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Abstract

The focus of this thesis is on Bounded Arithmetic, which describes a family

of theories in the language LBA =
{

0, 1,+, ·, <,
⌊
x
2

⌋
, |x|,#

}
. Those theories

are often augmented with induction-like schemes for formulas in which all

quantifiers are bounded.

The first part establishes a model-theoretic method to prove conserva-

tion of theories. A theory T is ∀∃-conservative over another theory T ′ in the

same language, if all ∀∃-sentences that follow from T also follow from T ′.

To achieve the goal of finding the right conditions on theories to obtain con-

servation for all ∀∃-sentences, we introduce the notion of Herbrand-saturated

structures. With such structures we are able to prove the main result of this

chapter: If every Herbrand-saturated model M of a universal theory T ′ is

also a model of a theory T in the same language, then T is ∀∃-conservative

over T ′.

As an application of this theorem, we show the following: Let UPVi be the

theory of all true universal sentences in the language consisting of polyno-

mial time functions with Σp
i -oracle in the standard model and let US1

2(FPi)

be the theory UPVi plus length minimization for strict Σb
1-formulas in that

language. Then US1
2(FPi) is ∀∃-conservative over UPVi.

The second main topic discussed in this thesis is simulation of propo-

sitional refutations. In this chapter, we develop a method for translating
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ABSTRACT 4

first-order sentences into propositional formulas. In order to work in a non-

standard model of arithmetic, we show how we code such formulas as well as

refutations. Further, we introduce a truth formula for codes of propositional

formulas. We show that a bounded sentence is true if and only if the truth

formula states that the code of its propositional translation is true.

Combining all the results, we prove the main theorem of this part: Let ϕ

be an unnested sentence in a bigger language than the language of all defin-

able functions and relations in the standard model of arithmetic and let M
be a countable nonstandard model of arithmetic. If the sentence ϕ with all

quantifiers bounded by some nonstandard integer is true in an expansion of

M, then there are no polynomial size refutations of the propositional trans-

lations of ϕ. We prove this result by utilizing the previously defined coding

functions and formulas.



Zusammenfassung

Der Schwerpunkt dieser Arbeit ist Bounded Arithmetic. Diese beschreibt eine

Familie von Theorien in der Sprache LBA =
{

0, 1,+, ·, <,
⌊
x
2

⌋
, |x|,#

}
. Solche

Theorien werden oft um ein Induktions-ähnliches Axiomenschema für Sätze,

bei denen alle Quantoren beschränkt sind, erweitert.

Im ersten Teil beschreiben wir eine modelltheoretische Methode mit der

wir Konservativität von Theorien zeigen können. Eine Theorie T ist ∀∃-
konservativ über einer Theorie T ′ der gleichen Sprache, wenn alle ∀∃-Sätze,

die aus T folgen auch aus T ′ folgen. Um die richtigen Anforderungen an Theo-

rien zu finden, sodass wir die ∀∃-Konservativitätseigenschaft erhalten, führen

wir Herbrand-saturierte Strukturen ein. Mit solchen zeigen wir anschließend

das Haupttheorem dieses Kapitels: Wenn jedes Herbrand-saturierte Modell

einer universellen Theorie T ′ auch Modell einer Theorie T der gleichen Spra-

che ist, dann ist T konservativ über T ′ für ∀∃-Sätze.

Als Anwendung dieses Theorems beweisen wir folgendes: Sei UPVi die Theo-

rie aller wahren universellen Sätze in der Sprache, die aus den Funktio-

nen besteht, die in polynomieller Zeit von einer Turing-Maschine mit Σp
i -

Orakel berechenbar sind. Darüber hinaus sei US1
2(FPi) die Theorie UPVi

mit zusätzlicher length minimization für strikte Σb
1-Formeln in dieser Spra-

che. Dann ist UPVi konservativ über US1
2(FPi) für ∀∃-Sätze.

Das zweite große Thema, das in dieser Arbeit behandelt wird, ist die
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Simulation von Widerspruchsbeweisen aussagenlogischer Formeln. In diesem

Kapitel entwickeln wir eine Methode, prädikatenlogische Formeln erster Stu-

fe in aussagenlogische Formeln zu übersetzen. Um in Nichtstandardmodellen

der Arithmetik arbeiten zu können, zeigen wir, wie wir solche Formeln und

Widerspruchsbeweise codieren. Weiters führen wir eine Wahrheitsformel für

Codes aussagenlogischer Formeln ein. Mit dieser zeigen wir, dass ein be-

schränkt quantifizierter Satz genau dann wahr ist, wenn die Wahrheitsformel

sagt, dass der Code der aussagenlogischen Übersetzung wahr ist.

Wir wenden diese Resultate an, um das Haupttheorem dieses Kapitels zu be-

weisen: Sei ϕ ein Satz in einer größeren Sprache als der Sprache aller definier-

baren Funktionen und Relationen im Standardmodell der Arithmetik undM
ein abzählbares Nichtstandardmodell der Arithmetik. Wenn der Satz ϕ, bei

dem alle Quantoren durch eine nichtstandard Zahl beschränkt sind, in einer

Expansion vonM wahr ist, dann existieren keine polynomiell großen Wider-

spruchsbeweise der aussagenlogischen Übersetzungen von ϕ. Wir beweisen

dies mit Hilfe der zuvor definierten Codierungs-Funktionen und -Formeln.



Acknowledgements

First of all, I would like to thank Sy-David Friedman for the opportunity

to write my master thesis at the Kurt Gödel Research Center. Further, I
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Chapter 1

Preliminaries

In this chapter we revisit some important notions. We assume some basic

knowledge of logic and complexity theory but give the following definitions

as a reminder.

1.1 Logic and arithmetic

We start by giving a reminder on basic concepts in logic and arithmetic. For

more details we refer the reader to [7], [8] and [9].

Definition. A language L is a set of constants, function symbols and relation

symbols. Function symbols and relation symbols have a positive arity, i.e.,

the number of arguments accepted by the function symbol or relation symbol.

Note. In this thesis we use the convention that every language contains at

least one constant.

Definition. Let L be a language and X be a set of variables. We define

AL = {¬,∨,∧,∀,∃,=, ), (} ∪ X ∪ L as the alphabet of the language L.

Definition. Let L be a language. An L-term is a string over the alphabet

AL built by the following rules.

8



CHAPTER 1. PRELIMINARIES 9

• Every variable is an L-term.

• Every constant in L is an L-term.

• If f is a function symbol in L with arity r and t1, . . . , tr are L-terms,

then so is f(t1, . . . , tr).

Definition. Let L be a language. An L-formula is a string over the alphabet

AL built by the following rules.

(a) If s and t are L-terms, then s = t is an L-formula.

(b) If R ∈ L is a relation symbol with arity r and t1, . . . , tr are L-terms, then

R(t1, . . . , tr) is an L-formula.

(c) If ϕ is an L-formula, then ¬ϕ is an L-formula.

(d) If ϕ1 and ϕ2 are L-formulas, then (ϕ1∨ϕ2) and (ϕ1∧ϕ2) are L-formulas.

(e) If ϕ is an L-formula and x is a variable, then ∃xϕ and ∀xϕ are L-

formulas. We call ∃ and ∀ quantifiers.

Definition.

• We call L-formulas atomic, if they are derived by only applying rule

(a) or (b).

• If ϕ is an atomic L-formula or the negation of an atomic L-formula,

we say ϕ is an L-literal.

• We say an L-formula is quantifier-free, if it has no quantifiers, i.e., it

is derived by only applying the rules (a)-(d).

Notation. We use the common abbreviation ϕ→ ψ for ¬ϕ∨ψ where ϕ and

ψ are L-formulas in a language L.

Further, we often write
∨

1≤i≤r ϕi or
∧

1≤i≤r ϕi if ϕi (1 ≤ i ≤ r) are L-

formulas for (· · · (ϕ1∨ϕ2)∨· · · )∨ϕr) or (· · · (ϕ1∧ϕ2)∧· · · )∧ϕr) respectively.
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We also omit parentheses for better readability. If r = 0, we define
∨

1≤i≤r ϕi

as ⊥ and
∧

1≤i≤r ϕi as >.

Notation. We denote tuples of variables with a bar, e.g., x̄ = (x1, . . . , xr)

for r ∈ N.

Definition. Let L be a language and ϕ be an L-formula. A variable x is

called free if it is not in the scope of ∀ or ∃. An L-formula without free

variables is called L-sentence or first-order sentence.

Notation. Let t be an L-term and ϕ be an L-formula in a language L. If

we write t(x1, . . . , xr) or ϕ(x1, . . . , xr), we mean that all free variables of t

or ϕ are in {x1, . . . , xr}.

Note. We abbreviate ∀x (x ≤ t(ȳ)→ ϕ(x, ȳ, z̄)) by ∀x ≤ t(ȳ) ϕ(x, ȳ, z̄) and

∃x ≤ t(ȳ) ϕ(x, ȳ, z̄) abbreviates ∃x (x ≤ t(ȳ) ∧ ϕ(x, ȳ, z̄)).

Definition. We say a first-order sentence is universal, if it is of the form

∀x1, . . . , xr ψ(x1, . . . , xr)

for an r ∈ N where ψ(x1, . . . , xr) is a quantifier-free first-order formula.

We say a first-order sentence is existential, if it is of the form

∃x1, . . . , xr ψ(x1, . . . , xr)

for an r ∈ N where ψ(x1, . . . , xr) is a quantifier-free first-order formula.

Notation. We abbreviate ∀x1, . . . , xr ψ(x1, . . . , xr, ȳ) by writing ∀x̄ ψ(x̄, ȳ)

and ∃x1, . . . , xr ψ(x1, . . . , xr, ȳ) by ∃x̄ ψ(x̄, ȳ).

Definition. Let L be a language. An L-structure M is defined as a pair

M =
(
M, (SM)S∈L

)
such that M is a nonempty set and

• SM ∈M , if S is a constant,
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• SM : M r →M , if S is a function symbol with arity r, and

• SM ⊆M r, if S is a relation symbol with arity r.

We call SM the interpretation of S ∈ L in M and say M is the universe of

M.

Definition. Let M =
(
M, (SM)S∈L

)
be an L-structure for a language L.

Further let t(x1, . . . , xr) be an L-term and a1, . . . , ar ∈ M . The inter-

pretation of an L-term in M is defined inductively on the complexity of

t(x1, . . . , xr):

• If t(x1, . . . , xr) is the variable xi, then tM(a1, . . . , ar) = ai.

• If t(x1, . . . , xr) is a constant c ∈ L, then tM(a1, . . . , ar) = cM.

• If t(x1, . . . , xr) is of the form f(t1(x1, . . . , xr), . . . , ts(x1, . . . , xr)) for L-

terms ti (1 ≤ i ≤ s), then

tM(a1, . . . , ar) = fM(tM1 (a1, . . . , ar), . . . , t
M
s (a1, . . . , ar)).

Note. By the definition above, every term t(x1, . . . , xr) defines, interpreted

in M, a function tM : M r →M .

Definition. Let M =
(
M, (SM)S∈L

)
be an L-structure for a language L.

Assume N ⊆ M and N 6= ∅, all interpretations cM of L-constants c in M
are in N and N is closed under all functions fM. If we restrict the interpre-

tations of the symbols in L on N , we obtain a structure N =
(
N, (SN )S∈L

)
,

which we call substructure of M.

Definition. Let M =
(
M, (SM)S∈L

)
be an L-structure for a language L

and let L′ be a language such that L ⊆ L′. If N =
(
N, (SN )S∈L′

)
is an

L′-structure such that N = M and SN = SM for all S ∈ L, then we call N
an L′-expansion of M.
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Definition. Let L be a language. A set T of L-sentences is called L-theory.

Definition. Let T be a theory in a language L. A model M of T is an

L-structure such that for all sentences ϕ in T , M |= ϕ.

Notation. We often do not distinguish between M and its universe M and

writeM for both. It should be clear from the context which of them is meant.

Definition. Let L be a language.

• An L-formula ϕ is valid, if it is true in all L-structures. We write

|= ϕ.

• Let T be an L-theory and ϕ an L-sentence. We write T |= ϕ, if for all

L-models M of T , M |= ϕ also holds.

Definition. Let L be a language and T an L-theory. T is consistent if there

exists a model M of T .

Definition. The structure N = (N, 0N, SN,+N, ·N, <N) is called the standard

model of arithmetic where N denotes the set of natural numbers, 0N the

integer 0, SN the successor function, +N the addition, ·N the multiplication

and <N the less-than relation.

Definition. LetM =
(
M, (SM)S∈L

)
and N =

(
N, (SN )S∈L

)
be L-structures

for a language L.

• An L-structure homomorphism is a map f : M → N such that

– For every constant c ∈ L, f(cM) = cN .

– For every relation symbol R ∈ L with arity r > 0 and every tuple

(a1, . . . , ar) ∈M r,

if (a1, . . . , ar) ∈ RM, then (f(a1), . . . , f(ar)) ∈ RN .

– For every function symbol F ∈ L with arity r > 0 and every tuple

(a1, . . . , ar) ∈M r,

f(FM(a1, . . . , ar)) = FN (f(a1), . . . , f(ar)).
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• An elementary embedding is an L-structure homomorphism f : M →
N such that for every L-formula ϕ(x1, . . . , xr) and all a1, . . . , ar ∈ M ,

the following holds

M |= ϕ(a1, . . . , ar) if and only if N |= ϕ(f(a1), . . . , f(ar)).

• The structure N is called elementary extension if M ⊆ N and the

inclusion map f : M → N is an elementary embedding. It is called a

proper elementary extension, if M ( N .

Definition. Let M be a proper elementary extension of the standard model

of arithmetic. We call M a nonstandard model of arithmetic. The elements

of the universe of M which are not in N are called nonstandard integers.

Notation. From now on, we omit ”of arithmetic” and refer to the models

defined above as the standard model or nonstandard models.

1.2 Complexity theory

The definitions and results of this sections as well as more details can be

found in [1].

Definition. A problem Q is a subset of N.

Definition. Let x ∈ N. We denote the length of x by |x| which is equal to

dlog2(x+ 1)e.

Definition. Let f : Nr → N be a function. We say f is a polynomial

time function if there is a polynomial p and a Turing machine T such that

for every x1, . . . , xr ∈ N after at most p(|x1|, . . . , |xr|)-many steps on input

(x1, . . . , xr) in binary, T reaches the halting state and f(x1, . . . , xr) is written

on the work tape in binary.



CHAPTER 1. PRELIMINARIES 14

Definition. Let O ⊆ N be a problem. An oracle Turing machine T with

oracle O is a Turing machine augmented with an extra read/write tape which

is called oracle tape and three states q?, qy, qn. Every time T reaches the state

q?, the Turing machine T goes into state qy if what is written on the oracle

tape (in binary) is in O and goes into state qn if it is not.

Definition. Let i ≥ 1. A problem Q is in Σp
i if there exists a polynomial

time function f : Ni+1 → N, and a polynomial p such that x ∈ Q if and only

if

∃y1 < 2p(|x|) ∀y2 < 2p(|x|) · · · Qiyi < 2p(|x|) f(x, y1, . . . , yi) = 1

where Qi denotes ∀ if i is even and Qi denotes ∃ if i is odd.

Notation. We code sequences of natural numbers by converting them into

binary representation with ∗ between two entries of the sequence and then

applying the map 0 7→ 00, 1 7→ 11 and ∗ 7→ 01. Then we convert the

resulting binary number back to its integer representation.

The tupling functions 〈.〉r : Nr → N with r ∈ N map an r-ary tuple of natural

numbers to its code. We omit the index r and just write 〈.〉 for any r-ary

tupling function. Further, we use the function ‖x‖ which maps x to the length

of the sequence which x codes.

Furthermore, when we write (x)i for an i ∈ N, we mean the output of the

function which maps (x, i) to the i-th entry of the sequence which is coded by

x. We use the convention that a sequence starts with the 0th entry.

Note. By our choice of coding, the functions 〈.〉, ‖x‖ and (x)i above are

polynomial time functions.

Now we have given all necessary definitions needed and are able to start

with the main part.



Chapter 2

Witnessing and conservation

In this chapter, we introduce the notion of Herbrand-saturated structures

and show how to use them to prove conservation of one theory over another.

By conservation we mean the following.

Definition. Let T1 and T2 be theories in the same language and let Φ be a

set of first-order formulas in this language. We say T1 is conservative for

Φ-formulas (or Φ-conservative) over T2, if for every ϕ ∈ Φ,

T1 |= ϕ implies T2 |= ϕ.

We show that for two theories T1 and T2 in the same language where T2

is universal, the following holds: If every Herbrand-saturated model of T2 is

also a model of T1, then T1 is ∀∃-conservative over T2.

This particular method is based on a paper by Avigad [2]. It serves as

an alternative to the more common proof-theoretic approach.

With this technique we show a similar result to the so-called Buss’s Witness-

ing Theorem [3]. This was first proven in [3] in a proof-theoretic manner like

many other conservation results. Our approach will be semantically.

In the first section of this chapter we define Herbrand-saturated structures

and show how we obtain ∀∃-conservation of a theory over another theory in

the same language by using such structures. We show some more results

15



CHAPTER 2. WITNESSING AND CONSERVATION 16

about Herbrand-saturated structures afterwards. In the last section of this

chapter, we prove a similar result to Buss’s Witnessing Theorem with the

techniques and methods developed in the first section.

2.1 Conservation by Herbrand-saturation

Definition. A theory T is universal, if it only consists of universal sentences.

Next is Herbrand’s theorem which will be useful later on. This theorem

is the most important part when it comes to witnessing results.

Theorem 2.1 (Herbrand’s Theorem). Let T be a universal theory and as-

sume that T |= ∀x̄∃ȳ ψ(x̄, ȳ) where ψ is a quantifier-free formula and ȳ =

(y1, . . . , yr).

Then there are terms tji (x̄) and an s ∈ N with 1 ≤ i ≤ r and 1 ≤ j ≤ s, such

that

T |= ∀x̄
s∨
j=1

ψ
(
x̄, tj1(x̄), tj2(x̄), . . . , tjr(x̄)

)
.

Proof. Assume T 6|=
∨s
j=1 ψ

(
x̄, tj1(x̄), tj2(x̄), . . . , tjr(x̄)

)
. Then T is consistent

with the set

S = {¬ψ (c̄, t1(c̄), . . . , tr(c̄)) | t1(x̄), . . . , tr(x̄) terms in the language of T}

where c̄ is a new tuple of constants. Thus, there is a model M of S ∪
T . Now let N be the substructure of M with the universe N = {t(c̄) |
t(x̄) is a term in the language of T}. Note that N contains all constants of

the language of T interpreted in M and is closed under the interpretations

of the function symbols in M. Then N is a model of T where ∃ȳ ψ(c̄, ȳ)

fails.

The next definition gives us a useful property of theories.
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Definition. A theory T supports definition by cases, if for every finite num-

ber of terms t1(x̄), . . . , ts(x̄) and quantifier-free formulas θ1(x̄), . . . , θs−1(x̄) in

the language of T there is a function symbol F such that:

T |= ∀x̄ F (x̄) =



t1(x̄) if θ1(x̄)

t2(x̄) if ¬θ1(x̄) ∧ θ2(x̄)
...

ts−1(x̄) if ¬θ1(x̄) ∧ ¬θ2(x̄) ∧ · · · ∧ ¬θs−2(x̄) ∧ θs−1(x̄)

ts(x̄) otherwise.

If a theory supports definition by cases, then we can use a function sym-

bol for distinct terms depending on the truth of quantifier-free formulas.

For example, in the proof of Herbrand’s Theorem we get a function symbol

eliminating all the terms.

Corollary 2.2. Let T be a universal theory that supports definition by cases

and assume T |= ∀x̄∃ȳ ψ(x̄, ȳ) where ψ is a quantifier-free formula and ȳ =

(y1, . . . , yr) with r ∈ N.

Then there are function symbols F1, . . . , Fr such that

T |= ∀x̄ ψ (x̄, F1(x̄), F2(x̄), . . . , Fr(x̄)) .

Proof. Theorem 2.1 implies that there are terms tji (x̄) and an s ∈ N with

1 ≤ i ≤ r and 1 ≤ j ≤ s, such that

T |= ∀x̄
s∨
j=1

ψ
(
x̄, tj1(x̄), tj2(x̄), . . . , tjr(x̄)

)
.

Since ψ(x̄, y1, . . . , yr) is quantifier-free and T supports definition by cases,

there exist function symbols Fi for 1 ≤ i ≤ r such that in models of T the
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following holds

∀x̄ Fi(x̄) =



t1i (x̄) if ψ (x̄, t11(x̄), . . . , t1r(x̄))

t2i (x̄) if ¬ψ (x̄, t11(x̄), . . . , t1r(x̄)) ∧ ψ (x̄, t21(x̄), . . . , t2r(x̄))
...

ts−1
i (x̄) if

s−2∧
j=1

¬ψ
(
x̄, tj1(x̄), . . . , tjr(x̄)

)
∧

ψ
(
x̄, ts−1

1 (x̄), . . . , ts−1
r (x̄)

)
tsi (x̄) otherwise.

Hence, we obtain

T |= ∀x̄ ψ (x̄, F1(x̄), F2(x̄), . . . , Fr(x̄)) .

Next we define Herbrand-saturated structures. Structures with this prop-

erty will play an important role in proving conservation results.

Definition. Let L be a language and M be an L-structure.

• The language L(M) is the language L together with additional con-

stants for the elements of the universe of M.

• The universal diagram ofM is the set of all universal sentences in the

language L(M) which are true in M.

• We say ϕ is an ∃∀-sentence, if ϕ = ∃x̄∀ȳ ψ(x̄, ȳ) where ψ(x̄, ȳ) is

quantifier-free.

Similarly, we say that ϕ is a ∀∃-sentence, if ϕ = ∀x̄∃ȳ ψ(x̄, ȳ) for a

quantifier-free formula ψ(x̄, ȳ).

• The L-structure M is Herbrand-saturated if for any ∃∀-sentence ϕ in

the language L(M) which is consistent with the universal diagram of
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M, we have M |= ϕ.

• Let T1 and T2 be theories in the language L.

We say T1 is ∀∃-conservative over T2, if T1 is Φ-conservative over T2

where Φ is the set of all ∀∃-sentences in L.

Proposition 2.3. Every consistent universal theory T has an Herbrand-

saturated model.

Proof. Let L be the language of T . For simplicity we assume that L is count-

able. The same argument works for uncountable languages using transfinite

induction. Let L′ denote an extension of L with countably many new con-

stants c0, c1, . . . . Furthermore, we enumerate all quantifier-free formulas of L′

with θ1(x̄1, ȳ1), θ2(x̄2, ȳ2), . . . where x̄i = (x1, . . . , xri) and ȳi = (y1, . . . , ysi)

for ri, si ∈ N and i ≥ 1. The next step is constructing an increasing sequence

of sets of universal sentences to obtain the universal diagram of the desired

model.

• Let S0 = T . Since T is universal, so is S0.

• At stage i+ 1 we try to satisfy ∀ȳi+1 θi+1(x̄i+1, ȳi+1).

To achieve the latter, we pick a tuple of the newly introduced constants c̄

which does not occur in Si or θi+1 and let

Si+1 :=

Si ∪ {∀ȳi+1 θi+1(c̄, ȳi+1)} if this is consistent,

Si otherwise.

By induction on i we show that every Si is consistent. The theory S0 = T

is consistent by assumption. Now assume that Si is consistent. If Si+1 =

Si ∪ {∀ȳi+1 θi+1(c̄, ȳi+1)}, it has to be consistent by definition. Otherwise,

Si+1 = Si and thus, it is consistent by the induction hypothesis. Therefore,

S =
⋃
i∈N

Si is also consistent.
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For uncountable languages we use the same construction as above at suc-

cessor stages and the union of all previously defined Si at limit stages.

Let N be a model of S andM be a substructure of N such that the universe

ofM is the set {tN | t closed term in L′}. Since S only consists of universal

sentences, every substructure of N is also a model of S. Hence,M is a model

of S and thus, M |= T .

Note that each element ofM is denoted by one of the ci’s we introduced

earlier. This follows from the fact that every element ofM can be written as

a term t in L′. Now pick j such that θj(x̄j, ȳj) is the statement x = t. Hence

for the constant c introduced in this step of the construction, the formula

c = t is an element of Sj+1.

Finally, we show thatM is Herbrand-saturated. Assume there is a quantifier-

free formula ϕ and a tuple of parameters ā in M such that we have M 6|=
∃x̄∀ȳ ϕ(x̄, ȳ, ā). We claim that this sentence is inconsistent with the univer-

sal diagram of M.

By the remark above, every entry of ā is denoted by a constant in L′.
Let b̄ be the tuple of constants in L′ such that bi denotes ai for all ai in ā.

Choose an index i0 such that θi0+1(x̄, ȳ) = ϕ(x̄, ȳ, b̄). Let c̄ be the constants

used at stage i0 + 1 in the construction. Then M 6|= ∀ȳ ϕ(c̄, ȳ, b̄) and hence,

the sentence is inconsistent with Si. Since c̄ does not occur in Si, the formula

∃x̄∀ȳ ϕ(x̄, ȳ, b̄) is also inconsistent with Si.

Now we rename b̄ to ā and the constants in Si to the corresponding elements

of the universe of M. If we choose to name the constants of L(M) the

same as the element in the universe they are representing, we obtain that

the renamed Si is a subset of the universal diagram of M. This proves the

desired inconsistency.

We will now turn to the main result of this section, which provides us with
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all the requirements on models of theories we need for proving conservation.

Theorem 2.4. Let T1 and T2 be theories in the same language such that T2

is universal.

If every Herbrand-saturated model of T2 is also a model of T1, then for every

∀∃-sentence ϕ, T1 |= ϕ implies T2 |= ϕ.

Proof. Assume that every Herbrand-saturated model of T2 is also a model of

T1. Let ϕ(x̄, ȳ) be a quantifier-free formula in the language of T2. Suppose

that T2 6|= ∀x̄∃ȳ ϕ(x̄, ȳ). Then we have to show that T1 6|= ∀x̄∃ȳ ϕ(x̄, ȳ).

Assume this sentence is not true in some models of T2. Then we obtain that

T ′2 := T2 ∪ {∀ȳ ¬ϕ(c̄, ȳ)} is consistent and universal where c̄ is a new tuple

of constants.

By Proposition 2.3 there is an Herbrand-saturated model M of T ′2. Let

N be the restriction of M to the language of both theories. It is easy to

see that N is Herbrand-saturated: Let ψ be an ∃∀-sentence in L(N ) that

is consistent with the universal diagram of N . Since N is a restriction of

M, it follows that ψ is an ∃∀-sentence in L(M) that is consistent with the

universal diagram of M. Thus, M |= ψ because M is Herbrand-saturated.

Therefore, we also obtain N |= ψ since ψ is in L(N ) and N is restriction of

M.

By construction, N is an Herbrand-saturated model of T2 such that N |=
∃x̄∀ȳ ¬ϕ(x̄, ȳ). Therefore, N is also a model of T1 in which ∀x̄∃ȳ ϕ(x̄, ȳ) is

false.

2.2 More on Herbrand-saturated structures

In this section we show some consequences for Herbrand-saturated structures

from previously proven results.

Proposition 2.5. Let M be an Herbrand-saturated structure in a language

L. Suppose M |= ∀x̄∃ȳ ϕ(x̄, ȳ, ā) where ϕ is quantifier-free, ā is a tuple of
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parameters in M and ȳ = (y1, . . . , yr). Then there is a universal formula

ψ(z̄, w̄), an integer s and terms tji (x̄, z̄, w̄) with 1 ≤ i ≤ r and 1 ≤ j ≤ s such

that M |= ∃w̄ ψ(ā, w̄) and

|= ψ(z̄, w̄)→
s∨
j=1

ϕ(x̄, tj1(x̄, z̄, w̄), tj2(x̄, z̄, w̄), . . . , tjr(x̄, z̄, w̄), z̄).

Proof. Assume M |= ∀x̄∃ȳ ϕ(x̄, ȳ, ā) holds. Hence, ∃x̄∀ȳ ¬ϕ(x̄, ȳ, ā) is not

true in M. Since it is an ∃∀-sentence and M is Herbrand-saturated, it is

inconsistent with the universal diagram ofM. Therefore, there is a universal

formula ψ(z̄, w̄) and a tuple of parameters b̄ satisfying

M |= ψ(ā, b̄) and

|= ψ(ā, b̄)→ ∃ȳ ϕ(x̄, ȳ, ā).

Now replace the tuples ā and b̄ with variables z̄ and w̄. First we obtain

M |= ∃w̄ ψ(ā, w̄). Now consider the formula ψ(z̄, w̄)→ ∃ȳ ϕ(x̄, ȳ, z̄). We can

rewrite the formula to the equivalent statement ∃ȳ (ψ(z̄, w̄)→ ϕ(x̄, ȳ, z̄)).

Because this existential formula is valid, we can apply Herbrand’s Theorem.

So there is an integer s and terms tji (x̄, z̄, w̄) with 1 ≤ i ≤ r and 1 ≤ j ≤ s

such that

|= ψ(z̄, w̄)→
s∨
j=1

ϕ(x̄, tj1(x̄, z̄, w̄), tj2(x̄, z̄, w̄), . . . , tjr(x̄, z̄, w̄), z̄).

Corollary 2.6. Let M be an Herbrand-saturated structure for a language

L. Suppose M |= ∀x̄∃ȳ ϕ(x̄, ȳ, ā) where ϕ is quantifier-free and ā is a tuple

of parameters in M and ȳ = (y1, . . . , yr). Then there is an integer s, terms

tji (x̄, z̄, w̄) with 1 ≤ i ≤ r and 1 ≤ j ≤ s and a tuple of parameters b̄ ∈ M
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such that

M |= ∀x̄
s∨
j=1

ϕ(x̄, tj1(x̄, ā, b̄), tj2(x̄, ā, b̄), . . . , tjr(x̄, ā, b̄), ā)

for an s ∈ N.

Proof. This follows from the proof of Proposition 2.5 by using the same tuple

b̄.

Corollary 2.7. Let T be a universal theory which supports definition by

cases. Assume M is an Herbrand-saturated model of T and suppose M |=
∀x̄∃ȳ ϕ(x̄, ȳ, ā) where ϕ is quantifier-free and ā is a tuple of parameters in

M and ȳ = (y1, . . . , yr).

Then there are function symbols F1(x̄, z̄, w̄), . . . , Fr(x̄, z̄, w̄) and a tuple of

parameters b̄ in M such that M |= ∀x̄ ϕ(x̄, F1(x̄, ā, b̄), . . . , Fr(x̄, ā, b̄), ā).

Proof. Corollary 2.6 implies that there are terms tji (x̄, z̄, w̄) with 1 ≤ i ≤ r

and 1 ≤ j ≤ s for an integer s and that there is a tuple of parameters b̄ ∈M
such that

M |= ∀x̄
s∨
j=1

ϕ(x̄, tj1(x̄, ā, b̄), tj2(x̄, ā, b̄), . . . , tjr(x̄, ā, b̄), ā)

for an s ∈ N. Now define Fi as in the proof of Corollary 2.2.

2.3 Buss’s Witnessing Theorem

In this section we apply previous results to show a model-theoretic version

of Buss’s Witnessing Theorem [3]. The difference between our approach and

the original proof is that in [3] the result is shown by using proof-theoretic

methods. For a proof-theoretic discussion we refer to [4].
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We will not show the exact same result proven by Buss, but the theorem

we prove is similar to his statement. The definitions of this section are based

on [4] and [8] which provide more details on bounded arithmetic.

2.3.1 Defining UPVi

First of all, we define the proper theories for proving this result. We start

with the theory of polynomial time computable functions with Σp
i−1-oracles.

Definition.

• Let FP1 be the set of polynomial time functions.

• For i ≥ 2, let FPi be the set of polynomial time functions with Σp
i−1-

oracle.

• Let i ≥ 1. The theory UPVi is the universal theory in the language

LPVi
= {<} ∪ FPi

consisting of all true universal LPVi
-sentences in the expansion of the

standard model to LPVi
where all FPi-functions are interpreted the com-

mon way.

Now we show that UPVi supports definition by cases. Intuitively this is

clear: We have a list of FPi-functions to choose from and depending on the

output of the characteristic functions of quantifier-free formulas, we compute

the output of the function we want to choose. Thus, we need to show the

next lemma first.

Lemma 2.8. Let i ≥ 1. Every quantifier-free formula ϕ(x̄) in the language

LPVi
has a characteristic function χϕ(x̄) in FPi, i.e., there is a function

χϕ(x̄) ∈ FPi such that UPV |= ∀x̄ (ϕ(x̄)↔ χϕ(x̄) = 1).
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Proof. The interpretation of every LPVi
-term in the standard model defines

a function that is in FPi, because FPi is closed under composition. The

equality can be stated as a universal sentence, and therefore it holds in all

models of UPVi. Since the relations = and < can be checked in polynomial

time, the lemma holds for atomic formulas. It is clear, that the formulas for

which the lemma holds are closed under conjunctions and negations.

Proposition 2.9. Let i ≥ 1. The theory UPVi supports definition by cases.

Proof. By definition, we have to show that for every finite number of terms

t1(x̄), . . . , tk(x̄) and quantifier-free formulas θ1(x̄), . . . , θk−1(x̄) there is a func-

tion symbol F such that:

UPVi |= ∀x̄ F (x̄) =



t1(x̄) if θ1(x̄)

t2(x̄) if ¬θ1(x̄) ∧ θ2(x̄)
...

tk−1(x̄) if
∧k−2
i=1 ¬θi(x̄) ∧ θk−1(x̄)

tk(x̄) otherwise.

Since all θj(1 ≤ j < k) are quantifier-free, by Lemma 2.8 they have a char-

acteristic function χθj in FPi. Furthermore, from the proof of Lemma 2.8 we

obtained that every term tj defines an FPi-function fj.

Let F (x̄) be computed by the algorithm below (with algorithms Aj comput-

ing χθj and Bj the algorithm computing the FPi-function fj).

Every algorithm that is run in the algorithm computing F (x̄) computes

its output in polynomial time. Therefore, we run at most k-many polynomial

time algorithms for the characteristic functions and one for the term. Adding

the time of all those computations is adding polynomials. Thus, we get

another polynomial – so the algorithm runs in polynomial time. Since all

algorithms are allowed to make Σp
i−1-oracle queries, we obtain that overall this
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algorithm runs in polynomial time and makes Σp
i−1-oracle queries. Therefore,

F (x̄) is an FPi-function.

Input: x̄

if A1(x̄) = 1 then

output← B1(x̄)

return output

else if A2(x̄) = 1 then

output← B2(x̄)

return output
...

else if Ak−1(x̄) = 1 then

output← Bk−1(x̄)

return output

else

output← Bk(x̄)

return output

end if

Now we apply the theorems we proved in the previous section. First of all

we can apply Herbrand’s Theorem. Since UPVi supports definition by cases,

we get the following corollary.

Corollary 2.10. Let i ≥ 1. If UPVi |= ∀x̄∃ȳ ψ(x̄, ȳ) and ψ(x̄, ȳ) is a

quantifier-free formula where ȳ = (y1, . . . , yr), then there are function symbols

F1(x̄), . . . , Fr(x̄) in FPi such that UPVi |= ∀x̄ ψ(x̄, F1(x̄), . . . , Fr(x̄)).

Proof. By Proposition 2.9, UPVi supports definition by cases. Since it is a

universal theory by definition, we can apply Corollary 2.2.

Clearly the application of Herbrand’s Theorem, namely Proposition 2.5

works for UPVi.
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Corollary 2.11. Let i ≥ 1. Assume M is an Herbrand-saturated model

of UPVi and M |= ∀x̄∃ȳ ψ(x̄, ȳ, ā) where ψ(x̄, ȳ, z̄) is quantifier-free, ȳ =

(y1, . . . , yr) and ā is a tuple of parameters in M. Then there exist function

symbols F1(x̄, z̄, w̄), . . . Fr(x̄, z̄, w̄) in FPi and parameters b̄ ∈ M such that

M |= ∀x̄ ψ(x̄, F1(x̄, ā, b̄), . . . , Fr(x̄, ā, b̄), ā).

Proof. Since UPVi supports definition by cases and is a universal theory by

definition, we can apply Corollary 2.7.

2.3.2 Defining US1
2(FPi)

Next we define a weak fragment of arithmetic. We start with the language

of arithmetic and add a unary symbol
⌊
x
2

⌋
for cutting off the last digit in the

binary representation, a unary symbol |x| for the length of a number which

is equal to dlog2(x+ 1)e and the binary smash symbol x#y defined as 2|x|·|y|.

Definition. The language of bounded arithmetic is

LBA =
{

0, 1,+, ·, <,
⌊x

2

⌋
, |x|,#

}
.

Note. It is clear that 0, 1,+, ·, <,
⌊
x
2

⌋
, |x| and # are in FP1. Thus, we obtain

that LBA ⊆ LPVi
for all i ≥ 1.

Note. We use the common abbreviation ”x ≤ y” for ”x < y ∨ x = y”.

Definition. Let i ≥ 1. The set of ∆b
0(FPi)-formulas is the set of formulas

satisfying:

• If ϕ(x̄) is a quantifier-free LPVi
-formula, then ϕ(x̄) ∈ ∆b

0(FPi).

• If ϕ(x̄) and ψ(x̄) are ∆b
0(FPi)-formulas, then ¬ϕ(x̄), ϕ(x̄) ∧ ψ(x̄) and

ϕ(x̄) ∨ ψ(x̄) are ∆b
0(FPi)-formulas.

• If ϕ(x, ȳ) is a ∆b
0(FPi)-formula and t(ȳ) is an LPVi

-term, then ∃x ≤
|t(ȳ)| ϕ(x, ȳ) and ∀x ≤ |t(ȳ)| ϕ(x, ȳ) are ∆b

0(FPi)-formulas.
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The set of Σb,s
1 (FPi)-formulas is the set of formulas ϕ(ȳ) that are of the

form ∃x ≤ t(ȳ) ψ(x, ȳ) where ψ(x, ȳ) is a ∆b
0(FPi)-formula and t(ȳ) is an

LPVi
-term.

Definition. Let Φ be a set of formulas. Length minimization LMIN(Φ) is

the set of sentences

∀x, w̄
(
ϕ(x, w̄)→ ∃y ≤ x ∀z ≤ x (ϕ(y, w̄) ∧ (|z| < |y| → ¬ϕ(z, w̄)))

)
for all formulas ϕ(x, w̄) ∈ Φ.

Definition. Let i ≥ 1. The theory US1
2(FPi) is the theory UPVi together

with LMIN(Σb,s
1 (FPi)).

Proposition 2.12. Let i ≥ 1. In UPVi every ∆b
0(FPi)-formula is equivalent

to an atomic formula.

Proof. By Lemma 2.8, every quantifier-free LPVi
-formula has a characteristic

function in FPi. Hence, if ϕ(ȳ) is quantifier-free, then UPVi |= ∀ȳ (ϕ(ȳ) ↔
χϕ(ȳ) = 1) which proves the claim for quantifier-free formulas.

Assume now that ϕ(ȳ) = ∃x ≤ |t(ȳ)| ψ(x, ȳ) where ψ(x, ȳ) is a quantifier-free

formula in the language LPVi
and t(ȳ) is a term in this language. First of

all, we show that there is an FPi-function F (ȳ) such that

UPVi |= ∀ȳ
(
∃x ≤ |t(ȳ)| ψ(x, ȳ)↔ ψ(F (ȳ), ȳ)

)
.

We show that the left-hand side implies the right-hand side: Since ψ(x, ȳ)

is quantifier-free, there is an FPi-function χψ, such that its algorithm A
computes on input (x, ȳ) the value of χψ(x, ȳ). Let F (ȳ) be the function

with the following algorithm:
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Input: ȳ

z ← t(ȳ)

u← |z|
x← 0

while x ≤ u do

if A(x, ȳ) = 1 then

output← x

return output

else

x← x+ 1

end if

end while

return output

Let ȳ = (y1, . . . , yr). Computing t(ȳ) can be done in less than p(|y1|, . . . , |yr|)
steps with p being a polynomial, because all LPVi

-terms define FPi-functions.

Hence, |t(ȳ)| = |z| ≤ p(|y1|, . . . , |yr|) and therefore, |z| is computable in

polynomial time. Now the loop computes the characteristic function of ψ

at most |z|-many times. Since this function is in FPi, there is a polynomial

p′ such that this function is computable in time p′(|x|, |y1|, . . . , |yr|). Since

x ≤ |z|, we obtain that |x| ≤ |z| also holds. Combining these facts, we

obtain that this algorithm needs polynomial time to compute. Note that, if

i > 1, in all the algorithms of t(ȳ) and in A, Σp
i−1-oracle queries are allowed.

Hence, in the algorithm above, queries to Σp
i−1-oracles are allowed as well.

In conclusion, whether i = 1 or i > 1, F (ȳ) is an FPi-function. The other

implication is trivial.

Since ψ(F (ȳ), ȳ) is quantifier-free, we obtain that it is equivalent to an atomic

formula in models of UPVi.
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2.3.3 Conservation of US1
2(FPi) over UPVi

Notation. Let i ≥ 1. We write NPVi
for the expansion of the standard model

N to LPVi
where all LPVi

-symbols are interpreted the obvious way.

Theorem 2.13. Let i ≥ 1. The theory US1
2(FPi) is ∀∃-conservative over

UPVi.

Proof. By Theorem 2.4 the only thing we need to show is that, if M is an

Herbrand-saturated model of UPVi, then M is a model of US1
2(FPi).

Since UPVi is the theory of true universal sentences in NPVi
, the only step

remaining to prove that M |= US1
2(FPi) is showing that LMIN(Σb,s

1 (FPi))

holds in M, i.e.,

M |= ϕ(a, b̄)→ ∃x ≤ a ∀y ≤ a
(
ϕ(x, b̄) ∧

(
|y| < |x| → ¬ϕ(y, b̄)

))
for a Σb,s

1 (FPi)-formula ϕ(x, ū) and a, b̄ ∈ M. Assume M |= ϕ(a, b̄) holds

and

M 6|= ∃x ≤ a ∀y ≤ a
[
ϕ(x, b̄) ∧

(
|y| < |x| → ¬ϕ(y, b̄)

)]
.

As ϕ(x, ū) does not involve y, we can rewrite the formula to get the quantifier

inside the parentheses right in front of the first occurrence of y, i.e.,

M 6|= ∃x ≤ a
[
ϕ(x, b̄) ∧ ∀y ≤ a

(
|y| < |x| → ¬ϕ(y, b̄)

)]
.

Since ϕ(x, ū) is a Σb,s
1 (FPi)-formula, there exists a term t(x, ū) not involving z

and a ∆b
0(FPi)-formula ψ(x, z, ū), such that ϕ(x, ū) = ∃z ≤ t(x, ū) ψ(x, z, ū).

By Proposition 2.12, in models of UPVi the formula ψ(x, z, ū) is equivalent

to an atomic formula of the form χψ(x, z, ū) = 1 where χψ is in FPi. Without

loss of generality, we assume ψ(x, z, ū) is such a formula. SinceM |= UPVi,
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we obtain

M 6|= ∃x ≤ a [∃z ≤ t(x, b̄) ψ(x, z, b̄)∧

∀y ≤ a
(
|y| < |x| → ¬∃z′ ≤ t(y, b̄) ψ(y, z′, b̄)

)
].

We can rewrite the statement above by using standard arguments. Hence,

the above is equivalent to

M |= ∀x, z ∃y, z′
(
x ≤ a→

(
z ≤ t(x, b̄)→

(
y ≤ a ∧ z′ ≤ t(y, b̄) ∧

[
ψ(x, z, b̄)→

(
|y| < |x| ∧ ψ(y, z′, b̄)

) ])))
.

This is a statement of the form M |= ∀x, z ∃y, z′ θ(x, z, y, z′, b̄) where the

formula θ(x, z, y, z′, b̄) is quantifier-free. By Corollary 2.11, there exist func-

tions G1(x, z, ū, v̄) and G2(x, z, ū, v̄) in FPi and a tuple of parameters c̄ in

M such that

M |= ∀x, z
(
x ≤ a→

(
z ≤ t(x, b̄)→

(
G1(x, z, b̄, c̄) ≤ a∧

G2(x, z, b̄, c̄) ≤ t(G1(x, z, b̄, c̄), b̄) ∧ [ψ(x, z, b̄)→

(|G1(x, z, b̄, c̄)| < |x| ∧ ψ(G1(x, z, b̄, c̄), G2(x, z, b̄, c̄), b̄))]
)))

.

Putting the abbreviations ∀x ≤ a and ∀z ≤ t(x, b̄) in place, we obtain the

statement

M |= ∀x ≤ a ∀z ≤ t(x, b̄)
(
G1(x, z, b̄, c̄) ≤ a ∧

G2(x, z, b̄, c̄) ≤ t
(
G1(x, z, b̄, c̄), b̄

)
∧
[
ψ(x, z, b̄)→(

|G1(x, z, b̄, c̄)| < |x| ∧ ψ
(
G1(x, z, b̄, c̄), G2(x, z, b̄, c̄), b̄

)) ])
.

(?)

Assume the algorithms A1 and A2 compute on input (x, z, ū, v̄) the output

of G1(x, z, ū, v̄) and G2(x, z, ū, v̄) respectively. Let Bψ be the algorithm com-
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puting χψ(x, z, ū). Because t(x, ū) is a term in LPVi
, by the proof of Lemma

2.8 it defines an FPi-function. Assume Bt(x, ū) is the algorithm computing

on input (x, ū) the output of this function. Let F (x, z, ū, v̄) be the function

that is computed by the algorithm below.

Input: x, z, ū, v̄

if Bψ(x, z, ū) = 0 then

w ← 1

else

w ← 0

end if

while w = 0 do

x′ ← A1(x, z, ū, v̄)

z′ ← A2(x, z, ū, v̄)

if Bψ(x′, z′, ū) = 0 ∨ |x| ≤ |x′| ∨ z′ > Bt(x′, ū) then

w ← 1

else

x← x′

z ← z′

end if

end while

output← 〈x, z〉
return output

The algorithms A1,A2,Bψ and Bt compute their output in polynomial

time because they are algorithms of FPi-functions. Hence, there is a poly-

nomial bounding the computation time of one run of the while-loop. The

while-loop is computed at most |x|-many times because every time we run

this loop, we check if the reassigned x′ has the property that |x′| is smaller

than in the previous run of the while-loop, starting with x′ being the input x.

Hence, the computation time of the algorithm is bounded by a polynomial

as well. Thus, F (x, z, ū, v̄) is an FPi-function.
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Let Fx(x, z, ū, v̄) be the function that computes F (x, z, ū, v̄) first and

then decodes the first entry of the pair that F outputs on input (x, z, ū, v̄).

Analogously, let Fz(x, z, ū, v̄) be the decoded second entry of F (x, z, ū, v̄).

Since F is an FPi-function and the decoding can be done in polynomial

time, the functions Fx and Fz are in FPi as well.

Claim 1. NPVi
|= ∀x, ū, v̄ ∀z ≤ t(x, ū) Fx(x, z, ū, v̄) ≤ x

Proof. Let ax, az ∈ N and ēu and ēv be N-tuples such that az ≤ t(ax, ēu).

Either Fx(ax, az, ēu, ēv) = ax, or, if the algorithm runs the while-loop at least

twice, |Fx(ax, az, ēu, ēv)| < |ax| holds. �

Claim 2. NPVi
|= ∀x, ū, v̄ ∀z ≤ t(x, ū) Fz(x, z, ū, v̄) ≤ t (Fx(x, z, ū, v̄), ū)

Proof. Let ax, az ∈ N and ēu and ēv be N-tuples such that az ≤ t(ax, ēu).

Analogously to Claim 1, we obtain that either Fx(ax, az, ēu, ēv) = ax and

Fz(ax, az, ēu, ēv) = az, which by assumption is ≤ t(ax, ēu), or we have that

Fz(ax, az, ēu, ēv) ≤ t(Fx(ax, az, ēu, ēv), ēu) which follows from the algorithm.

�

The next claim is obvious.

Claim 3.

NPVi
|= ∀x, ū, v̄ ∀z ≤ t(x, ū)

(
ψ(x, z, ū)→ ψ(Fx(x, z, ū, v̄), Fz(x, z, ū, v̄), ū)

)
In the following claim, we abbreviate Fx for Fx(x, z, ū, v̄) and Fz for

Fz(x, z, ū, v̄) for better readability. Note, that in the claim x, z, ū, v̄ are in

the scope of the universal quantifiers.

Claim 4.

NPVi
|= ∀x, ū, v̄ ∀z ≤ t(x, ū)

(
|G1(Fx, Fz, ū, v̄)| ≥ |Fx|∨

t (G1(Fx, Fz, ū, v̄), ū) < G2(Fx, Fz, ū, v̄)∨

¬ψ(G1(Fx, Fz, ū, v̄), G2(Fx, Fz, ū, v̄), ū)
)



CHAPTER 2. WITNESSING AND CONSERVATION 34

Proof. Assume otherwise, then the while-loop would not have stopped, since

these three disjuncts are equivalent to the three conditions to run the while-

loop again. �

All the statements of the four claims above are universal and true in NPVi

and therefore, they hold in M as well.

By assumption, M |= ϕ(a, b̄). Thus, there is a d ∈ M with M |=
d ≤ t(a, b̄) such that M |= ψ(a, d, b̄). Let a0 = FMx (a, d, b̄, c̄) and d0 =

FMz (a, d, b̄, c̄). Then the following holds:

• From Claim 1, we obtain that M |= a0 ≤ a.

• From Claim 2, we obtain that M |= d0 ≤ t(a0, b̄).

• From Claim 3, we obtain that M |= ψ(a0, d0, b̄).

• From Claim 4, we obtain that

M |= |G1(a0, d0, b̄, c)| ≥ |a0| ∨ t
(
G1(a0, d0, b̄, c̄), b̄

)
< G2(a0, d0, b̄, c̄)∨

¬ψ(G1(a0, d0, b̄, c̄), G2(a0, d0, b̄, c̄), b̄).

Thus, the statement (?) does not hold inM for x = a0 and z = d0, which is

a contradiction.



Chapter 3

Simulation of propositional

refutations

In the first two sections of this chapter we introduce propositional formulas

and refutations. After that we define how we translate first-order formulas

into propositional formulas. In the subsequent sections, we show how we code

propositional translations and refutations. The last section of this chapter

focuses on proving the main theorem of this part which can be understood as

follows: Let L be the language of all definable functions in the standard model

with new symbols added, let ϕ be an L-sentence and let M be a countable

nonstandard model of arithmetic. If there is an L-expansion of M where ϕ

is true on an initial segment, then there are no polynomial size refutations

of the propositional translations of ϕ. We postpone further details.

3.1 Propositional formulas

Definition. Propositional formulas are built from propositional variables

and connectives
∧

,
∨

and ¬ using the following rules:

• A propositional variable p and its negation ¬p are propositional formu-

las called literals.

35
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• If Φ is a finite set of propositional formulas, then
∧

Φ is a propositional

formula called conjunction.

• If Φ is a finite set of propositional formulas, then
∨

Φ is a propositional

formula called disjunction.

Notation. We write > for
∧
∅ and ⊥ for

∨
∅.

Definition. If ϕ is a propositional formula, then we define the propositional

formula ¬ϕ recursively:

• If ϕ = p for a propositional variable p, then ¬ϕ = ¬p.

• If ϕ = ¬p for a propositional variable p, then ¬ϕ = p.

• If ϕ =
∧

Φ where Φ is a finite set of propositional formulas, then

¬ϕ =
∨
{¬ψ | ψ ∈ Φ}.

• If ϕ =
∨

Φ where Φ is a finite set of propositional formulas, then

¬ϕ =
∧
{¬ψ | ψ ∈ Φ}.

Note. By definition ¬⊥ = > and ¬> = ⊥.

Notation. We use the common abbreviation ϕ∧ψ and ϕ∨ψ for propositional

formulas ϕ and ψ. Those abbreviations should be seen as functions with the

following meaning.

Let ϕ and ψ be propositional formulas and let Φ and Ψ be finite sets of

propositional formulas. Then

ϕ∧ψ =



ϕ if ψ = >

ψ if ϕ = >∧(
Φ ∪Ψ

)
if ϕ =

∧
Φ and ψ =

∧
Ψ where Φ 6= ∅ and Ψ 6= ∅∧(

Φ ∪ {ψ}
)

if ϕ =
∧

Φ with Φ 6= ∅ and ψ is not a conjunction∧(
{ϕ} ∪Ψ

)
if ϕ is not a conjunction and ψ =

∧
Ψ with Ψ 6= ∅∧

{ϕ, ψ} if ϕ and ψ are not conjunctions



CHAPTER 3. SIMULATION OF PROPOSITIONAL REFUTATIONS 37

and

ϕ ∨ ψ =



ϕ if ψ = ⊥

ψ if ϕ = ⊥∨(
Φ ∪Ψ

)
if ϕ =

∨
Φ and ψ =

∨
Ψ where Φ 6= ∅ and Ψ 6= ∅∨(

Φ ∪ {ψ}
)

if ϕ =
∨

Φ with Φ 6= ∅ and ψ is not a disjunction∨(
{ϕ} ∪Ψ

)
if ϕ is not a disjunction and ψ =

∨
Ψ with Ψ 6= ∅∨

{ϕ, ψ} if ϕ and ψ are not disjunctions

Note. It is easy to see, that ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ) holds for all propositional

formulas ϕ and ψ.

Notation. Because of the associativity of ∧ and ∨, we can iterate the nota-

tions above for 3 or more propositional formulas. For r-many propositional

formulas ϕ1, . . . , ϕr we write
∧∧

1≤i≤r ϕi instead of (· · · (ϕ1 ∧ ϕ2)∧ · · · )∧ ϕr)
and

∨∨
1≤i≤r ϕi instead of (· · · (ϕ1 ∨ ϕ2) ∨ · · · ) ∨ ϕr).

Definition. If ϕ is a propositional formula, we define the set of subformulas

subϕ of ϕ recursively:

• If ϕ is a propositional variable p, then subϕ = {p}.

• If ϕ is a negated propositional variable ¬p, then subϕ = {p,¬p}.

• If ϕ is of the form
∧

Φ or
∨

Φ for a finite set of propositional formulas

Φ, then we define

subϕ = {ϕ} ∪
⋃
ψ∈Φ

subψ.

Definition. The size of a propositional formula ϕ denoted by sizeFml(ϕ) is

defined as follows.

• If ϕ = p for a propositional variable p, then sizeFml(ϕ) = 1.
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• If ϕ = ¬p for a propositional variable p, then sizeFml(ϕ) = 2.

• If ϕ =
∧

Φ or ϕ =
∨

Φ where Φ is a finite set of propositional formulas,

then sizeFml(ϕ) = 1 +
∑
ψ∈Φ

sizeFml(ψ).

Note. From the definition we obtain sizeFml(>) = sizeFml(⊥) = 1.

Definition. Let ϕ be a propositional formula. We define the depth of ϕ

denoted by dp(ϕ) inductively:

• If ϕ ∈ {p,¬p} where p is a propositional variable, then dp(ϕ) = 0.

• If ϕ =
∧

Φ, then let Φ0 ⊆ Φ be the set containing all conjunctions in

Φ and let Φ1 be Φ \ Φ0. The depth of a conjunction is defined as

dp(ϕ) = max
{

1 + max{dp(ψ) | ψ ∈ Φ1},max{dp(ψ) | ψ ∈ Φ0}
}
.

• If ϕ =
∨

Φ, then let Φ0 ⊆ Φ be the set containing all disjunctions in Φ

and let Φ1 be Φ \ Φ0. The depth of a disjunction is defined as

dp (ϕ) = max
{

1 + max{dp(ψ) | ψ ∈ Φ1},max{dp(ψ) | ψ ∈ Φ0}
}
.

We set max ∅ = 0.

Note. By the definition above, we obtain dp(>) = dp(⊥) = 1.

Further, if ϕ is a conjunction of depth d, then ¬ϕ is a disjunction of depth

d and vice versa.

Definition. We define the sets of propositional formulas Σprop
i and Πprop

i

for i ∈ N recursively. Let V be a set of propositional variables. Then let

Lit = V ∪ {¬p | p ∈ V}.

• Σprop
0 = Πprop

0 = Lit

• If ϕ is a Πprop
i -formula, then ϕ is a Σprop

i+1 -formula.
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• If Φ is a set of Πprop
i -formulas containing no disjunction, then

∨
Φ is

a Σprop
i+1 -formula.

• If ϕ is a Σprop
i -formula, then ϕ is a Πprop

i+1 -formula.

• If Φ is a set of Σprop
i -formulas containing no conjunction, then

∧
Φ is

a Πprop
i+1 -formula.

Note. The set Lit is the set of all literals built from propositional variables

in V.

By definition, the propositional formula ⊥ =
∨
∅ is in Σprop

1 and > =
∧
∅ is

in Πprop
1 independent of the choice of V.

If we write ϕ∨ψ or ϕ∧ψ for Σprop
d - or Πprop

d -formulas ϕ and ψ where d ∈ N,

then by the notational comment on page 36, the resulting formula is in Σprop
d′ -

or Πprop
d′ for another d′ ∈ N.

Definition. Let k ≥ 1 be an integer.

• A propositional formula is in disjunctive normal form (DNF), if it is

in Σprop
2 .

• If
∨

Φ is a DNF and for every
∧

Ψ ∈ Φ, the set Ψ contains at most k

literals, i.e., the cardinality of Ψ is ≤ k, we call
∨

Φ a k-DNF.

• A propositional formula is in conjunctive normal form (CNF), if it is

in Πprop
2 .

• If
∧

Φ is a CNF and for every
∨

Ψ ∈ Φ, the set Ψ contains at most k

literals, i.e., the cardinality of Ψ is ≤ k, we call
∧

Φ a k-CNF.

Proposition 3.1. For every d ∈ N, every Σprop
d -formula and every Πprop

d -

formula has depth ≤ d.

Proof. Literals have depth 0, hence Σprop
0 -formulas and Πprop

0 -formulas have

depth ≤ 0.
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Assume the claim holds for d− 1.

Then every Σprop
d−1 -formula and every Πprop

d−1 -formula has depth ≤ d− 1. Every

Σprop
d -formula is either a Πprop

d−1 -formula or of the form
∨

Φ where Φ is a finite

set of Πprop
d−1 -formulas containing no disjunction. Assume the former, then the

claim holds by the induction hypothesis. Assume the latter. Then the subset

of disjunctions in Φ is empty. In the notation of the definition of the depth

of a propositional formula, we obtain Φ0 = ∅ and Φ1 = Φ. Hence,

dp
(∨

Φ
)

= max
{

1 + max{dp(ψ) | ψ ∈ Φ}, 0
}

= 1 + max{dp(ψ) | ψ ∈ Φ}.

Since every ψ ∈ Φ has depth ≤ d− 1, we obtain that dp(
∨

Φ) ≤ d.

Analogously we can show that dp(
∧

Φ) ≤ d.

Definition. Let V be a set of propositional variables.

• We define T and F as truth values. The truth value T represents ”true”

and F represents ”false”.

• An assignment is a function α : V→ {T, F}.

• Let α be an assignment of all propositional variables in V. The exten-

sion ᾱ of α to propositional formulas ϕ with variables from V is defined

recursively:

– If ϕ = p for a p ∈ V, then ᾱ(ϕ) = α(p).

– If ϕ =
∧

Φ where Φ is a finite set of propositional formulas, then

ᾱ(ϕ) = T if and only if ᾱ(ψ) = T for all ψ ∈ Φ.

– If ϕ =
∨

Φ where Φ is a finite set of propositional formulas, then

ᾱ(ϕ) = T if and only if there exists a ψ ∈ Φ such that ᾱ(ψ) = T.

– If ϕ = ¬ϕ′ for a propositional formula ϕ′, then ᾱ(ϕ) = T if and

only if ᾱ(ϕ′) = F.

• We say ᾱ(ϕ) is the truth value of ϕ.
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• If ᾱ(ϕ) = T where ϕ is a propositional formula and ᾱ is the extension

of an assignment of all propositional variables occurring in ϕ, then we

say ”ᾱ satisfies ϕ”.

• We say that a propositional formula ϕ is a tautology, if for all assign-

ments α their extension ᾱ to propositional formulas satisfies ϕ.

• We say that a propositional formula ϕ is unsatisfiable if there is no as-

signment α such that its extension ᾱ to propositional formulas satisfies

ϕ.

• We say that a set of propositional formulas Φ is unsatisfiable if and only

if there is no assignment α such that its extension ᾱ to propositional

formulas satisfies all ϕ ∈ Φ simultaneously.

• We say the propositional formulas ϕ and ψ are logically equivalent if

and only if for the extension ᾱ of any assignment α of all propositional

variables occurring in ϕ and ψ, ᾱ(ϕ) = ᾱ(ψ), i.e., ϕ and ψ always have

the same truth value. We write ϕ ≡ ψ.

Note. We obtain from the definition above that ᾱ(⊥) = F and ᾱ(>) = T for

the extension ᾱ of any assignment α.

3.2 Frege refutation systems

Definition. Let ψ1, . . . , ψr be propositional formulas and p1, . . . , pr distinct

propositional variables where r is an integer. A substitution is a function

σ : {p1, . . . , pr} → {ψ1, . . . , ψr} mapping pi to ψi for 1 ≤ i ≤ r. If ϕ is a

propositional formula, then σ(ϕ) is the propositional formula which results

from simultaneously replacing pi by ψi for 1 ≤ i ≤ r in the propositional

formula ϕ.
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Definition.

• A Frege rule R is an (r + 1)-tuple of propositional formulas ϕ0, . . . , ϕr

in propositional variables written as

R :
ϕ1 . . . ϕr

ϕ0

such that the propositional formula
∧∧

1≤i≤r ϕi → ϕ0 is a tautology.

This property is called soundness of R. We call (r+ 1) the arity of the

rule R and write ar(R) = r + 1.

• A Frege rule in which r = 0 is called a Frege axiom scheme.

• For any substitution σ we say the propositional formula σ(ϕ0) is in-

ferred from propositional formulas σ(ϕ1), . . . , σ(ϕr) by R.

• A finite collection of Frege rules F is called a Frege refutation system.

• A Frege refutation from a collection of Frege rules (F-refutation) of

a set of propositional formulas Φ is a finite sequence (ψ0, . . . , ψs) of

propositional formulas such that for 0 ≤ i < s either

– ψi is in the set Φ, or

– there are ψj1 , . . . , ψjr (0 ≤ j1, . . . , jr < i) such that ψi is inferred

from ψj1 , . . . , ψjr by a rule R in F with ar(R) = r + 1,

and ψs = ⊥.

• If σ = (ψ0, . . . , ψs) is a Frege refutation, then we say (s + 1) is the

length of σ and write ‖σ‖ = s+ 1.

• The size of a Frege refutation is the sum of all sizes of propositional

formulas occurring in the Frege refutation. We write sizeRefut(σ).
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The Frege refutation systems F(d)

In this chapter we focus on the commonly used Frege refutation systems F(d)

which we define below.

Definition. We define the following three rules.

Let d ∈ N with d ≥ 1.

• Weakening rule: Let ϕ and ψ be Σprop
d -formulas, then the weakening

rule for Σprop
d -formulas is:

ϕ

ϕ ∨ ψ

• Cut rule: Let ϕ1, ϕ2 be Σprop
d -formulas and let ψ be a Πprop

d−1 -formula,

then the cut rule for Σprop
d -formulas is:

ϕ1 ∨ ψ ϕ2 ∨ ¬ψ
ϕ1 ∨ ϕ2

Let d ∈ N with d ≥ 2.

• ∧-introduction rule: Let ϕ1 and ϕ2 be Σprop
d -formulas and let ψ1 and ψ2

be Πprop
d−1 -formulas which are not disjunctions. The ∧-introduction rule

for Σprop
d -formulas is:

ϕ1 ∨ ψ1 ϕ2 ∨ ψ2

ϕ1 ∨ ϕ2 ∨
(
ψ1 ∧ ψ2

)
Definition. Let d ∈ N with d ≥ 1. We define the Frege refutation systems

F(d) for Σprop
d -formulas as follows.

• F(1) consists of

– the weakening rule for d = 1, and

– the cut rule for d = 1.
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• F(d) for d ≥ 2 consists of

– the weakening rule,

– the cut rule, and

– the ∧-introduction rule.

Definition.

• The Frege refutation system F(1) is also called Resolution. We write

R.

• We call F(2) also DNF-Resolution. We write RDNF.

• Let k ≥ 1 be an integer. We define RDNFk
as the Frege refutation

system consisting of the following three rules.

– Weakening rule: Let ϕ and ψ be k-DNFs, then the weakening rule

for k-DNFs is:
ϕ

ϕ ∨ ψ

– Cut rule: Let ϕ1, ϕ2 be k-DNFs and let ψ be a Πprop
1 -formula such

that ϕ1∨ψ and ϕ2∨¬ψ are k-DNFs, then the cut rule for k-DNFs

is:
ϕ1 ∨ ψ ϕ2 ∨ ¬ψ

ϕ1 ∨ ϕ2

– ∧-introduction rule: Let ϕ1 and ϕ2 be k-DNFs and let ψ1 and

ψ2 be Πprop
1 -formulas such that ψ1 ∧ ψ2 is a k-DNFs. The ∧-

introduction rule for k-DNFs is:

ϕ1 ∨ ψ1 ϕ2 ∨ ψ2

ϕ1 ∨ ϕ2 ∨
(
ψ1 ∧ ψ2

)
Note. The refutation systems defined above are complete in the following

sense: There is an F(d)-refutation of a set of Σprop
d -formulas Φ if and only
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if Φ is unsatisfiable.

Note that the same applies to k-DNF-Resolution and a set of k-DNFs Φ.

Note. The rules introduced above are sound, i.e., F(d) are sound Frege refu-

tation systems for integers d ≥ 1.

3.3 Propositional translation

In this section we show how to translate first-order formulas in a language

bigger than the language of arithmetic to propositional formulas.

Definition. A relation R ⊆ Nr is definable in the standard model, if there

is a formula ψR in the language of N such that for a1, . . . , ar ∈ N, we have

R(a1, . . . , ar) if and only if N |= ψR(a1, . . . , ar).

A function f : Nr → N is definable in the standard model, if there is a formula

ψf in the language of N such that for a0, . . . , ar ∈ N, we have f(a1, . . . , ar) =

a0 if and only if N |= ψf (a0, . . . , ar).

Note. Every FPi-function is definable in the standard model ([4]).

Notation. Let LN be the language of all functions and relations definable in

the standard model. For the rest of the chapter we fix a finite language L′

and let L = LN ∪ L′.

Definition. For an L-formula θ(w1, . . . , wr) we define θ<x(w1, . . . , wr) re-

cursively:

• If θ(w1, . . . , wr) is atomic, then θ<x(w1, . . . , wr) = θ(w1, . . . , wr).

• If θ(w1, . . . , wr) = ¬ψ(w1, . . . , wr) where ψ is an L-formula, then θ<x =

¬ψ<x(w1, . . . , wr).

• If θ(w1, . . . , wr) = θ1(w1, . . . , wr) ∧ θ2(w1, . . . , wr) where θ1 and θ2 are

L-formulas, then θ<x(w1, . . . , wr) = θ<x1 (w1, . . . , wr) ∧ θ<x2 (w1, . . . , wr).
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• If θ(w1, . . . , wr) = ∀y ψ(y, w1, . . . , wr) where ψ(y, w1, . . . , wr) is an L-

formula, then θ<x(w1, . . . , wr) = ∀y < x ψ<x(y, w1, . . . , wr).

Note. Keep in mind that if we use the abbreviations ∀y ≤ t and ∃y ≤ t for

a term t in θ, we obtain the following:

• If θ = ∀y ≤ t ψ(y) with ψ(y) an L-formula, then θ = ∀y (y ≤ t→ ψ(y))

and hence, θ<x = ∀y < x (y ≤ t→ ψ<x(y)).

• If θ = ∃y ≤ t ψ(y) with ψ(y) an L-formula, then θ = ∃y (y ≤ t∧ψ(y))

and hence, θ<x = ∃y < x (y ≤ t ∧ ψ<x(y)).

Notation. We write ar(f) or ar(R) for the arity of a function f or a relation

R respectively.

Notation. For every relation R ∈ L′ and every function f ∈ L′, we introduce

propositional variables Ra1,...,aar(R)
for every tuple (a1, . . . , aar(R)) ∈ Nar(R) and

fa1,...,aar(f)+1
for every tuple (a1, . . . , aar(f)+1) ∈ Nar(f)+1.

For the rest of the chapter we fix VL′ to be the set of all the propositional

variables introduced above. We will work with Σprop
d - and Πprop

d -formulas built

from this particular VL′.

Next we want to translate L-formulas to propositional formulas built from

propositional variables in VL′ .

Notation. An L-formula is unnested, if all occurring first-order atoms are

of the form x = y, f(x1, . . . , xar(f)) = xar(f)+1 or R(x1, . . . , xar(R)) for a

function f ∈ L or a relation R ∈ L.

Definition. Let θ(x1, . . . , xr) be an unnested L-formula and let m be an inte-

ger. We define the propositional translation 〈θ(a1, . . . , ar)〉(m) of θ(a1, . . . , ar)

for a1, . . . , ar ∈ N by induction on the structure of θ.
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(T1) If θ(x1, . . . , xr) is a formula in the language LN, then define the propo-

sitional translation as

〈θ(a1, . . . , ar)〉(m) =

> if N |= θ<m(a1, . . . , ar)

⊥ if N 6|= θ<m(a1, . . . , ar).

(T2) If θ(x1, . . . , xar(R)) is an atomic L′-formula R(x1, . . . , xar(R)) where R

is a relation in L′, then define the propositional translation as

〈θ(a1, . . . , aar(R))〉(m)
= Ra1,...,aar(R)

.

(T3) If θ(x1, . . . , xar(f)+1) is an atomic L′-formula f(x1, . . . , xar(f)) = xar(f)+1

for a function symbol f ∈ L′, then define the propositional translation

as

〈θ(a1, . . . , aar(f)+1)〉
(m)

= fa1,...,aar(f)+1
.

(T4) If θ(x1, . . . , xr) is an L-formula ¬θ′(x1, . . . , xr), then define the propo-

sitional translation as

〈θ(a1, . . . , ar)〉(m) = ¬〈θ′(a1, . . . , ar)〉(m).

(T5) If θ(x1, . . . , xr) is an L-formula θ1(x1, . . . , xr)∧θ2(x1, . . . , xr), then de-

fine the propositional translation as

〈θ(a1, . . . , ar)〉(m) = 〈θ1(a1, . . . , ar)〉(m) ∧ 〈θ2(a1, . . . , ar)〉(m).

(T6) If θ(x1, . . . , xr) is an L-formula ∀y θ′(x1, . . . , xr, y), then define the

propositional translation as

〈θ(a1, . . . , ar)〉(m) =
∧∧

0≤i<m

〈θ′(a1, . . . , ar, i)〉(m).
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Note. The propositional conjunctions in (T5) and (T6) are as in the nota-

tional comment on page 36. Thus, a propositional translation always yields

a Σprop
d - or Πprop

d -formula for some d ∈ N.

For the rest of the section we show how to bound the size of a propositional

translation.

Lemma 3.2. Let m be an integer and ϕ, ϕ′, ϕ0, . . . , ϕm−1 be propositional

formulas. Then the following holds.

(a) sizeFml(¬ϕ) ≤ 2 · sizeFml(ϕ)

(b) sizeFml(
∧∧

0≤i<m ϕi) ≤ 1 +m ·max{sizeFml(ϕi) | 0 ≤ i < m}

Proof. (a): We show this result by induction on the structure of ϕ. If ϕ is

a propositional variable p, then ¬ϕ = ¬p and thus, sizeFml(¬ϕ) = 2 ≤ 2 ·
sizeFml(ϕ). If ϕ = ¬p, then ¬ϕ = p and thus, sizeFml(¬ϕ) = 1 ≤ 2·sizeFml(ϕ).

Now assume that ϕ =
∧

Φ or ϕ =
∨

Φ for a finite set of propositional

formulas Φ and assume that the claim holds for all ψ in Φ. Then the size of

¬ϕ is

sizeFml(¬ϕ) = 1 +
∑
ψ∈Φ

sizeFml(¬ψ) ≤ 1 +
∑
ψ∈Φ

2 · sizeFml(ψ) ≤

2 · (1 +
∑
ψ∈Φ

sizeFml(ψ)) = 2 · sizeFml(ϕ).

(b): This can be shown in a straightforward way:

sizeFml(
∧∧

0≤i<m

ϕi) ≤ 1+
m−1∑
i=0

sizeFml(ϕi) ≤ 1+m ·max{sizeFml(ϕi) | 0 ≤ i < m}

Note that this is also true for m = 0 since sizeFml(>) = 1 and m = 1.

Proposition 3.3. Let θ(x1, . . . , xr) be an L-formula and let m be a natural

number. Then there is an l ∈ N such that for every (a1, . . . , ar) ∈ Nr and for
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every m ∈ N
sizeFml(〈θ(a1, . . . , ar)〉(m)) ≤ (m+ 2)l .

Proof. We prove this by induction on the structure of θ.

• LN-formulas:

Assume θ(x1, . . . , xr) is an LN-formula. Then for a1, . . . , ar ∈ N, the

propositional translation 〈θ(a1, . . . , ar)〉(m) is in {>,⊥}. Therefore, we

obtain sizeFml(〈θ(a1, . . . , ar)〉(m)) = 1, thus l = 0.

• Atoms:

If θ(x1, . . . , xar(R)) = R(x1, . . . , xar(R)) for a relation R ∈ L′, then

for a1, . . . , aar(R) ∈ N, we have 〈θ(a1, . . . , aar(R))〉(m)
= Ra1,...,aar(R)

and

therefore, sizeFml(〈θ(a1, . . . , aar(R))〉(m)
) = 1. Hence, l = 0.

If θ(x1, . . . , xar(f)+1) is a formula f(x1, . . . , xar(f)) = xar(f)+1 for a func-

tion f ∈ L′, then for a1, . . . , aar(f)+1 ∈ N the propositional transla-

tion 〈θ(a1, . . . , aar(f)+1)〉
(m)

equals fa1,...,aar(f)+1
and therefore, we obtain

sizeFml(〈θ(a1, . . . , aar(f)+1)〉
(m)

) = 1. Again, l = 0.

• Negations:

Let θ(x1, . . . , xr) = ¬θ′(x1, . . . , xr) where θ′(x1, . . . , xr) is another L-

formula. Then for a1, . . . , ar ∈ N, the translation 〈θ(a1, . . . , ar)〉(m) of

θ(a1, . . . , ar) is ¬〈θ′(a1, . . . , ar)〉(m). By the induction hypothesis there

is an l′ ∈ N such that

sizeFml(〈θ′(a1, . . . , ar)〉(m)) ≤ (m+ 2)l
′
.

By Lemma 3.2 (a), sizeFml(¬ϕ) ≤ 2 · sizeFml(ϕ) for any propositional

formula ϕ and therefore,

sizeFml(¬〈θ′(a1, . . . , ar)〉(m)) ≤ 2 · sizeFml(〈θ′(a1, . . . , ar)〉(m)).
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Note that the following holds for all m ∈ N:

2 · (m+ 2)l
′
≤ (m+ 2)l

′+1 .

Putting those facts together, we obtain

sizeFml(¬〈θ′(a1, . . . , ar)〉(m)) ≤ (m+ 2)l
′+1

and therefore, l = l′ + 1.

• Conjunctions:

Let θ(x1, . . . , xr) = θ1(x1, . . . , xr) ∧ θ2(x1, . . . , xr) where θ1(x1, . . . , xr)

and θ2(x1, . . . , xr) are L-formulas. Then for integers a1, . . . , ar, we ob-

tain

〈θ(a1, . . . , ar)〉(m) = 〈θ1(a1, . . . , ar)〉(m) ∧ 〈θ2(a1, . . . , ar)〉(m).

By the induction hypothesis there are natural numbers l1 and l2 such

that

sizeFml(〈θi(a1, . . . , ar)〉(m)) ≤ (m+ 2)li

for i ∈ {1, 2}. Then by Lemma 3.2 (b),

sizeFml(〈θ(a1, . . . , ar)〉(m)) ≤

1 + 2 ·max
{

sizeFml(〈θi(a1, . . . , ar)〉(m)) | i ∈ {1, 2}
}
.

Since sizeFml(〈θ1(a1, . . . , ar)〉(m)) and sizeFml(〈θ2(a1, . . . , ar)〉(m)) only

differ in the exponent, we obtain for l′ = max{l1, l2} that

sizeFml(〈θ(a1, . . . , ar)〉(m)) ≤ 1 + 2 · (m+ 2)l
′
.
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Therefore, we have

sizeFml(〈θ(a1, . . . , ar)〉(m)) ≤ (m+ 2)l
′+2 .

Thus, l = max{l1, l2}+ 2.

• Universal quantifications:

Assume θ(x1, . . . , xr) = ∀y θ′(x1, . . . , xr, y) where θ′(x1, . . . , xr, y) is an

L-formula. For a1, . . . , ar ∈ N, the translation is 〈θ(a1, . . . , ar)〉(m) =∧∧
0≤i<m 〈θ′(a1, . . . , ar, i)〉(m). By the induction hypothesis, for every

i < m, there is an li ∈ N such that

sizeFml(〈θ′(a1, . . . , ar, i)〉(m)) ≤ (m+ 2)li .

Applying Lemma 3.2 (b), we obtain

sizeFml(〈θ(a1, . . . , ar)〉(m)) ≤

1 +m ·max
{

sizeFml(〈θ′(a1, . . . , ar, i)〉(m)) | 0 ≤ i < m
}
.

By the same arguments as before, we can write max in the exponent

and obtain

sizeFml(〈θ(a1, . . . , ar)〉(m)) ≤ 1 +m · (m+ 2)max{li|0≤i<m} .

Let l′ = max{li | 0 ≤ i < m}. Thus, we have

sizeFml(〈θ(a1, . . . , ar)〉(m)) ≤ 1 + (m+ 2)l
′+1 ,

and hence, we can conclude

sizeFml(〈θ(a1, . . . , ar)〉(m)) ≤ (m+ 2)l
′+2 .
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Therefore, l = max{li | 0 ≤ i < m}+ 2.

3.4 Coding literals

Before we define the coding of literals, we show how we code sets.

Notation. Let bit(x, y) : N2 → {0, 1} be the function in LN mapping (x, y)

to the x-th bit of the binary representation of y if it exists and to 0 otherwise.

Notation.

• We code a finite set X of natural numbers by the natural number a =∑
c∈X 2c. This means that bit(c, a) = 1 if and only if c is in X. We

write a = pXq where p.q means ”code of”.

• We abbreviate ”bit(c, a) = 1” by writing ”c ∈ a”. Moreover, we write

”∃x ∈ a ϕ” for ”∃x (bit(x, a) = 1 ∧ ϕ)” as well as ”∀x ∈ a ϕ” for

”∀x (bit(x, a) = 1→ ϕ)” for a first-order formula ϕ.

• Let X and Y be sets of natural numbers and let a = pXq and b = pY q.

Then X is a subset of Y if and only if for every c ∈ N, bit(c, a) ≤
bit(c, b) holds. We write ”a ⊆ b” for ”∀x bit(x, a) ≤ bit(x, b)”.

• Let Z be the union of two finite sets of natural numbers X and Y .

Further, let a = pXq and b = pY q. Then c = pZq if and only if for all

e ∈ N
bit(e, c) = 1− (1− bit(e, a)) · (1− bit(e, b)).

We use the binary LN-function symbol ”∪” which maps the codes of two

sets of natural numbers to the code of their union, e.g., in the setting

above c = a ∪ b.
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• Let Z be the set difference of two finite sets of natural numbers X and

Y . Further let a = pXq and b = pY q. Then c = pZq if and only if for

all e ∈ N
bit(e, c) = bit(e, a) · (bit(e, a)− bit(e, b)) .

We use the binary LN-function symbol ”\” which maps the codes of two

sets of natural numbers to the code of their set difference, e.g., in the

setting above c = a \ b.

Lemma 3.4. The following holds in the standard model.

(a) N |= ∀x, y, z
(
x ∈ y ∪ z ↔ x ∈ y ∨ x ∈ z

)
, and

(b) N |= ∀x, y, z
(
x ∈ y \ z ↔ x ∈ y ∧ ¬(x ∈ z)

)
.

Proof. This follows from the definition above.

Note. The propositional translation 〈∃x ∈ a ϕ(x)〉(m) for integers a and m

and an L-formula ϕ(x) is

〈∃x (bit(x, a) = 1 ∧ ϕ(x))〉(m) =
∨∨
x<m

(
〈bit(x, a) = 1〉(m) ∧ 〈ϕ(x)〉(m)

)
.

Note that 〈bit(x, a) = 1〉(m) = 〈x ∈ a〉(m).

Now we turn to the coding of literals. First of all, we need to code relation

and function symbols from the new language L′.

Notation. For every R ∈ L′ and every f ∈ L′ we associate a unique natural

number c with R or f and write c = pRq or c = pfq respectively.

Notation. Let Rel ⊆ N and Fct ⊆ N be the sets such that the codes of all

relation symbols or function symbols of L′ are in Rel or Fct respectively.

Definition. An integer c codes a literal ` if and only if c = 〈c1, c2, c3〉 for

c1, c2, c3 ∈ N with the properties:
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• If ` = Ra1,...,aar(R)
for a relation R ∈ L′, then

c1 = pRq, c2 = 〈a1, . . . , aar(R)〉 and c3 = 1.

• If ` = ¬Ra1,...,aar(R)
for a relation R ∈ L′, then

c1 = pRq, c2 = 〈a1, . . . , aar(R)〉 and c3 = 0.

• If ` = fa1,...,aar(f)+1
for a function f ∈ L′, then

c1 = pfq, c2 = 〈a1, . . . , aar(f)+1〉 and c3 = 1.

• If ` = ¬fa1,...,aar(f)+1
for a function f ∈ L′, then

c1 = pfq, c2 = 〈a1, . . . , aar(f)+1〉 and c3 = 0.

We write c = p`q if c codes the literal `.

Definition. We define the following formulas.

Lit(x) = ∃x1, x2, x3

(
x = 〈x1, x2, x3〉 ∧ x3 < 2 ∧( ∨

pRq∈Rel

[
x1 = pRq ∧ ∃y1, . . . , yar(R) x2 = 〈y1, . . . , yar(R)〉

]
∨

∨
pfq∈Fct

[
x1 = pfq ∧ ∃y1, . . . , yar(f)+1 x2 = 〈y1, . . . , yar(f)+1〉

] ))

TrueRel(x1, x2, x3) =∨
pRq∈Rel

(
x1 = pRq ∧ ∃y1, . . . , yar(R)

[
x2 = 〈y1, . . . , yar(R)〉∧(

(R(y1, . . . , yar(R)) ∧ x3 = 1) ∨ (¬R(y1, . . . , yar(R)) ∧ x3 = 0)
)])
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TrueFct(x1, x2, x3) =∨
pfq∈Fct

(
x1 = pfq ∧ ∃y1, . . . , yar(f)+1

[
x2 = 〈y1, . . . , yar(f)+1〉∧(

(f(y1, . . . , yar(f)) = yar(f)+1 ∧ x3 = 1)∨

(¬f(y1, . . . , yar(f)) = yar(f)+1 ∧ x3 = 0)
)])

TrueLit(x) = ∃x1, x2, x3

[
x = 〈x1, x2, x3〉 ∧

(
TrueRel(x1, x2, x3)∨

TrueFct(x1, x2, x3)
)]

Note. The formula Lit(x) states ”x codes a literal” and TrueLit(x) states ”x

codes a true literal”. Note that TrueLit(x) implies Lit(x). Further note that

the formula Lit(x) is an LN-formula but TrueLit(x) is not.

Definition. Let ϕ(x1, . . . , xr) be an unnested L-literal.

We write Tϕ : Nr+1 → N for the function in LN that maps (m, a1, . . . , ar) ∈
Nr+1 to p〈ϕ(a1, . . . , ar)〉(m)q. We use the notation Tϕ(m; a1, . . . , ar) for better

readability between the translation bound and the parameters in ϕ.

Next we show how to relate the truth of an L-literal to the truth of its

coded propositional correspondent.

Proposition 3.5. Let M be a nonstandard model and N an L-expansion of

M. Further assume θ(x1, . . . , xr) is an unnested L′-literal.

For a1, . . . , ar, n ∈ N the following holds

N |= θ(a1, . . . , ar) if and only if N |= TrueLit(Tθ(n; a1, . . . , ar)).

Proof. Assume θ(a1, . . . , ar) = R(a1, . . . , ar). Intuitively the propositional

translation 〈θ(a1, . . . , ar)〉(n) is equal to Ra1,...,aar(R)
. SinceM is a nonstandard

model, the function Tθ has an interpretation in M such that

TMθ (n; a1, . . . , aar(R)) = 〈pRq, 〈a1, . . . , aar(R)〉M, 1〉M.
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Next we determine if N |= TrueLit(Tθ(n; a1, . . . , aar(R))). As N is an L-

expansion of M and Tθ ∈ LN, we have

TNθ (n; a1, . . . , aar(R)) = TMθ (n; a1, . . . , aar(R)).

Since there are c1, c2 and c3 in N such that

TNθ (n; a1, . . . , aar(R)) = 〈c1, c2, c3〉N ,

namely pRq, 〈a1, . . . , aar(R)〉N and 1, we have TrueLit(T
N
θ (n; a1, . . . , aar(R)))

is true in N if and only if

N |= TrueRel(pRq, 〈a1, . . . , aar(R)〉, 1) ∨ TrueFct(pRq, 〈a1, . . . , aar(R)〉, 1).

Since pRq ∈ Rel, we obtain that N |= ¬TrueFct(pRq, 〈a1, . . . , aar(R)〉, 1)

and therefore, TrueLit(T
N
θ (n; a1, . . . , aar(R))) holds in N if and only if N |=

TrueRel(pRq, 〈a1, . . . , aar(R)〉, 1). Since the first entry is pRq, all disjuncts in

TrueRel(pRq, 〈a1, . . . , aar(R)〉N , 1) except for one are false in N . We obtain

that TrueRel(pRq, 〈a1, . . . , aar(R)〉N , 1) is true in N if and only if

N |= pRq = pRq ∧ ∃y1, . . . , yar(R)

[
〈a1, . . . , aar(R)〉 = 〈y1, . . . , yar(R)〉∧(

(R(y1, . . . , yar(R)) ∧ 1 = 1) ∨ (¬R(y1, . . . , yar(R)) ∧ 1 = 0)
)

in N . Clearly, the above holds if and only if N |= R(a1, . . . , aar(R)), which

proves the claim.

The other cases can be proven analogously.

We end this section with results about the propositional translation of

the TrueLit-formula.

Proposition 3.6. The propositional translation 〈TrueLit(c)〉(m) of the for-

mula TrueLit(c) for integers c and m is either a literal or equal to ⊥.
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Proof. We translate TrueLit(c) to 〈TrueLit(c)〉(m) for integers c and m and

enumerate the translations for convenient referral later on.

〈TrueLit(c)〉(m) =
∨∨
x1<m

∨∨
x2<m

∨∨
x3<m

[
〈c = 〈x1, x2, x3〉〉(1)

(m)∧(
〈TrueRel(x1, x2, x3)〉(2)

(m) ∨ 〈TrueFct(x1, x2, x3)〉(3)
(m)

)]

〈TrueRel(x1, x2, x3)〉(2)
(m) =

∨∨
pRq∈Rel

(
〈x1 = pRq〉(4)

(m)∧∨∨
y1<m

· · ·
∨∨

yar(R)<m

[
〈x2 = 〈y1, . . . , yar(R)〉〉(5)

(m)
∧
(
(〈R(y1, . . . , yar(R))〉(6)

(m)
∧

〈x3 = 1〉(7)
(m)) ∨ (〈¬R(y1, . . . , yar(R))〉(8)

(m)
∧ 〈x3 = 0〉(9)

(m))
)])

〈TrueFct(x1, x2, x3)〉(3)
(m) =

∨∨
pfq∈Fct

(
〈x1 = pfq〉(10)

(m)∧∨∨
y1<m

· · ·
∨∨

yar(f)+1<m

[
〈x2 = 〈y1, . . . , yar(f)+1〉〉(11)

(m)
∧

(
(〈f(y1, . . . , yar(f)) = yar(f)+1〉(12)

(m)
∧ 〈x3 = 1〉(13)

(m) )∨

(〈¬f(y1, . . . , yar(f)) = yar(f)+1〉(14)

(m)
∧ 〈x3 = 0〉(15)

(m) )
)])

Most of the subformulas of TrueLit(c) do not involve L′-symbols and are

thus translated to a truth value according to whether they are true or false in

the standard model. Hence, we obtain a propositional formula with numer-

ous occurrences of > and ⊥ which are eliminated in the translation process.

Assume c does not code a literal: If c does not code a triple, i.e., there

are no c1, c2, c3 such that c = 〈c1, c2, c3〉, then translation (1) is equal to ⊥.

If there are c1, c2, c3 such that c = 〈c1, c2, c3〉 but there is no R ∈ L′ and

no f ∈ L′ such that c1 = pRq or c1 = pfq, then translation (4) is equal
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to ⊥ and translation (10) is equal to ⊥. If there is such an R or f in L′,
but c2 does not code a tuple of length ar(R) or ar(f) + 1 respectively, then

translations (5) and (11) are equal to ⊥. Lastly, if c3 ≥ 2, then translations

(7), (9), (13) and (15) are equal to ⊥. In all of those cases we obtain that

〈TrueLit(c)〉(m) = ⊥.

Assume c codes a literal, but one of c1, c2 and c3 is bigger than m or

equal to m where c = 〈c1, c2, c3〉. Then translation (1) is equal to ⊥, making

〈TrueLit(c)〉(m) = ⊥.

Now assume c codes a literal and c1, c2 and c3 are smaller thanm. Without

loss of generality let c = 〈c1, c2, 1〉 where c1 = pR′q, c2 = 〈b1, . . . , bar(R′)〉 for

a relation R′ ∈ L′ and b1, . . . , bar(R′) ∈ N.

Translation (1) will only be evaluated to > in the disjunct where x1 =

c1, x2 = c2 and x3 = 1. Thus, all other disjuncts are equal to ⊥, since then

translation (1) is equal to ⊥ and therefore, the whole conjunction is equal to

⊥. Hence,

〈TrueLit(c)〉(m) = 〈TrueRel(c1, c2, c3)〉(2)
(m) ∨ 〈TrueFct(c1, c2, c3)〉(3)

(m).

Since c1 codes a relation, translation (3) is equal to ⊥. We obtain that

〈TrueLit(c)〉(m) = 〈TrueRel(c1, c2, c3)〉(m).

Only one of the translations 〈c1 = pRq〉(m) for pRq ∈ Rel in translation

(2) is equal to >, namely if R = R′. We obtain that

〈TrueLit(c)〉(m) = > ∧
∨∨
y1<m

· · ·
∨∨

yar(R)<m

[
〈c2 = 〈y1, . . . , yar(R)〉〉(5)

(m)
∧

(
(〈R′(y1, . . . , yar(R′))〉(6)

(m)
∧ 〈c3 = 1〉(7)

(m)) ∨

(〈¬R′(y1, . . . , yar(R′))〉(8)

(m)
∧ 〈c3 = 0〉(9)

(m))
)]

Translation (5) is only equal to > if yi = bi for 1 ≤ i ≤ ar(R′). If the
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bi’s are not smaller than m, then translation (5) is equal to ⊥ and hence,

〈TrueLit(c)〉(m) = ⊥. Assume otherwise. Then only one disjunct, namely the

one involving yi = bi for 1 ≤ i ≤ ar(R′), is not equal to ⊥. We obtain that

〈TrueLit(c)〉(m) = > ∧
(
(〈R′(b1, . . . , bar(R′))〉(6)

(m)
∧ 〈c3 = 1〉(7)

(m)) ∨

(〈¬R′(b1, . . . , bar(R′))〉(8)

(m)
∧ 〈c3 = 0〉(9)

(m))
)
.

Since c3 = 1, translation (7) is equal to > and translation (9) is equal to ⊥.

It follows that

〈TrueLit(c)〉(m) = (〈R′(b1, . . . , bar(R′))〉(6)

(m)
∧ >) ∨ ⊥

and therefore, 〈TrueLit(c)〉(m) = R′b1,...,bar(R′)
. The other cases can be proven

analogously.

Corollary 3.7. Let M be a nonstandard model. Then

M |= ∀x, y
(

Lit(TTrueLit
(x; y)) ∨ TTrueLit

(x; y) = p⊥q
)

Proof. This follows from the elementary equivalence of M to N where this

statement holds by Proposition 3.6 and the definition of TTrueLit
.

3.5 Coding propositional formulas

Definition. We define the code pϕq of Σprop
d - and Πprop

d -formulas ϕ for d ∈ N
recursively.

An integer c codes a Σprop
d - or Πprop

d -formula ϕ if and only if c codes a literal

or d ≥ 1 and c = 〈c1, c2〉 for c1, c2 ∈ N with the properties:

• If ϕ is a Σprop
d -formula

∨
Φ where Φ is a finite set of Πprop

d−1 -formulas,

then

– c1 = 0, and
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– c2 codes the set of codes of all ψ in Φ, i.e., c2 = p{pψq | ψ ∈ Φ}q.

• If ϕ is a Πprop
d -formula

∧
Φ where Φ is a finite set of Σprop

d−1 -formulas,

then

– c1 = 1, and

– c2 codes the set of codes of all ψ in Φ, i.e., c2 = p{pψq | ψ ∈ Φ}q.

Definition. We define the formulas FmlΣprop
d

(x), FmlΠprop
d

(x), FmlDNF(x),

FmlDNFk
(x) and the formula FmlCNFk

(x) for d, k ∈ N recursively on d.

FmlΣprop
0

(x) = FmlΠprop
0

(x) = Lit(x)

FmlΣprop
d

(x) = FmlΠprop
d−1

(x) ∨ ∃y
(
x = 〈0, y〉 ∧ ∀z ∈ y

[
Lit(z) ∨

∃w
(
z = 〈1, w〉 ∧ FmlΠprop

d−1
(z)
)])

FmlΠprop
d

(x) = FmlΣprop
d−1

(x) ∨ ∃y
(
x = 〈1, y〉 ∧ ∀z ∈ y

[
Lit(z) ∨

∃w
(
z = 〈0, w〉 ∧ FmlΣprop

d−1
(z)
)])

FmlDNF(x) = FmlΣprop
2

(x)

FmlDNFk
(x) = FmlΠprop

1
(x) ∨ ∃y

(
x = 〈0, y〉 ∧ ∀z ∈ y

[
Lit(z) ∨

∃w
(
z = 〈1, w〉 ∧ FmlΠprop

1
(z) ∧ card(w) ≤ k

)])
FmlCNFk

(x) = FmlΣprop
1

(x) ∨ ∃y
(
x = 〈1, y〉 ∧ ∀z ∈ y

[
Lit(z) ∨

∃w
(
z = 〈0, w〉 ∧ FmlΣprop

1
(z) ∧ card(w) ≤ k

)])
The function card(x) ∈ LN maps x to the cardinality of the set coded by x.

Note. All formulas defined above are LN-formulas since Lit(x) is an LN-

formula and all other occurring symbols are in LN.

With the formulas FmlΣprop
d

(x) and FmlΠprop
d

(x) we can state ”x codes a Σprop
d -

or Πprop
d -formula”.
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Definition. We define the functions Disj : N2 → N and Conj : N2 → N by

Disj(x, y) =



y if x = p⊥q

x if y = p⊥q

〈0, u ∪ v〉 if ∃u, v
(
u 6= p∅q ∧ v 6= p∅q∧

x = 〈0, u〉 ∧ y = 〈0, v〉
)

〈0, u ∪ p{y}q〉 if ∃u∀v
(
u 6= p∅q ∧ x = 〈0, u〉 ∧ y 6= 〈0, v〉

)
〈0, p{x}q ∪ v〉 if ∀u∃v

(
v 6= p∅q ∧ x 6= 〈0, u〉 ∧ y = 〈0, v〉

)
〈0, p{x, y}q〉 if ∀u, v

(
x 6= 〈0, u〉 ∧ y 6= 〈0, v〉

)

Conj(x, y) =



y if x = p>q

x if y = p>q

〈1, u ∪ v〉 if ∃u, v
(
u 6= p∅q ∧ v 6= p∅q∧

x = 〈1, u〉 ∧ y = 〈1, v〉
)

〈1, u ∪ p{y}q〉 if ∃u∀v
(
u 6= p∅q ∧ x = 〈1, u〉 ∧ y 6= 〈1, v〉

)
〈1, p{x}q ∪ v〉 if ∀u∃v

(
v 6= p∅q ∧ x 6= 〈1, u〉 ∧ y = 〈1, v〉

)
〈1, p{x, y}q〉 if ∀u, v

(
x 6= 〈1, u〉 ∧ y 6= 〈1, v〉

)
Note. The functions Disj and Conj are in LN. We use them to map pϕq

and pψq to pϕ ∨ ψq or pϕ ∧ ψq respectively where ϕ and ψ are Σprop
d - or

Πprop
d -formulas for a d ∈ N.

Definition. We define the formulas TrueΣprop
d

(x),TrueΠprop
d

(x),TrueDNF(x)

and TrueDNFk
(x) for integers d and k ≥ 1 recursively on d.

TrueΣprop
0

(x) = TrueΠprop
0

(x) = TrueLit(x)

TrueΣprop
d

(x) = TrueΠprop
d−1

(x) ∨ ∃y
(
x = 〈0, y〉 ∧ ∃z ∈ y TrueΠprop

d−1
(z)∧

¬FmlΠprop
d−1

(x) ∧ FmlΣprop
d

(x)
)
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TrueΠprop
d

(x) = TrueΣprop
d−1

(x) ∨ ∃y
(
x = 〈1, y〉 ∧ ∀z ∈ y TrueΣprop

d−1
(z)∧

¬FmlΣprop
d−1

(x) ∧ FmlΠprop
d

(x)
)

TrueDNF(x) = TrueΣprop
2

(x)

TrueDNFk
(x) = FmlDNFk

(x) ∧ TrueDNF(x)

Note. With the formulas TrueΣprop
d

(x) and TrueΠprop
d

(x) we can state ”x codes

a true Σprop
d - or Πprop

d -formula”. By this we mean an extension of the TrueLit-

formula to propositional formulas. Note that all of the defined formulas above

are not LN-formulas since TrueLit(x) is not.

Lemma 3.8. Let M be a nonstandard model, N an L-expansion of M and

d an integer.

(a) M |= ∀x
(

FmlΣprop
d

(x)→ FmlΠprop
d+1

(x)
)

(b) M |= ∀x
(

FmlΠprop
d

(x)→ FmlΣprop
d+1

(x)
)

(c) N |= ∀x
(

TrueΣprop
d

(x)→ TrueΠprop
d+1

(x)
)

(d) N |= ∀x
(

TrueΠprop
d

(x)→ TrueΣprop
d+1

(x)
)

Proof. This follows from the definitions of the formulas.

Definition. We define the LN-function Neg : N→ N by

Neg(x) =


〈x1, x2, 1− x3〉 if x = 〈x1, x2, x3〉

〈1− x1, x
′
2〉 if x = 〈x1, x2〉 where x′2 = p{Neg(y) | y ∈ x2}q

0 otherwise.

Lemma 3.9. Let ϕ be a propositional formula in Σprop
d or Πprop

d for an integer

d. Then we have p¬ϕq = Neg(pϕq).

Proof. We show this by induction on d: Let ` be a literal and assume that

p`q = 〈c1, c2, c3〉 for c1, c2, c3 ∈ N. Then p¬`q = 〈c1, c2, 1 − c3〉, which is
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Neg(p`q).

Assume the claim holds for d− 1 and ϕ =
∨

Φ ∈ Σprop
d \Πprop

d−1 or ϕ =
∧

Φ ∈
Πprop
d \ Σprop

d−1 . Further let Ψ = {¬ψ | ψ ∈ Φ}. Then,

p¬ϕq (1)
=

p
∧

Ψq if ϕ =
∨

Φ

p
∨

Ψq if ϕ =
∧

Φ

(2)
=

〈1, p{p¬ψq | ψ ∈ Φ}q〉 if ϕ =
∨

Φ

〈0, p{p¬ψq | ψ ∈ Φ}q〉 if ϕ =
∧

Φ

(3)
=

〈1, p{Neg(pψq) | ψ ∈ Φ}q〉 if ϕ =
∨

Φ

〈0, p{Neg(pψq) | ψ ∈ Φ}q〉 if ϕ =
∧

Φ

(4)
=

〈1, p{Neg(c) | c ∈ pΦq}q〉 if ϕ =
∨

Φ

〈0, p{Neg(c) | c ∈ pΦq}q〉 if ϕ =
∧

Φ

(5)
=

Neg(〈1, p{pψq | ψ ∈ Φ}q〉) if ϕ =
∨

Φ

Neg(〈0, p{pψq | ψ ∈ Φ}q〉) if ϕ =
∧

Φ

(6)
= Neg(pϕq).

Equality (2) holds by definition of codes of propositional formulas. The third

equality holds by the induction hypothesis and (4) holds again by definition.

Note that ”c ∈ pΦq” on the right-hand side of (4) is the abbreviation for

”bit(c, pΦq) = 1”. Equality (5) is true by definition of Neg and so is equality

(6).

Notation. Let ϕ(x1, . . . , xr) be an unnested L-formula. Just like before

for L-literals, we write Tϕ : Nr+1 → N for the LN-function that maps

(m, a1, . . . , ar) ∈ Nr+1 to p〈ϕ(a1, . . . , ar)〉(m)q. If Tϕ(m; a1, . . . , ar) = 〈0, c〉
or Tϕ(m; a1, . . . , ar) = 〈1, c〉 for a c ∈ N, i.e., the output of Tϕ(m; a1, . . . , ar)

codes a conjunction or disjunction, then we write Cϕ : Nr+1 → N for the

LN-function that maps (m, a1, . . . , ar) ∈ Nr+1 to that c. Again we write

Cϕ(m; a1, . . . , ar) for the reader’s benefit.
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Corollary 3.10. Let ϕ(x1, . . . , xr) be an unnested L-formula.

N |= ∀x, x1, . . . , xr T¬ϕ(x;x1, . . . , xr) = Neg(Tϕ(x;x1, . . . , xr))

Proof. From rule (T4) of the definition of propositional translations, it follows

that 〈¬ϕ(a1, . . . , ar)〉(m) = ¬〈ϕ(a1, . . . , ar)〉(m) for all a1, . . . , ar,m ∈ N. From

Lemma 3.9, we obtain that the claim holds.

Lemma 3.11. LetM be a nonstandard model, N an L-expansion ofM and

d be an integer with d ≥ 0.

(a) N |= ∀x
(

FmlΠprop
d

(x) ∧
(

TrueΣprop
d

(Neg(x))↔ ¬TrueΠprop
d

(x)
))

(b) N |= ∀x
(

FmlΣprop
d

(x) ∧
(

TrueΠprop
d

(Neg(x))↔ ¬TrueΣprop
d

(x)
))

Proof. Let c ∈ N be such that FmlΠprop
d

(c) is true inN . We show these claims

by induction on d. If Lit(c) is also true in N , then the claim follows from the

definitions of Neg and TrueLit. Suppose now that c codes a
(
Πprop
d \ Σprop

d−1

)
-

formula in the sense of N , i.e., FmlΠprop
d

(c)∧¬FmlΣprop
d−1

(c) holds in N . Then

there is a c′ ∈ N such that c = 〈1, c′〉N and a c′′ ∈ N such that NegN (c) =

〈0, c′′〉N . The statement ¬TrueΠprop
d

(c) holds in N by definition of TrueΠprop
d

if

and only if ¬TrueΣprop
d−1

(c)∧∃y ∈ c′ ¬TrueΣprop
d−1

(y) is true. Since FmlΠprop
d

(c)∧
¬FmlΣprop

d−1
(c) holds in N , we obtain that TrueΣprop

d−1
(c) cannot be true in N .

By the induction hypothesis, there is a c0 ∈ N with N |= c0 ∈ c′ such

that ¬TrueΣprop
d−1

(c0) holds if and only if TrueΠprop
d−1

(NegN (c0)) is true in N . By

definition of Neg and elementary equivalence, we obtain that N |= Neg(c0) ∈
c′′. Since NegN (c) = 〈0, c′′〉N , from the definition of TrueΣprop

d
we obtain that

N |= ¬TrueΠprop
d

(c) if and only if N |= TrueΣprop
d

(Neg(c)). Analogously, we

can show the result for c ∈ N such that c = 〈0, c′〉 for a c′ ∈ N which is

result (b).

We now combine the results just proven to show how to relate the truth

of a first-order formula to the truth of its propositional translation.
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Proposition 3.12. Let M be a nonstandard model, N an L-expansion of

M and d, k be an integer with d, k ≥ 1. Assume ϕ(x1, . . . , xr) is unnested

an L-sentence.

(a) If N |= ∀x, x1, . . . , xr FmlΠprop
d

(Tϕ(x;x1, . . . , xr)), then

N |= ∀x, x1, . . . , xr
[
ϕ<x(x1, . . . , xr)↔ TrueΠprop

d
(Tϕ(x;x1, . . . , xr))

]
.

(b) If N |= ∀x, x1, . . . , xr FmlΣprop
d

(Tϕ(x;x1, . . . , xr)), then

N |= ∀x, x1, . . . , xr
[
ϕ<x(x1, . . . , xr)↔ TrueΣprop

d
(Tϕ(x;x1, . . . , xr))

]
.

(c) If N |= ∀x, x1, . . . , xr FmlDNFk
(Tϕ(x;x1, . . . , xr)), then

N |= ∀x, x1, . . . , xr
[
ϕ<x(x1, . . . , xr)↔ TrueDNFk

(Tϕ(x;x1, . . . , xr))
]
.

Proof. (a): This proof is done by induction on the structure of L′-formulas.

Atomic formulas: If ϕ(x1, . . . , xr) is an L′-atom, then apply Proposition 3.5.

Assume now, ϕ(x1, . . . , xr) is an LN-atom and a1, . . . , ar,m are in N. Then

by definition of propositional translation

〈ϕ(a1, . . . , ar)〉(m) =

> if N |= ϕ<m(a1, . . . , ar)

⊥ if N 6|= ϕ<m(a1, . . . , ar).

Since N |= TrueΠprop
d

(p>q) ∧ ¬TrueΠprop
d

(p⊥q), we obtain

N |= ∀x, x1, . . . , xr
[
ϕ<x(x1, . . . , xr)↔ TrueΠprop

d
(Tϕ(x;x1, . . . , xr))

]
and by elementary equivalence this holds in N too.

Negations: Assume ϕ(x1, . . . , xr) = ¬ψ(x1, . . . , xr) where ψ(x1, . . . , xr) is
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an unnested L-formula and let a1, . . . , ar, n ∈ N .

N |= ϕ<n(a1, . . . , ar) if and only if N 6|= ψ<n(a1, . . . , ar)

if and only if N |= ¬TrueΠprop
d

(Tψ(n; a1, . . . , ar))

if and only if N |= TrueΣprop
d

(Neg(Tψ(n; a1, . . . , ar)))

if and only if N |= TrueΣprop
d

(T¬ψ(n; a1, . . . , ar))

The second equivalence holds by assumption. The third equivalence follows

from Lemma 3.11 (a). The last one is obtained by applying Corollary 3.10.

Note that this holds in N since N is an L-expansion ofM where it holds by

elementary equivalence.

Conjunctions: Assume ϕ(x1, . . . , xr) = ψ1(x1, . . . , xr) ∧ ψ2(x1, . . . , xr) such

that ψ1 and ψ2 are unnested L-formulas.

N |= ϕ<n(a1, . . . , ar)

if and only if N |= ψ<n1 (a1, . . . , ar) and N |= ψ<n2 (a1, . . . , ar)

if and only if N |= TrueΠprop
d

(Tψ1(n; a1, . . . , ar)) and

N |= TrueΠprop
d

(Tψ2(n; a1, . . . , ar))

if and only if N |= TrueΠprop
d

(Tψ1(n; a1, . . . , ar)) ∧

TrueΠprop
d

(Tψ2(n; a1, . . . , ar))

if and only if N |= TrueΠprop
d

(Tψ1∧ψ2(n; a1, . . . , ar))

Again, the second equivalence holds by assumption. Now we show the last

equivalence. By definition of Conj, the statement

∀x, x1, . . . , xr Tψ1∧ψ2(x;x1, . . . , xr) =

Conj(Tψ1(x;x1, . . . , xr),Tψ2(x;x1, . . . , xr))

holds in the standard model. Looking at the definition of Conj, one can
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conclude that

N |= ∀x, x1, . . . , xr ∀z ∈ Cψ1∧ψ2(x;x1, . . . , xr)
[
z = Tψ1(x;x1, . . . , xr)∨

z = Tψ2(x;x1, . . . , xr) ∨ z ∈ Cψ1(x;x1, . . . , xr) ∨ z ∈ Cψ2(x;x1, . . . , xr)
]
. (?)

The same way we obtain that

N |= ∀x, x1, . . . , xr
[

Tψi
(x;x1, . . . , xr) ∈ Cψ1∧ψ2(x;x1, . . . , xr)∨

Cψi
(x;x1, . . . , xr) ⊆ Cψ1∧ψ2(x;x1, . . . , xr)

]
. (??)

for i ∈ {1, 2}. By elementary equivalence these statements hold in M and

therefore in N as well.

If N |= Tψ1(n; a1, . . . , ar) = p>q, then we have TNψ1∧ψ2
(n; a1, . . . , ar) =

TNψ2
(n; a1, . . . , ar) and the claim clearly holds. Analogously, if we have N |=

Tψ2(n; a1, . . . , ar) = p>q.

Assume Tψi
(n; a1, . . . , ar) 6= p>q for both i ∈ {1, 2}.

If TNψi
(n; a1, . . . , ar) = 〈1,Cψi

(n; a1, . . . , ar)〉N where i ∈ {1, 2}, it follows

that N |= Cψi
(n; a1, . . . , ar) ⊆ Cψ1∧ψ2(n; a1, . . . , ar). If TNψi

(n; a1, . . . , ar) 6=
〈1,Cψi

(n; a1, . . . , ar)〉N , then N |= Tψi
(n; a1, . . . , ar) ∈ Cψ1∧ψ2(n; a1, . . . , ar).

Assume now TrueΠprop
d

(Tψi
(n; a1, . . . , ar)) holds in N for both i ∈ {1, 2}.

If TNψi
(n; a1, . . . , ar) = 〈1,Cψi

(n; a1, . . . , ar)〉N , then by definition of TrueΠprop
d

,

we obtain that ∀z ∈ Cψi
(n; a1, . . . , ar) TrueΣprop

d−1
(z) is true in N . If we

have TNψi
(n; a1, . . . , ar) 6= 〈1,Cψi

(n; a1, . . . , ar)〉N , then we obtain that N |=
TrueΣprop

d−1
(Tψi

(n; a1, . . . , ar)).

Therefore, we obtain by (?) thatN |= ∀z ∈ Cψ1∧ψ2(n; a1, . . . , ar) TrueΣprop
d−1

(z)

and by definition it follows that TrueΠprop
d

(Tψ1∧ψ2(n; a1, . . . , ar)) holds in N .

Now assume, N |= TrueΠprop
d

(Tψ1∧ψ2(n; a1, . . . , ar)). Again, by definition
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of TrueΠprop
d

, N |= ∀z ∈ Cψ1∧ψ2(n; a1, . . . , ar) TrueΣprop
d−1

(z). Since by (??),

N thinks that either CNψi
(n; a1, . . . , ar) is a subset of CNψ1∧ψ2

(n; a1, . . . , ar) or

TNψi
(n; a1, . . . , ar) is in CNψ1∧ψ2

(n; a1, . . . , ar).

Thus, it follows that TrueΠprop
d

(TNψi
(n; a1, . . . , ar)) holds in N for both i ∈

{1, 2}.

Universal quantifications: Let ϕ(x1, . . . , xr) = ∀y ψ(y, x1, . . . , xr) for an

unnested L-formula ψ(y, x1, . . . , xr).

N |= ϕ<n(a1, . . . , ar)

if and only if N |= ψ<n(c, a1, . . . , ar) for all c <N n

if and only if N |= TrueΠprop
d

(Tψ(n; c, a1, . . . , ar)) for all c <N n

if and only if N |= ∀y < n TrueΠprop
d

(Tψ(n; y, a1, . . . , ar))

if and only if N |= TrueΠprop
d

(Tϕ(n; a1, . . . , ar))

As before, we obtain the second equivalence by assumption. We show the

last equivalence.

First of all note that

N |= ∀x, x1, . . . , xr
[

Tϕ(x;x1, . . . , xr) = 〈1,Cϕ(x;x1, . . . , xr)〉∨

∃y < x
(

Tϕ(x;x1, . . . , xr) = Tψ(x; y, x1, . . . , xr) ∧ ∀z < x (z 6= y →

Tψ(x; z, x1, . . . , xr) = p>q)
)]

by definition of propositional translations and their coding functions.

If there is a c <N n such that TNϕ (n; a1, . . . , ar) = TNψ (n; c, a1, . . . , ar) and

for all c′ <N n with c′ 6= c, we have N |= Tψ(n; c′, a1, . . . , ar) = p>q, then

the claim clearly holds.

Now assume otherwise, then TNϕ (n; a1, . . . , ar) = 〈1,Cϕ(n; a1, . . . , ar)〉N .

Suppose N |= ∀y < n TrueΠprop
d

(Tψ(n; y, a1, . . . , ar)). Again by definition of
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propositional translations, we obtain

N |= ∀x, x1, . . . , xr ∀z ∈ Cϕ(x;x1, . . . , xr) ∃y < x[
z = Tψ(x; y, x1, . . . , xr)∨(
Tψ(x; y, x1, . . . , xr) = 〈1,Cψ(x; y, x1, . . . , xr)〉∧

z ∈ Cψ(x; y, x1, . . . , xr)
)]
.

(�)

By elementary equivalence, this holds in M and thus in N too. Let c ∈ N
such that c <N n. If Cψ(n; c, a1, . . . , ar) ⊆N Cϕ(n; a1, . . . , ar), then by defini-

tion of TrueΠprop
d

, we have N |= ∀z ∈ Cψ(n; c, a1, . . . , ar) TrueΣprop
d−1

(z). Oth-

erwise TNψ (n; c, a1, . . . , ar) ∈N CNϕ (n; a1, . . . , ar). Applying the statement (�)
as well as the assumption implies N |= ∀z ∈ Cϕ(n; a1, . . . , ar) TrueΣprop

d−1
(z).

We obtain N |= TrueΠprop
d

(Tϕ(n; a1, . . . , ar)).

Assume now that TrueΠprop
d

(Tϕ(n; a1, . . . , ar)) holds in N . The following

holds by definition of codings

N |= ∀x, x1, . . . , xr ∀y < x
[

Tψ(x; y, x1, . . . , xr) ∈ Cϕ(x;x1, . . . , xr)∨(
Tψ(x; y, x1, . . . , xr) = 〈1,Cψ(x; y, x1, . . . , xr)〉∧

Cψ(x; y, x1, . . . , xr) ⊆ Cϕ(x;x1, . . . , xr)
)]
. (��)

Since TrueΠprop
d

(Tϕ(n; a1, . . . , ar)) holds in N , by definition of TrueΠprop
d

, also

∀z ∈ Cϕ(n; a1, . . . , ar) TrueΣprop
d−1

(z) is true in N . Applying the statement

(��), we obtain N |= ∀y < n TrueΠprop
d

(Tψ(n; y, a1, . . . , ar)).

Next we show how to classify the propositional translations of the True-

formulas.

Proposition 3.13. Let c, d, k and m be integers with k ≥ 1.

(a) The propositional translation 〈TrueΣprop
d

(c)〉
(m)

of TrueΣprop
d

(c) is a Σprop
d -

formula or equal to ⊥.
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(b) The propositional translation 〈TrueΠprop
d

(c)〉
(m)

of TrueΠprop
d

(c) is a Πprop
d -

formula or equal to ⊥.

(c) The propositional translation 〈TrueDNFk
(c)〉(m) of TrueDNFk

(c) is a k-

DNF.

Proof. We prove (a) and (b) by induction on d. If d = 0, then

〈TrueΣprop
0

(c)〉
(m)

= 〈TrueΠprop
0

(c)〉
(m)

= 〈TrueLit(c)〉(m),

which is either a literal or equal to ⊥ by Proposition 3.6.

Assume now that the claim holds for d− 1.

(a): Translating TrueΣprop
d

(c) gives us

〈TrueΣprop
d

(c)〉
(m)

= 〈TrueΠprop
d−1

(c)〉(1)

(m)
∨
∨∨
y<m

[
〈c = 〈0, y〉〉(2)

(m)∧∨∨
z<m

(
〈z ∈ y〉(3)

(m)∧〈TrueΠprop
d−1

(z)〉(4)

(m)

)
∧〈¬FmlΠprop

d−1
(c)〉(5)

(m)
∧〈FmlΣprop

d
(c)〉(6)

(m)

]
.

Translation (1) is equal to a Πprop
d−1 -formula or equal to ⊥ by the induction

hypothesis.

If the former holds, then for some d′ < d, 〈FmlΣprop

d′
(c)〉

(m)
or 〈FmlΠprop

d′
(c)〉

(m)

is equal to >, making translation (5) equal to ⊥. This follows from the fact

that they are LN-formulas which are translated to > or ⊥ by definition.

Therefore, the whole disjunction will be equal to ⊥ and 〈TrueΣprop
d

(c)〉
(m)

is

equal to translation (1). This means, the translation of TrueΣprop
d

(c) is equal

to a Πprop
d−1 -formula and therefore, a Σprop

d -formula.

Assume the latter, i.e., translation (1) is equal to ⊥ and thus,

〈TrueΣprop
d

(c)〉
(m)

=
∨∨
y<m

[
〈c = 〈0, y〉〉(2)

(m) ∧
∨∨
z<m

(
〈z ∈ y〉(3)

(m)∧

〈TrueΠprop
d−1

(z)〉(4)

(m)

)
∧ 〈¬FmlΠprop

d−1
(c)〉(5)

(m)
∧ 〈FmlΣprop

d
(c)〉(6)

(m)

]
.
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If translation (5) or (6) is equal to ⊥, then again 〈TrueΣprop
d

(c)〉
(m)

= ⊥.

Suppose now, translations (5) and (6) are equal to >, which is equivalent to

c coding a Σprop
d \ Πprop

d−1 -formula, and therefore,

〈TrueΣprop
d

(c)〉
(m)

=∨∨
y<m

[
〈c = 〈0, y〉〉(2)

(m) ∧
∨∨
z<m

(
〈z ∈ y〉(3)

(m) ∧ 〈TrueΠprop
d−1

(z)〉(4)

(m)

)]
.

If there is an a ∈ N with a < m such that c = 〈0, a〉, then translation (2)

is equal to >. For all other a ∈ N, the whole disjunct is equal to ⊥. This

means that if there is no such a, then 〈TrueΠprop
d

(c)〉
(m)

= ⊥. Assume now

that there is such an a ∈ N. Then all other disjuncts are equal to ⊥, making

〈TrueΣprop
d

(c)〉
(m)

equal to

∨∨
z<m

(
〈z ∈ a〉(3)

(m) ∧ 〈TrueΠprop
d−1

(z)〉(4)

(m)

)
.

If translation (3) is equal to ⊥, the disjunct is equal to ⊥. If translation (3)

is equal to >, the conjunction is equal to translation (4). We obtain that

〈TrueΣprop
d

(c)〉
(m)

=
∨∨
z∈a
z<m

〈TrueΠprop
d−1

(z)〉
(m)
. (?)

By the induction hypothesis, 〈TrueΠprop
d−1

(z)〉
(m)

is either a Πprop
d−1 -formula or

equal to ⊥. Therefore, either 〈TrueΣprop
d

(c)〉
(m)

is a disjunction of Πprop
d−1 -

formulas and therefore a Σprop
d -formula or TrueΣprop

d
= ⊥.

(b): Analogously, we can show result (b) for TrueΠprop
d

(c).

(c): The translation of TrueDNFk
(c) is

〈TrueDNFk
(c)〉(m) = 〈FmlDNFk

(c)〉(m) ∧ 〈TrueDNF(c)〉(m).
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Assume one of them is equal to ⊥, then 〈TrueDNFk
(c)〉(m) = ⊥.

If 〈FmlDNFk
(c)〉(m) = > and 〈TrueDNF(c)〉(m) 6= ⊥, then by (a), we obtain

〈TrueDNF(c)〉(m) ∈ Σprop
2 . Moreover, equation (?) holds in this case too with

d = 2. Since 〈FmlDNFk
(c)〉(m) = >, we can conclude that a in (?) codes a

set of k-many codes of Πprop
1 -formulas. Thus, 〈TrueDNFk

(c)〉(m) is a k-DNF

as well.

Corollary 3.14. LetM be a nonstandard model and d, k integers with k ≥ 1.

(a) M |= ∀x, y
(

FmlΣprop
d

(TTrue
Σ
prop
d

(x; y)) ∨ TTrue
Σ
prop
d

(x; y) = p⊥q
)
.

(b) M |= ∀x, y
(

FmlΠprop
d

(TTrue
Π
prop
d

(x; y)) ∨ TTrue
Π
prop
d

(x; y) = p⊥q
)
.

(c) M |= ∀x, y FmlDNFk
(TTrueDNFk

(x; y))

Proof. This follows from Proposition 3.13, the definition of Tϕ and elemen-

tary equivalence since this holds in the standard model.

Corollary 3.15. Let c, d and m be integers.

(a) The propositional translation 〈¬TrueΣprop
d

(c)〉
(m)

of ¬TrueΣprop
d

(c) is a

Πprop
d -formula or equal to >.

(b) The propositional translation 〈¬TrueΠprop
d

(c)〉
(m)

of ¬TrueΠprop
d

(c) is a

Σprop
d -formula or equal to >.

(c) The propositional translation 〈¬TrueDNFk
(c)〉(m) of ¬TrueDNFk

(c) is a

k-CNF.

Proof. This follows from Proposition 3.13 and rule (T4) of the definition of

propositional translations.

Corollary 3.16. LetM be a nonstandard model and d, k integers with k ≥ 1

(a) M |= ∀x, y
(

FmlΠprop
d

(T¬True
Σ
prop
d

(x; y)) ∨ T¬True
Σ
prop
d

(x; y) = p>q
)
.

(b) M |= ∀x, y
(

FmlΣprop
d

(T¬True
Π
prop
d

(x; y)) ∨ T¬True
Π
prop
d

(x; y) = p>q
)
.
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(c) M |= ∀x, y FmlCNFk
(T¬TrueDNFk

(x; y))

Proof. This follows from Corollary 3.15, the definition of Tϕ and elementary

equivalence since this holds in the standard model.

3.6 Coding refutations

Notation. We use the LN-formula IsSequence(x) stating ”x codes a se-

quence”.

Also we write sizeFml(x) for the LN-function mapping x to the size of the

propositional formula it codes or, if x codes a refutation, then sizeRefut(x)

maps x to the size of the refutation.

Definition. We define the formulas Rule∨, Rulecut and Rule∧.

Rule∨(x, y, z) =
(
z = Disj(x, y)

)
Rulecut(x, y, z) = ∃u, v, x′, y′

(
x = Disj(x′, u) ∧ y = Disj(y′, v) ∧

u = Neg(v) ∧ z = Disj(x′, y′)
)

Rule∧(x, y, z) = ∃u, v, x′, y′, u′, v′
(
x = Disj(x′, u) ∧ y = Disj(y′, v) ∧(

Lit(u) ∨ u = 〈1, u′〉
)
∧
(

Lit(v) ∨ v = 〈1, v′〉
)
∧

z = Disj
(
x′,Disj(y′,Conj(u, v))

))
We define the formulas RefutF(d), RefutDNF and RefutDNFk

for integers d, k ≥
1.

RefutF(1)(x, y) = ∀z ∈ x FmlΣprop
1

(z) ∧ IsSequence(y) ∧ (y)‖y‖−1 = p⊥q ∧

∀u ≤ ‖y‖ − 1
[

FmlΣprop
1

((y)u) ∧
(

(y)u ∈ x ∨ ∃v, w < u(
Rule∨((y)v, (y)w, (y)u) ∨ Rulecut((y)v, (y)w, (y)u)

))]
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RefutF(d)(x, y) = ∀z ∈ x FmlΣprop
d

(z) ∧ IsSequence(y) ∧ (y)‖y‖−1 = p⊥q ∧

∀u ≤ ‖y‖ − 1
[

FmlΣprop
d

((y)u) ∧
(

(y)u ∈ x ∨ ∃v, w < u(
Rule∨((y)v, (y)w, (y)u) ∨ Rulecut((y)v, (y)w, (y)u) ∨

Rule∧((y)v, (y)w, (y)u)
))]

RefutDNF(x, y) = RefutF(2)(x, y)

RefutDNFk
(x, y) = RefutDNF(x, y) ∧ ∀z ∈ x FmlDNFk

(z) ∧

∀u ≤ ‖y‖ − 1 FmlDNFk
((y)u)

Note. The RefutF(d)-formula states ”y codes an F(d)-refutation of the set of

propositional formulas coded by x”. The formulas RefutDNF and RefutDNFk

are defined analogously.

The formula Rule∨(x, y, z) states ”the propositional formula coded by z is ob-

tained from the propositional formulas coded by x and y by applying the weak-

ening rule”. In the same way we defined Rulecut(x, y, z) and Rule∧(x, y, z).

Note that we do not need to define a rule for ∧-introduction of k-DNFs

separately. The reason is that we have restricted all formulas in a k-DNF

refutation to be k-DNFs and therefore, the formula obtained by ∧-instruction

has to be a k-DNF as well.

Further note that all formulas above are LN-formulas since they are only

defined by functions (including Neg,Disj and Conj) and LN-formulas.

Now we show that the soundness of the rules of F(d) also holds for coded

refutations.

Proposition 3.17. Let M be a nonstandard model, N an L-expansion of

M and d, k integers with d, k ≥ 1. Then the following holds.

(a) N |= ∀x, y, z
(

TrueΣprop
d

(x)∧FmlΣprop
d

(y)∧Rule∨(x, y, z)→ TrueΣprop
d

(z)
)

(b) N |= ∀x, y, z
(

TrueDNFk
(x)∧FmlDNFk

(y)∧Rule∨(x, y, z)→ TrueDNFk
(z)
)
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Proof. We argue in N . Let a, b, c ∈ N and assume

N |= TrueΣprop
d

(a) ∧ FmlΣprop
d

(b) ∧ Rule∨(a, b, c)
)
.

(a): If N thinks that a codes a disjunction, then there is an a′ ∈ N such

that a = 〈0, a′〉N , a′ 6= p∅q and there is an a0 ∈ N with a0 ∈N a′ such that

TrueΠprop
d−1

(a0) is true because TrueΣprop
d

(a) is true. By definition of Disj there

is a c′ ∈ N such that c = 〈0, c′〉N . By Lemma 3.4 (a), a0 ∈N c′. Therefore,

TrueΣprop
d

(c) is true.

If N thinks that a does not code a disjunction, then TrueΠprop
d−1

(a) is also true.

By definition of Disj and Lemma 3.4 (a), we obtain that either c = a or there

is a c′ ∈ N such that c = 〈0, c′〉N and a ∈N c′ and hence, TrueΣprop
d

(c) holds.

(b): This follows from (a).

Proposition 3.18. Let M be a nonstandard model, N an L-expansion of

M and d, k integers with d, k ≥ 1. Then the following holds.

(a) N |= ∀x, y, z
(

TrueΣprop
d

(x) ∧ TrueΣprop
d

(y) ∧ Rulecut(x, y, z)→
TrueΣprop

d
(z)
)

(b) N |= ∀x, y, z
(

TrueDNFk
(x) ∧ TrueDNFk

(y) ∧ Rulecut(x, y, z)→
TrueDNFk

(z)
)

Proof. (a): Again, we argue in N . Let a, b, c ∈ N and assume N |=(
TrueΣprop

d
(a) ∧ TrueΣprop

d
(b) ∧ Rulecut(a, b, c)

)
.

Then there are integers a1, b1, e ∈ N such that a = DisjN (a1, e) and b =

DisjN (b1,NegN (e)).

Case 1: Assume a = a1. Then e = p⊥q.
If N thinks, a codes a disjunction, then there exists an a′ ∈ N such that

a = 〈0, a′〉N and there is an a0 ∈ N with a0 ∈N a′ such that TrueΠprop
d−1

(a0)

holds. By definition of Disj there is a c′ ∈ N such that c = 〈0, c′〉N and
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a0 ∈N c′.

IfN thinks, a does not code a disjunction, then either a ∈N c′ or, if b1 = p⊥q,
then a = c holds.

In both cases we obtain TrueΣprop
d

(c).

Case 2: If a = e, then by Lemma 3.11 (a), ¬TrueΠprop
d

(NegN (e)) is true and

therefore, TrueΣprop
d

(b1) has to be true. Analogously to above, we obtain that

TrueΣprop
d

(c) holds. Note that in this case, FmlΠprop
d−1

(e) has to be true in N be-

cause if N |= FmlΣprop
d

(e) ∧ ¬FmlΠprop
d−1

(e), the statement FmlΠprop
d

(NegN (e))

would also be true in N and thus, FmlΣprop
d

(DisjN (b1,NegN (e))) would be

false in N . Therefore, TrueΣprop
d

(b) would be false as well, which contradicts

the assumption.

Case 3: Now assume a 6= a1 and a 6= e. Then there is an a′ ∈ N such

that DisjN (a1, e) = 〈0, a′〉N .

Since TrueΣprop
d

(a) is true, there is an a0 ∈ N with a0 ∈N a′ such that

TrueΠprop
d−1

(a0) holds. Further, there exists a c′ such that c = 〈0, c′〉N .

• N thinks, a1 codes a disjunction: Then there is an a′1 ∈ N such that

a1 = 〈0, a′1〉N .

– a0 ∈N a′1: Then by definition of Disj, also a0 ∈N c′ and therefore,

TrueΣprop
d

(c) is true.

– N thinks, e = 〈0, e′〉N codes a disjunction, a0 ∈N e′: By Lemma

3.11 (b), we obtain that ¬TrueΠprop
d

(NegN (e)) holds as well. Thus,

TrueΣprop
d

(b1) holds. Then either b1 ∈N c′ or there is a b′1 ∈ N
such that b1 = 〈0, b′1〉N and a b0 ∈ N with b0 ∈N b′1 such that

TrueΠprop
d−1

(b0) holds. If the the latter applies, then by definition of

Disj, b0 ∈N c′ and we obtain N |= TrueΣprop
d

(c).

– N thinks, e does not code a disjunction, a0 = e: Then by Lemma

3.11 (a), ¬TrueΣprop
d

(NegN (e)) is true. By the same argument as
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before we have N |= TrueΣprop
d

(c).

• N thinks, a1 does not code a disjunction:

– a0 = a1: Then we obtain a0 ∈N c′ and therefore, TrueΣprop
d

(c) is

true.

– a0 6= a1: As before we obtain that ¬TrueΣprop
d

(NegN (e)) is true

and thus, TrueΣprop
d

(c) holds.

(b): follows from (a).

Proposition 3.19. Let M be a nonstandard model, N an L-expansion of

M and d, k integers with d ≥ 2 and k ≥ 1. Then the following holds.

(a) N |= ∀x, y, z
(
(TrueΣprop

d
(x) ∧ TrueΣprop

d
(y) ∧ Rule∧(x, y, z))→

TrueΣprop
d

(z)
)

(b) N |= ∀x, y, z
(
(TrueDNFk

(x) ∧ TrueDNFk
(y) ∧ Rule∧(x, y, z)∧

FmlDNFk
(z))→ TrueDNFk

(z)
)

Proof. We argue in N as before and assume for a, b, c ∈ N that

TrueΣprop
d

(a) ∧ TrueΣprop
d

(b) ∧ Rule∧(a, b, c)→ TrueΣprop
d

(c)

holds. Note that there are a1, b1, e1, e2 ∈ N such that a = DisjN (a1, e1) and

b = DisjN (b1, e2).

Assume N thinks c does not code a disjunction. We obtain that a1 = b1 =

p⊥q. Then TrueΠprop
d−1

(e1) and TrueΠprop
d−1

(e2) have to hold. If N thinks both e1

and e2 code conjunctions, there are e′1 and e′2 in N such that e1 = 〈1, e′1〉N

and e2 = 〈1, e′2〉N . Because both TrueΠprop
d−1

(e1) and TrueΠprop
d−1

(e2) hold, the

statements ∀e′′1 ∈ e′1 TrueΣprop
d−2

(e′′1) and ∀e′′2 ∈ e′2 TrueΣprop
d−2

(e′′2) are true.

By definition of Conj and by Lemma 3.4 (a), there exists an e′ ∈ N with

ConjN (e1, e2) = 〈1, e′〉N and

∀e′′
((
e′′ ∈ e′1 ∨ e′′ ∈ e′2

)
↔ e′′ ∈ e′

)
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are true. Therefore, TrueΠprop
d−1

(ConjN (e1, e2)) holds. By Lemma 3.8 (d), we

obtain that TrueΣprop
d

(c) is true. If N thinks at least one of ei for i ∈ {1, 2}
does not code conjunction, we obtain that ei ∈ e′ and analogously that

TrueΠprop
d−1

(ConjN (e1, e2)) holds.

Assume N thinks that c codes a disjunction. Then there is a c′ ∈ N such

that c = 〈0, c′〉N .

Since TrueΠprop
d

(a) holds, TrueΣprop
d

(a1) or TrueΣprop
d

(e1) also hold. If N thinks

a1 codes a disjunction, then there exists an a′1 ∈ N such that a1 = 〈0, a′1〉N .

Assume that TrueΣprop
d

(a1) holds. Then, if N thinks, a1 codes a disjunc-

tion, there is an a0 ∈ N such that a0 ∈N a′1 and TrueΠprop
d−1

(a0) holds. If N
thinks a1 does not code a disjunction, let a0 = a1. By definition of Rule∧

and of Disj, we obtain that N |= a0 ∈ c′ and thus, TrueΣprop
d

(c) holds.

If TrueΠprop
d

(a1) does not hold, then TrueΠprop
d−1

(e1) has to be true.

If N thinks, b1 codes a disjunction, then there is a b′1 ∈ N such that

b1 = 〈0, b′1〉N . Assume now, TrueΣprop
d

(b1) holds. Then, if N thinks b1 codes

a disjunction, there is a b0 ∈ N with b0 ∈N b′1 such that TrueΠprop
d−1

(b0) holds.

If N thinks b1 does not code a disjunction, let b0 = b1. As before, we obtain

b0 ∈N c′. Assume now that neither of both cases apply. Then TrueΠprop
d−1

(e1)

and TrueΠprop
d−1

(e2) are true. Analogously to above, we obtain that TrueΣprop
d

(c)

holds.

(b): follows from (a).

Corollary 3.20. Let M be a nonstandard model, N an L-expansion of M
and d ≥ 2 and k ≥ 1 be integers. Then the following holds.

(a) N |= ∀x, y, z
(

TrueΣprop
d

(x) ∧ TrueΣprop
d

(y) ∧
(

Rule∨(x, y, z)∨

Rulecut(x, y, z) ∨ Rule∧(x, y, z)
)
→ TrueΣprop

d
(z)
)

(b) N |= ∀x, y, z
(

TrueΣprop
1

(x) ∧ TrueΣprop
1

(y) ∧
(

Rule∨(x, y, z)∨

Rulecut(x, y, z)
)
→ TrueΣprop

d
(z)
)
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(c) N |= ∀x, y, z
(

TrueDNFk
(x) ∧ TrueDNFk

(y) ∧ FmlDNFk
(z)∧(

Rule∨(x, y, z) ∨ Rulecut(x, y, z) ∨ Rule∧(x, y, z)
)
→ TrueDNFk

(z)
)

Proof. This follows from Propositions 3.17, 3.18 and 3.19.

We finish this section with a technical lemma.

Lemma 3.21. The following holds in N:

∀x ‖x‖ ≤ sizeRefut(x).

Proof. This follows from the definitions of sizeRefut(x) and ‖x‖ since every

formula has at least size 1.

3.7 Simulation of propositional refutations

In this section we want to combine all results of this chapter to show that

there are no polynomial size F(d)-refutations of the propositional transla-

tions of an unnested L-sentence ϕ if there is an L-expansion of a countable

nonstandard model in which ϕ is true on an initial segment.

Proposition 3.22. Assume that ϕ is an unnested universal L-sentence ϕ =

∀x1, . . . , xr ϕ0(x1, . . . , xr) where ϕ0(x1, . . . , xr) is a quantifier-free L-formula

of the form
∧
i∈I
∨
j∈Ji ϕi,j(x1, . . . , xr) for finite index sets I 6= ∅ and Ji 6= ∅

such that i ∈ I and ϕi,j(x1, . . . , xr) are L-literals.

(a) The propositional translation 〈ϕ〉(m) of ϕ is in conjunctive normal form

for all m ∈ N.

(b) N |= ∀x FmlΠprop
2

(Tϕ(x)).

Proof. (a): By the rules of propositional translation, we obtain

〈ϕ〉(m) =
∧∧
x1<m

· · ·
∧∧
xr<m

∧∧
i∈I

∨∨
j∈Ji

〈ϕi,j(x1, . . . , xr)〉(m).
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Because of the fact that ϕi,j(x1, . . . , xr) are unnested L-literals, their propo-

sitional translation 〈ϕi,j(x1, . . . , xr)〉(m) is either equal to >, ⊥ or a literal.

Thus, we obtain that 〈ϕ〉(m) is in conjunctive normal form. Note that by

definition > and ⊥ are also in conjunctive normal form and therefore, the

claim also holds if the translation is equal to either of them.

(b): follows from (a)

Definition. Let d ≥ 1 be an integer. We write Λd for the set of all unnested

L-formulas ϕ(x,w1, . . . , wr) such that for all a, b1, . . . , br,m ∈ N, their propo-

sitional translations 〈ϕ(a, b1, . . . , br)〉(m) are Πprop
d -formulas.

Note. Note that for every L-formula ϕ(x,w1, . . . , wr) ∈ Λd the propositional

translation 〈¬ϕ(a, b1, . . . , br)〉(m) of its negation is a propositional formula in

Σprop
d for a, b1, . . . , br,m ∈ N.

Further note that

N |= ∀z, x, w1, . . . , wr [FmlΠprop
d

(Tϕ(z;x,w1, . . . , wr))∧

FmlΣprop
d

(T¬ϕ(z;x,w1, . . . , wr))]

holds for all ϕ(x,w1, . . . , wr) ∈ Λd.

Definition. The least number principle for a set of first-order formulas Θ

is the statement that for any θ(x,w1, . . . , wr) ∈ Θ the following holds:

∀w1, . . . , wr ∃x
[
θ(x,w1, . . . , wr)→

∃y ≤ x ∀z ≤ x
(
θ(y, w1, . . . , wr) ∧ (z < y → ¬θ(z, w1, . . . , wr))

)]
.

We write LNP(Θ).

Let M be a structure that interprets < as a linear order on its universe

and let b0 ∈ M. For a set of first-order formulas Θ the least number prin-

ciple up to b0 is the statement that for any θ(x,w1, . . . , wr) ∈ Θ in M the
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following holds:

∀w1, . . . , wr ∃x < b0

[
θ(x,w1, . . . , wr)→

∃y ≤ x ∀z ≤ x
(
θ(y, w1, . . . , wr) ∧ (z < y → ¬θ(z, w1, . . . , wr))

)]
.

We write LNP<b0(Θ).

Definition. Let ϑTot(x) be the propositional conjunction∧{∨{
fa1,...,aar(f)+1

| aar(f)+1 < x
}
| pfq ∈ Fct, a1, . . . , aar(f) < x

}
and let ϑFct(x) be the propositional conjunction

∧{∨{
¬fa1,...,aar(f),c,¬fa1,...,aar(f),d

}
|

pfq ∈ Fct, a1, . . . , aar(f), c, d < x, c 6= d
}

Note. Both ϑTot(x) and ϑFct(x) are conjunctions of Σprop
1 -formulas.

Definition. Let CTot(x) be the LN-function such that for any m ∈ N, the con-

junction ϑTot(m) is coded by 〈1, CTot(m)〉 and let CFct(x) be the LN-function

such that for any m ∈ N, the conjunction ϑFct(m) is coded by 〈1, CFct(m)〉.

Lemma 3.23. LetM be a nonstandard model and N an L-expansion ofM.

Then

N |= ∀x
(

TrueΠprop
2

(〈1, CTot(x)〉) ∧ TrueΠprop
2

(〈1, CFct(x)〉)
)
.

Proof. Assume for an n ∈ N , the sentence TrueΠprop
2

(〈1, CFct(n)〉N ) is false

in N . Then there is an f ∈ L′ and a1, . . . , aar(f), c, d < n with c 6= d, such

that ¬TrueΣprop
2

(T¬f(a1,...,aar(f))=c∨¬f(a1,...,aar(f))=d) is true in M. By defini-

tion of TrueΣprop
d

we obtain that this means that TrueLit(Tf(a1,...,aar(f))=c) ∧
TrueLit(Tf(a1,...,aar(f))=d) holds in N . By Proposition 3.5, it follows that
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N |= f(a1, . . . , ar) = c ∧ f(a1, . . . , ar) = d contradicting that f is a func-

tion.

Analogously, the same holds for TrueΠprop
2

(〈1, CTot(x)〉).

3.7.1 The main theorem

Theorem 3.24. Let M be a countable nonstandard model of arithmetic in

the language LN and d be an integer with d ≥ 1.

Let ϕ be an unnested universal L-sentence ϕ = ∀x1, . . . , xr ϕ0(x1, . . . , xr)

where ϕ0(x1, . . . , xr) is a quantifier-free L-formula of the form

ϕ0(x1, . . . , xr) =
∧
i∈I

∨
j∈Ji

ϕi,j(x1, . . . , xr)

for finite index sets I 6= ∅ and Ji 6= ∅ such that i ∈ I and ϕi,j(x1, . . . , xr) are

L-literals.

If there are nonstandard integers n, b0 ∈ M \ N with b0 >
M nl for all l ∈ N

such that there exists an L-expansion N of M with the properties N |=
LNP<b0(Λd) and N |= ϕ<n, then for all l ∈ N there exists an m ∈ N with

m > 1 such that the propositional formula 〈ϕ〉(m) ∧ϑTot(m)∧ϑFct(m) has no

F(d)-refutation of size ≤ ml.

Note. In Proposition 3.22 (a) we have shown that for m ∈ N the proposi-

tional translation 〈ϕ〉(m) of ϕ is a propositional formula in conjunctive normal

form, i.e., 〈ϕ〉(m) =
∧

Φ where Φ is a set of Σprop
1 -formulas.

Note that ϑTot(m) and ϑFct(m) are conjunctions of Σprop
1 -formulas as well.

Therefore, 〈ϕ〉(m) ∧ ϑTot(m) ∧ ϑFct(m) =
∧

Φm where Φm is a set of Σprop
1 -

formulas. Then this means that regardless of the choice of d in the theorem,

Φm contains propositional formulas that we can work with in F(d).

Further note that for all m ∈ N the set Φm is coded by Cϕ(m) ∪ CTot(m) ∪
CFct(m).

Notation. By an F(d)–refutation of 〈ϕ〉(m)∧ϑTot(m)∧ϑFct(m) =
∧

Φm for



CHAPTER 3. SIMULATION OF PROPOSITIONAL REFUTATIONS 83

m ∈ N, we mean an F(d)-refutation of the set Φm. Since the propositional

formula 〈ϕ〉(m) ∧ ϑTot(m) ∧ ϑFct(m) is a conjunction, these mean the same:

There is an F(d)-refutation of Φm if and only if Φm is unsatisfiable.

Proof of Theorem 3.24. Assume towards a contradiction that there are non-

standard integers n, b0 ∈ M \ N with b0 >
M nl for all l ∈ N such that there

is an L-expansion N of M in which ϕ<n and LNP<b0(Λd) are true and that

there is an l0 ∈ N such that for every m ∈ N with m > 1 the propositional

formula 〈ϕ〉(m) ∧ ϑTot(m) ∧ ϑFct(m) has an F(d)-refutation of size ≤ ml0 .

We can state the latter in the standard model as the sentence

∀x > 1 ∃y
(
RefutF(d)(Cϕ(x) ∪ CTot(x) ∪ CFct(x), y) ∧ sizeRefut(y) ≤ xl0

)
.

Since this is true in the standard model, it is also true in M and therefore

in N . Thus, for the nonstandard integer n there is a nonstandard integer π

in N such that the sentence is true in N for x = n and y = π.

Intuitively, π codes a refutation of ”〈ϕ〉(n) ∧ ϑTot(n) ∧ ϑFct(n)”. Let s be the

length of π in N , i.e., s = ‖π‖N . By definition of RefutF(d), the last entry

(π)s−1 of π is p⊥q. Hence, N |= ¬TrueΣprop
d

((π)s−1).

Define a ”False-formula” which states ”the y-th entry of the refutation

coded by z is false”: False(y, z) = ¬TrueΣprop
d

((z)y).

By Corollary 3.15, 〈¬TrueΣprop
d

(a)〉
(m)

is in Πprop
d for all a,m ∈ N. Note that

the corollary states that the propositional translation could also be equal to

>. But since by assumption d ≥ 1 and > ∈ Πprop
1 , this statement also holds

for >. Observe that for any a, b ∈ N, the term (a)b is also in N. Thus, we

obtain that False(y, z) ∈ Λd.

By assumption the least number principle is true in N for False(y, π) up to

b0.

Since N |= False(s − 1, π), because sizeRefut(π) ≤N nl0 holds and by

Lemma 3.21, also s− 1 <N b0 is true. Thus, we can apply the least number

principle to False(y, π). Hence there is a ≤N -minimal a0 ∈ N with a0 ≤N
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s− 1 such that False(a0, π) is true in N and False(a, π) is false in N for all

a ∈ N with a <N a0. Thus, there are two cases:

(a) a0 = 0: By definition of RefutF(d), N |= (π)0 ∈ Cϕ(n)∪CTot(n)∪CFct(n).

Since N |= ¬TrueΣprop
d

((π)0), from the definition of TrueΠprop
d

we obtain

that

N |= ¬TrueΠprop
d+1

(〈1,Cϕ(n)〉) ∨ ¬TrueΠprop
d+1

(〈1, CTot(n)〉)∨

¬TrueΠprop
d+1

(〈1, CFct(n)〉).

By Lemma 3.23, we can conclude that N |= ¬TrueΠprop
d+1

(〈1,Cϕ(n)〉).
Since TNϕ (n) = 〈1,CNϕ (n)〉N , this means N |= ¬TrueΠprop

d+1
(Tϕ(n)). Intu-

itively, this is equivalent to saying N |= ¬TrueΠprop
d+1

(p〈ϕ〉(n)q).

By Proposition 3.12, we have N |= ∀x (ϕ<x ↔ TrueΠprop
d+1

(Tϕ(x))). On

one hand, N |= ϕ<n, but on the other handN |= ¬TrueΠprop
d+1

(〈1,Cϕ(n)〉).
This is a contradiction.

(b) 0 <N a0 ≤N s− 1: This means that TrueΣprop
d

((π)a0) is false in N . By

definition of RefutF(d), N thinks that either (π)a0 ∈N CNϕ (n)∪CNTot(n)∪
CNFct(n) or there are a1, a2 ∈ N with a1, a2 <

N a0 such that

• if d = 1,

N |= Rule∨((π)a1 , (π)a2 , (π)a0 ∨ Rulecut((π)a1 , (π)a2 , (π)a0)

• or if d > 1,

N |= Rule∨((π)a1 , (π)a2 , (π)a0 ∨ Rulecut((π)a1 , (π)a2 , (π)a0)∨

Rule∧((π)a1 , (π)a2 , (π)a0).

If N |= (π)a0 ∈ Cϕ(n) ∪ CTot(n) ∪ CFct(n), we obtain a contradiction

analogously to case (a).
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Assume the latter. Since a1, a2 <N a0, by assumption we have N |=
TrueΣprop

d
((π)a1) and N |= TrueΣprop

d
((π)a2). Applying Corollary 3.20, we

obtain a contradiction since N |= ¬TrueΣprop
d

((π)a0).

3.7.2 The main theorem for other Frege refutation sys-

tems

Notation. Define ΛCNF to be the set of all L-sentences ϕ(x, y1, . . . , yr) such

that their propositional translation 〈ϕ(a, b1, . . . , br)〉(m) is a CNF for all nat-

ural numbers a, b1, . . . , br,m.

Let ΛCNFk
the set of all L-sentences ϕ(x, y1, . . . , yr) such that their proposi-

tional translation 〈ϕ(a, b1, . . . , br)〉(m) is a k-CNF for all a, b1, . . . , br,m ∈ N.

Note. Clearly, ΛCNF = Λ2 and ΛCNFk
⊆ Λ2.

Corollary 3.25. Let M be a countable nonstandard model of arithmetic in

the language LN. Further let P, Λ be one of the pairs (a), (b) or (c) (with

k ∈ N and k ≥ 1) shown in the table below.

Let ϕ be an unnested universal L-sentence ϕ = ∀x1, . . . , xr ϕ0(x1, . . . , xr)

where ϕ0(x1, . . . , xr) is a quantifier-free L-formula of the form

ϕ0(x1, . . . , xr) =
∧
i∈I

∨
j∈Ji

ϕi,j(x1, . . . , xr)

for finite index sets I 6= ∅ and Ji 6= ∅ such that i ∈ I and ϕi,j(x1, . . . , xr) are

L-literals.

If there are nonstandard integers n, b0 ∈ M \ N with b0 >
M nl for all l ∈ N

such that there exists an L-expansion N of M with the properties N |=
LNP<b0(Λ) and N |= ϕ<n, then for all l ∈ N there exists an m ∈ N with

m > 1 such that the propositional formula 〈ϕ〉(m) ∧ϑTot(m)∧ϑFct(m) has no

P-refutation of size ≤ ml.
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Theorem 3.24 (a) (b) (c)

Σprop
d Σprop

1 DNFs (= Σprop
2 ) k-DNFs

P F(d) R (= F(1)) RDNF (= F(2)) RDNFk

Λ Λd Λ1 ΛCNF (= Λ2) ΛCNFk

Proof. (a) and (b): For P = R let d = 1 and for P = RDNF let d = 2 in

Theorem 3.24.

(c): Let P = RDNFk
for an integer k ≥ 1. Since we have proven all results

we used in the proof of Theorem 3.24 for k-DNFs as well, the theorem also

holds for RDNFk
.
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