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Abstract

In this thesis, we study classically scale-invariant versions of the Standard Model (SM) with
additional scalar degrees of freedom. There, spontaneous symmetry breaking (SSB) and the gen-
eration of all particles’ masses is induced by radiative corrections in the S. Coleman-E. Weinberg
effective potential. Having just the particle spectrum of the SM, the SM cannot be described as
a scale-invariant theory with SSB à la S. Coleman and E. Weinberg because of the large mass
of the top-quark. One way to circumvent this problem is adding an arbitrary number of scalar
singlets to the particle content of the SM. We consider models where either one real or complex
scalar singlet is added and we construct tree-level scalar potentials in a classically scale-invariant
way. We calculate the full effective potential up to one-loop order by means of the perturbative
approach introduced by E. Gildener and S. Weinberg. In each model, we add an arbitrary num-
ber of right-handed neutrino fields with the aim to describe neutrinos as massive particles via the
seesaw-mechanism. In the final step, we investigate if the considered models can be described
in perturbation theory. From our calculations, we find that the last model in this thesis, where
we add one complex scalar X singlet to the particle content of the SM and construct a scalar
tree-level potential which is invariant under X ↔ X∗, accounts for both the introduction of mas-
sive neutrinos and the validity of perturbation theory with at least one massive scalar field with a
mass in the TeV-range.

Zusammenfassung

In dieser Arbeit behandeln wir klassisch skaleninvariante Versionen des Standardmodells der El-
ementarteilchenphysik mit zusätzlichen skalaren Freiheitsgraden. Spontane Symmetriebrechung
und die Massen aller Elementarteilchen werden durch Quantenkorrekturen im effektiven Poten-
tial nach S. Coleman und E. Weinberg hervorgerufen. Mit dem Teilchenspektrum des Standard-
modells ist es nicht möglich es als skaleninvariante Theorie mit Symmetriebrechung nach S.
Coleman und E. Weinberg zu beschreiben, da das top-Quark eine sehr schwere Masse besitzt.
Ein Weg dieses Problem zu umgehen und das Standardmodell als skaleninvariante Theorie zu
beschreiben, ist das Hinzufügen einer beliebigen Anzahl skalarer Singuletts zum Teilchenspek-
trum des Standardmodelles. Wir betrachten Modelle, in denen lediglich ein reelles oder kom-
plexes skalares Singulett hinzugefügt wird und konstruieren skalare Potentiale mit klassischer
Skaleninvarianz. Wir berechnen das effektive Potential auf Einschleifenniveau nach der störungs-
theoretischen Herangehensweise von E. Gildener und S. Weinberg. Darüberhinaus fügen wir in
jedem Modell eine beliebige Anzahl rechtshändiger Neutrinofelder hinzu, mit dem Ziel Neutri-
nomassen mit Hilfe des Seesaw-Mechanismus zu erklären. Abschließend untersuchen wir, ob
die betrachteten Modelle störungstheoretisch beschrieben werden können. Aufgrund unserer
Berechnungen ist das als letztes in dieser Arbeit betrachtete Modell − in dem wir ein komplexes
skalares Singulett X hinzufügen und ein Potential betrachten, das invariant unter X ↔ X∗ ist
− geeignet, Neutrinos als massive Teilchen zu beschreiben und es sind alle Rechnungen auch
störungstheoretisch durchführbar, wobei zumindest ein Skalarfeld eine schwere Masse im TeV-
Bereich besitzt.
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1 Introduction

The Standard Model of elementary particle physics (SM) [1–3] is a renormalizable gauge
field theory that contains all elementary particles known so far and describes the interactions
between them. The origin of the masses of all the charged fermions, the gauge bosons and the
Higgs boson itself is described by the Higgs mechanism [4–9]. With the discovery of the Higgs
boson − as one of the particles contained in the SM − at ATLAS [10] and CMS [11] in July
2012, the minimal version of the SM is completed.

The SM has, both from its theoretical formulation and from experimental data, a great
success in predicting and describing the building blocks of matter we know today. But although
it seems to be a self-consistent theory in its mathematical formulation, nowadays we know that
it can not describe all phenomena in nature and so physics beyond the Standard Model (BSM)
seems to exist. One obvious reason is that neutrino-oscillations were observed in experiments
[12–14] and therefore at least two of the three neutrino flavors included in the SM have to be
massive. This is in contradiction to the minimal version of the SM where they are described as
massless particles.

Considering the SM as a quantum field theory, an astonishing property of the SM-Lagrangian
is the fact that all terms except the explicit mass term µ2Φ†Φ in the Higgs potential have operator
dimension 4. Thus this term is the only one which breaks scale-invariance. Describing extensions
of the SM as a classically scale-invariant theory is under intensive consideration nowadays and in-
vestigated in many current works [15–44]. But this is not possible with the SM gauge-group and
the known particle content due to the mass values of the top-quark and the Higgs boson. To solve
this issue, i) one can extend the gauge-group of the SM, ii) one can add an arbitrary number of
real or complex scalar fields to the particle content of the SM without extending its gauge-group
or iii) one can both introduce new particles and extend the gauge-group. In this thesis, we will
only tackle the second approach which is known as minimal scale-invariant extensions of the
SM.

In the entire thesis, only models with one additional real or complex scalar degree of free-
dom will be considered. Apart from the fact that the SM can be described as a scale-invariant
theory by just adding one scalar degree of freedom, we can give an explanation for massive neutri-
nos via the seesaw-mechanism of type 1 [45–48]. By adding an arbitrary number of right-handed
neutrinos to the particle content of the SM that couple to the additional scalar singlet, these
couplings are of Majorana-type. Thus, when the scalar singlet gets a nonvanishing vacuum ex-
pectation value (VEV) and spontaneous symmetry breaking (SSB) occurs, Majorana-massterms
for the neutrinos will be generated. Furthermore by having both left-handed and right-handed
neutrinos, the construction of Yukawa couplings to the Higgs doublet is possible resulting in
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Dirac-massterms after SSB.

Moreover, in absence of an explicit scalar mass term, electroweak SSB and the generation of
all SM particles’ masses will be induced by radiative corrections to the tree-level scalar potential.
We will calculate the Coleman-Weinberg (CW) effective potential up to one-loop order [49].

This thesis is organized as follows: In chapter 2, we review the most important aspects of
the SM needed for this work, like the Higgs mechanism, the occurrence of electroweak SSB
and the introduction of Yukawa couplings of the fermions to the Higgs boson and describe how
the charged fermions, gauge bosons and the Higgs boson receive their masses after SSB. Then
in chapter 3 going already to BSM-physics, we proceed with the seesaw-mechanism of type 1.
There, we will add an arbitrary number of right-handed neutrino singlets and at least one scalar
singlet (being both singlets under the SM gauge group) to the particle content of the SM.

After that, in chapter 4, we review the CW-mechanism of effective potentials at one-loop
order giving an explanation of electroweak SSB in classically scale-invariant theories. The calcu-
lations are done in dimensional regularization [50, 51] and give the one-loop effective potential
for scalar, gauge boson and fermion loop-corrections writing all terms in the modified mini-
mal subtraction scheme (MS-scheme) [52, 53]. In chapter 5, we proceed by summarizing the
main aspects of the work of Gildener and S. Weinberg (GW) [54] which makes us of with the
CW-potential and gives an explanation which condition on all particles’ masses included in a
considered model has to be fulfilled so that a specific model can be described perturbatively.

After all these theoretical aspects, we show the calculations and give the results of all the
different models we worked with, where the SM is considered as a classically scale-invariant
theory with an extended scalar sector. In addition to the new scalar degrees of freedom that will
be introduced, we will add right-handed neutrinos in each model to describe neutrinos as massive
particles. In chapter 6, we discuss a model with one additional real scalar singlet compared to
the particle content of the SM. In chapter 7, we discuss a model with one additional complex
scalar field, where the scalar potential is invariant under a U(1)-transformation of that field. In
this model, there is again one more physical scalar compared to the SM and due to that U(1)-
symmetry which is already broken at one-loop order there will occur a real Goldstone boson, the
Majoron. The Majoron stays massless after SSB in all orders of perturbation theory. In chapter
8, we discuss a model with one additional complex scalar field X , where the effective potential
is invariant under the discrete symmetry X ↔ X∗. In this case, we have three heavy scalar
particles. To conclude, we summarize our results in chapter 9 and give some prospects for future
work.
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2 The Standard Model of Particle
Physics

The Standard Model (SM) of elementary Particle Physics − a quantum field theory (QFT) in its
mathematical formulation − includes all fundamental particles (known so far) shown in figure
2.1 and describes their interactions among each other. The matter how we know it on earth is
mostly built from the first family of quarks (up- and down-quarks), being the constituents of
protons and neutrons, and together with the electron, as one constituent living in the first family
of the leptons, they make up atoms. The remaining fermions (quarks and leptons) living in the
other two generations are mostly produced in accelerators, or they are radiated from stars where
the energy-scale is much higher than in everyday world.

Figure 2.1: All particles included in the SM (taken from [55])

This chapter gives a phenomenogical overview of the SM, but not a complete mathematical
description. Of course, one can find a more detailed description of the SM in many textbooks
nowadays, as in [56–58].



2 The Standard Model of Particle Physics

2.1 Building up the SM-Lagrangian

The SM is a renormalizable quantum field theory based on local gauge invariance, given by the
gauge group,

GSM = SU(3)C × SU(2)L × U(1)Y . (2.1)

Gauge invariance means that the Lagrangian of the SM is constructed such that it is invariant, if
the fields (fermion and scalar fields) transform under its group (2.1), and local corresponds to
the fact that these transformations have to depend on space and time. Each fermion, the three
generations of left- and right-handed leptons (EL)T

i =
(
νL eL

)
i
, (eR)i and quarks (QL)T

i =(
uL dL

)
i
, (uR)i and (dR)i, and the scalar field Φ of the SM have SU(2)L and U(1)Y quantum

numbers shown in table 2.1. The hypercharge Y is defined by Q = τ3 + Y , with Q being the
electric charge and τ3 being the third generator of SU(2)L.

SU(2)L U(1)Y
(uL)i 1

2
1
6

(dL)i -1
2

1
6

(uR)i 0 2
3

(dR)i 0 -1
3

(νL)i 1
2 -1

2

(eL)i -1
2 -1

2

(eR)i 0 -1

(νR)i 0 0

Φ =
(

Φ+

Φ0

)
-1

2
1
2

Table 2.1: The quantum numbers of τ3 for SU(2)L and of Y for U(1)Y , of the fermions and of
the Higgs boson in the SM

A necessary component to build up the SM-Lagrangian is the covariant derivative reading

Dµ = ∂µ − ig′Y Bµ − igτaAaµ − igsTAGA
µ , (2.2)

where Y is the generator of U(1)Y , τa (a = 1, 2, 3) are the three generators of SU(2)L given by

τa =


1
2σa forSU(2)L doublets
0 forSU(2)L singlets

(2.3)

with σa being the Pauli-matrices and TA (A = 1, ..., 8) are the eight generators of SU(3)C given

4



2.1 Building up the SM-Lagrangian

by

TA =


1
2λA forSU(3)C triplets
0 forSU(3)C singlets

(2.4)

with λA being the Gellmann-matrices. SU(3)C stands for the strong interaction and its gauge
fields are the eight gluons. SU(2)L×U(1)Y stands for the weak and electromagnetic interactions
and its gauge fields are the Aaµ and Bµ. The three Pauli-matrices and the eight Gellman-matrices
are listed here:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (2.5)

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 ,

λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 = 1√
3

1 0 0
0 1 0
0 0 −2

 . (2.6)

The SM-Lagrangian is given by

LSM = Lgauge + Lf + LHiggs + LY , (2.7)

with Lgauge including the kinetic terms and the triple and quartic selfinteractions of Aaµ and GA
µ ,

Lgauge = −1
4 G

A
µν G

µνA − 1
4 W

i
µνW

µνi − 1
4 Bµν B

µν , (2.8)

with

GA
µν = ∂µG

A
ν − ∂νGA

µ − gsfABCGB
µG

C
ν , (2.9)

W a
µν = ∂µA

a
ν − ∂νAaµ − gεabcAbµAcν , (2.10)

Bµν = ∂µBν − ∂νBµ , (2.11)

where fABC are the structure constants of SU(3)C , [TA, TB] = ifABCT
C , and εijk (the Levi-

Civita symbol in three dimensions) are the structure constants of SU(2)L, [τa, τb] = iεabcτ
c.

The Lagrangian Lf includes the kinetic term for all fermions and the interactions between

5



2 The Standard Model of Particle Physics

fermions and gauge bosons as well and reads

Lf = i
∑
ψ

ψ /Dψ , (2.12)

with ψ = {(QL)i, (uR)i, (dR)i, (EL)i, (eR)i, (νR)i} . Explicit fermion mass terms cannot be
included in the SM-Lagrangian, since they would violate the required gauge-invariance. The
Lagrangian in the Higgs sector LHiggs and the Yukawa-Lagrangian LY will be discussed in
sections 2.2 and 2.3.

2.2 The Higgs-mechanism

Adding explicit mass terms for gauge bosons and for fermions would violate the required gauge-
invariance of the SM-Lagrangian. The Higgs doublet of the SM generates gauge boson masses
dynamically due to the kinetic term in the Lagrangian and it will also be possible to add Yukawa-
couplings of the fermions to the Higgs field so that they will get massive after SSB.

2.2.1 Introducing one complex scalar doublet

The Lagrangian in the scalar sector of the SM is given by

LHiggs = (DµΦ)†(DµΦ)− V(Φ) with V(Φ) = µ2 Φ†Φ + λ (Φ†Φ)2, (2.13)

with Φ being a complex scalar doublet,

Φ = 1√
2

(
ϕ1 + iϕ2
ϕ4 + iϕ3

)
, (2.14)

where all the fields ϕi (i = 1, 2, 3, 4) are real. The doublet Φ interacts with the electroweak
part, SU(2)L × U(1)Y , of the SM with its quantum numbers given in table 2.1. The quartic
selfcoupling λ has to be positive (λ > 0), so that V(Φ) in (2.13) is bounded from below, and µ2

is chosen to be negative (µ2 < 0), since only then V(Φ) has a nonvanishing minimum away from
the origin. As Φ only acts on the SU(2)L × U(1)Y -part in the SM, its covariant derivarite Dµ

reads

Dµ = ∂µ − igAaµτa − i
g′

2 Bµ. (2.15)

Without loss of generality, the VEV of Φ can be chosen to be

〈0|Φ|0〉 = 〈Φ〉 = 1√
2

(
0
v

)
, 〈0|ϕ4|0〉 = v and 〈0|ϕi|0〉 = 0 for i = 1, 2, 3 , (2.16)

6



2.2 The Higgs-mechanism

where v is positive and reads v =
√
−µ2

λ
. With this choice the VEV is not gauge-invariant

although the Lagrangian LHiggs is. One says that electroweak SSB occurs.

Since the scalar doublet interacts only with SU(2)L × U(1)Y , this part of the gauge group
has to be broken. It breaks down to U(1)em ,

SU(2)L × U(1)Y → U(1)em , (2.17)

the electromagnetic interaction.

The general transformation of the Higgs doublet reads

Φ→ Φ′ = exp {−i(~α(x) · ~τ + β(x)Y )}Φ . (2.18)

Writing the Higgs doublet in unitary gauge, which is a specific choice of (2.18), the expansion
of Φ around its VEV is given by

Φ = 1√
2

(
0

v + h(x)

)
, (2.19)

with h(x) being a real scalar field.

One can find the mass mh of the scalar field h(x) by inserting (2.19) into V(Φ),

V(h) = − m4
h

16λ + m2
h

2 h2 +
√
λ

2 mh h
3 + λ

4 h
4 with m2

h = 2λv2. (2.20)

The other three scalar fields appearing in (2.14) are would-be Goldstone bosons and are eaten up
by the three gauge bosons W± and Z0, when electroweak SSB occurs.

The generation of the masses of W± and Z0 is explained by Goldstone’s Theorem [59, 60]:
It says that for every broken generator of a continuous symmetry in gauge theories, a massless
Goldstone boson comes into being. This breakdown is induced by the VEV of a scalar field.
Then, via the dynamics of the Goldstone bosons, the gauge bosons get massive. In the case
of the SM, three generators are broken via the breakdown shown in (2.17); the mathematical
description of this fact is shown in the next paragraphs (section 2.2.2).

2.2.2 Masses of the gauge bosons

After SSB, the masses of the gauge bosons are generated dynamically from the kinetic term
(DµΦ)†(DµΦ) in the Higgs-Lagrangian (2.13). The relevant terms are those that contain the
generators of SU(2) and U(1). Evaluating (DµΦ)†(DµΦ) at the VEV of the Higgs doublet

7



2 The Standard Model of Particle Physics

(2.16), one obtains

(DµΦ)†(DµΦ) ∼ 1
2
(
0 v

)
(−igAaµτa − i

g′

2 Bµ)†(−igAaµτa − i
g′

2 Bµ)
(

0
v

)

= 1
2
v2

4
[
g2(W+

µ )2 + g2(W−
µ )2 + (g2 + (g′)2)(Z0

µ)2
]
, (2.21)

where the mass eigenfields were introduced via

W±
µ = 1√

2
(A1

µ ∓ iA2
µ) and Z0

µ = 1√
g2 + (g′)2

(gA3
µ − g′Bµ) (2.22)

and their masses can be calculated to be

MW = g v

2 , and MZ =

√
g2 + (g′)2 v

2 . (2.23)

The remaining gauge boson, the photon γ, remains massless and is defined to be orthogonal to
Z0
µ,

Aµ = 1√
g2 + (g′)2

(gBµ + g′A3
µ) with Mγ = 0. (2.24)

Having identified the mass-eigenfields, it is common to rewrite Dµ from (2.15) in depen-
dence of these fields rather than in dependence of A1

µ, A
2
µ, A

3
µ and Bµ. The covariant derivative

for the leptons living in a general SU(2)L×U(1)Y -representation takes the following form [56],

Dµ = ∂µ − igτaAaµ − ig′Y Bµ

= ∂µ − i
g√
2
(
W+
µ τ

+ +W−
µ τ
−
)
− i 1√

g2 + (g′)2

(
g2τ 3 − (g′)2Y

)
Z0
µ

− i gg′√
g2 + (g′)2

(
τ 3 + Y

)
Aµ , (2.25)

with τ± defined to be τ± = τ1 ± i τ2.

From the last term of this equation, one can read off the coupling of the photon to the leptons.
Defining the operator of the electric charge as Q = τ 3 + Y and electric charge as e = gg′√

g2+(g′)2
,

one obtains

Dµ ∼ −i
gg′√

g2 + (g′)2

(
τ 3 + Y

)
Aµ = −i eQAµ , (2.26)

which is the same covariant derivative as for QED if setting Q = −1 as it is valid for electrons.
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2.3 Implementation of fermion masses

With the definition of the Fermi constant GF ,

GF√
2

= g2

8 M2
W

, (2.27)

together with the mass of W± , one achieves for the VEV of the Higgs field,

v2 = 1√
2GF

. (2.28)

With the experimental value of GF [61], one gets v = 246 GeV.

2.3 Implementation of fermion masses

An explicit fermion mass term mf ψψ = mf (ψLψR + ψRψL) with ψ being any fermionic field
is forbidden, since ψL and ψR live in different representations of SU(2)L × U(1)Y and thus the
term would spoil the gauge-invariance.

In the SM, fermion masses are generated after SSB via Yukawa-interactions of the fermions
to the Higgs doublet,

LY = Llepton + Lquark , (2.29)

with

Llepton = −(ĒL)i λij` Φ (eR)j + h.c. , (2.30)

Lquark = −(Q̄L)i λijd Φ (dR)j − (Q̄L)i λiju Φ̃ (uR)j + h.c. . (2.31)

Here, (eR)j are the three right-handed charged lepton fields, (uR)j and (dR)j are the three right-
handed up-quark and down-quark fields. (EL)i and (QL)i denote the three left-handed lepton
and quarks doublets,

(EL)i =
(
νL
eL

)
i

and (QL)i =
(
uL
dL

)
i

. (2.32)

All the three Yukawa-coupling matrices λij` , λijd and λiju are in general complex 3 × 3-matrices
and in the last term the Higgs doublet is implemented via Φ̃ = (iσ2)Φ∗. In that way, all the terms
in LY (2.29) are invariant under the SM gauge-group.
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2 The Standard Model of Particle Physics

2.3.1 Charged leptons

After SSB, the Yukawa-Lagrangian expressed in unitary gauge for the charged leptons reads

Llepton = −(ĒL)i
λij`√

2

(
0

v + h

)
(eR)j + h.c. (2.33)

= − λ
ij
`√
2

(ēL)i (v + h) (eR)j + h.c. . (2.34)

From here, one can read off the mass matrix of the charged leptons as

M
ij
` = 1√

2
λij` v . (2.35)

For diagonalizing the Yukawa-coupling matrix λij` , one uses two unitary matrices U` and W`

such that the matrix λ̂` = U †` λ`W` and thus

M̂` = U †` M`W` (2.36)

is diagonal with only real and positive entries, denoted with M i
` . Together with that diagonaliza-

tion, the physical mass-eigenfields of the leptons are given by

êiL = (U †` )ij(eL)j and êiR = (W †
` )ij(eR)j (2.37)

and the Lagrangian reads

Llepton = −(¯̂eL)i M̂ij
` (êR)i

(
1 + h

v

)
+ h.c. (2.38)

= −M i
` (¯̂eiL êiR + ¯̂eiR êiL)

(
1 + h

v

)
. (2.39)

From here, one can also read off the couplings of the leptons to the Higgs boson, namely

gLhh,i = M i
`

v
. (2.40)

10



2.3 Implementation of fermion masses

2.3.2 Quarks

The quark sector can be treated in analogy as it was done in the leptonic case. After SSB, the
Yukawa-Lagrangian expressed in unitary gauge for the quarks reads

Lquark = −(Q̄L)i
λijd√

2

(
0

v + h

)
(dR)j − (Q̄L)i

λiju√
2

(
v + h

0

)
(uR)j + h.c. (2.41)

= − λ
ij
d√
2

(d̄L)i (v + h) (dR)j −
λiju√

2
(ūL)i (v + h) (uR)j + h.c. . (2.42)

From here, one can read off the mass matrices of the down-type and up-type quarks with

M
ij
d = 1√

2
λijd v and Mij

u = 1√
2
λiju v . (2.43)

As in the leptonic case, one needs two unitary matrices for diagonalizing the mass-matrix again,
but this time one has two different mass-matrices for down-type and up-type quarks and one has
to treat them separately, namely

M̂d = U †d MuWd and M̂u = U †uMuWu (2.44)

are both diagonal with real and positive entries, denoted with M i
d and M i

u. Together with these
diagonalizations, the physical mass-eigenstates of the quarks are given by

d̂iL = (U †d)ij(dL)j , d̂iR = (W †
d )ij(dR)j , (2.45)

ûiL = (U †u)ij(uL)j , ûiR = (W †
u)ij(uR)j , (2.46)

and the Lagrangian reads

Lquark = −
{

( ¯̂
dL)i M̂ij

d (d̂R)i + (¯̂uL)i M̂ij
u (ûR)i

} (
1 + h

v

)
+ h.c. (2.47)

= −
{
M i

d ( ¯̂
diL d̂

i
R + ¯̂

diR d̂
i
L) +M i

u (¯̂uiL ûiR + ¯̂uiR ûiL)
} (

1 + h

v

)
. (2.48)

From here, one can also read off the couplings of the quarks to the Higgs boson, namely

gqhh,i = M i
d

v
(2.49)

for the three down-type quarks, and

gqhh,i = M i
u

v
(2.50)

for the three up-type quarks.
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2 The Standard Model of Particle Physics

2.3.3 The issue of neutrinos

In the minimal version of the SM, neutrinos are described as massless particles without possess-
ing couplings of Yukawa-type like charged leptons and quarks as discussed in this section. But
from neutrino oscillation measurements [12–14], one knows that they have to be massive particle
states even if the masses are very tiny. In the next chapter, we will discuss the seesaw-mechanism,
a way how they can be described as massive particle states.

12



3 Neutrino Masses in BSM physics

As mentioned before, neutrinos are described as massless particles within the minimal version of
the SM. By means of an enlargement of the particle content of the SM by an arbitrary number nR
of right-handed neutrino fields and one scalar singlet X , being both singlets under the SM gauge-
group GSM (2.1), it is possible to write down both Yukawa couplings of the neutrinos to the Higgs
doublet and couplings of Majorana-type to the additional scalar singlet X . After SSB occurs and
X gets a nonvanishing VEV, either due to an explicit scalar mass term in the Lagrangian or due
to radiative corrections to the scalar potential, an explanation for light neutrino masses is given
by the seesaw-mechanism of type 1 which was first studied independently by some authors in
[45–48].

3.1 Dirac- and Majorana-Lagrangian for neutrinos

Adding nR right-handed neutrino singlets,

(νR)j , j = {1, 2, ..., nR} , (3.1)

to the particle spectrum of the SM, one can write down a Yukawa-interaction term to the Higgs
doublet as follows [62],

LD = −
3∑
i=1

nR∑
j=1

(EL)i (∆)ij Φ̃ (νR)j + h.c. , (3.2)

where (∆)ij is a complex-valued (3× nR)-matrix and Φ̃ = iσ2Φ∗.
Moreover by adding a complex scalar singlet X = ϕ5 + iϕ6 to the particle spectrum, one

can with both the right-handed neutrinos and X construct an explicit term with couplings of
Majorana-type with [62]

LM = −1
2

nR∑
j1,j2=1

(νR)cj1 (Γν)j1j2 X (νR)j2 + h.c.

= 1
2

nR∑
j1,j2=1

(νR)T
j1 C

−1 (Γν)j1j2 X (νR)j2 + h.c. . (3.3)

Here (Γν)j1j2 is a (nR × nR)-matrix with, in general, complex entries and C is the charge conju-



3 Neutrino Masses in BSM physics

gation matrix with the following properties [63],

CT = −C, C† = C−1, C γT
µ C

−1 = −γµ .

In (3.3) we have used that [63]

(νR)cj1 = −(νR)T
j1 C

−1 (3.4)

holds and that (νR)cj1 is a left-handed particle state defined by [63]

(νR)cj1 = C (νR)T
j1 . (3.5)

After SSB and when both the scalar doublet Φ and the scalar singlet X get nonvanishing
VEVs, 〈Φ〉 (2.16) and 〈X〉, the neutrino mass termes read

LD = −
3∑
i=1

nR∑
j=1

(νL)i (MD)ij (νR)j + h.c. , (3.6)

LM = 1
2

nR∑
j1,j2=1

(νR)T
j1 C

−1 (MR)j1j2 (νR)j2 + h.c. , (3.7)

with the neutrino mass matrices MD and MR

(MD)ij = 1√
2

(∆)ij v and (MR)j1j2 = (Γν)j1j2〈X〉 . (3.8)

Due to the anticommutation relation of fermion fields and the knowledge that the charge conjuga-
tion matrix C is an antisymmetric matrix, it follows that (νR)T

j1 C
−1 (νR)j2 = (νR)T

j2 C
−1 (νR)j1

and thus that the Majorana-massmatrix MR has to be symmetric:

LM = 1
2

nR∑
j1,j2=1

(νR)T
j1 C

−1 (MR)j1j2 (νR)j2 + h.c.

= 1
2

nR∑
j1,j2=1

(νR)T
j2 C

−1 (MR)j1j2 (νR)j1 + h.c.

= 1
2

nR∑
j1,j2=1

(νR)T
j1 C

−1 (MR)j2j1 (νR)j1 + h.c. .

At the first equality we have used the relation from above, (νR)T
j1 C

−1 (νR)j2 = (νR)T
j2 C

−1 (νR)j1 ,
and at the second equality we have just renamed respectively exchanged the indices.

14



3.1 Dirac- and Majorana-Lagrangian for neutrinos

Defining a (nR + 3)-component right-handed neutrino field with [62]

ωR =
(

(νL)c
νR

)
, (3.9)

one can add the Dirac (3.6) and the Majorana (3.7) Lagrangian gaining (suppressing the family
indices of the fields) [62]

LD + LM = −ν̄LMD νR + 1
2 ν

T
R C

−1 MR νR + h.c.

= 1
2 ω

T
R C

−1 MD+M ωR + h.c.

= −1
2 (ωR)cMD+M ωR + h.c. (3.10)

with the (3 + nR)× (3 + nR)-dimensional mass matrix MD+M given by [62]

MD+M =


3 nR

3 0 MD

nR MT
D MR

 . (3.11)

For every symmetric matrix with complex entries, like MD+M , it is possible to make a
transformation such that

M̂D+M = UT MD+M U (3.12)

is a diagonal matrix with only non-negative entries, where U being a unitary matrix. With that
same transformation, one obtains the tree-level mass-eigenfields of the neutrinos by [62]

ω̂R = U † ωR . (3.13)

After that transformation, the Lagrangian (3.10) reads

LD + LM = −1
2 (ωR)cMD+M ωR + h.c. = 1

2 ω
T
R C

−1 MD+M ωR + h.c.

= 1
2 ω̂

T
R U

T C−1 U∗ M̂D+M U † U ω̂R + h.c.

= 1
2 ω̂

T
R C

−1 M̂D+M ω̂R + h.c. = −1
2 (ω̂R)c M̂D+M ω̂R + h.c. . (3.14)

15



3 Neutrino Masses in BSM physics

Defining the vector N as [62, 63]

N =


ν1
ν2
...

ν3+nR

 = ω̂R + (ω̂R)c , (3.15)

where all fields νk satisfy

(νk)c = νk ∀ k = 1, ... , 3 + nR , (3.16)

the Lagrangian can be written as [62, 63]

LD + LM = −1
2 N M̂D+MN = −1

2

3+nR∑
k=1

mk νk νk . (3.17)

This shows that all the mass-eigenfields coming from a Dirac-Majorana-Lagrangian are in gen-
eral Majorana fields, being spin 1

2 particle and having no nontrivial charges. The particles and
antiparticles are exactly the same.

3.2 Neutrino Masses via seesaw-mechanism of type 1

To make the diagonalization of MD+M explicit, one decomposes the matrix U via [63, 64]

U = W V =
√13 −BB† B

−B†
√
1nR −B†B

 diag(VL , VR) . (3.18)

Here, all three matrices W , VL and VR are unitary matrices with W being a (3 +nR)× (3 +nR)-
matrix, VL being 3× 3 and VR being nR × nR [64]. In W , B can be expanded in powers of MD

MR

and reads B = M∗
D (M∗

R)−1 at lowest order [63] independently what forms MD and MR exactly
take. This approximation is possible, since the basic and important assumption of the seesaw-
mechanism is that the scale of MD is much smaller than the scale of MR. With this assumption,
the matrix W is given by [63]

W '


3 nR

3 13 − 1
2 BB

† B

nR −B† 1nR − 1
2 B
†B



=
(
13 − 1

2 M
∗
D (M∗

R)−1 M−1
R MT

D M∗
D (M∗

R)−1

−M−1
R MT

D 1nR − 1
2 M

−1
R MT

DM
∗
D (M∗

R)−1

)
(3.19)
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3.2 Neutrino Masses via seesaw-mechanism of type 1

at lowest order.

The procedure of the diagonalization is done in two consecutive steps. The matrixW brings
MD+M in block-diagonal form and with the matrix V one achieves the diagonal matrix with the
mass-eigenvalues being on the diagonal.

As first step, bringing the mass-matrix MD+M in block-diagonal form via separating the
small from the large scale, one obtains [63, 64]

W TMD+MW '


3 nR

3 Mlight 0
nR 0 Mheavy

 , (3.20)

with Mlight and Mheavy given by [62, 63, 65]

Mlight = −MD(MR)−1MT
D and Mheavy = MR . (3.21)

In this block-diagonal matrix (3.20), Mheavy is given up to order O(M
2
D

MR
) and the three remaining

matrices are accurate up to order O(M
3
D

M2
R

) [66].

In the second step, the diagonalization of the two remaining submatrices Mlight and Mheavy

gives [64]

V T
R Mheavy VR = diag(Mν,1, ...,Mν,nR) , (3.22)

V T
L Mlight VL = diag(Mν,nR+1,Mν,nR+2,Mν,nR+3) . (3.23)

This mechanism we considered and summarized here is called seesaw-mechanism and is
based on the assumption that the scale of the Majorana-massterm MR is much larger than that
of the Dirac-massmatrix MD and thus the scale of electroweak symmetry breaking. In addition,
there is the assumption that the total lepton number L is violated by the term with MR. The scale
of MR can be rather low given by the TeV scale or higher in the range of the grand unification
scale given by ∼ 1015 GeV or even as high as the Planck scale with ∼ 1019 GeV in dependence
which model is under consideration [63].

An attractive feature of the Seesaw-mechanism (of type 1) is the fact that the masses of
the three light neutrinos are arising in a natural way via formula (3.21) in dependence of the
two given mass scales in a specific model considered. In (3.21), one finds the explanation that
these masses are by orders smaller than the masses of all the fundamental charged fermions, e.g.
mν
me

= 10−6 with me being the mass of the electron [67].

3.2.1 Example of one left- and one right-handed neutrino field

For illustration and giving the simplest example, let us consider the case of having just one left-
handed νL and one right-handed νR neutrino field. Then after SSB, the Dirac-Majorana massterm

17



3 Neutrino Masses in BSM physics

reads [63]

LD + LM = −νLmD νR −
1
2 (νR)cmR νR + h.c. = 1

2 (ωR)T C−1 MD+M ωR + h.c. , (3.24)

where the scale of mR is assumed to be much bigger than that of mD, mD � mR, and here both
mD and mR are, in general, complex numbers. The full 2× 2 mass-matrix MD+M reads

MD+M =
(

0 mD

mD mR

)
(3.25)

and the two component vector ωR is given by

ωR =
(

(νL)c
νR

)
. (3.26)

The two mass eigenvalues of MD+M can be calculated to be

mlight =
√
m2
R

4 +m2
D −

mR

2 ≈ m2
D

mR

, (3.27)

mheavy =
√
m2
R

4 +m2
D + mR

2 ≈ mR , (3.28)

using the approximation mD � mR.

To diagonalize MD+M (3.25), one uses the unitary matrix

U =
(
−i cos θ sin θ
i sin θ cos θ

)
(3.29)

with sin θ =
√

mlight
mlight+mheavy

≈ mD
mR

and cos θ > 0. Then one obtains from equation (3.12)

M̂D+M = UT MD+M U = diag(mheavy,mlight) (3.30)

showing that one has one light and one heavy neutrino − both being Majorana particles − with
the masses given in (3.27) and (3.28).
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4 Effective Potential at one-loop order:
Coleman-Weinberg Potential

In this chapter, we introduce the basics and give an overview on the computation of effective
potentials Veff for a renormalizable field theory and we show the results of calculating them up to
one-loop order: the CW-Potential [49]. Considering only tree-level and one-loop contributions
to the effective potential Veff, it is called a semiclassical or quasiclassical approximation [49, 68].
In this procedure, there is the possibility that the symmetry is broken spontaneously− in models
where one does not expect such a breakdown from considering the tree-level potential − due to
quantum corrections [49] instead of having a negative Higgs term in the Lagrangian. That means
considering classically scale-invariant models.

A great advantage of the semiclassical approximation is to look at all possible vacuum
states simultaneously. While we are doing this, we can compute all higher order corrections to
the effective potential Veff, which corresponds to a diagramatic loop expansion [49]. The minima
of Veff then give the true vacua of the considered theory.

The derivation we will show in the following sections is valid for all classically scale-
invariant (non-)Abelian renormalizable field theories. After explaining what classical scale-
invariance means (section 4.1), we will consider a quantum field theory with just one single
real scalar field ϕ(x) (making the notation simpler) implemented by the Lagrangian L(ϕ, ∂µϕ)
in sections 4.2 and 4.3. Moreover, for later convenience, all the formulae in section 4.2 are
written in Euclidean space.

4.1 Models with classical scale-invariance

Under a scale transformation [69], all space time points transform with the same parameter ρ,
namely

xµ → x′µ = ρ xµ (4.1)

and simultaneously the momenta transform with

pµ → p′µ = 1
ρ
pµ. (4.2)

At the same time, physical parameters like explicit (tree-level) masses and couplings λijkl
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remain unchanged. Thus in (classically) scale-invariant theories, all the particles get their masses
merely due to their couplings to the scalar fields after SSB, as shown for gauge fields in section
2.2.2 and fermions in section 2.3.

In infinitesimal form, such a scale transformation reads [69]

xµ → x′µ = (1 + ε)xµ (4.3)

and simultaneously any field k(x) transforms with [69]

k(x)→ k′(x′) = (1− diε) k(x), (4.4)

where the number di is the (mass-)dimension of the field, [k] = [mass]di . Thus:

di = 1 for scalar fields, (4.5)

di = 3
2 for fermionic fields, (4.6)

di = 1 for gauge fields. (4.7)

Writing it not in the infinitesimal form, scalar fields ϕi(x), fermionic fields ψj(x) and gauge
fields Aµl (x) transform in the following form:

ϕi(x)→ 1
ρ
ϕi(x), (4.8)

ψj(x)→ 1
ρ

3
2
ψj(x), (4.9)

Aµl (x)→ 1
ρ
Aµl (x). (4.10)

A theory given by the Lagrangian L is said to be classically scale-invariant if its action
S =

∫
d4xL is invariant under the transformations in (4.8) to (4.10). This is exactly then the

case, if all terms in L have operator dimension equal to 4. As a matter of fact, the only term in
the SM-Lagrangian whose term is not 4-dimensional, and therefore breaks scale-invariance, is
the Higgs mass term µ2 Φ†Φ in (2.13).

4.1.1 Example: Massless ϕ4-theory

To illustrate the classical scale-invariance given at tree-level which then breaks down already at
one-loop order, let us consider a massless ϕ4-theory with just one single real scalar field ϕ. Its
Lagrangian is given by

L(ϕ, ∂µϕ) = (∂µϕ)(∂µϕ) + λ

4! ϕ
4. (4.11)
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4.2 Derivation of the effective potential

The action reads

S =
∫

d4x

[
(∂µϕ)(∂µϕ) + λ

4! ϕ
4
]

(4.12)

and is obviously invariant under

x→ ρ x, d4x→ ρ4 d4x, (4.13)

ϕ→ 1
ρ
ϕ, ∂µ →

1
ρ
∂µ. (4.14)

But the effective potential at one-loop order (for the form of the result see section 4.4.1 and
for more details of the calculation [49]) reads

Veff(ϕ) = λ

4! ϕ
4 + λ2 ϕ4

256π2

(
ln

λ
2 ϕ

2

µ2 −
3
2

)
(4.15)

and breaks scale-invariance being there at tree-level, since∫
d4xϕ4 lnϕ2 →

∫
d4xϕ4

(
lnϕ2 − ln ρ2

)
. (4.16)

4.2 Derivation of the effective potential

To describe a quantum field theory completely, one can consider Z[f ], the generating functional
of all Green’s functions. It is defined as

Z[f ] =
∞∑
n=0

1
n!

∫
d4x1 · · · d4xn 〈 0 |T [ϕ̂(x1) · · · ϕ̂(xn)] | 0 〉 f(x1) · · · f(xn), (4.17)

where each of the coefficients 〈 0 |T [ϕ̂(x1) · · · ϕ̂(xn)] | 0 〉, for a fixed number n, is a n-point
Green’s functions with different space-time point x1 to xn. Here, f(x) is an external source,
which has to vanish at large distances, f(x) → 0 for |x| → ∞, so that all the integrals in (4.17)
converge [68]. It is introduced to the Lagrangian by coupling ϕ(x) to an external field f(x) via
[49, 70]

L′(ϕ, ∂µϕ, f) = L(ϕ, ∂µϕ) + Lf (ϕ, f) = L(ϕ, ∂µϕ)− ϕ(x)f(x). (4.18)

The generating functional Z[f ] is the transition amplitude from the groundstate |0〉 to the
groundstate |0〉 under influence of f(x). On the one hand, Z[f ] can be written as the exponential
of W[f ] [49, 68],

Z[f ] = 〈 0 | 0 〉f = exp{−W[f ]}, (4.19)
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with

−W[f ] =
∞∑
n=1

1
n!

∫
d4x1 · · · d4xn 〈 0 |T [ϕ̂(x1) · · · ϕ̂(xn)] | 0 〉c︸ ︷︷ ︸

G(n)
c (x1, ..., xn)

f(x1) · · · f(xn) (4.20)

being the generating functional of all connected Green’s functions G(n)
c (x1, ..., xn). On the other

hand, one can write Z[f ] as a functional of the time-ordered exponential [68, 70]

Z[f ] = 〈 0 | 0 〉f = 〈 0 |T
[
exp

{∫
d4x ϕ̂(x)f(x)

}]
| 0 〉. (4.21)

In path integral representation, the connected n-point Green’s functions G(n)
c (x1, ..., xn)

can be expressed as [68]

G(n)
c (x1, ..., xn) = 1

N

∫
[dϕ]ϕ(x1) · · ·ϕ(xn) exp{−Scl(ϕ)} (4.22)

with the normalization defined as N =
∫

[dϕ] exp{−Scl} and Scl =
∫

d4xL(ϕ, ∂µϕ) being the
classical action of the theory. Furtheron, one can write Z[f ] in the path integral representation as
[68]

Z[f ] = exp{−W[f ]} = 1
N

∫
[dϕ] exp

{
−
∫

d4x L′(ϕ, ∂µϕ, f)
}
. (4.23)

The term in the denominator is chosen such that the generating functional Z[f ] is normalized to
Z[0]=1. Due to the change in the Lagrangian (4.18), the model gets a perturbation from the term
Lf (ϕ, f). In (4.23), W[f ] gives the response of the model to that perturbation and represents an
average value of the classical action, given by exp{−

∫
d4xL(ϕ, ∂µϕ)} [68].

The functional derivative of W[f ] with respect to f(x) [49],

ϕc(x) = δW[f ]
δf(x) = 〈 0 | ϕ̂(x) | 0 〉

〈 0 | 0 〉

∣∣∣∣∣
f

, (4.24)

is called the classical field ϕc(x). The effective action Γ[ϕc], then defined as a functional − in
dependence of ϕc(x) − via the Legendre-transformation, reads [49, 70]

Γ[ϕc] = W[f ] +
∫

d4x f(x)ϕc(x). (4.25)

Similarly to W[f ] and Z[f ], the effective action can be expanded in powers of ϕc(x) [49],

Γ[ϕc] =
∞∑
n=1

1
n!

∫
d4x1 · · · d4xn Γ(n)(x1, ..., xn)ϕc(x1) · · ·ϕc(xn), (4.26)

where the coefficients Γ(n)(x1, ..., xn) turn out to be the sum of all n-point one-particle irre-
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ducible (1PI) Feynman graphs. Not expanded in ϕc(x) itself, but in momenta thereof, the effec-
tive action reads [49]

Γ[ϕc] =
∫

d4x
[
Veff(ϕc) + 1

2(∂µϕc)(∂µϕc) Z(ϕc) + ...
]
, (4.27)

with the term independent of the momenta being the effective potential Veff(ϕc). Considering
(4.26) and (4.27) in the limit of vanishing external momenta, the sum af all n-point 1PI Green’s
functions can be computed by taking the n-th derivative of Veff(ϕc) [49].

4.3 Loop-Expansion of the effective potential

If we know the structure of the effective potential Veff of the considered theory, we can give
information about SSB. An exact calculation of Veff is impossible by evaluating all Feynman-
diagramms, since one would need to consider an infinite number of loops and one would have
to calculate an infinite number of diagramms at each loop order. Thus, we need an approxima-
tion method, namely considering Veff per loop order; first summing up all tree-diagramms, then
summing up those with one loop, then those with two loops and so forth and so on.

Introducing the parameter ~ to the Lagrangian L′ in (4.18) via [49]

L′(ϕ, ∂µϕ, f) → 1
~
L′(ϕ, ∂µϕ, f), (4.28)

while treating L′(ϕ, ∂µϕ, f) as independent of ~, one can use as the desired approximation
method [49, 68]

W[f ] =
∑
`

~`W(`)[f ], (4.29)

with ` being the number of closed loops in each 1PI Feynman-diagramm and W(`)[f ] being all
the contribution to W[f ] at loop order `.

Hence, we can write Z[f ] as an expansion in powers of ~ as

Z[f ] = exp
(
−1
~

W[f ]
)

= exp
(
−1
~

W(0)[f ] − W(1)[f ] − ~W(2)[f ] + ...
)
. (4.30)

In the approximation of only considering tree-level graphs, i.e. exp
(
−1

~W(0)[f ]
)
, Z[f ] will fall

off exponentially when ~→ 0− a limit reffered to as the classical limit. From (4.30), it is visible
that the one-loop quantum corrections give a finite contribution in this limit and all corrections
of higher order vanish. This procedure of only considering tree-level and one-loop contributions
is called semiclassical approximation.

A great advantage of this procedure is that one can compute Veff at any loop order without
considering one specific vacuum state and since L′ is independent of ~, the expansion parameter
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4 Effective Potential at one-loop order: Coleman-Weinberg Potential

~ is unaffected by redefinition of the scalar fields [49].

4.4 The Coleman-Weinberg Potential

We want to display the one-loop corrections to the tree-level scalar potential V0 for all possible
renormalizable massless gauge field theories. The theory we consider here would consist of fields
which are all assumed to be massless at tree-level. The fields are real spinless scalar fields ϕi,
fermionic fields ψj and real vector fields Alµ, where the indices i, j and l numerate the respective
fields in each case. For the couplings, we assume quartic self-interactions of the scalar fields,
fermion-scalar couplings of Yukawa-type and couplings of the vector fields to the scalars which
are minimally gauge-invariant. In the following, we will write all scalar fields ϕi into a vector ~ϕ
for convenience.

As argued in [49], the effective potential at one-loop order reads

Veff(~ϕ) = V0(~ϕ) + δV(1)(~ϕ) = V0(~ϕ) + VS(~ϕ) + Vg(~ϕ) + Vf(~ϕ), (4.31)

where V0 is the scalar tree-level potential (shown in figure 4.1), VS is the scalar one-loop con-
tribution (shown in figure 4.2), Vg is the one-loop contribution due to gauge bosons (shown in
figure 4.3) and Vf is the one-loop contribution due to fermions (shown in figure 4.4).

Figure 4.1: Tree-level graph in the scalar-sector contributing to V0

At tree-level, there is just one single diagram contributing to V0(~ϕ), namely the one depicted
in figure 4.1.

All the renormalized one-loop contributions written in the MS-scheme evaluated at renormalization-
scale µ are given in the next paragraphs.

4.4.1 scalar loops

The one-loop contribution in the scalar sector, VS, can be computed by summing up all 1PI
graphs (infinite summation) with scalar particles in the loop as depicted in figure 4.2. The result
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4.4 The Coleman-Weinberg Potential

can be computed as [71]

VS(~ϕ) = 1
64π2 Tr

{
M4

S(~ϕ)
[
ln M

2
S(~ϕ)
µ2 − 3

2

]}
, (4.32)

with M2
S(~ϕ) being a real and symmetric matrix as well as a quadratic function in ~ϕ reading

(
M2

S(~ϕ)
)
ik

= ∂2V0(~ϕ)
∂ϕi ∂ϕk

. (4.33)

Evaluating (4.33) at the VEV of ~ϕ, 〈~ϕ〉, one can read off the squared mass matrix of the scalars.

+ + + ...

Figure 4.2: 1PI one-loop graphs contributing to VS (scalar particles running around the loop) up
to order n = 6

4.4.2 gauge boson loops

Figure 4.3 shows the first diagramms contributing to Vg. By summing up all 1PI graphs with a
gauge boson running around the loop, one arrives at [71]

Vg(~ϕ) = 3
64π2 Tr

{
M4

V (~ϕ)
[
ln M

2
V (~ϕ)
µ2 − 5

6

]}
, (4.34)

where M2
V (~ϕ) is again a real and symmetric matrix and quadratic in ~ϕ. For gauge bosons which

couple minimally to the scalar fields, it is given by (M2
V (~ϕ))lm = glgm(Tl~ϕ , Tm~ϕ), where

Tl and Tm are the generators of the underlying gauge groups and gl and gm are the coupling
constants to the corresponding gauge fields. Inserting the VEV of ~ϕ, 〈~ϕ〉, M2

V (〈~ϕ〉) gives the
squared mass matrix of the gauge bosons. The extra factor of 3 compared to the scalar case
comes from the polarization degrees of freedom for each gauge boson.
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4 Effective Potential at one-loop order: Coleman-Weinberg Potential

+ + + ...

Figure 4.3: 1PI one-loop graphs contributing to Vg (gauge bosons running around the loop) up
to order n = 6

4.4.3 fermion loops

In order to find the fermionic one-loop contribution to the effective potential, one considers the
most general form of Yukawa-interactions of the fermions to scalars. This part of the Lagrangian
reads

L = χcMf(~ϕ)χ + h.c. , (4.35)

where the symmetric matrix Mf(~ϕ) is a linear function in ~ϕ and contains the Yukawa-couplings.
If evaluated at 〈~ϕ〉,Mf(〈~ϕ〉), it is the fermion-mass matrix. Furtheron, χ denotes the right-handed
fermionic field vector and it can be decomposed as follows,

χ =
(

(ψL)c
ψR

)
. (4.36)

+ + + ...

Figure 4.4: 1PI one-loop graphs contributing to Vf (fermions running around the loop) up to
order n = 6

Since the trace of an odd number of gamma matrices vanishes, only diagramms (shown in
figure 4.4) with an even number of internal fermion lines resulting in an even number of external
scalar states contribute to the GW-potential. In this case, the result reads [71]

Vf(~ϕ) = − cf

64π2 Tr
{(
Mf(~ϕ)M †

f (~ϕ)
)2
[
ln Mf(~ϕ)M †

f (~ϕ)
µ2 − 3

2

]}
, (4.37)

where cf = 2 for Majorana fermions and cf = 4 for Dirac fermions running around the loop.
Each closed fermion loop gets a minus sign, and so we have an extra factor of −1 compared to
the scalar case in front of the trace in (4.37).
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5 Gildener Weinberg approach to the
effective potential

In this chapter, we will follow the discussion of both Eldad Gildener’s and Steven Weinberg’s
work [54] and the work of Lisa Alexander-Nunneley and Apostolos Pilaftsis [15] in order to
describe when SSB in field theories with classical scale-invariance occurs.

5.1 SSB in classically scale-invariant theories

In their work [54], Eldad Gildener and Steven Weinberg (GW) work out the procedure of SSB in
classically scale-invariant field theories with an arbitrary but fixed number n of weakly-coupled
real scalar fields. They describe a method for finding a minimum of Veff = V0 + δV (δV being
the loop-corrections to a given tree-level potential V0) away from the origin in field space, but in
a region where perturbation theory is still applicable.

In the following, we will consider a renormalizable gauge field theory with n real scalar
fields ϕi (i = {1, 2, ..., n}), for convenience often written in an n-dimensional field vector ~ϕ.
Scale-invariance of the tree-level potential V0(~ϕ) is assumed and then the most general renormal-
izable tree-level potential can be written as

V0(~ϕ) = 1
4!λijklϕiϕjϕkϕl, (5.1)

where the fully symmetric (under exchange of all its indices) quartic scalar couplings λijkl are
defined via [54]

∂4 V0(~ϕ)
∂ϕi ∂ϕj ∂ϕk ∂ϕl

∣∣∣∣∣
~ϕ∼µ

= λijkl(µ) (5.2)

with µ being a renormalization scale with the dimension of a mass.

The tree-level potential in (5.1) has a continuous set of non-trivial local minima along a
radially outwards going ray ~φflat = φ~n (called the ”flat-direction“) for a certain renormalization
scale µ = ΛW . For finding this ray, first one has to search for the minimum on the unit sphere
in field space,

∑
iN

2
i = 1 (Ni denotes the component of a unit vector ~N in the radial direction).

The non-trivial minimum is achieved at one specific point on the sphere, picking one specific
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direction ~N = ~n, and now one can choose ΛW such that this minimum becomes zero,

min
n`n`=1

λijkl(ΛW )ninjnknl = 0, (5.3)

in the following reffered as to the GW-condition. This defines the ”flat-direction“ as the direction
going through both the origin and the minimum on the sphere. Because of the structure of the tree-
level potential V0 ∼ ϕiϕjϕkϕl, V0 does not vanish only at this point but gets the value 0 along the
whole ray ~φflat spanned by the vector ~n. This equation (5.3) gives just a single constraint to all the
λijkl. So, implementing (5.3) reduces the number of the free dimensionless parameters by one in
favor of introducing one dimensional parameter (a procedure called ”dimensional transmutation“
[49]), namely µ = ΛW .

To make sure that ~φflat = φ~n is really a stationary line,

∂ V0(~ϕ)
∂ϕi

∣∣∣∣∣
~N =~n

= 1
3! λijkl(ΛW )njnknl = 0 (5.4)

has to be fulfilled. Moreover, in order for the ray ~φflat to form a set of (at least local) minima,
the matrix of second derivatives (Hessian matrix) evaluated in the ”flat-direction“,

(P )ij = ∂2 V0(~ϕ)
∂ϕi ∂ϕj

∣∣∣∣∣
~ϕ=~n

= 1
2λijkl(ΛW )nknl, (5.5)

has to be positive semi-definit.

Combining (5.4) and (5.5), one immediately sees that the vector ~n is an eigenvector of the
matrix (P ) with eigenvalue 0. The particle corresponding to the eigenstate lying in the ”flat-
direction“ is the so-called scalon [54].

The full effective potential Veff(~ϕ) will get nonvanishing contributions from higher order
quantum corrections and especially from one-loop corrections δV(1)(~ϕ) along ~φflat. These have
a great impact on the description of the theory, because the tree-level potential vanishes there.
Adding higher-order corrections to V0(~ϕ) gives the potential a small curvature along ~φflat (in the
radial direction) picking out a specific point 〈φ〉~n on the flat direction. In addition, the potential
also gets a shift in an arbitrary direction δ~ϕ away from the ray. Demanding that 〈φ〉~n + δ~ϕ is
then the stationary point, one finds

0 = ∂

∂ϕi

[
V0(~ϕ) + δV(1)(~ϕ)

]
︸ ︷︷ ︸

=V1−loop
eff (~ϕ)

∣∣∣∣∣∣∣∣∣∣
〈φ〉~n+ δ~ϕ

= (P )ij δϕj 〈φ〉2 + ∂δV(1)(~ϕ)
∂ϕi

∣∣∣∣∣
〈φ〉~n

, (5.6)

where δ~ϕ is to be assumed as a correction of one-loop order. Contracting (5.6) with ~n using
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5.1 SSB in classically scale-invariant theories

(P )ijnj = 0, one obtains

0 = ni
∂

∂ϕi
δV(1)(~ϕ)

∣∣∣∣∣
〈φ〉~n

= ∂δV(1)(φ~n)
∂φ

∣∣∣∣∣
〈φ〉

(5.7)

as the condition for finding the value 〈φ〉 to one-loop order in perturbation theory.

Along the flat direction ~φflat = φ~n with the specific renormalization-scale µ = ΛW , the
effective potential at one-loop order V1−loop

eff (~φflat) can be written as [54]

V1−loop
eff (~φflat) = δV(1)(~φflat) = Aφ4 + Bφ4 ln φ2

Λ2
W

(5.8)

with A and B being two dimensionless constants,

A = 1
64π2〈φ〉4

[
3 Tr

{
M4

V

(
ln M2

V

〈φ〉2
− 5

6

)}
+ Tr

{
M4

S

(
ln M2

S

〈φ〉2
− 3

2

)}

− 4 Tr
{
M4

DF

(
ln M

2
DF

〈φ〉2
− 3

2

)}
− 2 Tr

{
M4

MF

(
ln M

2
MF

〈φ〉2
− 3

2

)}]
(5.9)

and

B = 1
64π2〈φ〉4

(
3 TrM4

V + TrM4
S − 4 TrM4

DF − 2 TrM4
MF

)
(5.10)

in MS scheme. In these formulae, MV,S,DF,MF evaluated at 〈φ〉~n are the tree-level mass matrices
for vector fields, scalar particles, Dirac and Majorana (right-handed neutrinos) fermions. The
trace runs over all internal degrees of freedom like flavor and color and is taken over the matrices
itself as well.

Searching for the minimum of (5.8) according to (5.7), 〈φ〉 is given by

〈φ〉2 = Λ2
W exp

[
−
(1

2 + A
B

)]
. (5.11)

So that this stationary point may be indeed a minimum, the value of B (5.10) has to be positive
(B>0). Evaluating (5.8) at the minimum (5.11) in the flat direction, one gets [54]

V1−loop
eff (〈φ〉~n) = V0(〈φ〉~n)︸ ︷︷ ︸

=0

+ δV(1)(〈φ〉~n) = −1
2B〈φ〉4 < 0 (5.12)

which shows that V1−loop
eff (〈φ〉~n) is definitely less than V(0) = 0 and so electroweak SSB takes

place if this stationary point is really a (local) minimum. The proof that this stationary point
(5.11) is a minimum of the one-loop effective potential is given in the section 5.2.
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5 Gildener Weinberg approach to the effective potential

5.2 Masses of the scalars

By means of the masses of the scalar bosons, one can calculate if this stationary point at 〈φ〉~n +
δ~ϕ is really a minimum or not.

At tree-level, the eigenvalues of the matrix [49, 54]

(M2
S)ij = ∂2V0(~ϕ)

∂ϕi∂ϕj

∣∣∣∣∣
〈φ〉~n

= Pij〈φ〉2 (5.13)

evaluated in the flat direction give the squared masses of all scalar particles. (5.13) is a sym-
metric n×n matrix and since (P) (5.5) has only vanishing and positive eigenvalues, the masses
of (5.13) are zero or positive as well. The matrix (5.13) contains a set of vanishing eigenvalues
corresponding to Goldstone bosons living in any gauge theory with a continuous symmetry and
has one vanishing eigenvalue due to the eigenvector ~n corresponding to the scalon (associated as
the pseudo-Goldstone boson from the breakdown of classical scale-invariance [15]) and a set of
positive eigenvalues due to massive scalar particles.

When the potential receives small perturbations δV(1)(~ϕ) due to one-loop corrections, the
eigenvalues of the squared mass matrix

(
M2

S + (δM (1)
S )2

)
ij

(~ϕ) = ∂2

∂ϕi∂ϕj

[
V0(~ϕ) + δV(1)(~ϕ)

]
(5.14)

are shifted too. Considering only terms of first order in the perturbation and evaluating it at the
stationary point 〈φ〉~n+ δ~ϕ, one gets [54]

(δM (1)
S )2

ij(~ϕ) = ∂2 δV(1)(~ϕ)
∂ϕi ∂ϕj

∣∣∣∣∣
〈φ〉~n

+ λijkl nk δϕl 〈φ〉. (5.15)

For the stationary point 〈φ〉~n+ δ~ϕ to be a local minimum, the matrix (5.15) must not have
negative eigenvalues either. The set of vanishing eigenvalues corresponding to the Goldstone
bosons remain massless as long as δV(1)(~ϕ) has the same global symmetries as V0(~ϕ). The
squared masses (m2

H + (δm(1)
H )2) of the heavy states remain positive, since only small perturba-

tions are considered. Thus we finally have to calculate the one-loop corrected mass of the scalon.
From perturbation theory we know that it is given by the expectation value ~nT(δM (1)

S )2~n with the
eigenvector ~n from tree-level. One receives

(m(1)
S )2 = (δM (1)

S )2
ijninj = ∂2 δV(1)(~ϕ)

∂ϕi ∂ϕj

∣∣∣∣∣
〈φ〉~n

ninj = ∂2δV(1)(φ~n)
∂φ2

∣∣∣∣∣
〈φ〉

(5.16)

and doing the full calculation, one obtains [54]

(m(1)
S )2 = 8B〈φ〉2 (5.17)
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for the squared mass of the scalon at one-loop order. This is certainly positive, since B>0.
The scalon is known as the pseudo-Goldstone boson of the spontaneous breakdown of scale-
invariance. It is massless at tree-level and gets its mass when scale-invariance is broken due to
quantum corrections. So, the matrix in (5.14) has only vanishing and positive eigenvalues too
and thus the assumption that the discussed stationary point is indeed a minimum is completed
here.

5.3 Example: Scale-invariant version of SM with one
scalar doublet

At this point, it has to be noted that the construction of a classically scale-invariant version of the
SM with just one scalar doublet fails. Having only one doublet in the SM, there is just a single
physical scalar state, namely the Higgs boson with a mass of mh = (125.09± 0.21± 0.11) GeV
[61], which has to be identified as the scalon.

For the dimensionless constant B (5.10), we get (taking only the t-quark in the fermion
sector, since it is so much heavier than all the other fermions)

B = 1
64 π2 〈φ〉4

(
6 M4

W + 3 M4
Z − 12 M4

t

)
. (5.18)

The extra factor of 2 in front of the W -boson mass comes from the fact that W+ and W− have
the same mass and the extra factor of 3 in front of the t-quark mass is due to color. Thus we
obtain for the mass-square of the scalon (5.17) (masses for t-quark, gauge bosons taken from
[61])

m2
h =

(
m(1)
S

)2
= 8B〈φ〉2 = 1

8π2 〈φ〉2
(
6 M4

W + 3 M4
Z − 12 M4

t

)
︸ ︷︷ ︸

≈− (319 GeV)4

< 0. (5.19)

Here, we see that the square of the Higgs mass would get negative, because the t-quark is so
much heavier than the gauge bosons.

To solve this problem, there are two possibilities: Either one can enlarge the scalar sector
of the SM with additional scalar fields ([15–17, 21–33], making no claim to be complete) and/or
one extends the gauge group by (non)-Abelian factors. In the former case, one gets heavy fields
already at tree-level which give positive contribution on the right-hand side of (5.18) and in
the latter case more gauge boson come into being because of the larger pattern of SSB (giving
positive contributions on the right-hand side of (5.18) as well).

In this thesis, we will discuss different scale-invariant versions of the SM where we just add
one real or complex scalar singlet X without an extension of its gauge group. In this case the
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5 Gildener Weinberg approach to the effective potential

Lagrangian reads

L = LSM |µ=0 + (∂µX)†(∂µX) + V0 (Φ, X) (5.20)

and in addition − with right-handed neutrino fields − one has to consider the Dirac- and Majo-
rana terms from section 3.1.
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6 Minimal scale-invariant version of
the SM with one real scalar singlet

6.1 Model-setup: Tree-level potential in the scalar
sector

As Krzysztof A. Meissner and Hermann Nicolai [16] proposed, the minimal way to write a
classically scale-invariant version of the SM with one additional real scalar field ϕ5, being a
singlet under SU(2)L ×U(1)Y − the electroweak part of the SM gauge group − is by enlarging
the tree-level potential in the scalar sector via

V0 (Φ, ϕ5) = λH(Φ†Φ)2 + 1
4λSϕ

4
5 − λHS(Φ†Φ)ϕ2

5, (6.1)

with the complex scalar doublet Φ = 1√
2

(
ϕ1 + iϕ2
ϕ4 + iϕ3

)
taken from the SM. By demanding

classical scale-invariance and only considering terms with operator dimension 4, the tree-level
potential (6.1) is the most general one [16], we can consider. Assuming it to be hermitian, all
three scalar couplings λH , λS and λHS have to be taken real.

Writing (6.1) in terms of all the real fields ϕi (i = 1, 2, 3, 4, 5), the potential reads

V0 (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) = 1
4λH

( 4∑
i=1

ϕ2
i

)2

+ 1
4λSϕ

4
5 −

1
2λHS

( 4∑
i=1

ϕ2
i

)
ϕ2

5. (6.2)

6.2 GW-condition and the flat direction

To find the GW-condition [54], we have to consider (6.2) on the unit sphere in field space

(
5∑
j=1

ϕ2
j = 1). There, (6.2) can be parametrized by ϕ5, namely

V0 (ϕ5) = 1
4
[
(λH + λS + 2λHS)ϕ4

5 − 2 (λH + λHS)ϕ2
5 + λH

]
. (6.3)
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The minimum on the sphere is found for

ϕ2
5 = λH + λHS

λH + λS + 2λHS
(6.4)

and demanding that it is equal to zero,

λ2
HS(ΛW ) = λH(ΛW )λS(ΛW ) (6.5)

has to be fulfilled for a certain renormalization scale ΛW . With expressions (6.4) and (6.5), the
flat direction can be written as

~φflat = φ


0
0
0

cosω
sinω


︸ ︷︷ ︸

=~n

+ Goldstone Boson directions , (6.6)

where the mixing-angle ω is given by

cos2 ω = λS + λHS
λH + λS + 2λHS

= λHS
λH + λHS

, (6.7)

sin2 ω = λH + λHS
λH + λS + 2λHS

= λH
λH + λHS

. (6.8)

In the following, we will often use the 2-dimensional vector

~nflat =
(

cosω
sinω

)
(6.9)

restricting ourselves to the relevant subspace of the two physical scalar states.

Since the scalar doublet Φ in the tree-level potential (6.1) behaves with the same transfor-
mations as in the SM, one can adjust the VEV of Φ to be real and so the two VEVs (the VEV of
ϕ5 has to be real anyway) read

〈Φ〉 = 1√
2

(
0

〈ϕ4〉 = v

)
and 〈ϕ5〉 = vS, (6.10)

where v = 〈φ〉 cosω = 246 GeV and vS = 〈φ〉 sinω. Thus(
〈ϕ4〉
〈ϕ5〉

)
=
(
v
vS

)
= 〈φ〉~nflat. (6.11)
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6.3 Masses of the three would-be Goldstone bosons

When Φ and ϕ5 achieve their VEVs (6.10), electroweak SSB occurs and the three would-be
Goldstone boson fields ϕ1, ϕ2 and ϕ3 are eaten up by the three gauge bosons W± and Z0.

The full matrix for the squared masses in the scalar sector (j, k = 1, ..., 5) reads

(
∂2V0

∂ϕj∂ϕk

)
=


2λH ϕ̃ϕ̃T + [λH ϕ̃Tϕ̃ − λHS ϕ

2
5]14 −2λHSϕ5ϕ̃

−2λHSϕ5ϕ̃
T 3λ

2
HS

λH
ϕ2

5 − λHS ϕ̃
Tϕ̃

 , (6.12)

where

ϕ̃T =
(
ϕ1, ϕ2, ϕ3, ϕ4

)
. (6.13)

To get an expression for the masses of the would-be Goldstone bosons MGB, we multiply

the matrix in (6.12) with the 5-dimensional vector ~m =
(
~m′

0

)
(~m′ being 4-dimensional and

chosen such that ϕ̃T ~m′ = 0). Then, we obtain,
2λH ϕ̃ϕ̃T + [λH ϕ̃Tϕ̃ − λHS ϕ

2
5]14 −2λHSϕ5ϕ̃

−2λHSϕ5ϕ̃
T 3λ

2
HS

λH
ϕ2

5 − λHS ϕ̃
Tϕ̃


(
~m′

0

)
=

= (λH ϕ̃Tϕ̃ − λHS ϕ
2
5)
(
~m′

0

)
.

Since ~m′ is a 4-dimensional vector, the eigenvalue (λH ϕ̃Tϕ̃ − λHS ϕ
2
5) is three-fold de-

generate. Evaluating it at the VEVs (6.10), we achieve the squared masses of the 3 would-be
Goldstone bosons with

M2
GB = (λH ϕ̃Tϕ̃ − λHS ϕ

2
5)
∣∣∣
v,vS

= 0. (6.14)

6.4 Masses of the two physical scalars

As we worked out in the previous chapter, from the analysis of GW [54], we know that the scalon
S has to be one of the two physical scalar mass-eigenstates and it lies in the flat direction ~nflat
(6.9)− restricting ourselves to the relevant 2-dimensional subspace. The other state H has to live
in a direction orthogonal to (6.9) and is already massive at tree-level. We can expand both ϕ4
and ϕ5 around their VEVs (6.11) and express them in dependence of the mass-eigenfields S and
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6 Minimal scale-invariant version of the SM with one real scalar singlet

H, (
ϕ4
ϕ5

)
=
(
v + ϕ′4
vS + ϕ′5

)
= (〈φ〉 + S)

(
cosω
sinω

)
+ H

(
− sinω
cosω

)
. (6.15)

In order to get the tree-level masses of S and H, we insert (6.15) into (6.2) by neglecting the
three would-be Goldstone fields ϕ1, ϕ2 and ϕ3 and extracting only the terms proportional to 〈φ〉2.
Doing the calculation, we obtain

V0
O(〈φ〉2)= λHS〈φ〉2H2 = 1

2 2λHS〈φ〉2︸ ︷︷ ︸
=m2

H(v,vS)

H2, (6.16)

and knowing that V0 is of the form

V0 = 1
2 m2

S S2 + 1
2 m2

H H2, (6.17)

we see that the scalon is really massless at tree-level and the heavy state H has a tree-level mass
of m2

H(v, vS) = 2λHS〈φ〉2.

Having merely one state H with non-vanishing tree-level mass, the one-loop effective po-
tential in the scalar sector evaluated at (6.11) reads

δV(1)
S (〈φ〉~nflat) = 1

64 π2

(
2λHS〈φ〉2

)2
[
ln 2λHS〈φ〉2

Λ2
W

− 3
2

]
. (6.18)

6.5 Full effective potential at one-loop order

With the contributions from the gauge bosons and from the fermionic sector (only t-quarks and
heavy right-handed neutrinos) included, the full one-loop effective potential evaluated at the
vacuum reads

δV(1)(〈φ〉~n) = 1
64π2

{(
2λHS〈φ〉2

)2
[
ln 2λHS〈φ〉2

Λ2
W

− 3
2

]
+ 6 ·

(1
4 g2 v2

)2
[
ln

1
4 g2 v2

Λ2
W

− 5
6

]
+

+ 3 ·
(1

4 (g2 + g′2) v2
)2
[
ln

1
4 (g2 + g′2) v2

Λ2
W

− 5
6

]
−

− 12 ·
(1

2 g
2
t v

2
)2
[
ln

1
2 g

2
t v

2

Λ2
W

− 3
2

]
−

2 ·
nR∑
r=1

M4
ν,r

[
ln

M2
ν,r

Λ2
W

− 3
2

]}
. (6.19)
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6.5 Full effective potential at one-loop order

From this formula (6.19), we can read off

B = 1
64 π2 〈φ〉4

(
m4
H + 6 M4

W + 3 M4
Z − 12 M4

t − 2
nR∑
r=1

M4
ν,r

)
(6.20)

and demanding that B has to be strictly positive [54], we get (with the mass-values Mt ' 173 GeV,
MW ' 80 GeV and MZ ' 91 GeV are taken from [61]):

m4
H − 2

nR∑
r=1

M4
ν,r > 12 M4

t − 6 M4
W − 3 M4

Z ≈ (319 GeV)4 (6.21)

⇒ mH,min ' 319 GeV. (6.22)

This shows that the heavy state H with a tree-level mass of at least 319 GeV (if the right-handed
neutrinos get masses of order O(TeV), the scalar H has a mass of order O(TeV) too) can not be
identified with the Higgs boson discovered by ATLAS [10] and CMS [11] in 2012 with a mass
of mh = (125.09± 0.21± 0.11) GeV [61]. Thus, in the model considered here, the scalon S has
to be the observed Higgs particle and thus on the one hand one has

m2
h = m2

S = (125.09 GeV)2, (6.23)

and on the other hand one has

m2
h = m2

S = 8 B 〈φ〉2 = 1
8 π2 〈φ〉2

(
− (319 GeV)4 + m4

H − 2
nR∑
r=1

M4
ν,r

)
. (6.24)

Combining the last two formulae and with the knowledge that B>0, one achieves an even higher
bound for the mass of the heavy state H:

m4
H − 2

nR∑
r=1

M4
ν,r > 8π2〈φ〉2 m2

h + (319 GeV)4 (6.25)

⇒ mH,min ' 540 GeV . (6.26)

Knowing that m2
H = 2λHS〈φ〉2 > (540 GeV)2, we achieve a lower bound for λHS of

λHS > 2.41 cos2 ω. (6.27)

To implement heavy right-handed neutrinos with the seesaw mechanism of type 1 [45–48]
(as described in section 3.1), we would need the VEV of the additional singlet ϕ5, vS , to be much
bigger than the VEV of the doublet Φ, v = 246 GeV.

For the (Dirac-)fermion couplings not to deviate much from the SM-values, cosω must not
deviate too much from 1 (seeing in formulae (6.9), (6.10) and (6.11)). This deviation has to be
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6 Minimal scale-invariant version of the SM with one real scalar singlet

in the range [72–74],

0.9 < cosω < 1. (6.28)

Even if we take the smallest value for cosω respectively the highest possible value for ω, we see
from (6.9)-(6.11), that vS is certainly smaller than v. This finally shows that, in this model, we
can not implement heavy right-handed neutrinos, since vS is far too small.

6.6 Would the model be perturbatively valid?

For scalar field theories which have only ϕ4-selfinteractions among themselves,

V0 = λijkl
4! ϕiϕjϕkϕl, (6.29)

to be perturbatively valid, all the couplings λijkl has to fulfill

λijkl �
λ2
ijkl

(4π)2 → λijkl � (4π)2 ∼ 144. (6.30)

This can be seen from comparing the order of the couplings from tree-level and one-loop dia-
grams with both two incoming and two outgoing scalar particles, where the contribution from
one-loop order has to be much smaller than that from tree-level.

Considering our tree-level potential (6.2) again, we have

V0 = 1
4λH

( 4∑
i=1

ϕ2
i

)2

+ 1
4λSϕ

4
5 −

1
2λHS

( 4∑
i=1

ϕ2
i

)
ϕ2

5

= 1
4!

6λH
( 4∑
i=1

ϕ2
i

)2

+ 6λSϕ4
5 − 12λHS

( 4∑
i=1

ϕ2
i

)
ϕ2

5

 , (6.31)

leading to the following upper bounds for the couplings,

0 < λH � 24, 0 < λS � 24 and |λHS| � 12, (6.32)

where positivity of λH and λS is demanded for the potential to be bounded from below. Compar-
ing the lower bound for λHS (6.27) with these constraints (6.32), one sees that this scalar model
could, in principle, be described perturbatively.

To conclude, the only problem why we have to exclude this model is that implementation
of heavy neutrinos is not possible here.
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7 Minimal scale-invariant version of
the SM with one complex scalar
singlet and a global U(1)-symmetry

7.1 Model-setup

In this chapter, we study and give the results for a scale-invariant version of the SM with one
additional complex scalar singlet field X , carrying a (modified) lepton number `, proposed by
Krzysztof A. Meissner and Hermann Nicolai in [17]. Considering only terms with operator-
dimension 4 and supposing that the tree-level potential in the scalar sector V0 (Φ, X) is invariant
under an additional global U(1)` transformation of X (X → exp (i`)X), the tree-level potential
reads [17]

V0 (Φ, X) = λH(Φ†Φ)2 + λX(X∗X)2 − 2λHX(Φ†Φ)(X∗X) (7.1)

with

Φ = 1√
2

(
ϕ1 + iϕ2
ϕ4 + iϕ3

)
and X = 1√

2
(ϕ5 + iϕ6). (7.2)

Demanding that (7.1) is hermitian, the three quartic scalar couplings λH , λX and λHX have to be
taken real.

7.2 GW-condition and the flat direction

Considering (7.1) just on the unit sphere
∑6
i=1 ϕ

2
i = 1, we obtain again the GW-condition [54]

λ2
HX(ΛW ) = λH(ΛW )λX(ΛW ). (7.3)

This characterizes the flat-direction given by

~nT =
(
0, 0, 0, cosω, sinω, 0

)
, (7.4)



7 Minimal scale-invariant version of the SM with one complex scalar singlet and a global
U(1)-symmetry

where the mixing angle ω is defined via

cos2 ω = λX + λHX
λH + λX + 2λHX

= λHX
λH + λHX

, (7.5)

sin2 ω = λH + λHX
λH + λX + 2λHX

= λH
λH + λHX

. (7.6)

Since the tree-level potential (7.1) is symmetric under exchange of ϕ5 and ϕ6, due to the
global U(1)` transformation, it is possible to rotate the singlet X in a way, so that it achieves a
real VEV. Then, the VEVs of both Φ and X read

〈Φ〉 = 1√
2

(
0
v

)
= 1√

2
〈φ〉 cosω and 〈X〉 = vX√

2
= 1√

2
〈φ〉 sinω , (7.7)

hence v = 〈φ〉 cosω and vX = 〈φ〉 sinω.

7.3 Scalar masses

To obtain all the masses of the scalar particles, we consider the matrix of squared masses in the
scalar sector (i, j = 1, ..., 6),(

∂2V0

∂ϕi∂ϕj

)
=

=


2λH ϕ̃ϕ̃T + [λH ϕ̃Tϕ̃ − λHX X̃

TX̃]14 −2λHXϕ̃X̃T

−2λHXX̃ϕ̃T 2 λ2
HX

λH
X̃X̃T +

[
λ2
HX

λH
X̃TX̃ − λHX ϕ̃Tϕ̃

]
12

 ,
(7.8)

with ϕ̃T =
(
ϕ1, ϕ2, ϕ3, ϕ4

)
and X̃T =

(
ϕ5, ϕ6

)
.

Aside from the three-fold degenerate eigenvalue of the three would-be Goldstone bosons
which again reads

M2
GB = λH ϕ̃

Tϕ̃− λHχ X̃TX̃ (7.9)

giving zero, when evaluated at the VEVs (7.7), and

m2
H(v, vX) = 2λHX〈φ〉2, (7.10)

m2
S(v, vX) = 0 (7.11)

to the same mass-eigenstates as they were defined in (6.15), there exists a 6th eigenvalue (with
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eigenvector ~m1 =
(
~0
~m′1

)
, ~m′1 being 2-dimensional with χ̃T ~m′1 = 0, and ~0 being 4-dimensional),

namely one associated with the Majoron [75, 76], given by

M2
Maj = λ2

HX

λH
X̃TX̃ − λHX ϕ̃Tϕ̃, (7.12)

vanishing, when evaluated at the VEVs (7.7).

7.3.1 The majoron

The majoron is a real Goldstone-boson with vanishing mass which couples dominantly to all the
neutrinos, even though weak, and hardly to the matter particles in the SM [75]. This massless
Goldstone-boson comes from the spontaneous breakdown of the global U(1)`, when X achieves
its VEV (7.7). The connection of this global symmetry breakdown to the (modified) lepton
number ` is understood as follows.

Introducing right-handed neutrinos to our model, we can construct Majorana mass-terms
which violate lepton number (∆L = 2), where the Majorana mass-matrix is proportional to
the scalar singlet X . Then having a non-vanishing VEV of X − sinω 6= 0 in (7.7) − leads
simultaneously to the spontaneous breakdown of U(1)` and the violation of the modified lepton
number ` [75].

7.4 Full effective potential at one-loop order

After adding the contributions from the gauge bosons and the fermions, no additional heavy
physical scalar fields have to be taken into account if compared to (6.19) and so the effective
potential Veff at one-loop order evaluated at the vacuum is exactly the same as in the previous
model (6.19), namely

δV(1)(〈φ〉~n) = 1
64 π2

{(
2λHX〈φ〉2

)2
[
ln 2λHX〈φ〉2

Λ2
W

− 3
2

]
+

+ 6 ·
(1

4 g2 v2
)2 [

ln
1
4 g2 v2

Λ2
W

− 5
6

]
+

+ 3 ·
(1

4 (g2 + g′2) v2
)2 [

ln
1
4 (g2 + g′2) v2

Λ2
W

− 5
6

]
−

− 12 ·
(1

2 g
2
t v

2
)2 [

ln
1
2 g

2
t v

2

Λ2
W

− 3
2

]
−

− 2 ·
nR∑
r=1

M4
ν,r

[
ln

M2
ν,r

Λ2
W

− 3
2

]}
. (7.13)
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From here, we again achieve

B = 1
64 π2 〈φ〉4

(
m4
H + 6 M4

W + 3 M4
Z − 12 M4

t − 2
nR∑
r=1

M4
ν,r

)
(7.14)

and from the relation m2
S = 8 B 〈φ〉2 and the knowledge that the scalon has again to be identified

with the Higgs boson with a mass of mh = (125.09 ± 0.21 ± 0.11) GeV, we obtain a minimal
mass-value for the heavy state H with

mH,min = 540.1 GeV (7.15)

and thus

λHX > 2.41 cos2 ω. (7.16)

7.4.1 Perturbative validity and right-handed neutrinos?

Neclecting the three would-be Goldstone boson fields, the tree-level potential in dependence of
the real scalar fields ϕ4, ϕ5 and ϕ6 reads

V0 = 1
4λH

( 4∑
i=1

ϕ2
i

)2

+ 1
4λX

 6∑
j=5

ϕ2
j

2

− 1
2λHX

( 4∑
i=1

ϕ2
i

) 6∑
j=5

ϕ2
j

 (7.17)

= 1
4!
[
6λHϕ4

4 + 6λX(ϕ2
5 + ϕ2

6)2 − 12λHXϕ2
4(ϕ2

5 + ϕ2
6)
]

(7.18)

and so we achieve for the ranges of the couplings, where perturbation theory is valid,

0 < λH � 24, 0 < λX � 24 and |λHX | � 12, (7.19)

again.

Thus, due to exactly the same reasons as in section 6.6, this model could be explained in
perturbation theory too. But the reason, why we exclude this model from further considerations
is that one can not add right-handed neutrinos achieving a mass from the VEV of X , vX . This is
the case, since the VEV of Φ is again bigger than that of vX .
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8 Scale-invariant version of SM with
one complex scalar singlet X and
the discrete symmetry X ↔ X∗

In this chapter, we discuss again a classically scale-invariant version of the SM with one ad-
ditional complex scalar-singlet X which was considered in works of Arsham Farzinnia et. al.
[28–30], Arsham Farzinnia [31] and furtheron in [32] and [33] with different motivations. But
this time, the tree-level potential is not protected under a globally U(1)-transformation of X , but
it is invariant under the discrete transformation X ↔ X∗.

In all the papers [28–31], they assumed the VEV of X to be real. But this is a wrong
assumption and not representing the general case: Because of the absence of a U(1)-symmetry
the field X can not be rotated in a way such that its VEV becomes real.

8.1 Model-Setup: Tree-level potential in the scalar
sector

The tree-level potential in the scalar sector considered in [28–33] reads

V0 (Φ, X) = λ1

6 (Φ†Φ)2 + λ2

6 |X|
4 + λ3 (Φ†Φ) |X|2 + λ4

2 (Φ†Φ)
(
X2 + (X∗)2

)
+ λ5

12
(
X2 + (X∗)2

)
|X|2 + λ6

12
(
X4 + (X∗)4

)
(8.1)

with

Φ = 1√
2

(
ϕ1 + iϕ2
ϕ4 + iϕ3

)
and X = 1√

2
(ϕ5 + iϕ6),

where all the {ϕi} (i = 1, 2, 3, 4, 5, 6) are real scalar fields. The tree-level potential (8.1), being
invariant under the transformation X ↔ X∗ (ϕ5 ↔ ϕ5, ϕ6 ↔ −ϕ6) and X being a singlet
under the SM gauge-group (2.1), is hermitian and so all the couplings {λi} (i = 1, 2, 3, 4, 5, 6)
have to be taken real.
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Writing (8.1) in terms of the real fields {ϕi}, the potential reads

V0 = λ1

24 (
4∑
j=1

ϕ2
j)2 + λ2

24 (ϕ2
5 + ϕ2

6)2 + λ3

4 (
4∑
j=1

ϕ2
j) (ϕ2

5 + ϕ2
6) + λ4

4 (
4∑
j=1

ϕ2
j) (ϕ2

5 − ϕ2
6)

+ λ5

24 (ϕ2
5 − ϕ2

6) (ϕ2
5 + ϕ2

6) + λ6

24 (ϕ2
5 − ϕ2

6)2 − λ6

6 ϕ2
5ϕ

2
6. (8.2)

Introducing new variables x and y,

x = ϕ2
5 + ϕ2

6, and y = ϕ2
5 − ϕ2

6, (8.3)

or vice versa

ϕ2
5 = x+ y

2 and ϕ2
6 = x− y

2 , (8.4)

we can write the potential (8.2) in terms of x, y and z as

V0(x, y, z) = 1
24

[
λ1z

2 + 6z(λ3x+ λ4y) + (λ2 − λ6)x2 + λ5xy + 2λ6y
2
]
, (8.5)

where we have defined z as z = ∑4
j=1 ϕ

2
j .

8.2 GW-condition and the flat direction

As next step, we want to determine the GW-condition [54] to get a relation between the couplings
at a certain energy-scale ΛW . To do that, we have to consider (8.2) on the unit sphere in field

space (
6∑
i=1

ϕ2
i = x+ z = 1). Thus expressing the variable z in terms of x, z = 1− x, we have

V0(x, y) = 1
24
(
λ1 + 2a1x+ 2a2y + 2a3xy + a4x

2 + a5y
2
)

(8.6)

where

a1 = 3λ3 − λ1,

a2 = 3λ4,

a3 = 1
2λ5 − 3λ4,

a4 = λ1 + λ2 − 6λ3 − λ6,

a5 = 2λ6. (8.7)

To obtain the GW-condition, one has to differentiate V0 with respect to both x and y (now
we are working just on a two-dimensional subspace of the full field space) and set the expressions
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8.2 GW-condition and the flat direction

equal to zero,

∂V0

∂x

∣∣∣∣∣
x=x0, y=y0

= a1 + a4x0 + a3y0 = 0, (8.8)

∂V0

∂y

∣∣∣∣∣
x=x0, y=y0

= a2 + a3x0 + a5y0 = 0, (8.9)

and hence the solutions for x0 and y0 read

x0 = a1a5 − a2a3

a2
3 − a4a5

and y0 = a2a4 − a1a3

a2
3 − a4a5

. (8.10)

The values of x0 and y0 represent the VEVs of x and y from which the VEVs of Φ and X can
be attained. Since the scalar tree-level potential (8.1) has just a discrete (but no continuous)
symmetry, the potential is not symmetric under exchange of ϕ5 and ϕ6 and therefore ϕ5 and
ϕ6 can not be rotated in a manner such that X achieves a real VEV as it was claimed in [28–
31]. In the general case, X achieves a complex VEV − a fact which will be assumed in all our
calculations in the following.

Inserting these values of x0 and y0 (8.10) back into the potential (8.6) and demanding that
V0(x0, y0) = 0, we come to the condition

λ1(a2
3 − a4a5) = 2a1a2a3 − a2

1a5 − a2
2a4. (8.11)

Expressing (8.11) in dependence of just the {λi}, we obtain for the GW-condition[
λ2

5 + 8λ6(λ6 − λ2)
]
λ1 + 36

[
2λ2

3λ6 − λ3λ4λ5 − λ2
4(λ6 − λ2)

]
= 0 (8.12)

with the set of all six λi being evaluated at a certain renormalization-scale ΛW . With the GW-
condition (8.12) and (8.4), the flat direction is defined as

~φflat = φ



0
0
0√

1− x0√
x0+y0

2√
x0−y0

2


︸ ︷︷ ︸

=~n

+ Goldstone Boson directions , (8.13)
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where the variables x0, y0 (8.10) and (1− x0) with λ1 being eliminated by using (8.12) read

x0 = 6 · λ4λ5 − 4λ3λ6

N
, (8.14)

y0 = 6 · λ3λ5 + 2λ4(λ6 − λ2)
N

, (8.15)

1− x0 = − λ
2
5 + 8λ6(λ6 − λ2)

N
, (8.16)

with N = 6λ4λ5 − λ2
5 + 8λ6(λ2 − 3λ3 − λ6).

Neglecting the three would-be Goldstone bosons’ directions, we will often restrict ourselves
to the relevant 3-dimensional subspace and write

~nflat =


√

1− x0√
x0+y0

2√
x0−y0

2

 (8.17)

in our further argumentations.

As already mentioned, the field Φ will achieve a real VEV and χ will achieve a complex
VEV and so we write

〈Φ〉 = 1√
2

(
0

〈ϕ4〉 = v

)
and 〈X〉 = 1√

2
(〈ϕ5〉+ i〈ϕ6〉) = 1√

2
(v5 + iv6) (8.18)

with v, v5 and v6 read (by means of (8.4))

v = 〈φ〉
√

1− x0, v5 = 〈φ〉
√
x0 + y0

2 and v6 = 〈φ〉
√
x0 − y0

2 , (8.19)

where the ranges of x0 and y0 are

0 < x0 < 1 and − x0 < y0 < x0. (8.20)

Hence, we can write 〈ϕ4〉
〈ϕ5〉
〈ϕ6〉

 =

 vv5
v6

 = 〈φ〉~nflat. (8.21)
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8.3 Masses of the three would-be Goldstone Bosons

8.3 Masses of the three would-be Goldstone Bosons

As in the models discussed in the last two chapter (chapters 6 and 7), we again achieve the
squared mass-eigenvalues of the would-be Goldstone bosons by considering the 4×4-part of the
full matrix in the scalar sector,(

∂2V0

∂ϕi∂ϕk

)
= λ1

3 (ϕ̃ϕ̃T)ik +
{
λ1

6 ϕ̃
Tϕ̃ + 1

2(λ3x + λ4y)
}

︸ ︷︷ ︸
=M2

GB(ϕ̃,x,y)

δik (i, k = 1, 2, 3, 4), (8.22)

where ϕ̃T =
(
ϕ1 ϕ2 ϕ3 ϕ4

)
.

Evaluating the squared mass-eigenvalue of the would-be Goldstone bosons M2
GB(ϕ̃, x, y) at the

VEVs (8.21), we get

M2
GB(v, v5, v6) = λ1

6 (1− x0) + 1
2(λ3x0 + λ4y0) (8.23)

and then by eliminating λ1 by using (8.12), we achieve

M2
GB(v, v5, v6) = 0. (8.24)

as expected. This eigenvalue is three-fold degenerate and due to it the three gauge bosons W±

and Z0 get their masses after electroweak SSB.

8.4 Masses of the three physical scalars

As in the model taken from [16] discussed in the previous chapter (chapter 6), we again expand
the real fields around their VEVs (8.21) for finding the mass-eigenstates. The scalon again lies
in the flat direction given in (8.17) and the other two particles lie in the 2-dimensional plane
orthogonal to it. The expansion of the fields ϕ4, ϕ5 and ϕ6 around their VEVs readsϕ4

ϕ5
ϕ6

 =

 v + ϕ′4
v5 + ϕ′5
v6 + ϕ′6

 = (〈φ〉 + S)~nflat + η ~n1 + ξ ~n2, (8.25)

where the vectors ~n1 and ~n2 have to lie somewhere in the plane orthogonal to ~nflat, but they have
to be chosen such that they are orthogonal to each other,

~n1 = 1
√
x0


0

−
√

x0−y0
2√

x0+y0
2

 and ~n2 = 1
√
x0


−x0√

1− x0

√
x0+y0

2√
1− x0

√
x0−y0

2

 . (8.26)
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With this choice (8.26), the set of three vectors {~nflat, ~n1, ~n2} forms an orthonormal basis.

For the determination of the mass-eigenstates, it is convenient to write the tree-level poten-
tial (8.5) in matrix form as

V0 = 1
24

(
x y z

)
Ã

xy
z

 with Ã =

 c1
c3
2 3λ3

c3
2 c2 3λ4

3λ3 3λ4 λ1

 , (8.27)

where the newly introduced parameters c1, c2 and c3 read

c1 = λ2 − λ6, c2 = 2λ6 and c3 = λ5. (8.28)

In addition, we can express λ1, λ3 and λ4 in terms of x0, y0, c1, c2 and c3 via

λ1 = 1
(1− x0)2 (c1x

2
0 + c2y

2
0 + c3x0y0), (8.29)

λ3 = − 1
6(1− x0) (2c1x0 + c3y0), (8.30)

λ4 = − 1
6(1− x0) (c3x0 + 2c2y0). (8.31)

Originally, we had started with six free parameters λ1, λ2, λ3, λ4, λ5 and λ6 where one of
them (choosing λ1) is fixed at the renormalization-scale ΛW by the GW-condition (8.12) leaving
five of them. For simplifying the notation in the next step, we use {x0, y0, c1, c2, c3} as a
parameter set instead of {λ2, λ3, λ4, λ5, λ6}.

For the determination of the mass-eigenfields, we have to write (8.27) as a function of S, η
and ξ rather than x, y and z and consider only terms proportional to 〈φ〉2 (respectively quadratic
in the fields S, η and ξ). So, we obtain

V0(S, η, ξ) = 〈φ〉
2

2
(
S η ξ

) =P̃︷ ︸︸ ︷(
0 ~0T

2
~02 P̃2×2

) Sη
ξ

 (8.32)

with P̃2×2 = 1
3x0

 c2 (x2
0 − y2

0) −1
2

√
x2

0−y
2
0

1−x0
(c3x0 + 2c2y0)

−1
2

√
x2

0−y
2
0

1−x0
(c3x0 + 2c2y0) 1

1−x0
(c1x

2
0 + c2y

2
0 + c3x0y0)

 , (8.33)

which verifies that the scalon S lying in the flat direction has a vanishing mass at tree-level.

Introducing a new parameter via

d =
√
x2

0 − y2
0

1− x0
, (8.34)
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we can write (8.33) with the set of parameters {x0, λ1, λ4, c2, d} as

P̃2×2 = 1− x0

3x0

(
c2 d

2 3λ4 d
3λ4 d λ1

)
, (8.35)

which is more compact and therefore we will use it further on.

With the transformation {ϕ4, ϕ5, ϕ6} → {S, η, ξ}, the squared mass-matrix is not yet in
diagonal form, but the scalon S is decoupled from the two other states which are already massive
at tree-level. In that way, we reduced the problem of diagonalizing a symmetric 3×3-matrix to
that of a 2-dimensional symmetric matrix. To diagonalize the 2 × 2-matrix P̃2×2, we use the
SO(3)-matrix

R′ =

1 0 0
0 cosα sinα
0 − sinα cosα

 , (8.36)

and compute the product R′P̃R′T. So that this product gives a diagonal matrix, the off-diagonal
term

cosα sinα (P̃22 − P̃33) + (cos2 α− sin2 α) P̃23

has to vanish. This is exactly the case, if we define α as

tan(2α) = 2P̃23

P̃33 − P̃22
. (8.37)

Writing α as a function of the five parameters {x0, y0, c1, c2, c3} and {x0, λ1, λ4, c2, d}, it reads

α = 1
2 arctan

(√
x2

0 − y2
0
√

1− x0
c3x0 + 2c2y0

c2(x2
0 − y2

0)(1− x0)− (c1x2
0 + c2y2

0 + c3x0y0)

)
(8.38)

= 1
2 arctan

(
6λ4d

λ1 − c2d2

)
. (8.39)

Due to this specific transformation R′P̃R′T, we transform the fields η and ξ in

V0(S, η, ξ) = 〈φ〉
2

2
(
S η ξ

)
P̃

Sη
ξ

 (8.40)
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8 Scale-invariant version of SM with one complex scalar singlet X and the discrete symmetry
X ↔ X∗

into the two mass-eigenfields, calling them η′ and ξ′. Then V0 reads

V0(S, η′, ξ′) = 〈φ〉
2

2
(
S η′ ξ′

)
[R′P̃R′T]3×3

Sη′
ξ′

 (8.41)

= 1
2
[
m2
η′ (η′)2 + m2

ξ′ (ξ′)2
]
, (8.42)

where the squared masses of η′ and ξ′ are obtained as

m2
η′ = 〈φ〉2

(
P̃22 cos2 α + P̃33 sin2 α − 2P̃23 cosα sinα

)
, (8.43)

m2
ξ′ = 〈φ〉2

(
P̃22 sin2 α + P̃33 cos2 α + 2P̃23 cosα sinα

)
, (8.44)

and the corresponding mass-eigenfields areSη′
ξ′

 = R′

Sη
ξ

 =

 S
cosα η − sinα ξ
cosα ξ + sinα η

 (8.45)

or vice versa Sη
ξ

 = R′T

Sη′
ξ′

 =

 S
cosα η′ + sinα ξ′
cosα ξ′ − sinα η′

 . (8.46)

Inserting this transformation (8.46) back into (8.25), we achieve

ϕ4
ϕ5
ϕ6

 = (〈φ〉 + S)


√

1− x0√
x0+y0

2√
x0−y0

2

 + 1
√
x0

η


0
−
√

x0−y0
2√

x0+y0
2

 + ξ


−x0√

1− x0

√
x0+y0

2√
1− x0

√
x0−y0

2




= (〈φ〉 + S)


√

1− x0√
x0+y0

2√
x0−y0

2

 +

+ 1
√
x0

η′


x0 sinα
−
(√

x0−y0
2 cosα +

√
1− x0

√
x0+y0

2 sinα
)√

x0+y0
2 cosα −

√
1− x0

√
x0−y0

2 sinα

 +

+ ξ′


−x0 cosα

√
1− x0

√
x0+y0

2 cosα −
√

x0−y0
2 sinα

√
1− x0

√
x0−y0

2 cosα +
√

x0+y0
2 sinα


 (8.47)

for the transformation of the fields {ϕ4, ϕ5, ϕ6} to the mass-eigenstates {S, η′, ξ′}.
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8.5 Full effective potential at one-loop order

8.5 Full effective potential at one-loop order

With the contributions from the gauge bosons and the fermions (taking only t-quarks and right-
handed neutrinos) included, the full one-loop effective potential evaluated in the flat direction
reads

δV(1)(〈φ〉~n) = 1
64π2

{
m4
η′

[
ln

m2
η′

Λ2
W

− 3
2

]
+ m4

ξ′

[
ln

m2
ξ′

Λ2
W

− 3
2

]
+

+ 6 ·M4
W

[
ln M2

W

Λ2
W

− 5
6

]
+ 3 ·M4

Z

[
ln M2

Z

Λ2
W

− 5
6

]
−

− 12 ·M4
t

[
ln M2

t

Λ2
W

− 3
2

]
− 2 ·

nR∑
r=1

M4
ν,r

[
ln

M2
ν,r

Λ2
W

− 3
2

]}
. (8.48)

From here, one can read off

B = 1
64π2 〈φ〉4

(
m4
η′ + m4

ξ′ + 6 M4
W + 3 M4

Z − 12 M4
t − 2

nR∑
r=1

M4
ν,r

)
(8.49)

and demanding that B has to be strictly positive, B>0 [54], one gets

m4
η′ + m4

ξ′ − 2
nR∑
r=1

M4
ν,r > 12 M4

t − 6 M4
W − 3 M4

Z ≈ (319 GeV)4 . (8.50)

Thus the minimal value for the sum of m4
η′ and m4

ξ′ is given by

(m4
η′ + m4

ξ′)min = (319 GeV)4 . (8.51)

8.6 Which scalar is the observed Higgs boson?

For implementing nR right-handed neutrinos via the seesaw mechanism of type 1 [45–48] (as
explained in chapter 3), the VEV of the scalar singlet, 〈X〉, has to be much bigger than that of
the Higgs doublet, v = 〈φ〉

√
1− x0. The ratio of

〈X〉 =
√
v2

5 + v2
6

2 = 〈φ〉
√
x0

2 and v = 〈φ〉
√

1− x0 (8.52)

is given by the relation

〈X〉
v

= 1√
2

√
x0

1− x0
. (8.53)
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Knowing that v = 246 GeV and by assuming 〈X〉 to have at least a value of 1 TeV, we achieve a
range for x0 of

0.97 < x0 < 1 (8.54)

and therefore we get

〈φ〉 > 1.42 TeV . (8.55)

Assuming c1, c2 and c3 to be small but different from zero and y0 having a fixed nonvanish-
ing value satisfying |y0| < x0, we can consider α (8.38) only as a function of x0. Taking the limit
x0 → 1, we get

α(x0) x0→1−−−→ 0 . (8.56)

Looking at the expansion of the Higgs doublet around its VEV in dependence of the mass
eigenstates (8.47), it reads

Φ = 1√
2

(
0

v +
√

1− x0 S +√x0 sinα η′ − √x0 cosα ξ′

)
(8.57)

and thus we can identify ξ′ as the mass eigenstate of the physical Higgs particle with a mass of
mh = (125.09 ± 0.21 ± 0.11) GeV [61] discovered at the LHC in 2012 [10, 11], since just the
term κf = −√x0 cosα (responsible for the coupling of the fermions to the Higgs field in the
SM) standing in front of this state ξ′ has an absolute value slightly different from one. With the
findings from above,

√
1− x0 is not much different from zero and

√
x0 sinα is for sure much

smaller than
√
x0 cosα. Therefore the states S and η′ couple much weaker to the fermions than

the state ξ′.

For the absolute value of the coupling constant κf = −√x0 cosα, we take [72–74] a range
of

0.9 <
√
x0 cosα < 1 (8.58)

obtaning a range for cosα of

0.9
√
x0

< cosα <
1
√
x0
. (8.59)

With the values for x0 (8.54) and not allowing cosα to be larger than one, we get

0.84 < cos2 α < 1 for x0 = 0.97 ,
0.81 < cos2 α < 1 for x0 = 1.
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In the final calculation, we will always take

0.84 < cos2 α < 1 , (8.60)

since then the range for α is certainly satisfied no matter which explicit value is chosen for x0.

Since we have identified the state ξ′ as the physical Higgs particle, we obtain from (8.44),

m2
h = m2

ξ′ = (125.09 GeV)2 = 〈φ〉2
(
P̃22 sin2 α + P̃33 cos2 α + 2P̃23 cosα sinα

)
= v2

3x0

(
c2 d

2 + (λ1 − c2 d
2) cos2 α + 6λ4 d cosα sinα

)
.

(8.61)

Due to the fact that the minimal value for the sum of m4
η′ and m4

ξ′ is given by (8.51), we
have

mη′ > 317 GeV (8.62)

and from the squared mass of the mass eigenstate η′ (8.43), we get

(317 GeV)2 < m2
η′ = 〈φ〉2

(
P̃22 cos2 α + P̃33 sin2 α − 2P̃23 cosα sinα

)
= v2

3x0

(
λ1 + (c2 d

2 − λ1) cos2 α − 6λ4 d cosα sinα
)
. (8.63)

If we express λ4 in (8.61) in terms of the other parameters and inserting it into (8.63), we
get

3x0

[(317
246

)2
+
(125.09

246

)2]
< λ1 + c2 d

2 . (8.64)

Therefore, we have

λ1 + c2 d
2 > 5.76 for x0 = 1 ,

λ1 + c2 d
2 > 5.58 for x0 = 0.97 .

In the following, we will adjust the values of λ1, c2 and d such that

λ1 + c2 d
2 > 5.76 (8.65)

is certainly fulfilled.

For achieving an upper bound for c2, we consider the relevant term in (8.2),

λ6

24
(
ϕ2

5 − ϕ2
6

)2
− λ6

6 ϕ2
5ϕ

2
6 = λ6

24
(
ϕ4

5 + ϕ4
6 − 6ϕ2

5ϕ
2
6

)
, (8.66)
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seeing that |6λ6| has to be much smaller than (4π)2 for the model to be perturbatively valid and
thus c2 (c2 = 2λ6) has to be in the following range,

0 < c2 <
16
3 π2 ≈ 16π . (8.67)

In addition, knowing that y0 is a real number, one gets an upper bound for d in dependence
of x0,

d ≤ x0√
1− x0

(8.68)

and it is assumed to be positive from formula (8.34).

8.6.1 Specific examples for model to be perturbatively valid

Following the same argumentation as in sections 6.6 and 7.4.1, and making the rough approxi-
mation π ≈ 3 for the upper bounds, we get as ranges for λ1 to λ6 in this model,

0 < λ1 � 144 , 0 < λ2 � 72 , |λ3| � 24 , |λ4| � 24 , |λ5| � 144 , |λ6| � 24 .
(8.69)

Thus, for the model to be carried out perturbatively, we have to choose values for x0, λ1,
cos2 α, d and c2 in the ranges found above, listed for clearness again,

0.97 < x0 < 1 , (8.70)

d ≤ x0√
1− x0

, (8.71)

0.84 < cos2 α < 1 , (8.72)
0 < c2 < 48 , (8.73)

λ1 + c2 d
2 > 5.76 , (8.74)

such that the ranges for λ1 to λ6 are satisfied. Moreover, the final parameters have to fulfill
det (P̃2×2) > 0 with P̃2×2 from formula (8.35), so

λ1c2 − 9λ2
4 > 0 . (8.75)
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8.6 Which scalar is the observed Higgs boson?

Example 1

One reasonable set for the input parameters {x0, λ1, α, d, c2} is

x0 = 0.98 , λ1 = 10 , α = 0.20 , d = 6.50 , c2 = 5.34 (8.76)

leading to values for {λ2, λ3, λ4, λ5, λ6} with

λ2 = 3.22 , (8.77)
λ3 = 0.74 , (8.78)
λ4 = −2.34 , (8.79)
λ5 = −3.42 , (8.80)
λ6 = 2.67 , (8.81)

seeing that all values are in a region where perturbation theory can certainly be carried out.

With these value, the determinant of the mass matrix in (8.35) is positive. We obtain

λ1c2 − 9λ2
4 = 4.23 .

Moreover, we have chosen the values such that the Higgs mass (8.61) is reproduced with

mh = 125.11 GeV , (8.82)

and the mass (8.63) of the second heavy scalar particle can be calculated to be

mη′ = 2.20 TeV . (8.83)

With x0 = 0.98, we get 〈φ〉 = 1.74 TeV and with all the parameters, we achieve for the
squared one-loop mass of the scalon,

(m(1)
S )2 = 8B〈φ〉2 = 1

8 π2 〈φ〉2

(
m4
h + m4

η′ + 6 M4
W + 3 M4

Z − 12 M4
t − 2

nR∑
r=1

M4
ν,r

)

= 97.78 (TeV)2 − 8.38 · 10−9 (GeV)−2
nR∑
r=1

M4
ν,r . (8.84)

If we do not add heavy neutrinos to the model, the one-loop mass of the scalon is

m(1)
S = 312.69 GeV (8.85)

and if there are heavy neutrinos, it is even smaller.
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Example 2

Another set for reasonable input parameters {x0, λ1, α, d, c2} is

x0 = 0.99 , λ1 = 15 , α = 0.30 , d = 9.519 , c2 = 1.65 (8.86)

leading to values for {λ2, λ3, λ4, λ5, λ6} with

λ2 = 0.92 , (8.87)
λ3 = 0.39 , (8.88)
λ4 = −1.61 , (8.89)
λ5 = −0.81 , (8.90)
λ6 = 0.83 , (8.91)

seeing that all values are in a region where perturbation theory can certainly be carried out.

With these value, the determinant of the mass matrix in (8.35) is positive. We obtain

λ1c2 − 9λ2
4 = 1.39 .

Moreover, we have chosen the values such that the Higgs mass (8.61) is reproduced with

mh = 125.02 GeV , (8.92)

and the mass (8.63) of the second heavy scalar particle can be calculated to be

mη′ = 1.83 TeV . (8.93)

With x0 = 0.99, we get 〈φ〉 = 2.46 TeV and with all the parameters, we achieve for the
squared one-loop mass of the scalon,

(m(1)
S )2 = 8B〈φ〉2 = 1

8 π2 〈φ〉2

(
m4
h + m4

η′ + 6 M4
W + 3 M4

Z − 12 M4
t − 2

nR∑
r=1

M4
ν,r

)

= 48.89 (TeV)2 − 4.18 · 10−9 (GeV)−2
nR∑
r=1

M4
ν,r . (8.94)

If we do not add heavy neutrinos to the model, the one-loop mass of the scalon is

m(1)
S = 221.10 GeV (8.95)

and if there are heavy neutrinos, it is even smaller.
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Example 3

Another set for reasonable input parameters {x0, λ1, α, d, c2} is

x0 = 0.999 , λ1 = 30 , α = 0.108 , d = 10 , c2 = 24.87 (8.96)

leading to values for {λ2, λ3, λ4, λ5, λ6} with

λ2 = 34.76 , (8.97)
λ3 = 8.51 , (8.98)
λ4 = −8.99 , (8.99)
λ5 = −47.13 , (8.100)
λ6 = 12.44 , (8.101)

seeing that all values are in a region where perturbation theory can certainly be carried out.

With these value, the determinant of the mass matrix in (8.35) is positive. We obtain

λ1c2 − 9λ2
4 = 19.47 .

Moreover, we have chosen the values such that the Higgs mass (8.61) is reproduced with

mh = 124.99 GeV , (8.102)

and the mass (8.63) of the second heavy scalar particle can be calculated to be

mη′ = 7.13 TeV . (8.103)

With x0 = 0.999, we get 〈φ〉 = 7.78 TeV and with all the parameters, we achieve for the
squared one-loop mass of the scalon,

(m(1)
S )2 = 8B〈φ〉2 = 1

8 π2 〈φ〉2

(
m4
h + m4

η′ + 6 M4
W + 3 M4

Z − 12 M4
t − 2

nR∑
r=1

M4
ν,r

)

= 540.26 (TeV)2 − 4.18 · 10−10 (GeV)−2
nR∑
r=1

M4
ν,r . (8.104)

If we do not add heavy neutrinos to the model, the one-loop mass of the scalon is

m(1)
S = 735.03 GeV (8.105)

and if there are heavy neutrinos, it is even smaller.
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Summary

In the last of these three examples, the values of the couplings − formula (8.97) to (8.101) −
seem to be a bit high, but comparing them with the ranges given in (8.69), nevertheless it seems
to fit well. Therefore all three examples given in this section seem to be viable to be carried out
in perturbation theory, where the second example has the best prediction since the couplings are
really small.
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9 Conclusions and Prospects

In this thesis, three versions of the SM with classical scale-invariance were considered, where −
compared to the particle content of the minimal version of the SM − scalar degrees of freedom
and an arbitrary number of right-handed neutrinos were added but leaving the gauge group of
the SM unchanged. In absence of an explicit scalar mass term in the Lagrangian, all particles’
masses arised via quantum corrections to the effective potential. In all three models, one real
or complex scalar singlet was added and moreover an arbitrary number of right-handed neutrino
fields was introduced to give an explanation for massive neutrinos via the seesaw-mechanism of
type 1. In the first two models considered, in chapters 6 and 7, it was not possible to include
massive neutrinos via the seesaw-mechanism, since from our calculations in the scalar sector, we
found that the VEV of the Higgs doublet is much larger than that of the scalar singlet. Therefore,
we discarded these models from further calculations with the aim to describe a version of the SM
with additional scalar fields and the realization of neutrino masses.

In the last model considered, in chapter 8, we did not come to any contradictions in our
calculations and therefore this model seems viable to account for both an additional heavy scalar
state with a mass in the TeV-range and for giving an explanation for light neutrino masses via
the seesaw-mechanism realized with a symmetry breaking scale in the TeV-range. In addition,
one has the scalon as another scalar state having a smaller mass of order O(102 GeV) or even
smaller if there are heavy neutrinos in the TeV-range included. If there really exist physical
scalar particles and neutrinos with masses in the TeV-range in nature and if our model can come
to fruition, has to be proven in future experiments like at the LHC.

In this potentially viable model, we added one complex scalar singlet X and the scalar
potential we investigated was invariant under the discrete transformation X ↔ X∗. In our cal-
culations, we concentrated on the scalar sector: First we found the tree-level mass-eigenstates
and the corresponding mass-eigenvalues of all the physical scalar particles. Then we calculated
the scalar effective potential up to one-loop order with the quantum corrections containing scalar,
gauge boson, t-quark and neutrino loops. The calculations were performed in dimensional regu-
larization and the results were given in the MS-scheme. At one-loop order we got an inequality
in terms of the masses of all particles contained in that model. Having the mass-eigenvalues of
all the scalar states contained in the model in dependence of the six dimensionless couplings λ1,
λ2, λ3, λ4, λ5, λ6 and claiming that we had heavy neutrinos with masses of order O(TeV) as well,
we then came to a parameter range of the six couplings with the observation that we could adjust
them being small enough so that the model is perturbatively valid.



9 Conclusions and Prospects

In our calculations, we found three examples where all the couplings {λ1, λ2, λ3, λ4, λ5, λ6}
have values where perturbation theory is valid and the mass of the heavy scalar state lies between
1.8 TeV and 7.1 TeV. The mass range of the heavy scalar state might be enlarged by making a
scan over the full parameter ranges of all the six couplings. We found the masses by just trying
and setting in values for the couplings. In this way, we did not find any values where the mass
of the scalar goes to (much) heavier masses than 7.1 TeV and we do not think that this model
can be described perturbatively with a massive scalar state with a mass of around 10 TeV or even
heavier.
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