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Summary

In this thesis, we consider fully packed loop configurations (FPLs), that is, subgraphs

F of the n× n square grid together with 4n external edges such that every vertex of the

grid is incident to two edges of F and precisely every other external edge starting with

the, say, topmost horizontal external edge on the left side is occupied by F . They are in

one-to-one correspondence with alternating sign matrices (ASMs), hence their number is

given by the famous formula for the number of ASMs proved in [31] and later in [14]. This

correspondence made FPLs that were until then mainly studied in statistical mechanics

known among combinatorialists.

In contrast to ASMs, FPLs allow a study in dependency on the connectivity of the

occupied external edges (these connections are encoded as a link pattern, π, and the

number of FPLs with such a pattern is denoted Aπ). The study of the numbers Aπ was

excited by the Razumov–Stroganov correspondence, which was conjectured by Razumov

and Stroganov in [25] and proved by Cantini and Sportiello in [9]. It relates the numbers

Aπ to the XXZ quantum spin chain at anisotropy parameter ∆ = −1
2
, Temperley-Lieb

random walks and the dense O(1) loop model. In addition, various beautiful properties

of the numbers Aπ have been proved in recent years. For instance, it was conjectured

in [35] and proved in [10] that for link patterns π ∪m made up of a link pattern π and

m nested arches, Aπ∪m is polynomial in m.

Triangular fully packed loop configurations (TFPLs) – the central objects of this

thesis – came up in [10] in the course of the proof that Aπ∪m is a polynomial in m: for

large m FPLs with link pattern π ∪m admit a decomposition as part of which TFPLs

occur. From this decomposition the authors of [10] derive an expression for the numbers

Aπ∪m from which it immediately follows that Aπ∪m is a polynomial in m. Since in this

expression numbers of TFPLs show up it provides a link between the numbers of TFPLs

and the numbers Aπ∪m. Besides this link, the many nice properties that have been

discovered since the emergence of TFPLs ([29], [19], [11]) motivate the study of TFPLs.

For instance, one such property is that the boundary of a TFPL, that is, a triple (u, v;w)

made up of 01-words, must satisfy

(0.1) d(u) + d(v) ≤ d(w),

where d(ω) denotes the number of inversions in ω. The integer exc(u, v;w) = d(w) −
d(u)−d(v) is in the following said to be the excess of a TFPL (with boundary (u, v;w)).

To study TFPLs with respect to the excess of their boundary turned out to be fruitful.
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In [11] enumeration results for TFPLs of excess 0 or 1 were proved. To begin with, if

exc(u, v;w) = 0 the number of TFPLs with boundary (u, v;w) is given by the Littlewood-

Richardson coefficient

(0.2) c
λ(w)
λ(u),λ(v),

where λ(u), λ(v) and λ(w) are Young diagrams assigned to u, v and w. This provides a

new enumeration for Littlewood-Richardson coefficients, which are important in various

areas of mathematics including algebraic geometry, representation theory and algebraic

combinatorics. Finally, if exc(u, v;w) = 1 then the number of TFPLs with boundary

(u, v;w) admits an expression in terms of Littlewood-Richardson coefficients.

Wieland gyration, on the other hand, is an operation on FPLs that was invented in [30]

to prove the rotational invariance of the numbers of FPLs corresponding to fixed link

patterns. Later it was heavily used by Cantini and Sportiello [9] to prove the Razumov–

Stroganov correspondence. In connection with TFPLs, Wieland gyration first appeared

in [29] and [19].

The research that this thesis is made up of is part of two published articles (Chapter

3 and Chapter 5) and an accepted article (Chapter 4). In Chapter 3 Wieland drift is

defined as an operation on TFPLs that is composed of the same local operations as the

usual Wieland gyration for FPLs. In addition, various properties of Wieland drift are

proved: due to a finiteness argument for every TFPL f the sequence (WLm(f))m≥0 made

up of the images of f under iterated applications of left-Wieland drift WL is eventually

periodic. In Theorem 3.10, it is proved that the length of the period is always one, which

means one always reaches a TFPL that is invariant under left-Wieland drift. In fact, if

N is the size of f , then less than 2N iterations of WL suffice to obtain such a stable

configuration. A key step in the proof of Theorem 3.10 is to classify these stable TFPLs.

It turns out that the stability of a TFPL depends solely on the occurrence of a certain

type of edges called drifters, which is the content of Theorem 3.11. These results also

hold for right-Wieland drift.

The focus in Chapter 4 lies on TFPLs of excess 2. The main result is a linear expression

for the number of TFPLs of excess 2 in terms of numbers of TFPLs that are invariant

under Wieland drift, see Theorem 4.2. This linear expression generalises already existing

enumeration results for TFPLs of excess 0 or 1. Its proof heavily uses Wieland drift.

In the last chapter of this thesis hexagonal fully packed loop configurations (HFPLs)

are introduced as a generalisation of TFPLs. Furthermore, some of the existing results

for TFPLs are generalised to HFPLs. To begin with, each HFPL is assigned a sextuple

(lT, t, rT; lB, b, rB) of 01-words that encodes its boundary conditions. This is done in a way

that generalises the way in which the boundary conditions of a TFPL are encoded by

01-words. The necessary condition in (0.1) for the boundary of a TFPL generalises to
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the necessary condition

(0.3) d(rB) + d(b) + d(lB) ≥ d(lT) + d(t) + d(rT) + |lT|1|t|0 + |t|1|rT|0 + |rB|0|lB|1
for the boundary of an HFPL (Theorem 5.11). Here, | · |i denotes the number of occur-

rences of i for i = 0, 1.

The excess of an HFPL with boundary (lT, t, rT; lB, b, rB) is defined as exc(lT, t, rT; lB, b, rB) =

d(rB) + d(b) + d(lB)− d(lT)− d(t)− d(rT)− |lT|1|t|0 − |t|1|rT|0 − |rB|0|lB|1. As in the case

of TFPLs, (0.3) shows that the excess of an HFPL must be non-negative. Similarly Theo-

rem 5.35 shows that HFPLs with boundary (lT, t, rT; lB, b, rB) such that exc(lT, t, rT; lB, b, rB) =

0 are enumerated by the Littlewood-Richardson coefficient

c
λ(lB b rB)
λ(m(lB) lT t), λ(m(t) rT m(rB)),

where m(ω) denotes the 01-word of length N in which the first |ω|0 letters are zero and

the last |ω|1 letters are 1. Finally, an expression for the number of HFPLs of excess 1 is

established in Theorem 5.49.
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Zusammenfassung

Diese Dissertation befasst sich mit Fully Packed Loop Konfigurationen (FPLen), das

heißt, Teilgraphen F des n × n quadratischen Rasters zusammen mit 4n äußeren Kan-

ten, sodass jeder Knoten des Rasters Endknoten zweier Kanten von F ist und genau

jede zweite äußere Kante startend, sagen wir, mit der obersten horizontalen äußeren

Kante auf der linken Seite, von F belegt ist. Sie sind in eineindeutiger Beziehung zu

alternierenden Vorzeichenmatrizen, somit ist ihre Anzahl gegeben durch die berühmte

Formel für die Anzahl von Vorzeichenmatrizen der Größe n, die in [31] und später in [14]

bewiesen wurde. Diese Beziehung machte FPLen, welche bis dahin hauptsächlich in der

statistischen Mechanik studiert wurden, unter KombinatorikerInnen bekannt.

Im Unterschied zu alternierenden Vorzeichenmatrizen erlauben FPLen eine verfeinerte

Studie in Abhängigkeit davon, welche der belegten externen Kanten miteinander verbun-

den sind (diese Verbindungen werden in einem Verbindungsdiagramme, π, kodiert und

die Anzahl von FPLen mit Verbindungsdiagramm π wird mit Aπ bezeichnet). Die Studie

der Anzahlen Aπ wurde von der Razumov–Stroganov Beziehung, welche von Razumov

und Stroganov in [25] vermutet und von Cantini und Sportiello in [9] bewiesen wurde,

angeregt. Diese bringt die Zahlen Aπ in Beziehung mit der XXZ Quantum Spin Kette

bei Anisotropieparameter ∆ = −1
2
, Temperley-Lieb Random Walks und dem Dense O(1)

Loop Modell. Zusätzlich wurden in den letzten Jahren viele verschiedene schöne Eigen-

schaften der Anzahlen Aπ bewiesen. Zum Beispiel wurde in [35] vermutet und in [10]

bewiesen, dass für Verbindungsdiagramme π ∪m bestehend aus einem Verbindungsdia-

gramm π und m verschachtelten Verbindungen Aπ∪m polynomiell in m ist.

Dreieckige Fully Packed Loop Konfigurationen (DFPLen) – die zentralen Objekte

dieser Dissertation – kamen im Zuge des Beweises in [10], dass Aπ∪m ein Polynom in m

ist, auf: für große m erlauben FPLen mit Verbindungsdiagramm π∪m eine Zerlegung als

Teil welcher DFPLen auftauchen. Von dieser Zerlegung leiten die Autoren von [10] einen

Ausdruck für die Zahlen Aπ∪m ab, aus dem sofort folgt, dass Aπ∪m ein Polynom in m ist.

Da in diesem Ausdruck auch Anzahlen von DFPLen vorkommen, stellt er eine Verbindung

zwischen der Abzählung von DFPLen und von FPLen mit Verbindungsdiagrammen des

Typs π ∪ m dar. Neben dieser Verbindung wird die Studie von DFPLen durch ihre

zahlreichen netten Eigenschaften ([29], [19] und [11]) motiviert. Eine solche ist, zum

Beispiel, dass der Rand einer DFPL, das ist ein Tripel (u, v;w) aus 01-Wörtern, stets

(0.4) d(u) + d(v) ≤ d(w)
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erfüllen muss. Hier bezeichnet d(·) die Anzahl an Inversionen in einem Wort. Die Zahl

exc(u, v;w) = d(w) − d(u) − d(v) wird im Folgenden als der Exzess einer DFPL (mit

Rand (u, v;w)) bezeichnet.

DFPLen unter Berücksichtigung ihres Exzesses zu studieren hat sich als ergebnisreich

erwiesen. So wurden in [20] und [11] Abzählresultate für DFPLen von Exzess 0 oder

1 bewiesen. Ist zunächst exc(u, v;w) = 0, dann ist die Anzahl von DFPLen mit Rand

(u, v;w) durch den Littlewood-Richardson Koeffizienten

(0.5) c
λ(w)
λ(u),λ(v)

gegeben, wobei λ(u), λ(v) und λ(w) den 01-Wörtern u, v und w zugeordnete Young

Diagramme sind. Littlewood-Richardson Koeffizienten sind in verschiedenen Feldern der

Mathematik wie zum Beispiel algebraische Geometrie, Darstellungstheorie und algebrais-

che Kombinatorik von Bedeutung. Das obige Resultat bringt sie nun auch in Zusammen-

hang mit DFPLen. Ist schließlich exc(u, v;w) = 1, so kann die Anzahl von DFPLen mit

Rand (u, v;w) in Form von Littlewood-Richardson Koeffizienten ausgedrückt werden.

Wieland Rotation, auf der anderen Seite, ist eine Operation auf FPLen, die in [30] en-

twickelt wurde, um zu zeigen, dass die Anzahl von FPLen mit einem festen Verbindungs-

diagramm invariant unter Rotation dieses Verbindungsdiagramms ist. Später hat sie erhe-

blich zum Beweis der Razumov–Stroganov Beziehung [25] durch Cantini und Sportiello ([9])

beigetragen. Im Zusammenhang mit DFPLen tauchte Wieland Rotation erstmals in [29]

und [19] auf.

Die Forschungsarbeit, aus welcher diese Dissertation besteht, ist Teil zweier veröffentlichter

Artikel (Kapitel 3 und Kapitel 5) und eines akzeptierten Artikels (Kapitel 4). In Kapitel

3 wird Wieland Trift definiert als eine Operation auf DFPLen, die sich aus denselben

lokalen Operationen wie die übliche Wieland Rotation für FPLen zusammensetzt. Des

weiteren werden einige Eigenschaften von Wieland Trift bewiesen: für jede DFPL f muss

die Folge (WLm(f))m≥0 bestehend aus den Bildern von f unter iterierten Anwendun-

gen von Links-Wieland Trift aufgrund eines Endlichkeitsarguments schließlich periodisch

sein. In Theorem 3.10 wird gezeigt, dass die Periodenlänge dabei stets 1 sein muss, das

heißt, durch WL wird immer eine DFPL erreicht, die invariant unter Links-Wieland Trift

ist. Genauer benötigt es dazu höchstens 2N Iterationen von WL, wenn N die Größe

der DFPL bezeichnet. Ein zentraler Schritt im Beweis von Theorem 3.10 ist die Klas-

sifizierung von DFPLen, die invariant unter WL sind: die Stabilität einer DFPL unter

WL hängt ausschließlich vom Vorhandensein eines speziellen Typs an Kanten – Trifter

genannt – ab (Theorem 3.11). Diese Resultate gelten auch für Rechts-Wieland Trift.

Der Fokus in Kapitel 4 liegt auf DFPLen von Exzess 2. Das Hauptresultat ist ein

linearer Ausdruck für die Anzahl von DFPLen von Exzess 2 in den Anzahlen von DF-

PLen, die invariant unter der Anwendung von Wieland Trift sind, siehe Theorem 4.2.
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Dieser lineare Ausdruck verallgemeinert bereits bekannten Abzählresultate für DFPLen

von Exzess 0 oder 1. Sein Beweis beruht stark auf Wieland Trift.

Im letzten Kapitel dieser Dissertation werden Hexagonale Fully Packed Loop Kon-

figurationen (HFPLen) als Verallgemeinerung von DFPLen eingeführt. Des weiteren

werden einige der bereits bekannten Resultate für DFPLen für HFPLen formuliert und

bewiesen. Zunächst wird jeder HFPL ein Sextupel (lT, t, rT; lB, b, rB), das den Rand der

HFPL kodiert, zugeordnet. Das wird in einer Art und Weise getan, die das Kodieren des

Randes einer DFPL durch Wörter verallgemeinert. Die notwendige Bedingung in (0.4)

für den Rand (u, v;w) einer DFPL wird dann zu der notwendigen Bedingung

(0.6) d(rB) + d(b) + d(lB) ≥ d(lT) + d(t) + d(rT) + |lT|1|t|0 + |t|1|rT|0 + |rB|0|lB|1
für den Rand einer HFPL (Theorem 5.11). Hier bezeichnet |w|i die Anzahl des Vorkom-

mens von i in dem Wort w für i = 0, 1.

Der Exzess einer HFPL mit Rand (lT, t, rT; lB, b, rB) ist definiert als exc(lT, t, rT; lB, b, rB) =

d(rB) + d(b) + d(lB) − d(lT) − d(t) − d(rT) − |lT|1|t|0 − |t|1|rT|0 − |rB|0|lB|1. Wie auch im

Falle von DFPLen folgt aus (0.6), dass der Exzess einer HFPL nicht-negativ ist. Ebenso

werden HFPLen mit Rand (lT, t, rT; lB, b, rB) sodass exc(lT, t, rT; lB, b, rB) = 0 durch den

Littlewood-Richardson Koeffizienten

c
λ(lB b rB)
λ(m(lB) lT t), λ(m(t) rT m(rB)),

abgezählt, siehe Theorem 5.35. Hier bezeichnet m(ω) das 01-Wort der Länge N , in dem

die ersten |ω|0 Buchstaben 0 und die letzten |ω|1 Buchstaben 1 sind. Schlussendlich wird

in Theorem 5.49 ein Ausdruck für die Anzahl von HFPLen mit Rand (lT, t, rT; lB, b, rB),

wo exc(lT, t, rT; lB, b, rB) = 1, bewiesen.
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CHAPTER 1

Introduction

1.1. Fully packed loop configurations

1.1.1. The square-ice or six-vertex model. In ordinary ice, each oxygen atom is

tetrahedrally surrounded by four oxygen atoms at a distance of 275 pico metre. Further-

more, each water molecule is oriented so that its hydrogen atoms are directed towards two

of the four nearest oxygen atoms forming hydrogen bonds. The orientations are further

restricted by the requirement that only one hydrogen atom lies between two neighbouring

oxygen atoms. An ice crystal can thus exist in any one of a large number of configurations,

each corresponding to certain orientations of the water molecules.

Pauling ([22]) proposed this crystal structure of ordinary ice in 1935 to account for

the residual entropy of ice that was measured by Ashley and Giauque ([2]) in 1933.

For N large enough the residual entropy of ice is given by S = kBN logW where kB

is Boltzmann’s constant, N the number of oxygen atoms in the ice crystal and W =

limn→∞
n
√
Zn in which Zn denotes the number of all configurations accessible to the

crystal consisting of n oxygen atoms. Since the crystal structure proposed by Pauling

allows multiple configurations, Zn > 1 for n > 1 and therefore S is positive.

Although Pauling did not succeed in computing W he could derive the estimate

W ≈ 1.5. While this agreed well with the measurements by Ashley and Giauque Pauling’s

theory could not be verified until exact values for W were found. Given the enumerative

nature of this problem it became popular amongst combinatorialists, who found it to be

very hard indeed. Only in 1967 was the first exact solution for W found. Lieb ([15]) com-

puted the exact value of W in the 2-dimensional case, namely W = (4
3
)
3
2 ≈ 1.5396007. In

higher dimensions no exact solutions for W are known to this day. Numerical computa-

tions of W , on the other hand, exist in two and three dimensions. Nagle ([21]) found that

W = 1.50685 ± 0.00015 in the 2-dimensional case and W = 1540 ± 0.001 in the 3-

dimensional case.

The two-dimensional ice model that Lieb used to compute W was the square-ice

model, that is, the oxygen atoms are located at the points in the plane with integer coor-

dinates and the hydrogen atoms lineal between the oxygen atoms. The square ice model

may be represented as an oriented graph by replacing the oxygen atoms by vertices and

the bonds between two oxygen atoms by arrows that indicate to which oxygen atom the

hydrogen atom is covalently bonded (see Figure 1.1 for an example). In this graphical
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Figure 1.1. Left: a square-ice configuration in which the lines indicate
the covalent bonds and the dotted lines the hydrogen bonds. Right: the
six-vertex configuration corresponding to the square-ice configuration on
the left side.

representation of the square-ice model, there must be one of the six configurations dis-

played in Figure 1.2 around each vertex. This is why the graphical representation of the

square-ice model is called the six-vertex model.

To the vertices in a six-vertex configuration weights can be assigned dependent on

the orientations of the four adjacent edges as is indicated in Figure 1.2. Physically, the

weights cohere with the energies of the configurations at each vertex. Two-dimensional

ice-crystals correspond to taking all weights equal to 1. Additionally to two-dimensional

ice-crystals, the six vertex model may represent other crystal arrangements. For instance

2-dimensional potassium dihydrogen phosphate crystals correspond to taking a1 = a2 = 1

and b1 = b2 = c1 = c2 > 1, see ([27]).

a1 a2 b1 b2 c1 c2

Figure 1.2. The six configurations around a vertex in the six-vertex model.

From now on, six-vertex configurations will be considered on n × n-squares. The

underlying graph of such configurations is the graph Gn whose vertex set is [n] × [n],

where [n] = {1, 2, . . . , n}. Furthermore, any two vertices that are spaced at distance 1

are adjacent in Gn and 4n external edges are attached to the vertices on the boundary

as follows: external edges that are attached to vertices with x-coordinate 1 or n are

horizontal, while external edges that are attached to vertices with y-coordinate 1 or n

are vertical. A six-vertex configuration of size n henceforth refers to a six-vertex

configuration on Gn. Figure 1.1 displays an example. Six-vertex configurations of finite

size may be studied with both restricted and unrestricted boundary conditions. Here,

they shall obey the domain wall boundary condition (abbreviated DWBC) that was

14



introduced by Korepin in [13], whereby the horizontal external edges point inwards and

the vertical external edges point outwards. The configuration in Figure 1.1 satisfies the

DWBC.

0 1 0 0 0

1 -1 0 0 1

0 0 0 1 0

0 1 0 0 0

0 0 1 0 0

(

(

Figure 1.3. The six-vertex configuration with DWBC from Figure 1.1
and its corresponding 5× 5 ASM.

Six-vertex configurations are not only important in statistical mechanics but also in

combinatorics. This comes from the fact that six-vertex configurations with DWBC are in

one-to-one correspondence with alternating sign matrices (abbreviated ASMs). The

latter are matrices with entries 1, −1 and 0 such that the non-zero elements in each row

and column alternate in sign and sum up to 1. An example is given in Figure 1.3. ASMs

came up in the study of λ-determinants by Mills, Robbins and Rumsey in 1982, see [16].

Since then many links have been discovered between ASMs and other fields of interest in

combinatorics, including (amongst others) descending plane partitions, totally symmetric

self-complementary plane partitions and domino tilings.

The number of alternating sign matrices of size n, denoted An, is given by the following

nice formula:

(1.1) An =
n−1∏
k=0

(3k + 1)!

(n+ k)!

This formula was conjectured by Mills, Robbins and Rumsey ([17]) in 1983. Great

efforts were made to prove it in the years following, and in the end it was Zeilberger ([31])

who found the first proof. He proposed it in 1992 and thereafter it took the referees a

further three years to verify his argument. In 1995 Kuperberg ([14]) gave a simpler

proof of (1.1) that exploited the connection between ASMs and the six-vertex model.

It relied on the Yang-Baxter equation for the six vertex model. The correspondence

between ASMs and six-vertex configurations has played a key role in proofs of identities

for ASMs ever since. Most recently, it has been used by Behrend, Fischer and Konvalinka
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to prove enumeration results for diagonally and antidiagonally symmetric ASMs of odd

order, see [4].

1.1.2. Fully packed loop configurations. In 1996 Batchelor, Blöte, Nienhuis and

Yung ([3]) were the first to investigate fully packed loops on the square lattice (abbre-

viated FPLs), which are subgraphs f of the square grid such that each vertex is incident

to precisely two edges of f . An FPL is of size n if it is a subgraph of the graph Gn. In

the following, we limit ourselves to FPLs satisfying the domain wall boundary conditions

(without mentioning this explicitly again). An FPL fulfils the domain wall boundary

conditions if along the border every other external edge belongs to the FPL, starting

with the topmost on the left side. Beginning at this edge the 2n external edges belong-

ing to the FPL are numbered counter-clockwise. An example of an FPL is displayed in

Figure 1.4.

1

2

3

4

5 6 7

8

9

10

11

121314

Figure 1.4. An FPL of size 7 together with its corresponding six-vertex configuration.

FPLs of size n are in one-to-one correspondence with six-vertex configurations of size

n satisfying the DWBC and thus with ASMs of size n. The correspondence between

FPLs and six-vertex configurations satisfying the DWBC is indicated by the example

in Figure 1.4. In contrast to ASMs and six-vertex configurations, FPLs offer a refined

study with respect to the connectivity of the occupied external edges (these connections

are encoded as a link pattern). A link pattern π of size 2n is defined as a partition of

[2n] = {1, 2, . . . , 2n} into n blocks of size 2 that are pairwise non-crossing, that is, there

are no integers i < j < k < ` such that {i, k} and {j, `} are both in π. In the following,

link patterns are represented by non-crossing arches between 2n aligned points. The link

pattern associated with the FPL in Figure 1.4 is depicted in Figure 1.5.

Studying FPLs with respect to their link patterns has yielded much fruit. Let Aπ

denote the number of FLPs corresponding to a prescribed link pattern π. In 2000
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 1.5. The link pattern {{1, 10}, {2, 3}, {4, 9}, {5, 8}, {6, 7}, {11, 12}, {13, 14}}.

Wieland ([30]) proved the rotational invariance of the numbers Aπ. That is, for all

link patterns π,

(1.2) Ar(π) = Aπ

where r(π) = {{i + 1 (mod 2n), j + 1 (mod 2n)} : {i, j} ∈ π}. (Sometimes link patterns

are represented by non-crossing arches between 2n points drawn equidistantly on a circle.

Using this representation, r is simply a rotation, hence the term rotational invariance.)

A short time later Razumov and Stroganov ([25]) conjectured that the coordinates of

the ground state vector in the XXY spin chain model are given by the numbers Aπ.

Their conjecture excited the enumerative study of FPLs corresponding to a fixed link

pattern. Various beautiful conjectures and identities for the numbers Aπ have arisen from

that study. Worth mentioning is for instance Zuber ([35]) who contributed many nice

conjectures, two of which were proved by Caselli, Krattenthaler, Lass and Nadeau ([10]).

Cantini and Sportiello ([9]) proved the conjecture by Razumov and Stroganov in 2010,

thereby widening the range of influence of the numbers Aπ significantly. The assertion of

the Razumov-Stroganov-Cantini-Sportiello theorem and a sketch of its consequences can

be found in Section 1.2.

1.1.3. Triangular fully packed loop configurations. Triangular fully packed

loop configurations (abbreviated TFPLs) are the central objects of this thesis. Cru-

cial in their development were FPLs corresponding to link patterns with a large number

of nested arches. A link pattern π of size n is said to possess m nested arches if there

exists an i ∈ [2n] such that {i− k + 1 (mod 2n), i + k (mod 2n)} ∈ π for all 1 ≤ k ≤ m.

An example of a link pattern that exhibits nested arches is depicted in Figure 1.6. Due

to Wieland’s result it suffices to consider the case i = 2n − m − 1 in connection with

the study of the numbers Aπ. Hence, denote with (π)m the link pattern of size n that

comprises a link pattern π of size n−m on [2(n−m)] and m nested arches.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 1.6. A link pattern of size 8 with three nested arches. The link
pattern on [10] here is π = {{1, 2}, {3, 10}, {4, 5}, {6, 7}, {8, 9}}.
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Zuber ([35]) conjectured that A(π)m is polynomial in m. An important observation in

the proof of this conjecture by Caselli et al. ([10]) is that FPLs corresponding to a link

pattern with a large number of nested arches admit a decomposition, in which TFPLs

naturally arise, see Figure 1.7 for an example. The vertices of a TFPL that lie on the left

and on the right boundary are of degree 0 or 1 as indicated in Figure 1.7. The degrees

of the vertices along the left and right boundary are encoded by Dyck-words u and v,

each of which corresponds to a side of the TFPL (see Figure 1.8 for an example). In

the following, the number of TFPLs corresponding to fixed words u and v and the link

pattern π is denoted by t
w(π)
u,v . In the interest of convenience, π is encoded by a Dyck-word,

denoted w(π).

1

2

3

4

5

6

7 8 9 10 11 12

13

14

15

16

17

18

192021222324

Figure 1.7. An FPL of size 12 that corresponds to a link pattern pos-
sessing nine nested arches. The TFPL that is contained in that FPL is
indicated in black.

It was proved in [10, 19, 29] that for all integers n > m ≥ 0 and link patterns π of

size n the following holds:

(1.3) A(π)m =
∑

u,v∈Dn−m
Pλ(u)(n−m)tw(π)

u,v Pλ(v)′(m− 2(n−m) + 1).

The sum in (1.3) runs through the Dyck-words of length 2(n−m). Furthermore, λ(ω)

denotes the Young-diagram associated to the Dyck-word ω as explained in Section 2.1.

Finally, Pλ(n) =
∏
x∈λ

c(x)+n
h(x)

where the product runs through the cells x of the Young-

diagram λ, c(x) denotes the content of x and h(x) the hook length of x. (That is, c(x) =

jx − ix and h(x) = |{x′ ∈ λ : ix′ ≥ ix and jx′ = jx}| + |{x′ ∈ λ : ix′ = ix and jx′ > jx}|
18



when ix (resp. jx) denotes the index of the row (resp. column) of the cell x). For positive

n by Pλ(n) semi-standard Young tableaux of shape λ with entries at most n are counted

(Stanley’s hook-content formula ([28, Theorem 15.3])).

0

0

0

0

1

1

1

1

u v

Figure 1.8. The TFPL from Figure 1.7 with the words u and v indicated.

At the time at which the identity (1.3) was found, the conjecture by Razumov and

Stroganov had not been proved. Since the expression in (1.3) offered a new interpretation

of the numbers Aπ, the attention of those who were interested in proving the Razumov-

Stroganov-conjecture was drawn to TFPLs. Zinn-Justin indeed conjectured a formula for

the numbers t
w(π)
u,v from which the Razumov-Stroganov-conjecture would follow, see [34].

His conjecture remains unproven to this day. Nonetheless, a special case was proved

by Nadeau ([20]), namely that t
w(π)
u,v is given by the Littlewood-Richardson coefficient

c
λ(w(π))
λ(u),λ(v) if λ(w(π)) has as many cells as λ(u) and λ(v) have together. In symbols,

(1.4) tw(π)
u,v = c

λ(w(π))
λ(u),λ(v).

Although the Razumov-Stroganov-conjecture has been proved the study of TFPLs is

still worthwhile. Enumeration formulas for TFPLs, on the one hand, provide a deeper

understanding of the enumeration of FPLs corresponding to fixed link patterns due to

the identity (1.3) and thus may help to prove open conjectures. On the other hand,

TFPLs offer fascinating combinatorics. The first such already occurred in the study of

FPLs corresponding to link patterns π∪m, see [29] and [19]. Thereafter many more were

found including the aforementioned enumeration result by Nadeau. Particularly worth

mentioning in this regard is the work by Fischer and Nadeau in [11].

1.2. The many appearances of the numbers Aπ

As sources for this section I mainly used an article by Romik ([26]) and a book by

Zinn-Justin ([33]).

1.2.1. XXZ spin chains. The model that we consider in this subsection is a 1-

dimensional chain of L sites with a spin-1
2

particle on each site. Other than in more

complicated quantum mechanical models, the spin of a spin-1
2

particle can be expressed
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as a linear combination of two eigenspinors (or eigenstates) with coefficients in C. Tradi-

tionally, the eigenspinors are labelled spin up and spin down. Hence, set |↑〉 = ( 1
0 ) ∈ C2

and |↓〉 = ( 0
1 ) ∈ C2.

Since every spin can be identified with a 2-dimensional complex vector the quantum-

mechanical spin operators can be represented by 2×2-matrices with complex entries. The

2× 2-matrices that represent the quantum-mechanical spin operators for spin-1
2

particle

are the Pauli spin-1
2

matrices, that is, the matrices

(1.5) σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
.

The matrices that we will actually need for our purposes are the following:

(1.6) σ+ =
1

2
(σx + iσy) =

(
0 1

0 0

)
, σ− =

1

2
(σx − iσy) =

(
0 0

1 0

)
.

Example 1.1. It holds that σ+ · |↑〉 = 0, σ+ · |↓〉 = |↑〉, σ− · |↑〉 = |↓〉, σ− · |↓〉 = 0,

σz · |↑〉 = |↑〉 and σz · |↓〉 = −|↓〉.

An XXZ spin chain exhibits L spin-1
2

particles, hence a state of the XXZ spin chain

model consists of L spins s1, s2, . . . , sL. It is encoded by the tensor s1 ⊗ s2 ⊗ · · · ⊗ sL,

so that the tensor product made up of L copies of C2 forms the space of spins for the

XXZ spin chain model. The matrices σ+, σ− and σz act on the space of spins as follows:

for ` = 1, . . . , L− 1 set

(1.7) σ±` = idC2 ⊗ · · · ⊗ idC2︸ ︷︷ ︸
`-1

⊗σ± ⊗ idC2 ⊗ · · · ⊗ idC2 ,

(1.8) σz` = idC2 ⊗ · · · ⊗ idC2︸ ︷︷ ︸
`-1

⊗σz ⊗ idC2 ⊗ · · · ⊗ idC2 .

The Hamiltonian with anisotropy parameter ∆ (which is set −1/2 in the following)

for this model is defined as

(1.9) HL
XXZ =

L∑
`=1

(σ+
` σ
−
`+1 + σ−` σ

+
`+1 +

∆

2
σz`σ

z
`+1)

where σzL+1 = σz1 (periodic boundary condition) and σ±L+1 = q±2σ±1 (twisted bound-

ary conditions) for q = e
πi
3 . As a remark, if ∆ = 1 then the Hamiltonian in (1.9) is the

Hamiltonian of the XXX spin chain model.
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Example 1.2.

H2
XXZ(|↑〉 ⊗ |↓〉) = σ+ · |↑〉 ⊗ σ− · |↓〉+ σ− · |↑〉 ⊗ σ+ · |↓〉+

∆

2
σz · |↑〉 ⊗ σz · |↓〉

+ q−2σ− · |↑〉 ⊗ σ+ · |↓〉+ q2σ+ · |↑〉 ⊗ σ− · |↓〉+
∆

2
σz · |↑〉 ⊗ σz · |↓〉

= (1 + q−2)|↓〉 ⊗ |↑〉 −∆|↑〉 ⊗ |↓〉

In statistical mechanics, one is interested in the ground states, that is, the lowest-

energy states, of a model. It was shown in [1] that the ground state energy in the XXZ

spin chain model with twisted periodic boundary conditions equals

(1.10) E0 =
3L

4
.

The ground states |Ψ〉 with energy E0 are precisely the eigenvectors of the Hamiltonian

with eigenvalue E0, that is,

(1.11) HL
XXZ |Ψ〉 =

3L

4
|Ψ〉.

Razumov and Stroganov put forth an astonishing conjecture on the coordinates of

the ground state vector for the XXZ spin chain model with twisted periodic boundary

conditions and with even L in 2004, see [25]. Their conjectured coordinates involve the

numbers of FPLs with a given link pattern. In 2011 Cantini and Sportiello proved the

conjecture, see [9]. To understand their theorem it is necessary to relate link patterns to

XXZ spin chains.

To each link pattern π of size 2n, an element of the space of spins of dimension 2n

can be assigned as follows: first, orient the arches of π and generate the set O(π) of

all orientations of π. Thereafter, assign the weight ω(−→π ) = LR(−→π ) − RL(−→π ) to each
−→π ∈ O(π) where LR(−→π ) denotes the number of arches in −→π that are oriented from left

to right and RL(−→π ) the number of the arches in −→π that are oriented from right to left.

Finally, map each −→π ∈ O(π) to a 2n-fold tensor product |−→π 〉 = s1 ⊗ · · · ⊗ s2n made

up of eigenspinors s1, . . . , s2n such that si = |↑〉 whenever the out-degree of i is 1 in −→π
and si = |↓〉 whenever the in-degree of i is 1 in −→π . The element of the space of spins of

dimension 2n assigned to π is then

(1.12) |π〉 =
∑
−→π ∈O(π)

q
ω(−→π )

2 |−→π 〉,

where q = e
πi
3 .

21



Example 1.3.∣∣∣∣
1 2 3 4 5 6

〉
= q

3
2

∣∣∣∣
1 2 3 4 5 6

〉
+ q

1
2

∣∣∣∣
1 2 3 4 5 6

〉
+ q

1
2

∣∣∣∣
1 2 3 4 5 6

〉

+ q
1
2

∣∣∣∣
1 2 3 4 5 6

〉
+ q−

1
2

∣∣∣∣
1 2 3 4 5 6

〉
+ q−

1
2

∣∣∣∣
1 2 3 4 5 6

〉

+ q−
1
2

∣∣∣∣
1 2 3 4 5 6

〉
+ q−

3
2

∣∣∣∣
1 2 3 4 5 6

〉
= q

3
2 |↑〉 ⊗ |↑〉 ⊗ |↓〉 ⊗ |↓〉 ⊗ |↑〉 ⊗ |↓〉+ q

1
2 |↑〉 ⊗ |↓〉 ⊗ |↑〉 ⊗ |↓〉 ⊗ |↑〉 ⊗ |↓〉

+ q
1
2 |↓〉 ⊗ |↑〉 ⊗ |↓〉 ⊗ |↑〉 ⊗ |↑〉 ⊗ |↓〉+ q

1
2 |↑〉 ⊗ |↑〉 ⊗ |↓〉 ⊗ |↓〉 ⊗ |↓〉 ⊗ |↑〉

+ q−
1
2 |↑〉 ⊗ |↓〉 ⊗ |↑〉 ⊗ |↓〉 ⊗ |↓〉 ⊗ |↑〉+ q−

1
2 |↓〉 ⊗ |↑〉 ⊗ |↓〉 ⊗ |↑〉 ⊗ |↓〉 ⊗ |↑〉

+ q−
1
2 |↓〉 ⊗ |↓〉 ⊗ |↑〉 ⊗ |↑〉 ⊗ |↑〉 ⊗ |↓〉+ q−

3
2 |↓〉 ⊗ |↓〉 ⊗ |↑〉 ⊗ |↑〉 ⊗ |↓〉 ⊗ |↑〉

Example 1.4.

|
1 2 3 4 5 6

〉 = q
3
2 |↑〉 ⊗ |↓〉 ⊗ |↑〉 ⊗ |↓〉 ⊗ |↑〉 ⊗ |↓〉+ q

1
2 |↑〉 ⊗ |↓〉 ⊗ |↑〉 ⊗ |↓〉 ⊗ |↓〉 ⊗ |↑〉

+ q
1
2 |↑〉 ⊗ |↓〉 ⊗ |↓〉 ⊗ |↑〉 ⊗ |↑〉 ⊗ |↓〉+ q

1
2 |↓〉 ⊗ |↑〉 ⊗ |↑〉 ⊗ |↓〉 ⊗ |↑〉 ⊗ |↓〉

+ q−
1
2 |↓〉 ⊗ |↑〉 ⊗ |↓〉 ⊗ |↑〉 ⊗ |↑〉 ⊗ |↓〉+ q−

1
2 |↓〉 ⊗ |↑〉 ⊗ |↑〉 ⊗ |↓〉 ⊗ |↓〉 ⊗ |↑〉

+ q−
1
2 |↑〉 ⊗ |↓〉 ⊗ |↓〉 ⊗ |↑〉 ⊗ |↓〉 ⊗ |↑〉+ q−

3
2 |↓〉 ⊗ |↓〉 ⊗ |↑〉 ⊗ |↑〉 ⊗ |↓〉 ⊗ |↑〉.

In the following, denote by LP(n) the set of link patterns of size n. Furthermore,

let CLP(n) be the complex vector space with basis LP(n) (that is, the space of linear

combinations of link patterns of size 2n with coefficients in C). Then the previous map

naturally extends to an injective map from CLP(n) to (C2)⊗2n. Thus, we can set

(1.13) |sn〉 =
∑

π∈LP(n)

Aπ|π〉 ∈ (C2)⊗L.

Razumov and Stroganov conjectured that |sn〉 is a ground state of the XXZ spin chain

model with twisted periodic boundary conditions and anisotropy parameter ∆ = −1
2
,

which was proved by Cantini and Sportiello.

Theorem 1.5 (Cantini-Sportiello-Razumov-Stroganov theorem ([25, 9])).

(1.14) H2n
XXZ |sn〉 =

3n

2
|sn〉.
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Finally, the Hamiltonian can be rewritten in terms of the following operators on the

space of spins (C2)⊗L: for ` = 1, . . . , L set

(1.15) e` = σ+
` σ
−
`+1 + σ−` σ

+
`+1 +

∆

2
(σz`σ

z
`+1 − id(C2)⊗L)− i

√
3

4
(σz`+1 − σz` )

Example 1.6. e1(|↑〉⊗|↓〉) = |↓〉⊗|↑〉+q|↑〉⊗|↓〉, e1(|↓〉⊗|↑〉) = |↑〉⊗|↓〉+q−1|↓〉⊗|↑〉,
e1(|↑〉 ⊗ |↑〉) = e1(|↓〉 ⊗ |↓〉) = 0, e2(|↑〉 ⊗ |↓〉) = q−2|↓〉 ⊗ |↑〉+ q|↑〉 ⊗ |↓〉, e2(|↓〉 ⊗ |↑〉) =

q2|↑〉 ⊗ |↓〉+ q−1|↓〉 ⊗ |↑〉, e2(|↑〉 ⊗ |↑〉) = e2(|↓〉 ⊗ |↓〉) = 0

The operators e1, . . . , eL−1 satisfy the following relations (the Jones relations):

(1.16) e2
i = ei, eiei±1ei = ei, eiej = ejei if |j − i| > 1.

This is noteworthy because the generators of the Temperley-Lieb algebra of size L

with parameter τ = 1 fulfil these relations too. Thus the action of e1, . . . , eL−1 on the

space of spins is a representation of the Temperley-Lieb algebra. Furthermore, it is easy

to check that

(1.17) HL
XXZ =

L∑
`=1

(e` +
∆

2
id(C2)⊗L).

The assertion of the Cantini-Sportiello-Razumov-Stroganov theorem is thus equivalent

to the following identity:

(1.18)
2n∑
`=1

e`|sn〉 = 2n|sn〉.

The operator
L∑̀
=1

e` often is referred to as the Temperley-Lieb Hamiltonian. Be-

sides the aforementioned representation the Temperley-Lieb algebra exhibits a represen-

tation on the set of link patterns, which will be the content of the next subsection. The

denotation of the representation on link patterns will the same as the denotation of the

representation on C⊗L. That is due to the following relation between the two represen-

tations:

(1.19) e`(|π〉) = |e`(π)〉

for ` = 1, . . . , L− 1.

Example 1.7. A short computation shows that

e1 ·
∣∣∣∣
1 2 3 4 5 6

〉
= |

1 2 3 4 5 6
〉 .

1.2.2. Temperley-Lieb random walk or Temperley-Lieb stochastic process.

It has already been mentioned in the previous subsection that the Temperley-Lieb

operators e1, . . . , e2n−1 can be applied to link patterns of size 2n. Given a link pattern
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π ∈ LP(n) for ` = 1, . . . , 2n − 1 the link pattern e`(π) is determined as follows: first,

subtract the blocks that contain ` or `+ 1 from π; then add the block {`, `+ 1} and the

block made up of the elements of [2n]\{`, `+ 1} that are in a block with ` or `+ 1 in π.

Example 1.8.

(1.20) e1

(
1 2 3 4 5 6

)
=

1 2 3 4 5 6

A nice graphical representation of the action of e` may be obtained by associating the

operators e` for ` = 1, . . . , 2n− 1 with the following diagrams:

(1.21) e` ←→
1 2 `–1 ` `+1 `+2 2n–1

· · ·· · ·
2n

In order to obtain the link pattern e`(π), first the diagram corresponding to e` is

placed below π such that the top vertices in the diagram and the vertices in π coincide.

Now, the bottom vertices in the diagram of e` are pairwise connected by arcs. Thus, the

link pattern e`(π) is the link pattern of size 2n in which the same pairs of vertices are

connected. The graphical representation for the example in Example 1.8 is depicted in

Figure 1.9.

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6

Figure 1.9. An example for the graphical representation of the action of
the Temperley-Lieb operator e1 on link patterns.

For our purpose, it is necessary to have an operator e2n. Hence, the definition of e2n

shall be the same as the definition of e` for ` = 1, . . . , 2n − 1 with the sole exception

that the integers are considered modulo 2n. An example is given in Figure 1.10. The

Temperley-Lieb operators e1, e2, . . . , e2n now indeed satisfy (1.19).

1 2 3 4 5 6 1 2 3 4 5 6

e6

Figure 1.10. The operator e6 applied to a link pattern of size 6.

A Temperley-Lieb random walk or Temperley-Lieb stochastic process ([23])

is defined as a sequence (πm)m≥0 of link patterns of size 2n, beginning with an initial

link pattern π0, where each link pattern πm+1 is obtained from πm by choosing ` from

{1, 2, . . . , 2n} uniformly at random and setting πm+1 = e`(π). It is easy to see that
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Temperley-Lieb random walks are stationary Markov chains. Thus the transition prob-

ability distribution can be represented by a transition matrix. The entries of the

transition matrix Tn are tπ,π′ = Pr(πm+1 = π′| πm = π) (that is, the probability that

πm+1 = π′ under the condition that πm = π). Since ` ∈ {1, 2, . . . , 2n} is chosen uniformly

randomly it holds that

(1.22) tπ,π′ =
1

2n
|{1 ≤ ` ≤ 2n : e`(π) = π′}|

for all link patterns π and π′ of size 2n. This is why the stationary distribution

µn = (µπ)π∈LP(n) of the Temperley-Lieb random walk must satisfy

(1.23) µπ =
1

2n

2n∑
`=1

∑
π′∈LP(n):
e`(π

′)=π

µπ′ .

It will be shown next that the Cantini-Sportiello-Razumov-Stroganov theorem implies

the following expression for µπ in terms of numbers of FPLs:

(1.24) µπ =
Aπ
An

.

To see that (1.24) follows from Theorem 1.5 it suffices to revisit the identity (1.18):

∑
π∈LP(n)

2nAπ|π〉 = 2n|sn〉 =
2n∑
`=1

e`|sn〉 =
∑

π′∈LP(n)

Aπ′
2n∑
`=1

e`|π′〉 =
∑

π′∈LP(n)

Aπ′
2n∑
`=1

|e`(π′)〉

=
∑

π∈LP(n)

2n∑
`=1

∑
π′∈LP(n):
e`(π

′)=π

µπ′Aπ′ |π〉.(1.25)

Comparing the coefficients in (1.25) shows that Aπ satisfies the identity (1.23). In

conclusion, µπ = Aπ
An

because the stationary distribution must be normalized, that is, it

must satisfy
∑

π∈LP(n)

µπ = 1.

1.2.3. The dense O(1) loop model. In this subsection we consider another model

in which the probability vector (Aπ
An

)π∈LP(n) occurs: the dense O(1) loop model of sta-

tistical mechanics with periodic boundary conditions. Its states are random tilings of

[0, L]× [0,∞) for an L > 0 with the following two plaquettes:

(1.26)
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Each plaquette is uniformly randomly chosen. Furthermore, we superimpose periodic

boundary conditions on [0, L] × [0,∞), that is, we identify (0, k) and (L, k) for each

k ≥ 0. Figure 1.11 displays a section of a dense O(1) loop on [0, 8]× [0,∞) with periodic

boundary conditions.

··
·

Figure 1.11. A section of a dense O(1) loop on the strip [0, 6] × [0,∞)
with periodic boundary conditions.

A dense O(1) loop on the strip [0, 2n] × [0,∞) subject to periodic boundary con-

ditions may be assigned a link pattern Π
(n)
∗ as follows: for each i = 0, . . . , 2n − 1

follow the path starting in (2i+1
2
, 0) until it reaches a vertex (Π

(n)
∗ (i), 0). Now, set

Π
(n)
∗ = {{i,Π(n)

∗ (i)} : 1 ≤ i ≤ 2n − 1}. The dense O(1) loop in Figure 1.11 has link

pattern {{1, 2}, {3, 4}, {5, 6}}. The link pattern Π
(n)
∗ is often referred to as the connec-

tivity pattern. For a link pattern π ∈ LP(n) denote by

(1.27) µπ = Pr(Π(n)
∗ = π)

the probability that the connectivity pattern of a dense O(1) loop on the strip

[0, 2n] × [0,∞) with periodic boundary conditions is π. The probability vector

µn = (µπ)π∈LP(n) satisfies the following:

Theorem 1.9 ([18, 26]). Let e1, . . . , e2n be the Temperley-Lieb operators. Further-

more, let Hn be the square matrix with rows and columns indexed by link patterns of size

2n and with entries (Hn)π,π′ = 2n− |{1 ≤ ` ≤ 2n : e`(π) = π′}|. Then

(1.28) Hnµn = 0.

Thus if we set Mn = idCLP(n) − 1
2n
Hn then Mnµn = µn. From the Cantini-Sportiello-

Razumov-Stroganov-theorem it follows that
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(1.29) µπ =
Aπ
An

.

1.3. Structure of the thesis

1.3.1. Chapter 2. In this chapter, the combinatorial objects that are consistently

needed throughout this thesis are summarised. Furthermore, the previous work on TFPLs

by Fischer and Nadeau ([19], [20], [11]) is outlined. That is because it forms the basis

for this thesis.

1.3.2. Chapter 3. This chapter contains the definition of Wieland drift as the nat-

ural adoption of Wieland gyration – a map on FPLs invented by Wieland [30] in order to

prove the rotational invariance of the numbers Aπ – to TFPLs. Furthermore, a detailed

study of some of its properties is given.

1.3.3. Chapter 4. In this chapter, an expression for the number of TFPLs of excess

2 in terms of TFPLs that are stable under the application of Wieland drift is proved. It

generalises previous enumerative results by Fischer and Nadeau for TFPLs of excess 0 or

1. (The excess of a TFPL must be a non-negative integer.)

1.3.4. Chapter 5. In this chapter, hexagonal fully packed loop configurations are

introduced as a generalisation of TFPLs. In addition the results for TFPLs by Fischer

and Nadeau are generalised to hexagonal fully packed loop configurations.
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CHAPTER 2

Preliminaries

In this chapter, the terms and definitions that are consistently needed in the thesis are

summarised. The first part recaps elementary combinatorial objects, statistics on these

objects and properties of these objects. In the second part, triangular fully packed loop

configurations are introduced together with the concepts and terms that are crucial for

the thesis. Furthermore, the parts of the work by Fischer and Nadeau on triangular fully

packed loop configurations ([19], [20], [11]) that are needed for the thesis are outlined.

2.1. Words and Young diagrams

Throughout the thesis, a word ω of length N is defined as a finite sequence ω =

ω1ω2 · · ·ωN where ωi ∈ {0, 1} for all 1 ≤ i ≤ N . Furthermore, the following notations are

used:

– The number of occurrences of i in a word ω is denoted |ω|i for i = 0, 1;

– Two words ω, σ of length N is said to satisfy ω ≤ σ if |ω1 · · ·ωn|1 ≤ |σ1 · · · σn|1
for all 1 ≤ n ≤ N ;

– The number of inversions of ω, that is, pairs 1 ≤ i < j ≤ N such that ωi = 1

and ωj = 0, is denoted d(ω);

– Given a word ω = ω1ω2 · · ·ωN the word ω1 · · ·ωn in which 0 = 1 and 1 = 0 is

denoted by ω, the word ωNωN−1 · · ·ω1 is denoted ←−ω and the word ←−ω is denoted

ω∗.

For instance, 0010101 = 1101010,
←−−−−−
0010101 = 1010100 and 0010101∗ = 0101011.

Definition 2.1. (1) A Young diagram is a finite collection of boxes arranged

in left-justified rows, with the row lengths weakly decreasing.

(2) Two Young diagrams µ and λ are said to satisfy µ ⊆ λ if λ contains µ set-

theoretically. The set-theoretic difference of two Young diagrams µ and λ that

satisfy µ ⊆ λ is said to be the skew diagram λ/µ.

(3) The number of boxes a Young diagram λ (resp. skew diagram λ/µ) is made up

of is denoted by |λ| (resp. |λ/µ|).

(4) The conjugate of a Young diagram λ is defined as the Young diagram obtained

by reflecting λ along its main diagonal.

Throughout the thesis, with a word ω a Young diagram λ(ω) will be associated as

follows: to a given word ω a path on the square lattice is constructed by drawing a (0, 1)-

step if ωi = 0 and a (1, 0)-step if ωi = 1 for i from 1 to n. Additionally, a vertical line
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Figure 2.1. A Young diagram and a skew diagram.

through the paths starting point and a horizontal line through its ending point are drawn.

Then the region enclosed by the lattice path and the two lines is a Young diagram which

shall be the image of ω under λ. In Figure 2.2, examples of words and their corresponding

Young diagrams are given.

1
0

1
1
0

0
0

1 1

0 0
0

1

0
0

0

1
1

1 1

Figure 2.2. The Young diagram λ(0100101011) and the Young diagram
λ(0100101011∗).

For two words ω and σ of length N it holds ω ≤ σ if and only if λ(ω) ⊆ λ(σ).

Furthermore, |λ(ω)| = d(ω) and λ(ω∗) coincides with the conjugate of λ(ω).

The following two skew shapes will play an important role in the thesis:

Definition 2.2. A skew diagram is said to be a horizontal strip (resp. a vertical

strip) if each of its columns ( resp. rows) contains at most one box. Throughout the

thesis, if the skew diagram of skew shape λ(σ)/λ(ω) is a horizontal strip (resp. a vertical

strip) it will be written ω
h−→ σ (resp. ω

v−→ σ).

0
0

0
0 0

1
1

1

1 1

1 1
1 1

0
1

1
1

1 1 1

111
0
0 0

0

0
0

0

Figure 2.3. A horizontal and a vertical strip.

For two words ω and σ of length N satisfying ω ≤ σ the skew diagram of skew shape

λ(σ)/λ(ω) is a horizontal strip (resp. a vertical strip) if and only if the following holds:
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if ωi is the j-th one (resp. zero) in ω then σi−1 or σi (resp. σi or σi+1) is the j-th one

(resp. zero) in σ for each j ∈ {1, . . . , |ω|1} (resp. for each j ∈ {1, 2, . . . , |ω|0}).

Definition 2.3. Let λ and µ be two Young diagrams such that λ contains µ.

(1) A Young tableau of skew shape λ/µ is a filling of the boxes of the skew dia-

gram of skew shape λ/µ with positive integers. Recording the occurrences of each

number appears in a Young tableau gives a sequence that is denoted the content

of the tableau.

(2) A Young tableau is said to be semi-standard if the entries in each row are

non-decreasing and the entries in each column are (strictly) increasing.

1 1
1

1
2 2

2
3

Figure 2.4. A semi-standard Young tableau of skew shape λ(011011100)/λ(001011011).

Throughout the thesis, semi-standard Young tableaux T of skew shape λ/µ with

entries smaller than or equal to m are associated with a sequences of Young diagrams

µ = τ0 ⊆ τ1 ⊆ · · · ⊆ τm−1 ⊆ τm = λ

such that τi/τi−1 is a horizontal strip for all 1 ≤ i ≤ m by letting τi be the Young diagram

that satisfies τi ⊇ µ and that τi ⊇ µ consists of the cells of λ/µ that have entry at most

i in T for all 1 ≤ i ≤ m. For instance, the semi-standard Young tableau of skew shape

λ(011011100)/λ(001011011) in Figure 2.4 corresponds to the sequence

λ(001011011)
h−→ λ(010101110)

h−→ λ(011011010)
h−→ λ(011011100).

2.2. Triangular fully packed loop configurations

2.2.1. Triangular fully packed loop configurations. To give the definition of

triangular fully packed loop configurations the following graph is needed:

Definition 2.4. Let N be a positive integer. The graph GN is defined as the induced

subgraph of the square grid made up of N consecutive centred rows of 3, 5, . . . , 2N + 1

vertices from top to bottom together with 2N + 1 vertical external edges incident to the

2N + 1 bottom vertices.

In Figure 2.5, the graph G7 is depicted. From now on, the vertices of GN are parti-

tioned into odd and even vertices in a chessboard manner such that the leftmost vertex
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Figure 2.5. The graph G7.

of the top row in GN is odd. In the figures, odd vertices are represented by circles and

even vertices by squares. There are vertices of GN that play a special role (indicated in

red in Figure 2.5): let LN = {L1, L2, . . . , LN} (resp. RN = {R1, R2, . . . , RN}) be the set

made up of the vertices, that are leftmost (resp. rightmost) in each of the N rows of GN ,

and let BN = {B1, B2, . . . , BN} be the set made up of the even vertices of the bottom

row of GN . All vertices are numbered from left to right. Furthermore, the N(N + 1) unit

squares of GN including external unit squares that have three surrounding edges only are

said to be the cells of GN . From now on, they are partitioned into odd and even cells

in a chessboard manner such that the top left cell of GN is odd.

Definition 2.5. Let N be a positive integer. A triangular fully packed loop

configuration (abbreviated TFPL) of size N is a subgraph f of GN such that:

(1) precisely the external edges that are incident to vertices in BN are occupied by f ;

(2) the 2N vertices in LN ∪RN have degree 0 or 1;

(3) all other vertices of GN have degree 2 in f ;

(4) a path in f neither connects two vertices of LN nor two vertices of RN .

An example of a TFPL is given in Figure 2.6. A cell of f is a cell of GN together

with those of its surrounding edges that are occupied by f .

Definition 2.6. Let f be a TFPL of size N . A triple (u, v;w) of words of length N

is assigned to f as follows: for i = 1, . . . , N

(1) set ui = 1, if the vertex Li ∈ LN has degree 1, and ui = 0, otherwise;

(2) set vi = 0, if the vertex Ri ∈ RN has degree 1, and vi = 1, otherwise;

(3) set wi = 1, if in f the vertex Bi ∈ BN is connected with a vertex in LN or with

a vertex Bh for an h < i, and wi = 0, otherwise.

The triple (u, v;w) is said to be the boundary of f . Furthermore, the set of TFPLs with

boundary (u, v;w) is denoted Twu,v and its cardinality twu,v.
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Figure 2.6. A TFPL of size 7. Its boundary is (0101111, 0011111; 1101101).

In [10], [29] and [11] it was proved that the boundary of a TFPL must necessarily

satisfy the following conditions:

Theorem 2.7 ([10, 29, 11]). If twu,v > 0, then

(1) |u|1 = |v|1 = |w|1 and |u|0 = |v|0 = |w|0;

(2) u ≤ w and v ≤ w;

(3) d(u) + d(v) ≤ d(w).

In terms of diagrams, (2) means λ(u) ⊆ λ(w) and λ(v) ⊆ λ(w), while (3) means

|λ(u)|+ |λ(v)| ≤ |λ(w)|. A new proof of the third condition is given in Chapter 3.

Definition 2.8 ([11]). Let u, v, w be words of length N . The excess of u, v, w is

defined as

exc(u, v;w) = d(w)− d(u)− d(v).

If exc(u, v;w) = k then a TFPL with boundary (u, v;w) is said to be of excess k.

2.2.2. Oriented Triangular fully packed loop configurations. The definitions

of both TFPLs and their boundaries contain global conditions (Definition 2.5(4) and

Definition 2.6(3)). Those can be omitted when adding an orientation to each edge of a

TFPL.

Definition 2.9. An oriented TFPL of size N is a TFPL of size N together with

an orientation of its edges such that the edges attached to LN are outgoing, the edges

attached to RN are incoming and all other vertices of GN are incident to an incoming

and an outgoing edge.

An example of an oriented TFPL of size 7 is depicted in Figure 2.7. In the definition

of the underlying TFPL of an oriented TFPL condition (4) can be omitted. That is
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Figure 2.7. An oriented TFPL of size 7.

because the required orientations of the edges attached to vertices of the left and right

boundary prevent paths from returning to the respective boundary.

Definition 2.10. An oriented TFPL f has boundary (u, v;w) if the following hold:

(1) If Li ∈ LN has out-degree 1 in f , then ui = 1. Otherwise, ui = 0.

(2) If Ri ∈ RN has in-degree 1 in f , then vi = 0. Otherwise, vi = 1.

(3) If the external edge attached to the vertex Bi ∈ BN is outgoing in f , then wi = 1.

Otherwise, wi = 0.

The set of all oriented TFPLs with boundary (u, v;w) is denoted
−→
T w
u,v and its cardinality

−→
t wu,v.

While u and v coincide with the respective boundary word in the underlying ordinary

TFPL this is not the case for w. Instead of the connectivity of the paths, w encodes

the local orientation of the edges. Only in the case when in an oriented TFPL all paths

between two vertices Bi and Bj of BN are oriented from Bi to Bj, if i < j, the boundary

word w coincides with the respective boundary word of the underlying TFPL. This shows

that for each TFPL with boundary (u, v;w) there exists an oriented TFPL with boundary

(u, v;w) underlying this TFPL:

Definition 2.11. The canonical orientation of a TFPL is defined as the orien-

tation of the edges of the TFPL that satisfies the conditions in Definition 2.9 and in

addition that each path between two vertices Bi, Bj ∈ BN is oriented from Bi to Bj, if

i < j, and that all closed paths are oriented clockwise.

The previous observations imply that

(2.1) twu,v ≤
−→
t wu,v.

It was proved in [11] that also the boundary of an oriented TFPL must satisfy the

conditions (1), (2) and (3) in Theorem 2.7. What sets oriented TFPLs apart from ordinary
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TFPLs is that the excess of an oriented TFPL admits the following interpretation in terms

of numbers of occurrences of certain local configurations:

Theorem 2.12 ([11, Theorem 4.3]). Let f be an oriented TFPL with boundary

(u, v;w). Then

(2.2) exc(u, v;w) = + + + + + + +

where by , , etc. the numbers of occurrences of the local configurations , , etc. in f

are denoted.

Obviously, Theorem 2.12 implies that d(u) + d(v) ≤ d(w), whenever (u, v;w) is the

boundary of an oriented TFPL.

2.2.3. Blue-red path tangles. In this subsection an alternative representation of

oriented TFPLs will be introduced, namely blue-red path tangles. They came up in [11]

and will be crucial for several proofs in the thesis. Throughout this subsection, let u, v, w

be words of length N such that |u|0 = |v|0 = |w|0, |u|1 = |v|1 = |w|1, u ≤ w, v ≤ w and

d(u) + d(v) ≤ d(w). Furthermore, set N0 = |u|0 and N1 = |u|1.

A blue-red path tangle is made up of an N0-tuple of non-intersecting blue lattice

paths and an N1-tuple of non-intersecting red lattice paths. The blue lattice paths use

steps (−1, 1), (−1,−1) and (−2, 0), while the red lattice paths use steps (1, 1), (1,−1)

and (2, 0). Furthermore, neither a blue nor a red lattice path goes below the x-axis.

For each k = 1, . . . , N0 and ` = 1, . . . , N1, let ik (resp. i′`) be the index of the k-th

zero (resp. `-th one) in w and jk (resp. j′`) be the index of the k-th zero in u (resp.

`-th one in v). Then the starting point Dk (resp. D′`) of the k-th blue path (resp. `-th

red path) is defined as the vertex midway between the ik-th (resp. i′`-th) even vertex on

the bottom row of GN and the odd vertex to its left (resp. right). The ending point Ek

(resp. E ′`) of the k-th blue path (resp. `-th red path), on the other hand, is defined as

the vertex midway between Ljk (resp. Rj′`
) and the even vertex to it right (resp. left).

An example is displayed in Figure 2.8.

In the following, the set of N0-tuples (P1, P2, . . . , PN0) of non-intersecting blue lattice

paths, where Pk is a path from Dk to Ek, is denoted by P(u,w) and the set of N1-tuples of

non-intersecting red paths (P ′1, P
′
2, . . . , P

′
N1

), where P ′` is a path from D′` to E ′`, is denoted

by P ′(v, w).

Theorem 2.13 ([11, Theorem 4.1]). The set
−→
T w
u,v is in bijection with the set of pairs

(B,R) ∈ P(u,w)× P ′(v, w) that satisfy the two following conditions:

(1) no diagonal step of R crosses a diagonal step of B;

(2) each middle point of a horizontal step in B (resp. R) is used by a step in R

(resp. B).
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Figure 2.8. An oriented TFPL with boundary (01101, 00111; 10110) and
its corresponding blue-red path tangle with boundary
(01101, 00111; 10110).

The set of such configurations is denoted by BlueRed(u, v;w) and a configuration in

BlueRed(u, v;w) is said to be a blue-red path tangle with boundary (u, v;w).

Figure 2.9. From oriented TFPLs to blue-red path tangles.

Proof. Here the bijection given in [11] is repeated: let f be an oriented TFPL of

size N and with boundary (u, v;w). As a start blue vertices are inserted in the middle

of each horizontal edge of GN that has an odd vertex to its left and red vertices are

inserted in the middle of each horizontal edge of GN that has an even vertex to its left.

Next, blue edges are inserted as indicated in the left part of Figure 2.9 and red edges are

inserted as indicated in the right part of Figure 2.9. Then the blue vertices together with

the blue edges give rise to an N0–tuple of non-intersecting paths B = (P1, P2, . . . , PN0)

in P(u,w) and the red vertices together with the red edges give rise to an N1–tuple of

non-intersecting paths R = (P ′1, P
′
2, . . . , P

′
N1

) in P ′(v, w). The condition that no diagonal

step of R crosses a diagonal step of B is equivalent to that there is a unique orientation

of each vertical edge in f . On the other hand, the condition that each middle point of

a horizontal step in B (resp. R) is used by a step in R (resp. B) is equivalent to that

each even vertex in f must be incident to an outgoing (resp. incoming) edge. Thus,

(B,R) ∈ BlueRed(u, v;w). �

2.2.4. Enumeration of TFPLs of excess 0 or 1. From Theorem 2.7 it follows

that twu,v = 0 unless exc(u, v;w) ≥ 0. For both oriented and ordinary TFPLs of excess 0

and 1 enumeration results are known. In this subsection, those for ordinary TFPLs are

recapped.

Definition 2.14. A Littlewood-Richardson tableau is a semi-standard Young

tableau with the additional property that the sequence obtained by concatenating its re-

versed rows is a lattice permutation, that is, in every initial part of the sequence any
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number i occurs at least as often as the number i + 1. The Littlewood-Richardson

coefficient cλν,µ is defined as the number of skew shape ν/λ with content µ.

Littlewood-Richardson coefficients appear in many areas of mathematics including

representation theory and algebraic geometry. Their first appearance though Littlewood-

Richardson coefficients made in algebraic combinatorics as the structure constants for the

product in the ring of symmetric functions with respect to the basis of Schur functions.

From now on, write cwu,v for the the Littlewood-Richardson coefficient c
λ(w)
λ(u),λ(v).

Theorem 2.15 ([20, 11]). Let u, v and w be words such that exc(u, v;w) = 0. Then

(2.3) twu,v = cwu,v.

This was first proved by Nadeau for Dyck words in [20]. Later, he and Fischer proved

the general case in [11], thereby establishing TFPLs as a generalised model of Littlewood-

Richardson coefficients. In the same article, they proved an expression for twu,v in terms

of Littlewood-Richardson coefficients for words u, v and w with exc(u, v;w) = 1.

Definition 2.16. Let ω and ω+ be words such that ω = ωL01ωR and ω+ = ωL10ωR

for appropriate words ωL and ωR. Then set Li(ω, ω
+) = |ωL|i and Ri(ω, ω

+) = |ωR|i.
Furthermore, set L(ω, ω+) = L0(ω, ω+) + L1(ω, ω+) + 1.

In the following, write ω → ω+ if ω = ωL01ωR and ω+ = ωL10ωR for appropriate

words ωL and ωR. Observe that ω → ω+ is equivalent to |ω|i = |ω+|i for i = 0, 1, ω ≤ ω+

and d(ω+) = d(ω) + 1.

Theorem 2.17 ([11]). Let u, v and w be words such that

exc(u, v;w) = 1. Then

(2.4) twu,v =
∑

u+:u→u+
|u|1cwu+,v +

∑
v+: v→v+

L(v, v+)cwu,v+ −
∑

w−:w−→w
L1(w−, w)cw

−
u,v .

The proof of Theorem 2.17 in [11] was split into two steps. In the first step, they

proved that the number of TFPLs with boundary (u, v;w) that contain the edge is given

by

(2.5)
∑

u+:u→u+
(R1(u, u+) + 1)cwu+,v +

∑
v+: v→v+

(L0(v, v+) + 1)cwu,v+ .

Thereto they developed moves that ultimately transform TFPLs of excess 1 that

contain the edge into TFPLs of excess 0. In the second step, they proved that the

number of TFPLs with boundary (u, v;w) that do not contain the edge equals
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(2.6)
∑

u+:u→u+
L1(u, u+)cwu+,v +

∑
v+: v→v+

L1(v, v+)cwu,v+ −
∑

w−:w−→w
L1(w−, w)cw

−
u,v .
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CHAPTER 3

Wieland drift

In 2000, Wieland [30] invented the operation on FPLs that bears his name. The

Wieland gyration was used to prove the rotational invariance of the numbers Aπ of

FPLs corresponding to a given link pattern π. It was later heavily used by Cantini and

Sportiello [9] to prove the Razumov-Stroganov conjecture. It also came up in connection

with TFPLs already in [19] following work of [29].

The main contribution of this chapter is the explicit definition of Wieland drift for

TFPLs together with a detailed study of some of its properties. Everything presented in

this chapter is joint work with Fischer and Nadeau and was published in [8]. This chapter

is divided as follows. Section 3.1 contains the definition of Wieland drift on TFPLs, which

is based on Wieland’s original definition. Furthermore, its first properties – culminating

in Theorem 3.7 – are given. We can then state the theorems about stability of TFPLs,

namely Theorems 3.10 and 3.11, which are proved in Section 3.2. Finally, Section 3.3

contains applications of Wieland drift to enumerative questions concerning TFPLs.

3.1. Wieland drift for TFPLs

In this section the definitions of left- and right-Wieland drift for TFPLs are given

and some first properties are derived. The starting point is the definition of Wieland

gyration for FPLs. In that which follows FPLs of size n are considered subgraphs of Gn

that occupy every other external edge. Furthermore, the cells of Gn are partitioned into

odd and even cells in a chessboard manner such that by convention the leftmost cell of

the top row of Gn is odd.

Figure 3.1. Up to rotation, the action of W on the active cells of an FPL.

Wieland gyration is composed of local operations on all active cells of an FPL: the

active cells of an FPL can be chosen to be either all its odd or all its even cells. Now, let

F be an FPL and c be an active cell of F . Then two cases must be distinguished:

• If c contains precisely two edges of F on opposite sides Wieland gyration W

leaves c invariant.
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• Otherwise, the effect of W on c is that edges and non-edges of F are exchanged.

In Figure 3.1, the action of W on active cells is illustrated. The result of applying W to

each active cell of F is said to be the image of F under Wieland gyration and is denoted

by W(F ). In Figure 3.2, an FPL and its the image under Wieland gyration with the odd

cells being active is pictured.

W

Figure 3.2. An FPL and its image under Wieland gyration with the odd
cells being active.

Wieland drift as it will be defined for TFPLs is based on the operation W. As active

cells of a TFPL can be chosen either all its odd cells or all its even cells. Choosing all odd

cells as active cells will lead to what will be defined as left-Wieland drift, while choosing

all even cells as active cells will lead to what will be defined as right-Wieland drift.

Definition 3.1. Let f be a TFPL with left boundary word u, and let u− be a word

such that u−
h−→ u. The image of f under left-Wieland drift with respect to u−

is determined as follows:

(1) Insert a vertex L′i to the left of Li for 1 ≤ i ≤ N . Then run through the

occurrences of one in u−: Let {i1 < i2 < . . . < iN1} = {i|u−i = 1}.
(a) If uij is the j-th one in u, add a horizontal edge between L′ij and Lij .

(b) If uij−1 is the j-th one in u, add a vertical edge between L′ij and Lij−1.

(2) Apply Wieland gyration to each odd cell of f .

(3) Delete all vertices in RN and their incident edges.

After shifting the whole construction one unit to the right, one obtains the desired image

WLu−(f). In the case u− = u, it will be simply written WL(f) and spoken of the image

of f under left-Wieland drift.

In Figure 3.3 a TFPL with its odd cells marked by grey dots and its image under

left-Wieland drift with respect to 0011111 are depicted. Note that 0011111
h−→ 0101111.

What is more, the right boundary 0101111 of the image of the TFPL under WL0011111

and the right boundary 0011111 of the preimage satisfy that 0011111
v−→ 0101111. This

turns out to hold in general:
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Figure 3.3. A TFPL with boundary (0101111, 0011111; 1101101) and its
image under left-Wieland drift with respect to 0011111.

Proposition 3.2. Let f be a TFPL with boundary (u, v;w) and let u− be a word

satisfying u−
h−→ u. Then WLu−(f) is a TFPL with boundary (u−, v+;w) where v+ is a

word satisfying v
v−→ v+.

Proof. First, it has to be checked that WLu−(f) indeed is a TFPL, that is, the four

conditions in Definition 2.5 must be satisfied. To begin with, the vertices in LN have

degree 0 or 1 in WLu−(f) by construction. On the other hand, for the degree of Ri to be

2 in WLu−(f), the vertex to the left of Ri would need to be adjacent to both Ri−1 and Ri

in f , which is excluded since no path in f joins two vertices in RN by Definition 2.5(4).

Thus, the vertices in RN have degree 0 or 1 in WLu−(f). All other vertices have degree 2

in WLu−(f) since they simply come from the application of W to cells of f . For the fourth

condition observe that Wieland gyration preserves the connectivity of path endpoints in

each active cell. Thus, a path in WLu−(f) cannot join two vertices in LN by construction.

On the other hand, if a path in WLu−(f) joined two vertices of RN , say Ri and Rj, then

a path in f would have to join the vertex to the left of Ri and the vertex to the left of

Rj. Since Ri and Rj are of degree 1 in WLu−(f) both the vertex to the left of Ri and the

vertex to the left of Rj would have to be adjacent to a vertex of RN in f . In summary,

if a path in WLu−(f) joined two vertices in RN then there would exist a path in f that

joins two vertices in RN , which is excluded by Definition 2.5(4). Therefore, no path in

WLu−(f) joins two vertices in RN .

It remains to check the assertion on the boundary. The left boundary of WLu−(f) is

u− by construction. The right boundary v+ of WLu−(f) satisfies v
v−→ v+ by Proposition

3.4 below and the characterisation of pairs σ, σ+ of words satisfying σ
v−→ σ+ in the first

section of Chapter 2.

Finally, the bottom boundary of WLu−(f) is w because Wieland gyration preserves

the connectivity of path endpoints in each active cell. �

The lemma below treats the effects of left-Wieland drift along the right boundary of

a TFPL.

Lemma 3.3. Let f, u−, v+ be as in Proposition 3.2. Then v+ 6= v if and only if there

exists a vertex in RN , which is incident to a vertical edge of f .
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Proof. Denote by xs the vertex to the left of Rs for all 1 ≤ s ≤ N .

Let f be a TFPL with a vertex Rj incident to a vertical edge and pick j minimal.

Then xj is necessarily adjacent to both the vertex to its left and to the vertex below,

which is why Rj is of degree 0 in WLu−(f). Since Rj is of degree 1 in f this shows v 6= v+.

Conversely, suppose that v+ 6= v. Then by Proposition 3.2 it must hold v < v+ and

therefore vj = 0 and v+
j = 1 for a j ∈ {1, 2, . . . , N − 1}. Thus, Rj is of degree 0 in

WLu−(f) and xj is adjacent to the vertex to its left and to the vertex below in f . Since

Rj is of degree 1 in f , it is necessarily incident to a vertical edge. �

As a byproduct of the previous proof, one can in fact precisely describe the right

boundary v+ as follows:

Proposition 3.4. Conserve the hypotheses of Lemma 3.3. For each i such that Ri

is adjacent to a horizontal edge ( resp. a vertical edge) then v+
i = 0 ( resp. v+

i+1 = 0). All

other values v+
j ’s are equal to 1.

Right-Wieland drift. Right-Wieland drift depends on a word v− satisfying v−
v−→ v,

which encodes what happens along the right boundary of a TFPL with boundary (u, v;w),

and is denoted by WRv− respectively WR, if v− = v. It is defined in an obvious way as

the symmetric version of left Wieland-drift and shall simply be illustrated by the example

in Figure 3.4.
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Figure 3.4. A TFPL and its image under right-Wieland drift with respect
to 0011111.

There are immediate symmetrical versions of Propositions 3.2 and 3.4 for right-

Wieland drift that we record:

Proposition 3.5. The image of a TFPL with boundary (u, v;w) under right-Wieland

drift with respect to v− is a TFPL with boundary (u+, v−;w) where u+ is a word satisfying

u
h−→ u+.

Proposition 3.6. Keep the notations of the previous proposition. For each index i

such that Li is incident to a horizontal edge ( resp. a vertical edge), there holds u+
i = 1

( resp. u+
i−1 = 1). All other values u+

j ’s are equal to 0.

Given a TFPL with right boundary v, the effect of left-Wieland drift along the right

boundary of the TFPL is inverted by right-Wieland drift with respect to v. On the other

42



hand, given a TFPL with left boundary u the effect of right-Wieland drift along the left

boundary is inverted by left-Wieland drift with respect to u. Since Wieland gyration is

an involution on each cell, it follows:

Theorem 3.7 (B., Fischer, Nadeau, [8]). (1) Let f be a TFPL with boundary

(u+, v;w) and u be a word such that u
h−→ u+. Then

WRv(WLu(f)) = f.

(2) Let f be a TFPL with boundary (u, v+;w) and v be a word such that v
v−→ v+.

Then

WLu(WRv(f)) = f.

Remark 3.8. It is perhaps useful to point out that WR(WL(f)) 6= f in general.

Indeed by Lemma 3.3 equality holds precisely when all vertices Ri of degree one are

incident to horizontal edges.

In Section 3.2, the behaviour of TFPLs under iterated applications of WL will be

studied. An example of a TFPL to which left-Wieland drift is repeatedly applied is

depicted in Figure 3.5: one checks that the last TFPL in the sequence is invariant by

left-Wieland drift.

Definition 3.9. A TFPL is said to be stable if it is invariant under the application

of left-Wieland drift.

WL

WL WL

Figure 3.5. A TFPL to which left-Wieland drift is repeatedly applied.

Given a TFPL f , the sequence (WLm(f))m≥0 is eventually periodic since there are

only finitely many TFPLs of a fixed size. The length of this period is in fact always 1.
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Theorem 3.10 (B., Fischer, Nadeau, [8]). Let f be a TFPL of size N . Then

WL2N−1(f) is stable, so that the following holds for all m ≥ 2N − 1 :

WLm(f) = WL2N−1(f).

The same holds for right-Wieland drift.

In order to prove Theorem 3.10, it is necessary to characterise TFPLs that are invari-

ant under left-Wieland drift. Note that a TFPL is invariant under left-Wieland drift if

and only if it is invariant under right-Wieland drift by Theorem 3.7.

3.2. Stable TFPLs

From now on the vertices of GN will be considered partitioned into odd and even

vertices as specified in Section 2.2. In this section, it will be proved that stable TFPLs

can be characterised as follows:

Theorem 3.11 (B., Fischer, Nadeau,[8]). A TFPL is stable if and only if it con-

tains no edge of the form .

Definition 3.12. The edge is called a drifter.

The number of drifters that a TFPL can contain is bounded by the excess of the

TFPL:

Proposition 3.13. A TFPL of excess k contains at most k drifters.

Proof. If a TFPL of excess k is oriented canonically then the so-obtained oriented

TFPL again is of excess k. Thus, the assertion immediately follows from Theorem 2.12.

�

Theorem 3.11 and Proposition 3.13 give rise to the following class of stable TFPLs:

Corollary 3.14. If a TFPL is of excess 0, then it is stable.

In the following, the possible cells of a TFPL play an important role in the proofs.

For convenience, notations for the 16 odd and 16 even cells of a TFPL are fixed. In

Figure 3.6 the chosen notation can be seen.

3.2.1. Characterisation of stable TFPLs. To prove Theorem 3.11, we will begin

by showing that a TFPL containing a drifter is not stable.

Proposition 3.15. Let f be a TFPL that contains a drifter. Then WL(f) 6= f .
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o1 o2 o3 o4 o5 o6 o7 o8

o16o9 o15o14o13o12o11o10

e9 e16e11 e12 e13 e14 e15e10

o1 o2 e1 e2

e6 e7 e8e1 e2 e3 e4 e5

Figure 3.6. The notations for the 16 odd and 16 even internal cells of
a TFPL, with emphasis on the subsets O = {o1, o2, o3, o4, o5} and E =
{e1, e2, e3, e4, e5}. Furthermore, the notations for the 2 odd and 2 even
external cells of a TFPL.

Proof. If f contains a drifter incident to a vertex in RN , then by Lemma 3.3 the

right boundaries of f and WL(f) are different, so that necessarily WL(f) 6= f .

Hence, assume that no vertex in RN is incident to a drifter. Let ι be a drifter in f

with maximal x-coordinate and consider the odd cell o in f that contains ι. Furthermore,

let x be the top right vertex of o and y be the bottom right vertex of o. By the choice of

ι the vertices x and y are not incident to a drifter in f .

oι

x

y

Therefore, o ∈ {o8, o9, o10, o11, o15}. If o is of the form o8 or o15, the vertex to the

right of x is incident to a drifter in WL(f). In that case, WL(f) 6= f because the vertex

to the right of x in f is not incident to a drifter by assumption. If o is of the form o9, o10

or o11, the vertices x and y are not adjacent in WL(f). Thus, WL(f) 6= f because x and

y are adjacent in f . �

To prove that a TFPL without a drifter is indeed stable, we need to determine the

types of cells that may occur. Define O = {o1, o2, o3, o4, o5} and E = {e1, e2, e3, e4, e5}.

Lemma 3.16. If f is a TFPL without drifters, then all interior odd cells belong to O

while all of its interior even cells belong to E.
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Proof. Let f be a TFPL without a drifter, and o be one of its interior odd cells.

Since o has no drifter, it can only belong to O or have one of the types o6, o7 or o12. But

in types o6 (resp. o7) or o12, there would exist an interior cell below (resp. above) o that

contains a drifter, which is excluded.

The case of even cells is entirely analogous. �

Furthermore, in a TFPL with no drifter each odd cell has a uniquely determined even

cell to its right.

Lemma 3.17. Let f be a TFPL without drifters, o an odd cell of f and e the even cell

of f to the right of o. If o and e are interior, then they can only occur as part of one of

the following pairs:

o1 o2 o3 o5o4 e1e2e3e5 e4

On the other hand, if o and e contain an external edge, then o and e can only occur as

part of one of the following pairs:

o2 o1e1 e2

Proof. Here, only the case when o is an interior odd cell and o = o1 is considered,

the other cases being similar. Obviously, the cell e cannot equal e4. But it cannot equal

e1, e2 or e3 either, since otherwise one of the right vertices of o would be be incident to a

drifter. The only remaining possibility is that e is of type e5 by Lemma 3.16. �

The proof of Theorem 3.11 now can be completed by showing that a TFPL without

drifters is invariant under left-Wieland drift.

Proposition 3.18. If f is a TFPL without drifters, then WL(f) = f .

Proof. Let o be an odd cell of f and e be the even cell to its right. By Lemma 3.17,

e is uniquely determined by o. The crucial observation is that e coincides with the image

of o under Wieland gyration. Thus, each even cell of f and its corresponding even cell of

WL(f) coincide. By definition all edges and non-edges of f incident to a vertex in LN
are preserved by left-Wieland drift. In summary, WL(f) = f . �

3.2.2. TFPLs are eventually stable under Wieland drift. In this subsection,

we will prove Theorem 3.10. The idea of the proof is the following: when applying left-

Wieland drift to a TFPL, the drifters of the TFPL are globally moved to the right. Thus,

after a finite number of applications of left-Wieland drift, all drifters eventually disappear

through the right boundary. As a consequence of Theorem 3.11 a stable TFPL is then

obtained.

In a TFPL of size N , there are 2N + 1 columns of vertices which we label from left

to right from 1 to 2N + 1.
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Proposition 3.19. Let f be a TFPL of size N that contains a drifter in the n-th

column but no drifter in the columns 1, . . . , n − 1 to its left. Then WL(f) contains no

drifter in any of the columns 1, . . . , n.

Proof. First of all, notice that by the definition of left-Wieland drift, no vertex of

LN is incident to a drifter in WL(f). By definition of WL, the occurrence of a drifter in

an even cell e of WL(f) depends solely on the odd cell to the left of the even cell e in

f . By hypothesis, no odd cell of f occurring to the left of the (n − 1)-st column has a

vertex incident to a drifter. It follows from the proof of Lemma 3.16 that all these odd

cells belong to O. This entails that all even cells of WL(f) to the left of the n-th column

belong to E, and thus do not contain a drifter. Since these even cells cover all vertical

edges in the columns 1, . . . , n, the proof is complete. �

Proof of Theorem 3.10. By induction on the result of Proposition 3.19, we know

that the configuration WL2N+1−n(f) contains no drifter, and thus is stable under WL by

Theorem 3.11, that is,

(3.1) WLm(f) = WL2N+1−n(f)

for all m ≥ 2N + 1− n. Since the first column of vertices of a TFPL consists only of the

vertex L1, we have n ≥ 2, which proves the theorem. �

3.3. Applications of Wieland drift on TFPLs

3.3.1. Some linear relations. The following was conjectured for Dyck words in [29]

and proved in [19] using Wieland gyration on FPLs.

Proposition 3.20. Let u, v and w be words. Then∑
u+:u

h−→u+

twu+,v =
∑

v+: v
v−→v+

twu,v+ .

Proof. Indeed the function WLu(·) acts on all TFPLs with boundary (u+, v;w),

while WRv(·) acts on TFPLs with boundary (u, v−;w). By Theorem 3.7, these functions

are inverses of one another, and the result is obtained by taking cardinalities. �

3.3.2. The inequality in Theorem 2.7. This states that |λ(u)|+ |λ(v)| ≤ |λ(w)|
always holds for the boundaries (u, v;w) of TFPLs. It was given in [29, Lemma 3.7] in

the Dyck word case. Later, another proof in connection with oriented TFPLs was given

in [11]. For the exact result in [11] see Theorem 2.12.

Now an independent proof based on the properties of Wieland drift will be given; the

idea for this proof comes from the original one by Thapper, which can be seen as relying

on Wieland gyration on FPLs in an indirect way.
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Proof of Theorem 2.7(3). Let f be a TFPL with boundary (u, v;w). The proof

is done by induction on |λ(u)|. In the case when |λ(u)| = 0 it has to be shown that

|λ(v)| ≤ |λ(w)|; the latter immediately follows from Theorem 2.7(2).

Assume now |λ(u)| ≥ 1. By removing a corner of λ(u), there exists a Young diagram

λ(u−) ⊆ λ(u) with one cell less than λ(u). In particular λ(u)/λ(u−) is a horizontal strip.

It first will be proved that there exists an i > 0 such that WLiu−(f) has right boundary

v+ 6= v. Assume the contrary, that is, the right boundary of WLiu−(f) is v for all i > 0.

Since there is only a finite number of TFPLs with boundary (u−, v;w), there exist integers

i0, p > 0 such that

WLi0+p
u− (f) = WLi0u−(f).

By applying WRi0
v to both sides of the identity and by Theorem 3.7 it follows that

WLpu−(f) = f . But these configurations have left boundaries u, u− respectively, which

contradicts the assumption u− 6= u.

Hence, let i be a positive integer such that WLiu−(f) has boundary (u−, v+;w) where

v+ 6= v. By Proposition 3.2 it holds λ(v) ( λ(v+). Applying the induction hypothesis to

WLiu−(f) completes the proof:

|λ(u)|+ |λ(v)| = |λ(u−)|+ 1 + |λ(v)| ≤ |λ(u−)|+ |λ(v+)| ≤ |λ(w)|.

�

3.4. Outlook

One of the most intriguing properties of Wieland drift is that it is eventually periodic

with period 1. This property now offers to relate TFPLs to stable TFPLs by use of

Wieland drift, thereby establishing an approach to the enumeration of TFPLs. (Note

that below the number of stable TFPLs with boundary (u, v;w) is denoted by swu,v.)

The enumeration results for TFPLs that we have seen up to this point are, on the one

hand, that twu,v coincides with the Littlewood-Richardson coefficient cwu,v if exc(u, v;w) = 0

(Theorem 2.15) and, on the other hand, a linear expression in terms of Littlewood-

Richardson coefficients for twu,v if exc(u, v;w) = 1 (Theorem 2.17). Given that TFPLs of

excess 0 are necessarily stable (Corollary 3.14) we may construe the first result as the

consequence of the two identities twu,v = swu,v and swu,v = cwu,v (if exc(u, v;w) = 0). The

second result just as well can be seen as the consequence of an expression for twu,v in terms

of numbers of stable TFPLs and an expression for the number of stable TFPLs in terms

of Littlewood-Richardson coefficients as per particulars given below.

It is mentioned in Section 2.2.4 that the proof of the result for TFPLs of excess 1 in [11]

treats TFPLs that exhibit the edge and those that do not separately. This edge is our

drifter, meaning that in retrospective the numbers of both instable and stable TFPLs of

excess 1 are expressed in terms of Littlewood-Richardson coefficients in [11]. (The precise

formulations can be found in (2.5) and (2.6) respectively.) Since for words u+, v+ and
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w− with exc(u+, v+;w−) = 0 the Littlewood-Richardson coefficient cw
+

u+,v+ coincides with

the number of stable TFPLs with boundary (u+, v+;w−) the expression for the number

of instable TFPLs with boundary (u, v;w) in (2.5) is actually an expression in terms of

numbers of stable TFPLs. To be more precise, (2.5) is equivalent to

(3.2) twu,v − swu,v =
∑

u+:u→u+
(R1(u, u+) + 1)swu+,v +

∑
v+: v→v+

(L0(v, v+) + 1)swu,v+

where u → u+ means that u = uL01uR and u+ = uL10uR for appropriate words uL and

uR, Ri(u, u
+) = |uL|i and Li(u, u

+) = |uR|i for i = 0, 1. Furthermore, (2.6) is equivalent

to

(3.3) swu,v =
∑

u+:u→u+
L1(u, u+)cwu+,v +

∑
v+: v→v+

L1(v, v+)cwu,v+ −
∑

w−:w−→w
L1(w−, w)cw

−
u,v .

To prove the expression in (2.5) for the number of instable TFPLs with boundary

(u, v;w) the authors in [11] invented transformations that ultimately transform instable

TFPLs of excess 1 into TFPLs of excess 0 and counted how many instable TFPLs with

boundary (u, v;w) are transformed into the same TFPL of excess 0. These transfor-

mations turn out to be essentially equivalent to a simple application of Wieland drift.

Instable TFPLs thus may be related to stable TFPLs through Wieland drift in a way

that generalises the way set forth for instable TFPLs of excess 1 in [11], in order to at

best find an expression for twu,v in terms of numbers of stable TFPLs. In a parallel line

of research stable TFPLs should be studied and enumerated. It might be possible to

express swu,v in terms of Littlewood-Richardson coefficients.
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CHAPTER 4

Triangular fully packed loop configurations of excess 2

The main contribution of this chapter is a linear expression for twu,v in terms of numbers

of stable TFPLs for any words u, v and w with exc(u, v;w) = 2. This linear expression

generalises the expression for the excess-1-case in (3.2). To give the exact formulation of

the main result of this chapter further notation is needed.

Definition 4.1. Let u and u+ be two 01-words of the same length that satisfy |u|1 =

|u+|1 = N1 and λ(u) ⊆ λ(u+). Then denote by gu,u+ the number of semi-standard Young

tableaux of skew shape λ(u+)/λ(u) with entries in the i-th column – when counted from

the left – restricted to 1, 2, . . . , N1 − i+ 1.

1 1
2

1 1
3

21
2

21
3

22
3

Figure 4.1. The semi-standard Young tableaux that contribute to g001101,101001.

For instance g001101,101001 = 5. From now on, denote the set of stable TFPLs with

boundary (u+, v+;w) with Swu+,v+ and its cardinality with swu+,v+ .

Theorem 4.2. Let u, v, w be words of the same length such that |u|1 = |v|1 = |w|1
and exc(u, v;w) = 2. Then

(4.1) twu,v =
∑

u+≥u, v+≥v
gu,u+ gv∗,(v+)∗ s

w
u+,v+ .

By Theorem 2.7 swu+,v+ = 0 unless |u+|1 = |v+|1 = |w|1 and d(u+) + d(v+) ≤ d(w).

The sum in (4.1) is finite since it is restricted to words u+ and v+ that satisfy |u+|1 =

|v+|1 = |w|1 and d(u+) + d(v+) ≤ d(w). Furthermore, if exc(u, v;w) = 0 then

(4.2) twu,v = swu,v

by Corollary 3.14. For words u, v and w with exc(u, v;w) = 1 Fischer and Nadeau

proved an expression for twu,v in terms of Littlewood-Richardson coefficients, see (2.5).

This expression now can be written as follows:
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(4.3) twu,v = swu,v +
∑
u+≥u

gu,u+ swu+,v +
∑
v+≥v

gv∗,(v+)∗ s
w
u,v+ .

Thus, the linear expression stated in Theorem 4.2 generalises the already existing enu-

meration results for TFPLs with boundary (u, v;w) where exc(u, v;w) = 0, 1.

This chapter is structured as follows. In Section 4.1 the effect of Wieland drift on

TFPLs of excess 2 will be studied in detail. We already know from the previous chapter

that Wieland drift changes a TFPL solely near the drifters. The main contribution of

the first section will be the definition of (five) transformations around drifters – so-called

moves – that suffice to describe the effect of Wieland drift on TFPLs of excess 2, see

Proposition 4.3. In Section 4.2, we will study the numbers of times left- (resp. right-)

Wieland drift has to be applied to TFPLs until a from the outset fixed drifter is incident

to a vertex of the right (resp. left) boundary. This study will culminate in Corollary 4.11,

which will be crucial for the proof of Theorem 4.2 that is the content of Section 4.3.

The work presented in this chapter was presented as a poster at the 27th Interna-

tional Conference on Formal Power Series and Algebraic Combinatorics in 2015 ([6]).

Furthermore, it has recently been accepted to be published by The Electronic Journal of

Combinatorics ([7]).

4.1. An alternative description of Wieland drift for TFPLs of excess 2

The main contribution of this section is a description of the effect of Wieland drift

on TFPLs of excess at most 2 as a composition of moves. In Figure 4.2, the moves

that form the basis for that description are depicted. Recall that a TFPL of excess 2

contains at most 2 drifters, which is why there occur at most two drifters in every move.

Furthermore, if the move M4 is applicable to a TFPL of excess 2 then no other moves

are applicable to that TFPL by Theorem 2.12.

M1 M2 M3 M4 M5

Figure 4.2. The moves that describe the effect of left-Wieland drift on
instable TFPLs of excess 2.
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Proposition 4.3. Let f be an instable TFPL with boundary (u, v;w) such that

exc(u, v;w) ≤ 2. Furthermore, let u− be a word that satisfies u−
h−→ u. Then the

image of f under left-Wieland drift with respect to u− is determined as follows:

(1) if Ri in RN is incident to a drifter delete that drifter and add a horizontal edge

incident to Ri+1 for i = 1, 2, . . . , N − 1;

(2) perform M4 or M5 if possible; otherwise, run through the columns of GN from

right to left, that is, for j = 2N + 1, 2N, . . . , 1:

(a) if there is precisely one drifter in the j-th column of GN , apply M1, M2 or

M3 to it;

(b) if there are two drifters in the j-th column of GN , apply M1, M2 or M3

to each of the drifters in the following order: if the odd cell that contains

the upper drifter is the cell o9, that is, , move the lower drifter first.

Otherwise, move the upper drifter first.

(3) run through the occurrences of one in u−: let {i1 < · · · < iN1} = {i : u−i = 1}.
If uij−1 is the j-th one in u delete the horizontal edge incident to Lij−1 and add

a vertical edge incident to Lij for j = 1, 2, . . . , N1.

In Figure 4.3 a TFPL of excess 2 with two drifters and its image under left-Wieland

drift are depicted. The two drifters in the original TFPL have the same x-coordinate and

the odd cell that contains the upper drifter is of the form o9. Thus, by left-Wieland drift

the move M1 is applied to the lower drifter before the move M2 is applied to the other

drifter. The rest of the TFPL is preserved.

1

0

0

0

0

0

0

1

0 1 0 0 0 1 0 0

1

0

0

0

0

0

0

1

WL

Figure 4.3. A TFPL of excess 2 with two drifters and its image under
left-Wieland drift.

In the proof of Proposition 4.3 the effect of left-Wieland drift will be checked cell by

cell. From the set of cells that can occur in a TFPL of excess at most 2 the following

cells can be excluded:

Lemma 4.4. In a TFPL of excess at most 2, none of the following cells can occur:

o15 o16 e15 e16

Since the proofs in this section work by studying the cells of a TFPL it is convenient

to fix notations for all the odd and even cells that can occur in a TFPL. These notations

are chosen as in the previous chapter, see Figure 3.6.
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Proof. Let f be a TFPL and
−→
f its canonical orientation. First, suppose that f

contains a cell c of the form o15. Then c must exhibit two configurations in
−→
f that

contribute to the excess, see Theorem 2.12. On the other hand, the right vertex of the

horizontal edge in c which is oriented from right to left in
−→
f either is adjacent to the

vertex to its right or is incident to a drifter. Thus,
−→
f exhibits yet another configuration

that contributes to the excess. The excess of f thus must be at least 3. For the same

reason, a TFPL of excess at most 2 cannot contain the third cell in the list.

Now, suppose that a cell c in f is of the form o16. Then both the top and the bottom

rightmost vertex in c have to be incident to a drifter. Therefore, f contains at least three

drifters and therefore has to be of excess at least 3. By the same argument, the fourth

cell in the list cannot occur in a TFPL of excess at most 2. �

In the following, it will be convenient to distinguish between the cells of a TFPL and

the cells of its image under left-Wieland drift. To this end, given a cell c of GN it is

written c when it is referred to the cell c of the TFPL and c′ when it is referred to the

cell c of the image of the TFPL under WL. When the cells of a TFPL and of its image

under left-Wieland drift are compared it has to be kept in mind that in the last step

of left-Wieland drift the whole configuration is shifted one unit to the right. For that

reason, for each odd cell o of a TFPL and the even cell e to the right of o the following

holds when disregarding the distinction between odd and even vertices:

(4.4) e′ = W(o)

To begin with, in the image of a TFPL under WL all edges incident to a vertex in LN
must be horizontal by definition. This is why it suffices to determine the effect of WL on

the even cells of a TFPL. The following lemma gives conditions under which even cells

are preserved under WL. Its proof is analogous to the proof of Lemma 3.17 and therefore

omitted.

Lemma 4.5. Let f be a TFPL. Furthermore, let o be an odd cell of f and e the even

cell to the right of o such that no vertex of o and e is incident to a drifter. If o and e are

interior cells, then they can only occur as part of one of the following pairs:

o1 o2 o3 o5o4 e1e2e3e5 e4

On the other hand, if o and e contain an external edge, then o and e can only occur as

part of one of the following pairs:

o2 o1e1 e2

In particular, e′ = e.
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Due to Lemma 4.5 it remains to determine the effect of WL on even cells e such that

a vertex in e or in the odd cell o to the left of e is incident to a drifter. Now, each

drifter that is not incident to a vertex in LN ∪ RN brings about four such even cells,

see Figure 4.4. These even cells and the odd cells to their left shall in the following be

denoted as indicated in Figure 4.4. Finally, a drifter that is incident to a vertex in LN
(resp. RN) solely entails the cells or, er, ob and eb (resp. ol, el, ob and eb).

ot et
ol el or er

ob eb

Figure 4.4. A drifter and its surrounding cells.

The next lemma addresses the effect of left-Wieland drift on the cells et, el and eb.

Lemma 4.6. Let f be an instable TFPL of excess at most 2, o an odd cell of f and e

the even cell to the right of o. If o does not contain a drifter, a vertex of e is incident to

a drifter and o /∈ {o6, o7, o12}, then e′ and e coincide with the following sole exceptions:

(1) if in e there is a drifter, then in e′ there is none,

(2) if the top left vertex of e is incident to a drifter, then there is no horizontal edge

between the two top vertices of e but there is one between the two top vertices of

e′,

(3) if the bottom left vertex of e is incident to a drifter, then there is no horizontal

edge between the two bottom vertices of e but there is one between the two bottom

vertices of e′.

Proof. If o and e are external cells such that a vertex of e is incident to a drifter,

then o = o1, e = e1 and e′ = e2. In that case, e′ and e coincide with the sole exception

that there is no horizontal edge between the two top vertices of e whereas there is one

between the two top vertices of e′. Suppose that o and e are internal cells such that o

does not contain a drifter, a vertex of e is incident to a drifter and o is not in {o6, o7,

o12}. Then (o, e) can only occur as part of one of the following pairs:

o1 e2o1 e1 o1 e3 o1 e9 o1 e10 o1 e11 o2 e1 o2 e8 o2 e9

o3 e1 o3 e8 o3 e10 o4 e6 o4 e7 o4 e13 o4 e14o4 e12 o5 e8

Now, e′ = e5 if o = o1, e′ = e3 if o = o2, e′ = e2 if o = o3, e′ = e4 if o = o4 and e′ = e1 if

o = o5. It can easily be checked that in any case e′ and e satisfy the assertions. �

Proposition 4.3 now is proved separately for instable TFPLs of excess at most 2 that

contain precisely one drifter and for those that contain two drifters.
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Proof of Proposition 4.3(one drifter). Let f be an instable TFPL of excess

at most 2 that contains precisely one drifter d. First, the case when d is incident to a

vertex Ri in RN is considered. In that case the cells ol, el, ob and eb exist. Furthermore,

both ol and ob do not contain a drifter and are not in {o6, o7, o12} because in f there is

only one drifter. Thus, by Lemma 4.6 on the one hand e′l and el coincide with the sole

exception that in e′l there is no drifter whereas in el there is one and on the other hand

e′b and eb coincide with the sole exception that in e′b the two top vertices are adjacent

whereas in eb they are not. By Lemma 4.5 the effect of left-Wieland drift on f is that

the drifter incident to Ri is replaced by a horizontal edge incident to Ri+1 while the rest

of f is preserved.

It remains to consider the case when d is not incident to a vertex in RN . In that

case the cells or, er, ob and eb of f have to exist. Since f contains precisely one drifter

or ∈ {o8, o9, o10, o11} by Lemma 4.4. It will be proceeded by treating each of the four

possible cases for or separately.

First, the case when or = o8 is regarded. In that case, er = e5 because f contains

precisely one drifter. Furthermore, W(o8) = o8 and therefore e′r = e8. On the other hand,

e′b and eb coincide with the sole exception that the two top vertices in e′b are adjacent

whereas in eb they are not by Lemma 4.6. If the cells ot, et, ol and el exist, then both

ot and ol cannot be in {o6, o7, o12} and for that reason e′t and et coincide with the sole

exception that the two bottom vertices in e′t are adjacent whereas in et they are not and

e′l and el coincide with the sole exception that in e′l there is no drifter whereas in el there

is one by Lemma 4.6. By Lemma 4.5, the effect of left-Wieland drift on f is that the

move M1 is applied to d while the rest of f is preserved.

Next, the case when or = o9 is considered. In that case, er = e2, ob = o7 and eb = e4.

Furthermore, W(o9) = o6 that is e′r = e6 and W(o7) = o10 that is e′b = e10. If the cells ol,

el, ot and et exist, then neither ot nor ol is in {o6, o7, o12}. By Lemma 4.6 and Lemma 4.5

the effect of left-Wieland drift on f is that the move M2 is applied to d while the rest of

f is preserved.

Next, the case when or = o10 is regarded. In that case, ot, et, ol and el exist.

Furthermore, er = e3, ot = o6 and et = e4. Therefore, e′r = e7 and e′t = e9. Since neither

ob nor ol is in {o6, o7, o12} by Lemma 4.6 and Lemma 4.5 the effect of left-Wieland drift

on f is that the move M3 is applied to d while the rest of f is preserved.

Finally, the case when or = o11 is checked. In that case ot, et, ol and el exist.

Furthermore, er = e1, ob = o7, eb = e4, ol = o5, el = e8, ot = o6 and et = e4. Therefore,

e′r = e12, e′b = e10, e′l = e1 and e′t = e9. By Lemma 4.5 the effect of left-Wieland drift on

f is that the move M4 is applied to d while the rest of f is preserved. �

The proof of Proposition 4.3 for instable TFPLs f of excess 2 that contain two drifters

is split into the following three parts: (1) all drifters in f are incident to vertices in RN ;

56



(2) one drifter in f is incident to a vertex in RN and the other is not; (3) no drifter in f

is incident to a vertex in RN .

Proof of Proposition 4.3(two drifters (1)). Let f be a TFPL of excess 2

that contains two drifters. If in f all drifters are incident to a vertex in RN then for each

drifter in f the cells ol and ob do not exhibit a drifter and are not of the form o6, o7 or

o12. Therefore, by Lemma 4.6 and Lemma 4.5 the effect of WL on f is that each drifter

is replaced by a horizontal edge such that if a drifter is incident to Ri in f the respective

horizontal edge in WL(f) is incident to Ri+1, while the rest of f remains unchanged. �

Proof of Proposition 4.3(two drifters (2)). Let f be a TFPL of excess 2

that contains two drifters d and d∗ whereof d is incident to a vertex Ri in RN and d∗ is

not incident to a vertex in RN . Note that f contains neither a cell of type o11 nor of type

e11. That is because when adding the canonical orientation to f such a cell would give

rise to two local configurations that contribute to the excess which would imply that f

is of excess greater than 2. As a start, suppose that no vertex of ol and ob is incident to

d∗. In that case e′l and el coincide with the sole exception that in e′l there is no drifter

and e′b and eb coincide with the sole exception that in e′b the two top vertices are adjacent

whereas in eb they are not by Lemma 4.6. On the other hand, since d∗ is not incident to a

vertex in RN the cells o∗r, e
∗
r, o
∗
b and e∗b exist. Furthermore, no vertex of o∗r, e

∗
r, o
∗
b and e∗b is

incident to d. If the cells o∗l , e
∗
l , o
∗
t and e∗t exist then also no vertex of these cells is incident

to d. For those reasons, by analogous arguments as in the proof of Proposition 4.3(1)

the effect of left-Wieland drift on f is that d is replaced by a horizontal edge incident to

Ri+1 before a unique move of {M1,M2,M3} is applied to d∗. The rest of f is preserved

by left-Wieland drift.

Now, if the bottom right vertex of ob is incident to d∗, then o∗r ∈ {o8, o9, o10}. If

o∗r = o8, then e∗r = e5. Furthermore, ol, ob, o
∗
l and o∗b do not contain a drifter and are not

in {o6, o7, o12}. Thus, the effect of left-Wieland drift is that d is replaced by a horizontal

edge incident to Ri+1 before the move M1 is applied to d∗ while the rest of f is preserved.

If o∗r = o9, then e∗r = e2, o∗b = o7 and e∗b = e4. Additionally, ol, ob and ol do not contain

a drifter and are not in {o6, o7, o12}. Therefore, the effect of left-Wieland drift is that

d is replaced by a horizontal edge incident to Ri+1 before the move M2 is applied to d∗

while the rest of f is preserved. Finally, if o∗r = o10, then e∗r = e3, ob = o6 and eb = e7.

Furthermore, ol, o
∗
l and o∗b do not contain a drifter and are not in {o6, o7, o12}. For those

reasons, the effect of left-Wieland drift is that d is replaced by a horizontal edge incident

to Ri+1 before the move M3 is applied to d∗ while the rest of f is preserved.

Next, if ol contains d∗, then ol = o10, el = e9, o∗t = o6, e∗t = e4, ob = o4, eb = e7 and

o∗b /∈ {o6, o7, o12}. Therefore, e′l = e7, e′t = e9, e′b = e4 and by Lemma 4.6 the cells e∗′b
and e∗b coincide with the sole exception that in e∗′b there is an edge between the two top

vertices whereas in e∗b there is none. For those reasons, the effect of left-Wieland drift
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on f is that d is replaced by a horizontal edge incident to Ri+1 before the move M3 is

applied to d∗ while the rest of f is preserved.

Finally, if ob contains d∗, then ob ∈ {o8, o9}. If ob = o8, then eb = e3. Furthermore,

none of the cells ol, o
∗
l and o∗b is in {o6, o7, o12}. Thus, the effect of left-Wieland drift on f

is that d is replaced by a horizontal edge incident to Ri+1 before the move M1 is applied

to d∗ while the rest of f is preserved. On the other hand, if ob = o9, then eb = e1, o∗b = o7

and e∗b = e4. Additionally, ol and o∗l do not contain a drifter and are not in {o6, o7, o12}.
Therefore, the effect of left-Wieland drift on f is that d is replaced by a horizontal edge

incident to Ri+1 before the move M2 is applied to d∗ while the rest of f is preserved. �

Proof of Proposition 4.3(two drifters (3)). Let f be a TFPL of excess 2

that contains two drifters whereof none is incident to a vertex in RN . In that case the

cells or, er, ob, eb and the cells o∗r, e
∗
r, o

∗
b , e
∗
b exist. Furthermore, both or and o∗r have to be

in {o8, o9, o10, o13, o14}. It is started with the case when no vertex of the cells or, er, ob, eb

is incident to d∗ and no vertex of the cells o∗r, e
∗
r, o

∗
b , e

∗
b is incident to d. This implies that

if the cells ol, el, ot and et exist then none of their vertices is incident to d∗ and if the cells

o∗l , e
∗
l , o

∗
t and e∗t exist then none of their vertices is incident to d. Therefore, by the same

arguments as in the proof of Proposition 4.3(1) the effect of left-Wieland drift on f is

that simultaneously to each of the two drifters d and d∗ a unique move in {M1,M2,M3} is

applied while the rest of f is conserved. Since the moves can be performed simultaneously

they can be performed in the order stated in Proposition 4.3(2).

It remains to study the case when a vertex of or, er, ob or eb is incident to d∗ or a

vertex of o∗r, e
∗
r, o

∗
b or e∗b is incident to d. Hence, without loss of generality assume that

a vertex of the cells or, er, ob, eb that is not the top right vertex of or is incident to the

drifter d∗. Then or does not equal o14 and o∗r does not equal o13.

As a start, the case when the bottom right vertex of ob is incident to d∗ is considered.

In that case d and d∗ have the same x-coordinate and d has the larger y-coordinates than

d∗. If the cells ot, et, ol and el exist then ot neither equals o7 nor o12. Furthermore, if

ot = o6 then et = e4, or = o10 and er = e3. Thus, e′t = e9 and e′r = e7. On the other

hand, if ot does not equal o6 then e′t and et coincide with the sole exception that in e′t
there is a horizontal edge between its two bottom vertices whereas in et there is none by

Lemma 4.6. Since neither ol nor o∗l equals o6, o7 or o12 the cells e′l and el (resp. e∗′l and

e∗l ) coincide with the sole exception that in e′l (resp. e∗′l ) there is no drifter by Lemma 4.6.

Finally, o∗b does neither equal o6 nor o12 and if it equals o7 then e∗b = e4, o∗r = o9, e∗r = e2,

e∗′b = e10 and e∗′r = e3. ω → ω+ By Lemma 4.5, it remains to study the cells or, er, ob, eb,

o∗r, e
∗
r, e

′
r, e

′
b and e∗′r . A list of all possible configurations in the cells or, er, ob, eb, o

∗
r, e

∗
r,

e′r, e
′
b and e∗′r is given in Table 1.

In summary, left-Wieland drift has the following effect:

• The move M5 is applied if or = o9 and o∗r = o10.
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or o8 o8 o8 o8 o8 o9 o9 o9 o10 o10 o10 o10

er e5 e5 e5 e5 e5 e2 e2 e2 e3 e3 e3 e3

o∗r o8 o8 o9 o9 o10 o8 o9 o10 o8 o8 o9 o10

e∗r e5 e5 e2 e2 e3 e5 e2 e3 e5 e5 e2 e3

ob o1 o4 o1 o4 o6 o7 o7 o12 o1 o4 o4 o6

eb e1 e12 e1 e12 e7 e6 e6 e4 e1 e12 e12 e7

e′r e8 e8 e8 e8 e8 e6 e6 e6 e7 e7 e7 e7

e∗′r e8 e8 e6 e6 e7 e8 e6 e7 e8 e8 e6 e7

e′b e15 e4 e15 e4 e9 e10 e10 e11 e15 e4 e4 e9

Table 1. The cells or, er, o
∗
r, e
∗
r, ob and eb of f and the cells e′r, e

∗′
r and e′b

of WL(f) in the case when d∗ is incident to the bottom right vertex of ob
in f .

• The move M1/M2 is applied to d∗ before the move M2 is applied to d if or = o9

and o∗r = o8/o9.

• The move M1 is applied to d before the move M1/M2/M3 is applied to d∗ if

or = o8 and o∗r = o8/o9/o10.

• The move M3 is applied to d before the move M1/M2/M3 is applied to d∗ if

or = o10 and o∗r = o8/o9/o10.

In all cases the rest of f is preserved by left-Wieland drift.

Next, the case when the drifter d∗ is contained in er is studied. In that case the x-

coordinate of d∗ is larger than the one of d. Note that (or, er) ∈ {(o9, e10), (o10, e9)} since

f contains neither of the cells o11 and e11. Now, if or = o9 then ob = o7, eb = e4, o∗t = o4,

e∗t = e6 and (o∗r, e
∗
r) ∈ {(o8, e5), (o9, e2)}. Furthermore, if o∗r = o9 then o∗b = o7 and e∗b = e4.

Thus, e′r = e6, e′b = e10, e∗′t = e4 and if o∗r = o9 then e∗′r = e6 and e∗′b = e10. On the other

hand, if or = o10 then ot = o6, et = e4, o∗b = o4, e∗b = e7 and (o∗r, e
∗
r) ∈ {(o8, e5), (o10, e3)}.

Furthermore, if o∗r = o10 then o∗t = o6 and e∗t = e4. Thus, e′r = e7, e′t = e9 and e∗′b = e4

and if o∗r = o10 then e∗′r = e7 and e∗′t = e9. By Lemma 4.5 and Lemma 4.6 the effect of

left-Wieland drift is the following:

• The move M1/M2 is applied to d∗ before the move M2 is applied to d if or = o9

and o∗r = o8/o9.

• The move M1/M3 is applied to d∗ before the move M3 is applied to d if or = o10

and o∗r = o8/o10.

In both cases the rest of f is preserved by left-Wieland drift.

Next, the case when d∗ is contained in eb is regarded. In that case the x-coordinate of

d∗ is larger than the one of d. The cells ol and ob are both not contained in {o6, o7, o12}.
For instance, it is not possible that ob equals o7 because then eb would have to equal e15

or the bottom right vertex of ob would be incident to a drifter. As a start, if ot exists then

it cannot be in {o7, o12}. Furthermore, if ot = o6 then et = e4, or = o10, er = e3, e′t = e9

and e′r = e7. On the other hand, o∗b cannot be in {o6, o12}. Furthermore, if o∗b = o7 then
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e∗b = e4, o∗r = o9, e∗r = e2, e∗′b = e10 and e∗′r = e6. To determine the effect of left-Wieland

drift on f it remains to study the cells o∗r, e
∗
r, or, er, e

∗′
r and e′r. In Table 2 all possible

configurations in these cells are listed.

o∗r o8 o8 o9 o9 o10

e∗r e5 e5 e2 e2 e3

or o8 o10 o8 o10 o13

er e2 e1 e2 e1 e4

e∗′r e8 e8 e6 e6 e7

e′r e8 e7 e8 e7 e14

Table 2. The cells o∗r, e
∗
r, or and er of f and the cells e∗′r and e′r of WL(f)

in the case when d∗ is contained in eb.

In summary, the effect of left-Wieland drift on f is the following:

• The move M1 is applied to d∗ before the move M1/M3 is applied to d if o∗r = o8

and or = o8/o10.

• The move M2 is applied to d∗ before the move M1/M3 is applied to d if o∗r = o9

and or = o8/o10.

• The move M3 is applied to d∗ before it also is applied to d if o∗r = o10 and

or = o13.

In all cases the rest of f is preserved by left-Wieland drift.

The last case that is to be considered is the case when d∗ is contained in ob. In that

case the x-coordinate of d is larger than the one of d∗. Furthermore, the cells ol and o∗l
are not contained in {o6, o7, o12}, if ot exists then it cannot be in {o7, o12} and o∗b cannot

be in {o6, o12}. On the other hand, if ot = o6 then et = e4, or = o10, er = e3, e′t = e9 and

e′r = e7 and if o∗b = o7 then e∗b = e4, o∗r = o9, e∗r = e2, e∗′b = e10 and e∗′r = e6. To determine

the effect of left-Wieland drift on f it remains to study the cells o∗r, e
∗
r, or, er, e

∗′
r and e′r.

In Table 3 all possible configurations in these cells are listed.

or o8 o8 o9 o10 o10

er e5 e5 e2 e3 e3

ob o8 o9 o14 o8 o9

eb e3 e1 e4 e3 e1

e′r e8 e8 e6 e7 e7

e′b e8 e6 e3 e8 e6

Table 3. The cells or, er, ob and eb of f and the cells e′r and e′b of WL(f)
in the case when d∗ is contained in ob.

By Lemma 4.5 and Lemma 4.6 the effect of left-Wieland drift on f is the following:

• The move M1 is applied to d before the move M1/M2 is applied to d∗ if or = o8

and ob = o8/o9.
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• The move M2 is first applied to d and then to d∗ if or = o9 and ob = o14.

• The move M3 is applied to d before the move M1/M2 is applied to d∗ if or = o10

and ob = o8/o9.

�

The description of the effect of right-Wieland drift on an instable TFPL of excess

at most 2 follows from the description of the effect of left-Wieland drift on an instable

TFPL of excess at most 2 by vertical symmetry.

Proposition 4.7. Let f be an instable TFPL with boundary (u, v;w) such that

exc(u, v;w) ≤ 2. Furthermore, let v− be a word so that v−
v−→ v. Then the image

of f under right-Wieland drift with respect to v− is determined as follows:

(1) if Li in LN is incident to a drifter delete that drifter and add a horizontal edge

incident to Li−1 for i = 2, 3, . . . , N ; denote the so-obtained TFPL by f ′;

(2) perform M−1
4 or M−1

5 if possible; otherwise, run through the columns of GN from

left to right, that is, for j = 1, 2, . . . , 2N + 1:

(3) if there is precisely one drifter in the j-th column of GN , apply M−1
1 , M−1

2 or

M−1
3 to it;

(4) if there are two drifters in the j-th column of GN , apply M−1
1 , M−1

2 or M−1
3

to each of the drifters in the following order: if the even cell that contains the

lower drifter is not of the form o10 (see Figure 3.6) move the lower drifter first;

otherwise, move the upper drifter first;

(5) run through the occurrences of zero in v−: let {i1 < · · · < iN0} = {i : v−i = 0}.
If vij+1 is the j-th zero in v delete the horizontal edge incident to Rij+1 and add

a vertical edge incident to Rij for j = 1, 2, . . . , N0.

4.2. The path of a drifter under Wieland drift for TFPLs of excess 2

The focus of this section is on studying how many iterations of left- (resp. right-)

Wieland drift are needed until a drifter in an instable TFPL of excess 2 is incident to

a vertex in RN (resp. LN). For this purpose, it is necessary to specify which drifter in

the image of a TFPL under left- (resp. right-) Wieland drift is assigned to which drifter

in the initial TFPL. To begin with, in both the preimage and the image of each of the

moves M1, M2 and M3 (resp. M−1
1 , M−1

2 and M−1
3 ) there is precisely one drifter. Thus,

from now on, the drifter in the image is assigned to the drifter in the preimage for each

of these moves.

In contrast to the moves M1, M2 and M3 (resp. M−1
1 , M−1

2 and M−1
3 ) the preimage

and the image of both M4 and M5 (resp. M−1
4 and M−1

5 ) do not exhibit the same number

of drifters. Hence, fix a drifter in the image of M4 (resp. M−1
5 ) that is from now on

assigned to the drifter in the preimage of M4 (resp. M−1
5 ). Reversely, if to a drifter the

move M5 (resp. M−1
4 ) is applied then the drifter in the image of the move M5 (resp.
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M−1
4 ) is assigned to this drifter. Figure 4.5 displays an example for the case when the

upper drifter in the image of the move M4 is assigned to the drifter in the preimage of

the move M4.

WL WL

WL WL

Figure 4.5. A TFPL of excess 2 and its instable images under left-
Wieland drift. In each of the images the drifter that is assigned to the
drifter in the initial TFPL is indicated in green if, say, the upper drifter in
the image of the move M4 is assigned to the drifter in the preimage of the
move M4.

Now, let f be an instable TFPL of excess 2 and d0 a drifter in f . Furthermore,

denote with d(`) (resp. d(−r)) the drifter in WL`(f) (resp. WRr(f)) that is assigned to

d0 and with Lf (d) (resp. Rf (d)) the unique non-negative integer such that d(Lf (d)) (resp.

d(Rf (d))) is incident to a vertex inRN (resp. LN). (The latter exist due to Proposition 4.3

resp. Proposition 4.7.) Thus, d can be understood as a map on [−Rf (d), Lf (d)] that

assigns to ` ∈ [0;Lf (d)] a drifter in WL`(f) and to −r ∈ [−Rf (d);−1] a drifter in

WRr(f). (Note that d(0) = d0.)

Definition 4.8 (Pathf (d),Leftf (d),Rightf (d),HeightLf (d),HeightRf (d)). Define the

path of d as the sequence

Pathf (d) =
(

WRRf (d)(f), . . . ,WR(f), f,WL(f), . . . ,WLLf (d)(f)
)
.

Furthermore, set Leftf (d) = WLLf (d)(f) and WRRf (d)(f) = Rightf (d). Finally, set

HeightLf (d) the positive integer h such that d(Lf (d)) is incident to RN−h in Leftf (d) and

HeigthR(d) the positive integer h′ such that d(Rf (d)) is incident to Lh′+1 in Rightf (d).

Observe that |Pathf (d)| = Lf (d) +Rf (d) + 1. In Figure 4.2 an example for the path

of a drifter is displayed. Now, for i = 1, 2, 3, 4, 5 set

#Mi(d) = |{0 ≤ r < Rf (d) : by WR the move M−1
i is applied to d(r) in WRr(f)}|

+ |{0 ≤ ` < Lf (d) : by WL the move Mi is applied to d(`) in WL`(f)}|.

Thus, |Pathf (d)| = #M1(d)+#M2(d)+#M3(d)+#M4(d)+#M5(d)+1 and in summary
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(4.5) Lf (d) +Rf (d) =
5∑
i=1

#Mi(d).

Definition 4.9 (Ri(u
Rf (d)), Li(v

Lf (d))). Let uRf (d) be the left boundary of WRRf (d)(f)

and vLf (d) the right boundary of WLLf (d)(f). Then Ri(u
Rf (d)) denotes the number of

occurrences of i among the last (N − 1 − HeightRf (d)) letters of uRf (d) and Li(v
Lf (d))

denotes the number of occurrences of i among the first (N − 1 − HeightLf (d)) letters of

vLf (d) for i = 0, 1.

Proposition 4.10. Let uRf (d) be the left boundary of WRRf (d)(f) and vLf (d) the right

boundary of WLLf (d)(f). Then

5∑
i=1

#Mi(d) = R1(uRf (d)) + L0(vLf (d)) + 1.(4.6)

Corollary 4.11. Let uRf (d) be the left boundary of WRRf (d)(f) and vLf (d) the right

boundary of WLLf (d)(f). Then

(4.7) Lf (d) +Rf (d) = R1(uRf (d)) + L0(vLf (d)) + 1.

WR WR
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0

0

0 0

1

1

1

1

1

1

1 1 1
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1

1

0

WL WL

0
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0

0
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1

1

1

1

1

1

1 1 1

0

1

0

1

1

Figure 4.6. A TFPL with boundary (01101, 00111; 10110) and the path
of the drifter that is indicated in green.

The proof of Proposition 4.10 is the objective of the rest of this section. It requires

to consider TFPLs of excess 2 together with the canonical orientation of their edges. In

doing so, the moves by which the effect of Wieland drift is described in Proposition 4.3

translate into the moves depicted in Figure 4.7. It follows from Theorem 2.12 that the

move M1 has the four oriented counterparts
−→
M1,1,

−→
M1,2,

−→
M1,3 and

−→
M1,4, the move M2

the three oriented counterparts
−→
M2,1,

−→
M2,2,

−→
M2,3 and the move M3 the three oriented
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counterparts
−→
M3,1,

−→
M3,2 and

−→
M3,3. Furthermore, both M4 and M5 have only one oriented

counterpart, namely
−→
M4 and

−→
M5 respectively.

Remark 4.12. The moves
−→
M1,1,

−→
M1,2,

−→
M1,3,

−→
M1,4,

−→
M2,1 and

−→
M3,1 coincide with the

moves BB, BR, RR, RB, B and R respectively invented in [11] for oriented TFPLs of

excess 1.

−→
M2,1

−→
M3,1

−→
M1,1

−→
M1,2

−→
M1,3

−→
M1,4

−→
M2,2

−→
M2,3

−→
M3,2

−→
M3,3

−→
M4

−→
M5

Figure 4.7. The moves describing the effect of Wieland drift on TFPLs
of excess 2 that are equipped with the canonical orientation.

The following lemmas are immediate consequences of Proposition 4.3 and Proposi-

tion 4.7. They describe the effect of left- and right-Wieland drift respectively on
−→
f , that

is, f together with its canonical orientation, in terms of the moves in Figure 4.7.

Lemma 4.13. If not all drifters in f are incident to vertices in RN , the effect of

left-Wieland drift on f translates into the following effect on
−→
f :

(1) If in
−→
f there is precisely one drifter then by left-Wieland drift a unique move

in {−→M1,1,
−→
M1,2,

−→
M1,3,

−→
M1,4,

−→
M2,1,

−→
M2,2,

−→
M2,3,

−→
M3,1,

−→
M3,2,

−→
M3,3,

−→
M4} is performed

while the rest of
−→
f remains unchanged.

(2) If in
−→
f there are two drifters and none of those drifters is incident to a vertex in

RN then by left-Wieland drift either
−→
M5 is performed or to each drifter a unique

move in {−→M1,1,
−→
M1,2,

−→
M1,3,

−→
M1,4,

−→
M2,1,

−→
M3,1} is applied in the same order as in

Proposition 4.3. The rest of
−→
f remains unchanged.
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(3) If in
−→
f there are two drifters whereof one is incident to a vertex in RN then

by left-Wieland drift the drifter incident to a vertex Ri in RN is replaced by a

horizontal edge incident to Ri+1 before to the remaining drifter a unique move in

{−→M1,1,
−→
M1,2,

−→
M1,3,

−→
M1,4,

−→
M2,1,

−→
M3,1} is applied. The rest of

−→
f remains unchanged

by left-Wieland drift.

Recall that when in f all drifters are incident to vertices in RN then by left-Wieland

drift these drifters are simply replaced by horizontal edges.

Lemma 4.14. If not all drifters in f are incident to a vertex in LN , the effect of

right-Wieland drift on f translates into the following effect on
−→
f :

(1) If in
−→
f there is precisely one drifter then by right-Wieland drift

−→
M−1

1,1,
−→
M−1

1,2,
−→
M−1

1,3,
−→
M−1

1,4,
−→
M−1

2,1,
−→
M−1

2,2,
−→
M−1

2,3,
−→
M−1

3,1,
−→
M−1

3,2,
−→
M−1

3,3 or
−→
M−1

5 is performed while the

rest of
−→
f remains unchanged.

(2) If in
−→
f there are two drifters and none of those drifters is incident to a vertex

in LN then by right-Wieland drift either
−→
M−1

4 is performed or to each drifter in−→
f a unique move in {−→M−1

1,1,
−→
M−1

1,2,
−→
M−1

1,3,
−→
M−1

1,4,
−→
M−1

2,1,
−→
M−1

3,1} is applied in the same

order as in Proposition 4.7. The rest of
−→
f remains unchanged.

(3) If in
−→
f there are two drifters whereof one is incident to a vertex in LN then by

right-Wieland drift the drifter incident to a vertex Lj in LN is replaced by a hori-

zontal edge incident to Lj−1 before a unique move in

{−→M−1
1,1,
−→
M−1

1,2,
−→
M−1

1,3,
−→
M−1

1,4,
−→
M−1

2,1,
−→
M−1

3,1} is applied to the remaining drifter. The rest

of
−→
f remains unchanged by right-Wieland drift.

In the following, set

#
−→
M i,j(d) = |{0 ≤ r < Rf (d) : by WR the move

−→
M−1

i,j is applied to d(r) in WRr(
−→
f )}|

+ |{0 ≤ ` < Lf (d) : by WL the move
−→
M i,j is applied to d(`) in WL`(

−→
f )}|.

for (i, j) ∈ {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}. For the moves−→
M−1

4 and
−→
M5 it needs to be distinguished which of the two drifters in the respective image

is chosen. Hence, for i = 4, 5 set

#
−→
M i(d) = |{0 ≤ r < Rf (d) : by WR the move

−→
M−1

i is applied to d(r) in WRr(
−→
f )}|

+ |{0 ≤ ` < Lf (d) : by WL the move
−→
M i is applied to d(`) in WL`(

−→
f )}|.

and indicate by a t or b whether in the respective image the top or the bottom drifter

is associated with d in f . In that way, one obtains the notations #
−→
M b

i(d) and #
−→
M t

i(d)

respectively for i = 4, 5.

Lemma 4.15. Let uRf (d) be the left boundary of WRRf (d)(f) and vLf (d) the right bound-

ary of WLLf (d)(f). Then we have:
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(1)
4∑
i=1

#
−→
M1,i(d) +

3∑
j=1

#
−→
M3,j(d) + #

−→
M t

4(d) + #
−→
M b

5(d) = N − HeightRf (d),

(2)
4∑
i=1

#
−→
M1,i(d) +

3∑
j=1

#
−→
M2,j(d) + #

−→
M b

4(d) + #
−→
M t

5(d) = N − HeightLf (d),

(3) #
−→
M1,1(d) + #

−→
M1,4(d) + #

−→
M2,3(d)−#

−→
M3,3(d) + #

−→
M b

4(d) = L1(vLf (d)),

(4) #
−→
M1,2(d) + #

−→
M1,3(d)−#

−→
M2,3(d) + #

−→
M3,3(d)−#

−→
M b

4(d) = R0(uRf (d)) + 1.

The identities in Lemma 4.15 generalise the identities stated in Proposition 6.11 and

Proposition 6.12 in [11] for #BB, #BR, #RR, #RB, #B and #R. The proof of

Lemma 4.15 is given in terms of blue-red path tangles and uses analogous arguments as

the proofs of Proposition 6.11 and Proposition 6.12 in [11].

−→
M2,1

−→
M3,1

−→
M1,1

−→
M1,2

−→
M1,3

−→
M1,4

−→
M2,2

−→
M2,3

−→
M3,2

−→
M3,3

−→
M4

−→
M5

Figure 4.8. The moves in terms of blue-red path tangles that describe
the effect of Wieland drift on canonically oriented TFPLs of excess 2.

Proof. For the first identity, observe that the set of odd vertices in GN is decomposed

of N + 1 sets such that in each such set the odd vertices are aligned with slope −
√

2.

These sets are denoted the \-diagonals of GN in the following. For instance, RN is a

\-diagonal of GN . It can be seen from Figure 4.2 that if a move M1 or M3 is applicable to

d(`) in WL`(f), then the odd vertex incident to d(`+ 1) in WL`+1(f) lies on a \-diagonal

to the right of the one on which the odd vertex incident to d(`) lies. The same is true if

M4 or M5 is applicable to d(`) and d(` + 1) is chosen to be the top drifter in the image

of M4 respectively d(`) is the bottom drifter in the preimage of the move M5. In all the
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other cases the odd vertices incident to d(`) and d(` + 1) lie on the same \-diagonal of

GN . The first identity now follows since the odd vertex incident to d(Rf (d)) in Rightf (d)

(resp. d(Lf (d)) in Leftf (d)) lies on the HeightRf (d)-th (resp. N + 1-st) \-diagonal of GN

when counted from the left.

The second identity can be shown using analogous arguments as for the first identity.

Instead into \-diagonals the odd vertices in GN are to be decomposed into sets such that

the odd vertices in each set are aligned with slope
√

2.

For the third identity, observe that in the blue-red path tangle corresponding to

WRRf (d)(
−→
f ) the drifter d(Rf (d)) correspond to a blue (−1,−1)-step, while d(Lf (d)) is a

red (1,−1)-step in the blue-red path tangle corresponding to WLLf (d)(
−→
f ). Furthermore,

in the blue-red path tangle corresponding to WLLf (d) there are L1(vLf (d)) many red paths

that intersect the right boundary above the red path on which d(Lf (d))(
−→
f ) lies. Thus,

when running through r ∈ {−Rf (d), . . . ,−1, 0} and ` ∈ {1, . . . , Lf (d)} in increasing

order, d must overcome L1(vLf (d)) red paths. On the other hand, a red path is overcome

precisely by the moves
−→
M1,1,

−→
M1,4,

−→
M2,3 or

−→
M b

4 as it can be seen in Figure 4.8. That

is because by the moves
−→
M2,3 or

−→
M b

4 the drifter is transformed from a red into a blue

down step that lies in the area below the red path. On the other hand, the move
−→
M3,3

is the only move by which the drifter is transformed from a blue down step is into a red

down step that lies in the area above the blue path. For that reason, #
−→
M3,3(d) must be

subtracted. Finally, by no move is a blue down step moved from the area below a red

path into the area above the very same red path.

The last identity follows by analogous arguments as the third. Instead of the red

paths blue paths need to be considered. �

Proof of Proposition 4.10. By subtracting (4) from (1) in Lemma 4.15 one ob-

tains

R1(uRf (d)) =
∑

j∈{1,4}
#
−→
M1,j(d)+#

−→
M2,3(d)+

∑
j∈{1,2}

#
−→
M3,j(d)+#

−→
M b

4(d)+#
−→
M t

4(d)+#
−→
M b

5(d).

On the other hand, by subtracting (3) from (2) in Lemma 4.15 one obtains

L0(vLf (d)) + 1 =
∑

j∈{2,3}
#
−→
M1,j(d) +

∑
j∈{1,2}

#
−→
M2,j(d) + #

−→
M3,3(d) + #

−→
M t

5(d).

Summing these two identities gives the assertion. �

4.3. Proof of Theorem 4.2

In this section, Theorem 4.2 is proved bijectively. The following consequence of Propo-

sition 4.10 plays a decisive role in this respect: let f be an instable TFPL of excess 2 and

d a drifter in f . Then it holds either
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(4.8) Lf (d) ≤ L0(vLf (d)) and Rf (d) > R1(uRf (d))

or

(4.9) Lf (d) > L0(vLf (d)) and Rf (d) ≤ R1(uRf (d)).

Recall that it is fixed which drifter in the image of the move M4 (resp. M−1
5 ) is

assigned to the drifter in the preimage of the move M4 (resp. M−1
5 ). Nevertheless,

whether a drifter d in a TFPL of excess 2 satisfies either (4.8) or (4.9) does not depend

on the choice of the drifters. This follows from the lemma below.

Lemma 4.16. If f exhibits the preimage of the move M4 (resp. M−1
5 ) then in WRr(f)

(resp. WL`(f)) there is precisely one drifter for all 0 ≤ r ≤ Rf (d) (resp. 0 ≤ ` ≤ Lf (d)).

Proof. Let f be a TFPL of excess 2 that exhibits the preimage of the move M4 and−→
f its canonical orientation. Then by Theorem 2.12 the loop in the preimage of the move

M4 in f gives rise to two configurations that contribute to the excess. The drifter in the

preimage of
−→
M4 is thus the sole drifter in

−→
f . It is now easy to check that by right-Wieland

drift either
−→
M−1

1,2 or
−→
M−1

1,3 is applied to the drifter in f . By Proposition 4.7 therefore the

vertices of a drifter in
−−−−−→
WRr(f) have y-coordinate smaller than the y-coordinate of the

vertices of the drifter in f for all r > 0. In consequence, the even vertex that is incident

to the drifter in f is the centre of two succeeding (−1, 0)-steps – a configuration that

contributes to the excess – in
−−−−−→
WRr(f) for all r > 0. Thus, in

−−−−−→
WRr(f) there is precisely

one configuration other than these two succeeding (−1, 0)-steps that contributes to the

excess for 0 < r ≤ R(f). This configuration must be a drifter by Proposition 4.7, which

concludes the proof.

The proof of the second assertion follows from the previous by symmetry. �

Let f be a TFPL with boundary (u, v;w) where exc(u, v;w) = 2. Furthermore,

let L(f) = max{` ≥ 0 : WL`(f) is instable} and Left(f) = WLL(f)+1(f) resp. R(f) =

max{r ≥ 0 : WRr(f) is instable} and Right(f) = WRR(f)+1(f). Then a triple (S(f), g(f), T (f))

in
⋃

u+≥u, v+≥v
Gu,u+ × Swu+,v+ ×Gv∗,(v+)∗ is assigned to f as follows:

(1) if f is stable, set g(f) = f , S(f) the empty semi-standard Young tableau of

skew shape λ(u)/λ(u) and T (f) the empty semi-standard Young tableau of skew

shape λ(v∗)/λ(v∗).

(2) if Rf (d) ≤ R1(uRf (d)) holds for each drifter d in f , set g(f) the stable TFPL

Right(f) and u+ the left boundary of g(f). Then u+ > u. Set furthermore S(f)
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the semi-standard Young tableau of skew shape λ(u+)/λ(u) corresponding to the

sequence

u = u0 h−→ u1 h−→ · · · h−→ uR(f) h−→ uR(f)+1 = u+,

where ur is the left boundary of WRr(f) for each 0 ≤ r ≤ R(f) + 1, and T (f)

the empty semi-standard Young tableau of skew shape λ(v∗)/λ(v∗).

(3) if Lf (d) ≤ L0(vLf (d)) holds for each drifter d in f , set g(f) the stable TFPL

Left(f) and v+ the right boundary of g(f). Then v+ > v. Set furthermore S(f)

the empty semi-standard Young tableau of skew shape λ(u)/λ(u) and T (f) the

semi-standard Young tableau of skew shape λ((v+)∗)/λ(v∗) corresponding to the

sequence

v∗ = (v0)∗
h−→ (v1)∗

h−→ · · · h−→ (vL(f))∗
h−→ (vL(f)+1)∗ = (v+)∗,

where v` is the right boundary of WL`(f) for each 0 ≤ ` ≤ L(f) + 1.

(4) if there are two drifters dr and dl in f that satisfy Rf (dr) ≤ R1(uRf (dr)) and

Lf (dl) ≤ L0(vLf (dl)), then set g(f) the TFPL that is obtained from f as follows:

move dl to the right boundary using the moves M1, M2, M3 and replace it by a

horizontal edge; thereafter, move dr to the left boundary using the moves M−1
1 ,

M−1
2 , M−1

3 and replace it by a horizontal edge. Observe that g(f) indeed is stable.

In the following, let u+ be the left and v+ the right boundary of g(f). Then

u+ > u, |λ(u+)/λ(u)| = 1, v+ > v and |λ((v+)∗)/λ(v∗)| = 1. Finally, set S(f)

the semi-standard Young tableau of skew shape λ(u+)/λ(u) with entry Rf (dr)+1

and T (f) is the semi-standard Young tableau of skew shape λ((v+)∗)/λ(v∗) with

entry Lf (dl) + 1.

In Figure 4.9, a TFPL of excess 2 and the triple (S, g, T ) associated with it are

depicted.

Φ

0

0

0

0

0

0

0 0 0

0

0

0

0

0

0

000

1

1

1

1

11

1

1 1

1

11

1

3

Figure 4.9. An instable TFPL with boundary (00011, 01001; 10010) and
the triple (S, g, T ) it is associated with.
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Theorem 4.17. Let u, v, w be words of the same length such that |u|1 = |v|1 = |w|1
and exc(u, v;w) = 2. Furthermore, set N1 = |u|1. Then the map

Φ : Twu,v −→
⋃

u+≥u, v+≥v:
|u+|1=|v+|1=N1

Gu,u+ × Swu+,v+ ×Gv∗,(v+)∗

f 7−→ (S(f), g(f), T (f))

is a bijection.

Remark 4.18. The assertion of Theorem 4.2 immediately follows from Theorem 4.17.

Proposition 4.19. Let f be an instable TFPL of excess 2 that contains two drifters

dr and dl such that Rf (dr) ≤ R1(uRf (dr)) and Lf (dl) ≤ L0(vLf (dl)). Then dr can be moved

to the left boundary by the moves M−1
1 , M−1

2 and M−1
3 and dl can be moved to the right

boundary by the moves M1, M2 and M3.

The proof of Proposition 4.19 is based on the following two lemmas. To begin with,

note that two drifters d and d∗ in a TFPL f of excess 2 that contains the preimage of the

move M5 (resp. M−1
4 ) must satisfy Lf (d) = Lf (d

∗) (resp. Rf (d) = Rf (d
∗)). Therefore,

a TFPL that contains the preimage of the move M5 (resp. M−1
4 ) does not fulfil the

preconditions of Proposition 4.19 by Corollary 4.11.

Lemma 4.20. Let f be a TFPL of excess 2 that contains two drifters d and d∗, whereof

d is not incident to a vertex in RN . Furthermore, f shall not exhibit the preimage of the

move M5. Then, if none of the moves M1, M2 or M3 can be applied to d, d is prevented

from being moved by d∗ by way of one of the following blockades:

B1 B2 B3

o9 e2
o7 e6

B4 B5

o6 e4
o10 e1

B6 B7 B8

o9 e1
o7 e4

o6 e7
o10 e3

o8 e2
e3o8

o9 e2
o14 e4

e4o13
o10 e3

d

d
d

d

d
d

d

d

d∗
d∗

d∗

d∗

d∗

d∗

d∗

d∗

Proof. Since d is not incident to a vertex in RN it is contained in an odd cell o of f .

Furthermore, o ∈ {o8, o9, o10, o13, o14} because f cannot contain the odd cell o11 and two

drifters at the same time by Theorem 2.12. Here, only the case when o = o8 is considered.

In that case, for the even cell e to the right of o it holds e ∈ {e2, e3, e5}. The case e = e5

is impossible since by assumption the move M1 cannot be applied to d. Thus, e = e2 or

e = e3 which give rise to the blockades B1 and B2 respectively. �

Lemma 4.21. Let the assumptions be the same as in Lemma 4.20. Then

Lf (d)− Lf (d∗) = L0(vLf (d))− L0(vLf (d∗)) + 1.
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The crucial idea for the proof of Lemma 4.21 is to consider TFPLs of excess at most

2 together with their canonical orientation and then represent them in terms of blue-red

path tangles. By doing so the blockades in Lemma 4.20 translate into the blockades

depicted in Figure 4.10 and Figure 4.11.

−→
B 1,1

d∗
d

−→
B 1,2

d∗
d

−→
B 1,3

d

d∗

−→
B 1,4

d

d∗

−→
B 2,1

d

d∗

−→
B 2,2

d

d∗

−→
B 2,3

d∗

−→
B 3

d

d∗

−→
B 4

d∗

d

−→
B 5

d∗

d

−→
B 6

d

d∗

−→
B 7

d

d∗

−→
B 8

d∗
d

−→
B 2,4
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Figure 4.10. The blockades of Lemma 4.20 in a TFPL of excess 2 that
is equipped with the canonical orientation.

Proof. In the following, set

#
−−→
MLi,j(d) = |{0 ≤ ` < Lf (d) :

−→
M i,j is applied by WL to d(`) in WL`(

−→
f )}|.

for (i, j) ∈ {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}. The numbers

#
−−→
MLb4(d), #

−−→
MLt4(d), #

−−→
MLb5(d) and #

−−→
MLt5(d) are defined analogously. Furthermore, fix

the following notations:

DNW (d, d∗) =
4∑
i=1

(#
−−→
ML1,i(d)−#

−−→
ML1,i(d

∗)) +
3∑
j=1

(#
−−→
ML3,j(d)−#

−−→
ML3,j(d

∗))

+ #
−−→
MLt4(d)−#

−−→
MLt4(d∗) + #

−−→
MLb5(d)−#

−−→
MLb5(d∗);

DNE(d, d∗) =
4∑
i=1

(#
−−→
ML1,i(d

∗)−#
−−→
ML1,i(d)) +

3∑
j=1

(#
−−→
ML2,j(d

∗)−#
−−→
ML2,j(d))

+ HeightLf (d
∗)− HeightLf (d) + #

−−→
MLb4(d∗)−#

−−→
MLb4(d) + #

−−→
MLt5(d∗)−#

−−→
MLt5(d);

Red(d, d∗) =
∑

j∈{1,4}
(#
−−→
ML1,j(d

∗)−#
−−→
ML1,j(d)) + #

−−→
ML2,3(d∗)−#

−−→
ML2,3(d)

−#
−−→
ML3,3(d∗) + #

−−→
ML3,3(d) + #

−−→
MLb4(d∗)−#

−−→
MLb4(d) + L1(vLf (d))− L1(vLf (d∗));

Blue(d, d∗) = #
−−→
ML1,2(d) + #

−−→
ML1,3(d)−#

−−→
ML2,3(d) + #

−−→
ML3,3(d)−#

−−→
MLb4(d)

−#
−−→
ML1,2(d∗)−#

−−→
ML1,3(d∗) + #

−−→
ML2,3(d∗)−#

−−→
ML3,3(d∗) + #

−−→
MLb4(d∗).

71



−→
B 1,1

−→
B 1,2

−→
B 1,3

−→
B 1,4

−→
B 2,1

−→
B 2,2

−→
B 2,3

−→
B 3

d∗

d

−→
B 2,4

d∗

d

−→
B 4

−→
B 5

−→
B 6

−→
B 7

−→
B 8

d∗

d d

d∗ d∗
d

d∗
d

d∗

d d

d∗

d

d∗

d∗

d
d∗

d

d∗
d

d∗

d
d∗

d

Figure 4.11. The blockades of Figure 4.10 in terms of blue-red path tangles.

An easy computation shows that DNW (d, d∗)− Blue(d, d∗)−DNE(d, d∗) + Red(d, d∗)

equals Lf (d)−Lf (d∗)−L0(vLf (d)) +L0(vLf (d∗)). To conclude the proof of Lemma 4.21 it

will be shown that DNW (d, d∗)−Blue(d, d∗)−DNE(d, d∗) + Red(d, d∗) equals 1. For that

purpose, alternative interpretations of the integers DNW (d, d∗), DNE(d, d∗), Red(d, d∗)

and Blue(d, d∗) will be derived by analogous arguments as in the proof of Lemma 4.15.

To begin with, decompose GN into \-diagonals as in the proof of Lemma 4.15. Fur-

thermore, a \-diagonal – denoted dr – is said to lie to the right of another \-diagonal

– denoted dl – if the odd vertex with the smallest y-coordinate in dr has a larger x-

coordinate than the odd vertex with the smallest y-coordinate in dl. Now, suppose that

the odd vertex incident to d is part of the i(d)-th \-diagonal in f and the odd vertex

incident to d∗ is part of the i(d∗)-th \-diagonal in f when counted from the left. Then

DNW (d, d∗) = i(d∗)− i(d) by the same arguments as in the proof of Lemma 4.15(1).

Next, decompose the odd vertices in GN into N + 1 sets such that in each set the

odd vertices are aligned with slope
√

2. These sets are said to be the /-diagonals of GN .

Furthermore, a /-diagonal dr is said to lie to the right of another /-diagonal dl in GN if

the odd vertex with the smallest y-coordinate in dr has a larger x-coordinate than the

odd vertex with the smallest y-coordinate in dl. Suppose that the odd vertex incident to

d is part of the j(d)-th \-diagonal in f and the odd vertex incident to d∗ is part of the

j(d∗)-th \-diagonal in f when counted from the left. Then DNE(d, d∗) = j(d)− j(d∗) by

the same arguments as in the proof of Lemma 4.15(2).

From now on, consider the blue-red path tangle associated with WL`(
−→
f ) for all 0 ≤

` ≤ Lf (d). Then Red(d, d∗) equals the difference of the number of red paths d ”jumps

over” in the process of moving to the left boundary by repeatedly applying right-Wieland

drift and the number of red paths d∗ ”jumps over” in the process of moving to the left

boundary by the iterated application of right-Wieland drift by the same arguments as in

the proof of Lemma 4.15(3). To be more precise, a blue down step “jumps over” a red

path by the application of WR if before the application of WR it is in the area below

the red path and after the application it is in the area above the red path. On the other
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hand, a red down step “jumps over” a red path if after the application of WR it is a blue

down step that lies in the area above the red path.

Finally, Blue(d, d∗) is the difference of the number of blue paths d ”jumps over” in the

process of moving to the right boundary by repeatedly applying left-Wieland drift and

the number of blue paths d∗ ”jumps over” in the process of moving to the right boundary

by the iterated application of left-Wieland drift by the same arguments as in the proof

of Lemma 4.15(4). To be more precise, a red down step “jumps over” a blue path by the

application of WL if before the application of WL it lies in the area below the blue path

and after the application it is in the area above the blue path. On the other hand, a blue

down step “jumps over” a blue path if after the application of WL it is a red down step

that lies in the area above the red path.

Thus, DNW (d, d∗), DNE(d, d∗), Red(d, d∗) and Blue(d, d∗) can be computed separately

for each blockade by looking at Figure 4.10 and Figure 4.11, which is done in Table 4.

−→
B 1,1

−→
B 1,2

−→
B 1,3

−→
B 1,4

−→
B 2,1

−→
B 2,2

−→
B 2,3

−→
B 2,4

−→
B 3

−→
B 4

−→
B 5

−→
B 6

−→
B 7

−→
B 8

DNW 0 0 0 0 1 1 1 1 1 −1 1 0 1 0
DNE −1 −1 −1 −1 0 0 0 0 0 −1 0 −1 1 −1
Red −1 0 −1 0 0 1 0 1 1 0 0 −1 1 0
Blue −1 0 −1 0 0 1 0 1 1 −1 0 −1 0 0

Table 4. The numbers DNW (d, d∗), DNE(d, d∗), Red(d, d∗) and Blue(d, d∗)
computed separately for each type of blockade.

In summary, it follows that

DNW (d, d∗)− Blue(d, d∗)−DNE(d, d∗) + Red(d, d∗) = 1.

Therefore, Lf (d)− Lf (d∗)− L0(vLf (d)) + L0(vLf (d∗)) = 1. �

Proposition 4.19 follows immediately from Lemma 4.21.

Proof of Proposition 4.19. Let f be an instable TFPL of excess 2 that contains

two drifters dl and dr such that Rf (dr) ≤ R1(uRf (dr)) and Lf (dl) ≤ L0(vLf (dl)). Without

loss of generality, suppose that dl cannot be moved to the right boundary using the moves

M1, M2 and M3. Then, by Lemma 4.21

Lf (dl) ≥ Lf (dr) + L0(vLf (dl))− L0(vLf (dr)) + 1.

Thus, Lf (dl) > L0(vLf (dl)) and equivalently Rf (dr) > R1(uRf (dr)) + 1. That is a contra-

diction. Therefore, dl can be moved to the right boundary using the moves M1, M2 and

M3.

By vertical symmetry, dr can be moved to the left boundary by the moves M−1
1 , M−1

2

or M−1
3 . �

In Figure 4.12, the instable TFPL of excess 2 of Figure 4.2 and the triple (S, g, T )

associated with it are depicted.
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Figure 4.12. The instable TFPL of Figure 4.2 and the triple (S, g, T ) it
is associated with.

Proof of Theorem 4.17. Let u, v, w be words of length N satisfying that |u|1 =

|v|1 = |w|1 = N1 and exc(u, v;w) ≤ 2. Furthermore, let f ∈ Twu,v be instable and denote

by (S, g, T ) the image of f under Φ. As a start, S is an element of Gu,u+ for the following

reason: let c be a cell of the Young diagram of skew shape λ(u+)/λ(u) then its entry in

S has to be Rf (d) + 1 for a drifter d in f and it has to hold Rf (d) ≤ R1(uRf (d)) by the

definition of Φ. Now, if c is part of the i-th column in λ(u+)/λ(u) then R1(uRf (d)) = N1−i
and therefore the entry of c in S is at most N1− i+ 1. By analogous arguments it follows

that T ∈ Gv∗,(v+)∗ .

It remains to show that Φ is a bijection. This will be done by giving the inverse map:

let u+ ≥ u, v+ ≥ v, S ∈ Gu,u+ , g ∈ Swu+,v+ and T ∈ Gv∗,(v+)∗ and consider the sequences

λ(u) = λ(u0) ⊆ λ(u1) ⊆ · · · ⊆ λ(uR+1) = λ(u+)

corresponding to S where R + 1 is the largest entry of S and

λ(v∗) = λ((v0)∗) ⊆ λ((v1)∗) ⊆ · · · ⊆ λ((vL+1)∗) = λ((v+)∗)

corresponding to T where L + 1 is the largest entry of T . Then associate (S, g, T ) with

a TFPL Ψ(S, g, T ) in Twu,v as follows:

(1) if u+ > u and v+ = v, set Ψ(S, g, T ) = (WLu0 ◦WLu1 ◦ · · · ◦WLuR−1 ◦WLuR)(g).

(2) if u+ = u and v+ > v, set Ψ(S, g, T ) = (WRv0 ◦WRv1 ◦ · · ·◦WRvL−1 ◦WRvL)(g).

(3) if u+ > u and v+ > v, set Ψ(S, g, T ) the TFPL obtained from g as follows: since

u+ > u and v+ > v the skew shapes λ(u+)/λ(u) and λ((v+)∗)/λ(v∗) both consist

of precisely one cell. In the following, suppose that the cell in λ(u+)/λ(u) (resp.

in λ((v+)∗)/λ(v∗)) is part of the j-th (resp. j′-th) column when counted from

the left. To begin with, insert two drifters in g as follows: a drifter dr incident

to Lij+1 is inserted while the horizontal edge incident to Lij is deleted if ij is the

index of the j-th one in u+ and a drifter dl incident to Ri|v|0−j′+1−1 is inserted

while the horizontal edge incident to Ri|v|0−j′+1
is deleted if i|v|0−j′+1 the index of

the |v|0− j+ 1′-st zero in v+. Thereafter, dr is moved R times by the moves M1,

M2 and M3 and dl is moved L times by the moves M−1
1 , M−1

2 and M−1
3 . The

so-obtained TFPL shall be the image of (S, g, T ) under Ψ.

(4) If u+ = u and v+ = v, then Ψ(S, g, T ) = g.

It is easy to check that Ψ is the inverse map of Φ. �
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4.4. Outlook

In this chapter, an expression for the numbers of TFPLs of excess 2 in terms of

stable TFPLs has been established, which generalises the expressions in Theorem 2.15

and Theorem 2.17 for TFPLs of excess 0 and 1 respectively. The logical next step is to

check whether this expression is valid for TFPLs of excess greater than 2. The answer

turns out to be no. Already for TFPLs of excess 3 there are counterexamples, one of

which is given below.

Example 4.22. It is easy to check that t1010
0011,0011 = s1010

0011,0011 + 17. Figure 4.19 at

the end of this section shows all instable TFPLs with boundary (0011, 0011; 1010). On

the other hand, computing the right side in (4.1) for u = v = 0011 and w = 1010 gives

s1010
0011,0011 + 18.

In the following, it is outlined at which point the methods used to prove Theorem 4.2

fail for TFPLs of excess 3. Furthermore, a modification of the expression (4.1) is conjec-

tured for the excess-3-case. It adds weights to TFPLs dependent on the occurrences of the

cells o15 and o16. An interesting question for future studies is whether this modification

is true in the general case.

To begin with, the effect of left- and right-Wieland drift on TFPLs of excess 3 as the

composition of moves will be conjectured. The moves that are additionally needed for

this purpose are displayed in Figure 4.13. From Theorem 2.12 it follows that a TFPL

of excess 3 that contains the preimage of one of the new moves there cannot be another

drifter. Thus, in the course of the application of WL to such a TFPL no other move but

the respective new move is performed. The analogous is true for WR.

M6 M7 M8 M9

Figure 4.13. The new moves that are needed to describe the effect of WL
on TFPLs of excess 3.

Conjecture 1. Let u, v and w be words such that exc(u, v;w) = 3 and f ∈ Twu,v

instable. Furthermore, let u− be a word such that u−
h−→ u. Then the image of f under

left-Wieland drift with respect to u− is determined as follows:
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(1) if Ri ∈ RN is incident to a drifter delete that drifter and add a horizontal edge

incident to Ri+1 for i = 1, 2, . . . , N − 1;

(2) perform the move M6, M7, M8 or M9 if possible; otherwise, run through the

columns of GN from right to left, that is, for j = 2N + 1, . . . , 1:

(a) if there is precisely one drifter on the j-th column of GN , apply the move

M1, M2, M3 or M4 to it;

(b) if there are precisely two drifters db and dt on the j-th column of GN , either

apply the move M5 to them or apply M1, M2 or M3 to each of them in

the following order: move db first, if dt lies above db and the odd cell that

contains dt is o9; otherwise, move dt first.

(c) if there are three drifters on the j-th column of GN then either apply M5 to

two of them and thereafter apply M1, M2 or M3 to the other drifter or apply

M1, M2 or M3 to each of them in the order determined by the following: for

each two drifters db and dt in-between which there is no other drifter move

db before dt, if dt lies above db and the odd cell that contains dt is o9, and

otherwise move dt before db.

(3) run through the occurrences of one in u−, that is, for j = 1, . . . , |u−|1 delete the

horizontal edge incident to Lij−1 and add a vertical edge incident to Lij , where

ij is the index of the j-th one in u−.

1
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0

0

0

0

0

0

1

1

WL

WR1

1

0

0

0

0

0

1

1

0

1

1

0

01

1

0

0

0
WL

1

1

0

01

1

0

0

0
WL

00

1 10 001 10 00

1 10 00 1 10 00

Figure 4.14. A TFPL with boundary (00011, 00011; 01010) and its im-
ages under left-Wieland drift that have excess 3.

In Figure 4.14 a TFPL of excess 3 and its images under WL of excess 3 are de-

picted. Conjecture 1 together with Theorem 3.7 would immediately yield an alternative

description of the effect of WR on TFPLs of excess 3. Furthermore, Conjecture 1 would

allow to define L(f), R(f), Lf (d), Rf (d), Pathf (d), (ur)
R(f)+1
r=0 , R1(uRf (d)), (v`)

L(f)+1
`=0 and

L0(vLf (d)) for TFPLs f of excess 3.
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The essential property in the excess-2-case is that Lf (d) + Rf (d) = R1(uRf (d)) +

L0(vLf (d))+1 holds for each drifter d in a TFPL f of excess 2. When regarding the framed

TFPL in Figure 4.14 then for the drifter d that is indicated in green it holds Lf (d) = 2 =

L0(vLf (d)) and Rf (d) = 1 = R1(uRf (d)). Thus, Lf (d) +Rf (d) = R1(uRf (d)) +L0(vLf (d)) in

that example, which disagrees with the excess-2-case. For this reason, it is expedient to

investigate the quantity Lf (d) +Rf (d) for drifters d in TFPLs f of excess 3.

For this purpose, it is helpful to regard the effect of the new moves on individual

drifters. In doing so, one immediately sees that in the preimage of the move M6 there

are three drifters while in its image there is one and that in the preimage of the move

M7 there is one drifter while in its image there are three. For the purpose of studying

the effect of left-Wieland drift on a particular drifter encode with M6,b, M6,c and M6,t

whether the bottommost, central or topmost drifter in the preimage of the move M6 is

regarded before the three drifters merge. Furthermore, a drifter in the image of the move

M7 that shall be regarded from that point forward needs to be chosen. Encode with

M7,b, M7,c and M7,t whether the bottommost, the central or the topmost drifter in the

image of the move M7 is chosen. Finally, in the preimages and images of both M8 and

M9 there are two drifters. In the following, for both moves identify the topmost (resp.

bottommost) drifter in the preimage with the topmost (resp. bottommost) drifter in

the image. Furthermore, encode with M8,b resp. M9,b and M8,t resp. M9,t whether the

bottommost or the topmost drifter is considered.

The basic idea in the proof of the equality Lf (d)+Rf (d) = R1(uRf (d)+L0(vLf (d))+1 in

the excess-2-case was to give linear relations in the numbers #M1(d), #M2(d), #M3(d),

#M4,b(d), #M4,t(d), #M5,b(d) and #M5,t(d). Thus, the same should be tried in the

excess-3-case. For that purpose, for any move M set

#M(d) = |{0 ≤ r ≤ Rf (d)− 1 : by WR the move M−1 is applied to d in WRr(f)}|
+ |{0 ≤ ` ≤ Lf (d)− 1 : by WL the move M is applied to d in WL`(f)}|.

Thus, |Pathf (d)| =
3∑
i=1

#Mi(d) +
9∑
j=4

(#Mj,b(d) + #Mj,t(d)) +
7∑
i=6

#Mi,c(d) and in

summary

Lf (d) +Rf (d) =
3∑
i=1

#Mi(d) +
9∑
j=4

(#Mj,b(d) + #Mj,t(d)) +
7∑
i=6

#Mi,c(d).

Using the same ideas as in the excess-2-case would give the following:
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Conjecture 2. Let u, v and w be words that satisfy exc(u, v;w) = 3. Furthermore,

let f ∈ Twu,v instable and d a drifter in f . Then

R1(uRf (d)) + L0(vLf (d)) + 1 =
3∑
i=1

#Mi(d) +
9∑
j=4

(#Mj,b(d) + #Mj,t(d)) + 2
7∑
i=6

#Mi,c(d).

In particular, Lf (d) +Rf (d) ∈ {R1(uRf (d)) + L0(vLf (d)), R1(uRf (d)) + L0(vLf (d)) + 1}.

Conjecture 2 would imply that a drifter d in a TFPL of excess 3 satisfies one of the

following:

Lf (d) ≤ L0(vLf (d)) and Rf (d) > R1(uRf (d));(4.10)

Lf (d) > L0(vLf (d)) and Rf (d) ≤ R1(uRf (d));(4.11)

Lf (d) = L0(vLf (d)) and Rf (d) = R1(uRf (d)).(4.12)

To TFPLs f of excess 3 in which no drifter d satisfies Lf (d) = L0(vLf (d)) and Rf (d) =

R1(uRf (d)) at the same time, triples (S(f), g(f), T (f)) ∈ Gu,u+ × Swu+,v+ × Gv∗,(v+)∗ for

appropriate words u+ ≥ u and v+ ≥ v may be assigned analogous as in the excess-2-case.

Thus, solely TFPLs f of excess 3 that contain a drifter d that satisfies Lf (d) = L0(vLf (d))

and Rf (d) = R1(uRf (d)) will be considered in the following. It will turn out that some of

these TFPLs are counted twice and some once by the right side in (4.1).

To begin with, observe that in a TFPL of excess 3 the preimage of the move M6 (resp.

M7) must be part of the left (resp. right) configuration in Figure 4.15 by Theorem 2.12.

Since in both configurations in Figure 4.15 the connectivity of the vertices of degree 1 is

the same the following holds:

Remark 4.23. Let u, v and w be words such that exc(u, v;w) = 3. Then TFPLs

with boundary (u, v;w) that contain the preimage of the move M6 are in one-to-one

correspondence with TFPLs with boundary (u, v;w) that contain the preimage of the

move M7.

Figure 4.15. The correspondence between TFPLs of excess 3 that contain
the preimage of the move M6 and those that contain the preimage of the
move M7.

In the following, let f ∈ Twu,v such that (4.12) holds for a drifter d in f . Then either

WL`(f) for an ` ≥ 0 or WRr(f) for an r > 0 contains the preimage of the move M6 or

M7.
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Figure 4.16. The two triples that give the framed TFPL in Figure 4.14.

To begin with, if WL`(f) contains the preimage of the move M6 for an ` ≥ 0 then

f may be associated with two triples by moving all drifters to the right boundary or

by moving d to the left boundary and the remaining drifters to the right boundary and

deleting them there. For instance, the framed TFPL in Figure 4.14 can be associated

with the two triples depicted in Figure 4.16.

On the other hand, WL`(f) corresponds to a TFPL f ′ ∈ Twu,v that contains the

preimage of the move M7 by Remark 4.23. Furthermore, the drifter d′ satisfies (4.12) in

WR`+1(f ′). This is why WR`+1(f ′) can be associated with a triple in
⋃

u+,v+
Gu,u+×Swu+,v+×

Gv∗,(v+)∗ by moving d′ to the left boundary and deleting it there. Figure 4.17 displays the

TFPL that corresponds to the framed TFPL in Figure 4.14 by Remark 4.23. In addition,

it depicts the triple in
⋃

u+,v+
G00101,u+ × S0

u+,v+1010× G00011∗,(v+)∗ that is associated with

that TFPL.
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Figure 4.17. The TFPL corresponding to the framed TFPL in Fig-
ure 4.14 and the triple that is associated with it.

Finally, in WL(f ′) the topmost drifter dt in the image of the move M7 must fulfil

RWL(f ′)(dt) = R1(uRWL(f ′)(dt)) + ` + 2 and therefore LWL(f ′)(dt) = L0(vLWL(f ′)(dt)) − ` − 1

by Conjecture 2. In summary,

LWR`+1(f ′)(dt) = `+ 2 + L0(vLWR`+1(f ′)(dt))− `− 1 = L0(vLWR`+1(f ′)(dt)) + 1.

Thus, if d′ in WR`+1(f ′) was moved to the right boundary the entry of the cell corre-

sponding to dt would have to be L0(vLWR`+1(f ′)(dt)) + 2, which is permitted. This is why

WR`+1(f ′) is associated with only one triple in
⋃

u+,v+
Gu,u+ × Swu+,v+ ×Gv∗,(v+)∗ . In sum-

mary, f and WR`+1(f ′) may in total be associated with three triples in
⋃

u+,v+
Gu,u+ ×

Swu+,v+ ×Gv∗,(v+)∗ .
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By vertical symmetry it follows that if WRr(f) contains the preimage of the move M6

for an r > 1 then f is associated with only one triple in
⋃

u+,v+
Gu,u+ × Swu+,v+ ×Gv∗,(v+)∗ .

Furthermore, WRr(f) corresponds to a TFPL f ′ in Twu,v that contains the preimage of the

move M7 by Remark 4.23. Thus, WLr−1(f ′) contains a drifter d′ that satisfies (4.12) and

is associated with two triples in
⋃
u+,v+ Gu,u+×Swu+,v+×Gv∗,(v+)∗ . For those reasons, f and

WLr−1(f ′) may in total be associated with three triples in
⋃

u+,v+
Gu,u+×Swu+,v+×Gv∗,(v+)∗ .

Finally, if WR(f) contains the preimage of the move M6 then it is easy to check that

f is associated with only one triple in
⋃
u+,v+ Gu,u+×Swu+,v+×Gv∗,(v+)∗ . Furthermore, the

same is true for the TFPL WL(f ′) where f ′ is the TFPL corresponding to WR(f) due

to Remark 4.23. However, the existence of f is equivalent to the existence of a triple in⋃
u+,v+ Gu,u+ × Swu+,v+ ×Gv∗,(v+)∗ that cannot be assigned a TFPL of excess 3 by Ψ. The

stable TFPL of that triple is obtained from f by performing the transformation

and thereafter moving the leftmost (resp. rightmost) drifter to the left (resp. right)

boundary. Furthermore, the tableau T is the tableau of skew shape λ(uRf (d))/λ(u) with

entry R1(uRf (d)))+1 and the tableau S is the tableau of skew shape λ(vLf (d))∗/λ(v)∗ with

entry L0(vLf (d)) + 1. For instance, the triple in Figure 4.18 is such a triple. Furthermore,

the TFPL with boundary (0011, 0011; 1010) that entails the existence of that triple is

depicted in Figure 4.18. In summary, f and WL(f ′) are in total associated with three

triples in
⋃
u+,v+ Gu,u+ × Swu+,v+ ×Gv∗,(v+)∗ .

2 2

Figure 4.18. Left: the TFPL with boundary (0011, 0011; 1010) that con-
tains a drifter that satisfies (4.12) and whose image under WR contains the
preimage of the move M6; right: the triple to which a TFPL with boundary
(0011, 0011; 1010) cannot be assigned by Φ.

Analogous observations can be made if WL`(f) for an ` ≥ 0 or WRr(f) for an r > 0

contains the preimage of the M7. Thus, the following weighted enumeration of TFPLs

seems natural:

Definition 4.24. Let f be a TFPL. Then denote the number of occurrences of the

cells o15 (that is, the cell ) in f by o15(f). Furthermore, set

twu,v(q) =
∑
f∈Twu,v

qo15(f).

80



Conjecture 3. Let u, v and w be words of length N such that |u|1 = |v|1 = |w|1
and exc(u, v;w) = 3. Furthermore, set N1 = |u|1. Then

(4.13) twu,v(2) =
∑

u+,v+:u+≥u, v+≥v
|u+|1=|v+|1=N1

gu,u+ gv∗,(v+)∗ s
w
u+,v+ .

Observe that (4.13) is true for u = 0011, v = 0011 and w = 1010.

81



1 1
2

1 1
2

1 1 1 1 12

11 1 21 1 1
2

1 2 1
2

1
2

1 1
2

2 11 21

2 1 1 2 1

2

Figure 4.19. The instable TFPLs with boundary (0011, 0011; 1010).
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CHAPTER 5

Hexagonal fully packed loop configurations

In this chapter we introduce fully packed loop configurations of hexagonal shape (HF-

PLs) as the generalisation of triangular fully packed loop configurations. The first main

result of this chapter establishes necessary conditions for the boundary (lT, t, rT; lB, b, rB)

of an HFPL. The inequality d(rB)+d(b)+d(lB) ≥ d(lT)+d(t)+d(rT)+ |lT|1|t|0 + |t|1|rT|0 +

|rB|0|lB|1 is an example of one such condition (here | · |i denotes the number of occurrences

of i and d(·) denotes the number of inversions). It is the content of Theorem 5.11.

The other main results of this chapters are expressions in terms of Littlewood-Richardson

coefficients for the numbers of HFPLs with boundary (lT, t, rT; lB, b, rB) such that d(rB) +

d(b) + d(lB) − d(lT) − d(t) − d(rT) − |lT|1|t|0 − |t|1|rT|0 − |rB|0|lB|1 = 0, 1. They can be

found in Theorem 5.35 and Theorem 5.49.

The content of this chapter was published in [5].

5.1. Hexagonal fully packed loop configurations

In this section the main objects of this thesis are introduced, namely hexagonal FPLs.

From now on, let K,L,M and N be non-negative integers such that K ≤ M + N and

N ≤ K + L. Furthermore, let

HK,L,M,N = {(x, y) ∈ R2 :y ≤ x, y ≤ K − 1, y ≤ −x+ 2(K + L),

y ≥ −x− 1, y ≥ −M −N +K, y ≥ x− 2(M + L)− 1}.

Definition 5.1. The graph HK,L,M,N is defined as the induced subgraph of the square

grid with vertex set HK,L,M,N ∩ Z2.

y = 2

y = −x− 1
LT,1

LT,2

LT,3 T1 RT,1

RT,2

RT,3

RT,4

RB,1

RB,2

RB,3

B1

LB,2

LB,3

LB,4y = −4

y = −x+ 8

y = x− 11

y = x

(0, 0)

LB,1

Figure 5.1. The graph H3,1,4,3.
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In Figure 5.1, the graph H3,1,4,3 is depicted. From now on, the vertices of HK,L,M,N

are partitioned into odd and even vertices in a chessboard manner such that the vertices

which lie on the lines y = x and y = −x + 2(K + L) are odd and those which lie on

the lines y = −x − 1 and y = x − 2(M + L) − 1 are even. In the pictures, odd vertices

are illustrated by circles and even vertices by squares. Some vertices of HK,L,M,N are of

special interest:

LT = {LT,1, . . . , LT,K}: the leftmost vertices of the K topmost rows;

RT = {RT,1, . . . , RT,M}: the rightmost vertices of the M topmost rows;

T = {T1, . . . , TL}: the odd vertices of the top row that are not in LT ∪RT ;

LB = {LB,1, . . . , LB,M+N−K}: the leftmost vertices of the M + N − K lowermost

rows;

RB = {RB,1, . . . , RB,N}: the rightmost vertices of the N lowermost rows;

B = {B1, . . . , BK+L−N}: the even vertices of the bottom row that are not in LB ∪
RB.

All vertices are numbered from left to right.

5.1.1. Hexagonal fully packed loop configurations.

Definition 5.2. A hexagonal fully packed loop configuration (HFPL) of size

(K,L,M,N) is a subgraph f of HK,L,M,N which satisfies the following conditions:

(1) the vertices in LB ∪ LT ∪RB ∪RT are of degree 0 or 1;

(2) the vertices in T ∪ B are of degree 1;

(3) all other vertices of HK,L,M,N are of degree 2;

(4) a path in f neither joins two vertices in LB ∪ LT nor two vertices in RB ∪RT .

0

0

0

1

1

1

1

1

1

1

1

1

1

0

1

1

lT

t

rT

lB
rB

b

Figure 5.2. A hexagonal fully packed loop configuration of size (3, 1, 4, 3).

Remark 5.3. TFPLs of size n appear as a subset of HFPLs when considered HFPLs

of size (n, 0, n, 0).
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An example of an HFPL is given in Figure 5.2. Later, local configurations around

each vertex of an HFPL are considered. It then will be necessary that each vertex of an

HFPL is of degree 2. To achieve that, external edges along each boundary of an HFPL

are attached as follows: given an HFPL f to each vertex in B ∪ T a vertical external

edge is attached, to each vertex in LB ∪ LT ∪RB ∪RT of degree 1 a horizontal external

edges is attached and to each vertex in LB ∪LT ∪RB ∪RT of degree 0 both a horizontal

and a vertical edge are attached. The HFPL f with the external edges attached will be

denoted by f . In the figures, the external edges will be represented by dotted lines.

In an HFPL non-closed paths have their extremities in LT ∪ T ∪RT ∪RB ∪ B ∪ LB.

In the following, HFPLs will be considered according to a sextuple (lT, t, rT; lB, b, rB) of

words. This sextuple, on the one hand, encodes whether a vertex in LB ∪LT ∪RB ∪RT

is of degree 0 or 1. On the other hand, for vertices in B ∪ T it encodes with which other

vertex on the boundary it is connected.

Definition 5.4. To each HFPL f of size (K,L,M,N) is assigned a sextuple of

words (lT, t, rT; lB, b, rB) of lengths (K,L,M ;M + N −K,K + L − N,N) respectively in

the following way:

(lT) if the vertex LT,i ∈ LT is of degree 1, set (lT)i = 1, otherwise, set (lT)i = 0;

(t) if the vertex Ti ∈ T is connected with a vertex in LT ∪ LB ∪ B or a vertex Th in

T for an h < i, set ti = 0, otherwise, set ti = 1;

(rT) if the vertex RT,i ∈ RT is of degree 1, set (rT)i = 0, otherwise, set (rT)i = 1;

(lB) if the vertex LB,i ∈ LB is of degree 1, set (lB)i = 0, otherwise, set (lB)i = 1;

(b) if the vertex Bi ∈ B is connected with a vertex in RT ∪ RB ∪ T or a vertex Bj

in B for a j > i, set bi = 0, otherwise, set bi = 1;

(rB) if the vertex RB,i ∈ RB is of degree 1, set (rB)i = 1, otherwise, set (rB)i = 0.

The HFPL f then is said to have boundary (lT, t, rT; lB, b, rB). Furthermore, the set of

HFPLs with boundary (lT, t, rT; lB, b, rB) is denoted by H lT,t,rT
lB,b,rB

and its cardinality by hlT,t,rTlB,b,rB
.

Remark 5.5. A TFPL with boundary (u, v;w) when considered an HFPL of size

(n, 0, n, 0) has boundary (u, ε, v; ε, w, ε) where ε denotes the empty word.

The HFPL depicted in Figure 5.2 has boundary (011, 1, 0111; 1110, 1, 110). As from

now, to an HFPL of size (K,L,M,N) a pair of extended link patterns (πb, πt) (where πb

is an extended link pattern on {1, . . . , K + L − N} and πt an extended link pattern on

{1, . . . , L}) is assigned as follows:

(πb) for all Bi, Bj ∈ B which are linked by a path in f let {i, j} ∈ πb; for all B` ∈ B
which are connected with a vertex in LB ∪ LT let ` be a left point of πb; for all

Br ∈ B which are connected with a vertex in T ∪RT ∪RB let r be a right point

of πb.
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(πt) for all Ti, Tj ∈ T which are linked by a path in f let {i, j} ∈ πt; for all T` ∈ T
which are connected with a vertex in LB ∪ LT ∪ B let ` be a left point of πt; for

all Tr which are connected with a vertex in RT ∪RB let r be a right point of πt.

In Figure 5.3 an example of an HFPL and its associated pair of extended link patterns is

given. For any HFPL in H lT,t,rT
lB,b,rB

with extended link patterns πb and πt, it holds w(πb) = b

and w(πt) = t.

0

0

1

0

1 0 1 0 0 0

1

0

0

1

1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 10

πb πt

Figure 5.3. An HFPL of size (5, 4, 5, 0) with boundary
(00101, 0100, 01001; ε, 110001000, ε) and its associated pair of extended
link patterns.

5.1.2. Oriented hexagonal fully packed loop configurations. The definition

of HFPLs contains global conditions, as do the definitions of the top and the bottom

boundary. These global conditions can be omitted when adding an orientation to each

edge of an HFPL.

Definition 5.6. An oriented HFPL of size (K,L,M,N) is an HFPL of the same

size together with an orientation of each edge such that each vertex of degree 2 is incident

to an incoming and an outgoing edge, each edge attached to a vertex in LT∪LB is outgoing

and each edge attached to a vertex in RT ∪RB is incoming.

Remark 5.7. Oriented TFPLs of size n appear as subsets of oriented HFPLs when

considered oriented HFPLs of size (n, 0, n, 0).

In Figure 5.4, an example of an oriented HFPL is given. The condition that in an

oriented HFPL edges attached to a vertex in LT ∪LB (resp. RT ∪RB) are outgoing (resp.

incoming) guarantees that in the underlying HFPL a path does not connect two vertices

in LT ∪LB (resp. RT ∪RB). This is why in the definition of the underlying HFPL of an

oriented HFPL the fourth condition can be omitted.

Definition 5.8. To each oriented HFPL its boundary (lT, t, rT; lB, b, rB) is assigned

as follows:

(lT) if LT,i ∈ LT has out-degree 1, then (lT)i = 1, otherwise, (lT)i = 0;

(t) if Ti ∈ T has in-degree 1, then ti = 0, otherwise, ti = 1;

(rT) if RT,i ∈ RT has in-degree 1, then (rT)i = 0, otherwise, (rT)i = 1;

(rB) if RB,i ∈ RB has in-degree 1, then (rB)i = 1, otherwise, (rB)i = 0;

(b) if Bi ∈ B has in-degree 1, then bi = 1, otherwise, bi = 0;
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11

0

0

0

1 0 0 1 0

1

0

0

1 0 0 0

Figure 5.4. An oriented HFPL of size (4, 3, 2, 3).

(lB) if LB,i ∈ LB has out-degree 1, then (lB)i = 0, otherwise, (lB)i = 1.

The set of oriented HFPLs with boundary (lT, t, rT; lB, b, rB) is denoted by
−→
H lT,t,rT

lB,b,rB
and its

cardinality by
−→
h lT,t,rT

lB,b,rB
.

Remark 5.9. An oriented TFPL with boundary (u, v;w) when considered an oriented

HFPL of size (n, 0, n, 0) has boundary (u, ε, v; ε, w, ε) where ε denotes the empty word.

The oriented HFPL depicted in Figure 5.4 has boundary (0001, 001, 01; 1, 1000, 100).

For oriented HFPLs nice symmetries hold:

Proposition 5.10. (1) Vertical reflection together with the reorientation of all

edges exchanges
−→
H lT,t,rT

lB,b,rB
and
−→
H

r∗T,t
∗,l∗T

r∗B,b
∗,l∗B

. Thus,
−→
h lT,t,rT

lB,b,rB
=
−→
h

r∗T,t
∗,l∗T

r∗B,b
∗,l∗B

.

(2) Horizontal reflection exchanges
−→
H lT,t,rT

lB,b,rB
and
−→
H lB,b,rB

lT,t,rT
. Thus,

−→
h lT,t,rT

lB,b,rB
=
−→
h lB,b,rB

lT,t,rT
.

The first main result of this section contains necessary conditions for the boundary

of an oriented HFPL and will be stated next:

Theorem 5.11. Let (lT, t, rT; lB, b, rB) be a sextuple of words of length (K,L,M ;M +

N −K,K + L−N,N) respectively. Then
−→
h lT,t,rT

lB,b,rB
> 0 implies:

(1) |lT|0 + |t|0 = |rB|0 + |b|0 and |t|1 + |rT|1 = |b|1 + |lB|1;

(2) lT t ≤ b rB and t rT ≤ lB b for the concatenations lT t, b rB, t rT and lB b;

(3) d(rB) + d(b) + d(lB) ≥ d(lT) + d(t) + d(rT) + |lT|1|t|0 + |t|1|rT|0 + |rB|0|lB|1.

In Section 5.4, a proof of Theorem 5.11 using a model bijective to oriented HFPLs

will be given. Theorem 5.11 immediately implies necessary conditions for the boundary

(u, v;w) of an oriented TFPL when considering the oriented TFPL an oriented HFPL

with boundary (u, ε, v; ε, w, ε).

Corollary 5.12. Let u, v, w be words of length N . Then the existence of an oriented

TFPL with boundary (u, v;w) implies the following:

(1) |u|0 = |v|0 = |w|0;

(2) u ≤ w and v ≤ w;

(3) d(u) + d(v) ≤ d(w).
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There is a natural injection from H lT,t,rT
lB,b,rB

to
−→
H lT,t,rT

lB,b,rB
: given an HFPL in H lT,t,rT

lB,b,rB
, orient

all its edges so that the conditions in Definition 5.6 are fulfilled; in addition, all closed

paths shall be oriented clockwise, each path connecting two vertices Bi, Bj in B shall be

oriented from Bi to Bj if i < j, each path connecting two vertices Ti, Tj in T shall be

oriented from Ti to Tj if i < j and each path connecting a vertex Bi in B and a vertex

Tj in T shall be oriented from Bi to Tj. Note that the chosen orientation ensures that

b is indeed the bottom boundary word of the resulting oriented HFPL and t the top

boundary word. Thus, it holds

(5.1) hlT,t,rTlB,b,rB
≤ −→h lT,t,rT

lB,b,rB

for any lT, t, rT, rB, b, lB. Conversely, with each oriented HFPL a non-oriented HFPL can

be associated by ignoring the orientation of the edges but this operation does not have

to preserve the bottom and the top boundary words. In Section 5.3, the number hlT,t,rTlB,b,rB

will be deduced from a certain weighted enumeration of oriented HFPLs. From (5.1) the

following corollary of Theorem 5.11 follows immediately:

Corollary 5.13. The conclusions of Theorem 5.11 hold if hlT,t,rTlB,b,rB
> 0.

To each oriented HFPL a pair (−→πb ,−→πt ) of directed extended link patterns is assigned

in the natural way. In Figure 5.5, an example of an oriented HFPL and its assigned

pair of directed extended link patterns is given. Note that −→πb has to be left-incoming

and −→πt has to be right-outgoing. Furthermore, for any oriented HFPL in
−→
H lT,t,rT

lB,b,rB
the

source-sink-word of −→πb equals b and the source-sink-word of −→πt equals t.

0

0

1

1

0

0

0

0

1

1

1 0 1 0

1 1 1 0 1 0 0 0 0 1 1 1 0 01 0 0 0 0 01 1

−→π b
−→π t

Figure 5.5. An oriented HFPL of size (5, 4, 5, 0) together with its two
corresponding oriented extended link patterns.

Later in this paper it will be needed that each vertex in an oriented HFPL is of

degree 2. For that purpose, directed external edges are attached to an oriented HFPL

f as follows: first, external edges are attached to the underlying HFPL of f . Then

an orientation is added to each external edge such that each vertex is incident to an

incoming and an outgoing edge; furthermore, for vertices in LT ∪LB that are incident to

two external edges the horizontal edge shall be incoming and for vertices in in RT ∪RB

that are incident to two external edges the horizontal edge shall be outgoing. In the

figures, the directed external edges are represented by dotted arrows.
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5.2. Extended link patterns

A link pattern π of size 2n is defined as a partition of {1, 2, . . . , 2n} into n blocks of

size 2 that are pairwise non-crossing that is there are no integers i < j < k < l such

that {i, k} and {j, l} are both in π. In the following, link patterns are represented by

non-crossing arches between 2n aligned points. An example of a link pattern is given

in Figure 5.6. It is a well known fact that link patterns of size 2n are in bijection with

Dyck words of length 2n: to a link pattern π of size 2n the Dyck word ω of length 2n is

assigned by setting ωi = 0 and ωj = 1 for each pair {i, j} in π with i < j. For example,

the Dyck word corresponding to the link pattern depicted in Figure 5.6 is 001101000111.

In this thesis, a more general notion of link patterns is needed.

1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 0 01 1 1 1 1 1

Figure 5.6. The link pattern {{1, 4}, {2, 3}, {5, 6}, {7, 12}, {8, 11}, {9, 10}}.

Definition 5.14. An extended link pattern π on {1, . . . , n} is the data of integers

1 ≤ `1 < `2 < · · · < `i < r1 < r2 < · · · < rj ≤ n

together with a link pattern on each maximal interval of integers in {1, . . . , n} that does

not contain any of the points `s or rt. The integers `1, `2, . . . , `i are said to be the left

points of π and the integers r1, r2, . . . , rj are said to be the right points of π.

In the figures, left and right points will be represented by attaching the extremity

of an arch to the points `s and rt with the arch going left (resp. right) for a left point

`s (resp. for a right point rt). An example of an extended link pattern is given in

Figure 5.7. To an extended link pattern π with left points `1 < `2 < · · · < `i and right

points r1 < r2 < · · · < rj a word ω = w(π) is assigned as follows: as a start, set ω`s = 1

for all 1 ≤ s ≤ i and ωrt = 0 for all 1 ≤ t ≤ j. Then associate each link pattern in π

with its corresponding Dyck word. For instance, the word assigned to the extended link

pattern in Figure 5.7 is 1001101101010.

Proposition 5.15. The map w is a bijection from the set of extended link patterns

on {1, . . . , n} to the set of words of length n.

The proof of the previous proposition can be found in [11, Proposition 1.6]. In the

course of this paper it will become necessary to consider directed extended link patterns

that is extended link patterns together with an orientation of the arches. In the following,

the number of arches in a directed link pattern −→π on {1, . . . , n} that connect two points
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1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 0 1 1 0 1 1 1 10 0 0

Figure 5.7. An extended link pattern with left points 1 and 8 and right
point 13.

in {1, . . . , n} and are oriented from right to left is denoted by RL(−→π ). Furthermore,

a point i in a directed link pattern −→π on {1, . . . , n} is said to be a source if the arch

attached to it is outgoing and a sink if the arch attached to it is incoming. To a directed

extended link pattern −→π on {1, . . . , n} its source-sink-word w = w1 · · ·wn is assigned as

follows: for each i from 1 to n set wi = 0 if i is a source or wi = 1 if i is a sink. Finally, a

directed extended link pattern is said to be left-incoming if all left points are sinks resp.

right-outgoing if all right points are sources. An example of a right-outgoing directed

extended link pattern is depicted in Figure 5.8. Its source-sink-word is 1010101010010.

1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 1 0 1 10 001 0 01

Figure 5.8. A directed extended link pattern with sources
2, 4, 6, 8, 10, 11, 13 and sinks 1, 3, 5, 7, 9, 12.

Definition 5.16. (1) A word ω′ of size n is feasible for a word ω of length n

if there exists a directed extended link pattern −→π with underlying extended link

pattern w−1(ω′) such that ω is the source-sink-word of −→π . Such a −→π is unique

and therefore one can define g(ω, ω′) = RL(−→π ) for all words ω, ω′ such that ω′

is feasible for ω.

(2) A word ω′ feasible for a word ω is said to be left-points-fixing if −→π is left-

incoming resp. right-points-fixing if −→π is right-outgoing.

For instance, the word 1001101101010 is feasible for 1010101010010; the latter is

the source-sink word of the directed extended link pattern in Figure 5.8 and the former

corresponds to the extended link pattern in Figure 5.7. Thus,

g(1010101010010, 1001101101010) = 2.
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If a word ω′ is left-points-fixing feasible for a word ω, then ω` = 1 for each left point `

of −→π . On the other hand, if ω′ is right-points-fixing feasible for ω, then ωr = 0 for each

right point r of −→π .

5.3. Recovering HFPLs from oriented HFPLs

In this section the interplay between HFPLs and oriented HFPLs is studied. This

is done by generalizing the study of the interplay between TFPLs and oriented TFPLs

in [11].

5.3.1. The weighted enumeration of oriented HFPLs. The definition of the

weight of an oriented HFPL is based on the following statistics on oriented HFPLs:

for an oriented HFPL f let N�(f) (resp. N	(f)) be the number of closed paths in

f that are oriented clockwise (resp. counter-clockwise) and set RLb(f) = RL(−→πb) and

RLt(f) = RL(−→πt ) where −→πb and −→πt are the two directed extended link patterns associated

with f . Now, the weight of an oriented HFPL is defined as qRLb(f)−RLt(f)+N	(f)−N�(f)

which leads to the following weighted enumeration of oriented HFPLs:

(5.2)
−→
h lT,t,rT

lB,b,rB
(q) =

∑
f∈−→H lT,t,rT

lB,b,rB

qRLb(f)−RLt(f)qN
	(f)−N�(f).

Next, an interpretation for the weight of an oriented HFPL in terms of numbers of

occurrences of certain turns will be proved. To this end, a step is said to be of type u if

it is a (0, 1)-step, of type d if it is a (0,−1)-step, of type r if it is a (1, 0)-step and of type

l if it is a (−1, 0)-step. Furthermore, a turn is said to be of type dl if it consists of a step

of type d that is succeeded by a step of type l. The types ul, lu, ld, dr, ur, ru and rd

of turns are defined analogously. In the following, set R = {dl, lu} and L = {ld,ul}.

dl lu

ld ul

R

L

Figure 5.9. The four types of turns.

From now on, fix a turn t	 ∈ L and let t� be the turn in R that is obtained by

swapping the two steps in t	. The number of occurrences of turns of type t	 (resp. of

type t�) in an oriented subgraph g of the square lattice Z2 shall be denoted by t	(g)

(resp. t�(g)).

Proposition 5.17. Let f be an oriented HFPL. Then

t	(f)− t�(f) = RLb(f)−RLt(f) +N	(f)−N�(f).
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Proof. The proof of Proposition 5.17 is a generalisation of the proof of Proposi-

tion 2.4 in [11]. Essential for the proof is the following assertion that is given in [11, Corol-

lary 2.3]: for all directed closed self-avoiding paths p on the square lattice, t	(p) − t�(p)

equals -1 (resp. 1) if p is oriented clockwise (resp. counter-clockwise). Thus, it remains

to evaluate t	(p) − t�(p) for the non-closed paths p in f . In the following, the external

edges are considered part of the non-closed paths.

As a start, let p be a non-closed path in f that connects two vertices in T , see

Figure 5.10 in a particular case. Then p starts with a step of type d and ends with a step

of type u. Now, p is completed to a closed self-avoiding path p′ on the square lattice by

adding a horizontal line above the configuration. If p goes from Tj to Ti with i < j, then

p′ is oriented clockwise and therefore t	(p′) − t�(p′) = −1. Furthermore, the turns that

appear in the exterior path are one turn of type ur and one of type rd. For that reason,

t	(p′) = t	(p) and t�(p′) = t�(p). In summary, −1 = t	(p)− t�(p). On the other hand,

if p goes from Ti to Tj with i < j, then p′ is oriented counter-clockwise. Furthermore,

the turns that occur in the exterior path are one turn of type ul and one of type ld.

Therefore, t	(p′) = t	(p) + 1 and t�(p′) = t�(p). In summary, t	(p)− t�(p) = 0.

Figure 5.10. Closure of a path in an oriented HFPL.

Next, let p be a non-closed path in f that connects a vertex in B and a vertex in T .

In that case, p starts and ends either with a step of type u or with a step of type d. The

non-closed path p is completed to a closed self-avoiding path p′ on the square lattice by

adding a path to the right of f with the least possible number of turns. If p is oriented

from the vertex in B to the vertex in T , then p′ is oriented clockwise. Furthermore, the

turns that appear in the exterior path are a turn of type ur, a turn of type rd, a turn of

type dl and a turn of type lu. Thus, t	(p′) = t	(p) and t�(p′) = t�(p) + 1. In summary,

t	(p)− t�(p) = 0. On the other hand if p is oriented from the vertex in T to the vertex in

B, then p′ is oriented counter-clockwise and the turns that occur in the exterior path are

a turn of type dr, a turn of type ru, a turn of type ul and a turn of type ld. Therefore,

t	(p′) = t	(p) + 1 and t�(p′) = t�(p). In summary, t	(p)− t�(p) = 0.

Next, let p be a non-closed path in f that goes from a vertex in T to a vertex in

RT ∪ RB. In that case p starts with a step of type d and ends with a step of type r.
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Now, p is completed to a closed self-avoiding path p′ by adding a path above and to the

right of f with the least possible number of turns. Then p′ is oriented counter-clockwise

and the turns that occur in the exterior path are a turn of type ru, a turn of type ul

and a turn of type ld. Therefore, t	(p′) = t	(p) + 1 and t�(p′) = t�(p). In summary,

t	(p) − t�(p) = 0. The difference also vanishes if p goes from a vertex in T to a vertex

in LB ∪ LT .

The remaining cases are covered by Proposition 2.4 in [11]. �

Proposition 5.17 implies the following identity for the weighted enumeration of ori-

ented HFPLs: let t	 ∈ L and t� ∈ R be the turn, that is obtained by swapping the two

steps in t	. Then −→
h lT,t,rT

lB,b,rB
(q) =

∑
f∈−→H lT,t,rT

lB,b,rB

qt	(f)−t�(f).

5.3.2. Deriving the number of ordinary HFPLs from the weighted enu-

meration of oriented HFPLs. The goal of this subsection is to extract the number

of HFPLs with boundary (lT, t, rT; lB, b, rB) from the weighted enumeration of oriented

HFPLs in (5.2). For that purpose, let H
lT,t,rT
lB,b,rB

denote the subset of
−→
H lT,t,rT

lB,b,rB
that is made

up of those oriented HFPLs whose associated directed link patterns −→πb and −→πt verify

RL(−→πb) = 0 and RL(−→πt ) = 0. Furthermore, let h
lT,t,rT
lB,b,rB

(q) be the corresponding weighted

enumeration, cf. (5.2). The following lemma relates hlT,t,rTlB,b,rB
to h

lT,t,rT
lB,b,rB

(q):

Lemma 5.18. Let ρ be a primitive sixth root of unity, so that ρ satisfies ρ+ 1/ρ = 1.

Then

h
lT,t,rT
lB,b,rB

(ρ) = hlT,t,rTlB,b,rB
.

The proof of Lemma 5.18 is analogous to the proof of an analogous identity for TFPLs

in [11, Proposition 2.5]. For that reason, the proof of Lemma 5.18 is omitted. Given

an oriented HFPL f in
−→
H lT,t,rT

lB,b,rB
consider the oriented HFPL f ′ that is obtained from f

by orienting all paths in f that connect two vertices in B or two vertices in T from

left to right. The boundary of f ′ then has to be (lT, t
′, rT; lB, b

′, rB) for a word b′ that

is left-points-fixing feasible for b and a word t′ that is right-points-fixing feasible for t.

Furthermore,

RLb(f)−RLt(f) +N	(f)−N�(f) = g(b, b′)− g(t, t′) +N	(f ′)−N�(f ′).

Therefore, the following holds:

(5.3)
−→
h lT,t,rT

lB,b,rB
(q) =

∑
t′: t′ right-points-fixing feasible for t
b′: b′ left-points-fixing feasible for b

q−g(t,t
′)qg(b,b

′)h
rB,b
′,lB

lT,t′,rT (q).
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In the following, the goal is to invert the relation in (5.3) in order to obtain an

expression for the number of HFPLs in terms of the weighted enumeration with the help

of Lemma 5.18.

Definition 5.19. (1) Let Mb(n) = M be the square matrix of size 2n which has

rows and columns indexed by words of length n and entry Mw,w′ = qg(w,w
′) if w′

is left-points-fixing feasible for w and entry Mw,w′ = 0 otherwise.

(2) Let Mt(n) = M be the square matrix of size 2n which has rows and columns

indexed by words of length n and entry Mw,w′ = q−g(w,w
′) if w′ is right-points-

fixing feasible for w and entry Mw,w′ = 0 otherwise.
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0

0
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0

0 0

Figure 5.11. The matrices Mb(3) (left) and Mt(3) (right).

Proposition 5.20. For any positive integer n the matrices Mb(n) and Mt(n) are

invertible.

Proof. Throughout this proof, if w′ is feasible for w let −→π be the unique directed

extended link pattern with underlying extended link pattern w−1(w′) and source-sink

word w.

It will first be proved that Mb(n) is a lower triangular matrix with ones on the diagonal

and therefore invertible. There are only ones on the diagonal of Mb(n) because qg(w,w) =

q0 = 1 for all words w of length n. To show that Mb(n) is lower triangular it is sufficient

to find a linear order ≺ on the set of words of length n that satisfies w′ ≺ w whenever

w′ is left-points-fixing feasible for w and use it for the rows and columns of Mb(n). First,

note that if w′ is left-points-fixing feasible for w and in −→π all right points are sinks then

there exist ordered pairs (i1, j1), (i2, j2), . . . , (ik, jk) such that w′is = 0, w′js = 1, wis = 1

and wjs = 0 for all 1 ≤ s ≤ k and wi = w′i for all other indices. Thus, |w′|1 = |w|1 and

w′ ≤ w in that particular case. Now, given any two words w and w′ of length n such
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that w′ is left-points-fixing feasible for w then |w|1 − |w′|1 is the number of right points

in −→π which are sinks. In particular, |w|1 ≥ |w′|1. Hence, for to given words w and w′ set

w′ � w if |w′|1 ≤ |w|1 and in the case when |w′|1 = |w|1 if additionally w′ ≤ w. Then

by � a partial order on the set of words of length n is defined. Furthermore, for any

two words w and w′ of length n such that w′ is left-points-fixing feasible for w it follows

w′ � w. Thus, for any linear order C on the set of words of length n that extends � it

holds that w′ C w whenever w′ is left-points-fixing feasible for w.

The invertibility of Mt(n) follows from the invertibility of Mb(n) because they are

related by rotation by 180◦ together with the inversion of the entries.

�

Corollary 5.21. Let lT, t, rT, lB, b, rB) be words of lengths K, L, M , M +N −K,

K + L−N , N respectively. Then

h
lT,t,rT
lB,b,rB

(q) =
∑
t′,b′

(Mb(K + L−N)−1)b,b′(Mt(L)−1)t,t′
−→
h lT,t

′,rT
lB,b′,rB

(q)

and in particular

hlT,t,rTlB,b,rB
=
∑
t′,b′

(Mb(K + L−N)−1)b,b′(Mt(L)−1)t,t′
−→
h lT,t

′,rT
lB,b′,rB

(ρ)

where ρ is a primitive sixth root of unity.

5.4. Path tangles

In this section, hexagonal blue-red path tangles will be introduced which are in bijec-

tion with oriented HFPLs. Furthermore, proofs in terms of blue-red path tangles of the

necessary conditions on the boundary of an oriented HFPL stated in Theorem 5.11 will

be given.

5.4.1. Path tangles. For the definition of blue-red path tangles a new set of vertices

is required: given non-negative integers K, L, M and N the vertices of a blue-red path

tangle of size (K,L,M,N) are the vertices in

V K,L,M,N = HK,L,M,N ∩ {(x+
1

2
, y) : x, y ∈ Z}.

Note that V K,L,M,N is enclosed by the lines y = x− 1
2
, y = K−1, y = −x− 1

2
+2(K+L),

y = −x − 1
2
, y = −M − N + K and y = x − 2(M + L) − 1

2
. An example is given

in Figure 5.12. The vertices in V K,L,M,N are partitioned into blue and red vertices in a

chessboard manner such that the vertices in V K,L,M,N that lie on the line y = x− 1
2

or on

the line y = x− 2(M + L)− 1
2

are blue and the vertices that lie on the line y = −x− 1
2

or on the line y = −x− 1
2

+ 2(K + L) are red. There are vertices in V K,L,M,N that play

a special role:
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• the K + L blue vertices E = {E1, E2, . . . , EK+L} which lie on the line y = x− 1
2

or on the line y = K − 1;

• the K + L blue vertices D = {D1, D2, . . . , DK+L} which lie on the line y =

x− 2(M + L)− 1
2

or on the line y = −M −N +K;

• the L+M red vertices E ′ = {E ′1, E ′2, . . . , E ′L+M} which lie on the line y = K − 1

or on the line y = −x− 1
2

+ 2(K + L);

• the L + M red vertices D′ = {D′1, D′2, . . . , D′L+M} which lie on the line y =

−M −N +K or on the line y = −x− 1
2
.

All vertices are numbered from left to right.

E1

E2

E3

E6

D6

D7

D′
4

D′
1

E′
2

E′
5

y = −x− 1
2

y = x− 21
2

y = −3

y = 4

y = x− 1
2

y = −x+ 27
2

(0, 0)

E4

E5 E7E′
1

D′
2

D′
3 D′

5D1 D2 D3

D4

D5

E′
3

E′
4

Figure 5.12. A hexagonal blue-red path tangle with boundary
(00011, 01, 001; 100, 10, 11000). The oriented HFPL it corresponds to is
indicated in grey.

A blue path in a blue-red path tangle is defined to be a path that only uses steps

(−1, 1), (−1,−1) and (−2, 0), while a red path is defined to be a path that only uses

steps (1, 1), (1,−1) and (2, 0). From now on, the set of blue paths from Di to Ej which

never go below the line y = −M −N +K and never above the line y = K − 1 is denoted

by P(Di, Ej) and the set of red paths from D′i′ to E ′j′ which never go below the line

y = −M −N +K and never above the line y = K − 1 is denoted by P ′(D′i′ , E ′j′).
Given a sextuple (lT, t, rT; lB, b, rB) of words of lengths (K,L,M ;M +N −K,K +L−

N,N) respectively satisfying that

|lT|0 + |t|0 = |b|0 + |rB|0 and |t|1 + |rT|1 = |lB|1 + |b|1.(5.4)

denote the index of the k-th zero in the concatenation b rB (resp. lT t) by ik (resp.

by jk) and the index of the `-th one in the concatenation lB b (resp. t rT) by i′` (resp.

by j′`). Furthermore, denote the set of (|lT|0 + |t|0)-tuples (P1, . . . , P|lT|0+|t|0) of non-

intersecting paths with Pk ∈ P(Dik , Ejk) by P(b rB, lT t) and the set of (|t|1 + |rT|1)-tuples

(P ′1, . . . , P
′
|t|1+|rT|1) of non-intersecting paths with P ′k ∈ P ′(D′i′k , E

′
j′k

) by P ′(lB b, t rT).

Definition 5.22. A pair (B,R) ∈ P(brB, lTt)×P ′(lBb, trT) is said to be a hexagonal

blue-red path tangle with boundary (lT, t, rT; lB, b, rB) if it satisfies the following:

(1) no diagonal step of R crosses a diagonal step of B;
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(2) each middle point of a horizontal step of B (resp. of R) is used by a step in R

(resp. B).

The set of blue-red path tangles with boundary (lT, t, rT; lB, b, rB) is denoted by

BlueRed(lT, t, rT; lB, b, rB).

In Figure 5.12, a blue-red path tangle with boundary (00011, 01, 001; 100, 10, 11000)

is displayed. Hexagonal blue-red path tangles with boundary (lT, t, rT; lB, b, rB) encode

oriented HFPLs with boundary (lT, t, rT; lB, b, rB): given an oriented HFPL f ∈ −→H lT,t,rT
lB,b,rB

blue vertices are added to f in the middle of each horizontal line of HK,L,M,N having

an odd left and an even right vertex and red vertices are added in the middle of each

horizontal line of HK,L,M,N having an even left and an odd right vertex. Then blue and

red arrows are added as indicated in Figure 5.13. After removing all vertices and edges

Figure 5.13. From oriented HFPLs to blue-red path tangles.

of f a blue-red path tangle in BlueRed(lT, t, rT; lB, b, rB) is obtained.

Theorem 5.23. Let (lT, t, rT; lB, b, rB) be a sextuple of words of lengths (K,L,M ;M +

N −K,K +L−N,N) respectively. Then the map described above is a bijection between−→
H lT,t,rT

lB,b,rB
and BlueRed(lT, t, rT; lB, b, rB).

In Figure 5.12, the oriented HFPL corresponding to the depicted blue-red path tangle

is indicated in the same figure. The proof of Theorem 5.23 is omitted because its proof

is analogous to the proof of Theorem 4.1 in [11]. From (5.4) and Theorem 5.23 the

assertions of Theorem 5.11(1) follow immediately. Also the constraints on the boundary

of an oriented HFPL stated in Theorem 5.11(2) now can be proved.

Proof of Theorem 5.11(2). Let f ∈ −→H lT,t,rT
lB,b,rB

and (B,R) its corresponding blue-

red path tangle in BlueRed(lT, t, rT; lB, b, rB). It will only be shown that lT t ≤ b rB. To

be more precise, it will be proved that jk ≤ ik for all 1 ≤ k ≤ |lT|0 + |t|0 which implies

lT t ≤ b rB. For that purpose, consider the (|lT|0 + |t|0)-tuple B = (P1, . . . , P|lT|0+|t|0)

D6

E3

Figure 5.14. The path P3 of the blue-red path tangle depicted in Figure 5.12.

of non-intersecting paths with Pk ∈ P(Dik , Ejk). Since for each i = 1, . . . , K + L the
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vertices Di and Ei both lie on the i-th Northwest-Southeast diagonal of blue vertices

when counted from left the difference ik− jk counts the (−1,−1)- and (−2, 0)-steps of Pk

for k = 1, . . . , |lT|0 + |t|0. This is why ik − jk ≥ 0 for k = 1, . . . , |lT|0 + |t|0 which proves

the assertion. �

Proposition 5.24. For any oriented HFPL and blue-red path tangle with boundary

(lT, t, rT; lB, b, rB) respectively, the following two formulae hold:

(1) d(rB) + d(b) + |rB|0|b|1 − d(lT)− d(t)− |lT|1|t|0 = + = + ;

(2) d(b) + d(lB) + |b|0|lB|1 − d(t)− d(rT)− |t|1|rT|0 = + = + .

Here, , etc. denote the numbers of occurrences of the edge , etc.

Proof. It follows from the proof of Theorem 5.11(2) that

|lT|0+|t|0∑
k=1

(ik − jk) = + .

On the other hand,

ik − jk = # of 1′s among the first ik letters of b rB

−# of 1′s among the first jk letters of lT t.

Thus,

|lT|0+|t|0∑
k=1

(ik − jk) = d(brB)− d(lTt) = d(rB) + d(b) + |rB|0|b|1 − d(lT)− d(t)− |lT|1|t|0,

which proves the first identity. The second identity follows analogously. �

In the next subsection it will be necessary to regard blue-red path tangles together

with external edges; given a path tangle (B,R) to the vertices Ei1 , . . . , Ei|lT|0+|t|0 and

Dj1 , . . . , Dj|lT|0+|t|0
(−1, 1)-steps are attached while to the vertices E ′i′1 , . . . , E

′
i′|t|1+|rT|1

and

D′j′1 , . . . , D
′
j′|t|1+|rT|1

(1, 1)-steps are attached. These external edges are consistent with the

external edges attached to oriented HFPLs.

5.4.2. The combinatorial interpretation of d(rB) + d(b) + d(lB)− d(lT)− d(t)−
d(rT)−|lT|1|t|0−|t|1|rT|0−|rB|0|lB|1. In this subsection, it will be shown that given an ori-

ented HFPL in
−→
H lT,t,rT

lB,b,rB
by the quantity d(rB)+d(b)+d(lB)−d(lT)−d(t)−d(rT)−|lT|1|t|0−

|t|1|rT|0−|rB|0|lB|1 the occurrences of certain local patterns are counted. Throughout this

subsection, the numbers of occurrences of the local configurations , etc. are

denoted by , etc.
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Theorem 5.25. For any oriented HFPL in
−→
H lT,t,rT

lB,b,rB
the following formula holds:

d(rB) + d(b) + d(lB)− d(lT)− d(t)− d(rT)− |lT|1|t|0 − |t|1|rT|0 − |rB|0|lB|1

= + + + + + + + .(5.5)

In particular, this proves Theorem 5.11(3).

For oriented TFPLs with boundary (u, v;w) when considered HFPLs with boundary

(u, ε, v; ε, w, ε) Theorem 5.11 implies the following:

Corollary 5.26. For any oriented TFPL with boundary (u, v;w) the following holds:

d(w)− d(u)− d(v) = + + + + + + + .

The proof of Theorem 5.25 is done in terms of blue-red path tangles. To show (5.5),

further identities for blue-red path tangles are needed.

Definition 5.27. In a blue-red path tangle a pair (b, r) consisting of a blue path b

and a red path r is said to be intersecting if b and r intersect at least once.

The number of intersecting pairs of an element in BlueRed(lT, t, rT; lB, b, rB), on the

one hand, can be derived from lT, t, rT, lB, b, rB and, on the other hand, can be expressed

in terms of numbers of occurrences of certain local configurations.

Lemma 5.28. For any blue-red path tangle in BlueRed(lT, t, rT; lB, b, rB) the number of

its intersecting pairs equals

(5.6) d(b)− d(t) + |b|0|lB|1 + |rB|0(|b|1 + |lB|1).

Proof. Let (B,R) be a blue-red path-tangle with boundary (lT, t, rT; lB, b, rB) and

B = (P1, . . . , P|b|0+|rB|0) with Pk ∈ P(Dik , Ejk). The main idea of the proof is to compute

the number of red paths that intersect with Pk separately for each k and then sum these

numbers. In doing so the following three cases for k are distinguished: k ≤ min{|b|0, |lT|0},
k > max{|b|0, |lT|0} and min{|b|0, |lT|0} < k ≤ max{|b|0, |lT|0}.

In the first case, ik ≤ K +L−N and jk ≤ K. Therefore, for each k ≤ min{|b|0, |lT|0}
the number of red paths that intersect with Pk is given by

|lB|1+# of 1’s among the first (ik − 1) letters of b.

In the second case, ik > K + L − N and jk > K. For that reason, for each k >

max{|b|0, |lT|0} the number of red paths that intersect with Pk is given by

|b|1 + |lB|1 −# of 1’s among the first (jk −K − 1) letters of t.
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In the last case, it is necessary to regard the cases |b|0 < |lT|0 and |lT|0 < |b|0
separately. If |b|0 < |lT|0 then for each |b|0 < k ≤ |lT|0 it holds ik > K + L − N and

jk ≤ K. For that reason, the number of red paths that intersect with Pk is given by

|b|1 + |lB|1.

On the other hand, if |lT|0 < |b|0 then for each |b|0 < k ≤ |lT|0 it holds ik ≤ K + L−N
and jk > K. For that reason, the number of red paths that intersect with Pk is given by

|lB|1 + # of 1’s among the first (ik − 1) letters of b −# of 1’s among the first

(jk −K − 1) letters of t.

By summing the numbers of red paths that intersect with a path Pk over all k the assertion

follows. �

Expressing the number of intersecting pairs of a blue-red path tangle in terms of

numbers of occurrences of local configurations gives the following identities:

Lemma 5.29. For any oriented HFPL and blue-red path tangle respectively that has

boundary (lT, t, rT; lB, b, rB) and is equipped with external edges one has the following:

d(b)− d(t) + |b|0|lB|1 + |rB|0(|b|1 + |lB|1) = + − −

= + − −

d(b)− d(t) + |b|0|lB|1 + |rB|0(|b|1 + |lB|1) = + − −

= + − −

Lemma 5.29 generalises Lemma 4.7 in [11]. Its proof is omitted here because it is

similar to the proof of Lemma 4.7 in [11]. Now, everything that is needed to prove

Theorem 5.25 is provided.

Proof of Theorem 5.25. Let f ∈ −→H lT,t,rT
lB,b,rB

equipped with external edges. Then

Proposition 5.24 implies the following identity for f :

d(rB) + d(b) + d(lB)− d(lT)− d(t)− d(rT)− |lT|1|t|0 − |t|1|rT|0 − |rB|0|lB|1

= + + + − (d(b)− d(t) + |b|0|lB|1 + |rB|0(|lB|1 + |b|1)).
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It remains to consider the right side of the previous equation. The number +

can be expressed in the following way:

+ =
1

2
( + ) +

1

2
( + )

=
1

2

(
+ + + + +

)
+

1

2

(
+ + + + +

)
.(5.7)

By Lemma 5.29, the following identity holds for f :

d(b)− d(t)+|b|0|lB|1 + |rB|0(|b|1 + |lB|1)

=
1

2

(
+ − − + + − −

)
.(5.8)

Finally, subtracting (5.8) from (5.7) proves (5.5) for oriented HFPLs with the external

edges included. The external edges either are horizontal edges oriented from the left to

the right vertex or vertical edges where the bottom vertex is odd and the top vertex is

even. Since such oriented edges are not counted by the right side in (5.5) the identity in

(5.5) stays true when the external edges in f are removed. �

5.5. Configurations of excess 0

In this section, ordinary and oriented HFPLs with boundary (lT, t, rT; lB, b, rB) which

satisfies that d(rB) + d(b) + d(lB)−d(lT)−d(t)−d(rT)− |lT|1|t|0− |t|1|rT|0− |rB|0|lB|1 = 0

are considered; by Theorem 5.11(3) zero is the minimal value d(rB)+d(b)+d(lB)−d(lT)−
d(t)−d(rT)− |lT|1|t|0− |t|1|rT|0− |rB|0|lB|1 can assume for the boundary (lT, t, rT; lB, b, rB)

of an oriented HFPL.

Definition 5.30. Given a sextuple (lT, t, rT; lB, b, rB) of words its excess is defined

as

exc(lT, t, rT; lB, b, rB) = d(rB)+d(b)+d(lB)−d(lT)−d(t)−d(rT)−|lT|1|t|0−|t|1|rT|0−|rB|0|lB|1.

In the case when exc(lT, t, rT; lB, b, rB) = k, both an ordinary and an oriented HFPL with

boundary (lT, t, rT; lB, b, rB) are said to be of excess k.

In [11] the excess was defined for the boundary (u, v;w) of TFPLs as the integer

d(w) − d(u) − d(v). The excess as it is defined in this paper is a generalisation of this

excess. That is, because when considering TFPLs with boundary (u, v;w) HFPLs with

boundary (u, ε, v; ε, w, ε) it holds that

exc(u, ε, v; ε, w, ε) = d(w)− d(u)− d(v).

The crucial objects in the approach to HFPLs of excess 0 set forth in this section are

hexagonal Knutson-Tao puzzles ; this is due to their one-to-one correspondence to HF-

PLs of excess 0 and to the fact that the number of hexagonal Knutson-Tao puzzles with
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boundary (lT, t, rT; lB, b, rB) is given by the Littlewood-Richardson coefficient in (5.9) be-

low.

5.5.1. Hexagonal Knutson-Tao puzzles. In this subsection, hexagonal Knutson-

Tao puzzles are defined and their enumeration by Littlewood-Richardson coefficients is

proved.

Definition 5.31 ([12]). A puzzle piece is defined as one of the following equilateral

plane figures with side length 1 and labelled edges:

0 0
0

0
00 1 1

1

1
1 1

1 0

0 1
1 1
0

0

1

1
0 0

Below, the hexagon with vertices (0, 0), (K
2
, K
√

3
2

), (K
2

+ L, K
√

3
2

),(K+M
2

+ L, (K−M)
√

3
2

),

(K+M−N
2

+ L, (K−M−N)
√

3
2

) and (M+N−K
2

, (K−M−N)
√

3
2

) is denoted by HK,L,M,N . A decom-

position P of HK,L,M,N into unit triangles and unit rhombi all edges labelled 0 or 1 such

that each region is a puzzle piece is said to be a hexagonal Knutson-Tao puzzle of size

(K,L,M,N). Furthermore, a hexagonal Knutson-Tao puzzle is said to have boundary

(lT, t, rT; lB, b, rB) if the labels of the top left, top, top right, bottom left, bottom and

bottom right sides of HK,L,M,N are given by lT, t, rT, lB, b and rB respectively, when

read from left to right. In Figure 5.15, a hexagonal Knutson-Tao puzzle with boundary

(01, 010, 01; 1100, 0, 1100) is depicted.
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lB rB
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0

0

1
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0

0

Figure 5.15. A hexagonal Knutson-Tao puzzle with boundary
(01, 010, 01; 1100, 0, 1100).

Recall from the introduction that by the map m to a 01-word ω of length N the word

of length N where the first |ω|0 letters are zero and the last |ω|1 letters are 1 is assigned.

For instance, m(010) = 001.

Proposition 5.32. The number of hexagonal Knutson-Tao puzzles with boundary

(lT, t, rT; lB, b, rB) is given by the Littlewood-Richardson coefficient

(5.9) clB b rB
m(lB) lT t,m(t)rT m(rB).
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Proof. From an enumeration result in [12] for triangular Knutson-Tao puzzles it fol-

lows that triangular Knutson-Tao puzzles with boundary (m(lB) lT t,m(t) rT m(rB); lB b rB)

are enumerated by the Littlewood-Richardson coefficient in (5.9). Therefore, to prove

the assertion it suffices to associate each hexagonal Knutson-Tao puzzle with boundary

(lT, t, rT; lB, b, rB) in a bijective way with a triangular Knutson-Tao puzzle with boundary

(m(lB) lT t,m(t) rT m(rB); lB b rB). First, note that for a word ω there exist a unique trian-

gular Knutson-Tao puzzle with boundary (ω,m(ω);ω) and a unique triangular Knutson-

Tao puzzle with boundary (m(ω), ω;ω). From this it follows that for each hexagonal

Knutson-Tao puzzle P with boundary (lT, t, rT; lB, b, rB) there exists a unique triangular

Knutson-Tao puzzle with boundary (m(lB) lT t,m(t) rT m(rB); lB b rB) that contains P . A

particular case can be seen in Figure 5.16. Conversely, it can easily be checked that each

triangular Knutson-Tao puzzle with boundary (m(lB) lT t,m(t) rT m(rB); lB b rB) contains

a hexagonal Knutson-Tao puzzle with boundary (lT, t, rT; lB, b, rB). In summary, associat-

ing a hexagonal Knutson-Tao puzzle with boundary (lT, t, rT; lB, b, rB) with the triangular

Knutson-Tao puzzle with boundary (m(lB) lT t,m(t) rT m(rB); lB b rB) that contains P gives

a bijective map. �
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Figure 5.16. The triangular Knutson-Tao puzzle corresponding to the
hexagonal one depicted in Figure 5.15.

5.5.2. Configurations of excess 0. In this subsection, oriented and ordinary HF-

PLs of excess 0 are regarded. By Theorem 5.25 oriented HFPLs of excess 0 have the

following characterisation:

Corollary 5.33. An oriented HFPL f is of excess 0 if and only if none of the

following four configurations occurs in f :

The characterisation above and Theorem 5.11(3) imply the following properties of an

oriented HFPL of excess 0:

Proposition 5.34. Oriented HFPLs of excess 0 have the following properties:

103



(1) they neither contain a path joining two vertices in B that is oriented from right

to left nor a path joining two vertices in T that is oriented from right to left;

(2) their weight is 1;

(3) they do not contain closed paths.

In particular,
−→
h lT,t,rT

lB,b,rB
(q) = hlT,t,rTlB,b,rB

if exc(lT, t, rT; lB, b, rB) = 0.

The previous proposition generalises Proposition 5.3 in [11] and Lemma 13 in [20].

Proof. Let lT, t, rT, lB, b and rB be words with exc(lT, t, rT; lB, b, rB) = 0. Further-

more, let f ∈ −→H lT,t,rT
lB,b,rB

. If f contained a path that joined two vertices in B or two vertices

in T and was oriented from right to left then there would exist an oriented HFPL f ′ with

boundary (lT, t
′, rT; lB, b

′, rB) such that d(b′) − d(t′) < d(b) − d(t) (f ′ is obtained from f

by reorienting the paths in f which join two vertices in B or T and which are oriented

from right to left). This is impossible by Theorem 5.25(3) because

(5.10) exc(lT, t
′, rT; rB, b

′, lB) < exc(lT, t, rT; lB, b, rB) = 0.

Thus, in f there are no paths that join two vertices in B or T and that are oriented from

right to left. The proofs of the second and the third proposition are analogous to the

proofs of Proposition 5.3(2), (3) in [11]. This is why they are omitted. �

In [32], [20] and in [11] it is shown that ordinary resp. oriented TFPLs of excess 0 are

in bijection with (triangular) Knutson-Tao puzzles. The bijection given in [11] between

oriented TFPLs and triangular Knutson-Tao puzzles naturally extends to a bijection

between oriented HFPLs of excess 0 and hexagonal Knutson-Tao puzzles. It will not

be stated in this paper but it will be indicated by an example; in Figure 5.17 the ori-

ented HFPL of excess 0 corresponding to the hexagonal Knutson-Tao puzzle depicted in

Figure 5.15 is displayed.

Theorem 5.35. Let (lT, t, rT; lB, b, rB) be a sextuple of words of lengths (K,L,M ;M +

N −K,K + L−N,N) respectively such that exc(lT, t, rT; lB, b, rB) = 0. Then

(5.11)
−→
h lT,t,rT

lB,b,rB
= clB b rB

m(lB) lT t,m(t) rT m(rB).

By Proposition 5.34 it holds
−→
h lT,t,rT

lB,b,rB
= hlT,t,rTlB,b,rB

if exc(lT, t, rT; lB, b, rB) = 0. Thus, from

Theorem 5.35 one immediately obtains:

Corollary 5.36. Let (lT, t, rT; lB, b, rB) be as in Theorem 5.35. Then

(5.12) hlT,t,rTlB,b,rB
= clB b rB

m(lB) lT t,m(t) rT m(rB).
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Figure 5.17. Except for scaling the oriented HFPL of excess 0 with
boundary (01, 010, 01; 1100, 0, 1100) that corresponds to the hexagonal
Knutson-Tao puzzle with the same boundary depicted in Figure 5.15.

The following corollary is an immediate consequence of Theorem 5.35 and Corol-

lary 5.36 for TFPLs and was first shown for the Dyck-word-case in [20] and later for the

general case in [11].

Corollary 5.37. Let u, v, w be words of length N such that d(w)− d(u)− d(v) = 0.

Then the number of both ordinary and oriented TFPLs with boundary (u, v;w) is given

by the Littlewood-Richardson coefficient cwu,v.

5.6. Configurations of excess 1

The purpose of this section is to determine and examine both ordinary and oriented

TFPLs of excess 1; the main result of this section will be an expression for the number of

ordinary resp. oriented HFPLs of excess 1 in terms of Littlewood-Richardson coefficients.

5.6.1. Configurations of excess 1. It is started with the determination of oriented

HFPLs of excess 1. By Theorem 5.25 they can be characterised as follows:

Proposition 5.38. An oriented HFPL is of excess 1 if and only if there is a local

configuration among the first four in the list below that appears precisely once, whereas

the other seven configurations in the list do not appear at all.

In terms of blue-red path tangles, a configuration is of excess 1 if and only if there is

a local configuration among the first four in the list below that appears precisely once,

whereas the other seven configurations in the list do not appear at all.
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By Proposition 5.38 configurations of excess 1 resemble configurations of excess 0 with

the exception of one defect. This defect can be of four different types which from now on

will be denoted as indicated in Figure 5.18. For hexagonal Knutson-Tao puzzles new puz-

zle pieces will be introduced in order to obtain puzzles that correspond to configurations

of excess 1.

Definition 5.39 ([11]). A hexagonal BD-puzzle of size (K,L,M,N) is a decom-

position P of HK,L,M,N into unit triangles and unit rhombi all edges labelled 0 or 1 such

that

(1) there is precisely one pair of adjacent /-edges (the defect) labelled as indicated

in the first column of Figure 5.18,

(2) each region is a puzzle piece and

(3) whenever two puzzle pieces are adjacent their common edge has the same label in

both puzzle pieces with the exception of the pair of adjacent edges that give rise

to the defect.

A hexagonal RD-puzzle of size (K,L,M,N) is defined analogously but with (1) replaced

by

(1’) there is precisely one pair of adjacent \-edges (the defect) labelled as indicated

in the second column of Figure 5.18.

A hexagonal DHD-puzzle contains precisely one equilateral O-triangle of side length 2

with edges labelled as indicated in the third column of Figure 5.18 while a hexagonal

DHU-puzzle contains precisely one equilateral M-triangle of side length 2 with edges

labelled as indicated in the fourth column of Figure 5.18.

1
0

0
1

0
1

1
0

BD RD

Oriented TFPL

Path tangle

Puzzle
1

0

0

0

1

1

DHD

0 1

1

0 1

0

DHU

Figure 5.18. Supplementary configurations in the excess-1-case.
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Proposition 5.40. Let lT, t, rT, lB, b and rB be words with exc(lT, t, rT; lB, b, rB) = 1

and X ∈ {BD, RD, DHU, DHD}. Then the oriented HFPLs of type X with bound-

ary (lT, t, rT; lB, b, rB) are in one-to-one correspondence with the X-puzzles with boundary

(lT, t, rT; lB, b, rB).

The proof of Proposition 5.40 is analogous to the proof of Proposition 6.5 in [11] and

therefore is omitted. Examples of oriented HFPLs of excess 1 and their corresponding

puzzles are given in Figure 5.19
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Figure 5.19. An oriented HFPL of excess 1 with a defect of type BD
and its corresponding BD-puzzle and an oriented HFPL of excess 1 with a
defect of type DHU and its corresponding DHU-puzzle.

Proposition 5.41. Let f be an oriented HFPL of excess 1. Then the weight of f is

1 if the defect is of type BD or RD, q if the defect is of type DHD and q−1 if the defect

is of type DHU.

The proof of Proposition 5.41 uses the interpretation of the weight of an oriented

HFPL in terms of numbers of occurrences of certain turns; it is analogous to the proof of

Proposition 6.3 in [11] and therefore is omitted.

5.6.2. Moving a defect of type BD or RD. In this subsection, oriented HFPLs

of excess 1 where the defect is of type BD or RD are considered. To such oriented HFPLs

certain moves will be applied for the purpose of obtaining an oriented HFPL of excess 0.

These moves are the same as in [11, Section 6] for oriented TFPLs of excess 1 and are

depicted in Figure 5.20. Their names are due to their representations in terms of blue-red

path tangles.

Lemma 5.42. Let f be an oriented HFPL of excess 1 where the defect is of type BD

or RD.
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B BB BR R RR RB

Figure 5.20. The rules for moving a defect of type BD or RD in an
oriented HFPL of excess 1.

(1) If the defect in f is not incident to a vertex in RT ∪RB then a unique move B,

BB, BR, R, RR or RB can be applied to it. The oriented HFPL of excess 1

that is obtained from f by applying this unique move is denoted by MoveR(f).

(2) If the defect in f is not incident to a vertex in LT ∪LB then a unique move B−1,

BB−1, BR−1, R−1, RR−1, RB−1 can be applied to it. The oriented HFPL that

is obtained from f by applying this unique move is denoted by MoveL(f).

The proof of Lemma 5.42 is analogous to the proof of Lemma 6.6 in [11] which states

the analogous for oriented TFPLs. This is why it is omitted. By Lemma 5.42 any oriented

HFPL of excess 1 where the defect is of type BD or RD can be transformed into a unique

oriented HFPL of excess 1 where the defect is incident to a vertex in RT ∪ RB (resp.

LT ∪ LB) by the repeated application of MoveR (resp. MoveL). Figure 5.21 shows an

oriented HFPL of excess 1 and its images under MoveR and MoveL.

It is described next how oriented HFPLs f where the defect is incident to a vertex in

RT ∪RB or LT ∪LB are associated with oriented HFPLs of excess 0. First, if the defect

is incident to a vertex RT,i in RT then the vertex RT,i+1 has to be of degree 0. In that

case, the oriented HFPL of excess 0 is obtained from f by deleting the defect and by

adding a horizontal edge incident to RT,i+1. By that in rT a zero and the one to its right

are exchanged. If the defect is incident to a vertex RB,j in RB then RB,j−1 has to be of

degree 0. In that case, the oriented HFPL of excess 0 is obtained from f by deleting the

defect and by adding a horizontal edge incident to RB,j−1. In doing so a zero and the

one to its left are exchanged in rB. On the other hand, if the defect in f is incident to a

vertex in LT ∪ LB an oriented HFPL of excess 0 is assigned to f in the analogous way.

For the changes in the boundary of an oriented HFPL of excess 1 caused by the deletion

of a defect the following notation will be chosen:

Definition 5.43. Given two words ω and ω+ it is written ω → ω+ if ω = ωL01ωR

and ω+ = ωL10ωR for appropriate words ωL and ωR.

Conversely, given an oriented HFPL of excess 0 a defect may be introduced along the

left or right boundary by reversing the previously described deletion process. If a defect

is introduced along the left or right boundary of an oriented HFPL of excess 0 it can be
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Figure 5.21. An oriented HFPL of excess 1 and its images under MoveR
and under MoveL.

moved in a unique way to the opposite boundary by Lemma 5.42. For that reason, given

a sextuple (lT, t, rT; lB, b, rB) of words such that exc(lT, t, rT; lB, b, rB) = 1 it holds that

∑
l+T : lT→l+T

clB b rB
m(lB) l+T t,m(t) rT m(rB)

+
∑

l−B : l−B→lB

c
l−B b rB

m(l−B ) lT t,m(t) rT m(rB)

(5.13)

=
∑

r+T : rT→r+T

clB b rB
m(lB) lT t,m(t) r+T m(rB)

+
∑

r−B : r−B→rB

c
lB b r−B
m(lB) lT t,m(t) rT m(r−B )

.

Figure 5.21 lists five different oriented HFPLs of excess 1. All of these oriented HFPLs

are transformed into the same oriented HFPL of excess 1 by the repeated application of

MoveR. In this oriented HFPL the defect is incident to a vertex in RT ∪RB. At the same

time by the repeated application of MoveL the five oriented HFPLs in Figure 5.21 are

transformed into the same oriented HFPL of excess 1. In this oriented HFPL the defect is

incident to a vertex in LT∪LB. Thus, all five oriented HFPLs in Figure 5.21 are associated

with the same pair of oriented HFPLs of excess 0. This subsection will culminate in an

expression for the number of oriented HFPLs with boundary (lT, t, rT; lB, b, rB) of excess 1

where the defect is of type BD or RD in terms of Littlewood-Richardson coefficients which

will result from counting how many oriented HFPLs with boundary (lT, t, rT; lB, b, rB) and

a defect of type BD or RD are associated with the same pair of oriented HFPLs of excess 0.

The methods used to count these configurations resemble the methods developed in [11]

for the study of oriented TFPLs of excess 1 with a defect of type BD or RD. They are

109



based on a detailed analysis of the moves displayed in Figure 5.20. More details can be

found in Section 6.5 in [11]. To formulate the main result of this subsection the following

notations are needed:

Definition 5.44. For two words ω → ω+ set Li(ω, ω
+) = |ωL|i resp. Ri(ω, ω

+) =

|ωR|i for i = 0, 1 and L(ω, ω+) = L0(ω, ω+)+L1(ω, ω+)+1 resp. R(ω, ω+) = R0(ω, ω+)+

R1(ω, ω+) + 1.

Proposition 5.45. Let lT, t, rT, rB, b and lB be words with exc(lT, t, rT; lB, b, rB) = 1.

(1) The number of oriented HFPLs with boundary (lT, t, rT; lB, b, rB) to which one on

the moves in {BB,BR,R} can be applied is given by∑
l+T : lT→l+T

(R1(lT, l
+
T) + |t|1 + 1)clB b rB

m(lB) l+T t,m(t) rT m(rB)
+

∑
l−B : l−B→lB

(|lT|1 + |t|1)c
l−B b rB

m(l−B ) lT t,m(t) rT m(rB)

−
∑

r−B : r−B→rB

(R1(r−B , rB) + 1)c
lB b r−B
m(lB) lT t,m(t) rT m(r−B )

.

(2) The number of oriented HFPLs with boundary (lT, t, rT; lB, b, rB) to which one of

the moves in {B,RR,RB} can be applied is given by∑
r+T : rT→r+T

(L0(rT, r
+
T ) + |t|0)clB b rB

m(lB) lT t,m(t) r+T m(rB)
+

∑
r−B : r−B→rB

(|t|0 + |rT|0)c
lB b r−B
m(lB) lT t,m(t) rT m(r−B )

−
∑

l−B : l−B→lB

L0(l−B , lB)c
l−B b rB

m(l−B ) lT t,m(t) rT m(rB)
.

(3) The number of oriented HFPLs with boundary (lT, t, rT; lB, b, rB) to which one of

the moves in {BB,BR} can be applied is given by∑
r+T : rT→r+T

(|t|1 + L1(rT, r
+
T ) + 1)clB b rB

m(lB) lT t,m(t) r+T m(rB)
+

∑
r−B : r−B→rB

(|t|1 + |rT|1)c
lB b r−B
m(lB) lT t,m(t) rT m(r−B )

−
∑

l−B : l−B→lB

(L1(l−B , lB) + 1)c
l−B b rB

m(l−B ) lT t,m(t) rT m(rB)
.

(4) The number of oriented HFPLs with boundary (lT, t, rT; lB, b, rB) to which the

move R can be applied is given by∑
l+T : lT→l+T

R1(lT, l
+
T)clB b rB

m(lB) l+T t,m(t) rT m(rB)
+

∑
l−B : l−B→lB

(|lT|1 + L1(l−B , lB))c
l−B b rB

m(l−B ) lT t,m(t) rT m(rB)

−
∑

r+T : rT→r+T

L1(rT, r
+
T )clB b rB

m(lB) lT t,m(t) r+T m(rB)
−

∑
r−B : r−B→rB

(R1(r−B , rB) + |rT|1)c
lB b r−B
m(lB) lT t,m(t) rT m(r−B )

.
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(5) The number of oriented HFPLs with boundary (lT, t, rT; lB, b, rB) where the defect

is of type BD or RD is given by∑
l+T : lT→l+T

(R1(lT, l
+
T) + |t|1 + 1)clB b rB

m(lB) l+T t,m(t) rT m(rB)

+
∑

r+T : rT→r+T

(L0(rT, r
+
T ) + |t|0 + 1)clB b rB

m(lB) lT t,m(t) r+T m(rB)

+
∑

r−B : r−B→rB

(|t|0 + |rT|0 −R1(r−B , rB))c
lB b r−B
m(lB) lT t,m(t) rT m(r−B )

+
∑

l−B : l−B→lB

(|lT|1 + |t|1 − L0(l−B , lB))c
l−B b rB

m(l−B ) lT t,m(t) rT m(rB)
.

The proof of Proposition 5.45 follows the same ideas as presented in Section 6.3 in [11]

and therefore will not be given in this thesis. In the next subsection, the third and the

fourth statement of the previous proposition will be needed to give formulae for the

number of oriented HFPLs of excess 1 with a defect of type DHD and DHU.

5.6.3. Configurations of excess 1 with a defect of type DHD or DHU. The

key observation for the study of oriented HFPLs of excess 1 with a defect of type DHD

(resp. DHU) is indicated in Figure 5.20; they can be identified with oriented HFPLs of

excess 1 with a defect of type BD (resp. RD) to which the move BR (resp. RB) can be

applied. The number of oriented HFPLs with boundary (lT, t, rT; lB, b, rB) of excess 1 to

which the move BR can be applied and the number of oriented HFPLs with the same

boundary to which the move RB can be applied are related as follows:

Lemma 5.46. Let lT, t, rT, rB, b, lB be words with exc(lT, t, rT; lB, b, rB) = 1. Subtracting

the number of oriented HFPLs with boundary (lT, t, rT; lB, b, rB) to which the move RB can

be applied from the number of oriented HFPLs with the same boundary to which the move

BR can be applied gives∑
r+T :rT→r+T

clB b rB
m(lB) lT t,m(t) r+T m(rB)

−
∑

r−B : r−B→rB

c
lB b r−B
m(lB) lT t,m(t) rT m(r−B )

.

Lemma 5.46 follows by an argument similar to the one that leads to Proposition 6.11(1)

in [11] which states the analogous for oriented TFPLs of excess 1. This is why a proof of

Lemma 5.46 will not be given. As a result of the previous lemma it suffices to enumerate

oriented HFPLs of excess 1 to which the move BR can be applied in order to derive for-

mulae for both the number of oriented HFPLs of excess 1 with a defect of type DHD and

the number of oriented HFPLs of excess 1 with a defect of type DHU. Furthermore, due

to Proposition 5.45(3) in order to achieve a formula for the number of oriented HFPLs

of excess 1 to which the move BR can be applied it remains to find a formula for the

number of oriented HFPLs of excess 1 to which the move BB can be applied. The finding

of such a formula relies on the following crucial observation: rotating a BD-puzzle to
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which the move BB can be applied by −120◦ gives an RD-puzzle to which the move R−1

can be applied. This relation is illustrated in Figure 5.6.3. Considering the corresponding

rotated puzzles allows the use of Proposition 5.45(4) to obtain a formula for the number

of BD-puzzles to which the move BB can be applied.

rotation by −120◦

0

BB

1
1 11

10
1

1
0

11

0 0
1

1

0

1

1
1

1
1
1 0

1 1

0

0

1

1

R−1

1 0

0 11
1

1

1 0

1

Figure 5.22. The move BB in terms of puzzles and its image under ro-
tation by −120◦, which is the move R−1.

Lemma 5.47. Let lT, t, rT, lB, b, rB be words with exc(lT, t, rT; lB, b, rB) = 1. The number

of BD-puzzles with boundary (lT, t, rT; lB, b, rB) to which the move BB can be applied is

given by∑
b−: b−→b

L1(b−, b)clB b− rB
m(lB) lT t,m(t) rT m(rB) +

∑
r−B : r−B→rB

(|b|1 + L1(r−B , rB))c
lB b r−B
m(lB) lT t,m(t) rT m(r−B )

−
∑

l+T :lT→l+T

L1(lT, l
+
T)clB b rB

m(lB) l+T t,m(t) rT m(rB)
−

∑
t+: t→t+

(|rT|1 +R1(t, t+))clB b rB
m(lB) lT t+,m(t+) rT m(rB).

The previous results give rise to the following expressions for the number of oriented

HFPLs of excess 1 with a defect of type DHD and the number of oriented HFPLs of

excess 1 with a defect of type DHU in terms of Littlewood-Richardson coefficients.

Proposition 5.48. Let lT, t, rT, lB, b, rB be a words with exc(lT, t, rT; lB, b, rB) = 1.
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(1) The number of oriented HFPLs with boundary (lT, t, rT; lB, b, rB) where the defect

is of type DHD equals∑
l+T : lT→l+T

L1(lT, l
+
T)clB b rB

m(lB) l+T t,m(t) rT m(rB)
+

∑
t+: t→t+

(|rT|1 +R1(t, t+))clB b rB
m(lB) lT t+,m(t+) rT m(rB)

+
∑

r+T : rT→r+T

(|t|1 + L1(rT, r
+
T ) + 1)clB b rB

m(lB) lT t,m(t) r+T m(rB)

−
∑

l−B : l−B→lB

(L1(l−B , lB) + 1)c
l−B b rB

m(l−B ) lT t,m(t) rT m(rB)

+
∑

r−B : r−B→rB

(|lB|1 − L1(r−B , rB))c
lB b r−B
m(lB) lT t,m(t) rT m(r−B )

−
∑

b−: b−→b

L1(b−, b)clB b− rB
m(lB) lT t,m(t) rT m(rB).

(2) The number of oriented HFPLs with boundary (lT, t, rT; lB, b, rB) where the defect

is of type DHU is given by∑
l+T : lT→l+T

L1(lT, l
+
T)clB b rB

m(lB) l+T t,m(t) rT m(rB)
+

∑
t+: t→t+

(|rT|1 +R1(t, t+))clB b rB
m(lB) lT t+,m(t+) rT m(rB)

+
∑

r+T : rT→r+T

(|t|1 + L1(rT, r
+
T ))clB b rB

m(lB) lT t,m(t) r+T m(rB)
−

∑
l−B : l−B→lB

L1(l−B , lB)c
l−B b rB

m(l−B ) lT t,m(t) rT m(rB)

+
∑

r−B : r−B→rB

(|lB|1 − L1(r−B , rB))c
lB b r−B
m(lB) lT t,m(t) rT m(r−B )

−
∑

b−: b−→b

L1(b−, b)clB b− rB
m(lB) lT t,m(t) rT m(rB).

5.6.4. Enumeration of configurations of excess 1. In this subsection the results

of the previous subsections are combined to formulae for the number of oriented HFPLs

with boundary (lT, t, rT; lB, b, rB) of excess 1 and for the number of ordinary HFPLs with

boundary (lT, t, rT; lB, b, rB) of excess 1.

Theorem 5.49. Let (lT, t, rT; lB, b, rB) be words of lengths (K,L,M ;M +N −K,K +

L−N,N) respectively such that exc(lT, t, rT; lB, b, rB) = 1.
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(1) The number of oriented HFPLs with boundary (lT, t, rT; lB, b, rB) equals∑
l+T :lT−→l+T

(|lT|1 + |t|1 + L1(lT, l
+
T))clB b rB

m(lB) l+T t,m(t) rT m(rB)

+
∑

t+:t−→t+

2(|rT|1 +R1(t, t+))clB b rB
m(lB) lT t+,m(t) rT m(rB)

+
∑

r+T :rT−→r+T

(L+ |t|1 + L(rT, r
+
T ) + L1(rT, r

+
T ) + 1)clB b rB

m(lB) lT t,m(t) r+T m(rB)

+
∑

r−B :r−B −→rB

(L+M + |lB|1 + 1− |rB|1 − |b|1 − L1(r−B , rB))c
lB b r−B
m(lB) lT t,m(t)rT m(rB)

−
∑

b−:b−−→b

2L1(b−, b)clB b− rB
m(lB) lT t,m(t) rT m(rB)

+
∑

l−B :l−B −→lB

(|lT|1 + |t|1 − L(l−B , lB)− L1(l−B , lB))c
l−B b rB
m(lB) lT t,m(t) rT m(rB).

(2) The weighted enumeration of oriented HFPLs with boundary (lT, t, rT; lB, b, rB)

equals∑
l+T :lT−→l+T

(R1(lT, l
+
T) + |t|1 + 1 + (q + q−1)L1(lT, l

+
T))clB b rB

m(lB) l+T t,m(t) rT m(rB)

+
∑

t+:t−→t+

(q + q−1)(|rT|1 +R1(t, t+))clB b rB
m(lB) lT t+,m(t) rT m(rB)

+
∑

r+T :rT−→r+T

(|t|0 + 1 + L0(rT, r
+
T ) + (q + q−1)(|t|1 + L1(rT, r

+
T )) + q)clB b rB

m(lB) lT t,m(t) r+T m(rB)

+
∑

r−B :r−B −→rB

(|t|0 + |rT|0 −R1(r−B , rB) + (q + q−1)(|lB|1 − L1(r−B , rB)))c
lB b r−B
m(lB) lTt,m(t) rT m(rB)

−
∑

b−:b−−→b

(q + q−1)L1(b−, b)clB b− rB
m(lB) lT t,m(t) rT m(rB)

+
∑

l−B :l−B −→lB

(|lT|1 + |t|1 − L0(l−B , lB)− (q + q−1)L1(l−B , lB)− q)cl
−
B b rB
m(lB) lT t,m(t) rT m(rB).
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(3) The number of HFPLs with boundary (lT, t, rT; lB, b, rB) equals∑
l+T :lT−→l+T

(|lT|1 + |t|1)clB b rB
m(lB) l+T t,m(t) rT m(rB)

+
∑

t+:t−→t+

(|rT|1 +R1(t, t+)− 1)clB b rB
m(lB) lT t+,m(t) rT m(rB)

+
∑

r+T :rT−→r+T

(L+ L(rT, r
+
T ))clB b rB

m(lB) lT t,m(t) r+T m(rB)

+
∑

r−B :r−B −→rB

(|t|0 + |rT|0 + |lB|1 − |rB|1 + 1)c
lB b r−B
m(lB) lT t,m(t) rT m(rB)

−
∑

b−:b−−→b

L1(b−, b)clB b− rB
m(lB) lT t,m(t) rT m(rB)

+
∑

l−B :l−B −→lB

(|lT|1 + |t|1 − L(l−B , lB) + 1)c
l−B b rB
m(lB) lT t,m(t) rT m(rB).

Theorem 5.45 implies the following enumeration result for TFPLs with boundary

(u, v;w) of excess 1 which is the content of Theorem 6.20 in [11].

Corollary 5.50. Let u, v, w be words of the same length with exc(u, v;w) = 1. The

number of TFPLs with boundary (u, v;w) is given by∑
u+:u→u+

|u|1cwu+,v +
∑

v+:v→v+
L(v, v+)cwu,v+ −

∑
w−:w−→w

L1(w−, w)cwu,v.

Proof. The first two identities follow from Proposition 5.45(5) and Proposition 5.48;

for the second identity also Proposition 5.41 needs to be considered. It remains to prove

the third part of the theorem. First, note that in the excess-1-case (5.3) simplifies to

−→
h lT,t,rT

lB,b,rB
(q) = h

lT,t,rT
lB,b,rB

(q) + q−1
∑

t+:t→t+

h
lT,t

+,rT
lB,b,rB

(q) + q
∑

b−:b−→b

h
lT,t,rT
lB,b−,rB(q).

Furthermore, it has to hold exc(lT, t
+, rT; lB, b, rB) = exc(lT, t, rT; lB, b

−, rB) = 0 if t → t+

and b− → b. Thus, h
lT,t

+,rT
lB,b,rB

(q) = hlT,t
+,rT

lB,b,rB
and h

lT,t,rT
lB,b−,rB(q) = hlT,t,rTlB,b−,rB

by Proposition 5.34.

Therefore,

h
lT,t,rT
lB,b,rB

(q) =
−→
h lT,t,rT

lB,b,rB
(q)− q−1

∑
t+: t→t+

clB b rB
m(lB) lT t+,m(t) rT m(rB) − q

∑
b−: b−→b

clB b−rB
m(lB) lT t,m(t) rT m(rB).

Finally, in order to derive hrB,b
−,lB

lT,t,rT
from the weighted enumeration in Theorem 5.49

with the help of Lemma 5.18 one last identity is needed:
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∑
b−: b−→b

clB b− rB
m(lB) lT t,m(t) rT m(rB) +

∑
l−B : l−B→lB

c
l−B b rB

m(l−B ) lT t,m(t) rT m(rB)

=
∑

r+T : rT→r+T

clB b rB
m(lB) lT t,m(t) r+T m(rB)

+
∑

t+: t→t+

c
l−B b rB
m(lB) lT t+,m(t+) rT m(rB).

Its proof is analogous to the proof of the identity
∑

v+: v→v+
cwu,v+ =

∑
w−:w−→w

cw
−

u,v in [11]. �

5.7. Outlook

In the previous chapters we have advanced the study of TFPLs. These advances may

too be achieved for HFPLs. To begin with, Wieland drift for HFPLs can be defined as the

generalisation of Wieland drift for TFPLs. For HFPLs it then ought to possess similar

properties as it does for TFPLs. For instance, it should be eventually stable with period

one. If the latter is true it should be possible to obtain an expression for the number of

HFPLs of excess 2 in terms of stable HFPLs. This expression then must generalise the

expression obtained in Theorem 4.2.
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