
DISSERTATION

Titel der Dissertation

Numerical Grids for Spherical Shells

and Other Complex Domains

Verfasser

Mag. rer. nat. Hannes Grimm-Strele

angestrebter akademischer Grad

Doktor der Naturwissenschaften (Dr. rer. nat.)

Wien, im November 2013

Studienkennzahl lt. Studienblatt: A 791 405
Studienrichtung lt. Studienblatt: Mathematik
Betreuer: Univ.-Prof. Dr. Herbert J. Muthsam

Abstract

In this thesis, we present several ways to design numerical grids covering spherical shells
and other complex domains. Cartesian and spherical grids which by now are nearly
exclusively used in numerical astrophysics have certain deficiencies when applied to these
domains. When applying Cartesian grids, around 50 % of the grid cells lie outside of the
star. For spherical coordinate systems, grid lines converge at the poles and at the core,
requiring special treatment of these regions and making the simulation inefficient due to
converging grid lines resulting in small time steps.

We can get rid of these problems using overlapping grids, but we either limit the
accuracy of our solution or destroy the exact conservation of conserved properties by
the interpolation between the grids. Noise is generated at the grid boundaries which
adversely affects the stability of the simulation.

Instead, we suggest to use curvilinear grids. Using non-smooth mapping functions,
we can create a structured grid which completely covers circles or spheres. We show
how these grids are implemented in simulation codes designed for Cartesian coordinate
systems. Since the mapping functions we intend to use are non-smooth, the numerical
errors are large when using a finite difference formulation. For a WENO code we show
both theoretically and by numerical experiment that numerical results using a finite
volume formulation are reasonably accurate, whereas the numerical error with the finite
difference formulation is unacceptably large. Furthermore, we show using a PPM code
that split time integration leads to huge errors, too, and present ways to rewrite existing
codes to unsplit time integration schemes. If these conditions are fulfilled, the numerical
results are satisfactory on the proposed non-smooth grids.

As a side topic, we investigate the practical efficiency of several explicit Runge–Kutta
scheme with differing order of accuracy and error constants for the problem of solar
surface convection and with WENO schemes for spatial discretisation. We show that in
some situations, higher order time integration schemes are less efficient than lower order
ones due to smaller error constants.

2

Zusammenfassung

In der vorliegenden Dissertation werden verschiedene Gitter vorgestellt, mit denen man
numerische Simulationen auf Kugelschalen und anderen kugelförmigen Gebieten durch-
führen kann. Kartesische und sphärische Gitter, wie sie nahezu ausschließlich in der
numerischen Astrophysik verwendet werden, sind für dieses Problem ineffizient oder nicht
direkt anwendbar. Wenn man einen Stern mit einer kartesischen Box umschreibt, liegen
etwa 50 % des Volumens außerhalb der Kugel. Bei sphärischen Koordinatensystemen
konvergieren Gitterlinien an den Polen und im Kern, was neben den analytischen noch
schwer wiegende numerische Konsequenzen hat, da der Zeitschritt durch die kleinsten
Gittermaschenweiten beschränkt wird.

Überlappende Gitter lösen das Problem der Singularitäten, jedoch wird durch die
Interpolation zwischen den Gittern entweder die Genauigkeitsordnung der numerischen
Lösung beschränkt oder die numerische Erhaltung der Erhaltungsgrößen geht verloren.
An den Übergängen zwischen den Gittern entsteht durch die Interpolation Rauschen,
das die Stabilität der Simulation verschlechtert.

Wir schlagen stattdessen die Verwendung von krummlinigen Koordinatensystemen
vor. Mit Hilfe nichtglatter Abbildungsfunktionen können wir ein einziges strukturi-
ertes Gitter erzeugen, das kreis- und kugelförmige Gebiete vollständig überdeckt. Wir
legen dar, wie krummlinige Koordinaten in bestehende, für kartesische Koordinaten
entwickelte Codes eingebaut werden können. Auf Grund der Nichtglattheit der Ab-
bildungsfunktion sind die numerischen Fehler im Falle eines Finite Differenzen–Codes
groß. Wir zeigen für einen WENO-Code sowohl theoretisch als auch durch numerische
Experimente, dass eine Finite Volumen–Formulierung Ergebnisse mit guter Genauigkeit
liefert, während eine Finite Differenzen–Formulierung zu inakzeptablen Fehlern führt.
Ebenso zeigen wir für einen PPM-Code, dass die verschiedenen räumlichen Richtungen
nicht nacheinander, sondern gleichzeitig zeitlich integriert werden müssen. Wenn diese
Bedingungen erfüllt sind, liefern die verwendeten Codes zufriedenstellende Ergebnisse
auf den vorgeschlagenen nichtglatten Gittern.

Darüber hinaus untersuchen wir die Effizienz mehrerer expliziter Runge–Kutta–Sche-
mata, die sich in Genauigkeitsordnung und den Fehlerkonstanten unterscheiden, für
die Simulation von solarer Oberflächenkonvektion mit WENO–Methoden. Unter bes-
timmten Umständen führen die unterschiedlichen Fehlerkonstanten dazu, dass Zeitinte-
grationsverfahren niedriger Ordnung effizienter sind als solche höherer Ordnung.

3

Contents

1 Introduction 6
1.1 Numerical Grids for Astrophysical Simulations 7
1.2 Time and Length Scales of Astrophysical Simulations 8

2 Process of Numerical Modelling 10
2.1 Analytical Model . 10
2.2 Numerical Simulation . 15
2.3 Code Validation and Verification . 15

2.3.1 Verification Methods . 16
2.3.2 Examples of Code Validation . 18

2.4 The Four Main Restrictions of Validity . 24
2.4.1 Grid Geometry . 25
2.4.2 Time Scales . 26
2.4.3 Parameter Space . 28
2.4.4 Boundary Conditions . 28

3 Numerical Methods 31
3.1 The Weighted Essentially Non Oscillatory (WENO) Scheme 31

3.1.1 Finite difference and finite volume discretisation 31
3.1.2 Reconstruction Algorithm . 34

3.2 Explicit Runge–Kutta Time Integration Schemes 37
3.2.1 Some Thoughts on Efficiency . 39

3.3 The Piecewise Parabolic Method (PPM) 59
3.3.1 Time Integration . 61

4 Composite Grids 68
4.1 The Yin–Yang Grid . 68

4.1.1 Conservation Problem . 69
4.2 Boundary Interpolation Methods . 70

4.2.1 Conservative Approach . 71
4.2.2 High-Order Approach . 71
4.2.3 Numerical Experiments . 75
4.2.4 Conclusions . 89

5 Curvilinear Grids 92
5.1 Strong Derivation . 93

4

Contents

5.2 Derivation Assuming Weak Differentiability 94
5.3 Parabolic Terms . 97

5.3.1 Numerical Experiments . 98
5.3.2 Transformation to Curvilinear Coordinates 99
5.3.3 WENO–type Scheme to Calculate Derivatives 104

5.4 Numerical Consequences . 108
5.4.1 The Freestream Problem . 108

5.5 Numerical Results . 114
5.5.1 Mapping Functions . 115
5.5.2 ANTARES . 117
5.5.3 Prometheus . 127
5.5.4 A Direct Comparison . 133
5.5.5 Conclusions . 140

5.6 Metric Terms in Three Dimensions . 141
5.6.1 Discretisation . 143

6 Conclusions and Future Work 148

5

1 Introduction

The equations of fluid mechanics, i.e. the Navier–Stokes and the Euler equations, are
analytically solvable only in few special cases. Since their solution is of great interest for
many fields of science, the numerical solution of these equations is of great importance.
The numerical approach to solving these equations is called computational fluid dynamics
(CFD). It can be seen as a “sub–field of either fluid dynamics or numerical analysis”
(Ferziger and Perić, 2002), emphasizing the interdisciplinary character of this field.

In practice, when we speak about CFD, we have engineering applications in mind. But
also in astrophysics there are many problems which require the solution of the equations
of fluid mechanics as we will describe in Chapter 2. The exchange of methods and
experiences can be very useful, since the computational problems are similar.

Nevertheless, there are certain differences between engineering and astrophysical ap-
plications. The parameter space in terms of length and time scales as well as viscosity
and (heat) conduction differs by several orders of magnitude. This implies that astro-
physicists will, for a long time from now, not be able to effectively resolve all scales in
their simulations. In the terminology from Section 1.2, astrophysical simulations follow
the large eddy simulation paradigm.

Whereas engineers often encounter complicated geometries in their applications as,
e.g., airfoils, the geometry of most astrophysical applications is rather simple. In most
cases, the simulation domain can be either chosen to be a Cartesian box or a spherical
cone. Because of this, engineers tend to use complicated grids which limits the order of
accuracy of the numerical method (Ferziger and Perić, 2002), whereas astrophysicists
use high–order methods on regular grids.

However, in this thesis we will show that the standard grids used in numerical astro-
physics are sometimes not sufficient and limit the applicability and physical relevance of
the simulation code. Instead, techniques from engineering applications can be used to
extend the grid capabilities of the existing astrophysical simulation codes.

We only mention that numerical astrophysics encomprises a wide variety of additional
topics as, e.g., self–gravity, special and general relativity, magnetic fields, and radiation
transport. We will shortly mention some of these topics in Chapter 2. All numerical
methods in this thesis deal with the equations of fluid mechanics exclusively. We add
that parts of this thesis, in particular from Chapter 5, are published in Grimm-Strele
et al. (2013b).

6

1 Introduction

1.1 Numerical Grids for Astrophysical Simulations

There are many astrophysical applications where the physical domain of interest is a
sphere or a circle, e.g. the numerical simulation of core convection (Browning et al.,
2004; Cai et al., 2011) or of convection in giant planets (Evonuk and Glatzmaier, 2006,
2007). The usability of spherical coordinate systems is restricted due to the grid singu-
larity in the centre of the sphere as discussed, for instance, by Evonuk and Glatzmaier
(2007). With a Cartesian grid, a huge part of the computational resources are wasted
(Freytag et al., 2002) and to improve resolution along spheres, complex adaptive mesh
refinements have to be used (Zingale et al., 2013) to keep the computational require-
ments manageable. Therefore, all default grids used in numerical astrophysics have some
fatal deficiencies.

For the specific case of a sphere with grid singularity at the centre, Cai et al. (2011)
proposed a different approach. They use spectral expansion methods on a spherical
grid. To avoid the time step restriction due to converging grid lines at the centre, they
lower the order of the harmonic expansion at the centre. The equations are recast in
a form such that boundary conditions can easily be applied at the centre. In this way,
the simulation domain can be extended to the full sphere. Anyway, their procedure
still requires the specification of a boundary condition at the centre and applies only to
spherical domains.

Mocz et al. (2013) implemented a discontinuous Galerkin method on arbitrary static
and moving Voronoi meshes. In theory, their approach promises great flexibility and wide
applicability. In applications, however, there are still numerical difficulties present, e.g.
in the treatment of shocks, making the use of the method in astrophysical applications
difficult at the moment.

In this paper, we present the methods used to extend the applicability of the simu-
lation codes ANTARES (Muthsam et al., 2010a) and Prometheus (Müller et al., 1991)
to more general geometries. Until now, ANTARES was exclusively applied to numerical
simulations of solar and stellar surface convection and stellar interiors in Cartesian ge-
ometry (e.g., Muthsam et al., 2010a; Happenhofer et al., 2013) as well as convection in
Cepheids in spherical geometry (e.g., Muthsam et al., 2010b; Mundprecht et al., 2013).
For the inviscid part of the Navier–Stokes equations, the WENO finite difference scheme
is employed (Shu and Osher, 1988; Shu, 2003; Merriman, 2003). The WENO scheme is
a highly efficient shock-capturing scheme which can be implemented at several different
orders of accuracy. In this paper, we consider the fifth order variant called WENO5. Its
superiority compared to other high–order schemes was shown, e.g., in Muthsam et al.
(2007). Nevertheless, its applicability is restricted by its specific requirements concerning
the grid geometry (Merriman, 2003).

Prometheus, on the other hand, is a finite volume code using the PPM scheme (Colella
and Woodward, 1984) for spatial discretisation. Its main application is the simulation
of supernova explosions in spherical geometry. Recently, Wongwathanarat et al. (2010)
implemented the “Yin–Yang” grid which is a combination of two spherical grids. Its
advantage is that, in contrast to a standard spherical grid, the cell sizes are quasi–

7

1 Introduction

uniform.
The Yin–Yang grid is a special case of a composite grid (Chesshire and Henshaw, 1990;

Ferziger and Perić, 2002). In this approach, the computational domain is covered with
several overlapping or patched grids. Usually, each of these grids has a rather simple
geometry where efficient algorithms of high accuracy are easily available. Information at
the grid boundary and in the overlap must be exchanged by some interpolation process.
The numerical consequences are described and verified by numerical experiments in
Chapter 4.

The technique of mapped grids is widely used in engineering (Wesseling, 2001; Ferziger
and Perić, 2002; LeVeque, 2004), but until now was only seldomly applied in an astro-
physical setting (Kifonidis and Müller, 2012). In principle, given a suitable mapping
function, any problem defined on a general domain can be transformed to a problem in
a computational space which is equidistant and Cartesian and where any standard nu-
merical scheme, the applicability of which often is restricted to Cartesian and equidistant
grids, can be used. The only requirement is that the grid in physical space is structured.

Shu (2003) applied the WENO finite difference scheme in a straightforward way to
smooth grids1. In all numerical examples in the mentioned paper, the Mach number
Ma = |u|

vsnd
was higher than 1.

The behaviour of the method in the low Mach number limit on Cartesian grids was
investigated in Happenhofer et al. (2013). They showed that the WENO5 finite difference
scheme does not perform well for Mach numbers smaller than 0.1 even on Cartesian grids.

In Chapter 5, we will show how well the WENO finite difference and finite volume
scheme and the PPM scheme with several time integration methods performs on smooth
and non–smooth grids for flows in the intermediate flow regime of 0.1 ≤ Ma ≤ 1.

Most of the findings of this thesis are not restricted to our specific code, but apply to
any finite difference or finite volume code. From the numerical experiments in Chapter 5,
we conclude in which situations and in which numerical setup the mapped grid technique
gives reliable results. Thereby, we concentrate on the WENO and the PPM algorithm
and on astrophysical simulations. We demonstrate the usefulness and applicability of
the mapping functions for a sphere from Calhoun et al. (2008) in this setting.

1.2 Time and Length Scales of Astrophysical Simulations

The Reynolds number Re of a flow is a dimensionless quantity measuring the strength
of inviscid terms in the Navier–Stokes equations compared to the viscous ones (Pope,
2000). It is defined as

Re =
LU

ν
, (1.1)

where L and U are the macroscopic length scale and the velocity of the physical problem,
and ν is the kinematic viscosity. Kupka (2009b) and Freytag et al. (2012) estimated Re

1In this thesis, we will call a grid (non)smooth if the associated mapping function is (non)smooth.

8

1 Introduction

for the case of solar surface convection to be of order 1010 at least, varying throughout
the whole star.

A turbulent flow contains a wide range of length scales. According to Pope (2000)
and Canuto et al. (1988), the standard model of energy transport for turbulent flows is
that energy is fed in at the largest length scale, the so–called “integral scale” L of the
problem, and transported to the smallest scales l where the energy is dissipated by the
molecular viscosity. Using the Reynolds number of the problem, the ratio of these two
scales can be determined by

L

l
= Re

3
4 . (1.2)

For simulations of solar surface convection, L is several Mm. The flow at the surface
is expected to be turbulent. Therefore, with the above formula the dissipation scale l is
of magnitude cm.

This implies that a numerical simulation for solar surface convection can never resolve
all relevant scales. This would require an enourmous amount of grid points which is
not feasible with today’s computational resources. Instead, these simulations follow the
large eddy simulation (LES) paradigm. The idea of this approach is that whereas the
large eddies depend on the geometry of the problem, the small eddies are self–similar
(Pope, 2000). In an LES, the grid resolution corresponds to a sufficiently fine length
scale where the eddies are already self–similar. All smaller scales are modelled either by
an explicit subgrid model as the famous Smagorinsky model (Smagorinsky, 1963) or by
the numerical viscosity of the scheme (Grinstein et al., 2007).

More generally, astrophysical simulations embrace several orders of magnitude of spa-
tial scales. The length scales as well as the viscosity in astrophysical problems are such
that they cannot be resolved in a numerical simulation. Therefore, the vast majority of
astrophysical simulations are large eddy simulations. As a side remark, these conditions
can also not be reached in terrestrial experiments. This limits the possibilities to vali-
date the simulation data as outlined in Chapter 2. Finally, we note that similar to the
spatial scales, the time scales of an astrophysical problem can differ by several orders of
magnitude (e.g., Kupka, 2009b).

This has several implications for the design of the numerical grid. The grid size
should not be dictated by the coordinate system but be flexible to be increased or
decreased depending on the flow regime. Small cells as they occur near the poles of a
spherical coordinate system limit the time step and increase the computational costs of
a simulation (e.g., Washington et al., 2009). In Chapter 5, we will describe the design
and implementation of grids for a sphere which fulfil these requirements.

9

2 Process of Numerical Modelling

As described in Ferziger and Perić (2002), the numerical modelling process consists of
two steps. Given a physical problem, the first step is picking the set of appropriate
mathematical equations which describe the problem in sufficient detail. In many cases
these will be partial differential equations. These equations may contain analytical
simplifications to decrease the complexity of the model. The second step is designing
and implementing the numerical scheme solving these equations. Of course, the choice of
the analytical model influences the design of the numerical method. There is no efficient
numerical method which is suited for all types of equations. Finally, the correctness and
the physical realism of the numerical model must be demonstrated.

In the following, we will illustrate the modelling process by an example. Then, we
will outline the main difficulties of developing codes which provide realistic results for
the problem at hand, and how their correctness can be checked.

2.1 Analytical Model

As an example for the first step, we consider the Sun. A schematic view of the inner
structure of the Sun can be found in Figure 2.1.

The equations governing the flow of the plasma are the Navier–Stokes equations.
Following Chorin and Marsden (1993) and Obertscheider (2007), they take the form

∂ρ

∂t
+∇ · (ρu) = 0, (2.1a)

∂ (ρu)

∂t
+∇ · (ρuu + p Id) = ρg +∇ · τ, (2.1b)

∂E

∂t
+∇ · (u (E + p)) = ρ (g · u) +∇ · (u · τ) +Qrad, (2.1c)

neglecting the magnetic field terms and assuming the fluid to be Newtonian. The mean-
ing and units of all variables is shown in Table 2.1. Id is the identity matrix. An equation
of state must be specified to complete this set of equations. The viscous stress tensor
τ = (τi,j)i,j=1,2,3 is given by

τi,j = η

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δi,j (∇ · u)

)
+ ζ δi,j (∇ · u) . (2.2)

g is the gravity vector and Qrad is the radiative heating rate describing the energy

10

2 Process of Numerical Modelling

Figure 2.1: A schematic view of the Sun. Picture taken from http://sunearthday.

nasa.gov/. In the core, energy is released by nuclear burning. In the inner
two thirds, the energy is transported by radiation. In the outer third, it is
transported by turbulent convection. Near the surface of the Sun, the scales
get smaller, and the turbulence manifests in the solar granulation.

exchange between gas and radiation. δi,j is the Kronecker symbol. η and ζ are the first
and second coefficients of viscosity.

We can rewrite equations (2.1) as

∂Q

∂t
+∇ · Fadv = ∇ · Fvisc + S (2.3a)

with

11

2 Process of Numerical Modelling

variable meaning unit (CGS)

ρ gas density g cm−3

T temperature K
p pressure dyn cm−2

u x velocity (vertical) cm s−1

v y velocity (horizontal) cm s−1

w z velocity (horizontal) cm s−1

µx x momentum density (vertical) g s−1 cm−2

µy y momentum density (horizontal) g s−1 cm−2

µz z momentum density (horizontal) g s−1 cm−2

Qrad radiative heating rate erg s−1 cm−3

vsnd sound speed cm s−1

E total energy erg cm−3

e internal energy erg cm−3

ε specific internal energy erg g−1

η dynamic viscosity g cm−1 s−1

ζ second (bulk) viscosity g cm−1 s−1

Table 2.1: Variable names, meaning and CGS units as used in this thesis. Please note
that x denotes the vertical direction. Vectors are written in bold face. The
velocity vector is u = (u, v, w)T .

Q =

 ρ
ρu
E

 , Fadv =

 ρu
ρuu + p Id
u (E + p)

 ,

Fvisc =

 0
τ

u · τ

 , S =

 0
ρg

ρ (g · u) +Qrad

 .

(2.3b)

We call the terms collected in Fadv the advective or inertial part and in Fvisc the
viscous part of the Navier–Stokes equations. All first derivatives are contained in Fadv,
all second order terms in Fvisc.

However, due to the large time and length scales, it is impossible with today’s com-
puter resources to simulate the whole Sun in one simulation, solving the full set of
equations (Freytag et al., 2012). Instead, every numerical simulation can only cover a
small subproblem.

For the simulation of sunspots, the full magnetohydrodynamics (MHD) equations
must be solved with realistic equation of state (e.g., Rempel et al., 2009). In the quiet
Sun, the influence of the magnetic field is negligible, but the radiative heating rate must
be modelled suitably. The frequency-dependent intensity Iν can be calculated by the
radiative transfer equation

12

2 Process of Numerical Modelling

(
1

c

∂

∂t
+ r · ∇

)
Iν = ρχν (Sν − Iν) , (2.4)

where ν is the frequency, Sν is the source function and χν the opacity of the material
(Obertscheider, 2007). Defining the radiative energy flux Frad by

Frad =

∫
ν

∮
Iν(r,n) n dω dν, (2.5)

where ω is the solid angle and n the surface normal, the heating rate Qrad can be
calculated by

Qrad = −∇ · Frad. (2.6)

For details, we refer to Mihalas (1978). In optically thick regions, the calculation of
Frad can be simplified by means of the diffusion approximation. Then,

Frad = κ∇T, (2.7)

with the radiative conductivity κ. Due to the choice of our coordinate system with the
x direction pointing inwards the star, Frad is positive with this definition as long as T
increases with depth.

In the Sun, most of the material is ionised for temperatures above around 105 K.
Energy is mainly transported by radiation. In this region, the appropriate equation is
the ideal gas equation of state for a fully ionized plasma,

p =
rgas

µ
ρT, (2.8)

where rgas is the universal gas constant and µ is the mean molecular weight (Nordlund
et al., 2009).

The deep interior of the solar convection zone is nearly adiabatic. Here, the anelastic
approximation is valid. Its basic idea is to filter out fast sound waves analytically since
they do not contribute much to the convective motions of the fluid (Lilly, 1996).

More precisely, in the anelastic approximation we assume that the deviations of ther-
modynamic variables from a horizontally uniform reference state are small. The conti-
nuity equation in (2.1) is replaced by

∇ · (ρ0u) = 0, (2.9)

where ρ0 is some reference density value, neglecting the time derivative of density. In a
stratified atmosphere, ρ0 usually refers to the hydrostatic density stratification fulfilling

∇p0 = ρ0g (2.10)

with the mean pressure p0 (Brown et al., 2012).
There are several formulations of the anelastic approximation, differing, amongst oth-

13

2 Process of Numerical Modelling

ers, in terms of energy conservation. Their formulations and behaviour is compared in
Brown et al. (2012). Due to its initial assumptions the anelastic approximation yields
qualitatively wrong results in regions where these assumptions are violated, as e.g., near
the stellar surface in simulations of stellar convection, but reduces the complexity in
equations (2.1) considerably in regions where it is applicable.

Another, even more restrictive simplification is the Boussinesq approximation (Lilly,
1996). It neglects all density-related changes except in the buoyancy term, and is ap-
plicable only to low Mach number flows and very narrow simulation boxes (Zaussinger
and Spruit, 2013).

The Boussinesq approximation is a special case of an incompressible flow. A fluid
is called incompressible, if the density of a fluid particle is constant following the fluid
(Chorin and Marsden, 1993). In precise terms, the Lagrangian derivative D

Dt = ∂
∂t +

u · ∇ of the mass density ρ is 0. This implies ∇ · u = 0 by virtue of the equation of
continuity. This condition eliminates the need for an energy conservation equation as the
third equation in (2.1). The pressure is then obtained by reformulating the divergence
constraint. The resulting equation is of elliptic type (Lilly, 1996). We note that for
the anelastic approximation, the reference state stays compressible (Lilly, 1996; Brown
et al., 2012).

In some situations, it is necessary to describe the fluid as a multi-component fluid, e.g,
as a mixture of hydrogen and helium, or other heavier elements. For each component, a
separate continuity equation is added to equations (2.1), and the momentum and energy
equations are changed accordingly (Kupka, 2009b).

We conclude that depending on the problem of interest, the Navier–Stokes equa-
tions (2.1) can either be simplified considerably or additional terms must be added,
increasing or decreasing the complexity of the analytical model considerably. The most
general approach is often not affordable in terms of computation time, as outlined in
Chapter 1 for the case of stellar surface convection. Details can be found in Kupka
(2009b) and Freytag et al. (2012). Selecting simplifications of the model equations,
however, limits the physical relevance of the simulation. This is the case, e.g., for the
anelastic approximation. Its limitations are described in Brown et al. (2012). Anyway,
analytical solutions are only available in the simplest cases being of little physical rele-
vance. The only way to solve these equations is by performing numerical simulations.
The analytical model must be complex enough to capture the essential physical proper-
ties of the system and, at the same time, allow its numerical solution with reasonable
computational resources.

Alternatively, reformulating and appropriately discretising the Navier–Stokes equa-
tions (2.1) may lead to a system of discrete equations which avoid the problems of the
full set of analytical equations. A successful example for this approach in the case of the
Navier–Stokes equations in the low Mach number regime is the method from Kwatra
et al. (2009) and Happenhofer et al. (2013) where the stability and accuracy of the nu-
merical scheme could be improved considerably without losing the full compressibility of
the system. In this approach, the discretisation of the equations is part of the modelling
process. In the next section, we will focus on the numerical treatment of the equations.

14

2 Process of Numerical Modelling

2.2 Numerical Simulation

After the analytical model has been chosen, the numerical method must be designed
and implemented. The model formulation and the expected flow regime impose specific
requirements on the numerical method. For numerical hydrodynamical simulations, the
continuous flow equations must be discretised on a suitable grid. We will exemplify this
again by simulations of the Sun.

For simulations of solar surface convection, we expect strong shocks and Mach num-
bers of order 1. The Reynolds number, a parameter relating the strength of the advective
and the viscous terms in the Navier–Stokes equations, is very high. Therefore, the nu-
merical method must be shock-capturing and stable, without adding to much numerical
dissipation. The time integration can be done explicitly, since the advection time scale
is the most restrictive one. WENO methods as used, e.g., in Muthsam et al. (2007) and
Muthsam et al. (2010a) are an efficient choice yielding very accurate results.

For simulations of the deeper parts of the solar convection zone, the flow is rather
smooth, nearly incompressible and very subsonic. Most upwind schemes, which are very
well suited for the simulation of surface convection, do not perform well in this regime
(Guillard and Viozat, 1999; Guillard and Murrone, 2004). This stems from the fact that
the advective part of the Navier–Stokes equations called Fadv in equation (2.3) is stiff
in the low Mach number limit (chapter 14 in Wesseling, 2001). In that case, explicit
time integration is very inefficient and inaccurate since it must resolve the fast sound
waves leading to very small time steps and large rounding errors. Instead, implicit
time integration methods should be used (e.g., Euler backward; Viallet et al., 2011;
Kupka et al., 2012) and the sound waves can be removed analytically or numerically.
Another possibility is preconditioning of the equations (Wesseling, 2001; Miczek, 2013)
or analytical reformulation of the equations as in Kwatra et al. (2009) and Happenhofer
et al. (2013).

Conservation of mass, energy and momentum are the key concepts of most applications
of fluid dynamics. The numerical method must be able to conserve these quantities.
For this reason, we prefer to use finite volume or conservative finite difference schemes
for discretisation of the equations since then, the conservation properties are fulfilled
automatically. Nevertheless, conservation can also get lost due to the analytical model
(Lilly, 1996; Brown et al., 2012).

2.3 Code Validation and Verification

After all, choosing the analytical model as well as the numerical method introduces
errors into the simulation. These errors should be measured and controlled separately
as well as together.

Following the description in Ferziger and Perić (2002), the accuracy of numerical
solutions is limited by three types of systematic errors. Firstly, there are modelling
errors which arise since the mathematical equations do not describe the actual flow
perfectly, or since the geometry of the problem cannot be reflected by the numerical

15

2 Process of Numerical Modelling

simulation domain. Secondly, due to the transformation of the continuous equations
into discrete form we get discretisation errors. Thirdly, the differences between the
discretised (algebraic) equations and the numerical solution caused by the error of the
numerical iterative schemes used to solve the equations are called iteration errors.

Adapting the terminology from Calder et al. (2002), in the process of code validation
and verification these errors are controlled and quantified. The discretisation and itera-
tion errors are checked in the verification process. In the validation step, the compliance
of the model with reality is tested. Informally speaking, we understand by code verifi-
cation the process of checking that we are correctly solving the equations, as they were
chosen in the modelling process. Code validation means to check whether we solve the
appropriate equations (Calder et al., 2002). Figure 2.2 provides a schematic view of the
overall process.

Of course, validation is much more complicated, especially in astrophysics. There
are only very limited experimental data for any astrophysical application with which
the numerical data can be compared. The observational data have, in most cases, very
low resolution and can only be used to compare with integral quantities of the whole
simulation.

Simulation Model Nature

Verification Validation

Figure 2.2: Code verification and validation. The process of checking the (mathematical)
correctness of the numerical solution for the given set of partial differential
equations (the model) is called verification. The process of checking if the
model describes nature correctly is called validation.

In the following, we will introduce the main methods for code verification, and give
some examples of code validation in the astrophysical context. We will demonstrate how
the numerical method limits the validity of the simulation as well.

2.3.1 Verification Methods

In the code verification step we check whether there are errors in the numerical program
solving the given set of differential equations. In some cases, we have analytical solutions
of the equations we can compare. These and some more sophisticated methods are
presented in the following paragraphs.

16

2 Process of Numerical Modelling

Test Problems

If the differential equations are given in a specific simplified form, we may be able to
solve them analytically and then check the numerical solution by comparing with the
analytical solution. Of course, this approach is limited to very simple and specific cases
and it is not sufficient to prove the correctness of a code. In other cases, very accurate
numerical solutions are known which were calculated with other simulation codes. A
whole set of such test problems can be found, e.g., in Liska and Wendroff (2003).

Not every test problem is suited for any numerical code. If the code is designed, e.g.,
for low Mach number flows, it will probably fail for any test where the flow has a high
Mach number. But this imposes no restrictions on the applicability of the code to the
problems it was designed for.

Self-Convergence Studies

Testing self-convergence means increasing the spatial and temporal resolution of the
simulation and test whether the numerical solution approaches a stable and unique
solution. Following the description in Appendix A.6 in LeVeque (2007), we expect that
the error ε of the numerical solution decreases with grid spacing h according to a power
law of the form

ε(h) ≈ Chp, (2.11)

where p is the (empirical) order of convergence or order of accuracy and C is the error
constant of the method. p and C, however, depend on the test problem as well. By
comparing the numerical solution of several grid resolutions, the convergence rate p of
a code for the given test problem can be calculated if the error can be determined by
comparing with an analytical solution or a numerical reference solution. If, for example,
the resolution is increased by a factor 2, the convergence rate p can be estimated by

p = log2 (ε(h)/ε(h/2)) , (2.12)

where ε(h) is the numerical error at grid spacing h. Then, the error constant of the
method can be calculated by

C = ε(h)/hp. (2.13)

Self-convergence studies show errors in the discretisation process. They do not prove
that the numerical code solves the equations it was designed for, and in particular they
do not demonstrate the physical relevance of the solution. Instead, they show that
with decreasing grid spacing the code approaches some unique solution. Nevertheless,
they are a valuable tool to measure the consistency of the code and the accuracy of the
discretisation.

The order of accuracy and error constant may depend on the norm chosen for measure-
ment of the error. For a grid function fi = f(xi), where xi are the discrete grid points

17

2 Process of Numerical Modelling

where the function value is defined, we define the following three norms (Appendix A.5
in LeVeque, 2007).

‖f‖L1 =
∑
i

hi |fi| , (2.14)

‖f‖L2 =

(∑
i

hif
2
i

) 1
2

, (2.15)

‖f‖L∞ = max
i
|fi| , (2.16)

where hi is the width of the ith grid cell. The L1 norm ‖f‖L1 gives the arithmetic mean
of the absolute function value in each grid point. The L∞ norm ‖f‖L∞ finds the absolute
maximum of the function on the whole domain. Finally, the L2 norm ‖f‖L2 defines an
average error value where the extreme function values have higher weight. Depending on
the application in mind, each of these norms can give valuable insights into the quality
of the numerical solution.

Code–To–Code Comparisons

The most sophisticated method of code verification is comparison with other codes which
should use different numerics and/or different analytical models for the same test prob-
lem. If the results are similar it is a strong indication that the codes are working properly.
Having congruent data from several codes strengthens the trustworthiness of each of the
codes.

Even if a numerical code is verified with the methods described above, there is still
the possibility that the numerical solution inherits deficiencies from the chosen numerical
method or even from the choice of the model equations. By comparing with different
codes it can be checked whether the numerical solutions are method-independent, and
if the analytical model behind the codes is different, these tests can already provide a
certain validation of the results.

For the case of solar surface convection, extensive code comparisons were done by
Kupka (2009a) and Beeck et al. (2012). They show a general agreement of the codes
considered in the comparisons, even though the amplitude of the difference may depend
on the variable you are looking at. E.g., the mean temperature stratification of all
simulations is very similar whereas the standard deviation shows larger differences as
depicted in Figure 2.3. Kupka (2009a) demonstrated that the higher moments of the
temperature distribution exhibit increased sensitivity on the numerical method and the
boundary condition.

2.3.2 Examples of Code Validation

Validation is the second step in proving the physical relevance of the simulation results,
and usually it is the much harder one. There is no standard procedure how one can

18

2 Process of Numerical Modelling

Figure 2.3: Mean temperature stratification and standard deviation of the temperature
distribution for three simulations of solar surface granulation. Figure taken
from Beeck et al. (2012).

show that the output of the simulation code actually is a good model for the application
one is interested in.

In the wide field of computational fluid dynamics, the most effective and easiest way of
validation is comparison of the numerical data with experiments or direct measurements
of the actual flow. Another possibility is performing simulations where all scales are
resolved and no simplifications of the basic analytical model are used. Even though
these experiments and numerical simulations are very demanding in terms of human
and computer time as well as resources, they can be performed for several test cases,
and the numerical code can be benchmarked and validated using this data.

The parameter range of nearly all astrophysical applications covers a regime which
cannot be reached in terrestrial conditions (e.g., Kupka, 2009b). All fluid experiments
which can be performed in a laboratory differ by several orders of magnitude in length
and time scales as well as viscosity. Similarly, it is not affordable to perform simula-
tions where all scales are resolved. Therefore, the two main possibilities of validating a
simulation code are not available in astrophysics.

In the next paragraphs, we will give examples of code validation for several astrophys-
ical applications. Thereby, we will emphasize the limitations to code validity due to the
numerical method.

Stellar Surface Convection

In astrophysics, most observational data have a very low resolution such that it cannot
be used to gain detailed information about the dynamics of the plasma on the stellar
surface or even inside of the star. The only case where truely high-resolution observations
exist is the Sun and that is why it has become an important benchmark for any stellar
simulation code.

On the surface of the quiet Sun, we observe a granular pattern which is the manifesta-
tion of the turbulent convection in the outer regions of the Sun, as shown in Figure 2.1

19

2 Process of Numerical Modelling

(e.g., Nordlund et al., 2009; Kupka, 2009b). By choosing a small simulation box of only
several Mm in size around the optical surface of the Sun, Nordlund (1982) started to
perform detailed and accurate simulations of the convection on the solar surface. Since
then, several other groups have developed their own simulation codes for stellar surface
convection (e.g. Freytag et al., 2012; Vögler et al., 2005; Muthsam et al., 2007, 2010a).

Figure 2.4: Simulated (top) and observed (bottom) granulation patterns at the surface
of the Sun. The middle picture shows artificially blurred simulation data.
Due to the high resolution of the simulation, the simulated picture is actually
sharper than the observed one. Figure taken from Stein and Nordlund (1998).

These simulations have proven to be very accurate. The first test is direct comparison
with the observational data. As shown in Figure 2.4, the simulated and observed snap-
shots cannot be distinguished except for the even higher resolution of the simulation. At
the same time, this test is already the starting point where we can learn something from
the simulation: it is impossible to get as accurate and highly resolved data from the
observations as we get from the simulation. The simulations deepen our understanding
of the convective motions on the surface of the Sun and even in the upper part of the
solar convection zone. See Lemmerer et al. (2013) for details.

In Asplund et al. (2000a) and Asplund et al. (2000b), the observed spectral line forma-
tion of Fe lines is compared to the synthetic one calculated from the three-dimensional
simulation data. Its line shapes, shifts and asymmetries are very similar, showing that
the simulation produces realistic results also for these derived quantities. Pereira et al.
(2013) showed that the predictions from the three-dimensional models for the continuum
centre–to–limb variations are closer to the observations than any one-dimensional model
which has been used in the past.

Another method of validation is comparison with models and observation from aster-

20

2 Process of Numerical Modelling

oseismology. Georgobiani et al. (2000) showed that the numerical simulation reproduced
the basic observed properties of solar oscillations.

We conclude that the simulation of solar surface convection is very well tested and
validated. After the validation process has been successful, one can start to gain in-
formation from the simulation where no observational data is available. The surface of
many main-sequence stars is assumed to behave similarly as the Sun. But, due to their
larger distance to the earth, we do not possess as detailed and accurate observational
data as for the Sun. But one can use the simulation codes which have been verified
by the solar benchmark to predict the dynamic properties of other main-sequence stars
provided they behave similarly to the Sun. Trampedach et al. (2013) and Magic et al.
(2013) have started to calculate grids of stars distributed over a wide range of stellar
parameters, spending a huge amount of computation time and producing terabytes of
promising output data.

Nevertheless, we must be aware of the limitations of this approach. The assumption
that we can model the granulation in Cartesian boxes which are small in comparison
to the stellar radius implies that the integral length scale of the problem is small. The
size of a granule scales roughly with the inverse of the gravity acceleration g (Robinson
et al., 2004). More precisely, Freytag et al. (2002) used the empirical relation

xgran ≈ 10 rgas
Teff

g
(2.17)

where xgran is the typical size of a granule and rgas is the universal gas constant. In
terms of the solar radius R�, mass M� and effective temperature Teff,�, this can be
rewritten as

xgran

R?
≈ 0.0025

R?
R�

Teff,?

Teff,�

M�
M?

. (2.18)

Therefore, the assumption that the granule size is small compared to the stellar radius
is not true any more when the mass of the star is small or the radius and the effective
temperature are high compared to the solar values.

Typically, the simulation box is placed near the stellar surface such that the top
boundary is in the upper photosphere, whereas the bottom boundary is situated deeply
inside the convective envelope. There is no obvious choice for the boundary conditions.
Ideally, they should allow free in– and outflow and not influence the solution in the
inner regions of the simulation box. The design of such boundary conditions is not
trivial (Grimm-Strele et al., 2013a).

Star In A Box

Substituting the stellar parameters of the red supergiant Betelgeuse into formula (2.17),
Freytag et al. (2002) suggested that there are only a few hundred convection cells on
the whole surface of the star. In this case, the local approach — approximating a small
representative piece of the star near the surface by a Cartesian box — will not work.
Instead, the simulation domain must include the whole star.

21

2 Process of Numerical Modelling

A direct way to apply the Cartesian codes designed for surface convection simula-
tions to these stars is the star–in–a–box approach (Freytag et al., 2002). The Cartesian
simulation domain is chosen large enough to contain the whole star.

The numerical difficulties connected to this approach are obvious and manifold. By
fitting a sphere inside a cube, about 50 % of the computational cells are located outside
of the star and therefore do not provide any information. This makes parallelisation
by domain decomposition much more wasteful and limits the efficiency of the code.
Furthermore, the resolution is uniform everywhere even though we would like to have
higher resolution near the optical surface of the star. Imposing boundary conditions is
very difficult as every approximation of a spherical shell by Cartesian grid cells is rather
crude.

Nevertheless, this approach has the advantage of easy implementation. All efficient
algorithms designed for Cartesian grids can be used. Chiavassa et al. (2009) showed
that the results obtained by these simulations fit existing interferometric observations
reasonably well, and in the absence of better alternatives, they provide a valuable tool
for numerical astrophysicists.

Figure 2.5: Emergent surface intensity from a numerical simulation of Betelgeuse. Pic-
ture taken from http://www.astro.uu.se/~bf/.

Core and Envelope Convection with ASH

Deeper in the convection zone of the Sun, the convective motions act on much larger
scales such that they cannot be captured in small Cartesian boxes. Instead, Glatzmaier
(1984) developed the code ASH which solves the three-dimensional anelastic magneto-
hydrodynamic equations in a spherical coordinate system. In the horizontal directions,

22

2 Process of Numerical Modelling

all variables are expanded in spherical harmonics, whereas in the vertical direction,
Chebychev polynomials are used.

The spherical coordinate system defined by the transformation

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ,

with φ ∈ [0, 2π] , θ ∈ [0, π] , (2.19)

has several obvious advantages compared to the star–in–a–box approach. It is the nat-
ural choice for the simulation of spherical shells and cones. The radial grid layering
can be adapted to the structure of the star, and resolution can be increased near the
tachocline (the transition from the radiative interior to the convective outer envelope)
or the spherical surface. With the anelastic approximation, the sound waves are filtered
out explicitly, and the numerical time step can be large enough to cover the dynamical
time scales of core and envelope convection in main sequence stars.

The code was applied to a variety of astrophysical problems, including, e.g., core
convection of an A–type star (Browning et al., 2004), the transition between the radia-
tive and the convective zone of the Sun (Browning et al., 2007) and super-granulation
(DeRosa et al., 2002). Toomre et al. (2012) give a comprehensive overview of the as-
trophysical problems tackled with ASH and how these simulations match observations
from asteroseismology.

Despite its success in applications, the numerical approach of ASH has severe draw-
backs. The anelastic approximation is qualitatively wrong near the surface of the star.
Therefore, the outer 2 to 5 % percent of the star are usually excluded from their sim-
ulations, even though the turbulent convection at the surface is assumed to drive the
convection in the convective envelope (e.g., Kupka, 2009b). This influence must be
modelled by an artificial boundary condition.

We explain the basic idea of spectral methods for the case of Fourier expansions. The
set of functions

φk(x) = eikx (2.20)

is an orthonormal system on [0, 2π]. i is the imaginary unit. For a given function f , its
Fourier coefficients f̂k are given by

f̂k =
1

2π

∫ 2π

0
f(x)e−ikx dx. (2.21)

The Fourier expansion of f is defined by the infinite series

Ff =
∞∑

k=−∞
f̂kφk (2.22)

(Canuto et al., 1988). Other expansions can be obtained by choosing a different orthonor-

23

2 Process of Numerical Modelling

mal set of expansion functions. When this approximation is implemented numerically,
two types of errors arise: truncation errors when only a finite number of terms are con-
sidered in the expansion (2.22). Then, the error arising due to approximate calculation
of the coefficients (2.21) is called aliasing error.

There are “de-aliasing” methods to remove the aliasing error from the numerical solu-
tion. But, since the aliasing and truncation errors decay at the same rate, the accuracy
of the aliased solution will be well enough as soon as the resolution is high (Canuto
et al., 1988). It is doubtable that any simulation in an astrophysical context can reach
sufficient high resolution, and the effect on the accuracy of the numerical solution is
unclear.

The convergence speed of spectral methods is, in principle, superior to any finite
difference or finite volume method (Canuto et al., 1988). But there are mainly two
restrictions to this theoretical advantage. Firstly, coupling the spectral method with the
Crank–Nicolson or the second order Adams–Bashforth time integration scheme scheme
as done in Glatzmaier (1984) leads to dominance of temporal errors when the resolution
is increased, and the overall order is restricted again. Secondly, if discontinuities are
present in the numerical solution, the Gibbs phenomenon, an oscillatory overshoot of —
in the limit of vanishing grid spacing — finite amplitude, leads to further reduction of the
convergence order (p. 45, Canuto et al., 1988). Table 2.4-1. in Fornberg (1998) shows the
order of the errors in the maximum norm caused by irregularities of a function. Variable
and non-smooth coefficient functions are problematic for spectral methods, expecially
when the spherical harmonics expansion is used (Fornberg, 1998).

Finally, we note that it is a challenging task to efficiently implement the Legendre
transform on parallel computers (Clune et al., 1999). The transform, which is needed
due to the spherical harmonics expansion, dominates the total computation time of ASH
and any other code employing spherical harmonics expansions (Cai et al., 2011).

The spherical coordinate system itself has several disadvantages. At r = 0 and θ =
0, π, there are grid singularities. The singularity in θ is taken care of when using spherical
harmonics expansions, but for a finite difference or finite volume method, grid cells get
very small and impose strong restrictions on the time step if explicit time integration
methods are used. At the inner core, an artificial boundary must be introduced. This
might not be problematic for simulations of the outer convective envelope, but it certainly
changes the velocity field if a flow through the centre of the grid exists. This probably
is the case for the simulations of core convection as in Browning et al. (2004). By using
a two-dimensional Cartesian code, Evonuk and Glatzmaier (2007) demonstrated that,
depending on the rotation rate, the velocity field of a fully convective planet is changed
completely by the introduction of a small artificial core, no matter how small the core
is. Figure 2.6 taken from Evonuk and Glatzmaier (2007) illustrates this behaviour.

2.4 The Four Main Restrictions of Validity

In the previous section we demonstrated that the numerical method limits the validity
and applicability of an astrophysical simulation code. We have identified the four main

24

2 Process of Numerical Modelling

Figure 2.6: Flow pattern in the interior of a giant gaseous planet with and without
artificial inner core. Figure taken from Evonuk and Glatzmaier (2007).

restrictions as the limitations due to the numerical grid, the problem of resolving a wide
variety of time scales, the problem of resolving the parameter space and viscosity, and
the design of appropriate boundary conditions. We will describe each of these points in
detail.

2.4.1 Grid Geometry

The geometry of many astrophysical computational problems is rather simple. Either the
domain can be approximated by a Cartesian box, or it has spherical shape. However,
for certain applications as, e.g., core convection, the classical Cartesian and spherical
coordinate systems are not sufficient.

In other cases, a non-uniform grid resolution throughout the domain would be desir-
able. In surface convection simulations, the flow inside the granules is expected to be
rather laminar. Only in the fast downdrafts between the granules, turbulence is expected
to develop (Kupka, 2009b). There, it would be desirable to have a higher resolution to
better resolve the turbulent motions. The technique of grid refinement as described in
Muthsam et al. (2010a) is a valuable tool to get to very high resolutions without making
the computational requirements unbearable.

When going deeper into the convection zone, spatial scales increase such that the
resolution requirements decrease compared to the surface. A non-equidistant grid in the
radial direction as used in Magic et al. (2013) and Glatzmaier (1984) helps lowering the
computational requirements of the simulation.

25

2 Process of Numerical Modelling

The choice of the numerical grid limits the applicability of a numerical code consider-
ably. Many numerical schemes are only usable for equidistant Cartesian or other simple
coordinate systems (e.g. WENO as described in Merriman, 2003). Generalisations to
unstructured grids are very complicated and expensive both in terms of programming
work and computation time (p. 36 in Ferziger and Perić, 2002). Therefore, as long as
it is possible to use the simple and efficient high-order schemes for Cartesian grids, one
should continue to use them. We summarise the advantages and disadvantages of the
spectral approach from Glatzmaier (1984), the WENO approach for Cartesian domains
from Muthsam et al. (2010a) and for spherical domains from Mundprecht et al. (2013)
in Table 2.2.

The topic of the PhD thesis will be to extend the grid capabilites of two existing codes
working in Cartesian coordinates, keeping the changes in code and numerical method as
small as possible.

2.4.2 Time Scales

In the right panel of Figure 2.7, the mean Mach number Ma = |u|
vsnd

of the convective flow
is shown (dashed line). It denotes the ratio of the convective velocity to the speed of the
sound waves. Near the surface, Ma is around unity, but going deeper in the convection
zone, it decreases by several orders of magnitude.

As described in Kupka (2009b), explicit time integration schemes use the information
at the old time step to calculate an extrapolation of the new time step. More precisely,
if we denote the differential operator by L and the solution at time step n by un,

un+1 = un + δtL (un) . (2.23)

The time step size δt is limited by the Courant–Friedrichs–Levy (CFL) condition (e.g.,
Strikwerda, 1989), and is constrained by the local speed of sound. Therefore, explicit
time integration schemes are very efficient near the surface, but allow only very small
time steps in the deeper convection zone where the Mach number is low.

Famous examples of explicit time integration schemes in the context of Runge–Kutta
methods are the Euler forward scheme (Strikwerda, 1989) and the TVD2 and TVD3
schemes from Jiang and Shu (1996). In this thesis, we also use the SSP RK(3,2) scheme
from Kraaijevanger (1991) and Kupka et al. (2012). These methods differ, amongst
others, in number of stages, order of accuracy and error constants.

On the contrary, implicit time integration schemes require the solution of a (non)linear
system to get the solution at the new time level, i.e.

un+1 = un + δtL
(
un+1

)
. (2.24)

Therefore, one step with an implicit time integration scheme is much more expensive
than with an explicit one. The use of implicit schemes pays off when the time step can
be chosen much larger. On the other hand, large time steps may decrease the accuracy
of the solution (Kupka, 2009b).

26

2 Process of Numerical Modelling

Guillard and Viozat (1999) and Guillard and Murrone (2004) demonstrated that the
accuracy of certain upwind schemes is very bad in low Mach number flows. This was
confirmed in Happenhofer et al. (2013) for the WENO5 scheme with explicit time inte-
gration. For low Mach numbers, the numerical scheme must be adapted suitably both
for reasons of efficiency and accuracy. The disadvantage of analytical approaches like
the anelastic approximation is that their basic assumptions limit their domain of appli-
cability to specific regions in the star, and the use of the approaches in other regimes
will yield wrong results (Brown et al., 2012).

Solving the Navier–Stokes equations without any simplifications with implicit time
integration schemes is possible in theory, but numerically very complicated and hard
to implement efficiently (Miczek, 2013; Viallet et al., 2011). Happenhofer et al. (2013)
suggested the use of Kwatra’s method (Kwatra et al., 2009) instead. There, the Navier–
Stokes equations are reformulated with very tiny simplifications to yield an elliptic equa-
tion for a pressure prediction. Using this prediction of the pressure in a modified update
step increases the stability and accuracy of the method in the low Mach number limit
considerably without destroying its ability to handle shocks and high Mach number flows
(Happenhofer et al., 2013).

Besides the time scales of advection and sound waves there exist a variety of other
time scales describing various physical processes. Thermal relaxation, e.g., acts on the
Kelvin–Helmholtz time scale. For a numerical simulation this is the time it takes for the
whole energy of the box to be transported away by radiation only. For solar granulation
simulations, this time scale is approximately several hundred hours (Grimm-Strele et al.,
2013a) and therefore out of scope for any multidimensional simulation — even though
its importance for the relaxation and rearrangement of a model is huge.

If other terms like, e.g., heat diffusion or viscosity, impose a rigid limit to the time
step, implicit–explicit (IMEX) methods may be a efficient alternative. The basic idea is
to split the differential operator in two parts,

L (u(t)) = Lexp (u(t)) + Limp (u(t)) , (2.25)

and integrate the one part Lexp with an explicit scheme and the other Limp with an
implicit one (Kupka et al., 2012). The terms in the equations corresponding to the stiff
processes are put in the implicit part Limp. Nevertheless, the integration of both parts
is simpler than performing a fully implicit integration step of the differential operator.

Due to the large computational requirements of these simulations, interesting results
can only be obtained by means of parallelisation, in particular domain decomposition
(e.g. Obertscheider, 2007). Whereas this is rather trivial for explicit schemes, good scal-
ing is very difficult to obtain for implicit time integration schemes. Therefore, Hotta
et al. (2012) modified the differential equations in such a way that their explicit schemes
can be used efficiently throughout the solar convection zone. They sacrificed the essen-
tial property of mass conservation for that. However, Grimm-Strele (2010) describes
a solution algorithm based on the Schur Complement method (Saad, 2003) which has
been proven to scale strongly up to several thousand MPI processes (Happenhofer et al.,
2013).

27

2 Process of Numerical Modelling

0.7 0.8 0.9 1.0
R/Rsun

9

10

11

12

13

14
R
ey
no
ld
s
nu
m
be
r
lo
g
R
e

0.7 0.8 0.9 1.0
R/Rsun

−10

−8

−6

−4

−2

0

lo
g
P
r,

lo
g
M
a

Figure 2.7: Reynolds number (left), Prandtl and Mach number (right, solid and dashed
lines, respectively) throughout the solar convection zone. Figure taken from
Freytag et al. (2012).

2.4.3 Parameter Space

The Reynolds number Re is a measure of the magnitude of the viscous forces compared
to the advective ones. High Reynolds numbers imply small viscosity. Freytag et al.
(2012) evaluated Re for the case of solar convection by

Re =
vcHp

ν
, (2.26)

with the convective velocity vc, the local pressure scale height Hp and the microscopic
kinematic viscosity ν evaluated from one-dimensional stellar evolution models. Figure 2.7
shows that the Reynolds number is of the order 1010 to 1013 throughout the convection
zone. Similarly, the Prandtl number Pr, defined as the ratio of coefficients of momentum
and heat transfer, was found to be of order 10−6 and 10−10 near the surface of the Sun.

But instead of the realistic values for Re and Pr, the concept of large eddy simulations
implies that the effective viscosity of a numerical simulation is much higher, and therefore
the effective values of Reynolds and Prandtl number are much lower resp. higher than the
realistic ones (e.g. Kupka, 2009b; Freytag et al., 2012). The spatial resolution needed to
reach realistic effective values of these parameters is not feasible with today’s computers.
This limits the physical realism of the simulations in an unpredictable way. Since this
is not the topic of this thesis, we will not go into more detail, but refer the reader to
Kupka (2009b) and Freytag et al. (2012), instead.

2.4.4 Boundary Conditions

Finally, in most astrophysical applications there is no obvious way how the boundary
conditions should be set. Grimm-Strele et al. (2013a) describe the problem for the case
of stellar surface convection in much detail. As already mentioned in paragraph 2.3.2,
the domain of surface convection simulations typically embraces a small Cartesian box at
the surface of the star. The top boundary is located in the upper photosphere, whereas

28

2 Process of Numerical Modelling

the lower boundary is somewhere in the convection zone. Although it is obvious that it
is desirable to put as much distance between the boundaries and the surface, the exact
vertical position of both boundaries is dictated by the computational resources available.
In any case, the boundary conditions should be designed such that they disturb the flow
as little as possible which is not a trivial task. Again, this topic will not be covered in
this thesis. An extensive discussion can be found in Grimm-Strele et al. (2013a).

29

2
P
ro
cess

of
N
u
m
erical

M
o
d
ellin

g

Spectral Approach Cartesian WENO Spherical WENO
Glatzmaier (1984) Muthsam et al. (2010a) Mundprecht et al. (2013)

order of accuracy ++ theoretically high, but
limited by solution and
time integration accu-
racy

+ usually 5, but limited
by time integration ac-
curacy

− limited to 2

pole problem in latitude + avoided due to spherical
harmonics

+ not present − solvable with Yin–Yang
grid

core singularity − not solvable + not present − not solvable
smoothness require-
ments

− high, unpredictable be-
haviour for non-smooth
flow

+ none, shock-capturing + none, shock-capturing

effect of low resolution − aliasing errors make re-
sults untrustworthy

+ LES: smaller scales are
modelled by subgrid
scale model

+ LES: smaller scales are
modelled by subgrid
scale model

conservation property − not conservative + fully conservative ex-
cept for gravity

− not conservative due to
geometry terms

computational cost − Legendre transform +− intermediate +− intermediate
outer boundary + spherical − Cartesian box + spherical
parallelisation − difficult + straightforward + straightforward

Table 2.2: Comparison of advantages and disadvantages of standard spectral and WENO approaches for the numerical
simulation of the full sphere.

30

3 Numerical Methods

In this chapter, we will describe the numerical methods used in this thesis and their
important properties concerning the structure of the grid.

As a side topic, we will investigate the efficiency of several explicit Runge–Kutta
schemes combined with the fifth order WENO scheme as described in Section 3.1 for
some idealised cases and the case of solar convection.

3.1 The Weighted Essentially Non Oscillatory (WENO)
Scheme

In this section, we consider the Euler equations without any viscous, gravity or diffusion
terms. The Euler equations are a system of partial differential equations. In three spatial
dimensions and in a Cartesian coordinate system, their differential form is

∂

∂t
Q +

∂

∂x
F +

∂

∂y
G +

∂

∂z
H = 0, (3.1)

with the state vector Q and the flux functions F, G and H given by

Q =


ρ
ρu
ρv
ρw
E

 , F (Q) =


ρu

ρu2 + p
ρuv
ρuw

(p+ E)u

 ,

G (Q) =


ρv
ρvu

ρv2 + p
ρvw

(p+ E)v

 , H (Q) =


ρw
ρwu
ρwv

ρw2 + p
(p+ E)w

 ,

(3.2)

where the pressure p = p(ρ, e) is given by an equation of state and e = E − u2+v2+w2

2ρ is

the internal energy. In the following, we will write u := (u, v, w)T for the velocity vector.

3.1.1 Finite difference and finite volume discretisation

First, we derive the finite difference and finite volume discretisation of the Euler equa-
tions for the one-dimensional case. Thereby, we follow the method of lines approach

31

3 Numerical Methods

of discretising space and time derivatives separately (Toro, 2009; LeVeque, 2007). The
differential form of the Euler equations in one spatial dimension is

∂

∂t
Q +

∂

∂x
F = 0, (3.3)

Q =

 ρ
ρu
E

 ,F (Q) =

 ρu
ρu2 + p

(p+ E)u

 , (3.4)

where p = p(ρ, e) and the velocity u. Let Ω = [a, b] and let a grid on Ω be defined on
the half-integer nodes, i.e.

xi+ 1
2

= xi− 1
2

+ δxi, i = 1, . . . , n, x 1
2

= a, xn+ 1
2

= b. (3.5)

The grid is not necessarily equidistant. The index i refers to the centre of the cell

Ci =
[
xi− 1

2
, xi+ 1

2

]
.

Definition 1. The Cell Average Operator A on a grid (3.5) is defined by

A(h)i :=
1

δxi

∫ x
i+1

2

x
i− 1

2

h(x̃)dx̃. (3.6)

Applying A to (3.3) gives

∂

∂t
(AQ)i +

δFi

δxi
= 0 with

δFi

δxi
=

Fi+ 1
2
− Fi− 1

2

δxi
(3.7)

with Fi+ 1
2

= F
(
Q(xi+ 1

2
)
)

. (AQ)i =: Qi is the Cell Average of Q in the cell Ci =[
xi− 1

2
, xi+ 1

2

]
.

Applying now A−1 as in Merriman (2003), we get

∂

∂t
Qi + A−1 δFi

δxi
= 0. (3.8)

Merriman (2003) showed that

A−1 δFi

δxi
=
δ
(
A−1Fi

)
δxi

if the grid is equidistant, i.e. δxi = δx ∀i. (3.9)

In this case, (3.3) is equivalent to

∂

∂t
Qi +

δfi
δxi

= 0 with Fi = (Af)i. (3.10)

(3.10) is called the Shu–Osher form of (3.3). It is equivalent to (3.1) if the grid is
equidistant (Merriman, 2003).

32

3 Numerical Methods

A finite volume scheme starts with equation (3.7) and computes approximations for
Qi+ 1

2
from the given cell averaged Qi. The numerical flux F̂i+ 1

2
is calculated by

F̂i+ 1
2

= F
(
Qi+ 1

2

)
. (3.11)

In contrast, the finite difference scheme starts with equation (3.10) and computes ap-
proximations for fi+ 1

2
from the values of the analytical flux function F. Since Fi = (Af)i,

both approaches are computationally equivalent and require the numerical solution of
the following

Problem 1 (Reconstruction problem). Given a set of cell averages, compute the value
of the underlying function at the half-integer nodes.

Definition 2. The Reconstruction Operator R acts on cell averages and reconstructs the
point value of the underlying function

R(Ah)i+ 1
2

= hi+ 1
2

(3.12)

on a given grid (3.5).

If the grid is equidistant, the same algorithm can be used to compute Qi+ 1
2

and fi+ 1
2
.

The only difference lies in the input for the reconstruction process: in the case of a finite
volume scheme, the inputs are given by the cell averages Qi of the state vector, whereas
in the case of a finite difference scheme, they are given by the analytical flux function F
evaluated at the cell centre.

Given a reconstruction operator R, Problem 1 can be solved. The WENO recon-
struction operator is described in detail in Shu (2003) and also in 3.1.2, following the
cited reference. In general, finite volume methods can be designed on non-equidistant
grids. However, since the WENO reconstruction operator as it is described in 3.1.2
works only on equidistant grids, the applicability of the finite volume method using this
reconstruction method is restricted to equidistant grids, too.

The advantage of the finite difference scheme lies in its easy extension to higher di-
mensions. Let a region (i.e., a non-empty, open, and connected set) Ω ⊂ R3 be given.
We examine the Euler equations (3.1) on Ω.

In the finite volume approach, applying AxAy to the three-dimensional Euler equa-
tions (3.1) results in

∂

∂t
(Ax,y,zQ)i,j,k +

Ay,z(Fi+ 1
2
)j,k −Ay,z(Fi− 1

2
)j,k

δx

+
Ax,z(Gj+ 1

2
)i,k −Ax,z(Gj− 1

2
)i,k

δy
+

Ax,y(Hk+ 1
2
)i,j −Ax,y(Hk− 1

2
)i,j

δz
= 0.

(3.13)

We wrote Ax,y for AxAy here. The fluxes are now surface integrals over the cell
boundaries. With the midpoint rule,

33

3 Numerical Methods

Ay,z(Fi+ 1
2
)j,k = Fi+ 1

2
,j,k +O(h2). (3.14)

With only one evaluation of the fluxes, the overall order of the method is restricted
to two. We notice that if F is linear, this integration is exact.

Contrary, in the finite difference approach, (3.1) is transformed to

∂

∂t
Qi,j,k +

fi+ 1
2
,j,k − fi− 1

2
,j,k

δx
+

gi,j+ 1
2
,k − gi,j− 1

2
,k

δy
+

hi,j,k+ 1
2
− hi,j,k− 1

2

δz
= 0 (3.15)

with F = Ax(f), G = Ay(g) and H = Az(h). The overall order of the method only
depends on the order of the reconstruction of f , g and h, which are one-dimensional re-
construction problems. The one-dimensional algorithms can be directly applied without
loss of order of accuracy.

Even if the high order one-dimensional WENO reconstruction algorithm is applied to
evaluate the flux functions in (3.13), the resulting finite volume method is only second
order accurate. To obtain a truly high-order multidimensional finite volume method,
more complicated integrations for the line integrals in (3.13) must be performed, in-
creasing the computational costs of the finite volume scheme tremendously (Shu, 2003;
Colella et al., 2011; Zhang et al., 2011). Therefore, finite difference schemes are clearly
preferable on Cartesian grids.

The procedure is described in pseudocode in Algorithms 1 and 2.

Algorithm 1 Finite difference scheme for the three-dimensional Euler equations.

1: Qi,j,k is given as point value at the cell centre.
2: A(f)i,j,k = Fi,j,k, A(g)i,j,k = Gi,j,k, A(h)i,j,k = Hi,j,k

3: fi± 1
2
,j,k = Rx (Fi,j,k), gi,j± 1

2
,k = Ry (Gi,j,k), hi,j,k± 1

2
= Rz (Hi,j,k)

4:

∂Qi,j,k

∂t
=− 1

δx

(
fi+ 1

2
,j,k − fi− 1

2
,j,k

)
− 1

δy

(
gi,j+ 1

2
,k − gi,j− 1

2
,k

)
− 1

δz

(
hi,j,k+ 1

2
− hi,j,k− 1

2

)

Both algorithms need the specification of a reconstruction operator. A reconstruction
operator calculates the point value of a function given its cell averages. The WENO
reconstruction operator is described, e.g., in Shu (2003) and 3.1.2.

3.1.2 Reconstruction Algorithm

In the following, the WENO reconstruction operator is derived following Shu (2003).
The purpose of the reconstruction operator is to solve Problem 1, i.e. reconstruct the
value of the underlying function at a certain position given a set of cell averages.

34

3 Numerical Methods

Algorithm 2 Finite volume scheme for the three-dimensional Euler equations.

1: Qi,j,k = Qi,j,k is given as cell average.

2: Qi± 1
2
,j,k = Rx

(
Qi,j,k

)
, Qi,j± 1

2
,k = Ry

(
Qi,j,k

)
. Qi,j,k± 1

2
= Rz

(
Qi,j,k

)
3: Fi± 1

2
,j,k = F

(
Qi± 1

2
,j,k

)
, Gi,j± 1

2
,k = G

(
Qi,j± 1

2
,k

)
, Hi,j,k± 1

2
= H

(
Qi,j,k± 1

2

)
4:

∂Qi,j,k

∂t
=− 1

δx

(
Fi+ 1

2
,j,k − Fi− 1

2
,j,k

)
− 1

δy

(
Gi,j+ 1

2
,k −Gi,j− 1

2
,k

)
− 1

δz

(
Hi,j,k+ 1

2
−Hi,j,k− 1

2

)

We will only consider equidistant one-dimensional grids and reconstruction of the
value at the half-integer node i+ 1

2 . This is sufficient for the finite difference and finite
volume algorithms used in this paper.

The idea of the WENO reconstruction process is to use several stencils in the neigh-
bourhood of i+ 1

2 . On each of the stencils, an interpolating polynomial of high order is
defined. The interpolated value is obtained by a convex combination of these polynomi-
als weighted according to their smoothness. If a discontinuity is contained in the stencil
of a polynomial, its weight will be very small thereby avoiding oscillatory behaviour
known from high order interpolation.

Assume that the cell averages φi = (Aφ)i of the function φ are given and φi+ 1
2

should

be reconstructed. We consider k stencils

Sr(i) = {xi−r, . . . , xi−r+k−1}, r = 0, . . . , k − 1. (3.16)

On each stencil Sr(i) a polynomial pr of degree k− 1 is defined such that the approx-

imation φ
(r)

i+ 1
2

to φi+ 1
2

is given by

φ
(r)

i+ 1
2

= pr(xi+ 1
2
) +O((δx)k) (3.17)

and

A(pr) = A(φ) = φ on Sr(i). (3.18)

Solving the resulting linear system for the case k = 3 gives the interpolation polyno-
mials

35

3 Numerical Methods

p0(xi+ 1
2
) =

1

3
φi−2 −

7

6
φi−1 +

11

6
φi, (3.19)

p1(xi+ 1
2
) = −1

6
φi−1 +

5

6
φi +

1

3
φi+1, (3.20)

p2(xi+ 1
2
) =

1

3
φi +

5

6
φi+1 −

1

6
φi+2, (3.21)

The interpolating polynomial of fifth order can be obtained by combination of the
three polynomials of third order. If we define the weights

d0 =
3

10
, d1 =

3

5
, d2 =

1

10
, (3.22)

the fifth order interpolation polynomial p(5) can be obtained by

p(5)(x) = d0p0(x) + d1p1(x) + d2p2(x). (3.23)

High-order polynomial interpolation is known to produce oscillatory results. To avoid
oscillations in the WENO approach, a convex combination of all candidate stencils pr is
used to compute φi+ 1

2
. This procedure leads to non-oscillatory approximations of order

2k − 1, where k is the width of each of the stencils Sr(i).
Therefore, the approximation to φi+ 1

2
is calculated by

φi+ 1
2

= ω0p0(xi+ 1
2
) + ω1p1(xi+ 1

2
) + ω2p2(xi+ 1

2
), (3.24)

where ω0, ω1 and ω2 are nonlinear weights comparing the smoothness of the interpo-
lation polynomials. Defining

β0 =
13

12

(
φi − 2φi+1 + φi+2

)2
+

1

4

(
3φi − 4φi+1 + φi+2

)2
,

β1 =
13

12

(
φi−1 − 2φi + φi+1

)2
+

1

4

(
φi−1 − φi+1

)2
,

β2 =
13

12

(
φi−2 − 2φi−1 + φi

)2
+

1

4

(
φi−2 − 4φi−1

)2
,

(3.25)

we calculate

ω̃0 =
d0

(β0 + ε)2
, ω̃1 =

d1

(β1 + ε)2
, ω̃2 =

d2

(β2 + ε)2
, (3.26)

and finally

ω0 =
ω̃0

ω̃0 + ω̃1 + ω̃2
, ω1 =

ω̃1

ω̃0 + ω̃1 + ω̃2
, ω2 =

ω̃2

ω̃0 + ω̃1 + ω̃2
. (3.27)

ε is a small parameter which is used to avoid division by zero.

36

3 Numerical Methods

3.2 Explicit Runge–Kutta Time Integration Schemes

In Section 3.1, we followed the method of lines approach of discretising space and time
separately (Toro, 2009; LeVeque, 2007). The continuous problem is converted to

∂Q

∂t
= L (Qn) , (3.28)

where L is the operator resulting from the spatial (WENO) discretisation procedure.
The integration of this equation can be performed with any numerical method for solving
ordinary differential equations, in particular Runge–Kutta methods.

We follow Gottlieb et al. (2001) in defining some basic properties of Runge–Kutta
schemes.

Definition 3. Let an initial value problem of the form

φ′(t) = L (φ(t)) , φ(0) = φ0, (3.29)

be given. An explicit s–stage Runge–Kutta scheme is an integration scheme of the form

φ(0) = φn,

φ(i) =
i−1∑
k=0

(
αi,k φ

(k) + δt βi,k L(φ(k))
)
, αi,k ≥ 0, i = 1, . . . , s,

φn+1 = φ(s),

(3.30)

where φn = φ(tn) and the time step δt is given by the CFL condition.

Definition 4. Assume that L results from the discretisation of a spatial operator and let
a seminorm ‖·‖ be given. Following Wang and Spiteri (2007), a Runge–Kutta method of
the form (3.30) is called strong stability preserving (SSP) if for all stages i, i = 1, 2, . . . s,∥∥∥φ(i)

∥∥∥ ≤ ‖φn‖ (3.31)

with a CFL restriction on the time step δt.

The total variation diminishing (TVD) property (Shu and Osher, 1988) is a special
case of this definition. It results from inserting the total variation norm of φ at time tn,

TV(φn) =
∑
j

∣∣φnj+1 − φnj
∣∣ , (3.32)

in (3.31).
In this paragraph, we consider four explicit time integration schemes: the first-order

Euler forward method, the second-order two-stage TVD2 and the third-order three-stage
TVD3 scheme from Shu and Osher (1988). The fourth explicit scheme is the second-
order three-stage scheme from Kraaijevanger (1991), further studied in Ketcheson et al.
(2009) and Kupka et al. (2012), called SSP RK(3,2).

37

3 Numerical Methods

The TVD2 and TVD3 (total variation diminishing) schemes were also analysed with
respect to their SSP (strong stability preserving) properties by Kraaijevanger (1991).
Their coefficients were first derived by Heun (1900) and Fehlberg (1970) from a differ-
ent viewpoint. They are the explicit Runge–Kutta schemes of second order with two
stages (TVD2) and of third order with three stages (TVD3) which have the largest
domain for which the SSP property holds among all schemes of such order and such
number of stages, i.e. they are the optimum SSP RK(2,2) and SSP RK(3,3) schemes.
The SSP RK(3,2) scheme is the optimum one among all three-stage explicit Runge–
Kutta schemes with SSP property, if the approximate order is required to be only two
instead of three (see Kraaijevanger (1991) for proofs of these results). Their Butcher
arrays (e.g., Kraaijevanger, 1991; LeVeque, 2007) and their Shu–Osher arrays (Shu and
Osher, 1988) are given in Table 3.1 resp. Table 3.2.

We note that all schemes are explicit schemes. According to Wang and Spiteri (2007),
they are all linearly unstable in theory when coupled with the WENO5 scheme. But the
Courant numbers we use are small enough in terms of Motamed et al. (2011) to make
the combination with WENO5 stable in practical applications.

0

1 1

ATVD2
1
2

1
2

0
1
2

1
2

1 1
2

1
2

ASSP RK(3,2)
1
3

1
3

1
3

0

1 1
1
2

1
4

1
4

ATVD3
1
6

1
6

2
3

Table 3.1: The Butcher arrays of the explicit schemes considered in Section 3.2. From
left to right: TVD2, SSP RK(3,2), TVD3.

scheme order stages αi βi

Euler 1 1 1 1

TVD2 2 2 1 1
1
2

1
2 0 1

2

SSP RK(3,2) 2 3 1 1
2

0 1 0 1
2

1
3 0 2

3 0 0 1
3

TVD3 3 3 1 1
3
4

1
4 0 1

4
1
3 0 2

3 0 0 2
3

Table 3.2: The Shu–Osher arrays (Shu and Osher, 1988) of the explicit schemes consid-
ered in Section 3.2.

38

3 Numerical Methods

3.2.1 Some Thoughts on Efficiency

In practice, the order of accuracy is not sufficient to describe the efficiency of a Runge–
Kutta method. As already mentioned in Chapter 2 and described in Appendix A.6 in
LeVeque (2007), we assume that the error ε of a method decays with the step size h as

ε(h) ≈ Chp, (3.33)

where p is the (empirical) order of convergence or order of accuracy and C is the error
constant of the method. ε(h) is the numerical error at grid spacing h. A higher order
method may, for a given grid, deliver worse results than a lower order scheme due to its
high error constant C (p. 35, Ferziger and Perić, 2002).
p and C can be estimated from a numerical solution if the exact (or at least, very

accurate) solution is known by comparing the error for several values of h. If, for example,
the resolution is increased by a factor 2, the convergence rate p can be estimated by

p = log2 (ε(h)/ε(h/2)) . (3.34)

Then, the error constant of the method can be calculated by

C = ε(h)/hp. (3.35)

The obtained values depend on the test problem and on the norm chosen to measure
the error size.

Analytical Test Cases

We compare the efficiency and accuracy of several time integration schemes by solving
the advection equation

∂φ

∂t
+
∂φ

∂x
= 0 (3.36)

for t > 0 and x ∈ [0, 1] with periodic boundary conditions, and the WENO5 scheme for
spatial discretisation. With the initial condition

φ (x, 0) = 1 + 0.1 sin (2πx) , (3.37)

the analytical solution stays smooth for all times. Therefore, this is an appropriate test
case for determining the empirical order of accuracy and the error constants of a method.

Given discontinuous initial data,

φ (x, 0) =

{
1, if 0.1 < x < 0.3,

0, else,
(3.38)

the convergence order is restricted by the smoothness of the solution.
The analytical solution of the advection equation (3.36) at time t is φ(x, t) = φ(x−t, 0).

By comparing the numerical solution to the analytical one, we calculate the mean L2

39

3 Numerical Methods

error after 2 s (cf. Appendix A.5 in LeVeque, 2007) for a set of spatial and temporal
resolutions. The results are given for the smooth initial condition (3.37) in Tables 3.10,
3.11, 3.13 and 3.12 for the Euler forward, the TVD2, the TVD3, and the SSP RK(3,2)
scheme, respectively. For the discontinuous initial condition, they can be found in Ta-
bles 3.14, 3.15, 3.17 and 3.16. In each row, the spatial resolution is fixed, whereas in the
columns, the temporal resolution is constant. Since φ is of magnitude 1, the absolute
errors shown are also relative errors.

For the advection equation, the (advective) Courant number σ is defined by

σ = u
δt

δx
, (3.39)

where u is the advection velocity. In these tests, u = 1. On the diagonal of each of the
error tables, we see the error for a fixed Courant number. If the solution was not stable,
we do not give a number for the error size. In most cases, the algorithm is stable only
if σ < 1.

From these data we can deduce the size of the temporal and spatial error for each
scheme, and its dependence on the Courant number. For the smooth initial condi-
tion (3.37), we observe that the error ε(δx, δt) of the Euler scheme is never smaller than
10−4. It shows approximately first order convergence in time. For many combinations
of δt and δx, decreasing δx does not lead to a decrease in the error, since the error is
dominated by the error of the time integration scheme. We conclude that the Euler
forward scheme is not efficient unless the spatial resolution is very coarse. Then, the
maximum allowed Courant numbers are rather small.

For the other schemes, the error reaches much smaller magnitudes down to approx-
imately machine precision. In most cases, temporal and spatial error are balanced or
the spatial error dominates except for the regions where both resolutions are either very
coarse or very fine. The TVD3 scheme shows the smallest errors, but these are only
reached with very high spatial and temporal resolution.

For the discontinuous problem, the errors are much larger. For a large range of
combinations of δt and δx, the error is nearly independent of the temporal scheme.
It does decrease with spatial resolution, but at a much slower rate determined by the
smoothness of the solution. Nevertheless, the stability properties are different. The
Euler forward scheme is always unstable for σ ≥ 1, except for very coarse resolution.
All other schemes give stable solutions with σ = 1, but often they are very inaccurate.
Only the SSP RK(3,2) scheme seems to allow σ > 1, at least for coarse resolutions.

In Tables 3.3, 3.4, and 3.5, we give the empirical order of accuracy and error constant
calculated for fixed values of σ when solving the advection equation (3.36) with smooth
initial data (3.37). We clearly see second order convergence for TVD2 and SSP RK(3,2)
and third order convergence for TVD3 as soon as the spatial resolution is high. For
small Courant numbers, the convergence rate of TVD3 is even higher, but always in
combination with a huge error constant. For lower resolution, the spatial error domi-
nates and we see the fifth order convergence of the WENO5 scheme used for the spatial
discretisation.

40

3 Numerical Methods

It is not reasonable to compare the error constants if the order of accuracy of the
methods are different. This is also the reason why we did not give data for the first-
order Euler scheme. Nevertheless we observe that the error constant of TVD2 is twice
as large as the one of SSP RK(3,2). Therefore, SSP RK(3,2) is the more efficient scheme
even though it has three stages whereas TVD2 has two stages. The smaller the Courant
number is the smaller is the influence of the time integration scheme on the overall
accuracy.

For the discontinuous initial condition (3.38) we give the mean orders and error con-
stants for all integration schemes in Table 3.26, averaged over all spatial resolutions.
They do not differ much from method to method, since the accuracy of the numerical
solution is limited by the smoothness of the analytical solution. Only the Euler forward
method shows other convergence rates with much higher error constants, indicating very
irregular error convergence. This means that the additional effort of using a three-stage
scheme does not pay off in terms of accuracy compared to TVD2. In terms of stability,
SSP RK(3,2) is the best scheme.

Finally, we solve the one-dimensional diffusion equation

∂φ

∂t
−D∂

2φ

∂x2
= 0 (3.40)

for t > 0 and x ∈ [0, 2] with periodic boundary conditions and with initial data

φ (x, 0) = 1.1 + 0.1 sin (πx) . (3.41)

The analytical solution is

φ (x, t) = 1.1 + 0.1 exp
(
−Dπ2t

)
sin (πx) . (3.42)

D > 0 is the (constant) diffusion coefficient which we choose as 10−3. For the conserva-

tive discretisation of ∂2φ
∂x2

, the fourth-order order stencils from Happenhofer et al. (2013)
are used. On an equidistant grid, the first derivative of a function φ is approximated by

∂φ

∂x

(
xi+ 1

2

)
≈ φi−1 + 15φi − 15φi+1 − φi−2

12 δx
. (3.43a)

We write φi = φ(xi). Then, the conservative discretisation of the outer derivative
leads to a fourth order accurate approximation of the second derivative. More precisely,

∂2φ

∂x2
(xi) ≈

∂φ
∂x (xi+ 1

2
)− ∂φ

∂x (xi− 1
2
)

δx
(3.43b)

is a fourth order approximation to the analytical value if the first derivatives are calcu-
lated as defined in equation (3.43a).

For the diffusion equation, we define the (diffusive) Courant number σ by

σ = D
δt

δx2
, (3.44)

41

3 Numerical Methods

The errors of the numerical solutions calculated after 50 s are shown in Tables 3.18,
3.19, 3.21 and 3.20. Keeping the Courant number σ fixed and decreasing the grid spacing
means decreasing the time step size quadratically. Therefore, the empirical convergence
rates and error constants shown in Tables 3.6, 3.7, 3.8 and 3.9 exhibit second to fourth
order convergence since the convergence rate of the time integration is doubled. The
overall convergence is then restricted by the fourth order spatial discretisation as defined
in equations (3.43). The increase in error for very small grid spacings is due to rounding
errors, and is larger the more stages the time integration scheme has. TVD3 yields stable
results even with σ = 0.5, but this is only due to the simplicity of our test problem. In
practice, TVD3 can not be used with this Courant number increasing the inefficiency of
the method.

From Table 10 in Kupka et al. (2012) we deduce that the maximum Courant number
σ as defined in equation (3.44) for diffusive terms is 0.375 for TVD2, 0.299 for TVD3
and 0.672 for SSP RK(3,2). From looking at the error decay in Tables 3.7, 3.8 and 3.9
we deduce that the error does not change much when going from σ = 0.25 to σ =
0.5, depending on the spatial resolution. We conclude that, depending on the spatial
resolution, the high Courant number of SSP RK(3,2) makes it to the most efficient scheme
for diffusion–type equations even though its theoretical order of accuracy is only 2.

One could argue that formally, it is not a consistent way of measuring convergence
orders by using the spatial resolution δx as h in formula (3.33) since the number of
degrees of freedom increases quadratically for the advection equation or even cubic for
the diffusion equation due to the smaller time steps induced by the CFL condition. But
from a practical point of view, modifying the spatial resolution and choosing a Courant
number is the only way to control the accuracy of an existing simulation. Therefore,
measuring the order of error decay when decreasing the spatial resolution while keeping
the Courant number fixed gives the type of “convergence order” which you will encounter
in applications.

We conclude that the efficiency of the time integration scheme depends on the expected
smoothness and the required accuracy of the numerical solution. Therefore, in the next
paragraph we try to estimate the typical accuracy and smoothness of a simulation of
solar surface convection.

42

3 Numerical Methods

σ = 0.5 σ = 0.25 σ = 0.125 σ = 0.0625
δx p C p C p C p C

0.2500 1.6042 1.11e-1 3.1336 7.25e-1 3.8831 2.16e0 3.9609 2.49e0
0.1250 1.9672 2.35e-1 2.1068 8.57e-2 3.3880 7.72e-1 4.6528 1.05e1
0.0625 1.9963 2.55e-1 1.9867 6.14e-2 2.0373 1.82e-2 2.7312 5.09e-2
0.0312 1.9998 2.58e-1 1.9964 6.35e-2 1.9942 1.57e-2 2.0064 4.13e-3
0.0156 2.0000 2.58e-1 1.9985 6.41e-2 1.9977 1.59e-2 1.9972 3.98e-3
0.0078 2.0000 2.58e-1 1.9993 6.43e-2 1.9989 1.60e-2 1.9987 4.01e-3
0.0039 2.0000 2.58e-1 1.9996 6.44e-2 1.9995 1.61e-2 1.9995 4.02e-3

Table 3.3: Empirical order of accuracy p and error constant C for WENO with TVD2
scheme for several fixed Courant numbers σ when solving (3.36) & (3.37).

σ = 0.5 σ = 0.25 σ = 0.125 σ = 0.0625
δx p C p C p C p C

0.2500 2.2595 2.19e-1 3.7177 1.72e0 3.9350 2.36e0 3.9611 2.50e0
0.1250 1.9893 1.25e-1 2.5914 1.65e-1 4.1633 3.80e0 4.8362 1.54e1
0.0625 1.9945 1.27e-1 1.9934 3.14e-2 2.2324 1.80e-2 3.4997 3.79e-1
0.0312 1.9997 1.29e-1 1.9960 3.17e-2 1.9958 7.91e-3 2.0598 2.58e-3
0.0156 2.0000 1.29e-1 1.9985 3.20e-2 1.9976 7.97e-3 1.9976 1.99e-3
0.0078 2.0000 1.29e-1 1.9993 3.22e-2 1.9989 8.02e-3 1.9987 2.00e-3
0.0039 2.0000 1.29e-1 1.9996 3.22e-2 1.9995 8.04e-3 1.9995 2.01e-3

Table 3.4: Empirical order of accuracy p and error constant C for WENO with
SSP RK(3,2) scheme for several fixed Courant numbers σ when solving (3.36)
& (3.37).

σ = 0.5 σ = 0.25 σ = 0.125 σ = 0.0625
δx p C p C p C p C

0.2500 3.8447 2.45e0 3.9783 2.66e0 3.9397 2.42e0 3.9584 2.50e0
0.1250 4.1773 4.90e0 4.7464 1.31e1 4.8706 1.68e1 4.8857 1.72e1
0.0625 3.6070 1.01e0 4.5749 8.17e0 4.9584 2.14e1 5.0160 2.47e1
0.0312 3.2028 2.49e-1 3.9409 9.08e-1 4.7613 1.08e1 4.9858 2.22e1
0.0156 3.0561 1.35e-1 3.3692 8.42e-2 4.2681 1.39e0 4.8700 1.37e1
0.0078 3.0144 1.10e-1 3.1087 2.38e-2 3.6170 5.90e-2 4.5418 2.79e0
0.0039 3.0036 1.04e-1 3.0283 1.52e-2 3.2035 5.95e-3 3.6701 2.22e-2

Table 3.5: Empirical order of accuracy p and error constant C for WENO with TVD3
scheme for several fixed Courant numbers σ when solving (3.36) & (3.37).

43

3 Numerical Methods

σ = 0.5 σ = 0.25 σ = 0.125 σ = 0.0625
δx p C p C p C p C

0.25000 1.8938 2.56e-2 1.3826 2.07e-3 -1.3608 1.37e-6 9.5049 4.51e1
0.12500 1.8806 2.49e-2 1.8231 5.18e-3 1.5568 5.91e-4 -3.7697 4.64e-11
0.06250 1.9535 3.04e-2 1.9262 6.90e-3 1.8760 1.43e-3 1.6425 1.53e-4
0.03125 1.9715 3.24e-2 1.9683 7.98e-3 1.9557 1.89e-3 1.9074 3.82e-4
0.01562 1.9865 3.45e-2 1.9848 8.55e-3 1.9820 2.11e-3 1.9705 4.97e-4
0.00781 1.9929 3.56e-2 1.9927 8.88e-3 1.9920 2.21e-3 1.9891 5.44e-4

Table 3.6: Empirical order of accuracy p and error constant C for solving (3.40) & (3.41)
with Euler forward and fixed Courant numbers.

σ = 0.5 σ = 0.25 σ = 0.125 σ = 0.0625
δx p C p C p C p C

0.25000 3.9394 4.83e-2 3.8610 2.45e-2 3.8850 2.45e-2 3.8729 2.38e-2
0.12500 3.8917 4.37e-2 3.9606 3.01e-2 3.9562 2.84e-2 3.9574 2.84e-2
0.06250 3.9570 5.24e-2 3.9790 3.17e-2 3.9838 3.07e-2 3.9834 3.05e-2
0.03125 3.9727 5.54e-2 3.9913 3.31e-2 3.9928 3.16e-2 3.9925 3.15e-2
0.01562 3.9870 5.87e-2 3.9959 3.37e-2 3.9889 3.11e-2 3.9974 3.21e-2
0.00781 3.9938 6.07e-2 3.8854 1.97e-2 4.0487 4.16e-2 4.0310 3.78e-2

Table 3.7: Empirical order of accuracy p and error constant C for solving (3.40) & (3.41)
with TVD2 and fixed Courant numbers.

σ = 0.5 σ = 0.25 σ = 0.125 σ = 0.0625
δx p C p C p C p C

0.25000 3.9722 4.05e-2 3.8673 2.43e-2 3.8855 2.45e-2 3.8729 2.38e-2
0.12500 3.9128 3.58e-2 3.9644 2.97e-2 3.9564 2.84e-2 3.9574 2.84e-2
0.06250 3.9694 4.19e-2 3.9811 3.11e-2 3.9839 3.06e-2 3.9834 3.05e-2
0.03125 3.9795 4.34e-2 3.9924 3.24e-2 3.9929 3.16e-2 3.9930 3.15e-2
0.01562 3.9905 4.54e-2 3.9962 3.29e-2 3.9956 3.19e-2 3.9776 2.96e-2
0.00781 3.9877 4.48e-2 3.7622 1.06e-2 2.5241 2.53e-5 0.6311 2.63e-9

Table 3.8: Empirical order of accuracy p and error constant C for solving (3.40) & (3.41)
with SSP RK(3,2) and fixed Courant numbers.

σ = 0.5 σ = 0.25 σ = 0.125 σ = 0.0625
δx p C p C p C p C

0.25000 4.0284 3.30e-2 3.8739 2.41e-2 3.8859 2.45e-2 3.8729 2.38e-2
0.12500 3.9508 2.80e-2 3.9684 2.93e-2 3.9567 2.83e-2 3.9574 2.84e-2
0.06250 3.9926 3.15e-2 3.9834 3.05e-2 3.9841 3.06e-2 3.9834 3.05e-2
0.03125 3.9924 3.15e-2 3.9936 3.16e-2 3.9930 3.15e-2 3.9930 3.15e-2
0.01562 3.9973 3.21e-2 3.9968 3.20e-2 3.9960 3.19e-2 3.9816 3.01e-2
0.00781 3.9832 3.00e-2 3.7839 1.14e-2 2.6530 4.72e-5 0.7838 5.49e-9

Table 3.9: Empirical order of accuracy p and error constant C for solving (3.40) & (3.41)
with TVD3 and fixed Courant numbers.

44

δx \ δt 0.2500 0.1250 0.0625 0.0312 0.0156 0.0078 0.0039 0.0020 0.0010 0.0005 0.0002 0.0001

0.2500 6.00e-1 1.81e-1 6.24e-2 2.17e-2 7.12e-3 5.40e-3 7.49e-3 8.84e-3 9.54e-3 9.90e-3 1.01e-2 1.02e-2
0.1250 6.54e-1 2.26e-1 8.23e-2 3.39e-2 1.56e-2 7.25e-3 3.32e-3 1.44e-3 6.10e-4 4.34e-4 5.10e-4 5.80e-4
0.0625 7.23e-1 5.58e-1 3.55e-2 1.65e-2 7.89e-3 3.85e-3 1.90e-3 9.34e-4 4.56e-4 2.18e-4 9.98e-5
0.0312 1.41e-2 7.98e-3 3.91e-3 1.93e-3 9.61e-4 4.79e-4 2.39e-4 1.19e-4
0.0156 6.99e-3 4.12e-3 1.94e-3 9.65e-4 4.81e-4 2.40e-4 1.20e-4
0.0078 4.43e-3 1.76e-3 9.67e-4 4.82e-4 2.41e-4 1.20e-4
0.0039 3.13e-3 1.13e-3 5.54e-4 2.41e-4 1.20e-4
0.0020 2.08e-3 1.14e-3 3.52e-4 1.20e-4

Table 3.10: ε(δx, δt) for the combination of WENO5 with Euler forward when solving (3.36) & (3.37).

δx \ δt 0.2500 0.1250 0.0625 0.0312 0.0156 0.0078 0.0039 0.0020 0.0010 0.0005 0.0002 0.0001

0.2500 5.58e-2 1.20e-2 9.41e-3 9.93e-3 1.03e-2 1.03e-2 1.03e-2 1.03e-2 1.03e-2 1.03e-2 1.03e-2 1.03e-2
0.1250 9.73e-1 1.71e-2 3.94e-3 1.07e-3 6.73e-4 6.59e-4 6.62e-4 6.63e-4 6.63e-4 6.63e-4 6.63e-4 6.63e-4
0.0625 4.31e-3 1.01e-3 2.49e-4 6.43e-5 2.62e-5 2.25e-5 2.24e-5 2.25e-5 2.25e-5 2.25e-5
0.0312 2.28e-3 2.52e-4 6.28e-5 1.57e-5 3.95e-6 1.17e-6 7.22e-7 6.90e-7 6.89e-7
0.0156 2.42e-3 6.31e-5 1.57e-5 3.93e-6 9.82e-7 2.46e-7 6.45e-8 2.59e-8
0.0078 1.36e-3 1.58e-5 3.94e-6 9.84e-7 2.46e-7 6.15e-8 1.54e-8
0.0039 7.22e-4 3.94e-6 9.85e-7 2.46e-7 6.16e-8 1.54e-8
0.0020 4.05e-4 9.86e-7 2.46e-7 6.16e-8 1.54e-8

Table 3.11: ε(δx, δt) for the combination of WENO5 with TVD2 when solving (3.36) & (3.37).

45

δx \ δt 0.2500 0.1250 0.0625 0.0312 0.0156 0.0078 0.0039 0.0020 0.0010 0.0005 0.0002 0.0001

0.2500 2.63e-2 9.56e-3 9.91e-3 1.01e-2 1.03e-2 1.03e-2 1.03e-2 1.03e-2 1.03e-2 1.03e-2 1.03e-2 1.03e-2
0.1250 7.50e-2 8.27e-3 2.00e-3 7.53e-4 6.60e-4 6.62e-4 6.63e-4 6.63e-4 6.63e-4 6.63e-4 6.63e-4 6.63e-4
0.0625 2.22e-1 2.05e-3 5.03e-4 1.25e-4 3.68e-5 2.32e-5 2.24e-5 2.25e-5 2.25e-5 2.25e-5 2.25e-5
0.0312 5.09e-4 1.26e-4 3.14e-5 7.84e-6 2.05e-6 8.29e-7 6.95e-7 6.89e-7 6.89e-7
0.0156 4.58e-1 1.27e-4 3.15e-5 7.87e-6 1.97e-6 4.91e-7 1.24e-7 3.69e-8 2.24e-8
0.0078 3.16e-5 7.89e-6 1.97e-6 4.92e-7 1.23e-7 3.07e-8 7.71e-9
0.0039 1.20e-4 1.97e-6 4.93e-7 1.23e-7 3.08e-8 7.69e-9
0.0020 1.47e-4 4.93e-7 1.23e-7 3.08e-8 7.70e-9

Table 3.12: ε(δx, δt) for the combination of WENO5 with SSP RK(3,2) when solving (3.36) & (3.37).

δx \ δt 0.2500 0.1250 0.0625 0.0312 0.0156 0.0078 0.0039 0.0020 0.0010 0.0005 0.0002 0.0001

0.2500 1.81e-2 1.19e-2 1.07e-2 1.03e-2 1.03e-2 1.03e-2 1.03e-2 1.03e-2 1.03e-2 1.03e-2 1.03e-2 1.03e-2
0.1250 9.28e-2 2.14e-3 8.28e-4 6.80e-4 6.70e-4 6.66e-4 6.64e-4 6.63e-4 6.64e-4 6.63e-4 6.63e-4 6.63e-4
0.0625 7.83e-2 2.21e-4 4.58e-5 2.53e-5 2.29e-5 2.25e-5 2.25e-5 2.25e-5 2.25e-5 2.25e-5 2.25e-5
0.0312 2.56e-5 3.76e-6 1.06e-6 7.36e-7 6.96e-7 6.91e-7 6.90e-7 6.90e-7 6.90e-7
0.0156 3.13e-6 4.08e-7 6.92e-8 2.71e-8 2.20e-8 2.13e-8 2.12e-8 2.12e-8
0.0078 3.88e-7 4.90e-8 6.69e-9 1.41e-9 7.51e-10 6.69e-10 6.59e-10
0.0039 4.85e-8 6.07e-9 7.76e-10 1.15e-10 3.22e-11 2.20e-11
0.0020 6.05e-9 7.57e-10 9.51e-11 1.25e-11 2.53e-12

Table 3.13: ε(δx, δt) for the combination of WENO5 with TVD3 when solving (3.36) & (3.37).

46

δx \ δt 0.2500 0.1250 0.0625 0.0312 0.0156 0.0078 0.0039 0.0020 0.0010 0.0005 0.0002 0.0001

0.2500 8.15e-1 2.95e-1 4.16e-1 4.49e-1 4.48e-1 4.51e-1 4.54e-1 4.54e-1 4.54e-1 4.54e-1 4.54e-1 4.54e-1
0.1250 2.31e-1 3.57e-1 3.18e-1 3.31e-1 3.39e-1 3.44e-1 3.45e-1 3.46e-1 3.46e-1 3.46e-1
0.0625 3.77e-1 3.49e-1 2.31e-1 2.30e-1 2.34e-1 2.40e-1 2.43e-1 2.45e-1 2.45e-1
0.0312 1.23e-1 3.41e-1 2.22e-1 1.53e-1 1.39e-1 1.43e-1 1.47e-1 1.49e-1
0.0156 8.39e-2 7.10e-2 8.18e-2 9.40e-2 1.04e-1 1.12e-1 1.16e-1
0.0078 6.43e-2 6.84e-2 5.78e-2 6.61e-2 7.38e-2 8.03e-2
0.0039 5.34e-2 3.50e-2 4.08e-2 4.67e-2 5.22e-2
0.0020 1.43e-1 2.88e-2 3.30e-2

Table 3.14: ε(δx, δt) for the combination of WENO5 with Euler forward when solving (3.36) & (3.38).

δx \ δt 0.2500 0.1250 0.0625 0.0312 0.0156 0.0078 0.0039 0.0020 0.0010 0.0005 0.0002 0.0001

0.2500 4.80e-1 4.20e-1 4.38e-1 4.53e-1 4.51e-1 4.53e-1 4.54e-1 4.54e-1 4.54e-1 4.54e-1 4.54e-1 4.54e-1
0.1250 4.35e-1 3.05e-1 3.38e-1 3.38e-1 3.43e-1 3.45e-1 3.47e-1 3.46e-1 3.46e-1 3.46e-1 3.47e-1
0.0625 3.58e-1 2.42e-1 2.35e-1 2.40e-1 2.46e-1 2.45e-1 2.46e-1 2.46e-1 2.46e-1 2.46e-1
0.0312 3.12e-1 1.98e-1 1.57e-1 1.52e-1 1.51e-1 1.51e-1 1.51e-1 1.51e-1 1.51e-1
0.0156 2.55e-1 1.45e-1 1.23e-1 1.21e-1 1.20e-1 1.20e-1 1.20e-1 1.20e-1
0.0078 1.91e-1 1.06e-1 9.34e-2 9.01e-2 8.99e-2 8.99e-2 8.99e-2
0.0039 1.58e-1 7.91e-2 6.98e-2 6.77e-2 6.75e-2 6.75e-2
0.0020 1.32e-1 6.52e-2 5.36e-2 5.08e-2 5.06e-2

Table 3.15: ε(δx, δt) for the combination of WENO5 with TVD2 when solving (3.36) & (3.38).

47

δx \ δt 0.2500 0.1250 0.0625 0.0312 0.0156 0.0078 0.0039 0.0020 0.0010 0.0005 0.0002 0.0001

0.2500 4.40e-1 4.25e-1 4.40e-1 4.54e-1 4.51e-1 4.53e-1 4.54e-1 4.54e-1 4.54e-1 4.54e-1 4.54e-1 4.54e-1
0.1250 5.66e-1 3.66e-1 3.09e-1 3.42e-1 3.39e-1 3.43e-1 3.45e-1 3.47e-1 3.46e-1 3.46e-1 3.46e-1 3.47e-1
0.0625 3.81e-1 2.97e-1 2.49e-1 2.37e-1 2.41e-1 2.46e-1 2.45e-1 2.46e-1 2.46e-1 2.46e-1 2.46e-1
0.0312 5.03e-1 1.98e-1 1.76e-1 1.55e-1 1.52e-1 1.51e-1 1.51e-1 1.51e-1 1.51e-1 1.51e-1
0.0156 1.55e-1 1.33e-1 1.22e-1 1.21e-1 1.20e-1 1.20e-1 1.20e-1 1.20e-1
0.0078 1.17e-1 9.56e-2 9.38e-2 9.01e-2 8.99e-2 8.99e-2 8.99e-2
0.0039 9.32e-2 6.98e-2 6.85e-2 6.77e-2 6.76e-2 6.76e-2
0.0020 7.42e-2 5.80e-2 5.17e-2 5.07e-2 5.06e-2

Table 3.16: ε(δx, δt) for the combination of WENO5 with SSP RK(3,2) when solving (3.36) & (3.38).

δx \ δt 0.2500 0.1250 0.0625 0.0312 0.0156 0.0078 0.0039 0.0020 0.0010 0.0005 0.0002 0.0001

0.2500 4.56e-1 4.32e-1 4.42e-1 4.54e-1 4.51e-1 4.53e-1 4.54e-1 4.54e-1 4.54e-1 4.54e-1 4.54e-1 4.54e-1
0.1250 4.01e-1 3.19e-1 3.46e-1 3.40e-1 3.43e-1 3.45e-1 3.47e-1 3.46e-1 3.46e-1 3.46e-1 3.47e-1
0.0625 3.13e-1 2.70e-1 2.40e-1 2.42e-1 2.46e-1 2.45e-1 2.46e-1 2.46e-1 2.46e-1 2.46e-1
0.0312 2.44e-1 1.64e-1 1.54e-1 1.52e-1 1.51e-1 1.51e-1 1.51e-1 1.51e-1 1.51e-1
0.0156 1.95e-1 1.27e-1 1.22e-1 1.21e-1 1.20e-1 1.20e-1 1.20e-1 1.20e-1
0.0078 1.73e-1 9.44e-2 9.47e-2 9.01e-2 8.99e-2 8.99e-2 8.99e-2
0.0039 1.48e-1 7.05e-2 6.82e-2 6.77e-2 6.76e-2 6.76e-2
0.0020 1.21e-1 5.28e-2 5.11e-2 5.08e-2 5.07e-2

Table 3.17: ε(δx, δt) for the combination of WENO5 with TVD3 when solving (3.36) & (3.38).

48

δx \ δt 15.62500 3.90625 0.97656 0.24414 0.06104 0.01526 0.00381 0.00095 0.00024 0.00006 0.00001

0.25000 1.85e-3 3.05e-4 9.04e-6 8.55e-5 1.05e-4 1.09e-4 1.10e-4 1.11e-4 1.11e-4 1.11e-4 1.11e-4
0.12500 2.37e-3 4.98e-4 1.17e-4 2.32e-5 1.18e-7 5.65e-6 7.09e-6 7.45e-6 7.54e-6 7.56e-6 7.56e-6
0.06250 2.58e-3 5.51e-4 1.35e-4 3.31e-5 7.89e-6 1.61e-6 3.58e-8 3.57e-7 4.55e-7 4.79e-7 4.85e-7
0.03125 2.69e-3 3.49e-5 8.70e-6 2.15e-6 5.14e-7 1.05e-7 3.25e-9 2.23e-8 2.87e-8
0.01562 2.74e-3 8.90e-6 2.22e-6 5.54e-7 1.37e-7 3.28e-8 6.75e-9 2.37e-10
0.00781 2.77e-3 2.25e-6 5.61e-7 1.40e-7 3.50e-8 8.65e-9 2.07e-9
0.00391 4.16e-2 5.64e-7 1.41e-7 3.53e-8 8.81e-9 2.20e-9
0.00195 1.41e-7 3.54e-8 8.84e-9 2.21e-9

Table 3.18: ε(δx, δt) for the combination of WENO5 with Euler forward when solving (3.40) & (3.41).

δx \ δt 15.62500 3.90625 0.97656 0.24414 0.06104 0.01526 0.00381 0.00095 0.00024 0.00006 0.00001

0.25000 2.05e-4 1.16e-4 1.12e-4 1.11e-4 1.11e-4 1.11e-4 1.11e-4 1.11e-4 1.11e-4 1.11e-4 1.11e-4
0.12500 1.19e-4 1.34e-5 7.99e-6 7.59e-6 7.57e-6 7.57e-6 7.57e-6 7.57e-6 7.57e-6 7.57e-6 7.57e-6
0.06250 1.29e-4 2.84e-5 9.01e-7 5.13e-7 4.89e-7 4.87e-7 4.87e-7 4.87e-7 4.87e-7 4.87e-7 4.87e-7
0.03125 3.00e-3 5.80e-8 3.25e-8 3.09e-8 3.08e-8 3.08e-8 3.08e-8 3.08e-8 3.08e-8
0.01562 3.70e-9 2.05e-9 1.94e-9 1.94e-9 1.94e-9 1.94e-9 1.94e-9
0.00781 2.33e-10 1.28e-10 1.22e-10 1.21e-10 1.21e-10 1.21e-10
0.00391 1.46e-11 8.67e-12 7.39e-12 7.42e-12 7.43e-12
0.00195 1.00e-12 6.24e-13 5.67e-13 6.24e-13

Table 3.19: ε(δx, δt) for the combination of WENO5 with TVD2 when solving (3.40) & (3.41).

49

δx \ δt 15.62500 3.90625 0.97656 0.24414 0.06104 0.01526 0.00381 0.00095 0.00024 0.00006 0.00001

0.25000 1.64e-4 1.14e-4 1.12e-4 1.11e-4 1.11e-4 1.11e-4 1.11e-4 1.11e-4 1.11e-4 1.11e-4 1.11e-4
0.12500 6.18e-5 1.05e-5 7.81e-6 7.58e-6 7.57e-6 7.57e-6 7.57e-6 7.57e-6 7.57e-6 7.57e-6 7.57e-6
0.06250 6.24e-5 3.81e-6 6.96e-7 5.00e-7 4.88e-7 4.87e-7 4.87e-7 4.87e-7 4.87e-7 4.87e-7 4.87e-7
0.03125 4.44e-8 3.17e-8 3.09e-8 3.08e-8 3.08e-8 3.08e-8 3.08e-8 3.08e-8
0.01562 2.82e-9 1.99e-9 1.94e-9 1.94e-9 1.94e-9 1.94e-9 1.96e-9
0.00781 1.77e-10 1.25e-10 1.22e-10 1.23e-10 1.44e-10 3.30e-10
0.00391 1.12e-11 9.19e-12 2.11e-11 7.93e-11 3.12e-10
0.00195 4.71e-12 1.97e-11 7.94e-11 3.14e-10

Table 3.20: ε(δx, δt) for the combination of WENO5 with SSP RK(3,2) when solving (3.40) & (3.41).

δx \ δt 15.62500 3.90625 0.97656 0.24414 0.06104 0.01526 0.00381 0.00095 0.00024 0.00006 0.00001

0.25000 1.24e-4 1.12e-4 1.12e-4 1.11e-4 1.11e-4 1.11e-4 1.11e-4 1.11e-4 1.11e-4 1.11e-4 1.11e-4
0.12500 4.72e-6 7.58e-6 7.63e-6 7.57e-6 7.57e-6 7.57e-6 7.57e-6 7.57e-6 7.57e-6 7.57e-6 7.57e-6
0.06250 3.36e-5 3.88e-3 4.90e-7 4.88e-7 4.88e-7 4.87e-7 4.87e-7 4.87e-7 4.87e-7 4.87e-7 4.87e-7
0.03125 3.08e-8 3.08e-8 3.08e-8 3.08e-8 3.08e-8 3.08e-8 3.08e-8 3.08e-8
0.01562 1.94e-9 1.94e-9 1.94e-9 1.94e-9 1.94e-9 1.94e-9 1.96e-9
0.00781 1.21e-10 1.21e-10 1.21e-10 1.23e-10 1.40e-10 3.01e-10
0.00391 7.67e-12 8.80e-12 1.93e-11 7.12e-11 2.78e-10
0.00195 4.56e-12 1.80e-11 7.13e-11 2.80e-10

Table 3.21: ε(δx, δt) for the combination of WENO5 with TVD3 when solving (3.40) & (3.41).

50

3 Numerical Methods

Error Size in Simulations of Solar Surface Convection

To measure the typical error in simulations of solar surface convection with ANTARES,
we performed two two–dimensional simulations which only differ in the numerical reso-
lution. Their specifications are summarised in Table 3.22.

resolution [km] grid points box size [Mm] binning

Model 1 19.5× 40.0 195× 150 3.8× 6.0 grey
Model 2 9.74× 20.0 389× 300 3.8× 6.0 grey

Table 3.22: Basic parameters of the two two-dimensional models from Section 3.2.1.
Model 2 was started from Model 1. The data was mapped to the finer
grid by interpolation, and both models were run for 31 s. Both models use
the Smagorinsky subgrid model (Smagorinsky, 1963) to resolve motions with
scales smaller than the grid resolution and the integration rule A4 by Carlson
(1963) for the angular integration in the radiative transfer solver.

The error was calculated according to LeVeque (2007, Appendix A.6) by comparing
the solution on the finer grid with the solution on the coarser grid on coinciding grid
points. By assuming that the error on the finer grid is much smaller than the error
on the coarser grid, the difference of the two solutions is a good estimate for the total
error. The resulting error estimates in several variables and several norms are shown in
Table 3.23.

variable type L1 L2 L∞

density
[
g cm−3

]
absolute 6.03e-9 1.14e-8 1.47e-7

temperature [K] absolute 32.3 103.8 1413.4

density relative 0.7 % 2.2 % 38.1 %

temperature relative 0.4 % 1.4 % 29.0 %

mean temperature [K] absolute 18.1 49.9 385.4

mean temperature relative 0.3 % 0.7 % 5.0 %

Table 3.23: The error sizes calculated by comparing the models from Table 3.22 ac-
cording to the procedure from LeVeque (2007). The norms are calculated
as described in the cited reference. The relative errors are calculated by
dividing the absolute difference by the value of Model 1.

We remark that these simulations are Large Eddy Simulations (LES), i.e., they do not
resolve all scales of motion. All motions with length scales smaller than the grid resolu-
tion are modelled by the Smagorinsky subgrid model and by the numerical viscosity of
the numerical scheme. Therefore, the measurement of “the error” is not trivial. Chang-
ing the resolution will change the results and monotonic convergence of the solution with
decreasing grid spacing can not be expected due to the chaotic nature of turbulence.

51

3 Numerical Methods

We observe that the L∞ error is much larger than the L1 and L2 error. This stems from
the fact that near the optical surface, the motion of the fluid is turbulent and changes in
the numerical parameters as grid resolution produces arbitrarily large differences. Here,
the pointwise changes due to increased resolution are large compared to the rest of the
simulation domain as can be seen in Figure 3.2.

Therefore, we refrain from measuring the error pointwise. Instead, we suggest to use
the mean temperature profile for error measurement. In Figure 3.1 we observe that
the mean temperature is much more stable but still sensitive enough to changes in the
resolution. The standard deviation of the temperature profile is even more sensitive,
but since it approaches 0 it is not suited for calculating relative errors. Furthermore,
its behaviour near the top boundary is strongly influenced by the boundary condition
(Grimm-Strele et al., 2013a). The typical mean error of the temperature profile, i.e. the
relative error in the L1 norm, is around 0.1 % to 0.5 %.

 4000

 8000

 12000

 16000

 20000

 24000

 0 1 2 3 4
 0

 1000

 2000

 3000

<
T

>
 [
K

]

σ
 [
K

]

box depth [Mm]

<T>, Model 1

<T>, Model 2

σ, Model 1

σ, Model 2

Figure 3.1: Mean temperature profile and standard deviation of Models 1 and 2 as de-
scribed in Table 3.22.

In simulations where all scales of motion are resolved on the grid scale (i.e., DNS),
the magnitude of the error typically is of the size 0.1 % (cf. Fig. 7 in Happenhofer et al.,
2013).

Finally, we want to determine the area ratio of smooth to non-smooth regions. For
this purpose, we calculate the nonlinearity index NI as defined in equation (8) of Taylor
et al. (2007). Therein, the nonlinear weights ωj of the interpolating polynomials in

52

3 Numerical Methods

x
 [
M

m
]

y [Mm]

0 2 4 6

0

1

2

3

0.5 1 1.5 2

x 10
4

x
 [
M

m
]

y [Mm]

0 2 4 6

0

1

2

3

0 500 1000

Figure 3.2: Left: snapshot of the temperature distribution [K] of Model 1; right: absolute
difference of the temperature distribution [K] of Model 1 and Model 2. The
parameters of the models are described in Table 3.22.

the WENO reconstruction scheme as described in Paragraph 3.1.2 are compared to the
optimal linear weights dj . In smooth regions, they should be of the same size, whereas
in non-smooth regions the weight of one of the parabolae should be much higher. Then,
the nonlinearity index NI defined by

NI =
1√

k(k + 1)

 k∑
j=0

(
1− (k + 1)ωj/dj∑k

l=0 ωl/dl

)2
 1

2

, (3.45)

will be close to 1. Here, k is, as in Paragraph 3.1.2, the width of the stencil of each
interpolation polynomial such that the order of the reconstruction process is 2k − 1.

We plot NI as calculated in the WENO reconstruction procedure in the first charac-
teristic variable for reconstruction in the vertical (x) direction, for a three-dimensional
standard model of solar surface convection. Its vertical resolution is 19.5 km and the
horizontal 40 km for a box size of 4 Mm × 6 Mm × 6 Mm. In Figure 3.3, we show NI
together with the entropy at a fixed geometrical depth near the optical surface. Actu-
ally, NI is located at the half-integer node, but we ignore this small visualisation error.
In Figure 3.4, the mean value, the standard deviation, the minimum and the maximum
error in each vertical layer is plotted.

We conclude that NI captures the dynamics of surface convection very well. In regions
where the flow is turbulent — mainly the intergranular lanes near the optical surface
(which is located at a geometrical depth of around 800 km) —, its value is large whereas
it is reasonably small in smooth regions of the flow. We remark that the size of the
minimum value of NI depends on the design of the nonlinear weights in the WENO
reconstruction (Taylor et al., 2007). In our tests, ε as defined in Section 3.1.2 is fixed to

53

3 Numerical Methods

10−40.
We conclude that even though NI is a purely numerical parameter, it also has a physical

meaning and is a good indicator of whether a solution is smooth or not. Counting the
number of points where NI < 0.25 and where NI > 0.5, we get a good estimate of the
area ratio of smooth to non-smooth regions. In this particular simulation, the fraction of
non-smooth regions never exceeds 8 % except for the uppermost layers which are strongly
influenced by the boundary conditions. Over the whole simulation box, we can estimate
the ratio to be

volume where the flow is non-smooth

volume where the flow is smooth
≈ 0.05. (3.46)

Therefore, even though the fraction of non-smooth regions is not negligible, the flow
in the simulation box is mostly smooth.

y direction [Mm]

z
 d

ir
e
c
ti
o
n
 [
M

m
]

Nonlinearity index at depth 0.95437 Mm

0 1 2 3 4 5
0

1

2

3

4

5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

y direction [Mm]

z
 d

ir
e
c
ti
o
n
 [
M

m
]

Entropy at depth 0.95437 Mm

0 1 2 3 4 5
0

1

2

3

4

5

1.55 1.6 1.65 1.7 1.75

x 10
9

Figure 3.3: Snapshots of the nonlinearity index NI and the entropy of the three-
dimensional model at a geometrical depth of around 1 Mm. The optical
surface is at a geometrical depth of around 800 km. We observe that NI is
largest in the intergranular lanes where the fluid motion is most turbulent
(Kupka, 2009b). On the top of each granule, the flow is rather smooth such
that NI is small.

Calculation of Computational Costs

The reason to use higher-order time integration schemes is that we expect more accurate
results with less computation time than with the first-order Euler method. Clearly, all

54

3 Numerical Methods

 0

 0.25

 0.5

 0.75

 1

 1 2 3 4

box depth [Mm]

mean value
standard variation

minimum value
maximum value

Figure 3.4: Mean value, standard deviation, minimum and maximum of the nonlinearity
index NI at a specific vertical depth. We observe that NI reaches both its
maximum values and its maximum average just below the optical surface.
Deeper in the convection zone, the flow is smoother but NI never falls below
a value of around 0.17.

of the higher order schemes from Section 3.2.1 fulfil this for all grid resolutions and for
both the advection and the diffusion equation.

It is more difficult to say which one of the three higher order methods is the best for
our purposes. Our approach to this problem is determining the required grid spacing to
reach a typical accuracy given the error of the numerical method as calculated in the
previous section at a given Courant number. In precise terms, we solve the following
problem:

Problem 2. Given a relative accuracy εrel and a Courant number, which grid spacing
is necessary for a computational cube of unit size, and how many time steps are needed
for a time interval of unit length?

Given an empirical order of accuracy p and error constant C of a method, the required
grid spacing can be calculated by inversion of (3.35),

h =
(εrel

C

) 1
p
. (3.47)

In three dimensions, we need N = h−3 grid points for a unit cube with side length of
1 cm. For an advection equation,

55

3 Numerical Methods

T = nstages
|u|
σh

(3.48)

integration steps are needed to cover a time interval of 1 s length. We set the advection
velocity u to 1 in the following. High speeds will require small time steps and increase
the importance of the time integration method. For a diffusion equation,

T = nstages
1

σh2
, (3.49)

assuming a diffusion coefficient D of size 1. nstages is the number of stages of the Runge–
Kutta method, and σ is the Courant number. Finally, the computational costs are given
by T ·N corresponding to the number of evaluations of the differential operator.

We start with considering the advection equation (3.36) with smooth initial data.
From Tables 3.3, 3.4 and 3.5, we deduce the mean orders and error constants summarised
in Table 3.24.

σ = 0.5 σ = 0.25 σ = 0.125 σ = 0.0625
scheme p C p C p C p C

Euler 0.92 5.76e-1 0.82 2.49e-1 0.85 8.84e-2 0.84 5.19e-2
TVD2 1.94 2.33e-1 2.17 1.61e-1 2.47 4.31e-1 2.76 1.86e0

SSP RK(3,2) 2.03 1.41e-1 2.39 2.91e-1 2.62 8.87e-1 2.91 2.62e0
TVD3 3.42 1.28e0 3.82 3.57e0 4.23 7.55e0 4.56 1.19e1

Table 3.24: Empirical order of accuracy p and error constants C for WENO with several
time integration schemes and fixed Courant numbers σ when solving (3.36)
& (3.37).

scheme Euler TVD2 SSP RK(3,2) TVD3

σ 0.25 0.25 0.25 0.5 0.25 0.5

εrel 5 · 10−3

h 0.009 0.202 0.183 0.193 0.179 0.198

N 1.6e6 121 164 139 174 130

T 469.7 39.6 65.7 31.1 67.0 30.4

overall costs 7.6e8 4.8e3 1.1e4 4.3e3 1.2e4 3.9e3

Table 3.25: Computational costs for model simulation when solving (3.36) & (3.37).

In Table 3.25, the computational costs with each scheme are calculated. According to
the data from Table 3.23, we choose a relative accuracy of 5 · 10−3. The Euler forward
scheme is by far the most expensive one. It needs a grid spacing of around 0.01 to
reach this error size. For the higher-order schemes, much larger grid spacings can be
chosen. Since the total error is dominated by the spatial error in this regime, increasing

56

3 Numerical Methods

the time step by increasing the Courant number does not lead to considerably larger
errors. The Courant number can be chosen as large as the stability of the method
allows. Consequently, SSP RK(3,2) and TVD3 are the most efficient schemes since they
allow Courant numbers of 0.5, as indicated by the data in Tables 3.12 and 3.13 and
confirmed by numerical experiments with solar surface convection simulations. TVD2 is
most efficient when comparing all schemes with fixed Courant number of 0.25, but it is
not stable with higher Courant numbers.

With discontinuous initial data (3.38), the error size is much larger. Using the orders
and constants from Table 3.26 and a relative error size of 2.5 · 10−1 results in computa-
tional costs as summarised in Table 3.27.

σ = 0.5 σ = 0.25 σ = 0.125 σ = 0.0625
scheme p C p C p C p C

Euler 0.15 5.09e0 0.60 1.47e2 0.57 5.17e0 0.54 1.00e0
TVD2 0.38 7.18e-1 0.43 7.70e-1 0.45 8.25e-1 0.45 8.47e-1

SSP RK(3,2) 0.41 7.46e-1 0.44 8.08e-1 0.45 8.30e-1 0.45 8.48e-1
TVD3 0.43 8.73e-1 0.45 8.35e-1 0.45 8.34e-1 0.45 8.49e-1

Table 3.26: Empirical order of accuracy p and error constants C for WENO with several
time integration schemes and fixed Courant numbers σ when solving (3.36)
& (3.38).

scheme Euler TVD2 SSP RK(3,2) TVD3

σ 0.25 0.25 0.25 0.5 0.25 0.5

εrel 2.5 · 10−1

h 0.001 0.073 0.070 0.070 0.070 0.055

N 7.0e8 2561 2976 2979 3102 6150

T 3556.5 109.5 172.6 86.3 175.0 109.9

overall costs 2.5e12 2.8e5 5.1e5 2.6e5 5.4e5 6.8e5

Table 3.27: Computational costs for model simulation when solving (3.36) & (3.38).

We deduce from Table 3.27 that again Euler forward is very ineffective whereas for all
higher-order schemes, the required grid spacing is similar. Since the error is dominated
by the spatial one and the smoothness of the solution, increasing the Courant number
does not considerably decrease the accuracy. Once more, SSP RK(3,2) with σ = 0.5
turns out to be more efficient than TVD2 with σ = 0.25.

For pure diffusion, we calculate the mean order of accuracy and error constant by
averaging over all resolutions in Tables 3.6, 3.7, 3.8 and 3.9. Of course, these values
are only rough estimates. The resulting values are summarised in Table 3.28. Due
to equation (3.44), the convergence speed in time is doubled, such that the overall
order for all schemes is restricted by the fourth order spatial discretisation as defined in

57

3 Numerical Methods

equations (3.43).

σ = 0.5 σ = 0.25 σ = 0.125 σ = 0.0625
scheme p C p C p C p C

Euler 1.94 2.95e-2 1.82 6.13e-3 1.20 1.20e-3 2.25 9.03e0
TVD2 3.95 5.17e-2 3.96 3.06e-2 3.96 2.93e-2 3.96 2.93e-2

SSP RK(3,2) 3.96 4.14e-2 3.96 3.01e-2 3.96 2.94e-2 3.96 2.88e-2
TVD3 3.99 3.12e-2 3.96 2.95e-2 3.96 2.94e-2 3.96 2.89e-2

Table 3.28: Empirical order of accuracy p and error constants C for WENO with several
time integration schemes and fixed Courant numbers σ when solving (3.40)
& (3.41).

scheme Euler TVD2 SSP RK(3,2) TVD3

σ 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5

εrel 1.0 · 10−6

h 0.008 0.005 0.074 0.064 0.074 0.068 0.074 0.075

N 1.7e6 8.2e6 2502 3801 2471 3146 2433 2394

T 5.8e4 8.1e4 1474 974 2193 1288 2171 1074

overall costs 1.0e11 6.6e11 3.7e6 3.7e6 5.4e6 4.1e6 5.2e6 2.6e6

Table 3.29: Computational costs for model simulation when solving (3.40) & (3.41).

For the diffusion equation, we expect much smaller errors due to the smoothing prop-
erties of the diffusion equation. Therefore, we calculate the computational costs for a
relative accuracy of 1.0 · 10−6. The computational costs of the Euler forward scheme
exceed the costs of the higher order schemes by several orders of magnitude. As long as
the spatial error is dominating, increasing the Courant number leads to more efficient
schemes.

In contrast to non-linear methods like WENO for hyperbolic equations where stability
limits for σ must be found by experiment, there are analytical methods to determine the
maximum admissible Courant number for each time integration scheme. From Table 10
in Kupka et al. (2012) we deduce that the maximum Courant number σ as defined in
equation (3.44) for diffusive terms is 0.375 for TVD2 and Euler forward, 0.299 for TVD3
and 0.672 for SSP RK(3,2).

Taking this into account, the efficiency of the TVD2 and the SSP RK(3,2) scheme is the
highest one. Since the costs are of similar size and all numbers are only rough estimates,
no clear conclusion can be drawn which scheme is the most efficient one. The fact the
TVD3 is still stable with σ = 0.5 comes from the fact that the test problem (3.40) with
initial condition given by equation (3.41) is rather simple and the total integration time
is not very long. In realistic applications, TVD3 will not be stable with this Courant
number.

58

3 Numerical Methods

In conclusion, for both advection and diffusion equations the WENO5 method com-
bined with SSP RK(3,2) time integration is more efficient and more accurate than any
other time integration schemes tested, both for smooth and non-smooth flows. We bene-
fit from the high stability of SSP RK(3,2) and from the fact that the spatial error usually
is much larger than the temporal one. This justifies the additional efforts required for the
implementation of SSP RK(3,2), even though its theoretical order of accuracy is lower
than TVD3 and it has more stages than TVD2.

We note that these results may change with advection velocity and diffusion coeffi-
cients since the specific choice will affect the influence of the time and spatial integration
method on the overall accuracy and efficiency. Nevertheless, we assume that this in-
fluence is rather small, considering, in particular, the highly idealised nature of our
estimates.

3.3 The Piecewise Parabolic Method (PPM)

We will not describe the Piecewise Parabolic Method in full detail. A precise description
of the reconstruction process can be found in Colella and Woodward (1984). With
the reconstructed states at the cell boundaries, a Riemann problem must be solved. A
Riemann solver for real gases is described in Colella and Glaz (1985). Toro (2009) gives
an extensive introduction to Riemann solvers.

The basic idea of the reconstruction process, however, is similar to the WENO pro-
cedure. We will outline the procedure for the one-dimensional case on an equidistant
grid as described in Colella and Woodward (1984) and Colella and Sekora (2008). We
assume that all variables are given as cell averages. In Colella and Woodward (1984), a
parabolic interpolant is constructed which takes the form

φi+ 1
2

=
−φi−1 + 7φi + 7φi+1 − φi+2

12
, (3.50)

where φi is the cell average of φ in the cell
[
xi− 1

2
, xi+ 1

2

]
, φi = A(φ)i = 1

δxi

∫ xi+1
2

x
i− 1

2

φ(x̃)dx̃

(Colella and Woodward, 1984). To increase the order of accuracy in smooth flows,
Colella and Sekora (2008) suggested to use instead the sixth-order accurate formula

φi+ 1
2

=
φi−2 − 8φi−1 + 37φi + 37φi+1 − 8φi+2 + φi+3

60
. (3.51)

This value must be limited to avoid oscillations near discontinuities in the solution.
Colella and Sekora (2008) suggested the following procedure which preserves smooth
extrema as well, which had not been the case for the original methods presented in
Colella and Woodward (1984). The three approximations to the second derivative in
i+ 1

2 are

59

3 Numerical Methods

(
D2φ

)
i+ 1

2
,C

=
3

h2

(
φi − 2φi+ 1

2
+ φi+1

)
, (3.52a)(

D2φ
)
i+ 1

2
,L

=
1

h2

(
φi−1 − 2φi + φi+1

)
, (3.52b)(

D2φ
)
i+ 1

2
,R

=
1

h2

(
φi − 2φi+1 + φi+2

)
, (3.52c)

where h is the (constant) grid spacing. φi+ 1
2

is taken from equation (3.51). If the sign

of all approximations coincides, we define

(
D2φ

)
i+ 1

2
,lim

= sign
((
D2φ

)
i+ 1

2
,C

)
·

min
(
Clim

∣∣∣(D2φ
)
i+ 1

2
,L

∣∣∣ , Clim

∣∣∣(D2φ
)
i+ 1

2
,R

∣∣∣ , ∣∣∣(D2φ
)
i+ 1

2
,C

∣∣∣). (3.53)

Clim > 1 is a constant which should be independent of the grid spacing. Colella and
Sekora (2008) suggested to set it to 1.25. If the signs of

(
D2φ

)
i+ 1

2
,C

,
(
D2φ

)
i+ 1

2
,L

and(
D2φ

)
i+ 1

2
,R

differ,
(
D2φ

)
i+ 1

2
,lim

is set to 0. The final approximation to φi+ 1
2

is obtained

by

φi+ 1
2

=
1

2

(
φi + φi+1 −

h2

3

(
D2φ

)
i+ 1

2
,lim

)
. (3.54)

The whole procedure is summarised in pseudo code in Algorithm 3.

Algorithm 3 Interpolation procedure from Colella and Sekora (2008).

1: φi+ 1
2

= 1
60

(
φi−2 − 8φi−1 + 37φi + 37φi+1 − 8φi+2 + φi+3

)
2:
(
D2φ

)
C

= 3
(
φi+1 − 2φi+ 1

2
+ φi

)
,(

D2φ
)
L

=
(
φi−1 − 2φi + φi+1

)
,
(
D2φ

)
R

=
(
φi − 2φi+1 + φi+2

)
3:
(
D2φ

)
lim,L/R

= Clim min
(∣∣(D2φ

)
L

∣∣ , ∣∣(D2φ
)
R

∣∣)
4:
(
D2φ

)
lim

= 0

5: if
(
D2φ

)
C
> 0 &

(
D2φ

)
R
> 0 &

(
D2φ

)
L
> 0 then

6:
(
D2φ

)
lim

= min
(∣∣(D2φ

)
C

∣∣ , (D2φ
)

lim,L/R

)
7: end if
8: if

(
D2φ

)
C
< 0 &

(
D2φ

)
R
< 0 &

(
D2φ

)
L
< 0 then

9:
(
D2φ

)
lim

= −min
(∣∣(D2φ

)
C

∣∣ , (D2φ
)

lim,L/R

)
10: end if
11: φi+ 1

2
= 1

2

(
φi + φi+1 − 1

3

(
D2φ

)
lim

)
In the next step, we obtain left and right cell edge values φi,− and φi,+ as input for

the Riemann solver from the interpolated value φi+ 1
2
. If

60

3 Numerical Methods

(
φi+ 1

2
− φi

)(
φi − φi− 1

2

)
≤ 0 and

(
φi+1 − φi

) (
φi − φi−1

)
≤ 0, (3.55)

there is a local extremum at i+ 1
2 . Defining the approximations

(
D2φ

)
i+ 1

2
,P

=− 2

h2

(
6φi − 3

(
φj− 1

2
+ φj+ 1

2

))
, (3.56a)(

D2φ
)
i+ 1

2
,L

=
1

h2

(
φi−2 − 2φi−1 + φi

)
, (3.56b)(

D2φ
)
i+ 1

2
,C

=
1

h2

(
φi−1 − 2φi + φi+1

)
, (3.56c)(

D2φ
)
i+ 1

2
,R

=
1

h2

(
φi − 2φi+1 + φi+2

)
, (3.56d)

we proceed similarly as before. If the sign of all approximations coincides, we define

(
D2φ

)
i+ 1

2
,lim

= sign
((
D2φ

)
i+ 1

2
,P

)
·min

(∣∣∣(D2φ
)
i+ 1

2
,P

∣∣∣ ,
Clim

∣∣∣(D2φ
)
i+ 1

2
,L

∣∣∣ , Clim

∣∣∣(D2φ
)
i+ 1

2
,R

∣∣∣ , Clim

∣∣∣(D2φ
)
i+ 1

2
,C

∣∣∣). (3.57)

Clim > 1 is set to 1.25 again. If the signs differ,
(
D2φ

)
i+ 1

2
,lim

is set to 0. Finally, φi,±

is obtained by

φi,± = φi +
(
φj± 1

2
− φi

) (D2φ
)
i+ 1

2
,lim

(D2φ)i+ 1
2
,P

. (3.58)

If (3.55) is not fulfilled and(
φi+ 1

2
− φi

)(
φi − φi− 1

2

)
< 0, (3.59)

we set

φi,+ = φi,− = φi. (3.60)

Otherwise, if
∣∣∣φi± 1

2
− φi

∣∣∣ ≥ 2
∣∣∣φi∓ 1

2
− φi

∣∣∣, we set

φi,± = φi − 2
(
φi,∓ − φi

)
. (3.61)

The whole procedure is summarised in pseudo code in Algorithm 4.

3.3.1 Time Integration

Definition 5. Let a multdimensional problem be given. We call a time integration
scheme split if the spatial integration is performed dimension-wise (in “sweeps”) using

61

3 Numerical Methods

Algorithm 4 Construction of cell edge values as in Colella and Sekora (2008).

1: if
(
φi+ 1

2
− φi

)(
φi − φi− 1

2

)
≤ 0 &

(
φi+1 − φi

) (
φi − φi−1

)
≤ 0 then

2:
(
D2φ

)
P

= −2
(

6φi − 3
(
φj− 1

2
+ φj+ 1

2

))
,
(
D2φ

)
C

=
(
φi−1 − 2φi + φi+1

)
,(

D2φ
)
L

=
(
φi−2 − 2φi−1 + φi

)
,
(
D2φ

)
R

=
(
φi − 2φi+1 + φi+2

)
3:

(
D2φ

)
lim,C/L/R

= Clim min
(∣∣(D2φ

)
C

∣∣ , ∣∣(D2φ
)
L

∣∣ , ∣∣(D2φ
)
R

∣∣)
4:

(
D2φ

)
lim

= 0

5: if
(
D2φ

)
C
> 0 &

(
D2φ

)
R
> 0 &

(
D2φ

)
L
> 0 &

(
D2φ

)
P
> 0 then

6:
(
D2φ

)
lim

= min
(∣∣(D2φ

)
P

∣∣ , (D2φ
)

lim,C/L/R

)
7: end if
8: if

(
D2φ

)
C
< 0 &

(
D2φ

)
R
< 0 &

(
D2φ

)
L
< 0 &

(
D2φ

)
P
< 0 then

9:
(
D2φ

)
lim

= −min
(∣∣(D2φ

)
P

∣∣ , (D2φ
)

lim,C/L/R

)
10: end if
11: if

(
D2φ

)
P

= 0 then

12: φi,+ = φi,− = φi
13: else

14: φi,± = φi +
(
φj± 1

2
− φi

)
(D2φ)

lim
(D2φ)P

15: end if
16: else
17: if

(
φi+ 1

2
− φi

)(
φi − φi− 1

2

)
< 0 then

18: φi,+ = φi,− = φi

19: else if
∣∣∣φi± 1

2
− φi

∣∣∣ ≥ 2
∣∣∣φi∓ 1

2
− φi

∣∣∣ then

20: φi,± = φi − 2
(
φi,∓ − φi

)
21: end if
22: end if

the information from the previous sweep in the current time step. In an unsplit scheme,
all fluxes are updated simultaneously.

Until now, we only investigated unsplit time integration schemes. On Cartesian grids,
split schemes can lead to more stable and accurate schemes with the same computational
costs as its unsplit counterparts.

Split Time Integration

To extend any one-dimensional integration scheme to higher dimensions, Warming and
Beam (1976) suggested the first-order scheme

Qn+1 = LxLyQ
n, (3.62)

and the second-order scheme

62

3 Numerical Methods

Qn+2 = LxLyLyLxQ
n. (3.63)

Here, Lx means application of the one-dimensional scheme in x direction, and Ly
application in y direction. When the latter scheme is combined with a suitable spatial
reconstruction scheme, Courant numbers of 0.9 can be used, and the time integration
is second-order accurate. The accuracy of the first scheme is restricted to first order
no matter which spatial scheme is used. Nevertheless, it might be superior to unsplit
schemes as we will show in the following paragraph.

We will exemplify the advantage of split time integration schemes for the two-dimensional
advection equation

∂φ

∂t
+
∂φ

∂x
+
∂φ

∂y
= 0 (3.64)

using von Neumann analysis (Wesseling, 2001; LeVeque, 2007). The computational
domain is [0, 1]2 with periodic boundary conditions. The equation is discretised on an
equidistant grid with grid spacings δx = δy. We consider the first order accurate upwind
scheme

φn+1
i,j = φni,j − σ

(
2φni,j − φni−1,j − φni,j−1

)
, (3.65)

We denote the Courant number by σ = δt
δx . This scheme results from replacing the

derivatives in (3.64) by one-sided finite differences,

∂φ

∂t
≈ φn+1 − φn

δt
,
∂φ

∂x
≈ φi,j − φi−1,j

δx
,
∂φ

∂y
≈ φi,j − φi,j−1

δy
. (3.66)

Discretising equation (3.64) with upwind differences in space and the first order split
scheme from Warming and Beam (1976) in time yields

φ?i,j =φni,j − σ
(
φni,j − φni,j−1

)
, (3.67a)

φn+1
i,j =φ?i,j − σ

(
φ?i,j − φ?i−1,j

)
. (3.67b)

Since the equation (3.64) is linear, the scheme is symmetric, and by rearranging terms,
it can be brought in the one-step form

φn+1
i,j = φni,j − σ

(
2φni,j − φni−1,j − φni,j−1

)
+ σ2

(
φni,j + φni−1,j−1 − φni,j−1 − φni−1,j

)
.

(3.68)

In the von Neumann analysis, the Fourier transform is applied to the discretised
equation (LeVeque, 2007). Writing φ̂(ξ) for the Fourier transform at wave number ξ,
the discretised equation is brought in the form

63

3 Numerical Methods

φ̂n+1(ξ) = g(ξ)φ̂n(ξ). (3.69)

For the numerical solution to be stable, it is sufficient that the amplification factor
g(ξ) fulfils

|g(ξ)| ≤ 1 + α δt (3.70)

for some α independent of ξ. Since

∂eı(x+y)ξ

∂x
=
∂eı(x+y)ξ

∂y
= ı ξ eı(x+y)ξ, (3.71)

where ı is the imaginary unit, eı(x+y)ξ is an Eigenfunction with Eigenvalue ı for both ∂
∂x

and ∂
∂y .

We investigate how the schemes (3.65) and (3.68) work on the single wave number ξ
by setting φni,j = eı(i δx+j δy)ξ, δx = δy. Since we expect that

φn+1
i,j = g(ξ)φni,j , (3.72)

we can calculate g(ξ) for both schemes. For the upwind scheme,

g(ξ) = 1− 2σ
(

1− e−ı ξ δx
)
, (3.73)

the absolute value of which is bound by 1 for all ξ as long as σ ≤ 1
2 .

For the case of the split scheme (3.68), we calculate

g(ξ) = 1− σ
(

2− 2e−ı ξ δx
)

+ σ2
(

1− 2e−ı ξ δx + e−2ı ξ δx
)

= 1− 2σ
(

1− e−ı ξ δx
)

+ σ2
(

1− e−ı ξ δx
)2

=
(

1− σ
(

1− e−ı ξ δx
))2

.

Therefore, the absolute value of g(ξ) is smaller than 1 for all ξ if σ ≤ 1. We conclude
even though both schemes are first order accurate, the stability of the split scheme is
twice as large as the one of the unsplit scheme in terms of maximum allowed Courant
numbers.

The split scheme (3.68) is identical to the first order corner transport upwind (CTU)
scheme for the advection equation defined in Colella (1990). There, a second-order
extension of the scheme to systems of conservation laws is introduced which we will
present in the following paragraph.

64

3 Numerical Methods

The CTU Scheme

Even though the stability and accuracy of split time integration schemes is high, they
restrict the applicability of the code. On the other hand, simple unsplit schemes like
the first order upwind scheme (3.65) are not very stable. The corner transport upwind
(CTU) scheme from Colella (1990) is an extension of simple unsplit schemes to second
order with improved stability and direct applicability to systems of conservation laws.
We will describe the scheme for the two-dimensional Euler equations

∂

∂t
Q +

∂

∂x
F +

∂

∂y
G = 0, (3.74)

with the state vector Q and the flux functions F and G given by

Q =


ρ
ρu
ρv
E

 , F (Q) =


ρu

ρu2 + p
ρuv

(p+ E)u

 , G (Q) =


ρv
ρvu

ρv2 + p
(p+ E)v

 , (3.75)

where the pressure p = p(ρ, e) is given by an equation of state and e = E − u2+v2

2ρ is

the internal energy. In the following, we will write u := (u, v)T for the velocity vector.
Furthermore, we define the vector of primitive variables

S =


ρ
u
v
p

 , resp., in three dimensions, S =


ρ
u
v
w
p

 . (3.76)

The CTU algorithm is a predictor–corrector scheme. Once predictions Q
n+ 1

2

i± 1
2
,j

and

Q
n+ 1

2

i,j± 1
2

are constructed (either in the conservative variables Q or in the primitive variables

S), the values at the new time step for the Euler equations (3.74) are obtained by

Qn+1
i,j = Qn

i,j −
δt

δx

(
F
n+ 1

2

i+ 1
2
,j
− F

n+ 1
2

i− 1
2
,j

)
− δt

δy

(
G
n+ 1

2

i,j+ 1
2

−G
n+ 1

2

i,j− 1
2

)
, (3.77)

where F
n+ 1

2

i± 1
2
,j

= F

(
Q
n+ 1

2

i± 1
2
,j

)
and G

n+ 1
2

i,j± 1
2

= G

(
Q
n+ 1

2

i,j± 1
2

)
. The construction of the pre-

dictive variables at time step n+ 1
2 starts with the extrapolation formula

Q
n+ 1

2

i± 1
2
,j

= Qn
i,j ±

δx

2

∂Q

∂x
+
δt

2

∂Q

∂t
. (3.78)

From the Euler equations (3.74) we get

∂Q

∂t
= −

(
∂F

∂x
+
∂G

∂y

)
. (3.79)

65

3 Numerical Methods

Introducing the linearisation of F in Q

Ax =
∂F

∂Q
such that

∂F

∂x
= Ax

∂Q

∂x
, (3.80)

the equation (3.78) transforms to

Q
n+ 1

2

i± 1
2
,j

= Qn
i,j +

(
±δx

2
− δt

2
Ax

)
∂Q

∂x
− δt

2

∂G

∂y
. (3.81)

In Colella (1990), all terms on the right-hand side of (3.81) are evaluated at the cell
centre in an appropriate manner. Instead of linearising in Q, one could as well linearise
in S. In this way, Colella (1990) constructed a two-dimensional unsplit scheme of second
order with high stability.

Saltzman (1994) presented the first extension of the CTU algorithm to three dimen-
sions in the context of Riemann solvers (Toro, 2009). To reach the high stability of the
two-dimensional algorithm, twelve Riemann problems had to be solved instead of three
as required by a split or a simple unsplit scheme as, e.g., the upwind scheme. Gardiner
and Stone (2008) modified the algorithm slightly and reduced the number of Riemann
problems to six. The stability of the algorithm is still superior to any other unsplit
scheme, but only half as good as the scheme by Saltzman (1994). In the following, we
outline their algorithm for the three-dimensional Euler equations (3.1). Here, PPM de-
notes application of the PPM algorithm to reconstruct the primitive variables at the cell
boundary as needed by the Riemann solver. RIEMANN means solution of the Riemann
problem with the given boundary data.

Step 1 Calculate the left and right states and the associated interface flux with the
standard PPM scheme.

S?
L/R,x,i+ 1

2
,j,k

= PPM(Q(n)),

F?
i+ 1

2
,j,k

= RIEMANN(S?
L,x,i+ 1

2
,j,k
,S?

R,x,i+ 1
2
,j,k

)
(3.82)

Step 2 Update the states with the transversal fluxes to the intermediate time level.

Q
(n+ 1

2
)

L,x,i+ 1
2
,j,k

= Q?
L,x,i+ 1

2
,j,k
− δt

2δy

(
G?
i,j+ 1

2
,k
−G?

i,j− 1
2
,k

)
− δt

2δz

(
H?
i,j,k+ 1

2

−H?
i,j,k− 1

2

)
,

Q
(n+ 1

2
)

R,x,i+ 1
2
,j,k

= Q?
R,x,i+ 1

2
,j,k
− δt

2δy

(
G?
i+1,j+ 1

2
,k
−G?

i+1,j− 1
2
,k

)
− δt

2δz

(
H?
i+1,j,k+ 1

2

−H?
i+1,j,k− 1

2

)
(3.83)

66

3 Numerical Methods

Here, Q?
L/R,x,i+ 1

2
,j,k

and Q
(n+ 1

2
)

L/R,x,i+ 1
2
,j,k

are the variables in conservation form cor-

responding to the primitive variables S?
L/R,x,i+ 1

2
,j,k

and S
(n+ 1

2
)

L/R,x,i+ 1
2
,j,k

.

Step 3 Calculate the flux according to these updated states.

F
(n+ 1

2
)

i+ 1
2
,j,k

= RIEMANN

(
S

(n+ 1
2

)

L,x,i+ 1
2
,j,k
,S

(n+ 1
2

)

R,x,i+ 1
2
,j,k

)
(3.84)

Step 4 Update the conserved variables with the corrected fluxes.

Q
(n+1)
i,j,k = Q

(n)
i,j,k −

δt

δx

(
F

(n+ 1
2

)

i+ 1
2
,j,k
− F

(n+ 1
2

)

i− 1
2
,j,k

)
− δt

δy

(
G

(n+ 1
2

)

i,j+ 1
2
,k
−G

(n+ 1
2

)

i,j− 1
2
,k

)
− δt

δz

(
H

(n+ 1
2

)

i,j,k+ 1
2

−H
(n+ 1

2
)

i,j,k− 1
2

) (3.85)

We immediately see that twice as many Riemann problems have to be solved than
in the unsplit scheme. Furthermore, as any unsplit scheme the algorithm leads to an
increase in memory consumption compared to a split scheme since the fluxes must be
saved in several three-dimensional arrays for the simultaneous update. In step (3.83),
the cell boundary states must either be recalculated or saved in step (3.82), leading to
either an increase in total computation time or an increase in memory requirements.

67

4 Composite Grids

We have seen in Section 2 that Cartesian and spherical coordinate systems are the most
common choices in numerical astrophysics. Most algorithms work only on these types of
grids. Nevertheless, these coordinate systems have several disadvantages which restrict
their applicability.

For the case that the simulation domain is a full sphere, spherical coordinate systems
cannot cover the whole domain due to the grid singularities at the centre and at the
poles. With a Cartesian grid, a huge part of the computational resources is wasted.

A straightforward way to extend the capabilities of a code written for spherical or
Cartesian coordinate systems is to use several grids and cover the computational do-
main in this way. This is called the composite grid approach. The grids can either
overlap (Chesshire and Henshaw, 1990) or be patched together (Rai, 1986). Allowing
overlapping grids makes the use of standard grids for rather complex domains possible
while increasing computational costs and complicating the interpolation at the bound-
ary. On the other hand, patched grids decrease the flexibility of the code again. E.g., a
Cartesian and a spherical grid can only be patched together in special situations.

In this section, we will investigate the advantages and disadvantages of the overlapping
grid or Chimera grid approach (Ferziger and Perić, 2002). We start with a famous
example, the Yin–Yang grid, before commenting on the numerical difficulties of this
method.

4.1 The Yin–Yang Grid

The domain of interest of many meteorological computational problems, but also of
mantle convection in geophysics and supernova explosions, is a spherical shell (e.g.,
Washington et al., 2009; Wongwathanarat et al., 2010). A spherical coordinate system
implies very small time steps due to convergence of the grid lines near the poles when
finite difference or finite volume schemes with explicit time integration are used. Never-
theless, the geometry of the problem is quite regular such that unstructured grids are not
suited as well. Instead, the cubed sphere approach (Sadourny, 1972; Ronchi et al., 1996)
and the Yin–Yang grid (Kageyama and Sato, 2004) were introduced. We will focus on
the second approach in this section.

The basic idea of the Yin–Yang grid is to use two spherical grids with low latitudes.
By rotating one of them, their union covers the whole shell, but each grid has quasi-
uniform grid spacings. Wongwathanarat et al. (2010) report that a factor 26 for 3◦ to
80 for 1◦ angular resolution in computation time can be saved when using the Yin–Yang
grid instead of a conventional spherical coordinate system.

68

4 Composite Grids

The computational efficiency of the Yin–Yang grid is much better than that of any
spherical coordinate system, and it is a good choice as long as the centre of the grid is
not of interest. The singularity at the centre is not removed by this approach. Further-
more, at the boundary some kind of interpolation must be performed. This brings new
difficulties in the algorithm as described in the next paragraph.

4.1.1 Conservation Problem

At the boundary of the two grids, some interpolation procedure must be implemented.
Kageyama and Sato (2004) used bilinear interpolation of the variables from the one grid
as boundary conditions for the other. But Peng et al. (2006) show that polynomial
interpolation of variables does not lead to conservation at the grid boundaries. Instead,
they suggest a simple flux interpolation formula which leads to conservation for scalar
variables. Wongwathanarat et al. (2010) describe in much detail that this approach does
not work for vector variables, such as the velocity vector, which change their orientation
in every grid cell. This is the case, e.g., for the velocity vector u = (ur, uφ, uθ)

T in
spherical coordinate systems. Anyway, after measuring the conservation error they found
it to be small and to decrease with grid spacing.

Pärt-Enander and Sjögreen (1994) describe why no interpolation scheme based on in-
terpolation of variables at grid boundaries can be conservative. Following their descrip-
tion, we show that any method based on interpolation or reconstruction of variables is
not conservative. Simplifying as much as possible, we assume that two one-dimensional
grids with constant grid spacings δx1 and δx2 are given. Slightly modifying the no-
tation from Pärt-Enander and Sjögreen (1994), the left grid G1 is defined on (−∞, b]
and the right grid G2 on [c,∞). The cell boundaries yj+1/2 on the left grid are given by
yj+1/2 = b−(N1−j) δx1, j = N1, N1−1, . . ., where N1 is the number of grid points on the
left grid. The cell boundaries xj−1/2 on the right grid are defined by xj−1/2 = c+ j δx2,
j = 1, 2, . . . The overlap is defined by

d =x1/2 − yq−1/2 > 0

where q = max{j : x1/2 − yj−1/2 > 0, yj−1/2 ∈ G1, x1/2 ∈ G2}.
(4.1)

We choose b and c such that q < N1. We want to solve a one-dimensional conservation
law of the form

∂φ

∂t
+
∂F (φ)

∂x
= 0, φ(x, 0) = φ0(x), x ∈ (−∞,∞). (4.2)

At time step tn, the numerical solutions vnj on G1 and unj on G2 are defined at the

cell centres yj = 1
2(yj−1/2 + yj+1/2) and xj = 1

2(xj−1/2 + xj+1/2). They are advanced by
a conservative finite difference scheme of the form

69

4 Composite Grids

vn+1
j = vnj −

δt

δx1

(
fj+1/2 − fj−1/2

)
,

un+1
j =unj −

δt

δx2

(
gj+1/2 − gj−1/2

)
,

(4.3)

where f and g are the numerical fluxes given by the scheme used for spatial discretisation.
We assume that at time step n, sufficient boundary data is given to compute all fluxes
to update vn+1

j , j = N1, N1 − 1, . . ., and un+1
j , j = 1, 2, Boundary conditions must

be specified at N1 + 1 for G1 and at 0 for G2. The total mass of φ at time tn is defined
by

In =

q−1∑
j=−∞

δx1v
n
j + dvnq +

∞∑
j=1

δx2u
n
j . (4.4)

We call a method conservative, if In+1 = In. Inserting (4.3) into In+1, we arrive at

In+1 − In

δt
= −

q−1∑
j=−∞

(
fj+1/2 − fj−1/2

)
− d

δx1

(
fq+1/2 − fq−1/2

)
−
∞∑
j=1

(
gj+1/2 − gj−1/2

)
= g1/2 −

((
1− d

δx1

)
fq−1/2 +

d

δx1
fq+1/2

)
.

(4.5)

We conclude that the method is conservative if and only if the leftmost numerical flux
g1/2 on G2 is set by

g1/2 =

(
1− d

δx1

)
fq−1/2 +

d

δx1
fq+1/2. (4.6)

This is exactly the flux interpolation formula by Berger (1987). Boundary conditions
on the variables, no matter whether they use interpolation or reconstruction principles,
do not lead to conservation at the grid boundary (Pärt-Enander and Sjögreen, 1994).

4.2 Boundary Interpolation Methods

As outlined in the previous paragraph, Pärt-Enander and Sjögreen (1994) showed that
only interpolation of numerical fluxes at the boundary leads to conservation at the grid
boundary. Other approaches based either on polynomial interpolation or on integration
of a reconstruction of the cell values do not conserve mass since the numerical fluxes
obtained in this way do not cancel out exactly. Non-conservation leads to displacements
when shock fronts cross the grid interface. On the other hand, the conservative formula
of Berger (1987) is significantly less stable. Both methods produce numerical noise at
the interface, in particular at low speeds.

70

4 Composite Grids

To remove the noise Pärt-Enander and Sjögreen (1994) suggested a non-linear filtering
procedure, and to increase the stability of the flux interpolation methods they recom-
mend switching to the characteristic variables at an outflow boundary. All of these
methods are necessary, but complicated to implement.

4.2.1 Conservative Approach

The idea of interpolating numerical fluxes at grid interfaces was introduced by Berger
(1987) for a variety of one- and two-dimensional special cases as, e.g., abrupt change in
spatial or temporal grid resolution and overlapping grids. Whereas the method is rather
simple to implement in one spatial dimension, it gets much more complicated when
going to two or three spatial dimensions. The method is based on linear interpolation
and therefore limits the overall order of the scheme to two. Furthermore, the method
decreases the stability of the numerical scheme (Pärt-Enander and Sjögreen, 1994) and
application to vector variables, which change their orientation from cell to cell, is unclear
(Wongwathanarat et al., 2010).

4.2.2 High-Order Approach

In the context of high-order finite difference schemes, Sebastian and Shu (2003) presented
a different approach based on high order interpolation of the variables. They claimed
that by using high order Lagrangian or WENO–type interpolation, the conservation
errors are very small and decrease with grid spacing. In contrast to the method of
Berger (1987), the overall order of the scheme is not restricted by the grid interpolation
procedure.

We outline the approach of Sebastian and Shu (2003) in the following. The domain
of interest is covered with several overlapping grids. On each of these grids, the WENO
finite difference scheme (Shu and Osher, 1988; Shu, 2003) is used. The overlap of the
grids is large enough such that enough boundary points can be obtained from the other
grid by some method solving the following

Problem 3 (interpolation problem). Given a set of point values, approximate the value
of the underlying function at a position between these cells to high order of accuracy.

Problem 3 is closely related to Problem 1. Therefore, Sebastian and Shu (2003)
suggested a procedure similar to the WENO reconstruction algorithm as described in
paragraph 3.1.2 to solve the interpolation problem. We describe the WENO interpolation
method in the following paragraph. Of course, Problem 3 can also be solved with
standard interpolation methods as Lagrange interpolation. Sebastian and Shu (2003)
found that both Lagrange and WENO–type interpolation succeed in obtaining high
order of accuracy and keeping the conservation errors small. Due to the simplicity of
the Lagrange procedure and since it did not show any adverse effects in the presence of
shocks, they prefer Lagrange interpolation.

As described in Carpenter et al. (1995) and Fornberg (1998), time-dependent bound-
ary conditions can limit the order of accuracy of a Runge–Kutta scheme when not

71

4 Composite Grids

implemented correctly. In Table G.1-4. in Fornberg (1998), an overview can be found
how the method of implementing time-dependent boundary conditions influences the
order of accuracy of the solution. Interpolation at grid boundaries can be understood
as using time-dependent boundary conditions on every domain, and limits the order of
accuracy to two. Nevertheless, as long as the error at the boundary is small compared
to the error in the inner part of each domain, the overall order is not affected adversely.
However, this theoretical limitation should be kept in mind when designing high-order
interpolation methods at grid interfaces.

WENO–type Interpolation Algorithm

In the following, the WENO–type interpolation operator is derived following Sebastian
and Shu (2003). The purpose of the interpolation operator is to solve Problem 3, i.e.
interpolate the value of the underlying function at a certain position given a set of point
values.

We will only consider equidistant one-dimensional grids and interpolation of the value

in the cell
[
xi− 1

2
, xi+ 1

2

]
. The idea of the WENO interpolation process is to use several

stencils in the neighbourhood of the point to be interpolated to. On each of the stencils,
an interpolating polynomial of high order is defined. The interpolated value is obtained
by summing these polynomials weighting them according to their smoothness. If a dis-
continuity is contained in the stencil of a polynomial, its weight will be very small thereby
avoiding oscillatory behaviour as it is common when using high order interpolation.

Assume that the point values φi of the function φ are given and we want to interpolate

the value of φ at x0 ∈
[
xi− 1

2
, xi+ 1

2

]
. We consider k stencils

Sr(i) = {xi−r, . . . , xi−r+k−1}, r = 0, . . . , k − 1. (4.7)

On each stencil Sr(i) a polynomial pr of degree k − 1 is defined by Lagrange interpo-
lation,

pr(x) =
k−1∑
j=0

φi−r+jcrj(x), crj(x) =
k−1∏

l=0,l 6=j

x− xi−r+l
xi−r+j − xi−r+l

. (4.8)

The interpolation polynomial P of degree 2k−1 on the 2k−1 points xi−k+1, . . . , xi+k−1

can be obtained in the same way. The linear weights dr(x) are defined uniquely by the
relation

P (x) =

k−1∑
r=0

dr(x)pr(x), with

k−1∑
r=0

dr(x) = 1. (4.9)

The values of crj and dr for interpolation at xi− 1
2

are given in Table 4.1 for the case

of an equidistant grid and k = 3. We note that for this case, the linear weights can be
obtained by

72

4 Composite Grids

d0(x) = c5
2,4(x), d2(x) = c5

2,0(x), d1(x) = 1− d0(x)− d2(x), (4.10)

where c5
rj(x) are the coefficients of the Lagrange interpolation polynomial of degree

k = 5. Similar formulae are available (but more complicated) for any other value of k.

crj j = 0 j = 1 j = 2 dr

r = 0 15
8 −5

4
3
8

5
16

r = 1 3
8

3
4 −1

8
1
16

r = 2 −1
8

3
4

3
8

5
8

Table 4.1: The interpolation constants crj(x) and dr(x) as defined in (4.8) for x = xi− 1
2

and k = 3 on an equidistant grid.

High-order polynomial interpolation is known to produce oscillatory results. To avoid
oscillations in the WENO approach, a convex combination of all candidate stencils pr is
used to compute φ(x0). This procedure leads to non-oscillatory approximations of order
2k− 1, where k is the width of each of the stencils Sr(i). We set k = 3 in the following.

Therefore, the approximation to φ(x0), x0 ∈
[
xi− 1

2
, xi+ 1

2

]
, is calculated by

φ(x0) = ω0p0(x0) + ω1p1(x0) + ω2p2(x0), (4.11)

where ω0, ω1 and ω2 are nonlinear weights comparing the smoothness of the interpo-
lation polynomials. To measure the smoothness of each interpolation polynomial pr, we
calculate

βr(x) =
2∑
l=1

∫ x
i+1

2

x
i− 1

2

δx2l−1

(
dl pr(x)

dxl

)2

dx, x ∈
[
xi− 1

2
, xi+ 1

2

]
. (4.12)

This results in the smoothness indicators

β0 =
1

3

(
10φ2

i − 31φiφi+1 + 25φ2
i+1 + 11φiφi+2 − 19φi+1φi+2 + 4φ2

i+2

)
,

β1 =
1

3

(
4φ2

i−1 − 13φi−1φi + 13φ2
i + 5φi−1φi+1 − 13φiφi+1 + 4φ2

i+1

)
,

β2 =
1

3

(
4φ2

i−2 − 19φi−2φi−1 + 25φ2
i−1 + 11φi−2φi − 31φi−1φi + 10φ2

i

)
.

(4.13)

Then,

ω̃0 =
d0(x)

(β0 + ε)2
, ω̃1 =

d1(x)

(β1 + ε)2
, ω̃2 =

d2(x)

(β2 + ε)2
, (4.14)

with the linear weights dr defined by (4.9). ε is a small parameter which is used to avoid
division by zero. Finally,

73

4 Composite Grids

ω0 =
ω̃0

ω̃0 + ω̃1 + ω̃2
, ω1 =

ω̃1

ω̃0 + ω̃1 + ω̃2
, ω2 =

ω̃2

ω̃0 + ω̃1 + ω̃2
. (4.15)

Macdonald and Ruuth (2008) remark that with the choice of interpolation stencils
from Sebastian and Shu (2003), one of the candidate stencils corresponds to an extrap-
olation rather than an interpolation. Since the choice of stencils is quite arbitrary, they
suggested a different scheme where all stencils correspond to interpolations. The effect
is a secondary one and not important for our purposes.

We emphasize that the difference of this algorithm compared to the reconstruction
algorithm presented in paragraph 3.1.2 is that the interpolation polynomials agree with
the point values of φ in each grid point, and not the cell averages over each computational
cell.

A straightforward alternative approach to discretising the conservation law (4.2) in
space is replacing the space derivative by a central difference, i.e.

∂F (φ)

∂x
≈
Fi+ 1

2
− Fi− 1

2

δxi
. (4.16)

For an equidistant grid, this approximation is of second order. Interpreting all values of
φ and F as point values allows to apply the WENO interpolation procedure to calculate
F (φ(xi+ 1

2
)) = Fi+ 1

2
from the point values F (φ(xi)) = Fi to high order. Conservation

is obtained by using the flux-based form (4.16). Nevertheless, the overall method is
only of second order for equidistant grids, but extension to non-equidistant grids is
straightforward.

Finally, we show that WENO–type interpolation is non-linear.

Definition 6. An interpolation operator I is linear, if

I(λf) = λI(f) (4.17)

for a constant λ and given data f .

Collorary 1. Polynomial interpolation is linear.

Proof. For a given set of data points (xi, fi), the Lagrange form of the interpolation
polynomial p is

p(x) =

n∑
i=0

fi

n∏
j=0,j 6=i

x− xj
xi − xj

(4.18)

For the data (xi, λ fi + µ gi), λ, µ ∈ R,

74

4 Composite Grids

pλf+µg(x) =
n∑
i=0

(λfi + µgi)
n∏

j=0,j 6=i

x− xj
xi − xj

= λ

n∑
i=0

fi

n∏
j=0,j 6=i

x− xj
xi − xj

+ µ

n∑
i=0

gi

n∏
j=0,j 6=i

x− xj
xi − xj

= λ pf (x) + µ pg(x).

(4.19)

Collorary 2. WENO interpolation is non-linear.

Proof. The WENO interpolation polynomial of order k is of the form

pWENO(x) =
k∑
r=0

ωr(x)p(r)(x). (4.20)

The weights ωr(x) do not depend linearly on the interpolation data. Therefore, the
whole interpolation procedure is non-linear.

4.2.3 Numerical Experiments

We test the procedures presented in the previous section for several conservative finite
difference methods. We solve the one-dimensional conservation law as defined in (4.2)
on a finite interval [a, b] with periodic boundary conditions. For the first-order upwind
method (Strikwerda, 1989), the discretised version of (4.2) is then

φn+1
j = φnj −

δt

δx

(
F (φ)nj − F (φ)nj−1

)
. (4.21)

assuming ∂F
∂φ > 0. The Lax-Wendroff method (Strikwerda, 1989) is a second-order

method using the derivative ∂F
∂φ in calculating the spatial derivative. It takes the form

φn+1
j = φnj −

δt

2 δx

(
F (φ)nj+1 − F (φ)n+1

j−1

)
+

δt2

2 δx2

(
Aj+ 1

2

(
F (φ)nj+1 − F (φ)nj

)
−Aj− 1

2

(
F (φ)nj − F (φ)nj−1

))
,

(4.22)

where Aj± 1
2

is the derivative of F evaluated at
φj+φj±1

2 .

Furthermore, we solve the equation with the fifth order finite difference WENO scheme
(Shu and Osher, 1988; Shu, 2003) and the variant where we replaced the reconstruction
by an interpolation as described in paragraph 4.2.2. For the spatial discretisation, we
use the third-order three-stage TVD3 scheme from Shu and Osher (1988). We expect the
scheme using the reconstruction algorithm of fifth order as outlined in paragraph 3.1.2

75

4 Composite Grids

to be of third order since the time integration is third order, and the scheme using the
WENO–type interpolation algorithm to be second order accurate. The methods used in
this section are summarised in Table 4.2.

scheme order ∂φ
∂t Hj+ 1

2

upwind 1
φn+1
j −φnj
δt φj

Lax–Wendroff 2
φn+1
j −φnj
δt

Fj+1+Fj

2 − δt
2 δx

(
Aj+ 1

2
· (Fj+1 − Fj)

)
WENO5 interpolation 2 TVD3 WENO5 interpolation of F (φ)

WENO5 reconstruction 3 TVD3 WENO5 reconstruction of F (φ)

Table 4.2: The schemes used in Section 4.2.3 to solve the one-dimensional conservation
law (4.2). The equation is first semi-discretised in space and brought in con-
servation form ∂φ

∂t + 1
δx(Hj+ 1

2
− Hj− 1

2
) = 0. The table shows how the time

derivative ∂φ
∂t and the value of the numerical flux function at the cell boundary

Hj+ 1
2

is obtained. The derivative Aj± 1
2

is defined by Aj± 1
2

= ∂F
∂φ | 12 (φj+φj±1).

The WENO reconstruction scheme is described in paragraph 3.1.2, and the
interpolation scheme in paragraph 4.2.2. The coefficients for the third-order
three-stage TVD3 scheme from Shu and Osher (1988) can be found in Ta-
bles 3.1 and 3.2. The order corresponds to the order of the overall scheme,
i.e. the minimum of the order of spatial and temporal discretisation.

In all of the following tests, we choose F (φ) = φ such that the conservation law (4.2)
is just the one-dimensional advection equation, and ∂F

∂φ = 1 > 0. Then, we consider the
three initial conditions

φ0(x) =

{
1 + 5 exp

(
− 1

(2−4x)2
− 1

(4x)2

)
, 0.0 < x < 0.5

1, else
, (4.23a)

φ0(x) =1.1 + 0.1 sin (πx) , (4.23b)

φ0(x) =

{
1, 0.1 < x < 0.3

0, else
. (4.23c)

We call these tests the “hill”, the “sine wave” and the “step” initial condition in
the following. They are shown in Figure 4.1. The computational domain is [0, 2] with
periodic boundary conditions. We discretise the domain on the two grids G1 and G2

with constant grid spacing δx1 and δx2. This implies that there are two grid interfaces,
at 0 and at 1.1. The number of grid points N1 on G1 and N2 on G2 as well as the
constant grid spacings δx1 and δx2 are given by

76

4 Composite Grids

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

 0

 0.5

 1

φ w

x [cm]

hill
sine wave

step
wG1wG2

Figure 4.1: Initial conditions as defined in equations (4.23), and cell weights w on both
grids G1 and G2 used in the calculation of conserved quantities. 82 cells are
used on G1 and 64 cells on G2.

N1 = 2i + 3 · i, δx1 =
1.1

N1
, N2 = 2i, δx2 =

0.9

N2
. (4.24)

Then, we add grid points to both grids such that they overlap at 0 and at 1.1 sufficiently
wide to provide boundary information to the other grid by each of the interpolation
methods described before.

We evaluate the error of the numerical solution by comparing to the analytical solution
given by

φ(x, t) = φ0(x− t). (4.25)

We choose t = 2 s for the sine wave and the step test, and t = 1 s for the hill test as
final point in time. The Courant number σ = δt

δx is set to 0.1 in all calculations in this
section.

In order to calculate the sum of φ over the whole computational domain, we have to
assign a weight w to each grid cell. In regions which are not overlapped, the weight is 1.
We denote by q1 < N1 the first node of G1 at the grid interface at 1.1 the computational
cell of which overlaps with G2, and q2 < N2 the corresponding point of G2 at the grid
interface at 0. The weight of q1 and q2 is given by the ratio of the non-overlapped region
to the total cell length. We assign w = 0 to all other cells. For the case of 82 cells on
G1 and 64 cells on G2, the weights are shown in Figure 4.1.

77

4 Composite Grids

Hill Initial Condition

We show results for the case of the hill test on 47 and 32 grid points in Figure 4.2.
Linear interpolation is used at the grid interface, but the outcome does not change
significantly with different interpolation methods. We observe that the upwind method
damps the initial conditions strongly. The Lax–Wendroff method, on the other hand,
produces oscillatory results. Only the WENO5 scheme gives an accurate solution at this
resolution.

 0.75

 1

 1.25

 1.5

 1.75

 1 1.25 1.5

φ

x [cm]

upwind
Lax-Wendroff

WENO5 reconstruction
analytical solution

Figure 4.2: Numerical solutions for the hill test after 1 s calculated with the methods
described in Table 4.2. 47 grid points are used on G1 and 32 on G1. Grid in-
terfaces are located at 0 and 1.1. Linear interpolation without flux correction
was used for boundary interpolation, but the influence of the interpolation
method is small compared to the effect of the numerical scheme. The solution
on each grid is drawn with its own line, therefore there is some overlap.

In the following we discuss the error decay in the L2 norm for the initial conditions
defined in equations (4.23). The grid spacing shown on the x axis is the grid spacing
on G2. We test linear interpolation, parabolic interpolation with and without the flux
correction by Berger (1987) and Pärt-Enander and Sjögreen (1994), and WENO–type
interpolation as described in paragraph 4.2.2 and Sebastian and Shu (2003).

In Figure 4.3, the error decay for the hill test is shown. We observe that the con-
vergence of the first-order upwind, the second-order Lax–Wendroff method and the
second-order WENO–interpolation method is not affected by the boundary interpola-
tion method. Only for the high order accurate WENO–reconstruction method, the error
decay changes depending on the boundary interpolation method. We observe that the
decay is reduced to second order for the linear interpolation and when the flux correction

78

4 Composite Grids

 1e-09

 1e-06

 0.001

 1

 0.0001 0.001 0.01 0.1 1

L
2
 e

rr
o
r

grid spacing

Upwind
Lax-Wendroff

WENO5 interpolation + TVD3
WENO5 reconstruction + TVD3

 1e-09

 1e-06

 0.001

 1

 0.0001 0.001 0.01 0.1 1

L
2
 e

rr
o
r

grid spacing

Upwind
Lax-Wendroff

WENO5 interpolation + TVD3
WENO5 reconstruction + TVD3

 1e-09

 1e-06

 0.001

 1

 0.0001 0.001 0.01 0.1 1

L
2
 e

rr
o
r

grid spacing

Upwind
Lax-Wendroff

WENO5 interpolation + TVD3
WENO5 reconstruction + TVD3

 1e-09

 1e-06

 0.001

 1

 0.0001 0.001 0.01 0.1 1

L
2
 e

rr
o
r

grid spacing

Upwind
Lax-Wendroff

WENO5 interpolation + TVD3
WENO5 reconstruction + TVD3

Figure 4.3: Error decay for the hill test with several boundary interpolation methods and
numerical schemes as defined in Table 4.2. From top left to bottom right:
linear interpolation, parabolic interpolation with flux correction, parabolic
interpolation without flux correction, WENO5 interpolation. The grey line
indicates second-order convergence.

is used. Much smaller errors can be reached with the parabolic and the WENO–type
interpolation.

Comparing the effect of boundary interpolation for the WENO5 reconstruction scheme
isolated in Figure 4.4, we conclude that the higher complexity and computational costs
of the WENO–type interpolation do not pay off in higher accuracy. On the contrary,
for very fine resolutions the error of the parabolic interpolation is slightly smaller. For
coarser resolutions, the differences are much smaller. The overall error is dominated
by the errors due to the spatial and temporal discretisation, and the influence of the
boundary interpolation method is small.

Next we turn to the conservation error. As shown in Figure 4.5, the total “mass” of
φ is conserved exactly with the flux correction mechanism by Berger (1987). The size
of the conservation error is of similar size for all other boundary interpolation methods.
Its absolute size depends on the numerical scheme and the test problem, therefore we
refrain from giving absolute numbers. Instead, we observe that the conservation error
is smaller the higher the accuracy of the method is, and that it decreases with grid

79

4 Composite Grids

spacing for all tests and numerical schemes. With a highly accurate scheme such as the
WENO5 scheme by Shu and Osher (1988) its magnitude will be very small, but it will
never vanish completely unless the method by Berger (1987) is used which decreases the
accuracy and stability of the method again.

Finally, we note that even though the WENO–interpolation method is only second-
order accurate, its errors are smaller by about one magnitude compared to the second-
order Lax–Wendroff scheme. This indicates that the interpolation method can yield
accurate results efficiently as long as the resolution is rather coarse.

 1e-09

 1e-06

 0.001

 1

 0.0001 0.001 0.01 0.1 1

L
2
 e

rr
o
r

grid spacing

linear
parabolic

parabolic + flux correction
WENO5

Figure 4.4: Error decay for the hill test with several boundary interpolation methods
and the fifth order WENO scheme. Time integration is done with TVD3.
The grey line indicates second-order convergence.

Sine Wave Initial Condition

Figures 4.6 and 4.7 for the sine wave test lead to similar conclusions. With the lin-
ear interpolation and when using the flux correction, the overall order is restricted to
two, which mainly affects the accuracy of the WENO–reconstruction method. We loose
several order of magnitude in accuracy compared to WENO–type and parabolic interpo-
lation. The errors when using the WENO–type interpolation at the boundary and when
using parabolic interpolation are of comparable size. For very high resolutions, they
are limited by the accumulation of rounding errors. Again, the WENO–interpolation
method is superior compared to Lax–Wendroff.

80

4 Composite Grids

-0.0015

-0.001

-0.0005

 0

 0.04 0.08 0.12

re
la

ti
v
e
 c

o
n
s
e
rv

a
ti
o
n
 e

rr
o
r

grid spacing

linear
parabolic

parabolic + flux correction
WENO5

Figure 4.5: Mass conservation error for the hill test with several boundary interpolation
methods and the fifth order WENO scheme. Time integration is done with
TVD3.

Step Initial Condition

Finally, we investigate the step test. Here, the analytical solution is not differentiable. All
numerical methods and all boundary interpolation schemes lead to convergent solutions,
but the order is always reduced to linear convergence in the L1 norm and square-root
convergence in the L2 norm. This stems from the non-smoothness of the analytical
solution and the action of the numerical integration scheme, as we demonstrate in the
next section. Here, the grid interpolation method does not degrade the accuracy of the
solution, but the stability.

Since we observe that the method of interpolation at the grid interface does not have
any noticeable influence on the accuracy of the overall scheme, we only show results
with linear interpolation in Figure 4.8. With several combinations of numerical scheme
and boundary interpolation method, the numerical solutions get unstable even though
the Courant number in these tests was only 0.1. This results in very high errors and
slow convergence of the solutions, and happens mostly for the low-order methods such
as the Upwind and the Lax–Wendroff scheme, as shown in Figure 4.9 for several grid
resolutions. Higher numerical resolution decreases the error, which obviously is created
when the step passes the grid interface marked by a vertical line. We do not observe
these instabilities when using WENO methods.

81

4 Composite Grids

 1e-09

 1e-06

 0.001

 1

 0.0001 0.001 0.01 0.1 1

L
2
 e

rr
o
r

grid spacing

Upwind
Lax-Wendroff

WENO5 interpolation + TVD3
WENO5 reconstruction + TVD3

 1e-09

 1e-06

 0.001

 1

 0.0001 0.001 0.01 0.1 1

L
2
 e

rr
o
r

grid spacing

Upwind
Lax-Wendroff

WENO5 interpolation + TVD3
WENO5 reconstruction + TVD3

 1e-12

 1e-08

 0.0001

 1

 0.0001 0.001 0.01 0.1 1

L
2
 e

rr
o
r

grid spacing

Upwind
Lax-Wendroff

WENO5 interpolation + TVD3
WENO5 reconstruction + TVD3

 1e-12

 1e-08

 0.0001

 1

 0.0001 0.001 0.01 0.1 1

L
2
 e

rr
o
r

grid spacing

Upwind
Lax-Wendroff

WENO5 interpolation + TVD3
WENO5 reconstruction + TVD3

Figure 4.6: Error decay for the sine wave test with several boundary interpolation meth-
ods and numerical schemes as defined in Table 4.2. From top left to bot-
tom right: linear interpolation, parabolic interpolation with flux correction,
parabolic interpolation without flux correction, WENO5 interpolation. The
grey line indicates second-order convergence.

Heaviside Initial Condition

We confirm that the slow convergence in the step test is not due to the grid interpolation
method but stems from the non-smoothness of the analytical solution and the numerical
viscosity of the WENO scheme by using the following test. Again, we consider the
advection equation

∂φ

∂t
+ a

∂φ

∂x
= 0 (4.26)

where a is the (constant) advection speed, with the Heaviside initial condition

φ (x, 0) = H(x) =

{
0, x < 0

1, x ≥ 0
. (4.27)

The Heaviside function does not possess any strong or weak derivatives. The analytical
solution of (4.26) is

82

4 Composite Grids

 1e-12

 1e-08

 0.0001

 1

 0.0001 0.001 0.01 0.1 1

L
2
 e

rr
o
r

grid spacing

linear
parabolic

parabolic + flux correction
WENO5

Figure 4.7: Error decay for the sine wave test with several boundary interpolation meth-
ods and the fifth order WENO scheme. Time integration is done with TVD3.
The grey line indicates second-order convergence.

φ (x, t) = φ (x− a t, 0) , (4.28)

i.e. a shift of the initial condition (4.27) by the distance a t.
We fix the Courant number σ = a δt

δx = 0.1 and the advection speed a = 1. When we
solve the boundary value problem

∂φ

∂t
+
∂φ

∂x
= 0,

φ (x, 0) = H(x) =

{
0, x < 0

1, x ≥ 0
, φ (0, t) = 0, φ (10, t) = 1,

(4.29)

on the domain x ∈ [0, 10], t ∈ [0, 5] with the fifth order WENO scheme and TVD3 time
integration as implemented in ANTARES on one equidistant grid, we get approximately
first order convergence in the L1 norm, but square root convergence in the L2 norm at
time t = 5 s, as shown in Figure 4.10.

When looking at the numerical solution after 5 s for several numbers of grid points
as given in Figure 4.11, we observe that besides the advection of the initial condition,
the numerical viscosity of the WENO scheme leads to smoothing near the discontinuity.
The width of the region where the solution is smoothed decreases with grid spacing.
Furthermore, the position of the jump is shifted for all grid resolutions leading to large

83

4 Composite Grids

 0.001

 0.01

 0.1

 1

 0.0001 0.001 0.01 0.1 1

L
1
 e

rr
o
r

grid spacing

Upwind
Lax-Wendroff

WENO5 interpolation + TVD3
WENO5 reconstruction + TVD3

 0.001

 0.01

 0.1

 1

 0.0001 0.001 0.01 0.1 1

L
2
 e

rr
o
r

grid spacing

Upwind
Lax-Wendroff

WENO5 interpolation + TVD3
WENO5 reconstruction + TVD3

Figure 4.8: Error decay in the L1 and the L2 norm for the step test with linear boundary
interpolation of variables and with several numerical schemes as defined in
Table 4.2. The results do not differ considerably depending on the boundary
interpolation method. On both pictures, the grey line indicates square-root
convergence.

local errors, and there is a small overshoot for coarse grid resolutions.
Next, we try to find an analytical equation of the form

∂φ

∂t
− κ∂

βφ

∂xβ
= 0, β = 2, 3, . . . , (4.30)

which describes the action of the numerical viscosity of the WENO scheme in the Heavi-
side example. The analytical solution for β = 2 is given by (cf. p. 47 in Evans, 2002)

φ(x, t) =

∫ ∞
−∞

G(x− y, t)H(y) dy where G(x, t) =
1√

4πκt
exp

(
− x2

4κt

)
. (4.31)

For the initial condition (4.27), we obtain

φ(x, t) =

∫ ∞
0

G(x− y, t) dy =

∫ x

−∞
G(z, t) dz, (4.32)

by substituting z = x− y. Finally, by

φ(x, t) =
1√

4πκt

∫ x

−∞
exp

(
− z2

4κt

)
dz, (4.33)

we conclude that φ(x, t) is the distribution function of the Gaussian distribution with
mean value 0 and standard deviation

√
2κt. Therefore, for fixed x and t, the deviation

from the initial condition (4.27) is proportional to
√
κ. The analytical solution for β = 2

and several values of κ given by (4.33) and calculated with Mathematica is shown on
the left panel in Figure 4.12. On the right panel, these solutions are compared to the
numerical solution of problem (4.29). We observe that the numerical solutions are not

84

4 Composite Grids

-0.4

 0

 0.4

 0.8

 1.2

 0 0.5 1 1.5 2

φ

x [cm]

82 + 64

280 + 256

1054 + 1024

Figure 4.9: Numerical solution of the step test with the Lax–Wendroff scheme and linear
boundary interpolation of variables. The results do not differ considerably
depending on the boundary interpolation method. In the caption, we state
the number of grid points on each of the grids. The vertical line is at the
interface between the two grids.

perfectly symmetric as their analytical counterparts, but there is a rough correlation
between numerical resolution and the value of κ in (4.30).

Given a numerical solution of (4.29) at time t, we define xjump := a t, the analytically
correct position of the jump for problem (4.29). For solutions of equation (4.30), we set
xjump = 0. Then, we define the left and right widths wl and wr for both the numerical
solutions of (4.29) and the analytical solutions of (4.30) with initial condition (4.27) by

wl = argmin
x<xjump

||φ(x, t)| − ε| − xjump, wr = argmin
x>xjump

||φ(x, t)− 1| − ε| − xjump, (4.34)

where ε is some small number, usually 0.01. We interpret wl and wr as the smoothing
widths of the solution, and plot wl and wr for the numerical solution of (4.29) and the
analytical solution of (4.30) for β = 2, in Figure 4.13. Note that for the analytical
solution, wl = wr since the solution is symmetric around xjump. We observe that wl and
wr of the numerical solution of (4.29) agree very well with the values for the analytical
solution of (4.30), at least for intermediate and high resolutions. This result seems to
be independent of advection speed and simulation time. We remark that the smoothing
width w of the analytical solution of (4.30) scales with κ1/β. Since we observe that
the smoothing width of the numerical solution of (4.29) roughly scales with

√
δx, we

85

4 Composite Grids

 0.001

 0.01

 0.1

 1

 10

 0.001 0.01 0.1 1 10

e
rr

o
r

grid spacing [cm]

L
1
 error

L
2
 error

Figure 4.10: Empirical order of accuracy of the WENO5 scheme with TVD3 time in-
tegration when solving equation (4.29) with fixed σ = 0.1 in the L1 and
the L2 norm. The grey lines indicate square root (solid line) and linear
convergence (dash-dotted line).

-0.25

 0

 0.25

 0.5

 0.75

 1

 1.25

 2.5 3.75 5 6.25 7.5

position [cm]

32 points

64 points

256 points

1024 points

2048 points
-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2.5 3.75 5 6.25 7.5

position [cm]

32 points

64 points

256 points

1024 points

2048 points

Figure 4.11: Numerical solution (left) and error of the numerical solution compared to
the analytical solution (right) of problem (4.29) at t ≈ 5 s (end time differs
slightly depending on time step size) with fixed σ = 0.1 for several grid
resolutions. x ranges from 0 to 10 cm while t evolves over 0 to 5 s.

86

4 Composite Grids

-0.25

 0

 0.25

 0.5

 0.75

 1

 1.25

 2.5 3.75 5 6.25 7.5

position [cm]

κ=0.1

κ=0.01

κ=0.001

κ=0.0001
-0.25

 0

 0.25

 0.5

 0.75

 1

 1.25

 3.75 5 6.25

position [cm]

κ=0.01

κ=0.001

κ=0.0001

64 points

128 points

256 points

Figure 4.12: Left panel: analytical solution of equation (4.30) with β = 2 and several
values of κ as calculated by Mathematica. The solution was shifted to
be centred at x = 5. Right panel: comparison of the analytical solution
of equation (4.30) with β = 2 (red lines) and the numerical solution of
problem (4.29) (blue lines).

conclude that β = 2 describes the numerical viscosity of the WENO scheme.
We deduce that the numerical viscosity acts similarly to a diffusive process with β = 2

when we describe κ as a function of a and the grid resolution δx. From Figure 4.13, we
obtain the approximate relation

w (log δx) ≈ w
(

3

4
log
(κ
a

)
+

3

4

)
. (4.35)

Combining (4.30) and (4.35), we conclude that for the Heaviside initial condition (4.27),
the numerical viscosity of the WENO5 scheme acts like a diffusive process of the form

∂φ

∂t
−
(

0.1 a (δx)
4
3

) ∂2φ

∂x2
= 0. (4.36)

The error arising from the numerical viscosity dominates the overall error in this case.

Therefore, the numerical error is proportional to

√
0.1 a (δx)

4
3 ∼ (δx)

2
3 , which is similar

to the L1 and L2 error convergence order we observe in Figure 4.10.
The fact that the L2 error has a slower convergence order than the L1 error can

be explained by the displacement of the numerical solution compared to the analytical
solution of (4.29) as shown in Figure 4.11. Since the L2 error assesses a higher weight to
outliers than the L1 norm, the region where the errors are high due to the displacement
affects the L2 error stronger.

We conclude that the slow convergence of the WENO5 scheme when applied to the
Heaviside initial condition (4.27) can be explained by the action of the numerical viscosity
which dominates the overall error. The difference between the L1 and the L2 convergence
is due to the displacement of the position of the jump in the numerical solution.

87

4 Composite Grids

-2

-1

 0

 1

 2

 0.001 0.01 0.1 1

 1e-05 0.0001 0.001 0.01 0.1

w
id

th
 [
c
m

]

grid spacing [cm]

κ/a [cm]

wl

wr

width of ut - κ uxx=0

-2

-1

 0

 1

 2

 0.001 0.01 0.1 1

 1e-05 0.0001 0.001 0.01 0.1

w
id

th
 [
c
m

]

grid spacing [cm]

κ/a [cm]

wl

wr

width of ut - κ uxx=0

-2

-1

 0

 1

 2

 0.001 0.01 0.1 1

 1e-05 0.0001 0.001 0.01 0.1

w
id

th
 [
c
m

]

grid spacing [cm]

κ/a [cm]

wl

wr

width of ut - κ uxx=0

-2

-1

 0

 1

 2

 0.001 0.01 0.1 1

 1e-05 0.0001 0.001 0.01 0.1

w
id

th
 [
c
m

]

grid spacing [cm]

κ/a [cm]

wl

wr

width of ut - κ uxx=0

Figure 4.13: Smoothing widths wl and wr for the numerical solution of (4.29) and the
analytical solution of (4.30) with β = 2. The widths of the numerical
solution are plotted over grid spacing whereas the widths of the analytical
solutions are plotted over values of κ/a. On the top for a = 0.5 cm s−1,
on the bottom for a = 1 cm s−1. On the left for t = 2.5 s, on the right for
t = 5 s.

88

4 Composite Grids

Two-dimensional Euler Equations

We extend the composite approach to two dimensions and the Euler equations (3.74).
As computational grid, we choose a Cartesian grid with side length 1.2 centred at the
origin, and a spherical grid given by

x = r cosφ, y = r sinφ, r ∈ [0.5, 1] , φ ∈ [0, 2π] . (4.37)

Therefore, the computational domain is the circle with radius 1. At the grid interface,
we employ bilinear interpolation of the conservative variables as described in Peng et al.
(2006) and Wongwathanarat et al. (2010).

In Figure 4.14, the results for the two-dimensional extension of the Sod shock tube
(Sod, 1978) are shown, similar to the setup in Wongwathanarat et al. (2010). Outflow
boundary conditions are used at the physical boudaries. We use 400 grid points in each
direction on both grids.

We observe that the overall results look rather fine. The shock front stays straight
and is only distorted at the physical boundaries by the outflow boundary conditions.
The grid interface, on the other hand, does not seem to hinder the motion of the shock,
but to transmit it without difficulties. Nevertheless, numerical noise is generated moving
in shock direction, similar to what was seen in Pärt-Enander and Sjögreen (1994). We
note that the Mach number of the SOD shock is around 1, whereas Pärt-Enander and
Sjögreen (1994) suggest that slowly moving shocks are more problematic.

4.2.4 Conclusions

Our numerical experiments confirm the theoretical results of Chapter 4. Standard low-
order interpolation methods at grid boundaries limit the accuracy of the overall solution
and are not conservative. On the other hand, flux-based correction mechanisms like the
one proposed in Berger (1987) fix the problem of conservation but impose a new limit on
the overall convergence order. High-order approaches like the one from Sebastian and
Shu (2003) allow high order convergence when high order accurate numerical schemes
are used, but they induce conservation errors at the grid boundary. This error might
be small and can be neglected in specific cases (Wongwathanarat et al., 2010), but for
long-term numerical simulations with quasi-stationary flows as, e.g., the simulation of
stellar convection, they are not suited. Especially when discontinuities are present in
the numerical solution, the stability of all grid interpolation methods is very low.

Moreover, it is not trivial to solve elliptic equations on composite grids. For ellip-
tic equations, the solution in each grid point is coupled at each instant of time to the
whole computational domain. When the equation is solved on each grid separately, the
algorithm must be iterated in a Schwartz–type procedure increasing the computational
costs tremendously (Saad, 2003). Furthermore, the convergence of the iteration can be
very slow, or the algorithm can fail to converge at all (e.g., Gander, 2005). Other ap-
proaches are to use an auxilliary grid where the elliptic equation is solved using standard
techniques (Wongwathanarat et al., 2010).

89

4 Composite Grids

Figure 4.14: Time evolution of the two-dimensional SOD shock tube test on a composite
grid. Top left: grids with only every 16th grid point plotted, top right:
t = 0 s, bottom left: t = 0.47 s, bottom right: t = 0.94 s.

In higher dimensions, the calculation of total sums of conserved quantities as well as
the identification of neighbouring cells on the other grid gets much more complicated.
If overlap of grids is allowed, this can lead to a considerable waste of computation time,
and the problem of merging the solutions together in the overlapping region must be
solved. Finally, numerical noise is generated when a shock is passing a grid interface.

Keeping the concepts described in section 1.2 in mind, we note that it is unclear what
happens to a turbulent flow at a grid interface, especially if the resolution is different
between the grids. The results of an LES typically depend on the numerical resolution
and could differ on each grid.

We therefore refrain from using the composite grid approach and present the alterna-
tive of curvilinear grids in the following chapter, which allows the design of high order,
globally conservative schemes on reasonably complex geometries.

As a side remark, the interpolation-based WENO method (4.16) is only second-order
accurate, but its error constants are much smaller than standard second-order accurate

90

4 Composite Grids

schemes, and it has the advantage of non-oscillatory and shock-capturing numerical so-
lutions. In case a reconstruction-based scheme cannot be used due to, e.g., the numerical
grid, this scheme is a reasonable alternative.

91

5 Curvilinear Grids

Parts of this chapter, in particular the sections concerning WENO methods, are pub-
lished in Grimm-Strele et al. (2013b).

Numerical schemes which are designed for Cartesian, equidistant grids can be gen-
eralised to more complicated domains with the technique of mapped grids. There, a
mapping function

M : [−1, 1]3 → Ω, M(ξ, η, ζ) = (x, y, z)T, (5.1)

is defined which maps the Cartesian and equidistant computational space into the phys-
ical space. The information about the geometry of the physical space is then contained
in the transformed partial differential equations. The Euler equations in strong con-
servation form in physical space (3.1) are transformed into strong conservation form in
computational space. In three dimensions, they take the form

∂

∂t
J−1Q +

∂

∂ξ
F̂ +

∂

∂η
Ĝ +

∂

∂ζ
Ĥ = 0 (5.2a)

with

F̂ =n1F + n2G + n3H, (5.2b)

Ĝ =m1F +m2G +m3H, (5.2c)

Ĥ =o1F + o2G + o3H, (5.2d)

where J−1 is the determinant of the inverse Jacobian of the mapping function M (see,
e.g., Kifonidis and Müller, 2012). The precise form of the factors n1, n2, n3 and so on
can be found in section 5.6. They consist of metric derivatives of the mapping function
M . ξ, η, and ζ are the computational variables defined by M .

We present two derivations of the strong conservation form of the two-dimensional
Euler equations in computational space which differ in their differentiability assump-
tions concerning the mapping function M . The classical first approach assuming strong
differentiability of the mapping function can be found in section 5.1. A more general
derivation is sketched out in section 5.2.

We work in two dimensions in the following, but the approach can be generalised
directly to three dimensions. The results for three dimensions can be found in section 5.6.

92

5 Curvilinear Grids

5.1 Strong Derivation

If there is a differentiable function

M : [−1, 1]2 → Ω, M(ξ, η) = (x, y)T, (5.3)

we can transform the two-dimensional Euler equations in differential form (3.74) to

∂

∂t
J−1Q +

∂

∂ξ
F̂ +

∂

∂η
Ĝ = 0 (5.4a)

with

F̂ =
∂y

∂η
F− ∂x

∂η
G, (5.4b)

Ĝ =− ∂y

∂ξ
F +

∂x

∂ξ
G, (5.4c)

and the determinant of the inverse Jacobian of the transformation

J−1 =

∣∣∣∣∂(x, y)

∂(ξ, η)

∣∣∣∣ =
∂y

∂η

∂x

∂ξ
− ∂y

∂ξ

∂x

∂η
. (5.4d)

In this way, the conservation law (3.74) defined in the physical space is transformed
into a conservation law in the computational space. If M is at least in C1, all derivatives
and the Jacobian are well-defined (Vinokur, 1974; Thompson et al., 1985; Kifonidis and
Müller, 2012).

Following the description in Tannehill et al. (1997), this form can be derived by
multiplying (3.74) with J−1 and rearranging terms. First we look at ∂F

∂x J
−1. With the

chain rule of differentiation,

∂F

∂x
J−1 =

(
∂ξ

∂x

∂F

∂ξ
+
∂η

∂x

∂F

∂η

)
J−1

=
∂

∂ξ

(
F
∂ξ

∂x
J−1

)
+

∂

∂η

(
F
∂η

∂x
J−1

)
− F

∂

∂ξ

(
∂ξ

∂x
J−1

)
− F

∂

∂η

(
∂η

∂x
J−1

)
.

In two dimensions,(
∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

)
=

(
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

)−1

= J

(
∂y
∂η −∂x

∂η

−∂y
∂ξ

∂x
∂ξ

)
, (5.5)

and as a direct consequence,

93

5 Curvilinear Grids

∂ξ

∂x
J−1 =

∂y

∂η
,
∂ξ

∂y
J−1 = −∂x

∂η
,
∂η

∂x
J−1 = −∂y

∂ξ
,
∂η

∂y
J−1 =

∂x

∂ξ
. (5.6)

We can further write

∂F

∂x
J−1 =

∂

∂ξ

(
∂y

∂η
F

)
+

∂

∂η

(
−∂y
∂ξ

F

)
− F

(
∂2y

∂ξ∂η
− ∂2y

∂η∂ξ

)
︸ ︷︷ ︸

=0

.

Here we assumed the mapping function to be at least in C2. The same procedure
leads to similar expressions for ∂G

∂y J
−1. Plugging all these expressions into (3.74) leads

to (5.4).

5.2 Derivation Assuming Weak Differentiability

In applications, the mapping function M from the physical domain Ω to the compu-
tational domain is not known in closed form or does not possess an analytical form.
We therefore seek for a derivation of the transformed equations (5.4) which does not
require any differentiability of the mapping function M . Following the description
in Wesseling (2001), we assume that a structured set of nodes (xi± 1

2
,j± 1

2
, yi± 1

2
,j± 1

2
),

1 ≤ i ≤ n, 1 ≤ j ≤ m, is given (e.g., by an external grid generation program, see
Thompson et al., 1985), instead of an analytical expression for M . Ω is the convex hull
of {(xi± 1

2
,j± 1

2
, yi± 1

2
,j± 1

2
) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Then we define the discrete mapping

function M̃ point-wisely by

M̃(ξi− 1
2
, ηj− 1

2
) = (xi− 1

2
,j− 1

2
, yi− 1

2
,j− 1

2
), i = 1, . . . , n+ 1, j = 1, . . . ,m+ 1. (5.7)

For (ξ, η) ∈ Ci,j :=
[
ξi− 1

2
, ξi+ 1

2

]
×
[
ηj− 1

2
, ηj+ 1

2

]
, we define M(ξ, η) by bilinear interpo-

lation of the physical coordinates of the edges of the cell. In this way, we continue M̃ to
M : [−1, 1]× [−1, 1]→ Ω. M is continuous, linear in each Ci,j , but not differentiable on
the boundary of each cell Ci,j . It follows that M 6∈ C1([−1, 1]2), but M ∈ H1([−1, 1]2).

If the mapping function is defined in this way, the image of each cell Ci,j is a quadrilat-

eral Di,j with edges
(
xi− 1

2
,j− 1

2
, yi− 1

2
,j− 1

2

)
,
(
xi− 1

2
,j+ 1

2
, yi− 1

2
,j+ 1

2

)
,
(
xi+ 1

2
,j− 1

2
, yi+ 1

2
,j− 1

2

)
,

and
(
xi+ 1

2
,j+ 1

2
, yi+ 1

2
,j+ 1

2

)
in physical space. All cell sides are straight line segments. We

can choose the quadrilateral Di,j as the (arbitrary) control volume W ⊂ Ω of the integral
formulation of the Euler equations

94

5 Curvilinear Grids

∂

∂t

∫
W
ρ dV =−

∫
∂W

n · ρu dA, (5.8a)

∂

∂t

∫
W
ρu dV =−

∫
∂W

[n · ρu⊗ u + np] dA, (5.8b)

∂

∂t

∫
W
E dV =−

∫
∂W

n · (p+ E) u dA, (5.8c)

where n is the unit outward normal on ∂W , the boundary of W . Due to Gauss’ Theorem
(p. 627, Evans, 2002), equations (5.8) are equivalent to the differential form (3.74) for
sufficiently smooth functions (Chorin and Marsden, 1993). But ∂W = ∂Di,j consists of
the four line segments

Si± 1
2

=

(
xi± 1

2
,j+ 1

2

yi± 1
2
,j+ 1

2

)
−

(
xi± 1

2
,j− 1

2

yi± 1
2
,j− 1

2

)
, (5.9a)

Sj± 1
2

=

(
xi+ 1

2
,j± 1

2

yi+ 1
2
,j± 1

2

)
−

(
xi− 1

2
,j± 1

2

yi− 1
2
,j± 1

2

)
. (5.9b)

Their length is given by

∣∣∣Si± 1
2

∣∣∣ =

√(
xi± 1

2
,j+ 1

2
− xi± 1

2
,j− 1

2

)2
+
(
yi± 1

2
,j+ 1

2
− yi± 1

2
,j− 1

2

)2
, (5.10a)∣∣∣Sj± 1

2

∣∣∣ =

√(
xi+ 1

2
,j± 1

2
− xi− 1

2
,j± 1

2

)2
+
(
yi+ 1

2
,j± 1

2
− yi− 1

2
,j± 1

2

)2
, (5.10b)

and the normal vectors n =

(
n1

n2

)
in equations (5.8) are exactly

n1 =
(
yi± 1

2
,j+ 1

2
− yi± 1

2
,j− 1

2

)
/
∣∣∣Si± 1

2

∣∣∣ , (5.10c)

n2 = −
(
xi± 1

2
,j+ 1

2
− xi± 1

2
,j− 1

2

)
/
∣∣∣Si± 1

2

∣∣∣ (5.10d)

on Si± 1
2

and

n1 = −
(
yi+ 1

2
,j± 1

2
− yi− 1

2
,j± 1

2

)
/
∣∣∣Sj± 1

2

∣∣∣ , (5.10e)

n2 =
(
xi+ 1

2
,j± 1

2
− xi− 1

2
,j± 1

2

)
/
∣∣∣Sj± 1

2

∣∣∣ . (5.10f)

95

5 Curvilinear Grids

on Sj± 1
2
. From now on, we will write n =

(
n1

n2

)
for the normal vector on Si± 1

2
and

m =

(
m1

m2

)
for the normal vector on Sj± 1

2
. The surface area of the quadrilateral Di,j

is

|Di,j | =
1

2

∣∣∣(yi− 1
2
,j− 1

2
− yi+ 1

2
,j+ 1

2
)(xi− 1

2
,j+ 1

2
− xi+ 1

2
,j− 1

2
)

+ (yi+ 1
2
,j− 1

2
− yi− 1

2
,j+ 1

2
)(xi− 1

2
,j− 1

2
− xi+ 1

2
,j+ 1

2
)
∣∣∣.

Since |Di,j | > 0, we define the cell average of the state vector Qi,j in the cell (i, j) by

Qi,j = |Di,j |−1
∫
Di,j

Q dV. (5.11)

With U := n1u+ n2v, V := m1u+m2v, we can write equations (5.8) as

∂

∂t
Qi,j = −

∫
S
i+1

2

F̂ dS −
∫
S
i− 1

2

F̂ dS +

∫
S
j+1

2

Ĝ dS −
∫
S
j− 1

2

Ĝ dS

 , (5.12)

where

Q =


ρ
ρu
ρv
E

 , F̂ =


ρU

ρUu+ n1p
ρUv + n2p
(p+ E)U

 , Ĝ =


ρV

ρV u+m1p
ρV u+m2p
(p+ E)V

 . (5.13)

Evaluating the line integrals in (5.12) with the midpoint rule, we get

∂

∂t
|Di,j |Qi,j = −

(
F̂i+ 1

2
,j − F̂i− 1

2
,j + Ĝi,j+ 1

2
− Ĝi,j− 1

2

)
. (5.14)

In the computational space, all standard numerical methods can be used to calculate
the value of the numerical flux functions F̂ and Ĝ since the computational space is
equidistant and Cartesian. In particular, both the finite difference and the finite volume
WENO scheme as described in Algorithms 1 and 2 can be applied to solve (5.14). The
specific form of the algorithms for curvilinear coordinates can be found in Algorithms 5
and 6.

The advantage of the weak derivation, besides that it does not require M to be differ-
entiable, is that one gets formulae for all metric terms occurring in the transformation
process. The Jacobian of the transformation is given by the area of the corresponding
quadrilateral and therefore is positive by definition. The mapping function is not re-
quired to fulfil any smoothness properties. We therefore prefer to define our mapping
function in this way.

96

5 Curvilinear Grids

Algorithm 5 Finite difference scheme for curvilinear coordinates.

1: Qi,j is given as point value at the cell centre.
2: A(f̂)i,j = F̂i,j = n1|i,jFi,j + n2|i,jGi,j ,

A(ĝ)i,j = Ĝi,j = m1|i,jFi,j +m2|i,jGi,j

3: f̂i± 1
2
,j = Rξ

(
F̂i,j

)
, ĝi,j± 1

2
= Rη

(
Ĝi,j

)
4:

∂Qi,j

∂t = − 1
δξ

(
f̂i+ 1

2
,j − f̂i− 1

2
,j

)
− 1

δη

(
ĝi,j+ 1

2
− ĝi,j− 1

2

)
Algorithm 6 Finite volume scheme for curvilinear coordinates.

1: Qi,j = Qi,j is given as cell average.

2: Qi± 1
2
,j = Rξ

(
Qi,j

)
, Qi,j± 1

2
= Rη

(
Qi,j

)
3: F̂i± 1

2
,j = n1|i± 1

2
,jF
(
Qi± 1

2
,j

)
+ n2|i± 1

2
,jG

(
Qi± 1

2
,j

)
,

Ĝi,j± 1
2

= m1|i,j± 1
2
F
(
Qi,j± 1

2

)
+m2|i,j± 1

2
G
(
Qi,j± 1

2

)
4:

∂Qi,j

∂t = − 1
δξ

(
F̂i+ 1

2
,j − F̂i− 1

2
,j

)
− 1

δη

(
Ĝi,j+ 1

2
− Ĝi,j− 1

2

)

We note that similar formulae exist for the three-dimensional case. The precise for-
mulation can be found, e.g., in section 5.6 and in Visbal and Gaitonde (2002).

5.3 Parabolic Terms

We call terms in time-dependent partial differential equations like (2.1) containing second
derivatives parabolic terms. In contrast, the Euler equations (3.74) do not contain any
parabolic terms. A precise definition of the term in two dimensions is given in the
following

Definition 7. In terms of Evans (2002, p. 350), a partial differential equation in two
space dimensions of the form

∂u

∂t
− b11

∂2u

∂ξ2
− 2b12

∂2u

∂ξ∂η
− b22

∂2u

∂η2
= 0 (5.15)

is parabolic if there exists a constant α > 0 such that

b11ζ
2
1 + 2b12ζ1ζ2 + b22ζ

2
2 ≥ α |ζ| (5.16)

for each ζ = (ζ1, ζ2)T ∈ R2.

As a starting point, we consider the one-dimensional diffusion equation

∂φ

∂t
−D∂

2φ

∂x2
=
∂φ

∂t
−D ∂

∂x

(
∂φ

∂x

)
= 0 (5.17)

97

5 Curvilinear Grids

with the constant coefficient of diffusion D. In one spatial dimension and on an equidis-
tant Cartesian grid, the equation can be discretised with fourth order accuracy by the
method described in Happenhofer et al. (2013) and in section 3.2.1. Therein, the outer
derivative is approximated by

∂

∂x

(
∂φ

∂x

)
(xi) =

∂φ
∂x

(
xi+ 1

2

)
− ∂φ

∂x

(
xi− 1

2

)
δx

(5.18)

with constant grid spacing δx. Then, the inner derivative is calculated by

∂φ

∂x

(
xi− 1

2

)
=
φi−2 − 15φi−1 + 15φi − φi+1

12 δx
, (5.19)

leading to a fourth-order accurate approximation both in the finite volume and the finite
difference context. Here, φi = φ (xi).

Similar procedures can be applied to any parabolic term, in particular the viscous
stress tensor in the Navier–Stokes equations (2.1). Special care has to be taken for mixed
derivatives. In the two-dimensional case, neglecting all but the ∇ · τ term in (2.1), we
arrive at

∂

∂t
(µx) =

∂

∂x

((
ζ +

4

3
η

)
∂u

∂x
+

(
ζ − 2

3
η

)
∂v

∂y

)
+

∂

∂y

(
η

(
∂u

∂x
+
∂v

∂y

))
(5.20)

by virtue of equations (2.1) and (2.2). Both in the finite volume and in the finite
difference approach, the outer derivatives are replaced by a finite difference, evaluating
the inner function at the half-integer nodes. Therefore, we need the terms inside the
spatial derivatives in (5.20) at (i − 1

2 , j) and at (i, j − 1
2). ∂u

∂x at (i − 1
2 , j) and ∂v

∂y at

(i, j − 1
2) can be calculated directly by formula (5.19). Then, the coefficient functions

must be interpolated to the half-integer grid. To fourth order accuracy,

ηi− 1
2
,j =

−ηi−2,j + 7ηi−1,j + 7ηi,j − ηi+1,j

12
, (5.21)

assuming that the variable is given as a cell average. To calculate ∂v
∂y at the half integer

index, we calculate the derivative at the cell centre by

∂v

∂y
|i,j =

vi,j−2 − 8vi,j−1 + 8vi,j+1 − vi,j+2

12 δy
, (5.22)

and then interpolate the result to
(
i− 1

2 , j
)

according to formula (5.21). The resulting
procedure is fourth-order accurate.

5.3.1 Numerical Experiments

We demonstrate the accuracy of the scheme by solving the diffusion equation with mixed
terms

98

5 Curvilinear Grids

∂φ

∂t
−D

(
∂2φ

∂x2
+ cmix

∂2φ

∂x∂y
+
∂2φ

∂y2

)
= 0 (5.23)

on a Cartesian grid. With the initial condition

φ(x, y, t = 0) = 2 + sin (π (2x+ y)) , (5.24)

the analytical solution on [0, 2]2 is given by

φ(x, y, t) = 2 + exp
(
−(5 + 2cmix)π2Dt

)
sin (π (2x+ y)) . (5.25)

The parameter cmix regulates the strength of the mixed term in (5.23). With cmix = 0,
the mixed term disappears and we arrive at the classical diffusion equation. We write
the equation in the conservative formulation

∂φ

∂t
+
∂F

∂x
+
∂G

∂y
= 0 (5.26)

by defining the flux functions

F = −D
(
∂φ

∂x
+
cmix

2

∂φ

∂y

)
, G = −D

(
∂φ

∂y
+
cmix

2

∂φ

∂x

)
. (5.27)

To calculate the first derivative in the flux functions F and G, we can directly apply
the formula (5.19), whereas we have to use (5.22) and (5.21) to calculate the mixed terms
at the half-integer grid. Writing DXB for the application of formula (5.19), DXC for (5.22),
and INTX for (5.21) in x direction and corresponding expressions for the y direction,

Fi− 1
2
,j = −D

(
DXB(φ) +

cmix

2
INTX(DYC(φ))

)
, (5.28a)

Gi,j− 1
2

= −D
(
DYB(φ) +

cmix

2
INTY(DXC(φ))

)
. (5.28b)

If the coefficients D and cmix were spatially varying, we would have to interpolate
them by formula (5.21) to the boundary grid as well.

From Figure 5.1 we deduce that even for large values of cmix, the scheme proves to
be fourth order accurate, even though the error constants slightly increase. Only for
cmix = 8 corresponding to a situation where the mixed derivative strongly dominates
the equation, the simulation gets unstable. In this case, the equation is not parabolic
any more (p. 142, Strikwerda, 1989), and we cannot except a stable solution from our
scheme. For all stable cases, the empirical values of the error constant C are given in
Table 5.1. In all of these simulations, the Courant number was fixed to 0.1 and the
diffusion coefficient D was 10−3.

5.3.2 Transformation to Curvilinear Coordinates

In this section, we consider the two-dimensional diffusion equation without mixed terms

99

5 Curvilinear Grids

 1e-10

 1e-07

 0.0001

 0.1

 0.001 0.01 0.1 1

e
rr

o
r

grid spacing

cmix=0

cmix=0.02

cmix=0.2

cmix=2

cmix=8

quadratic

quartic

Figure 5.1: Empirical order of accuracy of the ANTARES scheme for diffusive terms
when solving equation (5.23) with different values of cmix. All simulations
use the TVD2 Runge–Kutta scheme (Shu and Osher, 1988) for temporal
discretisation, and a fixed Courant number of 0.1. Grey lines indicate second
and fourth order convergence, respectively.

100

5 Curvilinear Grids

cmix = 0 cmix = 0.02 cmix = 0.2 cmix = 2.0
δx p C p C p C p C

0.286 3.735 8.53e0 3.733 8.69e0 3.725 1.01e1 3.815 2.19e1
0.133 3.885 1.16e1 3.885 1.18e1 3.885 1.39e1 3.924 2.73e1
0.065 3.948 1.37e1 3.948 1.40e1 3.949 1.66e1 3.968 3.08e1
0.032 3.975 1.51e1 3.975 1.54e1 3.977 1.83e1 3.991 3.34e1
0.016 3.988 1.59e1 3.988 1.63e1 3.989 1.92e1 3.997 3.42e1

Table 5.1: Empirical order of accuracy p and error constants C for the numerical solution
of (5.23) in dependence of the strength of the mixed derivatives. We observe
that the order of accuracy is about 4 in all cases, but the error constant for
cmix is more than twice as large for cmix = 2.0 than without mixed terms.
cmix is a borderline case for the parabolic nature of (5.23). Strictly speaking,
(5.23) is parabolic only if |cmix| < 2.

∂φ

∂t
−D

(
∂2φ

∂x2
+
∂2φ

∂y2

)
= 0 (5.29)

on a general structured grid. We assume that a mapping function M is given which
maps the physical space in a Cartesian equidistant computational space. There, we can
apply the standard procedure from section 5.3 for a Cartesian grid to the transformed
equation.

Writing F = −D ∂φ
∂x and G = −D ∂φ

∂y , (5.29) can be transformed to the “conservation
law”

∂φ

∂t
+
∂F

∂x
+
∂G

∂y
= 0. (5.30)

Similar to what was done in sections 5.1 and 5.2, by applying the chain rule of differen-
tiation, this equation can be brought into strong conservation form in the computational
space under the assumption that M is in H1. As before, we write ξ and η for the inde-

pendent variables in computational space, and J−1 =
∣∣∣∂(x,y)
∂(ξ,η)

∣∣∣ for the inverse Jacobian of

the transformation M . With the transformed fluxes

F̂ =
∂y

∂η
F − ∂x

∂η
G, Ĝ = −∂y

∂ξ
F +

∂x

∂ξ
G, (5.31)

the diffusion equation (5.29) transforms to

∂J−1φ

∂t
+
∂F̂

∂ξ
+
∂Ĝ

∂η
= 0. (5.32)

But the fluxes F̂ and Ĝ still contain x and y derivatives. In the following, we write

101

5 Curvilinear Grids

n1 :=
∂y

∂η
, n2 := −∂x

∂η
, m1 := −∂y

∂ξ
, m2 :=

∂x

∂ξ
, (5.33)

and calculate the inverse Jacobian J−1 by

J−1 :=

∣∣∣∣∂(x, y)

∂(ξ, η)

∣∣∣∣ = n1m2 − n2m1. (5.34)

The relations

∂ξ

∂x
J−1 = n1,

∂η

∂x
J−1 = m1,

∂ξ

∂y
J−1 = n2,

∂η

∂y
J−1 = m2 (5.35)

are direct consequences of these definitions. With the chain rule,

FJ−1 = −D∂φ
∂x
J−1 = −D

(
n1
∂φ

∂ξ
+m1

∂φ

∂η

)
, (5.36a)

GJ−1 = −D∂φ
∂y
J−1 = −D

(
n2
∂φ

∂ξ
+m2

∂φ

∂η

)
. (5.36b)

assuming again that M is at least in H1. Therefore, the transformed fluxes F̂ and Ĝ
can be written as

F̂ = n1F + n2G = −DJ
((
n2

1 + n2
2

) ∂φ
∂ξ

+ (n1m1 + n2m2)
∂φ

∂η

)
, (5.37a)

Ĝ = m1F +m2G = −DJ
(

(n1m1 + n2m2)
∂φ

∂ξ
+
(
m2

1 +m2
2

) ∂φ
∂η

)
. (5.37b)

Even though we started with the classical diffusion equation (5.29) without any mixed
terms, the transformed equation, where all x and y derivatives have been replaced by
ξ and η derivatives, has a more complicated form, containing coefficient functions and
mixed derivatives.

We check if the equation is still parabolic in terms of definition 7. Definition 7 is
equivalent to the requirement that

A =

(
b11 b12

b12 b22

)
(5.38)

has only positive eigenvalues. The eigenvalues of A are given by

λ1,2 =
b11 + b22

2
±

√(
b11 + b22

2

)2

+
(
b212 − b11b22

)
. (5.39)

Therefore, the above differential equation is parabolic if (p. 142, Strikwerda, 1989)

102

5 Curvilinear Grids

b11, b22 > 0 and b212 < b11b22. (5.40)

In our case (dropping the positive factor DJ in front of all terms),

b11 = n2
1 + n2

2 > 0, b12 = n1m1 +m2n2, b22 = m2
1 +m2

2 > 0. (5.41)

We calculate

b11b22 − b212 =
(

(n1m1)2 + (n1m2)2 + (n2m1)2 + (n2m2)2
)

−
(

(n1m1)2 + 2n1n2m1m2 + (n2m2)2
)

= (n1m2 − n2m1)2 =
(
J−1

)2
> 0,

since J−1 > 0. Therefore, we showed that the conditions (5.40) are fulfilled. The
transformed equation is parabolic again.

The transformed equation (5.32) with the flux functions defined by (5.37) can be
discretised in the computational space. Since the grid in the computational space is
equidistant and Cartesian, we can apply the methods from section 5.3 to solve the
equation there.

Following Calhoun et al. (2008), we discretise equation (5.32) in space in the finite
volume setting by

∂J−1φ

∂t
= −

(
F̂i+ 1

2
,j − F̂i− 1

2
,j + Ĝi,j+ 1

2
− Ĝi,j− 1

2

)
. (5.42)

The fluxes are calculated by

F̂i± 1
2
,j == −DJi± 1

2
,j

(∣∣∣Si± 1
2

∣∣∣2 ∂φ
∂ξ
|i± 1

2
,j + Ti± 1

2

∂φ

∂η
|i± 1

2
,j

)
, (5.43a)

Ĝi,j± 1
2

== −DJi,j± 1
2

(
Tj± 1

2

∂φ

∂ξ
|i,j± 1

2
+
∣∣∣Sj± 1

2

∣∣∣2 ∂φ
∂η
|i,j± 1

2

)
. (5.43b)

with the cell surfaces Si± 1
2

and Sj± 1
2

as defined in equations (5.9), and Ti± 1
2

and Tj± 1
2

defined by

Ti± 1
2

= (n1m1 + n2m2) |i± 1
2
,j , Tj± 1

2
= (n1m1 + n2m2) |i,j± 1

2
. (5.44)

We note that compared to the terms needed for hyperbolic equations, additional metric
terms must be stored, i.e. Ji± 1

2
,j , Ji,j± 1

2
, Ti± 1

2
and Tj± 1

2
. They should not be obtained

by interpolation, but be calculated using the mapping function M itself (cf. p. 118 in
Thompson et al., 1985). For the discretisation of the derivates contained in F̂i± 1

2
,j and

Ĝi,j± 1
2
, Calhoun et al. (2008) used second order finite differences and interpolations, i.e.

103

5 Curvilinear Grids

∂φ

∂ξ
|i+ 1

2
,j ≈ φi+1,j − φi,j , (5.45a)

∂φ

∂η
|i+ 1

2
,j ≈

φi+ 1
2
,j+1 − φi+ 1

2
,j−1

2
≈ φi,j+1 + φi+1,j+1

4
− φi,j−1 + φi+1,j−1

4
, (5.45b)

∂φ

∂ξ
|i,j+ 1

2
≈
φi+1,j+ 1

2
− φi−1,j+ 1

2

2
≈ φi+1,j + φi+1,j+1

4
− φi−1,j + φi−1,j+1

4
, (5.45c)

∂φ

∂η
|i,j+ 1

2
≈ φi,j+1 − φi,j . (5.45d)

Alternatively, one can use combinations of (5.19), (5.21) and (5.22) to obtain higher
order approximations.

In general, for all kinds of partial differential equations, one can either discretise the
transformed equations in computational space, or one can discretise in the physical space
(Calhoun et al., 2008). It may depend on the application at hand which way is the more
accurate and stable one (e.g., Happenhofer, 2013).

5.3.3 WENO–type Scheme to Calculate Derivatives

In the following, we present an alternative approach to calculate derivatives on a one-
dimensional equidistant grid. It relies on the WENO idea to use several interpolation
polynomials in the neighbourhood of the point where the derivative should be calculated.
This approach can be used in the numerical solution of parabolic terms as an alternative
to the method from Happenhofer et al. (2013), or to calculate the metric derivatives ∂x

∂ξ ,
∂y
∂η , ∂x

∂η and ∂y
∂ξ .

Problem 4 (Numerical Differentiation). Given the point values of a function φ on an
equidistant grid {ξi, i = 1, . . . , n}, calculate the derivative φ′(ξi).

Remark 1. Problem 4 can be formulated in a much more general way, but we only need
it in the special case stated here. See Shu (2001) for a more general treatment.

Remark 2. We assume in the following that the variable φ is given by point values.
Alternatively, it could be given by cell averages as well. The algorithmic changes are then
similar to the differences between the WENO interpolation and reconstruction scheme,
as they are described in paragraphs 4.2.2 and 3.1.2, respectively.

The basic idea of this approach is outlined in Shu (2001). On the stencil S1 =
{ξi−2, ξi−1, ξi}, a unique approximation of φ′(ξi) can be obtained by differentiating the
third order interpolation polynomial to φ on S1. This yields the approximation

φ′1(ξi) =
1

2
(φi−2 − 4φi−1 + 3φi) . (5.46)

Analogously for S2 = {ξi−1, ξi, ξi+1}

104

5 Curvilinear Grids

φ′2(ξi) =
1

2
(−φi−1 + φi+1) , (5.47)

and for S3 = {ξi, ξi+1, ξi+2}

φ′3(ξi) =
1

2
(−3φi + 4φi+1 − φi+2) . (5.48)

Comparison with the fourth order interpolation polynomial,

φ′(ξi) =
1

12
(φi−2 − 8φi−1 + 8φi+1 − φi+2) , (5.49)

gives the linear weights d1, d2 and d3 via

φ′(ξi) = d1φ
′
1(ξi) + d2φ

′
2(ξi) + d3φ

′
3(ξi). (5.50)

We calculate

d1 =
1

6
, d2 =

2

3
and d3 =

1

6
. (5.51)

As in the procedure described in section 4.2.2, these linear weights are replaced by
nonlinear ones measuring the smoothness of the interpolation polynomial. According to
Shu (2001), we set

βj = (δξ)3

∫ ξ
i− 1

2

ξ
i− 1

2

(
d2

dξ2
φ(ξ)

)2

dξ (5.52)

which for ξ = ξi leads to

β1 =φ2
i−2 − 4φi−2φi−1 + 4φ2

i−1 + 2φi−2φi − 4φi−1φi + φ2
i , (5.53)

β2 =φ2
i−1 − 4φi−1φi + 4φ2

i + 2φi−1φi+1 − 4φiφi+1 + φ2
i+1, (5.54)

β3 =φ2
i − 4φiφi+1 + 4φ2

i+1 + 2φiφi+2 − 4φi+1φi+2 + φ2
i+2. (5.55)

The final numerical approximation for φ′(ξi) is then obtained via

φ′(ξi) = ω1φ
′
1(ξi) + ω2φ

′
2(ξi) + ω3φ

′
3(ξi), (5.56)

with

ωj =
ω̃j

ω̃1 + ω̃2 + ω̃3
, ω̃j =

dj
(ε+ βj)2

. (5.57)

Usually ε is set to 10−6.

105

5 Curvilinear Grids

Derivatives at the Half-Integer Nodes

We can extend this procedure to calculate derivatives at the half-integer nodes.

Problem 5 (Numerical Differentiation at the Half-Integer Nodes). Given the point val-
ues of a function φ on an equidistant grid {ξi, i = 1, . . . , n}, calculate the derivative
φ′(ξi+ 1

2
).

The finite difference approximation to φ′(ξi+ 1
2
) is

to second order: φ′(ξi+ 1
2
) =

1

δξ
(−φi + φi+1) , (5.58)

to fourth order: φ′(ξi+ 1
2
) =

1

24 δξ
(φi−1 − 27φi + 27φi+1 − φi+2) . (5.59)

In the WENO context, this problem can be handled in a similar way as Problem 4.
First we consider only the two stencils S1 = {ξi−1, ξi, ξi+1} and S2 = {ξi, ξi+1, ξi+2}. But
for both stencils,

φ′1/2(ξi+ 1
2
) = −φi + φi+1. (5.60)

Therefore, this approach is equivalent to using central differences of second order.
If the two stencils S0 = {ξi−2, ξi−1, ξi} and S3 = {ξi+1, ξi+2, ξi+3} are added, we get

the additional polynomials

φ′0(ξi+ 1
2
) =φi−2 − 3φi−1 + 2φi, (5.61)

φ′3(ξi+ 1
2
) =− 2φi+1 + 3φi+2 − φi+3. (5.62)

On the large stencil

S = {ξi−2, ξi−1, ξi, ξi+1, ξi+2, ξi+3}, (5.63)

the numerical derivative is

φ′(ξi+ 1
2
) =
−9φi−2 + 125φi−1 − 2250φi + 2250φi+1 − 125φi+2 + 9φi+3

1920
. (5.64)

But the linear weights cannot be deduced from comparison with the interpolation
polynomial on S since ξi−1 and ξi+2 are not used in φ′1,2(ξi+ 1

2
).

If we consider stencils of width four, we get three interpolation polynomials on the sten-
cils S1 = {ξi−2, ξi−1, ξi, ξi+1}, S2 = {ξi−1, ξi, ξi+1, ξi+2} and S3 = {ξi, ξi+1, ξi+2, ξi+3}.
These are

106

5 Curvilinear Grids

φ′1(ξi+ 1
2
) =

φi−2 − 3φi−1 − 21φi + 23φi+1

24
, (5.65)

φ′2(ξi+ 1
2
) =

φi−1 − 27φi + 27φi+1 − φi+2

24
, (5.66)

φ′3(ξi+ 1
2
) =
−23φi + 21φi+1 + 3φi+2 − φi+3

24
. (5.67)

From the numerical approximation on the broad stencil

S = {ξi−2, ξi−1, ξi, ξi+1, ξi+2, ξi+3} (5.68)

we deduce the linear weights

d1 = d3 =
3

16
, d2 =

5

8
. (5.69)

The smoothness indicators are defined by

βj =

3∑
l=2

(δξ)2l−1

∫ ξ
i− 1

2

ξ
i− 1

2

(
dl

dξl
φ(ξ)

)2

dξ. (5.70)

We calculate

β1 =
1

12

(
13φ2

i−2 − 78φi−2φi−1 + 129φ2
i−1 + 78φi−2φi − 282φi−1φi

+165φ2
i − 26φi−2φi+1 + 102φi−1φi+1 − 126φiφi+1 + 25φ2

i+1

)
,

(5.71)

β2 =
1

12

(
25φ2

i−1 − 126φi−1φi + 165φ2
i + 102φi−1φi+1 − 282φiφi+1

+129φ2
i+1 − 26φi−1φi+2 + 78φiφi+2 − 78φi+1φi+2 + 13φ2

i+2

)
,

(5.72)

β3 =
1

12

(
61φ2

i − 318φiφi+1 + 417φ2
i+1 + 270φiφi+2 − 714φi+1φi+2

+309φ2
i+2 − 74φiφi+3 + 198φi+1φi+3 − 174φi+2φi+3 + 25φ2

i+3

)
.

(5.73)

This approach has the advantage of yielding non-oscillatory results near discontinu-
ities, whereas the finite difference formulae (5.59) will produce overshoot. In the nu-
merical simulations in this thesis, however, the procedure by Happenhofer et al. (2013)
is used for discretisation of parabolic terms. If all coefficient functions are sufficiently
smooth, the analytical solution of parabolic equations is smooth even if the initial data is
non-smooth (Evans, 2002), and therefore high-order finite difference approaches without
any limiting procedure are a suitable method to integrate these terms. For calculating
the metric derivatives, the formulae (5.81) should be used, as we will demonstrate in
section 5.4.

107

5 Curvilinear Grids

5.4 Numerical Consequences

When implementing curvilinear coordinates in an existing code written for Cartesian
coordinates, the accuracy and stability of the numerical scheme can be deteriorated if
the implementation is not done suitably. We show the theoretical background for some
of these problems in the following, and illustrate them by numerical data in the next
section.

5.4.1 The Freestream Problem

Nonomura et al. (2010) and Colella et al. (2011) emphasize the importance of the fol-
lowing, seemingly simple, test problem.

Problem 6 (Freestream preservation for the Euler equations). Given the initial condi-
tions

(ρ, ρu, ρv, E) = (ρ0, 0, 0, e0) , (5.74)

with constant density ρ0 and internal energy e0, the numerical solution of the transformed
system (5.4) should stay close to the analytical solution

(ρ, ρu, ρv, E) = (ρ0, 0, 0, e0) (5.75)

for all times. p0 = p(ρ0, e0) is the pressure given by the equation of state.

Plugging these initial conditions into the transformed Euler equations (5.4), we get

0 = p0

(
∂n1

∂ξ
+
∂m1

∂η

)
, 0 = p0

(
∂n2

∂ξ
+
∂m2

∂η

)
, (5.76)

since ∂
∂t (ρu) = ∂

∂t (ρv) = 0. This condition must be fulfilled numerically in order to
prevent numerical errors. Since

n1 =
∂y

∂η
, n2 = −∂x

∂η
,m1 = −∂y

∂ξ
,m2 =

∂x

∂ξ
, (5.77)

this is equivalent to the requirement that the second derivatives of the mapping func-
tion M are symmetric. Every function which is twice (weakly) differentiable fulfils this
property (i.e. all mapping functions for which the strong derivation in section 5.1 holds,
definitely do so as well).

Finite volume and finite difference discretisation

Next, we investigate if the freestream is preserved by the finite difference and the finite
volume discretisation of the Euler equations. The WENO finite difference scheme as
summarised in Algorithm 5 corresponds to the scheme WENO-G in Nonomura et al. (2010).
In the cited reference, they describe precisely why the finite difference scheme does
not fulfil the freestream preservation property. The fluxes F̂ and Ĝ are reconstructed

108

5 Curvilinear Grids

directly from their value at the cell centre, including the metric terms evaluated at the
cell centre. These fluxes are not constant for the freestream initial conditions. The
reconstructed fluxes at the cell boundary will not be constant, too, and be different on
any cell boundary. Therefore, they will not cancel out, and steadily, a numerical error
is introduced.

We note that Nonomura et al. (2010) introduced the WENO-C scheme as a different
WENO finite difference scheme which fulfils the freestream property by calculating ∂Q

∂t
via

∂Q

∂t
=
∂ξ

∂x

∂F

∂ξ
+
∂η

∂x

∂F

∂η
+
∂ξ

∂y

∂G

∂ξ
+
∂η

∂y

∂G

∂η
. (5.78)

We did not consider this scheme here since it is not conservative and its computational
costs are three times higher than WENO-G in three dimensions, making the scheme useless
for our purposes.

On the contrary, for the WENO finite volume scheme as summarised in Algorithm 6,
the state vector Q is reconstructed at the cell boundaries from its cell averages. There-
fore, for Problem 6 the reconstruction process will yield constant approximations for the
state vector at the cell interface, i.e.

Qi± 1
2
,j = Qi,j± 1

2
= (ρ0, 0, 0, e0)T . (5.79)

In the update step (5.14), only the metric terms will be non-constant. In precise terms,
the conditions

n1|i+ 1
2
,j − n1|i− 1

2
,j

δξ
+
m1|i,j+ 1

2
−m1|i,j− 1

2

δη
= 0, (5.80a)

n2|i+ 1
2
,j − n2|i− 1

2
,j

δξ
+
m2|i,j+ 1

2
−m2|i,j− 1

2

δη
= 0, (5.80b)

are equivalent to preserving the freestream. If the metric terms are calculated, as de-
scribed in section 5.2, by

n1|i± 1
2
,j =

∂y

∂η
|i± 1

2
,j =

yi± 1
2
,j+ 1

2
− yi± 1

2
,j− 1

2

δη
, (5.81a)

n2|i± 1
2
,j =− ∂x

∂η
|i± 1

2
,j = −

xi± 1
2
,j+ 1

2
− xi± 1

2
,j− 1

2

δη
, (5.81b)

m1|i,j± 1
2

=− ∂y

∂ξ
|i,j± 1

2
= −

yi+ 1
2
,j± 1

2
− yi− 1

2
,j± 1

2

δξ
, (5.81c)

m2|i,j± 1
2

=
∂x

∂ξ
|i,j± 1

2
=
xi+ 1

2
,j± 1

2
− xi− 1

2
,j± 1

2

δξ
, (5.81d)

109

5 Curvilinear Grids

conditions (5.80) are fulfilled exactly and the freestream will be preserved numerically.
We note that the freestream is never preserved in general if analytical expressions, if

available, for the metric terms are used (p. 118, Thompson et al., 1985).
We remark that even though conditions (5.81) look like second-order approximations,

they are rather analytical requirements which must be fulfilled by the discretisation
of the metric terms in order to preserve the freestream. They are a consequence of
the conservative discretisation of the derivatives in equations (3.74). As described in
section 3.1, the discrete formulations of the Euler equations as in (3.7) and (3.10) are
analytically equivalent to the continuous one in equation (3.3).

For trivial mapping functions such as M : [−1, 1]2 → [−1, 1]2, M(ξ, η) = (ξ, η)T with
∂y
∂η = ∂x

∂ξ = const, ∂y∂ξ = ∂x
∂η = 0, freestream preservation is of course possible even for the

finite difference scheme WENO-G.
We conclude that the mapped grid technique should be used only with the WENO

finite volume scheme and with the metric terms calculated by (5.80). Non-preservation
of the freestream leads to inacceptable errors, as we will demonstrate in the following
section. The WENO finite difference scheme cannot preserve the freestream and be
conservative at the same time.

Dimensionally Split Time Integration

In Colella and Woodward (1984) and section 3.3, the PPM algorithm to solve the one-
dimensional Euler equations, as it is implemented in the finite volume code Prometheus
(Müller et al., 1991), is described. In theren, the PPM algorithm is used to reconstruct
the input for an exact Riemann solver from the given cell averages. The time integration
is second order accurate. To extend this method to higher dimensions, Warming and
Beam (1976) suggested the second-order split scheme

Q(n+2) = LξLηLηLξQ
(n), (5.82)

written here for the two-dimensional case. Lξ means application of the PPM scheme in
ξ direction, and Lη application in η direction.

As described in section 3.3, the resulting algorithm is very stable and accurate on
Cartesian grids. Unsplit schemes where all information in all directions is updated
simultaneously are less stable or more complicated, as the CTU scheme from Colella
(1990). In the curvilinear framework, however, the split scheme leads to violation of the
the freestream initial condition as defined in Problem 6. To preserve the freestream, exact
cancellation of the metric terms as in equation (5.80) is required. This can be achieved
by discretising the metric terms by equations (5.81) and simultaneously updating all
fluxes as described in the above paragraph.

When the fluxes are updated consecutively, applying Lξ to Q̂0 will produce numerical
fluxes F̂i+ 1

2
,j of the form

110

5 Curvilinear Grids

F̂i+ 1
2
,j ≈

 0
n1|i+ 1

2
,j,kp0

n2|i+ 1
2
,j,kp0

 . (5.83)

With these fluxes, Q̂? defined by

Q̂?
i,j = LξQ̂0|i,j = Q̂0|i,j −

δt

Ωi,j

(
F̂i+ 1

2
,j − F̂i− 1

2
,j

)
(5.84)

where Ωi,j = J−1
i,j is the cell volume, will not be constant unless n1 and n2 are constant.

When Lη is applied to Q̂?, the consistency relation is violated since the pressure is not
constant anymore.

We therefore refrain from using the split time integration schemes from Warming
and Beam (1976) in the curvilinear framework. Instead, we look for unsplit schemes
where freestream preservation can be achieved simply by using equations (5.81) for
discretisation of the metric derivatives. Any Runge–Kutta scheme fulfils this property
as described in the previous paragraph. For the CTU scheme as outlined in section 3.3,
more changes are necessary as we will show in the following.

We check the changes for curvilinear coordinates in the two-dimensional CTU scheme
as described in Colella (1990). The CTU algorithm is a predictor–corrector scheme.
As in the Cartesian case, the values at the new time step for the curvilinear Euler
equations (5.4) in two dimensions are obtained by

Q
(n+1)
i,j = Q

(n)
i,j −

δt

J

(
F̂

(n+ 1
2

)

i+ 1
2
,j
− F̂

(n+ 1
2

)

i− 1
2
,j

)
− δt

J

(
Ĝ

(n+ 1
2

)

i,j+ 1
2

− Ĝ
(n+ 1

2
)

i,j− 1
2

)
, (5.85)

with the predictions Q
(n+ 1

2
)

i± 1
2
,j

and Q
(n+ 1

2
)

i,j± 1
2

at an intermediate time level. The construction

of the predictive variables starts with the extrapolation formula

Q
(n+ 1

2
)

i± 1
2
,j

= Q
(n)
i,j ±

δξ

2

∂Q

∂ξ
+
δt

2

∂Q

∂t
, (5.86)

analogously to equation (3.78). From the definition of the curvilinear Euler equations,
we get

∂Q

∂t
=− J−1

(
∂F̂

∂ξ
+
∂Ĝ

∂η

)
, (5.87)

∂F̂

∂ξ
=
∂ (n1F + n2G)

∂ξ
=
∂n1

∂ξ
F + n1

∂F

∂ξ
+
∂n2

∂ξ
G + n2

∂G

∂ξ
. (5.88)

With the chain rule,

∂F

∂ξ
=
∂F

∂Q

∂Q

∂ξ
,
∂G

∂ξ
=
∂G

∂Q

∂Q

∂ξ
. (5.89)

111

5 Curvilinear Grids

Introducing

Aξ = n1
∂F

∂Q
+ n2

∂G

∂Q
, (5.90)

the equation (5.86) transforms to

Q
(n+ 1

2
)

i± 1
2
,j

= Q
(n)
i,j +

(
±1

2
− δt

2J
Aξ

)
∂Q

∂ξ
− δt

2J

(
∂n1

∂ξ
F +

∂n2

∂ξ
G +

∂Ĝ

∂η

)
, (5.91)

analogously to equation (3.81). In Colella (1990), all terms on the right-hand side
of (5.91) are evaluated at the cell centre. In our implementation, we use the result of the

Riemann solver with input Q
(n)
i,j for the term Q

(n)
i,j +

(
±1

2 −
δt
2JAξ

) ∂Q
∂ξ . All other terms

are evaluated at the cell centre, at (i, j) for the left states and at (i+ 1, j) for the right
states.

The terms ∂n1
∂ξ F and ∂n2

∂ξ G are 0 for Cartesian grids. They are needed to fulfil the con-
sistency requirement (5.80). In the CTU algorithm and its three-dimensional extension
from Gardiner and Stone (2008), they must be added as source terms C in step (3.83)
to the corrected states in conservation form:

cξ = − δt

2J−1

(
n1|i+ 1

2
,j,k − n1|i− 1

2
,j,k

)
,

cη = − δt

2J−1

(
n2|i+ 1

2
,j,k − n2|i− 1

2
,j,k

)
,

cζ = − δt

2J−1

(
n3|i+ 1

2
,j,k − n3|i− 1

2
,j,k

)
,

(5.92)

Cξ,i,j,k,ρ = cξρi,j,kui,j,k

+ cηρi,j,kvi,j,k + cζρi,j,kwi,j,k,

Cξ,i,j,k,ρu = cξρi,j,k (ρi,j,kui,j,kui,j,k + pi,j,k)

+ cηρi,j,kρi,j,kui,j,kvi,j,k + cζρi,j,kρi,j,kui,j,kwi,j,k,

Cξ,i,j,k,ρv = cξρi,j,kρi,j,kvi,j,kui,j,k

+ cηρi,j,k (ρi,j,kvi,j,kvi,j,k + pi,j,k) + cζρi,j,kρi,j,kvi,j,kwi,j,k,

Cξ,i,j,k,ρw = cξρi,j,kρi,j,kwi,j,kui,j,k

+ cηρi,j,kρi,j,kwi,j,kvi,j,k + cζρi,j,k (ρi,j,kwi,j,kwi,j,k + pi,j,k) ,

Cξ,i,j,k,E = cξui,j,k (Ei,j,k + pi,j,k)

+ cηvi,j,k (Ei,j,k + pi,j,k) + cζwi,j,k (Ei,j,k + pi,j,k) .

(5.93)

For the right states, the source terms are evaluated at i + 1. Analogous expressions
hold for the other directions. We note that cξ, cη and cζ are 0 for Cartesian coordinates.
Apart from that, the CTU algorithm as described in section 3.3 can be applied directly

112

5 Curvilinear Grids

to the curvilinear equations (5.4) by replacing x and y by ξ and η.
Concerning the implementation, the CTU scheme requires much more memory than

the split scheme. In the split scheme, the only multidimensional arrays needed are
the ones containing the conserved or primitive variables. For any unsplit scheme, the
numerical flux in each direction must be stored in a separate array for the update step
as step (3.85) in the CTU scheme. This results in 3 · nconserved additional 3D arrays,
where nconserved is the number of conserved quantities. This can be reduced to nconserved

arrays by adding up the fluxes after each directional sweep.
If the state vectors calculated in (3.82) are saved for the reuse in (3.83), 2 ·nconserved ·3

additional 3D arrays are needed. Since this is certainly too much, the state vectors
Q?
L,x,i+ 1

2
,j,k

must be recalculated in (3.83) increasing the computational requirements.

Then, the flux arrays used to store the fluxes calculated in (3.82) cannot be overwritten
since steps (3.83) and (3.84) are executed simultaneously.

At the boundaries, for the leftmost left state and the rightmost right state, the
transversal fluxes needed in step (3.83) are not available (see Figure 5.2). For most
boundary conditions, the fluxes from the neighbouring cell can be used instead.

nx nx+1

Figure 5.2: Schematic view of the outermost grid cell called nx. For the prediction of the
states in the CTU scheme, the transversal fluxes at nx+1 are needed. For all
boundary conditions where the transversal velocities in the boundary layers
are obtained by constant extrapolation, the transversal corrections for the
states at the interface between nx and nx+1 can therefore be obtained by
using the values for the outermost grid cell nx.

The intermediate update from step (3.83) should be applied to the conservative state
variables. In the state vector S?

L,x,i+ 1
2
,j,k

, only the primitive variables 1/ρ, u, v, w and

113

5 Curvilinear Grids

p are stored. They have to be converted to ρ, ρu, ρv, ρw and E at the beginning, and
back to the primitive form at the end of the update.

For the Riemann solver, the velocity vector u given in Cartesian components u, v and
w must be transformed to normal and two tangential components uN , uT and uTT in the
local coordinate system on the cell surface (Colella and Woodward, 1984; Colella, 1990).
The local coordinate system in three dimensions is defined by the vector n = (n1, n2, n3)T

resp. m = (m1,m2,m3)T or o = (o1, o2, o3)T. The precise form of these vectors in three
dimensions can be found in section 5.6. In the following, we only consider rotation in
the coordinate system defined by n.

According to Wongwathanarat (2013), the rotation is given by composition of two
rotations around the η and ζ axis. Their rotation matrices are given by

Rζ (φ) =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 , (5.94a)

Rη

(
−(
π

2
− θ)

)
=

 sin θ 0 cos θ
0 1 0

− cos θ 0 sin θ

 . (5.94b)

The angles φ and θ can be obtained by

sin θ =
√
n2

1 + n2
2, cos θ = n3, sinφ =

n2√
n2

1 + n2
2

, cosφ =
n1√
n2

1 + n2
2

. (5.95)

Finally,

 uN
uT
uTT

 =


n1 n2 n3

− n2√
n2
1+n2

2

n1√
n2
1+n2

2

0

− n1n3√
n2
1+n2

2

− n2n3√
n2
1+n2

2

√
n2

1 + n2
2


 u

v
w

 . (5.96)

This is a rotation matrix since its determinant is 1 and the inverse is given by the
transpose. Note that in two dimensions, n3 = 0 and the transformation is given by uN

uT
uTT

 =

 n1 n2 0
−n2 n1 0

0 0 1

 u
v
w

 . (5.97)

5.5 Numerical Results

In the following, we illustrate the theoretical results from the preceeding sections by
numerical simulations. First, we introduce several mapping functions.

114

5 Curvilinear Grids

5.5.1 Mapping Functions

There is no strongly differentiable function (a diffeomorphism) from the (unit) sphere to
the (unit) square since the square is not a submanifold of R2. Therefore, if we want to
use the mapped grid technique to perform simulations on spherical domains, we have to
rely on mapping functions which are only weakly differentiable.

For the mapped grid technique, Calhoun et al. (2008) gave some examples of mapping
functions which map a circular domain to [−1, 1]2 and vice versa. In this section, we
want to investigate how the mapping functions M1 and M2 from Calhoun et al. (2008)
defined by

M1 : [−1, 1]2 → Ω, x = R · max (|ξ| , |η|) ξ√
ξ2 + η2

, (5.98a)

y = R · max (|ξ| , |η|) η√
ξ2 + η2

, (5.98b)

M2 : [−1, 1]2 → Ω, w = max (|ξ| , |η|)2 , (5.98c)

x = w · xM1 + (1− w) · Rξ√
2
, (5.98d)

y = w · yM1 + (1− w) · Rη√
2
, (5.98e)

where xM1 and yM1 are the physical coordinates defined by M1, and

Ω = {(x, y) ∈ R2 :
√
x2 + y2 ≤ R}, (5.99)

perform in numerical simulations when WENO schemes and the PPM scheme with
several time integration methods are employed.

It is obvious to see that these functions are only weakly differentiable. Therefore, they
should be applied only in the context of the methods developed in section 5.2.

Besides the mapping functions M1 and M2, we use the mapping functions

M3 : [−1, 1]2 → Ω,
x = −R+ 2R · (ξ + 0.1 sin (2πξ) sin (2πη)) ,

y = −R+ 2R · (η + 0.1 sin (2πξ) sin (2πη)) ,
(5.100)

M4 : [−1, 1]2 → Ω,
x = −R+ 2R · ξ,
y = −R+ 2R · η,

(5.101)

where Ω = [−R,R]2. M3 was used in Colella et al. (2011) to test the order of accuracy
of their scheme since it is a smooth function, whereas M4 gives a Cartesian grid. We
will call a grid “smooth” if the mapping function defining this grid is smooth.

Remark 3. We note that a polar grid is a special case of a mapped grid via the mapping
function

115

5 Curvilinear Grids

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

y

Figure 5.3: Grid defined by function M1 from Calhoun et al. (2008).

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

y

Figure 5.4: Grid defined by function M2 from Calhoun et al. (2008).

116

5 Curvilinear Grids

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 5.5: Grid defined by function M3 from Colella et al. (2011).

Mpolar [0, 1]2 → Ω,
x = R0 +Rξ cos (2πη) ,

y = R0 +Rξ sin (2πη) ,
(5.102)

where R0 is the radius of the innermost grid cell. R0 = 0 leads to “degenerate” cells at
the centre, i.e. cells which have one side with length 0. The difference to the classical
polar grid is that the velocity vector is not given in the radial and the angular components,
but still in the Cartesian ones. This has the advantage that geometrical source terms as
in Mundprecht et al. (2013) are avoided. Instead, the transformed equations are in the
strong conservation form (5.4).

5.5.2 ANTARES

All simulations in this subsection are performed with the code ANTARES (Muthsam
et al., 2010a) using explicit time integration schemes and Marquina flux splitting (Donat
and Marquina, 1996). If not stated otherwise, the Runge–Kutta scheme employed in
the simulations is SSP RK(3,2), a second-order Runge–Kutta scheme with three stages
(Kraaijevanger, 1991; Kupka et al., 2012). In all simulations, the ideal gas equation
is used, and the Courant number is fixed to 0.1. The WENO finite difference scheme
corresponds to the method WENO-G in Nonomura et al. (2010).

Gresho Vortex

The specific setup of the Gresho Vortex used in this paragraph is described in Happen-
hofer et al. (2013) and Miczek (2013). We repeat the definition here for convenience.

117

5 Curvilinear Grids

ρ = 1, (5.103a)

p0 =
ρ

γMa2
ref

, (5.103b)

uφ =


5r, 0 ≤ r < 0.2,

2− 5r, 0.2 ≤ r < 0.4,

0, 0.4 ≤ r,
(5.103c)

p =


p0 + 25

2 r
2, 0 ≤ r < 0.2,

p0 + 25
2 r

2 + 4(1− 5r − ln 0.2 + ln r), 0.2 ≤ r < 0.4,

p0 − 2 + 4 ln 2, 0.4 ≤ r.
(5.103d)

r =
√
x2 + y2 is the distance from the origin and uφ the angular velocity in terms of

the polar angle φ = atan2(y, x). Note that the difference to the setup as it is described
in Liska and Wendroff (2003) is the introduction of a reference Mach number Maref . The
pressure p is scaled such that the reference Mach number is the maximum Mach number
of the resulting flow.

We performed a simulation with Maref = 0.1 and γ = 5
3 over a time interval of 2 s

corresponding to approximately 1.5 rotations of the vortex. The size of the domain is
1 cm in each direction, and we use 100× 100 grid points. The analytical solution is pure
angular rotation of the vortex. The results on the four grids defined by the mapping
functions M1, M2, M3 and M4 are shown in Figure 5.6 for the finite difference scheme
and in Figure 5.7 for the finite volume scheme.

With the non-smooth mapping functions M1 and M2, the results with the finite dif-
ference scheme are catastrophic, whereas with the finite volume scheme, the difference
to the solution on the Cartesian grid is small. It is obvious that the problems come from
the grid points where the mapping functions are not smooth. But even with the smooth
mapping function M3, the symmetry of the vortex is destroyed with the finite difference
scheme, whereas there is no visible difference to the Cartesian solution with the finite
volume scheme.

The Mach number Maref = 0.1 of this test is rather low for an explicit time integration
scheme, but Happenhofer et al. (2013) showed that the WENO scheme with Runge–
Kutta time integration yields reliable results in this regime. As shown in Figure 5.8,
the deformations due to the grid get smaller with higher Mach numbers, but in any
case, the results with the finite volume scheme are more accurate. On the other hand,
this explains why applying the mapped grid technique to the WENO finite difference
scheme in Shu (2003) worked properly: the mapping function were smooth, and the
Mach number in the numerical tests was always larger than 1.

We conclude that the WENO finite difference scheme should only be used in com-
bination with the mapped grid technique if the mapping function is smooth and if the
Mach number of the simulation is high. The reason for the bad performance lies in
the violation of the preservation of the freestream. The finite volume scheme, however,

118

5 Curvilinear Grids

x [cm]

y
 [
c
m

]

−0.5 0 0.5

−0.5

0

0.5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

x [cm]

y
 [
c
m

]

−0.5 0 0.5

−0.5

0

0.5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

x [cm]

y
 [
c
m

]

−0.5 0 0.5

−0.5

0

0.5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

x [cm]
y
 [
c
m

]

−0.5 0 0.5

−0.5

0

0.5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Figure 5.6: Mach number in the Gresho vortex test after 2 s with the WENO finite
difference scheme. The initial Mach number was 0.1. In all figures, the
results of the simulation with M1 are shown in the top left panel, with M2 in
the top right, with M3 in the bottom left and with M4 in the bottom right
panel.

119

5 Curvilinear Grids

x [cm]

y
 [
c
m

]

−0.5 0 0.5

−0.5

0

0.5

x [cm]

y
 [
c
m

]

−0.5 0 0.5

−0.5

0

0.5

x [cm]

y
 [
c
m

]

−0.5 0 0.5

−0.5

0

0.5

x [cm]

y
 [
c
m

]

−0.5 0 0.5

−0.5

0

0.5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Figure 5.7: Mach number in the Gresho vortex test after 2 s with the WENO finite
volume scheme. The initial Mach number was 0.1.

120

5 Curvilinear Grids

x [cm]

y
 [
c
m

]

−0.5 0 0.5

−0.5

0

0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

x [cm]

y
 [
c
m

]

−0.5 0 0.5

−0.5

0

0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

x [cm]

y
 [
c
m

]

−0.5 0 0.5

−0.5

0

0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

x [cm]

y
 [
c
m

]

−0.5 0 0.5

−0.5

0

0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 5.8: Mach number in the Gresho vortex test after 2 s with the WENO finite
difference scheme with initial Mach number of 0.5.

yields accurate results even on non-smooth grids and in low Mach number tests.

Sod Shock Tube

With the Sod Shock Tube (Sod, 1978) we test the performance of our schemes in the
high Mach number regime. The computational domain is [−0, 5, 0.5]2 and γ = 1.4. In
each direction, we use 100 grid points. The inital shock position is at 0.2 in x direction.

Even in this setup where the Mach number is rather high, the WENO finite difference
scheme performs badly with the non-smooth mapping functions M1 and M2 as we can
see in Figure 5.9. With M1, the simulation crashed after 0.09 s because of negative
densities. At the diagonals, numerical artifacts occur even without any flow present at
this position as a consequence of the violation of the freestream preservation.

121

5 Curvilinear Grids

x [cm]

y
 [
c
m

]

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x [cm]

y
 [
c
m

]

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x [cm]

y
 [
c
m

]

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x [cm]

y
 [
c
m

]

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.9: Density in the Sod Shocktube Test after 0.22 s with the WENO finite differ-
ence scheme. M1 (top left panel) after 0.09 s. In the outermost three layers,
outflow boundary conditions are set.

122

5 Curvilinear Grids

x [cm]

y
 [
c
m

]

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

x [cm]

y
 [
c
m

]

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

x [cm]

y
 [
c
m

]

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

x [cm]

y
 [
c
m

]

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.10: Density in the Sod Shocktube Test after 0.22 s with the WENO finite volume
scheme. In the outermost three layers, outflow boundary conditions are set.

123

5 Curvilinear Grids

grid M1 M2 M3 M4

spacing error order error order error order error order

6.25e-1 7.74e-3 1.39e-3 2.77e-3 7.74e-4
3.13e-1 5.89e-3 0.392 1.31e-3 0.088 4.76e-4 2.539 1.23e-4 2.652
1.56e-1 3.83e-3 0.621 9.29e-4 0.492 7.01e-5 2.764 1.05e-5 3.548
7.81e-2 2.95e-3 0.380 8.03e-4 0.209 1.20e-5 2.546 5.46e-7 4.270
3.91e-2 1.98e-3 0.572 5.43e-4 0.566 2.83e-6 2.087 7.21e-8 2.919

Table 5.2: Mean L1 error sizes and order of accuracy for the finite difference scheme.

From Figure 5.10 we deduce that the simulations with the finite volume scheme do
not show any anomalies. On the smooth grids, the results from the two schemes are
very similar.

Nonlinear Advection

Zhang et al. (2011) and Kifonidis and Müller (2012) suggested a non-linear flow example
to test the order of accuracy of a scheme. They showed that a smooth linear flow is not
a suitable test case to test the accuracy of a finite volume method, because for a linear
initial condition, the integration in equation (3.14) is exact, and the overall order of the
method is not restricted. They suggested to instead use the non-linear initial conditions

ρmean = 1, umean = 1, vmean = 1, pmean = 1, (5.104a)

with the perturbations of the velocities u and v, the temperature T ∼ p/ρ, and the
entropy S ∼ p/ρ1.4 defined by

(δu, δv) =
ε

2π
e0.5(1−r2)(−y, x), δT = −(γ − 1)ε2

8γπ2
e1−r2 , δS = 0. (5.104b)

The computational domain is [0, 10]2, (x, y) = (x−5, y−5), r2 = x2 +y2, γ = 1.4 and
the vortex strength ε is 5. The analytical solution is passive convection of the vortex
with the mean flow. For the explicit time integration, we used the third-order TVD3
scheme (Shu and Osher, 1988) in this test.

In Figures 5.11 and 5.12, the error of the WENO finite difference and the finite vol-
ume scheme for the nonlinear advection problem are shown. The error is measured
by comparing the numerical solution after 0.2 s to the analytical one in the L1 norm.
We conclude that for the Cartesian and the smooth grid defined by the mapping func-
tions M4 and M3, both schemes show comparable error sizes. The empirical order of
convergence is between two and three for M3 and higher than three for M4 in both cases.

For the non-smooth mapping functions M1 and M2, the error does not decrease sig-
nificantly for the finite difference scheme, whereas first- to second-order convergence can
be observed with the finite volume scheme.

124

5 Curvilinear Grids

 1e-08

 1e-06

 0.0001

 0.01

 0.01 0.1 1

L
1
 e

rr
o
r

grid spacing [cm]

M1
M2
M3
M4

quadratic

Figure 5.11: Order of accuracy of the WENO finite difference scheme for the nonlinear
advection problem measured in the L1 norm. The grey line indicates second-
order convergence.

 1e-08

 1e-06

 0.0001

 0.01

 0.01 0.1 1

L
1
 e

rr
o
r

grid spacing [cm]

M1
M2
M3
M4

quadratic

Figure 5.12: Order of accuracy of the WENO finite volume scheme for the nonlinear
advection problem measured in the L1 norm. The grey line indicates second-
order convergence.

125

5 Curvilinear Grids

grid M1 M2 M3 M4

spacing error order error order error order error order

6.25e-1 2.00e-3 6.20e-4 1.74e-3 8.46e-4
3.13e-1 6.40e-4 1.643 1.27e-4 2.283 2.64e-4 2.717 1.04e-4 3.018
1.56e-1 2.26e-4 1.498 2.73e-5 2.222 3.37e-5 2.970 8.40e-6 3.635
7.81e-2 7.06e-5 1.681 7.32e-6 1.900 6.53e-6 2.369 7.53e-7 3.480
3.91e-2 1.93e-5 1.869 1.97e-6 1.894 1.63e-6 1.998 1.64e-7 2.201

Table 5.3: Mean L1 error sizes and order of accuracy for the finite volume scheme.

In the finite volume case, we expect second-order convergence for all mappings due to
the second-order integration formula used to obtain equation (5.14). Consequently, we
observe second-order convergence for all grids at least asymptotically for high resolution
in Table 5.3. For low resolutions, the numerical solution exhibits third-order convergence
indicating that the temporal error dominates in this regime. We note that the Courant
number is 0.1 in all of our tests minimising the error due to the time integration scheme.
We conclude that the absolute magnitude of the spatial error strongly depends on the
mapping function, whereas the convergence order is restricted by the integration rule
used to convert equation (5.12) into (5.14). To obtain a higher than second order accurate
scheme, high-order integration formulae must be used (Casper and Atkins, 1993; Zhang
et al., 2011).

On Cartesian grids, the finite difference algorithm is superior compared to the finite
volume algorithm. As expected, the scheme is at least third order accurate for all
resolutions whereas the finite volume scheme shows second-order convergence for high
resolutions. For the smooth mapping M3, Visbal and Gaitonde (2002) showed that the
violation of the freestream preservation leads to large errors which dominate the overall
error and decrease the convergence speed. With the non-smooth functions M1 and M2,
this error is particularly large at the diagonals as we can observe for the Gresho vortex
in Figure 5.6. This error does hardly decrease with grid spacing and leads to the slow
convergence found in the data from Table 5.2. We can explain this slow convergence
by the fact that in the finite difference approach, the fluxes F̂ and Ĝ are reconstructed.
But these fluxes are non-smooth themselves since they contain the non-smooth metric
terms. Therefore, the reconstruction process is only of low order, too.

This test demonstrates once more that the WENO finite difference scheme should
only be combined with the mapped grid technique if the mapping function is smooth.
With the finite volume scheme, the simulation converges also on non-smooth grids, but
at a much slower rate than on smooth grids. With both algorithms, the “smoother”
function M2 yields more accurate results than M1. We conclude that also the finite
volume scheme performs better the smoother the grid is. Therefore, non-smooth grids
should only be used if absolutely necessary.

For coarse resolutions, the results of M2 with the finite volume scheme are better than
the results with M1, but also with the smooth mapping M3. They are even comparable

126

5 Curvilinear Grids

with the Cartesian mapping M4. In astrophysical applications where the grid resolution
usually is very coarse, grids like the one defined by M2 combined with the WENO
finite volume algorithm may well yield sufficiently accurate results. These grids are an
acceptable alternative, if a non-smooth grid is needed by the problem geometry.

5.5.3 Prometheus

We compare the accuracy and efficiency of the Prometheus code with the split second-
order time integration scheme by Warming and Beam (1976), the unsplit version where
all fluxes are updated simultaneously (being equivalent to the first-order Euler forward
method), and the second-order accurate unsplit CTU scheme (Colella, 1990). The code
version with the CTU time integration uses the changes by Colella and Sekora (2008)
whereas the other two code versions use the PPM scheme as it is described in Colella
and Woodward (1984), but the differences are rather small in most cases.

As test problems, we select the nonlinear advection test from Zhang et al. (2011), the
Taylor–Sedov test as in Wongwathanarat et al. (2010) and the moving Gresho vortex
from Liska and Wendroff (2003).

Nonlinear Advection

The setup of the nonlinear advection test from Zhang et al. (2011) is described above.
The resulting error decay plots with Prometheus can be seen in Figure 5.13. We ob-
serve second-order convergence for the split and the CTU scheme on the Cartesian grid,
whereas the unsplit scheme is first order accurate at most. For high resolutions, the re-
sults with the unsplit scheme show oscillatory behaviour leading to an increase in mean
error. The error size can be decreased by decreasing the Courant number which is 0.9
in these tests. Our tests indicate that the split and the CTU scheme yield stable results
of similar accuracy. Both can be run with σ = 0.9 without any problems. Nevertheless,
the computational costs of CTU are about twice as high as the ones of the split scheme,
and its memory requirements are higher, too.

We also test the accuracy of the curvilinear extension of the CTU scheme. We use
the mapping M2 and σ = 0.9 in this paragraph. The empirical error decay as observed
from Figure 5.13 is second order, too. We note that the size of the error cannot be
compared directly. Even though it is a mean error per grid point, the total size of the
domain is different to the simulation on Cartesian grids, but the size of the vortex is the
same. This will result in different mean errors even if the accuracy of the scheme were
the same. The convergence rate, on the other side, is not affected by this.

Taylor–Sedov Explosion

We test the curvilinear extension of the CTU scheme on the Taylor–Sedov explosion
as described in Wongwathanarat et al. (2010). The initial setup is a spherical shock
propagating radially. As centre of the explosion, we choose (7.0×1019 cm, 2.5×1019 cm)
on a computational domain with side length 3 × 1020 cm centred at the origin. The

127

5 Curvilinear Grids

 1e-05

 0.001

 0.1 1

L
1
 e

rr
o
r

grid spacing [cm]

split scheme on M4, σ=0.9
unsplit scheme on M4, σ=0.9

CTU scheme on M4, σ=0.9
CTU scheme on M2, σ=0.9

quadratic

Figure 5.13: Order of accuracy of the PPM scheme with several time integration methods
for the nonlinear advection problem measured in the L1 norm. The grey
line indicates second-order convergence.

results of the simulation with M1, M2, M4 and the polar grid defined by Mpolar after
2.34 × 1011 s are shown in Figure 5.14. The yellow circle indicates the position of the
shock front according to the analytical solution assuming cylindrical symmetry.1 We use
100 grid points in each direction.

We observe that the position of the shock is correct for each grid, but there are
asymmetries introduced by the grid structure and insufficient resolution. Since the
explosion centre is not in the centre of the grid, a huge amount of grid cells would be
needed to keep the spherical shape of the initial explosion. From Table 5.4 we deduce
that the cell volume ratio rV defined as the quotient of the smallest and the largest cell
volume of grids M1 and M2 is much larger than for Mpolar, allowing much larger time
steps. Nevertheless, the accuracy of the numerical solution is the same on the three
grids. The mean L1 error is smallest on the Cartesian grid partly due to the fact that
the domain size is larger by nearly 25 %. The additional parts of the domain do not
contribute any relevant information, in particular no error, and therefore decrease the
mean error.

In conclusion, the curvilinear extension of the CTU scheme yields stable and rea-
sonably accurate results for this test case. The advantage of the curvilinear approach
with the mapping function Mpolar compared to classical polar and spherical coordinate
systems is that no geometrical source terms are introduced, and linear momentum is

1We thank Annop Wongwathanarat for supplying the IDL script calculating the analytical solution of
the Taylor–Sedov problem

128

5 Curvilinear Grids

grid rV
domain size mean L1 error over time [s]

[cm] 3.4e10 8.4e10 1.34e11 1.84e11 2.34e11

M1 5.05e-1 7.07e40 7.20e6 1.08e7 1.29e7 1.47e7 1.61e7
M2 3.21e-1 7.07e40 7.18e6 1.07e7 1.28e7 1.46e7 1.61e7
M4 1.0 9.00e40 5.56e6 8.35e6 9.91e6 1.13e7 1.24e7

Mpolar 3.84e-2 7.13e40 7.12e6 1.07e7 1.27e7 1.43e7 1.58e7

Table 5.4: Maximum cell volume ratio, domain size, and mean L1 error over time for
each of the grids considered in the Taylor–Sedov example. The cell aspect
ratio rV is defined as the ratio of the smallest to the largest cell volume. The
mean L1 error was obtained by calculating the differences in radial velocity
ur =

√
u2 + v2 of the numerical solution compared to the analytical one in

the L1 norm, and then dividing by the domain size.

conserved to machine precision. With the grids M1 and M2, we are able to circumvent
the grid singularity at r = 0.

Moving Gresho

The moving Gresho vortex results from adding a mean flow in x direction to the sta-
tionary vortex as defined above. The mean flow is (u, v) = (1, 0) and the computational
domain [0, 4]× [0, 1].

We run the simulation on 160 × 40 grid points for 3 s with a Courant factor σ = 0.9
on a Cartesian grid. The analytical solution is advection of the rotating vortex with the
mean flow. In Figure 5.15, we show the vorticity ω = ∇ ·u at the end of the simulation.
We see that the symmetry of the vortex is lost in all cases. Nevertheless, the result with
the CTU scheme is closest to the analytical solution. The result with the unsplit scheme
is worst, whereas with the split integration, the magnitude of the vorticity is correct,
but the vortex is deformed considerably. We note that the results for PPM in Liska and
Wendroff (2003) look similar. There, they used the split time integration scheme.

On the top of each panel in Figure 5.15, we show the end time of the simulation in
seconds, the kinetic energy scaled by the initial kinetic energy, and the maximum Mach
number of the flow at the end of the simulation. The initial Mach number is about 0.65.
We expect Mach number and total kinetic energy of the simulation to stay unchanged
since the problem consists only of advective motions and rotation. Also in this respect,
the CTU scheme gives the results closest to the analytical solution, whereas the unsplit
scheme is worst.

Similar conclusions can be drawn when looking at the angular velocity in Figure 5.16.
The results with the CTU scheme are superior to the ones with the split and even more
with the unsplit time integration. In all cases, the symmetry of the vortex gets lost.

Next, we investigate the Mach number dependence of the results. In Figure 5.17, the
angular velocity of three simulations after a simulation time of 2.5 s is shown where we
modified the reference Mach number Maref of the rotation of the vortex. The mean flow

129

5 Curvilinear Grids

x [cm]

y
 [
c
m

]

−1 −0.5 0 0.5 1

x 10
20

−1

−0.5

0

0.5

1

x 10
20

1

2

3

4

5

6

7

8

x 10
7

x [cm]
y
 [
c
m

]

−1 −0.5 0 0.5 1

x 10
20

−1

−0.5

0

0.5

1

x 10
20

1

2

3

4

5

6

7

8

x 10
7

x [cm]

y
 [
c
m

]

−1 −0.5 0 0.5 1

x 10
20

−1

−0.5

0

0.5

1

x 10
20

1

2

3

4

5

6

7

8

x 10
7

x [cm]

y
 [
c
m

]

−1 −0.5 0 0.5 1

x 10
20

−1

−0.5

0

0.5

1

x 10
20

1

2

3

4

5

6

7

8

x 10
7

Figure 5.14: Numerical solution of the Taylor–Sedov explosion 2.34×1011 s after the ex-
plosion with the Prometheus code and CTU time integration. The Courant
number is 0.9. Color scale according to radial velocity ur =

√
u2 + v2. The

yellow circle indicates the position of the exact solution (assuming cylin-
drical symmetry). The initial setup is as in Wongwathanarat et al. (2010).
From top left to bottom right: grid M4, polar grid as defined by Mpolar,
grid M1 and grid M2. The inner circle of the polar grid is at 5.0× 1018 cm.
The horizontal line is due to visualisation.

130

5 Curvilinear Grids

x [cm]

y
 [
c
m

]

SPLIT: time 3.0004 s, kinetic energy 1.0054, Mach number 0.55044

0.5 1 1.5 2 2.5 3 3.5

0.2

0.4

0.6

0.8

−4

−2

0

2

4

6

8

10

x [cm]

y
 [
c
m

]

UNSPLIT: time 2.9992 s, kinetic energy 0.97146, Mach number 0.45456

0.5 1 1.5 2 2.5 3 3.5

0.2

0.4

0.6

0.8

x [cm]

y
 [
c
m

]

CTU: time 2.9975 s, kinetic energy 1.0012, Mach number 0.59234

0.5 1 1.5 2 2.5 3 3.5

0.2

0.4

0.6

0.8

Figure 5.15: Magnitude of the vorticity of the moving Gresho vortex. The yellow circles
indicate the exact position of the vortex as it is advected with the mean
flow. From top to bottom: results with split, unsplit and CTU scheme.
On the top of each panel, the relative kinetic energy scaled by the initial
kinetic energy, and the maximum Mach number of the flow at the end of
the simulation are given.

131

5 Curvilinear Grids

x [cm]

y
 [
c
m

]

SPLIT: time 3.0004 s, kinetic energy 1.0054, Mach number 0.55044

0.5 1 1.5 2 2.5 3 3.5

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x [cm]

y
 [
c
m

]

UNSPLIT: time 2.9992 s, kinetic energy 0.97146, Mach number 0.45456

0.5 1 1.5 2 2.5 3 3.5

0.2

0.4

0.6

0.8

x [cm]

y
 [
c
m

]

CTU: time 2.9975 s, kinetic energy 1.0012, Mach number 0.59234

0.5 1 1.5 2 2.5 3 3.5

0.2

0.4

0.6

0.8

Figure 5.16: Angular velocity of the moving Gresho vortex on the Cartesian grid defined
by M4. The yellow circles indicate the exact position of the vortex. From
top to bottom: results with split, unsplit and CTU scheme. On the top of
each panel, the relative kinetic energy scaled by the initial kinetic energy,
and the maximum Mach number of the flow at the end of the simulation
are given.

132

5 Curvilinear Grids

is the same in all cases. All simulations are done with the CTU scheme and σ = 0.9.
We observe that the strength of the deformation increases when the Mach number gets
lower. Also the damping in terms of kinetic energy and magnitude of the angular velocity
increases. This is similar to what was observed in Happenhofer et al. (2013) for the
WENO5 finite difference scheme, even though the results with PPM look slightly better.

Next, we calculate the moving Gresho test on the curvilinear grids defined by the
mapping functions M1, M2 and M3. Therefore, we have to change the computational
domain to the circle K = {(x, y) ∈ R2 :

√
(x− 2)2 + (y − 2)2 ≤ 2} resp. the square

[0, 4]2 in the case of M3. The number of grid points is reset to 160 in both directions.
In the Figures 5.18, 5.19 and 5.20, the angular velocity in the region 1.5 ≤ y ≤ 2.5 is
shown for the grids M1, M2 and M3, respectively.

We observe that the result with the split scheme is catastrophic on all grids. The
vortex is destroyed completely and instead, high artificial velocities at the diagonals
occur where the mapping function is not differentiable. This is a result of the violation
of the freestream preservation property due to the split time integration. In contrast,
with the unsplit and the CTU scheme, the vortex is preserved. Clearly, the result with
the CTU scheme is the most accurate one, also in terms of damping of kinetic energy.

The results for the mapping M3 are similar, but the accuracy with all schemes is worse.
Also with the unsplit and the CTU schemes, the vortex is deformed considerably. By
lowering the Courant number, we obtain much better results, as shown in Figure 5.21
for the CTU scheme. With σ = 0.9, the symmetry of the vortex is destroyed completely,
whereas with σ = 0.1 the solution looks quite accurate. This proves that the accuracy
and the stability of the curvilinear CTU scheme is worse than its Cartesian version. The
behaviour is strongly influenced by the mapping function used. Even though M3 is a
smooth grid in the sense that the mapping function is strongly differentiable, it varies
quite rapidly from cell to cell. We suspect that this is the reason for the instability and
bad accuracy of the method in this case.

Nevertheless, for reasonably low Mach numbers, the curvilinear CTU scheme works
well for σ = 0.9 and the mapping functions M1 and M2 for the moving Gresho vortex
test. For M3, the results are much worse due to the fast cell–to–cell variation of the grid.

5.5.4 A Direct Comparison

We compare the accuracy and efficiency of the finite volume variant of ANTARES and
Prometheus with the CTU scheme for the Gaussian initial condition

r =

√
(x− 0.5)2 + (y − 0.25)2, ρ(x, y) =

{
1 + exp (−16r) , r < 0.5,

1, else,
(5.105)

advected with the mean flow u = 1 and v = 0.5. Furthermore, p = 1 and γ = 5
3 . We solve

the Euler equations on [−1, 1] with periodic boundary conditions using the mappings
M3 and M4 on five grids with 10, 20, 40, 80 and 160 grid points in each direction.

133

5 Curvilinear Grids

x [cm]

y
 [
c
m

]

Ma=0.35: time 2.506 s, kinetic energy 0.99934, Mach number 0.61321

0.5 1 1.5 2 2.5 3 3.5

0.2

0.4

0.6

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x [cm]

y
 [
c
m

]

Ma=0.10: time 2.5028 s, kinetic energy 0.99804, Mach number 0.18288

0.5 1 1.5 2 2.5 3 3.5

0.2

0.4

0.6

0.8

x [cm]

y
 [
c
m

]

Ma=0.01: time 2.5002 s, kinetic energy 0.98835, Mach number 0.016419

0.5 1 1.5 2 2.5 3 3.5

0.2

0.4

0.6

0.8

Figure 5.17: Angular velocity of the moving Gresho vortex in dependence of the Mach
number. The yellow circles indicate the exact position of the vortex. In each
panel, a different value for the Mach number of the rotation was chosen,
whereas the mean flow was always set to (u, v) = (1, 0). From top to
bottom: Maref = 0.35, Maref = 0.1 and Maref = 0.01. All simulations are
done with the CTU scheme. On the top of each panel, the relative kinetic
energy scaled by the initial kinetic energy, and the maximum Mach number
of the flow (taking both rotation and mean flow into account) at the end of
the simulation are given.

134

5 Curvilinear Grids

x [cm]

y
 [
c
m

]

SPLIT: time 2.9987 s, kinetic energy 0.90212, Mach number 0.73379

0.5 1 1.5 2 2.5 3 3.5
1.5

2

2.5

x [cm]

y
 [
c
m

]

UNSPLIT: time 2.9993 s, kinetic energy 0.99625, Mach number 0.47193

0.5 1 1.5 2 2.5 3 3.5
1.5

2

2.5

x [cm]

y
 [
c
m

]

CTU: time 3 s, kinetic energy 1.0007, Mach number 0.58608

0.5 1 1.5 2 2.5 3 3.5
1.5

2

2.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5.18: Angular velocity of the moving Gresho vortex on the curvilinear grid defined
by M1. Only the region 1.5 ≤ y ≤ 2.5 is shown. The yellow circles indicate
the exact position of the vortex. From top to bottom: results with split,
unsplit and CTU scheme. On the top of each panel, the relative kinetic
energy scaled by the initial kinetic energy, and the maximum Mach number
of the flow at the end of the simulation are given.

135

5 Curvilinear Grids

x [cm]

y
 [

c
m

]

SPLIT: time 3.0022 s, kinetic energy 0.96797, Mach number 0.73187

0.5 1 1.5 2 2.5 3 3.5
1.5

2

2.5

x [cm]

y
 [

c
m

]

UNSPLIT: time 3.001 s, kinetic energy 0.99533, Mach number 0.4818

0.5 1 1.5 2 2.5 3 3.5
1.5

2

2.5

x [cm]

y
 [

c
m

]

CTU: time 2.9986 s, kinetic energy 0.99945, Mach number 0.59237

0.5 1 1.5 2 2.5 3 3.5
1.5

2

2.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5.19: Angular velocity of the moving Gresho vortex on the curvilinear grid defined
by M2. Only the region 1.5 ≤ y ≤ 2.5 is shown. The yellow circles indicate
the exact position of the vortex. From top to bottom: results with split,
unsplit and CTU scheme. On the top of each panel, the relative kinetic
energy scaled by the initial kinetic energy, and the maximum Mach number
of the flow at the end of the simulation are given.

136

5 Curvilinear Grids

x [cm]

y
 [
c
m

]

SPLIT: time 1.5049 s, kinetic energy 1.0493, Mach number 1.7038

0.5 1 1.5 2 2.5 3 3.5
1.5

2

2.5

x [cm]

y
 [
c
m

]

UNSPLIT: time 1.502 s, kinetic energy 0.98961, Mach number 0.52218

0.5 1 1.5 2 2.5 3 3.5
1.5

2

2.5

x [cm]

y
 [
c
m

]

CTU: time 1.5022 s, kinetic energy 1.0185, Mach number 0.65105

0.5 1 1.5 2 2.5 3 3.5
1.5

2

2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.20: Angular velocity of the moving Gresho vortex on the curvilinear grid defined
by M3. Only the region 1.5 ≤ y ≤ 2.5 is shown. The yellow circles indicate
the exact position of the vortex. From top to bottom: results with split,
unsplit and CTU scheme. On the top of each panel, the relative kinetic
energy scaled by the initial kinetic energy, and the maximum Mach number
of the flow at the end of the simulation are given.

137

5 Curvilinear Grids

x [cm]

y
 [
c
m

]

C=0.90: time 1.5022 s, kinetic energy 1.0185, Mach number 0.65105

0.5 1 1.5 2 2.5 3 3.5
1.5

2

2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x [cm]

y
 [
c
m

]

C=0.45: time 1.5011 s, kinetic energy 1.0107, Mach number 0.70482

0.5 1 1.5 2 2.5 3 3.5
1.5

2

2.5

x [cm]

y
 [
c
m

]

C=0.10: time 1.5002 s, kinetic energy 1.007, Mach number 0.63964

0.5 1 1.5 2 2.5 3 3.5
1.5

2

2.5

Figure 5.21: Angular velocity of the moving Gresho vortex on the curvilinear grid defined
by M3. Only the region 1.5 ≤ y ≤ 2.5 is shown. The yellow circles indicate
the exact position of the vortex. From top to bottom: results with σ = 0.9,
0.45 and 0.1. On the top of each panel, the relative kinetic energy scaled
by the initial kinetic energy, and the maximum Mach number of the flow
at the end of the simulation are given.

138

5 Curvilinear Grids

We compare the error size of the L1 norm and the maximum value of density after
2 s for both codes in Figure 5.22. For ANTARES, we use the SSP RK(3,2) Runge–
Kutta scheme with σ = 0.5, whereas we set σ = 0.8 for the CTU scheme used in
Prometheus. We observe that ANTARES is more accurate on both grids, especially for
high resolutions.

 1e-05

 0.001

 0.1

 0.01 0.1

L
1
 e

rr
o
r

1/N

M3, Antares

M3, Prometheus

M4, ANTARES

M4, Prometheus

linear

quadratic
 1

 1.25

 1.5

 1.75

 2

 2.25

 0.01 0.1
m

a
x
im

u
m

 d
e
n
s
it
y
 [
g
 c

m
-3

]
1/N

M3, Antares

M3, Prometheus

M4, Antares

M4, Prometheus

Figure 5.22: Error decay (left) and maximum density after 2 s (right) for the Gaussian
test (5.105) with the ANTARES and the Prometheus code on the grids
defined by M3 and M4. N is the number of grid points in each direction.
On the left, the grey lines indicate first- and second-order convergence. On
the right, the grey line indicates the maximum density of the analytical
solution.

In Table 5.5, we compare the computational costs. The wall-clock times of ANTARES
are much higher than for Prometheus even though the number of time steps is quite
similar. We conclude that each integration step with ANTARES takes much longer than
with Prometheus, but also yields more accurate results. However, we refrain from taking
the precise numbers too seriously, since they depend on the compiler, the processor and
many other factors as well.

ANTARES Prometheus
M3 M4 M3 M4

N steps time steps time steps time steps time

40 690 0:10 227 00:03 544 00:07 236 00:03
80 1440 1:20 464 00:27 1067 00:55 437 00:22
160 2902 11:01 940 03:48 2111 07:14 841 02:44

Table 5.5: Number of time integration steps and wall-clock time of the Gaussian
test (5.105) with the ANTARES and the Prometheus code on the grids defined
by M3 and M4. Wall-clock time is in the format mm:ss and was measured on
an Intel Xeon CPU E5462 at 2.80 GHz. ANTARES was compiled with the
ifort and Prometheus with the gfortran compiler.

139

5 Curvilinear Grids

From this test we deduce that ANTARES is slightly more accurate, but also slower
than Prometheus. For both codes, the use of M3 does not significantly reduce the
accuracy. The efficiency is much worse with M3, but we can explain this with the non-
uniform cell volume leading to stronger time step restrictions. In general, curvilinear
grids can even lead to larger time steps, e.g. compared to a spherical grid.

5.5.5 Conclusions

Curvilinear coordinates are an easy and efficient way to extend existing codes written for
Cartesian grids to more complicated geometries. The grid can be generated either by a
(analytical or numerical) mapping function, or by an external grid generation program.
It must always be structured.

For the case of spherical domains, Calhoun et al. (2008) provided mapping functions
which are not strongly differentiable. We showed that the analytical transformation also
works in a weak sense without assuming strong differentiability of the mapping function.

WENO Schemes

In Shu (2003), the application of the WENO finite difference scheme to smooth curvi-
linear grids is shown. The results are of high accuracy, since the mapping functions are
smooth and the Mach number of the numerical tests are high.

In this chapter, the WENO finite difference and finite volume scheme were applied
with non-smooth mapping functions as those defined by the mapping functions from
Calhoun et al. (2008) for the first time. Particular attention is paid to problems arising
when the Mach number of the flow is rather low. Whereas the WENO finite volume
scheme performs well in these cases, the WENO finite difference scheme does not give
a convergent solution. It only works if the mapping function is smooth, but even in
this case the finite volume scheme yields better results for the low Mach number tests
presented in this paper.

Since it is only a minor algorithmic change from the WENO finite difference to the
WENO finite volume scheme, we recommend to switch to the WENO finite volume
scheme when the mapped grid technique is used for non-smooth mapping functions as
well as for low Mach numbers. The smoother the mapping function is, the more accu-
rate are the results. Therefore, one should always use the smoothest mapping function
allowed by the simulation setup.

In theory, the finite volume scheme is only second order accurate. In our calculations,
however, the empirical order of accuracy of the finite volume scheme was higher. To
increase the theoretical order of accuracy the computational requirements and the com-
plexity of the code has to be increased considerably (Casper and Atkins, 1993; Zhang
et al., 2011; Colella et al., 2011). In practice, WENO schemes usually are combined with
lower order Runge–Kutta methods for time integration with highest-possible Courant
numbers. The overall error of the scheme will be dominated by the temporal error, and
the overall order of the method will be limited to two or three, anyway.

140

5 Curvilinear Grids

In astrophysical simulations, the typical resolution is rather coarse. In this regime,
non-smooth mapping functions perform nearly as well as smooth ones, when combined
with the WENO finite volume scheme. We conclude that they are an acceptable al-
ternative, if the problem geometry requires the use of non-smooth mapping functions.
We conclude that curvilinear coordinates provide enough flexibility for most problems
in computational astrophysics whereas keeping the high efficiency and accuracy of the
Cartesian schemes they are based on.

PPM Scheme

The applicability and efficiency of curvilinear coordinates for the PPM scheme depends
on the time integration method it is combined with. With the dimensionally split time
integration from Warming and Beam (1976), the violation of the freestream preservation
leads to unacceptable results, as in the case of the finite difference WENO scheme.

Updating all fluxes simultaneously — in an “unsplit” fashion —, leads to preservation
of the freestream, but the order of the scheme is degraded to first order, and the scheme
is not stable any more with the high Courant numbers of the split version. This approach
corresponds to using the Euler forward scheme for time integration.

For the Cartesian case, the CTU scheme from Colella (1990) is superior compared to
both the split and the unsplit scheme. Since it is an unsplit scheme itself, the freestream
is preserved, and curvilinear coordinates can be implemented in the way we outlined
before. Nevertheless, in certain tests and with some mapping functions, the accuracy
and stability of the curvilinear version is much worse than the Cartesian version.

Therefore, we do not recommend to use the curvilinear version of the CTU scheme.
It is hard to predict in which situations it is stable and in which it is not, making the
use of very low Courant numbers necessary. Alternatively, a high-order Runge–Kutta
scheme combined with the PPM scheme as described in Colella et al. (2011) may lead
to stable and high-order accurate results.

5.6 Metric Terms in Three Dimensions

A (system of) conservation law(s) in Cartesian space in three dimensions is given by

∂

∂t
Q =

∂

∂x
F +

∂

∂y
G +

∂

∂z
H, (5.106)

where Q is the vector of the conserved quantities, e.g. for the Euler equations

Q = (ρ, ρu, ρv, ρw,E)T , (5.107)

and F, G and H are the (analytical) flux functions. For the Euler equations, they are
given by

141

5 Curvilinear Grids

F =


ρu

ρuu+ p
ρuv
ρuw

(p+ E)u

 ,G =


ρv
ρvu

ρvv + p
ρvw

(p+ E)v

 ,H =


ρw
ρwu
ρwv

ρww + p
(p+ E)w

 . (5.108)

Let a (weakly differentiable) transformation M be given such that

M : [−1, 1]3 → Ω, M(ξ, η, ζ) = (x, y, z). (5.109)

We assume that the mapping function does not change in time. The inverse Jacobian
J−1 of the transformation M is given by

J−1 =

∣∣∣∣∂(x, y, z)

∂(ξ, η, ζ)

∣∣∣∣ =

(
∂x

∂ξ

∂y

∂η

∂z

∂ζ
+
∂x

∂η

∂y

∂ζ

∂z

∂ξ
+
∂x

∂ζ

∂y

∂ξ

∂z

∂η

)
−
(
∂x

∂ζ

∂y

∂η

∂z

∂ξ
+
∂x

∂ξ

∂y

∂ζ

∂z

∂η
+
∂x

∂η

∂y

∂ξ

∂z

∂ζ

). (5.110)

Since ∂(x,y,z)
∂(ξ,η,ζ) =

(
∂(ξ,η,ζ)
∂(x,y,z)

)−1
, we can derive

∂ξ

∂x
J−1 = yηzζ − yζzη,

∂ξ

∂y
J−1 = xζzη − xηzζ ,

∂ξ

∂z
J−1 = xηyζ − xζyη, (5.111a)

∂η

∂x
J−1 = yζzξ − yξzζ ,

∂η

∂y
J−1 = xξzζ − xζzξ,

∂η

∂z
J−1 = xζyξ − xξyζ , (5.111b)

∂ζ

∂x
J−1 = yξzη − yηzξ,

∂ζ

∂y
J−1 = xηzξ − xξzη,

∂ζ

∂z
J−1 = xξyη − xηyξ. (5.111c)

With the chain rule of differentiation,

∂

∂x
=
∂ξ

∂x

∂

∂ξ
+
∂η

∂x

∂

∂η
+
∂ζ

∂x

∂

∂ζ
, (5.112a)

∂

∂y
=
∂ξ

∂y

∂

∂ξ
+
∂η

∂y

∂

∂η
+
∂ζ

∂y

∂

∂ζ
, (5.112b)

∂

∂z
=
∂ξ

∂z

∂

∂ξ
+
∂η

∂z

∂

∂η
+
∂ζ

∂z

∂

∂ζ
. (5.112c)

the system is transformed to a conservative system in computational space in the form

∂

∂t
J−1Q =

∂

∂ξ
F̂ +

∂

∂η
Ĝ +

∂

∂ζ
Ĥ. (5.113)

similar to what was done in sections 5.1 and 5.2. The transformed fluxes are defined by

142

5 Curvilinear Grids

F̂ := n1F + n2G + n3H, (5.114a)

Ĝ := m1F +m2G +m3H, (5.114b)

Ĥ := o1F + o2G + o3H, (5.114c)

where we have written

n1 := yηzζ − zηyζ ,m1 := yζzξ − zζyξ, o1 := yξzη − zξyη, (5.115a)

n2 := zηxζ − xηzζ ,m2 := zζxξ − xζzξ, o2 := zξxη − xξzη, (5.115b)

n3 := xηyζ − yηxζ ,m3 := xζyξ − yζxξ, o3 := xξyη − yξxη. (5.115c)

As before, we have to find a discretisation of these terms such that no spurious source
terms arise. Therefore, we check if the analytical solution to the freestream problem 6
is preserved by the numerical discretisation.

5.6.1 Discretisation

We discretise the equations in space according to the finite volume approach. Then, the
update is defined by

∂

∂t
J−1Q =

(
F̂i+ 1

2
,j,k − F̂i− 1

2
,j,k

)
+
(
Ĝi,j+ 1

2
,k − Ĝi,j− 1

2
,k

)
+
(
Ĥi,j,k+ 1

2
− Ĥi,j,k− 1

2

)
.

(5.116)

For the Euler equations, the initial conditions u = v = w = 0, ρ = ρ0, E = e0 with
some constants ρ0 and e0 lead to

0 =
(
n1|i+ 1

2
,j,k − n1|i− 1

2
,j,k

)
+
(
m1|i,j+ 1

2
,k −m1|i,j− 1

2
,k

)
+
(
o1|i,j,k+ 1

2
− o1|i,j,k− 1

2

)
,

(5.117a)

0 =
(
n2|i+ 1

2
,j,k − n2|i− 1

2
,j,k

)
+
(
m2|i,j+ 1

2
,k −m2|i,j− 1

2
,k

)
+
(
o2|i,j,k+ 1

2
− o2|i,j,k− 1

2

)
,

(5.117b)

0 =
(
n3|i+ 1

2
,j,k − n3|i− 1

2
,j,k

)
+
(
m3|i,j+ 1

2
,k −m3|i,j− 1

2
,k

)
+
(
o3|i,j,k+ 1

2
− o3|i,j,k− 1

2

)
,

(5.117c)

143

5 Curvilinear Grids

since ∂
∂t (ρu) = ∂

∂t (ρv) = ∂
∂t (ρw) and p = p(ρ0, e0) is constant, too. These analytical

conditions must be fulfilled numerically to solve the freestream problem. This can be
accomplished by choosing a suitable discretisation for the metric terms. Even if analyt-
ical expressions are known, they should not be used because then the above conditions
are not fulfilled.

Direct discretisation of equations (5.115) with second order accurate finite differences
does lead to a violation of the freestream, which can be checked by a straightforward
calculation.

In precise terms, replacing n1|i+ 1
2
,j,k, m1|i,j± 1

2
,k and o1|i,j,k± 1

2
by

n1|i± 1
2
,j,k = (yηzζ − zηyζ) |i± 1

2
,j,k

≈
(
yi± 1

2
,j+ 1

2
,k − yi± 1

2
,j− 1

2
,k

)(
zi± 1

2
,j,k+ 1

2
− zi± 1

2
,j,k− 1

2

)
−
(
zi± 1

2
,j+ 1

2
,k − zi± 1

2
,j− 1

2
,k

)(
yi± 1

2
,j,k+ 1

2
− yi± 1

2
,j,k− 1

2

)
,

, (5.118a)

m1|i,j± 1
2
,k = (yζzξ − zζyξ) |i,j± 1

2
,k

≈
(
yi,j± 1

2
,k+ 1

2
− yi,j± 1

2
,k− 1

2

)(
zi+ 1

2
,j± 1

2
,k − zi− 1

2
,j± 1

2
,k

)
−
(
zi,j± 1

2
,k+ 1

2
− zi,j± 1

2
,k− 1

2

)(
yi+ 1

2
,j± 1

2
,k − yi− 1

2
,j± 1

2
,k

)
,

, (5.118b)

o1|i,j,k± 1
2

= (yξzη − zξyη) |i,j,k± 1
2

≈
(
yi+ 1

2
,j,k± 1

2
− yi− 1

2
,j,k± 1

2

)(
zi,j+ 1

2
,k± 1

2
− zi,j− 1

2
,k± 1

2

)
−
(
zi+ 1

2
,j,k± 1

2
− zi− 1

2
,j,k± 1

2

)(
yi,j+ 1

2
,k± 1

2
− yi,j− 1

2
,k± 1

2

)
,

(5.118c)

we see by comparing coefficients for, e.g., yi+ 1
2
,j+ 1

2
,k,(

zi+ 1
2
,j,k+ 1

2
− zi+ 1

2
,j,k− 1

2

)
+
(
zi,j+ 1

2
,k+ 1

2
− zi,j+ 1

2
,k− 1

2

)
6= 0, (5.119)

and the terms do not cancel out in general.
Instead, the metric derivatives can be rewritten as (Visbal and Gaitonde, 2002)

n1 := (yηz)ζ − (zyζ)η ,m1 := (yζz)ξ − (zyξ)ζ , o1 := (yξz)η − (zyη)ξ , (5.120a)

n2 := (zηx)ζ − (xzζ)η ,m2 := (zζx)ξ − (xzξ)ζ , o2 := (zξx)η − (xzη)ξ , (5.120b)

n3 := (xηy)ζ − (yxζ)η ,m3 := (xζy)ξ − (yxξ)ζ , o3 := (xξy)η − (yxη)ξ , (5.120c)

assuming that the second derivatives commute. Discretising all metric terms in the same
manner by second order central differences,

144

5 Curvilinear Grids

n1|i± 1
2
,j,k = (yηz)ζ |i± 1

2
,j,k − (zyζ)η |i± 1

2
,j,k

≈
(

(yηz) |i± 1
2
,j,k+ 1

2
− (yηz) |i± 1

2
,j,k− 1

2

)
−
(

(zyζ) |i± 1
2
,j+ 1

2
,k − (zyζ) |i± 1

2
,j− 1

2
,k

)
≈
(
yi± 1

2
,j+ 1

2
,k+ 1

2
− yi± 1

2
,j− 1

2
,k+ 1

2

)
zi± 1

2
,j,k+ 1

2

−
(
yi± 1

2
,j+ 1

2
,k− 1

2
− yi± 1

2
,j− 1

2
,k− 1

2

)
zi± 1

2
,j,k− 1

2

− zi± 1
2
,j+ 1

2
,k

(
yi± 1

2
,j+ 1

2
,k+ 1

2
− yi± 1

2
,j+ 1

2
,k− 1

2

)
+ zi± 1

2
,j− 1

2
,k

(
yi± 1

2
,j− 1

2
,k+ 1

2
− yi± 1

2
,j− 1

2
,k− 1

2

)
=
(
yi± 1

2
,j+ 1

2
,k+ 1

2
− yi± 1

2
,j− 1

2
,k+ 1

2

)
zi± 1

2
,j,k+ 1

2

−
(
yi± 1

2
,j+ 1

2
,k− 1

2
− yi± 1

2
,j− 1

2
,k− 1

2

)
zi± 1

2
,j,k− 1

2

− zi± 1
2
,j+ 1

2
,k

(
yi± 1

2
,j+ 1

2
,k+ 1

2
− yi± 1

2
,j+ 1

2
,k− 1

2

)
+ zi± 1

2
,j− 1

2
,k

(
yi± 1

2
,j− 1

2
,k+ 1

2
− yi± 1

2
,j− 1

2
,k− 1

2

)
.

(5.121)

Similarly,

m1|i,j± 1
2
,k = (yζz)ξ |i,j± 1

2
,k − (zyξ)ζ |i,j± 1

2
,k

≈
(
yi+ 1

2
,j± 1

2
,k+ 1

2
− yi+ 1

2
,j± 1

2
,k− 1

2

)
zi+ 1

2
,j± 1

2
,k

−
(
yi− 1

2
,j± 1

2
,k+ 1

2
− yi− 1

2
,j± 1

2
,k− 1

2

)
zi− 1

2
,j± 1

2
,k

− zi,j± 1
2
,k+ 1

2

(
yi+ 1

2
,j± 1

2
,k+ 1

2
− yi− 1

2
,j± 1

2
,k+ 1

2

)
+ zi,j± 1

2
,k− 1

2

(
yi+ 1

2
,j± 1

2
,k− 1

2
− yi− 1

2
,j± 1

2
,k− 1

2

)
,

(5.122)

o1|i,j,k± 1
2

= (yξz)η |i,j,k± 1
2
− (zyη)ξ |i,j,k± 1

2

≈
(
yi+ 1

2
,j+ 1

2
,k± 1

2
− yi− 1

2
,j+ 1

2
,k± 1

2

)
zi,j+ 1

2
,k± 1

2

−
(
yi+ 1

2
,j− 1

2
,k± 1

2
− yi− 1

2
,j− 1

2
,k± 1

2

)
zi,j− 1

2
,k± 1

2

− zi+ 1
2
,j,k± 1

2

(
yi+ 1

2
,j+ 1

2
,k± 1

2
− yi+ 1

2
,j− 1

2
,k± 1

2

)
+ zi− 1

2
,j,k± 1

2

(
yi− 1

2
,j+ 1

2
,k± 1

2
− yi− 1

2
,j− 1

2
,k± 1

2

)
.

(5.123)

Comparing coefficients for, e.g., yi+ 1
2
,j+ 1

2
,k− 1

2
in (5.117), we see that

145

5 Curvilinear Grids

zi+ 1
2
,j,k+ 1

2
− zi+ 1

2
,j+ 1

2
,k + zi+ 1

2
,j+ 1

2
,k − zi,j+ 1

2
,k+ 1

2

+zi,j+ 1
2
,k+ 1

2
− zi+ 1

2
,j,k+ 1

2
= 0.

(5.124)

Analogously, all metric terms cancel out now, and the freestream is preserved also by
the numerical discretisation.

By writing zi± 1
2
,j,k+ 1

2
= 1

2

(
zi± 1

2
,j+ 1

2
,k+ 1

2
+ zi± 1

2
,j− 1

2
,k+ 1

2

)
, the expressions for the nor-

mals can be simplified to

n1|i± 1
2
,j,k =

1

2

((
yi± 1

2
,j+ 1

2
,k+ 1

2
− yi± 1

2
,j− 1

2
,k− 1

2

)(
zi± 1

2
,j− 1

2
,k+ 1

2
− zi± 1

2
,j+ 1

2
,k− 1

2

)
−
(
yi± 1

2
,j− 1

2
,k+ 1

2
− yi± 1

2
,j+ 1

2
,k− 1

2

)(
zi± 1

2
,j+ 1

2
,k+ 1

2
− zi± 1

2
,j− 1

2
,k− 1

2

))
,

(5.125a)

n2|i± 1
2
,j,k =

1

2

((
zi± 1

2
,j+ 1

2
,k+ 1

2
− zi± 1

2
,j− 1

2
,k− 1

2

)(
xi± 1

2
,j− 1

2
,k+ 1

2
− xi± 1

2
,j+ 1

2
,k− 1

2

)
−
(
zi± 1

2
,j− 1

2
,k+ 1

2
− zi± 1

2
,j+ 1

2
,k− 1

2

)(
xi± 1

2
,j+ 1

2
,k+ 1

2
− xi± 1

2
,j− 1

2
,k− 1

2

))
,

(5.125b)

n3|i± 1
2
,j,k =

1

2

((
xi± 1

2
,j+ 1

2
,k+ 1

2
− xi± 1

2
,j− 1

2
,k− 1

2

)(
yi± 1

2
,j− 1

2
,k+ 1

2
− yi± 1

2
,j+ 1

2
,k− 1

2

)
−
(
xi± 1

2
,j− 1

2
,k+ 1

2
− xi± 1

2
,j+ 1

2
,k− 1

2

)(
yi± 1

2
,j+ 1

2
,k+ 1

2
− yi± 1

2
,j− 1

2
,k− 1

2

))
,

(5.125c)

m1|i,j± 1
2
,k =

1

2

((
yi+ 1

2
,j± 1

2
,k+ 1

2
− yi− 1

2
,j± 1

2
,k− 1

2

)(
zi− 1

2
,j± 1

2
,k+ 1

2
− zi+ 1

2
,j± 1

2
,k− 1

2

)
−
(
yi− 1

2
,j± 1

2
,k+ 1

2
− yi+ 1

2
,j± 1

2
,k− 1

2

)(
zi+ 1

2
,j± 1

2
,k+ 1

2
− zi− 1

2
,j± 1

2
,k− 1

2

))
,

(5.126a)

m2|i,j± 1
2
,k =

1

2

((
zi+ 1

2
,j± 1

2
,k+ 1

2
− zi− 1

2
,j± 1

2
,k− 1

2

)(
xi− 1

2
,j± 1

2
,k+ 1

2
− xi+ 1

2
,j± 1

2
,k− 1

2

)
−
(
zi− 1

2
,j± 1

2
,k+ 1

2
− zi+ 1

2
,j± 1

2
,k− 1

2

)(
xi+ 1

2
,j± 1

2
,k+ 1

2
− xi− 1

2
,j± 1

2
,k− 1

2

))
,

(5.126b)

m3|i,j± 1
2
,k =

1

2

((
xi+ 1

2
,j± 1

2
,k+ 1

2
− xi− 1

2
,j± 1

2
,k− 1

2

)(
yi− 1

2
,j± 1

2
,k+ 1

2
− yi+ 1

2
,j± 1

2
,k− 1

2

)
−
(
xi− 1

2
,j± 1

2
,k+ 1

2
− xi+ 1

2
,j± 1

2
,k− 1

2

)(
yi+ 1

2
,j± 1

2
,k+ 1

2
− yi− 1

2
,j± 1

2
,k− 1

2

))
,

(5.126c)

146

5 Curvilinear Grids

o1|i,j,k± 1
2

=
1

2

((
yi+ 1

2
,j+ 1

2
,k± 1

2
− yi− 1

2
,j− 1

2
,k± 1

2

)(
zi− 1

2
,j+ 1

2
,k± 1

2
− zi+ 1

2
,j− 1

2
,k± 1

2

)
−
(
yi− 1

2
,j+ 1

2
,k± 1

2
− yi+ 1

2
,j− 1

2
,k± 1

2

)(
zi+ 1

2
,j+ 1

2
,k± 1

2
− zi− 1

2
,j− 1

2
,k± 1

2

))
,

(5.127a)

o2|i,j,k± 1
2

=
1

2

((
zi+ 1

2
,j+ 1

2
,k± 1

2
− zi− 1

2
,j− 1

2
,k± 1

2

)(
xi− 1

2
,j+ 1

2
,k± 1

2
− xi+ 1

2
,j− 1

2
,k± 1

2

)
−
(
zi− 1

2
,j+ 1

2
,k± 1

2
− zi+ 1

2
,j− 1

2
,k± 1

2

)(
xi+ 1

2
,j+ 1

2
,k± 1

2
− xi− 1

2
,j− 1

2
,k± 1

2

))
,

(5.127b)

o3|i,j,k± 1
2

=
1

2

((
xi+ 1

2
,j+ 1

2
,k± 1

2
− xi− 1

2
,j− 1

2
,k± 1

2

)(
yi− 1

2
,j+ 1

2
,k± 1

2
− yi+ 1

2
,j− 1

2
,k± 1

2

)
−
(
xi− 1

2
,j+ 1

2
,k± 1

2
− xi+ 1

2
,j− 1

2
,k± 1

2

)(
yi+ 1

2
,j+ 1

2
,k± 1

2
− yi− 1

2
,j− 1

2
,k± 1

2

))
.

(5.127c)

The surface area of the cell sides is given by

Si± 1
2
,j,k =

√
n1|2i± 1

2
,j,k

+ n2|2i± 1
2
,j,k

+ n3|2i± 1
2
,j,k
, (5.128a)

Si,j± 1
2
,k =

√
m1|2i,j± 1

2
,k

+m2|2i,j± 1
2
,k

+m3|2i,j± 1
2
,k
, (5.128b)

Si,j,k± 1
2

=
√
o1|2i,j,k± 1

2

+ o2|2i,j,k± 1
2

+ o3|2i,j,k± 1
2

. (5.128c)

147

6 Conclusions and Future Work

The physical realism of astrophysical hydrodynamical simulations and their feasibility
in terms of computational requirements directly depend on the design and the numerical
methods of the simulation code, including the choice of the numerical grid, the time inte-
gration method and the boundary conditions. In this thesis, we investigate the influence
of the numerical grid. Thereby, we focus on methods which are computationally efficient
and can easily be implemented in existing codes written for Cartesian and spherical co-
ordinates. These classical coordinate systems do not provide enough flexibility for a wide
range of astrophysical applications, including core convection or convection in spherical
shells in three dimensions, or their use is not efficient due to grid cells lying outside of
the domain of interest or converging grid lines leading to small time steps.

Unstructured grid methods would require to rewrite codes from the scratch, render-
ing years of code development and testing useless. The computational costs, already
exorbitant on the simple and efficient standard grids, would be further increased. Sim-
ilarly, discontinuous Galerkin methods (e.g., Hesthaven and Warburton, 2008; Mocz
et al., 2013) provide in theory high accuracy and flexibility, but at high computational
costs. To make discontinuous Galerkin methods efficient enough for any astrophysical
application, a lot of methodological improvements are needed.

Composite grids allow, on the one hand, the use of existing codes developed for Carte-
sian and spherical grid geometries, while on the other hand offering great flexibility in
covering complicated computational domains. One very successful example is the combi-
nation of two spherical grids to cover spherical shells in three dimensions, the Yin–Yang
grid (Kageyama and Sato, 2004; Wongwathanarat et al., 2010). But the big disadvantage
of this approach is that the necessary interpolation at the grid interface cannot, as we
describe in Chapter 4, be done with high order and, at the same time, in a conservative
fashion. Noise generated at the grid interfaces lowers the stability of the overall method.
We therefore refrain from using composite grids.

Instead, we consider the technique of curvilinear coordinates to be the method of
choice. Using a mapping procedure, the problem given in a complicated physical space
is transformed in a Cartesian and equidistant computational space, where all standard
methods can be directly applied to solve the transformed problem.

Of course, numerical difficulties arise when this technique is implemented. We found
the freestream problem to be a very helpful test, despite its evident simplicity. Methods
leading to a violation of the freestream preservation as, e.g., WENO finite difference
methods and split time integration schemes, will in most cases not yield stable and
accurate results. A detailed discussion can be found in Chapter 5.

With the WENO finite volume scheme, however, we are able to solve several challeng-
ing test problems both on smooth and on non-smooth grids as the ones for spherical

148

6 Conclusions and Future Work

domains from Calhoun et al. (2008). There is a close correlation between the analytical
fact that these mapping functions are not strongly differentiable and the failure of finite
difference methods in numerical simulations on these grids. Only when the analytically
motivated conditions (5.76) are exactly fulfilled in the numerical implementation, the
method will deliver accurate and stable results.

For the PPM scheme, we implemented the curvilinear version of the CTU scheme
from Colella (1990). Even though this method works nicely on Cartesian grids and is
even superior compared to the split scheme in terms of accuracy (but not in terms of
computational efficiency), its stability on both smooth and non-smooth curvilinear grids
is much worse. To achieve reliable results, low Courant numbers must be chosen such
that the computational costs increase considerably.

Therefore, we plan to implement the method of Colella et al. (2011) instead. They
extended their scheme to fourth order by using the method of lines approach with Runge–
Kutta schemes and suitable methods of calculating the metric derivatives. In this way,
the modified PPM scheme can be extended to curvilinear coordinates while keeping its
high stability and accuracy. It is even possible to extend this approach to higher orders
of accuracy.

For the WENO finite volume scheme, we plan to extend our work to the Navier–
Stokes equations with gravity and diffusion in three spatial dimensions. It would be
interesting to apply low Mach number methods as the one presented in Kwatra et al.
(2009) and Happenhofer et al. (2013) to curvilinear coordinates and further improve
their performance for low Mach numbers.

For this purpose, elliptic and parabolic equations must be solved on curvilinear grids.
Finite element solvers as the ones developed in Grimm-Strele (2010) and Happenhofer
(2013) are easily extendible to curvilinear coordinates. Either the equations must be
transformed to the computational space and then solved there with standard methods
as described in section 5.3, or they are solved directly in the physical space. Since the
grid is structured both in the computational as well as the physical space, the structure
of the stiffness matrix does not change. All integration formulae used for calculating the
stiffness matrix in the finite element approach can be reused for curvilinear grids with
only little or even no changes. It must be verified by numerical experiments which way
is the more efficient and accurate one.

Furthermore, the influence of the Mach number on the results needs additional inves-
tigations. We assume that the distortions due to the freestream preservation violation
for finite difference schemes are hidden when there are fast motions of the fluid. Only
with low Mach numbers, the numerical errors get large enough to disturb the numerical
solution considerably.

Theoretically, the mapping functions used to create the curvilinear grid can have dis-
continuities when used in a finite volume formulation. But from numerical experiments
we observe that the accuracy of the numerical solution degrades the less smooth the
mapping function is. As long as it is possible to use smooth grids, it is advisible to do
so.

In the current implementation, the WENO method on curvilinear grids is only second

149

6 Conclusions and Future Work

order accurate since we used the midpoint rule to obtain equation (5.14). Increasing the
order is theoretically possible by using higher order quadrature rules (Casper and Atkins,
1993; Zhang et al., 2011), but this goes along with a considerable increase in computa-
tional costs. In section 3.2.1, we showed that due to small error constants, second order
time integration methods can be more efficient than higher order ones when coupled with
the fifth order accurate WENO scheme. Similarly, even if using second order approxima-
tions theoretically restricts the overall order of the method, the overall method can still
be more cost efficient than higher order ones in practice. Considering the fact that the
ansatz spaces in the finite element solvers from Grimm-Strele (2010) and Happenhofer
(2013) as well as time-dependent boundary conditions (Carpenter et al., 1995; Fornberg,
1998) limit the overall order to two anyway, we consider the additional programming
and computational work required to make the method higher order accurate not worth
the effort within the ANTARES framework. But in contrast to the composite grid ap-
proach where the order cannot be increased above two without destroying conservation
properties, higher orders of accuracy are possible in principle.

From the analytical and numerical results obtained in this thesis we conclude that
curvilinear coordinates are an efficient and flexible choice with which a wide range of
astrophysical problems can be investigated. They combine the simplicity of standard
coordinate systems with enough grid adaptability as it is needed in many astrophysical
problems.

150

Danksagung

Diese Dissertation hätte ohne die Mithilfe vieler nicht geschrieben werden können. Mei-
nem Doktorvater Herbert Muthsam danke ich für die interessante Themenstellung, die
Aufnahme in seine Forschungsgruppe und die kenntnisreiche Hilfestellung während des
Schreibens. Friedrich Kupka hat mir in vielen Gesprächen die Astrophysik und die Tur-
bulenztheorie näher gebracht und stand jederzeit zu ausgiebigen fachlichen Diskussionen
zur Verfügung. Natalie Happenhofer, Patrick Blies, Eva Mundprecht und Bernhard Löw-
Baselli haben eine sehr angenehme und fruchtbare Atmosphäre innerhalb der Forschungs-
gruppe geschaffen. Darüber hinaus danke ich Marcus Page und Steffen Kionke für viele
interessante Diskussionen und Anregungen.

Weite Teile meiner Dissertation sind am Max–Planck–Institut für Astrophysik in
Garching bei München entstanden. Für die Gastfreundschaft bedanke ich mich sehr,
insbesondere bei Ewald Müller, der auch fachlich stets ein kompetenter Ansprechpartner
war. Viele wertvolle Anregungen erhielt ich aus Diskussionen mit Annop Wongwatha-
narat, Philipp Edelmann und Fabian Miczek. Meine Bürogenossen Robert Andrassy,
Alexander Kolodzig und Monika Soraisam sorgten für spannenden fachlichen Austausch
und auch Ablenkung an so manchem langen Nachmittag.

Ganz besonderer Dank gilt meinen Eltern, die mich in jedem Stadium meiner Disser-
tation inhaltlich, finanziell und vor allen Dingen psychisch unterstützt haben.

Die Anwendungsbereiche dieser Arbeit sind vielfältig. Daher wurde sie auch von
mehreren Seiten finanziell gefördert: durch die Projekte P21742, P25229, P20762, P20973
und P18224 des Fonds zur Förderung der wissenschaftlichen Forschung (FWF) sowie vom
Max–Planck–Institut für Astrophysik in Garching. Die meisten Berechnungen wurden
auf lokal zur Verfügung stehenden Rechnern durchgeführt. Umfangreichere Berechnun-
gen wurden auf den VSC–Clustern der Wiener Universitäten sowie auf dem Hydra–
Cluster des RZG Garching durchgeführt.

Curriculum Vitae

Hannes Grimm-Strele

eMail address hannes.grimm-strele@gmx.net

Education

5/2010 – ongoing University of Vienna

PhD studies in mathematics

Thesis: Numerical Grids for Spherical Shells and
Other Complex Domains

Supervisor: H. J. Muthsam

7/2013 – 8/2013 Technical University of Istanbul

Research stay as part of the Summer of HPC
programme

8/2009, 9/2011 – 3/2012, 9/2012 –
10/2012, 3/2013 – 4/2013

Max–Planck–Institute for Astrophysics,
Garching

Extended research stays, supervisor: E. Müller

10/2004 – 4/2010 University of Vienna

Diploma studies in mathematics

Thesis: Numerical solution of the generalised
Poisson equation on parallel computers

Supervisor: H. J. Muthsam

June 24, 2004 Bismarck-Gymnasium Karlsruhe

Abitur

Conferences and Talks

April 26, 2013 Talk at the University of Würzburg

March 18, 2013 MPA Institute Seminar, Garching

November 27, 2012 Vienna Lunch Talk, Vienna TU

June 24–28, 2012 EU–US HPC Summer School, Dublin

February 27–28, 2012 VSC User Meeting, Neusiedl am See

April, 2011 & April, 2012 Workshops on small scale magnetic fields,
Bairisch-Kölldorf

June 14–17, 2011 SimTech 2011, Stuttgart

List of my Publications

Grimm-Strele, H., Kupka, F., Löw-Baselli, B., Mundprecht, E., Zaussinger, F., and
Schiansky, P. (2013a). Realistic Simulations of Stellar Surface Convection with
ANTARES: I. Boundary Conditions and Model Relaxation. NewA. Available at
http://arxiv.org/abs/1305.0743.

Grimm-Strele, H., Kupka, F., and Muthsam, H. J. (2013b). Curvilinear Grids for WENO
Methods in Astrophysical Simulations. Computer Physics Communications. Available
at http://arxiv.org/abs/1308.3066.

Happenhofer, N., Grimm-Strele, H., Kupka, F., Löw-Baselli, B., and Muthsam, H. J.
(2013). A low Mach number solver: Enhancing applicability. JCP, 236:96 – 118.

Kupka, F., Muthsam, H. J., Zaussinger, F., Grimm-Strele, H., Happenhofer, N., Löw-
Baselli, B., Mundprecht, E., and Obertscheider, C. (2010). Solar Surface Flow Sim-
ulations at Ultra-High Resolution, chapter 4, pages 415 – 425. High Performance
Computing in Science and Engineering. Springer Berlin New–York Heidelberg.

Lemmerer, B., Utz, D., Hanslmeier, A., Veronig, A., Thonhofer, S., Grimm-Strele, H.,
and Karyappa, R. (2013). 2D Segmentation of small convective patterns in RHD
simulations. A&A. Submitted to A&A.

Muthsam, H. J., Kupka, F., Mundprecht, E., Zaussinger, F., Grimm-Strele, H., and Hap-
penhofer, N. (2010). Simulations of stellar convection, pulsation and semiconvection.
In Brummell, N., Brun, A., Miesch, M., and Ponty, Y., editors, Astrophysical Dynam-
ics: From Stars to Galaxies, number 271 in Proceedings IAU Symposium, pages 179
– 186.

153

Bibliography

Asplund, M., Nordlund, A., Trampedach, R., Allende Prieto, C., and Stein, R. F.
(2000a). Line formation in solar granulation. I. Fe line shapes, shifts and asymmetries.
A&A, 359:729 – 742.

Asplund, M., Nordlund, A., Trampedach, R., and Stein, R. F. (2000b). Line formation
in solar granulation. II. The photospheric Fe abundance. A&A, 359:743 – 754.

Beeck, B., Collet, R., Steffen, M., Asplund, M., Cameron, R. H., Freytag, B., Hayek,
W., Ludwig, H.-G., and Schüssler, M. (2012). Simulations of the solar near-surface
layers with the CO5BOLD, MURaM, and Stagger codes. A&A, 539:A121.

Berger, M. J. (1987). On Conservation at Grid Interfaces. SIAM Journal on Numerical
Analysis, 24:967 – 984.

Brown, B. P., Vasil, G. M., and Zweibel, E. G. (2012). Energy Conservation and Gravity
Waves in Sound-Proof Treatments of Stellar Interiors. Part I. Anelastic Approxima-
tions. ApJ, 756:109 – 128.

Browning, M. K., Brun, A. S., Miesch, M. S., and Toomre, J. (2007). Dynamo action
in simulations of penetrative solar convection with an imposed tachocline. Astron.
Nachr., 328:1100 – 1103.

Browning, M. K., Brun, A. S., and Toomre, J. (2004). Simulations Of Core Convection
In Rotating A-type Stars: Differential Rotation And Overshooting. ApJ, 601:512 –
529.

Cai, T., Chan, K. L., and Deng, L. (2011). Numerical simulation of core convection by
a multi-layer semi-implicit spherical spectral method. JCP, 230:8698 – 8712.

Calder, A. C., Fryxell, B., Plewa, T., Rosner, R., Dursi, L. J., Weirs, V. G., Dupont,
T., Robey, H. F., Kane, J. O., Remington, A. B., Drake, R. P., Dimonte, G., Zingale,
M., Timmes, F. X., Olson, K., Ricker, P., MaxNeice, P., and Tufo, H. M. (2002). On
Validating an Astrophysical Simulation Code. The Astrophysical Journal Supplement
Series, 143:201 – 229.

Calhoun, D. A., Helzel, C., and LeVeque, R. J. (2008). Logically Rectangular Grids and
Finite Volume Methods for PDEs in Circular and Spherical Domains. SIAM Review,
50:723 – 752.

154

Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. (1988). Spectral Meth-
ods in Fluid Dynamics. Springer Series in Computational Physics. Springer, Berlin
Heidelberg New–York.

Carlson, B. G. (1963). The numerical theory of neutron transport, volume 1 (Statistical
Physics), chapter 1, pages 1 – 42. Methods in Computational Physics. Advances in
Research and Applications.

Carpenter, M. H., Gottlieb, D., Abarbanel, S., and Don, W.-S. (1995). The Theoret-
ical Accuracy of Runge–Kutta Time Discretizations for the Initial Boundary Value
Problem: A Study of the Boundary Error. SIAM J. Sci. Comput., 16:1241 – 1252.

Casper, J. and Atkins, H. L. (1993). A Finite-Volume High-Order ENO Scheme for
Two-Dimensional Hyperbolic Systems. JCP, 106:62 – 76.

Chesshire, G. and Henshaw, W. D. (1990). Composite overlapping meshes for the solu-
tion of partial differential equations. JCP, 90:1 – 64.

Chiavassa, A., Plez, B., Josselin, E., and Freytag, B. (2009). Radiative hydrodynamics
simulations of red supergiant stars: I. Interpretation of interferometric observations.
A&A, 506:1351 – 1365.

Chorin, A. J. and Marsden, J. E. (1993). A Mathematical Introduction to Fluid Mechan-
ics, volume 4 of Texts in Applied Mathematics. Springer, New–York Berlin Heidelberg,
3rd edition.

Clune, T. L., Elliott, J. R., Miesch, M. S., Toomre, J., and Glatzmaier, G. A. (1999).
Computational aspects of a code to study rotating turbulent convection in spherical
shells. Parallel Computing, 25:361 – 380.

Colella, P. (1990). Multidimensional upwind methods for hyperbolic conservation laws.
JCP, 87(1):171 – 200.

Colella, P., Dorr, M. R., Hittinger, J. A. F., and Martin, D. F. (2011). High-order,
finite-volume methods in mapped coordinates. JCP, 230:2952 – 2976.

Colella, P. and Glaz, H. M. (1985). Efficient solution algorithms for the Riemann problem
for real gases. JCP, 59:264 – 289.

Colella, P. and Sekora, M. D. (2008). A limiter for PPM that preserves accuracy at
smooth extrema. JCP, 227:7069 – 7076.

Colella, P. and Woodward, P. R. (1984). The Piecewise Parabolic Method (PPM) for
Gas-Dynamical Simulations. JCP, 54:174 – 201.

DeRosa, M. L., Gilman, P. A., and Toomre, J. (2002). Solar Multiscale Convection and
Rotation Gradients Studied in Shallow Spherical Shells. ApJ, 581:1356.

Donat, R. and Marquina, A. (1996). Capturing Shock Reflections: An Improved Flux
Formula. JCP, 125:42 – 58.

Evans, L. C. (2002). Partial Differential Equations, volume 19 of Graduate Studies in
Mathematics. American Mathematical Society, 2nd edition.

Evonuk, M. and Glatzmaier, G. A. (2006). 2D study of the effects of the size of a solid
core on the equatorial flow in giant planets. Icarus, 181:458 – 464.

Evonuk, M. and Glatzmaier, G. A. (2007). The effects of rotation rate on deep convection
in giant planets with small solid cores. Planetary and Space Science, 55:407 – 412.

Fehlberg, E. (1970). Klassische Runge–Kutta–Formeln vierter und niedrigerer Ordnung
mit Schrittweiten–Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme. Com-
puting, 6(1):61 – 71.

Ferziger, J. H. and Perić, M. (2002). Computational Methods for Fluid Dynamics.
Springer, Berlin, 3rd edition.

Fornberg, B. (1998). A Practical Guide to Pseudospectral Methods, volume 1 of Cam-
bridge Monographs on Applied and Computational Mathematics. Cambridge Univer-
sity Press.

Freytag, B., Steffen, M., and Dorch, B. (2002). Spots on the surface of Betelgeuse —
Results from new 3D stellar convection models. Astron. Nachr., 323:213 – 219.

Freytag, B., Steffen, M., Ludwig, H.-G., Wedemeyer-Böhm, S., Schaffenberger, W., and
Steiner, O. (2012). Simulations of stellar convection with CO5BOLD. JCP, 231:919
– 959.

Gander, M. J. (2005). Optimized Schwarz Methods. SIAM J. Numer. Anal., 44:699 –
731.

Gardiner, T. A. and Stone, J. M. (2008). An unsplit Godunov method for ideal MHD
via constrained transport in three dimensions. JCP, 227(8):4123 – 4141.

Georgobiani, D., Kosovichev, A., Nigam, R., Nordlund, A., and Stein, R. F. (2000).
Numerical Simulations of Oscillation Modes of the Solar Convection Zone. ApJL,
530(2):L139.

Glatzmaier, G. A. (1984). Simulations of Stellar Convective Dynamos. I. The Model and
Method. JCP, 55:461 – 484.

Gottlieb, S., Shu, C.-W., and Tadmor, E. (2001). Strong Stability-Preserving High-
Order Time Discretization Methods. SIAM Review, 43(1):89 – 112.

Grimm-Strele, H. (2010). Numerical solution of the generalised Poisson equation on
parallel computers. Master’s thesis, Universität Wien.

Grimm-Strele, H., Kupka, F., Löw-Baselli, B., Mundprecht, E., Zaussinger, F., and
Schiansky, P. (2013a). Realistic Simulations of Stellar Surface Convection with
ANTARES: I. Boundary Conditions and Model Relaxation. NewA. Available at
http://arxiv.org/abs/1305.0743.

Grimm-Strele, H., Kupka, F., and Muthsam, H. J. (2013b). Curvilinear Grids for WENO
Methods in Astrophysical Simulations. Computer Physics Communications. Available
at http://arxiv.org/abs/1308.3066.

Grinstein, F. F., Margolin, L. O., and Rider, W. J. (2007). Implicit large eddy simulation:
computing turbulent fluid dynamics. Cambridge University Press.

Guillard, H. and Murrone, A. (2004). On the behavior of upwind schemes in the low
Mach number limit: II. Godunov type schemes. Computers & Fluids, 33:655 – 675.

Guillard, H. and Viozat, C. (1999). On the behaviour of upwind schemes in the low
Mach number limit. Computers & Fluids, 28:63 – 86.

Happenhofer, N. (2013). Efficient Time Integration of the Governing Equations in As-
trophysical Hydrodynamics. PhD thesis, Universität Wien.

Happenhofer, N., Grimm-Strele, H., Kupka, F., Löw-Baselli, B., and Muthsam, H. J.
(2013). A low Mach number solver: Enhancing applicability. JCP, 236:96 – 118.

Hesthaven, J. S. and Warburton, T. (2008). Nodal Discontinuous Galerkin Methods:
Algorithms, Analysis, and Applications, volume 54 of Texts in Applied Mathematics.
Springer Berlin New–York Heidelberg.

Heun, K. (1900). Neue Methoden zur approximativen Integration der Differentialgle-
ichungen einer unabhängigen Veränderlichen. Z. Math. Phys, 45:23 – 38.

Hotta, H., Rempel, M., Yokoyama, T., Iida, Y., and Fan, Y. (2012). Numerical calcu-
lation of convection with reduced speed of sound technique. A&A, 539:A30.

Jiang, G.-S. and Shu, C.-W. (1996). Efficient Implementation of Weighted ENO Schemes.
JCP, 126:202 – 228.

Kageyama, A. and Sato, T. (2004). The “Yin-Yang Grid”: An Overset Grid in Spherical
Geometry. Geochemistry Geophysics Geosystems, 5:1 – 15.

Ketcheson, D. I., Macdonald, C. B., and Gottlieb, S. (2009). Optimal implicit strong
stability preserving Runge–Kutta methods. Applied Numerical Mathematics, 59:373
– 392.

Kifonidis, K. and Müller, E. (2012). On multigrid solution of the implicit equations of
hydrodynamics. Experiments for the compressible Euler equations in general coordi-
nates. A&A, 544:A47.

Kraaijevanger, J. F. B. M. (1991). Contractivity of Runge-Kutta methods. BIT,
31(3):482 – 528.

Kupka, F. (2009a). 3D stellar atmospheres for stellar structure models and asteroseis-
mology. MmSAI, 80:701 – 710.

Kupka, F. (2009b). Turbulent Convection and Simulations in Astrophysics, chapter 3,
pages 49–105. Springer Lecture Notes in Physics 756.

Kupka, F., Happenhofer, N., Higueras, I., and Koch, O. (2012). Total-variation-
diminishing implicit–explicit Runge–Kutta methods for the simulation of double-
diffusive convection in astrophysics. JCP, 231:3561 – 3586.

Kwatra, N., Su, J., Gretarsson, J. T., and Fedkiw, R. (2009). A method for avoiding
the acoustic time step restriction in compressible flow. JCP, 228:4146 – 4161.

Lemmerer, B., Utz, D., Hanslmeier, A., Veronig, A., Thonhofer, S., Grimm-Strele, H.,
and Karyappa, R. (2013). 2D Segmentation of small convective patterns in RHD
simulations. A&A. Submitted to A&A.

LeVeque, R. J. (2004). Finite–Volume Methods for Hyperbolic Problems. Cambridge
Texts in Applied Mathematics. Cambridge University Press.

LeVeque, R. J. (2007). Finite Difference Methods for Ordinary and Partial Differential
Equations. Steady State and Time Dependent Problems. Society for Industrial and
Applied Mathematics (SIAM).

Lilly, D. K. (1996). A comparison of incompressible, anelastic and Boussinesq dynamics.
Atmospheric Research, 40:143 – 151.

Liska, R. and Wendroff, B. (2003). Comparions of Several Difference Schemes on 1D and
2D Test Problems for the Euler Equations. SIAM Journal on Scientific Computing,
25:1 – 30. Available at http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/

compare8/.

Macdonald, C. B. and Ruuth, S. J. (2008). Level Set Equations on Surfaces via the
Closest Point Method. Journal Of Scientific Computing, 35:219 – 240.

Magic, Z., Collet, R., Asplund, M., Trampedach, R., Hayek, W., Chiavassa, A., Stein,
R. F., and Nordlund, A. (2013). The Stagger-grid: A Grid of 3D Stellar Atmosphere
Models. I. Methods and General Properties. A&A, 557:A26.

Merriman, B. (2003). Understanding the Shu–Osher Conservative Finite Difference
Form. Journal Of Scientific Computing, 19:309 – 322.

Miczek, F. (2013). Simulation of low Mach number astrophysical flows. PhD thesis, TU
München.

Mihalas, D. (1978). Stellar Atmospheres. W. H. Freeman and Co.

Mocz, P., Vogelsberger, M., Sijacki, D., Pakmor, R., and Hernquist, L. (2013). A dis-
continuous Galerkin method for solving the fluid and MHD equations in astrophysical
simulations. MNRAS. Available at http://arxiv.org/abs/1305.5536.

Motamed, M., Macdonald, C. B., and Ruuth, S. J. (2011). On the Linear Stability of
the Fifth-Order WENO Discretization. Journal Of Scientific Computing, 47(2):127 –
149.

Müller, E., Fryxell, B., and Arnett, D. (1991). Instability and clumping in SN 1987A.
A&A, 251:505 – 514.

Mundprecht, E., Muthsam, H. J., and Kupka, F. (2013). Multidimensional realistic
modelling of Cepheid-like variables. I. Extensions of the ANTARES code. MNRAS,
435:3191 – 3205.

Muthsam, H. J., Kupka, F., Löw-Baselli, B., Obertscheider, C., Langer, M., and Lenz, P.
(2010a). ANTARES – A Numerical Tool for Astrophysical RESearch with applications
to solar granulation. NewA, 15:460 – 475.

Muthsam, H. J., Kupka, F., Mundprecht, E., Zaussinger, F., Grimm-Strele, H., and Hap-
penhofer, N. (2010b). Simulations of stellar convection, pulsation and semiconvection.
In Brummell, N., Brun, A., Miesch, M., and Ponty, Y., editors, Astrophysical Dynam-
ics: From Stars to Galaxies, number 271 in Proceedings IAU Symposium, pages 179
– 186.

Muthsam, H. J., Löw-Baselli, B., Obertscheider, C., Langer, M., Lenz, P., and Kupka,
F. (2007). High–resolution models of solar granulation: the two–dimensional case.
MNRAS, 380:1335 – 1340.

Nonomura, T., Iizuka, N., and Fujii, K. (2010). Freestream and vortex preservation
properties of high-order WENO and WCNS on curvilinear grids. Computers & Fluids,
39(2):197 – 214.

Nordlund, A. (1982). Numerical simulations of the solar granulation. I. Basic equations
and methods. A&A, 107:1 – 10.

Nordlund, A., Stein, R. F., and Asplund, M. (2009). Solar Surface Convection. Living
Rev. Solar Phys., 6:1 – 117. Cited on January 16, 2013.

Obertscheider, C. (2007). Modelling of solar granulation — Implementation and com-
parison of numerical schemes. PhD thesis, Universität Wien.

Pärt-Enander, E. and Sjögreen, B. (1994). Conservative and non-conservative interpo-
lation between overlapping grids for finite volume solutions of hyperbolic problems.
Computers & Fluids, 23:551 – 574.

Peng, X., Xiao, F., and Takahashi, K. (2006). Conservative constraint for a quasi-
uniform overset grid on the sphere. Q. J. R. Meteorol. Soc., 132:979 – 996.

Pereira, T. M. D., Asplund, M., Collet, R., Thaler, I., Trampedach, R., and Leenaarts,
J. (2013). How realistic are solar model atmospheres? A&A, 554:A118.

Pope, S. B. (2000). Turbulent Flows. Cambridge University Press.

Rai, M. M. (1986). A Conservative Treatment of Zonal Boundaries for Euler Equation
Calculations. JCP, 62:472 – 503.

Rempel, M., Schüssler, M., and Knölker, M. (2009). Radiative Magnetohydrodynamic
Simulation of Sunspot Structure. ApJ, 691:640.

Robinson, F. J., Demarque, P., Li, L. H., Sofia, S., Kim, Y.-C., Chan, K. L., and Guen-
ther, D. B. (2004). Three-dimensional simulations of the upper radiation–convection
transition layer in subgiant stars. MNRAS, 347(4):1208 – 1216.

Ronchi, C., Iacono, R., and Paolucci, P. S. (1996). The “Cubed Sphere”: A New Method
for the Solution of Partial Differential Equations in Spherical Geometry. JCP, 124:91
– 114.

Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics.

Sadourny, R. (1972). Conservative Finite-Difference Approximations of the Primitive
Equations on Quasi-Uniform Spherical Grids. Monthly Weather Review, 100:136 –
144.

Saltzman, J. (1994). An Unsplit 3D Upwind Method for Hyperbolic Conservation Laws.
JCP, 115(1):153 – 168.

Sebastian, K. and Shu, C.-W. (2003). Multidomain WENO Finite Difference Method
with Interpolation at Subdomain Interfaces. Journal Of Scientific Computing, 19:405
– 438.

Shu, C.-W. (2001). High Order Finite Difference and Finite Volume WENO Schemes
and Discontinuous Galerkin Methods for CFD. Technical Report 2001-11, ICASE,
NASA Langley Research Center.

Shu, C.-W. (2003). High-order Finite Difference and Finite Volume WENO Schemes and
Discontinuous Galerkin Methods for CFD. International Journal of Computational
Fluid Dynamics, 17(2):107 – 118.

Shu, C.-W. and Osher, S. (1988). Efficient implementation of essentially non-oscillatory
shock-capturing schemes. JCP, 77(2):439 – 471.

Smagorinsky, J. (1963). General Circulation Experiments with the Primitive Equations.
I. The Basic Experiment. MWR, 91:99 – 164.

Sod, G. A. (1978). A survey of several finite difference methods for systems of nonlinear
hyperbolic conservation laws. JCP, 27(1):1 – 31.

Stein, R. F. and Nordlund, A. (1998). Simulations of Solar Granulation. I. General
Properties. ApJ, 499:914 – 933.

Strikwerda, J. C. (1989). Finite Difference Schemes and Partial Differential Equations.
Wadsworth & Brooks/Cole.

Tannehill, J. C., Anderson, D. A., and Pletcher, R. H. (1997). Computational Fluid
Mechanics and Heat Transfer. Taylor & Francis.

Taylor, E. M., Wu, M., and Martin, M. P. (2007). Optimization of nonlinear error
for weighted essentially non-oscillatory methods in direct numerical simulations of
compressible turbulence. JCP, 223:384 – 397.

Thompson, J. F., Warsi, Z. U. A., and Wayne Mastin, C. (1985). Numerical Grid
Generation. Foundations and Applications. North–Holland.

Toomre, J., Augustson, K., Brown, B. P., Browning, M. K., Brun, A. S., Featherstone,
N. A., and Miesch, M. S. (2012). New Era in 3-D Modeling of Convection and Mag-
netic Dynamos in Stellar Envelopes and Cores. In Shibahashi, H., Takata, M., and
Lynas-Gray, A. E., editors, Progress in Solar/Stellar Physics with Helio- and Astero-
seismology, volume 462, page 331.

Toro, E. F. (2009). Riemann solvers and numerical methods for fluid dynamics: a
practical introduction. Springer Berlin New–York Heidelberg.

Trampedach, R., Asplund, M., Collet, R., Nordlund, A., and Stein, R. F. (2013). A
Grid of 3D Stellar Atmosphere Models of Solar Metallicity: I. General Properties,
Granulation and Atmospheric Expansion. ApJ, 769:18.

Viallet, M., Baraffe, I., and Walder, R. (2011). Towards a new generation of multi-
dimensional stellar evolution models: development of an implicit hydrodynamic code.
A&A, 531:A86.

Vinokur, M. (1974). Conservation Equations of Gasdynamics in Curvilinear Coordinate
Systems. JCP, 14:105 – 125.

Visbal, M. R. and Gaitonde, D. V. (2002). On the Use of Higher-Order Finite-Difference
Schemes on Curvilinear and Deforming Meshes. JCP, 181:155 – 185.

Vögler, A., Shelyag, S., Schüssler, M., Cattaneo, F., Emonet, T., and Linde, T. (2005).
Simulations of magneto-convection in the solar photosphere. A&A, 429:335 – 351.

Wang, R. and Spiteri, R. J. (2007). Linear Instability of the Fifth-Order WENO Method.
SIAM J. Numer. Anal., 45(5):1871 – 1901.

Warming, R. F. and Beam, R. M. (1976). Upwind Second-Order Difference Schemes
and Applications in Aerodynamic Flows. AIAA Journal, 14(9):1241 – 1249.

Washington, W. M., Buja, L., and Craig, A. (2009). The computational future for
climate and Earth system models: on the path to petaflop and beyond. Phil. Trans.
R. Soc. A, 367(1890):833 – 846.

Wesseling, P. (2001). Principles of Computational Fluid Dynamics, volume 29 of
Springer Series in Computational Mathematics. Springer, Berlin Heidelberg New–
York.

Wongwathanarat, A. (2013). Rotation of vectors. Private communication.

Wongwathanarat, A., Hammer, N. J., and Müller, E. (2010). An axis-free overset grid
in spherical polar coordinates for simulating 3D self-gravitating flows. A&A, 514:1 –
14.

Zaussinger, F. and Spruit, H. (2013). Semiconvection: numerical simulations. A&A,
554:A119.

Zhang, R., Zhang, M., and Shu, C.-W. (2011). On the Order of Accuracy and Numerical
Performance of Two Classes of Finite Volume WENO Schemes. Commun. Comput.
Phys., 9(3):807 – 827.

Zingale, M., Nonaka, A., Almgren, A. S., Bell, J. B., Malone, C. M., and Orvedahl,
R. (2013). Low Mach Number Modeling of Convection in Helium Shells on Sub-
Chandrasekhar White Dwarfs. I. Methodology. ApJ, 764:97 – 110.

