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Abstract

Forcing notions can be classified via their size in a general way. Until now

two different types were developed: set forcing and definable class forcing,

where the forcing notion is a set or definable class respectively. Here, we

want to introduce and study the next two steps in this classification by size,

namely class forcing and definable hyperclass forcing (where the conditions

of the forcing notion are themselves classes) in the context of (an extension

of) Morse-Kelley class theory.

For class forcing, we adapt the existing account of class forcing over a

ZFC model to a model pM, Cq of Morse-Kelley class theory. We give a rigor-

ous definition of class forcing in such a model and show that the Definability

Lemma (and the Truth Lemma) can be proven without restricting the no-

tion of forcing. Furthermore we show under which conditions the axioms

are preserved. We conclude by proving that Laver’s Theorem does not hold

for class forcings.

For definable hyperclass forcing, we use a symmetry between MK˚˚ mod-

els and models of ZFC´ plus there exists a strongly inaccessible cardinal

(called SetMK˚˚). This allows us to define hyperclass forcing in MK˚˚ by

going to the related SetMK˚˚ model and use a definable class forcing there.

We arrive at a definable class forcing extension from which we can go back to

a model of MK˚˚. To use this construction we define a coding between MK˚˚

and SetMK˚˚ models and show how definable class forcing can be applied

in the context of an ZFC´ model. We conclude by giving an application of

this forcing in showing that every β-model of MK˚˚ can be extended to a

minimal β-model of MK˚˚ with the same ordinals.

Zusammenfassung

Grundlegend kann die Erzwingungsmethode durch die Größe ihrer Grund-

struktur klassifiziert werden. Die heute verwendeten Formen umfassen Grö-

ßen im Bereich von Mengen und definierbaren Klassen. In dieser Arbeit wer-

den die nächsten möglichen Schritte in dieser Hierarchie entwickelt: Klassen

und Hyperklassen (Objekte deren Elemente Klassen sind) in der Theorie

von Morse-Kelley.

Für Klassen werden die Definitionen und grundlegenden Ergebnisse der

Erzwingungsmethode im Kontext von Morse-Kelley definiert und gezeigt.
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Insbesondere wird das Definierbarkeitslemma und Wahrheitslemma bewiesen

das hier im allgemeinen für jegliche Klassenerzwingung gilt. Als Anwendung

beweisen wir, dass das Theorem von Laver nicht für Klassenerzwingung gilt.

Für Hyperklassen nutzen wir die Beziehung zwischen Modellen von MK˚˚

und Modellen einer Variante von ZFC´. Dies erlaubt uns Hyperklassen-

erzwingung in MK˚˚ zu definieren, indem wir zu einem ZFC´ Modell gehen

und dort definierbare Klassenerzwingung anwenden. Von der daraus ge-

wonnenen Modellerweiterung können wir nun wieder zu einem Modell von

MK˚˚ zurückgehen. Für diesen Ansatz entwickeln wir eine Kodierung zwis-

chen Modellen von MK˚˚ und bestimmten Modellen von ZFC´ und zeigen,

dass definierbare Klassenerzwingung in diesem Kontext durchführbar ist.

Ein konkretes Beispiel einer Hyperklassenerzwingung wird gegeben, indem

gezeigt wird, dass jedes β-Modell von MK˚˚ zu einem minimalen β-Modell

von MK˚˚ erweitert werden kann (mit den selben Ordinalzahlen).
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Chapter 1

Introduction and Basic

Definitions

When considering forcing notions with respect to their size, there are two

different types: the original version of forcing, where the forcing notion is

a set, called set forcing, and forcing in ZFC, where the forcing notion is

a class, called definable class forcing. In this thesis we consider these two

types as first steps in a hierarchy where forcing notions are classified via

their size. We will define the next two steps in this hierarchy, class forcing

and definable hyperclass forcing, and give applications for these forcings in

the context of Morse-Kelley class theory.

The structure of this thesis will be as follows: In the first chapter we will

present an overview over existing definitions and results regarding definable

class forcing and give a short introduction to Morse-Kelley class theory

(MK).

In the second chapter we develop class forcing in MK by defining all

basic notions in the context where we now have two types of object, sets

and classes, and proving the Forcing Theorem. In difference to definable

class forcing, it is now possible to prove the Definability Lemma without

having to restrict the forcing notion. Further, we will show which forcing

notions preserve the axioms and we will show that Laver’s Theorem1 about

the definability of the ground model in its forcing extensions does not hold

for class forcing.

The third chapter is concerned with definable hyperclass forcing, i.e. a

1see [Lav07]

1



2 CHAPTER 1. INTRODUCTION AND BASIC DEFINITIONS

forcing with class conditions. We will define this forcing indirectly by using

a correspondence between certain models of MK and models of a version of

ZFC´ (minus PowerSet) and showing that we can define definable hyperclass

forcing by going to the related ZFC´ model and using definable class forcing

there. To set this up we will show that this correspondence is indeed a coding

between a variant of MK and certain models of the ZFC´ which allows us

to go back and forth between them. Then we define definable hyperclass

forcing and show how the problems of definable class forcing in the setting

of ZFC´ can be handled. We conclude the chapter by giving an example of

definable hyperclass forcing by showing that every β-model of a variant of

MK can be extended to a minimal β-model of the same variant of MK with

the same ordinals.

1.1 Definable Class Forcing

The idea of considering a forcing notion with a (proper) class of conditions

instead of with a set of conditions was introduced by W. Easton in 1970.

He needed the forcing notion to be a class to prove the theorem that the

continuum function 2κ, for κ regular, can behave in any reasonable way and

as changes in the size of 2κ are bounded by the size of a set-forcing notion,

the forcing has to be a class. Two problems arise when considering a class

sized forcing: the forcing relation might not be definable in the ground

model and the extension might not preserve the axioms. As an example

consider Colpω,ORDq with conditions p : nÑ Ord for n P ω which adds a

cofinal sequence of length ω in the ordinals. Here Replacement fails2. These

problems were addressed in a general way in [Fri00]) where class forcings

are presented which are definable (with parameters) over a model xM,Ay.

In the following we give a short overview of the main definitions and

results of [Fri00] and [Fri10] which we will use repeatedly in the following

chapters of this thesis. For proofs and more details see there.

Definition 1.1. The structure xM,Ay is a ground model, if:

(a) xM,Ay is a transitive model of ZFC, i.e. M is a transitive model of

ZFC, A Ď M and Replacement holds in M for formulas mentioning

A as a unary predicate.

2A detailed analyses on how even the Definability Lemma for Class Forcings can fail
can be found in [HKL`].
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(b) (Minimality) M |ù V “ LpAq “
Ť

tLpA X Vαq : α P ORDu, the

smallest inner model containing each of the sets AX Vα, α P ORD.

We need A as a class predicate to define the class P . Property (a)

implies that xM,Ay is amenable: for x in M , A X x also belongs to M .

Property (b) ensures that for every extension N of M with N |ù ZFC, M

is definable in xN,Ay, because M equals LpAqN . From now on xM,Ay will

always denote a ground model. We say that D Ď P is dense below p if

@q ď p Dr pr ď q, r P Dq and D Ď P is predense ď p P P if every q ď p is

compatible with an element of D.

Definition 1.2. P ĎM is called a xM,Ay-forcing, if it is a pre-ordering (a

reflexive, transitive relation) with greatest element 1P which is definable over

xM,Ay. Let G Ď P . G is P -generic over xM,Ay if G is compatible, upward-

closed and GXD ‰ H whenever D Ď P is dense and xM,Ay-definable.

As in set forcing we define M rGs for any G Ď M as follows: A name is

a set σ P M , whose elements are of the form xτ, ay, τ a name and a P M .

Then σG “ tτG : xτ, ay P σ for some a P Gu and M rGs “ tσG : σ a nameu.

Then a P -generic extension of xM,Ay is a model xM rGs, A,Gy where G is

P -generic over xM,Ay. P is an M -forcing if it is an xM,Ay-forcing for some

A. A generic extension of M is a model xM rGs, A,Gy for some choice of

P , A and of G P -generic over xM,Ay. X Ď M is generic over M if X is

definable in a generic extension of M .

Definition 1.3. Suppose p belongs to P , ϕpx1, . . . , xmq is a formula and

σ1, . . . , σm are names. We write p , ϕpσ1, . . . , σmq iff for each G which is

P -generic over xM,Ay and p P G, we have xM rGs, A,Gy |ù ϕpσG1 , . . . , σ
G
mq.

As in set forcing the following holds:

Lemma 1.4.

(i) M ĎM rGs, M rGs is transitive and ORDpM rGsq “ ORDpMq.

(ii) GX Vα PM rGs for each α P ORDpMq.

Next we state the two parts of the Forcing Theorem:

Lemma 1.5 (Definability for,). For any ϕ, the relation “p , ϕpσ1, . . . , σmq”

is definable in xM,Ay.



4 CHAPTER 1. INTRODUCTION AND BASIC DEFINITIONS

Lemma 1.6 (Truth Lemma). If G is P -generic then

xM rGs, A,Gy |ù ϕpσG1 , . . . , σ
G
mq ô Dp P G pp , ϕpσ1, . . . , σmqq.

In set forcing we can show the Definybility Lemma by defining a relation

,˚ for which the Definability and Truth Lemma holds and then showing

that indeed , and ,˚ are the same. When doing this for class forcing, we

have to restrict the forcing notions we consider:

Definition 1.7. Let σ, τ, π be elements of N .

1. p ,˚ σ P τ iff tq : Dxπ, ry P τ such that q ď r, q ,˚ σ “ πu is dense

below p.

2. p ,˚ σ “ τ iff for all xπ, ry P σ Y τ, p ,˚ pπ P σ Ø π P τq.

3. p ,˚ ϕ^ ψ iff p ,˚ ϕ and p ,˚ ψ.

4. p ,˚  ϕ iff @q ď p p q ,˚ ϕq.

5. p ,˚ @xϕ iff for all σ, p ,˚ ϕpσq.

As P may now be a class the first two clauses now involve unbounded

quantifiers and therefore lead to definitions of p ,˚ σ P τ , p ,˚ σ “ τ whose

quantifier complexity may increase with the ranks of σ, τ .

This problem can be resolved by using the property of pretameness,

which helps to control the quantifier complexity of the relations p ,˚ σ P τ ,

p ,˚ σ “ τ :

Definition 1.8. P is pretame iff whenever xDi|i P ay, a PM , is an xM,Ay-

definable sequence of dense classes and p P P then there is q ď p and

xdi|i P ay PM such that di Ď Di and di is predense ď q for each i.

Now we can prove the definability of ,˚ and it follows that:

Lemma 1.9. For a pretame P and G P -generic over M :

xM rGs, A,Gy |ù ϕpσG1 , . . . , σ
G
n q iff for some p P G, p ,˚ ϕpσ1, . . . , σnq.

Lemma 1.10. The relations ,˚ and , are the same.
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Pretameness not only allows us to show that the Definability Lemma

holds, it also serves to show that the axioms of ZFC´ are preserved. Indeed

pretameness is equivalent to the preservation of ZFC´:

Proposition 1.11. Suppose that for each p P P there is G Ď P such that

p P G, G is P -generic over xM,Ay and xM rGs, A,Gy is a model of ZF-

Power. Then P is pretame.

Proposition 1.12. Suppose that P is pretame. Then P is ZFC´ preserv-

ing.

For the PowerSet Axiom we need a strengthening of pretameness, called

tameness:

Definition 1.13. A predense ď p partition is a pair pD0, D1q such that

D0 Y D1 is predense ď p and p0 P D0, p1 P D1 then p0 and p1 are in-

compatible. Suppose xpDi
0, D

i
1q | i P ay, xpE

i
0, E

i
1q | i P ay are sequences of

predense ď p partitions, We say that they are equivalent ď p if for each

i P a, tq | q meets Di
0 iff q meets Ei0u is dense ď p. When p “ 1P we omit

“ď p”.

To each sequence of predense ď p partitions ~D “ xpDi
0, D

i
1q | i P ay P M

and G P -generic over xM,Ay, p P G we can associate the function fG~D
: aÑ 2

defined by fpiq “ 0 Ø GXDi
0 ‰ H. Then two such sequences are equivalent

ď p exactly if their associated functions are equal, for each choice of G.

Definition 1.14. P is tame iff P is pretame and for each a PM and p P P

there is q ď p and α P ORDpMq such that whenever ~D “ xpDi
0, D

i
1q|i P ay P

M is a sequence of predense ď q partitions, tr | ~D is equivalent ď r to some

~E “ xpEi0, E
i
1q | i P ay in VM

α u is dense below q.

The idea behind this definition is simply that P is tame if P is pretame

and in addition 1P , “Power Set Axiom”. Indeed it follows by the Truth

Lemma for P -forcing:

Theorem 1.15. Suppose that M is countable. Then P is ZFC preserving

iff P is tame.

There are helpful connections between distributive forcings and tameness

which are also used for cofinality preservation, so for example the following

holds:
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Definition 1.16. For regular κ ą ω, P is κ-distributive whenever p P P

and xDi | i ă βy is an xM,Ay-definable sequence of dense classes, β ă κ then

there is q ď p meeting each Di. P is tame below κ if the tameness conditions

hold for P provided we aim pose the added restriction that Cardpaq ă κ.

Lemma 1.17. If P is κ-distributive then P is tame below κ and if P is

κ-distributive and pretame then whenever G Ď P is P -generic over xM,Ay

and cofpαq ě κ in M we have cofpαq ě κ in M rGs.

1.2 Morse-Kelley Class Theory

In ZFC we can only talk about classes as abbreviations for formulas as our

only objects are sets. In class theories like Morse-Kelley (MK) or Gödel-

Bernays (GB) the language is two-sorted, i.e. the object are sets and classes

and we have corresponding quantifiers for each type of object.3 We denote

the classes by upper case letters and sets by lower case letters, the same will

hold for class-names and set-names and so on. Hence atomic formulas for

the P-relation are of the form “x P X” where x is a set-variable and X is

a set- or class-variable. The models M of MK are of the form xM, P, Cy,
where M is a transitive model of ZFC, C the family of classes of M (i.e.

every element of C is a subset of M) and P is the standard P relation (from

now on we will omit mentioning this relation).

The axiomatizations of class theories which are often used and closely

related to ZFC are MK and GBC. Their axioms which are purely about sets

coincide with the corresponding ZFC axioms such as pairing and union and

they share class axioms like the Global Choice Axiom. Their difference lies

in the Comprehension Axiom in the sense that GB only allows quantification

over sets whereas MK allows quantification over sets as well as classes. This

results in major differences between the two theories which can be seen for

example in their relation to ZFC: GB is a conservative extension of ZFC,

meaning that every sentence about sets that can be proved in GB can already

be proved in ZFC and so GB cannot prove “new” theorems about ZFC. MK

on the other hand can do just that, in particular MK implies CON(ZFC)4

3There is also an equivalent one-sorted formulation in which the only objects are classes
and sets are defined as being classes which are elements of other classes. For reasons of
clarity we will use the two-sorted version throughout the paper.

4This is because in MK we can form a Satisfaction Predicate for V and then by reflection
we get an elementary submodel Vα of V . But any such Vα models ZFC.
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and so MK is not conservative over ZFC. The consistency strength of MK

is strictly stronger than that of ZFC but lies below that of ZFC + there is

an inaccessible cardinal as xVκ, Vκ`1y for κ inaccessible, is a model for MK

in ZFC.

As said above we choose MK (and not GB) as underlying theory to

define class-forcing. The reason lies mainly in the fact that within MK we

can show the Definability Lemma for class-forcing without having to restrict

the forcing notion whereas in GB this would not be possible. We use the

following axiomatization of MK:

A) Set Axioms:

1. Extensionality for sets: @x@yp@z pz P xØ z P yq Ñ x “ yq.

2. Pairing: For any sets x and y there is a set tx, yu.

3. Infinity: There is an infinite set.

4. Union: For every set x the set
Ť

x exists.

5. Power set: For every set x the power set P pxq of x exists.

B) Class Axioms:

1. Foundation: Every nonempty class has an P-minimal element.

2. Extensionality for classes: @z pz P X Ø z P Y q Ñ X “ Y .

3. Replacement: If a class F is a function and x is a set, then

tF pzq : z P xu is a set.

4. Class-Comprehension:

@X1 . . .@XnDY Y “ tx : ϕpx,X1, . . . , Xnqu

where ϕ is a formula containing class parameters in which quan-

tification over both sets and classes are allowed.

5. Global Choice: There exists a global class well-ordering of the

universe of sets.

There are different ways of axiomatizing MK, one of them is obtained by

using the Limitation of Size Axiom instead of Global Choice and Replace-

ment. Limitation of Size is an axiom that was introduced by von Neumann

and says that for every C P M, C is a proper class if and only if there
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is a one-to-one function from the universe of sets to C, i.e. all the proper

classes have the same size. The two axiomatizations are equivalent: Global

Choice and Replacement follow from Limitation of size and vice versa. 5

A nontrivial argument shows that Limitation of Size does not follow from

Replacement plus Local Choice.

In the definition of forcing we will use the following induction and recur-

sion principles:

Proposition 1.18 (Induction). Let pOrd,Rq be well-founded and ϕpαq a

property of an ordinal α. Then it holds that

@α P Ord pp@β P Ord pβ RαÑ ϕpβqqq Ñ ϕpαqq Ñ @α P Ordϕpαq

Proof. Otherwise, as R is well-founded, there exists an R-minimal element

α of Ord such that  ϕpαq. That is a contradiction.

Proposition 1.19 (Recursion). For every well-founded binary relation R

on Ord and every formula ϕpX,Y q satisfying @X D!Y ϕpX,Y q, there is a

unique binary relation S on Ord ˆ V such that for every α P Ord it holds

that ϕpSăα, Sαq, where Sα “ tx | pα, xq P Su and Săα “ tpβ, xq P S |βRαu.

Proof. By induction on α it holds that for each γ there exists a unique binary

relation Sγ on Ordăγ ˆ V , where Ordăγ “ tβ P Ord |βRγu, such that

ϕpSγăα, S
γ
αq holds for all αRγ. Then it follows from Class-Comprehension

that we can take S “
Ť

γPOrd Sγ .

5This is because Global Choice is equivalent with the statement that every proper class
is bijective with the ordinals.



Chapter 2

Class Forcing in MK

In this chapter we would like to broaden the approach for definable class

forcing from the last chapter by changing the notion of ground model from

a model M of ZFC with a class A to general models of class theory with

an arbitrary collection of classes C. We choose Morse-Kelley class theory as

our underlying theory.1

In the following we will define the relevant notions like names, interpre-

tations and the extension for class forcing in Morse-Kelley. Then we will

show that the forcing relation is definable in the ground model, that the

Truth Lemma holds and we characterize P -generic extensions which satisfy

the axioms of MK. We will show that Laver’s Theorem fails for class forcings.

2.1 Generics, Names and the Extension

To lay out forcing in MK we have to redefine the basic notions like names,

interpretation of names etc. to arrive at the definition of the forcing exten-

1In [Chu80] R. Chuaqui follows a similar approach and defines forcing for Morse-Kelley
class theory. However there is a significant difference between our two approaches. To show
that the extension preserves the axioms Chuaqui restricts the generic G for an arbitrary
forcing notion P in the following way: A subclass G of a notion of forcing P is strongly
P-generic over a model pM, Cq of MK iff G is P -generic over pM, Cq and for all ordinals
β P M there is a set P 1 P M such that P 1 Ď P and for all sequences of dense sections
xDα : α P βy, there is a q P G satisfying

@αpα P β Ñ D p pp P P 1 XG^ the greatest lower bound of p and q exists

and is an element of Dαqq.

where a subclass D of a partial order P is a P -section if every extension of a condition in
D is in D.

9
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sion. As we work in a two-sorted theory we will define these notions for

sets and classes respectively. Let us start with the definition of the forcing

notions and its generics. We use the notation pX1, . . . , Xnq P C to mean

Xi P C for all i.

Definition 2.1. Let P P C and ďP P C be a partial ordering with greatest

element 1P . We call pP,ďP q P C an pM, Cq-forcing and often abbreviate it

by writing P . With the above convention pP,ďP q P C means that P and ďP

are in C.

G Ď P is P -generic over pM, Cq if

1. G is compatible: If p, q P G then for some r, r ď p and r ď q.

2. G is upwards closed: p ě q P G Ñ p P G.

3. GXD ‰ H whenever D Ď P is dense, D P C.

Note that from now on we will assume M to be countable (and transitive)

and C to be countable to ensure that for each p P P there exists G such that

p P G and G is P -generic.

We build the hierarchy of names for sets and classes in the following way

(we will use capital greek letters for class-names and lower case greek letters

for set-names):

Definition 2.2.

N s
0 “ H.

N s
α`1 “ tσ : σ is a subset of N s

α ˆ P in Mu.

N s
λ “

Ť

tN s
α : α ă λu, if λ is a limit ordinal.

N s “
Ť

tN s
α : α P ORDpMqu is the class of all set-names of P.

N “ tΣ : Σ is a subclass of N s ˆ P in Cu.

Note that the N s
α (for α ą 0) are in fact proper classes (and indeed N

is a hyperclass) and therefore Definition 2.2 is an inductive definition of a

sequence of proper classes of length the ordinals. The fact that with this

definition we stay inside C follows from Proposition 1.19.
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Lemma 2.3.

a) If α ď β then N s
α Ď N s

β .

b) N s Ď N .

Proof. a) By induction on β. For β “ 0 there is nothing to prove.

Successor step β Ñ β`1. Assume N s
α Ď N s

β for all α ď β. Let τ P N s
α

for some α ă β ` 1. Then we know by assumption that τ P N s
β . So

by Definition 2.2 there is some γ ă β such that τ “ txπi, piy | i P Iu

where for each i P I, πi P N s
γ and pi P P . By assumption πi P N s

β for

all i P I and so τ P N s
β`1.

Limit step λ. Assume N s
α Ď N s

β for all α ď β ă λ. But by Definition

2.2, σ P N s
λ iff σ P N s

β for some β ă λ and so it follows that N s
α Ď N s

λ

for all α ď λ.

b) By Definition 2.2, Σ P N iff Σ is a subclass of N s ˆ P iff for every

xτ, py P Σ, τ P N s and p P P iff for every xτ, py P Σ there is an ordinal

α such that τ P N s
α and p P P . Let σ P N s, i.e. there is an ordinal β

such that σ P N s
β . Then it holds that for every xτ, py P σ there is an

ordinal α ă β such that τ P N s
α and p P P . So σ P N .

We define the interpretations of set- and class-names recursively.

Definition 2.4.

σG “ tτG : Dp P Gpxτ, py P σqu for σ P N s.

ΣG “ tσG : Dp P Gpxσ, py P Σqu for Σ P N .

According to the definitions above we define the extension of an MK

model pM, Cq to be the extension of the set part and the extension of the

class part:

Definition 2.5. pM, CqrGs “ pM rGs, CrGsq “ ptσG : σ P N su, tΣG : Σ P

N uq.

Definition 2.6. If P is a partial order with greatest element 1P , we define

the canonical P -names of x PM and C P C:

x̌ “ txy̌, 1P y | y P xu.
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Č “ txx̌, 1P y |x P Cu.

From these definitions the basic facts of forcing follow easily:

Lemma 2.7. Let M “ xM, Cy be a model of MK, where M is a transitive

model of ZFC and C the family of classes of M. Then it holds that:

a) @x PMpx̌ P N s ^ x̌G “ xq and @C P CpČ P N ^ ČG “ Cq.

b) pM, Cq Ď pM, CqrGs in the sense that M ĎM rGs and C Ď CrGs.

c) G P pM, CqrGs, i.e. G P CrGs

d) M rGs is transitive and OrdpM rGsq “ OrdpMq.

e) If pN, C1q is a model of MK, M Ď N , C Ď C1, G P C1 then pM, CqrGs Ď
pN, C1q.

Proof. a): Using Definition 2.4 and Definition 2.6 we can easily show this

by induction.

b): follows immediately from 1.

c): Let Γ “ txp̌, py : p P P u. Then this is a name for G as ΓG “ tp̌G | p P

Gu “ tp | p P Gu “ G.

d) It follows from Definition 2.4 and Definition 2.5 that M rGs is transi-

tive. For every σ P N s the rank of σG is at most rank σ, so OrdpM rGsq Ď

OrdpMq.

e) For each name Σ P N , Σ P pM, Cq and therefore Σ P pN, C1q. As

G P C1 the interpretation of Σ in pM, CqrGs is the same as in pN, C1q.

2.2 Definability and Truth Lemmas

We will define the forcing relation and show that it is definable in the ground

model and how it relates to truth in the extension. The main focus will be

the Definability Lemma, since it now is possible to prove that it holds for all

forcing notions in contrast to A-definable class-forcings in a ZFC setting (see

[Fri00]). Note that when we talk about a formula ϕpx1, . . . , xm, X1, . . . , Xnq

we mean ϕ to be a second-order formula that allows second-order quantifi-

cation and we always assume the model pM, Cq to be countable.
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Definition 2.8. Suppose p belongs to P , ϕpx1, . . . , xm, X1, . . . , Xnq is a for-

mula, σ1, . . . , σm are set-names and Σ1, . . . ,Σn are class-names. We write

p , ϕpσ1, . . . , σm,Σ1, . . . ,Σnq iff whenever G Ď P is P -generic over pM, Cq
and p P P , we have pM, CqrGs |ù ϕpσG1 , . . . , σ

G
m,Σ

G
1 , . . . ,Σ

G
n q.

Lemma 2.9 (Definability Lemma). For any ϕ, the relation “p , ϕpσ1, . . . , σm,

Σ1, . . . ,Σnq” of p, ~σ, ~Σ is definable in pM, Cq.

Lemma 2.10 (Truth Lemma). If G is P -generic over pM, Cq then

pM, CqrGs |ùϕpσG1 , . . . , σGm,ΣG
1 , . . . ,Σ

G
n q ô

Dp P G pp , ϕpσ1, . . . , σm,Σ1, . . . ,Σnqq.

Following the approach of set-forcing we introduce a new relation ,˚ and

prove the Definability and Truth Lemma for this ,˚. Then we will show

that ,˚ equals the intended forcing relation ,.

The definition of ,˚ consists of ten cases: six cases for atomic formulas,

where the first two are for set-names, the second two for the “hybrid” of

set- and class-names and the last two for class-names, one for ^ and  

respectively and two quantifier cases, one for first-order and one for second-

order quantification. By splitting the cases in this way we can see very

easily that it is enough to prove the Definability Lemma for set-names only

(case one and two in the Definition) and then infer the general Definability

Lemma by induction.

Definition 2.11. D Ď P is dense below p if @q ď p Dr pr ď q, r P Dq.

Definition 2.12. Let σ, γ, π be elements of N s and Σ,Γ elements of N .

1. p ,˚ σ P γ iff tq : Dxπ, ry P γ such that q ď r, q ,˚ π “ σu is dense

below p.

2. p ,˚ σ “ γ iff for all xπ, ry P σ Y γ, p ,˚ pπ P σ Ø π P γq.

3. p ,˚ σ P Σ iff tq : Dxπ, ry P Σ such that q ď r, q ,˚ π “ σu is dense

below p.

4. p ,˚ σ “ Σ iff for all xπ, ry P σ Y Σ, p ,˚ pπ P σ Ø π P Σq.

5. p ,˚ Σ P Γ iff tq : Dxπ, ry P Γ such that q ď r, q ,˚ π “ Σu is dense

below p.
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6. p ,˚ Σ “ Γ iff for all xπ, ry P ΣY Γ, p ,˚ pπ P Σ Ø π P Γq.

7. p ,˚ ϕ^ ψ iff p ,˚ ϕ and p ,˚ ψ.

8. p ,˚  ϕ iff @q ď p p q ,˚ ϕq.

9. p ,˚ @xϕ iff for all σ, p ,˚ ϕpσq.

10. p ,˚ @Xϕ iff for all Σ, p ,˚ ϕpΣq.

We have to show that ,˚ is definable within the ground model. For

this it is enough to concentrate on the first two of the above cases, because

we can reduce the definability of the ,˚-relation for arbitrary second-order

formulas to its definability for atomic formulas σ P τ , σ “ τ , where σ and

τ are set-names. The rest of the cases then follow by induction. So let us

restate Lemma 2.9 for the case of ,˚ and set-names:

Lemma 2.13 (Definability Lemma for the atomic cases of set-names). The

relation “p ,˚ ϕpσ, τq” is definable in pM, Cq for ϕ “ “σ P τ” and ϕ “ “σ “

τ”.

Proof. We will show by induction2 on β P ORD that there are unique classes

Xβ, Yβ Ď β ˆ M which define the ,˚-relation for the first two cases of

Definition 2.12 in the following way: for all α ă β, Rα “ pXβqα, Sα “ pYβqα

where pXβqα “ tx | xα, xy P Xβu and

Rα “ tpp, σ, P, τq | p P P, σ and τ are set P -names, (‹)

rankpσq and rankpτq ă α, for all q ď p

there is q1 ď q and xπ, ry P τ such that

q1 ď r and pq1, π,“, σq P Sαu

and

Sα “ tpp, σ,“, τq | p P P, σ and τ are set P -names, (‹‹)

rankpσq and rankpτq ă α,

for all xπ, ry P σ Y τ such that

pp, π, P, σq P Rα iff pp, π, P, τq P Rαu

2To show how this induction works in the context of a class-theory we will not simply
use Proposition 1.18 and 1.19, but rather give the complete construction.
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To show that Xβ and Yβ are definable we will define the classes Rα

and Sα at each step by recursion on the tupel pp, σ, e, τq according to the

following well-founded partial order on P ˆN s ˆ t“ P ”, “ “ ”u ˆN s.

Definition 2.14. Suppose pp, σ, e, τq, pq, σ1, e1, τ 1q P P ˆ N s ˆ t“ P ”, “ “

”u ˆN s. Say that pq, σ1, e1, τ 1q ă pp, σ, e, τqif

• maxprankpσ1q, rankpτ 1qq ă maxprankpσq, rankpτqq, or

• maxprankpσ1q, rankpτ 1qq “ maxprankpσq, rankpτqq, and rankpσq ě

rankpτq but rankpσ1q ă rankpτ 1q, or

• maxprankpσ1q, rankpτ 1qq “ maxprankpσq, rankpτqq, and rankpσq ě

rankpτq Ø rankpσ1q ě rankpτ 1q, and e is ““” and e1 is “P”.

Note that clause 1 and 2 of Definition 2.12 always reduce the ă-rank of

the members of P ˆN s ˆ t“ P ”, “ “ ”u ˆN s.

“Successor step β Ñ β ` 1.” We know that there are unique classes

Xβ, Yβ such that for all α ă β, Rα “ pXβqα, Sα “ pYβqα and (‹) and (‹‹)

hold. We want to show that there are unique classes Xβ`1, Yβ`1 such that

for all α ă β ` 1, Rα “ pXβ`1qα, Sα “ pYβ`1qα and (‹) and (‹‹) hold. So

let for all α ă β pXβ`1qα “ pXβqα “ Rα and pYβ`1qα “ pYβqα “ Sα and

define pXβ`1qβ “ Rβ and pYβ`1qβ “ Sβ uniquely as follows:

A) pp, σ,“P”, τq P Rβ if and only if for all q ď p there is q1 ď q and

xπ, ry P τ such that q1 ď r and pq1, π,“=”, σq P Sβ.

B) pp, σ,““”, τq P Sβ if and only if for all xπ, ry P σ Y τ : pp, π,“P”, σq P

Rβ iff pp, π,“P”, τq P Rβ.

These definitions clearly satisfy p‹q and p‹‹q and to see that they are in-

deed inductive definitions over the well-order defined in Definition 2.14, we

consider the following three cases for each of the definitions A) and B):

1. rankpσq ă rankpτq

2. rankpτq ă rankpσq

3. rankpσq “ rankpτq
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Ad A.1: pq1, π,“=”, σq ă pp, σ,“P”, τq because rankpσq, rankpπq ă rankpτq

(first clause of Denfition 2.14).

Ad A.2: pq1, π,“=”, σq ă pp, σ,“P”, τq because max(rankpπq, rankpσqq “

max(rankpσq, rankpτqq and rankpσq ě rankpτq and rankpπq ă rankpσq (sec-

ond clause of Definition 2.14).

Ad A.3: pq1, π,“=”, σq ă pp, σ,“P”, τq because max(rankpπq, rankpσqq “

max(rankpσq, rankpτqq and rankpσq ě rankpτq and rankpπq ă rankpσq “

rankpτq (second clause of Definition 2.14).

Ad B.1: pp, π,“P”, σq ă pp, σ,““”, τq because rankpσq, rankpπq ă rankpτq

and pp, π,“P”, τq ă pp, σ,““”, τq because max(rankpπq, rankpτqq “ max(rankpσq,

rankpτqq and rankpσq ă rankpτq and rankpπq ă rankpτq (third clause of Def-

inition 2.14).

Ad B.2: pp, π,“P”, σq ă pp, σ,““”, τq because of the second clause of

Definition 2.14 and pp, π,“P”, τq ă pp, σ,““”, τq because rankpπq, rankpτq ă

rankpσq.

Ad B.3: pp, π,“P”, σq ă pp, σ,““”, τq and pp, π,“P”, τq ă pp, σ,““”, τq

because max(rankpπq, rankpτqq “ max(rankpσq, rankpτqq and rankpσq ě

rankpτq and rankpπq ă rankpσq, rankpτq (both second clause of Definition

2.14).

“Limit step λ.” We know that for every β ă λ there are unique classes

Xβ, Yβ such that for all α ă β, Rα “ pXβqα, Sα “ pYβqα and (‹) and (‹‹)

hold. We have to show that there are unique classes Xλ, Yλ Ď λ ˆM , λ

limit, such that for all β ă λ, Rβ “ pXλqβ, Sβ “ pYλqβ and p‹q and p‹‹q

hold respectively. We define the required classes as follows:

xα, xy P Xλ ØDxxRγ , Sγy | γ ď αy DX,Y pp@γ ď αppXqγ “ Rγ and

pY qγ “ Sγ and they satisfy p‹q and p‹‹q resp.q^

px P pXqγ for some γ ď αqq

xα, xy P Yλ ØDxxRγ , Sγy | γ ď αy DX,Y pp@γ ď αppXqγ “ Rγ and

pY qγ “ Sγ and they satisfy p‹q and p‹‹q resp.q^

px P pY qγ for some γ ď αqq
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From the proof of the successor step we see that the sequence xxRγ , Sγy | γ ď

αy is unique for every α ă λ and therefore Xλ, Yλ are also unique. This defi-

nition is possible only in Morse-Kelly with its version of Class-Comprehension

and not in Gödel-Bernays, because we are quantifying over class variables

(in fact we only need ∆1
1 Class-Comprehension).

The general Definability Lemma now follows immediately from this Lemma

and Definition 2.12. We now turn to the Truth Lemma.

In the following a capital greek letter denotes a name from N (and

therefore can be a set- or a class-name), whereas a lower case greek letter is

a name from N s (and therefore can only be a set-name).

Lemma 2.15.

a) If p ,˚ ϕ and q ď p then q ,˚ ϕ

b) If tp | q ,˚ ϕu is dense below p then p ,˚ ϕ.

c) If  p ,˚ ϕ then Dq ď ppq ,˚  ϕq.

Proof. a) By induction on ϕ: Let ϕ be Σ P Γ, then by Definition 2.2 D “

tq1 : Dxπ, ry P Γ such that q1 ď r, q1 ,˚ π “ Σu is dense below p. Then for

all q ď p, D is also dense below q and therefore q ,˚ ϕ. The other cases

follow easily.

b) By induction on ϕ. Let ϕ be Σ P Γ and tq | q ,˚ Σ P Γu is dense below

p. From Definition 2.12 it follows that tq | ts : Dxπ, ry P Γ such that s ď

r, s ,˚ π “ Σu is dense below qu is dense below p and from a well-known

fact it follows that D “ ts : Dxπ, ry P Γ such that s ď r, s ,˚ π “ Σu is

dense below p. Again by Definition 2.12 we get as desired p ,˚ Σ P Γ.

The other cases follow easily; for the case of negation we will use the fact

that if tp | q ,˚  ϕu is dense below p then @q ď pp q ,˚ ϕq, using a).

c) follows directly from b).

Now, the proofs for the Truth Lemma and ,˚“, follow similarly to the

proofs in set-forcing (note that a name Σ P N can also be a set-name and

therefore we don’t need to mention the cases for set-names explicitly):

Lemma 2.16 (Truth Lemma). If G is P -generic then

pM, CqrGs |ù ϕpΣG
1 , . . . ,Σ

G
mq ô Dp P G pp ,˚ ϕpΣ1, . . . ,Σmqq.
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Proof. By induction on ϕ.

Σ P Γ. “Ñ” Assume ΣG P ΓG then choose a xπ, ry P Γ such that ΣG “ πG

and r P G. By induction there is a p P G with p ď r and p ,˚ π “ Σ.

Then for all q ď p, q ,˚ π “ Σ and by Definition 2.2 p ,˚ Σ P Γ.

“Ð”: Assume Dp P Gpp ,˚ Σ P Γq. Then tq : Dxπ, ry P τ such that q ď

r, q ,˚ σ “ πu “ D is dense below p and so by genericity GXD ‰ H.

So there is a q P G, q ď p such that Dxπ, ry P Γ with q ď r, q ,˚ π “ Σ.

By induction πG “ ΣG and as r ě q, r P G and therefore πG P ΓG. So

ΣG P ΓG.

Σ “ Γ. “Ñ” Assume σG “ ΓG. Then for all xπ, ry P Σ Y Γ with r P G it

holds that πG P ΣG Ø πG P ΓG. Let D “ tp | either p ,˚ Σ “

Γ or for some xπ, ry P Σ Y Γ, p ,˚  pπ P Σ Ø π P Γqu. Then D

is dense: By contradiction, let q P P and assume that there is no

p ď q such that p P D. But if there is no p ď q such that for

some xπ, ry P Σ Y Γ, p ,˚  pπ P Σ Ø π P Γqu then by Lemma 2.15

q ,˚ pπ P Σ Ø π P Γq for all xπ, ry P ΣY Γ and therefore q ,˚ Σ “ Γ.

So there is a p ď q such that p P D. Since the filter G is generic, there

is a p P G X D. If p ,˚  pπ P Σ Ø π P Γqu for some xπ, ry P Σ Y Γ

then by induction  pπG P ΣG Ø πG P ΓGq for some xπ, ry P Σ Y Γ.

But this is a contradiction to ΣG “ ΓG and so P ,˚ Σ “ Γ.

“Ð” Assume that there is p P G pp ,˚ Σ “ Γq. By Definition 2.2 it

follows that for all xπ, ry P Σ Y Γ P ,˚ pπ P Σ Ø π P Γq. Then by

induction πG P ΣG Ø πG P ΓG for all xπ, ry P ΣY Γ. So ΣG “ ΓG.

ϕ^ ψ “Ñ” Assume that pM, CqrGs |ù ϕ^ψ iff pM, CqrGs |ù ϕ and pM, CqrGs |ù
ψ. Then by induction Dp P G P ,˚ ϕ and Dq P G, q ,˚ ψ and we

know that Dr P Gpr ď p and r ď qq such that r ,˚ ϕ and r ,˚ ψ and

so by Definition 2.2 r ,˚ ϕ^ ψ.

“Ð” Assume Dp P G, p ,˚ ϕ ^ ψ, then p ,˚ ϕ and p ,˚ ψ. So

pM, CqrGs |ù ϕ and pM, CqrGs |ù ψ and therefore pM, CqrGs |ù ϕ^ ψ.

 ϕ “Ñ” Assume that pM, CqrGs |ù  ϕ. D “ tp | p ,˚ ϕ or p ,˚  ϕu

is dense (using Lemma 2.15 and Definition 2.2). Therefore there is a

p P GXD and by induction p ,˚  ϕ.

“Ð” Assume that there is p P G such that p ,˚  ϕ. If pM, Cq |ù ϕ

then by induction hypothesis there is a q P G such that q ,˚ ϕ. But
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then also r ,˚ ϕ for some r ď p, q and this is a contradiction because

of Definition 2.2. So pM, Cq |ù  ϕ.

@Xϕ “Ñ” Assume that pM, CqrGs |ù @Xϕ. Following the lines of the “Ñ”-

part of the proof for Σ “ Γ, there is a dense D “ tp | either p ,˚

@Xϕ or for some σ, p ,˚  ϕpσqu. By induction we show that the

second case is not possible and so it follows that p ,˚ @Xϕ.

“Ð” By induction.

Lemma 2.17. ,˚“,

Proof. p ,˚ ϕpσ1, . . . , σnq Ñ p , ϕpσ1, . . . , σnq follows directly from the

Truth Lemma. For the converse we use Lemma 2.15 c) and note that we

assumed the existence of generics. Then from  p ,˚ ϕpσ1, . . . , σnq it follows

that for some q ď p, q ,˚  ϕpσ1, . . . , σnq and so  p , ϕpσ1, . . . , σnq.

2.3 The Extension fulfills the Axioms

We have shown that in MK we can prove the Definability Lemma without

restricting the forcing notion as we have to do when working withA-definable

class-forcing in ZFC (see [Fri00]). Unfortunately we do not have the same

advantage when proving the preservation of the axioms. For example, when

proving the Replacement Axiom we have to show that the range of a set

under a class function is still a set and this does not hold in general for class-

forcings. In [Fri00] two properties of forcing notions are introduced, namely

pretameness and tameness. Pretameness is needed to prove the Definability

Lemma and show that all axioms except Power Set are preserved. For the

Power Set Axiom this restriction needs to be strengthened to tameness. Let

us give the definitions in the MK context:

Definition 2.18 (Pretameness). D Ď P is predense ď p P P if every q ď p

is compatible with an element of D.

P is pretame if and only if whenever xDi | i P ay is a sequence of dense

classes inM, a PM and p P P then there exists a q ď p and xdi | i P ay PM

such that di Ď Di and di is predense ď q for each i.
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Definition 2.19. q P P meets D Ď P if q extends an element in D.

A predense ď p partition is a pair pD0, D1q such that D0YD1 is predense

ď p and p0 P D0, p1 P D1 Ñ p0, p1 are incompatible. Suppose xpDi
0, D

i
1q | i P

ay, xpEi0, E
i
1q | i P ay are sequences of predense ď p partitions. We say that

they are equivalent ď p if for each i P a, tq | q meets Di
0 Ø q meets Ei0u is

dense ď p. When p “ 1P we omit ď p.

To each sequence of predense ď p partitions ~D “ xpDi
0, D

i
1q|i P ay P M

and G is P -generic over xM, Cy, p P G we can associate the function

fG~D : aÑ 2

defined by fpiq “ 0 Ø GXDi
0 ‰ H. Then two such sequences are equivalent

ď p exactly if their associated functions are equal, for each choice of G.

Definition 2.20 (Tameness). P is tame iff P is pretame and for each a PM

and p P P there is q ď p and α P ORDpMq such that whenever ~D “

xpDi
0, D

i
1q|i P ay P M is a sequence of predense ď q partitions, tr | ~D is

equivalent ď r to some ~E “ xpEi0, E
i
1q | i P ay in VM

α u is dense below q.

Theorem 2.21. Let pM, Cq be a model of MK. Then, if G is P -generic over

pM, Cq and P is tame then pM, CqrGs is a model of MK.

Proof. Extensionality and Foundation follow because M rGs is transitive (see

Lemma 2.7 d) ; axiom 2 and 3 from Definitions 2.2 and 2.4. For Pairing,

let σG1 , σ
G
2 be such that σ1, σ2 P N s. Then the interpretation of the name

σ “ txσ1, 1
P y, xσ2, 1

P yu in the extension gives the desired σG “ tσG1 , σ
G
2 u.

Infinity follows because ω exists in pM, Cq and the notion of ω is absolute to

any model, ω P pM, CqrGs. Union follows as in the set-forcing case.

Replacement: This follows as in [Fri00] from the property of pretameness

and we give the proof to make clear where the property of pretameness is

needed: Suppose that F : σG Ñ M rGs. Then for each σ0 of rank ă rankσ

the class Dpσ0q “ tp | for some τ, q , σ0 P σ Ñ F pσ0q “ τu is dense below

p, for some p P G which forces that F is a total function on σ. We now use

pretameness to “shrink” this class to a set: so for each q ď p there is an r ď q

and α P OrdpMq such that Dαpσ0q “ ts | s P V
M
α and for some τ of rank ă

α, s , σ0 P σ Ñ F pσ0q “ τu is predense ď r for each σ0 of rank ă rank σ.

Then it follows by genericity that there is a q P G and α P OrdpMq such

that q ď p and Dαpσ0q is predense ď q for each σ0 of rank ă rankσ. So let
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π “ txτ, ry | rank τ ă α, r P VM
α , r , τ P ranpF qu and then it follows that

ranpF q “ πG PM rGs.

Power Set: This follows from tameness as shown in [Fri00].

Class-Comprehension: Let Γ “ txσ, py P N s ˆ P | p , ϕpσ,Σ1, . . . ,Σnqu.

Because of the Definability Lemma, we know that Γ P N . By Definition

2.2 and 2.4, ΓG “ tσG | Dp P Gpxσ, py P Γqu and we need to check that

this equals the desired Y “ tx | pϕpx,ΣG
1 , . . . ,Σ

G
n qq

pM,CqrGsu. So let σG P ΓG.

Then by the definition of ΓG we know that p , ϕpσ,Σ1, . . . ,Σnq and because

of the Truth Lemma it follows that pM, CqrGs |ù ϕpσG,ΣG
1 , . . . ,Σ

G
n q. For

the converse, let x P Y . By the Truth Lemma, Dp P Gpp , ϕpπ,Σ1, . . . ,Σnq,

where π is a name for x. By definition of Γ, xπ, py P Γ.

Global Choice: Let ăM denote the well-order of M and let σx, σy be the

least names for some x, y P M rGs. As the names are elements of M , we

may assume that σx ăM σy. So we define the relation ăG in M rGs using M

and ăM as parameters, so that x ăG y iff σx ăM σy for the corresponding

least names of x and y. Let R “ tpx, yq |x, y P M rGs and x ăG yu. Then

by Class-Comprehension the class R exists.

As mentioned in Chapter 1, [Fri00] gives us a simple sufficient condition

for tameness that translates directly into the context of MK:

Definition 2.22. For regular, uncountable κ ą ω, P is κ-distributive if

whenever p P P and xDi | i ă βy are dense classes, β ă κ then there is a

q ď p meeting each Di (p meets D if p ď q P D for some q).

P is tame below κ if the tameness conditions hold for P with the added

restriction that Cardpaq ă κ.

Lemma 2.23. If P is κ-distributive then P is tame below κ.

Proof. Analogous to set-forcing 3.

2.4 Laver’s Theorem

In the following we will give an example which shows that a fundamental

theorem that holds for set-forcing can be violated by tame class-forcings.

Laver’s Theorem (see [Lav07]) shows that for a set-generic extension

V Ď V rGs, V |ù ZFC with the forcing notion P P V and G P -generic over

3See [Fri00], page 37.
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V , V is definable in V rGs from parameter Vδ`1 (of V ) and δ “ |P |` in

V rGs. This result makes use of the fact that every such forcing extension

has the approximation and cover properties as defined in [Ham03] and relies

on certain results for such extensions.

In general, the same does not hold for class-forcing. In fact there are

class-forcings such that the ground model is not even second-order definable

from set-parameters:

Theorem 2.24. There is an MK-model pM, Cq and a first-order definable,

tame class-forcing P with G P-generic over pM, Cq such that the ground

model M is not definable with set-parameters in the generic extension pM, CqrGs.

Proof. We are starting from L. For every successor cardinal α, let Pα be

the forcing that adds one Cohen set to α: Pα is the set of all functions p

such that

domppq Ă α, |domppq| ă α, ranppq Ă t0, 1u.

Let P be the Easton product of the Pα for every successor α: A condition

p P P is a function p P L of the form p “ xpα : α successor cardinaly P

Πα succ.Pα (p is stronger then q if and only if p Ą q) and p has Easton

support: for every inaccessible cardinal κ, | tα ă κ | ppαq ‰ Hu | ă κ. Then

P is the forcing which adds one Cohen set to every successor cardinal.

Let P “ P ˆ P “ Πα succPα ˆ Πα succPα be the forcing that adds

simultaneously two Cohen sets to every successor cardinal.4 Note that

Πα succ.Pα ˆ Πα succ.Pα is isomorphic to Πα succ.Pα ˆ Pα. Let G be P-

generic. Then G “ Πα succ.G0pαq ˆ G1pαq and we let G0 “ Πα succ.G0pαq

and G1 “ Πα succ.G1pαq with G0, G1 P -generic over L. We consider the

extension LrG0s Ď LrG0srG1s and we will show, that LrG0s is not definable

in LrG0srG1s from parameters in LrG0s.

The reason that we cannot apply Laver’s and Hamkins’ results of [Lav07]

to this extension is that it does not fulfill the δ approximation property5: As

the forcing adds a new set to every successor, the δ approximation property

cannot hold at successor cardinals δ: the added Cohen set is an element of
4It follows by a standard argument that P is pretame (and indeed tame) over pM, Cq,

see [Fri00].
5A pair of transitive classes M Ď N satisfies the δ approximation property (with δ P

CardN ) if whenever A Ď M is a set in N and A X a P M for any a P M of size less than
δ in M , then A P M . For models of set theory equipped with classes, the pair M Ď N
satisfies the δ approximation property for classes if whenever A Ď M is a class of N and
AX a P M for any a of size less than δ in M , then A is a class of M .
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the extension and a subset of the ground model and all of its ă δ approxi-

mations are elements of the ground model but the whole set is not.

Note that the forcing is weakly homogeneous, i.e. for every p, q P P
there is an automorphism π on P such that πppq is compatible with q.

This is because every Pα is weakly homogeneous (let πppq P Pα such that

dompπppqq “ domppq and πppqpλq “ qpλq if λ P domppq X dompqq and

πppqpλq “ ppλq otherwise, then π is order preserving and a bijection) and

therefore also P is weakly homogeneous (define π componentwise using the

projection of p to pα). Similar for P ˆ P .

To show that LrG0s is not definable in LrG0srG1s with parameters, as-

sume to the contrary that there is a set-parameter a0 such that LrG0s is

definable by the second-order formula ϕpx, a0q in LrG0srG1s from a0. Let

α be such that a0 P LrG0æα,G1æαs. Now consider a “ G0pα
`q, the Cohen

set which is added to α` in the first component of P. a is Pα`-generic over

LrG0æα,G1æαs and as a is an element of LrG0s the formula ϕ holds for a. So

we also know that there is a condition q P G such that q , ϕp 9a, a0q.

Now we construct another generic G˚ “ G˚0 ˆ G˚1 which produces the

same extension but also an element for which ϕ holds and which is not an

element of LrG0s. This new generic adds the same sets as G, but we switch

G0 and G1 at α` so that the set added by G1pα
`q is now added in the new

first component G˚0 . However we have to make sure that the new generic

respects q so that ϕ is again forced in the extension. We achieve this by

fixing the generic G on the length of qpα`q (we can assume that the length

is the same on G0 and G1).

It follows that q P G˚0 ˆG
˚
1 and because of weakly homogeneity G˚0 ˆG

˚
1

is generic and LrG0srG1s “ LrG˚0srG
˚
1s. Because of the construction of G˚,

the formula ϕpx, a0q holds for the set b “ G˚0pα
`q but b is not an element of

LrG0s. That is a contradiction!

We have seen that there are different ways of approaching class-forcing,

namely on the one hand as definable from a class parameter A in a ZFC

model pM,Aq and on the other hand in the context of an MK model pM, Cq.
That presents us with three notions of genericity: set-genericity, A-definable

class genericity and class-genericity. In the next chapter we define the next

step in this hierarchy of genericity which is definable hyperclass-genericity.





Chapter 3

Definable Hyperclass Forcing

in MK˚˚

In the context of ZFC we can talk about definable class forcings as done in

[Fri00], where we deal directly with the class forcing notion as it is definable

from a class predicate. Here we want to develop a way of defining definable

hyperclass forcings in MK, i.e. forcings with class conditions, but we will

choose an indirect approach, which will allow us to reduce the technical

problems as much as possible to the context of definable class forcing. So

instead of talking directly about hyperclasses, we will use a correspondence

between models of a variant of MK (called MK˚) and models of a variant of

ZFC´ (called SetMK˚). We get an idea of how such a model of SetMK˚ looks

by considering the following model of MK: xVκ, Vκ`1y where κ is strongly

inaccessible. Similar to this model we will show how to define a model of

SetMK˚ with a strongly inaccessible cardinal κ which is the largest cardinal

such that the sets of the MK˚ model are elements of Vκ and the classes are

elements of Vκ˚ , where κ˚ is the height of the SetMK˚ model. We will then

force over such a model with a definable class forcing which will give us an

extension of the SetMK˚ model. From this extension we can then go back

to a model of MK˚ and this is the definable hyperclass-generic extensions of

the original MK˚ model.

25
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-

6
?

-

M

M` M`rGs

MrGsIn MK˚:

In SetMK˚:
def. class

forcing

def. hyperclass

forcing

In the following we will describe how we can go from MK˚ to SetMK˚

and vice versa and show that the basic properties of class forcing over a

model of SetMK˚ hold. Then we give an application of definable hyperclass

forcing regarding minimal models of MK˚˚.

But before we develop the relation between these models further we will

impose a restriction on the models we are considering.

Definition 3.1. A model M of Morse-Kelley class theory is a β-model of

MK if a class is well-founded in M if and only if it is true that the class is

well-founded.

We introduce this restriction for two reasons: First, we will define a

coding which allows us to go from a β-model of MK˚ to a transitive model

of SetMK˚ and this coding only works in the intended way if we know that

every well-founded class in the model is really well-founded (see section 3.1).

Secondly we will prove a theorem about minimal models and such a notion

only makes sense if we work with minimal β-models. So from now on, we

will always talk about β-models of (variants of) MK.

3.1 Coding between MK˚ and SetMK˚

The associated model of set theory will be a model of ZFC´ (i.e. minus

the Power Set Axiom) where we understand such a model to include the

Collection (or Bounding) Principle1. To ensure this we have to add the

Class-Bounding Principle, a “class version” of the Bounding Principle, and

we call the resulting axiomatic system MK˚:

Definition 3.2. The axioms of MK˚ consist of the axioms of MK plus the

1Note that in ZFC minus Power Set the Bounding Principle does not follow from
Replacement. This is used in [Zar82], where he showed that in ZF´ the different formu-
lations of the Axiom of Choice are not equivalent. As for MK, work done in [GH] shows
that for example ultrapower constructions don’t work without first adding a version of
Class-Bounding.
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Class-Bounding Axiom

@x DAϕpx,Aq Ñ DB @x Dy ϕpx, pBqyq

where pBqy “ tz | py, zq P Bu.

Note that as we have Global Choice, this is equivalent to AC8:

@x DAϕpx,Aq Ñ DB @xϕpx, pBqxq.

Equivalently, SetMK˚ will include the set version of Bounding (here

called Set-Bounding):

@x P a Dy ϕpx, yq Ñ Db@x P a Dy P b ϕpx, yq

As we will show in the proof of Theorem 3.7 and the proof of Theorem

3.12, Set-Bounding in SetMK˚ follows from Class-Bounding in MK˚ and

vice versa.

We are now going to show how to translate the theory of MK˚ to a

first-order set theory SetMK˚. The axioms of SetMK˚ are:

1. ZFC´ (including Set-Bounding).

2. There is a strongly inaccessible cardinal κ.

3. Every set can be mapped injectively into κ.

We can construct a transitive model M` of SetMK˚ out of any β-model

pM, Cq of MK˚ by taking all sets which are coded by a pair pM0, Rq, where

M0 belongs to C and R is a binary relation within C. We will show that M`

is the unique model of SetMK˚ with largest cardinal κ such that M “ VM`

κ

and the elements of C are the subsets of M in M`.

To describe the coding between SetMK˚ and MK˚ we will define what a

coding pair pM0, Rq is and what it means for a coding pair pM0, Rq to code

a set x in a model of SetMK˚.

Definition 3.3. A pair pM0, Rq is a coding pair in the β-modelM “ pM, Cq
if M0 is an element of C with a distinguished element a, R P C and R is a

binary relation on M0 with the following properties:
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a) @z P M0 D!n such that z has R-distance n from a, i.e. there is an

R-chain pzRzn´1R . . . Rz1Raq,

b) if x, y, z PM0 with y ‰ z, yRx, zRx then pM0, Rqæy is not isomorphic

to pM0, Rqæz, where pM0, Rqæy denotes the R-transitive closure below

y (i.e. y together with all elements which are connected to y via an

R-chain), respectively for z,

c) if y, z P M0 are on level n (i.e. have the same R-distance n from a)

and y ‰ z then vRy Ñ  pvRzq,

d) R is well-founded.

Note that in the definition of the codes in pM, Cq we need the assumption

that pM, Cq is a β-model as for a class to code a set in M` it has to be well-

founded not only in the MK model but “in the real world”.

The meaning of the definition becomes clearer when we view the coding

pair as a tree T whose nodes are exactly the distinct elements of M0, the

top node is a and R is the extension relation of the tree. A tree T 1 with top

node a1 is a subtree of T if a1 is a node of T and T 1 contains all T -nodes (not

only immediately) below a1. If T 1 is a subtree of T such that a1 lies directly

below a then T 1 is called a direct subtree of T . Then property bq states that

for every node x distinct direct subtrees are not isomorphic and property cq

implies that the trees below two distinct points on the same level are disjoint

(and not only on the next level).

The idea behind the coding pairs is, that every coding pair will define a

unique set x in the SetMK˚ model. Note that at the same time every x in

M` can correspond to different coding pairs in M.

In the following we will give some intuition on what such a correspon-

dence between coding pairs in M and sets in M` should look like: Every

x P M` is coded by a tree Tx where x is associated to the top node ax of

Tx, the elements y P x are associated to the nodes on the first level below ax

so that every node on this level gives rise to a subtree Ty which codes y so

that the elements of y are associated to the nodes on the second level below

ax and so on:
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Tx
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Ty

codes

x

P
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z

Note that there are only countably many levels but a level can have class

many elements. If two elements ay, az have the same Rx predecessor (i.e.

are connected to the same node on the previous level) their subtrees Ty, Tz

will never be isomorphic and therefore don’t code the same element of M`

(by property bq of Definition 3.3). But it can happen that there are isomor-

phic subtrees on different levels or on the same level but not connected to

the same node on the level above. This can be made clear in the following

two examples: First let y P x, v P y and w P y and v P w. Then there are

two isomorphic trees Tv and T 1v both coding v but on different levels:
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Secondly let v P w, v P y and w, y P x. Again there are two isomorphic

trees Tv and T 1v coding v but this time on the same level:
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To show that Definition 3.3 indeed defines a coding, we have to show

that there is a correspondence between x and its coding pair. As we want

to include non-transitive sets we will work with pTCptxuq, Pq (note that we

used the transitive closure of txu rather than the transitive closure of x as

the transitive closure of two different sets could be the same). As we have

seen, the coding tree will have a lot of isomorphic subtrees, for example

many different pairs pai, tuq coding the empty set. So the tree Tx itself will

not be isomorphic to pTCptxuq, Pq and we will have to collapse pMx, Rxq to

a structure pMx, Rxq{ « in which we have identified all these isomorphic

subtrees. We define this quotient of the coding pair in the following way:

Definition 3.4. For a coding pair pM0, Rq, let ras “ tb P M0 | pM0, Rqæb

isomorphic to pM0, Rqæau be the equivalence class of all the top nodes of

subtrees of the coding tree T which are isomorphic to the subtree Ta (here

pM0, Rqæb denotes the “sub-coding pair” which is the subtree Tb as detailed

in Definition 3.3). By Global Choice let ã be a fixed representative of this

class. Then let M̃0 “ tã | ras for all a P M0u and define the relation R̃ as

follows: ãR̃b̃ iff Da0, b0 such that a0 P ras and b0 P rbs and a0Rb0.

Note that if a0 « a1 and b0Ra0 then there is b1 with b1Ra1 such that

b0 « b1 as the isomorphism between Ta0 and Ta1 will restrict to the trees

Tb0 and Tb1 .

The following example shows how this quotient structure looks for a

possible coding tree of the set 3:
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As one can see, the resulting structure pM̃3, R̃3q is then isomorphic to

pTCpt3uq, Pq. In the following we will show that this construction works

in general:

Lemma 3.5. Let pM0, Rq be a coding pair. Then the quotient structure

pM̃0, R̃q as defined in Definition 3.4 is extensional and well-founded.
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Proof. By Class-Bounding R̃ P C and R̃ is well-founded as we can always

find an R-minimal element a, build the equivalence class ras and find its

representative ã. Then ã is R̃ minimal as otherwise there exists ã1 such that

ã1R̃ã and therefore there is a10 P ra
1s such that a10Ra.

To show that R̃ is extensional, let ỹ, z̃ P M̃0 with ỹ ‰ z̃ and assume that

they have the same extension tx̃ | x̃R̃ỹu “ tx̃ | x̃R̃z̃u. Going back to pM0, Rq

this means that the elements of the related equivalence classes rys, rzs have

the same isomorphism types of children, i.e. for every x0, y0, z0 P M0 with

x0Ry0, y0 P rys and z0 P rzs we can find x1 with x1Rz0 such that x0, x1 P rxs.

By using property bq of Definition 3.3 it follows that the rys “ rzs, because

we do not have multiplicities in pM0, Rq, i.e. isomorphic subtrees that are

connected to the same R-predecessor. It follows that ỹ “ z̃.

Note that the quotient structure always has a fixed top node which is the

representative of the equivalence class of the distinguished node of pM0, Rq,

which has the distinguished node as its only element.

It follows from Mostowski’s Theorem that there is a unique transitive

structure with the P-relation that is isomorphic to pM̃0, R̃q. This structure

then has the form pTCptxuq, Pq for a unique set x.

Definition 3.6. A coding pair pMx, Rxq is called a coding pair for x, if x

is the unique set such that pM̃x, R̃xq is isomorphic to pTCptxuq, Pq.

In the following we will use this coding to associate a transitive model

of SetMK˚ to each β-model of MK˚ and vice versa.

Theorem 3.7. Let M “ pM, Cq be a β-model of MK˚ and

M` “ tx | there is a coding pair pMx, Rxq for xu

Then M` is the unique, transitive set that obeys the following properties:

a) M` |ù SetMK˚,

b) C “ P pMq XM`,

c) M “ VM`

κ , κ is the largest cardinal in M` and strongly inaccessible

in M`.

The coding between M and M` is the key to prove the theorem. So

before proving this theorem we will prove two useful fact about the coding.
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As we have seen there can be more than one coding pair for an x P

M`. Of course these coding pairs are isomorphic because they are all built

according to Definition 3.3 but we also would like to know that they are

isomorphic inM. For elements of M` that can be coded by sets inM this

is trivial but for elements that are coded by proper classes we have to show

the following:

Lemma 3.8 (Coding Lemma 1). Let M “ pM, Cq be a transitive β-model

of MK˚. Let N1, N2 P C and R1, R2 be well-founded binary relations in C
such that pN1, R1q and pN2, R2q are coding pairs as described in Definition

3.3. Then if there is an isomorphism between pN1, R1q and pN2, R2q there

is such an isomorphism in C.

Proof. Let T1, T2 be the coding trees associated to the coding pairs pN1, R1q,

pN2, R2q. Assume to the contrary that there is an isomorphism between T1

and T2 but not one in C. It follows that the tree below the top node of

T1 is isomorphic to the tree below the top node of T2, but there is no such

isomorphism in C. Then, as T1 and T2 are well-founded we can choose a

T1-minimal node a1 of T1 such that for some node a2 of T2 the tree U1 (the

tree T1 below and including a1) is isomorphic to U2 (the tree T2 below and

including a2) but there is no isomorphism in C. Because of the minimality

of a1 we know that for every node a1,i of U1 just below a1 and every node

a2,j of U2 just below a2, if U1,i is isomorphic to U2,j then there is an isomor-

phism in C. Moreover the property “U1,i, U2,j are ismorophic” is expressible

in pM, Cq.
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Now we can apply the Class Bounding Principle of MK˚ to get a class

B so that for each a1,i, a2,j for which U1,i, U2,j are isomorphic, pBqc is such

an isomorphism for some set c. Using the global well-order of M we can
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choose a unique cpa1,i, a2,jq for each relevant pair xa1,i, a2,jy and combine

the isomorphisms pBqcpa1,i,a2,jq to get an isomorphism between U1 and U2 in

C, which is a contradiction.

So all coding trees of the same element of M` are isomorphic in C. For

the converse it is obvious that two isomorphic coding trees code the same

element in M` as they give rise to the same pM̃x, R̃xq.

The next lemma shows that we are able to see something of the coding

in M`:

Lemma 3.9 (Coding Lemma 2). For all x P M` there is a one-to-one

function f PM` such that f : xÑMx, where pMx, Rxq is a coding pair for

x.

Proof. Let Tx be a coding tree for x and for each y P x let Ty is the subtree

of Tx with top node ay lying just below the top node of Tx such that Ty

codes y. Note that the choice of ay is unique after having fixed the tree Tx.

To show that f “ txy, ayy | y P xu belongs to M`, we have to find a

coding tree for f . Firstly we construct a coding tree Txy,ayy for every xy, ayy

with y P x. As ay is a set in M , it is a set in M` and therefore coded by

some Tay . So we can build Txy,ayy by connecting the trees Ty and Tay . To

make sure that the relation Rxy,ayy on the new tree is well-defined we can

relabel the nodes of the tree Tay and so we get the following picture:

tta1yu, ta
1
y, ayuu “ axy,ayy
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@

ay

Tay
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ta1yu ta1y, ayu������a1y

Ty

�
�
�

A
A
A

In this way we code every pair xy, ayy with y P x and we can now join

all the codes to code f .

Let pMf , Rf q be the following pair: Mf “
Ť

zPxMxz,azy Y tafu where

af P M and af R Mxz,azy for every z P x. Then Rf is the binary relation
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which is defined using Rx as parameter:

Rf “ txv, wy | for some y P x either xv, wy P Rxy,ayy or

v “ axy,ayy and w “ afu

Mf and Rf are well-defined because of Class Comprehension in MK˚ and

so f is coded by the tree Tf which is ordered by Rz below every az and by

putting axy,ayy below af otherwise.

Now we give the proof of Theorem 3.7.

Proof. a) We show that if M is a β-model of MK˚ then M` |ù SetMK˚.

The first step is proving that M` satisfies ZFC´ with Set-Bounding.

Observe that M` is transitive: Let x PM`. Then for every y P x there

is a coding tree for y (namely the corresponding subtree of Tx). Therefore

y P M` and so x Ď M`. From transitivity it follows that Extensionality

and Foundation hold in M`; Infinity follows as ω PM`.

Pairing: Let x, y be coded by Tx, Ty respectively. Then tx, yu is coded

by the tree:
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Union: Let x be coded by Tx:
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The obvious way to code
Ť

x would be to join the ay0, ay1, . . . , az0, az1, . . .
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together by one top node aŤ

x. But in general this is not a coding tree

by reasons of isomorphism: Our coding trees have the property that sub-

trees which are connected to the same node on the next level above are all

pairwise non-isomorphic. In this case that means that the trees Tay , Taz , . . .

are pairwise non-isomorphic, as are the trees Tay0 , Tay1 , . . . and the trees

Taz0 , Taz1 , . . . and so on. But, as we explained before, it can happen that

some of the Tayi are isomorphic to, for example, some of the Tazj . So if we

connect these trees by a top node the resulting tree would have isomorphic

subtrees connected by the same node on the next level and therefore would

not be a coding tree. This problem can easily be resolved by taking equiva-

lence classes of the subtrees of Tx from the second level below ax (where two

trees are equivalent if the are isomorphic). Then we take a representative

from each equivalence class and connect them to the top node aŤ

x (as be-

fore, this is possible by Class Comprehension in MK˚ and Coding Lemma

1).

To prove Comprehension and Bounding we need to take a closer look at

how formulas in M` translate to formulas in M:

Lemma 3.10. For each first-order formula ϕ there is a formula ψ of second-

order class theory such that for all x1, . . . , xn P M
`, M` |ù ϕpx1, . . . , xnq

if and only if M |ù ψpc1, . . . , cnq for any choice of codes c1, . . . , cn for

x1, . . . , xn.

Proof. The proof is by induction over the complexity of the formula ϕ. For

the first atomic case assume that M` |ù y P x. Let cx and cy be codes for

x and y respectively and let Tx, Ty be the associated coding trees. As we

know that y P x it follows that there is a direct subtree Ty1 of Tx such that

Ty1 is a coding tree for y ( “direct subtree” means a subtree whose top node

lies just below the top node of the original tree). As Ty1 and Ty are both

codes for y they are isomorphic and by Coding Lemma 1 we know that they

are isomorphic in M. So M |ù “cy is isomorphic to a direct subtree of cx”

and this therefore is the desired ψ.

For the second atomic case assume that M` |ù y “ x. Let cx and cy be

codes for x and y respectively. As y “ x, cy is also a code for x and again by

Coding Lemma 1 we know that the codes are isomorphic in M thus giving

us the desired ψ.

The cases of  ϕ, ϕ1^ϕ2 follow easily by using the induction hypothesis.
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For the quantor case assume that M` |ù @xϕ. Let cx be a code for x. By

induction hypothesis let ψ be the second-order formula associated to ϕ such

that M |ù ψ. Then M` |ù @xϕ translates to M |ù @cxψ.

Comprehension: Let a, x1, . . . , xn P M
` and let ϕpx, x1, . . . , xn, aq be

any first-order formula. We will show that b “ tx P a : M` |ù ϕpx, x1, . . . , xn, aqu

in an element of M` by using Class Comprehension inM to find the corre-

sponding B P C and build from it a coding tree for b.

Let Tx1 , . . . , Txn , Ta be codes for the corresponding elements of M` and

let ψ be the formula corresponding to ϕ provided by Lemma 3.10. Assume

that b is non-empty, i.e. that there is x0 in a such that ϕ holds. Therefore

there is a c0 such that ψpc0, Tx1 , . . . , Txn , Taq holds. Let c be a variable that

varies over the level directly below the top level of Ta so that each Tapcq

denotes a direct subtree of Ta. Then by Class Comprehension there is a

class B such that if ψpTapcq, Tx1 , . . . , Txn , Taq holds then pBqc is the direct

subtree Tapcq of Ta and if not then pBqc is Tc0 . So let Tb be the coding tree

with top node ab and whose direct subtrees are all of the pBqc:

Tb �
�
�

@
@
@

�
�
�

A
A

�
�
�

A
A
A

ab

apcq

Tapcq ordered by Rapcq

Then Tb codes b PM` with b “ tx P a : ϕpx, x1, . . . , xn, aqu.

Bounding: We have to show that for a PM` and ϕ a first-order formula

M` |ù @x P a Dy ϕpx, yq Ñ Db@x P a Dy P b ϕpx, yq.

So assume that @x P a Db ϕpx, yq. Let Ty, Ta be coding trees for y and

a respectively and let ψ be the second-order formula corresponding to ϕ

provided by Lemma 3.10. By Class-Bounding in MK˚ we know that

DB @Tx direct subtree of TaDy
1 ψpTx, pBqy1q,

where pBqy1 “ tz | py1, zq P Bu. By Class Comprehension we can join to-
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gether all the section pBqy1 which are coding trees TpBqy1 to obtain a tree Tb

with top node ab such that the TpBqy1 are the direct subtrees of Tb. It follows

that in M there is a tree Tb such that for every tree Tx subtree of Ta there

is a TpBqy1 direct subtree of Tb such that ψpTx, TpBqy1 q and the tree Tb gives

us the desired b in M`.

Replacement: Follows from Comprehension and Bounding.

Choice: We have to show that every element of M` can be well-ordered

(we aim for the strongest version of the axiom of Choice in a set-theory

without Power Set (see [Zar82]). So let x PM` and let Tx be a coding tree

for x with top node ax. We know that the direct subtrees Ty of Tx code the

elements y of x and their top nodes ay are elements of M . As we have a

well-order of M we can well-order the class B “ tay | ay is the top node of

a direct subtree Ty of Txu. We call this well-order W . Now we can build a

tree for every pair xay, azy P W by using the trees Ty, Tz analogous as we

did in the proof of Coding Lemma 2:

ttayu, tay, azuu “ axy,zy
�
�
�

@
@
@

az

Tz

�
�
�

A
A
A

tayu tay, azu������ay

Ty

�
�
�

A
A
A

So for every xay, azy P W we get a coding tree for the pair xy, zy with

y, z P x. As we have shown in the proof of Coding Lemma 2 we can now

join together the trees by a single top node aw using Class Comprehension.

We now get a tree Tw which is a coding tree for an element w of M` and w

is a well-order of x.

Remark 3.11. The next two results below (b and c) will show, that there

even is a global choice function for the sets in VM`

κ for κ an inaccessible

cardinal, as there is a class which well-orders M and we will show that every

class in C is an element of M`.
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b) We have to show that C “ P pMq XM`. So assume that X P C and

y P X. Then y PM and so can be coded by the following tree: y is the top

node of the tree Ty. On the first level below the top node there are nodes

for every element of y which are named by pairwise different elements zi of

Mztyu. On the first level below such an zi there are nodes for every element

in zi named by pairwise different elements vj of Mzty, ziu and so on. So

Ty is a coding tree for y and therefore y P M`. This can be done for all

y P X and by Class Comprehension the trees Ty can be connected to a tree

TX with top node aX . Then the pair pMX , RXq gives a code for X with

MX “
Ť

yPXMy Y taXu and

RX “ txv, wy | for some y P X either xv, wy P Ry or v “ ay and w “ aXu

Therefore X PM`.

For the converse, let x P M` and x Ď M . Then there exists a coding

pair pMx, Rxq of x such that pM̃x, R̃xq – pTCtxu, Pq (see Lemma 3.5). As

pM̃x, R̃xq is in C, has rank Ord(M) and we can build TCptxuq by transfinite

induction from pM̃x, R̃xq, we can decode x in C and so x P C.

c) Now we will show that there is a strongly inaccessible cardinal κ in

M` which is the largest cardinal in M` and the elements of M (the sets in

M) are exactly the elements of VM`

κ .

Let κ be OrdpMq. Then as κ Ď M and κ P M` it follows from b) that

κ is a class in C. Let f : β Ñ κ with β is a ordinal less than κ be a function

in C. From the Class Bounding Principle it follows that f is bounded in κ.

So κ is regular in M and therefore regular in M`. Moreover, again by b),

any subset of an ordinal β of M which belongs to M` is a class in C and

indeed a set in M , so the power set of β in M` equals the power set of β in

M and so κ is strongly inaccessible. It follows that if x PM then x P VM`

κ .

For the converse let x P VM`

κ and let pMx, Rxq be a coding pair and Tx

the associate coding tree for x . By Coding Lemma 2 any coding tree of a

set is a set, so Tx is an element of M . Clause 3 of the axioms of SetMk˚

follows directly from Coding Lemma 2 and so κ is the largest cardinal in M`.

That M` is unique follows from its construction: Let M`` be another

such model of SetMK˚ (i.e. it is transitive, C “ P pMq XM`` and M “
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VM``

κ with κ largest cardinal in M`` and strongly inaccessible cardinal in

M``). Then M` and M`` have the same largest cardinal κ, they have the

same subsets of κ and as every set in both models can be coded by a subset

of κ they are the same.

This concludes the proof of Theorem 3.7.

The converse of Theorem 3.7 follows by the corresponding axioms in the

SetMK˚ model:

Theorem 3.12. Let N be a transitive model of SetMK˚ that has a strongly

inaccessible cardinal κ that is the largest cardinal, let C “ P pMqXN and M

is defined to be V N
κ . Then M “ pM, Cq is a β-model of MK˚ and the model

M` derived from M by Theorem 3.7 equals N .

Proof. We have to show that pM, Cq fulfills the axioms of MK˚: Extension-

ality, Pairing, Infinity, Union, Power Set, and Foundation follow directly

by the corresponding axioms of SetMK˚. By the definition of M and C it

follows that every set is a class and elements of classes are sets.

For the remaining axioms, note that there is an easy converse for Lemma

3.10: For each formula ϕ of second-order class theory there is a first-order

formula ψ such that for all x1, . . . , xn PM, M |ù ϕpx1, . . . , xnq if and only

if N |ù ψpx1, . . . , xnq. This holds because by assumption all elements of M
are elements of C or M and therefore elements of N and so ϕ and ψ are the

same where the statement that x is a set in M translates to x P V N
κ and

the statement that X is a class in M translates to X P P pMq XN . So for

Class Comprehension we have to show that the following holds:

@X1 . . .@XnDY Y “ tx : ϕpx,X1, . . . , Xnqu

where ϕ is a formula containing class parameters in which quantification over

both sets and classes is allowed. By the definition of M and C this statement

is exactly the Comprehension Axiom of N where ψ is the first-order formula

corresponding to ϕ: y “ tx P V N
κ : N |ù ψpx, x1, . . . , xn, V

N
κ q.

For Class Bounding we have to show:

@x DAϕpx,Aq Ñ DB @x Dy ϕpx, pBqyq

where pBqy “ tz | py, zq P Bu. So assume that @x DAϕpx,Aq holds in M.
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Then translating this to N we know by Set-Bounding that

@x P VM`

κ DA P P pMq XM` ψpx,Aq Ñ Db@x P VM`

κ Dy P b ψpx, yq

where ψ is the first-order formula corresponding to ϕ. By Set-Comprehension

we can form a set b0 from b such that b0 “ ty | y P b^ y Ď V N
κ u. Then there

is a function f P N from V N
κ onto b0 (as b0 has size less or equal κ) and so f

is also an element of M. The we can define the class pBqz “ tw |w P fpzqu

and therefore also B “ tpz, wq | z P V N
κ ^ w P fpzqu. So Class-Bounding

holds.

For Global Choice we have to show that there is a well-ordering of M .

We know that every element of N can be well-ordered and so V N
κ can be

well-ordered. The well-order is therefore an element of C.
pM, Cq has to be a β-model: Any well-founded relation in pM, Cq corre-

sponds to a well-founded relation in N and because N is a transitive model

of ZF´, well-foundedness is absolute (we can define a rank function into the

“real” ordinals which witnesses the well-foundedness in V ).

Finally when we build the M` of M according to Theorem 3.7, M`

and N are both transitive, have the same largest cardinal κ and the same

subsets of κ and are therefore equal.

Remark 3.13. We can also use this switching between models of MK˚ and

SetMK˚ for class-forcing: Instead of doing class-forcing over MK˚ we go to

SetMK˚ and do a set-forcing there. Note that by doing this indirect version

of class-forcing we don’t lose the tameness requirement for the forcing: As-

sume the class-forcing is not tame (as for example a forcing which collapses

the universe to ω). Then we go to M` |ù SetMK˚ and force with the as-

sociated set-forcing. But such a forcing destroys the inaccessibility of κ and

therefore the preservation of PowerSet in the MK˚ extension MrGs.

Corollary 3.14.

M` “
ď

CPC
Lκ˚pCq.
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where κ˚ is the height of M` and

L0pCq “TCptCuq

Lβ`1pCq “Def pLβpCqq

LλpCq “
ď

βăλ

LβpCq, λ limit.

Proof. Let x P M`. Then there is a coding pair pMx, Rxq for x such that

pM̃x, R̃xq is isomorphic to pTCptxuq, Pq. As M̃x and R̃x are elements of C
we can code the pair pM̃x, R̃xq by a class Cx P C. As Cx is an element

of M`, Lκ˚pCxq is an inner model in M`. But now we can decode x in

Lκ˚pCxq as we can build pTCptxuq by transfinite induction from pM̃x, R̃xq.

So x P Lκ˚pCxq.

For the converse, let x P
Ť

CPC Lκ˚pCq, i.e. there is an Cx P C such that

x P Lκ˚pCxq. As Lκ˚pCxq is an inner model of M, x is an element of C and

by Theorem 3.7 b) it is an element of M`.

3.2 Hyperclass Forcing and Forcing in SetMK˚˚

In the last section we have seen how to move back and forth between a

model of MK˚ and its associated SetMK˚ model. Now we will use this

relation between a model of class theory and a model of set theory to define

hyperclass forcing. A hyperclass is a collection whose elements are classes.

The key idea is that instead of trying to formalize forcing for a definable

hyperclass forcing notion, we can go to the associated model of SetMK˚

where the forcing notion is now a class and so we force with a definable class

forcing there and then go back to a new MK˚ model. First let us define the

relevant notions:

Definition 3.15. Let M “ pM, Cq be a model of MK˚ and for P Ď C let

pP,ďq “ P be an M-definable partial ordering with a greatest element 1P.

P,Q P P are compatible if for some R, R ď P and R ď Q. A definable

hyperclass D Ď P is dense if @PDQpQ ď P and Q P Dq. Then a G Ď C is

called a P-generic hyperclass overM iff G is a pairwise compatible, upward-

closed subcollection of P which meets every dense subcollection of P which is

definable over M.

We will assume that for each P P P there exists G such that P P G and
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G is P-generic overM (this is always possible if the modelM is countable).

To define the structure pM, CqrGs where G is a P-generic hyperclass over

pM, Cq we will use Theorem 3.7 and Proposition 3.12. By Theorem 3.7 we go

to the model M` |ù SetMK˚. As P is a subcollection of C inM it becomes a

subclass of P pMq XM` and is an M`-definable class, G remains a pairwise

compatible, upward-closed subclass of P which meets every dense subclass

of P which is definable over M` and therefore is definable class-generic over

M`. Then we define names, their interpretation and the extension of M` as

usual: A P-name in M` is a set in M` consisting of pairs pτ, pq where τ is a P-

name in M` and p belongs to P (as we are in the set model we now denote the

elements of P with lower-case letters). Then N “ YtNα |α P OrdpM`qu is

the collection of all names where N0 “ H, Nα`1 “ tσ |σ is a subset of N ˆ
P in M`u and Nλ “ YtNα |α ă λu for a limit ordinal λ. For a P-name σ

its interpretation is σG “ tτG | p P G for some pτ, pq P σu. Then M`rGs is

the set of all such τG. Finally we can define the extension of M:

Definition 3.16. Let M “ pM, Cq be a β-model of MK˚, P be a definable

hyperclass forcing and G Ď P be a P-generic hyperclass over M. Let M`

be the model of SetMK˚ associated to M by Theorem 3.7 and assume that

M`rGs |ù SetMK˚ with largest cardinal κ with M`rGs transitive. Then

MrGs “ pM, CqrGs is the β-model of MK˚ derived from M`rGs by Theorem

3.12, whose sets are the elements of V
M`rGs
κ and whose classes are the sub-

sets of V
M`rGs
κ in M`rGs, where κ is the largest cardinal of M`rGs and is

strongly inaccessible. Such a model is called a definable hyperclass-generic

outer model of M.

This definition assumes that the definable class-forcing P again produces

a model of SetMK˚ with the same largest cardinal κ where κ is strongly

inaccessible (we say in short that P does not change κ). Unfortunately the

assumption that SetMK˚ is preserved is not as straightforward as it might

seem. Definable class-forcing was developed by [Fri00]. There the concept of

pretameness and tameness of a forcing notion is introduced and it is shown

that such a forcing has a definable forcing relation and preserves the ax-

ioms. In the case of SetMK˚ we now have the added problem that we are

not forcing over a model of full ZFC but rather over ZFC´, i.e. without

the Power Set Axiom. This can cause problems when we use concepts like

the hierarchy of the Vα, for example to prove that pretame class-forcings
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preserve the Replacement (or in our case the Set-Bounding) Axiom. So we

cannot simply transfer the results of [Fri00] but have to prove the Definabil-

ity Lemma and the preservation of the axioms again without making use of

the Power Set Axiom.

To define definable class-forcing in SetMK˚ first note that the following

still holds: Let M` be a transitive model of SetMK˚, P be a M`-definable

forcing notion and G P -generic over M`. Then M`rGs is transitive and

OrdpM`rGsq “ OrdpM`q. It follows from the definition of the interpreta-

tion of names and the definition of M`rGs that if y P σG then y “ τG for

some τ P TCpσq and therefore M`rGs is transitive. Furthermore for every

x P OrdpM`q there exists a name σ for x (i.e. x “ σG as defined above)

with name-rank of σ “ the least α P OrdpMq such that σ P Nα`1 and by

induction the von Neumann rank of σG is at most the name rank of σ. So

we know that if “new” sets are added by the forcing they have size at most

the “old” sets from M` and so OrdpM`rGsq Ď OrdpM`q.

We will first treat the case where we already assume that the forcing

relation is definable and P is a pretame class-forcing and then show how we

can ensure that in general pretame class-forcings preserve the axioms and

the Definability Lemma holds.

Proposition 3.17. Let M` be a model of SetMK˚ and let P be a pretame

definable class-forcing over M` that does not change κ and whose forcing

relation is definable. Let G Ď P be definable class-generic over M`. Then

M`rGs is a model of SetMK˚.

Proof. Extensionality, Pairing, Comprehension, Infinity, Foundation and

Choice still hold by the proof for definable class-forcing over full ZFC. We

have to show that Set-Bounding holds in M`rGs, i.e.

M`rGs |ù @x P a Dy ϕpx, yq Ñ Db@x P a Dy P b ϕpx, yq

Let σ be a name for a. We can extend any p for which p , @x P σ Dy ϕpx, yq

to force that there is an isomorphism between σ and an ordinal α (by using

AC) and so we can assume without loss of generality that σ is α̌ where

α P Ord and therefore p , @x ă α Dy ϕpx, yq. Then for such a fixed p and

for each x ă α we can define by the Definability of the forcing relation

Dx “ tq ď p | Dτ q , ϕpx, τqu where Dx is dense below p. By pretameness

there is a q ď p and xdx |x ă αy PM` such that for all x ă α, dx is pretense
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ď q and by genericity there is such a q in G. Then we know that for all

pairs xx, ry where x ă α and r P dx there is τ such that r , ϕpx, τq. By the

Set-Bounding principle in M` we get a set T P M` such that @px, rq with

r P dx Dτ P T such that r , ϕpx, τq. Finally let π be a name for tτG | τ P T u,

i.e. π “ txτ, 1Py | τ P T u. Then, because the generic below q hits every dx,

ϕpx, τq will hold for some τ P T . It follows that q , @x ă α Dy P π ϕpx, yq.

Then Union follows with the use of Set-Bounding.

With this proposition we have shown that in a model of MK˚ we can

force with a definable hyperclass-forcing P and preserve MK˚, provided P
translates to a pretame class-forcing in SetMK˚ which preserves the in-

accessibility of κ and whose forcing relation is definable. But in practice

we don’t usually know if the forcing relation is definable, even if we know

that P is pretame due to the absence of a suitable hierarchy (like the V -

hierarchy which suffices when forcing over ZF-models). So we will introduce

a preparatory forcing which does not add any new sets but converts the

SetMK˚ model M` into a model of the form LαrAs for some generic class

predicate A Ď ORD preserving SetMK˚ (relative to A). This will allow us

to use the relativized L hierarchy and therefore adapt the proof of the De-

finability Lemma for a pretame class-forcing and the fact that it preserves

the axioms. Such a preparatory forcing presents us with two difficulties:

first we have to show that its forcing relation is definable and the forcing

is pretame, so that we can infer from Proposition 3.17 that it preserves the

axioms. Secondly we have to show that the predicate A, that was added by

the forcing, can be coded into a subset of κ so as to avoid problems when

going back to the MK˚ model.

To prove the pretameness of such a forcing we have to add a new axiom

to SetMK˚, namely a variant of Dependent Choice. To ensure that this

axiom holds in M`, we will add its class version to MK˚ and show that it

is transformed to the appropriate set version using the coding introduced in

the last section.

Definition 3.18. Let MK˚˚ consist of the axioms of MK˚ plus Dependent

Choice for Classes (we denote this with DC8):

@ ~XDY ϕp ~X, Y q Ñ @XD~Z pZ0 “ X ^ @i P ORDϕp~Zæi, Ziqq

where ~X is an α-length sequence of classes for some α P ORD, ~Z is an
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ORD-length sequence of classes and Zæi is the sequence of the “previously

chosen” Zj, j ă i.

In the resulting SetMK˚˚ model M`, DC8 becomes a form of κ-Dependent

Choice:

@~x Dyϕp~x, yq Ñ @xD~z pz0 “ x^ @i ă κϕp~zæi, ziqq

where ~x is a ă κ-length sequence of sets, ~z is a κ-length sequences of sets

and zæi is the sequence of the “previously chosen” zj , j ă i.

The coding between MK˚˚ and SetMK˚˚ works exactly as in the MK˚

case, we only have to prove that it transforms DC8 into DCκ and vice versa.

Proposition 3.19. 1. Let M “ pM, Cq be a β-model of MK˚˚. Then we

can define a model

M` “ tx | there is a coding pair pMx, Rxq that codes xu

Then M` is the unique, transitive set that obeys the following proper-

ties:

a) M` |ù SetMK˚˚,

b) C “ P pMq XM`,

c) M “ VM`

κ , κ is the largest cardinal in M` and strongly inacces-

sible in M`.

2. Let M` be a model of SetMK˚˚ that has a strongly inaccessible cardinal

κ, let C “ P pMq XM` and M “ VM`

κ . Then M “ pM, Cq is a model

of MK˚˚.

Proof. For 1.: Using the proof of Theorem 3.7 it only remains to show that

M` is a model of κ-Dependent Choice, where κ is strongly inaccessible

in M`: M` |ù @ ~x Dy ϕp~x, yq Ñ @xD~zpz0 “ x ^ @i ă κϕp~zæi, ziqq where

~x, ~z are κ-length sequences. So assume that M` |ù @ ~x Dy ϕp~x, yq. From

what we have show above, we know that ~x is an ordinal length sequence

of elements in M and also y is an element of M (as these can be classes

we will write them with upper case letters in M). Let ψ be the second-

order formula associated to ϕ, i.e. ψ is the formula that says exactly the

same as ϕ only that its variables can be classes. Then by DC8 we have

that @ ~XDY ψp ~X, Y q Ñ @XD~Z pZ0 “ X ^ @i P ORDψp~Zæi, Ziqq where ~X, ~Z
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are sequences of classes with ordinal length and Zæi is the sequence of the

previously “chosen” Zj , j ă i. As before all the classes mentioned here are

elements of M` where ~Z is a κ-length sequence and so we have proven the

κ-Dependent Choice.

For 2.: Again we only have to proof the case of DC8 and this is an direct

analog to the proof of the Comprehension Axiom in the proof of Proposition

3.12.

Lemma 3.20. Let M` be a model of SetMK˚˚ with largest cardinal κ and

P be an M`-definable class forcing notion. Then if P is ď κ-closed it is

ď κ-distributive.

Proof. Let p P P and xDi | i ă βy is an M` definable sequence of dense

classes, β ď κ, and we want to show that there is a q ď p meeting each Di

(q meets Di if q ď qi P Di for some qi). As we have shown that P is ď κ-

closed we want to construct a descending sequence p0 ě p1 ě . . . ě pi ě . . .

pi ă βq with pi P Di for all i ă β. Here we need the SetMK˚˚ version of

the Dependent Choice Axiom we added to MK˚: Recall that κ-Dependent

Choice says that @~x Dyϕp~x, yq Ñ @xD~z pz0 “ x ^ @i ă κϕp~zæi, ziqq where ~x

is a ă κ-length sequence of sets, ~z is a κ-length sequences of sets and zæi is

the sequence of the previously “chosen” zj , j ă i. If we take ϕp~x, yq to mean

that “~x is a descending sequence of conditions, xi P Di for i ă length ~x, y

is a lower bound for ~x and y P Dlength~x” then we know that we can find a

descending sequence p0 ě p1 ě . . . ě pi ě . . . pi ă βq with pi P Di for all

i ă β such that there is an q P P with q ď p and q ď pi for all i ă β and so

q meets all Di.

Theorem 3.21. Let M` be a model of SetMK˚˚ with largest cardinal κ

and let κ˚ denote the height of M`. Then there is an M`-definable forcing

P such that the Definability Lemma holds and P is pretame, which adds a

class predicate A Ď κ˚ such that M` “ Lκ˚rAs and pM`, Aq |ù SetMK˚˚

relativized to A.

Proof. Let P “ t p : β Ñ 2 |β ă κ˚, p P M`u and let G be P -generic over

M`. Let
Ť

G “ g : κ˚ Ñ 2 and A “ tγ ă κ˚ | gpγq “ 1u. Note that

G is an amenable predicate, i.e. G X a belongs to M` for every a P M`

and P is ď κ-closed, as for every λ ď κ and every descending sequence
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p0 ě p1 ě . . . ě pi ě . . . pi ă λq there is q “
Ť

iăλ pi P P such that

@i ă λ q ď pi.

To show that the forcing relation is definable in the ground model, we

will concentrate on the atomic cases “p , σ P τ” and “p , σ “ τ”. Then the

other cases follow by induction. For p , σ P τ first consider the case where

the length of p is larger then the ranks of σ and τ (i.e. there is an γ such

that rank σ, rank τ ă γ and Domppq ą γ). Then the question if σG P τG

is already decided by p, meaning that σG P τG exactly when σp P τp with

τp “ tπp | xπ, qy P τ, p ď qu as p “has no holes” and therefore a condition

that extends p will never change the decisions made below the length of p.

This now defines the forcing relation because P doesn’t add any new sets

and therefore σp and τp are already elements of the ground model. If p is not

large enough to decide if σG is an element of τG, then we have to check that

every q that extends p decides that this is the case so we get the definition

“p , σ P τ Ø @q ď p p |q| ą rank σ, rank τ Ñ σq P τ qq”. The definitions

for the ““” case can be given the same way and so the forcing is definable.

The Truth Lemma then follows from Definability by the usual arguments.

Next we want to show that P is pretame: As P is ď κ-closed, we know

by Lemma 3.20 that P is ď κ-distributive. Then P is also pretame for

sequences of dense classes of length ď κ and therefore P is pretame.

We have shown that P doesn’t add any new sets to the extension but

a subclass A Ă κ˚. So the forcing just reorganizes M` and adds A as a

predicate. Then every set of ordinals from M` is copied into an interval of

the generic and so every set of ordinals and therefore also every set is coded

by A. Also as A adds no new sets it holds that Lκ˚rAs Ď M`. It follows

that M`rGs “ Lκ˚rAs and therefore already M` “ Lκ˚rAs.

It remains to show that pM`, Aq |ù pSetMK˚˚qA, i.e. SetMK˚˚ holds

for formulas which can mention A as a predicate. As P preserves the strongly

inaccessibility of κ it follows by Proposition 3.17 that M`rGs |ù SetMK˚

and that means that pM`, Aq |ù SetMK˚. But as the Comprehension and

Bounding can mention the generic this implies that pM`, Aq |ù pSetMK˚qA.

For the DCκ note that by adding A we now have a global well-order of the

extension. That means that if we have a ă ´κ sequence ~x in M`rGs such

that @~x Dy ϕp~x, yq and we want to find a κ-length sequence ~z such that

@xD~z pz0 “ x ^ @i ă κϕp~zæi, ziqq we can just take zi to be least so that

ϕp~zæi, ziq for each i.
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As our ultimate goal is to go back to an MK˚˚ model, we want to show

that the predicate A can be coded into a subset of κ:

Theorem 3.22. Let pM`, Aq be a model of SetMK˚˚ relativized to a pred-

icate A, with largest cardinal κ and let κ˚ denote the height of pM`, Aq,

where A is the generic predicate added by the forcing P in Theorem 3.21

and M` “ Lκ˚rAs. Then we can force that there is a X Ď κ such that

Lκ˚rAs Ď Lκ˚rXs, SetMK˚˚ is preserved and κ remains strongly inaccessi-

ble.

Proof. To get A definable in M`rXs, for some X Ď κ, we want to use an

almost disjoint forcing which codes the predicate A into such an X. The

forcing will be along the following lines: we will need to define a family S of

almost disjoint sets (i.e. for x, y Ď κ, x and y are almost disjoint if xX y is

bounded in κ) Aβ which we will use to code the predicate A Ď κ˚ into an

X. We will define Aβ to be the least subset of κ (i.e. least in the canonical

well-order of Lκ˚rA X βs) in Lκ˚rA X βs which is distinct from the Aβ̄ for

β̄ ă β. The idea is that we can decode A in Lκ˚rXs if we know the Aβ’s. But

as A is a proper class we don’t know that we can always find such distinct

Aβ’s. So we will have to assume that the cardinality of β is at most κ not

only in Lκ˚rAs but also in Lκ˚rA X βs because now to find an Aβ distinct

from each Aβ̄, β̄ ă β, we can list these Aβ̄’s as xAi | i ă κy and obtain Aβ by

diagonalization. To fulfill that assumption however we have to “reshape” A

into a predicate A1 that has the property that if β ă κ˚ then the cardinality

of β is ď κ in Lκ˚rA
1 X βs. Then we can code A as the even part of A1 to

get pM`, A1q |ù pSetMK˚˚qA
1

and finally code A1 by a subset of κ.

So the proof consists of two steps: First we have to show that we can

reshape A and then we have to force with an almost disjoint forcing to show

that the reshaped predicate A1 can be coded into a subset of κ, preserving

SetMK˚˚ in each step.

Step 1: We add a reshaped predicate A1 over pLκ˚rAs, Aq by the following

forcing:

P “ tp : β Ñ 2 |κ ď β ă κ˚,@ γ ď β pLκ˚rAX γ, pæγs ( | γ | ď κqu

The main obstacle is to show that P is definably-distributive, i.e. we have

to show that for a p P P and pM`, Aq-definable sequences of dense classes

of set-length xDi | i ă αy for all α ď κ, there is a q ď p meeting each Di
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with q P P .

Claim 3.23. P is definably-distributive.

Proof. Note that it suffices to show definable-distributivity for κ; so we

consider an pM`, Aq-definable sequence of dense classes xDi | i ă κy. We

want to define a descending sequence of conditions p ě p0 ě p1 ě . . . where

pi ě q, q P P and pi`1 P Di for each i ă κ. To show that the pi are

indeed conditions we have to show that Lκ˚rA X γ, piæγs |ù |γ| ď κ for

every γ ď |pi|. In the following we will use the fact that a condition is

always extendible to any length ă κ˚: @p@β ă κ˚ Dq ď p, |q| ě β, q P P .

This holds because there is an x Ď κ such that β is coded by x and p˚x P P

and has length |p|`κ. If this is still below β we can lengthen p further by a

sequence of 0’s: q “ p˚x˚~0. This will again be an element of P as we know

from the information in the code x of β that the ordinals will collapse.

First, we assume that the sequence of dense classes is Σ1-definable, i.e.

tpq, iq | q P Diu is Σ1-definable with parameter.

As we have seen that every condition is extendible, we can extend p

to catch a parameter x P L|p|rAs such that the sequence of the Di is Σ1-

definable with parameter x. Let p0 be this extension of p. Then, as we have

Global Choice, we can consider the ăpM`,Aq-least pair pq0, w0q such that

q0 ď p0 and w0 witnesses “q0 P D0”. Then we choose p1 such that p1 is a

condition which extends q0 such that w0 P L|p1|rA X |p1|s. Now we define

p2 in the same way: Choose pq1, w1q such that q1 ď p1 and w1 witnesses

“q1 P D1”. Then let p2 ď q1 such that w1 P L|p2|rA X |p2|s. Define the rest

of the successor cases ppn`1, wn`1q similarly.

For the first of the limit cases, let pω “
Ť

năω pn and we claim that

pω P P . So we have to show that @γ ď |pω|, γ collapses to κ using only

A X γ and pωæγ. We know that if γ ă |pω| then γ ă |pn| for some n.

So we only have to consider the case where γ “ |pω|. It follows from the

construction of the pn’s that the sequence xpn |n ă ωy is definable over

L|pω |rA X |pω|, pωs and is a cofinal sequence in pω, i.e. it converges to pω.

Then also the sequence of the lengths of the pn’s, x |pn| |n ă ωy is definable

over L|pω |rAX|pω|, pωs and converges to |pω|. As we know that |pn| collapses

to κ for every n ă ω, we know that in L|pω |rA X |pω|, pωs |pω| definably

collapses to κ. So L|pω |`1rA X |pω|, pωs |ù |pω| is collapsed to κ. The other

limit cases can be handled in the same way.
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Now we go to the Σ2-definable case. Note that we cannot simply copy

the construction of the pn-sequence because the witness qn`1 we need for

the definition of the next pn`1 will now be a solution to a Π1-statement and

will therefore not be absolute in the other models. But we know that for

V “ Lκ˚rAs it holds that @α ă κ˚ Dβ ď κ˚, α ă β such that LβrAs is

Σn-elementary in Lκ˚rAs. This holds because for a pair α, n we can take

the Σn-Skolem Hull N of α in Lκ˚rAs. Then in M we have a solution for

every Σn-property with parameters ă α, M is transitive and bounded by

Class-Bounding. Then there is a β ď κ˚ such that M is equal to LβrAs.

So we can always find models that are Σ1-elementary submodels of

pM`, Aq in which we can carry out the definition of the sequence of con-

ditions: As before we choose for every n ă ω a pair pqn, wnq such that

qn ď pn such that wn witnesses “qn P Dn” and then let pn`1 ď qn such

that wn P L|pn`1|rA X |pn`1|, pn`1s and L|pn`1|rA X |pn`1|, pn`1s is an Σ1-

elementary submodel of Lκ˚rAs. This also holds in the limit case by us-

ing the same construction we did for the Σ1 case where again the model

L|pω |`1rA X |pω|, pωs is an Σ1-elementary submodel of Lκ˚rAs. The same

can be done for all the Σm-definable cases.

Now that we know that P is ď κ-distributive, we know that P is ď κ-

pretame and therefore pM`, A,A1q |ù pSetMK˚˚qA,A
1

(similar to proof of

Theorem 3.21 by using Proposition 3.17 and the fact that there is a global

well-order of the extension). Then we can code A to be the even part of A1

and we get a model pM`, A1q |ù pSetMK˚˚qA
1

. It remains to show that A1

can be coded into a subset of κ.

Step 2: Code A1 into X Ď κ. As we know that A1 is reshaped we can

define a collection of sets S “ xAβ |β ă κ˚y in the following way: let Aβ be

the least B Ď κ in Lκ˚rA
1Xβs such that B R tAβ̄ | β̄ ă βu. S can be turned

into a collection S 1 “ xA1β |β ă κ˚y of almost disjoint sets A1β by mapping

every set to the set of codes of its proper initial segments: B Ď κ is mapped

to B1 “ tCode pBXαq |α ă κu Ď κ. Then for two distinct subsets B and C

of κ, |B1XC 1 | ă κ and therefore they are almost disjoint. We want to show

that we can code A1 by a subset X of κ by showing that X XA1β is bounded

if and only if β P A1. This can be done by a forcing Q with the conditions

pg, Sq where S Ď A1, |S| ă κ and g is an element of ăκ2. Extension is

defined by: pg, Sq ě ph, T q iff h extends g, S Ď T and if β P S and hpγq “ 1
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for a γ P A1β then gpγq “ 1. Note that two conditions with the same first

component xg, Sy and xg, T y are compatible because we can always find a

common extension xg, SYT y. Thus a function which maps every element of

a definable antichain into its first component is injective (as otherwise the

conditions would be compatible). So we have injectively mapped a definable

class to a set as there are only κ many first components. By Bounding such

a function exists as a set and so Q is set-c.c., i.e. every definable antichain

is only set-sized. Then Q is pretame, as every definable dense class can be

seen as an antichain. Now let G be a Q-generic, G0 “
Ť

tg | pg, Sq P Gu and

X “ tγ |G0pγq “ 1u. we argue that we can find the almost disjoint sets in

Lκ˚rXs because A1 is reshaped and therefore it holds for any β that |β| ď κ

in Lκ˚rA
1 X βs. So after X has decoded A1 X β it can find A1β and then

continue the decoding in the following way: β P A1 if there is an pg, Sq P G

with β P S and by the definition of extension if G0pγq “ 1 for a γ P A1β
then gpγq “ 1. So X X A1β “ tγ | gpγq “ 1u X A1β and that is bounded and

therefore we have a code of A1 by X via

X XA1β is bounded if and only if β P A1.

As this forcing is κ-closed (i.e. closed for ă κ sequences), κ stays reg-

ular and therefore strongly inaccessible and by Proposition 3.17 SetMK˚ is

preserved and by Proposition 3.17 SetMK˚ is preserved.

We have seen how definable hyperclass-forcing can be carried out over a

modelM of MK˚˚: First we go to the related SetMK˚˚ modelM` (Theorem

3.7). Then in order to be able to force over this model, we change M` to a

model Lκ˚rAs for a generic predicate A (Theorem 3.21). Finally we showed

how to code A into a subset X Ď κ to avoid having an undefinable predicate

once we go back to the extension of the original MK˚˚ model (Theorem

3.22). At this point we can force with any desirable pretame definable

class-forcing over Lκ˚rXs, go back to MK˚˚ and get the desired definable

hyperclass-forcing over MK˚˚.

So we have given a template which allows us to do definable hyperclass-

forcing over MK˚˚. In the following we will show how to use this template

to produce minimal β-models of MK˚˚.
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3.3 Minimal β-Models of MK˚˚

As an application of definable hyperclass forcing we will show that every

β-model of MK˚˚ can be extended to a minimal β-model of MK˚˚ via the

use of SetMK˚˚ models. Here a minimal model MpSq of SetMK˚˚ is the

least transitive model of SetMK˚˚ containing a real S and equivalently a

minimal β-model MpSq of MK˚˚ is the least β-model of MK˚˚ containing

a real S.2 For that we will use and modify the template developed in the

last section: We start with an arbitrary β-model M “ pM, Cq of MK˚˚ and

from that we get the corresponding model M` of SetMK˚˚ (by Theorem

3.7) with M “ VM`

κ and C “ P pMq XM` where κ is strongly inaccessible

in M`. Let κ˚ denote the height of M` and apply Theorem 3.21 to arrive

at M` “ Lκ˚rAs where A Ď κ˚ and pM`, Aq satisfies SetMKp ˚ ˚q relative

to A. We now show that we can extend M` to a minimal model of SetMK˚˚

and then go back to an MK˚˚ model, which will be a minimal β-model of

MK˚˚.

Theorem 3.24. Every β-model of MK˚˚ can be extended to a minimal β-

model of MK˚˚ with the same ordinals.

Proof. First we will code the predicate A into a subset of κ by using Theorem

3.22 with a small modification in the “reshaping” forcing. Instead of forcing

that each γ ă κ˚ collapses in Lκ˚rA X γ, pæγs, we will force it to already

collapse instantly in the next level, i.e. in Lγ`1rAX γ, pæγs. So the forcing

will be:

P “ tp : β Ñ 2 |κ ď β ă κ˚,@ γ ď β pLγ`1rAX γ, pæγs ( | γ | ď κqu

The proof that P is definably-distributive then works in exactly the same

way. As in Theorem 3.22 we can code A to be the even part of the predicate

A1 added by the reshaping forcing which in turn can be coded into an X Ď κ

by an almost disjoint forcing. This gives us that there are no SetMK˚˚

models containing X of height between κ and κ˚: In the reshaping forcing

we destroyed the Replacement axiom level by level relative to A and in the

2We can see here that it is vital to restrict ourselves to β-models in order to talk about
minimal models of MK by comparing this to the situation in ZFC: There it also only
makes sense to talk about minimal models containing a real for well-founded models (and
not for ill-founded models). So by making the transformation from MK to SetMK we have
to restrict ourselves to β-models.
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almost disjoint coding we can now choose the codes instantly level-by-level

(i.e. every code for γ appears in Lγ`1rXs). So A1 can be recovered level-

by-level from X and therefore Replacement is also destroyed level-by-level

relative to X. We arrive at a SetMK˚˚ model Lκ˚rXs, with X Ď κ, which is

the least transitive ZFC´ model containing X (again κ remains regular and

indeed strongly inaccessible, because the almost disjoint coding is κ-closed).

We will extend this to a minimal model of SetMK˚˚ in two steps: First

we extend Lκ˚rXs to a model Lκ˚rY s such that no cardinal κ̄ ă κ˚ can

serve as a “source” for a SetMK˚˚ model (i.e. is the largest cardinal of a

SetMK˚˚ model containing Y X κ̄) and second we show that we can add a

real S such that in Lκ˚rSs there are no SetMK˚˚ models containing S below

κ˚. Then it only remains to show that from Lκ˚rSs we can go back to a

minimal β-model of MK˚˚.

Step 1: With the modification of Theorem 3.22, we have shown that

there are no SetMK˚˚ models containing X between κ and κ˚. But it could

still be that there exist cardinals below κ which are sources for SetMK˚˚

models. We will destroy these cardinals by shooting a club through a “fat-

stationary” set which has no such cardinals and then force all limit cardinals

to belong to this club.

So let S “ tκ̄ ă κ | κ̄ is a limit cardinal and for all β̄ ą κ̄, if Lβ̄rXX κ̄s (

ZFC´ then Lβ̄rX X κ̄s * κ̄ is strongly inaccessibleu.

Definition 3.25. S is fat-stationary if for every club C in Lκ˚rXs, S XC

contains closed subsets of any order type less than κ.

We prove the following:

Lemma 3.26. S is fat-stationary and there is a κ-distributive (i.e. ă κ

distributive) forcing of size κ that adds a club C Ď S.

Proof. First we will show that S is stationary with respect to clubs in

Lκ˚rXs. So suppose C is a club in LαrXs for an α ă κ˚. We build an

increasing sequence xMn |n ă ωy of sufficiently elementary submodels of

LαrXs in the following way: Let M0 be the Σ1-Skolem Hull of ω Y tX,Cu

in LαrXs. Then C PM0 and κ0 “ suppM0 X κq is a cardinal. Next, let M1

be the Σ1-Skolem Hull of κ0 ` 1Y tX,Cu in LαrXs and κ1 “ suppM1 X κq.

Repeat this construction for all n ă ω. Then this sequence of elementary



54 CHAPTER 3. DEFINABLE HYPERCLASS FORCING IN MK˚˚

submodels is definable over Mω “
Ť

năωMn and κω “ supnăωκn ă κ is a

cardinal in C as C is closed, unbounded in κ. Also κω is an element of S

because if LᾱrX X κωs is the transitive collapse of Mω then there are no

ZFC´ models containing X X κω of height ă ᾱ (by elementarity), of height

“ ᾱ because xκn |n ă ωy is definable over it (and so κω becomes definably

singular) and any ZFC´ model containing X X κω of height ą ᾱ sees that

κω has cofinality ω (as the κn-sequence is an element of it).

To show that S is fat-stationary we can use the same proof as for sta-

tionarity except one uses a longer δ-sequence of elementary submodels, for

δ a limit cardinal less than κ.

Now for the second part of the Lemma we can force with a set-forcing

to add a club. Here we will closely follow the proof of the ZFC version

of this claim, as proven in [AS83] (see there for more details). Let Q “

tp | p is a closed, bounded subset of Su be a forcing notion ordered by end-

extensions: q ď p iff p “ q X psupppq ` 1q. For G Q-generic over Lκ˚rXs let

C “
Ť

G. Then C is closed and unbounded and a subset of S. To show

that Q is κ-distributive we have to show that for every τ ă κ and sequence

D “ xDi | i P τy of open, dense subsets of Q,
Ş

iăτ Di is dense in Q. Now we

can define a sequence of elementary substructures xMα |α ă κy of Lκ˚rXs

such that cα “ Mα X κ is an ordinal and xcα |α ă κy is an increasing and

continuous sequence cofinal in κ. Let E be the collection of the cα, α ă κ.

Because S is fat-stationary, S X E contains a closed subset A of order-type

τ ` 1. Then in the model Mα, with α “ suppAq, we can define an increasing

sequence xpi | i ă τy, such that pi P Q and pi`1 P Di XMα. We can define

pτ “
Ť

iăτ piYtαu and this will be in
Ş

iăτ Di. Note that this (set-) forcing

is an element of Lκ˚rXs and therefore preserves ZFC´. Furthermore, as

this forcing doesn’t add sets of size ă κ, κ stays strongly inaccessible and

SetMK˚ is preserved because of Proposition 3.17.

Let X 1 be the join of X with the club we added. Then X 1 Ď κ and the

resulting model is Lκ˚rX
1s.

Lemma 3.27. We can force all limit cardinals to belong to C with a forcing

of size κ such that κ remains strongly inaccessible.

Proof. Enumerate C as follows: C “ xκ̄i | i ă κy. We may assume that each

κ̄i is a strong limit cardinal (as κ is strongly inaccessible we can thin out

C). Then we can build an Easton product of collapses, where we collapse
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every κ̄i`1 to the successor of κ̄i and therefore ensure that all limit cardinals

below κ are limits of cardinals in C and therefore are themselves in C.

So for i ă κ consider Colipκ̄
`
i , κ̄i`1q, where the conditions are functions

p with domppq Ă κ̄`i , |domppq| ă κ̄`i and rangeppq Ă κ̄ı`1. Cardinals below

κ̄`i and above κ̄κ̄ii`1 are preserved (the size of the forcing is κ̄κ̄ii`1) and in the

extension we have a function which maps κ̄`i onto κ̄i`1.

Now we can build the Easton product (product with Easton support) of

these collapses for every i ă κ: A condition p in this forcing is a function

such that p “ xpi | i ă κy P ΠıăκColipκ̄
`
i , κ̄i`1q and the forcing is ordered

by end-extension. p has Easton support, i.e. for every inaccessible cardinal

λ, | tα ă λ | ppαq ‰ Hu | ă λ. As usual with Easton Products the forcing

notion P can be split into two parts P pď λq “ ΠıďλColipκ̄
`
i , κ̄i`1q and P pą

λq “ ΠλăıăκColipκ̄
`
i , κ̄i`1q for every regular cardinal λ. For this reason and

as each κ̄i is a strong limit, each collapse from κ̄i`1 to κ̄`i will not be affected

by the other collapses and κ remains regular and strong limit. Furthermore,

as this forcing is in Lκ˚rX
1s (it is of size κ) it preserves SetMK˚˚.

Because of the unboundedness of C, every limit cardinal is also a limit

of cardinals in C and therefore, as C is closed, it is an element of C.

We conclude Step 1 by choosing X2 to be the join of X 1 and the above

Easton product. Then we arrive at a model Lκ˚rX
2s with X2 Ď κ such that

for every cardinal κ̄ ă κ˚ there is no model of ZFC´ containing X2 X κ̄ in

which κ̄ is inaccessible and therefore κ̄ is not a source for a SetMK˚˚ model.

Step 2: We want to extend the results from the last step to hold for all

ordinals, i.e. for all ordinals α ă κ˚ there is no SetMK˚˚ model of height

ă κ˚ containing a real S in which α is strongly inaccessible. This makes use

of Jensen coding and a result about admissibility spectra which is connected

to it. We will use these results as black boxes and will only state the main

definitions and theorems here:

Theorem 3.28 (Jensen Coding). Suppose that xM,Ay is a transitive model

of ZFC, i.e. M is a transitive model of ZFC, A Ď M and Replacement

holds in M for formulas mentioning A as a unary predicate. Then there is

an xM,Ay-definable class forcing P such that if G Ď P is P -generic over

xM,Ay, then:

a) xM rGs, A,Gy |ù ZFC.
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b) For some R Ď ω, M rGs |ù V “ LrRs and xM rGs, A,Gy |ù A,G are

definable from the parameter R.

The very elaborate proof of this result uses Jensen’s fine structure theory

and, very roughly, the forcing involved consists of three components: an

almost disjoint coding at successor cardinals, a variation thereof at limit

cardinals and a reshaping forcing.3

Definition 3.29. Let T be the theory of ZF without Power Set and with

Replacement restricted to Σ1 formulas. Then ΛpRq for a real R denotes the

admissibility spectrum of R and is defined as the class of all ordinals α such

that LαrRs |ù T , i.e. the class of all R-admissible ordinals.

Theorem 3.30 (S.-D. Friedman). 4 Suppose ϕ is Σ1 and L |ù ϕpκq when-

ever κ is an L-cardinal. Then there exists a real R ăL 07 such that ΛpRq Ď

tα |L |ù ϕpαqu and R is cardinal preserving over L.

We will use these theorems to prove the following lemma:

Lemma 3.31. We can extend the model Lκ˚rX
2s to be of the form Lκ˚rSs

for a real S such that Lκ˚rSs |ù SetMK˚˚ and whenever ᾱ ă κ˚ is an

ordinal there is no model of SetMK˚˚ of height ă κ˚ containing S in which

ᾱ is strongly inaccessible.

Proof. First we add a real R to the resulting model of Step 1 and get a

model Lκ˚rRs |ù SetMK˚˚. This can be done by using Jensen coding

over the model Lκ˚rX
2s. Although we start from a model of ZFC´ rather

than ZFC our model is of the form Lκ˚rX
2s and therefore we can use the

standard pretameness argument for Jensen coding to show that ZFC´ is

preserved5. Also, κ will still be inaccessible in the extension because Jensen

coding preserves inaccessibles.6 Note that the result from Step 1 still holds:

In Lκ˚rRs we have that if κ̄ ă κ˚ is a cardinal then there is no transitive

model of SetMK˚˚ containing R in which κ̄ is inaccessible as otherwise there

would have been such a model containing X2 X κ̄ as the latter is coded by

R in Lκ̄rRs.

3An detailed account of this can be found in [BJW82], a simplified version of the proof
can be found in [Fri00].

4See [Fri00], Theorem 7.5, p. 142.
5See [Fri00], Chapter 4.
6This follows from an property called diagonal distributivity (see [Fri00], p. 37).
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Now we use Theorem 3.30 relativized to the real R to produce a new real

S such that this holds for ordinals κ̄. Theorem 3.30 works in the context of

ZFC´ for the same reasons as for Jensen coding. Note that Lκ˚rRs |ù ϕpκ̄q

for every Lκ˚rRs-cardinal κ̄ where ϕpαq is the following Σ1 property with

parameter R: “Either LαrRs |ù there is a largest cardinal or there is β ą α

such that LβrRs |ù α is singular and for all γ with α ă γ ă β, LγrRs *

ZFC´”. This property says that either α is a successor or we can “see”

the singularity of α before we see a ZFC´ model for which it could be a

source. Then by Theorem 3.30 there exists a real S generic over Lκ˚rRs

such that Lκ˚rSs |ù SetMK˚˚ and ΛpSq Ď tα |LrRs |ù ϕpαqu. As α which

is inaccessible in a model of ZFC´ containing S is S-admissible, we get the

desired property for all ordinals.

We now have a minimal model Lκ˚rSs of SetMK˚˚, i.e. the least tran-

sitive model of SetMK˚˚ containing S. It only remains to show that by

going back to MK˚˚ we arrive at a minimal β-model of MK˚˚. To see

that consider the model pLκrSs, Cq where C consists of the subsets of LκrSs

in Lκ˚rSs. This is a β-model of MK˚˚ by Proposition 3.12 and it is the

least such model containing S because otherwise there exists a β-model

pN, C1q Ă pLκrSs, Cq, pN, C1q |ù MK˚˚ containing S that would give rise to

a model N` of SetMK˚˚. If we then go to the LrSs of N` we arrive at

a model LαrSs for some α ă κ˚ which is a model of SetMK˚˚. This is a

contradiction to the minimality of Lκ˚rSs.





Chapter 4

Open Questions

This thesis opens up a wider area of further research and related open ques-

tions.

For example it would be interesting to transfer some more basic facts

from set forcing in ZFC to the context of MK. One example would be to not

only define forcing in MK via the approach of countable transitive models

as done in this thesis, but also for example via the Boolean-valued approach.

Question: How can a Boolean valued approach to forcing be defined for

class forcing in MK?

In the definition of definable hyperclass forcing we used the restriction to

β-models of MK˚ to make the coding of a transitive SetMK˚ model work. It

would be interesting to investigate what happens if we drop this restriction:

Question: How can definable hyperclass forcing be defined for an arbi-

trary model of MK˚˚?

Dropping the β-model assumption for the coding would mean to work

only internally of the MK˚˚ model and restricting ourselves to just work

with coding pairs. We are confident that this can be done, but there are

many details to be worked out.

In this thesis we consider three variants of the axioms of Morse-Kelley;

the standard form MK, the extension via Class-Bounding, here called MK˚

and the additional extension with Dependent Choice, called MK˚˚. The

59
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obvious question presents itself, how they are related:

Question: Assuming just the consistency of MK, are there models of MK

that don’t satisfy MK˚ and models of MK˚ that don’t satisfy MK˚˚?

Apart from these specific questions which arise from the framework of

this thesis, there is a wide field of possible future research. It will be inter-

esting to see how results from forcing (for example cardinal preservation)

translate to hyperclass forcing and what other application can be found:

Question: What further applications can be found for definable hyper-

class forcing in MK˚˚ using the template we provided in this work? In

general, what results from set and class forcing will hold in the context of

hyperclass forcing?

Another fruitful topic is the connection between Morse-Kelley and sec-

ond order arithmetic.

Question: What results and questions con be transferred from the con-

text of Morse-Kelley class theory to second order arithmetic and vice versa?

For example, the question about minimal β-models of MK˚˚ can be

translated to minimal β-models of second order arithmetic (plus Dependent

Choice). Starting with a β-model of second order arithmetic we can go to a

related model of ZFC´ where the inaccessible cardinal κ is now simply ℵ0.

Then the question about models below the largest cardinal becomes trivial

and the result of a minimal β-model follows much easier than in the context

of MK˚˚.

Of course, definable hyperclass forcing is not the last step in considering

a hierarchy of forcing notions via their size. One could ask further:

Question: What would a general hyperclass forcing look like and in which

context can it be developed (a hypercass theory)? What would a hyperhy-

perclass forcing look like, i.e. a forcing where conditions are hyperclasses?

In this thesis we developed two further steps in this hierarchy after set
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forcing and definable class forcing. We hope that it will serve as a basis for

further fruitful research!
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