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 Abstract  

In plants, diurnal regulation has been shown to be essentially involved in growth control, 

developmental processes and responses towards stress and fluctuating environmental 

conditions. Diurnal reprogramming of metabolism is required to cope with the broad range of 

external parameters faced by plants during the course of a day/night cycle. Yet, the derivation 

of conclusive hypotheses dealing with these regulatory strategies from experimental datasets 

is impeded by numerous regulatory circuits, non-linear enzyme kinetics and thermodynamic 

constraints. To overcome this limitation and gain insight into the regulation of metabolism in 

Arabidopsis thaliana, a covariance-based steady-state modelling approach was applied for the 

functional integration of metabolomics data. The inverse approximation of biochemical 

Jacobian matrices identified alpha- ketoglutarate, glutamate and glucose as key elements in 

diurnal regulation of primary metabolism. Additionally, diurnal dynamics in core enzymatic 

reactions could be characterized and validated by literature data and a proteomics dataset. 

Particularly, an increase of alpha- ketoglutarate dehydrogenase protein abundance and a peak 

in activity of two central transamination reactions could successfully be predicted. Finally, to 

facilitate the extraction of meaningful biochemical networks from genome scale 

reconstructions a user friendly graphical user interface (GUI) was developed. 
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 Kurzfassung 

In Pflanzen stellt die diurnale Regulation von Stoffwechselprozessen eine Voraussetzung für 

die effiziente Kontrolle von Wachstum, Entwicklungsprozessen und Stressreaktionen dar. Die 

tageszeitabhängige Anpassung des Stoffwechsels ist für Pflanzen nötig, um auf eine Vielfalt 

äußerer Parameter reagieren zu können. Jedoch stellt die Ableitung zugrundeliegender 

Regulationsmechanismen aus Experimentaldaten eine Herausforderung dar, da sich eine 

Vielzahl regulatorischer Kreisläufe nichtlinear verhält und daher eine intuitive Interpretation 

erschweren. In der vorliegenden Arbeit wurde daher eine auf experimenteller 

Kovarianzinformation basierende mathematische Methode angewandt, welche experimentell 

ermittelte Stoffwechseldynamiken mit einem biochemischen Netzwerk verknüpfte. Mit 

diesem Ansatz konnte gezeigt werden, dass die diurnale Regulation der Konzentrationen von 

alpha- Ketoglutarat, Glutamat und Glukose eine zentrale Rolle im pflanzlichen 

Primärstoffwechsel spielt. Darüber hinaus wurden Enzymreaktionen, die starken Einfluss auf 

die diurnale Dynamik des Primärstoffwechsels ausüben, identifiziert. Schließlich wurde eine 

computergestützte Benutzeroberfläche entwickelt, die die Reduktion von genombasierten, 

biochemischen Netzwerken auf  experimentell validierbare Kernstrukturen erleichtert. 
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 Introduction 

4.1. Aim 

This study aimed at the identification of biochemical key elements in the diurnal regulation of 

primary metabolism in the model plant Arabidopsis thaliana by the functional integration of 

large scale metabolomics data in metabolic network structures. A covariance based steady-

state modelling approach was applied, potentially connecting experimental data with 

biochemical network information, which was extracted from published genome scale 

metabolic reconstructions. Finally, identified central metabolites and predictions of their 

influence on the regulation of key reactions were validated by the analysis of published gene 

expression studies and enzyme kinetics, as well as the interpretation of a proteomic data set. 

Additionally, a workflow for the efficient extraction of meaningful core networks from large 

metabolic networks was established to facilitate and speed up approaches requiring 

information about the biochemical connections of a specific set of metabolites.  

First, representing a central part of metabolism in plants, a concise model of the tricarboxylic 

acid cycle was examined. Though, from a physiological point of view it is a small part in a vast 

regulatory network, therefore a larger model, which additionally incorporated numerous 

reactions of the main carbohydrate and amino acid pathways was constructed. This allowed 

the examination of regulation patterns and the identification of key metabolites throughout 

a broad part of the plants primary metabolism. 

 

4.2. The genetic model plant Arabidopsis thaliana 

Arabidopsis thaliana is a member of the Brassicaceae family and probably the best 

characterized plant on a molecular genetic level. It is an annual ruderal plant with a life cycle 

duration of 10-12 weeks in its natural habitat, which can be shortened to around 6 weeks in 

optimal, controlled conditions. Flowering is induced by long days and can be initiated earlier 

than usual by subjecting the plants to light period durations of ≥ 16 hours (Kadereit, Kost, & 

Sonnewald, 2014). There are numerous natural accessions colonizing a wide geographic 

range, from Europe, Asia and northern America to isolated occurrences in Australia and Africa 

(Hoffmann, 2002; Koornneef, Alonso-Blanco, & Vreugdenhil, 2004). 

A. thaliana has been intensely studied as a model organism for the extension of knowledge 

about molecular, physiological, genetic and ecological aspects in plants since it was proposed 
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as an appropriate study object by Friedrich Laibach (Laibach, 1943). In modern studies it is still 

appreciated for the originally described traits of (I) high fertility, (II) easy cultivation in limited 

space, (III) fast development, (IV) availability of many natural accessions, (V) easy crossing with 

a good fertility of hybrids, and (VI) a low chromosome number. Additionally the availability of 

seeds through seed stock facilities offering mutant lines and genetically distinct natural 

accessions makes experiments reproducible and convenient. It was chosen for this study 

because there is a broad base of biochemical knowledge readily available, which is imperative 

for the process of metabolic modelling. Further, there are vast datasets of published enzyme 

activity assays, transcriptomics and proteomics data sets, finally permitting a comprehensive 

validation of results and hypotheses acquired by modelling approaches.  

4.3. Diurnal dynamics of metabolism in Arabidopsis 

In many higher plants, e.g. in A. thaliana, numerous molecular processes are regulated 

depending on the phase of the day. Many of these processes are regulated by the circadian 

clock which represents an endogenous molecular oscillator and supposedly grant a 

remarkable evolutionary benefit (Dodd et al., 2005). Clock-regulated processes show a 

characteristic oscillating pattern, observable even if the organism is kept under constant light 

or darkness. Already centuries ago it was discovered that plants undergo rhythms, which are 

independent of illumination. According to Mancuso and colleagues the first notion of such 

movements, sustained even when the plant is kept in continuous darkness, was written down 

as early as 1729 (Mairan, 1729; Mancuso & Shabala, 2007). More recently, it has been shown 

on RNA level, that about one third of expressed genes in Arabidopsis are regulated by circadian 

clock mechanisms (Covington, Maloof, Straume, Kay, & Harmer, 2008). Blaesing and co-

workers investigated diurnal gene expression patterns and found that both sugar availability 

and circadian clock mechanisms are major inputs of regulation (Blaesing et al., 2005). Harmer 

gave a detailed review of circadian clock regulation in plants (Harmer, 2009). In addition to 

processes regulated by the clock, there are many examples of plant responses to illumination 

and darkness, which do not continue to show their typical dynamics if the day-night cycle is 

interrupted or stopped. Diurnal rhythms affect almost all processes in plants and can be clearly 

observed in studies of metabolism when plants are sampled over the course of one or several 

dark-light periods. One prominent example in Arabidopsis is the dynamic accumulation of 

transitory leaf starch in the light period and its degradation in the dark providing the plant 

with sufficient energy and carbon equivalents (reviewed by Zeeman, Smith, and Smith 2004). 
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One described strategy of Arabidopsis growing in short day conditions is the up-regulation of 

transitory starch production, to supply sufficient carbon equivalents during the night, by 

activation of ADP-glucose pyrophosphorylase (Gibon, Blaesing, Palacios-Rojas, et al., 2004). In 

addition it was observed, that the plant adapts the rate of starch degradation during the dark 

phase in such a way, that the starch pool is continuously decreasing during the night, regulated 

by the length of the dark phase to counteract depletion of the sucrose pool before the next 

light period starts (Sulpice et al., 2014). 

 

4.4. Metabolic Modelling in Systems Biology 

Systems biology has become a rapidly growing research field and aims for the understanding 

of an organism not just as a sum of all analysed parts, but as a complex, interconnected and 

tightly regulated system. Frequently, approaches focus the iterative combination of 

experimental and computational methods. 

Commonly, systems biology approaches aim at the identification and prediction of (molecular) 

phenotypes by the functional integration of experimental high throughput data applying 

various mathematical approaches (Weckwerth, 2011). Frequently, functional integration 

approaches result in multidimensional problems, which need computational strategies to 

enable the realistic interpretation of complex interactions between various levels of molecular 

organization. Hence, computationally assisted metabolic modelling approaches strive to 

depict available information about biochemical interactions of substances in a living organism 

as a mathematical representation (Steuer, 2007). 

In the field of molecular systems biology, strategies of mathematical modeling have 

successfully been applied to approach various open research questions (for further 

information see (Töpfer, Kleessen, & Nikoloski, 2015; Watson, Yilmaz, & Walhout, 2015)). Flux 

Balance Analysis (FBA) is one of the most basic approaches calculating flux distributions in an 

organism at a hypothetical steady state. Such a steady state approach is based on the 

assumption that interconversions between metabolite pools are much faster than cell growth 

or environmental fluctuations. The optimisation of flux rates in FBA always relies on one 

predefined cost function, e.g. optimization of cellular growth or maximal generation of a 

desired product. Hence, it is much easier to apply this technique to single cell organisms than 

to differentiated multicellular organisms. All other constraints are given by the stoichiometry 

of the contained reactions and set upper and lower boundaries in which the reaction velocities 
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are allowed to fluctuate. This strategy is commonly used for the optimisation of industrial 

processes for the production of chemicals (see e.g. (Hsu & Lo, 2003)) or therapeutic 

substances, e.g. biopharmaceutical proteins (see e.g. (Meadows, Karnik, Lam, Forestell, & 

Snedecor, 2010)).  

For the detailed and functional analysis of dynamics in a molecular system, kinetic modelling 

approaches have been shown to be suitable due to the functional analysis of reaction rates, 

which makes it possible to unravel specific functional properties. Examples for such kinetic 

approaches are studies on the discrimination of various cancer cell lines by identification of 

impaired molecular interactions (Mani et al., 2008) or the determination of diurnal dynamics 

of kinetic parameters belonging to the central carbohydrate metabolism in Arabidopsis 

thaliana (Nägele et al., 2010). The latter study allowed the estimation of the effect of a 

reduced activity of a vacuolar invertase on the diurnal regulation of carbon allocation on a 

whole-plant level. Nevertheless the construction of such kinetic models requires detailed 

knowledge about enzyme kinetic parameters and, is therefore limited to relatively small 

networks of well-studied organisms.  

 

4.5. Ordinary differential equations and inverse approximation 

Reactions in metabolic networks can be described as systems of ordinary differential 

equations (ODEs) in which changes of metabolite concentrations are described over changes 

in time (Equation 1). 

* ( )M

dM
= f t

dt
 N v  

 ( Equation 1) 

Here, M is the concentration of a metabolite, v is a vector containing reaction rates and N 

represents the stoichiometric matrix of a metabolic system (Schallau & Junker, 2010). The 

stoichiometric matrix N has the dimensions s x m, where s is the number of species and m the 

number of reactions. It summarizes which metabolite takes part in which reactions. The 

entries of N, called stoichiometric coefficients, contain information about the consumption or 

production of the corresponding metabolites, denoted by positive, negative or zero entries. 

The term N*v represents all reactions contributing to the metabolic function of the metabolite 

of interest, such as its rate of biosynthesis, rate of degradation or the rate of transport. The 

vector v comprises reaction rates which are influenced by a vast number of parameters (p). 

For example, these parameters comprise protein levels and thermodynamic constraints. Due 
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to the large number and the multitude of dependencies between these parameters it is hardly 

possible to completely assess them experimentally. Even if enzyme kinetic parameters are 

available, e.g. from databases like BRENDA (http://www.brenda-enzymes.org/), they are 

frequently derived from in vitro studies under optimal conditions and can differ severely from 

the parameters prevalent in vivo (Minton, 2001; Teusink et al., 2000).  

Yet, if sufficient parameters of the metabolite function were available it would be possible to 

numerically integrate the ODE systems enabling the simulation of time courses of metabolite 

concentrations. However, as it was illustrated before, the availability of parameters with 

adequate confidence is limited and parameter estimation techniques may introduce and 

amplify uncertainties (Gutenkunst et al., 2007; Schaber, Liebermeister, & Klipp, 2009). 

To circumvent the limitation of large-scale metabolic models by (enzyme) kinetic parameters, 

Nägele and colleagues derived a strategy to directly infer Jacobian matrices from experimental 

covariance information of a metabolic steady state (Nägele et al., 2014). This strategy is based 

on the linearization of the nonlinear metabolic functions fM(t) at a steady state and the partial 

differentiation of the functions with respect to metabolite concentrations, finally resulting in 

the Jacobian matrix J. (Equation 2) 
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Equation 2) 

The direct inference of J from the covariance matrix C (Equation 3) is based on previous studies 

in which the theoretical basics (Van Kampen, 1992) as well as the biochemical interpretation 

were derived and explained (Nägele & Weckwerth, 2013; Steuer, Kurths, Fiehn, & Weckwerth, 

2003; Sun & Weckwerth, 2012). The fluctuation matrix D on the right side of the equation 

introduces randomly generated noise to account for metabolite fluctuations.  

2T  JC CJ D  ( Equation 3) 
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The covariances, which provide information about how two entities change together in a 

system, were calculated as shown in (Equation 4). 

1

1
cov( , ) ( )( )

1

n

j k ij j ik k

i

x x x x x x
n 

  

  

( Equation 4) 

Respectively the covariance matrices (C) incorporating all metabolites in the system were 

constructed in the manner: 

1 1 1 1 1 1 2 2 1 1

1 1 1

2 2 1 1 2 2 2 2 2 2
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( )( ) ( )( ) ( )( )

1 1 1

1 1 1
( )( ) ( )( ) ( )( )

1 1 1

1 1
( )( ) ( )(

1 1

n n n

i i i i i is s

i i i

n n n

i i i i i is s

i i i

n

is s i is s i

i

x x x x x x x x x x x x
n n n

x x x x x x x x x x x x
n n n

x x x x x x x
n n

  

  



     
  

     
   

   
 

  

  



C

2

1 1

1
) ( )( )

1

n n

is s is s

i i

x x x x x
n 

 
 
 
 
 
 
 
 
    

 

 

 

Entries of the biochemical Jacobian describe the influence of (infinitesimally) small changes in 

the concentration of a metabolite on a metabolite function at a metabolic steady state 

(Nägele, 2014).  

The application of Equation 3 for functional integration of experimental high throughput data 

in biochemical network structures has already been applied in previous studies, e.g. to identify 

metabolic key regulators in the low energy response of Arabidopsis (Nägele et al., 2014). 

The biochemical network structure required for a modelling approach can either be 

constructed manually, or be derived from genome scale metabolic network reconstructions 

which are freely available for numerous model organisms and cell types (e.g.: de Oliveira 

Dal’Molin et al. 2010; Ryu, Kim, and Lee 2015; Orth et al. 2011). Due to the widespread 

convention of using the open SBML (Systems Biology Markup Language) data format (Hucka 

et al., 2003) to describe and distribute mathematical models, the availability of models 

describing diverse biological systems is high. The public reference repository BioModels 

currently lists over 140,000 models of various organisms and cell types (Juty et al., 2015) and 

this number is continuously growing.  

Nevertheless the direct integration of metabolite data acquired by a GC-MS (Gas 

chromatography coupled to mass spectrometry) approach in such structures is not feasible as 

not all species (metabolites) contained in the full reconstruction can be monitored. Therefore 

it is necessary to remove metabolites which were not measured from the model and create 
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conglomerate reactions of steps which could not be resolved (Nägele et al., 2014). A genome 

scale metabolic reconstruction contains a comprehensive set of reactions which are encoded 

in the DNA. An extensive overview of the metabolic reconstruction process was given by Thiele 

and Palsson (Thiele & Palsson, 2010). However this does not mean that all these reactions are 

physiologically important or active at the current, examined state of the organism. For 

example a reaction which is part of an anabolic pathway, directly driven by photosynthesis 

will be present in the metabolic reconstruction, but will play a negligible role in the metabolic 

fluxes of sink tissue. Due to this every reaction must be critically evaluated to create a high 

confidence network for the organism taking the current state as well as the sampled organs 

into account. Even though this is a time consuming and laborious task, the careful curation 

and validation of a network ensures that all results from the following modelling procedure 

can be interpreted in a biochemical and physiological meaningful context. Without detailed 

information about the biochemical interactions of metabolites in the organism the application 

of a covariance based modelling strategy is highly speculative and it would be substantially 

harder to draw conclusions from the results.  
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 Methods 

5.1. Software and Versions 

Table 1 gives a detailed overview of the most important software and versions used in this 

project. 

Table 1 Software versions used in this project 

Software  Version Weblink / Publication 

MATLAB® 8.4 

R2014b (64bit) 
The MathWorks, Inc 

www.mathworks.com 
Bioinformatics 

Toolbox™ 

4.5 

SimBiology® 5.1 [trial version] 

CellDesigner™ 4.4. www.celldesigner.org 

(Funahashi, Matsuoka, Jouraku, 

Kitano, & Kikuchi, 2006) 

 

5.2. Metabolic Network Reduction 

A genome scale metabolic reconstruction work of a juvenile Arabidopsis thaliana leaf (Mintz-

Oron et al. 2012) was used for the construction of the metabolic network required for the 

modelling approach. For the reproducible and reliable reduction of such large networks to 

meaningful core networks containing only metabolites included in the experimental analysis, 

a workflow, aided by a graphical user interface (GUI), was developed in the numerical 

computing environment MATLAB®. 

In the first step of the workflow, a metabolic network in the SBML format is loaded. The 

algorithm detects if the loaded model contains information about subcellular localisation of 

the compounds and provides the possibility to decide if this subdivision should be retained or 

ignored. If metabolite measurements were conducted without subcellular fractionation of the 

samples the latter option should be chosen as this will combine all compartments finally 

leading to a substantial simplification of the model. Any physiologically unfeasible reactions 

resulting from this automated combination of compartments will be removed in one of the 



Methods 

12 

following steps. The network’s stoichiometry is visualised to identify and automatically 

remove species not taking part in any reaction, which are frequently included in large-scale 

metabolic network reconstructions. After the successful import of the SBML model according 

to the user’s input all metabolites and the stoichiometric matrix are read from the model and 

saved to the MATLAB workspace. The extraction of the stoichiometry information is 

conducted using inbuilt functions of SimBiology®. If this MATLAB app is not available the 

stoichiometric matrix can also be extracted from the SBML model by other, non-commercial 

software like COPASI (Hoops et al., 2006). This information is subsequently used to create a 

logical or Boolean square interaction matrix, which indicates all interactions between the 

contained metabolites, but disregards the stoichiometric coefficients, which provide 

information about the amount of molecules taking part in the reaction. Then a list of the 

metabolites (.xslx, .xsl or .csv format), representing the species of interest for the final and 

reduced model structure is loaded and the contained names are compared to the species 

names prevalent in the provided network. This is necessary because every chemical 

compound can be addressed by a multitude of names or nomenclature conventions, which 

generally poses a big problem of working with metabolic networks (Merlet et al., 2016). The 

result of this step is a table which allows the user to map the metabolites of interest to the 

corresponding species. Additionally, it is possible to allocate several species to one metabolite 

which can be used for example if the network discriminates isoforms which cannot be 

distinguished in the measurements. After this the interaction matrix and the full metabolite 

list of the network are reduced to the raw network and visualized using the biograph() 

command, which is part of the MATLAB Bioinformatics ToolboxTM. To facilitate the manual 

curation of the generated core network, an interactive table is prompted which can be used 

to edit the interaction network finally producing a high confidence network. A manual 

curation in this way ensures that only biochemically and physiologically feasible reactions are 

enclosed in the final network. 

Due to the technical limitations in quantifying phosphorylated compounds by the GC-MS 

method, the artificial pool of activated compounds (AC) was introduced in the model used in 

this study. It structurally summarizes activated and phosphorylated compounds and does not 

comprise any experimental information about concentration of these compounds. 

The visualisation of SBML models was performed with CellDesigner™ Ver. 4.4 (Funahashi et 

al., 2006). 
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5.3. Ordinary differential equations and inverse approximation 

The mathematical description of metabolic networks was based on systems of ordinary 

differential equations, ODEs, (see Equation 1). Based on the ODE structure, all metabolite 

interactions were described by a square interaction matrix, which was derived from the 

stoichiometric matrix. 

Jacobian Matrices were calculated iteratively utilizing a covariance based inverse approach as 

shown in (Equation 3). The absolutely quantified metabolite data, used for the calculation of 

the covariances, were provided by Dr. Thomas Nägele (Department of Ecogenomics and 

Systems Biology, University of Vienna) and were acquired by harvesting leaves of A. thaliana 

at 5 time points in the course of one light period (16 h light / 8 h dark) and analysing them 

with GC-MS as described by Doerfler and co-workers (Doerfler et al., 2013). The light period 

started at 6 am and lasted until 10 pm, represented by the respective time point names 6:00 

– 22:00 in the following graphs. The medians and the interquartile ranges of these iterative 

calculations were then used for further analyses. As the covariance based modelling approach 

contained no information about feedback or feedforward regulations, the influence of a 

negative sign is difficult to discuss. Therefore each of the Jacobian entries is considered 

regardless of its sign and the absolute value was interpreted. 

All computational steps were performed in the numerical computing environment MATLAB®. 
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 Results 

6.1. High confidence networks derived from genome sequence 

information  

The previously described workflow for the reduction of network structures (see chapter 5.2) 

was utilized for the extraction of a high confidence network from a genome scale 

reconstruction (Mintz-Oron et al., 2012) of Arabidopsis thaliana leaf metabolism which 

contained 2463 metabolites in 2769 reactions (Figure 1). Additionally, the model contained 

information about subcellular compartmentation. 

 
 

Figure 1 Graphical representation of the genome scale reconstruction of Arabidopsis thaliana leaf 

metabolism based on the SBML model published by Mintz-Oron and colleagues (Mintz-Oron et al., 
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2012). Green boxes show metabolites, grey lines represent biochemical reactions and red squares 

indicate compartments. VA vacuole, GA golgi apparatus, PE peroxisome, MI mitochondrion, ER 

endoplasmic reticulum, PL plastid, CY cytosol. 

The metabolic network, which resulted from the reduction process, comprised only the 

metabolites which were absolutely quantified in the GC-TOF/MS metabolomics experiment. 

Furthermore, it did not contain information about the subcellular localization of reactions and 

metabolites. Each reaction included in the final network was validated using a biochemical 

pathway database (www.biocyc.org)(Caspi et al., 2014) and literature data. A list of all 

reactions and participating enzymes identified by the corresponding enzyme commission (EC) 

numbers is provided in the Appendix, Table S1, and visualized in the high confidence network 

(Figure 2), which is referred to as model A in the following chapters. 

 

 

Figure 2 Schematic representation of the high confidence metabolic network. ac activated 

compounds, tre trehalose, glc glucose, mlt maltose, suc sucrose, fru fructose, raf raffinose, mel 

melibiose, gal galactose, gol galactinol, myn myo-inositol, asc ascorbate, gly glycine, ser serine, ile 

isoleucine, val valine, leu leucine, pyr pyruvate, ala alanine, cit citrate, kga alpha- ketoglutarate, glu 

glutamate, pro proline, scc succinate, fum fumarate, mal malate, oxa oxaloacetate, asp aspartate, 

asn asparagine, gln glutamine, sta starch. 
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6.2. Mathematical description of metabolic networks 

The tricarboxylic acid (TCA) cycle (Figure 3) was mathematically described by a system of 

ordinary differential equations, ODEs (Table 2) and will be referred to as model B in the 

following chapters.  

 

Figure 3 Simplified scheme of the TCA cycle. pyr pyruvate, cit citrate, kga alpha- ketoglutarate, scc 

succinate, fum fumarate, mal malate, oxa oxaloacetate 

This simple model comprised 7 metabolite pools, S = {pyruvate, citrate, alpha- ketoglutarate, 

succinate, fumarate, malate, oxaloacetate} and 12 biochemical reactions, R = {R1, R2, …, R12}. 

Each reaction R represented an enzymatic interconversion or transport reaction. 
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Table 2 Reactions in the TCA model and their representation as ODEs 

Representation of reactions ODEs 

1

2

3

4

5

6

7

8

9

10

11

12

:

:

:

:

:

:

:

:

:

:

:

R pyruvate

R pyruvate oxaloacetate citrate

R citrate alpha ketoglutarate

R alpha ketoglutarate succinate

R succinate fumarate

R fumarate malate

R fumarate

R malate fumarate

R malate

R m

R

R
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d
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The ODE system was represented in form of the stoichiometric matrix N.  

1 1 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 1 0 1 1 1 0 1

0 1 0 0 0 0 0 0 0 1 1 1

pyruvate

citrate

alpha ketoglutarate

succinate

fumarate

malate

oxaloacetate

 
 

 
  
 

  
  
 

   
   

N  

 

A square interaction matrix I was derived indicating whether two metabolites biochemically 

interact (entry: 1) or not (entry: 0). This interaction matrix was applied for the inverse 

calculation of the Jacobian matrices. 

1 1 0 0 0 0 1

0 1 1 0 0 0 0

0 0 1 1 0 0 0
 

0 0 0 1 1 0 0

0 0 0 0 1 1 0

0 0 0 0 1 1 1

1 1 0 0 0 1 1

pyr cit kga scc fum mal oxa

pyr

cit

kga

scc

fum

mal

oxa

I  
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The same procedure to describe metabolic networks by the generation of a system of ODEs 

was used for the high confidence network generated by the reduction strategy described in 

the previous chapter (chapter 5.2). The resulting interaction matrix is provided in the 

Appendix (Table S4). 

 

6.3. Modelling the tricarboxylic acid cycle  

To determine the number of replications which were, at least, necessary for a stable and 

reproducible inverse approximation of Jacobian matrices, 102, 103, 5*103, 104 and 106 

calculations were performed. The interquartile distances, which were determined by 

subtracting the 25 % quantile from the 75 % quantile, were analysed to indicate a stable 

technical variance of the calculations. Interquartile distances were found to be stable after 

5*103 calculations, (Figure 4), and, hence, all following calculations were conducted with 

5*103 repetitions. 

The diagonal Jacobian entries of alpha-ketoglutarate, 𝛿 𝑓(𝑘𝑔𝑎)/ 𝛿 𝑘𝑔𝑎 , containing 

information about the influence of concentration changes on its own metabolic function, 

revealed a dramatic fluctuation at 18:00 (Figure 5). In general, at the time point 18:00, which 

corresponded to 12 hours of light in the diurnal period, almost all diagonal entries of Jacobian 

matrices reached a peak value (Figure 5).  

  

Figure 4 Interquartile distances of 102, 103, 104, 105 and 106 calculations of Jacobian matrices for 

each time point. The x-axis represents the number of repetitions of the inverse calculation. All 

distances were normalised to the interquartile distance of 100 replicates. 
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Figure 5 Diurnal dynamics of diagonal Jacobian Entries of the TCA cycle model, ranked after the highest 

entry. Colours represent absolute values of Jacobian Entries. 

Ranking metabolites according to the absolute values of diagonal Jacobian entries, the first 

part of the cycle, i.e. pyruvate, citrate and alpha-ketoglutarate, was found to have consistently 

higher values at 18:00 than metabolites of the second part, i.e. succinate, fumarate, malate 

and oxaloacetate (Table 3).  

 

Table 3 Diagonal Jacobian entries of metabolites in the TCA cycle model, ordered 
concerning the maximum value in the course of the light period. 

 
06:00 10:00 14:00 18:00 22:00 

alpha- ketoglutarate 2.16E-12 2.07E-10 5.97E-10 2.30E-09 3.55E-10 

citrate 3.58E-12 1.38E-10 3.09E-11 1.63E-09 2.88E-10 

pyruvate 3.90E-11 3.12E-11 2.23E-10 1.61E-09 2.57E-11 

fumarate 1.31E-11 2.44E-12 2.09E-10 9.99E-10 4.92E-11 

oxaloacetate 4.64E-10 1.49E-11 7.15E-11 5.32E-10 8.37E-10 

malate 2.79E-11 2.12E-11 7.74E-10 2.35E-10 2.87E-10 

succinate 2.14E-11 3.36E-11 3.45E-11 6.99E-10 7.75E-12 

 

The time dependent  concentration of alpha- ketoglutarate showed a significant drop between 

14:00 and 18:00 with a subsequent increase until 22:00, while in the first part of the day 

(06:00-14:00) a slight increase was observed (Figure 6 - A). The detailed visualisation of the 

diagonal Jacobian entries of alpha- ketoglutarate over the course of the day (Figure 6 - B) 

revealed smaller changes in the first three time points and a substantial peak at 18:00. 
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Figure 6 Diurnal dynamics of alpha- ketoglutarate concentrations (A) and the diagonal Jacobian 

entries (B). The blue line indicates the mean of the iterative calculations.  

Due to large variances, the diurnal concentration dynamics of citrate did not feature 

statistically significant changes, but an increase at 10:00 with a subsequent decrease until 

18:00 was observable (Figure 7 – A). The diagonal Jacobian entries, similar to alpha-

ketoglutarate, showed a large peak at 18:00 and a smaller one at 10:00 (Figure 7 – B).  

  



Results 

21 

21 

 

Figure 7 Diurnal dynamics of citrate concentrations (A) and the diagonal Jacobian entries (B). The 

blue line indicates the mean of the iterative calculations.  

The concentration of pyruvate increased from 06:00 until 14:00, dropped at 18:00 and finally 

reached levels similar to the first half of the day at 22:00 (Figure 8 – A). The diagonal entries 

showed a similar pattern as alpha- ketoglutarate and citrate, featuring a distinct peak at 18:00 

(Figure 8 – B). 

 

Figure 8 Diurnal dynamics of pyruvate concentrations (A) and the diagonal Jacobian entries (B). The 

blue line indicates the mean of the iterative calculations.  
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6.4. Simulation of the metabolic C/N interface 

The minimum number of inverse calculations for a stable interquartile distance was 

determined as described for the TCA cycle model (see chapter 6.3). Most of the Jacobian 

entries showed stable interquartile distances after 1000 iterations (Figure 9). Yet, in order to 

overcome remaining fluctuations in some of the Jacobian entries, calculations were 

performed 104 times.  

 

  

 

Figure 9 Interquartile distances of iterative calculations of Jacobian matrices. The x-axis 

represents 10, 102, 103 and 104 repetitions of the inverse calculation. 
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The analysis of all diagonal Jacobian entries over the diurnal time course indicated similar 

patterns of entries related to alpha- ketoglutarate, glutamate and glucose (Figure 10; 

Appendix Table S2). These three metabolites were clearly separated from the others, by 

showing notably higher diagonal Jacobian values. For a full representation of all Jacobian 

matrix entries for the interactions contained in the network see Appendix Table S3. 

 

 

 
Figure 10 Diurnal dynamics of diagonal Jacobian entries, ranked after the highest entry. Colours 

represent absolute values on a log scale. 
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To unravel the influences of connected metabolite pools on the identified key regulators 

glutamate, alpha- ketoglutarate and glucose, all corresponding dependencies were 

investigated . 

In detail, the diagonal entries of alpha- ketoglutarate increased during the first part of the day 

until 14:00 followed by a sharp decrease approaching values near to zero in the evening 

(Figure 11 - A), which was similar to the dynamic behaviour of the Jacobian entries of 

𝛿 𝑓(𝛼 − 𝑘𝑔𝑎)/𝛿 𝑜𝑥𝑎 (Figure 11 - C). The other non-diagonal entries featured a distinct peak 

at 14:00 (Figure 11 – B, D, E). 

 

 

Figure 11 Diurnal dynamics of Jacobian entries describing the dependency of the alpha- ketoglutarate 

function on alpha- ketoglutarate (A), pyruvate (B), oxaloacetate (C), citrate (D) and glutamate (E). Blue 

lines indicate the median of the calculations. 
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Diurnal dynamics of glutamate concentration were characterised by a slight increase during 

the first four hours of the day, which was followed by a sharp decrease at 14:00 (Figure 12). 

Additionally, the variance of the pool was found to be smallest at time point 14:00 which 

represents the middle of the light period.  

 

 

Figure 12 Diurnal dynamics of glutamate concentrations  
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A clear increase of the diagonal Jacobian entries of glutamate was detected during the first 

four hours of the light period, while they decreased almost to zero during the evening (Figure 

13 –A). The non-diagonal entries featured high values in the beginning of the day, which 

decreased until evening (Figure 13 – B-F). Additionally, the entries of 𝛿 𝑓(𝑔𝑙𝑢)/𝛿 𝑘𝑔𝑎 and 

𝛿 𝑓(𝑔𝑙𝑢)/𝛿 𝑜𝑥𝑎, showed an increase in the middle of the day, at 14:00. 

 

Figure 13 Diurnal dynamics of Jacobian entries describing the dependency of the glutamate function 

on the concentration of glutamate (A), alpha- ketoglutarate(B), oxaloacetate (C), pyruvate (D), 

alanine (E), aspartate (F) and glutamine (G). Lines indicate the median of the calculations. 

 

  



Results 

27 

27 

The interaction with oxaloacetate was shown to be important for both alpha- ketoglutarate 

and glutamate (Figure 11- C and Figure 13- C). The only reaction where these metabolites 

interact in the examined context is the biosynthesis of aspartate (see Figure 2). The Jacobian 

entries describing the aspartate function with respect to changes in concentrations of 

glutamate and oxaloacetate showed a peak value in the middle of the light period at 14:00 

(Figure 14).  

 

 
Figure 14 Diurnal dynamics of absolute Jacobian entries for the metabolic function of aspartate 

depending on the concentration of glutamate (A) and oxaloacetate (B). Lines indicate the mean of 

the iterative calculations. 
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The concentration of aspartate was found to be rather constant during the diurnal cycle 

although a decrease of variance was observed in the pool between 14:00 and 18:00 (Figure 

15). The median concentration of oxaloacetate increased by until 14:00 followed by a 

considerable decline. Finally, between 18:00 and 22:00 the concentration rose again to a 

similar level as observed at 14:00 (Figure 16 -A). The diagonal Jacobian entries were high in 

the morning, dropped at 10:00 and showed a second peak at 14:00. In the evening they were 

close to zero (Figure 16 -B).  

 

  
Figure 15 Diurnal dynamics of aspartate concentration. 
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Figure 16 Diurnal dynamics of oxaloacetate concentration (A) and the diagonal Jacobian entries (B). 

The blue line indicates the mean of the iterative calculations 

 

The next essential interactions of glutamate are with pyruvate and alanine (Figure 13 – D, E). 

The concentration of alanine did not show any significant changes during the light period, but 

seemed to increase slightly at 10:00 and 22:00 (Figure 17). 

 

 

Figure 17 Diurnal dynamics of alanine concentration. 
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The dependency of the alanine metabolic function on the pyruvate pool shows a distinct 

increase in the middle of the day with a following decrease until the end of the light phase 

(Figure 18).  

 

 
Figure 18 Diurnal dynamics of Jacobian entries describing the dependency of the alanine function 

on the pyruvate concentration. The line indicates the mean of the iterative calculations. 
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The concentration of glucose showed a dramatic peak at 10:00, with a subsequent decrease, 

so the levels at 14:00 are similar to 06:00, finally from 14:00 to 22:00 the concentration 

increased slightly (Figure 19).  

 

 

Figure 19 Diurnal dynamics of glucose concentrations. 

The diagonal Jacobian entries of glucose featured a high value in the morning, followed by a 

rapid decrease to almost zero until 14:00. In the second half of the day the values remained 

low (Figure 20 - A). The non-diagonal entries featured similar diurnal dynamics (Figure 20 B-

E), with the exception of 𝛿 𝑓(𝑔𝑙𝑐)/𝛿 𝑚𝑙𝑡, which showed rather stable values until 10:00 with 

a subsequent, distinct decline to 14:00.  
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Figure 20 Diurnal dynamics of Jacobian entries describing the dependency of the glucose function 

on the concentration of glucose (A), trehalose (B), melibiose (C), maltose (D), and sucrose (E). Blue 

lines indicate the median of the calculations. 

In addition to the identified key element glucose, the starch metabolism was examined. 

Transitory starch levels increased until a plateau at 18:00 was reached (Figure 21 - A), while 

the diagonal Jacobian entries of starch metabolism were found to be higher in the morning, 

and close to zero in the afternoon, with a small increase at 14:00 (Figure 21 - B). In general, 

the diagonal Jacobian entries of starch metabolism had a very low absolute value (10-11). The 

Jacobian entries of 𝛿 𝑓(𝑚𝑙𝑡)/𝛿 𝑠𝑡𝑎 showed a decrease in the beginning of the day and then 

stayed low until evening (Figure 22). 
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Figure 21 Diurnal dynamics of transitory starch concentrations (A) and the diagonal Jacobian entries 

(B). The blue line indicates the mean of the iterative calculations.  

 

 
Figure 22 Diurnal dynamics of the Jacobian entries describing the dependency of the metabolic 

function of maltose on the transitory starch pool. The line indicates the mean of the iterative 

calculations. 
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 Discussion 

7.1. The development of a high confidence network is imperative for 

metabolic modelling 

In the present work, a theoretical method was developed which allows for the extraction of 

meaningful biochemical networks from genome scale metabolic network reconstructions. A 

user friendly GUI was programmed to ease and support future modelling approaches 

(Appendix - Figure S2 and Figure S3). As previously mentioned, it is imperative that every 

single reaction contained in a metabolic network, needs to be carefully examined and 

validated by available literature sources (see chapter 4.5). Particularly, enzymes catalysing 

rate limiting steps of metabolic interconversion should be included in the reduced model 

structure in order to preserve the biochemically and physiologically relevant network 

information. Even if large scale metabolic reconstructions are available, they are often 

algorithm generated and contain a comprehensive set of reactions predictable by the genome 

in an organism (see e.g. (Thiele & Palsson, 2010)). As the covariance based modelling approach 

presented in this work relies on the validity of the biochemical interaction matrix, only 

reactions which are well characterized and can be confidently predicted in the organism 

should be included.  

7.2. Jacobian matrix entries represent tangents of biochemical reaction 

rates 

A Jacobian matrix entry comprises information about the influence of changes in a metabolite 

concentration on a specific metabolic function, which allows to draw conclusions about the 

dynamic capabilities of an underlying biochemical system. More specifically, a large entry 

indicates that even a small change in a metabolite concentration can have a significant 

influence on the metabolic function. If Michaelis Menten kinetics are assumed for the reaction 

with the largest influence on the metabolic function, this dependency can be visualized as 

depicted in Figure 23. If tangents, which represent a linearization of a function in a certain 

point, are drawn at certain substrate concentrations, e.g. 20 [arbitrary units – a.u.] (Figure 23-

A) and 10 [a. u.] (Figure 23–B) on the reaction rate function, it becomes evident that a small 

change in the substrate concentration has a stronger effect when the enzyme is not saturated. 

Hence, a decrease in substrate concentration is one possible explanation for an increase in a 

Jacobian matrix value. Another explanation for a Jacobian value alteration is the change of 
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enzyme abundance. Thus, a small change in substrate concentration has a stronger effect on 

the reaction rate if more enzyme is available, because the enzyme is farther away from being 

in a saturated state (Figure 23-C, orange line).  

If none of the previously mentioned scenarios seem to be able to explain a change in the 

Jacobian matrix values, it could be that the dependencies are shifted due to allosteric 

interactions. 

When discussing the Jacobian entries acquired through covariance-based calculation 

methods, it should be kept in mind that the Jacobian matrix describes a metabolic steady 

state. Therefore it is possible to approximate the Jacobian matrices through inverse 

calculation at the time points of measurement, but an extrapolation over the whole time 

course would not be valid. Thus, the transitions between the calculated time points were 

assumed to be linear for graphical representation (e.g. Figure 6 B), which is reasonable in the 

way, that it does not change the interpretation of the results.  

 

7.3. Alpha- ketoglutarate acts as a key regulator in diurnal energy 

metabolism 

The TCA cycle is of particular biochemical interest, because it is a central hub of primary 

metabolism. Therefore, identified patterns of regulation may provide insight into fundamental 

 

Figure 23 Ideal Michaelis-Menten kinetics for an exemplary enzyme. Tangents show the linearization 

of the reaction rate at a certain substrate concentration. Tangent at substrate concentration 20 

[arbitrary units – a.u.] (A), Tangent at substrate concentration 10 [a.u.] (B), both tangents at 

substrate concentration 10 (C), the orange line indicates a doubled maximal reaction rate (vmax), 

representing, e.g. an increased enzyme concentration. 
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mechanisms of plant growth and survival. Secondly, it poses a special challenge for modelling 

approaches because the explanation of regulatory effects may always incorporate some 

redundancy due to propagating regulation effects in cyclic structures.  

Through the analysis of diagonal Jacobian entries of all metabolites in the TCA cycle, alpha- 

ketoglutarate was identified as the most important biochemical regulator in a diurnal context, 

followed by citrate (Table 3 and Figure 5). In early studies about metabolic fluxes through the 

TCA cycle it was also found that alpha- ketoglutarate dehydrogenase and citrate synthase act 

as key regulators (Safer & Williamson, 1973). 

Almost all diurnal time-courses of metabolites contained in the TCA model showed a peak in 

their diagonal Jacobian entries at 18:00, which gave the impression that this time point was 

an important point of regulation in the TCA cycle or possibly even other catabolic processes 

like mitochondrial respiration. Due to the major part of respiration taking place in the dark 

(Schopfer & Brennicke, 2010), it was interesting to see such a change in dependencies already 

in the evening when light was still available. These changes could indicate steps of metabolic 

reprogramming for the upcoming dark phase which would enable an efficient and quick switch 

from light regulated to dark regulated processes. Such a change in energy metabolism was 

also suggested by the change in starch metabolism indicated by the constant starch levels 

from 18:00 to 22:00 (Figure 21).It has been shown that under long-day conditions, i.e. 16h 

light/8h dark, the estimated growth of the plants, and therefore their carbon allocation 

profile, shows a sinusoidal form with two peaks where the second peak appears already at 

predawn (Sulpice et al., 2014). 

When the diurnal dynamics of the diagonal Jacobian entries for alpha- ketoglutarate and its 

change in total concentration were evaluated (Figure 6), the peak at 18:00 could be partially 

explained by the decrease in concentration and variance of the metabolite. Due to the 

assumption of Michaelis Menten kinetics for the alpha- ketoglutarate dehydrogenase 

reaction, which is most likely the regulating step for this metabolite pool (Tretter & Adam-Vizi, 

2005), a decrease in concentration would increase the influence of variations in the 

metabolite pool on the metabolic function (see chapter 7.2). However, this would not explain 

the rise of the diagonal entries in earlier time points as the concentration was rather 

increasing, though not significantly. One hypothesis of how such a pattern may arise would be 

an increased abundance of the enzyme level during the day and, by this a change in metabolite 

concentrations would lead to a stronger effect on the metabolic function. The validity of this 
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hypothesis was supported by proteomics data, which showed that the alpha- ketoglutarate 

dehydrogenase protein had a higher abundancy in the evening than in the morning (Figure 

S1) (E. Nukarinen, unpublished data). Additionally, it has been shown that the expression of 

two alpha- ketoglutarate dehydrogenase genes (AT5G65750, AT3G55410) increases during 

the day and decreases during the night (Blaesing et al., 2005; Mockler et al., 2007; S. Smith et 

al., 2004). 

Citrate and pyruvate, which were identified as the following important regulators (Table 3) 

showed very similar patterns in their diagonal Jacobian entries as alpha- ketoglutarate (Figure 

5). The peak in the diagonal Jacobian entries of citrate at 18:00 might be explained by the 

observed decrease in concentration and variance of citrate at this time point (Figure 7). This 

is also valid for the diagonal Jacobian entries of pyruvate, as the concentration features a 

similar decrease at 18:00 (Figure 8). The expression of pyruvate kinase (AT2G36580) and 

aconitase (AT2G05710) showed similar patterns, indicating an increase during the day and a 

decrease during the night (Mockler et al., 2007; S. Smith et al., 2004). 

 

7.4. Glutamate-dependent aminotransferase reactions show a distinct 

diurnal pattern 

Model A (Figure 2) contained all metabolites which were absolutely quantified by GC-MS 

analysis covering the central primary metabolism in Arabidopsis thaliana. Results indicated 

that the three most important key elements in the diurnal regulation of primary metabolism 

were alpha- ketoglutarate, glucose and glutamate (Figure 10 and Table S2). The identification 

of alpha- ketoglutarate as a key biochemical regulator agreed with the results of the TCA cycle 

model (see chapter 6.3). Alpha-ketoglutarate and glutamate pools were known to be tightly 

interconnected via several biochemical pathways (Schopfer & Brennicke, 2010). Moreover, 

they directly affect the carbon-nitrogen homeostasis of a plant. Their identification as key 

elements was therefore meaningful, indicating the biochemical validity and interpretability of 

the results gained by the modelling approach. In plants, the regulation of sugar levels is strictly 

controlled (see e.g. (Rolland, Baena-Gonzalez, & Sheen, 2006)), which could be a reason for 

the observed pattern of glucose regulation. Additionally, it has been shown that glucose 

serves as a key regulator in various processes and is a central signalling molecule in plants 

(Blaesing et al., 2005; Moore et al., 2003; Rolland, Moore, & Sheen, 2002). 



Discussion 

38 

Comparing Jacobian entries of the two different models it was necessary to differentiate two 

different biochemical backgrounds. In model B, the mitochondrial tricarboxylic acid cycle, and 

hence, only mitochondrial influences were considered while model A contained additional 

reactions from amino acid biosynthesis pathways and central carbon metabolism.  

Model A is more applicable to the presented dataset, as the metabolite concentrations were 

determined without prior separation of subcellular compartments and it has been shown that 

TCA cycle intermediates are not only part of the mitochondrial metabolism but also take part 

in reactions of other compartments, e.g.: fumarate can serve as an alternative carbon sink 

under high nitrogen conditions (Pracharoenwattana et al., 2010). Though, Model B could still 

give important information about the regulation of the mitochondrial TCA cycle.  

The shift of the peak in alpha- ketoglutarate diagonal Jacobian entries from 18:00 in model B 

(Figure 6 and Figure 11) to an earlier point in the day in model A could be an indication of the 

increased influence of nitrogen metabolism on the regulation of this metabolite pool. This 

directly supports the hypothesis of a high influence of nitrogen metabolism during the day, 

which was reported by several studies. For example, in tobacco plants the total amount of 

amino acids was found to be significantly lower if the plant had been exposed to short day 

conditions (Matt, Schurr, Klein, Krapp, & Stitt, 1998). In Arabidopsis the concentration of 

amino acids was reported to increase throughout the day and to decrease slightly in late 

evening (Sulpice et al., 2014). However, in a plant, the total concentration of amino acids alone 

might not be sufficient to estimate the dynamics of amino acid metabolism, as they are not 

just end products and used for storage, but continuously processed in the construction of 

proteins and therefore undergo a constant turnover (Bauer, Urquhart, & Joy, 1977). This 

raised the question which reactions might be limiting in these pathways and if their patterns 

of activity show diurnal changes. In many of the amino acid synthesis pathways glutamate acts 

as nitrogen donor and therefore, limits the rate of many different amino acids. 

Plants take up most of the required nitrogen in the form of nitrate, which first needs to be 

reduced to ammonium, to be incorporated in the glutamine synthetase-glutamate-synthase 

pathway (GS-GOGAT). The activity of nitrate reductase, which catalyses the reduction of 

nitrate to nitrite and represents the first step in the reduction of plant usable nitrogen, was 

reported to increase as soon as light is cast on the plant and then decrease until evening in 

tobacco (Scheible, Krapp, & Stitt, 2000). This pattern of a high value in the morning and a 

decrease during the day could also be observed in the Jacobian entries, 𝛿 𝑓(𝑔𝑙𝑢)/𝛿 𝑔𝑙𝑛 and 
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𝛿 𝑓(𝑔𝑙𝑢)/ 𝛿 𝑘𝑔𝑎  (Figure 13), describing the metabolic interconnection arising from the 

glutamine synthase and glutamate synthase reactions, which are following steps in the 

process of nitrogen uptake. 

Another central reaction in plant amino acid metabolism is the transfer of an amino group 

from glutamate to oxaloacetate to form aspartate. This step is catalysed by the enzyme 

aspartate aminotransferase (EC 2.6.1.1). In the present study, the connection of oxaloacetate 

with glutamate and alpha- ketoglutarate could be identified as an important reaction in the 

diurnal dynamics of primary metabolism (Figure 11 – C, Figure 13 - C). Aspartate serves as 

amino group donor in several other pathways, like the biosynthesis of asparagine, methionine, 

threonine or lysine (Berg, Stryer, & Tymoczko, 2015) and is an important transport form of 

nitrogen from source to sink tissues. The mean level of aspartate was found to be constant 

over the diurnal period, but the variance was found to be lower at the time points 14:00 and 

18:00, which already indicated a very tight regulation of the metabolite pool at these time 

points (Figure 15). Considering the dependencies of the aspartate metabolic function on the 

metabolite concentrations of glutamate and oxaloacetate, a strong peak could be identified 

in the middle of the day (Figure 14). This indicates that the rate of this transamination reaction 

was increasing until midday and then decreased until evening, which could also be 

representative and deducible for other amino acid biosynthesis reactions, which require 

aspartate as a substrate, e.g.: lysine biosynthesis.  

The diurnal enzymatic activity of aspartate aminotransferase in Arabidopsis was monitored by 

Gibon and co-workers who found an increase from morning to midday and a decrease until 

evening (Gibon, Blaesing, Hannemann, et al., 2004). This described enzyme activity fit the 

observed pattern in the Jacobian entries 𝛿 𝑓(𝑎𝑠𝑝)/ 𝛿 𝑔𝑙𝑢 and 𝛿 𝑓(𝑎𝑠𝑝)/ 𝛿 𝑜𝑥𝑎 (Figure 14), 

and it would explain that a change in the concentration of the two substrates had a large effect 

on the aspartate function during midday. Furthermore, this reaction seemed to be more 

limited by the amount of available oxaloacetate as the corresponding Jacobian 

entries 𝛿 𝑓(𝑎𝑠𝑝)/𝛿 𝑜𝑥𝑎 were significantly higher than the entries 𝛿 𝑓(𝑎𝑠𝑝)/𝛿 𝑔𝑙𝑢 (p<0.045). 

Additionally, the diagonal Jacobian entries for oxaloacetate showed another peak at 14:00, 

which was most probably linked to the aspartate aminotransferase reaction (Figure 16 - B).In 

contrast, glutamate diagonal entries did not show such a peak (Figure 13 - A). The lack of this 

glutamate peak could be interpreted in two ways: (i) reactions with the most influence on the 

glutamate pool at this time point were either running at maximum capacity, or (ii) were limited 
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by another factor. The hypothesis that the glutamate pool is not the limiting factor for amino 

acid biosynthesis was also discussed in a previous study where Stitt and colleagues supplied 

plants with glutamate and could not observe an increase in other amino acids (Stitt et al., 

2002). 

A second glutamate consuming reaction in amino acid metabolism is the branch of alanine 

biosynthesis where an amino-group is transferred to pyruvate. The dependency of the alanine 

metabolic function on the pyruvate pool, which gave information about the reaction catalysed 

by an alanine aminotransferase (EC 2.6.1.2.), increased until midday and then declined until 

the end of the day. This pattern was similar to the regulation observed for the aspartate 

aminotransferase reaction. Additionally, the entries 𝛿 𝑓(𝑘𝑔𝑎)/ 𝛿 𝑝𝑦𝑟, which correspond to 

the alanine biosynthesis showed the same pattern (Figure 11 - B). Based on this observation 

it is hypothesised that the activity of alanine aminotransferase behaves in a similar way as 

aspartate aminotransferase. This hypothesis also matches the results of Gibon and co-workers 

who found the activity of both enzymes to peak at midday (Gibon, Blaesing, Hannemann, et 

al., 2004). The derived hypothesis of a strong activation of amino acid biosynthesis was further 

supported by a significant peak in the entries 𝛿 𝑓(𝑘𝑔𝑎)/ 𝛿 𝑔𝑙𝑢, which show the dependency 

of the alpha- ketoglutarate function on the glutamate concentration (Figure 11 - E). This 

observed interconnection might also be due to the sudden decrease of the glutamate 

concentration at 14:00, which could be the effect of a high activity of transamination reactions 

using glutamate as amino group donor. This directly supports the hypothesis about the 

coordinated aspartate aminotransferase and alanine aminotransferase activity. As previously 

mentioned, the lack of corresponding peaks in the concentrations of aspartate and alanine 

(Figure 15 and Figure 17) does not necessarily contradict the hypothesis of increased enzyme 

activities, but might rather be an indication of a high turnover of these amino acids. 

The regulatory influence of glucose, indicated by the diagonal entries 𝛿 𝑓(𝑔𝑙𝑐)/ 𝛿 𝑔𝑙𝑐 , 

seemed to be high in the morning and diminished as the day progressed, while the 

concentration of glucose increased (Figure 19 and Figure 20). Additionally, the dependency of 

the glucose metabolic function on other metabolites decreased in a similar pattern during the 

day. While glucose is involved in numerous metabolic and regulatory processes in plant 

metabolism, it is also an end product of the starch degradation pathway. The starch content 

constantly rose through the light period, as it was previously described in many other studies 

(e.g. (Lu, Gehan, & Sharkey, 2005; Pal et al., 2013)), but reached a plateau in the end of the 
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day (Figure 21), which was also observed for long day conditions before (Nägele et al., 2010; 

Sulpice et al., 2014). The diagonal Jacobian entries 𝛿 𝑓(𝑠𝑡𝑎)/ 𝛿 𝑠𝑡𝑎 , constantly decreased 

during the day indicating a shrinking influence of starch level changes on the starch metabolic 

function. Based on the finding that the amount of starch degrading proteins does not change 

significantly during the light period (Lu et al., 2005), the decreasing Jacobian entries could be 

explained with the vice versa increasing concentration, which would result in a saturation of 

starch degrading proteins. Although, it has been postulated, that starch degradation is most 

likely not regulated by protein abundance (Hädrich et al., 2012). In general, the values of the 

diagonal Jacobian entries of starch were very low, indicating a minor role of starch 

degradation during the light phase, which coincides with numerous previous studies (see e.g. 

(A. M. Smith, Zeeman, & Smith, 2005)).  
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 Conclusion and Outlook 

The applied metabolic modelling approach revealed intricate diurnal dynamics of central 

carbon and nitrogen metabolism. Important parts of amino acid biosynthesis, i.e. central 

transamination reactions catalysed by enzymes like aspartate aminotransferase or alanine 

aminotransferase, were identified to be most active in the middle of the day, with a notable 

lag phase in the first part of the light phase and a decline of activity towards evening. 

Furthermore, alpha- ketoglutarate and glutamate were identified to occupy a central role of 

in primary energy metabolism, and an increase in abundance of alpha- ketoglutarate 

dehydrogenase protein during the light phase could be predicted. The findings of this study 

could be verified by literature data on corresponding enzyme activities and provided protein 

abundance measurements, supporting the validity and reliability of the applied covariance 

based modelling approach.  

In general, the interpretation of Jacobian matrix entries significantly facilitates the integration 

of experimental metabolomics data with metabolic network information when the data were 

acquired in a time continuous manner. However, by the approximation of Jacobian entries, a 

steady state is assumed for each individual time point and an extrapolation over a larger time 

interval is not possible. This is a necessary simplification for this approach, but undoubtedly 

the transitions between measured time points will not always be linear. Recently, we 

developed an approach to address the functional dependencies between the points of 

measurements performed in a diurnal, or other continuous context. A variance weighted 

regression analysis of the data is performed and used to create time continuous metabolic 

functions, which are then related to first and second order derivatives of interacting 

metabolites. This method, like the covariance based inverse calculation presented in this 

work, relies on a robust biochemical background, but promises to advance interpretation of 

time continuous data (Nägele, Fürtauer, Nagler, Weiszmann, & Weckwerth, 2016). 
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 Appendix – Supplementary Tables and Figures 

Table S1 List of all metabolite dependencies and corresponding pathways and enzymes used in Model 

A. 

Jacobian Entry 

δf[..]/δ[..] 
Associated Pathway 

Representative 

Enzyme Reaction 

(EC Number) 
Function of 

(δf[..]) 

Variable 

(δ[…]) 

glycine 
glycine photorespiration 2.1.2.1 

glutamate photorespiration 2.6.1.4 

serine 
glycine photorespiration 2.1.2.1 

serine photorespiration 2.6.1.45 

sucrose 

sucrose 

sucrose 

export/interconversion/ 

cleavage 

2.4.1.82 

3.2.1.26 

galactinol raffinose biosynthesis 2.4.1.82 

raffinose raffinose biosynthesis 2.4.1.82 

fructose 

sucrose sucrose cleavage 3.2.1.26 

fructose 
fructose interconversion/ 

phosphorylation 
2.7.1.4 

raffinose raffinose cleavage 3.2.1.26 

glucose 

sucrose sucrose cleavage 3.2.1.26 

glucose 
glucose interconversion/ 

phosphorylation 
2.7.1.1 

melibiose melibiose cleavage 3.2.1.22 

trehalose trehalose degradation 3.2.1.28 

maltose starch degradation 3.2.1.20 

raffinose 

sucrose raffinose biosynthesis 2.4.1.82 

raffinose 
raffinose 

interconversion/cleavage 
3.2.1.26 

galactinol raffinose biosynthesis 2.4.1.82 

melibiose 

raffinose raffinose cleavage 3.2.1.26 

melibiose 
melibiose 

interconversion/cleavage 
3.2.1.22 

galactinol 

sucrose raffinose biosynthesis 2.4.1.82 

galactinol raffinose biosynthesis 2.4.1.82 

myo-inositol galactinol synthesis 2.4.1.123 
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Jacobian Entry 

δf[..]/δ[..] 
Associated Pathway 

 

Representative 

Enzyme Reaction 

(EC Number) 

Function of 

(δf[..]) 

Variable 

(δ[…]) 

galactose 

galactose 
galactose interconversion/ 

phosphorylation 
2.7.1.6 

melibiose 
melibiose 

interconversion/degradation 
3.2.1.22 

raffinose stachyose: degradation 3.2.1.22 

myo-inositol myo-inositol 
myo-inositol interconversion/ 

galactinol synthesis 
2.4.1.123 

phenylalanine 

phenylalanin

e 

phenylalanine 

interconversion/degradation 

2.6.1.57 

2.6.1.58 

glutamate phenylalanine biosynthesis 
2.6.1.79 

4.2.1.91 

tyrosine 

tyrosine 
tyrosine 

interconversion/degradation 
2.6.1.5 

glutamate tyrosine biosynthesis 
2.6.1.79 

1.3.1.78 

pyruvate 

valine alanine biosynthesis 2.6.1.66 

pyruvate 
pyruvate 

interconversion/degradation 

1.2.4.1 

2.6.1.58 

glutamate 
valine/leucine/alanine 

biosynthesis 

2.6.1.42 

2.6.1.2 

valine 

pyruvate valine biosynthesis 2.6.1.42 

valine 
valine 

interconversion/degradation 
2.6.1.42 

glutamate valine biosynthesis 2.6.1.42 

leucine 

pyruvate leucine biosynthesis 2.6.1.42 

leucine 
leucine 

interconversion/degradation 
2.6.1.42 

glutamate leucine biosynthesis 2.6.1.42 

alanine 

pyruvate alanine biosynthesis 2.6.1.2 

alanine 
alanine 

interconversion/degradation 
2.6.1.2 

glutamate alanine biosynthesis 2.6.1.2 

valine alanine biosynthesis 2.6.1.66 
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Jacobian Entry 

δf[..]/δ[..] 
Associated Pathway 

 

Representative 

Enzyme Reaction 

(EC Number) 

Function of 

(δf[..]) 

Variable 

(δ[…]) 

citrate 

pyruvate citrate biosynthesis 
1.2.4.1 

2.3.3.8 

citrate 
citrate 

interconversion/degradation 
4.2.1.3 

oxaloacetate citrate biosynthesis 
1.2.4.1 

2.3.3.8 

aspartate 

aspartate 
aspartate 

interconversion/degradation 

6.3.5.4 

2.7.2.4 

4.2.3.1 

oxaloacetate aspartate biosynthesis 
1.1.1.37 

2.6.1.1 

glutamate aspartate biosynthesis 2.6.1.1 

glutamine asparagine biosynthesis 6.3.5.4 

asparagine 

aspartate asparagine biosynthesis 6.3.5.4 

asparagine 
asparagine 

interconversion/degradation 
3.5.1.1 

glutamine asparagine biosynthesis 6.3.5.4 

succinate 

alpha- 

ketoglutarate 
succinate biosynthesis 6.2.1.5 

succinate 
succinate 

interconversion/degradation 
1.3.5.1 

fumarate 

succinate fumarate biosynthesis 1.3.5.1 

fumarate 
fumarate 

interconversion/degradation 
4.2.1.2 

malate 

fumarate malate biosynthesis 4.2.1.2 

malate 
malate 

interconversion/degradation 
1.1.1.37 

proline 

proline 
proline 

interconversion/degradation 
1.5.99.8 

glutamate 
proline biosynthesis 

 

2.7.2.11 

1.2.1.41 

1.5.1.2 
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Jacobian Entry 

δf[..]/δ[..] 
Associated Pathway 

Representative 

Enzyme Reaction 

(EC Number) 
Function of 

(δf[..]) 

Variable 

(δ[…]) 

alpha- 

ketoglutarate 

pyruvate valine/leucine biosynthesis 2.6.1.42 

glutamate 
glutamate 

interconversion/degradation 

2.6.1.2 

2.6.1.1 

2.6.1.4 

2.6.1.79 

citrate 
alpha- ketoglutarate 

biosynthesis 

4.2.1.3 

1.1.1.41 

oxaloacetate aspartate biosynthesis 2.6.1.1 

alpha- 

ketoglutarate 

alpha- ketoglutarate 

interconversion/degradation 

1.4.1.13 

1.4.1.2 

6.2.1.5 

glutamate 

pyruvate 
valine/leucine/alanine 

biosynthesis 

2.6.1.42 

2.6.1.2 

aspartate asparagine biosynthesis 6.3.5.4 

oxaloacetate aspartate biosynthesis 2.6.1.1 

glutamate 
glutamate 

interconversion/degradation 

2.6.1.42 

2.6.1.2 

6.3.5.4 

2.6.1.1 

2.6.1.4 

2.6.1.79 

1.3.1.78 

2.7.2.11 

4.1.1.19 

3.5.3.11 

glutamine 
tryptophan/asparagine 

biosynthesis 

6.3.5.4 

4.1.3.27 

alpha- 

ketoglutarate 
glutamate biosynthesis 

1.4.1.13 

1.4.1.2 
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Jacobian Entry 

δf[..]/δ[..] 
Associated Pathway 

Representative 

Enzyme Reaction 

(EC Number) 
Function of 

(δf[..]) 

Variable 

(δ[…]) 

glutamine 

 

 

aspartate asparagine biosynthesis 6.3.5.4 

glutamate glutamine biosynthesis 6.3.1.2 

glutamine 
glutamine 

interconversion/degradation 

4.1.3.27 

6.3.5.4 

3.5.1.2 

oxaloacetate 

 

 

glutamate aspartate biosynthesis 2.6.1.1 

malate TCA-cycle 1.1.1.37 

oxaloacetate 
TCA-cycle 

 

1.1.1.37 

2.3.3.1 

2.3.3.8 

ascorbate 

 

myo-inositol 
UDP-α-d-glucuronate 

biosynthesis 
1.13.99.1 

ascorbate 
ascorbate 

interconversion/degradation 
1.11.1.11 

maltose 

 

starch starch degradation 3.2.1.1 

maltose 
maltose 

interconversion/degradation 

3.2.1.20 

5.4.99.16 

trehalose trehalose 
trehalose 

interconversion/degradation 
3.2.1.28 

starch starch starch degradation 3.2.1.1 

lysine 

glutamate L-lysine biosynthesis 2.6.1.83 

aspartate L-lysine biosynthesis 2.7.2.4 

pyruvate L-lysine biosynthesis 4.3.3.7 

isoleucine 
pyruvate isoleucine biosynthesis 2.6.1.42 

isoleucine isoleucine biosynthesis 2.2.1.6 
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Figure S1 Amount of alpha- ketoglutarate dehydrogenase protein at the end of the day and the 

end of the night – data provided by Ella Nukarinen (personal notice). 

 

Table S2 Ranking of metabolites in the large, high confidence network, according to their maximum 

diagonal Jacobian entry. 

 
06:00 10:00 14:00 18:00 22:00 

alpha-ketoglutarate 1.88E+05 2.32E+06 3.14E+06 4.72E+03 1.72E+04 

glucose 4.14E+04 2.24E+04 4.32E+02 1.29E-03 2.38E+00 

glutamate 6.28E+03 2.01E+04 9.80E+02 2.60E-01 1.63E+01 

leucine 4.86E-06 1.09E-07 8.07E-09 5.39E-08 5.95E-09 

lysine 1.60E-07 1.86E-08 1.53E-06 1.96E-09 1.49E-09 

galactose 3.10E-07 1.10E-06 4.29E-07 7.71E-09 1.15E-08 

glycine 2.32E-07 2.69E-08 6.39E-10 3.15E-09 9.88E-10 

asparagine 1.61E-07 3.88E-08 5.02E-08 3.10E-08 1.69E-08 

galactinol 1.47E-07 7.45E-08 2.23E-08 3.95E-10 3.75E-10 

maltose 4.19E-08 8.29E-08 1.90E-08 3.08E-08 2.50E-09 

tyrosine 6.59E-08 4.03E-10 1.97E-08 5.66E-10 1.46E-10 

glutamine 1.49E-08 5.32E-10 1.02E-09 3.99E-10 8.98E-10 

phenylalanine 8.66E-09 1.12E-08 5.47E-11 3.51E-10 2.42E-10 

valine 1.07E-08 1.08E-08 6.52E-10 3.49E-10 5.62E-10 

fumarate 0 3.64E-10 0 1.00E-08 1.25E-10 

trehalose 7.36E-09 8.45E-09 2.50E-10 1.83E-09 5.85E-09 

isoleucine 1.10E-10 2.07E-09 1.58E-10 8.41E-09 5.73E-10 

pyruvate 5.65E-09 3.53E-09 1.64E-09 8.60E-10 3.81E-10 

aspartate 1.15E-09 6.04E-10 1.30E-09 3.41E-09 4.58E-09 

serine 1.44E-09 4.24E-09 1.17E-09 1.49E-09 5.60E-10 

fructose 2.03E-10 1.99E-09 2.55E-09 3.81E-09 4.05E-10 

ascorbate 4.62E-11 1.04E-10 3.69E-09 1.29E-09 1.05E-10 

proline 3.54E-09 3.17E-10 3.24E-10 7.27E-10 1.00E-10 

citrate 2.84E-09 8.15E-10 1.60E-09 2.91E-11 4.81E-10 
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alanine 1.30E-09 2.92E-10 1.47E-09 1.39E-09 2.65E-09 

sucrose 1.53E-09 1.86E-10 5.30E-10 1.91E-09 0 

oxaloacetate 1.37E-09 1.65E-10 7.83E-10 5.95E-11 6.64E-11 

malate 5.69E-10 5.86E-12 2.41E-11 9.59E-10 1.53E-10 

myo-inositol 9.27E-10 1.14E-10 0 1.45E-11 2.82E-11 

melibiose 2.19E-10 3.28E-11 4.57E-10 3.17E-11 3.63E-13 

succinate 3.19E-10 1.20E-10 4.22E-10 2.31E-12 2.88E-12 

starch 9.93E-12 9.31E-13 6.45E-12 0 0 

 

Table S3 Ranking of all metabolite interactions of the large, primary metabolism network, according 

to the maximum Jacobian entries,  

 06:00 10:00 14:00 18:00 22:00 

δf(glu)/ δ(kga) 1.41E+07 1.17E+06 1.95E+06 2.44E+00 2.27E+02 

δf(glu)/ δ(oxa) 1.30E+07 3.51E+05 1.28E+06 4.81E-01 9.92E+01 

δf(glu)/ δ(pyr) 9.83E+06 6.87E+05 9.44E+03 1.81E+01 9.54E+02 

δf(kga)/ δ(pyr) 1.93E+05 4.54E+05 3.79E+06 3.70E+02 9.48E+02 

δf(glu)/ δ(ala) 3.46E+06 7.46E+05 7.87E+05 3.22E-01 5.72E+01 

δf(kga)/ δ(kga) 1.88E+05 2.32E+06 3.14E+06 4.72E+03 1.72E+04 

δf(glc)/ δ(tre) 2.41E+06 3.97E+05 7.59E+04 3.83E-01 9.16E+01 

δf(kga)/ δ(oxa) 1.42E+05 1.49E+06 1.98E+06 1.77E+03 1.97E+04 

δf(glc)/ δ(mel) 1.43E+06 2.17E+05 1.08E+05 9.23E-01 1.74E+02 

δf(glu)/ δ(asp) 1.15E+06 4.82E+05 1.73E+05 1.82E+00 2.17E+02 

δf(glu)/ δ(gln) 7.75E+05 9.45E+04 3.07E+04 6.85E-01 5.67E+01 

δf(kga)/ δ(cit) 1.15E+04 8.33E+04 5.08E+05 2.83E+01 6.68E+02 

δf(glc)/ δ(mlt) 4.76E+05 4.98E+05 9.75E+03 4.70E-02 3.67E+01 

δf(kga)/ δ(glu) 1.06E+03 4.10E+02 1.76E+05 4.96E+00 5.13E+01 

δf(glc)/ δ(glc) 4.14E+04 2.24E+04 4.32E+02 1.29E-03 2.38E+00 

δf(glc)/ δ(suc) 2.92E+04 1.13E+04 7.10E+02 3.27E-04 1.93E-01 

δf(glu)/ δ(glu) 6.28E+03 2.01E+04 9.80E+02 2.60E-01 1.63E+01 

δf(leu)/ δ(leu) 4.86E-06 1.09E-07 8.07E-09 5.39E-08 5.95E-09 

δf(lys)/ δ(lys) 1.60E-07 1.86E-08 1.53E-06 1.96E-09 1.49E-09 

δf(gal)/ δ(gal) 3.10E-07 1.10E-06 4.29E-07 7.71E-09 1.15E-08 

δf(leu)/ δ(pyr) 9.45E-07 5.27E-08 2.80E-08 3.16E-09 2.38E-09 

δf(gol)/ δ(gal) 5.70E-07 1.34E-07 3.04E-07 3.47E-09 3.98E-10 

δf(gal)/ δ(mel) 1.48E-07 4.35E-07 2.30E-07 2.01E-08 7.76E-10 

δf(gly)/ δ(gly) 2.32E-07 2.69E-08 6.39E-10 3.15E-09 9.88E-10 

δf(asp)/ δ(asp) 1.61E-07 3.88E-08 5.02E-08 3.10E-08 1.69E-08 

δf(asp)/ δ(oxa) 7.88E-09 6.61E-09 1.51E-07 8.59E-10 4.60E-09 

δf(gol)/ δ(gol) 1.47E-07 7.45E-08 2.23E-08 3.95E-10 3.75E-10 

δf(asp)/ δ(asp) 9.93E-09 4.49E-09 6.85E-09 8.44E-08 1.12E-09 

δf(lys)/ δ(asp) 8.41E-09 1.22E-09 8.37E-08 1.13E-08 1.26E-10 

δf(mlt)/ δ(mlt) 4.19E-08 8.29E-08 1.90E-08 3.08E-08 2.50E-09 

δf(suc)/ δ(gol) 4.94E-09 1.40E-08 2.63E-09 7.50E-08 3.90E-09 

δf(tye)/ δ(tye) 6.59E-08 4.03E-10 1.97E-08 5.66E-10 1.46E-10 

δf(asp)/ δ(gln) 5.46E-09 5.69E-10 1.37E-09 5.95E-08 1.45E-09 
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δf(mal)/ δ(oxa) 4.89E-08 4.59E-10 2.18E-08 7.11E-09 6.98E-10 

δf(cit)/ δ(oxa) 4.09E-08 1.79E-09 4.62E-09 6.20E-10 1.94E-09 

δf(lys)/ δ(pyr) 3.94E-08 3.02E-10 4.03E-08 1.13E-08 1.05E-10 

δf(raf)/ δ(gol) 1.30E-09 2.42E-11 9.04E-11 3.66E-08 3.53E-09 

δf(ser)/ δ(gly) 3.57E-08 2.20E-09 1.21E-08 1.78E-08 3.72E-09 

δf(fum)/ δ(scc) 3.22E-09 4.97E-09 1.50E-09 2.65E-08 2.47E-09 

δf(leu)/ δ(glu) 2.48E-08 9.69E-10 4.66E-10 6.35E-11 2.29E-12 

δf(ala)/ δ(pyr) 1.79E-09 2.70E-09 2.46E-08 6.77E-09 2.77E-09 

δf(gol)/ δ(suc) 2.36E-08 1.65E-12 5.21E-09 2.61E-09 2.75E-11 

δf(gol)/ δ(myo) 2.24E-08 5.94E-09 1.12E-08 6.10E-09 3.47E-10 

δf(raf)/ δ(raf) 1.17E-09 -5.12E-10 -1.07E-08 -2.63E-07 1.78E-08 

δf(gln)/ δ(asp) 5.88E-09 3.23E-10 1.52E-10 1.74E-08 1.69E-08 

δf(scc)/ δ(kga) 1.69E-08 5.48E-09 2.32E-09 3.07E-11 1.99E-09 

δf(fru)/ δ(raf) 2.12E-10 1.70E-10 9.41E-09 1.63E-08 2.20E-09 

δf(cit)/ δ(pyr) 1.63E-08 1.22E-09 4.33E-09 1.09E-09 1.09E-10 

δf(lys)/ δ(glu) 2.43E-10 7.92E-11 1.57E-08 6.93E-10 5.42E-12 

δf(gln)/ δ(gln) 1.49E-08 5.32E-10 1.02E-09 3.99E-10 8.98E-10 

δf(gal)/ δ(raf) 3.70E-09 1.02E-08 1.41E-08 1.02E-09 7.49E-11 

δf(phe)/ δ(phe) 8.66E-09 1.12E-08 5.47E-11 3.51E-10 2.42E-10 

δf(val)/ δ(val) 1.07E-08 1.08E-08 6.52E-10 3.49E-10 5.62E-10 

δf(pyr)/ δ(val) 8.46E-09 1.04E-08 2.10E-09 3.46E-10 1.25E-09 

δf(fum)/ δ(fum) 0 3.64E-10 0 1.00E-08 1.25E-10 

δf(val)/ δ(pyr) 7.38E-09 3.16E-09 9.35E-09 2.10E-09 5.97E-11 

δf(tre)/ δ(tre) 7.36E-09 8.45E-09 2.50E-10 1.83E-09 5.85E-09 

δf(ile)/ δ(ile) 1.10E-10 2.07E-09 1.58E-10 8.41E-09 5.73E-10 

δf(oxa)/ δ(mal) 4.52E-10 6.93E-11 0 8.23E-09 3.83E-09 

δf(ile)/ δ(pyr) 3.59E-09 1.55E-09 7.28E-09 1.06E-09 2.68E-10 

δf(ala)/ δ(val) 6.12E-10 8.20E-10 1.30E-09 7.04E-09 3.20E-09 

δf(asp)/ δ(gln) 4.10E-10 8.48E-10 1.15E-10 6.64E-09 4.75E-11 

δf(pyr)/ δ(pyr) 5.65E-09 3.53E-09 1.64E-09 8.60E-10 3.81E-10 

δf(fum)/ δ(mal) 3.14E-09 4.49E-09 7.49E-11 5.48E-09 0 

δf(phe)/ δ(gln) 4.74E-10 2.72E-10 3.06E-10 4.81E-09 3.23E-13 

δf(asp)/ δ(asp) 1.15E-09 6.04E-10 1.30E-09 3.41E-09 4.58E-09 

δf(ser)/ δ(ser) 1.44E-09 4.24E-09 1.17E-09 1.49E-09 5.60E-10 

δf(mal)/ δ(fum) 2.95E-10 6.81E-12 0 4.19E-09 4.94E-11 

δf(fru)/ δ(fru) 2.03E-10 1.99E-09 2.55E-09 3.81E-09 4.05E-10 

δf(oxa)/ δ(glu) 0 2.54E-10 2.16E-10 3.77E-09 3.73E-09 

δf(asc)/ δ(asc) 4.62E-11 1.04E-10 3.69E-09 1.29E-09 1.05E-10 

δf(pro)/ δ(pro) 3.54E-09 3.17E-10 3.24E-10 7.27E-10 1.00E-10 

δf(ser)/ δ(gln) 2.17E-10 3.28E-09 1.81E-10 2.50E-09 3.24E-10 

δf(suc)/ δ(raf) 2.08E-09 3.24E-09 5.13E-10 2.96E-09 2.79E-11 

δf(asc)/ δ(myo) 2.21E-09 2.00E-10 5.36E-10 3.10E-09 5.39E-10 

δf(cit)/ δ(cit) 2.84E-09 8.15E-10 1.60E-09 2.91E-11 4.81E-10 

δf(ala)/ δ(ala) 1.30E-09 2.92E-10 1.47E-09 1.39E-09 2.65E-09 

δf(raf)/ δ(suc) 1.45E-09 4.65E-13 3.58E-11 2.45E-09 4.89E-11 

δf(pro)/ δ(glu) 1.94E-09 2.34E-10 6.32E-10 1.57E-10 1.37E-10 

δf(suc)/ δ(suc) 1.53E-09 1.86E-10 5.30E-10 1.91E-09 0 
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δf(gln)/ δ(glu) 1.87E-09 1.18E-10 9.74E-10 1.57E-09 1.08E-09 

δf(asp)/ δ(glu) 1.75E-10 1.99E-10 1.77E-09 6.88E-10 4.47E-10 

δf(mel)/ δ(raf) 5.44E-10 7.73E-11 1.60E-09 1.85E-11 0 

δf(gly)/ δ(glu) 1.53E-09 1.42E-09 1.04E-09 6.62E-12 5.90E-11 

δf(val)/ δ(glu) 2.22E-10 1.26E-10 1.52E-09 6.65E-13 1.01E-13 

δf(pyr)/ δ(glu) 3.70E-10 1.50E-10 1.51E-09 5.06E-12 4.87E-11 

δf(oxa)/ δ(oxa) 1.37E-09 1.65E-10 7.83E-10 5.95E-11 6.64E-11 

δf(mlt)/ δ(sta) 1.19E-09 4.85E-12 9.95E-12 1.63E-11 3.68E-12 

δf(phe)/ δ(glu) 7.11E-11 6.47E-10 1.02E-10 1.04E-09 6.22E-13 

δf(mal)/ δ(mal) 5.69E-10 5.86E-12 2.41E-11 9.59E-10 1.53E-10 

δf(myo)/ δ(myo) 9.27E-10 1.14E-10 0 1.45E-11 2.82E-11 

δf(fru)/ δ(suc) 5.47E-10 4.68E-12 6.75E-10 8.80E-10 4.52E-10 

δf(mel)/ δ(mel) 2.19E-10 3.28E-11 4.57E-10 3.17E-11 3.63E-13 

δf(tye)/ δ(glu) 0 0 4.56E-10 0 3.54E-12 

δf(scc)/ δ(scc) 3.19E-10 1.20E-10 4.22E-10 2.31E-12 2.88E-12 

δf(sta)/ δ(sta) 9.93E-12 9.31E-13 6.45E-12 0 0 
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Table S4 Interaction matrix of large, high confidence network, Functions are represented in columns, dependent on metabolite levels in rows (continued on 

next page) 

 raf ser tre gln asc asp mlt gly leu gol gal kga scc ile cit asp fru fum ala lys myn val pyr phe glc suc pro tyr mel glu mal oxa ac sta 

raf 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 

ser 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

tre 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

gln 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 

asc 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

asp 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

mlt 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

gly 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

leu 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

gol 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

gal 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

kga 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

scc 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ile 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

cit 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

asp 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

fru 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

fum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

ala 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

lys 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

myn 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

pyr 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 
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Table S4 (continued) 

 raf ser tre gln asc asp mlt gly leu gol gal kga scc ile cit asp fru fum ala lys myn val pyr phe glc suc pro tyr mel glu mal oxa ac sta 

phe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

glc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 

suc 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 

pro 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

tyr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

mel 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 

glu 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0 

mal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 

oxa 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 

ac 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 1 

sta 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

Table S5 Abbreviations used in Table S4 

raffinose raf galactinol gol alanine ala tyrosine tyr 

serine ser galactose gal lysine lys melibiose mel 

trehalose tre 
alpha-
ketoglutarate kga myo-inositol myn glutamate glu 

glutamine gln succinate scc valine val malate mal 

ascorbate asc isoleucine ile pyruvate pyr oxaloacetate oxa 

asparagine asp citrate cit phenylalanine phe 
Activated 
Compounds ac 

maltose mlt aspartate asp glucose glc Starch sta 

glycine gly fructose fru sucrose suc   

leucine leu fumarate fum proline pro   
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Figure S2 Visualisation of the workflow for network reduction 
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Figure S3 GUI of the presented MATLAB workflow for the extraction of core metabolic networks 

from genome scale metabolic reconstructions. NERD – Network Reduction Device 
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