

MASTERARBEIT

Titel der Masterarbeit

A Large Neighborhood Search Metaheuristic
for the Personal Planning Problem

Verfasst von

Piotr Matl, BSc

angestrebter akademischer Grad

Master of Science (MSc)

Wien, 2014

Studienkennzahl lt. Studienblatt: A 066 914
Studienrichtung lt. Studienblatt: Masterstudium Internationale Betriebswirtschaft
Betreut von: O.Univ.Prof. Dipl-Ing. Dr. Richard F. Hartl

Acknowledgements

I would like to thank O.Univ.Prof. Dipl.-Ing. Dr. Richard Hartl for giving me the op-

portunity to write this thesis at the Chair of Production and Operations Management

at the University of Vienna. Working on this project has been a valuable experience

and would otherwise not have been possible. I am also very grateful to Dr. Fabien

Tricoire for offering me the chance to work on this topic, and for his constructive

feedback on the algorithm implementation and for reviewing this thesis.

My thanks also go out to Dr. Pamela Nolz and Dr. Ulrike Ritzinger from the Aus-

trian Institute of Technology for their reliable support during all phases of this project,

as well as to DI Markus Straub for his effective technical assistance. Great teamwork

made this adventure that much more enjoyable. The financial support from the AIT

is also gratefully acknowledged.

Last but not least, my caring parents. It just would not have been the same ex-

perience without them asking every week: “So are you finally done with that project?

When are you visiting?!”

Contents

List of Figures iii

List of Tables v

List of Algorithms vii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Description . 2

1.3 Related Research . 3

2 The Personal Planning Problem 7

2.1 Input Data and Pre-Processing . 7

2.2 Mathematical Model . 9

2.2.1 Decision Variables . 9

2.2.2 Objective Functions . 9

2.2.3 Constraints . 11

2.3 Selecting an Appropriate Metaheuristic 13

2.3.1 Defining Characteristics of the PPP 13

2.3.2 Challenges for Local Search Methods 14

2.3.3 Challenges for Evolutionary Methods 15

3 Large Neighborhood Search 17

3.1 General Framework and Extensions . 17

3.2 Recent Applications . 19

3.2.1 LNS with Exact Methods . 19

i

3.2.2 Purely Heuristic LNS . 20

3.2.3 Multi-Objective LNS . 22

3.3 Advantages of LNS for Solving the PPP 23

3.3.1 Reduced Need for Complex Feasibility Evaluations 24

3.3.2 Navigation Across Disconnected Solution Spaces 25

3.3.3 Synergy with Generating an Approximation Front 26

4 The Proposed Metaheuristic 27

4.1 High-Level Layer . 28

4.1.1 Exploration Phase . 28

4.1.2 Consolidation Phase . 29

4.1.3 Refinement Phase . 30

4.2 Medium-Level Layer . 31

4.2.1 Destroy Operators . 31

4.2.2 Repair Operators . 35

4.2.3 Efficiency Evaluation . 39

4.3 Low-Level Layer . 40

4.3.1 Timing Update . 40

4.3.2 Slack Update . 45

4.3.3 Insertion Feasibility Evaluation 47

5 Computational Experiments 51

5.1 Data Sets . 51

5.2 Parameter Settings . 52

5.3 Instances with Exact Reference Sets . 54

5.4 Instances with Approximate Reference Sets 57

6 Conclusion 63

Bibliography 65

Abstract (English) 69

Abstract (German) 70

Curriculum Vitae 71

ii

List of Figures

1 Processing Tasks and Locations into Visits 8

2 A Typical Approximation Set for a PPP Instance 28

3 Overview of Destroy Operator Characteristics 32

4 Overview of Repair Operator Characteristics 36

5 Example Timing Update (1/4) . 41

6 Example Timing Update (2/4) . 42

7 Example Timing Update (3/4) . 42

8 Example Timing Update (4/4) . 43

9 Example Insertion (1/3) . 48

10 Example Insertion (2/3) . 49

11 Example Insertion (3/3) . 49

12 Approximation Set of Run with Worst Hypervolume % 56

13 Approximation Set of Run with Worst Epsilon Indicator 57

14 Average Front Size over 10 Runs . 58

15 Average Run Time over 10 Runs, in Seconds 60

16 Hypervolume Growth by Search Progress 61

iii

iv

List of Tables

1 Parameters of the Proposed Metaheuristic 52

2 Default Parameter Values . 54

3 Results for Benchmark Instances (10 Runs Each) 55

4 Summary of Results on Benchmark Instances 55

5 Modified Parameter Values for Extended Runs 57

6 Results for Larger Instances (10 Runs Each) 59

7 Summary of Results on Larger Instances 60

v

vi

List of Algorithms

1 Large Neighborhood Search . 18

2 Timing Update . 44

3 Slack Calculation . 46

vii

viii

Chapter 1

Introduction

“So much to do, so little time.”

1.1 Motivation

Balancing professional obligations with one’s private life can be challenging. Self-

employed people in particular (e.g. event managers, photographers, consultants)

tend to have busy and complex schedules with multiple projects and clients, but

without a clear distinction between fixed working hours and leisure time. Although

this flexibility can be an advantage, realizing its full potential may be far from simple.

An intelligent schedule optimizer with built-in routing functionality can support

busy people in planning their work and getting the most out of their leisure time. De-

termining when, where, and in what order to get things done can be overwhelming

for a person when their schedule is very flexible due to the large number of options

and combinations. Yet more flexible schedules have more potential for time savings.

A sophisticated optimizer can help users overcome this complexity by filtering out

the large number of inefficient options and presenting only a few of the best stream-

lined suggestions.

The development of such an optimization application was one of the aims of

a research project initiated by the Austrian Research Promotion Agency. Carried

out in cooperation with the Austrian Institute of Technology, this thesis presents

a mathematical model for a combined scheduling and routing problem that cap-

tures the real-life challenge faced by people with complex and flexible schedules,

and proposes an algorithm to efficiently solve it. The optimization algorithm has

been successfully implemented and embedded within a prototype mobile applica-

tion for end-users.

1

1.2 Problem Description

As described above, the problem to be solved is motivated by the challenges faced

by mobile self-employed entrepreneurs. These people have a variety of tasks which

they may need to perform at various locations (e.g. meetings with different clients,

project work at different venues). These tasks may be subject to timing constraints

(e.g. arranged appointment times, opening hours), and they may have varying levels

of importance or urgency (e.g. submitting a deliverable, versus cleaning the home

office). The problem can therefore be modeled as an orienteering problem with time

windows (OPTW), where the nodes are the tasks and their locations, the profits at

the nodes represent the importance of those tasks, and the service times measure

how much time the tasks require.

Several extensions to the classic OPTW are needed to model additional real-life

aspects. First, tasks may have several possible locations to choose from. For exam-

ple, art supplies may be bought at a number of different shops, eating out can be

done at various restaurants, and packages can be sent from any post office. Second,

efficient schedules should not be short-sighted and should be based on a planning

horizon longer than just one day. As a result, tasks and locations may have multiple

time windows during the planning horizon. For instance, a bank may be open only

on weekdays, and its opening hours may be split due to a midday break. Similarly,

tasks such as having lunch at noon may have their own time windows independent

of their potential locations.

In addition, sets of tasks may be connected by precedence relations. For ex-

ample, the subsequent stages of a project (e.g. music composition, practice, and

recording), may be done individually at any time, but not in any order. Furthermore,

it may be necessary to respect a certain time delay between related tasks. For exam-

ple, if the person wishes to exercise three times per week, they may wish to allocate

a day for rest between each session. This can be modeled by imposing a minimum

time delay constraint between the individual sessions. Similarly, a maximum time

delay constraint may be added to ensure that tasks are not too far apart.

Finally, the overall “quality” of a schedule depends not only on its score in terms

of the tasks planned, but also on the efficiency of their timing and routing. These

two aspects are conflicting, and people may also have varying preferences with re-

gard to the trade-off between getting more tasks done and having more free time. As

a result, there exists in most cases no single unique best solution which maximizes

both objectives simultaneously. Nonetheless, a solution can still be better than an-

other, for instance if both its profit and free time values are higher thanks to a more

efficient routing plan.

In general, a solution is said to dominate another if it is not worse in any ob-

jective, and better in at least one. A solution which cannot not dominated by any

other feasible solution is Pareto-optimal, and it is not possible to improve any of

2

its objective values without deteriorating another. Similarly, a solution is efficient

or non-dominated with respect to a reference set if it is not dominated by any of

the solutions in that set. Pareto-optimal solutions are always efficient, and the set

of all Pareto-optimal solutions dominates all other solutions to the problem. From

this perspective, the Pareto-optimal set can be considered the optimal “answer” to a

multi-objective problem.

For these reasons, a bi-objective model is proposed so that both of the above-

mentioned aspects of schedule quality can be taken into account. This also allows

to present the decision maker with a set of different schedules which he or she may

compare and choose from.

The classic OPTW is thus extended into a bi-objective OPTW with multiple time

windows per task and location, multiple locations per task, precedence relations, as

well as minimum and maximum time delays between related tasks. We propose to

call this extension the Personal Planning Problem (PPP).

1.3 Related Research

A large body of research has been published on the OP and its variants. A recent

review of this research, including the OPTW and variants of the team orienteering

problem (TOP) is presented in [43]. The OP itself can also be formulated as a trav-

eling salesman problem with profits (TSPP), of which a slightly older review is pro-

vided by [10]. The PPP is most similar to the OPTW, with some similarity to the TOP

with time windows (TOPTW) due to multiple visits to the depot (i.e. home) location.

As noted by [43], not much research has been published specifically on the OPTW,

but the TOP with time windows (TOPTW) is a generalization that has been given

noticeable attention.

An exact solution method to orienteering problems including the TOPTW is pro-

posed in [4]. However, due to the problem’s difficulty and real-life applications most

research on the TOPTW has focused on heuristic approaches [43]. [42] propose a

fast and deterministic iterated local search (ILS) to solve the problem in only a few

seconds. New benchmark instances are also introduced. [23] propose an ant colony

optimization (ACO) algorithm which finds superior results, but requires more com-

putation time. An enhanced version of this ACO is proposed by the same authors

in [24]. Motivated by a real industrial problem, [40] present a rich extension of the

OPTW with multiple periods and multiple time windows per profit point (MuPOPTW).

In this case the authors focus more on solution quality and combine a variable neigh-

borhood search (VNS) with an exact route feasibility check. The VNS of [40] also

produces high quality results on the (T)OPTW benchmark instances, though at the

expense of additional run time.

A number of competing solution methods for the TOPTW have recently been

3

published. [19] combine a greedy randomized adaptive search procedure (GRASP)

algorithm with variable neighborhood descent (VND). The procedure is shown to

have a low average gap to the best known solutions, and some new best solutions are

identified. [20] introduce a granular VNS (GVNS) in which the efficiency of neigh-

borhood exploration is boosted by exploiting dual information from an LP formu-

lation of a sub-problem. The GVNS of [20] further improves the set of best known

benchmark solutions.

A relatively straightforward heuristic for the TOPTW is proposed by [22]. The au-

thors randomly explore one of the common swap, move, and 2-opt neighborhoods,

and embed this local search within a simulated annealing (SA) framework. Fast and

slow versions of the algorithm are tested by changing the stopping criterion, and

both variants produce new best solutions. [11] extend the ILS of [42] with a clus-

tering mechanism to mitigate some of the algorithm’s weaknesses when applied to

practical tourist trip design problems. An artificial bee colony (ABC) approach is

presented in [8]. Very recently, [14] combine heuristic and exact methods: the au-

thors propose a local search with perturbation elements, embedded in a SA frame-

work, to generate a set of neighbor solutions to the incumbent, and then solve a set

packing formulation of the TOPTW based on the pool of routes among the discov-

ered neighbor solutions. [14] find 35 new best solutions and their algorithm outper-

forms previous methods in terms of average performance.

The multi-constraint TOP with multiple time windows (MCTOPMTW) introduced

by [39] is similar to the PPP in some respects. In this formulation, the vertices may

have multiple time windows (as in the PPP), and they may have several different at-

tributes which are subject to knapsack constraints. [39] are motivated by a tourism

application where the different attributes can for instance represent entry costs (to

limit total spend) or point-of-interest categories (to accommodate “max-n-type con-

straints” such as only visiting at most n museums). Such attribute data could be

used in the PPP to model types of tasks which are to be done regularly a certain

number of times, and to ensure that each task is planned at only one of its possible

visits. However, the precedence constraints and the minimum/maximum time de-

lay constraints still remain, and these are the most complicating factors in the PPP.

Despite this large number of publications, little attention has been given to multi-

objective formulations of the OP or its variants. This is somewhat surprising since

the TSPP and OP are characterized by an inherent conflict between the profit col-

lected and the distance traveled. However, most researchers solve these problems

in a single-objective way by considering the distance/cost objective as a constraint,

or sequentially solving such a single-objective problem with different limits on this

constraint [10].

Nonetheless, some true multi-objective approaches have recently been proposed.

[35] present a multi-objective OP (MOOP) arising in the tourism sector. The objec-

4

tives refer in this case to the different categories of points of interest (e.g. culture,

leisure, dining), with each such point offering different degrees of benefits for each

category. An ant colony optimization (ACO) algorithm and a variable neighborhood

search (VNS) are developed to generate non-dominated fronts of potential solu-

tions. Both procedures are tested for the bi-objective OP (BOOP) on benchmark in-

stances as well as on real-life instances from the cities of Vienna, Austria and Padua,

Italy. An important point of difference between the BOOP presented by [35] and the

bi-objective PPP is that the objective functions in the PPP are highly correlated.

[41] proposes a general algorithmic framework (multi-directional local search,

MDLS) for solving multi-objective problems including the BOOP. The non-dominated

set is iteratively improved using single-objective improvement algorithms for each

objective. The framework is tested on the BOOP instances of [35] and improved re-

sults are obtained.

Also motivated by tourism applications, [30] present a formulation with three

objectives: minimizing distance traveled, minimizing the cost of scheduled activi-

ties, and maximizing the utility gained from those activities (a fourth objective for

the deviation of time spent on activities is also introduced, but treated as a con-

straint). Constraints include visiting hours, lunch and dinner breaks, and prefer-

ence information on the types of activities. The problem is solved using an inter-

active tabu search (TS) metaheuristic in which the search is guided by the decision

maker’s choices.

Most recently, a generic bi-objective branch-and-bound algorithm is presented

by [26] and applied specifically to the TOPTW. The authors use the MDLS of [41] to

compute upper bound sets, and column generation for lower bound sets. Compared

to the popular ε-constraint method, the approach of [26] has the notable advantage

of returning a much more evenly spaced and representative solution set if the search

is terminated early or times out.

This thesis adds to the research on the OP by explicitly considering the timing as-

pect as a second optimization objective besides the collected score, and introduces

several scheduling constraints not yet examined in the context of the OP. The thesis

is structured as follows:

Chapter 2 presents a mathematical model for the PPP, and discusses the char-

acteristics of the problem as they relate to developing a solution procedure. A large

neighborhood search (LNS) framework was chosen for this purpose - Chapter 3 de-

scribes the LNS framework and reviews recent advances and applications. Chapter 4

describes in detail the search strategy and constituent elements of the implemented

metaheuristic. Since there exist no benchmark instances for the PPP, the algorithm

was tested on a set of new instances developed by the Austrian Institute of Tech-

nology - Chapter 5 describes the data sets and reports the results of computational

experiments. Conclusions and closing remarks are made in Chapter 6.

5

6

Chapter 2

The Personal Planning Problem

As with many routing problems, the PPP can be modeled on a graph. Like in the

standard OP and its extensions, the tasks are performed on the nodes of the graph,

which in turn represent locations on the plane. The arcs between the nodes are

then the connections (distance, travel time) between adjacent tasks/locations. This

section presents the mathematical formulation of the PPP, and analyzes the defin-

ing characteristics of the problem with regard to choosing an appropriate solution

method.

2.1 Input Data and Pre-Processing

The set of locations L is given. Each location has at least one time window, and a

distance/travel time matrix is provided. Note that the location time windows are

independent of any tasks which might be performed at these locations. The set of

tasks T is also provided. Tasks may be performed at one of several possible locations,

but note that they cannot be split between locations. Each task has a set of available

time windows, a given profit, and a service time.

At this point, a significant difference between the PPP and the standard OP and

its variants is clear. In the PPP it is possible that two or more tasks are performed

at the same location, and that the same location is visited multiple times, possibly

during two or more of the location’s different time windows. This leads to some

complications with the mathematical model and subsequent implementation.

In order to deal with the first extension (multiple locations per task), location

nodes are duplicated so that every location node is associated with exactly one task.

This results in location nodes with two sets of time windows - one set for the location

itself, and one set for its associated task. In order to accommodate the second ex-

tension (multiple time windows per task and location), the overlaps between every

location’s two sets of time windows are determined. For each overlap that is equal

7

to or greater than the service time of the location’s allocated task, a copy of the loca-

tion is created with that overlap as its only time window. Figure 1 below provides a

graphical representation for one task and one of its locations. All of the task’s time

windows are compared with the time windows of the selected location, and all over-

laps which are at least as large as the task’s service time result in separate visits:

Figure 1: Processing Tasks and Locations into Visits

To avoid confusion with the original set of locations L, this processed set of

nodes will be referred to as the set of feasible visits V . Since each visit maps to a

unique and feasible combination of one task, one location, and one (combined)

time window, it is possible to generate a distance matrix between visits and express

the original problem on a graph of visits rather than locations. This leads to the

following notation:

V j the set of available visits for task j

[oi ,ci] the (only) time window at visit i

pi the profit of the task associated with visit i

ti the service time of the task associated with visit i

di j the travel time between the locations of visits i and j

The resulting graph network significantly reduces redundancy as it contains (only)

all the individually feasible combinations of tasks, locations, and time windows.

Feasible routes through this network, i.e. feasible solutions to the problem, are then

subject to further constraints.

The PPP introduces two more extensions: precedence relations between tasks,

and minimum as well as maximum time delays between them. The following nota-

tion is added:

8

ρi the set of precedents of task i

δi the set of dependents of task i

αi j the minimum delay between tasks i and j

βi j the maximum delay between tasks i and j

The set of precedents ρi specifies which tasks must be performed before task i if

task i is performed. For each precedent j ∈ ρi , the minimum delay αi j / maximum

delay βi j specifies the minimum/maximum time that may be allotted between the

end time of precedent j and the start time of task i . With this information, it is possi-

ble to construct another set δi containing those tasks for which task i is a precedent.

These tasks are dependent on task i being in the solution. Although not necessary

for formulating the problem, this set is very useful for the solution procedure.

Finally, a set of mandatory tasks Ω ⊂ T is given, which holds those tasks that

must be scheduled for the solution to be feasible (e.g. fixed appointments). In ad-

dition, a constant ω specifies the minimum time above which idle time (i.e. time in

which no task and no travel time have been scheduled) counts as a free time slot for

meaningful leisure time. Time is discretized and can take only integer values.

2.2 Mathematical Model

2.2.1 Decision Variables

In the following, it is assumed that the input data has been pre-processed as ex-

plained in the previous section. A solution to the PPP can then be specified using

the following decision variables:

yi a binary variable taking the value 1 if task i is scheduled, 0 otherwise

vi a binary variable taking the value 1 if visit i is scheduled, 0 otherwise

xi j a binary variable taking the value 1 if the arc from visit i to visit j is used

σi the time at which task i is started

γi the start of service at visit i

wi the idle time before γi (does not include travel time from previous visit)

bi a binary variable taking the value 1 if there is a free time slot before visit i ,

0 otherwise

2.2.2 Objective Functions

There is a clear trade-off between taking on additional tasks, and enjoying more free

time. Keeping all other variables constant, every additional task added to an existing

schedule reduces the total free time within that schedule, and vice versa. The PPP is

9

therefore a bi-objective optimization problem. Roughly speaking, the aim is to max-

imize the subjective “satisfaction” of squeezing in (and hopefully accomplishing) as

many tasks as possible while maximizing the quality of the schedule’s timing.

In more mathematical terms, the first objective corresponds to maximizing the

sum of the profit scores of the scheduled tasks. This can easily be captured with the

following objective function:

f1 = max
∑
i∈T

pi yi (1)

Measuring the quality of a schedule’s timing is less straightforward. However,

it appears reasonable to base this objective on some numerical measure relating

to the schedule’s periods of idle time, i.e periods during which neither service nor

travel are planned. Admittedly, these periods could be seen as “free” time (positive)

or as “waiting” time (negative), depending on the individual. For this reason, the

following four objective functions are examined:

f2 = min
∑
i∈V

bi (2)

f3 = max
∑
i∈V

wi (3)

f4 = max(min
i∈V

wi) (4)

f5 = max(max
i∈V

wi) (5)

f2 minimizes the number of free time slots in the schedule. Free time slots are

defined as those periods of idle time wi greater than the time slot threshold ω. The

objective function f2 is motivated by the notion that decision makers may likely pre-

fer fewer, but longer and contiguous, periods of free time, rather than many smaller

and separated breaks.

Given two identical solutions, it is possible to manipulate the total number of

free time slots by shifting the visit start times forward or backward. When visits and

visit order are kept constant, shifting the start times affects only the distribution of

the available idle time, but not the overall total. In this way, it becomes possible to

eliminate smaller periods of idle time by squeezing tasks into longer uninterrupted

periods, and the freed up idle time is accumulated into fewer, but larger periods.

Thus, minimizing the number of free time slots results in schedules with generally

longer and uninterrupted periods of free time.

f3 maximizes the total idle time available in the schedule. Unlike f2, no distinc-

tion is made with regard to the distribution of this idle time. This objective function

10

makes no assumptions about the decision maker’s preference for longer or shorter

periods of free time, and in this way avoids the issue of generalizing such prefer-

ences.

f4 maximizes the minimum duration among the free time slots in the schedule.

The motive behind this objective function is to guarantee that if there are idle time

breaks in the decision maker’s schedule, they are all guaranteed to be at least of a

particular duration, which is maximized by this function. Decision makers may pre-

fer schedules with as many breaks of as long a duration as possible.

f5 maximizes the maximum duration among the free time slots in the schedule.

This objective function aims to ensure at least one free time slot that is as long as

possible, which is in some way a stronger version of f2. Like with f2, extending the

duration of an existing free time slot implies reducing the duration of another. How-

ever, unlike f2, f5 makes a distinction with regard to the distribution of the idle time

among the free time slots. f5 favors schedules in which one of the slots is as large

as possible. Since this also minimizes the other time slots, f5 brings the schedule as

close as possible to having one less time slot, whereas f2 only distinguishes whether

this is possible at all or not for the given solution’s visit order.

The proposed bi-objective model consists in general of f1 as the first objective

for the schedule’s score, and one of f2 to f5 for the second objective of the sched-

ule’s timing quality. However, f3 was eventually chosen as the second objective for

the purposes of the practical application. In any case, the objective functions are

optimized subject to the constraints presented below.

2.2.3 Constraints

A solution to the PPP can be modeled as a single giant tour spanning the entire plan-

ning horizon. In the following, visit 0 represents the start of the tour, and visit 1 the

end of the tour. Artificial tasks and visits, e.g. sleeping time at the decision maker’s

home, may be added to the model and enforced by adding them to the set of manda-

tory tasksΩ.

Constraint 6 ensures that tasks are marked as scheduled if one of their assigned

visits is planned. Constraints 7 and 8 ensure that these visits are planned only if

they are reached from a previous location, and then left to reach the next location,

respectively.

11

∑
j∈Vi

v j = yi ∀i ∈ T (6)

vi =
∑

j∈V \{1}
x j i ∀i ∈V \ {0} (7)

vi =
∑

j∈V \{0}
xi j ∀i ∈V \ {1} (8)

oi vi ≤ γi ∀i ∈V (9)

γi + ti ≤ ci +M(1− zi) ∀i ∈V (10)

σi = γ j ∀i ∈ T,∀ j ∈Vi (11)

γi + ti +di j xi j ≤ γ j +M(1−xi j) ∀i , j ∈V (12)

w j ≤ γ j − (γi + ti +di j xi j)+M(1−xi j) ∀i , j ∈V (13)

w j ≥ γ j − (γi + ti +di j xi j)−M(1−xi j) ∀i , j ∈V (14)

w j ≤ z j ·M ∀ j ∈V (15)

b j ·M ≥ w j −ω ∀ j ∈V \ {0} (16)

yi < y j ∀i ∈ T,∀ j ∈ ρi (17)

σi ≤σ j + t j +βi j +M(1− yi) ∀i ∈ T,∀ j ∈ ρi (18)

σi ≥σ j + t j +αi j −M(1− yi) ∀i ∈ T,∀ j ∈ ρi (19)

yi = 1 ∀i ∈Ω (20)

yi ∈ {0,1} ∀i ∈ T (21)

zi ∈ {0,1} ∀i ∈V (22)

bi ∈ {0,1} ∀i ∈V (23)

xi j ∈ {0,1} ∀i , j ∈V (24)

σi ≥ 0 ∀i ∈ T (25)

wi ≥ 0 ∀i ∈V (26)

Constraint 9 ensures that service at a scheduled visit starts only on or after the

visit’s opening time, and constraint 10 makes sure that the service is completed be-

fore the visit’s closing time. Constraint 11 then synchronizes the start of service at

the visit with the start of service of the corresponding task. Given these start times,

constraint 12 maintains the time consistency so that consecutive tasks are begun

only after the earlier task has been completed and enough travel time has been al-

lotted to reach the next task on or before its planned start time. Constraints 13, 14,

and 15 then set the idle times before start of service. Constraint 16, together with the

minimizing objective function, handles the number of free time slots in the sched-

ule.

12

Constraint 17 controls the start times of tasks linked by precedence relations

such that all of a task’s predecessors start before the task itself. In addition, con-

straints 18 and 19 enforce the maximum and minimum delays between related tasks.

Finally, constraint 20 ensures that all of the mandatory tasks are scheduled, and the

remaining constraints 21 to 26 define the domains of the decision variables.

2.3 Selecting an Appropriate Metaheuristic

At its core, the PPP is a form of a TSP with profits (TSPP). Within this broad range of

problems, it falls more specifically into the category of orienteering problems (OP),

in particular those with time windows (OPTW). A variety of solution methods have

been proposed for the TSPP, a survey of which is provided by [10]. Likewise, different

competing approaches have been developed for the OP and its variants, a recent

overview of which is available in [43]. As a result, there is a wide range of seemingly

promising options, and it is not immediately clear which solution strategy would be

most appropriate.

This section first examines the defining characteristics for the difficulty of the

PPP and the requirements relevant for the intended practical application. The suit-

ability of some common solution methods is then evaluated based on these features

in order to determine an appropriate strategy for tackling the PPP.

2.3.1 Defining Characteristics of the PPP

From the mathematical model presented in the previous section, it is clear that the

PPP is generally a tightly constrained problem. In addition to the classic constraints

on sub-tours and distances, feasibility is subject to time windows, precedence re-

lations, minimum and maximum time delays, and a set of mandatory tasks, which

themselves are also subject to these constraints. At the same time, the number of

feasible visits and thus schedules may generally be larger than in other OPs, be-

cause tasks can be performed at one of several locations, and both the tasks and

their locations offer several feasible time windows. PPP problem instances can thus

be tightly constrained in terms of the number of constraints, but not necessarily

over-constrained when it comes to the size of the feasible solution space.

In addition, the precedence and time delay constraints introduce a greater de-

gree of interdependency between the elements of a PPP solution than is usual in

other routing problems. For example, a 2-opt procedure at the start of a TSPP route

does not affect the elements at the end of the route. Likewise, tours in a VRP or TOP

can to a large extent be constructed and improved separately without affecting the

feasibility or structure of the other routes in the solution. This is not the case in the

PPP, where shifting a task with a tight time delay may require the shifting of a depen-

13

dent task either earlier and/or later in the route - and those shifts can themselves

trigger further changes as well. As a result, the design of efficient feasibility evalua-

tion of insertions, deletions, or shifts must consider the effect on the entire solution,

rather than only on a local level.

The bi-objective formulation of the PPP is another decisive characteristic for the

selection of a solution method. The planned commercial application of the problem

is intended for a large number of unrelated decision makers. A priori information

about the relative importance of the two objectives is therefore not available, making

aggregate methods for transforming the problem into a single-objective formulation

inappropriate. Furthermore, a varied and representative subset of efficient solutions

should be available from a single run of the solution procedure. Consequently, the

chosen solution method must be capable of yielding multiple efficient solutions that

are more or less evenly distributed along the approximation front.

Finally, the intended application should produce these results within at most a

few minutes of computation time. Although no rigorous formal proof has been pre-

sented, the PPP is a generalization of the OP, where the OP can be seen as a PPP with

only single locations per task, no timing aspects, and no precedence constraints.

The OP, in turn, is itself a generalization of the TSP, which is well-known to be NP-

Hard. As a result, only heuristic methods are expected to provide the required trade-

off between solution quality and computational time.

To conclude, the chosen solution procedure for the PPP should:

• account for a “rich” set of different types of constraints,

• handle the interdependencies between them,

• generate a varied and representative set of efficient solutions, and

• perform efficiently with limited computational resources.

2.3.2 Challenges for Local Search Methods

Local search methods such as Variable Neighborhood Search (VNS), Iterated Local

Search (ILS), or Tabu Search (TS) are based on the notion of neighborhoods. The

neighborhood N(s) of a current solution s is defined as all the solutions which can

be created by applying a corresponding neighborhood operator on s. The neighbor-

hood operator is generally designed to make minor changes to the solution so that

N(s) is relatively small and a complete search of the neighborhood remains compu-

tationally tractable. Examples of common neighborhood operators in the routing

field include move (moves a customer to another position in the current or in a dif-

ferent route) and swap (exchanges the positions of two customers).

14

Some general guidelines for the selection and design of metaheuristics for com-

binatorial optimization problems are presented in [13]. The authors emphasize that

methods based on local search should above all operate on a solution space S for

which it is easy to generate feasible solutions. In particular, it should be easy to

reach feasible neighbor solutions. Otherwise, the neighborhood N(s) will be filled

with infeasible moves, and restoring feasibility to the unusable neighboring solu-

tions would defeat the purpose of using small neighborhoods for quick evaluation.

With regard to the PPP, the presence of time windows means that simple opera-

tors modifying the order of the tasks are not likely to generate many feasible moves.

This is further compounded by the precedence constraints, and the allowable time

delays. Several tasks may be linked in order due to precedence relations between

successive tasks in the sequence. Tasks that are part of such a precedence chain are

even more restricted in where they may be moved, and the constraints on their or-

dering and timing place further limits on the timing options of other unrelated tasks.

The more complex the underlying scheduling constraints, the unlikelier it is for ba-

sic operators to lead to admissible solutions [37]. Yet using more complex operators

goes against the purpose of local search as a method for efficient neighborhood ex-

ploration.

In addition, for local search to be effective, optimal or near-optimal solutions to

the problem must be reachable from most, if not all, of the solutions in S through

paths defined by the neighborhoods [13]. This is unlikely to be possible or efficient

if these neighborhoods are small and highly restricted, due to the large number of

constraints as described above. It can be expected that such a local search would

exhibit a strong tendency to stagnate in “isolated” local optima [17, 38]. To overcome

this, penalty functions may be used to traverse the space of infeasible solutions, but

as pointed out by [37], this often leads to solutions which are “slightly infeasible”.

This becomes more than a “slight” problem when restoring feasibility is not simple,

as is the case in the PPP.

2.3.3 Challenges for Evolutionary Methods

Evolutionary methods, particularly genetic algorithms (GA)s, have been applied to

a variety of multi-objective optimization problems, as reviewed by [45]. In gen-

eral, these methods work by maintaining a population of solutions, evaluating their

characteristics, and recombining their constituent elements to create new solutions.

Poor solutions and their elements steadily disappear from the population, and the

search converges so that the solutions are distributed around one or several optima.

Since GAs operate by default on a set of solutions, they may be well-suited for also

returning a set of solutions as their output [5, 45], as required in the proposed PPP.

With regard to an application for the PPP, the major problem of evolutionary

15

techniques would be in maintaining the feasibility of the generated solutions. GAs

rely on the combination of elements from two or more solutions, and indeed, their

effectiveness can be a result of combining very different solutions from a purposely

diverse population [5, 45]. However, the more constrained the problem, the more

care must be paid to prevent infeasibility, or to restore it if it appears. In a GA,

maintaining feasibility would require a very careful design of the crossover opera-

tors. Given the number of constraints in the PPP, the operators would have to focus

on foreseeing and minimizing infeasibility, while simultaneously trying to capture

synergy between different solutions. Nonetheess, it is unlikely for infeasibility to be

avoided completely given the number of constraints in the PPP.

Given an infeasible solution to the PPP, it is not necessarily obvious what the un-

derlying cause is, or which fix would restore feasibility with minimal changes or at

minimal cost to the given solution. For example, if a task’s timing violates the time

window constraint, possible fixes include scheduling it at another of its time win-

dows, at another of its locations, deleting another task to make room in the schedule,

or removing the task itself. Changing to another time window or location may sim-

ply propagate infeasibility, so removal of another task or the task itself would seem

more promising in general. However, unlike in most other routing problems, even

the removal itself may introduce further infeasibility in the PPP if the task to remove

is mandatory, or part of a precedence chain. If it is part of a chain, then all of the

subsequent tasks would have to be removed as well, and the solution begins to de-

viate further and further from the structure originally intended by the evolutionary

algorithm’s selection strategy.

In summary, an evolutionary implementation for the PPP could be expected to

spend too much of its resources on ensuring or restoring feasibility, rather than ac-

tively optimizing the solution set.

16

Chapter 3

Large Neighborhood Search

After consideration of the issues discussed in Section 2.3, large neighborhood search

(LNS) was selected as a promising optimization method capable of dealing with the

particular challenges posed by the PPP. This chapter introduces the LNS framework,

reviews some recent applications, and discusses the advantages of LNS for solving

the PPP.

3.1 General Framework and Extensions

First introduced in 1998 by [38] and subsequently elaborated upon by [37] as ruin

and recreate, LNS is a metaheuristic framework based on the idea of gradually im-

proving an initial solution by destroying and subsequently repairing its constituent

parts. A destroy operator deletes certain parts of the solution, as defined by the op-

erator’s selection strategy. The resulting partial solution is then reconstructed with a

repair operator, which is essentially a construction algorithm. A neighborhood in an

LNS is defined as a combination of a destroy and repair operator. How the solution is

destroyed usually depends on some stochastic elements, and how it is reconstructed

depends on which of its parts were destroyed. Consequently, the resulting neighbor-

hood implicitly defined by the combination of the two operators is large, giving this

metaheuristic its name [28].

Pseudocode for an elementary LNS implementation for a minimization prob-

lem is presented in Algorithm 1 (adapted from [28]). The LNS procedure starts with

an initial feasible solution x. This initial solution may be created by a construction

heuristic, possibly the same one used in the repair phase. Either way, line 2 sets the

initial solution as the best found solution xbest . Line 3 begins the actual LNS search

phase, the length of which depends on a pre-defined stopping condition. Examples

for common stopping criteria are a set computation time, or a set number of iter-

ations. An iteration of the LNS starts in line 4 with the destroy phase. The destroy

17

Algorithm 1 Large Neighborhood Search

1: begin with a feasible solution x
2: xbest ← x
3: while stopping criterion not met do
4: x ′ ← destroy(x)
5: x ′ ← repair(x’)
6: if accept(x ′, x) then
7: x ← x ′
8: if cost(x ′) < cost(xbest) then
9: xbest ← x ′

10: return xbest

operator is applied to the working solution x to remove some elements and create a

partial new solution x ′. How much of the working solution x is destroyed will usually

depend on some intensity parameter. The partial new solution x ′ is then repaired in

line 5 by applying the repair operator. Lines 6 and 7 allow for the implementation of

an acceptance or selection criterion for choosing the working solution x for the next

iteration. The simplest possibility here is to always accept the new solution x ′ as the

next working solution, but many other options exist. For instance, a greedy search

might only continue subsequent iterations on improved solutions. In any case, the

cost of the new solution x ′ is compared with the best found solution so far xbest ,

and replaces the best found solution if the cost is lower. This marks the end of the

iteration, and the next one begins again on line 4, and this pattern continues until

the stopping criterion is reached. The best found solution xbest is returned in Line

10 as the algorithm’s output at the end of the search.

It is clear that the LNS concept is a very general metaheuristic, and that specific

applications will depend greatly on the particular destroy and repair operators cho-

sen for the problem to be solved. However, this general framework may still be ex-

tended further. One common extension is to define multiple destroy and/or repair

operators, rather than just one of each. The operators should be designed so that

they target different parts of the solution for destruction, and favor different recon-

struction patterns for rebuilding the solution. For the repair operators, a distinction

is also made between optimal and heuristic repair methods, where the optimal ones

reconstruct the best possible complete solution with an exact algorithm, and the

heuristic ones operate like construction heuristics [28].

In principle, LNS implementations with multiple destroy and repair operators

may select the operators randomly at each iteration. However, this selection can be

refined by keeping track of the success rates of individual operators or destroy/repair

operator combinations, and selecting the operators in each iteration based on statis-

tical measures of their past performance. Such LNS implementations are classified

as Adaptive Large Neighborhood Search (ALNS) algorithms.

18

3.2 Recent Applications

LNS is a relatively new metaheuristic, especially compared to more established ap-

proaches like tabu search or genetic algorithms. However, a number of success-

ful pioneering applications have recently been proposed, particularly in the rout-

ing and scheduling literature [28]. This section reviews those publications and their

contributions.

3.2.1 LNS with Exact Methods

The seminal LNS paper by [38] proposes the application of various destroy opera-

tors (e.g. worst or related removal), combined with a single, exact repair operator

based on constraint programming. [38] notes the synergy of moderate destroy op-

erators with exact algorithms - partial solutions represent more tractable problem

sizes for exact algorithms, and applying different destroy operators diversifies the

search. Since then, a number of similar applications have appeared, hybridizing the

LNS framework with an exact method.

[2] solve the VRPTW using a two-stage approach. The authors first minimize the

number of routes using a simulated annealing heuristic, and then minimize total

travel distance using an LNS combined with a heuristic branch-and-bound proce-

dure for the repair operation. With regard to this problem class, [2] conclude that

LNS is generally much better at minimizing the distance objective and relatively

poor at minimizing the route objective, confirming the findings of [38]. A similar

solution approach is proposed and similar conclusions are reported by the authors

also for the pickup-and-delivery problem with time windows (PDPTW) [3].

[36] proposes a decomposition-based approach for solving a bus rapid transit

route design problem. The problem is decomposed into the route design and route

evaluation levels. The space of route designs is searched with LNS, while the route

frequencies and passenger flows are determined using an LP model. Although the

LNS of [36] is not adaptive as such, it uses the route characteristics of the optimal

LP solutions for guiding the LNS operators. In addition, the exact approach is only

applied to promising route designs, i.e. a lower bound is computed for the selected

design before finding the optimal frequencies and flows.

[15] propose a general LNS combined with constraint programming for dial-a-

ride problems (DARPs). A distinguishing feature of their approach is that the method

does not search for the optimal reconstruction of the solution, but rather only for the

first feasible one. There is thus no direct attempt at finding improving solutions with

the constraint method. Instead, a simulated annealing acceptance criterion directs

the search in promising directions while allowing for diversification. This general

approach by [15] outperformed more specialized algorithms at the time of publica-

tion, and can be applied more easily to DARP variations, for which side-constraints

19

are often dependent on underlying real-life applications.

Most recently, [25] present an algorithm combining LNS with column genera-

tion, also or the DARP. Within this framework, the LNS considers the diversifica-

tion and improvement of entire solutions, while the column generation compo-

nent works to improve the solution at the route level. The generation of additional

columns is guided by an embedded variable neighborhood search (VNS). Although

this makes the framework proposed by [25] more complex than the approach by [15]

above, it finds new best solutions for almost half of the benchmark instances, and at

only a third of the running time as the state-of-the-art.

3.2.2 Purely Heuristic LNS

Unlike the approaches above, purely heuristic LNS algorithms generally rely on mul-

tiple repair operators. The application of these operators is often controlled by an

adaptive layer which favors those operators which have led to improved solutions

during the search. A relatively large number of ALNS applications have been pro-

posed in the routing literature. The flexibility and general character of the LNS con-

cept is reflected by the variety of problem classes and application-specific exten-

sions considered by these contributions.

[31] present a rich heuristic framework capable of modeling a variety of VRPs

with backhauls. The authors implement an ALNS for a rich pickup and delivery

problem with time windows (RPDPTW) and apply the same algorithm to solve the

standard VRP with backhauls (VRPB), mixed vehicles (MVRPB), multiple depots (MD-

MVRPB), and time windows (VRPBTW, MVRPBTW), as well as the VRP with simulta-

neous pick ups and deliveries (VRPSPD). New best known solutions were found for

two thirds of the benchmark instances.

[27] propose a general ALNS metaheuristic for tackling several related problem

classes, namely the VRPTW, the capacitated VRP (CVRP), the multi-depot VRP (MD-

VRP), the site-dependent VRP (SDVRP), and the open VRP (OVRP). As in [31], the au-

thors transform these five problem types into a RPDPTW which is then solved with

an ALNS. It is notable that this ALNS obtains competitive results for all examined

classes except the CRVP, despite the lack of problem-specific tuning of the operators

or of the adaptive layer parameters.

Other extensions of the VRP have also been considered. [12] develop an ALNS for

the 2-Echelon VRP (2E-VRP). The problem consists in optimizing a two-level distri-

bution system of goods from a central depot to a number of given satellite facilities,

and from these facilities to the customers. Based on the hierarchical structure of

the problem, the authors propose also a two-level approach for the destroy opera-

tors. Some destroy operators manipulate the solution structure at the satellite level

(large impact), while others focus on changes at the customer level (small impact).

20

In addition, [12] incorporate a strong local search phase after the repair operation

for promising solutions, by exploring the split, move, swap, 2-opt, and 2-opt* neigh-

borhoods with a first improvement strategy. New best solutions for more than half

of the 2E-VRP benchmark instances are found.

A similar application is described by [1], who develop an ALNS for the VRPTW

with multiple routes (VRPMTW). In this problem, each vehicle may complete mul-

tiple tours during the operational day. Similar to [12], the authors take advantage

of the hierarchical nature of the VRPTW and propose a similar multi-level approach

to the destroy operators, removing either workdays, routes, or individual customers,

either randomly or according to a relatedness measure. Their results indicate that

the multi-level scheme markedly improves the percentage of served customers in

the solutions compared to only a customer-based approach.

[9] present an extension of the VRPTW focusing on green logistics, called the

pollution routing problem (PRP). The objective is similar to the classical VRPTW,

but the objective is a complex function of fuel consumption, emissions, and driver

costs. The authors solve the problem in two phases, optimizing first the classical

VRPTW, and then the PRP objective for the given VRPTW solution. Interestingly,

this application combines an ALNS with an exact procedure - the ALNS solves the

underlying VRPTW, and a polynomial time speed optimization algorithm improves

the final objective function.

Like the VRPTW, the PDPTW is often optimized in the same two phases, by min-

imizing first the number of routes, and then the total distance. [32] apply an ALNS

to this problem, but unlike the contributions described above, they apply the same

ALNS to both stages of the search and obtain competitive results. The authors in-

troduce additional diversification by adding noise to the repair operators’ objec-

tive functions, and by using a simulated annealing acceptance criterion within their

LNS.

Motivated by a real problem faced by a commercial air carrier, [29] consider an

extension of the PDPTW where transhipment of loads from one vehicle to another is

permitted (PDPT). Similar to other authors, [29] divide the search into two phases,

using a GRASP procedure to generate a set of diverse and promising initial solutions,

which are then improved with an ALNS. The authors extend the adaptive nature of

their ALNS to the destroy operation as well: rather than choosing the degree of de-

struction randomly at each iteration, this factor is reset to a minimum every time an

improved solution is found, and increases steadily until the next improvement. This

has the effect of automatically intensifying the search when a promising solution is

found, and diversifying otherwise.

[7] consider a pickup and delivery problem with multiple stacks arising in the

distribution of pallets or containers of goods. Items picked up by the vehicle must

be placed in one of a limited number of stacks in the vehicle, and delivery can be per-

21

formed only on a LIFO basis. The authors introduce stack-specific destroy and re-

pair operators, including a regret-based insertion strategy for multiple stacks. Com-

putational experiments show that the LNS of [7] scales better than a competing VNS

algorithm when the instance size grows.

Highly competitive results have also been published recently by [18] for the team

orienteering problem (TOP). Similar to [12], the authors apply a local search phase

for further intensification after the LNS repair operation. Their LNS is not adap-

tive, but [18] explore the move, swap, 2-opt, and Or-opt neighborhoods, as well as

a swap neighborhood using the pool of unrouted stops. New best known solutions

are found for all but one of the 387 benchmark instances, within comparable com-

putation times.

Some researchers have used ALNS to handle very rich routing applications with a

wide variety of constraints. [6] present an ALNS for the technician and task schedul-

ing problem (TTSP). Their implementation handles a variety of different constraints,

such as technician skill levels, precedent and successor relationships between the

tasks, outsourcing options, and team building. [16] build on this work and consider

the TTSP with routing aspects (STRSP), as well as with and without team building.

A novel feature of the ALNS proposed by [16] is that the adaptive layer operates on

pairs of destroy and repair operators, rather than individually. The addition of noise

to objective value calculations is handled adaptively as well. Like [6], [16] also ap-

ply the proposed metaheuristic on real-life cases with additional constraints such as

lunch breaks and working hours regulations, with promising results.

Another rich application, a rollon-rolloff waste collection VRPTW, was solved by

[44]. The problem consists in routing containers from industrial and retail sites to

disposal facilities, container storage yards, and depots. The authors consider a va-

riety of complicating factors, such as multiple disposal facilities, multiple storage

yards, different container types and sizes, drivers’ lunch breaks, and different work

schedules. Despite the many constraints, [44] find feasible solutions and generate

considerable improvements compared to the industrial partner’s previous practices.

3.2.3 Multi-Objective LNS

There are comparably fewer LNS contributions taking multiple objectives into ac-

count. Indeed, evolutionary algorithms appear to be one of the more popular heuris-

tic multi-objective approaches. [45] provide a recent review of the state-of-the-art

for this stream of multi-objective optimization.

Nonetheless, a general theoretical framework for a multi-objective LNS (MO-

LNS) has recently been proposed by [34]. The authors combine LNS with constraint

programming (CP), taking advantage of the synergies first pointed out in the seminal

LNS paper by [38]. Solutions are selected from the archive of non-dominated solu-

22

tions, relaxed, and solved with a CP solver. In order to prevent clustering around one

part of the approximation front, solutions are not selected randomly from a simple

list of the archive. Instead, [34] propose to select a uniform random point on the

hyperplane between the extreme solutions of the archive, and choose the archived

solution closest to this point as the solution used in the next iteration.

In order to find a set of non-dominated solutions, the search is steered in differ-

ent directions by dynamically changing a filtering constraint for each objective: no

filter allows the objective to take any value, a weak filter updates the upper bound

on the objective such that a new solution must have an equal or better value, and a

strong filter updates the objective’s upper bound so that a new solution must strictly

improve this upper bound to be accepted. Various levels of intensification can then

be achieved by changing the strength of the filters set for each objective. [34] apply

diversification by turning off all filters and activating a Pareto constraint on the do-

main of each objective such that a non-dominated solution is produced by the con-

straint solver. Initial experiments on benchmarks for the multi-objective quadratic

assignment (MO-QAP) problem, the multi-objective binary knapsack problem, and

a bi-objective tank allocation problem yield competitive results.

When it comes to multi-objective LNS for real-life applications, an example can

be found in [21]. The authors consider a DARP arising in healthcare logistics, where

the interests of multiple stakeholders must be taken into account. [21] combine

five different objective functions within a multi-criteria decision making framework,

and solve the DARP with an ALNS. A distinguishing feature of the LNS by [21] is

that three sets of destroy and repair operators are considered: basic ones from the

literature, advanced ones exploiting some structure in the specific application, and

parameterized ones specifically designed around the five objective functions to be

optimized. Although no configuration is found to dominate any other, this can be

a useful planning framework for designing meaningful destroy and repair operators

in a multi-objective context.

3.3 Advantages of LNS for Solving the PPP

The LNS framework offers three significant advantages for tackling the PPP:

1. it requires only the most basic feasibility checks related to simple insertion

steps,

2. it is able to conduct a broad search of the tightly constrained and potentially

discontinuous PPP solution space, and

3. it provides a built-in mechanism for finding efficient solutions from different

segments of the bi-objective approximation set.

23

3.3.1 Reduced Need for Complex Feasibility Evaluations

In order to better understand Points 1 and 2, it is necessary to take a closer look at

the concept of infeasibility. For any problem, many kinds of constraint violations

may exist. Let V be the set of all such violations for a given problem. If a solution

contains any violation v ∈V , then this renders the solution infeasible.

Consider problems with at least one set of constraints stating that some, but not

all, elements of the problem must be included in a solution for it to be feasible. When

constructing an initial solution to such a problem, individual elements are added

one at a time, such that a sequence of partial, incomplete solutions are created that

lead up to the first feasible solution state. It is clear that all of the incomplete so-

lutions are infeasible, because they violate some constraint on the mandatory ele-

ments. However, the inverse is generally not true: not all infeasible solutions are

incomplete.

Hence, there exists a subset of violations C ⊆V which determine whether a given

solution is incomplete, and its complement set F of all other violations. If a solution

contains violations only from C and none from F , it will be referred to as weakly

infeasible, and this type of infeasibility will be referred to as weak infeasibility. All

other cases will be referred to as strongly infeasible with strong infeasibility. In this

context, it is shown that the basic LNS framework enables, by its design, to set a clear

limit on the degree and type of infeasibility encountered during the search process.

Consider first the destroy operator. At the most basic level, it can only remove

elements. Since the search begins with a feasible solution, applying a destroy oper-

ator can therefore introduce only weak infeasibility into the working solution, if any

at all. The actual degree of any potential infeasibility is further limited by the destroy

operator’s intensity parameter, which can be set as desired.

In the specific context of the PPP, only two constraint violations qualify for weak

feasibility: the lack of a mandatory task from the set Ω, and the lack of a required

precedent from a scheduled task i ’s set of precedents ρi . In both cases, and assum-

ing that solutions are restored to feasibility immediately upon being destroyed, at

least one feasible reinsertion is always guaranteed to exist after the destroy opera-

tion, namely the position before the operation. Thus, correcting weak infeasibility

is simply a matter of reinserting the missing tasks just like any others, and thus does

not require any specialized infeasibility handling. At the same time, it may be pos-

sible to restore the removed mandatory elements to more efficient positions in the

current state of the partial solution. This leads us to the repair operator.

In principle, a repair operator should only insert elements into the solution. Re-

pair operators are essentially construction procedures, and as such they require only

the minimum feasibility evaluations required for performing feasible insertions. In

contrast, local search moves such as move or swap already require either more so-

24

phisticated feasibility checks (even a simple move operator is already equivalent to a

combination of one destroy and one repair operation), or special feasibility restora-

tion procedures.

Since the initial solution is feasible and the destroy operator can introduce only

weak infeasibility as detailed above, the repair operator can be the only source of

strong infeasibility in an LNS optimization procedure. Whether it is introduced or

not depends wholly on the intended search strategy implemented by the algorithm

designer. Merely inserting additional elements cannot correct strong infeasibility if

it is present, as this type of violation is caused by a conflict between two or more ex-

isting elements, rather than by their lack. Hence, any strong infeasibility permitted

at any point will require some dedicated feasibility restoration procedure elsewhere.

However, allowing a search through the infeasible solution space is likely to be a re-

dundant strategy when using an LNS (elaborated in the next section).

As a result, there is little motivation for deviating from pure construction-based

repair operators performing only feasible insertions. An LNS thus requires only the

elemental feasibility evaluations required for the simplest insertion operations, as

stated in Point 1. This is clearly an advantage for tightly constrained problems such

as the PPP, in which more involved feasibility checks or corrections may be too am-

biguous, more time-consuming, or even more complicated than just generating a

new solution. In fact, no infeasibility correction procedures are required unless the

implementation explicitly allows and plans to explore the infeasible solution space.

3.3.2 Navigation Across Disconnected Solution Spaces

Complex problems with many constraints like the PPP are often characterized by a

“disconnected” solution space or “discontinuous, uneven” objective function land-

scapes. In such cases, local search procedures limited to only feasible moves are

likely to be trapped in “isolated” sections of the solution space, leading to premature

convergence at a possibly weak local optimum [17, 37]. Exploration of the infeasible

solution space is a possible strategy to overcome these difficulties. In this context,

limiting the degree of allowable infeasibility, as described in the previous section,

could very well be counterproductive.

Fortunately, the ability of an LNS algorithm to navigate such “problematic” so-

lution spaces is one of the framework’s most commonly recognized and exploited

advantages [17, 28, 37, 38].

The smaller neighborhoods applied in most local search heuristics are explicitly

defined in terms of basic operators performing only small steps. These algorithms

tend to have trouble with discontinuous landscapes because as the number of con-

straints increases, it becomes less and less likely that there exists a sequence com-

posed of many such small steps that links two isolated solution spaces [17]. Even if

25

such a sequence exists, it is likely that the objective function does not improve along

the entire path, and therefore the search might be steered away from this direction

unless a sufficient, possibly large number of deteriorating moves are permitted.

In contrast, an LNS can perform such jumps in one iteration, and without the

need to handle the infeasible search space. The destroy operator reduces the solu-

tion to a state from which different parts of the solution space may still be reached,

since the solution is only partially complete. The repair operator then determines

in which direction to reconstruct the solution. The combination of these two op-

erators means that even a single iteration can move the search to distant parts of

the solution space. The degree of this behavior can also be dynamically controlled

by the destroy intensity parameter. It is also possible to define several destroy and

repair operators so that applying different combinations of them will also have the

effect of searching different distant parts of the solution space.

It is likely that the number and types of constraints in the PPP could result in the

kind of disconnected or uneven solution spaces described above. As a result, the

LNS framework appears to be a promising option for achieving a sufficiently diverse

exploration of the PPP solution space in a simple and modular way.

3.3.3 Synergy with Generating an Approximation Front

Finally, the LNS framework happens to be very conducive to filling out the approx-

imation set for the PPP. In this particular problem, the relationship between profit

and available free time is strongly related to how “empty” or “full” a solution is: the

more profit is collected, the less free time there is, and vice versa. As a result, solu-

tions with low profit/more free time will tend to be “emptier” in the sense of having

fewer tasks, while solutions at the other end of the front with high profit/less free

time will tend to be “fuller”.

From this perspective, the LNS operations of destroy and repair generate a nat-

ural progression of solutions along the efficient front. A destroy operator makes the

solution “emptier”, and a repair operator gradually makes it “fuller” again. This can

be taken advantage of by evaluating the efficiency of solutions after every insertion

step. In this way, large parts of the objective space can be explored every time a

solution is destroyed and repaired.

It should be noted, however, that this is not a general advantage of the LNS

framework, but rather happens to work for the specific objective functions in the

PPP, and because an actual solution set is required as the output for the particular

application motivating the present work. If a problem’s objective functions are not

directly or indirectly related to how “full” or “empty” the solution is, then the de-

stroy/repair concept does not necessarily offer any special advantages for the con-

struction of an efficient set.

26

Chapter 4

The Proposed Metaheuristic

The aim of the proposed algorithm is to find a set of non-dominated solutions which

approximates the true Pareto frontier of the problem. In the bi-objective case of

the PPP in which both objectives are to be maximized, the approximation front will

generally take on a form similar to the one shown in Figure 2, where each point

represents one solution. For the purposes of this narrative, the area with lower profit

and more free time will be referred to as the “upper” region of the front, and the

area with higher profit and less free time as the “lower” region of the front. It is

important to note that the upper region is composed of “emptier” solutions in the

sense that they contain fewer tasks - this yields high free time values, and low profit.

The opposite is true for the lower region - more tasks allow for a higher total profit,

but each additional task decreases free time. As a consequence, the upper regions

are generally easier to optimize for the selected objective functions, because there

are fewer potential permutations of tasks and routes for solutions with a lower limit

on their total profit.

Particular focus is placed on exploring both the upper and lower regions of the

approximation set in order to generate a diverse and representative set of schedules.

This is important because a priori preference information is not available from the

decision maker, and he or she may also wish to compare different schedules without

re-running the algorithm.

Another practical consideration for the intended application is that it should be

possible for the decision maker to terminate the search at any time. This means that

the algorithm should generate a representative and front of reasonably high quality

solutions even after a very brief search. The available computational time is there-

fore treated as a variable, making elaborate initialization procedures unsuitable for

the application. The chosen search strategy reflects these considerations.

Section 4.1 explains the overarching search strategy in which the actual LNS has

been embedded. In particular, the different phases of the search are explained. Sec-

27

Figure 2: A Typical Approximation Set for a PPP Instance

tion 4.2 then continues with a closer look at the specific elements of the LNS itself,

namely the destroy and repair operators, as well as the efficiency evaluation proce-

dure. Section 4.3 concludes the chapter with an explanation of how some common

procedures for routing problems can be adapted in order to deal with the specific

constraints imposed by the PPP.

4.1 High-Level Layer

The proposed search strategy can be divided into three phases:

A exploration an initial approximation set is constructed

B consolidation formerly efficient solutions are re-examined for local optima

C refinement individual elements of the approximation set are improved

4.1.1 Exploration Phase

The aim of this first phase is to explore a varied set of solutions with different un-

derlying structure. For this purpose, the heuristic starts each iteration of this phase

with the empty solution. This empty solution is developed in as many directions

as possible by applying many different repair operators (presented in more detail in

Section 4.2.2). Construction ends once no more insertions are possible. In this and

all other phases, an iteration of the proposed algorithm starts with some solution

state, and ends once no further insertions are possible.

The empty solution is first made feasible through the insertion of all the manda-

tory tasks. These tasks constitute to some extent a backbone to all potential solu-

28

tions since every feasible solution must contain them. How they are sequenced, and

the visit (i.e. location and time window) chosen for each of them, can have a sig-

nificant impact on the options available for the further insertion of all remaining

tasks. As a result, it is important to explore as many combinations as possible of

these tasks’ available visits, using different repair operators. This is the easiest and

most flexible point in the search to do so, since the solution is still empty.

Finding an initial feasible solution may not be easy if the set of mandatory tasks

Ω is large, and if it includes many precedence constraints. In fact, it is not guar-

anteed that a feasible initial solution even exists for the input data specified by the

decision maker. In cases when no feasible initial solution can be found within a cer-

tain number of attempts, the input data is relaxed by transforming all mandatory

tasks in Ω into optional ones, and setting their profit scores to a very large value to

ensure that as many as possible are included during later insertion operations.

Once the empty solution has taken on a feasible initial state, a randomly selected

repair operator is iteratively applied to build the solution one insertion at a time. The

efficiency of the current solution is evaluated after every insertion, and the approx-

imation set is updated accordingly if the new solution is efficient. If the solution is

in fact efficient, it is also copied to a stack for re-examination during the next phase.

This stack keeps track of all the solutions which were efficient at some point, even if

they become dominated by other solutions in subsequent iterations.

The exploration phase is concluded after a predetermined number of iterations.

4.1.2 Consolidation Phase

The aim of the consolidation phase is to more thoroughly examine all the solutions

saved in the stack and see if any improvements can still be made from them. Recall

that all of these solutions must have been efficient at some point in the search in

order to be added to the stack. It is thus possible that they may still possess some

good features, even if they have since become dominated. The consolidation phase

applies the LNS to these solutions to search for local optima around them.

Each iteration consists of taking a solution from the stack, applying a destroy

operator, and then rebuilding it with a repair operator until no further insertions

are possible. As before, the efficiency of intermediate solutions is examined after

every insertion. Newly discovered efficient solutions are still added to the stack as

before. As a result, promising solutions are immediately explored further in the next

iteration since they will have been placed on top of the stack.

In principle, all solutions from the stack may be considered. However, experi-

ments showed that it becomes increasingly unlikely and time-consuming for solu-

tions lower in the stack to yield new efficient solutions. Hence, in addition to the

LIFO policy used for stacks, a stopping criterion is also proposed which breaks the

29

search of the stack after a predefined number of solutions have not produced any

improvements of the approximation set. Either way, the stack is empty at the end of

this phase.

If the exploration phase was thorough, then the consolidation phase does not

make many improvements, and as a result does not take much time, because no

new solutions get added to the stack. On the other hand, if the exploration phase

was weak, this phase provides the chance to make improvements by considering the

previously efficient solutions one more time. In this way, the consolidation phase

ensures that the approximation set is sufficiently diverse before the search focuses

more on intensification.

4.1.3 Refinement Phase

This is the final phase of the search, and it aims at intensifying the search around the

specific solutions in the approximation set and fine-tuning the routing or timing. At

this point, only the solutions in the approximation set are considered for further

improvement, and for this reason it is important to develop a representative front

during the previous phases.

The working solution at the start of each iteration is taken from the approxima-

tion set. The solutions of the approximation set are considered in order, sweeping

from one end of the front to the other, examining each solution along the way. The

neighborhood around each solution is explored by applying a destroy operator and

then reconstructing with the repair operators as before.

The solution stack is empty at the start of this phase. However, new efficient so-

lutions are still added to it whenever discovered. The selection of the next working

solution at the start of each iteration gives priority to any solutions which may have

been added to the stack. As in the consolidation phase, this has the effect of inten-

sifying the search around promising parts of the front before moving on to the next

solution.

Once one end of the front is reached, the search restarts again at the other end.

This sweep procedure is repeated until the search is terminated manually or an-

other stopping condition is reached. For the practical application, a limit on the

total number of sweeps as well as a limit on the run time were used as stopping

conditions, but other criteria, e.g. a certain number of iterations without improve-

ment, can also be implemented. Finally, the solutions of the approximation set are

returned as the output of the algorithm. Since some approximation sets may be very

large (over 100 solutions), a post-processing procedure may be applied to reduce the

number of solutions in the output. For the practical application, the front is divided

into n regions each with an equal number of solutions, and from each region the

solution with the highest profit is returned.

30

4.2 Medium-Level Layer

This section goes into detail on the proposed destroy and repair operators, as well

as on the procedure for evaluating solution efficiency in the bi-objective case.

One factor influencing the design of the embedded LNS was the desire to min-

imize the number and influence of parameters. For this reason, the destroy and

repair operators were tentatively set to be selected randomly and with equal proba-

bility. As computational tests suggested this to be a sufficient configuration, further

adaptive elements were not added.

However, the framework presented here for determining the particular charac-

teristics of individual operators was specifically designed for a comprehensive statis-

tical evaluation and adaptive implementation. It is a fairly novel framework in that

it does not require explicitly predefining every possible operator, but rather only a

set of combinable characteristics. The set of actual operators is then implicit as the

set of combinations of these characteristics.

4.2.1 Destroy Operators

One thing all destroy operators have in common is that they result in the removal of

some parts of the solution. They differ from one another in terms of what kind of

parts they remove, why specific parts are chosen over others, and how much of the

solution is destroyed. A specific instance of a destroy operator can be sufficiently

defined by specifying these three characteristics. The destroy operators used in the

proposed metaheuristic are thus determined by the following properties:

A component definition of what constitutes a “part” of the solution

B criterion on what basis these parts are evaluated

C quantity how much of the solution is to be destroyed

A destroy operator is built from a combination of these three properties. As

stated above, in the specific practical application motivating this work, these prop-

erties are randomly combined with equal probability for all combinations of their

possible states. However, the framework provides potential for a structured exam-

ination of the effectiveness of particular components at a more detailed level than

that of whole destroy operators. This can be incorporated into a dedicated ALNS

framework, especially if data are available over a longer period with a large number

of instances, and particularly for problems characterized by a significant degree of

variability in instance structure (which is where an ALNS shines).

31

Figure 3: Overview of Destroy Operator Characteristics

Solution Components

As pointed out by [28], the destroy method as a whole should be capable of reach-

ing the entire solution space, or at least those parts which are likely to include the

global optimum. Consequently, it is a good idea to not always remove the same kind

of parts from the solution. This of course depends on how the notion of “part” is

defined. [38] proposes to select parts based on “relatedness”, and the present work

uses that idea as well.

The basic unit of construction in the PPP is the visit, i.e. a unique combination

of task, location, task time window, and location time window. The following com-

ponents, i.e. definitions of what constitutes a “part” of the solution, are proposed:

A.1 single each visit by itself

A.2 consecutive consecutive sequence of visits

A.3 same-day all visits on a particular day

A.4 chain visits connected by precedence relations

The single component type is of course the most basic. It allows for the most

fine-grained selection of parts to remove, and is in this sense better for small and

selective perturbations. On the other hand, it offers no concept of relatedness, so

that the visits removed with this definition may be from completely different and

unrelated parts of the solution. This definition is also the best for a purely random

destroy operator.

The consecutive component type defines a “part” as a sequence of x consecutive

visits, scheduled one immediately after the other in the solution. This provides relat-

edness both in terms of routing (the locations are visited one after another) as well

as timing (the time windows either overlap or progress from earlier to later). Smaller

32

values of the component length parameter x allow for a more targeted selection,

while larger values focus more on the notion of relatedness. If one such consecutive

part is selected for removal, all of its component visits are removed. A distinction

can be made whether the parts defined in this way are allowed to overlap or not. For

example, if a solution consists of the tasks {A,B ,C ,D} and the consecutive compo-

nent length is 2, then the available parts may be either {(A,B), (C ,D)} if overlaps are

not considered, or {(A,B), (B ,C), (C ,D)} if they are. The proposed algorithm imple-

ments the latter understanding, which allows for a finer selection of the tasks to be

removed.

As its name suggests, the same-day component type defines a “part” as those

tasks which are scheduled on the same day. Although this definition is somewhat

specific to the practical application, in which separate days are clearly defined and

divided, a more general definition could use consecutive, non-overlapping time win-

dows of some specific length (which could also be subject to some variance). This

component type is intended to introduce a greater degree of perturbation while en-

suring that all the removed tasks are still related.

Finally, the chain component type targets tasks which may not necessarily be

related spatially or temporally, but which are nonetheless connected through prece-

dence relations, possibly also with time delays. Recall that in the PPP, tasks con-

nected by precedence relations may also be subject to timing restrictions in the

forms of minimum and maximum time gaps between the consecutive tasks of the

chain. Such chains of visits can place a significant degree of restriction on the solu-

tion and further insertions. Although individual parts of a chain may be removed as

elements of components defined with the previous definitions, this definition allows

for the removal and subsequent reinsertion of an entire chain and no other tasks.

Removal Criteria

Provided that the potential parts for removal have been identified, the decision still

has to be made on which of them to actually remove. Various evaluation or removal

criteria may be defined depending on the particular factors relevant for the solution

quality of the given problem. For the PPP, the following removal criteria are pro-

posed:

B.1 min forward shift how much the visits can be shifted now

B.2 min time window flex. how much the visits can ever be shifted

B.3 min profit/time ratio how much the visits are worth their time

B.4 random a purely random selection

The forward shift criterion measures how much a visit (and subsequent ones)

can be pushed forward without affecting the feasibility of the solution as a whole.

33

When applied to an aggregate solution component, the average is calculated as an

approximation. All visits are, by default, scheduled as early as possible within their

position in the schedule order. As a result, a lower forward shift indicates a more

constrained part of the solution, which generally points to a poor scheduling or

routing plan, especially in solutions that are not that full to begin with. Although

for those solutions where many tasks are scheduled a low forward shift may indicate

that the time windows have been used up as much as possible, it could just as well

mean that there is a bottleneck somewhere which prevents the insertion of further

tasks.

The time window flexibility criterion refers to the degree a visit can potentially

be shifted back or forward if some others are removed. It is defined as the size of

the visit’s time window minus the task’s service time. Although this figure is con-

stant for each visit, recall that each task has a number of visits to choose from. This

criterion evaluates the visits actually chosen in the current solution. As before, the

average is calculated in the case of aggregate components. Visits or segments with

lower values indicate potential (or possibly already existing) bottlenecks, but from

a different perspective than above. The motivation for removing them is similar as

above, namely to increase flexibility for the insertion of further visits.

The profit/time ratio criterion tries to capture the relative value of a component

compared to how it has been scheduled. The profit of course represents the score

awarded by the task(s), while the time in the denominator refers to the travel time

to/from these tasks, as well as their service times. Free time within a segment does

not count toward the total time. Short segments with high profit score the best,

whereas long segments with low profit score the worst. It should be noted that an

appropriate way to deal with mandatory tasks is necessary, depending on how their

profit scores are modeled: if they are set to 0, then segments with these tasks will

tend to be chosen more often, whereas if the profits are set to a high number, they

will rarely be chosen. For the practical application, non-mandatory tasks could have

profits of either 100, 500, or 1000, so mandatory tasks were scored with 500 for the

purposes of this criterion. Other policies are possible, e.g. taking the median or aver-

age profit of the tasks in the current instance. In any case, this criterion is designed

to also consider the profit of the tasks and not only their timing (the focus of the

previous criteria).

Finally, the random criterion simply assigns a random score between 0 and 100

to each solution component. As pointed out by [38], a random selection of the parts

to destroy results in a diversification effect, while removing the worst components

(according to the previous criteria) facilitates intensification.

34

Destroy Quantity

This last feature of the destroy operator determines how much of the solution will

actually be destroyed. This parameter should generally be a variable number in a

range defined by a preset minimum intensity and maximum intensity. Since differ-

ent solutions will have different numbers of visits scheduled, and different destroy

operators may define “parts” of different sizes for removal, this parameter refers to

the percentage of visits to remove from those currently scheduled. This ensures that

the relative effect is more or less the same regardless of instance size and of how

empty or full the solution is.

The destroy quantity and its range play a central role in an LNS, and should be

chosen carefully. If it is too low, then the search is more likely to become trapped

in local optima, but if it is too high, then the LNS devolves into a random search.

One possibility is to vary the possible range depending on the stage of the search,

e.g. setting higher minimum and maximum values during early stages for a greater

emphasis on diversification, but reducing them to a lower range later on for more

intensification. However, this introduces further parameters and requires additional

tuning. The proposed metaheuristic forgoes a variable destroy quantity as it was

found to perform well with a fixed range of 5% to 30%.

4.2.2 Repair Operators

Given an empty or partial solution, the task of the repair operator is to reconstruct

it in a way that improves the solution’s objective values as much as possible. To this

end, two elements are necessary: a feasibility restoration procedure, and a recon-

struction procedure.

The issues surrounding feasibility in the PPP have been discussed in more detail

in Chapter 2.3 and Section 3.3.1. Recall that if a solution is feasible, then a destroy

operator can introduce at most only weak infeasibility, i.e. the kind resulting from

the lack of some mandatory elements in the solution. If such infeasibility is han-

dled immediately after destroying the solution, then no elaborate procedures are

necessary. The missing mandatory elements, in this case visits, can be simply rein-

serted according to some random or greedy criteria. The reason for this is that if

no non-mandatory elements are inserted beforehand, then it is guaranteed that at

least one set of feasible reinsertion positions exists, namely the positions held by the

tasks immediately prior to the destruction of the solution. However, other positions

and other visits (i.e. locations and time windows) may still be explored, allowing for

diversification among these tasks even if they are always present in every solution.

The repair procedure therefore always begins by first restoring feasibility to the

solution if necessary. This procedure is identical to the general reconstruction pro-

cedure detailed below, the only difference being that only mandatory tasks are con-

35

sidered for reinsertion, and all are required to be inserted. If the chosen insertion

order leads to infeasibility, then a new insertion order is generated with the task that

could not be inserted previously at the start of the ordering. If this policy does not

find a solution after a set amount of attempts, then the tasks are reinserted at their

previous positions, which are guaranteed to be feasible and open.

The actual repair operators applied for reconstructing the partial solution are

generated according to the same framework used for defining the destroy operators,

i.e. through a combination of fundamental properties. One thing common to all

repair operators is that they insert a missing element, and in the case of the PPP this

is always a visit node, i.e. a preset combination of task, location, and time windows.

However, distinctions between repair operators can be made based on the following

properties:

A scope the pool of tasks which are considered for insertion

B order the order in which the visits are inserted

C criterion which insertion positions are selected

The proposed repair operators behave like construction heuristics and are not

designed to specifically find only the optimal reconstruction from a given partial

solution. Optimal repair operators can be useful, particularly with small degrees

of destruction to limit the potential search space and thus computational effort of

the reconstruction. The original proposal for the LNS framework by [38] was in

fact based around a constraint-programming method for optimal reconstruction.

However, this type of approach did not seem appropriate given the limited expected

computation time for the practical application.

Figure 4: Overview of Repair Operator Characteristics

36

Insertion Scope

The scope characteristic determines the set of tasks which are eligible for insertion

by the operator. One of three options may be selected:

A.1 all all currently unscheduled tasks

A.2 removed only the tasks removed by the destroy operator

A.3 neglected only the tasks which were previously unscheduled

These three options reflect varying degrees of intensification. Selecting from the

pool of removed tasks offers the greatest degree of intensification, while the pool

of neglected tasks imposes considerable diversification. The pool of all currently

unscheduled tasks represents a middle ground with opportunities for both. The re-

moved pool is generally the smallest, however even if it consists of only a single task,

note that this does not imply that it will be reinserted at the same position or with

the same visit.

Insertion Order

As its name implies, the order property determines in which order visits are inserted

into the partial solution. Three options are proposed:

B.1 greedy the visit with the best best-insertion is inserted first

B.2 GRASP one of the best best-insertions is randomly selected

B.3 random a purely stochastic ordering

For the greedy option, the best insertion according to the selected insertion cri-

terion (detailed in the next section) is calculated for every unscheduled task, and

the best of these best insertions is performed. It should be noted that the greedy or-

dering must be recalculated after every insertion, because the best insertions for the

remaining tasks are subject to change as the solution changes. As a result, this op-

tion may be considerably more time-consuming if many new tasks are to be sched-

uled. The greedy option may also lead to premature convergence at a relatively poor

local optimum. However, if the insertion pool is relatively small, then a greedy in-

sertion order could produce near-optimal reconstructions (not to be confused with

near-optimal solutions).

The GRASP option also requires evaluating the best insertion for each unsched-

uled visit, but it is not always the best of these best insertions which is selected.

Instead, a restricted candidate list of some predefined size is considered, and one of

the insertions from this list is randomly performed. This is done in very much the

same way as in the more general GRASP heuristic. A selection based on a roulette

wheel implementation is proposed here so that within the restricted candidate list,

37

insertions with relatively better costs/benefit ratios have a greater probability of be-

ing chosen.

The random option is mostly self-explanatory. A list of all the unscheduled tasks

is created and shuffled, and the tasks are then best-inserted in this order until all

tasks have been examined. This option provides a degree of diversification not ob-

tainable with the other options above. Although it is unpredictable, it is also notice-

ably faster per iteration since its computational complexity is considerably lower

(each visit’s best insertion is calculated only once, compared to once for every inser-

tion step as in the previous two options).

In all cases, it should be noted that this property has no direct influence on which

visits are chosen for each task, or on the positions at which those visits are inserted.

Those decisions are determined by the last repair element:

Insertion Criterion

The insertion criterion defines the measure used to evaluate and compare the many

feasible insertions for each visit. The following three are proposed:

C.1 min shift time the extra travel and service time required

C.2 max total slack the potential slack time at the chosen position

C.3 max time w. flex. time window size compared to the service time

The shift time criterion measures how much subsequent tasks must be shifted

in order to accommodate the insertion. It is the sum of the visit’s service time and

the travel time to and from this visit at the proposed insertion position, minus the

current travel time between the visits before and after the insertion position. Smaller

scores are favored as they reflect a better routing and a less time-consuming task.

Since all the other criteria are to be maximized, the reciprocal of the extra time is

taken instead, with a large numerator to prevent rounding inaccuracies.

The total slack criterion is an estimation of how flexible the inserted visit could

be at the selected position. The calculation of the exact slack time is somewhat more

involved due to the presence of the minimum/maximum time delays between some

tasks, so that only an approximation is used here. The score for this criterion is the

sum of the necessary waiting time before starting service, and the time between the

end of service and the visit’s closing time. Insertions with lower total slack potential

are more likely to become bottlenecks because they cannot be shifted as easily. In

addition, including the waiting time in this measure encourages time windows to

be chosen in such a way that subsequent visits in the schedule do not have overlap-

ping time windows (if they do, then there is only travel time between them). The

visits with large or similar time windows are then generally left for later steps of the

construction, and can then still be more easily inserted thanks to these overlaps,

38

whether as replacements or as additional visits. Overall, the total slack criterion at-

tempts to capture flexible positions in the solution’s current timing structure, since

the waiting time and slack time are highly dependent on the current state of the

schedule.

The time window flexibility criterion, on the other hand, does not depend on the

current state of the schedule. Defined as the visit’s time window length minus its

service time, it is a static measure for each visit. However, as with the equivalent

destroy criterion, each task in the PPP generally has many possible visits, as deter-

mined by all of its time windows, all of its locations, and all of those locations’ time

windows. As a result, this criterion seeks to filter these possibilities for those which

likely offer greater temporal flexibility in the long run of the construction. Visits with

larger leeway in their time windows will generally have shorter service time, longer

time windows, or both. Inserting such visits is unlikely to trap the solution in a local

optimum too early, since these kinds of visits can more easily be shifted as needed

during subsequent insertions.

All three of these criteria focus exclusively on the timing aspects of the problem.

However, the visit’s profit can easily be incorporated into the insertion decision. To

achieve this, the insertion scores are weighted according to the profit of the visit, by

multiplying the score and the profit. This yields a total of six insertion criteria.

4.2.3 Efficiency Evaluation

Efficiency is examined not only for every repaired solution, but also for every inter-

mediate solution. Therefore, it is important that the efficiency evaluation is suffi-

ciently efficient itself, especially when the approximation sets become large. Com-

pared to a naive approach, the following procedure allows to reduce the average

number of comparisons necessary to evaluate the efficiency of a new solution and

determine all the old solutions which have possibly been dominated.

Storing the efficient solutions in order of increasing profit ensures that they are

also listed in order of decreasing free time, and vice versa. When a new solution is

found, it is compared to the solutions in the efficient set in sequence. If it is dom-

inated by any single solution then the search is immediately ended. If the solution

is incomparable because one objective is better while the other is worse, then the

search is continued until a dominating solution is encountered, or until the relation-

ship between the objectives is reversed - this happens precisely at the new solution’s

position in the efficient set if it is efficient. If the new solution dominates any exist-

ing solutions, then they will all be encountered immediately prior to this position in

the list.

39

4.3 Low-Level Layer

This section explains how some common elements from standard routing applica-

tions can be adapted to deal with the additional constraints in the PPP. Specifically,

the precedence constraints and their associated minimum and maximum time gaps

lead to complications with evaluating the feasibility of insertions, updating the tim-

ing data after an insertion, and finding plans in which precedence chains are effi-

ciently scheduled.

4.3.1 Timing Update

After an insertion has been performed, it is necessary to update the timing data. Pro-

cedures for standard routing problems with time windows have been suggested in

the literature (e.g. by [42] for the TOPTW). However, the presence of minimum and

maximum time delays between tasks introduces some complicating factors. This

section details how the timing update after an insertion can be handled in the PPP.

For each visit in the schedule, the following timing data are stored:

Wait w the waiting time before starting the task

Begin b the start of the task at the chosen location

End e the end of the task at the chosen location

Slack s the maximum feasible postponement of the task

It is assumed that all visits are scheduled at the earliest feasible time within their

selected time windows. Note that this does not mean the earliest time window. The

schedules returned at the end of the search may still be post-processed to shift visits

to later times as desired.

The wait variable is subject to some additional considerations in the PPP. If there

exists a minimum time delay between two visits, then even if they are scheduled

consecutively and have overlapping time windows, there must still be a waiting time

planned before the later visit in order to satisfy the delay. Similarly, if there is a max-

imum time delay and the visits are scheduled far apart, it may be necessary to add

extra waiting time before the earlier visit. When multiple time gap relations exist for

a given visit, then it is necessary to find a waiting time which satisfies all of them in

order for the insertion to be feasible, and this waiting time should be minimized so

that the start time is at the earliest time within the selected time window (as noted

above).

The slack time also requires additional checks. In standard routing problems

with time windows, the slack time for a visit j measures the amount of time it may

be delayed without causing any time window infeasibility at subsequent visits. It is

then simply the sum of the waiting and slack time at the next visit j +1, or the time

40

until the end of the time window at visit j , whichever is lower [42]. However, in

the PPP, minimum and maximum time delay constraints from both earlier and later

visits may shorten this slack time further. Determining by how much can become

rather involved when multiple time delay constraints are present, and multiple, un-

related precedence chains are involved. This makes it inefficient and error-prone to

update the slack time together with the other variables, so this step is only done once

the other three timing variables have already been updated for the whole schedule.

The update of the wait, begin, and end times is described below, and the slack time

update is detailed in the next section.

Inserting a selected visit j between visits i and k may shift k and subsequent

visits. Provided that the triangle inequality is satisfied in the distance matrix, the

total shift starting at the position of visit k is determined according to the formula

below:

shift = di j +w j + t j +d j k −di k

Figure 5 shows the insertion of a visit j in a standard routing problem with time

windows. The x-axis represents the time at that point in the schedule, visit j is in-

serted at time 13. The y-axis corresponds to the remaining shift at a particular posi-

tion in the schedule. The step-wise decreasing line plots the decreasing shift as it is

resolved at subsequent visits of the schedule. Once the shift is reduced to 0, no fur-

ther changes occur. In the example, only visits below the step-wise line are affected

by the shift caused by inserting visit j .

Figure 5: Example Timing Update (1/4)

At this point, the presence of minimum and maximum time delays introduces

several complications to this procedure in the PPP. Some examples are now consid-

ered. For the sake of simplicity, service times and travel times are ignored.

Suppose there is a precedence chain of visits x and y , scheduled at times 21 and

36, respectively, and that the minimum delay between these two visits is 15 time

units. When the timing update reaches visit x, the shift has not yet been reduced

to 0, and visit x is shifted by some time units. However, this leads to a violation of

41

the minimum time delay to visit y . Clearly, visit y must be shifted as well, and in this

example by the same amount as visit x. Notice that visit y can be shifted only at most

as much as its predecessor visit x - if the delay between the visits were larger than

the time delay, for example 20 time units, then the shift at visit y would be reduced

by (20 - 15) = 5 time units. Either way, some of the shift is propagated to a later part

of the schedule, even though that part would otherwise not have been reached by

the shift from task j . This is shown in Figure 6.

Figure 6: Example Timing Update (2/4)

Consider now the case of a maximum delay. In the example above, even if there

is a maximum delay between visits x and y , it can never be violated by shifting visits

to later parts of the schedule, since visit y can never be shifted more than visit x.

However, suppose there is a precedence chain of visits a and b, scheduled at times 3

and 18, with a maximum delay of 20 time units. This delay is not a tight constraint at

this point, as the visits are only (18 - 3) = 15 time units apart. Suppose now that when

the timing update reaches visit b, and the remaining shift is 10 time units. After visit

b is shifted to time 28, the gap to visit a has increased to 25, so that visit a must now

be shifted (25 - 20) = 5 time units. As before, visit a can be shifted no more than visit

b, but unlike in the previous example, now the shift can be propagated even to parts

of the schedule before the original insertion position of visit j . This stands in stark

contrast to classic routing problems. Figure 7 shows the effect of maximum delays

in the PPP.

Figure 7: Example Timing Update (3/4)

42

In the two examples above, the shift is propagated to positions before or after

the reach of the original shift (marked in grey) caused by visit j . In both cases, it

does not matter in what order the propagations are resolved. In general however,

propagations of a shift should be resolved immediately. This prevents difficulties in

cases when two or more visits of a precedent chain fall within the reach of a single

shift.

Consider the example shown in Figure 8. Suppose there is another chain of visits

p and q , scheduled at times 23 and 26, respectively, and with a minimum delay of

3 time units. When the timing update reaches visit p, visit q must be shifted in the

same manner as visit y , but before the remainder of the initial shift is resolved. In

this way, when the original shift caused by visit j reaches visit q , the waiting time

before visit q will have already been updated to absorb the entire remaining shift.

Otherwise, visit q could be incorrectly shifted a second time.

Figure 8: Example Timing Update (4/4)

Note that only minimum delay constraints can cause propagations to later parts

of the solution (as in Figure 6). Likewise, only maximum delay constraints can lead

to propagations to earlier parts of the solution (as in Figure 7). Importantly, every

propagation can itself lead to further propagations, each of which may take the form

of any of the cases described above. With this in mind, Algorithm 2 presents pseu-

docode for a recursive implementation handling the timing update in the PPP:

43

Algorithm 2 Timing Update

1: j ← the visit which was originally inserted

2: n ← the visit to be shifted

3: shift ← the amount of time visit n must be postponed

4: while shift > 0 do

5: shift ← max[0, (shift −wn)]

6: bn ← bn + shift

7: en ← en + shift

8: wn ← bn − (em +dmn) (where m is the visit immediately before n)

9: for all scheduled predecessors p in ρn do

10: v ← (bn −ep)−βnd

11: if v > 0 then

12: timingUpdate(j , p, (v +wp))

13: for all scheduled dependent visits d in δn do

14: v ←αnd − (bd −en)

15: if v > 0 then

16: timingUpdate(j , p, (v +wd))

17: if n = j then

18: shift ← di j +w j + t j +d j k −di k

19: n ← n +1 (the next visit after n)

20: return

The algorithm takes three parameters: the visit j which was originally inserted,

the visit n which is to be shifted, and the shift amount. Due to the recursive nature

of the algorithm, the first call is made with values of (j , j , 1), and beforehand wn is

set to 1, and b j and e j are reduced by 1. It is assumed that the solution is feasible

prior to the insertion.

Line 4 opens the while loop which continues the update until the shift has been

reduced to 0. Line 5 reduces the shift by the waiting time prior to the current visit,

and ensures it remains non-negative in case all the shift has been absorbed. Lines 6

to 8 then update the begin, end, and waiting times of the current visit.

Line 9 examines all of the current visit n’s scheduled predecessors, if any. For

each one, the difference between the time delay to the predecessor, and the maxi-

mum time delay, is computed in line 10. If this difference is greater than 0, then the

maximum delay has been violated (linen 11), and the predecessor must be shifted

by the difference. The algorithm is therefore called again with j , n, and the differ-

ence v in line 12. An equivalent procedure is followed for all of visit n’s scheduled

dependent visits in lines 13 to 16.

If this is the first call to the algorithm and the first iteration of the loop, then visit

44

n will in fact be visit j . Line 18 then sets the shift to its proper value for all subsequent

visits. The dummy parameters for the first call to the algorithm are necessary to

ensure that also visit j ’s predecessors and dependent tasks are shifted accordingly,

since visit j would otherwise never actually be shifted (but rather only inserted).

Finally, line 19 sets the current visit to the next one in the schedule. The procedure

then loops from line 4 until no more visits must be shifted.

4.3.2 Slack Update

In classical standard routing problems with time windows, the slack time can be

rather easily updated along with the other timing variables. [33] and [42] propose

such procedures, based on the shift time of an insertion, and backwards recursion.

In the PPP however, minimum and maximum time delays introduce some com-

plicating factors. In the algorithms of [33] and [42], once the shift has been reduced

to 0, no later visits need to be updated. This is generally not the case in the PPP. Con-

sider the example in Figure 6 from the previous section: there could be a visit z near

the end of the schedule with a maximum time delay to visit y . Even if z is not shifted,

the shift of y can nonetheless extend the slack time of z. The additional slack time at

z may then affect the visits before z, even if they are not related to y or z in any way

by time delay constraints. Similarly, if there is a minimum time delay between y and

z, then removing z may increase the slack time of y by more than simply the freed

up time. The complexity of these interactions increases when multiple unrelated

sets of such connected visits are considered, especially when these sets overlap (for

example visits p and q in Figure 6 are between visits x and y , but are not directly

related).

One consequence of the above is that potentially every visit’s slack time may

need to be updated, regardless of whether or not it was actually shifted itself (like

visit z and those before z in the example above). Looking at the highly simplified ex-

ample in Figure 8, there are already four non-connected parts of the solution which

are not directly affected by any of the shifts. Rather than keeping track of all of them

and dealing with the many potential precedence chains and the complex interac-

tions between them during the timing update, it is conceptually simpler and less

error-prone to update the slack times of all visits afterward, in a single run through

the schedule. Such an implementation is proposed for the PPP in Algorithm 3 below:

45

Algorithm 3 Slack Calculation

1: for all visits j in the schedule do

2: s j ← c j −e j

3: for all visits j except the last, from latest to earliest do

4: if s j > w j+1 + s j+1 then

5: s j ← w j+1 + s j+1

6: for all scheduled precedent visits i in ρ j do

7: u ← ei + si +βi j

8: bmax ← b j + s j

9: if u < bmax then

10: s j ← s j − (bmax −u)

11: bmax ← b j + s j

12: l ← ei + si +αi j

13: if bmax < l then

14: si ← si − (l −bmax)

15: return

The main idea behind the algorithm is to recalculate all the slack times by re-

ducing them from their upper bounds until all of them are feasible. It is similar to

the procedures of [33] and [42] in that it also relies on backwards recursion. The

difference is that the updated timing variables (waiting, start, end) must already be

known for all visits in the schedule, rather than only the current one. That is why

Algorithm 2 from the previous section must be run first.

Lines 1 and 2 start the algorithm by setting the slack time of every scheduled visit

j to its upper bound, namely the difference between the visit’s closing time c j and its

end time e j . This is necessary so that the procedure can also be used when visits are

removed from the schedule, which leads to an unknown increase in the slack times,

rather than a decrease. Line 3 then begins the updating procedure from the next to

last visit j . Line 4 checks whether the current visit j ’s slack time s j is larger than the

sum of the waiting time w j+1 and the slack time s j+1 of the next visit j + 1 in the

schedule. If this sum is larger, then visit j ’s slack is infeasible and must be reduced

to that sum in line 5. This is identical to the backwards recursion applied by [33] and

[42].

In order to consider the additional effects on time delay constraints, line 6 ex-

amines all scheduled predecessors i of the current visit j . Only tasks connected by

precedence relations can have associated time delays in the proposed PPP formula-

tion, but an extension to any combination is straightforward by simply replacing ρ j

with the set of visits connected to visit j by time delays. Lines 7 to 10 consider the

effect of a maximum delay between visit j and its predecessor i . Line 7 calculates

46

an upper bound u on the latest feasible start time of visit j when predecessor i is

shifted as late as possible. This is the sum of the predecessor’s end time ei , the pre-

decessor’s slack time si , and the maximum time delay βi j between the predecessor

i and current visit j . Line 8 calculates the latest feasible start time bmax of visit j

with regard to its own slack time. This is simply the start time b j plus the slack time

s j . If bmax is greater than u (line 9), then that implies that visit j ’s slack has been

overestimated, and s j is then reduced by the difference of bmax and u in line 10.

Similar calculations are then performed in lines 11 to 14 to examine the effect

of a minimum time delay between visits i and j . bmax is first recomputed in line

11 using the updated s j . Line 12 then calculates a lower bound l on j ’s start time

for the case that its predecessor i is shifted as much as possible. This is the sum of

i ’s end time ei , its slack time si , and the minimum time delay αi j between i and j .

If the lower bound l is greater than the actual latest start time bmax (line 13), then

that means the slack time of the predecessor has been overestimated, and si is then

reduced accordingly by the difference of l and bmax in line 14.

The for-loop started in line 6 is then continued for the next scheduled predeces-

sor of current visit j . Note that dependent tasks scheduled later than the current visit

j need not be considered explicitly - they will have been considered before reaching

visit j since the algorithm begins at the end of the schedule. Once all predecessors of

j have been examined, the algorithm continues from line 3 with the next visit j −1,

and terminates on line 15 once the outer for-loop has been resolved.

Pre-processing the slack time allows for a more efficient feasibility evaluation of

insertions. For the problems considered by [33] and [42], the computational com-

plexity of evaluating insertion feasibility can be reduced from O(n) to O(1) constant

time on average in this way. In the PPP, the maximum and minimum time delays

add some overhead. The algorithm described above runs in O(n ·B) time, where B is

greater than ρ j for all visits j . As a result, the average complexity of checking an in-

sertion’s feasibility becomes O(B). Although B can be as large as n−1, where n is the

total number of tasks, precedence chains in practical instances are generally much

shorter and rarely longer than 5 tasks. The overhead is therefore mostly negligible in

practice.

4.3.3 Insertion Feasibility Evaluation

In the previous sections, it is assumed that an insertion has already been selected

and performed. However, before this can be done, the feasibility of the selected

insertion must be evaluated. In standard routing problems with time windows, it

is sufficient to examine the slack time of the visit immediately after the intended

insertion position. If the shift caused by the intended insertion is less than or equal

to this slack time, then the insertion is at least feasible.

47

In the PPP, the slack time for each visit must take into account all of the prece-

dence and time delay constraints between all visits in the schedule. If the slack

times are updated as outlined in the previous section, then this condition is satis-

fied. However, there exist specific cases in the PPP where examining only the slack

time is not sufficient.

Consider the example shown in Figure 9. The boxes represent task service time,

and the thick lines beneath represent the time window of the selected visit. Assume

all travel times are 1 and that the schedule begins with visit a. Looking at the initial

state, visit x has a slack time of 3 time units, with a waiting time of 1. Visit a has 5

time units left until the end of its time window, so the slack time of visit a is min[5,

(3+1)] = 4 time units.

Figure 9: Example Insertion (1/3)

Visit a is part of a precedence chain, and visit b is to be inserted as shown in

Figure 10. Suppose that the maximum time gap between visits a and b is 4 time

units. For the given visit b, the time window starts at time 8. Subtracting the time

gap 4 from this means that visit a must end at time 4 or later. It currently ends at

time 2, meaning it would have to be shifted 2 time units. If the shift of earlier visits

is not considered, then this particular insertion will be regarded as infeasible.

48

Figure 10: Example Insertion (2/3)

However, it may in fact be a highly efficient position, and in this example it is

feasible. As was shown in Section 4.3.1, in the PPP it is possible that insertions cause

shifts also before the insertion position. The resulting schedule is shown in Figure

11.

Figure 11: Example Insertion (3/3)

Consider now the case where the maximum time gap is 3 units instead of 4. Now

visit a has to be shifted by 3 time units, and this also appears to be possible since

this is lower than the visit’s slack of 4. However, shifting visit a by 2 units ends up

pushing visit b forward by 1 unit due to visit x and the travel times. This in turn

requires shifting visit a again, leading to an infinite loop. It can be seen in Figure

11 that the time difference between visits a and b can be no smaller than 4 time

units due to visit x and the travel times, so that the intended insertion can never be

feasible.

49

Clearly, the slack alone is not sufficient for evaluating insertion feasibility under

the presence of time gap constraints. The problem lies in the fact that the slack time

can take into account only time delay constraints which are actually binding in the

current schedule. Hence visit a’s slack cannot take into consideration the maximum

time delay to visit b, because visit b is not in the solution when this slack time is

calculated.

This kind of error can only happen after the insertion of a visit with a maximum

delay to an earlier precedent, and even in these cases, it is rare. It depends on which

visits are scheduled in between, and what the exact travel times are. In order to han-

dle this case, it is sufficient to perform these kinds of insertions on a tentative copy

of the schedule, and accept it only if no such loops occur. An insertion is infeasible

in this regard if any visit is ever shifted more than once - if this occurs then the in-

sertion can be discarded and another one may be taken instead. In most cases, the

original visit to insert may simply be inserted at the next available position.

50

Chapter 5

Computational Experiments

This chapter reports the results of running the proposed metaheuristic on a number

of test instances supplied by the partnering research institution. The first section

describes these instances and the data sets in more detail. This is followed by an

explanation of the parameter settings used for the experiments. Finally, summaries

of the test results are presented. An exact solution method for the PPP was imple-

mented by the partnering research institution, so for a subset of the instances, op-

timal reference sets are available as benchmarks. Approximate reference sets were

used as benchmarks for the remaining instances.

5.1 Data Sets

The available test instances can be divided into six groups (A to F), each representing

one of six different fictional personas with a different type of schedule pattern. Their

schedules differ in the number of tasks, ranging from 30 to over 80, and the rela-

tive number of precedence relations among them, ranging from approx. 15% to 88%

(meaning this share of the tasks are subject in some way to precedence constraints).

Five versions exist for each schedule, representing different weeks of a longer, parti-

tioned planning horizon.

With regard to the routing aspect of the problem, existing data sets of real lo-

cations in the city of Vienna, Austria were used. Appropriate subsets (e.g. super-

markets, restaurants, specialty stores) were used as the available locations for dif-

ferent types of tasks. One location designates the decision-maker’s “home”, which

is always the start and end point of the schedule. Time window data on opening

and closing times was either supplied from a database or estimated. The underly-

ing distance matrix for these locations was determined according to the mode of

transportation used in each instance. Five modes of transportation (lowercase a to

e) were modeled: personal automobile (a), car-sharing service such as Car2Go (b),

51

public transportation (c), cycling (d), and walking (e).

Each instance is constructed using one of the schedules (persona/week), a set of

available locations, and one mode of transportation. This is reflected in the instance

IDs, e.g. ID “B2a” corresponds to persona B’s second planning week, using a car.

Two instances were created for each schedule (persona/week), using different

modes of transportation, and every resulting instance was scaled using different sets

of available locations, ranging in size from 50 to nearly 3000 locations. The results

reported in this section are based on the largest available instance for each schedule

and transportation mode combination.

5.2 Parameter Settings

Although in principle a mostly parameter-less implementation can be constructed,

several parameters are used to better control the progression from one search phase

to another in order to improve the quality/run time performance. The table below

summarizes the parameters of the algorithm:

Symbol Description

lexp the limit on the number of iterations in the exploration phase

lcon the limit on the maximum consecutive iterations without improvement in

the consolidation phase

lr e f the limit on the number of sweeps over the whole efficient set in the refine-

ment phase

fr e f a parameter which skews the focus of the search in the refinement phase

tmax the maximum run time before the algorithm terminates

dmi n the minimum destroy intensity, as a percentage of visits scheduled

dmax the maximum destroy intensity, as a percentage of visits scheduled

smi n the minimum segment length for the consecutive destroy operator

smi n the maximum segment length for the consecutive destroy operator

RC L the size of the restricted candidate list for the GRASP repair operator

Table 1: Parameters of the Proposed Metaheuristic

It is possible to skip the exploration phase entirely and start the consolidation

phase with only the empty solution in the stack. However, initial experiments showed

that this approach takes much longer to converge to an approximation set of similar

quality. If the first and only iteration starting with the empty solution results in a

poor construction, then the consolidation phase spends much of its time iteratively

improving these poor intermediate solutions. As a result, lexp was set to 20 so that

the consolidation phase can start with a reasonably good approximation set.

In the consolidation phase, it is possible to omit the parameter entirely by end-

ing the phase only once the solution stack is empty. However, experiments showed

52

that the solutions near the bottom of the stack only rarely lead to improvements in

the efficient set. By the time the consolidation phase starts, these early solutions are

too inferior to be of much help. This is the reason why a LIFO policy was used for

the stack, but also the reason why a parameter lcon is necessary, especially for large-

scale instances in which the stack may be very large. Tests on the largest instances

showed that an lcon value of 20 was sufficient for exploring the most promising so-

lutions in the stack and deleting the rest.

Being the final part of the search, the refinement phase needs some sort of stop-

ping condition. A natural choice is to limit the number of times the approximation

set is refined, i.e. the number of destroy/repair sweeps over the entire set. Examin-

ing the most difficult instances, it was observed that improvements to the efficient

set were at best only marginal after two or three sweeps. As a result, a sweep count

limit lr e f of 3 was chosen. In addition, an upper limit on the run time, rmax , was

defined and set to 300 seconds.

An additional parameter fr e f was introduced in order to skew the focus of the

refinement phase. As mentioned at the start of Section 4, choosing total free time

as the second objective results in “emptier” solutions with fewer tasks at the upper

end of the front, and “fuller” solutions at the lower end. One consequence is that it

is generally much easier to find highly efficient solutions for the upper part of the

front, because finding a very good or optimal combination and arrangement of a

small number of tasks is generally easier than for a larger number. This intuition

was confirmed in initial experiments, where it was observed that most of the im-

provements in the refinement phase were made in the lower region of the front, and

by using solutions from the lower region as the working solutions.

In order to focus more of the search on the lower part while still sweeping over all

solutions in the approximation set, a solution si with index i in the approximation

set A is considered n times per sweep, where:

n = ⌈
(i / |A|)∗ fr e f

⌉
Provided that A is ordered as proposed from lowest to highest profit, this selec-

tion rule allows solutions from the lower part to be selected for refinement up to fr e f

more frequently than the solutions from the upper part. Setting fr e f to 1 results in an

unbiased sweep over all solutions equally. Note that in the case of multiple sweeps,

it is not equivalent to perform a single sweep using the sum of the n attempts per

solution, because the solutions in the set are subject to change during each sweep

and the newer ones are reselected during the next. fr e f was set to a value of 3 for all

experiments.

With regard to the destroy and repair operators, the destroy intensity range was

fixed for the entire search, with dmi n set to 5 and dmax to 30. The consecutive oper-

ator was set to evaluate sequences with a minimum length smi n of at least 2 visits,

53

and with an smax of 5. The size RC L of the restricted candidate list for the repair op-

erator’s GRASP insertion order was fixed at 5. Finally, the available characteristics of

the repair operator were slightly adjusted depending on the search phase. In partic-

ular, the insertion scope during the exploration phase must always be all since every

iteration starts from an empty solution with no previous state. In addition, only the

greedy and GRASP insertion orders were active during refinement, in order to focus

explicitly on intensification.

Finally, all computations were conducted on a personal computer with an In-

tel Core i7 2.20 GHz processor with 8GB of RAM. The table below summarizes the

default parameter settings used in all experiments (unless noted otherwise):

Parameter Value Parameter Value Parameter Value

lexp 20 dmi n 5 smi n 2

lcon 20 dmax 30 smi n 5

lr e f 3 tmax 300 RC L 5

fr e f 3

Table 2: Default Parameter Values

5.3 Instances with Exact Reference Sets

A set of smaller instances solvable to optimality was made available by the part-

nering research institution as a benchmark for the proposed metaheuristic. These

instances are based on a shorter planning horizon of 3 as opposed to 7 days, and

contain fewer tasks and considerably fewer locations. Each instance was solved 10

times with the parameter settings outlined in the previous section. Table 3 reports

the results for each instance, and Table 4 summarizes the main indicator values.

The results show that the algorithm performs very well and generates a near-

optimal set of solutions for almost all of the benchmark instances. The average hy-

pervolume attained over all instances and all runs is above 99% of the optimal value,

and the average epsilon indicator over all instances and all runs is 1.019. In terms of

worst-case performance, even the worst runs attain on average over 98% of the opti-

mal hypervolume, and an average epsilon indicator of 1.045. These results indicate

that the algorithm is generally reliable.

54

Instance Tasks Chain % Locations Visits
Average Average Hypervolume (%) Mult. Unary Epsilon

Front Size Run Time Worst Ave Best Worst Ave Best

A1a 21 66.67 19 102 14 1 99.10 99.43 99.79 1.125 1.045 1.013

A1d 21 66.67 19 102 14 1 95.39 97.42 99.38 1.077 1.039 1.011

A2a 21 52.38 20 100 16 1 99.41 99.66 99.88 1.053 1.035 1.017

A2d 21 52.38 20 100 17 1 99.13 99.52 99.78 1.078 1.038 1.012

A3a 24 75.00 20 111 15 1 98.90 99.57 99.89 1.355 1.110 1.007

A3d 24 75.00 20 111 17 2 98.89 99.74 99.90 1.299 1.039 1.006

A4a 22 50.00 20 107 20 1 99.34 99.84 100.00 1.035 1.013 1.001

A4d 22 50.00 20 107 19 1 95.14 97.81 99.77 1.061 1.034 1.010

A5a 21 61.90 17 88 22 1 99.36 99.61 99.79 1.068 1.028 1.017

A5d 21 61.90 17 88 21 1 99.44 99.73 99.92 1.052 1.022 1.003

B1a 19 21.05 29 86 19 0 93.30 98.50 99.95 1.100 1.040 1.007

B1d 19 21.05 29 86 18 0 92.03 98.09 99.97 1.106 1.041 1.004

B2a 19 36.84 27 107 13 0 99.71 99.93 99.99 1.016 1.004 1.000

B2d 19 36.84 27 107 14 0 99.88 99.95 100.00 1.006 1.004 1.000

B3a 22 36.36 28 91 11 0 97.43 97.91 99.58 1.100 1.052 1.017

B3d 22 36.36 28 91 11 0 94.35 97.16 98.03 1.100 1.043 1.009

B4a 16 37.50 29 49 13 0 99.88 99.93 99.99 1.003 1.002 1.001

B4d 16 37.50 29 49 14 0 99.89 99.96 100.00 1.005 1.003 1.001

B5a 17 29.41 30 71 25 0 99.97 99.98 100.00 1.016 1.006 1.001

B5d 17 29.41 30 71 25 0 99.98 99.99 100.00 1.012 1.006 1.001

C1a 24 58.33 24 64 19 1 97.86 98.50 100.00 1.006 1.001 1.000

C1d 24 58.33 24 64 15 0 98.70 99.83 100.00 1.037 1.007 1.000

C2a 24 41.67 20 64 28 1 99.67 99.84 99.97 1.028 1.017 1.009

C2d 24 41.67 20 64 26 1 99.27 99.65 99.94 1.039 1.025 1.009

C3a 22 54.55 20 74 24 1 96.83 99.25 99.98 1.034 1.020 1.007

C3d 22 54.55 20 74 21 1 97.50 99.11 99.96 1.037 1.024 1.005

C4a 22 36.36 28 78 39 1 99.80 99.89 99.97 1.014 1.008 1.004

C4d 22 36.36 28 78 42 2 99.83 99.92 99.99 1.022 1.008 1.003

C5a 22 45.45 24 70 30 1 99.68 99.85 99.95 1.022 1.012 1.008

C5d 22 45.45 24 70 32 1 99.62 99.79 99.90 1.027 1.020 1.009

Table 3: Results for Benchmark Instances (10 Runs Each)

Average Average Hypervolume (%) Mult. Unary Epsilon

Front Size Run Time Worst Ave Best Worst Ave Best

Minimum 11 0 92.03 97.08 98.03 1.355 1.110 1.017

Maximum 90 301 99.98 99.99 100.00 1.003 1.001 1.000

Average 35 71 98.32 99.24 99.80 1.045 1.019 1.006

Table 4: Summary of Results on Benchmark Instances

Looking at the best and worst runs of each instance, it is clear that there is more

variance among the worst runs. The best runs for each instance all fall within a range

of 98% to 100% of the optimal hypervolume, whereas the weakest runs generate any-

where between 92% and just under 100%. Nonetheless, the results are promising

since even the single worst run still manages to attain over 92% of the optimal hyper-

volume. Figure 12 shows the normalized approximation set and the Pareto-optimal

set of the run with the worst hypervolume.

55

Figure 12: Approximation Set of Run with Worst Hypervolume %

It can be seen that even for this worst run, the algorithm finds the optimal so-

lutions at the upper end of the front (high free time, low profit). This supports the

notion that the upper area of the approximation set is generally easier to optimize

for the PPP. At the other end of the front, the solutions are further from the optimum,

and no solutions are found for some of the highest profit scores. However, looking

at the other extreme, the best run on this instance (B1d) finds 99.97% of the opti-

mum hypervolume, and the average is 98.09%, so it seems that finding a very good

approximation set is more likely for this instance.

There appears to be more variance among the instances and runs when consid-

ering the worst epsilon indicator, which is rather high at 1.355. However, the unary

epsilon indicator is based on the quality of the worst solution in an approximation

set. Figure 13 shows the approximation set with the worst epsilon indicator.

56

Figure 13: Approximation Set of Run with Worst Epsilon Indicator

Looking at the approximation set, it is clear that this “worst” set is in fact very

efficient, except for the single highest profit value. This is an acceptable compro-

mise, especially since the solutions with the highest profit are not only difficult to

optimize, but in some cases difficult to attain at all, as in the previous instance.

Overall, there do not appear to be too many significant differences in perfor-

mance between the schedules or transportation modes of the benchmark instances.

Due to the small size of these instances, the run times are also all negligible.

5.4 Instances with Approximate Reference Sets

This section reports the results on test instances for which no exact optimal refer-

ence sets are known. Each instance was solved 10 times. In order to evaluate the

potential effect of having limited the search with the parameter settings outlined in

section 5.2, each instance was also solved once with much more generous settings:

Parameter Value Parameter Value

lexp 50 lr e f ∞
lcon ∞ rmax 600

Table 5: Modified Parameter Values for Extended Runs

57

Although for most instances these extended runs produced slightly better so-

lution sets, the final reference set used for these tests was the non-dominated set of

solutions found over all 10 regular runs and the extended run. This reference set was

used as the benchmark for evaluating the relative hypervolume and multiplicative

unary epsilon indicators for the larger instances. Table 6 reports the results of the 10

regular runs for each instance, followed by a summary of all indicators in Table 7.

The experimental results indicate that the performance of the proposed meta-

heuristic is robust and consistent for much larger instances as well. Averaged over

all instances, the gap between the best and worst average hypervolume is only about

1.4%, and never more than 7% for any single instance. The average hypervolume

over all instances stands at over 99% of the respective instances’ best known values.

Likewise, the average epsilon indicator over all instances is 1.012, just slightly above

the optimal value of 1.0. Even the worst of the worst runs manages to attain 93% of

its respective instance’s best found hypervolume, and the worst epsilon indicator is

still only 1.062. Together, these indicators suggest that the solutions found by the

proposed metaheuristic may be highly efficient and also well-distributed across the

efficient frontier, with very little variance in quality from one run to the next. Unfor-

tunately, it is not possible to draw strong conclusions about the absolute quality of

the solutions without the optimal fronts as a reference.

Although the differences are small, a closer look at the data suggests that the

instances from the A, B, D, and F groups may be somewhat easier to optimize. Their

hypervolume indicators are consistently within 1% to 2% of the best known, and the

average always above 99%. In contrast, instances from the C and E schedule groups

result in somewhat more variable solution quality, particularly set E.

A similar split among the schedule groups is discernible in the average sizes of

their approximation fronts. It can be seen in Figure 14 that instance sets C and E tend

to have larger approximation fronts, with most of these instances having at least 60.

On the other hand, it is rare for any instances from the other sets A, B, D, and F to

have more than 60 solutions in an approximation set on average.

Figure 14: Average Front Size over 10 Runs

58

Instance Tasks Chain % Locations Visits
Average Average Hypervolume (%) Mult. Unary Epsilon

Front Size Run Time Worst Ave Best Worst Ave Best

A1a 32 71.88 2244 17458 20 86 99.80 99.87 99.97 1.021 1.009 1.002

A1b 31 74.19 2244 17457 22 58 98.64 99.54 99.86 1.062 1.023 1.016

A2a 36 75.00 2117 19267 17 168 99.83 99.94 99.98 1.007 1.003 1.001

A2b 36 75.00 2117 19267 20 141 98.80 99.24 99.35 1.036 1.025 1.023

A3a 32 87.50 1930 15935 14 78 99.76 99.88 99.94 1.017 1.011 1.002

A3b 32 87.50 1930 15935 16 51 99.51 99.60 99.70 1.023 1.015 1.009

A4a 26 69.23 1931 15861 11 97 99.92 99.97 99.99 1.005 1.001 1.000

A4b 26 69.23 1931 15861 15 41 99.60 99.77 99.94 1.026 1.019 1.008

A5a 30 76.67 222 3909 25 60 99.91 99.95 99.98 1.006 1.003 1.001

A5b 29 79.31 222 3908 31 59 99.54 99.65 99.84 1.035 1.015 1.005

B1a 27 14.81 109 1935 53 6 99.97 99.99 99.99 1.002 1.001 1.001

B1c 26 15.38 109 1934 51 5 99.92 99.95 99.97 1.006 1.004 1.003

B2a 28 14.29 231 3869 30 7 95.51 99.17 99.94 1.029 1.010 1.002

B2c 27 14.81 231 3868 30 3 95.24 95.73 99.91 1.015 1.012 1.006

B3a 28 17.86 2184 8513 18 11 95.69 99.51 99.98 1.030 1.007 1.001

B3c 27 18.52 2184 8512 17 4 95.02 97.87 99.92 1.057 1.020 1.004

B4a 27 14.81 2185 6575 28 5 99.77 99.87 99.95 1.025 1.021 1.006

B4c 27 14.81 2185 6575 26 4 99.80 99.89 99.97 1.031 1.013 1.002

B5a 26 19.23 1889 5844 58 12 99.94 99.95 99.96 1.004 1.003 1.002

B5c 25 20.00 1889 5843 46 8 99.68 99.77 99.87 1.032 1.018 1.010

C1a 62 67.74 1106 4227 114 300 99.54 99.81 99.94 1.019 1.010 1.005

C1e 61 68.85 1106 4226 85 148 98.74 99.18 99.72 1.017 1.012 1.007

C2a 63 65.08 1315 6150 54 298 99.60 99.89 99.95 1.012 1.007 1.003

C2e 63 65.08 1315 6150 47 114 97.96 98.71 99.88 1.020 1.014 1.010

C3a 63 66.67 722 3034 72 252 98.94 99.07 99.64 1.013 1.009 1.005

C3e 62 67.74 722 3033 55 95 97.81 99.17 99.91 1.017 1.014 1.010

C4a 60 63.33 1100 5246 77 300 99.61 99.86 99.96 1.016 1.008 1.005

C4e 60 63.33 1100 5246 59 113 97.12 98.15 99.75 1.023 1.015 1.010

C5a 62 64.52 437 2358 74 291 97.92 98.86 99.93 1.019 1.016 1.008

C5e 62 64.52 437 2358 50 92 96.37 97.21 99.85 1.024 1.016 1.010

D1d 35 25.71 2598 12761 39 192 99.91 99.92 99.94 1.004 1.003 1.002

D1e 35 25.71 2598 12761 36 95 99.77 99.86 99.91 1.012 1.005 1.002

D2d 40 30.00 2439 26853 49 300 99.52 99.69 99.81 1.022 1.013 1.007

D2e 40 30.00 2439 26853 52 300 99.38 99.54 99.77 1.028 1.022 1.010

D3d 42 30.95 2035 65619 43 300 99.87 99.92 99.96 1.006 1.003 1.002

D3e 42 30.95 2035 65619 73 300 99.13 99.50 99.75 1.024 1.015 1.011

D4d 42 30.95 2033 43324 27 188 98.92 99.27 99.97 1.014 1.012 1.004

D4e 42 30.95 2033 43324 27 119 98.91 99.11 99.97 1.026 1.018 1.004

D5d 40 25.00 2048 29676 25 166 93.66 96.76 99.88 1.020 1.016 1.002

D5e 40 25.00 2048 29676 23 82 93.18 98.51 99.71 1.032 1.019 1.008

E1d 65 58.46 808 4253 75 300 98.46 99.26 99.91 1.017 1.010 1.006

E1e 65 58.46 808 4253 59 106 97.20 98.36 99.75 1.022 1.014 1.006

E2d 71 66.20 765 4082 78 300 98.69 99.36 99.77 1.021 1.011 1.008

E2e 71 66.20 765 4082 71 288 97.40 98.76 99.68 1.020 1.015 1.011

E3d 72 61.11 725 4640 58 300 95.99 98.12 99.48 1.027 1.015 1.007

E3e 71 61.97 725 4639 56 300 93.83 97.08 99.21 1.047 1.026 1.012

E4d 74 64.86 1002 5342 90 300 97.10 98.20 99.25 1.024 1.017 1.013

E4e 73 65.75 1002 5341 80 300 96.93 98.55 99.65 1.021 1.015 1.011

E5d 70 61.43 755 4831 72 300 97.47 98.55 99.75 1.016 1.012 1.008

E5e 70 61.43 755 4831 75 298 96.05 98.13 99.62 1.026 1.015 1.006

F1d 39 28.21 2947 13184 64 228 99.80 99.85 99.89 1.014 1.009 1.004

F1e 39 28.21 2947 13184 57 148 99.62 99.72 99.83 1.021 1.016 1.009

F2d 30 23.33 2487 12983 26 40 99.95 99.96 99.97 1.003 1.002 1.001

F2e 30 23.33 2487 12983 26 27 99.83 99.90 99.92 1.009 1.006 1.004

F3d 29 27.59 99 1933 17 3 99.88 99.93 99.97 1.004 1.002 1.001

F3e 29 27.59 99 1933 17 3 99.52 99.66 99.75 1.012 1.011 1.006

F4d 35 17.14 2629 14762 42 110 99.84 99.90 99.96 1.005 1.003 1.002

F4e 35 17.14 2629 14762 37 64 99.68 99.81 99.90 1.017 1.011 1.003

F5d 32 28.13 2480 12405 65 74 99.83 99.88 99.92 1.006 1.005 1.003

F5e 32 28.13 2480 12405 61 54 99.68 99.75 99.83 1.013 1.009 1.003

Table 6: Results for Larger Instances (10 Runs Each)

Average Average Hypervolume (%) Mult. Unary Epsilon

Front Size Run Time Worst Ave Best Worst Ave Best

Minimum 11 3 93.18 95.73 99.21 1.062 1.026 1.023

Maximum 114 300 99.97 99.99 99.99 1.002 1.001 1.000

Average 46 142 98.47 99.23 99.84 1.020 1.012 1.006

Table 7: Summary of Results on Larger Instances

There are also clear differences in the run times for these instance classes (Figure

15). Here too, schedule groups A, B, and F fall into a similar category, with most of

their average run times being below 100 seconds, i.e. less than two thirds of the limit.

On the other hand, schedule groups C, D, and E barely have any instances with run

times below 100 seconds, and in fact, about half of them time out at the 300 second

limit. Interestingly, instances with faster transportation modes (e.g. car (a) vs. public

transportation (c), or cycling (d) vs. walking (e)) are usually solved more quickly.

Figure 15: Average Run Time over 10 Runs, in Seconds

Putting this data together, it appears that schedule sets C and E are more difficult

than the others. Their hypervolume and run time are generally worse than for the

instances in the A, B, D, and F groups. Schedule set D is somewhat of an exception

as the qualitative results are as good as those in the easier group, but the run time is

clearly much higher and similar to the more difficult instances.

An closer examination of the instance characteristics reveals some insights into

instance difficulty. Schedule sets C and E have a markedly higher number of tasks

to be planned, ranging from 60 to over 70. In contrast, the instances from the A,

B, D, and F sets generally have around half as many tasks, from 25 to 35 in most

cases. In addition, schedule sets C and E also have considerably higher shares of

tasks connected by precedence and time gap constraints, between approx. 58% and

69%. Most of the easier instance groups have no more than about 30% of their tasks

connected by such complicating factors. Group A is an exception to this trend.

60

However, it is noteworthy that although sets C and E have the most tasks and

precedence relations, they have by far the fewest locations - most C and E instances

have well below 1000 locations total, whereas almost all of the other instance sets

have well over 2000.

One counter-intuitive result is that the more difficult sets C and E actually have

the fewest feasible visits, with just over 6000 for the largest instance, compared to

well over 10000 for most of the others. It was expected that the number of visits

would be the determining factor for difficulty, since this figure determines the size

of the search space. However, it appears that the number of visits is a better indi-

cator for the run time. In particular, it explains why schedule set D has such high

run times despite being relatively easier to solve - instances of group D have by far

the most visits, including some with 26000, 43000, and even 65000, compared to no

more than 20000 for the largest of the remaining instances. This puts a significant

computational burden on every insertion operation.

Despite all these differences, the algorithm converges quickly to the respective

solution sets. This was a major objective for the practical application, as the search

could be stopped at any time by the decision-maker. Figure 16 plots the hypervol-

ume as a percentage of the final found hypervolume per instance, relative to the

progress of the search. The two curves represent the average and the worst growth

over all instances. It can be seen that, on average, the algorithm quickly finds more

than 95% of the final hypervolume within about 10% of the search, and still around

90% in the worst case. The rest of the search focuses on the final 5% to 10% of the so-

lution quality. This suggests that even for the most time-consuming instances which

timed out at 300 seconds, the quality of the returned solution would have been only

slightly inferior if the search had been interrupted after only 30 seconds.

Figure 16: Hypervolume Growth by Search Progress

61

62

Chapter 6

Conclusion

The present work introduces the Personal Planning Problem (PPP), an extension of

the classic OPTW. Motivated by the planning challenges faced by people with com-

plex and flexible schedules, the PPP extends the routing and scheduling aspects of

the OPTW with a number of real-life constraints, including multiple time windows,

precedence relations between tasks, and minimum/maximum time delays between

activities. A bi-objective formulation using total profit and total free time captures

the inherent trade-off between scheduling more tasks, and having more leisure time.

A metaheuristic based on Large Neighborhood Search is proposed. The algo-

rithm explores the search space in many different directions, maintains a set of

non-dominated solutions, and iteratively refines this set to improve the solutions’

objective values. Large parts of the objective space are explored at every iteration

by evaluating the efficiency of all intermediate solutions. A modular framework for

creating a variety of destroy and repair operators is presented, based on combining

their defining characteristics. Classic procedures used for updating the timing vari-

ables in routing problems are adapted to handle the additional constraints of the

PPP.

Computational experiments show that the algorithm can efficiently handle the

many side-constraints, and produces highly efficient and representative solution

sets in a consistent and reliable way. Benchmark instances are solved nearly to op-

timality in less than 2 seconds on average. Tests on larger instances confirm the

consistency of the solution quality, with an average deviation of around only 1.5%

from the best known hypervolume over 60 instances and 600 runs. Likewise, the

very small range of the multiplicative unary epsilon values indicates that the solu-

tions in the approximation sets are all of similar quality compared to the best known

solutions, i.e. the algorithm does not favor the optimization of one objective over

the other. Results for instance sizes ranging from 2000 to over 65000 feasible vis-

its indicate that the algorithm scales well. Despite differences in total computation

63

time, the algorithm converges quickly to the optimal or best known solution sets, so

that high quality solutions are available even if the search is terminated early by the

decision maker.

Although the PPP has many more constraints than the OPTW, the feasible so-

lution space is not necessarily smaller. The combinations of multiple locations per

task and multiple time windows per task and per location introduce many possibil-

ities. An analysis of instance characteristics and obtained solution quality reveals

that the difficulty of PPP instances may depend primarily on the number of tasks

and on how many of them are linked by precedence and time delay constraints. The

number of locations or the total number of feasible visits appears to have more in-

fluence on the run time than on solution quality. This suggests that the scheduling

aspect of the PPP may be more difficult to optimize than the routing aspect, or that

the former determines to some extent the difficulty of the latter.

Since the computational results are very satisfactory with the basic LNS frame-

work, additional adaptive elements are forgone in the practical application in fa-

vor of reducing the number of parameters and the required tuning. However, there

is potential for synergy between the modular implementation proposed for the de-

stroy and repair operators and an adaptive LNS framework. This may be a promising

avenue for further research.

64

Bibliography

[1] Azi N., Gendreau M., Potvin J-Y. (2014): An adaptive large neighborhood search

for a vehicle routing problem with multiple routes, Computers & Operations

Research, 41, 167-173.

[2] Bent R., Van Hentenryck P. (2004): A two-stage hybrid local search for the vehi-

cle routing problem with time windows, Transportation Science, 38(4), 515-530.

[3] Bent R., Van Hentenryck P. (2006): A two-stage hybrid algorithm for pickup and

delivery vehicle routing problems with time windows, Computers & Operations

Research, 33, 875-893.

[4] Boussier S., Feillet D., Gendreau M. (2007): An exact algorithm for team orien-

teering problems, 4OR, 5, 211-230.

[5] Coello Coello C.A. (1999): A Comprehensive Survey of Evolutionary-Based Mul-

tiobjective Optimization Techniques, Knowledge and Information Systems, 1,

269-308.

[6] Cordeau J-F., Laporte G., Pasin F., Ropke S. (2010): Scheduling technicians and

tasks in a telecommunications company, Journal of Scheduling, 13, 393-409.

[7] Côté J-F., Gendreau M., Potvin J-Y. (2012): Large Neighborhood Search for the

Pickup and Delivery Traveling Salesman Problem with Multiple Stacks, Net-

works, 60(1), 19-30.

[8] Cura T. (2014): An artificial bee colony algorithm approach for the team orien-

teering problem with time windows, Computers & Industrial Engineering, 74,

270-290.

[9] Demir E., Bektas T., Laporte G. (2012): An adaptive large neighborhood search

heuristic for the Pollution-Routing Problem, European Journal of Operational

Research, 212, 346-359.

[10] Feillet D., Dejax P., Gendreau M. (2005): Traveling Salesman Problems with

Profits, Transportation Science, 39(2), 188-205.

65

[11] Gavalas D., Konstantopoulos Ch., Mastakas K., Pantziou G., Tasoulas Y. (2013):

Cluster-Based Heuristics for the Team Orienteering Problem with Time Win-

dows, In: Lecture Notes in Computer Science, 7933, 390-401.

[12] Hemmelmayr V., Cordeau J-F., Crainic T.G. (2012): An adaptive large neighbor-

hood search heuristic for Two-Echelon Vehicle Routing Problems arising in city

logistics, Computers & Operations Research, 39, 3215-3228.

[13] Hertz A., Widmer M. (2003): Guidelines for the Use of Meta-Heuristics in Com-

binatorial Optimization, European Journal of Operational Research, 151, 247-

252.

[14] Hu Q., Lim A. (2014): An iterative three-component heuristic for the team ori-

enteering problem with time windows, European Journal of Operational Re-

search, 232, 276-286.

[15] Jain S., Van Hentenryck P. (2011): Large Neighborhood Search for Dial-a-Ride

Problems, Principles and Practice of Constraint Programming - Proceedings of

the 17th International Conference, CP 2011, 400-413.

[16] Kovacs A.A., Parragh S.N., Doerner K.F., Hartl R.F. (2012): Adaptive large neigh-

borhood search for service technician routing and scheduling problems, Jour-

nal of Scheduling, 15, 579-600.

[17] Kilby P., Prosser P., Shaw P. (2000): A Comparison of Traditional and Constraint-

based Heuristic Methods on Vehicle Routing Problems with Side Constraints,

Constraints, 5, 389-414.

[18] Kim B.-I., Li H., Johnson A.L. (2013): An augmented large neighborhood search

method for solving the team orienteering problem, Expert Systems with Appli-

cations, 40, 3065-3072.

[19] Labadie N., Melechovský J., Wolfler Calvo R. (2011): Hybridized evolutionary

local search algorithm for the team orienteering problem with time windows,

Journal of Heuristics, 17, 729-753.

[20] Labadie N., Mansini R., Melechovský J., Wolfler Calvo R. (2012): The Team Ori-

enteering Problem with Time Windows: An LP-based Granular Variable Neigh-

borhood Search, European Journal of Operational Research, 220, 15-27.

[21] Lehuédé F., Masson R., Parragh S.N., Péton O., Tricoire F. (2014): A multi-criteria

large neighbourhood search for the transportation of disabled people, Journal

of the Operational Research Society, 65, 94-107.

66

[22] Lin S-W., Yu V.F. (2012): A simulated annealing heuristic for the team orien-

teering problem with time windows, European Journal of Operational Research,

217, 15-27.

[23] Montemanni R., Gambardella L. (2009): Ant colony system for team orienteer-

ing problems with time windows, Foundations of Computing and Decision Sci-

ences, 34(4), 287-306.

[24] Montemanni R., Weyland D., Gambardella L. (2009): An Enhanced Ant Colony

System for the Team Orienteering Problem with Time Windows, In: 2011 Inter-

national Symposium on Computer Science and Society (ISCCS), IEEE, 381-384.

[25] Parragh S.N., Schmid V. (2013): Hybrid column generation and large neighbor-

hood search for the dial-a-ride problem, Computers & Operations Research, 40,

490-497.

[26] Parragh S.N., Tricoire F. (2014): Branch-and-bound for bi-objective optimiza-

tion, Retrieved from: http://www.optimization-online.org/DB_HTML/

2014/07/4444.html.

[27] Pisinger D., Ropke S. (2007): A general heuristic for vehicle routing problems,

Computers & Operations Research, 34, 2403-2435.

[28] Pisinger D., Ropke S. (2010): Large Neighborhood Search, In: Handbook of

Metaheuristics, Second Edition, Gendreau M., Potvin J.-Y. (Eds.), Springer, 399-

419.

[29] Qu Y., Bard J.F. (2012): A GRASP with adaptive large neighborhood search for

pickup and delivery problems with transshipment, Computers & Operations

Research, 39, 2439-2456.

[30] Rodríguez B., Molina J., Pérez F., Caballero R. (2012): Interactive design of per-

sonalized tourism routes, Tourism Management, 33, 926-940.

[31] Ropke S., Pisinger D. (2006): A unified heuristic for a large class of Vehicle Rout-

ing Problems with Backhauls, European Journal of Operational Research, 171,

750-775.

[32] Ropke S., Pisinger D. (2006): An Adaptive Large Neighborhood Search Heuris-

tic for the Pickup and Delivery Problem with Time Windows, Transportation

Science, 40(4), 455-472.

[33] Savelsbergh M.V.P. (1992): The Vehicle Routing Problem with Time Windows:

Minimizing Route Duration, ORSA Journal on Computing, 4(2), 146-154.

67

http://www.optimization-online.org/DB_HTML/2014/07/4444.html
http://www.optimization-online.org/DB_HTML/2014/07/4444.html

[34] Schaus P., Hartert R. (2013): Multi-objective Large Neighborhood Search, In:

emphLecture Notes in Computer Science, 8124, 611-627.

[35] Schilde M., Doerner K.F., Hartl R.F., Kiechle G. (2009): Metaheuristics for the

bi-objective orienteering problem, Swarm Intelligence, 3, 179-201.

[36] Schmid V. (2014): Hybrid large neighborhood search for the bus rapid transit

route design problem, European Journal of Operational Research, 238, 427-437.

[37] Schrimpf G., Schneider J., Stamm-Wilbrandt H., Dueck G. (2000): Record

Breaking Optimization Results Using the Ruin and Recreate Principle, Journal

of Computational Physics, 159, 139-171.

[38] Shaw P. (1998): Using Constraint Programming and Local Search Methods to

Solve Vehicle Routing Problems, In: Fourth International Conference on Princi-

ples and Practice of Constraint Programming (CP’98), 417-431.

[39] Souffriau W., Vansteenwegen P., Vanden Berghe G., Van Oudheusden D. (2013):

The Multiconstraint Team Orienteering Problem with Multiple Time Windows,

Transportation Science, 47(1), 53-63.

[40] Tricoire F., Romauch M., Doerner K.F., Hartl R.F. (2010): Heuristics for the multi-

period orienteering problem with time windows, Computers & Operations Re-

search, 37, 351-67.

[41] Tricoire F. (2012): Multi-directional local search, Computers & Operations Re-

search, 39, 3089-3101.

[42] Vansteenwegen P., Souffriau W., Berghe G.V., Van Oudheusden D. (2009): Iter-

ated local search for the team orienteering problem with time windows, Com-

puters & Operations Research, 36, 3281-3290.

[43] Vansteenwegen P., Souffriau W., Van Oudheusden D. (2011): The Orienteering

Problem: A Survey, European Journal of Operational Research, 209, 1-10.

[44] Wy J., Kim B-I., Kim S. (2013): The rollon-rolloff waste collection vehicle routing

problem with time windows, European Journal of Operational Research, 224,

466-476.

[45] Zhou A., Qu B-Y., Li H., Zhao S-Z., Suganthan P.N., Zhang Q. (2011): Multiob-

jective Evolutionary Algorithms: A survey of the state of the art, Swarm and

Evolutionary Computation, 1, 32-49.

68

Abstract

People with complex schedules, such as self-employed people with multiple projects

and clients, have to plan their time wisely to strike a balance between their profes-

sional activities and their private leisure time. An automated schedule optimizer

with built-in routing functionality can provide support by offering good suggestions

for when, where, and in what order to get tasks done. In doing so, such a planner

should consider the individual user preferences with regard to the trade-off between

professional activities and leisure.

The development of such an optimization application was one of the aims of a

research project initiated by the Austrian Research Promotion Agency. Carried out

in cooperation with the Austrian Institute of Technology (AIT), this thesis introduces

and solves the Personal Planning Problem (PPP), a combined scheduling and rout-

ing model that captures the real-life challenge faced by people with complex and

flexible schedules.

The PPP extends the Orienteering Problem with Time Windows (OPTW), where

the nodes represent the tasks to be scheduled and their locations. In contrast to the

OPTW, the PPP formulation allows tasks to be done at one of several possible loca-

tions and during one of several possible time windows. In addition, precedence rela-

tions between tasks, as well as minimum and maximum time delays between related

tasks, are taken into account. In order to capture the trade-off between scheduling

more tasks and enjoying more leisure time, a bi-objective model is formulated so

that a diverse set of efficient and varied schedules can be presented to the decision

maker.

A metaheuristic based on Large Neighborhood Search is proposed for solving the

PPP. The solution space is explored by iteratively destroying different parts of a solu-

tion, and then reconstructing it in various ways. Several destroy and repair operators

are used to diversify and intensify the search. Some common procedures from the

literature are adapted to handle the specific constraints of the PPP.

The proposed metaheuristic is implemented and tested on a set of benchmark

instances provided by the Austrian Institute of Technology. Computational exper-

iments show that the algorithm is effective, reliable, and scales well with increas-

ing instance size. Near-optimal sets of schedules are consistently found for the in-

stances for which optimal solutions are known, and the solution quality is consis-

tent for larger instances as well. Since the algorithm generates a representative set

of non-dominated solutions, the decision maker can compare different schedules

without re-running the optimization, and the various preferences of different deci-

sion makers can be taken into account.

69

Kurzfassung

Menschen mit komplexen Tagesabläufen, wie beispielsweise mobile Selbstständige,

müssen sich ihre Zeit sinnvoll einteilen, um alle beruflichen und privaten Termine

sowie Freizeitaktivitäten wahrnehmen zu können. Ein automatischer Tagesplaner,

der die effiziente Planung von Terminen und Aktivitäten mit dazugehöriger Routen-

planung übernimmt, kann diese Zielgruppe unterstützen indem Vorschläge für einen

effizienten Wochenplan gemacht werden. Wichtig ist hier, dass der Planer die nach

Benutzer individuelle gewünschte Balance zwischen beruflichen Aktivitäten und Frei-

zeit berücksichtigt.

Ein Ziel im Rahmen eines Forschungsprojektes der Österreichischen Forschungs-

förderungsgesellschaft war die Entwicklung einer solchen Optimierungssoftware. Die

vorliegende Arbeit, verfasst im Rahmen einer Zusammenarbeit mit dem Austrian In-

stitute of Technology (AIT), präsentiert und löst das Personal Planning Problem (PPP)

- ein mathematisches Modell welches sowohl die zeitlichen als auch die örtlichen As-

pekte einer realistischen Terminplanung berücksichtigt.

Das PPP erweitert das bekannte Orienteering Problem with Time Windows (OPTW).

Die Knoten repräsentieren dabei die zu planende Aufgaben und die Orte an denen sie

ausgeführt werden. Im Unterschied zum OPTW, ermöglicht die PPP Formulierung,

dass eine Aufgabe an mehreren Standorten und zu verschiedenen Zeitfenstern ge-

plant werden kann. Weiters werden Reihenfolgebedingungen und zeitliche Mindest-

und/oder Maximalabstände zwischen den Aufgaben berücksichtigt. Um die Bal-

ance zwischen mehr Aktivitäten und mehr Freizeit zu berücksichtigen, wird eine bi-

kriterielle Formulierung des Problems gelöst. So kann eine repräsentative Menge von

effizienten Zeitplänen erstellt und dem Entscheidungsträger präsentiert werden.

Das vorgestellte Lösungsverfahren basiert auf Large Neighborhood Search. Der

Lösungsraum wird erkundet indem verschiedene Teile eines Plans iterativ zerstört

und anschließend wieder rekonstruiert werden. Der Algorithmus setzt verschiedene

Zerstörungs- und Reparaturoperatoren ein um die Suche zu diversifizieren bzw. zu

verstärken. Bekannte Verfahren aus der Literatur wurden an die problemspezifis-

chen Nebenbedingungen des PPP angepasst.

Die präsentierte Metaheuristik wurde implementiert und auf problemspezifis-

chen, vom AIT entworfenen, Vergleichsinstanzen getestet. Der Algorithmus erweist

sich als effektiv und zuverlässig für alle untersuchten Problemgrößen. Für die kleinen

Testinstanzen, für welche die exakte Pareto-Menge bekannt ist, findet die Metaheuris-

tik nahezu immer die exakten Lösungen und für größere Instanzen ist die Qualität

der Ergebnisse konsistent. Der Algorithmus erzeugt stets repräsentative Fronten von

Pareto-effizienten Lösungen - dadurch können diverse Terminpläne ohne einen Neu-

start des Verfahrens verglichen, und die unterschiedlichen Präferenzen von verschiede-

nen Entscheidungsträgern berücksichtigt werden.

70

Peter Matl
Curriculum Vitae B peter.l.matl@gmail.com

Education
2012–2014 Master of Science, University of Vienna.

International Business Administration
Operations Research
Transportation Logistics

2011 International Exchange Semester, National University of Singapore (NUS).
2008–2012 Bachelor of Business Studies, Vienna University of Economics and Business.

International Business Track
Cross-Functional Management

2007–2008 Translation Studies, University of Vienna.
Translation & Interpretation
English, German, Polish

2006 Cambridge CELTA, International House Cracow.
Certificate in English Language Teaching to Adults

2002–2006 International Baccalaureate Diploma.
Stuyvesant High School, New York City, USA
Liceum V, Wroclaw, Poland

Master’s Thesis
Title A Large Neighborhood Search Metaheuristic for the Personal Planning Problem

Supervisors O.Univ.Prof. Dipl-Ing. Dr. Richard F. Hartl, Dr. Fabien Tricoire
Written as part of a collaborative project with the Austrian Institute of Technology
with the aim of developing an intelligent schedule planner with built-in routing
functionality. The thesis work focused on the design and implementation of an
optimization algorithm for a prototype mobile application.

Bachelor’s Thesis
Title Intercultural Differences in New Product Development: A Comparative Review

Supervisor Dr. Elisabeth Götze
A meta-analysis of the success factors for new product innovation and development
in an international context. The aim of the thesis was to survey the relatively frag-
mented empirical literature on the subject, find commonalities, and draw conclusions
from the reported evidence.

Awards
2014 Performance Scholarship of the University of Vienna for the 2012/13 academic year

1/2

Work Experience
2007–Present Freelance Translator, German to English.

Various business and economic topics:

{ location consulting
{ shopping center optimization
{ market analysis
{ brand management

{ demographics
{ consumer expenditures
{ press releases
{ white papers

Computer skills
Data Proc. LATEX, Microsoft Office

Programming java, C++
Other IBM CPLEX, SPSS

Languages
English Native speaker
Polish Native speaker

German Advanced (C2)
Spanish Intermediate (B2)
French Basic (A2)

2/2

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Problem Description
	Related Research

	The Personal Planning Problem
	Input Data and Pre-Processing
	Mathematical Model
	Decision Variables
	Objective Functions
	Constraints

	Selecting an Appropriate Metaheuristic
	Defining Characteristics of the PPP
	Challenges for Local Search Methods
	Challenges for Evolutionary Methods

	Large Neighborhood Search
	General Framework and Extensions
	Recent Applications
	LNS with Exact Methods
	Purely Heuristic LNS
	Multi-Objective LNS

	Advantages of LNS for Solving the PPP
	Reduced Need for Complex Feasibility Evaluations
	Navigation Across Disconnected Solution Spaces
	Synergy with Generating an Approximation Front

	The Proposed Metaheuristic
	High-Level Layer
	Exploration Phase
	Consolidation Phase
	Refinement Phase

	Medium-Level Layer
	Destroy Operators
	Repair Operators
	Efficiency Evaluation

	Low-Level Layer
	Timing Update
	Slack Update
	Insertion Feasibility Evaluation

	Computational Experiments
	Data Sets
	Parameter Settings
	Instances with Exact Reference Sets
	Instances with Approximate Reference Sets

	Conclusion
	Bibliography
	Abstract (English)
	Abstract (German)
	Curriculum Vitae

