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Abstract

This thesis is dedicated to reductions of holonomy on Cartan geometries. Given
such a geometric structure the underlying manifold decomposes into initial sub-
manifolds that in turn carry induced Cartan geometry structures.

We study the possible outcomes of this theory when applied to Rieman-
nian manifolds by using tractor calculus and obtain an interpretation of a wide
range of holonomy reductions in geometrical terms. They are characterized by
a parallel distribution and a vector field with certain properties, together with
a structure resulting of classical holonomy.





Abstract (Deutsch)

Diese Arbeit ist Holonomiereduktionen von Cartan Geometrien gewidmet.
Ist eine solche geometrische Struktur gegeben, zerfällt die unterliegende Man-
nigfaltigkeit in initiale Teilmannigfaltigkeiten, die wiederum induzierte Cartan
Geometrien tragen.

Wir untersuchen die Auswirkungen dieser Theorie unter Verwendung von
Traktorbündeln und -konnexionen, wenn sie auf Riemann’sche Geometrie ange-
wandt wird und erhalten eine geometrische Interpretation eines breiten Sprek-
trums von Holonomiereduktionen. Sie werden durch eine parallele Distribution
und ein Vektorfeld, zusammen mit einer Struktur, die aus klassischer Holonomie
resultiert, beschrieben.
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Introduction

Historically, there are two starting points for the ideas considered in this thesis.
One the one hand, Riemannian geometry is the very classical example in

differential geometry that originates in the work of Gauss, who studied two-
dimensional surfaces in three-dimensional Euclidean space. His student Bern-
hard Riemann extended Gauss’ ideas to n-dimensional space in his habilitation
thesis in 1854 and thereby laid the foundations of what we call today “Rieman-
nian Geometry”. After the introduction of the Levi-Civita-connection and the
parallel transport in the beginning of the 20th century, Élie Cartan first consid-
ered the notion of “holonomy” in 1926, that extracts a Lie group out of parallel
transport along closed curves. The relationship between the holonomy and the
curvature of a Riemannian manifold is made explicit by the Ambrose-Singer-
Theorem (1952). In 1955, the French mathematican Marcel Berger further
developed this area by classifying all simply connected Riemannian manifolds,
that are irreducible and non-symmetric, in terms of their holonomy [2].

On the other hand, Felix Klein laid the foundation for a new perspective
towards geometry with his Erlangen program in 1872. Again, Élie Cartan con-
tributed greatly to this theory by formulating his method of moving frames.
Later, when this concept was described in terms of principal bundles, it was
named after him: the Cartan geometry. Cartan geometries constitute an at-
tempt to specify what is meant by the term “geometry” – they are certain
principal bundles endowed with a differential form that has similar properties
as a principal connection, but are more restrictive. In particular, two Lie groups
are encoded in the definition of a Cartan geometry, namely the structure group
of the principal bundle and a group containing the first one, that describes all
isomorphisms of a model geometry. Together, these two Lie groups form the
“type” of a Cartan geometry. These geometries include Euclidean geometry
(of type (Euc(n), O(n))), Projective geometry and Conformal geometry, both in
their classical form on Rn and on the sphere, respectively, and on differentiable
manifolds.

Only recently in 2011, these two ideas were merged by Čap, Gover and
Hammerl [4]. They introduced a structure on a Cartan geometry called “holon-
omy reduction”. This has proved to be particularly successful when applied to
parabolic geometries that are special types of Cartan geometries. We obtain an
immediate geometric geometric interpretation of holonomy reductions by ap-
plying tractor calculus, i.e. a vector bundle endowed with a linear connection
naturally associated to the geometry.

We start by introducing the basic definitions and properties of principal
bundles and vector bundles (without proofs). In Chapter 2, we shortly discuss
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the original idea of holonomy on Riemannian manifolds, and, more generally,
on principal bundles, including a proof of the Ambrose-Singer-Theorem. Then
we start a discussion of Cartan geometries by giving Klein geometries and G-
structures as a motivation. Subsequently, we define Cartan geometries and
observe their main properties. Then we turn to holonomy reductions of Cartan
geometries and explain their implications on the structure and geometry of the
underlying manifold.

The main part of the thesis is dedicated to the examination of holonomy
reductions on Riemannian manifolds. As desired, we can recover the classical
holonomy that is a special case of holonomy on principal bundles and that is
discussed in Chapter 2.

However, we obtain more: Any holonomy reduction of a Riemannian Cartan
geometry has a “type” that is a subgroup of Euc(n) = O(n)nRn. We will give
a geometric interpretation of all holonomy reductions of “type” HnV where H
is a Lie subgroup of O(n) and V ⊂ Rn is a vector space that is invariant under
the standard action of H. For V = Rn we obtain classical holonomy.

The case V ( Rn gives a parallel distribution on M whose rank is the same as
the dimension of V and a vector field with certain properties (cf. 5.3.25). This is
enough information to characterize the holonomy reduction (O(V )×O(V ⊥))n
V ⊂ Euc(n). In order to obtain these structures we will give a characterization
of holonomy reductions in terms of tractor bundles as an intermediate step.

Since H leaves V invariant, we have H ⊂ O(V ) × O(V ⊥). The reduction
HnV ⊂ O(V )×O(V ⊥)nV is similar to a classical holonomy reduction, hence
induces another geometric structure on M that is compatible with the above
distribution and the vector field.



Chapter 1

Background and
fundamental concepts

In this chapter we will recall the most important properties of principal fiber
bundles and connections in order to introduce the notation. We will omit most
proofs.

1.1 Principal bundles

Notation Let π : G → M be a fiber bundle. We will denote G|U := π−1 (U)
for U ⊂M . In addition, let Gx := G|{x}.

It is possible to describe certain geometries through a “symmetry group”,
for example, the Euclidean space that is Rn endowed with the standard inner
product. We may alternatively characterize the Euclidean inner product by
forming the group of all its isometries, that is denoted by Euc(n) (on the concrete
form of Euc(n) cf. Example 3.1.1). Furthermore, it is well-known that we obtain
an identification Rn = Euc(n)/P via the canonical group action of Euc(n) on
Rn, where P is the stabilizer of some element in Rn under the action. If we
choose 0 ∈ Rn, we obtain P = O(n). Therefore, we may express Euclidean
space as the pair of Lie groups (Euc(n), O(n)), explicitely we have the canonical
projection Euc(n)→ Euc(n)/O(n) where Euc(n) acts by left multiplication on
the total space and the action factors to the base space.

The first fundamental step in order to generalize the above idea to arbitrary
manifolds endowed with certain geometries will be the concept of a principal
bundle:

Definition Let π : G → M be a fiber bundle over a smooth manifold M with
a Lie group G as typical fiber.

Two bundle charts ϕ1 : G|U1
→ U1×G, ϕ2 : G|U2

→ U2×G, where U1, U2 are

open in M , are called G-compatible if the composition ϕ2 ◦ (ϕ1)
−1

: (U1 ∩ U2)×
G → (U1 ∩ U2) × G is of the form (x, g) 7→ (x, f (x) g) for a smooth function
f : M → G.

A bundle atlas is called G-compatible if all its elements are principal charts
that are pairwise G-compatible.

3
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Two G-compatible atlasses are equivalent (with respect to G), if their union
is again G-compatible.

The fiber bundle is called principal bundle π : G →M with structure group
G (or shortly G-principal bundle) if it is endowed with an equivalence class
of G-compatible bundle atlasses. The charts of one of the atlasses inside this
equivalence class are called principal charts.

Some important properties of principal bundles are presented in the next
proposition:

Proposition 1.1.1. Let π : G →M be a principal bundle with structure group
G.

(i) There is a canonical, smooth, right G-action ρ on G such that in the charts
of a G-compatible atlas the action is given by right multiplication in the
second component (by G-compatibility this fits together to form a global
action on G). The action ρ is free, leaves fibers invariant and acts fiberwise
transitively.

(ii) The quotient of G by G can be identified with M such that the differentiable
structure is preserved.

Proof. see [8, p.50]

Notation We denote ρ (u, g) = ρu (g) = ρg (u) for u ∈ G and g ∈ G. In the
following, we will often omit the ρ and denote ρ (u, g) by u · g or ug.

Remark 1.1.2. The fibers of a principal bundle G do not carry a group structure
(in contrast to the fibers of a vector bundle). This is due to the fact that given
two charts ϕ,ψ : G|U → U × G of a principal bundle π : G → M , where
U ⊂ M open, the fiberwise chart change ψ ◦ ϕ−1 over x ∈ U is of the form
(x, g) 7→ (x, g0 · g) where g0, g ∈ G. Left multiplication by a fixed element g0 of
G is in general not a group homomorphism of G, hence a chart does not endow
Gx with a group structure that is compatible with all other charts.

Definition Let π : G → M be a G-principal bundle and π′ : G′ → M ′ a G′-
principal bundle. A homomorphism of principal bundles (φ,Φ) is given by a Lie
group homomorphism φ : G → G′ and a smooth map Φ : G → G′ such that
Φ (ug) = Φ (u)φ (g) for all u ∈ G and g ∈ G.

Such a homomorphism (φ,Φ) as in the definition above induces a smooth
map Φ̄ between the underlying manifolds M →M ′, since π′ ◦Φ factors through
π:

Take u1, u2 ∈ G with π (u1) = π (u2) then there exists a g ∈ G with
u2 = u1g, therefore π′ (Φ (u2)) = π′ (Φ (u1)φ (g)) = π′ (Φ (u1)). The factor-
ized map Φ̄ : M →M ′ is smooth and satisfies π′ ◦ Φ = Φ̄ ◦ π.

If φ is injective, M = M ′ and Φ̄ = idM , Φ is called a reduction of the
structure group form G′ to G (or shortly we call G a G-reduction).

Notation We denote the Lie algebra of a Lie group G by g, similarly the Lie
algebras of H and P will be denoted by h and p, respectively.
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We immediately see that we obtain distinguished objects on the total space
of a principal bundle, firstly from the projection and secondly from the canonical
G-action (see 1.1.1(i)).

Definition (i) Each G-principal bundle π : G → M carries a canonical dis-
tribution V G, that is defined by VuG := (V G)u := ker (Tuπ) for u ∈ G.
This is called the vertical subbundle.

(ii) The vector fields ζX (u) := d
dt |0ρ

exp(tX) (u) = Teρ
u ·X on G where u ∈ G,

X ∈ g and t ∈ R, are called the fundamental vector fields.

These two objects are actually closely related:

Proposition 1.1.3. Let π : G →M be a principal G-bundle.

(i) All fundamental vector fields have values in the vertical subbundle of TG.
Conversely, each element in the vertical subbundle VuG is of the form
ζX (u) for a unique X ∈ g, where u ∈ G. In fact, X 7→ ζX(u) for a fixed
u ∈ G is a linear isomorphism g→ VuG.

(ii) All fundamental vector fields are G-equivariant, i.e.

(ρg)
∗
ζX = ζAd(g−1)(X)

for g ∈ G and X ∈ g.

(iii) The flow of ζX for X ∈ g is given by FlXt = ρexp(tX). It is defined for all
t ∈ R.

Proof. (i) and (ii) see [10, p.42]
(iii) For u ∈ G, we have u · exp (0 ·X) = u and

d

dt
|t=s (u · exp (tX)) =

d

dt
|t=0 (u · exp ((t+ s)X))

=
d

dt
|t=0 (u · exp (sX) · exp (tX)) = ζX (u · exp (sX)) .

In the following, we give two important examples. The first one was men-
tioned in a special case as a motiviation for the definition of a principal bundle.

The second example is the prototypical example of a principal bundle and
may be formed for each smooth manifold. Reductions of it can be used to
describe structures on the manifold. An example for such a structure is given
in 1.2.6, and a more general treatment follows in 3.2.

Example 1.1.4. 1. Homogenous spaces: Let G be a Lie group and P a
closed Lie subgroup of G. Then the canonical projection π : G → G/P
is equipped with the structure of a P -principal bundle, such that the right
action on G is given by right multiplication of P .

The action is obviously free, leaves fibers invariant (for g ∈ G and p ∈ P
we have gpP = gP ) and acts transitively on each fiber (if gP = g′P for
g, g′ ∈ G there is a p ∈ P such that g′ = gp).

Since π : G → G/P is a surjective submersion, there are local sections
σ ∈ Γ (G|U ) of G over open subsets U ⊂ G/P that can be used to de-
fine principal charts as G|U → U × P, g 7→ (gP, σ (gP ) g). Those are
equivariant by definition and give rise to a G-compatible atlas.
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2. Frame bundles: Let M be a smooth manifold of dimension n. We define
the frame bundle over M as FTM :=

⊔
x∈M GL (TxM), the set of all

ordered bases of tangent spaces of M . It is natural to define the projection
FTM →M by u 7→ x for u ∈ GL (TxM).

There is a canonical right action of g ∈ GL (n,R) on u ∈ FTM that

is given by u · g =
{∑n

j=1 g
1
juj , . . . ,

∑n
j=1 g

n
j uj

}
where the basis u of a

tangent space is given by {u1, . . . , un} and gij denotes the entry of the
n× n-matrix g in row i and column j.

(i) The GL (n,R)-action on FTM is free, leaves fibers invariant and acts
transitively on each fiber.

(ii) There is a canonical identification of FTM with⊔
x∈M
{u : Rn → TxM | u a linear isomorphism } .

In this picture, the G-action is given by (u · g) (y) = u (g (y)) for
g ∈ GL (n,R) and y ∈ Rn.

(iii) FTM →M can be uniquely equipped with the structure of a fiber bun-
dle, such that the projection is a surjective submersion with respect
to the the differentiable structure on FTM .

(iv) There is a bundle atlas with GL (n,R)-equivariant charts, which im-
plies that FTM is a principal bundle.

For proofs of the statements above see [8, p.55f].

1.1.1 Reduction of the structure group

We present a result that describes how a reduction of a given G-principal bundle
π : G →M looks like:

Lemma 1.1.5. Suppose there is a subset H ⊂ G and a Lie subgroup H of G,
such that the four following conditions are satisfied:

(i) π
∣∣
H : H →M is surjective.

(ii) H is invariant under the restriction of the principal action to H.

(iii) For each x ∈M , H acts transitively on π−1 (x) ∩H.

(iv) For each x ∈ M there is a smooth local section of G defined on an open
neighborhood of x that has values in H.

Then the inclusion H ↪→ G is a reduction of the structure group from G to H.

Proof. see [6, p.19f]
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1.1.2 Principal connections

Charles Ehresmann first introduced connections on principal bundles in 1950.
They will be crucial for our viewpoint of geometry on principal bundles, and we
will see that they are closely related to the concept of a Cartan connection on
a principal bundle, however are much more general.

Definition A principal connection on a G-principal bundle π : G → M with
dim (M) = n is a smooth distribution H of rank n on G that is invariant un-
der the right action on G, i.e. Hug = Tuρg (Hu) for u ∈ G and g ∈ G, and
complementary to the vertical bundle.

The distribution H is often called horizontal, since it is complementary to
the vertical bundle.

Firstly, a distinguished horizontal distribution H provides a pointwise linear
isomorphism Tuπ

∣∣
Hu

: Hu ∼= Tπ(u)M for all u ∈ G. This implies the following

Lemma 1.1.6. (i) Each vector field ξ ∈ X (M) can be uniquely lifted to a
vector field ξhorG on G that satisfies Tπ · ξhorG = ξ and ξhorG (u) ∈ Hu for all
u ∈ G. The vector field ξhorG is called the horizontal lift of ξ.

(ii) Furthermore, since H is G-invariant, the horizontal lifts are G-equivariant,
i.e. Tuρg · ξhorG (u) = ξhorG (ug) for u ∈ G and g ∈ G.

Proof. see [8, p.65]

Notation If it is clear to which bundle we lift ξ, we will just write ξhor.

In the following proposition we will present how a connection can be equiv-
alently described:

Proposition 1.1.7. Let π : G → M be a G-principal bundle endowed with a
principal connection H ⊂ TG.

A principal connection can be equivalently expressed by a differential form
γ ∈ Ω1 (G, g) that satisfies both ρ∗gγ = Ad

(
g−1

)
◦γ for all g ∈ G and γ (ζX) = X

for all fundamental vector fields corresponding to X ∈ g. It is called the principal
connection form associated to H.

The horizontal distribution is given by Hu := ker (γu) where u ∈ G. Con-
versely, the splitting TG = VG ⊕ H induces the principal connection form γ as
the projection onto the first component together with the trivialization of V G
from 1.1.3.

Proof. see [8, p.63f]

Any such connection has a curvature, that is the vertical projection of the Lie
bracket of the horizontal projections of vector fields. Its purpose is to measure
the “involutivity” of the horizontal distribution, i.e. if the curvature vanishes,
the horizontal distribution is involutive and hence there exists a foliation of the
bundle coming from the connection. More precisely, we have the following

Definition Let H be a principal connection on a principal bundle G → M
over a smooth manifold M . Then TG = H ⊕ V G. Denote the projections onto
the horizontal and the vertical subbundle by prH and prV , respectively. The
curvature of H is the 2-form on G with values in the vector-bundle V G, given
by R (ξ, η) := −prV

([
prH (ξ) ,prV (η)

])
where ξ, η ∈ X (G).
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Again it is possible the describe the curvature in terms of a differential form
that has values in the Lie algebra g:

Proposition 1.1.8. Let γ ∈ Ω1 (G, g) be a connection form on the G-principal
bundle π : G →M of a principal connection H.

(i) There is a 2-form Ω ∈ Ω2 (G, g) that contains all the information on the
curvature R ∈ Ω2 (G, V G) of H. It is related to R via the equation

Ru (ξ, η) = ζΩu(ξ,η) (u)

where u ∈ G and ξ, η ∈ TuG. The differential form Ω is called the curvature
form of γ.

(ii) The following equation holds for all ξ, η ∈ X (G):

Ω (ξ, η) = dγ (ξ, η) + [γ (ξ) , γ (η)] ,

where [., .] denotes the Lie bracket in g.

(iii) The curvature form Ω is G-equivariant, i.e. ρ∗gΩ = Ad
(
g−1

)
◦Ω for g ∈ G.

(iv) Moreover, for u ∈ G and ξ ∈ VuG we have Ω (ξ, .) = 0.

Proof. see [5, p.39]

1.2 Associated bundles

A very important feature of principal bundles is that they induce other bundles
with the help of actions of their structure group G. The additional ingredient
we need is an action of the structure group on some other manifold (often a
vector space). Then, many objects on a principal bundle, such as a connection,
can be transferred to the induced bundles.

Let π : G → M be a G-principal bundle and S a smooth manifold endowed
with a smooth left G-action λ : G× S → S.

Notation We will often abbreviate the action by · or completely omit the
symbol.

Consider the manifold G × S, that carries an induced G-action given by
(g, (u, s)) 7→

(
ρ (u, g) , λ

(
g−1, s

))
where g ∈ G, s ∈ S and u ∈ G. By forming

the quotient with respect to the G-action, we obtain a new space, that is de-
noted by G ×G S (we will see below that it is again a manifold). Its elements
are equivalence classes of pairs (u, s), that we denote by [u, s]. By definition,
we have

[
ug, g−1s

]
= [u, s], hence in particular [ug, s] = [u, gs].

Let πS : G ×G S → M be given by πS ([u, s]) = π (u). This is well-defined,
since the right action on G leaves fibers invariant.

We want to show that πS : G ×G S →M is again a smooth fiber bundle:
Given a principal chart ϕ : G|U → U ×G over an open set U ⊂M , we construct
a chart for the associated bundle G×G S. Let ψ : (G ×G S) |U → U ×S, [u, s] 7→
(π (u) ,pr2 (ϕ (u)) · s) where pr2 : U × G → G is the projection on the second
component. One can show that this is a well-defined diffeomorphism (for the
details see [1, p.53f]). In summary, this shows
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Proposition 1.2.1. The space G ×G S together with πS carries the structure
of a fiber bundle over M with typical fiber S.

As mentioned before, many objects on the principal bundle carry over to
associated bundles. In the following proposition, we give some examples of this
correspondence.

Proposition 1.2.2. Let π : G →M be a G-principal bundle and S a manifold
carrying a left G-action.

(i) Each homomorphism (φ,Φ) of principal G-bundles between π : G → M
and another G-principal bundle π′ : G′ → M ′, such that φ = idG, induces
a fiber bundle morphism G×GS → G′×GS that is characterized by [u, s] 7→
[Φ (u) , s] for u ∈ G and s ∈ S.

(ii) Conversely, for another manifold S′ equally equipped with a left G-action
and a smooth map f : S → S′ that is equivariant, we obtain a smooth
bundle map G ×G S → G ×G S′ via [u, s] 7→ [u, f (s)] for u ∈ G and s ∈ S.

Proof. see [5, p.28,40]

The next correspondence will be a particularly important one, since it con-
verts sections of associated bundles into equivariant functions, that are often
easier to work with.

Proposition 1.2.3. Let π : G →M be a G-principal bundle and S a manifold
carrying a G-action. The the set of smooth sections of the associated bundle
G ×G S and the equivariant, smooth functions G → S are in bijective correspon-
dence, namely via σ (π (u)) = [u, f (u)] for σ ∈ Γ (G ×G S) and f ∈ C∞ (G, S)
satisfying f ◦ ρg = λg−1 ◦ f for g ∈ G.

Proof. see [5, p.28]

Finally, the following proposition will connect the concept of associated bun-
dles with the reduction of the structure group from subsection 1.1. This is one
of the key points of the description of geometric structures as reductions of the
frame bundle.

Proposition 1.2.4. Given a reduction H of the structure group H of a G-
principal π : G →M and a G-action on the manifold S, then we obtain H×HS =
G ×G S where in the first associated bundle we restricted the G-action to H.

Proof. We denote the reduction by ι : H ↪→ G. Let Φ : H ×H S → G ×G S be
given by Φ([u, s]) := [ι(u), s] for u ∈ H and s ∈ S. Similarly to the proof of
1.2.2(i) one shows that this is a well-defined fiber bundle morphism.

To prove its injectivity, suppose [ι(u1), s1] = [ι(u2), s2] for u1, u2 ∈ H
and s1, s2 ∈ S. Then there is an h ∈ H such that u2 = u1h and thus
[ι(u1)h, s2] = [ι(u1), hs2] = [ι(u1), s1]. Therefore, s1 = hs2 and consequently
[u2, s2] = [u1h, h

−1s1] = [u1, s1].
Now let [u, s] ∈ G ×G S. Then choose a u0 ∈ H such that π(ι(u0)) = π(u).

There is a g ∈ G such that u = ι(u0)g, thus [u, s] = [ι(u0)g, s] = [ι(u0), gs] and
consequently Φ is a bijective map.

We still have to show that the inverse of Φ is smooth. Take a local section σ
of H and consider the map τ : G×M G → G that gives for two elements u, u′ ∈ G,
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that lie in the same fiber, the unique element of G that satisfies u = u′g. By
the implicit function theorem, this is a smooth map. Then the inverse of Φ is
given by Φ−1([u, s]) = [σ(π(u)), τ(u, ι(σ(π(u))))s].

Note that in the case that S is a vectorspace, the map Φ from the above
proof is a linear isomorphism.

On the other hand, we may describe reductions of the structure group as
sections of an associated bundle:

Proposition 1.2.5. Reductions of the structure group j : G → F from G to H
are in bijective correspondence with smooth sections σ of the associated bundle
π̂G/H : F ×G (G/H) = F/H →M .

Sketch of Proof. We give a sketch of the proof. For the details, see [5, p.46].
First, note that there is a natural identification F ×G (G/H) = F/H via
[u, gH] 7→ uH where u ∈ F and g ∈ G. It is straightforward to check that
this is a well-defined bijection.

Since H acts freely on G, the canonical projection q : F → F/H is a principal
fiber bundle, such that the following diagram commutes by definition:

F

π̂

yy

q

��
F/H

π̂G/H

��
M

Let G be an H-subbundle of F . Then we obtain the section of F/H at
x ∈M by choosing a local section σ̄ of G around x and taking σ := q ◦ σ̄ where
σ̄ is defined. This is well-defined, since two such sections piece together to a
global section of F/H: Consider two such sections σ̄1, σ̄2 : U → G that are
defined on the same open set U ⊂ M , then for each x ∈ U there is an h ∈ H
with σ̄1 (x) · h = σ̄2 (x), hence q (σ̄1 (x)) = q (σ̄2 (x)).

On the other hand, for a local section σ ∈ Γ(F/H) let G := q−1 (σ (M)).
This defines an H-subbundle of F since the conditions from 1.1.5 are satisfied.
This is straightforward to check.

Finally, in order to illustrate how reductions of the structure group induce
geometric structures, we present the following Example. This also shows how
associated bundles are used to construct bijective correspondences.

Example 1.2.6. Let E →M be an n-dimensional vector bundle over the man-
ifold M and

FE =
⊔
x∈M
{u linear isomorphism Rn → Ex}

its linear frame bundle, that is a principal bundle with structure group GL (n,R).

Claim: An O(n)-reduction of FE is equivalent to a positive definite bundle
metric on E.
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Proof: A metric on E is a choice of an inner product on each fiber Ex for
x ∈ M , that depends smoothly on x. More formally, it is a smooth section of
the associated bundle FE ×GL(n,R) O, O is the space of inner products on Rn
and a given metric g corresponds to the section σ (π (u)) =

[
u, u∗gπ(u)

]
.

Note that by choosing an element b0 in O, we obtain an idenfication O =
GL (n,R) /H where H = StabGL(n,R) (b0), since GL (n,R) acts transitively on
O, and hence

FE ×GL(n,R) O = F ×GL(n,R) GL (n,R) /H

=
(
FE ×GL(n,R) GL (n,R)

)
/H = FE/H.

Thus, a section of FE×GL(n,R)O corresponds to fiberwise H-Orbits in FE, that
piece together to give a reduction of the structure group from GL (n,R) to H.

Associated vector bundles play a particularly important role. These are
formed as the associated bundle of a principal bundle together with a vector-
space that carries a smooth G-representation.

Proposition 1.2.7. Let π : G → M be a G-principal bundle and V a finite-
dimensional vector space endowed with a smooth G-representation.

Then the associated bundle G ×G V is a vector bundle of rank dim (V ). The
vector space structure on its fiber is characterized by [u, v]+r [u,w] := [u, v + rw]
where u ∈ G, r ∈ R and v, w ∈ V .

The construction satisfies functorial properties such as

G ×G (V ∗) = (G ×G V )
∗
, G ×G (V ⊗W ) = (G ×G V )⊗ (G ×GW )

and G ×g (V ⊕W ) = G ×G V ⊕ G ×GW

where W is another finite-dimensional vector space.

Proof. see [5, p.28]

1.2.1 Induced connections

The interplay between principal and associated bundles continues: Let H be a
principal connection on the bundle π : G →M with structure group G.

Definition A fiber bundle connection on a fiber bundle π : F → M is given
by a distribution of rank dim (M) on the manifold F , that is complementary to
the vertical distribution given by V F = ker (Tπ).

Analogously as before, connections on fiber bundles determine a distin-
guished lifting of vector fields.

Furthermore, connections on principal bundles G induce fiber bundle con-
nections on associated bundles of G:

Let S be a manifold endowed with a G-action. Firstly note that q : G ×S →
G ×G S, (u, s) 7→ [u, s] is a surjective submersion, and in fact even a principal
bundle. Hence for all (u, s) the map T(u,s)q : TuG × TsS → T[u,s]G × S is
surjective.

Note that (q ◦ πS)(u, s) = πS([u, s]) = π(u) = (π ◦ pr1)(u) where u ∈ G,
s ∈ S and pr1 : G × S → G denotes the projection on the first component. Now
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consider the subspace Hu × {0} ⊂ T(u,s)(G × S). Restricted to this subspace,
the projection T(u,s)q is injective, since (ξ, 0) ∈ Hu × {0} ∩ ker(Tq) implies that
Tπ · Tq · (ξ, 0) = Tπ · ξ = 0. But ξ is horizontal, hence ξ = 0.

Definition The induced connection on G ×P S is given by H[u,s] := T(u,s)q ·
(Hu × {0s}).

We still have to show that the induced connection is well-defined: Note that
q(ug, g−1s) = q(u, s), thus q ◦ (ρg × λg−1) = q. Hence we have

H[ug,g−1s] = T(ug,g−1s)q · (Hug × {0})
= T(ug,g−1s)q · (Tuρg · Hu, Tsλg−1 · {0}) = T(u,s)q · (Hu × {0}).

In the case of an associated vector bundle V := G ×G V induced connections
admit a particularly nice form.

Definition and Proposition 1.2.8. A fiber bundle connection on a vector
bundle π : V → M is called linear connection, if the horizontal lift for fixed
x ∈M and ξ ∈ TxM , depending on the point in Vx to where ξ is lifted, is linear
for all x and ξ.

A linear connection is equivalent to a differential operator

∇ : X (M)× Γ (V)→ Γ (V) , (ξ, σ) 7→ ∇ξσ.

that is C∞ (M)-linear in X (M) and R-linear in Γ (V), and additionally satisfies
a Leibniz-rule for f ∈ C∞ (M), ξ ∈ X and σ ∈ Γ (V):

∇ξ (fσ) = (ξ · f)σ + f∇ξσ

Proof. see [5, p. 35f]

Recall from 1.2.3 that a section σ of V = G ×G V corresponds to an equiv-
ariant function f : G → V .

Proposition 1.2.9. The derivative ∇ξσ of σ ∈ Γ (V) with respect to a vector

field ξ ∈ X (M) corresponds to ξhorG · f ∈ C∞ (G, V )
G

, the derivative of f by the
horizontal lift of ξ.

Furthermore, the frame bundle FE of a vector bundle E (for the definition
see Example 1.2.6) has special properties. Note that its structure group is the
general linear group of the same dimension as the fiber of E. The frame bundle
FM in Example 1.1.4 is in fact the frame bundle of TM .

Lemma 1.2.10. Let M be a smooth dimensional manifold, E an n-dimensional
vector bundle over M and FE its frame bundle.

(i) The canonical map FE ×GL(n,R) Rn → E given by [u, x] 7→ u (x) is an
isomorphism of vector bundles.

(ii) Any linear connection on E is induced by a unique principal connection
on FE.

Proof. see [5, p.42]

Example 1.2.11. Continuing 1.2.6, note that there is a unique principal con-
nection on FE that induces ∇. The above O(n)-reduction of FE is compatible
with this principal connection if and only if the metric on E is parallel with
respect to ∇. This is easy to compute.



Chapter 2

Holonomy of principal
connections

In this chapter we want to give a short introduction to holonomy of principal
connections. One should regard it as motivation for the concepts in Chapter 4.
We follow Chapter 3 of [6].

Throughout this chapter we fix a G-principal bundle π : G → M endowed
with a principal connection form γ ∈ Ω1 (G, g).

2.1 Horizontal lift of curves

Let c : [a, b] → M be a smooth curve, more precisely c should be smoothly
extensible on an interval (a − ε, b + ε) for an ε > 0. Our aim is to construct a
curve on G, that covers c and has derivative in the horizontal distribution.

Form the pullback bundle

pr1 : c∗G := {(t, u) ∈ [a, b]× G | c (t) = π (u)} → [a, b],

that is again a G-principal bundle with the G-action in the second component
of c∗G. Here [a, b] should be regarded as a manifold with boundary. It carries
the differential form (pr2)

∗
γ ∈ Ω1 (c∗G, g), that is a principal connection be-

cause the map pr2 : c∗G → G is G-equivariant by definition of c∗G, hence c∗γ is
G-equivariant since γ is, and the fibers, projection and G-action on c∗G remain
the same as on G, so fundamental vector fields are reproduced by c∗γ.

Consider the vector field c̄ on c∗G given by

c̄ (t, u) =
(

1, (c′ (t))
hor

(u)
)
∈ (Tc)

∗
(TG) = T (c∗G) ,

where (c′ (t))
hor

is the horizontal lift of c′ (t). This is well-defined, since Ttc ·1 =

c′ (t) = Tπ
(

(c′ (t))
hor

(u)
)

. c̄ obviously depends smoothly on t and one may

take any local smooth section of G to show smooth dependence on u.

Definition Let c : [a, b] → M a smooth curve and u ∈ Gc(t0) where t0 ∈ [a, b].

Shrink the interval [a, b] around t0, such that Flc̄t(t0, u) exists for all t ∈ [a, b].

13
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Then the horizontal lift of c at u is defined as c̃u(t) := pr2

(
Flc̄t (t0, u)

)
on

[a, b].

Let us state some basic properties of c̃u.

Proposition 2.1.1. (i) The curve c̃u is indeed a lift of c, i.e. π ◦ c̃u = c.

(ii) The horizontal lift of c : [a, b] → G is G-equivariant, i.e. for g ∈ G,
u ∈ Gc(t0) for t0, t ∈ [a, b] we have c̃ug(t) = cu(t) · g.

(iii) The horizontal curve c̃u : [a, b] → G is horizontal, meaning that c̃′u(t) ∈
Hc̃(t) for all t ∈ [a, b], where H denotes the horizontal distribution of the
given principal connection.

Proof. (i) Show that for u ∈ Gc(0) and t ∈ (a, b) we have π (c̃u(t)) = c (t).

The flow of the c̄ is given by Flc̄s (t, u) =

(
t+ s,Fl

(c′(t))
hor

s (u)

)
, since,

after evalulating at s = 0 we have

(
t,Fl

(c′(t))
hor

0 (u)

)
= (t, u), and

d

ds

(
t+ s,Fl

(c′(t))
hor

s (u)

)
=

(
1, (c′ (t))

hor
(

Fl
(c′(t))

hor

s (u)

))
= c̄

(
Fl

(c′(t))
hor

s (u)

)
.

The fact that Flc̄s (t, u) ∈ c∗G implies, by setting s = t0, that

c (t) = c

(
pr1

(
t,Fl

(c′(t))
hor

t0

))
= π

(
Fl

(c′(t))
hor

t+t0 (u)

)
= π (c̃u(t)) .

(ii) Claim 1 : Flows of invariant vector fields are equivariant.
proof of claim: Let ξ ∈ X (G) satisfying ξ (ug) = Tuρg · ξ (u). Then we

show Flξt (ug) = Flξt (u) g: Firstly, Flξ0 (u) g = ug, and secondly, d
dt

(
Flξt (u) g

)
=

d
dt

(
ρg

(
Flξt (u)

))
= Tρg · ξ

(
Flξt (u)

)
= ξ

(
Flξt (u) g

)
. This implies Claim 1.

Claim 2 : c̄ is G-invariant.
proof of claim: Let g ∈ G, then the projection satisfies π ◦ ρg = π, hence

Tugπ ◦ Tuρg = Tuπ. By invariance of the horizontal distribution we have
Tugπ|Hug ◦ Tuρg|Hu = Tuπ|Hu , and these three maps are all linear isomorphisms
onto their image. Hence for (t, u) ∈ c∗G the vector field satisfies

c̄ (t, ug) =
(

1, (c′ (t))
hor

(ug)
)

=
(

1,
(
Tugπ|Hug

)−1 · c′ (t)
)

=
(

1, Tuρg · (Tuπ|Hu)
−1 · c′ (t)

)
= Tuρg · c̄ (t, u) .

This finishes the proof of (i).

(iii) can be seen from

d

dt
c̃u(t) = pr2

(
d

dt
Flc̄t (t0, u)

)
= pr2

(
c̄
(
Flc̄t (t0, u)

))
= (c′ (t))

hor
(

Fl
(c′(t))

hor

t0+t (u)

)
∈ H.
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2.2 Holonomy groups

Consider a smooth loop c : [a, b]→M . Then, since G acts freely and transitively
on each fiber, there is a unique element guc of G such that c̃u(b) = uguc for all
u ∈ Ga.

Our aim is to collect all such elements of G in order to obtain a distinguished
subgroup of G that is induced by the connection.

We move to a slightly different concept in order to simplify the subsequent
definition, namely we consider a piecewise smooth curve c : [a, b] → M , so c is
continuous and there is a partition {a = t0, t1, . . . , tk−1, tk = b} of the interval
[a, b] such that c is smooth on [tj , tj+1] for 0 ≤ j ≤ k − 1.

For u ∈ Gc(a) define c̃u recursively by c̃u(t) := c̃u(t) if t ∈ [a, t1] and c̃u(t) :=
c̃c̃(tj)(t) if t ∈ [tj , tj+1]. In order to see that c̃u is well-defined, note that if
c is smooth on [a, b] and u ∈ Gt0 and t1, t + t1 ∈ [a, b] we have by definition
c̃c̃u(t1)(t) = c̃u(t+ t1).

Definition Let u ∈ G and x := π (u). Then

Holγ (u) := {guc ∈ G | ∃ piecewise smooth, closed curve c such that

c̃u(b) = u · guc }

is called the holonomy group at u of γ.

Proposition 2.2.1. The holonomy group Holγ (u) for u ∈ G is a subgroup of
G.

Proof. Consider two piecewise smooth loops c : [a, b] → M , c̄ : [b, d] → M and
x = π(u) ∈ M where u ∈ Ga = Gb. Then their horizontal lifts c̃ and ˜̄c yield
elements guc , g

u
c̄ ∈ Holγ(u) that are characterized by c̃(b) = uguc and ˜̄c(d) = uguc̄ .

The concatenation c ∗ c̄ : [a, d]→M is defined by

(c ∗ c̄) (t) =

{
c (t) if t ∈ [a, b]

c̄ (t) if t ∈ [b, d]
.

This is again a loop at x ∈M and its horizontal lift yields

(c̃ ∗ c̄)u(d) = ˜̄cc̃u(b)(d) = ˜̄cuguc (d) = ˜̄cu(d)guc = uguc̄ g
u
c ,

hence the product of two elements is again an element of the holonomy group.

Furthermore, let c−1 : [a, b] → M be given by c−1(t) := c(a + b − t). This
is exactly c passed through backward. We slightly modify c−1 by shifting:
c−1 : [b, 2b − a] → M, c−1(t) := c(a + b − (t − (b − a))) = c(2b − t). Note that
(c−1)′(t) = −c′(2b− t). Then we have

(c̃ ∗ c−1)u(2b− a) = c̃−1
c̃(b)(2b− a) = Fl

−(c′)
hor

(2b−a)−b

(
Fl

(c′)
hor

b−a (u)

)
= Fl

(c′)
hor

a−b

(
Fl

(c′)
hor

b−a (u)

)
= u.

Thus c−1(2b− a) = u(gcu)−1. Hence for each element of Holγ(u) also its inverse
is in Holγ(u).
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Observe how holonomy groups at different points on the total space are
related:

Proposition 2.2.2. (i) Let u ∈ G and g ∈ G. Then we have Holγ (ug) =
g−1 Holγ (u) g.

(ii) Let c̄ : [a, b] → M be a piecewise smooth curve, u ∈ Gc(a) and ū := ˜̄cu(b).
Then there is a canonical identification Holγ (ū) ∼= Holγ (u).

Proof. (i) If c : [a, b] → M is a piecewise smooth loop at x := π (u), then
c̃u(b) = uguc and c̃ug(b) = uggugc . We know from 2.1.1 (ii) that uggugc = c̃ug(b) =
c̃u(b)g = uguc g. We conclude uguc = uggugc g−1, thus gugc = g−1guc g.

(ii) Let c : [a, d] → M be piecewise smooth loop at x := c (a), then guc ∈
Holγ (u). Form c̄−1, the curve in reverse direction, and shift it by d−b: c̄−1(t) :=
c̄(a+ b− t+ (b− d)) = c̄(a+ d− t), [d− b+ a, d]→M .

The concatenation c̄−1 ∗ c ∗ c̄ : [d− b+ a, b] gives a loop based at x̄ := c (b),
since c̄−1(d− b+ a) = c̄(a+ d− d+ b− a) = c̄(b). Hence any loop at x can be

made into a loop at x̄. Note that since ˜̄cu(b) = ū we have ˜̄c−1
ū(d) = u. Thus

c̃˜̄c−1
ū(d)

(a) = c̃ū(a) = uguc and therefore

( ˜c̄−1 ∗ c ∗ c̄)ū(b) = ˜̄cuguc (b) = ˜̄cu(b)guc = ūguc .

Therefore, any element in Holγ(u) can be interpreted as an element in Holγ(ū).
The converse direction is completely analogous.

Theorem 2.2.3. The holonomy group Holγ (u) for u ∈ G is a Lie subgroup of
G.

Proof. We give a short idea of the proof. For the full proof, see [6, p.49ff].
Firstly, we consider the restricted holonomy group

Hol0γ(u) :={gcu ∈ G | ∃c : [a, b]→M a piecewise smooth,

nullhomotopic loop at x = π(u) and c̃u(b) = ugcu}.

For each nullhomotopic curve there is a smooth F : [a, b]2 → M such that
c is the concatenation of the four boundary segments t 7→ F (t, a), t 7→ F (b, t),
t 7→ F (a+b−t, b) and t 7→ F (a, a+b−t). Then retract this rectangle to the line
[a, b] × {0}, hence we obtain curves cs for s ∈ [0, 1] that are the concatenation
of t 7→ F (t, a), t 7→ F (b, (1 − s)t), t 7→ F (a + b − t, (1 − s)b + sa) and t 7→
F (a, (1− s)(a+ b− t)).

Mapping s to the evaluation of (c̃s)u at its endpoint gives a piecewise smooth
curve from ugcu to u, since for s = 1 the curve cs is just the concatenation of
the line segment t 7→ F (t, a) and its inverse t 7→ F (a + b − t, a). This can be
seen as a piecewise smooth curve in Hol0γ(u) from gcu to e.

Then apply the Theorem from [6, p.50] that claims that each subgroup H of
G, where each element in H can be connected to e by a piecewise smooth path
in H, is a Lie subgroup.

Furthermore, the map [c] 7→ gcu · Hol0γ(u) is a surjective homomorphism

from the fundamental group π1(M,x) onto Holγ(u)/Hol0γ(u). Since π1(M,x) is
countable, this gives the necessary topological conditions in order to prove that
Holγ(u) is a Lie subgroup of G.
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2.3 Curvature and Holonomy

In this section we will show that the curvature form has values only in the Lie-
algebra hol (u) of Holγ (u) for u ∈ G. This result prepares the theorems following
in the next sections.

Lemma 2.3.1. Let ξ, η ∈ X (G) be two vector fields on G with values in the hor-
izontal distribution H. Then ζ Ω(ξ,η) = prH ([ξ, η]) − [ξ, η] where prH : TG → H
denotes the projection onto the horizontal distribution according to the decom-
position TG = H⊕ V G.

Proof. We know from 1.1.8(ii) that the curvature form is given by

Ω (ξ, η) = dγ (ξ, η) + [γ (ξ) , γ (η)]

= ξ · γ (η)− η · γ (ξ)− γ ([ξ, η]) + [γ (ξ) , γ (η)] ,

The first two and the last summand vanish, since ξ and η are horizontal.
Let u ∈ G. Any tangent vector ν ∈ TuG is of the form prH (ν) + prV (ν),

where prV denotes the projection onto the vertical subspace of TuG. Moreover,
there is a X ∈ g such that prV (ν) = ζX (u). Since ker (γu) = Hu we obtain
ζγu(ν) (u) = ζγu(ζX(u)) (u) = ζX (u) = prV (ν).

Thus

ζ Ω(ξ,η) = ζ−γ([ξ,η]) = −prV ([ξ, η])

= − [ξ, η] + prH ([ξ, η]) .

This finishes the proof.

It is well-known (see [11, p.34]), that for x ∈M we have

[ξ, η] (x) =
d

dt
|0 Flξ−

√
t

(
Flη−
√
t

(
Flξ√

t

(
Flη√

t
(x)
)))

,

where the right hand side of the expression is smooth up to t = 0.
This helps to prove the following

Proposition 2.3.2. The curvature form Ωu for u ∈ G has values in holγ (u).

Proof. Let u ∈ G and ξ, η ∈ X (G). It is sufficient to consider vector fields with
values in H, since Ω vanishes on the vertical subspace (see 1.1.8(iv)). Note that
the horizontal lifts of coordinate vector fields on M form a pointwise basis for
Hu, since Hu ∼= Tπ(u)M via Tuπ. Hence we may take ξ := ∂hori and η := ∂horj ,
the coordinate vector fields associated to some chart of M and 1 ≤ i, j ≤ n.

In particular, [∂i, ∂j ] = 0. This means that the flows of ∂i and ∂j com-

mute, i.e. Fl∂i−t ◦Fl
∂j
−t ◦Fl∂it ◦Fl

∂j
t = idM for t ∈ R sufficiently small. Note that

[ξ, η] does not necessarily vanish, since the horizontal distribution may not be
involutive.

However, from 1.1.8 and the fact, that ξ and η are horizontal, we obtain
Ωu (ξ (u) , η (u)) = −γ ([ξ, η]).

Note that since ξ covers ∂i, their flows satisfy π ◦ Flξt = Fl∂it ◦π. The same

holds for η and ∂j . Let f (t, u) :=
(

Flξ−
√
t
◦Flη−

√
t
◦Flξ√

t
◦Flη√

t

)
(u′) for t ∈ R
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and u′ ∈ G. Note that the curve t 7→ f (t, u) is piecewise horizontal. In addition,

π (f (t, u)) = π
(

Flξ−
√
t

(
Flη−
√
t

(
Flξ√

t

(
Flη√

t
(u)
))))

= Fl∂i−
√
t

(
π
(

Flη−
√
t

(
Flξ√

t

(
Flη√

t
(u)
))))

= . . .

= Fl∂i−
√
t

(
Fl
∂j

−
√
t

(
Fl∂i√

t

(
Fl
∂j√
t
(π (u))

)))
.

The flows of ∂i and ∂j commute, hence this expression equals π (u) for all t. In
fact, this means that each t ∈ R, that is sufficiently small, gives us a piecewise
smooth, closed curve t 7→ π (f (t, u)). Its horizontal lift is exactly t 7→ f (t, u).

In particular, f (t, u) ∈ π−1 (π (u)) and for each t ∈ R there exists a gt ∈
Holγ (u) such that ft (u) = ugt. The group element gt depends smoothly on t
by the implicit function theorem. Thus

[ξ, η] (u) =
d

dt
|0ft =

d

dt
|0ugt = Teρ

u · d
dt
|0gt︸ ︷︷ ︸

∈holγ(u)

= ζ d
dt |0gt

(u) ,

hence Ωu (ξ, η) = −γu ([ξ, η]) = − d
dt |0gt ∈ holγ (u).

2.4 The reduction theorem

We will prove, that by fixing u ∈ G it is possible to consider a reduction
j : G(u) ↪→ G that is induced by the connection. Furthermore, this subbun-
dle is compatible with the principal connection, meaning that the horizontal
distribution is tangential to the subbundle. In terms of the connection form γ
this means that ι∗γ has values in h.

Theorem 2.4.1. Let G →M be a G-principal bundle where M is (path-) con-
nected and γ a principal connection on G. Fixing u ∈ G, there is a reduction
G (u) ↪→ G of the structure group to Holγ (u), such that the horizontal distri-
bution of γ is tangent to G(u), thus defining a principal connection on G(u).
This connection also has holonomy group Holγ (u) at u. The reduction G (u) is
defined as the set of all points that can be connected to u by a horizontal curve.

Proof. Let

G (u) := {u′ ∈ G | ∃c : [a, b]→M horizontal curve, c (a) = u, c (b) = u′} .

In order to show that G (u) is a reduction of G, we use 1.1.5.

(1) Let x ∈ M . Then there is a curve c : [a, b] → M such that c (a) = π (u)
and c (b) = x, since M is path-connected. The horizontal lift c̃u : [a, b]→ G
connects u with c̃u(b), i.e. c̃u(b) ∈ G (u). Hence π

∣∣
G(u)

: G (u) → M is

surjective.

(2) Let u′ ∈ G (u) and g ∈ Holγ (u). So, on the one hand, there is a horizontal
curve c : [a, b]→ G that connects u and u′. Note that c = (π̃ ◦ c)u.

On the other hand, there is a closed curve cg : [d, a] → M such that

(c̃g)u(a) = ug. Consider the concatenation c̄ := (π ◦ c)−1 ∗ cg ∗ (π ◦ c),
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[d− b+a, a]→M , where (π ◦ c)−1 is shifted by d− b (cf. proof of 2.2.2(ii)).
This is a closed curve at π (u′), and its horizontal lift satisfies ˜̄cu′(b) = u′g
(this is proved analogously as in 2.2.2(ii)).

This shows that acting by elements of Holγ (u) preserves G (u).

(3) In order to show fiberwise transitivity of the action, let u′1, u
′
2 ∈ Gx ∩ G (u)

where x ∈ M . There are horizontal curves c1 : [a, b] → G, c2 : [b, d] → G
such that c1 (a) = u = c2 (b) and c1 (b) = u′1, c2 (d) = u′2, respectively. Note
that (c̃i)u = ci.

The curve c := (π ◦ c1)
−1 ∗ (π ◦ c2) on M is closed at x, and its horizontal

lift yields

u′1g
c
u′1

= c̃u′1(d) = (c̃2)
(c̃−1

1 )u′1
(b)

(d) = (c̃2)u(d) = u′2,

where gcu′1
∈ Holγ(u′1) ∼= Holγ(u).

(4) We have to construct a local smooth section of G that has values in G (u).
Choose a local frame for H, i.e. vector fields ξ1, . . . , ξn ∈ X(U), where
U is an open neighborhood of some u0 ∈ G(u), such that for all u′ ∈ U
the vector fields ξ1(u′), . . . , ξn(u′) are a basis of Hu′ . This can be done by
taking a local frame on M (e.g. coordinate vector fields) and lifting them

horizontally. Then consider the map ϕ(t1, . . . , tn) := (Flξ1t1 ◦ · · · ◦ Flξntn )(u0),
that is defined on an open neighborhood V of 0 ∈ Rn.

Note that

T0ϕ · ei =
d

dt
|0ϕ(0, . . . , 0, t, 0, . . . , 0) =

d

dt
|0 Flξit (u0) = ξi(ϕ(0)) = ξi(u0).

Thus T0ϕ · (si) =
∑n
i=1 siξi(u0) for s1, . . . , sn ∈ R. This shows that T0ϕ :

Rn → Hu0 is a linear isomorphism.

Since Tu0
π
∣∣
Hu0

: Hu0
→ Tπ(u)M is a linear isomorphism, so is T0(φ ◦ ϕ).

Thus ψ := π ◦ ϕ is a local diffeomorphism V → ψ(V ) (possibly we have to
shrink V ).

Furthermore, for all (t1, . . . , tn) ∈ Rn the curve [0, 1] → G,
t 7→ ϕ(t(t1, . . . , tn)) is horizontal, as can be seen by an analogous com-
putation. Hence ϕ has values in G(u).

Therefore the map ψ(V ) → G(u), y 7→ ϕ(ψ−1(y)) gives a local section of
G(u), since π(ϕ(ψ−1(y))) = ψ(ψ−1(y)) = y.

Next, consider the horizontal spaces. The claim is easy to see in terms
of the local section from (4): For each u0 in G(u) we have a smooth local
section σ around π(u0) of G(u) with the property that Tπ(u0)σ has values in
Hu0

. Obviously this implies that Hu0
⊂ Tu0

G(u) and the remaining claims
follow easily.

2.5 The Ambrose-Singer-theorem

The following theorem will conclude our short outline on holonomy groups of
principal connections. It shows, that the curvature of a connection determines



20 CHAPTER 2. HOLONOMY OF PRINCIPAL CONNECTIONS

the Lie algebra of its holonomy group, hence the structure of the holonomy
group itself.

Theorem 2.5.1. Let G →M be a G-principal bundle over a connected manifold
M and γ ∈ Ω1 (G, g) a principal connection. Then the values Ωu′ (ξ, η) of the
curvature form, where u′ ∈ G and ξ, η ∈ Tu′G vary, span the Lie subalgebra
holγ (u) for u ∈ G.

Proof. Without loss of generality, we will consider G (u), the holonomy reduction
reduction of G, together with the connection γ restricted to G (u) (see 2.4.1).
Let

h := span {Ωu′ (ξ, η) | u′ ∈ G (u) , ξ, η ∈ Tu′G (u)} .

By 2.3.2 we have h ≤ holγ (u) =: hol. Hence we have to show hol ≤ h.

Let N be the distribution on G (u) that is defined by
Nu′ := Hu′ ⊕ {ζX (u′) | X ∈ h} for u′ ∈ G (u). This is smooth, since it is
spanned by a smooth distribution and a set of vector fields.

Claim: N is integrable.
proof of claim: We show that N is involutive.
Let ξ, η ∈ X (G (u)) vector fields on G (u) with values in the horizontal dis-

tribution. From 2.3.1 we know that their Lie bracket decomposes into vertical
and horizontal component as [ξ, η] = prH ([ξ, η])− ζΩ(ξ,η).

Let X,Y ∈ h. Then [ζX , ζY ] = ζ[X,Y ] ∈ N, since h is a subalgebra of hol.

Finally, we have to compute [ζY , ξ]. Note that FlζYt = ρexp(tV ). We use the

formula [ζY , ξ] (u′) = (LζY )ξ(u′) = d
dt |0

(
T

Fl
ζY
−t (u′)

FlζYt · ξ
(

FlζY−t (u′)
))

where

u′ ∈ G (u) (see [9, p.20]). Therefore,

[ζY , ξ] (u′) =
d

dt
|0
(
Tρexp(tY ) · ξ (u′ exp (−tY ))

)
= lim
t→0

1

t

(
Tρexp(tY ) · ξ (u′ exp (−tY ))− Tρexp(0) · ξ (u′)

)
= lim
t→0

1

t

(
Tρexp(tY ) · ξ (u′ exp (−tY ))− ξ (u′)

)
By right-invariance of the horizontal distribution, Tρexp(tY ) ·ξ (u′ exp (−tY ))

is again horizontal, hence the whole expression is horizontal. Therefore,
[ζY , ξ] (u′) ∈ Nu′ . end of proof of claim

Let N be the maximal integral manifold of N in G (u) that contains u.
However, each u′ ∈ G (u) can be connected with u by a horizontal curve, and
each horizontal curve starting at u must be contained in N . Consequently,
N = G (u). In particular, TG (u) = N and hence h = hol, since the holonomy
group is the structure group of G (u). This means, both h and hol parametrize
each vertical subspace of TG, hence h = hol by dimensional reasons.



Chapter 3

Cartan geometries

This chapter deals with Cartan geometries. We follow 1.4.1, 1.3.6 and 1.5 of [5].

3.1 Klein geometries

As a motivation for the concept of Cartan geometries, we take look at homoge-
nous spaces and recall their essential properties. In the following, let G be a Lie
group and P a closed Lie subgroup of G.

Definition A Klein-geometry is a connected manifold M endowed with a
smooth, transitive action λ of a Lie-group G.

Here, M should be viewed as a manifold endowed with a geometric structure
whose isomorphisms are of the form λg(x) = gx for x ∈M and g ∈ G.

The name “homogenous” should indicate that the space is uniform, i.e. that
it looks the same around each point (even globally): Given two elements x, y ∈
M , then there is a g ∈ G such that g ·x = y where λg is a “structure-preserving”
diffeomorphism.

Example 3.1.1. Of course, any definition of geometry should include the Eu-
clidean space, given by Rn that is endowed with the flat Riemannian metric δ.
It can be realized as a Klein geometry, by considering the group Euc(n) of Eu-
clidean motions, that is given by all maps Rn → Rn of the form x 7→ Ax + b,
where A ∈ O(n) and b ∈ Rn. The group Euc(n) may be viewed as the subgroup

of GL(n+1,R) given by block-matrices of the form

(
1 0
b A

)
, hence it is a finite-

dimensional Lie group.

Claim: Euc(n) is the isometry group of (Rn, δ).
proof of claim: On the one hand, if Φ ∈ Euc(n) is of the form Φ(x) = Ax +
b, where A ∈ O(n) and b ∈ Rn, we have DxΦ = A for all x ∈ Rn. Thus
(Φ∗δ)x(y1, y2) = δΦ(x)(Ay1, Ay2) = δ(y1, y2). Thus each element of Euc(n) is
an isometry of (Rn, δ).

On the other hand, let Φ : Rn → Rn satisfy Φ∗δ = δ. Then for t ∈ R and

21
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x, y1, y2, z ∈ Rn we obtain

0 =
d

dt
|0δx+tz(y1, y2) =

d

dt
|0δΦ(x+tz)(Dx+tzΦ · y1, Dx+tzΦ · y2)

= δΦ(x)(D
2
xΦ · (z, y1), DxΦ · y2) + δΦ(x)(D

2
xΦ · (z, y2), DxΦ · y1).

This equation shows that the map T : (y1, y2, z) 7→ δΦ(x)(D
2
xΦ · (z, y1), DxΦ · y2)

is skew-symmetric in the first two arguments. Furthermore, it is symmetric in
the last two arguments and trilinear. These properties imply that it vanishes:

T (y1, y2, z) = −T (y2, y1, z) = −T (y2, z, y1) = T (z, y2, y1)

= T (z, y1, y2) = −T (y1, z, y2) = −T (y1, y2, z).

Since DxΦ is a linear isomorphism, we obtain D2
xΦ = 0. This implies that

DΦ = A, a fixed linear map, that is by assumption an element of O(n).
Now let x ∈ Rn, and c : R→ Rn the smooth curve given by c(t) = tx. Then

Φ(x) = Φ(c(1)) = Φ(c(0)) +

∫ 1

0

(Φ ◦ c)′(0)dt = Φ(0) +

∫ 1

0

Axdt. = Φ(0) +Ax.

This shows the claim.
Furthermore, Euc(n) obviously acts transitively on Rn, thus the pair

(Rn,Euc(n)) is a Klein geometry.

After distinguishing a point x ∈ M , we obtain an identification G/P = M
via gP 7→ g · x, where P is the stabilizer of x in G. It is natural to consider the
canonical projection π : G → G/P , since in this picture the isomorphisms of
the structure are exactly given by the factorized left-multiplications with fixed
elements on G.

Example 3.1.2. Fix 0 in the Euclidean space (Rn, δ). The stabilizer of 0
in Euc(n) is obviously given by O(n), thus we obtain the identification Rn =
Euc(n)/O(n).

There is a canonical differential form on G which encodes the geometric
structure of G/P :

Definition The Maurer-Cartan-form ωMC = ω ∈ Ω1 (G, g) on a Lie-group G
is defined by ω (g) (ξ) := Tgλg−1 · ξ

First we summarize the characteristics of the space G/P and the Maurer-
Cartan-form. The proofs are straightforward.

Proposition 3.1.3. (i) The canonical projection π : G→ G/P together with
the right-multiplication of P on G is a principal bundle.

(ii) The Maurer-Cartan-form ω is equivariant with respect to right multiplica-
tion on G, i.e. for all g ∈ G we have ρ∗gω = Ad

(
g−1

)
◦ ω.

(iii) For all g ∈ G the linear map ω (g) : TgG → g is an isomorphism. In
particular, the tangent bundle of G is trivial – ω is therefore called an
absolute parallelism.

(iv) The Maurer-Cartan form reproduces the generators of left-invariant
vector-fields, i.e. for all X ∈ g, ω (LX) = X.



3.2. G-STRUCTURES 23

(v) The “Maurer-Cartan-equation” holds: For all ξ, η ∈ X (G) we have

dω (ξ, η) + [ω (ξ) , ω (η)] = 0

Proof. [12, p.102,108,111,145].

Consider the left multiplication λg : G → G for g ∈ G. This map factors
to the left action by g on G/P → G/P , that is the “structure-preserving”
isomorphism from before, hence this is compatible with our viewpoint.

The map λg : G→ G is even an isomorphism of principal bundles: Firstly it
commutes with the projection (π◦λg)(g′) = gg′P = λg(g

′P ) = (λg◦π)(g′) for all
g′ ∈ G, and secondly, for all p ∈ P and g′ ∈ G we have λg(g

′p) = gg′p = λg(g
′)p.

Clearly it is bijective and smooth.
In the next proposition we will see that the Maurer-Cartan-form can be used

to distinguish these “structure-preserving” isomorphisms from the rest of the
principal bundle isomorphisms.

Proposition 3.1.4. Let Φ : G → G be an isomorphism of principal bundles,
i.e. Φ (gp) = Φ (g) p for all g ∈ G and p ∈ P . Then the following statements
are equivalent:

(i) We have Φ∗ω = ω.

(ii) There is a g ∈ G such that Φ = λg.

Proof. (ii)⇒ (i) Let g′ ∈ G and ξ ∈ T ′gG then
(
λ∗gω

)
g′

(ξ) = ωgg′ (Tgg′λg · ξ) =

Tgg′λ(g′)−1g−1 · Tg′λg · ξ = ωg (ξ).

(i)⇒ (ii) Recall that we assumed G/P connected. We make use of the fact
that for a connected manifold N and two smooth functions f1, f2 : N → G which
satisfy f∗1ω = f∗2ω there is a g ∈ G such that f2 = λg ◦ f1 (see [12, p.115]). Let
N := G0, the connected component of G that contains e ∈ G. Then consider
Φ
∣∣
G0

: G0 → G and idG
∣∣
G0

: G0 → G. By the fundamental theorem of calculus,

we know that Φ
∣∣
G0

is of the form λg for a g ∈ G.

For g′P ∈ G/P there exists a smooth curve c : [0, 1] → G/P such that
c (0) = eP and c (1) = g′P . Next, we lift this curve to ĉ : [0, 1] → G such that
ĉ (0) = e, then ĉ has values in G0. Furthermore, ĉ (1)P = g′P , therefore there is
a p ∈ P such that ĉ (1) = g′p. Now Φ (g′) p = Φ (g′p) = Φ (ĉ (1)) = gĉ (1) = gg′p,
hence Φ (g′) = gg′.

3.2 G-structures

As another motivation for the definition following in the next section, we con-
sider G-structures with connections. We will see that both Klein geometries
and G-structures fit in the definition of a Cartan geometry.

We use a smooth manifold M of dimension n as base space. Then consider
the frame bundle π : F → M (see 1.1.4 2.). There we offered two different
interpretations of the frame bundle: Firstly, we may interpret the fiber as the
set of all bases of the tangent space at the underlying point, and secondly, as
the set of all linear isomorphisms between Rn and this tangent space. In the
following, we will mostly use the second interpretation.
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In the following, we will consider reductions of the frame bundle. The ge-
ometrical meaning of such a reduction is best illustrated by consider explicit
examples:

A Riemannian metric g on M induces the orthonormal frame bundle defined
by

FO :=
{
u ∈ F | gπ(u)(u(x), u(y)) = 〈x, y〉 ∀x, y ∈ Rn

}
⊂ F .

An almost-complex structure on a 2n-dimensional manifold M is given by a
vector bundle homomorphism J : TM → TM with J2 = − idTM . It induces
the reduction

FC =
⊔
x∈M
{u : Cn → TxM | u R-linear and u (iy) = Jx (u (y)) where y ∈ Cn} ,

where we identified R2n = Cn.

Definition Let M be a n-dimensional manifold. A G-structure with structure
group H, where H is a Lie subgroup of GL(n,R), is a reduction of the structure
group of F →M from GL(n,R) to H.

Example 3.2.1. Let us examine Riemannian structures in detail:
Claim: A Riemannian metric g on a n-dimensional manifold M is equivalent

to a G-structure on M with structure group O(n).
proof of claim: Let us start with a metric g. We saw above how to construct
the orthonormal frame bundle FO out of it, but we still have to show that this
a reduction of the structure group from GL(n,R) to O(n). We use 1.1.5: (i)
The projection π restricted to FO is obviously surjective. (ii) Let u ∈ FO and
h ∈ O(n). Then for x, y ∈ Rn we have

gπ(u·h)((u · h)(x), (u · h)(y)) = gπ(u)(u(hx), u(hy)) = 〈hx, hy〉 = 〈x, y〉

, and thus u · h ∈ FO. (iii) Now, suppose u, u′ ∈ FO such that π(u) = π(u′).
Then u−1 ◦ u′ : Rn → Rn that is compatible with the inner product, since for
x, y ∈ Rn we have 〈(u−1 ◦ u′)(x), (u−1 ◦ u′)(y)〉 = gπ(u)(u

′(x), u′(y)) = 〈x, y〉.
Thus u−1 ◦u′ = h ∈ O(n), and hence u′ = u ·h. Thus, O(n) acts transitively on
each fiber of FO. (iv) Take a smooth local section σ of F . Each value of σ can be
interpreted as a basis of the tangent space to M . Now note that Gram-Schmidt
orthonormalization is a smooth procedure, and apply it to each value of σ with
respect to g. Then we obtain a smooth local section of FO.

On the other hand, if we have a given reduction FO of F → M , we can
define a Riemannian metric on M by setting gx(ξ, η) := 〈u−1(ξ), u−1(η)〉 for
an arbitrary u ∈ FO|x and ξ, η ∈ TxM . This definition is independent of the
choice of u ∈ FO|x, since each other element in FO|x is of the form u · h for
h ∈ O(n) and 〈h−1(u−1(ξ)), h−1(u−1(η))〉 = 〈u−1(ξ), u−1(η)〉. Furthermore,
one can show smoothness of g by taking a local smooth section of FO.

If we start with a Riemannian metric, then construct the corresponding or-
thonormal frame bundle, and then again build a metric from it, by definition we
regain the initial metric. The other direction is also true per construction.

Note that there is a canonical 1-form on the frame bundle:

Definition Let θ ∈ Ω1 (F ,Rn) be given by θu (ξ) = u−1 (Tuπ · ξ), where u ∈ F
and ξ ∈ TuF . This is called the soldering form.
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The soldering form interacts nicely with the structure of the principal bundle:

Proposition 3.2.2. 1. The soldering form θ is equivariant with respect to
the right action on F and the standard action on Rn: Let g ∈ GL (n,R),
then ρ∗gθ = g−1 ◦ θ.

2. It is strictly horizontal, meaning that for ξ ∈ TF we have θ (ξ) = 0 if and
only if ξ ∈ V F .

Proof. (i) Let u ∈ F and ξ ∈ TuF . Note that π ◦ ρg = π, hence(
ρ∗gθ
)
u

(ξ) = θu◦g (Tuρg · ξ) = g−1
(
u−1 (Tugπ · Tuρg · ξ)

)
= g−1

(
u−1 (Tuπ · ξ)

)
= g−1 (θu (ξ)) .

(ii) Suppose ξ ∈ TuF . If θu (ξ) vanishes, we have u−1 (Tuπ · ξ) = 0. Since
u is an isomorphism, Tuπ · ξ = 0. Hence by definition, ξ lies in the vertical
subbundle. The other implication is clear.

Proposition 3.2.3. Let H be a subgroup of GL (n,R) and M a n-dimensional
manifold. G-Structures with structure group H are in bijective correspondence
with H-principal bundles G → M endowed with a 1-form Θ ∈ Ω1 (G,R) that is
equivariant and strictly horizontal.

Proof. Consider a given reduction ι : G ↪→ F , then π
∣∣
G : G → M is an H-

principal bundle. In addition, Θ := ι∗θ is a 1-form. It inherits equivariancy
from θ, since ι is equivariant. Furthermore, ι is an injective immersion, hence
Tι is injective. Thus for ξ ∈ TG we have

Θ (ξ) = 0 ⇐⇒ θ (Tι · ξ) = 0 ⇐⇒ ξ ∈ ker (Tπ) ⇐⇒ ξ ∈ ker
(
Tπ
∣∣
G

)
.

On the other hand, let G →M be an H-principal bundle and Θ ∈ Ω1 (G,Rn)
an equivariant, strictly horizontal 1-form. In particular, this implies that VuG =
ker (Θu) for all u ∈ G. Hence Θu factors to an injective linear map Θ̃u :
TuG/VuG → Rn. For dimensional reasons, it is bijective. The same argument

shows that T̃uπ : TuG/VuG → Tπ(u)M is a linear isomorphism.

Now, let ι : G → F , ι (u) := T̃uπ ◦
(

Θ̃u

)−1

that is a linear isomorphism

between Rn and Tπ(u)M , hence an element of F . The map ι is smooth and

respects the fibers. Furthermore, we have Θ̃uh ◦ Tρh = h−1 ◦ Θ̃u for h ∈ H by
equivariancy. Hence

ι (uh) = T̃uhπ ◦
(

Θ̃uh

)−1

= T̃uhπ ◦
(
h−1 ◦ Θ̃u ◦ Tρh−1

)−1

= T̃uhπ ◦ Tuρh ◦ Θ̃−1
u ◦ h = T̃uπ ◦ Θ̃−1

u ◦ h = ι (u) · h.

This shows equivariance of ι, and in particular it implies that ι is injective.

We still have to show that the correspondence is bijective. Suppose ι : G ↪→
F is a given H-reduction. Then we obtain the differential form Θ := ι∗θ on
G. This in turn induces the reduction ι′ : G → F that is characterized by
ι′ (u) ◦ Tuπ = Θu. However,

Θu = θι(u) ◦ Tuι = ι (u) ◦ Tuπ ◦ Tuι = ι (u) ◦ Tuπ.
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Hence we have ι′ = ι.
On the other hand, a given Θ on G → M induces the map ι characterized

by ι (u) ◦ Tuπ = Θu. Let Θ′ := ι∗Θ. But then

Θ′u = (ι∗θ)u = θι(u) ◦ Tuι = ι (u) ◦ Tuπ ◦ Tι = ι (u) ◦ Tuπ = Θu.

This shows that G-structures are - just as Klein geometries - principal bun-
dles over M .

Definition A connection on a G-structure G ↪→ F is a principal connection on
G.

Let G be a G-structure equipped with a connection γ ∈ Ω1(G, h). Then,
together with the soldering form on G, we obtain a differential form ω ∈
Ω1(G, h⊕ Rn), by simply setting ω := γ + Θ.

Example 3.2.4. G-structures with structure group O(n) carry a canonical con-
nection, namely the Levi-Civita connection.

Proposition 3.2.5. Let ι : G ↪→ F be a G-structure with structure group H.
We know from 1.2.5 that it determines a unique section of F/H. The section
σ is parallel with respect to the induced connection coming from γ if and only if
the horizontal distribution of γ is tangent to G in each point.

Proof. Let j : G → F be a reduction such that j∗γ is a principal connection.
Let σ : M → F/H be the corresponding section. By the identification F ×G
(G/H) = F/H, σ has values in an associated bundle and thus corresponds
to an equivariant function f : G → G/H. Therefore one can view elements
û ∈ q−1 (σ (M)) = G as [û, eH] = ûH = σ (p (û)) = [û, f (û)]. Hence we see that
f must map û to eH. Let ξ ∈ X (M), u ∈ G and û := j (u), then the horizontal
lifts are related via ξhorF (û) = Tuj · ξhorG (u). This implies

(
ξhorF · f

)
(û) = Tj(u)f · Tuj · ξhorG (u) = Tu (f ◦ j) · ξhorG (u) = 0,

since f ◦ j is constant.
But ξhorF · f corresponds to ∇ξσ, hence σ is parallel.

Conversely, let σ : M → F/H = F×GG/H be a parallel section (represented
again by the equivariant function f). This means that for all ξ ∈ X (M) we have
ξhorF · f = 0.

Then the reduction G is defined as

{u ∈ F | σ(π(u)) = uH} = {u ∈ F | σ(π(u)) = [u, eH]}
= {u ∈ F | f(u) = eH} = f−1(eH).

Thus if we can show that for each u ∈ G the equivariant map f is regular,
we have TuG = ker(Tuf) that contains ξhoru by definition.

Indeed for X ∈ g and u ∈ G we have

Tuf · ζX(u) =
d

dt
|0f(u · exp(tX)) =

d

dt
|0 exp(−tX)f(u)

=
d

dt
|0 exp(−tX)H = −X + g,

and thus Tuf is surjective.
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3.3 Cartan geometries

Think of the following construction as “curved” versions of Klein geometries
(such as Riemannian structures are curved versions of Euclidean space):

Definition Let G be a Lie group and P a Lie subgroup of G. A Cartan-
geometry of type (G,P ) is a principal fiber bundle G →M over a C∞-manifold
M with structure group P , that is equipped with a one-form ω ∈ Ω1 (G, g),
which satisfies the following conditions:

1. For p ∈ P we have ρ∗pω = Ad
(
p−1
)
◦ ω.

2. For u ∈ G, ω (u) : TuG → g is a linear isomorphism.

3. By inserting a fundamental vector-field ζX ∈ X (G) for X ∈ p into ω we
reproduce its generator, i.e. ω (ζX) = X.

The differential form ω is called the Cartan connection.

Example 3.3.1. In the case of a homogenous space G→ G/P the fundamental
vector fields corresponding to elements from p are exactly the left-invariant ones.
Thus, the Maurer-Cartan form of a Klein geometry satisfies the conditions 1.-3.
above. Klein geometries are called homogenous models of Cartan geometries.

Example 3.3.2. G-structures with connections are Cartan geometries:
Let G ↪→ F be a G-structure on the manifold M with structure group P ,

and γ a connection on G. Let G be the Lie group P n Rn. Its Lie algebra
is isomorphic to p ⊕ Rn as a vector space and as a representation of P . We
consider, equivalently, the bundle G →M equipped with the 1-form ω = γ+Θ ∈
Ω1(G, p⊕ Rn).

1. Both γ and Θ are P -equivariant, hence so is ω.

2. Let u ∈ G. Since G carries a connection γ, we can decompose the tangent
space TuG = Hu⊕VuG into a horizontal and a vertical part. The soldering
form Θu vanishes on VuG and is bijective on Hu, whereas the connection
γu is bijective on VuG. By definition, Hu = ker(γu), thus ωu is a linear
isomorphism on TuG.

3. Let X ∈ p. We obtain ω(ζX) = γ(ζX) + Θ(ζX) = X + 0.

Thus G is a Cartan geometry of type (P nRn, P ).

As mentioned above, the following concept will be the main tool to capture
the difference between the homogenous model and a general Cartan geometry:

Definition The curvature K of a Cartan-geometry G →M,ω of type (G,P ) is
defined by K ∈ Ω2 (G, g), K (ξ, η) := dω (ξ, η)+[ω (ξ) , ω (η)], where [., .] denotes
the Lie bracket on g.

Remark 3.3.3. Since the Cartan connection provides a trivialization of the
tangent bundle, we may fix one X ∈ g and look at the constant vector field
ω−1 (X) ∈ X (G), that is simply defined by

(
ω−1 (X)

)
(u) := (ω (u))

−1
(X) for

u ∈ G. This is obviously smooth, hence indeed a vector field.
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We may rewrite the curvature entirely in terms of the Lie algebra :

Definition The curvature function of a Cartan geometry is defined by κ : G →
∧2g∗ ⊗ g, κ (u) (X,Y ) := K (u)

(
ω−1 (X) (u) , ω−1 (Y ) (u)

)
.

Conversely, we can express the curvature asKu (ξ, η) = κ (u) (ωu (ξ) , ωu (η)),
hence we do not lose any information about K when passing to the curvature
function.
Also note that there is an induced P -action on ∧2 (g/p)

∗ ⊗ g that comes from
the adjoint action of P on g.

Now observe the following properties of the curvature and the curvature
function:

Lemma 3.3.4. (i) The curvature is horizontal, i.e. for a vertical vector
field corresponding to X ∈ p and for η ∈ X (G) the curvature vanishes:
K (ζX , η) = 0 . In particular, κ factorizes to a map G → ∧2 (g/p)

∗ ⊗ g

(ii) For p ∈ P we have ρ∗pK = Ad
(
p−1
)
◦K.

(iii) For p ∈ P and u ∈ G we have κ (up) = p−1 · κ (u)..

Proof. 1. Choose X, η as above. Since by definition of ω, iζXω is constant
and thus has vanishing exterior derivative, we may start by applying the
Cartan formula to

dω (ζX , η) = (iζXdω) (η) = (iζXdω) (η) + d (iζXω) (η) = (LζXω) (η) .

By the defining properties of the Cartan connection and by 1.1.3(iii):

LζXω =
d

dt
|0
((
FlζXt

)∗
ω
)

=
d

dt
|0
(
ρexp(tX)

)∗
ω

=
d

dt
|0 (Ad (exp (−tX)) ◦ ω) =

d

dt
|0 exp (−t · ad (X)) ◦ ω

= ad (−X) ◦ ω.

From these observations we conclude

dω (ζX , η) = −ad (X) (ω (η)) = −[X, η],

hence K(ζX , η) = 0.

Furthermore, for X ∈ g and H ∈ p we calculate

κ (X,H) = K
(
ω−1 (X) , ω−1 (H)

)
= K

(
ω−1 (X) , ζH

)
= 0,

hence κ : G → ∧2 (g/p)
∗ ⊗ g is well-defined.

2. Let u ∈ G, ξ, η ∈ X (G) , p ∈ P :(
ρ∗pK

)
(u) (ξ, η) =dω (up) (Tuρp · ξ, Tuρp · η)

+ [ω (up) (Tuρp · ξ) , ω (up) (Tuρp · η)]

=
(
ρ∗p (dω)

)
(u) (ξ, η) + [

(
ρ∗pω

)
(u) (ξ) ,

(
ρ∗pω

)
(u) (η)]



3.4. TRACTOR BUNDLES 29

By naturality of the exterior derivative and since Ad
(
p−1
)

is a Lie algebra
homomorphism we obtain

(
ρ∗pK

)
(u) (ξ, η) = d

(
ρ∗pω

)
(u) (ξ, η) + [

(
ρ∗pω

)
(u) (ξ) ,

(
ρ∗pω

)
(u) (η)]

=d
(
Ad
(
p−1
)
◦ ω
)

(u) (ξ, η)

+ [Ad
(
p−1
)

(ω (u) (ξ)) , Ad
(
p−1
)

(ω (u) (η))]

=Ad
(
p−1
)

(dω (u) (ξ, η)) +Ad
(
p−1
)

([ω (u) (ξ) , ω (u) (η)])

=Ad
(
p−1
)

(K (u) (ξ, η))

Definition Let (G → M,ω) be a Cartan geometry of type (G,P ). If the
curvature function κ : G → ∧2(g/p)∗ ⊗ g only takes values in the subspace
∧2(gp)∗ ⊗ p, the Cartan geometry is called torsion-free.

Remark 3.3.5. In the case of a G-structure G with structure group P on a
manifold M , note that G ×P Rn = F ×GL(n,R) Rn = TM , where F is the frame
bundle and n is the dimension of M . If G is endowed with a principal connection
γ, this induces a linear connection ∇ on TM .

However, the G-structure is equivalent to the Cartan geometry G →M, ω :=
θ + γ. One can show that (G → M,ω) is torsion-free in sense of the above
definition, if and only if ∇ is torsion-free, i.e. ∇ξη −∇ηξ = [ξ, η] where ξ, η ∈
X(M). The details of this computation are given in [5, p.44].

3.4 Tractor Bundles

We saw in 1.2 that P -representations induce vector bundles. In the case that
G carries a principal connection, the vector bundle inherits a linear connection.
However, the Cartan connection ω is not a principal connection and in general
does not yield a linear connection.

Thus we restrict to the special case of a G-representation. We will conclude
this section on Cartan geometries by showing that this suffices to construct a
canonical linear connection on the associated vector bundle.

Definition Let G be a Cartan geometry of type (G,P ), and ρ̄ : G → GL(V )
a representation of G on a finite-dimensional vector space V . Then we call
G ×P V = Ĝ ×G V (see 1.2.4) the corresponding tractor bundle.

3.4.1 The Adjoint Tractor Bundle

Definition Let (G →M,ω) be a Cartan geometry. The tractor bundle AM :=
G ×P g corresponding to the adjoint action on g is called the adjoint tractor
bundle.

We start our survey on tractor bundles with focus on the adjoint tractor
bundle, which interacts particularly nicely with other tractor bundles. Recall
that G ×P g/p = TM . Note that the canonical projection g → g/p is P -
equivariant and therefore induces a bundle map Π : G×P g = AM → G×P g/p =
TM
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Proposition 3.4.1. Let G be a Cartan geometry and VM := G ×P V a tractor
bundle of G.

(i) There is a bundle map {., .} : AM × AM → AM that turns each fiber
AxM , where x ∈M , into a Lie algebra isomorphic to g.

(ii) There is a bijective correspondence between the set of sections of AM and
the P -invariant vector fields X(G)P on G, i.e. ξ ∈ X(G)P ⇐⇒ ∀u ∈
G, h ∈ H : ξ(uh) = Tuρh · ξ(u). This induces a Lie bracket [., .] on Γ(AM)
such that Π ([σ1, σ2]) = [Π (σ1) ,Π (σ2)], where σ1, σ2 ∈ Γ (AM) and the
bracket on the right hand side is the usual Lie bracket of vector fields.

(iii) There is a map • : AM ×VM → VM that turns each fiber of VxM , where
x ∈ M , into an AxM -module, i.e. it satisfies {σ1, σ2} • t = σ1 • σ2 • t −
σ2 • σ1 • t for σ1, σ2 ∈ Γ(AM) and t ∈ Γ(VM).

Proof. As for (i), let p ∈ P and X,Y ∈ g and recall that Ad(p) · [X,Y ] =
[Ad(p) ·X,Ad(p) · Y ], so the Lie-bracket is H-equivariant and thus induces a
bundle map { , }. It is easy to see that the induced charts of the associated
bundle G ×P g provide Lie-algebra-isomorphisms for each fiber: Let x ∈M and
u ∈ π−1(x). The fiber AxM can be written as {[u,X] | X ∈ g}, and a chart
around x restricted to π−1(x) is given by [u,X] 7→ (π (u) , ρ̄ (pr2 (ϕ (u)) , X)),
where ϕ is a principal chart for G around x. But here ρ̄ is the adjoint action
and we know from above that this is a Lie-algebra-isomorphism. However, note
there is no canonical identification of Ax with g.

(ii) First, let us establish the bijective correspondence. We know Γ (AM) =

Γ (G ×P g) ∼= C∞ (G, g)
P

. Furthermore, the Cartan connection trivializes the

tangent bundle of G, more precisely ω : TG
∼=−→ G× g, therefore each vector field

ξ ∈ X (G) can be identified with the smooth function ω (ξ) := ω ◦ ξ ∈ C∞(G, g),
and ω (ξ) is P -equivariant if and only if ξ is P -invariant: Let u ∈ G and p ∈ P ,
then

ω (ξ) (up) = ω (ξ (up)) = ω (Tρp · ξ (u)) = Ad(p−1) · ω (ξ) (u) ,

which proves the one implication; the other follows analogously.
Therefore X (G)

P ∼= C∞ (G, g)
P ∼= Γ (AM).

Because of the naturality of the Lie bracket, the P -invariant vector fields
form a Lie-subalgebra of X(G) - this induces our Lie bracket [ , ] on Γ (AM).

The projection Π : AM → TM induces a map Γ (AM)→ Γ (TM) = X (M),
that we again denote by Π. It will be useful to know, how the projection Π
looks in the correspondence with X (G)

P
:

claim: Let ξ ∈ X (G)
P

. Since it is right-invariant, ξ̄ (x) := Tuπ · ξ (u) for
x ∈ M and an arbitrary u ∈ π−1 (x) is well defined. The projection via Π of
the section of AM corresponding to ξ is exactly ξ̄.
proof of claim: ξ corresponds to the smooth, equivariant function G → g, u 7→
ω (ξ (u)), therefore to the section

σ (π (u)) = [u, ω (ξ (u))] where u ∈ G. Now let x ∈M and u ∈ π−1 (x), then

(Π (σ)) (x) = Π (σ (x)) = Π ([u, ω (ξ (u))]) = [u, ω (ξ (u)) + p] .
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Recall that in the identification G ×P g/p = TM we treat [u,X + p] as
Tuπ

(
ω−1
u (X)

)
, so here [u, ω (ξ (u))] is exactly Tuπ · ξ (u). end of proof of claim

Now we calculate the desired identity: Let ξ1, ξ2 ∈ X (G)
P

. Then naturality
of the Lie bracket implies

Π ([ξ1, ξ2]) = Tπ · [ξ1, ξ2] = [Tπ · ξ1, Tπ · ξ2] = [Π (ξ1) ,Π (ξ2)] ,

so the same identity holds with ξj replaced by σj ∈ Γ (AM).

(iii) We consider the derivative of the representation ρ̄′ : g → gl (V ). Let
t ∈ R, g ∈ G, v ∈ V and X ∈ g. Note that exp (t ·Ad (g) (X)) = g·exp (tX)·g−1,
since conjg is a Lie-group-homomorphism. Thus

ρ̄′ (Ad (g) (X)) (ρ̄ (g) (v))

=
d

dt
|0 (ρ̄ (exp (t ·Ad (g) (X))) (ρ̄ (g) (v)))

=
d

dt
|0
(
ρ
(
g exp (tX) g−1

)
(ρ̄ (g) (v))

)
=

d

dt
|0
(
ρ̄ (g) ρ̄ (exp (tX)) ρ̄

(
g−1

)
ρ̄ (g) · v

)
=

d

dt
|0 (ρ̄ (g) ρ̄ (exp (tX)) (v)) = ρ̄ (g) (ρ̄′ (X) (v)) .

Therefore, the map g × V → V, (X, v) 7→ ρ̄′ (X) (v) is a G-equivariant with
respect to the G-actions Ad×ρ̄ on g × V and ρ̄ on V , respectively, hence in
particular P -equivariant. Therefore it induces a bundle map • : AM × VM →
VM .

3.4.2 The fundamental derivative

The next construction works for P -representations, thus on general associated
vector bundles:

Definition and Lemma 3.4.2. Let (G →M,ω) be a Cartan geometry of type
(G,P ), ρ̄ : P → GL (V ) a representation of P and VM := G ×P V the corre-
sponding associated bundle. Let D : Γ (AM) × Γ (VM) → Γ (VM), D (σ, τ) :=

Dστ the section of VM that corresponds to ξ ·φ ∈ C∞ (G, V )
P

, where ξ ∈ XP (G)

is the vector field that corresponds to σ ∈ Γ (AM); and φ ∈ C∞ (G, V )
P

is the
smooth equivariant function, that corresponds to τ ∈ Γ (VM).

Proof. We have to prove ξ · φ is P -equivariant: Let u ∈ G and p ∈ P . Then

(ξ · φ) (up) = ξ (up) · φ = Tφ · Tρp · ξ (u) = ρ̄
(
p−1
)

(ξ (u) · φ) ,

where the last equality holds, since φ is P -equivariant, i.e. φ(ρp(u)) =
φ(up) = ρ̄

(
p−1
)

(φ(u)), and ρ̄
(
p−1
)

: V → V is linear.

Remark 3.4.3. By exactly the same procedure as in Proposition 3.4.1 (iii) we
obtain an operator • : (G ×P p)×VM → VM , because ρ̄′ is an equivariant map
p × V → V . In the case that ρ̄ is in fact a G-representation, this • is just the
restriction of the • from Proposition 3.4.1 to (G ×P p)× VM ⊂ AM × VM .
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Proposition 3.4.4. Let (G →M,ω) be a Cartan geometry of type (G,P ), and
ρ̄ : P → GL(V ) a representation of P .

(i) Let σ ∈ Γ (AM) and f : M → R a smooth function, i.e. a section of the
vector bundle M × R = G ×P R with the trivial representation ρ̄ : P →
GL(R), ρ̄ ≡ idR, then Dσf = Π (σ) · f .

(ii) Let σ ∈ Γ (G ×P p) ⊂ Γ (AM), then for τ ∈ Γ (VM) we have Dστ = −s•τ .

Proof. (i) Let x ∈M . The function f can be viewed as the section x 7→ (x, f (x))
which is identified with [u, f (x)], where u is an arbitrary element of π−1 (x).
Therefore, the equivariant function that corresponds to the section is given by
f ◦ π. Let ξ ∈ X (G)

P
be the vector field corresponding to σ. The derivative

ξ · (f ◦ π) = (Tπ · ξ) · f , whereas Tπ · ξ = Π (σ), which gives the claim.

(ii) The section σ corresponds to the equivariant function φ : G → p,
such that σ (π (u)) = [u, φ (u)] for u ∈ G; and furthermore to an vector field

ξ ∈ X (G)
P

. By assumption ω (ξ) has values in p, and is therefore of the form
ξ (u) = ζωu(ζ(u)) (u) for u ∈ G.
Let f : G → V be the equivariant function corresponding to τ , and p := exp (tX)
for X ∈ p and t ∈ R. By equivariance of f we have f (u · exp (tX)) =
ρ̄ (exp (−tX)) (f (u)) for u ∈ G. Therefore

(ζX · f) (u) = Tuf · Teρu ·X =
d

dt
|0f (u · exp (tX))

=
d

dt
|0ρ̄ (exp (−tX)) (f (u)) = −ρ̄′ (X) (f (u)) .

Altogether,

(Dστ) (π (u)) =
(
ζωu(ξ)·f (u)

)
= −ρ̄′ (ωu (ξ)) (f (u)) = −ρ̄′ (φ (u)) (f (u))

= − [u, φ (u)] • [u, f (u)] = − (σ • τ) (π(u))

Now we turn back to tractor bundles. In the following theorem we construct
the desired linear connection.

Theorem 3.4.5. Let VM = G ×p V a tractor bundle of the Cartan geometry
(G →M,ω) together with a G-representation ρ̄ : G → GL(V ). Then for σ ∈
Γ (AM) and τ ∈ Γ (VM),

∇Π(σ)τ := Dστ + σ • τ

defines a linear connection on the tractor bundle.

Proof. According to 1.2.8 we have to prove R-bilinearity, C∞(M)-linearity in
the first argument and the Leibniz rule for ∇.

Firstly, take a look on the identifications that are needed to define the oper-
ators: The correspondence between Γ(VM) and C∞(G, V )P is C∞(M)-linear.
The projection g → g/p is R-linear, thus Π is C∞(M)-linear. Similarly the
derivative ρ̄′ : g× V → V is R-bilinear, thus the operator • is C∞(M)-bilinear.
The fundamental derivative D is a usual derivative after identifying Γ(AM)
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with XP (G) and Γ(VM) with C∞(G, g)P . As above these identifications are
C∞(M)-linear. The derivative itself is C∞(M)-linear (even C∞(G)-linear) in
the XP (G)-argument and satisfies the usual Leibniz rule in the C∞(G, g)P .

This immediately implies C∞(M)-linearity in Π(σ) and R-linearity in τ .
As for the Leibniz rule, we have for σ ∈ Γ(AM) (corresponding to ξ ∈

XP (G)), τ ∈ Γ(VM) (corresponding to φ ∈ C∞(G, V )P )) and f ∈ C∞(M)

∇Π(σ)(fτ) = Dσ(fτ) + σ • (fτ)

= ξ · ((f ◦ π)φ) + ((f ◦ π))(σ • τ)

= (ξ · ((f ◦ π)))φ+ ((f ◦ π))(ξ · φ) + ((f ◦ π))(σ • τ)

= (Π(σ) · f)τ + f(∇Π(σ)τ).

Finally, we have to observe that Dστ + σ • τ depends only on Π(σ) instead
of σ: Let σ1, σ2 ∈ Γ(AM) such that Π(σ1) = Π(σ2). Then σ1 and σ2 differ by a
section σ′ that has values in G×P p ⊂ AM . By 3.4.4(ii) we have Dσ′τ+σ′•τ = 0
hence by R-linearity of the expression (see above) we obtain Dσ1

τ + σ1 • τ =
Dσ1

τ + σ1 • τ .





Chapter 4

Holonomy of Cartan
Geometries

The following chapter will constitute the theoretical key section of this thesis,
that is a detailed examination of the theoretical part of [4]. We will generalize
the concept of holonomy to Cartan geometries and consider implications of
holonomy reductions for the geometric structure of the underlying manifold.

Hereafter let (π : G →M,ω) be a Cartan geometry of type (G,P ).

4.1 Holonomy reductions

We have a principal bundle G to which we might try to apply the concept
of holonomy. However, ω is not a principal connection, since it is pointwise
a linear isomorphism, hence its kernel is trivial. It is invariant under the G-
action though and reproduces the generators of fundamental vector fields coming
from elements in p, and indeed it induces a principal connection on a canonical
associated bundle of G. The details are established in the following proposition:

Proposition 4.1.1. (i) The associated bundle π̂ : Ĝ := G ×P G → M is
a G-principal bundle and there is a canonical, P -equivariant embedding
ι : G ↪→ Ĝ.

(ii) There is a unique principal connection ω̂ ∈ Ω1
(
Ĝ, g

)
on Ĝ such that

ι∗ω̂ = ω.

(iii) Conversely, if γ ∈ Ω1
(
Ĝ, g

)
is a principal connection and ι∗γ is pointwise

injective, ι∗γ is a Cartan connection on G.

Proof. (i) G acts canonically on G ×P G by right multiplication in the second
component. This is well-defined, since right and left multiplication commute.
Furthermore, the action is free, leaves fibers invariant and is transitive on each
fiber. For a given principal chart ϕ

∣∣
U

: G|U → U × P over an open set U ∈M ,
one can use the induced charts on the associated bundle as principal charts
ψ
∣∣
U

: Ĝ|U → U ×G for Ĝ, since they are equivariant: Let u ∈ G|U and g, g′ ∈ G,

35
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then

ψ ([u, g] · g′) = ψ ([u, gg′]) = (π (u) , ϕ (u) · gg′)
= (π (u) , ϕ (u) g) g′ = ψ ([u, g]) · g′.

The inclusion is given by ι (u) := [u, e], where u ∈ G. This is injective. In the
charts ϕ

∣∣
U

and ψ
∣∣
U

one can see that ι is also infinitesimally injective, namely
for x ∈ U and p ∈ P we have

ψ
(
ι
(
ϕ−1 (x, p)

))
= ψ

([
ϕ−1 (x, p) , e

])
=
(
π
(
ϕ−1 (x, p)

)
, ϕ
(
ϕ−1 (x, p)

)
· e
)

= (x, p) .

Therefore ι is given by the inclusion P ↪→ G in the appropriate charts ϕ, ψ for
G|U and Ĝ|U , respectively.

Equivariancy follows from ι (up) = [up, e] = [u, p] = [u, e] p = ι (u) p for
u ∈ G and p ∈ P .

(ii) Let u ∈ G and û := ι (u). We have (Tûι)
−1
(
VûĜ

)
= VuG since π̂ ◦ ι = π,

hence for dimensional reasons Tui (TuG) + VûĜ = TûĜ and Tuι (TuG) ∩ VûĜ =
Tuι (VuG). Now define for ξ ∈ TuG the principal connection ω̂û (Tuι · ξ) := ωu(ξ)
and for X ∈ g let ω̂û (ζX (û)) := X.

In order to show that ω̂ is well-defined, let ζX (u) ∈ VuG for X ∈ g. Then
note that for p ∈ P we have

(ι ◦ ρu) (p) = ι (up) = [up, e] = [u, p] = [u, e] · p = ρû (p) . (4.1)

Therefore, Tûι · ζX (u) = Tuι · Teρu ·X = Tûρ
û ·X = ζX (û), so the definitions

of ω̂ coincide on Tuι (VuG).

Furthermore, ω̂ is equivariant, what is obvious on the vertical subspace,
whereas for ξ ∈ Tuι (TuG) we have

(
(ρp)

∗
ω̂û
)

(Tuι · ξ) = ω̂ûp (Tuρp · Tuι · ξ)
(4.1)
= ω̂ûp (Tûpι · Tuρp · ξ)

= ωu (Tuρp · ξ) = Ad
(
p−1
)
◦ ωu (ξ)

= Ad
(
p−1
)
◦ ω̂û (Tuι · ξ)

Therefore we may extend ω̂ equivariantly to Ĝ in order to obtain a principal
connection: From above we know that ω̂up◦Tuρp = Ad(p−1)◦ω̂u for all u ∈ ι(G)

and p ∈ P . Let u ∈ Ĝ. Then there is a g ∈ G such that gu ∈ ι(G). Then define
ω̂u := Ad(g) ◦ ω̂ug ◦ Tuρg. The differential form ω̂ is well-defined because of the
above equivariance-property.

We still have to see that ω̂ is a principal connection. Equivariance is easy
to check: Let u ∈ Ĝ, g ∈ G such that ug ∈ ι(G) and h ∈ G. Note that
(uh)(h−1g) ∈ ι(G). Now by definition

ω̂uh ◦ Tρh = Ad(h−1g) ◦ ω̂ug ◦ Tρh−1g ◦ Tρh
= Ad(h−1) ◦Ad(g) ◦ ω̂ug ◦ Tρg = Ad(h−1) ◦ ω̂u.

Also, it reproduces the generators of fundamental vector fields: Firstly, note
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that for u ∈ Ĝ, X ∈ g and g ∈ G we have

Tuρg · ζX(u) =
d

dt
|0ρg(u · exp(tX)) =

d

dt
|0u exp(tX)g =

d

dt
|0ugg−1 exp(tX)g

=
d

dt
|0ug exp(Ad(g−1)(tX)) =

d

dt
|0ρexp(tAd(g−1))(X)(ug)

= ζAd(g−1)(X)(ug).

Therefore for u ∈ Ĝ and g ∈ G such that ug ∈ ι(G) we have

ω̂u(ζX(u)) = Ad(g)(ω̂ug(Tuρg · ζx(u))) = Ad(g)(ω̂ug(ζAd(g−1(X)(ug))))

= Ad(g)(Ad(g−1)(X)) = X.

Uniqueness follows from Tuι (TuG) + VûĜ = TûĜ.

(iii) Let p ∈ P , u ∈ G and X ∈ g. Firstly, ι∗γ is equivariant:

(ρp)
∗

(ι∗γ) = (ι∗γ) ◦ Tρp = γ ◦ Tι ◦ Tρp
(i)
= γ ◦ Tρp ◦ Tι

= Ad
(
p−1
)
◦ γ ◦ Tι = Ad

(
p−1
)
◦ (ι∗γ)

Secondly, it reproduces the generators of fundamental vector fields:

(ι∗γ)u (ζX (u)) = γι(u) (Tuι · ζX (u)) = γu (ζX (ι (u))) = X

And finally, (ι∗γ)u : TuG → g is injective, therefore bijective due to dimensional
reasons.

Remark 4.1.2. Note that one can view the space of principal connections on
a given principal bundle as an affine space. In this sense, one can interpret
the above proposition as saying that the set of Cartan connections on G is an
open subset of the space of principal connections on Ĝ, since the condition to be
pointwise injective is an open condition.

This can be explained as follows: Injectivity is an open condition on lin-
ear maps TxM → V , where x ∈ M , a k-dimensional manifold, and V an n-
dimensional vector-space, since after the choice of a basis of TxM and V , we ob-
tain a map Rk → Rn. Injectivity of this map means that it has a k×k-submatrix
whose determinant does not vanish. Since the determinant is continuous and
the set R \ {0} is open in R, also its preimage under the determinant, the set
of injective maps, is open. Thus the set of one-forms, consisting of pointwise
linear maps from tangent spaces into a fixed vector space, that are pointwise
injective, is open.

We want to introduce a notion of holonomy for Cartan geometries.
Recall Example 1.2.6: We showed that a parallel metric on a vector bundle

is equivalent to a parallel section of the bundle associated to its frame bnun-
dles via the space of inner products on Rn. By choosing a distinguished inner
product, we obtained a reduction of the structure group of the frame bundle
from the general linear group to the stablizer of the distinguished inner product.

Now we try to realize a similar concept on Cartan Geometries:
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We will consider H-reductions of the principal bundle Ĝ where H is a sub-
group of G. These reductions can be described by sections of an associated
bundle with fiber G/H. We will face problems with H being determined only
up to conjugation. Thus we replace the fiber G/H by an “abstract homogenous
space” O, i.e. a manifold O, on that G acts smoothly and transitively from
the left. The choice of an α ∈ O yields Hα := StabG (α) and an identification
G/H = O.

Definition A holonomy reduction of (G →M,ω) is a parallel, smooth section
σ of Ĝ ×G O = G ×P O with respect to the connection induced by ω̂, where O
is a G-homogenous space. The reduction σ is said to be of G-type O.

In the following we will explore the consequences of a holonomy reduction
for the original Cartan geometry (π : G →M,ω).

On the group level, we see the other side of the problem: We observe how
different elements of the orbit interact. Given two α, α′ ∈ O, they are linked by
an element g ∈ G as α′ = g · α. Hence their stabilizers in G, that we denote by
Hα and Hα′ , respectively, are conjugate:

Hα′ = {g′ ∈ G | g′ · α′ = α′} = {g′ ∈ G | g′g · α = g · α}
=
{
g′ ∈ G | g−1g′g · α = α

}
=
{
gg′g−1 | g′ ∈ G, g′ · α = α

}
= gHαg

−1.

This issue is well-known for principal bundles (see 2.2.2(ii)).
We would like to obtain a reduction of G from P to P ∩ Hα. However, if

we choose a different element in O, this has a stabilizer of the form gHαg
−1 for

g ∈ G. The intersections Hα ∩ P and Hgα ∩ P = gHαg
−1 ∩ P need not be of

the same dimension though.
So we conclude that we cannot hope to obtain a global reduction of the

structure group H ⊂ G in general.
The issue of “relative position” is best illustrated by considering an explicit

example:

Example 4.1.3. Let G := SL (n,R), P := StabG (l), the stabilizer of a line
l ⊂ Rn containing 0 and O the space of non-degenerate, symmetric bilinear
forms on Rn with signature (p, q), where p+ q = n.

Real, symmetric bilinear forms are characterized (up to base change) by their
rank and signature, hence G acts transitively on O.

However, we must not forget the additional structure given by the distin-
guished line l in Rn. Now different choices of inner products have different
relative positions with respect to l: The restriction of the chosen inner product
to l × l has image either R+

0 , R−0 or {0}. As long as 0 < p, q < n, all three
possiblities occur.

Therefore, the choice of an element in O is not canonical.

4.2 Tractor bundles

In this section we see how parallel sections of certain vector bundles induce
holonomy reductions. To this end, we need vector bundles that are associated
to Ĝ. These are exactly the tractor bundles we introduced in Section 3.4.
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Note that since ι : G ↪→ Ĝ is a reduction of the structure group, we have
G ×P V = Ĝ ×G V for all G-representations V . Furthermore, from 4.1.1 we
know that Ĝ carries a canonical principal connection ω̂. This induces a linear
connection ∇ω̂ on Ĝ ×G V = G ×P V .

However, in 3.4.5 we already constructed a canonical linear connection ∇ on
G ×P V . Firstly, we show that these two concepts are the same:

Proposition 4.2.1. The two linear connections ∇ω̂ and ∇ on G×P V coincide.
In the following we will denote it by ∇.

Proof. Let ξ ∈ X(M) and τ ∈ Γ(G ×P V ) = Γ(Ĝ ×G V ). The section τ corre-

sponds to equivariant functions f : G → V and f̂ : Ĝ → V . With the identifi-
cation from 1.2.4 we have for [ι(u), f̂(ι(u))] = τ(π(u)) = [u, f(u)] = [ι(u), f(u)]

for u ∈ G and thus f̂ ◦ ι = f .
Now choose a P -equivariant lift ξ̃ ∈ X(G)P . Note that Π(ξ̃) = ξ (as we

observed in the proof of 3.4.1(i)). The horizontal lift of ξ to Ĝ at ι(u) ∈ Ĝ is
given by the expression

ξ̂hor(ι(u)) = Tuι · ξ̃(u)− ζω(ξ̃(u))(ι(u)),

since Tuπ · ξ̂hor(ι(u)) = Tuπξ̃(u) = ξ(π(u)) and ω̂(Tuι · ξ̃(u) − ζω(ξ̃(u))(ι(u))) =

ω(ξ̃(u))− ω(ξ̃(u)) = 0.

The expression (∇ω̂ξ τ)(π(u)) is equivalent to the equivariant function (ξ̂hor ·
f̂)(ι(u)). We compute

(ξ̂hor · f̂)(ι(u)) = Tι(u)f̂ · (Tuι · ξ̃(u)− ζω(ξ̃(u))(ι(u)))

= (ξ̃ · f)(u)− d

dt
|0f̂(ι(u) · exp(tω(ξ̃(u))))

= (ξ̃ · f)(u)− d

dt
|0ρ̄(exp(−tω(ξ̃(u))))(f(u))

= (ξ̃ · f)(u) + ρ̄′(ω(ξ̃(u)))(f(u)),

where ρ̄ : G→ GL(V ) is the G-representation and ρ̄′ its derivative g→ gl(V ).
The first summand of the result of the computation above is the fundamental

derivative of τ with respect to the section σ of AM that corresponds to ξ̃. This
is the desired term.

This section σ is explicitely given by σ(π(u)) = [u, ω(ξ̃(u))]. Thus the second
summand corresponds to σ•τ . Hence we have proved that ∇ω̂ is the same linear
connection as the one from 3.4.5.

Next, we will link the above concept with holonomy reductions of Cartan
geometries.

Proposition 4.2.2. Assume M is connected and let ρ̄ : G → GL (V ) be a
finite-dimensional G-representation and σ a section of the corresponding tractor
bundle V that is parallel with respect to the tractor connection ∇. Then σ
corresponds to an G-equivariant function s : Ĝ → V whose image s(Ĝ) is a
G-orbit in V .

Proof. We know from 1.2.3 that sections of associated bundles correspond to
equivariant functions. That σ is parallel means that for all ξ ∈ X (M) we have
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∇ξσ = 0, i.e. s satisfies ξhor · s = 0 for the horizontal lift ξhor ∈ X(Ĝ) of ξ (cf.
1.2.9).

By fixing an element û ∈ Ĝ we see that the G-orbit of s (û) in V is contained
in the image of s: Let g ∈ G then g · s (û) = s

(
ûg−1

)
.

On the other hand, let û′ ∈ Ĝ be an arbitrary element. Connect the base
points of û and û′ by a smooth curve that we lift to a horizontal curve c : [0, 1]→
Ĝ such that c (0) = û. Now c (1) is in the same fiber of Ĝ hence there is a g ∈ G
such that û′ = c (1) g. But as we conclude from above that c′ ·s = 0 the function
s is constant along the curve c, i.e.

s (û′) = s (c (1) g) = g−1s (c (1)) = g−1s (c (0)) = g−1s (û) .

Now given a parallel section σ of a tractor bundle as in 4.2.2, let O denote
the G-orbit from 4.2.2. Observe that by definition O is a G-invariant subset of
V , therefore Ĝ ×G O ⊂ Ĝ ×G V is a well-defined smooth subbundle such that
the induced connections are compatible with the inclusion (this is obvious from
the definition of the induced horizontal subspace). We know σ has values in
G ×P O hence defines a holonomy reduction of type O.

Example 4.2.3. We carry on with our previous Example 4.1.3 and consider
the vector space

(
S2Rn

)∗
. This is the vector space of symmetric bilinear forms

on Rn. We already mentioned before, that the bilinear forms are determined,
up to base change, by their rank and signature, hence the decomposition into
G-orbits is given by⊔

0≤p≤r, 0≤r≤n

{
b ∈

(
S2Rn

)∗ | b has rank r and signature p
}
.

The homogenous space O from Example 4.1.3 is exactly such a G-orbit, and
a holonomy reduction of this type can be interpreted as a parallel section of the
vector bundle Ĝ ×G S2(Rn)∗.

4.3 Structure of the underlying manifold

Recall that our problem was related to the fact that the choice of different
elements of O have different stablizers, that are all conjugated by elements of
G, but might have different intersections with P .

Now consider the case of α, α′ ∈ O with α′ = g · α for a g ∈ P . Let H be
the stabilizer of α in G, then the stabilizer H ′ of α′ is given by H ′ = gHg−1.

But in addition, we clearly have gPg−1 = P and thus H ′ ∩ P = gHg−1 ∩
gPg−1 = g (H ∩ P ) g−1. Hence the pairs (H ′, H ′ ∩ P ) and (H,H ∩ P ) (consist-
ing of two nested subgroups of G) are simultaneously isomorphic by conjugation.

Let us consider the G-equivariant function s : Ĝ → O corresponding to a
holonomy reduction σ of type O (cf. 1.2.3) and recall that there is the canonical
P -reduction ι (G) of Ĝ. Combining these two objects, we observe that for x ∈M
the image of the fiber ι (Gx) under s is a P -orbit in O – by fixing any u ∈ Gx
we conclude s (ι (Gx)) = s (ι (u · P )) = s (P · ι (u)) = P · s (ι (u)).

Definition (i) Let x ∈M . The P -orbit in O given by s (ι (Gx)) is called the
P -type of x with respect to the holonomy reduction σ.
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(ii) Let i ∈ P\O be a P -orbit in O. Then the set

Mi := {x ∈M | s (ι (Gx)) = i} ⊂M

is called the curved orbit of type i.

(iii) The decomposition M =
⊔
i∈P\OMi is called the curved-orbit-

decomposition of M .

4.4 The homogenous model

Following up the last definition, let us explicitly compute these objects for the
homogenous model. We will need these information particularly for Lemma
4.5.1.

To begin with, we collect some useful facts about the homogenous model in
the following lemma.

Lemma 4.4.1. (i) The extension Ĝ := G×P G can be canonically trivialized
as Ĝ = G/P ×G, where the projection corresponding to π̂ is the projection
onto the first component. The G-action in the trivialization becomes right
multiplication in the second component, thus the trivialization provides a
global principal chart.

(ii) The fundamental vector field corresponding to X ∈ g in the trivialization
is given by ζX (gP, g′) = (0gP , Teλg′ ·X) = (0, LX), where LX denotes the
left-invariant vector field with respect to X ∈ g.

(iii) G is embedded into G/P ×G via ι (g) = (gP, g).

(iv) The principal connection ω̂ is the flat connection with respect to the trivi-
alization from (i).

Proof. In the following, let g, g′, g′′ ∈ G and p ∈ P . (i) Let Φ : G/P×G→ G×P
G be the map defined by (gP, g′) 7→

[
g, g−1g′

]
. Its inverse map is evidently given

by Φ−1 ([g, g′]) = (gP, gg′), which is well-defined, since Φ−1
([
gp, p−1g′

])
=(

gpP, gpp−1g′
)

= (gP, gg′) .

As for the projection, we have π̂ (Φ (gP, g′)) = π̂
([
g, g−1g′

])
= gP ; whereas

the right action is given by

(gP, g′) · g′′ : = Φ−1 (Φ (gP, g′) · g′′) = Φ−1
([
g, g−1g′

]
g′′
)

= Φ−1
([
g, g−1g′g′′

])
= (gP, g′g′′) .

(ii) Since the action of g′′ on (gP, g′) can be written as ρ(gP,g′) (g′′) =
(gP, g′) · g′′ = (gP, g′g′′) = (constgP ×λg′) (g′′), the derivative is

ζX (gP, g′) = Teρ
(gP,g′) ·X = (Te constgP ×Teλg′) ·X = (0gP , Teλg′ ·X) .

(iii) is obvious from 4.1.1 and the proof of (i).
(vi) The principal connection ω̂ is determined by ι∗ω̂ = ω. We want to

calculate ker
(
ω̂ι(g)

)
for g ∈ G, so assume (ξ′, η′) ∈ Tι(g) (G/P ×G). But
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Tι(g) (G/P ×G) = Tgι (TgG) + Vι(g)(G/P × G) and Tgι = Tgπ × idTgG , so
we can write ξ′ = Tgπ · ξ for ξ ∈ TgG. Then, let η := η′ − ξ ∈ TgG. We get

ω̂ι(g) (ξ′, η′) = ω̂ (Tgπ · ξ, ξ + η) = ω̂ (Tgπ · ξ, ξ)︸ ︷︷ ︸
=Tgι·ξ

+ω̂ (0, η) = ωg (ξ) + Tgλg−1 · η.

The last equation follows since we know from (ii) that (0, η) is horizontal and
the form of the fundamental vector fields, therefore

ω̂ (0, η) = ω̂
(
0, Teλg · Tgλg−1 · η

)
= ω̂

(
ζTgλg−1 ·η

)
(g) = Tgλg−1 · η.

Recall that the Maurer Cartan form is given by ωg (ξ) = Tgλg−1 · ξ. Conse-
quently, we can determine the horizontal space by

ω̂ι(g) (ξ′, η′) = 0 ⇐⇒ Tgλg−1 · ξ = −Tgλg−1 · η ⇐⇒ ξ = −η ⇐⇒ η′ = 0.

Hence by equivariancy (and since G acts only on the second component),
T (G/P )×{0} ⊂ T (G/P ×G) is the horizontal distribution. In particular, the
principal connection on Ĝ is given by ω̂(gP,g′) = ωg′ ◦ pr2.

Next, we describe the possible H-reductions of the homogenous model.

Lemma 4.4.2. Let σ be a holonomy reduction of type G/H of the homogenous
model G → G/P , where H ⊂ G is a closed subgroup. Then there is a g ∈ G
such that the corresponding reduction of Ĝ has the form G/P × gH ⊂ G/P ×G.

It corresponds to the equivariant function [g′, g′′] 7→ g′′ (g′)
−1
gH, Ĝ→ G/H.

Proof. Let H be the reduction of Ĝ ∼= G/P ×G from G to H, that corresponds
to σ. The connection is flat on Ĝ and must stay a principal connection under
the reduction, hence the reduction must be of the form G/P×F where F ⊂ G is
a set diffeomorphic to H. Indeed, if we know one element (g′P, g) ∈ H, we can
immediately conclude that G/P × {g} ⊂ H and, by H-equivariancy, we obtain
H = G/P × gH.

Next, we view the reduction of Ĝ as a section of Ĝ/H. Note that Ĝ/H =
G×P (G/H) ∼= G/P ×G/H.

The image of H under the projection Ĝ → Ĝ/H is gives the section σ :

G/P → Ĝ/H, σ (g′P ) = (g′P, gH) =
[
g′, (g′)

−1
gH
]
.

Therefore, the G-equivariant function corresponding to σ is given by s : Ĝ→
G/H, [g′, g′′] 7→ (g′′) (g′)

−1
gH.

Let us start with the most obvious case and fix a subgroup H ⊂ G. Consider
the reduction of the form G/P × H ⊂ G/P × G, equivalent to the holonomy

reduction σ ∈ Γ
(
Ĝ/H

)
, σ (gP ) = (gP,H) for g ∈ G.

We want a more explicit description of the P -type decomposition of the
underlying manifold G/P . The fiber of gP ∈ G/P in G is gP ⊂ G, therefore
the embedded fiber in Ĝ is given by

ι (gP ) = ι ({gp | p ∈ P}) = {(gpP, gp) ∈ G/P ×G | p ∈ P} = {gP} × gP.



4.4. THE HOMOGENOUS MODEL 43

Hence the P -orbit of gP inO = G/H is s ({gP} × gP ) = {p−1g−1 | p ∈ P}·H =
P · g−1H. Thus the set of curved orbits in G/H is parametrized by the set of
double cosets P\ (G/H).

In order to determine the curved orbit of gP ∈ G/P , we consider the map

G/P → P\ (G/H) , g′P 7→ P (g′)
−1
H that assignes to each element of the

underlying manifold G/P its P -orbit in O. Obviously, this is well-defined and
factors over the canonical projection G/P → H\ (G/P ). The inverse of the

factorized map is given by P (g′)
−1
H 7→ Hg′P , so it is a bijection. From that

we can read off all other elements in G/P that have the same P -type as gP ,
that form its curved orbit H · gP ⊂ G/P .

Now observe that by fixing an element gP in H · gP , the curved orbit itself
inherits a geometry: H acts freely and transitively on H · gP ⊂ G/P , and the
stabilizer of gP in H is given by H ∩ gPg−1, since h ∈ H stabilizes gP if and
only if h · gP = gP , which is equivalent to h ∈ gPg−1. So, we can identify
H · gP with H/

(
H ∩ gPg−1

)
.

If we choose another point in the same H-orbit, namely one of the form
hgP ∈ H · gP for h ∈ H, we obtain an isomorphic structure: The stabilizer
of hgP is given by StabH (hgP ) = hStabH (gP )h−1 = h

(
H ∩ gPg−1

)
h−1 =

H∩hgP (hg)
−1

. Hence we obtain the structure H ·gP = H/
(
H ∩ hgP (hg)

−1
)

.

This is isomorphic to H/
(
H ∩ gPg−1

)
via h′

(
H ∩ hgP (hg)

−1
)
7→ h−1h′hH ∩

gPg−1, where h′ ∈ H.

Note that given an abstract homogenous space O. Choosing a distinguished
element α ∈ O gives the identification O = G/H where H is the stabilizer of α
in G.

The following proposition summarizes the information on holonomy reduc-
tions of the homogenous model that was collected in the above paragraphs.

Proposition 4.4.3. (i) The P -type of gP ∈ G/P is given by P · g−1H ⊂
P\(G/H), so the curved orbits are parametrized by P\(G/H). In the
abstract homogenous space, this means that the P -type of gP is P · g−1α.

(ii) The curved orbit corresponding to the P -orbit P · gH is given by

(G/P )Pg−1H = H · gP ⊂ G/P,

where H is the stabilizer of α in G. Furthermore,

H · gP = H/
(
H ∩ gPg−1

)
= g−1Hg/g−1Hg ∩ P.

Example 4.4.4. Let us look again at our example (see 4.1.3 and 4.2.3), i.e.
let G := SL (n,R), P := StabG (l), the stabilizer of a line l ⊂ Rn through 0.

Now we fix a subgroup H := SO (p, q) of G (that gives us G/H = O, where
O is the space of symmetric, non-degenerate inner products of signature (p, q)).
We assume 0 < p, q in order to avoid trivialities. The group H is the stabilizer
of the standard inner product of signature (p, q) on Rn, that we denote by b0.

We consider the homogenous model G → G/P of the Cartan geometry of
type (G,P ), where G/P = RPn−1 is the space of lines in Rn. An element
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gP ∈ G/P corresponds to the line g (l) ∈ G/P for g ∈ G. Proposition 4.4.3
shows that the curved orbit, that contains gP , is given by H · gP =̂H · g (l).

We observed in 4.4.3 that the curved orbit decomposition is given by
H\(G/P ) = H\RPn−1.

Claim: There are three H-orbits, that we denote by (G/P )+, (G/P )− and

(G/P )0. An element l ∈ G/P is classified by b0
∣∣
l×l that is positive definite,

negative definite or vanishes.
proof of claim: First, note that A ∈ SO(p, q) implies b0(Al,Al) = b0(l, l)

for all l ∈ RPn−1, hence the H-action leaves the sets (G/P )+, (G/P )− and
(G/P )0 invariant.

Let l ∈ (G/P )+ and choose v ∈ l such that b0(v, v) = 1. Complete v to
a orthonormal basis of Rn such that the base change to the standard basis has
determinant 1. Then v 7→ e1 under this base change. This shows that H acts
transitively on (G/P )+.

The analogous argument works for (G/P )−.
Let Rv = l ∈ (G/P )0. Then, since b0 is non-degenerate there is a w ∈ Rn

such that b0(v, w) = 1. Consider w′ := w− 1
2b0(w,w)v, that lies in the span of v

and w. Then b0(w′, w′) = b0(w,w)−2 1
2b0(w,w)b0(v, w)+ 1

4b0(w,w)2b0(v, v) = 0.
On the span of v and w′ the inner product b0 is of signature (1, 1). Thus,

by choosing an appropriate basis of {v, w}⊥, we can complete v, w to a basis of
Rn. Starting with another null vector ṽ, we can obtain a basis in the same way.
In addition, we require that the basis has the same orientation as above. The
base change is in SO(p, q), since b0 looks the same in both bases. Thus H acts
transitively on (G/P )0.

Now let us look at the orbits in more detail:

(1) Firstly, look at (G/P )+ :=
{
l ∈ G/P | b0 (l, l) = R+

0

}
.

In order to describe the structure on the curved orbit, we choose a line in
(G/P )+, for example the line l := 〈 e1 〉 spanned by the first unit vector.

We show that its stabilizer in H is given by O (p− 1, q): Let g :=

(
a b
c D

)
∈

SL (n,R) be a (1, n− 1)-block matrix with g (l) = l, i.e.

(
a
c

)
=

(
λ
0

)
where

λ 6= 0. Hence c = 0 and a > 0. On the other hand, such a matrix

(
a b
0 D

)
clearly fixes the line l. Now g should additionally satisfy gTg = Ip,q, where
Ip,q is the diagonal matrix with 1 in the first p diagonal entries, and −1 in
the remaining q entries.

Hence we have the equation(
a b
0 D

)T (
a b
0 D

)
=

(
a 0
bT D

)(
a b
0 D

)
=

(
a2 ab
abT DTD

)
= Ip,q.

We conclude D ∈ O (p− 1, q) and a = ±1, and thus b = 0. Since H =
SO(p, q), we obtain a = det(D).

Therefore, we have (G/P )+ = SO(p, q)/O(p − 1, q). This gives a Rieman-
nian metric of signature (p− 1, q) on (G/P )+ (see [5, p.7f]).



4.4. THE HOMOGENOUS MODEL 45

(2) The case of the curved orbit (G/P )− =
{
l ∈ G/P | b0 (l, l) = R−0

}
is com-

pletely analogous to Case (1). We obtain the structure
SO (p, q) /O (p, q − 1) = (G/P )−, that is endowed with a metric of signature
(p, q − 1).

(3) The third case is more involved, hence we will only sketch the construction
of the structure on the orbit (for the details see [5, p.13f]). The curved orbit
(G/P )0 is given by {l ∈ G/P | b0 (l, l) = {0}}.

Consider the projection π : C := {x ∈ Rn \ {0} | b0 (x, x) = 0} → (G/P )0,
that maps x to the line that contains x. The tangent space of x to C is given
by x⊥, and since x is null, x ∈ x⊥. The tangent map of the projection,
Txπ : TxC → Tπ(x)(G/P )0, satisfies Txπ · x = 0, since π (t · x) = π (x) for

all t ∈ R. Therefore, Txπ factors to a map T̃xπ : x⊥/Rx → Tπ(x)(G/P )0.
One can show that Txπ is a linear isomorphism.

Moreover, x⊥ inherits an inner product of signature (p− 1, q − 1) from the
surrounding space Rn, that factors to x⊥/Rx, since for y1, y2 ∈ x⊥ we have
b0 (y1 + x, y2 + x) = b0 (y1, y2)+b0 (y1, x)+b0 (x, y2)+b0 (x, x) = b0 (y1, y2).

The isomorphism T̃xπ carries the inner product over to Tπ(x)(G/P )0.

Let us check whether this inner product is well-defined: Choose another
element of C, that is mapped to π (x), then this has to be of the form λx
where λ ∈ R+. Consider the curves c (t) := x + tξ and c̃ (t) := λc (t)

for ξ ∈ x⊥ = (λx)
⊥

, then these curves satisfy c (0) = x and c̃ (0) = λx,
respectively, and c′ (0) = ξ whereas c̃′ (0) = λξ. Thus the tangent maps
Txπ and Tλxπ differ only by the positive factor λ, hence the inner product
on Tπ(x)(G/P )0 is uniquely defined up to a positive scalar. This gives a
conformal structure on (G/P )0.

The group action of SO (p, q) leaves the inner product b0 invariant, and
hence acts by conformal isometries on (G/P )0. One can show that it is
exactly the isomorphim group of this structure.

Finally, to complete our discussion on the homogenous model, we consider
other H-reductions of G/P . We will see that the whole structure of the decom-
position only changes by the action of an element of G. This shows that there
is only one H-reduction of the homogenous model up to the G-action.

Let g0 be a fixed element of G and consider the H-reduction G/P × g0H ⊂
G/P ×G (cf. 4.4.2) In order to establish the P -type of a given gP ∈ G/P , we
compute

s (ι (GgP )) = s (ι (gP )) = s ([gP, e]) = P−1 · (g)
−1
g0H ⊂ G/H.

Therefore, the map T : G/P → P\ (G/H), that assignes to each element in
G/P its P -type, is given by gP 7→ Pg−1g0H.

Again we compute the curved orbit, that corresponds to the P -orbit Pg−1H,
thus we have to compute T−1

(
Pg−1H

)
:

An element g′P ∈ G/P is mapped to Pg−1H if and only if P (g′)
−1
g0H =

Pg−1H. This is equivalent to the existence of an h ∈ H and a p ∈ P such
that (g′)

−1
g0 = pg−1h ⇔ g′ = g0h

−1gp−1. Hence the curved orbit is given
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by (G/P )Pg−1H = {g′P ∈ G/P | ∃h ∈ H : g′P = g0hgP} = g0HgP . This is ex-
actly the curved orbit (corresponding to the P -orbit Pg−1H) from the reduction
above, translated by the action of g0.

As for the structures on the curved orbits, we rewrite the curved orbit as
(G/P )Pg−1H = g0HgP = conjg0

(H)g0gP . It is easy to see that conjg0
(H) is

again a subgroup of G that stabilizes an element of O. We abbreviate H0 :=
conjg0

(H).
We see immediately that we can write down the curved orbit as a homoge-

nous space: H0 · g0gP = H0/StabH0
(g0gP ) for gP ∈ G/P . An element g0hg

−1
0

of H0, where h ∈ H, stabilizes g0gP if and only if g0hg
−1
0 g0gP = g0gP , hence if

h stabilizes gP . From above, we know that StabH(gP ) = H∩gPg−1. Therefore,
StabH0

(g0gP ) = g0 StabH(gP )g−1
0 = g0(H ∩ gPg−1)g−1

0 = H0 ∩ (g0g)P (g0g)−1.
In summary, we have proved the following

Proposition 4.4.5. The curved orbit of P -type Pg−1H induced by the holon-
omy reduction G/P × g0H is of the form g0HgP ⊂ G/P . It can be written
as

conjg0
(H) · g0gP = conjg0

(H)/ conjg0
(H ∩ gPg−1)

= conjg0
(H)/(conjg0

(H) ∩ (g0g)P (g0g)−1).

Therefore it suffices to consider one holonomy reduction of a certain type of
the homogenous model. The curved orbits of all other such holonomy reductions
are obtained by the left action of an element of G. Their geometric structure is
isomorphic to that of the original curved orbit by conjugation with the respective
G-element.

4.5 The Curved-Orbit-Decomposition

The next section, that contains our main theorem, will explain the name “curved-
orbit-decomposition”. In order to to compare different Cartan geometries of the
same type, we start with the “Comparison-Lemma”:

Lemma 4.5.1 (Comparison). Let (π : G →M,ω) and (π′ : G′ →M ′, ω′) be
Cartan geometries of type (G,P ), and s : Ĝ → O and s′ : Ĝ′ → O the equiv-
ariant functions corresponding to holonomy reductions of G and G′ of the same
type O. For a P -orbit i ∈ P\O, such that the curved orbits Mi,M

′
i are not

empty, and for x ∈Mi and x′ ∈M ′i there exist

(i) a local diffeomorphism φ between open neighborhoods U,U ′ of x and x′,
respectively, such that φ (x) = x′; and

(ii) a diffeomorphism Φ : π−1 (U)→ π′−1 (U ′) that is equivariant with respect
to the P -actions, such that the following diagram is commutative:

U

φ

��

π−1 (U)π
oo s //

Φ

��

O

U ′ (π′)
−1

(U ′)
π′oo

s′

::vvvvvvvvvv

(iii) Moreover, φ (Mj ∩ U) = M ′j ∩ U ′ for all j ∈ P\O.
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Proof. We will construct charts forM that are nicely compatible with the curved
orbits. These will allow to compare the two curved orbit decompositions.

First of all, choose a linear subspace g− ⊂ g, such that g− ⊕ p = g as a
vector space. Recall that each X ∈ g− induces a vector field ω−1 (X) ∈ X (G).

Let α ∈ i and choose u0 ∈ G, such that π (u0) = x and s (u0) = α. Then
consider the map

Ψ : X 7→ Fl
ω−1(X)
1 (u0) .

Claim 1: There is an open neighborhood W of 0 in g−, such that Ψ : X 7→
Fl
ω−1(X)
1 (u0) defines a smooth map W → G and ψ := π ◦Ψ is a diffeomorphism

onto an open subset of M .
proof of claim: Consider the manifold G×g and the vector field Ξ ∈ X (G × g)

given by Ξ (u,X) :=
(
ω (X)

−1
(u) , 0

)
where u ∈ G and X ∈ g. The flow of Ξ

at (u,X) ∈ G × g is given by c (t) := (c1 (t) , c2 (t)) :=
(

Fl
ω−1(X)
t (u) , X

)
, since,

c (0) =
(

Fl
ω−1(X)
0 (u) , X

)
= (u,X), and the derivative of c is given by

c′ (t) =
(
ω−1 (X)

(
Fl
ω−1(X)
t (u)

)
, 0
)

=
(
ω−1 (c2 (t)) (c1 (t)) , 0

)
.

Now consider (u0, 0) ∈ G × g. There is an open neighborhood W̃ of (u0, 0) in
G × g and an ε > 0 such that the flow of Ξ exists for all elements of W̃ at time
t < ε. Let W̄ := W̃ ∩ ({u0} × g−). This shows existence of the above claimed
neighborhood of 0 in g−. Also, since flows are smooth, the map Ψ : W̄ → G
given by Ψ (X) := pr2

(
FlΞ1 (u0, X)

)
= Fl

ω−1(X)
1 (u0) is smooth.

In order to show that ψ is a diffeomorphism, consider T0ψ : g− → TxM .
Suppose for Y ∈ g− that T0ψ · Y = 0, then 0 = Tu0π · T0Ψ · Y . Hence T0Ψ · Y
is vertical, but

0 = T0Ψ · Y =
d

dt
|0
(

Fl
ω−1(t·Y )
1 (u0)

)
=

d

dt
|0
(

Fl
t·ω−1(Y )
1 (u0)

)
=

d

dt
|0
(

Fl
ω−1(Y )
t (u0)

)
= ω−1 (Y ) (u0),

so Y ∈ p, therefore Y = 0. Thus T0ψ is injective, and by dimensional reasons it
is also bijective. This shows that ψ is a local diffeomorphism around 0, hence we
can shrink W̄ to W , a neighborhood around 0, on which ψ is a diffeomorphism.
end of proof

Let U := ψ (W ) ⊂M , and τ : U → G and τ̂ : U → Ĝ such that τ (ψ (X)) =
Ψ (X) and τ̂ (ψ (X)) = ι (Ψ (X)) · exp (−X) for X ∈ g−. The map τ is not
only smooth but also a local section of G, since by definition π (τ (ψ (X))) =
π (Ψ (X)) = ψ (X), and the same argument shows that also τ̂ is a section.

Then fix X ∈ W ⊂ g− and consider the curve c : [0, 1] → Ĝ, c (t) =
τ̂ (ψ (tX)), that is well-defined and smooth.

Claim 2: The curve c̃ is horizontal.
proof of claim: By definition,

c̃ (t) = ι
(

Fl
ω−1(tX)
1 (u0)

)
· exp (−tX) = ι

(
Fl
ω−1(X)
t (u0)

)
· exp (−tX) ,
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thus

ω̂c̃(t) (c̃′ (t)) = ω̂c̃(t)

(
Tρ
(
Tι · ω−1 (X)

(
Fl
ω−1(X)
t (u0)

)
, T−tX exp · (−X)

))
= ω̂c̃(t)

(
Tρ

Fl
ω−1(X)
t (u0)

· d
dt

(exp (−tX))

)
+ ω̂c̃(t)

(
Tρexp(−tX) · ω−1 (X)

(
Fl
ω−1(X)
t (u0)

))
Using equivariancy of ω̂, the first summand gives

ω̂
ι
(

Fl
ω−1(X)
t (u0)

)
·exp(−tX)

(
Tρ

ι
(

Fl
ω−1(X)
t (u0)

) · d
ds

(exp (−sX))

)
= ω̂

ι
(

Fl
ω−1(X)
t (u0)

)(Tρ
ι
(

Fl
ω−1(X)
t (u0)

) · Tρexp(tX) · d
ds

(exp (−sX))

)
= ω̂

ι
(

Fl
ω−1(X)
t (u0)

)(Tρ
ι
(

Fl
ω−1(X)
t (u0)

) · d
ds
|s=t exp ((t− s)X)

)
= ω̂

ι
(

Fl
ω−1(X)
t (u0)

)(Tρ
ι
(

Fl
ω−1(X)
t (u0)

) · (−X)

)
= ω̂

ι
(

Fl
ω−1(X)
t (u0)

) (ζ−X (ι(Fl
ω−1(X)
t (u0)

)))
= −X,

whereas the second summand results in

Ad (exp (−tX)) ω̂c̃(t)

(
ω−1 (X)

(
Fl
ω−1(X)
t (u0)

))
= Ad (exp (−tX)) ·X

= Te conjexp(tX) (X) =
d

ds
|s=0 conjexp(tX) (exp (sX))

=
d

ds
|s=0 exp ((t+ s− t)X) = X.

Therefore c̃ is horizontal. end of proof

Since s is constant along horizontal curves, we see that

α = s (uu0
) = s (c̃ (0)) = s (c̃ (1)) = s (Ψ (X) · exp (−X)) = s (Ψ (X)) exp (−X)

and therefore s (Ψ (X)) = α · exp (X).

Now, we can apply the same procedure to π′ : G′ → M ′ for u′0 ∈ G′ with
s′ (u′0) = exp (−X) · α and π′ (u′0) = x′, and we obtain again s′ (Ψ′ (X)) = α.
By shrinking W , such that both ψ and ψ′ are diffeomorphisms on W , define
φ := ψ′ ◦ψ−1. Since ψ(0) = π (Ψ (0)) = π(u) = x we get φ(x) = ψ′

(
ψ−1 (x)

)
=

ψ′(0) = x′. That proves (i).

There is a uniquely determined, P -equivariant diffeomorphism Φ : π−1 (U)→
π′−1 (U ′) that satisfies Φ ◦ τ = τ ′ ◦φ. Indeed, both τ and τ ′ are injective, so we
can just map τ (x̃) 7→ τ ′ (φ (x̃)) and extend this equivariantly.

Because s′ (Ψ′ (X)) = exp (−X) · α = s (Ψ (X)), we have s ◦Ψ = s′ ◦ Φ ◦Ψ
and therefore, using the injectivity of Ψ and Ψ′, s = s′ ◦ Φ. This proves (ii).
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Finally, since Φ covers φ, we have Φ (Gx̃) = G′φ(x̃) for any x̃ ∈ U , so the

P -orbits s (Gx̃) and s′
(
G′φ(x̃)

)
coincide. This completes the proof of (ii).

So far, we see that the decomposition of the underlying manifolds into orbits
locally looks alike up to diffeomorphism. Using this, we will compare an arbi-
trary Cartan geometry with its homogenous model to verify that curved orbits
are initial submanifolds and to carry over geometric structures to them.

The pair consisting of Hα and its distinguished subgroup Pα := Gα∩P ⊂ Gα
is isomorphic to (Gα′ , Pα′) by g-conjugation and hence may be identified. We
denote elements of this isomorphism class by (Gi, Pi).

Before we come to our main result, we recall the notion of an initial sub-
manifold:

Remark 4.5.2. Recall that a k-dimensional initial submanifold is a subset N of
a smooth, n-dimensional manifold M , such that for all x ∈ N there is a chart
ϕ : U → U ′ around x in M , with ϕ ((U ∩N)x) = U ′ ∩

(
Rk × {0}

)
. For an

arbitrary subset A ⊂M , Ax denotes the set of all y ∈ A that can be joined to x
with a smooth curve in M lying in A.

Lemma 4.5.3. Let M be a smooth manifold endowed with a G-action λ, where
G is a Lie group. Then, the G-orbits are initial submanifolds of M .

Proof. see [9, p.47]

Theorem 4.5.4. Let (G →M,ω) be a Cartan geometry of type (G,H) endowed
with a holonomy reduction of type O such that s : Ĝ → O is its corresponding
equivariant function. Let Mi ⊂M be a non-empty curved orbit where i ∈ P\O.

(i) Locally, the curved orbit Mi looks like an orbit of a group action: For α ∈ i
and x ∈ M , there exist open neighborhoods U of x and U ′ of eP ∈ G/P
and a diffeomorphism ϕ : U → U ′ such that ϕ (x) = eP and ϕ (Mi ∩ U) =
(Gα · eP ) ∩ U ′. Therefore, Mi is an initial submanifold.

(ii) The curved orbit Mi itself carries a canonical Cartan geometry structure
(Gi →Mi, ωi) of type (Gi, Pi). If we choose a representative α ∈ i, we
obtain an embedding ια : Gi → G |Mi such that ι∗αω = ωi.

(iii) By choosing α ∈ i, we can relate the curvatures K of G and Ki of Gi via
Ki = ι∗αK, whereas the curvature functions satisfy for u ∈ Gα

κ (ια (u))
∣∣∧2 gα/gα∩p

= κi (u) .

Proof. (i) By using Lemma 4.5.1 we can compare our given Cartan geometry
with its homogenous model G → G/P carrying the holonomy reduction s′ :
Ĝ → O that is determined by s′ (eP, e) = α. Now since eP lies inside the
curved orbit (G/P )i, the Lemma provides a diffeomorphism φ between open
neighborhoods U and U ′ of x and eP , respectively, that maps x to eP and
satisfies ϕ (Mi ∩ U) = (G/P )i ∩U ′. But as we saw in 4.4.3 (ii) the curved orbit
(G/P )i is exactly Gα · eP ⊂ G/P .

Lemma 4.5.3 shows that therefore, the curved orbits are initial submanifolds.
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(ii) First note that we can pullback G and Ĝ by the inclusion ji : Mi ↪→M .
Generally, the pullbacks of principal fiber bundles are again principal fiber bun-
dles of the same structure group, since the fibers remain the same. Now we start
with a fixed α ∈ i. The holonomy reduction can be equivalently described by the
reduction s−1 (α) ⊂ Ĝ. Now form the pullback Gα := ji

∗ (ι−1
(
s−1 (α)

))
⊂ ji∗G.

Claim 1: Gα is a Pα-principal bundle over Mi.
proof of claim: As in (i) we compare G with its homogenous model. Lemma

4.5.1 provides a local, P -equivariant diffeomorphism Φ : π̂−1 (U) → π̂′−1 (U ′),
where U and U ′ are open neighborhoods of x ∈Mi and eP ∈ G/P that satisfy
s−1 (α) = Φ

(
s′−1 (α)

)
. Moreover, G is embedded into Ĝ hence we may w.l.o.g.

assume G to be the homogenous model G. The holonomy reduction has the
form s (gP, g′) = (g′)

−1 · α, so s−1 (α) = G/P × Gα. Since ι (g) = (gP, g), we
have ι−1

(
s−1 (α)

)
= Gα. This is a Pα-reduction of G, thus also its pullback

bundle j∗iGα. end of proof

Claim 2: The gα-valued 1-form ωα := ji
∗ω ∈ Ω1 (ji

∗Gα, gα) is a Cartan
connection of type (Gα, Pα).

proof of claim: First consider the values of ω̂ on H := s−1 (α) ⊂ Ĝ. By
parallelity of s we have the horizontal distribution Hu ⊂ Tus

−1 (α) for u ∈ H.
Hence by dimensional reasons TuH = Hu ⊕ Vus

−1 (α) and since s−1 (α) is a
Gα-reduction of Ĝ, the principal connection ω̂ takes values only in gα. Through
ω = ι∗ω̂ we see that also j∗i ω has values in gα.

Equivariance of ωα can be computed straightforwardly. The inclusion ji is
by definition equivariant, so we have for u ∈ Gα, p ∈ Pα and ξ ∈ TuGα(

(ρp)
∗

(ωα)
)
u

(ξ) = (ωα)up (Tuρp · ξ) = ωji(up) (Tupji · Tuρp · ξ)
= ωji(u)p (Tuρp · Tuji · ξ) = Ad

(
p−1
)
· (ωα)u (ξ) .

The proof of the reproduction property again uses the equivariance of ji as
well as the properties of ω: Let u ∈ Gα and X ∈ gα then

(ωα)u (ζX (u)) = ωji(u) (Tuji · Teρu ·X) = ωji(u)

(
Teρ

ji(u) ·X
)

= X.

Finally, we have to show that ωα is an absolute parallelism. (ωα)u : TuGα →
gα is injective, since Tuji and ωji(u) are, but the dimension of Gα must be the
same as Gα, its homogenous model, hence (ωα)u is also surjective. end of proof

So far we chose a fixed α in the orbit i. If we take another α′ := p ·α, where
p ∈ P , then we obtain another Pα-reduction Gα′ of G. Note that there is a
canonical Lie group isomorphism conjp : Gα → Gα′ , hence also a Lie algebra
isomorphism Ad (p) : gα → gα′ , such that

Gα
conjg //

Ad

��

Gα′

Ad′

��
GL (gα)

conj(Te conjg)

// GL (gα′)

commutes.
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Hence the quadruples (Gα, Pα, gα,Ad) and
(
Gα′ , Pα′ , gα′ ,Ad′

)
are canoni-

cally isomorphic. We will show that also the corresponding Cartan geometries
(Gα, ωα) and (Gα′ , ωα′) are canonically isomorphic with respect to the isomor-
phism above, hence we may identify those Cartan geometries to obtain a geom-
etry Gi →Mi.

Claim 3: The restriction of the action ρp−1

∣∣
Gα

: Gα → Gα′ together with
conjp : Pα → Pα′ is an isomorphism of Cartan geometries.

proof of claim: We have to check for u ∈ Gα = ji
∗ (ι−1

(
s−1 (α)

))
that

up−1 ∈ Gα′ . The right action leaves fibers invariant, therefore it is compatible
with the pullback. We compute for u ∈ Gα and p′ ∈ Pα

s
(
ι
(
up−1

))
= s

(
ι (u) p−1

)
= p · s (ι (u)) = p · α = α′,

hence ρp−1 (Gα) = Gα′ , and ρp−1 (up′) = up′p−1 = up−1pp′p−1 = ρp−1 (u) ·
conjp (p′).

Also, for u ∈ Gα and ξ ∈ TuGα we have

(ωα′)up−1

(
Tρp−1 · ξ

)
= ωji(up−1)

(
Tji · Tρp−1 · ξ

)
= ωji(u)p−1

(
Tρp−1 · Tji · ξ

)
= Ad (p) · ωji(u) (Tji · ξ) = Ad (p) · (ωα)u (ξ) .

end of proof

However, the different Gα’s in the isomorphism class Gi are embedded dif-
ferently into G. Each choice of α ∈ i yields an inclusion, that from now we call
ια : Gα ↪→ G.

As for (iii), we use compatiblity of ω and ωi and naturality of the exterior
derivative to compute for ξ, η ∈ TGα

(ι∗αK) (ξ, η) =dω (Tια · ξ, T ια · η) + [ω (Tια · ξ) , ω (Tια · η)]

=dωi (ξ, η) + [ωi (ξ) , ωi (η)] = Ki (ξ, η) .

We use ι∗αK = Ki and ι∗αω = ωi to calculate for u ∈ Gi and X,Y ∈ gα:

κi (u) (X,Y ) = (Ki)u

(
(ωi)

−1
u (X) , (ωi)

−1
u (Y )

)
=Kια(u)

(
Tuji · (ωu ◦ Tuji)−1

(X) , Tuji · (ωu ◦ Tuji)−1
(Y )
)

=Kια(u)

(
ω−1
ια(u) (X) , ω−1

ια(u) (Y )
)

= κ (ια (u)) (X,Y )

This completes the proof.





Chapter 5

Holonomy reductions of
Riemannian Cartan
geometries

First of all, we show that a Riemannian metric on a manifold M induces a
Cartan geometry of type (Euc (n) , O (n)) where n ∈ N is the dimension of
M . Conversely, one can reconstruct the metric from the Cartan geometry.
Thoughout this chapter, we will denote G := Euc(n) and P := O(n).

We are interested in the question, what candidates for subgroups of Euc(n)
for holonomy reductions there are, and what kind of structures they imply.

Before we start investigating different types of holonomy reductions, we col-
lect some information about the Cartan description of Riemannian metrics.

5.1 Cartan Geometries of Riemannian type

We first show that a Cartan geometry of type (G,P ) is equivalent to a Rieman-
nian metric g on M :

Proposition 5.1.1. Let M be an n-dimensional manifold. Then a Riemannian
metric g on M is equivalent to a torsion-free Cartan geometry (G → M,ω) of
type (G,P ).

Proof. We saw in 3.2.1 that Riemannian metrics on M are equivalent to re-
ductions of the structure group of the frame bundle F from GL(n,R) to O(n).
This is done by forming the orthonormal frame bundle with respect to g. The
orthonormal frame bundle carries a canonical principal connection – the Levi-
Civita-connection with respect to the underlying Riemannian metric. The cor-
responding connection on TM is torsion-free. Therefore, we have to show:

Claim: A Cartan geometry (G →M,ω) of type (Euc(n), O(n)) is equivalent
to a G-structure j : FO ↪→ FM with structure group O(n) endowed with a
connection γ ∈ Ω1(FO, o(n)).

Given a G-structure FO with connection γ, define the Cartan geometry by
G := FO and ω := (j∗θ) + γ, where θ ∈ Ω1(G,Rn) is the soldering form on FM .

53



54 CHAPTER 5. HOLONOMY REDUCTIONS OF RIEMANNIAN ...

Note that the adjoint representation of Euc(n) restricted to O(n) is the
standard representation on Rn and the adjoint representation of O(n) on o(n).

Thus ω is equivariant with respect to the action on G, since θ and γ are.
Furthermore, γ reproduces the generators of fundamental vector fields, whereas
θ vanishes on the vertical subspace. And finally, suppose that for u ∈ G and
ξ ∈ TuG we have ωu(ξ) = 0. Therefore γu(ξ) = 0 and θu(ξ) = 0. Since θ is
strictly horizontal, we conclude ξ ∈ VuG. But γ reproduces the generators of
fundamental vector fields, and thus ξ = 0. This shows that ωu is injective, hence
by dimensional reasons bijective. Altogether we have shown that ω is a Cartan
connection on G →M .

On the other hand, suppose we have a given Cartan geometry G. For
u ∈ G consider the map prR

n ◦ωu where prR
n

: Rn ⊕ o(n) → Rn denotes
the projection on the Rn-component. This map factorizes over Tuπ to a map

˜prRn ◦ωu : Tπ(u)M → Rn. Taking the inverse of this map, we obtain an ele-

ment of the frame bundle of M . Then denote the map u 7→ ( ˜prRn ◦ωu)−1 by
j : G → F .

In order to show that j is injective, let u ∈ G and g ∈ O(n). Then

j(ug) = ( ˜prRn ◦ωug)−1 = ( ˜prRn ◦Ad(g−1) ◦ ωu)−1

= ( ˜g−1 ◦ prRn ◦ωu)−1 = (g ◦ ( ˜prRn ◦ωu))−1 = j(u) ◦ g

The above equation shows that j is a homomorphism, thus is injective. Fur-
thermore, it is easy to see that γ := pro(n) ◦ω is a principal connection by using
the characterizing properties of the Cartan connection.

Finally, we have to show that above constructions are inverse: Start with a
given Cartan geometry G. We embed it into the frame bundle of M via j and
define γ := pro(n) ◦ω. We have to show that (j∗θ) + γ = ω. The o(n)-part is
clear by construction. As for the Rn-part, we have for u ∈ G

(j∗θ)u = θj(u) ◦ Tuj = (j(u))−1 ◦ Tj(u)π ◦ Tuj = ˜(prRn ◦ωu) ◦ Tuπ = prR
n

◦ωu.

Conversely, starting with a G-structure i : FO ↪→ FM , we have to show that
the embedding j obtained from ω := i∗θ+ γ is the same as i. Let u ∈ FO, then

j(u) = ( ˜prRn ◦ωu)−1 = (ĩ∗θ)−1 = ( ˜i(u)−1 ◦ Ti(u)π ◦ Tui)−1

= ( ˜i(u)−1 ◦ Tuπ)−1 = i(u).

Finally, by recalling 3.3.5, we conclude that the Cartan geometry has to be
torsion-free.

5.1.1 The groups Euc(n) and O(n)

We first describe the groups G and P in a coordinate-independent way. Note
that G (and in particular P ) acts canonically on Rn+1 in the following manner:
There is an injective group homomorphism

O(n) nRn ↪→ GL (n+ 1,R) , (A, v) 7→
(

1 0
v A

)
,
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a matrix with blocks of sizes 1 and n. This admits the standard representation
on Rn+1.
Whenever we compute with elements of G, we will assume them to be given in
the above block-matrix-form.

Notation We will denote the vector space Rn+1 by V and its standard basis
by {e0, . . . , en}.

Proposition 5.1.2. (i) There is a ϕ0 ∈ V ∗ that is G-invariant. In particu-
lar, the G-action leaves ker(ϕ0) invariant.

(ii) There is an inner product on ker(ϕ0) that is invariant under G.

(iii) There is a v0 ∈ V such that P = StabG (v0) and ϕ0 (v0) = 1.

Proof. Let g :=

(
1 0
v A

)
∈ G where v ∈ Rn and A ∈ O (n).

(i) For ϕ0 :=
(
1 0 . . . 0

)
∈ Rn+1∗ we have

g · ϕ0 = ϕ0 ◦ g−1 =
(
1 0

)( 1 0
−v A−1

)
=
(
1 0

)
.

(ii) In coordinates e0, . . . , en we have ker(ϕ0) = {0}×Rn, i.e. for w ∈ ker(ϕ0)
we have (

1 0
v A

)
·
(

0
w

)
=

(
0
Aw

)
Therefore the restricted action is exactly the standard O(n)-action on Rn,

and this leaves the standard inner product invariant.

(iii) Let v0 := e0 ∈ Rn+1, then clearly ϕ0 (v) = 1. An element g :=(
1 0
v A

)
∈ G acts trivially on v, if and only if

(
1
0

)
=

(
1 0
v A

)(
1
0

)
=

(
1
v

)
.

This is equivalent to v = 0, hence g ∈ P .

The above proposition implies the following

Corollary 5.1.3. The vector space V decomposes into 〈v0〉 ⊕ ker (ϕ0) as a P -
module.

Proof. From 5.1.2(iii) we know that v0 /∈ ker (ϕ0), hence by dimensional rea-
sons 〈v0〉 ⊕ ker (ϕ0) = V . Furthermore, v0 is P -invariant, and ker (ϕ0) is even
G-invariant, therefore in particular P -invariant. Conseqently, the P -action pre-
serves the decomposition.

5.1.2 The canonical tractor bundle

In the following we will construct canonical objects from (π : G →M,ω).

Notation If we consider two or more Cartan geometries at once, we expand the
notation by a M where M is the underlying manifold of the Cartan geometry,
in order to avoid ambiguities.
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We have given the principal bundles G and Ĝ. This allows us to form the
canonical associated bundle T := G×P V = Ĝ×GV and to transfer the principal
connection ω̂ from Ĝ to a linear connection ∇ on T .

Recall that the subspace ker (ϕ0) carries a natural inner product, coming
from the G-action (see 5.1.2). This yields the following

Proposition 5.1.4. Let G → M be a Cartan geometry of type (G,P ). Then
the standard tractor bundle T admits the decomposition

G ×P V = (G ×P 〈v0〉)⊕ (G ×P ker (ϕ0)) .

Furthermore, G ×P ker (ϕ0) inherits a canonical metric h, and we have

(i) (G ×P ker (ϕ0) , h) = (TM, g) , where g denotes the Riemannian metric
on M , and

(ii) G×P 〈v0〉 = M×R. We will denote this line bundle by L and its canonical
section π(u) 7→ [u, v0], where u ∈ G, by 1.

Proof. We know from 5.1.3 that the decomposition is P -invariant, hence it car-
ries over to the associated bundle.

(i) Note that G is the orthonormal frame bundle of (M, g) (see 5.1.1 ). There
is a canonical isomorphism G ×P ker (ϕ0) → TM given by [u, y] 7→ u (y) where
u ∈ G and y ∈ ker (ϕ0) = Rn. This is well-defined, smooth and commutes
with the projections. It is fiberwise linear, since u ∈ G is a linear isometry
Rn → Tπ(u)M . Bijectivity also follows from that as well.

Furthermore, the isomorphism is an isometry with respect to the induced
metric h on G ×P ker (ϕ0) and the Riemannian metric g on TM : The metric h
is defined by h ([u, x] , [u, y]) := 〈x, y〉, where u ∈ G, x, y ∈ ker (ϕ0) = Rn and
〈 , 〉 denotes the standard inner product on Rn. Thus, h ([u, x] , [u, y]) = 〈x, y〉 =
gπ(u) (u (x) , u (y)), since u is an isometry.

(ii) The isomorphism G ×P 〈v0〉 →M ×R is given by [u, v] 7→ (π (u) , ϕ0(v))
where v ∈ 〈v0〉. It is well-defined, commutes with the the projections and is
smooth. Furthermore, it is fiberwise a linear isomorphism.

5.1.3 The homogenous model

In this section, we will consider the tractor bundle of the homogenous model of
the Cartan geometry of type (G,P ), that is the space Rn = G/P endowed with
the Euclidean metric.

In the next lemma we note that associated bundles of the homogenous model
are trivial:

Lemma 5.1.5. Let (G,P ) be a pair of Lie-groups such that P is closed in G
and ρ̄ : G→ GL (V ) is a representation of G on an n-dimensional vector-space
V .

(i) The associated bundle satisfies G ×P V = (G/P ) × V via
[g, v] 7→ (gP, ρ̄(g)v) where g ∈ G and v ∈ V .

(ii) The flat connection on G ×P G with respect to the canonical trivializa-
tion G/P ×G, induces the flat connection on G×P V with respect to the
trivialization from (i).
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Proof. (i) From 1.2.4 we know that G×P V = (G×P G)×G V . Also, G×P G
can be canonically trivialized (see 4.4.1(i)) as G×P G = (G/P )×G, hence we
have G×P V = (G/P ×G)×G V .

Let g, g′ ∈ G and consider the map (G/P ×G) ×G V → G/P × V , given

by [(gP, g′) , v] 7→ (gP, (g′) v). This is well defined, since [(gP, g′g′′) , (g′′)
−1
v]

is mapped to (gP, g′g′′ (g′′)
−1
v) = (gP, g′v) for g′′ ∈ G. The map is fiberwise

linear. Furthermore, if g′v = 0 we have v = 0, thus the map is fiberwise injective,
hence bijective. Thus we obtain a vector bundle isomorphism between G×P V
and G/P × V .

In order to write down the isomorphism explicitely, let [g, v] ∈ G ×P V .
This is identified with [[g, e] , v] ∈ (G×P G) ×G V . The element [g, e] corre-
sponds to(gP, g) in the trivialization. Therefore, we have (G/P ×G) ×G V 3
[(gP, g) , v] = [(gP, e) , gv] and this is mapped to (gP, gv) ∈ G/P × V .

(ii) Let σ ∈ Γ(G×P V ). On the one hand, σ corresponds to an equivariant
function f : (G/P×G)→ V that is characterized by σ(gP ) = [(gP, g′), f(gP, g′)]
for g, g′ ∈ G. On the other hand, since G×P V is trivial, the section σ can be
interpreted as a smooth function f̄ : G/P → V .

Then σ(gP ) = [(gP, g′), f(gP, g)] is under the trivialization from (i) given
by (gP, g′ · f(gP, g′)) = (gP, f(gP, e)), where the last equality follows from
equivariance of f . Hence we obtain f̄(gP ) = f(gP, e).

Let ξ ∈ X(G/P ), then its flat horizontal lift to G ×P G = G/P × G is
given by (ξ, 0) ∈ T (G/P ) × TG. Thus, the induced connection ∇ is computed
as follows: The section ∇ξσ corresponds to the function Tf · (ξ, 0) = T f̄ · ξ.
The last term gives the derivative of σ with respect to the flat connection on
G×P V = G/P × V .

Therefore, these two connections coincide.

In particular, the standard tractor bundle of the homogenous model is given
by T = G×P V = G/P ×V = Rn×Rn+1. Therefore, we will interpret sections
of T as smooth functions G/P → V .

Next, we will compute the line bundle L in the tractor bundle:

Proposition 5.1.6. Under the canonical trivialization Φ of the canonical trac-
tor bundle T (see 5.1.5), the line bundle L is given by{(

v,

(
λ
λv

))
∈ Rn × Rn+1 | v ∈ Rn, λ ∈ R

}
.

Proof. Let g ∈ G be of the form g =

(
1 0
v A

)
where v ∈ Rn and A ∈ O (n).

Then gP ∈ G/P corresponds to v ∈ Rn.

The line bundle is given by L := G×P 〈v0〉. The element [g, λv0] ∈ L, where
λ ∈ R, is mapped by Φ to (gP, gλv0) = (gP, λgv0).

Here we have λgv0 = λ

(
1 0
v A

)(
1
0

)
=

(
λ
λv

)
. Hence, (gP, λgv0) =

(
v,

(
λ
λv

))
.

This shows the claim.
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5.1.4 The tractor connection

Next, we compute the tractor connection in the decomposition of Proposition
5.1.4:

Proposition 5.1.7. For a Cartan geometry (π : G → M,ω) of type
(Euc(n), O(n)), and its canonical tractor bundle T = G×P Rn+1 = L⊕TM (cf.
5.1.4), the corresponding tractor connection is given by

∇ξ
(
φ
η

)
=

(
ξ · φ

φξ +∇LCξ η

)
,

where φ ∈ C∞(M,R), ξ, η ∈ X(M) and ∇LC denotes the Levi-Civita-connection
on TM .

Proof. We use the theorem 3.4.5 to prove the statement.
We consider the adjoint tractor bundle AM := G ×P g → M . The adjoint

action of O(n) on euc(n) is given by

Ad (A, (B,X)) =

(
1 0
0 A

)(
0 0
X B

)(
1 0
0 A−1

)
=

(
0 0
AX ABA−1

)
,

where A ∈ O(n) and (B,X) ∈ euc(n) = o(n)⊕ Rn (as a vector space).

Let σ ∈ Γ (T ). Firstly, T = L ⊕ TM , thus σ = (φ, η) for φ ∈ C∞ (M,R)
and η ∈ X (M). We denote the equivariant function corresponding to σ by
f : G → Rn+1. Furthermore, we denote the function f composed with the
projection on the first component by f0, and f composed with the projection
onto the last n components by fn. Then we have η (π (u)) = [u, fn(u)] and
φ(π(u)) = [u, f0(u)] for u ∈ G.

Recall that there is a surjective bundle map Π : G ×P g → G ×P g/p =
G ×P Rn = TM that is given by Π (τ (π(u))) = Π ([u, t (u)]) = [u, t(u) + p] =
[u,X(u)] =u (X (u)).

Now choose τ ∈ Γ (AM) such that Π ◦ τ = ξ. We obtain an equivariant
function G → euc(n) corresponding to τ . Note that euc(n) ∼= o(n)⊕Rn as a vec-
torspace, thus the function has two components that we denote by B : G → o(n)
and X : G → Rn.

Let us start by computing τ •σ. Therefore we have to take the derivative of

the standard action ρ of Euc(n) on Rn+1. Let

(
1 0
v A

)
∈ Euc (n) and

(
λ, y
)
∈

Rn+1, where A ∈ O(n), v, y ∈ Rn and λ ∈ R.
We have (

ρ

((
1 0
v A

)))(
λ
y

)
=

(
λ

λv +Ay

)
.

Let (B,X) ∈ euc(n) and t 7→ (A(t), v(t)) ∈ Euc(n) a smooth curve such that
0 7→ e and the derivative equals (B,X) at 0. Then

d

dt
|0ρ
((

1 0
v(t) A(t)

))(
λ
y

)
=

d

dt
|0
(

λ
λv(t) +A(t)y

)
=

(
0

λX +By

)
.
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This map ρ′ : g × Rn+1 → Rn+1 carries over to the bundles AM and T , a
map • : AM × T → T . We obtain for u ∈ G

(τ • σ) (π (u)) = [u, ρ′ (t (u)) , f (u)] =

[
u, ρ′

((
0 0

X (u) B (u)

))(
f0 (u)
fn (u)

)]
=

[
u,

(
0

f0 (u)X (u) +B (u) fn (u)

)]
=

[
u,

(
0

φ (π (u))X (u) +B (u) fn (u)

)]
,

since f0 = φ ◦ π.

Secondly, we want to compute the fundamental derivative Dτσ. Recall that
ω : TG → G × g gives a trivialization of the tangent bundle of G, thus we have
a bijective correspondence between vector fields on G and smooth functions
G → g. If we restrict this correspondence to equivariant functions on C∞ (G, g)
we obtain exactly the P -invariant vector fields on G.

In our case, ω = θ + γ, where θ ∈ Ω1 (G,Rn) is the soldering form on G and
γ ∈ Ω1 (G) denotes the Levi-Civita-connection on G. Note that γ extracts the
vertical part of a tangent vector, whereas θ projects to the underlying manifold
M , hence is completely determined by the horizontal component of the tangent
vector.

Let u ∈ G and ξ ∈ TG, then ξ is of the form ζB+(Tuπ ·ξ)hor where B ∈ o(n).
Then ωu (ξ) =

(
B, u−1

(
Tuπ · ξhor

))
.

Thus the inverse is given by ω−1 (B (u) , X (u)) = ζB(u) + (u (X (u)))
hor

.

We have to compute the derivative of f in direction ζB(u) + (u (X(u)))
hor

.
We start with the component f0 of f : By definition, f0 = φ ◦ π, hence

Tuf0 ·
(
ζB(u) + (u (X (u)))

hor
)

= Tφ(u)φ · Tuπ ·
(
ζB(u) + (u (X (u)))

hor
)

= Tπ(u)φ · (u (X (u))) = Tπ(u)φ · (Π (τ)) (π (u)) = (ξ · φ) (π (u)) .

The fn-component of f yields the following:

Tufn · (u (X (u)))
hor

= Tufn · ξhor (u) .

Recall that this expression is by definition the equivariant function correspond-
ing to ∇LCξ η.

Furthermore,

Tufn · ζB(u) (u) =
d

dt
|0fn (u · exp (tB (u))) =

d

dt
|0 exp (−tB (u)) · fn (u)(

d

dt
|0 exp (−tB (u))

)
· fn (u) = −B (u) fn (u) .

Recall from above that the adjoint action of O (n) on g/p = Rn. In addition,
this action is linear.



60 CHAPTER 5. HOLONOMY REDUCTIONS OF RIEMANNIAN ...

Summarizing the computations from above, we obtain by using 3.4.5

(∇ξσ) (π (u))

=

(
(ξ · φ) (π (u))

[u, φ (π (u))X (u) +B (u) fn (u)−B (u) fn (u)] +
(
∇LCξ η

)
(π (u))

)

=

(
(ξ · φ) (π (u))

φ (π (u)) ξ (u) +
(
∇LCξ η

)
(π (u))

)
.

5.2 Reductions of Riemannian Holonomy

Now we start to consider holonomy reductions of a Riemannian Cartan geometry
(G →M,ω).

The first obvious idea is to take a closed Lie subgroup H ⊂ O (n) and
consider a holonomy reduction according to H n Rn, meaning that is has type
Euc(n)/(H n Rn). In particular, if H leaves some subspace V ⊂ Rn invariant,
we have H ⊂ O(V ) × O(V ⊥). In the end of this section we take a closer look
at the case H = O(V )×O(V ⊥).

5.2.1 General Observations

Note that the curved-orbit-decomposition will consist of only one orbit. This is
due to the fact that the group O (n) acts transitively on Euc (n) /(H nRn) for
every subgroup H ⊂ O (n):

Lemma 5.2.1. Let H ⊂ O (n) be a subgroup. The left multiplication of O (n)
on Euc (n) /(H n Rn) is transitive. Consequently, each holonomy reduction of
a Riemannnian Cartan geometry with holonomy group H nRn has exactly one
curved orbit.

Proof. Consider (
1 0
v A

)
(H nRn) ∈ Euc (n) /(H nRn)

for A ∈ O (n) and v ∈ Rn. Note that

(
1 0
0 A

)
∈ O (n) and

(
1 0

A−1v I

)
∈

H nRn, and in addition we have(
1 0
0 A

)(
1 0

A−1v I

)
=

(
1 0
v A

)
.

Therefore we obtain(
1 0
0 A−1

)
·
(

1 0
v A

)
(H nRn) =

(
1 0

A−1v I

)
(H nRn) = H nRn.

By definition, we have at most as many curved orbits in M as P -orbits in
G/(H nRn).
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Nevertheless, the holonomy reduction implies some kind of structure, that we
will investigate. We start by describing the extended bundle Ĝ more explicitly.
It is built from the orthonormal frame bundle by forming the associated bundle
Ĝ = G ×O(n) (O (n) nRn).

Thus in order to understand this bundle, we must view O (n) n Rn as an
O (n)-module. First note the following

Remark 5.2.2. For two fiber bundles π1 : G1 → M and π2 : G2 → M over
the same manifold M it is possible to define the “fibered product”. This should
be another fiber bundle over M , such that the fiber over x ∈ M is given by
(G1)x × (G2)x. Technically, this can be realized as the pullback bundle π∗1G2 (or,
equivalently, π∗2G1). Its projection π is defined as π1 ◦ pr1, as illustrated in the
following commutative diagram:

π∗1G2
pr2 //

π

!!DD
DD

DD
DD

pr1

��

G2

π2

��
G1 π1

// M

We denote this bundle by G1 ×M G2. The fiber over x ∈M is indeed given by

(G1 ×M G2)x = pr−1
1

(
π−1

1 ({x})
)

= pr−1
1 ((G1)x) = (G1)x × (G2)x .

Let us investigate what happens if an associated bundle is formed with an
action that decomposes into a product:

Lemma 5.2.3. Let S1, S2 be manifolds, each endowed with a left P -action,
where P is the structure group of the principal bundle π : G → M . Then
G ×P (S1 × S2) = (G ×P S1)×M (G ×P S2).

Proof. Let

Φ : G ×P (S1 × S2)→ (G ×P S1)×M (G ×P S2) , [u, (s1, s2)] 7→ ([u, s1] , [u, s2]) .

This is indeed a well-defined fiber-bundle-isomorphism.

Lemma 5.2.4. (i) As an O (n)-space, O (n)nRn is isomorphic to O (n)×Rn
with left multiplication in the first component and standard action in the
second.

(ii) The extended bundle Ĝ can be identified with the fibered product G×M TM .

(iii) Under the identifiation from (ii), the embedding ι : G ↪→ Ĝ is of the form
idG ×0TM where 0TM denotes the zero-section of TM .

Proof. (i) Let

(
1 0
0 B

)
∈ O (n). It acts on

(
1 0
v A

)
∈ Euc (n) by(

1 0
0 B

)
·
(

1 0
v A

)
=

(
1 0
Bv BA

)
.

(ii) By (i) and 5.2.3, we have

Ĝ = G ×O(n) Euc (n) = G ×O(n) (O (n)× Rn)

=
(
G ×O(n) O (n)

)
×M

(
G ×O(n) Rn

)
= G ×M TM.
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(iii) Let u ∈ G. Then ι (u) = [u, e] ∈ G ×O(n) Euc (n). This element cor-
responds to [u, (e, 0)] ∈ G ×O(n) (O (n)× Rn), and is further identified with
([u, e] , [u, 0]). We obtain the element (u, 0) ∈ G × TM .

5.2.2 Equivalence to structures on the Riemannian man-
ifold

Now we assume that we have a given holonomy reduction Ĥ ⊂ Ĝ of the Cartan
geometry (π : G → M,ω) of type Euc (n) /(H n Rn). We form the intersection
H := Ĥ ∩ ι (G) ⊂ ι(G) = G × {0TM} ∼= G, and obtain the following diagram:

G ι // Ĝ

H

j

OO

ῑ
// Ĥ

ĵ

OO

We will denote the respective inclusions as in the diagram.

Proposition 5.2.5. The inclusion j : H ↪→ ι (G) = G × {0TM} ∼= G is a
reduction of the structure group from O (n) to H. It is compatible with the
connection γ, meaning j∗γ has values in the Lie algebra h of H.

Proof. We use 1.1.5 to show the claim.

1. Let x ∈ M , u ∈ ι (Gx) ⊂ G and u′ ∈ Ĥx ⊂ G. There is an element(
1 0
v A

)
∈ Euc (n) such that

u′ = u ·
(

1 0
v A

)
= u ·

(
1 0
0 A

)(
1 0

A−1v I

)
Thus, by invariance of G and Ĥ, we have found an element

u ·
(

1 0
0 A

)
= u′

(
1 0

A−1v I

)−1

in the intersection H = ι (G) ∩ Ĥ . Therefore π
∣∣
H is surjective.

2. The subset H is H-invariant, since for u ∈ H and h ∈ H we have h ∈
H n Rn, hence uh ∈ Ĥ, and on the other hand h ∈ O (n), thus uh ∈ G.
Consequently, uh ∈ H.

3. We have to show that H acts fiberwise transitively on H. Let u, u′ ∈ H
with π (u) = π (u′). Since both u and u′ are elements of G and Ĥ, there
are elements A ∈ O (n), v ∈ Rn and B ∈ H such that

u′ = u

(
1 0
0 A

)
and u = u′

(
1 0
v B

)
.

Consequently,

u = u′
(

1 0
v B

)
= u

(
1 0
0 A

)(
1 0
v B

)
= u

(
1 0
Av AB

)
.
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The Euc (n)-action on Ĝ is free, therefore

(
1 0
Av AB

)
=

(
1 0
0 I

)
. There-

fore, v = 0 and A = B−1 ∈ H. This gives an element in H that maps u
to u′.

4. Finally, we have to show that around each x ∈M there is an open neigh-
borhood U and a local smooth section of G|U that has values in H. Choose
U such that there is a smooth local section σ of G|U and a local section σ̂
of Ĥ|U .

By the implicit function theorem, there is a smooth function f : U →
Euc (n) such that σ̂ (y) = (ι ◦ σ) (y) · f (y) for all y ∈ U . The function f is

of the form f (y) =

(
1 0

v (y) A (y)

)
, where v : U → Rn and A : U → O (n)

are smooth.

We rewrite

(
1 0

v (y) A (y)

)
=

(
1 0
0 A (y)

)(
1 0

A (y)
−1
v(y) I

)
, where the

first factor is an element of O (n) and the second one is an element of
H nRn.

Then (ι ◦ σ) ·
(

1 0
0 A

)
= σ̂ ·

(
1 0

−A−1v I

)
=: τ .

Since G is O (n)-invariant, τ is a section of G, and since Ĥ is H n Rn-
invariant, it is a section of Ĥ. Hence it has values in H.

We still have to show that j∗γ has values in h.
The Cartan connection ω decomposes into the soldering form θ ∈ Ω1 (G,Rn)

and the connection γ ∈ Ω1 (G, o(n)). However,

j∗θ + j∗γ = j∗ω = j∗ (ι∗ω̂) = ῑ∗
(
ĵ∗ω̂

)
,

where ῑ : H ↪→ Ĥ and ĵ : Ĥ ↪→ Ĝ are the inclusions.
Since Ĥ is a holonomy reduction, it is compatible with the connection ω̂ on

Ĝ, meaning ĵ∗ω̂ has values in h⊕ Rn. Consequently, j∗γ has values in h.

It is straightforward to show that, conversely, a reduction of the structure
group of G that is compatible with the connection, induces a holonomy reduc-
tion.

Proposition 5.2.6. Let j : H ↪→ G be a reduction of the structure group from
O (n) to H, such that j∗γ has values in h. Then H induces a holonomy reduction
ĵ : Ĥ ↪→ Ĝ of type Euc (n) /(H nRn).

Proof. Let Ĥ := H×H (H nRn) and ῑ : H ↪→ Ĥ be given by ῑ (u) := [u, e]. We
define the embedding ĵ of Ĥ into Ĝ by

ĵ

([
u,

(
1 0
v A

)])
:=

[
j (u) ,

(
1 0
v A

)]
,

where u ∈ H, v ∈ Rn and A ∈ H.
Let u, u′ = u · B ∈ H, where B ∈ H, and furthermore A,A′ ∈ H and

v, v′ ∈ Rn. The map ĵ is well-defined and injective, since, by using injectivity
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and equivariance of j, we obtain

ĵ

([
u,

(
1 0
v A

)])
= ĵ

([
u′,

(
1 0
v′ A′

)])
⇐⇒

[
j (u) ,

(
1 0
v A

)]
=

[
j (u)B,

(
1 0
v′ A′

)]
⇐⇒

(
1 0
v A

)
=

(
1 0
0 B

)(
1 0
v′ A′

)
⇐⇒

[
u,

(
1 0
v A

)]
=

[
u′,

(
1 0
v′ A′

)]
.

The inclusion j is infinitesimally injective, thus so is ĵ.
We still have to show that j∗ω̂ has values in h⊕ Rn:

First note that T ῑ · Hγ ∩ V Ĥ = {0}: Suppose ξ ∈ Hγ such that T ῑ · ξ ∈ V Ĥ.
By definition, T ῑ · ξ is mapped to 0 by the derivative of the projection, hence,
since ῑ is a bundle map, ξ itself lies in the vertical subspace of TH. However,
TH = Hγ ⊕ VH, hence ξ = 0.

Therefore, by dimensional reasons, we obtain

T Ĥ|ῑ(H) = (T ῑ · Hγ)⊕
(
V Ĥ|ῑ(H)

)
.

On the one hand, an element ξ ∈ V Ĥ inserted into ĵ∗ω̂ will give an element of
h⊕ Rn. On the other hand, we have

ῑ∗ĵ∗ω = j∗ι∗ω̂ = j∗ω = j∗γ + j∗θ

where j∗γ has values in h and j∗θ has values in Rn. Thus for ξ ∈ Hγ we have(
ĵ∗ω̂

)
(T ῑ · ξ) =

(
ῑ∗ĵ∗ω̂

)
(ξ) ∈ h⊕ Rn, hence altogehter(
ĵ∗ω̂

)(
T Ĥ|ῑ(H)

)
∈ h⊕ Rn.

Finally, by equivariant extension, the claim follows for all elements in T Ĥ.

We still have to check that the two constructions from 5.2.5 and 5.2.6 are
inverse to each other:

Proposition 5.2.7. Let (π : G → M,ω) be a Cartan geometry of type
(Euc(n), O(n)) and H ⊂ O(n) a closed Lie subgroup. Holonomy reductions
of type Euc(n)/(HnRn) of the Cartan geometry are equivalent to reductions of
the structure group of G from O(n) to H.

Proof. Start with a reduction j : H ↪→ G, that is compatible with the connection
γ. The holonomy reduction in 5.2.6 was defined as Ĥ := H ×H (H nRn)
together with the embedding ĵ : Ĥ ↪→ Ĝ, ĵ ([u, (h, x)]) := [j (u) , (h, x)] where
u ∈ H, h ∈ H and x ∈ Rn.

In 5.2.4 we saw that Ĝ = G ×M TM . In this picture, the above embedding
is of the form ĵ ([u, (h, x)]) = (uh, u (x)). In 5.2.5, we reduced the bundle Ĥ by
intersecting it with ι (G) = G × {0TM}, where 0TM denotes the zero-section of
TM . Therefore, we obtain the subset {uh | u ∈ H, h ∈ H} = H of G. This is
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the set we had started with.

On the other hand, let ĵ : Ĥ ↪→ Ĝ be a reduction of the structure group from
Euc (n) to (H n Rn), that is compatible with the connection ω̂ on Ĝ. In 5.2.5
we formed the induced reduction H := Ĥ ∩ ι (G) together with the inclusion
j : H ↪→ ι (G) ∼= G. Additionally, we have the inclusion ῑ : H ↪→ Ĥ. In turn, by
5.2.6, H induces the reduction H×H (H nRn) ↪→ Ĝ, [u, (h, x)] 7→ [j (u) , (h, x)].

Let u ∈ H, h ∈ H and x ∈ Rn. We have ῑ (u) ∈ Ĥ, hence the embedded
elements are of the form [j (u) , (h, x)] = [j(u), e] · (h, x) = ι (j (u)) · (h, x) =
ĵ (ῑ(u)) · (h, x) ∈ ĵ(Ĥ). Hence H ×H (H n Rn) is embedded into Ĝ exactly in
the same way as Ĥ, thus the two reductions are isomorphic.

Thus we have proved that the original concept of Riemannian holonomy fits
into our definition of a holonomy reduction. All these reductions are well-known
as a certain type of G-structures endowed with a connection.

Hence holonomy reductions of Riemannian Cartan geometries generalize this
concept.

Remark 5.2.8. Note that we did not make use of the fact that G is the or-
thonormal frame bundle over M . Let G be a reduction of the frame bundle of
M , that has structure group P ⊂ GL (n,R), together with ω of the form θ + γ,
where θ is the soldering form and γ a principal connection on G (i.e. G is a
G-structure endowed with a connection γ) and H a closed subgroup of P . Then
a holonomy reduction of type (P n Rn)/(H n Rn), where H ⊂ P , is equivalent
to a H-reduction of G. The proof is completely analogous to the proof of 5.2.7.

5.2.3 Reductions of type O(V )×O(V ⊥)

At last, we consider an explicit type of reductions. Let V be a k-dimensional
linear subspace of Rn. We showed in Proposition 5.2.7 that holonomy reductions
of type O(V )×O(V ⊥)nRn are equivalent to reductions of the structure group of
the orthonormal frame bundle from O(n) to O(V )×O(V ⊥) that are compatible
with the connection. Without loss of generality we assume V := Rk × {0}.

Note that the group H := O(k)×O(n− k) is the stabilizer of the subspace
V ⊂ Rn in O(n). In particular, it stabilizes the complement V ⊥.

Definition Let V → M be a vector bundle endowed with a linear connection
∇. A subbundle V0 of V is called parallel if for all ξ ∈ X(M) and σ ∈ Γ(V0) the
covariant derivative ∇ξσ is again a section of V0.

We can immediately see, what kind of structure is induced by a H-reduction
that is compatible with the connection:

Proposition 5.2.9. Let (M, g) be a Riemannian manifold. A G-structure of
type O(k)×O(n−k) on the orthonormal frame bundle G, that is compatible with
the Levi-Civita-connection, is equivalent to a parallel distribution E of rank k
on M .

Proof. Let j : H ↪→ G be a reduction of the structure group from O(n) to
O(k)×O(n−k). We have H×H Rn = G×O(n)Rn = TM . Let E := H×H Rk ⊂
TM .
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We know j∗γ ∈ Ω1(H, h), where γ is the Levi-Civita-connection on G and
h = o(k) ⊕ o(n − k) the Lie algebra of H. Both connections induce the
Levi-Civita-connection ∇ on TM . Therefore the covariant derivative ∇ξη for
ξ ∈ X(M) and η ∈ Γ(E) corresponds to taking the derivative of the equivariant
function H → Rk that is induced by η with respect to the horizontal lift of ξ.
This is again an equivariant function H → Rk. Thus ∇ξσ has values in E and
hence E is parallel.

Conversely, suppose we have a given parallel distribution E. Then let H :=
{u ∈ G | [u, x] ∈ E ∀x ∈ Rk}. We have to show that this is an H-reduction. We
use 1.1.5:

(1) Let x ∈ M and u ∈ Gx. Choose an orthonormal basis of Ex, that is of the
form [u, v1], . . . [u, vk], where vi ∈ Rn. Complete it to an orthonormal basis
B = {v1, . . . , vn}. Take the base change A ∈ O(n) from the standard basis
to B, i.e. Aei = vi. Then [uA, ei] = [u,Aei] = [u, vi] ∈ E ∀i ≤ k. Hence
uA ∈ Hx and therefore π

∣∣
H : H →M is surjective.

(2) Let u ∈ H and A ∈ H, i.e. A stabilizes the subspace Rk ⊂ Rn. Thus
[uA, x] = [u,Ax] ∈ T0 for all x ∈ Rk.

(3) Let u, u′ ∈ H with u′ = uA for a A ∈ O(n). We have to show that A ∈ H.
We know that [u, x] ∈ E and [u′, x] = [uA, x] = [u,Ax] ∈ E for all x ∈ Rk.
If A did not stabilize Rk, the dimension of Eπ(u) would be larger than k.
Hence A ∈ H.

(4) The procedure from (1) can be conducted in a smooth way. Take a local
orthonormal frame of E that is of the form [σ(x), v1(x)], . . . , [σ(x), vk(x)]
where σ : U → G is a local section of G, x ∈ U and v1, . . . , vk : U → Rn are
smooth functions. Complete it to an orthonormal frame

[σ(x), v1(x)], . . . , [σ(x), vk(x)], [σ(x), vk+1(x)], . . . [σ(x), vn(x)]

of TM . Then let A(x) ∈ O(n) be the base change satisfying A(x)ei = vi(x).
By the implicit function theorem, A depends smoothly on x. Finally, σ ·A is
a local section of H, since [(σ ·A)(x), ei] = [σ(x), A(x)ei] = [σ(x), vi(x)]∀x ∈
U ∀i ≤ k.

Next, we show that these two constructions are inverse to each other:
Firstly, let H be an H-reduction and form E := H×H Rk. Then let

H̄ :=
{
u ∈ Ĝ | [u, x] ∈ E ∀x ∈ Rk

}
.

We have to show that H = H̄.
On the one hand, let u ∈ H. By definition, [u, x] ∈ E for all x ∈ Rk, thus

x ∈ H̄.
On the other hand, let u ∈ H̄. We take an element u′ ∈ H such that

π (u) = π (u′), hence there is a A ∈ O(n) such that u = u′A. We conclude that
for all x ∈ Rk we have [u′, Ax] = [u′A, x] = [u, x] ∈ E. Therefore, A has to
stabilize the subspace Rk ⊂ Rn, since otherwise E would have dimension higher
than k. Thus A ∈ H and u = u′A ∈ H.
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Now, let us start with a given subbundle E that has rank k. Let H :={
u ∈ G | [u, x] ∈ E ∀x ∈ Rk

}
, and form Ē := H ×H Rk. We have to show that

Ē = E.

Let [u, x] ∈ Ē where u ∈ H and x ∈ Rk. By definition, [u, y] ∈ E for all
y ∈ Rk, hence in particular [u, x] ∈ E.

On the other hand, consider an element [u, x] ∈ E where u ∈ G and x ∈ Rn.
Choose an element u′ = uA ∈ H where A ∈ O(n). Then

[
u′, A−1x

]
=[

u′A−1, x
]

= [u, x] ∈ E, hence A−1x ∈ Rk again by dimensional reasons. There-

fore, A ∈ H and [u, x] =
[
u′, A−1x

]
∈ Ē.

We still have to prove that the reduction H is compatible with the connec-
tion. Note that h = o(k) ⊕ o(n − k) = Stabo(n)(Rk). From above, we know

that E = H×H Rk. We want to show that the horizontal distribution satisfies
Hu ⊂ TuH for all u ∈ H.

Suppose indirectly that there is a u ∈ H such that Hu 6⊂ TuH. Take a
horizontal curve c : I → G such that c(0) = u and c(t) /∈ H for all t > 0, such
that I is an open interval containing 0.

Furthermore, choose a local section τ ofH around π (u) satisfying τ (π (u)) =
u. By the inverse function theorem, we can find a smooth map A : I → G such
that c(t) = τ (π (c (t)))A (t). We see that A(0) = e and A−1 (t) /∈ H for all
t > 0, hence X := d

dt |0A
−1 (t) /∈ h.

Now choose x ∈ Rk+1 such that X · x /∈ Rk+1 and f : G → Rn+1 an
equivariant function such that f (u) = x. The function f corresponds to a
vector field on M with values in E. By definition of E, the covariant derivative
of this vector field along any vector field ξ on M again has values in E. This
covariant derivative corresponds to ξhor · f , hence ξhor · f again has values in
Rk.

We obtain

Rk 3 (c′ (0) · f) =
d

dt
|0f (c (t)) =

d

dt
|0A−1 (t) f (τ (π (c (t))))

=

(
d

dt
|0A−1 (t)

)
f (τ (π (c (0)))) +A−1 (0)

(
d

dt
|0f (τ (π (c (t))))

)
=Xf (u) +

d

dt
|0f (τ (π (c (t)))) .

However, f (u) ∈ Rk and τ is a section of H, hence also the second summand
is in Rk.

Therefore we have a contradiction, since X ·x /∈ Rk but the other two terms
are elements of Rk.

Finally, we observe two immediate properties of parallel distributions.

Proposition 5.2.10. Let M be a Riemannian manifold and E a parallel on
M . Then

(i) E is involutive, hence integrable, and

(ii) its orthogonal complement E⊥ is parallel.
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Proof. (i) Let ξ, η ∈ Γ(E). Then, since the Levi-Civita-connection is torsion-
free, we have

[ξ, η] = ∇ξη −∇ηξ,

and since E is parallel, both summands on the right hand side are sections of E.

(ii) Let η ∈ Γ(E⊥) and ζ ∈ X(M). Then for each ξ ∈ Γ(E) we have

0 = ζ · 0 = ζ · g(ξ, η) = g(∇ζξ, η) + g(ξ,∇ξη) = g(ξ,∇ζη),

since E is parallel. Hence ∇ζη is again a section of E⊥.

This shows that a O(V )×O(V ⊥)-reduction implies a product structure on
the tangent bundle. As a consequence, the manifold M itself is locally isometric
to a product of Riemannian manifolds (see the de Rham decomposition theorem,
e.g. [8, p.187]).

5.3 Reductions of type O(V )×O(V ⊥)n V

In this section we consider an explicit subgroup, namely O(V ) × O(V ⊥) n V ,
where V ⊂ Rn is a k-dimensional vector space. We will give a geometrical char-
acterization of these holonomy reductions in terms of a certain vector field on
the underlying manifold together with the parallel distribution that we studied
in 5.2.9.

Having examined holonomy reductions of this type in detail, we can make
conclusions for holonomy reductions of type H n V , where H is a subgroup of
O(n) that leaves V invariant, since

H n V ⊂ O(V )×O(V ⊥) n V ⊂ Euc(n).

In 5.2.7 we showed that the holonomy reduction H n Rn ⊂ Euc(n) is
a usual reduction of the structure group from O(n) to H. Here we have
H ⊂ O(V ) × O(V ⊥), hence H is reducible in the sense that its action leaves
the decomposition V ⊕ V ⊥ invariant. By the de Rham decomposition theorem
(see [8, p.187]) the manifold is locally isometric to a product of Riemannian
manifolds. The reduction H n V ⊂ O(V ) × O(V ⊥) n V endows this product
with a structure coming from Riemannian holonomy.

For notational reasons, we take V = Rk and thus consider

H := (O(k)×O(n− k)) nRk

where k < n.

5.3.1 Groups and Orbits

We start by describing the group H as the stabilizer of an object on the canonical
representation Rn+1 of G:

Proposition 5.3.1. There is a k+1-dimensional linear subspace W0 ⊂ V such
that H = StabG (W0) and dim (ker (ϕ0) ∩W ) = k.
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Proof. We conduct the proof in coordinates e0, ..., en of V = Rn+1, such that
ϕ0 extracts the coefficient of e0 (see 5.1.2).

Let W0 := 〈 e0, . . . , ek 〉. Since ker (ϕ0) = 〈 e1, . . . , en 〉, the intersection with
W0 has dimension k. An element of H is given by 1 0 0

v′ C 0
0 0 D


in 1+k+(n−k)-block matrix form , where v′ ∈ Rk, C ∈ O(k) and D ∈ O(n−k).
It stabilizes W0 since for 1 ≤ i ≤ k we have 1 0 0

v′ C 0
0 0 D

1
0
0

 =

 1
v′

0

 and

 1 0 0
v′ C 0
0 0 D

0
ei
0

 =

 0
Cei
0

 .

.

Conversely, let g :=

(
1 0
v A

)
∈ G, where A ∈ O(n) and v ∈ Rn, such that g

stabilizes W0. Then

(
1 0
v A

)(
1
0

)
=

(
1
v

)
∈W0, thus the last n−k components

of v must vanish.

Furthermore, for 1 ≤ i ≤ k we have

(
1 0
v A

)(
0
ei

)
=

(
0
Aei

)
∈W0, hence A

maps the linear subspace L := 〈 e1, . . . , ek 〉 ⊂ Rn to itself. Thus also A−1(L) =
L. Let v ∈ L⊥ = 〈 ek+1, . . . , en 〉 ⊂ Rn, then we have 〈Av,w 〉 =

〈
v,A−1w

〉
=

0 for all w ∈ L. Therefore A
(
L⊥
)
⊂ L⊥. Hence A preserves the decomposition

Rn = L ⊕ L⊥. Consequently, it is of the form

(
C 0
0 D

)
for C ∈ O(k) and

D ∈ O(n− k).

The G-orbit

We consider the G-orbit of W0 in the space of linear, k+1-dimensional subspaces
of V , the Grassmannian Gr(k + 1, V ). First we recall from linear algebra:

Lemma 5.3.2. Let V be a finite-dimensional vector space and W ⊂ V a linear
subspace with annihilator W ◦ ⊂ V ∗.

(i) V ∗/W ◦ = W ∗

(ii) (V/W )
∗

= W ◦

(iii) The linear subspaces of V are in bijective correspondence to the quotients
of V ∗ via W 7→ V ∗/W ◦.

(iv) Each linear subspace L ⊂ V ∗ is of the form W ◦ for a unique W ⊂ V .

Proof. (i) Let p : V ∗ → W ∗, p (f) = f
∣∣
W

for f ∈ V ∗. Then p is surjective and

has kernel ker (p) =
{
f ∈ V ∗ : f

∣∣
W

= 0
}

= W ◦, therefore V ∗/W ◦ ∼= W ∗.

(ii) Let q : W ◦ → (V/W )
∗

given by f 7→ f̃ , where for f ∈ W ◦ , f̃ is the
factorized map over the canonical projection V → V/W . The map q is linear
and if f ∈ ker (q) then for all v ∈ V we have 0 = f̃(v + W ) = f(v), therefore
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f = 0. Hence q is injective and surjectivity follows from dimensional reasons.

(iii) Denote Φ : W 7→ V ∗/W and Ψ : {quotients of V ∗} → {subspaces of V } ,
V ∗/L 7→ L◦. The maps are inverse to each other since

Ψ (Φ (W )) = Ψ (V ∗/W ◦) = (W ◦)
◦

= W

and Φ (Ψ (V ∗/L)) = Φ (L◦) = V ∗/
(
(L◦)

◦)
= V ∗/L.

(iv) Construct a basis {v1, . . . , vn} of V such that its dual basis {f1, . . . , fn}
gives a basis of L by {f1, . . . , fk}. Now L = 〈 vk+1, . . . , vn 〉◦ since: f ∈ L ⇒
f =

∑k
i=1 αifi where αi ∈ R⇒ ∀j > k : f (vj) = 0. Conversely, it is clear that

fj ∈ 〈 vk+1, . . . , vn 〉◦ if and only if j ≤ k, therefore in this case fj ∈ L.

Proposition 5.3.3. The G-orbit in Gr(k + 1, V ) that contains W0 is given by

O := {W ⊂ V | ϕ0|W 6= 0} = {W ⊂ V | dim (ker (ϕ0) ∩W ) = k} .

Proof. We first prove the second equality: For W ∈ Gr(k + 1, V ) we claim
ϕ0

∣∣
W
6= 0 ⇐⇒ dim (W ∩ ker (ϕ0)) = k.

(⇒) Note that W ∩ ker(ϕ0) = {w ∈ W | ϕ0(w) = 0} = ker(ϕ0

∣∣
W

). Thus

ϕ0

∣∣
W
6= 0 ⇐⇒ ker(ϕ0

∣∣
W

) ( W ⇐⇒ ker(ϕ0) ∩W ( W . Hence W ∩ ker (ϕ0)
can have at most dimension k, but since dim(W ) + dim(ker (ϕ0)) = dim(V ) +
dim (W ∩ ker (ϕ0)) we have dim(W ∩ ker (ϕ0)) = (k + 1) + n− (n+ 1) = k.

The other implication (⇐) is clear from ker(ϕ0) (W0

Now we prove the remaining equality:

(⊂) Let g =

(
1 0
v A

)
∈ G, where A ∈ O(n) and v ∈ Rn, then

g (W0) = 〈 ge0, . . . , gek 〉 =

〈(
1
v

)
,

(
0
Ae1

)
, . . . ,

(
0
Aek

)〉

and ϕ0

(
1
v

)
= 1, so ϕ0

∣∣
g(W0)

6= 0.

(⊃) Let W ∈ Gr(k + 1, V ) such that ϕ0

∣∣
W
6= 0. We construct a basis of W

as follows: Take an orthonormal basis {v1, . . . , vk} of W ∩ker (ϕ0) and complete
it to a basis of W by some w ∈ W . Necessarily w /∈ ker (ϕ0) therefore its 0-

component w0 6= 0. Let v0 := 1
w0
w, that must be of the form v0 =

(
1
v

)
where

v ∈ Rn.
On the other hand, complete {v1, . . . , vk} to an orthonormal basis

{v1, . . . , vn} of ker (ϕ0) and denote the the base change in ker (ϕ0) from
{e1, . . . , en} to {v1, . . . , vn} by A ∈ O(n) (both bases are orthonormal with
respect to the inner product on ker(ϕ0)). Hence

W = 〈w, v1, . . . , vk〉 =

〈(
1
v

)
,

(
0
Ae1

)
, . . . ,

(
0
Aek

)〉
=

(
1 0
v A

)
(W0) .

Proposition 5.3.4. The orbit O is an open subset of the manifold Gr (k + 1, V ).
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Proof. Note that Gr(k + 1, ker(ϕ0)) ⊂ Gr(k + 1, V ) is a closed submanifold.
Furthermore, an element W ∈ Gr(k + 1, V ) satisfies W /∈ Gr(k + 1, ker(ϕ0))
if and only if W ( ker(ϕ0). This is equivalent to ϕ0

∣∣
W
6= 0. Thus O is the

complement of Gr(k+1, ker(ϕ0)) and hence an open subset of Gr(k+1, V ).

The above proposition shows that O is indeed a smooth manifold, namely
an open subset of the manifold Gr(k + 1, V ).

In the following, we will describe a Cartan geometry endowed with a holon-
omy reduction of type O in detail. We start by investigating the O(n)-orbits in
O, in order to determine the different P -types. Then we compute the curved
orbits in the homogenous model. By taking a detour to the canonical tractor
bundle, we will be able to transfer certain results from the homogenous model
to any Riemannian Cartan geometry that is equipped with such a holonomy re-
duction. Finally, we find an equivalent geometrical interpretation for holonomy
reductions of this type.

The P -orbits

Next, we want to describe the P -orbits in O in an invariant way.
Let W ∈ O. We know that ker(ϕ0) ∩W has dimension k. Take (ker(ϕ0) ∩

W )⊥ in ker(ϕ0) that is endowed with an inner product (cf. 5.1.2). Then

V = W ⊕ (ker(ϕ0) ∩W )⊥,

since w ∈ W ∩ ((W ∩ ker(ϕ0))⊥) implies that w ∈ W ∩ ker(ϕ) and w ∈ (W ∩
ker(ϕ))⊥. Thus w = 0. Furthermore, dim(W+(ker(ϕ0)∩W )⊥) = k+1+n−k =
n+ 1, thus the above equation holds.

Denote the projection on the second component of the direct sum by pr2 :
V → (ker(ϕ0) ∩W )⊥. Then we can compute the norm of the projection of v0

(cf. 5.1.2), since (ker(ϕ0) ∩W )⊥ ⊂ ker(ϕ0) carries an inner product.
We define

Definition

Or := {W ∈ O | || pr2(v0)|| = r}

for r ∈ R+
0 .

Proposition 5.3.5. The Or’s for r ∈ R+
0 are exactly the P -orbits in O.

Proof. We conduct the proof in the standard coordinates {e0, . . . , en} of V =
Rn+1 (see 5.1.2). Recall that ker(ϕ0) = 〈 e1, . . . , en 〉 in these coordinates.

We prove the following three claims in order to establish the proposition:

(i) Wr :=

〈(
1
ren

)
,

(
0
e1

)
, . . . ,

(
0
ek

)〉
∈ Or.

(ii) P ·W ⊂ Or for each W ∈ Or. In particular P ·Wr ⊂ Or.

(iii) P ·Wr = Or.

proof of (i): We have ker(ϕ0) ∩Wr = 〈 e1, . . . , ek 〉, thus (ker(ϕ0) ∩Wr)
⊥ =

〈 ek+1, . . . , en 〉.
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In order to compute the projection of v0 we have to solve the following
equation (

1
0

)
= α

(
1
ren

)
+

(
0
x

)
+

(
0
y

)
,

where α ∈ R, x ∈ W ∩ ker(ϕ0) and y ∈ (W ∩ ker(ϕ0))⊥ = 〈 ek+1, . . . , en 〉. We
immediately conclude α = 1 and x = 0, therefore y = −ren. This gives pr2(v0),
thus ||pr2(v0)|| = || − ren|| = r.

proof of (ii): Let p ∈ P and W ∈ Or. We consider the transformation
p : V → V . Note that p preserves the vector v0, i.e. p(v0) = v0, and the
inner product on ker(ϕ0). Therefore, for any linear subspace U of ker(ϕ0) we
have p(U⊥) = (p(U))⊥, in particular this holds for U = W ∩ ker(ϕ0). Thus
it maps the decomposition W ⊕ (W ∩ ker(ϕ0))⊥ to p(W )⊕ (p(W ) ∩ ker(ϕ0))⊥

of V . Denote the projections on the second component by prW2 and pr
p(W )
2 ,

respectively. Otherwise said, p satisfies p ◦ prW2 = pr
p(W )
2 ◦p.

Altogether, we have ||pr
p(W )
2 (v0)|| = || pr

p(W )
2 (p(v0))|| = ||p(prW2 (v0)|| =

||prW2 (v0)|| = r, since p is orthogonal on ker(ϕ0). Thus p(W ) ∈ Or.

proof of (iii): We will show that O ⊂
⊔
r≥0 P ·Wr. Combined with O =⊔

r≥0Or and (ii) this proves equality of P ·Wr and Or.

In the proof of 5.3.3 we saw that elements W of O are of the form〈(
1
v

)
,

(
0
Ae1

)
, . . . ,

(
0
Aek

)〉
for v ∈ Rn and A ∈ O(n). Acting with(

1 0
0 A−1

)
on W gives the subspace

〈(
1

A−1v

)
,

(
0
e1

)
, . . . ,

(
0
ek

)〉
of Rn+1.

Denote the first k components of A−1v by v1 ∈ Rk and the remaining n − k
components by v2 ∈ Rn−k, then there is r ≥ 0 and D ∈ O(n − k) such that

Dv2 = ren−k. Let additionally the 1 × k × n − k-block-matrix

1 0 0
0 Ik 0
0 0 D


act on the subspace to obtain

〈 1
v1

ren−k

 ,

 0
e1

0

 , . . . ,

 0
ek
0

〉 = Wr. Hence

O ⊂
⋃
r≥0 P ·Wr.

It is clear from (ii) and the fact that Or ∩Or′ = ∅ for r 6= r′ that the union
is disjoint. This completes the proof.

Thus, our P -types are characterized by the non-negative, real numbers. We
will denote the curved orbits in M by Mr, where Mr is the collection of all
points that have P -type Or.

Example 5.3.6. Consider the special case k = 0. Then we have H = O(n)×{0}
and O = {W ∈ Gr(1, k + 1) | dim(ker(ϕ0)) ∩W = 0}. Note that each element
W ∈ O is generated by an element of the form e0 +w for a unique w ∈ {0}×Rn.
Each w ∈ {0} ×Rn induces a line 〈e0 +w〉 ∈ O, hence O = Rn. The Lie group
G = Euc(n) acts on O via (A, v) · 〈e0 + w〉 = 〈e0 + Aw + v〉, thus the induced
action on Rn is the standard action of O(n) nRn on Rn.
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The P -orbits in Rn are exactly the spheres around 0.
This indeed fits together with the Or’s defined above: Rn+1 decomposes into

〈 e0 + w 〉 ⊕ (ker(ϕ0) ∩ 〈 e0 + w 〉)⊥ = 〈 e0 + w 〉 ⊕ ker(ϕ0). Then v0 is projected
onto −w ∈ ker(ϕ0) since v0 = (e0 + w) − w. Hence the orbits in O = Rn are
formed according to ||w|| where w ∈ Rn. These are the spheres around 0, as
seen above.

5.3.2 The induced subbundle of the tractor bundle

There is a k+ 1-dimensional subbundle T0 of T , that is induced by a holonomy
reduction of type O:

The holonomy reduction can be interpreted as a reduction j : H → Ĝ
of the structure group from Euc(n) to H. We know from 5.3.1 that H is
the stabilizer of a k + 1-dimensional subspace W0 in V . Hence we obtain
T0 := H×H W0 ⊂ H×H V = T .

The pullback connection of ω̂ on H is principal and we can show, that the
induced connection on T coincides with the tractor connection:

Lemma 5.3.7. The connection ω̂ on Ĝ and its pullback on H induce the same
connection on T .

Proof. We have T = H ×H V = Ĝ ×G V . Let σ ∈ Γ(T ), then σ corrsponds
to the equivariant functions fH : H → V and fG : Ĝ → V , respectively. The
functions satisfy fG ◦ j = fH .

For ξ ∈ X(M), denote the horizontal lifts of ξ to H and Ĝ by ξhorH and ξhorG ,
respectively. Then Tj · ξhorH = ξhorG .

Consequently, ξhorG · fG = TfG · Tj · ξhorH = TfH · ξhorH . Therefore, j∗ω̂ and
ω̂ induce the same connection on T .

From the above Lemma we can immediately conclude that T0 is parallel:
Since the pullback of the connection to the reduction induces the same connec-
tion as ω̂ on T , the covariant derivative corresponds to taking the derivative of
the equivariant function H → Rk+1 with respect to the horizontal lift of ξ. This
is again an equivariant function H → Rk+1, hence ∇ξσ has values in T0.

Question: How does T0 behave with respect to the decomposition T =
L ⊕ TM (cf. 5.1.4)?

Recall from 5.3.1 that dim (ker (ϕ0) ∩W0) = k, and since ker(ϕ0) is G-
invariant and hence H-invariant, we have

dim ((H×H W0) ∩ (H×H ker (ϕ0))) = dim (T0 ∩ TM) = k.

Furthermore, this implies that there can be no x ∈M such that (T0)x ⊂ Tx,
since in this case the dimension of the above intersection would be k+1. Equiv-
alently expressed, this means that prL : T → L, the projection onto L with
respect to the decomposition T = L ⊕ TM , cannot vanish at any point.

Now we will show that these properties of T0 already suffice to characterize
the holonomy reduction:
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Proposition 5.3.8. Let (M, g) be a Riemannian manifold of dimension n,
k < n and T0 be a k+ 1-dimensional parallel subbundle of the canonical tractor
bundle T on M , such that prL ((T0)x) 6= {0} for all x ∈M . Then

H = {u ∈ Ĝ | [u, x] ∈ T0 ∀x ∈ Rk+1}

is a reduction of the structure group of Ĝ from Euc(n) to (O(k)×O(n−k))nRk.

Proof. We make use of 1.1.5 so we have to verify conditions (i) - (iv) from there.

(i) Let x ∈M and u ∈ Gx ⊂ Ĝx. There is a [u, x0] ∈ (T0)x such that pr0 (x) 6=
0 and gx (x0, x0) = 1, where pr0 denotes the projection Rn+1 → R on
the first component. Complete [u, x0] to a basis of (T0), that is of the
form [u, x0] , [u, x1] , . . . , [u, xk], such that pr0(xi) = 0 for all 1 ≤ i ≤ k
and the set {[u, x1] , . . . , [u, xk]} is orthonormal with respect to gx. By
5.1.4, x1, . . . , xk are orthonormal in {0}×Rn with respect to the standard
inner product, thus we can complete them to an orthonormal basis of
{0}×Rn. Denote the base change from the standard basis of Rn+1 to the
above constructed basis by g. This is an element of Euc(n), since the first
standard basis element is mapped to x0 and the rest of the elements are
in Rn and form an orthonormal basis.

Then, ug ∈ H since [ug, ei] = [u, gei] = [u, xi] ∈ (T0)x for all i ∈ {0, . . . , k}.

(ii) Let u ∈ H and h ∈ O(k)×O(n− k) nRk. Then h stabilizes the subspace
Rk+1 ⊂ Rn+1, thus [uh, x] = [u, hx] ∈ T0 for all x ∈ Rk+1.

(iii) Let u, u′ ∈ H with u′ = ug for a g ∈ G. We have to show that g ∈ H. We
know that [u, x] ∈ T0 and [u′, x] = [ug, x] = [u, gx] ∈ T0 for all x ∈ Rk+1.
If g did not stabilize Rk+1, the dimension of (T0)π(u) would be larger than
k + 1. Hence g ∈ H.

(iv) Let σ : U → G be a local smooth section of G ⊂ Ĝ where U ⊂ M is an
open subset.

The projection prL : T → L is a smooth surjective homomorphism of
vector bundles. Thus there is a smooth section of T0 which gets mapped to
the constant function 1. This corresponds to a smooth map x0 : U → Rn+1

such that ||x0 (x) || = 1 and prL ([σ (x) , x0 (x)]) 6= 0 for all x ∈ U .

Analogously as in (i), but in a smooth way, we complete x 7→ [σ (x) , x0 (x)]
to a local frame of T |U . Denote the respective base change by g : U → G.
Then, exactly as in (i), we obtain the local section σg of Ĝ that has values
in H.

This allows us to construct reductions of the structure group from parallel
subbundles of the canonical tractor bundle. Conversely, given a reduction of
the structure group H from G to O(k) × O(n − k) n Rk+1 we build parallel
subbundles of the tractor bundle by forming the associated bundle H×H Rk+1.

In order to prove that holonomy reductions of type O(k) × O(n − k) n Rk
are equivalent to certain parallel tractor bundles, we have to show the following
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Lemma 5.3.9. Consider the Lie algebra representation euc(n) → gl
(
Rn+1

)
.

Then h := o(k)⊕ o(n− k)⊕ Rk is exactly the stabilizer of Rk+1 in euc(n).

Proof. On the one hand, let

 0 0 0
X A 0
0 0 B

 ∈ h. Then

 0 0 0
X A 0
0 0 B

1
0
0

 = 0
X
0

 and

 0 0 0
X A 0
0 0 B

0
ei
0

 =

 0
Aei
0

 ∈ Rk+1.

On the other hand, suppose indirectly that there is an element of euc(n) that

stabilizes Rk+1 but is not in h. It must be of the form

 0 0 0
X A D
Y −DT B

 for

Y 6= 0 or D 6= 0.

However,

 0 0 0
X A D
Y −DT B

1
0
0

 =

 0
X
Y

 and

 0 0 0
X A D
Y −DT B

0
ei
0

 = 0
Aei
−DTei

. Therefore, it cannot stabilize Rk+1.

This allows us to show

Theorem 5.3.10. Let (M, g) be a Riemannian manifold of dimension n and
(G → M,ω) the corresponding Cartan geometry (cf. 5.1.1) and k < n. A
holonomy reduction of type O (where O is as in 5.3.3) is equivalent to a k + 1-
dimensional, parallel subbundle T0 of T such that prL((T0)x) 6= {0} for all
x ∈M .

Proof. Denote H := O(k)×O(n− k) nRk.
At first, we show that on the one hand, given a tractor bundle as in the

above claim, the reduction of the structure group from 5.3.8 and on the other
hand, forming the tractor bundle out of a reduction of the structure group, are
inverse to each other.

Firstly, let H be an H-reduction. Then form T0 := H×HRk+1. Finally, as in

5.3.8, let H̄ :=
{
u ∈ Ĝ | [u, x] ∈ T0 ∀x ∈ Rk+1

}
. We have to show that H = H̄.

On the one hand, let u ∈ H. By definition, [u, x] ∈ T0 for all x ∈ Rk+1, thus
x ∈ H̄.

On the other hand, let u ∈ H̄. We take an element u′ ∈ H such that
π (u) = π (u′), hence there is a g ∈ G such that u = u′g. We conclude, that
for all x ∈ Rk+1 we have [u′, gx] = [u′g, x] = [u, x] ∈ T0. Therefore, g has to
stabilize the subspace Rk+1 ⊂ Rn+1, since otherwise T0 would have dimension
higher than k + 1. Thus g ∈ H and u = u′g ∈ H.

Now, let us start with a given sub-vector bundle T0 that has the same prop-

erties as described in 5.3.8. Let H :=
{
u ∈ Ĝ | [u, x] ∈ T0 ∀x ∈ Rk+1

}
, and form

T̄0 := H×H Rk+1. We have to show that T̄0 = T0.
Let [u, x] ∈ T̄0 where u ∈ H and x ∈ Rk+1. By definition, [u, y] ∈ T0 for all

y ∈ Rk+1, hence in particular [u, x] ∈ T0.
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On the other hand, consider an element [u, x] ∈ T0 where u ∈ Ĝ and
x ∈ Rn+1. Choose an element u′ = ug ∈ H where g ∈ G. Then

[
u′, g−1x

]
=[

u′g−1, x
]

= [u, x] ∈ T0, hence g−1x ∈ Rk+1 again by dimensional reasons.

Therefore, g ∈ H and [u, x] =
[
u′, g−1x

]
∈ T̄0.

There is one thing left to prove: we saw before that given a reduction of the
structure group that is compatible with the prinicipal connection on Ĝ induces a
parallel sub-tractor bundle. However, we have to show that in our situation also
the converse is true, i.e. that H from 5.3.8 is compatible with the connection ω̂
on Ĝ.

From above, we know that T0 = H ×H Rk+1. We want to show that the
horizontal distribution satisfies Hu ⊂ TuH for all u ∈ H.

Suppose indirectly that there is a u ∈ H such that Hu 6⊂ TuH. Take a
horizontal curve c : I → Ĝ such that c(0) = u and c(t) /∈ H for all t > 0, such
that I is an open interval containing 0.

Furthermore, choose a local section τ ofH around π (u) satisfying τ (π (u)) =
u. By the inverse function theorem, we can find a smooth map g : I → G such
that c(t) = τ (π (c (t))) g (t). We see that g(0) = e and g−1 (t) /∈ H for all t > 0,
hence X := d

dt |0g
−1 (t) /∈ h.

Now choose x ∈ Rk+1 such that X · x /∈ Rk+1 and f̂ : Ĝ → Rn+1 an
equivariant function such that f̂ (u) = x. The function f̂ corresponds to a
section of T with values in T0. By definition of T0, the covariant derivative of
this section along any vector field ξ on the underlying manifold again has values
in T0. This covariant derivative corresponds to ξhor · f̂ , hence ξhor · f̂ again has
values in Rk+1.

We obtain

Rk+1 3
(
c′ (0) · f̂

)
=

d

dt
|0f̂ (c (t)) =

d

dt
|0g−1 (t) f̂ (τ (π (c (t))))

=

(
d

dt
|0g−1 (t)

)
f̂ (τ (π (c (0)))) + g−1 (0)

(
d

dt
|0f̂ (τ (π (c (t))))

)
=Xf̂ (u) +

d

dt
|0f̂ (τ (π (c (t)))) .

However, f̂ (u) ∈ Rk+1 and τ is a section of H, hence also the second sum-
mand is in Rk+1.

Therefore we have a contradiction, since X · x /∈ Rk+1 but the other two
terms are elements of Rk+1.

Altogether this shows that holonomy reductions with holonomy groupO(k)×
O(n − k) n Rk on a Riemannian geometry are equivalent to certain parallel
subbundles of the tractor bundle.

Now we want to understand the structures that are induced on the tangent
bundle.

Denote E := T0∩TM . We already noted before that this bundle has constant
rank k, thus we obtain a distribution on M .

Since v0 is not H-invariant, the dimension of the intersection of L and T0

will in general not be constant. By dimensional reasons there are only two
possibilities for each x ∈ M : either Lx ⊂ (T0)x or Lx ∩ (T0)x = {0}. In the
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following we will investigate how the intersection Lx ∩ (T0)x behaves for x ∈M
with respect to the curved orbits.

Moreover, we can consider the projection q : L ⊕ TM → TM . If
(Lx ∩ (T0)x) = {0} for x ∈M , we have dim(q((T0)x)) = k+1 and Ex ⊂ q((T0)x).
Since TxM carries a metric gx, we obtain the decomposition q((T0)x) = Ex⊕E⊥x ,
where E⊥x denotes the orthogonal complement of Ex in q((T0)x). The vec-
tor space E⊥x has dimension 1. We denote it by Lx. Furthermore, we de-
note the orthogonal complement of q((T0)x) in TxM by Fx, hence we have
TxM = Ex ⊕ Lx ⊕ Fx.

Note that this decomposition depends smoothly on x, thus we have outside
of

S := {x ∈M | Lx ⊂ (T0)x}

the following decomposition:

TM |M\S = E|M\S ⊕ L⊕ F.

Later we will show that S = M0 (cf. 5.3.22).

Also the other curved orbits can be characterized in terms of the relative
positions of L and T0: Note that T decomposes into T0 ⊕ E⊥ where E⊥ is the
orthogonal complement of E in TM . The intersection is trivial, since T0∩TM =
E and E⊥ ⊂ TM . Furthermore, we have dim(T0 +E⊥) = dim(T0)+dim(E⊥) =
k + 1 + n− k = n+ 1, and thus T = T0 ⊕E⊥. Denote the projection T → E⊥

with respect to this decomposition by pr. Later we will see that x ∈Mr if and
only if ||pr(1x)|| = r, where 1 is the canonical section of L and the norm is
computed with respect to the Riemannian metric on M .

5.3.3 The homogenous model

Firstly, we will thoroughly examine the case of the homogenous model, so that
we are later able to generalize results via Comparison (cf. 4.5.1). Here we follow
the theoretical observations on holonomy reductions of the homogenous model
in 4.4.3.

The curved orbits

Thus we consider the H-action on G/P to determine the curved-orbit-
decomposition in order to study the reduction G/P ×H ⊂ G/P ×G.

Notation Let M be a Riemannian manifold endowed with a holonomy reduc-
tion of type O (where O is as in Proposition 5.3.3). We denote the curved orbit
corresponding to Or (see Proposition 5.3.5) by Mr for r ∈ R+

0 .

Proposition 5.3.11. The H-orbits in G/P = Rn = Rk × Rn−k are given by

(G/P )0 = Rk × {0} and (G/P )r = Rk × Sn−k−1
r ,

where r > 0 and Sn−k−1
r denotes the n − k − 1-dimensional sphere of radius r

in Rn−k with respect to the standard inner product restricted to Rn−k.
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Proof.  1 0 0
v′ C 0
0 0 D

 · (1 0
x I

)
P =

 1 0 0
v′ + Cx1 C 0
Dx2 0 D

P,

where x =

(
x1

x2

)
for x1, v

′ ∈ Rk, x2 ∈ Rn−k, C ∈ O(k) and D ∈ O(n−k). Thus

(C,D, v′) · (x1, x2) = (Cx1 + v′, Dx2).
Therefore, the H-orbit that contains 0 ∈ Rn is given by{
(C · 0 + v′, D · 0) | C ∈ O(k), D ∈ O(n− k), v′ ∈ Rk

}
= Rk × {0} ⊂ Rn.

Now let r ∈ R+ and consider the H-orbit that contains ren. On the one
hand, let (C,D, v′) ∈ H. Then (C,D, v′) · ren = (v′, rDen−k) ∈ Rk × Sn−k−1

r .
Assume on the other hand (x1, x2) ∈ Rk × Sn−k−1

r . The orthogonal group acts
transitively on the spheres, hence we can choose D ∈ O(n − k − 1) such that
D (ren−k) = x2. Then (Ik, D, x1) · ren = (x1, x2).

We still have to prove that x ∈ (G/P )r has P -type Or. Take ren ∈ (G/P )r

for r ∈ R+
0 , then ren=̂

(
1 0
ren I

)
P . Note that its P -type is given by P · g−1H

(cf. 4.4.3), and

g−1(W0) =

(
1 0
−ren In

)〈 (
1
0

)
,

(
0
e1

)
, . . . ,

(
0
en

)〉
=

〈(
1
−ren

)
,

(
0
e1

)
, . . . ,

(
0
ek

)〉
= Wr (see 5.3.5).

This proves that ren has P -type Or, thus the whole curved orbit (G/P )r has
this P -type.

Note that G/P decomposes into infinitely many orbits, where one is of di-
mension k and the others have dimension n− 1.

Next we consider the induced structures on the curved orbits (cf 4.4.3(ii)).
We compute the stabilizers Hα for representatives α in each Or for r ∈ R+

0 and
then consider the geometry Hα/(Hα ∩ P ).

Proposition 5.3.12. The singular orbit (G/P )0 inherits a Riemannian struc-
ture, whereas the other orbits (G/P )r admit the structure of a global Riemannian
product of dimension k × (n− k − 1) for r > 0.

Proof. We already know from Proposition 5.3.11 how the curved orbits look
like. We choose the elements ren ∈ (G/P )r = Rk × Sn−k−1

r , i.e. for r = 0 we
have 0 ∈ (G/P )0 = Rk × {0}, and compute their stabilizers in H in order to
write the orbits as homogenous spaces.

The element ren ∈ (G/P )r corresponds to grP ∈ G/P where

gr =

(
1 0
ren In

)
. Note that

1 0 0
v C 0
0 0 D

 1 0 0
0 Ik 0

ren−k 0 In−k

 =

 1 0 0
v C 0

rDen 0 D

 ,
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where v ∈ Rk, C ∈ O(k) and D ∈ O(n− k) and en−k ∈ Rn−k denotes the unit
vector with 1 in the last entry.

Thus if r = 0, we look for all elements in H that stabilize g0P . These are
precisely the elements of H with v = 0, i.e.

(G/P )0 = H · g0P = ((O(k)×O(n− k)) nRk)/(O(k)×O(n− k))

= Euc(k)/O(k)× {0}.

This is the Euclidean space of dimension k embedded into the Euclidean space
of dimension n.

In the case r > 0, the elements of H that stabilize grP are those satisfying
v = 0 and rDen−k = ren−k. Thus D ∈ O(n− k − 1) and we obtain

(G/P )r = H · grP = ((O(k)×O(n− k)) nRk)/(O(k)×O(n− k − 1))

= Euc(k)/O(k)×O(n− k)/O(n− k − 1).

This is Rk × Sn−k−1 endowed with the product of the two respective standard
metrics.

Hence we have one singular curved orbit, (G/P )0, that has dimension k,
while all other curved orbits have dimension n − 1 and satisfy (G/P )r =
{x ∈ Rn | d ((G/P )0 , x) = r} for r ∈ R+

0 , where d measures the distance be-
tween a point and a closed set in Rn. More precisely, d(A, y) := infx∈A d(x, y)
where A is a closed set in Rn and y ∈ Rn.

Furthermore, any curved orbit (G/P )r is a global product of (G/P )0 and
a sphere, and its Riemannian metric decomposes into these two parts. They
should be interpreted as the “parallel” part to (G/P )0 and the “spherical” part
that represents the distance to a point on (G/P )0.

Also, note that the Riemannian structures that are induced by the holon-
omy reduction are the respective restrictions of the Riemannian metric on the
surrounding space G/P .

This is clear in view of the construction of the curved orbits (cf. 4.4.3): We
obtained the structures of the curved orbits as subsets of the original homoge-
nous space for different g ∈ G :

g−1Hg
� � //

��

G

��
g−1Hg/g−1Hg ∩ P � � // G/P

The Maurer-Cartan-form on G that is pull-backed along the inclusion gives the
Maurer-Cartan-form of the subgroup g−1Hg ⊂ G. Therefore the structures on
the curved orbits must clearly be compatible with the surrounding structure of
G/P .

The other holonomy reductions of the homogenous model are easily com-
puted by applying the action of an element of Euc(n) (cf. 4.4.5): Let (A, v) ∈
O(n) n Rn. Then (A, v) · (G/P )0 = A(Rk × {0}) + v. Note that this gives all
possible k-dimensional affine subspaces of the Euclidean space, equipped with
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the Euclidean metric of Rn restricted to the subspace.

In particular, they are all totally geodesic:

Definition Let (M, g) be a Riemannian manifold. A submanifold N ⊂ M is
called totally geodesic if for all x ∈ N and ξ ∈ TxN the geodesic (in M) with
initial data (x, ξ) stays at least for a short time in N .

Also, since the action of an element of G preserves the Euclidean metric, the
other curved orbits remain the sets of fixed distance to (G/P )0.

The tractor bundle

Next, we compute the subbundle T0 of the tractor bundle explicitly.
Consider the H-reduction H := G/P × H of Ĝ = G/P × G. We have

T0 = H×H W0 = (G/P ×H)×H W0.
In 5.1.5(i) we saw that associated bundles of trivial principal bundles admit

a trivialization as well, i.e. (G/P ×H) ×H V ∼= G/P × V via [(g′P, h) , v] 7→
(g′P, hv), where V is an arbitrary vector space endowed with a G-action and
g′ ∈ G, h ∈ H and v ∈ V .

In particular, we can compute T0 in the trivialization and answer the question
for which v ∈ G/P = Rn we have Lv ⊂ (T0)v. The form of the line bundle L in
the trivialization was computed in 5.1.6.

For v ∈ Rn we have Lv ⊂ (T0)v if and only if

(
1
v

)
∈ W0 . This is true if

there are real numbers (α0, . . . , αk) such that(
1
v

)
= α0

(
1
0

)
+ α1

(
0
e1

)
+ · · ·+ αk

(
0
ek

)
.

One sees immediately, that α0 = 1, hence this is the case if and only if v ∈
〈 e1, . . . , ek 〉, that is a k-dimensional affine subspace in Rn.

Summarizing this information, we obtain the following

Proposition 5.3.13. Consider the holonomy reduction G/P ×H ⊂ G/P ×G
of the homogenous model G→ G/P . Then we have

S := {v ∈ Rn | Lv ⊂ (T0)v} = Rk × {0} = (G/P )0 .

Recall the situation V = 〈v0〉 ⊕ ker(ϕ0) together with a W ∈ O, that is a
k + 1-dimensional subspace W ⊂ V such that ϕ0

∣∣
W
6= 0. There we observed

that the P -orbits in O are exactly those W , for that ||pr(v0)|| is constant,
where pr : V → E⊥ with respect to the decomposition V = W ⊕ E⊥, where
E = W ∩ ker(ϕ0).

Proposition 5.3.14. An element x ∈ G/P lies in the curved orbit (G/P )r if
and only if ||pr(1x)|| = r, where 1 is the section (π(u)) = [u, v0] (for u ∈ G)
and ||.|| denotes the norm on TxM that is induced by gx.

Proof. We compute the projection in the canonical trivialization: The tractor
bundle T0 is given by G/P ×(Rk+1×{0}) and E = G/P ×({0}×Rk×{0}), thus
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E⊥ = G/P × ({0}×Rn−k). Therefore the projection pr simply is the projection
of the second component to the last n− k components.

Recall from 5.1.6 that the line bundle Lx ∼=
{(

x,

(
λ
λx

))
| λ ∈ R

}
in the

trivialization T ∼= G/P × Rn+1. In particular, the distinguished element v0(x)

in L is

(
x,

(
1
x

))
.

Thus ||pr(v0(x))|| is just the norm of the last n−k components of x. Propo-
sition 5.3.11 immediately implies that this characterizes the curved orbits.

The decomposition of the tangent bundle

Proposition 5.3.13 shows that for x outside of S = (G/P )0 we have Lx 6⊂ (T0)x.
Thus projecting q : L⊕TG/P → TG/P yields the k+ 1-dimensional subbundle
q((T0)x) of TxG/P . This contains Ex, thus we can distinguish a line Lx that
is the orthogonal complement of Ex in q((T0)x) . The whole construction is
smooth, thus we get a smooth line bundle L on G/P \ S.

Furthermore, denote the orthogonal complement of q((T0)x) in TxG/P by
Fx. This yields a distribution of rank n− k − 1 on G/P \ S.

The next proposition will show how these distributions interact with the
curved orbits:

Proposition 5.3.15. (i) We have TS = E|S.

(ii) For all v ∈ (G/P )r we have Tv(G/P )r ⊥ Lv.

(iii) Ev and Fv are tangential to the curved orbit (G/P )r for v ∈ (G/P )r. In
particular, Tv(G/P )r = Ev ⊕ Fv.

Proof. First we have to compute the projection in coordinates. In this proof,
restrict all bundles over G/P to bundles over (G/P ) \ S.

Let v ∈ (G/P )\(G/P )0. We have L =

{(
v,

(
λ
λv

))
∈ V | v ∈ G/P, λ ∈ R

}
and T (G/P ) = {0} × Rn. An element x =

(
x1

x2

)
∈ Tv = V is of the form(

x1

x2

)
= α1

(
1
v

)
+ α2

(
0
y

)
for α1, α2 ∈ R and y ∈ Rn. Then α1 = x1 and

q (v, x) = α2y = x2 − α1v = x2 − x1v.

(i) We have T0 = G/P ×W0 and TM = G/P × ({0} × Rn). Therefore, the
intersection E = T0 ∩ TM is the subbundle G/P × (Rk × {0}) in G/P × Rn.
Restricted to (G/P )0 = Rk ×{0}, this gives S × (Rk ×{0}), that is exactly the
tangent bundle of S in T (G/P ).

(ii) We have

q(v, (T0)v) = 〈 q(v, e0), . . . q(v, ek) 〉 = 〈 −v, e1, . . . , ek 〉 .

Thus n(v) := v −
∑

1≤i≤k 〈 v, ei 〉 ei is orthogonal to Rk × {0} and con-
tained in q((T0)x). This is just the projection of v to the last n − k com-
ponents, that we denote by prn−k(v). This is a nonzero element of L. We
know (G/P )r = Rk × Sn−k−1

r (see 5.3.11), hence if v ∈ (G/P )r, we have
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n(v) ∈ {0} × Sn−k−1
r and thus n(v) ∈ (Tv(G/P )r)

⊥.

(iii) This follows from (ii), since T (G/P )r = L⊥ = E ⊕ F .

5.3.4 Comparison

Now we move on to holonomy reductions of type O (where O is as in 5.3.3) of
Riemannian Cartan geometries over smooth manifolds.

We can conclude from the homogenous model that each holonomy reduction
induces a distinguished curved orbit M0 that is (if non-empty) of dimension k,
while all others have dimension n − 1: First, note that all curved orbits are
submanifolds of M . This is easy to see by applying the Comparison-Lemma
4.5.1: Comparison with the holonomy reduction of the homogenous model im-
mediately provides a submanifold chart for M0. For the other curved orbits Mr,
where r ∈ R+, similarly use the local diffeomorphism obtained from comparison
with the homogenous model and then compose with a submanifold chart for the
respective orbit (G/P )r = Rk × Sn−k−1

r .

We know from Theorem 4.5.4 that the structures on the curved orbits are of
the same type as those of the homogenous model. Thus we apply 5.3.12 and see
that the distinguished orbit M0 is a Riemannian manifold and the other curved
orbits Mr are Riemannian manifolds as well, that in addition decompose locally
into a product of dimension k + (n − k). Furthermore, by construction of the
Cartan geometries (Gi, ωi) in the proof of 4.5.4, their structures are compatible
with the surrounding Riemannian metric g, meaning that for each r ∈ R+

0 the
Riemannian metric gr coming from the reduction satisfies j∗r g = gr, where jr is
the inclusion of Mr into M .

We want to show that some properties of the curved orbits of the homoge-
nous model remain true in the curved case. To that effect we make use of the
explicit form of g. We take a closer look at the local diffeomorphism φ from the
Comparison-Lemma 4.5.1. It depends on the choice of a complement g− of p in
g.

In our case, g = o (n) ⊕ Rn as a P -module and p = o (n). Indeed, it is the
unique P -invariant complement of p in g. Furthermore, the Cartan connection
ω is of the form θ+ γ, where θ ∈ Ω1(G,Rn) is the canonical soldering form and
γ ∈ Ω1(G, g) is a principal connection on G, that is the equivalent to the Levi-
Civita-connection on the orthonormal frame bundle (cf. 5.1.1). This emphasizes
the naturality of the decomposition g = o(n) ⊕ Rn. Hence in the following we
will always choose g− = Rn as a natural complement to p.

Notation For two holonomy reductions on Riemannian manifolds M and M ′,
one has to choose x ∈Mr and y ∈M ′r in order to obtain a diffeomorphism from
4.5.1 between open neighborhoods of x and y, respectively. We will denote it
by φxy . Note that φxy still depends on the choice of orthonormal bases of TxM
and TyM

′.

Let (π : G →M,ω) be a Cartan geometry of type (G,P ) that is endowed with
a holonomy reduction of type O. For Comparison, consider the homogenous
model endowed with the holonomy reduction G/P ×H ⊂ G/P ×G.
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Proposition 5.3.16. If x ∈ Mr and y ∈ (G/P )r for r ∈ R+
0 there are open

neighborhoods U of x and V of y such that each φyx : V → U is of the form y′ 7→
expx (f0 (y′ − y)) where f0 is an isometry between Rn and TxM . In particular,
the map φyx as in the Proposition above is defined exactly where the exponential
map based at x is a diffeomorphism.

Proof. First of all, we have to choose u0 ∈ Gx and g0 ∈ Gy such that s(u0),
sG/P (g0) ∈ Or (where s and sG/P are the equivariant function corresponding to
the holonomy reductions on G and G, respectively). Recall from 4.5.1 that the
local diffeomorphism φxy is defined such that the following diagram commutes:

G

��

Rn = g−
Fl
ω
−1
MC

(.)

1 (g0)oo

ψ′

uukkkkkkkkkkkkkkkkk

g0yyttttttttt

u0
$$JJJJJJJJJ

Fl
ω−1(.)
1 (u0) //

ψ

))SSSSSSSSSSSSSSSSS G

π

��
Rn

φyx

66TyRn TxM M

where ψ and ψ′ are the local diffeomorphisms as in the proof of 4.5.1 (the are
defined such that the diagram commutes).

Note that the construction of the local diffeomorphism in the proof of 4.5.1
is a generalization of the construction of the exponential function (see [3, p.56]).

One can define the exponential map as expx (ξ) := π

(
Fl
ω−1((u0)−1(ξ))
1 (u0)

)
where u0 ∈ π−1 (x) and ξ is sufficiently close to 0 ∈ TxM such that the flow is
defined.

Hence we have ψ(X) = π(Fl
ω−1(X)
1 (u0)) = expx(u0(X)) for X ∈ g− that is

sufficiently close to 0, and analogously ψ′ = expy ◦g0. Therefore,

φyx = ψ ◦ ψ′−1 = expx ◦u0 ◦ g−1
0 ◦ exp−1

y ,

and f0 := u0 ◦ g−1
0 is an isometry Rn → TxM .

For G/P the exponential map is given by expy (v) = y + v where y ∈ G/P
and v ∈ Rn, hence exp−1

y (y′) = y′ − y. Thus φyx (y′) = expx (f0 (y′ − y)).

Now we are able to show that the distinguished curved orbit M0 is totally
geodesic:

Proposition 5.3.17. Let (M, g) be a Riemannian manifold endowed with a
holonomy reduction of type O as in 5.1.2. Then the k-dimensional curved orbit
M0 (if non-empty) is totally geodesic.

Proof. This follows immediately from the form of the local diffeomorphism in
the Comparison-Lemma 4.5.1: Let x ∈ M0 and ξ ∈ TxM0, and denote the
geodesic through x with initial velocity ξ by c. We want to show that c stays
inside of M0 for some interval (−ε, ε) where ε > 0.

Compare with the homogenous model: By 5.3.16, we can locally write M0 =
expx(f0(U×{0})) where f0 : Rn → TxM is an isometry and U is a neighborhood
of 0 in Rk. Since TxM = T0 expx ·Tf0 · (Rk × {0}) = f0(Rk × {0}), the tangent
vector ξ is of the form f0(ζ) for some ζ ∈ Rk × {0}.
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Let ε > 0 such that the geodesic c is defined on (−ε, ε) and of the form
c(t) = expx(tξ) = expx(f0(tζ)) where −ε ≤ t ≤ ε. This is obviously inside of
M0.

Now we turn to the other curved orbits. We will see that locally they can
be interpreted as sets of fixed distance from M0 – or from each other – as we
already observed in the case of the homogenous model.

Proposition 5.3.18. Let x0 ∈Mr for r ∈ R+
0 . Then there is a neighborhood U

of x0 in M such that Mr′ ∩ U = {x ∈ U | d (x,Mr′) = |r − r′|} for all r′ ∈ R+
0 .

Proof. Let U ′ be a totally normal neighborhood of x (a neighborhood that is
normal for each of its elements). By a normal neighborhood we mean an the
image of an open neighborhood of 0 in the tangent space of the point, on that
the exponential map is a diffeomorphism, under exp.

In the first step, we shrink U ′: It is well-known, that there is a ρ > 0 such
that the ball Bρ(x) is geodesically convex, i.e. for each pair of points (x′, x′′) in
Bρ(x) there is a unique minimizing geodesic between x′ and x′′ that stays inside
of Bρ(x) (see [7, p.85]). Let ρ ∈ R+ such that Bρ(x0) is geodesically convex
and contained in U . Then we define U := B ρ

2
(x0) ∩ {x ∈ Mr′ | |r − r′| < ρ

2}.
Note that M is locally foliated into the Mr’s by comparison, thus U is an open
neighborhood of x0.

Claim 1: For all x ∈Mr′ ∩Bρ(x0) we have d (x,Mr) ≥ |r − r′|.

proof of claim: Let y :=

(
0

r′en−k

)
∈ Rk × Sn−k−1

r′ = (G/P )r′ and consider

V := φ−1 (U) where φ := φyx (φ−1 is defined on U since the inverse of the
exponential map based at x is always defined on a totally normal neighborhood
around x).

(a) Let x1 ∈ Mr ∩ U , then x1 is of the form φ (y1) where y1 ∈ Rk × Sn−k−1
r =

(G/P )r. Therefore, and by 5.3.16, we obtain

d (x, x1) = d (x, expx (f (y1 − y))) = ||f (y − 1− y) || = ||y1 − y|| ≥ |r − r′|,

where f : Rn → TxM is the isometry such that φ(y′) = expx(f(y′ − y)) .

(b) Let x1 ∈Mr \Bρ(x0), then we have

ρ ≤ d(x0, x1) ≤ d(x0, x) + d(x, x1) <
ρ

2
+ d(x, x1),

hence d(x, x1) > ρ
2 and x ∈ U , thus by definition |r−r′| < ρ

2 . Consequently,
d(x, x1) > |r − r′|.

Claim 2: For all x ∈ Mr′ ∩ U there is a x1 ∈ Mr ∩ U such that d (x, x1) =
|r − r′|.

proof of claim: Again consider y as above and φ = φyx. Let y1 :=

(
0

ren−k

)
∈

Rk × Sn−k−1
r = (G/P )r. Then x1 := φ (y1) is in Mr ∩ U and

d (x, x1) = d (x, expx (f (y1 − y))) = ||f (y1 − y) || = ||y1 − y|| = |r′ − r|.
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This shows how to interpret the curved orbit decomposition geometrically.
Consequently in the case M0 6= ∅, given the submanifold M0, we can locally
reconstruct the decomposition into curved orbits. Our aim will be to to recon-
struct the whole holonomy reduction locally. For that, we use tractor bundles
as an auxiliary construction.

Above we obtained a clear picture of the behaviour of the tractor bundle in
the homogenous model. The crucial point will now be to carry this over to any
Cartan geometry of type (Euc (n) , O (n)). To this end we will note that the
Comparison-map from 4.5.1 induces a local vector bundle isomorphism between
the canonical tractor bundles and that this isomorphism preserves the examined
subbundles.

Proposition 5.3.19. Let G →M be a Cartan geometry, endowed with a holon-
omy reduction H of type O and HG/P a holonomy reduction of type O of the ho-
mogenous model. The Comparison-Lemma 4.5.1 gives a local diffeomorphism φ
between neighborhoods U of y ∈ (G/P )r and U ′ of x ∈Mr for r ∈ R+

0 . There is a
vector-bundle-isomorphism Φ̃ : T G/P |U = (G×P V )|U → T M |U ′ = (G×P V )|U ′ ,
that covers the local diffeomorphism φ, such that

(i) Φ̃ maps the canonical line bundle LG/P |U := (G×P 〈v0〉)|U onto LM |U ′ =
(G ×P 〈v0〉)|U ′ .

(ii) Φ̃ maps the tangent bundle T (G/P ) |U onto TM |U ′ , hence preserves the
decompositions of T G/P |U and T M |U ′ . Furthermore, it is compatible with
the Riemannian metrics g on M and delta on G/P , i.e. Φ̃∗g = δG/P .

(iii) Φ̃ maps the induced subbundle T G/P0 |U := (HG/P ×H W0)|U onto the sub-
bundle T M0 |U ′ = (H×H W0)|U ′ . In particular, it preserves the decomposi-
tion of the tangent bundle.

Remark 5.3.20. Note that Φ̃|TU is not necessarily the derivative of φ. If this
is the case, the Cartan geometry G is locally flat and thus locally isomorphic to
Rn. However, Φ̃|TU yields a local orthonormal frame on U by taking Φ̃|TU (ei)
for 1 ≤ i ≤ n.

Proof. φ : U → U ′ is a diffeomorphism between open sets U ⊂ G/P and
U ′ ⊂M , that is covered by a P -equivariant Φ : G|U → G|U ′ , an isomorphism of
principal bundles.

(i) Let Φ̃ : (G×P V ) |U → (G ×P V ) |U ′ be given by Φ̃ ([g, x]) := [Φ (g) , x].
From now on, in the whole proof we will speak about bundles with restriced
base set U or U ′, respectively, but for the sake of readability, we will omit the
restrictions |U(′).

The map Φ̃ is well-defined, since
[
gp, p−1x

]
∈ G×P V is mapped to[

Φ (gp) , p−1x
]

=
[
Φ (g) p, p−1x

]
= [Φ (g) , x] .

Furthermore, it is obviously fiberwise linear. Since Φ is an isomorphism of prin-
cipal bundles, Φ̃ is a vector-bundle-isomorphism. It covers φ, since Φ does.

(ii) The line bundles are given by LG/P = G×P 〈v0〉 and LM = G ×P 〈v0〉,
thus an element [g, λv0] ∈ LG/P is mapped to Φ̃ ([g, λv0]) = [Φ (g) , λv0] ∈ LM .
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By the same argument as above, Φ̃ maps T (G/P ) ∼= G ×P ker (ϕ0) onto
TM ∼= G ×P ker (ϕ0).

By 5.1.4, the Riemannian metrics are equivalent to the canonical metrics
hG/P and hM on G ×P ker (ϕ0) and G ×P ker (ϕ0), respectively, that come from
the standard inner product on ker (ϕ0), hence for [g, x] , [g, y] ∈ G ×P ker (ϕ0)
we have

hG/P ([g, x] , [g, y]) = 〈 x, y 〉 = hM ([Φ (g) , x] , [Φ (g) , y])

= hM
(

Φ̃ ([g, x]) , Φ̃ ([g, y])
)
.

(iii) The proof of the last statement is rather involved compared to (i) and
(ii). This results from the fact, that we constructed Φ̃ from the P -equivariant
map Φ, and that v0 ∈ V and ϕ0 ∈ Rn+1∗ are P -invariant. However, W0 is not
invariant under P , hence we have to take a detour to show H-equivariancy of
Φ̃.

At first, consider the map Φ′ : Ĝ = G ×P G → Ĝ = G ×P G given by
Φ′ ([g, g′]) := [Φ (g) , g′]. It is well-defined, since Φ is P -equivariant. Also, it
preserves fibers, is bijective and equivariant with respect to the G-actions on Ĝ
and Ĝ.

Now, analogously as in (i), Φ′ induces an isomorphism of vector bundles
Φ̃′ : Ĝ×G V → Ĝ ×G V , defined by Φ̃′ ([ĝ, x]) := [Φ′ (ĝ) , x].

However, Ĝ×G V = G×P V and Ĝ ×G V = G ×P V . We show Φ̃ = Φ̃′:
Take an element [g, x] =̂ [[g, e] , x] in G×P V = Ĝ×GV . Under Φ̃ it is mapped

to Φ̃ ([g, x]) = [Φ (g) , x] =̂ [[Φ (g) , e] , x] = [Φ′ ([g, e]) , x] = Φ̃′ ([[g, e] , x]).

Claim: The map Φ′ maps HG/P ⊂ Ĝ onto H ⊂ Ĝ.
proof of claim: The holonomy reductions HG/P and H may equivalently be
expressed by equivariant functions sG/P : Ĝ → O and sM : Ĝ → O (they are

related via
(
sG/P

)−1
(W0) = HG/P and

(
sM
)−1

(W0) = H).

From the Comparison-Lemma 4.5.1 we know that sG/P ◦ Φ′ = sM . Thus

Φ′
(
HG/P

)
= Φ′

((
sG/P

)−1

(W0)

)
=
(

(Φ′)
−1
)−1

((
sG/P

)−1

(W0)

)
=
((
sG/P ◦ (Φ′)

−1
))−1

(W0) =
(
sM
)−1

(W0) = H.

This proves the claim.

Now let g ∈ HG/P and x ∈W0. Then we have

Φ̃ ([g, x]) = Φ̃′([g, x]) = [Φ′(g), x] ∈ T0,

since Φ′(g) ∈ H and x ∈W0.

In the origin of Comparison, the canonical tractor bundle isomorphism from
above admits a particularly nice form:

Corollary 5.3.21. Let y ∈ (G/P )r and x ∈ Mr for r ∈ R+
0 . By 5.3.16,

comparison mapping y to x is of the form φ(y) = expx(f0(y′ − y)) where f0 :
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Rn → TxM is a linear isometry. By 5.3.19, φ induces a canonical Φ̃ : T G/P →
T M locally around y and x.

Then Φ̃|Ty(G/P ) : Ty(G/P ) → TxM , since Φ̃ preserves the decomposition

T = L ⊕ TM , has the form Φ̃|TyG/P = f0. In particular, f0(E
G/P
y ) = Ex.

Proof. Recall the construction of Φ : G|U → G|U ′ from the proof of 4.5.1, where
U ′ is a normal neighborhood around x and U is the preimage of it under φ.
For the construction of the comparison map we have to choose g0 ∈ Gy and
u0 ∈ Gx, such that sG/P (g0) ∈ Or and s(u0) ∈ Or where sG/P and s denote the
equivariant functions on Ĝ and Ĝ that correspond to the holonomy reductions,
respectively. Now f0 = u0◦g−1

0 (cf. proof of 5.3.16). The map Φy is constructed
such that it maps g0 to u0.

Hence Φ̃([g0, ei]) = [Φ(g0), ei] = [u0, ei] for 1 ≤ i ≤ n. Using the canonical
identification G ×P Rn = TM given by [u, x] 7→ u(x) we see that Φ̃(g0(ei)) =
u0(ei), hence Φ̃(x) = u0(g−1

0 (x)) = f0(x) for all x ∈ Rn.
In particular, since Φ̃ preserves both T0, and T (G/P ) and TM , we have

Φ̃(EG/P ) = E. Hence f0(E
G/P
y ) = Φ̃(E

G/P
y ) = Ex.

This provides an efficient tool to generalize properties of holonomy reductions
on the homogenous model.

Corollary 5.3.22. The curved orbit M0 can be characterized as

M0 = {x ∈M | Lx ⊂ (T0)x}.

Proof. The claim follows straightforwardly from 5.3.19.
Endow the homogenous model with the holonomy reduction G/P × H ⊂

G/P × G. Let x ∈ M0, then by 4.5.1 there is a diffeomorphism φ : U → U ′,
where U is a neighborhood of 0 ∈ G/P and U ′ is a neighborhood of x, such
that φ maps the (G/P )r ∩ U to Mr ∩ U ′ for r ∈ R+

0 . By 5.3.19 there is an
isomorphism of tractor bundles Φ̃ : T G/P |U → T M |U ′ that covers φ, such that

Φ̃(LG/P0 ) = LMx and Φ̃((T G/P0 )0) = (T M0 )x. Furthermore, by 5.3.13, we have

LG/P0 ⊂ (T G/P0 )0, thus LM0 ⊂ (T M0 )0.
On the other hand, let x ∈M such that Lx ⊂ (T0)x. Suppose indirectly that

x ∈Mr for r > 0. Again there is, locally around x and any y ∈ (G/P )r, an iso-
morphism of tractor bundles that is compatible with the subbundles. However,

(LG/Py ∩ (T G/P0 )y = {0} and hence LMx ∩ (T M0 )x = {0}. This is a contradic-
tion.

By reformulating the last Corollary 5.3.22, we obtain

M \M0 = {x ∈M | Lx ∩ (T0)x = {0}} .

Recall the canonical decomposition from the end of section 5.3.2 of the tangent
bundle TM |M\S = E|M\S ⊕ L⊕ F where S = {x ∈M | Lx ⊂ (T0)x}.

In 5.3.15 we observed how this decomposition behaves with respect to the
curved orbits in the homogenous model. Now we are able to generalize the result
to any Riemannian Cartan geometry.

Proposition 5.3.23. Let (G →M,ω) be a Cartan geometry of type (G,P ) that
carries a holonomy reduction H of type O. Then
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(i) we have TM0 = E|M0
, and

(ii) for r > 0, we have L|Mr ⊥ TMr. Thus we obtain TMr = E|Mr ⊕ F |Mr .

(iii) We have r(x) = ||pr(1x)|| for all x ∈ Mr, where pr : T0 ⊕ E⊥ → E⊥ is
the projection discussed in the end of section 5.3.2.

Proof. Let HG/P := G/P × H ⊂ G/P × G = Ĝ be a holonomy reduction of
the homogenous model. Then the tractor-bundle-isomorphism Φ̃ from 5.3.19
preserves the decompositions of T (G/P ) and TM :

Firstly, the subbundle E is given by the intersection of T G/P0 and T (G/P ),

and T G/P0 and TM , respectively. In 5.3.19 (iii) and (iv) we proved that Φ̃

maps T (G/P ) onto TM and T G/P0 onto T M0 . Thus the first component of the
decomposition is preserved.

Secondly, 5.3.19(ii) and (iii) show that Φ̃ preserves the decompositions, hence
it commutes with the projections qG/P and qM : Φ̃ ◦ qG/P = qM ◦ Φ̃. Therefore,

we have Φ̃
(
qG/P

(
T G/P0

))
= qM

(
Φ̃
(
T G/P0

))
= qM

(
T M0

)
by 5.3.19(iii).

Finally, by 5.3.19 (iii) the isomorphim Φ̃ is compatible with the Riemannian
metrics δ on G/P and g on M . Thus if Φ̃ (A) ⊂ B, also Φ̃

(
A⊥
)
⊂ B⊥ for

y ∈ G/P and subspaces A of Ty (G/P ) and B of Tφ(y)M .

Since L and q (T0)
⊥

are defined by forming orthogonal complements, the
decomposition is invariant under Φ̃.

(i) Compare with the homogenous model at x ∈ M0 and y = 0 ∈ G/P .
We know that the Comparison map is of the form φ(y′) = expx(f0(y′)) and
φ(Rk × {0}) = M0 in a neighborhood of 0 (see 5.3.16). Now from 5.3.21 we
know that f0(Rk ×{0}) = f0(Ey) = Ex. Furthermore, we have Tyφ = f0. Thus

TxM0 = Tx(φ(Rk × {0})) = Txφ · Ey = f0(Rk × {0}) = Ex.

(ii) Again we use Comparison. Let x ∈Mr and y ∈ (G/P )r. We know that
Ly ⊥ Ty(G/P )r. For the Comparison map φ(y′) = expx(f0(y − y′)) we have

Tyφ = f0 = Φ̃y (cf. 5.3.16 and 5.3.21). Above we saw that Φ̃y(Ly) = Lx and
furthermore we know that Tyφ(Ty(G/P )r) = TyMr. Thus

L = f0(Ly) ⊥ f0(Ty(G/P )r) = TxMr.

(iii) Let x ∈ Mr for some r ∈ R+
0 and y ∈ (G/P )r. Comparison of x and y

gives a map φ of the usual form and induces a local vector bundle isomorphism
Φ̃ that preserves the subbundles T0 and E. Thus in particular it commutes with
the projection pr.

Furthermore, Φ̃(1(π(u))) = Φ̃([u, v0]) = [Φ(u), v0] = 1φ(π(u)). In the origin y

of Comparison we have Φ̃|Ty(G/P ) = Tyφ.
The claim is true for the homogenous model (see 5.3.14), hence we have

r = ||prG/P (1G/Py )|| = ||Φ̃(prG/P (1y))|| = ||pr(Φ̃(1y))|| = ||pr(1x)||.
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Corollary 5.3.24. Let φ(y′) = expx(f0(y−y′)) be a Comparison map of x ∈Mr

and y ∈ (G/P )r for any r ∈ R+
0 and some f0 : Rn → TxM a linear isometry as

shown in 5.3.16. Then f0(E
G/P
y ) = Ex and if r > 0 moreover f0(L

G/P
y ) = Lx

holds.

Proof. This was shown in the proof of 5.3.23.

5.3.5 A geometrical characterization

We finally give a geometrical characterization of the holonomy reduction.
We can show that a vector field on M , that satisfies the right properties,

is equivalent to a holonomy reduction. Recall that in 5.3.10 we showed that a
holonomy reduction is equivalent to a certain subbundle of the canonical tractor
bundle.

Theorem 5.3.25. Let M be a Riemannian manifold that is endowed with a
parallel, rank-k distribution E. Then the following two objects are equivalent:

(a) A parallel subbundle T0 ⊂ T of rank k + 1 such that T0 ∩ TM = E; and

(b) a smooth vector field n ∈ Γ(E⊥), that satisfies

(i) S := {x ∈ M | n(x) = 0} is empty or a smooth integral manifold of
E, and

(ii) ∇ξn = prE
⊥

(ξ) ∀ξ ∈ X(M), where prE
⊥

denotes the projection E ⊕
E⊥ → E⊥.

Proof. (a) → (b) The given T0 is equivalent to a holonomy reduction of the
Cartan geometry (see 5.3.10). Hence we can use everything we know about
holonomy reductions.

Let n(x) := pr(1(x)), where pr : T0 ⊕ E⊥ → E⊥. This is per definition a
smooth section of E⊥. We know from 5.3.22 that

S = {x ∈M | n(x) = 0} = {x ∈M | 1x ∈ (T0)x}
= {x ∈M | Lx ⊂ (T0)x} = M0.

This is either empty or a smooth integral manifold of E.
Furthermore, the decomposition of 1 in terms of T = T0⊕E⊥ is per definition

of n given by (
1
0

)
=

(
1
−n

)
+

(
0
n

)
,

where the first component denotes the L-part and the second component denotes

the TM -part of an element of T . Therefore

(
1
−n

)
∈ T0.

The bundle T0 is parallel, hence for any ξ ∈ X(M)

∇ξ
(

1
−n

)
=

(
0

ξ −∇LCξ n

)
is a section of T0. Thus ξ −∇LCξ n is a section of T0 ∩ TM = E.

Furthermore, E⊥ is parallel since E is and hence ∇ξn ∈ Γ(E⊥). Therefore

∇ξn = prE
⊥

(ξ).
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(b) → (a) For the given vector field n, let T0 =

〈(
1
−n

)〉
⊕
(

0
E

)
in the

decomposition T = L ⊕ TM . Since n is smooth, the bundle T0 is smooth.
Obviously we have T0 ∩ TM = E. It is left to show that T0 is parallel: The

distribution E is parallel, hence the derivative of a section of this part of T0 is
again a section of T0. Let ξ ∈ X(M), then

∇ξ
(

1
−n

)
=

(
0

ξ −∇LCξ n

)
=

(
0

ξ − prE
⊥

(ξ)

)
.

Obviously this is again a section of T0.

We still have to see that this correspondence is bijective. Start with a given

T0. Then let n(x) = pr(1x). We construct the tractor by adding

(
1
−n

)
to E,

but

(
1
−n

)
∈ T0 by definition of n. Hence the constructed tractor bundle is the

same as the original one.

Now start with a given n. Construct T0 =

〈(
1
−n

)〉
⊕
(

0
E

)
. Then since(

1
−n

)
∈ T0, the decomposition of 1 in T0⊕E⊥ is given by

(
1
0

)
=

(
1
−n

)
+

(
0
n

)
.

Hence n(x) = pr(1x).
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