result does not. The following theorem asserts that, for CT states

expanded in the Fourier basis, it is possible to efficiently determine (in a suitable approximate

and probabilistic sense) all Fourier coefficients which are larger than some threshold value; a

similar result also holds for CT states expanded in product bases. The result is in the present

paper mainly used as a technique in the proof of Theorems 22 and 23 (similar to the proof

of Kushilevitz-Mansour). However we believe it may be of independent interest, given the

broadness of the class of CT states and the frequent usage of Fourier transforms.

Let Z2n denote the cyclic group of integers modulo 2n. Any n-bit string x is identified

with an element of Z2n via the binary expansion. Recall that the quantum Fourier transform

over Z2n is the following n-qubit unitary operator:

F2n =
1√
2n

∑
x,y∈Z2n

exp(2πixy
2n

) ∣x⟩⟨y∣ . (4.2)
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and the Fourier basis is simply the orthonormal basis {∣Fx⟩ ∶ x ∈ Bn} defined by ∣Fx⟩ = F2n ∣x⟩.

Theorem 24. Let ∣ψ⟩ be an n-qubit CT state and consider its expansion in the Fourier basis:

∣ψ⟩ = ∑ ψ̂x∣Fx⟩. (4.3)

There exists a randomized classical algorithm with runtime poly(n, 1
θ , log 1

π ) which outputs

a list L = {x1, . . . , xl} where l ≤ 2/θ and where each xi is an n-bit string such that, with

probability at least 1 − π:

(a) for all y ∈ L, it holds that ∣ψ̂x∣2 ≥ θ
2 ;

(b) every k-bit string x satisfying ∣ψ̂x∣2 ≥ θ belongs to the list L;

Furthermore, given any x ∈ Bn, there exists a classical algorithm with runtime poly(n,1/ε, log 1
δ )

which, with probability at least 1 − δ, outputs an ε-approximation of ψ̂x. Finally, the above

results also holds if the Fourier basis is replaced by a product basis {U ∣x⟩} where U =
U1 ⊗⋯⊗Un is an arbitrary tensor product unitary operator.

4.3 Proof outline and organization of the paper

In Section 4.4 we discuss ε-approximately t-sparse distributions and states. A key property will

be Lemma 26 where we show that the large probabilities contain most of the information of an

approximately sparse distribution i.e. discarding the small probabilities does not introduce too

much error.

It will be a key point in our proofs that the output distributions of the quantum circuits

considered in Theorems 20 to 23, as well as a suitable subset of their marginal distributions,

are what will be called here additively approximable. The latter are distributions whose in-

dividual probabilities can be efficiently approximated with a randomized classical algorithm

with a performance in terms of error and success probability which is similar to the one given

by the Chernoff bound. Our analysis of additively approximable distributions (Section 4.5 and

Section 4.6), which is a significant component in the proofs of our main results, will not make

reference to quantum computing (the latter is done as of Section 4.7). In Section 4.5, we in-

troduce the notion of additively approximable distributions and develop their properties. An

important feature will be established in Theorem 30 where we show that, for any probabil-

ity distribution which is itself additively approximable and for which a designated subset of

its marginals are additively approximable as well, it is possible to efficiently determine (in a

suitable approximate sense) those probabilities which are larger than some given, sufficiently

large, threshold value. This lemma, in combination with Lemma 26 mentioned above, will

yield an efficient algorithm to (approximately) sample any ε-approximately t-sparse distribu-

tion which is additively approximable and whose marginals are as well; this algorithm is given
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in Section 4.6 (Theorem 31). The results developed in Section 4.5 to Section 4.6 will fol-

low the general proof idea of the Kushilevitz-Mansour theorem [Goldreich and Levin, 1989,

Kushilevitz and Mansour, 1991].

In Section 4.7 we recall classical simulation properties of CT states. Finally, in Section 4.8

the proofs of our main results are given: the main strategy is to show that the output distribu-

tions of the circuits considered in our main theorems, as well as their marginals, are additively

approximable.

4.4 Approximate sparseness

4.4.1 Basic definitions

We call a quantum state ∣ϕ⟩ t-sparse (relative to the computational basis), if at most t ampli-

tudes ⟨x∣ϕ⟩ are nonzero. We will use the standard `2-norm as as the natural distance measure

for two pure states. Thus we will call two quantum states ∣ϕ⟩ , ∣ψ⟩ ε-close, if ∣∣ ∣ϕ⟩− ∣ψ⟩ ∣∣2 ≤ ε.
We call a normalized pure state ∣ϕ⟩ ε-approximately t-sparse if there exists a, not necessarily

normalized, t-sparse vector which is ε-close to ∣ϕ⟩. In this paper we will mostly be interested in

a sparseness t which scales at most polynomially with the number of qubits n, and in an error ε

which is worst polynomially small in n. Note that in the definition of approximate sparseness

we allow the t-sparse vector to be an unnormalized state (this will be a convenient definition in

our proofs). However, if ∣ϕ⟩ is ε-approximately t-sparse and if ε is sufficiently small (namely

ε ≤ 0.5), there always exists a normalized t-sparse state ∣ϕ′⟩ which is O(ε)-close to ∣ϕ⟩ as well

(see Section 4.4.2).

Similar to sparse quantum states, we call a probability distribution P = {px ∶ x ∈ Bn} on

the set of n-bit strings t-sparse if at most t of its probabilities px are nonzero. The distance

between two probability distributions P and P ′ will be measured in terms of the total variation

distance, defined by

∥P − P ′∥1 = ∑∣px − p′x∣. (4.4)

We say that P is ε-approximately t-sparse if there exists a t-sparse vector v = (vx ∶ x ∈ Bn)
such that ∑∣px − vx∣ ≤ ε. The entries vx may a priori be arbitrary complex numbers. However,

similar to above, if P is ε-approximately t-sparse and if ε is sufficiently small, there always

exists a normalized probability distributionP ′ which is t-sparse and such that ∥P−P ′∥1 ≤ O(ε)
(see Section 4.4.2).

The support of a probability distribution P = {px ∶ x ∈ Bn} is the set of all x for which

px ≠ 0. If A ⊆ Bn, the restriction of P to A is the subnormalized distribution {qx ∶ x ∈ Bn}
defined by

qx =
⎧⎪⎪⎨⎪⎪⎩

px if x ∈ A
0 otherwise.

(4.5)
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Similarly, the support of an n-qubit state is the set of all x for which ⟨x∣ϕ⟩ ≠ 0. If A ⊆ Bn, the

restriction of ∣ϕ⟩ to A is the subnormalized state

∑
x∈A

⟨x∣ϕ⟩∣x⟩. (4.6)

4.4.2 Basic properties

Let P = {px ∶ x ∈ Bn} be an arbitrary probability distribution. Let At ⊆ Bn be a subset which,

roughly speaking, contains t bit strings corresponding to the t largest probabilities of P . More

formally, At satisfies the properties (i) ∣At∣ = t and (ii) px ≥ py for all x ∈ At and y ∉ At. Note

that there may be more than one set At with this property (e.g. if multiple probabilities happen

to be equal). For our purposes the particular choice of At will however be irrelevant. Let P[t]
denote the restriction of P to At. Note that P[t] is t-sparse. Furthermore it is straightforward

to show that, for any t-sparse vector v = (vx ∶ x ∈ Bn) (where the vx may be arbitrary complex

numbers), one has ∥P[t] −P∥1 ≤ ∥v −P∥1 i.e. P[t] has minimal distance to P among all such

t-sparse v’s. It follows that P is ε-approximately t-sparse iff

∥P − P[t]∥1 ≤ ε. (4.7)

Next we show that, for any ε-approximately t-sparse distribution P with ε ≤ 0.5 there always

exists a t-sparse normalized distribution P ′ which is O(ε)-close to P . To see this, set P ′ ∶=
P[t]/∥P[t]∥1. Owing to Eq. (4.7) we have

1 − ε ≤ ∥P[t]∥1 ≤ 1. (4.8)

We then find

∥P ′ − P∥1 = ∥P[t] − ∥P[t]∥1 ⋅ P∥1
∥P[t]∥1

≤ ∥P[t] − ∥P[t]∥1 ⋅ P∥1
1 − ε

≤ ∥P[t] − P∥1
1 − ε

+ (1 − ∥P[t]∥1) ⋅ ∥P∥1
1 − ε

≤ 2ε
1 − ε

. (4.9)

Here in the equality we used the definition of P[t]; in the first inequality we used Eq. (4.8); in

the second inequality we used the triangle inequality; finally we used Eq. (4.7) and Eq. (4.8).

Then, if ε ≤ 0.5, we have ∥P ′ − P∥1 ≤ 4ε.
Let ∣ϕ⟩ be an n-qubit state. In analogy with above, let At ⊆ Bn be a subset which, roughly

speaking, contains t bit strings corresponding to the t largest amplitudes of ∣ϕ⟩. More formally,

At satisfies (i) ∣At∣ = t and (ii) ∣⟨x∣ϕ⟩∣ ≥ ∣⟨y∣ϕ⟩∣ for all x ∈ At and y ∉ At. Letting ∣ϕ[t]⟩ denote

the restriction of ∣ϕ⟩ to At, it is straightforward to show that ∣ϕ[t]⟩ has minimal `2-distance to

∣ϕ⟩ among all t-sparse vectors. It follows that ∣ϕ⟩ is ε-approximately t-sparse iff

∥∣ϕ⟩ − ∣ϕ[t]⟩∥2 ≤ ε. (4.10)

Fully analogous to above, for any ε-approximately t-sparse state ∣ϕ⟩ with ε ≤ 0.5 there al-

ways exists a t-sparse normalized state ∣ϕ′⟩ which is O(ε)-close to ∣ϕ⟩. The state ∣ϕ′⟩ ∶=
∣ϕ[t]⟩/∥∣ϕ[t]⟩∥2 does the job.
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Let ∣ϕ⟩ be an n-qubit pure state and let P be the probability distribution arising from mea-

suring all qubits of ∣ϕ⟩ in the computational basis. We may then ask whether P is approximate

sparse or whether the full state ∣ϕ⟩ is approximately sparse, where in the former case close-

ness is measured w.r.t. total variation distance and in the latter case it is measured w.r.t. `2
distance. Next we show that both notions of approximate sparseness are equivalent up to a

square-root rescaling of the accuracy ε (which is mostly harmless if one is ultimately inter-

ested in ε = 1/poly(n), as we will mostly be in this paper).

Lemma 25. Let ∣ϕ⟩ be an n-qubit pure state and let P be the probability distribution arising

from measuring all qubits of ∣ϕ⟩ in the computational basis. Then ∣ϕ⟩ is
√
ε-approximately

t-sparse (relative to the `2-distance, as above) iff P is ε-approximately t-sparse (relative to the

total variation distance, as above).

Proof. Define px = ∣⟨x∣ϕ⟩∣2 for all x. As above, let At be a set of t n-bit string satisfying

px ≥ py for all x ∈ At and y ∉ At. This is (trivially) equivalent to ∣⟨x∣ϕ⟩∣ ≥ ∣⟨y∣ϕ⟩∣ for all x ∈ At
and y ∉ At. Let P[t] denote the restriction of P to At and similarly ∣ϕ[t]⟩ is the restriction of

∣ϕ⟩ to At. Recall that ∣ϕ⟩ is
√
ε-approximately t-sparse iff ∥∣ϕ⟩ − ∣ϕ[t]⟩∥2 ≤

√
ε and that P is

ε-approximately t-sparse iff ∥P −P[t]∥1 ≤ ε. A straightforward application of definitions now

shows that ∥∣ϕ⟩ − ∣ϕ[t]⟩∥2 = ∥P − P[t]∥, since both expressions coincide with

∑
x∉At

∣⟨x∣ϕ⟩∣2. (4.11)

This shows that ∥∣ϕ⟩ − ∣ϕ[t]⟩∥2 ≤
√
ε iff ∥P − P[t]∥1 ≤ ε.

4.4.3 Sparse distributions have large coefficients

The next lemma shows that, for an approximately sparse probability distribution, the ‘small’

probabilities can be ignored without introducing much error. This property will be important

in the proof of our main results, in combination with Theorem 30 which states that the large

probabilities can be efficiently computed for certain distributions. The following lemma is also

closely related to [Kushilevitz and Mansour, 1991, Lemma 3.11]

Lemma 26. Let P = {px ∶ x ∈ Bn} be an ε-approximately t-sparse probability distribution.

Define Bε,t to be the subset of all bit strings x such that px ≥ ε/t. Define the subnormalized

distributionQε,t to be the restriction ofP toBε,t. ThenQε,t isO(ε)-close toP . More precisely

∥Qε,t − P∥1 ≤ 2ε.

Proof. LetAt ⊆ Bn and P[t] be defined as in Section 4.4.2. Recall that ∥P[t]−P∥1 ≤ ε owing

to the approximate sparseness of P . Furthermore construct P ′ as follows: start from P[t] and

set all probabilities with magnitudes ≤ ε
t to zero; let C denote the support of P ′. Note that

C ⊆ At and thus ∣At ∖C ∣ ≤ t. Furthermore px ≤ ε/t for every x ∈ At ∖C. Then

∣∣P − P ′∣∣1 ≤ ∣∣P − P[t]∣∣1 + ∣∣P[t] − P ′∣∣1
≤ ε + ∑

x∈At∖C

px ≤ ε + t ⋅
ε

t
= 2ε. (4.12)
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Note also thatC ⊆ Bε,t since px ≥ ε/t for all x ∈ C. Thus bothP ′ andQε,t are restrictions ofP ,

and that the support Bε,t of Qε,t contains the support C of P ′. This implies that ∣∣P −Qε,t∣∣1 ≤
∣∣P − P ′∣∣1. Together with (4.12) this proves the result.

An analogous result holds for approximately sparse quantum states. We do not make it

explicit here since it will not be needed in our proofs of the main results.

4.5 Additively approximable probability distributions

4.5.1 Definition and basic properties

The Chernoff-Hoeffding bound is a basic tool in probability theory which will be used in this

work. Whereas the bound is usually stated for real-valued random variables, here we state a

simple generalization to the complex-valued case, which follows from the real-valued case by

bounding real and imaginary parts of independently.

Lemma 27 (Chernoff-Hoeffding bound). Let X1, . . . ,XT be i.i.d. complex-valued random

variables with E ∶= EXi and ∣Xi∣ ≤ 1 for every i = 1, . . . , T . Then with T = 4
ε2 log(4

δ ) we have

Pr{∣ 1
T

T

∑
i=1
Xi −E∣ ≤ ε} ≥ 1 − δ

A proof of Lemma 27 can be found in Section 4.10.1. The main application of the Chernoff

bound used in this work will be in the following context. Let F ∶ Bn → C be an efficiently

computable complex function (i.e. computable in polynomial time on a deterministic classical

computer) satisfying ∣F (x)∣ ≤ 1 for all x ∈ Bn and let P ∶= {px ∶ x ∈ Bn} be a probability

distribution on the set of n-bit strings which can be sampled in poly(n) time on a randomized

classical computer. Then a direct application of the Chernoff-Hoeffding bound shows that there

exists a classical randomized algorithm to estimate

⟨F ⟩ ∶= ∑pxF (x) (4.13)

with error ε and probability at least 1− δ in poly(n, 1
ε , log 1

δ ) time. This means that in poly(n)
time it is possible to achieve an accuracy ε = 1/poly(n) and exponentially small failure proba-

bility δ = 2−poly(n).

Next we introduce a definition for functions that are approximable with randomized classi-

cal algorithms having a performance in terms of error ε and failure probability δ that is analo-

gous to those obtained by applying the Chernoff bound (see also [Bordewich et al., 2005] for a

related notion of additive approximations).

Definition 28. A function f ∶ Bn → C is said to be additively approximable if there exists a

randomized classical algorithm with runtime poly(n,1/ε, log 1
δ ) which, on input of an n-bit

bit string x, outputs with probability at least 1 − δ an ε-approximation of f(x). A probability



4.5 Additively approximable probability distributions 79

distribution P = {px} on the set of n-bit strings is said to be additively approximable if the

function x→ px is additively approximable.

Note that any P which can be sampled classically in poly(n) time is additively approx-

imable since each individual probability can essentially be computed by sampling the distribu-

tion. More precisely, to estimate px, write px = ∑ δ(x, y)py where δ(x, y) equals 1 if x = y
and 0 otherwise. We have thus rewritten px as the expectation value of F ≡ δ(x, ⋅) which is a

poly(n)-time computable function satisfying ∣F (x)∣ ≤ 1 for all x ∈ Bn. The discussion above

Definition 28 then immediately implies that P is additively approximable.

In the example discussed in Eq. (4.13) we found that ⟨F ⟩ can be efficiently approximated

provided that F was efficiently computable on a deterministic computer. In the following

lemma it is shown that the same performance in estimating ⟨F ⟩ can be achieved even when F

is only additively approximable. The argument is a basic application of the Chernoff bound.

Lemma 29. Let F ∶ Bn → C be an additively approximable function and let P ∶= {px ∶
x ∈ Bn} be a probability distribution which can be sampled in poly(n) time on a classical

computer. Then there exists a classical randomized algorithm to estimate ⟨F ⟩ ∶= ∑pxF (x)
with error ε and probability 1 − δ in poly(n, 1

ε , log 1
δ ) time.

Proof. By generating K = O( 1
ε2 log 1

δ ) bit strings x1, . . . , xK from the distribution P , the

inequality

∣ 1
K

K

∑
i=1
F (xi) − ⟨F ⟩∣ ≤ ε/2 (4.14)

holds with probability at least 1 − δ/2, owing to the Chernoff bound. Then, for each xi we

compute a complex number ci satisfying ∣ci −F (xi)∣ ≤ ε
2 with probability at least 1− δ/(2K).

Since F is additively approximable, each ci can be computed in time

T = poly(n, 2
ε , log 2K

δ ) = poly(n, 1
ε , log 1

δ ). (4.15)

Thus the total runtime of computing all values ci is KT = poly(n, 1
ε , log 1

δ ). The total proba-

bility that each ci is ε
2 -close to F (xi) and that (4.14) holds is at least

(1 − δ
2) ⋅ (1 −

δ
2K )K ≥ (1 − δ

2) ⋅ (1 −
δ
2) ≥ 1 − δ (4.16)

where we have repeatedly used that (1 − a)r ≥ 1 − ra for all positive integers r and for all

a ∈ [0,1]. It follows that, with probability at least 1 − δ, we have

∣ 1
K

K

∑
i=1
ci − ⟨F ⟩∣ ≤ ε (4.17)

by using the triangle inequality.
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4.5.2 Estimating large coefficients

The following theorem contains the property of additive approximations which is most impor-

tant for our purposes. It is a statement that, for distributions which are additively approximable

and for which also (a designated subset of) the marginals are additively approximable, there

exists an efficient algorithm to determine those probabilities which are larger than some given

threshold value. The proof technique is a type of binary search algorithm which is a direct

generalization of the proof of the Kushilevitz-Mansour algorithm [Kushilevitz and Mansour,

1991].

Theorem 30. Let P = {px ∶ x ∈ Bk} be a probability distribution. Let Pm denote the marginal

probability distribution of the first m bits, for every m ranging from 1 to k (with Pk ≡ P).

Suppose that all distributionsPm are additively approximable. Then the following holds: given

θ, π > 0, there exists a randomized classical algorithm with runtime poly(k, 1
θ , log 1

π ) which

outputs a list L = {x1, . . . , xl} where l ≤ 2/θ and where each xi is an k-bit string such that,

with probability at least 1 − π:

(a) for all y ∈ L, it holds that p(y) ≥ θ
2 ;

(b) every k-bit string x satisfying p(x) ≥ θ belongs to the list L;

Proof. For any integer m ≤ k we denote by p(x1⋯xm) the marginal probability of the bit

string x1⋯xm. We point out the basic fact that

p(x1⋯xm−1) ≥ p(x1⋯xm−1xm) (4.18)

for all m and for all xj’s.

The algorithm will consist of k steps. In each step we construct a list Lm containing a

certain collection of m-bit strings, where m ranges from 1 to k. The final list Lk will satisfy

(a)-(b) with probability at least 1 − π. In the algorithm we will repeatedly invoke that each Pm
is additively approximable; whenever an additive approximation of any Pm will be considered,

we will set the required probability of success to be at least 1 − δ with δ ∶= θπ/2k and the

accuracy to be ε ∶= θ/4. Each single estimate of such a probability can be done in time

Nsingle = poly(k, 1
ε
, log 1

δ
) = poly(k, 1

θ
, log 1

π
). (4.19)

Step 1. The list L1 ⊆ B1 ≡ {0,1} is computed as follows. We use that P1 is additively

approximable and compute p(0) (i.e. the probability of the outcome 0 on the first bit). More

formally, we compute a number c(0) satisfying

∣c(0) − p(0)∣ ≤ θ/4 (4.20)

with probability at least 1 − δ. If c(0) ≥ 3θ/4 then define the bit 0 to belong to the list L1.

Analogously we compute c(1) as an approximation of p(1) and add the bit 1 to L1 if c(1) ≥
3θ/4.
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Step 2. To compute the list L2 ⊆ B2 ≡ {00,01,10,11} we use that P2 is additively

approximable as follows. For every x ∈ L1 and u ∈ {0,1} we compute an θ/4-approximation

of p(xu) with probability at least 1 − δ, yielding a number c(xu) in analogy to Step 1. If

c(xu) ≥ 3θ/4 then we add the bit pair xu to the list L2.

Steps 3-k. The above procedure is continued for allm = 3⋯k where in them-th step we use

that Pm is additively approximable. To compute the list Lm ⊆ Bm, for every x1⋯xm−1 ∈ Lm−1

and u ∈ {0,1} we compute c(x1⋯xm−1u), which is an θ/4-approximation of p(x1⋯xm−1u)
with probability at least 1 − δ. If c(x1⋯xm−1u) ≥ 3θ/4 then we add the bit string x1⋯xm−1u

to the list Lm.

Finally, if at some point in the above algorithm one of the lists Lm contains strictly more

than 2/θ elements, the algorithm is halted and all subsequent lists Lm+1, . . . , Lk are defined to

be empty. With this extra constraint, we ensure that at most 2k/θ probabilities are estimated. It

follows that the total runtime of the algorithm is

2k
θ
⋅Nsingle = poly(k, 1

θ
, log 1

π
). (4.21)

Furthermore, since at most 2k/θ probabilities are estimated, each succeeding with probability

1 − δ, the probability that all estimates succeed is at least (1 − δ)
2k
θ ≥ 1 − 2k

θ δ = 1 − π.

From this point on we consider the case that all estimates succeed, and claim that in this

case the list Lk satisfies (a)-(b). We make the following observations. First, for every m we

prove property (a’): For all x1⋯xm ∈ Lm it holds that p(x1⋯xm) ≥ θ/2. This is true since

c(x1⋯xm) is an θ
4 -approximation of p(x1⋯xm) and since x1⋯xm was only added to Lm if

c(x1⋯xm) ≥ 3θ/4. Property (a’) implies that the list Lk satisfies (a). Furthermore, property

(a’) implies that every list Lm contains at most 2/θ bit strings (since probability distributions

are normalized to sum up to 1). This shows that, as long as all estimates of the probabilities are

successful, the halting procedure described above need never be applied (indeed, the latter is

only incorporated in the algorithm to ensure that successive failed estimations of probabilities

do not result in an (exponentially) long runtime).

Second, we argue that eachLm satisfies property (b’): If p(x1⋯xm) ≥ θ then x1⋯xm ∈ Lm.

To see this, we argue by induction on m. For m = 1, property (b’) follows immediately from

the definition of L1. Furthermore suppose that y = y1⋯ym satisfies p(y) ≥ θ. Then, using

Eq. (4.18) we have p(y1⋯ym−1) ≥ θ and thus, by induction, we have y1⋯ym−1 ∈ Lm−1. The

definition of Lm now immediately implies that y1⋯ym ∈ Lm. This shows that property (b’)

holds for all Lm, so that Lk satisfies (b) as desired.

4.6 Algorithm for additively approximable, approximately sparse
distributions

We now arrive at an efficient algorithm which, on input of a probability distribution P which is

promised to be approximately sparse and which satisfies the conditions of Theorem 30, outputs
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an (exactly) sparse distribution P ′ which is close to P . In addition, the distribution P ′ can be

sampled efficiently. The proof will be obtained by combining Theorem 30 and Lemma 26.

The argument is straightforward but somewhat tedious since some care is required in choos-

ing suitable epsilons and deltas. We also note that Theorem 31 is closely related to theorem

3.11 in [Kushilevitz and Mansour, 1991], which provides a randomized classical algorithm

for computing representations of Boolean functions which are promised to be approximately

sparse.

Theorem 31. Let P be a distribution on Bk which satisfies the following conditions:

(i) P is promised to be ε-approximately t-sparse, where ε ≤ 1/6.

(ii) P and its marginals Pm (m = 1, . . . , k) are additively approximable as in Theorem 30.

Then there exists a randomized classical algorithm with runtime poly(k, t, 1
ε , log 1

δ ) which

outputs (by means of listing all nonzero probabilities) an s-sparse probability distribution

P ′ = {p′x} where s = O(t/ε) such that, with probability at least 1 − δ, P ′ is O(ε)-close to

P (more precisely ∥P − P ′∥1 ≤ 12ε). Furthermore, p′x ≥ ε/8t for all p′x which are nonzero.

Finally, it is possible to sample P ′ on a classical computer in poly(k, t,1/ε) time.

Proof. First we invoke Theorem 30 with θ ∶= ε/t and

π ∶= δ
2t/ε+1 . (4.22)

This yields, with probability at least 1−π, a list L of k-bit strings satisfying conditions (a)-(b),

within a runtime

N1 = poly(k, 1
θ , log 1

π ) = poly(k, t, 1
ε , log 1

δ ). (4.23)

Note that ∣L∣ ≤ 2t/ε. Second, since P is additively approximable, each individual probability

px with x ∈ L can be computed with success probability at least 1 − π and with an error ε′ set

to

ε′ ∶= min{ε/∣L∣, ε/4t} (4.24)

in time

N2 = poly(k, 1
ε′ , log 1

π ) = poly(k, t, 1
ε , log 1

δ ). (4.25)

This yields a list of numbers {cx ∶ x ∈ L} such that ∣px − cx∣ ≤ ε′ for all x ∈ L if all evaluations

were successful. Up to this point, the runtime of the algorithm is N = N1 + ∣L∣N2 which scales

as poly(k, t, 1
ε , log 1

δ ), and the total success probability is at least

(1 − π)∣L∣+1 ≥ 1 − (∣L∣ + 1)π ≥ 1 − δ (4.26)
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where we have used (4.22) and the property ∣L∣ ≤ 2t/ε. From this point on, the entire algorithm

proceeds deterministically.

Define cx to be 0 for all x ∉ L and let C = {cx ∶ x ∈ Bk} denote the resulting list of

2k coefficients. Now let Qε,t = {qx} be the restriction of P to Bε,t, where Bε,t is the set of

strings satisfying px ≥ ε/t, as defined in Lemma 26. Note that Bε,t ⊆ L (recall condition (b) of

Theorem 30 and the fact that here θ = ε/t). Then

∥C − P∥1 = ∑
x∈L

∣cx − px∣ + ∑
x∉L

px ≤ ∣L∣ ⋅ ε′ + ∑
x∉L

px

≤ ε + ∑
x∉L

px ≤ ε + ∑
x∉Bε,t

px = ε + ∥P −Qε,t∥1 ≤ 3ε. (4.27)

Here in the first inequality we used that ∣cx − px∣ ≤ ε′ for all x ∈ L; in the second, we used the

definition of ε′; in the third, we used Bε,t ⊆ L; in the equality, we used the definition of Qε,t;
finally, we used Lemma 26.

Since ∣cx − px∣ ≤ ε′ ≤ ε/4t (recall the definition of ε′) and since px ≥ ε/2t owing to

condition (a) of Theorem 30, we have cx ≥ ε/4t for every x ∈ L; in particular, all cx are

nonnegative. Finally, we set P ′ to be C divided by its 1-norm ∥C∥1 = ∑ ∣cx∣, so that P ′ is a

proper probability distribution. Since P ′ is ∣L∣-sparse, computing P ′ from C can be done in

O(∣L∣) =poly(t,1/ε) time. Putting everything together, the total runtime for computing P ′

scales as poly(k, t, 1
ε , log 1

δ ). We now show that P ′ is also O(ε)-close to P . The argument is

straightforward and fully analogous to the one in Section 4.4.2, cf. (4.8)-(4.9). Since ∥C−P∥1 ≤
3ε and ∥P∥1 = 1 we have

1 − 3ε ≤ ∥C∥1 ≤ 1 + 3ε. (4.28)

We then find

∥P ′ − P∥1 = ∥C − ∥C∥1 ⋅ P∥1
∥C∥1

≤ ∥C − ∥C∥1 ⋅ P∥1
1 − 3ε

≤ ∥C − P∥1
1 − 3ε

+ ∣1 − ∥C∥1∣ ⋅ ∥P∥1
1 − 3ε

≤ 6ε
1 − 3ε

. (4.29)

Then, for ε ≤ 1/6, we have ∥P ′ − P∥1 ≤ 12ε. Note also that p′x ≥ ε/8t for all x ∈ L follows by

combining the inequalities cx ≥ ε/4t and ∥C∥ ≤ 1 + 3ε and ε ≤ 1/6.

Finally, we show how to sample P ′. For a bit string x1⋯xm with m between 1 and k, let

p′(x1⋯xm) denote the marginal probability of P ′ for obtaining x1⋯xm on the first m bits.

Since P is s-sparse with s = O(t/ε), each p′(x1⋯xm) can be computed from P ′ in poly(s) =
poly(t,1/ε) time on input of x1⋯xm. By a standard argument, the property that all such

marginals can be computed, allows to sample P ′ in poly(k, t,1/ε) time [Jerrum et al., 1986,

Terhal and DiVincenzo, 2004, Valiant, 2002].
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4.7 Classical simulation of CT states

Here we review two classical simulation results for CT states which will be used in the proofs of

our results. An n-qubit unitary operator U is said to be efficiently computable basis-preserving

if there exist efficiently computable functions f, f ′ ∶ Bn → Bn and g, g′ ∶ Bn → C where

∣g(x)∣ = 1 = ∣g′(x)∣ for all x ∈ Bn, such that, for every computational basis state ∣x⟩, one has

U ∣x⟩ = g(x)∣f(x)⟩ and U†∣x⟩ = g′(x)∣f ′(x)⟩ (4.30)

A notable example of efficiently computable basis preserving operations is given by operators

comprising tensor products of Pauli matrices 1,X,Y,Z.

Lemma 32 ([Van den Nest, 2011]). Let ∣ψ⟩ and ∣ϕ⟩ be CT n-qubit states and let A be an ef-

ficiently computable basis-preserving n-qubit operation. Then there exists a randomized clas-

sical algorithm with runtime poly(n,1/ε, log 1
δ ) which outputs an approximation of ⟨ψ∣A ∣ϕ⟩

with accuracy ε and success probability at least 1 − δ.

Lemma 33 ([Van den Nest, 2011]). Let ∣ψ⟩ and ∣ϕ⟩ be CT n-qubit states, let ∣ξ⟩ and ∣χ⟩ be

CT k-qubit states with k ≤ n. Then there exists a randomized classical algorithm with runtime

poly(n,1/ε, log 1
δ ) which outputs an approximation of ⟨ϕ∣ [∣ξ⟩⟨χ∣ ⊗1] ∣ψ⟩ with accuracy ε and

success probability at least 1 − δ.

The above results are slightly more detailed then the corresponding results in [Van den

Nest, 2011] since the latter reference does not provide explicit information about the scaling

with ε and δ. For completeness, proofs of Lemma 32 and Lemma 33 (which are straightforward

extensions of the proofs in [Van den Nest, 2011]) are given in Section 4.10.2.

4.8 Proofs of main results

4.8.1 Proof of Theorem 20

The proof will be obtained by showing that the output distribution of any quantum circuit

considered in Theorem 20 satisfies the conditions of Theorem 31. We introduce some further

basic definitions. For any positive integer d, let Xd, Zd be generalized Pauli operators (also

known as Weyl operators) [Gottesman, 1999], which act on the d-level computational basis

states ∣x⟩ (with x ∈ Zd) as follows

Xd ∣x⟩ = ∣x + 1⟩ (4.31)

Zd ∣x⟩ = e
2πi
d
x ∣x⟩ (4.32)

where x + 1 is defined modulo d. Note that the order of both Xd is d (i.e. is the smallest

integer r ≥ 2 satisfying Xr
d = I is precisely d), as is the order of Zd. Let Fd denote the Fourier

transform over Zd. A straightforward application of definitions [Gottesman, 1999] shows that

F†
dZdFd =Xd. and FdZdF†

d =X
†
d . (4.33)
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Theorem 20 now follows immediately from Theorem 31 in combination with the following

result:

Lemma 34. Let P be a probability distribution on Bk arising from a quantum circuit satisfy-

ing conditions (a)-(b) in Theorem 20. Let Pm denote the marginal distributions arising from

measurement of the firstm qubits, form = 1, . . . , k (with P ≡ Pm). Then each Pm is additively

approximable.

Proof. Without loss of generality we let S be the set of first k qubits. For a k-bit string

x = (x1, . . . , xk), consider the associated k-bit integer x̂ ∶= x120 + x22 + ⋯ + xk2k−1. The

standard basis states of a k-qubit system will be labeled both by the set of k-bit strings x and

the associated integers x̂ depending on which formulation is most convenient. Below we will

use the basic fact that, for any m = 1, . . . , k,

x̂ mod 2m = x120 +⋯ + xm2m−1. (4.34)

Let m ∈ {1, . . . , k}. For an m-bit string y = y1⋯ym, consider the projector (acting on k qubits)

∣y1⋯ym⟩⟨y1⋯ym∣ ⊗ I ≡ P (y) (4.35)

where I denotes the identity on the last k −m qubits. Thus P (y) is the projector onto those

k-qubit computational basis states ∣x⟩ where the first m bits of x coincide with y. Owing

to (4.34), this means that P (y) is the projector on those computational ∣x⟩ satisfying x̂ mod

2m = ŷ, where ŷ ∶= y120 + ⋯ + ym2m−1. Let Z2k ≡ Z and X2k ≡ X denote the generalized

Pauli operators acting on C2k . A straightforward application of the definition of Z shows that

x̂ mod 2m = ŷ iff αŷZ2k−m ∣x̂⟩ = ∣x̂⟩ with α ∶= e−
2πi
2m . (4.36)

This implies that P (y) coincides with the projector onto the eigenspace of M ∶= αŷZ2k−m

with eigenvalue 1. This projector can be obtained by averaging over all powers of M ; since the

order of M is 2m (recall that the order of Z is 2k), this implies that

P (y) = 1
2m

2m−1
∑
u=0

Mu. (4.37)

Let F ≡ F2k denote the Fourier transform modulo 2k. We consider the scenario where F is

applied in the block U2; the case where F† is applied is treated in full analogy and is omitted

here. Denoting N ∶= αŷX2k−m (i.e. we replace Z by X ≡ X2k in the definition of M ) and

recalling the first identity of Eq. (4.32) we find

F†P (y)F = 1
2m

2m−1
∑
u=0

Nu. (4.38)

Now denote the n-qubit CT state generated after application of the block U1 by ∣CT⟩. Further-

more denote the marginal probability of obtaining the bit string y when measuring the first m

qubits at the end of the circuit by p(y). Then

p(y) = ⟨CT∣[F†P (y)F] ⊗ I ∣CT⟩ (4.39)
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where I denotes the identity acting on the last n − k qubits. Using Lemma 34 we find

p(y1⋯ym) = 1
2m

2m−1
∑
u=0

⟨CT∣Nu ⊗ I ∣CT⟩. (4.40)

It easily follows from the definition of N that each Nu ⊗ I is efficiently computable basis-

preserving (as defined in section 4.7). Together with Lemma 32 this implies that the function

u ∈ Z2m → ⟨CT∣Nu ⊗ I ∣CT⟩ is additively approximable. But then Lemma 29 implies that

y → p(y) is additively approximable as well.

4.8.2 Proof of Theorem 21

Similar to the proof of Theorem 20, also the proof of Theorem 21 follows immediately by

showing that the output distribution of any quantum circuit considered in Theorem 21 satisfies

the conditions of Theorem 31. The latter is done next.

Lemma 35. LetP be a probability distribution onBk arising from a quantum circuit satisfying

conditions (a)-(b’) in Theorem 21. Let Pm denote the marginal distributions arising from

measurement of the firstm qubits, form = 1, . . . , k (with P ≡ Pm). Then each Pm is additively

approximable.

Proof. We prove the result for qubit systems; the proof will carry over straightforwardly to

systems of qudits of potentially different dimensions. Without loss of generality we let S be

the set of first k qubits. For an m-bit string y = y1⋯ym with m ≤ k, let p(y) denote the

marginal probability of the outcome y1⋯ym when measuring the first m qubits at the end of

the circuit. We need to show that the function y → p(y) is additively approximable. Denote

the CT state generated after application of the block U1 by ∣CT⟩. Since U2 = u1 ⊗⋯⊗ un is a

tensor product operator and since ∣y⟩ is a product state, we have

p(y) = ⟨CT∣U†[∣y⟩⟨y∣ ⊗ 1]U ∣CT⟩ = ⟨CT∣ ∣α⟩⟨α∣ ⊗ 1 ∣CT⟩ (4.41)

for some m-qubit tensor product state ∣α⟩ (with efficiently computable description). Since

product states are CT, Lemma 33 immediately implies that y → p(y) is additively approx-

imable.

4.8.3 Proof of Theorem 22 and Theorem 23

Lemma 36. Let ∣CT⟩ be an n-qubit CT state, let U = U1 ⊗⋯⊗Un be a unitary tensor product

operator and let F denote the Fourier transform modulo 2n. Then the following functions are

additively approximable (where x = x1⋯xn is an n-bit string):

x → ⟨x∣F∣CT⟩ (4.42)

x → ⟨x∣F†∣CT⟩ (4.43)

x → ⟨x∣U ∣CT⟩. (4.44)
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The last function is still additively approximable when generalized to tensor product operators

acting on n qudit systems with potentially different dimensions.

Proof. A straightforward application of definitions shows that the states F∣x⟩, F†∣x⟩ and U ∣x⟩
are CT. The result then immediately follows from Lemma 32 (with A being the identity).

Lemma 37. Let c, c′ be two complex numbers satisfying c ≠ 0 and ∣c − c′∣ ≤ α for some α > 0.

Let c = θ∣c∣ where θ is the phase of c and similarly c′ = θ′∣c′∣. Then ∣θ − θ′∣ ≤ 2α/∣c∣.

Proof. Since ∣c − c′∣ ≤ α, we have ∣∣c∣ − ∣c′∣∣ ≤ α. Then

∣θ − θ′∣∣c∣ = ∣c − θ′∣c∣∣ ≤ ∣c − c′∣ + ∣c′ − θ′∣c∣∣ = ∣c − c′∣ + ∣∣c′∣ − ∣c∣∣ ≤ 2α. (4.45)

Next we prove Theorem 22 and Theorem 23. Let ∣ψout⟩ denote the final state in any of the

settings considered in Theorem 22 and Theorem 23. We write ⟨x∣ψout⟩ = γx
√
px where γx is the

phase and px the modulus squared, so that P = {px} is the probability distribution arising from

measuring all qubits of ∣ψout⟩ in the computational basis. Since ∣ψout⟩ is
√
ε-approximately

t-sparse, P is ε-approximately t-sparse by Lemma 25. Recalling Lemma 34 and Lemma 35,

we find that all conditions of Theorem 31 are fulfilled. Thus there exists a randomized classical

algorithm with runtime poly(n, t, 1
ε , log 1

δ ) which outputs an s-sparse probability distribution

P ′ = {p′x} where s = O(t/ε) such that, with probability at least 1 − δ, ∥P ′ − P∥1 ≤ 12ε. Let

L be the list of bit strings as in the proof of Theorem 31. Recall from the latter proof also the

following properties: ∣L∣ ≤ 2t/ε; L is precisely the support of P ′; px ≥ ε/2t for every x ∈ L.

Thus far we have computed an approximation P ′ of the probability distribution P . Next

we will also approximately compute the amplitudes of ∣ψout⟩ by employing Lemma 36. For

every x ∈ L we compute a complex number ax satisfying

∣ax − ⟨x∣ψout⟩∣ ≤
√
ε3/8t. (4.46)

Owing to Lemma 36, the function x→ ⟨x∣ψout⟩ is additively approximable. Therefore each in-

dividual ax can be computed with success probability at least 1−δ/∣L∣ in timeN = poly(n, t, 1
ε , log 1

δ ).

Thus the total runtime for computing all ax is ∣L∣T = poly(n, t, 1
ε , log 1

δ ) and the total success

probability is at least 1− δ. We then compute the complex phase θx of each ax (which requires

O(∣L∣) computational steps in total) and define the state

∣ϕ⟩ ∶= ∑
x∈L

θx
√
p′x∣x⟩. (4.47)

Note that ∣ϕ⟩ has 2-norm equal to 1: indeed ∥∣ϕ⟩∥2
2 coincides with ∑x∈L p′x which equals 1

since L coincides with the support of P ′. Next we prove that ∣ϕ⟩ is O(
√
ε)-close to ∣ψout⟩. The

idea of the argument is rather straightforward but the details will be somewhat tedious.
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First we show that the phase θx is close to γx for every x ∈ L (recall that the latter is the

phase of ⟨x∣ψout⟩): using Lemma 37 and recalling that px ≥ ε/2t, we have

∣θx − γx∣ ≤ 2 ⋅
√

ε3

8t
⋅ 1
√
px

≤ ε. (4.48)

This implies that

∥ ∑
x∈L

(θx − γx)
√
p′x∣x⟩∥2

2 = ∑
x∈L

∣θx − γx∣22p′x ≤ ε2 ∑
x∈L

p′x ≤ ε2. (4.49)

For every two numbers a, b ≥ 0 we have ∣a − b∣2 ≤ ∣a2 − b2∣. This implies that

∑∣
√
p′x −

√
px∣2 ≤ ∑∣p′x − px∣ = ∥P ′ − P∥1 ≤ 12ε (4.50)

where the sums are over all x ∈ Bn. Hence

∥∣ψout⟩ − ∑
x∈L

γx
√
p′x∣x⟩∥2

2 = ∑
x∈L

∣γx
√
px − γx

√
p′x∣2 + ∑

x∉L

px

= ∑
x∈L

∣√px −
√
p′x∣2 + ∑

x∉L

px

= ∑
x∈Bn

∣√px −
√
px

′∣2 ≤ 12ε (4.51)

where in the last equality we used that p′x = 0 for all x ∉ L. Writing

∣ϕ⟩ = ∑
x∈L

γx
√
p′x∣x⟩ + ∑

x∈L

(θx − γx)
√
p′x∣x⟩ (4.52)

and using the triangle inequality, we then find

∥∣ψout⟩ − ∣ϕ⟩∥2 ≤ ∥∣ψout⟩ − ∑
x∈L

γx
√
p′x∣x⟩∥2 + ∥ ∑

x∈L

(θx − γx)
√
p′x∣x⟩∥2

≤
√

12ε + ε ≤ 5
√
ε. (4.53)

4.8.4 Proof of Theorem 24

Denote by P = {px ∶ x ∈ Bn} the probability distribution arising from a standard basis mea-

surement of all n qubits performed on the state F†
2n ∣ψ⟩. Then px = ∣ψ̂x∣2. It follows from

Lemma 34 that P and its marginals Pm fulfill all conditions of Theorem 30. The latter result

then immediately implies the existence of a classical algorithm with runtime poly(k, 1
θ , log 1

π )
which outputs a list L = {x1, . . . , xl} where l ≤ 2/θ such that, with probability at least 1 − π,

conditions (a) and (b) in Theorem 24 are fulfilled. Furthermore, Lemma 36 implies that, given

any x ∈ Bn, there exists a classical algorithm with runtime poly(n,1/ε, log 1
δ ) which, with

probability at least 1 − δ, outputs an ε-approximation of ψ̂x, since ψ̂x = ⟨x∣F†
2n ∣ψ⟩.

Fully analogously, for U = U1 ⊗ ⋯ ⊗ Un let P = {px} be the probability distribution

arising from a standard basis measurement of all n qubits performed on the state U†∣ψ⟩. The

extension of Theorem 24 to the product basis {U ∣x⟩} is now obtained by combining Lemma 35,

Theorem 30, and Lemma 36.
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4.9 Further research

In the classical simulation algorithms given in this paper, we have not optimized the degree or

constants involved in the polynomial-time simulation. While our algorithm is a generalization

of [Goldreich and Levin, 1989, Kushilevitz and Mansour, 1991], for optimal performance one

could try to adapt the more advanced, query-optimal algorithm of [Hassanieh et al., 2012b] to

our setting.

4.10 Appendix

4.10.1 Proof of lemma 27

We recall the standard Chernoff-Hoeffding bound for real-valued random variables.

Theorem 38 (Chernoff-Hoeffding bound). Let X1, . . . ,XT be i.i.d. real random variables.

Assume that ∣Xi∣ ≤ 1 and denote E ∶= EXi. Then

Prob{∣ 1
T

T

∑
i=1
Xi −E∣ ≤ ε} ≥ 1 − 2e−

Tε2
2 . (4.54)

The proof of the complex-valued version of the Chernoff-Hoeffding bound as given in lemma

27 is an immediate corollary of the real-valued version, as follows. For complex-valued random

variables X1, . . . ,XT we apply Theorem 38 independently to the real and imaginary parts of

the Xi, where we choose ε̃ = ε√
2 . Denoting Y ∶= 1

T ∑
T
i=1Xi −E, this yields lower bounds for

the probabilities that Re(Y ) ≤ ε̃ and Im(Y ) ≤ ε̃. Putting things together we find

Prob{∣ 1
T

T

∑
i=1
Xi −E∣ ≤ ε} ≥ 1 − 4e−

Tε2
4 . (4.55)

4.10.2 Proofs of lemmas 32 and 33

In this section we give explicit quantitative versions of the definition and theorems about CT

states, which were only stated implicitly in [Van den Nest, 2010].

Definition 39 (Computationally Tractable (CT) states). An n-qubit state ∣ψ⟩ is called ‘compu-

tationally tractable’ (CT) if the following conditions hold:

1. [Sample] it is possible to sample in time s∣ψ⟩ = O(poly(n)) with classical means from

the probability distribution Prob(x) = ∣⟨x∣ψ⟩∣2 on the set of n-bit strings x.

2. [Query] upon input of any bit string x, the coefficient ⟨x∣ψ⟩ can be computed in c∣ψ⟩ =
O(poly(n)) time on a classical computer.

The proof of lemma 32 will follow immediately from the following result:
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Lemma 40. Let ∣ψ⟩ and ∣ϕ⟩ be two CT n-qubit states and let s = s∣ψ⟩+s∣ϕ⟩, c = c∣ψ⟩+c∣ϕ⟩. Then

there exists a randomized classical algorithm to compute µ such that ∣⟨ϕ∣ψ⟩ − µ∣ ≤ ε in time

O( s+c
ε2 log(4

δ )) with error probability δ.

Proof. Denote px ∶= ∣⟨x∣ψ⟩∣2 and qx ∶= ∣⟨x∣ϕ⟩∣2 . Since ∣ψ⟩ and ∣ϕ⟩ are CT states, it is possible

to sample from the probability distributions {px} and {qx} in time s (Definition 39, Item 1).

Define the function α ∶ {0,1}n ↦ {0,1} by α(x) = 1 if px ≥ qx and α(x) = 0 otherwise,

for every n-bit string x, and define the function β by β(x) ∶= 1 − α(x). Then α and β can

be computed in time O(c) since px and qx can be computed in time c each by Item 2 in

Definition 39. The overlap ⟨ϕ∣ψ⟩ is equal to

⟨ϕ∣ψ⟩ = ∑⟨ϕ∣x⟩⟨x∣ψ⟩α(x) +∑⟨ϕ∣x⟩⟨x∣ψ⟩β(x) (4.56)

where the sums are over all n-bit strings x. Defining the functions F and G by

F (x) = ⟨ϕ∣x⟩⟨x∣ψ⟩
px

α(x), G(x) = ⟨ϕ∣x⟩⟨x∣ψ⟩
qx

β(x) (4.57)

we have ⟨ϕ∣ψ⟩ = ⟨F ⟩+ ⟨G⟩, where ⟨F ⟩ = ∑pxF (x) and ⟨G⟩ = ∑pxG(x). It follows from the

query property (Definition 39, Item 2) of CT states, that F andG can be evaluated in timeO(c).

Furthermore, both ∣F (x)∣ and ∣G(x)∣ are not greater than 1. It thus follows from Lemma 27,

that both ⟨F ⟩ and ⟨G⟩ can be approximated with accuracy ε/2 and error probability at most δ/2
by estimating the averages over samples from the distributions px and qx, respectively. More

precisely, let Xi, 1 ≤ i ≤ T , be samples drawn from distribution {px} with T = 16
ε2 log(8

δ ), and

let µF = 1
T ∑

T
i=1 F (Xi), (and similarly for samples Yi drawn from {qx}, µG = 1

T ∑
T
i=1G(Yi)),

then it follows from Lemma 27 that

Pr{∣µF − ⟨F ⟩∣ ≤ ε/2} ≥ 1 − δ/2 (4.58)

Pr{∣µG − ⟨G⟩∣ ≤ ε/2} ≥ 1 − δ/2 (4.59)

Thus we conclude that ⟨ϕ∣ψ⟩ can be approximated by µ = µF + µG in time O( s+c
ε2 log(4

δ ))
such that

Pr{∣µ − ⟨ϕ∣ψ⟩∣ ≤ ε} ≥ 1 − δ (4.60)

The proof of lemma 33 is obtained by noting that any partial overlap of n-qubit CT states

(as considered in lemma 33) can be re-expressed (via a poly(n) time classical reduction) as a

complete overlap ⟨φ∣φ′⟩ where ∣φ⟩ and ∣φ′⟩ are CT states on O(n) qubits. Invoking lemma 32

then proves the result.
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In this thesis we have made progress towards understanding the computational power and pos-

sibilities provided by a quantum computer. In one direction, we have explicitly designed quan-

tum algorithms that construct non-trivial ground states of certain Local Hamiltonians. While

this problem is QMA-complete in general (and thus hard even for a quantum computer), we

have identified several conditions that suffice to make the problem tractable and put it into

BQP. In this sense, we have explored the border between QMA and BQP and improved our

understanding of what allows quantum computers to excel. In another direction, we have ex-

plored the border between BQP and BPP with the goal of improving our understanding when

and why quantum computers could be classically simulated. Just as in the first direction, we

have identified a condition that results in an efficient classical simulation algorithm for a class

of non-trivial quantum circuits.

More specifically, towards the first direction (finding useful quantum algorithms) we have

shown in Chapter 1 how to construct quantum states described by injective PEPS in polyno-

mial time by first reducing the problem to the generation of a sequence of unique ground states

of certain Hamiltonians and then preparing that sequence. In follow-up work, [Hauke et al.,

2012] have found our algorithm to be a useful application for small-scale quantum comput-

ers, so-called discrete quantum simulators, due to its frugal use of Hilbert space dimensions.

Furthermore, [Somma and Boixo, 2013] have used their general spectral gap amplification

technique to achieve a quadratic improvement of the run-time of our algorithm in the spectral

gap parameter, while [Ozols et al., 2012] have used their quantum rejection sampling technique

to achieve a quadratic speed-up of our algorithm in the condition number parameter.

Furthermore, we have shown in Chapter 2 how to generalize our algorithm to topological,

degenerate ground states by exploiting the unique structure of G-injective PEPS. The technique

(introduced in Chapters 1 and 2) of constructing a complex many-body quantum state by start-

ing from an easily-constructible state and successively transforming it into the desired state, is

very general. Although we have applied it here to G-injective PEPS, as a class of states includ-

ing many important topological quantum states, our algorithm can probably be generalized to

other classes of tensor network states, such as string-net models [Schuch, 2012] and models

constructed from Hopf algebras [Buerschaper et al., 2013].

Next, in Chapter 3, we have developed a quantum generalization of Moser’s algorithm

and information theoretic analysis to efficiently construct a zero-energy ground state of certain

local Hamiltonians. The existence of such ground states has been established by the non-

constructive Quantum Lovász Local Lemma [Ambainis et al., 2012]. Our algorithm requires

the additional assumption that the Hamiltonian is a sum of commuting projectors. In fact, for

this special case, our algorithm is a constructive proof of the Quantum Lovász Local Lemma,
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as our argument does not depend on the non-constructive result of [Ambainis et al., 2012]. The

obvious open question is whether Theorem 11 can be generalized to the non-commuting case.

A further open question is whether Moser and Tardos’ combinatorial proof [Moser and Tardos,

2010] of the Lovász Local Lemma for the more general, asymmetric case can be generalized

to the quantum setting. It is interesting to note that the dissipative algorithm of [Verstraete

et al., 2009] is precisely the quantum analogue of Moser and Tardos’ algorithm for the general,

asymmetric Lovász Local Lemma written in the language of CP-maps. Thus, [Verstraete et al.,

2009] already gives a way to prepare the ground state implied by the non-constructive QLLL

[Ambainis et al., 2012]. What is still missing is an argument supporting a polynomial-time

convergence rate of the given CP-map.

Our second direction concerns the classical simulation of quantum computers. We have

found in Chapter 4 that circuits with a structure similar to Shor’s algorithm can be classically

simulated assuming approximate sparseness of the output distribution generated by the cir-

cuit. The implications of our results are twofold. First, they pose restrictions on the design

of fast quantum algorithms. For example, our results show that any exact quantum algorithm

adopting the QFT-Toffoli-QFT−1 block structure (or more generally the structures considered

in Theorems 20-23) which has as its output state a single computational basis state containing

the answer of the problem, can never achieve an exponential quantum speed-up. Second, the

present results have conceptual implications: the exponential speed-up found in quantum algo-

rithms is often related to the availability of interference of probability amplitudes in this model.

Indeed, in several quantum algorithms, first a superposition of states is created using a QFT,

then amplitudes are manipulated in some nontrivial way using reversible (classical) gates, such

that in a final QFT, by means of interference, only desired basis states survive, whereas the

amplitudes for undesired states cancel out. Our results imply that this qualitative picture has to

be refined, since too many cancellations leading to only a few classical output states (let alone

a single one!) can in fact be simulated efficiently classically, and thus cannot offer an exponen-

tial speed-up. Indeed, our results imply that the final probability distribution must necessarily

have super-polynomially large support (e.g. in the same order as the full state space), in order

to allow for exponential speed-up. Finally, since only polynomially many measurements can

be performed efficiently on the output state—and thus only a small fraction of the necessarily

large number of states can be sampled—the output distribution must have a special structure

such that meaningful information can be recovered from just a few measurements. Notably, the

coset state produced by Shor’s algorithm (and its generalizations) has group structure which is

indeed exploited in the classical post-processing step to recover the entire state space from just

a few measurements.
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