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Abstract

The purpose of this research is to study time-frequency localized functions, the
sampling, approximation and reconstruction of such functions in the Gabor setting,
and to construct some adaptive transforms that can be applied to audio signal pro-
cessing. We first investigate functions that satisfy some localization in a region in
the time-frequency plane using the tools from time-frequency localization operators.
We characterize a function’s concentration in a region in the time-frequency plane
and compare some measures of localization. We then consider the approximation of
time-frequency localized functions using a local Gabor system. We obtain approxi-
mation estimates in terms of a time-frequency localization measure. We show that
if a function lies on a subspace generated by eigenfunctions of a time-frequency lo-
calization operator on a bounded region, we can choose an enlargement of the region
such that the local Gabor system over time-frequency points on the larger region sat-
isfies a frame-like inequality on the subspace. This would allow for the construction
of a time-frequency dictionary consisting of functions that are maximally concen-
trated in the region, and a family of these dictionaries forming a global frame. We
also study the random sampling of functions that are localized in a region in the
time-frequency plane. We determine the probability that a sampling inequality holds
for time-frequency localized functions using sampling points in the region of con-
centration. Lastly, we present two adaptive time-frequency based transforms - via
time-frequency localized subspaces and via nonstationary Gabor frames, and present
their advantages in audio signal processing. We show that applying an approximate
projection onto the time-frequency localized subspaces exhibits a reduction in the
error in reconstructing a signal from the corresponding analysis coefficients. For non-
stationary Gabor frames, we show that perfect reconstruction is easily realizable in
the painless case, and we illustrate its applications in signal processing, e.g. obtaining
an invertible constant-Q transform.
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit dem Studium Zeit-Frequenz-lokalisierter
Funktionen, insbesondere deren Abtastung, Approximation und Rekonstruktion im
Gabor Kontext, sowie der Konstruktion adaptiver Transformationen und deren Ver-
wendung zur Verarbeitung von Audiosignalen. Zeit-Frequenz-Lokalisierungsoperator-
en liefern unsWerkzeuge zur Beschreibung der Konzentration, beziehungsweise Lokali-
sation, von Funktionen in einer gewissen Region der Zeit-Frequenz-Ebene. Wir
charakterisieren die Konzentration einer Funktion in solchen Regionen und vergle-
ichen unterschiedliche Lokalisationsmaße, um schliesslich die Approximation Zeit-
Frequenz-lokalisierter Funktionen durch lokale Gaborsysteme zu untersuchen. In
einem geeigneten Maß der Zeit-Frequenz-Lokalisation knnen wir den Approxima-
tionsfehler nach oben abschtzen. Insbesondere zeigen wir, dass Funktionen, welche
in einem von den Eigenfunktionen eines Lokalisierungsoperators generierten Unter-
raum liegen, in folgendem Sinne durch lokale Gaborsysteme beschrieben werden kn-
nen: Vergrern wir die durch den Lokalisierungsoperator beschriebene Zeit-Frequenz-
Region ausreichend, so erfllt das auf diese vergrerte Region eingeschrnkte lokale
Gaborsystem eine Art Frame-Ungleichung fr Funktionen im von den Eigenfunktio-
nen aufgespannten Unterraum. Dies erlaubt die Konstruktion von Zeit-Frequenz-
Systemen aus, bezglich einer bestimmten Region, maximal konzentrierten Funktio-
nen, so dass eine Familie solcher Funktionen ein globales Frame ist. Weiters un-
tersuchen wir die zullige Abtastung Zeit-Frequenz-lokalisierter Funktionen und bes-
timmen die Wahrscheinlichkeit, mit welcher fr solche lokalisierten Funktionen eine
Sampling-Ungleichung gilt, abhngig von der Region der Lokalisierung. Auerdem
prsentieren wir zwei Methoden zur Konstruktion adaptiver, Zeit-Frequenz-basierter
Transformationen durch (a) Zeit-Frequenz-lokalisierte Unterrume und (b) nichtsta-
tionre Gaborsysteme, sowie ihre Vorteile im Kontext der Audiosignalverarbeitung.
Wir zeigen, dass nherungsweise Projektion auf Zeit-Frequenz-lokalisierte Unterrume
zu einer Verminderung des Rekonstruktionsfehlers bezglich der zugehrigen Analyseko-
effizienten fhrt. Auerdem diskutieren wir die Konstruktion nichtstationrer Gaborsys-
teme mit fehlerloser Rekonstruktion und ihre Anwendung in der Signalverarbeitung,
unter anderem am Beispiel einer invertierbaren Constant-Q Transformation.
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Introduction

Background and overview

Time-frequency localization is an ongoing active topic of research in harmonic
analysis. While it is well known that no nontrivial function can be compactly sup-
ported simultaneously in time and frequency, functions that exhibit some localization
in a compact region in the time-frequency plane have been studied using operators
which localize a function’s time-frequency content on bounded regions in the time-
frequency plane. Landau, Slepian, and Pollak considered operators composed of
consecutive time- and band-limiting steps, cf. [87, 73, 74], that yield the well-known
prolate spheroidal functions as eigenfunctions. These functions satisfy some optimal-
ity in concentration in a rectangular region in the time-frequency domain.

In [25], Daubechies introduced time-frequency localization operators obtained by
restricting the integral in the inversion formula to a subset of R2. The eigenfunctions
and eigenvalues of these operators have been studied in [82, 47, 29]. The study of the
properties of time-frequency operators and its connection with other mathematical
topics have been a continued topic of research, e.g. [95, 23, 1, 57].

We make use of time-frequency localization operators to describe a function’s local
time-frequency content, and we compare and relate this measure of time-frequency
concentration with measures that use a sharp cutoff in time and in frequency. As in
the case of the prolate spheroidal wave functions, the eigenfunctions of time-frequency
localization operators are somehow maximally concentrated in time-frequency in the
region being considered. We investigate how a function that satisfies a localization
criterion can be characterized by these eigenfunctions. Since the eigenfunctions are
optimally concentrated in the region, we also show how a given time-frequency lo-
calized function can be approximated by its projection onto a subspace spanned by
a finite number of these eigenfunctions. Such projection onto a time-frequency lo-
calized subspace is comparable to the method of time-varying filtering using Wigner
distribution synthesis techniques, cf. [60].

Using Gabor frames, we also obtain local representations of time-frequency local-
ized functions. That is, we approximate such functions using a local Gabor sampling
set, namely, those which are inside some larger cover of the given region. This is
influenced by the approximation result formulated by Daubechies in a seminal paper
[26]. Similar estimates were also established in [80]. In contrast, the truncated Gabor
expansions we use are over more general regions, i.e. not just a rectangular region.
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2 INTRODUCTION

Moreover, the error bounds to be used are in terms of time-frequency localization
measure.

Sampling and time-frequency localization via time- and band-limiting operators
were studied in [90, 63]. We likewise consider the approximation of time-frequency
localized functions via eigenfunctions of a time-frequency localization operator from
the local samples.

In [9], the problem of random sampling of band-limited functions was considered
and the probability of obtaining a sampling inequality for band-limited functions
was estimated. We also investigate the random sampling of time-frequency localized
functions and estimate the probability that a sampling inequality holds involving only
the relevant samples.

Families of time-frequency localization operators and coverings of the time-frequen-
cy plane can be used to construct global frames that satisfy some local properties,
cf. [36, 39, 40]. Projection of the local Gabor system onto a subspace spanned by a
finite number eigenfunctions of a time-frequency localization operator allows a con-
struction of a time-frequency dictionary consisting of functions that are maximally
concentrated in the region. By taking a family of such time-frequency dictionaries,
we are also able to obtain an global adaptive frame for L2(R).

Adaptive time-frequency representations provide an alternative to the fixed res-
olution inherent in Gabor frames. Such works on adaptive representations include
designing building blocks that adapt to specific signals, or having more flexible tilings
of the time-frequency plane that yield different resolutions in different areas of the
plane, cf. [94, 69, 34] among others.

Using the local Gabor systems and approximate projections onto the time-frequen-
cy localized subspaces, we obtain adaptive analysis-synthesis systems, cf. [41], that
would provide the desired resolution in various frequency bands and at the same time
provide arbitrarily good reconstruction quality. Numerical results will be compared
to an adaptive method proposed in [77].

We also present the work on nonstationary Gabor frames [89, 7], that allow for
adaptivity in time or in frequency. We show that for the painless case, the transform
is perfectly invertible. We then show how the nonstationary Gabor frames can be used
in signal processing applications, e.g. obtaining an invertible constant-Q transform.
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Structure and contributions

Chapter 1 recalls some basic concepts on Fourier, time-frequency, and Gabor anal-
ysis. In Chapter 2, we review and summarize some aspects of time-frequency local-
ization and prove some new observations. Chapter 3 deals with the approximation of
time-frequency localized functions, wherein we obtain some theoretical estimates, and
illustrate the results with numerical examples. Chapter 4 is concerned with the local
random sampling of the STFT of time-frequency localized functions. In Chapter 5,
we present two adaptive time-frequency representations, via approximate projections
onto subspaces of eigenfunctions and via nonstationary Gabor frames, in a theoretical
setting and with numerical experiments.

The following is a summary of the contributions from this research work:

• We use a time-frequency localization operator in measuring a function’s local
time-frequency content in a bounded region Ω in the time-frequency plane
and prove a result that relates the concentration of f and f̂ on intervals with
the time-frequency concentration of f on a rectangle (Section 2.3.1).

• We prove a characterization of the function’s time-frequency concentration Ω
using eigenfunctions and eigenvalues of a time-frequency localization operator
on Ω (Section 2.3.2).

• We obtain an approximation of a function localized in Ω by its projection
onto the subspace generated by a finite number eigenfunctions of a time-
frequency localization operator on Ω and obtain error bounds in terms of the
time-frequency concentration of f in Ω (Section 2.3.2).

• We obtain an approximation of a function localized in Ω using a local Gabor
system and obtain error bounds in terms of the function’s time-frequency
concentration in Ω (Section 3.1).

• We show that if a function lies on a subspace generated by eigenfunctions of
a time-frequency localization operator, we can choose an enlargement of Ω
such that the local Gabor system over time-frequency points on the larger
region satisfies a frame-like inequality on the subspace (Section 3.2). We also
present numerical results that exhibit the dependence of the approximation
error on the enlargement of the region and the number of sampling points,
and the performance of a reconstruction algorithm (Section 3.4).

• By projecting the local Gabor system onto a subspace spanned by a finite
number eigenfunctions of a time-frequency localization operator, we obtain
a time-frequency dictionary consisting of functions that are maximally con-
centrated in the region. And by considering a family of such time-frequency
dictionaries such that the union of the regions cover the time-frequency plane,
we are also able to obtain an adaptive frame for the whole L2(R) (Section 3.3).
We also present numerical results that show the dependence of the condition
numbers of the resulting frame operators from the time-frequency dictionary
on the amount of overlap used between adjacent regions, and compare them
with frame operators arising from quilted Gabor frames [34] (Section 3.4).
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• We study the random sampling of time-frequency localized functions and
estimate the probability that a sampling inequality holds using only the
relevant samples from the region of concentration, analogous to the results
in [9, 10] (Chapter 4).

• We make use of time-frequency localization operators corresponding to the
desired partition into frequency bands. At the same time, the windows can
also change over time as desired. Using approximate projections onto sub-
spaces generated by the eigenvectors which are best-concentrated in each
frequency band and time interval, we naturally obtain a smooth transition
between adjacent frequency bands and time intervals. We provide some of
numerical results in comparison to the method proposed in [77] (Section 5.1).
This work has been published in [41]

• We obtain an adaptive time-frequency representation via nonstationary Ga-
bor frames, and show invertibility in the painless case. We also present ef-
ficient implementations of the nonstationary Gabor transform in automatic
adaptation to transients and in the construction of an invertible constant-Q
transform (Section 5.2). This work has been published in [89, 7]



CHAPTER 1

Preliminaries

In this chapter, we recall some basic definitions and concepts that will be used
in the succeeding chapters. We review the basics of Fourier analysis, the short-time
Fourier transform, and Gabor theory.

For a function f in Rd,
∫
Rd f(t) dx is the usual Lebesgue integral on Rd. For a

measurable set E ⊆ Rd, its measure is |E| =
∫
Rd χE(x) dx, where χE denotes the

characteristic function on E. If p ∈ [1,∞), the integral

(∫

Rd

|f(x)|p dx
)1

p

is the Lp-norm, ‖f‖p, of f , and Lp(Rd), or simply Lp is the Banach space of all
measurable functions such that ‖f‖p < ∞. If p = ∞, the space L∞(Rd) consists of
essentially bounded measurable functions. Here, we take ‖f‖∞ = ess supx∈Rd|f(x)|.

The space L1(Rd) is also referred to as the space of integrable functions, while
L2(Rd) is referred to as the space of square integrable functions. Moreover, L2(Rd) is
a Hilbert space with inner product

〈f, g〉 =
∫

Rd

f(x)g(x) dx.

A Banach space is said to be separable if it contains a countable dense subset.
The spaces Lp(Rd) are separable for any p ∈ [1,∞).

Given a collection {gk}k∈N in a Banach space and scalars {ck}k∈N, we say the series

f =
∑

k∈N
ck gk =

∞∑

k=1

ck gk

converges and is equal to f if
∥∥∥∥∥f −

N∑

k=1

ck gk

∥∥∥∥∥ −→ 0 as N → ∞.

We note that the ordering of the terms is important; if the order of indices is changed,
we are not guaranteed the convergence of the series. If the convergence of the series
does not depend on the order of the terms, then it is called unconditionally conver-
gence, otherwise it is called conditional convergence.

5



6 1. PRELIMINARIES

1.1. Fourier transform

We recall in this section some basic definitions and properties of the Fourier trans-
form. For more details and proofs, one may refer to [54].

The Fourier transform of a function f ∈ L1(Rd) is defined as

Ff(ω) = f̂(ω) =

∫

Rd

f(t) e−2πω·t dt, ω ∈ Rd. (1.1)

Lemma 1.1 (Riemann-Lebesgue). If f ∈ L1(Rd), then f̂ is uniformly continuous

and lim
|ω|→∞

|f̂(ω)| = 0.

If we let C0(Rd) denote the Banach space of continuous functions vanishing at
infinity, then from Lemma 1.1, we get the following mapping property of the Fourier
transform:

F : L1(Rd) −→ C0(Rd).

Theorem 1.2 (Plancherel). If f ∈ L1(Rd) ∩ L2(Rd), then

‖f‖2 = ‖f̂‖2. (1.2)

As a consequence of Theorem 1.2, F extends to a unitary operator on L2(Rd) and
satisfies Parseval’s formula

〈f, g〉 = 〈f̂ , ĝ〉, for all f, g ∈ L2(Rd). (1.3)

An interpretation of Plancherel’s theorem in signal analysis is that the Fourier
transform is an energy-preserving transform.

Theorem 1.3 (Hausdorff-Young). Let 1 ≤ p ≤ 2 and let p′ be such that
1

p
+

1

p′
= 1.

Then F : Lp(Rd) → Lp
′

(Rd) and ‖f̂‖p′ ≤ ‖f‖p.

The convolution of two functions f, g ∈ L1(Rd) is the function f ∗ g defined by

(f ∗ g)(x) =
∫

Rd

f(y)g(x− y) dy. (1.4)

The norm and Fourier transform of a convolution of two functions satisfy the following
properties:

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1; (1.5)

(̂f ∗ g) = f̂ · ĝ and (̂f · g) = f̂ ∗ ĝ (1.6)

Theorem 1.4 (Young). If f ∈ Lp(Rd) and g ∈ Lq(Rd) and
1

p
+

1

q
= 1 +

1

r
, then

f ∗ g ∈ Lp(Rd) and

‖f ∗ g‖r ≤ (ApAqAr′)
d‖f‖p‖g‖q, (1.7)
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where Ap =

(
p1/p

p′1/p
′

)1/2

.

The involution f ∗ of f is defined by

f ∗(x) = f(−x) (1.8)

and the reflection operator I by

If(x) = f(−x). (1.9)

It follows that

f̂ ∗ = f̂ and Îf = If̂ . (1.10)

Using this notation, the convolution operator can be written as

(f ∗ g)(x) = 〈f,Txg
∗〉, (1.11)

if both sides are defined.

Theorem 1.5 (Inversion formula). If f ∈ L1(Rd) and f̂ ∈ L1(Rd), then

f(x) =

∫

Rd

f̂(ω)e2πix·ωdω, for all x ∈ Rd. (1.12)

We consider two operators that occur frequently in the study of time- and frequency-
representations of signals. Suppose T and F are subsets of Rd with finite measure.
The time-limiting operator QT is given by

QTf(t) = χT (t)f(t), (1.13)

while the band-limiting operator QF is given by

PFf(t) =

∫

F

f̂(ω)e2πiω·t dω = F−1(χF f̂)(t). (1.14)

We note that both operators are orthogonal projections on L2(Rd). We say that f is
time-limited to T if f(t) = QTf(t). Similarly, we say that f is band-limited to F if
f(t) = PFf(t).

1.2. The short-time Fourier transform

In this section, we discuss the short-time Fourier transform and mention some of
its properties. The transform is designed to represent a function combining the time
and frequency information at the same-time. The book [55] provides an excellent
reference to the area of time-frequency (TF) analysis using the short-time Fourier
transform as a main tool.

Before we define the short-time Fourier transform, we would need the following
operators. The translation and modulation operators are given by

Txf(t) = f(t− x) and Mωf(t) = f(t) e2πiω·t, (1.15)
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where t, x, ω ∈ Rd. Together, they form a time-frequency shift operator π(z), z =
(x, w) ∈ R2d, given by

π(z)f(t) = f(t− x) e2πiω·t. (1.16)

Definition 1.6. Let ϕ be a non-zero function in L2(Rd), called the window function.
The short-time Fourier transform (STFT) of a function f with respect to ϕ is defined
as

Vϕf(x, ω) =
∫

Rd

f(t)ϕ(t− x) e−2πit·ωdt, (1.17)

where x, ω ∈ Rd.

The following lemma shows some equivalent forms of the STFT.

Lemma 1.7. If f, ϕ ∈ L2(Rd), then the STFT is uniformly continuous on R2d and

Vϕf(x, ω) = F(f ·Txϕ)(ω) (1.18)

= 〈f,MωTxϕ〉 = 〈f, π(z)ϕ〉
= 〈f̂ ,TωM−xϕ̂〉

Remark 1.8. Expressing the STFT in the form Vϕf(z) = 〈f, π(z)ϕ〉 is useful in
extending it for f lying in a Banach space B, where 〈·, ·〉 is defined by some form of
duality. For instance, Vϕ is well defined for all f in the space of tempered distributions
S ′(Rd), provided that ϕ is in the Schwartz space S(Rd).

Lemma 1.9 (Covariance Property). Whenever Vϕf is defined, we have

Vϕ(TuMηf)(x, ω) = e−2πiu·ωVϕf(x− u, ω − η) (1.19)

for x, u, ω, η ∈ R2d. In particular,

|Vϕ(TuMηf)(x, ω)| = |Vϕf(x− u, ω − η)|. (1.20)

Theorem 1.10 (Orthogonality relations for STFT). Let f1, f2, ϕ1, ϕ2 ∈ L2(Rd).
Then Vϕj

fj ∈ L2(R2d) for j = 1, 2, and

〈Vϕ1f1,Vϕ2f2〉L2(R2d) = 〈f1, f2〉〈ϕ1, ϕ2〉.
Corollary 1.11. If f, ϕ ∈ L2(Rd), then

‖Vϕf‖2 = ‖f‖2‖ϕ‖2.
In particular, if ‖ϕ‖2 = 1, then

‖f‖2 = ‖Vϕf‖2, for all f ∈ L2(Rd). (1.21)

In this case, the STFT is an isometry from L2(Rd) into L2(R2d).

Corollary 1.12 (Inversion formula for the STFT). Suppose that ϕ, γ ∈ L2(Rd) and
〈ϕ, γ〉 6= 0. Then for all f ∈ L2(Rd)

f =
1

〈γ, ϕ〉

∫∫

Rd

Vϕf(z) π(z)γdz. (1.22)
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The inversion formula for the STFT is well defined in the weak sense for all
f ∈ L2(Rd) for windows γ, ϕ with 〈γ, ϕ〉 6= 0. Weisz [91] proved the convergence of
the Riemann sums of the inverse STFT of f under some conditions in the window
functions.

Given a non-zero window ϕ and a function F on R2d. The formal adjoint V∗
ϕ of

Vϕ is given by

V∗
ϕF =

∫∫

R2d

F (z) π(z)ϕdz, (1.23)

where the integral is defined weakly by

〈V∗
ϕF, f〉 =

∫∫

R2d

F (z)〈π(z)ϕ, f〉 dz

=

∫∫

R2d

F (z)Vϕf(z) dz

= 〈F,Vϕf〉.

We have the following pointwise estimate on the STFT of V∗
ϕF :

Lemma 1.13. [55, Proposition 11.3.2] Let ϕ be a non-zero window function and let
F be a function on R2d. Then

|Vϕ(V∗
ϕF )(x, ω)| ≤ (|Vϕϕ| ∗ |F |)(x, ω), (1.24)

for all (z) ∈ R2d.

Proof :

VϕV∗
ϕF (x, ω) = 〈V∗

ϕF,MωTxϕ〉

=

∫∫

R2d

F (t, ξ)Vϕ(MωTxϕ)(t, ξ)dtdξ

=

∫∫

R2d

F (t, ξ)Vϕϕ(x− t, ω − ξ)e−2πit·(ω−ξ) dtdξ.

By taking the absolute value of each side, the conclusion is obtained.

Definition 1.14. Let ϕ ∈ L2(Rd) be a window function with ϕ‖2 = 1. The spectro-
gram of f with respect to ϕ is defined to be

SPECϕ f(z) = |Vϕf(z)|2.

From the definition, the spectrogram SPECϕ f is non-negative. Moreover, by
Lemma 1.9, it is covariant, and by Corollary 1.11, it is energy-preserving, i.e.

SPECϕ(TuMηf) = SPECϕ f(x− u, ω − η),∫∫

R2d

SPECϕ f(z) dz = ‖f‖22.
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Definition 1.15. Let 1 ≤ p, q ≤ ∞. The mixed-norm space Lp,q(R2d) is the space of
all measurable functions on R2d such that the norm

‖F‖Lp,q =

(∫

Rd

(∫

Rd

|F (x, ω)|p dx
)q/p

dω

)1/q

,

with the usual modification for p = ∞ or q = ∞, is finite.

Note that Lp,p(R2d) = Lp(R2d). We consider now the functions whose STFT lies
in the mixed-norm space Lp,q(Rd).

Definition 1.16. Let ϕ be a nonzero function in S(Rd). The modulation space
Mp,q(Rd) is given by

Mp,q(Rd) = {f ∈ S ′(Rd) : Vϕf ∈ Lp,q(Rd)}.

If p = q, then we write Mp(Rd) for Mp,p(Rd).

The modulation space Mp,q(Rd) is a Banach space equipped with the norm
‖f‖Mp,q := ‖Vϕf‖Lp,q , where a different choice for ϕ yields an equivalent norm. Since
the STFT is an isometry from L2(Rd) into L2(R2d), then M2(Rd) = L2(Rd). The
space M1(Rd), consisting of functions whose STFT is integrable, coincides with Fe-
ichtinger’s algebra S0(R

d), cf. [45]. It is the smallest Banach space that is invariant
under modulations and translations. We recall some of its characterizations, cf. [55,
Proposition 12.1.2].

Proposition 1.17. The following conditions are equivalent:

(1) f ∈ S0(R
d).

(2) f ∈ L2(Rd) and for one/all g ∈ S(Rd), we have Vgf ∈ L1(R2d).
(3) f ∈ L2(Rd) and for one/all g ∈ S0(R

d), we have Vgf ∈ L1(R2d).

In the discussion of time-frequency localization operators, which are obtained by
restricting the inversion formula for the STFT, in Chapter 2, properties of compact
operators will come into play. We recall some characterizations and properties (cf.
[84, 22]). Here, H, H1, and H2 are complex separable Hilbert spaces.

Definition 1.18. The operator T : H1 → H2 is called compact if the image of the
closed unit ball in H1 has compact closure in H2.

We will make use of the following properties of compact operators.

Theorem 1.19. (1) If T : H → H is compact and L : H → H is bounded,
then TL and LT are compact.

(2) Suppose T : H → H is a bounded operator. If ‖Txn‖H → 0 whenever
xn → 0 weakly, i.e. 〈xn, h〉 → 0 for any h ∈ H, then T is compact.
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Theorem 1.20 (Spectral theorem for compact self-adjoint operators). Let T : H →
H be a compact self-adjoint operator. Then there exists a sequence {αk}k∈N of real
numbers and a corresponding orthonormal sequence {ψk}k∈N in H such that

(1) lim
k→∞

αk = 0,

(2) Tψk = αkψk for every k ∈ N, i.e. each ψk is an eigenfunction of T with
eigenvalue αk, and

(3) Tf =
∞∑

k=1

αk〈f, ψk〉ψk for every f ∈ H, where the series converges in the

norm of H.

Definition 1.21. Let T : H → H be a compact operator and let {sk}k∈N be
the sequence of singular values of T (square roots of the eigenvalues of the non-
negative self-adjoint operator T ∗T ). The operator T belongs to the Schatten p-class
if {sk}k∈N ∈ ℓp(N). The set of all Schatten p-class operators is denoted by Sp(H). If
p = 1, then T is called a trace class operator. If p = 2, then T is called a Hilbert-
Schmidt operator.

A criterion for T to be trace class is given in the following theorem.

Theorem 1.22. A compact operator T : H → H belongs to the trace class S1(H) if
and only if ∑

k∈N
|〈Tek, ek〉| <∞

for every orthonormal basis {ek}k∈N of H. In this case,

‖T‖S1 = sup
{ek}k∈N ONB

∑

k∈N
|〈Tek, ek〉|.

1.3. Gabor frames

Frames are a generalization of bases that offer added flexibility because of its
redundancy. They were introduced by Duffin and Schaeffer in [43], and have since
become an important tool in mathematics. Frames consisting of time-frequency shifts
of a single function are called Gabor frames. For a more detailed discussion on frames,
we recommend the books by Christensen [19, 20]. A good reference on Gabor frames
is [49] and its sequel [50].

Definition 1.23. A sequence {fi}i∈I in a separable Hilbert space H is called a frame
if there exist constants A, B > 0 such that for all f ∈ H

A‖f‖2 ≤
∑

i∈I
|〈f, fi〉|2 ≤ B‖f‖2. (1.25)

Any such constants A and B are called frame bounds. If A = B, then the sequence
{fi}i∈I is called a tight frame.
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Remark 1.24. If there exists B > 0 such that at least just the right-hand inequality
in (1.25) is satisfied, then {fi}i∈I is called a Bessel sequence

Remark 1.25. An orthonormal basis is a normalized tight frame with A = B = 1.

Definition 1.26. Let {fi}i∈I ⊆ H. The coefficient operator or analysis operator C
is defined by

Cf = {〈f, fi〉}i∈I .
The reconstruction operator or synthesis operator D is defined by

Dc =
∑

i∈I
cifi ∈ H,

for a finite sequence c = {ci}i∈I . The frame operator is defined on H by

Sf =
∑

i∈I
〈f, fi〉fi.

Proposition 1.27. Let {fi}i∈I be a frame for H with frame bounds A,B > 0.

(1) C is a bounded operator from H into ℓ2(I) with closed range.
(2) The operators C and D are adjoint to each other, i.e. D = C∗. Conse-

quently, D extends to a bounded operator from ℓ2(I) into H and satisfies
∥∥∥
∑

i∈I
cifi

∥∥∥ ≤ B
1
2‖c‖2.

(3) If f =
∑

i∈I cifi for some c ∈ ℓ2(I), the for every ε > 0 there exists a finite
subset F0 ⊂ I such that∥∥∥f −

∑

i∈F
cifi

∥∥∥ < ε for all finite subsets F ⊇ F0,

i.e.
∑

i∈I cifi converges unconditionally to f ∈ H.
(4) The operator S = C∗C = DD∗ maps H onto H and is a positive invertible

operator.
(5) The sequence {S−1fi}i∈I is a frame, called the dual frame, with bounds

B−1, A−1 > 0.
(6) Every f ∈ H has nonorthogonal expansions

f =
∑

i∈I
〈f,S−1fi〉fi and f =

∑

i∈I
〈f, fi〉S−1fi, (1.26)

where both sums converge unconditionally in H.

For tight frames, the frame operator becomes S = AI. They have the advantage
of having the same functions for analysis and synthesis.

The series expansion in Proposition 1.27(6) is useful if one can obtain the dual
frames explicitly. Usually, it is more convenient to apply the following iterative
method, called the frame algorithm, in reconstructing a function from its analysis
coefficients.
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Frame algorithm: Given a relaxation parameter 0 < λ <
2

B
, set δ = max{|1−λA|, |1−

λB|} < 1. Let f0 = 0 and define recursively

fn+1 = fn + λS(f − fn). (1.27)

Then lim
n→∞

fn = f with a geometric rate of convergence, i.e.

‖f − fn‖2 ≤ δn‖f‖2.
Definition 1.28. A sequence {fi}i∈I in a Hilbert space H is called a Riesz sequence,
if and only if there exist constants A′, B′ > 0 such that the inequalities

A′‖c‖2 ≤
∥∥∥
∑

i∈I
cifi

∥∥∥ ≤ B′‖c‖2 (1.28)

hold for all finite sequences c = {ci}i∈I . For a Riesz sequence, the coefficients in the
frame expansions (1.26) are unique. A Riesz sequence is called a Riesz basis for H if
span{fi}i∈I = H.

We now consider a special type of frames called Gabor frames.

Definition 1.29. Given a non-zero window function g ∈ L2(Rd) and lattice Λ ∈ R2d,
the set of time-frequency shifts

G(g,Λ) = {gλ := π(λ)g : λ ∈ Λ} (1.29)

is called a Gabor system. If such a Gabor system is a frame for L2(Rd), then it is
called a Gabor frame.

The Gabor frame operator has the form

Sf =
∑

λ∈Λ
〈f, π(λ)g〉π(λ)g. (1.30)

If we want to emphasize the dependence on the window ϕ in (1.30), we write Sg,g
instead of S.

Proposition 1.30. If G(g,Λ) is a frame for L2(Rd), then there exists a dual window
γ ∈ L2(Rd) such that the dual frame of G(g,Λ) is G(γ,Λ). Every f ∈ L2(Rd) can be
represented as

f =
∑

λ∈Λ
〈f, π(λ)g〉π(λ)γ (1.31)

=
∑

λ∈Λ
〈f, π(λ)γ〉π(λ)g. (1.32)

The representation (1.31), or equivalently (1.32), is called the Gabor expansion of
f ∈ L2(Rd).

Corollary 1.31. If G(g,Λ) is a frame for L2(Rd) with dual window γ = S−1g ∈
L2(Rd), then the inverse frame operator is given by

S−1
g,gf = Sγ,γf =

∑

λ∈Λ
〈f, π(λ)γ〉π(λ)γ.



14 1. PRELIMINARIES

For a separable lattice Λ = aZd × bZd, with lattice parameters a and b, we also
write G(g,Λ) as G(g, a, b). We next mention some results concerning the density of
Gabor frames over a separable lattice.

Corollary 1.32. (1) If G(g, a, b) is a frame for L2(Rd), then ab ≤ 1.
(2) The Gabor system G(g, a, b) is a frame for L2(Rd) and ab = 1 if and only if

G(g, a, b) is a Riesz basis for L2(Rd).
(3) The Gabor system G(g, a, b) is an orthonormal basis for L2(Rd) if and only

if G(g, a, b) is a tight frame, ‖g‖2 = 1 and ab = 1.

In some special cases, the Gabor frame operator can be simplified obtaining ex-
plicit simple examples of Gabor frames. An example is the following “painless non-
orthogonal expansion,” cf. [28].

Theorem 1.33. Suppose that g ∈ L∞(Rd) is supported on the cube QL = [0, L]d. If

a ≤ L and b ≤ 1

L
, then the frame operator is the multiplication operator

Sf(x) =

(
1

b

∑

k∈Zd

|g(x− ak)|2
)
f(x).

Consequently, G(g, a, b) is a frame with frame bounds
A

bd
and

B

bd
if and only if

A ≤
∑

k∈Zd

|g(x− ak)|2 ≤ B a.e. (1.33)

Furthermore, G(g, a, b) is a tight frame if and only if
∑

k∈Zd |g(x − ak)|2 =constant
almost everywhere.

If Λ is not necessarily a lattice, but a general countable subset of R2d, we say that
the set G(g,Λ) = {π(λ)g : λ ∈ Λ} is an irregular Gabor system. If it is a frame,
then we say that G(g,Λ) is an irregular Gabor frame. Christensen, Deng, and Heil
[21] provide some necessary density conditions on the set of points Λ for the Gabor
system G(g,Λ) to be a frame.

For z = (t, ω) ∈ R2d, we denote by Qh(z) the unit cube in R2d centered at z with
side lengths h, i.e.

Qh(z) =
d∏

k=1

[t1 − h/2, t1 + h/2)×
d∏

k=1

[ωk − h/2, ωk + h/2).

We also write Q(z) = Q1(z).

Definition 1.34. Let Λ = {λk}k∈I be a countable set of points in R2d.

(1) Λ is said to be separated if inf
j 6=k

|λj − λk| > 0. Any constant δ > 0 such

|λj − λk| > 0, j 6= k, is called a separation constant.
(2) Λ is said to be relatively separated if it is a finite union of separated sets of

points.



1.3. GABOR FRAMES 15

We denote by ν+(h) and ν−(h) the largest and smallest number of points in Λ
that lie in any cube Qh(z), i.e.

ν+(h) = sup
z∈R2d

#(Λ ∩Qh(z)), ν−(h) = inf
z∈R2d

#(Λ ∩Qh(z)),

and we define the upper and lower Beurling densities of Λ as

D+(Λ) = lim sup
h→∞

ν+(h)

h2d
and D−(Λ) = lim inf

h→∞
ν−(h)
h2d

,

respectively. If D+(Λ) = D−(Λ), then Λ is said to have uniform Beurling density

D(Λ) = D+(Λ) = D−(Λ).

A characterization of the density of Λ and the separation of its points can be seen
in [19] stated as follows.

Lemma 1.35. [19, Lemma 7.1.3] Let Λ be a countable subset of R2d. The following
are equivalent:

(1) D+(Λ) <∞
(2) Λ is relatively separated.
(3) For some (and therefore every) h > 0, there is an Nh(Λ) ∈ N such that

sup
m∈Z2d

#(Λ ∩Qh(hm)) < Nh.

Definition 1.36. The Wiener amalgam space W (Lp, ℓq), 1 ≤ p, q ≤ ∞ is the Banach
space of all measurable functions f with norm

‖f‖W (Lp,ℓq) =
∥∥∥‖f · χQ(·)‖Lp

∥∥∥
ℓq
<∞.

A sampling estimate for functions in the Wiener amalgam space was shown e.g. in
[52, Lemma 3.2.11]. A similar proof can be used to show that it holds in the irregular
case as well, cf. [6].

Lemma 1.37. [6, Proposition 2.2.3] Let Λ be a relatively separated set in R2d. Then
there is a constant CΛ = N1(Λ) such that for all p ∈ [1,∞),

∑

λ∈Λ
|f(λ)|p ≤ CΛ‖f‖W (L∞,ℓp)

for all continuous functions f ∈ W (L∞, ℓp).

Lemma 1.37 above can be used to show that a Bessel condition for the Gabor
system G(g,Λ), cf. [6].
Theorem 1.38. [6, Theorem 2.2.6] Let g ∈ S0 and let Λ be a relatively separated set
in R2d. Then the Gabor system G(g,Λ) forms a Bessel sequence in L2(Rd), i.e. there
exists B > 0 such that for all f ∈ L2(Rd),

∑

λ∈Λ
|Vgf(λ)|2 ≤ B ‖f‖22.
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Remark 1.39. A suitable choice for B is

B = N1(Λ)‖Vϕ0ϕ0‖W (L∞,ℓ1)‖g‖2S0
Cg,ϕ0, (1.34)

where ϕ0 is the Gaussian window ϕ0(t) = e−πt
2
and Cg,ϕ0 = sup

{
C > 0 :

∑
n∈N |bn| ≤

C‖g‖S0 , g =
∑

n∈N bnMηmTymϕ0

}
.

We mention the result of Feichtinger and Gröchenig in [46] that provides conditions
for an irregular Gabor frame.

Theorem 1.40. [46, Theorem 6.1] Let g ∈ S0. Then there is an open set U ∈ R2d

such that the Gabor system G(g,Λ) is a frame for L2(Rd) provided Λ is a relatively
separated and ∪λ∈Λ(λ+ U) = R2d.

1.4. Wavelet theory

Let ψ ∈ L2(R) and (α, β) ∈ R+ × R. We define the wavelet system by

ψα,β(t) =
1√
α
ψ

(
t− β

α

)
= TβDαψ, (1.35)

where Dα denotes the dilation operator given by Dαf(t) =
1√
α
f( t

α
).

The wavelet transform is then defined as

Wψf(α, β) = 〈f,TβDαψ〉 =
(
f ∗DαIψ

)
(β). (1.36)

If ψ is localized around τ0, then ψα,β(t) is centered at α · τ0 + β. The frequency

center is at η/α, where η is the center of ψ̂.



CHAPTER 2

Time-frequency localized functions

The uncertainty principle, in its several forms, sets a restriction on the time-
frequency behavior of a function. While a signal cannot have all its energy lying in
a compact region in the time-frequency plane, signals that have highly concentrated
time-frequency content are used in many applications.

Landau, Pollak, and Slepian, in [87, 73, 74, 86], developed the study of band-
limited functions that are concentrated on a finite time interval. They made use of
compositions of time- and band-limiting operators and considered the eigenvalue prob-
lem associated with these operators. They investigated concentrations of band-limited
functions on finite length intervals, and the “dimension” of the set of band-limited
signals that are approximately time-limited on an interval. The optimal orthogonal
system that represented band-limited and essentially time-limited functions consists
of the prolate spheroidal wave functions (PSWF). Among the results obtained is that
if f is essentially time-limited to [−T/2, T/2] and bandlimited to [−Ω,Ω], then it is
well approximated by its projection on the span of the first [2TΩ] PSWF eigenfunc-
tions of the operator P[−Ω,Ω]Q[−T/2,T/2].

The time-frequency localization operators that will be considered here would allow
for localization on more general regions of the time-frequency plane. They were
introduced and studied by Daubechies in [25], and Ramanathan and Topiwala in
[82]. These operators can be used to extract and localize components of a signal
from its representation in the time-frequency plane. They go by the names STFT
multipliers [48] or Toeplitz operators [30]. They have appeared in physics as tools in
quantization procedures [13] called anti-Wick operators, and in the approximation of
pseudodifferential operators [24].

These operators are built by restricting the integral in the inversion formula from
the STFT coefficients to a subset of R2d. Its properties, connections with other
mathematical topics, and applications have been covered in various works, e.g. [82,
47, 29, 95, 23, 1, 57, 39, 40].

We recall time-frequency localization operators and their properties, such as bound-
edness and compactness, and review eigenvalues and eigenfunctions of these operators.
Then we use these operators to measure the time-frequency content of functions on
the compact region. We likewise show that if a function is highly concentrated on a
compact region in the time-frequency plane, then it is well approximated on a sub-
space of eigenfunctions of a time-frequency localization operator. We also compare

17
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measures of localization from time-frequency localization operators and time- and
band-limiting operators. Most of the new results in this chapter and in Chapter 3 are
presented in the joint work with M. Dörfler [42].

2.1. Time-frequency localization operators and their properties

Definition 2.1. Let ϕ be a given window function and σ a bounded nonnegative
function on R2d. The time-frequency localization operator Hσ,ϕ with window ϕ and
symbol σ is formally defined as

Hσ,ϕf =

∫∫

R2d

σ(z)Vϕf(z)π(z)ϕdz = V∗σVf.

The integral is defined strongly e.g. in L2(Rd) if σ ∈ L1(Rd) and ϕ ∈ L2(Rd).
Indeed, if Kn ⊂ R2d, n ≥ 1 is a nested exhausting sequence of compact sets and if we
define fσn to be

fσn =

∫∫

Kn

σ(z)Vϕf(z)π(z)ϕdz,

then by the Cauchy-Schwarz inequality, we estimate for h ∈ L2(Rd) that

|〈fσn , h〉| =
∣∣∣∣
∫∫

Kn

σ(z)Vϕf(z)Vϕh(z) dz
∣∣∣∣

≤ ‖Vϕf‖∞‖Vϕh‖∞‖σ‖1
≤ ‖f‖2‖ϕ‖22‖h‖2‖σ‖1.

So for each n, fσn is a well-defined element of L2(Rd) with ‖fσn ‖2 ≤ ‖f‖2‖ϕ‖22‖σ‖1.
We estimate similarly that

|〈Hσ,ϕf − fσn , h〉| =
∣∣∣∣
∫∫

R2d

σ(z)Vϕf(z)Vϕh(z) dz −
∫∫

Kn

σ(z)Vϕf(z)Vϕh(z) dz
∣∣∣∣

=

∣∣∣∣
∫∫

Kc
n

σ(z)Vϕf(z)Vϕh(z) dz
∣∣∣∣

≤ ‖f‖2‖ϕ‖22‖h‖2
∫∫

Kc
n

|σ(z)| dz

Since this is true for all h ∈ L2(Rd), we have

‖Hσ,ϕf − fσn ‖2 = sup
‖h‖2=1

|〈Hσ,ϕf − fσn , h〉|

≤ ‖f‖2‖ϕ‖2
∫∫

Kc
n

|σ(z)| dz.

Since σ ∈ L1(Rd) the right-hand side approaches 0 as n increases.

We note that if σ ≡ 1 and ‖ϕ‖2 = 1, then by the inversion formula of the STFT,
Hσ,ϕf = f . If σ is compactly supported on Ω ⊆ R2d, then Hσ,ϕf is interpreted as the
part of f that lies essentially in Ω.



2.1. TIME-FREQUENCY LOCALIZATION OPERATORS AND THEIR PROPERTIES 19

It is usually more convenient to use the alternative weak definition of Hσ,ϕ given
by

〈Hσ,ϕf, g〉 = 〈σVϕf,Vϕg〉. (2.1)

This definition extends to symbols σ in S ′(Rd). Boundedness and Schatten class
properties of time-frequency localization operators between various spaces in terms
of properties of the symbol σ and the window ϕ have been studied in various works
such as [95, 48, 23, 15, 92, 11]. Some of their results are summarized in Table 1.

Symbol Window Localization Operator

L∞(R2d) L2(Rd) B(L2(Rd))

Lp(R2d), 1 ≤ p <∞ L2(Rd) Sp(L2(Rd))

M∞,∞(R2d) M1(Rd) = S0(R
d) B(Mp,q(Rd)), 1 ≤ p, q ≤ ∞

Mp,∞(R2d), 1 ≤ p <∞ M1(Rd) = S0(R
d) Sp(L2(Rd))

Table 1. Time-frequency localization operators and symbols and win-
dow functions

For the purpose of this research, we shall keep our focus on time-frequency local-
ization operators Hσ,ϕ with symbol σ = χΩ where χΩ is the characteristic function
on Ω, a compact set in R2d or at least a bounded set in R2d with |Ω| < ∞, and win-
dow function ϕ ∈ L2(Rd) with ‖ϕ‖2 = 1. In this case, we also write the localization
operator as HΩ,ϕ. Let us show the well-known boundedness, compactness, and trace
class properties of HΩ,ϕ, see e.g. [14, 95, 48].

Theorem 2.2. Let Ω be a compact region of R2d and ϕ ∈ L2(Rd), with ‖ϕ‖2 =
1. Then HΩ,ϕ is a bounded operator on L2(R2d) with norm ‖HΩ,ϕ‖B(L2(Rd)) ≤ 1.
Moreover, HΩ,ϕ is a compact operator and even trace class.

Proof : We first note that Vϕ and V∗
ϕ are bounded operators from L2(Rd) to L2(R2d)

and L2(R2d) to L2(Rd), respectively, with operator norm 1. For f ∈ L2(Rd),

‖HΩ,ϕf‖2 = ‖V∗
ϕ(χΩ · Vϕf)‖2

≤ ‖V∗
ϕ‖L2→L2‖χΩ‖∞‖Vϕ‖L2→L2‖f‖2

= ‖f‖2,
so HΩ,ϕ ∈ B(L2(Rd)) and ‖HΩ,ϕ‖B(L2(Rd)) ≤ 1.

We now show that HΩ,ϕ is a compact operator. We first denote by MΩ :
L2(Rd) → L2(Rd), F (z) 7→ (MΩF )(z) := χΩ(z) · Vϕ(z) the multiplication opera-
tor with the function χΩ. Since HΩ,ϕ = V∗

ϕMΩVϕ, and V∗
ϕ is bounded, it suffices to

show that MΩVϕ is compact.

Let {fn}n∈N be a sequence in L2(Rd) that is weakly convergent to 0. We show
that ‖MΩVϕfn‖2 → 0 as n→ ∞. We calculate

‖MΩVϕfn‖22 = ‖χΩVϕfn‖22 =
∫∫

R2d

|χΩ(z)|2|Vϕfn(z)|2 dz =
∫∫

Ω

|Vϕfn(z)|2 dz.
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Since {fn}n∈N converges weakly to 0, i.e. 〈fn, g〉 → 0 for every g ∈ L2(Rd), we have
for every z ∈ Ω, |Vϕfn(z)|2 = |〈fn, π(z)ϕ〉|2 → 0 as n → ∞. This means that the
integrand converges to 0 pointwise in Ω.

Recall that every weakly convergent sequence is norm bounded, i.e. there exists
a C > 0 such that ‖fn‖2 ≤ C for all n ∈ N. So

|Vϕfn(z)|2 ≤ ‖ϕ‖22‖fn‖22 ≤ C2.

By the Dominated Convergence Theorem, ‖MΩVϕfn‖22 → 0 as n→ 0. Hence, MΩVϕ
is compact, which implies that HΩ,ϕ is compact.

To show that HΩ,ϕ is trace class, we let {ek}∞k=1 be an arbitrary orthonormal basis
of L2(Rd), and we calculate

∞∑

k=1

|〈HΩ,ϕek, ek〉| =
∞∑

k=1

|〈V∗
ϕ(χΩ · Vϕek), ek〉|

=

∞∑

k=1

|〈χΩ · Vϕek,Vϕek〉|

=

∞∑

k=1

∣∣∣
∫∫

R2d

χΩ(z)Vϕek(z)Vϕek(z) dz
∣∣∣

=

∞∑

k=1

∫∫

Ω

|Vϕek(z)|2 dz

(Fubini)
=

∫∫

Ω

∞∑

k=1

|Vϕek(z)|2 dz

=

∫∫

Ω

∞∑

k=1

|〈ek, π(z)ϕ〉|2 dz

=

∫∫

Ω

‖π(z)ϕ‖22 dz = |Ω| ‖ϕ‖22 = |Ω|,

where the last line follows from the fact that {ek}∞k=1 is an orthonormal basis of
L2(Rd). Therefore, HΩ,ϕ is trace class with ‖HΩ,ϕ‖S1 = |Ω|.

The STFT of HΩ,ϕ, using (1.24), satisfies the following pointwise estimate:

|Vϕ(HΩ,ϕf)(z)| = |Vϕ(V∗
ϕ(χΩVϕf))(z)| ≤ (|Vϕϕ| ∗ (χΩ|Vϕf |))(z). (2.2)

The estimate above is useful in establishing the norm estimates involving HΩ,ϕf . For
instance, for σ = χΩ and ϕ ∈ S0(R

d), then HΩ,ϕ is a bounded operator say from
Mp(Rd) into Mp(Rd) (see Table 1) since (2.2) gives

‖HΩ,ϕf‖Mp(Rd) = ‖Vϕ(HΩ,ϕf)‖Lp(R2d)

≤ ‖|Vϕϕ| ∗ |χΩVϕf |‖Lp(R2d)
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≤ ‖Vϕϕ‖L1(R2d)‖χΩVϕf‖Lp(R2d) (Young’s inequality (1.7))

≤ ‖ϕ‖S0(Rd)‖Vϕf‖Lp(R2d) = C‖f‖Mp(R2d).

2.2. Eigenvalues and eigenfunctions

Since the time-frequency localization operator HΩ,ϕ = V∗
ϕχΩVϕ that we consider is

a compact and self-adjoint operator, the spectral theorem gives the following spectral
representation:

HΩ,ϕf =
∞∑

k=1

αk〈f, ψk〉ψk, (2.3)

where {αk}∞k=1 are the positive eigenvalues arranged in a non-increasing manner and
{ψk}∞k=1 is the corresponding orthonormal set of eigenfunctions.

The operator HΩ,ϕ is useful in studying the optimization problem

Maximize

∫∫

Ω

|Vϕf(z)|2 dz, ‖f‖2 = 1, (2.4)

which aims to look for the function that has a spectrogram that is well concentrated
in Ω. Since

〈HΩ,ϕf, f〉 =
∫∫

Ω

Vϕf(z)〈π(z)ϕ, f〉 dz =
∫∫

Ω

|Vϕf(z)|2 dz,

it follows that the first eigenfunction ψ1 satisfies

α1 = 〈HΩ,ϕψ1, ψ1〉 =
∫∫

Ω

|Vϕψ1(z)|2dz = max
‖f‖2=1

∫∫

Ω

|Vϕf(z)|2dz, (2.5)

which solves (2.4). Moreover, the min-max lemma for self-adjoint operators states
that

αk =

∫∫

Ω

|Vϕψk(z)|2 dz = max
f⊥ψ1,...,ψk−1, ‖f‖2=1

∫∫

Ω

|Vϕf(z)|2dz. (2.6)

So the eigenvalues of HΩ,ϕ determines the number of orthogonal functions that have
a well-concentrated spectrogram in Ω.

For the case where ϕ is a normalized Gaussian and Ω is a disk centered at the
origin, Daubechies [25] showed that the eigenfunctions of the corresponding time-
frequency localization operator are the Hermite functions. The behavior of the eigen-
values αk was also described including its exponential decay in the index k and the
width of the plunge region. It was shown that there are ≈ |Ω| eigenvalues greater

than or equal to
1

2
.

Figure 1 shows a disk in the time-frequency plane and the eigenvalues of the result-
ing time-frequency localization operator with a normalized Gaussian as the window
function. We see in Figure 2 the spectrograms of four eigenfunctions.
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Figure 1. A circular region and the eigenvalues of a time-frequency
localization operator
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Figure 2. Spectrograms of eigenfunctions of a time-frequency opera-
tor with Gaussian window over a circular region

We mention the standard estimate for the distribution of the eigenvalues of HΩ,ϕ,
which appears e.g. in [72]. The version presented in [2, Lemma 3.3] is the following:

∣∣∣#{k : αΩ
k > 1−δ}−|Ω|

∣∣∣ ≤ max
{
1

δ
,

1

1− δ

} ∣∣∣∣
∫

Ω

∫

Ω

|Vϕϕ(z − z′)|2 dz dz′ − |Ω|
∣∣∣∣ . (2.7)

Upon a dilation of the region Ω, it turns out that the number of eigenvalues of
close to 1 is asymptotically equal to the area of the region. Given a dilation rΩ of the
region, denote by αrΩk the kth eigenvalue of the time-frequency localization operator
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HrΩ,ϕ. The distribution of the eigenvalues satisfies

lim
r→∞

#{k : αrΩk > 1− δ}
|rΩ| = 1. (2.8)

The asymptotic distribution (2.8) was proved by Ramanathan and Topiwala in [82]
with the assumption that the region Ω has C1 boundary. Generalities and refinements
of the result appear in [47, 29, 58, 59, 2, 3].

We note that these properties on eigenvalues and eigenfunctions are analogous to
that of the localization operators of Landau, Pollak, and Slepian. For those local-
ization operators consisting of time- and band-limiting operators, the eigenfunctions
are the prolate spheroidal wave functions. Along with new results in time- and band-
limiting, the works of Landau, Pollak, and Slepian have been compiled in recent the
book [62].

2.3. Time-frequency concentration on a region

2.3.1. Localization measures. We consider various measures of a function’s
concentration in compact sets in Rd or in the time-frequency plane.

Definition 2.3. Let ϕ be a window function in L2(Rd) with ‖ϕ‖2 = 1, let T and F
be compact intervals in Rd, and let Ω be a compact subset of R2d.

(1) A function f ∈ L2(Rd) is ε-concentrated in T if∫

T

|f(t)|2 dt ≥ (1− ε)‖f‖22, (2.9)

or equivalently, ∫

T c

|f(t)|2 dt ≤ ε‖f‖22. (2.10)

If f̂ is ε-concentrated in F , then we also say that f is ε-band-limited in F .

(2) A function f ∈ L2(Rd) is (ε, ϕ)-concentrated in Ω if the time-frequency con-
centration EΩ,ϕ(f) given by

EΩ,ϕ(f) =
∫∫

Ω

|Vϕf(z)|2dz = 〈HΩ,ϕf, f〉,

satisfies
EΩ,ϕ(f) ≥ (1− ε)‖f‖22,

or equivalently, the time-frequency (concentration) remainder E rem
Ω,ϕ (f) satis-

fies
E rem
Ω,ϕ (f) := 〈(I −HΩ,ϕ)f, f〉 ≤ ε‖f‖22.

(3) A function f ∈ L2(Rd) is ε-localized with respect to an operator L if

‖Lf − f‖22 ≤ ε‖f‖22.
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Remark 2.4.

(1) If f is ε-concentrated in T , with 0 ≤ ε ≤ 1/4, then most of the energy of
f is concentrated in T . In this case, we also say that f is (ε-)essentially
concentrated/time-limited in T . Similarly, respective to the other defini-
tions, we also say that f is (ε-)essentially band-limited in F , (ε-)essentially
concentrated in Ω, (ε-)essentially localized with respect to L.

(2) In terms of the time-limiting operatorPT , f is ε-concentrated in T if and only
if f is ε-localized with respect to PT , i.e. ‖PTf − f‖22 ≤ ε‖f‖22. Similarly,
f is ε-band-limited in F if and only if f is ε-localized with respect to the
band-limiting operator QF , i.e. ‖QFf − f‖22 ≤ ε‖f‖22

(3) In [72], Landau introduced the notion of ε-approximated eigenvalues and
eigenfunctions. α is said to be an ε-approximated eigenvalue of L if there
exists f with ‖f‖2 = 1, such that ‖Lf − αf‖2 ≤ ε; f is called an ε-
approximated eigenfunction corresponding to α. So a function f ∈ L2(Rd)
that is ε-localized with respect to L is a

√
ε-approximated eigenfunction of

L corresponding to 1.

Unlike PT and QF , HΩ,ϕ is not a projection so we do not get an immediate result
as in Remark 2.4(2) for HΩ,ϕ. Instead, we have the following comparison.

Lemma 2.5. Let ϕ be a window function in L2(Rd) with ‖ϕ‖2 = 1, and Ω be a
compact set in R2d. If f ∈ L2(Rd) is (ε, ϕ)-concentrated in Ω, then f is also ε-
localized with respect to HΩ,ϕ. On the other hand, if f is ε-localized with respect to
HΩ,ϕ, then f is (ε+

√
ε, ϕ)-concentrated in Ω.

Proof : Since ‖HΩ,ϕf‖2 ≤ ‖f‖2, i.e. ‖HΩ,ϕ‖B(L2(Rd)) ≤ 1, we have

〈H2
Ω,ϕf, f〉 ≤ 〈HΩ,ϕf, f〉,

or equivalently,

〈(I −HΩ,ϕ)
2f, f〉 ≤ 〈(I −HΩ,ϕ)f, f〉.

Since HΩ,ϕ is self-adjoint, the left-hand side is equal to ‖HΩ,ϕf − f‖22, so the first
statement is obtained.

For the second statement, we observe that

2〈(I −HΩ,ϕ)f, f〉 = ‖HΩ,ϕf − f‖22 + ‖f‖22 − ‖HΩ,ϕf‖22
≤ ‖HΩ,ϕf − f‖22 + (‖HΩ,ϕf − f‖2 + ‖HΩ,ϕf‖2)2 − ‖HΩ,ϕf‖22
= 2‖HΩ,ϕf − f‖22 + 2‖HΩ,ϕf − f‖2‖HΩ,ϕf‖2.

So we have

〈(I −HΩ,ϕ)f, f〉 ≤ ‖HΩ,ϕf − f‖22 + ‖HΩ,ϕf − f‖2‖f‖2,

and the result follows.
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We note that measuring the localization of a function in Ω via a time-frequency
localization operator would naturally depend on the window function ϕ. The next
result shows how the time-frequency concentration changes given a change in the
window function.

Lemma 2.6. Given window functions ϕ and ϕ′. Then for every f ∈ L2(Rd),

|EΩ,ϕ(f)− EΩ,ϕ′(f)| ≤ (‖ϕ− ϕ′‖22 + 2‖ϕ‖2‖ϕ− ϕ′‖2)‖f‖22.

Proof : From the boundedness of the time-frequency localization operators in L2(Rd),
we get the following estimate:

|EΩ,ϕ(f)− EΩ,ϕ′(f)| = |〈HΩ,ϕf, f〉 − 〈HΩ,ϕ′f, f〉|
= |〈V∗

ϕMΩVϕf, f〉 − 〈V∗
ϕ′MΩVϕ′f, f〉|

= |〈(V∗
ϕMΩVϕ − V∗

ϕ′MΩVϕ′)f, f〉|
= |〈(V∗

ϕ−ϕ′MΩVϕ−ϕ′ + V∗
ϕ−ϕ′MΩVϕ′ + V∗

ϕ′MΩVϕ−ϕ′)f, f〉|
≤ |〈V∗

ϕ−ϕ′MΩVϕ−ϕ′f, f〉|+ |〈V∗
ϕ−ϕ′MΩVϕ′f, f〉|

+ |〈V∗
ϕ′MΩVϕ−ϕ′f, f〉|

= |〈HΩ,ϕ−ϕ′f, f〉|+ |〈V∗
ϕ−ϕ′MΩVϕ′f, f〉|+ |〈V∗

ϕ′MΩVϕ−ϕ′f, f〉|
≤ ‖HΩ,ϕ−ϕ′f‖2‖f‖2 + ‖V∗

ϕ−ϕ′MΩVϕ′f‖2‖f‖2
+ ‖V∗

ϕ′MΩVϕ−ϕ′f‖2‖f‖2
≤ (‖χΩ‖∞‖ϕ− ϕ′‖22 + 2‖ϕ′‖2‖ϕ− ϕ′‖2)‖f‖22

We now show how the concentration of f and f̂ on intervals is related to the
concentration of f on a rectangular region in the time-frequency plane. We shall
make use of the following lemma.

Lemma 2.7. For any 0 < a < A, the following inequalities hold:

(1)

∫

Qc
A

∫

Rd

|Vϕf(x, ω)|2dωdx ≤
∫

Qc
A−a

|f(t)|2dt
∫

Qa

|ϕ(t)|2dt+ ‖f‖22
∫

Qc
a

|ϕ(t)|2dt

(2)

∫

QA

∫

Rd

|Vϕf(x, ω)|2dωdx ≤
∫

QA+a

|f(t)|2dt
∫

Qa

|ϕ(t)|2dt+ ‖f‖22
∫

Qc
a

|ϕ(t)|2dt

Proof : To prove (1), we write the STFT of f with respect to ϕ as a Fourier transform
and apply Plancherel’s theorem:

∫

Qc
A

∫

Rd

|Vϕf(x, ω)|2dωdx =

∫

Qc
A

∫

Rd

|f ·Txϕ(t)|2dtdx

=

∫

Qc
A

∫

Rd

|f(t+ x)|2|ϕ(t)|2dtdx
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=

∫

Qc
A

∫

Rd

|f(t+ x)|2|ϕ(t)χQa(t)|2dtdx

+

∫

Qc
A

∫

Rd

|f(t+ x)|2|ϕ(t)χQc
a
(t)|2dtdx.

By Fubini’s theorem, we can interchange the order of integration in the first term of
the last equality and estimate it as follows:

∫

Qc
A

∫

Rd

|f(t+ x)|2|ϕ(t)χQa(t)|2dtdx =

∫

Qc
A

∫

Qa

|f(t+ x)|2|ϕ(t)|2dtdx

≤
∫

Rd

∫

Qc
A−a

|f(x)|2|ϕ(t)|2dxdt.

For the second term, we set Iϕ(t) = ϕ(−t) and we obtain the following:
∫

Qc
A

∫

Rd

|f(t+ x)|2|ϕ(t)χQc
a
(t)|2dtdx ≤

∫

Qc
A

(|f |2 ∗ |I(ϕ · χQc
a
)|2)(x)dx

≤ ‖|f |2 ∗ |I(ϕ · χQc
a
)|2‖1

≤ ‖f‖22 ‖ϕ · χQc
a
‖22.

Let us now prove (2). Again, we make use of Plancherel’s theorem and Fubini’s
theorem.∫

QA

∫

Rd

|Vϕf(x, ω)|2dωdx =

∫

QA

∫

Rd

|f(x+ t)|2|ϕ(t)|2dtdx

=

∫

QA

∫

Qa

|f(x+ t)|2|ϕ(t)|2dtdx

+

∫

QA

∫

Qc
a

|f(x+ t)|2|ϕ(t)|2dtdx

=

∫

Qa

|ϕ(t)|2
∫

QA

|f(x+ t)|2dxdt

+

∫

Qc
a

|ϕ(t)|2
∫

QA

|f(x+ t)|2dxdt

≤
∫

Qa

|ϕ(t)|2
∫

QA+a

|f(x)|2dxdt + ‖f‖22
∫

Qc
a

|ϕ(t)|2dt

Proposition 2.8. Let ϕ be a window function in L2(Rd) with ‖ϕ‖2 = 1. Suppose that
ϕ is ε1-concentrated in Qa = [−a, a]d with Fourier transform ϕ̂ that is ε2-concentrated
in Qb = [−b, b]d.

(1) If f is ε
2
-concentrated in QA−a and f̂ is ε

2
-concentrated in QB−b, then f is

(ε+ ε1 + ε2, ϕ)-concentrated in QA ×QB.
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(2) If f is (ε, ϕ)-concentrated in QA×QB, then f and f̂ are (ε+ε1)- and (ε+ε2)-
concentrated in QA+a and QB+b, respectively.

Proof :

(1) Using Lemma 2.7(1), also for f̂ and ϕ̂, we obtain the following inequality which
gives the desired result:

∫

Qc
A

∫

Qc
B

|Vϕf(x, ω)|2dωdx ≤
∫

Qc
A−a

|f(t)|2dt
∫

Qa

|ϕ(t)|2dt

+

∫

Qc
B−b

|f̂(ω)|2dω
∫

Qb

|ϕ̂(ω)|2dω

+ ‖f‖22
(∫

Qc
a

|ϕ(t)|2dt+
∫

Qc
b

|ϕ̂(ω)|2dω
)
.

(2) By assumption, we have

(1− ε)‖f‖22 ≤
∫

QA

∫

QB

|Vϕf(x, ω)|2dωdx

≤
∫

QA

∫

Rd

|Vϕf(x, ω)|2dωdx,

and using Lemma 2.7(2), we obtain

(1− ε)‖f‖22 ≤
∫

QA+a

|f(t)|2dt
∫

Qa

|ϕ(t)|2dt+ ‖f‖22
∫

Qc
a

|ϕ(t)|2dt

≤
∫

QA+a

|f(t)|2dt+ ‖f‖22
∫

Qc
a

|ϕ(t)|2dt.

Since the second term in the inequality above is less than ε1‖f‖22 by assumption,
transposing the term yields

(1− ε− ε1)‖f‖22 ≤
∫

QA+a

|f(t)|2dt.

The case for f̂ being (ε+ ε2)-concentrated on QB+b is proved similarly, applying

Lemma 2.7(2) to f̂ and ϕ̂.

The various notions of concentration lead to different versions of the uncertainty
principle. In terms of our definition of a function’s concentration on an interval T and
the concentration of its Fourier transform on F , the uncertainty principle by Donoho
and Stark, cf. [32], is as follows.

Theorem 2.9 (Donoho-Stark). Suppose that f ∈ L2(Rd), f 6= 0, is εT -concentrated
in T ⊆ Rd and εF -band-limited in F ⊆ Rd. Then

|T ||F | ≥ (1−√
εT −√

εF )
2.
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For an uncertainty principle in terms of the STFT, we have the following weak
uncertainty principle, cf. [55], whose proof follows immediately from the function’s
concentration in Ω.

Proposition 2.10. [55, Proposition 3.3.1] Suppose that ‖f‖2 = ‖ϕ‖2 = 1 and that
Ω ⊆ R2d. If ε ≥ 0 and f is (ε, ϕ)-concentrated in Ω, then |Ω| ≥ 1− ε.

Proof : Since |Vϕf(z)| = |〈f, π(z)ϕ〉| ≤ ‖f‖2‖ϕ‖2 = 1 for all z ∈ R2d, and f is
(ε, ϕ)-concentrated in Ω, it follows that

1− ε ≤ 〈HΩ,ϕf, f〉 =
∫∫

Ω

|Vϕf(z)|2 dz ≤ ‖Vϕ‖2∞|Ω| ≤ |Ω|.

Remark 2.11. A sharper estimate on the size of Ω was also proved in [55, Theorem
3.3.3], yielding |Ω| ≥ 2d(1− ε)2.

2.3.2. Functions concentrated in Ω. We denote by C (Ω, ε, ϕ) the set of func-
tions in L2(Rd) that are (ε, ϕ)-concentrated in a compact subset Ω of R2d:

C (Ω, ε, ϕ) = {f ∈ L2(Rd) : EΩ,ϕ(f) ≥ (1− ε)‖f‖22}.
Each eigenfunction ψk of HΩ,ϕ with eigenvalue αk ≥ (1− ε) from the spectral repre-
sentation (2.3) is in C (Ω, ε, ϕ). Indeed, 〈HΩ,ϕψk, ψk〉 = αk ≥ (1− ε). Moreover, if we
let

VN = span{ψk : k = 1, . . . , N}
be the span of the first N eigenfunctions of the time-frequency localization operator
HΩ,ϕ, then for f =

∑N
k=1〈f, ψk〉ψk ∈ VN , we have

〈HΩ,ϕf, f〉 =
N∑

k=1

αk|〈f, ψk〉|2 ≥ αN

N∑

k=1

|〈f, ψk〉|2 = αN‖f‖22, (2.11)

i.e. f is (1 − αN , ϕ)-concentrated in Ω. So for a properly chosen N , functions in VN
are in C (Ω, ε, ϕ).

In contrast, functions which are (1−αN , ϕ)-concentrated in Ω need not lie in VN .
The following proposition characterizes a function that is (ε, ϕ)-concentrated on Ω.

Proposition 2.12. Let ϕ, Ω and ε be given and let N0 be the integer such that
αN0 ≥ 1−ε and αN0+1 < 1−ε. Furthermore, let fker denote the orthogonal projection
of f onto the kernel ker(HΩ,ϕ) of HΩ,ϕ. A function f in L2(Rd) is (ε, ϕ)-concentrated
on Ω if and only if

N0∑

k=1

(αk + ε− 1)|〈f, ψk〉|2 ≥
∞∑

k=N0+1

(1− ε− αk)|〈f, ψk〉|2 + (1− ε)‖fker‖22

Proof : The eigenfunctions {ψk}k form an orthonormal subset in L2(Rd), possibly
incomplete if ker(HΩ,ϕ) 6= {0}; hence, we can write f =

∑∞
j=1〈f, ψj〉ψj + fker, where
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fker ∈ ker(HΩ,ϕ) and, as in (2.11), 〈HΩ,ϕf, f〉 =
∑∞

k=1 αk|〈f, ψk〉|2. So the function f
is (ε, ϕ)-concentrated on Ω if and only if

∞∑

k=1

αk|〈f, ψk〉|2 ≥ (1− ε)

( ∞∑

k=1

|〈f, ψk〉|2 + ‖fker‖22

)
,

and the conclusion follows.

Remark 2.13. Despite the interpretation of HΩ,ϕf as the part of f that essentially
lies in Ω, it is possible that the resulting function HΩ,ϕf is not (ε, ϕ)-concentrated in
Ω. In fact, for every eigenfunction ψk with corresponding eigenvalue αk < 1− ε,

〈HΩ,ϕ(HΩ,ϕψk),HΩ,ϕψk〉 = α3
k = αk‖HΩ,ϕψk‖22,

i.e. HΩ,ϕψk is not (ε, ϕ)-concentrated in Ω.

Remark 2.14. We emphasize that C (Ω, ε, ϕ) is not a linear space. Indeed, consider
the eigenfunction ψM corresponding to the eigenvalue αM > 1−ε. Let h =

∑
k∈Z ckψk

such that the sequence {ck}k∈Z satisfies the following conditions:

0 < cM <
1− ε

αM

,
∑

k∈Z
c2k = 1, and

∑

k∈Z
αkc

2
k = 1− ηε, 1 < η <

1

ε
.

It follows that ‖h‖2 = 1 and 〈HΩ,ϕh, h〉 = 1 − ηε < 1 − ε so that h /∈ C (Ω, ε, ϕ).

Choose δ such that 0 < δ ≤ 2cM (αM − (1− ε))

ε(η − 1)
, and let f = ψM + δh. We calculate

〈HΩ,ϕf, f〉 = 〈HΩ,ϕψM , ψM〉+ 2δRe〈HΩϕψM , h〉+ δ2〈HΩ,ϕh, h〉
= αM + 2δαMcM + δ2(1− ηε).

It follows from the conditions above that the right-hand side of the equation is greater
than or equal to (1+2δcM+δ2)(1−ε), which is equal to ‖f‖22(1−ε). So f ∈ C (Ω, ε, ϕ),
but f − ψM = δh /∈ C (Ω, ε, ϕ).

While a function f that is (ε, ϕ)-concentrated in Ω does not necessarily lie in
some subspace VN of eigenfunctions of HΩ,ϕ, it can be approximated using a finite
number of such eigenfunctions. Let PVN denote the orthogonal projection onto the
subspace VN . We note that approximations of band-limited functions via projections
onto eigenspaces of time- and band-limited functions were presented in [90, 63, 10].

Proposition 2.15. Let f be (ε, ϕ)-concentrated on Ω ⊂ R2d. For fixed c > 1, let
ψk, k = 1, . . . , N , be all eigenfunctions of HΩ,ϕ corresponding to eigenvalues αk >

c−1
c
.

Then

(1) ‖PVNf‖22 ≥ (1− cε)‖f‖22,

(2)

∥∥∥∥f −PVNf
∥∥∥∥
2

2

< cε‖f‖22, and
(3) EΩ,ϕ(PVNf) ≥ αN (1− cε)‖f‖22.
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Proof : Without loss of generality, we assume that ‖f‖2 = 1. We have, by assumption:

〈HΩ,ϕf, f〉 =
∞∑

k=1

αk|〈f, ψk〉|2 =
∫∫

Ω

|Vϕf(z)|2dz ≥ (1− ε)‖f‖22

We argue by contradiction; to this end, assume that
∑N

k=1 |〈f, ψk〉|2 = K < 1 − cε.
Furthermore

‖f‖22 = 1 =
∞∑

k=1

|〈f, ψk〉|2 + ‖fker‖22 ,

hence ∞∑

k=N+1

|〈f, ψk〉|2 = 1−K − ‖fker‖22.

We then have ∞∑

k=N+1

αk|〈f, ψk〉|2 <
c− 1

c
· (1−K − ‖fker‖22)

such that
∞∑

k=1

αk|〈f, ψk〉|2 <K +
c− 1

c
· (1−K − ‖fker‖22)

=
c− 1 +K

c
− c− 1

c
‖fker‖22

<1 +
1− cε− 1

c
− c− 1

c
‖fker‖22 < 1− ε,

which is a contradiction. Hence,
∑N

k=1 |〈f, ψk〉|2 must be greater than or equal to
1− cε.

The second inequality follows from the decomposition of f into f = PVN + (f −
PVNf), which gives

‖f −PVN f‖22 = 1− ‖PVNf‖22 ≤ 1− (1− cε) = cε.

And for the third inequality, we have

EΩ,ϕ(PVNf) = 〈HΩ,ϕPVNf,PVN f〉 =
N∑

k=1

αk|〈f, ψk〉|2 ≥ αN‖PVNf‖22 ≥ αN(1− cε).

Remark 2.16. Projections onto subspaces generated by eigenfunctions of compact
self-adjoint operators have been used as time-frequency filters. In [61], Hlawatsch,
et. al. used eigenfunctions of a linear operator via the Wigner distribution. Dörfler
[33], on the other hand, used Gabor multipliers to obtain the projection operators
onto time-frequency localized subspaces.

Remark 2.17. In [70, 71], Jaming, et. al. investigated the approximation of essen-
tially time- and band-limited functions via expansions in the Hermite, Legendre, and
Chebyshev bases.
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2.3.3. Spectrogram of a subspace and accumulated spectrograms. Given
an N -dimensional subspace V of L2(R), PV the orthogonal projection onto V with
projection kernel κV , i.e. PV f(t) =

∫
R
κV (t, y)f(y) dy, recall that if {ek}Nk=1 is an or-

thonormal basis of V , then κV (t, y) =
∑N

k=1 ek(t)ek(y). The kernel κV is independent
of the choice of orthonormal basis for V .

In [60], different quadratic signal representations, e.g. the Wigner distribution,
spectral energy density, ambiguity function, were extended to a linear signal space.
We consider here the spectrogram SPECϕ V of the subspace V with window function
ϕ defined as

SPECϕ V (x, ω) =

∫∫

R2d

κV (t, y)ϕ(t− x)ϕ(y − x) e−2πiω·(t−y) dt dy.

If the subspace V is the subspace VN consisting of the first N eigenfunctions
ψ1, . . . , ψN ofHΩ,ϕ corresponding to theN largest eigenvalues {α}Nk=1, then κVN (t, y) =∑N

k=1 ψk(t)ψk(y) and

SPECϕ V (x, ω) =

∫∫

R2d

N∑

k=1

ψk(t)ψk(y) ϕ(t− x)ϕ(y − x) e−2πiω(t−y) dt dy

=
N∑

k=1

∫

Rd

ψk(t)ϕ(t− x) e−2πiω·t dt

∫

Rd

ψk(y)ϕ(y − x) e2πiω·y dy

=

N∑

k=1

Vϕψk(x, ω)Vϕψk(x, ω) =
N∑

k=1

|Vϕψk(x, ω)|2.

Similar to the definition of a function f ’s concentration EΩ,ϕ(f), we define the
time-frequency concentration of a subspace VN in Ω as

EΩ,ϕ(VN) :=
1

N

∫∫

Ω

SPECg VN(x, ω) dx dω.

If the ψks are eigenfunctions of the localization operator HΩ,ϕ, then EΩ,ϕ(VN) =

1
N

N∑
k=1

αk. We can see that αN ≤ EΩ,ϕ(VN) ≤ α1. The min-max characterization of

the eigenvalues of compact operators implies that any N -dimensional subset cannot
be better concentrated in Ω, i.e. if V ′

N is any N -dimensional subspace of L2(R), then
EΩ,ϕ(V ′

N) ≤ EΩ,ϕ(VN).

In [2], Abreu, Gröchenig, and Romero showed that the corresponding spectro-
grams of the first ⌈Ω⌉ eigenfunctions of HΩ,ϕ approximately form a partition of unity
on Ω. Define the accumulated spectrogram of Ω with respect to ϕ as the spectro-
gram of the subspace V⌈Ω⌉ consisting of the eigenfunctions ψk, k = 1, . . . , ⌈Ω⌉ of
HΩ,ϕ, i.e. SPECϕ V⌈Ω⌉(z). They derived the following asymptotic, non-asymptotic,
and weak L2 estimates for the accumulated spectrogram.
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Theorem 2.18. [2] Let ϕ ∈ L2(Rd), ‖ϕ‖2 = 1, and let Ω ⊂ R2d be compact.

(1) The accumulated spectrogram SPECϕ V⌈RΩ⌉(R·) converges to the characteris-
tic function χΩ in L1(R2d) as R → ∞.

(2) If ϕ satisfies ‖ϕ‖2M∗ :=
∫
R2d |z| |Vϕϕ(z)|2 dz < ∞ and Ω has finite perimeter

given by |∂Ω|, then
1

|Ω|‖ SPECϕ V⌈Ω⌉ − χΩ ∗ |Vϕϕ|2‖1 ≤
(

1

|Ω| + 4‖g‖M∗

√
|∂Ω|
|Ω|

)
.

(3) If g and Ω satisfy 1 ≤ ‖g‖2M∗|∂Ω| <∞, then

|{z ∈ R2d : | SPECϕ V⌈Ω⌉(z)− χΩ(z)| > δ}| . 1

δ2
‖g‖2M∗|∂Ω|, δ > 0.



CHAPTER 3

Sampling and approximation of time-frequency localized
functions

The STFT of a function provides a continuous joint time-frequency representation
for a function f , wherein by the inversion formula, we are able to recover f from the
information encoded in Vϕf(z), z ∈ R2d. This representation is highly redundant.
By the use of Gabor frames, we are able to obtain a discrete representation of f from
the samples of the STFT without information loss.

In this chapter, we will investigate how well the frame expansion of a function f
captures its time-frequency localization. In particular, we will consider in Section 3.1
truncations of the Gabor frame expansion of f :

∑
λ∈Λ∩Ω∗〈f, gλ〉g̃λ. We shall recall,

among others, the result of Daubechies in [26] showing under certain conditions that a
function can be reasonably approximated by a truncated version of the frame expan-
sion assuming that a function is essentially localized in time and in frequency. For a
compact region Ω in the time-frequency plane, we obtain a similar approximation for
f by a truncated Gabor frame expansion where the error will be expressed in terms
of the concentration of f in Ω.

In Section 3.2, we consider the case where the functions come from the subspace of
eigenfunctions of a time-frequency localization operator over Ω. Projecting the local
time-frequency dictionary from the truncated Gabor expansions yields a frame for the
subspace. If we take a family of such dictionaries corresponding to compact regions
that would collectively cover the time-frequency plane, we would then obtain a global
frame for L2(R). These will be illustrated by numerical experiments in Section 3.4.

3.1. Local Gabor approximation

In [26] (see also [20, Theorem 9.8.1]), Daubechies proved the following theorem
which shows that if a function is essentially limited to a finite time interval and to a
finite range in frequency, then it can essentially be represented by a finite number of
expansion coefficients.

Theorem 3.1. [26, Theorem 3.1] Suppose that the Gabor systems {MmbTnag}m,n∈Z
and {MmbTnah}m,n∈Z form a pair of dual frames for L2(R) with upper frame bounds
B and D, respectively, and that for some constants C > 0, α > 1/2, the decay
conditions

|h(t)| ≤ C(1 + t2)−α, t ∈ R, |ĥ(ω)| ≤ C(1 + ω2)−α, ω ∈ R,

33
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hold. Then for any ε > 0, there exist numbers yε, ξε > 0 such that for all y, ξ > 0,
∥∥∥∥f −

∑

(m,n)∈B(y+yε,ξ+ξε)

〈f,MmbTnah〉MmbTnag

∥∥∥∥
2

≤
√
BD(‖(I −Q[−y,y])f‖2 + ‖(I −P[−ξ,ξ])f‖2 + ε‖f‖2)

for all f ∈ L2(R).

Eldar and Matusiak in [80] also provided an approximation for a function f using a
truncated Gabor expansion where the error is estimated via the function’s respective
concentration on a finite time and a finite frequency interval.

Theorem 3.2. [80, Theorem III.1] Let f be a function supported on the interval
[−β/2, β/2] and εξ-bandlimited to [−ξ/2, ξ/2]. Suppose G(g, a, b) is a Gabor frame
with g compactly supported on [−α/2, α/2], a = µα, and b = 1/α for some µ ∈ (0, 1),
and suppose that γ ∈ S0 is the dual atom. Then for every εB > 0, there exists an
L0 <∞, depending on γ and the essential bandwidths of g and f , such that

∥∥∥∥∥f −
K0∑

k=−K0

L0∑

l=−L0

〈f,MblTakg〉MblTakγ

∥∥∥∥∥
2

≤ C̃0(εξ + εB)‖f‖2, (3.1)

where C̃0 = C2
a,b‖γ‖S0‖g‖S0 with Ca,b = (1 + 1/a)1/2(1 + 1/b)1/2.

Remark 3.3. In Theorem 3.2, the number of frequency coefficients L0 is determined
by the essential bandwidth of g, i.e. if gc is bandlimited to the interval [−B/2, B/2]
and ‖g − gc‖S0 ≤ ‖g‖S0 , then L0 =

⌈
ξ +B

2b

⌉
− 1.

We shall show a result analogous to Theorem 3.1, this time involving the local-
ization of f with respect to HΩ,ϕ or the time-frequency concentration EΩ,ϕ(f) of f .
We need the following lemma which gives an upper bound on the inner product of a
time-frequency localized function with a time-frequency shifted copy of the window
function ϕ. Note that while HΩ,ϕf is interpreted as the part of f in Ω, the uncertainty
principle prohibits its STFT to have nonzero values only in Ω, and there will always
be points z ∈ R2 \ Ω at which |VϕHΩ,ϕf(z)| 6= 0. It can be shown, however, that
|VϕHΩ,ϕf(z)| decays fast with respect to the distance of z from Ω. Daubechies proved

this result in [25] for the case where the window function is the Gaussian ϕ0(t) = e−πt
2
,

showing that the pointwise magnitude of the STFT decays exponentially (see Lemma
3.4 below), using the property involving the STFT of time-frequency shifts of the
Gaussian [55, Lemma 1.5.2]:

〈TxMωϕ0,TuMηϕ0〉 = 1√
2
exp[πi(u− x)(η + ω)− π

2
(u− x)2 − π

2
(η − ω)2]

Lemma 3.4. [25, Section III] For any δ between 0 and 1, one has

|〈HΩ,ϕ0f, π(z)ϕ0〉| ≤ 1√
2
δ−

1
2‖f‖2 exp[−π

2
(1− δ) dist(z,Ω)2].

A similar result involving windows with milder decay conditions is the following.
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Lemma 3.5. Let ϕ, g ∈ L2(R) such that ‖ϕ‖2 = 1 and |Vϕg(z)| ≤ C(1+ |z|2s)−1, for
some C > 0 and s > 1, for all z ∈ R2. For any δ between 0 and 1, one has

|VϕHΩ,ϕf(z)| = |〈HΩ,ϕf, π(z)g〉| ≤ Csδ
− 1
2s‖f‖2(1 + (1− δ)dist(z,Ω)s)−1,

where Cs =
C
√
2π√

s sin(π/s)
.

Remark 3.6. An example of the inequality |Vϕg(z)| ≤ C(1 + |z|2s)−1 being satisfied
for all z ∈ R2 is when ϕ and g are in the Schwartz space S(R). Moreover, in that
case, for every s > 0, there is a C for which the inequality is satisfied. We also note
that another (equivalent) form for a polynomial decay of the STFT that appear in
the literature is |Vϕg(z)| ≤ C ′(1 + |z|2)−s.

Proof : If z, z′ ∈ R2, then |〈π(z′)ϕ, π(z)g〉| = |〈ϕ, π(z − z′)g〉| ≤ C ′
s(1 + |z − z′|2s)−1.

For 0 < δ < 1,

|〈HΩ,ϕf, π(z)g〉| ≤
∫∫

Ω

|〈f, π(z′)ϕ〉| |〈π(z′)ϕ, π(z)g〉| dz′

≤ C

∫∫

Ω

|〈f, π(z′)ϕ〉| 1

1 + |z − z′|2s dz
′

≤ C

∫∫

Ω

|〈f, π(z′)ϕ〉| 1√
1 + δ|z − z′|2s

1√
1 + (1− δ)|z − z′|2s

dz′

≤ C
√
2

1

1 + (1− δ) inf
z′∈Ω

|z − z′|s
(∫∫

R2

1

1 + δ|z − z′|2s dz
′
)1

2

·

(∫∫

R2

|〈f, π(z′)ϕ〉|2 dz′
) 1

2

=
C
√
2π√

s sin(π/s)
δ−

1
2s (1 + (1− δ) inf

z′∈Ω
|z − z′|s)−1‖ϕ‖2‖f‖2,

and the conclusion follows.

Theorem 3.7. Let ϕ, g ∈ L2(R) such that ‖ϕ‖2 = 1 and |Vϕg(z)| ≤ C(1 + |z|2s)−1,
for some C > 0 and s > 1, for all z ∈ R2. Suppose that the Gabor system G(g,Λ)
forms a frame with the system {g̃λ}λ∈Λ as a dual frame, with respective upper frame
bounds B and D. Let Ω be a compact subset of R2. Then, for any ε > 0, there exists
Ωε ⊂ R2 such that for all Ω∗ ⊃ Ωε,

∥∥∥∥∥f −
∑

λ∈Λ∩Ω∗

〈f, gλ〉g̃λ
∥∥∥∥∥
2

≤ C ′
(
‖f −HΩ,ϕf‖2 + ε‖f‖2

)
, (3.2)

for all f ∈ L2(R).
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Proof : Let f ∈ L2(R), and consider compact set Ω ⊂ R2. For any Ω∗ ⊃ Ω, since
G(g,Λ) is a frame with dual frame {g̃λ}λ∈Λ, we have

∥∥∥∥∥f −
∑

λ∈Λ∩Ω∗

〈f, gλ〉g̃λ
∥∥∥∥∥
2

=

∥∥∥∥∥
∑

λ/∈Λ∩Ω∗

〈f, gλ〉g̃λ
∥∥∥∥∥
2

= sup
‖h‖2=1

∣∣∣∣∣

〈 ∑

λ/∈Λ∩Ω∗

〈f, gλ〉g̃λ, h
〉∣∣∣∣∣

≤ sup
‖h‖2=1

∑

λ/∈Λ∩Ω∗

|〈f, gλ〉| |〈g̃λ, h〉|.

Since ∑

λ/∈Λ∩Ω∗

|〈f, gλ〉| |〈g̃λ, h〉| =
∑

λ/∈Λ∩Ω∗

|〈(HΩ,ϕ + (I −HΩ,ϕ))f, gλ〉| |〈g̃λ, h〉|,

we obtain∑

λ/∈Λ∩Ω∗

|〈f, gλ〉| |〈g̃λ, h〉| ≤
∑

λ/∈Λ∩Ω∗

|〈HΩ,ϕf, gλ〉| |〈g̃λ, h〉|

+
∑

λ/∈Λ∩Ω∗

|〈(I −HΩ,ϕ)f, gλ〉| |〈g̃λ, h〉|

≤
( ∑

λ/∈Λ∩Ω∗

|〈HΩ,ϕf, gλ〉|2
)1

2
( ∑

λ/∈Λ∩Ω∗

|〈g̃λ, h〉|2
)1

2

+

( ∑

λ/∈Λ∩Ω∗

|〈(I −HΩ,ϕ)f, gλ〉|2
)1

2
( ∑

λ/∈Λ∩Ω∗

|〈g̃λ, h〉|2
)1

2

.

So that
∥∥∥∥∥f −

∑

λ∈Λ∩Ω∗

〈f, gλ〉g̃λ
∥∥∥∥∥
2

≤ sup
‖h‖2=1

( ∑

λ/∈Λ∩Ω∗

|〈HΩ,ϕf, gλ〉|2
)1

2
( ∑

λ/∈Λ∩Ω∗

|〈g̃λ, h〉|2
)1

2

+ sup
‖h‖2=1

( ∑

λ/∈Λ∩Ω∗

|〈(I −HΩ,ϕ)f, gλ〉|2
)1

2
( ∑

λ/∈Λ∩Ω∗

|〈g̃λ, h〉|2
)1

2

Using Lemma 3.5 and the assumption that G(g,Λ), {g̃λ}λ∈Λ have upper frame bounds
B and D, respectively, we get

∥∥∥∥∥f −
∑

λ∈Λ∩Ω∗

〈f, gλ〉g̃λ
∥∥∥∥∥
2

≤ C2
1
s

√
D ‖f‖2

( ∑

λ/∈Λ∩Ω∗

(1 + 1
2
dist(λ,Ω)s)−2

)1
2

+
√
BD ‖(I −HΩ,ϕ)f‖2.

This estimate holds true for all Ω∗ ⊃ Ω. By the convergence of the above series, if Ω is
fixed, then for a given ε > 0, one can find Ωε ⊃ Ω such that for all Ω∗ ⊃ Ωε, the series
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is less than ε2. Finally, taking C ′ = max{C2 1
s

√
D,

√
BD}, we get the conclusion of

the theorem.

Remark 3.8. We emphasize that by Theorem 3.7, we are able to obtain an approx-
imation estimate that holds uniformly for for all f ∈ C (Ω, ε0, ϕ), i.e. for any ε > 0,
there exists a Ωε such that for all Ω∗ ⊃ Ωε and all ε̃ > ε0 + ε,∥∥∥∥∥f −

∑

λ∈Λ∩Ω∗

〈f, gλ〉g̃λ
∥∥∥∥∥
2

≤ C ′ε̃‖f‖2, (3.3)

for all f ∈ C (Ω, ε0, ϕ). In contrast, for a fixed f , such an inequality can be obtained
more simply from the strong operator convergence of the Gabor frame operator.

We show an example for the case where the window function is the Gaussian ϕ0

and the region Ω is the disk B(O,R) with center at the origin O and with radius
R. We will make use of the decay of the STFT of HΩ,ϕ in Lemma 3.4. First, we
prove the following lemma that gives an estimate on the decay of the tail of the
sum of samples of the two-dimensional Gaussian outside the disk B(O,R∗). Let
Q(j) = [j1 − 1

2
, j1 +

1
2
)× [j2 − 1

2
, j2 +

1
2
), j = (j1, j2) ∈ Z2.

Lemma 3.9. Let Λ be a relatively separated set of points in R2 with supz∈R2 #(Λ ∩
Q(z)) =: NΛ <∞. Fix R > 0. If R∗ > R, then

∑

λ∈Λ, |λ|>R∗

exp(−π
2
(|λ| −R)2) ≤ CΛ exp (− π

4
( (R

∗)2

4
− R2)), (3.4)

where CΛ = 8 exp(5π
4
)NΛ.

Proof : Let R∗ > R and define the sets

JR∗ = {j ∈ Z2 : Q(j) ∩ (R2 \B(O,R∗)) 6= ∅} and

ΛR∗,j = {λ ∈ Λ : |λ| > R∗, λ ∈ Q(j)}.
We are then able to rewrite the left-hand side of (3.4) as

∑

λ∈Λ, |λ|>R∗

exp(−π
2
(|λ| − R)2) =

∑

j∈JR∗

∑

λ∈ΛR∗,j

exp(−π
2
(|λ| −R)2). (3.5)

If λ, z ∈ Q(j), then |λ| ≥ |z| −
√
2. And since −(|z| −R−

√
2)2 ≤ −( (|z|−R)

2

2
− 2), we

have
e−

π
2
(|λ|−R)2 ≤ e−

π
2
(|z|−R−

√
2)2 ≤ eπ exp (− π

4
(|z| −R)2).

Using the inequalities −(|z| − R)2 ≤ − |z|2
2

+R2 and −(R∗ −
√
2)2 ≤ − (R∗)2

2
+ 2, we

estimate (3.5) as follows:
∑

j∈JR∗

∑

λ∈ΛR∗,j

exp(−π
2
(|λ| − R)2) ≤

∑

j∈JR∗

∑

λ∈ΛR∗,j

∫∫

Q(j)

exp (− π
4
(|z| − R)2) dz

≤ NΛ

∫∫

R2\B(O,R∗−
√
2)

exp (− π
4
(|z| −R)2) dz
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≤ NΛ e
πe

πR2

4

∫∫

|z|>R∗−
√
2

exp (− π|z|2
8

) dz

= 8NΛ e
πe

πR2

4 exp (− π(R∗−
√
2)2

8
)

≤ 8NΛ e
5π
4 exp (− π

4
( (R

∗)2

4
− R2)).

By taking CΛ = 8NΛ e
5π
4 , we get the conclusion of the lemma.

Example 3.10. Suppose Ω is the disk centered at the origin with radius R and
suppose that the Gabor system {π(λ)ϕ0 : λ ∈ Λ} forms a frame with the system
{ϕ̃0,λ : λ ∈ Λ} as a dual frame, having respective upper frame bounds B and D.
Then, for any ε between 0 and 1, there exists Rε such that

∥∥∥∥∥∥
f −

∑

λ∈Λ, |λ|≤R+Rε

〈f, π(λ)ϕ0〉ϕ̃0,λ

∥∥∥∥∥∥
2

≤ CΛ,B,D

(
‖f −HΩ,ϕ0f‖2 + ε‖f‖2

)
, (3.6)

for all f ∈ L2(R). Here, we can take Rε ≥ −R +
√
4R2 − 32

π
ln ε.

Proof : Following the proof of Theorem 3.7, we have for Ω∗ ⊃ Ω,

∥∥∥∥f −
∑

λ∈Λ∩Ω∗

〈f, π(λ)ϕ0〉ϕ̃0,λ

∥∥∥∥
2

≤
√
D

( ∑

λ/∈Λ∩Ω∗

|〈HΩ,ϕ0f, π(λ)ϕ0〉|2
)1

2

+
√
BD‖f −HΩ,ϕ0f‖2.

We can take Ω∗ to be a disk centered at the origin with radius R∗ := R+Rε > R.
We use Lemma 3.4 (with δ = 1

2
) and Lemma 3.9 to estimate the first term on the

right side as follows:

√
D

( ∑

λ/∈Λ∩Ω∗

|〈HΩ,ϕ0f, π(λ)ϕ0〉|2
)1

2

≤
√
D‖f‖2

( ∑

λ/∈Λ∩Ω∗

exp(−π
2
dist(λ,Ω)2)

) 1
2

=
√
D‖f‖2

√
CΛ exp (− π

8
( (R

∗)2

4
− R2))

Now, exp ( − π
8
( (R

∗)2

4
− R2)) ≤ ε whenever R∗ ≥

√
4R2 − 32

π
ln ε. So we can take

Rε ≥ −R +
√
4R2 − 32

π
ln ε, and CΛ,B,D := max{√DCΛ,

√
BD}.

Remark 3.11. In Theorem 3.1, the enlargement of the rectangular region, i.e. adding
yε and ξε, depends only on ε, the desired precision of the approximation. In The-
orem 3.7, however, the generality of the region of concentration Ω and the possible
nonuniformity of the samples in Λ make the enlargement dependent on the region.
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3.2. Local Gabor approximation of a function in a TF-localized subspace

Consider the subspace VN spanned by the first N eigenfunctions of the localization
operatorHΩ,ϕ, Ω a compact subset of R2 and ϕ ∈ L2(R) with ‖ϕ‖2 = 1, corresponding
to the eigenvalues arranged in descending order. Let g be a window function in L2(R)
such that ‖g‖2 = 1 and |Vϕg(z)| ≤ C(1 + |z|2s)−1 for some C > 0 and s > 1. Let
the Gabor system G(g,Λ) form a frame with lower and upper frame bounds A and
B, respectively, and let {g̃λ}λ∈Λ be its dual frame.

Since every f ∈ VN is (1−αN)-concentrated in Ω, it follows that (3.3) holds for all
f ∈ VN , where ε0 = 1− αN . We note however that ε̃ is bounded below by ε0, which
is fixed. We can improve the estimate since we are considering only the elements of
VN , wherein the error bound approaches 0 as the set Ω∗ gets larger.

Proposition 3.12. For any ε > 0, there exists an Ω∗ ⊃ Ω such that
∥∥∥∥∥f −

∑

λ∈Λ∩Ω∗

〈f, gλ〉g̃λ
∥∥∥∥∥
2

≤ ε‖f‖2, for all f ∈ VN . (3.7)

Proof : Let ε > 0 and f ∈ VN . Then

f −
∑

λ∈Λ∩Ω∗

〈f, gλ〉g̃λ =
N∑

k=1

〈f, ψk〉ψk −
∑

λ∈Λ∩Ω∗

( N∑

k=1

〈f, ψk〉〈ψk, gλ〉
)
g̃λ

=
N∑

k=1

〈f, ψk〉
(
ψk −

∑

λ∈Λ∩Ω∗

〈ψk, gλ〉g̃λ
)

=
N∑

k=1

〈f, ψk〉
( ∑

λ/∈Λ∩Ω∗

〈ψk, gλ〉g̃λ
)
.

So we have
∥∥∥∥f −

∑

λ∈Λ∩Ω∗

〈f, gλ〉g̃λ
∥∥∥∥
2

2

=

∥∥∥∥
N∑

k=1

〈f, ψk〉
( ∑

λ/∈Λ∩Ω∗

〈ψk, gλ〉g̃λ
)∥∥∥∥

2

2

≤
( N∑

k=1

|〈f, ψk〉|
∥∥∥∥
∑

λ/∈Λ∩Ω∗

〈ψk, gλ〉g̃λ
∥∥∥∥
2

)2

≤
N∑

k=1

|〈f, ψk〉|2
N∑

k=1

∥∥∥∥
∑

λ/∈Λ∩Ω∗

〈ψk, gλ〉g̃λ
∥∥∥∥
2

2

= ‖f‖22
N∑

k=1

sup
‖h‖2=1

∣∣∣∣
∑

λ/∈Λ∩Ω∗

〈ψk, gλ〉〈g̃λ, h〉
∣∣∣∣
2

≤ ‖f‖22
N∑

k=1

sup
‖h‖2=1

( ∑

λ/∈Λ∩Ω∗

|〈ψk, gλ〉|2
)( ∑

λ/∈Λ∩Ω∗

|〈g̃λ, h〉|2
)
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≤ A−1‖f‖22
N∑

k=1

∑

λ/∈Λ∩Ω∗

|〈ψk, gλ〉|2.

We consider |〈ψk, gλ〉| and note that |〈ψk, gλ〉| = 1
αk
|〈HΩ,ϕψk, gλ〉|. Since g satisfies

|Vϕg(z)| ≤ C(1 + |z|2s)−1, it follows from Lemma 3.5 that

|〈ψk, gλ〉| ≤
1

αk
Cs2

1
2s (1 + 1

2
dist(λ,Ω)s)−1,

where δ is taken to be 1
2
, which gives us

∥∥∥∥f −
∑

λ∈Λ∩Ω∗

〈f, gλ〉g̃λ
∥∥∥∥
2

2

≤ A−1‖f‖22C2
s2

1
s

( N∑

k=1

1

α2
k

) ∑

λ/∈Λ∩Ω∗

(1 + 1
2
dist(λ,Ω)s)−2.

The right-hand side of the above equation approaches 0 as Ω∗ gets larger. In partic-
ular, given ε > 0, one can choose Ω∗ so that the sum

∑

λ/∈Λ∩Ω∗

(1 + 1
2
dist(λ,Ω)s)−2 < ε2/

(
A−1C2

s2
1
s

N∑

k=1

1

α2
k

)

which gives the conclusion of the proposition.

Remark 3.13. In [33], Dörfler considered the truncated frame expansion

SRf =
∑

λ∈MR∩Λ
〈f, π(λ)gt〉π(λ)gt,

where G(gt,Λ) is a tight Gabor frame and MR is a region such that MR ⊆ BR(0). It
was shown that for a fixed R0 > 0 and for any ε > 0, there exists R1 such that for all
f ∈ ran(SR0),

‖f − SRf‖22 < ε‖f‖22
for all R > R1. In contrast, Proposition 3.12 holds for f in the subspace VN and we
obtain more explicit relations between ε and the enlargement of the region, especially
if the region has known shape.

In the next proposition, we obtain yet another error estimate for the approxima-
tion of f ∈ L2(R) wherein this time, the error bound is expressed in terms of the
error between f and its projection onto the subspace VN .

Proposition 3.14. Let G(g,Λ) be a Gabor frame with |Vϕg(z)| ≤ C(1 + |z|2s)−1 and
frame bounds A and B. Then, for all N > 0 and all ε > 0, there exists a set Ω∗ ⊃ Ω
in R2, such that for all f ∈ L2(R) with corresponding projection fN := PVNf onto the
TF-localization subspace VN ,the following estimate holds:

∥∥∥∥∥f −
∑

λ∈Λ∩Ω∗

〈f, gλ〉g̃λ
∥∥∥∥∥
2

≤
(
1 +

√
B
A

)
‖f − fN‖2 + ε‖f‖2. (3.8)
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Proof : Since
∥∥∥∥∥f −

∑

λ∈Λ∩Ω∗

〈f, gλ〉g̃λ
∥∥∥∥∥
2

≤ ‖f − fN‖2 +
∥∥∥∥∥fN −

∑

λ∈Λ∩Ω∗

〈fN , gλ〉g̃λ
∥∥∥∥∥
2

+

∥∥∥∥∥
∑

λ∈Λ∩Ω∗

〈fN − f, gλ〉g̃λ
∥∥∥∥∥
2

the result follows from Proposition 3.12 and the boundedness of the associated analysis
and synthesis operators.

As a corollary, we obtain the following result for local approximation by Gabor
frame elements for functions with known time-frequency concentration in a given set
Ω.

Corollary 3.15. Let f be (ε, ϕ)-concentrated on Ω ⊂ R2. For fixed c > 1, let ψk, k =
1, . . . , N , be all eigenfunctions of HΩ,ϕ corresponding to eigenvalues αk >

c−1
c
. Then,

for all ε̃ >
(
1 +

√
B
A

)
· √cε, there exists a set Ω∗ ⊃ Ω in R2, such that

∥∥∥∥∥f −
∑

λ∈Λ∩Ω∗

〈f, gλ〉g̃λ
∥∥∥∥∥
2

≤ ε̃‖f‖2. (3.9)

Proof : The result follows immediately from Proposition 3.14 and Proposition 2.15(2).

3.2.1. Local TF-dictionaries and reconstruction from samples. We now
look at some properties of the local time-frequency dictionary corresponding to the
enlarged region Ω∗ covering Ω, and show a reconstruction procedure for a function
in the subspace VN from the local samples. We recall the following theorem by
Feichtinger and Zimmermann, c.f. [52]:

Theorem 3.16. [52, Theorem 3.6.16] Let (g, γ) be a Λ-dual pair in L2(Rd). Consider
a closed subspace V ⊆ L2(Rd), and assume that J ⊆ Λ is an index set such that for
some ε < 1, ∥∥∥∥∥f −

∑

λ∈J
〈f, π(λ)g〉π(λ)γ

∥∥∥∥∥
2

≤ ε‖f‖2 for all f ∈ V. (3.10)

Then f ∈ V can be completely reconstructed from {〈f, π(λ)g〉}λ∈J.

We note that reconstruction from restricted samples of the Gabor coefficients for
functions on a closed subspace in [52] was motivated by the problem of reconstructing
a bandlimited function from samples of its STFT on a strip in the time-frequency
plane covering the frequency band of the function.
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By Proposition 3.12, the above theorem is satisfied on the subspace VN , where
J = Λ ∩ Ω∗. If Sloc is the operator

Sloc : f 7 −→
∑

λ∈Λ∩Ω∗

〈f, gλ〉g̃λ,

then it follows from Proposition 3.12 that ‖f −Slocf‖2 < ε‖f‖2 for all f ∈ VN . With
PVN as the orthogonal projection onto VN , we have ‖ Id−PVNSloc‖Op < ε. Using the

Neumann series to obtain the operator L =
∞∑
k=0

(Id−PVNSloc)k, we have LPVNSloc = Id

on VN . Moreover, as a consequence of Proposition 3.12 is the following frame-like
inequality for functions in VN .

Proposition 3.17. If ε < 1 and inequality (3.7) is satisfied, then for all f ∈ VN ,

A(1− ε)2‖f‖22 ≤
∑

λ∈Λ∩Ω∗

|〈f, gλ〉|2 ≤ B‖f‖22, (3.11)

where A and B are lower and upper frame bounds, respectively, for G(g,Λ). This
implies that the system {PVNgλ}λ∈Λ∩Ω∗ forms a frame for VN . More generally, the
system {π(µ)PVNπ(λ)g}λ∈Λ∩Ω∗, where µ ∈ R2, forms a frame for the subspace VN,µ :=
{π(µ)f : f ∈ VN}.

Proof : From Proposition 3.12, we get

‖f‖2 −
∥∥∥∥∥
∑

λ∈Λ∩Ω∗

〈f, gλ〉g̃λ
∥∥∥∥∥
2

≤
∥∥∥∥∥f −

∑

λ∈Λ∩Ω∗

〈f, gλ〉g̃λ
∥∥∥∥∥
2

≤ ε‖f‖2.

And we obtain

(1− ε)2‖f‖22 ≤
∥∥∥∥∥
∑

λ∈Λ∩Ω∗

〈f, gλ〉g̃λ
∥∥∥∥∥

2

2

≤ 1

A

∑

λ∈Λ∩Ω∗

|〈f, gλ〉|2

≤ B

A
‖f‖22.

For the subspace VN,µ, we first note that

‖f‖2 = ‖π(µ)f‖2 and 〈f,PVNgλ〉 = 〈π(µ)f, π(µ)PVNgλ〉.

The inequality in (3.11) can then be reformulated as

A(1− ε)2‖π(µ)f‖22 ≤
∑

λ∈Λ∩Ω∗

|〈π(µ)f, π(µ)PVNgλ〉|2 ≤ B‖π(µ)f‖22,

for all f ∈ VN , or π(µ)f ∈ VN,µ.
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3.2.1.1. Local TF-dictionaries and pseudoframes for subspaces. Pseudoframes for
subspaces were introduced in by Li and Ogawa in [75] that aims to provide a more
flexible representation for functions in a subspace since it does not require the analysis
and synthesis sequences to lie in the subspace. It can be used e.g. for optimal noise
suppression, cf. [76].

A Bessel sequence {xn} with respect to a subspace V of a separable Hilbert space
H is said to be a pseudoframe for the subspace V (PFFS) with respect to a Bessel
sequence {x∗n} in H (called a dual pseudoframe to {xn} for V ) if

∀f ∈ V, f =
∑

n

〈f, xn〉x∗n. (3.12)

By Proposition 3.17, since {PVNgλ}λ∈Λ∩Ω∗ is a frame for VN , there is a dual frame
{g̃λ,VN}λ∈Λ∩Ω∗ such that for all f ∈ VN

f =
∑

λ∈Λ∩Ω∗

〈f,PVNgλ〉g̃λ,VN . (3.13)

Moreover, since f ∈ VN , 〈f,PVNgλ〉 = 〈f, gλ〉, so {gλ}λ∈Λ∩Ω∗ is a pseudoframe for
VN with respect to {g̃λ,VN}λ∈Λ∩Ω∗ . We also note that by [75, Theorems 2 and
3], a dual pseudoframe may be obtained via g̃λ,VN = PVN (Cg,Λ,Ω∗PVN )†gλ, where
Cgλf = {〈f, gλ〉}λ∈Λ∩Ω∗ and L† denotes the pseudoinverse of L. In the language of
[51], {gλ}λ∈Λ∩Ω∗ is a family of local atoms that provide an atomic decomposition for
VN .

3.2.1.2. Local TF-dictionaries and generalized sampling. The reconstruction of a
function f ∈ VN from the samples 〈f, gλ〉 translates to obtaining samples from inner
products with respect to one set of functions and reconstructing with another given
set of functions. This is the problem dealt with in consistent sampling involving bases,
which was later extended to frames via generalized sampling, cf. [44, 4, 5].

In this case, if Cgλ denotes the analysis operator of {gλ}λ∈Λ∩Ω∗ with C∗
gλ

as the

synthesis operator, and Cψk
denotes the analysis operator of {ψk}Nk=1 with C∗

ψk
as the

synthesis operator, then the reconstruction of f is given by Cψk
(C∗

gλ
Cψk

)†C∗
gλ
f .

3.3. Global frames from TF-localization

In [36], Dörfler and Gröchenig showed that finitely many eigenfunctions of HΩ,ϕ

generate a multi-window Gabor frame for L2(R) (see also the works of Dörfler and
Romero in [39, 40]). We restate the result in [36] for the case where the symbol is χΩ,
Ω a compact subset of R2, ϕ ∈ S0(R) and g ∈ L2(R) such that ‖ϕ‖2 = ‖g‖2 = 1 and
|Vϕg(z)| ≤ C(1 + |z|2s)−1 for some C > 0 and s > 1. Note that by Proposition 1.17,
g is also in S0(R

d). Given two non-negative functions h1 and h2, we write h1 ≍ h2 if
there exist constants K1, K2 ≥ 0 such that K1h1 ≤ h2 ≤ K2h1.
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Lemma 3.18. [36, Lemma 9] Suppose
∑

µ∈Λ̃ TµχΩ ≍ 1. Let {ψk}k∈N be the or-
thonormal system of eigenfunctions of HΩ,ϕ. Then there exists N ∈ N such that

∪Nk=1G(ψk, Λ̃) is a multi-window Gabor frame for L2(R).

We use this result to obtain another family of time-frequency dictionaries that
form a frame for L2(R).

Proposition 3.19. Suppose G(g,Λ) is a Gabor frame, Ω is a compact subset of R2

and Λ̃ a lattice such that
∑

µ∈Λ̃ TµχΩ ≍ 1. Let {ψk}k∈N be the orthonormal system
of eigenfunctions of HΩ,ϕ. Then there exists N ∈ N and a region Ω∗ ⊃ Ω such that

∪λ∈Λ∩Ω∗G(PVNgλ, Λ̃), where VN = span{ψk}Nk=1, is a multi-window Gabor frame for
L2(R).

Proof : By Lemma 3.18, there exists N ∈ N, such that ∪Nk=1G(ψk, Λ̃) is a multi-
window Gabor frame for L2(R). Proposition 3.12 and Proposition 3.17 tell us that
there exists Ω∗ ⊃ Ω such that for any µ ∈ R2, {π(µ)PVNgλ}λ∈Λ∩Ω∗ is a frame for

VN,µ = {π(µ)f : f ∈ VN}. Let µ ∈ Λ̃. For any f ∈ L2(R), we have

∑

λ∈Λ∩Ω∗

|〈f, π(µ)PVNgλ〉|2 =
∑

λ∈Λ∩Ω∗

|〈π(µ)∗f,PVNgλ〉|2

=
∑

λ∈Λ∩Ω∗

|〈PVNπ(µ)∗f,PVNgλ〉|2

≍ ‖PVNπ(µ)∗f‖22 (by Proposition 3.17)

=

N∑

k=1

|〈PVNπ(µ)∗f, ψk〉|2

=
N∑

k=1

|〈f, π(µ)ψk〉|2.

And we obtain the following equivalent expressions:

∑

µ∈Λ̃

∑

λ∈Λ∩Ω∗

|〈f, π(µ)PVNgλ〉|2 ≍
∑

µ∈Λ̃

N∑

k=1

|〈f, π(µ)ψk〉|2 ≍ ‖f‖22, (3.14)

where the second equivalence follows from Lemma 3.18. Hence, the conclusion follows.

We note that the equivalence
∑

λ∈Λ∩Ω∗

|〈f, π(µ)PVNgλ〉|2 ≍
N∑
k=1

|〈f, π(µ)ψk〉|2 can be

written explicitly, using (3.11), as

A(1−ε)2
N∑

k=1

|〈f, π(µ)ψk〉|2 ≤
∑

λ∈Λ∩Ω∗

|〈f, π(µ)PVNgλ〉|2 ≤ B
N∑

k=1

|〈f, π(µ)ψk〉|2, (3.15)
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where 0 < ε < 1. Consequently, the first equivalence in (3.14) is as follows:

Aε
∑

µ∈Λ̃

N∑

k=1

|〈f, π(µ)ψk〉|2 ≤
∑

µ∈Λ̃

∑

λ∈Λ∩Ω∗

|〈f, π(µ)PVNgλ〉|2 ≤ B
∑

µ∈Λ̃

N∑

k=1

|〈f, π(µ)ψk〉|2,

where Aε = A(1− ε)2.

We can generalize the above proposition, wherein instead of translating a single
region Ω to cover R2, we consider a family of regions Ωµ ⊂ R2 such that

∑
µ∈Λ̃ χΩµ ≍ 1.

It follows from [40, Theorem 5.10] that we can choose Nµ such that

‖f‖22 ≍
∑

µ∈Λ̃

Nµ∑

k=1

|〈f, ψµk 〉|2, f ∈ L2(R) (3.16)

and obtain the following theorem.

Theorem 3.20. Let {Ωµ}µ∈Λ̃ be a family of compact regions in R2 such that∑
µ∈Λ̃ χΩµ ≍ 1, and let ϕ ∈ S0(R) such that ‖ϕ‖2 = 1. Corresponding to each

µ ∈ Λ̃, we let gµ ∈ L2(R) such that ‖gµ‖2 = 1 and |Vϕgµ(z)| ≤ Cµ(1 + |z|2sµ)−1 for
some Cµ > 0 and sµ > 1, and let G(gµ,Λµ) be a frame for L2(R) with frame bounds

Aµ and Bµ. Denote by VNµ the span of the first Nµ eigenfunctions {ψµk}
Nµ

k=1 of HΩµ,ϕ

corresponding to the Nµ largest eigenvalues, where each Nµ is chosen so that (3.16)
holds. If 0 < εµ < 1 such that 0 < infµ∈Λ̃Aµ(1 − εµ)

2 ≤ supµ∈Λ̃Bµ < ∞, then there

exist Ω∗
µ ⊃ Ωµ such that

⋃
µ∈Λ̃{PVNµ

π(λ)gµ}λ∈Λµ∩Ω∗
µ
is a frame for L2(R).

Remark 3.21. This global system forming a frame obtained from local systems is
comparable to quilted Gabor frames introduced by Dörfler in [34], the difference
being the the projection of the time-frequency dictionary elements onto the time-
frequency localized subspaces. In [83], Romero proved results concerning frames for
general spline-type spaces from portions of given frames which provided existence
conditions for quilted Gabor frames.

Proof : For each µ ∈ Λ̃, by Proposition 3.17, there exists Ω∗
µ ⊃ Ωµ such that

{PVNµ
π(λ)gµ}λ∈Λµ∩Ω∗

µ
is a frame for VNµ and as in (3.15), the following inequality

holds for all f ∈ L2(R):

Aµ(1− εµ)
2

Nµ∑

k=1

|〈f, ψµk 〉|2 ≤
∑

λ∈Λµ∩Ω∗
µ

|〈f,PVNµ
π(λ)gµ〉|2 ≤ Bµ

Nµ∑

k=1

|〈f, ψµk 〉|2.

By the assumption that 0 < Ã := infµ∈Λ̃Aµ(1− εµ)
2 ≤ B̃ := supµ∈Λ̃Bµ <∞ and the

equivalence in (3.16), we get

Ã
∑

µ∈Λ̃

Nµ∑

k=1

|〈f, ψµk 〉|2 ≤
∑

µ∈Λ̃

∑

λ∈Λµ∩Ω∗
µ

|〈f,PVNµ
π(λ)gµ〉|2 ≤ B̃

∑

µ∈Λ̃

Nµ∑

k=1

|〈f, ψµk 〉|2,

and finally
∑
µ∈Λ̃

∑
λ∈Λµ∩Ω∗

µ

|〈f,PVNµ
π(λ)gµ〉|2 ≍ ‖f‖22.
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3.4. Numerical examples

In this section, we consider examples in the finite discrete case (CL, L = 480)
that illustrate the results in the previous sections. The experiments were done in
MATLAB using the NuHAG Matlab toolbox available in the following website:
http://www.univie.ac.at/nuhag-php/mmodule/.

3.4.1. Experiment 1. We first examine the approximation of time-frequency
localized signals by a local Gabor system, in particular, functions lying in the N -
dimensional subspace VN of eigenfunctions of HΩ,ϕ, as shown in Proposition 3.12. In
this example, we take Ω to be a disk centered at the origin with radius 80 and ϕ to
be a normalized Gaussian.

Figure 1 shows the STFT of a signal in VN and the sample points taken over
circular regions with varying radii, each containing Ω. In each case, the sampling
points are obtained by restricting a lattice with parameters a = b = 20 over the
circular region. The error of the approximation ‖PVN − SlocPVN‖Op, where Sloc is a
truncated tight frame operator, is shown in Table 1 below.
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Figure 1. Sampling points over various enlargements of the covering region.

Cover radius No. of samp. pts. Op. norm error

80 45 0.9650

100 77 0.1105

120 109 0.0194

140 145 0.0031

Table 1. Error ‖PVN − SlocPVN‖Op over varying radii for the disk Ω

http://www.univie.ac.at/nuhag-php/mmodule/
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We saw in Proposition 3.17 that if ε < 1, corresponding to the operator norm
‖PVN − SlocPVN‖Op being less than 1, then the local Gabor system projected into
VN forms a frame for VN so perfect reconstruction is possible by the frame algorithm
(1.27). The performance of the reconstruction algorithm is shown in Figure 2. As
expected, the larger the covering region, the faster the convergence.
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Figure 2. Convergence of the reconstruction algorithm from the local
samples with the same lattice parameters but with varying radii of the
covering regions.

3.4.2. Experiment 2. In this next experiment, we look at an example of how
the collection of local Gabor systems can form a frame given that the sum of the
characteristic functions over the regions is bounded above and below by a positive
number. Figure 3 shows ten regions in the TF-plane and Figure 4 shows its sum.
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Figure 3. Ten regions that partition the time-frequency plane.
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Sum of the characteristic functions
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Figure 4. Sum of the characteristic functions over the ten regions.

Sample points are then taken over sets that contain each region, where different
lattices are used for each set. The lattice parameters assigned to each set are sum-
marized in Table 2, and the sample points are depicted in Figure 5. The left image
shows sample points obtained by restricting each lattice over the regions themselves,
while the samples in the right image are obtained from the restriction over larger
sets containing each region, thus producing more overlap. Tight windows are used
corresponding to each set of restricted lattice points.

Region (a, b) Region (a, b)

1 (20, 20) 6 (15, 15)

2 (16, 20) 7 (12, 15)

3 (20, 16) 8 (12, 12)

4 (16, 16) 9 (10, 12)

5 (15, 16) 10 (10, 10)

Table 2. Lattice parameters over the different regions.
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Figure 5. Sampling points on the different local patches.
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We form a quilted Gabor frame from the collection of local Gabor systems. And
by projecting each local Gabor system onto the local subspace corresponding to each
region, we likewise obtain a global frame as in Theorem 3.20. The average of the

relative error
‖f − Sif‖2

‖f‖2
when the frame operators S1 and S2, corresponding to the

quilted Gabor frame (i.e. without projection) and the global frame (i.e. with projec-
tion), respectively, are applied to a random signal f are shown in Table 3.

without projection with projection

Less overlap 0.2610 0.1687

More overlap 0.5840 0.1709

Table 3. Average of the error in applying the frame operator to a
random signal (average of 1000 attempts).

In both cases of less and more overlap, projecting onto the TF-localized subspaces
decreases the relative error between the signal and the approximation by the frame
operator. Note that in both quilted Gabor frame and the global frame with projection,
having more overlap increases the relative error since we are just comparing f with
Sif . Since we are dealing with frames, perfect reconstruction (up to numerical error)
is possible via the frame algorithm (1.27).

We first compare the respective condition numbers of the frame operators for the
cases of less and more overlap. The values are shown in Table 4. Once again, in
both quilted Gabor frame and the global frame with projection, having more overlap
improves the condition number. Note that the large condition number for the frame
operator corresponding to the global frame with less overlap can be attributed to the
lower frame bound in Theorem 3.20, which is related to the set Ω∗

µ that covers the
region Ωµ - a smaller region Ω∗

µ implies a smaller lower frame bound.

without projection with projection

Less overlap 5.1429 16.0406

More overlap 3.5472 1.9845

Table 4. Condition numbers of the resulting frame operators.
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Figure 6 compares the convergence of the frame algorithm for the four cases con-
sidered.
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Figure 6. Convergence of the frame algorithm.



CHAPTER 4

Random sampling of time-frequency localized functions

In [9, 10], R. Bass and K. Gröchenig studied the random sampling of band-limited
functions. They investigated the probability that a sampling inequality holds from
random local sampling points. Given the space B of bandlimited functions,

B = {f ∈ L2(R) : supp f̂ ⊆ [−1/2, 1/2]},
we let CR = [−R/2, R/2], and we define the subset

B(R, ε) = {f ∈ B :

∫

CR

|f(x)|2 dx ≥ (1− ε)‖f‖22}.

Theorem 4.1. [10, Theorem 1] Let {xj : j ∈ N} be a sequence of independent and
identically distributed random variables that are uniformly distributed in CR. Suppose
that R ≥ 2, that ε ∈ (0, 1) and ν ∈ (0, 1/2) are small enough, and that 0 < δ < 1.
There exists a constant κ so that if the number of samples r satisfies

r ≥ R
1 + ν/3

ν2
ln

2R

δ
,

then the sampling inequality

r

R

(
1

2
− ε− ν − 12εκ

)
‖f‖22 ≤

r∑

j=1

|f(xj)| ≤ r‖f‖22 for all f ∈ B(R, ε)

holds with probability at least 1− δ. The constant κ can be taken to be κ = edπ.

Remark 4.2. Führ and Xian [53] extended the results to the setting of finitely gen-
erated shift-invariant spaces.

We follow the approach in [10] for functions that are (ε, ϕ)-concentrated on a
compact region Ω in the time-frequency plane, where ϕ ∈ L2(R) with ‖ϕ‖2 = 1. We
first consider random sampling for functions in the finite-dimensional space VN of
eigenfunctions of HΩ,ϕ.

Proposition 4.3. Let ΛΩ = {λj}j∈N be a sequence of independent and identically
distributed random variables that are uniformly distributed in Ω. Then

P


 inf
f∈VN ,‖f‖2=1

1

r

r∑

j=1

(|Vϕf(λj)|2 −
1

|Ω| 〈HΩ,ϕf, f〉) ≤ − ν

|Ω|


 ≤ N exp

(
− ν2r

|Ω|(1 + ν/3)

)

(4.1)

for ν ≥ 0.
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First part of the proof. Let f = 〈c, ψ〉 =
N∑
k=1

ckψk ∈ VN , so that

|Vϕf(λj)|2 =
N∑

k,l=1

ckcl〈ψk, π(λj)ϕ〉〈ψl, π(λj)ϕ〉.

We define the N ×N rank-one matrix Tj as follows:

(Tj)kl := 〈ψk, π(λj)ϕ〉〈ψl, π(λj)ϕ〉. (4.2)

Note that |Vϕf(λj)|2 = 〈c, Tjc〉. Since each random variable λj is uniformly dis-
tributed over Ω, and ψk is the kth eigenfunction of the time-frequency localization
operator HΩ,ϕ, the expectation of the kl-th entry is

E ((Tj)kl) =
1

|Ω|

∫∫

Ω

〈ψk, π(z)ϕ〉〈ψl, π(z)ϕ〉 dz = 1

|Ω|〈HΩ,ϕψk, ψl〉 (4.3)

=
1

|Ω|αkδkl k, l = 1, . . . , N, (4.4)

where δkl is Kronecker’s delta. The expectation of Tj is the diagonal matrix

E(Tj) =
1

|Ω| diag(αk) =:
1

|Ω|∆. (4.5)

Now, the expression inside the left-hand side of (4.1) can be rewritten as

inf
f∈VN ,‖f‖2=1

1

r

r∑

j=1

(
|Vϕf(λj)|2 − 1

|Ω|〈HΩ,ϕf, f〉
)

(4.6)

= inf
‖c‖2=1

1

r

r∑

j=1

(〈c, Tjc〉 − 〈c,E(Tj)c〉) (4.7)

= αmin

(
1

r

r∑

j=1

(Tj − E(Tj))

)
, (4.8)

where αmin(U) denotes the smallest eigenvalue of a self-adjoint matrix U .

We now apply a matrix Bernstein inequality due to Tropp [88]. Let αmax(A) be
the largest singular value of a matrix A so that ‖A‖ = αmax(A

∗A)1/2 is the operator
norm with respect to the ℓ2-norm.

Theorem 4.4. [88, Theorem 1.4] Let Xj be a finite sequence of independent, random,
self-adjoint N × N-matrices. Suppose that E(Xj) = 0 and ‖Xj‖ ≤ B a.s. and let

σ2 =
∥∥∥
∑r

j=1E(X
2
j )
∥∥∥. Then for all t ≥ 0,

P

(
αmax

( r∑

j=1

Xj

)
≥ t

)
≤ N exp

(
− t2/2

σ2 +Bt/3

)
. (4.9)

We take Xj = Tj − E(Tj) and compute ‖Xj‖ and ‖∑r
j=1E(X

2
j )‖.
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Lemma 4.5. If Xj = Tj − E(Tj), then

(1) ‖Xj‖ ≤ 1,

(2) E(X2
j ) ≤

1

|Ω|∆, and

(3) σ2 =
∥∥∥

r∑

j=1

E(X2
j )
∥∥∥ ≤ r

|Ω| .

Proof :

(1) The matrix norm of Xj is estimated as follows:

‖Xj‖ = ‖Tj − E(Tj)‖ = sup
‖c‖2=1

|〈c, Tjc〉 − 〈c,E(Tj)c〉|

= sup
‖f‖2=1

∣∣∣ |Vϕf(λj)|2 − 1

|Ω|〈HΩ,ϕf, f〉
∣∣∣

≤ ‖f‖22‖ϕ‖22 = 1

(2) To find E(X2
j ), we use (4.5) and obtain

E(X2
j ) = E(T 2

j )−
1

|Ω|E(Tj∆)− 1

|Ω|E(∆Tj) +
1

|Ω|2∆
2

= E(T 2
j )−

1

|Ω|E(Tj)∆− 1

|Ω|∆E(Tj) +
1

|Ω|2∆
2

= E(T 2
j )−

1

|Ω|2∆
2.

Now we compare T 2
j and Tj .

(T 2
j )km =

N∑

l=1

(Tj)kl(Tj)lm

=

N∑

k=1

〈ψk, π(λj)ϕ〉〈ψl, π(λj)ϕ〉〈ψl, π(λj)ϕ〉〈ψm, π(λj)ϕ〉

=

(
N∑

l=1

|〈ψl, π(λj)ϕ〉|2
)
(Tj)km

= ‖PVNϕ‖22(Tj)km ≤ ‖ϕ‖22(Tj)km = (Tj)km

We thus have T 2
j ≤ Tj and E(T 2

j ) ≤ E(Tj) =
1

|Ω|∆, so the expectation of X2
j gives

E(X2
j ) = E(T 2

j )−
1

|Ω|2∆
2 ≤ 1

|Ω|∆.

(3) σ2 =
∥∥∥

r∑

j=1

E(X2
j )
∥∥∥ ≤ r

|Ω|‖∆‖ ≤ r

|Ω| .
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End of proof of Proposition 4.3. It follows from Theorem 4.4, taking t = rν/|Ω|, that

P

(
αmin

( r∑

j=1

(Tj − E(Tj)

)
≤ − νr

|Ω|

)
≤ N exp

(
− ν2r2|Ω|−2

|Ω|−1r + |Ω|−1νr/3

)
.

Together with (4.8), we obtain the conclusion of the proposition.

We now observe a relation between the lower sampling inequality for the space
VN to that for functions that are (ε, ϕ)-concentrated in Ω.

Lemma 4.6. Let ϕ ∈ S0, with ‖ϕ‖2 = 1 and ΛΩ = {λr}rj=1 a finite relatively sepa-
rated set of points in Ω. If the inequality

1

r

r∑

j=1

|Vϕp(λj)|2 ≥
〈HΩ,ϕp, p〉 − ν‖p‖22

|Ω| (4.10)

holds for all p ∈ VN , then the inequality

r∑

j=1

|Vϕ(λj)|2 ≥ A‖f‖22 (4.11)

holds for all f that are (ε, ϕ)-concentrated in Ω with constant

A =
r

|Ω|

(
αN − αNε

1− αN
− ν

)
− 2B

√
ε

1− αN
,

where B is a constant dependent on the covering index

N0 = sup
m∈Z2

#(Λ ∩Q1(m))

and the window function ϕ.

Remark 4.7. For A > 0, we need r ≥ |Ω|
(

2B
√

ε
1−αN

αN − αN ε
1−αN

− ν

)
.

Proof : Since f = PVN f + (I − PVN )f , we have

(
r∑

j=1

|Vϕf(λj)|2
)1/2

≥
(

r∑

j=1

|VϕPVN f(λj)|2
)1/2

−
(

r∑

j=1

|Vϕ(I − PVN )f(λj)|2
)1/2

.

Squaring both sides of the inequality and applying Theorem 1.38, where B is the
Bessel bound given in (1.34),we get

r∑

j=1

|Vϕf(λj)|2 ≥
r∑

j=1

|VϕPVNf(λj)|2

− 2

(
r∑

j=1

|VϕPVNf(λj)|2
)1/2( r∑

j=1

|Vϕ(I − PVN )f(λj)|2
)1/2
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+

r∑

j=1

|Vϕ(I − PVN )f(λj)|2

≥
r∑

j=1

|VϕPVNf(λj)|2 − 2B‖PVNf‖2‖(I −PVN )f‖2

≥
r∑

j=1

|VϕPVNf(λj)|2 − 2B

√
ε

1− αN

‖f‖22,

where the last inequality follows from ‖PVNf‖2 ≤ ‖f‖2 and Proposition 2.15(2). By
hypothesis (4.10) and Proposition 2.15, we obtain

r∑

j=1

|Vϕf(λj)|2 ≥
r∑

j=1

|VϕPVNf(λj)|2 − 2B

√
ε

1− αN

‖f‖22

≥ r

|Ω|〈HΩ,ϕPVN f,PVNf〉 −
r ν

|Ω|‖PVNf‖
2
2 − 2B

√
ε

1− αN

‖f‖22

≥ r

|Ω|αN
(
1− ε

1− αN

)
‖f‖22 −

r ν

|Ω| − 2B

√
ε

1− αN

‖f‖22.

So we can take A as

A =
r

|Ω|

(
αN − αNε

1− αN
− ν

)
− 2B

√
ε

1− αN
.

For the succeeding results, let Ω be a compact set that would need at most |Ω|+ǫ1
cubes Q(m) = [m1−1/2, m1+1/2]× [m2−1/2, m2+1/2], where m = (m1, m2) ∈ Z2

and ǫ1 ≥ 0, to cover it.

Lemma 4.8. Let ΛΩ = {λj}rj=1 be a finite sequence of independent and identically
distributed random variables that are uniformly distributed in Ω. Let a > |Ω|−1. Then

P(N0 > ar) ≤ (|Ω|+ ǫ1) exp
(
− r(a ln(a|Ω|)− (a− |Ω|−1))

)
.

Proof : If N0 > ar, then for at least one m, Q(m) must contain at least ar points
from ΛΩ. So we have

P(N0 > ar) ≤ (|Ω|+ ǫ1) sup
m∈Z2

P(#(ΛΩ ∩Q(m)) > ar). (4.12)

We fix m ∈ Z2. For any b > 0, it follows from Chebyshev’s inequality that

P(#(ΛΩ ∩Q(m)) > ar) = P

( r∑

j=1

χQ(m)(λj) > ar
)

≤ e−bar E exp
(
b

r∑

j=1

χQ(m)(λj)
)
.
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Since the λ’s are uniformly distributed over ΛΩ, it follows that χQ(m)(λj) = 1 with
probability at most |Ω|−1 and otherwise is 0. And by the independence,

P(#(ΛΩ ∩Q(m)) > ar) ≤ e−bar
r∏

j=1

E exp(bχQ(m)(λj))

≤ e−bar ((1− |Ω|−1) + eb|Ω|−1)r = e−bar (1 + (eb − 1)|Ω|−1)r

≤ e−bar (exp ((eb − 1)|Ω|−1))r.

We choose b = ln(a|Ω|) that optimizes the last term, which becomes

exp
(
− r(a ln(a|Ω|)− (a− |Ω|−1))

)
.

Substituting this expression in (4.12) gives the desired result.

We now combine the result in Proposition 4.3 with the estimates obtained in
Lemma 4.6 and Lemma 4.8, and choose appropriate values of the parameters ε and
ν to obtain the next theorem. We take αN = 1/2 so that N is around |Ω|, say
N = |Ω| + ǫ2. From the Bessel bound B in (1.34), we have N1(Λ) = N0 and we let
Cϕ = B/N0.

Theorem 4.9. Let ΛΩ = {λj}j∈N be a sequence of identically distributed random
variables that are uniformly distributed in Ω, and let ϕ be a window function in S0

with ‖ϕ‖2 = 1. Suppose

ε <
1

4(1 + 6
√
2Cϕ)2

and ν <
1

2
− (1 + 6

√
2Cϕ)

√
ε.

If we let

A =
r

|Ω|

(
1

2
− ε− ν − 6

√
2Cϕ

√
ε
)
, (4.13)

then the sampling inequality

A‖f‖22 ≤
r∑

j=1

|Vϕ(λj)|2 ≤ r‖f‖22, (4.14)

for all (ε, ϕ)-concentrated functions, holds with probability at least

1− (|Ω|+ ǫ2) exp

(
− ν2r

|Ω|(1 + ν/3)

)
− (|Ω|+ ǫ1) exp

(
− r

|Ω|(3 ln 3− 2)
)
. (4.15)

Proof : Since |Vϕf(λj)| = |〈f, π(λj)ϕ〉| ≤ ‖f‖2, the right-hand side of (4.14) follows
immediately. We take a = 3|Ω|−1. Let

V1 =

{
inf

f∈VN , ‖f‖2=1

1

r

r∑

j=1

(
|Vϕf(λj)|2 − 1

|Ω|〈HΩ,ϕf, f〉
)
≤ − ν

|Ω|

}

and let

V2 = {N0 > ar}.
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It follows from Proposition 4.3 and Lemma 4.8 that the probability of (V1 ∪ V2)c is
bounded below by (4.15). And by Lemma 4.6, we have that

r∑

j=1

|Vϕf(λj)|2 ≥ A‖f‖22

for all (ε, ϕ)-concentrated functions f such that (V1 ∪ V2)c holds. With N0 = 3|Ω|−1,

the lower bound in (4.11) becomes A =
r

|Ω|

(
1

2
−ε−ν−6

√
2Cϕ

√
ε
)
. The assumptions

on ε and ν would guarantee that A > 0.

With N = |Ω|+ ǫ2 and 0 < ν < 1/2− (1 + 6
√
2Cϕ)

√
ε, if δ is given and

r ≥ max

{
|Ω|1 + ν/3

ν2
ln

2(|Ω|+ ǫ2)

δ
,

|Ω|
3 ln 3− 2

ln
2(|Ω|+ ǫ1)

δ

}
= |Ω|1 + ν/3

ν2
ln

2(|Ω|+ ǫ2)

δ
,

then the probability in (4.15) will be larger than 1− δ.





CHAPTER 5

Adaptive time-frequency representations and applications

This chapter consists of the results presented in [41, 89, 7]. These are joint works
with P. Balazs, M. Dörfler, T. Grill, N. Holighaus, and F. Jaillet.

Adaptivity in the time-frequency representation of functions is often desired in
applications, cf. [8]. While Gabor frames already provide more flexibility over Gabor
Riesz bases, the rigid structure of Gabor frames may still be to be too restrictive in
some applications, as it exhibits a fixed time-frequency resolution in its representa-
tion. Real life signals may have various components with with distinct time-frequency
localization properties. Gabor frames may be adapted to certain properties of the sig-
nal. Such adaptation may be achieved for instance in opting to have diverse windows
with certain desirable properties, or varying the sampling process instead of having
a regular structure of the sampling set.

We present two adaptive time-frequency representations and illustrate their ad-
vantages in audio signal processing with numerical examples. The first method is ob-
tained by an approximate projection of the relevant atoms onto a system of weighted
vectors which are optimally concentrated inside the desired regions of adaptation.
The second method is via nonstationary Gabor frames where the a set of more gen-
eral windows are used instead of just regular translates of a single window. The
transform thus obtained would allow for adaptivity in either time or frequency.

5.1. Approximate projections onto time-frequency subspaces

Assume that we are given a partition of R2, i.e. a family of sets Ωµ ⊂ R2 such that∑
µ χΩµ ≡ 1, and a window function ϕ ∈ L2(R) such that ‖ϕ‖2 = 1. Then, using the

spectral decomposition of each time-frequency localization operator HΩµ,ϕ, we obtain

f =
∑

µ

HΩµ,ϕf =
∑

µ

∞∑

k=1

αµk〈f, ψµk 〉ψµk .

Now assume further that a tight Gabor frame G(gµ,Λµ) is assigned to each set Ωµ.
Expanding f with respect to each of these frames, we obtain:

f =
∑

µ

∑

λ∈Λµ

〈f, π(λ)gµ〉
∞∑

k=1

αµk〈π(λ)gµ, ψµk 〉ψµk (5.1)
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We make the following observations from the properties of time-frequency localization
operators as reviewed in Chapter 2:

• The largest eigenvalues αµk of a localization operator typically are close to 1
and then drop to 0 very fast (in fact, the sequence {αµk}k has exponential
decay), cf. [29]. Around |Ωµ| eigenvalues lie above 0.5. Consequently, one
can safely discard elements with index k > Nµ in (5.1).

• On the other hand, from Lemma 3.5 the inner product 〈π(λ)gµ, ψµk 〉 is shown
to decay fast with respect to the distance of λ from Ωµ, e.g. for a Gaussian
window gµ, the decay is exponential, while milder decay conditions lead to a
polynomial decay. Therefore, all π(λ)gµ with dist(λ,Ωµ) ≥ b for some b can
be omitted from the equation (5.1).

We thus choose an appropriate Nµ, an extension size or overlap b and set Ω∗ = Ωµ ∪
{z ∈ R2 \ Ωµ : dist(z,Ωµ) < b}. We then propose to use the following approximate
reconstruction formula:

f̃ =
∑

µ

∑

λ∈Λµ∩Ω∗
µ

〈f, π(λ)gµ〉
Nµ∑

k=1

αµk〈π(λ)gµ, ψµk 〉ψµk (5.2)

Observe that the sum
∑Nµ

k=1 α
µ
k〈·, ψµk 〉ψµk , which we denote by H

Nµ

Ωµ,ϕ
since it is a

truncation of the spectral decomposition of HΩµ,ϕ, is a weighted sum of the first Nµ

eigenfunctions of the time-frequency localization operator HΩµ,ϕ. We can then treat

H
Nµ

Ωµ,ϕ
as an approximate projection onto the subspace VNµ spanned by {ψµk}

Nµ

k=1.

We now obtain the following error estimate:

Proposition 5.1. Let a partition of R2 be given, Ωµ ⊂ R2 such that
∑

µ χΩµ ≡ 1, and

let the windows gµ satisfy a joint polynomial decay condition of the form |Vϕgµ(z)| ≤
C(1 + |z|2s)−1, s > 1, for all z ∈ R2. Let f̃ be the approximate reconstruction of f in

(5.2). Then, the reconstruction error is bounded by ‖f̃ − f‖2 ≤
∑

µ errµ ‖f‖2, where
for all µ and some 0 < δ < 1, the following estimate holds:

errµ ≤




∞∑

k=Nµ+1

(αµk)
2




1
2

+


Cµ

∑

λ/∈Λµ∩Ω∗
µ

(
1 + (1− δ)(inf

z∈Ω
|z − λ|s)

)−2



1
2

(5.3)

Remark 5.2. It should be noted that the sum of errµ over all µ can be shown to be
finite for appropriate choices of Nµ and Ω∗

µ. Here, we prefer to state the explicit local
errors, since their expression is more informative in showing directly the influence of
the parameters Nµ and b.
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Proof : Let f̃µ =
∑

λ∈Ωµ∩Ωµ
∗〈f, π(λ)gµ〉HNµ

Ωµ,ϕ
π(λ)gµ. We can estimate the left-hand

side of (5.2) as follows:

‖f − f̃‖2 =
∥∥∥∥
∑

µ

HΩµ,ϕf −
∑

µ

f̃µ

∥∥∥∥
2

≤
∑

µ

‖HΩµ,ϕf − f̃µ‖2

≤
∑

µ

(
‖HΩµ,ϕf −H

Nµ

Ωµ,ϕ
f‖2 + ‖HNµ

Ωµ,ϕ
f − f̃µ‖2

)
.

We obtain error bounds for ‖HΩµ,ϕf −H
Nµ

Ωµ,ϕ
f‖2 and ‖HNµ

Ωµ,ϕ
f − f̃µ‖2 separately. For

the first expression, we have

‖HΩµ,ϕf −H
Nµ

Ωµ,ϕ
f‖2 =

∥∥∥∥
∑

k>Nµ

αµk〈f, ψµk 〉ψµk
∥∥∥∥
2

≤
( ∑

k>Nµ

(αµk)
2

) 1
2
( ∑

k>Nµ

|〈f, ψµk 〉|2
) 1

2

≤
( ∑

k>Nµ

(αµk)
2

) 1
2

‖f‖2.

On the other hand, for ‖HNµ

Ωµ,ϕ
f − f̃µ‖2 we calculate

‖HNµ

Ωµ,ϕ
f − f̃µ‖2 =

∥∥∥∥
∑

λ/∈Λµ∩Ω∗
µ

〈f, π(λ)gµ〉
Nµ∑

k=1

αµk〈f, ψµk 〉ψµk
∥∥∥∥
2

≤
∑

λ/∈Λµ∩Ω∗
µ

|〈f, π(λ)gµ〉|
Nµ∑

k=1

αµk |〈π(λ)gµ, ψµk 〉|

=
∑

λ/∈Λµ∩Ω∗
µ

|〈f, π(λ)gµ〉|
Nµ∑

k=1

|〈HΩµ,ϕψ
µ
k , π(λ)g

µ〉|

≤
∑

λ/∈Λµ∩Ω∗
µ

|〈f, π(λ)gµ〉|Cδ− 1
2sNµ(1 + (1− δ) dist(λ,Ωµ)

s)−1

(Lemma 3.5)

≤ Cδ−
1
2sNµ

( ∑

λ/∈Λµ∩Ω∗
µ

|〈f, π(λ)gµ〉|2
) 1

2

·

( ∑

λ/∈Λµ∩Ω∗
µ

(1 + (1− δ) dist(λ,Ωµ)
s)−2

)1
2

.

If Bµ is the frame bound of the tight Gabor frame G(gµ,Λµ), then by taking Cµ =√
BµCsδ

− 1
2sNµ, we obtain the conclusion of the proposition.
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5.1.1. Derived Algorithm.

5.1.1.1. Computation of H
Nµ

Ωµ,ϕ
. To obtain the eigenvectors and eigenvalues needed

for the approximation in (5.2), we work with discrete versions of the localization
operators HΩµ,ϕ. To this end, consider the tight Gabor frame G(gt,Λ). We define the
Gabor multiplier Hmµ,Λ as follows:

Hmµ,Λf =
∑

λ∈Λ
mµ(λ)〈f, π(λ)gt〉π(λ)gt, (5.4)

where the masks mµ are obtained by letting mµ(λ) := 1, if λ ∈ Ωµ and 0 otherwise.
Then Hmµ,Λ is a discretization of the operator HΩµ,ϕ and it can be shown that its
spectral decomposition accurately approximates HΩµ,ϕ, for sufficiently dense lattice
Λ, cf. [48, 35].

In applications Hmµ,Λ is a matrix whose size depends on the signal length L and
it may be cumbersome to find the eigenfunctions and eigenvalues directly. However,
as observed e.g. in [39], the size of the corresponding Gramian matrix Γmµ , given by

Γmµ := G√
mµ ·G∗√

mµ
, (5.5)

where G√
mµ is the operator f 7→ [

√
mµ(λ)〈f, π(λ)g〉]λ∈Λ∩supp(m), mapping CL to CK ,

is K×K with K being the number of lattice points λµ inside the support of the mask
mµ, which is usually small enough for the computation of the spectral decomposition
to be a feasible task.

Writing Hmµ,Λ as a composition of G√
mµ and its adjoint G∗√

mµ
, the eigenfunctions

of Hmµ,Λ = G∗√
mµ

· G√
mµ may be obtained from the eigenfunctions of the Gramian

Γmµ by

ψµk =
1

sj
G∗√

mµ
· uj, j = 1, . . . , K, (5.6)

where G√
mµf =

K∑
k=1

sj〈f, ψµk 〉CLuj is the singular value decomposition of G√
mµ . Fur-

thermore, in (5.5) only the largest Nµ eigenfunctions uj need to be computed.

5.1.1.2. Choosing Nµ and Ω∗. For each µ, Nµ eigenfunctions {ψµk}j of Hmµ,Λ, as-
sociated to the eigenvalues αµk greater than a threshold tµ must be chosen. If the sets
Ωµ are of the same area, then we just take the same value of Nµ for each µ. Choosing
Nµ such that αµNµ

< 10−m, the first expression in the error estimate (5.3) is bounded

by 10−m due to the exponential decay of the eigenvalues.

Second, we choose a rectangular extension Ω∗
µ of Ωµ by increasing its sides by a

margin also of size b, such that in the second expression of (5.3), the value infz∈Ω |z−λ|
is sufficiently big for all λ /∈ Λµ ∩ Ω∗

µ.

5.1.2. Numerical Experiments. We look at examples in the finite discrete
case CL, L = 144. The experiments were done in MATLAB using the NuHAG
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Matlab toolbox available in http://www.univie.ac.at/nuhag-php/mmodule/. The
time-frequency plane will be partitioned into four parts, dividing the time axis at
tcut = L/2, and the frequency axis into bands corresponding to the frequencies above
and below ωcut = L/4. We note that these frequency bands extend to the negative
frequencies in a symmetric manner about the frequency 0.

The following tight Gabor frames will then be associated to the four regions:

(1) G(g1t , 12, 4) at the region Ω1 (lower frequency region and time t ≤ L/2);
(2) G(g2t , 16, 6) at the region Ω2 (lower frequency region and time t > L/2);
(3) G(g3t , 8, 16) at the region Ω3 (higher frequency region and time t ≤ L/2); and
(4) G(g4t , 9, 12) at the region Ω4 (higher frequency region and time t > L/2).

The signal will be analyzed using the these tight Gabor frames and applied with
weighted functions over regions that cover our partitions. We shall reconstruct using
the method introduced in [77] and our proposed method, and compare the approxi-
mation quality from the two methods.

For the approximate reconstruction [77], weight functionsW 1
T and W 2

T , depending
only on time, and W 1

F and W 2
F , depending only on frequency, shall be applied to the

analysis coefficients. These weight functions are defined as follows:

W 1
T (t) :=





1 if 1 ≤ t ≤ t1
t−t2
t1−t2 if t1 ≤ t ≤ t2

0 elsewhere

,

where t1 ≤ tcut ≤ t2, W
2
T := 1−W 1

T , i.e. W
1
T (t) +W 2

T (t) = 1 for each t,

W 1
F (ω) :=





1 if −ω1 ≤ ω ≤ ω1

ω−ω2

ω1−ω2
if ω1 ≤ t ≤ ω2

ω+ω2

ω2−ω1
if −ω2 ≤ t ≤ −ω1

0 elsewhere

, where ω1 ≤ ωcut ≤ ω2, W
2
F := 1−W 1

F , i.e. W
1
F (ω) +W 2

F (ω) = 1 for each ω. Figure
1 shows the four weight functions. We note that varying the ti and ωi amounts to
varying the overlap of the weight functions. In the experiment, the overlap value
b := t2 − tcut = tcut − t1 for the weight function in time shall also be used for the
weight function in frequency so that b = ω2 − ωcut = ωcut − ω1.

Recall that from [77], the reconstruction formula is given by

f̃W =
4∑

k=1

∑

λ∈Λk

W k
TF (t, ω)〈f, π(λ)gkt 〉π(λ)gkt , (5.7)

where W k
TF corresponds to W 1

T ·W 1
F for k = 1, W 2

T ·W 1
F for k = 2, W 1

T ·W 2
F for k = 3,

and W 2
T ·W 2

F for k = 4.

http://www.univie.ac.at/nuhag-php/mmodule/
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time

Weight functions in time

0

1

frequency

Weight functions in frequency

Figure 1. Weight functions W 1
T , W

2
T , W

1
F , and W

2
F .

We now compare the errors in approximating f using the methods described
above. Figure 2 shows the average of the root mean square (RMS) of the error given
by

err(frec) =
‖f − frec‖2

‖f‖2
=

√√√√√√√

L∑
n=1

(f [n]− frec[n])2

L∑
n=1

(f [n])2
,

of 50 random signals against the amount of overlap b. The solid line is from the
weight function method in [77] while the non-solid lines result from the proposed
approximate projection method. Each of the non-solid lines uses a different num-
ber of eigenfunctions: 45, 50, and 55 eigenfunctions, corresponding to the eigenvalue
thresholds 0.1016, 0.0243, and 0.0040. In both methods, we see the dependence of
the approximate reconstruction on the overlap amount. In the case of our proposed
method, the second term on error bound of (5.3) approaches 0 as the overlap increases.
Moreover, the approximate projection method has the added possibility of improving
the approximation error by increasing the number of eigenfunctions in the reconstruc-
tion. The dependence of the proposed method on the number of eigenfunctions in
the subspace is depicted in Figure 3.

Finally, we point out that the separation between the distinct regions chosen for
the different desired resolutions, that is Ωµ, µ = 1, . . . , 4, is much sharper using the
approximate projection method. This fact is illustrated in Figure 4, where we show
the results of applying one of the local systems to random white noise. Depicted are
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Figure 2. Approximation error vs. amount of overlap.
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Figure 3. Approximation error vs. number of eigenfunctions in the subspace.

the spectrograms of the results for the systems corresponding to low frequencies, first
signal part and high frequencies, second signal part, respectively. For both methods,
the set of parameters providing the best approximation quality is used. It can clearly
be seen, that the approximate projection method significantly reduces the spill outside
the region of interest which is quite considerable in the weight function method.

5.2. Nonstationary Gabor frames

In this section, we present an approach to fast adaptive time-frequency transforms,
that is based on a generalization of painless nonorthogonal expansions [28]. It allows
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Figure 4. Concentration of local systems within Ωµ. The spectro-
grams of local systems applied to random noise are shown.

for adaptivity of the analysis windows and the sampling points. Since the resulting
frames locally resemble classical Gabor frames and share some of their structure,
they are called nonstationary Gabor frames. The corresponding transform is likewise
referred to as nonstationary Gabor transform (NSGT). This concept relies on ideas
introduced in [67], and presented in [68].

The central feature of painless expansions is the diagonality of the frame operator
associated with the proposed analysis system. This idea is used here to yield pain-
less nonstationary Gabor frames and will allow for both mathematical accuracy in
the sense of perfect reconstruction (the frame operator is invertible) and numerical
feasibility by means of an FFT-based implementation. The construction of painless
nonstationary Gabor frames relies on three intuitively accessible properties of the
windows and time-frequency shift parameters used.

(1) The signal f of interest is localized at time- (or frequency-)positions n by
means of multiplication with a compactly supported (or limited bandwidth,
respectively) window function gn.

(2) The Fourier transform is applied on the localized pieces f · gn. The resulting
spectra are sampled densely enough in order to perfectly reconstruct f · gn
from these samples.

(3) Adjacent windows overlap to avoid loss of information. At the same time,
unnecessary overlap is undesirable. In other words, we assume that 0 < A ≤∑

n∈Z |gn(t)|2 ≤ B <∞, a.e., for some positive A and B.

We will show that these requirements lead to invertibility of the frame operator and
therefore to perfect reconstruction. Moreover, the frame operator is diagonal and
its inversion is straight-forward. Further, the dual frame has the same structure



5.2. NONSTATIONARY GABOR FRAMES 67

as the original one. Because of these pleasant consequences following from the three
above-mentioned requirements, the frames satisfying all of them will be called painless
nonstationary Gabor frames and we refer to this situation as the painless case. Since
Gabor transforms, as opposed to wavelet transforms, are in a certain sense symmetric
with respect to Fourier transform, our approach leads to adaptivity in either time or
frequency.

5.2.1. Resolution changing over time. As opposed to standard Gabor anal-
ysis, where time translation is used to generate atoms, the setting of nonstationary
Gabor frames allows for changing, hence adaptive, windows in different time posi-
tions. Then, for each time position, we build atoms by regular frequency modulation.
Using a set of functions {gn}n∈Z in L2(R) and frequency sampling step bn, for m ∈ Z

and n ∈ Z, we define atoms of the form:

gm,n(t) = gn(t)e
2πimbnt = Mmbngn(t),

implicitly assuming that the functions gn are well-localized and centered around time-
points an. This is similar to the standard Gabor scheme, however, with the possibility
to vary the window gn for each position an. Thus, sampling of the time-frequency
plane is done on a grid which is irregular over time, but regular over frequency at
each temporal position.

Figure 5 shows an example of such a sampling grid. Note that some results exist
in Gabor theory for semi-regular sampling grids, as for example in [18]. Our study
uses a more general setting, as the sampling grid is in general not separable and,
more importantly, the window can evolve over time. To get a first idea of the effect
of nonstationary Gabor frames, the reader may take a look at Figure 6 and Figure 7,
which show regular Gabor transforms and a nonstationary Gabor transform of the
same signal. Note that the NSGT in Figure 7 was adapted to transients and the
components are well resolved.
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Figure 5. Example of a sampling grid of the time-frequency plane
when building a decomposition with time-frequency resolution evolving
over time
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Glockenspiel − short window
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Figure 6. Glockenspiel (Example 1). Gabor representations with
short window (11.6 ms), resp. long window (185.8 ms).

Glockenspiel − dB−scaled Gabor transform
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Figure 7. Glockenspiel (Example 1). Regular Gabor representation
with a Hann window of 58 ms length and a nonstationary Gabor rep-
resentation using Hann windows of varying length.

In the current situation, the analysis coefficients may be written as

cm,n = 〈f,Mmbngn〉 = ̂(f · gn)(mbn), m, n ∈ Z.

Remark 5.3. If we set gn(t) = g(t − na) for a fixed time-constant a and bn = b for
all n, we obtain the case of classical painless nonorthogonal expansions for regular
Gabor systems.

5.2.2. Resolution changing over frequency. An analog construction in the
frequency domain leads to irregular sampling over frequency, together with windows
featuring adaptive bandwidth. Then, sampling is regular over time. An example of
the sampling grid in such a case is given in Figure 8.
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Figure 8. Example of a sampling grid of the time-frequency plane
when building a decomposition with time-frequency resolution changing
over frequency

In this case, we introduce a family of functions {hm}m∈Z of L2(R), and for m ∈ Z

and n ∈ Z, we define atoms of the form:

hm,n(t) = hm(t− nam). (5.8)

Therefore ĥm,n(ν) = ĥm(ν) · e−2πinamν and the analysis coefficients may be written as

cm,n = 〈f, hm,n〉 = 〈f̂ ,F(Tnamhm)〉 = F−1(f̂ · ĥm)(nam).
Hence, the situation is completely analog to the one described in the previous section,
up to a Fourier transform.

In practice we will choose each function hm as a well localized band-pass function
with center frequency bn.

5.2.3. Link between nonstationary Gabor frames, wavelet frames and
filterbanks: To obtain wavelet frames, the wavelet transform in (1.35) is sampled
at sampling points (βn, αm). A typical discretization scheme is (nβ0, α

m
0 ), cf. [79].

Then, the frame elements are ψm,n(t) = Tnβ0Dαm
0
ψ(t). Comparing this expression to

(5.8) and setting hm = Dm
α0
ψ and am = β0, we see that a wavelet frame with this

discretization scheme corresponds to a nonstationary Gabor transform.

Another possibility for sampling the continuous wavelet transform uses α = αm0
and β = nβ0α

m
0 , cf. [27]. Again, we obtain a correspondence to nonstationary Gabor

frames by setting hm = Dm
α0
ψ and am = β0 · αm0 .

Beyond the setting of wavelets, any filter bank [79], even with non-constant down-
sampling factors Dm, can be written as a nonstationary Gabor frame. A filter bank
is a set of time-invariant, linear filters hm, i.e. Fourier multipliers. The response of a
filter bank for the signal f and sampling period T0 is given (in the continuous case)
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by

cm,n = (f ∗ hm) (nDmT0) =

∫

R

f(t)hm (nDmT0 − t) dt = 〈f, hm,n〉 ,

where hm,n(t) = h (nDmT0 − t). Setting hm = I hm and choosing am = DmT0 this
construction is realized with nonstationary Gabor frames using (5.8). If the filters are
band-limited and the down-sampling factors are small enough, then the conditions
for the painless case are met and the corresponding reconstruction procedure can be
applied.

5.2.4. Invertibility of the frame operator and reconstruction. In this
subsection we give the precise conditions under which painless nonstationary Gabor
frames are constructed. The first two basic conditions, namely compactly supported
windows and sufficiently dense frequency sampling points, lead to diagonality of the
associated frame operator S. The third condition, the controlled overlap of adjacent
windows, then leads to boundedness and invertibility of S. The following theorem
generalizes the results given for the classical case of painless nonorthogonal expan-
sions [28, 55].

Theorem 5.4. For every n ∈ Z, let the function gn ∈ L2(R) be compactly supported
with supp(gn) ⊆ [cn, dn] and let bn be chosen such that dn − cn ≤ 1

bn
. Then the frame

operator

S : f 7→
∑

m,n

〈f, gm,n〉gm,n

of the system

gm,n(t) = gn(t) e
2πimbnt, m ∈ Z and n ∈ Z,

is given by a multiplication operator of the form

Sf(t) =

(∑

n

1

bn
|gn(t)|2

)
f(t).

Proof : Note that,

〈Sf, f〉 =
∑

n

∑

m

∣∣∣∣
∫

R

f(t) gn(t) e
−2πimbntdt

∣∣∣∣
2

=
∑

n

∑

m

∣∣∣∣
∫ dn

cn

f(t) gn(t) e
−2πimbntdt

∣∣∣∣
2

,

due to the compact support property of the gn. Let In = [cn, cn+b
−1
n ] for all n and χI

denote the characteristic function of the interval I. Taking into account the compact
support of gn again, it is obvious that

f gn = χIn
∑

l

Tlb−1
n
(fgn),
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with the b−1
n -periodic function

∑
lTlb−1

n
(f gn). Hence, with Wm,n(t) = e−2πimbnt,

∣∣∣∣
∫ dn

cn

f(t) gn(t)Wm,n(t) dt

∣∣∣∣
2

=

∣∣∣∣
∫

In

f(t) gn(t)Wm,n(t) dt

∣∣∣∣
2

,

= |〈f gn,Wm,n〉L2(In)|2

and applying Parseval’s identity to the sum over m yields

〈Sf, f〉 =
∑

n

∑

m

|〈f gn,Wm,n〉L2(In)|2

=
∑

n

1

bn
‖f gn‖2 =

〈∑

n

1

bn
|gn|2f, f

〉
.

While in general, the inversion of S can be numerically cumbersome, in the special
case described in Theorem 5.4, the invertibility of the frame operator is easy to check
and inversion is a simple multiplication.

Corollary 5.5. Under the conditions given in Theorem 5.4, the system of functions
gm,n forms a frame for L2(R) if and only if

∑
n

1
bn
|gn(t)|2 ≍ 1. In this case, the

canonical dual frame elements are given by:

g̃m,n(t) =
gn(t)∑
l
1
bl
|gl(t)|2

e2πimbnt, (5.9)

and the associated canonical tight frame elements can be calculated as:

g̊m,n(t) =
gn(t)√∑
l
1
bl
|gl(t)|2

e2πimbnt.

Remark 5.6. The optimal lower and upper frame bounds are explicitly given by
Aopt = essinf

∑
n

1
bn
|gn(t)|2 and Bopt = esssup

∑
n

1
bn
|gn(t)|2.

We next state the results of Theorem 5.4 and Corollary 5.5 in the Fourier domain.
This is the basis for adaptation over frequency.

Corollary 5.7. For every m ∈ Z, let the function hm be band-limited to supp(ĥm) =
[cm, dm] and let am be chosen such that dn− cn ≤ 1

am
. Then the frame operator of the

system

hm,n(t) = hm(t− nam) , m ∈ Z, n ∈ Z

is given by a convolution operator of the form

〈Sf, f〉 =
〈
F−1

(∑

m

1

am
|ĥm|2

)
∗ f, f

〉
(5.10)

for f ∈ L2(R). Hence, the system of functions hm,n forms a frame of L2(R) if and

only if ∀ν ∈ R,
∑

m
1
am

|ĥm(ν)|2 ≍ 1. The elements of the canonical dual frame are
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given by

h̃m,n(t) = TnamF−1




ĥm
∑

l

1

al
|ĥl|2


 (t) (5.11)

and the canonical tight frame is given by

h̊m,n(t) = TnamF−1


 ĥm√∑

l
1
al
|ĥl|2


 (t). (5.12)

Proof : We deduce the form of the frame operator in the current setting from the
proof of Theorem 5.4 by setting

〈Sf, f〉 = 〈Ŝf, f̂〉 =
∑

m,n

|〈f̂ , ĥm,n〉|2

and the rest of the corollary is equivalent to Corollary 1.

Remark 5.8. Classical Gabor frames are intimately related to modulation spaces,
see [55] for an extensive discussion and relevant references. The characterization of
modulation spaces depends on the joint time-frequency localization of the analysis
window. Painless nonstationary Gabor frames characterize modulation spaces, if, in
a addition to compactness in one domain (time or frequency), the windows gk exhibit
a uniform decay in the sense time-frequency molecules, see [56, Theorem 22], i.e.,
letting ξ = (ak, l/bk), k, l ∈ Z, we require |Vϕgk(z)| ≤ C(1+ |z− ξ|)−r for some r > 2.
Then, the corresponding frame operator is invertible on all modulation spaces Mp,
1 ≤ p ≤ ∞, and the ℓp-norm of the corresponding coefficient sequence is equivalent
to the modulation space norm.

5.2.5. Discrete, time-adaptive Gabor transform. For the practical imple-
mentation, the equivalent theory may be developed in a finite discrete setting using
the Hilbert space CL. Since this is largely straight-forward from simple matrix multi-
plication, we only state the main result. Given a set of functions {gn}n∈{0,...,N−1}, a set
of integers (number of frequency samples for each time position) {Mn}n∈{0,...,N−1} as-
sociated with the set of real values {bn = L

Mn
}n∈{0,...,N−1}, the discrete, nonstationary

Gabor system is given by

gm,n[k] = gn[k] · e
2πimbnk

L = gn[k] ·Wmbnk
L .

for n = 0, . . . , N−1, m = 0, . . . ,Mn−1 and all k = 0, . . . L−1. Note that in practice,
gm,n[k] will have zero-values for most k, allowing for efficient FFT-implementation:

since Mn = L
bn
, we have gm,n[k] = gn[k] · e

2πimk
Mn and the nonstationary Gabor coeffi-

cients are given by an FFT of length Mn for each gn.

The number of elements of {gm,n} is P =
∑N−1

n=0 Mn. Let G be the L× P matrix

such that its p-th column is gm,n, for p = m+
∑n−1

k=0 Mk.
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Corollary 5.9. The frame operator S = G ·G∗ is an L× L matrix with entries:

Sk,j =
∑

n∈N(k−j)

Mn gn[k] gn[j]

where Np = {n ∈ [0, N − 1] | p = 0 mod Mn} for p ∈ [−L, L]. Therefore, if appro-
priate support conditions are met, S is a diagonal matrix.

5.2.5.1. Numerical complexity. Assuming that the windows gn have support of
length Ln, let M = maxn {Mn} be the maximum FFT-length. We consider the
painless case where Ln ≤ Mn ≤M . The number of operations is

(1) Windowing: Ln operations for the n-th window.
(2) FFT: O (Mn · log (Mn)) for the n-th window.

Then the number of operations for the discrete NSGT is

O
(
N−1∑

n=0

Mn · log (Mn) + Ln

)
= O (N · (M log (M) +M))

= O (N · (M log (M)))

Similar to the regular Gabor case, the number of windows N will usually depend
linearly on the signal length L while the maximum FFT-length M is assumed to be
independent of L. In that case, the discrete NSGT is a linear cost algorithm.

For the construction of the dual windows in the painless case, the computation
involves multiplication of the window functions by the inverse of the diagonal matrix
S and results in O(2

∑N−1
n=0 Ln) = O(N ·M) operations. Lastly, the inverse NSGT has

numerical complexity O (N · (M log (M))), as in the NSGT, since it entails computing
the IFFT of each coefficient vector, multiplying with the corresponding dual windows
and evaluating the sum.

Technical framework: All subsequently presented simulations were done in MATLAB
R2009b on a 2 Gigahertz Intel Core 2 Duo machine with 2 Gigabytes of RAM run-
ning Kubuntu 9.04. The CQTs were computed using the code published with [85],
available for free download at http://www.elec.qmul.ac.uk/people/anssik/cqt/.
The constant-Q nonstationary Gabor transform (CQ-NSGT) algorithms are available
at http://univie.ac.at/nonstatgab/.

5.2.5.2. Application: automatic adaptation to transients. In real-life applications,
NSGT has the potential to represent local signal characteristics, e.g. transient sound
events, in a more appropriate way than pre-determined, regular transform schemes.
Since the appropriateness of a representation depends on the specific application, any
adaptation procedure must be designed specifically. For the implementation itself,
however, two observations generally remain true: First, the general nonstationary
framework needs to be restricted to a well defined set of choices. Second, some
measure is needed to determine the most suitable of the possible choices. For example,

http://www.elec.qmul.ac.uk/people/anssik/cqt/
http://univie.ac.at/nonstatgab/
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in the case of a sparsity measure, the most sparse representation will be chosen.
To show that good results are achieved even when using quite simple adaptation
methods, we describe a procedure suitable for signals consisting mainly of transient
and sinusoidal components. The adaptation measure proposed is based on onset
detection, i.e. estimating where transients occur in the signal. The transform setting
is what we call scale frames: the analysis procedure uses a single window prototype
and a countable set of dilations thereof.

For evaluation, the representation quality is measured by comparison of the num-
ber of representation coefficients leading to certain root mean square (RMS) recon-
struction errors, for both NSGT and regular Gabor transforms. The results are
especially convincing for sparse music signals with high energy transient components.
Other possible adaptation methods might be based on time-frequency concentration,
sparsity or entropy measures [94],[69],[78].

Scale frames: In the following paragraphs, we propose a family of nonstationary
Gabor frames that allows for exponential changes in time-frequency resolution along
time positions. To avoid heavy notation and since the formalism necessary for the
discrete, finite case could obscure the principal idea, we describe the continuous case
construction. Suitable standard sampling then yields discrete, finite frames with
equivalent characteristics.

The basic idea is to build a sequence of windows gn from a single, continuous
window prototype g with support on an interval of length 1 in such a way that
the resulting gn satisfy Corollary 5.5. The window sequence will be unambiguously
determined by a sequence of scales. Once this scale sequence is known, it is a simple
task to choose modulation parameters bn satisfying the necessary conditions.

As a scale sequence, we allow any integer-valued sequence {sn}n∈Z such that |sn−
sn−1| ∈ {0, 1}, where the latter restriction is set in order to avoid sudden changes of
window length. Then, gn is, up to translation, given by a dilation of the prototype g:

D2sn (g)(t) =
√
2−sng(2−snt)

This implies that a change of scale from one time step to the next corresponds to the
use of a window either half or twice as long. More precisely, for every time step n, set
s = min{sn−1, sn} and fix an overlap of 2/3 ·2s, if sn 6= sn−1 and 1/3 ·2s, if sn = sn−1.
Explicitly,

gn = TnD2sn (g),

with recursively defined time shift operators Tn given by

T0 = T0, Tn =

{
T2s5/6Tn−1, if sn 6= sn−1

T2s+1/3Tn−1, else.

Defining the time shifts in this manner, we achieve exactly the desired overlap as
illustrated in Figure 9.
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Figure 9. Illustration of scale frame overlaps and time shifts.

By construction, each gn has non-zero overlap with its neighbors gn−1 and gn+1

and at any point on the real line, at most two windows are non-zero. After performing
a preliminary transient detection step, the construction of the adapted frame reduces
to the determination of a scale sequence.

In the subsequent figures and experiments we used the Hann window as proto-
type, but other window choices are possible. The described concept can easily be
generalized by admitting other overlap factors and scaling ratio than the ones spec-
ified above. The parameters have to be chosen with some care, though. Otherwise
the resulting frames might be badly conditioned, with a big or even infinite condition
number B

A
, caused by accumulation points for the time shifts or gaps between windows.

Frame construction from a sequence of onsets: In this paragraph, we assume that the
signals of interest are mainly comprised of transient and sinusoidal components, an
assumption met, e.g. by piano music. The instant a piano key is hit corresponds to
a percussive, transient sound event, directly followed by harmonic components, con-
centrated in frequency. An intuitive adaptation to signals of this type would use high
time resolution at the positions of transients. This corresponds to applying minimal
scale at the transients and steadily increasing the scale with the distance from the
closest transient. The transients’ positions can be determined, e.g. by so-called onset
detection procedures [31] which, if used carefully, work to a high degree of accuracy.
Once the transient positions are known, the construction of a corresponding scale
frame yields good nonstationary representations for sufficiently sparse signals.

Application of onset-based scale frames: We applied the procedure proposed above to
various signals, mainly piano music. For this presentation, we selected three examples,
all of them sampled at 44.1 kHz and consisting of a single channel. Some more
examples and corresponding results as well as the source sound files can be found on
the associated web-page http://univie.ac.at/nonstatgab/.

http://univie.ac.at/nonstatgab/
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• Example 1: The widely used Glockenspiel signal shown in Figure 7.
• Example 2: An excerpt from a solo jazz piano piece performed by Herbie
Hancock, characterized by its calmness and varied rhythmical pattern, re-
sulting in irregularly spaced low-energy transients. See Figure 10.

• Example 3: A short excerpt of György Ligeti’s piano concert. With highly
percussive onsets in the piano and Glockenspiel voices and some orchestral
background, this is the most polyphonic of our examples. See Figure 11.

For comparison, the plots in Figures 7, 10 and 11 also show standard Gabor coef-
ficients with comparable (average) window overlap. A Hann window of 2560 samples
length was chosen for the computation of regular Gabor transforms. The compar-
ison shows that for the three signals, the NSGT features a better concentration of
transient energy than a regular Gabor transform, while keeping, or even improving,
frequency resolution.
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time (seconds)

fr
eq

ue
nc

y 
(H

z)

0 2 4 6 8 10 12
0

1000

2000

3000

4000

5000

6000

7000

Figure 10. Hancock (Example 2). Regular and nonstationary Gabor
representations.

Efficiency in sparse reconstruction: The onset detection procedure and a subsequent
scale frame analysis were applied, along with a regular Gabor decomposition, to the
Glockenspiel and Ligeti signals. As a test of the representations’ sparsity, the signals
were synthesized from their corresponding coefficients, modified by hard thresholding
followed by reconstruction using the dual frame. Then the numbers of largest magni-
tude coefficients needed for a certain relative root mean square (RMS) reconstruction
error for each representation were compared. The RMS error of a vector f and its
reconstruction frec is given by

RMS(f, frec) =

√∑L−1
k=0 |f [k]− frec[k]|2∑L−1

k=0 |f [k]|2
.

All transforms are of redundancy about 5
3
. The results for NSGT and different regular

Gabor transform schemes are listed in Figure 12. On the Glockenspiel signal the
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Ligeti − dB−scaled Gabor transform
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Figure 11. Ligeti (Example 3). Regular and nonstationary Gabor representations.

NSGT method performs vastly better than the ordinary Gabor transform. For Ligeti,
the differences are not as significant, but still the NSGT-based procedure shows better
overall results.
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Figure 12. RMS error in sparse representations of Example 1 and
Example 3. Parameters (in parentheses) are hop size and window length
in the regular case (GT) or shortest window length and number of scales
for the nonstationary case (NSGT). The values are estimated to be the
optimal numbers of coefficients necessary to achieve reconstruction with
less than the respective error.

5.2.6. Implementation of a discrete, frequency-adaptive Gabor Trans-
form. Since our construction of Gabor frames with adaptivity in the frequency do-
main relies on the fact that analysis windows hm possess compact bandwidth, an
FFT-based implementation is highly efficient. We take the input signal’s Fourier
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transform and treat the procedure in complete analogy to the situation developed for

time-adaptive transforms, i.e. hm,n[k] = Tnamhm[k] and ĥm,n[j] = M−nam ĥm[j].

As observed in Section 5.2.3, we are able to obtain wavelet frames using Gabor
frames that exhibit nonstationarity in the frequency domain. Moreover, we may
design general transforms with flexible frequency resolution, such as a constant-Q
transform. While various other adjustments (e.g. Mel- or Bark-scaled transforms)
are feasible, we will focus our discussion on the constant-Q case.

Remark 5.10. Note that for real-valued signals the symmetry of their FFT can be
exploited to further reduce the computational effort. We particularly refer to the
LTFAT routines filterbankrealdual.m and filterbankrealtight.m.

5.2.6.1. A constant-Q transform via nonstationary Gabor frames. The constant-
Q transform (CQT), introduced by Brown [16], transforms a time signal into the
time-frequency domain, where the center frequencies of the frequency bins are ge-
ometrically spaced. Since the Q-factor (the ratio of the center frequencies to the
window’s bandwidth) is constant, the representation allows for a better frequency
resolution at lower frequencies and a better time resolution at the higher frequencies.
This is sometimes preferable to the fixed resolution of the standard Gabor transform,
for which the frequency bins are linearly spaced. In particular, this kind of resolution
is often desired in the analysis of musical signals, since the transform can be set to
coincide the temperament, e.g. semitone or quartertone, used in Western music.

The originally introduced constant-Q transform, however, is not invertible and
is computationally more intensive than the DFT. A more computationally efficient
approach was presented in the sequel [17]. In the paper, for the nth time slice of
the signal f , the coefficient vector cm,n, equal to inner product of the signal f with

the time-limited window hm,n is computed in the Fourier side via 〈f̂ , ĥm,n〉, taking
advantage of the sparsity of the frequency domain kernel or spectral kernel. Note that
in contrast, we compute the coefficient vector for each frequency bin, making use of
band -limited window functions.

Perfect reconstruction wavelet transforms with rational dilation factors were pro-
posed in [12]. Since they are based on iterated filter banks, these methods are compu-
tationally too expensive for long, real-life signals, when high Q-factors, such as 12-96
bins per octave, are required.

In [85], Klapuri and Schörkhuber presented a computation of the CQT that shows
improved efficiency and flexibility to the method proposed in [17], among others.
However, the approximate inversion introduced in [85] still gives an RMS error of
around 10−3. The lack of perfect invertibility prevents the convenient modification of
CQT-coefficients with subsequent resynthesis required in complex music processing
tasks such as masking or transposition. By allowing adaptive resolution in frequency,
we can construct an invertible nonstationary Gabor transform with a constant Q-
factor on the relevant frequency bins.
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Setting: For the frame elements in the transform, we consider functions hm ∈ CL, m =
1, . . . ,M having center frequencies (in Hz) at ξm = ξmin2

m−1
B , as in the CQT. Here,

B is the number of frequency bins per octave, and ξmin and ξmax are the desired
minimum and maximum frequencies, respectively. In the experiments, we restrict
ξmax to be less than the Nyquist frequency and there should exist anM ∈ N satisfying

ξmax ≤ ξmin2
M−1
B < ξs/2, where ξs denotes the sampling frequency. In this case, we

take M = ⌈B log2(ξmax/ξmin) + 1⌉, where ⌈z⌉ is the smallest integer greater than
or equal to z. While in the CQT no 0-frequency is present, the NSGT provides all
necessary freedom to use additional center frequencies. Since the signals of interest
are real-valued, we put filters at center frequencies beyond the Nyquist frequency in
a symmetric manner. This results in the following values for the center frequencies:

ξm =





0, m = 0

ξmin2
m−1
B , m = 1, . . . ,M

ξs/2, m =M + 1

ξs − ξ2M+2−m, m =M + 2, . . . , 2M + 1.

For the corresponding bandwidth Ωm of hm, we set Ωm = ξm+1 − ξm−1, for m =
1, . . . ,M , and Ω0 = 2ξ1 = 2ξmin. By construction, these result in a constant Q-factor
Q = (2

1
B − 2−

1
B )−1 for m = 2, . . . ,M − 1. And we can write each Ωm as follows:

Ωm =





2ξmin, m = 0

ξ2, m = 1, 2M + 1

ξm/Q, m = 2, . . . ,M − 1

(ξs − 2ξM−1)/2, m =M,M + 2

ξs − 2ξM , m =M + 1

ξ2M+2−m/Q, m =M + 3, . . . , 2M.

If we use a Hann window ĥ, supported on [−1/2, 1/2], then we can obtain each hm
via ĥm[j] = ĥ((j ξs

L
− ξm)/Ωm), where j = 0, . . . , L − 1. Letting am ≤ ξs

Ωm
, we define

hm,n by their Fourier transform ĥm,n = M−nam ĥm, n = 0, . . . , ⌊ L
am

⌋ − 1. Figure 13
illustrates the time-frequency sampling grid of the set-up, where the center frequencies
are geometrically spaced and sampling points regularly spaced.

The support conditions on ĥm imply that the sum σ =
∑2M+1

m=0
L
am

|ĥm|2 is finite
and bounded away from 0. The frame operator is therefore invertible and we can
apply inversion from painless nonorthogonal expansions.

Note that we consider the bandwidth to be the support of the window in frequency.
This makes sense in the considered painless case. Very often, see e.g. [85], the
bandwidth is taken as the width between the points, where the filter response drops
to half of the maximum, i.e. the −3dB -bandwidth. This definition would also make
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Figure 13. Exemplary sampling grid of the time-frequency plane for
a constant-Q nonstationary Gabor system.

sense in a non-compactly supported case. For the chosen filters, Hann windows, the
Q-factor considering the −3dB -bandwidth is just double of the one considered above.

We see in Figure 14 the standard Gabor transform spectrogram and the constant-
Q NSGT spectrogram of the Glockenspiel signal, the latter being very similar to the
CQT spectrogram obtained from the original algorithm [16] but with the additional
property that the signal can be perfectly reconstructed from the coefficients. Figures
15 and 16 compare the standard Gabor transform spectrogram and the constant-Q
NSGT spectrogram of two additional test signals, both sampled at 44.1 kHz:

• Example 4: A recording of Bach’s Little Fugue in G Minor, BWV578 per-
formed by Christopher Herrick on a pipe organ. Low frequency noise and
the characteristic structure of pipe organ notes are resolved very well by a
CQT. See Figure 15.

• Example 5: An excerpt from a duet between violin and piano. Written
by John Zorn and performed by Sylvie Courvoisier and Mark Feldman, the
sample is made up of three short segments: A frantic sequence of violin and
piano notes, a slow violin melody with piano backing and an inharmonic part
with chirp component. See Figure 16.

Efficiency: The computation time of the nonstationary Gabor transform was found
to be better than a recent fast CQT implementation [85], as seen in Figure 17. The
two plots show mean values for computation time in seconds and the corresponding
variance over 50 iterations, with varying window lengths and number of frequency
bins, respectively. The outlier, drawn in gray, in Figure 17 (left) at the prime number
600569 illustrates dependence of the current CQ-NSGT implementation on the signal
length’s prime factor structure, analogous to FFT.

It is again reasonable to assume that the number of filters is bounded, indepen-
dently of L, while the number of temporal points depend on L. As the role of M and
N is switched in the assumption in subsection 5.2.5.1 for the complexity, we arrive at a
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Glockenspiel − dB−scaled CQ−NSGT

time (seconds)

fr
eq

ue
nc

y 
(H

z)

0 1 2 3 4 5
  200

  800

 3200

12800

22050

time (seconds)

fr
eq

ue
nc

y 
(H

z)
Glockenspiel − dB−scaled Gabor transform

0 1 2 3 4 5
     0

5512.5

 11025

 16538

 22050

time (seconds)

fr
eq

ue
nc

y 
(H

z)

Glockenspiel − dB−scaled CQ−spectrogram

0 1 2 3 4 5
  200

  800

 3200

12800

22050

Figure 14. Glockenspiel (Example 1). Regular Gabor, constant-Q
nonstationary Gabor and constant-Q representations of the signal. The
transform parameters were B = 48 and ξmin = 200 Hz.

complexity of O (L logL). This is also the complexity of the FFT of the whole signal.
So the overall complexity of the frequency-dependent nonstationary Gabor transform
is O (L logL). The advantage of the method in terms of computation efficiency thus
decreases as longer signals are considered.

Experiments on Applications: Our experiments show applications of the CQ-NSGT
in musical contexts, where the property of a logarithmic frequency scale renders the
method often superior to the traditional STFT. Corresponding sound examples can
be found at http://univie.ac.at/nonstatgab/cqt/.

Transposition: A useful property of continuous constant-Q decompositions is the
fact that the transposition of a harmonic structure, like a note including overtones,
corresponds to a simple translation of the logarithmically scaled spectrum. Approxi-
mately, this is also the case for the finite, discrete CQ-NSGT. In this experiment, we
transposed a piano chord simply by shifting the inner frequency bins accordingly. By
inner frequency bins, we refer to all bins with constant Q-factor. This excludes the

http://univie.ac.at/nonstatgab/cqt/
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Fugue − dB−scaled CQ−NSGT
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Figure 15. Bach’s Little Fugue (Example 4). Regular and constant-
Q nonstationary Gabor representations of the signal. The transform
parameters were B = 48 and ξmin = 75 Hz.
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Figure 16. Violin and piano duet (Example 5). Regular and constant-
Q nonstationary Gabor representations of the signal. The transform
parameters were B = 48 and ξmin = 50 Hz.

0-frequency and Nyquist frequency bins. The onset portion of the signal has been
damped, since inharmonic components, such as transients, produce audible artifacts
when handled in this way. In Figure 18, we show spectrograms of the original and
modified chords, shifted by 20 bins. This corresponds to an upwards transposition
by 5 semitones.

Masking: In the masking experiment, we show that the perfect reconstruction
property of CQ-NSGT can be used to cut out components from a signal by directly
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Figure 17. Comparison of computation time of CQT (top curves) and
NSGT (bottom curves). The figure on the left shows the computation
times for signals of various lengths with the number of bins per octave
fixed at B = 48, while the figure on the right shows the computation
times for the Glockenspiel signal, varying the number of bins per octave.
In both figures, the solid lines represent the mean time (in seconds)
and the dashed/dotted lines signify the mean time with corresponding
variance. The minimum frequency for all cases ξmin was chosen at 50 Hz.

modifying the time-frequency coefficients. The advantage of considerably higher spec-
tral resolution at low frequencies (with a chosen application-specific temporal reso-
lution at higher frequencies) compared to the STFT, makes the CQ-NSGT a very
powerful, novel tool for masking or isolating time-frequency components of musical
signals. Our example shows in Figure 19 a mask for extracting – or inversely, sup-
pressing – a note from the Glockenspiel signal depicted in Figure 7 The mask was
created as a gray-scale bitmap using an ordinary image manipulation program and
then resampled in order to conform to the irregular time-frequency grid of the CQ-
NSGT. Figure 19 shows the mask spectrogram, along with the spectrograms of the
synthesized, processed signal and remainder.

5.2.7. Further work involving nonstationary Gabor frames. There has
been a considerable amount of work on nonstationary Gabor frames since its intro-
duction in [67, 68] and its initial development in [89, 7] that range from additional
applications to generalizations and structural properties.

General existence and perturbation results of such frames were proved by Dörfler
and Matusiak in [38]. Moreover, they constructed nonstationary Gabor frames having
non-compactly supported windows or “almost painless” nonstationary Gabor frames.
Due to the more complicated structure of such frames compared to the regular Gabor
frame case, computing for the canonical dual frames, which would entail the inversion
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Figure 18. Piano chord signal and upwards transposition by 5 semi-
tones, corresponding to a circular shift of the inner bins by 20. The
transform parameters were B = 48 and ξmin = 100 Hz.

of the frame operator, is computationally more cumbersome. In their succeeding pa-
per [37], Dörfler and Matusiak proposed the use of approximate dual frames obtaining
good approximate reconstruction.

In [64], Holighaus studied further the structure of nonstationary Gabor systems
and their dual systems. Following the Walnut representation (cf. [55, Theorem 6.3.2]
for the regular Gabor case) for the frame operator of nonstationary Gabor systems
in [38], he proved a Walnut-like representation for some inverse nonstationary Gabor
frame operators, that leads to a dual nonstationary Gabor frame having the same
support conditions. He also obtained characterizations for a pair of nonstationary
Gabor frames forming dual frames.

The joint work with Holighaus, et. al. [65] extends the results in [89] concerning
the constant-Q nonstationary Gabor transform. By introducing a preprocessing step
of slicing the signal into pieces of finite length, thus the name “sliced constant-Q
transform” or sliCQ, the resulting algorithm allows for real-time processing.



5.2. NONSTATIONARY GABOR FRAMES 85

time (seconds)

fr
eq

ue
nc

y 
(H

z)

Mask

0 1 2 3 4 5
   50

  200

  800

 3200

12800

22050

time (seconds)

fr
eq

ue
nc

y 
(H

z)

Glockenspiel (masked) − dB−scaled CQ−NSGT

0 1 2 3 4 5
   50

  200

  800

 3200

12800

22050

time (seconds)

fr
eq

ue
nc

y 
(H

z)

Glockenspiel component − dB−scaled CQ−NSGT

0 1 2 3 4 5
   50

  200

  800

 3200

12800

22050

Figure 19. Note extraction from the Glockenspiel signal by masking.
The CQ-NSGT coefficients of the Glockenspiel signal were weighted
with the mask shown on top. The remaining signal and extracted com-
ponent are depicted in the middle and bottom respectively. The trans-
form parameters were B = 24 and ξmin = 50 Hz.

Additional work in applications include that of the joint work with Holzapfel,
et. al. [66] wherein a nonstationary Gabor transform was used in beat tracking in
music signals that produced statistically significant improvements on a large dataset.
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Necciari, et. al. [81] applied the frequency side nonstationary Gabor transform with
windows equidistantly spaced on the psychoacoustic “ERB” frequency scale, obtain-
ing perfect reconstruction using fast iterative methods.

Following the results on nonstationary Gabor frames, Wiesmeyr [93] applied a
warping of the frequency axis to obtain a transform given a desired frequency scaling.
The resulting continuous warped transform is a generalization of the continuous STFT
and wavelet transform.
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