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Chapter 1

Introduction and Motivation

1.1 Soft Matter and Complex Fluids

The field of Soft Matter concerns itself with a variety of physical, chemical and biological
systems that share two important features. First of all, they are comprised of entities much
larger than the typical size of atoms or simple molecules. Secondly, the energy needed to
deform or alter the structure of their constituents is usually on the order of the thermal
energy kBT at room temperature. These two aspects account for the fact that many soft
matter systems exhibit self-assembly behaviour, which means that the final structure and
properties of a material are governed by ordered but reversibly formed aggregates of finite
size interacting with each other. Due to the reversibility and the constant competition
between entropic and enthalpic driving forces, it is hard – if not impossible – to infer the
structure and behaviour of soft matter systems from the interaction of their smallest building
blocks. However, this softness also makes them very interesting in terms of technological
applications. In daily life, soft matter systems can be encountered as chemical products such
as paints, foams, detergents, rubber, adhesives, as well as various biological materials such
as milk or blood. Some prominent examples of soft matter research include

colloidal suspensions made up of spherical or rod-like solid particles of sizes between
1nm and 1µm in solution,

polymeric systems consisting of long macromolecular chains of repeated units usually
covalently linked by a carbone backbone,

amphiphilic systems of molecules with both a hydrophilic – i.e. ”water loving” – and a
hydrophobic – i.e. ”water hating” part,

active matter which has the ability to propel itself or exert mechanical forces by consum-
ing energy.

3
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1.2 Between Patchy Colloids and Ultrasoft Polymers:
Telechelic Star Polymers

Advances in technology would not be possible without the discovery and synthesis of novel
materials with a unique combination of physical and chemical properties. The enormous
progress of soft matter research during the last decades brought with it the desire to create
materials especially tailored to specific technological applications. Ideally, these materials
would consist of highly tunable building blocks with the ability to self-assemble into a pre-
dictable shape and respond to a variety of chemical and physical stimuli. Over the past
years, many studies have been conducted on complex colloids and polymers such as star-
branched polyelectrolytes [1], hard colloids with functionalised attractive patches [2, 3, 4],
DNA-coated colloids [5, 6], amphiphilic dendrimers [7], and microgels [8].

Recently, telechelic star polymers (TSPs), sometimes also referred to as diblock copolymer
stars or amphiphilic star polymers, have proved to be a very versatile novel class of tunable
molecules. They result when a number of f diblock copolymer arms are anchored to a central
point. Each arm consists of a block of solvophilic monomers on the internal end and a block
of solvophobic monomers on the protruding end. The term telechelic is derived from the two
Greek words tele (τηλε′), meaning ”remote” or end, and chele (χει′λoς), which means ”lip”
or ”claw” and refers to a functionalised (attractive) group in this context.

It has been shown that single TSPs take on various distinct conformations completely
controlled by their functionality f , their fraction of solvophobic monomers per arm or am-
phiphilicity α and temperature [9, 10]. They self-assemble into structures with one or multi-
ple aggregation sites or clusters of their solvophobic parts. Due to the steric repulsion of the
solvophilic monomers, the arms collapsing on their ends take on a nearly ellipsoidal, bloated
shape sometimes called a ”watermelon” structure. When there are several aggregation sites
present, these are distributed equally over the whole dihedral angle due to entropic effects
and thus resemble soft penetrable colloids with attractive patches.

If the solvophobic part is longer than the solvophopilic part, i.e. α ≥ 0.5, these confor-
mations are not stable at finite densities and the system undergoes macrophase-separation
between a gas and a liquid independent of functionality [11, 12]. In the opposite case
(α ≤ 0.5), however, the single star properties such as patch size, number and distribution
persist even up to high concentrations [13]. Depending on the number of association sites,
these systems can form spherical [11, 12] or wormlike [14] micelles for low functionality stars
with only one patch or percolating networks or gels for stars with higher functionality and
multiple watermelon structures [15]. Furthermore, stars that keep their single star confor-
mation in the semidilute regime were also shown to be able to mechanically stabilize crystal
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lattices which are compatible with the number of their association sites, as for example a
diamond and a simple cubic lattice in the case of a four-patch star [13, 16].

1.3 Hydrodynamics and Rheology

Since non-equilibrium situations, especially flow, play a role in many technological appli-
cations and biological systems such as in microfluidics or blood flow, understanding the
behaviour of patchy colloids in such environments is essential. For example, star polymers
are used today in drug delivery systems [17] or as motor oil viscosity modifiers [18].

Shear flow represents the special case of a non-equilibrium stationary state, which makes
it an ideal system for studying the dynamical behaviour of colloids and polymers. In dilute
solutions, we might observe density fluctuations on a supramolecular level and we can mea-
sure the viscoelastic response to applied stresses. For polymers, the rheological properties
can be governed by two counteracting processes: With their many fluctuating degrees of
freedom, polymer gels can adapt to the flow profile, resulting in a decreasing viscosity with
shear rate and so-called shear thinning, or polymers can be entangled with knots and loops,
leading to an increase in viscosity or shear thickening.

Before investigating percolating networks of stars however, it is instructive to first un-
derstand the response of single star under shear flows in order to better predict possible
implications on dilute solutions. Purely repulsive stars without hydrophobic end groups
have already been studied in shear flow and it has been shown that their structural flexi-
bility leads to a mutual influence of fluid and polymer, resulting in both a change in the
conformation of the star and a deviation from the linear profile of the fluid [19]. Furthermore,
stars with small functionality f exhibit a tumbling motion characterized by alternating col-
lapsed and stretched conformations [19], resembling the behaviour of linear polymers [20],
while high-functionality stars perform a continuous tank-treading rotation similar to fluid
droplets and capsules [21].

1.4 Scope and Organisation of this Thesis

In this thesis, the behaviour of telechelic star polymers at infinite dilution under the influence
of shear flow will be investigated with a special emphasis on the possible change of their
patchiness and association sites.

In Chapter 2 the model of star polymers used in this work will be presented and a short
review of their characteristics under equilibrium situations will be given.

Chapter 3 will give a short introduction on the governing equations of hydrodynamics
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and a discussion of feasible simplifications for special systems.
Afterwards, we will transition from the theoretical description of hydrodynamics to the

computational implementation thereof in Chapter 4. We will introduce in detail the meso-
scopic simulation approach of Multi-particle Collision Dynamics and test the algorithm
against theoretical predictions.

In Chapter 5, molecular dynamics and Multi-particle Collision dynamics will be combined
for a hybrid simulation of telechelic star polymers under shear flow, which will represent the
main body of work of this thesis.

Finally, the results will be summarized and discussed in Chapter 6 and a brief outlook
on possible future extension of the topic covered in this thesis will be given.



Chapter 2

Telechelic Star Polymers

2.1 The Model

Telechelic star polymers (TSPs) are macromolecules consisting of a number of f amphiphilic
arms anchored to a central point. Each of these arms is composed of a central part of NA

solvophilic monomers of type A and a tail of NB solvophobic monomers of type B. The
fraction of solvophobic monomers per arm, the amphiphilicity, is denoted by α = NB

NA+NB
.

The monomers themselves are considered to be point particles. The model of the TSP used
in this thesis follows closely the work of Rovigatti, Capone and Likos [22], who studied the
self-assembly scenarios of such polymers under equilibrium conditions.

Bonds between consecutive monomers are held together by a FENE (finitely extensible
nonlinear elastic) potential [23] of the form

VFENE(r) = −15εr
2
F

σ2 log
(

1− r2

r2
F

)
(2.1)

where rF is the maximum distance between linked monomers and is set to rF = 1.5σ for
regular monomers and rF = 4.5σ for bonds with the central anchoring monomer — with
σ being the distance at which an unshifted Lennard–Jones (LJ) potential [24] is zero. The
parameter ε denotes the interaction strength. In the following it is assumed that σ = 1,
ε = 1, kB = 1 (Boltzmann’s constant) and m = 1 (monomer mass) and all dimensional
quantities such as length, time and temperature are scaled accordingly. Additionally, all
monomers of type A interact with other monomers of type A as well as with monomers of
type B via a generalized repulsive Lennard–Jones (LJ) potential,

VAA(r) = VAB(r) =


4ε
[(

r
σ

)48
−
(
r
σ

)24
]

+ ε if r < rcrep,

0 otherwise
(2.2)

with a cutoff distance rcrep = 2 1
24 ≈ 1.03.
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Furthermore, the interaction of the solvophobic B-monomers is governed by addition of
an attractive tail to the former generalized LJ potential 2.3, rescaled by a factor λ, which
serves as an inverse temperature:

VBB(r) =


VAA(r)− λ if r < rcrep,

4λ
[(

r
σ

)48
−
(
r
σ

)24
]

otherwise
(2.3)

To improve performance, this potential is truncated at rc = 1.5. Since this truncation creates
a discontinuity in the potential which would violate energy conservation when two particles
cross this boundary [25], the potential is also shifted such that VBB(rc) = 0.

(a) λ = 0.5 (b) λ = 1.15

(c) λ = 1.35

Figure 2.1: Representative conformations of a TSP with f = 6 with different interaction
strengths λ. Purple spheres correspond to solvophobic B-type monomers. Solvophilic A-
type monomers are coloured in different shades of grey and blue according to which arm
they belong to.
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Figure 2.1 shows snapshots of typical conformation of a TSP with f = 6 and α = 0.3 at
different values of the attraction coupling constant λ. The image illustrates the self-assembly
process taking place with increasing λ. At small values of λ, both A and B type monomers
are in good solvent conditions and the TSP takes on an open configuration resembling that
of athermal stars [26]. When the value of λ is increased, however, the interaction between B
monomers becomes stronger, i.e. the solvent quality is worsened for B monomers, and they
form patches among themselves, connecting different arms. For very high values of λ, all
arms collapse onto one patch, given that the number of monomers per arm Lf is big enough
to compensate the steric repulsion of the A-type monomers. The ellipsoidal shape of a star
with many arms collapsing onto one patch is sometimes called a watermelon structure.

2.2 Results in Equilibrium

In the following section, we will give a brief introduction on the characteristics investigated
in this thesis, and we will present results of preliminary equilibrium simulations of telechelic
star polymers. These results were obtained using molecular dynamics simulations (cf. 5.1)
with implicit solvent – i.e. no hydrodynamic interactions are taken into account –, with a
time-step of ∆t = 0.001 and a temperature of kBT = 0.5. Functionalities f of 6, 9 and 15 as
well as values of α of 0.3 and 0.5 are considered. The degree of polymerization Lf – i.e. the
number of monomers per arm – is 40 for all stars regardless of functionality. The attraction
coupling constant λ ranges from 0.8 to 1.4.

2.2.1 Characterisation of Patchiness

In order to characterize the telechelic stars we first analyse the patches into which their
arms self-assemble. Patches are defined by a clustering algorithm, where two arms are
said to belong to the same cluster if at least two of their B-monomers experience a net
attraction between them – i.e. their pair-wise energy is less than zero. From this, we
calculate the average number of patches Np and the average size of the patches sp – where
only patches of size ≥ 2 are considered. In the good solvent limit (λ → 0), as well as for
amphiphilicities α < 0.3 [13, 16], no patches are formed in equilibrium situations (for the
values of λ taken into account in this work) since the entropic intra-star repulsions dominate
over the enthalpic attractions between the solvophobic tails and the stars behave in the same
manner as athermal stars [26].
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Figure 2.2: Number of patches Np as a function of λ for different functionalities f and
amphiphilicities α
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Figure 2.3: Patch-size sp as a function of λ for different functionalities f and amphiphilicities
α

Figure 2.2 and 2.3 show the average number of patches Np and the average size of
patches sp formed, respectively, for the equilibrium situation without shear or hydrodynamic
interactions.

For small values of λ, patch number Np and patch size sp increase monotonically with
λ for all combinations of f and α considered. However, this monotonic behaviour is only
continued to high values of α for stars of low functionality and amphiphiphilicity, e.g. f = 6
and α = 0.3. This specific star architecture reaches a plateau at λ = 1.3, where all arms are
collapsed onto one patch. The curves of all other star architectures considered exhibit a clear
non-monotonicity for high values of α. For more than six arms, it is more favourable for the
stars to form more than one patch due to the steric repulsion between A-type monomers
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and the entropic cost of the completely collapsed conformation. Above a certain threshold,
however, the enthalpic contribution of the B-type monomers dominates and different patches
start feeling a strong mutual attraction, which leads to the formation of fewer patches of
greater size.

(a) λ = 1.15 (b) λ = 1.20

(c) λ = 1.25

Figure 2.4: Representative conformations of a TSP with f = 9 with different interaction
strengths λ. Purple spheres correspond to solvophobic B-type monomers. Solvophilic A-
type monomers are coloured in different shades of grey and blue according to which arm
they belong to.

The snapshots of typical conformations of a star with 9 arms and an amphiphilicity of
α = 0.3, as shown in figure 2.4, visualize this behaviour. At λ = 1.15, the star polymer
forms on average two highly dynamical patches and free arms still exists. Slightly lowering
the temperature, i.e. λ = 1.20, leads to the collapse of the remaining free arms onto the
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already formed patches. Finally, at λ ≥ 1.25, the attraction between B-monomers is high
enough to overcome the entropic cost of merging two patches into one. The same is true for
TSPs with 15 arms, the only difference being that the favoured number of patches changes
from three to two. A comparison between the behaviour of stars of different amphiphilicity
α suggests that the onset of the non-monotonic dependence of patch size and patch number
on λ occurs at at lower values of λ for higher values of α.

2.2.2 Conformation and Shape Parameters

In order to investigate the shape of the TSPs, we follow the method of using the principal
moments of the gyration tensor to analyse polymer conformations first proposed by Šolc
and Stockmayer in 1973 [27]. To this end, we define the radius of gyration tensor of a
configuration of a polymer as

Gαβ := 1
N

N∑
i=1

(ri,α − rcm,α) (ri,β − rcm,β) (2.4)

= 1
N2

N∑
j>i

(ri,α − rj,α)(ri,β − rj,β) , (2.5)

where N is the total number of monomers of a star, ri,α is the α-th Cartesian component of
monomer i in the polymer (where α, β = {x, y, z}) and rcm is the position of the polymer’s
center-of-mass. Both definitions presented are equivalent, however, we will use the first one
in the following discussion. The shape of polymers can be conveniently analysed by changing
to the principal axis system of G – i.e. the system in which G is diagonal –

G = diag(λ1, λ2, λ3) , (2.6)

with eigenvalues λi in descending order (λ1 ≥ λ2 ≥ λ3). The three eigenvectors corresponding
to the three eigenvectors define an ellipsoid which has the same inertial properties as the
polymer. The tensor G has three invariants, namely its trace

I1 := tr(G) = λ1 + λ2 + λ3 , (2.7)

which corresponds to the squared radius of gyration, its determinant

I2 := det(G) = λ1λ2λ3 , (2.8)

and the sum of its three principal minors

I3 := 1
2
(
(tr(G))2 − tr(G2)

)
= G11G22 +G11G33 +G22G33 −G12G21 −G13G31 −G23G32

= λ1λ2 + λ1λ3 + λ2λ3 (2.9)
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These invariants can now be used along with the eigenvalues of G to define shape pa-
rameters which we will later use to describe the conformations of the TSPs. First, we
introduce a measure for the polymer’s deviation from a spherical shape, the asphericity δ

[28, 29, 30, 31, 32]

δ := 〈I
2
1 − 3I3〉
〈I2

2 〉
= 1− 3〈 I2

I2
1
〉 . (2.10)

It ranges from 0 for objects with spherical symmetry to 1 for perfectly straight chains or
rods.

In order to distinguish between prolate and oblate conformations, it is useful to introduce
the prolateness parameter S [30, 33, 31]

S := 〈(3λ1 − I1)(3λ2 − I1)(3λ3 − I1)
I2

1
〉 , (2.11)

which can range from -0.25 to 2, where negative values are associated with predominantly
oblate shapes while positive values correspond to moreover prolate shapes.

Finally, we define the acylindricity c [28, 32]

c := 〈λ2 − λ3

I1
〉 (2.12)

which is always greater or equal to zero and reaches zero only for shapes with cylindrical
symmetry.
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Figure 2.5: Radius of gyration Rg as a function of λ for different functionalities f and
amphiphilicities α
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Figure 2.6: Acylindricity c as a function of λ for different functionalities f and amphiphilic-
ities α

Figures 2.5, 2.8, 2.7 and 2.6 show the radius of gyration Rg, the asphericity δ, the
prolateness S and the acylindricity c, respectively, for stars in equilibrium. For all stars,
we see that the radius of gyration depends predominantly on the number of patches they
form – with stars forming fewer patches having a smaller radius of gyration –, while their
functionality is of lesser importance. Secondly, we notice that the prolateness S and the
asphericity qualitatively exhibit the same behaviour. Thus, the asphericity δ will not be
included in all subsequent data analysis. It is also worth noting that the prolateness S is
always positive throughout the whole parameter space considered, indicating that the stars
always take on a prolate shape, which has also been shown for chain- and ring polymers [34].
Like the radius of gyration, the prolateness exhibits a strong correlation with the number of
patches formed. For stars which form only one patch, e.g. f = 6 and α = 0.3, S reaches
almost zero, which is representative of a spherical conformation. Extremely prolate shapes,
on the other hand, are always associated with two patches.

Furthermore, all shape parameters are roughly constant with increasing λ, up to a cer-
tain threshold value which coincides with the value at which the size of the patches starts
deviating from 2. This indicates that the onset of patch formation begins with several pairs
of arms getting close to each other without affecting the shape. Upon further increasing the
attraction between B-monomers, these patch-precursors align to form patches whose size
and number is governed by the star-architecture.
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Figure 2.7: Prolateness parameter S as a function of λ for different functionalities f and
amphiphilicities α
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Figure 2.8: Asphericity δ as a function of λ for different functionalities f and amphiphilicities
α

Finally, it should be noted that the behaviour of all of the characteristics presented here
is shifted in λ compared to previous results presented in the work of Rovigatti et al. [22] – an
effect than can probably be attributed to the significantly smaller number of monomers per
arm Lf used here, which increases the relative contribution of the steric repulsion between
the A-blocks.
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2.2.3 Orientational Resistance

Once the telechelic star polymers are subjected to a fluid undergoing shear flow, it will be
interesting to see how the polymer reacts to this change of environment. A good measure
for the resistance of a macromolecule againt orientation in a flow field is its orientational
resistance mg [35], which is related to the angle χg between the flow direction x and the
eigenvector of the gyration tensor with the largest eigenvalue ê1 as depicted in figure 2.9. It
is defined as

mg = Wi tan 2χg , (2.13)

and can be calculated from the gyration tensor of the polymer according to

tan 2χg = 2Gxy

(Gxx −Gyy)
. (2.14)

For a detailed derivation the interested reader is referred to Appendix B.

ê1ê2

χg
x

y

Figure 2.9: orientation angle χg

The dimensionless quantity Wi is called the Weissenberg number and is a function of the
shear rate γ̇ and the longest relaxation time τ of the polymer in equilibrium

Wi = γ̇τ . (2.15)

Within the theory of Zimm dynamics the blob model of star polymers without amphiphilic
properties and a large number of arms f predicts [36]

τ = τ0L
3ν
f f

1−3ν/2 , (2.16)

with a Flory exponent of ν = 0.6 and

τ0 = ηb3

kBT
, (2.17)
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where η denotes the solvent viscosity, kBT the thermal energy and b the bond length, which
we define here to be the distance between two solvophilic monomers with the minimal energy.

The reason for multiplying with the dimensionless Weissenberg number Wi for the def-
inition of the orientational resistance mg lies in the fact that for small shear rates Gxy ∼ γ̇

and (Gxx−Gyy) ∼ γ̇2 has been found for several systems including rodlike colloids and linear
polymers [37, 38, 39], which leads to a nonvanishing value for the orientational resistance
mg in the limit of zero shear rate (i.e. Wi −→ 0).



Chapter 3

Hydrodynamics

Hydrodynamics is the theory of motion of fluids. Since it concerns itself with their macro-
scopic properties, fluids are regarded as continuous media instead of as an ensemble of
individual atoms. Hence, when we speak of infinitely small volume elements of such a fluid,
we mean infinitely small compared to the total volume under consideration, but still large
compared to the typical sizes and distances on a molecular level. In consequence, properties
of any small volume element are considered to be well-defined averages over its molecular
constituents. Mathematically, fluid flow is described by its velocity field v(r, t) and any
other two of its thermodynamic properties, such as pressure p(r, t) and mass density ρ(r, t).
In the following, a short introduction into the mathematical description of fluids will be
given. For a more detailed explanation on the fundamentals of fluid dynamics, the reader
is referred to the introductory textbook Fluid Mechanics by Landau and Lifshitz [40] or
Statistical Mechanics of Nonequilibrium Fluids by Evans and Morriss [41].

3.1 The Continuity Equation

Let us begin the derivation of the governing equations of fluid dynamics by considering the
change of mass in a certain volume V0. If we denote the mass density at a given point r at
time t by ρ(r, t), the total mass M in the volume V0 is given by the integral

M =
∫
V0

ρ dV . (3.1)

The amount of fluid that leaves the volume V0 per unit time is given by the flow through its
boundaries ∮

∂V0

ρv · df , (3.2)

where ρv is called the mass flux density and df is a vector normal to a surface element of
the volume V0, which points outward and has a magnitude equal to the area of the surface

18
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element. This loss of mass through the boundaries has to be equal to the negative change
in total mass inside the volume and thus we arrive at

∂

∂t

∫
ρ dV = −

∮
ρv · df . (3.3)

Applying Green’s formula to the surface integral on the right hand transforms it into a
volume integral ∮

ρv · df =
∫
∇ · (ρv) dV (3.4)

Accordingly, equation 3.2 becomes∫ [
∂ρ

∂t
+∇ · (ρv)

]
dV = 0 . (3.5)

This equation must hold for any volume and thus the integrand must vanish and we arrive
at the continuity equation:

∂ρ

∂t
+∇ · (ρv) = 0 . (3.6)

3.2 Ideal Fluids and Euler’s Equation

In the simplest case, there is no energy dissipation due to internal friction or heat exchange.
Fluids, for which these two processes can be neglected are called ideal fluids and we will take
a look at their equations of motions in the following. First, consider some volume of the
fluid. In the absence of shear forces the total force acting on it is equal to the total pressure
acting normal to its surface

F = −
∮
p df = −

∫
∇p dV , (3.7)

where the second equivalence follows from the gradient theorem. This means that the sur-
rounding fluid exerts a force −∇p on a unit volume. Inserting this into Newton’s equation
of motion for the fluid’s mass density yields

ρ
dv
dt = −∇p . (3.8)

It is important to note here that the derivative dv
dt refers to the change of velocity of a

particular amount of the fluid as it propagates in time and space. However, since we study
the fluid in terms of velocity fields which are defined for fixed points in space, we have to
express this derivative differently. In order to do so, we split the substantial derivative dv

dt

into two terms — one corresponding to the change in velocity per time dt at a fixed point
in space, and one reflecting the change in velocity between two points being dr apart, i.e.

dv
dt = ∂v

∂t
+ (v ·∇)v . (3.9)
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Thus, equation 3.8 becomes
∂v

∂t
+ (v ·∇)v = −1

ρ
∇p , (3.10)

which is known as Euler’s equation and was first derived in 1755.
Euler’s equation has another useful formulation in terms of the evolution of the fluids

momentum density ρv. Applying the continuity equation (3.6) allows us to calculate

∂

∂t
(ρvi) = ρ

∂vi
∂t

+ vi
∂ρ

∂t
,

= ρ
∂vi
∂t
− vi

∂(ρvj)
∂xj

. (3.11)

The term ∂vi

∂t
can be rewritten with the help of Euler’s equation (3.10)

∂vi
∂t

= −vj
∂vi
∂xj
− 1
ρ

∂p

∂xi
= −vj

∂vi
∂xj
− 1
ρ
δij

∂p

∂xj
. (3.12)

Defining the momentum flux density tensor Πij as

Πij = pδij + ρvivj (3.13)

we finally arrive at an equation for the evolution of the momentum flux density in terms of
the momentum flux density tensor

∂

∂t
(ρvi) = −∂Πij

∂xj
. (3.14)

Physically, Πij describes the ith component of momentum flowing through a unit surface
area perpendicular to the j-axis per unit time.

3.3 Energy Dissipation and the Navier Stokes Equa-
tion

In the previous sections, ideal fluids were described by completely reversible transfers of
momentum due to mechanical propagation of fluid particles and pressure gradients. In real
fluids, however, irreversibility is introduced into the system due to internal friction and
thermal conduction. In the following, these effects of energy dissipation will be discussed
and accounted for by making the necessary adaptations in Euler’s equation.

Internal friction occurs when momentum is transferred from locations with high fluid
velocity to locations where the fluid velocity is smaller. Such viscous transfer of momentum
can be incorporated into the equations of motion by adding a term −σ′ij to the momentum
flux density tensor (cf. equation 3.13)

Πij = pδij + ρvivk − σ′ij . (3.15)
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Since internal friction arises from different parts of the fluid moving with different velocities
and has to vanish for a constant velocity field, σ′ij can only be dependent upon spacial
derivatives of the fluid velocity ∂vi/∂xj. Given that the fluid is sufficiently fine-grained such
that velocity gradients are small, we can assume that σ′ij contains only first derivatives of
the velocity. Furthermore, σij must vanish if the fluid is subjected to a uniform rotation
around an axis ω, i.e. v(r, t) = ω × r, because one can change to a co-rotating reference
frame, in which the entire fluid is at rest. Hence, σ′ij must be a symmetric tensor. Imposing
these conditions, we can write it in the form

σ′ij = a

(
∂vi
∂xj

+ ∂vj
∂xi

)
+ b

∂vk
∂xk

δij (3.16)

However it will be convenient later to decompose this into a traceless and a diagonal part by
introducing the dynamic viscosity η := a and the second viscosity ζ := b+ 2

3a and rewriting
equation 3.16 as

σ′ij = η

(
∂vi
∂xj

+ ∂vj
∂xi
− 2

3δij
∂vk
∂xk

)
+ ζδij

∂vk
∂xk

. (3.17)

Inserting the modified momentum flux tensor Πij into Euler’s equation (3.10) and assuming
that the viscosity coefficients η and ζ are constant throughout the fluid — which doesn’t
hold in general, but is a good approximation in most cases —, we finally obtain

ρ

(
∂v

∂t
+ (v ·∇)v

)
= −∇p+ η∆v + (ζ + 1

3η)∇(∇ · v) , (3.18)

or, alternatively, by defining the stress tensor σij := −pδij + σ′ij

ρ

(
∂v

∂t
+ (v · ∇)v

)
= ∇ · σ . (3.19)

This equation is called the Navier–Stokes equation. If the fluid is additionally subjected to
an external force field, the force density f ext would have to be added to the right side of
the equation. For incompressible fluids, i.e. ∂ρ

∂t
= 0, we notice that ∇ · v = 0 follows from

the continuity equation (3.6) and the viscous stress tensor reduces to σij = η
(
∂vi

∂xj
+ ∂vj

∂xi

)
.

Finally, we find the Navier–Stokes equation for incompressible fluids

ρ

(
∂v

∂t
+ (v ·∇)v

)
= −∇p+ η∆v . (3.20)

3.4 Linearized Hydrodynamics

Let us now take a look at the relative magnitudes of the terms appearing in the Navier–
Stokes equation for incompressible fluids (3.20). In order to do so, we rescale all variables
according to [42]

v → v

u
, r → r

L
, t→ t

τ
, (3.21)
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where u is a typical velocity – e.g. the average speed of a colloid embedded in the fluid –,
L is a typical length – e.g. the diameter of such a colloid – and τ is a typical timescale –
e.g. the average time between consecutive collisions of colloids. Rewriting equation 3.20 in
terms of these new variables and multiplying by L2/(ηu) yields

ρL2

ητ

∂v

∂t
+ ρuL

η
(v ·∇)v = −∇p+ ∆v , (3.22)

where the pressure p is also a dimensionless quantity after rescaling. The dimensionless
quantity

Re := ρuL

η
(3.23)

is known as the Reynolds number [43, 44] and is a measure for the relative magnitude of
inertial to viscous forces. Its value can differ in orders of magnitudes for different systems. For
example, Re ≈ 104 for a human swimming in water, whereas Re ≈ 10−4 for a microorganism
of about 2µm in size [45].

For problems on a micro- to mesoscopic length scale, such as the dynamics of a polymer
embedded in a solution, the Reynolds number is small enough in order to allow us to neglect
the nonlinear advective term ρuL

η
(v ·∇)v in the Navier–Stokes equation (3.18). The resulting

equation is known as the linearized Navier–Stokes equation1

ρ
∂v

∂t
= −∇p+ η∆v + (ζ + 1

3η)∇(∇ · v) . (3.24)

In some cases, a small Reynolds number also justifies dropping the temporal acceleration
term ρL2

ητ
∂v
∂t

in equation 3.22, resulting in the creeping flow limit or Stokes equation

−∇p+ η∆v + (ζ + 1
3η)∇(∇ · v) = 0 . (3.25)

However, neglecting temporal acceleration corresponds to resolving on a timescale big enough
such that hydrodynamics relax instantaneously to forces local in time.

1It should be noted that making a linear expansion in ρ and v, i.e. substituting ρ = ρ0 + δρ and v = δv,
and neglecting terms quadratic in (δρ, δv) also leads to the linearized Navier–Stokes equation.



Chapter 4

Multiparticle Collision Dynamics

Multi-particle Collision Dynamics (MPC) is a particle-based simulation method for hydrody-
namic problems. Its first variant was introduced by Malevanets and Kapral in 1999 [46, 47]
and has since been developed in different ways to deal with a broad variety of physical sys-
tems, starting from macromolecules in simple solvents [48] and fluids with complex boundary
conditions such as membranes [49] to viscoelastic fluids [50].

In Multi-particle Collision Dynamics, the fluid is composed of a number of N ∈ N+

point-like particles, each of which corresponds to a volume of the fluid that is big compared
to a single fluid molecule but small compared to the system size V = LxLyLz. The MPC
procedure consists of to consecutive phases — a streaming phase, in which the particles move
ballistically and independent of each other, and a collision phase, in which the interaction
of the particles is simulated such that the long term behaviour of the fluid obeys the Navier-
Stokes equation [51, 52, 53].

4.1 Stochastic Rotation Dynamics

In the streaming step, each particle is propagated in time according to ballistic motion:

ri(t+ ∆t) = ri(t) + vi(t) ·∆t (4.1)

If the system is constrained by certain boundaries (see section 4.5)— such as walls, periodic
boundary conditions, etc. —, their effects would have to be implemented directly after the
streaming step or in some cases the streaming step would have to be altered altogether. In
the subsequent collision step, the system is divided into Ncell cubic cells with lattice constant
a. This length is usually a typical size of the system and has to be chosen carefully (see
section 5.1). Each particle is then assigned to a specific cell based on its current position
within the system. The cells are then treated independent of each other and the particles

23
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inside a cell interact and exchange momentum with each other in a way that conserves total
linear momentum, mass and energy.

The most common procedure that fulfils these conditions is to apply a stochastic rotation
on the relative particle velocities (which is why MPC is also known under Stochastic Rotation
Dynamics) [54],

vi(t+ ∆t) = vi(t) + (R(β)− 1) (vi(t)− vcm(t))

= vcm(t) + R(β) (vi(t)− vcm(t)) (4.2)

where vcm is the center-of-mass velocity of the specific cell, i.e.

vcm =
∑
i∈cellmivi∑
i∈cellmi

= 1
Nc

∑
i∈cell

vi (4.3)

The latter holds only if all particles considered have the same mass.
The operator R(β) describes a rotation by an angle β (which is fixed throughout the

simulation) around an axis pointing in the direction of a unit vector r = (rx, ry, rz)T , which
is chosen randomly for each cell j and each step by uniformly sampling from a 2-sphere S2

of radius 1. This can be achieved by drawing two numbers φ ∈ [0, 2π] and ϑ ∈ [−1, 1] from
uniform distributions of the given intervals and transforming them as follows to yield the
components rα of the unit vector r

rx =
√

1− ϑ2 cosφ (4.4)

ry =
√

1− ϑ2 sinφ (4.5)

rz = ϑ (4.6)

Defining c = cos β and s = sin β, the rotation operator takes on the form

R(β) =


r2
x + (1− r2

x)c rxry(1− c)− rzs rxrz(1− c) + rys

rxry(1− c) + rzs r2
y + (1− r2

y)c ryrz(1− c)− rxs
rxrz(1− c)− rys ryrz(1− c) + rxs r2

z + (1− r2
z)c

 (4.7)

Malevanets and Kapral have found an H-theorem for this algorithm, stating that the
equilibrium distribution of particle velocities is Maxwellian as well as that the correct hy-
drodynamic behaviour is produced [46].

4.2 Grid Shift

In its original form, a fixed grid was used to sort the particles into cells at each time-
step. However, this procedure renders the algorithm non-Galilean invariant. This effect is
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most pronounced if the particles’ mean free path λ = ∆t
√
kbT/m is small compared to the

lattice constant a, i.e. at small temperatures or small time-steps. The violation of Galilean
invariance can easily be illustrated if one considers the build-up of correlations of particles
in one cell: When the mean free path is small, particles are less likely to leave their current
cell, so they collide with the same particles repeatedly and their states become correlated
— violating the assumption of molecular chaos. Consider now an imposed homogeneous
flow field V , which corresponds to a moving observer in the opposite direction. Such a field
would change the correlations between particles and make the transport properties of the
fluid dependent on V — and thus destroy Galilean invariance.

However, Galilean invariance can easily be restored by using a different grid at each
time-step [53, 54]. To achieve this, the grid is shifted by a random vector d with components
distributed uniformly in the interval [−a/2, a/2]. Note that this is equivalent to shifting the
particles in the direction −d before sorting and shifting them back to their original positions
after the collision. Due to the random grid shift, particles are now grouped into different
collision environments at each time-step and interact with different neighbours.

Figure 4.1: Illustration of the grid shift procedure as explained in section 4.2 . Initial cells
are coloured black, while shifted cells are coloured purple. The particles belonging to one
exemplary box are coloured green to show how boundary conditions are applied.

4.3 Angular Momentum Conservation

It should be noted that the stochastic rotation introduced in section 4.1 does not conserve
angular momentum [55]. This leads to an anisotropic stress tensor [56] and non-zero dis-
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sipation if the entire fluid is rotated. In most systems this deviation from Navier-Stokes
behaviour is negligible, especially in the incompressible fluid limit, where MPC particles
move slow compared to the speed of sound. For polymer dynamics, Ripoll et al. found ex-
cellent agreement between simulations with the SRD algorithm and predictions of the Zimm
theory [57].

However, as Götze et al. [58] pointed out, there are several situations involving rotating
fluids, in which the anisotropy of the stress tensor gives rise to non-physical torques. They
were able to identify three cases: (i) boundary conditions defined by torques, (ii) binary
fluid mixtures of different viscosities and (iii) polymers with a high local monomer density.
It should be noted, however, that in the last case, problems can be avoided if the size of the
MPC cells is approximately equal to the excluded volume of the monomers.

Various modifications have been proposed to restore conservation of angular momentum
in the SRD algorithm. One possibility is to have the collision angle β depend on the velocities
and positions of the particles in a given cell [59]. Another widely used approch is to perform
a rigid-body rotation after the collision to compensate for the initial change in angular
momentum ∆L [60, 61, 62]. The total velocity update during the collision phase then reads

vi(t+ ∆t) = vcm(t) + R(β) (vi(t)− vcm(t)) + ω × ri,cm(t+ ∆t) (4.8)

where the angular velocity ω is

ω = Π−1 {
∑
i∈cell

mi [ri,cm(t+ ∆t)× (vi,cm(t)−R(β)vi,cm(t))]}︸ ︷︷ ︸
−∆L

. (4.9)

Note that all quantities with subscript i,cm are in the center-of-mass reference frame of the
current cell. For the implementation, one does not invert the moment of inertia tensor Π,
but instead solves the linear equation −∆L = Π · ω for ω.

A downside of this algorithm is that, while conserving angular momentum, it does not
conserve energy. Thus, a thermostat has to be added when using this variant of MPC. For the
simulation of telechelic star polymers under shear, results for MPC with and without angular
momentum conversation were compared for f = 15, α = 0.3, λ = 1.05 and different shear
rates, but no significant deviations could be observed, so angular momentum conservation
was subsequently not incorporated for performance reasons.

4.4 Maxwell-Boltzmann Scaling Thermostat

Since the stochastic rotation variant of MPC conserves energy (cf. section 4.1), it yields
statistics corresponding to a microcanonical ensemble. However, in some situations it is
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more desirable to simulate at a constant temperature instead of at a constant energy: if
thermal fluctuations might lead to new characteristics of a polymer, simulations should be
comparable to experiments or in the presence of external fields and viscous heating. For
the simulations in this work, the Maxwell-Boltzmann Scaling thermostat was used. It is a
velocity scaling algorithm acting locally on a cell-level and was first introduced for MPC by
Huang et al. [63].

In a cell of Nc particles, the set of relative velocities {v} = {vi,cm|i ∈ cell} at a given
temperature T should be distributed according to the Maxwell-Boltzmann distribution

P ({v}) =
(

m

2πkBT

)3Nc/2
exp

− m

2kBT
∑
i∈cell

v2
i,cm

 (4.10)

From this, we can calculate the probability that the particles of a cell have the local kinetic
energy Ek by integrating over all possible sets {v} with ∑i∈cell

mi

2 v
2
i,cm = Ek. The probability

density for the local kinetic energy is then given by [64]

P (Ek) = 1
Ekγ(f/2)

(
Ek
kbT

)f/2
exp

(−Ek
kbT

)
(4.11)

Here, f = 3(Nc − 1) denotes the degrees of freedom within a cell and γ(x) is the gamma
function. Note that this distribution converges to a Gaussian function with mean 〈Ek〉 =
fkBT/2 and variance (∆Ek)2 = f(kBT )2/2.

For each cell, a new kinetic energy E ′k is drawn randomly from the distribution in equation
4.11 and the particles’ relative velocities are scaled by a factor κ

vi,cm → κvi,cm with κ =
√√√√ 2E ′k∑

i∈cellmiv2
i,cm

(4.12)

so that the new local kinetic energy is E ′k.

4.5 Boundary Conditions and Shear Flow

Since MPC simulations are carried out in finite systems, boundary conditions have to be
chosen and implemented to keep the number of particles within the simulation box fixed.
As mentioned earlier in this chapter, one advantage of MPC is the great variety of possible
boundary conditions that can be implemented alongside with it. These include so-called slip
[47, 65] and no-slip boundary conditions [66], where particles bounce back when they hit the
surface and are given a new velocity. The boundary conditions used in this work are periodic
boundary conditions and Lees–Edwards boundary conditions, which will be explained in the
following.
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4.5.1 Periodic Boundary Conditions

Periodic boundary conditions were introduced for molecular dynamics simulation to lessen
the problem of artificial surface effects [67]. Instead of having a finite system, the central
box is considered to be replicated periodically in all directions, forming an infinite lattice.
Therefore, when a particle leaves the central box in one direction, one of its image particles
will enter from the opposite surface. Implementation-wise, this means that a particle’s
position r will be mapped into the central box according to

rj → r′j = rj − cjLj for j ∈ {x, y, z} (4.13)

where Lj is the side-length of the central box in the j direction. The constant cj is chosen
such that r′j lies within the boundaries of the box. For a system with its origin at the lower
forward left corner, cj = brj/Ljc1, such that rj ∈ [0, Lj]. On the other hand, for a system
with its origin at the center of the box, cj = brj/Lje1, such that rj ∈ [−Lj/2,+Lj/2]. In the
following, we will always consider the latter choice. In some situations, it may be more de-
sirable to have the particles propagate through the infinite system and only virtually folding
them back into the central box for the sorting procedure — for example when calculating
dynamic properties of the fluid such as mean-squared displacement. However, one should be
aware that such an implementation will decrease the accuracy of the floating point numbers
used to store the positions, if the particles move too far from the origin [68].

4.5.2 Lees–Edwards Boundary Conditions

Lees–Edwards boundary conditions are a method to combine shear flow with periodic bound-
ary conditions [69, 25, 50]. The infinte system considered when using periodic boundary
conditions (cf. 4.5.1) is subjected to a uniform shear in the x − y plane with shear rate
γ̇ = dvx

dry
. The layer of boxes whose centers are at (x, 0, z) are stationary, while layers above

and below move with a contant velocity of vbox = (±γ̇Ly, 0, 0) (see figure 4.2). Therefore,
when a particle leaves the central box in the y direction, one of its images will enter the cen-
tral box from the opposite surface, but since the image box from which it enters is displaced
by a factor dx = γ̇Lyt in the x-direction, the image particle will enter the center box also
displaced that way. Additionaly, it will have a x-velocity that is smaller than the original

1Here, b c denotes mapping to the largest previous integer, d e denotes mapping to the smallest following
integer and b e denotes mapping to the nearest integer.
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particle by γ̇Ly. Mathematically, these boundary conditions can be expressed as

rx → r′x = rj − b
ry
Ly
eγ̇Lyt

vx → v′x = vx − b
ry
Ly
eγ̇Ly

rj → r′j = rj − b
rj
Lj
eLj for j ∈ {x, y, z} 1

Note that periodic boundary conditions are recovered in the case of γ̇ = 0.

γ̇Ly γ̇Ly

−γ̇Ly −γ̇Ly

x

y

z

Figure 4.2: Lees–Edwards boundary conditions for homogeneous shear flow. The green
spheres demonstrate what happens when a particle leaves the central box and boundary
conditions are applied. The blue arrows indicate the average velocity profile of the fluid.

4.6 Embedded Objects

Macromolecules such as colloids or polymers can easily be incorporated into the MPC algo-
rithm by including them as point particles in the collision step [48]. For monomers of mass
M and velocities V i, the center-of-mass velocity in equation 4.2 is then calculated according
to

vcm = m
∑Nc
i∈cell vi +M

∑Nm
i∈cell V i

Ncm+NmM
(4.14)

where Nm is the number of monomers in a given cell. During the stochastic collision, the
monomers and the MPC particles exchange momenta. This interaction is generally strong
enough to keep embedded objects at a desired temperature by introducing a thermostat
for the fluid particles only. Between successive collisions monomers are propagated in time
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according to their equations of motion by a molecular dynamics scheme of time-step ∆tMD,
which is usually much smaller than the time-step ∆t of the MPC routine.

When embedding polymers in an MPC fluid, the average number of monomers per cell
〈Nm〉 should not be greater than unity, so that hydrodynamic interactions between neigh-
bouring monomers can build up. Therefore, the lattice constant a should be chosen to be
of the order of the average bond length of the polymer, provided the monomers are also
subjected to excluded volume interactions, which is the case here. Furthermore, the mass of
the monomers should match the average mass of fluid particles per cell [70], i.e. M = 〈Nc〉m.

4.7 Verification of the Algorithm

In the following section, a few static and dynamic properties of the MPC fluid will be tested
against both analytical and published results to ensure the correctness of the implementation.

Unless stated otherwise, the parameters used in these preliminary simulations were chosen
as follows. The primary box had dimensions Lx = Ly = Lz = 30a, with a = 1.0, and
the average number of particles per cell was 〈Nc〉 = 10 – which amounts to a total of
N = LxLyLz

a3 〈Nc〉 = 270000 particles. The rotation angle β was set to 130° and the time-step
to ∆t = 0.1

√
ma2/kBT . Finally, the system was simulated at a temperature of kBT = 1.

4.7.1 Velocity Distribution

First of all, the correct implementation of the Maxwell–Bolzmann Scaling Thermostat (cf.
section 4.4) was tested. Figure 4.3 shows the probability density of absolute velocities av-
eraged over all MPC particles. The results are in excellent agreement with the theoretical
prediction based on the Maxwell–Boltzmann distribution (4.10).



CHAPTER 4. MULTIPARTICLE COLLISION DYNAMICS 31

0 1 2 3 4 5
|v|

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
(|v
|)

Figure 4.3: Distribution of absolute velocities averaged over all MPC particles for a temper-
ature of T = 1 and without shear. Circles represent simulation results while the solid line
shows the theoretical prediction based on the Maxwell–Boltzmann distribution.

4.7.2 Velocity-Autocorrelation Function

In order to verify the implementation of the MPC algorithm, it is instructive to take a
look at velocity autocorrelation functions. It has been shown [46, 47, 55, 56] that the
MPC fluid exhibits the correct hydrodynamic behaviour according to the linearized Navier-
Stokes equations on sufficiently large length and time scales (see section 3.4). Therefore,
it is possible to derive analytical expressions for the velocity autocorrelation functions by
solving the linearized Navier-Stokes equations in Fourier space by applying the following
transformations

v(r, t) = 1
2π

∑
k

∫
v̂(k, ω) e−ik·r eiωtdω (4.15)

v̂(k, ω) = 1
V

∫
v(r, t) eik·r e−iωtd3rdt (4.16)

with kα = 2πnα/L and nα ∈ Z \ {0}.
Splitting the velocity in fourier space v̂ into a longitudinal v̂L and a transverse part

v̂T with respect to k, we can find analytical expressions for the velocity autocorrelation
functions of both parts, i.e.
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〈vT (k, t) · vT (−k, 0)〉 = 2kBT
ρV

e−νk
2|t| (4.17)

and

〈vL(k, t) · vL(−k, 0)〉 =


kBT
ρV
e−ν̃k

2|t|/2
[
cos(Ω|t|)−

√
k2ν̃2

4c2−k2ν̃2 sin(Ω|t|)
]
, if 4c2

k2ν̃2 > 1 ,
kBT
ρV
e−ν̃k

2|t|/2
[
cosh(Λ|t|)−

√
k2ν̃2

k2ν̃2−4c2 sinh(Λ|t|)
]
, if 4c2

k2ν̃2 < 1 ,
(4.18)

where ν = η/ρ, ν̃ = η̃/ρ = (η+ηk/3)/ρ, Ω = k2ν̃
√

4c2/(k2/ν̃2)− 1/2 and Λ = k2ν̃
√

1− 4c2/(k2/ν̃2)/2.
The velocity correlation function in real space follows by applying the inverse Fourier

transformation
〈v(r, t) · v(r′, 0)〉 =

∑
k

〈v(k, t) · v(−k, t)〉e−ik·(r−r′) , (4.19)

where 〈v(k, t) · v(−k, t)〉 is the sum of the longitudinal and two times the transverse auto-
correlation functions. For a detailed derivation the interested reader is referred to appendix
A.
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Figure 4.4: Normalized transverse velocity autocorrelation function for different values of
k. The symbols represent simulation data, whereas the solid line represents the analytical
expression.
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Figure 4.4 displays the results for the transverse velocity autocorrelation for three differ-
ent values of k, corresponding to the three spatial dimensions in Fourier space. Since the
three curves collapse onto each other over the whole time-period sampled, one can assume
that the fluid is isotropic as expected. Furthermore, excellent agreement with the theoretical
prediction (equation 4.17) for a kinematic viscosity of ν = 0.87 is achieved.

4.7.3 Homogeneous Shear Flow

Applying Lees–Edwards boundary conditions introduces homogeneous shear into the system
(cf. section 4.5.2). The fluid should respond to this by developing a linear velocity profile in
the x− y plane

vx = γ̇y (4.20)

We tried to verify this behaviour by dividing the box in the y-direction into small slices of
length 0.2 and averaging over the velocities in the x-direction vx of all particles in a given
slice over the course of the simulation. The results are presented in figure 4.5 and exhibit
excellent agreement with the theoretical prediction.
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Figure 4.5: Velocity profile of a MPC fluid with Lees–Edwards boundary conditions



Chapter 5

Telechelic Star Polymers under Shear

In the present chapter, the implementation and choice of parameters for the simulation will
be explained and the results for the characteristics described in chapter 2 will be presented.

5.1 Implementation and Simulation Parameters

To investigate the behaviour of telechelic star polymers under the presence of a homogeneous
shear flow we used a hybrid simulation technique that combines molecular dynamics (MD)
with multiparticle collision dynamics (MPC). The monomers of the telechelic star polymer
are propagated in time according to their Newtonian equations of motion with the help of the
Velocity-Verlet integration scheme [71, 72]. Let ri(t) and vi(t) be the position and velocity
of the ith monomer at time t, and let F i(t) be the sum of all pairwise additive forces acting
on given monomer. Then, the updated positions ri(t+ ∆t) and velocities vi(t+ ∆t) after a
time step of ∆t are calculated as follows

ri(t+ ∆t) = ri(t) + vi(t)∆t+ F i(t)
2m ∆t2 , (5.1)

vi(t+ ∆t) = vi(t) + 1
2m (F i(t) + F i(t+ ∆t)) ∆t . (5.2)

Since we need the forces at time t and t + ∆t, we have to make a force calculation after
updating the positions of all particles and before updating the velocities of all particles.

To speed up the force calculations, Verlet lists [71, 72] for each monomers are kept,
indicating the neighbours of each monomer within a certain cut-off distance rv – which is
chosen slightly larger than the cut-off for the force calculation rc. To construct and update
these lists, the simulation box is divided into smaller sub-boxes of length rc, such that only
particles belonging to one of the 27 neighbouring sub-boxes have to be checked for finding
the members of one monomer’s Verlet list [73]. These neighbour lists have to be updated

34
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whenever any monomer has travelled a distance greater or equal to rv − rc since the last
update.

The star polymer was coupled to the MPC solvent by including it in the stochastic
rotation as described in section 4.6. Unless stated otherwise, the parameters used in the
final simulations were chosen as follows. For the solvent particles a time-step of ∆ts = 0.1
was used, while the motion of the monomers of the star polymers was integrated using a
smaller time-step of ∆tm = 0.001. The side length of the MPC cells must be chosen such
that there is approximately one monomer per cell in order to properly resolve hydrodynamic
interactions while also capturing the effects of anisotropic friction. Since the bond length
of the monomers is b ≈ 1, we chose a = 1.0 as the side length of the cells to ensure this.
The rotation angle β was set to 130° and the system was simulated at a temperature of
kBT = 0.5. Note that all simulation parameters not specific to the solvent were the same as
for the equilibrium simulations described in section 2.2. In terms of star architecture, stars
of 6, 9 and 15 arms with amphiphilicities α of 0.3 and 0.5 were investigated. The attraction
coupling constant λ was varied between 0.5 and 1.15.

In the following sections, the behaviour of star polymers will be discussed separately
for the two different amphiphilicities investigated in our simulations, α = 0.3 and α = 0.5,
respectively.

5.2 The Case of Low Amphiphilicity α = 0.3

As discussed earlier in section 2.2, in equilibrium, stars of an amphiphilicity as low as α = 0.3
form patches whose number and size is a monotonically increasing function of the attraction
coupling constant (or inverse temperature) λ for all the values of λ considered here (i.e.
λ ≤ 1.15). Furthermore, in this range, the attraction between B-type monomers is not
strong enough to form any patches of more than two arms (see figures 2.2a and 2.3a).
Since athermal star polymers elongate and take on a more prolate shape under linear shear
conditions [74], we would expect that applying shear on end-functionalised star polymers
promotes clustering and leads to an increase in patch size and a stabilisation of patches at
lower values of λ than in equilibrium conditions.

5.2.1 Characterization of Patchiness

Figure 5.1 shows the number of patches Np (left column) as well as the size of the formed
patches sp (right column) for 6 (top), 9 (middle) and 15 (bottom) arms and various inverse
temperatures λ as a function of the dimensionless Weissenberg number Wi ranging from
0 to ≈ 103. For all functionalities considered, the stars seem to make a transition from
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a constant number of patches to a monotonic increase with Weissenberg number. This
transition happens at lower shear rates at lower temperature and higher functionality.

10−1 100 101 102 103 104

Wi

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
p

λ = 0.5

λ = 0.8

λ = 1.05

λ = 1.15

(a) f = 6

10−1 100 101 102 103 104

Wi

2.00

2.02

2.04

2.06

2.08

2.10

2.12

2.14

s p

λ = 0.5

λ = 0.8

λ = 1.05

λ = 1.15

(b) f = 6

10−1 100 101 102 103 104

Wi

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
p

λ = 0.5

λ = 0.8

λ = 1.05

λ = 1.15

(c) f = 9

10−1 100 101 102 103 104

Wi

2.00

2.05

2.10

2.15

2.20

2.25

2.30

2.35
s p

λ = 0.5

λ = 0.8

λ = 1.05

λ = 1.15

(d) f = 9

10−1 100 101 102 103 104

Wi

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
p

λ = 0.5

λ = 0.8

λ = 1.05

λ = 1.15

(e) f = 15

10−1 100 101 102 103 104

Wi

2.0

2.1

2.2

2.3

2.4

S
p

λ = 0.5

λ = 0.8

λ = 1.05

λ = 1.15

(f) f = 15

Figure 5.1: Number of patches Np (left) and patch-size sp (right) as a function of Weissenberg
number Wi for functionalities f ∈ {6, 9, 15} (from top to bottom) and amphiphilicity α = 0.3

Even though the change with increasing shear rate is quite similar for stars of different
functionalities, the range between the minimum and the maximum number of patches for
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a given star architecture is quite different depending predominantely on functionality. On
the end of very low functionality, f = 6, the average number of patches is always below
1, indicating that either the lifetime of two-arm patches is increased by high shear or that
patches are formed more often at high shear. To find out which of those two assumptions is
true, we examined the conformations of such stars at different shear rates in more detail.

∆t = 1000

∆t = 3000

(a) Wi ≈ 30

∆t = 1000

∆t = 1000

(b) Wi ≈ 560

Figure 5.2: Representative conformations of a TSP with f = 6, α = 0.3 and λ = 1.05 at
an intermediate (Wi ≈ 30, left) and a high shear rate (Wi ≈ 560, right). Purple spheres
correspond to solvophobic B-type monomers, while solvophilic A-type monomers are coloured
in different shades of grey and blue according to which arm they belong to.

Figure 5.2 shows consecutive snapshots of a star with six arms at an inverse temperature
of λ = 1.05 at an intermediate (left) and a high (right) Weissenberg number. We notice that
at high shear rates, arms change from one side to the other relatively often. This might be
responsible for the quick formation and breaking of patches, as can be seen from the shorter
lifetime of the patch between the two grey arms at Wi ≈ 560 than at Wi ≈ 30 (middle
configurations). These faster dynamics at high shear rates could be observed throughout
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the whole simulation. Thus, we can conclude that for stars of low functionality and low
amphiphilicity, shear makes patches less stable but at the same time more abundant.

For stars of high functionality, f = 15, on the other hand, the changes in patchiness with
increasing shear rate are qualitatively more diverse than in the low functionality case. For
λ = 1.05, for example the average number of patches changes from one in equilibrium to
two at high Weissenberg numbers. Interestingly, however, for even higher attraction between
solvophobic monomers, λ = 1.15, the star structure changes from one or two patches forming
in equilibrium to two or three patches forming at the highest shear rate considered. The
ability to form three patches when subjected to high shear flows is intriguing, since intuitively
one would assume that the elongation induced by the linear velocity profile would promote
the formation of two patches at the ends of the prolate ellipsoidal shape. Comparing the
conformations at intermediate and high shear rates (figures 5.3a and 5.3b, respectively), we
notice that the two patches formed at the left end of the star at high shear rate are in fact
very close to each other. However, the attraction between them is not high enough to get
them to collapse onto each other. Furthermore, arms forming patches seem to be much
shorter than free arms at high shear due to the clustering of the solvophobic monomers and
the steric repulsion between the solvophilic monomers. Elongated free arms between patches
might thus hinder the collapse of several patches onto one.

(a) Wi ≈ 50 (b) Wi ≈ 103

Figure 5.3: Representative conformations of a TSP with f = 15, α = 0.3 and λ = 1.15 at
an intermediate (Wi ≈ 50, left) and a high shear rate (Wi ≈ 103, right). Purple spheres
correspond to solvophobic B-type monomers, while solvophilic A-type monomers are coloured
in blue. Patches formed are marked by red ellipses.
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5.2.2 Conformation and Shape Parameters

The results obtained so far all depend upon our specific definition of a patch, which is com-
puted via a threshold-based clustering algorithm as explained in section 2.2.1. When using
such techniques one should always bear in mind that they have an intrinsic ambiguity asso-
ciated with them and small differences in the definition of a patch might lead to qualitative
different results. To compensate for this problem, we also characterise the conformation of
the telechelic star polymers in terms of their gyration tensor and calculate the shape param-
eters prolateness and acylindricity derived from it (cf. section 2.2.2). If we can relate these
measures of star shape along with the visual inspections of the conformations to our results
about the patch formation, we can confirm that our definition of a patch is self-consistent.
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Figure 5.4: Radius of gyration Rg as a function of Weissenberg number Wi for functionalities
f ∈ {6, 9, 15} (from left to right and top to bottom) and amphiphilicity α = 0.3
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We start by analysing the radius of gyration Rg, which is the least sensitive measure of
shape, since it only gives a rough estimate about the overall size of the molecule. Figure
5.4 shows the radius of gyration as a function of Weissenberg number for all functionalities
considered. As already seen in the snapshots of the configurations (cf. figures 5.3), the
radius of gyration increases drastically with increasing shear rate after a certain threshold
on the order of Wi ≈ 10, which is approximately the same for all functionalities. Although
not visible in the case of six arms, the radius of gyration is smaller for higher λ, especially
at intermediate shear rates. This could be due to the resistance against elongation of arms
which are part of a patch, as was discussed in the previous section and seen in figure 5.3b.

The elongation of the stars with shear rate is also demonstrated by the prolateness S,
depicted in the left column of figure 5.6. However, contrary to the behaviour of the gyration
radius, we notice no dependence of the prolateness on the attraction coupling constant λ.
According to the definition of the prolateness in equation 2.11, it depends on the relative
differences between the eigenvalues of the gyration tensor. Looking at the conformation
of stars with different values of λ at the same Weissenberg number (figure 5.5), we notice
that while arms in patches are less elongated, a star with more patches also has less free
arms which can increase the extension of the star perpendicular to the axis of the largest
eigenvalue. Therefore, these two effects might compensate each other in a way that the
prolateness is independent of the attraction between B-monomers.

Finally, we turn to an examination of the acylindricity c (right column of figure 5.6).
It drops drastically at high shear rates, which is not surprising, given that the undisturbed
velocity field is symmetric with respect to a rotation around the direction of its gradient.
As the molecule aligns itself with the flow it should at least partially adopt this symmetry,
which leads to a convergence of the two smallest eigenvalues of the gyration tensor and thus
an acylindricity going to zero.

(a) λ = 0.8 (b) λ = 1.15

Figure 5.5: Representative conformations of a TSP with f = 15 with different interaction
strengths λ at a high shear rate with Wi ≈ 500. Purple spheres correspond to solvophobic
B-type monomers, while solvophilic A-type monomers are coloured in blue.
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Figure 5.6: Prolateness S (left) and acylindricity c (right) as a function of Weissenberg
number Wi for functionalities f ∈ {6, 9, 15} (from top to bottom) and amphiphilicity α = 0.3

However, we do not see any trend with respect to λ – for a given functionality, all the
curves collapse onto each other within the statistical error. The different trends for different
functionalities seem to stem from the fact that for intermediate to high shear rates, all stars
undergo the same transition from low to high cylindrical symmetry, but their equilibrium
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conformations vary significantly, with stars of high functionality being more cylindrical than
those of low functionality. The conformations of figure 5.7 illustrate the non-monotonicity
of the acylindricity for stars of fifteen arms. The figure shows a star with λ = 1.05 and
functionality f = 15 at low, intermediate and high shear rates, respectively. Each conforma-
tion is viewed in two different planes – the flow-gradient plane above and the flow-vorticity
plane below – to compare the extension of the star in different directions. For small shear
rates, the TSP assumes a highly spherical shape and thus exhibits a small acylindricity. As
the shear gets stronger, the star is stretched in the flow direction while an extension in the
gradient direction is hinderes, leading to an increase in acylindricity. At high shear rates,
extension in the vorticity direction is inhibited as well, with the exception of the occasional
arm rotating in the flow-vorticity plane in the course of the TSP’s tank-treading motion.
Furthermore, at high shear rates the acylindricity is less sensitive to differences in extension
between the vorticity and gradient direction, since it is scaled by the radius of gyration,
whose value almost doubles from low to high Weissenberg number.
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(a) Wi ≈ 0.5 (b) Wi ≈ 30

(c) Wi ≈ 560

Figure 5.7: Representative conformations of a TSP with f = 15 and λ = 1.05 at different
shear rates. Each conformation is shown in the flow-gradient plane (top) and the flow-
vorticity plane (bottom). Purple spheres correspond to solvophobic B-type monomers, while
solvophilic A-type monomers are coloured in blue.
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5.2.3 Orientational Resistance

As discussed in section 2.2.3 and appendix B, the orientational resistance is a measure for
the alignment of a molecule in a flow field. Our results for the orientational resistance as a
function of Weissenberg number are presented in figure 5.8 for stars of functionalities 6, 9
and 15, respectively.
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Figure 5.8: Orientational resistance mg as a function of Weissenberg number Wi for star
polymers of functionalities f ∈ {6, 9, 15} (from left to right and top to bottom) and am-
phiphilicity α = 0.3
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Unlike for linear polymer chains, we do not see a plateau value at small shear rates.
However, we do observe that the orientational resistance can be described by a powerlaw,

mg(Wi) ∼Wiµ , (5.3)

for large Weissenberg numbers. A linear fit of the logarithms of both mg and Wi at the five
highest shear rates considered yields the exponents µ as indicated in figures 5.8(a)-(c). These
results coincide within the statistical error with the results obtained for purely repulsive star
polymers [74], where an exponent of µ = 0.65 ± 0.05 was found. Furthermore, we see no
significant difference in orientational resistance with respect to the inverse temperature λ,
which is probably related to the fact that the stretching of the stars in the flow direction at
high Weissenberg numbers dominates their shape.
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5.3 The Case of High Amphiphilicity α = 0.5

We now turn our attention to star-polymers with a higher amphiphilicity, namely α = 0.5.
For this fraction of attractive monomers, we have found that the number of patches formed
by stars of 9 or 15 arms reaches its maximum value at λ = 1.15 (cf. section 2.2.1), which is
the highest value of λ considered in our non-equilibrium simulations. Upon further increase
of the attraction between the solvophobic tails, different patches collapse onto each other,
leading to an on average decreasing number of patches of larger size. We would like to see
whether the exertion of shear forces induces a similar behaviour as the modulation of the
attractive coupling. We will consider the same star architectures in terms of functionality
and attraction and the same Weissenberg numbers as for the case of low amphiphilicity stars
(cf. section 5.2)

5.3.1 Characterisation of Patchiness

For low values of λ we observe the same monotonic trend of increasing number of patches
with increasing shear rate (see left column of figure 5.9), as was already seen in the case of
low amphiphilicty. Although small, this trend is now also visible and more conclusive for
the patch size, as can be seen from the right column of figure 5.9. For the highest value of λ
considered, i.e. λ = 1.15, however, patch-number and patch-size exhibit an interesting non-
monotonicity which differs also for the various functionalities investigated. For these cases,
the patch-size is peaked at some low (for f = 9) or intermediate (for f = 6, 15) Weissenberg
number. This behaviour is especially pronounced for the star-architecture with 15 arms,
where as little as three to as many as five arms can on average be part of a patch, depending
on the shear rate.
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Figure 5.9: Number of patches Np (left) and patch-size sp (right) as a function of Weissenberg
number Wi for functionalities f ∈ {6, 9, 15} (from top to bottom) and amphiphilicity α = 0.5

Since these peeks in patch size go hand in hand with local minima in patch-number,
we were interested in whether the average number of arms being part of any patch, i.e.
Na = Np·sp, remains more or less constant over the range of Weissenberg numbers considered.
As can be seen from figure 5.10, this is indeed the case for stars with 9 and 15 arms, apart
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from minor fluctuations at intermediate shear rates. This indicates that in these cases shear
does not induce the formation of more patches of the same type as present in equilibrium,
but rather leads to the reconfiguration of patches. This is an interesting finding, since the
number of patches formed by a TSP determines the macroscopic properties at finite densities
[11, 12, 15, 14]. These could thus be tuned not only by temperature but also by applying
shear to the system. For stars of functionality f = 6, the trend in Na follows that of the
number of patches Np closely, since the patch size varies only between about sp = 2.2 and
sp = 2.6.
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Figure 5.10: Number of arms participating in patch formation Na as a function of Weis-
senberg number Wi for functionalities f ∈ {6, 9, 15} (from left to right and top to bottom)
and amphiphilicity α = 0.5
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5.3.2 Conformation and Shape Parameters

At an amphiphilicity of α = 0.5, the size of the TSPs, as measured by their average radius
of gyration in figure 5.11, is significantly smaller for higher λ throughout the whole range of
shear rates considered. This was not the case for low amphiphilicity stars, where the differ-
ences completely vanished at high Weissenberg numbers (cf. section 5.2.2). Surprisingly, the
prolateness S is not affected by the attraction between B-monomers, as depicted in figures
5.12(a), (c) and (e).
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Figure 5.11: Radius of gyration Rg as a function of Weissenberg number Wi for functionalities
f ∈ {6, 9, 15} (from left to right and top to bottom) and amphiphilicity α = 0.5

For TSPs of low functionality and low attraction between solvophobic monomers, the
acylindricity follows the same qualitative trend that has been found for low amphiphilicity
stars (cf. figures 5.6 and 5.12). For these parameters, the average number of patches does not
exceed two at any Weissenberg number and since two patches do not hinder the alignment
with the flow field nor break cylindrical symmetry, the acylidricity is completely determined
by the strength of the shear flow. A deviation from this behaviour can already be seen
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for f = 9 and λ = 1.15, but for stars with 15 arms, the curves for different λ are clearly
distinct from each other. We assume that the acylindricity is strongly affected by the number
of patches a star forms, since some patch-numbers are more compatible with cylindrical
symmetry than others.
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Figure 5.12: Prolateness S (left) and acylindricity c (right) as a function of Weissenberg
number Wi for functionalities f ∈ {6, 9, 15} (from top to bottom) and amphiphilicity α = 0.5
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Figure 5.13 aims to compare the shape of a star with 15 arms at two different tempera-
tures, corresponding to λ = 0.8 and λ = 1.15, and two different shear rates, at which their
acylindricity clearly differs. At Wi ≈ 6, the TSP of low λ forms only small patches, while
most arms are free, which leads to a highly spherical shape and thus a small acylindricity.
The star of λ = 1.15, however, forms three patches at this Weissenberg number, in which
most arms participate. Since this conformation is highly asymmetrical with respect to a
rotation around its major axis, it coincides with the maximum in acylindricity. As the shear
rate increases further, three patches of approximately equal size are not stable anymore, and
one of the patches is broken up and its arms distributed among the remaining ones, which
can be easily aligned with the flow. Since the attraction between solvophobic monomers
and the formation of two big patches hinders the extension of arms in the vorticity and the
gradient direction, the acylindricity is much smaller than for stars of low λ, whose patches
are mostly made up of two or three arms.

(a) λ = 0.8, Wi ≈ 6 (b) λ = 1.15, Wi ≈ 6

(c) λ = 0.8, Wi ≈ 140 (d) λ = 1.15, Wi ≈ 1400

Figure 5.13: Representative conformations of TSPs with f = 15, α = 0.5 and λ = 0.8
(left) as well as λ = 1.15 (right) at two different Weissenberg numbers, Wi ≈ 6 (top) and
Wi ≈ 30. Purple spheres correspond to solvophobic B-type monomers, while solvophilic
A-type monomers are coloured in blue.



CHAPTER 5. TELECHELIC STAR POLYMERS UNDER SHEAR 52

5.3.3 Orientational Resistance

The orientational resistance mg shows marked differences for α = 0.5 at high shear rates,
depending on the attraction between B-monomers. As depicted in figure 5.14, star-polymers
with lower values of λ tend to align themselves more easily with the flow field. On the
other hand, the exponents of the fitted curve mg ∼ Wiµ are smaller for stars with stronger
attraction, since the differences in orientational resistance vanish at very high Weissenberg
numbers. Table 5.1 summarizes the findings of the fitting procedure. Again, only the last
five data points, which lie on a straight line in the double-logarithmic plot were used for the
power-law fit. It should be noted that, although the statistical error is rather high compared
to the differences in the exponents, the trend is the same for all functionalities considered.
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Figure 5.14: Orientational resistance mg as a function of Weissenberg number Wi for star
polymers of functionalities f ∈ {6, 9, 15} (from left to right and top to bottom) and am-
phiphilicity α = 0.5
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µ

λ f = 6 f = 9 f = 15
0.5 0.65± 0.03 0.66 ± 0.03 0.68 ± 0.03
0.8 0.64 ± 0.03 0.66 ± 0.04 0.67 ± 0.03
1.05 0.63 ± 0.03 0.64 ± 0.03 0.65 ± 0.04
1.15 0.61 ± 0.03 0.59 ± 0.07 0.63 ± 0.04

Table 5.1: Exponents µ of the power law mg ∼Wiµ for amphiphilicity α = 0.5 and different
inverse temperatures λ and functionalities f .

5.3.4 A closer look at f = 15 and λ = 1.15

Since it exhibits the strongest non-monotonicity and the greatest changes in patchiness upon
being subjected to different shear rates, we will try to characterise the behaviour of the star
architecture with 15 arms and high attraction between solvophobic monomers, i.e. λ = 1.15
in more detail. To this end, we take a look at typical conformations of this TSP at increasing
shear rates as illustrated in figure 5.15. At a Weissenberg number of Wi ≈ 3, the shape and
patchiness of the star resembles that of the equilibrium simulations, as is also reflected by the
fact that all shape parameters are approximately constant up to this shear rate. Increasing
the shear rate to intermediate values corresponding to Wi ≈ 30, we notice a change from
three to four small patches to two or three bigger patches of five arms on average. This
transformation in patch configuration is likely due to the elongation of the star (see figure
5.12e) as well as its alignment with the flow field (see 5.14c). Upon further increase of the
shear rate (figure 5.15c), we see a strong drop in patch size sp and the number of patch-
forming arms Na as the shear stresses force the arms to elongate and to break free of the
patches. The patches that remain stable are clustered towards the center of the star polymer,
leading to a high local density near the anchoring point. At very high shear rates (Wi > 103,
figure 5.15d), all arms are elongated and new patches can be formed by neighbouring arms
aligning with the flow field.
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(a) Wi ≈ 3 (b) Wi ≈ 30

(c) Wi ≈ 140 (d) Wi ≈ 1400

Figure 5.15: Representative conformations of a TSP with f = 15, λ = 1.15 and α = 0.5
at various Weissenberg numbers (increasing from (a) to (d)). Purple spheres correspond to
solvophobic B-type monomers, while solvophilic A-type monomers are coloured in different
shades of grey and blue to distuinguish between arms.



Chapter 6

Conclusion and Outlook

In this work, we have performed a first investigation of a specific class of molecules, telechelic
star polymers, under homogeneous shear flow conditions, employing a simulation technique
which couples classic Molecular Dynamics to mesoscopic Multiparticle Collision Dynamics.
The main focus hereby lied on the quantification of the polymers’ patchiness, their shape
parameters and their orientational resistance.

We have shown that these polymers respond to shear stresses qualitatively different from
athermal stars, when the attraction between their solvophobic blocks is sufficiently high
and that shear can be utilized as yet another parameter to tune their self-assembly next
to functionality, amphiphilicity and temperature. While shear increases the patchiness of
low amphiphility TSPs as a result of their alignment with the flow field, we have found
that for high amphiphility stars the number and size of patches formed are non-monotonic
functions of shear rate. This might have interesting implications on the system’s rheological
properties and viscoelastic responses in dilute bulk phases, since the macro- and microscopic
phase behaviour of TSPs in equilibrium is governed by their number of association sites,
or patches. Furthermore, we were able to demonstrate that high amphiphility TSPs resist
alignment with the flow field more strongly than athermal star polymers in the regime of
intermediate Weissenberg numbers.

Whether the characteristics of single star polymers found in this study will prevail in
systems of finite densities will be subject of further theoretical and computational studies in
the future.
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Appendix A

Solutions to the Linearized
Navier–Stokes Equations

In this appendix, we will derive the solutions to the linearised Navier-Stokes equations and
subsequently use these results to determine the velocity autocorrelation functions presented
in section 4.7.2 [75, 76].

We will start from the Navier-Stokes equation with an added random force term fR =
∇ · σR describing thermal fluctuations

ρ

(
∂v

∂t
+ (v ·∇)v

)
= −∇p+ η∆v + (ζ + 1

3η)∇(∇ · v) + fR , (A.1)

together with the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0 . (A.2)

In contrast to section 3.4, where we used the dimensionless Reynolds number (cf. eq. 3.23)
to linearise the Navier-Stokes equation, we will now make a linear in expansion in v and ρ.
We assume that the density ρ is nearly constant across the fluid with only small variations
δρ and that the velocity of the fluid is zero apart from small fluctuations δv, i.e.

ρ = ρ0 + δρ v = δv . (A.3)

Substituting A.3 into the Navier-Stokes equation A.1 and neglecting terms quadratic in
(δv, δρ) leads to the linearised equations

ρ0
∂v

∂t
= −∇p+ η∆v + (ζ + 1

3η)∇(∇ · v) + fR , (A.4)

∂

∂t
δρ+ ρ0∇ · v = 0 , (A.5)
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where we wrote δv as v for simplicity, but keep in mind that the stationary velocity is still
zero. Taking the divergence of of equation A.4 and using equation A.5 to substitute the term
∂
∂t

(ρ0∇ · v) yields

− ∂2

∂t2
δρ = −∆p+∇ ·

[
η∆v + (ζ + 1

3η)∇(∇ · v) + fR
]
. (A.6)

If we assume that the fluid obeys the ideal gas equation of state

p = NkbT

V
= ρc2 , (A.7)

with c =
√
kbT/m being the isothermal velocity of sound, we finally arrive at

∆p− 1
c2
∂2p

∂t2
=∇ ·

[
η∆v + (ζ + 1

3η)∇(∇ · v) + fR
]
. (A.8)

In order to solve equations A.4 and A.8 for the unknown variables v and p, we perform
a Fourier transformation of the form

v(r, t) = 1
2π

∑
k

∫
v̂(k, ω) e−ik·r eiωtdω , (A.9)

v̂(k, ω) = 1
V

∫
v(r, t) eik·r e−iωtd3rdt (A.10)

on all non-constant variables, which yields

iωρ0v̂ = ikp̂− ηk2v̂ − (ζ + 1
3η)kkT v̂ + f̂R , (A.11)(

ω2

c2 − k
2
)
p̂ = ikT

[
ηk2v̂ + (ζ + 1

3η)kkT v̂ − f̂R
]
, (A.12)

where the superscript T denotes the transpose of a vector.
In order to continue, we separate the velocity v̂ into a longitudinal and transverse part

with respect to k, i.e. v̂ = v̂L + v̂T , and define the longitudinal and transverse projection
operators P L := kkT/k2 and P T := 1 − P L, respectively. Applying P T on equation A.11
yields

v̂T = (iωρ0)−1P Tf
R =: Q̂T (k, ω)P T f̂

R
. (A.13)

Multiplying equation A.11 by kT , we can solve for p̂

p̂ =
(
ωρ0

k2 − iη̃
)
kT v̂ + i

k2k
T f̂R , (A.14)

with η̃ = 4η
3 + ζ. Substituting into equation A.12, we finally arrive at

v̂L =
(

˜ηk2 + iρ0

ω

)−1
P Lf̂

R =: Q̂L(k, ω)P Lf̂
R
. (A.15)
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In order to calculate the velocity autocorrelation functions, we need to specify some
characteristics of the random force fR = ∇ · σR. Since the random force accounts for
thermal fluctuations of the fluid, we assume that the stochastic process for the random
stress tensor σR is Gaussian and Markovian with the following moments

〈σR〉 = 0 , (A.16)

〈σRαβ(r, t)σRα′β′(r′t′) = 2kBTηαβα′β′δ3(r − r′)δ(t− t′) , (A.17)

with
ηαβα′β′ = η (δαβ′δα′β + δαα′δββ′) +

(
ζ − 2

3η
)
δαβδα′β′ . (A.18)

With this, we can calculate the correlation function of the random force in Fourier space

〈f̂Rα (k, ω)f̂Rβ (k′, ω′)〉 = −kα′kβ′〈σαα′(k, ω)σββ′(k′, ω′)〉

= 4πkBT
V

k2
[
ηδαβ + (ζ + η

3)kαkβ
k2

]
δ(ω + ω′)δk,−k , (A.19)

and use this result to find an expression for the velocity autocorrelation function in Fourier
space

〈v̂(k, ω) · v̂(k′, ω′)〉 = 4πkBT
V

k2
(
2η|Q̂T |2 + η̃|Q̂L|2δ(ω + ω′)

)
δk,−k . (A.20)

Note that the factor 2 in front of |Q̂T |2 arises from the two transverse components of vorticity.
We will continue now with the derivation of the time-dependent correlation, which follows

by convolution

〈v(k, t)·v(k′, 0)〉 = 2kBTk2

V
δk,−k′

∫
[2ηQT (k, t− t′)QT (k′,−t′) + η̃QL(k, t− t′)QL(k′,−t′)] dt′ .

(A.21)
Fourier transformation of Q(k, ω) with respect to ω yields

QT (k, t) = 1
ρ0
e−νk

2tΘ(t) , (A.22)

QL(k, t) =


1
ρ0
e−ν̃k

2t/2
[
cos(Ωt)−

√
k2ν̃2

4c2−k2ν̃2 sin(Ωt)
]

Θ , if 4c2

k2ν̃2 > 1 ,
1
ρ0
e−ν̃k

2t/2
[
cosh(Λt)−

√
k2ν̃2

k2ν̃2−4c2 sinh(Λt)
]

Θ , if 4c2

k2ν̃2 < 1 ,
(A.23)

where ν = η/ρ0, ν̃ = η̃/ρ0, Ω = k2ν̃
√

4c2/(k2/ν̃2)− 1/2 and Λ = k2ν̃
√

1− 4c2/(k2/ν̃2)/2. It
now remains to evaluate the integral in equation A.21 and separating again into a transverse
and longitudinal part to arrive at

〈vT (k, t) · vT (−k, 0)〉 = 2kBT
ρ0V

e−νk
2|t| , (A.24)

〈vL(k, t) · vL(−k, 0)〉 =


kBT
ρ0V

e−ν̃k
2|t|/2

[
cos(Ω|t|)−

√
k2ν̃2

4c2−k2ν̃2 sin(Ω|t|)
]
, if 4c2

k2ν̃2 > 1 ,
kBT
ρ0V

e−ν̃k
2|t|/2

[
cosh(Λ|t|)−

√
k2ν̃2

k2ν̃2−4c2 sinh(Λ|t|)
]
, if 4c2

k2ν̃2 < 1 .
(A.25)



Appendix B

On the Derivation of Orientational
Resistance Under Shear

Consider a molecule made up of N monomers considered as point particles of equal mass.
Its gyration tensor is defined as

Gαβ := 1
N

N∑
i=1
〈rαi r

β
i 〉 α, β ∈ {x, y, z} , (B.1)

where rαi is the α-th Cartesian component of the position ri of the i-th monomer in the
center-of-mass reference frame of the molecule. The eigenvectors of the gyration tensor G
define the ”moment of inertia ellipsoid” of the molecule. If the molecule is subjected to
homogenous shear flow with x being the flow direction, y the gradient direction and z the
vorticity direction, i.e. the fluid motion obeys

vx = γ̇y , (B.2)

where γ̇ is the shear rate, its gyration tensor will change compared to an equilibrium sit-
uation. In the vorticity direction z, the system is symmetrical with respect to reflection
across the origin, i.e. z → −z, from which it follows that terms rxi rzi or ryi rzi are equally
likely to occur in the gyration tensor as their negative counterparts −rxi rzi and −ryi rzi . Thus,
the entries Gxz and Gyz of the gyration tensor will vanish in the ensemble average and the
gyration tensor takes on the form

G =


Gxx Gxy 0
Gyx Gyy 0

0 0 Gzz

 (B.3)

Furthermore, one of the eigenvectors of the gyration tensor G will point along the vorticity
direction z, while the other two will be rotated on the x − y plane (see figure B.1). The

59



APPENDIX B. ON THE DERIVATION OF ORIENTATIONAL RESISTANCE UNDER SHEAR60

ê1ê2

χg
x

y

Figure B.1: 2-dimensional projection of the ”moment of inertia ellipsoid” defined by the
eigenvectors ê1, ê2 and ê3 of the gyration tensor. The eigenvector ê3 points out of the page.
The orientation angle is denoted by χg.

angle χg denotes the angle between the eigenvector ê1 and the flow direction x and must lie
in the interval [0, π/4]. Due to the shear forces, ê1 must correspond to the largest eigenvalue
of the gyration tensor, which we will denote by λ1. Let us consider its defining equation

Gxx Gxy 0
Gyx Gyy 0

0 0 Gzz



ex1

ey1

0

 = λ1


ex1

ey1

0

 (B.4)

=⇒


Gxxe

x
1 +Gxye

y
1 = λ1e

x
1

Gyxe
x
1 +Gyye

y
1 = λ1e

y
1

(B.5)

Since both components, ex and ey are positive, it follows that

tanχg = ey1
ex1
. (B.6)

Dividing both equations in (B.5) allows us to calculate the ratio

ey1
ex1

= Gyxe
x
1 +Gyye

y
1

Gxxex1 +Gxye
y
1
, (B.7)

=⇒ tanχg = Gyx +Gyy tanχg
Gxx +Gxy tanχg

,

=⇒ Gxx tanχg +Gxy tan2 χg = Gyx +Gyy tanχg ,

=⇒ 1− tan2 χg = (Gxx −Gyy)
Gxy

tanχg , (B.8)
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Using the trigonometric identity

tan 2α = 2 tanα
1− tan2 α

, (B.9)

we finally find that
tan 2χg = 2Gxy

(Gxx −Gyy)
. (B.10)

Since the tangens is a strictly monotonically increasing function in the interval (−π
2 ,

π
2 ), it

is a good choice for measuring the resistance of a molecule to be oriented in the presence of
shear flow and thus the orientational resistance parameter mG is defined as

mg = Wi tan 2χg , (B.11)

where Wi is the Weissenberg number (cf. equation 2.15).



Appendix C

Abstract (english)

Telechelic star polymers (TSPs), consisting of f amphiphilic diblock-copolymer arms an-
chored to a central point, represent a class of highly tunable nanoparticles with the ability
of spontaneously self-assembling into soft patchy particles with attractive aggregation sites
formed by the solvophobic parts on their periphery. In this thesis, the patchiness, shape
and orientational resistance of said polymers is examined under homogeneous shear flows.
This is achieved by employing a hybrid algorithm combining Molecular Dynamics for the
monomers with the mesoscopic technique of Multiparticle Collision Dynamics for the sol-
vent. Telechelic star polymers of functionalities f = {6, 9, 15} with a fraction of solvophobic
monomers of α = 0.3 and α = 0.5 are considered. The coupling constant governing the
attraction between solvophobic monomers is varied from λ = 0.5 to λ = 1.15. We find
that shear flow promotes patch formation for stars exhibiting little clustering of their solvo-
phobic monomers in equilibrium conditions due to the alignment of the arms with the flow
field. For telechelic star polymers of high amphiphilicity and attraction between solvophobic
monomers, however, we discover a non-monotonic dependence of patch number and patch
size on shear rate. We compare the shape and alignment with the flow of TSPs with that
of athermal stars and observe a stronger resistance against alignment at intermediate shear
rates. Finally, we propose explanations for the dynamic reorganisation of the solvophobic
patches when subjected to shear stresses and make assumptions about their implications on
rheological properties in dilute systems.
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Appendix D

Abstract (deutsch)

Telechelische Sternpolymere (TSPs), bestehend aus f amphiphilen Diblock-Kopolymeren ve-
rankert an einem zentralen Punkt, stellen eine Klasse von leicht manipulierbaren Nanopar-
tikeln mit der Fähigkeit zur spontanen Selbstorganisation zu weichen Kolloiden mit attrak-
tiven Aggregationszentren an ihrer Peripherie dar. In dieser Arbeit wurde die Anzahl und
Größe besagter Aggregationszentren, die Form, sowie die Resistenz gegen Orientierung in
einer Strömung unter homogener Scherung untersucht. Hierfür wurde ein hybrider Algorith-
mus verwendet, welcher aus einer Kombination von Molekulardynamik zur Simulation der
Monomere und der mesoskopischen Technik ”Multiparticle Collision Dynamics” zur Sim-
ulation der Fluidteilchen bestand. Es wurden telechelische Sternpolymere der Funktion-
alitäten f = {6, 9, 15}, sowie mit einem Anteil an solvophoben Monomeren von α = 0.3
und α = 0.5 betrachtet. Die Kopplungskonstante λ, welche die Attraktivität zwischen
solvophoben Teilchen bestimmt, wurde dabei zwischen λ = 0.5 und λ = 1.15 variiert. Es
zeigte sich hierbei, dass Scherung Clusterbildung für jene Sternpolymere verstärkt, die in
Gleichgewichtssituationen wenig attraktive Aggregationsszentren aufweisen. Dies lässt sich
auf deren Ausrichtung im Strömungsprofil der Flüssigkeit zurückführen. Für telechelische
Sternpolymere mit hoher Amphiphilizität und Anziehung zwischen deren solvophoben An-
teilen konnten wir allerdings eine nicht-monotone Abhängigkeit der Anzahl und Größe der
solvophoben Cluster von der Schergeschwindigkeit feststellen. Des weiteren wurden Form
und Orientierung der telechelischen Sterne mit jenen von athermalen Sternen verglichen und
eine stärkere Resistenz gegen Ausrichtung in der Strömung beobachtet. Zum Schluss wird
eine Erklärung für die dynamische Reorganisation der solvophoben Aggregate unter dem Ein-
fluss von Scherspannung angeboten und Annahmen zu deren Implikationen für rheologische
Eigenschaften getätigt.
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