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Abstract

We introduce a theoretical model for time evolution of the gut microbiome.
The model captures the temporal dynamics and simulates the composition
within the microbial community.

For parametrization we fitted the model to experimental data by using gen-
eralized simulated annealing. The experimental data and data from simula-
tions show typical features of self-organized criticality, a concept explaining
how general characteristic behavior arises in systems of many interacting
elements [1]. Specifically, species lifetime distributions follow a power-law
and the mean power spectral densities of the time-series show pink noise
in their distribution.

We computed power spectral densities for the individual microbial species
and find that the microbial community stratifies into subgroups of species
exhibiting different kinds of noise, namely white, pink and brown noise. The
noise a subgroup exhibits correlates with species abundance. The sub-
groups also differ in how strong model parameters, namely immigration
probability, extinction probability and microbe-microbe interaction strength,
influence their time evolution.

Species reaching only low abundances typically exhibit white noise. Those
species experience high turnover and are strongly influenced by stochastic
external fluctuations, influences incorporated in immigration probability.
Species showing the highest abundances and high temporal persistence
within the community exhibit brown noise. They are strongly affected by ex-
ternal deterministic drivers, which is mainly the host of the microbial com-
munity. This influence is comprised in extinction probability.

Species showing intermediate abundances exhibit pink noise. They are
neither very strongly affected by stochastic external fluctuations nor by the
influence of the host. The time evolution of species exhibiting pink noise is
likely mostly shaped by internal structure, the interactions within the micro-
bial community.

The gut microbiome as a system also exhibits pink noise. We therefore
argue that it shows self-organized critical behavior and that the structures
within the microbial community strongly shape the time development and
dynamics of this system.

Our work provides insight into the systematic behavior of the gut micro-
biome and the influence of community structure. It can be used as a starting
point for further research, e.g. to examine the influence of internal struc-
ture on various microbial communities and their dynamics or to investigate
diseased states of the gut microbiome and potentially associated patterns.



Zusammenfassung

Wir stellen ein theoretisches Model der zeitlichen Entwicklung der Darm-
flora vor. Das Model erfasst die zeitliche Dynamik und simuliert die Zusam-
mensetzung der mikrobiellen Gemeinschaft.

Zur Parametrisierung passten wir unser Model durch "generalized simu-
lated annealing" an experimentelle Daten an. Sowohl experimentelle Daten
als auch Daten aus der Simulation zeigen typische Merkmale selbstor-
ganisierter Kritikalitét, ein Konzept zur Erklarung von generellem charak-
teristischem Verhalten, dass in Systemen mit vielen interagierenden Ele-
menten auftritt [1]. Diese Merkmale sind Verteilungen in den Lebenszeiten
der Spezies die Potenzgesetzen folgen, sowie mittlere spektrale Leistungs-
dichten der Zeitreihen die rosa Rauschen in ihren Verteilungen zeigen.
Wir errechneten spekirale Leistungsdichten fir die einzelnen mikrobiellen
Spezies und finden eine Stratifizierung der mikrobiellen Gemeinschaft in
Untergruppen, die unterschiedliche Typen von Rauschen aufweisen. Diese
Untergruppen weisen entweder weil3es, rosa oder braunes Rauschen auf.
Das Rauschen, dass eine Untergruppe aufweist, korreliert mit der Abun-
danz der Spezies. Die Untergruppen unterscheiden sich auch darin, wie
stark Model-Parameter ihre zeitliche Entwicklung beeinflussen. Diese Model-
Parameter sind Immigrationswahrscheinlichkeit, Extinktionswahrscheinlichkeit
und Stérke der Interaktion zwischen Mikroben.

Gering abundante Spezies zeigen typischerweise weiBes Rauschen. Diese
Spezies erfahren haufige Umwalzungen und sind stark beeinflusst von
stochastischen externen Fluktuationen. Diese Einflisse sind in der Immi-
grationswahrscheinlichkeit enthalten.

Spezies, die die héchsten Abundanzen und hohe zeitliche Persistenz
aufweisen, zeigen braunes Rauschen. Sie sind stark beeinflusst von exter-
nen deterministischen Treibern, hauptsachlich dem Host der mikrobiellen
Gemeinschaft. Diese Einflisse sind in der Extinktionswahrscheinlichkeit
enthalten.

Spezies mit mittleren Abundanzen zeigen rosa Rauschen. Sie sind weder
durch stochastische externe Fluktuationen noch durch den Host beson-
ders stark beeinflusst. Die zeitliche Entwicklung dieser Untergruppe von
Spezies wird wahrscheinlich in erster Linie durch interne Strukturen geformt,
die Interaktionen innerhalb der mikrobiellen Gemeinschaft.

Die Darmflora als System weist ebenfalls rosa Rauschen auf. Wir argu-
mentieren daher, dass die Darmflora selborganisiert kritisches Verhalten
zeigt und dass die Strukturen innerhalb der mikrobiellen Gemeinschaft die
zeitliche Entwicklung und Dynamik dieses Systems stark formen.

Unsere Arbeit liefert Erkenntnisse Uber das systemische Verhalten der Darm-
flora und den Einfluss der mikrobiellen Gemeinschaftsstruktur. Sie kann als
Ausgangspunkt flr weiter Forschung dienen, z.B. um den Einfluss interner
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Strukturen auf verschiedene mikrobielle Gemeinschaften und deren Dy-
namik zu ermitteln oder um Krankheitszusténde der Darmflora und mégliche
assoziierte Muster zu erforschen.
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1 Introduction and Background

1.1 The gut microbiome

Recent research supports the idea that the human body functions as a habi-
tat for myriads of microbes, consequentially making it an environment com-
posed of by far more microbial than human genes. Efforts have been un-
dertaken by projects as HMP (Human Microbiome Project) [2] or MetaHIT
(Metagenomics of the Human Intestinal Tract) [3] to catalog large parts of
these various human microbiomes, such as skin, mouth or gut. Of all these
human body sites inhabited by microbes the intestinal tract is the most pop-
ulated one. An estimated number of 10'® bacteria essentially makes it one
of the most densely populated known ecosystems [4]. Several 100-1000
microbial species or OTUs (operational taxonomic units) make up this di-
verse community [5]. Interestingly, these species belong to only a few of all
described bacterial phyla, predominantly Bacteroidetes, Firmicutes and, to
a lesser extent, Proteobacteria and Actinobacteria [6]. Comparing the in-
testinal microbial community of different humans reveals great variability in
species composition [7] making ones gut microbiome a unique characteris-
tic very much like a fingerprint. This unique gut community is an invaluable
symbiont for its host, performing many important functions including, but
not limited to, metabolic functions, stimulation of the immune system and
inhibition of pathogens through competitive exclusion [8].

The respective roles of genetics and environmental factors on the develop-
ment and composition of the gut microbiome are yet unclear. For instance,
it has been shown that the development of the gut microbiome in infants is
highly dependent on the mode of delivery. The resemblance of the intestinal
microbiota composition between infants and their mothers is significantly
higher for vaginally delivered infants than for infants delivered by C-section.
This difference decreases with the age of the infants and diet becomes a
more prominent factor in the development of the gut microbiome [9]. In
general, bacterial diversity increases with age and in older children the bi-
ological mothers fecal microbiota is no more similar to her children than
their biological fathers. The intestinal microbial communities of monozy-
gotic twins are also no more similar than those of dizygotic twins, whilst
the fecal microbiota of co-habiting adults are significantly more similar than
those of members from different families. Those findings of Yatsunenko et
al. [10] suggest a rather low heritability of the microbiome and furthermore
emphasize the importance of shared environmental influences. Overall it
seems that predominantly geography and cultural traditions as well as age
explain the variety in microbial composition of fecal samples.

There is also substantial variation in the species composition of one indi-
vidual occurring over time, with especially the gut microbiome of infants



undergoing frequent transitions [8]. Although differences in the microbial
composition of newborns might be pronounced, the functional maturation
during the first three years shows common patterns and features, even in
infants from geographically distinct regions [10]. The microbiota of adults is,
particularly viewed over longer timescales, more stable and the fractional
abundance of OTUs is relatively constant. Even though, relative and abso-
lute species abundances are fluctuating on a short timescale and changes
in diet, medication or varying environmental influences may result in com-
position shifts [11].

High variability, especially over short timescales, in the intestinal microbial
community at species level poses a difficult challenge when trying to define
the makeup of a healthy gut microbiome. Arumugam et al. [12] brought
forward the idea that there are different enterotypes existing which together
form something of a core gut microbiome. However, this thought has also
been challenged [13], suggesting that microbial variation in the gut is con-
tinuous, not stratified. While defining a typical or common gut microbiome
on the basis of species composition seems therefore infeasible, the func-
tional gene profiles across individuals are quite similar, hinting towards a
functional core microbiome [8]. Hence functional composition, though nat-
urally going through transition during human development, might also be
the more appropriate measure for defining a healthy gut microbiome [14].
A dysbiosis in the gut microbiota, i.e. disruption of the microbial commu-
nity, has been associated with various diseases like allergies, inflammatory
bowel diseases (IBD), obesity, type 2 diabetes, gastric cancer and even
autism [15]. Even though, it is still unclear whether the dysbiosis is caused
by the associated disease or contributed to its development. Moreover,
treatment of a disease with e.g. antibiotics can lead to substantial shifts in
the microbial community making the host more susceptible to pathogenic
invasion [16]. Considering additionally the naturally high variability of the
gut microbiota across individuals and time makes apparent the importance
of distinguishing between naturally occurring fluctuations inherent to the
system and changes that might lead to or stem from diseases. The ques-
tion remains how resilient the gut microbial community is, what determines
its resilience and of what nature and how strong perturbations have to be in
order to alter the composition [8]. Broader understanding of the gut micro-
biome as an ecosystem and the dynamics within this system is needed to
improve application of more specific therapies. Currently pro- and praebi-
otics, dietary measures and faecal microbiome transplantation are increas-
ingly applied to directly or indirectly influence the community composition
for medical purposes [14]. Yet our limited knowledge makes it difficult to
design more specifically targeted therapies. In microbial ecology in princi-
pal and especially concerning the intestinal microbial community modeling
approaches can provide valuable input. The incredible variability of this mi-
crobiome makes theoretical prediction and development of targeted thera-
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pies difficult. Gut microbiome models can help to test assumptions, predict
possible outcomes and infer connections between microbial composition
and disease or health [17].

1.2 Self-organized criticality

The idea of self-organized criticality (SOC) was first introduced by Bak,
Tang and Wiesenfeld in 1988 [18] as an explanation for emergent complex
behavior in far-from-equilibrium systems. The word itself is comprised of
two parts. "Self-organization" refers to the emergence of complex behavior
or structure in a system of many interacting elements. "Criticality”" refers
to a system at a critical point, where little input of energy can have dispro-
portionately large effects [19]. An intuitive metaphor for how SOC works
and what characterizes systems showing SOC can be found in the book
"Self-Organized Criticality. Emergent Complex Behavior in Physical and Bi-
ological Systems" from 1998 by H.J.Jensen [1]: When attempting to push a
piano across a floor and continuously applying the same amount of force, at
first nothing is going to happen and the piano won’t move. But once a crit-
ical point is reached and the applied force overcomes the friction between
piano and floor, the piano is going to jump forward. However, it is impossi-
ble to predict the size of this jump forward. Even though the force applied
is always the same, most of the time the piano will only move a little bit, but
sometimes it will make a big jump forward. This is exactly the characteristic
behavior of a self-organized critical system. The input to the system is small
but continuous and once a critical point is reached, the system is going to
react to the input. Due to the interactions between the individual elements
of the system this reaction can sometimes propagate throughout the whole
system, but most of the time the reaction is going to be small. Those event
sizes, or "avalanches" as they are often referred to, show a self-similar
distribution. This reflects the fact that most events are small and only a
few events are big and affecting a large proportion of the system. This
scale-freeness in lifetimes of system features, reaching from avalanches in
sand piles to earthquakes or extinction events in biological communities,
has been associated with a variety of complex systems [19] and is also one
of the key characteristics of self-organized criticality [1]. Closely linked to
this observation is also the most prominent property associated with SOC,
a typical configuration of its spectral density termed pink noise or 1/f-noise.
When performing a spectral density analysis of a fluctuating temporal sig-
nal, the spectral density function of a process takes the form of P(f) « f#
[20]. The power of the fluctuations in the signal P(f) and their frequency f
show a log-linear relationship where the value of 5 would be the observable
slope in a log-log plot. As described in [21], 5 allows a qualitative charac-
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terization of the underlying process and the special case of 5 ~ —1 is of
particular interest in the context of SOC. An exponent g ~ —1 indicates that
different event sizes and time-scales influence the system equally and the
system exhibits fractal scaling. SOC is thought to be one possible mecha-
nism underlying scale-freeness or fractal scaling in complex systems [1]. In
biology especially 1/f-noise has attracted quite some interest, as it can be
found on cellular and organic level in living organisms (e.g. self-discharge
of neurons or heart rate and blood pressure) [22] as well as underlying var-
ious ecological fluctuations (e.g. population dynamics) [23]. The idea of
various biological systems being self-organized critical seems accordingly
reasonable. Applied to biological communities it would suggest that partic-
ularly interactions between individuals and species are of importance and
shape the community structure. Noise dynamics are inherent to the system
and noise is not solely a stochastic phenomenon, but to some extent an
intrinsic feature. Indeed, indications for SOC based on noise spectra have
been found in various systems and fields, reaching from the classical sand-
pile model featured in the paper from 1988 [18] across earthquakes [24]
and extinction events in fossil records [25] to human brain oscillations [26],
stock markets [27] and social media [21]. However, the concept of SOC
also poses difficulties. One of the main critical points is the lack of a formal
and generally accepted definition. Consequentially, the characterization of
SOC is qualitative rather than quantitative. Restricted parameter ranges
that lead to SOC behavior additionally attract criticism [1]. Particularly in
biology, where processes are strongly characterized by interactions of the
protagonists, SOC still remains a promising field of research with the poten-
tial to shed some light on the emergence of complexity and the universality
of fractals and scale-invariance. The gut microbial community is a biologi-
cal system where interactions between the protagonists, microbes as well
as the host, are very important for system functions. There is also a con-
tinuous flow-through of matter and energy, i.e. food intake and excretion,
perturbing the system and introducing stochasticity. These characteristics
make it a system where the concept of SOC could be particularly useful.

1.3 Modeling approaches to community structure

Modeling biological communities poses the problem of finding a balance
between simplification and detail. When simplifying a model too much it
won’t capture the main dynamics of the modeled system. On the other
hand, adding too much detail and too many variables to a model compli-
cates deductive reasoning. With this in mind, a broad division in biologi-
cal models can be made between models following the neutral theory and
the ecological niche theory, respectively. Neutral theory, first introduced by
S.P.Hubbell in [28] seeks to describe formation and maintenance of biodi-
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versity patterns in ecological communities. It assumes that species-specific
traits play a minor role in the development of biodiversity due to the strong
influence of stochasticity. Application of the neutral theory to e.g. a model
of the human microbiome evolution [29] emphasized differences in evolu-
tion due to the extent of parental contribution. Yet the assumptions taken
are profound simplifications not applicable to the general case. According
to Harris et al. [30], who applied neutral theory to 278 human gut micro-
biome data sets, neutral theory doesn’t hold on the whole community level,
suggesting that species-specific traits play an important role. Within certain
taxonomic groups neutral theory and therefore stochasticity seem to have
a bigger influence.

A different approach to formation and maintenance of microbial communi-
ties is ecological niche theory. As opposed to neutral theory, it assumes
that species-specific traits are responsible for arising biodiversity and that
different ecological niches in an ecosystem are occupied by species that dif-
fer in their characteristics [31]. Modeling of biological community dynamics
based on ecological niche theory is, for example, done using generalized
Lotka-Volterra equations [32]. Time-evolution of a number of N species is
modeled in the form of:

N
dz;
W0 — () (b + D ag(t))
j=1

where the abundance of species z; at time ¢ is calculated taking into
account the specific growth rate b; and the interactions between species i
and species | a;; that alter growth of z; [33]. Generalized Lotka-Volterra
equations have been used to model antibiotic administration to the gut mi-
crobiome and C.difficile infection, granting some insight into the underlying
microbial network [34]. Another study by Bucci et al. [35], based on two
coupled stochastic differential equations, also focused on a gut microbiome
community disturbed by antibiotic treatment. It shows how antibiotic ad-
ministration can lead to a hysteresis effect in the microbiota composition
making recovery back to a healthy intestinal microbial community difficult.
However, modeling not only a few taxa but a whole intestinal community
complicates interpretation of modeling results.
Besides these population-level models, individual-based models are receiv-
ing more and more attention in the field of microbial ecology [36]. These
models can be either well-mixed and not integrating space or they are spa-
tial models that do take into account space. Individual-based models are
usually computationally more demanding. They do have the benefit of ac-
counting for interpopulation variability and they are able to link individual
and population behavior allowing the emergence of population dynamics
from modeling the individual level [37]. Individual-based modeling in micro-
bial ecology has, among other areas, been successfully applied to biofilms



[38] and bioreactors [39].

The main concepts of self-organized criticality have also been incorporated
into an individual-based model by Solé, Alonso and McKane in 2002 [40].
The authors describe the applicability of their model in various cases, for
example as a predator-prey model or a neutral model. They also put for-
ward a multispecies variety of the model with a focus on interactions, which
shows typical features of SOC. This work showed that a model for SOC
is able to capture system dynamics in macrobiological systems and is a
useful tool for studying the community structure. Applying the concept to
complex microbial communities could provide valuable information about
their development and systematic behavior. We therefore chose this model
by Solé, Alonso and McKane as a basis for our work on the gut microbial
community.

1.4 Biological and microbial networks

When we aim to describe a biological or microbial system or community,
a key instrument to represent and visualize these systems is the use of
networks and, as Albert-Laszlé Barabasi put it: "...networks are the pre-
requisite for describing any complex system..." [41]. The study of networks
and their properties originated in mathematical graph theory, but proofed to
be useful in various fields. Networks in principle are composed of nodes,
which can be any entity or also trait and are connected with each other
via directed or undirected links [42]. There are various network character-
istics that can be analyzed and potentially linked to system features and
dynamics, for example node degree, connectivity or betweenness central-
ity (for further details see 2.2). Of specific interest in biological systems are
interaction networks between species. Those networks might for instance
be foodwebs [43], pollination networks [44] or even social networks [45].
Causal networks derived from experimental data can reveal interaction pat-
terns within a certain community. Experimental data composed of presence
and absence data from species can however not be used to build causal
networks. In this case, only data correlation is possible to build a correla-
tional network. While it is possible and feasible in macrobiology to collect
experimental evidence for causal interactions between different species or
individuals, this poses a problem in microbiology. For microbial networks
it is seldom possible to provide experimental evidence for causal interac-
tions at the community level. Co-presence patterns are instead used to
infer statistical correlations. They do not perfectly represent the actual bio-
logical interactions, but can be utilized to infer ecological trends and roles
[46]. However, using presence and absence data can also lead to wrong
conclusions. Common presence is not necessarily due to a common en-
vironmental driver. Double zeros in presence and absence data are even
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more difficult to interpret. Various unrelated reasons can result in common
absence, also pure stochasticity.

A model simulating a microbial community can close this gap to some ex-
tent as it allows computing of a causal interaction network. Our knowledge
of causal interactions in the gut microbial community is limited. It is an area
where modeling community composition and dynamics can provide insight.
Inferring network structure from simulations can help understand the sys-
tematic behavior of the gut microbiome and its inherent dynamics. This
interaction network from a modeled microbial community can reveal impor-
tant interrelations between community structure and system dynamics.

1.5 Parametrization and model fitting

When biological parameters are not readily available, fitting a theoretical
model to experimental data is one option. Moreover, this procedure allows
for model validation. To assess the goodness-of-fit, the similarity of simu-
lation and data needs to be queried. Various measures for calculating the
similarity between time-series data are available: distance or divergence
measures (e.g. Euclidean or Manhattan distance), correlation measures
(e.g. Pearson’s cross-correlation coefficient), transformation approaches
based on principle component analysis (PCA) or Fourier transformation, or
metric approaches (converting the time-series data into a number of param-
eters that sufficiently describe the data) [47]. Biological systems are mostly
high dimensional with many interacting players generating multivariate time
series. Due to their high dimensionality, a common approach is data com-
pression, e.g. with PCA [48] or empirical mode decomposition (EMD) [49],
to reduce the dimensions and then calculate similarity measures.
Time-series data from microbial gut communities, however, needs a some-
what different angle. Data fitting on the multivariate time series itself is in
this case not feasible, because the variability in the gut composition and
the fluctuation patterns between individuals are very high. A better suited
approach is data fitting by means of measures that are able to capture
the overall dynamics and structure of the data. For microbial communities,
rank-abundance distributions showed to be a viable measure [50]. Those
distributions display the species or OTUs ranked according to their relative
abundance (see Figure 1).

After reducing the dimensions of the multivariate time-series one can ap-
ply a divergence measure to estimate the similarity between simulated and
experimental data. Divergence measures are non-symmetric and used to
compute the distance between two or more probability distributions (in this
case rank-abundance distributions). For comparing two probability distri-
butions a variety of divergence measures are available [51]. A divergence
measure used in a various fields ranging from population biology [52] to



molecular biology [53] and also socioecology [54] is the Kullback-Leibler
divergence. The general form of the Kullback-Leibler divergence is:

= ) nP(Z)
KL(P,Q)_Zi:P( ) o0

KL(BQ)...Kullback-Leibler divergence between P and Q
PQ...probability distributions with i instances

[62]

where P is typically observed, experimental data and Q theoretical or mod-
eled data. To validate the computed Kullback-Leibler divergence a goodness-
of-fit measure suggested in [55] can be applied:

_ KL(P,Q
R?=1- KL((P,M))

KL()...computed Kullback-Leibler divergence
BQ...probability distributions
M...a vector with coordinates all equal to the mean of P

Finding model parameters that give a good approximation of the ex-
perimental data that we aim to describe is the next step after deciding on
a divergence measure. Model parametrization is especially difficult when
dealing with complex microbial communities. A vast parameter space is
available and the objective is to find parameters which best describe the
experimental data and therefore show the highest similarity in terms of the
divergence measure. However, this is not a straightforward task. The pa-
rameter space is characterized as a rugged landscape (see figure 2 for an
example) meaning that many combinations of parameters are, in terms of
the landscape, locally optimal solutions, but globally there are better so-
lutions. Ultimately, model parametrization aims for a global optimization.
There are various techniques to find the global optimum of a complex opti-
mization problem. One approach is called branch and bound, where upper
and lower bounds are applied to a feasible region in the parameter space
and then this feasible region is divided into several subregions. From the
optimal solutions of all the subregions the best solution is selected. There
are also clustering methods, which are multistart methods that cluster the
starting points to avoid using redundant starting points that would end up in
the same local optimum. Evolutionary algorithms are also used for global
optimization. Those algorithms take their inspiration from natural selection.
Different populations of starting points are formed and the solutions with
the highest fitness in each population are then recombined. Solutions are
also mutated by introducing small changes [56].
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Another widely used approach to global optimization is simulated anneal-
ing, which is applied in fields as diverse as restoration ecology [57], protein
structure prediction [58] or waste management [59]. Simulated annealing
takes its inspiration from metallurgy, where the initial temperature of the
metal and the cooling schedule are determining the energetic state of the
cooled, solid metal. In simulated annealing, a parameter change is in prin-
cipal accepted when it leads to a better solution. However, an artificial
temperature term is introduced and the lower the temperature, the higher
the probability that also a parameter change that results in a worse solution
is accepted. Introducing this temperature term enables simulated anneal-
ing to navigate out of a local optimum and find the global optimum [60].
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Figure 1: Rank-Abundance Curve. Species are ranked according to their
relative abundance. The X-axis depicts the rank of the species, on the
Y-axis the relative abundance is shown.

Figure 2: Rugged landscape of the parameter space. The goodness of
a parameter combination is on the y-axis, while x- and z-axis represent ad-
justable parameters. There are locally and globally optimal solutions and
also different parameter combinations that lead to comparably good solu-
tions. Landscape computed in Mathematica [61]
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1.6 Summary

With our work we aim to describe the temporal development and structural
dynamics of the gut microbial community. The gut microbiome is a highly
diverse and complex biological system. Temporal variability during the life-
time of a host, but also the high variability between hosts make it difficult to
describe a typical intestinal microbial community. A healthy gut microbiome
provides various important functions [8] for its host and dysbiosis has been
linked to several diseases [15]. It is accordingly of crucial importance to
understand the underlying structure and driving forces shaping this micro-
bial community. Modeling the temporal dynamics and community structure
is one possibly approach to aid this objective. Model approaches for bio-
logical communities reach from generalized Lotka-Volterra equations [34]
to neutral models [29] and dynamic individual-based models [38].

We adapted a model for self-organized criticality (SOC) in macrobiological
systems [40] to describe the gut microbial community. SOC is a concept
that aims to describe arising complexity in far-from-equilibrium systems.
Those systems are characterized by a constant flow-through of energy and
the importance of the interaction network among the systems elements [1].
The gut microbiome is as well strongly influenced by the continuous flow-
through of matter and energy and shaped by microbe-microbe and host-
microbe interactions. Typical patterns found in systems exhibiting SOC
are scale-free distributions of system feature lifetimes (e.g. earthquakes
or extinction events in fossil records) and pink noise in the power spectral
densities [18]. A challenge when modeling complex systems like the gut
microbial community is model parametrization and verification. We chose
to compute a Kullback-Leibler divergence [62] to compare multivariate time-
series of microbial abundances from experimental data and data from simu-
lations. For model parametrization we use generalized simulated annealing
[60], a method for finding the global maximum of a multidimensional func-
tion.
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2 Material and Methods

2.1 A model for self-organized criticality in the
gut microbiome

The dynamical change and evolution of the gut microbiota is influenced and
characterized by turn-over of the microbial mass, immigration and extinc-
tion of individual microbes, interactions between individuals that can either
inhibit or facilitate growth, interactions between microbes and the host and
characteristics of the host, e.g. diet patterns. A model aiming at simulating
the time-evolution of this community should take into account the ability of
microbial species to reproduce and colonize available space, which is in our
model contained in a species-specific immigration probability. A species
resilience and durability in the given environment as well as the stochas-
tic loss of individual microbes due to the guts inherent continuous in- and
outflow is combined in a species-specific extinction probability. Extinction
probability also encompasses the hosts influence on microbial growth and
resilience. Ecological interactions between microbes that shape the micro-
bial community are accessible as species-specific interaction coefficients,
reaching from mutualism and competition to predation.

We adapted a model for self-organized criticality in macrobiology intro-
duced by Solé, Alonso and McKane in 2002: Self-organized instability in
complex ecosystems [40]. We generalized it to include different types of
symbiotic relationships between microbes, such as mutualism or compe-
tition. The model is individual-based, it uses discrete time-steps and de-
terministic mixing. During one given time step, an individual microbe can
potentially interact with any other microbe and immigration as well as ex-
tinction solely depend on the immigration and extinction probabilities asso-
ciated with the species and neither on biomass nor on spatial proximity. We
further assume a finite number of N available sites for microbial coloniza-
tion. Each site can be occupied by exactly one individual of one microbial
species from the finite species pool S.

12



2.1.1 Simulation rules

Time evolution is simulated in a step-wise manner. During each time step
At every site N is visited and immigration and extinction rules are applied.

(I) Immigration
occupation of an empty site by an individual of a randomly chosen
species, i.e. A € X(S), with probability 14
0% A
() Extinction
a site occupied by an individual of species A can become empty with
probability € 4
AA0
[40]

Every occupied site can now undergo interaction. The microbe on this
site can interact with a randomly chosen second microbe belonging to a
different species and occupying another site. Depending on the species-
specific interaction coefficients of those two individuals, Q245 (the influence
species B has on species A) and Q4 (the influence species A has on
species B), there are different interaction possibilities:

(1) Interaction

(@) Qap,2pa <0and Qup < Qpa

A+B-5 9B
where Q = Qg + abs(Qap)

(b) Q4 < 0,04 =0

A+B 9B
where Q = Qp4 + abs(Qap)

(c) Quap <0,Qp4>0

A+B - 9B
where Q = Qpa + abs(Qap)

13



(d) Qap>0,04=0
choose a third, random site

o if third site is empty

A+B+0-524+B
where Q = Qp4 + abs(Qap)

o if third site is occupied by an individual of species C

A+B+C %241 B if Qo < O
where Q = Qpa + abs(Qap)

(e) Qap,0pa>0and Qap > Qpa
choose a third, random site

o if third site is empty

A+B+0-924+B
where Q = Qpa + abs(Qap)

o if third site is occupied by an individual of species C

A+B+C 524+ B if Qo < O
where Q = Qp4 + abs(Qap)

For visualization of a model time-step see figure 3.

2.1.2 Post-processing of the simulated data

After a given amount of t time steps only a number of randomly filtered time
steps are used for comparison to experimental data. We introduce this
layer to account for stochasticity during experiments and collection of data,
such as irregular sampling intervals, differing sequencing depth, various
sequencing errors.
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Figure 3: Visualized time step of the self-organized criticality model.
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2.2 Community structure and network analysis

As it is yet unknown what topography underlies actual microbial networks,
we chose two different, opposing approaches for structuring the interaction
matrix 2. This way, potentially occurring differences in system dynamics
due to network structure should be easier to detect. On the one hand,
Erd6s—Rényi represents a random network with the degrees of the net-
work nodes being normally distributed [63]. On the other hand, Klemm and
Eguiluz introduced a network structure that does not only show a scale-free
degree distribution, but also includes a high clustering coefficient and ex-
hibits small-world properties [64].

The local community structure of interaction networks has a large impact
on the emerging community properties, such as robustness and resilience
[66]. While the interaction structure for simple microbial communities has
been investigated for several case studies (e.g. [67], [68]), no reference
system for intermediate to highly complex microbial communities such as
the gut exists to our knowledge [2].

To account for this effect of interaction structure on the community dynam-
ics we used the two different methods for structuring the community matrix
Q:

e Erdos—Rényi
a random network, with the degrees (number of connections) of the
network nodes (representing the species) being normally distributed
[63], see figures 4 and 5

e Klemm-Eguiluz
a small-world network, with a scale-free degree distribution and show-
ing modularity [64], see figures 6 and 7

16



s
.‘_“""' i‘ S

s

Figure 4: Network from a community matrix with an underlying
Erdos—Reényi structure. Circles represent species, the size of the circle
and the color intensity indicate the node degree; arrows represent a di-
rected interaction between species, the thicker the arrow the more positive
is the interaction coefficient. Network computed with Gephi [65]
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Figure 5: Node degree distribution of the Erdos—Rényi network. Node
degrees are approximately normally distributed, the mean node degree is
~ 10
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Figure 6: Network from a community matrix with an underlying Klemm-
Eguiluz structure. Circles represent species, the size of the circle and
the color intensity indicate the node degree; arrows represent a directed
interaction between species, the thicker the arrow the more positive is the
interaction coefficient. Network computed with Gephi [65]
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Figure 7: Node degree distribution of the Klemm-Eguiluz network.
Node degrees show a skewed distribution, the mean node degree is also
~10

18



e Connectivity
The connectivity of an interaction matrix is given by

¢= 7]\/*(1%71)

E...number of possible edges (connections between nodes)
N...number of nodes

We set it to a value of 0.02, according to predicted networks from
CoNet [69] (personal communication with Karoline Faust).

The following topological network measures were used to illustrate and
compare the interaction structure of the community matrix €2:

o Node characteristics

— Node Degree

The degree of a node k is the number of its connections (edges)
to other nodes.

¢ Local and wider neighborhood

— Clustering Coefficient

The local clustering coefficient or transitivity gives the probability
that the adjacent nodes of a node are connected to each other.

Z(ekikj)

— Fn
T, = En*(kn—1)

n...node of a graph
k.,...neighboring nodes of node n
ek, ---edge from node k; to node k;
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o Navigability

— Betweenness Centrality
Betweenness centrality BC is roughly defined by how many short-
est paths lead through a given node.

o
BC. = Zmy
Cn=" > ( p )
i#ngj
oinj-..numMber of shortest paths from node i to j passing through
n
oi;...number of shortest paths from node i to |

— Closeness Centrality
Closeness centrality CC measures, how many steps it takes to
get from one given node to every other node.

ceC, = %
> d(n,i)
i#n
d(n,i)...distance between node n and node i

[70]

We compared the computed networks with the igraph package in the R
environment [70].
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2.3 Divergence measure and model fitting

With our work we set out to capture the main driving forces and dynam-
ics of the intestinal microbial community and establish a method to validate
the model with respect to experimentally gained data. In order to quantify
the overall similarity between simulated and experimental data, we use a
Kullback-Leibler divergence as proposed in [62] and adapted it to:

P;;
KL(P,Q) =) > (Pjix* log(Q‘;’ ) — Pji + Qi)
i ¥
J...time-point
i...rank
P..mean ranks of experimental data
Q...mean ranks of simulated time-series

A Kullback-Leibler divergence gives an estimation on how much infor-
mation is lost when using one probability distribution to approximate an-
other probability distribution. We use rank-abundance distributions com-
puted from the experimental as well as the simulated data as the prob-
ability distributions for the Kullback-Leibler divergence. Rank-abundance
distributions are a commonly used way of characterizing microbial commu-
nities and representing their inherent dynamics [50]. This method ranks the
species according to their relative abundance, resulting in a descending
curve from the most abundant to the least abundant species (Figure 1).
We also applied a goodness of fit measure (R?) to the computed diver-
gence, as suggested in [55], in order to verify the calculated divergence:

_ KL(P,Q)
R* =1 gripan
KL()...computed Kullback-Leibler divergence
P..mean ranks of experimental data
Q...mean ranks of simulated time-series
M...a vector with coordinates all equal to the mean of P
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For a parametrization of the SOC-model we applied model fitting. We
used generalized simulated annealing, a heuristic optimization procedure,
as introduced in [71] and implemented in the GenSA package [60] for lo-
cating a good approximation to the global optimum:

D
T 3—qu
9o (D(1)) e O I —
[1+(qu—1) o2y 7T
[Tq, ()] 3—aqv

gq, 18 a distorted Cauchy-Lorentz visiting distribution, which is used to
generate a trial jump distance Ax(t) of the parameter z(t) under the artifi-
cial temperature T, (t). This trial jump is accepted by the optimizer function
if itimproves the solution, i.e. if it decreases the Kullback-Leibler divergence
measure. A trial jump that increases the divergence measure might be ac-
cepted according to an acceptance probability:

Py = min{1,[1 — (1 — g,)8 A B| 7w}

Inspired by annealing in metallurgy, generalized simulated annealing
introduces an artificial temperature T, (), which influences the trial jump
distance Az(t) and decreases with each artificial time-step t according to:

’11_17
Ty, (t) = TQU(l)(lzqt)qﬁ [60]
Generalized simulated annealing enables the optimizer function to grad-
ually minimize the Kullback-Leibler divergence by improving the parameter-
set while still allowing backward steps (in terms of the divergence measure).

For fitting the parameters of the SOC-model to experimental data, 25
parallel simulations with the same parameter-set were computed. The rel-
ative abundances of this 25 computed time-series were then used to calcu-
late the mean ranks of each time-step, which were needed for computing
the Kullback-Leibler divergence. The heuristic optimization was stopped
after an R? > 0.85 was reached. After this parametrization step, the best
parameter-sets determined by the optimization function were used to sim-
ulate longer time-evolution, which was further analyzed and compared to
the experimental data. For a detailed visualization of the parametrization
procedure, see figures 8, 9 and 10.

All scripts for model implementation, parametrization and statistical anal-
ysis where developed in R [72].
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Figure 8: Parametrization. For parametrization averaged rank-

abundances from 25 parallel model runs as well as averaged rank-
abundances from the experimental data were computed and used as prob-
ability distributions for the Kullback-Leibler divergence measure. A good-
ness of fit measure, R?, was calculated and used as a threshold for the
optimization function
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Figure 9: Calculation of the averaged rank-abundance curve. The
relative abundances of 25 simulation runs were used to generate rank-
abundance curves for each time-step of all 25 simulations. Those curves
were then first averaged over all simulations and finally averaged over

all time-steps resulting in the time evolution of the relative abundance of
species ranks
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Figure 10: Comparison of simulated and experimental data. The aver-
aged rank-abundances over time from simulated as well as experimental
data, computed as shown in figure 9, are used to calculate the Kullback-
Leibler divergence measure.
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2.4 Experimental data

The experimental data used for parametrization and comparison to the sim-
ulated time evolution comprises longitudinal samples of 2 subjects over the
course of one year [11]. In this study, high-throughput sequencing of ampli-
fied 16S rRNA was used to terize each sample. Reads were grouped into
operational taxonomic units (OTUs) at 97% sequence similarity. After qual-
ity filtering, data from 4321 OTUs of 299 and 272 gut samples, respectively,
were obtained from subject A and B.

For parametrization of the SOC-model we selected a subsample of the
150 most abundant OTUs, according to mean abundance over all samples.
Those OTUs represent 80% of the sampled microbial population in terms
of abundance. We performed an autocorrelation analysis to reveal possible
recurring patterns in the longitudinal data and to determine the number of
samples we then used for model fitting. Consistent with this analysis, we
chose 50 time-steps with regular sampling intervals from both subjects for
parametrization. In figures 11 and 12 relative abundances of the 150 most
abundant OTUs over the chosen 50 time-steps are shown.
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Figure 11: Relative abundances of OTUs in samples from donor A. Rel-
ative abundances of the 150 most abundant OTUs in samples from donor
A over the 50 samples chosen for model fitting
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Figure 12: Relative abundances of OTUs in samples from donor B. Rel-
ative abundances of the 150 most abundant OTUs in samples from donor
B over the 50 samples chosen for model fitting
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2.5 Characterization of microbial time evolution

We examined the simulated and experimental time-series data for the fol-
lowing standard ecological properties:

e Species Richness
Number of species present in a sample

¢ Alpha-Diversity (Shannon Index)

Alpha diversity takes both species richness and evenness into ac-
count to compute a measure of diversity

S

n; n;

Hg = _zi:ﬁ*ln(]\f)
Hg...alpha diversity for a community comprised of S species
N...total number of individuals
n;...number of individuals of species i

We also examined the data for properties that point towards self-organized
criticality:

e Scale-Invariance

We examined the lifetime distribution of OTUs in the experimental and
simulated data as well as the lifetime distribution of individuals in the
simulated data for scale-invariance. Scale invariant system features
approximately follow a power-law distribution, therefore a linear model
was fit to a log-log plot of the examined properties to evaluate whether
they show scale-invariance [19].

e Pink Noise

Pink noise, or 1/f noise, which is strongly associated with self-organized
criticality [18], can be evaluated via a spectral density analysis that
we performed with the function spectrum of the stats-package in the
R environment [72]. The spectral density analysis relates the power
spectra P(f) of a signal to its frequency f as follows: P(f) « 7 [20].
Pink noise is associated with an exponent 3 close to -1. By contrast
an exponent close to 0 points towards a process showing white noise
and an exponent close to -2 is associated with brown noise [21]. We
analyzed the mean power spectra of all species combined as well as
the power spectra of the individual species.
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3 Results

3.1 Model parametrization for simulation of the gut
microbiome

As biological parameters are not readily available, we fitted our theoretical
model to experimental data. We computed a Kullback-Leibler divergence
[62] between experimental and simulated data to estimate the similarity
between them. For model parametrization we used generalized simulated
annealing with the R package GenSA [60]. At first the optimizer function ex-
plores the available parameter space, as is shown in figure 13. During these
fitting iterations, the computed Kullback-Leibler divergence varies strongly.
After exploring the parameter space, the optimizer function starts with a
more targeted parameter optimization, as is shown in figure 14. We used
a goodness-of-fit measure (R?) to validate the computed Kullback-Leibler
divergence and set a threshold to R? = 0.85. If the goodness-of-fit measure
was above this threshold, we used the fitted parameters to simulate time
evolution of the microbial gut community. We compared simulations with
fitted parameters from fitting runs that reached the targeted optimization
regime and from fitting runs that reached R? > 0.85 during the parameter
space evaluation. Simulations with fitted parameters from both optimization
regimes resulted in very similar temporal dynamics. Due to this observa-
tion we chose to accept all parameter sets that reached a goodness-of-fit
measure above the chosen threshold, even if the solution was found during
parameter space evaluation.

29



R2=0.85
\

2 o
e _
:(")

[ 1]

(=]

o

2 v
5 W
bl

o

2 o
F .
-+ “ J
-

Q

[+

o m—l
s -
~

A ——)

0 100 200 300 400 500

number of fitting iterations

Figure 13: Change of Kullback-Leibler divergence during one fitting
run. The optimizer function explores the available parameter space,
an R? = 0.85 is reached after 501 iterations
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run. The optimizer function first explores the available parameter space
and then starts targeted optimization, an R? = 0.85 is reached after 1987
iterations
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3.2 Analysis of experimental and simulated data
3.2.1 Temporal dynamics of the microbial community

To gain intuition about the data, experimental as well as simulated, we com-
pared the time evolution of relative species abundances in a qualitative
manner.

Figure 15 and figure 16 show the time evolution of the 150 most abun-

dant OTUs in experimental survey data [11]. All time-points represent sam-
ples taken from one of two different subjects (donor A and donor B). In
the experimental time-course temporal fluctuation within single OTUs occur
frequently and some species experience peaks of high relative abundance.
The higher abundant species form a subgroup that is relatively stable in
composition over time. The majority of species are however very low in rel-
ative abundance, with the overall mean being 0.007 for samples from donor
A as well as donor B. Those species experience a high turnover and intro-
duce a lot of fluctuation into the community.
Some time-points are effectively dominated by species showing extremely
high relative abundances (between 0.8 and 1) in specific samples. To
make the variability over time in the relative abundances more visible, those
species were omitted in figures 15 and 16. The microbiome exhibits self-
similar temporal dynamics as shown in figure 17. This means that on differ-
ent time-scales and within different community sizes, time evolution shows
similar patterns.

In simulated data, with random community structure (Erdés-Rényi to-
pography underlying the interaction network) as well as clustered commu-
nity structure (Klemm-Eguiluz topography underlying the interaction net-
work), also high fluctuations on species level can be seen (figures 18 and
19). Again the majority of species is very low in abundance, with the over-
all means in relative abundance from both simulation approaches being
exactly identical to the abundance means from experimental data, 0.007.
Within both simulation approaches one species always developed very high
relative abundances (omitted in figures 18 and 19). As simulation parame-
ters associated with one species were fixed throughout the simulation, this
pattern was consistent. This dominance structure in simulations lead to
lower relative abundances as compared to the experimental data.

In both experimental and simulated data, individual species experience
high fluctuations over time. Community composition within the higher abun-
dant species, however, stays relatively constant. The majority of species
shows very low relative abundances, with the mean in relative abundances
being 0.007, identical for experimental as well as simulated data. This indi-
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cates that the overall trend in time evolution observable in experimental data
was well captured in simulated data. In experimental data single species
show peaks of very high abundance in certain time-points. This pattern was
not captured in simulations, but resulted in one or two species in each sim-
ulation dominating in terms of relative abundance. For computing the simi-
larity between experimental and simulated data we used rank-abundances.
Several time-points in the experimental data showed a dominating rank,
which lead to the dominance structure we now observe in the simulated
data.

0.4

relative abundance
0.2

Figure 15: Relative species abundances of 150 most abundant OTUs in
all samples from donor A. Individual species experience high fluctuation
over time, with visible peaks of higher abundances in certain time-points.
Mean relative abundance is 0.007. Species with peaks showing very high
abundances were omitted to make dynamics more visible
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Figure 16: Relative species abundances of 150 most abundant OTUs in
all samples from donor B. Individual species experience high fluctuation
over time, with visible peaks of higher abundances in certain time-points.
Diarrheal illness of the donor is only slightly visible in species composition.
Mean relative abundance is 0.007. Species with peaks showing very high
abundances were omitted to make dynamics more visible

110 species

Figure 17: Self-similar temporal dynamics in relative species abun-
dances of donor A. On different time-scales and within different commu-
nity sizes, time evolution shows similar patterns
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Figure 18: Relative species abundances over time, simulation with ran-
dom community structure. Individual species experience high fluctuation
over time. Mean relative abundance is 0.007. Species with very high abun-
dance were left out to make dynamics more visible
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Figure 19: Relative species abundances over time, simulation with
clustered community structure. Individual species experience high fluc-
tuation over time . Mean relative abundance is 0.007. Species with very
high abundance were left out to make dynamics more visible
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3.2.2 Analyzing ecological properties of the gut microbiome

We examined typical ecological properties of experimental and simulated
data. Those properties were species richness and alpha diversity, which
can be used to determine how well the model captures overall features of
the experimental data.

In experimental data, the microbial community is characterized by rel-
atively constant species richness and alpha diversity in both donor A and
donor B. At certain time-points, the community was shortly dominated by a
single OTU in terms of relative abundance. These time-points correspond-
ingly show a species richness of below 10 (figures 20 and 22).

A diarrheal illness of donor B caused a disruption in the community struc-
ture that resulted in a less diverse community. This is clearly visible around
time-point 140 in figure 22. It is also reflected in a lower mean species
richness of 108 in donor B’s gut microbiome. Mean species richness in the
gut microbial community of donor A is 131. The diarrheal illness is not as
prevalent in the time evolution shown in figure 16, as mostly species with
lower abundances were affected.

Alpha diversity, incorporating both species richness and evenness in the
microbiome, shows a pattern similar to species richness in both donors
(figures 21 and 23). Again, the less diverse community caused by diarrheal
illness of donor B is observable. Mean alpha diversity is also slightly higher
in samples from donor A (3.5) than in samples from donor B (3).
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Figure 20: Species richness over time in the gut microbial commu-
nity of donor A. Species richness is relatively constant over time, but the
microbial community is dominated by single OTUs at certain time-points
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Figure 21: Alpha diversity over time in the gut microbial community of
donor A. Alpha diversity follows a similar pattern as species richness and
is relatively constant over time, but the microbial community is dominated
by single OTUs at certain time-points
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Figure 22: Species richness over time in samples from donor B.
Species richness is relatively constant over time, but the microbial commu-
nity is dominated by single OTUs at certain time-points. Clearly visible is a
drop in community diversity due to a diarrheal illness of the donor around

time-point 140
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Figure 23: Alpha diversity over time in samples from donor B. Alpha
diversity follows a similar pattern as species richness and is relatively con-
stant over time, but the microbial community is dominated by single OTUs
at certain time-points. Again observable is the drop in community diversity
due to a diarrheal illness of the donor around time-point 140
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In simulated data, species richness as well as alpha diversity are very
constant within a single simulation run. There is, however, less variation
between simulation runs in simulations with random community structure
(figures 24 and 25) than in simulations with clustered community structure
(figures 26 and 27). Mean species richness within one simulation varies be-
tween 121 and 129 in simulations with random community structure and be-
tween 87 and 130 in simulations with clustered community structure. Mean
alpha diversity in simulations with random community structure varies be-
tween 2.2 and 2.8 and in simulations with clustered community structure
between 0.9 and 3.

Due to one species in simulations always dominating the community, alpha
diversity is generally lower than in experimental data. This is particularly
pronounced in one simulation from a clustered community structure (black
dots in figures 26 and 27). The dominating species in this simulation shows
relative abundances around 0.85 and leads to lower species richness and
alpha diversity.

We assume that those differences in variability between simulation runs
are an effect of the different topographies that underlie the interaction ma-
trices. The node degrees in interaction matrices of simulations with ran-
dom community structure are normally distributed and lead to simulations
showing very similar features and dynamics. The structure added to the
node degree distribution in interaction matrices of simulations with clus-
tered community structure (skewed distribution, small-world properties) al-
lows for more variation between simulation runs and leads to differences in
community dynamics.
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Figure 24: Species richness over time of simulations with random
community structure. The different colors represent simulations from dif-
ferent fitting runs. Node degrees are normally distributed in interaction ma-
trices of all simulations. This leads to very similar patterns in community
diversity and is visible in the similarity of species richness.
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Figure 25: Alpha diversity over time of simulations with random com-
munity structure. The different colors represent simulations from different
fitting runs. Node degrees are normally distributed in interaction matrices
of all simulations. This leads to very similar patterns in community diversity
and is also visible in the similarity of alpha diversity
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Figure 26: Species richness over time of simulations with clustered
community structure. Different colors represent simulations from different
fitting runs. A skewed distribution of hode degrees and small-world proper-
ties in the interaction network lead to greater variability between individual
fitting runs. This leads to the observable differences in species richness.
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Figure 27: Alpha diversity over time of simulations with clustered com-
munity structure. Different colors represent simulations from different fit-
ting runs. A skewed distribution of node degrees and small-world properties
in the interaction network lead to greater variability between individual fitting
runs. This also leads to the observable differences in alpha diversity.
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In experimental and simulated data, the diversity of the microbial com-
munity is relatively stable over time. Mean species richness in simulated
data overall ranges from 87 to 130, which is comparable to the mean
species richness of 108 and 131 found in experimental data. Species rich-
ness and alpha diversity differ over time in the experimental data, but they
also differ between donor A and donor B. This variability between two differ-
ent microbial communities is better captured by simulations with clustered
community structure. Those simulations show higher variability between
individual fitting runs than simulations with random community structure.
To our knowledge, there is yet no reference system for the interaction struc-
ture of complex microbial communities. Our findings suggest that the high
variability between the gut microbial communities of different hosts results
from differently clustered community structures.

Differences between experimental data and simulations that are visible in
the time evolution of the community (see section 3.2.1) are also reflected
in species richness and alpha diversity. In terms of relative abundance,
the microbial community in the experimental data is dominated by a sin-
gle species in certain time-points. The microbial communities in simulated
data are, however, dominated by one very highly abundant species over all
time-points.

We chose rank-abundances for computing the similarity between experi-
mental and simulated data. This measure does not capture this very pro-
nounced short-term fluctuations within individual species present in the ex-
perimental data. Instead, parameters leading to very high abundances are
fitted to the first rank, which leads to a different dominance structure in
the data from simulations. This differing dominance structure also leads to
a lower and more constant alpha diversity in all simulations as compared
to the experimental data. The reduced diversity of the gut microbiome of
donor B due to diarrheal illness was not captured in simulations, as the
combined data from donor A and donor B was used for model parametriza-
tion.
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3.2.3 Power-laws in lifetime distributions of intestinal microbial species

We investigated the distribution of species lifetimes over the time evolution
in experimental and simulated data. The duration of a species lifetime can
be seen as an event in the temporal development of a system. Plotting the
lifetime of all microbiota on a logarithmic scale might reveal certain proper-
ties of the system. Specifically, a power-law distribution of those lifetimes is
an important feature associated with self-organized criticality [1].

In experimental data, lifetime distributions of species in the microbial
community from both donor A and donor B follow a power-law. The linear
model fitted to the data gives a slope of -2.29, p < 0.0001 and R? = 0.83
(see figure 28, for statistics see table 1).

Species lifetime distributions from both simulation approaches follow a
power-law as well. We also examined the influence of the community orga-
nization on the lifetime distribution of simulated gut microbiota. The linear
model fitted to simulations with random community structure gives a slope
of -1.31, p < 0.0001 and R? = 0.80 (see figure 29, for statistics see table
1). The linear model fitted to simulations with clustered community struc-
ture gives a slope of -1.53, p < 0.0001 and R? = 0.89 (see figure 30, for
statistics see table 1).

Both in the experimental data as well as data from simulations species

lifetimes show a power-law distribution. The slope of the linear model fit
is however steeper in the experimental data. This suggests that in the ex-
perimental data species experience a higher number of extinction events
than the species in the simulated data. This might be due to external in-
fluences affecting the microbial community, which were not explicitly imple-
mented in the model. Species-specific model parameters were constant
over time. They do not include possible changes in the environment, such
as dietary changes or immune responses of the host, that might lead to
certain species experiencing a drop in abundance.
The simulations with a clustered community structure showed a slope in
the linear model fit closer to experimental data than the simulations with a
random community structure. This indicates that the interaction network of
the microbiota in the experimental data is most likely not random, but highly
structured.

Power-laws in distributions of system features are associated with scale-
freeness and self-organization [19]. The power-law distributions we found
in lifetimes of the gut microbial community are a first indication that it is a
self-organized critical system.
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Figure 28: Species lifetime distribution in experimental data. Distribu-
tion of species lifetimes in a log-log plot follow a power-law with a slope of
-2.29. The red line shows the linear model fit, for statistics see table 1
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Figure 29: Species lifetime distribution in simulations with random
community structure. Distribution of species lifetimes in a log-log plot
follow a power-law. The slope of -1.31 is less steep than in experimental
data. The red line shows the linear model fit, for statistics see table 1
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Figure 30: Species lifetime distribution in simulations with clustered
community. Distribution of species lifetimes in a log-log plot follow a power-
law. The slope of -1.53 is also less steep than in experimental data. The
red line shows the linear model, for statistics see table 1

Table 1: Lifetime distributions: linear model statistics

slope p adjusted R?
experimental data -2.29 | <0.0001 *** 0.83
random community structure | -1.31 | < 0.0001 *** 0.80
clustered community structure | -1.53 | < 0.0001 *** 0.89
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3.2.4 Pink noise in power spectral densities of the gut microbiome

On experimental data and data from simulations we performed spectral
density analysis. Power spectral densities show the distribution of variabil-
ity within a temporal signal. Examining these power spectral densities on a
logarithmic scale can give information about system properties. If a linear
model fitted to this distribution results in a slope g ~ —1, the system exhibits
1/f noise (= pink noise). Pink noise is the most important system feature
associated with self-organized criticality [18] and characteristic for systems
that are shaped mostly by internal structuring. A slope 5 ~ 0 suggests that
a system exhibits white noise, which is an indication for a strong influence
of stochasticity. A slope 5 ~ —2 suggests a system exhibiting brown noise,
an indication for a strong deterministic driving force [21].

We investigated the distribution of power spectral densities in individual
species of experimental data. This revealed that species differ in the type
of noise they exhibit. Many species stratify along this measure into sub-
groups and exhibit either white, pink or brown noise. The largest of those
subgroups of species exhibits white noise (N = 4163). Only a small number
of species exhibit brown noise (N = 56). When closely examining the time
evolution of this subgroup, they showed similar behavior to species exhibit-
ing white noise. Due to many time-points where those species exhibiting
brown noise where not found, the computation of power spectral densities
might be difficult. We do believe that the classification of those species into
the brown noise subgroup is an artifact. They do not represent the deter-
ministic dynamics classically associated with brown noise. In the further
analysis we therefore focus on the subgroups of species exhibiting either
white or pink noise.

The noise type these subgroups exhibit also correlates with mean relative
abundance of the species (see figure 31). The subgroup of species exhibit-
ing white noise shows significantly lower mean species abundances than
the subgroup of species exhibiting pink noise. White noise is associated
with high stochastic influence and it seems intuitive that the low abundant
species are those exhibiting white noise. They experience high turnover
and strong temporal fluctuations and get frequently washed out of the sys-
tem. This is observable in their shorter lifetimes (see figure 32). It can also
be seen in their higher ratio between mean abundance and standard devia-
tion of abundance (sd/mean, see figure 33). The higher this ratio, the higher
is the fluctuation in abundance over time relative to the mean abundance.
A higher sd/mean ratio is an indication for stronger stochastic influences.

The subgroup exhibiting pink noise consists of higher abundant species.
Pink noise is associated with systems where the interaction patterns be-
tween elements are driving the temporal evolution and stochasticity plays
a comparably smaller role. This is also in agreement with the patterns we
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find in species exhibiting pink noise in our experimental data. They are
more persistent and are less frequently washed out. This results in longer
species lifetimes (see figure 32) and lower sd/mean ratios (see figure 33).

We also examined mean power spectral densities in experimental data.
A linear model fitted to those mean power spectral densities gives an ex-
ponent 3 = -0.97 (see figure 34, for statistics see table 2). The majority of
species in the gut microbiome might be strongly influenced by stochasticity
and therefore exhibit white noise, but the microbial community as a whole
exhibits pink noise. This suggests that the subgroup of species that exhibit
pink noise influences overall system behavior the most. Those species,
which are more persistent in the community, seem to strongly shape the
gut microbiome.
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Figure 31: Mean relative species abundances in experimental data.
Differences of mean species abundances between subgroups of species
exhibiting white (N = 4163) and pink noise (619), respectively. Species
exhibiting white noise show significantly lower mean relative abundances
than species exhibiting pink noise; Wilcox-test: p < 0.0001 ***
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Figure 32: Species lifetimes in experimental data. Differences in life-
times between subgroups of species exhibiting white noise (N = 4163) and
pink noise (N = 619), respectively. Species exhibiting white noise show sig-
nificantly shorter lifetimes than species exhibiting pink noise; Wilcox-test: p
< 0.0001 ***
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Figure 33: Ratio between standard deviation and mean (sd/mean) of
species abundances in experimental data. Differences in sd/mean ratio
between subgroups of species exhibiting white noise (N = 4163) and pink
noise (N = 619), respectively. The ratio is significantly higher for species
exhibiting white noise, meaning that fluctuations in abundance relative to
the mean abundance are higher; Wilcox-test: p < 0.0001 ***
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Figure 34: Mean power spectra in experimental data. Mean power spec-
tral densities from experimental data in a log-log plot. The slope g = -0.97
indicates pink noise. The red line shows the linear model, for statistics see
table 2

Table 2: Mean power spectral densities: linear model statistics

B p adjusted R?
experimental data -0.97 | <0.0001 *** 0.74
random community structure | -1.19 | < 0.0001 *** 0.97
clustered community structure | -1.17 | < 0.0001 *** 0.97

In data from simulations, many species also stratified in terms of the
noise they exhibit. We find subgroups of species exhibiting either white,
pink or brown noise. In both simulation approaches these subgroups corre-
late with the mean species abundance (see figures 35 and 36). We see that
low abundant species that frequently get washed out exhibit white noise.
The high turnover within this subgroup of species is most likely due to the
high flow-through in the gut microbiome. This leads to strong stochastic
fluctuations in the abundances of those species. In the data from simula-
tions this is also reflected in their short lifetimes (see figures 37 and 38) and

48



their high sd/mean ratios (see figures 39 and 40).

Species showing the highest abundances (see figures 35 and 36) fall into
the subgroup of species exhibiting brown noise. Brown noise is thought to
be exhibited by systems that are influenced by deterministic drivers. In the
gut microbiome, the influence of the host presumably represents this deter-
ministic drivers and seems to have the strongest effect on species showing
brown noise. They are almost continuously present and get hardly washed
out of the system. This is apparent in their long lifetimes (see figures 37
and 38) and low sd/mean ratio (see figures 39 and 40).

Species that have intermediate abundances (see figures 35 and 36) ex-
hibit pink noise. Systems exhibiting pink noise are characterized mainly by
the interaction structure between their elements. We assume that this also
holds for the gut microbiome. Microbe-microbe interactions would there-
fore have the strongest effect on the temporal evolution of species exhibit-
ing pink noise. Stochastic influences like flow-through and deterministic
drivers like host-microbe interactions have less of an effect on this sub-
group of species. When looking at their intermediate lifetimes (see figures
37 and 38) and sd/mean ratios (see figures 39 and 40), we can observe
these reduced influences.

Those described patterns are very similar for simulations with random com-
munity structure and simulations with clustered community structure. An
apparent difference in simulation approaches is the number of species
within the subgroups exhibiting a certain noise type. These numbers are
much smaller for simulations with random community structure. Simula-
tions with clustered community structure have a higher diversity in interac-
tion patterns between species. This added diversity seems to result in more
species stratifying into subgroups exhibiting a certain noise type.

We could also find correlations between the noise type a subgroup exhibits
and model parameters. These results will be discussed in section 3.2.5.
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Figure 35: Mean species abundances in simulations with random com-
munity structure. Differences in mean abundances of species showing
white noise (N = 49), pink noise (N = 63) and brown noise (N = 13), respec-
tively. Species exhibiting different noise types show significant differences
in their mean abundances; Kruskal-Wallis test: p < 0.0001 ***
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Figure 36: Mean species abundances in simulations with clustered
community structure. Differences in mean abundances of species show-
ing white noise (N = 135), pink noise (N = 155) and brown noise (N = 52),
respectively. Species exhibiting different noise types show significant differ-
ences in their mean abundances; Kruskal-Wallis test: p < 0.0001 ***
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Figure 37: Species lifetimes in simulations with random community
structure. Differences in lifetimes between subgroups of species exhibit-
ing white noise (N = 49), pink noise (N = 63) and brown noise (N = 13),
respectively. Species exhibiting different noise types vary significantly in
their lifetimes; Kruskal-Wallis-test: p < 0.0001 ***
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Figure 38: Species lifetimes in simulations with clustered community
structure. Differences in lifetimes between subgroups of species exhibiting
white noise (N = 135), pink noise (N = 155) and brown noise (N = 52),
respectively. Species exhibiting different noise types vary significantly in
their lifetimes; Kruskal-Wallis-test: p < 0.0001 ***
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Figure 39: Ratio between standard deviation and mean (sd/mean) of
species abundances in simulations with random community struc-
ture. Differences in sd/mean ratio of species showing white noise (N =
49), pink noise (N = 63) and brown noise (N = 13), respectively. Subgroups
vary significantly in their sd/mean ratios; Kruskal-Wallis test: p < 0.0001 ***
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Figure 40: Ratio between standard deviation and mean (sd/mean) of
species abundances in simulations with clustered community struc-
ture. Differences in sd/mean ratio of species showing white noise (N =
135), pink noise (N = 155) and brown noise (N = 52), respectively. Sub-
groups vary significantly in their sd/mean ratios; Kruskal-Wallis test: p <
0.0001 ***
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In the data from simulation, we again examined mean power spectral
densities. Linear models fitted to mean power spectral densities from both
simulation approaches resulted in an exponent g close to -1. For sim-
ulations with random community structure g = -1.19 and for simulations
with clustered community structure g = -1.17 (see figures 41 and 42, for
statistics see table 2). Both exponents indicate that simulations overall ex-
hibit pink noise and that species exhibiting pink noise are mainly shaping
the temporal evolution of the gut microbial community. We argue that this
means, microbe-microbe interactions have the strongest influence on com-
munity structure and behavior and make the gut microbiome robust against
stochastic fluctuations and influences from deterministic drivers.

o linear model

log(power)

log(frequency)

Figure 41: Mean power spectra of simulations with random commu-
nity structure. Mean power spectral densities from different realizations of
simulations with random community structure in a log-log plot. The slope

= -1.19 indicates pink noise. The red line shows the linear model, for
statistics see table 2

53



linear model

10
|

log(power)
8
|

0 2 4 8
l

log(frequency)

Figure 42: Mean power spectra of simulations with clustered commu-
nity structure. Mean power spectral densities from different realizations of
simulations with clustered community structure in a log-log plot. The slope
B = -1.17 indicates pink noise. The red line shows the linear model, for
statistics see table 2

In both simulated and experimental data we observe that species strat-
ify into subgroups exhibiting a certain noise type. The mean power spectral
densities show that also both simulated data and experimental data overall
exhibit pink noise. We do find species exhibiting brown noise in data from
simulations. In the experimental data, however, we assume that species
showing brown noise is only an artifact. In the model, we did not take into
account frequently changing external influences, such as dietary changes
or immune responses of the host. These additional sources of stochastic
fluctuation influencing the whole microbial community might be the reason
why species exhibiting real brown noise are not present in experimental
data.

The results from examining power spectral densities suggest that nei-
ther stochastic fluctuations (flow-through) nor deterministic external drivers
(host-microbe interactions) have the strongest effect on time evolution in the
gut microbial community. The pink noise exhibited by the gut microbiome
as a system indicates that system inherent structures, the microbe-microbe
interactions, shape the system behavior.
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3.2.5 How immigration and extinction shape noise and abundance in
the simulated microbial community

We further examined how model parameters influence dynamical behavior
of species in simulated data and to what extent those parameters are linked
to the type of noise a species exhibits.

e Immigration probability

Immigration probabilities were in both simulation approaches uniformly
distributed among species. Immigration probability mainly represents
a species ability to colonize available space and niches within the
gut. This ability is highly influenced by the strength of stochastic influ-
ences, such as continuous flow-through. The better a species colo-
nization ability, the less susceptible it is to stochastic fluctuations. Im-
migration probabilities are in neither of our two simulation approaches
significantly different between subgroups of species exhibiting differ-
ent types of noise. There are, however, trends visible within sub-
groups of species exhibiting white or pink noise. Within those sub-
groups, species with a better colonization ability, which are less influ-
enced by stochasticity, reach higher abundance. We see these trends
for both simulation approaches in the distribution of immigration prob-
abilities within those subgroups (see figures 43 and 44). It is partic-
ularly visible in simulations with random community structure (figure
43) as there are less species that stratified into the subgroups. Tem-
poral evolution in the subgroup of species exhibiting brown noise was
in neither of the simulation approaches strongly shaped by their abil-
ity to colonize available space. Correspondingly we see no correlation
between immigration probability and abundance in those species.

These results suggest that a species ability to colonize space and
niches within the gut is to some extent shaping the temporal dynam-
ics of certain subgroups of species. Namely, we see a correlation
between immigration probability and abundance in species exhibiting
pink and white noise, respectively. On species showing the highest
abundances within the gut microbiome, which exhibit brown noise,
this property has no visible effect.
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Figure 43: Immigration probabilities in simulations with random com-
munity structure. Mean species abundances and corresponding immigra-
tion probabilities of species showing either white or pink noise. Within both
subgroups we see a trend that mean species abundance increases with
increasing immigration probability
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Figure 44: Immigration probabilities in simulations with clustered
community structure. Mean species abundances and corresponding im-
migration probabilities of species showing either white or pink noise. Again
we see a trend within both subgroups that mean species abundance in-
creases with increasing immigration probability
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e Extinction probability

Extinction probabilities were in both simulation approaches uniformly
distributed among species. Extinction probability reflects how well a
species is adapted to its environment. This particularly encompasses
how well it interacts with the host and how strong the hosts impact is
on the species temporal dynamics. For both simulation approaches
we find that strength of the hosts impact differs significantly between
subgroups of species exhibiting different noise types. The external
influence of the host is weakest in species showing white noise and
strongest in species showing brown noise (see figures 45 and 46).
We also find that the correlation between external influence and abun-
dance is strongest in species exhibiting brown noise and weaker in
the subgroups exhibiting pink or white noise. A linear model fitted
to a log-log plot of mean species abundance and extinction proba-
bility visualizes that species exhibiting brown noise follow the trend
line more than other species (see figures 47 and 48, for statistics of
the linear model fits see table 3). Particularly the temporal evolution
of low abundant species exhibiting white noise is strongly shaped by
stochastic fluctuations. This could explain why the hosts external in-
fluence has only little effect on their behavior.

The differences in external influence on species from different sub-
groups is more pronounced in simulations with random community
structure. In those simulations less species stratified into noise sub-
groups. The model parameters of species within one subgroup are
also very similar. We suggest that the added topography in the inter-
action network of simulations with clustered community structure also
allows for a higher variability in model parameters that still lead to a
species exhibiting a certain noise type.

The influence of external drivers that shape the gut microbial commu-
nity, particularly host-microbe interactions, varies greatly between dif-
ferent subgroups of species. Low abundant species exhibiting white
noise are less influenced by the host than very high abundant species
that exhibit brown noise. In the high abundant species that are most
affected by the hosts influence we also find a clearer correlation be-
tween strength of external influence and species abundance.
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Figure 45: Extinction probabilities in simulations simulations with
random community structure. Differences in extinction probabilities of
species showing white noise (N = 49), pink noise (N = 63) and brown noise
(N = 13), respectively. The subgroups differ significantly in their extinction
probabilities; Kruskal-Wallis test: p-value < 0.0001 ***
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Figure 46: Extinction probabilities in simulations with clustered com-
munity structure. Differences in extinction probabilities of species show-
ing white noise (N = 135), pink noise (N = 155) and brown noise (N = 52),
respectively. The subgroups differ significantly in their extinction probabili-
ties; Kruskal-Wallis test: p-value < 0.0001 ***

58



log(extinction probability)
3

0w white
o pink
- @ brown R
r~ linear model fit
T | 1 T T T
-6 -4 -2 0 2 4 & 8

log{mean species abundance)

Figure 47: Extinction probabilities in simulations with random com-
munity structure. Mean species abundances and corresponding extinc-
tion probabilities of species showing either white, pink or brown noise on
a logarithmic scale. The black line represents a linear model fit. Species
exhibiting brown noise show a trend corresponding to the linear model
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Figure 48: Extinction probabilities in simulations with clustered com-
munity structure. Mean species abundances and corresponding extinc-
tion probabilities of species showing either white, pink or brown noise on
a logarithmic scale. The black line represents a linear model fit. Species
exhibiting brown noise show a trend corresponding to the linear model
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Table 3: Extinction probabilities: linear model statistics

slope p adjusted R?
random community structure | -0.53 | < 0.0001 *** 0.58
clustered community structure | -0.47 | < 0.0001 *** 0.46

3.2.6 How community structure shapes noise and abundance in the
simulated gut microbiome

From experimental data of the gut microbial community it is hardly possible
to infer causal interactions between microbes. Simulating the time evolution
of the gut microbiome has the benefit that we can investigate the structure
of the simulated community. This can give information about links between
network properties and the respective community organization with the sys-
tems temporal dynamics.

The two different simulation approaches we used, differ in the topog-
raphy that underlies the microbial interaction network. The Erdés-Rényi
topography is characterized by a normal distribution in the node degrees of
the network [63], the community structure is random. The Klemm-Eguiluz
topography is characterized by a skewed distribution in the node degrees,
which leads to a clustered community structure that shows small-world
properties [64]. The difference in node degree distribution are shown in fig-
ure 49. These differences in simulation approaches are also visible in other
topological measures of the interaction network that we examined. Namely,
clustering coefficient and betweenness centrality show a greater variability
in simulations with a clustered community structure (Klemm-Eguiluz, see
figures 50 and 51). We also see higher variability in species richness
and alpha diversity between individual simulations with clustered commu-
nity structure than between individual simulations with random community
structure (see 3.2.2). A clustered community structure leads to a broader
range of possible interaction patterns which seem to allow for a higher vari-
ability in abundance distributions.
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Figure 49: Node degrees in simulations with different underlying net-
work topography. Differences in node degrees in simulations from net-
works with underlying Erdés-Rényi and Klemm-Eguiluz topography, respec-
tively (each 5 simulations of 150 species resulting in measures from 750
species). The variance in node degrees is greater for Klemm-Eguiluz sim-
ulations due to the node degree distribution being skewed; Wilcoxon test:
p < 0.0001 ***
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Figure 50: Clustering coefficients in simulations with different under-
lying network topography. Differences in clustering coefficients in simu-
lations from networks with underlying Erdés-Rényi and Klemm-Eguiluz to-
pography, respectively (each 5 simulations of 150 species resulting in mea-
sures from 750 species). The variance in clustering coefficients is greater
for Klemm-Eguiluz simulations; Wilcoxon test: p < 0.0001 ***
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Figure 51: Betweenness centrality in simulations with different under-
lying network topography. Differences in betweenness centrality in simu-
lations from networks with underlying Erdés-Rényi and Klemm-Eguiluz to-
pography, respectively (each 5 simulations of 150 species resulting in mea-
sures from 750 species). The variance in betweenness centrality is greater
for Klemm-Eguiluz simulations; Wilcoxon test: p < 0.0001 ***

We find power-laws in lifetime distributions and pink noise in mean
power spectral densities in both experimental and simulated data. These
are strong indications that the gut microbial community is a system exhibit-
ing self-organized critical behavior. Self-organized criticality is thought to
be found in systems strongly characterized by the interaction structure be-
tween system elements [1]. Therefore we assume that time evolution of
the gut microbiome is also highly shaped by microbe-microbe interactions.
Particularly, species showing pink noise in their individual power spectral
densities should be affected by their interactions with other microbes. To
visualize this influence of community structure on system behavior we ex-
amined topological measures of the interaction network. In simulations with
clustered community structure, we find differences in betweenness cen-
trality between subgroups of species exhibiting pink and brown noise, re-
spectively (see figure 52). We also see an effect of community organiza-
tion in simulations with random community structure. In these simulations,
species exhibiting pink and brown noise, respectively, differ in their node
degrees (see figure 53).
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The topological measures we examined can be used to gain information
about the navigability and the neighborhood within the network. However,
they are static measures that have certain limitations. As both experimental
and simulated data show clear indications for self-organized criticality, we
assume that community structure has a stronger effect on system behavior
than is visible in those topological measures. To draw systematic conclu-
sions about how community structure influences time evolution in the gut
microbiome and its connection to noise types different species exhibit, a
more dynamic approach could be useful. Map equations could for exam-
ple help to reveal patterns of information flow within the microbial network
[73]. Another approach would be, to look at the community structure from
a different angle and in more detail. We could investigate which microbes
specifically interact with each other and what types of noise they exhibit.
Patterns in this interaction structures within a subgroup of species could
help unravel the role of community structure in time evolution of the gut
microbiome.
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Figure 52: Betweenness centrality in simulations with clustered com-
munity structure. Differences in betweenness centrality between species
exhibiting pink and brown noise, respectively. Betweenness centrality is
significantly higher in species exhibiting brown noise; Wilcoxon test: p =
0.027
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Figure 53: Node degrees in simulations with random community struc-
ture. Differences in node degree between species exhibiting pink and
brown noise, respectively. Betweenness centrality is significantly higher
in species exhibiting brown noise; Wilcoxon test: p = 0.0065 *
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4 Discussion

In experimental and simulated data we performed spectral density analy-
sis on the temporal abundance data from individual species. Many micro-
bial species in experimental data stratified into two subgroups of species
showing either pink or white noise in their power spectral densities. These
two subgroups correlate with species abundance. As shown in figure 54
and figure 55 species exhibiting white noise have lower abundances than
species exhibiting pink noise. The lifetimes of those subgroups of species
also differ significantly (see section 3.2.4, figure 32) and higher abundant
species exhibiting pink noise are generally more persistent in the microbial
community.

The stratification of species into subgroups showing different noise types in
their power spectral densities was also very strong in simulations with clus-
tered community structure. Here we also find that species exhibiting white
noise are very low in abundance, while species exhibiting pink noise show
higher abundances (see figure 56). The subgroup of species exhibiting
brown noise shows the highest abundances over time. Those subgroups
again show different temporal persistence in the gut microbiome, which is
reflected in their different lifetimes (see figure 38).

We argue that in both experimental and simulated data the subgroup of
species showing higher lifetimes forms a stable part in the community.
Composition of this stable part might vary and form enterotypes, as sug-
gested in [12], or it is more of a functional core within the microbial com-
munity. Apart from this stable subgroup in the microbial community there is
also a highly variable part that experiences frequent turnover. In the exper-
imental and simulated data we analyzed, this part of the community shows
significantly shorter lifetimes and exhibits white noise.
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Figure 54: Relative species abundances in all samples from

donor A. Species are grouped according to the noise type they exhibit:
white noise (N=2420) and pink noise (N=177), respectively. Species with
peaks showing very high abundances were left out to make dynamics more
visible. Species exhibiting white noise are significantly less abundant than
species exhibiting pink noise
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Figure 55: Relative species abundances in all samples from

donor B. Species are grouped according to the noise type they exhibit:
white noise (N=1743) and pink noise (N=442), respectively. Species with
peaks showing very high abundances were left out to make dynamics more
visible. Species exhibiting white noise are significantly less abundant than
species exhibiting pink noise
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Figure 56: Relative species abundances over time from a simulation
with clustered community structure. Species are grouped according
to the noise type they exhibit: white noise (N=11), pink noise (N=34),
brown noise (N=14), species with very high abundance were left out to
make dynamics more visible. Very low abundant species exhibit white
noise, species showing intermediate abundances exhibit pink noise and
high abundant species exhibit brown noise

In the simulated data we also looked for trends within subgroups of

species exhibiting a certain noise type. Specifically, we examined how ex-
ternal drivers influence those subgroups. In the theoretical model, external
influences are captured in immigration and extinction probability. A species
ability to colonize available space in the gut is incorporated in the immigra-
tion probability. It also includes how strong a species is influenced by the
high flow-through in the gut. The influence the host has on the temporal
evolution of a microbial species, e.g. through host-microbe interactions,
mainly constitutes the extinction probability.
We find that external drivers seem to have strong effects on species ex-
hibiting white and brown noise. Flow-through and constraints on coloniza-
tion ability seem to have a large effect on species exhibiting white noise.
Species exhibiting brown noise are apparently strongly affected by host in-
fluences. The subgroup of species exhibiting pink noise seems to be more
robust against both those influences. We show this in figure 57 (upper plot)
for simulations with clustered community structure. It is a log-log plot with
immigration and extinction probability, respectively, on the x-axis and mean
species abundance on the y-axis.
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In terms of immigration probability, we see that the mean abundance of
species exhibiting white noise is higher for higher immigration probabili-
ties. The mean abundances of species exhibiting brown noise are higher
for lower extinction probabilities. The subgroup of species exhibiting pink
noise seems to be neither strongly affected by flow-through in the gut mi-
crobiome nor by host influences. This is also observable in figure 57 (upper
plot). Species exhibiting pink noise show a slight trend in immigration prob-
ability, but no visible correlation of mean abundance with extinction proba-
bility.

We observe a similar pattern in simulations with random community struc-
ture (see figure 57, lower plot). Here, however, mean abundance of species
exhibiting pink noise shows a stronger correlation with immigration proba-
bility.

Pink noise is strongly associated with self-organized criticality and suggests
that a systems internal structure, i.e. interactions between the elements, is
shaping its behavior [1]. Based on this concept and our observations we
argue that time evolution of species exhibiting pink noise in the gut micro-
bial community is most strongly influenced by their interactions with other
microbial species. This internal structure makes them more robust against
external drivers, be they high flow-through over time or the influences of
the host. In simulations with random community structure, the variability
in interaction patterns is limited. That in these simulations the influence of
external drivers (immigration probability in figure 57, lower plot) is stronger
than in simulations with clustered community structure emphasizes our ar-
gument.

Even in species that are most strongly influenced by the host we see some
impact of community structure. In figure 58 we show that within species
exhibiting brown noise in simulations with clustered community structure,
there is a range of mean in-going interaction coefficients. The more other
species positively influence the growth of a certain species, the more posi-
tive the measure is. It seems that abundance differences in those very high
abundant species are to some extent due to microbe-microbe interactions
and can not only be attributed to the influence of the host.

We also find many species exhibiting pink noise in the experimental
data. The time evolution of those species is most likely strongly shaped
by their interactions with other species as well. This is emphasized by the
pink noise we find in mean power spectral densities of experimental data
and also simulated data and the power-law distributions of the species life-
times. We also do not find species that exhibit brown noise in experimental
data, which is further evidence that the hosts influence on the gut microbial
community is limited.

Based on our analysis we argue, that the gut microbial community is a sys-
tem exhibiting self-organized critical behavior and that external drivers do
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have limited influence on the gut microbiome. We suggest that the time
evolution of this microbial community is mainly shaped by its internal struc-
ture.

Table 4: Extinction and immigration probabilities: linear model statistics

slope o) adjusted R?
random community structure
extinction probability -1.15 | <0.0001 *** 0.62
immigration probability 1.2 | <0.0001 *** 0.42
clustered community structure
extinction probability -0.94 | <0.0001 *** 0.53
immigration probability 1.03 | <0.0001 *** 0.33

70



o

(%] wxlinciion, beown noks
c axlinclion, prk noks

-g o immigralicn, whie nose
c - A immigralion. pirk noise
=1 O - —— linear mode 11, exinciion
_g —— o o O linear madk |11, immigrion

e

T R _— O i

B ::G% =i B r

[+ - B o

o a 0 m_

(=% F BT

o Lo iﬁg@ }

& ol By .

o ]
E

—_

o 9 -

o

8 -4 -2 0] 2
leglimmigration probability)
loglextinction probability)

o

(5] o exlinclion brown noies

% sxtinclion pirk noizs

e L= mmigmlion. whits roie

c - mmigration, pink nose

= — —— brear model ii. exiinciion
2 —0o D e mode | 11 immigrt i

g - :

w uy o
K “a

%] &

a

o

c © :

] W L _

o -

E ]
o P o

(=]

-8 -4 -2 0 2

leglimmigration probability)
loglextinction probability)

Figure 57: Distribution of immigration and extinction probabilities on
a logarithmic scale. Immigration and extinction probabilities, respectively,
and corresponding mean abundance of species showing different types of
noise on a logarithmic scale.

(upper plot) simulations with clustered community structure

(lower plot) simulations with random community structure

Species exhibiting brown noise (blue circles) show increasing abundance
with decreasing extinction probability (blue trend line); species exhibiting
white noise (green triangles) show increasing abundance with increasing
immigration probability (green trend line); species exhibiting pink noise (red
circles and triangles) show a correlation with immigration probability but no
visible correlation with extinction probability.

Linear model statistics in table 4

71



0.02 0.04

-0.01

.

mean coefficient
of in-going interactions

I I [ I |
500 1000 1500 2000 2500

mean species abundance

Figure 58: Mean interaction coefficient from in-going interactions in
simulations with clustered community structure. The variability of
mean in-going interaction coefficients in species exhibiting brown noise
suggests that their differences in abundance are to some extent due to
community structure

Our model simulates temporal dynamics within the intestinal microbial
community and captures its systematic behavior. It provided insight into
the development of community composition and temporal fluctuations. But
we also faced limitations. The model does not take into account stochas-
tic external perturbations or host-microbe interactions and species-specific
parameters were not variable over time, but represented a stable environ-
ment. We simulated only a small part of OTUs in the experimental data re-
sulting in information loss on the whole community. For more robust results,
taking more than two experimental data sets for parametrization could also
be useful. Analyses of the community structure also proofed to be very
difficult. Being able to show the patterns and dynamics in an interacting
community would, however, be very important.

Nevertheless, our theoretical model and the results from our analysis can
be used for further research in various directions. In our simulations, model
parameters associated with a particular species of the gut microbial com-
munity did not change over time. Strong perturbation of the system, for
example due to antibiotic treatment or a permanent change in diet, can
however lead to a shift in microbial community composition. After a per-
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turbation species might be better adapted to the environment than before-
hand while other species end up less well adapted. It might also lead to
a shift in the noise regime of certain species. Species that exhibited white
noise before a perturbation might now be better adapted to the new condi-
tions and exhibit pink noise after the perturbation. This could further result
in changed interaction structures, as evidenced by the noise pattern. As
shown by Stein et al. in [34], a strong external perturbation can cause
different species to rise in abundance. Due to community structure, their
higher abundance also facilitates other species. This would mean they are
less susceptible to stochastic fluctuations and might establish themselves
in the intestinal microbial community. A strong external perturbation could
result in a pathogenic microbial species establishing itself in the gut micro-
biome. Beneficial species on the other hand might be driven into a white
noise regime due to competitive exclusion. External perturbation could be
integrated into our SOC-model to investigate how it affects community dy-
namics. Perturbing species in a simulation and varying species parameters
over time could also help understand how a dysbiosis of the microbial com-
munity develops.

We also think that simulating different microbial communities with this model
can help understand patterns and trends in systematic behavior and de-
tailed analysis could aid mechanistic understanding. The gut microbiome
shows strong characteristics of self-organized criticality. In other microbial
communities species exhibiting brown noise might be found in higher num-
ber, suggesting a stronger influence from an external driver, e.g. a host.
The gut microbiome could also be simulated in more detail by explicitly im-
plementing host-microbe interactions to analyze their specific effects on mi-
crobial dynamics. We also suggest that our model could be used to model
the reduced gut communities of e.g. mouse models and link back model
parameters to experimental data. Vice versa, predictions and parametriza-
tions could be tested in lab models such as mouse models.

Comparison of model fittings to experimental data from healthy and dis-
eased subjects could provide understanding of systematic differences. As
suggested in [74] systems shifting between two dynamical regimes show
specific patterns that could be used as early-warning signals. This concept
might be extendable to power spectral densities and self-organized critical
systems. We argue that analyses of power spectral densities of healthy
and diseased microbial gut communities could broaden our understanding
of dysbiosis and its contribution to disease. It could also aid in identifying
specific markers for diseases, be they single species, groups of species or
patterns found in the temporal signal of the community. Finding patterns in
system features could further provide a valuable tool for possible prediction
of diseases, such as inflammatory bowel disease or gastric cancer.
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5 Conclusion

We apply an individual-based model to the simulation of temporal dynam-
ics in the gut microbiome. Our results show on a systematic level that the
influence of external effects and internal structure on time evolution vary
between species. We further find that the gut microbiome exhibits typical
characteristics of self-organized criticality, particularly pink noise. The pink
noise it exhibits indicates that the system behavior is strongly influenced
by the internal structure, the interaction network of the microbial commu-
nity. These findings can help to better understand structure and dynamics
of the gut microbial community and aid in the development of general treat-
ment strategies for diseased states of the microbiota. We make a first step
of introducing noise in power spectral densities as a marker for microbial
community organization. We argue that a systematic survey in a broad
range of data sets will uncover the mechanistic basis and the impact of mi-
crobial community organization for emerging community properties, such
as dysbiosis or persistent unfavorable microbiota composition responsible
for human disease state.
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