

# **DIPLOMARBEIT / DIPLOMA THESIS**

Titel der Diplomarbeit / Title of the Diploma Thesis

Use of drift-tube ion mobility spectrometry to enhance HPLC-TOFMS analysis of phenolic extracts

> verfasst von / submitted by Marian Došen

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Magister der Pharmazie (Mag.pharm.)

Wien, 2016 / Vienna, 2016

Studienkennzahl lt. Studienblatt / degree programme code as it appears on the student record sheet:

Studienrichtung lt. Studienblatt / degree programme as it appears on the student record sheet:

Betreut von / Supervisor:

A 449

Diplomstudium Pharmazie UniStG

ao. Univ.-Prof. Mag. Dr. Gottfried Reznicek

## **Statutory Declaration**

I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources, and that I have explicitly marked all material which has been quoted either literally or by content from the used sources.

Vienna,

Date

Signature

## Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Wien, am

Datum

Unterschrift

未練なく散も桜はさくら哉 without regret they fall and scatter... cherry blossoms *for* 無禅

## Acknowledgment

The continuous support of the whole working group of Assoc. Prof. Dr. Stephan Hann at the Division of Analytical Chemistry at University of Natural Resources and Life Sciences, Vienna was much appreciated. Special thanks to Dr. Tim Causon and Assoc. Prof. Dr. Stephan Hann for their guidance, patients and the provided possibility to work with them.

I would like to thank ao. Univ. Prof. Dr. Gottfried Reznicek from the Department of Pharmacognosy, University of Vienna for his support of this work in the first place.

Furthermore I would like to express my gratitude to my father, who if he would be still with us, would have liked my effort to process the topic at hand, after all he was the one who told me how to use my brain.

## Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Evaluierung eines, zwar nicht ganz neuen, aber erst vor einiger Zeit kommerziell zugänglichen Versuchsaufbaus. Es handelt sich dabei um Ionen mobilitäts Spektrometrie (IMS), die als Zusatzelement in einem gängigen quadrupol-Flugzeit-Massenspektrometer (QTOF) verbaut ist und jeweils mit Flüssigchromatographie (LC) gekoppelt wird. Die IMS-Einheit basiert dabei auf dem Prinzip der Drift-Zeit Auswertung und soll die Ionen nicht nur nach ihrem Masse zu Ladungsverhältnis sondern auch nach ihrem Form zu Ladungsverhältnis trennen. Driftzeit ist jene Zeit die ein Ion braucht um eine gewisse Strecke innerhalb der IMS-Einheit zu passieren und hängt von verschiedenen Parametern ab die innerhalb der Arbeit erklärt werden. Durch die Arbeit soll versucht werden den Nutzen dieser Methode für die Analyse von Pflanzenextrakten mit einem hohem Gehalt an phenolischen Sekundärstoffen, wie zum Beispiel Flavonoiden abzuschätzen. Um über geeignete Proben zu verfügen, die in gleichbleibender Qualität vorhanden sind und ohne großen Aufwand vorzubereiten waren, wurde Wein als Prototyp eines phenolischen Pflanzenextrakts gewählt.

Durch wiederholte Messungen gleicher Weinproben wurde die Wiederholgenauigkeit und die Zuverlässigkeit der Ergebnisse überprüft. Vor allem in Hinblick auf die Datenverarbeitung wurde versucht LC-IM-QTOF und LC-QTOF allein zu Vergleichen. Um dies zu ermöglichen wurden drei verschieden Weine durch Gruppierung der extrahierten Daten auf ihr Unterschiede geprüft. Im weiteren Verlauf der Arbeit wurde hoher Wert auf die Kalibrierung des Gerätes hinsichtlich der Drift-Zeit gelegt und der Stoßquerschnitt (CCS) für einige der Ionen ermittelt. Im letzten Teil der Arbeit wurde versucht die zusätzlichen Daten die durch die IMS zu Verfügung stehen zu nutzen um Probleme bei der Ermittlung von qualitativen Aussagen zu einzelnen Ionen aufzuzeigen.

Letztendlich kommt die Arbeit zu dem Schluss, dass die zusätzlichen Daten die durch die Driftzeit Messung zu Verfügung stehen durchaus sinnvoll für eine weiter in die Tiefe gehende Analytik sind. Es bedarf jedoch noch einiger Optimierung der vorhandenen Methode um den vollen Nutzen aus dem Experiment zu erhalten.

## Abstract

The present work deals with the evaluation of a relatively new commercially available instrument. The instrument concerned is a drift-tube ion mobility (IMS) combined with a quadrupole time-of-flight mass spectrometer (QTOF). The IMS is based on the principle of drift time ion mobility separation of ions relating to their shape-to-charge of ions. Drift time is the time an ion needs to pass through the IMS drift tube and is determined by different parameters, that are explained within the work. Throughout the work, it is a primary goal to estimate the value of this approach for the analysis of plant extracts containing a high concentration of phenolic secondary metabolites (e.g. flavanoids). To have suitable tests samples, which were easy to obtain and required low cost preparation, wine was chosen as a prototype of phenolic plant extracts.

The repeatability and the reliability of the results were checked by repeated measurements of the same wine samples. Above all comparison of the data processing of liquid chromatography in combination with ion mobility-time-of-flight-mass spectrometry (LC-IM-QTOF) and LC-QTOF alone, was aimed at. To allow this, three wines were checked by alignment of the extracted data for differences. High value was placed into the other part of the work; the calibration of the device concerning the drift time and the collisional cross section (CCS) determination for some of the ions. In the last part of the work, the additional data acquired by the IMS is used with some qualitative examples from targeted compounds to demonstrate the type of information that can be included in a full-scale LC-IM-(Q)TOF workflow.

A major conclusion of this work is that the additional separation and feature alignment utility of IMS will be valuable for both targeted and (possibly) non-targeted analytical workflows for phenolic extracts. Nevertheless, some optimization and investigation into further elements are still required. Some suggested further work to address these issues is suggested at the end of this thesis.

# Contents

| Zusammenfassung |              |                                                             |                      |  |  |  |
|-----------------|--------------|-------------------------------------------------------------|----------------------|--|--|--|
| Ab              | ostrac       | t                                                           | xi                   |  |  |  |
| 1.              | Intro        | troduction                                                  |                      |  |  |  |
|                 | 1.1.         | Polyphenols                                                 | 1                    |  |  |  |
|                 |              | 1.1.1. Flavonoids                                           | 3                    |  |  |  |
|                 | 1.0          | 1.1.2. Polyphenolic and flavonold content in wine           | 4                    |  |  |  |
|                 | 1.2.         | Analytical methods for while analysis                       | 5                    |  |  |  |
|                 |              | 1.2.2 HPI C-MS                                              | 5<br>6               |  |  |  |
|                 |              | 1.2.3. Ion mobility spectrometry mass spectrometry (IMS-MS) | 6                    |  |  |  |
|                 |              | 1.2.4. Drift tube IMS theoretical background                | 6                    |  |  |  |
|                 |              | 1.2.5. Concept of the collisional cross section             | 7                    |  |  |  |
|                 | 1.3.         | TOF-IMS instrument configuration                            | 9                    |  |  |  |
|                 |              | 1.3.1. Resolution                                           | 11                   |  |  |  |
|                 |              | 1.3.2. Separation                                           | 12                   |  |  |  |
| 2               | Eve          | avimontal                                                   | 12                   |  |  |  |
| ۷.              |              | Reagents and materials                                      | 10                   |  |  |  |
|                 | 2.2          | Sample preparation                                          | 13                   |  |  |  |
|                 | 2.3.         | LC-IM-TOFMS method                                          | 14                   |  |  |  |
|                 | <b>2.4</b> . | LC-IM-QTOFMS method                                         | - <del>-</del><br>15 |  |  |  |
|                 | 2.5.         | Data handling                                               | 15                   |  |  |  |
| 2               | D            | Descende Pressentes                                         | 17                   |  |  |  |
| 3.              | Resi         | Augustitative accession                                     | 11                   |  |  |  |
|                 | 3.1.         | Transmission                                                | 17                   |  |  |  |
|                 | 3.2.<br>2.2  | CCS measurements of phenol standards                        | 10                   |  |  |  |
|                 | 3.4          | Repeatability                                               | 22                   |  |  |  |
|                 | 3.5.         | LC-IM-TOF measurements                                      | 23                   |  |  |  |
|                 | 3.6.         | LC-IM-QTOF                                                  | 25                   |  |  |  |
|                 | 3.7.         | Qualitative examples                                        |                      |  |  |  |
|                 | ~ ,          | 3.7.1. Kaempherol                                           | 26                   |  |  |  |
|                 |              | 3.7.2. Epicatechin/Catechin                                 | 27                   |  |  |  |
|                 |              | 3.7.3. Miquelianin                                          | 29                   |  |  |  |
|                 |              | 3.7.4. Caftaric acid                                        | 30                   |  |  |  |

| 3.7.5. Castavinol                                                                                                                                                                                                    | 32                                                        |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|
| 4. Conclusion                                                                                                                                                                                                        | 35                                                        |  |  |  |  |
| Appendix                                                                                                                                                                                                             | 37                                                        |  |  |  |  |
| A. Chemicals                                                                                                                                                                                                         | 37                                                        |  |  |  |  |
| B. Quantification                                                                                                                                                                                                    | 39                                                        |  |  |  |  |
| C. CCS single field calibration                                                                                                                                                                                      | 41                                                        |  |  |  |  |
| D. Feature lists   D.1. Shiraz   D.1.1. LC-IM-(Q)TOF   D.1.2. LC-TOF   D.2. Blaufränkisch-Zweigelt-Merlot   D.2.1. LC-IM-(Q)TOF   D.2.2. LC-TOF   D.3.8 Blaufränkisch-Zweigelt   D.3.1. LC-IM-(Q)TOF   D.3.2. LC-TOF | <b>45</b><br>45<br>55<br>59<br>59<br>69<br>73<br>73<br>82 |  |  |  |  |
| Bibliography 83                                                                                                                                                                                                      |                                                           |  |  |  |  |

# **List of Figures**

| 1.1.  | Polyphenolic compounds.                                         | . 2  |
|-------|-----------------------------------------------------------------|------|
| 1.2.  | Common flavonoids.                                              | • 3  |
| 1.3.  | Stepped-field calibration of kaempherol.                        | . 8  |
| 1.4.  | Hypothetical ordering.                                          | . 9  |
| 1.5.  | Electro spray ionization interface scheme                       | . 10 |
| 1.6.  | Drift tube scheme.                                              | . 11 |
| 3.1.  | Extraced ion chromatograms of the standard substances           | . 18 |
| 3.2.  | Transmission comparison.                                        | . 19 |
| 3.3.  | CCS value comparison                                            | . 21 |
| 3.4.  | Repeatability study.                                            | . 22 |
| 3.5.  | Venn diagram IMS.                                               | . 23 |
| 3.6.  | Venn diagram TOF only mode.                                     | . 24 |
| 3.7.  | Full comparison of the extracted spectra for the mass 477.0675. | . 25 |
| 3.8.  | Chemical structure of kaempherol.                               | . 26 |
| 3.9.  | Combined spectra of kaempherol.                                 | . 27 |
| 3.10. | . Chemical structure of catechin/epicatechin                    | . 27 |
| 3.11. | . Combined spectra of epicatechin/catechin                      | . 28 |
| 3.12. | . Chemical structure of miquelianin                             | . 29 |
| 3.13. | . Combined spectra of miquelianin.                              | . 30 |
| 3.14. | . Chemical structure of caftaric acid                           | . 31 |
| 3.15. | . Combined spectra of caftaric acid.                            | . 32 |
| 3.16. | . Chemical structure of a castavinol                            | · 33 |
| 3.17. | . Combined spectra of a castavinol.                             | · 34 |
| C.1.  | All measured calibrant ions plotted as linear functions         | . 41 |

# **List of Tables**

| 1.1. | Compounds present in wine.                                         | 4  |
|------|--------------------------------------------------------------------|----|
| 2.1. | Used standard substances.                                          | 14 |
| 3.1. | Limits of detection and quantification                             | 17 |
| 3.2. | CCS value comparison                                               | 20 |
| 3.3. | Extracted masses from the repeatability measurements               | 22 |
| 3.4. | Extraction windows for kaempherol                                  | 26 |
| 3.5. | Extraction windows for catechin/epicatechin.                       | 28 |
| 3.6. | Extraction windows for miquelianin.                                | 29 |
| 3.7. | Extraction windows for caftaric acid                               | 31 |
| 3.8. | Extraction windows for castavinol.                                 | 33 |
| C.1. | Calibration used for the LC-IM-QTOF method with and without alter- |    |
|      | nating frames.                                                     | 42 |
| C.2. | Calibration used for the repeatability measurements.               | 42 |
| C.3. | Stepped-field measurements of the calibrant ions                   | 43 |

Ion mobility spectrometry in combination with mass spectrometry (IMS-MS) as a tool for solving analytical problems is becoming more common recently due to the fact, that new instruments aiming to offer increased measurement selectivity are emerging on the market which are ready for routine usage [1].

This thesis will deal with the development of analytical work flows to separate and characterize small molecules, using this approach on a newly available commercial instrument with a focus on polyphenolic compounds from plants. In order to broadly assess the potential of this technique for this application, reproducible samples (red wine) containing a wide variety of phenolic substances will be used as a test subject. The benefit of some red wine compounds for human health have been intensively studied and described in numerous publications and books and there is a still ongoing discussion about it throughout the scientific community [2, 3]. This discussion is not only present for wine, it is present for many plant compoundings and the healing or harming principles often are not fully understood, although some of them are used for centuries by humankind.

Plant extracts and fermentations are complex mixtures of chemical compounds and resolving their structures and determination of phenolic profiles requires much effort as knowledge continues to grow in this area. The last decades of analytical chemistry introduced mass spectrometry (MS) and in addition, high resolution mass spectrometry on a routine basis, which made it possible after chromatographic separation, to screen through a high number of samples. Such screenings brought an astonishing flow of detailed information for substances present in biological systems in general. To develop a general analytical workflow for this purpose, high-quality annotation and alignment of features across samples are essential requirements.

## 1.1. Polyphenols

Exact definitions for secondary plant metabolites are not always easy to provide due to the fact, that plant-derived substances encompass such a wide and structure rich environment. Major groups of compounds are defined by their functional groups or backbone structures from which they are built, for example as is the case for terpenoids. When it comes to polyphenols, however, there are also some main structures grouped together according to chemical properties and polymerization grade. The review of [4] presents a good overview of which kind of polyphenolic structures one could be confronted with, when trying to resolve a sample of plant extracts such as wine. Some of these substances classes are shown in **Figure 1.1**.



Figure 1.1.: Examples of compounds found in wine representing various classes of polyphenols.

#### 1.1.1. Flavonoids

Flavonoids are polyphenolic secondary plant metabolites, which are ubiquitous for all higher plants. Their purpose in nature seems to be for coloring flowers and fruit to attract or repel insects, as well as protecting plants from the adverse effects of UV-light and from herbivores or insects [5]. From the viewpoint of organic chemistry



Figure 1.2.: Common flavonoids and used nomenclature numbering pattern.

and nomenclature, the flavonoids are separated in different groups, based on their grade of oxidation and type of bonding. All groups resemble the same basic pattern of the flavan, a 3,4-dihydro-2-phenyl-2H-1-benzopyran, according to International Union of Pure and Applied Chemistry (IUPAC) nomenclature. The antioxidant properties of flavonoids correlate with their ability to scavenge radicals, which corresponds mostly to the position and the number of hydroxyl groups bound to the rings [6]. In **Fig. 1.2** the basic classification of flavonoids are shown, but considering that over 8000 different flavonoids up until 2006 have been characterized, it is merely an overview.

Many flavonoid drugs are used in herbal medicine with a long and successful tradition. However, not always the exact substance or the combination of substances that form the healing principle is known or comprehensively confirmed. Polyphenols such as anthocyanidins, as well as flavonoids, have been proposed as being responsible for these effects primarily due to their antioxidant properties [7]. Newer investigations on anti-inflammatory properties of different flavonoids, such as quercetin show, that they interact with arachidonic acid pathway enzymes and tumor necrosis factor kappa b pathway enzymes, which are important targets in drug development [8] and lead to

ongoing research and testing of their activities, using different assay methods [9–11].

Keeping in mind, that flavonoid compounds could lead to new pharmaceutical drugs in fighting disease connected to inflammation processes, such as cancer or arteriosclerosis [12–14], the development of new powerful analytical methods in separation and identification is a crucial step in the discovery process. This is not only true for extensive qualitative analysis, with the aim to find new structures or confirm the structures of the huge amount of features, that can be extracted from mass spectrometry data, but also for reasons of quality control and quantification of target compounds.

Emphasizing on the development of a method for liquid chromatography (LC) hyphenated with ion mobility spectrometry (IMS) and high resolution time of flight mass spectrometry (TOF), using an additional quadrupole for fragmentation (LC-IMS-QTOF) for the analysis of wine samples, in addition to methods for origin determination and quantification, (carried out at University of Natural Resources and Life Sciences, BOKU-Vienna, Department of Chemistry, Division of Analytical Chemistry), different aspects of method development and feature annotation will be considered to enrich existing work flows [15].

#### 1.1.2. Polyphenolic and flavonoid content in Wine

Concerning the polyphenolic and flavonoid content in wine, there are many publications dealing with how these compounds influence the taste or health impact of wine [16–18]. For this thesis, a brief overview of substances known to be found in common red wine, will be given, later in the results section some of these compounds will be targeted in detailed qualitative examples. These substances have been chosen to show the possibilities of identification and annotation that the proposed analytical workflow presented in this work, provides **Table 1.1**.

| Compound      | Sum formula          | Molecular Mass [g mol <sup>-1</sup> ] | Exact Mass |
|---------------|----------------------|---------------------------------------|------------|
| Kaempherol    | $C_{15}H_{10}O_{6}$  | 286.24                                | 286.0477   |
| Catechin      | $C_{15}H_{14}O_6$    | 290.27                                | 290.0790   |
| Epicatechin   | $C_{15}H_{14}O_6$    | 290.27                                | 290.0790   |
| Caftaric acid | $C_{13}H_{12}O_{9}$  | 312.23                                | 312.0481   |
| Miquelianin   | $C_{21}H_{18}O_{13}$ | 478.36                                | 478.0747   |
| Castavinol    | $C_{26}H_{30}O_{14}$ | 566.50                                | 566.1636   |

Table 1.1.: Compounds present in wine, chosen for closer investigation.

### 1.2. Analytical methods for wine analysis

For the separation and detection of polyphenolic compounds from plants, high performance liquid chromatography (HPLC) separations, with their different detection methods, are the state of the art technology. HPLC combined with mass spectrometry is already considered the benchmark tool for characterization and separation of plant extracts [19]. However, there is still room for improvement for a number of issues, such as the separation and identification of isobaric or stereo-isomeric compounds, especially within the group of flavonoids, as they are compounds with only slight variations in structure, which could nevertheless exhibit different biological activity.

Therefore, development of techniques that are able to resolve the complexity of samples with a large number of different, but structurally similar components, is important both in the search for new bioactive compounds and for broad scale comparisons of different extracts (e.g. authenticity determination).

#### 1.2.1. High performance liquid chromatography (HPLC)

When it comes to identification, molecules must be chromatographically separated in order to yield a robust identification parameter and allow detection of constituent components with a detector. HPLC has been a mainstay for some time now and, together with gas chromatography, remains a primary method of choice for the separation of complex samples. The wine samples at hand in this study can be formally seen as a liquid alcoholic plant extract, where the substances of interest are moderately polar organic molecules, that show good separation on reversed-phase HPLC columns. Reversed-phase HPLC separation is very suitable for such applications due to the fact, that a wide polar and apolar range of molecules, is present in such samples and is now the most commonly used method for phenol analysis [20].

HPLC itself is a very effective separation technique, using numerous chemical and physical principles for separation, depending on the column and mobile phase employed. The separation principle of reversed-phase HPLC is the interaction of apolar molecules with the apolar stationary phase material (typically silica derivatized with hydrophobic groups) and an organic-aqueous mobile phase, such as acetonitrile/water. HPLC has a wide variety of applications and a vast amount of different setups, the exact setup used for the analysis executed in this thesis, will be explained in the experimental section in detail, however, it is important to note, that the coverage of the polarity range in case of plant extracts is always a problem.

With the setup at hand, the retention of the heavier phenolic compounds with multiple hydroxy groups and the antocyanidins (because of their positive charge), will be very weak, so that they all appear badly separated before the first two minutes of the chromatography, which are not reliably usable for further annotation. Chromatography is always a compromise between time, separation quality and the amount of different substance groups covered. The approach used for the wine analysis in this case, was focused on good separation of a mix of standards, in the mass range of 160-320 g mol<sup>-1</sup>, that are flavonoids or phenolic compounds with a not too large polarity range covered.

This lead to the expectation, that similar compounds would be found in the retention time range of the standards.

#### 1.2.2. HPLC-MS

Coupling of HPLC with MS enables the possibility to measure mass information of separated compounds in an on-line-fashion. A wide variety of mass spectrometry principles can be used including ion trapping, quadrupole filtering, time-of-flight and Orbitrap mass analyzers. In this thesis, a time-of-flight (TOF) mass analyzer was employed. In this type of mass analyzer, ions are accelerated in a flight tube and the time required to reach the detector is used to calculate the mass-to-charge-ratio.

#### 1.2.3. Ion mobility spectrometry mass spectrometry (IMS-MS)

Together with drift time IMS, which will be discussed in detail as it is the instrument used in this thesis, differential-mobility spectrometry and traveling wave IMS with a lot of different setups, are used to try to solve analytical problems. The review of [1] provides an excellent overview of IMS-MS principles. HPLC coupled to ion mobility spectrometry-mass spectrometry (IMS-MS) is suggested in this work, to be a potentially suitable technique for the analysis of phenolic extracts [21], as it offers the possibility to bring a new dimension, the drift time (related to the shape-to-charge-ratio of an ion) into account for compound separation and identification.

#### 1.2.4. Drift tube IMS theoretical background

The theory of gaseous ion mobility, is part of the kinetic theory of gases and its application for IMS-MS was developed in the 1950s-1970s and further extended into research instruments in subsequent years [22–25].

In the case of ion transport in a drift-tube environment, the gas phase mobility of an ion, therefore is proportional to the electrical field strength E and inversely proportional to the pressure of the drift gas p and the drift time velocity  $v_d$ . Where the drift time  $t_d$ , then is directly proportional to the ratio of field strength divided by the pressure E/p [22, 25]. Measuring the drift time as an analytical parameter is thereby used, to characterize ions and calculate collisional cross sections for comparability and is the primary aim of this analytical approach. In the case of IMS-TOF, the additional measuring of masses by high resolution mass spectrometry, enables detection and further information to be derived. Equation (1.1) represents the fundamental idea behind it, in a mathematical way.

$$v_d = KE \tag{1.1}$$

The additional possibility of adding collision energy for fragmentation, which is done in an alternating frame manner, provides even more flexibility for the analytical workflow. Alternating frames in this case means, due to the fact that ions pass the drift tube as packages similar to the way they are introduced into the flight tube, collision energy is switched on and then off again, for a certain amount of transient. This brings in the possibility to product lock ions to certain drift times and be able to tell exactly which ion produces which fragments, without being forced to lock the quadrupole to a certain mass range. To make the concept clearer, it will be discussed in detail in **Section 3.6**.

#### 1.2.5. Concept of the collisional cross section

As mentioned above the drift time  $t_d$  is a function of ion mobility, pressure and field strength and therefore correlates to the parameters of our method and device only. Using the drift time and mass to charge information derived from drift-tube IM-MS measurements, calculation of the momentum transfer integral, according the fundamental zero-field equation, allows a so-called collisional cross sections (CCS) for a given ion to be calculated.

CCS itself can be seen as a representation of an ion-neutral complex derived from a simple model of hard spheres colliding. The CCS value of an ion in a given collision gas for the most part, depends on the radius (the ion is seen as a sphere) and reduced mass of the ion. The theory of gaseous ion mobility ultimately brought forth an equation by Mason and Schamp [22], relating the ion mobility to a CCS value (or momentum transfer integral,  $\Omega$ ), charge state Q, temperature T, drift gas density N and reduced mass  $\mu$  of the ion colliding with the drift gas molecules (1.2).

$$K = \frac{3}{16} \sqrt{\frac{2\pi}{\mu kT}} \frac{Q}{n\Omega_D}$$
(1.2)

For the determination of CCS values a simple approach called stepped-field method, can be used. The drift tube voltage difference is changed in a number of short time steps differing by a known voltage "step" (for example from 1700 V to 1100 V in 6 steps differing by 100 V each), while a substance of interest is directly infused into the system. Longer run-times make the measurements more precise, but 2.5 minutes where used in the methods in this thesis and the precision was kept inside 1 %. To then calculate the CCS value, the temperature and pressure of the used drift gas as well as the length of the drift tube, must be known. Then the CCS value can be acquired from a drift time t<sub>d</sub> against reciprocal field strength difference  $1/\Delta V$  plot, which turns out to be linear in a certain field strength range, because t<sub>d</sub> is directly proportional to the E/p ratio. The intercept of the linear function is used, to determine the minimal time  $t_0$  an ion needs to pass the drift region, hence its a correction of the actual  $t_d$ , according to the ion optics, much like the concept of dead volume in chromatography.

Using the corrected  $t_d$  and the known parameters of the instrument, CCS values can then be calculated simply by rearranging **Equation 1.2** into **Equation 1.4**. To be able to compare different measurements on different instruments, additionally the reduced mobility  $K_0$ , is commonly calculated by **Equation 1.3** and can be seen as the ion mobility

at standard gas density  $n_0$ , temperature and pressure ( $T_0 = 273$  K and  $p_0 = 1013$  mbar).

$$K_0 = K \frac{n}{n_0} = K \frac{T_0}{T} \frac{p}{p_0}$$
(1.3)

$$\Omega_D = \frac{3}{16} \sqrt{\frac{2\pi}{\mu kT}} \frac{Q}{nK_0} \tag{1.4}$$



Figure 1.3.: Stepped-field method plot for the  $[M - H]^-$ -Ion of kaempherol, with a CCS value of 166.9  $Å^2$  and the t<sub>d</sub> [ms] at different field strength.

As mentioned before, the stepped-field approach needs the drift-tube voltage to be changed while the system is running, this makes it impossible to use the approach for calculating CCS values, when the sample is introduced as a chromatographic peak of narrow width. The field strength could not be stepped, according to every substance eluting from the chromatography, it is self-evident, that there would not be enough time to accomplish this.

To still be able to calculate the values for all features from a sample-run in HPLC-IMS-MS mode, a single-field approach is used, that is basically a calibration-function of CCS values, determined from the same calibrant mixture, used for the mass calibration of the system. The CCS values of the ions in the calibrant solution are measured with a stepped-field method before the actual sample run and the calculated results are entered into a calibration table, that subsequently allows assignment of CCS values for all found features according to a linear calibration function. This approach was developed by the instrument manufacturer Agilent Technologies, and the calibration table used for the actual measurements can be reviewed in the Appendix.

The fact that  $t_d$  and the CCS value is directly related to the mass of an ion makes the ordering in **Fig. 1.4** obvious, however, the shape of an ion makes the small, but measurable difference.



Figure 1.4.: Hypothetical ordering of biomolecular classes, according to drift time t<sub>d</sub>. Adapted from [26].

## 1.3. TOF-IMS instrument configuration

The instruments used for our investigations are the Agilent 6230 TOF LC/MS [27] and Agilent 6560 Ion Mobility Q-TOF LC/MS [28]. The latter QTOF instrument contains a drift tube IMS and has been on the market since 2013. Apart from the IMS drift tube, both instruments are state-of-the art mass spectrometers with time of flight mass analyzers, while the 6560 instrument has a quadrupole and collision cell for precursor selection and fragmentation. Both instruments use the same ionization technique (electro spray ionization, ESI), with the exact same ionization source, which is important, because the first instrument was used to evaluate the limits of the detection and quantification for typical phenolic compounds and also, to assess the linear range of the measurements and transmission loss arising, from the use of the IMS functionality. An Agilent dual ESI with Jet stream technology is used (Figure 1.5) in the negative ionization mode, which was found to be suitable for a broad range of phenolic compounds. In an ESI source a nebulizer sprays the solution to be analyzed through a charged capillary into a chamber, with drying gas. Inside this chamber the solution droplets containing molecules are desolvated and the molecules are then softly ionized by loss or addition of a proton, and / or forming adducts with both cations and anions as  $Na^+$  or  $HCOO^-$ .

The Agilent Jet stream technology also thermally focuses the electro spray, exiting the capillary to further improve transfer of ions into the MS. This is achieved through a thermal gradient between the sheath gas and the drying gas. After ionization, the ions are trapped within a square RF trapping funnel and then sent into the drift tube as



Figure 1.5.: Agilent dual ESI with Jet stream technology scheme (more information at Agilent Technologies [28]). Between the nebulizer-tip and the capillary normally a potential difference of around 4000 V is applied.

discrete packages, the time they need to reach the end of the drift tube, is determined by the extent of collisions with the neutral drift gas that retards the motion of ions inside the tube. The stacked ring-ion-guide-design of the drift tube, that can be observed in **Figure 1.6** provides a constant (DC) electrical field for the drift event.



Figure 1.6.: Drift tube scheme with stacked ring ion guide design, exact length 78.2 cm.

The drift time as mentioned in the theoretical background section, is the main analytical parameter and can then be used to obtain the  $t_d$  versus  $1/\Delta v$  plot, used to calculate the CCS value for a given ion with either a stepped-field, or single-field calibration method. Following the drift separation, packages of ions are then guided further into the quadrupole and accelerated into the time of flight analyzer, where accurate high resolution mass spectra are collected. The combination of the two separation principles (shape-to-charge and mass-to-charge) with a high performance liquid chromatography system therefore, provides a very high level of separation possibilities. The detailed methods used with each system, will be explained in the experimental section.

#### 1.3.1. Resolution

Ion mobility spectrometry can be considered, to have characteristics of both chromatography and mass spectrometry. However, the resolution of drift-tube ion mobility is much lower than for mass spectrometry, as collisions (between analyte ions and neutral drift gas molecules in a low-field setting) are required.

"[...],IMS resolution is independent of the ion being separated and is directly proportional to the square root of the potential across the ion drift region (EL) and inversely proportional to the square root of the drift gas temperature." [29]

As the temperature and pressure in the case of the used instrument are kept

constant, resolution then depends principally on the drift tube length L (78.2 cm) and the field strength over the drift region E = V/cm which can be calculated via equation (1.5), where t<sub>d</sub> is the drift time, Q is the charge state of the ion and T is the absolute temperature [29].

Achieving higher resolution by applying higher field strength, has its limits due to the potential for arcing in the drift-tube, while very high field strengths lead to non-linear behavior, which makes determination of CCS values difficult. Conversely, low field strength, will effect the measurement as diffusion processes become very significant, which leads to peak broadening, loss of signal strength, intensity and resolution.

$$R = \frac{t}{\Delta t} = \sqrt{\frac{LEQ}{16kT\ln 2}}$$
(1.5)

#### 1.3.2. Separation

As one of the main goals of adding IMS into LC-MS methods is further separation of complex mixtures of compounds; the separation potential of this combination is of interest. An important parameter of separation is the concept of peak capacity of a system. The coupling of LC-IMS-MS provides an already good capacity from the LC and MS part, but is additionally enhanced by the addition of the orthogonal ion mobility separation. Following equation (1.6), an eight fold increase of peak capacity should be achievable, in comparison to a LC-MS system alone [30].

Peak Capacity = 
$$IM_{\text{Resolution}} \times MS_{\text{Resolution}} \times \text{Orthogonality}$$
 (1.6)

# 2. Experimental

## 2.1. Reagents and materials

Wine samples were purchased at the local supermarket. Three red wines from different heritage were used, two from Austria, one from Australia for the comparison analysis. The wines used were: Shiraz Heritage Release South Eastern Australia 2013; by Wolf Blass, Cuvée Tradition Blaufränkisch, Zweigelt and Merlot 2014 by Anton Iby Emotion Wine and Flat Lake Limitation Blaufränkisch-Zweigelt 2014; by Leo Hillinger. The wine used for the repeatability study, was Blauer Zweigelt Reserve Burgenland 2013, by Lenz Moser.

All the chemicals used for the mobile phase and buffer preparations where high grade MS chemicals purchased, from Sigma-Aldrich or Fluka (see Appendix). The mobile phases were filtered through membrane filters.

## 2.2. Sample preparation

The same procedure of preparation was used for the different methods to ensure comparability and was adapted from the method of Jaitz [15]. The freshly opened wines were filtered, (Iso-DiscTM, N-4-4, Nylon, 4 mm  $\times$  0.45 µm, Supelco, Bellefonte, PA, U. S.) and diluted 1:10 with 10 mmol L<sup>-1</sup> ammonium formate buffer (with a pH of 3.75 containing 10 % v/v methanol) to a final volume of 1 mL. A multi-compound standard, to assess retention times and mass spectra for some expected compounds in wine, was prepared.

A stock concentration of 5 µmol L<sup>-1</sup> for each substance was prepared in a 10 mmol L<sup>-1</sup> ammonium formate buffer (with a pH of 3.75 containing 10 % v/v methanol) and diluted to a final concentration of 25 µmol L<sup>-1</sup>, with 250 µmol L<sup>-1</sup> of internal standard ( $\alpha$ ,  $\alpha$ ,  $\alpha$ -Trifluoro-m-toluic acid). **Table 2.1** gives an overview over the used standard substances.

#### 2. Experimental

| Sum formula       | MW $[g mol^{-1}]$                                                                                                                                                                                                           | Supplier                                             |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| $C_9H_8O_3$       | 164.16                                                                                                                                                                                                                      | SIGMA C9008                                          |
| $C_7H_6O_5$       | 188.13                                                                                                                                                                                                                      | ROTH 7300.1                                          |
| $C_{15}H_{12}O_5$ | 272.25                                                                                                                                                                                                                      | SIGMA W530098                                        |
| $C_{15}H_{10}O_6$ | 286.24                                                                                                                                                                                                                      | SIGMA 60010                                          |
| $C_{15}H_{14}O_6$ | 290.27                                                                                                                                                                                                                      | FLUKA C1788                                          |
| $C_{15}H_{14}O_6$ | 290.27                                                                                                                                                                                                                      | SIGMA E1753                                          |
| $C_{15}H_{10}O_7$ | 302.24                                                                                                                                                                                                                      | SIGMA Q4951                                          |
| $C_{15}H_{10}O_8$ | 318.24                                                                                                                                                                                                                      | SIGMA M6760                                          |
| $C_8H_5O_2F_3$    | 190.12                                                                                                                                                                                                                      | SIGMA 188344                                         |
|                   | $\begin{array}{c} Sum \ formula \\ C_9H_8O_3 \\ C_7H_6O_5 \\ C_{15}H_{12}O_5 \\ C_{15}H_{10}O_6 \\ C_{15}H_{14}O_6 \\ C_{15}H_{14}O_6 \\ C_{15}H_{14}O_6 \\ C_{15}H_{10}O_7 \\ C_{15}H_{10}O_8 \\ C_8H_5O_2F_3 \end{array}$ | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |

Table 2.1.: List of used standard substances and the internal standard.

### 2.3. LC-IM-TOFMS method

An Agilent 1290 Infinity II LC system was coupled to an Agilent 6560 IMS-QTOF mass spectrometer, equipped with an Agilent G1607A dual Jetstream coaxial ESI source and an upgraded ion mobility alternate gas kit with electronic drift gas pressure control, keeping the gas pressure inside the drift tube in between 3.954 Torr and 3.955 Torr.

Chromatographic separations were performed at a temperature of 40 °C, using a Zorbax C18 SB Rapid Resolution column (2.1  $\times$  50 mm) using a conventional reversed-phase mobile phase gradient.

Eluent A contained 0.1 % v/v formic acid in water, and Eluent B contained 0.1 % v/v formic acid in acetonitrile. Using a solvent flow rate of 350  $\mu$ L min<sup>-1</sup>, an initial composition of 99 % A was held for 2 minutes, followed by a compositional gradient from 1% to 50 % B in 2-15 minutes, then increasing to 70 % from 15-16 minutes. This composition was held for 1 minute prior to returning to 1 % B and holding for 2 minutes (total run time of 20 minutes). The injection volume was 5  $\mu$ L.

All analyses were performed in the negative ionization mode. For all measurements, nitrogen was used as drying gas at a temperature of 360 °C, a sheath gas temperature of 150 °C and a sheath gas flow rate of 13 L min<sup>-1</sup>, to achieve the before mentioned thermal gradient. The nebulizer gas pressure was 20 psi, the MS capillary voltage was -4000 V, the nozzle voltage -2000 V and the fragmentor was set to -275 V. The scanning mass range was from 100 m/z to 1700 m/z with a TOF acquisition rate of 3 spectra  $\times s^{-1}$ . The mass spectrometer was calibrated each day, using the supplied calibrant masses of the manufacturer prior to the commencement of measurements. The secondary sprayer was used to infuse solution containing reference calibrant masses constantly during the analysis.

## 2.4. LC-IM-QTOFMS method

When operating in the IMS-QTOF mode, the square RF trapping funnel located in front of the drift tube is utilized to sequentially trap and release packages of ions from the stream of ions entering via the ESI interface [31].

For these experiments, the instrument was tuned to optimize the transmission of fragile ions (50-250 m/z) in the 2 GHz extended dynamic range mode.

The trapping funnel was operated with a trapping time of  $40\,000 \,\mu s$  and released packages of ions every 60 ms (i. e. no multiplexing was employed) with a gate width of 150  $\mu s$  set within the software.

The drift tube was operated with an absolute entrance voltage of  $\pm 700$  V and an exit voltage of  $\pm 250$  V, with a drift tube pressure set to 3.95 Torr and temperature of 30 °C, using high purity nitrogen as the collision gas. The acquisition settings were adjusted to yield 2.8 frames per second, corresponding to approximately 5 ion mobility transients per frame, and approximately 501 TOF transients per IM transient. The collection of <sup>MS</sup>/Ms spectra in the IMS-QTOF mode was facilitated by using the "alternating frames" setting, whereby the energy in the collision cell (located post-drift tube) was set to alternate between -40 V and 0 V between frames for the entire duration of the measurement.

High-purity nitrogen was used as the collision gas. In this mode, the number of TOF transients per frame is effectively halved, as 50 % of the duty time is dedicated to the high collision energy frames.

### 2.5. Data handling

All optimization and evaluation calculations were performed using Microsoft Excel. MS and IMS data analysis and identification of compounds were performed using Mass Hunter Workstation Version B.07.00, from which Qualitative Analysis and Quantitative Analysis as well as Profinder B.06.00 were used. In addition, Mass Hunter IM-MS Browser Version B.07.01 was used to handle the LC-IM-MS data and Mass Hunter Profiler B.07.00 was used to align features across two groups of samples. For plotting of data, analyses were exported as .csv files and visualized with Microsoft Excel for better comprehension. Blanks were measured every other analysis and considered in data evaluation, especially for feature annotation.

# 3. Results and discussion

11

Myricetin

## 3.1. Quantitative aspects of LC-TOF approach

As TOF instrumentation has a limited linear working range compared to a triple Quad or similar MS analyzers, the linearity of the detector response and limit of detection were determined (Table 3.1) using an Agilent 6230 TOF LC/MS instrument equipped with the same ion source running under the same chromatographic conditions.

The acquired data were used, to give an indication of the expected sensitivity and linearity for further work, which was undertaken with the Agilent 6560 Ion Mobility Q-TOF LC/MS instrument, which has a longer flight tube and some differences in the ion optics in addition to the ion mobility drift tube. The repeatability (Section 3.4)

| the Agilent 6230 TOF LC/MS instrument. Calculated according to the Eurachem guidelines [32]. |                        |                                   |                      |                                   |  |
|----------------------------------------------------------------------------------------------|------------------------|-----------------------------------|----------------------|-----------------------------------|--|
| Compound                                                                                     | LOD [ $\mu g L^{-1}$ ] | LOD [ $\mu$ mol L <sup>-1</sup> ] | $LOQ [\mu g L^{-1}]$ | LOQ [ $\mu$ mol L <sup>-1</sup> ] |  |
| <i>p</i> -Coumaric acid                                                                      | 19.4                   | 65                                | 120                  | 400                               |  |
| Gallic acid                                                                                  | 8.8                    | 29                                | 47                   | 160                               |  |
| Naringenin                                                                                   | 18                     | 60                                | 66                   | 220                               |  |
| Kaempherol                                                                                   | 37                     | 120                               | 120                  | 430                               |  |
| Catechin                                                                                     | 18                     | 58                                | 60                   | 200                               |  |
| Epicatechin                                                                                  | 21                     | 71                                | 73                   | 250                               |  |
| Quercetin                                                                                    | 22                     | 73                                | 73                   | 240                               |  |

Table 3.1.: Limits of detection (LOD) and quantification (LOQ) of the standard substances measured with

and robustness of the chromatographic separation was satisfactory (Fig. 3.1) and thus the method was ready to be moved to the new HPLC system of the Agilent 6560 Ion Mobility Q-TOF LC/MS instrument.

38

36

120



Figure 3.1.: The extracted ion chromatograms (EIC) of all standards and the internal standard from 10 measurements on the Agilent 6230 TOF LC/MS instrument overlaid, show excellent repeatability and good separation. The Myricetin standard shows some impurities at about 6 min and 10 min. All peaks were scaled to the Internal Standard as 100 %.

## 3.2. Transmission

One thing to consider with a drift region between the ion source and the rest of the mass spectrometer, is the impact on ion transmission. Comparison was done with the IMS turned on to a TOF-only method, the results can be observed in **Fig. 3.2**. Basically, there will always be a loss of intensity with more way for the ions to cover, however, the method used in this example can be further improved considering, that through the used trapping time of 40 ms and a package release time of 60 ms 1/3 of the usable time for trapping, was given up.

Further there will be an option within the software, called multi plexing, where ion packages are injected more frequently in a pseudo-random sequence allowing packages of "fast" ions to overtake "slow" ions from the previous package. The software can deconvolute this pattern and reconstruct the IMS separation. Less trapping time is beneficial as space-charging effects (leading to transmission losses) can be minimized.




Figure 3.2.: Abundance (chromatographic peak area) comparison of five substances extracted from the wine samples, retention times and m/z agreeing within their certainty with the standard substances. The transmission loss in IM mode can be observed by comparing the columns next to each other and is  $\approx 85\%$ .

### 3.3. CCS measurements of phenol standards

With ion mobility as part of the workflow, benchmarking of the CCS precision was undertaken. Comparison of the CCS values acquired through a stepped-field method and values acquired with a single-field method shows, that the relative standard deviation (RSD) lies < 1%. Some of the standard substances where only measured with the stepped-field method, because they are not abundant enough in wine (Naringenin) or elute from the chromatographic system before 2 minutes (Gallic acid). To be sure that, only reliable features were picked up, the feature extraction window was set to 2 minute to 16 minutes.

To assess the CCS value of a flavonoid glucoside in addition to the standards at hand, a Rutin standard was measured with the stepped filed method and the results provided information which values could be expected for this substance class. The stepped-field measurement where executed in an intra- and inter-day manner. For the intra-day study on one day three measurements in a row were executed and this was repeated over three days, to gain information on the repeatability of the measurements. All results are compiled in **Table 3.2** and the data set shows, that the CCS precision is not much different between the two approaches (**Fig. 3.3**). Trueness of values, however, can not be assessed due to the fact, that there are no sources for the true values yet.

| Table 3.2.: Comparison of the CCS values, | acquired with | the stepped-field | approach to | the values, | acquired |
|-------------------------------------------|---------------|-------------------|-------------|-------------|----------|
| with the single-field calibratior         | ۱ method.     |                   |             |             |          |

| Compound        | single-field $[Å^2]$ | stepped-field <sub>(intra day)</sub> $[Å^2]$ | stepped-field <sub>(inter day)</sub> $[Å^2]$ |
|-----------------|----------------------|----------------------------------------------|----------------------------------------------|
| p-Coumaric acid | -                    | 135.4 ±0.53                                  | 135.2 ±0.53                                  |
|                 |                      | 134.9 ±0.32                                  |                                              |
|                 |                      | $135.3 \pm 0.20$                             |                                              |
| Gallic acid     | -                    | $128.7 \pm 0.23$                             | $128.7 \pm 0.25$                             |
|                 |                      | 128.6 ±0.23                                  |                                              |
|                 |                      | 128.8 ±0.31                                  |                                              |
| Naringenin      | -                    | $168.6 \pm 0.20$                             | $168.6 \pm 0.24$                             |
|                 |                      | $168.5 \pm 0.20$                             |                                              |
|                 |                      | $168.6 \pm 0.31$                             |                                              |
| Kaempherol      | 166.2 ±1.23          | $166.7 \pm 0.46$                             | $166.8 \pm 0.32$                             |
|                 |                      | $166.7 \pm 0.23$                             |                                              |
|                 |                      | $166.9 \pm 0.20$                             |                                              |
| Catechin        | $161.0 \pm 0.60$     | 161.0 ±0.72                                  | $160.9 \pm 0.50$                             |
|                 |                      | $160.7 \pm 0.23$                             |                                              |
|                 |                      | 161.1 ±0.23                                  |                                              |
| Epicatechin     | 161.1 ±0.52          | $160.5 \pm 0.64$                             | $160.5 \pm 0.43$                             |
|                 |                      | 160.3 ±0.12                                  |                                              |
|                 |                      | $160.5 \pm 0.40$                             |                                              |
| Quercetin       | $168.5 \pm 0.47$     | $169.4 \pm 0.42$                             | $169.4 \pm 0.41$                             |
|                 |                      | $169.3 \pm 0.31$                             |                                              |
|                 |                      | $169.6 \pm 0.20$                             |                                              |
| Myricetin       | 170.9 ±0.36          | $172.2 \pm 0.31$                             | $172.3 \pm 0.47$                             |
|                 |                      | 172.1 ±0.31                                  |                                              |
|                 |                      | $172.6 \pm 0.12$                             |                                              |
| Rutin           | -                    | 238.1 ±0.12                                  | 238.1 ±0.47                                  |
|                 |                      | $_{237.8} \pm 0.31$                          |                                              |
|                 |                      | 238.3 ±0.35                                  |                                              |



Figure 3.3.: CCS comparison between the stepped-field (■) and the single-field (○) approach. The values with the higher deviation from the the mean are determined with the single-field approach, n indicates the number of reliable annotated features from wine and standard measurements.

### 3.4. Repeatability

To ensure that the retention time, m/z and  $t_d$  are repeatable, consecutive measurements of the same wine (mentioned in the experimental section) where undertaken. The **Table 3.3** shows the extracted masses of the substances from **Table 1.1** with their values and standard deviation. Furthermore, the base peak chromatograms (BPC) of the consecutive runs, were overlaid to show the repeatability of the results (**Fig. 3.4**).

Table 3.3.: Suggested substance for the extracted masses from the 6 repeatability measurements, aligned to the substance by retention time, drift time and m/z showing no significant difference to standard substances, or thoughtful investigation in **Section 3.7**. Note that for the castavinol example no decision, on which exact isomers are separated in the drift dimension, was made. \* Indicates a putative identification.

| Compound          | Retention time [min] | Drift time [ms]     | CCS [Å <sup>2</sup> ]     | m/z <sub>measured</sub> | [M-H] <sup>-</sup> predicted | mass <sub>div</sub> [ppm] |
|-------------------|----------------------|---------------------|---------------------------|-------------------------|------------------------------|---------------------------|
| Kaempherol        | 10.11 ±0.004         | 19.96 ±0.014        | 166.2 ±0.12               | 285.0399 ±0.0004        | 285.0405                     | 2.2                       |
| Epicatechin       | 4.182 ±0.002         | 19.34 ±0.004        | $160.9 \pm 0.04$          | 289.0705 ±0.0004        | 289.0718                     | 4.5                       |
| Catechin          | 5.184 ±0.003         | 19.34 ±0.009        | $160.9 \pm 0.08$          | 289.0711 ±0.0004        | 289.0718                     | 2.3                       |
| * Caftaric acid a | $3.310 \pm 0.007$    | $19.83 \pm 0.006$   | $164.5 \pm 0.04$          | 311.0403 ±0.0004        | 311.0409                     | 1.9                       |
| * Caftaric acid b | $3.311 \pm 0.007$    | $21.66 \pm 0.009$   | 179.6 ±0.09               | 311.0401 ±0.0004        | 311.0409                     | 2.6                       |
| * Miquelianin     | 6.716 ±0.003         | 25.50 ±0.022        | $208.3 \pm 0.18$          | 477.0662 ±0.0004        | 477.0675                     | 2.8                       |
| * Castavinol a    | 6.120 ±0.051         | 27.79 ±0.092        | 225.9 ±0.75               | 565.1536 ±0.0007        | 565.1557                     | 3.7                       |
| * Castavinol b    | $6.127 \pm 0.046$    | $28.63\ {\pm}0.029$ | $\textbf{232.8} \pm 0.25$ | 565.1541 $\pm 0.0012$   | 565.1557                     | 3.0                       |



Figure 3.4.: Six overlaid BPCs of the same wine measurement, to show repeatability of the analytic approach.

## 3.5. LC-IM-TOF measurements

The three wine varieties were measured and feature lists extracted with Mass Hunter Profiler B.07.00. Features where then filtered according to abundance  $\geq 1000$  ion volume, assigned charge state -1 or -2 and Q-Score  $\geq 80$ . This data set was used, to create a comparison (**Fig. 3.5**) between the different varieties and the TOF only approach (**Fig. 3.6**). The "unique" features must be seen as features that are not found in high enough abundance, or are not aligned well enough according to the filter settings applied by the user. Without a recursive extraction process, it is only possible to manually assess if all "unique" compounds are actually present in the other samples. Not picking up a feature in ion mobility mode in comparison to TOF only mode mostly means, that the abundance for an isotope peak or drift time peak has dropped to low for the algorithm to assign a charge state, or a drift time and the feature is then filtered out, because of the set options.

This is an important thing to consider, as in TOF only mode a lot of features get charge states even though they are, a closer look taken, not really above the chromatographic noise level. Making the split between confidence and feature number is one thing to be aware of, in general for a certain workflow.



Figure 3.5.: Venn diagram showing the feature distribution over the different wine varieties in IM mode, Shiraz (red), Blaufränkisch-Zweigelt-Merlot (blue) and Blaufränkisch-Zweigelt (yellow).



Figure 3.6.: Venn diagram showing the feature distribution over the different wine varieties in TOF only mode, Shiraz (red), Blaufränkisch-Zweigelt-Merlot (blue) and Blaufränkisch-Zweigelt (yellow).

### 3.6. LC-IM-QTOF

The alternating frames mode enables the possibility to measure fragmentation spectra of ions coming out of the drift tube, at a certain moment every other recorded frame. Using these additional time locked fragmentation spectra, fragments detected at the same drift time, can confirm assumptions made for the structural properties of annotated features. A short example (**Fig.** 3.7) will be given in this section and fragmentation spectra will be used in **Section** 3.7 to help with feature identification.



Figure 3.7.: A full comparison of high and low fragmentation frame spectra, from the mass 477.0675 m/z in a mass window from 476.9981 to 480.4988 m/z and a drift time window of 12.03 to 33.33 ms, extracted from the Shiraz sample. The values of the retention time and drift time of the precursor and the fragment as well as the mass spectra agree within their certainty. Showing the fragmentation behavior, gives valuable information for feature identification.

### 3.7. Qualitative examples

Through the combined usage of retention time accuracy, IMS data and alternating frames fragmentation data with high resolution, putative identification of features receives additional backup. Detailed examples for the isobaric pair epicatechin/catechin and kaempferol are shown using information from the analysis of standards as well as for some unknown compounds found in wine. It should be noted that, due to fragmentation taking place after the drift tube, fragments are going to have slightly shifted drift times.

### 3.7.1. Kaempherol

With the information of **Table 3.3** it is easy to compare the values shown in the spectra collection in **Fig. 3.9**, that represent the overlaid chromatograms, drift spectra and mass spectra from low and high fragmentation frames in alternating frames mode, as well as the EIC of the kaempherol standard.

The drift time and EICs of the fragments, show no significant difference (10.93 min  $\pm 0.034$  and 19.74 ms  $\pm 0.20$ ) with the times in the low fragmentation frame and in the non alternating frames mode. The example shows, that the values of the product ions agree with the drift time and the retention time, well in this particular case. Only the low abundance in the alternating frames mode was an issue, in being able to extract all fragment spectra, therefore only tow spectra could be shown, indicating that MS/MS settings need to be optimized to make better use of the IM-QTOF mode. Furthermore, manual interrogation of features is very time-consuming without an LC-MS and LC-MS/MS library.



Figure 3.8.: Chemical structure of Kaempherol, sumformula  $C_{15}H_{10}O_6$ , exact mass of the  $[M - H]^-$  ion 285.0405 m/z.

Table 3.4.: These extracted ions are plotted in the **Fig. 3.9** and are used for the putative identification of kaempherol.

| Kaempherol | spectrum | fragmentation frame | drift range [ms] | mass range [m/z]  | retention time range [min] | sample |
|------------|----------|---------------------|------------------|-------------------|----------------------------|--------|
| 1          | drift    | no fragmentation    | -                | 285.0271-285.0505 | 10.872-10.956              | shiraz |
| 2          | drift    | low                 | -                | 284.9059-285.4194 | 10.820-11.106              | shiraz |
| 3          | drift    | high                | -                | 159.0197-159.0850 | 10.820-11.106              | shiraz |
| 4          | drift    | low                 | -                | 285.0225-285.1042 | 10.850-10.946              | shiraz |
| 5          | drift    | high                |                  | 130.9356-131.0463 | 10.850-10.946              | shiraz |
| 1          | EIC      | no fragmentation    | 19.37-20.34      | 285.0224-287.1030 | -                          | shiraz |
| 2          | EIC      | low                 | 19.37-20.46      | 285.0276-287.0965 | -                          | shiraz |
| 3          | EIC      | high                | -                | 159.0365-159.0649 | -                          | shiraz |
| 4          | EIC      | low                 | 19.37-20.46      | 285.0267-287.0838 | -                          | shiraz |
| 5          | EIC      | high                | 19.37-20.46      | 285.0267-287.0838 | -                          | shiraz |
| 1          | mass     | low                 | 19.37-20.46      | -                 | 10.820-11.106              | shiraz |
| 2          | mass     | high                | 19.37-20.46      | -                 | 10.820-11.106              | shiraz |
| 3          | mass     | no fragmentation    | 17.57-22.38      | -                 | 10.872-10.956              | shiraz |
| 4          | mass     | low                 | 18.65-20.58      | -                 | 10.850-10.946              | shiraz |
| 5          | mass     | high                | 18.89-20.82      | -                 | 10.850-10.946              | shiraz |



Figure 3.9.: In this example, the values of retention time and drift time of fragments and precursor ion of kaempherol agree within their certainty. There was no significant difference of drift time, retention time and mass spectra between kaempherol and its standard. Using the algorithm of the Mass Hunter Workstation Version B.07.00, a sum formula was assigned to the ion, too. The plotted ions with their respective extraction windows can be observed in **Table 3.4**.

### 3.7.2. Epicatechin/Catechin

One of the questions concerning separation in the drift dimension is, how different the structures of molecules must be, to have a chance to separate them. In this example two stereo-isomers were used to assess their behavior in the drift tube. They do not separate at all and it looks like the analytic approach is not able to achieve any kind of separation for such small differences seen for some phenolic compounds.

As the two compounds are separated in the chromatography so well, it is critical, that HPLC is a major part of the analytical approach. Again in this example the retention times, drift times and m/z were controlled with the standards and backed up with the algorithm of the Mass Hunter Workstation Version B.07.00.



Figure 3.10.: Chemical structure of the isobaric pair catechin/epicatechin, sumformula  $C_{15}H_{14}O_6$ , exact mass of the  $[M - H]^-$  ion 289.0718 m/z.

|                      | 1        |                     |                  |                   |                            |                               |
|----------------------|----------|---------------------|------------------|-------------------|----------------------------|-------------------------------|
| Epicatechin/catechin | Spectrum | fragmentation frame | drift range [ms] | mass range [m/z]  | retention time range [min] | sample                        |
| 1                    | drift    | no fragmentation    | -                | 287.7237-289.9905 | 5.148-5.244                | shiraz                        |
| 2                    | drift    | no fragmentation    | -                | 287.7232-289.9901 | 5.973-6.040                | shiraz                        |
| 3                    | drift    | low                 | -                | 273.7597-313.9993 | 5.148-5.226                | standard                      |
| 4                    | drift    | high                | -                | 158.9883-159.1278 | 5.148-5.226                | standard                      |
| 5                    | drift    | low                 | -                | 288.7856-289.6259 | 5.963-6.059                | standard                      |
| 6                    | drift    | high                | -                | 159.0198-159.0983 | 5.963-6.059                | standard                      |
| 7                    | drift    | low                 | -                | 288.9727-289.4251 | 5.127-5.257                | shiraz                        |
| 8                    | drift    | high                | -                | 123.0346-123.0576 | 5.127-5.257                | shiraz                        |
| 9                    | drift    | high                | -                | 125.0087-125.0512 | 5.127-5.257                | shiraz                        |
| 10                   | drift    | low                 | -                | 289.0438-289.1025 | 5.977-6.054                | shiraz                        |
| 11                   | drift    | high                | -                | 123.0347-123.0577 | 5.977-6.054                | shiraz                        |
| 12                   | drift    | high                | -                | 125.0087-125.0590 | 5.977-6.054                | shiraz                        |
| 1                    | EIC      | low                 | 18.77-19.74      | 289.0554-291.1093 | -                          | standard                      |
| 2                    | EIC      | high                | -                | 159.0375-159.0631 | -                          | standard                      |
| 3                    | EIC      | no fragmentation    | 18.65-19.74      | 289.0560-291.1040 | -                          | shiraz                        |
| 4                    | EIC      | low                 | 18.65-19.74      | 289.0544-291.1201 | -                          | shiraz                        |
| 5                    | EIC      | high                | 18.65-19.74      | 289.0544-291.1201 | -                          | shiraz                        |
| 6                    | EIC      | high                | 18.77-19.86      | 289.0544-291.1083 | -                          | shiraz                        |
| 7                    | EIC      | low                 | 18.77-19.86      | 289.0544-291.1083 | -                          | shiraz                        |
| 8                    | EIC      | low                 | 18.65-19.86      | 289.0544-291.1024 | -                          | blaufränkisch-zweigelt-merlot |
| 9                    | EIC      | high                | 18.65-19.86      | 289.0544-291.1024 | -                          | blaufränkisch-zweigelt-merlot |
| 10                   | EIC      | low                 | 18.65-19.86      | 289.0542-291.1258 | -                          | blaufränkisch-zweigelt        |
| 11                   | EIC      | high                | 18.65-19.86      | 289.0542-291.1258 | -                          | blaufränkisch-zweigelt        |
| 1                    | mass     | low                 | 18.65-19.74      | -                 | 5.148-5.226                | standard                      |
| 2                    | mass     | no fragmentation    | 17.45-21.06      | -                 | 5.148-5.244                | shiraz                        |
| 3                    | mass     | low                 | 18.53-20.10      | -                 | 5.127-5.257                | shiraz                        |
| 4                    | mass     | high                | 18.53-20.10      | -                 | 5.127-5.257                | shiraz                        |
| 5                    | mass     | low                 | 18.53-20.10      | -                 | 5.977-6.054                | shiraz                        |
| 6                    | mass     | high                | 18.53-20.10      | -                 | 5.977-6.054                | shiraz                        |
|                      |          |                     |                  |                   |                            |                               |

Table 3.5.: These extracted ions are plotted in the **Fig. 3.11** and used for the putative identification of catechin/epicatechin.



Figure 3.11.: Epicatechin/catechin is an example, where there is a chromatographic separation of the two isobars (see also **Fig. 3.1**), but in the drift spectra all extractions show the same drift time. The plotted ions with their respective extraction windows can be observed in **Table 3.5**.

### 3.7.3. Miquelianin

In the case of the tentatively identified quercetin-(3)-O-glucuronide, the abundance of the substance is not the problem, but the consistency of the retention time in the three wine samples is out of the normally encountered range. However, the drift times of the precursors and fragments do not significantly differ. Considering the retention time windows used for recursive extractions, one of the features could get lost, when relaying only on retention time and mass.



Figure 3.12.: Chemical structure of the quercetin-(3)-O-glucuronide miquelianin, sumformula  $C_{21}H_{18}O_{13}$ , exact mass of the  $[M - H]^-$  ion 477.0675 m/z.

|             | 1        |                     |                  |                   |                            |                               |
|-------------|----------|---------------------|------------------|-------------------|----------------------------|-------------------------------|
| Miquelianin | Spectrum | fragmentation frame | drift range [ms] | mass range [m/z]  | retention time range [min] | sample                        |
| 1           | drift    | low                 | -                | 475.5541-483.9703 | 7.364-7.546                | shiraz                        |
| 2           | drift    | high                | -                | 300.7571-303.4357 | 7.381-7.460                | shiraz                        |
| 3           | drift    | low                 | -                | 477.0084-477.1518 | 7.347-7.425                | blaufränkisch-zweigelt-merlot |
| 4           | drift    | low                 | -                | 477.0198-477.1406 | 7.393-7.454                | blaufränkisch-zweigelt        |
| 5           | drift    | high                | -                | 300.9179-301.1637 | 7.347-7.425                | blaufränkisch-zweigelt-merlot |
| 6           | drift    | high                | -                | 301.0195-301.0494 | 7.393-7.454                | blaufränkisch-zweigelt        |
| 1           | EIC      | low                 | -                | 476.9981-480.4988 | -                          | shiraz                        |
| 2           | EIC      | high                | -                | 476.9981-480.4988 | -                          | shiraz                        |
| 3           | EIC      | low                 | 24.67-25.99      | 477.0418-479.1044 | -                          | blaufränkisch-zweigelt-merlot |
| 4           | EIC      | high                | 24.79-26.23      | 477.0490-478.1138 | -                          | blaufränkisch-zweigelt        |
| 5           | EIC      | high                | 24.67-25.99      | 477.0418-479.1044 | -                          | blaufränkisch-zweigelt-merlot |
| 6           | EIC      | low                 | 24.79-26.23      | 477.0490-478.1138 | -                          | blaufränkisch-zweigelt        |
| 1           | mass     | low                 | 12.03-33.33      | -                 | 7.381-7.460                | shiraz                        |
| 2           | mass     | high                | 12.03-33.33      | -                 | 7.381-7.460                | shiraz                        |
| 3           | mass     | low                 | 22.98-27.56      | -                 | 7.347-7.425                | blaufränkisch-zweigelt-merlot |
| 4           | mass     | low                 | 23.83-27.20      | -                 | 7.393-7.454                | blaufränkisch-zweigelt        |
| 5           | mass     | high                | 22.98-27.56      | -                 | 7.347-7.425                | blaufränkisch-zweigelt-merlot |
| 6           | mass     | high                | 23.83-27.20      | -                 | 7.393-7.454                | blaufränkisch-zweigelt        |

Table 3.6.: These extracted ions are plotted in the **Fig. 3.13** and are used for the tentative identification of miquelianin.



Figure 3.13.: Miquelianin is proposed as structure for this spectra composition, because of values of the masses agreeing within their certainty and forming of a drift locked fragment at the mass of the  $[M - H]^-$  ion of quercetin at 301.0354, as well as backed up from the algorithm of the Mass Hunter Workstation Version B.07.00 concerning the sumformula. The plotted ions with their respective extraction windows can be observed in **Table 3.6**.

#### 3.7.4. Caftaric acid

Caftaric acid was chosen to investigate, if the two isomers (cis/trans) would separate in the drift domain. The extracted spectra show, that in this case the chromatography alone is not able to achieve base line separation, whereas the two isomers are clearly separated in the drift domain. The drift spectra of the fragment ions are very noisy probably, because of low abundance and overlapping of the two fragments tartaric acid and caffeic acid for each isomer. The two fragments can be observed in the low and high fragmentation frames. The ion mobility difference for cis/trans isomers seems to be large enough for separation of some phenolic compounds, although HPLC is often able to resolve a number of well-known examples already (e.g. catechin and epicatechin). To confirm, which isomer is in cis- or trans-configuration, a standard would be needed; this measurement was not done within the work for this thesis.



Figure 3.14.: Chemical structure of caftaric acid, sumformula  $C_{13}H_{12}O_9$ , exact mass of the  $[M - H]^-$  ion 311.0409 m/z.

Table 3.7.: These extracted ions are plotted in the Fig. 3.15 and used for the tentative identification of caftaric acid.

| Caftaric acid | spectrum | fragmentation frame | drift range [ms] | mass range [m/z]  | retention time range [min] | sample                        |
|---------------|----------|---------------------|------------------|-------------------|----------------------------|-------------------------------|
| 1             | drift    | no fragmentation    | -                | 311.0122-311.0792 | 4.130-4.220                | shiraz                        |
| 2             | drift    | low                 | -                | 310.0747-315.2867 | 4.121-4.251                | shiraz                        |
| 3             | drift    | low                 | -                | 311.0307-311.0551 | 4.103-4.233                | blaufränkisch-zweigelt-merlot |
| 4             | drift    | low                 | -                | 311.0158-311.0950 | 4.115-4.245                | blaufränkisch-zweigelt        |
| 5             | drift    | high                | -                | 177.9796-181.7891 | 4.115-4.245                | blaufränkisch-zweigelt        |
| 6             | drift    | high                | -                | 178.9224-179.1582 | 4.103-4.233                | blaufränkisch-zweigelt-merlot |
| 7             | drift    | high                | -                | 147.0991-150.7254 | 4.121-4.268                | shiraz                        |
| 8             | drift    | high                | -                | 148.9520-149.0954 | 4.115-4.245                | blaufränkisch-zweigelt        |
| 9             | drift    | high                | -                | 148.9232-149.2312 | 4.103-4.233                | blaufränkisch-zweigelt-merlot |
| 10            | drift    | high                | -                | 177.4422-181.0738 | 4.121-4.268                | shiraz                        |
| 11            | drift    | low                 | -                | 307.0519-316.5457 | 4.103-4.233                | blaufränkisch-zweigelt-merlot |
| 12            | drift    | high                | -                | 178.9871-179.0935 | 4.103-4.233                | blaufränkisch-zweigelt-merlot |
| 13            | drift    | high                | -                | 148.9401-149.1510 | 4.103-4.233                | blaufränkisch-zweigelt-merlot |
| 1             | EIC      | no fragmentation    | 21.06-22.14      | 311.0248-312.0799 | -                          | shiraz                        |
| 2             | EIC      | low                 | 19.25-20.22      | 311.0230-312.0965 | -                          | shiraz                        |
| 3             | EIC      | low                 | 19.49-19.98      | 311.0291-311.0718 | -                          | blaufränkisch-zweigelt-merlot |
| 4             | EIC      | low                 | 21.30-21.78      | 311.0228-311.0594 | -                          | blaufränkisch-zweigelt        |
| 5             | EIC      | low                 | 20.58-21.06      | 311.0291-311.0779 | -                          | shiraz                        |
| 6             | EIC      | low                 | -                | 148.9343-149.0914 | -                          | shiraz                        |
| 7             | EIC      | low                 | -                | 178.9905-179.1038 | -                          | shiraz                        |
| 8             | EIC      | high                | -                | 178.9905-179.1038 | -                          | shiraz                        |
| 9             | EIC      | high                | -                | 148.9343-149.0914 | -                          | shiraz                        |
| 10            | EIC      | high                | 20.58-21.06      | 311.0291-311.0779 | -                          | shiraz                        |
| 11            | EIC      | high                | 19.25-20.22      | 311.0230-312.0965 | -                          | shiraz                        |
| 1             | mass     | no fragmentation    | 18.41-22.86      | -                 | 4.130-4.220                | shiraz                        |
| 2             | mass     | low                 | 17.93-23.83      | -                 | 4.121-4.251                | shiraz                        |
| 3             | mass     | low                 | 19.01-22.38      | -                 | 4.103-4.233                | blaufränkisch-zweigelt-merlot |
| 4             | mass     | low                 | 18.65-23.95      | -                 | 4.115-4.245                | blaufränkisch-zweigelt        |
| 5             | mass     | high                | 18.65-23.95      | -                 | 4.115-4.245                | blaufränkisch-zweigelt        |
| 6             | mass     | high                | 17.93-23.83      | -                 | 4.121-4.251                | blaufränkisch-zweigelt-merlot |
| 7             | mass     | high                | 19.13-22.14      | -                 | 4.103-4.233                | shiraz                        |



Figure 3.15.: Caftaric acid was chosen to investigate, if the two isomers (cis/trans) would separate in the drift domain. The extracted spectra show, that in this case the chromatography alone is not able to achieve base line separation, whereas the two isomers are clearly separated in the drift domain. The plotted ions with their respective extraction windows can be observed in **Table 3.7**.

#### 3.7.5. Castavinol

Castavinols are substances found in wine and the extracted mass, would match the proposed sumformula well. However, this example is highly speculative as the algorithm of the Mass Hunter Workstation Version B.07.00, could not assign a sumformula with enough confidence. Nevertheless the example was chosen to show, that the chromatography again is not totally reliable, but the drift spectra are clear and are even showing a separation of two compounds. The abundance in this case was very low, so only the wine with the highest abundance showed peaks in IMS mode and locked fragmentation could only be extracted for one fragment each in that same sample.



Figure 3.16.: Chemical structure of a castavinol, sumformula  $C_{26}H_{30}O_{14}$ , exact mass of the  $[M - H]^-$  ion 565.1557 m/z.

Table 3.8.: These extracted ions are plotted in the Fig. 3.17 and used for the tentative identification of castavinol.

| Castavinol | Spectrum | fragmentation frame | drift range [ms] | mass range [m/z]  | retention time range [min] | sample                        |
|------------|----------|---------------------|------------------|-------------------|----------------------------|-------------------------------|
| 1          | drift    | no fragmentation    | -                | 564.9652-565.3513 | 6.660-6.883                | shiraz                        |
| 2          | drift    | low                 | -                | 565.1125-565.1947 | 6.636-6.835                | blaufränkisch-zweigelt-merlot |
| 3          | drift    | high                | -                | 286.9796-287.1552 | 6.636-6.835                | blaufränkisch-zweigelt-merlot |
| 4          | drift    | high                | -                | 288.5857-290.6674 | 6.636-6.835                | blaufränkisch-zweigelt-merlot |
| 1          | EIC      | no fragmentation    | 27.92-28.76      | 565.1363-565.2102 | -                          | shiraz                        |
| 2          | EIC      | high                | 26.35-27.44      | 565.1249-566.2180 | -                          | shiraz                        |
| 3          | EIC      | low                 | 26.35-27.44      | 565.1249-566.2180 | -                          | shiraz                        |
| 4          | EIC      | low                 | 27.20-27.80      | 565.1332-565.1825 | -                          | blaufränkisch-zweigelt-merlot |
| 5          | EIC      | high                | 27.20-27.80      | 565.1332-565.1825 | -                          | blaufränkisch-zweigelt-merlot |
| 1          | mass     | low                 | 21.18-31.65      |                   | 4.520-4.598                | shiraz                        |
| 2          | mass     | high                | 21.18-31.65      |                   | 4.520-4.598                | shiraz                        |



Figure 3.17.: Castavinol is proposed as a candidate for this spectra combination. Due to low abundance the chromatography in this case has no satisfying signal-to-noise ration, therefore the drift spectra can be used to obtain information. The plotted ions with their respective extraction windows can be observed in **Table 3.8**.

# 4. Conclusion

The major goal of this thesis was, assessing how useful the additional ion mobility separation for further, feature alignment and annotation is. Through the usage of drift time  $t_d$  and the corresponding calculation of the CCS values, a new identification parameter can be introduced to a analytical workflow. Moreover, repeatability of  $t_d$  within a sample group can be used to improve the quality of untargeted and targeted data sets.

The possibility of adding drift information and alternating frames fragmentation with LC-IM-QTOF to a feature, seems promising not only for identification, also to acquire additional information for substance class grouping and further separation of the samples with the chance to resolve isobaric compounds. Still the method parameters need adjustment to improve transmission and the use of IM multiplexing will be the most powerful option to address this with the current instrumental setup.

Then the additional separation in the drift tube can be a valuable asset to solve analytical problems. Especially cleaning mass spectra by drift time filtering is dramatically improving signal-to-noise ratio as the majority of the background ions are removed. The fact that the separation in the drift tube takes only milliseconds makes it a time saving option in comparison to LCxLC-systems, even though they have higher peak capacities. Finally the option exists to run the instrument itself with an LCxLC-system to improve separation further. There are a lot of possibilities to use ion mobility in targeted and untargeted approaches and the resolving power for phenolic extracts was satisfactory at least, comparing results between labs could also be improved as less reliance is placed on chromatographic reproducibility due to the very high precision of the drift time separation.

# Appendix A.

# Chemicals

| Name                          | Provider | Code     | Molecular mass | Purity       | Batch #  |
|-------------------------------|----------|----------|----------------|--------------|----------|
| p-Coumaric acid               | Fluka    | 28200    | 164.16         | $\geq 98$ %  | 1315296  |
| Gallic acid monohydrate       | Roth     | 7300.1   | 188.13         | $\geq 98~\%$ | 32789741 |
| Quercetin dihydrate           | Sigma    | Q0125    | 338.26         | $\geq 98~\%$ | 085K0720 |
| (+)-Catechin Hydrate          | Fluka    | 22130    | 290.28         | $\geq 96$ %  | 1282200  |
| (-)-Epicatechin               | Sigma    | E1753    | 290.28         | $\geq 98~\%$ | 1354271  |
| Naringenin                    | SAFC     | W530098  | 272.25         | $\geq 96~\%$ | KBG5459V |
| Kaempherol                    | Sigma    | 60010    | 286.24         | $\geq 96$ %  | 1424445  |
| Myricetin                     | Sigma    | M6760    | 318.24         | $\geq 99 \%$ | 1420459  |
| Rutin hydrate                 | SIGMA    | R5143    | 610.52         | $\geq 99 \%$ | 086K1245 |
| Ammonium Formate              | Fluka    | 09735    | 63.06          | $\geq 99 \%$ | 1365019  |
| Trifluoro-m-toluic acid       | SIGMA    | 188344   | 190.12         | $\geq 99 \%$ | 454922   |
| Water LC-MS Chromasolv        | Fluka    | 39253    |                | $\geq 99 \%$ | 7732185  |
| Acetonitril LC-MS Chromasolv  | Fluka    | 34967    |                |              | 75058    |
| Methanol HiPerSolv Chromanorm | VWR      | 83638.32 |                |              | 14Z4188  |
| Formic acid                   | Fluka    | 56302    |                |              | 67561    |

# Appendix B.

# Quantification

| Sample           | ample       |      |       |                      | Gallic acid |                |           | Epicatechin Results |             |          | Catechin Results |             |          |
|------------------|-------------|------|-------|----------------------|-------------|----------------|-----------|---------------------|-------------|----------|------------------|-------------|----------|
| Name             | Data File   | Туре | Level | Acq.<br>Date-Time    | RT          | Final<br>Conc. | Area      | RT                  | Final Conc. | Area     | RT               | Final Conc. | Area     |
| STD5             | 003_STD5.d  | Cal  | 5     | 7.20.2015 2:34<br>PM | 1,396       | 387,266138     | 104112,02 | 5,775               | 353,643933  | 41156,77 | 7,036            | 333,80471   | 42806,15 |
| STD4             | 005_STD4a.d | Cal  | 4     | 7.20.2015 3:23<br>PM | 1,357       | 572,7077325    | 415728,13 | 5,703               | 538,351634  | 75683,94 | 6,98             | 549,57466   | 86315,16 |
| STD <sub>4</sub> | 006_STD4b.d | Cal  | 4     | 7.20.2015 3:47<br>PM | 1,377       | 561,562623     | 392581,6  | 5,723               | 563,719652  | 79084,99 | 7                | 567,94016   | 88690,46 |
| STD4             | 007_STD4c.d | Cal  | 4     | 7.20.2015 4:12<br>PM | 1,36        | 568,0664997    | 370479,68 | 5,739               | 599,583946  | 78290,33 | 7                | 584,56161   | 84352,09 |
| STD4             | 008_STD4d.d | Cal  | 4     | 7.20.2015 4:36<br>PM | 1,351       | 567,2094653    | 363588,93 | 5,747               | 586,578311  | 75095,83 | 7,024            | 591,10729   | 84174,24 |
| STD4             | 009_STD4e.d | Cal  | 4     | 7.20.2015 5:01<br>PM | 1,362       | 570,0073828    | 364657,24 | 5,724               | 580,708957  | 73577,14 | 7,018            | 596,4718    | 84375,07 |
| STD4             | 010_STD4f.d | Cal  | 4     | 7.20.2015 5:25<br>PM | 1,371       | 574,4036625    | 363763,61 | 5,733               | 565,370067  | 69831,09 | 6,994            | 576,39317   | 79421,71 |
| STD4             | 011_STD4g.d | Cal  | 4     | 7.20.2015 5:50<br>PM | 1,37        | 583,6369582    | 414953,58 | 5,733               | 576,511161  | 78707,91 | 7,01             | 575,27705   | 87226,1  |
| STD4             | 012_STD4h.d | Cal  | 4     | 7.20.2015 6:14<br>PM | 1,355       | 582,1606522    | 405236,81 | 5,718               | 606,932355  | 82225,29 | 6,979            | 616,72804   | 93012,81 |
| STD4             | 013_STD4i.d | Cal  | 4     | 7.20.2015 6:39<br>PM | 1,349       | 589,5650611    | 427611,96 | 5,728               | 612,817214  | 85362,19 | 7,022            | 598,00969   | 92048,39 |
| STD4             | 014_STD4j.d | Cal  | 4     | 7.20.2015 7:03<br>PM | 1,368       | 595,6662191    | 415099,59 | 5,748               | 631,707617  | 84012,83 | 7,025            | 626,47981   | 92296,68 |
| STD4             | 015_STD4k.d | Cal  | 4     | 7.20.2015 7:28<br>PM | 1,361       | 585,2198145    | 411238,06 | 5,74                | 621,702594  | 84881,32 | 7,017            | 613,59815   | 92745,64 |
| STD3             | 017_STD3.d  | Cal  | 3     | 7.20.2015 8:17<br>PM | 1,345       | 1652,677281    | 2195086,3 | 5,741               | 1520,24326  | 245418,4 | 7,018            | 1553,4223   | 276265,8 |
| STD2             | 018_STD2.d  | Cal  | 2     | 7.20.2015 8:41<br>PM | 1,362       | 5226,661831    | 8038592,2 | 5,741               | 4968,39275  | 836568,8 | 7,002            | 5231,3725   | 966523,2 |
| STD1             | 019_STD1.d  | Cal  | 1     | 7.20.2015 9:06<br>PM | 1,346       | 9783,188679    | 15036663  | 5,725               | 10073,7366  | 1662158  | 7,003            | 9785,2591   | 1768102  |

| p-Co  | umaric acid R | esults    | Myrice | tin Results |          | Querce | tin Results |          | Naring | enin Results |           | Kaemp  | herol Results |           |
|-------|---------------|-----------|--------|-------------|----------|--------|-------------|----------|--------|--------------|-----------|--------|---------------|-----------|
| RT    | Final Conc.   | Area      | RT     | Final Conc. | Area     | RT     | Final Conc. | Area     | RT     | Final Conc.  | Area      | RT     | Final Conc.   | Area      |
| 7,65  | 336,25909     | 475972,73 | 10,287 | 415,932302  | 33447,17 | 11,963 | 337,0806    | 114878,8 | 13,14  | 318,9764     | 907390,83 | 13,572 | 219,93852     | 644582,31 |
| 7,61  | 552,608875    | 995667,8  | 10,264 | 579,348909  | 140756,1 | 11,956 | 600,64709   | 301769,6 | 13,117 | 565,4749     | 1739021,1 | 13,549 | 639,84842     | 1486796,7 |
| 7,63  | 551,082212    | 980169,44 | 10,251 | 570,695097  | 133547,2 | 11,96  | 547,79869   | 262570,1 | 13,137 | 557,12808    | 1692062,7 | 13,585 | 577,04859     | 1350523,3 |
| 7,63  | 614,073065    | 1029911,9 | 10,251 | 602,496809  | 141299,5 | 11,96  | 585,9421    | 264865,6 | 13,137 | 608,98652    | 1702497,1 | 13,569 | 691,26583     | 1438689   |
| 7,638 | 605,95241     | 997859,77 | 10,259 | 586,419946  | 129905,5 | 11,967 | 587,12557   | 261559,8 | 13,145 | 585,60374    | 1611110,9 | 13,576 | 612,43078     | 1282515,8 |
| 7,632 | 618,788096    | 1015304,4 | 10,269 | 592,016096  | 132022,1 | 11,978 | 576,70008   | 253103,3 | 13,139 | 589,00112    | 1607215   | 13,57  | 646,30865     | 1329137,9 |
| 7,641 | 606,12197     | 970462,72 | 10,278 | 580,67046   | 123080,7 | 11,97  | 554,92685   | 235242,2 | 13,148 | 582,45032    | 1557750,1 | 13,579 | 558,64298     | 1157787,7 |
| 7,64  | 615,091897    | 1087671,9 | 10,261 | 578,314022  | 134037,1 | 11,953 | 570,72442   | 269243,3 | 13,147 | 603,03731    | 1776500,5 | 13,562 | 610,99023     | 1369937,1 |
| 7,626 | 581,940301    | 997822,22 | 10,263 | 591,470017  | 139587,5 | 11,955 | 635,74283   | 306002,1 | 13,133 | 597,16045    | 1727358,6 | 13,581 | 607,21314     | 1338622,9 |
| 7,652 | 589,834312    | 1041210,3 | 10,257 | 584,563693  | 138967,6 | 11,949 | 579,63723   | 277209,6 | 13,126 | 589,50118    | 1749560,3 | 13,558 | 563,13437     | 1292766,7 |
| 7,655 | 600,480535    | 1010400,8 | 10,243 | 613,249656  | 148810,4 | 11,968 | 623,18823   | 290281,9 | 13,129 | 625,80396    | 1764940,7 | 13,577 | 598,5549      | 1288970,3 |
| 7,647 | 625,555362    | 1093780,1 | 10,268 | 609,302512  | 150835   | 11,96  | 602,40778   | 285568,1 | 13,138 | 553,8211     | 1604724,3 | 13,569 | 529,95973     | 1204032,2 |
| 7,648 | 1396,12185    | 2906294,8 | 10,269 | 1140,98075  | 503004   | 11,978 | 1553,5888   | 952183,1 | 13,156 | 1725,9968    | 5385835,4 | 13,587 | 1690,5958     | 3495646,7 |
| 7,632 | 5018,97736    | 11046047  | 10,253 | 5032,05827  | 2995083  | 11,961 | 5614,8837   | 3702198  | 13,139 | 5330,9389    | 16616159  | 13,57  | 5954,0493     | 11574234  |
| 7,616 | 10087,1127    | 21778567  | 10,254 | 10322,4815  | 6194751  | 11,979 | 9429,6061   | 6100643  | 13,14  | 9566,1193    | 28944879  | 13,588 | 8900,0188     | 16652344  |



40

# Appendix C. CCS single field calibration

Figure C.1.: All measured calibrant ions plotted in a  $t_d$  against reciprocal field strength difference  $1/\Delta V$  plot.

**CCS** Calibration



1/dV ×1000 [V<sup>-1</sup>]

41

#### Table C.1.: Calibration used for the LC-IM-QTOF method with and without alternating frames mode on.

| # Single-Field CCS Calibrati | on Data               |          |             |          |   |         |               |
|------------------------------|-----------------------|----------|-------------|----------|---|---------|---------------|
| # Results                    |                       |          |             |          |   |         |               |
| Points Used                  | 6                     |          |             |          |   |         |               |
| Beta                         | 0.127949              |          |             |          |   |         |               |
| TFix                         | -0.562700             |          |             |          |   |         |               |
| TFix SE                      | 0,11038215            |          |             |          |   |         |               |
| # Scalar Inputs              |                       |          |             |          |   |         |               |
| Ion Polarity                 | Negative              |          |             |          |   |         |               |
| Drift Gas                    | N2                    |          |             |          |   |         |               |
| Point ID                     | CCS (A <sup>2</sup> ) | m/z      | Ion Species | Mass     | z | tD (ms) | Residual (ms) |
| 1                            | 128,7                 | 169,0142 | (M-H)-      | 169,0137 | 1 | 14,8    | 0,111         |
| 2                            | 169,4                 | 301,0354 | (M-H)-      | 301,0349 | 1 | 20,09   | -0,0788       |
| 3                            | 172,3                 | 317,0303 | (M-H)-      | 317,0298 | 1 | 20,43   | -0,1392       |
| 4                            | 215,7                 | 709,9426 | (M-H)-      | 709,9421 | 1 | 26,61   | 0,103         |
| 5                            | 230,4                 | 805,9907 | (M-H)-      | 805,9902 | 1 | 28,43   | 0,0126        |
| 6                            | 250,1                 | 955,972  | (M-H)-      | 955,9715 | 1 | 30,97   | -0,0085       |

Table C.2.: Calibration used for the LC-IM-QTOF method for the repeatability measurements, with six wine samples from the same wine.

| # Single-Field CCS Calibrat | ion Data              |          |             |           |   |         |               |
|-----------------------------|-----------------------|----------|-------------|-----------|---|---------|---------------|
|                             |                       |          |             |           |   |         |               |
| # Results                   |                       |          |             |           |   |         |               |
| Points Used                 | 5                     |          |             |           |   |         |               |
| Beta                        | 0,126337              |          |             |           |   |         |               |
| TFix                        | -0,069953             |          |             |           |   |         |               |
| TFix SE                     | 0,060531508           |          |             |           |   |         |               |
| # Scalar Inputs             |                       |          |             |           |   |         |               |
| Ion Polarity                | Negative              |          |             |           |   |         |               |
| Drift Gas                   | N2                    |          |             |           |   |         |               |
| Point ID                    | CCS (A <sup>2</sup> ) | m/z      | Ion Species | Mass      | z | tD (ms) | Residual (ms) |
| 1                           | 128,7                 | 169,0142 | (M-H)-      | 169,0137  | 1 | 14,94   | -0,0497       |
| 2                           | 143                   | 301,9981 | (M-H)-      | 301,9976  | 1 | 17,21   | -0,0027       |
| 3                           | 183,5                 | 601,979  | (M-H)-      | 601,9785  | 1 | 22,68   | 0,0883        |
| 4                           | 259,7                 | 1033,988 | (M-H)-      | 1033,9875 | 1 | 32,28   | -0,0243       |
| 5                           | 288,9                 | 1333,969 | (M-H)-      | 1333,9685 | 1 | 36,04   | -0,0116       |

| m/z       | Point ID          | tD(ms, obs)         | E (V/cm) | dV (V) | td (ms)            | Ко            | CCS (A <sup>2</sup> ) |
|-----------|-------------------|---------------------|----------|--------|--------------------|---------------|-----------------------|
| 112,9855  | 1                 | 12,36               | 18,595   | 1450.4 | 9.74               | 2,025         | 111                   |
| ,,,-,,,   | 2                 | 13.08               | 17,313   | 1350.4 | 10.46              | 2,025         | 111                   |
|           | 3                 | 13,92               | 16,03    | 1250,3 | 11,3               | 2,024         | 111                   |
|           | 4                 | 14,9                | 14,748   | 1150,3 | 12,28              | 2,025         | 111                   |
|           | 5                 | 16,07               | 13,467   | 1050,4 | 13,45              | 2,025         | 111                   |
| m/z       | Point ID          | tD(ms, obs)         | E(V/cm)  | dV (V) | td (ms)            | Ko            | CCS (A <sup>2</sup> ) |
| 248,9603  | 1                 | 15,97               | 18,595   | 1450,4 | 12,41              | 1,589         | 133,5                 |
|           | 2                 | 16,9                | 17,313   | 1350,4 | 13,34              | 1,588         | 133,6                 |
|           | 3                 | 17,97               | 16,03    | 1250,3 | 14,41              | 1,588         | 133,6                 |
|           | 4                 | 19,22               | 14,748   | 1150,3 | 15,66              | 1,588         | 133,6                 |
|           | 5                 | 20,7                | 13,467   | 1050,4 | 17,14              | 1,589         | 133,5                 |
| m/z       | Point ID          | tD(ms, obs)         | E (V/cm) | dV (V) | td (ms)            | Ko            | CCS (A <sup>2</sup> ) |
| 301,9981  | 1                 | 17,26               | 18,595   | 1450,4 | 13,41              | 1,471         | 142,9                 |
|           | 2                 | 18,26               | 17,313   | 1350,4 | 14,41              | 1,47          | 143                   |
|           | 3                 | 19,41               | 16,03    | 1250,3 | 15,56              | 1,471         | 143                   |
|           | 4                 | 20,76               | 14,748   | 1150,3 | 16,91              | 1,471         | 143                   |
| ,         | 5                 | 22,37               | 13,467   | 1050,4 | 18,52              | 1,471         | 143                   |
| m/z       | Point ID          | tD(ms, obs)         | E(V/cm)  | dV (V) | td (ms)            | Ko            | CCS (A <sup>2</sup> ) |
| 384,9349  | 1                 | 19,57               | 18,595   | 1450,4 | 15,17              | 1,3           | 160,2                 |
|           | 2                 | 20,7                | 17,313   | 1350,4 | 16,3               | 1,3           | 160,3                 |
|           | 3                 | 22                  | 16,03    | 1250,3 | 17,6               | 1,3           | 160,3                 |
|           | 4                 | 23,53               | 14,748   | 1150,3 | 19,13              | 1,3           | 160,3                 |
| /         | 5<br>Desire ta ID | 25,35               | 13,467   | 1050,4 | 20,95              | 1,3<br>Ka     | 160,3                 |
| m/Z       | Point ID          | tD(ms, obs)         | E(v/cm)  | dv (v) | ta (ms)            | K0            | CC5 (A <sup>2</sup> ) |
| 520,9108  | 1                 | 22,56               | 18,595   | 1450,4 | 17,49              | 1,128         | 183,1                 |
|           | 2                 | 23,86               | 17,313   | 1350,4 | 18,79              | 1,128         | 183,1                 |
|           | 3                 | 25,37               | 10,03    | 1250,3 | 20,3               | 1,127         | 103,2                 |
|           | 4                 | 27,13               | 14,740   | 1150,3 | 22,00              | 1,120         | 103,1                 |
| m/7       | 5<br>Point ID     | 29,22<br>tD(ms_obs) | 13,407   | dV(V)  | $\frac{24,15}{10}$ | 1,120<br>Ko   | $CCS(\Lambda^2)$      |
| 111/Z     |                   | 1D(1115,005)        | 18 FOF   | 14504  | 17 F8              | NU<br>1 1 2 2 | 182 4                 |
| 001,979   | 1                 | 22,00               | 10,595   | 1250,4 | 18.88              | 1,122         | 182.4                 |
|           | 2                 | 25,90               | 1/,313   | 1250,4 | 20.41              | 1,122         | 182.6                 |
|           | 5                 | 27.21               | 14.748   | 1150.2 | 20,41              | 1,121         | 182 5                 |
|           | 4                 | 20.37               | 12 467   | 1050.4 | 24.27              | 1 1 2 2       | 182 /                 |
| m/z       | Point ID          | tD(ms, obs)         | E (V/cm) | dV (V) | $\frac{24}{2}$     | Ko            | $CCS(A^2)$            |
| 709.9426  | 1                 | 26.81               | 18,595   | 1450.4 | 20.74              | 0.951         | 215.7                 |
| /*///-*   | 2                 | 28.35               | 17,313   | 1350.4 | 22,28              | 0,951         | 215.7                 |
|           | 3                 | 30,14               | 16.03    | 1250.3 | 24.07              | 0,95          | 215.8                 |
|           | 4                 | 32,23               | 14,748   | 1150,3 | 26,16              | 0,951         | 215,8                 |
|           | 5                 | 34,71               | 13,467   | 1050,4 | 28,64              | 0,951         | 215,7                 |
| m/z       | Point ID          | tD(ms, obs)         | E(V/cm)  | dV(V)  | td (ms)            | Ko            | CCS (A <sup>2</sup> ) |
| 805,9907  | 1                 | 28,64               | 18,595   | 1450,4 | 22,2               | 0,888         | 230,3                 |
|           | 2                 | 30,3                | 17,313   | 1350,4 | 23,86              | 0,888         | 230,5                 |
|           | 3                 | 32,21               | 16,03    | 1250,3 | 25,77              | 0,888         | 230,5                 |
|           | 4                 | 34,45               | 14,748   | 1150,3 | 28,01              | 0,888         | 230,5                 |
|           | 5                 | 37,1                | 13,467   | 1050,4 | 30,66              | 0,888         | 230,4                 |
| m/z       | Point ID          | tD(ms, obs)         | E (V/cm) | dV (V) | td (ms)            | Ko            | CCS (A <sup>2</sup> ) |
| 955,972   | 1                 | 31,22               | 18,595   | 1450,4 | 24,18              | 0,816         | 250,1                 |
|           | 2                 | 33,01               | 17,313   | 1350,4 | 25,97              | 0,816         | 250,1                 |
|           | 3                 | 35,1                | 16,03    | 1250,3 | 28,06              | 0,816         | 250,2                 |
|           | 4                 | 37,52               | 14,748   | 1150,3 | 30,48              | 0,816         | 250,1                 |
|           | 5                 | 40,43               | 13,467   | 1050,4 | 33,39              | 0,816         | 250,2                 |
| m/z       | Point ID          | tD(ms, obs)         | E (V/cm) | dV (V) | td (ms)            | Ко            | CCS (A <sup>2</sup> ) |
| 1033,9881 | 1                 | 32,38               | 18,595   | 1450,4 | 25,12              | 0,785         | 259,6                 |
|           | 2                 | 34,25               | 17,313   | 1350,4 | 26,99              | 0,785         | 259,7                 |
|           | 3                 | 36,42               | 16,03    | 1250,3 | 29,16              | 0,785         | 259,8                 |
|           | 4                 | 38,94               | 14,748   | 1150,3 | 31,68              | 0,785         | 259,7                 |
|           | 5                 | 41,95               | 13,467   | 1050,4 | 34,69              | 0,785         | 259,6                 |
| m/z       | Point ID          | tD(ms, obs)         | E (V/cm) | dV (V) | td (ms)            | Ko            | CCS (A <sup>2</sup> ) |
| 1333,9689 | 1                 | 36,1                | 18,595   | 1450,4 | 28,02              | 0,704         | 288,7                 |
|           | 2                 | 38,2                | 17,313   | 1350,4 | 30,12              | 0,703         | 289                   |
|           | 3                 | 40.61               | 16.03    | 1250.3 | 32.53              | 0.703         | 288.0                 |

Table C.3.: Stepped-field measurements of the calibrant ions used for the single-field calibration.

43

# Appendix D.

# **Feature lists**

# D.1. Shiraz

# D.1.1. LC-IM-(Q)TOF

| Feature | RT     | DT    | m/z      | Abund  | $\Omega [\mathring{A}^2]$ | Ζ | Quality | Mass     | Ions |
|---------|--------|-------|----------|--------|---------------------------|---|---------|----------|------|
| 1       | 11.202 | 15.76 | 189.0159 | 996826 | 129                       | 1 | 100     | 190.0232 | 3    |
| 2       | 9.694  | 20.09 | 301.0353 | 928088 | 161.5                     | 1 | 100     | 302.0426 | 3    |
| 3       | 11.2   | 23.11 | 401.0197 | 761695 | 184.4                     | 1 | 100     | 402.027  | 3    |
| 4       | 8.413  | 20.43 | 317.0285 | 548220 | 164                       | 1 | 100     | 318.0358 | 4    |
| 5       | 11.115 | 21    | 315.0496 | 455077 | 168.7                     | 1 | 75      | 316.0569 | 4    |
| 6       | 6.41   | 16.7  | 197.044  | 390376 | 136.5                     | 1 | 99.71   | 198.0513 | 3    |
| 7       | 4.556  | 15.48 | 175.0604 | 349030 | 127.3                     | 1 | 100     | 176.0677 | 2    |
| 8       | 5.19   | 19.16 | 289.0684 | 324704 | 154.1                     | 1 | 100     | 290.0757 | 3    |
| 9       | 10.915 | 19.77 | 285.0397 | 271098 | 159.3                     | 1 | 100     | 286.047  | 3    |
| 10      | 6.34   | 22.44 | 366.1181 | 267561 | 179.5                     | 1 | 100     | 367.1254 | 3    |
| 11      | 6.006  | 19.16 | 289.0715 | 233550 | 154.1                     | 1 | 100     | 290.0788 | 3    |
| 12      | 7.417  | 25.29 | 477.0637 | 231581 | 201.1                     | 1 | 100     | 478.071  | 4    |
| 13      | 4.555  | 23.32 | 373.1087 | 198709 | 186.5                     | 1 | 100     | 374.116  | 3    |
| 14      | 4.962  | 27.54 | 577.1285 | 178828 | 218.3                     | 1 | 100     | 578.1357 | 3    |
| 15      | 6.785  | 25.31 | 479.0802 | 147128 | 201.3                     | 1 | 94.8    | 480.0874 | 3    |
| 16      | 4.323  | 28.21 | 616.1058 | 129045 | 223.4                     | 1 | 100     | 617.113  | 3    |
| 17      | 7.566  | 27.15 | 497.3315 | 124195 | 215.9                     | 1 | 98.98   | 498.3388 | 3    |
| 18      | 5.444  | 15.81 | 179.0342 | 105606 | 129.8                     | 1 | 100     | 180.0415 | 3    |
| 19      | 11.161 | 17.75 | 257.0026 | 101857 | 143.3                     | 1 | 79.29   | 258.0098 | 3    |
| 20      | 11.198 | 14.3  | 161.0214 | 101381 | 117.9                     | 1 | 94.52   | 162.0287 | 2    |
| 21      | 8.212  | 22.4  | 389.1222 | 99411  | 178.8                     | 1 | 100     | 390.1295 | 2    |
| 22      | 11.199 | 24.53 | 469.0084 | 99252  | 195.1                     | 1 | 78.43   | 470.0157 | 2    |
| 23      | 5.013  | 24.18 | 443.1869 | 95749  | 192.5                     | 1 | 100     | 444.1942 | 3    |
| 24      | 5.015  | 21    | 295.0419 | 93033  | 169.2                     | 1 | 75      | 296.0492 | 2    |
| 25      | 8.129  | 26.83 | 507.1127 | 92929  | 213.2                     | 1 | 99.36   | 508.1199 | 3    |
| 26      | 5.811  | 27.74 | 577.1325 | 84383  | 219.9                     | 1 | 100     | 578.1397 | 4    |
| 27      | 4.025  | 20.99 | 315.107  | 81757  | 168.6                     | 1 | 100     | 316.1143 | 3    |
| 28      | 3.689  | 19.58 | 305.0649 | 79275  | 157.2                     | 1 | 100     | 306.0722 | 2    |
| 29      | 4.177  | 20.03 | 333.0211 | 75031  | 160.4                     | 1 | 92.26   | 334.0284 | 2    |
| 30      | 6.1    | 23.39 | 384.2474 | 73483  | 186.9                     | 1 | 72.64   | 385.2546 | 2    |
| 31      | 11.402 | 19.34 | 242.175  | 73371  | 157                       | 1 | 100     | 243.1823 | 2    |
| 32      | 7.496  | 25.97 | 493.0963 | 71595  | 206.5                     | 1 | 94.03   | 494.1036 | 3    |
| 33      | 5.503  | 22.28 | 325.0906 | 71311  | 179                       | 1 | 96.67   | 326.0978 | 2    |
| 34      | 7.276  | 19.03 | 300.9977 | 64676  | 152.7                     | 1 | 97.88   | 302.0049 | 3    |
| 35      | 3.378  | 23.9  | 429.1585 | 64231  | 190.5                     | 1 | 75.74   | 430.1658 | 2    |
|         |        |       |          |        |                           |   |         |          |      |

| 36       | 9.757          | 21.26          | 331.0446      | 64148      | 170.5      | 1 | 96.28          | 332.0519 | 2      |
|----------|----------------|----------------|---------------|------------|------------|---|----------------|----------|--------|
| 37       | 4.177          | 19.66          | 311.0386      | 61234      | 157.7      | 1 | 78.94          | 312.0459 | 2      |
| 38       | 3.323          | 23.22          | 399.1485      | 59859      | 185.3      | 1 | 99.98          | 400.1558 | 2      |
| 39       | 4.325          | 27.93          | 638.0881      | 58077      | 220.9      | 1 | 87.72          | 639.0953 | 3      |
| 40       | 3.542          | 22.4           | 385.1337      | 57837      | 178.9      | 1 | 95.69          | 386.141  | 2      |
| 41       | 4.104          | 16.98          | 219.0504      | 53378      | 138        | 1 | 76.23          | 220.0577 | 1      |
| 42       | 5.819          | 22.26          | 325.0914      | 52421      | 178.8      | 1 | 96.25          | 326.0987 | 3      |
| 43       | 7.521          | 28.73          | 625.1741      | 52123      | 227.5      | 1 | 100            | 626.1814 | 3      |
| 44       | 6.338          | 24.15          | 434.1048      | 51762      | 192.4      | 1 | 96.08          | 435.112  | 3      |
| 45       | 3.594          | 27.69          | 591.0994      | 50575      | 219.4      | 1 | 90.49          | 592.1066 | 3      |
| 46       | 11.247         | 19.65          | 318.9726      | 50544      | 157.5      | 1 | 67.28          | 319.9799 | 2      |
| 47       | 9.687          | 27.35          | 603.0763      | 50446      | 216.5      | 1 | 100            | 604.0836 | 3      |
| 48       | 4.174          | 21.54          | 311.0383      | 49990      | 173.2      | 1 | 100            | 312.0456 | 2      |
| 49       | 5.188          | 21.28          | 357.0542      | 49777      | 170.2      | 1 | 75             | 358.0614 | 3      |
| 50       | 7.092          | 27.27          | 497.3294      | 46200      | 216.9      | 1 | 94.88          | 498.3366 | 3      |
| 51       | 3.824          | 27.69          | 593.1286      | 45785      | 219.4      | 1 | 97.02          | 594.1359 | 2      |
| 52       | 11.2           | 29.47          | 613.026       | 44993      | 233.5      | 1 | 68.75          | 614.0333 | 2      |
| 53       | 7.418          | 25.73          | 499.046       | 44304      | 204.4      | 1 | 100            | 500.0533 | 2      |
| 54       | 5.696          | 24.56          | 401.1428      | 43008      | 196.2      | 1 | 93.5           | 402.15   | 2      |
| 55       | 4.939          | 20.04          | 293.1203      | 42593      |            | 0 | 70.11          | 293.1208 | 1      |
| 56       | 11.198         | 15.69          | 145.0265      | 40961      |            | 0 | 70.52          | 145.0271 | 1      |
| 57       | 5.696          | 24.86          | 447.1482      | 39988      | 198        | 1 | 100            | 448.1555 | 3      |
| 58       | 6.004          | 21.28          | 357.0573      | 39908      | 170.2      | 1 | 100            | 358.0646 | 2      |
| 59       | 9.76           | 17.77          | 207.0661      | 37659      | ,<br>145.1 | 1 | 93.57          | 208.0734 | 2      |
| 60       | 9.686          | 22.78          | ,<br>369.0224 | 37480      | 182.2      | 1 | 94.11          | 370.0297 | 2      |
| 61       | 4.05           | 28.6           | 633.1116      | 36508      | 226.4      | 1 | 90.08          | 634.1189 | 4      |
| 62       | 3.27           | 24.94          | 487.1636      | 36272      | 198.2      | 1 | 63.87          | 488.1709 | 2      |
| 63       | 3.706          | 18.21          | 243.0503      | 35873      | 147.5      | 1 | 57.47          | 244.0576 | 2      |
| 64       | 4.424          | 24.42          | 373.1109      | 35824      | 195.5      | 1 | 84.67          | 374.1181 | 2      |
| 65       | 7.718          | 23.83          | 353.1218      | 35757      | 191.1      | 1 | 100            | 354.1291 | 2      |
| 66       | 7.356          | 24.96          | 463.0845      | 33418      | 198.6      | 1 | 71.99          | 464.0918 | 3      |
| 67       | 5.975          | 24.56          | 431.1907      | 32304      | 195.7      | 1 | 71.46          | 432.1979 | 2      |
| 68       | 5.282          | 26.44          | 509.1252      | 20004      | -))-/      | 0 | 67.3           | 509.1258 | 1      |
| 69       | 5.861          | 26.99          | 511.1447      | 28275      | 214.5      | 1 | 54.2           | 512.152  | 2      |
| 70       | 6.101          | 16.21          | 180.0763      | 28228      | 132.7      | 1 | 82.22          | 100.0836 | 2      |
| 7°<br>71 | 10.78          | 22.27          | 327.2165      | 27823      | 178.8      | 1 | 80.05          | 328.2238 | 3      |
| 7-<br>72 | 5.426          | 24.54          | 427.1804      | 27680      | 195.7      | 1 | 100            | 428.1877 | 2      |
| 73       | 4.551          | 27.37          | 571.1582      | 27612      | -))-/      | 0 | 79.74          | 571.1587 | 1      |
| 74       | 11.30          | 22.42          | 320.2323      | 27501      | 180.1      | 1 | 76.63          | 330.2306 | 2      |
| 75       | 3.444          | 20.04          | 315.0706      | 27510      | 168.2      | 1 | 65.55          | 316.0779 | 2      |
| 76       | 4.174          | 15.82          | 179.0339      | 26700      | 130        | 1 | 73.46          | 180.0412 | 2      |
| 70       | 4·*/4<br>5 757 | 24.02          | 421 1003      | 25047      | 190        | 0 | 70.66          | 131 1000 | 1      |
| 78       | 4 602          | 1762           | 265 0284      | 25760      | 142 1      | 1 | 61.41          | 266 0257 | 2      |
| 70       | 6.716          | 25 27          | 470.0787      | 24065      | 200.0      | 1 | 78 5           | 480.086  | 2      |
| 79<br>80 | 4 174          | 27.62          | 622.0851      | 24905      | 218.7      | 1 | 85.2           | 624 0022 | 2      |
| 81       | 2 858          | 25.15          | 487.0641      | 24919      | 210.7      | 0 | 60.16          | 487.0647 | 1      |
| 82       | 3.725          | 21.27          | 257.0781      | 24240      | 170 1      | 1 | 100            | 258.0854 | 2      |
| 82       | 5.725<br>7 527 | 21.27          | 440 106       | 22027      | 102.2      | 1 | 61 70          | 450 1122 | 2      |
| 84       | 7.937<br>5.176 | -4·~/<br>24.66 | 484.0074      | 23610      | 105 0      | 1 | 70 22          | 485.1047 | 2      |
| 8=       | 4 077          | 10 57          | 205 0622      | 22286      | 157 1      | 1 | /y·~j<br>81 22 | 206.0605 | 2<br>2 |
| 86       | 4·9//<br>5 506 | 10.00          | 265.0022      | -<br>22140 | 161.6      | 1 | 62 7           | 266.0093 | 2<br>2 |
| 87       | 7 78=          | 17.77<br>22 E1 | 263.0700      | 21701      | 101.0      | 0 | 50.47          | 263.0715 | ے<br>1 |
| 88       | 1.00           |                | 282 0047      | 21667      |            | 0 | 75.0           | 282 00=2 | 1      |
| 00       | 4.00           | 22.3           | 202.094/      | 2100/      |            | 0 | 13.9           | 202.0922 | T      |

| 89  | 4.664                | 27.89 | 593.1247             | 21460  | 221   | 1 | 86.63          | 594.132  | 3      |
|-----|----------------------|-------|----------------------|--------|-------|---|----------------|----------|--------|
| 90  | 11.112               | 23.51 | 383.0359             | 21236  | 187.9 | 1 | 74.65          | 384.0432 | 2      |
| 91  | 8.106                | 16.66 | 187.0973             | 21016  |       | 0 | 78.43          | 187.0978 | 1      |
| 92  | 6.739                | 25.7  | 493.0586             | 20874  | 204.3 | 1 | 95.87          | 494.0658 | 3      |
| 93  | 6.521                | 15.47 | 163.0379             | 20738  | 127.8 | 1 | 86.42          | 164.0451 | 2      |
| 94  | 8.209                | 24    | 457.109              | 20515  | 190.9 | 1 | 100            | 458.1162 | 2      |
| 95  | 7.418                | 28.98 | 625.1731             | 20503  | 229.5 | 1 | 79.86          | 626.1804 | 3      |
| 96  | 4.523                | 17.63 | 265.0289             | 19507  |       | 0 | 72.85          | 265.0295 | 1      |
| 97  | 11.198               | 29.83 | 607.0093             | 19183  |       | 0 | 58.49          | 607.0099 | 1      |
| 98  | 3.575                | 20.94 | 323.1329             | 18511  |       | 0 | 77.03          | 323.1335 | 1      |
| 99  | 5.953                | 19.81 | 319.044              | 18101  |       | 0 | 74.24          | 319.0445 | 1      |
| 100 | 4.583                | 22.07 | 395.0911             | 17980  | 176   | 1 | 74.64          | 396.0984 | 2      |
| 101 | 5.824                | 19.97 | 265.0702             | 17575  | 161.4 | 1 | 58.2           | 266.0774 | 2      |
| 102 | 7.276                | 15.11 | 167.0349             | 17502  | •     | 0 | 51.66          | 167.0355 | 1      |
| 103 | 6.027                | 24.11 | 429.2098             | 17355  | 192.1 | 1 | 85.37          | 430.2171 | 2      |
| 104 | ,<br>5.149           | 20.75 | 323.1308             | 17151  | 166.4 | 1 | 84.93          | 324.1381 | 2      |
| 105 | 6.338                | 25.22 | 502.0914             | 16776  |       | 0 | 61.37          | 502.0919 | 1      |
| 106 | 3.596                | 21.6  | 368.0963             | 16614  |       | 0 | 74.79          | 368.0969 | 1      |
| 107 | 5.211                | 23.87 | 451.119              | 16100  | 180.0 | 1 | 80.17          | 452.1262 | 2      |
| 108 | 11.361               | 15.75 | 180.0164             | 15807  | 128.0 | 1 | 56.7           | 190.0237 | 2      |
| 100 | 5.547                | 24.03 | 181.0945             | 15780  | 100.0 | 1 | 03.20          | 482.1018 | 2      |
| 110 | 4 551                | 26.84 | 565 1421             | 14776  | 2128  | 1 | 78 54          | 566 1404 | 2      |
| 111 | 6.006                | 22.02 | 187 1421             | 14652  | 180.0 | 1 | 02.26          | 488 1501 | 2      |
| 112 | 2 820                | 22.26 | 422.0586             | 144055 | 109.9 | 0 | 90.00<br>72 77 | 422.0501 | 1      |
| 112 | 7 426                | 27.20 | 423.0300<br>505 1627 | 14422  |       | 0 | 60.2           | 505 1622 | 1      |
| 113 | 1 1 20               | 27.04 | 595.1027             | 14303  | 2108  | 1 | 65.21          | 595.1052 | 2      |
| 114 | 4.139                | 2/./4 | 593·12/4             | 14253  | 160.8 | 1 | 86 78          | 226.0068 | 2      |
| 115 | 5.249                | 20.07 | 325.0095             | 14240  | 188.2 | 1 | 86.24          | 320.0900 | 2      |
| 117 | 7.405                | 23.52 | 5/3.1003             | 12280  | 100.2 | 0 | 50.24<br>54.25 | 5/4.1150 | 2<br>1 |
| 118 | 7.495                | 20.39 | 509.221              | 12200  | 226.0 | 1 | 54.35<br>82.41 | 509.2210 | 2      |
| 110 | 7.54/                | 20.0  | 267.1005             | 13200  | 186   | 1 | 03.41          | 268 1622 | 2      |
| 120 | 5.051                | 23.24 | 307.135              | 12995  | 210.8 | 1 | 92.10<br>84.11 | 510.1023 | 2      |
| 120 | 4.509                | 20.53 | 242.0646             | 12/03  | 210.0 | 1 | 02.11          | 244.0710 | 2      |
| 121 | 7.097                | 19.45 | 243.0040             | 12091  | 157.0 | 1 | 92.44          | 244.0719 | 2      |
| 122 | 5.40                 | 25.13 | 447.1491             | 12051  | 200.2 | 1 | 57.00          | 440.1504 | 2      |
| 123 | 0.030                | 23.99 | 407.1420             | 12040  | 190.5 | 1 | 52.00          | 400.1501 | 2      |
| 124 | 7.151<br>8 <b></b> - | 23    | 403.1001             | 125//  | 103.5 | 1 | 70.70          | 404.1074 | 2      |
| 125 | 0.553                | 24.04 | 433.1107             | 125/2  |       | 0 | 70.10          | 433.1113 | 1      |
| 120 | 3.541                | 21.00 | 339.127              | 12523  | 1/3./ | 1 | 50.50          | 340.1343 | 2      |
| 127 | 9.697                | 24.25 | 430.9917             | 12346  |       | 0 | 55.6           | 430.9922 | 1      |
| 128 | 4.524                | 19.31 | 326.9989             | 11944  |       | 0 | 54.73          | 326.9995 | 1      |
| 129 | 4.534                | 22.11 | 395.0914             | 11611  | 176.3 | 1 | 56.02          | 396.0987 | 2      |
| 130 | 4.834                | 22.61 | 341.0844             | 11582  |       | 0 | 70.39          | 341.085  | 1      |
| 131 | 11.156               | 21.19 | 386.9592             | 11339  |       | 0 | 65.7           | 386.9598 | 1      |
| 132 | 11.154               | 18.33 | 273.9923             | 11122  | 147.6 | 1 | 50.53          | 274.9995 | 2      |
| 133 | 5.249                | 21.96 | 393.0755             | 11078  |       | 0 | 67.11          | 393.076  | 1      |
| 134 | 7.627                | 25.61 | 455.2105             | 11050  |       | 0 | 60.62          | 455.211  | 1      |
| 135 | 11.235               | 25.95 | 530.9778             | 10930  |       | 0 | 50.39          | 530.9784 | 1      |
| 136 | 4.1                  | 18.49 | 243.0481             | 10810  |       | 0 | 72.32          | 243.0486 | 1      |
| 137 | 4.412                | 19.99 | 305.017              | 10769  | 160.6 | 1 | 54.15          | 306.0243 | 2      |
| 138 | 4.782                | 18.06 | 243.0465             | 10653  |       | 0 | 80.71          | 243.0471 | 1      |
| 139 | 7.164                | 25.78 | 435.1251             | 10230  | 205.6 | 1 | 68             | 436.1324 | 2      |
| 140 | 5.146                | 22.57 | 341.0839             | 10041  | ~     | 0 | 79.53          | 341.0844 | 1      |
| 141 | 4.784                | 19.41 | 305.0158             | 9796   | 155.8 | 1 | 73.62          | 306.0231 | 2      |
|     |                      |       |                      |        |       |   |                |          |        |

| 142 | 6.491          | 25.41         | 461.161  | 9783  | 202.3 | 1 | 61.15          | 462.1683          | 2 |
|-----|----------------|---------------|----------|-------|-------|---|----------------|-------------------|---|
| 143 | 8.072          | 19.86         | 287.1484 | 9753  | 9     | 0 | 85.59          | 287.1489          | 1 |
| 144 | 6.008          | 21.53         | 329.0855 | 9627  | 172.7 | 1 | 100            | 330.0928          | 2 |
| 145 | 4.148          | 26.65         | 553.0779 | 9553  | 211.3 | 1 | 59.7           | 554.0851          | 3 |
| 146 | 3.659          | 23.55         | 430.0415 | 9501  | 9     | 0 | 56.21          | 430.042           | 1 |
| 147 | 7.165          | 25.21         | 441.1939 | 9452  |       | 0 | 81.31          | 441.1944          | 1 |
| 148 | 6.739          | 16.12         | 173.0808 | 9414  |       | 0 | 88.77          | 173.0813          | 1 |
| 149 | 4.408          | 18.63         | 243.0485 | 9352  |       | 0 | 60.75          | 243.0491          | 1 |
| 150 | 4.278          | 23.81         | 413.1629 | 9317  | 189.9 | 1 | 52.95          | 414.1701          | 2 |
| 151 | 4.537          | 22.52         | 411.057  | 9150  |       | 0 | 68.96          | 411.0576          | 1 |
| 152 | 8.495          | 23.84         | 435.1276 | 9100  |       | 0 | 81.54          | 435.1282          | 1 |
| 153 | 11.264         | 17.42         | 191.0708 | 8998  |       | 0 | 69             | 191.0713          | 1 |
| 154 | 7 447          | 22.08         | 440 1088 | 8000  | 100.8 | 1 | 50 10          | 450 2061          | 2 |
| 155 | 5 814          | 25.03         | 303 0771 | 8027  | 190.0 | 0 | 65.64          | 303.0776          | 1 |
| 156 | 1 150          | 12.0          | 140.0084 | 8802  |       | 0 | 81 52          | 140.0080          | 1 |
| 157 | 4.159          | 13.9<br>22 72 | 201 0246 | 8828  | 182.2 | 1 | 60             | 202 0418          | 2 |
| 157 | 9.702          | 17.00         | 320.0125 | 8817  | 103.3 | 0 | EO 14          | 302.0410          | 1 |
| 150 | 3.442          | 17.09         | 175.0125 | 8747  |       | 0 | 50.14          | 175.0131          | 1 |
| 159 | 4.239<br>6.816 | 15.44         | 1/3.0000 | 8=10  |       | 0 | 54.33<br>80.00 | 1/ <u>5</u> .0011 | 1 |
| 161 | 6 7            | 27.43         | 247 1140 | 8262  |       | 0 | 60.09          | 509.221           | 1 |
| 101 | 1.82           | 22.0          | 347.1149 | 8200  | 161 4 | 1 | 09.22<br>FF F8 | 347.1155          | 1 |
| 102 | 4.03           | 20.00         | 295.0432 | 8209  | 101.4 | 1 | 55.50          | 290.0505          | 2 |
| 103 | 4.104          | 24.94         | 401.0009 | 0110  | 190.5 | 1 | 55.52          | 462.0962          | 2 |
| 164 | 5.505          | 24.97         | 393.0772 | -000  |       | 0 | 69.97          | 393.0778          | 1 |
| 105 | 5.019          | 27.06         | 551.1350 | -9.1- | 214.7 | 1 | 53.45          | 552.1431          | 3 |
| 100 | 11.608         | 15.76         | 189.0161 | 7845  |       | 0 | 63.47          | 189.0167          | 1 |
| 167 | 7.78           | 21.21         | 333.0598 | 7836  | 170.1 | 1 | 97.4           | 334.067           | 2 |
| 168 | 3.572          | 22.04         | 391.1203 | 7769  |       | 0 | 68.36          | 391.1209          | 1 |
| 169 | 4.495          | 17.74         | 244.0265 | 7590  |       | 0 | 60.41          | 244.0271          | 1 |
| 170 | 14.769         | 14.08         | 174.956  | 7575  |       | 0 | 53.53          | 174.9565          | 1 |
| 171 | 15.196         | 14.09         | 174.9543 | 7518  |       | 0 | 68.73          | 174.9548          | 1 |
| 172 | 3.95           | 20.45         | 323.1332 | 7288  |       | 0 | 79.5           | 323.1338          | 1 |
| 173 | 2.976          | 17.67         | 229.0321 | 7225  | 143.4 | 1 | 51.97          | 230.0394          | 2 |
| 174 | 5.188          | 22.34         | 425.0411 | 7175  |       | 0 | 87.62          | 425.0417          | 1 |
| 175 | 5.236          | 20.23         | 307.0218 | 7087  |       | 0 | 81.35          | 307.0223          | 1 |
| 176 | 6.004          | 14.49         | 153.0187 | 6904  |       | 0 | 66.69          | 153.0193          | 1 |
| 177 | 4.09           | 20.7          | 370.9894 | 6751  |       | 0 | 52.82          | 370.9899          | 1 |
| 178 | 6.821          | 27.5          | 565.1522 | 6723  | 218.1 | 1 | 65.54          | 566.1594          | 2 |
| 179 | 15.534         | 14.01         | 174.9559 | 6568  |       | 0 | 58.56          | 174.9565          | 1 |
| 180 | 5              | 23.15         | 385.009  | 6520  |       | 0 | 51.47          | 385.0095          | 1 |
| 181 | 3.8            | 18.48         | 241.032  | 6494  |       | 0 | 57.33          | 241.0325          | 1 |
| 182 | 11.07          | 19.5          | 378.9167 | 6428  |       | 0 | 52.4           | 378.9173          | 1 |
| 183 | 4.201          | 15.66         | 183.0292 | 6374  | 128.4 | 1 | 76.4           | 184.0365          | 2 |
| 184 | 8.15           | 26.87         | 508.1168 | 6371  |       | 0 | 66.52          | 508.1173          | 1 |
| 185 | 6.509          | 31.35         | 737.136  | 6329  | 247.8 | 1 | 60.36          | 738.1433          | 3 |
| 186 | 9.266          | 21.56         | 331.114  | 6259  |       | 0 | 53.45          | 331.1146          | 1 |
| 187 | 8.243          | 29.35         | 639.1893 | 6134  | 232.4 | 1 | 74.13          | 640.1966          | 2 |
| 188 | 15.071         | 14.07         | 174.9546 | 6134  | 115.3 | 1 | 54.14          | 175.9618          | 2 |
| 189 | 3.528          | 21.83         | 347.095  | 6113  |       | 0 | 57.06          | 347.0955          | 1 |
| 190 | 12.908         | 21.62         | 315.1795 | 5852  |       | 0 | 70.53          | 315.18            | 1 |
| 191 | 6.933          | 29.04         | 619.1303 | 5574  | 230   | 1 | 53             | 620.1376          | 2 |
| 192 | 6.574          | 18.84         | 261.132  | 5504  |       | 0 | 67.29          | 261.1325          | 1 |
| 193 | 3.093          | 21.12         | 390.9973 | 5433  |       | 0 | 50.31          | 390.9979          | 1 |
| 194 | 3.97           | 21.47         | 393.0485 | 5422  | 171.2 | 1 | 58.7           | 394.0558          | 2 |

| 195  | 5.263  | 21.32 | 329.0836 | 5397     | 171     | 1 | 54.97          | 330.0908 | 2   |
|------|--------|-------|----------|----------|---------|---|----------------|----------|-----|
| 196  | 4.168  | 23.69 | 382.0964 | 5324     | 189.4   | 1 | 59.3           | 383.1037 | 1   |
| 197  | 8.15   | 18.44 | 243.1233 | 5302     |         | 0 | 53.85          | 243.1238 | 1   |
| 198  | 10.338 | 28.48 | 537.2706 | 5264     | 226.3   | 1 | 61.53          | 538.2779 | 2   |
| 199  | 6.004  | 20.62 | 289.0704 | 5204     | 166.2   | 1 | 53.57          | 290.0777 | 1   |
| 200  | 3.314  | 24.9  | 487.165  | 5182     | 197.8   | 1 | 56.97          | 488.1723 | 2   |
| 201  | 11.778 | 19.49 | 378.9166 | 5170     |         | 0 | 73.73          | 378.9172 | 1   |
| 202  | 5.172  | 25.35 | 506.0761 | 5160     | 201.3   | 1 | 66.77          | 507.0834 | 2   |
| 203  | 6.44   | 24.45 | 433.2058 | 5148     | 104.8   | 1 | 79.58          | /3/.2131 | 2   |
| 204  | 1 824  | 20.7  | 285 0114 | 5008     | -94.0   | 0 | 62.2           | 285 0110 | 1   |
| 205  | 11 686 | 17 70 | 221 0085 | 5011     |         | 0 | 53.76          | 231 0001 | 1   |
| 206  | E 422  | 1/ 2/ | 125.0452 | 1061     |         | 0 | 54.15          | 125.0458 | 1   |
| 2007 | 14 616 | 14.07 | 174.0526 | 4027     | 115 2   | 1 | 54.1)<br>E2 88 | 175.0608 | 2   |
| 207  | 15 510 | 12.07 | 174.9530 | 4947     | 115.5   | 0 | 55.00<br>6= 16 | 173.9000 | - 1 |
| 200  | 6 207  | 15.9/ | 1/4.9544 | 4882     |         | 0 | 62.02          | 1/4.9549 | 1   |
| 209  | 12 708 | 14.25 | 180.0725 | 4868     |         | 0 | 02.93<br>FR 28 | 180.0721 | 1   |
| 210  | 13.700 | 14.35 | 100.9/25 | 4000     |         | 0 | 5/.2/          | 100.9731 | 1   |
| 211  | 3.154  | 21.10 | 390.9908 | 4054     |         | 0 | 51.5           | 390.9974 | 1   |
| 212  | 3.173  | 15.0  | 150.007  | 4039     |         | 0 | 53.97          | 150.0070 | 1   |
| 213  | 4.934  | 21.00 | 361.10/4 | 4757     |         | 0 | 80.94          | 301.100  | 1   |
| 214  | 12.920 | 14.31 | 160.9724 | 4752     | < = 0 P | 0 | 62.29          | 160.973  | 1   |
| 215  | 2.619  | 19    | 287.0335 | 4732     | 152.8   | 1 | 55.21          | 288.0408 | 2   |
| 216  | 4.576  | 26.87 | 565.1413 | 4708     | 213     | 1 | 56.95          | 566.1486 | 2   |
| 217  | 3.175  | 18.84 | 291.0039 | 4670     |         | 0 | 57.73          | 291.0044 | 1   |
| 218  | 11.755 | 14.35 | 180.9729 | 4648     |         | 0 | 85.67          | 180.9734 | 1   |
| 219  | 6.339  | 31.2  | 733.2424 | 4545     | 246.6   | 1 | 51.83          | 734.2497 | 1   |
| 220  | 2.31   | 18.62 | 312.9835 | 4473     |         | 0 | 53.24          | 312.984  | 1   |
| 221  | 15.801 | 13.98 | 174.9556 | 4447     |         | 0 | 50.16          | 174.9562 | 1   |
| 222  | 9.826  | 14.32 | 180.9732 | 4424     |         | 0 | 51.88          | 180.9738 | 1   |
| 223  | 3.196  | 17.62 | 229.0326 | 4416     |         | 0 | 53.3           | 229.0332 | 1   |
| 224  | 14.411 | 15.25 | 218.932  | 4386     |         | 0 | 57.53          | 218.9325 | 1   |
| 225  | 6.154  | 24.81 | 453.1165 | 4386     | 197.5   | 1 | 68.24          | 454.1238 | 2   |
| 226  | 13.203 | 25    | 449.155  | 4332     |         | 0 | 56.46          | 449.1555 | 1   |
| 227  | 5.631  | 29.3  | 644.1353 | 4218     |         | 0 | 71.83          | 644.1359 | 1   |
| 228  | 6.937  | 22.46 | 397.0597 | 4217     |         | 0 | 72.16          | 397.0603 | 1   |
| 229  | 5.288  | 18.83 | 257.0616 | 4047     |         | 0 | 68.22          | 257.0622 | 1   |
| 230  | 10.367 | 14.29 | 180.9736 | 4018     |         | 0 | 57.78          | 180.9741 | 1   |
| 231  | 3.669  | 20.75 | 331.0651 | 4016     |         | 0 | 53.62          | 331.0657 | 1   |
| 232  | 6.05   | 23.92 | 381.1734 | 3964     |         | 0 | 83.34          | 381.1739 | 1   |
| 233  | 14.461 | 14.32 | 180.973  | 3962     |         | 0 | 52.18          | 180.9735 | 1   |
| 234  | 7.056  | 17.94 | 204.0654 | 3902     |         | 0 | 73.12          | 204.066  | 1   |
| 235  | 15.489 | 15.15 | 216.9344 | 3827     |         | 0 | 50.73          | 216.935  | 1   |
| 236  | 6.125  | 22.28 | 398.0222 | 3811     |         | 0 | 74.27          | 398.0227 | 1   |
| 237  | 11.146 | 22.7  | 454.9475 | 3809     |         | 0 | 52.53          | 454.948  | 1   |
| 238  | 4.524  | 19.54 | 333.0156 | 3798     | 156.3   | 1 | 80.17          | 334.0229 | 2   |
| 239  | 6.415  | 20.2  | 280.9959 | 3749     |         | 0 | 62.22          | 280.9964 | 1   |
| 240  | 3.05   | 14.42 | 153.0193 | 3734     |         | 0 | 50.87          | 153.0199 | 1   |
| 241  | 11.17  | 23.63 | 416.9945 | 3726     |         | 0 | 53.98          | 416.995  | 1   |
| 242  | 14.189 | 14.32 | 180.9725 | 3715     |         | 0 | 85.26          | 180.9731 | 1   |
| 243  | 6.603  | 22.85 | 574.1011 | 3704     |         | 0 | 55.81          | 574.1016 | 1   |
| 244  | 8.084  | 18.63 | 277.0658 | 3660     |         | 0 | 71.46          | 277.0663 | 1   |
| 245  | 6.174  | 25.11 | 399.1267 | 3639     |         | 0 | <br>59.75      | 399.1272 | 1   |
| 246  | 4.928  | 20.05 | 294.1244 | 3636     | 161.3   | 1 | 53.8           | 295.1317 | 2   |
| 247  | 13.888 | 14.35 | 180.9741 | 3606     | 5       | 0 | 61.43          | 180.9746 | 1   |
|      | J 2    |       | 27.15    | <u> </u> |         |   | 15             | 27.12    |     |

| 248 | 4.292                       | 21.56          | 373.1093 | 3601 |          | 0 | 70.26          | 373.1098              | 1 |
|-----|-----------------------------|----------------|----------|------|----------|---|----------------|-----------------------|---|
| 249 | 13.979                      | 15.15          | 216.9337 | 3551 |          | 0 | 52.51          | 216.9343              | 1 |
| 250 | 3.712                       | 21.78          | 373.0522 | 3536 |          | 0 | 68.9           | 373.0527              | 1 |
| 251 | 7.085                       | 27.5           | 514.3195 | 3500 | 218.6    | 1 | 50.26          | 515.3268              | 2 |
| 252 | 2.698                       | 18.98          | 287.0328 | 3470 | 152.7    | 1 | 51.38          | 288.0401              | 2 |
| 253 | 15.285                      | 19             | 242.0813 | 3441 | <i>.</i> | 0 | 55.18          | 242.0818              | 1 |
| 254 | 8.28                        | 17.54          | 211.0589 | 3423 |          | 0 | 51.08          | 211.0594              | 1 |
| 255 | 11.459                      | 22.62          | 329.2323 | 3396 | 181.7    | 1 | 87.01          | 330.2396              | 2 |
| 256 | 6.757                       | 28.62          | 559.1051 | 3392 |          | 0 | 51.65          | 559.1056              | 1 |
| 257 | 4.111                       | 19.63          | 305.0174 | 3374 |          | 0 | 78.43          | 305.0179              | 1 |
| 258 | 3.648                       | 22.69          | 383.154  | 3359 |          | 0 | 50.32          | 383.1545              | 1 |
| 259 | 11.534                      | 15.77          | 189.0166 | 3319 |          | 0 | 56.42          | 189.0172              | 1 |
| 260 | 2.878                       | 21.91          | 412.9779 | 3310 |          | 0 | 53.63          | 412.9784              | 1 |
| 261 | 5.23                        | 15.79          | 193.0127 | 3291 | 129      | 1 | 63.99          | 194.02                | 2 |
| 262 | 3.908                       | 21.34          | 377.0056 | 3287 |          | 0 | 52.35          | 377.0062              | 1 |
| 263 | 13.239                      | 15.13          | 216.9337 | 3284 |          | 0 | 53.23          | 216.9342              | 1 |
| 264 | 6.000                       | 23.51          | 401.2362 | 3273 |          | 0 | 59.17          | 401.2368              | 1 |
| 265 | 3 746                       | 10.57          | 305.0653 | 3254 | 157 1    | 1 | 52.00          | 306.0726              | 2 |
| 266 | 14 881                      | 14 22          | 180.0736 | 3240 | 1)/.1    | 0 | 51.84          | 180.0742              | 1 |
| 267 | 8 161                       | 18.65          | 265 1046 | 3244 |          | 0 | 52.58          | 265 1051              | 1 |
| 267 | 11.465                      | 17.77          | 263.1040 | 2225 |          | 0 | 70.02          | 253.1031              | 1 |
| 260 | 6 281                       | 1/·//<br>22 72 | 422 1854 | 2222 |          | 0 | 79.02          | 422 1850              | 1 |
| 209 | 5.301                       | 23.72          | 423.1034 | 2100 |          | 0 | 70.33<br>E2.01 | 423.1039              | 1 |
| 270 | 3.721<br>8.262              | 14.26          | 180.0728 | 2104 |          | 0 | 70.1E          | 180.0742              | 1 |
| 2/1 | 2.202                       | 14.20          | 251.0146 | 2104 |          | 0 | 70.15          | 251 0151              | 1 |
| 2/2 | 2.359                       | 17.05          | 180.0724 | 2084 |          | 0 | 53·34<br>64.66 | 180.0720              | 1 |
| 273 | 14.527                      | 14.23          | 180.9724 | 3004 |          | 0 | 85.40          | 180.9729              | 1 |
| 274 | 11.793                      | 14.25          | 180.9753 | 3000 |          | 0 | 69.42          | 180.9750              | 1 |
| 275 | 13.432<br>6.81 <del>0</del> | 14.32          | 100.9735 | 3074 | 225 7    | 1 | 65.00          | 100.9741<br>F66 1 F80 | 1 |
| 270 | 0.017                       | 20.44          | 505.1510 | 30/1 | 225.7    | 1 | 05.93          | 500.1509              | 1 |
| 277 | 15.590                      | 14.19          | 174.950  | 3003 |          | 0 | 53.35          | 174.9500              | 1 |
| 270 | 2.415                       | 19.57          | 309.0132 | 3033 |          | 0 | 50.98          | 309.0137              | 1 |
| 279 | 11.097                      | 19.74          | 310.9283 | 3000 |          | 0 | 59.0           | 310.9200              | 1 |
| 200 | 11.231                      | 10.72          | 298.9921 | 2961 |          | 0 | 57.0           | 296.9927              | 1 |
| 281 | 13.982                      | 19.5           | 378.9179 | 2981 |          | 0 | 59.2           | 378.9184              | 1 |
| 282 | 15.082                      | 13.12          | 154.9743 | 2945 |          | 0 | 53.29          | 154.9749              | 1 |
| 283 | 15.778                      | 14.32          | 180.9728 | 2944 |          | 0 | 69.33          | 180.9734              | 1 |
| 284 | 12.793                      | 14.32          | 180.9735 | 2916 | 117.1    | 1 | 55.38          | 181.9808              | 1 |
| 285 | 15.589                      | 19.57          | 378.9156 | 2003 |          | 0 | 52.1           | 378.9161              | 1 |
| 286 | 3.449                       | 15.25          | 153.055  | 2883 |          | 0 | 50.24          | 153.0555              | 1 |
| 287 | 4.969                       | 26.42          | 577.1305 | 2877 | 209.2    | 1 | 60.94          | 578.1377              | 1 |
| 288 | 12.521                      | 15.14          | 216.9344 | 2868 |          | 0 | 50.77          | 216.9349              | 1 |
| 289 | 13.973                      | 14.34          | 180.9724 | 2867 |          | 0 | 50.54          | 180.9729              | 1 |
| 290 | 3.223                       | 20.08          | 358.9891 | 2865 |          | 0 | 64.06          | 358.9897              | 1 |
| 291 | 3.175                       | 17.12          | 219.0517 | 2833 |          | 0 | 72.84          | 219.0522              | 1 |
| 292 | 15.87                       | 15.16          | 216.9332 | 2786 |          | 0 | 55.24          | 216.9337              | 1 |
| 293 | 11.167                      | 23.15          | 403.0263 | 2764 |          | 0 | 58.13          | 403.0269              | 1 |
| 294 | 4.646                       | 20.84          | 315.0704 | 2761 | 0        | 0 | 59.65          | 315.071               | 1 |
| 295 | 15.996                      | 22.75          | 353.1985 | 2741 | 182.2    | 1 | 59.26          | 354.2058              | 2 |
| 296 | 6.678                       | 14.34          | 180.9731 | 2740 |          | 0 | 90.12          | 180.9737              | 1 |
| 297 | 6.124                       | 17.65          | 304.9102 | 2719 |          | 0 | 51.38          | 304.9107              | 1 |
| 298 | 4.211                       | 16.91          | 181.0504 | 2701 |          | 0 | 50.13          | 181.051               | 1 |
| 299 | 12.95                       | 19.52          | 378.9174 | 2646 |          | 0 | 79.44          | 378.918               | 1 |
| 300 | 15.748                      | 14.33          | 180.9729 | 2645 |          | 0 | 85.91          | 180.9734              | 1 |

| 201 | 10 400 | 11 10                 | 101 0454  | 2645              |       | 0 | FO 12                      | 101 016   | т      |
|-----|--------|-----------------------|-----------|-------------------|-------|---|----------------------------|-----------|--------|
| 301 | 6 010  | 14.43                 | 191.9454  | 2045              |       | 0 | 50.42<br>60.42             | 191.940   | 1      |
| 302 | 11.208 | 19.10                 | 180.070   | 2032              |       | 0 | -00.43<br>                 | 180.0700  | 1      |
| 303 | 11.300 | 14.3                  | 160.973   | 2032              |       | 0 | 79.00<br>66 <del>-</del> 1 | 160.9730  | 1      |
| 304 | 3.053  | 22.09                 | 341.0023  | 2010              |       | 0 |                            | 341.0020  | 1      |
| 305 | 0.010  | 14.32                 | 180.9722  | 2598              |       | 0 | 72.00                      | 180.9727  | 1      |
| 300 | 11.504 | 15.79                 | 189.0162  | 2595              | 2472  | 0 | 75.73                      | 189.0108  | 1      |
| 307 | 12.003 | 31.43                 | 962.9663  | 2593              | 247.3 | 1 | 55                         | 903.9930  | 2      |
| 300 | 0.735  | 17.70                 | 257.0305  | 2590              | 143.5 | 1 | 64.37                      | 250.0370  | 2      |
| 309 | 2.092  | 23.87                 | 369.1381  | 2585              |       | 0 | 67.28                      | 369.1386  | 1      |
| 310 | 4.95   | 21.88                 | 361.1078  | 2580              |       | 0 | 68.76                      | 361.1084  | 1      |
| 311 | 4.907  | 18.84                 | 275.0062  | 2573              |       | 0 | 57.73                      | 275.0067  | 1      |
| 312 | 13.487 | 14.32                 | 180.9736  | 2547              |       | 0 | 71.41                      | 180.9741  | 1      |
| 313 | 11.33  | 14.35                 | 180.9723  | 2505              |       | 0 | 82.18                      | 180.9728  | 1      |
| 314 | 15.459 | 15.21                 | 216.934   | 2476              |       | 0 | 55.99                      | 216.9345  | 1      |
| 315 | 11.178 | 24.82                 | 607.0064  | 2474              |       | 0 | 51.71                      | 607.0069  | 1      |
| 316 | 12.382 | 14.35                 | 180.9728  | 2469              |       | 0 | 63.52                      | 180.9733  | 1      |
| 317 | 15.913 | 14.34                 | 180.9724  | 2458              |       | 0 | 62.59                      | 180.9729  | 1      |
| 318 | 12.361 | 17.72                 | 310.9285  | 2415              |       | 0 | 77                         | 310.9291  | 1      |
| 319 | 14.452 | 19.56                 | 378.918   | 2399              |       | 0 | 82.68                      | 378.9185  | 1      |
| 320 | 13.155 | 19.5                  | 378.9168  | 2375              |       | 0 | 56.79                      | 378.9173  | 1      |
| 321 | 6.245  | 14.31                 | 180.9728  | 2343              |       | 0 | 54.62                      | 180.9733  | 1      |
| 322 | 4.116  | 16.94                 | 220.0535  | 2313              |       | 0 | 54.5                       | 220.054   | 1      |
| 323 | 11.147 | 19.77                 | 257.0007  | 2286              |       | 0 | 82.1                       | 257.0013  | 1      |
| 324 | 3.403  | 18.95                 | 296.0157  | 2259              |       | 0 | 65.15                      | 296.0163  | 1      |
| 325 | 3.924  | 18.47                 | 241.0313  | 2250              |       | 0 | 54.72                      | 241.0319  | 1      |
| 326 | 11.549 | 17.72                 | 257.0024  | 2245              |       | 0 | 56.25                      | 257.003   | 1      |
| 327 | 4.238  | 21.53                 | 311.0377  | 2228              |       | 0 | 54.95                      | 311.0382  | 1      |
| 328 | 5.191  | 19.16                 | 289.1796  | 2224              |       | 0 | 56.92                      | 289.1801  | 1      |
| 329 | 4.977  | 25.23                 | 479.075   | 2224              |       | 0 | 55.97                      | 479.0755  | 1      |
| 330 | 6.946  | 20.8                  | 315.0694  | 2217              |       | 0 | 87.88                      | 315.07    | 1      |
| 331 | 11.246 | 16.98                 | 189.0172  | 2215              | 139.2 | 1 | 57.95                      | 190.0245  | 1      |
| 332 | 13.466 | 14.32                 | 180.9727  | 2214              |       | 0 | 85.75                      | 180.9733  | 1      |
| 333 | 7.673  | 14.23                 | 180.9729  | 2202              |       | 0 | 50.23                      | 180.9735  | 1      |
| 334 | 4.23   | 19.35                 | 326.9973  | 2181              |       | 0 | 57.96                      | 326.9978  | 1      |
| 335 | 15.65  | 13.13                 | 119.0355  | 2161              |       | 0 | 50.04                      | 119.036   | 1      |
| 336 | 11.246 | 17.75                 | 189.0156  | 2145              | 145.8 | 1 | 51.09                      | 190.0229  | 1      |
| 337 | 4.991  | 23.57                 | 446.9786  | 2143              |       | 0 | 70.2                       | 446.9791  | 1      |
| 338 | 11.35  | 18.35                 | 273.9924  | 2128              |       | 0 | 57.7                       | 273.9929  | 1      |
| 339 | 6.949  | 14.33                 | 180.9731  | 2120              |       | 0 | 58.34                      | 180.9737  | 1      |
| 340 | 10.064 | 20.14                 | 301.035   | 2114              |       | 0 | 50.95                      | 301.0356  | 1      |
| 341 | 4.319  | 22.75                 | 616.1054  | 2113              | 179.4 | 1 | 53.14                      | 617.1127  | 1      |
| 342 | 4.124  | 17.29                 | 211.0597  | 2095              |       | 0 | 57.64                      | 211.0603  | 1      |
| 343 | 9.144  | 14.34                 | 180.9732  | 2091              |       | 0 | 57.17                      | 180.9737  | 1      |
| 344 | 8.371  | 14.42                 | 180.9725  | 2057              |       | 0 | 57.46                      | 180.973   | 1      |
| 345 | 13.385 | 14.33                 | 180.9724  | 2036              |       | 0 | 62.22                      | 180.9729  | 1      |
| 346 | 3.227  | 18.89                 | 291.0015  | 2033              |       | 0 | 67.4                       | 291.002   | 1      |
| 347 | 2.167  | 23.14                 | 481.0548  | 2020              |       | 0 | 75.73                      | 481.0553  | 1      |
| 348 | 5.080  | 17.7                  | 304.0114  | 1997              |       | õ | 72.17                      | 304.0110  | 1      |
| 340 | 3.176  | -7.7                  | 345.0808  | 1072              |       | õ | 54.88                      | 345.0813  | 1      |
| 350 | 10,372 | <del>4</del><br>10.57 | 378.01/12 | 10/0              |       | 0 | 66.6                       | 378.0148  | 1      |
| 351 | 11.654 | 20.85                 | 446.0028  | 1022              |       | 0 | 52 40                      | 446.0044  | 1      |
| 352 | 11.725 | 15 76                 | 180.0176  | 1026              |       | 0 | 61 28                      | 180.0181  | 1      |
| 252 | 5 008  | 22.82                 | 452 0071  | 1024              | 180.4 | 1 | 578                        | 454 0044  | י<br>ז |
| 555 | 5.000  | 20.02                 | サノー・ツツ/ * | +7 <del>4</del> 4 |       | * | 57.0                       | 4,74,0044 | -      |

| 354        | 15.837            | 14.06  | 174.9562              | 1922         |       | 0 | 51.19          | 174.9567             | 1 |
|------------|-------------------|--------|-----------------------|--------------|-------|---|----------------|----------------------|---|
| 355        | 13.559            | 19.08  | 394.8896              | 1916         |       | 0 | 53.68          | 394.8902             | 1 |
| 356        | 4.526             | 17.77  | 259.0124              | 1906         |       | 0 | 57.55          | 259.013              | 1 |
| 357        | 8.832             | 20.45  | 317.0273              | 1901         |       | 0 | 70.5           | 317.0278             | 1 |
| 358        | 4.467             | 22.33  | 440.991               | 1891         |       | 0 | 59.46          | 440.9916             | 1 |
| 359        | 2.835             | 19.52  | 378.9152              | 1887         |       | 0 | 64.66          | 378.9157             | 1 |
| 360        | 3.869             | 18.3   | 296.9889              | 1878         |       | 0 | 89             | 296.9894             | 1 |
| 361        | 5.546             | 14.38  | 180.9722              | 1869         |       | 0 | 91.96          | 180.9728             | 1 |
| 362        | 15.374            | 14.32  | 180.9727              | 1852         |       | 0 | 67.51          | 180.9733             | 1 |
| 363        | 3.000             | 17.62  | 247.0118              | 1847         |       | 0 | 63.65          | 247.0124             | 1 |
| 364        | 6 212             | 25.25  | 405 0173              | 1845         |       | 0 | 68.02          | 405.0178             | 1 |
| 365        | 4 883             | 10.76  | 472 0681              | 1844         |       | 0 | 56.12          | 493.0170             | 1 |
| 266        | 7.025             | 14.22  | 180.0724              | 1841         |       | 0 | 50.13          | 180.072              | 1 |
| 267        | 12 40             | 18.67  | 226 1055              | 1825         |       | 0 | 52.90          | 226 106              | 1 |
| 307<br>268 | 11.028            | 10.07  | 180.0155              | 1820         |       | 0 | 50.77          | 180.016              | 1 |
| 300        | 2852              | 18.70  | 109.0155              | 1816         |       | 0 | 72.2           | 109.010              | 1 |
| 309        | 3.052             | 10.53  | 241.0320              | 1010         |       | 0 | 70.92          | 241.0332             | 1 |
| 370        | 4.159             | 19.0   | 312.0425              | 1000         |       | 0 | 54.05          | 312.043              | 1 |
| 371        | 5.872             | 19.45  | 241.1174              | 1801         |       | 0 | 52.22          | 241.118              | 1 |
| 372        | 13.967            | 15.78  | 230.9552              | 1783         |       | 0 | 93.82          | 230.9558             | 1 |
| 373        | 12.524            | 15.72  | 230.9556              | 1753         |       | 0 | 57.71          | 230.9562             | 1 |
| 374        | 4.928             | 17.48  | 213.0358              | 1749         |       | 0 | 54.53          | 213.0363             | 1 |
| 375        | 2.669             | 19.58  | 378.9152              | 1742         |       | 0 | 66.83          | 378.9158             | 1 |
| 376        | 5.958             | 17.6   | 304.9126              | 1741         |       | 0 | 52.4           | 304.9131             | 1 |
| 377        | 6.699             | 21.9   | 369.0949              | 1737         |       | 0 | 57.81          | 369.0955             | 1 |
| 378        | 6.325             | 20.97  | 362.9991              | 1732         |       | 0 | 59.38          | 362.9996             | 1 |
| 379        | 3.326             | 29.73  | 658.0918              | 1715         | 235.3 | 1 | 69.06          | 659.099              | 2 |
| 380        | 4.599             | 17.73  | 259.0114              | 1713         |       | 0 | 78.15          | 259.0119             | 1 |
| 381        | 10.356            | 17.78  | 310.9292              | 1696         | 142.3 | 1 | 54.79          | 311.9365             | 2 |
| 382        | 9.624             | 18.07  | 248.9607              | 1688         |       | 0 | 51.5           | 248.9612             | 1 |
| 383        | 2.883             | 18.17  | 258.9914              | 1680         |       | 0 | 90.65          | 258.9919             | 1 |
| 384        | 15.61             | 15.21  | 218.9303              | 1671         |       | 0 | 55.58          | 218.9308             | 1 |
| 385        | 14.281            | 13.37  | 135.9701              | 1669         |       | 0 | 50.28          | 135.9707             | 1 |
| 386        | 7.787             | 23.43  | 453.0391              | 1668         |       | 0 | 55.85          | 453.0397             | 1 |
| 387        | 4.546             | 17.68  | 244.0277              | 1663         |       | 0 | 52.81          | 244.0282             | 1 |
| 388        | 8.321             | 18.49  | 231.1583              | 1653         |       | 0 | 52.44          | 231.1588             | 1 |
| 389        | 10.598            | 16.12  | 174.9555              | 1644         |       | 0 | 52.84          | 174.9561             | 1 |
| 390        | 8.96              | 17.76  | 310.9281              | 1643         |       | 0 | 57.98          | 310.9287             | 1 |
| 391        | 6.336             | 19.43  | 295.0114              | 1628         |       | 0 | 55.9           | 295.012              | 1 |
| 392        | 6.422             | 21.41  | 348.9806              | 1627         |       | 0 | 70.47          | 348.9812             | 1 |
| 393        | 3.478             | 20.32  | 381.9504              | 1624         |       | 0 | 62.74          | 381.951              | 1 |
| 394        | 9.986             | 14.31  | 180.9729              | 1622         |       | 0 | 55.14          | 180.9734             | 1 |
| 395        | 6.51              | 14.23  | 180.9696              | 1613         |       | 0 | 52.13          | 180.9701             | 1 |
| 396        | 12.231            | 17.81  | 310.9279              | 1609         |       | 0 | 57.07          | 310.9285             | 1 |
| 397        | 13.104            | 15.87  | 230.9543              | 1608         |       | 0 | 58.37          | 230.9549             | 1 |
| 398        | 11.242            | 25.79  | 401.0229              | 1598         |       | 0 | 51.26          | 401.0235             | 1 |
| 300        | 11.000            | 15.83  | 189.017               | 1505         |       | 0 | 74.64          | 189.0176             | 1 |
| 400        | 2 / 27            | 18.02  | 206.012               | 1500         |       | 0 | 67.05          | 206.0126             | 1 |
| 400        | 11.678            | 17 75  | 310.0285              | 1582         |       | 0 | 58.68          | 310.0201             | 1 |
| 402        | 11.222            | 18 26  | 273.00/1              | 1574         |       | 0 | 65.24          | 273.0016             | 1 |
| 402        | 5 887             | 25 12  | -1 3·994+<br>185 1766 | +974<br>1572 |       | 0 | 52.26          | -15.9940<br>185 1771 | 1 |
| 403        | 8 2 4 1           | 18 = 2 | 221 1502              | -979<br>1557 |       | 0 | 81.62          | 221 1508             | 1 |
| 404        | 15.018            | 10.33  | 218 0212              | +227         |       | 0 | 55.02<br>55.82 | 218 0218             | 1 |
| 405        | 2 4 47            | 10.04  | 210.9312              | 1507         |       | 0 | 55.03<br>77 08 | 210.9310             | 1 |
| 400        | <del>~</del> •447 | 19.04  | 207.0327              | 1337         |       | 0 | 11.90          | 207.0333             | T |

| 407        | 5.793            | 17.62      | 304.9137            | 1533 |       | 0 | 57.93          | 304.9143 | 1 |
|------------|------------------|------------|---------------------|------|-------|---|----------------|----------|---|
| 408        | 7.079            | ,<br>17.89 | 204.065             | 1533 |       | 0 | 51.63          | 204.0655 | 1 |
| 409        | 4.486            | 23.31      | 359.096             | 1531 |       | 0 | 57.55          | 359.0966 | 1 |
| 410        | 5.966            | 15.84      | 193.013             | 1526 |       | 0 | 68.77          | 193.0136 | 1 |
| 411        | 4.041            | 22.31      | 384.0988            | 1525 |       | 0 | 51.29          | 384.0993 | 1 |
| т<br>/12   | 5.37             | 21.88      | 3/0.002/            | 1524 |       | 0 | 63.48          | 3/0.003  | 1 |
| 413        | 3.485            | 21.67      | 383.0567            | 1510 |       | 0 | 56.74          | 383.0572 | 1 |
| 410        | 0.016            | 17 70      | 310.0288            | 1512 | 1424  | 1 | 56.86          | 211 0261 | 1 |
| 415        | 12 011           | 1/ 2/      | 180.0722            | 1510 | -44   | 0 | 60.04          | 180.0728 | 1 |
| 415        | - 5.011<br>F F07 | 14.24      | 180.072             | 1510 |       | 0 | 09.94<br>71.12 | 180.0726 | 1 |
| 410        | 5.397            | 14.32      | 100.973             | 1504 |       | 0 | /1.12<br>56.52 | 110.9730 | 1 |
| 41/        | 5.941<br>12.861  | 23.91      | 180.0722            | 1480 |       | 0 | 50.53          | 180.0235 | 1 |
| 410        | 13.001           | 14.31      | 180.9733            | 1409 |       | 0 | -6             | 180.9730 | 1 |
| 419        | 4.594            | 23.36      | 405.001             | 14/1 |       | 0 | 50.75          | 405.0015 | 1 |
| 420        | 3.828            | 16.6       | 173.0461            | 1460 |       | 0 | 62.45          | 173.0467 | 1 |
| 421        | 14.591           | 19.49      | 378.9168            | 1459 |       | 0 | 67.44          | 378.9174 | 1 |
| 422        | 3.207            | 21.63      | 380.9726            | 1449 |       | 0 | 51.06          | 380.9732 | 1 |
| 423        | 8.006            | 24.73      | 461.07              | 1399 |       | 0 | 61.37          | 461.0705 | 1 |
| 424        | 6.811            | 26.71      | 508.1139            | 1395 |       | 0 | 52.53          | 508.1145 | 1 |
| 425        | 10.655           | 20.24      | 301.0344            | 1391 |       | 0 | 54.06          | 301.035  | 1 |
| 426        | 11.561           | 21         | 315.0499            | 1390 |       | 0 | 64.78          | 315.0504 | 1 |
| 427        | 6.792            | 16.47      | 195.062             | 1389 |       | 0 | 74.28          | 195.0625 | 1 |
| 428        | 4.589            | 23.6       | 479.0431            | 1337 |       | 0 | 54.42          | 479.0437 | 1 |
| 429        | 4.737            | 21.3       | 359.1317            | 1307 |       | 0 | 59.58          | 359.1322 | 1 |
| 430        | 12.566           | 20.89      | 446.9035            | 1306 |       | 0 | 57.3           | 446.9041 | 1 |
| 431        | 12.861           | 15.22      | 216.9332            | 1304 |       | 0 | 51.85          | 216.9338 | 1 |
| 432        | 6.482            | 25.09      | 441.1924            | 1296 | 199.9 | 1 | 71.29          | 442.1996 | 2 |
| 433        | 11.293           | 19.48      | 378.9157            | 1287 |       | 0 | 54.48          | 378.9163 | 1 |
| 434        | 6.201            | 22.26      | 398.0229            | 1277 |       | 0 | 63.66          | 398.0235 | 1 |
| 435        | 6.085            | 19.55      | 478.0714            | 1273 |       | 0 | 70.42          | 478.072  | 1 |
| 436        | 14.206           | 20.49      | 440.8862            | 1262 |       | 0 | 52.72          | 440.8867 | 1 |
| 437        | 14.348           | 15.76      | 230.9556            | 1258 |       | 0 | 53.21          | 230.9561 | 1 |
| 438        | 4.094            | 18.81      | 219.0496            | 1226 | 153.3 | 1 | 51.75          | 220.0569 | 1 |
| 439        | 11.153           | 27.1       | 604.9812            | 1226 | 555   | 0 | 60.61          | 604.9817 | 1 |
| 440        | 14.283           | 15.88      | 230.9544            | 1220 |       | 0 | 58.14          | 230.9549 | 1 |
| 441        | 11.635           | 19.34      | 242.1756            | 1213 |       | 0 | 53.03          | 242.1762 | 1 |
| 77-<br>112 | 11.181           | 17.46      | 248.0711            | 1208 |       | 0 | 70.02          | 248.0716 | 1 |
| 1/13       | 11.1/0           | 10.35      | 302.0063            | 1205 |       | 0 | 62.11          | 302.0060 | 1 |
| 444        | 5 220            | 18 22      | 261 0256            | 1100 |       | 0 | 65 52          | 261 0261 | 1 |
| 444        | 2 12             | 28.80      | 64E 1872            | 1172 |       | 0 | 61.66          | 645 1877 | 1 |
| 445        | 5.12             | 20.09      | 406 1615            | 1168 |       | 0 | E4 42          | 406 1621 | 1 |
| 440        | 12 182           | 15 72      | 180.0160            | 1125 |       | 0 | 54.45          | 180.0174 | 1 |
| 447        | 7.062            | 18 52      | 241 1062            | 1125 |       | 0 | 57.5<br>171.66 | 241 1067 | 1 |
| 440        | 7.902            | 10.53      | 140.0082            | 1107 |       | 0 | 71.00          | 241.1007 | 1 |
| 449        | 4.221            | 13.00      | 149.0002<br>=81.116 | 1100 |       | 0 | -6             | -81 116- | 1 |
| 450        | 4.549            | 27.02      | 501.110             | 1100 |       | 0 | 50.77          | 501.1105 | 1 |
| 451        | 14.901           | 10.90      | 194.0828            | 1090 |       | 0 | 63.17          | 194.0834 | 1 |
| 452        | 4.661            | 20.92      | 345.1153            | 1090 |       | 0 | 68             | 345.1159 | 1 |
| 453        | 5.565            | 19.18      | 241.1163            | 1066 |       | 0 | 04.03          | 241.1168 | 1 |
| 454        | 6.619            | 16.74      | 197.0438            | 1065 |       | 0 | 50.68          | 197.0443 | 1 |
| 455        | 5.893            | 19.41      | 241.1178            | 1044 | (     | 0 | 50.2           | 241.1183 | 1 |
| 456        | 4.101            | 21.02      | 379.0206            | 1042 | 167.7 | 1 | 73.55          | 380.0279 | 2 |
| 457        | 3.717            | 18.64      | 241.0332            | 1032 |       | 0 | 55.62          | 241.0338 | 1 |
| 458        | 6.397            | 18.04      | 261.015             | 1016 |       | 0 | 68.13          | 261.0155 | 1 |
| 459        | 8.55             | 24.31      | 394.146             | 1016 |       | 0 | 53.44          | 394.1466 | 1 |

| 460 | 2.334  | 16.73 | 188.0939 | 992 | 0 | 56.77 | 188.0945 | 1 |
|-----|--------|-------|----------|-----|---|-------|----------|---|
| 461 | 10.144 | 19.85 | 271.0604 | 985 | 0 | 51.37 | 271.061  | 1 |
| 462 | 2.459  | 18.97 | 269.0236 | 964 | 0 | 56.2  | 269.0241 | 1 |
| 463 | 11.301 | 14.27 | 161.0208 | 953 | 0 | 63.32 | 161.0214 | 1 |
| 464 | 9.788  | 19.72 | 269.1378 | 953 | 0 | 67.06 | 269.1383 | 1 |
| 465 | 3.802  | 20.62 | 300.0797 | 948 | 0 | 50.38 | 300.0803 | 1 |
| 466 | 3.464  | 18.94 | 296.0141 | 911 | 0 | 61.49 | 296.0147 | 1 |
| 467 | 5.068  | 20.02 | 294.1239 | 909 | 0 | 50.83 | 294.1244 | 1 |
| 468 | 11.352 | 17.82 | 258.0036 | 891 | 0 | 52.3  | 258.0041 | 1 |
| 469 | 6.196  | 23.19 | 389.1759 | 884 | 0 | 50.84 | 389.1765 | 1 |
| 470 | 5.748  | 22.35 | 359.0958 | 881 | 0 | 52.04 | 359.0964 | 1 |
| 471 | 5.373  | 18.68 | 409.0553 | 878 | 0 | 55.79 | 409.0559 | 1 |
| 472 | 3.89   | 16.58 | 229.0019 | 877 | 0 | 51.01 | 229.0024 | 1 |
| 473 | 3.504  | 17.17 | 231.0148 | 868 | 0 | 55.43 | 231.0153 | 1 |
| 474 | 3.888  | 16.73 | 235.0191 | 864 | 0 | 51.2  | 235.0196 | 1 |
| 475 | 6.072  | 19.16 | 290.0733 | 858 | 0 | 62.9  | 290.0738 | 1 |
| 476 | 5.164  | 23.65 | 584.1187 | 853 | 0 | 50.98 | 584.1192 | 1 |
| 477 | 11.152 | 24.54 | 401.0206 | 842 | 0 | 50.14 | 401.0211 | 1 |
| 478 | 3.118  | 19.85 | 350.9637 | 834 | 0 | 50.56 | 350.9642 | 1 |
| 479 | 11.273 | 17.04 | 189.0162 | 821 | 0 | 63.56 | 189.0167 | 1 |
| 480 | 12.896 | 21.7  | 316.1825 | 818 | 0 | 58.33 | 316.1831 | 1 |
| 481 | 4.184  | 17.21 | 330.0127 | 806 | 0 | 50.27 | 330.0132 | 1 |
| 482 | 12.529 | 15.76 | 189.0174 | 806 | 0 | 52.26 | 189.018  | 1 |
| 483 | 15.349 | 18.02 | 316.8945 | 805 | 0 | 54.4  | 316.8951 | 1 |
| 484 | 4.293  | 19.99 | 488.0648 | 802 | 0 | 51.54 | 488.0654 | 1 |
| 485 | 9.064  | 13.48 | 164.9259 | 800 | 0 | 56.88 | 164.9265 | 1 |
| 486 | 11.386 | 14.29 | 161.0206 | 775 | 0 | 50.48 | 161.0212 | 1 |
| 487 | 4.888  | 19.05 | 273.043  | 775 | 0 | 53.66 | 273.0435 | 1 |
| 488 | 7.205  | 24.35 | 433.2058 | 751 | 0 | 50.6  | 433.2064 | 1 |
| 489 | 8.236  | 27.78 | 589.095  | 699 | 0 | 56.37 | 589.0955 | 1 |
| 490 | 4.259  | 15.79 | 179.0329 | 692 | 0 | 58.8  | 179.0334 | 1 |
| 491 | 10.68  | 20.87 | 447.9063 | 654 | 0 | 54.92 | 447.9069 | 1 |
| 492 | 9.878  | 15.4  | 213.0131 | 645 | 0 | 50.25 | 213.0136 | 1 |
| 493 | 13.141 | 22.87 | 531.882  | 641 | 0 | 53.54 | 531.8825 | 1 |
| 494 | 15.635 | 11.89 | 178.8409 | 636 | 0 | 56.03 | 178.8415 | 1 |
| 495 | 2.113  | 21.88 | 339.1269 | 630 | 0 | 53.53 | 339.1275 | 1 |
| 496 | 5.499  | 22.86 | 326.0921 | 567 | 0 | 52.1  | 326.0926 | 1 |
| 497 | 9.778  | 22.74 | 301.0347 | 552 | 0 | 50.35 | 301.0353 | 1 |
| 498 | 14.23  | 24.06 | 325.1827 | 289 | 0 | 69.29 | 325.1833 | 1 |
| 499 | 13.946 | 24.07 | 325.183  | 220 | 0 | 83.94 | 325.1835 | 1 |
| 500 | 5.22   | 11.19 | 136.8624 | 182 | 0 | 59.98 | 136.8629 | 1 |
46 4.413 374.1189 488070 100

#### D.1.2. LC-TOF

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TD |        |          |          | 0     | 47 | 11.393 | 243.1836  | 459459 | 100  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------|----------|----------|-------|----|--------|-----------|--------|------|
| $  \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ID | RT     | Mass     | Abund    | Score | 48 | 8.202  | 390.1313  | 456835 | 100  |
| 2         4.541         176.0687         9609928         100         50         2.935         230.0466         427828         100           3         96.79         302.0427         7911017         100         51         3.384         956.9798         419902         80.7           4         11.186         402.03         6298694         100         52         2.936         144.0425         409454         100           5         6.395         198.053         4843184         100         53         4.301         639.0984         406779         100           6         11.167         404.0004         399716         100         55         5.173         358.0664         396576         100           7         6.327         367.1266         2153888         100         58         7.412         626.1849         376901         100           11         4.414         130.0266         1751921         100         69         9.749         208.0737         368623         100           12         7.407         478.0748         1735933         100         61         5.97         420.5734         352120         100           12         7.407         796. | 1  | 11.187 | 190.0245 | 31462550 | 100   | 49 | 7.709  | 354.1317  | 449339 | 100  |
| $  \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2  | 4.541  | 176.0687 | 9609928  | 100   | 50 | 2.935  | 230.0406  | 427828 | 100  |
| 4       11.186       402.03       6298694       100       52       2.936       144.0425       409454       100         5       6.395       198.053       4843184       100       53       4.301       639.094       406779       100         7       8.398       318.0375       3012739       100       55       5.173       358.0664       396376       100         8       1.1487       464.0004       3993765       100       56       2.937       162.0531       393855       100         9       5.173       290.079       2258237       100       58       7.412       626.1849       376901       100         11       4.414       130.0266       1761921       100       59       9.749       208.0737       368623       100         13       4.991       296.0532       1625799       100       61       5.97       432.1993       364096       100         14       5.422       180.0427       1611520       100       62       3.697       220.058       359423       100         15       5.492       326.11       1313795       100       63       7.151       436.1368       359443       100                                                                                  | 3  | 9.679  | 302.0427 | 7911017  | 100   | 51 | 3.384  | 956.9798  | 419902 | 80.7 |
| 5       6.395       198.053       443184       100       53       4.301       639.0984       406779       100         6       11.105       316.0582       3096999       100       54       11.187       464.0004       399716       100         8       398       318.0375       3012739       100       55       5.173       335.0664       39676       100         9       5.173       290.079       2258237       100       57       6.328       435.1138       383385       100         10       6.327       367.1266       2153888       100       58       7.412       426.1349       376901       100         11       4.414       130.0266       1761921       100       60       4.154       380.0357       366423       100         12       7.407       478.0748       1735933       100       63       7.151       436.138       35423       100         14       5.427       180.0427       1611520       100       62       3.697       220.0588       35423       100         15       4.945       578.1424       160331       100       67       3.4314       354123       10219       100                                                                                    | 4  | 11.186 | 402.03   | 6298694  | 100   | 52 | 2.936  | 144.0425  | 409454 | 100  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5  | 6.395  | 198.053  | 4843184  | 100   | 53 | 4.301  | 639.0984  | 406779 | 100  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6  | 11.105 | 316.0582 | 3096999  | 100   | 54 | 11.187 | 464.0004  | 399716 | 100  |
| 8         4.148         312.0481         2885332         100         56         2.937         162.0531         393585         100           9         5.173         290.079         2258237         100         57         6.328         435.1138         383385         100           11         4.414         130.0266         1761921         100         59         9.749         208.0737         36623         100           12         7.407         478.0748         1735933         100         60         4.154         380.0355         366748         100           13         4.991         296.0532         162.779         100         62         3.697         220.0588         359423         100           14         5.427         180.0427         1611520         100         63         7.151         436.138         350412         100           16         4.543         374.1186         1535164         100         64         4.804         296.0534         35104         100           18         5.492         326.1         1313795         100         66         5.753         432.1996         39334         100           19         4.3         617.1161 | 7  | 8.398  | 318.0375 | 3012739  | 100   | 55 | 5.173  | 358.0664  | 396376 | 100  |
| 9       5.173       290.079       2258237       100       57       6.328       435.1138       383385       100         10       6.327       367.1266       2153888       100       58       7.412       626.1849       376901       100         11       4.414       130.0266       1761921       100       59       9.749       208.0737       36623       100         12       7.407       478.0748       1735933       100       60       4.154       380.0355       366748       100         13       4.991       296.0532       1625799       100       61       5.97       432.1993       354986       100         16       4.543       374.1186       1535164       100       64       4.804       296.0534       352109       100         18       5.492       326.1       1131795       100       66       5.753       432.1996       393344       100         20       3.377       983.9984       1250877       100       68       3.656       306.0739       33346       99.8         21       5.808       326.1005       1114516       100       70       5.9316       132079       3222221       100                                                                             | 8  | 4.148  | 312.0481 | 2885332  | 100   | 56 | 2.937  | 162.0531  | 393585 | 100  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9  | 5.173  | 290.079  | 2258237  | 100   | 57 | 6.328  | 435.1138  | 383385 | 100  |
| 11 $4.414$ 130.0266 $1761921$ 10059 $9.749$ $208.0737$ $368623$ 10012 $7.407$ $478.0748$ $1735933$ 10060 $4.154$ $380.0355$ $366796$ 10013 $4.991$ $296.0532$ $1625799$ 10061 $5.97$ $432.1993$ $364096$ 10014 $5.427$ $180.0427$ $1611520$ 10062 $3.697$ $220.0588$ $359423$ 10015 $4.945$ $578.1424$ $1603301$ 10063 $7.151$ $436.1368$ $359423$ 10016 $4.543$ $374.1186$ $1535164$ 10066 $5.753$ $432.1996$ $339334$ 10016 $4.543$ $374.1186$ $1535164$ 10066 $5.753$ $432.1966$ $339334$ 10018 $5.492$ $326.11$ $1313795$ 10066 $5.753$ $432.1963$ $334270$ 10020 $3.377$ $983.9984$ $1250877$ 10068 $3.656$ $306.0739$ $33346$ 90021 $5.868$ $326.1005$ $1114516$ 10069 $5855$ $512.1529$ $327358$ 10022 $10.902$ $286.0482$ $1049368$ 100 $71$ $5.316$ $132.079$ $32221$ 10024 $8.123$ $508.122$ $1001569$ 100 $72$ $4.037$ $634.1206$ $316450$ 10025 $4.414$ $176.069$ $97588$ 100 $77$ $4.544$ $1070.0766$ <                                                                                                                                                                                                                                                                          | 10 | 6.327  | 367.1266 | 2153888  | 100   | 58 | 7.412  | 626.1849  | 376901 | 100  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 | 4.414  | 130.0266 | 1761921  | 100   | 59 | 9.749  | 208.0737  | 368623 | 100  |
| $  \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12 | 7.407  | 478.0748 | 1735933  | 100   | 60 | 4.154  | 380.0355  | 366748 | 100  |
| $      \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13 | 4.991  | 296.0532 | 1625799  | 100   | 61 | 5.97   | 432.1993  | 364096 | 100  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14 | 5.427  | 180.0427 | 1611520  | 100   | 62 | 3.697  | 220.0588  | 359423 | 100  |
| 16 $4.543$ $374.1186$ $1535164$ 100 $64$ $4.804$ $296.0534$ $352109$ 10017 $5.993$ $290.0791$ $1524397$ 100 $65$ $9.679$ $416.0354$ $350412$ 10018 $5.492$ $326.1$ $1313795$ 100 $66$ $5.753$ $432.1996$ $339334$ 10020 $3.377$ $983.9984$ $1250877$ 100 $68$ $3.656$ $306.0739$ $333046$ $99.8$ 21 $5.808$ $326.1005$ $1114516$ 100 $69$ $5.855$ $512.1529$ $327358$ 10023 $4.091$ $220.059$ $1013829$ 100 $71$ $5.316$ $132.079$ $322221$ 10024 $8.123$ $508.122$ $1001569$ 100 $72$ $4.037$ $634.1206$ $320016$ 10025 $4.414$ $176.069$ $997588$ 100 $73$ $4.544$ $1097.0706$ $316450$ 10026 $6.775$ $480.0907$ $991941$ 100 $74$ $7.407$ $500.0566$ $315836$ 10028 $7.516$ $626.1852$ $821835$ 100 $76$ $3.27$ $400.1579$ $313033$ 10029 $5799$ $578.1427$ $764387$ 100 $78$ $9.748$ $332.05232$ $307264$ 10031 $11.186$ $614.0362$ $757487$ 100 $78$ $9.748$ $330.2402$ $29560$ 10031 $11.186$ $614.0362$ $757487$ 100 $78$ $3.45$                                                                                                                                                                                                                                                       | 15 | 4.945  | 578.1424 | 1603301  | 100   | 63 | 7.151  | 436.1368  | 354986 | 100  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16 | 4.543  | 374.1186 | 1535164  | 100   | 64 | 4.804  | 296.0534  | 352109 | 100  |
| 18 $5.492$ $326.1$ $1313795$ $100$ 66 $5.753$ $432.1996$ $33934$ $100$ 19 $4.3$ $617.1161$ $1261913$ $100$ $67$ $3.418$ $154.0633$ $334270$ $100$ 20 $3.377$ $983.9984$ $1250877$ $100$ $68$ $3.656$ $306.0739$ $333046$ $998$ 21 $5.863$ $326.1005$ $1114516$ $100$ $69$ $5.855$ $512.1529$ $327358$ $100$ 22 $10.902$ $286.0482$ $1049368$ $100$ $70$ $5.993$ $358.0664$ $32698$ $100$ 23 $4.091$ $220.059$ $1013829$ $100$ $71$ $5.316$ $132.079$ $322221$ $100$ 24 $8.123$ $508.122$ $1001569$ $100$ $72$ $4.037$ $634.1206$ $320016$ $100$ 25 $4.414$ $176.069$ $997588$ $100$ $74$ $7.407$ $500.0566$ $315836$ $100$ 27 $3.388$ $967.081$ $901087$ $99$ $75$ $3.794$ $594.1372$ $315161$ $100$ 28 $7.516$ $626.1852$ $821835$ $100$ $77$ $14.847$ $195.0899$ $312576$ $98.6$ 30 $11.186$ $614.0362$ $757487$ $100$ $78$ $9.748$ $332.0532$ $307264$ $100$ 31 $11.184$ $470.0175$ $727848$ $100$ $79$ $3.562$ $592.1097$ $306951$ $100$ 32 $9.679$ $370.0301$ $67267$                                                                                                                                                                                                                    | 17 | 5.993  | 290.0791 | 1524397  | 100   | 65 | 9.679  | 416.0354  | 350412 | 100  |
| 19 $4.3$ $617.1161$ $1261913$ $100$ $67$ $3.418$ $154.0633$ $334270$ $100$ 20 $3.377$ $983.9984$ $1250877$ $100$ $68$ $3.656$ $306.0739$ $333046$ $99.8$ 21 $5.808$ $326.1005$ $1114516$ $100$ $69$ $5.855$ $512.1529$ $327358$ $100$ 22 $10.902$ $286.0482$ $1049368$ $100$ $70$ $5.993$ $358.0664$ $326989$ $100$ 23 $4.091$ $220.059$ $1013829$ $100$ $71$ $5.316$ $132.079$ $322211$ $100$ 24 $8.123$ $508.122$ $1001569$ $100$ $72$ $4.037$ $634.1206$ $320016$ $100$ 25 $4.414$ $176.069$ $997588$ $100$ $74$ $7.407$ $500.0566$ $315836$ $100$ 26 $6.775$ $480.0907$ $991941$ $100$ $74$ $7.407$ $590.0566$ $315836$ $100$ 28 $7.516$ $626.1852$ $821835$ $100$ $77$ $14.847$ $195.0899$ $312576$ $98.6$ 30 $11.186$ $614.0362$ $757487$ $100$ $78$ $9.748$ $332.0532$ $307264$ $100$ 31 $11.188$ $470.0175$ $727848$ $100$ $79$ $3.562$ $592.1097$ $306951$ $100$ 32 $9.679$ $370.0301$ $672667$ $100$ $81$ $11.187$ $275.0019$ $302300$ $100$ 33 $5.005$ $444.1997$                                                                                                                                                                                                                  | 18 | 5.492  | 326.1    | 1313795  | 100   | 66 | 5.753  | 432.1996  | 339334 | 100  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19 | 4.3    | 617.1161 | 1261913  | 100   | 67 | 3.418  | 154.0633  | 334270 | 100  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 | 3.377  | 983.9984 | 1250877  | 100   | 68 | 3.656  | 306.0739  | 333046 | 99.8 |
| 2210.902286.04821049368100705.993358.0664326989100234.091220.0591013829100715.316132.079322221100248.123508.1221001569100724.037634.1206320016100254.414176.069997588100734.5441097.0706316450100266.775480.0907991941100747.407500.0566315836100273.388967.08190108799753.794594.1372315161100287.516626.1852821835100763.27400.1579313033100295.799578.1427764387100789.748332.053230726498.63011.186614.0362757487100789.748332.05323072641003111.188470.0175727848100793.562592.1097306951100329.679370.0301672667100804.233176.0688302462100335.005444.19976580671008111.187275.0019302300100344.011316.1161603939100823.457231.0206302098100356.499164.04745952201008311.387330.240429566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21 | 5.808  | 326.1005 | 1114516  | 100   | 69 | 5.855  | 512.1529  | 327358 | 100  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22 | 10.902 | 286.0482 | 1049368  | 100   | 70 | 5.993  | 358.0664  | 326989 | 100  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23 | 4.091  | 220.059  | 1013829  | 100   | 71 | 5.316  | 132.079   | 322221 | 100  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24 | 8.123  | 508.122  | 1001569  | 100   | 72 | 4.037  | 634.1206  | 320016 | 100  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25 | 4.414  | 176.069  | 997588   | 100   | 73 | 4.544  | 1097.0706 | 316450 | 100  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26 | 6.775  | 480.0907 | 991941   | 100   | 74 | 7.407  | 500.0566  | 315836 | 100  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27 | 3.388  | 967.0081 | 901087   | 99    | 75 | 3.794  | 594.1372  | 315161 | 100  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28 | 7.516  | 626.1852 | 821835   | 100   | 76 | 3.27   | 400.1579  | 313033 | 100  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29 | 5.799  | 578.1427 | 764387   | 100   | 77 | 14.847 | 195.0899  | 312576 | 98.6 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30 | 11.186 | 614.0362 | 757487   | 100   | 78 | 9.748  | 332.0532  | 307264 | 100  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31 | 11.188 | 470.0175 | 727848   | 100   | 79 | 3.562  | 592.1097  | 306951 | 100  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32 | 9.679  | 370.0301 | 672667   | 100   | 80 | 4.233  | 176.0688  | 302462 | 100  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33 | 5.005  | 444.1997 | 658067   | 100   | 81 | 11.187 | 275.0019  | 302300 | 100  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34 | 4.011  | 316.1161 | 603939   | 100   | 82 | 3.457  | 231.0206  | 302098 | 100  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35 | 6.499  | 164.0474 | 595220   | 100   | 83 | 11.387 | 330.2404  | 295660 | 100  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36 | 6.175  | 190.0844 | 593136   | 100   | 84 | 7.247  | 168.041   | 294204 | 100  |
| 385.69448.1582580862100863.039154.0267283453100396.306166.0635552962100878.398386.0247274183100403.323430.1685537577100886.138398.030527100387416.216428.0412535236100894.118112.0162270685100424.415244.0562534321009011.187676.00652700901004311.186608.0192532936100915.995154.0268260307100443.146157.0742499324100925.493394.0872259960100452.266162.05314928311009313.454294.1831254768100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37 | 7.489  | 494.1061 | 583346   | 100   | 85 | 4.543  | 572.1691  | 287599 | 100  |
| 396.306166.0635552962100878.398386.0247274183100403.323430.1685537577100886.138398.030527100387416.216428.0412535236100894.118112.0162270685100424.415244.05625343321009011.187676.00652700901004311.186608.0192532936100915.995154.0268260307100443.146157.0742499324100925.493394.0872259960100452.266162.05314928311009313.454294.1831254768100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38 | 5.69   | 448.1582 | 580862   | 100   | 86 | 3.039  | 154.0267  | 283453 | 100  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39 | 6.306  | 166.0635 | 552962   | 100   | 87 | 8.398  | 386.0247  | 274183 | 100  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40 | 3.323  | 430.1685 | 537577   | 100   | 88 | 6.138  | 398.0305  | 271003 | 87   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41 | 6.216  | 428.0412 | 535236   | 100   | 89 | 4.118  | 112.0162  | 270685 | 100  |
| 4311.186608.0192532936100915.995154.0268260307100443.146157.0742499324100925.493394.0872259960100452.266162.05314928311009313.454294.1831254768100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42 | 4.415  | 244.0562 | 534332   | 100   | 90 | 11.187 | 676.0065  | 270090 | 100  |
| 443.146157.0742499324100925.493394.0872259960100452.266162.05314928311009313.454294.1831254768100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43 | 11.186 | 608.0192 | 532936   | 100   | 91 | 5.995  | 154.0268  | 260307 | 100  |
| 45 2.266 162.0531 492831 100 93 13.454 294.1831 254768 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44 | 3.146  | 157.0742 | 499324   | 100   | 92 | 5.493  | 394.0872  | 259960 | 100  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45 | 2.266  | 162.0531 | 492831   | 100   | 93 | 13.454 | 294.1831  | 254768 | 100  |

| 94    | 7.491                     | 510.2311  | 252260 | 100  | 142 | 11.187                     | 682.0232 | 167003 | 100  |
|-------|---------------------------|-----------|--------|------|-----|----------------------------|----------|--------|------|
| 95    | 11.186                    | 820.0249  | 251320 | 100  | 143 | 11.194                     | 531.9876 | 166005 | 93.7 |
| 96    | 5.419                     | 428.1891  | 248913 | 100  | 144 | 5.69                       | 516.1452 | 165814 | 100  |
| 97    | 7.346                     | 464.0953  | 248067 | 100  | 145 | 6.815                      | 510.1372 | 165601 | 100  |
| 98    | 5.273                     | 510.1374  | 247558 | 100  | 146 | 11.252                     | 192.0792 | 163986 | 100  |
| 99    | 4.989                     | 364.0403  | 244970 | 100  | 147 | 5.62                       | 488.1528 | 163555 | 100  |
| 100   | 4.927                     | 294.1316  | 244453 | 100  | 148 | 8.124                      | 576.1092 | 163327 | 100  |
| 101   | 6.816                     | 510.2312  | 243320 | 100  | 149 | 4.932                      | 214.0457 | 162707 | 100  |
| 102   | 11.230                    | 325.000   | 241888 | 100  | 150 | 5.006                      | 512.1865 | 162546 | 100  |
| 103   | 7.420                     | 596.1741  | 2/1330 | 100  | 151 | 4.542                      | 566.152  | 161000 | 100  |
| 104   | 7. <del>4</del> -9<br>4.1 | 288.0458  | 236700 | 100  | 152 | 3.514                      | 280.1158 | 161605 | 100  |
| 105   | 5.043                     | 414 1737  | 23/1/7 | 100  | 152 | 6 205                      | 266 0403 | 161222 | 100  |
| 105   | 7 262                     | 202 0042  | 228454 | 80   | 153 | 5 516                      | 226.0403 | 160685 | 100  |
| 107   | F 800                     | 204.0872  | 226494 | 100  | 155 | 2.285                      | 320.0039 | 158020 | 100  |
| 107   | 10 778                    | 228 2248  | 220/31 | 100  | 155 | 3.305<br>4.802             | 414 1726 | 158959 | 100  |
| 100   | 2 164                     | 320.2240  | 220230 | 100  | 150 | 4.003                      | 284 1021 | 1-8686 | 100  |
| 110   | 3.104                     | 230.0400  | 224270 | 100  | 157 | 4.011<br>6 <del>77</del> 6 | 304.1031 | 150000 | 100  |
| 110   | 3.192                     | 400.1739  | 222002 | 100  | 150 | 6 = 26                     | 540.0775 | 15//10 | 100  |
| 111   | 5.239                     | 320.1003  | 213050 | 100  | 159 | 6.400                      | 494.0095 | 150127 | 100  |
| 112   | 11.100                    | 140.0345  | 212090 | 100  | 100 | 6.299                      | /30.1401 | 155000 | 100  |
| 113   | 11.102                    | 304.0457  | 210605 | 100  | 101 | 0.000                      | 400.1527 | 152052 | 100  |
| 114   | 7.339                     | 204.0998  | 206800 | 100  | 162 | 5.799                      | 646.1298 | 150590 | 100  |
| 115   | 7.525                     | 450.1158  | 206344 | 100  | 163 | 4.821                      | 342.0951 | 149886 | 100  |
| 116   | 9.679                     | 438.0172  | 203532 | 100  | 164 | 4.088                      | 176.0687 | 148446 | 100  |
| 117   | 8.092                     | 188.1051  | 202046 | 100  | 165 | 8.037                      | 668.1951 | 148215 | 100  |
| 118   | 5.325                     | 158.0581  | 197351 | 100  | 166 | 11.228                     | 319.9821 | 147948 | 80   |
| 119   | 7.768                     | 364.0792  | 194767 | 100  | 167 | 11.19                      | 538.0047 | 146914 | 98.4 |
| 120   | 4.147                     | 150.0169  | 194081 | 100  | 168 | 7.711                      | 340.0795 | 146863 | 100  |
| 121   | 4.983                     | 384.0149  | 193819 | 90.4 | 169 | 6.303                      | 234.0506 | 145459 | 100  |
| 122   | 3.321                     | 498.1558  | 190819 | 100  | 170 | 7.625                      | 456.2203 | 145096 | 100  |
| 123   | 4.153                     | 334.0301  | 189826 | 100  | 171 | 6.023                      | 488.153  | 143892 | 100  |
| 124   | 5.741                     | 296.1473  | 187017 | 100  | 172 | 4.226                      | 652.2573 | 141720 | 100  |
| 125   | 9.795                     | 228.079   | 186086 | 100  | 173 | 4.418                      | 312.044  | 140460 | 96.6 |
| 126   | 3.378                     | 1034.9955 | 186056 | 99.4 | 174 | 11.186                     | 418.004  | 140450 | 100  |
| 127   | 4.645                     | 594.1369  | 185142 | 100  | 175 | 3.139                      | 482.106  | 140423 | 80   |
| 128   | 5.938                     | 320.0529  | 184094 | 98.9 | 176 | 4.119                      | 594.1371 | 140216 | 100  |
| 129   | 4.149                     | 646.0782  | 183860 | 100  | 177 | 4.084                      | 244.056  | 138945 | 100  |
| 130   | 3.678                     | 244.0586  | 183239 | 99.2 | 178 | 5.626                      | 645.1476 | 138940 | 100  |
| 131   | 4.771                     | 244.0561  | 182282 | 100  | 179 | 9.262                      | 264.1362 | 138873 | 100  |
| 132   | 8.134                     | 244.1313  | 181151 | 100  | 180 | 3.413                      | 316.0797 | 137996 | 100  |
| 133   | 5.263                     | 414.0256  | 179439 | 100  | 181 | 7.684                      | 244.0738 | 137914 | 100  |
| 134   | 6.703                     | 480.0903  | 177461 | 100  | 182 | 8.545                      | 434.1209 | 137792 | 100  |
| 135   | 4.194                     | 182.0582  | 173956 | 100  | 183 | 3.829                      | 488.0735 | 136683 | 100  |
| 136   | 4.945                     | 646.1297  | 172670 | 100  | 184 | 5.449                      | 448.1579 | 136445 | 100  |
| 137   | 6.485                     | 462.1728  | 171584 | 100  | 185 | 11.144                     | 325.999  | 136059 | 100  |
| 138   | 4.303                     | 661.08    | 170755 | 96.5 | 186 | 4.127                      | 554.0878 | 134598 | 100  |
| 130   | 6.022                     | 430.2100  | 169866 | 100  | 187 | 6.789                      | 508.1214 | 133880 | 100  |
| 140   | 5.161                     | 485.1104  | 168616 | 100  | 188 | 4.175                      | 184.0376 | 133001 | 100  |
| 141   | 3.120                     | 220.0585  | 167038 | 100  | 189 | 4.419                      | 306.0263 | 132917 | 100  |
| - r - | J                         |           | -,-,-  |      |     | 11-1-2                     | J J      |        |      |

D.1. Shiraz

| 190               | 5.303          | 316.1158 | 132853 | 100  | 238                     | 3.302          | 659.1025             | 102307                      | 95.1        |
|-------------------|----------------|----------|--------|------|-------------------------|----------------|----------------------|-----------------------------|-------------|
| 191               | 7.517          | 648.1664 | 132790 | 100  | 239                     | 8.082          | 782.2056             | 101526                      | 100         |
| 192               | 3.729          | 866.2061 | 132352 | 100  | 240                     | 5.2            | 452.1316             | 100194                      | 100         |
| 193               | 4.156          | 402.0174 | 129850 | 100  | 241                     | 6.175          | 258.0713             | 100017                      | 100         |
| 194               | 6.024          | 564.2415 | 129848 | 100  | 242                     | 6.011          | 324.1321             | 99280                       | 100         |
| 195               | 8.203          | 458.1184 | 129192 | 100  | 243                     | 8.203          | 436.1333             | 98874                       | 100         |
| 196               | 5.939          | 194.0207 | 127094 | 100  | 244                     | 6.463          | 540.1476             | 98512                       | 100         |
| 197               | 4.103          | 462.0983 | 126179 | 100  | 245                     | 4.413          | 442.1061             | 98296                       | 100         |
| 198               | 4.15           | 180.0427 | 125723 | 100  | 246                     | 2.037          | 292.0106             | 98197                       | 100         |
| 100               | 0.68           | 432.0008 | 125637 | 100  | - <del>1</del> °<br>247 | 5.428          | 248.0200             | 97420                       | 100         |
| 200               | 7.488          | 562.0034 | 125464 | 100  | 248                     | 4.118          | 174.0165             | 97 <del>4</del> -0<br>06210 | 100         |
| 201               | 6 2 2 0        | 502 1000 | 125448 | 100  | 240                     | 6.014          | 426 2206             | 06050                       | 100         |
| 201               | 2.028          | 246.0874 | 125226 | 100  | 249                     | 2 125          | 430.2300             | 90059                       | 05.5        |
| 202               | 4 804          | 274 1212 | 123320 | 100  | 250                     | 2.125          | 258.0866             | 95950                       | 95·5<br>100 |
| 203               | 4.094<br>8.100 | 182.0581 | 124010 | 100  | 251                     | 3.701<br>6.466 | 350.0000             | 95900                       | 100         |
| 204               | 0.109<br>= 160 | 102.0501 | 124430 | 100  | 252                     | 6 -86          | 494.1415             | 95/92                       | 100         |
| 205               | 7.103          | 442.2047 | 124229 | 100  | 253                     | 0.700          | 506.2250             | 95221                       | 100         |
| 206               | 3.772          | 400.15/9 | 124207 | 100  | 254                     | 4.301          | 496.1219             | 94913                       | 100         |
| 207               | 11.19          | 247.9829 | 123019 | 100  | 255                     | 4.414          | 1097.0703            | 94601                       | 100         |
| 208               | 7.338          | 272.0872 | 122577 | 100  | 256                     | 4.264          | 326.158              | 94563                       | 93.1        |
| 209               | 7.424          | 472.1942 | 122019 | 100  | 257                     | 6.809          | 566.1632             | 94355                       | 100         |
| 210               | 6.086          | 450.1161 | 121525 | 100  | 258                     | 11.185         | 479.9726             | 94304                       | 100         |
| 211               | 5.172          | 404.0715 | 120725 | 100  | 259                     | 11.146         | 319.982              | 94237                       | 100         |
| 212               | 4.935          | 146.0581 | 119782 | 100  | 260                     | 6.752          | 560.1163             | 93357                       | 100         |
| 213               | 10.902         | 354.0349 | 119631 | 100  | 261                     | 5.144          | 324.1421             | 93301                       | 94.6        |
| 214               | 6.698          | 348.1241 | 119434 | 100  | 262                     | 11.245         | 387.9696             | 92956                       | 100         |
| 215               | 8.55           | 441.1634 | 118436 | 100  | 263                     | 5.502          | 866.2049             | 91758                       | 100         |
| 216               | 5.137          | 342.0949 | 115906 | 100  | 264                     | 8.119          | 478.1107             | 91566                       | 100         |
| 217               | 4.492          | 510.1373 | 113207 | 100  | 265                     | 7.151          | 504.124              | 91321                       | 100         |
| 218               | 4.963          | 306.0739 | 112324 | 100  | 266                     | 6.042          | 428.1893             | 91172                       | 100         |
| 219               | 7.309          | 304.0585 | 112177 | 100  | 267                     | 5.172          | 426.0535             | 90228                       | 100         |
| 220               | 4.618          | 880.1728 | 111885 | 85.7 | 268                     | 4.421          | 374.0139             | 89905                       | 98          |
| 221               | 6.395          | 312.0457 | 111766 | 100  | 269                     | 4.523          | 396.1005             | 89671                       | 82.9        |
| 222               | 7.045          | 205.0741 | 111108 | 100  | 270                     | 4.931          | 314.0978             | 89400                       | 98.2        |
| 223               | 11.393         | 311.1703 | 110846 | 100  | 271                     | 6.457          | 866.2055             | 89110                       | 100         |
| 224               | 4.584          | 266.0378 | 110784 | 100  | 272                     | 7.77           | 658.19               | 87756                       | 100         |
| 225               | 5.208          | 132.0789 | 110391 | 100  | 273                     | 2.959          | 298.0275             | 87606                       | 87          |
| 226               | 5.315          | 200.0664 | 109741 | 100  | 274                     | 8.847          | 228.0792             | 86803                       | 100         |
| 227               | 7.924          | 354.1314 | 109093 | 100  | 275                     | 4.096          | 310.028              | 85480                       | 84.6        |
| ,<br>228          | 9.378          | 726.2165 | 108641 | 100  | 276                     | 5.809          | 552.1475             | 85456                       | 100         |
| 229               | 7.406          | 782.2057 | 108105 | 100  | 277                     | 8.3            | 640.2002             | 85300                       | 80          |
| 230               | 5.994          | 336.0844 | 107752 | 100  | 278                     | 6.749          | 248.0899             | 84854                       | 100         |
| 221               | 7 407          | 568 0438 | 107264 | 100  | 270                     | 5.001          | 404.0710             | 84580                       | 100         |
| 222               | 3.540          | 324.1422 | 105788 | 100  | 280                     | 1.268          | 414.1727             | 83605                       | 100         |
| - <u>-</u><br>222 | J·J49<br>7 516 | 604 1710 | 105772 | 100  | 281                     | 7.078          | 782 2048             | 82577                       | 07          |
| -<br>221          | 7 266          | 620 126  | 105720 | 100  | 282                     | 1 125          | 522.2040             | 82181                       | 77<br>100   |
|                   | 2.048          | 118 0627 | 105402 | 100  | 282                     | 4·+            | 220.0040             | 8228-                       | 100         |
| -35<br>226        | 2.940<br>= 8=1 | -80 1407 | 102521 | 100  | 203<br>284              | 5.995<br>0.177 | 330.0949<br>T26.2161 | 82220                       | 100         |
| ∠ <u>3</u> 0      | 5.054          | 182 1061 | 103531 | 100  | 204                     | 9.177          | 126.2101             | 8250<br>82582               | 100         |
| 231               | 5.529          | 402.1001 | 102440 | 100  | 205                     | 5.992          | 420.0537             | 02/02                       | 100         |

| 286 | 6.57   | 578.1417 | 82435 | 100  |
|-----|--------|----------|-------|------|
| 287 | 10.571 | 272.0684 | 82178 | 100  |
| 288 | 5.206  | 286.0511 | 82067 | 100  |
| 289 | 7.617  | 220.095  | 82023 | 100  |
| 290 | 11.188 | 691.9788 | 81657 | 100  |
| 291 | 4.93   | 276.016  | 81588 | 100  |
| 292 | 3.697  | 288.0455 | 81402 | 96.5 |
| 293 | 5.172  | 336.0843 | 81188 | 100  |
| 294 | 2.937  | 359.9976 | 80950 | 100  |
| 295 | 5.172  | 326.0552 | 79966 | 100  |
| 296 | 8.066  | 288.1574 | 79885 | 100  |
| 297 | 3.563  | 660.0971 | 79788 | 100  |
| 298 | 11.188 | 888.012  | 79704 | 97.5 |
| 299 | 8.293  | 288.0634 | 79511 | 100  |
| 300 | 3.193  | 207.0535 | 79452 | 92   |
|     |        |          |       |      |

## D.2. Blaufränkisch-Zweigelt-Merlot

### D.2.1. LC-IM-(Q)TOF

| Feature | RT     | DT    | m/z      | Abund   | Ω [Ų] | Ζ | Quality | Mass     | Ions |
|---------|--------|-------|----------|---------|-------|---|---------|----------|------|
| 1       | 11.196 | 15.77 | 189.0165 | 1030453 | 129   | 1 | 100     | 190.0238 | 2    |
| 2       | 11.194 | 23.11 | 401.0195 | 771867  | 184.4 | 1 | 99.62   | 402.0267 | 3    |
| 3       | 5.188  | 19.16 | 289.0705 | 576781  | 154.1 | 1 | 100     | 290.0778 | 3    |
| 4       | 9.688  | 20.09 | 301.0343 | 509223  | 161.5 | 1 | 100     | 302.0416 | 3    |
| 5       | 4.169  | 27.67 | 623.0857 | 407698  | 219   | 1 | 100     | 624.093  | 3    |
| 6       | 6.002  | 19.16 | 289.0706 | 387339  | 154.1 | 1 | 100     | 290.0779 | 3    |
| 7       | 6.408  | 16.7  | 197.0432 | 345966  | 136.5 | 1 | 100     | 198.0505 | 3    |
| 8       | 4.956  | 27.55 | 577.1313 | 329952  | 218.4 | 1 | 100     | 578.1385 | 3    |
| 9       | 4.551  | 15.49 | 175.0606 | 290715  | 127.3 | 1 | 75      | 176.0679 | 3    |
| 10      | 8.411  | 20.43 | 317.0291 | 255515  | 164   | 1 | 100     | 318.0364 | 3    |
| 11      | 4.168  | 19.67 | 311.0388 | 209886  | 157.9 | 1 | 71.27   | 312.0461 | 1    |
| 12      | 5.808  | 27.7  | 577.1324 | 183068  | 219.6 | 1 | 100     | 578.1397 | 2    |
| 13      | 5.443  | 15.82 | 179.0333 | 172913  | 129.9 | 1 | 100     | 180.0405 | 3    |
| 14      | 8.212  | 22.41 | 389.1223 | 167531  | 178.8 | 1 | 100     | 390.1296 | 3    |
| 15      | 5.003  | 20.99 | 295.0431 | 163742  |       | 0 | 79.99   | 295.0436 | 1    |
| 16      | 6.337  | 22.44 | 366.1163 | 149700  | 179.5 | 1 | 100     | 367.1236 | 2    |
| 17      | 11.239 | 17.75 | 257.0031 | 146086  | 143.3 | 1 | 51.06   | 258.0104 | 2    |
| 18      | 7.563  | 27.16 | 497.3323 | 144242  | 216   | 1 | 100     | 498.3395 | 3    |
| 19      | 4.553  | 23.33 | 373.1089 | 141166  | 186.7 | 1 | 100     | 374.1162 | 3    |
| 20      | 4.172  | 29.44 | 645.0669 | 134578  | 233   | 1 | 72.7    | 646.0741 | 2    |
| 21      | 3.686  | 19.57 | 305.0648 | 129080  | 157.2 | 1 | 97      | 306.0721 | 2    |
| 22      | 6.222  | 23.62 | 427.0302 | 116783  | 188.1 | 1 | 80.42   | 428.0375 | 2    |
| 23      | 7.414  | 25.31 | 477.0646 | 111931  | 201.2 | 1 | 100     | 478.0719 | 2    |
| 24      | 6.09   | 23.4  | 384.2478 | 110633  | 187   | 1 | 69.63   | 385.2551 | 2    |
| 25      | 11.193 | 24.55 | 469.0088 | 105481  | 195.2 | 1 | 83.05   | 470.0161 | 2    |
| 26      | 9.752  | 17.76 | 207.0652 | 104607  | 145   | 1 | 82.98   | 208.0725 | 2    |
| 27      | 3.818  | 27.71 | 593.1279 | 102269  | 219.6 | 1 | 100     | 594.1352 | 3    |
| 28      | 3.587  | 21.62 | 368.0966 | 99360   | 172.7 | 1 | 73.54   | 369.1039 | 2    |
| 29      | 5.187  | 21.29 | 357.0562 | 97668   | 170.3 | 1 | 100     | 358.0635 | 3    |
| 30      | 11.114 | 21    | 315.0504 | 92579   | 168.6 | 1 | 94.17   | 316.0577 | 2    |
| 31      | 4.168  | 15.83 | 179.034  | 91439   | 130.1 | 1 | 63      | 180.0413 | 2    |
| 32      | 3.37   | 23.95 | 429.159  | 85357   | 190.9 | 1 | 59.92   | 430.1663 | 3    |
| 33      | 3.31   | 23.21 | 399.1479 | 84824   | 185.2 | 1 | 93.83   | 400.1552 | 3    |
| 34      | 11.395 | 19.33 | 242.1754 | 82299   | 156.9 | 1 | 100     | 243.1827 | 2    |
| 35      | 3.858  | 25.15 | 487.0645 | 81664   | 199.9 | 1 | 100     | 488.0717 | 3    |
| 36      | 9.803  | 19.09 | 227.0707 | 81044   |       | 0 | 78.48   | 227.0712 | 1    |
| 37      | 7.272  | 19.01 | 300.9976 | 80083   |       | 0 | 79.99   | 300.9981 | 1    |
| 38      | 3.367  | 23.54 | 383.1533 | 79883   | 188.2 | 1 | 73.69   | 384.1606 | 2    |
| 39      | 6.004  | 21.29 | 357.0569 | 76695   | 170.2 | 1 | 100     | 358.0641 | 2    |
| 40      | 11.679 | 17.75 | 231.0088 | 73540   | 144   | 1 | 92.56   | 232.0161 | 3    |
| 41      | 7.094  | 27.25 | 497.3308 | 72962   | 216.7 | 1 | 81.64   | 498.3381 | 2    |
| 42      | 4.196  | 21.54 | 311.0387 | 66929   | 173.2 | 1 | 60.75   | 312.046  | 2    |
| 43      | 8.13   | 26.84 | 507.1121 | 61534   | 213.3 | 1 | 79.99   | 508.1193 | 1    |
| 44      | 3.525  | 19.46 | 279.1075 | 60273   | 156.8 | 1 | 76.04   | 280.1147 | 2    |
| 45      | 4.136  | 20.03 | 333.0205 | 59368   | 160.4 | 1 | 62.68   | 334.0278 | 2    |
| 46      | 7.52   | 28.77 | 625.1749 | 58635   | 227.8 | 1 | 100     | 626.1822 | 3    |
| 47      | 4.02   | 20.98 | 315.1066 | 51385   | 168.5 | 1 | 56.92   | 316.1139 | 3    |

| 48  | 9.753  | 21.24 | 331.045  | 51302 | 170.3 | 1 | 96.63 | 332.0523 | 3 |
|-----|--------|-------|----------|-------|-------|---|-------|----------|---|
| 49  | 5.694  | 24.88 | 447.1471 | 49681 | 198.1 | 1 | 95.89 | 448.1544 | 3 |
| 50  | 11.198 | 26.19 | 401.0217 | 49295 | 209.5 | 1 | 76.29 | 402.029  | 2 |
| 51  | 5.005  | 24.17 | 443.1888 | 48961 | 192.4 | 1 | 100   | 444.1961 | 2 |
| 52  | 4.422  | 24.43 | 373.11   | 45321 | 195.6 | 1 | 100   | 374.1173 | 2 |
| 53  | 3.721  | 21.33 | 357.0772 | 43710 | 170.6 | 1 | 75.77 | 358.0844 | 3 |
| 54  | 4.933  | 20.06 | 293.1208 | 41762 |       | 0 | 79.99 | 293.1214 | 1 |
| 55  | 3.594  | 27.68 | 591.1006 | 41642 | 219.3 | 1 | 52.57 | 592.1079 | 2 |
| 56  | 8.213  | 24    | 457.1078 | 39671 |       | 0 | 79.99 | 457.1084 | 1 |
| 57  | 10.913 | 19.77 | 285.0388 | 38486 |       | 0 | 50.65 | 285.0393 | 1 |
| 58  | 5.693  | 24.56 | 401.142  | 37986 |       | 0 | 76.59 | 401.1425 | 1 |
| 59  | 3.539  | 22.4  | 385.1338 | 36056 | 178.8 | 1 | 100   | 386.1411 | 2 |
| 60  | 4.661  | 27.87 | 593.1262 | 34038 | 220.8 | 1 | 100   | 594.1335 | 3 |
| 61  | 11.149 | 19.62 | 318.9731 | 33871 | 157.3 | 1 | 100   | 319.9804 | 2 |
| 62  | 11.206 | 24.84 | 462.9912 | 32842 | 197.6 | 1 | 55.85 | 463.9985 | 2 |
| 63  | 7.717  | 21.73 | 339.0711 | 32733 | 174.1 | 1 | 76.96 | 340.0784 | 1 |
| 64  | 6.337  | 24.11 | 434.1034 | 32537 | 192   | 1 | 88.05 | 435.1107 | 3 |
| 65  | 5.529  | 22.27 | 325.0537 | 31651 | 178.9 | 1 | 84.68 | 326.061  | 2 |
| 66  | 11.191 | 15.68 | 145.0261 | 30692 |       | 0 | 60.06 | 145.0267 | 1 |
| 67  | 8.553  | 23.99 | 433.1122 | 30400 | 191.1 | 1 | 86.29 | 434.1195 | 2 |
| 68  | 5.186  | 27.36 | 579.1464 | 30119 | 216.8 | 1 | 54.28 | 580.1536 | 3 |
| 69  | 3.858  | 25.84 | 509.0476 | 29097 |       | 0 | 71.41 | 509.0481 | 1 |
| 70  | 4.035  | 22.26 | 383.0934 | 27183 | 177.8 | 1 | 59.14 | 384.1006 | 2 |
| 71  | 6.817  | 26.79 | 509.1268 | 26209 | 212.9 | 1 | 69.05 | 510.1341 | 2 |
| 72  | 5.283  | 26.43 | 509.1253 | 26047 | 210   | 1 | 88.2  | 510.1325 | 3 |
| 73  | 7.414  | 25.76 | 499.0461 | 24693 | 204.6 | 1 | 96.08 | 500.0534 | 3 |
| 74  | 6.793  | 26.72 | 507.1111 | 23322 | 212.4 | 1 | 92.63 | 508.1184 | 2 |
| 75  | 8.096  | 17.01 | 209.0788 | 22676 | 138.6 | 1 | 95.03 | 210.086  | 2 |
| 76  | 7.567  | 27.54 | 514.3217 | 22545 |       | 0 | 71.54 | 514.3222 | 1 |
| 77  | 7.416  | 28.97 | 625.1736 | 22172 | 229.4 | 1 | 90.45 | 626.1809 | 3 |
| 78  | 4.975  | 19.57 | 305.0627 | 21730 | 157.1 | 1 | 92.93 | 306.07   | 2 |
| 79  | 11.193 | 29.84 | 607.0107 | 21716 | 236.6 | 1 | 73.16 | 608.018  | 2 |
| 80  | 6.514  | 15.46 | 163.0382 | 21311 | 127.7 | 1 | 52.2  | 164.0455 | 2 |
| 81  | 6.013  | 14.46 | 153.0192 | 21296 |       | 0 | 74.54 | 153.0198 | 1 |
| 82  | 7.158  | 25.76 | 435.1258 | 21244 | 205.5 | 1 | 68.6  | 436.1331 | 2 |
| 83  | 4.313  | 27.94 | 638.0876 | 20973 | 221   | 1 | 71.41 | 639.0948 | 2 |
| 84  | 11.65  | 24.1  | 435.1394 | 20967 | 192   | 1 | 69.71 | 436.1467 | 2 |
| 85  | 4.582  | 17.67 | 265.0289 | 19731 | 142.4 | 1 | 66.4  | 266.0361 | 2 |
| 86  | 11.39  | 21.23 | 310.1629 | 19621 | 170.7 | 1 | 64.68 | 311.1702 | 2 |
| 87  | 3.451  | 20.96 | 315.0703 | 19617 | 168.3 | 1 | 58.05 | 316.0775 | 2 |
| 88  | 8.117  | 16.35 | 181.05   | 19335 |       | 0 | 63.37 | 181.0506 | 1 |
| 89  | 7.773  | 22.51 | 363.0711 | 18732 | 180.1 | 1 | 63.96 | 364.0784 | 2 |
| 90  | 5.183  | 20.6  | 289.0703 | 18039 | 166   | 1 | 99.15 | 290.0776 | 2 |
| 91  | 7.72   | 20.43 | 339.0713 | 17712 | 163.5 | 1 | 67.06 | 340.0786 | 2 |
| 92  | 9.686  | 22.77 | 369.0209 | 17054 | 182.1 | 1 | 89.75 | 370.0282 | 2 |
| 93  | 3.708  | 18.22 | 243.0501 | 16950 |       | 0 | 65.31 | 243.0507 | 1 |
| 94  | 5.002  | 22.38 | 363.0296 | 16871 |       | 0 | 63.41 | 363.0302 | 1 |
| 95  | 8.091  | 23.47 | 451.1003 | 16827 | 186.6 | 1 | 69.64 | 452.1076 | 2 |
| 96  | 5.009  | 23.1  | 385.0109 | 16644 | 184.5 | 1 | 57.65 | 386.0182 | 2 |
| 97  | 5.754  | 24.89 | 431.1896 | 16644 |       | 0 | 79.99 | 431.1901 | 1 |
| 98  | 6.579  | 27.73 | 577.132  | 16192 | 219.8 | 1 | 53.53 | 578.1393 | 2 |
| 99  | 7.164  | 25.68 | 389.1205 | 16171 | 205.6 | 1 | 62.19 | 390.1278 | 2 |
| 100 | 8.108  | 16.68 | 187.0979 | 15174 |       | 0 | 59.74 | 187.0984 | 1 |

#### D.2. Blaufränkisch-Zweigelt-Merlot

| 101 | 5.509          | 22.25 | 325.0896             | 14812    | 178.7  | 1 | 55.38                      | 326.0969             | 2      |
|-----|----------------|-------|----------------------|----------|--------|---|----------------------------|----------------------|--------|
| 102 | 4.439          | 29.89 | 701.0993             | 14806    | 236.3  | 1 | 50.97                      | 702.1065             | 2      |
| 103 | 11.148         | 21.19 | 386.9612             | 14476    | 169    | 1 | 98.74                      | 387.9685             | 2      |
| 104 | 5.969          | 24.61 | 431.1905             | 14464    |        | 0 | 53.92                      | 431.191              | 1      |
| 105 | 4.821          | 20.04 | 295.0437             | 14110    | 161.2  | 1 | 51.62                      | 296.051              | 2      |
| 106 | 5.447          | 14.25 | 135.045              | 14071    |        | 0 | 66.14                      | 135.0455             | 1      |
| 107 | 8.073          | 19.83 | 287.1483             | 13972    |        | 0 | 52.8                       | 287.1488             | 1      |
| 108 | 7.707          | 23.81 | 353.1233             | 13718    | 190.9  | 1 | 77.28                      | 354.1306             | 1      |
| 109 | 6.946          | 22.47 | 397.0587             | 13377    |        | 0 | 52.87                      | 397.0592             | 1      |
| 110 | 5.458          | 25.19 | 447.1465             | 13295    | 200.7  | 1 | 85.9                       | 448.1538             | 2      |
| 111 | 6.736          | 25.69 | 493.0591             | 13024    | 204.2  | 1 | 81.01                      | 494.0664             | 2      |
| 112 | 6.001          | 22.4  | 419.0275             | 12559    |        | 0 | 83.06                      | 419.028              | 1      |
| 113 | 6.137          | 22.71 | 576.1232             | 12455    | 352.3  | 2 | 84.34                      | 1154.261             | 3      |
| 114 | 5.062          | 20.11 | 203.1221             | 12303    | 161.9  | 1 | 85.71                      | 294.1294             | 2      |
| 115 | 8.863          | 19.18 | 227.0707             | 12131    | 156.1  | 1 | 73.01                      | 228.078              | 2      |
| 116 | 4.554          | 26.85 | 565.1417             | 12027    | 212.8  | 1 | 100                        | 566.149              | 2      |
| 117 | 4 4 4 4        | 18.66 | 242.0468             | 11026    | 151.2  | 1 | 62 50                      | 244 0541             | - 2    |
| 118 | 4.444<br>5 187 | 22.21 | 425.0400             | 11022    | 191.2  | 0 | 778                        | 425 0447             | 1      |
| 110 | 5 201          | 22.91 | 207.0556             | 11580    | 176.6  | 1 | 72.04                      | 208 0620             | 2      |
| 120 | 7 512          | 28.62 | 597.0330             | 11517    | 170.0  | 0 | 75.9 <del>4</del><br>66.61 | 590.0029             | 1      |
| 120 | 4.088          | 16.04 | 210.0408             | 11/81    |        | 0 | 65.24                      | 210.0502             | 1      |
| 122 | <b>5</b> 425   | 24 54 | 427 1786             | 11288    |        | 0 | 54.81                      | 427 1702             | 1      |
| 122 | 4.00           | 18 5  | 242 0471             | 11211    |        | 0 | 85 52                      | 242 0477             | 1      |
| 123 | 5.000          | 21.02 | 206 0462             | 11205    |        | 0 | =8.28                      | 206 0468             | 1      |
| 124 | 8 211          | 22.05 | 290.0403             | 11299    | 188.6  | 1 | 64.06                      | 290.0400             | 1      |
| 125 | 7 562          | 25.0  | 487 2024             | 11219    | 212.0  | 1 | 54.90<br>F4.87             | 488 2107             | 2      |
| 120 | 7.503          | 20.70 | 407.3034             | 11210    | 212.9  | 1 | 54.07                      | 400.3107             | 3<br>1 |
| 12/ | 4 587          | 10.2  | 454.9474             | 10005    | 1545   | 1 | 53.5<br>64.68              | 454.940              | 1<br>2 |
| 120 | 4.507          | 19.3  | 320.9907             | 10005    | 154.5  | 1 | 04.00<br>72.45             | 320.000              | ∠<br>1 |
| 129 | 5.990          | 20.50 | 209.0700             | 10905    | 105.0  | 0 | 72.43                      | 290.0779             | 1      |
| 130 | 4.120          | 20.03 | 553.0700<br>402.0061 | 10/00    | 206.2  | 1 | -8 26                      | 553.0772<br>404 1022 | 2      |
| 131 | 7.409          | 25.94 | 493.0901             | 10031    | 200.2  | 1 | 50.20<br>60.1 <del>0</del> | 494.1033             | 3      |
| 132 | 2.447          | 25.95 | 530.9793             | 10359    | 205.9  | 1 |                            | 531.9005             |        |
| 133 | 3.447          | 15.27 | 153.0554             | 10200    |        | 0 | 70                         | 153.0559             | 1      |
| 134 | 5.395          | 23.04 | 451.1191             | 10064    |        | 0 | 79.99                      | 451.1196             | 1      |
| 135 | 4.397          | 10.07 | 243.0471             | 9937     | 151.3  | 1 | 51.21                      | 244.0544             | 1      |
| 136 | 10.501         | 19.92 | 2/1.0602             | 9928     |        | 0 | 73.1                       | 2/1.000/             | 1      |
| 137 | 5.10           | 22.4  | 419.027              | 9692     | 1/0.4  | 1 | 00.11                      | 420.0342             | 2      |
| 130 | 4.592          | 19.52 | 333.0157             | 9000     | a 60 6 | 0 | 59.03                      | 333.0103             | 1      |
| 139 | 4.454          | 21.01 | 323.1334             | 9625     | 100.0  | 1 | 96.29                      | 324.1407             | 2      |
| 140 | 11.20          | 21.19 | 300.9000             | 9510     | 169    | 1 | 53.52                      | 307.9001             | 2      |
| 141 | 10.229         | 18.73 | 228.1607             | 9387     | - 0    | 0 | 53.87                      | 228.1012             | 1      |
| 142 | 6.098          | 23.84 | 487.1425             | 8991     | 189.3  | 1 | 51.9                       | 488.1498             | 2      |
| 143 | 7.43           | 27.84 | 595.1638             | 8862     | 220.6  | 1 | 54.78                      | 596.1711             | 2      |
| 144 | 11.257         | 21.55 | 392.9763             | 8789     |        | 0 | 56.17                      | 392.9769             | 1      |
| 145 | 11.268         | 17.49 | 191.0704             | 8587     | 143.5  | 1 | 71.74                      | 192.0776             | 2      |
| 146 | 8.511          | 20.44 | 317.0282             | 8133     | 164    | 1 | 57.21                      | 318.0355             | 2      |
| 147 | 4.93           | 21.81 | 361.1077             | 8119     |        | 0 | 79.99                      | 361.1082             | 1      |
| 148 | 9.683          | 22.81 | 391.0028             | 8014     |        | 0 | 84.69                      | 391.0033             | 1      |
| 149 | 6.583          | 18.83 | 261.1326             | 7855<br> |        | 0 | 69.41                      | 261.1332             | 1      |
| 150 | 5.853          | 14.07 | 174.9554             | 7833     |        | 0 | 58.28                      | 174.9559             | 1      |
| 151 | 5.526          | 22.83 | 393.0403             | 7800     |        | 0 | 62.69                      | 393.0409             | 1      |
| 152 | 4.214          | 25.32 | 515.0767             | 7785     |        | 0 | 52.53                      | 515.0773             | 1      |
| 153 | 7.331          | 20.07 | 303.0493             | 7764     |        | 0 | 57.08                      | 303.0499             | 1      |

| 154 | 4.509  | 26.51 | 509.1264 | 7708 | 210.6 | 1 | 86.31 | 510.1336  | 2 |
|-----|--------|-------|----------|------|-------|---|-------|-----------|---|
| 155 | 8.973  | 18.68 | 229.0857 | 7551 |       | 0 | 66.94 | 229.0862  | 1 |
| 156 | 6.004  | 19.8  | 289.0697 | 7252 | 159.4 | 1 | 56.27 | 290.077   | 2 |
| 157 | 15.825 | 14.34 | 180.9729 | 7211 |       | 0 | 57.71 | 180.9735  | 1 |
| 158 | 8.098  | 18.49 | 271.0483 | 7159 |       | 0 | 62.65 | 271.0489  | 1 |
| 159 | 6.332  | 25.2  | 502.0877 | 7155 |       | 0 | 54.75 | 502.0883  | 1 |
| 160 | 4.354  | 23.21 | 707.2211 | 7119 | 359.9 | 2 | 57.23 | 1416.4568 | 3 |
| 161 | 6.747  | 16.13 | 173.0811 | 7065 |       | 0 | 53.2  | 173.0816  | 1 |
| 162 | 9.492  | 21.53 | 363.0811 | 7003 | 172.1 | 1 | 50.52 | 364.0884  | 2 |
| 163 | 6.361  | 25.14 | 441.1925 | 6940 |       | 0 | 52.75 | 441.1931  | 1 |
| 164 | 11.715 | 18.54 | 231.103  | 6913 |       | 0 | 53.93 | 231.1036  | 1 |
| 165 | 5.93   | 24.77 | 431.1895 | 6694 | 197.5 | 1 | 50.78 | 432.1968  | 2 |
| 166 | 7.625  | 25.59 | 455.21   | 6686 |       | 0 | 83.07 | 455.2106  | 1 |
| 167 | 8.137  | 26.91 | 508.1146 | 6634 | 213.9 | 1 | 66.68 | 509.1218  | 2 |
| 168 | 6.16   | 23.41 | 384.2468 | 6612 | 187.1 | 1 | 60.91 | 385.2541  | 2 |
| 169 | 2.977  | 22.67 | 345.0793 | 6588 | 181.8 | 1 | 64.88 | 346.0866  | 2 |
| 170 | 15.821 | 20.06 | 265.1471 | 6427 | 162.2 | 1 | 72.85 | 266.1543  | 3 |
| 171 | 5.086  | 27.35 | 577.1329 | 6161 | 216.8 | 1 | 50.52 | 578.1402  | 2 |
| 172 | 4.777  | 19.44 | 305.017  | 5959 |       | 0 | 72.2  | 305.0175  | 1 |
| 173 | 6.722  | 16.46 | 195.0633 | 5835 | 134.6 | 1 | 75.24 | 196.0706  | 2 |
| 174 | 4.067  | 22.21 | 383.0938 | 5797 | 177.4 | 1 | 57.9  | 384.1011  | 2 |
| 175 | 10.061 | 17.74 | 304.9125 | 5782 |       | 0 | 53.56 | 304.913   | 1 |
| 176 | 11.396 | 19.8  | 297.0746 | 5724 |       | 0 | 69.63 | 297.0752  | 1 |
| 177 | 11.146 | 22.65 | 454.9476 | 5721 | 179.9 | 1 | 74.51 | 455.9549  | 2 |
| 178 | 7.686  | 19.42 | 243.0653 | 5699 |       | 0 | 55.3  | 243.0658  | 1 |
| 179 | 5.631  | 14.06 | 174.9545 | 5654 |       | 0 | 53.14 | 174.9551  | 1 |
| 180 | 8.616  | 27.01 | 453.1324 | 5622 |       | 0 | 54.97 | 453.133   | 1 |
| 181 | 4.085  | 19.86 | 466.0235 | 5589 |       | 0 | 72.49 | 466.024   | 1 |
| 182 | 7.151  | 23.03 | 403.1004 | 5578 | 183.7 | 1 | 50.87 | 404.1076  | 2 |
| 183 | 5.148  | 20.72 | 323.1329 | 5569 |       | 0 | 88.13 | 323.1335  | 1 |
| 184 | 3.858  | 16.7  | 235.0195 | 5451 |       | 0 | 62.96 | 235.0201  | 1 |
| 185 | 11.156 | 18.68 | 298.9915 | 5307 |       | 0 | 58.07 | 298.992   | 1 |
| 186 | 9.436  | 17.64 | 304.9123 | 5191 |       | 0 | 53.41 | 304.9129  | 1 |
| 187 | 10.693 | 17.62 | 304.912  | 5185 |       | 0 | 51.36 | 304.9125  | 1 |
| 188 | 9.419  | 17.51 | 223.0944 | 5168 |       | 0 | 66.87 | 223.0949  | 1 |
| 189 | 4.524  | 24.76 | 469.0516 | 5160 | 196.9 | 1 | 56.44 | 470.0588  | 2 |
| 190 | 7.258  | 19.02 | 302.0004 | 5153 | 152.7 | 1 | 53.45 | 303.0077  | 2 |
| 191 | 6.021  | 23.99 | 487.1433 | 5150 | 190.4 | 1 | 66.98 | 488.1506  | 2 |
| 192 | 5.356  | 25.18 | 417.1342 | 5030 |       | 0 | 74.05 | 417.1348  | 1 |
| 193 | 4.393  | 21.83 | 329.0857 | 4969 |       | 0 | 51.72 | 329.0862  | 1 |
| 194 | 2.631  | 19.03 | 287.0336 | 4927 |       | 0 | 58    | 287.0342  | 1 |
| 195 | 11.094 | 21.03 | 316.0524 | 4911 |       | 0 | 55    | 316.0529  | 1 |
| 196 | 11.233 | 15.67 | 145.0262 | 4867 |       | 0 | 56.48 | 145.0268  | 1 |
| 197 | 14.278 | 14.32 | 180.9724 | 4843 |       | 0 | 59.14 | 180.9729  | 1 |
| 198 | 6.564  | 20.93 | 319.08   | 4732 |       | 0 | 67.32 | 319.0806  | 1 |
| 199 | 13.925 | 14.35 | 180.973  | 4719 |       | 0 | 58.56 | 180.9735  | 1 |
| 200 | 15.841 | 20.15 | 265.1474 | 4677 |       | 0 | 54.46 | 265.148   | 1 |
| 201 | 8.138  | 18.5  | 243.1223 | 4622 | 149.9 | 1 | 86.18 | 244.1296  | 1 |
| 202 | 15.869 | 14.32 | 180.9728 | 4616 |       | 0 | 59.8  | 180.9733  | 1 |
| 203 | 10.996 | 14.34 | 180.9732 | 4565 |       | 0 | 77.49 | 180.9737  | 1 |
| 204 | 10.682 | 14.34 | 180.9732 | 4560 |       | 0 | 51.14 | 180.9738  | 1 |
| 205 | 8.202  | 24.04 | 458.1105 | 4540 | 191.2 | 1 | 58.44 | 459.1178  | 2 |
| 206 | 7.062  | 17.9  | 204.0655 | 4503 | 146.3 | 1 | 51.13 | 205.0728  | 2 |

| 207                    | 6.191              | 23.33      | 384.2464  | 4500         |        | 0 | 50.27          | 384.247   | 1   |
|------------------------|--------------------|------------|-----------|--------------|--------|---|----------------|-----------|-----|
| 208                    | 2.494              | 17.64      | 304.9123  | 4472         |        | 0 | 67.08          | 304.9129  | 1   |
| 209                    | 8.328              | 18.48      | 231.1596  | 4451         |        | 0 | ,<br>55.96     | 231.1601  | 1   |
| 210                    | 8.249              | 14.32      | 180.9727  | 4420         |        | 0 | 66.74          | 180.9733  | 1   |
| 211                    | 13.472             | 21.89      | 293.1746  | 4338         |        | 0 | 71.3           | 293.1751  | 1   |
| 212                    | 3.797              | 14.47      | 150.0194  | 4309         |        | 0 | 67.14          | 150.02    | 1   |
| 213                    | 8.426              | 14.39      | 180.973   | 4298         |        | 0 | 74.15          | 180.9735  | 1   |
| 214                    | 5.637              | 24.49      | 463.1791  | 4294         |        | 0 | 52.11          | 463.1797  | 1   |
| 215                    | 6.472              | 25.27      | 493.129   | 4278         | 200.8  | 1 | 70.81          | 494.1362  | 1   |
| 216                    | 12.246             | 24.08      | 435.1405  | 4255         |        | 0 | 55.71          | 435.141   | 1   |
| 217                    | 4.506              | 17.73      | 244.0258  | 4248         |        | 0 | 66.42          | 244.0264  | 1   |
| 218                    | 7.931              | 14.31      | 180.9726  | 4209         |        | 0 | 57.4           | 180.9731  | 1   |
| 219                    | 8.559              | 17.63      | 304.9103  | 4156         |        | 0 | 75.45          | 304.9108  | 1   |
| 220                    | 6.01               | 21.72      | 323.1226  | 4134         | 174.4  | 1 | 90.09          | 324.1299  | 2   |
| 221                    | 8.429              | ,<br>17.63 | 304.9124  | 4101         | , , ,  | 0 | 51.87          | 304.913   | 1   |
| 222                    | 5.888              | 19.38      | 241.1181  | 4058         | 157.3  | 1 | 57.84          | 242.1254  | 2   |
| 223                    | 12.137             | 19.56      | 378.9168  | 3926         | 51 5   | 0 | 79.11          | 378.9174  | 1   |
| 224                    | 10.795             | 20.46      | 287.1478  | 3917         |        | 0 | 52.21          | 287.1483  | 1   |
| 225                    | 15.974             | 20.12      | 265.1465  | 3880         | 162.6  | 1 | 81.76          | 266.1538  | 2   |
| 226                    | 4.405              | 24.3       | 441.0968  | 3834         | 193.5  | 1 | 63.92          | 442.104   | 2   |
| 227                    | 10.668             | 18.19      | 237.1093  | 3805         | ))))   | 0 | 51.57          | 237.1099  | 1   |
| 228                    | 7.873              | 26.92      | 535.1783  | 3781         |        | 0 | 57.01          | 535.1788  | 1   |
| 229                    | 11.241             | 26.42      | 536.9986  | 3776         |        | 0 | 75.9           | 536.9991  | 1   |
| 230                    | 5.496              | 17.66      | 304.9114  | 3757         |        | 0 | 52.68          | 304.9119  | 1   |
| -)=<br>231             | 3.886              | 19.63      | 303.0017  | 3738         |        | 0 | 57.67          | 303.0023  | 1   |
| 232                    | 11.584             | 15.75      | 189.0165  | 3708         | 128.8  | 1 | 73.43          | 190.0237  | 2   |
| 233                    | 3.968              | 17.61      | 304.9133  | 3600         | 12010  | 0 | 50.07          | 304.9138  | 1   |
| 234                    | 13.771             | 15.16      | 216.0330  | 3687         |        | 0 | 50.64          | 216.0344  | 1   |
| 235                    | 6.484              | 25.34      | 461.1608  | 3685         |        | 0 | 61.43          | 461.1613  | 1   |
| 226                    | 8 072              | 20.16      | 300 1307  | 3680         |        | 0 | 52.68          | 200 1212  | 1   |
| -)°<br>237             | 6.414              | 18.11      | 107.0433  | 3674         | 148.4  | 1 | 58.75          | 198.0506  | 1   |
| 238                    | 15.015             | 14.37      | 180.0724  | 3666         | 140.4  | 0 | 52.80          | 180.0720  | 1   |
| -)©<br>230             | 4.073              | 22.20      | 330.2023  | 3653         |        | 0 | 50.33          | 330.2028  | 1   |
| 240                    | 5 663              | 22 /1      | 576 1207  | 3608         | 262 1  | 2 | 57.01          | 1154 256  | 2   |
| 241                    | 5 808              | 26.20      | 577 1320  | 3606         | 208.2  | 1 | 66.26          | 578 1402  | 1   |
| 242                    | 1 227              | 16.04      | 181 0501  | 3505         | 200.2  | 0 | 54.80          | 181.0507  | 1   |
| 242                    | 4.022              | 15.24      | 153.0546  | 3500         |        | 0 | 52.67          | 153 0552  | 1   |
| 243                    | 14 224             | 1/ 2/      | 180.0735  | 3571         |        | 0 | 71.76          | 180.0741  | 1   |
| 245                    | = 26=              | 22 72      | 412 0120  | 2502         | 181    | 1 | 60             | 414 0201  | 2   |
| 245                    | 15 402             | 10 51      | 278 0155  | 2451         | 101    | 0 | 70.84          | 278 016   | 1   |
| 240                    | 4 522              | 22.40      | 411.057   | 24.21        |        | 0 | 62.05          | 411.0576  | 1   |
| 247                    | 4·9 <del>2</del> 9 | 1767       | 204 0105  | 2442         |        | 0 | 52.95          | 204 0111  | 1   |
| 240                    | 2 10               | 17.07      | 220.0218  | 226E         |        | 0 | 60.6           | 220 0222  | 1   |
| 249                    | 3.19               | 17.59      | 229.0310  | 3305         |        | 0 | - 09.0<br>     | 229.0323  | 1   |
| 250                    | 3.530              | 22.86      | 230.0110  | 3340         |        | 0 | 62.24          | 230.0123  | 1   |
| 251                    | 4.409              | 23.00      | 278 01 46 | 3333<br>2216 |        | 0 | 57.34          | 278 01 51 | 1   |
| 252                    | 9.070              | 19.53      | 370.9140  | 2288         |        | 0 | 57.93          | 3/0.9151  | 1   |
| 253                    | 15.214             | 15.10      | 210.9304  | 3200         |        | 0 | 77.07<br>F0.87 | 210.931   | 1   |
| 254                    | 5.31               | 19.00      | 269.0077  | 3200         | 1106   | 1 | 50.07          | 269.0003  | 1   |
| -55<br>256             | 10.786             | 17.0       | 250.0009  | 3457         | 143.0  | 1 | 52.79          | 204.0115  | - 2 |
| 250<br>25 <del>7</del> | 2.08-              | 17.04      | 304.9109  | 3220         | 16.1.2 | 1 | 52.07<br>F2.89 | 304.9115  | 1   |
| 257<br>258             | 2.907              | 20.50      | 350.9099  | 3205         | 104.2  | 1 | 52.00          | 359.9972  | 2   |
| 250                    | 5.952              | 21.00      | 307.0323  | 3181         |        | 0 | 55.00          | 307.0328  | 1   |
| 259                    | 15.171             | 19.59      | 370.9194  | 3171         |        | 0 | 59.31          | 370.9199  | 1   |

| 260        | 11.698          | 17.81          | 235.0031             | 3160          |       | 0 | 66.57                  | 235.0037  | 1      |
|------------|-----------------|----------------|----------------------|---------------|-------|---|------------------------|-----------|--------|
| 261        | 10.141          | 19.9           | 271.0595             | 3135          |       | 0 | 54.08                  | 271.06    | 1      |
| 262        | 11.251          | 15.66          | 145.0262             | 3122          |       | 0 | 62.92                  | 145.0268  | 1      |
| 263        | 14.818          | 14.38          | 180.9723             | 3122          |       | 0 | 58.12                  | 180.9729  | 1      |
| 264        | 6.449           | 16.69          | 198.048              | 3080          |       | 0 | 52.73                  | 198.0485  | 1      |
| 265        | 4.92            | 19.36          | 271.1631             | 3067          |       | 0 | 55.98                  | 271.1637  | 1      |
| 266        | 4.19            | 20.71          | 519.0077             | 3048          | 320.8 | 2 | 61.58                  | 1040.0299 | 2      |
| 267        | 3.383           | 24.08          | 446.1484             | 3031          |       | 0 | 56.35                  | 446.149   | 1      |
| 268        | 5.482           | 19.85          | 243.1698             | 3021          |       | 0 | 60.65                  | 243.1704  | 1      |
| 269        | 7.562           | 28.83          | 625.1748             | 2975          |       | 0 | 54.39                  | 625.1753  | 1      |
| 270        | 4.26            | 17.66          | 265.03               | 2965          |       | 0 | 69.42                  | 265.0305  | 1      |
| 271        | 6.196           | 16.19          | 189.0773             | 2962          |       | 0 | 52.97                  | 189.0779  | 1      |
| 272        | 12.62           | 14.33          | 180.9731             | 2950          |       | 0 | 60.82                  | 180.9736  | 1      |
| 273        | 6.093           | 24.32          | 449.1048             | 2911          | 193.5 | 1 | 55.37                  | 450.1121  | 2      |
| 274        | 3.55            | 14.35          | 180.973              | 2894          | 100   | 0 | 56.31                  | 180.9735  | 1      |
| 275        | 9.702           | 20.11          | 303.0389             | 2876          | 161.6 | 1 | 50.81                  | 304.0462  | 2      |
| 276        | 14.819          | 13.23          | 154.9744             | 2876          |       | 0 | 62.94                  | 154.9749  | 1      |
| ,<br>277   | 15.811          | 19.51          | 378.9161             | 2873          |       | 0 | 56.6                   | 378.9166  | 1      |
| 278        | 10.974          | 19.82          | 285.039              | 2859          |       | 0 | 52.43                  | 285.0396  | 1      |
| ,<br>279   | 4.594           | 23.75          | 447.147              | 2849          |       | 0 | 54.37                  | 447.1476  | 1      |
| 280        | 9.843           | 27.93          | 545.1777             | 2821          |       | 0 | 65.09                  | 545.1783  | 1      |
| 281        | 3.613           | 23.42          | 436.0837             | 2804          |       | 0 | 67.26                  | 436.0842  | 1      |
| 282        | 10.533          | 17.57          | 304.9121             | 2801          |       | 0 | 67.97                  | 304.9126  | 1      |
| 283        | 10.759          | 14.32          | 180.9731             | 2799          | 117.1 | 1 | 54.04                  | 181.9804  | 2      |
| 284        | 15.992          | 22.77          | 353.1979             | 2789          | 182.4 | 1 | 91.75                  | 354.2052  | 2      |
| 285        | 2.77            | 19.53          | 378.9157             | 2783          |       | 0 | 79.44                  | 378.9163  | 1      |
| 286        | 15.017          | 14.31          | 180.9724             | 2776          |       | 0 | 63.48                  | 180.9729  | 1      |
| 287        | 11.017          | 15.26          | 216.934              | -77°<br>2758  |       | 0 | 50.95                  | 216.9345  | 1      |
| 288        | 13.013          | 19.08          | 243.1592             | 2757          |       | 0 | 63.39                  | 243.1597  | 1      |
| 280        | 15.274          | 14.33          | 180.973              | 2752          |       | 0 | 60.64                  | 180.0735  | 1      |
| 200        | 4.279           | 23.73          | 413.1634             | 2747          |       | 0 | 50.14                  | 413.164   | 1      |
| -98<br>201 | 14.062          | 14.33          | 180.0720             | 2601          |       | 0 | 50.71                  | 180.0735  | 1      |
| 202        | 4.086           | 10.71          | 305.0163             | 2603          |       | 0 | 55.56                  | 305.0169  | 1      |
| 202        | 6 753           | 22.62          | 576 6214             | 2674          | 266.0 | 2 | 55 77                  | 1155 2572 | 2      |
| 204        | 8 107           | 21.68          | 407.023              | 2670          | 500.9 | 0 | 52.44                  | 407.0236  | 1      |
| 294        | 11 800          | 15 72          | 180 0174             | 2650          |       | 0 | 61.24                  | 180.018   | 1      |
| 295        | 4 105           | 10.7           | 205 01/5             | 26.19         |       | 0 | 88 52                  | 205 0151  | 1      |
| 207        | 12 514          | 20.3           | 440 8855             | 2620          |       | 0 | 50.08                  | 440 8861  | 1      |
| 208        | 2 802           | 20.5           | 422.0578             | 2606          |       | 0 | 68 41                  | 422.0582  | 1      |
| 290        | 5.002<br>11.624 | 12 12          | 423.0370             | 2000          |       | 0 | 57.1                   | 154.075   | 1      |
| 299        | F 402           | 13.12<br>22.6E | 282 1106             | 2003          | 181   | 1 | 57.1<br>62.12          | 282 1170  | 2      |
| 201        | 2·492<br>15 476 | 10 5           | 278 0168             | -2747<br>2541 | 101   | 0 | 78.21                  | 278 0174  | - 1    |
| 202        | 2.86            | 19.5           | 570.9100             | 2541          | 205 6 | 1 | 65.02                  | 5/0.91/4  | 2      |
| 302        | 12 802          | 25.09          | 180.0706             | 2532          | 205.0 | 1 | 52.02                  | 180.07/5  | ∠<br>1 |
| 303        | 2.002           | 14.32          | 180.9730             | 2524          |       | 0 | 52.04<br>62.70         | 180.9741  | 1      |
| 304        | 3.250           | 25.27          | 401.0940<br>-88.1188 | 2510          | 261 7 | 2 |                        | 401.0953  | 1      |
| 305        | 5.954           | 23.3           | 180.0701             | 2501          | 301.7 | 2 | 53.02<br>60.0 <b>5</b> | 11/0.2522 | 2      |
| 300        | 0.10            | 14.32          | 100.9731             | 2405          |       | 0 | 00.35                  | 100.9737  | 1      |
| 209        | 12.337          | 1/.75          | 310.9275             | 2405          |       | 0 | 77.53                  | 101.0466  | 1      |
| 300        | 12.22y          | 14.43          | 191.940              | 2477          |       | 0 | 50.93<br>70.60         | 204 01 21 | 1      |
| 309        | 8 = 60          | 17.09          | 304.9125             | -475<br>2460  | 202.2 | 1 | 65 50                  | 304.9131  | 1      |
| 310        | 0.503           | 25.39          | 455.0931             | 2400          | 202.2 | 1 | 05.59                  | 450.1003  | 1      |
| 311        | 4.005           | 19.97          | 477.0139             | 2450          | 309.3 | 2 | 52.20                  | 950.0424  | 2      |
| 312        | 15.973          | 14.31          | 100.9720             | 2441          |       | 0 | 00.04                  | 100.9733  | 1      |

| 313 | 5.01                        | 25.34 | 514.9682  | 2425 |             | 0 | 69.37          | 514.9688 | 1 |
|-----|-----------------------------|-------|-----------|------|-------------|---|----------------|----------|---|
| 314 | 10.945                      | 15.77 | 230.9552  | 2421 |             | 0 | 53.24          | 230.9557 | 1 |
| 315 | 10.642                      | 15.84 | 230.9554  | 2416 |             | 0 | 59.62          | 230.956  | 1 |
| 316 | 10.856                      | 17.8  | 304.9114  | 2407 |             | 0 | 56.04          | 304.9119 | 1 |
| 317 | 11.338                      | 15.75 | 190.0205  | 2384 |             | 0 | 51.65          | 190.0211 | 1 |
| 318 | 8.569                       | 20.45 | 317.03    | 2382 |             | 0 | 54.55          | 317.0305 | 1 |
| 319 | 2.326                       | 18.88 | 319.0009  | 2367 | 151.2       | 1 | 65             | 320.0082 | 2 |
| 320 | 14.185                      | 13.13 | 154.9746  | 2360 |             | 0 | 52.39          | 154.9751 | 1 |
| 321 | 4.142                       | 22.82 | 1001.0747 | 2353 | 178.5       | 1 | 64.75          | 1002.082 | 2 |
| 322 | 9.02                        | 18.16 | 214.1448  | 2351 | -/ -/ -/ -/ | 0 | 55.84          | 214.1454 | 1 |
| 323 | 1.011                       | 23.5  | 373.1100  | 2348 | 188         | 1 | 02.2           | 374.1182 | 2 |
| 324 | 15.023                      | 13.21 | 154.973   | 2333 |             | 0 | 53.65          | 154.0735 | 1 |
| 325 | 4 127                       | 16.07 | 210.0511  | -555 |             | 0 | 63.16          | 210.0517 | 1 |
| 226 | 10 247                      | 14.25 | 180.0727  | 2224 | 116 5       | 1 | 50.54          | 181.08   | 1 |
| 220 | 0.072                       | 15.81 | 220.0548  | 2215 | 110.9       | 0 | 59.54          | 220.0554 | 1 |
| 228 | 9.9/ <del>2</del><br>12.424 | 15.01 | 238.9340  | 2313 |             | 0 | 50.92<br>58.20 | 238.9334 | 1 |
| 320 | 12.485                      | 17.23 | 210.9324  | 22/3 |             | 0 | 50.29          | 210.9329 | 1 |
| 329 | 2.405                       | 14.22 | 180.0721  | 2209 |             | 0 | 52.94          | 180.0726 | 1 |
| 330 | 3.79                        | 14.33 | 100.9731  | 2222 |             | 0 | 54.02<br>60.62 | 100.9730 | 1 |
| 331 | 10.097                      | 15.70 | 230.9530  | 2219 | 208 -       | 0 | 00.02          | 230.9543 | 1 |
| 332 | 4.00                        | 19.91 | 400.0222  | 2100 | 300.5       | 2 | 94.00          | 934.059  | 2 |
| 333 | 4.930                       | 20.19 | 294.123   | 2175 |             | 0 | 57.05          | 294.1230 | 1 |
| 334 | 4.952                       | 19.35 | 271.1632  | 2172 |             | 0 | 55.85          | 271.1638 | 1 |
| 335 | 3.778                       | 18.53 | 241.0323  | 2155 |             | 0 | 62.83          | 241.0328 | 1 |
| 336 | 7.797                       | 23.19 | 407.0566  | 2151 |             | 0 | 59.1           | 407.0572 | 1 |
| 337 | 12.819                      | 17.71 | 310.9307  | 2147 |             | 0 | 51.82          | 310.9313 | 1 |
| 338 | 5.706                       | 24.49 | 402.1478  | 2132 |             | 0 | 61.69          | 402.1484 | 1 |
| 339 | 6.532                       | 13.99 | 119.0481  | 2118 |             | 0 | 76.02          | 119.0487 | 1 |
| 340 | 11.487                      | 14.21 | 180.9743  | 2107 |             | 0 | 67.21          | 180.9749 | 1 |
| 341 | 6.452                       | 16.98 | 186.1112  | 2104 |             | 0 | 53.1           | 186.1117 | 1 |
| 342 | 12.494                      | 14.44 | 191.9451  | 2104 |             | 0 | 52.93          | 191.9456 | 1 |
| 343 | 10.615                      | 19.87 | 271.0603  | 2099 |             | 0 | 52.01          | 271.0608 | 1 |
| 344 | 9.995                       | 19.55 | 378.916   | 2098 |             | 0 | 57.68          | 378.9166 | 1 |
| 345 | 6.507                       | 16.66 | 197.0438  | 2091 |             | 0 | 53·42          | 197.0444 | 1 |
| 346 | 8.665                       | 14.34 | 180.9726  | 2088 |             | 0 | 58.35          | 180.9731 | 1 |
| 347 | 8.647                       | 14.32 | 180.9732  | 2068 |             | 0 | 70.68          | 180.9737 | 1 |
| 348 | 15.009                      | 14.56 | 191.9451  | 2056 |             | 0 | 50.79          | 191.9457 | 1 |
| 349 | 4.229                       | 21.57 | 312.0429  | 2042 | 173.5       | 1 | 71.72          | 313.0501 | 1 |
| 350 | 11.816                      | 15.16 | 216.9358  | 2041 | 122.9       | 1 | 63.48          | 217.943  | 2 |
| 351 | 5.512                       | 22.26 | 326.0558  | 2038 |             | 0 | 52.49          | 326.0564 | 1 |
| 352 | 3.085                       | 21.14 | 390.9947  | 2033 |             | 0 | 61.18          | 390.9952 | 1 |
| 353 | 8.613                       | 14.32 | 180.9739  | 2022 |             | 0 | 53.82          | 180.9745 | 1 |
| 354 | 8.471                       | 20.43 | 318.0323  | 2020 | 163.9       | 1 | 59.84          | 319.0396 | 2 |
| 355 | 3.654                       | 21.66 | 368.095   | 2014 |             | 0 | 50.16          | 368.0956 | 1 |
| 356 | 12.257                      | 20.44 | 440.8863  | 2009 |             | 0 | 63.61          | 440.8869 | 1 |
| 357 | 5.267                       | 26.04 | 481.0928  | 2002 |             | 0 | 62.79          | 481.0933 | 1 |
| 358 | 6.405                       | 25.19 | 720.6583  | 2000 |             | 0 | 59.8           | 720.6589 | 1 |
| 359 | 10.411                      | 15.83 | 230.954   | 1994 |             | 0 | 56.41          | 230.9545 | 1 |
| 360 | 5.394                       | 14.32 | 180.9728  | 1988 |             | 0 | 58.61          | 180.9733 | 1 |
| 361 | 14.989                      | 13.17 | 154.9737  | 1983 |             | 0 | 57.2           | 154.9743 | 1 |
| 362 | 5.969                       | 23.67 | 427.0299  | 1956 |             | 0 | 60.32          | 427.0304 | 1 |
| 363 | 3.813                       | 14.32 | 180.9732  | 1946 |             | 0 | 52.97          | 180.9737 | 1 |
| 364 | 12.551                      | 17.7  | 310.9277  | 1933 |             | 0 | 75.13          | 310.9282 | 1 |
| 365 | 5.853                       | 14.32 | 180.9727  | 1933 |             | 0 | 61.66          | 180.9733 | 1 |
| ~ ~ | ~ ~ ~ ~                     |       | · · ·     |      |             |   |                |          |   |

| 366        | 15.207          | 13.12 | 154.975  | 1909  |       | 0 | 64.4  | 154.9755 | 1 |
|------------|-----------------|-------|----------|-------|-------|---|-------|----------|---|
| 367        | 10.474          | 15.78 | 230.9532 | 1901  |       | 0 | 51.96 | 230.9537 | 1 |
| 368        | 4.343           | 19.26 | 229.1545 | 1898  |       | 0 | 52.65 | 229.1551 | 1 |
| 369        | 7.339           | 17.66 | 304.9123 | 1884  |       | 0 | 56.71 | 304.9128 | 1 |
| 370        | 11.177          | 20.94 | 315.0487 | 1884  |       | 0 | 58.44 | 315.0493 | 1 |
| 371        | 13.888          | 14.41 | 180.9728 | 1869  |       | 0 | 60.65 | 180.9734 | 1 |
| 372        | 2.664           | 21.17 | 377.0025 | 1854  |       | 0 | 60.88 | 377.0031 | 1 |
| 373        | 11.159          | 18.36 | 274.9955 | 1848  |       | 0 | 60.42 | 274.996  | 1 |
| 374        | 10.002          | 14.44 | 191.945  | 1844  |       | 0 | 56.93 | 191.9455 | 1 |
| 375        | 11.271          | 17.44 | 246.9744 | 1815  |       | 0 | 92.78 | 246.975  | 1 |
| 376        | 6.128           | 19.13 | 289.0681 | 1810  |       | 0 | 78.92 | 289.0686 | 1 |
| 377        | 6.732           | 26.1  | 475.1795 | 1810  |       | 0 | 64.94 | 475.18   | 1 |
| 378        | 4.278           | 15.87 | 179.0341 | 1808  |       | 0 | 55.05 | 179.0346 | 1 |
| 379        | 3.493           | 19.34 | 291.0978 | 1767  |       | 0 | 61.55 | 291.0984 | 1 |
| 380        | 12.956          | 13.25 | 146.9603 | 1766  |       | 0 | 55.73 | 146.9609 | 1 |
| 381        | 13.942          | 15.22 | 218.9318 | 1763  |       | 0 | 51.07 | 218.9324 | 1 |
| 382        | 3.954           | 21.54 | 393.0459 | 1756  |       | 0 | 56.68 | 393.0464 | 1 |
| 383        | 2.256           | 18.64 | 312.985  | 1728  |       | 0 | 52.28 | 312.9856 | 1 |
| 384        | 8.533           | 23.13 | 360.2382 | 1712  |       | 0 | 64.02 | 360.2387 | 1 |
| 385        | 2.769           | 18.99 | 287.0333 | 1710  |       | 0 | 50.73 | 287.0339 | 1 |
| 386        | 3.008           | 22.72 | 345.078  | 1710  | 182.1 | 1 | 53.9  | 346.0853 | 1 |
| 387        | 4.42            | 27.97 | 543.2245 | 1698  |       | 0 | 75.23 | 543.225  | 1 |
| 388        | 4.34            | 28.2  | 617.1087 | 1694  |       | 0 | 51.15 | 617.1092 | 1 |
| 389        | 6.748           | 14.38 | 180.9726 | 1683  |       | 0 | 50.04 | 180.9731 | 1 |
| 390        | 13.237          | 18.17 | 248.9605 | 1667  |       | 0 | 54.82 | 248.961  | 1 |
| 391        | 12.378          | 17.73 | 310.928  | 1666  |       | 0 | 74.37 | 310.9286 | 1 |
| 392        | 11.786          | 15.69 | 189.0169 | 1664  |       | 0 | 71.05 | 189.0175 | 1 |
| 393        | 4.971           | 25.29 | 577.1286 | 1652  |       | 0 | 60.8  | 577.1292 | 1 |
| 394        | 3.692           | 20.84 | 305.0654 | 1652  |       | 0 | 73.43 | 305.0659 | 1 |
| 395        | 10.047          | 20.08 | 301.0339 | 1630  |       | 0 | 54.57 | 301.0344 | 1 |
| 396        | 3.037           | 19    | 291.0008 | 1621  |       | 0 | 60.18 | 291.0013 | 1 |
| 397        | 3.123           | 19.32 | 309.0192 | 1609  |       | 0 | 53.9  | 309.0197 | 1 |
| 398        | 15.119          | 13.2  | 154.9734 | 1608  |       | 0 | 70.8  | 154.974  | 1 |
| 300        | 2,563           | 19.6  | 378.9173 | 1606  |       | 0 | 70.26 | 378.9178 | 1 |
| 400        | 2.515           | 21.02 | 377.0012 | 1604  |       | 0 | 53.33 | 377.0018 | 1 |
| 401        | 3.122           | 20.88 | 354.0093 | 1591  |       | 0 | 72.65 | 354.0099 | 1 |
| 402        | 5.754           | 21.37 | 326.9993 | 1590  |       | 0 | 63.30 | 326.9998 | 1 |
| 403        | 13.883          | 13.24 | 154.9735 | 1567  |       | 0 | 77.82 | 154.974  | 1 |
| 404        | 4.978           | 15.48 | 163.0384 | 1566  |       | 0 | 62.64 | 163.030  | 1 |
| 405        | 13.624          | 13.22 | 154.9749 | 1560  |       | 0 | 50.74 | 154.9754 | 1 |
| 406        | 3.131           | 14.44 | 153.0184 | 1543  |       | 0 | 74.7  | 153.019  | 1 |
| 407        | 3.836           | 19.57 | 303.0028 | 1536  |       | 0 | 68.41 | 303.0034 | 1 |
| 408        | 11.207          | 17.45 | 191.0708 | 1505  |       | 0 | 56.01 | 101.0714 | 1 |
| 400        | 14.525          | 14.44 | 180.0723 | 1504  |       | 0 | 53.08 | 180.0728 | 1 |
| 410        | 11.141          | 17.45 | 248.0723 | 1503  |       | 0 | 88.00 | 248.9728 | 1 |
| 411        | 4.951           | 26.41 | 577.1358 | 1502  | 200.2 | 1 | 50.04 | 578.1431 | 1 |
| 412        | 6 271           | 25.1  | 502.0883 | 1501  |       | 0 | 50.85 | 502 0888 | 1 |
| 412        | 15 706          | 20.11 | 266 1512 | 1486  |       | 0 | 67.85 | 266 1517 | 1 |
| 4-3<br>414 | 3,7/1           | 18.45 | 241.0308 | 1485  | 140.6 | 1 | 61.8  | 242.0381 | 1 |
| 4-4<br>415 | J•/4+<br>11./01 | 17.78 | 257.0028 | 1/71  | -47.0 | 0 | 68.22 | 257.0042 | 1 |
| 416        | 11.225          | 13.22 | 154.0742 | 1467  |       | 0 | 74 28 | 154.0748 | 1 |
| 417        | 3,122           | 14.33 | 180.0725 | 1461  |       | 0 | 52.10 | 180.073  | 1 |
| 4-7<br>418 | 11,261          | 19.60 | 310.0776 | 1450  |       | 0 | 60.2  | 310.0781 | 1 |
| T-~        |                 |       | J-J-3118 | -7,72 |       | - |       | J-J-31~+ | - |

| 419 | 7.731          | 23.44 | 451.101   | 1438 |       | 0 | 51.23          | 451.1016 | 1 |
|-----|----------------|-------|-----------|------|-------|---|----------------|----------|---|
| 420 | 15.969         | 22.01 | 311.1672  | 1436 | 177.1 | 1 | 66.63          | 312.1745 | 2 |
| 421 | 3.22           | 20.09 | 358.9876  | 1430 |       | 0 | 57.07          | 358.9882 | 1 |
| 422 | 4.828          | 13.81 | 149.0087  | 1428 |       | 0 | 78.41          | 149.0092 | 1 |
| 423 | 7.881          | 24.43 | 415.1955  | 1423 |       | 0 | 62.56          | 415.1961 | 1 |
| 424 | 4.565          | 22.57 | 427.0296  | 1400 |       | 0 | 51.14          | 427.0301 | 1 |
| 425 | 15.094         | 13.23 | 154.9726  | 1398 |       | 0 | 75.81          | 154.9732 | 1 |
| 426 | 7.934          | 18.55 | 241.1065  | 1398 |       | 0 | 68.83          | 241.107  | 1 |
| 427 | 11.147         | 19.74 | 257.0024  | 1385 |       | 0 | 58.9           | 257.0029 | 1 |
| 428 | 11.213         | 15.66 | 146.0304  | 1382 |       | 0 | 81.07          | 146.0309 | 1 |
| 429 | 5.399          | 20.93 | 357.1156  | 1378 |       | 0 | 56.69          | 357.1161 | 1 |
| 430 | 9.673          | 24.29 | 458.9883  | 1373 |       | 0 | 54.37          | 458.9888 | 1 |
| 431 | 4.79           | 21.91 | 355.0571  | 1361 |       | 0 | 53.64          | 355.0576 | 1 |
| 432 | 15.75          | 22.26 | 333.1328  | 1354 |       | 0 | 55.47          | 333.1334 | 1 |
| 433 | 11.309         | 22.75 | 454.9482  | 1340 |       | 0 | 50.76          | 454.9487 | 1 |
| 434 | 6.303          | 18.02 | 233.0425  | 1323 | 146.2 | 1 | 54.03          | 234.0408 | 2 |
| 425 | 14 041         | 20.02 | 452 0182  | 1207 | -40   | 0 | 58.22          | 452 0188 | 1 |
| 435 | 4 204          | 24.7  | 730 6308  | 1200 |       | 0 | 61.26          | 730 6404 | 1 |
| 430 | 4.504          | 12 02 | 140.0077  | 1299 |       | 0 | 60.1           | 140.0082 | 1 |
| 427 | 4./9/          | 12.95 | 154 0727  | 1255 |       | 0 | 55.01          | 154.0742 | 1 |
| 430 | 11 600         | 15.60 | 180.016   | 1255 |       | 0 | 51.91          | 180.0165 | 1 |
| 439 | 4 521          | 17.64 | 250.0104  | 1240 |       | 0 | 62.61          | 250.011  | 1 |
| 440 | 4.55±          | 10.61 | 202 0012  | 1249 |       | 0 | 72.84          | 202.0010 | 1 |
| 441 | 3.035<br>12.27 | 19.01 | 401.0225  | 1242 |       | 0 | 73.04<br>F6.42 | 401.024  | 1 |
| 442 | 12.2/          | 20    | 266 1 402 | 1230 |       | 0 | 50.45          | 266 1408 | 1 |
| 445 | 13.30          | 18.67 | 107.0068  | 1233 |       | 0 | 54.03          | 107.0074 | 1 |
| 444 | 4.391          | 10.07 | 197.0008  | 1210 |       | 0 | 51.92          | 197.0074 | 1 |
| 445 | 3.29           | 24.03 | 429.15/5  | 1105 |       | 0 | 52.30<br>77.71 | 429.150  | 1 |
| 440 | 4.303          | 19.99 | 303.0130  | 1195 |       | 0 | 61.22          | 222.0202 | 1 |
| 447 | 11 282         | 10.79 | 218 0717  | 1182 |       | 0 | E1 4           | 218 0722 | 1 |
| 440 | 6 218          | 19./1 | 310.9/1/  | 1105 |       | 0 | 51·4           | 310.9/22 | 1 |
| 449 | 0.310          | 23.43 | 353.0900  | 11/5 |       | 0 | 52.11          | 420.0800 | 1 |
| 450 | 9.005<br>= 628 | 24.05 | 430.9093  | 11/2 | 225   | 2 | 53.9           | 430.9099 | 1 |
| 451 | 5.020          | 20.90 | 400.0090  | 1142 | 345   | 2 | 55.51          | 9/4.1942 | 2 |
| 452 | 2.254          | 14.01 | 180.0167  | 1140 | 122.3 | 1 | 51.3           | 102.0542 |   |
| 453 | 12.301         | 15.77 | 109.0107  | 1131 |       | 0 | 71.1           | 109.0172 | 1 |
| 454 | 12.170         | 22.07 | 341.0024  | 1120 |       | 0 | 51.23          | 341.0029 | 1 |
| 455 | 2 217          | 24.15 | 301.103   | 1125 |       | 0 | 54.13<br>61.05 | 301.1030 | 1 |
| 450 | 2.217          | 20.21 | 2/9.0959  | 1125 |       | 0 |                | 2/9.0904 | 1 |
| 457 | 14.777         | 14.25 | 180.9741  | 1122 |       | 0 | 57.50          | 180.9740 | 1 |
| 450 | 2.000          | 10.29 | 232.0577  | 1120 |       | 0 | 51.00          | 232.0502 | 1 |
| 459 | 9.000          | 24.91 | 490.9700  | 1120 |       | 0 | 56.32          | 490.9771 | 1 |
| 400 | 2.103          | 10.3  | 232.050   | 1000 |       | 0 | 51.44          | 232.0500 | 1 |
| 461 | 13.700         | 17.91 | 310.9291  | 1005 |       | 0 | <b>69.61</b>   | 310.9297 | 1 |
| 462 | 15.528         | 13.12 | 154.974   | 1076 |       | 0 | 70.62          | 154.9745 | 1 |
| 463 | 10.684         | 19.89 | 273.0755  | 1074 |       | 0 | 70.93          | 273.076  | 1 |
| 464 | 5.424          | 21.47 | 316.1829  | 1068 |       | 0 | 72.95          | 316.1835 | 1 |
| 465 | 4.054          | 20.42 | 277.1184  | 1052 |       | 0 | 57.62          | 277.1189 | 1 |
| 466 | 4.089          | 20.58 | 373.0053  | 1050 |       | 0 | 54.16          | 373.0058 | 1 |
| 407 | 9.732          | 13.84 | 158.9777  | 1049 |       | 0 | 54.4           | 158.9783 | 1 |
| 400 | 3.040          | 22.25 | 390.9905  | 1035 |       | 0 | 00.1           | 390.9991 | 1 |
| 409 | 4.326          | 23.41 | 402.9763  | 1032 |       | 0 | 53.92          | 402.9769 | 1 |
| 470 | 4.151          | 24.00 | 007.0508  | 1028 |       | 0 | 53.41          | 007.0513 | 1 |
| 471 | 12.985         | 21.48 | 345.1075  | 1014 |       | 0 | 60.89          | 345.1081 | 1 |

| 472 | 3.77   | 21.49      | 335.1311 | 1004     |       | 0 | 59.03 | 335.1316 | 1 |
|-----|--------|------------|----------|----------|-------|---|-------|----------|---|
| 473 | 5.016  | 25.24      | 487.1391 | 1001     |       | 0 | 51.29 | 487.1396 | 1 |
| 474 | 7.576  | 26.87      | 488.3074 | 973      |       | 0 | 54.68 | 488.308  | 1 |
| 475 | 4.511  | 17.87      | 243.0459 | 971      |       | 0 | 54.9  | 243.0465 | 1 |
| 476 | 8.904  | 20.47      | 317.0288 | 953      |       | 0 | 60.75 | 317.0294 | 1 |
| 477 | 2.804  | 21.17      | 390.9956 | 953      |       | 0 | 55.33 | 390.9962 | 1 |
| 478 | 4.872  | ,<br>19.97 | 295.0449 | 952      |       | 0 | 53.07 | 295.0454 | 1 |
| 479 | 13.044 | 17.79      | 310.9282 | 935      |       | 0 | 53.88 | 310.9288 | 1 |
| 480 | 11.46  | 14.32      | 161.0215 | 919      |       | 0 | 52.31 | 161.022  | 1 |
| 481 | 11.214 | 17.39      | 248.9721 | 905      |       | 0 | 55.21 | 248.9727 | 1 |
| 482 | 15.993 | 20.21      | 506.9522 | 897      |       | 0 | 53.77 | 506.9527 | 1 |
| 483 | 4.23   | 15.75      | 183.0294 | 891      |       | 0 | 54    | 183.0299 | 1 |
| 484 | 15.441 | 20.12      | 265.1471 | 877      |       | 0 | 50.83 | 265.1476 | 1 |
| 485 | 4.067  | 19.86      | 458.0283 | 866      |       | 0 | 51.05 | 458.0289 | 1 |
| 486 | 13.028 | 15.24      | 220.9289 | 857      |       | 0 | 59.98 | 220.9294 | 1 |
| 487 | 4.446  | 14.57      | 153.0184 | 857      |       | 0 | 60.61 | 153.019  | 1 |
| 488 | 5.954  | 21.74      | 397.021  | 847      |       | 0 | 50.39 | 397.0215 | 1 |
| 489 | 5.037  | 22.68      | 413.0132 | 832      |       | 0 | 52.79 | 413.0137 | 1 |
| 490 | 4.537  | 19.49      | 295.0078 | 822      |       | 0 | 54.81 | 295.0084 | 1 |
| 491 | 11.328 | 17.67      | 189.0159 | 783      |       | 0 | 50.72 | 189.0165 | 1 |
| 492 | 4.491  | 18.46      | 266.009  | 773      |       | 0 | 53    | 266.0096 | 1 |
| 493 | 8.104  | 21.89      | 413.0402 | 772      |       | 0 | 50.66 | 413.0408 | 1 |
| 494 | 3.88   | 18.76      | 303.0072 | 758      |       | 0 | 55.38 | 303.0078 | 1 |
| 495 | 12.9   | 19.02      | 300.9983 | 753      |       | 0 | 51.31 | 300.9989 | 1 |
| 496 | 4.461  | 22.28      | 391.1178 | 753      |       | 0 | 59.54 | 391.1184 | 1 |
| 497 | 4.542  | 27.68      | 581.1156 | 741      |       | 0 | 55.43 | 581.1161 | 1 |
| 498 | 11.152 | 27.23      | 604.98   | 726      |       | 0 | 51.15 | 604.9805 | 1 |
| 499 | 10.093 | 17.94      | 180.9743 | ,<br>716 | 147.8 | 1 | 53.89 | 181.9815 | 1 |
| 500 | 6.062  | 24.06      | 465.0063 | ,<br>707 |       | 0 | 55.12 | 465.0069 | 1 |
| 501 | 3.679  | 18.48      | 241.0324 | 706      |       | 0 | 57.37 | 241.033  | 1 |
| 502 | 12.031 | 15.75      | 189.0153 | 702      |       | 0 | 52.09 | 189.0158 | 1 |
| 503 | 11.695 | 16.01      | 112.9858 | ,<br>693 |       | 0 | 50.28 | 112.9863 | 1 |
| 504 | 13.581 | 15.04      | 220.9307 | 689      |       | 0 | 54.3  | 220.9313 | 1 |
| 505 | 3.815  | 19.04      | 229.1556 | 675      |       | 0 | 54.84 | 229.1561 | 1 |
| 506 | 13.161 | 22.92      | 556.8786 | 650      |       | 0 | 52.62 | 556.8792 | 1 |
| 507 | 5.635  | 25.92      | 487.1382 | 649      |       | 0 | 51.21 | 487.1388 | 1 |
| 508 | 11.644 | 17.79      | 234.0085 | 643      |       | 0 | 52.72 | 234.009  | 1 |
| 509 | 6.476  | 21.81      | 314.2017 | 617      |       | 0 | 52.28 | 314.2022 | 1 |
| 510 | 4.921  | 23.33      | 372.2138 | 606      |       | 0 | 51.82 | 372.2144 | 1 |
| 511 | 3.908  | 23.64      | 457.0953 | 588      |       | 0 | 51.26 | 457.0958 | 1 |
| 512 | 14.045 | 15.65      | 189.017  | 567      |       | 0 | 51.78 | 189.0176 | 1 |
| 513 | 13.219 | 13.65      | 166.9248 | 555      |       | 0 | 54.49 | 166.9254 | 1 |
| 514 | 10.993 | 17.36      | 174.9548 | 532      |       | 0 | 52.24 | 174.9554 | 1 |
| 515 | 12.505 | 13.67      | 161.9475 | 482      |       | 0 | 51.95 | 161.948  | 1 |
| 516 | 10.886 | 13.91      | 158.9786 | 469      |       | 0 | 50.36 | 158.9792 | 1 |
| 517 | 13.058 | 24.07      | 325.182  | 203      |       | 0 | 94.42 | 325.1825 | 1 |

#### D.2. Blaufränkisch-Zweigelt-Merlot

47 11.389 243.1838 484921 100

#### D.2.2. LC-TOF

|    |        |          |          | _     | 48   | 3.27   | 400.158   | 484909 | 100  |
|----|--------|----------|----------|-------|------|--------|-----------|--------|------|
| ID | RT     | Mass     | Abund    | Score | - 49 | 4.812  | 296.0536  | 484186 | 100  |
| 1  | 11.185 | 190.0246 | 31198120 | 100   | 50   | 3.703  | 220.0586  | 453251 | 100  |
| 2  | 4.158  | 312.0481 | 8633019  | 100   | 51   | 6.312  | 166.0633  | 451919 | 100  |
| 3  | 4.545  | 176.0688 | 7340749  | 100   | 52   | 3.059  | 154.0267  | 441848 | 100  |
| 4  | 11.184 | 402.0301 | 6415990  | 100   | 53   | 2.945  | 144.0425  | 436516 | 100  |
| 5  | 5.177  | 290.0788 | 5620999  | 100   | 54   | 4.158  | 180.0427  | 429719 | 100  |
| 6  | 4.158  | 624.0962 | 5503637  | 100   | 55   | 3.837  | 488.0738  | 420717 | 100  |
| 7  | 6.401  | 198.0531 | 4010168  | 100   | 56   | 4.307  | 617.1161  | 418603 | 100  |
| 8  | 5.999  | 290.0791 | 3116831  | 100   | 57   | 11.105 | 316.0582  | 414076 | 100  |
| 9  | 4.998  | 296.0533 | 3086351  | 100   | 58   | 2.942  | 162.0531  | 407612 | 80   |
| 10 | 4.947  | 578.1424 | 2956368  | 100   | 59   | 11.186 | 464.0003  | 397860 | 100  |
| 11 | 9.68   | 302.0427 | 2584587  | 100   | 60   | 6.006  | 154.0268  | 389981 | 100  |
| 12 | 5.434  | 180.0426 | 2504387  | 100   | 61   | 7.409  | 626.1846  | 387635 | 100  |
| 13 | 4.415  | 130.0265 | 2030857  | 100   | 63   | 4.093  | 220.0587  | 379302 | 100  |
| 14 | 4.158  | 646.0781 | 1803084  | 100   | 64   | 4.999  | 364.0405  | 378210 | 100  |
| 15 | 5.803  | 578.1427 | 1730050  | 100   | 65   | 5.003  | 444.1997  | 369989 | 100  |
| 16 | 4.415  | 176.0692 | 1290159  | 100   | 67   | 11.184 | 275.002   | 341935 | 100  |
| 18 | 4.546  | 374.1193 | 1146534  | 100   | 68   | 7.405  | 782.2055  | 340564 | 100  |
| 19 | 6.333  | 367.126  | 1077445  | 100   | 69   | 3.576  | 369.1061  | 334969 | 80   |
| 20 | 9.748  | 208.0739 | 969333   | 100   | 70   | 5.317  | 132.0788  | 329086 | 100  |
| 21 | 8.402  | 318.038  | 921391   | 100   | 71   | 2.273  | 162.0532  | 326643 | 100  |
| 22 | 7.513  | 626.1851 | 851969   | 100   | 72   | 14.852 | 195.0899  | 324450 | 100  |
| 23 | 11.185 | 614.0363 | 808863   | 100   | 73   | 8.547  | 434.1209  | 317169 | 100  |
| 24 | 4.017  | 316.116  | 793092   | 100   | 74   | 6.815  | 510.1371  | 297191 | 100  |
| 25 | 3.428  | 154.0634 | 769306   | 100   | 75   | 3.329  | 498.1557  | 291263 | 100  |
| 26 | 5.177  | 358.0664 | 747816   | 100   | 76   | 3.569  | 592.1099  | 288086 | 100  |
| 27 | 8.203  | 390.1315 | 742309   | 100   | 77   | 4.948  | 646.1302  | 284531 | 100  |
| 28 | 11.186 | 470.0176 | 741478   | 100   | 78   | 2.962  | 230.0407  | 280906 | 87   |
| 29 | 3.329  | 430.1685 | 735446   | 100   | 79   | 4.549  | 1097.0704 | 280270 | 100  |
| 30 | 5.689  | 448.1583 | 681890   | 100   | 80   | 3.516  | 280.1161  | 278403 | 100  |
| 31 | 3.802  | 594.1374 | 672591   | 100   | 81   | 3.169  | 230.0406  | 276447 | 100  |
| 32 | 4.157  | 150.0169 | 667505   | 100   | 82   | 5.803  | 646.13    | 275156 | 100  |
| 33 | 7.406  | 478.075  | 657846   | 100   | 83   | 4.651  | 594.1372  | 264640 | 100  |
| 34 | 3.153  | 157.0742 | 655387   | 97.6  | 84   | 7.262  | 302.0046  | 262458 | 100  |
| 35 | 9.796  | 228.0791 | 654647   | 100   | 85   | 8.621  | 500.1468  | 260916 | 100  |
| 36 | 6.226  | 428.0413 | 625168   | 100   | 86   | 4.16   | 668.0598  | 260469 | 100  |
| 37 | 6.507  | 164.0476 | 619282   | 100   | 87   | 11.185 | 676.0066  | 255222 | 100  |
| 38 | 7.152  | 436.1371 | 584659   | 100   | 89   | 5.497  | 326.0998  | 251608 | 100  |
| 39 | 5.999  | 358.0665 | 569959   | 100   | 90   | 3.9    | 174.053   | 249388 | 80.1 |
| 40 | 4.416  | 374.119  | 564473   | 100   | 91   | 11.236 | 325.9989  | 246731 | 100  |
| 41 | 4.417  | 244.0561 | 539309   | 100   | 92   | 9.678  | 370.0296  | 246603 | 100  |
| 42 | 8.12   | 508.1217 | 533201   | 100   | 93   | 4.571  | 244.0562  | 243263 | 80   |
| 43 | 3.669  | 306.0739 | 530607   | 100   | 95   | 6.464  | 866.2059  | 237572 | 100  |
| 44 | 7.71   | 340.0796 | 521056   | 100   | 96   | 4.926  | 294.1316  | 237031 | 100  |
| 45 | 5.519  | 326.0639 | 515074   | 100   | 97   | 6.334  | 435.1137  | 235323 | 100  |
| 46 | 11.184 | 608.0192 | 504693   | 100   | 98   | 7.471  | 510.231   | 234945 | 100  |

| 99  | 4.123  | 380.0355      | 233090 | 87  | 15 | 2  | 7.048   | 205.0743  | 164517 | 100  |
|-----|--------|---------------|--------|-----|----|----|---------|-----------|--------|------|
| 100 | 8.111  | 182.0583      | 232312 | 100 | 15 | 3  | 4.203   | 402.0172  | 163830 | 96.7 |
| 101 | 4.162  | 620.0646      | 232257 | 100 | 15 | 4  | 7.526   | 450.1158  | 161784 | 100  |
| 102 | 5.274  | 510.1373      | 232195 | 100 | 15 | 5  | 5.602   | 866.206   | 161557 | 95.7 |
| 103 | 13.461 | 294.1831      | 231369 | 100 | 15 | 6  | 2.951   | 118.0632  | 161285 | 100  |
| 104 | 8.081  | 782.2061      | 231021 | 100 | 15 | 7  | 4.089   | 176.0688  | 159981 | 100  |
| 105 | 5.505  | 866.2054      | 228284 | 100 | 15 | 8  | 3.42    | 316.0794  | 159269 | 100  |
| 106 | 11.184 | 820.025       | 225947 | 100 | 15 | 9  | 4.307   | 639.098   | 158717 | 100  |
| 107 | 8.079  | 452.1106      | 225866 | 100 | 16 | 0  | 4.774   | 244.056   | 158678 | 100  |
| 108 | 6.788  | 508.1215      | 225416 | 100 | 16 | 1  | 11.375  | 330.2405  | 156683 | 100  |
| 109 | 4.232  | 176.0687      | 225011 | 100 | 16 | 2  | 7.766   | 364.0791  | 156019 | 100  |
| 110 | 11.185 | 146.0346      | 218989 | 100 | 16 | 3  | 7.406   | 500.0563  | 155592 | 100  |
| 111 | 7.251  | 168.0408      | 217138 | 100 | 16 | 4  | 10.901  | 286.0478  | 155204 | 100  |
| 112 | 3.513  | 386.1425      | 214661 | 100 | 16 | 5  | 5.898   | 1070.2692 | 154900 | 100  |
| 113 | 9.747  | 332.0533      | 213027 | 100 | 16 | 6  | 8.852   | 228.0789  | 154783 | 100  |
| 114 | 8.091  | 188.1051      | 212255 | 100 | 16 | 7  | 6.044   | 428.1894  | 154412 | 100  |
| 116 | 3.14   | 220.0586      | 208273 | 100 | 16 | 8  | 4.085   | 244.0561  | 153310 | 100  |
| 117 | 6.179  | 190.0843      | 207980 | 100 | 16 | 9  | 5.177   | 336.0843  | 153280 | 100  |
| 118 | 3.466  | 231.0204      | 207717 | 100 | 17 | 'O | 9.797   | 274.0843  | 152692 | 100  |
| 119 | 4.546  | 572.1689      | 207701 | 100 | 17 | '1 | 7.151   | 504.1242  | 152203 | 100  |
| 120 | 7.789  | 340.0795      | 207536 | 100 | 17 | 2  | 4.804   | 414.1739  | 150892 | 100  |
| 121 | 4.16   | 628.1071      | 207208 | 80  | 17 | '3 | 3.348   | 658.0988  | 150776 | 87   |
| 122 | 7.426  | 596.1738      | 203424 | 100 | 17 | 4  | 4.187   | 668.0601  | 150190 | 87   |
| 124 | 4.018  | 384.103       | 198688 | 100 | 17 | '5 | 4.416   | 306.0259  | 150106 | 98.2 |
| 125 | 8.202  | 458.1185      | 198054 | 100 | 17 | 6  | 5.303   | 316.1157  | 149935 | 100  |
| 126 | 5.177  | 404.0716      | 197802 | 100 | 17 | 7  | 4.52    | 244.056   | 149131 | 87   |
| 127 | 5.738  | 296.1474      | 196728 | 100 | 17 | 8  | 8.241   | 640.1999  | 147842 | 100  |
| 129 | 5.689  | 516.1452      | 193518 | 100 | 17 | '9 | 7.711   | 408.0666  | 143256 | 100  |
| 130 | 3.722  | 866.2055      | 192164 | 87  | 18 | 0  | 2.945   | 692.1747  | 143004 | 100  |
| 131 | 5.813  | 326.1         | 191566 | 100 | 18 | 1  | 4.158   | 662.045   | 142300 | 80   |
| 132 | 5.998  | 336.0844      | 191446 | 100 | 18 | 2  | 5.857   | 512.1524  | 141269 | 100  |
| 133 | 11.252 | 192.079       | 189890 | 100 | 18 | 4  | 5.001   | 386.0223  | 140671 | 100  |
| 134 | 5.751  | 432.1994      | 183738 | 100 | 18 | 5  | 8.203   | 436.1364  | 139906 | 100  |
| 136 | 3.707  | 358.0867      | 181400 | 100 | 18 | 6  | 4.038   | 634.1202  | 139541 | 100  |
| 137 | 4.119  | 594.1372      | 181285 | 100 | 18 | 7  | 7.514   | 648.1664  | 139399 | 100  |
| 138 | 5.264  | 414.0256      | 179466 | 100 | 18 | 8  | 6.412   | 1070.268  | 139398 | 100  |
| 139 | 5.178  | 426.0535      | 179394 | 100 | 18 | 9  | 5.434   | 248.0301  | 138293 | 100  |
| 140 | 11.185 | 682.0232      | 178191 | 100 | 19 | 0  | 11.143  | 325.9989  | 138211 | 100  |
| 141 | 4.43   | 702.1118      | 175600 | 100 | 19 | 1  | 5.872   | 242.1267  | 137401 | 100  |
| 142 | 8.966  | 276.0998      | 173997 | 100 | 19 | 2  | 11.184  | 418.004   | 135069 | 100  |
| 144 | 4.206  | 182.0582      | 173007 | 100 | 19 | 3  | 5.177   | 420.037   | 134669 | 100  |
| 145 | 7.707  | 354.1315      | 169918 | 100 | 19 | 4  | 6.401   | 266.0405  | 134457 | 100  |
| 146 | 6.423  | 187.1212      | 169774 | 100 | 19 |    | 9.679   | 416.0351  | 134001 | 100  |
| 147 | 9.466  | ,<br>546.1887 | 169209 | 100 | 19 | 6  | 11.189  | 531.9878  | 133522 | 89.7 |
| 148 | 6.573  | 578.1417      | 168638 | 100 | 19 | 7  | 5.449   | 448.1578  | 133134 | 100  |
| 149 | 4.547  | 396.1007      | 165707 | 100 | 19 | 8  | 6.31    | 234.0503  | 129109 | 100  |
| 150 | 11.23  | 319.982       | 165440 | 100 | 19 | 9  | 4.126   | 532.1059  | 128834 | 100  |
| 151 | 3.836  | 510.0551      | 164903 | 100 | 20 | ó  | 5.999   | 426.0536  | 128176 | 100  |
|     | J J-   | J - JJ-       | 12.2   |     |    |    | 2 1 1 1 | 1 202     |        |      |

#### D.2. Blaufränkisch-Zweigelt-Merlot

| 201 | 11.184     | 247.983   | 125187 | 100  | 251      | 4.118  | 112.0162      | 99252 | 100  |
|-----|------------|-----------|--------|------|----------|--------|---------------|-------|------|
| 202 | 5.997      | 404.0716  | 123746 | 100  | 252      | 6.404  | 312.0458      | 99175 | 100  |
| 204 | 5.176      | 326.0555  | 122998 | 100  | 253      | 4.192  | 396.0004      | 98472 | 87   |
| 205 | 5.945      | 320.053   | 122100 | 100  | 254      | 7.335  | 204.0999      | 97502 | 100  |
| 206 | 4.968      | 306.0739  | 121820 | 100  | 256      | 6.812  | 510.2311      | 96631 | 100  |
| 207 | 8.967      | 230.0945  | 120580 | 100  | 257      | 4.018  | 430.1082      | 96443 | 100  |
| 208 | 11.184     | 826.0415  | 120247 | 100  | 258      | 3.8    | 662.1243      | 96069 | 100  |
| 209 | 4.932      | 214.0458  | 119803 | 100  | 259      | 5.326  | 158.058       | 95978 | 100  |
| 210 | 6.001      | 444.1057  | 118745 | 100  | 260      | 8.122  | 576.1089      | 95547 | 100  |
| 211 | 5.52       | 394.051   | 118134 | 100  | 261      | 3.167  | 298.0274      | 95347 | 99.4 |
| 212 | 5.246      | 326.101   | 116718 | 97   | 262      | 4.813  | 364.0404      | 94497 | 100  |
| 213 | 5.315      | 200.0663  | 116455 | 100  | 263      | 5.212  | 132.0788      | 93396 | 100  |
| 214 | 3.866      | 444.1841  | 116277 | 100  | 264      | 5.119  | 686.1303      | 93209 | 100  |
| 215 | 4.415      | 1097.0704 | 116262 | 100  | 265      | 5.69   | 402.1523      | 92570 | 100  |
| 216 | 5.417      | 428.1892  | 115140 | 100  | 266      | 3.669  | 374.0612      | 92400 | 100  |
| 218 | 11.388     | 311.1706  | 114291 | 100  | 267      | 6.094  | 450.1158      | 92115 | 100  |
| 219 | 5.618      | 488.1528  | 114209 | 83.9 | 268      | 5.999  | 326.0557      | 91690 | 100  |
| 220 | 7.513      | 694.1718  | 113911 | 100  | 269      | 11.244 | 387.9693      | 91435 | 100  |
| 221 | 6.217      | 496.0285  | 112948 | 93.1 | 270      | 10.469 | 906.2663      | 91428 | 100  |
| 222 | ,<br>7.485 | 494.1056  | 112105 | 100  | ,<br>271 | 6.095  | 488.153       | 91391 | 100  |
| 223 | 5.852      | 866.2059  | 111738 | 100  | 272      | 4.415  | 572.1693      | 91301 | 100  |
| 224 | 4.132      | 334.0303  | 111507 | 84.7 | 273      | 7.403  | 850.1925      | 91171 | 96.1 |
| 225 | 3.655      | 162.0891  | 111305 | 100  | 274      | 6.69   | 518.1578      | 91154 | 100  |
| 226 | 8.402      | 386.0251  | 110925 | 100  | 275      | 2.94   | 359.9981      | 91114 | 94.5 |
| 227 | 4.154      | 695.1554  | 110868 | 100  | 276      | 8.547  | 502.1083      | 90861 | 100  |
| 228 | 3.577      | 437.0932  | 110707 | 100  | ,<br>277 | 6.503  | 738.1466      | 90607 | 100  |
| 229 | 10.763     | 656.4497  | 109924 | 100  | 278      | 11.184 | 888.0117      | 90547 | 100  |
| 230 | 5.016      | 166.0271  | 107544 | 100  | 279      | 7.078  | ,<br>782.2053 | 90462 | 100  |
| 231 | 4.162      | 622.0806  | 106544 | 100  | 280      | 3.719  | 620.0553      | 89317 | 88.7 |
| 232 | ,<br>3.329 | 384.163   | 106261 | 100  | 281      | 13.745 | 357.2509      | 87328 | 100  |
| 233 | 2.943      | 292.0108  | 105125 | 99.5 | 282      | 5.059  | 294.1314      | 87269 | 100  |
| 234 | 6.729      | 494.0694  | 104819 | 100  | 283      | 6.63   | 466.1105      | 87065 | 100  |
| 235 | 5.353      | 418.1472  | 104547 | 100  | 284      | 6.029  | 488.153       | 85862 | 100  |
| 236 | 9.823      | 546.1885  | 103442 | 100  | 285      | 3.515  | 348.1031      | 85479 | 100  |
| 237 | 6.752      | 560.1159  | 103367 | 100  | 286      | 5.005  | 512.1867      | 85204 | 100  |
| 238 | 5.176      | 353.0748  | 101985 | 100  | 287      | 4.153  | 383.1073      | 85161 | 100  |
| 239 | 8.522      | 324.0845  | 101932 | 100  | 288      | 5.379  | 686.1305      | 84807 | 100  |
| 240 | 3.704      | 288.0454  | 101156 | 100  | 289      | 3.268  | 468.1451      | 84532 | 100  |
| 241 | 4.19       | 184.0373  | 100353 | 100  | 290      | 4.347  | 230.1634      | 84339 | 100  |
| 242 | 5.998      | 420.037   | 100201 | 100  | 291      | 6.023  | 430.2199      | 83988 | 100  |
| 243 | 4.449      | 360.1055  | 99938  | 86.4 | 292      | 6.553  | 276.1107      | 83753 | 100  |
| 244 | 9.679      | 438.017   | 99722  | 100  | 293      | 5.947  | 194.0206      | 83353 | 99.9 |
| 245 | 6.354      | 442.2045  | 99626  | 100  | 294      | 7.309  | 304.0584      | 83313 | 100  |
| 246 | 4.119      | 554.0883  | 99620  | 100  | 295      | 8.302  | 640.2004      | 83262 | 80   |
| 247 | 4.999      | 614.0888  | 99530  | 100  | 296      | 3.78   | 151.0272      | 83067 | 100  |
| 248 | 4.546      | 566.1521  | 99368  | 100  | 207      | 8.134  | 244.1313      | 83060 | 100  |
| 249 | 5.057      | 182.058   | 99315  | 100  | 208      | 5.803  | 668.112       | 82988 | 100  |
| 250 | 4.415      | 442.1062  | 99276  | 100  | 200      | 8.478  | 580.1780      | 82300 | 100  |
| 5-  |            |           | 11-1-  |      | =))      | 17 -   | 5 1-5         | J     |      |

300 5.27 1086.2628 81536 96.6

# D.3. Blaufränkisch-Zweigelt

### D.3.1. LC-IM-(Q)TOF

| Feature | RT     | DT    | m/z      | Abund   | $\Omega [Å^2]$ | Ζ | Quality | Mass     | Ions |
|---------|--------|-------|----------|---------|----------------|---|---------|----------|------|
| 1       | 11.19  | 15.77 | 189.0167 | 1074218 | 129.1          | 1 | 100     | 190.0239 |      |
| 2       | 11.186 | 23.12 | 401.0211 | 778749  | 184.5          | 1 | 99.35   | 402.0284 |      |
| 3       | 5.186  | 19.17 | 289.07   | 740680  | 154.2          | 1 | 100     | 290.0773 |      |
| 4       | 6.002  | 19.16 | 289.0691 | 609460  | 154.1          | 1 | 100     | 290.0764 |      |
| 5       | 6.401  | 16.7  | 197.0452 | 397381  | 136.6          | 1 | 75      | 198.0525 |      |
| 6       | 4.955  | 27.54 | 577.1326 | 380666  | 218.3          | 1 | 100     | 578.1399 |      |
| 7       | 5.807  | 27.71 | 577.1315 | 288583  | 219.7          | 1 | 100     | 578.1388 |      |
| 8       | 4.548  | 15.49 | 175.0607 | 246901  | 127.4          | 1 | 100     | 176.068  |      |
| 9       | 9.681  | 20.08 | 301.0344 | 212618  | 161.4          | 1 | 100     | 302.0417 |      |
| 10      | 6.098  | 19.6  | 291.0854 | 164542  | 157.7          | 1 | 100     | 292.0927 |      |
| 11      | 8.402  | 20.42 | 317.0289 | 151322  | 163.9          | 1 | 100     | 318.0362 |      |
| 12      | 4.167  | 27.66 | 623.0889 | 145118  | 218.9          | 1 | 100     | 624.0962 |      |
| 13      | 5.189  | 21.28 | 357.0571 | 141902  | 170.2          | 1 | 74.43   | 358.0644 |      |
| 14      | 7.409  | 25.28 | 477.0641 | 137423  | 201            | 1 | 100     | 478.0713 |      |
| 15      | 4.55   | 23.34 | 373.1101 | 135913  | 186.7          | 1 | 100     | 374.1174 |      |
| 16      | 4.169  | 19.67 | 311.0401 | 134910  | 157.8          | 1 | 80.22   | 312.0473 |      |
| 17      | 6.333  | 22.44 | 366.1177 | 134102  | 179.5          | 1 | 100     | 367.125  |      |
| 18      | 11.155 | 17.75 | 257.003  | 120458  | 143.3          | 1 | 54.06   | 258.0103 |      |
| 19      | 4.175  | 20.04 | 333.0219 | 118218  | 160.4          | 1 | 89.16   | 334.0292 |      |
| 20      | 4.168  | 21.54 | 311.0408 | 116464  | 173.2          | 1 | 99.46   | 312.0481 |      |
| 21      | 5.44   | 15.82 | 179.034  | 116185  | 129.9          | 1 | 100     | 180.0413 |      |
| 22      | 7.556  | 27.15 | 497.3312 | 112142  | 216            | 1 | 97.76   | 498.3385 |      |
| 23      | 5.999  | 21.3  | 357.0567 | 111356  | 170.3          | 1 | 100     | 358.0639 |      |
| 24      | 8.202  | 22.42 | 389.1221 | 111053  | 179            | 1 | 100     | 390.1293 |      |
| 25      | 3.682  | 19.59 | 305.0652 | 109149  | 157.3          | 1 | 73.42   | 306.0724 |      |
| 26      | 5.004  | 20.98 | 295.044  | 97444   | 169            | 1 | 97.52   | 296.0512 |      |
| 27      | 9.748  | 17.77 | 207.0651 | 81421   | 145.2          | 1 | 94.31   | 208.0724 |      |
| 28      | 5.068  | 27.35 | 577.1323 | 72169   | 216.8          | 1 | 66.07   | 578.1396 |      |
| 29      | 4.026  | 21    | 315.108  | 71918   | 168.7          | 1 | 56.28   | 316.1153 |      |
| 30      | 5.005  | 24.16 | 443.1899 | 71777   | 192.4          | 1 | 100     | 444.1972 |      |
| 31      | 4.165  | 29.44 | 645.0719 | 70393   | 233.1          | 1 | 98.28   | 646.0792 |      |
| 32      | 3.592  | 21.63 | 368.0974 | 69829   | 172.9          | 1 | 94.15   | 369.1047 |      |
| 33      | 4.313  | 28.19 | 616.1068 | 67210   | 223.2          | 1 | 100     | 617.1141 |      |
| 34      | 5.185  | 27.28 | 579.1477 | 67052   | 216.2          | 1 | 74.75   | 580.155  |      |
| 35      | 11.39  | 19.34 | 242.1755 | 64841   | 156.9          | 1 | 100     | 243.1828 |      |
| 36      | 3.822  | 27.7  | 593.1282 | 63528   | 219.5          | 1 | 98.95   | 594.1355 |      |
| 37      | 11.242 | 19.63 | 318.9723 | 56027   | 157.3          | 1 | 95.37   | 319.9796 |      |
| 38      | 11.177 | 18.34 | 273.9934 | 55703   |                | 0 | 68.13   | 273.994  |      |
| 39      | 3.546  | 22.42 | 385.1343 | 51951   | 179            | 1 | 89.4    | 386.1416 |      |
| 40      | 3.854  | 25.15 | 487.0641 | 51943   | 199.9          | 1 | 83.39   | 488.0714 |      |
| 41      | 11.216 | 24.54 | 469.0089 | 50591   | 195.2          | 1 | 54.11   | 470.0162 |      |
| 42      | 7.087  | 27.26 | 497.3332 | 48558   | 216.9          | 1 | 95      | 498.3404 |      |
| 43      | 7.266  | 19.02 | 300.997  | 44427   | 152.7          | 1 | 77.82   | 302.0043 |      |
| 44      | 3.536  | 19.46 | 279.1075 | 43082   | 156.9          | 1 | 84.97   | 280.1148 |      |
| 45      | 7.511  | 28.71 | 625.1728 | 43028   | 227.3          | 1 | 92.53   | 626.18   |      |
| 46      | 3.321  | 23.22 | 399.1482 | 42838   |                | 0 | 70.88   | 399.1487 |      |
| 47      | 6.815  | 26.89 | 509.129  | 42663   | 213.7          | 1 | 73.17   | 510.1363 |      |

| 48        | 4.58           | 17.66             | 265.0295 | 42384          | 142.3      | 1      | 63.18                       | 266.0368  |
|-----------|----------------|-------------------|----------|----------------|------------|--------|-----------------------------|-----------|
| 49        | 7.525          | 24.3              | 449.1063 | 42373          |            | 0      | 57.51                       | 449.1068  |
| 50        | 3.443          | 20.99             | 315.0708 | 42111          | 168.6      | 1      | 78.46                       | 316.0781  |
| 51        | 6.097          | 20.47             | 313.0677 | 41034          | 164.3      | 1      | 98.66                       | 314.0749  |
| 52        | 4.976          | 19.59             | 305.0638 | 40153          | 157.3      | 1      | 100                         | 306.0711  |
| 53        | 2.962          | 22.7              | 345.0795 | 39828          | 182        | 1      | 96.52                       | 346.0867  |
| 54        | 11.147         | 19.63             | 318.9727 | 39390          | 157.4      | 1      | 79.99                       | 319.98    |
| 55        | 4.928          | 20.04             | 293.1223 | 39020          | 161.3      | 1      | 99.71                       | 294.1296  |
| 56        | 4.549          | 22.13             | 395.093  | 38987          | 176.5      | 1      | 71.89                       | 396.1002  |
| 57        | 5.503          | 22.3              | 325.0907 | 36618          | 179.1      | 1      | 89.27                       | 326.098   |
| 58        | 5.694          | 24.84             | 447.1487 | 35698          | • •        | 0      | 79.99                       | 447.1493  |
| 59        | 6.94           | 22.49             | 397.0587 | 35156          |            | 0      | 79.99                       | 397.0592  |
| 60        | 3.187          | 22.39             | 345.0794 | 34904          | 179.5      | 1      | 80.22                       | 346.0867  |
| 61        | 11.182         | 26.25             | 401.0206 | 34567          | 210        | 1      | 50.85                       | 402.0278  |
| 62        | 9.799          | 19.06             | 227.0704 | 32913          |            | 0      | 73.15                       | 227.071   |
| 63        | 5.695          | 24.54             | 401.1435 | 31448          | 196.1      | 1      | 76.68                       | 402.1507  |
| 64        | 6.776          | 25.29             | 479.0805 | 31313          | 201.1      | 1      | ,<br>96.99                  | 480.0878  |
| 65        | 8.118          | 26.84             | 507.1124 | 30992          | 213.4      | 1      | 67.33                       | 508.1197  |
| 66        | 4.66           | 27.84             | 593.1297 | 30098          | 220.6      | 1      | 100                         | 594.137   |
| 67        | 11.246         | 21.21             | 386.9598 | 29476          | 169.1      | 1      | 79.28                       | 387.9671  |
| 68        | 7.41           | 25.75             | 499.0459 | 29318          | 204.6      | 1      | 66.57                       | 500.0531  |
| 69        | 8.198          | 24.03             | 457.1093 | 28724          | 191.1      | 1      | 100                         | 458.1166  |
| 70        | 6.576          | 27.75             | 577.1316 | 26537          |            | 0      | 70.67                       | 577.1322  |
| ,<br>71   | 5.418          | 22.34             | 397.0583 | 26147          | 178.2      | 1      | 92.69                       | 398.0656  |
| ,<br>72   | 3.698          | 18.26             | 243.0504 | 25706          | ,<br>147.9 | 1      | 74.11                       | 244.0576  |
| ,<br>73   | 6.335          | 24.15             | 434.104  | 24070          | 192.4      | 1      | 95.32                       | 435.1112  |
| 74        | 4.424          | 14.66             | 153.0194 | 23887          |            | 0      | 69.91                       | 153.0199  |
| 75        | 3.724          | 21.34             | 357.078  | 22988          | 170.7      | 1      | 87.8                        | 358.0853  |
| 76        | 4.423          | 23.07             | 351.0678 | 22157          | 185        | 1      | 78.64                       | 352.075   |
| 77        | 5.718          | 22.31             | 397.0581 | 22086          | 177.9      | 1      | 100                         | 398.0654  |
| 78        | 6.049          | 21.74             | 576.1228 | 21544          | 337        | 2      | 55.71                       | 1154.2602 |
| 79<br>79  | 8.09           | 16.66             | 187.098  | 20180          | 136.7      | 1      | 69.42                       | 188.1053  |
| 80        | 5.996          | 22.38             | 419.0273 | 20161          | -90.7      | 0      | 54.17                       | 419.0278  |
| 81        | 5.200          | 22.17             | 397.0588 | 10225          | 176.8      | 1      | 03.37                       | 398.0661  |
| 82        | 4.548          | 27.4              | 571.1614 | 10163          | 217.2      | 1      | 75                          | 572.1687  |
| 83        | 5.817          | 22.24             | 325.0011 | 18551          |            | 0      | 58.9                        | 325.0016  |
| 84        | 9.748          | 21.25             | 331.0448 | 18531          | 170.4      | 1      | 54.35                       | 332.0521  |
| 85        | 11.104         | 21.03             | 315.0499 | 18407          | -/0.4      | 0      | 70.76                       | 315.0504  |
| 86        | 6.738          | 23.54             | 576.1232 | 18/11          | 186        | 1      | 62.40                       | 577.1305  |
| 87        | 4.104          | 16.98             | 219.0509 | 17438          | 100        | 0      | 51.20                       | 219.0515  |
| 88        | 6.635          | 24.44             | 465.1018 | 17240          | 194.4      | 1      | 79.34                       | 466.109   |
| 89        | 8.093          | 17.02             | 209.0791 | 17066          | - 27-7     | 0      | 72.67                       | 209.0796  |
| 90        | 3.857          | 25.87             | 509.0463 | 16762          |            | 0      | 51.70                       | 509.0469  |
| 98        | 7.701          | 23.70             | 353.122  | 16160          | 100.8      | 1      | 71.21                       | 354.1203  |
| 92        | 5.301          | 23.85             | 451.1224 | 16007          | 180.7      | 1      | 80.30                       | 452.1207  |
| 9-        | 5.683          | 21.53             | 576.1241 | 15948          | 333.7      | 2      | 61.71                       | 1154.2628 |
| 93        | 670            | 26 71             | 507 1120 | 15020          | 212.2      | -<br>1 | 50.72                       | 508 1202  |
| 94        | 7 557          | 20.71             | 514 2204 | 15840          | 212.5      | 1      | 60.8E                       | 515 2276  |
| 95<br>06  | 7.766          | -7-57<br>22 54    | 363.0702 | 15260          | 180 /      | 1      | 73 07                       | 364 0775  |
| 99<br>07  | 11 177         | 20.82             | 607.0087 | 15260          | 100.4      | 0      | 66.6                        | 607 0002  |
| 97<br>08  | 11 128         | -9.03<br>21 22    | 286 060E | 14084          |            | 0      | 72.22                       | 286.061   |
| 90<br>00  | 1 181          | 12 87             | 140 0002 | 14904<br>14615 |            | 0      | 7 <del>~</del> •33<br>52 77 | 140.0008  |
| 77<br>100 | 4·104<br>5 756 | 24.04             | 121 1802 | 14513          | 108.0      | 1      | 80 12                       | 122 106-  |
| 100       | 5.750          | <del>~4</del> ·94 | 421.1092 | -4044          | 190.9      | Т      | 00.12                       | 422.1905  |

| 101 | 7.486          | 25.98          | 493.0947 | 14164 | 206.5 | 1 | 72.1           | 494.1019 |        |
|-----|----------------|----------------|----------|-------|-------|---|----------------|----------|--------|
| 102 | 8.546          | 23.96          | 433.1147 | 13378 | 190.9 | 1 | 52.01          | 434.122  |        |
| 103 | 5.202          | 22.43          | 419.0277 | 13334 |       | 0 | 53.21          | 419.0282 |        |
| 104 | 5.193          | 20.6           | 289.0707 | 12558 | 166   | 1 | 54.08          | 290.0779 |        |
| 105 | 5.009          | 22.42          | 363.0307 | 12416 | 179.4 | 1 | 80.01          | 364.038  |        |
| 106 | 5.456          | 25.17          | 447.1483 | 12358 |       | 0 | 64.79          | 447.1488 |        |
| 107 | 5.172          | 20.59          | 289.0705 | 12156 | 165.9 | 1 | 54.57          | 290.0778 |        |
| 108 | 5.167          | 21.35          | 358.0601 | 11851 | 170.7 | 1 | 70.01          | 359.0674 |        |
| 109 | 4.052          | 19.98          | 315.1079 | 11624 | 160.3 | 1 | ,<br>66.25     | 316.1152 |        |
| 110 | 4.553          | 26.87          | 565.1446 | 11529 | 213   | 1 | 94.87          | 566.1519 |        |
| 111 | 3.538          | 21.81          | 347.0942 | 11375 | 174.7 | 1 | 80.59          | 348.1015 | 2      |
| 112 | 5.875          | 19.39          | 241.1175 | 11317 | 157.4 | 1 | 54.92          | 242.1248 | 2      |
| 113 | 4.029          | 24.15          | 451.0805 | 11158 | 57 1  | 0 | 64.31          | 451.0811 | 1      |
| 114 | 7.312          | 20.09          | 303.0493 | 11008 | 161.4 | 1 | 65.76          | 304.0566 | 2      |
| 115 | 5.384          | 29.7           | 685.1209 | 10959 |       | 0 | 54.62          | 685.1214 | 1      |
| 116 | 10.762         | 22.09          | 327.2157 | 10876 |       | 0 | 59.62          | 327.2162 | 1      |
| 117 | 4.514          | 17.63          | 265.0291 | 10835 | 142.1 | 1 | 54.86          | 266.0364 | 1      |
| 118 | 7.044          | 18.54          | 272.0536 | 10682 | 149.4 | 1 | 54.76          | 273.0609 | 2      |
| 110 | 2.003          | 20.51          | 358.0006 | 10580 | -42-4 | 0 | 63.63          | 358.9911 | -<br>1 |
| 120 | 6.011          | 20.59          | 289.0705 | 10573 | 165.9 | 1 | 58.43          | 290.0778 | 2      |
| 121 | 3.706          | 21.51          | 331.1016 | 10476 | 105.9 | 0 | 51.83          | 331.1022 | -<br>1 |
| 122 | 5.061          | 20.08          | 202 1221 | 10222 |       | 0 | 60.8           | 203 1226 | 1      |
| 122 | 6 726          | 25.72          | 403.0603 | 10043 |       | 0 | 82.81          | 403.0608 | 1      |
| 124 | 11 255         | 22.68          | 454 047  | 0872  |       | 0 | 57.47          | 493.0000 | 1      |
| 125 | 10.210         | 14.21          | 180.0720 | 9072  |       | 0 | 51.07          | 180.0725 | 1      |
| 125 | = 080          | 20 56          | 280.0702 | 9/4/  |       | 0 | 51.97          | 280.0707 | 1      |
| 120 | 5.909<br>4.100 | 20.90<br>15 65 | 182.0206 | 9501  |       | 0 | 86.01          | 182 0201 | 1      |
| 12/ | 4.199          | 18 = 1         | 242.048  | 9549  |       | 0 | 52.04          | 242.0485 | 1      |
| 120 | 4.095<br>2.14E | 22.10          | 412 0687 | 8026  |       | 0 | 55.04          | 412,0602 | 1      |
| 129 | 2.145<br>8.061 | 10.80          | 287 1484 | 8772  | 160.2 | 1 | 59.9           | 288 1557 | 1      |
| 130 | 2.670          | 21.84          | 207.1404 | 8200  | 100.2 | 1 |                | 200.1557 | 2      |
| 131 | 3.079          | 21.04          | 373.0520 | 8101  | 170.4 | 1 | 52.73          | 373.0532 | 1      |
| 132 | 4.54           | 22.51          | 411.0503 | 7202  | 1/9.4 | 1 | 57.03          | 412.0050 | 2      |
| 133 | 3.790          | 20.00          | 299.0702 | 7392  | 180.2 | 1 | 99.99<br>60.88 | 300.0035 | 2      |
| 134 | 3.597          | 22.74          | 430.0847 | 7309  | 160.9 | 1 | 00.00          | 437.092  | 1      |
| 135 | 15.905         | 22.62          | 353.1995 | 7323  |       | 0 | 59.07          | 353.2    | 1      |
| 130 | 0.492          | 23.01          | 435.1262 | 7320  |       | 0 | 50.87          | 435.1200 | 1      |
| 137 | 4.132          | 21.44          | 333.0219 | 7200  |       | 0 | 53.03          | 333.0225 | 1      |
| 130 | 4.104          | 19.13          | 309.019  | 7261  |       | 0 | 50.62          | 309.0195 | 1      |
| 139 | 6.096          | 22.18          | 381.0542 | 7094  |       | 0 | 79.23          | 381.0548 | 1      |
| 140 | 4.536          | 22.38          | 417.074  | 7089  |       | 0 | 59.29          | 417.0746 | 1      |
| 141 | 3.707          | 19.56          | 306.0686 | 7053  | 157   | 1 | 87.13          | 307.0759 | 2      |
| 142 | 6.093          | 23.93          | 487.1416 | 6904  |       | 0 | 60.37          | 487.1421 | 1      |
| 143 | 15.765         | 20.03          | 265.1467 | 6797  | 161.9 | 1 | 52.19          | 266.154  | 2      |
| 144 | 6.501          | 15.5           | 163.0392 | 6525  |       | 0 | 54.42          | 163.0397 | 1      |
| 145 | 4.777          | 18.13          | 243.0469 | 6457  |       | 0 | 54.94          | 243.0474 | 1      |
| 146 | 5.841          | 29.91          | 685.1179 | 6440  | 236.6 | 1 | 60.82          | 686.1251 | 2      |
| 147 | 8.096          | 16.36          | 181.0506 | 6322  | 134.4 | 1 | 55.06          | 182.0579 | 2      |
| 148 | 4.133          | 23.3           | 462.9785 | 6248  |       | 0 | 52.62          | 462.9791 | 1      |
| 149 | 6.029          | 24.01          | 487.1431 | 6241  | 190.6 | 1 | 77.15          | 488.1504 | 2      |
| 150 | 8.202          | 25.66          | 525.0951 | 6224  |       | 0 | 52.34          | 525.0956 | 1      |
| 151 | 3.599          | 23.82          | 458.0673 | 6208  |       | 0 | 61.33          | 458.0679 | 1      |
| 152 | 8.889          | 14.31          | 180.9728 | 6200  |       | 0 | 55.8           | 180.9733 | 1      |
| 153 | 3.665          | 19.5           | 279.1078 | 6172  |       | 0 | 75.25          | 279.1083 | 1      |

| 154 | 9.524  | 14.32 | 180.9744 | 5946 | 117.1 | 1 | 60.02 | 181.9817  | 1 |
|-----|--------|-------|----------|------|-------|---|-------|-----------|---|
| 155 | 11.147 | 25.95 | 530.9785 | 5934 | 205.9 | 1 | 53.89 | 531.9857  | 2 |
| 156 | 4.315  | 25.66 | 495.1116 | 5842 |       | 0 | 51.18 | 495.1121  | 1 |
| 157 | 6.111  | 22.67 | 576.1248 | 5782 | 179   | 1 | 58.49 | 577.1321  | 2 |
| 158 | 6.696  | 22.63 | 347.1158 | 5769 |       | 0 | 62.95 | 347.1163  | 1 |
| 159 | 11.255 | 15.8  | 190.0189 | 5687 | 129.2 | 1 | 60    | 191.0262  | 2 |
| 160 | 4.21   | 16.89 | 181.052  | 5635 |       | 0 | 54.84 | 181.0526  | 1 |
| 161 | 11.133 | 22.7  | 454.9478 | 5545 |       | 0 | 77.63 | 454.9484  | 1 |
| 162 | 14.925 | 14.32 | 180.973  | 5497 |       | 0 | 66.83 | 180.9736  | 1 |
| 163 | 5.819  | 19.98 | 265.0707 | 5412 |       | 0 | 58.76 | 265.0713  | 1 |
| 164 | 3.747  | 21.33 | 357.0775 | 5386 |       | 0 | 52.34 | 357.0781  | 1 |
| 165 | 6.52   | 15.51 | 163.0388 | 5269 |       | 0 | 69.27 | 163.0394  | 1 |
| 166 | 4.428  | 16.69 | 129.0193 | 5261 | 140.9 | 1 | 61.31 | 130.0266  | 1 |
| 167 | 11.469 | 14.32 | 180.9728 | 5242 |       | 0 | 61.8  | 180.9733  | 1 |
| 168 | 4.054  | 28.57 | 633.1111 | 5179 |       | 0 | 76.11 | 633.1117  | 1 |
| 169 | 9.954  | 14.32 | 180.9732 | 5153 |       | 0 | 56.54 | 180.9737  | 1 |
| 170 | 5.438  | 14.24 | 135.0445 | 5151 | 119.1 | 1 | 52.73 | 136.0518  | 1 |
| 171 | 6.751  | 28.56 | 559.1056 | 5005 |       | 0 | 52.34 | 559.1062  | 1 |
| 172 | 4.183  | 20.67 | 519.0115 | 4918 | 320.3 | 2 | 68.54 | 1040.0376 | 2 |
| 173 | 2.024  | 19.62 | 294.0279 | 4899 |       | 0 | 51.97 | 294.0285  | 1 |
| 174 | 5.406  | 15.24 | 177.0187 | 4881 |       | 0 | 80.32 | 177.0192  | 1 |
| 175 | 4.834  | 20.05 | 295.0432 | 4873 |       | 0 | 50.04 | 295.0438  | 1 |
| 176 | 3.744  | 14.31 | 180.9727 | 4738 |       | 0 | 55.6  | 180.9733  | 1 |
| 177 | 6.14   | 19.12 | 289.0695 | 4695 |       | 0 | 63.68 | 289.0701  | 1 |
| 178 | 4.203  | 25.3  | 515.0806 | 4654 |       | 0 | 56.76 | 515.0812  | 1 |
| 179 | 5.498  | 20    | 265.0704 | 4595 | 161.7 | 1 | 55.18 | 266.0777  | 2 |
| 180 | 4.029  | 22.93 | 399.059  | 4590 | 182.9 | 1 | 79.36 | 400.0662  | 1 |
| 181 | 4.921  | 18.91 | 275.0068 | 4512 |       | 0 | 56.53 | 275.0074  | 1 |
| 182 | 6.177  | 16.18 | 189.077  | 4481 |       | 0 | 78.26 | 189.0775  | 1 |
| 183 | 10.842 | 14.35 | 180.9731 | 4467 |       | 0 | 61.44 | 180.9737  | 1 |
| 184 | 11.171 | 15.88 | 191.0209 | 4301 |       | 0 | 58.87 | 191.0215  | 1 |
| 185 | 13.42  | 17.68 | 304.9131 | 4212 | 141.5 | 1 | 52.32 | 305.9204  | 2 |
| 186 | 5.041  | 17.34 | 254.9866 | 4204 |       | 0 | 65.04 | 254.9871  | 1 |
| 187 | 11.223 | 18.74 | 298.9913 | 4122 |       | 0 | 62.76 | 298.9919  | 1 |
| 188 | 11.624 | 14.34 | 180.9728 | 4090 |       | 0 | 65.46 | 180.9734  | 1 |
| 189 | 6.326  | 16.17 | 165.0561 | 4085 |       | 0 | 62.42 | 165.0566  | 1 |
| 190 | 7.387  | 27.85 | 577.1307 | 4079 | 220.8 | 1 | 52.97 | 578.138   | 2 |
| 191 | 14.022 | 14.3  | 180.9735 | 4008 |       | 0 | 64    | 180.9741  | 1 |
| 192 | 4.57   | 16.07 | 219.0252 | 4001 |       | 0 | 57.26 | 219.0257  | 1 |
| 193 | 3.251  | 25.21 | 481.0944 | 3974 |       | 0 | 70.33 | 481.095   | 1 |
| 194 | 14.416 | 14.32 | 180.9733 | 3916 |       | 0 | 66.36 | 180.9738  | 1 |
| 195 | 6.309  | 19.44 | 295.012  | 3883 |       | 0 | 51.97 | 295.0126  | 1 |
| 196 | 6.773  | 14.33 | 180.9731 | 3836 |       | 0 | 51.37 | 180.9737  | 1 |
| 197 | 5.003  | 22.3  | 295.0431 | 3802 | 179.9 | 1 | 57.69 | 296.0504  | 1 |
| 198 | 2.942  | 21.16 | 301.09   | 3756 | 170.3 | 1 | 52.87 | 302.0973  | 2 |
| 199 | 8.284  | 20.01 | 287.056  | 3735 |       | 0 | 68.25 | 287.0565  | 1 |
| 200 | 4.457  | 21.01 | 323.1332 | 3669 | 168.6 | 1 | 57.25 | 324.1405  | 2 |
| 201 | 4.573  | 22.04 | 389.0745 | 3666 |       | 0 | 61.06 | 389.0751  | 1 |
| 202 | 2.192  | 14.32 | 180.9731 | 3664 |       | 0 | 63.02 | 180.9737  | 1 |
| 203 | 5.085  | 20.99 | 295.0451 | 3645 |       | 0 | 58.56 | 295.0456  | 1 |
| 204 | 8.825  | 14.31 | 180.973  | 3629 |       | 0 | 62.86 | 180.9736  | 1 |
| 205 | 2.312  | 17.06 | 251.0151 | 3572 | 137.7 | 1 | 58.92 | 252.0224  | 1 |
| 206 | 12.276 | 14.34 | 180.9731 | 3455 |       | 0 | 59.37 | 180.9736  | 1 |

| 207 | 11.801           | 15.74          | 189.0158 | 3366  |        | 0 | 83.5       | 189.0164  | 1  |
|-----|------------------|----------------|----------|-------|--------|---|------------|-----------|----|
| 208 | 10.011           | 15.83          | 230.9552 | 3364  |        | 0 | 93.68      | 230.9557  | 1  |
| 209 | 11.694           | 15.77          | 189.0163 | 3361  |        | 0 | 56.79      | 189.0169  | 1  |
| 210 | 13.792           | 14.35          | 180.9731 | 3330  |        | 0 | 52.8       | 180.9736  | 1  |
| 211 | 4.188            | 19.93          | 704.9995 | 3307  | 156.2  | 1 | 58.17      | 706.0068  | 2  |
| 212 | 3.463            | 15.25          | 153.0554 | 3206  | -)*    | 0 | 59.8       | 153.0559  | 1  |
| 213 | 5.575            | 25.85          | 487.1433 | 3294  |        | 0 | 50.07      | 487.1438  | 1  |
| 214 | 11.132           | 24.53          | 522.0338 | 3250  |        | 0 | 65.46      | 522.0344  | 1  |
| 215 | 3.68             | 14.22          | 180.0733 | 3170  |        | 0 | 62.2       | 180.0730  | 1  |
| 216 | 15.016           | 15 15          | 216.0342 | 2174  |        | 0 | 50         | 216 0248  | 1  |
| 217 | = 601            | 22.1           | E87 6188 | 2100  |        | 0 | 61.2       | E87 6104  | 1  |
| 21/ | 12 40            | 15.00          | 218 0210 | 2102  |        | 0 | 58 1 F     | 218 0224  | 1  |
| 210 | - 3.49<br>E 1.47 | 22.50          | E84 121E | 2058  | 266.2  | 2 | 77.0       | 1170 2576 | 2  |
| 219 | 5.14/            | 23.39<br>16 F1 | 105.0624 | 3050  | 300.2  | 2 | 77.9       | 105.064   |    |
| 220 | 14.267           | 10.51          | 195.0034 | 3042  |        | 0 | 57.02      | 195.004   | 1  |
| 221 | 14.307           | 14.31          | 100.9730 | 3027  |        | 0 | 54.32      | 100.9742  | 1  |
| 222 | 4.401            | 22.40          | 440.9920 | 3000  |        | 0 | 61.24      | 440.9934  | 1  |
| 223 | 3.900            | 22.05          | 369.0265 | 2996  |        | 0 | 66.10      | 369.027   | 1  |
| 224 | 15.000           | 20.87          | 446.9029 | 2958  |        | 0 | 66.48      | 446.9035  | 1  |
| 225 | 15.987           | 21.5           | 309.1708 | 2938  | 172.9  | 1 | 56.72      | 310.1781  | 2  |
| 226 | 11.795           | 19.55          | 378.916  | 2915  |        | 0 | 76.21      | 378.9165  | 1  |
| 227 | 10.176           | 17.8           | 310.9282 | 2908  |        | 0 | 51.43      | 310.9287  | 1  |
| 228 | 11.853           | 18.79          | 251.1258 | 2870  |        | 0 | 92.53      | 251.1264  | 1  |
| 229 | 4.804            | 13.83          | 149.007  | 2859  |        | 0 | 96.57      | 149.0075  | 1  |
| 230 | 15.476           | 19.54          | 378.9157 | 2849  |        | 0 | 71.52      | 378.9162  | 1  |
| 231 | 10.561           | 19.75          | 271.0597 | 2839  |        | 0 | 51.99      | 271.0602  | 1  |
| 232 | 8.336            | 23.29          | 419.1303 | 2839  | 185.6  | 1 | 64.92      | 420.1376  | 2  |
| 233 | 13.844           | 14.28          | 180.9731 | 2821  |        | 0 | 60.19      | 180.9736  | 1  |
| 234 | 12.872           | 15.16          | 218.9318 | 2800  |        | 0 | 62.93      | 218.9323  | 1  |
| 235 | 11.718           | 15.16          | 216.9338 | 2785  |        | 0 | 67.77      | 216.9344  | 1  |
| 236 | 10.701           | 22.01          | 327.2153 | 2735  |        | 0 | 67.35      | 327.2158  | 1  |
| 237 | 2.091            | 19.6           | 294.0285 | 2703  |        | 0 | 67.23      | 294.0291  | 1  |
| 238 | 3.312            | 14.32          | 180.973  | 2699  |        | 0 | 61.66      | 180.9735  | 1  |
| 239 | 15.675           | 15.09          | 216.9344 | 2603  |        | 0 | 74.89      | 216.9349  | 1  |
| 240 | 2.901            | 14.86          | 169.0147 | 2573  |        | 0 | 76.37      | 169.0153  | 1  |
| 241 | 5.755            | 19.59          | 265.0309 | 2570  |        | 0 | 65.67      | 265.0314  | 1  |
| 242 | 8.197            | 25.39          | 519.0789 | 2565  |        | 0 | 74.24      | 519.0795  | 1  |
| 243 | 8.487            | 20.43          | 317.0295 | 2540  |        | 0 | 56.34      | 317.0301  | 1  |
| 244 | 14.701           | 14.55          | 191.9456 | 2538  |        | 0 | 60.48      | 191.9461  | 1  |
| 245 | 10.544           | 14.28          | 180.9725 | 2424  |        | 0 | 52.68      | 180.9731  | 1  |
| 246 | 4.449            | 21.44          | 329.0244 | 2411  | 172    | 1 | 79.73      | 330.0317  | 2  |
| 247 | 15.513           | 17.86          | 310.9288 | 2407  |        | 0 | 83.92      | 310.9294  | 1  |
| 248 | 6.533            | 20.26          | 347.0741 | 2376  | 162    | 1 | 87.78      | 348.0814  | 2  |
| 249 | 15.624           | 20.08          | 266.1494 | 2372  |        | 0 | 78.06      | 266.1499  | 1  |
| 250 | 14.964           | 14.29          | 180.9743 | 2367  |        | 0 | ,<br>72.16 | 180.9749  | 1  |
| 251 | 5.615            | 25.92          | 477.0991 | 2364  |        | 0 | ,<br>50.97 | 477.0997  | 1  |
| 252 | 7.06             | 20.37          | 334.0248 | 2356  |        | 0 | 70.72      | 334.0253  | 1  |
| 253 | ,<br>12.568      | 14.33          | 180.973  | 2353  |        | 0 | 57.94      | 180.9735  | 1  |
| 254 | 5.059            | 16.18          | 181.0498 | 2352  |        | 0 | 80.17      | 181.0504  | 1  |
| 255 | 6.397            | 20.31          | 280.995  | 2350  |        | 0 | 51.18      | 280.9956  | .1 |
| 256 | 5.81             | 24.59          | 577.1302 | 2349  | 194.5  | 1 | 69.63      | 578.1375  | .1 |
| 257 | 7.751            | 19.21          | 261.1328 | 2344  | - JT J | 0 | 61.71      | 261.1334  | 1  |
| 258 | 11.586           | 15.75          | 189.0151 | 2342  |        | 0 | 69.71      | 189.0156  | 1  |
| 250 | 15/137           | 14.33          | 180.0725 | 2328  |        | 0 | 88.66      | 180.0731  | 1  |
| -27 | -5.457           | -4.33          | 100.9/29 | - 330 |        | 0 | 00.00      | 100.9/31  | 1  |

| 260 | 11.801 | 15.9  | 174.9554 | 2328 |       | 0 | 51.62 | 174.9559 | 1 |
|-----|--------|-------|----------|------|-------|---|-------|----------|---|
| 261 | 14.075 | 19.59 | 378.9151 | 2319 |       | 0 | 54.22 | 378.9157 | 1 |
| 262 | 5.637  | 17.58 | 304.9124 | 2313 |       | 0 | 81.11 | 304.9129 | 1 |
| 263 | 6.726  | 16.38 | 195.0632 | 2281 |       | 0 | 83.7  | 195.0638 | 1 |
| 264 | 8.098  | 20.42 | 345.0516 | 2278 |       | 0 | 50.87 | 345.0521 | 1 |
| 265 | 15.439 | 13.19 | 119.0354 | 2278 |       | 0 | 50.59 | 119.036  | 1 |
| 266 | 12.989 | 19.54 | 378.9157 | 2261 |       | 0 | 58.71 | 378.9162 | 1 |
| 267 | 4.514  | 16.01 | 219.0249 | 2249 |       | 0 | 75.64 | 219.0254 | 1 |
| 268 | 4.407  | 24.33 | 441.0971 | 2210 | 193.8 | 1 | 71.34 | 442.1044 | 2 |
| 269 | 7.344  | 25.04 | 419.1679 | 2160 |       | 0 | 62.55 | 419.1684 | 1 |
| 270 | 10.674 | 14.32 | 180.9728 | 2147 |       | 0 | 51.84 | 180.9734 | 1 |
| 271 | 2.263  | 20.28 | 380.9703 | 2145 |       | 0 | 55.77 | 380.9708 | 1 |
| 272 | 2.201  | 20.28 | 279.0961 | 2143 |       | 0 | 57.22 | 279.0967 | 1 |
| 273 | 11.231 | 15.78 | 191.0216 | 2139 |       | 0 | 59.71 | 191.0221 | 1 |
| 274 | 15.255 | 14.4  | 180.9738 | 2128 |       | 0 | 50.43 | 180.9744 | 1 |
| 275 | 3.466  | 14.32 | 180.9725 | 2125 |       | 0 | 55.37 | 180.973  | 1 |
| 276 | 3.557  | 19.42 | 280.1108 | 2117 |       | 0 | 67.97 | 280.1114 | 1 |
| 277 | 6.555  | 20.84 | 319.0783 | 2111 | 167.3 | 1 | 50.32 | 320.0856 | 2 |
| 278 | 14.898 | 15.19 | 216.9341 | 2107 |       | 0 | 50.69 | 216.9347 | 1 |
| 279 | 4.421  | 14.35 | 129.0191 | 2100 | 120.5 | 1 | 51.78 | 130.0264 | 1 |
| 280 | 15.983 | 22.59 | 325.1822 | 2074 |       | 0 | 50.34 | 325.1828 | 1 |
| 281 | 3.697  | 21.96 | 438.9759 | 2056 |       | 0 | 53.5  | 438.9765 | 1 |
| 282 | 10.943 | 20.81 | 475.1302 | 2025 |       | 0 | 57.72 | 475.1307 | 1 |
| 283 | 14.989 | 14.44 | 191.9453 | 2017 |       | 0 | 55.22 | 191.9458 | 1 |
| 284 | 6.831  | 18.69 | 247.1551 | 2007 |       | 0 | 52.6  | 247.1557 | 1 |
| 285 | 10.91  | 20.85 | 452.1253 | 2001 |       | 0 | 61.23 | 452.1258 | 1 |
| 286 | 7.834  | 14.31 | 180.9745 | 1980 |       | 0 | 59.18 | 180.975  | 1 |
| 287 | 10.235 | 15.82 | 230.9552 | 1977 |       | 0 | 50.08 | 230.9558 | 1 |
| 288 | 15.334 | 15.27 | 216.934  | 1972 |       | 0 | 68.07 | 216.9345 | 1 |
| 289 | 6.114  | 20.44 | 314.072  | 1951 |       | 0 | 64.98 | 314.0725 | 1 |
| 290 | 4.95   | 26.12 | 577.1285 | 1925 | 206.8 | 1 | 68.9  | 578.1358 | 1 |
| 291 | 3.226  | 15.8  | 156.0659 | 1913 |       | 0 | 56.5  | 156.0665 | 1 |
| 292 | 4.034  | 24.01 | 399.0586 | 1911 | 191.7 | 1 | 66.21 | 400.0658 | 1 |
| 293 | 15.341 | 14.36 | 180.9726 | 1908 |       | 0 | 50.66 | 180.9731 | 1 |
| 294 | 15.385 | 14.44 | 191.9452 | 1901 |       | 0 | 69.64 | 191.9458 | 1 |
| 295 | 2.95   | 21.18 | 390.9978 | 1901 | 168.8 | 1 | 73.1  | 392.005  | 2 |
| 296 | 10.631 | 15.91 | 174.9551 | 1900 |       | 0 | 50.5  | 174.9557 | 1 |
| 297 | 9.425  | 17.2  | 201.112  | 1893 | 140.6 | 1 | 75.72 | 202.1193 | 2 |
| 298 | 9.732  | 15.82 | 230.9549 | 1890 |       | 0 | 62.37 | 230.9555 | 1 |
| 299 | 4.847  | 22.14 | 576.1215 | 1885 |       | 0 | 51.1  | 576.1221 | 1 |
| 300 | 11.187 | 14.32 | 162.0242 | 1877 |       | 0 | 90.21 | 162.0247 | 1 |
| 301 | 4.908  | 21.66 | 410.9807 | 1864 |       | 0 | 66.63 | 410.9812 | 1 |
| 302 | 10.161 | 15.83 | 230.9528 | 1850 |       | 0 | 56.35 | 230.9534 | 1 |
| 303 | 12.956 | 15.16 | 216.9344 | 1846 |       | 0 | 57.23 | 216.935  | 1 |
| 304 | 13.463 | 19.49 | 378.9173 | 1844 |       | 0 | 57.17 | 378.9178 | 1 |
| 305 | 11.31  | 19.78 | 257.0012 | 1838 |       | 0 | 56.14 | 257.0017 | 1 |
| 306 | 4.189  | 22.23 | 394.9959 | 1829 |       | 0 | 57.86 | 394.9964 | 1 |
| 307 | 5.067  | 15.46 | 183.0289 | 1825 |       | 0 | 53.02 | 183.0295 | 1 |
| 308 | 14.769 | 15.16 | 216.9337 | 1816 |       | 0 | 67.71 | 216.9342 | 1 |
| 309 | 5.297  | 17.68 | 304.9132 | 1811 |       | 0 | 54.53 | 304.9137 | 1 |
| 310 | 15     | 14.3  | 180.9737 | 1794 |       | 0 | 52.66 | 180.9743 | 1 |
| 311 | 5.402  | 17.68 | 304.9114 | 1791 |       | 0 | 73.29 | 304.9119 | 1 |
| 312 | 10.438 | 17.73 | 310.9272 | 1789 |       | 0 | 50.16 | 310.9278 | 1 |

| 313 | 15.572 | 15.1  | 216.9333      | 1786  |       | 0 | 59.59         | 216.9339  | 1 |
|-----|--------|-------|---------------|-------|-------|---|---------------|-----------|---|
| 314 | 5.71   | 21.53 | 576.6239      | 1779  | 333.7 | 2 | 50.81         | 1155.2623 | 2 |
| 315 | 11.66  | 15.76 | 189.016       | 1778  |       | 0 | 64.04         | 189.0165  | 1 |
| 316 | 2.269  | 20.93 | 446.9027      | 1754  |       | 0 | 65.51         | 446.9032  | 1 |
| 317 | 5.342  | 17.71 | 304.9109      | 1751  |       | 0 | 50.16         | 304.9114  | 1 |
| 318 | 13.102 | 19.62 | 378.9174      | 1745  |       | 0 | 52.19         | 378.9179  | 1 |
| 319 | 4.176  | 16.8  | 344.0152      | 1738  | 133.7 | 1 | 62.14         | 345.0225  | 1 |
| 320 | 12.288 | 15.12 | 216.9345      | 1737  |       | 0 | 57.61         | 216.9351  | 1 |
| 321 | 9.697  | 20.05 | 303.0386      | 1736  |       | 0 | 58.46         | 303.0392  | 1 |
| 322 | 12.823 | 17.76 | 242.9424      | 1735  |       | 0 | 56.75         | 242.9429  | 1 |
| 323 | 11.506 | 17.69 | 257.0024      | 1733  |       | 0 | 51.41         | 257.0029  | 1 |
| 324 | 2.925  | 17.56 | 247.0125      | 1733  |       | 0 | 64.2          | 247.013   | 1 |
| 325 | 11.569 | 15.65 | 189.0161      | 1731  |       | 0 | 60.29         | 189.0166  | 1 |
| 326 | 11.99  | 14.32 | 180.9726      | 1726  |       | 0 | 55.57         | 180.9731  | 1 |
| 327 | 3.988  | 14.27 | 180.9725      | 1722  |       | 0 | 55.23         | 180.973   | 1 |
| 328 | 6.233  | 24.68 | 720.6537      | 1720  |       | 0 | 51.74         | 720.6542  | 1 |
| 320 | 7 801  | 28.43 | 551 1378      | 1718  |       | 0 | 61 7          | 551 1384  | 1 |
| 320 | 2 722  | 14 22 | 180.0723      | 1717  |       | 0 | 66.25         | 180.0738  | 1 |
| 221 | 14 472 | 15.25 | 218 0222      | 1707  |       | 0 | E4 24         | 218 0220  | 1 |
| 222 | 14.4/2 | 15.23 | 210.9525      | 1607  |       | 0 | 24·24<br>76 1 | 210.9529  | 1 |
| 334 | 9.54/  | 18.04 | 230.9545      | 1602  |       | 0 | 70.1          | 230.9551  | 1 |
| 333 | 2.215  | 16.94 | 244.1202      | 1687  |       | 0 | 70.9          | 244.1200  | 1 |
| 334 | 5.33   | 10.09 | 199.0509      | 1681  |       | 0 | 70.05         | 199.0595  | 1 |
| 335 | 5.414  | 14.25 | 135.0449      | 1670  |       | 0 | 54.59         | 135.0455  | 1 |
| 336 | 14.040 | 17.72 | 310.9266      | 16/9  |       | 0 | 03.77         | 310.9292  | 1 |
| 337 | 10.036 | 15.77 | 230.9545      | 1666  |       | 0 | 63.35         | 230.955   | 1 |
| 338 | 15.368 | 19.49 | 378.9168      | 1657  |       | 0 | 59.97         | 378.9173  | 1 |
| 339 | 7.72   | 23.83 | 354.1259      | 1629  |       | 0 | 50.04         | 354.1264  | 1 |
| 340 | 3.404  | 15.35 | 153.055       | 1628  |       | 0 | 78.73         | 153.0556  | 1 |
| 341 | 5.339  | 21.59 | 584.6225      | 1606  |       | 0 | 56.75         | 584.6231  | 1 |
| 342 | 11.205 | 13.57 | 129.015       | 1604  |       | 0 | 67.67         | 129.0155  | 1 |
| 343 | 4.558  | 17.83 | 243.0466      | 1585  |       | 0 | 86.67         | 243.0472  | 1 |
| 344 | 6.215  | 23.35 | 384.2475      | 1580  |       | 0 | 58.75         | 384.248   | 1 |
| 345 | 14.986 | 16.86 | 194.0819      | 1567  |       | 0 | 68.71         | 194.0825  | 1 |
| 346 | 4.193  | 21.56 | 380.032       | 1566  |       | 0 | 62.63         | 380.0325  | 1 |
| 347 | 2.112  | 18.34 | 232.0599      | 1561  |       | 0 | 59.62         | 232.0605  | 1 |
| 348 | 14.565 | 14.44 | 191.9451      | 1552  |       | 0 | 66.63         | 191.9456  | 1 |
| 349 | 9.295  | 15.77 | 230.9566      | 1524  |       | 0 | 59.52         | 230.9571  | 1 |
| 350 | 13.53  | 20.96 | 452.92        | 1523  |       | 0 | 56.84         | 452.9206  | 1 |
| 351 | 2.276  | 14.9  | 161.0465      | 1519  |       | 0 | 55.84         | 161.0471  | 1 |
| 352 | 3.393  | 20.43 | 357.9836      | 1516  |       | 0 | 57.23         | 357.9841  | 1 |
| 353 | 13.392 | 17.72 | 242.942       | 1508  |       | 0 | 56.59         | 242.9426  | 1 |
| 354 | 6.742  | 28.46 | 597.1542      | 1505  |       | 0 | 60.19         | 597.1547  | 1 |
| 355 | 6.101  | 23.45 | 443.0246      | 1503  |       | 0 | 54.42         | 443.0252  | 1 |
| 356 | 14.999 | 15.13 | 218.9308      | 1500  |       | 0 | 70.96         | 218.9313  | 1 |
| 357 | 12.365 | 22.24 | 327.2174      | 1490  |       | 0 | 53.32         | 327.218   | 1 |
| 358 | 9.861  | 15.84 | 230.9553      | 1481  |       | 0 | 63.21         | 230.9559  | 1 |
| 359 | 4.105  | 19.93 | 477.0184      | 1476  |       | 0 | 53.82         | 477.0189  | 1 |
| 360 | 2.143  | 14.32 | 180.9733      | 1449  |       | 0 | 57.83         | 180.9739  | 1 |
| 361 | 13.953 | 17.76 | 310.9285      | 1444  |       | 0 | 78.12         | 310.9291  | 1 |
| 362 | 4.905  | 23.41 | 373.1102      | 1439  |       | 0 | 59.51         | 373.1107  | 1 |
| 363 | 7.537  | 14.32 | 180.9724      | 1426  |       | 0 | 52.49         | 180.9729  | 1 |
| 364 | 3.113  | 21.05 | 286.1766      | 1403  |       | 0 | 65.67         | 286.1772  | 1 |
| 365 | 5.962  | 26.64 | ,<br>491.1165 | 1395  |       | 0 | 51.36         | 491.117   | 1 |
| ~ ~ | ~ /    |       |               | ~ / / |       |   | ~ ~           |           |   |

| 366 | 11.83             | 18.45      | 229.1432  | 1395 |       | 0 | 52.04                     | 229.1437  | 1 |
|-----|-------------------|------------|-----------|------|-------|---|---------------------------|-----------|---|
| 367 | 11.343            | 18.36      | 273.9918  | 1392 |       | 0 | 67.5                      | 273.9923  | 1 |
| 368 | 15.133            | 20.94      | 446.9042  | 1374 |       | 0 | 50.12                     | 446.9048  | 1 |
| 369 | 3.721             | 17.02      | 173.0089  | 1357 | 140.5 | 1 | 59.51                     | 174.0162  | 1 |
| 370 | 4.167             | 26.1       | 623.0858  | 1350 | 206.3 | 1 | 54.28                     | 624.093   | 1 |
| 371 | 4.117             | 17.2       | 211.0612  | 1349 | 5     | 0 | 55.42                     | 211.0618  | 1 |
| 372 | 4.022             | ,<br>14.34 | 180.9727  | 1347 |       | 0 | 62.82                     | 180.9732  | 1 |
| 373 | 4.006             | 15.29      | 153.055   | 1344 |       | 0 | 76.3                      | 153.0556  | 1 |
| 374 | 11.835            | 14.08      | 130.9669  | 1332 |       | 0 | 50.26                     | 130.9674  | 1 |
| 375 | 10.546            | 19.76      | 271.0605  | 1323 |       | 0 | 51.36                     | 271.061   | 1 |
| 376 | 13.976            | 17.8       | 310.9281  | 1308 |       | 0 | 54.84                     | 310.9286  | 1 |
| 377 | 10.656            | 17.68      | 242.9425  | 1288 |       | 0 | 50.5                      | 242.943   | 1 |
| 378 | 11.437            | 15.79      | 190.0179  | 1280 |       | 0 | 64.13                     | 190.0185  | 1 |
| 370 | 13.604            | 15.17      | 216.0336  | 1271 |       | 0 | 74.01                     | 216.0341  | 1 |
| 380 | 5.340             | 20         | 317.0204  | 123/ |       | 0 | 62.35                     | 317.0200  | 1 |
| 381 | 3.221             | 14.30      | 180.9738  | 1207 |       | 0 | 54.48                     | 180.0743  | 1 |
| 282 | 2 825             | 14.8       | 160.0143  | 1200 |       | 0 | 50.32                     | 160.0148  | 1 |
| 282 | 6 210             | 21.18      | 222 1225  | 1104 |       | 0 | 62 56                     | 222 1221  | 1 |
| 284 | 2 57              | 18 08      | 287 0324  | 1164 |       | 0 | 50.82                     | 287.034   | 1 |
| 285 | 7 275             | 10.90      | 200.0085  | 1157 |       | 0 | 51.06                     | 207.034   | 1 |
| 286 | 1.0               | 21.8       | 256 1422  | 1157 |       | 0 | 64.25                     | 256 1420  | 1 |
| 287 | 4.9               | 10.67      | 210.076   | 11/0 |       | 0 | 58.0                      | 210.0766  | 1 |
| 288 | 6 284             | 22.7       | 519.970   | 1120 |       | 0 | 50.9                      | 519.9700  | 1 |
| 280 | 4 4 4             | -23·/      | 260.0268  | 1129 |       | 0 | 55. <del>2</del><br>66 21 | 260.0274  | 1 |
| 200 | 4.44              | 22 42      | 48E 0E84  | 1000 |       | 0 | 62.04                     | 485.05974 | 1 |
| 201 | 4.249             | -20.45     | 403.0304  | 1099 |       | 0 | 50.46                     | 405.0509  | 1 |
| 391 | 4.424             | 22.45      | 258 1062  | 1090 |       | 0 | 50.40                     | 258 1068  | 1 |
| 392 | 4.000<br>F 211    | 23.30      | 350.1902  | 1095 |       | 0 | 55.04                     | 350.1900  | 1 |
| 393 | 5.311<br>6 112    | 19.19      | 290.0730  | 1092 |       | 0 | 50.54<br>64 <del>00</del> | 290.0742  | 1 |
| 394 | 6 5 47            | 26.07      | 293.0095  | 1000 | 214 5 | 1 | 60.82                     | 293.09    | 2 |
| 395 | 0.54/             | 20.97      | 180.0722  | 10/1 | 214.5 | 1 | -1 86                     | 180.0720  | 1 |
| 390 | 7.5<br>6.404      | 14.34      | 287 01 48 | 1000 |       | 0 | 65.4                      | 287.0152  | 1 |
| 397 | 11.285            | 19.23      | 207.0140  | 1040 |       | 0 | 5.4                       | 207.0153  | 1 |
| 390 | <sup>11.305</sup> | 22.02      | 370.1407  | 1008 |       | 0 | 52.05                     | 370.1492  | 1 |
| 399 | 0.497             | 23.94      | 430.1321  | 997  |       | 0 | 57.20                     | 430.1320  | 1 |
| 400 | 12.435            | 15.70      | 109.0100  | 995  |       | 0 | 01.25<br>84               | 109.0172  | 1 |
| 401 | 2.973             | 19.01      | 292.0078  | 962  | 100.0 | 1 | 57.04                     | 292.0064  | 1 |
| 402 | 15.250            | 17.43      | 310.829   | 959  | 139.3 | 1 | 57.00                     | 317.0303  | 2 |
| 403 | 4.540             | 14.07      | 131.0722  | 952  |       | 0 | 57.00                     | 131.0727  | 1 |
| 404 | 5.98              | 22.37      | 420.031   | 951  |       | 0 | 50.66                     | 420.0315  | 1 |
| 405 | 4.45              | 20.04      | 306.0232  | 946  |       | 0 | 54.79                     | 306.0237  | 1 |
| 406 | 4.169             | 17.35      | 344.0142  | 945  | 138.2 | 1 | 68.87                     | 345.0215  | 1 |
| 407 | 4.52              | 19.56      | 265.0289  | 931  | 158.1 | 1 | 56.3                      | 266.0362  | 1 |
| 408 | 9.096             | 24.75      | 473.0797  | 921  |       | 0 | 53.12                     | 473.0802  | 1 |
| 409 | 6.812             | 19.5       | 378.9171  | 897  |       | 0 | 54.84                     | 378.9177  | 1 |
| 410 | 13.464            | 17.71      | 310.9293  | 895  |       | 0 | 53.05                     | 310.9298  | 1 |
| 411 | 4.957             | 29.51      | 577.1316  | 869  | 234.2 | 1 | 52.2                      | 578.1388  | 1 |
| 412 | 3.237             | 22.24      | 413.062   | 865  |       | 0 | 55.24                     | 413.0626  | 1 |
| 413 | 4.288             | 23.54      | 707.2207  | 829  |       | 0 | 53.85                     | 707.2212  | 1 |
| 414 | 4.582             | 17.81      | 243.0464  | 789  |       | 0 | 54.5                      | 243.047   | 1 |
| 415 | 4.988             | 20.07      | 331.0047  | 785  |       | 0 | 53.05                     | 331.0052  | 1 |
| 416 | 3.417             | 14.32      | 180.9728  | 782  |       | 0 | 51.7                      | 180.9734  | 1 |
| 417 | 15.562            | 21.89      | 311.1652  | 772  |       | 0 | 52.1                      | 311.1658  | 1 |
| 418 | 15.148            | 15.24      | 220.9277  | 768  |       | 0 | 56.84                     | 220.9282  | 1 |

#### D.3. Blaufränkisch-Zweigelt

|     |        |       | 0 .      |     |   |   |       |          |   |
|-----|--------|-------|----------|-----|---|---|-------|----------|---|
| 419 | 13.35  | 17.81 | 310.9284 | 755 | ( | 0 | 50.74 | 310.929  | 1 |
| 420 | 13.867 | 11.81 | 178.8437 | 755 | ( | 0 | 56.64 | 178.8442 | 1 |
| 421 | 9.344  | 13.57 | 152.9782 | 745 | ( | 0 | 52.28 | 152.9788 | 1 |
| 422 | 3.406  | 20.55 | 317.0872 | 729 | ( | 0 | 52.98 | 317.0878 | 1 |
| 423 | 4.19   | 16.12 | 238.9805 | 718 | ( | 0 | 51.89 | 238.981  | 1 |
| 424 | 4.145  | 22.32 | 312.0446 | 699 | ( | 0 | 53.41 | 312.0452 | 1 |
| 425 | 15.684 | 23.29 | 311.1664 | 697 | ( | 0 | 51.24 | 311.167  | 1 |
| 426 | 12.121 | 15.76 | 189.015  | 678 | ( | 0 | 50.49 | 189.0156 | 1 |
| 427 | 6.947  | 24.46 | 465.1044 | 572 | ( | D | 51.01 | 465.105  | 1 |
|     |        |       |          |     |   |   |       |          |   |

### D.3.2. LC-TOF

| .3.2.          | LC-T   | OF        |          |       | 46               | 4.171          | 300.0336             | 432589           | 100  |
|----------------|--------|-----------|----------|-------|------------------|----------------|----------------------|------------------|------|
| ID             | DT     |           | 41 1     | 0     | 47               | 6.817          | 510.137              | 420758           | 100  |
| ID             | KI     | Mass      | Abund    | Score | 48               | 4.102          | 220.0586             | 414960           | 100  |
| 1              | 11.193 | 190.0244  | 31512360 | 100   | 49               | 5.807          | 646.1301             | 414676           | 100  |
| 2              | 5.183  | 290.079   | 9486124  | 100   | 50               | 4.419          | 244.0562             | 413527           | 100  |
| 3              | 4.169  | 312.0484  | 8579934  | 100   | 51               | 3.682          | 306.0742             | 408854           | 100  |
| 4              | 6.002  | 290.079   | 7318316  | 100   | 52               | 4.819          | 296.0533             | 408355           | 100  |
| 5              | 11.192 | 402.0299  | 6192959  | 100   | 53               | 5.004          | 444.1996             | 407605           | 100  |
| 6              | 4.55   | 176.0687  | 6135209  | 100   | 54               | 3.35           | 430.1685             | 405481           | 100  |
| 7              | 6.405  | 198.053   | 4988157  | 100   | 55               | 3.814          | 594.1372             | 403400           | 100  |
| 8              | 4.953  | 578.1423  | 3147660  | 100   | 56               | 5.319          | 132.0788             | 397796           | 100  |
| 9              | 5.808  | 578.1426  | 2606421  | 100   | 57               | 4.556          | 244.0562             | 382035           | 100  |
| 10             | 5.005  | 296.053   | 1554592  | 100   | 58               | 5.526          | 326.0637             | 381458           | 100  |
| 11             | 5.44   | 180.0425  | 1510432  | 100   | 59               | 5.816          | 326.1002             | 379861           | 100  |
| 12             | 4.42   | 130.0263  | 1280638  | 100   | 60               | 5.512          | 866.2061             | 375558           | 100  |
| 13             | 4.55   | 374.1185  | 1005234  | 100   | 61               | 11.192         | 464.0001             | 371207           | 100  |
| 14             | 6.1    | 292.0948  | 1003295  | 100   | 62               | 3.745          | 866.2057             | 366423           | 100  |
| 15             | 11.227 | 258.0119  | 984035   | 87    | 63               | 3.167          | 157.0741             | 351344           | 100  |
| 16             | 4.024  | 316.116   | 933156   | 100   | 64               | 11.192         | 275.0017             | 349646           | 100  |
| 17             | 5.184  | 358.0665  | 916510   | 100   | 65               | 4.167          | 334.0299             | 349385           | 86.7 |
| 18             | 6.002  | 358.0665  | 861822   | 100   | 66               | 6.512          | 164.0472             | 340881           | 100  |
| 19             | 11.191 | 614.0361  | 830949   | 100   | 67               | 14.853         | 195.0898             | 334973           | 100  |
| 20             | 4.169  | 646.0785  | 795620   | 100   | 68               | 4.954          | 646.1299             | 332277           | 100  |
| 21             | 6.336  | 367.1266  | 788276   | 100   | 69               | 3.523          | 386.1425             | 326698           | 100  |
| 22             | 7.411  | 478.0747  | 785398   | 100   | 70               | 7.41           | 782.2057             | 316820           | 100  |
| 23             | 11.193 | 470.0173  | 769868   | 100   | ,<br>71          | 3.709          | 220.0584             | 309888           | 100  |
| 24             | 5.067  | 578.1424  | 762216   | 100   | ,<br>72          | 6.239          | 428.041              | 309152           | 87   |
| 25             | 9.687  | 302.0428  | 687947   | 100   | ,<br>73          | 4.42           | 374.1188             | 306935           | 100  |
| 26             | 9.753  | 208.0737  | 685291   | 100   | 73               | 7.157          | 436.137              | 306070           | 100  |
| 27             | 4.42   | 176.0687  | 670577   | 100   | 75               | 6.002          | 336.0845             | 290527           | 100  |
| 28             | 4.173  | 380.0356  | 629776   | 100   | 75               | 7.412          | 626.1845             | 285757           | 100  |
| 29             | 4.433  | 154.0268  | 607872   | 100   | 70               | 8.12           | 508.1216             | 285436           | 100  |
| 30             | 7.514  | 626.1848  | 587320   | 100   | 78               | 7.527          | 450.116              | 282110           | 100  |
| 31             | 11.156 | 258.0117  | 579538   | 85.3  | 70               | 5.183          | 404.0715             | 282071           | 100  |
| 32             | 2.961  | 144.0425  | 568069   | 100   | 80               | 8.082          | 782.2062             | 260503           | 100  |
| 33             | 5.5    | 326.1002  | 549852   | 100   | 81               | 4.553          | 1097.0702            | 266676           | 100  |
| 34             | 2.961  | 162.0531  | 549821   | 100   | 82               | 9.804          | 228.0788             | 263003           | 100  |
| 35             | 4.315  | 617.1164  | 534206   | 100   | 8 <u>2</u><br>82 | 4 17           | 180.0426             | 260620           | 100  |
| 36             | 5.691  | 448.1582  | 531921   | 100   | 84               | 2 584          | 260 1050             | 255571           | 100  |
| 37             | 2.96   | 230.0403  | 515033   | 100   | 85               | 6.014          | 154.0266             | 255371           | 100  |
| 38             | 8.403  | 318.0376  | 507204   | 100   | 86               | 11 102         | 676.0062             | 253490           | 100  |
| 39             | 6.469  | 866.2057  | 504359   | 100   | 87               | 11.192         | 225.0080             | 252208           | 100  |
| 40             | 11.101 | 608.0189  | 504246   | 100   | 88               | = 006          | 323.9909<br>264.0405 | 252390           | 100  |
| т~<br>41       | 8.202  | 390.1315  | 400277   | 100   | 80               | 12 450         | 304.0403             | 244902           | 100  |
| 42             | 3.438  | 154.0634  | 498495   | 100   | 09               | 13.459<br>6655 | 294.1032             | 230503<br>228022 | 100  |
| 43             | 6.316  | 166.0633  | 481088   | 100   | 90               | 2.055          | 246 0872             | 230033<br>226⊑42 | 100  |
| т)<br>44       | 11.30/ | 243.1837  | 463897   | 100   | 91               | 2.959          | 188 1051             | 230543           | 100  |
| <br>45         | 3.182  | 230.0404  | 440765   | 100   | 92               | 11 101         | 820.02.17            | 230112           | 100  |
| <del>4</del> 9 | 5.105  | - 30.0404 | 440700   | 100   | 93               | 11.191         | 020.024/             | 230034           | 100  |

| 94  | 2.293                  | 162.0533 | 235623      | 100  | 1 | 142             | 11.236         | 319.982  | 158182 | 100  |
|-----|------------------------|----------|-------------|------|---|-----------------|----------------|----------|--------|------|
| 95  | 5.964                  | 432.1993 | 234943      | 95.4 | 1 | 43              | 11.377         | 330.2404 | 156910 | 100  |
| 96  | 8.112                  | 182.0581 | 234302      | 100  | 1 | 44              | 4.239          | 176.0686 | 156585 | 100  |
| 97  | 4.928                  | 294.1314 | 232968      | 100  | 1 | 45              | 11.15          | 325.9989 | 156416 | 100  |
| 98  | 5.606                  | 866.2059 | 231215      | 92.8 | 1 | 146             | 4.135          | 594.1371 | 154357 | 100  |
| 99  | 7.054                  | 205.074  | 227249      | 100  | 1 | 147             | 4.427          | 352.0769 | 154289 | 100  |
| 100 | 2.962                  | 118.0631 | 227020      | 100  | 1 | ۲ <u>4</u> 8    | 4.193          | 402.0171 | 152237 | 87   |
| 101 | 3.845                  | 488.0734 | ,<br>225551 | 100  | 1 | 149             | 6.044          | 428.1889 | 152077 | 100  |
| 102 | 4.025                  | 384.1029 | 222263      | 100  | 1 | 150             | 2.959          | 298.0274 | 149012 | 100  |
| 103 | 6.579                  | 578.1419 | 221194      | 100  | 1 | 151             | 5.691          | 516.1452 | 148334 | 100  |
| 104 | 3.288                  | 400.1579 | 220723      | 100  | 1 | 152             | 5.42           | 398.0666 | 147790 | 100  |
| 105 | 11.194                 | 146.0345 | 220423      | 100  | 1 | 153             | 5.183          | 648.1452 | 146748 | 100  |
| 106 | 7.703                  | 354.1312 | 21/103      | 100  | - | 154             | 4.159          | 383.1074 | 146306 | 100  |
| 107 | 5 185                  | 426.0534 | 212627      | 100  | - | 155             | 7 420          | 506 1736 | 145820 | 100  |
| 108 | 6 781                  | 480.0002 | 208476      | 100  | 1 | 156             | 6.060          | 686 1202 | 145607 | 100  |
| 100 | 4 212                  | 182.058  | 2004/0      | 00.0 | - | 157             | 2.252          | 408 1550 | 145482 | 100  |
| 110 | 4.212                  | F00.0562 | 20/203      | 100  | 1 | 157             | 3·332<br>7 700 | 240.0701 | 143403 | 100  |
| 110 | 7.41 <u>2</u><br>6.001 | 404.0714 | 205/5/      | 100  | 1 | 150             | 6 181          | 100.084  | 144//5 | 100  |
| 111 | 4.657                  | 404.0714 | 204049      | 100  | 1 | 159             | 0.101          | 264.0702 | 14255/ | 100  |
| 112 | 4.057                  | 594·1373 | 203043      | 100  | 1 | 161             | 2.407          | 304.0792 | 142023 | 100  |
| 113 | 5.125                  | 000.1304 | 201212      | 100  | 1 | (62             | 3.407          | 207.0534 | 141599 | 100  |
| 114 | 3.10                   | 346.0673 | 200908      | 100  | 1 | 102             | 7.475          | 510.2309 | 140623 | 100  |
| 115 | 6.338                  | 435.1138 | 200337      | 100  | 1 | 163             | 3.864          | 174.0529 | 140522 | 99.8 |
| 116 | 3.434                  | 316.0792 | 200014      | 100  | 1 | 164             | 8.203          | 458.1186 | 138205 | 100  |
| 117 | 11.702                 | 232.1099 | 196721      | 100  | 1 | 165             | 5.248          | 326.1    | 137491 | 98.8 |
| 118 | 4.553                  | 396.1005 | 194130      | 100  | 1 | 166             | 5.454          | 448.1577 | 136403 | 100  |
| 119 | 3.524                  | 280.1162 | 192119      | 100  | 1 | 167             | 7.399          | 578.142  | 136268 | 100  |
| 120 | 5.752                  | 432.1991 | 191981      | 100  | 1 | 168             | 5.259          | 414.0255 | 135873 | 89.7 |
| 121 | 5.183                  | 336.0842 | 191006      | 100  | 1 | 169             | 5.319          | 200.0663 | 135794 | 100  |
| 122 | 5.183                  | 326.0556 | 190689      | 100  | 1 | 170             | 10.763         | 328.2246 | 134182 | 99   |
| 123 | 4.315                  | 639.0981 | 188844      | 100  | 1 | 171             | 5.875          | 242.1268 | 133859 | 100  |
| 124 | 5.183                  | 420.0368 | 187285      | 100  | 1 | 172             | 11.191         | 826.0416 | 132565 | 96.8 |
| 125 | 11.192                 | 682.0231 | 185205      | 100  | 1 | <sup>1</sup> 73 | 4.193          | 184.0375 | 132388 | 100  |
| 126 | 4.551                  | 572.169  | 180736      | 100  | 1 | <sup>1</sup> 74 | 5.183          | 353.0743 | 131596 | 100  |
| 127 | 6.002                  | 426.0536 | 180553      | 100  | 1 | <sup>1</sup> 75 | 6.1            | 338.1004 | 128626 | 100  |
| 128 | 8.626                  | 500.1465 | 180398      | 100  | 1 | 176             | 4.13           | 112.0164 | 127986 | 100  |
| 129 | 7.258                  | 168.042  | 179807      | 100  | 1 | L77             | 6.314          | 234.0504 | 127800 | 100  |
| 130 | 5.02                   | 166.0269 | 179727      | 100  | 1 | 178             | 11.19          | 418.0037 | 126958 | 100  |
| 131 | 3.072                  | 154.0268 | 178643      | 100  | 1 | ۲9              | 5.197          | 422.1572 | 126493 | 100  |
| 132 | 6.101                  | 360.082  | 170336      | 100  | 1 | 180             | 4.174          | 310.032  | 126079 | 100  |
| 133 | 6.002                  | 326.0557 | 169917      | 100  | 1 | 181             | 5.345          | 230.1057 | 125891 | 100  |
| 134 | 6.146                  | 398.0307 | 169461      | 86.7 | 1 | 182             | 7.269          | 302.0057 | 125336 | 100  |
| 135 | 6.002                  | 420.0367 | 168047      | 100  | 1 | 183             | 5.276          | 510.1371 | 124074 | 100  |
| 136 | 6.406                  | 266.0402 | 166761      | 100  | 1 | 184             | 11.193         | 247.983  | 123491 | 100  |
| 137 | 6.791                  | 508.1211 | 164752      | 100  | 1 | 185             | 5.844          | 686.1307 | 123100 | 100  |
| 138 | 4.974                  | 306.0741 | 163496      | 100  | 1 | 186             | 5.719          | 398.0669 | 122059 | 100  |
| 139 | 6.941                  | 398.0667 | 163209      | 100  | 1 | ۱8 <sub>7</sub> | 3.693          | 244.0584 | 121850 | 100  |
| 140 | 5.384                  | 686.1302 | 161520      | 100  | 1 | ,<br>188        | 3.18           | 162.0533 | 121698 | 100  |
| 141 | 5.856                  | 866.2061 | 160804      | 100  | 1 | 189             | 6.636          | 466.111  | 120465 | 100  |
|     | ~ ~                    |          |             |      |   | -               | ~              | •        |        |      |

| 190        | 8.082        | 452.1105                          | 119947 | 100  | 238 | 8.237  | 640.1997             | 94587          | 95.9 |
|------------|--------------|-----------------------------------|--------|------|-----|--------|----------------------|----------------|------|
| 191        | 3.716        | 358.0868                          | 119214 | 100  | 239 | 11.113 | 316.058              | 93502          | 100  |
| 192        | 3.156        | 220.0586                          | 118449 | 100  | 240 | 7.514  | 648.1666             | 92941          | 100  |
| 193        | 5.501        | 394.0875                          | 118275 | 100  | 241 | 6.404  | 312.0457             | 92692          | 100  |
| 194        | 4.095        | 244.0562                          | 117861 | 100  | 242 | 4.162  | 695.1557             | 92335          | 100  |
| 195        | 8.549        | 434.1213                          | 116047 | 100  | 243 | 3.182  | 482.1059             | 92260          | 100  |
| 196        | 5.739        | 296.1468                          | 115591 | 100  | 244 | 11.191 | 888.0115             | 91043          | 100  |
| 197        | 3.584        | 592.1095                          | 115480 | 100  | 245 | 3.584  | 437.0928             | 91031          | 100  |
| 198        | 6.097        | 882.2006                          | 115214 | 100  | 246 | 11.255 | 393.986              | 90776          | 100  |
| 199        | 4.11         | 288.0458                          | 113656 | 100  | 247 | 11.25  | 387.969              | 90589          | 100  |
| 200        | 6.732        | 174.0892                          | 113217 | 100  | 248 | 11.224 | 538.0047             | 90036          | 87   |
| 201        | 1.0/1        | 882.2001                          | 112617 | 100  | 2/0 | 5.469  | 244.1789             | 80704          | 100  |
| 202        | 6.003        | 353.0744                          | 112225 | 100  | 250 | 0.262  | 264 126              | 80670          | 100  |
| 202        | 6.008        | 444 1052                          | 108004 | 100  | 251 | 8.081  | 850 1020             | 80204          | 100  |
| 204        | 11 204       | 211 1708                          | 108220 | 100  | 252 | 4.028  | 214.0456             | 88122          | 08 1 |
| 204        | 6 001        | 648 14FF                          | 107204 | 100  | 252 | 4.950  | EE4 0882             | 87222          | 100  |
| 205        | 5.001        | 122.0788                          | 10/394 | 100  | 255 | 4.14   | 554.0002<br>661.0707 | 87210          | 100  |
| 200        | 5.215        | 132.0700                          | 100110 | 100  | 254 | 4.314  | 488 0227             | 86780          | 100  |
| 207        | 4.020        | 430.1002                          | 105004 | 100  | 255 | 5.102  | 400.0237             | 86412          | 100  |
| 200        | 5.3<br>- 808 | 398.007                           | 105009 | 100  | 250 | 4.430  | 702.1121             | 861-1          | 100  |
| 209        | 5.000        | 000.1123                          | 104133 | 100  | 257 | 5.304  | 316.1156             | 001/4<br>8(a(9 | 100  |
| 210        | 4.421        | 306.0266                          | 103555 | 100  | 258 | 6.733  | 494.0694             | 80008          | 100  |
| 211        | 5.061        | 646.13                            | 103345 | 99.2 | 259 | 6.78   | 586.2256             | 85750          | 100  |
| 212        | 7.489        | 494.1056                          | 103190 | 100  | 260 | 5.44   | 248.0297             | 85671          | 100  |
| 213        | 5.004        | 512.1867                          | 102942 | 100  | 261 | 2.96   | 302.0977             | 85590          | 100  |
| 214        | 5.625        | 488.1524                          | 102121 | 100  | 262 | 6.42   | 1070.2684            | 84769          | 100  |
| 215        | 3.656        | 162.0894                          | 101742 | 100  | 263 | 6.003  | 782.2055             | 84644          | 100  |
| 216        | 6.818        | 578.125                           | 100092 | 100  | 264 | 7.41   | 850.1931             | 84063          | 100  |
| 217        | 6.755        | 560.1161                          | 100025 | 100  | 265 | 5.354  | 426.173              | 83858          | 95.7 |
| 218        | 4.351        | 230.1633                          | 99946  | 100  | 266 | 13.848 | 379.293              | 83758          | 100  |
| 219        | 8.204        | 436.1363                          | 99937  | 100  | 267 | 6.375  | 866.2055             | 83606          | 100  |
| 220        | 4.804        | 414.1735                          | 99729  | 100  | 268 | 6.032  | 488.1525             | 83551          | 100  |
| 221        | 3.737        | 312.0481                          | 99689  | 100  | 269 | 4.172  | 690.0424             | 82876          | 100  |
| 222        | 5.86         | 512.1525                          | 99534  | 100  | 270 | 8.091  | 210.0871             | 82805          | 100  |
| 223        | 4.096        | 176.0687                          | 99432  | 100  | 271 | 9.685  | 370.0297             | 82708          | 100  |
| 224        | 3.184        | 292.0109                          | 99215  | 81.9 | 272 | 4.55   | 566.1521             | 82519          | 100  |
| 225        | 4.173        | 463.9877                          | 98786  | 98.6 | 273 | 5.817  | 394.0874             | 82155          | 100  |
| 226        | 4.775        | 244.0562                          | 98784  | 100  | 274 | 5.527  | 394.0509             | 81696          | 100  |
| 227        | 5.332        | 158.0579                          | 98711  | 100  | 275 | 4.442  | 222.0143             | 81632          | 100  |
| 228        | 9.468        | 546.1885                          | 98432  | 100  | 276 | 5.115  | 594.1371             | 81445          | 100  |
| 229        | 5.951        | 320.0533                          | 98147  | 100  | 277 | 5.391  | 452.1315             | 81284          | 100  |
| 230        | 5.009        | 386.022                           | 97978  | 100  | 278 | 4.527  | 266.0383             | 81246          | 87   |
| 231        | 11.152       | 319.9818                          | 97808  | 100  | 279 | 3.682  | 374.0611             | 80936          | 100  |
| 232        | 5.062        | 182.058                           | 97777  | 100  | 280 | 7.156  | 504.124              | 80886          | 100  |
| 233        | 3.846        | 510.055                           | 97662  | 100  | 281 | 4.024  | 452.0899             | 80152          | 100  |
| 234        | 11.26        | 192.0780                          | 97287  | 100  | 282 | 3.181  | 414.0747             | 79610          | 100  |
| 235        | 6.006        | 450,1161                          | 06220  | 100  | 283 | 6.704  | 348.1238             | 78370          | 100  |
| 226        | 6.006        | 488.1527                          | 95667  | 100  | 284 | 6.556  | 276.1112             | 78231          | 100  |
| -00<br>227 | 4.82         | 364.0402                          | 0/71/  | 100  |     | 6.488  | 462.172              | 77011          | 100  |
| -57        |              | J~ <del>T</del> ~ <del>T</del> ~J | 27/14  | 100  | -~, | ·      | /J                   | 117++          | 100  |

| 286 | 7.513  | 694.1719 | 77905 | 100  |
|-----|--------|----------|-------|------|
| 287 | 4.951  | 614.1183 | 77770 | 100  |
| 288 | 6      | 488.024  | 77733 | 100  |
| 289 | 3.712  | 288.0454 | 77345 | 100  |
| 290 | 2.966  | 186.0504 | 77330 | 100  |
| 291 | 6.101  | 314.0765 | 77246 | 100  |
| 292 | 4.553  | 412.0665 | 77183 | 100  |
| 293 | 11.193 | 479.9727 | 77095 | 100  |
| 294 | 5.061  | 294.1316 | 76695 | 100  |
| 295 | 3.181  | 359.998  | 76502 | 96.8 |
| 296 | 6.001  | 892.2187 | 76375 | 100  |
| 297 | 4.17   | 662.0452 | 76360 | 100  |
| 298 | 7.648  | 170.0215 | 76274 | 100  |
| 299 | 10.48  | 906.2669 | 75877 | 100  |
| 300 | 7.527  | 518.1031 | 75705 | 100  |

# **Bibliography**

- [1] Abu B. Kanu et al. "Ion mobility-mass spectrometry." In: *Journal of Mass Spectrometry* 43.1 (Jan. 1, 2008), pp. 1–22. DOI: 10.1002/jms.1383 (cit. on pp. 1, 6).
- [2] Riccardo Flamini. "Mass spectrometry in grape and wine chemistry. Part I: Polyphenols." In: *Mass Spectrometry Reviews* 22.4 (July 1, 2003), pp. 218–250. DOI: 10.1002/mas.10052 (cit. on p. 1).
- [3] Darko Modun et al. "The increase in human plasma antioxidant capacity after red wine consumption is due to both plasma urate and wine polyphenols." In: *Atherosclerosis* 197.1 (Mar. 2008), pp. 250–256. DOI: 10.1016/j.atherosclerosis. 2007.04.002 (cit. on p. 1).
- [4] Stéphane Quideau et al. "Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis." In: *Angewandte Chemie International Edition* 50.3 (Jan. 17, 2011), pp. 586–621. DOI: 10.1002/anie.201000044 (cit. on p. 1).
- [5] Øyvind M. [Hrsg Andersen and Jonathan E. Brown. *Flavonoids : chemistry, bio-chemistry and applications*. Boca Raton, Flaua: CRC Press, 2006. 1237 pp. (cit. on p. 3).
- [6] Kelly E Heim, Anthony R Tagliaferro, and Dennis J Bobilya. "Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships." In: *The Journal* of Nutritional Biochemistry 13.10 (Oct. 2002), pp. 572–584. DOI: 10.1016/S0955– 2863(02)00208–5 (cit. on p. 3).
- [7] Ilse Zündorf. "Teedrogen und Phytopharmaka. Von Max Wichtl (Hrsg.)" In: *Pharmazie in unserer Zeit* 38.2 (Mar. 1, 2009), pp. 192–193. DOI: 10.1002/pauz. 200990017 (cit. on p. 3).
- [8] Ana García-Lafuente et al. "Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease." In: *Inflammation Research* 58.9 (Apr. 21, 2009), pp. 537–552. DOI: 10.1007/s00011-009-0037-3 (cit. on p. 3).
- [9] Di Zhang et al. "Analysis of the antioxidant capacities of flavonoids under different spectrophotometric assays using cyclic voltammetry and density functional theory." In: *Journal of Agricultural and Food Chemistry* 59.18 (Sept. 28, 2011), pp. 10277–10285. DOI: 10.1021/jf201773q (cit. on p. 4).
- [10] Priyanka Chatterjee et al. "Evaluation of anti-inflammatory effects of green tea and black tea: A comparative in vitro study." In: *Journal of Advanced Pharmaceutical Technology & Research* 3.2 (2012), pp. 136–138. DOI: 10.4103/2231-4040.97298 (cit. on p. 4).

- [11] Patricia Diaz et al. "Antioxidant and anti-inflammatory activities of selected medicinal plants and fungi containing phenolic and flavonoid compounds." In: *Chinese Medicine* 7.1 (2012), p. 26. DOI: 10.1186/1749-8546-7-26 (cit. on p. 4).
- [12] Dragan Amic et al. "SAR and QSAR of the Antioxidant Activity of Flavonoids." In: *Current Medicinal Chemistry* 14.7 (Mar. 1, 2007), pp. 827–845. DOI: 10.2174/ 092986707780090954 (cit. on p. 4).
- [13] Ju-Mi Jeong et al. "Antioxidant and Chemosensitizing Effects of Flavonoids with Hydroxy and/or Methoxy Groups and Structure-Activity Relationship." In: *Journal of Pharmacy & Pharmaceutical Sciences* 10.4 (Oct. 26, 2007), pp. 537–546 (cit. on p. 4).
- S.K. Gunda, S.K.M. Narasimha, and M. Shaik. "P56lck kinase inhibitor studies: A 3D QSAR approach towards designing new drugs from flavonoid derivatives." In: *International Journal of Computational Biology and Drug Design* 7.2 (2014), pp. 278–294. DOI: 10.1504/IJCBDD.2014.061648 (cit. on p. 4).
- [15] Leonhard Jaitz et al. "LC–MS/MS analysis of phenols for classification of red wine according to geographic origin, grape variety and vintage." In: *Food Chemistry* 122.1 (Sept. 1, 2010), pp. 366–372. DOI: 10.1016/j.foodchem.2010.02.053 (cit. on pp. 4, 13).
- [16] Marcello Iriti and Sara Vitalini. "Chemical Diversity of Grape Products, a Complex Blend of Bioactive Secondary Metabolites." In: *The Natural Products Journale* 1.1 (July 1, 2011), pp. 71–74. DOI: 10.2174/2210315511101010071 (cit. on p. 4).
- [17] M. E. Alañón, M. S. Pérez-Coello, and M. L. Marina. "Wine science in the metabolomics era." In: *TrAC Trends in Analytical Chemistry* 74 (Dec. 2015), pp. 1–20. DOI: 10.1016/j.trac.2015.05.006 (cit. on p. 4).
- [18] Ramon Díaz et al. "Told through the wine: A liquid chromatography-mass spectrometry interplatform comparison reveals the influence of the global approach on the final annotated metabolites in non-targeted metabolomics." In: *Journal of Chromatography A* 1433 (Feb. 12, 2016), pp. 90–97. DOI: 10.1016/j.chroma.2016.01.010 (cit. on p. 4).
- [19] Franz Bucar, Abraham Wube, and Martin Schmid. "Natural product isolation

   how to get from biological material to pure compounds." In: *Natural Product Reports* 30.4 (Mar. 12, 2013), pp. 525–545. DOI: 10.1039/C3NP20106F (cit. on p. 5).
- [20] Bénédicte Lorrain et al. "Evolution of Analysis of Polyhenols from Grapes, Wines, and Extracts." In: *Molecules* 18.1 (Jan. 16, 2013), pp. 1076–1100. DOI: 10.3390/ molecules18011076 (cit. on p. 5).
- [21] Ghada H. Yassin et al. "Investigation of isomeric flavanol structures in black tea thearubigins using ultraperformance liquid chromatography coupled to hybrid quadrupole/ion mobility/time of flight mass spectrometry." In: *Journal of Mass Spectrometry* 49.11 (Nov. 1, 2014), pp. 1086–1095. DOI: 10.1002/jms.3406 (cit. on p. 6).

- [22] H. E. Revercomb and E. A. Mason. "Theory of plasma chromatography/gaseous electrophoresis. Review." In: *Analytical Chemistry* 47.7 (June 1, 1975), pp. 970–983. DOI: 10.1021/ac60357a043 (cit. on pp. 6, 7).
- [23] Iain Campuzano et al. "Structural Characterization of Drug-like Compounds by Ion Mobility Mass Spectrometry: Comparison of Theoretical and Experimentally Derived Nitrogen Collision Cross Sections." In: *Analytical Chemistry* 84.2 (Jan. 17, 2012), pp. 1026–1033. DOI: 10.1021/ac202625t (cit. on p. 6).
- [24] Matthew F. Bush, Iain D. G. Campuzano, and Carol V. Robinson. "Ion Mobility Mass Spectrometry of Peptide Ions: Effects of Drift Gas and Calibration Strategies." In: *Analytical Chemistry* 84.16 (Aug. 21, 2012), pp. 7124–7130. DOI: 10.1021/ac3014498 (cit. on p. 6).
- [25] Jody C. May and John A. McLean. "Ion Mobility-Mass Spectrometry: Time-Dispersive Instrumentation." In: *Analytical Chemistry* 87.3 (Feb. 3, 2015), pp. 1422– 1436. DOI: 10.1021/ac504720m (cit. on p. 6).
- [26] Larissa S. Fenn et al. "Characterizing ion mobility-mass spectrometry conformation space for the analysis of complex biological samples." In: *Analytical and Bioanalytical Chemistry* 394.1 (Feb. 27, 2009), pp. 235–244. DOI: 10.1007/s00216-009-2666-3 (cit. on p. 9).
- [27] 6200 Series Accurate-Mass Time-of-Flight (TOF) LC/MS Agilent. URL: http://www. chem.agilent.com/en-US/products-services/Instruments-Systems/Mass-Spectrometry/6200-Series-Accurate-Mass-Time-of-Flight-(TOF)-LC-MS/Pages/default.aspx (visited on 07/08/2015) (cit. on p. 9).
- [28] 6560 Ion Mobility Q-TOF LC/MS Agilent. URL: http://www.chem.agilent.com/ en-US/products-services/Instruments-Systems/Mass-Spectrometry/6560-Ion-Mobility-Q-TOF-LC-MS/Pages/default.aspx (visited on 07/08/2015) (cit. on pp. 9, 10).
- [29] Souji Rokushika et al. "Resolution measurement for ion mobility spectrometry." In: Analytical Chemistry 57.9 (Aug. 1, 1985), pp. 1902–1907. DOI: 10.1021/ ac00286a023 (cit. on pp. 11, 12).
- [30] Prabha Dwivedi, Albert J. Schultz, and Herbert H. Hill. "Metabolic Profiling of Human Blood by High Resolution Ion Mobility Mass Spectrometry (IM-MS)." In: *International journal of mass spectrometry* 298.1 (Dec. 2010), pp. 78–90. DOI: 10.1016/j.ijms.2010.02.007 (cit. on p. 12).
- [31] Brian H. Clowers et al. "Enhanced Ion Utilization Efficiency Using an Electrodynamic Ion Funnel Trap as an Injection Mechanism for Ion Mobility Spectrometry." In: *Analytical chemistry* 80.3 (Feb. 1, 2008), pp. 612–623. DOI: 10.1021/ac701648p (cit. on p. 15).
- [32] B. Magnusson and U. Ornemark (eds.) Eurachem Guide: The Fitness for Purpose of Analytical Methods A Laboratory Guide to Method Validation and Related Topics. 2014 (cit. on p. 17).
# Marian Došen

## Persönliche Daten

| Geburtsort und Datum: | Salzburg, Österreich   14 März 1986          |
|-----------------------|----------------------------------------------|
| Adresse:              | Fasangasse $41/2/2$ , 1030, Wien, Österreich |
| TELEFON:              | $+43\ 650\ 2424190$                          |
| EMAIL:                | marislav@gmx.at                              |

### Arbeitserfahrung

| Aktuell   | Midex Bau- und Handels -GmbH                                                                                                                       |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Feb 2016  | Netzwerkadministration                                                                                                                             |
|           | Installation eines kleinen Firmennetzwerks und Abwicklung der Datensicherung, Im-<br>plementierung einer Domain und Bereitstellung der Webpräsenz. |
| 2012-2013 | Lehrkraft beim LERNQUADRAT, Wien                                                                                                                   |
|           | Chemie und Mathematik                                                                                                                              |
|           | Unterricht und Bürotätigkeiten, sowie Kundenkontakt und Organisation                                                                               |
| 9011 9019 | Construction dentific Harry Dog Dr. Mangoon Counting Frankinstin für                                                                               |
| 2011-2012 | Neurologie und Psychiatrie                                                                                                                         |
|           | Erfahrungen mit dem Gesundheitswesen, neurologischen Erkrankungen und deren pharmakologischer Therapie, sowie Organisation und Koordination.       |
| 2006-2016 | Nachhilfetätigkeiten CHEMIE UND MATHEMATIK<br>Hauptsächlich Schüler der HTL Rosensteingasse                                                        |

### AUSBILDUNG

| Februar 2016 | Diplomstudium MAGISTER PHARMACIAE, Universität Wien, Wien                                                  |
|--------------|------------------------------------------------------------------------------------------------------------|
| October 2006 | Matura an der HTL Rosensteingasse für chemische Industrie<br>Abteilung für Leder und Naturstofftechnologie |

## Sprachen

|                      | DEUTSCH:  | Muttersprache |
|----------------------|-----------|---------------|
| BOSNISCH, KROATISCH, | SERBISCH: | Vatersprache  |
|                      | Englisch: | akzeptabel    |

## Computer Skills

Basiswissen:HTML, LINUX, ubuntu, IATEX, NetzwerktechnikFortgeschritten:Excel, Word, PowerPoint, Windowsplattformen generell

## INTERESSEN UND AKTIVITÄTEN

Chemie, Medizinalpflanzen Sportklettern, Reisen

# Marian Došen

## Personal Data

| PLACE AND DATE OF BIRTH: | Austria   14 March 1986               |
|--------------------------|---------------------------------------|
| Address:                 | Fasangasse $41/2/2$ , Vienna, Austria |
| PHONE:                   | $+43\ 650\ 2424190$                   |
| EMAIL:                   | marislav@gmx.at                       |

## WORK EXPERIENCE

| Current<br>Feb 2016 | Network-administration at MIDEX BAU- UND HANDELSGMBH, Vienna Setting up domain, network and data security for a small company. |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 2012 - 2013         | Teaching at LERNQUADRAT, Vienna<br>Mathematics and Chemistry                                                                   |
| 2011 - 2012         | Assistant at UNIVDOZ. DR. MARGOT SCHMITZ, Vienna<br>Organization and Coordination.                                             |
| 2006 - 2016         | Teaching to STUDENTS, Vienna<br>Learning Mathematics and Chemistry with students from my former school.                        |

### EDUCATION

| Feb 2016 | Diploma in | PHARMACY, | University | of Vienna, | Vienna |
|----------|------------|-----------|------------|------------|--------|
|----------|------------|-----------|------------|------------|--------|

Oct 2006 High school degree in INDUSTRIAL CHEMISTRY (http://hblva17.ac.at/)

### LANGUAGES

ENGLISH: Fluent GERMAN: Mother-tongue BOSNIAN-CROATIAN-SERBIAN: Proficient

## Computer Skills

### INTERESTS AND ACTIVITIES

Medicinal plants, Sports-climbing