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Abstract

We show that, under the assumption of the existence of M#
1 , there exists a

model on which the restricted nonstationary ideal NSω1 � A is ℵ2-saturated,
for A a stationary co-stationary subset of ω1, while the full nonstationary
ideal NSω1 can be made ∆1 definable with ω1 as a parameter. Further we

show, again under the assumption of the existence of M#
1 that there is a

model of set theory such that NSω1 is ℵ2-saturated and such that there is
lightface Σ1

4-definable well-order on the reals. This result is optimal in the
presence of a measurable cardinal.



Abstract

Unter der Annahme der Existenz von M#
1 wird ein mengentheoretisches

Modell von ZFC konstruiert in dem das nonstationäre Ideal NSω1 auf ω1

saturiert ist und in dem eine Σ1
4-definierbare Wohlordnung auf den reellen

Zahlen möglich ist. Dieses Resultat ist optimal sobald eine messbare Kar-
dinalzahl in dem Universum angenommen wird. Desweiteren wird, wieder
unter der Annahme der Existenz von M#

1 ein mengentheoretisches Modell
von ZFC konstruiert in welchem das auf eine beliebige, vorher fixierte sta-
tionäre, co-stationäre Teilmenge A ⊂ ω1 eingeschränkte nonstationäre Ideal
NSω1 � A saturiert ist, während NSω1 selbst ∆1-definierbar ist mit ω1 als
einzigem Parameter.



Introduction

This thesis deals with two fundamental notions in set theory: definability
and the saturation of the nonstationary ideal. The significance of the first
for set theoretic investigations was already known to the early descriptive
set theorists of the Russian and Polish schools who realized that the contin-
uum hypothesis has a positive answer when looking at analytic (i.e. easily
describable) sets only. Twenty years later K. Gödel showed how immensely
powerful the notion of definability can be when used to investigate the set
theoretic universe itself via his introduction of the constructible universe L.
The quest of finding L-like universes which at the same time allow large
cardinal properties is still one of the central open problems in set theory
and is just another testimony of the importance of the concept.

The investigation of the saturation of the nonstationary ideal on ω1,
NSω1 has a very interesting history as well. K. Kunen showed that given a
huge cardinal there is a model in which NSω1 is ℵ2-saturated, a result which
caused a considerable amount of attention as supercompact cardinals served
as an informal upper bound for all natural consequences of large cardinal
axioms, and hugeness is considerably stronger. Using a generic ultrapower
argument he even argued that hugeness is the exact consistency strength of
the assertion “NSω1 is saturated”. Taking stationary subsets as conditions
in a poset and picking a generic filter one arrives at a V -ultrafilter, which can
be used to form the ultrapower Ult(V,G) in V [G]. The resulting embedding
j : V → M has ω1 as critical point and M<j(ω1) ⊂ M does hold, which
resembles the definition of hugeness. This intuition however turned out
to be flawed as by the work of M. Foreman, M. Magidor and S. Shelah the
forcing axiom MM (whose consistency follows from a supercompact cardinal)
implies that NSω1 is ℵ2-saturated, which was later improved by S. Shelah
who showed that already a Woodin cardinal suffices to construct a model in
which NSω1 is saturated.

A natural question to ask is whether the saturation of NSω1 is consistent
with CH. The original proof of Shelah for the saturation of NSω1 does not
indicate an answer to this question. H. Woodin however, in [21], proved that
if there is a measurable cardinal and if NSω1 is saturated then CH fails, in
fact there exists a definable counterexample to CH. This impressive result
indicates that there might be a surprising connection between the statements
of CH and NSω1 being saturated.

Definability enters the picture in the following way. By a result of G.
Hjorth (see [7]), a Σ˜1

3-definable wellorder of the reals together with the as-
sumption that every real has a sharp implies CH. An investigation of the
possibility of a set theoretic universe where NSω1 is saturated and the reals
admit a projectively definable wellorder will therefore help to clarify the
actual connection between CH and the saturation of NSω1 . One of the two
main theorems of this thesis is the following:
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Theorem 1. Assume that M#
1 exists. Then there is a set theoretic universe

in which NSω1 is saturated and there is a (lightface) Σ1
4-definable wellorder

on the reals.

Very roughly speaking its proof takes Shelah’s argument for making NSω1

saturated and adds forcings which will code reals by triples of ordinals, using
a technique developed by A. Caicedo and B. Velickovic in [2]. Twisting their
original definition makes a further localization forcing possible which codes
all the relevant information for the wellorder in one real in such a way that
any suitable, countable model can work with it, thus witnessing the relation.

This result is also interesting from a second perspective. It is often a
challenging task to consider set theoretic universes with certain features,
usually obtained assuming some large cardinal, and additionally equip them
with definability properties. One can find a lot of literature devoted to
this type of investigations such as [6], [3], and [1]. Though very diverse in
their goals and means these results have in common that the ground model
from which they start is L or some slight extension of it. This approach
will not work when investigating possible models for “NSω1 saturated and
definable wellorders on the reals”. By a result of R. Jensen and J. Steel
the statement “NSω1 is saturated” is equiconsistent with the existence of
a Woodin cardinal, thus one is compelled to work in inner models which
will differ from L quite substantially in certain ways and render many of
the usual arguments harder if not impossible. So this thesis can be seen as
an attempt of finding coding methods which still work for stronger inner
models, making the definability of certain sets possible. This also applies
for the second result of this thesis.

The second theorem deals with the definability of NSω1 in the presence
of a normal, saturated ideal on ω1.

Theorem 2. Assume that M#
1 exists and that A ⊂ ω1 is a stationary, co-

stationary set. Then there is a model of ZFC in which the nonstationary
ideal restricted to subsets of A is saturated while the full ideal NSω1 is ∆1

definable using ω1 as a parameter.

Its proof starts again with Shelah’s argument of making NSω1 saturated,
and adds forcings which will write the characteristic functions of any sta-
tionary subset of ω1 into a pattern of canonically definable trees which have
a cofinal branch or not. These codings are also used in [1] to show that BPFA
and a Σ1

4 wellorder on the reals are simultaneously possible. We define a
suitable class of models which is stationary and the fact that throughout
the iteration there is always the stationary complement of A turns out to
be crucial when ensuring that this class remains stationary along the way
of the iteration. Again we will force to localize the relevant information in
such a way that already any suitable model can read it off from a subset of
ω1 only, yielding the desired definability of NSω1 .
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This theorem grew out of an attempt to answer a question in [5], where it
is asked whether one could improve Woodin’s result of Con(ZFC+ “there are
infinitely many Woodin cardinals”) implies Con(ZFC+ “NSω1 is saturated“),
and the techniques of our proof were initially intended to solve the problem
for having the full NSω1 saturated. It turned out however that one faces
big problems as the stationary class of nice models will lose its stationarity
during the iteration as its factors are semiproper only. This raised a serious
conflict with desired properties of our core model which served as the ground
model during the iteration, and so we decided to tackle the case for the
restricted ideal first.

We end this introduction with a short outline of how this thesis is or-
ganized. The first chapter very shortly defines the most important tools
which are used in the proofs of the two main theorems. RCS-iterations
and inner model theory play a fundamental role in the theorems so they are
introduced. These belong to the more technical and abstract parts of set
theory, but we hope that the reader can fully understand the thesis without
being an expert in these subfields as long as he keeps in mind a couple of
properties which, in the inner model case, we tried to state as additional
axioms. Also a proof of Shelah’s result of Con(ZFC+ ”there is a Woodin
cardinal“) implies Con(ZFC+ ”NSω1 is saturated“) is included as it is the
starting point for our investigations.

In the second chapter we prove Theorem 2 and in the third chapter we
prove Theorem 1. They can be read independently of each other.
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Chapter 1

Preliminaries

1.1 S-semiproperness and RCS-iterations

This section is a short reminder of the main definitions and properties of
notions centered around the fundamental concept of properness. As is well
known the definition of a proper notion of forcing was singled out by S.
Shelah in the eighties. Proper forcings represent a class of forcings which
is closed under iterations with countable support and which contain all the
forcings which have the ccc and which are ω-closed. There is a weaker
version of properness which Shelah called semiproper which still enjoys a
lot of the nice properties of properness which however can not be iterated
with countable support in a semiproperness preserving way. Nevertheless
there is a generalization of countable support iterations, the so-called re-
vised countable support iteration (RCS-iteration), which yields, applied to
semiproper factors, always a semiproper notion of forcing. For our purpose
a further generalization of semiproperness is needed, namely the so called
S-semiproper forcings. All these notions will be introduced now, the missing
proofs can be found e.g. in M. Viale’s notes [20] or in S. Shelah’s [19].

Definition 3. A notion of forcing P is called proper if and only if there
is a regular cardinal λ such that λ > 2|P| and there is a closed unbounded
C ⊂ [Hλ]ω of elementary submodels M ≺ (Hλ,∈, <, ..) (where < defines a
well-order. on Hλ and the dots should indicate further possible second order
parameters) such that for every condition p ∈ P∩M there exists a q ≤ p such
that q is (M,P)-generic; the latter meaning that every maximal antichain
A ⊂ P, A ∈M induces a predense subset A ∩M below the condition q.

It is very well known that there are other ways of defining what it means
for a condition q ∈ P to be (M,P)-generic, e.g. it is equivalent to the
assertion that for every name for an ordinal α̇ ∈M , q  α̇ ∈M . Also for a
partial order P to be proper is equivalent to preserve stationary subsets of
[λ]ω for every uncountable cardinal λ.

The next notion is crucial in the proof of the first main result.
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Definition 4. A class S consisting of elements M ∈ [Hθ]
ω for arbitrary

cardinals θ is called everywhere stationary if the following two things hold:

1. for all regular cardinals θ, S ∩ [Hθ]
ω is a stationary subset of [Hθ]

ω

2. S is closed under truncation meaning that for all regular, uncountable
cardinals θ and all M ∈ S M ∩Hθ ∈ S.

Now we can introduce a generalized form of proper forcing:

Definition 5. A notion of forcing P is S-proper for an everywhere station-
ary class S if there exists a regular, uncountable cardinal θ such that θ > 2|P|

and there is a club C ⊂ [Hθ]
ω such that for every M ∈ C ∩ S and every

p ∈ P ∩M there is a q ≤ p which is (M,P)-generic.

This definition can also be used if S is not a class but a stationary subset
of some [H(θ)]ω. It is well known due to Shelah that S-properness is almost
as good as full properness, I.e. it is preserved under countable support itera-
tions, preserves stationary subsets T ⊂ [Hθ]

ω as long as T ⊂ S and therefore
does not collapse ℵ1. In particular this means that during an iteration of S-
proper forcings with countable support, S remains an everywhere stationary
class.

Let us now turn to semiproperness:

Definition 6. Let P be a partial order, then P is semiproper if and only
if there is a cardinal θ > 2|P| and there is a club C ⊂ [Hθ]

ω of elementary
submodels M ≺ (Hθ,∈, <, ...) such that every condition p ∈ P ∩ M has
an (M,P)-semigeneric condition q below it; and a condition q is (M,P)-
semigeneric if and only if whenever α̇ is a name for a countable ordinal in
M then q  α̇ ∈M .

This generalizes in a straightforward way:

Definition 7. Let S be an everywhere stationary class. A notion of forcing
P is S-semiproper if for a regular θ > 2|P| there is a club C ⊂ [Hθ]

ω of
elementary submodels M ≺ (Hθ,∈, <, ...) such that for every M ∈ C ∩ S
and for every p ∈M there is a q < p which is (M,P)-semigeneric.

It is well known that in fact something stronger is true:

Fact 8. If S is everywhere stationary then P is S semiproper if and only
if for every sufficiently large θ and every M ≺ Hθ, M ∈ Stat such that
p,P ∈M there is a q < p such that q is (M,P)-semigeneric.

Proof. Let λ > 2|P| then there is a club C ⊂ Hλ such that for every N ∈ C
and every p ∈ N there is a stronger q which is (N,P)-semigeneric. Let θ > λ
and let M ≺ Hθ, M ∈ S and let < be a fixed well-order. of Hθ then M
will have the <-least club C witnessing the above as an element. Hence
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M ∩ Hλ ∈ C and as M ∈ S we get (M ∩ Hλ) ∈ S ∩ C. Thus we find for
every p ∈M ∩Hλ a q < p which is (M ∩Hλ)-semigeneric. As λ > 2|P|, q is
also (M,P)-semigeneric.

A most important feature of proper notions of forcing is that iterating
them with countable support results in a proper forcing again. (Its proof
relies heavily on the fact that countable subsets in the extension can be
covered by countable subsets of the groundmodel. This has as a consequence
that whenever we break an iteration with countable support (Pα, Q̇α : α <
δ) into two halves (Pα, Q̇α : α < β) and (Pα, Q̇α : β < α < δ), the second
half still is a countable support iteration)

Contrary to proper forcings, semiproper forcings will not be preserved
when using a countable support iteration. In order to give an example
illustrating this fact we have to be able to break an iteration (Pα, Q̇α : α <
δ) into two halves (Pα, Q̇α : α < β) for an ordinal β < δ, and Ṗ[β,δ), where

the second half is an iteration over the ground model V Pβ of length δ − β
with factors which correspond to the Q̇α. Intuitively it is clear that such a
construction should be possible, though on the one hand the factors Q̇α are
Pα-names of partial orders, while in the yet not explicitly defined iteration
Ṗ[β,δ) the factors of the iteration should be Pβ-names of Ṗ[β,α)-names of

partial orders (where Ṗ[β,α) is a Pβ-name for an iteration of length α − β).

Further the appropriate definition of the second half Ṗ[β,δ) should have the

consequence that the two step iteration (Pα, Q̇α : α < β) ∗ Ṗ[β,α) is forcing

equivalent to (Pα, Q̇α : α < δ). A precise analysis of the situation leads
quickly to a rather tedious definition:

Definition 9. Let (Pβ, Q̇β : β < α) be a forcing iteration of length α, let
η < α then we let Ṗ[η,α) be a Pη-name defined like this:

∀p ∈ Pη ∀ṡ ∈ V Pη (p η ṡ ∈ Ṗ[η,α) if and only if ∀q <η p ∃r ∈ Pα
(r � η < q and r � η η r � [η, α) = ṡ).

Here the term r � [η, α) does not mean the usual check-name for the
tail sequence as seen in V Pη (as this could result in more forcing conditions
than wanted - V Pη could have more such sequences than V ), but rather
the Pη-name for a function with domain [η, α) and values at stage ξ are
Ṗ[η,ξ)-names according to the Pξ-name r(ξ). Thus the above definition has
the more readable characterization that for a Pη-generic filter Gη over V we
have that

V [Gη] |= Ṗ[η,α) = {p � [η, α) : p ∈ Pα, p � η ∈ Gη}

With these clarified notions one can show that
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Fact 10. Every iteration (Pβ, Q̇β : β < α) is forcing equivalent to the
according two step iteration (Pβ, Q̇β : β < η) ∗ Ṗ[η,α). And the forcing

Ṗ[η,α) is forced to be isomorphic to an iteration of length α− η, i.e.

1 η Ṗ[η,α) is isomorphic to an iteration of length α− η

One must be careful with the second statement of the last fact. Although
for an iteration (Pβ, Q̇β : β < α) the tail Ṗ[η,α) can be seen as an iteration in

V Pη , the type of the iteration can change. As an example take a countable
support iteration (Pβ, Q̇β : β < α) and an intermediate stage η < α such
that in V Pη the cofinality of an ordinal δ < α, η < δ gets changed from
uncountable to countable cofinality. Then the cut off iteration with ground
model V Pη will not be a countable support iteration anymore as at stage δ,
which has countable cofinality, nevertheless the direct limit is taken. This
situation can not happen when the factors of the iteration are proper and
a countable support iteration is taken, as in a generic extension obtained
with a proper forcing all new countable sets of ordinals can be covered by
old countable sets. The above described phenomenon can be exploited to
construct an example of a countable support iteration of forcings which does
collapse ω1, yet the factors are semiproper. In order to change the cofinality
of an uncountable regular cardinal to cofinality ω we use Namba’s forcing:

Definition 11. The partial order Nm(ω2), the so called Namba forcing,
is defined like this: conditions are perfect trees T ⊂ (ω2)<ω, where perfect
means that every node has ℵ2-many extensions. The ordering is given by
T1 ≤ T2 if and only if T1 ⊂ T2.

One can show that under CH forcing with Nm(ω2) preserves ℵ1 and
changes the cofinality of (ω2)V to ω. Moreover if one assumes the exis-
tence of a measurable cardinal, then after forcing with an ω-closed, thus
CH preserving notion of forcing the Namba forcing is semiproper. Neverthe-
less countable support iterations of ω1-preserving notions of forcing, starting
with a Namba forcing can collapse ω1:

Assume as a ground model a model where Namba forcing is semiproper
and changes the cofinality of ω2 to ω. Let (Pα, Q̇α : α < ω2) be a countable
support iteration of length ω2 such that the first factor P0 is the Namba
forcing. Further assume that at each stage α < ω2, V Pα thinks that Q̇α has
an antichain of size ℵ1, a feature which can be arranged easily. Work in
V P0 , fix a cofinal function f : ω → ω2 and for each α < ω2 a P0-name of an
antichain Aα ⊂ Q̇α of size ω1 in V Pα . List Aα = (aαβ : β < ω1) and define a
name for a function ġ as follows:

Let ġ be chosen such that for every n ∈ ω and every β < ω1 the Boolean

value Jġ(n) = βK = 1 a a
f(n)
β a 1, I.e. at the f(n)-th coordinate, the

value is a
f(n)
β , while constantly 1 everywhere else.
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Now ġ is forced to be a surjective function from ω to ω1. Indeed let
p ∈ Pω2 be a condition with support γ < ω2 and let β < ω1 be an arbitrary

ordinal. Then there is an n ∈ ω such that f(n) > γ and so p and a
f(n)
β are

compatible. Therefore for every ordinal β < ω1 it is dense to be in the range
of ġ and so it is surjective on ω1.

Thus one cannot hope in general that countable support iterations of
semiproper forcings will preserve ω1. One has to iterate semiproper forcings
in a more careful way if one wants to preserve ω1. Obviously the above
example relies on the fact that after the Namba forcing the cofinality of
ωV2 has changed to ω, nevertheless at stage ωV2 , due to the definition of the
countable support iteration, we take the direct limit of the previous factors,
though we actually should have taken the inverse limit. If we allow for
our conditions in the iteration (Pα, Q̇α : α < ω2) Pβ-names of countable
sets, instead of the usual countable support, thus using a revised countable
support, then the example above will not define a surjection of ω to ω1

anymore. Indeed this modification will completely rule out the possibility of
collapsing ω1 as revised countable support iterations of semiproper forcings
result in a semiproper forcing again.

Definition 12. Let Pα be a forcing notion, let α > 0. Then Pα is an RCS-
iteration (short for revised countable support) of the factors Pβ, β < α if it
is a subset of the inverse limit of the forcings (Pβ : β < α) such that each
p ∈ Pα satisfies

• for each q < p there is an ordinal γ < α and a Pγ-condition r such
that r ≤ q � γ and in the forcing Pγ it holds that r γ cf(α) = ω or
for each β ≥ γ p � [γ, β) Pγ,β p(β) = 1

Fact 13. Iterations with RCS-support whose factors are semiproper result
in a semiproper forcing notion. Moreover if we split an RCS iteration into
two pieces then the tail iteration, as seen from the intermediate model will
look like an RCS iteration again. More precisely, if (Pα, Q̇α : α < β) is an
RCS iteration then 1 γ Ṗ[γ,β) is an RCS-itertaion, for every γ < β.

It is well known that properness is equivalent to the preservation of sta-
tionary subsets of [λ]ω. As a consequence the iteration of S-proper forcings
causes no new problems as long as we iterate with countable support. The
class S will remain stationary throughout the iteration and we end up with
an S-proper forcing, using the same proof as for countable iterations of
proper forcings. For S-semiproper notions of forcing P we can still infer
that they preserve stationary subsets of ω1 as long as for every stationary
S ⊂ ω1, {M ∩ω1 : M ∈ S}∩S is stationary. Indeed if S ⊂ ω1 is stationary,
if p ∈ P, and if Ċ denotes a name of a club, then we pick an elementary
submodel M ∈ S such that M ∩ ω1 ∈ S which contains Ċ. Let q < p be an
(M,P)-generic condition then q  M ∩ ω1 ∈ Ċ and as M ∩ ω1 ∈ S we are
done.
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However when iterating S-semiproper posets, for S an everywhere sta-
tionary class, we have to take into account that usually the stationarity of S
gets lost during the iteration. Thus a statement like “A two-step iteration of
S-semiproper notions of forcing is S-semiproper again”does not make sense
in general. We can consider the natural enlargement of S in V [G] though,
which adds to each element M of S the G-interpretations of its names and
which is the key notion when dealing with iterations.

Definition 14. Let S ⊂ [Hθ]
ω be stationary and let P be an arbitrary notion

of forcing with 2|P| < θ. Then set

S[G] := {M [G] : P ∈M ∈ S}

This set S[G] will remain a stationary set in V [G]:

Lemma 15. Let S ⊂ [Hθ]
ω be stationary and let P be an arbitrary notion

of forcing with 2|P| < θ then S[G] is a stationary subset of V [G]’s version of
[Hθ]

ω.

Proof. Fix a name Ċ for a club in [Hθ]
ω. Pick a countable M ≺ Hθ+ such

that M contains Ċ and such that M ∩ Hθ ∈ S. Then ĊG is a club and
is an element of M [G], therefore M [G] ∩ Hθ = (M ∩ Hθ)[G] ∈ ĊG, yet
(M ∩Hθ)[G] ∈ S[G].

Now this enables us to handle two step iterations:

Fact 16. Let S ⊂ Hθ be stationary and assume that P is a forcing notion
with 2|P| < θ which is S-proper. Let Q be a notion of forcing in V [G] which
is S[G]-proper, then the iteration P ∗Q is S-proper.

The last Proposition leads to

Fact 17. Let (Pi, Q̇i : I ∈ λ) be an RCS-iteration of forcings for which

1 i Qi is S[ĠI ]-semiproper

holds at each stage I < λ. Then Pλ is an S-semiproper forcing notion.

1.2 The canonical inner Model with one Woodin
Cardinal

Constructing universes of set theory with definable wellorders on the reals
becomes a reasonable task only when the underlying ground model already
satisfies a certain amount of definability which can be exploited. In the
presence of sufficiently ’small’ large cardinals Gödel’s constructible universe
L is the ultimate candidate for such a ground model, handing to the math-
ematician a lot of well studied tools to examine its structure thoroughly.
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However as soon as we investigate properties of the set theoretic universe
which are only achievable using stronger large cardinal hypotheses L will
not suffice anymore as these hypotheses are inconsistent with V = L. The
statement NSω1 is ℵ2-saturated is exactly one of such properties which need
a quite large cardinal, namely a Woodin cardinal, whose existence contra-
dicts V = L. We are thus compelled to use a model which is not L, yet
having some of its nice properties, plus containing a Woodin cardinal. Of
course Inner model theory equips the set theorist with such a model, named
M1 which shall be introduced here shortly.

As inner model theory relies heavily on a lot of nontrivial notions and
definitions, whose introduction would soak up a lot of space we will skip
them and assume the reader is already familiar with concepts such as

• the notion of an extender, its length and support, ultrapower construc-
tions and their relation to elementary embeddings of the universe,

• Jensen’s fine structural hierarchy,

• the notion of acceptability,

• fine extender sequences,

• the defintion of active and passive premice,

• the notion of projecta, universality, solidity and soundness,

• iteration games played on sufficiently iterable premice, thus generating
an iteration tree and the notion of branches in the iteration tree which
drop in model or degree,

• the comparison process of sufficiently iterable premice,

• the definition of a Woodin cardinal,

• plus other notions we probably have forgot to mention.

One can find these concepts introduced e.g. in [11], [13], [9]. It should be
noted however that a reader who does not know any of these can skip to
the end of the section while still being able to fully understand the thesis,
keeping in mind a couple of properties of M1 which are mentioned as a list
of properties stated as Fact 24, and which can be seen as additional axioms
we will use during our proofs.

Now to the definition of M1: recall first that a premouse M is called
tame whenever its extenders do not overlap a local Woodin cardinal, i.e.
whenever E is an extender on the M sequence and λ = lh(E) then

JMλ |= ∀ξ > crit(E)(ξ is not Woodin).

11



We define recursively a sequence of premice Nξ starting with

N0 := (Vω,∈, ∅, ∅).

Suppose now that the premouse Nξ has already been defined. Then we
consider the ωth core of Nξ and stop the construction if it does not exist. If
it exist we set Mξ := Cω(Nξ) and split into cases:

1. if Mξ = (J
~E
γ ,∈, ~E, ∅) is passive and there is an extender F ∗ over V ,

further an extender F over Mξ and an ordinal ν < γ such that

Vν+ω ⊂ Ult(V, F ∗ and F � ν = F ∗ ∩ ([ν]<ω × J ~Eγ ).

Assume further that the structure (J
~E
γ ,∈, ~E, F ) is a tame premouse

then pick the least such ν and set

Nξ+1 := (J
~E
γ ,∈, ~E, F )

2. if Mξ = (J
~E
γ ,∈, ~E,H) is not passive, (i.e. H 6= ∅) or there does not

exist a background extender F ∗, just continue in the J-hierarchy. Set

Nξ+1 = (J
~EaH
γ+1 ,∈, ~EaH, ∅).

In the limit steps λ, we let ωη = lim infξ<λ(ρ+
ω )Mξ and let Nλ be the

unique passive premouse P of height ωη such that for every β < η, J Pβ is

the eventual value of JMξ

β as ξ → λ.
We can use the just described sequence of premice

Ct := (Nξ : Nξ exists)

to define M1, assuming the existence of a Woodin cardinal. As a reminder
let us introduce the notion of 1-smallness:

Definition 18. Let M be a premouse, then we say that M is 1-small if
the following holds: whenever λ is the critical point of an extender on the
M-sequence, and δ < λ then

JMλ 2 there is no Woodin cardinal above δ.

Suppose first that for every ξ, Nξ is 1-small, then it is a result of J.Steel
[14] that for every ξ < Ord, Nξ is defined and so is N∞. In this case we
let M1 be N∞ which is a class sized model which can be shown to contain
exactly one Woodin cardinal.

Otherwise if there is a ξ < Ord such that Nξ is not 1-small then fix

the least such ξ. Nξ is an active premouse. Let M#
1 be Cω(Nξ) and let P

be the result of iterating the last extender of M#
1 out of the universe. Set

M1 := J P∞, then again M1 is a class sized model with one Woodin cardinal.
To summarize:

12



Theorem 19. If there is a Woodin cardinal then in both cases M1 is a class
sized model with exactly one Woodin cardinal and all its initial segments
JM1
β are 1-small and ω-sound.

We will always assume that M#
1 exists, i.e. M#

1 is the least mouse which

is not 1-small and M1 is the result of iterating away the last extender of M#
1 .

It is a wellknown fact that reals which are elements in a sufficiently
iterable premouse M admit an easy (i.e. ∆2

2) definition with a countable
ordinal as parameter, using comparability of mice. The formula for r ∈ M
just reads like this: r is the α-th real in some sufficiently, i.e. (ω, ω1 +
1)-iterable premouse. Thus the definability of reals in mice is tied to the
expressibility of ’sufficient’ iterability conditions in the sense of iteration
games. For the model M1, as was observed by J. Steel in [15] an even easier
definition is possible, due to a weakening of the usual iteration game which
is still enough to guarantee a certain amount of comparability. We say that
a premouse M is Π1

2-iterable if player II has a winning strategy for I(M),
where the latter denotes the new iteration game played on the premouseM.
Roughly speaking J. Steel showed that

• if M is a premouse which is embeddable into a model of the Ct-
sequence then player II has a winning strategy for the I(M),

• if on the other hand II has a winning strategy for I(M) played on the
premouse M then M can be compared with any premouse N which
embedds into an element of the Ct-sequence,

• and finally the set of premice {M : II has a winning strategy in I(M)}
is Πn definable.

We can use this to observe that a low complexity definition of countable
(countable in M1 that is) initial segments of M1 is possible in generic exten-
sions M1[G] which preserve ω1. We consider the set of countable premice
which are Π1

2-iterable, ω-sound, 1-small, and which project to ω.

B := {M ctbl premouse : M is Π1
2-iterable, ω-sound, 1-small ρω(M) = ω}.

If we are in a forcing extension M1[G] which preserves ω1 then using Shoen-
field absoluteness, the set of countable premice which are initial segments of
M1 and which project to ω form a set of premice which are still Π1

2-iterable
in M1[G], ω-sound and 1-small. If we consider in M1[G] an arbitrary el-
ement M of B and let N = JM1

η , η < ω1 be an initial segment of M1

which projects to ω then we can compare these two as M is Π1
2-iterable

which suffices for comparison as mentioned above. As both M and N are
ω-sound and ω-projecting they actually do not move during the iteration
and therefore we get that M E N or N E M must hold. If we let the
height of N = JM1

η vary we see that there is certainly an η < ω1 such that

13



M E N = JM1
η . Thus the set B defines in M1[G] a set of initial segments of

M1, which is cofinal in that for every countableM EM1 there is an N ∈ B
such thatM E N . As Π1

2-iterability is a Π1
2-notion, B is itself Π1

2-definable.
Thus we have shown:

Lemma 20. Let M1[G] be an ω1-preserving forcing extension of M1. Then
in M1[G] there is Π1

2-definable set B of premice which are of the form JM1
η

for some η < ω1. B is defined as

B := {M ctbl premouse : M is Π1
2-iterable, ω-sound and not 1-small},

and the set
{η < ω1 : ∃N ∈ B(N = JM1

η )}

is cofinal in ω1.

Next we want turn to the concept of generic absoluteness. The motiva-
tion for this will become clear later once we turn to the proofs of the thesis.
For now we just state that we would want our ground model V to be de-
finable in generic extensions V [G], for G a generic filter for a poset P, i.e.
we need a first order formula Φ(x) such that the class {x : V [G] |= Φ(x)}
outputs V again. To achieve this we proceed indirectly using Steel’s core
model K. As its definition is very involved we will skip it (the interested
reader can find it in [18]) and just state that it is so defined that the class
Kc is an iterate of K, or dually put K is a Skolem hull of Kc. The proof of
its existence initially used a measurable cardinal as well, but eventually R.
Jensen and J. Steel found a way around that additional hypotheses.

Theorem 21. Assume that there is no transitive class model satisfying ZFC
and “there is a Woodin cardinal”. Then there is a Σ2-formula Φ(x) such
that

K := {x : Φ(x) holds}

is a class model of ZFC, which is iterable. If P is a notion of forcing of set
size and G is a V -generic filter then KV [G] = KV , thus K is absolute for
set sized forcing extensions.

Note that as soon as we consider M1, cut it at the Woodin cardinal δ we
are in the situation of the anti large cardinal assumption and thus can build
K in JM1

δ . The model we end up with is again JM1
δ which was proved by

J.Steel (see [17] for a proof of this). Thus we do have a certain amount of
generic absoluteness in M1 namely there is a formula Φ(x) which defines K
and thus JM1

δ for notions of forcing which have size less than M1’s Woodin
cardinal δ.

We turn now to condensation of sufficiently iterable premice. The central
result is the following which was proved by J. Steel and I. Neeman building
on the works of Jensen, S.Friedman, Dodd, Mitchell and Schimmerling:
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Theorem 22. Let M be an ω-sound, (ω, ω1, ω1 + 1)-iterable premouse. Let
π : H →M be a fully elementary map such that its critical point cp(π) = ρHω .
Then either

1. H is a proper initial segment of M

2. there is an extender E on the M-sequence such that lh(E) = ρHω and
H is a proper initial segment of Ult0(M, E)

A useful observation is the following:

Lemma 23. Let M be as in the theorem above. Consider the set S of
countable elementary submodels of M whose transitive collapses are proper
initial segments of M. Then S is stationary in [M]ω.

Proof. Assume for a contradiction that S is not stationary then there is
a club C which is <-least in the definable wellorder of the mouse, such
that every element H of it does not collapse to an initial segment of M.
Let N B M be a bigger ω-sound, (ω, ω1, ω1 + 1)-iterable premouse which
sees that C is the <N -least such club. Let P ≺1 N be a countable Σ1-
substructure which is ω-sound, created as the Σ1-hull of {M} in N . Then
C ∈ P by elementarity and P ∩ [M]ω ∈ C as C is closed and unbounded.
But now the collapse of P ∩ [M]ω is an initial segment of π(P ). Yet π(P )
does collapse nicely as a comparison argument shows. Once we compare
π(P ) with an ω-sound, ω-projecting initial segment ofM nothing will move
during the comparison process and so π(P ) is an initial segment of M.
Thus π(P ) ∩ [M]ω is an initial segment, yet π(P ) ∩ [M]ω ∈ C which is a
contradiction.

To summarize the above results we formulate an explicit list of axioms
which M1 satisfies and which a reader who does not know about inner model
theory should keep in mind when reading this thesis.

Fact 24. M1 satisfies the following list of axioms

1. There is a Π1
2-definable set of reals I whose elements are codes for

countable initial segments of M1. Moreover these codes are cofinal
meaning that for every countable initial segment P of M1 there is a
code c in I such that N is an initial segment of c. Further this set still
works in all ω1-preserving forcing extensions M1[G] of M1.

2. In M1 below its Woodin cardinal Steel’s core model K can be con-
structed and coincides with JM1

δ . The definition of K is generically
absolute for set forcing extensions of size less than δ.

3. If JM1
η is an initial segment of M1, hence an ω-sound, (ω, ω1, ω1 + 1)-

iterable premouse then there is a stationary subset S ⊂ [JM1
η ]ω such

that every H ∈ S condenses to an initial segment of JM1
η .
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1.3 How to make NSω1
ℵ2-saturated

The investigation of the nonstationary ideal on a regular cardinal has a long
history in set theory which is no wonder as stationarity represents one of
its most fundamental notions. The question of the length of antichains of
stationary subsets modulo nonstationarity generated particular interest due
to their central role in generic ultrapower arguments.

Definition 25. Let κ be a regular cardinal and I an ideal on κ. For a regular
cardinal λ we say that I is λ saturated if there are no antichains of length
λ in P (κ)\I, where antichains are meant to be modulo I-small intersections
of their elements.

An equivalent way of saying that I is λ-saturated is therefore the state-
ment that the Boolean algebra P (κ)\I has the λ-cc, which highlights the
importance of the notion in the context of generic ultrapowers where condi-
tions are elements of I-positive sets ordered by the subset relation.

The question of possible values for antichains modulo I is intimately tied
with large cardinals as was already implicitly evident in S. Ulam’s work on
measurability, showing that for no λ there is a λ+-saturated ideal on λ+.
Forty years later R. Solovay showed that for a regular uncountable cardinal
κ, every stationary S ⊂ κ can be partitioned into κ many stationary sets
which implies that for every stationary S ⊂ κ the restricted nonstationary
ideal NSκ � S can not be κ-saturated. Thus naturally the question arises
whether there are successor cardinals κ such that the nonstationary ideal
on κ is κ+-saturated. Here a crucial difference between the nonstationary
ideal on ℵ1 and the nonstationary ideal on other regular κ > ℵ1 shows up,
which has its deeper reasons in the trivial fact that below ω1 limit ordinals
have only one possible cofinality, while at bigger cardinals more possibilities
occur. It is a ZFC-theorem of M.Gitik and S.Shelah that NSκ can not be
κ+-saturated for any κ > ω1, for κ = ω1 however, NSω1 can be ℵ2-saturated,
which was shown first by K. Kunen assuming the existence of a huge cardinal.

The ultimate solution to the problem of the consistency of the state-
ment NSω1 is ℵ2-saturated from optimal large cardinal assumptions was
eventually found by S. Shelah who showed around 1985 that already a
Woodin cardinal suffices for the consistency of NSω1 being saturated. As
this result and its proof are essential for our work we will give the proof
in this section in detail. As a concluding remark we mention that it was
only till 2006 that R.Jensen and J.Steel proved that the assumption of a
Woodin cardinal is in fact sharp in terms of consistency strength via show-
ing that if the theory ZFC+ “NSω1 on ω1 is saturated” is consistent then so
is ZFC + “there is a Woodin cardinal ”

We start with the preparations for Shelah’s result. The material in this
section draws heavily from R.Schinlder’s notes [16] on the problem. Recall
first a couple of definitions and facts.
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Definition 26. Let A be an arbitrary set then a cardinal κ is A-strong up
to the cardinal δ iff ∀γ < δ∃j : V →M which is elementary such that

1. crit j = κ ∧ γ < j(κ)

2. Vκ+γ ⊂M

3. A ∩ Vκ+γ = j(A) ∩ Vκ+γ

The following fact can be used to define Woodin cardinals:

Fact 27. The following are equivalent

• δ is Woodin

• For any A ⊂ Vδ,

{α < δ : α is A-strong up to δ }

is stationary in δ.

We will need a bit more, namely a Woodin cardinal with a ♦-sequence
living below it:

Definition 28. Let δ be a Woodin cardinal then we say that δ is Woodin
with ♦ iff there is a sequence (aκ : κ < δ) such that for each κ, aκ ⊂ Vκ
and for every A ⊂ Vδ the set

{κ < δ : A ∩ Vκ = aκ ∧ κ is A-strong up to δ}

is stationary in δ.

In terms of consistency strength this adds nothing to being a Woodin
cardinal. If δ is the Woodin cardinal and we force with δ-Cohen forcing then
in the resulting generic extension we have that δ is Woodin with ♦: indeed
first note that δ-Cohen forcing is the same as forcing with conditions of the
form (aα : α < κ < δ ∧ aα ⊂ Vα), ordered by end extension. Assume now
that there is a condition p such that

p  τ ⊂ Vδ ∧ σ ⊂ δ is club in δ.

We have to show that there is a stronger condition q < p, q = (aα : α < λ)
and a cardinal κ < δ for which

q  κ ∈ σ is τ − strong up to δ ∧ τ ∩ κ = aκ.

We construct by recursion a descending sequence of conditions (pκ : κ <
δ) such that the length of each pκ is µκ and such that the following points
are obeyed:
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1. {µκ : κ < δ} is a club in δ.

2. For every κ there is some Cκ ⊂ µκ which is unbounded in µκ such that
pκ  σ ∩ µκ = Cκ and consequently pκ  µκ ∈ σ.

3. For every κ there is some Aκ ⊂ Vκ such that pκ  τ ∩ Vmuκ = Aκ

4. for every κ, aµκ = Aκ

5. If pκ+1 1 κ is τ -strong up to δ, then there is an α < µκ+1 such that

pκ+1  κ is not τ -strong up to α

(Note here that κ + 1 makes such a choice always possible. It is im-
possible for κ limit)

That such a sequence exists is easily seen. Now set A :=
⋃
κ<δ Aκ, and as δ

is Woodin and the set {µκ : κ < δ} is a club in δ we find a point κ = µκ such
that κ is A-strong up to δ. Now pick the condition q := (aλ : λ < κ + 1)
which by 2,3 and 4 satisfies

q  κ ∈ σ ∧ τ ∩ κ = aκ.

To finish we need to show that also q  κ is τ -strong up to δ. Assume for
a contradiction the opposite then by property 5 there exists an α < µκ+1

such that
pκ+1  κ is not α-strong up to δ.

But the elementary embedding j : V → M which witnesses that κ is A-
strong up to δ can be lifted to j′ : V [G] → M ′, and by the δ-closure of the
forcing it will witness that κ is A-strong up to δ, a contradiction.

The usage of the ♦-sequence at the Woodin cardinal is crucial for the
proof of the existence of a model where NSω1 is ℵ2-saturated. We will use
it as a guideline for the iteration. Whenever we hit a stage α such that the
♦-sequence (aβ : β < δ) at stage α is the name of a maximal antichain
of stationary subsets of ω1 of length ω2 we want to change its length to
ℵ1, and further ensure that this maximal antichain remains maximal in all
stationary subsets of ω1-preserving outer models. The next forcing notion
does exactly what we demand:

Definition 29. Assume that ~S is an antichain of stationary subsets of ω1.
Then the so called sealing forcing S(~S) consists of conditions of the form
(p, c) where p : α + 1 → ~S is a function and c : α + 1 → ω1 is a function
with closed image and such that

∀ξ ≤ α(c(ξ) ∈
⋃
i∈ξ

p(i))

holds. We let (q, d) < (p, c) if q and d end-extend p and c respectively.
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It is well known that the sealing forcing S(~S) is ω-distributive and pre-
serves all stationary subsets of ~S, thus S(~S) is stationary subsets of ω1

preserving if ~S is maximal.
We can also consider a stationary, co-stationary set A ⊂ ω1 and the

nonstationary ideal restricted to subsets of A,

NSω1 � A := {B ⊂ A : B is stationary }.

It is natural to ask the same question we asked for the full ideal NSω1 , for
the r estricted version NSω1 � A, namely whether it can be ℵ2-saturated.
Surprisingly its positive answer has a simpler structure than for full NSω1 .
The reason behind this is that the set A enables us to see that the according
A-sealing forcings are particularly nice, namely ω-distributive.

Definition 30. Assume that A ⊂ ω1 is a stationary, co-stationary subset
of ω1 and that ~SA is an antichain of stationary subsets of A. Then we can
also seal it off using the straightforward generalization, denoted by S(~S)A of
the already introduced sealing forcing S(~S). Conditions of S(~S)A are pairs
(p, c) where p : α + 1 → ~SA is a function and c : α + 1 → ω1 is a function
with range a closed subset of ω1 such that

∀ξ ≤ α(c(ξ) ∈ A→ c(ξ) ∈
⋃
I∈ξ

p(I))

The idea now to force NSω1 to be ℵ2-saturated is to seal off one by one all
the long antichains of stationary subsets with an iteration. The first obstacle
one immediately encounters is how we catch our tail during this process, for
which the usage of the Woodin cardinal will be crucial. Another difficulty
is the following: One has to ensure that the iteration stays stationary set
preserving to avoid utter chaos. The sealing forcing S(~S) is stationary set
preserving as long as ~S is maximal, but there does not exist a theory for
iterations of stationary set preserving forcings in a stationary set preserving
way. Thus we are compelled to work with semiproper notions of forcing and
RCS-iterations instead. We demand to only seal off a maximal antichain
~S when the forcing S(~S) is also semiproper. But this leaves us with the
possibility of not sealing off every long antichain during the iteration. That
these difficulties still do not prevent the proof is outlined here in detail:

Theorem 31. Assume that δ is a Woodin cardinal with ♦. Then there exists
a semiproper forcing P of size δ such that in V [G], NSω1 is ℵ2-saturated and
δ = ℵ2.

Proof. We use a ♦-sequence on δ to determine at each stage α < δ which
forcing to use. Assume that during our iteration we have arrived at stage
α. Then let Qα be
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1. the sealing off forcing of a maximal antichain σGα if the diamond
sequence at stage α is the Pα-name σ for a maximal antichain of sta-
tionary subsets of ω1 and the sealing forcing is semiproper.

2. the collapse of 2ℵ2 to ℵ1 else.

At limit stages we use the RCS-limit. This already suffices. Assume for
a contradiction. that NSω1 is not ℵ2-saturated in V [G], I.e. there is a
maximal antichain ~S = (Si : I < ω2) in P (ω1)/NSω1 . Let τ be a P-name for
the sequence. As V [G] |= ℵ2 = δ for our Woodin cardinal δ, we claim that
it is possible to find an inaccessible κ below δ such that the following three
properties hold:

1. κ is P⊕ τ -strong up to δ in V

2. κ = ω
V [G�κ]
2

3. ~S � κ = (Si : I < κ) = (τ ∩ Vκ)G�κ is the maximal antichain in
V [G � κ] which is picked by the ♦-sequence at stage κ.

This is clear as we can assume that our ♦-sequence lives on the stationary
subset of inaccessible cardinals below δ, and for all inaccessible κ property
2 automatically holds. Moreover the sets

C1 := {κ < δ : ~S � κ = (Si : I < κ) = (τ ∩ Vκ)V [G�κ]}
and

C2 := {κ < δ : ∀α∀S ∈ P (ω1) ∩ V Pα stationary ∃S̄ ∈ ~S � κ(S ∩ S̄ /∈ NS)}

are both clubs, therefore hitting the stationary set T consisting of the points
κ < δ where τ∩Vκ = aκ (remember: aκ is the κ-th element of the ♦-sequence
(aα : α < δ)) and κ is τ -strong up to δ. Thus if κ is in the nonempty
intersection C1∩C2∩T then 1 and 2 are satisfied, and the recursive definition
of our forcing P yields that at stage κ, as aκ = τ ∩ Vκ, the sealing forcing
S((τ ∩ Vκ)G�κ) is at least considered, and in order to show property 3, it
suffices to show that (τ ∩ Vκ)G�κ) = S̄ � κ is maximal in V [G � κ]. But
this is clear as by the definition of RCS iteration and as |Pα| < κ we take
at inaccessible κ’s the direct limit of the Pα’s, thus each stationary S ⊂ ω1

in V Pκ is already included in a V Pα for α < κ. So we have ensured the
existence of a κ with all the 3, above stated properties.

Now the forcing S(~S � κ) can not be semiproper at stage κ, as otherwise
we would have to force with it, therefore killing the antichain ~S. So there
exists a condition (p, c) ∈ S(~S � κ) such that the set

T̄ := {X ≺ (Hκ+)V [G�κ] : |X| = ℵ0∧(p, c) ∈ X∧@Y ⊃ X(Y ≺ (Hκ+)V [G�κ]

∧|Y | = ℵ0∧(X∩ω1 = Y ∩ω1)∧∃(q, d) ≤ (p, c) ((q, d) is Y-semigeneric ))}.
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is stationary in V [G � κ], and by construction of our iteration, the κ-th
forcing in P is Col(ω1, 2

ℵ2), so in V [G � κ + 1] there is a surjection f :
ω1 → (Hκ+)V [G�κ]. As Col(ω1, 2

ℵ2) is proper the set T̄ remains stationary
in V [G � κ+ 1] which implies that

T := {α < ω1 : f”α ∈ T̄ ∧ α = f”α ∩ ω1}

is stationary in V [G � κ+1]. As the tail P[κ+2,δ) remains semiproper, seen as
an iteration with V [G � κ+1] as ground model, we can infer that T remains
stationary in V [G] and hence there exists an i0 < δ such that

(∗∗) T ∩ Si0 is stationary in V [G].

Let us shortly reflect the situation we are in. The idea is to find a
model X ∈ T̄ such that we can find a (X,S(~S � κ))-semigeneric condition
(q, d) < (p, c), thus arriving at a contradiction. In order to do so we have
to ensure that α = X ∩ ω1 is in some Si ∈ ~S � κ. As ~S was assumed to
be maximal there is indeed an index i0 < δ which is as desired, this index
however might be bigger than κ. This is where the large cardinal assumption
comes into play. We can find an elementary embedding j : V → M such
that j(κ) > i0, thus it seems that j(~S � κ) is now long enough to have Si0 as
an element. But this is not correct as ~S was not assumed to be definable and
therefore j ~S � κ) 6= ~S � j(κ). We have to use more than just the elementary
embedding, namely that Woodiness fixes even a predicate with j. Indeed if
we let λ > i0 such that (τ ∩Vλ)G�λ = ~S � λ, and let j : V →M be such that
j(τ) ∩ Vλ = τ ∩ Vλ then j(τ ∩ Vκ) = j(τ) ∩ Vj(κ) and Vj(κ) = Vλ ∪ Vj(κ)–Vλ,

thus j(~S � κ) = j(τ ∩ Vκ)G�κ) contains (τ ∩ Vλ) and thus Si0 .
First let λ < δ, λ > max(i0, κ + 1) be such that (τ ∩ Vλ)G�λ = ~S � λ,

so we have (τ ∩ Vλ)G�λ(i0) = Si0 . As κ was chosen to be P ⊕ τ -strong up
to δ we let j : V → M be an elementary embedding with critical point κ,
such that M is transitive, Mκ ⊂ M , Vλ+ω ⊂ M , j(P) ∩ Vλ = P ∩ Vλ, and
j(τ) ∩ Vλ = τ ∩ Vλ.

H should denote the generic filter for the segment (P[λ+1,j(κ)])
M [G�λ] of

j(P) over M [G � λ]. Then we lift j to an elementary embedding

j∗ : V [G � κ]→M [G � λ,H].

Notice that (Vλ+ω)V [G�λ] = (Vλ+ω)M [G�λ].
Now we let (Xi : I < ω1) ∈ V [G � κ + 1] be an increasing continuous

chain of countable elementary substructures of (Hj(κ)+)M [G�κ+1] with {τ ∩
Vλ, i0} ⊂ X0 satisfying for all I < ω1 the following three properties:

(a) I ∈ XI+1

(b) f”(Xi ∩ ω1) ⊂ Xi

(c) j∗”(Xi ∩ (Hκ+)V [G�κ] ⊂ Xi
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Let Ḡ := G � [κ+ 2, λ], then we have that

{Xi[Ḡ] ∩ ω1 : I < ω1} ∈ V [G � λ]

is a club in ω1 so intersecting it with the stationary set defined in (∗∗) we
find some I < ω1 such that Xi[Ḡ] ∩ ω1 = Xi ∩ ω1 ∈ T ∩ Si0 .

Write X := Xi, α := X ∩ ω1. As at stage κ we had to force with the
ω-closed Col(2ℵ2 ,ℵ1) we know that X ∩ (Hκ+)V [G�κ] ∈ V [G � κ]. Remember
that f ∈ V [G � κ+ 1] was chosen as a surjection of ω1 onto (Hκ+)V [G�κ], so
as α ∈ T by definition of T f”α ∈ T̄ and α = f”α ∩ ω1, and hence by (b)

f”α ⊂ X ∩ (Hκ+)V [G�κ] ∈ V [G � κ].

As α = f”α ∩ ω1, f”α ∈ T̄ and f”α ⊂ X ∩ (Hκ+)V [G�κ] we get that X ∩
(Hκ+)V [G�κ] ∈ T̄ and therefore

(∗ ∗ ∗) j∗(X ∩Hκ+)V [G�κ]) ∈ j∗(T̄ ).

Note that our second generic H, denoting the generic filter for the seg-
ment (P[λ+1,j(κ)])

M [G�λ] of j(P) over M [G � λ] has not been specified yet.

As the segment (P[λ+1,j(κ)])
M [G�λ] of j(P) over M [G � λ] is semi-proper we

have that there is a condition q in the segment (P[λ+1,j(κ)])
M [G�λ] of j(P)

which is (X[G],P[λ+1,j(κ)]-semigeneric. If we pick H such that q ∈ H then
by semigenericity of q we obtain X[Ḡ,H]∩ω1 = X[Ḡ]∩ω1 = X ∩ω1 = α ∈
Si0 = (τ ∩ Vλ)G�λ(i0) ∈ X[Ḡ,H]. But also due to (c) we have that

j∗(X ∩ (Hκ+)V [G�κ = j∗”(X ∩ (Hκ+)V [G�κ ⊂ X[Ḡ,H].

This gives us the desired contradiction as we can find an (X[Ḡ,H], j(S(~S �
κ)))-semigeneric condition below j(p, c) = (p, c). Indeed we can just list the
countably many names for countable ordinals in X[Ḡ,H] along with condi-
tions of j(S(~S � κ)) deciding them below (p, c) and let (p′, c′) ∈ j(S(~S � κ))
be just the condition with dom(c′) =dom(d′) = α + 1, c′(α) = α and
p′(I) = Si0 for some I < α. So X[Ḡ,H] together with (p′, c′) < (p, c)
witness that j∗(X ∩Hκ+)V [G�κ]) /∈ j∗(T̄ ), contradicting (∗ ∗ ∗).
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Chapter 2

NSω1 � A is ∆1-definable

2.1 Introduction

In this section we want to give a proof of the following theorem

Theorem 32. Assume that M#
1 exists, and let A ∈ M1 be a stationary,

co-stationary subset of ω1. Then there is a generic extension M1[G] via a
set sized forcing such that in M1[G] NSω1 is ∆1-definable in H(ω3) with
parameter ω1 and such that NSω1 � A is ℵ2-saturated.

Before starting the actual proof we outline its route roughly: The main
idea is to use Shelah’s proof of the saturation of NSω1 from a Woodin cardinal
as a starting point and try to add certain forcings which code additional
information of the universe. This additional information can be used to
obtain a nicer definition of stationarity on ω1. The extra coding forcings
should be chosen in such a way that they will not interfere with the usual
sealing forcings which push the saturation of NSω1 down to ℵ2, and should
be robust enough in that a once coded information should be preserved in
all future further generic extensions of the universe.

To be a little more precise the proof is via a δ-long (δ the Woodin car-
dinal) countable support iteration of semiproper and S-proper forcings. We
will use a ♦-sequence (aα)α<δ to guide the iteration. At each stage α of the
iteration we look at the α-th entry of the sequence. We will distinguish two
different cases, a coding stage and a sealing stage and start to describe the
first of the two stages:

If aα is the Pα-name of a stationary subset S ⊂ A then we code the
characteristic function of S into a pattern of nicely definable trees which
should have a cofinal branch or be bounded, meaning in that particular con-
text that there are no cofinal branches through the tree in no ω1-preserving
outer model. This is followed by a bunch of forcings which add a more local
version of this information to the universe. We shall see that the iteration
of these forcings is S-proper.
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If aα is a Pα-name of a long (i.e. of length ℵ2) maximal antichain in
the structure P (A)/NSω1 then we seal off this antichain after collapsing its
length to ℵ1 but only if this forcing is semiproper. This seemingly redundant
move will enable us to argue for stationary set preservation for the resulting
iteration, as, contrary to the semiproper case, there is no iteration theory
of stationary set preserving notions of forcing. This forcing is seen to be
Ac-proper and semiproper. In the remaining case we just do nothing and
force with the trivial forcing.

To summarize we arrive at a countable support iteration of S-proper
and Ac-proper forcings, therefore the iteration is S(Ac)-proper where S(Ac)
should denote the class {M ∈ S : M ∩ ω1 ∈ Ac}. We will see soon that
the class S is projective stationary, i.e. S(Ac) of models remains everywhere
stationary, hence the iteration with countable support yields a S(Ac)-proper
extension of the ground model M1. Consequently all new countable sets of
ordinals can be covered by countable sets of ordinals living in the ground
model. We use this observation to argue that stationary subsets of ω1 are
preserved in the just described iteration:

We can look at the iteration in a different way. As we only seal off when
the sealing forcing is semiproper, and as the forcing from coding stages is
S-proper (as to be seen soon), hence S-semiproper we drop the countable
support iteration for a second and use an RCS-iteration instead, i.e. we use
all the factors of the iteration but iterate them using the revised countable
support instead of the plain countable support. We arrive at a S-semiproper
generic extension of the ground model M1 which is stationary set preserving
as S is projective stationary. Yet, as S(Ac) = {M ∈ S : M ∩ ω1 ∈ Ac}
remains everywhere stationary, countable subsets of ordinals in the generic
extension can be covered by countable sets in the ground model. Con-
sequently the RCS-iteration is in fact just a countable support iteration.
Indeed at every stage α < δ we see that V Pα is a S(Ac)-proper forcing ex-
tension of V , thus whenever there is an ordinal β > α such that cof(β) is
countable in V Pα , it has already been of countable cofinality in V . Thus the
RCS-iteration is just a countable support iteration, and we can iterate with
countable support to end up with a S-semiproper extension of the ground
model. As a consequence the final model, when using countable support
iteration for the iterands, preserves stationary subsets of ω1.

2.2 The coding forcing

As already mentioned we need a coding forcing which harmonizes with the
stationary sealing forcings we need to keep the saturation of NSω1 low at
ℵ2. Our ground model for the iteration will be M1, the canonical inner
model with one Woodin cardinal. We cut M1 at the Woodin cardinal δ to

build Steel’s K there. We have already seen that KJ
M1
δ = JM1

δ . The move
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towards K has the advantage that K has a nice first order definition, as
opposed to M1, and generic absoluteness below δ is a well known fact for
K. We use K-trees Tα(ξ) := ((α+ξ)<(α+ξ))K , where β is a cardinal from
K, and either force a cofinal branch through it or we ensure that there can
not be any cofinal branches in ω1-preserving outer models. This way we can
code arbitrary 0,1-patterns into sequences of cofinal or bounded trees. The
big advantage of this method is that once we decided to write a certain pat-
tern using these trees this information will prevail in all ω1-preserving outer
models. Thus we don’t have to reconsider earlier information during the it-
eration. These sequences of cofinal or bounded trees will code characteristic
functions of stationary subsets of ω1. Of course the process of specializing
a tree off or shooting a cofinal branch should preserve stationary subsets of
ω1 to be useful for our purpose. Moreover we should be able to iterate these
forcings in a nice way. That this is indeed the case is the content of the next
proposition.

Proposition 33 (Coding via specializing trees). Assume GCH, β > ω1

regular, and let S be a stationary class which is projective stationary, i.e.
for every stationary S ⊂ ω1, S(S) = {M ∈ S : M ∩ ω1 ∈ S} is everywhere
stationary. Suppose that Q is an S-proper notion of forcing of size less than
β and G is V-generic. Then:

1. T (β) := ((β+)(<β))V viewed as a forcing is S-proper over V [G].

2. There is a proper forcing R ∈ V [G] of size β++ that destroys the
properness of T (β). More specifically if H is R-generic over V [G],
then in any ω1 preserving outer model of V [G][H] there is no branch
through T (β) which is T (β)-generic over V .

Proof. We shall show first that T (β) := ((β+)(<β))V is S-proper over V [G]
for G a generic filter for the forcing Q. This is trivial as the S-proper forcing
Q will not change the stationarity of S in V Q. Thus if we pick any countable
M ∈ S ⊂ V and fix a condition p ∈ T (β)∩M , we can find a stronger q < p
which is (M,T (β))-generic, as T (β) is defined in V and sufficiently closed
there. So T (β)V is S-proper in V [G].

To prove the second statement, first add β++ Cohen reals with a fi-
nite support product over V [G], then Lévy collapse β++ to ω1 and let
V [G][H1][H2] denote the resulting model, which is a proper forcing extension
of V [G]. By an observation of J.Silver we know that each β-branch through
T (β) which lies in V [G][H1][H2], in fact lies already in V [G][H1]. Indeed if
ḃ is a name in V [G][H1] for a new T (β)-branch, then we can build a binary
ω-tree of conditions in the Lévy collapse and by its ω1 closure each branch
has a lower bound, resulting in 2ℵ0 = β++-many different interpretations of
ḃ. Thus (T (β))V has in V [G][H1] 2ℵ0 = β++ many nodes on a fixed level
which is impossible as V |= GCH.
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Thus T (β) has at most ω1-many branches in V [G][H1][H2], and none
of those branches is cofinal in β+, therefore none of the branches is T (β)-
generic over V . Also every node is included in a β-branch. This enables
us to use Baumgartners method of “specializing a tree off a small set of
branches”.

Fact 34. If T is tree of height ω1, such that each node is contained in a
cofinal branch, and with at most ℵ1 many cofinal branches, then there is a
ccc forcing P such that if G is P-generic then whenever W is an outer model
of V[G] with the same ω1 then each cofinal branch through W belongs already
to V.

Now we can use the forcing P from the Fact above to build the model
V [G][H1][H2][H3] and obtain that whenever W is an ω1 preserving outer
model of V [G][H1][H2][H3] then each branch through the tree T (β) in W
is in fact in V [G][H1][H2], and therefore as already noted in V [G][H1]. As
no branch through T (β) in V [G][H1] is cofinal in β+ (by the ccc), and T (β)
generic branches are necessarily cofinal in β+, we are done.

2.3 The class S
Note that in the following we constantly use the fact that M1 below the
Woodin cardinal coincides with Steel’s core model K as build in JM1

δ . The
move toward K has the advantage that, contrary to M1 K admits a first
order definition. This does not cause any problems as long as we are below
δ (which we are all the time). As M1 is the ground model of our iteration,
we do not have access to full condensation. Knowing that a sufficiently
elementary submodel M of some JM1

η collapses to an M1 initial segment
is nevertheless of highest importance in our proof. The reason for this is
lies in the fact that we use K definable trees, living on K cardinals. It is
therefore desirable that these trees still live on K initial segments even after
we transitively collapse, in order to not completely lose control of the things
we are talking about. These considerations will become clearer once the
everywhere stationary class S, introduced for these very reasons is seen in
action during the proof.

We introduce without much further ado:

Definition 35. Let S be a class of countable sets. We say that S is every-
where stationary if

1. for every regular cardinal θ, S∩H(θ) is a stationary subset of [H(θ)]ω,
and

2. S is closed under truncation, I.e X ∩Hθ ∈ S whenever X ∈ S and θ
a regular cardinal.
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Definition 36. Let M be a (sufficiently) elementary submodel of some K
initial segment JKη . We say that M collapses nicely if the following demands
are met:

1. the transitive collapse M̄ is an initial segment of K, I.e. M̄ C K, and

2. whenever ωM̄1 is a cardinal in an K-initial segment JKη then already

all cardinals of M̄ remain cardinals in JKη , and

3. M̄ is K-correct, meaning that if Φ(x) denotes the first order formula
defining K and use it to define K inside the transitive model M̄ then
KM̄ = M̄ .

This list seems quite daring on first sight, nevertheless there are plenty
of nicely collapsing submodels:

Lemma 37. Let S denote the class of nicely collapsing submodels of M1.
Then S is everywhere stationary in M1. Moreover S is projective stationary,
meaning that for every stationary X ⊂ ω1, the set S(X) := {M ∈ S :
M ∩ ω1 ∈ X} remains an everywhere stationary class.

Proof. The first item is just the Lemma 23 on Condensation we have proved
already. For the second part we have to show that club often M̄ = JM1

η

is K-correct, but this is easy as we could have just picked an M which is
elementary in the universe with respect to the K defining formula Φ.
S is trivially closed under truncation and all the considerations so far

hold for H(θ) ∩M as well, thus H(θ) ∩M ∈ C ∩ S and S is everywhere
stationary.

Finally to show that S is projective stationary we assume the opposite,
thus there is a stationary X ⊂ ω1 and a fixed regular cardinal θ for which
there is a club C ⊂ [Hθ]

ω such that every M ∈ C does not collapse to an
initial segment of M1 or satisfies M ∩ ω1 /∈ X. Let C be the least such club
in the wellorder. We pick a regular λ > θ and the Σn-Skolem hull denoted
by N of {X, θ} in Hλ. We can assume that N ∩ ω1 ∈ X. It is clear that
N ∩Hθ ∈ C, however we can arrange that N collapses to an initial segment
of M1 and so does N ∩ Hθ which is a contradiction. To see that we can
always assume that N collapses to an initial segment of M1 we first note
that N projects to ω as it is not fully elementary in Hλ and can be chosen
to be ω-sound. If we pick a countable initial segment of M1, say JM1

η which
projects to ω and is ω-sound as well we can start to compare these two
models. But now both models will not move during the comparison and so
N̄ C JM1

η as desired.

The role of S and its somewhat peculiar definition will become clearer
during the advance of the proof. The reason we have to constantly fall back
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on S is that in the end we want suitable countable models to be able to see
the patterns of cofinal or bounded trees we inscribed during the iteration.
As these trees are defined in M1 on M1-cardinals, the countable models
should be correct about their M1 and their sequence of M1-cardinals. As
condensation in general fails in M1 we are compelled to work with S.

2.4 The definition of the iteration

We now describe the iteration in detail which is used to prove the main
theorem. It utilizes a δ-long countable support iteration of S-semiproper
forcings, the factors of it will be explained in the following subsections. Our
ground model is the inner model M1 with one Woodin cardinal δ, which is
also Woodin with ♦ as was shown. Actually we are working all the time
below the Woodin cardinal δ, and we emphasize again that JM1

δ = K. We
will therefore use M1 and K synonymously from now on and hope that it
will not cnfuse the reader. Remember that in M1 GCH does hold and there
exists a well-order. denoted by < of M1. Fix a stationary, co-stationary
subset A ⊂ ω1. The goal is to arrange the sealing stages, where we seal
a maximal antichain of stationary subsets of ω1 off and the coding stages,
where we code the characteristic function χS of a stationary S ⊂ ω1 into an
according pattern of cofinal and bounded (i.e. trees which have no branch
of the height of the tree) trees in such a way that they will not interfere with
each other.

We use the ♦-sequence (aα)α<δ to determine with which forcing we
should force at stage α. Thus assume that α < δ and we have already
constructed Pβ for β ≤ α. We define the forcing Q̇α in V Pα as follows:

1. if aα is a Pα-name of a stationary subset S of ω1 then we code the
characteristic function of S into a pattern of trees, followed by forcings
which will localize the inscribed information. These forcings will be
specified below in a detailed description.

2. if aα is a Pα-name of a maximal antichain of stationary subsets of our
fixed stationary, co-stationary A ⊂ ω1, then use the sealing forcing to
seal it off, provided the sealing forcing is S-semiproper. If it is not
force with the usual Levy collapse Col(ℵ1, 2

ℵ2).

3. else collapse 2ℵ2 to ℵ1 or force to create a default pattern of cofinal
trees

The third point of the definition deserves an explanation: our goal is that we
only create ω1-length patterns of cofinal and bounded trees which correspond
to characteristic functions of stationary subsets of ω1. We allow a default
pattern however to fill in gaps in the sequence of patterns. The reason
that we do so is to avoid the case of accidentally forced patterns during our
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iteration. Indeed if there is a gap in between two characteristic functions
of stationary sets, it could happen that the noise of the forcings we use
create an unwanted pattern of trees in the gap, which we cannot kill off
once it is produced. This potentially ruins our argument. To avoid this
degenerated case we set up the iteration in such a way that a default pattern
is forced in all gaps between characteristic functions of stationary sets. This
is cumbersome to explain in the recursive way we chose above, therefore we
used the blurry words in the third case and hope that this remark makes
the point clear.

2.5 The sealing forcings

Whenever aα at stage α is the Pα-name of a long maximal antichain in
P (A)/NSω1 then we have to seal it off using the following notion of forcing:

Definition 38. Assume that ~SA is a maximal antichain of stationary subsets
of A, where A ⊂ ω1 is stationary, co-stationary. Conditions of the sealing
forcing S(~S)A are pairs (p, c) where p : α + 1 → ~SA is a function and
c : α+ 1→ ω1 is a function with range a closed subset of ω1 such that

∀ξ ≤ α(c(ξ) ∈ A→ c(ξ) ∈
⋃
i∈ξ

p(i))

It is well known that S(~S)A is ω-distributive, preserves stationary subsets
of ω1 but is not necessarily semiproper. The definition of S(~S)A still makes
sense if the antichain ~SA is not maximal. In that case forcing with S(~S)A
turns the antichain into a maximal one. If A is not stationary then the
definition of S(~S)A is again meaningful and the forcing S(~S)A has a dense
subset which is countably closed.

2.6 The coding forcings

We turn now to the forcings mentioned in case 1. They are defined as a
three step iteration of forcings Q0

α ∗Q1
α ∗Q2

α which will be defined now:

2.6.1 Q0
α

For brevity we use in the following often the notion (K)η for an ordinal η
which just means JKη . Assume we arrived in our iteration at stage α, α a
cardinal of the ground model K which is M1 below the Woodin cardinal δ,
and the ♦-sequence (aβ)β<δ at stage α is the Pα-name of a stationary subset
S ⊂ ω1. Then we want to write the characteristic function χS of S into a
pattern of canonical trees for which we either shoot a cofinal branch through,
or make sure that there will never be a cofinal branch in each ω1-preserving
outer model.
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More specifically we let Q0
α be an ω1-length iteration of forcings (Pξ : ξ <

ω1) defined as follows: For ξ < ω1 we consider the forcing Tα(ξ) consisting
of the tree of K-sequences of elements of (α+ξ)K of length less than (α+ξ)K ,

i.e. we let Tα(ξ) = ((α+ξ)<(α+ξ))K . This forcing remains S-proper over
K[Gα], as was shown in Lemma 33. However, again by Lemma 33 there
exists a forcing Rα(ξ) of size α+(ξ+2) such that after forcing with Rα(ξ),
if H denotes the generic for Rα(ξ), each outer model of K[Gα][H] which
preserves ω1 can not contain any branch through Tα(ξ) which is cofinal in
α+ξ. Now we take the stationary set S ⊂ ω1 and code the pattern of S
into an ω1-block of trees Tα(ξ) := ((α+ξ)<(α+ξ))K , using only every third
cardinal successor of α in K for a nontrivial forcing in order to guarantee
S-properness.

1. if ξ ∈ S then we let Pξ·3 be the forcing which shoots a cofinal branch
through the tree Tα(ξ+++) using the tree forcing with conditions that
are nodes in the tree Tα(ξ+++).

2. if ξ /∈ S then pick Pξ·3 to specialize the tree Tα(ξ+++), using the
already defined S-proper specialization forcing.

3. if the index ξ of Pξ is not of the form η · 3 for an η < ω1 we let Pξ be
the trivial forcing.

We define Q0
α to be the countable support iteration of the just defined Pξ,

ξ < ω1.
Note that as K satisfies the GCH and as we only used every third K

cardinal we ensure that the condition on the size of the forcings in Lemma 33
is met, thus each iterand Pξ is an S-proper forcing and so is Q0

α. Note further
that if G0 is Q0

α-generic then in M1[Gα][G0] the model sees the stationary
set S via the pattern of the trees (T (α))K , having a cofinal branch or not.

To avoid unwanted patterns we can without any problems demand that
all ω1-blocks are used, meaning that each block has a pattern (possibly a
dummy pattern) written on it.

2.6.2 Q1
α

To define the next forcing Q1
α we first fix a sufficiently big initial segment

JKη of K such that the generic filter Gα ∗ G0 is also generic over JKη . We

then collapse the size of the structure JKη [Gα][G0] to ω1 via the usual Levy

collapse, Q1
α := Coll(λ, ω1), where λ = |JKη |. If G1 is Q1

α-generic then in
K[Gα][G0][G1] there exists a subset Xα ⊂ ω1 such that whenever M is a
transitive model of ZFC, which is K-correct and Xα ∈ M then M will say
that:

there is a K-cardinal α such that the previously coded stationary set S
can be read off from a pattern of cofinal or bounded branches through
canonical K-trees starting at α.
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2.6.3 Localization

Our goal is to add a set Yα ⊂ ω1 which reflects the desired property down
to all suitable models of size ℵ0. To be more specific we want a Yα ⊂ ω1 for
which the following holds:

♥ ∀β < ω1 ∀M countable, transitive model of ZF−, (Yα ∩ ω1) ∈ M ,

(K)M ⊂ JKη for some η < ω1, (ω1)M = (ω1)(K)M then M satisfies
that it can decode out of Yα ∩ ω1 an ordinal ᾱ such that for every
ξ < ω1 (ξ ∈ S if and only if Tᾱ(ξ+++) has a cofinal branch in M).

To force property ♥ we just use approximations of size ℵ0. Thus our forc-
ing Q2

α consists of the set of ω1-Cohen conditions p : |p| → 2 inK[Gα][G0][G1]
with the properties that

• The domain of p is a limit ordinal < ω1.

• The even part of p codes Xα ∩ ω1.

• For any limit ordinal ξ < ω1, ξ ≤ |p| and any transitive ZF−-model

M of size ω1, with ωM1 = (ω1)K
M

and which contains p � ξ, moreover

satisfies that (K)M ⊂ (K)η for some η < ω1 and (ω1)M = (ω1)(K)M

we have that there is ᾱ such that ∀ξ < (ω1)M ξ ∈ S if and only if

(Tᾱ(ξ+++))(K)M has a branch in M which is cofinal in (ᾱ)+(ξ).

Claim 39. The forcing Q2
α is S-proper.

Proof. Note that we can assume, via arguing by induction on the length of
the iteration that S is everywhere stationary in KPα∗Q0

α∗Q1
α as S(Ac) is. Note

also that the forcing Q2
α has the extendibility property, meaning that given

some condition p ∈ Q2
α and some countable limit ordinal γ > |p|, we can

always find a condition q extending p, such that |q| = γ. This is easily seen
as given a condition p ∈ Q2

α, one can extend its length to γ in such a way
that the even entries still code Xα up to γ, and on the odd entries one codes
an ordinal η > γ into an ω-block of the odd entries up to γ. Let q be such
a sequence. Then no model N which has q as an element can have γ as its
ω1 as it can use q to see the countability of η > γ. Thus the third property
is automatically satisfied and the sequence q of length γ is a condition in
Q2
α. We want to show the S-properness now, thus we shall exhibit a club

C ⊂ [H(θ)K[Gα][G0][G1]]ω such that whenever we pick an arbitrary countable
elementary submodel M ∈ C ∩ S and some condition p ∈ M ∩ Q2

α we can
show that there is a stronger q which is (M,Q2

α)-generic. Choose C to be a
club of elementary submodels of some (K)σ[Gα][G0][G1], such that the set
Xα is in every element of C, and let the ordinal σ be large enough to enable
(K)σ[Gα][G0][G1] to define its K properly, and therefore is able to realize
that
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1. (K)α1 is an initial segment of the K-version which is computed in the
model (K)σ[Gα][G0][G1]. Moreover as (K)α1 is coded into the set Xα,
the model (K)σ[Gα][G0][G1] will see that the set coded into Xα is an
initial segment of its own version of K. We write dec(Xα) to denote
the mouse which is coded into Xα. Thus dec(Xα) C (K)(K)σ [Gα][G0][G1]

does hold.

2. As (K)σ[Gα][G0][G1] and (K)α1 do have the same ω1, the sequence
of K-trees, as computed in (K)σ[Gα][G0][G1] and (K)α1 respectively,
which starts at the ordinal α (which is coded into Xα), will coincide.
To be more precise, the sequence of K-cardinals starting at α, as com-
puted in (K)σ[Gα][G0][G1] and (K)α1 respectively coincide. The trees
Tα(ξ+++) as computed in (K)σ[Gα][G0][G1] and (K)α1 respectively
coincide, and they do or do not have cofinal branches simultaneously.

Note that such a σ always exists due to the Reflection Principle, and the
definability of K in small forcing extensions.

Now let M be from C ∩ S. We list all the dense subsets Dn which
are elements of M and construct a descending sequence of Q2

α-conditions
p = q0 > q1 > .... We can demand that for every k ∈ ω, qk lies in the
corresponding dense set Dk. Further we demand that supk∈ω|dom(qk)| =
ξ = M ∩ ω1. If we can ensure that the limit of the qk’s, denoted with qω is
a condition we would be finished, as qω is (M,Q2

α)-generic. As the first two
properties of conditions in Q2

α hold automatically for qω, we have to ensure
the third property. Note first that if ξ < |qω| holds then property 3 will hold
automatically as well. Thus we shall show that the lower bound qω satisfies

(∗) For any countable, transitive ZF− model N such that qω ∈ N and µ
an ordinal such that (K)N ⊂ (K)µ, if ξ = ωN1 = (ωK1 )N and (ω1)N =
(ω1)(K)µ then qω codes a (K)N -cardinal ᾱ and certain generic filters

such that if one builds the sequence of (K)N -cardinals (ᾱ+τ )(K)N , and

the according trees (Tᾱ(ξ+++))(K)N then it holds that ξ ∈ Ṡ[Gα][G0][G1]

iff there is a cofinal branch through (Tᾱ(ξ+++))(K)N in N .

Now if we take our countableM ≺ (K)σ[Gα][G0][G1], M ∈ S such thatXα ∈
M , by elementarity we have that the two properties of (K)σ[Gα][G0][G1]
which we listed above still hold for M. Thus

1. M thinks that the real initial segment (K)α1 is coded into Xα. Further
M is also able to realize that this real initial segment is an initial
segment of its own K.

2. (ω1)M = ((ω1)K)M and moreover M computes the same pattern of
trees having cofinal branches or not as its own version of K. To be
more precise the sequence of K-cardinals starting at α does not depend
on whether we compute it in M or in (K)M . And likewise for the
pattern of trees having cofinal branches or not.
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Thus its transitive collapse M̄ will decode the same information out of
π(Xα) = Xα ∩ (ω1)M̄ , where π denotes the collapsing function. I.e. M̄
thinks that Xα ∩ (ω1)M̄ codes an initial segment of its own version of K
together with an ordinal ᾱ and some generically added branches through
trees, which have all the information to see the intended pattern of cofinal
or bounded trees Tᾱ(ξ+++) as computed in (K)M̄ . But as M was assumed
to be in S it will collapse nicely, thus M̄ = (K)ξ and Xα ∩ (ω1)M̄ codes an
initial segment (K)η of (K)ξ.

Whenever N is a countable, transitive ZF−-model, which satisfies that
N is elementary with respect to the K defining first order formula Φ(x),
KN ⊂ Kµ for a µ < ω1, qω ∈ N , and ξ = (ω1)N = ((ω1)(K))N , then it
contains, as the even entries of qω code Xα, the set Xα ∩ ξ. So if N decodes
the information packed into Xα∩ξ, it will obtain the ZF−-model from above,
namely (K)η ⊂ (K)M̄ , the (K)η-cardinal ᾱ, and certain generically added
cofinal branches through trees, such that (K)η together with the generically
added branches read off the intended pattern of bounded and cofinal trees.
As N was assumed to be smart, i.e. able to see each K initial segment in it
as such, N will be able to realize that (K)η is in fact also an initial segment
of its own K, thus (K)η ⊂ (K)N .

The goal is to show that the model (K)N which the countable model N
creates will define exactly the same sequence of cardinals starting at ᾱ and
exactly the same pattern of cofinal or bounded trees, as the model (K)η.
For the pattern which is seen by (K)η is the right one and we would be
finished. In order to show this, we crucially use the definition of S. First
note that from our assumptions on N we get that there is a µ < ω1 such
that (K)N ⊂ (K)µ and (ω1)N = (ω1)(K)µ . Thus, lining up already shown
things, we have that

(K)η ⊂ (K)N ⊂ (K)µ

and their versions of ω1 all coincide. Note now that as M ∈ S thus the
transitive collapse M̄ is of the form (K)ζ for some ζ < ω1. By the definition
of S we have that (K)(K)ζ = (K)ζ , and as seen above we also have

(K)η ⊂ (K)ζ .

Comparing ζ and µ we split into cases.
First assume that ζ ≤ µ. Then remember that (K)ζ has the property

that whenever a larger (K)-initial segment has the same ω1 then already all
(K)ζ-cardinals remain cardinals in the larger K-initial segment. As (K)µ is
of such a form and shares the same ω1, we infer that all cardinals of (K)ζ
are still cardinals in (K)µ. But by elementarity we have that all cardinals
of (K)η are still cardinals in (K))ζ , thus the sequence of cardinals after ᾱ
is the same as evaluated in (K)η and (K)µ. And as (K)η ⊂ (K)N ⊂ (K)µ,
the sequence of cardinals after ᾱ in (K)N is the same as the sequence of
cardinals after ᾱ in (K)η. Thus the sequence of trees in both models live
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on the same ordinals. As (ω1)(K)η = (ω1)(K)N the pattern of cofinal or

bounded trees must coincide as well as otherwise the (ω1)(KN
would have

been collapsed.
Secondly assume that µ > ζ. Then (K)η ⊂ (K)N ⊂ (K)µ ⊂ (K)ζ and as

already noted above, the sequence of cardinals after ᾱ does not depend on
the model (K)η or (K)ζ . But this also implies that the sequence of cardinals
does not depend on whether we compute them in (K)N or (K)η. Thus the
trees live on the same ordinals, independently from where we construct
them, and again, even the pattern of bounded or cofinal trees agrees as
(ω1)N = (ω1)(K)µ . This finishes the proof.

This finishes the definition of the three step iteration we use whenever
the α-th entry of the ♦-sequence aα is the name of a stationary subset of
ω1. What is left is to show that in the resulting model, the nonstationary
ideal NSω1 is indeed ∆1-definable over H(ω3) and NSω1 � A is ℵ2-saturated.

2.7 The definability of NSω1

Goal of this section is the proof that in our final model M1[Gδ] NSω1 is
∆˜ 1-definable over H(ω3). The parameter will be ω1. Remember that the
only patterns of length ω1 which occur on trees T (ξ)K in M1[Gδ] are the
ones which code stationary sets.

Lemma 40. If G denotes the generic for the forcing notion defined at the
beginning of the last section. Then in M1[G], the nonstationary ideal is
∆1-definable over H(ω3) using the parameter H(ω1).

Proof. Let S ⊂ ω1 be an arbitrary stationary subset of M1[G]. By the
inaccessibility of the Woodin cardinal δ, which represents the length of the
iteration, we know that the Pδ-name Ṡ of S is in fact a Pβ-name for some
β < δ. Thus there is a stage α < δ such that at stage α the name Ṡ is
considered by the ♦-sequence. The rules of our iteration then force the
characteristic function of S into the sequence of K-trees starting at the
K-cardinal α, followed by a localization of this information.

We therefore know that there is a set Yα ⊂ ω1 such that

♥ For every countable, transitive modelM(∈ Lω1 [Yα][Kω1 ]) of ZF− which
has Yα ∩ ωM1 as an element and which satisfies that KM ⊂ JKη and

ωM1 = ωK
M

1 , there exists an ordinal β ∈ M such that for every ξ <
ωM1 : ξ ∈ S if and only if M |= Tβ(ξ+++) has a β+ξ-cofinal branch.

Note that property ♥ can be written as Σ1 over H(ω3) with parameter
Kω1 , i.e. ω1. As stationarity is automatically Π1 over H(ω2) we see that in
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M1[Gδ] stationary sets have a ∆˜ 1 definition over H(ω3). What is left is to
show that the definition ♥ characterizes stationarity in M1[Gδ].

For that assume that S is an arbitrary subset of ω1 and assume that
there is a set Yα ⊂ ω1 such that ♥ holds. We want to conclude that S
is indeed stationary. Note first that ♥ also holds for transitive models M
which are uncountable. Indeed if M would be an uncountable, transitive
model such that the antecedens of ♥ does hold but not its conclusion, then
we can consider a countable elementary N ≺ M which is an element of S
and collapse it to obtain a countable transitive N̄ . By the definition of S, N̄
collapses to a M1-initial segment N̄ = JM1

η for some countable η. Thus N̄
is a countable, transitive model M for which ♥ fails by elementarity, which
is a contradiction. to our assumption that ♥ is true.

Hence as ♥ holds for models of arbitrary size we can consider large initial
segments JM1

η of M1, for which the antecedens of ♥ holds trivially. Thus

JM1
η witnesses that the pattern of the characteristic function of S is written

into trees which are build using K of JM1
η , I.e. the real K. But remember

that we have set up the iteration Pδ in such a way that the only patterns
of cofinal or bounded trees Tβ(ξ)K which can arise are the ones which code
stationary subsets of ω1. Thus the pattern which codes S must stem from
a stationary set which is what we wanted.

2.8 NSω1
� A is ℵ2-saturated

What is left is to show that we indeed have the restricted nonstationary
ideal saturated after forcing with the iteration.

Lemma 41. In the final model M1[Gδ] of the iteration the restricted non-
stationary ideal NSω1 � A on ω1 is ℵ2-saturated.

Proof. Note first that for every α < δ the forcing Pα is S-semiproper. In-
deed each factor of the iteration is S-proper, or S-semiproper, thus if we
iterate with countable support we obtain an S-semiproper notion of forcing
as we have argued at the beginning of the proof in section 2.1. This suffices
to see that the iteration is stationary sets preserving, which is of highest
importance for the following argument.

Assume now for a contradiction that in M1[Gδ] there is a δ = ω
M1[Gδ]
2 -

long antichain of stationary subsets of A. Denote this antichain with S and
let τ denote its Pδ-name. We claim that it is possible to find an inaccessible
κ below δ such that the following three properties hold:

1. κ is P⊕ τ -strong up to δ in M1

2. κ = ω
M1[G�κ]
2
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3. ~S � κ = (Si : I < κ) = (τ ∩ (M1)κ)G�κ is the maximal antichain in
M1[G � κ] which is picked by the �-sequence at stage κ.

This is clear as we can assume that our �-sequence lives on the stationary
subset of inaccessible cardinals below δ, and for all inaccessible κ property
2 automatically holds. Moreover the sets

C1 := {κ < δ : ~S � κ = (Si : I < κ) = (τ ∩ (M1)κ)M1[G�κ}

and

C2 := {κ < δ : ∀α∀S ∈ P (ω1) ∩MPα
1 stationary ∃S̄ ∈ ~S � κ(S ∩ S̄ /∈ NS}

are both clubs, therefore hitting the stationary set T consisting of the points
κ < δ where τ ∩ (M1)κ = aκ (remember: aκ is the κ-th element of the �-
sequence (aα : α < δ)) and κ is τ -strong up to δ. Thus if κ is in the nonempty
intersection C1∩C2∩T then 1 and 2 are satisfied, and the recursive definition
of our forcing P yields that at stage κ, as aκ = τ ∩ (M1)κ, the sealing forcing
S((τ ∩ (M1)κ)G�κ) is at least considered, and in order to show property 3, it
suffices to show that (τ ∩ (M1)κ)G�κ) = S̄ � κ is maximal in M1[G � κ]. But
this is clear as by the RCS iteration properties we take at inaccessible κ’s
the direct limit of the Pα’s, thus each stationary S ⊂ ω1 in MPκ

1 is already
included in a MPα

1 for α < κ. So we have ensured the existence of a κ with
all the 3, above stated properties.

Now the forcing S(~S � κ) can not be S-semiproper at stage κ, as oth-
erwise we would have to force with it, therefore killing the antichain ~S. So
there exists a condition (p, c) ∈ S(~S � κ) such that the set

T̄ := {X ≺ (Hκ+)M1[G�κ] : |X| = ℵ0∧(p, c) ∈ X∧@Y ⊃ X(Y ≺ (Hκ+)M1[G�κ]

∧ |Y | = ℵ0 ∧ (X ∩ω1 = Y ∩ω1)∧∃(q, d) ≤ (p, c) ((q, d) is Y-semigeneric ))}
∩ S.

is a stationary subset of S in M1[G � κ], and by construction of our iteration,
the κ-th forcing in P is Col(ω1, 2

ℵ2), so in M1[G � κ + 1] there is a surjec-
tion f : ω1 → (Hκ+)M1[G�κ]. As Col(ω1, 2

ℵ2) is proper the set T̄ remains
stationary in M1[G � κ+ 1] which implies that

T := {α < ω1 : f”α ∈ T̄ ∧ α = f”α ∩ ω1}

is stationary in M1[G � κ + 1]. As the tail P[κ+2,δ] remains S-semiproper,
seen as an iteration with M1[G � κ+ 1] as ground model, we can infer that
T remains stationary in M1[G] and therefore either ¬A ∩ T is stationary or
there exists an i0 < δ such that

(∗∗) T ∩ Si0 is stationary in M1[G].
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Assume first that ¬A∩T is stationary. We want to derive a contradiction.
Fix an α ∈ ¬A ∩ T , and let Z := f”α ∈ T̄ . We can list inside Z ≺
(Hκ+)M1[G�κ] all the S(~S � κ)-names for countable ordinals and a descending
sequence of S(~S � κ)-conditions (p, c) > (p0, c0) > (p1, c1), .. deciding more
and more of them. We can assume that sup(dom(pi)) = α and thus the lower
bound of the sequence (pi, ci)I∈ω denoted by (p′, c′) with dom(p′) = α+1 and
p′(α) ∈ ~S � κ is in fact already a condition in S(~S � κ) as α /∈ A. Thus we
have found a (Z, S(~S � κ))-semigeneric condition below (p, c) contradicting
Z ∈ T̄ .

Thus (∗∗) must hold. Let us shortly reflect the situation we are in. The
idea is to mimic the short argument from above in our new case, I.e. we want
to find a model X ∈ T̄ such that we can find a (X,S(~S � κ))- semigeneric
condition (q, d) < (p, c), thus arriving at a contradiction. For that it would
be sufficient to find an X such that

1. X ∩ ω1 ∈ T ∩ Si0 for some i0 < κ

2. f”(X ∩ ω1) ⊂ X

3. Si0 ∈ X

The first thing to note here is that already the first item can be impossible
to fulfill, f or we can not restrict the size of i0 and it might as well happen
that i0 > κ, and thus there is no chance of finding an S(~S � κ)-condition
which is (X,S(~S � κ))-semigeneric in the way described above. Here we use
the large cardinal property of δ being Woodin for rescue. We can find an
elementary embedding j : M1 → N such that j(κ) > i0, and which fixes
the predicate ~S up to a cardinal λ > i0. The task has now changed to
find a (j(X), j(S(~S � κ))-semigeneric condition below (c, p) in order to get a
contradiction.

First let λ < δ, λ > max(i0, κ+ 1) be such that (τ ∩ (M1)λ)G�λ = ~S � λ,
so we have (τ ∩ (M1)λ)G�λ(i0) = Si0 . As κ was chosen to be P⊕ τ -strong up
to δ we let j : M1 → N be an elementary embedding with critical point κ,
such that N is transitive, Nκ ⊂ N , (M1)λ+ω ⊂ N , j(P)∩(M1)λ = P∩(M1)λ,
and j(τ) ∩ (M1)λ = τ ∩ (M1)λ.

H should denote the generic filter for the segment (P[λ+1,j(κ)])
N [G�λ] of

j(P) over N [G � λ]. Then we lift j to an elementary embedding

j∗ : M1[G � κ]→ N [G � λ,H].

Notice that ((M1)λ+ω)M1[G�λ] = ((M1)λ+ω)N [G�λ].
Now we let (Xk : k < ω1) ∈ M1[G � κ+ 1] be an increasing continuous

chain of countable elementary substructures of (Hj(κ)+)N [G�κ+1] with {τ ∩
(M1)λ, i0} ⊂ X0 satisfying for all k < ω1 the following three properties:

(a) k ∈ Xk+1
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(b) f”(Xk ∩ ω1) ⊂ Xk

(c) j∗”(Xk ∩ (Hκ+)M1[G�κ] ⊂ Xk

Let Ḡ := G � [κ+ 2, λ], and consider the set

{Xk[Ḡ] ∩ ω1 : k < ω1}

which is a club in M1[G � λ]. We can demand that for all k < ω1, X[Ḡ]∩ω1 =
X ∩ ω1. And by the stationarity of T ∩ Si0 we obtain an index k ∈ ω1 such
that

Xk[Ḡ] ∩ ω1 = Xk ∩ ω1 ∈ T ∩ Si0 .
Write X := Xk, α := X ∩ ω1. As at stage κ we had to force with the ω-

closed Col(2ℵ2 ,ℵ1) we know that X∩ (Hκ+)M1[G�κ] ∈M1[G � κ]. Remember
that f ∈M1[G � κ+ 1] was chosen as a surjection of ω1 onto (Hκ+)M1[G�κ],
so as α ∈ T by definition of T f”α ∈ T̄ and α = f”α∩ω1, and hence by (b)

f”α ⊂ X ∩ (Hκ+)M1[G�κ] ∈M1[G � κ].

As α = f”α ∩ ω1, f”α ∈ T̄ and f”α ⊂ X ∩ (Hκ+)M1[G�κ] we get that
X ∩ (Hκ+)M1[G�κ] ∈ T̄ ⊂ S and therefore

(∗ ∗ ∗) j∗(X ∩Hκ+)M1[G�κ]) ∈ j∗(T̄ ) ⊂ j∗(S).

Note that our second generic H, denoting the generic filter for the seg-
ment (P[λ+1,j(κ)])

N [G�λ] of j(P) over N [G � λ] has not been specified yet. The

segment (P[λ+1,j(κ)])
N [G�λ] of j(P � κ)[G � λ] over N [G � λ] is j∗(S)[G � λ]-

semiproper. By (∗ ∗ ∗), j∗(X ∩HM1[G�κ]
κ+ )[Ḡ] ∈ j∗(T̄ )[Ḡ]. So we can say that

as T̄ is closed under supersets with the same intersection with ω1 so is j(T̄ ).
Hence X ∩ (Hκ+)M1[G�κ] ∈ T̄ implies that j∗(X ∩ (Hκ+)M1[G�κ]) ∈ j∗(T̄ )
which in turn implies that X ∈ j∗(T̄ ) by property (c), and finally we see
that X[Ḡ] ∈ j∗(T̄ )[G � [κ + 1, λ]] ⊂ j(S)[G � λ]. By the j(S)[G � λ]-
semiproperness of (P[λ+1,j(κ)])

N [G�λ] we can now conclude that any condi-
tion r ∈ P[λ+1,j(κ)] ∩ X[Ḡ] has a stronger condition q ∈ P[λ+1,j(κ)]) which
is (X[Ḡ],P[λ+1,j(κ)])-semigeneric. If we pick H such that q ∈ H then by
semigenericity of q we obtain X[Ḡ,H] ∩ ω1 = X[Ḡ] ∩ ω1 = X ∩ ω1 = α ∈
Si0 = (τ ∩ (M1)λ)G�λ(i0) ∈ X[Ḡ,H]. But also due to (c) we have that

j∗(X ∩ (Hκ+)M1[G�κ] = j∗”(X ∩ (Hκ+)M1[G�κ] ⊂ X[Ḡ,H].

This gives us the desired contradiction as we can find an (X[Ḡ,H], j(S(~S �
κ)))-semigeneric condition below j(p, c) = (p, c). Indeed we can just list the
countably many names for countable ordinals in X[Ḡ,H] along with condi-
tions of j(S(~S � κ)) deciding them below (p, c) and let (p′, c′) ∈ j(S(~S � κ))
be just the condition with dom(c′) =dom(d′) = α + 1, c′(α) = α and
p′(I) = Si0 for some I < α. So X[Ḡ,H] together with (p′, c′) < (p, c)
witness that j∗(X ∩Hκ+)M1[G�κ]) /∈ j∗(T̄ ), contradicting (∗ ∗ ∗).
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Chapter 3

NSω1 saturated and a
projective well-order.

Goal of this section is a the proof of the following result:

Theorem 42. Assume that M#
1 exists, then there exists a generic extension

M1[G] of M1 such that in M1[G] NSω1 is ℵ2-saturated and there is a lightface
Σ1

4-definable wellorder on the reals.

Its proof is organized as follows. First we introduce a method which
codes reals into triples of ordinals (β, γ, δ). This method was invented by
A. Caicedo and B. Velickovic [2] building on the work of J. Moore on his
set mapping reflection principle (see [12]), which he used to show that BPFA
implies that the continuum is ℵ2. Their coding is introduced thoroughly
in the first section of this chapter. The downside of this coding is that,
as opposed to the coding we used in the last chapter, we do not have any
control of when exactly a certain code gets written down in the universe.
However this difficulty does not prevent a nice definition of a wellorder
on the reals which is localizable, meaning that already small fragments of
the universe, provided they contain a certain amount of information, are
able to witness the coding. The relevant defintions for that are done in the
second section and the theorem is finally proved in the last section, where we
combine the coding forcings with forcings which seal off the long antichains
in P (ω1)\NSω1 .

3.1 The coding method

The definition of the coding is a rather convoluted one. We have to introduce
a couple of definitions and start with

Definition 43. A ~C-sequence, or a ladder system, is a sequence (Cα : α ∈
ω1, α a limit ordinal ), such that for every α, Cα ⊂ α is cofinal and the
ordertype of Cα is ω.
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For three subsets x, y, z ⊂ ω we can consider the oscillation function.
First turn use the set x into an equivalence relation ∼x, defined on the set
ω − x as follows: for natural numbers in the complement of x satisfying
n ≤ m let n ∼x m if and only if [n,m] ∩ x = ∅. This enables us to define:

Definition 44. For a triple of subset of natural numbers (x, y, z) list the
intervals (In : n ∈ k ≤ ω) of equivalence classes of ∼x which have nonempty
intersection with both y and z. Then the oscillation map o(x, y, z, ) : k → 2
is defined to be the function satisfying

o(x, y, z)(n) =

{
0 if min(In ∩ y) ≤ min(In ∩ z)
1 else

Next we want to define how suitable countable subsets of ordinals can
be used to code reals. For that suppose that ω1 < β < γ < δ are fixed limit
ordinals, and that N ⊂ M are countable subsets of δ. Assume further that
{ω1, β, γ} ⊂ N and that for every η ∈ {ω1, β, γ}, M ∩η is a limit ordinal and
N ∩ η < M ∩ η. We can use (N,M) to code a finite binary string. Namely
let M̄ denote the transitive collapse of M , let π : M → M̄ be the collapsing
map and let αM := π(ω1), βM := π(β), γM := π(γ) δM := M̄ . These are
all countable limit ordinals. Further set αN := sup(π“(ω1 ∩N)) and let the
height n(N,M) of αN in αM be the natural number defined by

n(N,M) := card(αN ∩ CαM )

where CαM is an element of our previously fixed ladder system. As n(N,M)
will appear quite often in the following we write shortly n for n(N,M).
Note that as the ordertype of each Cα is ω, and as N ∩ω1 is bounded below
M ∩ω1, n(N,M) is indeed a natural number. Now we can assign to the pair
(N,M) a triple (x, y, z) of finite subsets of natural numbers as follows:

x := {card(π(ξ) ∩ CβM ) : ξ ∈ β ∩N}.

Note that x again is finite as β∩N is bounded in the cofinal in βM -set CβM ,
which has ordertype ω. Similarly we define

y := {card(π(ξ) ∩ CγM ) : ξ ∈ γ ∩N}

and
z := {card(π(ξ) ∩ CδM : ξ ∈ δ ∩N}.

Again it is easily seen that these sets are finite subsets of the natural num-
bers. We can look at the oscillation o(x\n, y\n, z\n) (remember we let
n := n(N,M)) and if the oscillation function at these points has a domain
bigger or equal to n then we write

sβ,γ,δ(N,M) :=

{
o(x\n, y\n, z\n) � n if defined

∗ else
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Similarly we let sβ,γ,δ(N,M) � l = ∗ when l > n. The seemingly arbitrary
move in considering the oscillation of the triple (x\n, y\n, z\n) instead of
just the oscillation of (x, y, z) will become clear after the next definition.
Finally we are able to define what it means for a triple of ordinals (β, γ, δ)
to code a real r.

Definition 45. For a triple of limit ordinals (β, γ, δ), we say that it codes
a real r ∈ 2ω if there is a continuous increasing sequence (Nξ : ξ < ω1 of
countable sets of ordinals whose union is δ and which satisfies that whenever
ξ < ω1 is a limit ordinal then there is a ν < ξ such that

r =
⋃

ν<η<ξ

sβ,γ,δ(Nη, Nξ)

As a short remark, note that if we would define the sβ,γ,δ function with
the full oscillation of (x, y, z) instead, then our above definition would be-
come useless. Indeed if Nξ is a continuous increasing sequence whose union
is δ then for some fixed limit ξ < ω1, and if we construct the sets x, y, z for
the pair (Nν , Nξ), ν < ξ, the set x would for increasing ν eventually just
become an enumeration of card(η∩CβM ) for η ∈ β∩Nν . Likewise the sets y
and z would just become eventually an enumeration of the natural numbers,
and thus completely useless for any coding purpose. The idea to overcome
this, is to constantly throw away already coded information, namely the n,
and code the real r over and over again into the oscillation pattern.

Our next task is to combine the forcings which make NSω1 ℵ2-saturated,
and the forcings which will generically add witnesses for ordinal triples cod-
ing reals r in such a way that in the end a projective well-order. of the reals
is possible. For that we should take a closer look at the forcings which add
coding witnesses. These forcings have in common that their generics exist,
assuming the so called Mapping Reflection Principle (MRP), which was in-
troduced by Justin Moore. The MRP is a forcing axiom whose consistency
strength lies in between the proper forcing axiom PFA and the bounded
proper forcing axiom BPFA. Moore famously used the MRP to show that
already the bounded proper forcing axiom suffices to decide the value of the
continuum, namely ZFC + BPFA ` 2ℵ0 = ℵ2. We follow Caicedo Velickovic
in proving that MRP implies that for every real r there is a triple of ordinals
(β, γ, δ) such that ω1 < β < γ < δ < ω2 which code the real r. In fact the
witnesses for the coding can be added by small proper forcings, which will
allow us to combine these with the forcings which seal off long antichains
in P (ω1)\NSω1 . For the definition of the MRP we need the following local
version of stationarity:

Definition 46. Let θ be a regular cardinal, X be an uncountable set, let
M ≺ Hθ be a countable elementary submodel which contains [X]ω. Then
S ⊂ [X]ω is M -stationary if for every club subset C of [X]ω, C ∈M it holds
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that
C ∩ S ∩M 6= ∅.

Definition 47. Let X be an uncountable set, N ∈ [X]ω and x ⊂ N finite.
Then the Ellentuck topology on the set [X]ω is generated by base sets of the
form

[x,N ] := {Y ∈ [X]ω : x ⊂ Y ⊂ N}.

From now on whenever we say open we mean open with respect to the El-
lentuck topology.

Definition 48. Let X be an uncountable set, let θ be a large enough regular
cardinal so that [X]ω ∈ Hθ. Then a function Σ is said to be open stationary
if and only if its domain is a club C ⊂ [Hθ]

ω and for every countable M ∈ C,
Σ(M) ⊂ [X]ω is open and M -stationary.

Equipped with these notions we can introduce the mapping reflection
principle:

Definition 49. Let Σ be an open stationary function with domain some
club C ⊂ [Hθ]

ω and range P ([X]ω). Then there is a continuous sequence of
models (Nξ : ξ < ω1) in dom(Σ) such that for every limit ordinal ξ there is
a ν < ξ such that for every η with ν < η < ξ, Nη ∩X ∈ Σ(Nξ).

Key here is that these sequences of models which witness the truth of
the MRP can always be forced with a proper forcing:

Proposition 50. PFA proves MRP.

Proof. The goal is to show that the natural forcing which adds a continuous
sequence of models witnessing the MRP for a stationary set mapping Σ is
always proper. So given such a function Σ with domain C ⊂ [Hθ]

ω and
range P ([X]ω) we let PΣ be the partial order whose elements are functions
p : α + 1 → dom(Σ), α countable, which are continuous and ∈-increasing,
and which additionally satisfy the MRP-condition on its limit points, namely
that for every 0 < ν < α there is a ν0 < ν such that p(ξ) ∩X ∈ Σ(p(ν)) for
every ξ in the interval (ν0, ν). The order is by extension. The first thing to
note is that sets of the form Dα := {p ∈ PΣ : α ∈ dom(p)} are always dense.
This is true as the trivially dense sets Dx := {p ∈ PΣ : ∃β ∈ dom(p)(x ∈
p(β)) ensure that whenever we force with PΣ there will be a surjection from
{α : ∃p ∈ G(α ∈ dom(p)} onto the uncountable X. Thus once we show that
the forcing PΣ is proper, and therefore ω1-preserving the ω1-many dense sets
Dα and PFA will give the desired reflecting sequence. Note that we will not
use the density of the Dα’s to show that PΣ is proper, so we avoid a circular
reasoning.

To see that PΣ is proper we fix a large enough cardinal λ and a countable,
elementary submodel M ≺ Hλ which contains Σ, PΣ, a condition p ∈ PΣ,
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and the structure H|PΣ|+ . We list all the dense subsets (D0, D1, ..) of PΣ

which we can find in M and build by recursion a descending sequence of
conditions (pi : I ∈ ω) in M , starting at p0 := p hitting the corresponding
DI−1. Assume that we have already built conditions up to I ∈ ω. We
let N ′i be a countable elementary submodel of H|PΣ|+ containing Hθ, Di,
PΣ and pi, and build the club of countable structures Ci := {N ′i ∩ X :
N ′i as just described}. Note that this club will be in M , and further that
for every club on [Hθ]

ω which is in M , the set M ∩Hθ will be in the club.
Thus the set M ∩ Hθ will be in the domain of Σ and by the definition
of Σ, the set Σ(M ∩ Hθ) is M ∩ Hθ-stationary and open. So there is an
Ni ∈ Ci ∩Σ(M ∩Hθ) ∩M , and by the definition of the Ellentuck topology,
there is a finite subset of Ni called xi such that [xi, Ni] ⊂ Σ(M ∩ Hθ).
We first extend the condition pi to qi := pi ∪ {ζi + 1, hullHθpi(ζi) ∪ xi))},
for ζi the maximum of the domain of pi. This condition qi will also be
in N ′i as all its defining parameters are, thus as N ′i also contains Di we
can extend the condition qi to a pI+1 ∈ N ′i ∩ Di. Note that as we are
working in N ′i , no matter how we extend qi, the range of the extended
condition intersected with X will always be contained in Ni = N ′i ∩X, and
as Σ(M ∩Hθ ⊃ [xi, Ni], it will also be contained in Σ(M ∩Hθ. Then if we
set pω :=

⋃
I∈ω pI ∪ (ω, (M ∩Hθ)) then this will be a condition in PΣ, which

is by construction below p and (M,PΣ)-generic, thus the forcing is proper.

We can use the MRP to show that in its presence the function sβγδ
eventually becomes stable in the following way:

Proposition 51. Assume that the MRP does hold and let ω1 < β < γ < δ <
ω2 be limit ordinals with uncountable cofinality. Then there is a continuous
sequence of countable sets of ordinals (Nξ : ξ < ω1) such that

⋃
ξ<ω1

Nξ = δ
and such that for every limit ordinal ξ < ω1 and every n ∈ ω there is a
snξ ∈ 2n ∪ {∗} and there is a ν < ξ such that

sβγδ(Nη, Nξ) � n = snξ

for every η in the interval (ν, ξ). Moreover already BPFA suffices for the
conclusion.

The proof is a consequence of the following

Lemma 52. Again assume the MRP and suppose that for every α < ω1 we
have a partition of α into two sets Ki

α, I ∈ 2 such that both are clopen sets
in the usual order topology on ω1. Then there is a club C ⊂ ω1 such that for
every limit point ξ of C there is an I ∈ 2 such that C\Ki

ξ is bounded below
ξ. Already BPFA does suffice for the conclusion.
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Proof. Consider ω1 as a subset of [ω1]ω, then it is easy to see that the
property ”not an ordinal in [ω1]ω“ is an open set in the Ellentuck topology,
hence ω1 is closed in [ω1]ω. The restriction of the Ellentuck topology to ω1

yields the usual order topology on ω1.
If M ≺ Hθ is countable and α = M ∩ ω1 then one of the Ki

α’s is M -
stationary. Indeed assume not then there are two clubs C0 and C1 in M
which have empty intersection with K0

α and K1
α respectively. But then

C0 ∩C1 = ∅ in M and by elementarity in Hθ which is a contradiction. Now
set

Σ(M) := [ω1]ω\Ki
α

where K1−I
α is the stationary part of the partition. As this is an open

stationary map we can apply the MRP to obtain a sequence (Nξ : ξ < ω1)
such that for all limits ξ there is a ν < ξ such that Nη ∩ ω1 ∈ Σ(Nξ) for
every η ∈ (ν, ξ). Then C := {Nξ ∩ ω1 : ξ < ω1} is a club as required.

To see that already BPFA suffices for the conclusion note that the state-
ment of the Lemma is of the form Σ1 with parameters Ki

α ⊂ ω1. We have
already seen that each instance of the MRP can be forced by a proper forc-
ing. As BPFA is equivalent to the assertion that Hℵ2 ≺ V P for every proper
P we see that already BPFA is sufficient for the statement.

proof of the Proposition. Consider a triple (ω1 < β < γ < δ < ω2) of cofi-
nality ω1 and let (Nξ : ξ < ω1) be a continuous sequence of countable sets
of ordinals whose union is δ. We can assume without loss of generality that
{ω1, β, γ} ⊂ N0 and that Nη ∩ ω1 < Nξ ∩ ω1 holds for η < ξ and similar
inequalities hold for β and γ. For a fixed natural number n ∈ ω and an
ordinal ξ < ω1 we can apply the previous Lemma to obtain a partition of ξ
into 2n + 1 many sets {KI

ξ : I ∈ 2n+1} via setting

η ∈ KI
ξ if and only if sβγδ(Nη, Nξ) � n = si

for si the I-th element of 2n ∪ {∗} in some fixed well-order. This partition
consists even of clopen sets as already finitely many elements {n0.N1, ..., nk}
of Nξ suffice that sβγδ({n0, ..., nk}, Nξ) = sβγδ(Nη, Nξ) and thus each KI

ξ

is clopen. We apply the previous Lemma to obtain for every n ∈ ω a club
Cn ⊂ ω1 such that for every limit point ξ ∈ C eventually all points of C below
ξ are in some fixed KI

ξ . To KI
ξ corresponds an snξ ∈ 2n ∪ {∗} and we have

that for every limit ξ ∈ Cn there is an η < ξ such that sβγδ(Nη, Nξ) � n = snξ
for every η ∈ (ν, ξ). If we set C :=

⋂
n∈ω Cn then the sequence (Nξ : ξ ∈ C)

is as desired.

We will use the MRP to show that for every real r there is a proper
notion of forcing which will introduce a sequence of countable models which
witnesses that the real r is coded by a triple (β, γ, δ) of limit ordinals below
ℵ2. The procedure is the same as before, namely we show first that MRP
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implies that every real r is coded by a triple of ordinals, and then show
that in fact BPFA suffices for the conclusion. We start with fixing an F :
[ω4]<ω → ω4. We will define a sequence of two player games GFν for ν < ω1.

I β0 γ0 δ0 β1 γ1...

II κ0, ε0 λ0, ϑ0 µ0, $0 κ1, ε1...

The rules of the game GFν are as follows: player I starts by playing an
ordinal β0 < ω2, then player II responds with a pair of ordinals κ0 ≤ ε0 < ω2,
β0 ≤ κ0. In the next round player I plays an ordinal γ0 < ω3 and II responds
with playing ordinals λ0 ≤ ϑ0 < ω3 such that γ0 ≤ λ0. This is followed by
player I picking a δ0 < ω4 and II playing µ0 ≤ $0 < ω4 with δ0 ≤ µ0. Then
I goes back to play below ω2: he picks a β1 < ω2 greater than ε0 and II
responds with a pair κ1, ε1 such that β1 ≤ κ1, and the game continues with
I playing below ω3, II responding, I playing below ω4, II responding and so
on. The first player who violates the rules loses. Otherwise the game will
determine an infinite sequence of ordinals and we set

X := clF ({κn, λn, µn : n ∈ ω} ∪ ν})

where clF should denote the closure under the function F and ν < ω1 is
the index of the ν-th game GFν . We say that player II wins if the following
conditions hold:

• X ∩ ω1 = ν

• X ∩ [βn, βn+1) ⊂ [βn, εn) for all n ∈ ω.

• X ∩ [γn, γn+1) ⊂ [γn, ϑn) for all n ∈ ω.

• X ∩ [δn, δn+1) ⊂ [δn, $n) for all n ∈ ω.

If player I wins then he has won already after finitely many stages so by the
Gale-Stewart theorem GFν is determined for every ν < ω1. Player I wins GFν
only for few ν < ω1 as is shown now. Let

AF := {ν < ω1 : player I has a winning strategy in GFν }

then

Lemma 53. AF is nonstationary.

Proof. The proof is by contradiction, thus assume that AF is stationary for
some function F : [ω4]ω → ω4. First notice that there is a winning strategy
for I which works for all ν ∈ AF simultaneously. Indeed we can define a
strategy σ for I which maps a given state s of the game to the supremum of
all the ordinals of the form σν(s), ν ∈ AF , where σν is a winning strategy
for I. This strategy σ is again a winning strategy for I as a supposed play
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of the game where I follows σ but nevertheless yields a victory of II will
immediately give II a way of winning against any σν , contradicting the fact
that σν is a winning strategy for I.

A similar consideration shows that we can further assume that whenever
player I has to pick an ordinal γn+1 < ω3, he can do so without looking at
what player II decided to play for κn, εn. Indeed note that after all there are
only ℵ2-many choices for II to make and I can simply play the supremum of
all the answers, which again is a winning strategy for I. Likewise for playing
δn+1 < ω4, I does not have to care about the choices of II for λn and ϑn. We
will assume that the winning strategy σ for player II has the above described
properties

Now we describe a way for II to win against the strategy σ, thus giving
us the desired contradiction. We first fix a large enough regular θ and an
increasing, continuous elementary chain of ℵ1-sized models of length ω1·ω

P0 ≺ P1 ≺ ...Pξ ≺ ... ≺ Hθ, ξ < ω1·ω

such that F,AF , σ ∈ P0. Let Nn := Pω1·n and let N be the union of the
Nn’s. Let

ζn := sup(Nn ∩ ω2)

ηn := sup(Nn ∩ ω3)

θn := sup(Nn ∩ ω4)

then all of these ordinals have cofinality ω1 and the club subsets of Nn which
climb up to them are elements of Nn+1 as the sequence is an elementary
chain. We fix a countable M ≺ N containing all the just mentioned clubs
and such that {ζn : n ∈ ω} ⊂ M , {ηn : n ∈ ω} ⊂ M , {θn : n ∈ ω} ⊂ M
and F,AF , σ ∈ M holds. Further by the assumed stationarity of AF we
can demand that α := M ∩ ω1 ∈ AF . We will describe now a game where
I follows σ which will nevertheless result in a victory for II. Assume that
we are in the n-th round and the position pn−1 of the game looks like this
pn−1 = (β0, (κ0, ε0), γ0, ..., δn−1, (µn−1, $n−1)). Assume further that pn−1 ∈
Nn. Then I plays according to σ, thus βn = σ(pn−1) and as both σ and
pn−1 are in Nn, βn will also be in Nn. Then II will follow by choosing
κn ∈ M ∩ Nn+1 such that ζn ≤ κn < ω2. Let εn := sup(M ∩ Nn+1 ∩ ω2).
Recall that ζn+1 = sup(Nn+1 ∩ω2) has cofinality ω1 and as M is countable,
εn < ζn+1. As Nn+1 contains a club set which converges to ζn+1 and this
club is in M we conclude that εn ∈ Nn+1. Player II plays (κn, εn). Player
I then answers with σ(pn−1 (βn, (κn, εn))) = γn. As σ was assumed to be
not dependent on the previous choice of player I we know that γn ∈ Nn.
II responds with picking a λn ∈ M ∩ Nn+1 with ηn ≤ λn < ω3 and ϑn :=
sup(M ∩ Nn+1 ∩ ω3). The same reasoning as above yields that ϑn < ηn+1

and ϑn ∈ Nn. Player I the answers with δn with the help of the strategy σ.
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Again, as σ ∈ Nn, and as σ does not depend on player I’s choice of λn and
ϑn, δn ∈ Nn. Player II then follows with playing µn ∈M ∩Nn+1 such that
θn ≤ µn < ω4. If we let $n := sup(M ∩Nn+1 ∩ ω4) then again $n < θn+1

and $n ∈ Nn+1. II then picks (µn, $n). This defines the next stage pn of
the game and by summing up already shown things we see that pn ∈ Nn+1.
If we let

X := clF ({κi, λi, µi : I ∈ ω} ∪ α)

then X ⊂ M as all the relevant information is present in M . This implies
that X ∩ ω1 = α. By construction we also have that βn+1 ∈ Nn+1 and
εn = sup(M ∩ Nn+1 ∩ ω2), thus X ∩ [βn, βn+1) ⊂ X ∩ [βn, εn) for every
n. Likewise we have that for every n, X ∩ [γn, γn+1) = X ∩ [γn, ϑn) and
X ∩ [δn, δn+1) = X ∩ [δn, $n). Thus II has won the game GFα , however
α ∈ AF which is a contradiction.

If we assume that MRP holds then arbitrary reals r can be coded into
triples of ordinals, as is shown now:

Lemma 54. If MRP holds then every real r is coded into a triple (β, γ, δ)
such that the each element of the triple has cofinality ω1 and ω1 < β < γ <
δ < ω2.

Proof. Let r be an arbitrary real. We let θ be a regular cardinal which is
large enough, and let the open stationary set mapping Σr to be defined on
the club of countable elementary submodels M ≺ Hθ with values set as
follows:

Σr(M) := {N ∈ [M ∩ω4]ω : sω2,ω3,ω4(N,M ∩ω4) is an initial segment of r}

We have to check that Σr is indeed open and stationary. Openness is
clear as already finite information T ⊂ N suffices to determine the value
of sω2,ω3,ω4(N,M ∩ω4). Thus if N ∈ Σr(M) then already an open set of the
form [m,N ] will be a subset of Σr(M). To show that Σr is stationary needs
more work and the proof of this will be postponed. Instead we finish the
proof of the lemma under the assumption that Σr is open stationary.

Using MRP we obtain a reflecting sequence (Mξ : ξ < ω1) for Σr. Let
M :=

⋃
ξ<ω1

Mξ and let M̄ be its transitive collapse with π the collapsing
map. Let β = π(ω2), γ = π(ω3), δ = π(ω4). All these ordinals are in the
interval (ω1, ω2) and their cofinalities are ω1. Let Nξ := π(Mξ ∩ ω4) and we
get that

sβ,γ,δ(Nη, Nξ) = sω2,ω3,ω4(Mη ∩ ω4,Mξ ∩ ω4)

for every η < ξ < ω1.
Moreover for every ξ limit we have continuity in that Nξ =

⋃
η<ξNη.

Which implies that the n(Nη, Nξ) converges to ω for η → ξ, where as a short
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reminder n(Nη, Nξ) was defined to be the size of the set Cπ(ω1)∩π”(ω1∩Nη)
for π the collapsing function of Nξ. As sβ,γ,δ(Nη, Nξ) = sω2,ω3,ω4(Mη ∩
ω4,Mξ ∩ ω4), and as (Mξ : ξ < ω1 is a reflecting sequence for Σr we know
that there is a ν < ξ such that

r =
⋃

ν<η<ξ

sβ,γ,δ(Nη, Nξ).

This ends our proof as the triple (β, γ, δ) code r as desired.

Lemma 55. Already BPFA suffices for the conclusion of the last Lemma

Proof. We will use Bagaria’s characterization of BPFA again, namely that
BPFA is equivalent to the assertion that Hℵ2 ≺1 V P for every proper P.
Note that in the proof of the previous Lemma a proper forcing will add a
reflecting sequence for the open stationary function Σr and the existence of
a triple of ordinals coding the reals r is a Σ1 statement with parameters the
ladder system C and the real r. Thus already BPFA suffices to guarantee
such a triple.

What is still left to show is that the function Σr is M -stationary for
every M in its domain.

Lemma 56. Let Σr be the function from the proof of Lemma 77,

Σr(M) := {N ∈ [M∩ω4]ω : sω2,ω3,ω4(N,M∩ω4) is an initial segment of r}.

Then Σr is M -stationary for every M ≺ Hθ, where θ is a sufficiently large
regular cardinal.

Proof. The set XΣr which comes along with Σr is ω4. As the closed filter on
[ω4]ω is generated by sets which are closed under functions F : [ω4]<ω → ω4

it suffices to show that whenever M ≺ Hθ and F : [ω4]<ω → ω4 is a function
in M , then there is an X ∈ M which is closed under F and for which
X ∈ Σr(M) does hold. We will do this using the previously defined games
GFν and the already proved fact that there is a club C ⊂ ω1 of ordinals ν for
which player II has a winning strategy.

Thus let M be an arbitrary elementary submodel of Hθ. We will argue
almost entirely inside M . Let M̄ as always denote the transitive collapse
of M , let π be the collapsing function and set αM := π(ω1), βM := π(ω2),
γM := π(ω3) and δM := π(ω4). Let C be our fixed ladder system, and
for an ordinal rho < ω4 let htωi(ρ), the height of ρ in ωi be defined as
htωi(ρ) := card(π(ρ) ∩ Cπ(ωi)). Our goal is to show that we can find a

ν ∈ C ∩M and play finitely many rounds of the game GFν inside M such
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that if T is the finite set of relevant ordinals played by II and X := clF (T ∪ν)
then sω2ω3ω4(X,M ∩ ω4) is an initial segment of r and thus in Σr(M). The
two players I and II will collaborate to achieve this.

We consider the set of winning strategies σν for II and what they do at
stage one. Let us assume that I plays 0 in all of his three first moves. II
will respond with pairs (κν0 , ε

ν
0), (λν0 , ϑ

ν
0), and (µν0 , $

µ
0 ). We can consider the

suprema of the sets {εν0 : ν ∈ C} {ϑν0 : ν ∈ C} and {$ν
0 : ν ∈ C} and

call them ε, ϑ and $ respectively. These suprema are elements of M but we
leave M for a moment to compare the height of ε below ω2, the height of
ϑ below ω3 and the height of $ below ω4. We pick the maximum of these
three natural numbers, call it k and fix a ν ∈ C ∩M be such that its height
below ω1, say n is bigger than k. We ensured this way that for the set X
we will construct inductively sω2ω3ω4(X,M ∩ω4) will be defined on the first
n digits.

The first round of the game is played as follows: player I simply plays
0 three times and player II responds using his winning strategy σν . His
answers, say (κ0, ε0), (λ0, ϑ0) and (µ0, $0) are such that the height of ε0
below ω2, the height of ϑ0 below ω3 and the height of $0 below ω4 are less
than n and thus if we let X0 be the clF ({κ0, λ0, µ0}∪ν) then sω2ω3ω4(X0,M∩
ω4) = o(x\n, y\n, z\n) � n (where the sets x, y and z are defined as usual)
will be ∗. Thus we start our construction without accidentally having coded
some information already in the first step.

Assume now inductively that rounds 0, 1, ..., I − 1 have already been
played and that XI−1 := clF ({κ0, λ0, µ0, ..., κI−1, λI−1, µI−1} ∪ ν) is such
that sω2ω3ω4(Xn−1,M∩ω4) codes the previously fixed real r on the first I−2
many digits. Our goal is to code r’s I − 1-th digit. For that purpose I plays
an ordinal βi in M such that htω2(βi) > max{htω3(ϑI−1), htω4($I−1), n}.
Player II responds according to his winning strategy σν with the pair (κI , εI)
We have by the rules of the game that βi ≤ κi ≤ εi. We now split into cases
according the (I − 1)-th entry of r.

Case 1.

r(I − 1) = 0. Then player I picks a γi such that htω3(γi) > htω2(εi) and
player II answers with (λi, ϑi) according to σν . Then I plays δi such that
htω4(δi) > htω3(ϑi) and II plays again what σν tells him to, say (µi, $i).
By the rules of the game GFν we have that γi ≤ λi ≤ ϑi and δi ≤ µi ≤ $i.
Hence the height of any point in the interval (βi, εi) is less than the height
of any point in the interval (γi, ϑi) which are less than the height of any
point of the interval (δi, $i). Thus when going to the images under the
M collapse and constructing the according sets x, y and z we see that for
Xi := XI−1 ∪ {κi, λi, µi}, sω2ω3ω4(clF (XI ∪ ν)(I − 1) = 0 as desired. As ν is
a winning strategy for II the already coded information remains untouched
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when passing from XI−1 to Xi.

Case 2.

If r(I − 1) = 1 then we argue very similar to case 1, we just have to ensure
that we switch the heights of the ordinals in the intervals. To be more precise
we make player I and II play in such a way that the height below ω2 of any
point in the interval (βi, εi) is smaller than the height below ω4 of any point
in the interval (δi, $i) which in turn is smaller than the height below ω3 of
any point in the interval γi, ϑi). It is easy to see that such a play exists.

If I and II play the game as described above they will code the real r up
to n in n+1 many rounds. Let X := Xn+1 = clF ({κi, λi, µi : I ≤ n+1}∪ν)
then as ν is a winning strategy in GFν it follows that sω2ω3ω4(X,M∩ω4) � n =
r � n and as we played entirely within the elementary submodel M ≺ Hθ and
since X is closed under F we have an F -closed witness for Σr(M)∩M 6= ∅.
Thus Σr is M stationary.

Note that the coding method just described does go well with the sealing
forcings we use to seal off long antichains in P (ω1)\NSω1 as we only use them
whenever the forcing is semiproper. We finally have the techniques to prove
that, assuming the existence of M ]

1, there is a model of ZFC where NSω1 is
ℵ2 saturated and which has a Σ1

4-well-order. on the reals.

3.2 Coding the reals

We briefly summarize the main results of the last section:

(†) Given ordinals ω1 < β < γ < δ < ω2 of cofinality ω1, there exists
a proper notion of forcing Pβγδ such that after forcing with it the
following holds: There is an increasing continuous sequence (Nξ : ξ <
ω1) such that Nξ ∈ [δ]ω whose union is δ such that for every limit
ξ < ω1 and every n ∈ ω there is ν < ξ and snξ ∈ 2n such that

sβγδ(Nη, Nξ) � n = snξ

holds for every η in the interval (ν, ξ). We say then that the triple
(β, γ, δ) is stabilized.

(‡) Further if we fix a real r there is a proper notion of forcing Pr such
that the forcing will produce for a triple of ordinals (βr, γr, δr) of size
and cofinality ℵ1 a continuous, increasing sequence (Pξ : ξ < ω1),
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Pξ ∈ [δr]
ω such that

⋃
Pξ = δr and such that for every limit ξ < ω1

there is a ν < ξ such that⋃
ν<η<ξ

sβrγrδr(Pη, Pξ) = r.

We say then that the real r is determined by the triple (βr, γr, δr).

We can use these two forcing notions to set up a well-order. on the reals,
which is suitable for our purposes. First we define a partial function f
assigning triples of ordinals to reals:

Definition 57. For a real r we let f(r) be the antilexicographically least
triple (β, γ, δ) for which there is a sequence of models (Nξ : ξ < ω1), Nξ ∈
[δ]ω,

⋃
(Nξ) = δ such that the set

{ξ < ω1 : ∃ν < ξ(
⋃

ν<η<ξ

sβγδ(Nη, Nξ) = r)}

is club containing (if there is such a triple).

Note that this function f is only a partial function. However we can force
any given real to be in the domain of f using the proper forcing described
in (‡). We use the function f to define a partial well-founded order, which
will become a well-order. during our iteration :

Definition 58. Let r, s be two reals for which f(r) and f(s) is defined. Then
we write

r < s iff f(r) <antilex f(s).

It is clear that < will become a well-order. as soon as every real r ∈ ωω
is in the domain of f . The crucial property of < is the following:

Lemma 59. Suppose that M is a transitive model such that every triple of
ordinals ω1 < (β, γ, δ) < ω2 is stabilized. Suppose further that M |= x < y,
for two reals x, y ∈ M then x < y will hold in every stationary subset-
preserving forcing extension M [G] of M .

Proof. Assume for a contradiction that there is a stationary set preserv-
ing notion of forcing P such that M [G] |= y < x, for a generic G for
P. Thus G must have added a continuous, increasing sequence of count-
able sets of ordinals (Nξ : ξ < ω1) such that for a triple (β, γ, δ) the
set {ξ < ω1 : ∃ν < ξ(

⋃
ν<η<ξ sβγδ(Nη, Nξ) = y)} is club containing, and

(β, γ, δ) is antilexicographically less than the least triple (βx, γx, δx) for x.
But we have assumed that every triple of ordinals < ω2 in M is already sta-
bilized, I.e. there exists in M an increasing continuous sequence of countable
sets of ordinals (Pξ : ξ < ω1) such that

⋃
ξ<ω1

Pξ = δ. By a hand by hand
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argument carried out in M [G] we obtain a club C = {ξ < ω1 : Pξ = Nξ}
and for every limit point ξ of C we have that

⋃
ν<η<ξ sβγδ(Nη, Nξ) is the

same as
⋃
ν<η<ξ sβγδ(Pη, Pξ). Thus

M [G] |= {ξ < ω1 :
⋃
sβγδ(Pη, Pξ) = y} is club containing.

But as y and (Pξ : ξ < ω1) are objects in M and the function sβγδ is
absolute we can consider the set also in M . As M [G] is a stationary set-
preserving generic extension of M we have that already M sees that the
set {ξ < ω1 : ∃ν < ξ(

⋃
ν<η<ξ s(Pη, Pξ) = y)} is club containing in M as

otherwise the complement would be stationary and therefore stationary in
the extension. This is a contradiction to M |= x < y.

Thus the order <, once witnessed in a transitive model such that every
triple of ordinals is stabilized, will not change in all outer models which
preserve stationary subsets of ω1. This has as a consequence that we can
build up the well-order. < gradually during a forcing iteration and once we
have a model of the just described type which sees that x < y, then x < y in
our final model of the iteration, as long as the iteration preserves stationary
subsets of ω1. This enables us to localize the well-order. <, thus arriving at
a projective well-order. of small complexity.

3.3 Definition of the iteration

Next we describe how to code reals nicely while making NSω1 ℵ2-saturated.
In order to get NSω1 ℵ2-saturated we need an RCS-iteration of length κ,
where κ is the Woodin cardinal. Again we let a ♦-sequence decide what to
do in our forcing iteration. We fix such a ♦-sequence (aα : α < κ) in the
ground model V = M1, and let ~C be the ladder system we obtain using the
Σ1

3-well-order. of the reals of M1, which will still be a ladder system in small
forcing extensions of M1 which preserve ω1. We describe first informally
how the iteration looks like. As always we have stages which are used to
code information yielding the definable well-order. and stages where we seal
off long antichains in P (ω1)/NSω1 . We ensure that we code all the reals
we generate during the iteration into triples of ordinals (β, γ, δ) using the
proper forcing of (‡). At the same time we ensure that all the triples of
ordinals below ω2 stabilize using the forcing described in (†). Additionally
whenever our ♦-sequence hits the name of a long antichain in P (ω1)/NSω1

we seal it off. As we have stationarily many inaccessible cardinals below the
Woodin κ we will hit stationarily often inaccessible stages α such that the
model (M1)α[Gα] satisfies the following:

(1) (M1)α[Gα] |= ZF−

(2) (M1)α[Gα] |= ∀βγδ < ω2((β, γ, δ) is stabilized)
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(3) (M1)α[Gα] |= ∀r ∈ ωω∃(βr, γr, δr) (r is determined by (βr, γr, δr)).

Whenever we hit such a stage everything (M1)α[Gα] sees about < will be
preserved in all future extensions in our iteration by Lemma 61. Thus we will
additionally localize the information which is seen by (M1)α[Gα] concerning
<, I.e. for every pair of reals x < y in (M1)α[Gα] we add a subset Yx,y of ω1

such that every countable transitive model N which contains Yx,y ∩ωN1 will
also see that x < y. This uses a proper forcing again. As all the iterands
are proper or semiproper, using an RCS-iteration will yield a semiproper
notion of forcing. In the end we will argue that indeed NSω1 is saturated
and there is a Σ1

4-definable well-order. on the reals.
We start now with a more detailed description of how the iteration should

look like. We will construct the iteration recursively, so assume that α < κ
and we have already constructed Pβ for β ≤ α. We define the forcing Q̇α in
V Pα as follows:

(i) Assume that aα is the Pα-name of a real rα. Then we let Q̇α be
the Pα-name of the forcing which codes rα into a triple of ordinals
(βrα , γrα , δrα), such that βrα , γrα , δrα < ω2 and using the already fixed
~C-sequence. This forcing is followed by considering all the triples of
ordinals (β′, γ′, δ′) which are antilexicographically below (βrα , γrα , δrα)
and which have not been stabilized yet. We use an RCS-iteration of
forcings which stabilize each such triple (β′, γ′, δ′). As a summary Q̇α

is an ω1-long RCS iteration of proper forcings resulting in a proper
forcing, and we obtain a model where the real rα is coded into the
triple (βrα , γrα , δrα) with the help of the ladder system ~C, and each
other triple of ordinals below it will be stabilized.

Otherwise force with Col(2ℵ2 ,ℵ1), the usual Lévy collapse which col-
lapses 2ℵ2 down to ℵ1.

(ii) Assume that α is an inaccessible, further that aα is the Pα-name of
a maximal antichain Sα in P (ω1)/NSω1 , and assume that the sealing
forcing S(Sα) is semiproper. Then force with it, I.e. let Q̇α be S(Sα).

Otherwise force with Col(2ℵ2 ,ℵ1).

(iii) If α is an inaccessible and if (M1)α[Gα] is a model such that prop-
erty (1) (2) and (3) from above holds, then we first collapse its size
down to ℵ1. We consider a pair of reals x, y ∈ (M1)α[Gα] such that
(M1)α[Gα] |= x < y and construct a set Yx,y ⊂ ω1 which should code
in a nice way the information that (M1)α[Gα] |= x < y (this will be
specified below). Now code the set Yx,y into a real sx,y using almost
disjoint coding forcing relative to an almost disjoint family of reals in
M1. We pick the pair (x < y) in such a way that every such pair
we create during our iteration will be considered at some inaccessible
stage α. This can be easily achieved using some bookkeeping function.

53



The points (i) and (ii) are clear, thus we shall discuss (iii) in detail: Note first
that it is straightforward to code the previously fixed ladder system ~C into
a subset X of ω1 such that for every limit ordinal ξ < ω1, if we decode X ∩ ξ
we end up with ~C � ξ. Assume now that we are in the situation described in
(iii), thus α is an inaccessible and (M1)α[Gα] is a model of ZF−, (1),(2) and
(3). We collapse its size to ℵ1 using Lévy-collapse and let H be the generic
filter. Let x, y be two reals in (M1)α[Gα] such that (M1)α[Gα] |= x < y. We
describe now the set Xx,y ⊂ ω1 which codes the information:

Claim 60. In M1[Gα][H] there is a set Xx,y ⊂ ω1 such that Xx,y can be
recursively partitioned into 6 subsets such that the following holds:

1. dec1(Xx,y) = ~C

2. dec2(Xx,y) = x

3. dec3(Xx,y) = y

4. dec4(Xx,y) is the set consisting of the triple of ordinals (βx, γx, δx) and
the continuous sequence of models (Nx

ξ : ξ < ω1) such that (βx, γx, δx)
is the antilexicographically least triple which codes x with the help of
~C and witnessing sequence (Nx

ξ : ξ < ω1)

5. dec5(Xx,y) is the set similar defined as in the previous point but with
y instead of x.

6. dec6(Xx,y) is the set of all the continuous increasing sequences (N
(β′,γ′,δ′)
ξ :

ξ < ω1) for (β′, γ′, δ′) < (βx, γx, δx) of sets of ordinals which witness
that the triple (β′, γ′, δ′) stabilizes at a real which is neither x nor y.

The construction of such a set Xx,y is straightforward. As a consequence,
for every transitive model M of ZFC which contains Xx,y, M will see that
x < y as it contains all the relevant information. The goal now is to rewrite
Xx,y into a set Yx,y ⊂ ω1 such that every countable, transitive M which

contains Yx,y ∩ ωM1 already sees that x < y using the local ladder ~C � ωM1 .
We can force the existence of such a set Yx,y with a proper notion of forcing.

Lemma 61. There is a proper notion of forcing R which introduces a set
Yx,y ⊂ ω1 such that if H ′ is an R generic filter M1[Gα][H][H ′] satisfies that
there is subset Yx,y of ω1 such that if ξ = ωN1 for a countable transitive model
N then there are recursively definable decoding functions deci such that the
following holds:

1. dec1(Yx,y) = ~C and for every limit ordinal ξ < ω1, with ξω = ξ,

dec1(Yx,y � ξ) = ~C � ξ.

2. dec2(Yx,y) = x
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3. dec3(Yx,y) = y

4. dec4(Yx,y � ξ) is the set consisting of a triple of ordinals (βξx, γ
ξ
x, δ

ξ
x)

and a continuous sequence of sets of ordinals (Nx,ξ
I : I ∈ ξ) such that

x is coded by the triple (βξx, γ
ξ
x, δ

ξ
x) using the local ladder system ~C � ξ

and witnessed by (Nx,ξ
I : I ∈ ξ).

5. dec5(Yx,y) is defined similar as 4 but with x replaced by y.

6. dec6(Xx,y) is the set of all the continuous increasing sequences (N
ξ,(β′,γ′,δ′)
I :

I < ξ) for (β′, γ′, δ′) < (βξx, γ
ξ
x, δ

ξ
x) of sets of ordinals which witness that

the triple (β′, γ′, δ′) stabilizes at a real which is neither x nor y using
the local ladder ~C � ξ.

Proof. Working in M1[Gα][H] we have that (M1)α[Gα] is a model of ZF−

and (1) and (2) of size ℵ1. By the previous Claim we know that there is a
set Xx,y such that all the points in the claim are true. Fix a model of the
form (M1)η[Gα][H] for η > α which contains Xx,y and consider the club C
of countable, elementary submodels containing Xx,y. We can easily arrange
that Xx,y satisfies already (1) of the Claim. For M an arbitrary element of
C the following holds:

(M1)η[Gα][H] |= Xx,y satisfies (1)− (6) of the previous Claim

thus for each M ∈ C:

M |= Xx,y satisfies (1)− (6)

thus
M̄ |= X̄x,y satisfies (1)− (6)

But X̄x,y = Xx,y � ωM1 and as the decoding functions deci are absolute for
transitive models we get that Xx,y � ξ satisfies (1)-(6) for ξ’s which are the
ω1 of some M ∈ C. In order to get the full statement of the Claim we add
additional information to Xx,y which yields Yx,y such that any countable
transitive model N which contains Yx,y ∩ ωN1 must have its ω1 to be an ωM1
for some M ∈ C. To achieve this we use forcing.

Let R be the following partial order: conditions p ∈ R are ω1-Cohen
conditions, i.e. functions from limit ordinals ξ < ω1 to 2 which satisfy:

1. the even ordinals of {η < ξ : p(η) = 1}, where ξ = dom(p) code the
set Xx,y ∩ ξ.

2. for every limit ordinal ξ, if M is countable and transitive and ξ = ωM1
and (p � ξ) ∈M then p(ξ) seen as a subset of ξ satisfies points (1)−(6)
for every limit η < ξ.
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Note that whenever we do have a condition p ∈ R, and ξ < ω1 is a limit
ordinal we can extend p to q < p such that ξ ∈ dom(q). This is clear as
we can write into the first odd ω-block of q following dom(p) a surjection of
ξ to ω. Then no countable transitive model M which contains q can have
its ω1 at ξ, thus the second property for being a condition in R is satisfied
automatically. Thus the set Dη := {p ∈ R : η ∈ dom(p)} is dense for every
η < ω1 and the generic will produce a subset of ω1, Yx,y with the desired
properties (1) − (6) for countable, transitive models in M1[Gα][H]. This
already suffices as we will see below that the forcing R is also ω-distributive.

What is left is to show that the forcing R is proper: for that we pick
the (M1)η[Gα][H] from above and let the club C be the set of all countable
elementary submodels of it which contain the set Xx,y from above. IfM ∈ C,
and p ∈ R ∩M then we shall construct a q < p which is (M,R)-generic.
We list all the dense sets Dn in M and recursively construct a descending
sequence of conditions starting at p = p0 > p1 > ... such that pn ∈ Dn and
such that sup(dom(pn)) = ω1 ∩M . If we can show that the limit pω is a
condition in R, we are done. Thus we have to show that whenever pω ∩ ξ
is contained in a countable, transitive model N such that ξ = ωN1 then it
will satisfy conditions (1) − (6). This is clear by definition of R for every
ξ < dom(pω). If ξ = dom(pω) then as ξ = ωM̄1 , M ∈ C and pω codes Xx,y∩ξ
we know by the above that Xx,y ∩ ξ satisfies (1)− (6), and so does Yx,y ∩ ξ if
we change the decoding functions in the obvious way. Thus pω is a condition
in R as desired and the forcing R is proper.

Note that the same argument shows that R is also ω-distributive, and
so the added set Yx,y has the desired properties not only for countable sets
in M1[Gα][H] but also for sets in M1[Gα][H][H ′] as desired.

Now that we have constructed the localized set Yx,y for two reals x < y
in (M1)α[Gα] we code Yx,y ⊂ ω1 into a real rx,y using almost disjoint coding.
We fix an M1-family (rα : α < ω1) of almost disjoint reals and add a real
rx,y such that the following holds:

∀ξ < ω1 (ξ ∈ Yx,y iff rx,y ∩ rξ is almost disjoint.)

This forcing is ccc, therefore proper and for the real rx,y the following holds:

♥ Every countable, transitive model M which contains rx,y and (M1)ωM1
sees that x < y using the ladder system ~C � ωM1 .

This ends the discussion of the forcing we use in case (iii).
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3.4 NSω1
is saturated and a projective well-order.

Open Questions.

In this section we show that the model we obtain following the definition
given in the previous section will indeed satisfy that NSω1 is saturated and
there is a Σ1

4 definable well-order. on the reals. We start with the well-order.
first.

Lemma 62. Let G be a generic filter for the forcing defined in the last
section. Then

M1[G] |= there is a Σ1
4 definable well-order. on the reals.

Proof. We can use the cofinal set of M1-initial segments in M1[G] which is
Π1

2 definable to construct a Σ1
3-definable ladder system ~C in M1[G]. Simply

let (α,Cα) ∈ ~C if and only if there is a countable M1 initial segment M
which contains (α,Cα) and which sees that Cα is the <M -least set in M
(where <M denotes the usual definable well-order. on the mouse M) which
is cofinal and has ordertype ω. This definition is Σ1

3 and we let ψ(x) be
the defining formula, I.e. for every C ⊂ ω1 we have that ψ(C) if and only
if C ∈ ~C. We fix the ladder system ~C defined via ψ and code, using the
machinery described and explained above, everything relative to it. We
claim that the following defines the well-order. < in M1[G]:

(∗) x < y if and only if ∃r∀M(M countable and transitive and (M1)ωM1
∈

M then ψ(dec(r, (M1)ωM1
)) and M |= x < y using the local ladder

system ~C ∩ ωM1 ).

Here we write (dec(r, (M1)ωM1
) for the set we obtain when we decode the real

using the almost disjoint family of (M1)ωM1
-reals and obtain a subset of ωM1 .

Thus the statement ψ(dec(r, (M1)ωM1
) tells us that the ladder system coded

into the real is the previously fixed ladder system ~C relativized to ωM1 . The
direction from left to right is clear as whenever x < y in M1[G] then the
names of x and y will appear at some earlier stage β < κ in our iteration.
Thus x < y will be witnessed already at some inaccessible stage α < κ as
we used a bookkeeping function which looks at each name of a pair of reals
unboundedly often on the inaccessibles below κ. Note that in this case the
definition of our iteration guarantees us that we have added a real rx,y such
that ♥ holds which is exactly what we want.

For the direction from right to left note first that the right hand side
of (∗) holds also for large enough uncountable models M containing r and
(M1)ω1 and which satisfy that each triple of ordinals below ωM2 is stabilized.
Indeed if we assume that M is uncountable, r ∈ M and (M1)ω1 ∈ M and
every triple of ordinals is stabilized and M does decide that y < x, then a
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countable elementary submodel N ≺ M containing r will see as well that
y < x using the ladder system which is coded into r. This ladder system
must be our fixed ~C. But now the transitive collapse π(N) = N̄ contains r
and we can assume that also (M1)ωN̄1

is in N̄ . It will still think that y < x

using the ladder system π(~C) = ~C ∩ωN̄1 , but N̄ is just as in the assumption
for the right hand side for (∗). This gives us the contradiction. as N̄ cannot
see both x < y and y < x. Thus if we let M be big enough such that every
triple of ordinals below ω2 is stabilized then it will see that x < y. But by
Lemma 61 x < y must hold in M1[G].

Note further that the definition of the well-order. is of the form ∃r∀M(Π1
2 →

Π1
3) and therefore Σ1

4.

What is left is to show that in M1[G] the nonstationary ideal NSω1 is
indeed ℵ2-saturated. But this does not cause any problems as the coding
forcings were all seen to be proper, the sealing forcings were only used when
semiproper and we used RCS-iteration for the limit steps. Therefore the
iteration yields a semiproper, thus stationary set preserving extension of M1

and we can just repeat Shelah’s proof that NSω1 is ℵ2-saturated in the final
model. Hence the following is true, which ends the proof of the theorem:

Lemma 63. If G denotes the generic filter for the iteration then in M1[G]
the nonstationary ideal NSω1 is ℵ2-saturated.

We end this thesis with a couple of remarks. At first glimpse it might
seem that the techniques introduced in the second chapter, i.e. isolat-
ing a suitable class of models S and use K-definable objects to code pat-
terns would as well yield a solution to the problem of projectively definable
wellorders on the reals in the presence of NSω1 saturated. Indeed this was
our strategy for quite some time, it turned out however that this approach is
fruitless. The reason for this is that sealing the antichains in P (ω1)\NSω1 is
a semiproper forcing only, hence our stationary class S will lose its station-
arity along the iteration. This fact compels us to work with the augmented
version of S, namely S[G], for G the generic filter. But models in S[G]
are of the form M [G], i.e. M with all the names in it evaluated with the
help of G. These models M [G] are not necessarily generic extensions of M ,
thus defining K in them causes utter chaos, although K can be defined in
M ∈ S nicely. This problems led me to consider other methods of coding
which finally resulted in the proof described in this chapter. Note however
that the methods developed here do not seem to get an easy proof of the
following natural extension of the problem in chapter 2:

Question 1. How to get a model of ZFC in which NSω1 is ℵ2-saturated and
the full nonstationary ideal NSω1 is δ1-definable with parameter ω1?
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Another natural question is whether the δ1
4 wellorder is optimal while

having NSω1 saturated. By the results of Hjorth and Woodin, under the
assumption that there is a measurable cardinal, the Σ1

4 wellorder is optimal
but are there ways to do better in the absence of a measurable?

Question 2. Is there a model of ZFC in which NSω1 is saturated and there
is a ∆1

3-definable wellorder on the reals?

and finally the very interesting problem

Question 3. Is it possible to have a model of ZFC in which NSω1 is saturated
and CH holds?
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