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1 Introduction

The Resource Constrained Project Scheduling Problem (RCPSP) is a well-known

combinatorial optimization problem. It is designed to schedule a set of activi-

ties with given durations and resource requirements with respect to precedence

relations and limited resources. Due to its numerous practical applications - for

example the scheduling of production processes or timetabling - the RCPSP has

been in the focus of researchers over the last decades.

It is obvious that the above mentioned problem description is broad and general

and thus might not cover all aspects of practical instances. It became therefore

necessary to develop not only enhanced solution methods, but also extensions to

the basic formulation. One of those adaptations is the consideration of multiple

performance modes. As it is often the case with real-world scenarios, activities

can be performed in alternative ways influencing both the duration as well as the

resources needed for the execution.

According to [Sprecher and Drexl, 1998, p. 1] modes provide

”...alternative combinations of resources and belonging quantities

employed to fulfill the task related to the activities.”

The complexity of this problem - the so-called multi-mode Resource Constrained

Project Scheduling Problem (MRCPSP) - increases, as not only the feasible - if

not - optimal schedule has to be determined but also the modes in which the activ-

ities should be executed. This last choice now depends on two different trade-offs,

namely time-resource and resource-resource. Whereas the first one considers the

fact that a mode using a higher resource quantity to perform the activity faster,

restrains the resource limitations for other activities, the second represents the

possibility of resource substitution. This becomes evident if the growing need for

one resource due to a mode choice lowers the need for another resource simulta-

neously. All of these considerations make the MRCPSP a complex and difficult

problem to solve.
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The literature review in the following sections will show that already a lot of

different solution approaches - both heuristic and exact - have been developed

to cover the various RCPSP extensions. As already the standard Single Mode

Resource Constrained Project Scheduling Problem (SRCPSP) itself is - according

to Blazewicz et al. [1983] - NP-hard in the strong sense, the efficiency of exact

solution methods seems to be limited. According to Koné et al. [2011] at most

problem instances with up to 60 activities could be solved with exact methods

in the single mode case. This statement does not include latest hybrid solution

methods like the one introduced by Schutt et al. [2011] which is capable of closing

also some instances with 90 or 120 instances.

Despite those current limitations, exact approaches based on the solution of Mixed

Integer Linear Programming (MILP) models presented in this thesis should not

be neglected. As mentioned by Koné et al. [2011] when it comes to the implemen-

tation of RCPSPs in a real-world situation, MILP solvers tend to be one of the

few software applications available for companies. This fact makes a standardized

and efficient MILP model for the RCPSP useful across sectors and industries and

therefore interesting for further research. In their paper Koné et al. [2011] provided

an in-depth comparison of different MILP modeling approaches for the SRCPSP,

drawing the conclusion that some of those models deliver a good performance on

the analyzed benchmark problems. A summary of this paper will be provided in

the literature review section. This thesis now aims at enlarging the focus of the

analysis to the multi-mode case and prove whether the drawn conclusions are also

valid in this respect.

The structure of this thesis is as follows: Chapter 2 describes the SRCPSP and

the MRCPSP in greater detail, providing basic notations and further notes on

complexity. Chapter 3 will provide the reader with a short and focused literature

review on MILP formulations and the MRCPSP as well as some basic literature

sources. In Chapter 4 the MILP models will be presented and then implemented

and evaluated in Chapter 5. Chapter 6 draws a conclusion and provides some

ideas and comments for further research.
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2 Problem Description

2.1 General Problem Formulation

As already mentioned in the introductory chapter, the RCPSP consists of finding

a feasible schedule of starting times for a set of activities as a result, taking into

account resource and precedence constraints.

Generally stated, the problem depicts a project consisting of a set of activities

{0, 1, ..., n+1} where activities 0 and n+1 are the source and sink of the problem.

They represent the start and the end of the project as so-called dummy activities.

This differentiation led to the introduction of a second activity set by Koné et al.

[2011] A := {1, ..., n} to consider only the non-dummy activities.

Furthermore a set of k renewable resources R = {1, ...,m} is given as well as a

related resource capacity Bk. All activities require a certain amount of the renew-

able resources per period over their processing time, pi, which is then represented

by the variable bik. The source and sink activities have of course neither a resource

requirement nor a processing time, so p0 = pn+1 = 0 and b0,k = bn+1,k = 0.

The precedence constraints are based on a set E of activity pairs (i, j). Each

of the pairs entered in the set represents a precedence relation, as for example

(i, j) ∈ E would mean that activity i has to precede activity j in a feasible sched-

ule. In this thesis only standard precedence relations are considered. For the usage

of generalized precedence constraints, the reader is referred to Brucker and Knust

[2011] for introductory information.

The project spans over a given scheduling horizon H = {0, 1, ..., T} where T is a

given upper bound for the project’s makespan. A valid assumption for the value

of T could be the sum of all activity durations pi.

In the literature various objective functions are considered to optimize a certain

target value. Most common the aim is to minimize the project’s makespan. This

is also the objective function used in the context of this thesis.
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Apart from the set and variable definition, also a few assumptions have to be

made in order to complete the problem formulation. Once started, an activity can

not be interrupted but has to be finished, preemption is not allowed. Moreover

the input data is assumed to be integer and deterministically known.

For the sake of completeness it should also be mentioned that some of the as-

sumptions made above have been relaxed by researchers over the last decades

to encounter new solution methods. Some approaches allow activity splitting,

therefore neglecting the non-preemption requirement. Other approaches consider

multiple projects as an extension or work with different objective functions. The

examples here are numerous and the reader is referred to Hartmann and Briskorn

[2010] for a comprehensive description and literature review in this respect.

2.2 Multi-mode Problem Formulation

After the previous chapter provided a short summary of the general RCPSP, this

one will extend the formulation to cover the multi-mode case. In the MRCPSP

not just the starting times of the activities have to be determined but also the

mode in which they are performed.

The modes {1, ...,Mi} represent different alternatives for the activity’s resource

usage and processing time. Once chosen, a mode can not be changed anymore,

the activity has to be started and finished in the same mode.

As the different modes stand for different resource combinations, it is necessary

to comment further on the concept of renewable and nonrenewable resources.

Whereas renewable resources are - as indicated by the name - renewed and there-

fore available again in each time period, nonrenewable resources are restricted

with respect to the complete project planning horizon. Examples for renewable

resources would be machines or manpower, nonrenewables include money (i.e. to-

tal project budget) or energy.
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As put by [Brucker and Knust, 2011, p. 6]:

”...nonrenewable resources are consumed, i.e. when an activity i

is processed, the available amount Rk of a nonrenewable resource k is

decreased by rik.”

The concept of nonrenewable resources is introduced in this chapter because their

presence is only relevant in the multi-mode case. Depending on which mode is

chosen the consumption of the nonrenewable resource can differ and therefore

influence the solution. In the single mode scenario, the consumption of nonrenew-

ables is fixed and is not influencing the outcome, the capacity is either met or all

schedules are infeasible.

To be most accurate there is also a distinction made for so-called doubly-constrained

resources, referring for example to a monetary budget that is restricted both per

period and for the total project. These resources tend to be split into one renew-

able and one nonrenewable resource constraint.

Compared to the formulation of the SRCPSP above, the different modes influ-

ence both the notation of the activity duration and the resource requirements.

The processing time of activity i can now be denoted by pim whereas the resource

consumption is given by bikm to account for the influence of the mode choice.

Furthermore the different sets of resources have to be considered as well. In-

stead of one set of resources R, now two sets have to be introduced: Rr as the set

of renewable resources and Rv as the set of nonrenewable resources. Analogously,

the resource consumption of the activities is adapted to brikm and bvikm respectively.

The resource capacities are also aligned and denoted by Br
k and Bv

k .

For better traceability it should be mentioned that the notation used in this thesis

is derived from the one used by Koné et al. [2011] with some variations according

to the resource formulations by Brucker and Knust [2011]. For the dummy activi-

ties 0 and n+ 1 it is assumed that no mode has to be chosen as the durations and

resource requirements are zero by definition. In order to guarantee a consistency in

the precedence relation, source activity 0 is set as the predecessor for all activities

5



without given predecessor. The same is valid for all activities without a successor

where the sink activity n+ 1 is assigned for it.

2.2.1 Network Representation

In order to allow for a better understanding of some computational steps taken

later, a short introduction into the network representation of an RCPSP will be

provided. There are two main approaches used for network representation, the

Activity-on-Arc (AoA) and the Activity-on-Node (AoN) version. Kyriakidis et al.

[2012] describe the first one as event based method, with arcs representing activities

and nodes as a starting or finishing event. In the AoN approach, on the other hand

the activities are depicted by nodes whereas the arcs show the precedence relations

between them. As this method seems to be more intuitive to work with, it will

be used throughout this thesis. The general formulation of this network would

be a precedence graph G(V,E) where V is the set of activities and E as already

mentioned above describes the relations between the activities.

2.3 Complexity

The complexity of a problem refers to the efficiency with which it can be solved

via certain algorithms. The more complex a problem is, the harder it is to exactly

solve it within reasonable time. This is why heuristics tend to be preferred in such

cases as solution methods. As Brucker and Knust [2011] state, the efficiency of

an algorithm can be measured by calculating the running time needed for solving

the problem in a worst-case scenario with a certain input size. In this context

so called ”easy” and ”hard” problems can be distinguished. An ”easy” problem

can be solved with an algorithm in polynomial time. The notion ”NP-hard” on

the other hand is used to describe problems that are generally hard to solve to

optimality.

Blazewicz et al. [1983] proved that the SRCPSP with the aim of makespan

minimization is such an NP-hard problem. In their article the authors introduced

an updated classification scheme for RCPSPs with different resource constraint

information and tested them regarding their complexity issues. Moreover it is

shown that the problem is NP-hard in the strong sense, making it even more
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difficult to find an optimal solution and that is just describing the single mode

case. Optimization problems are NP hard in the strong sense if the related decision

problem - in this case the problem whether or not a feasible schedule with an

arbitrary deadline D exists - is NP-complete in the strong sense. The term ”in

the strong sense” implies that even if all numerical parameters of a problem would

be bounded by a polynomial of the input size, the problem would remain NP-

hard and therefore be hard - if not infeasible - to solve via a pseudo-polynomial

algorithm. As the MRCPSP adds another decision, namely the mode choice to

the problem, the complexity increases even more. To illustrate this, Kolisch and

Drexl [1997b] proved in their article the NP-completeness of the decision problem

for the multi-mode case.

3 Literature review

As already mentioned, the RCPSP is a widely discussed topic resulting in a va-

riety of articles, models and benchmarking studies. Keeping this in mind, this

chapter should give a short insight into the main contributions made so far in lit-

erature. The first part is dedicated to some general categorization papers whereas

the second part will introduce several solution approaches for the SRCPSP. This

is followed by mentioning the most important contributions about the MRCPSP,

focusing on best-performing exact and (meta)heuristic methods.

To start with the reader is referred to an article by Brucker et al. [1999]. The

authors introduce a notation and classification scheme for RCPSPs in the style of

similar schemes for machine scheduling. They focus on the resource and activity

characteristics and the objective function as classification criteria. Furthermore

the article gives an overview of solution approaches, both exact and heuristic

for the RCPSP and its various extensions, accompanied by computational re-

sults. Another orientation for the reader is the survey conducted by Hartmann

and Briskorn [2010]. The authors put their focus on the different variations of the

RCPSP, considering special cases in terms of resource categories, activity handling

and objective functions. Also here the different extensions are complemented with

solution approaches and articles from the literature.
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Although this thesis is examining different solution methods for the MRCPSP,

several articles should be mentioned for the single-mode case as well. As already

noted in the previous section, the basis for this work is the article by Koné et al.

[2011], which draws a theoretical and computational comparison between different

MILP models. Pritsker et al. [1969] introduced the first efficient MILP approach

for the RCPSP using a time-indexed formulation. The model has been extended

to the multi-mode case by Kolisch and Sprecher [1997]. In order to allow for com-

parative testing, they also introduced the PSPLIB which contains newly developed

benchmarking sets. This library has now become frequently used for benchmark

testing and is also the main source of instances used in this thesis. Artigues

et al. [2003] used a different approach and introduced a flow network model sup-

plemented by an insertion algorithm via a heuristic. Computational results have

shown potential for dynamic planning.

For the sake of completeness, also some of the best-performing algorithms so

far for solving the SRCPSP should be mentioned here. One state-of-the-art

Branch&Bound method derived by Demeulemeester and Herroelen [1997] is cur-

rently the best performing algorithm in this field for up to 30 activities. The

respective article describes the efforts to improve an older Branch&Bound version

with an emphasis on improving memory usage and computation time. Addition-

ally the new approach benefits from a new lower bound, developed by Mingozzi

et al. [1995] taking into account feasible activity subsets. The use of this more

efficient lower bound shows a strong impact on the memory and the computation

time needed.

For more than 30 activities, an interesting hybrid approach combining Constraint

Programming and Boolean satisfiability solving techniques was introduced by

Schutt et al. [2011]. [Schutt et al., 2011, p. 278] use:

”...cumulative constraints with explanation in a lazy clause gener-

ation system.”
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In order to get a full overview over the heuristics and metaheuristics in this

area, the reader is referred to a quite recent study by Kolisch and Hartmann

[2006] who categorized and evaluated the latest developments for metaheuristics,

also mentioning older approaches from their former study found in Hartmann and

Kolisch [2000]. The study itself gives an extensive overview over the characteris-

tics, efficiency and capabilities of various solution approaches.

In the context of the MRCPSP several articles should be mentioned. In their

paper Zapata et al. [2008] introduced several mathematical models to solve the

MRCPSP, one of which uses the notion of event points to indicate start or end

times of activities. The main goal was to find formulations to overcome compu-

tation problems with increasing time horizons. Although the results itself have

not been promising in comparison to other models, the event-based approach has

been adapted successfully by Koné et al. [2011] for the single mode case. Apart

from above MILP formulations, also the already well-established Branch&Bound

algorithms have been extended to the multi-mode case. The survey of Hartmann

and Drexl [1998] provides a comparison of several exact algorithms in this field,

reviewing different bounding techniques.

To conclude this section, we will state the best-performing algorithms so far. In

terms of exact approaches, the Branch&Bound algorithm by Sprecher and Drexl

[1998] is the providing the best results for activity sets with 10 and 20 activities

found in the PSPLIB. Another (hybrid) exact approach was introduced by Zhu

et al. [2006], who suggested a Branch&Cut procedure with an adaptive branching

and bound tightening scheme. Also the use of a Genetic Algorithm for finding

feasible solutions and upper bounds for the exact approach was mentioned. The

approach performed excellently on instances with 20 activities and also managed

to close a majority of the 30-activities instances of the PSPLIB, sometimes even

improving the best performing heuristics. For instances with 30 activities, several

heuristics provide good results, the local search algorithm by Kolisch and Drexl

[1997a], a Tabu-Search approach by Nonobe and Ibaraki [1998] and a Simulated

Annealing metaheuristic by Bouleimen and Lecocq [2003].
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A very recently published survey gives a good overview over the different meta-

heuristics used for solving the MRCPSP. For the evaluation of the different ap-

proaches Van Peteghem and Vanhoucke [2014] generate new datasets with 50 and

100 activities which guarantee for example only efficient modes and at least one

feasible solution per instance. They also give a very good examination of the influ-

ence that the different resource parameters have on the algorithms’ performance.

The metaheuristic that performed best in their comparison is the one by Van Pe-

teghem and Vanhoucke [2011] dealing with a so-called scatter search algorithm.

This population based metaheuristic is then accelerated with different procedures

taking into account the resource scarceness parameters to guarantee a more effi-

cient search. The method also performed very well on the instance set with 30

activities from the PSPLIB.

These articles represent of course only a fraction of the literature about the

SRCPSP and the MRCPSP. The review covers those articles that have been

crucial to the development of the models used in the thesis and other articles that

might be of interest for the reader. As already mentioned the main research focus

of this thesis is to evaluate the different MILP formulations found in Koné et al.

[2011] with consideration of multiple execution modes. In order to give the reader

a full understanding of the models, the differences and main characteristics, the

following chapter is dedicated to present and evaluate the models in their extended

versions.

4 Mixed Integer Linear Programming models –

The Multi-Mode case

4.1 Introductory comments

This chapter presents and explains the mathematical models used in this work.

All of the below presented approaches are extended versions of already existing

formulations for solving the SRCPSP presented by Koné et al. [2011]. The mod-

els described can be roughly divided into three categories, the Time-Indexed

10



formulations, the Flow-based formulation and the Event-based formula-

tions. All subsections will be containing a reference to the original model, a short

introduction of the main characteristics, the mathematical formulation itself and

a respective explanation. As the models tend to become vast and hard to oversee,

a certain subdivision of the constraints in terms of resource, precedence and other

relations is introduced to facilitate the understanding. The last part of this chap-

ter contains a short review and comparative analysis of the models.

It should be mentioned here that as a preprocessing step, the earliest and lat-

est starting times for every activity is determined. This ensures that the timing

of an activity is not bound to the whole time horizon but just to its very own

starting time window [ESi, LSi]. This allows us to shrink the initial time domain

of the variables. The method used for the calculation of the Earliest (ESi) and

Latest (LSi) Starting Time of activity i is based on calculating the longest path in

the precedence network. Here the Bellman-Ford algorithm for computing shortest

paths was used with negative arc weights (activity durations). As each activity i

had different mode durations, the shortest duration was taken in order to create

the largest possible starting time window. Intuitively described this algorithm is

based on the relaxation of the resource constraints, only taking into account the

precedence relations to derive the starting time window.

4.2 Time-indexed models

4.2.1 Discrete-time formulation (DT)

The discrete time-indexed formulation was first introduced by Pritsker et al. [1969]

as an attempt to use a 0-1 formulation to model the RCPSP. Although there were

already several 0-1 models in place, none of them succeeded in taking resource

restrictions into consideration. The model is based on the binary decision variable

xit indicating if activity i starts at time t or not. In order to account for the

multi-mode case this decision variable can be easily extended to ximt, a variable

becoming 1 if an activity i starts at time t in mode m and 0 if this is not true.

The model itself has been adapted as follows: (see also Kolisch and Sprecher [1997])

11



Objective function

min

Mi∑
m=1

LSi∑
t=ESi

t · xn+1,m,t (1)

Precedence constraints

Mj∑
n=1

LSj∑
t=ESj

t · xjnt ≥
Mi∑
m=1

LSi∑
t=ESi

(t+ pim) · ximt ∀(i, j) ∈ E (2)

Renewable resource constraints

n∑
i=1

Mi∑
m=1

brimk ·
min(LSi,t)∑

τ=max(ESi,t−pim+1)

ximτ ≤ Br
k ∀t ∈ H, k ∈ Rr (3)

Nonrenewable resource constraints

n∑
i=1

Mi∑
m=1

bvimk ·
LSi∑
t=ESi

ximt ≤ Bv
k ∀k ∈ Rv (4)

Activity and mode constraints

Mi∑
m=1

LSi∑
t=ESi

ximt = 1 ∀i ∈ A ∪ {n+ 1} (5)

x010 = 1 (6)

Mi∑
m=1

ximt ≤ 0 ∀i ∈ A ∪ {n+ 1}, t ∈ H \ {ESi, LSi} (7)

Decision variable definitions:

ximt ∈ {0, 1} ∀i ∈ A ∪ {n+ 1}, t ∈ H,m = 1, ...,Mi (8)

The objective function (1) minimizes the makespan of a project, represented by

the point in time t at which the last (sink) activity without any duration is started

within its starting time window (xn+1 = 1).
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Constraints (2) ensure that two activities (i, j) that are part of the precedence

matrix E stick to their precedence relationship. The point in time t where ac-

tivity j starts needs to be bigger or equal to the finishing time t of activity i

(calculated by summing up the starting time and the duration of activity i in

mode m).

Constraints (3) and (4) guarantee that the resource consumption of an activity

does not exceed the capacity of the available resources. Whereas (3) considers the

renewable resource capacity by taking into account the resource consumption per

resource k and time period t, (4) indicates the nonrenewable situation by summing

up the consumption over the entire time horizon.

Activity and mode constraints (5) ensure that each activity is only started once in

exactly one mode, whereas constraints (6) set the starting time of the source ac-

tivity to 0. Constraints (7) can be used to narrow the use of the decision variables

explicitly to their start time windows by setting the variable in at any point in

time outside those windows to 0. Constraints (9) characterize the decision variable

as binary.

4.2.2 Disaggregated discrete-time formulation (DDT)

The second time-indexed model attempts to use a different formulation of the

above precedence constraints. The model was introduced by Christofides et al.

[1987] and is - as indicated by the name - disaggregating the restriction on the

precedence relationship.

The below formulation used has been adapted from the model developed by Ar-

tigues [2013] and extended to the multi-mode case.

Mi∑
m=1

t−pim∑
τ=ESi

ximτ −
Mj∑
n=1

t∑
τ=ESj

xjnτ ≥ 0 ∀(i, j) ∈ E, t ∈ {ESi, LSi} (9)

This formulation in turn requires more constraints than the Discrete-Time (DT)

formulation with the same amount of binary decision variables.
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4.3 Flow-based continuous-time model (FCT)

The flow-based approach elaborated by Artigues et al. [2003] moves away from

using time as an index on to a continuous time formulation. Instead of view-

ing renewable resources as being available in a certain capacity per time period,

[Artigues et al., 2003, p. 250] approach them

”...by defining each resource k as the union of Rk resource units...”

where Rk stands for the resource capacity. In other words, each of the units in this

union, can only be allocated to one activity i at a time and is after the completion

of this activity passed on to another activity that requires it. The source and sink

activities are here also functioning as resource source and sink for the flow model,

by setting b̃r0,k,1 = b̃rn+1,k,1 = Br
k and b̃rikm = brikm for i 6= 0, n + 1 is an adapted

notation for the resource consumption.

To make this model work, a wider range of decision variables is needed. A con-

tinuous starting-time variable Si, to indicate the starting time of each activity, a

sequential binary variable xij to state if a precedence relationship exists between

i and j, a continuous flow variable fijk to represent the amount of renewable re-

source k transferred from activity i to activity j and a binary mode variable yim,

to show the chosen mode of activity i. This last decision variable has been added

to account for the multi-mode case. The model has been implemented as follows:

Objective function:

minSn+1 (10)

Precedence constraints:

Sj − Si ≥ −Mij +

Mi∑
m=1

(pim +Mij) · xij · yim ∀(i, j) ∈ (A ∪ {0, n+ 1})2 (11)

Renewable resource constraints:

fijk ≤ xij ·min(

Mi∑
m=1

b̃rikm · yim,
Mj∑
n=1

yjn · b̃rjkn)

∀(i, j) ∈ (A ∪ {0} × A ∪ {n+ 1}), k ∈ Rr (12)
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∑
j∈A∪(0,n+1)

fijk =

Mi∑
m=1

b̃rikm · yim ∀i ∈ A ∪ {0, n+ 1}, k ∈ Rr (13)

∑
i∈A∪(0,n+1)

fijk =

Mj∑
n=1

b̃rjkn · yjn ∀j ∈ A ∪ {0, n+ 1}, k ∈ Rr (14)

fn+1,0,k = Br
k ∀k ∈ Rr (15)

Nonrenewable resource constraints:

∑
i∈A

Mi∑
m=1

bvikm · yim ≤ Bv
ik ∀k ∈ Rv (16)

Activity and mode constraints:

xij + xji ≤ 1 ∀(i, j) ∈ (A ∪ {0, n+ 1})2, i < j (17)

xik ≥ xij + xjk − 1 ∀(i, j, k) ∈ (A ∪ {0, n+ 1})3 (18)

xij = 1 ∀(i, j) ∈ T (E) (19)

Mi∑
m=1

yim = 1 ∀i ∈ (A ∪ {0, n+ 1}) (20)

Decision variable definitions:

fijk ≥ 0 ∀(i, j) ∈ (A ∪ {0, n+ 1})2, k ∈ R (21)

ESi ≤ Si ≤ LSi ∀i ∈ (A ∪ {n+ 1}) (22)

S0 = 0 (23)

xij ∈ {0, 1} ∀(i, j) ∈ (A ∪ {0, n+ 1}2) (24)

yim ∈ {0, 1} ∀i ∈ (A ∪ {0, n+ 1}) (25)

The objective function (10) minimizes the starting time of the sink activity,

therefore minimizing the total makespan.
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The precedence constraints (11) indicate that if i precedes j (xij = 1), the start-

ing time of j, Sj, needs to be bigger or equal to the starting time of i plus the

mode dependent activity duration. This constraint shows the flaw of this formu-

lation as the introduction of a big-M variable is necessary. Mij is calculated as

the difference between ESi and LSj to keep it as low as possible. Apart from

that the multiplication of the two decision variables xij and yim makes additional

linearization necessary. This was achieved by simply introducing a new binary

variable zijm = xij · yim and several additional constraints to account for these

non-linearities:

zijm ≤ yim ∀(i, j) ∈ A2,m ∈ 1...Mi

Mi∑
m=1

zijm ≤ xij ∀(i, j) ∈ A2

zijm ≥ xij + yim − 1 ∀(i, j) ∈ A2,m ∈ 1...Mi

The constraints (12) - (15) regulate the flow of renewable resources. (12) sets the

pace for the flow, by linking fijk to the precedence variable xij. The flow variable

is only positive if a link between activities i and j exists. If yes, the flow is limited

to the minimum of resources needed by either activity. Also here a linearization

is needed in the calculation phase. This is continued by constraints (13) and (14)

which guarantee that the flow from activity i to all succeeding activities is exactly

the resource requirement of i in the chosen mode and that the flow from all preced-

ing activities i to j is exactly the resource requirement of j. (15) on the other hand

sets the resource flow from the sink to the source activity to the total capacity.

This guarantees the completion of the flow cycle. In comparison the nonrenewable

resource constraint (16) is straightforward, limiting the total consumption of each

resource to the total capacity.

Constraints (17) to (20) are activity and mode related. (17) should avoid any

cycles between activities i and j, whereas (18) guarantees the transitivity. If

activities i and j and activities j and k are connected, then there is also a link

between i and k. Constraint (19) sets all possible connections in the transitive clo-

sure TE to 1, opening all possible links for a resource flow. The transitive closure
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was calculated with the help of the Floyd-Warshall algorithm in the preprocessing

phase. Constraint (20) ensure that only one mode per activity is chosen. The

remaining constraints (21) to (25) characterize the decision variables.

4.4 Event-based continuous-time models

A relatively new approach is the usage of so-called events as main indexation. An

event corresponds to the start or the end time of an activity. When considering a

left-shifted schedule without any time lags between the activities, it is obvious that

the start time of an activity is either 0 or the end time of a preceding activity. This

reduces the number of events accordingly to the number of non-dummy activities

plus one. This event set E = {0, ..., n} remains independent from the time horizon,

making it an attractive approach with an increasing time horizon. Koné et al.

[2011] distinguish between two different methods in this context, the Start-End-

Event-based (SEE) formulation and the On-Off-Event-based (OOE) formulation.

4.4.1 Start-end Event-based formulation (SEE)

The SEE formulation is based on the work of Zapata et al. [2008], but was devel-

oped further by Koné et al. [2011]. It involves two sets of binary variables and

two sets of continuous ones. The binary variables xiem indicate if an activity i is

started at an event e in a certain mode m, the variables yiem indicate the ending

of the same. The set te represents the event date as each event gets attributed

a point in the time schedule. Last but not least, rek is the renewable resource

requirement after each event e.

Objective function:

min tn (26)

Precedence constraints:

Mi∑
m=1

n∑
e′=e

yie′m +

Mj∑
n=1

e−1∑
e′=0

xje′n ≤ 1 ∀(i, j) ∈ E, e ∈ E (27)
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Renewable resource constraints:

rr0k =
∑
i∈A

Mi∑
m=1

brikm · xi0m ∀k ∈ Rr (28)

rrek = rre−1,k+
∑
i∈A

Mi∑
m=1

brikm ·xiem−
∑
i∈A

Mi∑
m=1

brikm ·yiem ∀e ∈ E , e ≥ 1, k ∈ Rr (29)

rrek ≤ Br
k ∀e ∈ E , k ∈ Rr (30)

Nonrenewable resource constraints:

∑
i∈A

Mi∑
m=1

∑
e∈E

bvikm · xiem ≤ Bv
k ∀k ∈ Rv (31)

Activity and mode constraints:

Mi∑
m=1

∑
e∈E

xiem = 1 ∀i ∈ A (32)

Mi∑
m=1

∑
e∈E

yiem = 1 ∀i ∈ A (33)

∑
e∈E

xiem =
∑
f∈E

yifm ∀i ∈ A,m ∈ 1...Mi (34)

Timing constraints:

t0 = 0 (35)

tf ≥ te+pim ·xiem−pim ·(1−yifm) ∀(e, f) ∈ E2, f ≥ e, i ∈ A,m ∈ 1...Mi (36)

Mi∑
m=1

e−1∑
e′=0

yie′m ≤ e · (1−
Mi∑
m=1

xiem) ∀e ∈ E , i ∈ A, e > 0 (37)

te+1 ≥ te ∀e ∈ E , e < n (38)

Mi∑
m=1

ESi ·xiem ≤ te ≤
Mi∑
m=1

LSi ·xiem+LSn+1 ·(1−
Mi∑
m=1

xiem) ∀i ∈ A, e ∈ E (39)

ESn+1 ≤ tn ≤ LSn+1 (40)
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Mi∑
m=1

(ESi + pim) · yiem ≤ te ≤
Mi∑
m=1

(LSi + pim) · yiem + LSn+1 · (1−
Mi∑
m=1

yiem)

∀i ∈ A, e ∈ E (41)

Decision variable definitions:

te ≥ 0 ∀e ∈ E (42)

rek ≥ 0 ∀e ∈ E , k ∈ Rr (43)

xiem ∈ {0, 1}, yiem ∈ {0, 1} ∀i ∈ A ∪ {0, n+ 1}, e ∈ E ,m = 1...Mi (44)

The objective function (26) is again minimizing the makespan, this time by mini-

mizing the date of the last event n.

Precedence constraints (27) indicate that for two activities (i, j) in a precedence

relationship, j cannot start at at event e before which i has ended.

The renewable resource consumption is regulated by three constraints. As already

stated rek represents the resource consumption of resource k right after event e.

Therefore (28) is defining the resource consumption at event 0 by summing up the

resource needs of all activities starting right after event 0. (29) does the same for

all upcoming events by evaluating the consumptions of the last event adding all

the activities starting at the event and subtracting the ones ending. Constraint

(30) is then limiting the total amount of rek to the total capacity. In comparison

the nonrenewable resource consumption is summing up the resource needs over all

events and restricting it to the total capacity.

Constraints (32) and (33) indicate that each activity only starts and ends once

at one event in one mode and constraints (34) make sure that this mode is the

same at start and end events.

As the events need to be aligned with some points in the time horizon, addi-

tional timing constraints are needed. (35) clarify that the first event date is 0,

whereas (36) indicate that if an activity starts at event e and ends at event f , the
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date of f needs to be at least bigger than the date of e plus the respective activity

duration. Constraints (37) are very important and have been explicitly mentioned

in Artigues et al. [2013], their main purpose is to make sure that an activity i can

not start at an event e and end at an event e′ < e. Constraints (38) put the events

in ascending order. Constraints (39) to (41) restrict the event dates to the specific

starting time windows for starting respectively ending events. (42) to (44) define

the decision variables.

4.4.2 On-off Event-based formulation (OOE)

In the OOE model the approach is simpler, one set of binary variables ziem indicate

whether or not an activity i is in process at a certain event e in the chosen mode m.

In other words the variable is showing the status of the activity, whether it is active

(on) or inactive (off). Of course this reduces the number of events to the number of

non-dummy activities. The upper bound of the events is denoted by v. The second

binary variable set yiem states if an activity i starts at event e in a mode m, marking

the unique starting event. This additional variable is necessary to determine the

nonrenewable resource consumption. Cmax is a continuous variable representing

the makespan of the project, while te again shows the date of event e.

Objective function:

min Cmax (45)

Precedence constraints:

Mi∑
m=1

ziem +

Mj∑
n=1

e∑
e′=0

zje′n ≤ 1 + (1−
Mj∑
m=1

ziem) · e ∀(i, j) ∈ E, e ∈ E (46)

Renewable resource constraints:

n∑
i=1

Mi∑
m=1

brikm · ziem ≤ Br
k ∀e ∈ E , k ∈ Rr (47)

Nonrenewable resource constraints:

n∑
i=1

∑
e∈E

Mi∑
m=1

bvikm · yiem ≤ Bv
k ∀k ∈ Rv (48)
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Activity and mode constraints:

Mi∑
m=1

∑
e∈E

ziem ≥ 1 ∀i ∈ A (49)

Mi∑
m=1

e−1∑
e′=0

zie′m ≤
Mi∑
m=1

e · (1− (ziem − zi,e−1,m)) ∀e ∈ E \ {0} (50)

Mi∑
m=1

v∑
e′=e

zie′m ≤
Mi∑
m=1

(n− e) · (1 + (ziem − zi,e−1,m)) ∀e ∈ E \ {0} (51)

∑
e∈E

Mi∑
m=1

yiem = 1 ∀i ∈ A (52)

yiem ≥ ziem − zi,e−1,m ∀i ∈ A, e ∈ E ,m = 1...Mi (53)

Timing constraints:

t0 = 0 (54)

Cmax ≥ te +

Mi∑
m=1

(ziem − zi,e−1,m) · pim ∀e ∈ E , i ∈ A (55)

ESn+1 ≤ Cmax ≤ LSn+1 ∀e ∈ E , i ∈ A (56)

te+1 ≥ te ∀e 6= n− 1 ∈ E (57)

tf ≥ te + ((ziem − zi,e−1,m)− (zifm − zi,f−1,m)− 1) · pim
∀(e, f, i) ∈ E2xA, f > e,m = 1...Mi (58)

Mi∑
m=1

ESi · ziem ≤ te ≤ LSi ·
Mi∑
m=1

(ziem − zi,e−1,m) + LSn · (1−
Mi∑
m=1

(ziem − zi,e−1,m))

∀e ∈ E , i ∈ A (59)
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Decision variable definition:

te ≥ 0 ∀e ∈ E (60)

ziem ∈ {0, 1} ∀i ∈ A ∪ {0, n+ 1}, e = 0...v,m = 1...Mi (61)

yiem ∈ {0, 1} ∀i ∈ A ∪ {0, n+ 1}, e = 0...v,m = 1...Mi (62)

In order to also account for e = 0, in the preprocessing phase also an process

variable zi,−1,m = 0 for e = −1 is considered. The model minimizes the previously

defined variable Cmax (45), which is simply representing the makespan.

Precedence constraints (46) state that if activity i precedes activity j, j cannot be

active (”on”) at any event before e, if i is still active at e.

The renewable resource constraints (47) are putting the resource consumption of

each resource at each event in perspective to the available capacity. For the non-

renewable resources, only the event where i is starting is relevant, represented by

the variable yiem in the relevant mode.

Constraints (49) make sure that each activity is at least active at one event. Con-

straints (50) and (51) guarantee the non-preemption of an activity i. (50) is stating

that if i is starting at event e (ziem = 1; zie−1m = 0) then it can not start at any

event before e. (51) is referring to the opposite, if i ends at e (ziem = 0; zie−1m = 1)

then it cannot be active at any event after e. Constraints (52) request that each

activity starts at exactly one event, whereas (53) is defining the starting point, by

linking variables ziem and yiem.

Again the first event date is defined by 0 (54) and Cmax is set to be bigger

or equal to the event date of each activity plus its duration (55). (56) limits Cmax

further to the starting time window of the last activity and (57) order the event

dates. (58) is defining similarly to the SEE model, that the start and end date

of an activity i need to be at least separated by the activity duration. (59) on

the other hand put the event date in perspective of starting time windows and

constraints (60) - (62) define the decision variables.
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4.5 Model comparison and analysis

When comparing the models, the first assumption would be that the Time-Indexed

formulations have a clear advantage in terms of the amount of decision variables

needed. They only use one set of binary decision variables whereas all other mod-

els, especially in the multi-mode case need at least two sets of binaries and some

sets of continuous decision variables. However, this special feature of the DT and

Disaggregated Discrete-Time (DDT) models becomes problematic with increas-

ing time horizons. The number of the time-indexed decision variables increase of

course proportionally to the time horizon, a feature the other models do not share.

The Flow-based continuous time (FCT) and the event-based formulations do not

have any dependency on the time frame within their decision variables. This is a

clear advantage over the less-extensive time-indexed formulations when the time

horizon is large.

The flow-based formulation involves fewer binary decision variables than the event-

based models, but on the other hand has to consider the big-M constant, calculated

individually per activity combination in the preprocessing and the need for addi-

tional linearization constraints in the model implementation.

In comparison, the event-based models do not have to deal with big-M con-

stants, the OOE formulation involving fewer binary decision variables than the

SEE model. On the downside the nonrenewable resource constraint now needs an

additional binary variable to clarify the starting event. From this short character-

ization it is now clear, that the extend of the time horizon has a crucial influence

on the performance of the models, as well as the number of activities and the

precedence relations.

These properties have been tested for the Single-Mode case by Koné et al. [2011]

on various instance sets. To account for more settings they also introduced new

sets with a very high processing time range to align the examples with reality.

Not surprisingly the time-indexed models performed very good on the instance

sets with low processing time ranges and low scheduling horizon, followed by FCT
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and OOE approaches. Within the new sets, these two formulation outperform the

remaining ones, although they were not able to solve all included instances.

It is the scope of this paper to evaluate if these results can be upheld for the

multi-mode case or if the introduction of additional complexity and variables lead

to a shift in the outcome. Especially the performance of the OOE approach could

lose due to the introduction of additional binary decision variables. Apart from

that the time restriction on the calculation run will be of crucial importance when

it comes to finding an optimal solution.

5 Computational Analysis

In order to evaluate the different models presented in the last section, this chapter

is dedicated to the actual implementation. For a better understanding of the

process, the first part will be discussing the analytical framework of the analysis,

including the instances’ characteristics as well as the computational settings and

some remarks on the instance sets. The second part will present the results and

discuss their meaning also in dependence of parameter variations.

5.1 Analytical Framework

5.1.1 Parameter settings

The testing was performed on an HP Notebook PC with a 2.4 GHz processor and

4 GB RAM, running on Windows 7. The models were coded in Python 2.7 using

the PuLP module with a CPLEX solver interface. Restrictions of time or node

size as well as other parameters were modeled in the CPLEX environment.

Due to the high complexity the modeling took advantage of the node file writing

possibility offered by CPLEX. Especially for the larger instances this was crucial

due to exceedingly high memory requirements. This feature enables the program

to reduce the amount of memory space needed while exploring the search space

by saving parts of the nodes in the tree in files on the hard drive. Apart from that

also an upper cutoff level was set to the value of an upper bound on the project

makespan or to the maximal project horizon to restrict the search space.
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5.1.2 Discussion of set characteristics

As already mentioned in an earlier chapter, the instance sets used in this thesis

were taken from the PSPLIB, due to the fact that those sets are widely used and

well-reputed and are therefore favorable for a first computational study of the new

models. Kolisch and Sprecher [1997] generated those instances by combining and

varying three different sets of parameters:

• Fixed parameters

• Base parameters and

• Variable parameters.

Fixed parameters are - as indicated by the name - fixed in advance and are the

same for all benchmark sets. They are not varied at all during the set gener-

ations and include basic information like probabilities and deviation tolerances.

Base parameters are varied once per benchmark set and include for exam-

ple the number of activities, resources, predecessors and successors as well as the

activity duration range and the so called Network Complexity (NC). NC is a

parameter that indicates the average number of non-redundant arcs per activity

node. A general assumption is that the higher this value is, the easier the problem

is to solve. As this value is set per benchmark set, it is not possible or in scope of

this thesis to prove this assumption by parameter variation.

Variable parameters on the other hand are

”...systematically varied within each benchmark set.” [Kolisch

and Sprecher, 1997, p. 209]

These variable parameters are the Resource Factor (RF) and the Resource Strength

(RS). They have shown to affect computational results significantly and should

therefore be explained in more detail.
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The RF of a certain resource represents the average requirements of this specific

resource within the problem, whereas the RS shows the strength of the related

resource constraints. Or as put by [Kolisch and Drexl, 1997a, p. 995]

”The resource factor reflects the density of the coefficient matrix... .

The resource strength measures the degree of resource-constrainedness

in the interval [0,1].”

To get a bit more into detail for these two important factors, we will take a closer

look at the set up of them provided by Kolisch and Sprecher [1997]. First, the

RF for each resource category τ where τ represents renewable and nonrenewable

resource categories is calculated as follows:

RFτ =
1

J − 2
·
J−1∑
j=2

1

Mj

· 1

|τ |
·
Mj∑
m=1

·|Qτ
jm|

The formula basically reflects the average amount of a certain resource capacity τ

used across all non-dummy activities and all modes available. The variable Qjm

is the amount of combinations (j,m, r), for which the respective brjmr > 0. The

RF has to be determined by using a resource factor deviation tolerance εRF as a

controlling instrument, implying

RFτ ∈ [(1− εRF ) ·RFτ ; (1 + εRF ) ·RFτ ]

The value of ε in the calculations is as mentioned above a fixed variable, valid for

all benchmark instances.

The calculation of the RS based on the determination of the resource availabil-

ity Kτ
r [Kolisch and Sprecher, 1997, p. 209] is presented

”...as a convex combination of a minimum and maximum level Kmin
r

and Kmax
r , r ∈ τ ...”

where RS functions as scaling parameter.

Kτ
r = Kmin

r + round(RSτ · (Kmax
r −Kmin

r ))
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This indicates that with an RS of 0, the problem only deals with the smallest

resource availability possible. The minimum and maximum availability levels for

nonrenewables are determined by aggregating the respective consumptions.

Kmin
r =

J−1∑
j=2

minMJ
m=1{kvjmr}

Kmax
r =

J−1∑
j=2

maxMJ
m=1{kvjmr}

For the renewables the determination is as follows:

Kmin
r = maxJ−1j=2 {min

Mj

m=1{k
ρ
jmr}}

Kmax
r for renewables on the other hand is [Kolisch and Sprecher, 1997, p. 209]

”...determined by the peak per-period usage of resource r in the

resource dependent earliest start schedule.”

It is generally observed that the RF and the hardness of a problem are pos-

itively correlated, meaning that the higher the RF or the denser the coefficient

matrix, the harder the problem is to solve. This is easier to understand when one

considers the fact that RF = 1 means that every activity in every mode would re-

quire at least one unit of each resource, whereas a lower RF also allows for resource

requirements of 0, leading to a less intense scheme. The opposite indication is valid

for the RS, the closer the factor is to 0, the harder the problem is, indicating more

active resource constraints that need to be considered in the optimization process.

To generate the sets with the above-mentioned parameters, a full factorial test

design was executed including 10 replications. For the sets under review in this

thesis, J10 and J20, this was resulting in a total of 640 instances each, though

not all of them are feasible. The set names J10 and J20 indicate already the num-

ber of activities in each set. Whereas J10 comprises 536 feasible instances with

10 non-dummy activities, J20 includes 554 feasible instances with 20 non-dummy

activities. Both sets have two renewable and two nonrenewable resources available
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as well as three different modes for choice. The activity durations pim are settled in

the range from 1 to 10. Across all models the time restriction for the optimization

procedure was set to 300 seconds for the J10 instances and to 1800 seconds for

the J20 instances. CPLEX ultimately has a certain tolerance when it comes to

the time limitation. It is for example possible that an instance of the J20 set has

a solution time of 1805 seconds, increasing the solution time to a value above the

actual time limit.

Before starting any analyses, below list shows an overview of the parameters used

in the tables below and their respective abbreviations in the table headings:

• Set: Name of the set under review

• N: Number of instances in a certain set or subset

• AvT: Average solution time needed (in seconds)

• AvN: Average node amount of the solution

• AvGap: Average gap in percent between the makespan and the lower bound

Remark: The lower bound was determined by calculating the makespan

without considering the resource requirements (= Earliest Starting Time)

• Model: Name of the model under review

• Feasible #/%: Number/Percentage of feasible (integer) solutions found

• Best: Number of solutions found that match the reference best solution

from literature

• Opt: Number of instances which could be solved to proven optimality within

the given time limit

It is important to note here that the parameters like solution time and node

amount span their average only across the actual feasible solutions found and not

across the whole parameter set. This fact should be made obvious to the reader

as it might not be clear from below tables. Also results have been rounded for a

more readable presentation. This rounding has been performed after the actual
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calculation and has therefore no influence on the results themselves.

The above mentioned factors RF and RS are set for both resource types and

named accordingly RFR and RSR for the renewable and RFN and RSN for the

nonrenewable resource set. The values of these parameters are different for both

instance sets and can be found in Table 1 and Table 2 accompanied by the value

of NC. The influence of these parameters will be tested accordingly in the analysis

conducted below.

RFR 0.5 1.0

RSR 0.2 0.5 0.7 1.0

RFN 0.5 1.0

RSN 0.2 0.5 0.7 1.0

NC 1.5

Table 1: Variable parameter setting and NC for J10 instance set

RFR 0.5 1.0

RSR 0.25 0.5 0.75 1.0

RFN 0.5 1.0

RSN 0.25 0.5 0.75 1.0

NC 1.8

Table 2: Variable parameter setting and NC for J20 instance set

According to the above explanation of the parameters, their setting will thor-

oughly influence the outcome. To illustrate this in a very general context, two

different sub-instance sets of J10 and J20 are introduced below to account for two

possible settings of RF and RS. Both subsets - denoted 10 and 37 - comprise 10

instances with the same NC of 1.5, differing only in their setting of the resource

related parameters. While the examples in J1010 (J2010 respectively) have all pa-

rameters set to 0.5, the formulation of J1037 (and J2037) is more extreme, having

an RF of 1.0 and an RS of 0.2 (0.25 respectively for J20) for all resource types.
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As mentioned above a high RF value and a low RS value would indicate a

harder instance to solve. The first assumption is therefore that the instances num-

bered 37 are more difficult to solve than those of subset 10, which proves to be

true when considering below results. The second assumption here is that these

differences are going to be more obvious for the J20 set due to a higher number of

jobs.

Table 3 - 6 show the average outcome of the 10 instances per set in terms

of average solution time in seconds, average node amount and average solution

gap as well as the percentage of best bound solutions and the number of optimal

solutions found per model approach.

Model Best Opt AvT AvN AvGap

DT 100% 100% 0.66 160

20.3%

DDT 100% 100% 1.63 7

FCT 100% 100% 0.59 20

SEE 100% 80% 95.29 1,499

OOE 100% 100% 50.79 2,176

Table 3: Results overview J1010

Model Best Opt AvT AvN AvGap

DT 100% 100% 49.64 17,716 155.63%

DDT 100% 100% 27.06 908 155.63%

FCT 100% 100% 8.01 1,939 155.63%

SEE 80% 20% 264.72 26,980 157,05%

OOE 90% 30% 246.79 5,804 156,48%

Table 4: Results overview J1037
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Model Best Opt AvT AvN AvGap

DT 100% 100% 2.39 354 2.7%

DDT 100% 100% 20.06 6 2.7%

FCT 100% 100% 16.20 637 2.7%

SEE 100% 80% 674.60 20,198 2.7%

OOE 50% 50% 1,060.64 46,778 6.3%

Table 5: Results overview J2010

Model Best Opt AvT AvN AvGap

DT 20% 10% 1,723.08 108,671 103.0%

DDT 0% 0% 1,800.86 10,038 116.8%

FCT 10% 0% 1,801.11 26,069 119.7%

SEE 0% 0% 1,803.06 33,702 121.4%

OOE 0% 0% 1,801.27 95,989 121.8%

Table 6: Results overview J2037

As can be clearly seen the optimization of instance set J1010 requires consider-

ably less time and nodes to find a feasible solution. Apart from that CPLEX could

find the best reference solution within the given time frame for almost all instances.

Also when considering the number of optimal solutions found, most problems are

solve to optimality within the given time horizon. The average solution gap be-

tween the makespan found and the actual lower bound is vastly different, and

exceedingly higher in the J1037 approaches.

The same observation made for J10 can also be made for the J20 instances.

With nearly none of the problems from the set J2037 the reference best solution

could be found. The average node size - although already very high for the event

based models in the easy subset 10 - increases dramatically across all models.

Nevertheless the difference seems to be most obvious in the time-indexed models,

especially in the DT model. Same is true for the average solution gap, although

here the differences across models are not as obvious as with the node size.
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This is of course only a rough overview including averages and only specifically

chosen instance sets, but it is clearly showing the huge influence of the variable

parameters, not just on one but on all models. It therefore makes sense to also

take these parameters into consideration when conducting a more detailed analysis

in the second part of this chapter.

5.1.3 Comments on PSPLIB

Although the benchmark instances introduced in Kolisch and Sprecher [1997] are

widely used, also several downsides of the settings have been recognized. In or-

der to provide the reader with all information needed, also those issues should be

mentioned here to contribute to future analyses.

First of all the restriction of activity durations to a value between 1 and 10 is

very limiting when this feature should be evaluated in terms of its influence on

optimality. Due to this restriction, Koné et al. [2011] introduced several new in-

stance sets with a wider variety in the duration range. This in turn intends to put

additional pressure on the time-indexed formulations and adds another dimension

to the analytical framework.

Another downside is that out of the provided instance sets not all have an

actual feasible solution or provide inefficient mode alternatives in the first place.

Apart from that it is - due to the nature of the instances - not really possible to

achieve any major improvements by an algorithm as most solution procedures can

indeed solve these problems to optimality.

These shortcomings were mentioned explicitly by Van Peteghem and Vanhoucke

[2014] and triggered the introduction of new instance sets, therefore broadening

the scope of future testing. Despite the problematic aspects the PSPLIB instance

sets are still well-reputed and ideal for an initial testing of the new models.
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5.2 Results and analysis

5.2.1 Remarks on the analysis

The main objective of below numerical analysis is to show whether or not one or all

of the introduced models show the potential for solving the MRCPSP compared to

the current best solution. Apart from that general comparison it is also analysed

which of the models are performing best under which circumstances. Last but

not least comparisons should be drawn to the SRCPSP results presented by Koné

et al. [2011]. It will be interesting to see whether their results are also true for the

multi-mode case or if the influence of the mode number changes the outcome.

In order to answer the above questions, a series of tests with the models was

performed and analysed according to a unified scheme. For each problem set two

different upper bounds where used. The first approach uses a tighter upper bound

which equals the best known upper bound plus 4%, in the latter this subversion is

denoted by the extension ”0”. The second version identified by the extension ”1”

used the above mentioned maximum sum of all activity durations as the upper

bound, granting a higher search space and probably a higher complexity.

Before starting the analysis, Table 7 show the reference best solutions found in

literature for the two sets under review in terms of average solution time and - if

available - the average node amount.

Set N Author AvT (in sec) AvN

J10 536 Sprecher and Drexl [1998] 0.14

J20 554
Sprecher and Drexl [1998] 198.74

Zhu et al. [2006] 32.06 238

Table 7: Reference Best Solution
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5.2.2 Analysis J10

Table 8 shows the results of the calculation for the instance set J10 and the shorter

time horizon of the best bound + 4%.

Model
Feasible

Best Opt AvGap AvT AvN
# %

DT 536 100% 536 536 32.2% 0.69 196

DDT 536 100% 536 536 32.2% 0.37 20

FCT 536 100% 536 536 32.2% 2.00 283

SEE 534 99.6% 522 404 32.1% 109.8 4,767

OOE 536 100% 533 461 32.3% 84.76 3,954

Table 8: Result overview J10 0

The first obvious result is that almost all models can find the best solutions

provided by literature. Also most of them found the optimal solution, using of

course less than 300 seconds. The event-based models show as expected a slight

deviation. Of those instances where an integer solution was found, most of the

models can find an equal number of optimal solutions and show a quite similar

solution gap to the lower bound.

The greatest differences can be observed in the solution time and the node amount.

While the time-indexed formulations and the flow-based model show average so-

lution times of under 5 seconds, the event-based models take significantly more

time to reach a similar result and an even higher amount of nodes.

When only comparing the time indexed formulations, the DDT model performs

better than the DT which coincides with the basic findings of Koné et al. [2011].

The same is valid for the (slightly) better performance of the OOE formulation

compared to the SEE model when considering solution time and node size within

the event-based models.
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The findings valid for the above table are in general also true for the analysis

provided in Table 9 with a larger time horizon.

Model
Feasible

Best Opt AvGap AvT AvN
# %

DT 536 100% 536 536 32.2% 2.75 820

DDT 536 100% 536 536 32.2% 3.52 50

FCT 536 100% 536 536 32.2% 3.45 437

SEE 536 100% 524 386 32.5% 119.24 4,764

OOE 536 100% 531 459 32.3% 86.42 4,074

Table 9: Result overview J10 1

Here the time-indexed formulations perform better in terms of timing and node

size, followed by the flow-based model. The DT model is slightly faster than the

DDT but still using more nodes to find the same solution and also more than the

FCT model which only needs one second more on average for the solution.

The event-based models are still at the end in terms of performance and find-

ing the best solution, with the OOE model still slightly better. What is more

obvious is that it gets more difficult for the event-based versions to find the best

solution in below 300 seconds, leading to an increasing difference between the val-

ues of the variables Best and Opt per model.

What is really interesting to investigate is the change in performance of the dif-

ferent models when only the time horizon is extended, all other parameters being

equal. Although in fact the event-based models are still found at the end of the

performance range, the extension of the time horizon has not significantly changed

the solution time or the amount of nodes needed.

As expected changes in the time horizon have no or just minimum influence on

the performance of these models, which seems to be a clear advantage.
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Comparing this result to the changes of the time-indexed models, it looks quite

different. Although they are still outperforming in both situations, the changes are

obvious. The solution time needed almost tripled for both and the nodes needed

in the DT model increased about four times. The FCT also showed increases in

timing and node amount, but seems to be less sensitive towards time changes.

After that general analysis, the next tables show a more detailed view on the

different models when it comes to varying settings of RS and RF. Those results

are divided into three tables per model approach for a better overview. The de-

tailed analysis is only presented for the subversion of the calculation using the

larger time horizon in order to capture the changes better. Table 10 is showing

the detailed results for the time-indexed models.
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For the detailed analysis, one is firstly referred to the two parameter sections

regarding the renewable resources. As expected the higher the RF the harder the

problem is to solve. This comes clear when comparing the average timing and
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node amount. It is also worth noting that the DDT model performs slightly worse

in terms of solution time in the harder cases than the DT model. The influence of

the parameters becomes even clearer when looking at the RS. While the smaller

coefficient leads to a comparably high use of time and nodes, the influence dimin-

ishes with rising coefficient.

The largest jump in terms of solution time and nodes can be found when mov-

ing from the smallest to the second-smallest coefficient level the following stages

are not as intense. It is quite interesting to see that although the DDT uses less

nodes than the DT model it takes a bigger amount of solution time. This can be

related to the fact that on the one hand, the DDT model uses more constraints

due to the different precedence constraint. This in turn takes up more time to

solve. On the other hand the precedence constraint of the DDT model is stronger

than the DT constraint - or put differently - it is implying the statement of the

DT constraint. This in turn reduces the search space for the DDT model and thus

decreases the node size needed to explore and find a solution.

When considering the nonrenewable section the above assumptions also prove to

be correct, although their influence is not as intense as it is in the renewable part.

Nevertheless the changes in the results are still significant enough to prove the

assumptions to be true.

When comparing the makespans found to the results from literature both models

could compete across the parameter sets, providing all instances found in litera-

ture and all of them within the given time limit.
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Table 11 show the analysis for the flow-based approach.

Parameter N
FCT

Best Opt AvGap AvT AvN

RFR
0.5 259 259 259 26.4% 0.56 42

1.0 277 277 277 37.8% 6.15 806

RSR

0.2 119 119 119 76.0% 13.17 1,624

0.5 139 139 139 25.4% 1.35 257

0.7 138 138 138 19.4% 0.46 35

1.0 140 140 140 14.5% 0.22 2

RFN
0.5 232 232 232 18.7% 4.05 489

1.0 304 304 304 42.6% 2.99 397

RSN

0.2 78 78 78 87.7% 1.47 287

0.5 151 151 151 33.2% 3.74 415

0.7 156 156 156 20.1% 3.78 510

1.0 151 151 151 15.3% 3.84 460

Table 11: Detailed results J10 1 Flow-based

The results back up the assumption made for the renewable resources. However

within the nonrenewables, the findings are quite surprising. Despite the results

from Table 10, here the average timing and node size for increasing parameters of

RFN decrease. This difference is also true for the RSN, less nodes and time is used

in the supposedly harder levels. The differences are not that big or intense, still

leading to the conclusion that the parameter settings for the nonrenewables are

not as influential within the FCT model. These results are unexpected and will be

investigated further in the J20 analysis if they are also observed there. However, as

with the time-indexed models all instances could find a reference solution within

the given time frame.
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Last but not least, Table 12 provides the results for the event-based models.
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It is quite clear, that the results are mostly in line with the previous time-

indexed formulation results. The only difference is that the values of Best and

Opt differ across the parameters, indicating that not all of the best/optimal solu-

tions found could be detected within the 300 seconds limit.

What is now left to analyse for this set is if the influence of the parameters differ

in its extent among the different model approaches. As already detected in the

general analysis, the OOE model performs faster than the SEE approach. The

differences in the node amount used is not distinct and differs across the param-

eter levels. As expected more of the reference solutions were found for the easier

parameter instances, with the SEE model showing a better performance. Inter-

estingly of those that actually found the best solution, the OOE approach could

solve more instances to optimality. The differences are quite big when considering

the harder instances in the renewable section, they will be further analysed within

the J20 instance set.

When taking a look at the changes in the different RFR levels it seems as if

the greatest influence on the solution timing can be found within the DT and

FCT models, showing an 8 to 10 times higher time value. However when it comes

to the node size, the DDT model has the worse effects to bear. The event-based

models seem in comparison to be the least affected. When considering the RSR

section, the most obvious relative differences in timing between the lowest and

highest parameter level can again be found within the DT and FCT model. Al-

though the event based models need significantly more solution time, the changes

within the parameter settings for the renewables are not that intense. The same

is true for the RSR, while the time indexed and flow-based models show up to an

800 times larger node amount for the harder cases, the event-based models show

a maximum of 20 times higher nodes sizes.

Apart from the above-mentioned specialty of the FCT model, the other ap-

proaches reveal now a higher variability amongst the nonrenewable settings in the

RFN parameter set. When observing the development within the RSN adapta-

tions, the event-based models again show a smaller vulnerability to changes in the

settings than the time-indexed formulations.
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To sum up, it seems as if changes in the setting of renewable resource have

an influence on all of the models in the same way, but show the greatest changes

when it comes to the time-indexed and the flow-based formulations. The following

section will show if this higher sensitivity can also be found with a higher number

of activities.

5.2.3 Analysis J20

The analysis of J20 is built up in the exact same way as the one of J10, starting

with a general overview of the results for the two different time horizons, moving

on to the more detailed results of parameter influences.

Table 13 shows the results when using a smaller time horizon, proving again the

dominance of time-indexed formulations over event-based models when it comes

to finding feasible and best solutions.

Model
Feasible

Best Opt AvGap AvT AvN
# %

DT 543 98.0% 540 534 15.5% 66.03 15,789

DDT 552 99.7% 548 544 16.8% 45.81 1,995

FCT 499 90.1% 481 468 12.8% 170.9 6,204

SEE 339 61.2% 277 219 5.3% 720.1 12,178

OOE 347 62.6% 284 219 6.1% 781.0 25,714

Table 13: Result overview J20 0

Interestingly – when observing the results – the before very clear dominance

of the time-indexed models over the other approaches diminishes when looking

at the best/optimal solutions found. Although they still find an integer solution

in the majority of the cases, still dominating the event-based solutions, the share

of the optimal solutions found is decreasing. When in turn looking at the event-

based models, they could not always find a feasible solution, in the majority of

the cases where they did, the optimum was found, leading also to a lower average
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solution gap. None of the models could find all feasible solutions, although the

DDT model got quite close. The average solution time was again highest within

the event-based formulations, followed – with a large gap – by the FCT. The

DT model seems to lose partly its efficiency, needing both higher solution time

and an even higher node amount than the DDT model and also finds less feasible

solutions. Also compared to the FCT approach, the node amount used by the DT

is quite high.

Table 14 shows the results for the larger time horizon.

Model
Feasible

Best Opt AvGap AvT AvN
# %

DT 554 100% 533 524 17.3% 147.1 13,872

DDT 554 100% 530 527 17.6% 153.8 1,073

FCT 553 99.8% 471 457 19.4% 412.6 7,343

SEE 542 97.8% 297 223 23.0% 1,162 27,661

OOE 553 99.8% 295 219 22.2% 1,200 55,753

Table 14: Result overview J20 1

It is first to notice that in the setting with a larger time horizon, more feasible

solutions could be found, although the share of the best solutions found increases

only for the event-based models. The same is true for the optimal makespans

found. Only the event-based approaches seem to profit from the larger time hori-

zons, finding more optimal solutions within the given time frame of 1800 seconds.

Solution time of course increases, as well as the node amounts to a certain extent.

Unexpectedly the node amount value did not rise within the time-indexed models

but decreased to a small extent. The node amount used in the event-based for-

mulations more than doubled.

After that broad overview, the more detailed analysis below, will show if the

propositions held above are also true for a larger number of activities.
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A quick glance at Table 15 shows the similarity of the results found within set

J10 when investigating the time-indexed models.
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Again the higher the RF value or the lower the RS value, the higher is the solu-

tion time and node amount needed to find a solution. The most remarkable result

is that the node amount used by the DT model is significantly higher, although

its solution time value can be found among the ranges of the DDT results. The

DT model finds more solutions referenced by literature, though the difference is

not that significant. But also in both approaches more optimal solutions could be

found with the assumed easier parameter. This coincides with the results found

in the analysis of J10.

The results in Table 16 concerning the flow-based approach also confirm the main

settings found in the J10 cases.

Parameter N
FCT

Best Opt AvGap AvT AvN

RFN
0.5 244 212 206 11.8% 370.04 7,914

1.0 310 259 251 25.3% 446.22 6,893

RSN

0.25 75 61 59 58.7% 488.38 7,157

0.5 159 134 130 19.5% 434.53 6,601

0.75 160 136 131 10.8% 392.66 6,748

1.0 160 140 137 9.5% 375.72 8,761

RFR
0.5 271 261 257 13.4% 179.44 2,554

1.0 283 210 200 25.0% 635.06 11,912

RSR

0.25 140 65 55 48.6% 1,252.03 18,852

0.5 141 133 129 13.1% 355.17 9,438

0.75 143 143 143 10.2% 22.72 726

1.0 130 130 130 5.1% 6.24 45

Table 16: Detailed results J20 1 Flow-based

The parameters in the nonrenewables section again show a slightly different

behavior than expected and only small differences in solution node amount be-

tween the extremes. This confirms the finding within the analysis for the J10 set

for the node amount, but not for the timing. The solution values behave more as
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expected being higher for the harder parameter settings, as well as the values of

best and optimal solutions found being lower.

However those findings are not significant enough to completely ignore the dif-

ferences when comparing to the other models. One reason for this insensitivity to

the set up of the nonrenewable resources might be that the nonrenewable resource

constraint for this approach is far simpler than the ones found in the time-indexed

and event-based approaches. It only considers activities and modes not taking

into account timing and event indices like the other models. Changes in the non-

renewable resource matrix might therefore be less crucial for the result. This is an

interesting feature of this model that might be useful for specific problem settings

and should be evaluated further with a larger problem set.

For the renewable cases on the other hand the results are in coherence with the

results found in other models.

The outcome of the event based models in Table 17 shows again the expected

development of values across parameter settings.
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It can be observed that in the nonrenewable cases the timing of both models is

almost the same, whereas the node amount needed is almost twice as high in the

OOE formulation. In the renewables section these findings are confirmed as well.

What is obvious is that the differences in the solution time for the two models are

diminishing with the SEE model performing slightly better. On the other hand

the node amounts needed by the OOE approach are now almost double the size

on average than the ones used by the SEE. In general it seems as if the OOE

model is more favourable for the J10 set in terms of solution time due to its fewer

resource constraints. But as the activity and with it the event size increases this

advantage diminishes. This might in part be due to the fact that the constraints

in the activity/mode section of the OOE are – in comparison – not only more nu-

merous, but also bound to both – the activity amount and the events. This could

be sufficient enough to make up for the smaller amount of resource constraints. It

would be interesting to further observe this development with more activities to

investigate whether this discrepancy is continuing.

When considering the amount of best and optimal solutions found, the results

are ambiguous. No real dominance can be found as both models find a compara-

ble amount for each parameter set. However the assumption that more best and

optimal solutions can be found for easier parameter instances is again proven.

When comparing the extent of the influence the parameter changes have, the

differences in the RFN are almost non-existent, while the influence of the RSN is

higher when taking a look at the time-indexed formulations. The same statement

is true in the case of renewable resources, having for example about 170 to 200

times larger solution times for the lower RSR instances than for the highest ones.

It seems as if both the time-indexed and the flow based models show a higher vul-

nerability to changes in the parameter settings, both in timing and node amount.
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5.2.4 General analysis

To sum up the results above, not all of them came as expected. It is of course

not surprising that all models could solve all J10 instances at least to feasibility

with a lot less solution time and node amount needed compared to the J20 set.

It can also be stated that the differences in terms of feasible and best solutions

found where only marginal in the J10 cases. This is not true for the comparison

of the optimal solutions found. Here the event-based models show a worse result

in terms of the share of both of these variables, though still not to a great extent.

Major differences across models could only be observed in the solution time

and node size differences. This is true for both horizons used in this respect. The

main findings inside J10 were that when going from a low to a higher time horizon,

the deviation has been most obvious on the DT model, where both solution time

and node size increased significantly. With the FCT model staying in the mid-

dle, the event-based models showed the least vulnerability to the change in horizon.

This is also partly true for the J20 set, where the differences are far more ob-

vious also in terms of the average solution gap. The increases in timing and node

amount from the smaller to the bigger horizon can also be found here. The time

indexed models are still fast, the event-based still rank last in terms of solution

time and node size, although the differences in the average solution gap are not as

big among the models. The OOE model not only loses its dominance towards the

SEE version in terms of node size and average solution time for the larger horizon,

but also in the numbers of optimal solutions found. Compared to the J10 set also

the DT model seems to lose pace compared to the DDT approach.

All in all those general observations show a clear tendency towards three mod-

els in particular for each subset, the DDT model for the time-indexed version,

the FCT model as best performing (and quite stable) time-continuous formulation

and surprisingly the SEE approach in the event-based setting. It seems as if the

increase in the time horizon had no significant influence on the ranking among the

models, though the problems of course got more complex to solve. This has to be

tested further with larger problem instances, J20 still is not the most representa-
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tive set for this testing, showing only tendencies, but still some open issues and

inconsistent model behaviour.

When taking a look at the more detailed results in the parameter analysis, the

outcome is actually consistent across the sets and within the models. The results

show the same expected and unexpected model behaviour across all sets, deliver-

ing more carved-out results of course in the J20 cases.

When comparing the results to the observations made by Koné et al. [2011], some

similarities can be found in the multi-mode case. The time-indexed models per-

form best under the easiest circumstances, showing an inevitable decrease in per-

formance when additional time and activity settings are added. This deterioration

is as mentioned only obvious in the high relative increases in solution time and

might become more evident in a more complex environment. The FCT model

is throughout the sets the best performing time-continuous formulation showing

neither the best nor the worst performance. Its ignorance towards the settings of

nonrenewable parameters has not been shown or been tested in the article so far.

Despite the observations of Koné et al. [2011], the OOE model is not the best

performing event-based model in the multi-mode setting. This can be due to the

fact that the additional constraints added to make up for the multi-mode settings

make the model more complex. It is also possible that the lack of the preprocessing

attributed to the model in Koné et al. [2011] is responsible for the worse perfor-

mance. It will be a question for further research if preprocessing can accelerate

the performance of either the event-based formulations.

The dominance within the time-indexed models is not as straightforward in this

work. Tendencies are pointing towards a better performance of the DDT model,

but this has to be investigated further with more complex settings like more ac-

tivities or – as introduced by Koné et al. [2011] – a higher variability within the

activity durations.
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5.2.5 Preprocessing

The preprocessing steps to determine Earliest and Latest Starting Time Windows

which were described in chapter 2 are the most straightforward but also most gen-

eral calculation method. Also in this context, improvements in the preprocessing

phase could be made by a more sophisticated method. Koné et al. [2011] describe

an alternate way by introducing precedence and constraint propagation and a par-

allel schedule scheme heuristic for the starting time window calculation. As the

method is not used here, it will not be described in more detail, but should be

mentioned nevertheless for the interest of the reader.

Apart from the time window preprocessing that is basically only influencing the

performance of the time-indexed formulations DT and DDT, Koné et al. [2011]

also mention several preprocessing techniques for the OOE model aiming at re-

ducing the number of events needed. Their solutions range from the removal of

events due to precedence requirements on to the reduction of search space through

a heuristic variable setting. The preprocessing steps can also here influence the

performance of the algorithm and according to the authors there is the possibility

of enhancing the used heuristics.

6 Conclusion and further research

As indicated already in this thesis, the analyses conducted here are dedicated to

preliminary testing of the five introduced models. The extent of this paper only

allowed for the initial comparison of the approaches on two different sets pro-

vided by literature. The scope however was to prove whether or not the use of

the MILP models for the MRCPSP is useful and if yes, under which circumstances.

The findings of the analyses show promising but inconclusive results. This is

on the one hand due to the fact that the sets chosen are not suitable for an in-

depth research as they do not support any major improvements through differing

algorithms. On the other hand, there is still room for improvement within the

model set up, leaving space for better performances.
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The main points to target for future research are – among others – preprocessing

techniques on the one hand and a differing range of problems sets on the other

hand. The preprocessing steps in this thesis are basic and Koné et al. [2011]

proposes other approaches for time-window preprocessing and steps for the im-

provement of the OOE model. When considering the performance within the

event-based models, also preprocessing steps for the SEE approach are useful and

allow for a fairer comparison of the two.

It should also not be neglected that – although never taking the lead – the FCT

model performed well and pretty stable across all sets. This behaviour together

with the outstanding insensibility towards changes in the nonrenewable resource

parameter set changes, makes this model very promising for future research and

adaptations.

The broadening of the scope in terms of instance sets is another important

chapter. As already pointed out when discussing the downside of the PSPLIB, a

greater variation within the activity duration range will challenge the dominance

of the time-indexed models, together with a larger activity amount and probably

a higher mode amount for choice. It will be of utmost interest to see how the

models compete in a more complex setting.

To sum up, the findings of this paper definitely allow for further research in this

topic, also in the multi-mode case. So far the models showed different capabilities

in different settings. It will be a challenge for the future research to see whether

one of these models can be outstanding with the right preprocessing and – as al-

ready shown by Zhu et al. [2006] and the Branch and Cut method – using hybrid

methods and heuristic improvements.
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ABSTRACT

The Resource-Constrained Project Scheduling Problem (RCPSP) is a a widely

known problem for which various extensions have been introduced to make it more

applicable to real-world situations. One of these extensions is the introduction of

the multiple performance modes into this problem to examine the different trade-

offs in duration and resource consumption.

This thesis aims at extending and testing five different exact Mixed Integer

Linear Programming models on this complex problem, each of which has different

advantages and disadvantages provided by its setting. The solution approaches

have already been tested in the Single Mode case and found to be promising for

further research.

In this context the models are now tested on well-known Multi Mode bench-

marking instances with parameter variation and compared regarding their solution

times, the node amount used to get results and the actual number of optimal so-

lutions found. The outcome does not fully coincide with the one found in the

Single-Mode comparison, but similarities are apparent. The analysis also shows

promising results, indicating that further research is needed to fully grasp the

features of the different models.
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ZUSAMMENFASSUNG

Das Resourcenbeschraenkte Projektplanungsproblem (RCPSP) ist ein be-

kanntes Problem, fuer das bereits verschiedene Erweiterungen eingefuehrt wurden,

um es besser an reale Verhaeltnisse anzupassen. Eine dieser Erweiterungen ist die

Einfuehrung multipler Modi, um die verschiedenen Auswirkungen auf die Dauer

und den Ressourcenverbrauch der einzelnen Aktivitaeten zu untersuchen.

Diese Masterarbeit hat zum Ziel fuenf verschiedene Gemischt-Ganzzahlig Lin-

eare Programmmodelle auf diese komplexe Situation auszuweiten und zu testen.

Jedes dieser Modelle hat verschiedene Vor- und Nachteile durch die verwende-

ten Variablen und Indices. Die Loesungsansaetze wurden bereits in der urspru-

englichen Version getestet und als vielversprechend fuer weitere Forschungen be-

wertet.

In diesem Zusammenhang werden diese Modelle nun an bekannten multi-

modalen Benchmarking Instanzen mit einer Variation der Parameter getestet und

bezueglich der Loesungszeit, der verwendeten Menge an Knoten und der tat-

saechlichen Anzahl an gefundenen optimalen Loesungen verglichen. Die Resultate

entsprechen nicht voellig den bisher ermittelten Ergebnissen in der urspruenglichen

Version, Gemeinsamkeiten sind aber durchgehend vorhanden. Die Analyse zeigt

bereits vielversprechende Ergebnisse und verweist auf eine vertiefende Forschung,

um die verschiedenen Aspekte der einzelnen Modelle voll zu erfassen.
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