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Kurzfassung

In dieser Arbeit befassen wir uns mit der Implementierung von zwei Typen von Thermostaten
in Ring-Polymer-Molekulardynamik-Simulationen.

Molekulardynamik-Simulationen sind bekanntermaßen ein wertvolles Hilfsmittel bei der Un-
tersuchung von sowohl klassischen als auch quantenmechanischen molekularen Systemen. Bei
letzteren ermöglicht die Verwendung des Pfadintegral-Formalismus die Auffassung von quan-
tenmechanischen Teilchen als “beinahe-klassische” Ring-Polymere mit einem abgeänderten
intermolekularen Potential.

Um ein thermisches Gleichgewicht herzustellen, also ein kanonisches Ensemble zu simulieren,
werden Thermostate benötigt, welche die Interaktion des Systems mit einem Wärmebad im-
itieren. Natürlich gibt es hierfür viele verschiedene Typen, welche auf unterschiedlichen An-
sätzen beruhen. Es stellt sich heraus, dass die Verwendung eines Gauß’schen Thermostats
Resonanzen im Spektrum der Geschwindigkeits-Autokorrelationsfunktion hervorruft, was ein
unerwünschter Effekt ist.

In dieser Arbeit konzentrieren wir uns auf den Ursprung der erwähnten Resonanzen sowie
auf die Implementierung eines Langevin-Thermostats. Was ersteres Ziel betrifft, werden wir
entdecken, dass die Resonanzfrequenzen den Eigenfrequenzen des Federsystems zwischen den
einzelnen Monomeren entsprechen, auch wenn diese durch das intermolekulare Potential leicht
verschoben sind.
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KURZFASSUNG

Zweitens diskutieren wir die Implementierung eines Langevin-Thermostats, um die erwäh-
nten Resonanzen zu beseitigen. Wir zeigen, dass das Spektrum in diesem Fall keine Res-
onanzen aufweist und untersuchen den Effekt der Kopplungsstärke zwischen System und
Wärmebad. Außerdem vergleichen wir die Ergebnisse mit Daten einer centroid molecular

dynamics-Simulation.
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Abstract

This work deals with the implementation of two types of thermostats in ring polymer molecular
dynamics (RPMD) simulations.

Molecular dynamics simulations have been proven to be a powerful tool in the investigation
of molecular systems in the classical as well as in the quantum mechanical case. In the latter,
the use of the celebrated path integral formalism allows to treat quantum mechanical particles
as classical-like ring polymers with an alternative intermolecular potential.

In order to impose a thermal equilibrium condition, i.e. to simulate a canonical ensemble, a
thermostat is needed, which mimics the interaction of a system with a heat bath. Of course,
there exist many different types of thermostats with different approaches. It turns out that the
use of a Gaussian thermostat leads to resonances in the velocity auto-correlation spectrum,
which is an unwanted effect.

In this thesis, we focus on the investigation of the origin of the mentioned resonances and
on the implementation of a Langevin thermostat. Regarding the first aim, it turns out that
they correspond to the eigenfrequencies associated to the spring system of the ring monomers,
although the intermolecular potential yields a slight shift of those frequencies.

Secondly, the implementation of a Langevin thermostat to overcome the mentioned issues is
discussed in detail. We show that the spectrum is free of the resonances in this case and show
the effect of the coupling strength to the heat bath. Additionally, we compare the results to
data from simulations using the centroid molecular dynamics method.
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Chapter 1

Introduction

Physical experiments dealing with molecular systems can suffer from non-negligible obsta-
cles. Those range from extreme physical conditions like very low temperatures or very

high pressures to situations where the quantity of interest, e.g. a thermodynamic quantity, is
hardly accessible, which is often due to extremely low spatial and temporal scales. Theoretical
studies, on the other hand, often lead to mathematical problems that cannot be treated ana-
lytically, such that a direct calculation is not possible. All the mentioned problems, both of
experimental or theoretical nature, especially arise in statistical mechanics where many-body
systems are investigated.

The establishment of computer simulations as a viable technique for the investigation of sta-
tistical mechanical systems has therefore become a tool of great importance in this area, since
all the mentioned issues and hazards are irrelevant in this case. What matters here is mainly
the requirement of a realistic microscopic interaction model, a stable numerical procedure,
and appropriate techniques for the computation of the thermodynamic quantities of inter-
est. For these reasons, computer simulations have become a main tool in the “experimental”
investigation of classical as well as of quantum mechanical systems.

A widely used technique, especially for classical systems, is established by molecular dy-

namics simulations. The molecular dynamics method mimics physical motion by employing
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CHAPTER 1. INTRODUCTION

interaction models between the system particles and calculating their motion according to
the obtained intermolecular forces. The system is propagated in time using the associated
Hamiltonian equations of motion. From the configuration as well as from the momenta of
the particles, thermodynamic quantities can then be calculated, where needed relations are
provided by statistical mechanics.

One of these quantities is the velocity auto-correlation function (VACF). This quantity is
not only of interest for itself, but is also employed – together with the so-called Gaussian

approximation [4, 60] – to calculate the self part of the intermediate scattering function. This
quantity can be used further to, e.g. calculate the neutron cross section for H2 [29] and D2 [28].
The quantity we will be interested in the presented simulations is the spectrum of the velocity
auto-correlation function.

Considering quantum mechanical systems, the situation is a little more complicated. How-
ever, a crucial breakthrough was made by Richard Feynman, who developed the celebrated
path integral formalism, which allows to relate quantum mechanical monatomic systems to
classical-like ring polymers, which can then be simulated employing the already established
classical methods. This relation between quantum mechanical and ring-polymer systems has
been termed classical isomorphism.

In order to impose a certain temperature to a system, so-called thermostats are used. Since the
temperature regulation of a system is achieved via thermal contact to a heat bath which can
be microscopically described in many different ways, there are also many different approaches
to implement a thermostat for molecular dynamics simulations.

In this work, we will focus on two different types of those. We will see that the use of
a Gaussian thermostat leads to resonances in the spectrum of the velocity auto-correlation
function. Therefore, our goal will be to identify the source of those resonances, and present
a different thermostat that does not show this effect. This will be the Langevin thermostat,
which leads to a stochastic description of the heat bath coupling. The Langevin thermostat
has already been employed in ring polymer molecular dynamics simulations (e.g. [17]), but
not yet for the investigation of the velocity auto-correlation function and its spectrum.

We will focus on ortho-deuterium as a model system throughout this thesis, since it is very
well-studied and provides a very simple structure, which prevents losing ourselves in compu-
tational and implementational details.

This thesis is organized as follows. In Chapter 2, we are going to summarize the necessary
concepts of statistical mechanics, both for the classical and the quantum mechanical case.
We discuss the concept of ensembles as well as the approach for theoretically calculating
thermodynamic quantities.

2



CHAPTER 1. INTRODUCTION

Chapter 3 is devoted to an introduction to molecular dynamics simulations, which constitute
the basis for the simulations performed in this thesis.

We present the path integral formalism in Chapter 4, and also briefly discuss the path integral
Monte Carlo method.

Chapter 5 addresses the extension of the path integral formalism for quantum molecular
dynamics simulations, where the Boltzmann factor needs to be extended such that dynamical
information is introduced to the system. We then describe several particular techniques for the
simulation, including basic path integral molecular dynamics, centroid molecular dynamics
(CMD), and ring polymer dynamics (RPMD) simulations.

The explicit methods as well as details of the implementation, including the used algorithm,
which is based on the discussion in [17], are presented in Chapter 6.

With all those preparations, we are ready to present our results in Chapter 7, where we discuss
the issues arising in RPMD simulations employing the isokinetic ensemble, and identify the
source of the arising resonances. We compare those results to data from simulations employing
the Langevin thermostat, and show the dependence on different coupling strengths. Those
results are in turn compared to data obtained from CMD simulations.

Chapter 8 summarizes our achievements.
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Chapter 2

Some Statistical Mechanics

The laws of thermodynamics have been derived based on a phenomenological investiga-
tion of macroscopic systems. From these, a great number of physical results have been

derived, which have not only been important for scientific reasons, but also led to very useful
applications in daily life. However, all these findings do not predict any microscopic behavior
of the physical system. Relating the results of thermodynamics to microscopical effects is
not at all trivial. As a consequence, there is a whole theory which aims at finding relations
between these two levels of interest: statistical mechanics. As large and important this area
is, we will not present a detailed introduction, but rather discuss the main concepts relevant
for this thesis in the following sections.

We will start this chapter with a discussion of two important concepts in statistical mechanics,
which are the microcanonical and the canonical ensemble. We will define them and explain
how static macroscopic quantities are derived from the microscopic behavior in such systems.
We then describe the canonical ensemble for quantum mechanical systems in Section 2.3.
Since we are also interested in dynamic quantities which relate observables at certain time
differences, we introduce and discuss correlation functions for classical as well as for quantum
mechanical systems in Section 2.4. Finally, in Section 2.5, we present a first glimpse on
the numerical methods to compute the high-dimensional integrals defining thermodynamic
quantities.

5



CHAPTER 2. SOME STATISTICAL MECHANICS 2.1 The Microcanonical Ensemble

2.1 The Microcanonical Ensemble

Consider a system of N particles in a volume V in thermodynamic equilibrium. If we know
all the positions and all the velocities of these particles at a given time, we can, under the
assumption that the particles behave as classical mechanics tells us, use the equations of
motion to calculate the state of the system at any time we want. Let us consider the 6N -
dimensional space consisting of 3N position coordinates and 3N momentum coordinates,
where each set of positions and momenta of the system represents a point in this so-called
phase space. The evolution of the system state in time will then create a path in the phase
space, and it will turn out that there are certain restrictions as to which points can be
reached by a specific system. As an example, consider the system to be closed, i.e. no energy
is transferred to or from the system. Then, the possible states of the system form a hyperplane
in the phase space, comprising all points that correspond to a fixed value for the Hamiltonian
of the system, which is of course equal to the total system energy.

Since we have fixed certain quantities (N , V , and E, in this case), each state in the correspond-
ing phase space describes a closed macroscopic system with those parameters. However, there
are many more parameters that can be assigned to a macroscopic system, including pressure
or temperature, or more complicated ones like mean distances between particles. While the
quantities of the first category can be manipulated (in the sense of prescribing them), the ones
from the second category cannot, as they will depend on the prescribed ones (and, of course,
on the microscopic configuration). The question now is: Can their values be determined
anyway, and if yes, how can this be achieved? What is the pressure, or the temperature, of
the macroscopic system if it is different for each microscopic one? The basis for the solution
is provided by the main assumption of statistical mechanics, which is the postulate of equal

a-priori probability.

Postulate (Equal a priori probability)
For an isolated system in equilibrium, all microscopic states consistent with the given macro-

scopic quantitites are taken by the system with equal probability.

Using this postulate, the way to find out the quantities of interest is straightforward. Roughly
speaking, we just need to have the system in a representative collection of microscopic states,
log the respective quantity each time, and finally calculate the average. Note that this is also
the method of choice for typical physical measurements, where usually, the outcome is never
exactly the same, but will fluctuate a bit. Therefore, we perform experiments several times
in order to calculate error bounds for the measured quantities.

The set of microscopic states is a very important concept, such that it is advantageous to
give it a specific name. A collection of systems comprising all the possible microscopic states

6



CHAPTER 2. SOME STATISTICAL MECHANICS 2.1 The Microcanonical Ensemble

consistent with given macroscopic parameters is therefore called ensemble. As an example,
the ensemble for systems with fixed particle number, volume and total energy is called mi-

crocanonical ensemble, and will be discussed in the following paragraphs.

In order to be able to perform calculations based on ensembles, we first need to know the
number of microscopic states consistent with the macroscopic parameters. This quantity is
called partition function, or sometimes sum over states. It is basically derived by counting
the states in the subset of the phase space, which, for the microcanonical ensemble leads to

Ω(N,V,E) =
1

N !h3N

∫

E<H(p,q)<E+E0

d3Npd3Nq ≈ E0

N !h3N

∫
d3Npd3Nq δ [H(p,q)− E] ,

(2.1)

where E0 ≪ E, such that the integral is over a very thin shell above the constant-energy
hypersurface. Here, h denotes the Planck constant, which has been introduced to make Q

dimensionless, and H(p,q) is the Hamiltonian of the system. The factor (N !)−1 is added to
account for the correct Boltzmann counting. Note that, while we integrated over the energy
shell in the first integral, we are integrating over the whole phase space in the second one by
using a Delta-function.

As we said, the partition function gives us the number of accessible microscopic states under
the prescribed thermodynamic conditions. Remembering the postulate of equal a priori prob-
ability, we can also derive a probability distribution for the microscopic states. It is given
by

P =

⎧
⎨

⎩

1
Ω(N,V,E) if E < H < E + E0

0 else,
(2.2)

which, in the limit E0 → 0, can be rewritten as

P =
1

Ω(N,V,E)
δ [H − E] . (2.3)

Note that with this definition the partition function acts as a normalizing constant. Then,
if we want to calculate the value of an observable A(p,q) depending on p and q, we can do
this via

A = ⟨A⟩ = E0

N !h3NΩ(N,V,E)

∫
d3Npd3NqA(p,q) δ [H(p,q) − E] , (2.4)

which is the standard definition of an expected value with the probability distribution defined
in equation (2.3).

7



CHAPTER 2. SOME STATISTICAL MECHANICS 2.2 The Canonical Ensemble

2.2 The Canonical Ensemble

The microcanonical ensemble proves to be a very convenient theoretical starting point. How-
ever, the fact that it is very complicated or even impossible to obtain closed systems in
experiments makes the use of the microcanonical ensemble unfavorable. Rather, because ex-
perimentally easier achievable, we should have an ensemble with fixed temperature instead of
total energy. This results in the consideration of the canonical ensemble, which will also be
used throughout this thesis. To obtain it, consider a physical system in contact with a heat
bath, such that this combined system is closed, hence may be treated as a microcanonical
ensemble. Then the physical sub-system we are interested in will exhibit the properties of a
canonical ensemble.

Due to the thermal contact between the physical system and its heat bath, which leads to
different possible energies for the physical system, the postulate of equal a priori probability is
not valid any more, such that the probabilities for given microscropic states are not uniformly
distributed. In fact, for a microscopic state with energy E, the probability for the physical
system to be in this state P (E) is now proportional to

P (E) ∝ e−βE , (2.5)

where β = (kBT )−1. With this, the partition function for the canonical ensemble is given by

Q(N,V, T ) =
1

N !h3N

∫
d3Npd3Nq e−βH(p,q). (2.6)

This means that in the canonical ensemble the probabilities of the microscopic states are
weighted by a factor depending on the sub-system’s total energy. This factor, is called Boltz-

mann factor. The expected value for an observable is therefore

A = ⟨A⟩ = 1

N !h3NQ(N,V, T )

∫
d3Npd3NqA(p,q) e−βH(p,q). (2.7)

Remark

There are other ensembles that also appear to be suitable for comparison with experimental

data, such as the isothermal-isobaric ensemble, where N , the pressure p, and T are fixed, or

the grand canonical ensemble, where the chemical potential µ, V , and T are prescribed. It

can even be shown that these two ensembles are very similar to the canonical ensemble in the

sense that the corresponding results for simple observables are not too far apart, and that the

conversion is very simple in the thermodynamical limit [70].

8



CHAPTER 2. SOME STATISTICAL MECHANICS 2.3 Canonical Ensemble in QM

2.3 The Canonical Ensemble in Quantum Mechanics

So far, we have discussed classical ensembles. Of course, the notion of an ensemble can
be generalized to the quantum mechanical case. In fact, the classical canonical partition
function given in equation (2.6) is then the classical limit for the quantum mechanical partition
function. We will now have a closer look at the generalized formulation of this very ensemble.

For a quantum mechanical system in a mixed state |Ψ⟩, there exist orthogonal pure states
|Ψn⟩ which comprise the possible states the system can assume in case of a measurement. If
each of these states is assumed with probability pn, the density operator is given by

ρ̂ =
∑

n

pn |Ψn⟩ ⟨Ψn| . (2.8)

The corresponding density matrix is then

ρkl = ⟨Ψk|ρ̂|Ψl⟩ . (2.9)

We now use the density matrix for considering the expected value of an observable A. While
for pure states the result is pretty simple, where we obtain ⟨Â⟩n = ⟨Ψn|Â|Ψn⟩, for mixed
states we have to take into account all possible pure states. This leads to

⟨A⟩ =
∑

n

pn ⟨Ψn|A|Ψn⟩ =
∑

n

ρnnA = Tr [ρA] . (2.10)

For a quantum mechanical ensemble, the density matrix is therefore a measure for the proba-
bility that each microstate compatible with the macroscopic prescriptions is attained, and is
therefore the quantum mechanical correspondence of the phase space distribution. In partic-
ular, for the canonical ensemble, where we fix the particle number N , the volume V and the
temperature T , we have

ρ̂ =
e−βĤ

Q(N,V, T )
, (2.11)

where the related partition function is

Q(N,V, T ) = Tr
[
e−βĤ

]
. (2.12)

The expected value for an observable Â can therefore be written as

⟨Â⟩ :=
Tr
[
Âe−βĤ

]

Q(N,V, T )
=

Tr
[
Âe−βĤ

]

Tr
[
e−βĤ

] (2.13)

9



CHAPTER 2. SOME STATISTICAL MECHANICS 2.4 Dynamical Properties

2.4 Dynamical Properties

In the previous sections, we have described how to handle different ensembles and defined
averages for certain observables. These observables all corresponded to time-independent, or
static, properties. Examples for those are internal energy, the radial distribution function, or
the net electric dipole moment in a polar liquid. It turns out that there are several methods to
assess these quantities for classical as well as for quantum-mechanical systems (see [2, 27, 70]).

However, there are a lot of very interesting quantities that depend on time – or rather on time
differences. The most important ones of this type are diffusion constants, chemical reaction
rates, or thermal conductivities. Since these dynamical quantities have, by definition, their
origin in non-equilibrium systems, their calculation is not directly possible. Luckily, linear

response theory allows to relate their values to correlation functions of the system.

Let us us start with the classical case. Given two observables A and B for a classical system
the corresponding correlation function is given by

CAB(t) = ⟨A(0)B(t)⟩ = 1

Q

∫
d3Npd3Nq e−βH(p,q)A(0)B(t). (2.14)

Since only the time difference matters, we can always consider one observable at t = 0.

It is not only interesting to study the correlation between to different observables. Rather, one
is often interested in the correlation of a quantity with itself. The straightforward definition
of the auto-correlation function is then

CAA(t) =
1

Q

∫
d3Npd3Nq e−βH(p,q)A(0)A(t). (2.15)

Obviously, both of these definitions are, like the definitions of expected values, phase-space
integrals which we can consider as an expected value for an observable product.

Turning to quantum mechanical systems now, we quickly encounter a problem. Since oper-
ators in quantum mechanics do not commute in general, there are different possibilities to
define correlation functions.

The “standard” definition for a quantum mechanical correlation function is, analogeously to
the classical case, written as the expected value for an operator product,

CQM
AB (t) :=

1

Q
Tr
[
e−βĤÂ(0)B̂(t)

]
=

1

Q
Tr
[
e−βĤÂeiĤt/!B̂e−iĤt/!

]
, (2.16)

where the exponential with the complex exponent is the time evolution operator in the Heisen-
berg picture. A drawback of this definitions is the missing symmetry. As an example, for

10



CHAPTER 2. SOME STATISTICAL MECHANICS2.5 Sampling and Averaging in Practice

hermitian position-dependent operators, the correlation function is complex, while the classi-
cal autocorrelation function is real and even.

Another possibility to define the correlation function is the so-called Kubo-transformed cor-
relation function [40], which is written as

CK
AB(t) :=

1

βQ

β∫

0

Tr
[
e−(β−λ)ĤÂ(0)e−λĤB̂(t)

]
. (2.17)

Although this definition is different to equation (2.16), there is a simple relation between their
Fourier transforms,

CQM
AB (ω) =

β!ω

1− e−β!ω
CK
AB(ω), (2.18)

which allows to easily go back and forth between these two. Here, the Fourier transform is
given by

CAB(ω) =
1

2π

∞∫

−∞

dt e−iωtCAB(t) (2.19)

The big advantage of the Kubo-transformed correlation function is its higher symmetry. As
an example, for hermitian position-dependent operators, the correlation function is real and
even like in the classical case [21].

The main drawbacks from the computational side is that correlation functions can, for general
quantum mechanical systems, only be approximated. To perform this task, several methods
have been developed, but up to now, no method of choice exists, since each one has its
disadvantages. These different methods will be discussed in more detail in Chapter 5.

2.5 Sampling and Averaging in Practice

Having derived expressions for thermodynamic quantities, we are facing the integration of
integrals over spaces with 6N dimensions, where, for a macroscopic system, N ≈ 1023. Fur-
thermore, no analytic expressions for the solutions exist in general. The explicit calculation of
such integrals is therefore way out of reach. However, methods have been developed to numer-
ically calculate those integrals for very small systems with up to several thousand particles.
Of course, these calculations cannot be performed by hand, but involve the use of comput-
ers. Over time, there have been two main approaches which each have their advantages and
drawbacks. These are Monte Carlo simulations and Molecular Dynamics simulations.

11



CHAPTER 2. SOME STATISTICAL MECHANICS 2.6 Conclusions

Monte Carlo simulations are stochastic methods to approximate integrals relying on the
central-limit theorem. They go back to the work of Enrico Fermi, and were later heavily
used in the Manhattan Project. Basically, this technique has been developed to approximate
high-dimensional integrals, for which it is still used in many disciplines. For the use in sta-
tistical mechanics, the method is based on the random generation of accessible microscopic
states and subsequent calculation of the mean value over the quantity measured in each of
those states. A very effective approach is based on the fact that in equation (2.7) we have
a ratio of two integrals. Metropolis [47] developed a method that very efficiently samples
expressions of this type, which has become the standard method for Monte Carlo simulations
in statistical mechanics. For further information on this method, see [2, 27, 70].

2.6 Conclusions

As might have become clear from the few introductory words on this technique, the Monte
Carlo method is perfectly suitable for the calculation of static properties of a microscopic
system. However, in its basic version, it does not contain any dynamical information on the
particles whatsoever. Although this makes it appropriate for simulations of systems that
cannot be related to dynamical features (e.g. the Ising model), this is a huge drawback if
we are interested in dynamical information. Therefore, we will now turn to a method that
naturally describes particle motion.

Actually, this method is even fundamentally based on the microscopic dynamics of the system
under investigation. Here, rather than sampling over different systems we only consider one
of them. Then, in order to obtain the expected values of interest, either for simple observables
or for correlation functions, we rely on the ergodic hypothesis.

Hypothesis (Ergodic Hypothesis)
A dynamical system is called ergodic if given any allowed initial condition each microscopic

state consistent with the thermodynamic parameters is visited with non-zero probability.

This property of ergodic systems allows to identify the mean over the ensemble with the mean
over a single system evolving over time,

A =
1

N !h3NQ(N,V, T )

∫
d3Npd3NqA(p,q) e−βH(p,q) =

1

T

T∫

0

dt A(p(t),q(t)). (2.20)

Thus, we can use the equations of motion to evolve the system and calculate the desired
quantities after each performed timestep, thereby also yielding a sufficient number of samples
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to calculate the averages. This method is called Molecular Dynamics. Research on the method
itself as well as using it has become huge, which is mainly due to its versatility. Since it is
also used in this work, we refer to the following chapter for detailed explanations.
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Chapter 3

Molecular Dynamics Simulations

The method of molecular dynamics simulations for classical mechanics is a straightforward
approach to investigate macroscopic quantities of a system by considering its microscopic

behavior. In particular, it allows the calculation of static as well as dynamic properties of the
system. Computer simulations are very similar to physical experiments or can even be thought
of as virtual experiments. They enable the testing of hypotheses and generate information
about the investigated system, where their great advantage is the versatility of the system.
As an example, simulations at very high pressures or low temperatures are not more difficult
to perform than at pressures or temperatures arising naturally, while a physical experiment
under the same conditions might not only be a considerable challenge, but also affected by
severe safety issues. The main drawback, however, is the need of a properly working model
in order to be able to mimic the physical processes taking place. For many systems, this
challenge has been accomplished, which makes computer simulations a widely used tool in
the scientific community.

We start the chapter by a short review of the history of computer simulations. Then, we
will explain the derivation of the molecular dynamics method for the classical case, present
the chosen algorithm for the numerical integration in more detail, where we also include ther-
mostatting approaches. This description is mainly based on the books by Allen & Tildesley [2],
Frenkel & Smit [27] and Tuckerman [70].
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3.1 Some History of Computer Simulations

The driving force for the development of computer simulations was the desire to test theories
concerning dense liquids. For a long time, there was almost no way to obtain any verifica-
tion for theoretical approaches, where the best that could be done were mechanical models
developed by Bernal [5]. The first approach using computers was developed in Los Alamos in
1953, where Metropolis and his co-workers developed the now famous Monte Carlo technique
to model a two-dimensional fluid [47]. The next step was the integration of the equations
of motion for a one-dimensional anharmonic chain, performed by Fermi, Pasta and Ulam
[25]. Simulating the movement of hard spheres in 1956 by Alder and Wainwright [1] can be
considered the first molecular dynamics simulation, while the first simulation using realistic
continuous potentials of a liquid was performed in 1964 by Rahman for argon atoms [59].
Soon, more sophisticated structures starting from diatomic molecules [33] to liquid water [61]
to much more complicated molecules like proteins [42, 46] could be simulated. The range of
possible applications increased when Andersen introduced a molecular dynamics method for
NVT and NPT ensembles [3], which allowed direct comparison to the more easily performable
physical experiments at constant temperature or pressure.

Another milestone was the extension of computer simulation methods to quantum mechanical
systems. One of the groundbreaking steps here was the introduction of the computationally
expensive, so-called ab-initio simulations by Car and Parrinello [14], where the electronic
structure is directly used to calculate the interactions between the molecules.

Based on the much earlier works on quantum mechanical systems by Richard Feynman [26],
two approaches have evolved for simulations using the path integral formalism. On the one
hand, the first path integral Monte Carlo (PIMC) simulations have been performed by Ceper-
ley & Pollock [16]. This method allows the exact calculation of static properties of the system.
On the other hand, several methods based on molecular dynamics have been developed, rang-
ing from basic path integral molecular dynamics (first performed by Parrinello and Rahman
[55] as well as by Hall and Berne [32]) to centroid molecular dynamics (first performed by Cao
& Voth [10, 11, 12, 13]) and ring polymer molecular dynamics simulations (first publishe by
Craig and Manolopoulos [20, 21]). Although the latter category only allows an approximate

calculation of dynamical quantities, they show very good results under certain conditions. A
more detailed description of these methods will be provided in Chapters 4 and 5.

The first path integral molecular dynamics simulations have been performed by Parrinello
and Rahman [55] as well as by Hall and Berne [32]. Since then, many different refinements
and adaptations have been developed. This includes especially centroid molecular dynamics

[10, 11, 12, 13] as well as ring polymer molecular dynamics [20, 21] simulations. Since the
latter one is the method of choice in this work, we will go into further detail later on.
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3.2 The Molecular Dynamics Technique in a Nutshell

The idea of molecular dynamics simulations is to follow the trajectories of all the particles
in a system and calculate specified quantities of interest at every other time throughout the
simulation. The calculation of the trajectories boils down to solving the classical N -body
problem. Evaluating the statistics of the sampled quantities yields then numerical values for
thermodynamical as well as for structural parameters of the investigated system. This is
possible since all these quantitites can be related not only to the positions and the velocities
of the particles at given times, but to their time correlation functions and their spectra as
well. These relationships will be discussed later in this thesis.

The fundamental basis for this technique are Newton’s equations of motion, the solution of
which gives the trajectories of each particle belonging to the system. Analytic solutions to
Newton’s equations of motion can only be found for cases involving only up to two particles
or for certain, e.g. harmonic, potentials. However, when considering realistic systems, which
usually involves many particles and complicated potentials, there is only a numerical solution
attainable. To perform the necessary calculations, powerful algorithms are needed in order to
obtain suitable results within proper timespans. Many different types of algorithms, such as
Verlet algorithms, symplectic methods, or predictor-corrector methods have been developed.

Performing a molecular dynamics simulations boils down to the following steps:

(i) initialization,

(ii) equilibration,

(iii) measurement,

(iv) evaluation of the data.

The initialization step consists of assigning starting positions and velocities for all system
particles which are compatible with the constraints applied to the system. This task is fairly
simple, although there are some pitfalls that must to be avoided. In particular, a poor
initialization might lead to blow-ups of the numerical solution due to extremely large numbers
arising in the first steps of the time evolution. These might occur, e.g., when two particles
are very close together or even overlap and the resulting forces are huge.

A very simple approach to avoid this trap, which is also followed in the simulations conducted
for this work, is to put the particles on a lattice, which naturally avoids overlapping. Usually,
the lattice type which is naturally assumed by the respective crystallized system is employed
for this task. For spherical particles, this is the face-centered cubic configuration, which allows
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the highest densities without overlapping. The lattice constants need to be chosen according
to the prescribed density. By choosing suitable density and temperature for a liquid system,
the initialized crystal should then melt within a reasonable time.

The initialization of the velocities, on the other hand, is very straightforward. In particular,
one can assign values drawn from a uniform distribution. After that, one only needs to shift
the values such that the total momentum vanishes, and to rescale the values according to the
prescribed constraint like a given kinetic energy.

After the initialization, the system will in general not be in equilibrium. If we started to record
data right from the beginning, we would also measure quantities that belong to another state
of the system and therefore distort our results. As a consequence, we let the system evolve
for some time until it has reached equilibrium. Then, we are ready to log information.

The actual logging phase of the simulation is, of course, the most time consuming step. It
consists mainly of three steps that are repeated very many times in order to obtain proper
mean values. These steps are the calculation of the forces, the propagation of particle positions
and velocities, and the calculation of the quantities of interested in the current configuration.
All these steps will be explained in further detail below.

After a simulation is finished, we need to make sense of the data we recorded. This might on
the one hand just be the averaging over a sampled quantity, or on the other hand require the
calculation of a correlation function or a corresponding spectrum. Examples of this will be
given below, when we discuss the post-processing of the simulation.

A sketch of the course of a simulation (where we show the average potential energy sampled
from the beginning of the simulation) is shown in Figure 3.1.

3.3 Small Systems

The simulation of a physical system becomes very complex with increasing number of
molecules. Therefore, one is usually limited to the consideration of systems with up to O(108)

particles in simple systems. Compared to a typical system size (1 mol ≈ 1023 molecules), this
number is extremely low. The main problem with this is the influence of surface effects. These
arise since the particles at the surface are not surrounded by other system particles and there-
fore will encounter different interactions than their bulk counterparts. A simple estimation of
the number of surface particles in a system shall underline this problem.

Consider a simple lattice consisting of 1000 particles, yielding a 10 × 10 × 10 lattice. There,
the surface of the lattice is formed by 488 particles, which is almost half of the molecules. On
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Figure 3.1: A sketch of the typical course of a simulation. After the initialization,
some time is needed to equilibrate the system. Most of the time is then
needed for the sampling of the quantities of interest. At the end of the
simulation, the obtained data is evaluated in a post-processing step.

the other hand, considering a lattice made of 108 × 108 × 108 = 1024 particles, we have
approximately 6 × 1016 surface particles, which is about 6 × 10−8%. It is clear that in
macroscopic systems, surface effects can be neglected, while some work-around is needed
in the simulated system.

The solution in this case is the implementation of periodic boundary conditions, which be-
longs to the standard techniques in molecular dynamics simulations. Their use has been
first presented in [7]. This means that we identify opposite boundaries of our simulation do-
main. One can think of this as periodically extending the simulation domain in all directions,
where all copies of the original particle move in the exact same way. Therefore, if a particle
leaves the original domain, one of its copies will enter the domain on the opposite side. A
two-dimensional sketch of this situation is shown in Figure 3.2.

Note that a natural bound for long-range phenomena or long-wavelength fluctuations is the
size of the simulation domain. Therefore, if such effects are to be studied, it is necessary to
increase the size of the box and, accordingly, the system.
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Figure 3.2: Two-dimensional sketch of the periodically extended simulation do-
main. The hatched box is the original domain. If one particle leaves
it, one of its periodical counterparts enters the box across the opposite
boundary. Figure based on [2].

3.4 Integration Algorithms – Force Calculation

The integration of Newton’s equations of motion mainly involves two parts. On the one
hand, there is the calculation of the forces acting on each of the particles. This step is
very time-consuming and needs special attention such that we can save some computational
cost. On the other hand, there is the evolution of the positions and the momenta. Although
extreme accuracy of the trajectories is not necessary to a proper evaluation of the macroscopic
quantities, the most important topic here is a certain degree of stability of the algorithm.

The method of calculating the acting forces is of the utmost importance, since two factors play
a significant role. First, a suitable interaction model needs to be chosen in order to obtain
results that can be matched with real-world experiments. Second, if the force calculation is
done naively, a lot of computation time will be wasted.

The interactions between the system particles are defined via a potential U that influences
the movement of every particle, depending on the location of all the other particles. The
most simple ansatz for this potential is obtained by only considering pair interactions. In
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many cases, especially for simple molecules, this approach gives quite good results, and is
therefore widely used. In this case, the potential depends only on the distance between the
two particles. The resulting forces acting on the molecules are then obtained via

Fi = −
∂U(r)
∂ri

, (3.1)

where Fi is the force on particle i. Note that the potential depends on all the particle
coordinates, which is indicated by the bold notation.

A well studied and widely used pair potential is the Lennard-Jones potential, which combines
simplicity and accuracy for many different, but especially spherical substances for proper
choices of the included parameters. This type of potential is particularly suitable for inert
gases like Ar, Xe, or Kr, and is given by

U(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
. (3.2)

This choice yields a potential with a well of depth ε, and an assumed particle diameter of σ,
where the numerical values for ε and σ depend on the investigated substance. The shape of
the Lennard-Jones potential is shown in Figure 3.3.
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Figure 3.3: The shape of the Lennard-Jones potential. For distances lower than
21/6σ, the potential is repulsive. The potential depth is given by ε.
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It is obvious that the force is repelling for distances smaller than rm = 21/6σ. Furthermore,
it is notable that for distances larger than 3σ, the potential is approximately zero, which
underlines the short-range character of the potential. Note that there are many other types of
potentials (so-called realistic potentials) that model certain aspects of a specific system more
accurately than the Lennard-Jones potential. An example is the Silvera-Goldman potential
[65] for H2 and D2, which will be used later on in this work.

However, even for these most simple pair interaction models, the computational cost might
become enormous for systems with typical numbers of particles, since after the implementation
of periodic boundary conditions, in theory each molecule interacts not only with the molecules
in the original box, but also with all their periodic images, which are, in theory, infinitely
many. Since for n particles the number of interactions is O(n2), it is absolutely necessary
to come up with some trick to lower the number of force evaluations. The solution is pretty
straightforward and has become a standard technique.

We remember that a short-ranged potential is approximately zero after a few multiples of the
particle diameter (see the Lennard-Jones potential in Figure 3.3). Therefore, as a first step,
we apply the minimum image convention. This means that for a fixed molecule we only take
into account interactions with the particular image of each other particle which is closest to
the fixed molecule. In the second step, the actual force calculation, we will then consider the
interaction between two particles negligible if their distance is larger than a certain cut-off

distance. Since many particles will be beyond the cut-off distance, we can again save a lot
of work through this approach. As an example, in a 3D simulation box, we can disregard
almost half of all the particle interactions, even if we choose the maximum possible cut-off
(rc = L/2). The concept of the minimum image convention together with a potential cut-off
distance is shown in Figure 3.4.

Despite the usefulness of pair interaction models, it turns out that certain macroscopic quan-
tities obtained in experiments cannot be predicted correctly without considering many-body
interactions [23, 61]. This is especially the case for crystals. The best strategy to follow here
is to slightly adapt the exact pair interactions to obtain effective pair interactions. There exist
several approaches depending on the system of consideration, including the embedded atom
method [24] or the Stillinger-Weber potential [66], which even includes direction-dependent
terms. This is mostly necessary for non-spherical particles. It is obvious that more compli-
cated potentials require more computational power and memory.
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Figure 3.4: Two-dimensional sketch illustrating the minimum image convention.
All particles within the dash-dotted square are the nearest neighbours
to the particle in the center of this box, and are therefore considered
for interaction. Using the dashed circle as a cut-off radius, we would
only calculate the interaction with one other molecule, while the third
particle is too far away. Figure based on [2].

3.5 Time Evolution

The time evolution of the system is given by the Hamiltonian equations of motion, which read

ṗi = −
∂H
∂qi

q̇i =
∂H
∂pi

, (3.3)

where H is the Hamiltonian of the system and pi and qi denote the momentum and the
position of the i-th particle, respectively For a classical system, the Hamiltonian is given by

H(p,q) =
N∑

i=1

p2i
2mi

+ U(q), (3.4)

where mi denotes the particle mass and Ui denotes the potential that the i-th particle feels.

We have already mentioned that there are many different approaches to integrate the equations
of motion. Here, we will explain the velocity Verlet algorithm [67] in detail, since it shows
several favorable properties. It is an extension of the previously developed Verlet algorithm
[72] which evolves both positions and momenta explicitly, and is based on an Taylor series
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expansion of the position of particle i at a time t+∆t,

ri(t+∆t) = ri(t) +∆tṙi(t) +
∆t2

2
r̈i(t) +O(∆t3)

= ri(t) +∆tvi(t) +
∆t2

2mi
Fi(t) +O(∆t3), (3.5)

where we have used Newton’s second law to replace the second derivative by the force. Here,
ri(t) and vi(t) denote the location and the velocity of particle i, respectively, while Fi(t)

denotes the force acting on it at this time. Conversely, we can express ri(t) in terms of the
same quantities at time t+∆t,

ri(t) = ri(t+∆t)−∆tvi(t+∆t) +
∆t2

2mi
Fi(t+∆t) +O(∆t3). (3.6)

Using equation (3.5) for the first term in this expansion, we obtain

vi(t+∆t) = vi(t) +
∆t

2mi
[Fi(t) + Fi(t+∆t)] +O(∆t2). (3.7)

after some simple algebraic manipulations. Together, equations (3.5) and (3.7) provide a
scheme to evolve locations and velocities of the particles at the same time. Note however that
we need the intermolecular forces both at time t and t+∆t to compute the velocity, such that
we need some extra storage if we want to compute the forces only once per timestep. If we
want to work memory-efficient, we should divide the velocity update into two steps, yielding
the algorithm in Figure 3.5 for performing one time step.

velocity-Verlet Algorithm

1. v← v + ∆t2

2mi
F

2. r← r +∆tv

3. F← F(r)

4. v← v + ∆t2

2mi
F.

Figure 3.5: The velocity-Verlet algorithm.

Note that with this procedure, the force also needs to be calculated once at the very beginning
of the simulation.
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Although it has been shown that this integration algorithm is not extremely accurate, it
is very widely used. The reason is closely related to the approach on which the molecular
dynamics technique is based. In fact, when evolving the system it is less important that we
get every position and every velocity of every particle perfectly right than it is to keep the
system close to the appropriate phase space. This means that the velocity Verlet scheme
shows great long-term stability in this regard [2].

3.6 Sampling Quantities of Interest

3.6.1 Averaging of Macroscopic Quantities

We have already explained how macroscopic quantities are calculated in molecular dynamics
simulations. We basically move the system forward in time, log the respective quantities of
interest at each time step, and calculate the average at the end of the simulation. However,
this is a bit simplified.

Since the positions and velocities of all the system particles at time t + ∆t depend on the
respective quantities at time t, the derived macroscopic quantities will be correlated in some
way. Therefore, since the calculation of a macroscopic quantity also consumes computational
power, it might not be necessary to take every single step into account. Rather, one can move
the system forward in time for several steps and then perform the next quantity evaluation.

3.6.2 Calculation of Correlation Functions

Furthermore, we are not only interested in simple observables, but also correlation function,
which can in turn be related to further macroscopic quantities of the investigated system.

While we only need the current positions and velocities for the calculation of averages, we
also need to know past positions and velocities for the correlation functions. In order to work
memory-efficient here, one usually uses a ring buffer to store the respective values for easy
calculation.
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3.7 Thermostatting in Molecular Dynamics Simulations

The basic molecular dynamics technique is designed in such a way that it preserves the total
energy of the system. As we have already learned, this situation is described by microcanonical
ensembles. However, for canonical ensembles, we need to fix the temperature and let the total
energy fluctuate according to the Boltzmann factor. It is therefore necessary to find a way to
control the temperature during the time evolution of our simulated system. This procedure
is called thermostatting and can be achieved with the help of various techniques.

Of course, a thermostat is an instrument to simulate the interaction of our physical system
with the coupled heat bath. Since temperature is microscopically related to the kinetic en-
ergy of the particles, it is obvious that thermal regulation is obtained via rescaling of the
velocities of the molecules. This step can conceptually be performed in two different ways,
using either deterministic or stochastic methods. We will describe thermostats of either type
in the following discussion. Note that all concepts for thermostats do not describe the actual
physical processes occurring in temperature regulation of the canonical system, but are rather
an instrument to guide the system through all accessible total energy shells consistent with a
fixed temperature.

3.7.1 Nosé-Hoover (Chain) Thermostat

The Nosé-Hoover thermostat is a deterministic thermostat based on the findings of Nosé
[52, 53] in the formulation of Hoover [36, 37]. In this method, an additional, fictitious degree
of freedom representing the heat bath is introduced. This leads to an extended Hamiltonian
with 6N + 2 variables representing the combined system implemented as a microcanonical
ensemble. It has been shown that the original 6N physical variables will then describe a
system representing a canonical ensemble. Comparing the results obtained with the Nosé-
Hoover thermostat to others, we see that static as well as dynamic system properties are not
too far off from already validated data.

The Nosé-Hoover thermostat describes a system with one conservation law, i.e. the total
energy of the extended Hamiltonian. If there are additional conservation laws to be applied
to the system, stemming e.g. from external forces acting on the system, the resulting system
behavior will be different. As a solution, it has been proposed to couple the system to another
thermostat for each conservation law in place, yielding a chain of thermostats [45]. These
additional thermostats each introduce further fictitious degrees of freedom that allow taking
into account the additional constraints imposed on the system by the conservation laws. As a
special case, it is even possible to attach one Nosé-Hoover thermostat to each particle, which
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allows faster equilibration of the system and has turned to be very useful e.g. for proteins in
aqueous solution [69].

3.7.2 Gaussian Thermostat – The Isokinetic Ensemble

The Gaussian thermostat inherits its name from the fact that the Gaussian principle of least
constraint is employed to fix the total kinetic energy. The latter is the reason why the
corresponding ensemble is called isokinetic ensemble. The equations of motion were first
stated by Evans and Morriss [49], where the constraint was written as

N∑

i=1

p2
i

2mi
= K, (3.8)

yielding for the Hamiltonian

q̇i =
pi

mi
, (3.9a)

ṗi = Fi − αpi. (3.9b)

It is possible to find an explicit representation for the Lagrange multiplier α, which is given
as

α =

∑N
j=1Fj

pj

mj

∑N
j=1

p2
j

mj

. (3.10)

It turns out that compared to other methods, the isokinetic ensemble allows larger timesteps in
the integration of the equations of motion, which is very favorable regarding the computational
cost.

However, we need to note that the ensemble is slightly different from the canonical ensemble,
as only the position coordinates are canonically distributed, while the momentum coordinates
are constrained to one energy shell by definition. However, this difference appears to be very
small, especially for large N . Furthermore, since the two parts of the partition function based
on coordinates and momenta can be separated, one can easily relate the total canonical and
isokinetic partition functions.

The Gaussian thermostat has been used in a part of the simulations.
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3.7.3 Andersen Thermostat

The thermostat designed by Andersen [3] simulates random collisions of the physical system
particles with particles of the heat bath, thereby changing their velocity. Therefore, after
a certain number of steps (the frequency is given by the chosen strength of the coupling
between system and heat bath) a number of system particles is chosen randomly and their
velocities are resampled independently from a Maxwell-Boltzmann distribution corresponding
to temperature T . This way, with each collision, the system is moved from one constant energy
shell to another, in the end yielding a sampling over all accessible energy shells, which are
ultimately weighted according to their Boltzmann factor.

The biggest advantage of the Andersen thermostat is its conceptual simplicity. It has been
shown that it yields excellent results for the calculation of static quantities, e.g. equation-of-
state data. However, since the thermostatting process does not reflect the occurring physical
processes, but rather artificially changes the then discontinuous trajectories, the results related
to dynamical parameters like the diffusion constant are poor, and their quality even decreases
with increasing velocity resampling frequency.

3.7.4 Langevin Thermostat

The feasibility of Langevin thermostats in classical molecular dynamics simulations has been
demonstrated by Bussi and Parinello in 2007 [8]. Ceriotti et al. have shown their implemen-
tation in PIMD and RPMD simulations [17].

For the Langevin thermostat, we consider the heat bath to consist of very many, very small
particles. Therefore, collisions of a physical particle with a heat bath particle will happen
frequently, but cause only a small change in the motion of the physical particle. For the
physical system, these collisions can therefore be considered as small perturbations of the
particle motion. Since we are not interested in the movement of the heat bath particles, we
will not model them explicitly, but treat these perturbation in a statistical manner.

The use of Langevin dynamics leads to stochastic differential equations, namely

dqi(t) =
pi(t)

mi
dt, (3.11a)

dpi(t) = Fi(q(t))dt− γpi(t)dt+
√
2miγkBTdW (t), (3.11b)
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where γ is a friction coefficient and dW (t) describes a Wiener noise, i.e. ⟨dW (t)⟩ = 0,
⟨dW (t)dW (t′)⟩ = δ(t − t′). The implementation of this system of equations is performed
via the following reformulation of the Hamiltonian,

q̇i =
pi

mi
, (3.12a)

ṗi = Fi − γpi + σξ(t), (3.12b)

where we used a fluctuation-dissipation relation for σ,

σ2 = 2γmikBT. (3.13)

The quantity ξ, which represents the Wiener noise from the stochastic differential equation,
denotes an uncorrelated Gaussian random variable with zero mean and unit variance. This
reformulation can interpreted as follows. The term including the γ describes additional friction
in the system, while the random force represented by the term including ξ describes the
unpredictable collisions with the heat bath.

Further details on the implementation of the Langevin thermostat will be discussed later on
in Chapter 6.

3.8 Conclusions

Based on the essential requirement of a suitable interaction model, the classical equations of
motion is a very good approximation for most materials, where also good agreement is seen
with experiments. However, when it comes to light particles (like H2 or D2, which we will con-
sider in this thesis), low temperatures, or high vibrational frequencies, quantum effects play
an important role and cannot be neglected any more. Fortunately, the molecular dynamics
simulation method can be generalized to allow the investigation of quantum mechanical sys-
tems. Since we are interested in D2 at low temperatures, we need to draw our attention to
these methods in the following chapters.
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Chapter 4

The Path Integral Formalism

Starting at the beginning of the twentieth century, when the experiments on the blackbody
spectrum of electromagnetic radiation led to disturbing results, it became clear that the

classical model of nature was wrong under certain circumstances. Based on experiments
showing the photoelectric effect as well as those showing interference patterns of light, a theory
emerged that postulates the wave-particle duality as well as the quantization of observables:
quantum mechanics.

The theory of quantum mechanics, in particular the uncertainty principle, prohibits a simul-
taneous arbitrarily exact measurement of, e.g. a particle’s position and momentum, thereby
destroying the deterministic view of physics. (Physicists say that position and momentum do
not commute.) Rather, in the Schrödinger picture, it moves to a description of a system as
a wave function, which carries the whole information. If we now do know certain commuting
physical parameters of the system, we need to choose the related space representation for the
wave function. Then, the probabilities for parameters that cannot be measured at the same
time, can be computed using the absolute square of the wave function.

Furthermore, while in classical mechanics, the transition of a system’s state SA at time t0 to
a state SB at time t1 is deterministically defined, this is not the case in quantum mechanics.
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CHAPTER 4. PATH INTEGRALS 4.1 Formal Derivation

There are many possible paths for the evolution of the system between t0 and t1 that are
compatible, and each of those paths is taken with a certain probability that depends on the
amplitude of the wave function. This is shown in the sketch in Figure 4.1. If we now want
to sample states of the system between t0 and t1, we need to take into account each of the
possible paths and its likelihood in order to predict the respective outcome correctly. This is
the heuristic basis for the path integral formulation which was introduced by Richard Feynman
in 1948 [26].

t

SA

SB

(a)

t

SA

SB

(b)

Figure 4.1: Sketch of (a) the classically and (b) some quantum mechanically pos-
sible paths between SA and SB.

In this chapter, we first formally derive the path integral formulation using the basic quantum
statistical mechanics from Chapter 2, and discuss some inherent features. The derivation there
is mainly based on the presentations in [70] and [20]. The following Section 4.2 addresses the
implementation using a Monte Carlo approach, leading to the Path Integral Monte Carlo

(PIMC) method.

4.1 Formal Derivation

For the derivation of the path integral formulation, we restrict ourselves to one particle in one
dimension for the sake of simplicity and notation. The generalization to many particles and
three dimensions is straightforward, and will only be briefly mentioned.
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CHAPTER 4. PATH INTEGRALS 4.1 Formal Derivation

Let us recall the description of the quantum mechanical canonical ensemble described in
Chapter 2. We start out with a coordinate space representation for the quantum states,
which allows to write the density matrix as

ρ(x′, x;β) =
〈
x′
∣∣e−βH

∣∣x
〉
. (4.1)

Remembering that the Hamiltonian for the system is

Ĥ =
p̂2

2m
+ U(x̂) = K̂ + Û, (4.2)

where K̂ is the operator for the kinetic energy and Û is the one for the potential energy, it
appears to be useful to decompose the density operator with respect to K̂ and Û . Unfor-
tunately, since K̂ contains the momentum operator and Û contains the position operator, it
turns out that those two do not commute. This prevents a straightforward application of that
strategy. However, this drawback is overcome by considering the exact relation

e−βĤ =
(
e−βP (K̂+Û)

)P
, (4.3)

where we have defined βP := β/P , and then making use of the Trotter factorization,

e−βP (K̂+Û) ≈ e−βP Û/2e−βP K̂e−βP Û/2, (4.4)

which is exact in the limit P → ∞ [64], and the right hand side converges as O
(
P−2

)
. The

number P is called Trotter number. With this, the density matrix in the coordinate space
representation can therefore be written as

ρ(x′, x;β) = lim
P→∞

〈
x′
∣∣
(
e−βP Û/2e−βP K̂e−βP Û/2

)P ∣∣x
〉
. (4.5)

To proceed, we can now insert (P − 1) identity operators in terms of the coordinate space
states

Î =

∫
dx |x⟩ ⟨x| (4.6)

between successive factors, yielding

ρ(x′, x;β) = lim
P→∞

∫
dx(1) . . . dx(P−1) ⟨x′|e−βP Ĥ|x(1)⟩ ⟨x(1)|e−βP Ĥ|x(2)⟩ . . . ⟨x(P−1)|e−βP Ĥ|x⟩

= lim
P→∞

∫
dx(1) . . . dx(P−1)ρ(x′, x(1);βP )ρ(x

(1), x(2);βP ) . . . ρ(x
(P−1), x;βP ).

(4.7)
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CHAPTER 4. PATH INTEGRALS 4.1 Formal Derivation

This means that the canonical density matrix at temperature T can be expressed in terms
of a product of canonical density matrices at temperature P · T . This comes in handy since
the application of the Trotter formula requires a certain temperature such that the error
does not grow beyond an acceptable size. The big advantage of this representation is that
the considered states

∣∣x(i)
〉

are eigenvectors of the potential energy operator, which allows to
replace the operator by its corresponding eigenvalue, such that we then obtain (for one single
term)

⟨x(k)|e−βP Û/2e−βP K̂e−βP Û/2|x(k+1)⟩ = eβPU(x(k))/2 ⟨x(k)|e−βP K̂ |x(k+1)⟩ e−βPU(x(k+1))/2. (4.8)

Now, we are left with an operator depending on the momentum, but acting on coordinate
space states, which prevents an immediate evaluation. In order to enable the evaluation of the
momentum operator, we can again insert identity operators, but here in terms of momentum
space states in a similar manner as before,

Î =

∫
dp |p⟩ ⟨p| , (4.9)

such that for the involved matrix element, we arrive at

⟨x(k)|e−βP K̂ |x(k+1)⟩ =
∫

dp ⟨x(k)|e−βP K̂ |p⟩ ⟨p|x(k+1)⟩

=

∫
dp ⟨x(k)|p⟩ ⟨p|x(k+1)⟩ e−βP p2/2m = (∗). (4.10)

The remaining inner products can also be evaluated using

⟨x|p⟩ = 1√
2π!

eipx/!, ⟨p|x⟩ = 1√
2π!

e−ipx/!, (4.11)

yielding

(∗) = 1

2π!

∫
dp e−βP p2/(2m)eip[x

(k)−x(k+1)]/! =

=
1

2π!
e−m[x(k)−x(k+1)]2/(2βP !2)

∫
dp e−βP [p−im[x(k)−x(k+1)]/(!βP )]2/(2m) = (4.12)

=

√
m

2πβP !2
e−m[x(k)−x(k+1)]2/(2βP !2),

where we have completed the square at the second equal sign. Summarizing all these calcu-
lations and inserting their results into equation (4.1), the density matrix reads

ρ(x′, x;β) = lim
P→∞

(
m

2πβP!2

)P/2 ∫
dx(2) · · · dx(P ) e−βPφP (x), (4.13)
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where

φP (x) := φ(x(1), . . . , x(P )) =
P∑

k=1

[m
2
ω2
P (xk − xk+1)

2 + U(xk)
]∣∣∣∣∣

x1=x,xP+1=x′

(4.14)

and

ωP :=
1

βP!
. (4.15)

For one particle in one dimension, we can then write the canonical partition function as

Q(T ) = Tr
[
e−βH

]
=

∫
dx ρ(x, x;β), (4.16)

which means that the end point of the path is identical with the initial point. Straightfor-
wardly, based on equation (2.13), the expected value for operators solely depending on the
position can be written as

⟨A⟩ = 1

Q

∫
dx ⟨x|ρ(x, x;β)Â|x⟩

= lim
P→∞

1

QP

(
m

2πβP !2

)P/2 ∫
dx e−βPφP (x)AP (x), (4.17)

where QP is the partition function based on the density matrix with finite P , and where

AP (x) =
1

P

P∑

k=1

A(x(k)). (4.18)

Note that due to the equality of initial and final state of the density matrix for the partition
function and the expected value, we define P + 1 ≡ 1 in equation (4.14). This assumption
will be made throughout the rest of this thesis.

With this, we have formally arrived at representations for the quantum mechanical canonical
partition function as well as for thermodynamic observables depending on position. But what
does this have to do with path integrals? The link is a relation between the canonical density
matrix and the quantum mechanical time propagator, given by

Û(t) = e−iHt/!. (4.19)

Due to the obvious relationship

ρ̂(β) = e−βH = Û(−iβ!), (4.20)
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we can consider the density matrix operator as an imaginary time propagator, propagating
a state by time −iβ!. Therefore, our derivation, in particular equations (4.13) and (4.17),
represent a path integral in imaginary time, having common initial and final points. By
splitting the Boltzmann factor into P parts, we create P−1 time points separated in imaginary
time, allowing to consider the whole expression derived in equation (4.16) as the partition
function of a closed ring polymer.

The representation in equation (4.17) therefore allows to interpret the quantum mechanical
expected value for one particle in one dimension as an expected value for a classical ring
polymer with an alternative potential given by φP (x) in (4.14). This close connection between
the classical and quantum mechanical description of such a system has been termed classical

isomorphism [18].

Remark

Although this derivation is only exact in the limit P → ∞, it turns out that in computer

simulations it is often enough to choose P to be in the range of 102 when using the potential

given in equation (4.14). Furthermore, there are also more accurate (but therefore more

complicated) approximations to the density matrix that do not require more than 10 monomers.

Obviously, the involved potential φP (x) includes harmonic spring forces between neighboring
monomers, which are frequently called beads. Let us therefore have another look at the related
spring constant defined in equation (4.14). For low temperatures as well as for small masses,
its numerical value is also small, yielding weaker forces between the neigbouring atoms, which
results in larger mean distances between the beads of one polymer. For higher temperatures
and larger masses, however, the spring forces become stronger and stronger, yielding lower
distances between the beads of the polymer, until, in the classical limit, all beads coincide
and therefore just represent the classical particle. This fact also shows that the path integral
formalism is a generalization of the classical model.

Extending this formulation to many quantum mechanical particles is mostly straightforward.
However, there is one important difference to the truly classical case. While in the case of
genuine classical polymers, there will be an interaction between every atom present in the
system, this is not the case for the path integral case. Here, each bead only interacts with its
two neighbors on the same ring polymer, and furthermore with the beads of the same index
on all the other ring polymers, while there is no interaction with the rest of the beads.
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4.2 Simulation Techniques – Path Integral Monte Carlo

We now need to transform this theoretical derivation of the path integral formulation into
a practical implementation for the simulation of quantum mechanical systems. Since the
expression in equation (4.14) only contains a configurational partition function,

Q = lim
P→∞

(
m

2πβP!2

)P/2 ∫
dx e−βPφP (x), (4.21)

the first thing that comes to mind is to use a generalization of the Monte Carlo method,
where we do not consider an actual dynamical movement. This path integral Monte Carlo

(PIMC) method has been used for various quantum mechanical systems. The best efficiency
has been found for Boltzmann systems, but there are no principal problems for Bose and
Fermi systems [6, 68], although some practical challenges arise within the implementation.
However, it is still an excellent choice for the calculation of equilibrium properties. For this
reason, the PIMC method has been thoroughly investigated for its applicabilities as well as
strengths and weaknesses compared to other techniques [16].

As we have seen, in the path integral formulation the interactions are slightly different com-
pared to a truly classical ring polymer. On the one hand, each bead interacts with its two
neighbors on the same ring polymer, where harmonic potentials are assumed. On the other
hand, it interacts with each bead of the same index in all other ring polymers. Here, an ap-
propriate intermolecular potential is used. A sketch of the interactions between the involved
particles is shown in Figure 4.2.

Apart from having P times as many particles in the whole system, the main difficulty com-
pared to classical Monte Carlo simulations is that for large numbers of beads P the usual
acceptance rates for the trial moves are extremely low, which leads to a very low convergence
rate. The reason for the low acceptance rates is based on the fact that the stiff springs be-
tween the beads only allow very small changes in the relative monomer configuration at each
step. A naive solution to this is to move polymers as a whole, and to combine this with small
monomer moves.

More sophisticated methods to overcome those problems are the so-called staging [56] and
normal mode transformations [71]. However, even using those it is necessary to not move a
whole ring polymer per step, but rather only operate segments of a polymer at a time, which
increases the acceptance rates, and hence efficiency.
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Figure 4.2: Interactions between the beads of several ring polymers. The springs
represent the harmonic potentials, while the dashed lines represent the
intermolecular potential. Note that each bead only interacts with a
single bead of each other molecule.
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4.3 Conclusions

The use of the classical equations of motion is a very good approximation for a lot of ma-
terials, where also good agreement is seen between simulations and experiments. However,
when it comes to light particles (like H2 or D2, which we will consider in this thesis), low
temperatures, or high vibrational frequencies, quantum effects play an important role and
cannot be neglected any more. Fortunately, the use of the path integral formalism – as we
have derived it in this chapter – allows a neat way to treat quantum mechanical systems. The
approach allows to deal with a quantum mechanical system in a similar way as with classical
systems, albeit with a different Hamiltonian, hence the term classical isomorphism.

We have also seen a first approach to implement such systems, but, similarly to the classical
case, MC simulations do not provide dynamical information. Therefore, the obvious solution
is to devise a generalization of the MD method to quantum mechanical systems, which will
be able to handle this task. This will be the topic of the following chapter.
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Chapter 5

Molecular Dynamics Simulations

Based on the Path Integral Formalism

– The RPMD Method

We will now discuss the implementation of molecular dynamics methods based on the
path integral formulation. These methods can be derived from the results of the pre-

vious chapter, where we obtained expressions depending only on the system configuration,
which was sufficient for the implementation of the Monte Carlo method. To use MD simu-
lations, we need to include momentum information to enable the propagation of the system
and the evaluation of dynamical properties. This adaption is presented in Section 5.1. Note
again that while the PIMC method as well as all MD methods under discussion here provide
an in principle exact calculation for static properties, the results for dynamical properties can
only be obtained from MD simulations, and those are only approximate.

We will then present and discuss several molecular dynamics methods to simulate systems
based on the classical isomorphism. Each of them incorporates a different approach and is
favorable under certain conditions or for certain objectives, but also has its drawbacks, such
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CHAPTER 5. THE RPMD METHOD 5.1 Adaption for MD Simulations

that there exists no general method of choice. We end Section 5.1 with the description of the
basic path integral molecular dynamics method (PIMD), then briefly describe the centroid
molecular dynamics method (CMD) in Section 5.2. The last approach to be discussed is
the ring polymer molecular dynamics (RPMD) method in Section 5.3, which is also the
implementation investigated in this thesis.

5.1 Adapting the Classical Isomorphism Result for Molecular

Dynamics Simulations – Path Integral Molecular Dynamics

Although we obtained a nice classical-like Boltzmann probability density as a weight factor
in the partition function in Chapter 4, we note again that this only covers the configurational
part. Since we cannot simulate the physical propagation of the system in time without any
information on the momenta, we need to extend the Boltzmann factor in some way such that
p enters the expression. Of course, the strategy is again to add a representation of the identity
involving the desired quantities.

We will again restrict the system to one quantum mechanical particle for the sake of notational
simplicity, where the generalization to a many-body system in three dimensions is easily
obtained in a straightforward manner.

The idea is to insert a normalized Gaussian integral of the form

(
βP

2m′π

)P/2 ∫
dp e−βP

∑P
k=1 p

2
k/2m

′

= 1 (5.1)

containing a fictitious mass m′ into equation (4.17) to obtain

⟨A⟩ = lim
P→∞

1

Q

1

(2π!)P

(m

m′

)P/2
∫

dxdp e−βPHP (x,p)AP (x). (5.2)

With this reformulation, the Boltzmann factor comprises a full Hamiltonian for a single ring
polymer, namely

HP (x, p) =
P∑

k=1

[
p2k
2m′

+
m

2
ω2
P (xk − xk+1)

2 + U(xk)

]
. (5.3)

This is the expression that will form the basis for our methods for the evolution of our quantum
mechanical system in time. With this, the simulation basically works as in the classical case,
where the only difference is again the action of the intermolecular potential between the beads
of the same index, as has already been discussed in Chapter 4.
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Note however that the mass m′ introduced within the momentum expression has nothing to
do with the physical mass m of the particles, and is completely arbitrary. Rather, it only
determines the rate at which the system evolves dynamically in time. Therefore, in general
PIMD simulations, it is natural to choose it in a way such that the sampling process is
most efficient. While this technique appears to be very favorable for the calculation of static
properties, the lack of physical correspondence of m′ still prevents the direct calculation of any
dynamic parameters. This drawback is overcome by other methods like centroid molecular
dynamics as well as by ring polymer molecular dynamics, which will be discussed in the
following sections.

5.2 Centroid Molecular Dynamics

The centroid molecular dynamics (CMD) method originates from the findings published by
Cao and Voth [9, 10, 11, 12, 13]. It is based on the definition of the so-called path centroids,
which, in the discretized path integral formulation, are equal to the centers of mass of each
quantum particle (i.e. of the ring polymer). We will again present this method for one particle
in one dimension for the sake of notational simplicity.

For an Euclidean path, the imaginary time action functional for a particle of mass m, expe-
riencing a potential V is given by [35]

S [p(τ), x(τ)] =

!β∫

0

dτ

[

−ip(τ)dx(τ)
dτ

+
m

2

(
dx(τ)

dτ

)2

+ U (x(τ))

]

. (5.4)

The centroid variables are here defined by integration over imaginary time, namely

x0 =
1

!β

!β∫

0

dτ x(τ), p0 =
1

!β

!β∫

0

dτ p(τ). (5.5)

Using those, the partition function can be written as an integral of the imaginary time action
integral over all closed centroid constrained paths and over all possible centroid configurations,
yielding

Q =
1

!

∫
dxc dpc

∫
dx(τ) dp(τ) δ(xc − x0)δ(pc − p0)e

−S[p(τ),x(τ)]/!

=

∫
dxc dpc

∫
dx(τ) dp(τ) ρc(pc, xc), (5.6)
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where the corresponding centroid distribution function is given by

ρc(pc, xc) = e−βp2c/2me−βVc(xc). (5.7)

Here, Vc is the potential of mean force. For the evolution of the system in time, we use the
classical equations of motion for the centroid variables

ẋc =
pc
m

ṗc = −
dVc

dxc
, (5.8)

where the centroid force can be written as

dVc

dxc
=

1

ρc

∫
dx(τ)dp(τ)δ(xc − x0)δ(pc − p0)

dV (x)

dx
e−S[p(τ),x(τ)]/!. (5.9)

With this, centroid averages are calculated via

⟨A⟩ = 1

hQ

∫
dpcdxc ρc(pc, xc)Ac(pc, xc), (5.10)

while centroid correlation functions are similarly obtained from

⟨Ac(0)Bc(t)⟩ =
1

hQ

∫
dpcdxc ρc(pc, xc)AcBc(t), (5.11)

where Bc(t) := B(pc(t), xc(t)). It is important to mention the difference in the definition of the
observable average compared to the PIMD method. While one needs to calculate the average
over the observable values at the bead positions in PIMD, one calculates the observable value
at the mean of the positions (i.e. the centroid),

Ac = A

(
1

P

P∑

k=1

x(k)
)

(5.12)

in the CMD method. The same goes, of course, for correlation functions.

Equation (5.11) is a well-defined approximation to the Kubo-transformed correlation function
if at least one of the involved operators is a linear function of position or momentum, which
has already been discussed in Chapter 2. In particular, the CMD method is exact for t = 0,
for harmonic potentials (at all times), and in the classical limit [20]. It is also important
to note that the centroid molecular dynamics method is able to capture dominant quantum
many-body features like zero-point effects and tunneling [35].
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The CMD method has been applied to calculate quantum effects in liquid para-hydrogen,
liquid ortho-deuterium or liquid water. It turned out to be also very useful in the computation
of vibrational spectra.

One important drawback of CMD, apart from the required linearity of the operator in x or
p, is its computational cost. In particular, the integration of the equations of motion requires
the calculation of the centroid forces given by equation (5.9). This would seem to require a
full path integral simulation at each timestep, which yields a huge computational burden. A
variant involving an adiabatic approximation lowers this computational burden [34].

5.3 Ring Polymer Molecular Dynamics

The ring polymer molecular dynamics (RPMD) method has been introduced by Craig and
Manolopoulos [21], and has been thoroughly studied and applied to the calculation of dynam-
ical system parameters since then [17, 20, 22, 30, 34, 48, 63]. The idea here is to overcome
the lack of physical intuition introduced by the arbitrarily chosen fictitious mass m′ in the
momentum term. As might easily be guessed, the necessary step for this is the choice

m′ = m, (5.13)

such that each bead of the polymer has exactly the same mass as a single physical particle
under consideration. This overcomes the non-physical propagation in a natural way, albeit
for the price of a lower sampling efficiency compared to basic PIMD, as has been discussed
earlier in this chapter. With this, the interpretation of the quantum particles as classical ring
polymers with the already discussed interaction pattern is perfectly valid, and we can simply
extend the Hamiltonian given in equation (5.3) to N molecules and propagate the system.
The Hamiltonian then reads

HN
P (x,p) =

N∑

i=1

P∑

k=1

⎡

⎢⎣

[
p(k)i

]2

2m
+

m

2
ω2
P

(
x(k)i − x(k+1)

i

)2
+ U(x)

⎤

⎥⎦ . (5.14)

The equations of motion are therefore given by

ẋ(k)i =
p(k)i

m
, (5.15a)

ṗ(k)i = −mω2
P

(
2x(k)i − x(k+1)

i − x(k−1)
i

)
− ∂U(x)

∂x(k)i

. (5.15b)
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Note that in this setting, the equivalent classical simulation will be performed at a tempera-
ture of P · T instead of T , which is a typical choice for path integral simulations.

As for the classical case, by integrating equations (5.15) the total energy of the system is
conserved, yielding a microcanonical ensemble. In order to obtain a canonical ensemble, we
need to use a thermostat.

When implementing a thermostat, we still try to optimize the sampling procedure, in the
sense that we would like to choose the coupling strength such that we explore the different
energy shells most efficiently. In a Langevin thermostat, the coupling strength appears as
the friction coefficient γ (see equation (3.11b)). For a harmonic oscillator, of which we have
many in our system, it turns out that the best coupling strength depends on the respective
eigenfrequency. The optimal strategy is therefore to couple each bead with its own thermostat.
Further details on the coupling will be given in the following chapter, after we have introduced
a useful method to exactly propagate the system under the free Hamiltonian, i.e. without any
potential and without a thermostat.

Another aspect that needs to be discussed is dealing with the correlation functions. We
have already mentioned that the RPMD method only approximates quantum mechanical
correlation functions. In particular, this is only possible for operators involving position-
dependent operators, where one usually computes the Kubo-transformed correlation function.
It has been shown that this approximation becomes exact in two limiting cases:

• The classical limit: As we have already discussed earlier, in the classical limit, the strong
spring forces cause all beads to be at the very same spot, which is identified with the
position of the classical particle. In this case, the agreement with classical dynamical
quantities is obvious.

• The harmonic limit: In his dissertation, Craig [20] showed the coincidence of the RPMD
approximation with the exact solution for harmonic external potentials in connection
with linear operators of the position under consideration.

The definition of expected values and correlation functions for RPMD method is similar to
the PIMD method, i.e.

⟨A⟩ = 1

Q

1

(2π!)P

∫
dxdp e−βPHP (x,p) 1

P

P∑

k=1

A(x(k)) (5.16a)

⟨A(0)B(t)⟩ = 1

Q

1

(2π!)P

∫
dxdp e−βPHP (x,p) 1

P

P∑

k=1

A(x(k)(0))B(x(k)(t)). (5.16b)
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Our main interest in this thesis lies in the calculation of the velocity autocorrelation function
Cvv(t), which then allows to calculate the diffusion constant D of a liquid via

D =
1

3

∞∫

0

dt Cvv(t) =
1

6

∞∫

−∞

dt Cvv(t). (5.17)

At first glance, its calculation seems to be beyond the capabilities of the RPMD method,
since no position-dependent operator is involved. What saves the day here is the fact that the
velocity autocorrelation function is directly related to the position autocorrelation function
via

Cvv(t) = −
d2Cxx(t)

dt2
, (5.18)

yielding

Cvv(t) =
1

Q

∫
dxdp e−βPHP (p,x)vP (t)vP (0), (5.19)

where vP is defined analogeously to equation (4.18).

Note that the RPMD method only mimics physical motion, which allows the calculation
of dynamical system properties. However, the ring polymer dynamics do not correspond in
any way to actual quantum system dynamics [20]. As a consequence, real-time quantum
interference effects are not covered by this method. The importance of the RPMD method is
saved by the fact that for many condensed phase systems these effects can be neglected.

The big advantage of RPMD methods over CMD methods is the much lower computational
cost. The RPMD method has been successfully applied in investigations on various systems.
Starting with liquid para-hydrogen, which is kind of a benchmark system, the importance
of quantum mechanical effects in liquid dynamics has been demonstrated [48]. Similarly
encouraging results have been obtained in the study of liquid water [19, 31]. Moreover,
RPMD covers zero point energy effects in many different systems, ranging from water to ice
[43] to binary supercooled liquids near glass transition [44]. RPMD applicability is rounded
off by reproducing tunneling effects in chemical dynamics [22].

5.4 Conclusions

This chapter shed light on feasible methods to computationally investigate dynamical prop-
erties of quantum mechanical systems. As discussed, each of the mentioned methods shows
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advantages as well as drawbacks, which does not put one approach in ahead of the others.
Rather, one needs to choose the most suitable method according to the system and to the
observable one is interested in.
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Chapter 6

Methods

We are now almost ready for the simulation of quantum mechanical systems. The final
missing piece of the puzzle consists of details on the implementation. Therefore, this

chapter is devoted to the description and explanation of the methods implemented. In par-
ticular, we will discuss the interatomic potential employed to model D2, the Silvera-Goldman

potential, in Section 6.1. Then, we explain the use of normal coordinates in Section 6.2, which
allow an exact evolution of the system under the free Hamiltonian. This discussion is based
on [17]. With this, we are ready to describe the actual algorithm used for our computations
in Section 6.3. The chapter ends with a description of the computational parameters used.

6.1 The Silvera-Goldman Potential

When performing molecular dynamics simulations, a delicate task is the choice of the inter-
molecular potential. The calculation of the molecular interaction can only be performed ab

initio for very simple system, and even then, it is quite costly. For complicated systems, this
might not be possible at all, which is why in this case that step of the procedure is heavily
based on empirical work. As a consequence, there are many different types of potentials, all
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trying to capture the specificities of the system under consideration. Typically, simple ana-
lytic ansatz functions comprising free parameters are chosen, which can then be adapted to
fit theoretical or experimental data. As an example, the most simple one, the Lennard-Jones
potential has already been discussed previously in Section 3.4. However, Silvera and Gold-
man derived another type of potential which appears to be more suitable for the description
of the intermolecular forces in ortho-deuterium [65], and has been shown to yield excellent
agreement with experimental results. The Silvera-Goldman potential will also be employed
throughout this thesis, and is written as

U(r) = eα−βr−γr2 −
(
C6

r6
+

C8

r8
− C9

r9
+

C10

r10

)
· fc(r), (6.1)

where

fc(r) =

⎧
⎨

⎩
e−(

1.28rc
r

−1)2 r ≤ rc,

1 r > rc.
(6.2)

The first, exponential, term describes the intermolecular repulsion at close distances, while
the second part of the potential is the dispersion interaction, as modeled by the coefficients
C6, C8, and C10, which also gives rise to the potential well at around 0.344 nm. A noteworthy
feature here is the introduction of the C9/r9 term, which is meant to account for the repulsive
three-body tripole-dipole dispersion interaction [65]. The function fc is a damping function
that prevents U(r) from becoming singular for r → 0. Altogether, this means that the
Silvera-Goldman potential is an effective pair potential that also incorporates many-body
interactions.

The numerical values of the involved parameters are given in Table 6.1, and the shape of
the potential is presented in Figure 6.1, where also a comparison to the best available fit of
the Lennard-Jones potential for solid D2 (albeit for a higher temperature regime) is shown.
The values for the latter (ε/kB=37K, σ = 0.2928nm) are taken from [41]. It is obvious that
despite the qualitative similarity, the equilibrium distance between two particles is a little
higher for the Silvera-Goldman potential (0.344 nm compared to 0.329 nm for the Lennard-
Jones potential), which will certainly create different results in the simulations.

At the end of this description it is once again noted that this potential only describes the
interaction of a bead of one given ring polymer with the corresponding beads of the same
index on the other ring polymers. The interactions between beads of the same ring polymer
are modeled as springs, and therefore harmonic potentials, while there is no interaction with
beads with different indices in other ring polymers.
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Figure 6.1: The shape of the Silvera-Goldman potential, compared to the best
available fit for the Lennard-Jones potential for D2.

Parameter Value Parameter Value

α 1.713 C6 12.14

β 1.5671 C8 215.2

γ 0.00993 C9 143.1

rc 8.32 C10 4813.9

Table 6.1: Numerical values of the parameters of the Silvera-Goldman potential
[65]. The values are given in atomic units (a.u.).
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6.2 Normal Coordinates

For the RPMD method, the Hamiltonian can be written as

HP (p,q) =
N∑

i=1

P∑

k=1

⎛

⎜⎝

[
p(k)i

]2

2m
+

1

2
mω2

P

[
q(k)i − q(k+1)

i

]2
⎞

⎟⎠+
P∑

k=1

VP

(
q(k)1 ), . . . , q(k)P

)
, (6.3)

where we had ωP = (βP!)
−1 and periodic indices, i.e. P + 1 ≡ 1. Although this representa-

tion can technically be used to integrate the equations of motion without any problem, the
implementation is awkward since the evolution equations are coupled due to the stiff springs
connecting neighboring beads. The resulting harmonic forces are responsible for the occurring
of many different time scales, which requires the use of very small time steps in order to obtain
accurate results. This, of course, goes along with a significant increase in the computational
cost.

While this problem is addressed in PIMC by only moving segments of the ring polymers at
a time, this cannot be done in molecular dynamics simulations, since all particles need to be
moved according to the acting forces at each time step. A possible solution is found in the
fact that it is advantageous to split the Hamiltonian into two parts and consider the first sum
in a different, more suitable representation. In fact, the first sum can be interpreted as a
Hamiltonian with a harmonic potential. It is well-known that this system can be decoupled
using so-called normal modes. Their use in RPMD has first been proposed by Tuckerman [71]
as well as by Cao & Voth [11]. To derive this representation, we start by writing down the
equations of motion as

q̈(j)i = −ω2
P

(
2q(j)i − q(j−1)

i − q(j+1)
i

)
, 1 ≤ i ≤ N, 1 ≤ j ≤ P, (6.4)

or, in matrix form,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q̈(1)i
...
...
...

q̈(P )
i

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −ω2
P

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0 −1

−1 2 −1 0 · · · 0

0 −1 2 −1 · · · 0
...

. . .
...

0 · · · 0 −1 2 −1

−1 0 · · · 0 −1 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q(1)i
...
...
...

q(P )
i

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.5)
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We immediately see that the involved matrix on the right hand side is real and symmetric.
It is well known from linear algebra that a matrix A of this type can be diagonalized using
its eigenvalues ω2

k and an orthogonal matrix C formed by the eigenvectors,

A = C

⎛

⎜⎜⎜⎝

ω2
k1

. . .

ω2
kP

⎞

⎟⎟⎟⎠
CT . (6.6)

Note that we have already included the prefactor ω2
P from equation (6.5) into this represen-

tation. Inserting this into equation (6.5) and multiplying with CT from the left, we obtain

CT q̈i = −CTC

⎛

⎜⎜⎜⎝

ω2
k1

. . .

ω2
kP

⎞

⎟⎟⎟⎠
CTqi = −

⎛

⎜⎜⎜⎝

ω2
k1

. . .

ω2
kP

⎞

⎟⎟⎟⎠
CTqi. (6.7)

At the price of considering transformed coordinates q̂ := CTq, we have therefore decoupled
the system of equations, such that we can integrate the equations of motion indepently for
each normal mode. This is a huge advantage when it comes to the implementation and its
related numerical difficulties. In particular, the problem of different time scales is remedied
greatly. The corresponding transformation of the momenta is achieved similarly, yielding

p̂ = C · p, p = CT · p̂, (6.8a)

q̂ = C · q, q = CT · q̂, (6.8b)

where we also provided the formula for the inverse transformation. These transformed co-
ordinates are called normal coordinates or normal mode variables, whereas the ωk are called
normal mode frequencies.

Remark

Note that p and q as well as the corresponding normal mode coordinates comprise the beads

of all N molecules, and is therefore a P ×N matrix. All multiplications with C and CT are

therefore simple matrix multiplications.
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It now remains to calculate the eigenvalues and eigenvectors of A for our specific case. For
an even number of beads, one possible orthogonal transformation matrix C is given by

Cjk =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

√
1/P k = 1,

√
2/P · cos [2j(k − 1)π/P ] k = 2, . . . , P/2 − 1,

√
1/P · (−1)j k = P/2,

√
2/P · sin [2j(k − 1)π/P ] k = P/2 + 1, . . . , P,

(6.9)

while the normal frequencies ωk are given by

ωk = 2ωP sin

(
(k − 1)π

P

)
. (6.10)

Note that the frequency corresponding to k = 1 is zero. The related normal mode coordinates
therefore describe the movement of the center of mass of the molecule. It is furthermore of
interest that in the case of a closed ring polymer, all eigenfrequencies except ω1 appear twice,
yielding only P/2 different frequencies. This will be important later on.

Neglecting the intermolecular potential, the Hamiltonian in the normal mode representation
is then given by

H0(p̂, q̂) =
N∑

i=1

P∑

k=1

⎛

⎜⎝

[
p̂(k)i

]2

2m
+

1

2
mω2

k

[
q̂(k)i

]2
⎞

⎟⎠ . (6.11)

It is even possible to exactly evolve the transformed system in time by updating the normal
coordinates via

⎛

⎝p̂(k)i

q̂(k)i

⎞

⎠

∣∣∣∣∣∣
t+∆t

=

⎛

⎝ cos (ωk∆t) −mωk sin (ωk∆t)

sin (ωk∆t) /(mωk) cos (ωk∆t)

⎞

⎠

⎛

⎝p̂(k)i

q̂(k)i

⎞

⎠

∣∣∣∣∣∣
t

. (6.12)

6.3 The Algorithm

We have now set the basis to present the full algorithm used for the RPMD simulation
together with a white noise Langevin thermostat, which is based on the description in [17].
The corresponding symmetric operator propagator is of the type

e−∆tL ≈ e−
∆t
2 Lγe−

∆t
2 LU e−∆tL0e−

∆t
2 LU e−

∆t
2 Lγ , (6.13)

54



CHAPTER 6. METHODS 6.3 The Algorithm

where L = L0 + LU + Lγ is the associated total Liouvillian. The particular procedure is
described in Figure 6.2, where the five partitions marked by the dashed separation lines
represent the decomposition of the total Liouvillian. Since there is a frequent change between
bead and normal coordinates, we also present a graphical overview for one timestep focusing
on those transformations in Figure 6.3.

Let us have a closer look at the respective steps and the quantities involved. The first part
performs a half step under the Langevin term, which introduces the randomness due to
the heat bath coupling to our system. This step is performed in the normal coordinate
representation for simplicity of computation as well as exactness. The quantities c(k)1 and c(k)2

are given by

c(k)1 = e−γ(k)∆t/2, c(k)2 =

√
1− (c(k)1 )2, (6.14)

while ξ(k)i denotes a random variable drawn from a N (0, 1) distribution. The γ(k) denote the
coupling strengths of the thermostats to the beads. We are free to choose their numerical
values at our convenience, where the choice influences the speed of the exploration of the
different energy shells.

In [17], it is argued that the optimal choice is γ(k) = 2ωk. Note that steps 1 and 3 perform the
change from bead to normal coordinate representation and back. Therefore, γ(0) represents the
coupling strength of a thermostat to the center of mass, which should be handled differently
than the other eigenmodes. To do so, we define a separate time constant τ0, and choose

γ(0) =
1

τ0
. (6.15)

In Chapter 7, we will try different values for that parameter to investigate the effects on the
system.

Parts 2 to 4 represent a standard velocity-Verlet step. It is important to note that step 6 per-
forms the motion of the center of mass, while step 7 represents the evolution of the monomers
under the free Hamiltonian (i.e. without intermolecular potentials and without thermostats).
Both steps are performed in the normal coordinate representation as discussed in the previous
section.

The last part then represents the second half of the “Langevin step”, which is similar to part 1.
Note that the set of random variables is freshly drawn for this step.
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Langevin RPMD Algorithm

1. p̂← CTp

2. p̂(k)i ← c(k)1 p̂(k)i +
√

mi
βn

c(k)2 ξ(k)i

3. p← Cp̂

4. p(k)i ← p(k)i −
∆t
2

∂V (q(k)1 ,...,q(k)N )

∂q
(k)
i

5. p̂← CTp

q̂← CTq

6.

(
p̂(1)i

q̂(1)i

)

←
(

1 0

∆t/m 1

)(
p̂(1)i

q̂(1)i

)

7.

(
p̂(k)i

q̂(k)i

)

←
(

cos (ωk∆t) −mωk sin (ωk∆t)

sin (ωk∆t) /(mωk) cos (ωk∆t)

)(
p̂(k)i

q̂(k)i

)

8. p← Cp̂

q← Cq̂

9. p(k)i ← p(k)i −
∆t
2

∂V (q(k)1 ,...,q(k)N )

∂q(k)i

10. p̂← CTp

11. p̂(k)i ← c(k)1 p̂(k)i +
√

mi
βn

c(k)2 ξ(k)i

12. p← Cp̂

Figure 6.2: The algorithm for the RPMD simulation employing a Langevin ther-
mostat.
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Cartesian coordinates normal coordinates

p, q

p̂(k)i ← c(k)1 p̂(k)i +
√

mi
βn

c(k)2 ξ(k)i

p(k)i ← p(k)i −
∆t
2

∂V (q
(k)
1 ,...,q

(k)
N )

∂q(k)i

(
p̂

q̂

)

←M

(
p̂

q̂

)

p(k)i ← p(k)i −
∆t
2

∂V (q
(k)
1 ,...,q

(k)
N )

∂q(k)i

p̂(k)i ← c(k)1 p̂(k)i +
√

mi
βn

c(k)2 ξ(k)i

CT

C

CT

C

CT

C

Figure 6.3: Graphical representation of the algorithm for white noise Langevin
simulations. The manipulations in the left column are performed in
Cartesian coordinates, the ones in the right column in normal coordi-
nates. Note that the matrix multiplication in the fourth step represents
steps 6 (the motion of the center of mass) and 7 (the motion of the
monomers) in the algorithm.
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6.4 Computational Parameters Used

In this section, we will briefly discuss the computational parameters we used in our simulations.

For each simulation, the procedure was as follows. After setting up the lattice, the system
was evolved for 12.5 ps to obtain equilibrium. Then, the system was followed for 2.5 ns to
record data. We always used 108 atoms and investigated different Trotter numbers ranging
between 16 and 64. If nothing is indicated, we used P=64. With these parameters, one run
took about 40 hours on a standard personal computer.

When considering macroscopic quantities in molecular dynamics simulations, there is a corre-
lation between successive time steps, as has already been discussed in Chapter 3. Therefore,
we need not analyze after every single step, but let the system evolve for some time and
only calculate the macroscopic quantities every so often. Specifically, we sampled every ten
evolution steps.

Next, for the calculation of the frequency spectra, it is important to choose the time stepsize as
well as the recorded time-correlation length carefully in order to suppress noisy data. Here, we
chose a time stepsize of ∆t = 2.5 ·10−4 ps, and a maximum correlation length of ncor = 50000,
corresponding to 12.5 ps. With this, the obtained spectra behaved nicely up to the calculated
frequencies.
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Chapter 7

Results

After all these preparations we can now turn to the presentation and discussion of the
simulation results. The system we are investigating is liquid ortho-deuterium at tem-

peratures in the range between 20K and 37.5K at densities for which the system is along
the vapor-liquid coexistence line. What we will be actually interested in is the the velocity
auto-correlation function (VACF), and, more importantly, its spectrum.

We start our investigation with RPMD simulations using Gaussian thermostats. The results
of several simulations, i.e. those shown in Figure 7.1, have already been performed at the
beginning of the particular investigation of this thesis and been provided in a private commu-
nication [51]. Obviously, they showed resonances in the spectrum of the VACF. Section 7.2
is therefore concerned with the investigation of the origin of those resonances, where also the
dependence on temperature and Trotter number will be studied.

After this, we will turn to simulations using white-noise Langevin thermostats in Section 7.3.
We will compare the respective results to data stemming not only from the RPMD simulations
using Gaussian thermostats, but also from simulations using the CMD method. This will give
interesting insights into the specificities of the different methods.
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7.1 Ortho-Deuterium

In this work, we simulated the behavior of ortho-deuterium (o-D2). The ortho configuration
means that the nuclear spins are parallel oriented, which, at the investigated temperatures,
is the case for almost 98% of the deuterium molecules [39].

Ortho-deuterium is – like para-hydrogen – in the rotational ground state for low temperatures,
which is well described as forming of spherical particles [65]. If we considered the para-
deuterium configuration, we would need to use an extended PIMC algorithm to take the
rotatory wavefunction into account, which leads to much more complicated computations.
Investigating the ortho-configuration, we do not need to worry about the orientation of the
D–D bond, leading to a suitable description of the intermolecular potential by only taking
radially symmetric pair interactions into account.

This simple geometry, together with the availability of experimental data, are the reasons
D2 has been used widely for studies addressing computational aspects in quantum mechan-
ical systems [35, 57, 58]. Furthermore, many investigations on the system itself have been
performed [15, 38, 48, 54] to compare the computational experiments to experimental data.

7.2 Calculations Using Gaussian Thermostats

We will start out with the discussion of the data obtained from the use of a Gaussian ther-
mostat, which did not yield satisfactory results. Here, we will write J(ω) := CK

vv(ω) for the
Kubo-transformed spectra, which will be the type of spectrum shown throughout this chapter.
For the calculation of the spectrum we also used a Welch window with a cut-off of 5 ps.

We start out by considering VACF spectra of ortho-deuterium at different temperatures,
where N = 256 and P = 64. They are shown in Figure 7.1. Note that the spectrum is shown
in such a way that the diffusion constant D can be read off at ω = 0. This is obtained based
on the relation

D =
1

6

∞∫

−∞

dt Cvv(t) =
1

6
J(0), (7.1)

which will be the normalization kept throughout this chapter.

The qualitative difference of the respective graphs in Figure 7.1 is significant. It can be easily
seen that the diffusion constant increases with increasing temperature. For comparison, the
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Figure 7.1: VACF Kubo-transformed spectra for D2 obtained from RPMD simula-
tions using Gaussian thermostats. The diffusion constant can be read
off at ω = 0.
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Figure 7.2: The VACF Kubo-transformed spectrum of D2 calculated with a RPMD
simulation using Gaussian thermostats at 20K. The resonances at
higher frequencies are clearly seen.
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simulation at 20K gives D = 0.295Å2 ps−1, which is close to experimentally obtained data,
D = 0.36Å2 ps−1 [50].

However, we are interested in another observation. In Figure 7.2, the high-frequency range
of the VACF spectrum for ortho-deuterium at 20K, calculated from a RPMD simulation, is
shown on a log-log scale. Here, we used N = 108 and P = 64. Note that we actually have
N + 1 thermostats, since each ring polymer is attached to its individual thermostat keeping
its “internal” temperature at P · T , and one additional, global, thermostat keeping the whole
system at temperature T .

As can be seen, there are several resonances at larger frequencies. Although it is emphasized
that these resonances are very small and probably won’t affect the numerical values obtained
by integration over the whole spectrum, there is still the question of their origin.
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Figure 7.3: Part of the VACF spectrum of D2 at 20K calculated with a RPMD
simulation employing Gaussian thermostats for different Trotter num-
bers. The dependence on P is obvious. Note that only a part of the
spectrum is shown for a better comparison of the resonance locations.

To gain insight on this question, we considered spectra for Trotter numbers P = 16, P =

32, and P = 64, and for several temperatures T between 20K and 37.5K. Note that the
simulations for different temperatures have all been performed at the vapor-liquid coexistence
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temperature T [K] density ρ [nm−3]

20 25.60

22.5 24.75

25 23.84

27.5 22.65

30 21.53

32.5 19.93

35 17.93

37.5 14.69

Table 7.1: Temperatures and number densities that have been used for the simu-
lations of ortho-deuterium. Values taken from [62].
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Figure 7.4: The VACF spectrum of D2 calculated with a RPMD simulation em-
ploying Gaussian thermostats for different temperatures. The depen-
dence on T is obvious. In these simulations, the Trotter number was
kept constant at P = 64.
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curve, which is the reason why different densities were used. The input parameters for T and
ρ are shown in Table 7.1. The results are shown in Figures 7.3 and 7.4. It is obvious that the
resonance positions depend on both of these parameters.

Having found those two dependencies, we should now try to find an explicit relationship
between those quantities. We start with the following, qualitative, observation: On the one
hand, the overall number of resonances turns out to be the same as the half the Trotter number.
This fact has been observed in the spectrum using P = 16, where the resonances are all below
ω = 200ps−1. On the other hand, every eigenfrequency in the ring polymer appears twice due
to the periodicity condition for a closed ring polymer, yielding half as many eigenfrequencies
as beads. This has already been discussed in Section 6.2. That correspondence is a first clue
regarding the origin of those resonances.

The next step is therefore a comparison of the resonance frequencies to the eigenfrequencies
of the ring polymers, which depend on both P and T . This comparison for P = 64 at 20K
is presented in Figure 7.5. For better resolution, a detailed comparison at large frequencies is
shown in Figure 7.6. We see that the correspondence is obvious, although there is no exact
agreement between the two. Rather, for low frequencies, the eigenfrequencies are lower than
the observed resonances, whereas it is the other way round for high frequencies. A possible
explanation for this deviation is that the resonance frequencies in the simulation are also
affected by the intermolecular potential. This interaction then leads to a small shift of the
resonances compared to a free ring polymer.

Nevertheless, these findings prove that those resonances are induced by the eigenmodes of the
ring polymer. While observing such resonances for a classical ring polymer would definitely
make sense as this is an inherent effect, this is not true for the path integral approach. Here,
the ring polymer is a purely fictitious device and only appears due to the imaginary time path
integral formulation, and therefore those resonances do not represent any physical process in
the system. As a consequence, this effect is unwanted and should be avoided. To this end,
we turn to a Langevin thermostat and investigate the velocity auto-correlation spectrum for
this approach.

7.3 Calculations Using a White-Noise Langevin Thermostat

For this type of simulations, we use the algorithm described in Figure 6.2. Note that the
Langevin approach employs one independent thermostat per monomer, thereby using P ·N
thermostats in general, while the Gaussian approach only uses N + 1 thermostats. As has
been discussed during the presentation of the approach in Chapter 6, when using a white-
noise Langevin thermostat, there is one parameter left for adjustment. This is the coupling
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Figure 7.5: Comparison of the resonances in the VACF spectrum of D2 to the
polymers’ eigenfrequencies for P = 64 at 20K. The qualitative corre-
spondence is clear. For low ω, the eigenfrequencies are lower than the
resonances, while it is the other way round for high ω.
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Figure 7.6: Zoom into the high frequencies from Figure 7.5. In this region, the
eigenfrequencies are larger than the resonance frequencies.
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strength of the stochastic collisions to the system, which is given by the parameter τ0. We
therefore calculated the spectra at 20K employing different numerical values for τ0. Figure
7.7 shows the spectra for τ0 equal to 1, 10, and ∞.
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Figure 7.7: VACF spectrum of D2 at 20K calculated using RPMD and Langevin
thermostats with different coupling strengths.

Obviously, in all cases, the spectrum remains free of resonances. However, the decrease
at high frequencies differs greatly for larger values of τ0. This means that for larger τ0,
the contributions of the high frequencies become more and more suppressed. This poses
the question regarding the correct suppression strength induced by τ0. Since it has been
mentioned in the literature that there should not be a thermostat attached to the polymers’
center of mass [17], which corresponds to setting τ0 =∞, this choice appears to be suitable.
A comparison of this setup to the results obtained from the Gaussian thermostat shows that
this is indeed the correct choice (see Figure 7.8).

For the spectra obtained from the RPMD simulations with Gaussian thermostats and from the
Langevin algorithm with τ0 =∞, it is also interesting to compare the velocity auto-correlation
function itself, which is shown in Figure 7.9. Here, we also included the results stemming
from a simulation employing the CMD method [51], which employed one global Gaussian
thermostat. All three functions agree for almost all t, apart from an obvious difference in the
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Figure 7.8: Comparison of the VACF spectrum of D2 obtained by RPMD using
Gaussian thermostats and Langevin thermostats with τ0 =∞ at 20K.
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Figure 7.9: Comparison of the velocity auto-correlation functions for D2 at 20K
using RPMD simulations with Gaussian thermostats, Langevin ther-
mostats with τ0 =∞, and the CMD method.
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region of the minimum around t = 0.3ps. There, the auto-correlation function of the RPMD
simulation with Gaussian thermostats differs from the other two. It is worth noting that the
Langevin system shows excellent agreement with the VACF computed with the CMD method.
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Figure 7.10: Comparison of the Gauss and the Langevin VACF spectra for D2

at 20K and 30K. The agreement for different temperatures at high
frequencies could not be inferred from the Gauss spectra.

Finally, we are interested in the spectra calculated using Langevin thermostats at different
temperatures. In particular, we present the respective curves for T = 20K and T = 30K. We
show the corresponding results together with a comparison to the data from the simulations
employing Gaussian thermostats in Figure 7.10. The general agreement, apart from the
resonances in the Gauss spectra, is obvious.

Furthermore, looking only at the Langevin curves, it is observed that while the spectra show
a considerable difference at low frequencies for different temperatures, the high frequencies
are almost unaffected by a temperature change. This behavior could not be discerned in the
RPMD simulations employing Gaussian thermostats due to the resonances, which lead to
artifacts in the curves.

Based on this finding one might be tempted to wonder if this behavior, i.e. the agreement
at high frequencies, is also seen in CMD simulations. The spectra in question are shown
in Figure 7.11. There are several conclusions to be drawn. First, the CMD spectra show
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Figure 7.11: Comparison of RPMD using Langevin thermostats to the VACF spec-
trum for D2 obtained from the CMD method at 20K and 30K.

much lower values in the high-frequency region compared to the Langevin spectra. Second,
the CMD curves do not show the same agreement as the one seen in the Langevin spectra.
Finally, there is a characteristic knee in the spectra around 100 ps−1, whose position obviously
depends on the temperature, too. However, this might also be an artifact, but this question
is not in the scope of this thesis. These differences are based on the diverse approximations
induced by the derivation of CMD and RPMD methods.

7.4 Conclusions

A closer investigation of the resonances in the VACF spectra in the simulations using Gaussian
thermostats showed the correspondence to the eigenfrequencies of the ring polymers. This
turned out to be problematic, since those eigenfrequencies are only a virtual construct to be
able to perform a classical-like molecular dynamics simulation, and therefore do not correspond
to any physical process taking place in the system under investigation. Furthermore, those
resonances prevent a comparison of the spectra at high frequencies.

By using a Langevin thermostat, we were able to eliminate those resonances. We also showed
the different results for different coupling strengths, and argued the choice of not coupling a
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thermostat to the normal mode corresponding to the center of mass. The comparison of the
high frequencies of the spectra for different temperatures showed that the curves are almost
independent of T in this region. This poses the question if this is just a coincidence of a
general result for this system.

A comparison to the CMD method showed good agreement of the VACF itself, but revealed
differences – although only in the high-frequency region – in the spectra.
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Chapter 8

Conclusions

In this work, we investigated the calculation of the spectrum of the velocity auto-correlation
function in quantum mechanical systems. To this end, we used ring polymer molecular dy-
namics simulations, where Feynman’s path integral formalism was employed. These methods,
although just leading to an approximation of the velocity auto-correlation function, proves to
be a very convenient and, for moderately quantum mechanical systems, rather accurate tool.

For the proper implementation, we used several well-known techniques. As an example,
we used a normal mode transformation for the ring polymer beads, which allows an exact
propagation of the system under the free Hamiltonian. To couple the system with a heat
bath, we employed two different types of thermostats.

The results presented in the previous chapter revealed the importance of a suitable thermostat.
We have seen that when using Gaussian thermostats, the spectrum of the auto-correlation
function shows resonances, which prevents a proper interpretation of the high-frequency region
of the spectrum. We could identify these resonances as corresponding to the eigenfrequencies
of the ring-polymer beads. This is especially problematic, since those eigenmodes represent a
non-physical process in our system.
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The use of Langevin thermostats, on the other hand, did not show such resonances. As a
consequence, the method proved to be much more suitable for the calculation of the desired
spectra. The investigation of different coupling strengths showed the great differences that
can arise due to different choices for the numerical values, and which value should be chosen
for the best results.

Based on this investigation, several further questions arise that might be of interest in subse-
quent studies. One the one hand, several new observations have been made. As an example, it
might be of interest whether the independence from temperature in the high frequency region
of the spectrum is just a coincidence or a general result for weakly quantum mechanical sys-
tems. On the other hand, the question is whether the observations made in these simulations
can also be made using other, e.g. strongly quantum mechanical systems like H2.
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