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Abstract

English

This thesis presents the development of the Vienna Neural Network Speci�cation Lan-
guage (ViNNSL). At the beginning, neural networks are classi�ed and mapped to ontolo-
gies. In addition, neural network applications based on publications are presented. The
ontologies are used as search tree in order to �nd neural networks based on several pa-
rameters to solve a speci�c problem. Afterwards, ViNNSL 1.0 is outlined and extended
to ViNNSL 2.0. Therefore, already proposed neural network speci�cation languages are
analysed. Based on the analysis ViNNSL 1.0 is extended and every schema described
in detail. ViNNSL 2.0 provides the possibility to describe neural networks in order to
enable IT systems to execute them automatically and present the outcome. For a better
understanding use cases providing an application and evaluation example to ViNNSL
2.0 are given. Finally the future use of ViNNSL 2.0 is outlined.

German

Diese Masterarbeit beschreibt die Entwicklung der Vienna Neural Network Speci�cation
Language (ViNNSL). Zu Beginn werden neurale Netze klassi�ziert und auf Ontologien
abgebildet. Darüber hinaus werden Anwendungen für neurale Netze, basierend auf Pu-
blikationen, vorgestellt. Die Ontologien dienen als Suchbaum um neurale Netze zu iden-
ti�zieren, die zum Lösen einer bestimmten Problemstellung geeignet sind. Anschlieÿend
wird ViNNSL 1.0 erläutert und auf ViNNSL 2.0 erweitert. Zu diesem Zweck werden
existierende Beschreibungssprachen für neurale Netze analysiert. Basierend auf den Er-
gebnissen wird ViNNSL 1.0 ergänzt und jedes Schema im Detail beschrieben. ViNNSL
2.0 bietet die Möglichkeit neurale Netze in einer Form zu beschreiben, sodass IT-Systeme
in der Lage sind, diese automatisiert ausführen und das Ergebnis präsentieren zu lassen.
Für ein besseres Verständnis, werden Fallbeispiele zur Anwendung und Bewertung von
ViNNSL 2.0 präsentiert. Am Ende wird die zukünftige Verwendung von ViNNSL 2.0
dargestellt.
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1. Introduction

The thesis describes a concept for an implementation of a speci�cation language for
neural networks. In connection with the speci�cation language a classi�cation ontology
for neural networks by their type, problem domain and other categories based on pub-
lished literature is presented. In addition the state of the art on neural network markup
langugaes is used to develop ViNNSL 2.0.

Objectives: The �rst objective is developing a classi�cation schema for neural net-
works and mapping of di�erent neural network types to di�erent �elds of application
based on literature. The following step is to �nd out how ViNNSL has to be imple-
mented in order to be used within N2Grid and later on in N2Sky and maybe in other
neural network cluster too.

Non-objectives: This master thesis will not follow the approach of implementing a
running executable environment for ViNNSL. Only the structure of the �rst executable
version of the language will be outlined and described.

1.1. Motivation

MANN (2013) proposed N2Sky, an arti�cial neural network simulation environment
providing basic functions like creating, training and evaluating neural networks. The
system is Cloud-based in order to allow for a growing user community. For enabling the
communication between components of N2Sky and other resources within the cloud a
neural network speci�cation language is required.

In concern of a growing community, and available data as well as networks, a possi-
bility to brows through the available information is necessary. At this point ViNNSL
2.0 comes to action. Beside the possibility to contain all relevant information to set up
and work with a neural network, ViNNSL 2.0 shall also support the system by providing
information on the neural network paradigm. This means an easy way to provide meta
information on neural networks like problem domain, application domain and type is
necessary.

1.2. Structure

At the beginning a neural network ontology, containing a neural network classi�cation
ontology and a problem domain ontology, will be introduced. The basis for the ontologies
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1. Introduction

is technical literature on neural networks. Within the ontology introduction di�erent
neural network types are described shortly.

The following chapter provides an overview of state of the art neural network markup
languages. Sections within this chapter explain the current state of ViNNSL which is
based on the published paper from the University of Vienna science group. They also
give an overview of N2Grid as well as other languages.

Based on the results of previous chapters ViNNSL 2.0 will be explained. The sections
describe in�uences of other languages, the extensions to ViNNSL 2.0 and a detailed
description of the proposed structure provided in XSD-form.

The ViNNSL 2.0 explanation is followed by use cases, which are used as application
and for evaluation of the language. Therefore, a special software tool for XML develop-
ment is used.

In the end a conclusion on the results of this thesis and the future use of ViNNSL
2.0 in the N2Sky system is provided.

1.3. Methods

The ontology development is based on research on technical literature. Whereas the
state of the art of neural network speci�cation languages is determined by research on
publications. Based on these �ndings ViNNSL 2.0 schemas are developed and use cases
for their application provided. The use cases are evaluated using an XML tool.
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2. Neural Networks

The scienti�c �eld distinguishes between two kinds of neural networks, natural and ar-
ti�cial networks. In this thesis the term neural network describes an arti�cial neural
network. However, the di�erence between these types will be outlined.

Natural neural networks use computing elements, called neurons, which are located in
the brain. A human brain for example consists of approximately 1011 neurons. Neurons
communicate through a connection network of axons and synapses. (ZURADA 1992)
They are self-organising systems and each neuron is a complex arrangement, which deals
with incoming signals in many di�erent ways. Although, the production and transport
of signals is well-understood, the cooperation to form complex and massively parallel
systems capable of incredible information processing is still unclear. Their advantage
compared to conventional computer systems is the massive parallelism and redundancy,
which they exploit in order to deal with the unreliability of the individual computing
units. (ROJAS 1996)

Arti�cial neural networks are an attempt at modeling the information processing ca-
pabilities of nervous systems. (ROJAS 1996) They allow solving complex, mathemati-
cally ill-de�ned problems, nonlinear problems or stochastic problems. Those networks
are from a computational and algorithmical point of view very simple and provide a
self-organising feature to hold for a wide range of problems. Like brains they use high
parallelity. If a neuron fails to work it won't a�ect the whole network. Natural neu-
rons have switching times of milliseconds, which is slow compared to electronic logic
gates achieving nanoseconds. (GRAUPE 1997) Therefore, neural networks have great
potential to solve complex problems much faster than humans or animals.

2.1. Classi�cation of Neural Networks

Regarding the increasing number of di�erent neural networks an attempt for classi�-
cation seems more and more reasonable. Therefore, this thesis provides a possibility
based on the approach of HAUN (1998). Figure 2.1 provides a short overview on the
classi�cation levels developed by Haun. In this approach neural networks are classi�ed
into three levels. The levels are based on the connection type, neuron behaviour and
learning methods.

• Level 1: Feedback and feedforward networks

• Level 2: Nonlinear and linear networks

13



2. Neural Networks

• Level 3: Supervised and unsupervised networks

Haun doesn't provide many kinds of neural networks in his classi�cation. Therefore,
several types given by ZELL (1994) who doesn't give any classi�cation as well and
cellular neural networks (CNN) are added.

Figure 2.1.: Classi�cation of neural networks modi�ed from HAUN (1998)

The following chapters provide a more detailed explanation of the levels and their
appropriate networks.

2.1.1. Feedback Networks

Feedback neural network signals travel in di�erent directions. Therefore, the network's
�state� continuously changes. According to Badiru & Cheung input values initialises the
network only. Once initialised, the network output will continuously change. Depending
on the network parameters a dynamic network could continue to change or stabilise at
an equilibrium point. (BADIRU & CHEUNG 2002) These nets are able to deal with
incorrect or missing input data. However, feedback neural networks do not always �nd
the same or exact solution. (HAUN 1998)
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2.1. Classi�cation of Neural Networks

Figure 2.2.: Feedback network modi�ed from HAUN (1998)

2.1.1.1. De�ned Constructed Networks

These network's structure is already de�ned, when the data is presented. An example
is the Travelling-Salesman-Problem, where a number of locations has to be visited once
and the tour ends at the start point. Every location is represented by one neuron.

2.1.1.1.1. Hop�eld Network

An example of a feedback network is the Hop�eld network. It was a milestone in
the �eld of neural networks, introduced at the beginning of the 1980s. Hop�eld nets
are asynchronous, which means each unit computes its excitation at random times and
changes its state independently to 1 or -1. They keep their individual states till they are
selected for an update. The selection is made randomly. A Hop�eld net has n neurons,
which are connected with all other neurons in the net except themselves. These nets
are symmetric, because the weight of the connection from neuron i to neuron j has the
same value as the connection from j to i.

Figure 2.3.: Hop�eld network with four neurons (ZELL 1994)
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2. Neural Networks

2.1.1.1.2. Cellular Neural Networks (CNN)

Cellular neural networks were the �rst time proposed by Chua & Lin in 1988. According
to the researchers these networks can be viewed as a particular case of continuous Hop-
�eld networks. (SLAVOVA & MLADENOV 2004) The main di�erence compared to the
Hop�eld network is, that neurons are only connected with neurons in their neighbour-
hood. (CHUA & Lin 1988) While neurons in Hop�eld networks, as stated in 2.1.1.1.1,
are connected with all other neurons.

CNN enables parallel processing in the true sense. It has advantageous characteris-
tics compared to other neural networks. This net can be extended easily without re-
adjusting all weights. Although its cellular structure does still keep the complex dynamic
behaviour as seen with other neural networks. (SLAVOVA & MLADENOV 2004)

Figure 2.4.: 4x4 CNN (SLAVOVA & MLADENOV 2004)

2.1.1.2. Trained Networks

This group contains feedback networks which can be trained. These networks provide
supervised and unsupervised training.

2.1.1.2.1. Adaptive Resonance Theory (ART) 1

ART usually describes a family of neural networks. They were developed in order to
solve the stability-plasticity-dilemma. The issue was to determine how neural networks
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2.1. Classi�cation of Neural Networks

can learn new associations without forgetting old ones. Plasticity is the term describing
the modi�ability of neural networks. Stability describes the ability to remember learned
knowledge. (ZELL 1994)

In this thesis ART-1 is explained in more detail only in fact, that all members of this
family are able to deal with the stability-plasticity-dilemma. However, well known rep-
resentatives are given below.

• ART-1: original version, only able to deal with binary inputs

• ART-2: enhancement of ART-1 for continuous inputs

• ART-2A: simpli�cation of ART-2 for faster convergence

• ART-3: enhancement of ART-2 to model chronological or chemical processes

• ARTMAP: combination of two ART-nets (1 or 2) having supervised learning

• FUZZY ART: combination of fuzzy logic and ART

(ZELL 1994)

ART-1 consists of a comparison, a recognition layer and a reset component. Each vector
has an intensifying neuron called gain. They are acting as a switch for network synchro-
nisation. The reset component has the value 1, when the tolerance for the di�erence of
the input pattern and the result of the comparison layer excels a prede�ned level. In
this case the neurons of the recognition layer don't �re. (ZELL 1994)

Every neuron in the recognition layer stores one pattern. Therefore, the comparison
and the recognition layers are connected with two weighted matrices. One matrix is
in the direction from the comparison to the recognition layer and vice versa. But the
matrixes are not directly connected with each other. (ZELL 1994)

The network is initialised using a null vector. The weights of the bottom-up-matrix
get the same low value and the weights of the top-down-matrix are set to 1. Afterwards,
the input vector is presented to the network. Then the most similar neuron in the recog-
nition layer �res. The result is that each neuron in the comparison layer gets a state
(0 or 1). If the di�erence between the input vector and the state of comparison layer is
too high, a reset will be set. The reset deactivates the previously �ring neuron in the
recognition layer. (ZELL 1994)

This process continues till a stored vector is found which is similar enough to the input
vector or none of them is similar enough. If a similar vector was found, the network mod-
i�es the weights of the matrixes. In the other case an unused neuron of the recognition
layer is used to store the input vector. (ZELL 1994)
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2. Neural Networks

Figure 2.5.: ART-1 Architecture modi�ed from ZELL (1994)

2.1.2. Feedforward Networks

Connections in feedforward networks are going in one direction only. Neurons will be
connected between di�erent layers. However, layers can be skipped too. (HAUN 1998)
The output can be calculated directly from the input without knowing initial states.
Unlike feedback networks it does not contain loops and time delays. (MEDSKER &
JAIN 2000) That means an output of a neuron can't be an input of a neuron from a
previous layer. Feedforward networks can be divided into linear and nonlinear networks
(see 2.1), which will be explained in the following sections.

Figure 2.6.: Feedforward network modi�ed from HAUN (1998)

18



2.1. Classi�cation of Neural Networks

2.1.2.1. Nonlinear Networks

The output value of neurons will be calculated with a nonlinear function based on the
input values. The easiest implementation of these neurons has an activation value of
1 if the neuron's weighted sum is greater than a threshold otherwise it's 0. (HAUN 1998)

These networks can be split into supervised and unsupervised networks. The distinction
applies to the learning behaviour. A more detailed explanation will be given in the
following sections based on ROJAS (1996).

2.1.2.1.1. Supervised Networks

Input vectors are collected and presented to the network. The network computes the
output, and the deviation from the expected results are measured. Afterwards, the
weights, based on the magnitude of error, and the learning algorithm are corrected. The
network uses reinforcement or error correction to improve its weights. Reinforcement
learning is used when the result of the network is desired or not. In learning with error
correction, the magnitude of the error, together with the input value, is used to update
the weights. This type is also called learning with a teacher. (ROJAS 1996)

The process will be repeated till the error rate reaches an acceptable level. Usually
nets, which use this learning type, are provided with a training set to correct their
weights and a validation set to evaluate their settings.

Figure 2.7.: Classes of learning algorithms (ROJAS 1996)

2.1.2.1.1.1. Backpropagation (Rprop / Quickprop)

Unlike de�ned constructed networks as discussed in 2.1.1.1, backpropagation is not a
network design but the description of the learning algorithm, which repeatedly passes
the training data set through a network to determine the corresponding weights for each
input variable in the output and hidden layers.

The network calculates the predicted value and compares it with the actual value from
the training set. The derivatives are evaluated based on the error function and the net-
work weights. Therefore, the backpropagation algorithm goes backwards through the
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2. Neural Networks

net and adjusts the weights. This process is repeated till all error vectors are zero, i.e.
a perfect �t of the data or convergence criterion values are met. (MATIGNON 2005)
Rprop and Quickprop are improvements of the backpropagation algorithm.

Quickprop: This approach is used to determine the minimum of a feedforward net's
error function. It assumes that the error function is locally powered by two. Two as-
sumptions have to be given in order to work with Quickprop:

1. The error function can be locally approximated with a parabola.

2. The change of a weight wij is independent from changes of other weights.

If the assumptions are given Quickprop is faster by factor �ve to ten compared to
backpropagation. (ZELL, 1994, pp. 120-124)

Rprop: It combines Manhattan-Trainings, SuperSAB and Quickprop. Like in Manhattan-
Training weights are changed according to the arithmetic sign of the slope of the error
function. In addition only the error function's slope of the current and previous time
point like in SuperSAB and Quickprop are used. Moreover, every weight has its own
parameter for value changes. Compared to other algorithms Rprop has the easiest prop-
agation rule. (ZELL 1994)

Figure 2.8.: Backpropagation network modi�ed from HAUN (1998)

2.1.2.1.1.2. Cascade-Correlation Networks

The Cascade-Correlation learning architecture de�nes the weights between neurons and
the topology of a network. It starts with the smallest possible network and adds hidden
layer during training. However, each hidden layer contains only one neuron. If a new
hidden neuron is added the input weights are frozen and only the output weights will
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2.1. Classi�cation of Neural Networks

be changed. (ZELL 1994)

An advantage of Cascade-Correlation is the possibility to solve speci�c problems ev-
ery time. For example the solution to a problem can be split into sub problems A and
B. Once a sub problem is solved the net is always able to solve it and future neurons
just focus on solving the other problem. Usually hidden neurons take a long time till
they decide on which sub problem they focus. A solution to this loosed time is changing
only a few weights. Cascade-Correlation uses an extreme interpretation of this strategy.
(ZELL 1994)

Figure 2.9.: Cascade-Correlation Network (KOVALISHYN et al. 1998)

2.1.2.1.2. Unsupervised Networks

The numerical output for a given input which shall be produced by the network is
unknown. Therefore, the network must organise itself in order to produce appropriate
results. (ROJAS 1996) The goal for unsupervised networks is describing groups of data
that is similar to principal components, cluster analysis or Kohonen maps. (MATIGNON
2005)

2.1.2.1.2.1. Kohonen Network (Self-Organising Maps - SOM)

Kohonen networks, also called self-organising maps, are self-organising networks. The
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output is not prede�ned and the mapping of weight vectors to clusters is an automatic
process. At each step one input vector at the same time is presented. Together, they
constitute the �environment� of the network. Each new input produces an adaptation
of the parameters. Assuming these modi�cations are correctly controlled, the network
can build a kind of internal representation of the environment. (ROJAS 1996)

HAUN (1998) and ROJAS (1996) independently state that Kohonen networks use a
one dimensional chain of units. Each unit reacts on its neighbours. The goal is that
neighbour units learn to react to closely related signals. At the beginning neurons react
randomly to inputs but during the training they will start to group together. (HAUN
1998)

Figure 2.10.: Kohonen network (NOGUCHI & YOUKO 2010)

2.1.2.1.2.2. Counterpropagation Network

First introduced by Hecht-Nielsen, the Counterpropagation network is an extension to
the Kohonen network. It contains a hidden layer of Kohonen neurons. They are for ex-
ample connected with a linear associator (ROJAS 1996) or a Grossberg net (GRAUPE
1997).

The Kohonen layer is trained to converge to the average inputs. This layer is a pre-
classi�er to account for imperfect inputs using unsupervised training whereas the Gross-
berg layer uses supervised training in order to converge to the desired output. (GRAUPE
1997)
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Figure 2.11.: Counterpropagation network (ACHARYA & RAY 2005)

2.1.2.2. Linear Networks

Linear networks use linear activation functions for their nodes. This means the output,
activation value, of any node is linearly proportional to the sum of the inputs to the node.
For example a neural network consists of an input, a hidden and an output layer having
a linear activation function only. The hidden nodes output is a linear combination of
the input values. Thus apply to the output nodes too. This creates linear combinations
of the original inputs. The network can do no more than generate outputs that were
linear functions of the input. (RZEMPOLUCK 1998)

2.1.2.2.1. Perceptron

ZELL (1994) distinguishes between three types of perceptrons: Single Layer, Double
Layer and Triple Layer perceptron.

Perceptron describes a family of related neural networks. They are used for visual
pattern identi�cation. The structure of a general perceptron contains an input layer
with �xed weighted connections to the working layer. The connections from the working
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layer to the output layer are variable and can be trained. (ZELL 1994)

The number of layers in a perceptron is identical with the number of stages having
variable weights. The working layers are named �Level 0� to �Level n� whereas �Level
n� represents the output layer. According to Zell do more working layer increase the
mightiness of perceptrons. However, after a third layer perceptrons don't gain additional
abilities. (ZELL 1994)

Figure 2.12.: Perceptron schema modi�ed from LISA (2010) according to ZELL (1994)

2.1.2.2.2. Linear Associator

A linear associator is a computing unit which adds its weighted inputs. It shall repro-
duce the output of the input vectors of a training set. (ROJAS 1996) Linear associators
are based on the Hebbian learning rule which allows initialising the network directly
without explicit training. This network can be used as a method to store and recover
patterns from memory. The memory can be retrieved in di�erent forms. (LUGER 2005)

Figure 2.13.: Linear associator network (LUGER 2005)
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2.1.3. Partial Recurrent Networks

Partial recurrent networks cannot be clearly grouped to feedforward or feedback net-
works. They are usually based on feedforward networks having characteristics of feed-
back networks. Their purpose is considering the chronological order of input data. These
nets have context cells which implement a memory mechanism. Context cells receive in-
put from hidden or output cells and transfer them as input to the net. Partial recurrent
networks can be trained with slightly modi�ed training algorithms of feedforward nets.
(ZELL 1994)

2.1.3.1. Jordan-Net

Jordan-nets use a simple feedforward net architecture enhanced by context cells. The
input cells and context cells deliver their values to the hidden cells. The result of the
output cells are used as net results and input for the context cells. In addition context
cells have a direct feedback from themselves. These weights are static values and cannot
be changed by training. The feedback weight is a value between [0,1]. If the value tends
to 0 older inputs have a decreasing in�uence. This means the net is forgetting but is
�exible towards changes. If the value is close to 1 older inputs have a higher in�uence
on the result. (ZELL 1994)

The number of output cells has to match the number of context cells. All trainable
connections head to the output cells. The net's result is always in�uenced by external
input and the state stored in the context cells. Disadvantage of this model is that many
problems require a small value of the feedback weight and at the same time a high value
is wanted in order to consider older inputs. In addition the state of the hidden layer
cannot be stored. (ZELL 1994)

Figure 2.14.: Jordan-Net (JORDAN 1990)
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2.1.3.2. Elman-Net

Elman-nets are a modi�cation of Jordan-nets. The feedback loop goes from the hidden
cells to the context cells and the direct feedback loop of context cells to themselves is
skipped. In this case the number of context cells has to match the number of hidden
cells. The connection weight to context cells is 1.0. Context cells store the values of
the hidden cells from the previous sequence. Therefore, a chronological connection to
previous sequences can be reached. Simple Elman-nets contain only one hidden layer,
but for complex problems, nets with several hidden layer produce better results. In this
case hierarchical Elman-nets are useful. (ZELL 1994)

Figure 2.15.: Elman-Net (McCULLOCK 2012)

2.1.3.2.1. Hierarchical Elman-Net

Hierarchical Elman-nets allow the usage of several hidden layers. Each hidden layer
and the output layer have its own layer of context cells. Additionally, every context cell
has a feedback loop to itself. The weight of these loops can be de�ned on layer basis.
Therefore, the memory behaviour for each hidden layer can be in�uenced. (ZELL 1994)
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2.2. Neural Networks Application Domains

This section shall give an overview of the possibilities of speci�c neural network types to
solve speci�c problems. Therefore, applications for neural networks will be generalised
and described. In the second step, for each neural network stated in 2.1, applications
based on literature will be given. The last step is the presentation of networks and their
applications in table form.

2.2.1. Problem Domains of Neural Networks

ZURADA (1992) proposed examples of neural network paradigms. These are real world
problems which are solved using neural networks. The problems are explained in detail
within this section. All research papers presented in section 2.2.3 can be assigned to one
of the following domains. Figure 2.16 shows the neural network paradigms. In order
to keep the �gure readable the dashed lines give a single example of an application and
the corresponding network type. For example, a classi�er problem occurs in Retail,
Operations and other application domains. In the next step e.g. a Retail classi�cation
problem can be implemented using Backpropagation, Hop�eld and other network types.

Figure 2.16.: Neural Network Problem Domains
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2.2.1.1. Classi�ers

Classi�ers respond instantaneously to input. They classify input based on a decision
function. The neural network design's importance increases with the complexity of the
group requirements. An application example is the evaluation of electroencephalogram
signals of patients. It is used to detect imminent epileptic seizures. (ZURADA 1992)

2.2.1.2. Approximators

Approximators are based on classi�ers. Examples are autonomous driving systems.
Based on road images and range �nders the neural network trains and is able to de�ne
steering actions in order to keep a car in the middle of a road. The same principle is
used to approximate to mathematic functions. (ZURADA 1992)

2.2.1.3. Simple Memory and Pattern Restoration

Memories respond, in time, to presented patterns. These networks process a gradual
reconstruction of stored patterns in order to restore input patterns. For every stored
pattern the memory provides a stable output. If a presented pattern does not agree with
the stored stable output the network responds with the corrected entry. The network
shall then terminate at one of its originally stored patterns. (ZURADA 1992)

2.2.1.4. Optimising Networks

Optimisation is one of the most important objectives of engineering. The goal is min-
imising certain cost functions, which are usually de�ned by the user. A number of
optimisation problems can be translated directly into the minimisation of a neural net-
work's energy function. When the translation is accomplished the optimisation task is
presented for the actual solution. An example is the job-shop scheduling problem. It
determines in which allocation jobs need to be done in order to minimise costs, time,
etc. (ZURADA 1992)

2.2.1.5. Clustering and Feature detection

These networks are tuned to certain similarity aspects which are of interest in data.
An example is grouping measurement results together to suppress any systematic errors
that may have occurred. Another possibility is detecting frequently appearing signals as
inputs. These may indicate the true input signals among noise, which occurs randomly.
Feature detection is normally related to dimension reduction in data, also from fairly
complex structures. For example mapping speech features. (ZURADA 1992)

2.2.2. Neural Network Applications

Based on the publications of SMITH & GUPTA (2000) and PALIWAL & KUMAR
(2009) neural networks will be used in the following �elds of application:
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• Accounting and �nance

• Health and medicine

• Marketing

• Retail

• Insurance

• Telecommunications

• Operations management

• Emergency and Social Services

Possibilities of neural network applications are constantly increasing and therefore, an
overview is provided only.

2.2.2.1. Accounting and Finance

One of the main areas of banking and �nance that heavily rely on neural networks is
trading and �nancial forecasting. Neural networks have been applied successfully to
problems like derivative securities pricing and hedging, futures price forecasting, ex-
change rate forecasting, stock performance and selection prediction. For many years
banks have used credit scoring techniques based on statistical techniques to determine
which loan applicants they should lend money to. However, neural networks became
the underlying technique driving the decision making. Hecht-Nielson and Co. have
developed a credit scoring system, which increased pro�tability by 27% by learning to
correctly identify good and poor credit risks. (SMITH & GUPTA 2000)

Neural networks have also been successful in learning to predict corporate bankruptcy
and have been used to model the relationships between corporate strategy, short-run
�nancial health, and the performance of a company. This appears to be a promising
new area of application. Financial fraud detection is another important area of neural
networks in business. For example Visa International has an operational fraud detec-
tion system which is based upon a neural network. The network has been trained to
detect fraudulent activity by comparing legitimate card use with known cases of fraud
and saved Visa International approximately US$40 million within its �rst six months of
operation. Neural networks have also been used in the validation of bank signatures,
identifying forgeries signi�cantly better than human experts. (SMITH & GUPTA 2000)

2.2.2.2. Health and Medicine

Neural networks are used instead of classical statistical approaches in medical informat-
ics. They aid in the detection and classi�cation of coronary artery diseases, breast cancer
and many other. Neural networks provide better classi�cation results, not only in the
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training sample, but also in the test samples and it is demonstrated, that for medical
diagnosis problems, when the data is often highly unbalanced, neural networks can be
a promising classi�cation method for practical use. (PALIWAL & KUMAR 2009)

2.2.2.3. Marketing

The application of neural networks in marketing is relatively new, but is becoming
popular because of their ability of capturing nonlinear relationship between variables.
Numerous applications of neural network models are available. Examples are Market
Segmentation, Market Response Prediction, New Product Launch, Sales Forecasting,
Consumer Choice Prediction, etc. (PALIWAL & KUMAR 2009)
Market modelling is an extremely important issue in marketing. At the aggregate

level, market share models are commonly used in marketing for a number of di�erent
purposes. These include the estimation of price and advertising elasticity as well as
more generally, predicting the e�ects of changes in marketing variables. (PALIWAL &
KUMAR 2009)

2.2.2.4. Retail

Companies often need to forecast sales to make decisions about inventory, sta�ng levels,
and pricing. Neural networks have had great success at sales forecasting, due to their
ability to simultaneously consider multiple variables such as market demand for a prod-
uct, consumers' disposable income, the size of the population, the price of the product,
and the price of complementary products. (SMITH & GUPTA 2000)

The second major area where retail businesses can bene�t from neural networks is the
area of market basket analysis. Hidden amongst the daily transaction data of customers
is information relating to which products are often purchased together, or the expected
time delay between the sales of two products. Retailers can use this information to make
decisions, for example de�ne the store layout. If market basket analysis reveals a strong
association between products A and B then they can entice consumers to buy product
B by placing it near product A on the shelves. (SMITH & GUPTA 2000)

In case between two products exists a relationship over time, for example within six
months after buying a printer the customer returns to buy a new cartridge, retailers can
use this information to contact the customer, decreasing the chance that the customer
will purchase the product from a competitor. Understanding competitive market struc-
tures between di�erent brands has also been attempted with neural network techniques.
(SMITH & GUPTA 2000)

2.2.2.5. Insurance

Policy holders can be classi�ed into groups based on their behaviours, which can help
to determine e�ective premium pricing. Prediction of claim frequency and claim cost
can also help to set premiums, as well as �nd an acceptable mix or portfolio of policy
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holders' characteristics. The insurance industry, like the banking and �nance sectors, is
constantly in need to detect fraud, and neural networks can be trained to learn detecting
fraudulent claims or unusual circumstances. (SMITH & GUPTA 2000)

The �nal area where neural networks can be of bene�t is in customer retention. In-
surance is a competitive industry, and when a policy holder leaves, information why
they have left can be determined from their history. O�ering incentives to certain cus-
tomers like reducing their premiums or providing no-claims bonuses can help to keep
them. (SMITH & GUPTA 2000)

2.2.2.6. Telecommunication

Like other competitive retail industries, the telecommunications industry is concerned
with customers joining a competitor and win-back. Therefore, series of neural networks
are used to analyse customer and call data, predict if, when and why a customer is
likely to leave. As well as predict the e�ects of forthcoming promotional strategies and
interrogate data to �nd the most pro�table customers. (SMITH & GUPTA 2000)

Telecommunication companies are also concerned with product sales, since the more
reliant customers become on certain products the more likely they stay. Market basket
analysis is signi�cant here, since if a customer has bought one product from a common
market basket, then enticement to purchase the others can help to reduce the likelihood
that they will churn, and increases pro�tability through sales. (SMITH & GUPTA 2000)

Beside business applications, engineering applications of neural networks are interesting
to the operations researcher because it involves optimisation. This includes the use of
neural networks to assign channels to telephone calls for optimal network design, for
e�cient routing and control of tra�c. (SMITH & GUPTA 2000)

2.2.2.7. Operations management

Neural networks have been used successfully in many areas of operations management.
For example scheduling of machinery, assembly lines and cellular manufacturing as well
as other scheduling problems like timetabling, project scheduling and multiprocessor
task scheduling. All of these approaches are based upon the Hop�eld network which
is designed to solve complex optimisation problems. The use of neural networks in
various operation planning and control activities cover a broad spectrum of application
from demand forecasting to shop �oor scheduling and control. (SMITH & GUPTA 2000)

Neural networks have also been used in conjunction with other techniques, for example
simulation modelling to learn better manufacturing system design, traditional statistical
control techniques to enhance their performance. They can also be used as a diagnos-
tic tool, to detect faults in electrical equipment and satellite communication networks.
(SMITH & GUPTA 2000)
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In addition the term operations management within this thesis does not distinguish
between industrial, agricultural or power production. Furthermore, it also contains all
organisational tasks related with operation.

2.2.2.8. Emergency and Social Services

In addition neural networks can be used by emergency services in order to maintain
public security. In this thesis emergency services include for example police, ambulance,
�re brigade, public infrastructure like gas and power supplies, border control and many
others. Additionally this �eld of application does also contain operations which support
human beings in their daily life.

2.2.3. Application of speci�c Neural Networks

This section provides speci�c examples for possible applications for the described neural
networks in section 2.1 A general overview of the �elds of application is given in section
2.2.2 Thus a short view which type of network is applicable to which �eld of application
is given in �gure 2.17. The main purpose is giving examples for applications, most of
them published within the past �ve years. However, mentioning all of them would go
beyond the scope of this thesis.

Figure 2.17.: Fields of application for neural networks

1Accounting/Finance
2Health/Medicine
3Insurance
4Telecommunication
5Emergency and Social services
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2.2.3.1. Applications for Hop�eld Networks

The ELD (economic load dispatch) problem is one of the important optimisation prob-
lems in a power system. PARK et al. (1993) provide an example how a Hop�eld network
can be used to calculate the costs per generator. Their approach considers fuel, number
of generators and others and is compared with numerical methods.

MAETSCHKE & RAGAN (2014) used a Hop�eld network in which attractors char-
acterise cell states and used the model to identify cancer subtypes in gene-expression
data. Its advantages are uni�cation of clustering, feature selection, network inference
and it can be used as modelling framework for epigenetic landscapes.

SAMMOUDA et al. (2014) developed a Hop�eld network for pixel clustering of agri-
cultural satellite images. Their network clusters the image into non-overlapping, ho-
mogenous regions. In their case study they use the functionality to identify forage areas
for bees.

WANG (2013) used a discrete Hop�eld network to evaluate water quality. The research
paper classi�es water into the groups Oligotrophic, Nutrition, Eutrophication. Input
values are for example Chlorophyll, Phosphorus and Nitrogen. The comparison with a
backpropagation network showed that the Hop�eld network is approximately 33% faster.

Concerning the di�erent �elds of application the published scienti�c papers show that
Hop�eld networks are applicable to be used in Operations, Emergency and Social Ser-
vices, and Health and Medicine.

2.2.3.2. Applications for Cellular Neural Networks (CNN)

SUBUDHI et al. (2014) proposed an application for detecting moving objects from videos
captured by a static camera. Their approach also includes a Gibbs-Markov random �eld,
which is used to create a di�erence image from the image taken by the camera. The
Hop�eld network used in this paper is a cellular neural network. The CNN is used to
detect changed and unchanged pixels in di�erent frames. The result is, that this appli-
cation provides images containing moving objects only.

HADAD & PIROOZMAND (2007) developed a CNN which solves the nuclear reactor
dynamic equations. They used their model to simulate space-time response of di�erent
reactivity excursions in a nuclear reactor. As result, their CNN can be used as assistant
for reactor operations and reactor training simulations.

SAHIN et al. (2011) used a CNN to predict missing air pollution data. They try to
predict the daily mean of particulate matter and sulphur dioxide (SO2). The paper
shows that using a CNN provides a higher accuracy concerning predictions than mul-
tivariate linear regressions. They used datasets having 20% of missing data for their
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predictions. In addition, predictions are more reliable in winter than in summer.

SHITONG et al. (2007) developed a prototype of an advanced fuzzy CNN in order
to separate the liver out of computer tomography (CT) liver images. Their network is
based on the fuzzy CNN proposed by Wang S. and Wang M. to detect white blood cells.
The network's task is reducing all unnecessary information from the CT image in order
to visualise liver diseases.

NAMBA & ZHANG (2006) introduced a CNN used for pattern recognition based on
images showing braille letters. Furthermore, the images are taken by camera phones. A
data sample consisting of images with di�erent quality and a total number of 50 was used
for the network validation. In addition, the CNN was compared with a multi layered
perceptron (MLP). The result shows that the CNN is able to identify approximately
90% of all images correctly compared to 62% by the MLP.

CNNs can be used in di�erent �elds of application. Their ability for pattern recognition
is often taken for image processing. This task is requested by Health and Medicine,
and Emergency and Social Services. The proposed applications for missing air pollution
data and braille image pattern recognition are examples from the Emergency and Social
Services �eld of application.

2.2.3.3. Applications for Adaptive Resonance Theory (ART)

The proposed applications for ART-networks are not limited to ART-1, which was de-
scribed in section 2.1.1.2.1, but also to further developed networks.

GIRI & MOULICK (2014) presented an approach for Group Technology (GT) improve-
ment using an ART-1 network. The network determines the cells of GT. A cell contains
machines which produce similar parts. Their proposal reduces the waste of manpower
and idle times of machines by reducing the distances for components between di�erent
machines. The network's task is grouping the machines and components together, based
on the components' route sheet.

DASH et al. (2013) developed an ART-1 network for o�ine signature veri�cation. Their
main purpose was verifying similar looking but forged signatures. Especially for legal
issues signature veri�cation is very important. The authors compared serial and parallel
processing for their network. Finally, both approaches are almost 100% accurate.

CHANDRALEKHA & PRAFULLA (2009) de�ned parameters for vertical handovers
(for example 3G to 4G) between heterogeneous telecommunication networks using an
ART network. The network selects the best available wireless network during hando�s
based on a set of prede�ned user preferences on a mobile device. The ART network
was used in order to overcome the problem of learning stability. The proposed verti-
cal handover approach was compared with several others by GONDARA & KADAM
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(2011). The other approaches considered more parameters. Therefore, the introduced
network does not consider the factors �Power Consumption�, �Received Signal Strength�
and �Velocity�.

CHEN et al. (2002) used an ART-2 network to classify customers into several groups
and determine which features of a product, in their case golf clubs, are mandatory for
each of them. The classi�cation of the customers was based on age, gender and skill,
whereas the features were for example price, usability and design.

The referenced papers show that ART networks are applicable for Operations, Emer-
gency and Social Services, Marketing as well as Telecommunications.

2.2.3.4. Applications for Backpropagation Networks

WANG et al. (2011) constructed a backpropagation network for predicting stock indices.
They chose a backpropagation network due to its popular use in the short-term fore-
casting situations.

FENG et al. (2011) combined the backpropagation network with other techniques in
order to forecast the ozone concentration in cities. A support vector machine (SVM)
was used to classify the data into corresponding categories. After the data classi�cation
with SVM the backpropagation network, having a genetic algorithm for weight optimi-
sation, was used for the prediction.

CHE (2010) delivered a study for a cost estimation approach for plastic injection prod-
ucts and molds. With it, designers and R&D specialists can consider competitiveness
of product costs in the early stage. Therefore, the approach combines factor analysis,
particle swarm optimisation and two backpropagation networks.

NAWI et al. (2010) improved a backpropagation network which is used to predict pa-
tients with heart diseases. The proposed algorithm modi�es the gradient based search
direction by introducing the value of gain parameter in the activation function. The
result is an enhancement of the computational e�ectiveness of the training process.

HANAFIZADEH et al. (2010) proposed an expert system based on a backpropaga-
tion neural network to help customers on perfume selection. They used demographic,
product speci�c and customer's behavioural data to suggest appropriate perfumes.

KAEFER et al. (2005) compared a multinomial logit model (MNL) with a backpropa-
gation neural network to predict the best timing for direct marketing activities. Their
results show that the MNL is useful to determine chosen input variables, but the neural
network achieves a higher accuracy rate.

LIN (2009) developed a backpropagation neural network as a tool to support �re in-
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surance underwriters to estimate in-between risks. This gives them more discretion in
pricing in order to compete on the market.

ALTIPARMAK et al. (2009) developed a general backpropagation neural network to
estimate the reliability of telecommunication networks with identical link reliabilities.
They demonstrate the precision of the neural network estimate of reliability and its
ability to generalise to a variety of network sizes, including large scale communication
networks.

As the proposed �elds of application show backpropagation networks have a wide range
of possible applications. Thus are for example Accounting and Finance, Health and
Medicine, Marketing, Operation, Retail, and Emergency and Social Services.

2.2.3.5. Applications for Cascade-Correlation Networks

NASSIF et al. (2012) presented a Cascade-Correlation network for estimating the soft-
ware costs in an early life cycle stage. They use Use-Case diagrams for prediction. The
model was evaluated by using MMER1 and PRED2 as criteria.

CHANDRA & VARGHESE (2007) discussed the possibility of employing neural net-
works for the identi�cation of cipher systems from cipher texts. In their paper they
compared the Cascade-Correlation with a backpropagation network. The main goal is
reducing the e�ort in developing new cryptographic algorithms. Therefore, the neural
network checks if developed algorithms already exist. The Cascade-Correlation network
outperforms the backpropagation network with approximately 91%-93% to 73%-85%
accuracy.

DIAMANTOPOULOU (2006) developed a neural network which is able to compute
the volume of pine trees having the trunk diameter at 0.3 and 1.3 meters height and the
overall height of the tree as input variables. The network predicts the diameter on every
additional meter height between 1.3 meters and the total height for every tree. These
values are used to get the trunk volume over all trees.

HODNETT & HSIEH (2012) introduced a Cascade-Correlation network for �nancial
fore-casting as an active portfolio management tool. In their study, the Cascade-
Correlation network requires less input variables as a backpropagation network and had
greater strength in prediction future top performers on global equities.

The given examples show that Cascade-Correlation networks are able to be used in
the �elds Finance and Accounting, Operations, and Emergency and Social Services.
However, Operations includes the calculation of trunk volumes of trees and software
development.

1MMER: The Magnitude of Error Relative to the Estimate (NASSIF et al. 2012)
2PRED: Prediction Level (NASSIF et al. 2012)
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2.2.3.6. Applications for Kohonen Networks

DRAGOMIR et al. (2014) developed a Matlab application of a Kohonen network to clas-
sify consumers' daily load pro�les in a smart grid with power generation from renewable
energy sources. The network also determines the load behaviour of prosumers', who are
connected with a smart grid that integrates renewable energy sources.
The proposed approach of DRAGOMIR et al. (2014) would be applicable to 'people's
power stations'. Private households install renewable energy sources on their property,
for example the house. The produced energy will be fed into the power network. Such
power stations for example exist in Vienna.

OLSZEWSKI (2014) introduced a Kohonen network for fraud detection. Therefore, the
user accounts are visualised using the network. Furthermore, a method for the detection
threshold setting on the basis of the network's U-matrix is proposed. The approach was
con�rmed with experiments in di�erent research �elds. Those were Telecommunications,
Computer network intrusion and Credit cards. The telecommunication experiment was
based on fraud phone calls. The computer network intrusion experiment distinguished
between DOS, probing, unauthorised access to a normal user and unauthorised access
to a super user. The credit card experiment had the goal to detect illegal transactions.

CHON (2011) provides a research paper for Kohonen network applications on ecological
sciences. These are for example molecules and genes, organisms, communities and pop-
ulations as well as ecosystems. The presented applications a�ect animals, plants and
humans. For example climate change, water resources, ecological management, social-
economic behaviour of humans and response to toxic substances.

KIM et al. (2003) used a Kohonen network to cluster senior tourists of a speci�c re-
gion into several groups. The goal was to empower tourism marketers to justify selective
marketing actions. Additionally, the information is useful for travel planners including
agents and government o�ces which promote leisure activities.

CREPUT & KOUKAM (2009) combined an evolutionary algorithm with a Kohonen
network in order to improve its application to the Euclidian Travelling Salesman Prob-
lem (TSP). They compared their solution with 91 publicly available Kohonen network
based TSP solutions on standard test problems having between 29 and 85.900 cities.
This network performs better regarding the solution quality and/or computation time.

KONECNY et al. (2011) used a Kohonen network to evaluate a survey on insurance
companies' clients. They were grouped into satis�ed, less satis�ed and critical clients.
Afterwards, the authors analysed the coordinates of the centre of the groups in order to
determine the key attributes for each class. For example the key attributes for critical
clients are possible improvements, information on the news about a company, use of
accident insurance and probability of changing the insurance company.

37



2. Neural Networks

The presented papers show the wide range of possible applications for Kohonen networks.
These include the �elds Retail, Operation, Insurance, Telecommunication, Finance and
Accounting, Emergency and Social Services, Marketing, and Health and Medicine.

2.2.3.7. Applications for Counter-Propagation Networks

CHANG et al. (2010) introduced a method to apply Counter-Propagation networks to
audio copyright protection. Therefore, a synchronisation code was added to the low-
frequency components of candidate frames. This code works as watermark.

JUANG et al. (1998) compared a backpropagation and a Counter-Propagation net-
work in the modelling of the TIG welding process. This process is used for welding
aluminium, stainless steel, magnesium, titanium, etc. Factors like welding speed, wire
speed and cleaning percentage have an in�uence on the weld pool. Thus de�nes the
reliability, cleanliness and strength of the weld. This method is used for examples in the
aircraft industries. The Counter-Propagation network learns faster, whereas the back-
propagation network has better generalisation ability.

LIU (2010) developed a network to predict the customer maturity level for the �nancial
industry. Based on customers' demographic data, such as age, gender, education and
income the network calculates the maturity level. For example during the bachelor stage
a customer wants to save money, in the early marriage state the focus is on buying a
home and insurance needs followed by saving for retirement and children's education.

STOJKOVIC et al. (2010) use a Counter-Propagation network as a tool for develop-
ment of interpretable quantitative structure-property relationship models for prediction
of pKBH+ 3 values of a series of amides. Additionally, they identi�ed the LUMO ener-
gies and the number of halogen atoms as most in�uencing inputs.

The given examples for practical applications of Counter-Propagation networks show,
that these can be used in the �eld of Health and Medicine, Finance and Accounting,
Operations as well as Insurance.

2.2.3.8. Applications for Perceptrons

MEMON et al. (2013) presented an arti�cial neural network based automatic volt reg-
ulator controller for an excitation voltage system of synchronous machines in order to
investigate the applicability and to improve the transient response. A Multi-Layer per-
ceptron network was used due to its proven applicability in power system control and
stability. Simulations prove applicability by removing oscillations very quickly which

3pKBH+ describes the strength of the base's conjugated acid. In chemistry the value pKB describes
the strength of a base. Contrary pKA describes the strength of an acid. Both values have an
in�uence on the pH-value. pKBH+ states that a base molecule got a proton from an acid molecule.
In this case the acid molecule is described with a pKA- value.
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improves the transient stability of power systems.

RASHIDI & RASHIDI (2004) developed a Multi-Layer perceptron network using emo-
tional temporal di�erence learning as training method to predict solar activity. A set
of time series of sunspots was used for result comparison. The error signal has been
employed as emotional signal in the networks. The results show that temporal di�er-
ence learning based Multi-Layer perceptron neural networks are capable of improving
the prediction accuracy than neuro-fuzzy models.

ORHAN et al. (2011) introduced a Multi-Layer perceptron based classi�cation model as
a diagnostic decision support mechanism in the epilepsy treatment. EEG signals were
decomposed into frequency sub-bands using discrete wavelet transform. They performed
�ve di�erent experiments to obtain the performance of the model. The results show that
the model provides an accuracy of more than 95%.

LEE & CHOEH (2014) created a prediction model based on a Multi-Layer perceptron
network to predict the level of review helpfulness using the determinants of product data,
the review characteristics, and the textual characteristics of reviews. The results of this
study can be used to develop guidelines for creating more valuable online reviews. The
study sought to explore the characteristics of online user reviews and how they in�uence
the number of helpfulness votes.

MARQUES et al. (2014) implemented a Multi-Layer perceptron to determine how mar-
keting decisions in�uence the delivery performance. The marketing decisions with the
highest impacts are those related to the distribution channels.

The papers show that Multi-Layer perceptron can be used in Health and Medicine,
Retail, Marketing, Operations and Emergency and Social Services. The Emergency and
Social Services �eld �ts because of the solar activity prediction, due to their in�uence
on power systems.

2.2.3.9. Applications for Linear Associators

AMIN et al. (2011) developed an approach to separate fetal electrocardiography (ECG)
from maternal ECG using the abdominal ECG. Therefore, a linear neural network is
used. Input is the maternal signal and target is the composite signal. The network
emulate maternal signal as closely as possible to abdominal signal, thus only predict the
maternal ECG in the abdominal ECG. The network error equals abdominal ECG mi-
nus maternal ECG, which is the fetal ECG. The advantage for the patient is increasing
convenience by reducing the monitoring time.

BEKRANI et al. (2011) proposed an adaptive �ltering algorithm for stereophonic acous-
tic echo cancellation (SAEC) for a linear neural network. SAEC is a crucial part of
stereophonic audio communication systems. These systems are advantageous over mono-

39



2. Neural Networks

channel systems since they possess an inherent ability of transmitting spatial information
in addition to the voice information.
Linear Associator are therefore applicable to health and medicine and operations.

2.2.3.10. Applications for Partial Recurrent Networks

The applications for Jordan-Nets and Elman-Nets are often proposed together as re-
current networks in literature, this section contains published scienti�c papers which
contain both networks, whereas sub sections provide applications for either of them.

De MULDER et al. (2014) published a survey on the application of recurrent networks
to statistical language modelling. Statistical language modelling contains applications
like speech recognition, spelling correction, machine translation, distribution of words
various linguistic units such as words, sentences, words and whole documents. They
proposed extensions to recurrent networks in order to increase the applicability.

The paper, including those from the subsections, show, that recurrent networks are
useful to Emergency and Social Services, Insurance, Operations, Telecommunication,
Retail, Accounting and Finance, and Health and Medicine.

2.2.3.10.1. Applications for Jordan-Nets

MALLESWARAN et al. (2014) analysed the integration of GPS and Inertial Navigation
System (INS) based neural networks with the weight optimisation techniques genetic
algorithm and particle swarm optimisation. The analysed Jordan-Net provides superior
performance in error e�ciency and positional accuracy. In addition, it provides better
performance in non-linear manoeuvring trajectories than the other compared networks.

CAO et al. (2012) compared the autoregressive integrated moving average (ARIMA)
model with a Jordan-net for forecasting wind speed. Wind speed has an e�ect on the
energy industry, aerospace operations and the insurance market. Their results show, that
Jordan-nets are more accurate in predicting wind speed than ARIMA models. However,
they stated that higher accuracy can be achieved by taking the altitude of wind speed
measurement into account.
Insurance companies use risk assessment models to assess the �nancial risk of their
insurance exposure due to windstorms. (KHANDURI & MORROW 2003)

2.2.3.10.2. Applications for Elman-Nets

CHENG et al. (2012) proposed an Elman-net for DNA segmentation. In their study
they applied their network on the SARS and H1N1 genome. It presents a technology to
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study genome sequences without prior biological knowledge and it processes the ATCG4

sequences only. In addition the results are strikingly consistent with �ndings from biol-
ogists. Therefore, this approach can be used to rank parts of genomes.

LIN et al. (2006) developed an Elman-net for a dynamic portfolio selection model in
the �nancial industry. Their Elman-net is compared with the vector autoregression
model which is outperformed by the neural network.

DAS & CHAUDHURY (2007) researched on a backpropagation and an Elman-net to
forecast sales of a footwear company. They concluded that a hierarchical Elman-net
with two hidden layers provides the best performance to forecast the sales up to six
weeks. Their approach can be applied on several stores and products in order to opti-
mise short-term or middle-term stock planning.

SANTOS et al. (2014) used an Elman-net to improve the quality of experience of video
transmission over IP networks. Their proposed method shall be seen as an alternative
to server marked video frames. The network analyses the data �ow and classi�es the
packets on using their size and time intervals as information. It shall preserve I-Frames5

from being discarded because they are used for decoding B- and P-Frames6.

4ATCG stands for the four nucleotides adenine, thymine, cytosine and guanine, found in DNA. (Nature
Education 2009)

5I-Frame: Intra frame. It can be decoded without any other frame.(SANTOS et al. 2014)
6B- and P-Frames: Bidirectional and Predictive frames. The P-frames depend on information from
the nearest previous I- or P-frames and the B-frames use past and future I- or P-frames as references
for image representation. (SANTOS et al. 2014)
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Markup languages

When an author writes something he or she �marks it up�. For example, spaces indi-
cate word boundaries, commas indicate phrase boundaries and periods indicate sentence
boundaries. The markup is not part of the text or content, but tells us something about
it. If we read something we do not read but interpret it. For example, the voice gets
higher, when we read a question mark. (COOMBS et al. 1987)

The authors distinguish between four types of markups: Punctuational, Presentational,
Procedural and Descriptive.

• Punctuational markup consists of the use of a closed set of marks to provide
primarily syntactic information.

• Presentational markup includes horizontal and vertical spacing, folios, pages, breaks,
etc. For example, marking the beginning of a paragraph with spaces. Another ex-
ample is marking the paragraph with numbers.

• Procedural markup often replaces presentational markup. It consists of commands
indication how a text should be formatted.

• Descriptive markup identi�es the element types of text tokens. For example �<lq>�
for long quotations.

(COOMBS et al. 1987)

3.1. XML

Extensible Markup Language (XML) is a simple, very �exible text format derived from
SGML (ISO 8879). Originally designed to meet the challenges of large-scale electronic
publishing, XML is also playing an increasingly important role in the exchange of a wide
variety of data on the Web and elsewhere. (W3C 1996-2003)

XML documents form a tree structure which starts from the root and branches to the
leaves. The �rst line is the XML declaration. It de�nes the version and encoding of the
XML document. The elements in an XML form a document tree. Elements can have
sub elements which also may have sub elements. (Refsnes Data 1999-2014)

43



3. State of the Art of Neural Network Markup languages

In addition elements can be extended with attributes, which provide further information
about them. (Refsnes Data 1999-2014)

The following �gure gives an example of an XML document.

<bookstore>
<book category="COOKING">

<t i t l e lang="en">Everyday I t a l i a n</ t i t l e>
<author>Giada De Lau r en t i i s</author>
<year>2005</year>
<pr i c e>30.00</ p r i c e>

</book>
</bookstore>

3.2. Vienna Neural Network Speci�cation Language

(ViNNSL)

This section provides an overview of the current state of ViNNSL. It is mainly provided
by the scienti�c paper �ViNNSL - The Vienna Neural Network Speci�cation Language�
by BERAN, et al.(BERAN et al. 2008)

By using ViNNSL to describe the semantics and behaviour of a neural network paradigm
service, it is possible to create �dynamic� services that react on each input in a di�er-
ent way. The ViNNSL approach, seen as a semantic language standard, aims to serve
speci�cally the domain of neural networks by providing �ve schemata to manage the in-
teraction between a client and a neural network service provider. Using these schemata
users have the possibility to describe attributes like service capabilities, semantics, func-
tions and parameters in a client interpretable way. (BERAN et al. 2008)

Because of the following reasons, the ViNNSL supported dynamism is much more pow-
erful, than the usage of ordinary service data and interfaces only:

• By decoupling the language parts into �ve di�erent schemata only a smaller part
of the system has to be changed or extended in case of a schema change.

• The client can implement and interpret di�erent semantic schemata (descriptions)
and map them to one common service interface.

(BERAN et al. 2008)

ViNNSL consists of �ve parts: description schema, de�nition schema, data schema,
instance schema and result schema.

Figure 3.1 shows the description schema. It builds the �rst part of the schematas that
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are required to support the dynamism of a ViNNSL based neural network creation,
training, retraining and evaluation process. (BERAN et al. 2008)

Figure 3.1.: ViNNSL Description Schema (BERAN et al. 2008)

The identi�er �eld identi�es a neural network implementation by a unique MD5 hash.
Themetadata element provides other �elds for describing the service implementation and
its mode of operation. The paradigm �eld is used as hint about the realised network
type while name extends this information and speci�es the service in a more precise
way. However, with the usage of the description �eld users are able to describe the area
of application as well as the domain of the neural network solution. Finally the version
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tag contains a major and minor element to distinguish between di�erent versions of a
neural network implementation. (BERAN et al. 2008)

The Web Service endpoints to train, retrain and the evaluation method can be pro-
vided here too. The structure section, describes the topology of the neural network. It
contains an input, a hidden and an output block each having an id, a dimension and
a size. Within a service description these �elds are blank. Only the dimension and
size element contain an additional min and max attribute that have to be set in order
to de�ne the borders of the dimension (number of neurons inside a layer) and the size
(number of layers of the used type). (BERAN et al. 2008)

A zero as value for the size-min attribute means, that this layer is not mandatory.
However, a size-max attribute's value of zero means, that the layer is not supported in
this particular neural network. In addition to the structure description the connectivity
can also be pointed out by means of the connection element. Possible values are �full
connected� (network supports full connections only), �shortcuts� (user has to specify
each neuron- to-neuron connection) or �mixed�.

The parameter section groups elements of type valueparameter, boolparameter or com-
boparameter together. Valueparameter allows specifying �oating point numbers, boolpa-
rameter requires the selection of a logical value and comboparameter represents a list of
selectable items. Examples are learning rate for valueparameter, bias for boolparameter
and functions for comboparameters. The data section speci�es the data which is required
for di�erent neural network operations (train, retrain, evaluate). The description is op-
tional. However, the data format can be speci�ed by using the table (e.g. csv-like data)
or binary (e.g. base64-coded data) element. For the latter type the nature of accepted
�les can be speci�ed using allowed mime types or possible �le extensions. (BERAN et al.
2008)

The de�nition schema shown in 3.2 is user driven and represents an XML based formal
speci�cation of a newly created neural network that has to be trained. Like in the de-
scription schema the identi�er element tags a neural network implementation. (BERAN
et al. 2008)

The structure section in the de�nition schema is similar to the description schema's
section. It contains a set of layers of type input, hidden or output. Each layer needs an
id and a dimension (number of neurons in the layer). The size element is usually set to
one, nevertheless a higher setting implies that the neurons within this layer are arranged
as a multi-dimensional matrix instead of a uni-dimensional list. The neuron connec-
tions between di�erent layers are de�ned in the connections section. The fullconnection
element allows the user to specify neurons of a layer that are connected to neurons of
another layer. Speci�c neuron-to-neuron connections are de�ned by using the shortcut
element. (BERAN et al. 2008)
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Figure 3.2.: ViNNSL De�nition Schema (BERAN et al. 2008)

At the end of the document various parameters can be set de�ning the value element
of each parameter.

However, the de�nition itself is not su�cient enough to get a trained neural network.
In addition a training data document is required. This can be de�ned according to the
data schema shown in 3.3. The data approach distinguishes between two fundamental
cases. In the �rst case a neural network is used for which training data is based on
samples consisting of a list of input values and possibly a list of output values. Besides
providing csv-like data it is also possible to submit data �les by using binarysamples.
Each of these samples consist of a number of input and output �le elements containing
a name (�lename), a mimetype and a content encoded as xs:base64Binary. (BERAN
et al. 2008)

The instance schema, which is shown in 3.4 gives the user all possibilities to store a
neural network in any kind of XML structured document. The content of this element
is de�ned as xs:anyType and can be furthermore integrated in any result document.
(BERAN et al. 2008)
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Figure 3.3.: ViNNSL Data Schema (BERAN et al. 2008)

Figure 3.4.: ViNNSL Instance Schema (BERAN et al. 2008)

The last schema is the result schema which contains an instance document as a subpart
and is shown in 3.5. The identi�er is used to address the producer of a result. The date
section contains a timestamp which stores temporal information about the execution
time of the neural network activity that generates the result. The content of the instance
element varies for di�erent neural network implementations. However, it does always
contain some serialised trained, retrained or evaluated neural network.
The diagram2d section is an XML based approach to provide information for drawing

a two-dimensional diagram that may contain an error curve or another vector based
drawing. The diagram has a title (name), a description, a type (lines or points), an
xaxis, a yaxis and some values. Each axis has a title, a description, a min-value (lower
bound) and a max -value (upper bound). Every value entry inside the values element is
rendered as a line or a sum of points using a di�erent colour.

The table section contains a list of rows which provide input and output �oating point
data samples. Using a �le with its binaryrows is useful for neural network services with
�le based returns. Error and status can be provided inside the messages section.
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Figure 3.5.: ViNNSL Result Schema (BERAN et al. 2008)
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3.3. Neural Network Cube (N2Grid)

The N2Grid System (Schikuta & Weishäupl 2004) is a further development of the Neu-
roWeb, which is an internet based neural network simulator used by students and re-
searchers of the University of Vienna. (Schikuta 2002) N2Grid is a Java based envi-
ronment for a distributed neural network simulation. Apache Axis library and Apache
Tomcat Web container are used as hosting environment for the Web Services. They
distribute the components of N2Grid. For the Web frontend Java Servlets/JSPs have
been employed. This leads to the advantage of keeping the overall installation require-
ments quite low and to tie up a handy to deploy installation package. The whole system
architecture and its components are depicted in �gure 3.6. (BERAN et al. 2008)

Figure 3.6.: N2Grid Architecture and Components (BERAN et al. 2008)

3.3.1. N2Grid Architecture

The N2Grid system is based on service oriented architecture. The original idea behind
this system was seeing every part of an arti�cial neural network as data object, which can
be serialised and stored at some data site. Since the new WSRF standard every data site
is called "resource" and is usually implemented as a Web Service. Following Gundry's
notion of "information" a layered architecture is suggested to depict the dimensionality
of the di�erent layers:

• Data Grid (zero-dimensional): The Data Grid builds the basis layer and stores
data that represents just facts.

• Information Grid (one-dimensional): The Information Grid collects data of the
Data Grid in a structured manner and attributes it with semantic content.
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• Knowledge Grid (two-dimensional): The Knowledge Grid provides problem solu-
tion mechanisms on the administered information allowing a human for acting,
deciding or planning.

In most layered architecture, layers relay their functionality to the next upper layer in
form of services and data. Within the current version of N2Grid, these layers are realised
and mapped to speci�c services in the system. (BERAN et al. 2008)

3.3.2. N2Grid Components

The components in 3.6 are starting at the bottom layer.

N2Grid Simulation Service: This service uses a paradigm implementation respec-
tively a Paradigm Service for executing one of the following three actions:

• Train: Training of an untrained neural network.

• Retrain: Training of a previously trained network again in order to increase the
training accuracy.

• Evaluate: Evaluating a trained network.

(BERAN et al. 2008)

N2Grid Data Service: This service provides access to distributed data sources by
using protocols like GridFTP, OGSA-DAI or just HTTP. These data sources can pro-
vide either training or evaluation data as well as trained neural network instances. The
service o�ers the following methods:

• put: Inserts data into a data source.

• get: Retrieves data from a data source.

(BERAN et al. 2008)

N2Grid Paradigm Archive Service: Sometimes users want to �nd already trained
networks in order to use them as generic problem solvers. On the basis of Data Services
this service archives implementations of neural network paradigms and provides them
to users on a persistent basis. (BERAN et al. 2008)

N2Grid Resource Broker: This component keeps track of available services and
acts as a single point of contact. Jobs can be submitted here instead of submitting
them to a Simulation Service. The broker is furthermore tightly coupled with at least
one Replica Manager and enables the user to search for di�erent paradigms, e.g. Back
Propagation, Quick Propagation, Jordan, ART-x, etc. (BERAN et al. 2008)
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N2Grid Replica Manager: The Replica Manager replicates existing services to in-
crease the overall system performance. The reason is avoiding time-consuming network
data transfers following the "Owner-Computes" rule. In case of Paradigm Services,
which o�er some parallel processing capabilities, this manager controls the distribution
of workload and data. (BERAN et al. 2008)

N2Grid Paradigm Service: It contains the paradigm implementation that can be
seen as the business logic of a neural network. (BERAN et al. 2008)

N2Grid Java Application/Applet: The Application Client is intended to support
experienced users to run their simulations by providing data stored in local databases.
The Applet Client is very similar to the Application Client but has some limited func-
tionality. Due to sandbox restrictions accessing local data sources and �les is not allowed.
(BERAN et al. 2008)

N2Grid Web Portal: For the purpose of thin clients a simple Web browser - prefer-
ably Internet Explorer or Firefox - can be used to access the front end of N2Grid, a Web
Portal Client. It provides control over running simulation jobs and presents the calcu-
lated results to the user. This approach minimises the workload on the local machine.
(BERAN et al. 2008)

The Web portal uses ViNNSL as a dynamic GUI interface language which renders each
user control by using the Paradigm Service's description. Amongst others this allows
advanced result presentation by using two-dimensional vector graphic based diagrams.
By means of providing an appropriate document wrapper for the ViNNSL language it
can also be converted to other languages like Mozilla's XUL. (BERAN et al. 2008)

3.4. Other Languages

This chapter gives an overview of other neural network speci�cation languages based on
XML.

3.4.1. iXCSL

iXSCL stands for Extensible Soft Computing Language and is an XML vocabulary for
the speci�cation of common objects in the Soft Computing area. The �rst version only
considered Fuzzy systems. Later on iXCSL was enhanced in order to describe neural
networks. (de SOTO et al. 2003)

The model describes the architecture of a neural network as a set of interconnected
layers, and each layer as a set of interconnected processing nodes. Processing nodes
de�ned so far include arti�cial neurons and bias nodes. This model does not address
operations like training or testing the network, it only includes the necessary information
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to compute its outputs given a set of inputs. (de SOTO et al. 2003)

In order to describe a neural network a set of layers is de�ned and connections be-
tween them declared using a signalFlow element. This element is similar to the one
inside each layer, but here the name:oN represents the n-th output of the name layer.
The description is completed with a stop criterion which can be either a �xed number
of iterations or stability. (de SOTO et al. 2003)

The iXSCL schema de�nes two processing node types: the classic arti�cial neuron and
bias nodes. The nonLinearNeuronNode carries an activation function, weights and op-
tional named tags. Tags can be used to associate attributes to the neuron. Bias nodes
provide a constant output of a given real value. Nodes are de�ned inside a layer, which
also describes the set of connections between them. A signalFlow element declares the
inputs' source of every node and which nodes provide the outputs of the layer. A simple
syntax is used where iN represents the n-th input of the layer, oN is the n-th output,
and the id of a node. The whole layer is given a synchronous or asynchronous model
with a model attribute. (de SOTO et al. 2003)
<neuralNetwork name="Hopf i e ld ">

<parameters>
<input name=" input−vector " type="/ s en so r s /NoiseSample"/>
<output name="output−vector " type="/ l e v e l s /NoiseLeve l "/>

</parameters>
<networkLayers>

<laye r id=" l a t t i c e " nInputs="3" nOutputs="3" model="asynchronous ">
<process ingNodes>

<node id="n1" x s i : t y p e="nonLinearNeuronNode" nInputs="5">
<act iva t i onFunct ion x s i : t y p e=" thresho ldAct ivat ionFunct ion ">

<min>0.0</min>
<max>1.0</max>

</ act iva t i onFunct ion>
<weights>

0.123124124 0.259528285 0.87721231
0.1928123 0.12938241

</weights>
<tags>

<tag name=" l a b e l ">Class A1</ tag>
</ tags>

</node>
<!−− other nodes: n2 , n3 −−>

</process ingNodes>
<signa lF low>

<inputs node="n1">i1 i 2 i 3 n2 n3</ inputs>
<inputs node="n2">i1 i 2 i 3 n1 n3</ inputs>
<inputs node="n3">i1 i 2 i 3 n1 n2</ inputs>
<outputs>n1 n2 n3</outputs>

</ s igna lF low>
</ laye r>

</networkLayers>
<signa lF low>

<inputs node=" l a t t i c e ">i1 i 2 i 3</ inputs>
<outputs>l a t t i c e : o 1 l a t t i c e : o 2 l a t t i c e : o 3</outputs>

</ s igna lF low>
<stopCr i t e r i on x s i : t y p e=" s t a b i l i t y "/>

</neuralNetwork>

3.4.2. Neural XML (NXML)

Neural XML is an XML based language to create, train and run neural networks. It
allows generating, saving and loading neural networks to/from XML �les. (MADHUSU-
DANAN 2006)

The method uses a description �le, which describes the neural network. A network
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consists of named layers and neurons. Each neuron has a bias, output and delta value.
The hidden and output layer neurons additionally have a connection tag providing the
input's source in form of layer and neuron as well as a weight. The user has the possi-
bility to let the NXML generate a neural network description by giving the number of
neurons per layer or create an own description �le. (MADHUSUDANAN 2006)

A separate �le contains all information, which is required in order to train or run a
network. For example, the network, which shall be used, the operations, which have to
be performed and in which �le the results have to be saved. It is possible to de�ne the
number of training cycles, the input and output datatype as well as their values. The
training results are stored in newly created �les. (MADHUSUDANAN 2006)

NXML supports PatternData and ImageData. PatternData consists of Patterns, Num-
bers, Arrays and Characters as input and output types. ImageData requires an image
�le as input. In addition, its width and height, output type and value have to be given.
(MADHUSUDANAN 2006)

3.4.3. NNDef

MAKHFI (2001-2011) states that the goal of NNDef is to �facilitate exchange and exe-
cution of neural networks in a standard way�. It is a Java toolkit composed of a DTD1,
a Runtime Engine, a Runtime Library and a Matlab Exporter.

The Runtime Engine uses the de�ned neural network to process input data and gener-
ate output. The Runtime Library can be embedded in other applications to use NNDef
de�ned neural networks. The Matlab Exporter is used to empower Matlab to import
trained networks. (MAKHFI 2001-2011)

An NNDef XML document is thus structured in exactly one network and one to several
layers having one to several neurons. The network contains a description, a name, a
creation date and an author. A network has inputs and outputs. Each neuron in a layer
is described with input weights and a bias value. Furthermore, a neuron has a transfer
function and a combination function. (MAKHFI 2001-2011)

3.4.4. Arti�cial Neural Network Speci�cation Language
(ANNSL)

BARTZ (2008) developed an XML based language to describe neural networks for doc-
umenting and exchanging them between scienti�c and production tools. The paper
determined the information classes, which are required for the usage of neural networks.

1DTD: The DTD (Document Type De�nition) de�nes the legal building blocks of an XML document.
A DTD de�nes the document structure with a list of legal elements and attributes. (Refsnes Data
1999-2015)
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ANN Input Information contains administrative data plus one to many net input
data sets x(i), N values each. (BARTZ 2008)

ANN Target Output Information contains administrative data plus one to many
target output data sets Y(i), M values each. (BARTZ 2008)

ANN Output Information contains administrative data plus one to many net output
data sets y(i), M values each. (BARTZ 2008)

Training Result Information contains administrative data, information on the initial
ANN con�guration, and information on a number of epoch results. The information on
an epoch result may contain information on the errors observed during the epoch, on
the ANN con�guration at the end of the epoch, and on results of the individual training
sets. Results of an individual training set may contain information on the resulting net
output data set (e)y(i), on the errors generated by this training set, and on the resulting
ANN con�guration after this training set has been used for training. Most of these in-
formation fragments are optional as there is not always the need to document all details
of a training process. (BARTZ 2008)

ANN Con�guration Information contains the complete con�guration of the ANN.

The language consists of two speci�cations: Data Store Speci�cation and Con�gura-
tion Storage. The Data Store Speci�cation contains in sequential order NetInputData,
TargetOutputData, TrainingResultData and NetOutputData. However, NetInputData is
mandatory. (BARTZ 2008)

NetInputData (�gure 3.7) contains the following sections InputCount (Number of values
per data set), Name, Description, CreateDate, Creator (has sub elements Name and
Contact), DataType, Precision and InputDataSet (at least one is mandatory and has an
index number as attribute).

As numeric precision is an important criterion for some applications, such information
may be provided in the Precision element within each information class. It provides the
smallest positive number that may be distinguished from zero. If required, the precision
may be speci�ed individually for each net input respectively output. Such information
may be used for rounding, for deciding on training continuation, for textual or graphical
presentation, etc. Currently, the data store speci�cation supports simple numeric data
types. Their kind is given by the DataType element. These may be extended in the
future towards strings, composite types, and others. (BARTZ 2008)

TargetOutputData di�ers in having the equivalent elements to InputCount and Input-
Dataset. In addition the value setIndex connects InputData with TargetOutputData.
NetOutputData has additionally the possibility to store error information collected dur-
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Figure 3.7.: NetInputData (BARTZ 2008)

ing training in case TargetOutputData was given. (BARTZ 2008)

TrainingResultData must be able to incorporate results of the whole training process.
Therefore, it contains the element EpochResult (�gure 3.8). EpochIndex gives the number
of the epoch and setIndex the number of the corresponding TrainingResultSet. SetIndex
is the link to the InputDataSet and its TargetDataSet. In this case all or prede�ned
numbers of epochs and trainingresults can be chosen. (BARTZ 2008)

Figure 3.8.: EpochResult (BARTZ 2008)

As numeric precision is an important criterion for some applications, such information
may be provided in the Precision element within each information class. It contains the
smallest positive number that may be distinguished from zero. If required, the precision
may be speci�ed individually for each net input respectively output. Such information
may be used for rounding, for deciding on training continuation, for textual or graphical
presentation, etc. (BARTZ 2008)

The con�guration schema is shown in �gure 3.9. According to BARTZ the part General
and one Layer are necessary.
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Figure 3.9.: Overview of the ANNSL con�guration schema (BARTZ 2008)

The data stored in General and one layer is the minimum information required to specify
a neural network with ANNSL. Net function, activation function and output function
can be declared at layer or on neuron level. NetInputs are not explicitly modelled. They
are formally assigned to layer zero and are referenced by a virtual neuron index starting
with one. If the index needs to be modi�ed NetInputs can be used. They represent the
input values for the net and are used to route these values to neurons within the neural
network. Net outputs are identical to the output of the highest layer index. This default
behaviour can be modi�ed with the element NetOutputs. (BARTZ 2008)

All connections to one neuron are stored within one XML element. Individual inputs
are separated by XML whitespace. This reduces redundancy, avoids possible connection
con�icts and provides a compact notation. ANNSL also provides the possibility to ex-
clude neurons from the learning process using the Learning attribute. Special attention
has been paid to the representation of functions within neurons. Pre-known functions
like the weighted net function or sigmoid function can be de�ned by their name, whereas
customised functions can be de�ned by using a speci�cation language for mathematical
expressions based on XML. (BARTZ 2008)

3.5. Comparison of ViNNSL with other languages

The iXCS-Language describes an already trained neural network, which can be used
to process data. It is comparable to the de�nition schema of ViNNSL. However, un-
like ViNNSL iXCSL doesn't provide the possibility to train or evaluate networks. The
connections, layers, neurons and other information have to be given in order to use the
network.

ViNNSL instead expects the de�nition on layer level. These are the layer ID, num-
ber of neurons within a layer and number of a speci�c layer type. The weights between
neurons are calculated by the network. However, it is possible to de�ne speci�c connec-
tions between neurons and layers, but these have to be de�ned separately. Moreover,
ViNNSL doesn't provide the possibility to maintain weights and bias values of neurons.
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Figure 3.10.: Comparison of neural network speci�cation languages modi�ed from BE-
RAN et al. (2008)

NXML o�ers the possibility to generate a neural network by giving the number of neu-
rons per layer. Every neuron gets input from the neurons from the previous layer.
ViNNSL for example o�ers the opportunity to create shortcuts between single neurons
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across layers. In addition, ViNNSL enables the user to de�ne a range of neurons for
each layer. The NXML description �le is comparable to the ViNNSL de�nition �le.

Training results are stored in new �les by NXML. Each �le can be used as network,
which can be executed. These �les have the same state like the ViNNSL instance schema
�les. The �les containing training and execution data are the equivalent to the data �les
of ViNNSL. However, the execution �le also provides the results, whereas ViNNSL pro-
vides a separate result �le.

The ViNNSL Data schema is the equivalent to ANNSL data store and the De�nition
schema to the ANN con�guration. The ANNSL data store provides sections for di�erent
types of input and output, whereas ViNNSL expects a separate �le for training or data
processing. ANNSL saves the networks result in a data store section, while ViNNSL
provides a separate result schema. Unlike ViNNSL, ANNSL delivers detailed epoch re-
sults during the neural network training.

In addition, ANNSL provides additional information for the net input data, whereas
ViNNSL delivers a detailed result �le. Furthermore, ANNSL allows de�ning neural net-
works on a very detailed level.

ANNSL empowers the user to de�ne a neural network down to the speci�cation of
input parameters like weight, function, source layer and source neuron as well as ex-
cluding neurons from the learning process. On layer level, it allows de�ning customised
functions using MathML and OpenMath de�nitions. These are XML based notations
for the representation of mathematical functions.

ViNNSL instead let users set a learning value, a list of functions and the use of bi-
ases on network level. In addition it is possible to de�ne a full connection of the network
or shortcuts. Latter requires speci�c neuron-to-neuron connections or combine those.

The attributes of ViNNSL 2.0 will be explained in detail in chapter 4 ViNNSL 2.0.
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This chapter explains the ViNNSL extensions, which are based on the �ndings from the
previous chapters. Models showing the structure and elements of every schema as well as
associated XSDs will be presented. The �rst part of this chapter is the determination of
in�uences of the other neural network speci�cation languages summarised in this thesis.
The extensions and adaptions to ViNNSL, shown in the structure and element models,
are highlighted red. As fact that already existing elements are described in section 3.2,
only the newly-formed elements are explained.

4.1. In�uences of other Neural Network languages

The description schema is in�uenced by ANNSL. The possibility to add a creator and
contact data to the network was inspired by the proposal of BARTZ (2008). This pro-
posal also in�uenced ViNNSL by adding a training result schema. Moreover, providing
a creation date and an author was also proposed by MAKHFI (2001-2011).

The data representation in table form is inspired by ANNSL. In order to keep the
readability XML whitespaces are used to separate values within an element. Another
in�uence lead to the training result schema. Users shall have the possibility to analyse
the training process of networks.

The iXSCL schema proposes the possibility to include bias nodes into the network.
This option was not covered by the �rst proposal of ViNNSL.

4.2. Extensions to ViNNSL

This section provides explanations on every extension to ViNNSL ordered by each
schema. However, extensions are explained only once.

creator: The creator element contains the neural network creator's name and con-
tact data, which are stored in the name and contact elements.

problemDomain: This element represents the neural network classi�cation described
in chapter 2. Assertions are used to ensure that propagationType, learningType and net-
workType �t together.
propagationType: It de�nes the propagation type of the used neural network.
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learningType: It gives the learning type of the used neural network.
applicationField: It speci�es the �elds of application for the neural network.
networkType: It de�nes the type of the described neural network.
problemType: The problem type is based on the description in section 2.2.1

The elements propagationType, learningType and networkType are used to implement
the neural network classi�cation ontology described in section 2.1 and shown in �gure
2.1, in XSD language. Their task is providing a unique identi�cation of neural network
types.

ApplicationField does currently provide examples for possible applications. This part
of the neural network categorisation can be extended by neural network creators. They
can either use one of the proposed values or create their own.

ProblemType contains the problem, which is solved by the neural network. The used
ontology is based on the de�nitions of Jacek Zurada, which are provided in section 2.2.1.

The neural network classi�cation ontology and the problem domain ontology shall pro-
vide all necessary attributes for a neural network characterisation. Within ViNNSL 2.0
these ontologies are asserted in order to ensure the validity of characterisations.

executionEnvironment: This element covers the execution paradigm taxonomy shown
in �gure 4.1.

The concrete values of the parallel execution are stored as values within the leaf nodes
of this taxonomy. These elements also contain an attribute specifying the version of the
used technology.

Examples for parallel executed networks are given in chapter 5. However, parallel execu-
tion can be implemented for other networks than backpropagation nets too, as proposed
by Schikuta & Weidmann (1997) and Weishäupl & Schikuta (2003). Schikuta & Wei-
dmann (1997) introduced a data parallel simulation on a hypercube system similar to
the example shown in section 5.2, but for self-organising maps. Weishäupl & Schikuta
(2003) introduced parallelisation for CNN, which are designed for image processing,
comparable to UC1 (see section 5.1). Moreover, they also showed the possibilites of the
parallel implementation of neural networks on the TSP problem. (Schabauer et al. 2005)
Their implemented Kohonen network was executed with 100000 cities, unlike mentioned
implementations from CREPUT & KOUKAM (2009).

sequential: The neural network is executed sequentially. The default value is true.
parallel: This element contains all settings for a parallel execution of a neural network
software: The selected software technique to implement parallelism.

control: Control-parallel architectures perform processing in a decentralised manner,
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Figure 4.1.: Execution Paradigm Taxonomy (SCHIKUTA et al. 2015)

allowing di�erent programs to be executed on di�erent processors (typically: multiple
instruction, multiple data). (SERBEDZIJA 1996)
transputer: The transputer architecture de�nes a family of programmable VLSI com-
ponents. The de�nition of the architecture falls naturally into the logical aspects, which
de�ne how a system of interconnected transputers is designed and programmed, and the
physical aspects, which de�ne how transputers, as VLSI components, are interconnected
and controlled. (Inmos 1987)

dataparallel: Data-parallel architectures simultaneously process large data sets us-
ing centralised (typically: single instruction, multiple data) or regular (for example:
pipelined) control �ow. (SERBEDZIJA 1996)
topological: Topological parallel means mapping of neural network elements (like neu-
rons, links, etc.) to processor elements, like node-per-layer, single-node, or systolic
arrays. (SCHIKUTA 1997)

pipelining: It is an implementation technique where multiple instructions are over-
lapped in execution. The computer pipeline is divided in stages. Each stage completes
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a part of an instruction in parallel. The stages are connected one to the next to form a
pipe - instructions enter at one end, progress through the stages, and exit at the other
end. (PRABHU no date)
systolicarr: Systolic arrays are numerous simple processors arranged in one- or mul-
tidimensional arrays, performing simple operations in a pipelined manner. Circular
communication ensures that data arrives at regular time intervals from (possibly) dif-
ferent directions. (SERBEDZIJA 1996)

coarsestruct: Coarse structuring means each processor is used to store a node from
each of the layers, so that a �slice� of nodes lies on a single processor. The number of
processors needed to store a network is equal to the number of nodes in the largest layer
of the network. (SERBEDZIJA 1996)
connmachine: The Connection Machine is like an active memory made up of thou-
sands, potentially millions, of small, simple, processors working simultaneously, each
with its own tiny memory. (BLACK 1986)
maspar: MasPar stands for Massively Parallel Machine. The concept of Massively Par-
allel is a machine, which incorporates massive amounts of processing elements. By using
a Distributed Memory architecture (one which combines local memory and processor
at each level of the interconnection network) machines with almost an in�nite number
of processors without compromising design can be created. The only thing that limits
these types of computers is the cost of the processing elements. (Corporation no date)

�nestruct: For Fine Structuring processors were organised in a one-dimensional ar-
ray with one processor being allocated to a node and two processors to each connection.
One for the output and one for input side of a connection. (SERBEDZIJA 1996)

structural: Structural parallelism maps data structures representing neural network
information containers (as weight matrices, error value structures, input vectors, etc.)
onto processing elements according to a data-parallel scheme. (SCHIKUTA 1997)
spmd: Single-Program-Multiple-Data is the dominant style of parallel programming,
where all processors use the same program, though each has its own data. (PIETERSE
& BLACK 2004)
hypercube: It refers to a parallel computer with a common regular interconnect topol-
ogy that speci�es the layout of processing elements and the wiring in between them.
(STRICKER 2011)
cluster: A commodity cluster is a distributed computer system consisting of an inte-
grated set of fully and independently operational and marketed computer subsystems
(node) used together to perform a single application program or workload. (PADUA
2011)
gpgpu: The gpgpu application systems use the gpu as a group of fast multiple copro-
cessors, that execute data-parallelised kernel code. (JUNG 2008)
multicore: The multicore system is a system with two or more cores on a single chip.
In the homogeneous multicore system, it is used to program on the SPMD model. (LEE
et al. 2010)
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hardware: This element speci�es the used hardware for the neural network imple-
mentation.
general: The hardware is not designed for a speci�c purpose.
special: The hardware was designed for parallel neural network execution.

endpoints: The endpoint element de�nes if a neural network is going to be trained
or retrained.
resultSchema: It states which schema is a result of the execution.
dataSchemaID: This element is the link to the data for the neural network execution.
instanceSchemaID: If a neural network is retrained, it requires an existing instance.

The de�nition schema asserts for retraining, if a neural network gets an existing neural
network instance. Schema IDs which are elements within a schema, connect schemas for
the neural network execution

identi�er: Unique identi�cation of a schema instance.
table: Data is represented in table form within a data schema instance.
�le: Link to a �le containing the data for a neural network execution.

The data element is asserted to check if data is provided. In ViNNSL 2.0 the data
schema is extended with an identi�er.

The training result schema is a new schema developed for ViNNSL 2.0. It gives users the
possibility to analyse neural network trainings. The identi�er, data, executionEnviron-
ment, propagationType, learningType and networkType elements are already explained
in this section.

creationDate: Date of the training result.
netinput: Input data for the neural network training.
netoutput: Expected output data of the neural network.
weightmatrix: Link to a �le containing the connection weights.
epochs: Number of training epochs.
activationfunction: It de�nes the used activation function for the neural network
totalexecutiontime: The total execution time of the training in seconds.
epocherrorvalue: Link to a �le containing the error value per epoch.
learningrate: The speci�ed learning rate for neural network training.
momentum: The speci�ed momentum for neural network training.
threshold: The speci�ed threshold for neural network training.
bias: The bias value of the neural network. Every bias value de�ned in the de�nition
schema is a single element in the training result schema.

The instance schema is another schema, which is introduced with ViNNSL 2.0. Be-
side the structure of the neural network, all elements are extensions to ViNNSL or to
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this schema. The elements within the instance schema were already described before.
Together with a data schema, it represents a neural network execution. The instance
schema provides all necessary information to empower the system to build a neural net-
work. The data schema contains the data, which will be processed by the network.

The result schema is slightly modi�ed in ViNNSL 2.0. The data and �le element from
ViNNSL are grouped together to the data element. The vinnslinstance element was
renamed to instanceSchemaID and contains the ID of the used instance schema. The
messages element was skipped because ViNNSL 2.0. provides a training result schema.

4.2.1. File de�nitions

This subsection provides a short explanation on the syntax of �les used in ViNNSL 2.0.

4.2.1.1. Weightmatrix �le

The weightmatrix �le uses the following syntax to represent values:

• source layer ID �;� source neuron row �;� source neuron column �;� target layer ID
�;� target neuron row �;� target neuron column �;� weight value

Example: Input1;2;1;Hidden1;1;1;0.321

The single values have a semicolon as delimiter. It is used in order to respect comma
and dot as decimal point.

4.2.1.2. Data �le

The data �le provides an equivalent presentation like the table element in the ViNNSL
schemas. The used syntax is:

• Input values of a dataset in decimal form using whitespace as delimiter

• Output values of a dataset in decimal form using whitespace as delimiter

This means for training purposes the odd row numbers provide the input values and
the following even row number the target output values. In case of execution only input
values are provided by the data �le. If the data �le is part of the result schema, odd row
numbers are the input values and even row numbers are the calculated output values.

4.3. Schema models

This section provides all schema models (�gures 4.2 - 4.7) in order to give an overview
of the content of every schema which is provided below. Newly added elements and
models are shown with red lines. Elements with black lines were already proposed in
the previous version of ViNNSL.
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Figure 4.2.: Structure and elements of the description schema
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Figure 4.3.: Structure and elements of the de�nition schema
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Figure 4.4.: Structure and elements of the data schema

Figure 4.5.: Structure and elements of the training result schema
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Figure 4.6.: Structure and elements of the instance schema
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Figure 4.7.: Structure and elements of the result schema
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4.4. Description Schema

The description schema is used in order to describe a neural network and its possibilities.
Figure 4.2 shows the structure and the elements of the schema.

The root element speci�es the required XSD version. In addition, it speci�es a sim-
ple type, which provides the propagation method of neural networks, another one for
the minimum value 1 and a complex type with di�erent parameter values for specify-
ing the hardware for parallel execution. The description element sequence is described
within the subsections.

72



4.4. Description Schema

4.4.1. Identi�er and Metadata

The identi�er is an alphanumeric value, which is used as unique identi�er for the descrip-
tion schema. The metadata element provides keywords for the neural network paradigm,
the network name given by the creator and a version. The version may have a major
and a minor number.
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4.4.2. Creator

The creator element contains the name of the person developing the neural network and
his contact information.

4.4.3. Problem domain

The problem domain is based on the information gathered in chapter 2. It provides the
elements to de�ne the propagation type, learning type, application �eld, network type
and problem type.

The possible value for propagationType is �feedforward�, �feedback� or �recurrent�. In ad-
dition, learningType must be de�ned. Possible values are �de�nedconstructed�, �trained�,
�linear�, �supervised� and �unsupervised�. The applicationField element states, for which
�elds of application the neural network is usable. It provides a prede�ned enumeration
of values but also accepts a custom �eld of application. Whereas the networkType el-
ement speci�es, which types of neural network can be used. For example, Jordan-Net
and Elman-Net are similar to each other. Therefore, the description schema �ts to both
networks. However, all proposed network types must be in the same class. The prob-
lemType element speci�es the kind of problem the network shall solve e.g. Classi�cation
or Optimisation.

The problemDomain element provides assertions, which are used to check the consis-
tency of the subelements' values. For example, a neural network description cannot �t
to a Hop�eld and a Backpropagation network.
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4.4.4. Endpoints

Within the description schema the endpoints specify if the neural network can be trained,
retrained or evaluated.

4.4.5. Execution Environment

The executionEnvironment element de�nes if the neural network execution is serial
and/or parallel. The serial execution is always provided. In case of parallel execution
the whole parallelism taxonomy has to be provided. In addition, ViNNSL 2.0 provides
the possibility to specify multiple execution environments. Every environment has to be
de�ned by its own executionEnvironment element. The parallel execution is divided into
software and hardware information. The software and the hardware element contain all
information, which is necessary to set up and train the neural network automatically.
The hardware is de�ned using valueparameter, boolparameter and comboparameter. The
software speci�cation has to be mapped to the software element's structure. An example
is provided in chapter 5.
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4.4.6. Structure

The description schema has to contain a structure element. It provides the information
for input, hidden and output layers.

4.4.6.1. Input (Layer)

The input element has to occur once. It contains an ID of type string, which is used to
identify the input layer. In addition, it provides a dimension and a size �eld with a min
and a max value as elements. Dimension sets the number of neurons inside the layer
(rows) and size sets the number of layers of the speci�c type (columns). These values
can be speci�ed in order to consider the available resource for future network executions.

4.4.6.2. Hidden (Layer)

The hidden element is optional in the description schema. It contains an ID of type
string, which is used to identify the hidden layer(s). It also provides a dimension and
a size �eld with a min and a max value as elements. Dimension sets the number of
neurons inside the layer (rows) and size sets the number of layers of the speci�c type
(columns). These values can be speci�ed in order to consider the available resource for
future network executions.
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4.4.6.3. Output (Layer)

The output element is optional too, but may occur only once. It contains an ID of type
string as identi�er. It provides a dimension and a size �eld. Dimension sets the number
of neurons inside the layer (rows) and size sets the number of layers of the speci�c type
(columns). These values can be speci�ed in order to consider the available resource for
future network executions.
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4.4.6.4. Connections

Connections speci�es the possible connection types between the neurons of the neural
network.

4.4.7. Parameters

The parameter element contains several parameters. These can be used to specify,
which values e.g. learning rate, bias value, momentum, threshold, activation function
and others, can be provided for the neural network instantiation. The concrete values
have to be given in the de�nition schema.

4.4.8. Data

The data element contains three elements, which are used to describe how data has to be
presented to the network. The description element is mandatory. The tabledescription
and �ledescription elements can be used to give a more detailed explanation for data
presentation.
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As fact that ViNNSL provides a separate data schema the data itself need not be spec-
i�ed in the description schema. Especially, as every de�nition schema has to provide a
corresponding data schema. Therefore, the data element provides a description how the
data has to be presented to the network only.

4.5. De�nition Schema

The de�nition schema is used to describe a neural network, which shall be trained or
executed. The root element speci�es the required XSD version. In addition, it speci�es
simple types, which provide the propagation method of neural networks, another for
the minimum value 1 and a complex type with di�erent parameter values for specifying
the hardware for parallel execution. If the endpoint value in the de�nition schema is
set to "retrain" the user has to provide an instance schema ID. The de�nition element
sequence is described within the subsections.
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4.5.1. Identi�er

The identi�er is a unique value to identify the de�nition instance. In order to assign the
de�nition schema to a description schema instance the identi�er will have the description
schema identi�er as pre�x.
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4.5.2. Problem domain

The problemDomain element in the de�nition schema is similar to the equivalent element
in the description schema. However, within the de�nition schema the elements prop-
agationType, learningType, networkType and problemtype are allowed to occur once only.

The possible value for propagationType is �feedforward�, �feedback� or �recurrent�. In ad-
dition, learningType must be de�ned. Possible values are �de�nedconstructed�, �trained�,
�linear�, �supervised� and �unsupervised�. The applicationField element states, for which
�elds of application the neural network is usable. It provides a prede�ned enumeration
of values but also accepts a custom �eld of application. Whereas the networkType el-
ement speci�es which types of neural network can be used. For example, Jordan-Net
and Elman-Net are similar to each other. Therefore, the description schema �ts to both
networks. However, all proposed network types must be in the same class. The prob-
lemType element speci�es the kind of problem the network shall solve e.g. Classi�cation
or Optimisation.

The problemDomain element provides assertions, which are used to check the consis-
tency of the subelements' values. For example, a neural network description cannot �t
to a Hop�eld and a Backpropagation network.
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4.5.3. Endpoints

In the de�nition schema endpoints has to specify if the de�ned neural network will be
trained or retrained. For retraining, the instance schema has to be provided, and the
speci�cation set in the de�nition and the instance schema have to match. Therefore,
the usage of the identi�er as pre�x is recommended.

4.5.4. Execution environment

The executionEnvironment element de�nes if the neural network execution is serial
and/or parallel. Serial execution is always provided. In case of parallel execution the
whole parallelisation taxonomy has to be provided. Parallel execution is divided into
software and hardware information. The software and the hardware element contain all
information, which is necessary to set up and train the neural network automatically.
The hardware is de�ned using valueparameter, boolparameter and comboparameter. The
software speci�cation has to be mapped to the software element's structure. An example
is provided in chapter 5.
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4.5.5. Structure

The de�nition schema has to contain a structure element. It provides the information
for input, hidden and output layers.

4.5.5.1. Input (Layer)

The input element has to occur once. It contains an ID of type string, which is used to
identify the input layer. In addition, it provides a dimension and a size �eld. Dimension
sets the number of neurons inside the layer (rows) and size sets the number of layers of
the speci�c type (columns).

4.5.5.2. Hidden (Layer)

The hidden element is optional in the de�nition schema. It contains an ID of type
string, which is used to identify the hidden layers. It also provides a dimension and a
size �eld. Dimension sets the number of neurons inside the layer (rows) and size sets
the number of layers of the speci�c type (columns).
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4.5.5.3. Output (Layer)

The output element is optional too, but may occur only once. It contains an ID of type
string as identi�er. It provides a dimension and a size �eld. Dimension sets the number
of neurons inside the layer (rows) and size sets the number of layers of the speci�c type
(columns).

4.5.5.4. Connections

Depending on the description schema the de�nition schema can specify connections be-
tween neurons. The fullconnected element has to specify pairs of fromblock and toblock
elements. The values of these elements are the layer IDs. Concerning better under-
standability the layer IDs are de�ned as string data type. For example IDs �Input1�,
�Hidden1�, etc. are possible. Every element can only contain one ID. In case shortcuts
are used, connections between neurons across layers can be speci�ed.

The connection between single neurons has to be speci�ed using the following order:
layer ID, neuron row position and neuron column position. The delimiter has to be �;�.
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4.5.6. Result schema

The resultSchema element contains two elements: instance and training. These values
de�ne the outcome after processing the neural network. If instance is set to true the
user receives an instance schema, whereas training delivers a training result schema.
However, these values can be set only if the endpoint value is �train� or �retrain�.

4.5.7. Parameters

The parameter element contains several parameters of type decimal (valueparameter),
boolean (boolparameter) and string (comboparameter). These can be used to specify
values like learning rate, bias value, momentum, threshold, activation function and oth-
ers. Every parameter contains an attribute having its name, which was speci�ed in the
description schema.

4.5.8. Data

The data element contains a description of the data and the assigned data schema ID.

4.5.9. Instance Schema ID

If an existing neural network shall be retrained the de�nition schema has to provide
the instance schema ID. The schemas soundness' has to be checked by the application.
De�nition and instance schema have to have an identical structure element as well as
propagation type, learning type and network type. The other elements, which both
schemas have in common, will have the de�nition schema's values.
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4.6. Data Schema

The data schema is used to provide the values for a neural network, which shall be
trained or executed. The root element speci�es the required XSD version and the name
of the schema.

4.6.1. Identi�er and Creationdate

The data schema contains an identi�er element, which is a unique string containing
numeric and alphanumeric values. Creationdate speci�es the date on which the instance
was created.

4.6.2. Data element

The data element consists of a table element and a �le element. This element has to
contain at least a table or a �le element.

4.6.2.1. Table element

The table element stores all values in table form. It contains a netinput and a netoutput
element, which are used for training purposes. Each pair of these elements represents
one dataset. In case the neural network is evaluated the netoutput will be skipped and
input values are provided only. Within the elements single values are separated using
XML whitespace. All values are allowed to have decimal numbers only.
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4.6.2.2. File element

The �le element stores the link to the �le, which contains the data for the neural network.

4.7. Training Result Schema

The training result schema contains all values, which are explored within the training
phase of a neural network. It shall provide information on the training results and de-
termine if the trained network is satisfactory for the user.

The root element speci�es the required XSD version and the name of the schema. In
addition, it provides a simple type to specify the propagation type and complex types
for parameter values and bias values.

95



4. ViNNSL 2.0

96



4.7. Training Result Schema

97



4. ViNNSL 2.0

4.7.1. Identi�er and Creationdate

The training result schema contains an identi�er, which is a unique string containing
numeric and alphanumeric values. CreationDate speci�es the date on which the instance
was created.

4.7.2. Data element

The data element consists of a table and a �le element. It has to contain at least one of
the subelements.

4.7.2.1. Table element

The table element stores all values in table form. It contains a netinput and a netoutput
element, which are used for training purposes. Each pair of these elements represents
one dataset. Within the elements single values are separated using XML whitespace.
All values are allowed to have decimal numbers only.
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4.7.2.2. File element

The �le element stores the link to the �le which contains the data for the neural network.

4.7.3. Result parameter

The weightmatrix element speci�es the link to a �le containing all weights between the
neurons. Epochs gives the number of epochs during training. Meanerror is given as
decimal number. Activationfunction names the activation function only. Totalexecu-
tiontime is given in seconds. The epocherrorvalue element is similar to the weightmatrix
element. It provides the link to a �le containing the error value for every epoch. Learn-
ingrate, momentum and threshold are decimal numbers. The bias element is optional.
Depending on the de�nition schema the number of bias elements can vary.

4.7.4. Execution environment

This element provides the execution environment used for training. It de�nes if the neu-
ral network execution is serial and/or parallel. The serial execution is always provided.
In case of parallel execution the whole parallelism taxonomy has to be provided. The
parallel execution is divided into software and hardware information. The software and
the hardware element contain all information, which is necessary to set up and train
the neural network automatically. The hardware is de�ned using valueparameter, bool-
parameter and comboparameter. The software speci�cation has to be mapped to the
software element's structure. An example is provided in chapter 5.
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4.7.5. Propagation and Learning type

This element contains the speci�cation of the trained neural network. The possible
value for the type attribute is �feedforward�, �feedback� or �recurrent�. In addition, the
learningtype has to be given. Possible values are �de�nedconstructed�, �trained�, �linear�,
�supervised� and �unsupervised�.

4.7.6. Network type

The networkType element de�nes which neural network was trained.

4.8. Instance Schema

The instance schema provides all parameter for a trained and executable neural network.
Furthermore, it can be also used in order to retrain it. In this case the process results in
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a new instance schema and if requested a training result schema. For a neural network
execution users have to provide the instance schema and a data schema, which contains
the input values.

The root element speci�es the required XSD version and the name of the schema. In
addition it provides a simple type to specify the propagation type as well as a complex
type for parameter values.
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4.8.1. Identi�er and Creationdate

The instance schema contains an identi�er, which is a unique string containing numeric
and alphanumeric values. Creationdate speci�es the date on which the instance was
created.

4.8.2. Structure

The instance schema has to contain a structure element. It provides the information for
input, hidden and output layers.

4.8.2.1. Input (Layer)

The input element has to occur once. It contains an ID of type string, which is used to
identify the input layer. In addition, it provides a dimension and a size �eld. Dimension
sets the number of neurons inside the layer (rows) and size sets the number of layers of
the speci�c type (columns).

4.8.2.2. Hidden (Layer)

The hidden element is optional in the instance schema. It contains an ID of type string,
which is used to identify the hidden layers. It also provides a dimension and a size �eld.
Dimension sets the number of neurons inside the layer (rows) and size sets the number
of layers of the speci�c type (columns).
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4.8.2.3. Output (Layer)

The output element is optional too, but may occur only once. It contains an ID of type
string as identi�er. It provides a dimension and a size �eld. Dimension sets the number
of neurons inside the layer (rows) and size sets the number of layers of the speci�c type
(columns).

4.8.2.4. Connections

The connections set in the instance schema are the same as given in the de�nition
schema. The fullconnected element has to specify pairs of fromblock and toblock el-
ements. The values of these elements are the layer IDs. Concerning better under-
standability the layer IDs are de�ned as string data type. For example, IDs �Input1�,
�Hidden1�, etc. are possible. Every element can only contain one ID. In case shortcuts
are used, connections between neurons across layers can be speci�ed.

The connection between single neurons has to be speci�ed using the following order:
layer ID, neuron row position and neuron column position. The delimiter has to be �;�.
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4.8.3. Execution environment

The executionEnvironment element de�nes if the neural network execution is serial
and/or parallel. The serial execution is always provided. In case of parallel execu-
tion the whole parallelisation taxonomy has to be provided. The parallel execution is
divided into software and hardware information. The software and the hardware ele-
ment contain all information, which is necessary to set up and train the neural network
automatically. The hardware is de�ned using valueparameter, boolparameter and com-
boparameter. The software speci�cation has to be mapped to the software element's
structure. An example is provided in chapter 5.
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4.8.4. Problem domain

The problemDomain element in the instance schema is similar to the equivalent element
in the description schema. However, within the instance schema the elements propaga-
tionType, learningType, networkType and problemtype are allowed to occur once only.

The possible value for propagationType is �feedforward�, �feedback� or �recurrent�. In ad-
dition, learningType must be de�ned. Possible values are �de�nedconstructed�, �trained�,
�linear�, �supervised� and �unsupervised�. The applicationField element states, for which
�elds of application the neural network is usable. It provides a prede�ned enumeration
of values but also accepts a custom �eld of application. Whereas the networkType el-
ement speci�es which types of neural network can be used. For example, Jordan-Net
and Elman-Net are similar to each other. Therefore, the instance schema has to contain
only one of them. The problemType element speci�es the kind of problem the network
shall solve e.g. Classi�cation or Optimisation.

The problemDomain element provides assertions, which are used to check the consis-
tency of the subelements' values. For example, a neural network instance cannot �t to
a Hop�eld and a Backpropagation network.
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4.8.5. Activation function, weightmatrix and Data schema

The weightmatrix element speci�es the link to a �le containing all weights between the
neurons. The activationfunction element gives the name of the used activation function.
The dataSchemaID element contains the ID of the used data schema for the neural
network evaluation.
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4.9. Result Schema

The result schema contains the result of an executed neural network. The root element
contains the schema type of ViNNSL as attribute and speci�es the minimum XSD ver-
sion. As fact that the diagram is totally optional the assertion is used to check that the
result data is at least delivered in table form or as �le.

4.9.1. Identi�er, Instance and Creationdate

The result schema contains an identi�er element, which is a unique string containing
numeric and alphanumeric values. Creationdate speci�es the date on which the instance
was created. The instanceSchemaID element contains the unique identi�cation of the
used instance.

4.9.2. 2D Diagram

The result schema provides the possibility to store a 2D diagram, which presents the
results.

4.9.2.1. Diagram parameter

The diagram contains a title, a description and a type, which can be de�ned by the
neural network creators.
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4.9.2.2. X-Axis

The xaxis element provides the parameters for the x-axis of the diagram. These are the
tile, a description, the minimum and the maximum value of the axis.

4.9.2.3. Y-Axis

The yaxis element provides the parameters for the y-axis of the diagram. These are the
tile, a description, the minimum and the maximum value of the axis.

4.9.2.4. Values

The values element contains the values for the diagram. Every value is de�ned by the
value element, which contains the value for the x-axis and the y-axis.
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4.9.3. Table element

The table element stores all values in table form. It contains an input and an output
element. The input values were provided by the data schema and output contains the
calculated output values. Within the elements single values are separated using XML
whitespace. All values are allowed to have decimal numbers only.

4.9.4. File element

The �le element stores the link to the �le, which contains the result data of the executed
neural network. It contains the provided input values as well as the calculated output
values.
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ViNNSL 2.0

This chapter contains two use cases to show the application of ViNNSL 2.0. Furthermore,
it shows how the XML instances were evaluated against the schemas.

5.1. Use Case 1: Face recognition using a

backpropagation network

This example is based on the developed backpropagation network for face recoginition
by HUQQANI et al. (2013). Data sources for this neural network are images of 32x32
pixels. Examples are shown in Figure 5.1. Every image pictures a face looking to the
left or right side, up or down, with closed or open eyes, etc. Figure 5.2 gives an overview
of the network structure and parallelisation. The neural network shall be executed on
a GPU based system. It can be trained or executed. The input layer requires a single
dimension with 960 input neurons. The network has to contain a hiddenlayer with one
dimension and 1 to 1024 neurons. The output layer has only one neuron. The schemas
are linked to each other by the identi�ers' numerical pre�x. The multithreaded GPU
program was compiled by CUDA NVCC 3.0 and runs on a Tesla C1060 graphics card
(240x 1296 MHz streaming cores, 4GB memory at 800MHz).

Figure 5.1.: Image example for the face recognition network (HUQQANI et al. 2013)

117



5. Application and Evaluation of ViNNSL 2.0

Figure 5.2.: Neural network structure and parallelisation (HUQQANI et al. 2013)

Hardware speci�cation of the neural network:

• CPU program: dual processors Xoen 5570 2.93GHz quad core with hyperthreading
(16 logic cores)

• GPU program: tesla C1060 GPU with following features:

• GPUmemory: 4 GB

• GPU memory frequency: 800 MHz

• Max Block size: 512

• Max Blocks: 512*127*512*127

• Threads: 512*512*127*512*127

• Max work blocks: 30

• Max clock frequency: 1296 MHz

• Global memory size: 4294770688 bytes

• Max constant bu�er size: 65536 bytes

• Local memory size: 16384 bytes

5.1.1. Creator provides the description schema

The neural network creator has to create the description schema of his application. It
is the basis for users to de�ne their neural network instances.

The identi�er is a system e.g. N2Sky generated ID. First of all, the creator �lls in
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the metadata, which can be used as overview for the whole description schema. Creator
is necessary for communication between the creator and users. ProblemDomain contains
the neural network attributes and �elds of application. The creator can use prede�ned
�elds or specify his own. Afterwards, the endpoints have to be provided. They de�ne
what users can do with the network. For automatisation, the creator has to provide
the execution environment of the neural network. The serial element is always set to
true. In case parallelism is not available, serial execution will be used. The hardware
can be either general or special. The creator can use decimal (valueparameter), boolean
(boolparameter) and string (comboparameter) values to de�ne the hardware speci�cation.

Afterwards, the structure of the neural network has to be de�ned. The creator sets
the ID for the input layer and its dimension and size. For these values has to be a range
given. The same procedure follows for the hidden and output layer. Then the connec-
tions parameter has to be set. ViNNSL empowers creators to de�ne custom parameter
for their neural network. In this example are values for learning rate, bias, momentum,
threshold and activation function. Finally the expected data for the neural network has
to be described. Therefore, a general data explanation as well as a description for each
representation possibility can be given.
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5.1.2. User provides De�nition schema

The user has to provide a de�nition schema, which serves as basis for the system to
create the neural network instance. The schema ID is set by the system, but the user
has to provide the problemDomain, which is speci�ed in the description schema. The
neural network instance applicability has to be set using the applicationField element.
However, only values given in the description schema are valid. The task for the neural
network is given in the endpoints element.

The user has to select one of the execution environments, which are speci�ed in the
description schema. The de�nition schema accepts only one environment. Unlike the
description schema, which provides ranges, the de�nition schema must contain a con-
crete structure. The layers are identi�ed using the ID element. Their dimension and
size require a value within the range given in the description schema. The connections
are fullconnected. This means this element has to contain the connections between the
layers of the neural network.

The resultSchema element de�nes, which results, based on this neural network de�-
nition, shall be delivered. In this example, it's an instance and a training result schema.
The parameters element has to contain the values for the parameters speci�ed in the
description schema. The parameter values from the description schema are the values
of the name attribute in the de�nition schema. The values are the values for the neural
network, e.g. 0.4 as learning rate and 0.1 as momentum. The training data is given in
the data element.
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Beside the de�nition schema, the user also has to provide a data schema. For net-
work training it provides the input and output values. In this case the values are stored
within a �le and the path to its location is provided.

5.1.3. System delivers Training Result schema and Instance
schema

Based on the neural network de�nition provided with the de�nition schema the system
returns a training result schema providing information on the neural network training
process. The executionEnvironment value may di�er from the de�nition schema. For
example, if the parallel processing cannot be ful�lled the system has to switch to serial
processing automatically.

Identi�er and creationdate are automatically generated values. The data element con-
tains the path to the �le with the training data and weightmatrix to the �le containing
the weightmatrix values from the neural network training. Epochs is the number of
training epochs and meanerror their mean error value. Totalexecutiontime is the total
time of the neural network execution in seconds. Epocherrorvalue contains the path to
a �le providing information on every training epoch. Activationfunction, learningrate,
momentum and threshold are the values speci�ed in the de�nition schema. The same
case applies to the executionEnvironment, propagationType, learningType and network-
Type. However, the neural network has more than one bias value. Therefore, the bias
element contains several elements of type valueparameter. Each presents one bias value
given in the de�nition schema.
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The result of the neural network training is an instance schema, which can be used
with actual data. Identi�er and creationdate are system generated values. The struc-
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ture, executionEnvironment, problemDomain and activationfunction are identical to the
elements in the de�nition schema. The weightmatrix contains the path to the �le with
the values. In case the speci�ed endpoint is �train�, the values of the weightmatrix are
the same as those of the weightmatrix �le in the trainingresult schema.
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5.1.4. User provides Instance schema and Data schema

The user is able to provide the neural network application with an instance schema and
a data schema. The data schema contains the input values only. In this example, the
instance schema is the same, which was created as result of the neural network training
based on the de�nition schema in section 5.1.2
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5.1.5. System delivers Result schema

After the execution, the user gets the result schema from the neural network application.
Depending on the neural network implementation the result schema may contain a 2D
diagram, a table and a �le with the result values. Identi�er and creationdate are sys-
tem generated values. Vinnslinstance contains the identi�er value of the used instance
schema in order to assign the XML �les to each other.

5.1.6. User retrains the neural network

For retraining, the user has to provide the original de�nition schema and the instance
schema, together with a new data schema providing the training values. The user can
specify if a training result schema and/or instance schema shall be delivered. In this
example, a new instance schema is requested only and the de�nition schema is mostly
identical to the schema in section 5.1.2. However, the endpoints element's value changed
to �retrain�.
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5.1.7. System delivers a new Instance schema

Based on the retraining results, a new instance schema is provided by the neural network
application. Concretely spoken the weightmatrix will change only.
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5.2. Use Case 2: Parallelised backpropagation network

on a hypercube system

For the evaluation of the Structural Data Parallel (SDP) method a parallel neural net-
work simulation of the backpropagation neural network paradigm was developed. The
important part of the SDP approach is the identi�cation of data structure and their
mapping onto the neural network structure. Data arrays transformed into subarrays,
which are afterwards distributed among the processor. Examples are shown shown in
Figure 5.3. The neural network was executed on an Intel iPSC860 hypercube system
with four processors. (SCHIKUTA 1997)
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Figure 5.3.: Data distribution schemes (SCHIKUTA 1997)

5.2.1. Creator provides a Description schema

The neural network creator has to create the description schema of his application. It
is the basis for users to de�ne their neural network instances.
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5.2.2. User provides a De�nition schema

The user has to provide a de�nition schema, which serves as basis for the system to
create the neural network instance. The parameters are distinguished by their speci�ed
name as attribute and value as value. The network shall be trained and the neural
network application shall return a training result schema of this particular network.
The training data is given in the data element.
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Beside the de�nition schema, the user also has to provide a data schema. For network
training it provides the input and output values. In this case the values are stored within
a table.
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5.2.3. System delivers a training result schema

Based on the neural network de�nition provided with the de�nition schema the system
returns a training result schema providing information on the neural network training
process.
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5.3. XML Schema Evaluations

The proposed XML examples for ViNNSL 2.0 were evaluated using Oxygen XML Editor.
It allows the validation of XML documents with XML Schema, Relax NG, DTD, NVDL
and Schematron. According to its publisher, it supports all XML schema languages.
The Oxygen XML Editor's advantage is the full implementation of the XSD 1.1 speci-
�cation. The tool provides a visual marking of error sources and also links to the exact
location in the speci�cation for XML schema errors. (Syncro Soft SRLE. 2002-2015)
On the internet exist free XML to XSD evaluators e.g. W3C XML Schema (XSD) Val-
idation online, available under http://www.utilities-online.info/xsdvalidation.
However, these applications didn't support XSD 1.1.

For the evaluation of the proposed schema �les to the XML examples an XSD �le and
an XML �le were created. The �rst step was the validation of the XSD �les shown in
�gure 5.4. Afterwards the XML examples were inserted into the XML �les and validated
on well-formedness. An example is provided in �gure 5.5. As both �les are structured
properly they were evaluated against each other. In case of errors Oxygen XML Editor
provides a detailed error explanation and also links to the W3C de�nition. When the
XML example matches the XSD schema, the tool shows the message �Document is valid�
(�gure 5.6).
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Figure 5.4.: XSD validation Oxygen XML Editor
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Figure 5.5.: Check well-formedness in Oxygen XML-Editor
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Figure 5.6.: XML matches XSD in Oxygen XML Editor
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The taxonomies developed in chapter 2 provide the possibility to classify neural net-
works using the neural network classi�cation taxonomy or the neural network paradigm
taxonomy. In addition, neural network application domains are introduced. The tax-
onomies were completed with examples of concrete neural network implementations for
application domains. The main focus is on proposed neural networks published within
the last �ve year.

The �rst proposal of ViNNSL was developed in order to be used in the Neural Net-
work Cube (N2Grid) (section 3.3). However, MANN (2013) introduced N2Sky, a fur-
ther development of N2Grid, which uses RAVO and the virtual organisation paradigm. 1

Therefore, ViNNSL is extended to ViNNSL 2.0. Based on the ViNNSL speci�cation
and analysis of other neural network speci�cation langauges ViNNSL 2.0 is designed to
cover all needs to specify neural networks. The extensions contain new schemas, new
elements and XSD assertions to map the ontology into the schemas.

Compared to other neural network speci�cation languages mentioned in this thesis,
ViNNSL 2.0 empowers users to link several schemas with each other. For example, in
case of retraining the de�nition schema can be linked to an instance schema and a data
schema. The instance schema describes the existing neural network and the data schema
provides the new training data.

N2Sky uses the taxonomies in order to propose neural networks to a speci�c problem.
The user is able to search for neural networks by network attributes, for example prop-
agation type, learning type, etc. Other possibilites are searching via problem domain
and/or application domain. Depending on the input N2Sky will browse through the
taxonomies and presents those networks, which apply to the search results. A graphical
representation of the connection between those ontologies is shown in Figure 6.1.They
match on the table providing examples of which neural network is applicable for which
application domain. ViNNSL 2.0 and its extensions build the communication channel
of the components of N2Sky. (SCHIKUTA et al. 2015)

1Reference Architecture for Virtual Organizations was developed by Wajeeha Khalil, a PhD student
at the University of Vienna. It is presented as a standard for building Virtual Organizations (VOs).
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Figure 6.1.: Problem domain ontology for N2Sky modi�ed from SCHIKUTA et al.
(2015)

6.1. N2Sky

N2Sky is an environment for creating, training and evaluating neural networks. The
system is Cloud-based in order to allow for a growing user community. The simulator
interacts with Cloud data resources (i.e. databases) to store and retrieve all relevant data
about static and dynamic components of neural network objects. Cloud computing re-
sources provide elastic processing cycles for �power-hungry� neural network simulations.
Within N2Sky ViNNSL is used as a standardised description language for describing
neural net paradigms and objects called VINNSL. In addition it provides a business
model for researchers and students but also for any interested customer. (MANN 2013)

The N2Sky architecture is shown in �gure 6.2.

Infrastructure as a Service (IaaS): The IaaS layer is all about managing resources,
IaaS �basically provides enhanced virtualisation capabilities. Accordingly, di�erent re-
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sources may be provided via a service interface�. In the N2Sky architecture the IaaS layer
consists of two sublayers: Factory Layer and Infrastructure Enabler Layer. Users need
administrative rights for accessing the resources in Layer 0 (contains physical and logical
resources) over the resource management services in Layer 1 (allows access to resources).

Platform as a Service (PaaS): PaaS is all about application or service hosting on
an abstract or more domain-speci�c basis. PaaS provides �computational resources via
a platform upon which applications and services can be developed and hosted. PaaS
typically makes use of dedicated APIs to control the behaviour of a server hosting en-
gine, which executes and replicates the execution according to user requests�. It provides
transparent access to resources o�ered by the IaaS layer and transparent access for ap-
plications o�ered by the SaaS layer. Common examples are the Google App Engine,
Force.com and Windows Azure. In the N2Sky architecture it is divided into two sub-
layers. Layer 2 contains domain-independent tools, that are designed not only for use
in connection with neural networks. Layer 3 is composed of domain-speci�c (i.e. neural
network-speci�c) applications.

Software as a Service (SaaS): Finally, the SaaS layer on top of the SPI stack consists
of Cloud-enabled ready-to-use applications or services, Saas o�ers �implementations of
speci�c business functions and business processes, that are provided with speci�c Cloud
capabilities, i.e. they provide applications / services using a Cloud infrastructure or plat-
form, rather than providing Cloud features themselves�. Common examples are Google
Docs, Microsoft O�ce 365, SAP Business by Design or Salesforce CRM. In context of
N2Sky, SaaS is composed of one layer, namely the Service Layer.
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Figure 6.2.: N2Sky Architecture (MANN 2013)

6.1.1. Sample Work�ow

The following sample work�ow provided by MANN (2013) shall give an explanation on
how N2Sky is planned to work. The whole work�ow is shown in �gure 6.3 and described
below.

146



6.1. N2Sky

Figure 6.3.: N2Sky Sample work�ow (MANN 2013)

1. The developer publishes a paradigm service to N2Sky.

2. Stakeholder login via (mobile) web browser (AJAX request, RESTful Web Service).

3. Simulation management service dispatches login request to User management and
access control component per RESTful Web Service.

4. Callback to Simulation management service either sending a new session id or deny
access.

5. Callback to (mobile) web browser, redirecting session id or deny access.

6. Query Registry for neural network paradigms for problem solving.

7. Callback to (mobile) web browser by sending paradigm metadata.

8. Create new neural object by using selected paradigm for free, start new Eucalyptus
node instance if needed, start training and after them start a new evaluation by
using the training result.

9. Before a training task is able to start properly, it is checked if the desired paradigm
is provided at this host. If not, a Java EE web archive is deployed to this host by
retrieving it from the component archive service.
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10. Start a new training thread - Simulation management checks training status peri-
odically until status = 100, then gets result and stores it over the data archive in
the database.

11. Start a new evaluation thread - Simulation management checks evaluation status
periodically until status = 100, then gets result and stores it over the data archive
in the database.
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A. Description Schema

<xs:schema xmlns:xs=" ht tp : //www.w3 . org /2001/XMLSchema" elementFormDefault=" q u a l i f i e d "
vc:minVers ion=" 1 .1 " xmlns:vc=" ht tp : //www.w3 . org /2007/XMLSchema−ve r s i on i ng ">

<xs:s impleType name="propa">
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs:enumerat ion value=" feed forward "/>
<xs:enumerat ion value=" feedback "/>
<xs:enumerat ion value=" re cu r r en t "/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>
<xs:s impleType name="minno1">
<x s : r e s t r i c t i o n base=" x s : i n t e g e r ">
<xs :minExc lus ive value="0"/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>
<xs:complexType name="parametervalue ">
<xs : c h o i c e minOccurs="0" maxOccurs="unbounded">
<xs :e l ement name="valueparameter ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" xs :dec ima l ">
<x s : a t t r i b u t e name="name" type=" x s : s t r i n g "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="boolparameter ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" xs :boo l ean ">
<x s : a t t r i b u t e name="name" type=" x s : s t r i n g "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="comboparameter">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name="name" type=" x s : s t r i n g "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>

</ x s : c h o i c e>
</xs:complexType>

<xs :e l ement name=" de s c r i p t i o n ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" i d e n t i f i e r " type=" x s : s t r i n g "/>
<xs :e l ement name="metadata">
<xs:complexType>
<xs : s equence>
<!−−paradigm keywords−−>
<xs :e l ement name="paradigm" type=" x s : s t r i n g "/>
<!−−network name given by the creator−−>
<xs :e l ement name="name" type=" x s : s t r i n g "/>
<xs :e l ement name=" de s c r i p t i o n " type=" x s : s t r i n g "/>
<xs :e l ement name=" ve r s i on ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="major" type=" x s : i n t e g e r "/>
<xs :e l ement name="minor" type=" x s : i n t e g e r "/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name=" c r ea t o r ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="name" type=" x s : s t r i n g "/>
<xs :e l ement name=" contact " type=" x s : s t r i n g "/>

</ xs : s equence>
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</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="problemDomain">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="propagationType">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" learningType ">
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs:enumerat ion value=" de f in edcons t ruc t ed "/>
<xs:enumerat ion value=" t ra ined "/>
<xs:enumerat ion value=" superv i s ed "/>
<xs:enumerat ion value=" unsuperv i sed "/>
<xs:enumerat ion value=" l i n e a r "/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

</ xs : e l ement>
</ xs : s equence>
<x s : a t t r i b u t e name="type" type="propa"/>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name=" app l i c a t i o nF i e l d " maxOccurs="unbounded">
<xs:s impleType>
<xs :un ion>
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs:enumerat ion value="AccFin"/>
<xs:enumerat ion value="HealthMed"/>
<xs:enumerat ion value="Marketing"/>
<xs:enumerat ion value="Reta i l "/>
<xs:enumerat ion value=" Insur "/>
<xs:enumerat ion value="Telecom"/>
<xs:enumerat ion value="Operat ions "/>
<xs:enumerat ion value="EMS"/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs :pa t t e rn value=" [A−Za−z ]∗ "></ xs : pa t t e rn>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

</ xs :un ion>
</xs:s impleType>

</ xs : e l ement>
<xs :e l ement name="networkType">
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs:enumerat ion value="Hopf i e ld "/>
<xs:enumerat ion value="CNN"/>
<xs:enumerat ion value="ART"/>
<xs:enumerat ion value="Backpropagation "/>
<xs:enumerat ion value="Cascade−Cor r e l a t i on "/>
<xs:enumerat ion value="Kohonen"/>
<xs:enumerat ion value="Counterpropagation "/>
<xs:enumerat ion value="Perceptron "/>
<xs:enumerat ion value="Linear−Assoc ia to r "/>
<xs:enumerat ion value="Jordan−Net"/>
<xs:enumerat ion value="Elman−Net"/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

</ xs : e l ement>
<xs :e l ement name="problemType">
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs:enumerat ion value=" C l a s s i f i e r s "/>
<xs:enumerat ion value="Approximators "/>
<xs:enumerat ion value="Memory"/>
<xs:enumerat ion value="Optimisat ion "/>
<xs:enumerat ion value="Clus t e r ing "/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

</ xs : e l ement>
</ xs : s equence>
<x s : a s s e r t
t e s t=" ( ( propagationType/@type = ' feedback '  and propagationType/ learningType  = ' de f inedcons t ructed '  and ( networkType = ' Hopf ie ld '  or  networkType = 'CNN' ) )  or  ( propagationType/@type = ' feedback '  and propagationType/ learningType  = ' tra ined '  and networkType = 'ART' )  or  ( propagationType/@type = ' feedforward '  and propagationType/ learningType  = ' superv i sed '  and ( networkType = ' Backpropagation '  or  networkType = ' Cascade−Corre la t ion ' ) )  or  ( propagationType/@type = ' feedforward '  and propagationType/ learningType  = ' unsupervised '  and ( networkType = ' Counterpropagation '  or  networkType = 'Kohonen ' ) )  or  ( propagationType/@type = ' feedforward '  and propagationType/ learningType  = ' l i n ea r '  and ( networkType = ' Linear−Assoc iator '  or  networkType = ' Perceptron ' ) )  or  ( propagationType/@type = ' recurrent '  and propagationType/ learningType  = ' superv i sed '  and ( networkType = ' Jordan−Net '  or  networkType = 'Elman−Net ' ) )  and count ( networkType )  = 1 and count ( propagationType/ learningType )  = 1 and count ( propagationType/@type )  = 1) "

/>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name=" endpoints ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" t r a i n " type=" xs :boo l ean "/>
<xs :e l ement name=" r e t r a i n " type=" xs :boo l ean "/>
<xs :e l ement name=" eva luate " type=" xs :boo l ean "/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name="executionEnvironment " maxOccurs="unbounded">
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<xs:complexType>
<xs : s equence>
<xs :e l ement name=" s e r i a l " type=" xs :boo l ean " f i x ed=" true "/>
<xs :e l ement name=" p a r a l l e l " minOccurs="0">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" so f tware ">
<xs:complexType>
<xs : c h o i c e>
<xs :e l ement name=" con t r o l ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" transpute r ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name="data">
<xs:complexType>
<xs : c h o i c e>
<xs :e l ement name=" t op o l o g i c a l ">
<xs:complexType>
<xs : c h o i c e>
<xs :e l ement name=" p i p e l i n i n g ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" s y s t o l i c a r r ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name=" coa r s e s t r u c t ">
<xs:complexType>
<xs : c h o i c e>
<xs :e l ement name="connmachine">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="maspar">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>

</ x s : c h o i c e>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name=" f i n e s t r u c t ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="connmachine">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
</ x s : c h o i c e>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name=" s t r u c t u r a l ">
<xs:complexType>
<xs : s equence>
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<xs :e l ement name="spmd">
<xs:complexType>
<xs : c h o i c e>
<xs :e l ement name="hypercube">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name=" c l u s t e r ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="gpgpu">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="mul t i co re ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>

</ x s : c h o i c e>
</xs:complexType>

</ xs : e l ement>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>

</ x s : c h o i c e>
</xs:complexType>

</ xs : e l ement>
</ x s : c h o i c e>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="hardware">
<xs:complexType>
<xs : c h o i c e>
<xs :e l ement name=" gene ra l " type="parametervalue "/>
<xs :e l ement name=" s p e c i a l " type="parametervalue "/>

</ x s : c h o i c e>
</xs:complexType>

</ xs : e l ement>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name=" s t ru c tu r e ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" input ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="ID" type=" x s : s t r i n g "/>
<xs :e l ement name="dimension ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="min" type="minno1"/>
<xs :e l ement name="max" type="minno1"/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name=" s i z e ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="min" type="minno1"/>
<xs :e l ement name="max" type="minno1"/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
</ xs : s equence>

</xs:complexType>
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</ xs : e l ement>
<xs :e l ement name="hidden" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="ID" type=" x s : s t r i n g "/>
<xs :e l ement name="dimension ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="min" type="minno1"/>
<xs :e l ement name="max" type="minno1"/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name=" s i z e ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="min" type="minno1"/>
<xs :e l ement name="max" type="minno1"/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="output" minOccurs="0">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="ID" type=" x s : s t r i n g "/>
<xs :e l ement name="dimension ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="min" type="minno1"/>
<xs :e l ement name="max" type="minno1"/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name=" s i z e ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="min" type="minno1"/>
<xs :e l ement name="max" type="minno1"/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name=" connect ions ">
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs:enumerat ion value=" fu l l c onne c t ed "/>
<xs:enumerat ion value=" sho r t cu t s "/>
<xs:enumerat ion value="mixed"/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

</ xs : e l ement>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="parameters ">
<xs:complexType>
<xs : c h o i c e minOccurs="0" maxOccurs="unbounded">
<xs :e l ement name="valueparameter " type=" x s : s t r i n g " maxOccurs="unbounded"/>
<xs :e l ement name="boolparameter " type=" x s : s t r i n g " maxOccurs="unbounded"/>
<xs :e l ement name="comboparameter" type=" x s : s t r i n g " maxOccurs="unbounded"/>

</ x s : c h o i c e>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name="data">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" de s c r i p t i o n " type=" x s : s t r i n g "/>
<xs :e l ement name=" t ab l e d e s c r i p t i o n " type=" x s : s t r i n g " minOccurs="0"/>
<xs :e l ement name=" f i l e d e s c r i p t i o n " type=" x s : s t r i n g " minOccurs="0"/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>

</xs:schema>
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<xs:schema xmlns:xs=" ht tp : //www.w3 . org /2001/XMLSchema" elementFormDefault=" q u a l i f i e d "
vc:minVers ion=" 1 .1 " xmlns:vc=" ht tp : //www.w3 . org /2007/XMLSchema−ve r s i on i ng ">

<xs:s impleType name="propa">
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs:enumerat ion value=" feed forward "/>
<xs:enumerat ion value=" feedback "/>
<xs:enumerat ion value=" re cu r r en t "/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

<xs:s impleType name="minno1">
<x s : r e s t r i c t i o n base=" x s : i n t e g e r ">
<xs :minExc lus ive value="0"/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

<xs:complexType name="parametervalue ">
<xs : c h o i c e minOccurs="0" maxOccurs="unbounded">
<xs :e l ement name="valueparameter ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" xs :dec ima l ">
<x s : a t t r i b u t e name="name" type=" x s : s t r i n g "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="boolparameter ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" xs :boo l ean ">
<x s : a t t r i b u t e name="name" type=" x s : s t r i n g "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="comboparameter">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name="name" type=" x s : s t r i n g "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>

</ x s : c h o i c e>
</xs:complexType>

<xs :e l ement name=" d e f i n i t i o n ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" i d e n t i f i e r " type=" x s : s t r i n g "/>
<xs :e l ement name="problemDomain">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="propagationType">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" learningType ">
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs:enumerat ion value=" de f in edcons t ruc t ed "/>
<xs:enumerat ion value=" t ra ined "/>
<xs:enumerat ion value=" superv i s ed "/>
<xs:enumerat ion value=" unsuperv i sed "/>
<xs:enumerat ion value=" l i n e a r "/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

</ xs : e l ement>
</ xs : s equence>
<x s : a t t r i b u t e name="type" type="propa"/>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name=" app l i c a t i o nF i e l d " maxOccurs="unbounded">
<xs:s impleType>
<xs :un ion>
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<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs:enumerat ion value="AccFin"/>
<xs:enumerat ion value="HealthMed"/>
<xs:enumerat ion value="Marketing"/>
<xs:enumerat ion value="Reta i l "/>
<xs:enumerat ion value=" Insur "/>
<xs:enumerat ion value="Telecom"/>
<xs:enumerat ion value="Operat ions "/>
<xs:enumerat ion value="EMS"/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs :pa t t e rn value=" [A−Za−z ]∗ "></ xs : pa t t e rn>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

</ xs :un ion>
</xs:s impleType>

</ xs : e l ement>
<xs :e l ement name="networkType">
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs:enumerat ion value="Hopf i e ld "/>
<xs:enumerat ion value="CNN"/>
<xs:enumerat ion value="ART"/>
<xs:enumerat ion value="Backpropagation "/>
<xs:enumerat ion value="Cascade−Cor r e l a t i on "/>
<xs:enumerat ion value="Kohonen"/>
<xs:enumerat ion value="Counterpropagation "/>
<xs:enumerat ion value="Perceptron "/>
<xs:enumerat ion value="Linear−Assoc ia to r "/>
<xs:enumerat ion value="Jordan−Net"/>
<xs:enumerat ion value="Elman−Net"/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

</ xs : e l ement>
<xs :e l ement name="problemType">
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs:enumerat ion value=" C l a s s i f i e r s "/>
<xs:enumerat ion value="Approximators "/>
<xs:enumerat ion value="Memory"/>
<xs:enumerat ion value="Optimisat ion "/>
<xs:enumerat ion value="Clus t e r ing "/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

</ xs : e l ement>
</ xs : s equence>
<x s : a s s e r t
t e s t=" ( ( propagationType/@type = ' feedback '  and propagationType/ learningType  = ' de f inedcons t ructed '  and ( networkType = ' Hopf ie ld '  or  networkType = 'CNN' ) )  or  ( propagationType/@type = ' feedback '  and propagationType/ learningType  = ' tra ined '  and networkType = 'ART' )  or  ( propagationType/@type = ' feedforward '  and propagationType/ learningType  = ' superv i sed '  and ( networkType = ' Backpropagation '  or  networkType = ' Cascade−Corre la t ion ' ) )  or  ( propagationType/@type = ' feedforward '  and propagationType/ learningType  = ' unsupervised '  and ( networkType = ' Counterpropagation '  or  networkType = 'Kohonen ' ) )  or  ( propagationType/@type = ' feedforward '  and propagationType/ learningType  = ' l i n ea r '  and ( networkType = ' Linear−Assoc iator '  or  networkType = ' Perceptron ' ) )  or  ( propagationType/@type = ' recurrent '  and propagationType/ learningType  = ' superv i sed '  and ( networkType = ' Jordan−Net '  or  networkType = 'Elman−Net ' ) )  and count ( networkType )  = 1 and count ( propagationType/ learningType )  = 1 and count ( propagationType/@type )  = 1) "

/>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name=" endpoints ">
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs:enumerat ion value=" t r a i n "/>
<xs:enumerat ion value=" r e t r a i n "/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

</ xs : e l ement>
<xs :e l ement name="executionEnvironment ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" s e r i a l " type=" xs :boo l ean " f i x ed=" true "/>
<xs :e l ement name=" p a r a l l e l " minOccurs="0">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" so f tware ">
<xs:complexType>
<xs : c h o i c e>
<xs :e l ement name=" con t r o l ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" transpute r ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name="data">
<xs:complexType>
<xs : c h o i c e>
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<xs :e l ement name=" t op o l o g i c a l ">
<xs:complexType>
<xs : c h o i c e>
<xs :e l ement name=" p i p e l i n i n g ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" s y s t o l i c a r r ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name=" coa r s e s t r u c t ">
<xs:complexType>
<xs : c h o i c e>
<xs :e l ement name="connmachine">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="maspar">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>

</ x s : c h o i c e>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name=" f i n e s t r u c t ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="connmachine">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
</ x s : c h o i c e>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name=" s t r u c t u r a l ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="spmd">
<xs:complexType>
<xs : c h o i c e>
<xs :e l ement name="hypercube">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name=" c l u s t e r ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="gpgpu">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
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</xs : s impleContent>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name="mul t i co re ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>

</ x s : c h o i c e>
</xs:complexType>

</ xs : e l ement>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>

</ x s : c h o i c e>
</xs:complexType>

</ xs : e l ement>
</ x s : c h o i c e>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="hardware">
<xs:complexType>
<xs : c h o i c e>
<xs :e l ement name=" gene ra l " type="parametervalue "/>
<xs :e l ement name=" s p e c i a l " type="parametervalue "/>

</ x s : c h o i c e>
</xs:complexType>

</ xs : e l ement>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name=" s t ru c tu r e ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" input ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="ID" type=" x s : s t r i n g "/>
<xs :e l ement name="dimension " type="minno1"/>
<xs :e l ement name=" s i z e " type=" minno1"/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name="hidden" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="ID" type=" x s : s t r i n g "/>
<xs :e l ement name="dimension " type="minno1"/>
<xs :e l ement name=" s i z e " type="minno1"/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name="output" minOccurs="0">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="ID" type=" x s : s t r i n g "/>
<xs :e l ement name="dimension " type="minno1"/>
<xs :e l ement name=" s i z e " type="minno1"/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name=" connect ions ">
<xs:complexType>
<xs : c h o i c e maxOccurs="unbounded">
<xs :e l ement name=" fu l l c onne c t ed " minOccurs="0">
<xs:complexType>
<xs : s equence maxOccurs="unbounded">
<xs :e l ement name=" fromblock " type=" x s : s t r i n g "/>
<xs :e l ement name=" tob lock " type=" x s : s t r i n g "/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name=" sho r t cu t s ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" fromneuron" type=" x s : s t r i n g "/>
<xs :e l ement name=" toneuron" type=" x s : s t r i n g "/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
</ x s : c h o i c e>

</xs:complexType>
</ xs : e l ement>
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</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name=" resultSchema">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" in s tance " type=" xs :boo l ean "/>
<xs :e l ement name=" t r a i n i n g " type=" xs :boo l ean "/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name="parameters " type="parametervalue "/>
<xs :e l ement name="data">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" de s c r i p t i o n " type=" x s : s t r i n g "/>
<xs :e l ement name="dataSchemaID" type=" x s : s t r i n g "/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name=" instanceSchemaID" type=" x s : s t r i n g " minOccurs="0"/>

</ xs : s equence>
<x s : a s s e r t
t e s t=" i f ( endpoints  = ' r e t r a in ' )  then

    i f ( count ( instanceSchemaID )  > 0)  then
    true ( )
    e l s e
    f a l s e ( )
    e l s e
    i f ( count ( instanceSchemaID )  > 0)  then
    f a l s e ( )
    e l s e  true ( ) "/>

</xs:complexType>
</ xs : e l ement>

</xs:schema>
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C. Data Schema

<xs:schema xmlns:xs=" ht tp : //www.w3 . org /2001/XMLSchema" elementFormDefault=" q u a l i f i e d "
vc:minVers ion=" 1 .1 " xmlns:vc=" ht tp : //www.w3 . org /2007/XMLSchema−ve r s i on i ng ">

<xs :e l ement name="dataschema">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" i d e n t i f i e r " type=" x s : s t r i n g "/>
<xs :e l ement name=" c r ea t i onda t e " type=" xs :da t e "/>
<xs :e l ement name="data">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" tab l e " minOccurs="0">
<xs:complexType>
<xs : c h o i c e>
<xs : s equence maxOccurs="unbounded">
<xs :e l ement name="net input ">
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs :pa t t e rn value=" ( ( [ 0 − 9 ] )∗ ( [ . ] ) ? ( [ 0 − 9 ] )∗ ( \ s )?)+"/>
<xs :whiteSpace value=" pre s e rve "/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

</ xs : e l ement>
<xs :e l ement name="netoutput ">
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs :pa t t e rn value=" ( ( [ 0 − 9 ] )∗ ( [ . ] ) ? ( [ 0 − 9 ] )∗ ( \ s )?)+"/>
<xs :whiteSpace value=" pre s e rve "/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

</ xs : e l ement>
</ xs : s equence>
<xs : s equence>
<xs :e l ement name=" input " maxOccurs="unbounded">
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs :pa t t e rn value=" ( ( [ 0 − 9 ] )∗ ( [ . ] ) ? ( [ 0 − 9 ] )∗ ( \ s )?)+"/>
<xs :whiteSpace value=" pre s e rve "/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

</ xs : e l ement>
</ xs : s equence>

</ x s : c h o i c e>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name=" f i l e " type=" x s : s t r i n g " minOccurs="0"/>

</ xs : s equence>
<x s : a s s e r t t e s t=" ( count ( tab l e )  + count ( f i l e ) )  > 0"/>

</xs:complexType>
</ xs : e l ement>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
</xs:schema>

171





D. Training Result Schema

<xs:schema xmlns:xs=" ht tp : //www.w3 . org /2001/XMLSchema" elementFormDefault=" q u a l i f i e d "
vc:minVers ion=" 1 .1 " xmlns:vc=" ht tp : //www.w3 . org /2007/XMLSchema−ve r s i on i ng ">

<xs:s impleType name="propa">
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs:enumerat ion value=" feed forward "/>
<xs:enumerat ion value=" feedback "/>
<xs:enumerat ion value=" re cu r r en t "/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

<xs:complexType name="parametervalue ">
<xs : c h o i c e minOccurs="0" maxOccurs="unbounded">
<xs :e l ement name="valueparameter ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" xs :dec ima l ">
<x s : a t t r i b u t e name="name" type=" x s : s t r i n g "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="boolparameter ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" xs :boo l ean ">
<x s : a t t r i b u t e name="name" type=" x s : s t r i n g "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="comboparameter">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name="name" type=" x s : s t r i n g "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>

</ x s : c h o i c e>
</xs:complexType>

<xs:complexType name="parametervalueBias ">
<xs : c h o i c e minOccurs="0" maxOccurs="unbounded">
<xs :e l ement name="valueparameter ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" xs :dec ima l ">
<x s : a t t r i b u t e name="name" type=" x s : s t r i n g "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>

</ x s : c h o i c e>
</xs:complexType>

<xs :e l ement name=" t ra in ing r e su l t s chema ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" i d e n t i f i e r " type=" x s : s t r i n g "/>
<xs :e l ement name=" c r ea t i onda t e " type=" xs :da t e "/>
<xs :e l ement name="data">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" tab l e " minOccurs="0">
<xs:complexType>
<xs : s equence maxOccurs="unbounded">
<xs :e l ement name="net input ">
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs :pa t t e rn value=" ( ( [ 0 − 9 ] )∗ ( [ . ] ) ? ( [ 0 − 9 ] )∗ ( \ s )?)+"/>
<xs :whiteSpace value=" pre s e rve "/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

</ xs : e l ement>
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<xs :e l ement name="netoutput ">
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs :pa t t e rn value=" ( ( [ 0 − 9 ] )∗ ( [ . ] ) ? ( [ 0 − 9 ] )∗ ( \ s )?)+"/>
<xs :whiteSpace value=" pre s e rve "/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

</ xs : e l ement>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name=" f i l e " type=" x s : s t r i n g " minOccurs="0"/>

</ xs : s equence>
<x s : a s s e r t t e s t=" ( count ( tab l e )  + count ( f i l e ) )  > 0"/>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="weightmatrix " type=" x s : s t r i n g "/>
<xs :e l ement name="epochs " type=" x s : i n t e g e r "/>
<xs :e l ement name="meanerror " type=" xs :dec ima l "/>
<xs :e l ement name=" ac t i v a t i o n f un c t i o n " type=" x s : s t r i n g "/>
<xs :e l ement name=" to ta l exe cu t i on t ime " type=" x s : s t r i n g "/>
<xs :e l ement name=" epocher ro rva lue " type=" x s : s t r i n g "/>
<xs :e l ement name=" l e a r n i n g r a t e " type=" xs :dec ima l "/>
<xs :e l ement name="momentum" type=" xs :dec ima l "/>
<xs :e l ement name=" thre sho ld " type=" xs :dec ima l "/>
<xs :e l ement name=" b ia s " type="parametervalueBias " minOccurs="0" maxOccurs="unbounded"/>
<xs :e l ement name="executionEnvironment ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" s e r i a l " type=" xs :boo l ean " f i x ed=" true "/>
<xs :e l ement name=" p a r a l l e l " minOccurs="0">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" so f tware ">
<xs:complexType>
<xs : c h o i c e>
<xs :e l ement name=" con t r o l ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" transpute r ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name="data">
<xs:complexType>
<xs : c h o i c e>
<xs :e l ement name=" t op o l o g i c a l ">
<xs:complexType>
<xs : c h o i c e>
<xs :e l ement name=" p i p e l i n i n g ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" s y s t o l i c a r r ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name=" coa r s e s t r u c t ">
<xs:complexType>
<xs : c h o i c e>
<xs :e l ement name="connmachine">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="maspar">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
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</xs : s impleContent>
</xs:complexType>

</ xs : e l ement>
</ x s : c h o i c e>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name=" f i n e s t r u c t ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="connmachine">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
</ x s : c h o i c e>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name=" s t r u c t u r a l ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="spmd">
<xs:complexType>
<xs : c h o i c e>
<xs :e l ement name="hypercube">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name=" c l u s t e r ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="gpgpu">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="mul t i co re ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>

</ x s : c h o i c e>
</xs:complexType>

</ xs : e l ement>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>

</ x s : c h o i c e>
</xs:complexType>

</ xs : e l ement>
</ x s : c h o i c e>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="hardware">
<xs:complexType>
<xs : c h o i c e>
<xs :e l ement name=" gene ra l " type="parametervalue "/>
<xs :e l ement name=" s p e c i a l " type="parametervalue "/>

</ x s : c h o i c e>
</xs:complexType>

</ xs : e l ement>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>
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</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name="propagationType">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" learningType ">
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs:enumerat ion value=" de f in edcons t ruc t ed "/>
<xs:enumerat ion value=" t ra ined "/>
<xs:enumerat ion value=" superv i s ed "/>
<xs:enumerat ion value=" unsuperv i sed "/>
<xs:enumerat ion value=" l i n e a r "/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

</ xs : e l ement>
</ xs : s equence>
<x s : a t t r i b u t e name="type" type="propa"/>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="networkType">
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs:enumerat ion value="Hopf i e ld "/>
<xs:enumerat ion value="CNN"/>
<xs:enumerat ion value="ART"/>
<xs:enumerat ion value="Backpropagation "/>
<xs:enumerat ion value="Cascade−Cor r e l a t i on "/>
<xs:enumerat ion value="Kohonen"/>
<xs:enumerat ion value="Counterpropagation "/>
<xs:enumerat ion value="Perceptron "/>
<xs:enumerat ion value="Linear−Assoc ia to r "/>
<xs:enumerat ion value="Jordan−Net"/>
<xs:enumerat ion value="Elman−Net"/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

</ xs : e l ement>
</ xs : s equence>
<x s : a s s e r t
t e s t=" ( ( propagationType/@type = ' feedback '  and propagationType/ learningType  = ' de f inedcons t ructed '  and ( networkType = ' Hopf ie ld '  or  networkType = 'CNN' ) )  or  ( propagationType/@type = ' feedback '  and propagationType/ learningType  = ' tra ined '  and networkType = 'ART' )  or  ( propagationType/@type = ' feedforward '  and propagationType/ learningType  = ' superv i sed '  and ( networkType = ' Backpropagation '  or  networkType = ' Cascade−Corre la t ion ' ) )  or  ( propagationType/@type = ' feedforward '  and propagationType/ learningType  = ' unsupervised '  and ( networkType = ' Counterpropagation '  or  networkType = 'Kohonen ' ) )  or  ( propagationType/@type = ' feedforward '  and propagationType/ learningType  = ' l i n ea r '  and ( networkType = ' Linear−Assoc iator '  or  networkType = ' Perceptron ' ) )  or  ( propagationType/@type = ' recurrent '  and propagationType/ learningType  = ' superv i sed '  and ( networkType = ' Jordan−Net '  or  networkType = 'Elman−Net ' ) )  and count ( networkType )  = 1 and count ( propagationType/ learningType )  = 1 and count ( propagationType/@type )  = 1) "/>

</xs:complexType>
</ xs : e l ement>

</xs:schema>
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<xs:schema xmlns:xs=" ht tp : //www.w3 . org /2001/XMLSchema" elementFormDefault=" q u a l i f i e d "
vc:minVers ion=" 1 .1 " xmlns:vc=" ht tp : //www.w3 . org /2007/XMLSchema−ve r s i on i ng ">

<xs:s impleType name="propa">
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs:enumerat ion value=" feed forward "/>
<xs:enumerat ion value=" feedback "/>
<xs:enumerat ion value=" re cu r r en t "/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

<xs:complexType name="parametervalue ">
<xs : c h o i c e minOccurs="0" maxOccurs="unbounded">
<xs :e l ement name="valueparameter ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" xs :dec ima l ">
<x s : a t t r i b u t e name="name" type=" x s : s t r i n g "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="boolparameter ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" xs :boo l ean ">
<x s : a t t r i b u t e name="name" type=" x s : s t r i n g "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="comboparameter">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name="name" type=" x s : s t r i n g "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>

</ x s : c h o i c e>
</xs:complexType>

<xs :e l ement name=" instanceschema">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" i d e n t i f i e r " type=" x s : s t r i n g "/>
<xs :e l ement name=" c r ea t i onda t e " type=" xs :da t e "/>
<xs :e l ement name=" s t ru c tu r e ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" input ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="ID" type=" x s : s t r i n g "/>
<xs :e l ement name="dimension " type=" x s : i n t e g e r "/>
<xs :e l ement name=" s i z e " type=" x s : i n t e g e r "/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name="hidden" minOccurs="0">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="ID" type=" x s : s t r i n g "/>
<xs :e l ement name="dimension " type=" x s : i n t e g e r "/>
<xs :e l ement name=" s i z e " type=" x s : i n t e g e r "/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name="output" minOccurs="0">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="ID" type=" x s : s t r i n g "/>
<xs :e l ement name="dimension " type=" x s : i n t e g e r "/>
<xs :e l ement name=" s i z e " type=" x s : i n t e g e r "/>

</ xs : s equence>
</xs:complexType>
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</ xs : e l ement>
<xs :e l ement name=" connect ions ">
<xs:complexType>
<xs : c h o i c e maxOccurs="unbounded">
<xs :e l ement name=" fu l l c onne c t ed " minOccurs="0">
<xs:complexType>
<xs : s equence maxOccurs="unbounded">
<xs :e l ement name=" fromblock " type=" x s : s t r i n g "/>
<xs :e l ement name=" tob lock " type=" x s : s t r i n g "/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name=" sho r t cu t s " minOccurs="0">
<xs:complexType>
<xs : s equence maxOccurs="unbounded">
<xs :e l ement name=" fromneuron" type=" x s : s t r i n g "/>
<xs :e l ement name=" toneuron" type=" x s : s t r i n g "/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
</ x s : c h o i c e>

</xs:complexType>
</ xs : e l ement>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name="executionEnvironment ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" s e r i a l " type=" xs :boo l ean " f i x ed=" true "/>
<xs :e l ement name=" p a r a l l e l " minOccurs="0">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" so f tware ">
<xs:complexType>
<xs : c h o i c e>
<xs :e l ement name=" con t r o l ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" transpute r ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name="data">
<xs:complexType>
<xs : c h o i c e>
<xs :e l ement name=" t op o l o g i c a l ">
<xs:complexType>
<xs : c h o i c e>
<xs :e l ement name=" p i p e l i n i n g ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" s y s t o l i c a r r ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name=" coa r s e s t r u c t ">
<xs:complexType>
<xs : c h o i c e>
<xs :e l ement name="connmachine">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="maspar">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
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</xs : s impleContent>
</xs:complexType>

</ xs : e l ement>
</ x s : c h o i c e>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name=" f i n e s t r u c t ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="connmachine">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
</ x s : c h o i c e>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name=" s t r u c t u r a l ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="spmd">
<xs:complexType>
<xs : c h o i c e>
<xs :e l ement name="hypercube">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name=" c l u s t e r ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="gpgpu">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="mul t i co re ">
<xs:complexType>
<xs : s impleContent>
<xs : e x t en s i on base=" x s : s t r i n g ">
<x s : a t t r i b u t e name=" ve r s i on " type=" x s : s t r i n g " use=" requ i r ed "/>

</ xs : e x t en s i on>
</ xs : s impleContent>

</xs:complexType>
</ xs : e l ement>

</ x s : c h o i c e>
</xs:complexType>

</ xs : e l ement>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>

</ x s : c h o i c e>
</xs:complexType>

</ xs : e l ement>
</ x s : c h o i c e>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name="hardware">
<xs:complexType>
<xs : c h o i c e>
<xs :e l ement name=" gene ra l " type="parametervalue "/>
<xs :e l ement name=" s p e c i a l " type="parametervalue "/>

</ x s : c h o i c e>
</xs:complexType>

</ xs : e l ement>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>
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</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name="problemDomain">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="networkType">
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs:enumerat ion value="Hopf i e ld "/>
<xs:enumerat ion value="CNN"/>
<xs:enumerat ion value="ART"/>
<xs:enumerat ion value="Backpropagation "/>
<xs:enumerat ion value="Cascade−Cor r e l a t i on "/>
<xs:enumerat ion value="Kohonen"/>
<xs:enumerat ion value="Counterpropagation "/>
<xs:enumerat ion value="Perceptron "/>
<xs:enumerat ion value="Linear−Assoc ia to r "/>
<xs:enumerat ion value="Jordan−Net"/>
<xs:enumerat ion value="Elman−Net"/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

</ xs : e l ement>
<xs :e l ement name="propagationType">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" learningType ">
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs:enumerat ion value=" de f in edcons t ruc t ed "/>
<xs:enumerat ion value=" t ra ined "/>
<xs:enumerat ion value=" superv i s ed "/>
<xs:enumerat ion value=" unsuperv i sed "/>
<xs:enumerat ion value=" l i n e a r "/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

</ xs : e l ement>
</ xs : s equence>
<x s : a t t r i b u t e name="type" type="propa"/>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name=" app l i c a t i o nF i e l d " maxOccurs="unbounded">
<xs:s impleType>
<xs :un ion>
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs:enumerat ion value="AccFin"/>
<xs:enumerat ion value="HealthMed"/>
<xs:enumerat ion value="Marketing"/>
<xs:enumerat ion value="Reta i l "/>
<xs:enumerat ion value=" Insur "/>
<xs:enumerat ion value="Telecom"/>
<xs:enumerat ion value="Operat ions "/>
<xs:enumerat ion value="EMS"/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs :pa t t e rn value=" [A−Za−z ]∗ "></ xs : pa t t e rn>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

</ xs :un ion>
</xs:s impleType>

</ xs : e l ement>
<xs :e l ement name="problemType">
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs:enumerat ion value=" C l a s s i f i e r s "/>
<xs:enumerat ion value="Approximators "/>
<xs:enumerat ion value="Memory"/>
<xs:enumerat ion value="Optimisat ion "/>
<xs:enumerat ion value="Clus t e r ing "/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

</ xs : e l ement>
</ xs : s equence>
<x s : a s s e r t
t e s t=" ( ( propagationType/@type = ' feedback '  and propagationType/ learningType  = ' de f inedcons t ructed '  and ( networkType = ' Hopf ie ld '  or  networkType = 'CNN' ) )  or  ( propagationType/@type = ' feedback '  and propagationType/ learningType  = ' tra ined '  and networkType = 'ART' )  or  ( propagationType/@type = ' feedforward '  and propagationType/ learningType  = ' superv i sed '  and ( networkType = ' Backpropagation '  or  networkType = ' Cascade−Corre la t ion ' ) )  or  ( propagationType/@type = ' feedforward '  and propagationType/ learningType  = ' unsupervised '  and ( networkType = ' Counterpropagation '  or  networkType = 'Kohonen ' ) )  or  ( propagationType/@type = ' feedforward '  and propagationType/ learningType  = ' l i n ea r '  and ( networkType = ' Linear−Assoc iator '  or  networkType = ' Perceptron ' ) )  or  ( propagationType/@type = ' recurrent '  and propagationType/ learningType  = ' superv i sed '  and ( networkType = ' Jordan−Net '  or  networkType = 'Elman−Net ' ) )  and count ( networkType )  = 1 and count ( propagationType/ learningType )  = 1 and count ( propagationType/@type )  = 1) "

/> </xs:complexType>
</ xs : e l ement>
<xs :e l ement name="weightmatrix " type=" x s : s t r i n g "/>
<xs :e l ement name=" ac t i v a t i o n f un c t i o n " type=" x s : s t r i n g "/>
<xs :e l ement name="dataSchemaID" type=" x s : s t r i n g " minOccurs="0"/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
</xs:schema>
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<xs:schema xmlns:xs=" ht tp : //www.w3 . org /2001/XMLSchema" elementFormDefault=" q u a l i f i e d "
vc:minVers ion=" 1 .1 " xmlns:vc=" ht tp : //www.w3 . org /2007/XMLSchema−ve r s i on i ng ">

<xs :e l ement name=" resu l t schema ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" i d e n t i f i e r " type=" x s : s t r i n g "/>
<xs :e l ement name=" instanceSchemaID" type=" x s : s t r i n g "/>
<xs :e l ement name=" c r ea t i onda t e " type=" xs :da t e "/>
<xs :e l ement name="diagram2d" minOccurs="0">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" t i t l e " type=" x s : s t r i n g "/>
<xs :e l ement name=" de s c r i p t i o n " type=" x s : s t r i n g "/>
<xs :e l ement name="type" type=" x s : s t r i n g "/>
<xs :e l ement name=" xax i s ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" t i t l e " type=" x s : s t r i n g "/>
<xs :e l ement name=" de s c r i p t i o n " type=" x s : s t r i n g "/>
<xs :e l ement name="min" type=" x s : i n t e g e r "/>
<xs :e l ement name="max" type=" x s : i n t e g e r "/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name=" yax i s ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name=" t i t l e " type=" x s : s t r i n g "/>
<xs :e l ement name=" de s c r i p t i o n " type=" x s : s t r i n g "/>
<xs :e l ement name="min" type=" x s : i n t e g e r "/>
<xs :e l ement name="max" type=" x s : i n t e g e r "/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name=" va lues ">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="value " maxOccurs="unbounded">
<xs:complexType>
<xs : s equence>
<xs :e l ement name="xvalue " type=" xs :dec ima l "/>
<xs :e l ement name="yvalue " type=" xs :dec ima l "/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs :e l ement name=" tab l e " minOccurs="0">
<xs:complexType>
<xs : s equence minOccurs="0" maxOccurs="unbounded">
<xs :e l ement name=" input ">
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs :pa t t e rn value=" ( ( [ 0 − 9 ] )∗ ( [ . ] ) ? ( [ 0 − 9 ] )∗ ( \ s )?)+"/>
<xs :whiteSpace value=" pre s e rve "/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

</ xs : e l ement>
<xs :e l ement name="output">
<xs:s impleType>
<x s : r e s t r i c t i o n base=" x s : s t r i n g ">
<xs :pa t t e rn value=" ( ( [ 0 − 9 ] )∗ ( [ . ] ) ? ( [ 0 − 9 ] )∗ ( \ s )?)+"/>
<xs :whiteSpace value=" pre s e rve "/>

</ x s : r e s t r i c t i o n>
</xs:s impleType>

</ xs : e l ement>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>
<xs :e l ement name=" f i l e " type=" x s : s t r i n g " minOccurs="0"/>

</ xs : s equence>
<x s : a s s e r t t e s t=" ( count ( tab l e )  + count ( f i l e ) )  > 0"/>
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</xs:complexType>
</ xs : e l ement>

</xs:schema>
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G. Summary - German

Das Ziel dieser Arbeit war die Weiterentwicklung der Struktursprache ViNNSL, um
neurale Netze beschreiben und ausführen zu können.

Zu Beginn wird eine Einführung in das Themengebiet der neuralen Netze, sowie einer
Klassi�zierung anhand der Eigenschaften vorgenommen. Im Anschluss werden die
Problemdomänen neuraler Netze vorgestellt und praktische Beispiele für Anwendungen
dargeboten. Nachfolgend wird der aktuelle Status von ViNNSL erläutert und mit an-
deren Struktursprachen, zur Beschreibung neuraler Netze, verglichen um Unterschiede
herauszu�ltern.

Auf Basis dieser Analyse wird ViNNSL auf ViNNSL 2.0 erweitert. Diese Erweiterungen
führen zur Adaptierung bestehender und die Vorstellung neuer Schemas. Die Änderun-
gen umfassen die Möglichkeit, mithilfe von ViNNSL 2.0, neurale Netze im Hinblick
auf ihre Klassi�zierung, Problemdomäne, fachliches Anwendungsgebiet einzuteilen und
die technische Umsetzung zu de�nieren. Darüber hinaus werden zwei neue Schemas
eingeführt. Diese ermöglichen die Analyse des Netzwerktrainings, sowie ein bereits
trainiertes Netz neu instanzieren zu lassen. Mit dem zweiten Schema kann ein Netz,
ohne Training, ausgeführt werden. ViNNSL 2.0 ist, wie der Vorgänger, eine XML
basierte Sprache. Aus diesem Grund sind die einzelnen Schemas nach XSD 1.1 de�niert.
Dieser Standard ermöglicht die De�nition von Regeln, sodass sichergestellt wird, dass
die Schemas gültige und vollständige Informationen enthalten. Diese Arbeit enthält
daher eine Visualisierung und genaue Beschreibung der einzelnen Komponenten jedes
Schemas. Zusätzlich wird die praktische Verwendung mit zwei Fallstudien verdeutlicht.

ViNNSL 2.0 dient in N2Sky als standardisiertes Werkzeug zur Beschreibung der neuralen
Netze.
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