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Abstract

The aim of this thesis is to characterize certain smooth function classes defined on R
by the existence of extensions to C whose derivative with respect to z vanishes on R
and decreases rapidly near R. Such extensions are called asymptotically holomorphic
extensions. The speed of decay of the derivative with respect to z of such an extension
then determines the regularity of the given function defined on R. We focus on a char-
acterization of Denjoy-Carleman classes. Those are classes of smooth functions which
satisfy a growth condition on all their derivatives in terms of a weight sequence, i.e. the
n-th derivative can be dominated by the n-th weight.

Most of the proofs of the major theorems use the so-called two constants theorem. In
order to formulate the theorem, we define in chapter 2 the concept of harmonic measure
for Jordan domains and for certain unbounded domains. Apart from proving the two
constants theorem, we also give a geometric description of the harmonic measure.

In chapter 3 we characterize Denjoy-Carleman classes in terms of the existence of
asymptotically holomorphic extensions. We use this characterization to derive an alter-
native proof of closedness under composition of such classes.

In chapter 4 we give an alternative proof of the Denjoy-Carleman theorem which also
uses this characterization. We are actually able to show a quantitative result in the case
of non-quasianalytic weight sequences.

In chapter 5 we present two results of Borichev and Volberg that can be used to prove
that under certain conditions a system of ODEs defined by a quasianalytic function only
admits finitely many limit cycles.

Zusammenfassung

Das Ziel dieser Arbeit ist es, gewisse Klassen glatter auf R definierter Funktionen durch
die Existenz von Ausdehnungen nach C, deren Ableitung nach z auf R verschwindet und
nahe R rasch abfällt, zu charakterisieren. Solche Ausdehnungen werden asymptotisch
holomorphe Ausdehnungen genannt. Das Abfallverhalten der Ableitung nach z solch
einer Ausdehnung bestimmt dann die Regularität der gegebenen, auf R definierten, Funk-
tion. Wir konzentrieren uns auf eine Charakterisierung von Denjoy-Carleman Klassen.
Dies sind Klassen glatter Funktionen, die eine Wachstumsbedingung an alle Ableitun-
gen bezüglich einer Gewichtsfolge erfüllen, d.h. die n-te Ableitung kann durch das n-te
Gewicht dominiert werden.

Die meisten Beweise der Haupttheoreme verwenden das so genannte Zwei-Konstanten-
Theorem. Um dieses formulieren zu können, definieren wir in Kapitel 2 das Konzept des
harmonischen Maßes für Jordan Gebiete und für gewisse unbeschränkte Gebiete. Neben
einem Beweis des Zwei-Konstanten-Theorems erarbeiten wir auch eine geometrische
Beschreibung des harmonischen Maßes.

In Kapitel 3 charakterisieren wir Denjoy-Carleman Klassen durch die Existenz asymp-
totisch holomorpher Ausdehnungen. Wir verwenden diese Charakterisierung um einen
alternativen Beweis der Abgeschlossenheit solcher Klassen unter Komposition herzuleiten.

v



In Kapitel 4 geben wir einen alternativen Beweis des Denjoy-Carleman Theorems, der
auch diese Chrakterisierung verwendet. Im Falle einer nicht-quasianalytischen Gewichts-
folge ist es uns sogar möglich ein quantitatives Resultat zu zeigen.

In Kapitel 5 präsentieren wir zwei Resultate von Borichev und Volberg, die verwendet
werden können um zu zeigen, dass ein System gewöhnlicher Differentialgleichungen, das
durch eine quasianalytische Funktion definiert ist, unter gewissen Voraussetzungen nur
endlich viele Limes Zyklen zulässt.

vi



1 Prerequisites

This chapter represents a collection of several definitions and theorems being used
throughout the following chapters. The majority of the theorems deals with subhar-
monic, harmonic and analytic functions. Before treating those theorems we fix notation:

There are some specific subsets of C that will appear quite frequently:
As it is common in the literature

H := {z ∈ C : =(z) > 0}

denotes the upper half-plane. We will write

C+ := {z ∈ C : <(z) > 0}

for the right half-plane and

R+ := {x ∈ R : x > 0}

for the positive reals. In addition for a ∈ C and r > 0,

B(a, r) := {z ∈ C : |z − a| < r}

denotes the ball with center a and radius r. For the unit disc we will also use a different
notation, namely

D := B(0, 1).

In the following z and ζ always denote complex numbers. If not otherwise defined
we will write x = <(z) (ξ = <(ζ)) and y = =(z) (η = =(ζ)).

By smooth functions we understand infinitely many times continuously differentiable
functions (i.e. C∞-functions).

For a continuously differentiable function f defined on some open set U ⊆ C (i.e.
f ∈ C1(U)) we define the so-called Wirtinger derivatives:

∂f(z) :=
1

2

(
∂f

∂x
(z)− i∂f

∂y
(z)

)
,

∂f(z) :=
1

2

(
∂f

∂x
(z) + i

∂f

∂y
(z)

)
.

We will also write ∂f
∂z instead of ∂f (resp. ∂f

∂z instead of ∂f). ∂f is also referred to as
d-bar derivative or derivative with respect to z.

It is a classical result of one variable function theory that ∂f ≡ 0 on an open set
U ⊆ C is equivalent to f being holomorphic on U . In this case ∂f is the ordinary
complex derivative.

The following lemma gathers elementary properties of the Wirtinger derivatives.
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Chapter 1. Prerequisites

Lemma 1.0.1. Let α, β ∈ C and f, g ∈ C1(U) for some open U ⊆ C. Let h ∈ C1(V )
where f(U) ⊆ V . Then

∂(αf + βg) = α∂f + β∂g, (1.0.1)

∂(fg) = (∂f)g + f(∂g), (1.0.2)

∂(h ◦ f)(z) = ∂h(f(z))∂f(z) + ∂h(f(z))∂f(z), (1.0.3)

∂(h ◦ f)(z) = ∂h(f(z))∂f(z) + ∂h(f(z))∂f(z). (1.0.4)

(1.0.1) and (1.0.2) hold with ∂ replaced by ∂ as well.

Proof. Observe that ∂
∂x and ∂

∂y fulfil (1.0.1) and (1.0.2) (with ∂ replaced by ∂
∂x or ∂

∂y ).

Since ∂ and ∂ are linear combinations of these operators, (1.0.1) and (1.0.2) follow. For
(1.0.3) and (1.0.4), see [12, 1.4.4 (4), p. 62].

We will write dξ∧dη for the standard base element of 2-forms on R2. Quite frequently
we will integrate with respect to dζ ∧ dζ. Those 2-forms are connected as follows

dζ ∧ dζ = (dξ + idη) ∧ (dξ − idη) = −2idξ ∧ dη.

Definition Let Ω ⊆ C be open. A function f : Ω→ R∪{−∞} is upper-semicontinuous
iff for all z0 ∈ Ω

lim sup
z→z0

f(z) ≤ f(z0).

An upper-semicontinuous function f is subharmonic iff for all z ∈ Ω and r > 0 such
that B(z, r) ⊆ Ω

f(z) ≤ 1

2π

∫ 2π

0
f(z + reit)dt.

This means, that f(z) is smaller than the arithmetic mean of f over each circle lying
in Ω.

Theorem 1.0.2 (Jensen’s formula). Let f be analytic in an open neighbourhood of
B(0, r) and assume f(0) 6= 0. Then

log |f(0)|+
∫ r

0

n(t)

t
dt =

1

2π

∫ π

−π
log |f(reit)|dt

where n(t) := |{z ∈ B(0, t) : f(z) = 0}|.

Proof. See [9, I, p. 1-3].

There are some important facts on subharmonic functions that will be used:

Lemma 1.0.3. (i) Subharmonic functions are closed under taking sums and maxi-
mums, i.e. for f, g subharmonic also f + g and max(f, g) are subharmonic.
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(ii) Maximum principle for subharmonic functions:

Let Ω ⊆ C be a domain and f subharmonic on Ω. If there exists a ∈ Ω such that
f(a) ≥ f(z) for all z ∈ Ω, then f is constant on Ω.

(iii) Let f be analytic, then

z 7→ log |f(z)|

is subharmonic.

Proof. (i): Follows directly from the definition.

(ii): See [4, 3.2, p. 264].

(iii): If z0 is a zero of f , log |f(z0)| = −∞ trivially fulfils the defining inequality for
subharmonic functions. If not, apply Jensen’s formula (w.l.o.g. z0 = 0), which
leads to

log |f(0)|+
∫ r

0

n(t)

t
dt︸ ︷︷ ︸

≥0

=
1

2π

∫ π

−π
log |f(reit)|dt

implying subharmonicity of log |f(z)|.

Theorem 1.0.4. Let Ω ⊆ C be open and u harmonic on Ω. Then for all z ∈ Ω and
r > 0 such that B(z, r) ⊆ Ω

u(z) =
1

2π

∫ 2π

0
u(z + reit)dt. (1.0.5)

That means u has the mean value property for all z ∈ Ω.

Proof. See [4, 1.4 Mean value theorem, p. 253].

Remark 1.0.5. This shows that harmonic functions are subharmonic.

Theorem 1.0.6 (Maximum principle). Let Ω ⊆ C and u a continuous real valued
function on Ω having the mean value property for all z ∈ Ω (e.g. u harmonic). If there
exists a ∈ Ω such that

u(a) ≥ u(z)

for all z ∈ Ω. Then u is constant.

Proof. Follows from lemma 1.0.3 (ii).

Remark 1.0.7. From the maximum principle it follows immediately that harmonic func-
tions on bounded domains, extending continuously to the boundary, attain their maxi-
mum on the boundary.

3



Chapter 1. Prerequisites

The following is a generalisation of the fact that harmonic functions on bounded
domains attain their maximum on the boundary. If we drop the assumption of bound-
edness of the domain, it is clear that the maximum need not be attained at the boundary.
This is simply due to the fact that there are unbounded harmonic functions. Take for
example f(z) = =(z), then f is bounded on the real line by 0 but certainly this is not
the maximum of the function on the upper half plane. However, we have the following
lemma whose proof is taken from [7, Lemma 1.1, p. 2]:

Lemma 1.0.8. Let u be harmonic and bounded on some open Ω ⊆ C with the additional
property Ω 6= C. Suppose

lim sup
z→ζ

u(z) ≤ 0 (1.0.6)

only fails for finitely many ζ ∈ ∂Ω. Then

u(z) ≤ 0 on Ω.

Proof. Due to the assumption Ω 6= C, it is possible to assume w.l.o.g. that Ω is bounded:
There exists some z0 ∈ C\Ω. Because C\Ω is open, there is some r > 0, such that

B(z0, r) ⊆ C\Ω. Therefore the absolute value of ψ(z) := 1/(z − z0) is bounded by 1
r

on Ω. As ψ is analytic and not locally-constant on Ω, it follows that ψ(Ω) is open and
contained in B(0, 1/r). As ψ′ does not vanish on Ω (and ψ is one-to-one), it follows that
ψ−1 : ψ(Ω)→ Ω is analytic. As u is harmonic, it can be written as the real part of some
analytic function ũ. Therefore u ◦ ψ−1 = <(ũ ◦ ψ−1). As real and imaginary parts of an
analytic function are harmonic, one immediately gets that u ◦ ψ−1 is harmonic.

So it is possible to reduce the proof for unbounded Ω to the bounded case via an
application of the function ψ−1.

Now suppose Ω is bounded. Let F = {ζ1, . . . , ζn} be the finite set where condition
(1.0.6) fails. Then for every ε > 0, 1 ≤ j ≤ n, the function f εj defined for z ∈ Ω by

z 7→ ε log

(
diam(Ω)

|z − ζj |

)
is positive (as diam(Ω)

|z−ζj | > 1 for z ∈ Ω) and a direct computation shows ∆f εj ≡ 0. Now

define

uε(z) := u(z)−
n∑
j=1

f εj (z).

Since f εj (z)→ +∞ as z → ζj , lim supz→ζ uε(z) is non-positive for all boundary values ζ.
So by applying the ordinary maximum principle for harmonic functions, it follows that
uε ≤ 0 on Ω. This implies u(z) ≤

∑n
j=1 f

ε
j (z) for all ε > 0. But as the right hand side

tends to zero, as ε→ 0, one gets u(z) ≤ 0. Thus the proof is completed.

Theorem 1.0.9. Let Ω ⊆ C be a domain and f analytic on Ω. Then for all z ∈ Ω and
r > 0 such that B(z, r) ⊆ Ω

|f(z)| ≤ max
ζ∈∂B(z,r)

|f(ζ)|.

4



If Ω is in addition bounded and f continuously extends to the boundary, f attains it’s
maximum on the boundary.

Proof. See [13, 10.24 The maximum modulus theorem, p. 212].

In analogy to the above generalisation for harmonic functions, there is a similar
generalisation for analytic functions.

Theorem 1.0.10. Let Ω ⊆ C be a domain and Ω 6= C. Let f be analytic and bounded
on Ω and assume that lim supz→ζ |f(z)| ≤ m for all ζ ∈ ∂Ω, then |f(z)| ≤ m for all
z ∈ Ω.

Proof. See [9, III B, p. 23].

A very important formula, with numerous applications, consists of the inhomoge-
neous Cauchy integral formula:

Theorem 1.0.11. Let Ω ⊆ C be bounded and have piecewise smooth boundary ∂Ω. In
addition let ∂Ω be positively oriented. If f is continuously differentiable on an open set
V ⊃ Ω, then for all z ∈ Ω

f(z) =
1

2πi

∫
∂Ω

f(ζ)

ζ − z
dζ +

1

2πi

∫
Ω

∂f(ζ)

ζ − z
dζ ∧ dζ (1.0.7)

Proof. See [8, Theorem 1.2.1, p. 3].

The following simple observation will be used in many proofs in which the non-
holomorphic summand of the representation from theorem 1.0.11 is estimated.

Lemma 1.0.12. For z0 ∈ C and r > 0∫
B(z0,r)

1

|ζ − z0|
dξ ∧ dη = 2πr.

Proof. A change to polar coordinates yields∫
B(z0,r)

1

|ζ − z0|
dξ ∧ dη =

∫ 2π

0

∫ r

0

1

s
sdsdφ = 2πr.

Lemma 1.0.13. Let g : Ω → C be a continuously differentiable function, where Ω ⊆ C
is open and has smooth boundary. If ∂g is absolutely integrable on Ω, then

h(z) := g(z)− 1

2πi

∫
Ω

∂g(ζ)

ζ − z
dζ ∧ dζ

is analytic on Ω. If g is continuous up to the boundary, h admits a continuous extension
to Ω.

5



Chapter 1. Prerequisites

Proof. We first observe that
∫

Ω
∂g(ζ)
ζ−z dζ ∧ dζ exists for all z ∈ Ω. This follows since

ζ 7→ ∂g(ζ) is bounded on some ball B(z, ε) ⊆ Ω (due to continuity) and ζ 7→ 1
ζ−z is

integrable on B(z, ε). Outside this small ball ζ 7→ 1
ζ−z is bounded and ζ 7→ ∂g(ζ) is

integrable.

Let (Kn)n∈N be a compact exhaustion of Ω, where each Kn is smoothly bounded.
The inhomogeneous Cauchy-Riemann integral formula provides the following equality
for z ∈ K◦n

g(z) =
1

2πi

∫
∂Kn

g(ζ)

ζ − z
dζ +

1

2πi

∫
Kn

∂g(ζ)

ζ − z
dζ ∧ dζ.

Define for z ∈ K◦n
gn(z) :=

1

2πi

∫
∂Kn

g(ζ)

ζ − z
dζ,

gn is clearly analytic on it’s domain.

Now let n0 ∈ N be fixed and z ∈ K◦n0
arbitrary, then it holds for m > n0 (observe that

since (Kn)n is a compact exhaustion, there is some r > 0, such that dist(Kn0 ,Ω\Km) ≥
r)

|h(z)− gm(z)| ≤ 1

π

∫
Ω\Km

∣∣∣∣∂g(ζ)

z − ζ

∣∣∣∣ dξ ∧ dη
≤ 1

πr

∫
Ω\Km

|∂g(ζ)|dξ ∧ dη︸ ︷︷ ︸
→0 as m→∞

.

Therefore h|K◦n0 is the uniform limit of a sequence of analytic functions. As the argument
holds for all n0 ∈ N, it follows that h is analytic on Ω.

Since the map z 7→ 1
2πi

∫
Ω
∂g(ζ)
ζ−z dζ∧dζ is continuous for z ∈ Ω and g is by assumption

continuous on Ω it follows that h is continuous on Ω.

Lemma 1.0.14. Let Ω ⊆ C be open and (X,µ) a measure space. Let f : Ω×X → C be
a function such that for all compact discs K ⊆ Ω, there exists an absolutely integrable
function gK : X → R, such that |f(z, x)| ≤ gK(x) for all z ∈ K. In addition assume

x 7→ f(z, x) is absolutely integrable for all z ∈ Ω,

z 7→ f(z, x) is analytic on Ω for all x ∈ X.

Then the function F defined for z ∈ Ω as

F (z) :=

∫
X
f(z, x)dµ(x)

is analytic on Ω.

Proof. Simple consequence of the dominated convergence theorem.

6



Theorem 1.0.15 (Riemann mapping theorem). Let Ω ⊆ C be a simply connected do-
main with Ω 6= C. Then for all a ∈ Ω there exists a unique biholomorphic (i.e. bijective
and analytic with analytic inverse) function f : Ω→ D with

f(a) = 0, f ′(a) > 0.

Proof. See [4, 4.2 Riemann mapping theorem, p. 160].

7
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2 The harmonic measure

Here we define an important concept, which is a tool in some of the proofs later on. Its
main strength, and the reason why we deal with it, is outlined in section 2.4. Generally
speaking we need two ingredients to define a harmonic measure, namely a domain Ω ⊆ C
(with non-empty boundary) and a point z ∈ Ω. Then the harmonic measure for Ω as
seen from z is a Borel measure on the boundary ∂Ω with certain properties related to
harmonic functions on Ω. To make the dependence clear, it is written as

ω(z, E,Ω)

where E is a Borel-measurable subset of ∂Ω.
The defining property of the harmonic measure is that it recovers the value of a

harmonic function at z when only the boundary values are known. In other words,
knowledge of the harmonic measure in every point gives a solution of the Dirichlet prob-
lem for Ω. Although the harmonic measure can be defined for more general subsets, we
only deal with Jordan domains as it suffices for our purposes. Those domains are con-
siderably easier to handle as they are by definition simply connected. The main reason
is that the Riemann mapping theorem 1.0.15 is available for such domains.

2.1 Explicit construction for D

We will use the well-known solution of the Dirichlet problem for D:

Theorem 2.1.1. Let f ∈ C(∂D). Then there exists a unique function uf defined on D
having the following properties

(i) uf is harmonic on D,

(ii) uf is continuous on D,

(iii) uf |∂D = f .

uf can be written as

uf (z) =
1

2π

∫ 2π

0
f(eit)

1− |z|2

|eit − z|2
dt =

1

2πi

∫
∂D

f(ζ)

ζ

1− |z|2

|ζ − z|2
dζ. (2.1.1)

Proof. See [7, Theorem 1.3, p. 5].

It makes sense to define for an arbitrary Borel set E ⊆ ∂D

ω(z, E,D) :=
1

2πi

∫
E

1− |z|2

ζ|ζ − z|2
dζ. (2.1.2)

9



Chapter 2. The harmonic measure

This notion defines a Borel measure on ∂D and we call it the harmonic measure for D
as seen from z. Now we can reformulate (2.1.1):

uf (z) =

∫
∂D
f(ζ)dω(z, ζ,D). (2.1.3)

Observe that since constant functions are harmonic, it follows immediately that the
harmonic measure for D is a probability measure for each z ∈ D. Due to the Riesz
representation theorem (see [13, 6.19 Theorem, p. 130] for details) it is also possible to
use (2.1.3) as definition for the harmonic measure:

Fix z ∈ D. Then theorem 2.1.1 makes it possible to define φ(f) := uf (z) for all
f ∈ C(∂D). Lemma 1.0.8 immediately implies

−||f ||∞ ≤ φ(f) ≤ ||f ||∞

which shows that φ is a bounded linear functional. As positive boundary conditions
correspond to positive harmonic functions, we also get that φ is positive. Thus an appli-
cation of Riesz representation theorem implies the existence of a unique Borel measure
µz on ∂D such that

φ(f) = uf (z) =

∫
∂D
f(ζ)dµz(ζ) (2.1.4)

for all f ∈ C(∂D). And then we may define for a Borel set E ⊆ ∂D

ω(z, E,D) := µz(E) (2.1.5)

which yields the same measure as above.

It is worth noting that the harmonic measure on D is invariant under biholomorphic
functions. That means, given a biholomorphic function φ from D to D which extends
continuously to a homeomorphism of D, for all z ∈ D and Borel sets E ⊆ ∂D

ω(z, E,D) = ω(φ(z), φ(E),D). (2.1.6)

This invariance property follows from theorem 2.1.1: Take f ∈ C(∂D) and φ a biholo-
morphic function as above. Then f ◦ φ ∈ C(∂D), so we can apply theorem 2.1.1 to the
boundary condition f ◦ φ and get a uniquely defined harmonic function uf◦φ on D. On
the other hand, since a composition of a harmonic and a holomorphic function is again
harmonic, we get that uf ◦ φ is also a solution for the boundary condition f ◦ φ. The
uniqueness result from theorem 2.1.1 implies uf◦φ(z) = uf (φ(z)) for all z ∈ D. As this
equality holds for all f ∈ C(∂D), we get ω(z, φ−1(E),D) = ω(φ(z), E,D) for all Borel
sets E ⊆ ∂D which implies the desired result.

Due to the abstract nature of definition (2.1.5), it is certainly easier to derive es-
timates for the harmonic measure by using (2.1.2). But also the more constructive
definition (2.1.2) is lacking of an easy geometric description. So the next goal is to
derive a geometric description of ω(z, E,D).

10



2.2. Geometric description

2.2 Geometric description

The ideas in this section are taken from [7, exercises and further results, p. 26].

First we fix a notation for subarcs of the boundary of a ball B(a, r) where a ∈ C and
r > 0. Given two points ζ1, ζ2 ∈ ∂B(a, r), let [ζ1, ζ2]∂B(a,r) be the positively oriented arc
between ζ1 and ζ2 on ∂B(a, r). [ζ1, ζ1]∂B(a,r) shall denote the set {ζ1} (and not ∂B(a, r)).
For a = 0 and r = 1 we write [ζ1, ζ2]∂D. E.g. [−i, i]∂D denotes the right half of the unit
circle whereas [i,−i]∂D denotes the left half.

If we write [ζ1, ζ2]∂B(a,r) = [a + reiθ1 , a + reiθ2 ]∂B(a,r), we always assume that θ1, θ2

are chosen in such a way that the length of the arc equals r(θ2 − θ1).

Later on, we will need certain biholomorphic maps from the unit disc onto itself
(automorphisms) which extend to homeomorphisms of the closed unit disc. This is
taken care of in the following lemma.

Lemma 2.2.1. For a ∈ D, the map

z 7→ z − a
1− az

=: φa(z)

is a homeomorphism of D and an automorphism of D.

Proof. First observe that φa is clearly analytic on D as it is the quotient of analytic
functions with non-vanishing denominator. Due to the same reason it is continuous on
D. Next observe that, for z = eiθ ∈ ∂D

φa(z) = e−iθ
eiθ − a
e−iθ − a

= e−iθ
eiθ − a
eiθ − a

has absolute value 1. This shows that φa(∂D) ⊆ ∂D. Due to the maximum principle for
analytic functions, see theorem 1.0.9, and as non-constant analytic functions map open
sets to open sets, we get φa(D) ⊆ D and φa(D) ⊆ D.

A direct computation shows φ−1
a = φ−a which implies that φa is bijective on D. This

completes the proof.

Using the above lemma we can give a first geometric description of the harmonic
measure.

Lemma 2.2.2. Let E = [eiθ1 , eiθ2 ]∂D be an arc in ∂D. Let a ∈ D and let φ be the interior
angle at a of S(a,E), which consists of E and the line segments connecting a with eiθj for
j = 1, 2. Then

ω(a,E,D) =
1

2π
(2φ− (θ2 − θ1)). (2.2.7)

The picture shows the situation in lemma 2.2.2:

11



Chapter 2. The harmonic measure

eiθ1

eiθ2

a φ E

Proof. Observe that

ω(0, E,D) =
1

2π
(θ2 − θ1)

which can be verified by a direct computation of the integral in (2.1.2). Combining
this with (2.1.6) for the function φa from lemma 2.2.1, we can reduce the problem of
finding the value of ω(a,E,D) to simply computing φa(E). Thus we have to show that
the length of the arc φa(E) equals 2φ − (θ2 − θ1). To this end we compute φa(e

iθj ) for

j = 1, 2. Observe that φa(e
iθj ) = e−iθj e

iθj−a
eiθj−a

. Denoting φj = Arg(eiθj − a) and using

z
z = ei2Arg(z), we end up with

φa(e
iθj ) = ei(2φj−θj).

Thus it follows φa(E) = [ei(2φ1−θ1), ei(2φ2−θ2)]∂D whose length is 2φ− (θ2 − θ1).

The next theorem gives a very useful geometric description of the harmonic measure
of an arc as a certain angle.

Theorem 2.2.3. Let a, φ and E be as in lemma 2.2.2. Let eiφj be the second intersection
with ∂D of the line lj passing through the points eiθj and a (eiθj is the first intersection).
Let τ be the length of [eiφ1 , eiφ2 ]∂D (i.e. τ = φ2 − φ1) or equivalently the interior angle
at 0 of S(0, [eiφ1 , eiφ2 ]∂D)). Then

τ = 2φ− (θ2 − θ1). (2.2.8)

Together with lemma 2.2.2 this implies

τ

2π
= ω(a,E,D). (2.2.9)

Proof. Let L be the line segment connecting eiθ1 with eiθ2 . Then D\L has two connected
components. Assume a does not lie in the component of E. This is implies φ < π.
Assume in addition θ := θ2 − θ1 < π and τ < π.
The picture shows the situation under these assumptions

12
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a0

eiθ1

eiθ2

E

eiφ1

eiφ2

φ

τ

θ

ρα

α

ρβ

β

φ

ψ

ψ

L

Observe that the blue and red triangle are similar, thus the labelling of the angles,
appearing in the coloured triangles, is correct. In addition we have

α =
π

2
− θ

2
, (2.2.10)

β =
π

2
− τ

2
, (2.2.11)

ψ = α+ β − ρ, (2.2.12)

ρ = π − φ− ψ. (2.2.13)

Equations (2.2.10) and (2.2.11) are clear, as the defining triangles are isosceles. Similarly
(2.2.12) follows since the triangle defined by the points eiφ2 , 0, eiθ2 is isosceles. Finally
(2.2.13) just uses the fact that the angular sum in a triangle is π.
Using these equations we may derive

ρ = π − φ− α− β + ρ use (2.2.12), (2.2.13)

⇔ 0 = π − φ− π

2
+
θ

2
− π

2
+
τ

2
(2.2.10), (2.2.11)

⇔ τ = 2φ− θ

13



Chapter 2. The harmonic measure

If some of the angles that were assumed to be less than π are actually larger, an analogous
argumentation using their respective complementary angles leads to the same result. If
φ = π, which happens if and only if eiθj and a lie on the same line, we get eiφ1 = eiθ2

and eiφ2 = eiθ1 . Thus τ = 2π − (θ2 − θ1) = 2φ− (θ2 − θ1) in this case as well.

2.3 Construction for Jordan domains

In this section we will construct harmonic measures for more general domains Ω. The
construction is based upon the existence of biholomorphic maps from Ω to D which
extend to homeomorphisms of the respective closures. In view of the Riemann mapping
theorem 1.0.15, it is necessary to assume Ω to be simply connected to ensure the existence
of biholomorphic maps to the unit disc. In order to be able to extend such mappings to
homeomorphisms of the closures we have to make sure that the boundary is “sufficiently
nice”. The next definition tells what is meant by that.

Definition A simply connected domain in C whose boundary is a Jordan curve (i.e.
homeomorphic to S1) is called a Jordan domain.

The next theorem shows that it is possible to derive the aspired result for Jordan
domains. The respective proof of the theorem as well as the subsequent construction are
taken from [7, I.3. Carathéodory’s theorem, p. 13-16].

Theorem 2.3.1 (Charathéodory’s theorem). Let φ be a biholomorphic map from the
unit disc D onto a Jordan domain Ω. Then φ has a continuous extension to D, and the
extension is bijective from D to Ω.

Proof. Let ζ ∈ ∂D. First a continuous extension at ζ is constructed. For 0 < δ < 1
define γδ := (∂B(ζ, δ)) ∩ D. Then φ(γδ) is a Jordan arc, i.e. homeomorphic to (0, 1),
with length

L(δ) =

∫
γδ

|φ′(z)|ds =

∫ tδ2

tδ1

|φ′(ζ + δeit)|δdt,

where 0 ≤ tδ1 < tδ2 < 2π are the solutions of |ζ + δeit| = 1. An application of the
Cauchy-Schwarz inequality yields

L(δ)2 =

(∫ tδ2

tδ1

|φ′(ζ + δeit)|δdt

)2

≤

(∫ tδ2

tδ1

|φ′(ζ + δeit)|2δ2dt

)(∫ tδ2

tδ1

dt

)

≤ πδ
∫
γδ

|φ′(z)|2ds.

14



2.3. Construction for Jordan domains

Therefore ρ < 1, ∫ ρ

0

L(δ)2

δ
dδ ≤ π

∫ ρ

0

∫ tδ2

tδ1

|φ′(ζ + δeit)|2δdtdδ

= π

∫
B(ζ,ρ)∩D

|φ′(z)|2dxdy

= πArea(φ(B(ζ, ρ) ∩ D)) <∞.

But this implies the existence of a null sequence δn with L(δn)→ 0 as n→∞. Otherwise

L(δ) ≥ C > 0 for sufficiently small δ, but then
∫ ρ

0
L(δ)2

δ dδ ≥
∫ ρ

0
C2

δ dδ = ∞ being a
contradiction to the above integrability condition.

Let αn and βn be the endpoints of φ(γδn), then αn, βn ∈ Ω. They lie in ∂Ω. Note
that

|αn − βn| ≤ L(δn). (2.3.14)

Define for a subset U of C the diameter of U as diam(U) := sup{|x − y| : x, y ∈
U}. Denote by σn the closed subarc of ∂Ω connecting the two points αn, βn having
smaller diameter (there exist exactly two subarcs connecting the two points). Since ∂Ω
is homeomorphic to ∂D by assumption and by (2.3.14) it follows that diam(σn) tends to
0. Define Un to be the bounded connected component of C\(φ(γδn)∪ σn); this notion is
well defined because of the Jordan curve theorem. It immediately follows that diam(∂Un)
tends to 0 and therefore also

diam(Un)→ 0 (2.3.15)

for n → ∞. Since Un is connected, either φ(D\B(ζ, δn)) = Un or φ(B(ζ, δn) ∩ D) =
Un. But the first possibility cannot hold for large n since in this case diam(Un) ≥
diam(φ(B(0, 1

2))) > 0 contradicting (2.3.15). Thus diam(φ(B(ζ, δn) ∩ D))→ 0. Since in
addition φ(B(ζ, δn+1) ∩ D) ⊆ φ(B(ζ, δn) ∩ D) for all n, it follows∣∣∣∣∣⋂

n∈N
φ(B(ζ, δn) ∩ D)

∣∣∣∣∣ = 1 (2.3.16)

and we define that one point to be φ(ζ). As by (2.3.15) {Un : n ∈ N} forms a neigh-
bourhood basis it thus follows that the extension of φ to D∪ {ζ} is continuous. Use the
same construction for all points ζ ∈ ∂D. This procedure defines a continuous function
on D.

It is still left to show the bijectivity of the extended function. We show surjectivity
first: Since φ is continuous and φ(D) = Ω, it immediately follows φ(D) ⊆ φ(D) = Ω.
But since D is compact it also follows φ(D) ⊇ φ(D); let y∞ ∈ φ(D) then y∞ is the limit
of some convergent sequence yn = φ(xn) ∈ φ(D), the sequence (xn) has a convergent
subsequence (with limit x∞ ∈ D) due to compactness, which shows that φ(x∞) = y∞.

It is still left to prove injectivity: Assume the contrary, i.e. there are distinct points
ζ1, ζ2 ∈ ∂D with φ(ζ1) = φ(ζ2). Denote by W the interior of the Jordan curve

{φ(rζ1) : 0 ≤ r ≤ 1} ∪ {φ(rζ2) : 0 ≤ r ≤ 1}

15



Chapter 2. The harmonic measure

which is connected. Thus φ−1(W ) is one of the two connected components of

D\ ({rζ1 : 0 ≤ r ≤ 1} ∪ {rζ2 : 0 ≤ r ≤ 1}) .

Note that φ(∂D ∩ ∂φ−1(W )) ⊆ ∂W ∩ ∂Ω = {φ(ζ1)}. This shows that φ is actually
constant on a subarc of ∂D. The Schwarz reflection principle thus implies that φ is
constant, contradicting the assumption that φ is biholomorphic. Therefore φ has to be
injective on D.

So let now Ω be a Jordan domain and φ : D → Ω be a homeomorphism that is
biholomorphic between D and Ω. Having these ingredients, it is possible to derive a
solution of the Dirichlet problem for Ω:

Take f ∈ C(∂Ω), then f ◦ φ ∈ C(∂D). By the considerations of section 2.1, we find
a solution

uf◦φ(z) =
1

2πi

∫
∂D

f ◦ φ(ζ)

ζ

1− |z|2

|ζ − z|2
dζ.

Thus a solution for the initial boundary condition f is given by

uf (z) =
1

2πi

∫
∂D

f ◦ φ(ζ)

ζ

1− |φ−1(z)|2

|ζ − φ−1(z)|2
dζ = uf◦φ(φ−1(z)). (2.3.17)

Then for z ∈ Ω and a Borel set E ⊆ ∂Ω we set

ω(z, E,Ω) := ω(φ−1(z), φ−1(E),D) =
1

2πi

∫
φ−1(E)

1− |φ−1(z)|2

ζ|ζ − φ−1(z)|2
dζ. (2.3.18)

For fixed z the above notion (2.3.18) is a Borel measure on ∂Ω. With this definition we
can reformulate (2.3.17) as follows

uf (z) =

∫
∂Ω
f(ζ)dω(z, ζ,Ω). (2.3.19)

Thus we have found a solution of the Dirichlet problem for Ω by the means of a measure
on ∂Ω. By the maximum principle it follows that the measure is actually independent
of the chosen map φ.

2.4 Two constants theorem

The aspired result of this section consists of a sharpened maximum principle for analytic
functions. Take for example an analytic function f on D that has a continuous extension
to D. Suppose |f | ≤ m on some large subset E of the boundary and |f | ≤ M on the
whole boundary, where m is small and M is large. The maximum principle 1.0.9 tells us
that |f | is bounded by M on the whole disc. The intuition suggests that for z close to E,
|f(z)| should be affected mostly by the the boundary behaviour on E, i.e. |f(z)| ≤ m+ε
for some small ε. The two constants theorem makes that intuition precise. The following
theorems and their proofs are taken from [9, VII B, p. 256-257].

The two constants theorem is a corollary of the following theorem.
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Theorem 2.4.1. Let Ω be a Jordan domain and f a continuous function on Ω that is
analytic on Ω. Then for z ∈ Ω

log |f(z)| ≤
∫
∂Ω

log |f(ζ)|dω(z, ζ,Ω). (2.4.20)

Proof. Define for M > 0 and z ∈ Ω

VM (z) := max(log |f(z)|,−M).

Since constant functions are clearly subharmonic, log |f | is subharmonic by lemma 1.0.3
and max preserves subharmonicity, we get that VM is subharmonic on Ω. Since log |f |
is continuous on Ω\Nf , where Nf is the set of zeros of f , we immediately get that VM is
continuous on Ω. Since the harmonic measure serves for solving the Dirichlet problem
for Ω and VM is continuous on the boundary, we have that

z 7→
∫
∂Ω
VM (ζ)dω(z, ζ,Ω)

is harmonic on Ω and coincides with VM on the boundary by theorem 2.1.1. Therefore

gM (z) := VM (z)−
∫
∂Ω
VM (ζ)dω(z, ζ,Ω)

is subharmonic on Ω by lemma 1.0.3 and continuous up to the boundary. But by
construction gM (ζ) = 0 for all ζ ∈ ∂Ω. By the maximum principle, see lemma 1.0.3, we
therefore conclude that gM ≤ 0 on Ω. Thus we have for z ∈ Ω

log |f(z)| ≤ VM (z) ≤
∫
∂Ω
VM (ζ)dω(z, ζ,Ω).

Now let M → ∞, then the right hand side tends to
∫
∂Ω log |f(ζ)|dω(z, ζ,Ω). This can

be seen as follows:

For a function f with values in the extended reals (i.e. ±∞ are allowed as values), we
set f+ := max(f, 0), f− := −min(f, 0). For all ζ ∈ ∂Ω, we have V +

M (ζ) = (log |f(ζ)|)+

for all M ≥ 0. And V +
M is bounded on ∂Ω by continuity of V +

M and compactness
of the boundary of a Jordan domain. Thus V +

M is integrable on ∂Ω and the integral
equals

∫
∂Ω(log |f(ζ)|)+dω(z, ζ,Ω). In addition V −M (ζ) is increasing in M for each fixed

ζ ∈ ∂Ω and its pointwise limit is (log |f(ζ)|)−. Thus an application of the monotone
convergence theorem (see [13, 1.26, p. 26] for details) yields that

∫
∂Ω V

−
M (ζ)dω(z, ζ,Ω)

tends to
∫
∂Ω(log |f(ζ)|)−dω(z, ζ,Ω) as M →∞. This implies the statement.

We can finally prove the two constants theorem, which is now an easy task as we
have already shown theorem 2.4.1.
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Chapter 2. The harmonic measure

Theorem 2.4.2 (Two constants theorem). Let Ω be a Jordan domain and f a contin-
uous function on Ω that is analytic on Ω. Suppose |f(ζ)| ≤ m for ζ ∈ E ⊆ ∂Ω, where E
is Borel, and |f(ζ)| ≤M for ζ ∈ ∂Ω. Then for z ∈ Ω

|f(z)| ≤ mω(z,E,Ω)M1−ω(z,E,Ω) (2.4.21)

Proof. Theorem 2.4.1 implies

|f(z)| ≤ exp

(∫
∂Ω

log |f(ζ)|dω(z, ζ,Ω)

)
≤ exp

(∫
∂Ω

(logm)χE + (logM)χ∂Ω\Edω(z, ζ,Ω)

)
= exp ((logm)ω(z, E,Ω) + (logM)(1− ω(z, E,Ω)))

= mω(z,E,Ω)M1−ω(z,E,Ω)

where χE denotes the characteristic function of E.

Remark 2.4.3. It is clear from the proof that the two constants theorem can easily be
generalized to an “n constants theorem”:

Given a partition of ∂Ω into Borel sets Ej for j = 1, . . . , n and respective bounds mj

of |f |, we get

|f(z)| ≤
n∏
j=1

m
ω(z,Ej ,Ω)
j .

2.5 Special unbounded domains

Although all considerations concerning the harmonic measure up to this point only dealt
with bounded domains, it is also possible to derive similar results for many unbounded
domains. The goal of this chapter is to show that the two constants theorem can be
applied to special unbounded domains and (special) analytic functions.

Lemma 2.5.1. Let Ω ⊆ C be a (possibly unbounded) domain. Suppose there ex-
ists a biholomorphic map φ : Ω → D which extends to a homeomorphism from Ω to
D\{ζ1, . . . , ζn} for some ζj ∈ ∂D. Then for each f ∈ C0(Ω) that is analytic on Ω, let f̃
be defined as

f̃(z) :=

 f ◦ φ−1(z) , z ∈ D\{ζ1, . . . , ζn}

0 , z ∈ {ζ1, . . . , ζn}.

Then f̃ ∈ C(D) and is analytic on D.

Proof. Continuity on D\{ζ1, . . . , ζn} and analyticity on D of f̃ are clear from the defini-
tion. So it is left to show continuity at the points ζj :
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As the continuous image of a compact set is compact, it follows that φ(Ω∩B(0,m))
is compactly contained in D\{ζ1, . . . , ζn} for all m ∈ N. Thus there is rm > 0 such that

φ(Ω ∩B(0,m)) ⊆ D\
n⋃
i=1

B(ζi, rm). (2.5.22)

Let (zn)n be a sequence in D\{ζ1, . . . , ζn} converging to ζj for some j. This implies
that |φ−1(zn)| has to eventually leave every compact set due to (2.5.22), in other words
|φ−1(zn)| → ∞. This immediately gives continuity of f̃ at the points ζj , since f ∈
C0(Ω).

Therefore we may apply the two constants theorem 2.4.2 to the function f̃ and derive

|f̃(z)| ≤ mω(z,Ẽ,D)M1−ω(z,Ẽ,D)

where m and M bound |f̃ | on Ẽ and ∂D respectively. If bounds m,M of the initial
function f are known on some set E ⊆ ∂Ω, these bounds are valid for f̃ on φ(E). Thus
it follows

|f(z)| = |f ◦ φ−1(φ(z))| ≤ mω(φ(z),φ(E),D)M1−ω(φ(z),φ(E),D).

Therefore we have shown

Lemma 2.5.2 (Two constants theorem for unbounded domains). Let f,Ω, φ be as in
lemma 2.5.1. Let E ⊆ ∂Ω be a Borel set with

|f(z)| ≤ m ∀z ∈ E, |f(z)| ≤M ∀z ∈ ∂Ω.

Then
|f(z)| ≤ mω(φ(z),φ(E),D)M1−ω(φ(z),φ(E),D).

As we want to apply the two constants theorem for unbounded domains, we have to
examine whether a given Ω has the necessary properties to apply lemma 2.5.2. The pro-
totypical examples are simply connected domains with smooth boundary such that the
number of connected components of Ω\B(0,m) tends to some n ∈ N, where n determines
the number of ζj needed to construct a homeomorphism from Ω to D\{ζ1, . . . , ζn}.

The easiest examples for such domains, and the only ones needed later on, are the
upper half plane H and open strips. To see this we need to construct suitable functions
φ in these cases. For the upper half plane H we define (the so-called Cayley mapping)

φ(z) :=
z − i
z + i

. (2.5.23)

Then φ is biholomorphic from H to D and extends (by using the same definition for
z ∈ ∂H = R) to a homeomorphism from H to D\{1}:

φ is clearly analytic as the quotient of analytic functions with non vanishing de-
nominator. Its inverse is given by φ−1(z) := i1+z

1−z , which is analytic due to the same

reason. By using these definitions for functions defined on H and D\{1} respectively, it
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Chapter 2. The harmonic measure

immediately follows that φ extends to a homeomorphism.

Using this function we can also define a suitable function φ̃ : S → D, where S :=
{z ∈ C : 0 < =(z) < h} for some h > 0. Observe that ψ : S → H defined as z 7→ eπ

z
h

is a biholomorphic map from S to H which extends to a homeomorphism from S to
H\{0}. As the restriction to H\{0} of the above φ is a homeomorphism from H\{0}
to D\{−1, 1}, the composition φ ◦ ψ defines a suitable homeomorphism for S. Thus we
have found a function

φ̃(z) := φ ◦ ψ(z) =
eπ

z
h − i

eπ
z
h + i

which is biholomorphic between S and D and a homeomorphism between S and D\{−1, 1}.

Therefore we can apply the lemma 2.5.2 to analytic functions, vanishing at infinity,
defined on H and S.
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3 Characterization of smooth function classes by

asymptotically holomorphic extensions

This chapter gives a first and important example for the strength of the technique of
asymptotically holomorphic extensions:

We characterize the class of smooth functions (C∞(R)) and ultradifferentiable func-
tion classes defined by a regular weight sequence (C{Mn}(R)) (compare the correspond-
ing section 3.2 for the definition and elementary properties) by the existence of extensions
to C with rapidly decreasing derivative with respect to z. The speed of decay of the
derivative with respect to z of such an extension then determines the regularity of the
given function defined on R.

3.1 Characterization of C∞

The following considerations are taken from [6, p. 46-47]. Let f ∈ C∞(R) and z = x+iy.
Then the function

Fn(z) := Tnx (f, z) =
n∑
k=0

f (k)(x)
(iy)k

k!

defines a smooth extension of f to C with

∂Fn(z) =
1

2
f (n+1)(x)

(iy)n

n!
.

Therefore we get for each compact set K ⊆ R the existence of CK,n > 0 such that

|∂Fn(z)| ≤ CK,n|y|n for all x ∈ K. (3.1.1)

Having an extension Fn with property (3.1.1) for all n already characterizes smoothness
of a function:

Suppose we have for a given n ∈ N an extension Fn with property (3.1.1). Let I be
a bounded open interval in R. For x ∈ I we thus have C > 0 such that |∂Fn(x+ iy)| ≤
C|y|n. Cauchy’s integral formula (see theorem 1.0.11) implies for x ∈ I

f(x) =
1

2πi

∫
∂(I+i[−1,1])

Fn(ζ)

ζ − x
dζ +

1

2πi

∫
I+i[−1,1]

∂Fn(ζ)

ζ − x
dζ ∧ dζ.

Now we show that both summands in the above representation are (n− 1)-times differ-
entiable on I:

For the first summand this is clear by differentiating under the integral sign with
respect to x; apply the dominated convergence theorem to see that this is legitimate.
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For the second summand, we call it gn(x), we have for x, x0 ∈ I with x 6= x0

gn(x)− gn(x0)

x− x0
=

1

2πi

∫
I+i[−1,1]

∂Fn(ζ)

(ζ − x)(ζ − x0)
dζ ∧ dζ. (3.1.2)

Observe that |ζ−x| ≥ |η|, where we wrote η = =(ζ). By assumption
∣∣∣ ∂Fn(ζ)

(ζ−x)(ζ−x0)

∣∣∣ ≤ C|η|n
|η|2

for all ζ ∈ I+i[−1, 1]. As C|η|n
|η|2 = C|η|n−2 is integrable on I+i[−1, 1] (for n ≥ 2), we can

apply the dominated convergence theorem to derive that we can interchange limx→x0
and integration in equation (3.1.2). Thus we get for x ∈ I

g′n(x) =
1

2πi

∫
I+i[−1,1]

∂Fn(ζ)

(ζ − x)2
dζ ∧ dζ.

This argument can be iterated another (n− 2) times, showing that f is actually (n− 1)
times differentiable if an extension Fn of the above form exists; see the proof of theorem
3.2.4 for details.

Remark 3.1.1. In [10, Lemma 0, p. 116] a single extension is constructed whose
derivative with respect to z vanishes to infinite order on R, i.e. an extension F which
fulfils (3.1.1) for all n ∈ N.

3.2 Characterization of C{Mn}
First we need to define the classes under consideration:

Given an increasing sequence of positive numbers (Mn)∞n=0, called weight sequence,
and an open set U ⊆ R we will denote

C{Mn}(U) :=

{
f ∈ C∞(U) : ∀K ⊂⊂ U ∃B > 0 : ||f ||K,B := sup

n≥0, x∈K

|f (n)(x)|
BnMn

<∞

}
and call it a Denjoy-Carleman class; we will write DC class. We will also need a similar
concept defined as follows

Cgl{Mn}(U) :=

{
f ∈ C∞(U) : ∃B > 0 : ||f ||U,B := sup

n≥0, x∈U

|f (n)(x)|
BnMn

<∞

}
and call it a global Denjoy-Carleman class.

In addition we will write mn := Mn
n! . In order to derive some useful properties of the

respective DC class we will only deal with so called regular weight sequences. Those
are weight sequences with the following additional assumptions

m1/n
n

n→∞→ ∞, (3.2.3)

sup
n∈N

(
mn+1

mn

)1/n

<∞, (3.2.4)

m2
n ≤ mn−1mn+1 ∀n ∈ N. (3.2.5)
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3.2. Characterization of C{Mn}

A DC class defined by a regular weight sequence (Mn) is called a regular DC class.
Condition (3.2.3) ensures that the analytic functions are a proper subset of a regular
class, which follows easily from [13, Theorem 19.9, p.378]. Condition (3.2.4) clearly
gives C {Mn+1} = C {Mn} which implies that regular classes are derivation closed.
Condition (3.2.5) is referred to as strong logarithmic convexity of the sequence (Mn),
i.e. logarithmic convexity of (mn). Strong logarithmic convexity implies logarithmic
convexity which states

M2
n ≤Mn−1Mn+1 ∀n ∈ N.

From now on we assume that conditions (3.2.3), (3.2.4) and (3.2.5) are satisfied.

For a given weight sequence we define an associated weight function h by

h(r) := inf{mnr
n : n ≥ 0} for r ≥ 0.

As h is by definition the infimum of a family of increasing functions, h is increasing. In
addition we have h(0) = 0.

As the sequence
(

mn
mn+1

)
is decreasing due to (3.2.5) and tending to 0 due to (3.2.3),

we can define

K(r) := max

{
n ∈ N : r ≤ mn

mn+1

}
for 0 < r ≤ m0

m1
.

For n ≤ K(r) we have by definition mn
mn+1

≥ r. This is equivalent to mnr
n ≥ mn+1r

n+1;

moreover mnr
n > mn+1r

n+1 for r < mn
mn+1

. For n > K(r) we have again by definition
mn
mn+1

< r which is equivalent to mnr
n < mn+1r

n+1. This shows that the sequence

(rnmn)n is decreasing for n ≤ K(r) and increasing for n > K(r), thus it attains its

minimum at n = K(r) + 1. This now shows that for r ∈
(
mn+1

mn+2
, mn
mn+1

]
h(r) = mn+1r

n+1, (3.2.6)

and for r > m0
m1

h(r) = m0. (3.2.7)

In particular, h is smooth except points of the form rn = mn
mn+1

. In addition a direct
computation shows that h is continuous.

Since h(r) ≤ mnr
n for all r and all n by definition and h(rn) = mnr

n
n, we get

mn = sup
r>0

h(r)

rn
for all n ≥ 0. (3.2.8)

In addition we have for 0 < b ≤ 1 and B > 1 and sufficiently small t

bh(t) ≥ h(bt), (3.2.9)

Bh(t) ≤ h(Bt). (3.2.10)
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Chapter 3. Characterization of smooth function classes

And
h(t)

t
≤ h(Dt) (3.2.11)

for all t > 0, where D is chosen sufficiently large such that mn+1 ≤ Dnmn for all n; the
existence of a suitable D is ensured by property (3.2.4).

In the proof of theorem 3.2.2 we will need a function N defined as

N(r) := min {n ∈ N : h(r) = mnr
n} . (3.2.12)

In other words, N(r) denotes the smallest n with mn
mn+1

≤ r. It is easy to see that N is
decreasing.

Before proving the existence of almost holomorphic extensions we need an auxiliary
result. Lemma 3.2.1 and the subsequent theorem 3.2.2 are taken from [5, p. 41].

Lemma 3.2.1. Let f ∈ Cgl{Mn}(R), and for ξ ∈ R, z ∈ C and n ∈ N define

Tnξ (f, z) :=
n∑
k=0

f (k)(ξ)
(z − ξ)k

k!
.

Then, for ξ1, ξ2 ∈ R, we have∣∣Tnξ1(f, z)− Tnξ2(f, z)
∣∣ ≤ ||f ||R,BBn+1mn+1(|ξ1 − ξ2|+ |z − ξ1|)n+1 (3.2.13)

for any B > 0 with ||f ||R,B <∞.

Proof. Assume w.l.o.g. ξ1 ≤ ξ2. We use Taylor’s formula to rewrite Tnξ2(f, z) as follows

Tnξ2(f, z) =
n∑
k=0

f (k)(ξ2)
(z − ξ2)k

k!

=
n∑
k=0

 n∑
j=k

f (j)(ξ1)
(ξ2 − ξ1)j−k

(j − k)!

+ f (n+1)(ξ(k))
(ξ2 − ξ1)n+1−k

(n+ 1− k)!

 (z − ξ2)k

k!

=

 n∑
j=0

f (j)(ξ1)

j∑
k=0

(ξ2 − ξ1)j−k

(j − k)!

(z − ξ2)k

k!

+

n∑
k=0

f (n+1)(ξ(k))
(ξ2 − ξ1)n+1−k

(n+ 1− k)!

(z − ξ2)k

k!

=

n∑
j=0

f (j)(ξ1)
(z − ξ1)j

j!︸ ︷︷ ︸
=Tnξ1

(f,z)

+

n∑
k=0

f (n+1)(ξ(k))
(ξ2 − ξ1)n+1−k

(n+ 1− k)!

(z − ξ2)k

k!

where ξ(k) ∈ (ξ1, ξ2). We used the binomial theorem to derive the last line.
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3.2. Characterization of C{Mn}

Observe that there exists B > 0 such that |f (n+1)(ξ(k))| ≤ ||f ||R,BBn+1Mn+1 < ∞
for all k. Therefore

∣∣Tnξ1(f, z)− Tnξ2(f, z)
∣∣ =

∣∣∣∣∣
n∑
k=0

f (n+1)(ξ(k))
(ξ2 − ξ1)n+1−k

(n+ 1− k)!

(z − ξ2)k

k!

∣∣∣∣∣
≤ ||f ||R,BBn+1Mn+1

n∑
k=0

|ξ2 − ξ1|n+1−k

(n+ 1− k)!

|z − ξ2|k

k!

= ||f ||R,BBn+1 Mn+1

(n+ 1)!︸ ︷︷ ︸
=mn+1

(|ξ2 − ξ1|+ |z − ξ2|)n+1.

Again we used the binomial theorem to derive the last line.

Theorem 3.2.2. Let f ∈ Cgl{Mn}(R), then there exists F ∈ C∞(C) with F |R = f and
constants B,C > 0 such that for all z = x+ iy ∈ C∣∣∂F (z)

∣∣ ≤ Ch(B|y|).

In addition F can be chosen to be bounded and to have globally bounded partial derivatives
of first order.

Proof. Assume w.l.o.g. ||f ||R,1 <∞; this is no restriction because if ||f ||R,B <∞, then,
for g(x) := f(B−1x) we have ||g||R,1 = ||f ||R,B < ∞. If G is an extension of g, then
F (z) := G(Bz) is the required extension of F .

For z = x+ iy ∈ C\R define

G(z) := TN(2|y|)
x (f, z),

where N is defined as in (3.2.12). Observe that as all notions involved in the definition
of G are measurable, G is measurable.

In addition G is locally bounded: For ζ = ξ + iη ∈ B(z, |y|2 ) we have |y|2 ≤ |η| ≤
3|y|
2 ,

thus N(|y|) ≥ N(2|η|), and hence

|G(ζ)| ≤ max
n≤N(|y|)

sup
ζ∈B(z,|y|/2)

|Tnξ (f, ζ)| <∞.

Let ψ be a smooth, non-negative and radially symmetric function defined on C with
supp(ψ) ⊆ D and ∫

C
ψ(z)dx ∧ dy = 1.

We claim that the extension defined by

F (z) :=

 f(z) , z ∈ R,
4
y2

∫
C ψ

(
2 ζ−zy

)
G(ζ)dξ ∧ dη , z ∈ C\R.
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Chapter 3. Characterization of smooth function classes

is as required.

Observe that the integrand in the above definition of F (z) is constant zero for ζ /∈
B(z, |y|2 ). Since the integrand is smooth in z for all ζ and since G is locally bounded, it
follows that F is smooth on C\R. In addition

4

y2

∫
C
ψ

(
2
ζ − z
y

)
ζkdξ ∧ dη =

∫
C
ψ (ζ)

(y
2
ζ + z

)k
dξ ∧ dη

=

∫
B(0,1)

ψ (ζ)
(y

2
ζ + z

)k
dξ ∧ dη

=

∫ 1

0
ψ(r)r

∫ 2π

0
(
y

2
reiφ + z)kdφdr

=

∫ 1

0
ψ(r)r

1

i

∫
∂B(z, y

2
r)

ζk

ζ − z
dζdr

=

∫ 1

0
ψ(r)r2πzkdr

= zk
∫
C
ψ(ζ)dξ ∧ dη = zk.

By linearity of the integral it thus follows for an arbitrary polynomial p

4

y2

∫
C
ψ

(
2
ζ − z
y

)
p(ζ)dξ ∧ dη = p(z).

Now set p(z) = Tnx0(f, z) for an arbitrary x0 ∈ R which implies

F (z) = Tnx0(f, z) +
4

y2

∫
C
ψ

(
2
ζ − z
y

)
(G(ζ)− Tnx0(f, ζ))dξ ∧ dη, (3.2.14)

and applying ∂ to the above equality yields

∂F (z) = ∂(Tnx0(f, z))︸ ︷︷ ︸
=0

+

∫
C
∂

(
4

y2
ψ

(
2
ζ − z
y

))
(G(ζ)− Tnx0(f, ζ))dξ ∧ dη.

Now let x0 = x, which leads to

∂F (z) =

∫
C
∂

(
4

y2
ψ

(
2
ζ − z
y

))
(G(ζ)− Tnx (f, ζ))dξ ∧ dη; (3.2.15)

observe that Tnx (f, ζ) is not in the scope of the ∂-operator.

Computing the partial derivatives with respective to x and y separately and adding
their respective absolute values immediately implies that∣∣∣∣∂ ( 4

y2
ψ

(
2
ζ − z
y

))∣∣∣∣ ≤ A

|y|3
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3.2. Characterization of C{Mn}

for some positive A. Therefore we get by using the representation (3.2.15)

|∂F (z)| ≤ A

|y|3

∫
B(z,

|y|
2

)
|G(ζ)− Tnx (f, ζ)|dξ ∧ dη

≤ C̃

|y|
sup

ζ∈B(z,
|y|
2

)

|G(ζ)− Tnx (f, ζ)|
(3.2.16)

which holds for arbitrary n ∈ N.
For ζ = ξ+ iη ∈ B(z, |y|2 ), we have |ξ−x| ≤ |y|2 and |η| ≤ 3

2 |y|, so by applying lemma
3.2.1 we get for all n∣∣Tnξ (f, ζ)− Tnx (f, ζ)

∣∣ ≤ ||f ||R,1mn+1(|ξ − x|+ |ζ − ξ|)n+1

≤ ||f ||R,1mn+1(2|y|)n+1.
(3.2.17)

Now let n = N(4|y|)− 1. Then we have for ζ ∈ B(z, |y|2 )

|G(ζ)− Tnx (f, ζ)| ≤ |TN(2|η|)
ξ (f, ζ)− Tnξ (f, ζ)|+ |Tnξ (f, ζ)− Tnx (f, ζ)|.

We estimate the summands separately. By (3.2.17) and the definition of n (see also
(3.2.12))

|Tnξ (f, ζ)− Tnx (f, ζ)| ≤ ||f ||R,1mn+1(4|y|)n+1 ≤ ||f ||R,1h(4|y|). (3.2.18)

Recall that N is decreasing, the sequence (rnmn)n is decreasing for n ≤ N(r), and
2|η| ≤ 3|y| ≤ 4|y|. Thus we get for the other summand

|TN(2|η|)
ξ (f, ζ)− Tnξ (f, ζ)| ≤

N(2|η|)∑
k=n+1

|f (k)(ξ)| |η|
k

k!

≤ ||f ||R,1
N(2|η|)∑
k=n+1

mk|η|k

= ||f ||R,1
N(2|η|)∑
k=n+1

mk(2|η|)k
1

2k

≤ ||f ||R,1mn+1(2|η|)n+1
∞∑
k=1

1

2k

= ||f ||R,1mn+1(2|η|)n+1

≤ ||f ||R,1mn+1(4|y|)n+1 = ||f ||R,1h(4|y|).

(3.2.19)

Together with (3.2.18) this shows that for ζ ∈ B(z, |y|2 ),

|G(ζ)− Tnx (f, ζ)| ≤ 2||f ||R,1h(4|y|)
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Chapter 3. Characterization of smooth function classes

for n = N(4|y|)− 1.
Thus we may continue to estimate (3.2.16) and get

|∂F (z)| ≤ 2C̃

|y|
||f ||R,1h(4|y|).

As by (3.2.11) there is a constant D such that h(t)
t ≤ h(Dt), there exist positive constants

B,C such that
|∂F (z)| ≤ Ch(B|y|). (3.2.20)

It remains to show that F is smooth on R. A similar argument shows that |F (z) −
Tnx (f, z)| = o(|y|n) as |y| → 0 for all n: For given n we get for sufficiently small t that
N(2t) ≥ n+ 1. By (3.2.14), there is a constant K > 0 such that

|F (z)− Tnx (f, z)| ≤ K sup
ζ∈B(z,

|y|
2

)

|G(ζ)− Tnx (f, z)|

≤ K sup
ζ∈B(z,

|y|
2

)

(
|Tnξ (f, ζ)− Tnx (f, ζ)|+ |TN(2|η|)

ξ (f, ζ)− Tnξ (f, ζ)|
)

≤ K||f ||R,1mn+1

(
(2|y|)n+1 + (4|y|)n+1

)
≤ K||f ||R,1mn+1(6|y|)n+1

(3.2.21)

for sufficiently small |y|. We used (3.2.17) and (3.2.19) to derive the third inequality.
This implies that F is actually n-times differentiable at points z ∈ R.

Now we modify the given extension F to get a new extension which has the ad-
ditional boundedness properties. If we set n = 0 in (3.2.21), we get |F (z) − f(x)| ≤
K||f ||R,1m1(6|y|) for z = x+ iy ∈ C with sufficiently small imaginary part. This shows
that for z in some small open strip S ⊇ R with height l

|F (z)| ≤ K||f ||R,1m1(6|y|) + ||f ||R,1M0. (3.2.22)

Let ρ ∈ C∞(R) be non-negative, compactly supported in (−l, l) and constant 1 on a
small neighbourhood around 0. Then we define a new extension by F̃ (z) := F (z)ρ(y).
It can be easily verified that F̃ is again an extension of f with property (3.2.20) (with
different constants B̃, C̃). (3.2.22) immediately implies that F̃ is bounded.

Global boundedness of the partial derivatives of F̃ follows by a similar version of
(3.2.16) for n = 1 where ∂ is replaced by ∂

∂x and ∂
∂y , and a subsequent analogous

argumentation.

Remark 3.2.3. It is also possible to prove a local form of the above theorem (see [5,
Theorem 2, p. 41]):

Let f ∈ C{Mn}(U), for some open U ⊆ R, and h the associated weight function.
Then for all compact sets K ⊆ U there exists a continuously differentiable, compactly
supported function FK defined on C with FK |K = f |K and positive constants BK , CK
such that ∣∣∂FK(z)

∣∣ ≤ CKh(BKρ(z,K))

for all z ∈ C, where ρ(z,K) := inf{|z − w| : w ∈ K}.

28



3.2. Characterization of C{Mn}

The next theorem gives the converse direction. It is a special case of [5, Theorem 4,
p. 44].

Theorem 3.2.4. Let F ∈ C1(C) be bounded and suppose there are positive constants
B,C such that

|∂F (z)| ≤ Ch(B|y|)

for all z ∈ C. Then f := F |R ∈ Cgl{Mn}(R).

Proof. Let m ∈ Z. Then for |x − m| < 1 we have the following representation (see
theorem 1.0.11)

f(x) =
1

2πi

∫
∂B(m,2)

F (ζ)

ζ − x
dζ︸ ︷︷ ︸

=:h(x)

+
1

2πi

∫
B(m,2)

∂F (ζ)

ζ − x
dζ ∧ dζ︸ ︷︷ ︸

=:g(x)

.

It is clear that the first summand is smooth on (m− 1,m+ 1) and we get for all n ∈ N
and x ∈ (m− 1,m+ 1)

h(n)(x) =
n!

2πi

∫
∂B(m,2)

F (ζ)

(ζ − x)n+1
dζ.

For g we proceed inductively. Suppose we have already shown for some n ∈ N and all
x ∈ (m− 1,m+ 1)

g(n)(x) =
n!

2πi

∫
B(m,2)

∂F (ζ)

(ζ − x)n+1
dζ ∧ dζ.

Then take some fixed x0 ∈ (m−1,m+1) and an arbitrary sequence (xk)k (with |xk−m| <
1 for all k) converging to x0. Then we get

g(n)(xk)− g(n)(x0)

xk − x0
=

n!

2πi

∫
B(m,2)

1

xk − x0
∂F (ζ)

(
1

(ζ − xk)n+1
− 1

(ζ − x0)n+1

)
︸ ︷︷ ︸

=:τk(ζ)

dζ ∧ dζ

and observe that for all ζ ∈ C we have

τk(ζ) =
1

xk − x0
∂F (ζ)

(∑n
j=0

(
n+1
j

)
ζj(−1)n+1−j(xn+1−j

0 − xn+1−j
k )

(ζ − xk)n+1(ζ − x0)n+1

)

=
1

xk − x0
∂F (ζ)

(∑n
j=0

(
n+1
j

)
ζj(−1)n−j(xk − x0)pn−j(x0, xk)

(ζ − xk)n+1(ζ − x0)n+1

)

= ∂F (ζ)

(∑n
j=0

(
n+1
j

)
ζj(−1)n−jpn−j(x0, xk)

(ζ − xk)n+1(ζ − x0)n+1

)
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Chapter 3. Characterization of smooth function classes

where we have set pj(x0, xk) :=
∑j

l=0 x
l
0x
j−l
k . Using the assumption ∂F (z) ≤ Ch(B|y|)

and that 1
|ξ+iη−xk|n+1|ξ+iη−x0|n+1 ≤ 1

|η|2(n+1)
, we thus can derive for ζ = ξ + iη ∈ B(m, 2)

|τk(ζ)| ≤ Ch(B|η|)
|η|2(n+1)

∣∣∣∣∣∣
n∑
j=0

(
n+ 1

j

)
ζj(−1)n−jpn−j(x0, xk)

∣∣∣∣∣∣
≤ CB2(n+1)m2(n+1)

∣∣∣∣∣∣
n∑
j=0

(
n+ 1

j

)
ζj(−1)n−jpn−j(x0, xk)

∣∣∣∣∣∣︸ ︷︷ ︸
≤D<∞ uniformly for all ζ∈B(m,2), k∈N

where we used (3.2.8). Thus we can bound all τk by a uniform constant on B(m, 2) (the
constant may depend on m, but not on k). Observe in addition that τk(ζ) converges
pointwise to ∂F (ζ) n+1

(ζ−x0)n+2 . Thus we can apply the dominated convergence theorem

and derive

g(n+1)(x0) =
(n+ 1)!

2πi

∫
B(m,2)

∂F (ζ)

(ζ − x0)n+2
dζ ∧ dζ.

By induction we may conclude for all n ∈ N and x ∈ (m− 1,m+ 1)

f (n)(x) =
n!

2πi

∫
∂B(m,2)

F (ζ)

(ζ − x)n+1
dζ +

n!

2πi

∫
B(m,2)

∂F (ζ)

(ζ − x)n+1
dζ ∧ dζ.

Let K := supz∈C |F (z)| which is less than infinity by boundedness of F . We get for
|x−m| < 1

|f (n)(x)| ≤

∣∣∣∣∣ n!

2πi

∫
∂B(m,2)

F (ζ)

(ζ − x)n+1
dζ

∣∣∣∣∣+

∣∣∣∣∣ n!

2πi

∫
B(m,2)

∂F (ζ)

(ζ − x)n+1
dζ ∧ dζ

∣∣∣∣∣
≤ n!

2π
K4π +

n!

π

∫
B(m,2)

Ch(B|η|)
|η|n|ζ − x|

dξ ∧ dη

≤ n!

2π
K4π +

n!

π
CBnmn

∫
B(m,2)

1

|ζ − x|
dξ ∧ dη

≤ n!

2π
K4π +

n!

π
CBnmn

∫
B(x,3)

1

|ζ − x|
dξ ∧ dη︸ ︷︷ ︸

=6π; see (1.0.12)

≤ (2K + 6C)︸ ︷︷ ︸
=:C̃

BnMn

where we used (3.2.8) to derive the third inequality. Observe that the constants B, C̃
are independent of m. As every x lies in some B(m, 1) we thus have global estimates for
|f (n)(x)| which finally shows that f ∈ Cgl{Mn}(R).
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3.2. Characterization of C{Mn}

Remark 3.2.5. A similar proof can be used to prove the converse to remark 3.2.3: Let
U ⊆ R be open and let f be a function on U . Suppose for all compact sets K ⊆ U there
is a continuously differentiable extension FK of f |K to C and constants BK , CK > 0
depending on K such that

∂FK(z) ≤ CKh(BKρ(z,K))

for all z ∈ C. An analogous argumentation as in the last proof then shows that f ∈
C{Mn}(U). Now the appearing constants cannot be chosen uniformly. But this is not
necessary as we only want to prove the local result.

Combining theorems 3.2.2 and 3.2.4 (remarks 3.2.3 and 3.2.5) we get a characteriza-
tion of Cgl{Mn}(R) (C{Mn}(U)):

Corollary 3.2.6. Let f be a function defined on R. Then f ∈ Cgl{Mn}(R) if and only
if there exists a bounded continuously differentiable extension F of f to C and constants
B,C > 0 such that for all z ∈ C

|∂F (z)| ≤ Ch(B|y|).

Let U ⊆ R be open and let f be a function defined on U . Then f ∈ C{Mn}(U) if and
only if for all compact K ⊆ U there exists a continuously differentiable extension FK of
f |K to C and constants BK , CK > 0 such that for all z ∈ C

|∂FK(z)| ≤ CKh(BKρ(z,K)).

Now this characterization can be used to give a short proof of the stability under
composition of regular DC classes. The proof reduces to an application of the chain rule
of the d-bar operator (see lemma 1.0.1).

Theorem 3.2.7. Let U, V be open subsets of R and (Mn) a regular weight sequence.
Assume f ∈ Cgl{Mn}(U) (or C{Mn}(U)) and g ∈ Cgl{Mn}(V ) (or C{Mn}(V )) with
g : V → U . Then it follows

f ◦ g ∈ Cgl{Mn}(V ) (or C{Mn}(V )).

Proof. The standard proof (see e.g. [1, Theorem 4.7, p. 11-12]) uses the “Faà di Bruno
formula” (see e.g. [1, Proposition 4.3, p. 9]), which gives a formula for the n-th derivative
of a composition of functions. In the following we use the techniques developed in this
chapter to derive an alternative proof (for global DC classes with U = V = R).

Let f, g ∈ Cgl{Mn}(R). Let F,G be extensions of f, g as in theorem 3.2.2. We take
them to be bounded and to have globally bounded partial derivatives. If we can show
|∂(F ◦G)(z)| ≤ Ch(B|y|), this implies the desired result by theorem 3.2.4.

By global boundedness of
∣∣∣ ∂∂yG(z)

∣∣∣, there is a constant D such that for all z =

x+ iy ∈ C
|G(x+ iy)−G(x)| ≤ D|y|,
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and as |G(x+ iy)−G(x)| ≥ |=G(x+ iy)| (use that G(x) ∈ R), we get

|=G(x+ iy)| ≤ D|y|. (3.2.23)

Using lemma 1.0.1, we get

|∂(F ◦G)(z)| ≤ |∂F (G(z))||∂G(z)|+ |∂F (G(z))||∂G(z)|
≤ K2C1h(B1|y|) +K1C2h(B2|=G(z)|)
≤ K2C1h(B1|y|) +K1C2h(B2D|y|)
≤ Ch(B|y|),

where K1 is a global bound for ∂G (which is possible since the partial derivatives are
globally bounded) and B1, C1 are chosen such that |∂G(z)| ≤ C1h(B1|y|); the constants
B2, C2,K2 are chosen analogously for F . We used (3.2.23) to derive the third inequality
and chose B,C sufficiently large to get the last inequality. This completes the proof.
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4 An application of 3.2. A stronger Denjoy Car-

leman theorem

In this chapter we present a proof of the famous Denjoy Carleman theorem based on
asymptotically holomorphic extensions. We will use the characterization developed in
section 3.2. Using some additional assumptions, we will actually show more; namely in
the case of a non-quasianalytic weight sequence (i.e. (Mn)n fulfils ¬(ii) from theorem
4.0.1) we will give a precise estimate from below and from above of the maximal possible
growth of a function in a neighbourhood of a point where it vanishes of infinite order
(see theorem 4.3.1). We will mainly follow [5] and [6].

In order to formulate the Denjoy-Carleman theorem we need to define the notion of
quasianalyticity of a class of smooth functions and of a regular weight sequence:

Definition A class of smooth functions defined on some open set U ⊆ R is called
quasianalytic if for each element f in this class f (n)(x0) = 0 for some x0 ∈ U and all
n ∈ N implies f ≡ 0 on the connected component of x0.

A regular weight sequence (Mn)n is called quasianalytic if
∑∞

n=1M
−1/n
n =∞.

Observe that the class of analytic functions is clearly quasianalytic. The goal of the
Denjoy-Carleman theorem is now to describe quasianalyticity for DC classes in terms of
a growth condition for the defining weight sequence; i.e. quasianalyticity of the defining
weight sequence is equivalent to quasinalayticity of the DC class.

Before formulating the theorem, let us introduce another weight function φ for reg-
ular DC classes (we have already defined the associated weight function h, see sec-
tion 3.2): Given the associated weight function h of a regular DC class, we define

φ(t) := log
(

log
(

1
h(t)

))
for 0 < t ≤ t0 with t0 := h−1(min{ 1

2e ,
m0
2 }) and φ(t) = φ(t0) for

t0 ≤ t ≤ 1. Note that h is strictly increasing and continuous on (0, m0
m1

], thus bijective
onto its range there; and for r ≥ m0

m1
, we have h(r) = m0. By construction φ is positive

on (0, 1], decreasing and converging to ∞ near 0.

Theorem 4.0.1 (Denjoy-Carleman theorem).
Let C{Mn}(U) be a regular DC class (i.e. properties (3.2.3), (3.2.4) and (3.2.5) are

fulfilled). Then the following are equivalent:

(i) C{Mn}(U) is quasianalytic,

(ii) (Mn)n is quasianalytic (i.e.
∑∞

n=1M
−1/n
n =∞),

(iii)
∑∞

n=1
Mn−1

Mn
=∞,

(iv)
∫ 1

0 φ(t)dt =∞.
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Remark 4.0.2. The equivalence of (i), (ii) and (iii) is part of the classical Denjoy-
Carleman theorem (see e.g. [13, 19.11 Theorem, p. 380]). That quasianalyticity can be
characterized by (iv) is stated for example in [6, Theorem 1, p. 55].

The equivalence of (ii), (iii) and (iv) can be verified by a direct computation. We do
not carry out the computations here; for a proof(idea) we refer to [2, Lemma 5, p. 64].
From now on, we take for granted that properties (ii), (iii) and (iv) are equivalent, thus
quasianalyticity for regular weight sequences from now on can be characterized by any of
the properties (ii), (iii) and (iv).

The following sections of this chapter are concerned with the equivalence of (i) and
(iv). We will not prove this equivalence in full generality; i.e. (4.1.1) will be assumed in
general for our classes and for the proof of (i)⇒(iv) we will assume in addition (4.3.40).
These additional assumptions will make it possible to give an alternative proof based
on asymptotically holomorphic extensions and even to derive quantitative results in the
proof of ¬(iv)⇒ ¬(i); see section 4.3.

4.1 Preparation

In what follows C{Mn} denotes a regular DC class and h the associated weight func-
tion. The equivalence (i)⇔(iv) from theorem 4.0.1 will be proved using the additional
assumption

t|φ′(t)| → ∞, as t→ 0. (4.1.1)

Observe that the notion t|φ′(t)|makes sense for all points except t = mn
mn+1

; differentiation

is not be available at such points. We assume from now on that (4.1.1) is satisfied.
Due to (4.1.1) an application of the mean value theorem implies that for given C,D >

0, there is T (C,D) > 0 such that for 0 < t < T we have

|φ(t)− φ(Dt)| ≥ C. (4.1.2)

Before we prove some preparatory results, we observe that condition (4.1.1) is ac-
tually restrictive: For non-quasianalytic weight sequences an example is given by the
Gevrey-classes; they are defined by the weight sequence Mn := (n!)α, where α > 1; see
[5, Example, p. 41].

But even in the quasianalytic case, condition (4.1.1) is restrictive. More specifically:
We construct a regular quasianalytic weight sequence (where quasianalyticity means for
a weight sequence to fulfil one of the equivalent conditions (ii), (iii) or (iv) from theorem
4.0.1; see remark 4.0.2) with lim inft→0 t|φ′(t)| = 0. In view of lemma 4.1.2 (that is
proved without using (4.1.1)) this is somewhat surprising. The subsequent example was
suggested by Gerhard Schindl.

Before constructing a suitable weight sequence, we observe: Given any regular weight
sequence (Mn)n and denoting µn := mn

mn−1
(where mn = Mn

n! ), an application of (3.2.6)

shows for t ∈
(

1
µk+1

, 1
µk

)
t|φ′(t)| = k

−k log(t)− log(mk)
.
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Thus for given ε > 0, the existence of some t ∈
(

1
µk+1

, 1
µk

)
with

t|φ′(t)| ≤ ε

is equivalent to the existence of some t ∈
(

1
µk+1

, 1
µk

)
with

t ≤ exp

(
−1

ε

)
1

m
1/k
k

.

This now implies for given ε > 0

inf
t∈

(
1

µk+1
, 1
µk

) t|φ′(t)| ≤ ε⇔ exp

(
1

ε

)
m

1/k
k < µk+1. (4.1.3)

Let (Nk)k be a given regular quasianalytic weight sequence with N0 = 1. We denote
nk := Nk

k! and νk := nk
nk−1

, we set ν0 = 1. An example for such a sequence is given by

νk := log(k+e). We now use the given weight sequence (Nk)k, that may fulfil (4.1.1), to
construct a new regular quasianalytic weight sequence (Mk)k with lim inft→0 t|φ′(t)| = 0.

First we construct an increasing sequence (ak)k iteratively as follows: Set a0 :=
0, a1 := 1. Suppose al is already defined for l ≤ k such that al < al+1. Then let
bk > ak + 2 be chosen such that

νbk
ekνak

> 2. (4.1.4)

As νl → ∞ with l → ∞ (which follows from regularity conditions (3.2.3) and (3.2.5)),
the definition of bk makes sense. Let ck ≥ bk be defined sufficiently large to get

nbk(∏bk
p=ak+1 e

kn
1/ak
ak

)(∏k
l=2

∏al
r=al−1+1 e

l−1n
1/al−1
al−1

)
ν1

2ck−bk > 1. (4.1.5)

Let dk > ak + 2 be defined such that

dk∑
l=ak+1

1

ln
1/l
l

≥ ek. (4.1.6)

The definition of dk makes sense as (Nk)k was assumed to be quasianalytic (use Stirling’s
formula together with property (ii) from theorem 4.0.1). Now we set

ak+1 := max{ck, dk}.

Then (ak)k is by definition an increasing sequence with ak+1 > ak + 2.

Finally set µ0 := 1, µ1 := ν1 and for k ≥ 1 and ak + 1 ≤ l ≤ ak+1

µl := ekn1/ak
ak

.
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Set mn :=
∏n
l=0 µl and Mn := n!mn for all n ∈ N. The regularity conditions (3.2.3),

(3.2.4) and (3.2.5) follow directly from the assumed regularity of the sequence (Nk)k.
We observe

nak+1

mak+1

=
nbk
mbk

νbk+1

µbk+1
· · ·

νak+1

µak+1

≥ nbk
mbk

ak+1∏
l=bk+1

νbk

ekn
1/ak
ak

≥ nbk
mbk

ak+1∏
l=bk+1

νbk
ekνak

>
nbk
mbk

2ak+1−bk > 1

(4.1.7)

where the first line holds by the definitions of ml and µl (resp. nl and νl). For the
second line we used the strong logarithmic convexity of (Nk)k (i.e. the sequence (νl)l
is increasing) and the definition of µl for ak + 1 ≤ l ≤ ak+1. The third line follows

since n
1/l
l ≤ νl for all l ∈ N. For the last line we used (4.1.4) (for the second to the

last inequality) and (4.1.5) (for the last inequality; observe that the denominator of the
quotient in (4.1.5) is exactly mbk).

This now means that nak > mak for all k ∈ N. Therefore

µak+1 = ekn1/ak
ak

> ekm1/ak
ak

.

Applying (4.1.3) we get

inf
t∈

(
1

µak+1
, 1
µak

) t|φ′(t)| ≤ 1

k
.

Therefore lim inft→0 t|φ′(t)| = 0 when φ is defined by the weight sequence (Mk)k.
It is still left to show qusianalyticity of (Mk)k: To this end we verify condition (iii)

from theorem 4.0.1:

∞∑
l=1

1

lµl
=

1

µ1
+

∞∑
k=1

ak+1∑
l=ak+1

1

lµl

=
1

µ1
+

∞∑
k=1

ak+1∑
l=ak+1

1

lekn
1/ak
ak

≥ 1

µ1
+

∞∑
k=1

1

ek

ak+1∑
l=ak+1

1

ln
1/l
l

≥ 1

µ1
+

∞∑
k=1

1

ek
ek =∞

where we used (4.1.6) to derive the last line. This finishes the counterexample for the
quasianalytic case.
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Remark 4.1.1. An example of a class which satisfies (4.1.1) is given by the weight
sequence Mn := n!(log n)αn, where α > 0; see [6, Remarks (3), p. 56]. As φ(t) = 1

t1/α
,

(4.1.1) is satisfied. This class is quasianalytic for α ≤ 1 and non-quasianalytic for α > 1.

The next lemma shows that condition (iv) from theorem 4.0.1 can be formulated
differently.

Lemma 4.1.2. ∫ 1

0
φ(t)dt =∞⇔

∫ 1

0
t|φ′(t)|dt =∞.

Proof. Since φ is decreasing, we have |φ′(t)| = −φ′(t). Using integration by parts, we
get for 0 < r < 1 ∫ 1

r
φ(t)dt = φ(1)− rφ(r)−

∫ 1

r
tφ′(t)dt

= φ(1)− rφ(r) +

∫ 1

r
t|φ′(t)|dt.

(4.1.8)

As −rφ(r) ≤ 0 for all r, we get∫ 1

r
φ(t)dt ≤ φ(1) +

∫ 1

r
t|φ′(t)|dt.

Therefore
∫ 1

0 φ(t)dt =∞ immediately implies
∫ 1

0 t|φ
′(t)|dt =∞.

To prove the other direction, assume
∫ 1

0 t|φ
′(t)|dt =∞ and

∫ 1
0 φ(t)dt <∞ and derive

a contradiction: Under these assumptions, we get by (4.1.8) that

φ(1)− rφ(r) +

∫ 1

r
t|φ′(t)|dt

is decreasing in r (because the left-hand side of (4.1.8) is decreasing in r) and converging
to some limit C < ∞ as r → 0. Since

∫ 1
0 t|φ

′(t)|dt = ∞, there is some T such that for
r ≤ T ∫ 1

r
t|φ′(t)|dt ≥ C + 1− φ(1).

As φ(1)− rφ(r) +
∫ 1
r t|φ

′(t)|dt ≤ C for all r by (4.1.8), we thus get for r ≤ T

φ(1)− rφ(r) + C + 1− φ(1) ≤ C

which is equivalent to rφ(r) ≥ 1 for r ≤ T . But then φ(r) ≥ 1
r for small r and thus φ is

not integrable near 0 which contradicts the assumption
∫ 1

0 φ(t)dt < ∞. Thus the proof
is completed.

The idea for the following lemma is taken from http://functions.wolfram.com/

ElementaryFunctions/ArcTan/20/02/0002/.
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Chapter 4. An application of 3.2. A stronger Denjoy Carleman theorem

Lemma 4.1.3. For x ∈ R and n ∈ N

| arctan(n)(x)| ≤ n!.

Therefore arctan ∈ Cgl{Mn}(R) for an arbitrary regular weight sequence.

Proof. Observe that arctan′(x) = 1
1+x2

. A simple computation shows

1

1 + x2
=
−i
2

(
1

x− i
− 1

x+ i

)
.

Therefore we have for the n-th derivative of arctan (by differentiating the right-hand
side of the above equality (n− 1) times)

arctan(n)(x) =
i(−1)n(n− 1)!

2

(
1

(x− i)n
− 1

(x+ i)n

)
.

As 1
|x±i|n ≤ 1 for x ∈ R, we get | arctan(n)(x)| ≤ (n− 1)! < n!.

Lemma 4.1.4. Let a, b > 0. Set S2b := {z ∈ C : 0 ≤ y ≤ 2b}. Let ψ : S2b → D be

defined as ψ(z) := e
π
2b
z−i

e
π
2b
z+i

(see section 2.5) and let τ : R→ [0, 1] be defined as

τ(x) := ω(ψ(x+ ib), ψ([−a, a]),D).

Then τ is increasing on (−∞, 0) and decreasing on (0,∞).
If a ≥ b, we have the following estimate for all x

τ(x) ≥ C0e
− π

2b
|x|.

For |x| ≥ 2a(≥ 2b) we have in addition

τ(x) ≥ e−C
|x|−a
b .

Here C0, C are positive constants independent of a and b.

Proof. A simple calculation shows

ψ(x+ ib) =
e
π
2b
x − 1

e
π
2b
x + 1

. (4.1.9)

Thus ψ maps points of the form z = x+ ib to the interval (−1, 1) ⊆ R. In addition, we
have

ψ([−a, a]) =

[
e−

π
2b
a − i

e−
π
2b
a + i

,
e
π
2b
a − i

e
π
2b
a + i

]
∂D

,

where we used the notation from section 2.2 for arcs in ∂D. It can be easily seen
that ψ([−a, a]) is a subarc of the lower hemisphere of ∂D for all a, b (here it is not
necessary that a ≥ b). In addition all those arcs are symmetric with respect to the
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imaginary axis; i.e. x + iy ∈ ψ([−a, a]) implies −x + iy ∈ ψ([−a, a]). If we write
ψ([−a, a]) = [eiφ1(a,b), eiφ2(a,b)]∂D, we thus know that we can choose φj(a, b) for j = 1, 2
such that

−π < φ1(a, b) < −π
2
< φ2(a, b) < 0,

and 1
2(φ1(a, b) + φ2(a, b)) = −π

2 (due to symmetry of the arcs ψ([−a, a])).
By the definition of the harmonic measure for D, we have for t ∈ (−1, 1)

ω(t, ψ([−a, a]),D) =
1

2πi

∫
[eiφ1(a,b),eφ2(a,b)]∂D

1− t2

ζ|ζ − t|2
dζ

= (1− t2)
1

2πi

∫ φ2(a,b)

φ1(a,b)

1

eis|eis − t|2
ieisds

= (1− t2)
1

2π

∫ φ2(a,b)

φ1(a,b)

1

(cos(s)− t)2 + sin(s)2
ds

= (1− t2)
1

2π

∫ φ2(a,b)

φ1(a,b)

1

1− 2 cos(s)t+ t2
ds

≥ (1− |t|)(1 + |t|) 1

2π

∫ φ2(a,b)

φ1(a,b)

1

1 + 2|t|+ |t|2
ds

=
1− |t|
1 + |t|

φ2(a, b)− φ1(a, b)

2π
.

(4.1.10)

Using the geometric description of the harmonic measure for D (see section 2.2) and the
symmetry of ψ([−a, a]), it follows that the function t 7→ ω(t, ψ([−a, a]),D) is increasing
for t ∈ (−1, 0) and decreasing for t ∈ (0, 1). Since the function s 7→ s−1

s+1 is increasing on
(0,∞), we may conclude that x 7→ ψ(x + ib) is increasing as composition of increasing
functions (use the representation (4.1.9)). As x 7→ ψ(x + ib) maps (−∞, 0) to (−1, 0)
and (0,∞) to (0, 1), this implies the monotonicity properties of τ .

If we assume a ≥ b, we immediately get φ2(a, b) − φ1(a, b) ≥ φ2(b, b) − φ1(b, b) =
φ2(1, 1) − φ1(1, 1) =: C̃0 > 0, and thus a uniform bound from below. Therefore we can
continue to estimate (4.1.10) and get

ω(t, ψ([−a, a]),D) ≥ 1− |t|
1 + |t|

C̃0

2π
≥ (1− |t|) C̃0

4π︸︷︷︸
=:C0

. (4.1.11)

Using (4.1.9) and (4.1.11), it thus follows for a ≥ b and x ≥ 0

τ(x) ≥ C0

(
1− e

π
2b
x − 1

e
π
2b
x + 1

)

≥ C0

(
1− e

π
2b
x − 1

e
π
2b
x

)
= C0e

− π
2b
|x|,
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and for x < 0 we have

τ(x) ≥ C0

(
1− 1− e

π
2b
x

e
π
2b
x + 1

)
≥ C0

(
1− (1− e

π
2b
x)
)

= C0e
− π

2b
|x|.

Now choose z = x+ ib with |x| ≥ 2a(≥ 2b); let C be a constant such that e−(C−π) ≤ C0.
Then

C0e
− π

2b
|x| ≥ e−(C−π)e−

π
2b
|x| ≥ e−(C−π)a

b e−
π
2b
|x|

= e−(2C−π)a
b

+C a
b
− π

2b
|x| = e−(C−π

2
) 2a
b

+C a
b
− π

2b
|x|

≥ e−(C−π
2

)
|x|
b

+C a
b
− π

2b
|x| = e−C

|x|
b

+C a
b

= e−C
|x|−a
b .

With these preparations we can prove an important tool needed in the proofs later
on. It makes it possible to “spread” certain estimates to larger intervals. It is taken
from [6, Theorem 2 (Spreading Lemma), p. 57].

Lemma 4.1.5. Let h be the associated weight function of a regular DC class C{Mn}.
Then there exists A > 0 (depending on the DC class) such that the following holds: Let
F ∈ C1(C) with

|F (z)| ≤ 1

2|z + i|2
, (4.1.12)

|∂F (z)| ≤ h(y)

|z + i|2
, (4.1.13)

for z ∈ H, and

|F (z)| ≤ h(4y0) (4.1.14)

for z ∈ [−a, a]+ iy0 =: I(a, y0), where 0 < y0 < A and a > y0 are fixed. Then F satisfies

|F (z)| ≤ h(8y0) (4.1.15)

for z ∈ I(ã, 2y0) where ã := a + C1

∫ 8y0
4y0

t|φ′(t)|dt for some positive constant C1 (inde-

pendent of the DC class).

Remark 4.1.6. In the assumptions (4.1.12) and (4.1.13) the term 1
|z+i|2 can be replaced

with some function integrable on strips {z ∈ C : 0 < =(z) < h} and vanishing at infinity.
As the theorem is taken from [6], we restrict to the formulation given there.
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Proof of lemma 4.1.5.
The constant A will be specified throughout the proof; conditions on the smallness of y0

needed to justify certain arguments are subsummed in A. That means A will become
smaller in every step and y0 is always assumed to be smaller than the current A. To
begin with, let A := 1.

As ∂F is absolutely integrable on Sy0 := {z ∈ C : 0 < y < 3y0} by (4.1.13), it follows
by lemma 1.0.13 that

F1(z) := F (z)− 1

2πi

∫
Sy0

∂F (ζ)

ζ − z
dζ ∧ dζ

is analytic on Sy0 and continuous up to the boundary.

As we want to apply the two constants theorem 2.5.2 to F1 we also need to check
that F1 ∈ C0(Sy0). As F ∈ C0(Sy0) by (4.1.12) it suffices to show F − F1 ∈ C0(Sy0): If
|z| ≥ R > 1, then

|F1(z)− F (z)| ≤ 1

π

∫
Sy0

|∂F (ζ)|
|ζ − z|

dξ ∧ dη ≤ h(3y0)

π

∫
Sy0

1

|ζ + i|2
1

|ζ − z|
dξ ∧ dη

=
h(3y0)

π

(∫
Sy0∩B(0,R/2)

1

|ζ + i|2
1

|ζ − z|
dξ ∧ dη +

∫
Sy0\B(0,R/2)

1

|ζ + i|2
1

|ζ − z|
dξ ∧ dη

)

≤ h(3y0)

π

(
2

R

∫
Sy0∩B(0,R/2)

1

|ζ + i|2
dξ ∧ dη +

4

R2

∫
(Sy0\B(0,R/2))∩B(z,1)

1

|ζ − z|
dξ ∧ dη

+

∫
Sy0\(B(0,R/2)∪B(z,1))

1

|ζ + i|2
dξ ∧ dη

)

≤ h(3y0)

π


2

R

∫
Sy0

1

|ζ + i|2
dξ ∧ dη +

8π

R2
+

∫
Sy0\B(0,R/2)

1

|ξ|2
dξ ∧ dη︸ ︷︷ ︸

≤K
R


≤ K̃

R

for some constant K̃. Thus F1 − F ∈ C0(Sy0) and therefore also F1. In addition for
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arbitrary z ∈ Sy0 we have the following estimate

|F1(z)− F (z)| ≤ 1

π

∫
Sy0

|∂F (ζ)|
|ζ − z|

dξ ∧ dη

=
1

π

∫
Sy0∩B(z,1/4)

|∂F (ζ)|
|ζ − z|

dξ ∧ dη +
1

π

∫
Sy0\B(z,1/4)

|∂F (ζ)|
|ζ − z|

dξ ∧ dη

≤ h(3y0)

(
1

2
+

1

π

∫
Sy0\B(z,1/4)

1

|ζ + i|2
1

|ζ − z|
dξ ∧ dη

)

≤ h(3y0)


1

2
+

4

π

∫
Sy0

1

|ξ + i|2︸ ︷︷ ︸
= 1
ξ2+1

dξ ∧ dη



≤ h(3y0)

1

2
+

12y0

π

∫ ∞
−∞

1

ξ2 + 1
dξ︸ ︷︷ ︸

=π

 ≤ h(3y0)

(
1

2
+ 12A

)
︸ ︷︷ ︸

=:C

.

where we used that 1
|z+i|2 ≤ 1 for z ∈ Sy0 and lemma 1.0.12 to get the third line. For A

smaller than 1
24 , we get C ≤ 1. So assume that from now on.

Using these estimates together with (4.1.12) we get for z ∈ Sy0

|F1(z)| ≤ |F (z)|+ |F1(z)− F (z)| ≤ 1

2|z + i|2
+ h(3y0)

and as h(t) tends to 0 as t does, for sufficiently small t we get h(3t) ≤ 1
2 . So suppose

in addition to the above requirements on A, that it is chosen small enough to fulfil
h(3t) ≤ 1

2 for t < A. Thus we have for y0 < A and z ∈ Sy0

|F1(z)| ≤ 1.

Let S̃y0 := {z ∈ C : y0 < =(z) < 3y0}. As S̃y0 ⊆ Sy0 , F1 is analytic on S̃y0 and the above
global estimates for z ∈ Sy0 hold for S̃y0 as well. Thus we have for z ∈ S̃y0

|F1(z)| ≤ 1. (4.1.16)

And by assumption (4.1.14) we get for z ∈ I(a, y0) ⊆ ∂S̃y0

|F1(z)| ≤ |F (z)|+ |F1(z)− F (z)| ≤ h(4y0) + h(3y0) ≤ 2h(4y0). (4.1.17)

Therefore we may now apply the two constants theorem 2.5.2 to F1 (with Ω = S̃y0 ,

m = 2h(4y0), M = 1 and φ(z) = e
π
z−y0
2y0 −i

e
π
z−y0
2y0 +i

using the terminology from lemma 2.5.2; see
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section 2.5). To avoid confusion with φ = log log 1
h , we denote the biholomorphic map

from lemma 2.5.2 by ψ(z) := e
π
z−y0
2y0 −i

e
π
z−y0
2y0 +i

. An application of the two constants theorem

now yields for z ∈ S̃y0

|F1(z)| ≤ (2h(4y0))ω(ψ(z),ψ(I(a,y0)),D)11−ω(ψ(z),ψ(I(a,y0)),D). (4.1.18)

To justify the following considerations, assume A is small enough to get h(8t) < 1
8 for

t < A. Since h(4t) ≤ h(8t), this implies 2h(4t) ≤ 1 for t ≤ A. Now for y0 < A

(2h(4y0))2 exp(φ(8y0)−φ(4y0)) = (2h(4y0))
2
log(h(8y0))
log(h(4y0))

= 2
2
log(h(8y0))
log(h(4y0))h(8y0)2

≤ 22h(8y0)2

≤ 1

2
h(8y0).

So if for some z ∈ S̃y0 we have ω(ψ(z), ψ(I(a, y0)),D) ≥ 2 exp(φ(8y0)−φ(4y0)), it follows
by (4.1.18) that

|F1(z)| ≤ (2h(4y0))ω(ψ(z),ψ(I(a,y0)),D) ≤ 1

2
h(8y0).

And therefore

|F (z)| ≤ |F1(z)|+ |F (z)− F1(z)|

≤ 1

2
h(8y0) + h(3y0).

Take A in addition sufficiently small to get h(4t) ≤ 1
2h(8t) for t ≤ A; see (3.2.9). Then

it follows for y0 < A

1

2
h(8y0) + h(3y0) ≤ 1

2
h(8y0) +

1

2
h(8y0) ≤ h(8y0).

Thus we have shown that for z ∈ S̃y0 with ω(ψ(z), ψ(I(a, y0)),D) ≥ 2 exp(φ(8y0) −
φ(4y0)) and y0 < A

|F (z)| ≤ h(8y0). (4.1.19)

Claim 1: There exists an absolute constant C2 > 0 such that for z = x + i2y0, with
|x| ≤ a+ C2y0(φ(4y0)− φ(8y0)− log(2)), we have

ω(ψ(z), ψ(I(a, y0)),D) ≥ 2 exp(φ(8y0)− φ(4y0))

and therefore

|F (z)| ≤ h(8y0).
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Since y0 < a by assumption, we know by lemma 4.1.4 that ω(ψ(z), ψ(I(a, y0)),D) ≥
exp

(
−C |x|−ay0

)
for z = x + i2y0 with |x| ≥ 2a, where C is an absolute constant. Now

observe

exp

(
−C |x| − a

y0

)
≥ 2 exp(φ(8y0)− φ(4y0))

is equivalent to

|x| ≤ a+
1

C︸︷︷︸
=:C2

y0(φ(4y0)− φ(8y0)− log(2)).

This means that we can estimate the harmonic measure from below by 2 exp(φ(8y0) −
φ(4y0)) on 2a ≤ |x| ≤ a+C2y0(φ(4y0)− φ(8y0)− log(2)). But since the harmonic mea-
sure can only be larger than this lower bound on [−2a, 2a] by its monotonicity properties
(see lemma 4.1.4), the estimate from below actually holds for |x| ≤ a + C2y0(φ(4y0) −
φ(8y0)− log(2)). This finishes the proof of claim 1.

Claim 2: There exists an absolute constant C1 > 0 such that for sufficiently small
y0

C1

∫ 8y0

4y0

t|φ′(t)|dt ≤ C2y0(φ(4y0)− φ(8y0)− log(2)). (4.1.20)

Note that φ is decreasing and therefore |φ′| = −φ′. Thus the mean value theorem yields
the existence of τ ∈ [4y0, 8y0] such that∫ 8y0

4y0

t|φ′(t)|dt = τ

∫ 8y0

4y0

−φ′(t)dt

= τ(φ(4y0)− φ(8y0)).

As τ ≤ 8y0 it follows ∫ 8y0

4y0

t|φ′(t)|dt ≤ 8y0(φ(4y0)− φ(8y0)). (4.1.21)

By (4.1.1) we can find δ > 0 such that t|φ′(t)| ≥ 4 log(2) for 0 < t < δ. Assume from
now on that A ≤ δ

8 . Then we get for y0 < A∫ 8y0

4y0

t|φ′(t)|dt ≥ 4 log(2)4y0. (4.1.22)

Therefore

C2

16

∫ 8y0

4y0

t|φ′(t)|dt =
C2

8

∫ 8y0

4y0

t|φ′(t)|dt− C2

16

∫ 8y0

4y0

t|φ′(t)|dt

≤ C2y0(φ(4y0)− φ(8y0))− C2y0 log(2).

Thus let C1 := C2
16 (independent of the DC class, as C2 = 1

C comes from lemma 4.1.4),
finishing the proof of claim 2. Together with claim 1, this finishes the proof.
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4.2 A qualitative result, proof of theorem 4.0.1 (iv)⇒(i)

The subsequent proof is taken from [6, Theorem 1(i), p. 55]. We assume (iv) from
theorem 4.0.1 and, as mentioned before, that (4.1.1) is satisfied.

First let us show that it is possible to assume w.l.o.g. that f ∈ Cgl{Mn}(R) with
estimates of the form |f (n)(x)| ≤ Mn for all n ∈ N and all x ∈ R: By assumption
f ∈ C{Mn}(U) for some open U ⊆ R. For a given f with f (n)(x0) = 0 for some x0 ∈ U
and all n ∈ N, we have to show that f ≡ 0 on the connected component of x0 in U . So
there is no loss of generality in assuming that U is an interval and x0 = 0 (translate the
argument of the given function f). For [−δ, δ] ⊆ U we get f ∈ Cgl{Mn}(−δ, δ). Define
g := 2δ

π arctan, then by lemma 4.1.3 and theorem 3.2.7 we get f ◦ g ∈ Cgl{Mn}(R) and

a simple computation shows that (f ◦ g)(n)(0) = 0 for all n. So if the theorem is already
proved for classes of the form Cgl{Mn}(R), we may conclude f ◦ g ≡ 0 which implies
that f vanishes on (−δ, δ). Thus it follows immediately that f vanishes on U .

For f ∈ Cgl{Mn}(R) there are by definition positive constants A,B > 0 such that
|f (n)(x)| ≤ ABnMn for all n uniformly in x. Define g(x) := 1

Af( 1
Bx), then |g(n)(x)| ≤

Mn. So if we can conclude that g vanishes identically, the same holds for f .
So assume from now on

f (n)(0) = 0, (4.2.23)

|f (n)(x)| ≤Mn (4.2.24)

for all n ∈ N and all x ∈ R. It is our goal to show that f ≡ 0 on R.

Due to theorem 3.2.2, there exists a bounded extension F1 ∈ C1(C) of f and positive
constants B1, C1 such that |∂F1(z)| ≤ C1h(B1|y|) for all z ∈ C. Let b be defined on R
such that b(x) = 1 for |x| ≤ 1

4 and b(x) = 0 for |x| ≥ 1
2 and set

F2(z) = b(y)F1(z)

for z ∈ C. It is clear that F2 is again an extension of our given f , supp(F2) ⊆ {z ∈ C :
|y| ≤ 1

2} and there are again positive constants B2, C2 such that |∂F2(z)| ≤ C2h(B2|y|);
note that F1(z) and F2(z) coincide for |=(z)| < 1

4 . Finally we set

F (z) =
F2(z)

(z + i)2

for all z ∈ C which extends x 7→ g(x) := f(x)
(x+i)2

. A simple calculation shows that

g(n)(0) = 0 for all n and that we have

|F (z)| ≤ D

|z + i|2
, (4.2.25)

|∂F (z)| ≤ Ch(B|y|)
|z + i|2

, (4.2.26)
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where B = B2, C = C2 and D is the maximum of |F2|. F is by construction C1 on C
and supp(F ) ⊆ {z ∈ C : |y| ≤ 1

2}.
As
∫
∂B(0,r)

F (ζ)
ζ−z dζ → 0 for r → ∞ and as ∂F is absolutely integrable on C because

of (4.2.26) and supp(F ) ⊆ {z ∈ C : |y| ≤ 1
2}, we get

F (z) =
1

2πi

∫
C

∂F (ζ)

ζ − z
dζ ∧ dζ. (4.2.27)

By differentiation under the integral sign in x-direction at 0, and (4.2.23), we get for all
n ≥ 1 ∫

C

∂F (ζ)

ζn
dζ ∧ dζ = 0. (4.2.28)

Observe that the integral in (4.2.28) is absolutely convergent as

|∂F (z)|
|z|n

≤ Ch(B|z|)
|z|n|z + i|2

≤ CBnmn

|z + i|2
(4.2.29)

where the first inequality holds due to (4.2.26) and the second due to (3.2.8). By mul-
tiplying the equation (4.2.28) with zn−1 for n ≥ 1, we immediately get∫

C

∂F (ζ)zn−1

ζn
dζ ∧ dζ = 0. (4.2.30)

Suppose we already know the following representation for some n ∈ N

F (z) =
1

2πi

∫
C
∂F (ζ)

zn

(ζ − z)ζn
dζ ∧ dζ. (4.2.31)

Then subtracting (4.2.30) from this representation leads to

F (z) =
1

2πi

∫
C
∂F (ζ)

(
zn

(ζ − z)ζn
− zn

ζn+1

)
dζ ∧ dζ

=
1

2πi

∫
C
∂F (ζ)

(
zn+1

(ζ − z)ζn+1

)
dζ ∧ dζ.

Together with (4.2.27) which is just (4.2.31) for n = 0 we now can conclude by induction
that the representation (4.2.31) holds for all n ∈ N. We thus have for arbitrary n

|F (z)| ≤ 1

π

∫
C
|∂F (ζ)| |z|n

|ζ − z||ζ|n
dξ ∧ dη

≤ |z|
n

π
CBnmn

∫
{ζ:|=(ζ)|≤1/2}

1

|ζ − z||ζ + i|2
dξ ∧ dη︸ ︷︷ ︸

≤C̃ for all z∈C

≤ CC̃

π
(B|z|)nmn
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where we applied (4.2.29) to derive the second line. As the above holds for all n, we

get |F (z)| ≤ γh(β|z|) with β := B and γ := CC̃
π . Now let E ≥ max{B,C, 2D,β, γ, 2}.

Then a straightforward computation shows that the function F̃ (z) := 1
EF (z/E) has the

following properties

|F̃ (z)| ≤ 1

2

1

|z/E + i|2
, (4.2.32)

|F̃ (z)| ≤ h(|z|), (4.2.33)

|∂F̃ (z)| ≤ h(|y|)
|z/E + i|2

, (4.2.34)

and F̃ extends the function 1
E

f(x/E)
(x/E+i)2

. If we can show that F̃ |R ≡ 0, this implies f ≡ 0

on R.
As the proof of the spreading lemma 4.1.5 also works with conditions (4.2.32) and

(4.2.34) instead of (4.1.12) and (4.1.13) (cf. remark 4.1.6), we may apply lemma 4.1.5
to F̃ .

Claim: Let A,C1 be defined by lemma 4.1.5. Let B > 0 be chosen such that
t|φ′(t)| ≥ 1

C1
for 0 < t < B (possible due to (4.1.1)) and set Ã := min{A,B}. Suppose

that for z0 = x0 + iy0 with 0 < y0 < Ã, there exists n ∈ N with C1

∫ 4y0
4y0/2n

t|φ′(t)|dt > x0.
Then we have

|F̃ (z0)| ≤ h(4y0).

The claim is proved by an iterated application of lemma 4.1.5: We set an := 2 y02n .

Due to (4.2.33), we have |F̃ (x+ i y02n )| ≤ h(4y0
2n ) for |x| ≤ an. Since an ≥ y0

2n , lemma 4.1.5

implies for z = x+ i y0
2n−1 with |x| ≤ an + C1

∫ 4
y0

2n−1

4
y0
2n

t|φ′(t)|dt =: an−1 that

|F̃ (z)| ≤ h(4
y0

2n−1
).

We observe that an−1 ≥ an = y0
2n−1 . Suppose, we have already shown for some k with

0 < k < n that |F̃ (x+ i y0
2n−k

)| ≤ h(4 y0
2n−k

) for |x| ≤ an−k with an−k ≥ y0
2n−k

. Then we can

apply lemma 4.1.5 and get for z = x+i y0
2n−k−1 with |x| ≤ an−k+C1

∫ 4
y0

2n−k−1

4
y0

2n−k
t|φ′(t)|dt =:

an−k−1 that

|F̃ (z)| ≤ h(4
y0

2n−k−1
).

By the definition of B, we have an−k−1 ≥ 4 y0
2n−k−1 − 4 y0

2n−k
≥ y0

2n−k−1 . Thus it follows

inductively that we can apply lemma 4.1.5 n times. Since a0 = 2 y02n + C1

∫ 4y0
4
y0
2n
t|φ′(t)|dt,

this finishes the proof of the claim.
Now take z0 = x0+iy0 fixed with small imaginary part as in the claim. As by (iv) and

lemma 4.1.2 it follows
∫ 1

0 t|φ
′(t)| =∞, there exists n ∈ N such that C1

∫ 4y0
4y0/2n

t|φ′(t)| >
x0. And thus F̃ (x0 + iy0) ≤ h(4y0).

Since h(y) tends to 0 as y → 0, we therefore have F̃ (x) = 0 for all x ∈ R. As
mentioned above this implies that f has to vanish identically on R.
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4.3 A quantitative result, proof of theorem 4.0.1 (i)⇒(iv)

As always C{Mn} is a regular DC class and h is its associated weight function. We
will show ¬(iv)⇒ ¬(i) by proving a stronger implication, namely theorem 4.3.1. Let us
introduce two functions:

P (x) := sup
{
|f(x)| : f (n)(0) = 0, ||f (n)||∞ ≤Mn ∀n ∈ N

}
, x ≥ 0. (4.3.35)

If we assume ¬(iv), it is possible to define θ(x) for 0 ≤ x ≤
∫ 1

0 t|φ
′(t)|dt by requiring∫ θ(x)

0
t|φ′(t)|dt = x. (4.3.36)

Observe that θ is clearly an increasing continuous function with θ(0) = 0. Applying
assumption (4.1.1), we get:

For all ε > 0 there exists T > 0 such that for 0 < x, x0 < T

|θ(x)− θ(x0)| ≤ ε|x− x0|. (4.3.37)

To see (4.3.37) we investigate the difference quotient of θ. Let x0 be fixed and x > x0,
then

θ(x)− θ(x0)

x− x0
=

θ(x)− θ(x0)∫ θ(x)
θ(x0) t|φ′(t)|dt

=
θ(x)− θ(x0)

θ(ξ(x))
∫ θ(x)
θ(x0) |φ′(t)|dt

=
θ(x)− θ(x0)

θ(ξ(x))(φ(θ(x0))− φ(θ(x)))

where the existence of some suitable ξ(x) ∈ (x0, x) is ensured by the mean value theorem.
By taking the limit for x→ x0 in the above chain of equalities, we get for points where
φ is differentiable (i.e. x0 6= mn

mn+1
for any n, see section 3.2)

θ′(x0) = − 1

θ(x0)φ′(θ(x0))
=

1

θ(x0)|φ′(θ(x0))|
. (4.3.38)

By (4.1.1), the right-hand side tends to 0 as x0 → 0, thus an application of the mean
value theorem yields (4.3.37). The following theorem is taken from [6, Theorem 1(ii), p.
56].

Theorem 4.3.1. Assume ¬(iv). Then there exist 0 < Q1, Q2 such that for small x

P (x) ≤ h(Q1θ(Q2x)). (4.3.39)

If, in addition, there exists k > 0 such that for x sufficiently small

2φ(θ(x)) ≤ φ(kθ(x)), (4.3.40)

then there exists 0 < q such that for small x

h(qθ(x)) ≤ P (x). (4.3.41)
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Remark 4.3.2. (4.3.41) implies non-quasianalyticity of the respective DC class and thus
¬(i). The example from remark 4.1.1 also provides an example for a DC class which
satisfies the additional assumption (4.3.40).

Before proving the upper estimate of theorem 4.3.1 we need an auxiliary result. The
following lemma and its proof is inspired by [6, 1.4 Lemma, p. 52] (where it is proved
for different function classes).

Lemma 4.3.3. Let h be the weight function of a regular DC class and ε,B,C > 0 and
τ an integrable function on C. Then we have the following:

Let F ∈ C1(C) ∩ C0(C) such that ∂F is absolutely integrable on C with

|∂F (z)| ≤ Ch(B|y|)τ(z) for all z = x+ iy ∈ C, (4.3.42)

and for some z0 = x0 + iy0 ∈ C

|F (z)| ≤ Ch(B|y0|) for z ∈ B(z0, ε|y0|) =: B0. (4.3.43)

Then for all A > 0 there exists K (independent of z0 and F ) such that for z ∈
B(z0, A|y0|)

|F (z)| ≤ Kh(K|y0|). (4.3.44)

Proof. For z ∈ C, set

F1(z) := F (z)− 1

2πi

∫
B0

∂F (ζ)

ζ − z
dζ ∧ dζ.

Due to lemma 1.0.13, F1 is analytic on B0. It is clear by the definition of F1 that
|F1(z)− F (z)| ≤ Kh(K|y0|) everywhere for some constant K independent of F and z0.
So it suffices to prove for given A > 0 that |F1(z)| ≤ Kh(K|y0|) for z ∈ B(z0, A|y0|),
where K does not depend on F and z0. Since F ∈ C0(C) it follows, by applying theorem
1.0.11 to F , that

F1(z) =
1

2πi

∫
C\B0

∂F (ζ)

ζ − z
dζ ∧ dζ. (4.3.45)

Using that F1(z) = 1
2πi

∫
∂B0

F (ζ)
ζ−z dζ for z ∈ B0, implies for arbitrary k ∈ N

F
(k)
1 (z0) =

k!

2πi

∫
∂B0

F (ζ)

(ζ − z0)k+1
dζ.

Using (4.3.43) therefore implies

|F (k)
1 (z0)| ≤ Ch(B|y0|)

k!

(ε|y0|)k
. (4.3.46)

Differentiating (4.3.45) gives another representation of F
(k)
1 (z0)

F
(k)
1 (z0) =

k!

2πi

∫
C\B0

∂F (ζ)

(ζ − z0)k+1
dζ ∧ dζ. (4.3.47)
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A simple calculation shows for arbitrary n(
n−1∑
k=0

(z − z0)k

(ζ − z0)k+1

)
+

(z − z0)n

(ζ − z0)n(ζ − z)
=

1

ζ − z
. (4.3.48)

Using (4.3.47) and (4.3.48), we get by (4.3.45) the following representation for F1 for
arbitrary n ∈ N

F1(z) =

n−1∑
k=0

F
(k)
1 (z0)

(z − z0)k

k!
+

1

2πi

∫
C\B0

∂F (ζ)(z − z0)n

(ζ − z0)n(ζ − z)
dζ ∧ dζ. (4.3.49)

Take C̃ (depending only on ε) such that 1
|ζ−z0| ≤ C̃ 1

|η| for all ζ ∈ C\B0: If ζ = ξ + iη is

chosen with |η| ≤ (1 + ε)|y0| we have by the definition of B0

|η|
|ζ − z0|

≤ (1 + ε)|y0|
ε|y0|

=
(1 + ε)

ε
.

If |η| > (1 + ε)|y0| we have |η| = t|y0| for some t > (1 + ε). Thus

|η|
|ζ − z0|

≤ |η|
|η − y0|

≤ |η|
||η| − |y0||

=
t|y0|

(t− 1)|y0|
=

t

t− 1

and t
t−1 ≤

1+ε
ε for t > (1 + ε). Thus C̃ = 1+ε

ε is a suitable choice.
We investigate the summands of (4.3.49) separately. First take some A > 0, assume

w.l.o.g. A ≥ 2ε. By (4.3.46) it follows for z ∈ B(z0, A|y0|)∣∣∣∣∣
n−1∑
k=0

F
(k)
1 (z0)

(z − z0)k

k!

∣∣∣∣∣ ≤ Ch(B|y0|)
n−1∑
k=0

(A|y0|)k

(ε|y0|)k

= Ch(B|y0|)
n−1∑
k=0

(
A

ε

)k
≤ C(B|y0|)nmn

(
A

ε

)n
= C

(
AB|y0|
ε

)n
mn.

In addition we get for the other summand∣∣∣∣∣ 1

2πi

∫
C\B0

∂F (ζ)(z − z0)n

(ζ − z0)n(ζ − z)
dζ ∧ dζ

∣∣∣∣∣ ≤ (A|y0|)n

π

∫
C\B0

C̃nCh(B|η|)τ(ζ)

|η|n|ζ − z|
dξ ∧ dη

≤ C(ABC̃|y0|)nmn

π

∫
C\B0

τ(ζ)

|ζ − z|
dξ ∧ dη︸ ︷︷ ︸

=D<∞
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4.3. A quantitative result, proof of theorem 4.0.1 (i)⇒(iv)

where D only depends on ε. Now take K := 2 max{ABC̃, ABε , C,
CD
π } and observe that

K does not depend on z0 and F . Then we get for all n and z ∈ B(z0, A|y0|)

|F1(z)| ≤ K(K|y0|)nmn.

By taking n = N(K|y0|) we thus get the desired result.

Proof of P (x) ≤ h(Q1θ(Q2x)).
Take some f as in the definition of P , i.e. f (n)(0) = 0 and |f (n)(x)| ≤Mn for all x ∈ R
and n ∈ N (this means ||f ||R,1 ≤ 1). As in section 4.2, we define an extension F̃ of
1
E

f(x/E)
(x/E+i)2

with properties (4.2.32), (4.2.33) and (4.2.34). Observe that the constants in

the proof of theorem 3.2.2 only depend on ||f ||R,1; in fact they are increasing in terms
of ||f ||R,1. Thus the same constant E can be chosen for all extensions of functions with
||f ||R,1 ≤ 1.

Applying the claim from the proof of (iv)⇒(i) (section 4.2), we get for z = x+iy with

y ≥ θ(x/C1)
4 that |F̃ (z)| ≤ h(4y). Set z0 := x0 + iθ(x0/C1) and let B0 := B(z0,

θ(x0/C1)
2 ).

Observe that B0 ⊆ G :=
{
z = x+ iy : y ≥ θ(x/C1)

4

}
for sufficiently small x0: Take z =

x + iy ∈ B0, we have by the definition of B0 that y ≥ θ(x0/C1)
2 . If we can show for

|x− x0| ≤ θ(x0/C1)
2

θ(x/C1)

4
≤ θ(x0/C1)

2
(4.3.50)

this implies B0 ⊆ G. By (4.3.37), we have for sufficiently small x, x0 (with ε := C1)

|θ(x/C1)− θ(x0/C1)| ≤ |x− x0|.

Thus we have for |x− x0| ≤ θ(x0/C1)
2

1

4
θ(x/C1) ≤ 1

4

(
θ(x0/C1) +

θ(x0/C1)

2

)
≤ θ(x0/C1)

2
,

and this is exactly (4.3.50).
Thus we may conclude |F̃ (z)| ≤ h(4y) for z ∈ B0 and by the definition of B0 therefore

in addition |F̃ (z)| ≤ h(6θ(x0/C1)) for z ∈ B0.
Observe that F̃ has all the necessary properties to apply lemma 4.3.3 with ε = 1

2 .

Now take A = 3 (as in lemma 4.3.3) and we get a constant Q̃ independent of x0 such
that

|F̃ (z)| ≤ h(Q̃θ(x0/C1))

for z ∈ B(x0 + iθ(x0/C1), 3
2θ(x0/C1)) and as x0 ∈ B(x0 + iθ(x0/C1), 3

2θ(x0/C1)) we get
especially ∣∣∣∣ 1

E

f(x0/E)

(x0/E + i)2

∣∣∣∣ = |F̃ (x0)| ≤ h(Q̃θ(x0/C1)). (4.3.51)

As E|x0/E + i|2 ≤ 2E for sufficiently small x0 and as 2Eh(Q̃θ(x0)) ≤ h(2EQ̃θ(x0/C1))
for small x0, we may set Q1 := 2EQ̃ and Q2 := E

C1
and the proof is finished.
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Chapter 4. An application of 3.2. A stronger Denjoy Carleman theorem

For the lower estimate (4.3.41), we need a result on biholomorphic functions defined
on symmetric domains.

Lemma 4.3.4. Let Ωj ⊆ C for j = 1, 2 be two simply connected domains symmetric
with respect to the real line; i.e. z ∈ Ωj ⇒ z ∈ Ωj. If h : Ω1 → Ω2 is biholomorphic,
then also

g(z) := h(z)

is biholomorphic between Ω1 and Ω2.

If Ωj ∩ R 6= ∅ for j = 1, 2 and h(x0), h′(x0) ∈ R for some x0 ∈ Ω1 ∩ R, then h|Ω1∩R
is a homeomorhpism of Ω1 ∩ R and Ω2 ∩ R.

Proof. Since z 7→ z is bijective on Ωj for j = 1, 2 due to symmetry, we get that g is
bijective between Ω1 and Ω2 as it is the composition of bijective functions. Analyticity
follows since

lim
z→z0

g(z)− g(z0)

z − z0
= lim

z→z0

(
h(z)− h(z0)

z − z0

)
= h′(z0).

If h(x0), h′(x0) ∈ R for some x0 ∈ Ω1 ∩ R, we have by the above considerations h(x0) =
g(x0) and h′(x0) = g′(x0) ∈ R.

Now take φ1 : D→ Ω1 biholomorphic with φ1(0) = x0 and φ′1(0) > 0 and φ2 : Ω2 → D
biholomorphic with φ2(h(x0)) = 0 and φ′2(h(x0)) > 0. Observe that φ2 ◦ h ◦ φ1(0) =
0 = φ2 ◦ g ◦ φ1(0) and (φ2 ◦ h ◦ φ1)′(0) = (φ2 ◦ g ◦ φ1)′(0) ∈ R. Thus an application of
the uniqueness result in the Riemann mapping theorem 1.0.15 yields that φ2 ◦ h ◦ φ1 =
φ2 ◦ g ◦ φ1 and therefore h = g.

In other words h(z) = h(z) and thus h(x) ∈ Ω2 ∩ R for x ∈ Ω1 ∩ R. If for some
z = x + iy with y 6= 0 we would have h(z) ∈ R, this would imply that h(z) = h(z)
contradicting injectivity of h. Thus h|Ω1∩R : Ω1 ∩ R → Ω2 ∩ R is bijective and as
restriction of a biholomorphic function also a homeomorphism.

In addition we need a result dealing with the asymptotic behaviour of biholomorphic
functions mapping certain domains, so-called L−strips, to strips of fixed height. The
definitions and results are taken from [14].

A domain Ω ⊆ C is called L−strip if there are differentiable functions φ+, φ− :
(x0,∞) → R with φ+ > φ− and a Jordan arc γ ⊆ {z : <(z) ≤ x0} such that ∂Ω =
φ+((x0,∞)) ∪ φ−((x0,∞)) ∪ γ and {z = x + iy ∈ C : x0 ≤ x < ∞, φ−(x) < y <
φ+(x)} ⊆ Ω; in addition it is assumed that

lim
t→∞

φ′+(t) = lim
t→∞

φ′−(t) = tan(γ)

for some γ ∈ (−π
2 ,

π
2 ). Such a domain is called L-strip with boundary inclination γ at

infinity.
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4.3. A quantitative result, proof of theorem 4.0.1 (i)⇒(iv)

Theorem 4.3.5. Let Ω be an L−strip with boundary inclination γ = 0 at infinity and
H : Ω→ {z ∈ C : |=(z)| < π

2 } a biholomorphic function with H(x+ iy)→∞ as x→∞
uniformly in y. Then for z = x+ iy

<(H(z)) w π

∫ x

x0

1

φ+(t)− φ−(t)
dt

as x→∞ uniformly in y.

Proof. See [14, Theorem X, p. 315].

We write f(t) w g(t) as t→ c if f(t)
g(t) → 1 as t→ c.

In the proof of the lower estimate we need theorem 4.3.5 in a slightly different setting.

Corollary 4.3.6. Let Ω ⊆ C be a domain such that

Ω = {z = x+ iy ∈ C : 0 < x < x0, |y| < τ(x)}

where τ is an increasing continuous function on [0, x0), differentiable on (0, x0) with
τ(0) = 0 and

lim
x→0

τ ′(x) = 0.

Let G : Ω→ {z = x+ iy ∈ C : |y| < π
2 } be a biholomorphic function with

lim
x→0

G(x+ iy) = +∞

uniformly in y. Then

<(G(x+ iy)) w
π

2

∫ x0

x

1

τ(t)
dt.

as x→ 0 uniformly in y.

Proof. To apply theorem 4.3.5 we need to transform the given domain Ω to an L−strip.
Define

Ω̃ :=

{
h(z) := log

(
1

z

)
: z ∈ Ω

}
.

First, we observe that Ω̃ is indeed an L−strip: Let r(t) :=
√
t2 + τ(t)2 and ρ(t) :=

arctan
(
τ(t)
t

)
. It is clear from the definition of r that it is strictly increasing and r(t) > t.

Thus we get the existence of r−1 : (0, r(x0))→ (0, x0) and (as r(x0) > x0) r−1 is defined
on (0, x0). In addition

r′(t)→ 1 as t→ 0 (4.3.52)

which follows since τ(0) = 0 and τ ′(t)→ 0 as t→ 0. Moreover,

tρ′(t)→ 0 as t→ 0 (4.3.53)
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Chapter 4. An application of 3.2. A stronger Denjoy Carleman theorem

which holds as tρ′(t) =

(
1

1+
τ(t)2

t2

)
τ ′(t)t−τ(t)

t and the first factor converges to 1 and the

second factor to 0 (since τ ′ tends to 0!).
Now we describe a subdomain of Ω in polar coordinates as follows

Ω ⊇
{
z = r(t)eiα ∈ C : 0 < t < r−1(x0), |α| < ρ(t)

}
=
{
z = teiα ∈ C : 0 < t < x0, |α| < ρ(r−1(t))

}
=: Ω′.

Therefore

h(Ω′) =

{
log

(
1

t

)
− iα : 0 < t < x0, |α| < ρ(r−1(t))

}

=

z = x+ iy : x > log

(
1

x0

)
, |y| <

(
ρ ◦ r−1 ◦ exp

)
(−x)︸ ︷︷ ︸

=:β(x)

 .

To see that Ω̃ is an L−strip, we have to differentiate the boundary curve:

β′(x) = −ρ′(r−1(e−x))
(
r−1
)′

(e−x)e−x.

Since r′(t)→ 1 as t→ 0 due to (4.3.52), the same holds for r−1 and thus

β′(x) w −ρ′(r−1(e−x))e−x = −ρ′(r−1(e−x))r−1(e−x)
e−x

r−1(e−x)

as x→∞. Now we use (4.3.53) which implies that β′(x) tends to 0 at infinity. Therefore
Ω̃ is an L−strip with boundary inclination γ = 0.

Before proving the desired result, we need an auxiliary result: Given two positive
functions f, g defined on some intervals (0, t0) and (0, t1) respectively, both converging
to ∞ near 0 with divergent integral near 0 and f w g at 0, then∫ t0

t
f(s)ds w

∫ t1

t
g(s)ds (4.3.54)

as t→ 0.
This can be seen as follows: Let ε > 0 be fixed. Then there is t2 < t0, t1 such that

f(s) ≤ (1 + ε)g(s) for s < t2. Therefore we get for t < t2∫ t0
t f(s)ds∫ t1
t g(s)ds

≤
(1 + ε)

∫ t2
t g(s)ds+

∫ t0
t2
f(s)ds∫ t2

t g(s)ds+
∫ t1
t2
g(s)ds

= (1 + ε)

∫ t2
t g(s)ds∫ t2

t g(s)ds+
∫ t1
t2
g(s)ds

+

∫ t0
t2
f(s)ds∫ t2

t g(s)ds+
∫ t1
t2
g(s)ds

.

Since t 7→
∫ t2
t g(s)ds tends to ∞ as t → 0, it is clear that the first summand tends to

(1 + ε) and the second summand to 0 as t→ 0. The other estimate follows analogously.
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Set

G̃ : Ω̃→
{
z = x+ iy : |y| < π

2

}
z 7→ G(e−z)

which is biholomorphic on Ω̃∩{z ∈ C : |=(z)| < π}. Since G̃(z)→∞ as z →∞, we can
apply theorem 4.3.5 and get for z = teiα ∈ Ω′

<(G(z)) = <
(
G̃

(
log

(
1

t

)
− iα

))
w π

∫ log( 1
t )

log
(

1
x0

) 1

2ρ ◦ r−1(e−s)
ds

= −π
2

∫ t

x0

1

(ρ ◦ r−1(s))s
ds

=
π

2

∫ x0

t

1

(ρ ◦ r−1(s))s
ds

w
π

2

∫ x0

t

1

τ(s)
ds.

The last line follows, since ρ(r−1(s)) = arctan
(
τ(r−1(s))
r−1(s)

)
w τ(r−1(s))

r−1(s)
as s → 0 (since

arctan′(0) = 1), and as τ(r−1(s)) w τ(s) as s→ 0 (due to (4.3.55)).

Now observe that for z = x + iy ∈ Ω we have z = teiα for some t ∈ [x, r(x)). And
since for given ε > 0 we get for sufficiently small s

1 ≤ τ(r(s))

τ(s)
≤ τ(s+ τ(s))

τ(s)

≤ τ(s) + ετ(s)

τ(s)
= 1 + ε.

(4.3.55)

Combining this with r′(t)→ 1 as t→ 0, we get τ(r(s))r′(s) w τ(s) and therefore∫ x0

t

1

τ(s)
ds w

∫ x0

r(t)

1

τ(s)
ds

as t→ 0. Finally we thus get

<(G(x+ iy)) w
π

2

∫ x0

x

1

τ(s)
ds

as x→ 0 uniformly in y.

Now, we have all the necessary tools to prove the lower estimate from theorem 4.3.1.
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Chapter 4. An application of 3.2. A stronger Denjoy Carleman theorem

Proof of h(qθ(x)) ≤ P (x).
Let ε < 10

132 . By (4.3.37) we can find a T0 > 0 such that |θ(x) − θ(y)| ≤ ε|x − y| for
0 < x, y < T0. Define

Ω :=

{
z = x+ iy : 0 < x < T0, |y| <

5

4
θ(x)

}
,

S :=
{
z = x+ iy : |y| < π

2

}
.

Both domains are simply connected and symmetric with respect to the real axis. By
the Riemann mapping theorem 1.0.15, we get the existence of a biholomorphic function
G̃ : Ω→ S with G̃(T02 ) = 0 and G̃′(T02 ) < 0. An application of lemma 4.3.4 yields that

G̃(z) = G̃(z)

and G̃|(0,T0) is a homeomorphism from (0, T0) to R. As G̃′(T02 ) < 0, we get that G̃|(0,T0)

is decreasing, and thus

lim
x→0

G̃(x) = +∞, (4.3.56)

lim
x→T0

G̃(x) = −∞. (4.3.57)

Using the continuity of G̃ we also get that G̃(x + iy) → +∞ as x → 0 uniformly in y.
Now set

G(z) :=
3

π
G̃(z).

Then G is a biholomorphic map from Ω to the strip {z = x+ iy : |y| < 3
2}.

Due to (4.3.38) we have θ′(t) → 0 as t → 0, thus we can apply corollary 4.3.6 and
get for x→ 0

<G(x+ iy) =
3

π
<G̃(x+ iy) w

3

π

π

2

∫ T0

x

1
5
4θ(s)

ds =
12

10

∫ T0

x

1

θ(s)
ds. (4.3.58)

Applying (4.3.38), we get

(φ ◦ θ)′(x) = φ′(θ(x))θ′(x) = − 1

θ(x)
.

In other words −(φ ◦ θ) is an anti-derivative of 1
θ . We continue the asymptotic represen-

tation (4.3.58) of <G(x+ iy) and get

<G(x+ iy) w
12

10
(φ(θ(x))− φ(θ(T0))) w

12

10
φ(θ(x)). (4.3.59)

Now set for z ∈ Ω

F (z) := exp(− exp(G(z))).
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4.3. A quantitative result, proof of theorem 4.0.1 (i)⇒(iv)

F is by definition an analytic function on Ω. Choose T1 > 0 sufficiently small to get
h(θ(T1)) ≤ 1 and for x ≤ T1:

<(G(x+ iy)) ≥ 11

10
φ(θ(x)),

1

10
φ(θ(x)) ≥ − log

(
cos

(
3

2

))
=: − log(α).

Then it follows for x = <(z) ≤ T1

|F (z)| = exp(− exp(<G(x+ iy)) cos(=G(x+ iy)))

≤ exp

(
− exp

(
11

10
φ(θ(x)

)
α

)
≤ h(θ(x)) ≤ h(θ(T1)) ≤ 1.

(4.3.60)

An application of the additional assumption (4.3.40) implies for small x the existence of
a small 1 > q > 0 with

|F (x)| = exp(− exp(G(x))) ≥ exp(− exp(2φ(θ(x)))) ≥ h(qθ(x)). (4.3.61)

Define for z ∈ Ω̃ := Ω ∩ (T1 − Ω)

f(z) := F (z)F (T1 − z).

f is analytic on Ω̃. As |F | ≤ 1, we get immediately by (4.3.60)

|f(z)| ≤ |F (z)| ≤ h(θ(x)). (4.3.62)

Since |F (T1−x)| ≥ c > 0 (assume w.l.o.g. c < 1) as x→ 0 we get by (3.2.9) and (4.3.61)

|f(x)| ≥ c|F (x)| ≥ ch(qθ(x)) ≥ h(cqθ(x)). (4.3.63)

Set for x0 <
T1
2 , B0 := B

(
x0,

11
10θ(x0)

)
. Then we claim

B0 ⊆ Ω̃.

To prove this inclusion it is enough to show

12

10
θ

(
x0 −

11

10
θ(x0)

)
≥ 11

10
θ(x0).

This follows easily from (4.3.37): Observe

θ(x0) ≤ θ
(
x0 −

11

10
θ(x0)

)
+ ε

11

10
θ(x0)

⇔ 12

10
θ

(
x0 −

11

10
θ(x0)

)
≥ 12

10
θ(x0)− ε132

100
θ(x0)︸ ︷︷ ︸

≥ 11
10
θ(x0); by the choice of ε

.
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Chapter 4. An application of 3.2. A stronger Denjoy Carleman theorem

We also get θ
(
x0 + 11

10θ(x0)
)
≤ 11

10θ(x0) by the choice of ε. Therefore by (4.3.62) for
z = x+ iy ∈ B0

|f(x+ iy)| ≤ h(θ(x)) ≤ h
(
θ

(
x0 +

11

10
θ(x0)

))
≤ h

(
11

10
θ(x0)

)
.

So f is analytic on B0 and bounded by h
(

11
10θ(x0)

)
there. Therefore we may conclude

by Cauchy’s estimates (see e.g. [13, 10.26 Theorem, p. 213])

|f (k)(x0)| ≤ h
(

11

10
θ(x0)

)
k!

(
11

10
θ(x0)

)−k
≤Mk,

where we applied (3.2.8) to derive the second inequality. By symmetry we get |f (k)(x0)| ≤
Mk also for x0 ≥ T1

2 . In addition we have

∣∣∣f (k)(x0)
∣∣∣ ≤ h(11

10
θ(x0)

)
k!

(
11

10
θ(x0)

)−k
≤Mk+1

11

10
θ(x0)

which tends to 0 as x0 → 0. Thus f is flat at 0. Again by symmetry the same argument
holds for T1. This implies that we can extend f off [0, T1] by f ≡ 0.

Thus we have found a function f ∈ C∞(R) with

f (n)(0) = 0 for all n ∈ N,

|f (n)(x)| ≤Mn for all n ∈ N and all x ∈ R,
|f(x)| ≥ h(cqθ(x)) for small x > 0.

This completes the proof.
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5 Two results of Borichev and Volberg on asymp-

totically holomorphic functions

In this chapter we present a Phragmén-Lindelöf theorem and a uniqueness theorem for
asymptotically holomorphic functions. The uniqueness result may be understood as a
Denjoy-Carleman theorem at infinity. In sections 5.1 and 5.2 we focus on understanding
the proofs given by Borichev and Volberg. They use very involved constructions based
upon an application of the two constants theorem (see theorems 2.4.2 and 2.5.2) in both
proofs. In section 5.3 we will finally illustrate how the theorems can be used to solve a
very interesting problem. The theorems as well as their application are taken from [3].

Before treating the mentioned theorems, we need two auxiliary results. One of which
is the ordinary Phragmén-Lindelöf theorem (see [9, III C, p. 25]).

Theorem 5.0.1. Let f be analytic in a sector S of opening 2γ with γ < π (i.e. S =
(T ◦ R)(S̃) := (T ◦ R) ({z ∈ C : −γ < arg(z) < γ}), where T is a translation and R a
rotation). Suppose

|f(z)| ≤ CeA|z|α ∀z ∈ S

for some α < π/(2γ) and lim supz→ζ |f(z)| ≤ m <∞ for all ζ ∈ ∂S. Then

|f(z)| ≤ m ∀z ∈ S.

Proof. We can assume w.l.o.g. that f is defined on a sector S = {z ∈ C : −γ < arg(z) < γ};
if not, replace f by f ◦ (T ◦R), then the new f still fulfils all assumptions and is defined
on a sector {z ∈ C : −γ < arg(z) < γ}.

Pick β such that α < β < π/(2γ) and ε > 0. Define

vε(z) := log |f(z)| − ε<(zβ).

We claim that vε is subharmonic on S: Due to lemma 1.0.3 log |f(z)| is subharmonic. As
the domain of definition is a sector, there exists a holomorphic logarithm on S. Therefore
zβ = eβ log(z) can be holomorphically defined on S, so <(zβ) is harmonic (as real part of
a holomorphic function). This shows the claim.

Now we observe that <(zβ) = |z|β cos(βφ) ≥ |z|β cos(βγ) for z ∈ S where φ is the
argument of z. Since 0 < βγ < π/2, we thus have <(zβ) > 0 for z ∈ S. This immediately
implies

vε(z) ≤ log |f(z)|

and therefore

lim sup
z→ζ

vε(z) ≤ logm ∀ζ ∈ ∂S.
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functions

By assumption we have log |f(z)| ≤ logC + A|z|α. This yields the following inequality
for vε

vε(z) = log |f(z)| − ε<(zβ)

≤ logC +A|z|α − ε cos(βγ)|z|β︸ ︷︷ ︸
→−∞ as |z|→∞, since α<β

.

Therefore there exists some R > 0, such that vε(z) ≤ logm for all z ∈ S\B(0, R). Let
now z0 ∈ S be fixed. Since making R larger only makes it easier to fulfil the above
inequality, it is possible to take the above R > |z0|. This now gives

lim sup
z→ζ

vε(z) ≤ logm

for all ζ ∈ ∂(S∩B(0, R)). Thus applying lemma 1.0.3 to this domain gives vε(z0) ≤ logm

which is equivalent to log |f(z0)| ≤ logm + ε<(zβ0 ). Now let ε → 0, which implies the
statement of the theorem.

The next theorem is a particular case of the two constants theorem 2.5.2 needed in
the proof of theorem 5.1.1. It can be proved directly without an application of the more
general two constants theorem. It is taken from [11, IX Lemma (Hadamard’s three lines
theorem), p. 33].

Theorem 5.0.2. Let f be analytic on a vertical strip S := {z ∈ C : a < <(z) < b} and
bounded on S. Then the function M : [a, b] → R defined by M(x) = sup<(z)=x |f(z)| is
logarithmically convex, i.e.

M((1− t)a+ tb) ≤M(a)1−tM(b)t for 0 ≤ t ≤ 1.

Proof. Let F (z) := f(z)M(a)
z−b
b−aM(b)

a−z
b−a . Then F is analytic on the strip and as f is

bounded, also F is bounded on S. As |F (z)| ≤ 1 for <(z) ∈ {a, b}, it follows by the
maximum principle for bounded analytic functions (1.0.10) that |F | is bounded by 1 on
the whole strip which implies

|f(z)| ≤M(a)
b−<(z)
b−a M(b)

<(z)−a
b−a .

This completes the proof.
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5.1 Phragmén-Lindelöf theorem for asymptotically holo-
morphic functions

Theorem 5.1.1. [3, Theorem 6.1, p. 358] Let f be continuously differentiable and
bounded on C+(= {z ∈ C : <(z) > 0}). Let ω be a positive decreasing function on
R+ ∪ {0}, where R+ = C+ ∩ R, with the following properties:

log

(
1

ω(x)

)
is convex,

ω(x) = o(e−nx) x→∞, ∀n ∈ N.

If

|∂f(z)| < ω(<(z)),∣∣f |R+(x)
∣∣ = O(exp(−nx)), x→∞, ∀n ∈ N,

then there exists some L > 0, such that

|f(x)| < ω(Lx)

for sufficiently large x ∈ R.

Proof.
Claim 1: To simplify the following arguments, we observe that it is actually possible to
assume without loss of generality that

|∂f(z)| < ω(<(z))

(1 + |z|)4
, (5.1.1)

f(z) =
1

2πi

∫
ζ∈C+

∂f(ζ)

ζ − z
dζ ∧ dζ. (5.1.2)

To see this, set

h1(z) :=
f(z)

(1 + z)6
.

Now observe, that there is some R > 0, such that

|1 + z|6 > (1 + |z|)4 for |z| > R.

As in addition |1+z|6
(1+|z|)4 is continuous and non-zero on B(0, R) ∩ C+, it is bounded from

below by some m ∈ (0, 1). Therefore |1 + z|6 > m(1 + |z|)4 on C+, which implies
m
|1+z|6 ≤

1
(1+|z|)4 .

Let φ : R→ [0, 1] be a smooth function such that

φ(t) =

 0 , t ≤ 1
2

1 , t ≥ 1
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Set h2 : C→ C

h2(z) =

 0 , <(z) ≤ 0

φ(<(z))h1(z) , <(z) > 0

Then h2 is now globally defined on C and coincides with h1 for <(z) ≥ 1. Therefore
∂h2(z) = ∂h1(z) for <(z) > 1. Finally, we set

h3(z) := min

{
m,

mω(1)

max0≤<(z)≤1 |∂(φ(<(z))f(z))|

}
h2(z).

Now we can show that h3 already fulfils (5.1.1) and (5.1.2): For <(z) > 1 we have

|∂h3(z)| ≤ m
∣∣∣∣∂ ( f(z)

(1 + z)6

)∣∣∣∣
= m

∣∣∣∣ ∂f(z)

(1 + z)6

∣∣∣∣ ≤ ω(<(z))

(1 + |z|)4
,

and for 0 < <(z) ≤ 1 we have

|∂h3(z)| ≤ mω(1)

max0≤<(z)≤1 |∂(φ(<(z))f(z))|
∣∣∂(φ(<(z))f(z))

∣∣ 1

|1 + z|6

≤ ω(1)

(1 + |z|)4
≤ ω(<(z))

(1 + |z|)4
,

where the last inequality holds as ω is decreasing. This shows, that (5.1.1) holds for h3.
To see (5.1.2), we observe that

|h3(z)| ≤ m|h2(z)| ≤ m |φ(<(z))||f(z)|
|1 + z|6

≤ m |f(z)|
|1 + z|6

≤ |f(z)|
(1 + |z|)4

≤ ||f ||∞
(1 + |z|)4

.

Since h3 ∈ C1(C), it follows for z ∈ B(0, k) and n ≥ k (see theorem 1.0.11)

h3(z) =
1

2πi

∫
∂B(0,n)

h3(ζ)

ζ − z
dζ +

1

2πi

∫
B(0,n)

∂h3(ζ)

ζ − z
dζ ∧ dζ.

Now, ∣∣∣∣∣
∫
∂B(0,n)

h3(ζ)

ζ − z
dζ

∣∣∣∣∣ ≤ 2πn max
ζ∈∂B(0,n)

|h3(ζ)|
|ζ − z|

≤ 2πn
||f ||∞

(1 + n)4

1

n− k
.
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The latter tends to 0 as n→∞, which now means that

h3(z) = lim
n→∞

1

2πi

∫
B(0,n)

∂h3(ζ)

ζ − z
dζ ∧ dζ =

1

2πi

∫
C+

∂h3(ζ)

ζ − z
dζ ∧ dζ

where the second equality holds due to the dominated convergence theorem.
Now (5.1.1) and (5.1.2) hold for h3 and for <(z) > 1, h3(z) = M f(z)

(1+z)6
, with some

small constant M .
Suppose, the theorem can be proved for h3, then M |f(x)|

|1+x|6 ≤ ω(Kx) for some small

K and large enough x. But the convexity of log( 1
ω ) just means ω(tx + (1 − t)y) ≥

ω(x)tω(y)1−t for all t ∈ [0, 1], which shows

ω(tx)

ω(x)
≥ ω(x)tω(0)1−t

ω(x)
= cω(x)t−1 ≥ c̃e(1−t)x

where the existence of some c̃ > 0 in the last inequality follows from the assumption
that ω(x) = o(e−x) for x → ∞. And the right hand side grows faster in x than any
polynomial, which means that it is eventually larger than M |1 + x|6. Therefore

|f(x)| ≤M |1 + x|6ω(Kx) ≤ ω(
K

2
x)

for sufficiently large x. This now shows claim 1. So let us assume from now on that
(5.1.1) and (5.1.2) hold for the given f .

The next goal is to prove
Claim 2:

|f(z)| = O(exp(−n<(z))) ∀n ∈ N uniformly in =(z). (5.1.3)

To this end, we define Ft(z) := f(z)etz for t > 0. Ft is bounded on the imaginary axis
by assumption. In addition it is also bounded on the positive reals, because

|Ft(x)| = |f(x)etx| ≤ |f(x)edtex| x→∞→ 0.

Next, we define for z ∈ C+

aFt(z) := Ft(z)−
1

2πi

∫
C+

∂Ft(ζ)

ζ − z
dζ ∧ dζ. (5.1.4)

Since

|∂Ft(z)| =
∣∣∂f(z)

∣∣ |etz| ≤ 1

(1 + |z|)4
ω(<(z))et<(z)︸ ︷︷ ︸
≤Mt<∞

and the right-hand side of the above inequality is bounded and absolutely integrable on
C+, it is possible to apply Lemma 1.0.13 to derive analyticity of the function aFt .
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Due to the above considerations, aFt is bounded on the real and imaginary axis and

|aFt(z)| ≤Met|z|

for some large constant M . So by applying the Phragmén-Lindelöf theorem 5.0.1 to
the first quadrant, we get that aFt is bounded there. The same argument holds for the
fourth quadrant. So aFt is bounded on C+.

Since 1
2πi

∫
C+

∂Ft(ζ)
z−ζ dζ∧dζ is uniformly bounded (in z) on C+ (see the proof of 1.0.13),

it follows that Ft is bounded on C+ as well which means that

|f(z)etz| ≤ Ct <∞ ∀z ∈ C+.

Therefore it follows that

|f(z)| = O(e−n<(z)) for every n uniformly in =(z)

which is the desired result of claim 2.

Next, we define for each t ∈ R+ and z ∈ Ωt := {z ∈ C : <(z) > t}

ft(z) :=
1

2πi

∫
0<<(ζ)<t

∂f(ζ)

ζ − z
dζ ∧ dζ. (5.1.5)

Clearly for each fixed z ∈ Ωt, the integrand of (5.1.5) is absolutely integrable on {ζ ∈
C : 0 < <(ζ) < t} by (5.1.1). In addition the integrand is also analytic on Ωt for each
fixed ζ ∈ {ζ ∈ C : 0 < <(ζ) < t}.

In addition, given a compact disc B(z0, r) ⊆ Ωt, we get by the fact that there must
be an ε > 0 such that B(z0, r + ε) ⊆ Ωt, the following∣∣∣∣∂f(ζ)

ζ − z

∣∣∣∣ (5.1.2)

≤ ω(0)

(1 + |ζ|)4|ζ − z|
≤ ω(0)

ε(1 + |ζ|)4
(5.1.6)

where the above inequalities hold for all ζ with 0 < <(ζ) < t and all z ∈ B(z0, r). As
the right-hand side of (5.1.6) is absolutely integrable on {ζ ∈ C : 0 < <(ζ) < t}, it is
possible to apply Lemma 1.0.14 and derive analyticity of ft on Ωt. By (5.1.2) we also
get the following estimate for z ∈ Ωt

|f(z)− ft(z)| ≤
1

π

∫
Ωt

∣∣∣∣∂f(ζ)

ζ − z

∣∣∣∣ dξ ∧ dη
≤ ω(t)

π

∫
C

1

(1 + |ζ|)4|ζ − z|
dξ ∧ dη︸ ︷︷ ︸

≤K̃ independent of z

≤ Kω(t).

(5.1.7)

Claim 3: Let A := {n ∈ N : sup<(z)≥en |f(z)| < ω(en−2)} and B := N\A. Then A is
infinite.
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Define

a(x) := −e−x log

(
sup
<(z)≥ex

|f(z)|

)
. (5.1.8)

Let us first check that a(n)→∞: By the definition of a(n) this is clearly equivalent to

∀R > 0 ∃N(R) ∈ N : ∀n ≥ N sup
<(z)≥en

|f(z)| ≤ e−Ren .

And as |f(z)| = O(e−n<(z)) for all n ∈ N by (5.1.3), there exists some N such that
|f(z)| ≤ e−R<(z) for all z with <(z) ≥ eN . Therefore for all z with <(z) ≥ en ≥ eN we
have

|f(z)| ≤ e−R<(z) ≤ e−Ren .
So sup<(z)≥en |f(z)| ≤ e−Ren and therefore a(n)→∞.

Now let n ∈ B (i.e. sup<(z)≥en |f(z)| ≥ ω(en−2)). The function fen−2 is bounded
and analytic on Ωen−2 . Boundedness follows from the boundedness of f and (5.1.7),
analyticity was shown for general ft. In addition the following estimates hold

sup
<(z)=en−2

|fen−2(z)| ≤ (K + 1)e−a(n−2)en−2
, (5.1.9)

sup
<(z)=en

|fen−2(z)| ≤ (K + 1)e−a(n)en . (5.1.10)

(5.1.9) holds due to

sup
<(z)=en−2

|fen−2(z)| ≤ sup
<(z)=en−2

|fen−2(z)− f(z)|+ sup
<(z)=en−2

|f(z)|

(5.1.7)

≤ Kω(en−2) + sup
<(z)=en−2

|f(z)|

≤
n∈B

K sup
<(z)≥en

|f(z)|+ sup
<(z)=en−2

|f(z)|

≤ (K + 1) sup
<(z)≥en−2

|f(z)|

= (K + 1)e−a(n−2)en−2
.

(5.1.10) holds due to an analogous argument.
Due to the three lines theorem 5.0.2 (for x ∈ [en−2, en] and t ∈ [0, 1] such that

x = (1− t)en−2 + ten), it follows that

sup
<(z)=x

|fen−2(z)| ≤ (K + 1)e(−(1−t)a(n−2)en−2−ta(n)en). (5.1.11)

Since fen−2 is bounded and analytic in the the half plane {z ∈ C : <(z) ≥ x} for x ≥ en−2,
the respective maximum has to be attended at the boundary {z : <(z) = x} by the
maximum principle for bounded analytic functions (1.0.10). Therefore

sup
<(z)≥x

|fen−2(z)| ≤ (K + 1)e(−(1−t)a(n−2)en−2−ta(n)en). (5.1.12)
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For en−1 = e
e+1e

n−2 + 1
e+1e

n this means

sup
<(z)≥en−1

|fen−2(z)| ≤ (K + 1)e(−
e
e+1

a(n−2)en−2− 1
e+1

a(n)en). (5.1.13)

Claim 3a: For n ∈ B there exist absolute constants K1,K2, such that

a(n− 1) ≥ −K1e
−n +

a(n− 2) + ea(n)

1 + e
, (5.1.14)

a(n)− a(n− 1) ≤ K2e
−n +

1

e
(a(n− 1)− a(n− 2)). (5.1.15)

In order to show (5.1.14), we observe that

sup
<(z)≥en−1

|f(z)| ≤ sup
<(z)≥en−1

|f(z)− fen−2(z)|+ sup
<(z)≥en−1

|fen−2(z)|

(5.1.7),(5.1.13)

≤ Kω(en−2) + (K + 1)e(−
e
e+1

a(n−2)en−2− 1
e+1

a(n)en) (5.1.16)

≤ 2(K + 1)e(−
e
e+1

a(n−2)en−2− 1
e+1

a(n)en)

where the last inequality holds, because n ∈ B and therefore

e−a(n)en = sup
<(z)≥en

|f(z)| ≥ ω(en−2)

e−a(n−2)en−2
= sup
<(z)≥en−2

|f(z)| ≥ sup
<(z)≥en

|f(z)| ≥ ω(en−2).

This implies

ω(en−2) ≤ e(−
e
e+1

a(n−2)en−2− 1
e+1

a(n)en).

By applying −e−(n−1) log to the chain of inequalities (5.1.16), we get

a(n− 1) = −e−(n−1) log

(
sup

<(z)≥en−1

|f(z)|

)
≥ −e−(n−1) log

(
2(K + 1)e(−

e
e+1

a(n−2)en−2− 1
e+1

a(n)en)
)

= −e log(2(K + 1))︸ ︷︷ ︸
=:K1

e−n +
a(n− 2)

e+ 1
+
ea(n)

e+ 1
.

This is (5.1.14). (5.1.15) is then a simple manipulation of (5.1.14):

− a(n− 1) ≤ K1e
−n − a(n− 2)

1 + e
− ea(n)

1 + e

⇔ e

1 + e
a(n)− e

1 + e
a(n− 1) ≤ K1e

−n +
1

1 + e
a(n− 1)− 1

1 + e
a(n− 2)

⇔ a(n)− a(n− 1) ≤ K1
1 + e

e︸ ︷︷ ︸
=:K2

e−n +
1

e
(a(n− 1)− a(n− 2)).
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This is now used to show claim 3: Suppose A is finite, then beginning from some
index n0, all n are in B. Then (5.1.15) holds for all n ≥ n0. Set bn := a(n)− a(n− 1),
we can write a(n) = bn + · · · + bn0+1 + a(n0). (5.1.15) now reads bn ≤ K2e

−n + 1
ebn−1.

But even if equality holds, the solution of this recursion (with arbitrary initial value) is
summable: W.l.o.g. let n0 = 0 and observe

n∑
k=0

bk =

(
K2

n∑
k=1

ke−k

)
+

(
n∑
k=0

e−k

)
b0 ≤ K2

2− 1/e

(1− 1/e)2
+

b0
1− 1/e

<∞

for all n ∈ N.

But this means, that a(n) has to be bounded in this case, which is a contradiction
to a(n)→∞. Therefore, there are arbitrarily large integers in A and claim 3 holds.

Now we define a function

G(x) := xa(log(x)).

Observe, that G(x) = − log(sup<(z)≥x |f(z)|) is increasing. The goal is to show

Claim 4: There exists L > 0 such that for sufficiently large x ∈ R

G(x) ≥ log(
1

ω(Lx)
).

This implies the result of the theorem: Suppose we get some L such that the above
inequality holds for large x. Then

− log( sup
<(z)≥x

|f(z)|) ≥ log(
1

ω(Lx)
)

⇔ 1

sup<(z)≥x |f(z)|
≥ 1

ω(Lx)

⇔ sup
<(z)≥x

|f(z)| ≤ ω(Lx).

If n ∈ A, then we get by the definition of A that

G(en) = − log( sup
<(z)≥en

|f(z)|) ≥ − log(ω(en−2))

and for x ∈ [en, en+1], L < e−3:

log(
1

ω(Lx)
) ≤ log(

1

ω(e−3x)
) ≤ log(

1

ω(en−2)
) ≤ G(en) ≤ G(x). (5.1.17)

Claim 4a: There is an absolute constant K3 such that for large enough n ∈ A

G(en−1) ≥ −K3 log(ω(en−2)).
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To see this, first observe that

sup
<(z)≥en−2

|fen−2(z)|
(5.1.7)

≤ sup
<(z)≥en−2

|f(z)|+Kω(en−2)︸ ︷︷ ︸
≤1 for large n by (5.1.3) and the definition of ω

.

Since n ∈ A, it follows by (5.1.7) that sup<(z)=en |fen−2(z)| ≤ (K+ 1)ω(en−2). Therefore
the three lines theorem (5.0.2) implies for sufficiently large n ∈ A

sup
<(z)≥en−1

|fen−2(z)| ≤ (K + 1)
1

1+e︸ ︷︷ ︸
=:P

ω(en−2)
1

1+e .

Using this, we get

sup
<(z)≥en−1

|f(z)| ≤ sup
<(z)≥en−1

|fen−2(z)− f(z)|+ sup
<(z)≥en−1

|f(z)|

≤ (K + 1)ω(en−2) + Pω(en−2)
1
e+1

≤ (K + 1)ω(en−2)
1
e+1 + Pω(en−2)

1
e+1

≤ 2 max{(K + 1), P}ω(en−2)
1
e+1 .

Now, an application of − log to the above chain of inequalities gives

G(en−1) = − log

(
sup

<(z)≥en−1

|f(z)|

)
≥ − log

(
2 max{(K + 1), P}ω(en−2)

1
e+1

)
= − log (2 max{(K + 1), P})− 1

1 + e
log
(
ω(en−2)

)
(= (+))

As − log(ω(en))→ +∞, for large enough n, we get

− 1

2(1 + e)
log(ω(en−2)) ≥ − log (2 max{(K + 1), P})

which now leads to

(+) ≥ −1

2(1 + e)
log(ω(en−2)).

This shows claim 4a.

By taking some smaller K4 < K3, we can achieve (by convexity) for large x that

log(
1

ω(K4x)
) ≤ K3 log(

1

ω(x)
).
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This now shows that if L is in addition smaller than K4e
−2, for x ∈ [en−1, en]

log(
1

ω(Lx)
) ≤ log(

1

ω(K4en−2)
) ≤ K3 log(

1

ω(en−2)
) ≤ G(en−1) ≤ G(x). (5.1.18)

Claim 4b: For large enough integers n1, n2 ∈ A, such that
[n1+1, n2−1]∩N ⊂ B, there are absolute constants K5,K6, such that for x ∈ [en1 , en2−1]:

G(x) ≥ K5
G(en1)(en2−1 − x) +G(en2−1)(x− en1)

en2−1 − en1
+K6. (5.1.19)

We will first show that it is possible to find constants C1 and C2 such that

π(x) ≥ σ(x) ≥ C1
G(en1)(en2−1 − x) +G(en2−1)(x− en1)

en2−1 − en1
+ C2 (5.1.20)

where π is the polygon connecting the points of

Π := {(en, G(en)) : n ∈ [n1, n2 − 1] ∩ N}

and σ is it’s convex minorant. As can be easily verified, σ is also a polygon connecting
the points of some set Σ := {(emk , G(emk)) : k = 1, . . . , l} ⊆ Π, where m1 = n1 and
ml = n2 − 1. Next observe that (5.1.14) is equivalent to

ena(n)− en−1a(n− 1)

en − en−1
≤ K1e

−n +
en−1a(n− 1)− en−2a(n− 2)

en−1 − en−2
.

By the definition of G this means for n ∈ B

G(en)−G(en−1)

en − en−1
≤ K1e

−n +
G(en−1)−G(en−2)

en−1 − en−2
.

By denoting dnm := G(en)−G(em)
en−em this means

dnn−1 ≤
K1

en−1
+ dn−1

n−2 (5.1.21)

and therefore (note the difference of mk±1 and mk ± 1!)

d
mk+1
mk ≤ dmk+1

mk

(5.1.21)

≤ K1

emk
+ dmkmk−1 ≤

K1

emk
+ dmkmk−1

(5.1.22)

where the first and last inequality hold due to the definition of σ as convex minorant.
Because σ is a convex polygon, it immediately follows that dm2

m1
< dm3

m2
< · · · < dmlml−1

and dm2
m1
≤ dmlm1

≤ dmlml−1
.

Now (5.1.20) takes the following form (observe that the first inequality π(x) ≥ σ(x)
is trivially satisfied)

σ(x) ≥ C1d
n2−1
n1

x+ C1
G(en1)en2−1 −G(en2−1)en1

en2−1 − en1
+ C2. (5.1.23)
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If |Σ| = 2 (i.e. σ is a line and therefore π a concave polygon) let C1 := 1 and C2 := 0
to get (5.1.23). So assume from now on |Σ| ≥ 3.

If e−1
e dmlm1

≤ dm2
m1

, C1 := e−1
e and C2 := 0 are valid choices for the constants in

(5.1.23). If not, let k0 be the maximal integer such that

d
mk0
mk0−1 ≤

e− 1

e
dmlm1

. (5.1.24)

Note that 2 ≤ k0 ≤ l − 1.

The next goal is to show that (5.1.23) holds with the choices C1 := e−1
e and C2 :=

−K1 : First observe that in order to show that the above constants are good enough to
get (5.1.23) it suffices to show

0 ≤ e− 1

e
(emk0 − em1)dmlm1

− (emk0 − em1)d
mk0
m1︸ ︷︷ ︸

=G(e
mk0 )−G(em1 )

≤ K1. (5.1.25)

To see that (5.1.25) already implies (5.1.23), observe that the above difference is exactly
the difference of the value of the line L at emk0 and G(emk0 ), where L is a line with slope
e−1
e dmlm1

passing through the point (em1 , G(em1)). The left-hand side of (5.1.25) follows

since e−1
e dmlm1

− dmk0m1 ≥ d
mk0
mk0−1 − d

mk0
m1 ≥ 0 due to convexity. By translating L by the

value −K1 the desired result (5.1.23) thus follows by the definition of k0.

In order to derive (5.1.25) we need several observations.

dmlm1
=
emk0 − em1

eml − em1
d
mk0
m1 +

l∑
k=k0+1

emk − emk−1

eml − em1
dmkmk−1

.

By applying inequality (5.1.22) iteratively, we get for k0 < k ≤ l

dmkmk−1
≤ K1

emk0

 l∑
i=k0

(
1

e

)i+ d
mk0
mk0−1

≤ K1

emk0

e

e− 1
+ d

mk0
mk0−1 ,

and therefore

dmlm1
≤ emk0 − em1

eml − em1
d
mk0
mk0−1 +

l∑
k=k0+1

emk − emk−1

eml − em1

(
K1

emk0

e

e− 1
+ d

mk0
mk0−1

)

=

 K1

emk0

e

e− 1

l∑
k=k0+1

emk − emk−1

eml − em1

+ d
mk0
mk0−1 (5.1.26)

≤ K1

emk0

e

e− 1
+ d

mk0
mk0−1 .
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Additionally we have

(emk0 − em1)d
mk0
m1 = G(emk0 )−G(em1)

≥ G(emk0 )−G(emk0−1)

= (emk0 − emk0−1)d
mk0
mk0−1

(5.1.27)

and

e− 1

e
(emk0 − em1)− (emk0 − emk0−1) ≤ e− 1

e
emk0 − (emk0 − emk0−1)

= emk0 − emk0−1 − emk0 + emk0−1

= emk0−1 − emk0−1 ≤ 0.

(5.1.28)

Now putting all these observations together we finally get

e− 1

e
(emk0 − em1)dmlm1

− (emk0 − em1)d
mk0
m1

(5.1.27)

≤ e− 1

e
(emk0 − em1)dmlm1

− (emk0 − emk0−1)d
mk0
mk0−1

(5.1.26)

≤ K1

emk0
(emk0 − em1) +

(
e− 1

e
(emk0 − em1)− (emk0 − emk0−1)

)
d
mk0
mk0−1

(5.1.28)

≤ K1

emk0
(emk0 − em1) ≤ K1.

This is exactly (5.1.25) which, as already shown, implies (5.1.23). We have thus found
absolute constants such that (5.1.19) holds for G = π.

We still have to study the behaviour of G on intervals [en−1, en] for n ∈ B to finally
give absolute constants K5 and K6. To this end, we observe that in analogy to (5.1.12)
it holds that

sup
<(z)≥x

|fen−1(z)| ≤ (K + 1)e−(1−t)a(n−1)en−1−ta(n)en

for (1 − t)en−1 + ten = x ∈ [en−1, en] and t ∈ [0, 1]. With a justification as for (5.1.14)
it is then possible to derive

G(x) ≥ −K1e+ (1− t)G(en−1) + tG(en) (5.1.29)

with x and t as above. Now set

K5 :=
e− 1

e
, K6 := −(1 + e)K1.

Then (5.1.29) together with (5.1.23) shows that these choices for K5 and K6 imply
(5.1.19).

If n1 is chosen large enough to get (for all n1 < n ∈ A)

K5

2
G(en) ≥ −K6 + log(1/ω(0))
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it follows by convexity that

log

(
1

ω(K5
2 e

n)

)
≤ K5G(en) +K6.

A similar argument leads to the existence of a constant K7 such that

log

(
1

ω(K7en2−1)

)
≤ K5G(en2−1) +K6.

Now taking L < min{K5/2,K7} shows that the values of log( 1
ω(Lx)) on en1 and en2−1

are smaller than the respective values of

x 7→ K5
G(en1)(en2−1 − x) +G(en2−1)(x− en1)

en2−1 − en1
+K6.

As log
(

1
ω(Lx)

)
is assumed convex, it is smaller than the above affine linear function on

the whole interval [en1 , en2−1].
Now we take n1 ∈ A large enough such that all above considerations hold and L

smaller than the choices of the respective constants. Then it finally follows that

G(x) ≥ log

(
1

ω(Lx)

)
for x ≥ n1, which shows claim 4 and therefore the theorem.
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5.2 Uniqueness result

Theorem 5.2.1. [3, Theorem 7.1, p. 362]
Let ρ be a positive increasing function defined on R+ ∪ {0} with

ρ(0) = 0,

∫ 1

0
log log

1

ρ(x)
dx =∞. (5.2.30)

Let φ be a positive decreasing function defined on R+ ∪ {0} with∫ ∞
0

φ(x)dx <∞. (5.2.31)

Let S := {z ∈ C+ : |=(z)| < 1} and f a bounded continuously differentiable function
defined on S with ∣∣∂f(z)

∣∣ < ρ(φ(<(z))|=(z)|), (5.2.32)∣∣f |R+(x)
∣∣ < ρ(φ(x)) x > 0. (5.2.33)

Then

f(x) = 0

for sufficiently large x ∈ R+.
If ρ = h, where h is the corresponding weight function defined by some regular weight

sequence (see section 3.2), then

f(x) = 0

for all x ∈ R+.

Proof.
Claim 1: It is possible to assume w.l.o.g. in addition that φ is continuous and ρ con-
tinuous, strictly increasing and limx→∞ ρ(x) =∞.

To this end, it is enough to find continuous, decreasing φ̃ ≥ φ and continuous, strictly
increasing ρ̃ ≥ ρ such that∫ ∞

0
φ̃(x)dx <∞,

∫ 1

0
log log

1

ρ̃(x)
dx =∞

because due to φ̃ ≥ φ, ρ̃ ≥ ρ and monotony we have

ρ̃(φ̃(x)) ≥ ρ̃(φ(x)) ≥ ρ(φ(x)).

Consider ρ: We define

M(x) := log log
1

ρ(x)
. (5.2.34)
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Then M is decreasing on R+ and limx→0M(x) =∞. If we find a continuous and strictly
decreasing M̃ ≤M with

∫ 1
0 M̃(x)dx =∞, then exp(− exp(M̃)) is a suitable ρ̃.

Due to (5.2.30), there exists a decreasing function T ≤ M defined on (0, 1] and a
strictly decreasing sequence (xn)n∈N converging to 0 such that T |(xn+1,xn] is constant
(i.e. T is a step function on each compact subinterval of (0, 1]), T (xn+1) > T (xn) and∫ 1
t T (x)dx ≥

∫ 1
t M(x)dx− 1 for all t ∈ (0, 1].

Now define M̃ as M̃(xn) = T (xn−1) ∀n ∈ N and M̃ continuous and strictly decreasing
on [xn+1, xn] such that ∫ xn

xn+1

M̃(x)dx ≥
∫ xn

xn+1

T (x)dx− 1

2n

and M̃ ≤M continuous on [x1,∞) and tending to −∞. Then M̃ fulfils the requirements
above. M̃ may be imagined as follows (the grey graph represents a possible M̃):

0 xn+1 xn xn−1

T (xn)

T (xn−1)

A similar argument leads to the existence of a suitable φ̃. This shows the claim.

Assume from now on that ρ and φ have the additional properties from claim 1. By
the additional assumptions made for ρ it is now possible to define its inverse ρ−1 on all
of R+, which is also continuous. Therefore it is possible to define

s(t) := ρ−1

(
sup
x≥t
|f(x)|

)
which is continuous as it is the composition of continuous functions. As ρ is strictly
increasing, s is decreasing (as the composition of an increasing and a decreasing function).
Furthermore it holds that

s(t) = ρ−1

(
sup
x≥t
|f(x)|

)
< ρ−1(ρ(φ(t))) = φ(t). (5.2.35)

Assume from now on s(t) > 0 for all t ∈ R+.
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If we can derive a contradiction this implies the desired result: The negation of
s(t) > 0 for all t > 0 is s(T0) = 0 for some T0 > 0 (s is by definition non-negative). As
s is decreasing by assumption, this implies that s(t) = 0 for t ≥ T0 which is the desired
result for general ρ. If in addition ρ = h, remark 3.2.5 implies that f |R+ ∈ C{Mn}(R+)
and thus (5.2.30) implies with the application of theorem 4.0.1 that f is quasianalytic.
So f(t) being constant zero for large enough t implies that f(t) is constant 0 for all t > 0.

A crucial part of the proof is the following
Claim 2: There exists A <∞ and τ > 2 such that

0 ≤M(s(t))−M
(
s

(
t− s(t)

φ(t− 2)

))
≤ A, ∀t ≥ τ. (5.2.36)

To this end define for t ≥ 2

P (t) :=

{
z ∈ C : t− 2

s(t)

φ(t− 2)
≤ <(z) ≤ t+ 1, |=(z)| ≤ s(t)

φ(t− 2)

}
.

Now define for z ∈ P (t)

fP (t)(z) = f(z)− 1

2πi

∫
ζ∈P (t)

∂f(ζ)

ζ − z
dζ ∧ dζ.

Observe that since φ is decreasing and by (5.2.35) it follows that s(t)
φ(t−2) < 1 and hence

the definition of fP (t) makes sense (f is only defined on the strip S). By lemma 1.0.13
fP (t) is analytic on P (t)◦. And for x ∈ [t, t+ 1] the following inequality holds

|fP (t)(x)| ≤ |f(x)|+ 1

π

∫
ζ∈P (t)

|∂f(ζ)|
|ζ − x|

dξ ∧ dη

(5.2.32)

≤ sup
y≥t
|f(y)|+ 1

π

∫
ζ∈P (t)

ρ(φ(<(ζ))|=(ζ)|)
|ζ − x|

dξ ∧ dη

≤ sup
y≥t
|f(y)|+ 1

π

∫
ζ∈P (t)

ρ
(
φ(t− 2) s(t)

φ(t−2)

)
|ζ − x|

dξ ∧ dη

= sup
y≥t
|f(y)|+ sup

y≥t
|f(y)| 1

π

∫
ζ∈P (t)

1

|ζ − x|
dξ ∧ dη︸ ︷︷ ︸

≤8

≤ 9 sup
y≥t
|f(y)|

= 9 exp (− exp (M (s(t))))

where the third inequality holds due to the definition of P (t) and the monotonicity
properties of ρ and φ. That the integral in the fourth line is less than 8 holds due to the
fact that P (t) ⊆ B(x, 4) for any x ∈ [t, t+ 1]; apply lemma 1.0.12.
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By the two constants theorem 2.4.2 it thus follows the existence of A1 > 0 and τ1 > 2
such that for t ≥ τ1∣∣∣∣fP (t)

(
t− s(t)

φ(t− 2)

)∣∣∣∣ ≤ exp (− exp (M (s(t))−A1)) . (5.2.37)

This can be seen as follows: First define for l ∈ (0, 1] the set Gl as the interior of the
closed polygon defined by connecting the points 0, l, l + il,−2l + il,−2l − il, 0 in this
order.

0 l 1−2l−2

1

l

−l−1

Gl

G1

By the Riemann mapping theorem 1.0.15 it is possible to define a biholomorphic map
gl : D→ Gl with gl(0) = −l which extends continuously and bijectively to the boundary
by the theorem of Carathéodory 2.3.1, and we get (naming the continuous extension
from D to Gl again gl)

ω(−l, [0, l], Gl) = ω(0, g−1
l ([0, l]),D).

Now observe that lg1 is also a biholomorphic map from D to Gl with (lg1)(0) = −l and
in addition we have (lg1)−1([0, l]) = g−1

1 ([0, 1]). Therefore we get

ω(−l, [0, l], Gl) = ω(0, g−1
1 ([0, 1]),D).

As g1|S1 : S1 → ∂G1 is a homeomorphism, g−1
1 ([0, 1]) has non-empty interior (as subset

of S1) and therefore ω(−l, [0, l], Gl) = ω(0, g−1
1 ([0, 1]),D) =: α > 0.

As

(
t+G s(t)

φ(t−2)

)
⊆ P (t), apply the two constants theorem 2.4.2 with Ω = t+G s(t)

φ(t−2)

,

z = t− s(t)
φ(t−2) , E = [t, t+ s(t)

φ(t−2) ], m = 9 exp (− exp (M (s(t)))) and M = C some constant

uniformly bounding all fP (t) on their respective domains. To define C observe that |∂f |
is uniformly bounded on S by ρ(φ(0)) due to (5.2.32). Thus we have for arbitrary t > 2
and z ∈ P (t) ∣∣fP (t) (z)

∣∣ ≤ |f(z)|+ 1

π

∫
ζ∈P (t)

|∂f(ζ)|
|ζ − z|

dξ ∧ dη

≤ ||f ||∞ + 10ρ(φ(0)) =: C
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where we used that P (t) ⊆ B(z, 5) for any z ∈ P (t) and applied lemma 1.0.12. Now
using these choices for the parameters in 2.4.2 and assuming w.l.o.g. C ≥ 1, yields∣∣∣∣fP (t)

(
t− s(t)

φ(t− 2)

)∣∣∣∣ ≤ exp (− exp (M (s(t))))α 9αC1−α

≤ 9C︸︷︷︸
=:K

exp (− exp (M (s(t))))α .

As exp (− exp (M (s(t)))) = supx≥t |f(x)| tends to 0 as t → ∞ by (5.2.33), there is

some large τ1 such that for t ≥ τ1 we have exp (− exp (M (s(t))))
α
2 ≤ 1

K . Now set
A1 := − log(α/2), then (5.2.37) holds with these choices for A1 and τ1. Now take some
τ > τ1 such that for t ≥ τ we get

exp (− exp (M (s(t))−A1 + log(1/2))) ≤ 1

9
. (5.2.38)

Then for t ≥ τ the following holds∣∣∣∣f (t− s(t)

φ(t− 2)

)∣∣∣∣
≤

∣∣∣∣fP (t)

(
t− s(t)

φ(t− 2)

)∣∣∣∣+
1

π

∫
ζ∈P (t)

|∂f(ζ)|
|ζ − t− s(t)

φ(t−2) |
dξ ∧ dη

(5.2.37)

≤ exp (− exp (M (s(t))−A1)) +
1

π

∫
ζ∈P (t)

|∂f(ζ)|
|ζ − t− s(t)

φ(t−2) |
dξ ∧ dη

≤ exp (− exp (M (s(t))−A1)) + 8 exp (− exp (M (s(t))))

≤ 9 exp (− exp (M (s(t))−A1))

= 9 exp (− exp (M (s(t))−A1 + log(1/2)))2

(5.2.38)

≤ exp (− exp (M (s(t))−A1 + log(1/2))) .

Now set A := A1 − log(1/2) and τ as above, applying log ◦ − log to the above chain of
inequalities yields (5.2.36) and therefore the claim.

Now use claim 2 to show
Claim 3: There exists an increasing sequence of positive real numbers (tk)

∞
k=0 with

limk→∞ tk =∞ and

tk+1 −
s(tk+1)

φ(tk+1 − 2)
= tk ∀k ≥ 0. (5.2.39)

Take t0 := 2 and set r(t) := t − s(t)
φ(t−2) for t ≥ 2. As s and φ are continuous, the

same holds for r. Now assume tk is already defined for k ≤ n. Recall the assumption
s(t) > 0 for all t, so the same holds for tn (i.e. s(tn) > 0) and therefore r(tn) < tn. In

77



Chapter 5. Two results of Borichev and Volberg on asymptotically holomorphic
functions

addition s(t)
φ(t−2) < 1 implies r(t) ≥ t− 1 which shows that r(t)→∞ as t→∞. Now the

intermediate value theorem implies the existence of some tn+1 > tn with r(tn+1) = tn.
The only thing left to prove is limk→∞ tk =∞. So assume not, i.e. there is some t∞ <∞
such that limk→∞ tk = t∞, as this is the only alternative since tk is increasing. But this
would imply

t∞ = lim
k→∞

tk = lim
k→∞

r(tk+1) = r(t∞)

where the last equality holds due to continuity of r. But this contradicts r(t) < t ∀t,
which holds by the assumption s(t) > 0 ∀t. Thus the proof of claim 3 is finished.

(5.2.36) and (5.2.39) imply for all k ≥ k0 (take k0 such that tk0 ≥ τ)

M(s(tk))−M(s(tk−1)) ≤ A. (5.2.40)

Assume w.l.o.g. k0 = 0. Iterated application of (5.2.40) yields

M(s(tk))−M(s(t0)) ≤ kA. (5.2.41)

As M(t) is decreasing and tending to∞ as t approaches 0, the divergence of the integral
(5.2.30) happens arbitrarily close to 0, i.e.∫ x

0
M(t)dt =∞ ∀x > 0. (5.2.42)

By (5.2.35) s is smaller than a positive decreasing integrable function φ on (0,∞). As
such a function φ clearly converges to 0 at infinity, the same holds for s. Therefore, after
removing points tk with s(tk−1) = s(tk) from the sequence, {(s(tk), s(tk−1)] : k ≥ 0}
forms a partition of (0, s(t0)]. Together with (5.2.42) this implies

∞∑
k=1

∫ s(tk−1)

s(tk)
M(t)dt =∞. (5.2.43)

Now by using the above considerations, we get

∞∑
k=0

s(tk) =
∞∑
k=1

k (s(tk−1)− s(tk))

(5.2.41)

≥
∞∑
k=1

M(s(tk))−M(s(t0))

A
(s(tk−1)− s(tk))

≥ 1

A

∞∑
k=1

∫ s(tk−1)

s(tk)
M(t)dt− 1

A
M(s(t0))s(t0)

(5.2.43)
= ∞
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where the last inequality holds as M(t) ≤M(s(tk)) on the interval
(s(tk), s(tk−1)]. But also, by (5.2.39),

∞∑
k=0

s(tk) = s(t0) +
∞∑
k=1

φ(tk − 2)(tk − tk−1)

≤ s(t0) +
∞∑
k=1

∫ tk

tk−1

φ(t− 2)dt
(5.2.31)
< ∞

where the first inequality holds as φ(t− 2) ≥ φ(tk − 2) on the interval [tk−1, tk].
Therefore the assumption that s is positive leads to a contradiction. Thus the theo-

rem is proved.
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5.3 Application

Here we will sketch an application of theorems 5.1 and 5.2. Like the theorems, the ap-
plication is taken from [3]. We will only outline the main steps of the proof as a detailed
treatment would go beyond the scope of this thesis.

Borichev and Volberg use the technique of asymptotically holomorphic extensions
to prove that the number of limit cycles lying in a compact subset of R2 defined by a
system of ODEs of the form

ẋ = α(x, y)

ẏ = β(x, y), (x, y) ∈ R2
(5.3.44)

is finite if α, β lie in a quasianalytic regular DC class Cgl{Mn}, provided the conditions
(a), (b) and (c) below are satisfied.

Here we have functions α, β defined on R2, but the definition of DC classes is anal-
ogous to the one from section 3.2; the only difference being that we require that the
absolute value of any partial derivative of order n (i.e. k-times differentiation with re-
spect to x and (n − k)-times differentiation with respect to y for some 0 ≤ k ≤ n) is
locally (globally) bounded by ABnMn. The Denjoy-Carleman theorem also holds in the
same form as in theorem 4.0.1, which can be seen by applying the one-dimensional result
to a function of two variables composed with a curve parametrizing an affine line. Thus
the assumption of quasianalyticity of Cgl{Mn} is equivalent to∫ 1

0
φ(t)dt =∞ (5.3.45)

where φ(t) = log
(

log
(

1
h(t)

))
as in section 3.2.

Apart from assuming (5.3.45) for the class Cgl{Mn}, the proof uses the following
assumptions:

(a)

lim
x→∞

φ(x)

log
(

1
x

) =∞.

(b) For any compact set K ⊆ C there are only finitely many singular points (x, y) ∈ K.
A point (x, y) is called singular if it is a common zero of α and β.

(c) For each singular point (x0, y0), the Jacobian matrix of the vector field
(x, y) 7→ (α(x, y), β(x, y)) is invertible at (x0, y0). This means that all singular
points on a polycycle (defined below) are saddle points.

Before illustrating a proof of the desired result, we need some definitions.
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Definition
Cycle: A closed integral curve of the system (5.3.44) (i.e. a closed solution) is called

cycle.
Polycycle: A closed union of integral curves connecting finitely many singular points

of the system (5.3.44) is called a polycycle.
Limit cycle: A cycle is called limit cycle if it admits a neighbourhood without other

cycles.
Monodromy transformation of a cycle: Given a cycle C and a transversal Γ; i.e. a

one dimensional Cω-manifold intersecting the cycle at some point (x0, y0) such that the
linear approximation of C resp. Γ at (x0, y0) are linearly independent. Suppose there
are no singular points in a neighbourhood of C. Then the monodromy transformation
(with respect to the cycle C and the transversal Γ) maps a point (x, y) ∈ Γ (close to
(x0, y0)) to the point m(x, y) on Γ that is reached in minimal positive time when going
along the integral curve of (5.3.44) starting at (x, y). Using a suitable parametrization
of Γ, m can be interpreted as a map from (−1, 1) to R.

Monodromy transformation of a polycycle: Is defined analogously as for cycles. Let C
be a polycycle. The only difference is that transversals are replaced by semitransversals;
i.e. one dimensional Cω manifolds with boundary (point (x0, y0) ∈ C) whose (one-sided)
linear approximation at (x0, y0) and the linear approximation of C at (x0, y0) are linearly
independent. If the point (x0, y0) is a singular point of (5.3.44) the linear approximation
of C has to be replaced with a one-sided linear approximation.

Observe that monodromy transformations of cycles always exist, whereas monodromy
transformations of polycycles may not exist. Points lying (on some semitransveral Γ)
arbitrarily close to a polycycle C may never return to Γ along an integral curve of
(5.3.44).

In [3] Borichev and Volberg show

Theorem 5.3.1. [3, Theorem 2.1, p. 348]
Assume conditions (a), (b), (c). Let α, β from (5.3.44) lie in some quasianalytic DC

class. Then any polycycle of the system (5.3.44) has a neighbourhood without limit cycles.

Due to Borichev and Volberg, [3, 2.2. Main theorem, p. 347], theorem 5.3.1 implies
the desired result:

Theorem 5.3.2. [3, Theorem 2.2, p. 348] Assume conditions (a), (b), (c). Let α, β
from (5.3.44) lie in some quasianalytic DC class. Then for any compact subset K ⊆ R2,
the number of limit cycles of (5.3.44) lying in K is finite.

Proof sketch of theorem 5.3.1. Assume the contrary, i.e. there is a polycycle C of (5.3.44)
with limit cycles lying arbitrarily close to the polycycle. Then there exists a sequence of
limit cycles Cn converging to the polycycle. An application of [3, Theorem A, p. 347]
yields the existence of a monodromy transformation δC,Γ of C (with some semitransversal
Γ) and this monodromy transformation is of the form

δC,Γ(t) = t+ r(t)
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where r(t) = o(tn) as t→ 0 for all n ∈ N.
A quite involved construction then shows (see sections 4 and 5 in [3]) that it is possible

to extend the mapping t 7→ δC,Γ(e−t) to a continuously differentiable function ζ 7→ g(ζ)
defined on Ωε := {z = x+ iy ∈ C+ : |y| < eεx} for some ε such that for f(ζ) := g(ζ)−eζ
(also defined on Ωε) it follows ∣∣∂f(ζ)

∣∣ ≤ ρ0(e−εξ)

for ζ = ξ + iη ∈ Ωε. Moreover

|f |R(ξ)| = O(exp(−nξ)), ξ →∞, ∀n ∈ N.

Here ρ0(t) = γ(h(γt))
1
4 (for some large γ). Since log

(
1

ρ0(e−εξ)

)
is convex, an application

of a corollary of theorem 5.1 (see [3, Corollary 6.2, p. 361]) implies the existence of a
constant 0 < K < 1 such that for large ξ ∈ R∣∣∣δC,Γ(e−ξ)− e−ξ

∣∣∣ = |f |R(ξ)| ≤ ρ0(e−εKξ). (5.3.46)

In addition it is shown for ζ ∈ {z = x+ iy ∈ C : |y| < 1} that there exists some D > 0
with

|∂f(ζ)| ≤ ρ0(D|η|e−εξ) ≤ ρ0(D|η|e−εKξ).

Now observe that the divergence of the integral near zero of log
(

log
(

1
h(t)

))
(which

holds due to the assumed quasianalyticity) is equivalent to the divergence of the integral

near zero of log
(

log
(

1
ρ0(t)

))
. In addition

∫∞
0 e−εKtdt < ∞. Observe that (5.3.46) is

condition (5.2.33) from theorem 5.2. Therefore theorem 5.2 is applicable in the current
situation. Thus it follows that δC,Γ(e−ξ)− e−ξ = f(ξ) = 0 for sufficiently large ξ ∈ R.

This shows that the monodromy transformation of C is the identity. But this means
that close to the given polycycle C all integral curves are cycles. And this implies for
large enough n that arbitrarily close to Cn there is another cycle. Thus the given Cn
are not limit cycles, contradicting the assumption.
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