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Introduction

Frames are overcomplete systems of vectors in a Hilbert space that give rise to
redundant series expansions for every Hilbert space element. Intuitively, frames
should therefore be ‘denser’ than bases. On the other hand, Riesz sequences, which
are bases only on the subspace spanned by their elements, should be ‘less dense’
than bases.
This suggestion seems quite natural, yet a rigorous mathematical formulation for
abstract frames without specific structure has been challenging. The most general
approach to quantify the overcompleteness of frames is due to Balan, Casazza, Heil
and Landau [5]. They studied abstract frames whose index set can be mapped into
a discrete abelian group and defined a notion of density for such sets. For frames
and Riesz sequences satisfying some weak form of localization they showed the
existence of a so-called ‘critical density’ or ‘Nyquist density’, that is, a threshold
that yields a lower bound for the density of frames and simultaneously an upper
bound for the density of Riesz sequences.
Prior to [5] there has been a long history of density theory, however, limited to
special classes of frames. In fact, density considerations can be traced back to the
sampling theory of bandlimited functions by Beurling and Landau [35], because
sampling sets for functions in a reproducing kernel Hilbert space correspond to
frames of the reproducing kernels. As a convenient notion of density for a discrete
subset X of R Beurling suggested the asymptotic number of elements of X in an
interval normalized by the length of the interval [7].
Beurling’s definition, extended to Rn, turned out to be an appropriate tool to derive
necessary density conditions for various classes of frames indexed by discrete subsets
of Rn [32], [40], [42].
An important example in this context is the density theorem for irregular Gabor
frames due to Ramanathan and Steger [40]. It states that for a frame of the form
G = {e2πiξ·tg(t− x)}(x,ξ)∈Λ the Beurling density of the index set Λ ⊆ R

2n has to be
greater than or equal to one.
Their proof contained some fundamental new ideas, the Homogeneous Approxi-
mation Property and a Comparison Theorem, that laid out the path for proving
general density theorems. These methods have been successfully varied and ap-
plied by many authors [12], [25], [32]. In particular, the aforementioned density
for abstract frames by Balan, Casazza, Heil and Landau [5] was greatly inspired
by these principles.

While these tools are perfectly suited for frames with ‘commutative index sets’,
their limitations are visible when it comes to the density theory of wavelet frames.
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2 INTRODUCTION

Wavelet frames are indexed by discrete subsets of the affine group. Although
some ingredients like the Homogeneous Approximation Property are understood
for wavelet frames [31], natural notions of density adapted to the geometry of the
affine group fail to produce Nyquist density criteria for wavelet frames [30], [44].
However, there are great differences in the structure and geometry of commutative
groups and the affine group. It is not only the non-commutativity that enters
the scene. The affine group is neither nilpotent nor unimodular nor does it have
polynomial growth. These structural differences exhibit many possible reasons why
a genuine density theory for wavelet frames might fail.
So there is quite a gap in the existing literature. What about a density theory for
frames indexed by subsets of nilpotent groups, of unimodular groups or groups of
polynomial growth? On what groups can a meaningful notion of density be defined
such that Nyquist type density properties persist?
This thesis is a first step towards an answer of these questions.
We identify the class of homogeneous groups as particularly suitable for carrying
out a density theory beyond commutativity. Homogeneous groups are nilpotent Lie
groups endowed with a family of dilations. On the one hand, they are, in a sense,
the slightest non-commutative generalization of Rn and many classical techniques
for analysis on Euclidean spaces can still be applied. On the other hand, the rep-
resentation theory of nilpotent Lie groups provides a rich source of examples for
frames that are naturally indexed by discrete subsets of homogeneous groups.

The main objective of this thesis is to develop a (Nyquist type) density theory for
frames indexed by discrete subsets of homogeneous groups.

We define a density on homogeneous groups in analogy to the Beurling density on
R
n, however, adapted to the geometry of homogeneous groups. Instead of counting

the elements of a set X in intervals or cubes we count in balls with respect to a
left-invariant metric that interacts with the dilations in a simple fashion. We show
that the resulting density is independent of the particular choice of the metric and,
more generally, that it can be computed by replacing the balls by group translates
and dilates of relatively compact sets with non-empty interior and boundary of
measure zero. This result is non-trivial even on Rn where it is due to Landau [35].
A subtle example reveals that the density really depends on the group structure.

Once we have settled on a definition of density, we carry out a density theory in
the spirit of Ramanathan and Steger [40].
In analogy to [5], we proof a Comparison Theorem for abstract frames that are
indexed by discrete subsets of homogeneous groups and satisfy some weak form of
localization, namely a Homogeneous Approximation Property with respect to some
reference system.
In a further step we investigate two important classes of examples that are outside
the scope of the theory of Balan, Casazza, Heil and Landau [5], but can be tackled
with our approach. These are, on the one hand, frames of reproducing kernels in
connection with the sampling problem in shift-invariant spaces on homogeneous



INTRODUCTION 3

groups, and on the other hand, so-called coherent frames, that is, frames in the
orbit of projective square-integrable group representations.

Shift-invariant spaces are function spaces of the form

V 2(Γ, ϕ) = {f =
∑
γ∈Γ

cγLγϕ : c = (cγ)γ∈Γ ∈ `2(Γ)},

where ϕ ∈ L2(G) is some suitable generator function and Γ is a lattice in the homo-
geneous group G. We assume that the left translates of the generator with respect
to Γ form a Riesz basis for V 2(Γ, ϕ) and show that every frame of reproducing
kernels satisfies a Homogeneous Approximation Property with respect to this basis
of translates. Then the above mentioned Comparison Theorem provides necessary
density conditions for sampling sets, because sampling sets correspond to frames
of reproducing kernels and the density of a lattice can be computed.

Coherent frames are frames of the form

{π(χ)g : χ ∈ X},

where π is a square-integrable projective representation of G on a separable Hilbert
space H, X is some discrete subset of G and g ∈ H is some suitable atom. We show
that coherent frames possess an intrinsic Homogeneous Approximation Property,
which was already observed in [28] for unitary group representations and special
atoms. It follows that coherent frames automatically obey a Homogeneous Approx-
imation Property with respect to every reference system with the same structure.
To derive concrete necessary density conditions one therefore has to construct a
specific (orthonormal) basis in the orbit of the corresponding representation, com-
pute its density and apply the Comparison Theorem. We carry out these steps for
some concrete projective representations of low-dimensional homogeneous groups
and indicate how a general form of the density threshold could look like.

This thesis is organized as follows. Chapter 1 is an exposition of all necessary
prerequisites for the analysis on homogeneous groups such as basic definitions and
elementary properties of homogeneous groups, homogeneous norms, Haar measure
and function spaces on homogeneous groups and certain discrete subsets. The
reader is expected to be familiar with the basic concepts of Lie theory including
the concordance between Lie groups and Lie algebras via the exponential map
(confer, e.g., [46]).
In Chapter 2 the above mentioned analogue of Beurling’s density for discrete sub-
sets of homogeneous groups is introduced and justified.
In Chapter 3 we recall the notion of frames, Riesz sequences and related concepts
and proof a general theorem for the comparison of the densities of abstract frames
and Riesz sequences that are indexed by discrete subsets of homogeneous groups
and satisfy a Homogeneous Approximation Property.
Finally, the last two chapters are devoted to the study of the above mentioned
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example classes, the frames of reproducing kernels in connection with the sam-
pling problem in shift-invariant spaces on homogeneous groups (Chapter 4) and
frames in the orbit of projective square-integrable group representations (Chapter
5). In either case, we first collect definitions and basic properties, then establish
a Homogeneous Approximation Property and subsequently employ the abstract
Comparison Theorem from Chapter 3 to obtain necessary density thresholds.
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CHAPTER 1

Homogeneous Groups

1.1. Homogeneous Groups

Review of Nilpotent Lie Groups. Let g be a Lie algebra over R. Let G be
the corresponding connected and simply connected Lie group and let exp : g→ G
denote the associated exponential map.

For X, Y ∈ g sufficiently close to 0 ∈ g set

(1.1) X ∗ Y := exp−1(expX expY ).

The Campbell-Baker-Hausdorff formula states that X ∗ Y is given by an infinite
linear combination of X and Y and their iterated commutators (for the precise
formula see, e.g., [13], p.11). The first few low order terms are

(1.2) X ∗ Y = X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]]− 1

12
[Y, [X, Y ]] + . . . ,

the dots indicate expressions involving commutators of order four and more.

For (a class of) Lie algebras where iterated Lie brackets of higher order eventu-
ally vanish the Campbell-Baker-Hausdorff series reduces to a polynomial map and
thereby reveals the global structure of the corresponding connected and simply
connected Lie group.

Definition 1.1 (Nilpotent Lie algebra). Let g be a Lie algebra over R. The de-
scending central series of g is defined inductively by

g(1) = g, g(j+1) = [g, g(j)].

We say that g is nilpotent if there is an integer m such that g(m+1) = {0}.
More precisely, if g(m+1) = {0} and g(m) 6= {0} we say that g is nilpotent of step m.

Definition 1.2 (Nilpotent Lie group). A nilpotent Lie group is a Lie group G
whose Lie algebra is nilpotent.

We always assume that G is connected and simply connected.

If G is a (connected, simply connected) nilpotent Lie group with Lie algebra g, then
the exponential map exp : g → G is a global diffeomorphism and the Campbell-
Baker-Hausdorff formula (1.2) holds for all X, Y ∈ g (for details and proofs see,
e.g., [13], p.13). The Campbell-Baker-Hausdorff series terminates after finitely

5



6 1. HOMOGENEOUS GROUPS

many terms and defines a binary operation ∗ : g × g → g that is polynomial in
the coordinates. Furthermore, this map is actually a group law that endows g
with a Lie group structure (g, ∗) whose associated Lie algebra is g and such that
exp(g,∗) = Idg (see, e.g., [8], p.130, or [34], p.445).
By the definition in formula (1.1), it further follows that exp : (g, ∗) → (G, ·) is a
Lie group isomorphism.

Summarizing we get the following statement about the structure of nilpotent Lie
groups.

Theorem 1.3. Let G be a connected and simply connected nilpotent Lie group
with Lie algebra g. Let (g, ∗) denote the Lie group with the underlying manifold g
and with the multiplication given by the Campbell-Baker-Hausdorff product. Then
exp : (g, ∗)→ (G, ·) is a Lie group isomorphism.

Many authors use this fact to identify G with g via the exponential map.

Another important application of Theorem 1.3 is the possibility to transfer coor-
dinates from g to G and thereby identify G with R

n.

Definition 1.4 (Exponential coordinates). Fix an ordered basis
{X1, . . . , Xn} for g and identify the vector (x1, . . . , xn) in R

n with the element
x = exp(x1X1 + · · ·+ xnXn) in G.
We say that G is equipped with exponential coordinates or canonical coordinates
of the first kind.

In this parametrization of G the multiplication is just given by the polynomials
arising from the Campbell-Baker-Hausdorff formula.

Example 1.5 (Heisenberg group). The smallest non-commutative nilpotent Lie
algebra is the Heisenberg algebra h = RX1 + RX2 + RX3 with Lie brackets defined
by

(1.3) [X3, X2] = X1, [X3, X1] = [X2, X1] = 0.

If X = x1X1 + x2X2 + x3X3 and Y = y1X1 + y2X2 + y3X3, then

[X, Y ] =
[ 3∑
i=1

xiXi,
3∑
j=1

yjXj

]
=

3∑
i,j=1

xiyj[Xi, Xj] = (x3y2 − x2y3)X1.

Thus

X ∗ Y = X + Y +
1

2
[X, Y ]

=
(
x1 + y1 +

1

2
(x3y2 − x2y3)

)
X1 + (x2 + y2)X2 + (x3 + y3)X3.

The corresponding connected and simply connected Lie group H is called the
Heisenberg group. In its realization in exponential coordinates H can be regarded
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as R3 with product

(1.4) (x1, x2, x3)(y1, y2, y3) =
(
x1 + y1 +

1

2
(x3y2 − x2y3), x2 + y2, x3 + y3

)
.

Another widely used realization of a connected and simply connected nilpotent Lie
group G is via so-called Malcev coordinates.

Definition 1.6 (Malcev coordinates). An ordered basis {X1, . . . , Xn} of g is called
a (strong) Malcev basis, if for each k, 1 ≤ k ≤ n, the linear span

gk := span{X1, . . . , Xk}

is an ideal in g. Fix a Malcev basis and identify the vector (x1, . . . , xn) in Rn with
the element

x = exp(x1X1) . . . exp(xnXn) = exp(x1X1 ∗ · · · ∗ xnXn)

in G. These coordinates for G are called Malcev coordinates.

For illustration we calculate the realization of the Heisenberg group from Example
1.5 in Malcev coordinates.

Example 1.7 (Heisenberg group continued). By the definition of the Lie brackets
for the Heisenberg algebra h in (1.3), it follows that {X1, X2, X3} is a Malcev basis.
Let (x1, x2, x3) ∈ R

3 correspond to x = exp(x1X1) exp(x2X2) exp(x3X3), and
(y1, y2, y3) ∈ R3 correspond to y = exp(y1X1) exp(y2X2) exp(y3X3).

To obtain the multiplication rule for H in Malcev coordinates we compute

xy = exp(x1X1) exp(x2X2) exp(x3X3) exp(y1X1) exp(y2X2) exp(y3X3)

= exp(x1X1 ∗ x2X2 ∗ x3X3 ∗ y1X1 ∗ y2X2 ∗ y3X3).

By repeatedly employing the Campbell-Baker-Hausdorff formula, we calculate that

x1X1 ∗ x2X2 ∗ x3X3 ∗ y1X1 ∗ y2X2 ∗ y3X3 = (x1 + y1)X1 ∗ x2X2 ∗ x3X3 ∗ y2X2 ∗ y3X3

= (x1 + y1)X1 ∗ x2X2 ∗ (x3X3 ∗ y2X2 ∗ (−x3X3)) ∗ (x3 + y3)X3

= (x1 + y1)X1 ∗ x2X2 ∗ (y2X2 + x3y2X1)) ∗ (x3 + y3)X3

= (x1 + y1 + x3y2)X1 ∗ (x2 + y2)X2 ∗ (x3 + y3)X3.

Therefore the multiplication for H in Malcev coordinates is given by

(1.5) (x1, x2, x3)(y1, y2, y3) =
(
x1 + y1 + x3y2, x2 + y2, x3 + y3

)
.
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Homogeneous Groups. We consider homogeneous groups as defined in the
book of Folland and Stein [21], which also serves as our main reference for this
section.

Definition 1.8 (Homogeneous Lie algebra). A family of dilations on a Lie algebra
g is a family {δr}r>0 of algebra automorphisms of g of the form δr = eA log r, where
A is a diagonalizable operator on g with positive eigenvalues.
A Lie algebra endowed with a family of dilations {δr}r>0 is called a homogeneous
Lie algebra.

In particular, δrs = δrδs for all r, s > 0.

Without loss of generality we assume that the smallest eigenvalue of A is greater
than or equal to one (otherwise replace δr by δrα = eαA log r with α > 0 suitably
chosen).

Lemma 1.9. [21] Every homogeneous Lie algebra is nilpotent.

Proof. Let g be a homogeneous Lie algebra with a fixed family of dilations
δr = eA log r. Denote by σ(A) the set of eigenvalues of A and set Wa = ker(A−a Id)
for a ∈ R. Then

g =
⊕
a∈σ(A)

Wa

and δr|Wa = ra Id for all a ∈ R. If X ∈ Wa and Y ∈ Wa′ , then

δr[X, Y ] = [δrX, δrY ] = [raX, ra
′
Y ] = ra+a′ [X, Y ],

because δr is an algebra automorphism. Thus

(1.6) [Wa,Wa′ ] ⊆ Wa+a′ .

Since a ≥ 1 for all a ∈ σ(A), it follows from inclusion (1.6) that the j-th element
of the descending central series satisfies

g(j) ⊆
⊕
a≥j

Wa,

so g(j) = {0} for j sufficiently large. Therefore g is nilpotent.
�

From now on we fix a family of dilations δr = eA log r and denote by a1, . . . , an the
eigenvalues of A, listed in decreasing order and each eigenvalue ocurring as many
times as its multiplicity, that is,

a1 ≥ a2 ≥ · · · ≥ an ≥ 1.

Further fix an ordered basis {X1, . . . , Xn} for g consisting of corresponding eigen-
vectors, i.e.,

(1.7) AXi = aiXi
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for i = 1, . . . , n.

Claim: The basis {X1, . . . , Xn} constructed in (1.7) is a Malcev basis for g.

We need to show that for each k, 1 ≤ k ≤ n, the linear span gk := span{X1, . . . , Xk}
is an ideal in g. For that let Y =

∑k
i=1 yiXi ∈ gk and let Xi0 be an arbitrary basis

element. Then

[Xi0 , Y ] =
k∑
i=1

yi[Xi0 , Xi].

In view of inclusion (1.6), each Lie bracket [Xi0 , Xi] is either zero or an eigenvector
of A to an eigenvalue aj that is strictly greater than ak. But the eigenspace of every
eigenvalue aj with aj > ak is contained in gk by construction. Thus [Xi0 , Y ] ∈ gk
as a linear combination of elements in gk. Now for arbitrary X ∈ g write X =∑n

i=1 xiXi, then also

[X, Y ] =
n∑
i=1

xi[X, Y ] ∈ gk.

Interesting classes of homogeneous Lie algebras are the graded and stratified Lie
algebras.

Definition 1.10. A graded Lie algebra is a Lie algebra g that has a direct sum
decomposition

(1.8) g =
k⊕
i=1

Wi

such that [Wi,Wj] ⊆ Wi+j if i + j ≤ k and [Wi,Wj] = {0} if i + j > k. A decom-
positon of that form is called a gradation of g.

A Lie algebra g is called a stratified Lie algebra if it is graded and W1 generates g
as an algebra. In this case a decomposition

g =
k⊕
i=1

Wi

with the property [W1,Wi] = Wi+1 is called a stratification of g.

Every graded Lie algebra g with decomposition g =
⊕k

i=1Wi possesses a natural
family of dilations given by

(1.9) δr

( k∑
i=1

wi

)
=

k∑
i=1

riwi, wi ∈ Wi.
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Definition 1.11 (Homogeneous group). A homogeneous group is a connected and
simply connected Lie group G whose Lie algebra is endowed with a family of
dilations {δr}r>0 = {eA log r}r>0. The number D := trace(A) =

∑n
i=1 ai is called

the homogeneous dimension of G.

By Lemma 1.9, every homogeneous group is nilpotent and therefore isomorphic to
the Lie group (g, ∗), where

X ∗ Y = X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]]− 1

12
[Y, [X, Y ]] + . . . .

Since the dilations δr are algebra automorphisms on g, it follows that

(1.10) δr(X ∗ Y ) = δrX + δrY +
1

2
[δrX, δrY ] + · · · = δrX ∗ δrY.

In other words, the dilations δr are group automorphisms on the Lie group (g, ∗).

Definition 1.12 (Group dilations). Let G be a homogeneous group whose Lie
algebra is endowed with a family of dilations {δr}r>0. The maps δGr : G → G,
defined by

δGr := exp ◦ δr ◦ exp−1,

are called dilations of the group G.

As a composition of three isomorphisms, the group dilations δGr are group auto-
morphisms on G, that is,

(1.11) δGr (xy) = δGr (x)δGr (y)

for all x, y ∈ G.

If G is identified with R
n via exponential coordinates or Malcev coordinates with

respect to a basis of eigenvectors of δr as in (1.7), then δGr takes the explicit form

(1.12) δGr : Rn → R
n, δGr (x1, . . . , xn) = (ra1x1, . . . , r

anxn).

Indeed, in the case of Malcev coordinates observe that

δGr (exp(x1X1) . . . exp(xnXn)) = δGr (exp(x1X1)) . . . δGr (exp(xnXn))

= exp(δr(x1X1)) . . . exp(δr(xnXn))

= exp(ra1x1X1) . . . exp(ranxnXn).

Therefore the action of δGr in Malcev coordinates is

δGr (x1, . . . , xn) = (ra1x1, . . . , r
anxn).

For the case of exponential coordinates an analogous argument applies.

Unless there is some risk of confusion, the group dilations δGr will henceforth simply
be denoted by δr.
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We close this section with some examples.

Example 1.13. Rn with addition and the usual scalar multiplication is a homo-
geneous group.

Example 1.14 (Heisenberg group). Recall from Example 1.5 the Heisenberg alge-
bra h = RX1 + RX2 + RX3 with non-zero Lie bracket

[X3, X2] = X1.

Set W1 = span{X2, X3}, W2 = span{X1}, then h = W1 ⊕W2 is a stratification of
h and the natural dilations as defined in (1.9) are given by

(1.13) δr(x1X1 + x2X2 + x3X3) = r2x1X1 + r(x2X2 + x3X3).

On the Heisenberg group H in its realization in exponential or Malcev coordinates
with respect to the basis {X1, X2, X3} the corresponding dilations are

(1.14) δr(x1, x2, x3) = (r2x1, rx2, rx3).

In this case the homogeneous dimension of H is D = 4.

Example 1.15. Consider the four-dimensional Lie algebra g4 = RX1 + · · ·+ RX4

with non-vanishing Lie brackets

[X4, X3] = X2, [X4, X2] = X1.

Set W1 = span{X3, X4}, W2 = span{X2} and W3 = span{X1}, then

g4 = W1 ⊕W2 ⊕W3

is a stratification of g4 and the natural dilations as defined in (1.9) are given by

δr(x1X1 + x2X2 + x3X3 + x4X4) = r3x1X1 + r2x2X2 + r(x3X3 + x4X4).

If the corresponding connected and simply connected Lie group G4 is identified
with R

4 via Malcev coordinates with respect to the basis {X1, X2, X3, X4}, then
the multiplication law becomes

(x1, x2, x3, x4)(y1, y2, y3, y4) = (x1 +y1 +x4y2 + 1
2
x2

4y3, x2 +y2 +x4y3, x3 +y3, x4 +y4)

and the natural dilations on G4 are given by

δr(x1, x2, x3, x4) = (r3x1, r
2x2, rx3, rx4).

In this case the homogeneous dimension of G4 is D = 7.
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1.2. Homogeneous Norms and Leftinvariant Metrics

Throughout this section let G be a homogeneous group.
A homogeneous norm on G is a continuous function | | : G→ [0,∞) such that

(i) |x| = 0 if and only if x = e;
(ii) |x−1| = |x| for all x ∈ G;
(iii) |δrx| = r|x| for all x ∈ G and r > 0.

Homogeneous norms always exist.
First consider G = (g, ∗). Fix a basis {X1, . . . , Xn} of g consisting of eigenvectors
of δr, that is, δrXi = raiXi for i = 1, . . . , n. For X =

∑n
i=1 xiXi, set

|X| := max{|xi|
1
ai : 1 ≤ i ≤ n}.

Then | | defines a homogeneous norm on (g, ∗), because

|δrX| = max{|raixi|
1
ai : 1 ≤ i ≤ n} = rmax{|xi|

1
ai : 1 ≤ i ≤ n} = r|X|.

For general G set |x|G := | exp−1 x|.

Any two homogeneous norms | | and | |′ on G are equivalent in the sense that there
exist constants A,B > 0 such that

A|x| ≤ |x|′ ≤ B|x|
for all x ∈ G (see, e.g., [24], p.3).

Furthermore, every homogeneous norm | | on G is quasi-subadditive, that is,

(1.15) |xy| ≤ C(|x|+ |y|)
for some constant C > 0 and all x, y ∈ G (see, e.g., [21], p.9).

However, on every homogeneous group there also exists a subadditive homogeneous
norm, that is, a homogeneous norm which satisfies inequality (1.15) with C = 1
(see [29] for an explicit construction).
Thus we may henceforth assume that G is equipped with a fixed subadditive ho-
mogeneous norm | |.

Next we consider the left-invariant metric d induced by the homogeneous norm | |
on G, that is,

(1.16) d : G×G→ R
+, d(x, y) := |x−1y|.

Indeed, if | | is a subadditive homogeneous norm on G, then d satisfies the usual
metric properties

(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x) for all x, y ∈ G,
(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ G,
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as well as left-invariance,

(iv) d(ax, ay) = d(x, y) for all a, x, y ∈ G,

and homogeneity,

(v) d(δrx, δry) = rd(x, y) for all x ∈ G and r > 0.

With respect to the metric d define the balls with radius N > 0 and center x ∈ G
as usual by

BN(x) := {y ∈ G : d(x, y) < N}.

Observe that BN(x) is the left translate by x of BN(e),

(1.17) BN(x) = xBN(e),

because, by the left-invariance of d,

xBN(e) = {xz : d(e, z) < N} = {xz : d(x, xz) < N} = {y : d(x, y) < N} = BN(x).

Similarly, it follows from the homogeneity of d that BN(e) is the image of B1(e)
under δN ,

(1.18) BN(e) = δN(B1(e)).

Finally let us remark that the balls constructed in this way are relatively compact,
that means, for all x ∈ G and N > 0, the closure BN(x) is compact (see [21], p.9).

1.3. Haar Measure and Lebesgue Spaces

Haar measure on Homogeneous Groups. On every locally compact group
G (in particular, on every Lie group) there exists a non-zero Radon measure λ that
is left invariant, that is, it satisfies

λ(xE) = λ(E)

for every measurable set E ⊆ G and every x ∈ G. Equivalently,∫
G

f(y−1x)dλ(x) =

∫
G

f(x)dλ(x)

for every integrable function f on G and every y ∈ G. This measure λ is uniquely
determined up to positive multiples and is called a left Haar measure for G.
Further, every locally compact group possesses also a right Haar measure, that is,
a non-zero Radon measure ν that satisfies

ν(Ex) = ν(E)

for every measurable set E ⊆ G and every x ∈ G. In general, left and right Haar
measures do not coincide. If a group G admits a non-zero Radon measure λ that
is both left and right invariant, then G is called unimodular and λ is called a bi-
invariant Haar measure on G.

Nilpotent Lie groups are unimodular and a bi-invariant Haar measure is given by
the image measure of the Lebesgue measure under the exponential map [21].



14 1. HOMOGENEOUS GROUPS

Lemma 1.16. Let G be a (connected and simply connected) nilpotent Lie group
with Lie algebra g and exponential map exp : g → G. If µ denotes the Lebesgue
measure on g, then λ := µ ◦ exp−1 is a bi-invariant Haar measure on G.

A function f on G is then integrable with respect ot λ if and only if f ◦ exp is
integrable with respect to the Lebesgue measure and the integral is given by

(1.19)

∫
G

f(x)dλ(x) =

∫
g

f(exp(X))dµ(X).

For a proof of Lemma 1.16 one considers exponential coordinates with respect to a
Malcev basis for g. By the Campbell-Baker-Hausdorff formula, the differentials of
the left and right translations in these coordinates are upper triangular matrices
with ones on the diagonal, their determinants therefore identically one. For details
see [13], p. 19.

In the following we assume that G is a homogeneous group. We review the be-
haviour of the Haar measure with respect to dilations. Recall that the dilations
on G are defined as δGr := exp ◦ δr ◦ exp−1. By equation (1.19) and the change-of-
variables formula one observes that∫

G

f(δGr x)dλ(x) =

∫
G

f(exp(δr(exp−1 x)))dλ(x)(1.20)

=

∫
g

f(exp(δrX))dµ(X)

=

∫
g

r−Df(expX)dµ(X)

= r−D
∫
G

f(x)dλ(x)

where D denotes the homogeneous dimension of G.
In particular, it follows that

(1.21) λ(δGr E) = rDλ(E)

for every measurable set E ⊆ G.

We will henceforth simply write dx for the Haar measure on G and dX for the
Lebesgue measure on g.

Remark 1.17. If G is identified with R
n via exponential or Malcev coordinates,

then the Haar measure becomes the usual Lebesgue measure on R
n.

For the realization of G in exponential coordinates this is just the statement of
Lemma 1.16. But Malcev coordinates are related to exponential coordinates by a
polynomial isomorphism with polynomial inverse whose Jacobian determinant is
identically one (see [13], p. 18). Thus the claim follows.
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Lebesgue Spaces. For 1 ≤ p < ∞ we denote by Lp(G) the Lebesgue space
with respect to the Haar measure onG, that is, the space of all measurable functions
f : G→ C for which the norm

‖f‖Lp(G) =
(∫

G

|f(x)|pdx
) 1
p

is finite. The space L∞(G) consists of all measurable functions f : G → C for
which

‖f‖L∞(G) = ess supx∈G|f(x)| <∞,
where the essential supremum is taken with respect to the Haar measure on G. As
usual we identify functions in Lp(G) that differ only on a set of measure zero.

Elementary Operations for Functions on G. For a function f on G and
x ∈ G the left translation is defined by

Lxf(y) = f(x−1y),

and similarly the right translation by

Rxf(y) = f(yx).

Furthermore, the involution of a function f on G is given by

f ∗(x) = f(x−1),

and the convolution of two functions f and g on G by

(1.22) f ∗ g(x) =

∫
G

f(y)g(y−1x)dy

whenever the integral in (1.22) is defined.

For a function f on G and r > 0 the dilation is defined by

Drf(y) = r
D
2 f(δry),

where D denotes the homogeneous dimension of G. The normalization r
D
2 is chosen

so that Dr becomes a unitary operator on L2(G). Indeed, by the properties of the
Haar measure with respect to dilations (equation (1.20)), we get

‖Drf‖2
L2(G) =

∫
G

|Drf(x)|2dx

=

∫
G

rD|f(δrx)|2dx

=

∫
G

|f(x)|2dx = ‖f‖2
L2(G).
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For the later use we note how dilation interacts with involution and convolution.
Namely,

(Drf)∗(x) = Drf(x−1) = r
D
2 f(δr(x−1))(1.23)

= r
D
2 f((δrx)−1) = r

D
2 f ∗(δrx) = Dr(f

∗)(x)

and

(Drf ∗Drg)(x) =

∫
G

Drf(y)Drg(y−1x)dy(1.24)

=

∫
G

rDf(δry)g(δr(y
−1x))dy

=

∫
G

rDf(δry)g((δry)−1δrx)dy

=

∫
G

f(y)g(y−1δrx)dy = (f ∗ g)(δrx),

whenever f and g are such that the convolution (1.22) is defined.

1.4. Discrete Subsets of Homogeneous Groups

Definition 1.18. A subgroup Γ of G is called a (uniform) lattice if Γ is discrete
and if the quotient Γ\G is compact. A set of representatives mod Γ is called a
fundamental domain of Γ.

If U is a fundamental domain of a lattice Γ in G, then

(1.25) G = ΓU =
⋃
γ∈Γ

γU

with γU ∩ γ′U = ∅ for γ 6= γ′. Since Γ\G is compact, the fundamental domain U
can be chosen to be relatively compact.

Not every nilpotent Lie group admits a lattice. In fact, for nilpotent Lie groups
the existence of a lattice depends on the structure constants of the associated Lie
algebra being rational (confer, e.g., [13], p.200).

If we relax the conditions on a lattice and dispense with the group structure, we
are led to the notion of a quasi-lattice.

Definition 1.19. A discrete subset Γ ⊆ G is called a quasi-lattice if there exists
a relatively compact Borel set U such that G =

⋃
γ∈Γ γU and γU ∩ γ′U = ∅ for

γ 6= γ′. Such a set U is called a complement of Γ.
For simplicity we assume that U contains the identity.
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Quasi-lattices always exist in homogeneous groups. This is true more general in
every connected simply connected nilpotent Lie group (cf. [23]). For the reader’s
convenience we recall the proof and especially emphasize that we can choose a
connected complement with non-empty interior and boundary of measure zero.

First we recall a well-known factorization of G into lower-dimensional closed sub-
groups.

Lemma 1.20. Let G be a connected simply connected nilpotent Lie group.

(a) There exist a closed normal subgroup N of codimension one and a closed
subgroup H of dimension one such that G = NH and N ∩H = {e}.

(b) If N ×H is equipped with the product topology, then the map

α : N ×H → G, α(n, h) = nh

is a homeomorphism.
(c) The Haar measures λG, λN and λH of G, N and H can be normalized

such that ∫
G

f(x)dλG(x) =

∫
N

∫
H

f(nh)dλH(h)dλN(n)

for every f ∈ L1(G).

Proof. (a) Fix a Malcev basis {X1, . . . , Xn} of the Lie algebra g and set
n = span{X1, . . . , Xn−1} and h = RXn. Then N := exp(n) and H := exp(h)
are closed connected simply connected subgroups of G, N ∩H = {e}, N is normal
and G = NH (confer, e.g., [13], p. 16, Proposition 1.2.7).

(b) By (a), every element g ∈ G can be uniquely written in the form g = nh with
n ∈ N and h ∈ H. Thus the map α : N ×H → G, α(n, h) = nh is a bijection and
easily seen to be continuous. That α is even a homeomorphism follows by applica-
tion of the Open Mapping Theorem for locally compact groups (see, e.g., [43], p.
60, 61).

(c) For f ∈ L1(G) and x′ = n′h′ ∈ G we calculate∫
N

∫
H

f(nhn′h′)dλH(h)dλN(n) =

∫
N

∫
H

f(nhn′h−1hh′)dλH(h)dλN(n)

=

∫
H

∫
N

f(n(hn′h−1)hh′)dλN(n)dλH(h).

Since N is normal and the Haar measures λN on N and λH on H are right-invariant,
we get
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∫
H

∫
N

f(n(hn′h−1)hh′)dλN(n)dλH(h) =

∫
H

∫
N

f(nhh′)dλN(n)dλH(h)

=

∫
H

∫
N

f(nh)dλN(n)dλH(h)

=

∫
N

∫
H

f(nh)dλH(h)dλN(n).

Thus the integral ∫
N

∫
H

f(nh)dλH(h)dλN(n)

is invariant under right translation, so the assertion (c) follows from the uniqueness
of the Haar measure.

�

Proposition 1.21. Let G be a connected simply connected nilpotent Lie group.
Then there exists a quasi-lattice Γ in G and a connected complement U of Γ with
non-empty interior and boundary of measure zero.

Proof. The proof is by induction on n = dimG.
For the one-dimensional case take the isomorphic image of the lattice Z ⊆ R with
fundamental domain [0, 1).

For the induction step we consider the factorization G = NH as constructed in
Lemma 1.20. Note that N and H are connected simply connected nilpotent Lie
groups of dimension n − 1 and one respectively. By induction hypothesis, there
exists a quasi-lattice Γ0 in N and a connected complement U0 with non-empty
interior and boundary of measure zero in N , and a quasi-lattice Γ1 in H and a
connected complement U1 with non-empty interior and boundary of measure zero
in H. Define

Γ := Γ1Γ0 = {γ1γ0 : γ1 ∈ Γ1, γ0 ∈ Γ0},
U := U0U1 = {u0u1 : u0 ∈ U0, u1 ∈ U1}.

We claim that Γ is a quasi-lattice in G with complement U .
First observe that

ΓU = Γ1Γ0U0U1 = Γ1NU1 = NΓ1U1 = NH = G,

because N is normal and Γ0, Γ1 are quasi-lattices for N and H.

To show that this covering G = ΓU =
⋃
γ∈Γ γU is disjoint, we suppose that γU ∩

γ′U 6= ∅, i.e., that there exist u, u′ ∈ U such that γu = γ′u′. By the definition of Γ
and U , this means that

γu = γ1γ0u0u1 = γ′1γ
′
0u
′
0u
′
1 = γ′u′

for some γ1, γ
′
1 ∈ Γ1, γ0, γ

′
0 ∈ Γ0, u1, u

′
1 ∈ U1, u0, u

′
0 ∈ U0.
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Since N is normal and since Γ0U0 and Γ1U1 are coverings of N and H, we get

γu = γ1γ0u0u1 = (γ1γ0u0γ
−1
1 )(γ1u1) = nh,

γ′u′ = γ′1γ
′
0u
′
0u
′
1 = (γ′1γ

′
0u
′
0(γ′1)−1)(γ′1u

′
1) = n′h′.

By the uniqueness of the factorization G = NH, it follows that n = n′ and h = h′,
that is, γ1γ0u0γ

−1
1 = γ′1γ

′
0u
′
0(γ′1)−1 and γ1u1 = γ′1u

′
1. Since Γ1 is a quasi-lattice in

H, we conclude that γ1 = γ′1, and consequently γ0u0 = γ′0u
′
0. Since Γ0 is a quasi-

lattice in N , we further obtain that γ0 = γ′0. Therefore γ = γ′. Hence we have
G =

⋃
γ∈Γ γU and γU ∩ γ′U = ∅ for γ 6= γ′.

To show that U has non-empty interior we note that, by induction hypothesis,
there exists a non-empty subset B0 ⊆ U0 that is open in N and a non-empty
subset B1 ⊆ U1 that is open in H. By Lemma 1.20 (b), it follows that B0B1 is
open in G with B0B1 ⊆ U0U1, so U = U0U1 has non-empty interior.
Concerning the measure of the boundary of U = U0U1 we note that, by Lemma
1.20 (b),

(1.26) ∂G(U0U1) ⊆ (∂NU0)U1 ∪ U0(∂HU1).

By induction hypothesis and Lemma 1.20 (c), it follows that

λG(∂GU) ≤ λG((∂NU0)U1) + λG(U0(∂HU1))

= λN(∂NU0)λH(U1) + λN(U0)λH(∂HU1) = 0.

Finally we remark that Γ is countable as the product of two countable sets, and
U is connected and relatively compact as the product of two connected relatively
compact sets. This completes the proof.

�

In the following we can therefore always assume that we deal with a connected
complement U with non-empty interior and boundary of measure zero.

Translation and dilation of a quasi-lattice again give a quasi-lattice.

Lemma 1.22. Let Γ be a quasi-lattice in G with complement U , let g ∈ G and
r > 0.
(i) The set gΓ is a quasi-lattice in G with complement U .
(ii) The set δrΓ is a quasi-lattice in G with complement δrU .

Proof. (i) For arbitrary x ∈ G write x = gy, where y = g−1x. Since Γ is a
quasi-lattice, there exist γ ∈ Γ and u ∈ U such that y = γu, hence x = gγu. If
now x ∈ gγU ∩ gγ′U , then y = g−1x ∈ γU ∩ γ′U . Thus γ = γ′, because Γ is a
quasi-lattice.

(ii) Since δr is an automorphism on G, we have

G = δrG = δr

( ⋃
γ∈Γ

γU
)

=
⋃
γ∈Γ

(δrγ)δrU.
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Suppose now that (δrγ · δrU) ∩ (δrγ
′ · δrU) 6= ∅, or equivalently, since δr is a

homomorphism, δr(γU) ∩ δr(γ′U) 6= ∅. Since δr is also bijective, it follows that
γU ∩ γ′U 6= ∅ and hence γ = γ′, because Γ is a quasi-lattice.

�

In the following we denote the cardinality of a subset X ⊆ G by |X|.

Definition 1.23. A subset X ⊆ G is called relatively separated if

(1.27) max
g∈G
|X ∩ gU | <∞

for some relatively compact subset U of G with non-empty interior.

In other words, a subset X is relatively separated if the number of elements of X
that lie in any left translate of U is uniformly bounded.

For later use we state some well-known equivalent conditions.

Lemma 1.24. For a subset X ⊆ G the following statements are equivalent.

(i) X is relatively separated.
(ii) For every relatively compact subset V of G with non-empty interior

max
g∈G
|X ∩ gV | <∞.

(iii) For every relatively compact subset V of G with non-empty interior the
sum

∑
χ∈X 1χV is uniformly bounded on G, that is,

sup
g∈G

∑
χ∈X

1χV (g) <∞.

Proof. (i)⇒ (ii): Let V be an arbitrary relatively compact subset of G with
non-empty interior and let U be as in equation (1.27). Then

⋃
g∈V gU

o is an open

covering of V . Since V is compact, there exists a finite subcover
⋃n
i=1 giU

o of V .
It follows that

max
g∈G
|X ∩ gV | ≤ max

g∈G
|X ∩ gV | ≤ max

g∈G
|X ∩ g

n⋃
i=1

giU |

= max
g∈G
|X ∩

n⋃
i=1

ggiU | ≤ max
g∈G

n∑
i=1

|X ∩ ggiU |

≤
n∑
i=1

max
g∈G
|X ∩ ggiU | <∞.

(ii)⇒ (iii): Let V be an arbitrary relatively compact subset of G with non-empty
interior. Then the set V −1 is also relatively compact with non-empty interior and
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thus

max
g∈G
|X ∩ gV −1| <∞.

Now

sup
g∈G

∑
χ∈X

1χV (g) = max
g∈G
|{χ ∈ X : g ∈ χV }|

= max
g∈G
|{χ ∈ X : χ ∈ gV −1}|

= max
g∈G
|X ∩ gV −1| <∞.(1.28)

(iii)⇒ (i): This implication also follows from equation (1.28).
�

To verify that a subset of G is relatively separated it suffices to consider the left
translates by elements of a lattice and count the elements therein.

Lemma 1.25. Let Γ be a lattice in G with fundamental domain U . A subset X ⊆ G
is relatively separated if and only if

(1.29) max
γ∈Γ
|X ∩ γV | <∞

for some relatively compact subset V of G that contains the fundamental domain U .

Proof. Let V be a relatively compact subset of G that contains the funda-
mental domain U and satisfies

max
γ∈Γ
|X ∩ γV | =: C <∞.

Let K be an arbitrary relatively compact subset of G. Then the set UK is also
relatively compact and hence bounded, that is,

(1.30) UK ⊆ BN(e)

for some N > 0. Let NU > 0 be such that U ⊆ BNU (e) and let R > N +NU .
A translate γU intersects BN(e) only if γ ∈ BR(e). Indeed, if

x ∈ BN(e) ∩ γU ⊆ BN(e) ∩BNU (γ),

then

d(e, γ) ≤ d(e, x) + d(x, γ) < N +NU = R.

Therefore,

UK ⊆ BN(e) ⊆
⋃

γ∈Γ∩BR(e)

γU.

Now let g ∈ G be arbitrary. Since Γ is a lattice, we may write g = νu ∈ νU for
some unique ν ∈ Γ. Then

(1.31) gK ⊆ νUK ⊆
⋃

γ∈Γ∩BR(e)

νγU ⊆
⋃

γ∈Γ∩BR(e)

νγV.
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Let n := |Γ ∩BR(e)| <∞ denote the number of lattice points in BR(e). It follows
that

|X ∩ gK| ≤
∣∣∣X ∩ ⋃

γ∈Γ∩BR(e)

νγV
∣∣∣

≤
∑

γ∈Γ∩BR(e)

|X ∩ νγV |

≤ nmax
γ∈Γ
|X ∩ γV | = nC <∞.

Since g ∈ G was arbitrary, we conclude that

max
g∈G
|X ∩ gK| ≤ nC <∞.

Thus X is relatively separated.

�

1.5. Wiener Amalgam Spaces

Throughout this section let G be a homogeneous group.

Definition 1.26. Let V be a relatively compact subset of G with non-empty
interior and let 1 ≤ p, q ≤ ∞. The Wiener Amalgam Space W (Lp, Lq) consists of
all functions f : G→ C for which the associated control function

x 7→ ‖f · Lx1V ‖Lp(G) = ‖f · 1xV ‖Lp(G)

belongs to Lq(G). For 1 ≤ q <∞ a norm on W (Lp, Lq) is given by

‖f‖W (Lp,Lq) :=

(∫
G

‖f · 1xV ‖qpdx
) 1

q

=

(∫
G

(∫
xV

|f(y)|pdy
) q

p

dx

) 1
q

,

for q =∞ by
‖f‖W (Lp,Lq) := sup

x∈G
‖f · 1xV ‖p.

The definition of the Wiener Amalgam Spaces W (Lp, Lq) allows some flexibility.

Lemma 1.27.

(a) W (Lp, Lq) does not depend on the particular choice of V , i.e., different
relatively compact subsets of G with non-empty interior define the same
space and equivalent norms.

(b) If Γ is a quasi-lattice in G with complement U , then also

‖f‖W (Lp,`q) :=
(∑
γ∈Γ

‖f · 1γU‖qp
) 1
q

defines an equivalent norm on W (Lp, Lq).
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For a proof see [18] or [33].

In this text we mainly deal with the space W (C,Lq), the subspace of W (L∞, Lq)
consisting of continuous functions. In this case it is costumary to denote the control
function by

f#(x) := sup
y∈xV
|f(y)|

and f# is called the (left) local maximum function of f . The norm on W (C,Lq) is
then given by

‖f‖W (C,Lq) = ‖f#‖Lq(G).

If the defining set is chosen to be the complement U of a quasi-lattice Γ, then the
equivalent discrete norm from Lemma 1.27 is computed as

‖f‖W (C,`q) = ‖f#|Γ‖`q(Γ) =
(∑
γ∈Γ

sup
x∈γU
|f(x)|q

) 1
q
.

By abuse of notation, f#|Γ will be simply denoted by f# and also called (left) local
maximum function of f .

Wiener Amalgam Spaces are invariant under left translation and dilation.

Lemma 1.28.

(a) If f ∈ W (C,Lq), then Lzf ∈ W (C,Lq) for every z ∈ G.
(b) If f ∈ W (C,Lq), then Drf ∈ W (C,Lq) for every r > 0.

Proof. (a) For every x ∈ G,

(Lzf)#(x) = sup
y∈xV
|Lzf(y)| = sup

y∈xV
|f(z−1y)|

= sup
y∈z−1xV

|f(y)| = f#(z−1x) = Lz(f
#)(x).

Therefore

‖(Lzf)#‖Lq(G) = ‖Lz(f#)‖Lq(G) = ‖f#‖Lq(G) <∞.

(b) Recall that the definition of W (C,Lq) does not depend on the particular choice
of the defining set (Lemma 1.27). We temporarily indicate the defining set in the
local maximum function by a subscript, e. g.,

f#
V (x) = sup

y∈xV
|f(y)|.
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For every x ∈ G,

(Drf)#
V (x) = sup

y∈xV
|Drf(y)| = sup

y∈xV
|r

D
2 f(δry)|

= r
D
2 sup
z∈δrx·δrV

|f(z)| = r
D
2 f#

δrV
(δrx).

By equation (1.20) it follows that

‖(Drf)#
V ‖

q
Lq(G) =

∫
G

|(Drf)#
V (x)|qdx

= r
qD
2

∫
G

|f#
δrV

(δrx)|qdx

= r
(q−2)D

2

∫
G

|f#
δrV

(x)|qdx

= r
(q−2)D

2 ‖f#
δrV
‖qLq(G) <∞.

�

Next we collect some inclusion relations that will be useful in the sequel [17], [18].

Lemma 1.29.

(a) Cc(G) ⊆ W (L∞, L1),
(b) W (Lp, Lp) = Lp(G),
(c) If p1 ≥ p2, q1 ≤ q2, then W (Lp1 , Lq1) ⊆ W (Lp2 , Lq2) and

‖f‖W (Lp2 ,Lq2 ) ≤ C‖f‖W (Lp1 ,Lq1 ).

(d) In particular, W (C,Lp) ⊆ Lp(G) and

‖f‖Lp(G) ≤ C‖f‖W (C,Lp).

We will also need the following convolution relation for Amalgam Spaces on uni-
modular groups [17].

Proposition 1.30. Let G be a unimodular locally compact group and let p1, p2, q1, q2 ∈
[1,∞] be such that 1

p
:= 1

p1
+ 1

p2
− 1 ≥ 0 and 1

q
:= 1

q1
+ 1

q2
− 1 ≥ 0. Then

W (Lp1 , Lq1) ∗W (Lp2 , Lq2) ⊆ W (Lp, Lq).

Corollary 1.31. For every q ≥ 1 we have

W (L∞, L1) ∗ Lq(G) ⊆ W (L∞, Lq).

Proof. By Lemma 1.29, Lq(G) = W (Lq, Lq) ⊆ W (L1, Lq). Thus Proposition
1.30 implies

W (L∞, L1) ∗ Lq(G) ⊆ W (L∞, L1) ∗W (L1, Lq) ⊆ W (L∞, Lq).

�
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For later application we recall the following useful estimate [28].

Lemma 1.32. Let X be a relatively separated subset of G. Let V be a symmetric
relatively compact subset of G used to define the local maximum function. Set
C := supx∈G

∑
χ∈X 1χV (x) and let NV > 0 be such that V ⊆ BNV (e). Then, for

N > NV , we have ∑
χ∈X\BN (e)

|f(χ)|2 ≤ C

λ(V )

∫
G\BN−NV (e)

f#(x)2dx.

Proof. From V = V −1 it follows that χ ∈ xV whenever x ∈ χV . Thus

|f(χ)| ≤ f#(x) ∀x ∈ χV
and consequently

|f(χ)|2 ≤ 1

λ(V )

∫
χV

f#(x)2dx.

Summing over χ ∈ X\BN(e), we obtain

∑
χ∈X\BN (e)

|f(χ)|2 ≤ 1

λ(V )

∑
χ∈X\BN (e)

∫
χV

f#(x)2dx

=
1

λ(V )

∑
χ∈X\BN (e)

∫
G

1χV (x)f#(x)2dx

=
1

λ(V )

∫
G

∑
χ∈X\BN (e)

1χV (x)f#(x)2dx

≤ C

λ(V )

∫
G

1G\BN−NV (e)(x)f#(x)2dx

=
C

λ(V )

∫
G\BN−NV (e)

f#(x)2dx,

because, for all x ∈ G,∑
χ∈X\BN (e)

1χV (x) ≤
∑

χ∈X\BN (e)

1BNV (χ)(x) ≤ C 1G\BN−NV (e)(x).

�





CHAPTER 2

Density on Homogeneous Groups

2.1. Definition of Density

Let G be a homogeneous group with homogeneous dimension D and Haar measure
λ. Fix a subadditive homogeneous norm | | on G, denote the associated left-
invariant metric as defined in (1.16) by d and the corresponding balls by BN(g).

The existence of a left-invariant homogeneous metric allows us to define an ana-
logue of the Beurling density [7], [35], however, adapted to the geometry of the
homogeneous group G.

Definition 2.1. The upper density of a subset X ⊆ G is defined by

D+(X) := lim sup
N→∞

max
g∈G

|X ∩BN(g)|
λ(BN(e))

,

and its lower density by

D−(X) := lim inf
N→∞

min
g∈G

|X ∩BN(g)|
λ(BN(e))

.

A subset X of G is said to have uniform density D(X) if

D+(X) = D−(X) =: D(X).

Our goal in this section is to show that the definition of the upper and lower density
does not depend on the particular choice of the homogeneous norm.

For that define

D+
B(X) := lim sup

N→∞
max
g∈G

|X ∩ g · δNB|
λ(δNB)

,(2.1)

D−B(X) := lim inf
N→∞

min
g∈G

|X ∩ g · δNB|
λ(δNB)

.(2.2)

27
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If B := B1(e), then the quantities D+
B(X) and D−B(X) are just the upper and lower

densities from Definition 2.1 rewritten, because, for every g ∈ G and N ∈ N,

BN(g) = g ·BN(e) = g · δN(B1(e))

by the left-invariance and homogeneity of the metric d.

Therefore the invariance of the upper and lower densities under a change of the
homogeneous norm follows from the invariance of the quantities D+

B(X) and D−B(X)
under a change of the defining set B.
It turns out that D+

B(X) and D−B(X) do not depend on the defining set B as long
as B is chosen to be a relatively compact subset of G with non-empty interior and
boundary of measure zero.

The corresponding statement for the Beurling densities in Rn is due to Landau [35].
He showed that the Beurling density computed by means of a compact set with
boundary of measure zero is the same as computed by means of cubes.
We adapt Landau’s ideas to our setting. As a counterpart of the unit cube in R

n

we use a complement of some quasi-lattice in G.

In view of Proposition 1.21, a complement U of a quasi-lattice Γ in G is in the
remainder of this section always assumed to be connected and to have non-empty
interior and boundary of measure zero.

Proposition 2.2. Let Γ be a quasi-lattice in G with complement U and let B be
a relatively compact subset of G with non-empty interior and boundary of measure
zero. Then, for every relatively separated subset X of G, we have

D−U (X) = D−B(X) and D+
U (X) = D+

B(X).

For the proof of Proposition 2.2 we need two auxiliary lemmata.

Lemma 2.3. Let Γ be a quasi-lattice in G with complement U and let B be a
relatively compact subset of G with non-empty interior and boundary of measure
zero. For every ε > 0 there exist an r > 0 and finite subsets S ⊆ S ′ ⊆ G such that
(i) ⋃

γ∈S

(γ · δrU) ⊆ B with λ
( ⋃
γ∈S

(γ · δrU)
)
> λ(B)− ε,

(ii)

B ⊆
⋃
γ∈S′

(γ · δrU) with λ
( ⋃
γ∈S′

γ · δrU
)
< λ(B) + ε,

and (γ · δrU) ∩ (γ′ · δrU) = ∅ for γ 6= γ′ ∈ S ′.

Proof. Since the Haar measure λ is outer regular (see e.g. [15], [22]), we have

0 = λ(∂B) = inf{λ(O) : O ⊇ ∂B open}.
Thus, given ε > 0, there exists some open set Oε ⊇ ∂B such that λ(Oε) < ε.
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Consider the distance function

x 7→ dist(x,Oc
ε) := inf{d(x, y) : y ∈ Oc

ε},
which is a continuous function from G into R+. Since ∂B is compact, the minimum
of dist(x,Oc

ε) on ∂B exists. Since ∂B ∩Oc
ε = ∅,

η :=
1

2
min{dist(x,Oc

ε) : x ∈ ∂B} > 0.

For every x ∈ ∂B we then have Bη(x) ⊆ Oε. Thus also the “η-tube”
E :=

⋃
x∈∂B Bη(x) is contained in Oε and λ(E) ≤ λ(Oε) < ε.

Now choose r > 0 such that δrU ⊆ B η
2
(e). By Lemma 1.22 (ii), the set Γ′ := δrΓ is

a quasi-lattice for G with complement U ′ := δrU . Consider the following subsets
of Γ′:

S := {γ ∈ Γ′ : γU ′ ⊆ Bo},
S ′ := {γ ∈ Γ′ : γU ′ ∩B 6= ∅},
S ′′ := {γ ∈ Γ′ : γU ′ ∩ ∂B 6= ∅};

Clearly S ⊆ S ′\S ′′. Conversely, if γ ∈ S ′\S ′′, then γU ′ does not intersect the
boundary of B and thus can be written as γU ′ = (γU ′∩Bo)∪ (γU ′∩Bc

). Since U ′

is connected, it follows that γU ′ = γU ′ ∩ Bo, hence γ ∈ S. Therefore S ′\S ′′ = S,
or equivalently, S ′\S = S ′′. Since Γ′ is a quasi-lattice for G, we get⋃

γ∈S

γU ′ ⊆ B ⊆
⋃
γ∈S′

γU ′,

and it remains to prove that

λ(
⋃

γ∈S′\S

γU ′) = λ(
⋃
γ∈S′′

γU ′) < ε.

For that purpose we need to show that, for every γ ∈ S ′′, we have

γU ′ ⊆ E =
⋃
x∈∂B

Bη(x).

Let γ ∈ S ′′ be arbitrary and choose some x ∈ ∂B such that x ∈ γU ′. From the
definition of U ′ and the left-invariance of the metric, it follows that
γU ′ ⊆ γB η

2
(e) = B η

2
(γ), thus x ∈ B η

2
(γ).

Now let y ∈ γU ′ ⊆ B η
2
(γ) be arbitrary. By the triangle inequality, we get

d(x, y) ≤ d(x, γ) + d(γ, y) <
η

2
+
η

2
= η,

thus y ∈ Bη(x) ⊆ E . It follows that γU ′ ⊆ E . Because γ ∈ S ′′ was arbitrary, we
conclude that ⋃

γ∈S′′
γU ′ ⊆ E ⊆ Oε.

In particular,

λ(
⋃
γ∈S′′

γU ′) ≤ λ(E) ≤ λ(Oε) < ε.
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Finally we remark that the sets S, S ′, S ′′ are finite, because

λ(
⋃
γ∈S′

γU ′)− λ(B) = λ((
⋃
γ∈S′

γU ′)\B) ≤ λ(
⋃
γ∈S′′

γU ′) < ε

and thus
λ(
⋃
γ∈S′

γU ′) = |S ′|λ(U ′) < λ(B) + ε <∞

by the properties of the Haar measure.
�

Following Landau [35] we may also approximate the complement U from inside
and outside by finite unions of translates of a dilated relatively compact set with
boundary of measure zero. In contrast to Lemma 2.3 the covering is no longer a
disjoint union.

Lemma 2.4. Let Γ be a quasi-lattice in G with complement U and let B be a
relatively compact subset of G with non-empty interior and boundary of measure
zero. For every ε > 0 there exist finite subsets S ⊆ S ′ ⊆ G and rγ > 0 for γ ∈ S ′
such that
(i) ⋃

γ∈S

(γ · δrγB) ⊆ U with λ(
⋃
γ∈S

γ · δrγB) > λ(U)− ε,

and (γ · δrγB) ∩ (γ′ · δrγ′B) = ∅ for γ 6= γ′ ∈ S,

(ii)

U ⊆
⋃
γ∈S′

(γ · δrγB) with
∑
γ∈S′

λ(γ · δrγB) < λ(U) + ε.

Proof. Without loss of generality we assume that λ(U) = λ(B) = 1 (other-

wise replace U by δrU with r = λ(U)−
1
D and B by δtB with t = λ(B)−

1
D ).

(i) First we exhaust U with left translates of dilated B.

By induction we show that for every n ∈ N there exists a finite disjoint union En
of left translates of dilated versions of B contained in U such that

(2.3) λ(U\En) ≤ (1− ρD)(1− αρD)n

for some 0 < ρ, α < 1 that are independent of n.

Since B is relatively compact, there exist 0 < ρ < 1 and x ∈ G such that

E0 := x · δρB ⊆ U.

The measure of the remainder is

λ(U\E0) = λ(U)− λ(x · δρB) = 1− ρD.
This settles the initial step n = 0.
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Now by the induction hypothesis there exists a finite disjoint union En−1 of left
translates of dilated versions of B contained in U such that

(2.4) λ(U\En−1) ≤ (1− ρD)(1− αρD)n−1

for some α < 1 and ρ as above. The remainder Rn := U\En−1 is a relatively
compact subset of G whose boundary has measure zero. So by Lemma 2.3 (i)
we may exhaust Rn from inside by a finite disjoint union of left translates of a
sufficiently dilated U with measure arbitrarily close to λ(Rn). Formally, there exist
an rn > 0 and a finite set Sn ⊆ G such that

(2.5)
⋃
γ∈Sn

(γ · δrnU) ⊆ Rn and λ(
⋃
γ∈Sn

(γ · δrnU)) ≥ αλ(Rn).

By the left invariance and homogeneity of the Haar measure,

(2.6) λ
( ⋃
γ∈Sn

(γ · δrnU)
)

=
∑
γ∈Sn

λ(δrnU) = |Sn|rDn ≥ αλ(Rn).

Since x · δρB ⊆ U ,

(2.7)
⋃
γ∈Sn

((γδrnx) · δrnρB) =
⋃
γ∈Sn

(γ · δrn(x · δρB)) ⊆
⋃
γ∈Sn

(γ · δrnU) ⊆ Rn.

From inequality (2.6) it follows that

(2.8) λ
( ⋃
γ∈Sn

((γδrnx) · δrnρB))
)

=
∑
γ∈Sn

λ(δrnρB) = |Sn|rDn ρD ≥ ρDαλ(Rn).

Now define

(2.9) En := En−1 ∪
⋃
γ∈Sn

((γδrnx) · δrnρB).

By estimate (2.8) and the induction hypothesis (2.4), it follows that

λ(U\En) =λ
(
U\
(
En−1 ∪

⋃
γ∈Sn

((γδrnx) · δrnρB)
))

=λ
(

(U\En−1)\
⋃
γ∈Sn

((γδrnx) · δrnρB)
)

=λ(Rn)− λ
( ⋃
γ∈Sn

((γδrnx) · δrnρB)
)

≤λ(Rn)− αρDλ(Rn)

=λ(Rn)(1− αρD)

≤(1− ρD)(1− αρD)n−1(1− αρD)

=(1− ρD)(1− αρD)n.
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Given ε > 0 we can now choose n large enough such that λ(U\En) < ε.
Then En is a finite disjoint union of left translates of dilated versions of B with
measure

λ(En) = λ(U\(U\En)) = 1− λ(U\En) > 1− ε.

(ii) To cover U by left translates of dilated versions of B first choose σ > 1 and
y ∈ G such that U ⊆ y · δσB. By the proof of (i), there exists a finite disjoint union
Ek of left translates of dilated versions of B such that, for given ε > 0 and fixed
β > 1,

λ(U\Ek) <
ε

σDβ − 1
.

Now use Lemma 2.3 (ii) to cover the remainder Rk+1 := U\Ek, which is a relatively
compact subset of G whose boundary has measure zero, by a finite disjoint union
of sufficiently dilated left translates of U , formally,

Rk+1 ⊆
⋃
γ∈S′

(γ · δrU),(2.10)

such that

λ(
⋃
γ∈S′

(γ · δrU)) = |S ′|rD ≤ βλ(Rk+1).(2.11)

Since U ⊆ y · δσB, we get

Rk+1 ⊆
⋃
γ∈S′

(γ · δrU) ⊆
⋃
γ∈S′

(
(γδry) · δrσB

)
(2.12)

with ∑
γ∈S′

λ
(
(γδry) · δrσB

)
= σD|S ′|rD ≤ σDβλ(Rk+1).(2.13)

Altogether we get that

U = Ek ∪ (U\Ek) ⊆ Ek ∪
⋃
γ∈S′

(
(γδry) · δrσB

)
and, by the choice of Ek,

λ(Ek) +
∑
γ∈S′

λ
(
(γδry) · δrσB

)
= λ(U\Rk+1) +

∑
γ∈S′

λ
(
(γδry) · δrσB

)
≤ 1− λ(Rk+1) + σDβλ(Rk+1)

= 1 + λ(Rk+1)(σDβ − 1) < 1 + ε.

Since Ek is a disjoint union of left translates of dilated versions of B, the statement
of Lemma 2.4 (ii) follows.

�
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Proof of Proposition 2.2. By Lemma 2.3, we may choose r > 0 small
enough and a finite subset S ⊆ G such that⋃

γ∈S

(γ · δrU) ⊆ B with λ(
⋃
γ∈S

γ · δrU) = |S|rDλ(U) > λ(B)− ε

and (γ · δrU) ∩ (γ′ · δrU) = ∅ for γ 6= γ′ ∈ S.

For arbitrary g ∈ G and N > 0 we estimate

|X ∩ g · δNB| ≥ |X ∩ g · δN
( ⋃
γ∈S

(γ · δrU)
)
|

= |X ∩
⋃
γ∈S

(g · δNγ) · δNrU |

=
∑
γ∈S

|X ∩ (g · δNγ) · δNrU |,

where the last equation follows because
⋃
γ∈S(g · δNγ) · δNrU is a disjoint union as

a translate and dilate of the disjoint union
⋃
γ∈S(γ · δrU).

Hence

min
g∈G
|X ∩ g · δNB| ≥ min

g∈G

∑
γ∈S

|X ∩ (g · δNγ) · δNrU |

≥
∑
γ∈S

min
g∈G
|X ∩ (g · δNγ) · δNrU |

=
∑
γ∈S

min
g′∈G
|X ∩ g′ · δNrU |

= |S|min
g′∈G
|X ∩ g′ · δNrU |

and, by the homogeneity properties of the Haar measure,

min
g∈G

|X ∩ g · δNB|
λ(δNB)

≥ |S|min
g′∈G

|X ∩ g′ · δNrU |
λ(δNB)

= |S|min
g′∈G

|X ∩ g′ · δNrU |
NDλ(B)

= |S|min
g′∈G

|X ∩ g′ · δNrU |
NDrDλ(U)

· r
Dλ(U)

λ(B)

= |S|min
g′∈G

|X ∩ g′ · δNrU |
λ(δNrU)

· r
Dλ(U)

λ(B)
.
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Finally we derive that

D−B(X) = lim inf
N→∞

min
g∈G

|X ∩ g · δNB|
λ(δNB)

≥ lim inf
N→∞

min
g′∈G

|X ∩ g′ · δNrU |
λ(δNrU))

· |S|r
Dλ(U)

λ(B)

= D−U (X) · |S|r
Dλ(U)

λ(B)

> D−U (X) ·
(
1− ε

λ(B)

)
Since ε > 0 was arbitrary, it follows that D−B(X) ≥ D−U (X).

Using the approximation of U by dilated left translates of B obtained in Lemma
2.4 we can employ the same argument with the roles of U and B interchanged to
get D−U (X) ≥ D−B(X). Therefore D−U (X) = D−B(X).

The analogous argument, using the coverings of B and U obtained in Lemma 2.3
and Lemma 2.4 respectively, shows the equality D+

U (X) = D+
B(X) for the upper

density.

�

Remark 2.5. For Rn with the usual addition and scalar multiplication, the densi-
ties in Definition 2.1 just recover the standard upper and lower Beurling densities,
that is,

D+(X) = lim sup
N→∞

max
y∈Rn

|X ∩ y + [0, N ]n|
Nn

,

D−(X) = lim inf
N→∞

min
y∈Rn
|X ∩ y + [0, N ]n|

Nn
.

2.2. ‘Homogeneous’ Density versus Beurling Density

By the results in Section 1.1, every homogeneous group G can be identified with Rn

endowed with a group law that is polynomial in the coordinates and with a family
of dilations.
As a set, every subset of G is therefore essentially a subset of Rn. One may ask
what happens if we just compute the usual Beurling density on Rn. Does the den-
sity actually depend on the group structure that is imposed on R

n?
In the present section we answer this question in the affirmative and show that
differences already manifest on the simplest non-commutative homogeneous group,
the Heisenberg group.
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Recall from Example 1.7 and Example 1.14 that in Malcev coordinates the Heisen-
berg group H is R3 with the group law

(a, b, c) · (u, v, w) = (a+ u+ cv, b+ v, c+ w)

and dilations
δr(a, b, c) = (r2a, rb, rc).

In the following we present an example of a set X ⊆ R
3 that, regarded as a sub-

set of H, has lower density different from the standard lower Beurling density on R3.

Define

X :=

(
R

3\
∞⋃
k=1

(
(0, 0, k3) + [0, k)3

))
∩ Z3.

Regarded as a subset of the vector space R3, the set X has lower Beurling density
D−
R3(X) = 0.

Indeed, by construction of X,

min
g∈R3

|X ∩ g + [0, N ]3|
N3

= 0,

hence

D−
R3(X) = lim inf

N→∞
min
g∈R3

|X ∩ g + [0, N ]3|
N3

= 0.

On the other hand, the lower density of X ⊆ H in the sense of Definition 2.1 sat-
isfies D−

H
(X) = 1.

In view of Proposition 2.2, we may choose U = [0, 1)3 and compute the lower
density of X as

D−
H

(X) = lim inf
N→∞

min
g∈H

|X ∩ g · δNU |
λ(δNU)

.

If U = [0, 1)3, then δNU = [0, N2)× [0, N)× [0, N) and

(a, b, c) · δNU(2.14)

= {(a+ u+ cv, b+ v, c+ w) : (u, v, w) ∈ [0, N2)× [0, N)× [0, N)}.

First count the integer triples (l,m, n) ∈ Z3 in (a, b, c) · δNU . By equation (2.14),
there are N possible values for m and n and N2 possible values for l such that
(l,m, n) ∈ (a, b, c) · δNU . Thus, for every g = (a, b, c) ∈ H,

(2.15) |Z3 ∩ g · δNU | = N4 = |Z3 ∩ δNU |.
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Since X ⊆ Z
3,

min
g∈H
|X ∩ g · δNU | = |Z3 ∩ δNU | −max

g∈H

∣∣(Z3\X) ∩ g · δNU
∣∣ .

For N > 2 we show the estimate

max
g∈H

∣∣(Z3\X) ∩ g · δNU
∣∣ = max

g∈H

∣∣∣∣∣
(
Z

3 ∩
∞⋃
k=1

(
(0, 0, k3) + [0, k)3

))
∩ g · δNU

∣∣∣∣∣ ≤ N3.

We distinguish the following cases for g = (a, b, c) ∈ H:

(i)

(a, b, c) · δNU ∩
(
(0, 0, k3) + [0, k)3

)
6= ∅ for some k ≥ N ;

(ii)

(a, b, c) · δNU ∩
(
(0, 0, k3) + [0, k)3

)
6= ∅ for some k < N ;

(iii)

(a, b, c) · δNU ∩
∞⋃
k=1

(
(0, 0, k3) + [0, k)3

)
= ∅.

In case (i), the translate (a, b, c) ·δNU intersects exactly one cube (0, 0, k3)+[0, k)3,
because k ≥ N .

We need to count the integer triples (l,m, n) ∈ Z3 in

(a, b, c) · δNU ∩
(
(0, 0, k3) + [0, k)3

)
.

Since N ≤ k, there are at most N possible values for m and n and N2 possible
values for l such that (l,m, n) ∈ (a, b, c) · δNU ∩ ((0, 0, k3) + [0, k)3).

However, suppose that for some (u, v, w) ∈ δNU ,

(l,m, n) = (a, b, c) · (u, v, w)

= (a+ u+ cv, b+ v, c+ w) ∈ [0, k)× [0, k)× [k3, k3 + k) ∩ Z3.

This assumption implies that

(2.16) c ≥ k3 − w > k3 −N ≥ k3 − k.
But then, if j ∈ Z\{0} and u′ ∈ [0, N2), the element

(a, b, c) · (u′, v + j, w) = (a+ u′ + cv + cj, b+ v + j, c+ w)

cannot be in [0, k)× [0, k)× [k3, k3 + k), because

(2.17) |a+ u′ + cv| ≤ |a+ u+ cv|+ |u′ − u| < k +N2 ≤ k + k2
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and therefore, by the inequalities (2.16) and (2.17),

|a+ u′ + cv + cj| ≥ |c| − |a+ u′ + cv| ≥ k3 − k − k − k2 > k.

Consequently there is at most one integer m such that a triple of the form
(l,m, n) ∈ Z3 is in (a, b, c) · δNU ∩ [0, k)× [0, k)× [k3, k3 + k).

We conclude that∣∣(a, b, c) · δNU ∩ ((0, 0, k3) + [0, k)3
)
∩ Z3

∣∣ =
∣∣(a, b, c) · δNU ∩ (Z3\X)

∣∣ ≤ N3.

In case (ii), the translate (a, b, c) · δNU may intersect
⋃∞
k=1 ((0, 0, k3) + [0, k)3) in

more than one cube with side length strictly less than N , say in the m+ 1 cubes

(0, 0, k3
0) + [0, k0)3, . . . , (0, 0, (k0 +m)3) + [0, k0 +m)3,

where k0 +m < N .

If m = 0, then ∣∣(a, b, c) · δNU ∩ (0, 0, k3
0) + [0, k0)3

∣∣ ≤ k3
0 ≤ N3.

If m ≥ 1, then∣∣(a, b, c) · δNU ∩ (Z3\X)
∣∣ ≤ m∑

i=0

(k0 + i)3

=
m∑
i=0

(
k3

0 + 3ik2
0 + 3i2k0 + i3

)
=

m∑
i=0

k3
0 + 3k2

0

m∑
i=0

i+ 3k0

m∑
i=0

i2 +
m∑
i=0

i3.

Computing the sums we thus get∣∣(a, b, c) · δNU ∩ (Z3\X)
∣∣ ≤ (m+ 1)k3

0

+
3

2
m(m+ 1)k2

0

+
1

2
m(m+ 1)(2m+ 1)k0(2.18)

+
1

4
m2(m+ 1)2.

We want to estimate the expression (2.18) from above by N3. Since (a, b, c) · δNU
intersects all the m+ 1 cubes, it follows that

N > (k0 +m)3 − (k3
0 + k0) = 3mk2

0 + (3m2 − 1)k0 +m3,
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hence

N3 >
(
3mk2

0 + (3m2 − 1)k0 +m3
)3

= 27m3k6
0

+ (81m3 − 27m2)k5
0

+ (118m5 − 54m3 + 9m)k4
0

+ (81m6 − 27m4 + 3m3 − 1)k3
0(2.19)

+ (36m7 − 18m5 + 3m2)k2
0

+ (9m8 − 3m6)k0

+ m9.

The coefficient of each kj0, j = 0, 1, . . . , 6, is in (2.18) smaller than in (2.19), so we
also obtain in this case that∣∣(a, b, c) · δNU ∩ (Z3\X)

∣∣ ≤ N3.

In case (iii), the estimate |(a, b, c) · δNU ∩ (Z3\X)| ≤ N3 is satisfied trivially.

Finally we conclude that

D−
H

(X) = lim inf
N→∞

min
g∈H

|X ∩ g · δNU |
λ(δNU)

= lim inf
N→∞

(
|Z3 ∩ δNU |

N4
−max

g∈H

|(Z3\X) ∩ g · δNU |
N4

)
= lim inf

N→∞

N4

N4
− lim sup

N→∞
max
g∈H

|(Z3\X) ∩ g · δNU |
N4

≥ 1− lim
N→∞

N3

N4
= 1.
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2.3. Density of Quasi-lattices

In this section we compute the density of a quasi-lattice. For that we note some
elementary inclusions.

Lemma 2.6. Let Γ be a quasi-lattice in G with complement U . There exists some
NU > 0 such that, for N > NU ,

(2.20) (Γ ∩BN−NU (e))U ⊆ BN(e) ⊆ (Γ ∩BN+NU (e))U,

and consequently,

(2.21) |Γ ∩BN−NU (e)|λ(U) ≤ λ(BN(e)) ≤ |Γ ∩BN+NU (e)|λ(U).

Proof. The complement U is relatively compact, hence bounded, so we can
choose some NU > 0 such that U ⊆ BNU (e).
If x ∈ (Γ∩BN−NU (e))U , then x = γu for some u ∈ U and γ ∈ Γ with |γ| ≤ N−NU .
Therefore

|x| = |γu| ≤ |γ|+ |u| ≤ (N −NU) +NU = N,

so x ∈ BN(e).

Now let x ∈ BN(e). Since Γ is a quasi-lattice in G, there exists a γ ∈ Γ such that
x = γu ∈ γU for some u ∈ U . Thus γ = xu−1 and

|γ| = |xu−1| ≤ |x|+ |u−1| = |x|+ |u| ≤ N +NU .

We conclude that x ∈ (Γ ∩ BN+NU (e))U. Therefore the inclusion (2.20) is estab-
lished.

By the left-invariance of the Haar measure, it follows from the inclusion (2.20) that

λ(BN(e)) ≥ λ
(
(Γ ∩BN−NU (e))U

)
= λ

( ⋃
γ∈Γ∩BN−NU (e)

γU
)

=
∑

γ∈Γ∩BN−NU (e)

λ(γU) = |Γ ∩BN−NU (e)|λ(U),

because the translates γU of the complement U are disjoint.
The second inequality follows analogously.

�

Proposition 2.7. Let Γ be a quasi-lattice in G with complement U , then Γ has
uniform density

D+(Γ) = D−(Γ) =
1

λ(U)
.
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Proof. Let g ∈ G be arbitrary. Then γ ∈ BN(g) = gBN(e) if and only if
g−1γ ∈ BN(e). Therefore

D+(Γ) = lim sup
N→∞

max
g∈G

|g−1Γ ∩BN(e)|
λ(BN(e))

,

D−(Γ) = lim inf
N→∞

min
g∈G

|g−1Γ ∩BN(e)|
λ(BN(e))

.

Recall that for every g ∈ G the set g−1Γ is a quasi-lattice with complement U
(Lemma 1.22). By inequality (2.21) in Lemma 2.6 we obtain that

min
g∈G
|g−1Γ ∩BN−NU (e)|λ(U) ≤ λ(BN(e)) ≤ min

g∈G
|g−1Γ ∩BN+NU (e)|λ(U).

Using this inequality and the homogeneity properties of the Haar measure we esti-
mate

D−(Γ) = lim inf
N→∞

min
g∈G

|g−1Γ ∩BN+NU (e)|
λ(BN+NU (e))

= lim inf
N→∞

min
g∈G

|g−1Γ ∩BN+NU (e)|
(N +NU)Dλ(B1(e))

λ(U)

λ(U)

≥ lim inf
N→∞

λ(BN(e))

(N +NU)Dλ(B1(e))

1

λ(U)

= lim inf
N→∞

ND

(N +NU)D
1

λ(U)
=

1

λ(U)

and similarly

D−(Γ) = lim inf
N→∞

min
g∈G

|g−1Γ ∩BN−NU (e)|
λ(BN−NU (e))

λ(U)

λ(U)

≤ lim inf
N→∞

ND

(N −NU)D
1

λ(U)
=

1

λ(U)
.

The claim concerning the upper density follows analogously.
�



CHAPTER 3

Density and Frames

3.1. Frames and Riesz Sequences

In this section we collect the main properties of frames, Riesz sequences and related
notions. Frames were introduced by Duffin and Schaeffer [16] and nowadays frame
theory is an active area of research [9]. We follow the exposition in the books [11],
[27] and [48].

Definition 3.1. A family F = {fi}i∈I in a separable Hilbert space H is called a
Bessel sequence if there exists a constant B > 0 such that

(3.1)
∑
i∈I

|〈f, fi〉|2 ≤ B‖f‖2

for all f ∈ H. The constant B is called the Bessel bound for F .

By definition, F is a Bessel sequence if and only if the coefficient operator C,
defined by

Cf = {〈f, fi〉}i∈I ,
is a bounded operator from H into `2(I) with operator norm ‖C‖op ≤ B

1
2 .

For every finite sequence c = (ci)i∈I ,

〈C∗c, f〉 = 〈c, Cf〉 =
∑
i∈I

ci〈f, fi〉 =
∑
i∈I

ci〈fi, f〉 =
〈∑

i∈I

cifi, f
〉
,

so the adjoint operator C∗ : `2(I)→ H is given by

C∗c =
∑
i∈I

cifi

and C∗ is bounded with the same operator norm.
Summarizing, we have the following characterization of Bessel sequences.

Lemma 3.2. A family F = {fi}i∈I in H is a Bessel sequence with Bessel bound
B if and only if the inequality

(3.2)
∥∥∥∑
i∈I

cifi

∥∥∥2

≤ B‖c‖2

holds for every sequence c = (ci)i∈I ∈ `2(I).

The operator C∗ is often called the reconstruction operator.

41
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Definition 3.3. A family F = {fi}i∈I in a separable Hilbert space H is called a
Riesz-Fischer sequence if for every sequence c = (ci)i∈I ∈ `2(I) there exists at least
one function f ∈ H such that

(3.3) 〈f, fi〉 = ci, i ∈ I.

To put it differently, a family F is a Riesz-Fischer sequence if and only if the
associated coefficient operator C : H → `2(I) is surjective.
We recall another characterization of Riesz-Fischer sequences proved in [48].

Lemma 3.4. A family F = {fi}i∈I in H is a Riesz-Fischer sequence if and only
if there exists a constant A > 0 such that the inequality

(3.4) A‖c‖2 ≤
∥∥∥∑
i∈I

cifi

∥∥∥2

holds for every finite sequence c = (ci)i∈I .

Definition 3.5. A family F = {fi}i∈I in a separable Hilbert space H is called a
Riesz sequence if there exist constants A,B > 0 such that the inequalities

(3.5) A‖c‖2 ≤
∥∥∥∑
i∈I

cifi

∥∥∥2

≤ B‖c‖2

hold for every finite sequence c = (ci)i∈I .
A Riesz sequence F = {fi}i∈I is called a Riesz basis for H, if span{fi}i∈I = H.

If F = {fi}i∈I is a Riesz sequence, then inequality (3.5) implies in particular that

A
1
2 ≤ ‖fi‖ ≤ B

1
2

for all i ∈ I, in other words, every Riesz sequence is uniformly bounded below and
above in norm.

A convenient characterization for a system F = {fi}i∈I to be a Riesz sequence is
given in terms of the associated Gram matrix.

Lemma 3.6. A family F = {fi}i∈I in a separable Hilbert space H is a Riesz
sequence if and only if the associated Gram matrix G, defined by Gij = 〈fj, fi〉,
i, j ∈ I, is a bounded invertible operator on `2(I).

Proof. For every finite sequence c = (ci)i∈I ,

〈Gc, c〉 =
∑
i,j∈I

〈fj, fi〉cjci =
∥∥∥∑
i∈I

cifi

∥∥∥2

.

Thus inequality (3.5) is equivalent to the boundedness and invertibility of G.
�
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To check boundedness properties of infinite matrices Schur’s test is a helpful crite-
rion. We recall the statement and direct the interested reader to [11] or [27] for a
proof.

Lemma 3.7 (Schur’s test). Let A = (aij)i,j∈I be an infinite matrix such that
aij = aji and

(3.6)
∑
i∈I

|aij| ≤ K ∀j ∈ I.

Then the operator A defined by the matrix-vector multiplication (Ac)i =
∑

j∈I aijcj
is bounded on `2(I) with operator norm at most K.

Definition 3.8. A family F = {fi}i∈I in a separable Hilbert space H is called a
frame if there exist constants A,B > 0 such that

(3.7) A‖f‖2 ≤
∑
i∈I

|〈f, fi〉|2 ≤ B‖f‖2

for all f ∈ H. The numbers A and B are called frame bounds for F .

Note that a frame with frame bounds A,B is in particular a Bessel sequence with
Bessel bound B.

Lemma 3.9. Every Riesz basis is a frame.

For a proof see, e.g., [11]. The converse is not true. A frame that is not a Riesz
basis is said to be overcomplete.

The frame operator S : H → H associated to a frame F = {fi}i∈I is defined as

Sf := C∗Cf =
∑
i∈I

〈f, fi〉fi.

We collect some important properties of frames [11], [27].

Proposition 3.10. Let F = {fi}i∈I be a frame for H with frame bounds A,B.
(a) The frame operator S is a positive invertible operator satisfying AI ≤ S ≤ BI.
(b) The family F̃ = {S−1fi}i∈I is a frame for H with frame bounds B−1, A−1.
(c) Every f ∈ H has frame expansions of the form

(3.8) f =
∑
i∈I

〈f, S−1fi〉fi

and

(3.9) f =
∑
i∈I

〈f, fi〉S−1fi,

where both sums converge unconditionally in H.
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The frame F̃ = {S−1fi}i∈I is called the canonical dual frame of F .

More general, a frame F̃ = {f̃i}i∈I is called a dual frame of F = {fi}i∈I if

(3.10) f =
∑
i∈I

〈f, f̃i〉fi =
∑
i∈I

〈f, fi〉f̃i

for all f ∈ H.

For an arbitrary frame there may be many dual frames. In fact, if a frame is
overcomplete, then there always exist dual frames other than the canonical dual
frame (see, e.g., [11]). For Riesz bases, however, the dual frame is unique and has
some additional properties [11].

Lemma 3.11. Let F = {fi}i∈I be a Riesz basis for H. Then the canonical dual

frame F̃ = {S−1fi}i∈I = {f̃i}i∈I is the unique sequence in H satisfying

(3.11) f =
∑
i∈I

〈f, f̃i〉fi =
∑
i∈I

〈f, fi〉f̃i

for all f ∈ H. Moreover, F̃ is also a Riesz basis for H, and F and F̃ are biorthog-
onal, that is, 〈fi, f̃j〉 = δij.

In this case F̃ is called the dual Riesz basis of F .

Since F = {fi}i∈I is complete, that is, span{fi}i∈I = H, the dual Riesz basis F̃ is
also the unique sequence in H that is biorthogonal to F .

3.2. Homogeneous Approximation Property and Density

In this section we consider frames {fχ}χ∈X in a separable Hilbert space H that
are indexed by a discrete subset X of a homogeneous group G. In this abstract
setting the index χ of a frame element fχ has no a priori connotation. However,
if we impose some form of ‘localization’, achieved by the so-called Homogeneous
Approximation Property, we may think of the vector fχ living near χ in G.

The Homogeneous Approximation Property was first observed as a property inher-
ent to Gabor frames by Ramanathan and Steger [40] and subsequently established
also for frames of windowed exponentials [25] and wavelet frames [31]. An abstrac-
tion for general frames without special structure was provided in the fundamental
paper of Balan, Casazza, Heil and Landau [5].

Recall that in a separable Hilbert space H the distance of an element f ∈ H to a
closed linear subspace V ⊆ H is given by

dist(f, V ) := inf
v∈V
‖f − v‖ = ‖f − PV f‖,

where PV denotes the orthogonal projection onto V .
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Definition 3.12. Let X and Y be relatively separated subsets of G and let H be
a separable Hilbert space. Let F = {fχ}χ∈X be a frame for H with dual frame

F̃ = {f̃χ}χ∈X and let E = {eυ}υ∈Y be a set in H.
The frame F has the Homogeneous Approximation Property with respect to the
reference set E , if for every ε > 0 there exists some Nε > 0 such that, for every
υ ∈ Y ,

dist(eυ, span{f̃χ : χ ∈ X ∩BNε(υ)}) < ε.

The following theorem for the comparison of densities is an important ingredient
for deriving necessary density conditions for frames and Riesz sequences. The proof
relies on the double-projection technique of Ramanathan and Steger [40] and the
homogeneity properties of the Haar measure.

Theorem 3.13 (Comparison Theorem). Let X and Y be relatively separated sub-
sets of G. Assume that F = {fχ}χ∈X is a frame for H and that E = {eυ}υ∈Y is a
Riesz sequence in H.
If F has the Homogeneous Approximation Property with respect to E, then

D−(Y ) ≤ D−(X) and D+(Y ) ≤ D+(X).

Proof. Let F̃ = {f̃χ}χ∈X be a dual frame for F , and let Ẽ = {ẽυ}υ∈Y be the
Riesz basis in span(E) that is biorthogonal to E . The elements of a Riesz sequence
are uniformly bounded in norm, so

C := sup
υ∈Y
‖ẽυ‖ <∞.

Given ε > 0, choose Nε > 0 such that the Homogeneous Approximation Property
is satisfied with ε

C
, that is,

dist(eυ, span{f̃χ : χ ∈ X ∩BNε(υ)}) < ε

C

for all υ ∈ Y . Fix an arbitrary element g ∈ G and a radius N > 0, and define the
subspaces

V := span{eυ : υ ∈ Y ∩BN(g)}
and

W := span{f̃χ : χ ∈ X ∩BN+Nε(g)}
of H. Since X and Y are relatively separated, the subspaces V and W are finite-
dimensional with dimV = |Y ∩ BN(g)| and dimW ≤ |X ∩ BN+Nε(g)|. Let PV and
PW denote the orthogonal projections of H onto V and W , and define a map

T : V → V, T := PV PW .

Since the domain of T is V and PV and PW are projections, we may write the
operator T as

T = PV PWPWPV = (PWPV )∗(PWPV ),
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so T is a positive operator on V . We estimate the trace of T from above and below.
Every eigenvalue λ of T satisfies λ ≤ ‖T‖ ≤ ‖PV ‖‖PW‖ ≤ 1. Hence we get the
upper estimate

(3.12) trace(T ) ≤ rank(T ) ≤ dimW ≤ |X ∩BN+Nε(g)|.
To obtain a lower bound note that {eυ : υ ∈ Y ∩ BN(g)} is a Riesz basis for V
and its dual Riesz basis in V is given by {PV ẽυ : υ ∈ Y ∩ BN(g)}. From the
biorthogonality we get

trace(T ) =
∑

υ∈Y ∩BN (g)

〈Teυ, PV ẽυ〉 =
∑

υ∈Y ∩BN (g)

〈PV Teυ, ẽυ〉

=
∑

υ∈Y ∩BN (g)

〈eυ, ẽυ〉+
∑

υ∈Y ∩BN (g)

〈(PV PW − I)eυ, ẽυ〉

≥ |Y ∩BN(g)| −
∑

υ∈Y ∩BN (g)

|〈(PV PW − I)eυ, ẽυ〉|.(3.13)

We further estimate each term as

|〈(PV PW − I)eυ, ẽυ〉| ≤ ‖(PV PW − I)eυ‖‖ẽυ‖
≤ C · ‖PV PW eυ − PV eυ‖
≤ C · ‖PW eυ − eυ‖
= C · dist(eυ, span{f̃χ : χ ∈ X ∩BN+Nε(g)}).

Since BNε(υ) ⊆ BN+Nε(g) for υ ∈ Y ∩BN(g) and thus

span{f̃χ : χ ∈ X ∩BNε(υ)} ⊆ span{f̃χ : χ ∈ X ∩BN+Nε(g)},
the Homogeneous Approximation Property implies that

|〈(PV PW − I)eυ, ẽυ〉| ≤ C · dist(eυ, span{f̃χ : χ ∈ X ∩BNε(υ)})

< C
ε

C
= ε.(3.14)

Combining the estimates (3.13) and (3.14) we obtain the inequality

(3.15) trace(T ) ≥ |Y ∩BN(g)| −
∑

υ∈Y ∩BN (g)

ε = (1− ε)|Y ∩BN(g)|.

Putting things together we find that

(1− ε)|Y ∩BN(g)| ≤ trace(T ) ≤ |X ∩BN+Nε(g)|
and, as a consequence,

(3.16) (1− ε) |Y ∩BN(g)|
NDλ(B1(e))

≤ |(X ∩BN+Nε(g))|
(N +Nε)Dλ(B1(e))

(N +Nε)
D

ND
.

Since g ∈ G was arbitrary, we get

(1− ε) min
g∈G

|Y ∩BN(g)|
NDλ(B1(e))

≤ min
g∈G

|(X ∩BN+Nε(g))|
(N +Nε)Dλ(B1(e))

(N +Nε)
D

ND
.
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Taking the lower limit now yields

(1− ε)D−(Y ) ≤ D−(X).

Since ε > 0 was arbitrary, we obtain

D−(Y ) ≤ D−(X).

Taking the maximum over all g ∈ G and the upper limit, we similary get

D+(Y ) ≤ D+(X).

�

To derive efficient necessary density bounds one usually compares with the density
of a Riesz basis, which is both a Riesz sequence and a frame. If the Riesz basis
is additionally indexed by a (quasi-) lattice, then its density can be computed ac-
cording to Proposition 2.7 and thereby yields a concrete threshold.

Corollary 3.14. Let X be a relatively separated subset of G. Let Γ be a quasi-
lattice in G with complement U and assume that E = {eγ}γ∈Γ is a Riesz basis in
H.

(a) If F = {fχ}χ∈X is a frame for H that satisfies the Homogeneous Approxi-
mation Property with respect to E, then

D−(X) ≥ 1

λ(U)
.

(b) If F = {fχ}χ∈X is a Riesz sequence in H such that E satisfies the Homo-
geneous Approximation Property with respect to F , then

D+(X) ≤ 1

λ(U)
.





CHAPTER 4

Sampling and Interpolation in Shift-Invariant Spaces

The sampling and interpolation problem for bandlimited functions on R
n is at

the origin of Beurling’s definition of density [7], [35]. Beurling’s density has also
been used to derive necessary density conditions in so-called shift-invariant spaces,
which can be seen as a generalization of the space of bandlimited functions [1].
Bandlimited functions have been studied in the more general context of stratified
Lie groups [23], [39], and only recently also generalizations of shift-invariant spaces
to certain nilpotent Lie groups were proposed [6], [14].
In this chapter we study shift-invariant spaces on homogeneous groups. As a first
application of the abstract Comparison Theorem in the previous chapter, we derive
necessary density conditions for sampling and interpolation in terms of the density
defined in Chapter 2. This is done via a translation of the sampling and interpola-
tion problem into a question of frames and Riesz sequences of reproducing kernels,
as in the theory on R

n [1], [2].

Throughout this chapter we assume that G is a homogeneous group that admits a
lattice Γ in G.

4.1. Definitions and Prerequisites

Given a lattice Γ ⊆ G and a so-called generator ϕ ∈ L2(G) we consider the shift-
invariant space of the form

V 2(Γ, ϕ) = {f =
∑
γ∈Γ

cγLγϕ : c = (cγ)γ∈Γ ∈ `2(Γ)},

where Lγf(x) = f(γ−1x) denotes the left translation operator.

Standard assumptions on the generator function are membership in the Wiener
Amalgam Space W (C,L1) and the so-called Riesz basis property.

We say that ϕ ∈ L2(G) has the Riesz basis property with respect to Γ if the set
of left translations {Lγϕ}γ∈Γ forms a Riesz sequence in L2(G), i.e., if there exist
constants A,B > 0 such that, for all c ∈ `2(Γ), we have

A‖c‖`2(Γ) ≤
∥∥∑
γ∈Γ

cγLγϕ
∥∥
L2(G)

≤ B‖c‖`2(Γ).

In the following we fix a lattice Γ in G with fundamental domain U and abbreviate
V 2(Γ, ϕ) by V 2(ϕ).

49
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On Rn, a well-known criterion for the Riesz basis property of a function ϕ ∈ L2(Rn)
is stated in the Fourier domain [2]. A set of translates {ϕ(· − k)}k∈Zn is a Riesz
sequence in L2(Rn) if and only if there exist constants A,B > 0 such that

A ≤
∑
k∈Zn
|ϕ̂(ξ + k)|2 ≤ B a.e. ξ.

For functions on nilpotent Lie groups the transition to the Fourier domain is more
complicated and involves the group Fourier transform and the Plancherel theory
for nilpotent Lie groups. In this direction, characterizations of the Riesz basis
property for functions on certain nilpotent Lie groups have been announced only
recently in [6], [14].

In the setting of homogeneous groups we can construct a suitable class of genera-
tors ϕ ∈ W (C,L1) that have the Riesz basis property in a more elementary way.

By Lemma 3.6, the system {Lγϕ}γ∈Γ is a Riesz sequence if and only if the associ-
ated Gram matrix G, given by Gνγ := 〈Lγϕ,Lνϕ〉, γ, ν ∈ Γ, is a bounded invertible
operator on `2(Γ).

The action of G on a sequence b ∈ `2(Γ) is

Gb(ν) =
∑
γ∈Γ

〈Lγϕ,Lνϕ〉b(γ)

=
∑
γ∈Γ

〈ϕ,Lγ−1νϕ〉b(γ)

= ‖ϕ‖2
L2(G)b(ν) + Tb(ν),(4.1)

where

Tb(ν) :=
∑
ν 6=γ∈Γ

〈ϕ,Lγ−1νϕ〉b(γ).

We want to use Schur’s test (Lemma 3.7) to estimate the operator norm of T . The
matrix entries of T are Tνγ = 〈ϕ,Lγ−1νϕ〉 for ν 6= γ and Tνν = 0. Thus we have to
estimate, for every ν ∈ Γ,

∑
ν 6=γ∈Γ

|〈ϕ,Lγ−1νϕ〉| =
∑
e 6=γ∈Γ

|〈ϕ,Lγϕ〉|(4.2)

=
∑
e 6=γ∈Γ

∣∣∣∣∫
G

ϕ(x)ϕ(γ−1x)dx

∣∣∣∣
=

∑
e 6=γ∈Γ

∣∣∣∣∫
G

ϕ(x)ϕ∗(x−1γ)dx

∣∣∣∣
=

∑
e 6=γ∈Γ

|ϕ ∗ ϕ∗(γ)| .
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If we take ϕ ∈ W (C,L1) such that

(i) ‖ϕ‖L2(G) = 1

and

(ii)
∑
e 6=γ∈Γ

|ϕ ∗ ϕ∗(γ)| < 1,

then Schur’s test (Lemma 3.7) implies that ‖T‖ < 1 and it follows from equation
(4.1) for the action of the Gram matrix G that

G = I + T, ‖T‖ < 1,

or equivalently,

‖G− I‖ < 1.

This gives the invertibility of the Gram matrix G and thereby the Riesz basis prop-
erty for ϕ.

To find a generator ϕ ∈ W (C,L1) that has the Riesz basis property we therefore
need to construct a function ϕ ∈ W (C,L1) that satisfies the properties (i) and
(ii). The idea is to take a sufficiently dilated version of some arbitrary normalized
function in W (C,L1).
For that let ψ ∈ W (C,L1) with ‖ψ‖L2(G) = 1. Denote by ψ#(γ) := supx∈γU |ψ(x)|
the local maximum function and let NU > 0 be such that U ⊆ BNU (e). Since
ψ ∈ W (C,L1) ⊆ L1(G) and G is unimodular, the function ψ∗ is also in L1(G).
Corollary 1.31 implies that ψ ∗ψ∗ ∈ W (C,L1) ∗L1(G) ⊆ W (C,L1), so we can find
some N > 2NU > 0 such that

(4.3)
∑

γ∈Γ\BN−NU (e)

(ψ ∗ ψ∗)#(γ) < 1.

Now let r > 0 such that

(4.4) δrγ /∈ BN(e) ∀γ ∈ Γ, γ 6= e.

Set ϕ := Drψ and Γ′ := δrΓ. The equations (1.23) and (1.24) imply that∑
e6=γ∈Γ

|ϕ ∗ ϕ∗(γ)| =
∑
e6=γ∈Γ

|Drψ ∗ (Drψ)∗(γ)|

=
∑
e6=γ∈Γ

|Drψ ∗Dr(ψ
∗)(γ)|

=
∑
e6=γ∈Γ

|ψ ∗ ψ∗(δrγ)|

=
∑

γ′∈Γ′\BN (e)

|ψ ∗ ψ∗(γ′)|(4.5)

≤
∑

ν∈Γ\BN−NU (e)

∑
γ′∈Γ′∩νU

|ψ ∗ ψ∗(γ′)|.
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If γ′, η′ ∈ Γ′ ∩ νU for some ν ∈ Γ, then γ′, η′ ∈ νU ⊆ νBNU (e) = BNU (ν) and thus

d(e, (γ′)−1η′) = d(γ′, η′) ≤ d(γ′, ν) + d(ν, η′) < 2NU < N.

Condition (4.4) now implies that (γ′)−1η′ = e and therefore γ′ = η′. In other words,
for every ν ∈ Γ the translate νU contains at most one element γ′ of Γ′.
We continue equation (4.5) and conclude that∑

e 6=γ∈Γ

|ϕ ∗ ϕ∗(γ)| ≤
∑

ν∈Γ\BN−NU (e)

∑
γ′∈Γ′∩νU

|ψ ∗ ψ∗(γ′)|

≤
∑

ν∈Γ\BN−NU (e)

sup
x∈νU
|ψ ∗ ψ∗(x)|

=
∑

ν∈Γ\BN−NU (e)

(ψ ∗ ψ∗)#(ν) < 1.

Finally we remark that ϕ = Drψ ∈ W (C,L1) by Lemma 1.28 (b).

Next we collect some elementary properties of shift-invariant spaces on G. These
results follow essentially like the corresponding statements for shift-invariant spaces
on R

n (compare, e.g., [2]).

Lemma 4.1. If ϕ ∈ W (C,L1) and c ∈ `2(Γ), then the function f =
∑

γ∈Γ cγLγϕ

belongs to W (C,L2) and

(4.6) ‖f‖W (C,`2) ≤ ‖c‖`2(Γ)‖ϕ‖W (C,`1).

Proof. Let f#(γ) := supx∈U |f(γx)| and ϕ#(γ) := supx∈U |ϕ(γx)| be the (left)
local maximum functions of f and ϕ. We have

f#(ν) = sup
x∈U
|f(νx)|

= sup
x∈U
|
∑
γ∈Γ

cγLγϕ(νx)|

≤
∑
γ∈Γ

|cγ| sup
x∈U
|ϕ(γ−1νx)|

=
∑
γ∈Γ

|cγ|ϕ#(γ−1ν) = (|c| ∗ ϕ#)(ν).

Now Young’s inequality implies that

‖|c| ∗ ϕ#‖`2(Γ) ≤ ‖c‖`2(Γ)‖ϕ#‖`1(Γ).

Hence

‖f‖W (L∞,`2) = ‖f#‖`2(Γ) ≤ ‖|c| ∗ ϕ#‖`2(Γ)

≤ ‖c‖`2(Γ)‖ϕ#‖`1(Γ) = ‖c‖`2(Γ)‖ϕ‖W (C,`1).
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To see that f =
∑

γ∈Γ cγLγ is continuous let σ : N→ Γ be an arbitrary enumeration
of Γ. Set

fN :=
N∑
n=1

cσ(n)Lσ(n)ϕ =
∑

γ∈σ({1,..,N})

cγLγϕ

and denote by

cN := c · 1σ({1,..,N})

the sequence with terms cN,γ = cγ if γ ∈ σ({1, .., N}) and cN,γ = 0 if γ /∈
σ({1, .., N}). By Lemma 1.29 and equation (4.6), it follows that

‖f − fN‖L∞(G) ≤ C‖f − fN‖W (C,`∞)

≤ C ′‖f − fN‖W (C,`2)

= C ′
∥∥∑
γ∈Γ

(cγ − cN,γ)Lγϕ
∥∥
W (C,`2)

≤ C ′′‖c− cN‖`2(Γ) → 0

as N →∞. Thus f is continuous as the uniform limit of the continuous functions
fN .

�

Corollary 4.2. Let ϕ ∈ W (C,L1), then

V 2(ϕ) ⊆ W (C,L2) ⊆ L2(G).

If ϕ additionally has the Riesz basis property, then, for all f ∈ V 2(ϕ), we have the
norm equivalence

‖f‖L2(G) � ‖c‖`2(Γ) � ‖f‖W (C,`2).

Proof. Recall from Lemma 1.29 that W (C,L2) ⊆ L2(G) with ‖f‖L2(G) ≤
C‖f‖W (C,`2). Lemma 4.1 now implies the inclusion V 2(ϕ) ⊆ W (C,L2) ⊆ L2(G).
If f =

∑
γ∈Γ cγLγϕ ∈ V 2(ϕ), then Lemma 4.1 and the Riesz basis property of ϕ

imply that

‖f‖L2(G) ≤ C‖f‖W (C,`2) ≤ C‖c‖`2(Γ)‖ϕ‖W (C,`1) ≤ C ′‖f‖L2(G)‖ϕ‖W (C,`1).

�

Lemma 4.3. Suppose that ϕ ∈ V 2(ϕ) has the Riesz basis property. Then there
exists a unique ϕ̃ ∈ V 2(ϕ), the so-called dual generator, such that 〈Lνϕ̃, Lγϕ〉 = δν,γ
for all γ, ν ∈ Γ. Consequently,

f =
∑
γ∈Γ

〈f, Lγϕ̃〉Lγϕ =
∑
γ∈Γ

〈f, Lγϕ〉Lγϕ̃

for all f ∈ V 2(ϕ) ({Lγϕ̃}γ∈Γ is the dual Riesz basis for {Lγϕ}γ∈Γ in V 2(ϕ)).
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Proof. Since {Lγϕ}γ∈Γ is a Riesz basis for V 2(ϕ), there exists a unique se-
quence {gν}ν∈Γ in V 2(ϕ) such that 〈gν , Lγϕ〉 = δν,γ = δν(γ) for all γ, ν ∈ Γ (Lemma
3.11).
Set ϕ̃ := ge ∈ V 2(ϕ), then, for all γ, ν ∈ Γ,

〈Lνϕ̃, Lγϕ〉 = 〈ϕ̃, Lν−1γϕ〉 = δe(ν
−1γ) = Lνδe(γ) = δν(γ).

By uniqueness of the dual Riesz basis, {gν}ν∈Γ = {Lγϕ̃}γ∈Γ.

�

In the following we additionally assume that the generator ϕ satisfies

(4.7) inf
x∈G

∑
γ∈Γ

|Lγϕ(x)|2 ≥ α > 0.

Condition (4.7) prevents pathological examples of spaces V 2(ϕ) where all functions
in V 2(ϕ) vanish simultaneously on some subset of G.

Lemma 4.4. If ϕ ∈ W (C,L1) satisfies condition (4.7), then there exists some
N > 0 such that, for every ν ∈ Γ,

(4.8) inf
x∈νU

∑
γ∈Γ∩BN (ν)

|Lγϕ(x)|2 ≥ α

2
=: α′ > 0.

Proof. Since ϕ ∈ W (C,L1), the local maximum function ϕ# defined by
ϕ#(γ) = supx∈U |ϕ(γx)| is in `1(Γ) ⊆ `2(Γ). So we can choose N > 0 such that

(4.9)
∑

γ∈Γ\BN (e)

ϕ#(γ)2 <
α

2
.

Let ν ∈ Γ be arbitrary and let x = νu ∈ νU . Then∑
γ∈Γ\BN (ν)

|Lγϕ(x)|2 =
∑

γ∈Γ\BN (ν)

|ϕ(γ−1νu)|2(4.10)

=
∑

γ∈Γ\BN (ν)

|ϕ((ν−1γ)−1u)|2

=
∑

η∈Γ\BN (e)

|ϕ(η−1u)|2

=
∑

η∈Γ\BN (e)

|ϕ(ηu)|2

≤
∑

η∈Γ\BN (e)

sup
y∈U
|ϕ(ηy)|2

=
∑

η∈Γ\BN (e)

ϕ#(γ)2 <
α

2
.
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By the assumption (4.7) and inequality (4.10) we therefore obtain that∑
γ∈Γ∩BN (ν)

|Lγϕ(x)|2 =
∑
γ∈Γ

|Lγϕ(x)|2 −
∑

γ∈Γ\BN (ν)

|Lγϕ(x)|2

≥ α− α

2
=
α

2
.

Since x ∈ νU was arbitrary, it follows that

inf
x∈νU

∑
γ∈Γ∩BN (ν)

|Lγϕ(x)|2 ≥ α

2
.

�

4.2. Sampling and Interpolation

Definition 4.5. (i) A set X ⊆ G is called a set of sampling for V 2(ϕ), if there
exist constants 0 < A ≤ B <∞ such that, for all f ∈ V 2(ϕ),

A‖f‖2 ≤
∑
χ∈X

|f(χ)|2 ≤ B‖f‖2.

(ii) A set X ⊆ G is called a set of interpolation for V 2(ϕ), if for every sequence
a = (aχ)χ∈X in `2(X) there exists a function f ∈ V 2(ϕ) such that f(χ) = aχ for
all χ ∈ X.

As in the theory of shift-invariant spaces on Rn, the space V 2(ϕ) turns out to be a
reproducing kernel Hilbert space, which allows a transition from sets of sampling
and interpolation to frames and Riesz sequences of reproducing kernels. Again
large parts of the theory can be conducted in analogy to the theory on Rn [1], [2].

Proposition 4.6. Let ϕ ∈ W (C,L1) and assume that ϕ has the Riesz basis property
and satisfies condition (4.7).
A subset X ⊆ G is relatively separated if and only if there exists a constant B > 0
such that

(4.11)
∑
χ∈X

|f(χ)|2 ≤ B‖f‖2
L2(G)

for all f ∈ V 2(ϕ).

Proof. (⇒) Since X is relatively separated, there are at most K sampling
points χ in each translate γU of U , so∑

χ∈X

|f(χ)|2 =
∑
γ∈Γ

∑
χ∈X∩γU

|f(χ)|2

≤
∑
γ∈Γ

K sup
x∈γU
|f(x)|2

= K
∑
γ∈Γ

sup
x∈U
|f(γx)|2 = K‖f‖2

W (C,`2).
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Now Corollary 4.2 implies that∑
χ∈X

|f(χ)|2 ≤ K‖f‖2
W (C,`2) ≤ K̃‖f‖2

L2(G).

(⇐) By Lemma 4.4, there exists some N > 0 such that, for every ν ∈ Γ,

(4.12) inf
x∈νU

∑
γ∈Γ∩BN (ν)

|Lγϕ(x)|2 ≥ α′ > 0.

Let n := |Γ ∩BN(e)| denote the number of lattice points in BN(e). For every
ν ∈ Γ,

|Γ ∩BN(ν)| = |νΓ ∩ νBN(e)| = |ν(Γ ∩BN(e))| = |Γ ∩BN(e)| = n.

Let B denote the constant in inequality (4.11). For arbitrary ν ∈ Γ we show that

(4.13) |X ∩ νU | ≤ Bn

α′
‖ϕ‖2

L2(G).

First we use inequality (4.11) for f = Lγϕ ∈ V 2(ϕ) to obtain that∑
χ∈X∩νU

|ϕ(γ−1χ)|2 ≤
∑
χ∈X

|ϕ(γ−1χ)|2 ≤ B‖Lγϕ‖2
L2(G) = B‖ϕ‖2

L2(G)

for every γ ∈ Γ. It follows that∑
γ∈Γ∩BN (ν)

∑
χ∈X∩νU

|ϕ(γ−1χ)|2 ≤
∑

γ∈Γ∩BN (ν)

B‖ϕ‖2
L2(G)(4.14)

= nB‖ϕ‖2
L2(G).

On the other hand, it follows from property (4.12) that∑
γ∈Γ∩BN (ν)

∑
χ∈X∩νU

|ϕ(γ−1χ)|2 =
∑

χ∈X∩νU

∑
γ∈Γ∩BN (ν)

|ϕ(γ−1χ)|2(4.15)

≥
∑

χ∈X∩νU

α′ = |X ∩ νU |α′.

Now the inequalities (4.14) and (4.15) combined yield the desired upper bound
(4.13). Since ν ∈ Γ was arbitrary,

max
ν∈Γ
|X ∩ νU | ≤ Bn

α′
‖ϕ‖2

L2(G).

Therefore X is relatively separated by Lemma 1.25.

�

A Hilbert space H of continuous functions on G is called a reproducing kernel
Hilbert space, if for every x ∈ G the point evaluation f 7→ f(x) is a bounded linear
functional on H.
The Riesz Representation Theorem then implies that for every x ∈ G there exists
a unique function Kx ∈ H satisfying f(x) = 〈f,Kx〉. The functions {Kx} ⊆ H are
called the reproducing kernels.
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Proposition 4.7. Let ϕ ∈ W (C,L1). Assume that ϕ has the Riesz basis property
and denote the dual generator by ϕ̃.

(a) The space V 2(ϕ) is a reproducing kernel Hilbert space.
(b) The kernel functions Kx, x ∈ G, are explicitly given by

(4.16) Kx =
∑
γ∈Γ

ϕ(γ−1x)Lγϕ̃.

(c) The map x 7→ Kx, G→ V 2(ϕ) is continuous.

Proof. (a) It follows from Proposition 4.6 applied to the set X = {x} that

|f(x)| ≤ C‖f‖L2(G)

for all f ∈ V 2(ϕ).

(b) Applying Proposition 4.6 to the set X = {γ−1x : γ ∈ Γ} we obtain that the
sequence (ϕ(γ−1x))γ∈Γ belongs to `2(Γ). It follows that the function

Kx :=
∑

γ∈Γ ϕ(γ−1x)Lγϕ̃ belongs to V 2(ϕ) and that, for f =
∑

ν∈Γ cνLνϕ ∈ V 2(ϕ),

〈f,Kx〉 =
〈∑
ν∈Γ

cγLνϕ,
∑
γ∈Γ

ϕ(γ−1x)Lγϕ̃
〉

=
∑
ν∈Γ

∑
γ∈Γ

cνϕ(γ−1x)〈Lνϕ,Lγϕ̃〉

=
∑
ν∈Γ

cνLνϕ(x) = f(x)

by the biorthogonality of {Lνϕ}ν∈Γ and {Lγϕ̃}γ∈Γ.

(c) Let x0 ∈ G and ε > 0 be arbitrary. We need to find some δ > 0 such that

‖Kx −Kx0‖L2(G) < ε

for all x ∈ Bδ(x0). Using the formula (4.16) for the kernel functions Kx we note
that

‖Kx −Kx0‖L2(G) =
∥∥∥∑
γ∈Γ

(ϕ(γ−1x)− ϕ(γ−1x0))Lγϕ̃
∥∥∥
L2(G)

(4.17)

≤ ‖ϕ̃‖L2(G)

∑
γ∈Γ

|ϕ(γ−1x)− ϕ(γ−1x0)|.

Since ϕ ∈ W (C,L1), there exists some N > 0 such that

(4.18)
∑

γ∈Γ\BN (e)

sup
u∈U
|ϕ(γu)| < ε

3‖ϕ̃‖2

.
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Consider the ball B1(x0) of radius one around x0. Since B1(x0) is relatively com-
pact, there exists some N0 > 0 such that

(4.19) B1(x0) ⊆
⋃

ν∈Γ∩BN0
(e)

νU.

Let R > N0 +N . For all ν ∈ BN0(e) it follows that

BN(e) ⊆ BR(ν−1).

Indeed, if x ∈ B1(x0) and ν ∈ BN0(e), then also ν−1 ∈ BN0(e) and thus

d(ν−1, x) ≤ d(ν−1, e) + d(e, x) ≤ N0 +N < R.

By inclusion (4.19), each x ∈ B1(x0) can be written as x = νu for some ν ∈ BN0(e),
u ∈ U . Thus ∑

γ∈Γ\BR(e)

|ϕ(γ−1x)| ≤
∑

γ∈Γ\BR(e)

sup
u∈U
|ϕ(γ−1νu)|(4.20)

=
∑

γ∈Γ\BR(e)

sup
u∈U
|ϕ((ν−1γ)−1u)|

=
∑

η∈Γ\BR(ν−1)

sup
u∈U
|ϕ(η−1u)|

≤
∑

η∈Γ\BN (e)

sup
u∈U
|ϕ(η−1u)| < ε

3‖ϕ̃‖2

.

We now continue our initial estimate by splitting the infinite sum in inequality
(4.17) into a finite part and a small remainder, that is,

‖Kx −Kx0‖2 ≤ ‖ϕ̃‖2

∑
γ∈Γ

|ϕ(γ−1x)− ϕ(γ−1x0)|

= ‖ϕ̃‖2

( ∑
γ∈Γ∩BR(e)

|ϕ(γ−1x)− ϕ(γ−1x0)|+
∑

γ∈Γ\BR(e)

|ϕ(γ−1x)− ϕ(γ−1x0)|
)

≤ ‖ϕ̃‖2

( ∑
γ∈Γ∩BR(e)

|ϕ(γ−1x)− ϕ(γ−1x0)|+
∑

γ∈Γ\BR(e)

|ϕ(γ−1x)|+
∑

γ∈Γ\BR(e)

|ϕ(γ−1x0)|
)

<
2ε

3
+ ‖ϕ̃‖2

∑
γ∈Γ∩BR(e)

|ϕ(γ−1x)− ϕ(γ−1x0)|,

where the last inequality follows from the above estimate (4.20). Since the generator
ϕ is continuous, we can choose 0 < δ < 1 such that∑

γ∈Γ∩BR(e)

|ϕ(γ−1x)− ϕ(γ−1x0)| < ε

3‖ϕ̃‖2

for all x ∈ Bδ(x0). Putting things together we finally conclude that

‖Kx −Kx0‖2 < ε

for all x ∈ Bδ(x0).
�
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With the notion of reproducing kernels we can restate Proposition 4.6 as follows.

Corollary 4.8. Let ϕ ∈ W (C,L1) and assume that ϕ has the Riesz basis property
and satisfies condition (4.7). A subset X ⊆ G is relatively separated if and only if
the associated family K = {Kχ}χ∈X of reproducing kernels is a Bessel sequence in
V 2(ϕ).

Proof. Since f(χ) = 〈f,Kχ〉 for all χ ∈ X, the inequality (4.11) in Proposition
4.6 is precisely the Bessel condition for K = {Kχ}χ∈X .

�

Proposition 4.9. Let ϕ ∈ W (C,L1) and assume that ϕ has the Riesz basis prop-
erty. If a subset X ⊆ G is a set of interpolation for V 2(ϕ), then X is relatively
separated.

Proof. Since f(χ) = 〈f,Kχ〉 for all χ ∈ X, a subset X ⊆ G is a set of
interpolation for V 2(ϕ) if and only if the family K = {Kχ}χ∈X is a Riesz-Fischer
sequence in V 2(ϕ) (compare Definition 4.5 (ii) and Definition 3.3). By Lemma
3.4, the property of K = {Kχ}χ∈X forming a Riesz-Fischer sequence in V 2(ϕ) is
equivalent to the existence of a constant A > 0 such that the lower Riesz inequality

(4.21) A‖c‖2 ≤
∥∥∥∑
χ∈X

cχKχ

∥∥∥2

L2(G)

holds for every finite sequence c = (cχ)χ∈X . In particular, if X is a set of interpo-
lation for V 2(ϕ), then

(4.22) ‖Kχ −Kχ′‖L2(G) ≥ A
1
2

√
2

for all χ 6= χ′ ∈ X. By the continuity of the map x 7→ Kx, G→ V 2(ϕ) (Proposition
4.7 (c)), it follows that d(χ, χ′) ≥ δ for some δ > 0. Thus X is relatively separated.

�

Furthermore, we can also translate the properties of X being a set of sampling
or interpolation into statements about the associated family K = {Kχ}χ∈X of
reproducing kernels.

Proposition 4.10. Let ϕ ∈ W (C,L1) and assume that ϕ has the Riesz basis prop-
erty. Let K = {Kχ}χ∈X be the family of reproducing kernels associated to a subset
X of G.

(a) The set X is a set of sampling for V 2(ϕ) if and only if the family
K = {Kχ}χ∈X is a frame for V 2(ϕ).

(b) The set X is a set of interpolation for V 2(ϕ) if and only if the family
K = {Kχ}χ∈X is a Riesz sequence in V 2(ϕ).
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Proof. (a) follows directly from the definitions, because f(χ) = 〈f,Kχ〉 for
χ ∈ X.

(b) As already noted in the previous proof, a subset X ⊆ G is a set of interpolation
for V 2(ϕ) if and only if the family K = {Kχ}χ∈X obeys the lower Riesz inequality.
Proposition 4.9 in this case implies that the set X is relatively separated, a property
which further implies the Bessel condition for the associated family K = {Kχ}χ∈X
of reproducing kernels (Corollary 4.8). But the Bessel condition for K = {Kχ}χ∈X
is equivalent to the upper Riesz inequality by Lemma 3.2. Thus the assertion
follows.

�

4.3. Homogeneous Approximation Property and Density

Now that we have converted the sampling and interpolation problem into a ques-
tion about frames and Riesz sequences indexed by discrete subsets of G, we want to
employ the abstract Comparison Theorem from Chapter 3 (Theorem 3.13) to derive
necessary density conditions for sampling and interpolation. To meet the assump-
tions made in Theorem 3.13 we need to establish the Homogeneous Approximation
Property.

Proposition 4.11 (Homogeneous Approximation Property of E). Let ϕ ∈ W (C,L1)
and suppose that the set of left translates E = {Lγϕ}γ∈Γ forms a Riesz basis for

V 2(ϕ) with dual Riesz basis Ẽ = {Lγϕ̃}γ∈Γ. Let K = {Kχ}χ∈X be a set of reproduc-
ing kernels in V 2(ϕ). Then E has the Homogeneous Approximation Property with
respect to K, that is, for every ε > 0 there is an Nε > 0 such that for each χ ∈ X
we have

dist(Kχ, span{Lγϕ̃ : γ ∈ Γ ∩BNε(χ)}) < ε.

Proof. Since ϕ ∈ W (C,L1), the (left) local maximum function ϕ# defined by
ϕ#(γ) = supx∈U |ϕ(γx)| is in `1(Γ) ⊆ `2(Γ).
Let NU > 0 be such that U ⊆ BNU (e). Given ε > 0, choose Nε > NU > 0 such
that ∑

γ∈Γ\BNε−NU (e)

ϕ#(γ)2 < Aε2,

where A is the lower frame bound for E = {Lγϕ}γ∈Γ.

For each χ ∈ X we have the expansion

Kχ =
∑
γ∈Γ

〈Kχ, Lγϕ〉Lγϕ̃.
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Therefore

dist(Kχ, span{Lγϕ̃ : γ ∈ Γ ∩BNε(χ)})2 ≤
∥∥∥Kχ −

∑
γ∈Γ∩BNε (χ)

〈Kχ, Lγϕ〉Lγϕ̃
∥∥∥2

L2(G)

=
∥∥∥ ∑
γ∈Γ\BNε (χ)

〈Kχ, Lγϕ〉Lγϕ̃
∥∥∥2

L2(G)

≤ 1

A

∑
γ∈Γ\BNε (χ)

|〈Kχ, Lγϕ〉|2

=
1

A

∑
γ∈Γ\BNε (χ)

|ϕ(γ−1χ)|2.(4.23)

Since Γ is a lattice with fundamental domain U , we can assign to each χ ∈ X a
unique element νχ ∈ Γ such that χ ∈ νχU .
Recall that νχU ⊆ νχBNU (e) = BNU (νχ), so χ ∈ BNU (νχ). Thus, for every N > NU ,

BN−NU (νχ) ⊆ BN(χ)

and consequently

Γ\BNε(χ) ⊆ Γ\BNε−NU (νχ).

Now continue the above estimate (4.23) as follows,

dist(Kχ, span{Lγϕ̃ : γ ∈ Γ ∩BNε(χ)})2 ≤ 1

A

∑
γ∈Γ\BNε (χ)

|ϕ(γ−1χ)|2

≤ 1

A

∑
γ∈Γ\BNε−NU (νχ)

|ϕ(γ−1χ)|2

≤ 1

A

∑
γ∈Γ\BNε−NU (νχ)

ϕ#(γ−1νχ)2

=
1

A

∑
γ∈Γ\(νχ·BNε−NU (e))

ϕ#((ν−1
χ γ)−1)2

=
1

A

∑
η∈Γ\BNε−NU (e)

ϕ#(η−1)2

=
1

A

∑
η∈Γ\BNε−NU (e)

ϕ#(η)2 < ε.

�
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If the set K = {Kχ}χ∈X of reproducing kernels forms a frame for V 2(ϕ), then we
may similarly derive the Homogeneous Approximation Property of K with respect
to E .

Proposition 4.12 (Homogeneous Approximation Property ofK). Let ϕ ∈ W (C,L1)
and suppose that ϕ satisfies condition (4.7). Further suppose that the set of left
translates E = {Lγϕ}γ∈Γ forms a Riesz basis for V 2(ϕ).
If the set of reproducing kernels K = {Kχ}χ∈X is a frame for V 2(ϕ) with dual frame

{K̃χ}χ∈X , then K has the Homogeneous Approximation Property with respect to E,
that is, for every ε > 0 there is an Nε > 0 such that for each γ ∈ Γ we have

dist(Lγϕ, span{K̃χ : χ ∈ X ∩BNε(γ)}) < ε.

Proof. By Corollary 4.8, the assumption that the family K = {Kχ}χ∈X is a
frame for V 2(ϕ) implies that the index set X ⊆ G is relatively separated. Thus

max
γ∈Γ
|X ∩ γU | =: K <∞.

Since ϕ ∈ W (C,L1), the (left) local maximum function ϕ# defined by
ϕ#(γ) = supx∈U |ϕ(γx)| is in `1(Γ) ⊆ `2(Γ). Let NU > 0 be such that U ⊆ BNU (e).
Given ε > 0, choose Nε > NU > 0 such that

∑
γ∈Γ\BNε−NU (e)

ϕ#(γ)2 <
Aε2

K
,

where A is the lower frame bound for the frame of reproducing kernels {Kχ}χ∈X .

For each γ ∈ Γ we have the frame expansion

Lγϕ =
∑
χ∈X

〈Lγϕ,Kχ〉K̃χ =
∑
χ∈X

ϕ(γ−1χ)K̃χ.
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Therefore

dist(Lγϕ, span{K̃χ : χ ∈ X ∩BNε(γ)})2 ≤
∥∥∥Lγϕ− ∑

χ∈X∩BNε (γ)

〈Lγϕ,Kχ〉K̃χ

∥∥∥2

L2(G)

=
∥∥∥ ∑
χ∈X\BNε (γ)

〈Lγϕ,Kχ〉K̃χ

∥∥∥2

L2(G)

≤ 1

A

∑
χ∈X\BNε (γ)

|〈Lγϕ,Kχ〉|2

≤ 1

A

∑
ν∈Γ\BNε−NU (γ)

∑
χ∈X∩νU

|ϕ(γ−1χ)|2

≤ K

A

∑
ν∈Γ\BNε−NU (γ)

ϕ#(γ−1ν)2

=
K

A

∑
η∈Γ\BNε−NU (e)

ϕ#(η)2 < ε2.

�

Corollary 4.13. Let ϕ ∈ W (C,L1) and assume that ϕ has the Riesz basis property
and satisfies condition (4.7).

(a) If X ⊆ G is a set of interpolation for V 2(ϕ), then

D+(X) ≤ 1

λ(U)
.

(b) If X ⊆ G is a set of sampling for V 2(ϕ), then

D−(X) ≥ 1

λ(U)
.

Proof. Let K = {Kχ}χ∈X be the family of reproducing kernels correspond-
ing to X and let E = {Lγϕ}γ∈Γ be the Riesz basis of left translates spanning V 2(ϕ).

(a) By Proposition 4.11, E has the Homogeneous Approximation Property with
respect to K. Since X ⊆ G is a set of interpolation for V 2(ϕ), the family
K = {Kχ}χ∈X is a Riesz sequence in V 2(ϕ) (Proposition 4.10). Therefore the Com-
parison Theorem (Theorem 3.13) applied to the frame E and the Riesz sequence K
implies that

D+(X) ≤ D+(Γ) =
1

λ(U)
.
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(b) If X ⊆ G is a set of sampling for V 2(ϕ), then the family K of reproducing
kernels is a frame for V 2(ϕ) (Proposition 4.10). In this case K has the Homo-
geneous Approximation Property with respect to the Riesz basis E (Proposition
4.12). Again the Comparison Theorem (Theorem 3.13), now applied to compare
the density of the frame K to that of the Riesz basis E , gives the desired result

D−(X) ≥ D−(Γ) =
1

λ(U)
.

�



CHAPTER 5

Coherent Frames

The most prominent examples of frames in applications, the Gabor frames and
wavelet frames, are generated from a single vector under the action of a square-
integrable (projective) group representation of a locally compact group.

Generally, frames that arise as subsets of the orbit of a (projective) square-integrable
group representation are called coherent frames [19].

The existence of coherent frames for (square-) integrable group representations of
locally compact groups was settled in the context of general coorbit theory [26]
(see also [10] for a version with projective representations).
A Homogeneous Approximation Property for frames in the orbit of square-integrable
unitary representations was established in [28]. However, on general locally com-
pact groups a suitable notion of density to derive a theorem for the comparison of
the densities of frames and Riesz sequences is missing.
In the realm of homogeneous groups we can work with the density defined in Chap-
ter 2 and employ the abstract Comparison Theorem derived in Chapter 3.

5.1. Definitions and Prerequisites

First we collect some necessary definitions and prerequisites about projective rep-
resentations [36], [47].
Let G be a homogeneous group. Let H be a separable Hilbert space and denote
by U(H) the group of unitary operators on H.

Definition 5.1. A (continuous) projective representation of G on H is a strongly
continuous mapping π : G→ U(H) such that

(i) π(e) = I ;

(ii) There exists a continuous function µ : G×G→ T such that

π(xy) = µ(x, y)π(x)π(y)

for all x, y ∈ G.

The mapping π is called a unitary representation of G on H if

µ(x, y) = 1

65
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for all x, y ∈ G.

We will always deal with continuous projective representations and simply call
them projective representations.

The function µ, which is often called the multiplier of π, must satisfy

(a) µ(x, e) = µ(e, x) = 1 for all x ∈ G,

(b) µ(x, yz)µ(y, z) = µ(xy, z)µ(x, y) for all x, y, z ∈ G.

It follows from (a) and (b), by taking y = x−1, z = x, that

(c) µ(x, x−1) = µ(x−1, x) for all x ∈ G.

Further note that

(5.1) π(x)∗ = π(x)−1 = µ(x, x−1)π(x−1)

for every x ∈ G, because π(x) is unitary and, by (c),

I = π(e) = π(xx−1) = µ(x, x−1)π(x)π(x−1),

I = π(e) = π(x−1x) = µ(x, x−1)π(x−1)π(x).

Definition 5.2. A linear subspace W of H is said to be π-invariant if π(x)W ⊆ W
for all x ∈ G. A projective representation π of G on H is called irreducible if the
only closed π-invariant subspaces are {0} and H.

A projective representation π of G on H is square integrable, if for every f, g ∈ H
the representation coefficient Vgf : G→ C, defined by

Vgf(x) := 〈f, π(x)g〉,
is in L2(G).

Note that for every f, g ∈ H the representation coefficient Vgf is a continuous
function on G, because the map π : G→ U(H) is strongly continuous.

Definition 5.3. Two projective representations π1, π2 of G on Hilbert spaces H1,
H2 respectively are called projectively equivalent if there exists a unitary operator
U : H1 → H2 and a function ν : G→ T such that, for all x ∈ G,

(5.2) π2(x)U = ν(x)Uπ1(x).

Two unitary representations π1, π2 of G on Hilbert spaces H1, H2 are called uni-
tarily equivalent if equation (5.2) holds with ν(x) = 1 for all x ∈ G.

The representation coefficient obeys the following covariance property.
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Lemma 5.4. Let π be a projective representation of G with multiplier µ on a
Hilbert space H. Then

(5.3) Vg(π(y)f)(x) = µ(y, y−1x)Ly(Vgf)(x)

for all x, y ∈ G and f, g ∈ H.

Proof. Let x, y ∈ G and f, g ∈ H. Since π(y)∗ = π(y)−1 = µ(y, y−1)π(y−1),
we calculate

Vg(π(y)f)(x) = 〈π(y)f, π(x)g〉
= 〈f, π(y)−1π(x)g〉
= 〈f, µ(y, y−1)π(y−1)π(x)g〉
= 〈f, µ(y, y−1)µ(y−1, x)π(y−1x)g〉
= µ(y, y−1)µ(y−1, x)〈f, π(y−1x)g〉
= µ(y, y−1)µ(y−1, x)Vgf(y−1x)

= µ(y, y−1)µ(y−1, x)Ly(Vgf)(x).(5.4)

Using the properties (a) and (b) of the multiplier µ we get

µ(y, y−1) = µ(e, x)µ(y, y−1) = µ(yy−1, x)µ(y, y−1) = µ(y, y−1x)µ(y−1, x).

Therefore we can simplify equation (5.4) to

Vg(π(y)f)(x) = µ(y, y−1x)Ly(Vgf)(x).

�

We single out the subspace of H that is mapped into the space W (C,L2) under Vg.

Definition 5.5. Let π be a square-integrable projective representation of G on a
Hilbert space H. Define

N := {f ∈ H : Vgf ∈ W (C,L2) for all g ∈ H}.

Lemma 5.6. Let π be a square-integrable irreducible projective representation of
G on a Hilbert space H. The set N forms a dense subspace of H.

Proof. We show that N is a non-trivial π-invariant subspace of H. The irre-
ducibility of π then implies that N is a dense subspace of H.

Let 0 6= ϕ ∈ Cc(G) and 0 6= f ∈ H be arbitrary. Similar to a construction in [20]
we set

f ′ := π(ϕ)f =

∫
G

ϕ(y)π(y)fdy.
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We claim that Vgf
′ belongs to W (C,L2) for all g ∈ H, that is, f ′ ∈ N , and so

N 6= {0}.

From the definitions and the covariance property of Vg (Lemma 5.4) it follows that,
for arbitrary g ∈ H,

Vgf
′(x) = 〈π(ϕ)f, π(x)g〉(5.5)

=

∫
G

ϕ(y)〈π(y)f, π(x)g〉dy

=

∫
G

ϕ(y)Vg(π(y)f)(x)dy

=

∫
G

ϕ(y)Vgf(y−1x)µ(y, y−1x)dy.

Then

|Vgf ′(x)| =

∣∣∣∣∫
G

ϕ(y)Vgf(y−1x)µ(y, y−1x)dy

∣∣∣∣(5.6)

≤
∫
G

|ϕ(y)|
∣∣Vgf(y−1x)

∣∣ dy
= (|ϕ| ∗ |Vgf |) (x).

Since π is square integrable, i.e., Vgf ∈ L2(G), and ϕ ∈ Cc(G) ⊆ W (L∞, L1), it
follows from Corollary 1.31 that

|ϕ| ∗ |Vgf | ∈ W (L∞, L1) ∗ L2(G) ⊆ W (L∞, L2).

By equation (5.6), |Vgf ′| ≤ |ϕ| ∗ |Vgf | ∈ W (L∞, L2). Since Vgf
′ is continuous,

Vgf
′ ∈ W (C,L2). Since g ∈ H was arbitrary, f ′ ∈ N . Thus N 6= {0}.

To see that N is π-invariant, let f ∈ N be arbitrary. We need to show that
π(y)f ∈ N for all y ∈ G. So for arbitrary g ∈ H and y ∈ G we need to show that
Vg(π(y)f) ∈ W (C,L2). By Lemma 5.4 we have, for x ∈ G,

Vg(π(y)f)(x) = µ(y, y−1x)Ly(Vgf)(x)

and therefore

|Vg(π(y)f)| = |Ly(Vgf)|.

Since Vgf ∈ W (C,L2) and W (C,L2) is invariant under left translation (Lemma
1.28 (a)), it follows that also Vg(π(y)f) ∈ W (C,L2), that is, π(y)f ∈ N .

�
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5.2. Homogeneous Approximation Property and Density

Coherent Bessel sequences are indexed by relatively separated sets.

Lemma 5.7. Let π be a square-integrable irreducible projective representation of
G on a separable Hilbert space H. If 0 6= g ∈ H and X ⊆ G are such that
G = {π(χ)g : χ ∈ X} is a Bessel sequence in H, then the set X is relatively
separated.

Proof. The proof is similar to the second part of the proof of Proposition 4.6.
Choose some f ∈ H with ‖f‖H = 1. Note that ‖π(y)f‖H = 1 for all y ∈ G and
recall from Lemma 5.4 that

|〈π(y)f, π(χ)g〉| = |〈f, π(y−1χ)g〉| = |Vgf(y−1χ)|.

The representation coefficient Vgf is not identically zero and continuous on G, so
it must be bounded away from zero on a ball BR(a) for some R > 0 and a ∈ G,
that is,

(5.7) ε := inf
z∈BR(a)

|Vgf(z)| > 0.

We argue by contradiction and assume that X is not relatively separated. Then
for arbitrary n ∈ N there exists some g ∈ G such that

|X ∩BR(g)| ≥ n.

If χ ∈ BR(g) = gBR(e), then g−1χ ∈ BR(e) and hence ag−1χ ∈ BR(a). Therefore,

nε2 ≤
∑

χ∈X∩BR(g)

|Vgf(ag−1χ)|2 ≤
∑
χ∈X

|Vgf(ag−1χ)|2.(5.8)

On the other hand, if B denotes the Bessel bound for the system
G = {π(χ)g : χ ∈ X}, then∑

χ∈X

|Vgf(ag−1χ)|2 =
∑
χ∈X

|〈π(ga−1)f, π(χ)g〉|2(5.9)

≤ B‖π(ga−1)f‖2
H = B.

Since n ∈ N was arbitrary, the inequalities (5.8) and (5.9) combined yield a con-
tradiction.

�

Coherent frames possess some intrinsic Homogeneous Approximation Property as
was already noted by Gröchenig for unitary group representations and a special
class of atoms [28]. We provide a modification of his proof to our setting of projec-
tive representations of homogeneous groups and remove the assumption that was
imposed on the atom in [28].
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Proposition 5.8 (Homogeneous Approximation Property). Let π be a square-
integrable irreducible projective representation of G on a separable Hilbert space H.
Let g ∈ H and X ⊆ G be such that G = {π(χ)g : χ ∈ X} is a frame for H and
denote its dual frame by G̃ = {gχ : χ ∈ X}.
Then G possesses the Homogeneous Approximation Property, that is, for every
f ∈ H and ε > 0 there exists a constant N = N(f, ε) such that, for every x ∈ G,

dist
(
π(x)f, span{gχ : χ ∈ X ∩BN(x)}

)
< ε.

Proof. We first prove the Homogeneous Approximation Property for the dense
subspace N (Definition 5.5) and then extend to all of H by continuity.

Let f ∈ N be arbitrary. Let V be the symmetric relatively compact subset of G
used to define the local maximum function, that is,

f#(x) = sup
y∈xV
|f(y)|,

and let NV > 0 be such that V ⊆ BNV (e).

Since the index set X of the frame G = {π(χ)g : χ ∈ X} is automatically relatively
separated by Lemma 5.7, it follows from Lemma 1.24 that

C := sup
x∈G

∑
χ∈X

1χV (x) <∞.

By the definition of the subspace N , the representation coefficient Vgf belongs
to W (C,L2), put differently, (Vgf)# ∈ L2(G). So given ε > 0, we can choose
N = N(f, ε) such that

(5.10)

∫
G\BN−NV (e)

(Vgf)#(x)2dx <
Aλ(V )ε2

C
,

where A is the lower frame bound of the frame G.

For arbitrary y ∈ G consider the frame expansion of π(y)f with respect to the
frame G, that is,

π(y)f =
∑
χ∈X

〈π(y)f, π(χ)g〉gχ.

Then
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dist
(
π(y)f, span{gχ : χ ∈ X ∩BN(y)}

)2

≤
∥∥∥π(y)f −

∑
χ∈X∩BN (y)

〈π(y)f, π(χ)g〉gχ
∥∥∥2

=
∥∥∥ ∑
χ∈X\BN (y)

〈π(y)f, π(χ)g〉gχ
∥∥∥2

≤ 1

A

∑
χ∈X\BN (y)

|〈π(y)f, π(χ)g〉|2

=
1

A

∑
χ∈X\BN (y)

|〈f, π(y−1χ)g〉|2

=
1

A

∑
χ∈X\BN (y)

|Vgf(y−1χ)|2

=
1

A

∑
υ∈(y−1X)\BN (e)

|Vgf(υ)|2.

Note that the set y−1X = {y−1χ : χ ∈ X} is also relatively separated and

sup
x∈G

∑
υ∈y−1X

1υV (x) = sup
x∈G

∑
χ∈X

1y−1χV (x) = sup
x∈G

∑
χ∈X

1χV (x) = C.

Thus we may apply Lemma 1.32 and obtain, by the choice of N , that

dist
(
π(y)f, span{gχ : χ ∈ X ∩BN(y)}

)2

≤ 1

A

∑
υ∈y−1X\BN (e)

|Vgf(υ)|2

≤ C

Aλ(V )

∫
G\BN−NV (e)

(Vgf)#(x)2dx < ε2.

So the Homogeneous Approximation Property is established for f ∈ N .

Now let f ∈ H be arbitrary. Since N is dense in H (Lemma 5.6), we can choose

f̃ in N such that ‖f − f̃‖H < ε
2
. Take N := N(f, ε) to be the natural number

N(f̃ , ε
2
) that satisfies the Homogeneous Approximation Property for f̃ and ε

2
, that

is,

N := N(f, ε) := N(f̃ , ε
2
).
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With the temporary notation W := span{gχ : χ ∈ X ∩BN(y)} we get

dist
(
π(y)f,W

)
=
∣∣∣dist

(
π(y)f,W

)
− dist

(
π(y)f̃ ,W

)
+ dist

(
π(y)f̃ ,W

)∣∣∣
≤
∣∣∣dist

(
π(y)f,W

)
− dist

(
π(y)f̃ ,W

)∣∣∣+ dist
(
π(y)f̃ ,W

)
≤ ‖π(y)f − π(y)f̃‖H + dist

(
π(y)f̃ ,W

)
= ‖f − f̃‖H + dist

(
π(y)f̃ ,W

)
<
ε

2
+
ε

2
= ε,

because dist is continuous and π(y) is unitary.

�

Corollary 5.9. Let π be a square-integrable irreducible projective representation
of G on a separable Hilbert space H.
Let g ∈ H and X ⊆ G be such that G = {π(χ)g : χ ∈ X} is a frame for H and let
φ ∈ H and Y ⊆ G be such that E = {π(υ)φ : υ ∈ Y } is a Riesz sequence for H.
Then G has the Homogeneous Approximation Property with respect to E and

D−(Y ) ≤ D−(X) and D+(Y ) ≤ D+(X).

Proof. Given ε > 0, set Nε := N(φ, ε). Then, for all υ ∈ Y ,

dist
(
π(υ)φ, span{gχ : χ ∈ X ∩BNε(υ)}

)
< ε.

Thus G has the Homogeneous Approximation Property with respect to E in the
sense of Definition 3.12. By the Comparison Theorem 3.13 it now follows that

D−(Y ) ≤ D−(X) and D+(Y ) ≤ D+(X).

�

5.3. Examples

Some words about the assumptions on the representations are in order. For a
(projective) representation π of a unimodular group G on a Hilbert space H the
existence of a ‘well-spread’ subset X ⊆ G and an atom g ∈ H such that the system
{π(χ)g : χ ∈ X} is a frame for H implies that the representation π has to be
square-integrable (see, e.g., [4]).
However, for a connected and simply connected nilpotent Lie group N no irre-
ducible unitary representation π can be square-integrable. If Z is the center of N ,
then it follows from Schur’s lemma (see, e.g., [15], p.130) that

π|Z = χI

for some one-dimensional representation χ : Z → T, called the central character.
For 0 6= f, g ∈ H and z ∈ Z, x ∈ N we then have

|〈f, π(zx)g〉| = |χ(z)||〈f, π(x)g〉| = |〈f, π(x)g〉|,(5.11)
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so the representation coefficient Vgf is constant on Z-cosets. Since Z ∼= R
k for

some k ∈ N, the representation coefficient Vgf is not in L2(N).

Nevertheless one can still hope to find projective square-integrable representations
of connected and simply connected nilpotent Lie groups.

In the classical representation theory of nilpotent Lie groups it is customary to
extend the notion of square-integrability in the following way [37].

Definition 5.10. An irreducible unitary representation π of N on H is said to
be square integrable modulo the center Z, if for every f, g ∈ H the function |Vgf |,
which is constant on Z-cosets by equation (5.11), is in L2(N/Z).

Furthermore, every unitary representation π of N gives rise to a projective repre-
sentation of N/Z in a natural way.

Let q : N → N/Z denote the quotient map, and for x ∈ N let ẋ = q(x) = xZ denote
the left coset. Choose a (continuous) section s for q, that is, a map s : N/Z → N
such that q ◦ s = idN/Z .

Lemma 5.11. If π is a unitary representation of N on a Hilbert space H, then the
map

(5.12) π̃ : N/Z → U(H), π̃(ẋ) := π(s(ẋ))

is a projective representation of N/Z on H.

Proof. Define

ζ := ζs : N → Z, ζ(x) := s(ẋ)−1x.

Then every x ∈ N can be written as x = s(ẋ)ζ(x) ∈ s(N/Z) · Z.
It follows that

s( ˙(xy)) = xyζ(xy)−1 = s(ẋ)s(ẏ)ζ(x)ζ(y)ζ(xy)−1.(5.13)

Therefore

π̃(ẋẏ) = π̃( ˙(xy)) = π(s( ˙(xy)))

= π(s(ẋ)s(ẏ)ζ(x)ζ(y)ζ(xy)−1)

= χ(ζ(x)ζ(y)ζ(xy)−1)π(s(ẋ))π(s(ẏ))

= χ(ζ(x)ζ(y)ζ(xy)−1)π̃(ẋ)π̃(ẏ).

So π̃ is a (continuous) projective representation of N/Z with multiplier

µ(ẋ, ẏ) = χ(ζ(x)ζ(y)ζ(xy)−1).

�



74 5. COHERENT FRAMES

Furthermore, one can show that different choices of the section yield projectively
equivalent projective representations (see, e.g., [3]).

Note that unitary representations of a connected and simply connected nilpotent
Lie group N that are square integrable modulo the center Z yield square-integrable
projective representations of the group N/Z, which is again a connected and simply
connected nilpotent Lie group.
Thus we can resort to the well-understood representation theory of nilpotent Lie
groups to find suitable examples for our analysis. The irreducible unitary repre-
sentations of nilpotent Lie groups are classified by Kirillov theory [13], those which
are square-integrable modulo the center are characterized by the results of Moore
and Wolf [37].
For nilpotent Lie groups of dimension up to 6 all the irreducible unitary represen-
tations were explicitly calculated by Nielsen and listed in [38] together with other
relevant data used for their construction.

In the following we select some suitable low-dimensional examples of nilpotent Lie
groups from [38] and derive necessary density conditions for the coherent frames
and Riesz sequences in the orbit of the associated square-integrable projective rep-
resentations.
Not surprisingly, we want to make use of the Homogeneous Approximation Prop-
erty for coherent frames (Proposition 5.8) and employ the resulting Comparison
Theorem for coherent systems (Corollary 5.9). To obtain good density thresholds
we need to compare with the density of a Riesz basis. So the main task is to find
a Riesz basis in the orbit of the given square-integrable projective representation
and calculate its density.

First we review the well-known example of (irregular) Gabor frames. These are
frames in the orbit of the projective representations of R2 that are deduced from
the Schrödinger representations of the Heisenberg group.

Example 1. Recall the Heisenberg algebra h = RX1 + RX2 + RX3 with non-
vanishing Lie bracket

[X3, X2] = X1.

The corresponding connected and simply connected Lie group H in Malcev coordi-
nates is R3 with the multiplication law

(x1, x2, x3)(y1, y2, y3) = (x1 + y1 + x3y2, x2 + y2, x3 + y3).

The irreducible unitary representations of H on L2(R) that are square-integrable
modulo the center Z = R× {0} × {0} are parametrized by ξ ∈ R, ξ 6= 0, and given
by
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πξ(x1, x2, x3)φ(t) = e2πiξ(x1−x2t)φ(t− x3).

The quotient group H/Z is isomorphic to R2 with the usual addition.
The representations πξ give rise to irreducible square-integrable projective repre-
sentations of R2 on L2(R), which we also call πξ, via

πξ(x1, x2)φ(t) = e−2πiξx1tφ(t− x2).

Lemma 5.12. Let φ = 1Q, where Q = [0, 1], and Xξ = 1
ξ
Z× Z.

The system {πξ(χ)φ : χ ∈ Xξ} forms an orthonormal basis for L2(R).

Proof. [11], p. 71, Example 3.5.3
�

Lemma 5.13. The set Xξ is a lattice in R
2 with density D(Xξ) = |ξ|.

Proof. This is well-known (and also follows from Proposition 2.7).
�

Since an orthonormal basis is both a frame and a Riesz sequence, Corollary 5.9
together with Lemma 5.12 and Lemma 5.13 implies the following density thresholds.

Corollary 5.14. Let g ∈ L2(R) and X ⊆ R
2.

(a) If the set {πξ(x)g : x ∈ X} is a frame for L2(R), then

D−(X) ≥ |ξ|.
(b) If the set {πξ(x)g : x ∈ X} is a Riesz sequence in L2(R), then

D+(X) ≤ |ξ|.
(c) If the set {πξ(x)g : x ∈ X} is a Riesz basis for L2(R), then

D−(X) = D+(X) = |ξ|.

The statement of Corollary 5.14 somehow differs from the density theory of Balan,
Casazza, Heil and Landau [5], where the critical density that separates frames from
Riesz sequences is always equal to one, regardless of the specific structure of the
investigated frames and Riesz sequences. This is due to the fact that in [5] a nor-
malized version of the Beurling density is used.
As an illustration of how the dependence of the critical density on the parameter of
the representation already implicitly occurs in the existing literature, we review the
connection of Gabor frames with Gaussian window to sampling and interpolation
in the Bargmann-Fock Spaces (confer, e.g., [27], p. 53).
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Sampling and Interpolation in the Bargmann-Fock Spaces.

Definition 5.15. For ξ > 0 the Bargmann-Fock space Fξ is defined to be the
Hilbert space

Fξ = {F entire on C : ξ

∫
C

|F (z)|2e−πξ|z|2dz <∞}

with inner product

〈F,G〉Fξ = ξ

∫
C

F (z)G(z)e−πξ|z|
2

dz.

Definition 5.16. The Bargmann transform of a function f on R is the function
Bξf on C defined by

Bξf(z) = (2ξ)
1
4

∫
R

f(t)e2πξtz−πξt2−πξ
2
z2dt.

The Bargmann transform Bξ is a unitary operator from L2(R) onto Fξ
(see, e.g., [49], p.222).

Let ϕξ(t) = (2ξ)
1
4 e−πξt

2
. If we write z = x2 + ix1, then

(5.14) 〈f, πξ(x1, x2)ϕξ〉 = eπiξx1x2Bξf(z)e−
πξ
2
|z|2 .

Indeed,

eπiξx1x2Bξf(z)e−
πξ
2
|z|2

= eπiξx1x2e−
πξ
2

(x21+x22)(2ξ)
1
4

∫
R

f(t)e2πξt(x2+ix1)−πξt2−πξ
2

(x2+ix1)2dt

= (2ξ)
1
4

∫
R

f(t)e2πiξx1te2πξx2te−πξt
2

e−πξx
2
2dt

= (2ξ)
1
4

∫
R

f(t)e2πiξx1te−πξ(t−x2)2dt

=

∫
R

f(t)e−2πiξx1tϕξ(t− x2)dt

= 〈f, πξ(x1, x2)ϕξ〉.
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Definition 5.17. (i) A set Λ of complex numbers is a set of sampling for Fξ if
there exist positive numbers A and B such that, for all F ∈ Fξ,

(5.15) A‖F‖2
Fξ ≤

∑
z∈Λ

|F (z)|2e−πξ|z|2 ≤ B‖F‖2
Fξ .

(ii) A set Λ of complex numbers is a set of interpolation for Fξ if for every sequence

a = (az)z∈Λ ∈ `2(Λ) there exists a function F ∈ Fξ such that e−
πξ
2
|z|2F (z) = az for

all z ∈ Λ.

As a consequence of Corollary 5.14 and equation (5.14) we recover Seip’s necessary
density conditions for sampling and interpolation in the Bargmann-Fock spaces
[41], [42].

Corollary 5.18. (a) If a subset Λ ⊆ C is a set of sampling for Fξ, then

D−(Λ) ≥ ξ.

(b) If a subset Λ ⊆ C is a set of interpolation for Fξ,, then

D+(Λ) ≤ ξ.

Proof. (a) Since the Bargmann transform Bξ : L2(R)→ Fξ is unitary, we can
rewrite the sampling inequality (5.15) as

A‖f‖2
L2(R) = A‖Bξf‖2

Fξ ≤
∑
z∈Λ

|Bξf(z)|2e−πξ|z|2 ≤ B‖Bξf‖2
Fξ = B‖f‖2

L2(R)

for all f ∈ L2(R). By equation (5.14), it follows that

A‖f‖2
L2(R) ≤

∑
x2+ix1∈Λ

|〈f, πξ(x1, x2)ϕξ〉|2 ≤ B‖f‖2
L2(R)

for all f ∈ L2(R). This means that the system {πξ(x1, x2)ϕξ : x2 + ix1 ∈ Λ} is a
frame for L2(R) and thus D−(Λ) ≥ ξ by Corollary 5.14.

(b) If Λ is a set of interpolation for Fξ, then we can similarly to (a) use the unitary
operator Bξ and equation (5.14) to obtain that for every sequence a = (az)z∈Λ ∈
`2(Λ) there exists a function f ∈ L2(R) such that

〈f, πξ(x1, x2)ϕξ〉 = az

for all z = x2 + ix1 ∈ Λ. In other words, the system {πξ(x1, x2)ϕξ : x2 + ix1 ∈ Λ}
is a Riesz-Fischer sequence in L2(R). By Lemma 3.4, there exists a constant A > 0
such that

‖πξ(x1, x2)ϕξ − πξ(x′1, x′2)ϕξ‖ ≥ A
√

2

for all z = x2 + ix1 6= z′ = x′2 + ix′1 ∈ Λ. Since πξ is strongly continuous, also

|z − z′| ≥ δ > 0
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for all z 6= z′ ∈ Λ and some δ > 0. Thus Λ is (relatively) separated. It follows that
the system {πξ(x1, x2)ϕξ : x2 + ix1 ∈ Λ} is a Bessel sequence in L2(R), because∑

x2+ix1∈Λ

|〈f, πξ(x1, x2)ϕξ〉|2 =
∑

x2+ix1∈Λ

|Vϕξf(x1, x2)|2

=
∑
γ∈Z2

∑
x2+ix1∈γ+[0,1]2

|Vϕξf(x1, x2)|2

≤
∑
γ∈Z2

C max
x2+ix1∈γ+[0,1]2

|Vϕξf(x1, x2)|2

= C‖Vϕξf‖2
W (C,L2)

≤ C ′‖Vϕξϕξ‖2
W (C,L1)‖f‖2

L2(R),

where the last inequality follows from [27], Theorem 12.2.1. We conclude that the
system {πξ(x1, x2)ϕξ : x2 + ix1 ∈ Λ} is a Riesz sequence in L2(R) (Lemma 3.2) and
thus D+(Λ) ≤ ξ by Corollary 5.14.

�

Whereas in the case of Gabor frames one can compare with the standard orthonor-
mal basis

{e2πikt
1[0,1](t− l) : k, l ∈ Z}

of L2(R), for other representations similar reference bases need to be constructed
first.
In the following examples we construct an explicit orthonormal basis in the orbit
of a given square-integrable projective representation. For that we use two elemen-
tary facts for a system of orthogonal functions {fχ}χ∈X in L2(Ω), where Ω is some
measure space:

(i) If {eυ}υ∈Y is an orthonormal basis in L2(Ω) and eυ ∈ span{fχ}χ∈X for all
υ ∈ Y , then also {fχ}χ∈X is an orthonormal basis in L2(Ω).

(ii) If {fχ}χ∈X is an orthonormal basis in L2(Ω) and m ∈ L∞(Ω), |m| = 1,
then the system {mfχ}χ∈X is also an orthonormal basis in L2(Ω).

Example 2. Consider the Lie algebra g5,3 = RX1 + · · · + RX5 from [38] with
non-vanishing Lie brackets

[X5, X4] = X3, [X5, X3] = X1, [X4, X2] = X1.
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The corresponding connected and simply connected Lie group G5,3 in Malcev co-
ordinates is R5 with the multiplication law

(x1, x2, x3, x4, x5)(y1, y2, y3, y4, y5)

= (x1 + y1 + x4y2 + x5y3 + 1
2
x2

5y4, x2 + y2, x3 + y3 + x5y4, x4 + y4, x5 + y5).

The irreducible unitary representations of G5,3 on L2(R2) that are square-integrable
modulo the center Z = R×{0}×{0}×{0}×{0} are parametrized by ξ ∈ R, ξ 6= 0,
and given by

πξ(x1, . . . , x5)φ(s, t) = e2πiξ(x1−x2x4+x4s−x3t+ 1
2
x4t2)φ(s− x2, t− x5).

We want to study the projective representations of the quotient group G5,3/Z
derived from the representations πξ as in Lemma 5.11.
By deleting the coordinates of the center in the above multiplication law for G5,3

and relabeling the remaining coordinates xj by xj−1, we are led to the multiplication
law

(x1, x2, x3, x4)(y1, y2, y3, y4) = (x1 + y1, x2 + y2 + x4y3, x3 + y3, x4 + y4)

of the group R× H, which is isomorphic to the quotient group G5,3/Z.

The unitary representations πξ thus give rise to square-integrable projective repre-
sentations of R× H on L2(R2), which we also call πξ, via

πξ(x1, x2, x3, x4)φ(s, t) = e2πiξ(−x1x3+x3s−x2t+ 1
2
x3t2)φ(s− x1, t− x4).

Because of projective equivalence, we may for brevity omit the occurring phase
factor and work in the following with the projective representations

πξ(x1, x2, x3, x4)φ(s, t) = e2πiξ(x3s−x2t+ 1
2
x3t2)φ(s− x1, t− x4).

Lemma 5.19. Let φ = 1Q, where Q = [0, 1]2, and Xξ = Z× 1
ξ
Z× 1

ξ
Z× Z.

The system {πξ(χ)φ : χ ∈ Xξ} forms an orthonormal basis for L2(R2).

Proof. First we show the orthogonality.
Let χ = (k, 1

ξ
l, 1
ξ
m,n) ∈ Xξ, χ

′ = (k′, 1
ξ
l′, 1

ξ
m′, n′) ∈ Xξ. Then
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〈πξ(χ)φ, πξ(χ
′)φ〉 =

∫
R

∫
R

πξ(χ)φ(s, t)πξ(χ′)φ(s, t)dsdt

=

∫
R

∫
R

e2πiξ( 1
ξ
m− 1

ξ
m′)se2πiξ( 1

ξ
l′− 1

ξ
l)teπiξ(

1
ξ
m− 1

ξ
m′)t2

· 1Q(s− k, t− n)1Q(s− k′, t− n′)dsdt

= δk,k′δn,n′

∫ n+1

n

∫ k+1

k

e2πi(m−m′)se2πi(l′−l)teπi(m−m
′)t2dsdt

= δk,k′δn,n′

∫ n+1

n

(∫ k+1

k

e2πi(m−m′)sds
)
e2πi(l′−l)teπi(m−m

′)t2dt

= δk,k′δn,n′δm,m′

∫ n+1

n

e2πi(l′−l)tdt

= δk,k′δn,n′δm,m′δl,l′

= δχ,χ′ ,

because the integer translates of the characteristic function 1Q are disjoint for dis-
tinct pairs of integers and the functions {f(·) = e2πil· : l ∈ Z} are orthogonal on
L2([k, k + 1]) and L2([n, n+ 1]) respectively.

Next we prove the completeness of the system {πξ(χ)φ : χ ∈ Xξ} in L2(R2). For
this purpose we show that every element of the standard orthonormal basis

E = {e2πilte2πims
1Q(s− k, t− n) : k, l,m, n ∈ Z}

has an expansion with respect to the given orthogonal system

{πξ(χ)1Q(s, t) : χ ∈ Xξ} = {e2πimse2πilteπimt
2

1Q(s− k, t− n) : k, l,m, n ∈ Z}

in L2(R2).
So for some fixed basis element e2πil0te2πim0s1Q(s− k0, t− n0) in E we are looking
for an expansion of the form

e2πil0te2πim0s1Q(s− k0, t− n0) =
∑

k,l,m,n∈Z

aklmne
2πimse2πilteπimt

2

1Q(s− k, t− n).

If k 6= k0 or n 6= n0 or m 6= m0, set aklmn = 0. To find the remaining coefficients
ak0lm0n0 consider the series expansion of the function e2πil0te−πim0t2 in terms of the
basis {e2πilt : l ∈ Z} on L2([n0, n0 + 1]), that is,

e2πil0te−πim0t2 =
∑
l∈Z

cle
2πilt.

Then

e2πil0te2πim0s =
∑
l∈Z

cle
2πilteπim0t2e2πim0s



5.3. EXAMPLES 81

on L2([k0, k0 + 1] × [n0, n0 + 1]). Therefore the choice ak0lm0n0 = cl provides the
desired result.

Since every basis element in E belongs to span{πξ(χ)φ : χ ∈ Xξ}, the completeness
of the system {πξ(χ)φ : χ ∈ Xξ} in L2(R2) now follows from Property (i).

�

Lemma 5.20. The set Xξ is a lattice in R× H with density D(Xξ) = ξ2.

Proof. We claim that Xξ is a lattice in R × H with fundamental domain
Uξ := Aξ([0, 1)4), where Aξ is defined by

Aξ :=


1 0 0 0
0 1

ξ
0 0

0 0 1
ξ

0

0 0 0 1

 .

ClearlyXξ is a subgroup in R×H, so it remains to show that every element x ∈ R×H
can be uniquely written as x = χυ with χ ∈ Xξ and υ ∈ Uξ.
Let x = (x1, x2, x3, x4) ∈ R× H be arbitrary. Set

n = bx4c ∈ Z, z = x4 − bx4c ∈ [0, 1),

m = bξx3c ∈ Z, w = ξx3 − bξx3c ∈ [0, 1),

l = bξx2 − nwc ∈ Z, v = ξx2 − nw − bξx2 − nwc ∈ [0, 1),

k = bx1c ∈ Z, u = x1 − bx1c ∈ [0, 1),

and χ = (k, 1
ξ
l, 1
ξ
m,n) ∈ Xξ, υ = (u, 1

ξ
v, 1

ξ
w, z) ∈ Uξ. Then

χυ = (k + u, 1
ξ
(l + v + nw), 1

ξ
(m+ w), n+ z) = x.

Since this choice is unique, Xξ is a lattice with fundamental domain Uξ.

By Lemma 2.7, the density of a lattice is computed as the reciprocal of the volume
of its fundamental domain. Therefore,

D(Xξ) =
1

λ(Uξ)
=

1

λ(Aξ([0, 1)4))
=

1

| detAξ|
=

1
1
ξ2

= ξ2.

�

Since an orthonormal basis is both a frame and a Riesz sequence, Corollary 5.9 to-
gether with Lemma 5.19 and Lemma 5.20 implies the following density thresholds.
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Corollary 5.21. Let g ∈ L2(R2) and let X ⊆ R× H.

(a) If the set {πξ(x)g : x ∈ X} is a frame for L2(R2), then

D−(X) ≥ ξ2.

(b) If the set {πξ(x)g : x ∈ X} is a Riesz sequence in L2(R2), then

D+(X) ≤ ξ2.

(c) If the set {πξ(x)g : x ∈ X} is a Riesz basis for L2(R2), then

D−(X) = D+(X) = ξ2.

Example 3. Consider the Lie algebra g6,23 = RX1 + · · ·+ RX6 from [38] with
non-vanishing Lie brackets

[X6, X5] = X4, [X6, X4] = X2, [X6, X3] = −X1, [X5, X4] = X1, [X5, X3] = X2.

The corresponding connected and simply connected Lie group G6,23 in Malcev
coordinates is R6 with the multiplication law

(x1, x2, x3, x4, x5, x6)(y1, y2, y3, y4, y5, y6)

= (x1 + y1 + x5y4 − x6y3 + x5x6y5 + 1
2
x6y

2
5, x2 + y2 + x5y3 + x6y4 + 1

2
x2

6y5,

x3 + y3, x4 + y4 + x6y5, x5 + y5, x6 + y6).

The irreducible unitary representations ofG6,23 on L2(R2) that are square-integrable
modulo the center Z = R × R × {0} × {0} × {0} × {0} are parametrized by
ξ = (ξ1, ξ2) ∈ R2, ξ2

1 + ξ2
2 6= 0, and given by

πξ(x1, . . . , x6)φ(s, t)

=e2πi((x1− 1
2
x25x6−x4s+x5x6s−

1
2
x6s2+x3t)ξ1+(x2− 1

2
x5x26−x3s+

1
2
x26s−x4t+x5x6t−x6st)ξ2)φ(s− x5, t− x6).

We want to study the projective representations of the quotient group G6,23/Z
derived from the representations πξ as in Lemma 5.11.
By deleting the coordinates of the center in the above multiplication law for G6,23

and relabeling the remaining coordinates xj by xj−2, we are led to the multiplication
law

(x1, x2, x3, x4)(y1, y2, y3, y4) = (x1 + y1, x2 + y2 + x4y3, x3 + y3, x4 + y4)
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of the group R× H, which is isomorphic to the quotient group G6,23/Z.

The representations πξ give rise to irreducible square-integrable projective repre-
sentation of R× H on L2(R2), which we also call πξ, via

πξ(x)φ(s, t) = e2πi((−x2s+x3x4s− 1
2
x4s2+x1t)ξ1+(−x1s+ 1

2
x24s−x2t+x3x4t−x4st)ξ2)φ(s− x3, t− x4).

Note that as in the previous example we have omitted occurring phase factors.

Set

Mξ :=

(
ξ2 ξ1

−ξ1 ξ2

)
, then πξ can be rewritten as

πξ(x)φ(s, t)

= e−2πi
(

(x1ξ2+x2ξ1−x3x4ξ1− 1
2
x24ξ2)s+(−x1ξ1+x2ξ2−x3x4ξ2)t

)
e−πi

(
x4ξ1s2+2x4ξ2st

)
φ(s− x3, t− x4)

= e−2πi
(
〈Mξ(x1,x2)T ,(s,t)T 〉−(x3x4ξ1+ 1

2
x24ξ2)s−x3x4ξ2t

)
e−πi

(
x4ξ1s2+2x4ξ2st

)
φ(s− x3, t− x4).

For ξ = (ξ1, ξ2) ∈ R2, ξ2
1 + ξ2

2 6= 0 we therefore define

(5.16) Aξ :=


ξ2

ξ21+ξ22
− ξ1
ξ21+ξ22

0 0
ξ1

ξ21+ξ22

ξ2
ξ21+ξ22

0 0

0 0 1 0
0 0 0 1

 =

 M−1
ξ 0

0 I

 .

Note that detAξ = 1
ξ21+ξ22

6= 0, so Aξ is invertible.

Lemma 5.22. Let φ = 1Q, where Q = [0, 1]2, and set Xξ := Aξ(Z
4), where Aξ is

the matrix defined in (5.16). The system {πξ(χ)φ : χ ∈ Xξ} forms an orthonormal
basis for L2(R2).

Proof. First we show orthogonality.

For every

χ =
(

1
ξ21+ξ22

(ξ2k − ξ1l),
1

ξ21+ξ22
(ξ1k + ξ2l),m, n

)
∈ Xξ,

the representation πξ becomes

πξ(χ)φ(s, t) = e−2πi
(

(k−mnξ1− 1
2
n2ξ2)s+(l−mnξ2)t

)
e−πi

(
nξ1s2+2nξ2st

)
φ(s−m, t− n).
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For χ, χ′ ∈ Xξ we thus get〈
πξ(χ)φ,πξ(χ

′)φ
〉

=

∫
R

∫
R

πξ(χ)φ(s, t)πξ(χ′)φ(s, t)dsdt

=

∫
R

∫
R

e−2πi
(

(k−k′)−(mn−m′n′)ξ1− 1
2

(n2−n′2)ξ2

)
se−2πi

(
(l−l′)−(mn−m′n′)ξ2

)
t

· e−πi
(

(n−n′)ξ1s2+2(n−n′)ξ2st
)
1Q(s−m, t− n)1Q(s−m′, t− n′)dsdt

= δm,m′δn,n′

∫ n+1

n

∫ m+1

m

e−2πi(k−k′)se−2πi(l−l′)tdsdt

= δ(k,l,m,n),(k′,l′,m′,n′) = δA−1
ξ (χ),A−1

ξ (χ′) = δχ,χ′ ,

because the integer translates of the characteristic function 1Q are disjoint for dis-
tinct pairs of integers and the functions {f(·) = e2πik· : k ∈ Z} are orthogonal on
L2([m,m+ 1]) and L2([n, n+ 1]) respectively.

Next we prove the completeness of the system {πξ(χ)1Q(s, t) : χ ∈ Xξ} in L2(R2).
As in Example 2 we show that every element of the standard orthonormal basis

E = {e2πikse2πilt
1Q(s−m, t− n) : k, l,m, n ∈ Z}

has an expansion with respect to the given orthonormal system{
e−2πi

(
(k−mnξ1− 1

2
n2ξ2)s+(l−mnξ2)t

)
e−πi

(
nξ1s2+2nξ2st

)
1Q(s−m, t− n) : k, l,m, n ∈ Z

}
in L2(R2). Fix m0, n0 ∈ Z and set

m(s, t) := e−2πi
(

(−m0n0ξ1− 1
2
n2
0ξ2)s−m0n0ξ2t

)
e−πi

(
n0ξ1s2+2n0ξ2st

)
.

By Property (ii), the system{
e−2πikse−2πiltm(s, t) : k, l ∈ Z

}
is an orthonormal basis in L2([m0,m0 + 1] × [n0, n0 + 1]), because it is just the
well-known orthonormal basis {e−2πikse−2πilt : k, l ∈ Z} multiplied by a function of
modulus one.

For fixed k0, l0 ∈ Z we thus have an expansion of the element e2πik0se2πil0t of the
form

e2πik0se2πil0t =
∑
k,l∈Z

bkle
−2πikse−2πilte−2πi

(
(−m0n0ξ1− 1

2
n2
0ξ2)s−m0n0ξ2t

)
e−πi

(
n0ξ1s2+2n0ξ2st

)
on L2([m0,m0 + 1]× [n0, n0 + 1]).
It follows that every basis element e2πik0se2πil0t1Q(s − m0, t − n0) in E has an
expansion with respect to the system {πξ(χ)1Q(s, t) : χ ∈ Xξ} in L2(R2), so
{πξ(χ)1Q(s, t) : χ ∈ Xξ} is an orthonormal basis by Property (i).

�
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Lemma 5.23. The set Xξ is a quasi-lattice in R×H with density D(Xξ) = ξ2
1 +ξ2

2 .

Proof. We claim that Xξ is a quasi-lattice in R× H with complement
Uξ := Aξ([0, 1)4). We need to show that every element x ∈ R× H can be uniquely
written as x = χυ with χ ∈ Xξ and υ ∈ Uξ. Let x = (x1, x2, x3, x4) ∈ R × H be
arbitrary. Set

n = bx4c ∈ Z, z = x4 − bx4c ∈ [0, 1),

m = bx3c ∈ Z, w = x3 − bx3c ∈ [0, 1),

l = b−ξ1x1 + ξ2(x2 − nw)c ∈ Z,
v = −ξ1x1 + ξ2(x2 − nw)− b−ξ1x1 + ξ2(x2 − nw)c ∈ [0, 1),

k = bξ2x1 + ξ1(x2 − nw)c ∈ Z,
u = ξ2x1 + ξ1(x2 − nw)− bξ2x1 + ξ1(x2 − nw)c) ∈ [0, 1),

and let

χ =
(

1
ξ21+ξ22

(ξ2k − ξ1l),
1

ξ21+ξ22
(ξ1k + ξ2l),m, n

)
∈ Aξ(Z4) = Xξ,

υ =
(

1
ξ21+ξ22

(ξ2u− ξ1v), 1
ξ21+ξ22

(ξ1u+ ξ2v), w, z
)
∈ Aξ([0, 1)4) = Uξ.

Then

χυ =
(

1
ξ21+ξ22

(ξ2(k+u)−ξ1(l+v)), 1
ξ21+ξ22

(ξ1(k+u)+ξ2(l+v))+nw,m+w, n+z
)

= x.

Since this choice is unique, Xξ is a quasi-lattice in R× H with complement Uξ.

By Lemma 2.7, the density of a quasi-lattice is computed as the reciprocal of the
volume of its complement. Therefore,

D(Xξ) =
1

λ(Uξ)
=

1

λ(Aξ([0, 1)4))
=

1

| detAξ|
= ξ2

1 + ξ2
2 .

�

Since an orthonormal basis is both a frame and a Riesz sequence, Corollary 5.9
together with Lemma 5.22 and Lemma 5.23 implies the following density thresholds.

Corollary 5.24. Let g ∈ L2(R2) and X ⊆ R× H.

(a) If the set {πξ(x)g : x ∈ X} is a frame for L2(R2), then

D−(X) ≥ ξ2
1 + ξ2

2 .

(b) If the set {πξ(x)g : x ∈ X} is a Riesz sequence in L2(R2), then

D+(X) ≤ ξ2
1 + ξ2

2 .

(c) If the set {πξ(x)g : x ∈ X} is a Riesz basis for L2(R2), then

D−(X) = D+(X) = ξ2
1 + ξ2

2 .
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Example 4. Consider the Lie algebra g6,24 = RX1 + · · ·+ RX6 from [38] with
non-vanishing Lie brackets

[X6, X5] = X4, [X6, X4] = X3, [X6, X3] = X2, [X5, X4] = X1.

The corresponding connected and simply connected Lie group G6,24 in Malcev
coordinates is R6 with the multiplication law

(x1, x2, x3, x4, x5, x6)(y1, y2, y3, y4, y5, y6)

= (x1 + y1 + x5y4 + x5x6y5 + 1
2
x6y

2
5, x2 + y2 + x6y3 + 1

2
x2

6y4 + 1
6
x3

6y5,

x3 + y3 + x6y4 + 1
2
x2

6y5, x4 + y4 + x6y5, x5 + y5, x6 + y6).

The irreducible unitary representations ofG6,24 on L2(R2) that are square-integrable
modulo the center Z = R × R × {0} × {0} × {0} × {0} are parametrized by
ξ = (ξ1, ξ2) ∈ R2, ξ1ξ2 6= 0, and given by

πξ(x)φ(s, t) = e2πi((x1− 1
2
x25x6−x4s+x5x6s−

1
2
x6s2)ξ1)

· e2πi((x2− 1
6
x5x36+ 1

6
x36s−x3t+

1
2
x5x26t+

1
2
x4t2− 1

2
x5x6t2− 1

2
x26st+

1
2
x6st2)ξ2)φ(s− x5, t− x6).

We want to study the projective representations of the quotient group G6,24/Z
derived from the representations πξ as in Lemma 5.11.
By deleting the coordinates of the center in the above multiplication law for G6,24

and relabeling the remaining coordinates xj by xj−2, we are led to the multiplication
law

(x1, x2, x3, x4)(y1, y2, y3, y4) = (x1 +y1 +x4y2 + 1
2
x2

4y3, x2 +y2 +x4y3, x3 +y3, x4 +y4)

of the group G4 (confer Example 1.15), which is isomorphic to the quotient group
G6,24/Z.

The representations πξ give rise to irreducible square-integrable projective repre-
sentation of G4 on L2(R2), which we also call πξ, via

πξ(x)φ(s, t) = e−2πi
(

(x2ξ1−x3x4ξ1− 1
6
x34ξ2)s+(x1ξ2− 1

2
x3x24ξ2)t

)
· e−πi(x4ξ1s2−(x2−x3x4)ξ2t2+x24ξ2st−x4ξ2st2))φ(s− x3, t− x4).

Note that as in the previous examples we have omitted occurring phase factors.
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Lemma 5.25. Let φ = 1Q, where Q = [0, 1]2, and Xξ := 1
ξ2
Z× 1

ξ1
Z× Z× Z.

The system {πξ(χ)φ : χ ∈ Xξ} forms an orthonormal basis for L2(R2).

Proof. First we show orthogonality.
Let χ = ( 1

ξ2
k, 1

ξ1
l,m, n) ∈ Xξ, χ

′ = ( 1
ξ2
k′, 1

ξ1
l′,m′, n′) ∈ Xξ. Then

〈
πξ(χ)φ, πξ(χ

′)φ
〉

=

∫
R

∫
R

πξ(χ)φ(s, t)πξ(χ′)φ(s, t)dsdt

=

∫
R

∫
R

e−2πi
(

(l−l′)−(mn−m′n′)ξ1− 1
6

(n3−n′3)ξ2

)
se−2πi

(
(k−k′)− 1

2
(mn2−m′n′2)ξ2

)
t

· e−πi
(

(n−n′)ξ1s2−(l−l′) ξ2
ξ1
t2+(mn−m′n′)ξ2t2+(n2−n′2)ξ2st−(n−n′)ξ2st2

)
· 1Q(s−m, t− n)1Q(s−m′, t− n′)dsdt

= δm,m′δn,n′

∫ n+1

n

∫ m+1

m

e−2πi(l−l′)se−2πi(k−k′)te
πi(l−l′) ξ2

ξ1
t2
dsdt

= δm,m′δn,n′

∫ n+1

n

(∫ m+1

m

e−2πi(l−l′)sds
)
e−2πi(k−k′)te

πi(l−l′) ξ2
ξ1
t2
dt

= δm,m′δn,n′δl,l′

∫ n+1

n

e−2πi(k−k′)tdt

= δm,m′δn,n′δl,l′δk,k′

= δχ,χ′ ,

because the integer translates of the characteristic function 1Q are disjoint for dis-
tinct pairs of integers and the functions {f(·) = e2πik· : k ∈ Z} are orthogonal on
L2([m,m+ 1]) and L2([n, n+ 1]) respectively.

Next we prove the completeness of the system {πξ(χ)1Q(s, t) : χ ∈ Xξ} in L2(R2).
As in the previous examples we show that every element of the standard orthonor-
mal basis

E = {e−2πikte−2πils
1Q(s−m, t− n) : k, l,m, n ∈ Z}

has an expansion with respect to the given orthonormal system{
e−2πi(l−mnξ1− 1

6
n3ξ2)se−2πi(k− 1

2
mn2ξ2)t

e
−πi(nξ1s2−l ξ2ξ1 t

2+mnξ2t2+n2ξ2st−nξ2st2)

1Q(s−m, t− n) : k, l,m, n ∈ Z
}

in L2(R2). Fix a basis element e−2πik0te−2πil0s1Q(s−m0, t− n0) ∈ E .

Consider the series expansion of the function e−2πik0te
−πil0 ξ2ξ1 t

2

in terms of the basis
{e−2πikt : k ∈ Z} on L2([n0, n0 + 1]), that is,

e−2πik0te
−πil0 ξ2ξ1 t

2

=
∑
k∈Z

cke
−2πikt.
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It follows that

e−2πik0te−2πil0s =
∑
k∈Z

cke
−2πikte

πil0
ξ2
ξ1
t2
e−2πil0s

on L2([m0,m0+1]×[n0, n0+1]). To put it differently, every element of the standard
orthonormal basis {e−2πikte−2πils : k, l ∈ Z} for L2([m0,m0 +1]× [n0, n0 +1]) has an

expansion with respect to the orthogonal system {e−2πikte
πil

ξ2
ξ1
t2
e−2πils : k, l ∈ Z}

on L2([m0,m0 + 1]× [n0, n0 + 1]). By Property (i), we therefore conclude that the

system {e−2πikte
πil

ξ2
ξ1
t2
e−2πils : k, l ∈ Z} is an orthonormal basis in

L2([m0,m0 + 1]× [n0, n0 + 1]). Now set

m(s, t) := e−2πi
(

(−m0n0ξ1− 1
6
n3
0ξ2)s− 1

2
m0n2

0ξ2t
)
e−πi

(
n0ξ1s2+m0n0ξ2t2+n2

0ξ2st−n0ξ2st2
)
.

By Property (ii), the system{
e−2πikte

πil
ξ2
ξ1
t2
e−2πilsm(s, t) : k, l ∈ Z

}
is also an orthonormal basis in L2([m0,m0 + 1] × [n0, n0 + 1]), because it is just

the orthonormal basis {e−2πikte
πil

ξ2
ξ1
t2
e−2πils : k, l ∈ Z} multiplied by a function of

modulus one.

It follows that the basis element e−2πik0te−2πil0s1Q(s − m0, t − n0) ∈ E has an
expansion with respect to the system {πξ(χ)1Q(s, t) : χ ∈ Xξ} in L2(R2), so
{πξ(χ)1Q(s, t) : χ ∈ Xξ} is an orthonormal basis by Property (i).

�

Lemma 5.26. The set Xξ is a quasi-lattice in G4 with density D(Xξ) = |ξ1ξ2|.

Proof. We claim that Xξ is a quasi-lattice in G4 with complement
Uξ := Aξ([0, 1)4), where Aξ is defined by

Aξ :=


1
ξ2

0 0 0

0 1
ξ1

0 0

0 0 1 0
0 0 0 1

 .

We need to show that every element x ∈ G4 can be uniquely written as x = χυ
with χ ∈ Xξ and υ ∈ Uξ. Let x = (x1, x2, x3, x4) ∈ G4 be arbitrary.
Set

n = bx4c ∈ Z, z = x4 − bx4c ∈ [0, 1),

m = bx3c ∈ Z, w = x3 − bx3c ∈ [0, 1),

l = bξ1(x2 − nw)c ∈ Z, v = ξ1(x2 − nw)− bξ1(x2 − nw)c ∈ [0, 1),

k = bξ2(x1 − 1
ξ1
nv − 1

2
n2w)c ∈ Z,

u = ξ2(x1 − 1
ξ1
nv − 1

2
n2w)− bξ2(x1 − 1

ξ1
nv − 1

2
n2w)c ∈ [0, 1),
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and χ = ( 1
ξ2
k, 1

ξ1
l,m, n) ∈ Xξ, υ = ( 1

ξ2
u, 1

ξ1
v, w, z) ∈ Uξ. Then

χυ =
(

1
ξ2

(k + u) + 1
ξ1
nv + 1

2
n2w, 1

ξ1
(l + v) + nw,m+ w, n+ z

)
= x.

Since this choice is unique, Xξ is a quasi-lattice in G4 with complement Uξ.

By Lemma 2.7, the density of a quasi-lattice is computed as the reciprocal of the
volume of its complement. Therefore,

D(Xξ) =
1

λ(Uξ)
=

1

λ(Aξ([0, 1)4))
=

1

| detAξ|
= |ξ1ξ2|.

�

Since an orthonormal basis is both a frame and a Riesz sequence, Corollary 5.9
together with Lemma 5.25 and Lemma 5.26 implies the following density thresholds.

Corollary 5.27. Let g ∈ L2(R2) and X ⊆ G4.

(a) If the set {πξ(x)g : x ∈ X} is a frame for L2(R2), then

D−(X) ≥ |ξ1ξ2|.
(b) If the set {πξ(x)g : x ∈ X} is a Riesz sequence in L2(R2), then

D+(X) ≤ |ξ1ξ2|.
(c) If the set {πξ(x)g : x ∈ X} is a Riesz basis for L2(R2), then

D−(X) = D+(X) = |ξ1ξ2|.

5.4. Outlook

The classical Kirillov theory provides a construction of all irreducible unitary rep-
resentations of a nilpotent Lie group, namely as representations induced by certain
characters of closed subgroups.
Let N be a connected and simply connected nilpotent Lie group with Lie algebra
n. Denote by n∗ the linear dual of n and let ξ ∈ n∗. A subalgebra m of n is called
maximal subordinate to ξ if m is of maximal dimension such that ξ([m,m]) = 0. If
m is a maximal subordinate subalgebra to ξ ∈ n∗, then the map

(5.17) χξ(exp(X)) = e2πiξ(X), X ∈ m.

defines a one-dimensional representation, a so-called character, of the closed sub-
group M = exp(m) of N , because ξ([m,m]) = 0. The induced representation

(5.18) πξ := Ind(χξ) := IndNM(χξ)

(see, e.g., [22], [45] for the inducing construction) is an irreducible unitary rep-
resentation of N and (up to equivalence) independent of the particular choice of
the maximal subordinate subalgebra m. Furthermore, every irreducible unitary
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representation of a nilpotent Lie group N is (up to equivalence) obtained as a rep-
resentation induced by a one-dimensional representation χξ as in (5.17) and there
is a bijection between the equivalence classes of irreducible unitary representations
of N and the orbits in n∗ under the so-called coadjoint representation. For details
and proofs we refer the interested reader to the standard reference for representa-
tion theory of nilpotent Lie groups [13].

We are particularly interested in the description of those irreducible unitary repre-
sentations πξ that are square-integrable modulo the center.
Fix a Malcev basis {X1, . . . , Xn} for n and denote the center of n by z. Let k ∈ N
be such that z = span{X1, . . . , Xk} and let

z∗ = {ξ ∈ n∗ : ξ(Xi) = 0, k < i ≤ n}

For ξ ∈ n∗ consider the matrix

(5.19) B(ξ) =
(
ξ([Xi, Xj])

)
k+1≤i,j≤n

and define the Pfaffian Pf(ξ) by

Pf(ξ)2 = detB(ξ).

By the results of Moore and Wolf [37], the induced representation πξ for ξ ∈ n∗ is

square-integrable modulo the center if and only if Pf(ξ) 6= 0. Furthermore, if ξ̃ ∈ n∗

with Pf(ξ̃) 6= 0, then all elements in the subspace ξ̃ + z⊥ = ξ̃ + {ξ ∈ n∗ : ξ|z ≡ 0}
of n∗ lead to equivalent induced representations. So the irreducible unitary repre-
sentations of N that are square-integrable modulo the center are parametrized by
the subset {ξ ∈ z∗ : Pf(ξ) 6= 0} of n∗ (for details see [13] or [37]).

Let {X∗1 , . . . , X∗n} ⊆ n∗ denote the dual basis to {X1, . . . , Xn}. Revisiting the exam-
ples of the previous section in the light of the representation theoretic background
one can check that the representations πξ studied there are just the representations
induced by the elements ξ = ξ1X

∗
1 + · · · + ξkX

∗
k ∈ z∗ with Pf(ξ) 6= 0 and that the

value for the critical density equals |Pf(ξ)|.
The same holds true for all the relevant examples in [38], so we are lead to the
following statement.

Theorem 5.28. Let G be a homogeneous group isomorphic to a quotient group
N/Z for some connected and simply connected nilpotent Lie group N of dimension
at most 6 and let s : G→ N be a continuous section. Let πξ := Ind(χξ)◦s for some
ξ ∈ z∗ with Pf(ξ) 6= 0. Then there exists an orthonormal basis for H of the form
{πξ(χ)φ : χ ∈ Xξ}, where φ ∈ H and Xξ is a subset of G with uniform density

D(Xξ) = |Pf(ξ)|.
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Corollary 5.29. Let G and πξ be as in Theorem 5.28. Let g ∈ H and X ⊆ G.

(a) If the set {πξ(x)g : x ∈ X} is a frame for H, then

D−(X) ≥ |Pf(ξ)|.
(b) If the set {πξ(x)g : x ∈ X} is a Riesz sequence in H, then

D+(X) ≤ |Pf(ξ)|.
(c) If the set {πξ(x)g : x ∈ X} is a Riesz basis for H, then

D−(X) = D+(X) = |Pf(ξ)|.
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Abstract

This thesis is concerned with necessary density conditions for frames and Riesz
sequences indexed by discrete subsets of homogeneous groups. We define a density
on homogeneous groups in analogy to the Beurling density on Rn, however, adapted
to the geometry of homogeneous groups. Employing this density, we present a the-
orem for the comparison of the densities of frames and Riesz sequences indexed by
discrete subsets of homogeneous groups. It is a first non-commutative extension of
previous results like the density theorem for irregular Gabor frames of Ramanathan
and Steger and its generalization to abstract frames with ‘commutative index sets’
by Balan, Casazza, Heil und Landau.
The comparison theorem is used to derive necessary density conditions for sampling
and interpolation in shift-invariant spaces on homogeneous groups. This is done
via the correspondence of sampling sets and frames of reproducing kernels.
Further, necessary density conditions for frames and Riesz sequences in the orbit
of projective square-integrable group representations are investigated with the help
of the comparison theorem. For some concrete examples of projective representa-
tions of low-dimensional homogeneous groups we construct orthonormal bases in
the orbit and thereby deduce explicit thresholds for the density of frames and Riesz
sequences in the respective orbits.
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Zusammenfassung

Diese Dissertation beschäftigt sich mit notwendigen Dichtebedingungen für Frames
und Rieszfolgen, die durch diskrete Teilmengen von homogenen Liegruppen in-
diziert sind.
In Analogie zur Beurlingdichte auf Rn wird ein wohldefinierter Dichtebegriff auf
homogenen Liegruppen eingeführt. Unter Verwendung dieser Dichte wird ein Satz
zum Vergleich der Dichten von Frames und Rieszfolgen, die durch diskrete Teil-
mengen von homogenen Liegruppen indiziert sind, präsentiert. Dabei handelt es
sich um eine Verallgemeinerung des Dichtesatzes für Gaborframes von Ramanathan
und Steger sowie dessen Weiterentwicklung für abstrakte Frames mit ‘kommuta-
tiven Indexmengen’ durch Balan, Casazza, Heil und Landau.
Dieser Vergleichssatz wird verwendet um notwendige Dichtebedingungen für Ab-
tasten und Interpolation in Shift-invarianten Räumen auf homogenen Gruppen
herzuleiten. Dies geschieht mittels eines Zusammenhangs zwischen Abtastmengen
und Frames bestehend aus den zugehörigen reproduzierenden Kernen.
Weiters werden mithilfe des Vergleichssatzes notwendige Dichtebedingungen für
Frames und Rieszfolgen im Orbit projektiver quadrat-integrierbarer Darstellun-
gen von homogenen Gruppen untersucht. Für einige konkrete Beispiele projek-
tiver quadrat-integrierbarer Darstellungen niedrigdimensionaler homogener Grup-
pen werden Orthonormalbasen im Orbit konstruiert und dadurch explizite Ab-
schätzungen für die Dichte von Frames und Rieszfolgen im Orbit der jeweiligen
Darstellung gewonnen.
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