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Introduction

This thesis is concerned with questions regarding the spectral theory of the Dolbeault
Laplacian with d-Neumann boundary conditions, viewed as a self-adjoint operator acting on
the space of square-integrable differential forms on a Hermitian manifold. The associated
0-Neumann problem has become an important tool in the function theory of several complex
variables. Its inception seems to be rooted in some unpublished works of D. C. Spencer
from the 1950s, with major contributions to its foundation due to Kohn [Koh63], Kohn—
Nirenberg [KN65], Morrey [Mor58], and Hérmander [Hor65], among others. We refer to [Hor03]
for a historical account. The theory is most developed on bounded pseudoconvex domains in
C™, and we mention the monograph [Str10] for an in-depth treatment also containing extensive
references.

Before discussing the contents of the thesis and its main results, we shall briefly set up
the required notation and concepts in at least some detail. On a complex manifold M, there
are complex subbundles AP9T* M, with 0 < p, ¢ < n = dim¢ (M), of the bundle A¥T*M ® C
of complex k-forms on M which are spanned, over the domain of a given chart (z1,...,z2,) of
M, by differential forms of the type

dzjy AN+ Ndzj, NdZg A A dZ,. (1)

We denote the space of smooth sections of AP4T*M by QP4(M). Alternatively, AP9T*M may
be constructed from the eigenspaces of the complex structure operator. It turns out that the
exterior derivative d sends QP4(M) to QPTL4(M) @ QP4+1(M), and

B: QM) — QPITL(M)

is defined as the part of d that is mapped to QP4+1(M). In coordinates,
_ _ " of
o(fa)=0f Nha = —dz; A\ a,
(fa)=0f e; oz,

with « as in , so O generalizes the Wirtinger derivative 4/az from single variable complex
analysis. Moreover, 00 = 0, so we have the Dolbeault complex

0 00 Lot B Boarn(ar) 5 0

for every 0 < p < n. There is also a vector-valued analogue of 9: if E — M is a holomorphic
vector bundle, then there are first order differential operators

oF: QPI(M, E) — QPITY (M, E),

iii



iv INTRODUCTION

with QP4 M, E) = T'(M, AP1T*M ® FE) the space of smooth E-valued differential forms of
bidegree (p, q). If (&1,. .., &) is a local holomorphic frame of E over some open subset U C M,
then
r
oFu = Z 50@- ® &
j=1

for all u = 7% a; ® &, with a; € QP4(U). Clearly, 0F0F = 0, so we again end up with
a complex of differential operators. The holomorphic sections of E are then precisely the
s € I'(M, E) that satisfy the (homogeneous) Cauchy—Riemann equation

oFs =0.
The inhomogeneous Cauchy—Riemann equation
s =u (2)

for a given u € Q%'(M, E) (necessarily satisfying 9Fu = 0) is also important in the con-
struction of global holomorphic sections of E with prescribed properties. For example, one
may wish for holomorphic functions with prescribed singularities, or to extend holomorphic
functions initially defined on a hypersurface to a holomorphic function on a neighborhood of
that hypersurface. These questions and more can often be answered by first constructing a
“real” solution to the problem, and then correcting it to a holomorphic one using a solution
of . We refer to textbooks on complex analysis for examples of this principle, for instance
[Kra01l, chapter 5].

Even better than solving is to do so with estimates. For instance, one can wish for a
solution operator S: img(9¥) C QO1(M, E) — I'(M, E) which is continuous for the L? norms
induced by a Riemannian metric on M and a Hermitian metric on E. To this end, it is useful
to consider O in the sense of distributions, i.e., as an unbounded operator 55 on the Hilbert
space Lg’q(M , E) of square-integrable E-valued (p, ¢)-forms, with domain those u € Lg,q(M ,E)
such that 9Fu, when computed in the sense of distributions, lies in L;q 1+1(M, E). Since weak
solutions of are automatically smooth by interior elliptic regularity, hence holomorphic,
this is a natural extension of ¥ to consider. We refer to 0L as the weak extension of the
differential operator 0¥, and (Lg’.(M ,E),0F) is a prime example of a Hilbert complex, i.c., a
cochain complex of closed operators between Hilbert spaces. As we will see in section [I.2] it
is then fruitful to consider the self-adjoint operator

E ._ 3EQEx | fEx3E
Oy = 00" + 0y 0y (3)
on L2 (M, E), for its inverse leq: img(ng) — L2 (M, E), the 0F -Neumann operator, gives
a solution operator to (2 via
E ._ aExAE
Spa = 0w Npg-
In fact, qu gives the solution of minimal L? norm, and its continuity may be read off from

operator theoretic properties of D{f q- More precisely, Slfq and qu 41 are continuous if and
only if Dg ¢ has closed range. Equivalently, 0 either doesn’t belong to or is an isolated point of
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O'E(DE(]), the essential spectrum of E. Here, the essential spectrum of a self~adjoint operator
consists of the points in its spectrum that are not isolated eigenvalues of finite multiplicity. One
says that a self-adjoint operator has discrete spectrum if its essential spectrum is empty. The
compactness of qu and qu 41 is equivalent to Nijq being compact, which is the same as either
O'E(DE o) being empty or containing 0 as its only element. We point out that OF is an extension
of the elliptic Dolbeault Laplacian (or simply complex Laplacian) 0FOET 4 9F19F  where 0
is the formal adjoint of 0. As such, general elliptic operator theory gives compactness of
szq when M is compact.

In case M is a (smoothly bounded) domain in a larger manifold, the boundary conditions
that are imposed on elements of .(M, E) by their membership in dom(O¥) are called 0-
Neumann boundary conditions, and (0¥ is for this reason sometimes called the Dolbeault
Laplacian with O-Neumann boundary conditions. Therefore, the equation OFu = v for given
v € Li,(M ,E) is really a boundary value problem in disguise, called the 9¥-Neumann
problem. From a PDE point of view, this problem is analytically delicate because the boundary
conditions do not lead to good estimates for its solutions on the boundary and, as a result, one
may not expect u to be smooth up to the boundary even if v is (the problem is not “globally
regular”). That this can be remedied in at least some cases was first demonstrated by Kohn in
[Koh63], where he showed that the problem exhibits a subelliptic gain if M C C" is a bounded
strongly pseudoconvex domain with smooth boundary, and, as a consequence, global regularity
holds for such M. Moreover, the subelliptic estimates that Kohn proved imply, together with
Rellich’s theorem, that the 9-Neumann operator is compact in this case. Conversely, it was
shown by Kohn and Nirenberg in [KN65| that if M C C" is bounded, pseudoconvex, and
has a smooth boundary, then the compactness of the d-Neumann operator implies global
regularity. These results provide another motivation for studying the discreteness of spectrum
of OF. Furthermore, it is also known that the spectrum of (0¥ contains geometric information
of (the boundary of) M which goes beyond pseudoconvexity. As an example, Fu showed in
[Fu08] that, in case M =  is a smoothly bounded and bounded pseudoconvex domain in C?,
the growth of the spectral counting function (i.e., the number of eigenvalues of the complex

Laplacian below a given parameter) is related to € being of finite type.

Overview of the thesis. In chapter [I} we will introduce the basic notions used throughout
the thesis: differential operators and their extensions, as well as Hilbert complexes. Chapter [2]
deals with the general properties of (nonnegative) self-adjoint extensions of elliptic differential
operators. The most important result there is a slight extension of Persson’s theorem |Per60]
which characterizes the bottom of the essential spectrum of such operators.

Chapter [3| sets up the 9F-Neumann problem in detail and gives some fundamental proper-
ties. One of these is that, under suitable boundary and curvature assumptions, the discreteness
of spectrum of OF “percolates” up the 0F-complex: if the spectrum of ng is discrete, then
the same holds for ng n
[Fu08, Proposition 2.2] or [Str10, Proposition 4.5]. It was shown in [Hasl4] that this also

holds for the weighted 0-Neumann problem with a plurisubharmonic weight, by which we

1~ This is well-known for bounded pseudoconvex domains in C", see
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mean taking M = C" and E a trivial line bundle with metric chosen such that the L? norm of
a function f becomes f(cn |f|?e=% d\, with ¢: C® — R smooth and plurisubharmonic, and A
the Lebesgue measure. Further information on the weighted problem can be found in [Has14].
Our generalization is the following;:

Theorem 3.2.23. Let M C M’ be a q-Levi pseudoconvex open subset of a Kihler manifold
of 1-bounded geometry, with smooth boundary OM C M', and let E — M be a Hermitian
holomorphic vector bundle such that E|p; is q-Nakano lower semibounded. If ng_l has
discrete spectrum, then so does ng.

Here, the requirement of M having 1-bounded geometry means that its injectivity radius
is positive, and both the Riemann curvature tensor as well as its first covariant derivative are
bounded, uniformly on M. General Riemannian manifolds of bounded geometry are discussed
in section [4.I] Another area where manifolds with some bounded geometry are of use is the
analysis of Schrodinger operators, by which we mean operators of the form VIV + V for
some (metric) connection V on a Hermitian vector bundle F' and vector bundle morphism
V:F — F. It turns out that every differential operator of Laplace type is of this form,
which in particular applies to (twice) the Dolbeault Laplacian. For Schrodinger operators
acting on the sections of a Hermitian line bundle L — M, where (M, g) is a Riemannian
manifold of 1-bounded geometry, we establish in Theorem a generalization of a result
of Iwatsuka [Iwa86, Theorem 5.2]: if such an operator has a lower semibounded self-adjoint

extension with discrete spectrum, then
lim IRV > + |V]) duy = o0
r—r00 B(ZB,?") ( ) 9

for 7 > 0 small enough, with B(z,r) the geodesic ball and RV the curvature of V. The
application to 0¥ is then the following:

Theorem 4.3.2. Let L — M be a Hermitian holomorphic line bundle over a Kdhler
manifold of 1-bounded geometry, and let p € {0,n}. Assume that

(i) D[’in has discrete spectrum, or
(ii) for some 0 < q <n—1, L is (¢ + 1)-Nakano lower semibounded and 0% has discrete

spectrum.
Then
lim |R¥|? duy = oo (4.3.3)

T—00 B(.Z’,’I‘)

for all r > 0 small enough.

Here, the above Theorem |3.2.23|is used to transfer the discreteness of spectrum of D]ﬁq

L . . .
to that of LI}, where the general result on Schrédinger operators jlpphes. Theorem m
generalizes a result that was known in the setting of the weighted J-Neumann problem on

C™, see [BH17].
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In chapter we study the (essential) spectrum of the Dolbeault Laplacian with 9-Neumann
boundary conditions for product manifolds. Let £ — M and F — N be Hermitian holomor-
phic vector bundles over Hermitian manifolds. Then we can form the bundle FEXF — M x N,
which has fiber E, ® F, over (x,y) € M x N. We obtain the following result, which extends
work by Chakrabarti [Chal0], who deduced the formula (5.3.3).

Theorem 5.3.1. Let E — M and F' — N be Hermitian holomorphic vector bundles over
Hermitian manifolds. Then, for 0 < p,q < dim¢(M) + dimc(N),

o@N = U (0@F ) +a@h ) (5.3.3)
p'+p’=p
q/+q//:q
and
UE(DI?;EF) = U (O’e(DpE/',q/) + U(D]};’,q")) U (U(D§7q/> + UE(D]};’,(]”))? (534)
p'+p"=p
q'+q"=q

where p' and ¢’ range over {0, ..., dimc(M)}, and p” and ¢" range over {0, ..., dimc(N)}.

Theorem also has consequences for the compactness of the -Neumann operator
sz(;gF , as well as the minimal solution operator SE;EF . It was known to Krantz [Kra88| that
the minimal solution operator fails to be compact on the level of (0, 1)-forms on the bidisc in C2,
which is the product of two one-dimensional discs. Moreover, Haslinger and Helffer in [HHO7]
show that this extends to the weighted O-Neumann problem on C” if one considers decoupled
weights, which are functions of the form ¢(z1,...,2,) = ¢1(21) + -+ - + @n(zn). The question
whether such a product structure is an obstruction for compactness on higher degree forms was
left mostly unanswered, but can now be settled as a consequence of Theorem The proof of
Theorem uses the fact that the Hilbert complex (La. (M x N, EXF),0E®F) is equivalent
to the direct sum of tensor products of Hilbert complexes of the form (LIQJ,ﬂ(M ,E),0F) and
(Lg,,,.(N , F),0F). Therefore, we will also discuss tensor products of general Hilbert complexes
in section .11

The main chapters of this thesis are supplemented by appendices [A] to [C] which provide
some of the necessary background on Hermitian and differential geometry as well as on spectral
theory. This thesis strives to be self-contained to a large degree, which is why (proofs of) a
lot of auxiliary results are also presented.

Acknowledgments. 1 would like to thank my advisor Friedrich Haslinger for giving me the
opportunity to work on this project and for supporting me in my research interests. I am also
grateful to the people of the Complex Analysis group at the University of Vienna for creating
an enjoyable environment to work in. Finally, I want to thank Melanie Graf for carefully
proofreading parts of this thesis. Financial support was provided by the Austrian Science
Fund (FWF) projects P23664 and P28154.






CHAPTER 1

Differential operators, Hilbert complexes, and elliptic theory

In this chapter, we review and develop the basic tools needed throughout this thesis.
Section [I.1] defines differential operators acting between the sections of smooth vector bundles
and discusses their basic properties. As an important class of examples, Dirac type operators
will receive special attention in section Section deals with the basic theory of Hilbert
complexes. These are (cochain) complexes of closed operators between Hilbert spaces, and they
naturally occur when studying closed extensions of complexes of differential operators arising
in geometry. The weak extension of the Dolbeault complex is the central example of a Hilbert
complex in this thesis. In section [1.3] we will take a closer look at extensions of differential
operators to operators on Hilbert spaces of square integrable sections. Sobolev spaces are
also introduced in this section, as is part of elliptic regularity theory. Finally, section [I.4]is
devoted to the question of whether compactly supported sections are dense in the domains of
closed extensions of differential operators. In addition, the essential self-adjointness of first
and second order operators is discussed.

1.1. Differential operators

Let M be a smooth manifold of dimension n with (possibly empty) boundary oM. All
manifolds are assumed to be second countable (thus paracompact, so partitions of unity exist)
and of positive dimension, and for simplicity we will always assume that M (and hence OM) is
oriented. We denote the interior of M by M°. For a (smooth) vector bundle E' — M, we denote
by I'(M, E) the space of smooth sections of F, by I'.(M, E) the smooth sections with compact
support in M, and by I'..(M, E) the smooth sections of F with compact support contained
in M°. Thus, we may identify I'c.(M, E) with I'.(M°, E). Similarly, C2°(M) and Cg (M)
denote the smooth functions (complex valued if this makes sense and is not stated otherwise)
on M with compact support and compact support contained in M°, respectively. For more
on the (mostly standard) notation used throughout this section, we refer to appendix

Suppose now that E, F' — M are two (smooth) vector bundles. A (linear) differential
operator is a R—linealﬂ map D: I'(M, E) — I'(M, F) which is local in the sense that supp(Ds) C
supp(s) for all sections s € I'(M, E). By Peetre’s theorem, see [Nar73, Theorem 3.3.8] for a
proof, this is equivalent to D being represented as a matrix of partial differential operators
on an open subset of R™ in each chart of M and local trivializations of £ and F. The order

of D is the maximal order of operators in the matrix representation in a local trivialization,

1Or C-linear if E and F are complex vector bundles.
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and this is independent of the specific trivialization. There is also a more algebraic approach
to differential operators, see for instance [Nicl4, section 10.1] or [Pal65, chapter IV], and we
will encounter some of this in the discussion of the principal symbol below. Clearly, every
differential operator is uniquely determined by its restriction D: I'.(M,E) — T'.(M, F) to
the sections with compact support. The composition of two differential operators is again a
differential operator. Important examples of differential operators are the exterior derivative

d: QM) — Q(M),
with Q(M) = T'(M, AT*M) the space of smooth differential forms, and connections
V:T(M,E) = QY(M, E),

see appendix Moreover, every vector bundle morphism E — F defines a differential
operator.

Assume furthermore that (M, g) is a Riemannian manifold and that E and F' carry
Hermitian metrics. If XY € T,M, we will often write (X,Y) instead of g(X,Y). The
Riemannian volume form induced by the metric and the orientation will be denoted by
voly € Q*(M). Then C.(M,R) — R, f > [,, fvoly, is a positive linear functional, so that by
the Riesz representation theorem, see [Fol99, Theorem 7.2], there is a unique positive Radon
measure fg of full support on M such that [, fvoly = [, fdug for all f € C.(M,C). It
follows that the boundary OM is a set of measure zero for yy. The induced volume form
on OM is denoted by volgys, and the associated measure on M by usrs. We also extend
the metric g to a Hermitian form on 7'M ®g C, denoted by (e, ¢}, and we also use the same
notation for the (pointwise) Hermitian metrics on E and F. Then

(s, ) r2or.m) = /M<s,t> i, (1.11)

or just (s,t) defines an inner product on I'..(M, E), and similarly for I'..(M, F'). The Hilbert
space L?(M, E) is defined as the completion of I'..(M, E) with respect to (e, ). As usual,
this may be identified with the space of equivalence classes of measurable maps s: M — F
such that s(z) € E, for almost every € M and satisfying [, [s(z)|? dug(z) < oo, and
where two such maps are equivalent if and only if they differ on a set of measure zero. For
every differential operator D: T'(M, E) — T'(M, F) there is a unique differential operator
DI:T(M,F) — T'(M, E), called the formal adjoimﬂ to D, such that

(Ds,t) = (s, D't) (1.1.2)

holds for all s € T'e.(M,FE) and t € I'.(M, F). Both D and DT are of the same order. A
differential operator D is called formally self-adjoint if E = F and D = D'.

2The formal adjoint may be constructed via (DT)|FC(M,E) = (DZ.)|r.(m,E), where D, is the Hilbert space
adjoint of the densely defined operator D.. := D|r_ (am,5).- We refer to section for more on this. Of course,
computations in coordinates using integration by parts also allows to prove existence of Df. We use the
notation D' instead of D* because the latter will be reserved for true adjoints (recall that only holds if
s has compact support in M°, and not on the whole domain of D).
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Example 1.1.1. If V is a metric compatible connection on a Hermitian vector bundle
E — M, then the formal adjoint of V7 for Z € I'(M, T M ®g C) satisfies

(V)T = -V, —div(2), (1.1.3)

with div(Z) the divergence of Z with respect to the Riemannian metric on M. Indeed, for
s,t € Te(M, E), we have (Vzs,t) + (s, V5t) = Z(s,t) = insz(d(s,t)) by (A.1.2), where insz
is the insertion operator, see (A.0.1)), and hence

(Vzs, t) + (s, Vzt) = /M insz(d(s,t)) voly = / d((s,t)) A insz(voly) =

M
_ / (s,1) 1 (ins 7 (vol,)) — / (s, 1) d(insz(vol)) (1.1.4)
oM M

by Stokes’ theorem, where ¢: OM <— M is the boundary inclusion. If s € I['o.(M, E), then
the boundary integral vanishes, while in the last term we have d(insz(voly)) = Lz(voly) =
div(Z) volg, see [Leel3, p. 423], where L is the Lie derivativeﬁ This shows (1.1.3). Together,

(T1.3) and (T14) imply, for s,t € [o(M, E),

(Vzs,t) = (s, (V) t) - /a s.{Z.0) dpons (1.15)

where we have used that *(insz(volg)) = —(Z,v) volaas, see |[Leel3, Lemma 16.30], with v
the inward unit normal vector field to OM, and ugys the measure induced on the boundary.
This result will be generalized to arbitrary first order differential operators in Theorem [1.1.§
below.

Example 1.1.2. Let E — M be a vector bundle over a Riemannian manifold, and suppose
V¥ is a connection on E. Then the Bochner Laplacian is the second order differential operator

n
APs = —try (VIMOEGEs) = = (VIMOETEs) (ej,¢5): T(M, E) — T(M, E), (1.1.6)
j=1
where {e;}""_; is a local orthonormal frame of 7'M, the connection VI™M®E ig induced by V¥
and the Levi-Civita connection V'™ on T M, and trg: T*M @ T*M — R is defined by taking
the trace of A € T*M ® T* M after identifying it with an element of End(TM) = T*M & T M
by metric duality, i.e., try(A) = tr(X — (Y — A(X,Y))"). It is easy to see that

where we have used in the last step that

div(X) = tr(VIMX) =Y (VIM X ey),
k=1

hence Z?:l div(ej)e; = ;'L,k:1<VZkM€j, er)ej = — Z}l,k:ﬂveTkMekv ej)e; = — D k=1 Vszeh

3The divergence of Z (with respect to g) may in fact be defined as the function div(Z) which satisfies
Lz (voly) = div(Z) voly. Alternatively, div(Z) = tr(VZ), with V the Levi-Civita connection.
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Now suppose E is Hermitian and that V¥ is a metric connection. Since V¥ = ¢/ ® Vg,
with {ej}?zl the dual frame to {e;}}_;, we have VET = (VeEj)T inse; = (—VeEj —div(e;)) inse;,
according to (|1.1.3)). Therefore,

AF — vEIgE
where VP71 is the formal adjoint of V. In particular, AP is formally self-adjoint and

nonnegative.

1.1.1. The principal symbol of a differential operator. Let £ and F' be real or
complex vector bundles over M. For k € Ny, we denote by PDO)(E, F) the set of R-
(or C-) linear maps T: I'(M,E) — I'(M, F) such that T'" € ker(ad(f1)---ad(fxy1)) for all
f; € C®(M),1<j<k+1, where

ad(f)T = [T, f] =Tf — fT: T(M,E) — T'(M, F)

is the commutator of 7" with the operator of multiplication by f. Then the elements of
PDO®(E, F) are differential operators (i.e., local), and PDO®)(E, F) is called the set of
differential operators of order at most k. It turns out that, for f € C*°(M), s € I'(M, E), and
given x € M, the map

f e 2 ((ad () D)s) )

depends only on df (x) € T M and s(z) € E,, provided D € PDOW®)(E, F). Therefore, it
makes sense to define the k-symbol of D at x, which is given by

Symby,(D)(z,+): T*M — Hom(Ey, Fy), Symby(D)(x, )e = %((ad(f)kD)s)(x), (1.1.7)

with f € C*°(M) and s € I'(M, E) satisfying df (x) = £ € T; M and s(x) = e € E;. More
abstractly, we can view this as a (smooth) section Symb, (D) of Hom (n*E,n*F) — T*M,
where w: T*M — M is the cotangent bundle of M. One can show that it is equal to

Symby (D)(w, )(¢) = - D((f — f(2))Fs) (@)

with f and s as above. If £ € T*M, then we write Symby,(D)(&) for Symby (D)(w(§),£).

A differential operator D has order k£ > 0 (in the sense used at the beginning of this
section) if and only if D € PDO®) (M, E) and Symb,, (D) does not vanish identically, in which
case Symby, (D) is called the principal symbol of D, and we shall denote it by Symb (D). The
differential operators I'(M, E) — I'(M, F) of order 0 are given by the vector bundle morphisms
A: F — F, and clearly

Symb(A)(z,§) = Symby(A)(x,&) = A: E; — F,.

If D =30 <k @a(2)0 is a (scalar) partial differential operator on R, then its k-symbol is
given by Symby (D) (2, &) = 32|z @a(2)§* for § € Ty M = R", and is equal to the principal
symbol provided not all of the a,, for || = k vanish identically. We refer to [Nic14} section 10.1]
or [Pal65), chapter IV] for more information on the (principal) symbol.
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Definition 1.1.3. A differential operator D: I'(M, E) — I'(M, F) is called elliptic if its
principal symbol
Symb(D)(x,§): By — Fy
is a linear isomorphism for every x € M and § € T;M \ {0}. In particular, E and F' must

have the same rank.

Remark 1.1.4. Some authors define the k-symbol with an additional factor i*. Of course,
this only immediately makes sense for complex vector bundles, but this modification gets rid
of the sign factor in equation (|1.1.10) below for the k-symbol of the formal adjoint.

Example 1.1.5. Let V be a connection on FE, see appendix For the first order
differential operator V: I'(M, E) — T'(M,T*M ® E), we obtain
Symb(V)(z,§)e = ([V, fls)(x) = (V(fs) — [Vs)(z) = (df ©@5)(x) = @e,
again with f € C*°(M) and s € I'(M, E) such that df (z) = £ and s(z) = e. For a vector field
X e I'(M,TM) we have
Symb(Vx)(z,§)e = ([Vx, fls)(x) = X (f)(z)e = df (X)(x)e = {(X (x))e.

Alternatively, we could have obtained this by applying (1.1.9)) to Vx = insx oV, with insx the
insertion operator. If dV is the exterior covariant derivative associated to V, see appendix
then dV = ¢ o VAT MOE ith VAT"MOF jpnduced from V and a torsion free connection on

TM, and we immediately get
Symb (dV)(z,&)u =ce(E @u) =& Au (1.1.8)

forall ¢ € Ty M and u € AT;M ® E,. Here, e: T"M Q AT*M @ E — AT*M ® E is the wedge
product map.

Example 1.1.6. Let D: I'(M, E) — I'(M, F) be a first order differential operator. The
definition of Symb(D) shows that the map T;M — Hom(E,, F,), £ — Symb(D)(z,§), is
linear, hence we obtain a vector bundle morphism Up: T*M ® E — F given by Up(é ®e) =
Symb(D)(€)e.

T"Mxy E 25 T"M®E

2
Symb (m)
F

Suppose that V is a connection on E. Then, for f € C*°(M) and s € I'(M, E),
(D—YpoV)(fs)=Symb(D)(df)s+ fDs —¥p(df ®s) — f¥p(Vs) = f(D—T¥poV)s.
This shows that D = ¥p o V 4 @ for a vector bundle morphism Q: £ — F.

If D e PDOW)(E, F) and D’ € PDO™) (F, F') is another differential operator, then D’ oD
belongs to PDO® ) (E, F') and we have the symbol calculus

Symby (D' 0 D)(x,€) = Symby (D')(,€) o Symby (D) (w,): B, — Fl. (1.1.9)
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In particular, if A: F — F’ is a bundle morphism, then Symby(A4)(x,&)f = A(f) € F.. and
therefore Symby (A o D)(z,£) = A o Symby(D)(z,&). Note that need not hold for the
principal symbols. Indeed, if dV: Q(M, E) — Q(M, E) is the exterior covariant derivative
associated to a connection V on E, then Symb(dY )(x, &) Symb(dY)(z, &)u =EANEAu =0 by
, while dVdVu = RY Aey u for u € Q(M, E), with RV the curvature of V, is a zeroth
order operator which of course need not be zero.

Suppose that M is Riemannian and that F and F' are equipped with Hermitian metrics.
If D e PDO®(E, F), then (1.1.7) immediately implies that

Symby,(DY)(z,€) = (=1)* Symby (D) (z, €)* (1.1.10)
is the adjoint of Symby(D)(x, &), meaning that
(Symby (D) (@, €)e, f) = (=1)"{e, Symby (DY) (z, ) )
holds for all e € E, and f € F.
Example 1.1.7. Let V be a connection on E. For {,n € T;M and e,e € E,, we have
(Symb(V)(z,8)e,n@e) = (@ e,n@e) = (€ (n,§)e),
by Example and hence the principal symbol of VT is given by
Symb(V)(z,£)(n®e) = —(n,&)e = —insg(n @ e), (1.1.11)

where & is the metric dual. In particular, the principal symbol of the second order operator
VioVis

Symb (V' o V)(x,€) = —|¢2idg, (1.1.12)
for all £ € T M. The same holds for the Bochner Laplacian from (1.1.6):

Symb(AF)(€)e = — try(Symb (V5 () Symb (VF) (€)e) = — trg(€ @ E @ e) = —[¢[%e.
(1.1.13)
Of course, if V is metric compatible, then AP = Vo V by Example

We finish this section with the general version of Green’s formula, which is also known as
the general integration by parts formula. It can be found, for example, in |Taylla, Chap. 2,
Proposition 9.1], but we give a quick coordinate free proof here, based on ([1.1.5)).

Theorem 1.1.8. Let M be an oriented Riemannian manifold with boundary OM, and
let E,F — M be Hermitian vector bundles. Let D: T'(M,E) — T'(M,F) be a first order
differential operator. Then

(Ds,t) = (s, D't) —/ (Symb (D) (1")s, ) dpans (1.1.14)
oM

forall s e To(M, E) and t € To(M, F), where v is the inward unit normal vector field to OM
and V° is its metric dual.
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Proof. Let V be a metric connection on E. By Example we have D =Up oV +Q
for some vector bundle morphism Q: E — F. If U C M is open and (ex)}_, is an orthonormal
frame of T'M |y, with dual frame (&;)7_; of T* M|y, then on U we have D = Symb(D) (&) o
Ve, + @, with implied summation over k, and using we compute

<D57 t> - <87 DTt> - _<v6k37 Symb(DT)(fk)w + <S7 (Vek)T Symb(DT)(fk)t>
By , integrating this equation over M gives
(Ds,t) — (5, DTt) = —((Ve,s, Symb (D) (&:)t) — (s, (Ve, )T Symb (D) (&x)t)) =
—— [ (Syub(D)(€sit){er. v dmons == [ (Symib(D)e)s. 1) duonr.
oM oM

for s e To.(M,E) and t € T'.(M, F') with support in U. The general case follows by a partition

of unity argument.

1.1.2. Dirac type operators. Let E be a vector bundle over a Riemannian manifold

M. A second order differential operator D: I'(M, E) — T'(M, E) is said to be of Laplace type

(or a generalized Laplacian) if Symb (D) (&) = —|¢|?idg for all ¢ € T*M. From , we

know that the Bochner Laplacian from Example[I.1.2]is an operator of Laplace type. It turns

out that, conversely, any second order differential operator D: I'(M, E) — I'(M, E) of Laplace
type can be written in the form

D=AF 1V, (1.1.15)

where V: E — E is a vector bundle morphism and A¥ is the Bochner Laplacian associated to
a connection V¥ on E. For a proof, we refer to |[Gil08, Lemma 2.1] or [BGV04, Proposition 2.5],
or [BB13| Proposition 2.1] in the context of operators of Dirac type (which will be defined
momentarily). If E is Hermitian and D is formally self-adjoint, then V¥ may be chosen to
be metric compatible, and this requirement determines the pair (V¥, V) uniquely. The proof
of this last claim is basically contained in the proof of [BB13, Proposition 2.1]. According to
Example we then have D = VETVF 4V and V is necessarily also self-adjoint. Because
of , Laplace type operators are also sometimes called generalized Schridinger operators
or Schrédinger type operators. Formulas like are sometimes called Weitzenbock (type)
formulas or Lichnerowicz formulas.

Definition 1.1.9. A differential operator D: I'(M, E) — I'(M, E) is said to be of Dirac
type if D? is an operator of Laplace type.

In particular, every Dirac type operator is of first order and elliptic. Dirac type operators
are closely related to Clifford analysis. A Clifford module structure on a vector bundle E over
a Riemannian manifold M is a vector bundle morphism c¢: T*"M ® E — E with

c(§)e(n) + cn)e(§) = —2(5,n) idp (1.1.16)

for all {,n € T M and all € M, where ¢(§) € End(E) is defined by ¢(§) = (e — c¢({ @ €)).
The next Proposition shows that Definition agrees with the definition in [LM89, I1.§5]:
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Proposition 1.1.10. Let E be a vector bundle over a Riemannian manifold M. Then
the following are equivalent:

(i) E admits the structure of a bundle of Clifford modules, and

(ii) there exists an operator D: T'(M,E) — I'(M, E) of Dirac type.
In fact, the principal symbol of a Dirac type operator is a Clifford module structure on E and,
conversely, coV is of Dirac type for any connection V on E.

Proof. We follow the proof of [Nicl14, Proposition 11.1.7]. Suppose that ¢: T*M @ E — E
is a Clifford module structure, and let V: I'(M, E) — I'(M,T*M ® E) be a connection on E.

Put D :=coV. Then Symb(D)(§) = c({ ® ») by and Example and hence
Symb, (D%)(z, )e = e(§, e(&, €)) = e(§)e(€)e = — ¢

by for all ¢ € T*M and e € E, i.e., D? is a Laplace type operator.

Conversely, assume that D is a Dirac type operator on E. Since D is of first order,
(&, e) — Symb(D)(§)e is R-bilinear, hence there is a vector bundle morphism ¢: T*M®FE — E,
given by ¢(§ ® e) = Symb(D)({)e. As before, we write ¢(§) = ¢({ ® ») = Symb(D)(§). By
assumption, and using , we have ¢(£)? = Symb(D?)(¢) = —|¢[?idg. In particular,

c(€)e(n) +e(n)e() = (c(€) +e(m)? —e(€)? —e(n)® = (—[E+n* + €+ [n*) idp = —2(&,n) idp
for all £, € T*M, so ¢ is a Clifford module structure on FE.

While every Clifford module structure on F gives rise to Dirac type operators, there is no
canonical choice of such an operator. We next introduce Dirac bundles in the sense of Lawson
and Michelsohn, see |[LM&9|, which do come with a preferred Dirac type operator:

Definition 1.1.11. A Dirac bundle (E, M, c, VF) is a Hermitian vector bundle E over a
Riemannian manifold M together with a Clifford module structure ¢: T*"M ® F — F and a
metric connection V¥ on E such that

(i) for all £ € T*M and e;, e3 € E over the same basepoint,

(C(f ® 61)7 62) = _<€17 c(f ® 62)>’
i.e., the endomorphisms ¢(§) = ¢(§ ® ¢) of E are skew-Hermitian, and
(ii) for all X € T(M,TM), a € QY (M), and s € T'(M, E),
VEic(a®s)) =c(VEMa®s) + cla® VEs),
where V7™M is the (dual of the) Levi-Civita connection. This is equivalent to Ve = 0,
where V is the induced connection on Hom(7T*M ® E, E).
The operator D := ¢ o V¥ is called the Dirac operator associated to the Dirac bundle

(E,M,c,VFE), cf, Proposition [1.1.10

Remark 1.1.12. It can be shown that every bundle of Clifford modules can be made into a
Dirac bundle, see |[Nic14, Proposition 11.1.65], i.e., one can always find compatible Hermitian
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metrics and connections. For the proof, one can use the representation theory of spin groups.
Moreover, the Dirac operator associated to a Dirac bundle is formally self-adjoint, see [Nic14),
Proposition 11.1.66].

If V is a finite dimensional real vector space and ¢: V x V' — R is a symmetric bilinear
form, then the Clifford algebra over (V,q), denoted by Cliff(V, q), is the associative R algebra
(with unit) generated by V and subject to the relations

vw + wv = —2q(v, w)

for v,w € V. It may be realized as the quotient of the tensor algebra of V' by the ideal generated
by {v @ w+w ® v+ 2¢(v,w) : v,w € V}, and is characterized by the following universal
property: for every associative R-algebra A with unit 14 and every linear map ¢: V — A
such that p(v)p(w) + p(w)e(v) = —2¢(v,w) 14 for all v,w € V, there exists a unique algebra
homomorphism @: Cliff(V,q) — A satisfying ¢ o . = ¢, where ¢: V < Cliff(V, q) is the
inclusion.

If E is any other real vector space, then any linear map c¢: V' — End(F) with c¢(v)c(w) +
c(w)e(v) = —2q(v,w)idg for allv,w € V extends in a unique way to an algebra homomorphism
¢: Cliff(V,q) — End(FE) by the above universal property, i.e., E is made into a module over
the algebra Cliff(V, q). We will continue to denote ¢ simply by c.

Example 1.1.13. Let (V,(e,¢)) be a finite dimensional Euclidean vector space, and
consider the exterior algebra AV. For v € V, define ¢(v) == e(v) — ins,s € End(AV), where
e(v)(a) == v A a, and ins,s is the insertion operator (using the identification V' = V**).
Then c(v)c(w) + c(w)c(v) = —2(e(v) o ins,s +ins,; oe(w)) = —2(v,w) idy for v,w € V, so
we obtain an algebra homomorphism c: Cliff(V, (e, ¢)) — End(AV). Define the symbol map
o: Cliff(V,(e,#)) = AV by o(z) = ¢(x)1, where 1 is the unit in AV. Then o is bijective, see
[BGV04, Proposition 3.5, with its inverse AV — Cliff(V, (e, )) being called the quantization
map. If {e; };L:l is an orthonormal basis of V', then the quantization map is given by sending
ej, N\ Nej,, tocj, -+ cj,., where ¢; = 0~ !(e;) is the element of Cliff(V, (¢, ¢, )) corresponding
to e;.

Using the tools from the theory of principal fiber bundles, one can transfer these objects
and results to the setting of vector bundles over Riemannian manifolds. In particular, there
is a bundle Cliff(T*M) — M of algebras, with fiber over = € M precisely the Clifford algebra
over (TxM, (»,*),), and any Clifford module structure on a vector bundle E as above extends
uniquely to a vector bundle morphism c¢: Cliff(7*M) — End(E). Moreover, the Levi-Civita
connection on T*M extends to a connection on Cliff(T*M) which is compatible with the
multiplication in CLff(T*M).

The quantization map from Example allows us to define c¢(a) € I'(M,End(F))
for every differential form o € Q(M). If a ® A € Q(M,End(F)) with o € Q(M) and
A eT'(M,End(E)), then we extend this to c(a ® A) = ¢(a) o A € I'(M,End(F)), and hence
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we obtain a C°°(M)-linear map c: Q(M,End(E)) — I'(M,End(E)). If aq,...,a; are one-
forms and A € T'(M, End(E)), then c((a1 A+ --ANag) @A) = c¢(ar)o---oc(ay)oA. In particular,
if V is a connection on E with curvature RV € Q?(M,End(FE)), then it makes sense to form
c(RY) € I'(M,End(E)). If {e;}7-; is an orthonormal basis of T;; M, with dual basis {ej}’]?zl,
then

n

¢(RY)|, = Z c(e?) oc(ef) o RV (ej,er) = Z c(e?) o c(e?) o RV (e, ex), (1.1.17)
i<k Jk=1
where the second equality is due to (1.1.16)) and RY being alternating.
From (1.1.15)), we know that if D is a Dirac type operator on E, then D? may be written
as AF 4V for some connection V¥ on E and some vector bundle morphism V: E — E. The

N | =

following Theorem computes this representation in case D comes from a Dirac bundle:

Theorem 1.1.14 (General Bochner-Weitzenbdck formula). Let (E, M, ¢, VF) be a Dirac

bundle with associated Dirac operator D¥. Then
(DF)? = AP + ¢(RF),
where AP = VEIVE is the Bochner Laplacian, and R is the curvature of VF.
Proof. See [LM89, Theorem I1.8.2] or |[Nic14, Theorem 11.1.67].

Example 1.1.15. If M is a Riemannian manifold, then (M,AT*M, ¢, V), with V the
Levi-Civita connection and ¢(v) := £(v) — ins,s, cf., Example is a Dirac bundle, see
[Nic14, Proposition 11.2.1]. The associated Dirac operator is d + d', which squares to the
Hodge Laplacian d'd+ dd'. The endomorphism from the Bochner-Weitzenbéck formula splits
as c(RAT™M) = Di>0 K, with Ky, € End(A*T*M). One can show that Ko = 0 and

Ki(a) = RiCM(aﬁ, )

for a € A'T*M, where Ricp(X,Y) = Z?i:rri(M) (RM(X,ej)ej,Y) is the Ricci tensor of M.

We refer to [Nicl4, section 11.2.1] for a proof.

We will encounter the Bochner—Weitzenbdck formula for a Hermitian holomorphic vector
bundle over a Kéhler manifold in section [3.1.1} The corresponding Dirac operator then squares

to twice the Dolbeault Laplacian.

1.2. Hilbert complexes

In this section we will review some of the basics of the theory of Hilbert complexes.
For a more in-depth introduction, with focus on different aspects of the theory, see [BL92].
In addition, we will supplement this by adding concepts and results which are standard in
the L? theory of the O-complex from several complex variables. For a quick primer on the
basic concepts of unbounded operator theory, see the beginning of appendix [C] By a Hilbert
(cochain) complex (H,D,d) (or simply (H,d)) we mean a graded Hilbert space H = @,z H;
with only finitely many nonzero (mutually orthogonal) terms, a dense graded linear subspace
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D = P,z Di, and a closed linear operator d: D — D on H of degree 1 such that dod = 0.
We therefore obtain the (cochain) complex
di—2

di— 1 di

dit1
Di1 Di — Diyg — -+~

with closed and densely defined differentials d; = d|p,: D; — D;y1. Hilbert complexes were
most prominently studied in [BL92], but the concept also appears in some earlier works |[GV82;
Vas80]. They are useful in order to formalize the basic operator theoretic properties common
to boundary value problems for elliptic complexes.

An important operator associated to (H,d) is its Laplacian, defined by A = @,c, A; with

A =djd; +di1di_; on dom(A;):={xeD;ND;:de e Dj, and d'z € D, 1},

where D} C H; is the domain of d;_;, the adjoint of d;—;. This gives the chain complex

*
di72

* d;Ll .D* d;'k * d:+1
i—1 [ i+1 e

and we write D* = @,., D; C H and d* = @, d;. Each A; is a nonnegative self-adjoint
operator on H;, and it is useful to study the Laplacian in order to gain insight into the
solutions of the inhomogeneous d-equation, as we will see below. The fact that the Laplacian
is self-adjoint is usually attributed to Gaffney |Gafbb], where the corresponding result for the
de Rham complex is found.

We next describe the quadratic form associated to A, and refer to appendix for some
background on quadratic forms associated to self-adjoint operators. As a general notation in
this thesis, we write S C T for two (partially defined) operators S and T' from one Hilbert
space H; to another Hilbert space Hj if dom(S) C dom(7T") and Sz = Tz for all x € dom(S).
In other words, S C T if and only if Graph(S) C Graph(7T'), where Graph(S) = {(x, Sx) :
x € dom(S)} C Hy x Hy is the graph of S.

Lemma 1.2.1. Let (H,d) be a Hilbert complex with Laplacian A. Then d + d* (with
domain D N D*) is self-adjoint, A = (d + d*)?, and the quadratic form Qa associated to A
satisfies dom(Qa) = DN D* and

for x,y € dom(Qa).

Proof. Since dom(A) € D N D*, the operator d 4+ d* is densely defined and therefore has

an adjoint, which satisfies
d+d"=d"+d”" C(d+d")".

In other words, d 4+ d* is symmetric. The reverse inclusion is shown in detail in [GMM11,
Proposition 2.3]. We have (d + d*)? D dd + dd* + d*d + d*d* = A since dd = d*d* = 0, and
hence A = (d + d*)? because self-adjoint operators do not have proper self-adjoint extensions.
Formula follows from Example applied to the operator T' = d + d*, and the fact
that (dz,d*y) = 0 for all z,y € dom(Qa).
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If (H,D,d) and (H',D’,d") are Hilbert complexes, then a graded linear map g: H — H' (of
degree 0) is called a morphism of Hilbert complezes if g is bounded (i.e., g; == g|u,: H; — H]
is bounded for every i € Z) and god C d’ o g. In particular, g(D) C D’'. An isomorphism
of Hilbert complexes is a bijective morphism of Hilbert complexes g: H — H'’ such that
god = d og (in the sense of unbounded operators; in particular, g(D) = D). A unitary
equivalence between Hilbert complexes is a unitary isomorphism of Hilbert complexes. Note

L= g='od™ and hence

that if g: (H,d) — (H',d’) is such a unitary equivalence, then d* o g~
go A = A’og, so that the Laplacians are unitarily equivalent.

If {(H7,d’): j € F} is a finite collection of Hilbert complexes, then their direct sum is
the Hilbert ‘complex @jeF(Hja &) = (®j§F Hj, Djcr d’). Evidently, its Laplacian is given
by @,cr A7, with A’ the Laplacian of (H’,d’).

The cohomology of a Hilbert cochain complex (H,d) is the graded vector space
H(H,d) = @U—fi(H, d), where H'(H,d) :=ker(d;) /img(d;_1).
1€EZ
The reduced cohomology of (H,d) is
H(H,d) = @ﬁi(H, d), where F('(H,d) = ker(d;) /img(d;_1).
1€EZ
In general, the differentials of a Hilbert complex do not have closed range, so that typically

only H(H,d) will be a Hilbert space in a natural way. One of the main tools available is the

Hodge decomposition, see [BL92, Lemma 2.1]:

Proposition 1.2.2 (Weak Hodge decomposition). Fvery Hilbert complex (H,d) induces

an orthogonal decomposition

H, = ker(Ai) ® img(di_l) ©® 1mg(dj) (Z S Z)
Moreover, the space of harmonic elements,

ker(A) = €P (ker(d;) Nker(d;_))),
€L
is canonically isomorphic to 3 (H, d), in the sense that every equivalence class in H(H,d) has

a unique harmonic representative.

Let P%: H — H denote the orthogonal projection of H onto ker(d). The minimal (or

canonical) solution operator to (H,d) is the closed operator
S =S(H,d): img(d) C H — ker(d)> C H, S(dz) = (idy —P%z. (1.2.2)

This is well-defined since ker(d) = ker(idy —P9). We write S; = S;(H,d): img(d;—1) C
H; — H;_; for its restriction to H;. By definition, S gives the norm-minimal solution to the

inhomogeneous d-equation,

d(Sy) =y and Sy L ker(d)
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for y € img(d). It is a map of degree —1 (if (H, d) is a cochain complex), and its closedness is

an easy consequence of closedness of d. Actually,
Graph(S) = img((d, (idg —P%)|p): D — H @ H)

and the kernel of the map (d, (idg —P%)|p) is ker(d). For z € D Nker(d)*, we have
ldz|® + || (idpr —P)e||* = [|dz ]| + l2]|* > |||,

hence (d, (idg —P%)|p) has closed range and S is a closed operator.

The remaining results of this section are well-known for the (weak extension of the)
Dolbeault complex on Hermitian manifolds. As a (non-exhaustive) list of references, we cite
[CS01; [FK72; Has14; Hor65; [IKN65; Str10]. For the convenience of the reader, we provide
here the proofs of the corresponding results for Hilbert complexes. Note that while most of
those references do not consider the case where A; has a nontrivial kernel (since the complex
Laplacian on bounded pseudoconvex domains in C" is injective), this is easily incorporated

into the arguments, see also [@OR14; Rupll).

Lemma 1.2.3. Let (H,d) be a Hilbert complex. Then S;: img(d;—1) C H; — H;—1 is

bounded if and only if d;—1 has closed range. In this case we extend S; to H; by zero on

img(difl)l .

Proof. If d;—1 has closed range, then S; is a closed and everywhere defined operator
on the Hilbert space img(d;—1), hence bounded by the closed graph theorem. Conversely,
if S; is bounded there exists C' > 0 such that ||S(dx)| < C||dx| for all x € D;—y. If
x € D;_1 Nker(d;_1)*, then S(dz) = = and hence ||z|| = ||S(dz)|| < C||dz||, which shows that
d;—1 has closed range.

The next result shows that the minimal solution operator is closely related to the Laplacian:

Proposition 1.2.4. Let (H,d) be a Hilbert complex and define
1.
N = N(Ha d) = (A|d0m(A)ﬁker(A)J—) : Hng(A) — H
as the inverse of the Laplacian. We write N; = N;(H,d): img(A;) — H; for its restriction to
H;. Then:
(i) AN = Nd on D Nimg(A) and d*N = Nd* on D* Nimg(A).
(i) On img(d) Nimg(A) we have
S =d*N. (1.2.3)
(iii) On D Nd~!(img(A)) we have
I — P4 =d*Nd. (1.2.4)
Proof. If x € D; Nimg(A;), then z = A;y for some y € dom(A;) Nker(A;)+. It follows
that d;y € dom(A;11) and

Nd;x = NdiAiy = Ndzd:dly = N( ;~k+1di+1 + ddedzy =djy =d;Nx.
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This shows the first equation in|(i)} the other one follows similarly. If x € img(d;—1) Nimg(A;),
then

z=A;N;x = d:dZNZZE + difldf_lNiCC.
Because = € ker(d;) and d;od;—1 = 0, this implies d}d; N;x € ker(d;) Nimg(d}) = 0. Therefore,
x = d;—1d;_; N;x and
Sz = (I — PYYd}_|N;xz = d; Nz

since img(d}_,) = img(I — P%) N H;_;. This shows 1' and 1' is immediate from the
definition of S.

Lemma 1.2.5. Let (H,d) be a Hilbert complex. Then the following are equivalent:
(i) Ni: img(A;) — H; is bounded.
(ii) A; has closed range.

(iii) d;—1 and d; both have closed range.
(iv) There is C > 0 such that, for all x € D; N D} Nker(A;)L,

lzl* < C(ldil|® + |1d;_yz[|?).
(v) Si: img(d;—1) — H;—1 and S;y1: img(d;) — H; are both bounded.
(vi) The space D; N DF Nker(A;)* is a Hilbert space with inner product
(@,y) = (diw, diy) + (di_y 2, d7_1y) (1.2.5)
and the inclusion j;: D; N DI N ker(A;)* — H; is continuous.
In this case, we extend N; by zero on img(Ai)J— = ker(4;).

Proof. Because N; is closed, Conversely, suppose N; is bounded and take u; — u
with u; € img(A;). Then Nyu; — v for some v € H and we have A;N;ju; = uj. As A; is
closed, v € dom(4A;) and A;v = u, hence u € img(A;). Thus, |(1)}=1(i1)]

We now show |(ii)={(iii), so assume that A; has closed range. For z € D; Nker(d;)* C
ker(A;)* = img(A;), we have

Hl’”2 = <AZN23L‘,$) = <d;kdleac,:U> + <di_1d;-k_1Ni$,{L‘> = <diNi.%', dz$> S CH.CL‘HHdZ{B”
because d;_1d}_;N;z € ker(d;) L x, and the operators d;N; and dj_;N; are bounded on
img(A;) since

i Niy||I” + | di— 1 Niy || = (AiNiy, Niy) = (y, Niy)  (y € img(A;))
and N; is bounded by . Therefore, d; has closed range. Interchanging the roles of d; and
d;_;, one shows that the latter operator also has closed range.
Now assume that d;—; and d; have closed range. It follows that d} also has closed range.

If € D; N Df Nker(A)T = D; N Df N (img(di—1) @ img(d})), write = x1 + 72 with
z1 € Dy NDf Nimg(d;—1) and zo € D; N DY Nimg(d}). There exist Cy, C2 > 0 such that

lz1|* < Culldi_ya1|® = Culld;_yz]|* and  [laal* < Colldiza|® = Calldix®
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by our assumptions on d;_; and d;, and hence

2] = a1 |® + lla=l® < C(lldi_y2l® + | di]|?)

with C' := max{C4,Co}. This shows [(iiD){({iv)} and [(iv)[(ii)] is immediate as dom(A;) C
D; N D and ||d;x||? + ||df_qz||? = (Asz,z) < ||Asz||||=|| for € dom(A;). The equivalence
follows from Lemma The equivalence is straightforward. For
completeness of D; N Df N ker(A;)+ with respect to one uses closedness of d; and
dr_q.

Proposition 1.2.6. Let (H,d) be a Hilbert complex, and assume that any of the equivalent
statements of Lemma holds. We extend N; by zero on img(A;)L. Then
(i) AN = Nd on D; and d*N = Nd* on D},
(i) S; = d*N; on Hj;,
(7ii) N; = S} S; + S;41S;, 1, where S; and S;y1 are the extensions by zero, see Lemma m
(iv) max{[|S;||?, [|Si+1]|?} is bounded from above by (inf(a(A;) \ {0}))~}, the reciprocal of
the spectral gap of A;,
(v) N; = jioj¥f, where j;: D;ND! Nker(A;)* — H; is the inclusion from Lemmam and
the adjoint is with respect to the inner product ,
(vi) inf o(A;) > 0 if and only if ker(A;) =0, and
(vit) inf oo (A;) > 0 if and only if dim(ker(4;)) < oo.

Proof. On D; Nimg(A;)~ C ker(d;) we have dN = 0 and Nd =0, so dN = Nd holds on
D;, and similarly one shows d*N = Nd* on D;.

By the Hodge decomposition, img(A;) = img(d;—1) ®img(d;). Thus, img(d;—1) C img(4;)
and hence S = d*N on img(d;—1). Since S|ipg(g, )+ = 0 by definition, it remains to show
that d*N also vanishes on img(d;_1)*. As img(d;—1)*" = ker(A;) & img(d}) and Nlyer(a,) = 0,
we are left with showing that d*N\img(d;) = 0. Now if y € D} | = dom(d}), then d*Ndjy =
d*d; Ny =0 by This shows that S = d*N on H;.

We have d;_; N;x € D;_1 and d;N;x € D}, for x € H;, and therefore

= (Nid;—1)(d;_1Ni)x + (N;d;)(d; N;)x
= (di—1N;)(d;_1 Ni)x + (di N;)(d; N;)x

by Applying Sz* = di—lNi—l and 52:'_1 = diNi shows
Concerning we have, by and with Ao :== inf(c(A;) \ {0}),

I1Sial® + 1185121 = (878 + S Sfia)w, x) = (Niw,z) < [ Nillll]|* = A5 ]

for all x € H;. Therefore,

S;zx||? _
||S'L||2: H 1 H § 01

ser {0} ]2
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and

IS5l _ -
ISl = 185 P = sup 1520

We now show Let K; :=D; N D; N ker(A;)*. By Lemma K; is a Hilbert space
with inner product Q(z,y) == (diz, d;y) + (d}_z,d_1y). Let x € H;. Then jz € K;, and for
y =1y1 +y2 € dom(A;) with y; € ker(A;) and y2 L ker(4;) we have

(Ay, jim) = (diy2, diji ®) + (d;_1y2, di_1jix) = Q(y2, j; ¥) = (jiye, T).
Thus, y — (Ay, jfz) is continuous on dom(A;), so jfx € dom(A}) = dom(A;) and hence
ji o jF maps H; to dom(A;) N ker(A;)*+ C H;.

Because ker(A;) C img(j;)* = ker(jf), we have (j; 0 j)ker(a;) = 0 = Nilker(a,)- Let

y =11 +y2 € D;ND} with y; € ker(A;) and y2 L ker(A;). If z € img(A;), then

(Ai(ji o ji )z, y) = QUi m,y2) = (x, jiyz) = (@, y2) = (z,Y),
hence A;(ji © j7)limg(a,) = idimg(a,) since D; N D is dense in H; (it contains the domain of
the self-adjoint operator A;). Now let = € dom(A;) Nker(A;)*. Then

((Ji 0 Ji)Aim,y) = (Aiw, (Ji 0 §7)y2) = Q(x, §iy2) = (z,y2) = (2, ¥)

and hence (,]z o j7§k>Ai‘dom(Ai)ﬂker(Ai)L = iddom(Ai)ﬁker(Ai)i' This shows that

. 1.
(]i ©Ji )|1mg( (A ’dom i)Nker(A; )J-) : lmg(Ai) — H;
and therefore N; = j; o j.
The orthogonal decomposition H; = ker(4;) @ img(A;) induces a unitary equivalence of
A,; with the self-adjoint operator

0@ Ailimg(a,)ndom(a,) : ker(Ai) ® (img(Aq) N dom(A;)) = ker(A;) © img(Aq),

hence o(A) \ {0} = o(Admg(araom(a,) and ae< D\ 10} = 0Dy om(an) since
0 & 0(Ailimg(a,)) by the boundedness of Nilimg(a,)- Moreover, 0 € o(A;) (resp. 0 € 0c(A;)) if
and only if ker( i) # 0 (resp. dim(ker(A;)) = ) This immediately gives and

Remark 1.2.7. Concerning items and of Proposition one even has that
inf o(A;) > 0 (resp. inf o.(A;) > 0) if and only if the conditions of Lemma are satisfied
and ker(A;) = 0 (resp. dim(ker(4;)) < co). This is Proposition 2.2 (resp. Proposition 2.3) of
[Fal0)].

We are interested in determining whether N and S are compact operators. Recall that
the essential spectrum o.(T') of a normal operator T' on a Hilbert space is the set of complex
numbers which are accumulation points of its spectrum or eigenvalues of infinite multiplicity.
We refer to appendix for the precise definition and more information on o.(T).

Proposition 1.2.8. Let (H,d) be a Hilbert complex and assume that i € Z is such that
any of the equivalent statements of Lemma [1.2.5 holds. Then the following are equivalent:

(i) N;: H; — H; is compact.
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(i) S;: H; — H;—1 and Siy1: Hi+1 — H; are both compact.
(i) ;2 Di N DF Nker(A;)t — H; from Lemma is compact.
(iv) oe(A;) C {0}.

Proof. 1f S; and S;4+1 are compact (in particular: bounded), then of Proposition m
shows that /V; is also compact. Conversely, S; and S;;1 are compact as soon as IV; is since both
S7S; and S;115],; are nonnegative operators. Indeed, if A and B are bounded nonnegative

operators on a Hilbert space (K, (¢, ¢)) with A < B and B compact, then the compact operator
B/2 gatisfies

1A 22|® = (Az, ) < (Bz,z) = | B x|

for every z € K. Since BY/ Ql’j — 0 in K for every weak null sequence x;, we see that Al/?
is compact, and hence A is also compact. Now apply this to S;'S; < N; and ;1157 ; < N;.
Since N; = j; o j by Proposition it is clear that N; is compact if and only if j; is.

We know that 0c(A;) \ {0} = 0e(Ailimg(a;)ndom(a,)), see the proof of item of Propo-
sition m But N; is compact if and only if Nilimg(a,) 18, and this is the case if and only if

Ailimg(A;)ndom(a;) has compact resolvent, i.e., 0e(Ailimg(A,)ndom(a,)) = 0-

1.3. Strong and weak extensions of differential operators

Let M be a Riemannian manifold, and let E, F' — M be Hermitian vector bundles over M.
This data allows us to define the Hilbert spaces L?(M, E) and L?(M, F) of square-integrable
sections of E and F, respectively, with inner product . ID:T(M,E) - T(M,F)is a
(linear) differential operator, then it makes sense to ask whether the linear map

D = Dlr,.arp)y: Tee(M,E) — L*(M, F)

extends to a closed operator from L?(M, E) to L?(M, F), and if so, in how many different
ways this is possible.

Let D7. denote the Hilbert space adjoint of the densely defined operator D... The definition
of D! implies that (D').. C D¥ (recall that this means Graph((D')..) C Graph(D%,)),
and the general theory of unbounded operator then states that D.. is closable since its
adjoint is densely defined. To save on notational clutter, we shall say that a linear operator
A: dom(A) C L3(M,E) — L?>(M, F) is an extension of D (or “A extends D) if D.. C A,
and a closed extension of D if, in addition, A is closed.

Definition 1.3.1. The strong extension (or minimal closed extension) of D, denoted by
Dy, is the closure of De.: I'ee(M, E) C L?>(M,E) — L*(M, F), and the weak extension (or

mazimal closed extension) of D is D,, = (DT)%..

Since De. = (D) C (D)%, the operator D,, really is an extension of D. Both the

strong and weak extensions of D are closed, and hence Dg C D,,. It holds that D,, = ((D%)s)*,
since a densely defined operator and its closure have the same adjoint. This immediately
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implies
(DY), = (Dy)* and (D'), = (Dy)". (13.1)

By the definition of the formal adjoint of DT, we have ((DT)..t,s) = (t, Ds)) for t € T'oo(M, F)
and s € [o(M, E), thus [o(M, E) C dom((D%)},) = dom(D,,) and Dylr,(ar,5) = Dlr.(ar,5)-

In particular, every extension A of D with A C D,, satisfies

Aldom(a)nro(m,5) = Dldom(A)r.(1,E)- (1.3.2)

Remark 1.3.2. If : I'.(M, E) — C is a linear functional, then we may define the functional
Dy: T.(M,F) — C by (Dg)(s) := ¢(DTs), and this definition yields a continuous operator
D: D' (M°, E) — D'(M°, F) between the spaces of distributional sections of E|pro and F|pyo,
which are defined by D'(M°, E) := (['.(M°, E))’, the dual space, and similarly for D’(M°, F).
Here, I'.(M°, E) is equipped with the topology induced by the seminorms

S = I%a]i( Hv]SHLOO(K,(T*M)@V@E)a

where k£ € N and K runs through the compact subsets of M°, and where V is any given
connection on E and V7 denotes the ;™ covariant derivative, see section m Every t €
Li.(M, E) defines a distribution via s — [, (s, t) dug = (s, ), and this gives an embedding of
Ll (M, E) into D'(M°, E). In particular, we may view LP(M, E) as a subspace of D'(M°, E)
for 1 < p < co. For more details on distributions on manifolds, we refer to [Gro+01, chapter 3].
The definitions may also be generalized to the case where neither M nor E comes equipped

with metrics.

As its name suggests, the weak extension admits a description in terms of the distributional
action of D:

Proposition 1.3.3. The weak extension of D satisfies
dom(D,,) = {s € L*(M, E) : Ds € L*(M, F) in the sense of distributions}
and Dys = Ds for s € dom(D,,), where Ds is the distributional derivative.

Proof. By definition, the domain of D,, = (DT)#. consists of all s € L?(M, E) such that
there exists t € L2(M, F) with (s, DTu) = (t,u) for all u € dom((D")..) = T'ee(M, F). This
is equivalent to having Ds € L?(M, F) in the sense of distributions, and Ds =t = D,,s in
this case.

It is clear that D; is the smallest extension of D, to a closed operator from L?(M, E) to
L?*(M, F). The weak extension D,, is maximal in the sense that it is the largest extension of
D whose adjoint extends DY, as the next Proposition shows.

Proposition 1.3.4. Let D: I'(M, E) — I'(M, F) be a differential operator. An extension
A of D satisfies A C Dy, if and only if Tee(M, F) C dom(A*). In this case, A* is an extension
of Dt.
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Proof. If A is an extension of D with A C D,,, then (DT).. C (D), = (D,)* C A*, and
hence I'co(M, F) C dom(A*). Conversely, suppose that dom(A*) contains I'c.(M, F'). Let
s € dom(A) C L?(M, E) and compute the action of D on the distribution s: if ¢ € Te.(M, F),
then t € dom(A*) and hence

(Ds)(t) = {5, DTt) = (s, (DN)ut) = (s, A*t) = (As, 1),

where we have used (1.3.1) to see that A* C D¥, = (D,)* = (DT),. This means that the
distribution Ds is identified with the section As € L?*(M, F), therefore s € dom(D,,) and
(Dw)ldom(a) = A

Since A* is a restriction of (D), and T'..(M, F) C dom(A*), we have (D). € A* C (D1),,

so A* is an extension of the formal adjoint of D.

Remark 1.3.5. If A is a symmetric extension of a (necessarily formally self-adjoint) dif-
ferential operator D: I'(M, E) — I'(M, E), then D, C A C A* so I'ce(M, E) C dom(A) C
dom(A*) and hence the condition of Proposition is always satisfied. Thus, A is a restric-
tion of D,,. This comes as no surprise, since D,, = (D), = (Dy)* = D, and all symmetric

extensions of a symmetric operator on a Hilbert space are restrictions of its adjoint.

1.3.1. Sobolev spaces. Let E — M be a vector bundle over a manifold with (possibly
empty) boundary dM. Suppose that connections VIM and V¥ are chosen on TM and FE,
respectively. Denote by VE7: T'(M, E) — T'(M, (T*M)® @ E) the j™ covariant derivative,
which is defined as follows: we have induced connections V7 on (T*M)** @ E for i > 1,
and we let VEig = VEI-1YEI-2...YEIVEs for j > 1. Viewing T(M, (T*M)® @ E) as
the space of C°°(M)-multilinear maps I'(M,TM)*J — T'(M, E), this may also be defined
inductively as (VE1u)(X) = VEu and

(VEH ) (Ko, X;) = VR (TP 0) (X1, .., X))

J
- Z(VEJU)(XD B 7Xi—17 V;(yX17 Xi+17 s 7Xj)7
i=1
see [Lee09, section 12.8]. We also set VE0 := idr(az,m)-
Let (VE4),, denote the weak extension of the differential operator V7, see section
Suppose now that (M, g) is a Riemannian manifold and that E carries a Hermitian metric.
For k € Ng and u € I'.(M, E), define by

k

1/2
||u”Hk(M,E) = (Z ‘|VE’jU"%2(M7(T*M)®j®E)) (1.3.3)
7=0

the k" order Sobolev norm (see [BB12]).

Definition 1.3.6. The Sobolev space H*(M, E) is defined as ﬂ§:0 dom((V¥7),) and
therefore consists of all sections in L?(M, E) with distributional covariant derivatives up to
order k also being square integrable.



20 1. DIFFERENTIAL OPERATORS, HILBERT COMPLEXES, AND ELLIPTIC THEORY

We may view H*(M, E) as the domain of the closed operator ((VF1),, ..., (VF¥),) from
L*(M, E) to @?:1 L3(M, (T*M)®/ ® E), and hence it is a Hilbert space under the graph norm
of this operator, which is given by the square root of u HuH2+Z§;1 [(VET)yu?. Evidently,
this norm extends . The Sobolev space HE(M,E) is the completion of Te.(M, E)
with respect to , thus a closed subspace of H*(M, E). Tt follows that H}(M,E) =
dom((VF)y). Put

HE (M, E) = {uc L} (M,E) : pu € Hy(M,E) for all p € C(M)}.

Obvious extensions to Sobolev spaces based on LP(M, E) instead of L?(M, E) are available,
but we will not need them here. In general, the above Sobolev spaces depend on the choice of
metrics and connections, although this is suppressed in our notation. If M is compact (possibly
with boundary), then any of these choices produce equivalent norms, so that the Sobolev spaces
and their topologies only depend on the vector bundle £ — M. Using interpolation methods
and duality, one can define Sobolev spaces H*(M, E), H5(M, E), and H{ (M, E) for every
s € R, see [Tayllal chapter 4].

An important consequence of the Sobolev embedding theorems is that sections which belong
to every Sobolev space are smooth in the interior of M. In fact,

ﬁ HE (M,E) =T(M°, E), (1.3.4)
k=0

see [BB12, p. 17].

Remark 1.3.7. For general M and E, the spaces T'(M°, E)NH*(M, E) and T'..(M, E) need
not be dense in H*¥(M, E), and their closures may also be different. If k& > 2 and M is of
(k — 2)-bounded geometry, see section then all these spaces are dense in H*(M, E) by
|[Eic88, Proposition 1.6].

On the other hand, interior elliptic regularity implies that I'(M°, E) N H'(M, E) is dense
in H'(M, E), without any additional assumptions: by Remark the self-adjoint operator
A= (VE): (VF), on L2(M, E) is a restriction of (VETVE),, with VEIVE being elliptic
by . By Corollary below, A has a core consisting of sections which are smooth
on M°, and it follows that this is also a core for the associated quadratic form Q4. By
Example dom(Q4) = H'(M, E) as Hilbert spaces, so the claim follows. In case (M, g)
is complete (possibly with boundary), then Proposition will show that T'.(M, E) is
dense in H'(M, E).

Theorem 1.3.8 (Rellich-Kondrachov theorem). Let s > 0 and ¢t > 0.

(i) If M is compact, possibly with (smooth) boundary, then the inclusion H*T'(M,E) —
H*(M, E) is compact.

(i) If U C M° is open and with compact closure, then the inclusion HST'(U, E) <
H§(U, E) is compact.
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Proof. The statement can be reduced to the corresponding result about Sobolev spaces
on subsets of R”. We refer to |Taylla, Proposition 4.4] for the details.

1.3.2. Elliptic operator theory. On a closed (i.e., compact and without boundary)
manifold M, differential operators of order k extend to bounded linear maps from H*(M, F) to
H*7k(M, F) for all s € R. If the operator is elliptic, then these extensions are Fredholm, with
index independent of s, see [LM89, Theorem 5.2]. This is no longer true for open manifolds
or manifolds with boundary, but elliptic operators on them still enjoy some nice properties,
some of which we will list below.

Theorem 1.3.9 (Interior elliptic regularity). Let M be a smooth manifold (possibly with
boundary), and suppose D: I'(M,E) — I'(M, F) is an elliptic differential operator of order
k. If u e D'(M°,E) is such that Du € H (M, F), then u € Hlso'gk(]\/[7 E) and for all open
subsets U,V C M with U CCV CC M° and allt < s+ k, there is C > 0, independent of u,
such that

lull gstr,m) < CUIDU| s vy + Ul g viE))-

For a proof, see [Taylla, Theorem 5.11.1] or [Nic14, section 10.3.2], or [Eval0, section 6.3.1]
for a treatment of interior regularity for elliptic operators on R"™. An immediate application
of this is the regularity of sections in the domain of the weak extension of an elliptic operator:

Corollary 1.3.10. Let D: I'(M, E) — I'(M, F) be a k' order elliptic differential operator,
and suppose A is an extension of D with Dg C A C Dwﬁ Then dom(A) C Hf (M, E), and

if A is closed, then it has a core consisting of sections which are smooth on M°.

Proof. The proof follows [Beil7, Proposition 2.1]. If u € dom(A) C dom(D,,), then Du €
L%(M, F) in the sense of distributions, hence u € HF (M, E) by Theorem Now suppose
that A is closed. It follows that A*A is self-adjoint and satisfies A*A D (D,,)*Ds = (D")4Dy,
hence is a self-adjoint extension of the elliptic differential operator DD of order 2k. From
Remark we deduce that A*A is a restriction of (DTD),, and, again by Theorem m
dom(A*A) C H2* (M, E). Tterating this procedure, we see that dom((A*A)) C H**(M, E)

loc loc

for j > 1. But ;51 dom((A*A)) C 5y Hi (M, E) C T(M°,E), see (1.3.4), is a core

for A*A (see the argument in [BL92, p. 98]), and dom(A*A) in turn is densely included in
dom(A), see Example

Lemma 1.3.11. Let D: I'(M,E) — I'(M,F) be an elliptic differential operator and
w € C2(M). Then the operator of multiplication by ¢ maps dom(D,,) to dom(Dy).

Proof. By Corollary [1.3.10, D,, has a core consisting of sections which are smooth on M°.
Let s € dom(D,,), and choose s, € T'(M°, E) N dom(D,,) with s — s in dom(D,,). Then
¢sp € Tee(M, E) C dom(Dy) and @sy, — s in L?(M, E). Moreover,

I1Ds(psk) — Ds(psj)ll < llo(Dsy, — Dsj)|| + [I[D, @l (sx — 5

A particular, this is true for self-adjoint A, see Remark m
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Choose relatively compact open subsets U CC V' C M?° such that supp(y¢) C U. If d is the
order of D, then [D, ] has order d — 1 and vanishes outside of supp(y), hence there is a
constant C' > 0 such that |[[D, plul| < Cllufl ga-1 (g for all u € I'ec(U, E). By the interior
elliptic regularity estimates from Theorem [1.3.9], we therefore have

1Ds(psk) = Ds(s5)l| < el < | Dsi — Dsjll + C (I Dsi — Dsjl| + si, — sll)

for some constant C' > 0 and all j, k > 1. We conclude that (psi)ren is Cauchy in dom (D),
hence convergent, and the limit must agree with (s by the convergence in L?(M, E).

Corollary 1.3.12. Let A be an extension of an elliptic differential operator D with Ds C
A C Dy. If s € dom(A), then fs € dom(A) for all functions f € C°(M) that are constant
outside of a compact subset of M°.

Proof. We can assume that f[yn g = 1 for some compact K C M°. Write f =1 — ¢
with ¢ € C2(M). Then ps € dom(D;) C dom(A) by Lemma [1.3.11] and therefore also
fs=s—ps € dom(A).

If D is a first order operator, then the ellipticity assumption in Lemma [1.3.11] can be
disposed of:

Lemma 1.3.13. Let D: T'(M,E) — I'(M, F) be a first order differential operator, and
let s € dom(D,,) have compact support contained in M°. Then s € dom(Dy).

Proof. See |GL02, Lemma 2.1]. The proof can be done similarly to Proposition [1.4.11
below, by using trivializations of E and F' to translate the problem to a first order differential
operator on R", and then applying Friedrichs’ lemma.

1.3.3. Complexes of differential operators. The main examples of Hilbert complexes
are (closed extensions of) complexes of differential operators arising in differential geometry.
By this we mean a sequence of differential operators

0 — D(M, Eo) —% D(M, By) ~2 T(M, By) 2 ... 2“4 (M, E,) — 0
with smooth vector bundles F; over a smooth manifold M, and such that d;y; o d; = 0 for
all 7. We will assume that the order of all the nonzero d; coincide and are at least one, and
denote such a complex simply by (FE,,d). Suppose that M is Riemannian and that all E;,
0 < i < n, are Hermitian vector bundles, so that we may form the formal adjoints of the d;
and consider the spaces L?(M, E;) of square-integrable sections of E;. The complex is called
elliptic if all the Laplacians

AP = d; dl_, +did;: T(M, E;) — T(M, E;)

are elliptic differential operators, where dZ: [(M,E;—1) — T'(M, E;) denotes the formal ad-
joint of d;. For more details on elliptic complexes, see [AB67], [Nicl4, section 10.4.3], or
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[Tay11b, chapter 12]. If we denote by d, df, and AF the operators considered on I'(M, E) =
o D(M, E;), with E = @], E;, then we have

AP = (d+d")?:T(M,E) - T(M,E).

Let k; denote the order of d;, and put A := Symb(d;)(§) and B := Symb(d;_1)(§) for fixed
e T*M. By (1.1.9) and (1.1.10]), we have

Symby, 4. (AF)(€) = BB* + A*A.

Because (E,,d) is a complex, AB = 0 by (1.1.9), and hence img(B) C ker(A4) = img(A*)*, so
that Symby, 1. (AF)(€) # 0 unless A = B = 0. Therefore, AP has order ki1 + k;, and its
principal symbol at £ is BB* + AA*.

Proposition 1.3.14. A complex (E,,d) of differential operators between Hermitian vector
bundles over a Riemannian manifold is elliptic if and only if the principal symbol sequence

Symb (do) Symb(dy) Symb (d2) Symb (dn—1)

0— TI'*E() 7T*E1 7T*E2

™E, -0  (13.5)

is exact away from the zero section of T*M , where w: T*M — M is the cotangent bundle of
M. This means that img(Symb(d;—1)(z,€)) = ker(Symb(d;)(z,€)) as subspaces of (E;)y for
allz e M and 0 # € €Ty M.

P’I“OOf. Fixx e M and{ € T;M\{O}, and let A: (Ez)z — (Ei+1)m and B: (Ei—l)z — (Ez)r
be as above. The sequence ([1.3.5) is exact at 7*E; if and only if

0 = ker(A)/img(B) = ker(A) Nimg(B)* = ker(A) Nker(B*) = ker(A*A + BB*),

which is equivalent to A*A + BB* = Symb(AF)(£) being bijective since (E;), is finite dimen-

sional.

Note that in case the complex only consists of a single nontrivial operator, i.e., we have
the sequence 0 — I'(M, E) o, I'(M, F) — 0, then ellipticity of this complex is equivalent
to dy being elliptic, since exactness of the corresponding symbol sequence is the same
as Symb(dp)(&) being invertible for all £ # 0.

A choice of closed extensions (dg); of d; that produces a Hilbert complex (L?(M, E,), dg)
and satisfies ds C dy C dy, is called an ideal boundary condition for (E,,d). Here, we make
the agreement that L?(M, E;) = 0 for i € {0,...,n}, i.e., B; = M x {0} — M for these i.
Such ideal boundary conditions always exist, for the strong and weak extensions themselves,
see section give rise to ideal boundary conditions, cf., [BL92, Lemma 3.1]. Thus, we have
the Hilbert complexes

(L*(M, E,),ds) and (L*(M,E,),dy),

and we write d; , for (d;), = (dy)i, and similarly for d; ;. The self-adjoint extension of AE
induced by the Hilbert complex (L?(M, E,), d,,) is sometimes called the Gaffney extension of
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AF. By definition, it is the operator
AL = (dy)*dw + dw(dy)* (1.3.6)
on L2(M, E,) with domain

dom(AZ) = {z € dom(d,,) Ndom((dy)*) : dyz € dom((dy)*) and (dy,)*z € dom(dy)}.

1.4. Density of compactly supported sections and essential self-adjointness

Let E, F — M be Hermitian vector bundles over a Riemannian manifold, possibly with
boundary. Suppose D: I'(M,E) — I'(M, F) is a differential operator, and A is a closed
extension of D to an operator from L?(M,E) to L?(M,F). In this section, we want to
study whether sections with compact support are dense in dom(A) for the graph norm. Put
differently: does A have a core consisting of sections with compact support? The results will be
for first order operators, and we will also discuss the related issue of essential self-adjointness

for both first order and some second order operators.

1.4.1. Complete Riemannian manifolds. By a complete Riemannian manifold (M, g)
we mean a connected manifold M, possibly with boundary, together with Riemannian metric
g such that (M, d,) is a complete metric space, where

1
dyfa) = nf [\ aG0.5(0) e (141)

is the Riemannian distance between x,y € M, with the infimum being taken over all smooth
paths v: [0,1] — M with y(0) = « and (1) = y. The topology defined on M by d, coincides
with the original one, see [Leel3, Theorem 13.29].

The metric space (M,dy) is a length space, i.e., a metric space in which the distance
between two points is given by the infimum of the lengths of continuous paths connecting
them. A generalization of the theorem of Hopf-Rinow says that a locally compact length space
(X, d) is complete if and only if its compact subsets are exactly the closed and bounded ones,
see |[Gro99, p. 9] or [Papl4, Theorem 2.1.15]. Such a space is then automatically geodesic,
meaning that for any two points x,y € X there exists a geodesic path connecting them, i.e.,
an isometry v: [a,b] — X with y(a) = x and v(b) = y, see [Papl4, p. 71].

The following Lemma is a standard characterization of complete Riemannian manifolds.

The proof is adapted from [Dem02, Lemma 12.1].

Lemma 1.4.1. Let (M, g) be a connected Riemannian manifold, possibly with boundary.
Then the following are equivalent:

(i) (M, g) is complete.
(i) There exists a smooth proper function v: M — [0,00) with |dy| < 1.

(iii) There is a sequence (xk)ken of functions in C°(M,[0,1]) with (xk+1) y=1and

|supp(><k
\dxx| < 27F for all k € N, and such that (supp(xx))ren s a compact exhaustion of M.
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Proof. Assume that (M, g) is complete. For fixed zy € M, the function é: (M, dg) —
[0,00), 0(z) = 3dg(x, o) is Lipschitz with dé] < 3 almost everywhere, hence there is a
smooth function 8: M — [0,00) such that |dé| < 1 and |6 — 8| < 1. Let p: R — [0,1] be
smooth with p(t) = 1 for t < 1, p(t) = 0 for t > 2, and |p/| < 2. Put y(z) = p(27¥~15(x))
for z € M and k € N. Then x3: M — [0,1] is smooth and satisfies |dxz| < 27% and
supp(xx) € 6-1([0,2%]). On this set xx1 = 1, and supp(x%) is a closed subset of M contained
in 671([0,2%]) € 071([0,2% + 1]) = {& € M : dy(x,z0) < 2(2¥ +1)}. Since the length space
(M,dg) is complete, the closed balls are compact by the Hopf-Rinow theorem, and hence
supp(xx) is also compact. The construction also immediately implies that the supports of
form a compact exhaustion of M. Thus, (xx)ren has the properties required in

If (xk)ken is as in then the function v = 3222, 2¥(1 — xz): M — [0,00) is smooth,
proper, and satisfies |dy| < 1.

Suppose finally that ¢: M — [0, 00) is smooth, proper, and satisfies |di| < 1. Ifv: [0,1] —
M is a smooth path with y(1) =z and 7(0) = y, then

1
() — B(y) = $(r(1)) — B(3(0)) = / = /O (1)) d.
Y

It follows that [t(x) — $(y)] < (sup.car [d(2)]) i (8)] dt, hence [o(x) — w(y)| < dy(z,y)
for all x,y € M. Since v is proper, any closed bounded set for d, is therefore compact, and

since every Cauchy sequence in M is bounded, completeness follows.

1.4.2. Density of sections with compact support. Recall that if A is a closed op-
erator on a Hilbert space, then dom(A) is a Hilbert space if equipped with the graph norm
z+— (||z||> 4 ||Az||?)"/?, and any dense subspace of it is called a core for A. In particular, if
W C dom(A) is a core for A, then the closure of Ay equals A. We also refer to appendix
for more information. In this section, we discuss sufficient conditions for closed extensions of

differential operators to have a core consisting of sections with compact support.

Definition 1.4.2. Let D: I'(M, E) — I'(M, F') be a first order differential operator. We
say that an extension A of D satisfies the Leibniz rule (with respect to C2°(M) ) if fs € dom(A)
and

A(fs) = fAs + Symb(D)(df)s (1.4.2)
for all s € dom(A) and f € C(M).

Theorem 1.4.3. Let A be a closed extension of a first order differential operator D
satisfying the Leibniz rule (1.4.2). Suppose that (M, g) is complete and that the principal
symbol of D satisfies

| Symb(D)(&)] < C[¢| (1.4.3)

for some constant C >0 and all £ € T*M. If W C dom(A) is a core for A, then {ps: ¢ €
C*®(M), s € W} is also a core for A. In particular, the compactly supported elements are

dense in dom(A).
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Proof. We slightly modify the proof of [BB12, Theorem 3.3], where the statement is shown
for Dy, cf., Corollary below. Let s € dom(A). Since W is a core for A, we find s, € W
with s — s in dom(A). By the completeness of (M, g), there exists a sequence (Xk)ken
of functions in Cg°(M, [0, 1]) with (Xk+1)|supp(r) = 1, and |dxx| < 27% for all k € N, see
Lemma Then xxsx has compact support and is an element of dom(A) by assumption.
By the dominated convergence theorem, ||xxs—s|| — 0 and ||xxAs — As|| — 0. It follows that
XkSk — s in L?(M, E), and

| A(xwsk) — As||
< JA(xesk) — Alxes)|l + | A(xws) — As)||
< |IxxA(sk — s)|| 4 || Symb (D) (dx)(sx — 5)|| + [[xrAs — As|| 4 || Symb (D) (dxx)s||

C C
< | As — Asll + sllsk — sl + o As — sl + sl
also converges to zero as k — oo. Therefore, yisp — s in dom(A), which proves the claim.

Remark 1.4.4. A more sophisticated condition is given in [BB12, Theorem 1.2]: if M is a

connected Riemannian manifold which admits a complete Riemannian metric h such that
| Symb(D)(&)| < C(dista, (z, 0M))[¢]n

forall z € M and § € T)M, with C: [0,00) — R a positive, continuous, monotonically

oo 1
—— dr = o0,
/0 C(r)

then compactly supported elements of dom(D,,) are a core for D,,. After a conformal change

increasing function satisfying

of metric, this case is reduced to ([1.4.3).

Example 1.4.5. Let D: I'(M, E) — I'(M, E) be a formally self-adjoint differential oper-
ator of Dirac type, see section [[.1.2] For instance, this is the case if D is the Dirac operator
associated to a Dirac bundle, cf., Remark [1.1.12] By definition, D? is of Laplace type, hence

| Symb(D)(€)[* = | Symb(D)(€)* Symb(D)(€)| = | Symb(DD)(€)| = | Symb(D?)(€)| = [¢[?
(1.4.4)
for £ € T*M. Therefore, is satisfied.

Of course, the value of Theorem [[.4.3] depends on the number of extensions of D for which
the Leibniz rule can be established. (Note that the support of f in (1.4.2)) may intersect the

boundary.) The next Proposition gives us something to work with:

Proposition 1.4.6. Let A be an extension of a first order differential operators D with
D.. C A C Dy, and satisfying the Leibniz rule (1.4.2). Then the closure A satisfies the
Leibniz rule, and the extension A* of DT, see Pmposz’tionm also has this property, i.e.,
fs € dom(A*) and

A*(fs) = fA*s + Symb(D)(df)s
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for all s € dom(A*) and f € C°(M).

Proof. Let s € dom(A*), f € CX(M,R), and t € dom(A4). Then ft € dom(A) and
A(ft) = fAt + Symb(D)(df )t by assumption, and

(fs, At) = (s, fAt) = (s, A(ft) — Symb(D)(df )t) =
= (A*s, ft) + (Symb(DV)(df)s, t) = (fA*s + Symb(DV)(df )s, t).

This implies fs € dom(A*) and A*(fs) = fA*s + Symb(D")(df)s. The closure of A is given
by A = A** so the claim for A follows immediately.

Corollary 1.4.7. Let D be a first order differential operator. Then D and D, satisfy
the Leibniz rule (1.4.2)).

Proof. Clearly, D.. and (D%).. both satisfy the Leibniz rule, so Proposition implies
that Dy, = D, and D,, = ((D")..)* also have this property.

Remark 1.4.8. (i) As a consequence of Proposition an extension A of D with A C D,,
satisfies the Leibniz rule if and only if fs € dom(A) for all f € C*(M) and s € dom(A).
Indeed, we have fs € dom(D,,) and

A(fs) = Dy(fs) = fDus + Symb(D)(df)s = fAs + Symb(D)(df)s

automatically holds in this case, so is satisfied.

(ii) One can also consider the Leibniz rule with respect to other spaces of functions on
M. For instance, every extension A of D with Dy C A C D,, satisfies the Leibniz rule with
respect to CS2(M), the space of smooth functions on M with compact support in M°. Indeed,
if s € dom(A4) and f € C2(M,R), then fs € dom(D,,) by Proposition and hence
fs € dom(Dg) by Lemma In particular, fs € dom(A), and the same argument as
above shows that A satisfies the Leibniz rule with respect to C(M). Note that if M has no
boundary, then C2°(M) = C2 (M), hence is satisfied for all extensions A of D lying
between Dg and D,,.

Remark 1.4.9. The proof of Proposition also works if we replace C2°(M) by the space
of bounded smooth functions f: M — R such that  — | Symb(D)(z, df(x))| is bounded on
M. If D satisfies the symbol bound , then bounded smooth Lipschitz functions have this
property. In particular, D,, and D satisfy the Leibniz rule with respect to these functions.

Example 1.4.10. Let (FE,,d) be an elliptic complex of first order differential operators,
see section and consider the Hilbert complex (L?(M, E,), d,,). The operator dy, + d}, =
dyw + (d)s is a self-adjoint extension of d + df, see Lemma with domain dom(d,,) N
dom(d},) = dom(d,,) N dom((d")s). Note that d + d' is also of first order, since otherwise

Symb (d)(£) = — Symb(d")(§) = — Symb(d)(¢)*,
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which would imply ker(Symb(d)(¢)) = img(Symb(d)(€))*, hence contradicts Symb(d)(£)? = 0.
It follows that Symb(d + d') = Symb(d) 4+ Symb(d'). Let f € C>°(M) and s € dom(d,, + dZ,).
Then fs € dom(d,, + d},) by Corollary and

(dw + dy,)(fs) = fdws + Symb(d)(df)s+
+ f(d")gs + Symb(d")(df)s = f(dw + d%,)s + Symb(d + d")(df)s,

so dy, + dy, satisfies the Leibniz rule. Similarly, one shows that this is also true for d, +dj. The
same argument can also be used to show that if (L?(M, E,), dy) is an ideal boundary condition
for (E,, d) such that dy satisfies the Leibniz rule (1.4.2), then the self-adjoint operator dg +dj;
also has this property.

For the weak extension of a first order operator, we can use Friedrichs’ lemma to sharpen
Theorem and show that even I'.(M, E) is always a core:

Proposition 1.4.11. Let (M, g) be a complete Riemannian manifold, possibly having
a boundary, and let D: I'(M,E) — I'(M, F) be a first order differential operator satisfying
(1.4.3). Then T.(M,E) is a core for D,,.

Proof. The proof is an adaptation of the proof of item (ii) of [Str10, Proposition 2.3], where
the statement is shown for the d-operator on a bounded domain in C". By Theorem [[.4.3
and Corollary the compactly supported elements are dense in dom(D,,). So let u €
dom(D,,) have compact support. By a partition of unity argument, we may suppose that
supp(u) is contained in the relatively compact domain U of a chart x: U =, V of M over which
E and F are trivial. Thus, we have vector bundle isomorphisms ®: E|; — V x C27k(E) and
U: Fly — V xC2%(F) covering x, with U € M open and V open in R := {y € R" : y,, < 0}.
We obtain bijections -

o* F(U,E) N COO(V, (Crank(E)) and T*: F(U, F) N COO(V, (Crank(F))

via ®*(s) := ® o so x~! and identifying sections of the trivial bundles with functions, and sim-

ilarly for ¥*. Both ®* and U* extend to continuous operators ®*: L?(U, E) — L?(V, Cra»k(E))
and U*: L2(U, F) — L*(V,C**() and with continuous inverses. Here, L?(V, C'#"(£)) and
L%(V,Crak(F)) are defined by using Lebesgue measure on V' C R”.

Consider the first order differential operator D := U* o D o (&*)~1: C°°(V, Crank(E)) —
Co°(V, Crank(E)) | The coefficients of D are smooth on V, so we can extend D to a first order
differential operator acting on C'°(R", C™*X(E)) We put 4 = ®*u € L*(V,Cr2kE)) and
denote by @y € L*(R", C*"k(E)) its extension to R™ by zero.

Let ¢ € C(R™) be such that ¢ > 0, [p.@d\ = 1, and supp(¢) € RZ. Here, X
is Lebesgue measure on R", and RZ = {y € R" : y,, > 0}, with R” defined similarly. Set
we(y) = e "p(y/e) fore € (0,1] and y € R™. By Friedrichs’ lemma, see [MMO7, Lemma 3.1.3],

gig(l) HE(S% *Up) — e * (5a0)||L2(Rn,<crank(F)) =0, (1.4.5)
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where * denotes (component-wise) convolution on R", and D is the distributional derivative.
Moreover,

(- * (Diig — (Do) () = / @e(y)(Diio — (Do)(x ~ y) dA(y) =0 for v € RZ (1.4.6)

because supp(¢.) € RZ and Dy = (ﬁﬂ)o on R%. Put u. = (®*) "1 (¢: * Ug)|v. For e small
enough, we have supp((pe * ug)|y) CC V, so that u. € T'.(U, E) and hence (u)g € T'.(M, E).
Now

lw = (ue)ollr2r,p) = v — ellr2@,my < Cll®7u — @ ue| 2y, crank(e))
= OH’lj — Pe * ﬂOHLQ(V,(CTaUk(E)) S CH&D — Pe * ao||L2(Rn7Crank(E))

converges to 0 as € — 0, with C' > 0 depending on the geometry of U and F|y, and

[ Dw — Duy(ue)oll L2 (ar, 7y
= [|[Dwu — Dwue|l 12, F)
< C/H‘I/*(DU) - \Il*(DuE)HL2(V’(Crank(F))
= C/HBﬂ - f)((% * ﬂo)’V)||L2(u@rallk(p>)
= C/H(ﬁﬁ)o - (f)((@s * ﬁo)‘V))OHLQ(RR’(Crank(F))
< C'[(D@)o — e * (D)ol 2(gn gronccrr) + C' e % (D)o — D(e * o) | p2n cramice
= C'|[(D)o — e * (D)ol 2 (g craniccyy + C'llipe + (D) = D(spe * )|l 2 e cranicy

where C’ > 0 depends on the geometry of U and F|y. Clearly, the first term converges to

zero as € — 0, and the second one does so because of ([1.4.5). Thus, (u:)o — v in dom(D,,)
as € — 0, as required.

1.4.3. Essential self-adjointness. Suppose now that £ = I and that D is formally
self-adjoint (not necessarily of first order), in which case it also makes sense to ask how many
self-adjoint extension of D there are. If D.. = Ds is self-adjoint, then D (more precisely: D)
is called essentially self-adjoint (on T'co(M, E)). If this is so, then Dy is the only self-adjoint
extension of D, since Dy C A = A* C (Ds)* = Dy for any self-adjoint extension A of D.
Moreover, Dy = (D,)* = (DY), = Dy, and D, is the only closed symmetric extension of
D, see Remark [[.3.5] Conversely, if Dy = D,,, then D is essentially self-adjoint, since
(Ds)* = (Dy)* = (D")y = D,. Essential self-adjointness is also equivalent to D,, being
symmetric, since then D,, C (D,,)* C Dy, hence (Ds)* C (Dy)* = Ds, and we have equality
because Dy is also symmetric.

Theorem 1.4.12. Let M be a complete Riemannian manifold without boundary, and
suppose D: T'(M,E) — T'(M, F) is a first order differential operator. If the principal symbol
of D satisfies , then Dy = D., and the second order operator DTD: T(M, E) — T'(M, E)
is essentially self-adjoint.
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Variants of Theorem [1.4.12| appear in various pieces of literature, for instance in |Gat51;
Gafb4] for the Hodge Laplacian, in |[AV65] for the Dolbeault Laplacian, and [Wol73] for the

square of the Dirac operator. A proof of the result as stated above can be found in [AIb0S8)
Theorem 2.13]. Combining Theorem |1.4.12{ with the discussion above, we have:

Corollary 1.4.13. Let M be a complete Riemannian manifold without boundary, and
suppose D: T'(M,E) — I'(M, E) is a first order, formally self-adjoint differential operator
satisfying . Then both D and D? are essentially self-adjoint. In particular, this is true
for Dirac type operators.

An extension of this is the following theorem from [Che73, Theorem 2.2]:

Theorem 1.4.14 (Chernoff). Let M be a complete Riemannian manifold without bound-
ary, and suppose D: T'(M,E) — T'(M, E) is a first order, formally self-adjoint differential

operator. Put
¢(r) = sup {| Symb(D)(z, )| : x € M with dg(z,x0) =1},

where xg € M is any reference point. If fooo % dr = 400, then D¥ is essentially self-adjoint
for any integer k > 1.

In particular, Chernoff’s theorem says that the symbol bound is sufficient for all
powers of D to be essentially self-adjoint.

Let D: I'(M, E) — I'(M, E) be a formally self-adjoint differential operator of Laplace type.
Recall from section that D can be written in the form D = VIV +V for a unique metric
connection V and endomorphism V of E. In the following, we list some sufficient conditions
from [BMS02] for D to be essentially self-adjoint:

Theorem 1.4.15 (|[BMS02, Corollary 2.9]). Let (M, g) be a complete Riemannian mani-
fold without boundary, E — M be a Hermitian vector bundle, and D = VIV +V a formally
self-adjoint differential operator of Laplace type, as above. If V > —q in the sense of quadratic
forms, where q: M — [1,00) is a smooth function such that ¢~'/%: (M,d,) — R is (globally)
Lipschitz and with the property that fv % = o0 for every curve v in M going to infinity, then
D is essentially self-adjoint.

Theorem 1.4.16 ([BMS02, Theorem 2.13)). Let M, E, and D be as in Theorem |1.4.15,
If D is lower semibounded, then D is essentially self-adjoint.

We point out that the results of [BMS02] are far more general than the ones we present
here. In particular, they hold for potentials with very weak regularity.



CHAPTER 2

The essential spectrum of self-adjoint elliptic differential

operators

In this chapter, we consider (nonnegative) self-adjoint extensions A of general elliptic
differential operators on a Riemannian manifold M, possibly having a boundary. Section [2.]]
will first set up the notation used throughout this chapter, including Ay, which denotes the
restriction of A to an open subset U of M, defined by using the quadratic form associated to
A (see appendix for the basics on quadratic forms on Hilbert spaces). The highlight of
section [2.1]is the decomposition principle, which states that one can restrict A to complements
of compact subsets of M° without changing the essential spectrum. In section the bottom
of the essential spectrum of such operators is considered. One of the key results there is
Theorem a generalization of a theorem of Persson, and it states that inf o.(A) is the
limit of the net K — inf o(App k), where K runs through the compact subsets of M°, directed
by inclusion. The results in this sections are not fundamentally new, but we have taken care
to keep them as general as possible. For instance, we shall not make the often used assumption
for A to have a core of smooth sections with compact support (although this will be satisfied

in our applications).

2.1. The decomposition principle

Let (M, g) be a Riemannian manifold with (possibly empty) boundary M, and let E — M
be a (complex) Hermitian vector bundle. Suppose D: I'(M, E) — I'(M, E) is a formally self-
adjoint differential operator of order at least one, and let

A: dom(A) C L*(M, E) — L*(M, E)

be a lower semibounded self-adjoint extension of D, by which we mean D.. C A, cf., section[I.1}
We denote by Q4 the quadratic form associated to A, see appendix [C.2] In order to formulate
the results of the following sections, it will be convenient to restrict A to open subsets of M:

Lemma 2.1.1. Let U C M be an open subset. Then the quadratic form @A,U on L*(U, E)
with dom(Qa,y) = {s|v : u € dom(Q4) and supp(s) C U} and Qay(s,s) = Qa(so,s0) for
s € dom(Qay) is closable, where so € L*(M, E) denotes the extension of s by zero.

Proof. We need to show that if uy € dom(Qap) is a sequence with uy — 0 in L*(U, E)
and such that for every ¢ > 0 there is N € N with [Qa ¢ (up — uj, up — uj)| < e for j, k> N,
then also @AU(uk,uk) — 0 as k — oo, see [Sch12, Proposition 10.3]. These assumptions on

31



32 2. THE ESSENTIAL SPECTRUM OF SELF-ADJOINT ELLIPTIC DIFFERENTIAL OPERATORS

uy, imply that ((ux)o)ken is Cauchy in dom(Q4). Since Q4 is closed, there is t € dom(Q4)
with (ug)o — t in dom(Q4), and as also (uy)o — 0 in L?(M, E) by assumption, we have ¢t = 0.
Now

Qv (ur, k) = Qal(ur)o, (ur)o) = Qa(t,t) =0
as k — 00, S0 @A,U is closable.
Definition 2.1.2. For U C M an open subset, we define the quadratic form Q)4 7 as the

closure of the quadratic form @ Ay from Lemma The self-adjoint operator associated
to Qa,v is denoted by Ay.

Note that the open subset U in Definition is allowed to intersect 0M. We think of
Ay as being obtained by putting Dirichlet boundary conditions on U \ 9M, and keeping
the original boundary conditions on M NU. By 1} and since dom(@ A,vU) is dense in
dom(QA,r7), the operator Ay is given by

dom(Ay) = {s € dom(Qa ) : there is us € L*(U, E) such that
Qau(s,t) = (us, thr2w,p) for all t € dom(Qap)}, (2.1.1)
and Ays = us for s € dom(Ay).

Proposition 2.1.3. Let U C M be open. Then {s|y : s € dom(A) and supp(s) C U}
is contained in dom(Ay), and Ay(s|ly) = (As)|y. In particular, Ay is an extension of the
differential operator Dy == Dl g): T'(U, E) — T'(U, E), again in the sense that (Dy)e. € Ay
By Remark[1.3.5, Ay is a restriction of (Dy)w.

Proof. Let s € dom(A) with supp(s) € U. Then s € dom(Q4), hence s|yy € dom(Q4r7)
by definition. Moreover, for ¢ € dom(@ AU), we have

Qau(slu,t) = Qa((slv)os to) = Qals,to) = (As,to)r2(m,p) = ((As)|u, t) 2, E)-
It now follows from that s|y € dom(Ay) and Ay (s|y) = (As)|u.

Lemma 2.1.4. Let U,V C M be open subsets with U C V. Ifu € dom(Qay), then
ug € L?(V, E) belongs to dom(Qav), and Qau(u,v) = Qa.v(uo,vo) for allu,v € dom(Qa ).
In particular, inf o(Ay) > inf o(Ay).

Proof. Let s, € dom(Q4) be a sequence with supp(s;) C U and sg|y — v in dom(Qa,v).
Then the definition of @ 4,y implies that k — sj is Cauchy in dom(Q 4), hence convergent to
some Sy € dom(Q 4). Moreover,

Qav(u,u) = lim Qap(skly,sklv) = lm Qa(sk,sr) = Qa(Sco, 500)-
k—o00 k—oo

Similarly, since supp(sy) C V, we have sy — ug in L?(V, E) and k + si|y is Cauchy in
dom(Q 4,1 ), hence convergent to up in dom(Q4,7). Thus,

Qa,v(ug,up) = klglolo Qav(sklv,sklv) = kliﬂgo QA(Sks 5k) = QA(S00, S0) = Qau(u,u).
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By the polarization identity (C.2.1)), we get equality also away from the diagonal.
The inequality about the bottom of the spectra follows from the fact that inf o(Ay) is
the largest lower bound of Q 4,17, for we have

Qau(s,s) = Qayv(so,50) > (inf o (Av))llsol* = (inf o (Av))[|s[|*
for all s € dom(Qa,vr), hence inf o(Ay) > inf o(Ay ).

The next Theorem is central for what follows. It shows that the essential spectrum
of a self-adjoint elliptic differential operator depends only on the situation at infinity and
near the boundary OM. We have adapted the proof of [Bar00, Proposition 1] to our situa-
tion. Other sources with similar statements or for certain classes of operators include [Eic88,
Proposition 4.9], |Eic07, Proposition 1.4], and [MMO7, Proposition 3.2.4]. The minor dif-
ference between the decomposition principle of Bar and ours is that we do not assume that
I'.(M, E)Nndom(A) is a core for A. Recall (for example, from Proposition[C.1.3) that a number
A € C belongs to the essential spectrum o, (T') of a normal operator T if and only if there exists
a sequence x € Dy, where Dy is any core of T, with x — 0 weakly, liminfy_, . ||zg| > 0,
and (T — Az — 0. Such a sequence is called a singular Weyl sequence for (T, \).

Theorem 2.1.5 (Decomposition principle). Let A be a lower semibounded self-adjoint
extension of an elliptic differential operator as above. Then

oe(Av) = oe(A\k)

for allU C M open and K C U° compact, where U° = U \ OM is the interior of U as a
manifold with boundary U NOM.

Proof. Since Ay is a self-adjoint extension of an elliptic differential operator, it has a core
consisting of smooth sections, i.e., elements of I'(U°, E), see Corollary In particular,
I'(U°, E) ndom(Ay) is a core for Ay, and a similar statement holds for Ay k-

Let s, € T'(U° \ K, E) Ndom(Ap\ k), k > 1, be a singular Weyl sequence for (A g, A).
Clearly, (sx)o — 0 weakly and lim infy_, ||(sk)o|| > 0. Moreover,

Aresk = Aok (((sk)o) [\ i) = (Au(sk)o) ok

by Proposition hence Ay (sk)o = (Ap\ksk)o because supp((sx)o) € U \ K and differ-
ential operators do not increase the support of sections. Therefore, ||Ay(sk)o — A(sk)oll =
[(Atn i sk)o — A(sk)oll = [ A ksk — Askll — 0 as k — oo, showing that oc(An k) C 0e(Av).

Conversely, suppose that A € o.(Ay). Let (ux)r>1 be a corresponding singular Weyl
sequence for (Ay, A) contained in T'(U®, E) Ndom(Ay). Let K’ and K” be compact manifolds
with boundary such that K C (K')° C K’ C (K")° C K" C U°. By the elliptic estimates
from Theorem there is C' > 0 (independent of k) such that

Huk’K”HHd(K”,E) < C(HAUUkHLZ(U,E) + HukHL2(U,E)) <
< O([[Avuk — Al 2w.m) + (Al + 1) Sup l[ugll), (2.1.2)
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where d is the order of D. Every weakly convergent sequence is bounded, and shows
that {ug|x~ }r>1 is bounded in the Sobolev space HY(K", E). Because K" is compact, Rellich’s
theorem (see Theorem implies that a subsequence, which we still denote by (ug|x»)r>1,
converges in H4Y(K”, F). Call this limit us. Choose ¢ € C(M,[0,1]) with ¢|x = 1,
and @[y r = 0. Since (up)p>1 is weakly null, we have ||pusol|? = limp_,o0 (Pur, Puos) =
limg o0 (Uk, P?Uso) = 0, and hence uso|r = 0 almost everywhere. Thus, ug|xs — 0 in
L*(K', E) and, in particular, [Jug|| 20 g7 gy = Hminfj o [lus]]/2 > 0 for sufficiently large k.

Now take 1 € C°(M, [0,1]) with ¥| = 1 and Y[y g = 0. Put s := (1 — )ug|pe\x €
L(U°\ K, E). Then s, € dom(Ay k) by Corollary and Proposition m By the
above, liminfy o ||sk|| > 0, and since (sg,v) = (ug, (1 — ¥)vo) — 0 as k — oo for all
v € L}(U\ K, E), where vy denotes the extension by zero outside of U \ K, we have s — 0
weakly. Moreover, on U \ K,

Apresk = D((1 = Y)ug) = (1 — ) Duy + [D, 1 — lug,
and the differential operator [D, 1 —1)] of order d— 1 vanishes outside of K", since 1 is constant
there. Therefore, there is a constant C’ > 0 such that
1D, 1 = Plugll 2 w,my < C'llurll a1 ).

and this converges to zero by the above argument involving Rellich’s theorem. Finally,
[ A\ ksk = Asell < [[(1 =) (Avue — Aug) || + I[D, 1 = lul 2@ x,m) = 0

as k — 00, so that (sy)>1 is a singular Weyl sequence for (Agn g, A). Thus, A € o¢ (A g)-

Remark 2.1.6. If A satisfies appropriate elliptic estimates also on compact subsets K
intersecting the boundary of M, then the decomposition principle also holds for those K.
This is considered in [B&ar00].

2.2. The bottom of the essential spectrum

In this section, we wish to study the bottom of the essential spectrum of a nonnegative
self-adjoint extension of an elliptic differential operator. Of course, most results also apply
to lower semibounded operators after straightforward modifications. Before we do this, we
prove the following general result about the bottom of the essential spectrum of a nonnegative
self-adjoint operator S on a Hilbert space (H, (e, #)). Recall that a real number X\ satisfies
A < info(S) if and only if \||z|? < Qg(x,z) for all x € dom(Qg), because inf o(S) is the
largest lower bound of @g, the quadratic form associated to S. In order to characterize the
bottom of the essential spectrum, this inequality has to be perturbed by compact operators:

Theorem 2.2.1. Let S be a nonnegative self-adjoint operator on (H, (e, #)). Denote by
Qs: dom(SY?) x dom(SY%) = C, Qg(x,y) = (S %z, S¥/2y)

the quadratic form associated to S, see appendz':c and equip dom(Qg) = dom(S1/2) with
the inner product (z,y) — (x,y)+Qs(x,y). Then the following are equivalent for 0 < \g < 0o:
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(i) Ao < inf o.(S).
(ii) For every 0 < X\ < o, there exists a Banach space (Z,||*||z) and a compact linear
operator T: dom(Qg) — Z such that

Nalf < Qs(z,z) + || Tl (2.2.1)

for all x € dom(Qg).
(iii) For every 0 < A < Ao, the inclusion dom(Qg) N img(Ps([0,A])) — H is a compact
operator, where Pg is the spectral measure associated to S, and the first space is viewed

as a subspace of dom(QS)H

Proof. Assume first that |(i)| is true, and let 0 < A < Ag. Put Z := img(Ps([0,A])) C H,
equipped with the norm of H, and let P* := Pg([0,\]): H — Z be the orthogonal projection.
Then P? is compact (it even has finite rank), and so is T := VAP or: dom(Qg) — Z, where
t: dom(Qg) < H is the (continuous) inclusion. Moreover,

Mzl = Al = PYz||f + AP |l <
< Qs((1 = PYa, (1= PY)a) + A|[PYu() ]} < Qs(x,2) + || Tz %
for z € dom(Qs), where the inequality \||y||% < Qs(y,y) for y € img(1 — P?*) is due to
img(1 — P*) = img(Ps((A, 0))).
Next, we show |(ii)|=1(iii)l Suppose that 0 < A < Ag and choose p € (A, Ag). By there
exists a compact operator T: dom(Qg) — Z such that

ullyllzr < Qs(y,y) + I1Tyll% < Ayl + 11Tyl

for all y € img(Ps([0,A])). Let (z;)jen be a bounded sequence in dom(Qg) N img(Ps([0, A])).
We may assume without losing any generality that (Tz;) en converges in Z, say lim; Tx; =
z € Z. Since also x; — xj, € img(Ps([0, A])), the estimate

(= N'"Pllay —arlla < IT(xj - 2i)llz < | Txj = 2lz + | Tay - 2|z
for j,k € N shows that (z;);en is Cauchy in H, hence convergent.

Finally, we show that implies If \g > info.(S), then info.(S) is finite (i.e.,
not +o00) and we choose A\ € (info.(S), Ao). Because the rank of Ps(B/;(info.(S5))) is
infinite for all j € N, we obtain mutually orthogonal (in H) unit vectors x; contained in
img(Ps(By/;(inf 0.(S)))) € dom(Qs). Find N > 1 such that By y(inf 0.(S)) C [0, A]. Then
the bounded sequence (z;);>n in img(Ps([0, A])) cannot have a subsequence which converges
in H, a contradiction to Thus, \g < info.(9).

We point out the two extremal cases of Theorem [2.2.1]in the following corollaries:

Corollary 2.2.2. Let S be a nonnegative self-adjoint operator on (H,(s,#)). Then the

following are equivalent:

ISince A < oo, we actually have img(Ps([0,A])) C dom(Qs), but we use the notation to emphasize that
img(Ps([0, A])) is considered a subspace of dom(Qs).
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(i) The range of S is closed and dim(ker(S)) < oco. In other words, S is a (possibly
unbounded) Fredholm operator.
(ii) 0 & 0.(S) or, equivalently, inf o.(S) > 0.
(iii) There exists a Banach space Z, a compact linear operator T: dom(Qg) — Z, and a
constant C > 0 such that

lz)i% < C(Qs(x,2) + | Tx|%)
for all z € dom(Qgs).

Proof. The equivalence of and is a standard fact of the spectral theory of self-adjoint
operators, cf., Remark The rest follows easily from Theorem with C := 1/ for
A € (0,inf 0.(9)).

Corollary 2.2.3. Let S be a nonnegative self-adjoint operator on (H,(s,*)). Then the
following are equivalent:
(i) The spectrum of S is discrete, i.e., 0.(S) = 0.
(ii) For every € > 0, there exists a Banach space (Z,||#||z) and a compact linear operator
T: dom(Qgs) — Z such that

lzll% < e Qs(@,x) + ||IT|lZ

for all z € dom(Qg).
(iii) The inclusion dom(Qg) — H is a compact operator.

Proof. If 0.(S) = 0, then item of Theorem holds for every A > 0. Let ¢ >
0 and find A with 1/\ < e. Then ||z||} < eQs(z,z) + |A\"Y2Tz|| for some compact
T: dom(Qgs) — Z, and of course A\™1/2T is also compact. Conversely, we put € := 1/ for a
given A > 0. Then \|z|% < Qs(x, ) + |[VATz|% with compact T: dom(Qs) — Z, hence
inf 0.(S) > A by Corollary

It remains to establish the equivalence of [(i)| and This is a standard fact in spectral
theory, see [Sch12, Proposition 5.12], but we give here a different proof, based on approximating
dom(Qgs) < H by the compact inclusions from Theorem Assume that |(i)|is true. By
Theorem we have the compact embeddings t;: dom(Qg) N img(Ps([0,k])) — H for
k € N. Put Ty = 1 o Ps([0,k]): dom(Qg) — H, and denote by tr: dom(Qg) — H the
inclusion map. The Tj, k € N, are compact operators, and if x € dom(Qg), then

(toe = Ti)z | = || Ps((k, 00))z|% = (Ps((k, 00))z, ) =

- /(k’oo) d(Ps(t)z,r) < li/(k,oo)(l +t) d(Ps(t)x, z) < %(Hx”% + Qs(x, z)).

It follows that Tj, — too as k — oo in the operator norm of .Z(dom(Qg), H), hence i is also
compact. Conversely, if ¢+, is compact, then so are all 1 = too|img(Ps([0,k)))> @nd Theorem
implies that k < inf o.(S) for all k¥ > 1, hence o.(S) = 0.
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Remark 2.2.4. T heoremand its corollaries are inspired by [BB12, Proposition A.3] and
[Str10, Lemma 4.3]. Both of these references deal with bounded operators, and the transition to
unbounded self-adjoint operators S > 0 is essentially accomplished by studying the bounded
operator S%/2: dom(Qg) — H instead. The article [BB12] treats the bounded operator
version of Corollary while [Str10] considers compact operators (i.e., the analogue of
Corollary , with the inverse of a positive self-adjoint operator in mind (see Proposition 4.2

therein), and also contains references to some similar statements in the literature.

Consider now a Hermitian vector bundle £ — M over a Riemannian manifold M, and a
nonnegative self-adjoint extension A of an elliptic differential operator D: I'(M, E) — I'(M, E).
Apart from the decomposition principle in Theorem one of the main tools used in the
rest of this section will be the following simple property of compact subsets of LP(M, E):

Lemma 2.2.5. Let 1 < p < oco. Suppose that E is a Hermitian vector bundle over a
Riemannian manifold M, and let B C LP(M, E) be a totally bounded (equivalently: relatively
compact) subset. Then for every e > 0 there exists a compact subset K C M° such that

RS
M\K

forall s € B.

Proof. We adopt the proof from [Rupll, Theorem 2.5], where a characterization of the
compact subsets of L?(M) is given, cf., Remark As B is totally bounded there is, for any
given € > 0, a finite subset & C LP(M, F) with B C Ueq{s € LP(M, E) : ||s — t|[1r(ar,) <
¢/e/2}. Since M is assumed to be second countable, its interior M° is exhausted by a sequence
of compact subsetsﬂ Using this, p14(0M) = 0, and the fact that measures are continuous from
below, we see that there exists K C M° compact such that |[xan xtllze(vr,z) < ¢//2 for all
t € F, where we denote by xo: M — {0,1} the characteristic function of Q C M. If s € B,
we find ¢ € F such that ||s — t[|zr(ar,) < ¢/£/2, and it then follows that

<[
<[

1/p
</M\K |s|P dug) < lxank (s = Ollzear,p) + Ixanxtll e (ar, gy < i _ e

Remark 2.2.6. (i) In particular, if T: X — LP(M, E) is a compact linear operator from
a Banach space X to LP(M, E), then the image of the unit ball in X under T is totally
bounded in LP(M, E). Lemma m implies that there exists, for every ¢ > 0, a compact
subset K C M?° such that

/M\K (Tal? dpy < el (2:22)

for all z € X.

2This is true for second countable, locally compact Hausdorff spaces, see |Leel0 Proposition 4.76].
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(ii) One can extend Lemma to obtain a characterization of the compact subsets of
LP(M, E), see |Alb08, Theorem 4.9]E| a subset B C LP(M, E) is totally bounded if and only if
it is bounded, satisfies the conclusion of Lemma and has the property that {s|x : s € B}
is totally bounded in LP(K, E) for every compact K C M.

For the spaces LP(R™), the latter property can be replaced by requiring that, for every
e > 0, there exists 6 > 0 such that [5, [f(z+y) — f(z)[Pd\(z) <e forall f € B and |y| <4,
where A is Lebesgue measure on R™. In this context, the characterization is sometimes called
the Kolmogorov—Riesz compactness theorem. A proof can be found in [AF03, Theorem 2.32]
or [HH10|, with the latter containing comparisons to the Arzela—Ascoli theorem and some
historical notes. When R" is replaced by a Riemannian manifold, then one can use (instead
of translations) diffeomorphisms which are close to the identity in a specific sense, see [Rup11]
for the details.

We are now ready to show our main Lemma for this section:

Lemma 2.2.7. Let A be a nonnegative self-adjoint opemtmﬁ on L*(M,E). For every
0 < A <info.(A) and € > 0, there exists a compact subset K C M° such that

Qa(s:9) = | Oovanc —exilsP dig =3 [ sy —< [ 1o duy
M M\K K

for all s € dom(Q4), where again Xk and Xk are the characteristic functions.

Proof. Denote by P4 the spectral measure associated to A, and let
0 < ¢ < min{inf o.(A) — A\, &/2}.

Put Py := P4([0,\ + 4]). By Theorem the inclusion img(Py) Ndom(Q4) — L*(M, E)
is compact and, by (2.2.2)), there exists a compact subset K C M° such that

13 13
/ (A 3+2)lsf2 duy < Sl + Qs s (2.2.3)
Iy 2 2

for all s € img(FPy) C dom(Q4) and

1/2 5
Pys|*d ) < 2.2.4
([, ol i) = g sey ol (224

for all s € L?(M, E). Here, (2.2.3) is possible since s — (£|s]|2 + Qa(s, s))!/? is equivalent to
the norm on dom(Q4), and (2.2.4) works since Py: H — H is a finite rank projection. Now,

3The result there is only for L*(M, E), but the proof easily carries over to L?(M, E).
4Note that A need not be an extension of a differential operator.
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for s € dom(Qa4),

Qa(s:5) = Qa(Pos, Fos) + Qa((1 = Po)s, (1= R)s)
9 9
2 [ ot )Py = [Py (0 [ 10— PPy >
> (xPos, Pos) + (x(1 — Po)s, (1 — Po)s) (2.2.5)

with x == (A+0+§5)xank — 5§ = (A+90)Xan k — §Xk, and where we have used that x < A+4
to estimate the term with (1 — Py)s. The right hand side of (2.2.5)) is equal to

{(xs:s) = ((Pox(1 = Po) + (1 = Po)xFo)s, s) =
= {xs,5) — (Po(x + 5)(1 = Ry)s, s) — (1 — Po)(x + 5)Fos, s),

where Py(1 — P) = 0 was used in order to replace x by X := x + 5. Moreover,
— (RR(1 = Po)s, ) — (1 — Po)XPos, s) =
= —(Xs, Pos) + (XFos, Pos) — (FPos, Xs) + (XFos, Pos) = —2Re(Xs, Pos)),
the inequality being due to ¥ > 0. Now
124X, Posh| = 2(A + 6 + §)I{xan s, Posh| < 200+ 6 + 5)|1sllxan x Pos|| < d]s]?
by (2.2.4]). Putting it all together, we have shown that
2 € 2 2
Qals,5) > (xs,5) = dls|* = /M (Wi = (5+8) e ) 5P dug > /M<A><M\K — x|l dpg

(2.2.6)
for all s € dom(Q4), as claimed.

The next result is the appropriate generalization of Persson’s theorem |Per60] to our
setting, and gives a characterization of the bottom of the essential spectrum. Its proof is now
an easy consequence of Theorem and Lemma [2.2.7

Theorem 2.2.8. Let A be a nonnegative self-adjoint extension of an elliptic differential
operator acting on the sections of a Hermitian vector bundle E — M owver a Riemannian
manifold. Then for every A < info.(A), there exists a compact subset K C M° such that
info(Aynx) = A In fact,

li]r<n (inf o(App\ k) = infoe(A), (2.2.7)

where the limit is with respect to the net of compact subsets of M°, directed by K1 > Ko &
Ky D Ks.

Proof. If A <0, then we may put K := (). Given 0 < A < inf 0.(A), there exists a compact
subset K C M*® such that Q4(s,s) > )\fM\K 8|2 dpg for all s € dom(Q4) with s|x = 0, see
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Lemma For s € dom(Q,an\ k), we have so € dom(Q4) by Lemma [2.1.4} and
Qa,m\k(8,8) = Qals0,50) > )\/ |s0|? dpg = Al|s||%.
M\K

Therefore, info(Ayng) > A. It follows from Lemma that K ~ info(Ayn ) is an
increasing net, so the limit (2.2.7) exists. Since the above holds for every A < inf o.(A), we
obtain limg (inf o (A k) > inf 0c(A), and by Theorem we also have

ll’lfO'(AM\K) S infae(AM\K) = il’lfO'e(A),
so that equality holds in (2.2.7)).

In case o(A) is discrete, we can use Lemma to construct proper coercivity functions

for 4, in the following sense:

Theorem 2.2.9. Let A be a nonnegative self-adjoint extension of an elliptic differential

operator acting on the sections of E — M. Then the following are equivalent:

(i) The spectrum of A is discrete.
(ii) There exists a proper smooth function v : M° — [—1,00) such that

Qa(s,s) > /M¢|5|2dug (2.2.8)

for all s € dom(Q 4).
(iii) There exists a proper measurable function ¢: M° — [—1,00) such that (2.2.8)) holds for
all s € dom(Qa4).

Proof. Ttem is inspired by [Has14; Twa86; KS02; |Rupll1], where the construction is
done for certain classes of operators, cf., Remarks [2.2.10] and [2.2.11] below. Assume first that
A has discrete spectrum. By Lemma there are compact subsets K C M°, k € N,
such that Q4(s,s) > 2Fk Jarx, |s1? dug — [, 8% dug for all s € dom(Qa). Without loss of

generality, we may assume that (Kj)gen forms a compact exhaustion of M°. For s € dom(Q4),

we estimate

) SR , >y k|s|® dpg — 2% 2dpg ) >
Qu(s:9) = Qa0 = o (f Py 2 [ o) >

Ky
o0 o0 o0
=5 O IR N RUED S SRS Sl B R
kzz:l K1 \Ky, Z 2221 K1\ Ky,

k=1
Let ¢9: M°® — [0,00) be a smooth function with & — 1 < 9|, , \k, < k for & > 1 and
¥o|k, = 0. Then 1) is proper, and 1 :== 1)y — 1: M° — [—1,00) has the properties sought in
items and
Clearly, implies and if ¢: M° — [—1,00) is as in then for A > 0 fixed we
put K = ~1([~1,)\]). Since v is proper, K is compact, and

Qals,s) +[ls|? > /Mw )| dprg > /M\Kw )52 dpg > (A +1) /M\K 1512 dp,
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hence Qa(s,s) > )\fM\K|5]2dug — [ |sI*dug for all s € dom(Q4). It follows that A <
inf o (A k), therefore A < inf o.(A) by Theorem Since A was arbitrary, o.(A) = 0.

Remark 2.2.10. (i) By modifying the definition of K} in the proof of Theorem such
that Qa(s,s) > 2~k Jark, |s1? dug — € [i, |31 dug for s € dom(Qa) and k € N, we see that,
for every e > 0, there is ¢: M° — [—¢,00) smooth, proper, and satisfying (2.2.8). However,
we cannot expect 1 to be nonnegative everywhere in general, since then 0 = Q4(s,s) >
Jas ¥ls)? dug for s € ker(A) implies sy = 0 on the open subset U = ¢~1((0,00)) € M°.
If M is connected and D is of order two, this would imply s = 0 everywhere by a unique
continuation principle of Aronszajn, see |[Aro57] or [Dem12, p. 333, so that ker(A) = 0.

(ii) A statement similar to Theorem says the following: if A has closed range in
L*(M, E), then the discreteness of 0 (Alger(ayL) s equivalent to the existence of a function
Y: M° — [0,00) such that ¢(z) — oo as & — oo and Qa(s,s) > [y, ¥|s|*dugy for all s €
dom(Q4) Nker(A)*. In this case, ker(A) is allowed to have infinite dimension, but the
function 1 can be made nonnegative (and, in fact, bounded from below by inf(c(A)\ {0}) —¢).
The discreteness of spectrum assumption in this statement is equivalent to the operator
(A\ker(A)L)*l being compact on img(A), and extending to a compact operator on L?(M, E).

The proof of this is similar, and can be found in [Has14; Rupll|: Since A has closed range
in L2(M, E), there is C > 0 such that Q (s, s) > C||s||? holds for all s € dom(Q 4)Nker(A4)+ =
Wy, and one can argue similarly as in the proofs of Lemma [2.2.7] and Theorem [2.2.9) by using
the embedding Wy < L?(M, E) instead, where Wy now has the inner product (s, t) — QA(s, 1),
cf., Proposition [1.2.8

Remark 2.2.11. We currently do not know whether it is possible to have a version of
Theorem for the case inf 0.(A) < oo, i.e., whether there exists a proper smooth function
Y: M° — [—1,inf 0.(A)) with Qa(s,s) > [,,¥|s|*dug for all s € dom(Q4). It follows
easily from Lemma that for every 0 < A < info.(A), there is a smooth function
Yx: M — [—1,A] such that Qa(s,s) > [, ¥als|? dug for s € dom(Q4) and Yalang = A for
some compact K C M°. The difficulty of passing to inf o.(A) is that this method does not
seem to allow the construction of an increasing sequence of step functions ¢g: M — R and
compact subsets Kj C M° satisfying or(M \ K) = {—1,A1,...,\x} for some increasing
sequence i, of positive reals with limit inf o.(A), and such that Qa(s,s) > [y, x|s|* dug for
all s € dom(Q4) and k € N. The root cause is that the construction of (K;), <, if done as in
Lemma would depend on the distance of A\; to inf o.(A).

Nevertheless, one might still expect such a 1 to exist, at least for some classes of operators.
For example, it is shown in [Iwa86, Lemma 2.1] that this holds for magnetic Schrédinger

operators on R™, but the proof is tailored greatly to the concrete circumstances.
We next wish to understand better the case where inf o.(A) > 0.

Theorem 2.2.12. Let A be a nonnegative self-adjoint extension of an elliptic differential
operator D: T'(M, E) — I'(M, E) of order at least one. Then the following are equivalent:
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(i) The range of A is closed and dim(ker(A)) < oo. In other words, A is a (unbounded)
Fredholm operator.
(ii) 0 & o.(A) or, equivalently, inf o.(A) > 0.
(iii) There exists a Banach space (Z,||*|z), a compact linear operator T: dom(Q4) — Z,
and a constant C > 0 such that

Isl* < C(Qa(s. s) + I T's|%)

for all s € dom(Q 4).
(iv) There exists a compact subset K C M° and a constant C > 0 such that

Is1F < € (Qatss) + [ Isdy) (2.29)

holds for all s € dom(Q4). In case ker(A) = 0, one can choose K = ().
(v) The quadratic form Q4 is coercive at infinity, meaning that there is a compact subset
K C M° and a constant C > 0 such that

sl < CQals, )
for all s € dom(Q 4) with supp(s) C M \ K.

Proof. The equivalence of |(i)| to is supplied by Corollary If holds, then we
choose A € (0,inf 0.(A)). By Lemma there exists a compact subset K C M° such that

Qals,s) > )\fM\K |s|2dpg — [ |s|* dug for all s € dom(Q4). It follows that

Alsll? < Qals,8) + (A + 1) /K 152 dyg

for s € dom(Qa4), hence 1' holds with C = % If ker(A) = 0, then the inequality
|52 < CQual(s,s) = C||A2s|]? is equivalent to img(A/?) being closed. But if A2 has
closed range, then so does A, hence we may choose K = (). Thus, implies Conversely,
if K C M° and C > 0 are as in then
1
C Jank
for all s € dom(Qa4), so 1/C < inf o(App ). By Theorem 0<1/C <info.(A).
We are left with proving the equivalence of with the rest of the statements. It is clear

thatimplies Ifholds, then we have ||s||? < CQan\k(s,5) forall s € dom(Q 4\ k)
since {s|yn\k : 5 € dom(Q4) and supp(s) € M \ K'} is a core for Q4 pp\ g by definition. Now

(2.2.7)) implies that also info.(A) > 1/C > 0, hence is satisfied.

Remark 2.2.13. One can also replace the proof of the implication |(iv)=(i)| in Theo-
rem [2.2.12 by showing that, for every compact K C M°, the restriction map 7": dom(Q4) —

L*(K,E), s + s|k, is a compact operator, so that implies (which in turn implies .

1-C
Py = =5 [ s dny < Qus.
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Since T clearly is continuous, we only need to show that T' is compact on the dense subspace
dom(A) C dom(QA)H

dom(A) —— HL (M, B) 22, Hi(N, B)
H """"compact_ i( i

dom(A) «————— dom(Q4) Wi L*(K,E)
ense K

Let (sg)r>1 be a bounded sequence in dom(A). Then s, € HL.(M,E) by Remark
and Corollary Choosing ¢ € Cgg(M) such that p|x = 1 and a compact manifold
N C M with boundary containing supp(y) in its interior, we see that (¢sg)x>1 is contained in
H} (N, E), and also bounded in dom(Q 4). By Gérding’s inequality, see |Tay11b, Theorem 6.1],
(psk)k>1 is bounded in the Sobolev space Hé/2(N, E), and Theorem tells us that we can
select a subsequence (s, );>1 which converges in L?(N, E), and hence in L?(K, E). Since
(¢sk; )|l = sk;| K, the claim follows.

The implicationin Theoremis also shown in [MMO7, Theorem 3.1.8] for the
Dolbeault Laplacian (0¥, They do this by showing that implies that every L?-bounded
sequence (sg)g>1 in dom(Q4) with Qa(sg,sk) — 0 has a convergent subsequence, and that
this in turn implies closedness of img(A) and dim(ker(A4)) < oo. Their proof essentially
contains the above argument that the restriction map dom(Q4) — L?(K, E) is compact. In
[MMO7], is called a fundamental estimate.

Remark 2.2.14. Assume that D is essentially self-adjoint on I'c.(M, E), and let A be its
closure. Then I'..(M, E) is also a core for @4, since the inclusion dom(A) — dom(Q4) is
dense and Lipschitz, see appendix Condition of Theorem [2.2.12[ then reduces to the
inequality

sl < C||Ds||

forall s € I'ee(M, E) with supp(u) € M\ K. Thus, Theorem[2.2.12]includes Anghel’s condition
on the Fredholmness of a first order essentially self-adjoint differential operator, see |[Ang93,
Theorem 2.1], as a special case. For conditions on when first order differential operators are
essentially self-adjoint, see section We would also like to mention [BB12, Theorem 1.18],
where a different approach is presented.

Example 2.2.15. Let A and D be as in Theorem If App g > € for some compact
subset K C M° and € > 0 then this implies, by use of , that info.(A) > ¢, so A has
closed range and ker(A) is finite dimensional. A typical situation where this is true is the
following: Assume that D = Dg + V, where Dy is some nonnegative differential operator
and V: E — E is a vector bundle morphism with the property that (Vs,s), > ¢|s|? for
allz € M\ K and s € E,. We say that V is positive at infinity. For instance, one could

5If X and Y are normed spaces, Xo C X a dense subspace, T: X — Y a continuous linear operator such
that T'|x, is compact, then T is also compact. This is because the closed unit ball U :== {z € X : |jz||x <1} is
the closure (in X) of U N Xo, hence T(U) = T(U N Xo) C T (U N Xo), the latter being a compact subset of Y.
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consider cases where the bundle morphism in a Weitzenbock type formula, see , has
this property. If OM = 0, i.e., M = M°, then Qan\k(s,5) = (Dos + Vs, s) > ells||? for
all u € dom(A) NT'(M, E), hence Q4 y\x > € and therefore also Ay g > €, where we have
used that dom(A) NT'(M, E) is a form core for A by Corollary Thus, the conditions
of Theorem are satisfied. Note that in the presence of a boundary, the situation is
made more complicated by boundary integrals occurring in the formula for @) 4. Similarly, the
spectrum of A will be discrete if V() — 0o as © — 00, in the sense that for every A > 0 there
is a compact subset K C M such that info(V(x): E, — E,) > A forallz € M\ K.

Corollary 2.2.16. Let N C M be a measurable subset with the property that the restriction
map rn: dom(Qa) — L*(N, E) is compact. If

Qals,s) > C/ |5 dpg (2.2.10)
M\N
for some C >0 and all s € dom(Q4), then A is Fredholm.
Proof. If s € dom(Q4), then
1 1
o1 = [ sl gt [ o diy < 5 @alss) + [ 1oy = 5(@alsi) + IVEr()]P)
M\N N N

hence the claim follows from Theorem 2.2.121

Example 2.2.17. Suppose that dom(Q4) is contained in H'(M, E) and the inclusion
is continuous. For example, this is the case if A is the form sum (see Example of
ViV and V, where V' > 0 is a nonnegative self-adjoint bundle morphism, and V is the
connection on E used in defining the Sobolev space H' (M, E). If QA(s, s) > C’fM\U |s|? dpug
for all s € dom(Q4), a constant C' > 0, and an open subset U C M for which the embedding
HY(U,E) < L?(U,E) is compact, then A is a Fredholm operator. This is because the
restriction operator dom(Q4) — L?(U, E) factorizes as

dom(Qa) — H'(M,E) — H'(U,E) — L*(U,E).
Of course, relatively compact U satisfy this property, and this gives (2.2.9)), see Remark [2.2.13



CHAPTER 3

The Dolbeault Laplacian and the 0”-Neumann problem

This chapter deals with the Laplacian of the Dolbeault complex, the Dolbeault Laplacian
OF, as well as one of its important self-adjoint extensions, which leads to the 0¥ -Neumann
problem. In section , two formulas for (0¥ are presented: the Bochner-Weitzenbock
formula, which has at its roots the Clifford module structure of AP*T*M ® E and will be
used in applying elements of the theory of Schrédinger operators that will be presented in
section [£.2] as well as the Bochner—Kodaira—Nakano formula. We will only consider these for
Kahler manifolds, although both formulas have their generalizations to arbitrary Hermitian
manifolds. In section we discuss the aforementioned self-adjoint extension of OF and
establish some of its properties. Among these is the fact that the discreteness of its spectrum
“percolates” up the Dolbeault complex under some natural assumptions on £ and M. In
this analysis, the Bochner—Kodaira—Nakano formula is used, and we will have to make some

bounded geometry assumption on M.

3.1. Dolbeault Laplacian and Weitzenbock type formulas

Let M be a Hermitian manifold, with almost complex structure J and compatible Rie-
mannian metric g, and let £ — M be a Hermitian holomorphic vector bundle. On the complex
vector bundle (T'M ®g C, i) we have the Hermitian metric (e, ¢), defined as the sesquilinear
extension of g. Together with the Hermitian metric on E, this induces Hermitian forms on
the bundles A*T*M ® E, which we all continue to denote by (s, ). On functions, we put
(f,g9) = fg, as usual. These also induce a global inner product on Q.(M, E), the smooth
differential forms on M with values in F and with compact support, given by

(u,v) = /M<u,v> dug, (3.1.1)

for u,v € Q¥(M, E), and requiring that (u,v) = 0 if u and v have different degree. In ,
ftg is the measure on M induced by the metric g. Since M is Hermitian, it follows that the
decomposition Q.(M, E) = @, ,Q0(M, F) is orthogonal for this inner product. We will
frequently make use of local orthonormal frames. Usually, (wj);?zl will denote such a frame
for TVOM, with its conjugate frame (@j);‘:l a local orthonormal frame of 791 M. Moreover,
we have the dual coframes (w?)}_; and (@w?)}_; of (T""M)* and (T%'M)*, respectively. We
also refer to appendix
Associated to the Dolbeault complex is the second order differential operator

DF == 0P19F + 97971 = (97 + 9P1)*: Q**(M, E) — Q*(M, E),

45
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called the Dolbeault Laplacian (or simply complex Laplacian), where we denote by
BT Q% (M, E) — Q** " Y(M, E)

the formal adjoint to 0 with respect to (3.1.1). We refer to appendix [B| for the background
on complex differential geometry, including the definition of 8¥. The principal symbol of OF
reads

1
Symb (OF) (é)u = —ins(gu)o,l(50’1/\u)—§0’1/\ins(£u)o,1(u) = (01 0Ly gy = —§|§]2u, (3.1.2)
forall ¢ € Ty M CT;M ®@r C and u € A**T M ® E,, see (B.3.6)) for the principal symbol of
0F, from which
Symb (01 (&)u = — ins(esyo.1 (u) (3.1.3)
follows, and (B.2.2) for the last equality in (3.1.2). In (3.1.3), insy for Z € TM ®g C is the
insertion operator from (A.0.1)). It follows from the above that 200% is an operator of Laplace

type, meaning that its principal symbol is Symb (207) (&) = —|€|? idar+ peE, See sectionm
Consequently, v/2(0F + 9%71) is a Dirac type operator.

3.1.1. The Bochner—Weitzenbock formula for the Dolbeault Laplacian. From
, we know that v/2(9% + 9%1) is a Dirac type operator in the sense of section m
On a Kahler manifold (see appendix , this is an important example of a Dirac operator
associated to a Dirac bundle in the sense of Definition In fact, we have the following
result (see for instance [BGV04, Proposition 3.27)):

Proposition 3.1.1. Let M be a Kdhler manifold, E — M a Hermitian holomorphic
vector bundle, and 0 < p < n =:dimc(M). Then

ep(Eu = V2(E Au— ins ye0.1y(u))
defines a Clifford module structure on AP*T*M & E such that (AP*T*M ® E, M, cp,ﬁ) is
a Dirac bundle, where V is the connection induced by the Levi—Civita connection on T M
(equivalently: the Chern connection, see Theorem and also Ezample and the
Chern connection on E. The Dirac operator associated to this structure is
DE — /3(9F + 9P+,
Proof. Let uw e AP*T*M ® F and £ € T*M. Then
cp(€)*u = —211'18(’:150,1)(&-0’1 Au) — 2601 A ins(geo.1y(u) = —€|%u,

see l) s0 ¢p is a Clifford module structure. We have ¢,(§)* = \@(ins(gm)n (u) — €% Au) =
—cp(§), hence ¢,(§) is skew-Hermitian. Finally,

Vx(ep(@)u)) = vV2Vx (@®t Au — ins 0.1y (1)) =
= ﬁ((VXa)O’l N u—+ a%t A Vxu— ins(u(vxa)o,1)(u) - ins(ﬁao;)(vxu)),
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for every a € QY (M) and X € I'(M, TM), which equals ¢(Vya)u + c(a)(Vxu), as required.
Note that the Kihler assumption entered when we used Vx(a®!) = (Vxa)®?, i.e., the Levi-
Civita connection preserves the splitting TM ®@gr C = THOM @ T%' M, see Theorem
Thus, (AP*T*M ® E, M, ¢,, V) is a Dirac bundle.

It remains to compute D¥ := ¢, 0 V. Let {w;}}—; be alocal orthonormal frame of 7™ oM.

Then we have the orthonormal frame {e;}3", of TM, defined by egj i1 = %(w] +w;) and

e%:%m_@LWIM&ByBw,mmmW:WA%@mmszmAz3
and Proposition [A:2.2] we compute

FE —E* _(—i\e_ —E .
oFt = % (W) Vg, = —insg; Vau,,

with *% and *F” the Hodge star operators. Therefore,

2n
DF = cp(ek)ﬁek
k=1
= Z (Cp< 2 1)662]- y +ep( 2j)vezj)
j=1
1 . = i =
- \/§Z 5( e(w’) — insg, )V, 4w, + i(e(@’) + insz; ) Viw,—w,))

!
5
™=
g%
?

inSE]. %w]-) = \/i(gE + 8E7T)7

where we refer to (B.2.4)) for the expressions of the dual basis {e*}77,.

It follows from Proposition [3.1.1 and Theorem [I.1.14] that, on a Kéihler manifold, we have
the Weitzenbock type formula QDE (DF)2 = AN T MeE + cp(RATTT"MBEY on P (M, E).
The curvature term is made explicit in the following Theorem. The case p = 0 can also be
found in [MMO7, Theorem 1.4.7], from where the presentation of this formula is motivated.
If the Kéhler assumption is dropped, then the zeroth order term becomes more complicated
and involves the torsion of the Chern connection on 7'M, see [MMO7| for the details.

Theorem 3.1.2. For a Hermitian holomorphic vector bundle E over a Kdahler manifold
M, we have

o00F = ANTTTMEE | g E (3.1.4)

on QP*(M, E), where ANTTTM®E s the Bochner Laplacian (see Example associated
to the connection induced from the Levi—Civita connection on T M and the Chern connection



48 3. THE DOLBEAULT LAPLACIAN AND THE §®-NEUMANN PROBLEM

on E, and the bundle endomorphism K¥ = cp(RAp"T*M@E) of AP*T*M @ FE is given by

n n
— ZidAp,oT*M @RE (w;,w;) + Z {2 e(w") insg, @RE (w;, W)+
j=1 k=1

+ te(RT M (wj, @) (@) insg, +e(w’ ) insy, ) —

= 2RT M (wy, Wy )wy, w) e(w') s, £(@) insg, }, (3.1.5)

with {w;}1_; a local orthonormal frame of T'OM.

While we will not need the exact form (3.1.5) of X%, we nonetheless supply a proof here.
It will be split into several lemmas.

Lemma 3.1.3. If M and E are as in Theorem[3.1.9, then

n n
fKE [ ZRAP,'T*MQ@E(wj’wj) + 9 Z s(wk) lIISw RAP .T*M®E(’LUJ‘,W]§). (316)
Jj=1 Jik=1

Proof. Given (w;)7_, let {ex}3™, be the orthonormal frame of TM from (B.2.3), and
abbreviate R := RA"*T"M®E 45 well as ¢ = ¢p- From the defining property of Clifford module
structures and the fact that R is alternating, we know that

(€M) e(€® ) Rlezj-1, ear) = c(e™)e(e¥ ) R(eap, e2j-1)

for all j and k. Moreover,

R(egj, ear) = R(Jegj—1, Jea—1) = R(ezj—1, €25-1),

because R is a (1, 1)-form, see Proposition and Remark [B.3.6] By (1.1.17)), and using
the above symmetries, we have

XP = % z": {(C(ezj_l)C(e%_l)+c(62j)c(62k))R(€2j—1762k—1)+20(€2j_1)C(ezk)R(e%—l’62’“)}'
k=1
Note that
(¥ ) = (@) —insg; and  c(e¥) = i(e(W) + insg;). (3.1.7)

Short calculations show that (with implied summation over j and k)

(c(e2j*1)c(e2k71) + c(e )R(egj 1,€26—1) =

—(e(w) insg, + insg, £(@")) (R(w;, W) — R(wg,0;))
—(e(@) insg, +dj5 — (@) insg; ) (R(w;, @y) — R(wg, W;))
-2

(@) insg, R(w;, W) + 2&(@) insg,; R(w;, W)
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and

C<62j_1)c(62k>R(€2j_1,62k) =
= i(e(@) e(@*) + (@) ins, — insg, e(wh) — insg; insg, )o
o (— sR(wj, wg) — R(wy,W;))
_ %(e(mﬂ') insg, — 8k + g(mk) ins, ) (R(w;, @) + R(wy, ;)

=— Z R(w;,w;) + Z 7) insg, R(w;, @) + (@) insg; R(wj, Wg)),

where the terms with e(w/) e(w") and insy, insg, disappear because R(wj;,wy) + R(wy, w;)
is symmetric in (j, k). Putting these together, we arrive at

ZR wj, W, +2Z ) insg, R(wj, W), (3.1.8)

which is what we wanted to prove.

Remark 3.1.4. A different way to establish (3.1.6) is to work with the orthonormal basis
{w;,w;}7_; of TM ®@g C directly. To this end, one has to first complexify the Clifford action,
i.e.,

E(O)u = V2(% Au— ins(@o,l(u))

for £ € T*M ®C. (Note the complex conjugation in the second term, which makes ¢, complex

linear.) The Clifford relations are then

& (§)ep(n) + & (n)p(8) = —2(&, M),

and applying (1.1.17)) gives (3.1.6)) after some computations.
Lemma 3.1.5. Let M be a Kihler manifold. Then
— RAVTM (. 70;) + 2 (@) insg, RY T M (w;,wy) = tr(RT "M (wj, wy,)) (W) insa,

(3.1.9)
on AO*T*M

Proof. We abbreviate R = RA™T*M 4 avoid unnecessary clutter. We claim that it is
enough to show that ([3.1.9) holds on A®'T*M. To see this, define an endomorphism of
A%*T*M by

Ky = 2¢e(w") insy,; R(w;, W),
which is just the second term in (3.1.9). We first show that K; acts as a derivation, in the

sense that

Ki(anp)=KiaANB+aNKip (3.1.10)
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for all a, B € A%*T*M. To show (3.1.10), note that R(w;,wy) and e(w*) insg; satisfy this
derivation rule (see Example [A.1.8)), hence

5(:1(05/\,3) —KiaANB—aANKip=
=2(w" A insg, (@) A R(wj, Wk) B + 2R (w;, Wy ) A (@® A insg;, (6)). (3.1.11)

fa=a;AN---Nagand 8= 1 A--- A By are the wedge products of one-forms, then the right

hand side of (3.1.11) is

> i: 1)rrstag(@h A insg; (ar)) A R(wj, Wg) Bs + R(wj, W)y A (w® insg; (Bs))) A

r=1s=1

Nay A~ NG A NaghABLA--ABr A A By.

Therefore, to establish (3.1.10)), it suffices to show that the right hand side of (3.1.11]) vanishes
for o, € A®'T* M. Plugging in o = w* and = w’, the right-hand side of this equation is

2" A R(we, @)W + 2R(wp, W )T AT = 20" A (R(wa, Wi )T — R(wy, Wy,)W0).
Now, by (A.1.13]) and Remark
R(wa, W)@" = (RT" M (@, wy)wp)” = (R™ (@4, wi)w,) "),

and using the first Bianchi identity (A.1.14)) for the Riemann curvature tensor as well as the
fact that R™™ is a (1,1) form, we find

R(wa, W)w" = —((R™ (wy,, wy)w,)"")" =
= —(R™""™M (., wy)W0,)" = —R(W, wp) 0" = R(wp, Wy,)W
This shows (3.1.10)), and since —R(w;,w;) and the right-hand side of (3.1.9) clearly also have
this derivation property, it suﬂices to show (3.1.9) only on A®1T*M.

Now the left-hand side of , evaluated at w* and expanding R(w;, w;)w* in the
orthonormal basis {w’}7_, as Zé( (wj, Wy,)w*, W)W, equals

- Z (wj, @;)@®, @ )" + 2 Z wj,ﬁk)w“,@£>€(@k)ins@j (w') =
7,k,0

=2 (= (R(w;, w))o", w¥)yw + 2(R(w;, wy)w?, w)yw*). (3.1.12)

By (A.1.11) and (A.1.14]),

(R(wj, we)w”, w0’ ) = —(R(wj, W) W;,Wa) = (R(W;, w;) Wk, W) =

= —(R(wj, wj)w",w") = (R(w;, w;)w", w"),
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so that (3.1.12)) is equal to
> (R(wj,w;)w”, w")yw"

j’k
= —Z (wj,wj) W, W)W by (A.1.11))
=— Z (W, wa )wj, w; )T by pair symmetry, (A.1.15)
= Z(R(wa,wk)wj, w;) " since R is alternating
j7k
1,0 _ .
= Ztr(RT M (w,, ) o"
k
=" tr(RT"M (wy, wy)) W A insg, (@?),
Jik
as claimed.

Lemma 3.1.6. Let M be a Kdihler manifold. Then

n

~STORMMTM (g ) = 3 (BT M (), wy)) e(w) insy, (3.1.13)
j=1 Jk=1

on A*OT*M

Proof. Put R = RAYT"M Gince both sides of (13.1.13)) satisfy a derivation rule similar to
(3.1.7), we only have to show the claim on AMT*M and there we have

— Z R(Wy, Wy )w® = — Z (R(Wpn, Wy )w®, w? Y
m=1 jm=1

(R(Wny, Wiy )wy, wa>wj

I
3]

.
[y

(R(wj, W)W, wm>wj

I
M=

3
I

tr(R(w;, W) )w! A insy, (w®)

S
ol
Il
-

Il

similarly as the computation at the end of the proof of Lemma [3.1.5

Proof of Theorem[3.1.3. By Lemma and Example
n n
J(:E = — Z idAo,oT*M ®RE(’U)], @]) —+ 2 Z E(wk) ins@j ®RE(UJ3, wk)—
=1 jk=1

=Y RMTTM(wy ) @idp+2 Y (R M (wy, wy) e(@") insg, ) @ idg
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If « € A*OT*M and g € A%*T*M, then

— R(w;,@;)(a A B) + 2R(w;, W) e(@") insg, (A B) =
= —R(wj,w;)(a) A B+ 2R(wj, W) (o) A s(wk) insg, (8)+
+a A (= R(wj, ;)8 + 2R(w;, @) e(@") insg; (6)).

By Lemma the last term equals tr(RTl’OM(wj,Ek)) (w*) insg;, (o A B), and the first
term in the second line is —R(w;,w;)(a) A B = — tr(RTl’OM(wj,@k)) e(w?) insy, (a A B), by

Lemma [3.1.6] It remains to prove that
2R(wj, wy) (@) A (@) insg, (8) = —2(RT"M (w;, Wy )we, wi) e(wh) ins,,, e(@") insg, (o A B),

and for this it suffices to show

RTI’OM(

R(wj,w)a = —( W;, W) Wwe, Wy ) £(wh) insy,, ().

As in Lemma it is enough to show this for o € AY9T* M, and this is revealed to be true
by a calculation very similar to the one in the proof of Lemma [3.1.6

n n

R(wj, w)w® = — Z(R(wj,@k)wg,wa)wz = — Z (R(wj, Wg)we, wm)wZ A insy,,, (w®).
/=1 l,m=1

This completes the proof.

3.1.2. The Bochner—Kodaira—Nakano formula. We can, more generally, ask for
useful formulas expressing [0 as the sum of some other second order operator of Laplace type
(other than a Bochner Laplacian) and a vector bundle morphism. An important example of

this is the Bochner—-Kodaira—Nakano formula:

Theorem 3.1.7 (Bochner-Kodaira—Nakano formula). For a Hermitian holomorphic vec-
tor bundle E over a Kdhler manifold (M,w), we have

OF = (dFydly + i dPo) + iR ey, Al, (3.1.14)

where A: A**T*M @ E — A*~b*~IT*M ® E is the adjoint to v — w A u, the wedge product
Nev ©s combined with the evaluation map (see appendiz , and [e, *] is the commutator
of endomorphisms.

In , d¥ denotes the exterior covariant derivative associated to the Chern connection
on E, with (1,0)-part dfo (and (0, 1)-part 0F) and dﬁg is its formal adjoint, see appendix
for the details. The proof, see [MMO07, Theorem 1.4.11] or |[Ohs15|, Theorem 2.7], is usually done
by applying the so-called Kdhler identities, which are formulas for the commutators between
the operators 0F, dfo, (w), and their adjoints. For instance, [07, A] = idﬁg. In case E is the
trivial Hermitian line bundle, one furthermore shows that 200 := 2(90" + 919) is equal to the
Hodge Laplacian dd' + d'd, see for instance [Bal06, Corollary 5.26]. Formula (3.1.14) has an
extension to Hermitian manifolds that are not Kéhler, with additional torsion terms occurring.
This is due to Demailly [Dem86], and a proof can also be found in [MMO7, Theorem 1.4.12].
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The goal of this section is to obtain and understand an integrated form of in the
case where M is an open subset of a larger manifold M’, with smooth boundary M C M'.
We emphasize again that, unlike in chapter 2] M does not contain its boundary. The closure
M of M inside M’ is then a smooth manifold with boundary.

Definition 3.1.8. Suppose that U C M is a (relatively) open subset. We define
By (U, E) = {u € Qc(U, E) : ins(,0,1)(u)|oprrv = 0}, (3.1.15)

where v is a unit normal vector field to M, and we write %! = %(V +iJv) for its component
in T%' M. We denote by BY/ (U, E) the forms of bidegree (p,q) in By (U, E).

Remark 3.1.9. The spaces By (U, E) are closed under the multiplication with elements
of C*(U), and if u € By(U, E), then also insx(u) € By(U, E) for every vector field X €
I'(U,TM ® C), since insertion operators anticommute, i.e., insx o ins(,0,1y = —ins(,0,1) 0 insx.

The Levi form of a hypersurface. Let S be a (real) hypersurface of M’, i.e., a submanifold
of codimension one. For z € S, put H,S = 1,5 N J(1,S). It is the part of 7,,S that is
invariant under the ambient complex structure J of M’, and it is referred to as the complex
tangent space of S at x. Since S has codimension one, it turns out that x — dim(H,S) is
necessarily constant, and HS = J,cq HS is a (real) vector subbundle of T'S, with rank
2n — 2, where n is the complex dimension of M’. The eigenbundle of the restriction of J to
HS ®gr C associated to the eigenvalue +1 is

HYS = (T"OM")|s N (TS @R C). (3.1.16)

Note that the complex rank of HS ®p C is 2n — 2, hence that of H'0S is n — 1. We can now
define the extrinsic Levi form as in [Bog91, p. 160]:

Definition 3.1.10. The (extrinsic) Levi form of a hypersurface S C M’ is defined as
L1 T(S, HOS) x T(S, H'OS) - T(S, NS @2 C), (X,Y) — —%WNS@)R@(J[X, 7)),
with NS — S the normal bundle, and mysg.c: (TM' ®r C)|g — NS ®g C the projection.
Note that Zs is actually tensorial, i.e., sesquilinear over C*°(.S, C). For instance, we have
Z5(X.Y) = L25(X, V) + V(f)gemnsenc(TX) = FL5(X,Y)

because H'*S | NS ®g C in (TM’ ®g C)|s. Therefore, Zs(X,Y)(x) only depends on the
values of X and Y at x € S, and we may view it as a vector-valued quadratic form

Lo HOS xg HYWS — NS @ C.

Suppose that S is orientable. If v is a unit normal vector field (i.e., a unit norm section of
NS), then Zs(X,Y) = —%(J[X,Y],v)v. After making the choice of an orientation of S (i.e.,
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picking a particular unit normal vector field v), the Levi form evidently contains the same

information as the quadratic form

(X,Y) = (Ls(X,Y),0) = —%u[x,?],m (3.1.17)

on H'°S. The Levi form may also be defined intrinsically and generalizes to (and is important
in the study of) abstract CR manifolds, which are pairs (M, L) with M a smooth manifold and
L an involutive (its local sections are closed under the Lie bracket) subbundle of TM ®g C
such that L, NIL, = 0 for all z € M. For a (real) hypersurface S in a complex manifold, the
pair (S, H0S) is a CR manifold. We refer to the literature for details on the definition and
more properties, e.g., [Bog91].

Suppose now again that M is an open subset of M’ with smooth boundary OM. Then
OM is orientable with the inward pointing unit vector field to M given by v = —(dp)F, where
f: T*M — TM is the musical isomorphism and p € C°(M’,R) is a defining function for M,
i.e., M = p~1((~00,0)) and |dp| = 1 on OM = p~1({0}). It follows from that, in

holomorphic coordinates (21,...,2,) around x € M, a vector W = 377 4 wja%j‘x e THoM'
belongs to H:°(OM) if and only if
> A (@)w; = 9p(W) = dp(W) = 0, (3.1.18)

see also [Bog91, Lemma 2, p. 100]. In terms of the defining function, the Levi form of M

reads
Lont(X,Y) = (90p(X,Y))v = —(99p(X, ¥)) (dp)", (3.1.19)

see [Bog91} section 10.3], since

(JIX,Y],v) = —dp(J[X,Y]) since v = —(dp)*
= —(Jdp)([X,Y])
= —i0p([X,Y]) +i0p([X,Y]) since d =0 + 0

= —i(—dop(X,Y) + X(9p(Y)) — Y (9p(X)))

+i( —dop(X,Y) + X (0p(Y)) —Y(0p(X))) by (A.15)
= —2i00p(X,Y) +iY 0p(X) +iX (0p(Y))
= —2i00p(X,Y),

where in the last step we have used (3.1.16]) and that dp and dp annihilate T(OM) @r C. We
can extend the Levi form to act on (p, ¢)-forms in the following way:

Definition 3.1.11. For u,v € By/(M, E), we define Z(u,v): 9M — C by

n—1

L(u,v) = > (Lonr(€r &), ) (€ Ninsg (w),v), (3.1.20)
G k=1
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n— l

where v is the inward pointing unit normal vector field to M and {gj is a local orthonor-

mal frame of H?(OM).

Note that if {£;}72 ! is as in Definition[3.1.11} then {¢;(x) ?:_fu{ul’o(x)} is an orthonormal
basis of T}OM', see 13.1.16 . Moreover, ins—r5(u) = ins,01(u) = 0 for u € By (M, E) by
definition, hence, using ((3.1.19)),

n
L(u,v) = Z D0p(wy, ;) (W A insg, (u),v) (3.1.21)
jk=1
holds for every local orthonormal frame {w;}7_; of (T"OM")[aa; (see [MMO7, Definition 1.4.20]).
By construction, this is independent of the particular defining function used. If {w; }7]?:1 is
an orthonormal frame of T"OM'|9ys over V. C OM such that d0p(wy, ;) = s;0,) for some
si: V= R, and if u(x) = (W A+ Awlr AWM A -+ AwF)(2) at @ € V, then

2 (u,u)(@) = (s, (@) + -+ s, (2)) [u(2)
as is easily seen from (3.1.21]).

Definition 3.1.12. An open subset M C M’ of a Hermitian manifold with smooth
boundary M C M’ is called Levi pseudoconvex at x € OM if (Lyn (X, X),v) > 0 for all
X € H}O(OM), where £y is the Levi form of OM, see Deﬁnition and v is the inward
pointing unit normal vector field to M. If M is Levi pseudoconvex at every x € M, then

M is called Levi pseudoconver.

In other words, M is Levi pseudoconvex if and only if the quadratic form (Zsps(e,#),v)
on HY9(OM) from is positive semidefinite for the choice of orientation provided by
the inward pointing unit normal. If p: M’ — R is a defining function for M, then looking

t (3.1.19) we see that this is the same as having an everywhere nonnegative lower bound of
(X,Y) = 00p(X,Y) on H“°(OM). Using the coordinate description of HYO(OM),
this is the case if and only if

Zazjazk Jwjwg >0,  (w1,...,w )G(Cnmthz ] Jwj =0

for all x € OM and arbitrary holomorphic coordinates (z1, ..., zn) of M’ around z. Often,
this is the way Levi pseudoconvexity is introduced in the first place, see for instance [Str10,
p. 22] or |CS01, Definition 3.4.1].

Remark 3.1.13. There are also other notions of pseudoconvexity for complex manifolds
M. One of them is the existence of a smooth function v: M — R such that 190 is a Kéhler
metric (i.e., positive definite) and with the property that {x € M : ¢(z) < ¢} is compact for
all ¢ € R. In other words, v is a strictly plurisubharmonic exhaustion function. It was shown
by Grauert in [Grab8| that this is equivalent to M being a Stein manifold. This means that M
is holomorphically convex, and local holomorphic coordinates can be obtained as restrictions
of global holomorphic maps from M to C", with n the complex dimension of M. The detailed
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definition and more about Stein manifolds can be found in the literature, for example in
[Hor90]. The above notion of pseudoconvexity agrees with Levi pseudoconvexity in case M is
a bounded domain in C™ with smooth boundary (see textbooks on several complex variables,
for instance [Kra01]), but fails for smoothly bounded domains in general manifolds. We refer
to the survey articles [Nar78; Sib17| for more on this subject.

Equivalent to Levi pseudoconvexity is the condition £(a, ) > 0 for all « € B} (M, C),
as can be seen from ([3.1.20). This makes it easy to generalize this notion:

Definition 3.1.14. An open subset M C M’ of a Hermitian manifold with smooth
boundary M C M’ is called q-Levi pseudoconvez if £ (a, o) > 0 holds for all o € B?\f (M,C).

Remark 3.1.15. Note that, according to this definition, every smoothly bounded open
subset M C M’ is n-Levi pseudoconvex, with n the complex dimension of M’. Indeed, every
Q€ BR/’["(M, C) must vanish on M, for if {w1, ..., w,_1,v/2v"%} is an orthonormal frame of
TYOM' and a = faw1 A - AWp_1 A V%! for some smooth function f, then ins,o1(a)|gnr = 0
means f|ay = 0, hence algpr = 0.

Strong (q-) Levi pseudoconvexity is defined in a similar manner, by requiring the corre-
sponding strict inequalities to hold. As in Remark if Z(a,a) >0 for a € BR}II (M,C),
then this inequality continues to hold for o € BY#(M,C), with ¢ > 1. Following the same
reasoning, if M is ¢-Levi pseudoconvex, then it is also ¢’-Levi pseudoconvex for every ¢’ > q.
It is easy to see that M is ¢-Levi pseudoconvex for ¢ < n — 1 if and only if the sum of the
first ¢ eigenvalues of the Hermitian form (with respect to (e, ¢)) are nonnegative.

The global Bochner—Kodaira—Nakano formula. We will now derive an integrated form of
the Bochner-Kodaira—Nakano formula (3.1.14)), where the occurring boundary integral will
feature the quadratic form .Z from Definition [3.1.11} In the presented generality, it is available
in [MMO7, Theorem 1.4.21], from where our proof is mostly taken. We mention that Ma
and Marinescu consider not only the Kéahler case, but general Hermitian manifolds, and the
integrated formula on these manifolds will again feature torsion terms. The formula is simplest

n (n,q) forms, so we will discuss this case first. Put

QF (u,v) == (8Fu, dPv) + (8% Tu, 0% 1v)

for u,v € By (M, E). Later, we will extend Q¥ to become the quadratic form associated to
a self-adjoint extension of OF.

Theorem 3.1.16 (Global Bochner-Kodaira-Nakano formula). Let E be a Hermitian
holomorphic vector bundle over a Kdihler manifold M', and let M C M’ be an open subset
with smooth boundary OM C M' in case M # M'. Then

QP (u,u) = |drgull® + (iR Ny Au,u) + [ ZL(u,u) dpon (3.1.22)
oM

holds for all u € BY;* (M, E).
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Remark 3.1.17. For smoothly bounded open subsets of C", equation ([3.1.22)) is also referred
to as the Morrey—Kohn—Hormander formula, see [Str10, Proposition 2.4] or [CS01, Proposi-
tion 4.3.1]. Original works include [Hor65; Mor58|, but see [Str10] for extensive references.

In order to show (3.1.22]), we need a Lemma:

Lemma 3.1.18. Let E — M be a complex vector bundle over a smooth manifold, with
connection V¥ and induced exterior covariant derivative d¥. If {ej}g"zl is a local frame of
TM ®gr C, orthonormal with respect to a Hermitian metric (s,o) on TM ®r C, and X €
(M, TM ®g C) is a complex vector field on M, then

d¥ oinsx + insy od? = (VZ;MX, er) e(e’) o ins,, +Vx, (3.1.23)

where VIM s any torsion free connection on TM, extended complex linearly to TM @ C,
and V is the induced connection on AT*M ® E.

If M is oriented Riemannian, VT™ is the Levi-Civita connection, (o, ) is the induced
Hermitian metric on TM ®@g C, the bundle E is Hermitian with compatible connection V¥,

then also
dPToe(a) +e(a) o dPT = —(ej(aler)) — a(VZjMek)) ins,, oe(el) — ﬁg. (3.1.24)

for every one-form a € Q' (M, C).

Remark 3.1.19. If « € Q(M) and s € I'(M, E), then a simple computation using the
definition of d¥ and Cartan’s formula

doinsy +insxod =Lx on Q(M),

with Lx the Lie derivative, shows that (3.1.23) applied to o ® s, with a € Q(M) and
s € I'(M, E), is equal to

(dF oinsy +insx od?)(a ® s) = Lx(a) ® s+ a @ Vs,

We derive ([3.1.23)) in order to easily compute its adjoint formula (3.1.24]).
Proof of Lemma[3.1.18. We have d¥ =coV =¢(ef) o 6%, see (A.1.6). Therefore,

d¥ oinsy +insy od? = E(ej) o (ﬁej oinsy —insy oﬁej) + insX(ej)ﬁej.

Now

. . < . M TM :
Ve, oinsy —insx oV, =ins(Ve, " X) = (V" X, ep) inse,

and

iHSX(ej)ﬁej — <X7 ej>€ej = 6<*X7€j> = VX

€j
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This shows (3.1.23). For M as in (3.1.24)) we have available the Hodge star operator, see
appendix Propositions [A.2.1{ and |A.2.3| imply that, on Q'(M, E*),

*

" 0 dP oinsy +%F oinsy od? =
— (_1)ldE,T O;E* OiIlSau +(_1)l€(a) O;E* odE* _

= —dPToe(a) oxF" —e(a) o d®ToxE".

By (3.1.23)) and Propositions [A.2.1] and [A.2.2] this equals,

—<VZ;MOéﬁ, er) e(e?) o ins,, oxt" — 6an oF = _;E*Wins@ og(eF) =% o 6@.

Finally, (VEMa#, e) = (e, VeTjMaﬁ> = ¢;j((ex, a)) — <VZ;Mek,aﬁ> = ej(aler)) — a(VZ;Mek).

Proof of Theorem [3.1.16. We proceed as in the proof of [MMO7, Theorem 1.4.21]. Note
that for u,v € Q.(M, E), we have

(9 u,0) = (0.95) — [ (Semb(@)0 ), ) dig =
oM

= (u, dFv) + /8M<ins(yo,1)(u),v> dusnr  (3.1.25)

by Green’s formula 1.1.14) and because the principal symbol of 9% is ¢ — — inseryo1,
see (3.1.3) Therefore, 0% Tul|? = (9¥0%Tu,u) if u € By (M, E). For u € By (M, E),
Theorem [3.1.7]and (1.1.14)) imply

QF (u,u) = (9%u, dFu) + (0% Tu, 8% Tu)

— (OFu,u) + / (Symb (35) (1) (BF). u) dpsons
oM

= (dfodrpu u) + (iR Aey Au,u) + /8 M(Symb@E’T)(Vb)@EU)M dpon

= ldfull® + (iRF ey Au, u)+
+ / ((Symb(251) (1) (8Fu), u) — (Symb(d¥o) (1) (dfw), u)) dpons.
oM
(3.1.26)

It remains to compute the boundary integral. We have Symb (dfo)(yb)u = (V") ONu = —dpAu,

hence the integrand in (3.1.26)) is
{(—ins 01 0¥ 4 £(dp) o dfg)u, u).

Denote by 11, ,: A**T*M @ E — APT*M ® E the projections. Since (9p)? = —10 = 01

Lemma [3.1.18 implies that, for every local orthonormal frame {e; 3221 of TM ®g C,

(— ins, 0,1 0o + 5(6P) © dibT)u
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= (—ins,01 oIl g1 0d¥ 4+ €(dp) o1 40 dPT)u
= 11, 4(ins, 0.1 0d? — £(9p) o ¥ )u
= fﬂmq( — dE 0ins, 0,1 +dE’T o 6(ap) + 6,,0,1 + 6,1,0,1
+ <Vej1/0’1, er) e(€?) oinse, +(e;(Op(er)) — Op(Ve,er)) inse, oe(ek))u
= —Hn’q(<vej v er) e(e?) o inse, +(ej(9p(ex)) — Op(Ve,ex)) inse, o z-:(ek))u,
where in the last line we have used ins,o1(u) = 0 and dp A u = 0 since u € By'(M, E).

Let {w;}7_; be a local orthonormal frame of TYOM. Then {ex}3", = {w;, w;}7_ is a local
orthonormal frame of TM ®r C, and

Hn,q<Vej Ot k) e(ej) ins,, (u) = qu(Vej Ot W) s(ej) insg, ()

= <ij Vo’l,wk> E(Ej) insﬁk (’U,)
as well as
(j(Dp(ex) = Op(Ve,en) inse; e(€")u = (¢ (Op(wr)) = Op(Ve,w)) inse, e(w")u = 0

since Op is a (1,0)-form and e(w*)u = 0. Finally,

= —(@", (Vg, ")) since (X,Y) = (Y°, X”)

= (w", V., 0p) since VX’ = (VfX)b

= W since (a, X°) = (X, o) = a(X)
= (Vg,;0p)(wi) since all operations are C-linear
= w;(0p(wy)) + Op(Ve,;wy,) by the definition of Vg, dp
=w;(0p(wy)) + Op([W;, wi) + Vi, W;) since V is torsion free
=w;(0p(wy)) +wi(9p(w;)) + Op([wj, wy]) since Ip(w;) = Op(Vuw,w;) =0
— (d0p) (i) by

= (00p)(wj, wg) = (00p)(wy, W), since d = 9 + @ and 99 = —00

which completes the proof.

Remark 3.1.20. On A™*T*M ® E, the operator iR Ay A which occurs in (3.1.22) has
the form

iRY Aoy Au = RE (w;, W) e(W") insg; (u), (3.1.27)



60 3. THE DOLBEAULT LAPLACIAN AND THE §®-NEUMANN PROBLEM

with {w;}7_; a local orthonormal frame of TYOM. To see this, note first that the Kéhler form

w has the local expression

12n

w=g Z w(er, em) e Ae™

I,m=1

n
:722( JeQ]aem 6]/\6 +9(J€2] 1,€m) 2j_l/\em>
j=1m=1

1 & ~ :
5 Z ( —g(ezj—1,€em) e N e™ + g(ezj, em) et A em)

with {6[}1221 as in (B.2.3), and where we have used that Jey; = J262j_1 = —eg;j_1. Conse-
quently,

n n
A=—i) insg, ins,;, =i )  insy, insg, . (3.1.28)

j=1 j=1
Similarly, one checks that RF = RF(w;,w;) w’ A wF. Now
(w™

iRE Ny A = RE (w,,, W) € )5(wk)1nsw insy, = RE (wj, @) e(w k)lnsw]

after (anti-)commuting the exterior products and the insertion operators, and using that

e(w™)insy,; = Opmj — insy, e(w™).

Example 3.1.21. Let L — M’ be a Hermitian holomorphic line bundle over a complete
Kéahler manifold, and let M C M’ be a g-Levi pseudoconvex open subset with smooth boundary.
The curvature R” may be identified with a real (1, 1)-form on M, see Example and if x €
M, then by Remark |B.3.4] - applied to a unit norm element of L,) one can find an orthonormal
basis {w;}7_; of TEOM such that RY(wj,wy) = sj(z) 8, idy, for some numbers s;(z) € R,
which we order such that s; < --- < s,,. Consequently, if u=w! A--- Aw? AW A--- AW,
then

iRY Nev Au = (sj, () + -+ + 85, (2))u
by , hence
(IR Aoy Mt} > (s1(2) + -+ + () u?
for all w € A™TM ® L,. This and implies

QF (u,u) = ||dfgu||2 —l—/ (iR* Ney Au,u) dpg +/ L (u,u) dpyn (3.1.29)
M oM

> / (514 - + 59|l dyig (3.1.30)
M

for all w € By'(M, L).
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General bidegrees. The global Bochner-Kodaira—Nakano formula (3.1.22)) has an extension
to (p, q) forms for 0 < p < n, with a term involving the curvature of 719 M occurring. Consider
the morphism of complex vector bundles

O: (A*T*M @ E) @ A" POTM — AP*T*M @ E, ®(v®¢€) = (—1)" P P12 ing, (y)

for v € A»*T*M ® E and ¢ € A" POTM, and where the insertion operator is extended to
ATM @ C via insg p..a¢,) = insg o--- oinsg,. Let {w;}]_; be an orthonormal basis of
T °M, with dual basis {w’}?_; of (T}°M)*. Then it is easy to see that

u= Z/ (—=1)(=P)=P=D/2ing (w! Au) = Z/ d((w! Au) @wy)
- -

for all u € AP*T M ® E,, where as usual the primed sum means that the summation is
done over all increasing maps J: {1,...,n —p} — {1,...,n}, i.e, all subsets of {1,...,n} of
cardinality n — p, and w”’ = w’ WA Aw! (P with analogous definition for w ;. Thus, ®
is bijective (its domain and codomain are vector bundles with the same rank), and its inverse

is given by

Vo) =0 )= Y (0 Au)@wye NTEM @ (B, @ A" POT, M), (3.1.31)
|J|=n—p

From this, it is immediate that \Iff is an isometry.

Suppose that ¢ € T(U, A" POTM), w € T'(U,A"T*M) = Q*O(U), and s € T'(U, E) are
holomorphic on an open subset U C M. Then, if a € Q%*(U), we have

(WE)L@ESN T (55 7 0) @ 5 @ €)) = (BE) L (—1)"(w A Ba) @ 5 © )
(—1)" ins¢((w A Do) @ s)
=o(—1)"ins¢(@) A @ s
(1 i 1) 0
P (7)) (@ ha) @ s©¢)),

where ¢ = (—1)»P)(=P=1/2 " and where we have used that 027" M = 0 if and only
if 9w = 0 as a (n,1)-form on U. Since any u € Q"*(M,E ® A" POTM) can locally be
written as a linear combination of sections of the form (w A a) ® s ® &, it follows that
PESATPOTM Ul = (=1)"P¥L 0 9%, and because ) is an isometry, it also intertwines
the formal adjoints of 9F and 9F®A""°TM Tt is also clear that U maps B (M, E) to

By*(M,E ® A"~POTM). Therefore,

QF (u,u) = (|97 + 8% Nul® = || (8" + 9 T)ul|* =

— ||(8E®A” POTM + 8E®A" pOTM,T)\iju”Q — QE@A"_Z”OTM(\IIPEU’ \IIE'LL) (3132)

for all uw € By (M, E).
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Corollary 3.1.22. Let M C M’ be an open subset of a Kdihler manifold, with smooth
boundary OM in case M # M', and let E — M’ be a Hermitian holomorphic vector bundle.
For any open subset U C M, and any u € Bﬁ’[(U, E), we have

QF (u,u) = ||y MG 4 (iREENTTOTM A AL @) + / Z(u,u) dugy (3.1.33)
oMNU

with = Wl (u) € By (U, E® A""POTM).

Proof. If we keep denoting by u € QF*(M, E) its extension by zero outside supp(u) C U,

then it is clear that u € BY; (M, E). By Lemma (3.1.32)), and Theorem [3.1.16| we have

QF (u,u) = ||[dEgN" " TMAG|P 4 (iREENTOTM A A + | LW, 7) dpont.
oM

From (3.1.31)), it is immediate that insg, (‘I/f(u)) = (—1)”’p\115(ins@k (u)), and (3.1.21) implies
Z(u,u) = Z(u,u). Therefore, the last term above equals [, ;£ (u,u) dugns, since u has
compact support in U.

To avoid cluttering of ([3.1.33]), we have moved the computation of the curvature term to
its own Proposition below. As in the case of (3.1.4), we will not make use of its precise form,
but shall provide a proof anyways.

Proposition 3.1.23. Let (wj);-‘zl be a local orthonormal frame of TYOM. The curvature

term in (3.1.33)) equals
(iRPENTTITM Aoy Adiy @) = ({RP (wj, k) + (BT M (wy, ) —
— (RT""M (w;, Wy, )we, wpn) e(w') © sy, } e(@*) o insg, (u),u), (3.1.34)
with implicit summation over j, k, £, and m.
Remark 3.1.24. For p = n, we recover (3.1.27)), while for p = 0, we end up with
((e(@") o insg,) @ (RE (wj, wy) + tr(RT "M (w;,wy)) idp Ju, u) =
— «(e(@k) o insg;) ® RO (w;, @y )u, u))

where Ky = A"(TOM)* = det((T'°M)*) is the canonical line bundle over M, whose dual
K3, = A"THOM has curvature

REM(X,Y) = RMTOM(X ) = n(RTM(X,Y)) € Q*(M, End(K},)) = Q*(M, C),

see Example[ATT.8] This is exactly the curvature term in the global Bochner—Kodaira—Nakano
formula as presented in [MMO7, Theorem 1.4.21].

Proof of Proposition[3.1.23. By Remark [3.1.20] we have

iR Ay A = (@) insy; @ R(w;, W) (3.1.35)
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on A™MT*M @ (E ® A"POT M), where we have abbreviated R := RE®A" "*TM 43nd Exam-
ple shows that

R(w;, ;) = RE (w;, W) ® idpn—pogas +idg @RY " TM (w; 1my,).
Clearly,
(\Ilf)_l (e(@®) insg; QR (w;, W) @ idpn-poras )\I'f(u) = (e(@) insg, @RE (w;, W) ) u,
which gives the curvature term involving F in . Note that, by Example

n—p,0 _
RN TM(wjawk)(wJ(l) AREN AwJ(n—p))

= Z wya)y N AWge—1) N (RTLOM(w]‘,@k)wJ(T)) AW g1y N AW gm—p)
r=1

n—p
=> Z (RT""M (w01 ) 5y wim) X

r=1m=1
X’U]J(l)/\“‘/\TUJ(T_I)/\wm/\wj(r+1)/\“‘/\’lUJ(n_p)
jn gl 1,0
= Z Z )" ' RT M(wj7wk)wJ(r)7wm> W, A W,
r=1 m=1

with J,.: {1,...,n —p—1} — {1,...,n} the increasing map defined by omitting J(r), i.e
Jr(i) = J(i) for i <, and J,.(i) = J(i + 1) for i > r. We have, with v € A>*T*M ® E and

u = w’ A v for some increasing K: {1,...,p} = {0,...,n},
- n
Z Z Z 1)T71inswm/\wjr (w! Au) =
|=n r=1 m=1

— > (-1t inswmA(Kc)r(ch A )
r=1 m=1
n—p n

= Z NSw,, Aw e, (wKC(T) A wEr A w)
r=1 m=1
n—p n

= Z (=1)" P lins,, e(w ") INSw ey, (w B A w)
r=1 m=1
n—p n

= Z Z o ins,,, e(w )y
r=1 m=1
n n

= Z Z o ins,,, e(w')u
{=1 m=1

n n

=Y o(bem — e(w) ins,,, Ju

(=1 m=1
where ¢ == (—1)"P)(»=P=1)/2 i5 a5 before and K°: {1,...,n —p} — {1,...,n} is the com-

Cc

plement of K, i.e., the increasing map with img(K¢) = img(K)°. By linearity, the above
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computation is valid for u € AP*T*M ® E. Putting the above together, we arrive at
(WE)=1( e(wk) insg, ®idp @RA"*”’OTM(wj, W) UL (u) =

= Z w! A ( )mSw (u) ® (RAnip’OTM(wj,@k)wJ)
|J|=n—p

/

= 0 NS pan—p.07ar( (w? A (e(@ k)lnsw (u))

W, Wy )wy)
|J|=n—p
n—p

Z Z Z ) HRTM () W )w () Win) W08, p, (€(TF) insgg, (1))

Z (RTHM (wj, W) we, Win) (6, — e(w') insy,, ) e(@W*) insg, (u)

n n
=1 m=1

~

(tr RTM (wj, Wg))—

_ Z Z <RT1’OM(wj,wk)wg, W) e(w?) ins,,,, ) e(w") insg; (u).
(=1 m=1

This explains the terms containing the curvature of T5°M in (3.1.34) and finishes the proof.

3.2. The 0F-Neumann problem

Suppose that M C M’ is an open subset of a larger Hermitian manifold (M, J, g), with
boundary OM C M’ of class C* in case M # M’. Assume further that (M, g) is complete
(in the sense of section and let £ — M be a Hermitian holomorphic vector bundlem We
emphasize that M does not include its own boundary, as opposed to the notation of chapter [2]
where M was a smooth manifold with boundary, since this is not customary for complex
manifolds. We will slightly abuse our notation and denote the Dolbeault Laplacian €M for
E|y — M simply by OF: Q(M, E) — Q(M, E). This notation will also be extended to a
certain self-adjoint extension of (1F:

Definition 3.2.1. The Dolbeault Laplacian with d-Neumann boundary conditions is the

self-adjoint operator
E=0500" + 050, (3.2.1)
on L%}.(M , E), where 9% is the weak extension of 9%, see section and 0L* is the Hilbert
space adjoint of d%. Thus, for each 1 < p < dimg(M), the restriction of O to L2 (M, E) is
the Gaffney extension of the elliptic (by (3.1.2))) complex (AP*T*M ® E,9%), see (1.3.6). Its
quadratic form will be denoted by QF. By Lemma m it is given by
QF (u,v) = (Byu, 9v) + (B u, 0" v)

for u,v € dom(Q¥) = dom(0L) N dom(9E*).

1This means that E is defined in some open neighborhood of M and holomorphic on this neighborhood.



3.2. THE §-NEUMANN PROBLEM 65

If U C M is (relatively) open, then we denote by OF the self-adjoint operator (0¥)y on
La,(MﬂU, E) = La,(U, E), see Deﬁnition with associated quadratic form QF := Que -
We write ng and ijﬂ’p,q for the restrictions of OF and Dg to L]%,q(M, E) and L?),q(M NU, E),
respectively.

Remark 3.2.2. Note that the quadratic form QFMnU is an extension of QF, in the sense
that {u|pnp : u € dom(QF)} C dom(QFMnv) and

QP (u| i, ulvinw) = QF (u, ) (3.2.2)

for all u € dom(Qg). Intuitively, this is because Qg requires Dirichlet boundary conditions
on AU N M°, while the self-adjoint operator associated to QMU only requires the weaker
O0-Neumann boundary conditions, see Remark

To formally show (3.2.2), let v € dom(QF). Then ug, defined as the extension of u
to M by zero, see Lemma belongs to dom(Q¥) = dom(9%) N dom(9F1), and clearly
ulpnr = (wo)|mnu € dom(élEU MOUY . For all k € N, we find vg, € Q..(U, E) such that vy — u
in L2 ,(U, E) and 108 Tug — 0F Ty || < % Since (0 Tvp) | pnp = 0FMUt (v prar ), it follows

that (vk|mnv)ken is Cauchy in dom(@sE‘M”U’T), hence converges to u|yny in this space due

to the convergence in L%y.(M NU, E). Thus, u|yny belongs to dom(&f'MﬁUvT)7 and
58E|MﬁU7T(u’MmU) — lillﬂn(gE’T’Uk)‘MﬁU = (ESE,TuoﬂMmU,

so that QFlmnu ulprnws wlano) = QF (ug, ug) = QE (u, ), as claimed.
U

Proposition 3.2.3. If U C M is open, then the space By (U, E) from Deﬁm’tion is
a form core for Dg.

Proof. We shall use the known fact that By;(M, E) is a form core for OF if M is com-
pactﬂ the proof of which requires careful use of mollifiers. By , Example
and Theorem m (note that at the beginning of this section, we have assumed M to
be complete), we know that the elements of dom(9% + 9E*) with compact support in M
are dense in dom(Q¥). If u € dom(Q¥) has compact support, choose a compact manifold
with boundary X C M such that supp(u) C V := (M N X) U X°, an open subset of M.
Then u|y € dom(QEF) C dom(QFlVrm) = dom(QFIx°), see , and by the aforemen-
tioned result for compact manifolds, there exist vy € Bx (X, E) with vy, — u|x as k — o
in dom(QFx°). Let ¢ € C®(M,[0,1]) with Plsupp(u) = 1. Then puvp € Q.(M,E) and
ins,01y(pvr) = @insony(vr) = 0 on IM N IX, and py, = 0 on IM \ X anyways, so

2This may be done by first approximating wuo by 0% € dom(Q®) with supp(vi) C U, and then approximating
each vy, by elements of Qc.(U, E).
3The statement can be found in [MMO7, Lemma 3.5.1], where a reference is made to |Hor65, Proposi-

tion 1.2.4]. A proof for M a domain in C" can also be found in [Str10, Proposition 2.3].
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oup € By (M, E). By (1.3.2) and since v2(9¥ + 9F1) is a Dirac type operator, see sec-
tion [1.1.2{and (3.1.2), we have

QP (p(vk — vj), (v — v5)) <
< 2(|| Symb(9” + 8% 1) (dp) (v, — vj)|I” + (8" + 0" (vy, — vj)[I?) <

< el Zoo e nnlloe = villZz  xo.m) + 2Q"1x° (v, — vj, v, — v)). (3.2.3)

Thus, (pvg)ken is Cauchy in dom(QF ), hence convergent, and the limit agrees with u by the
convergence in Li.(M , ). This shows the claim for U = M.

Now let U € M be an arbitrary open subset. By the definition of Qg , it suffices to show
that every u|y with u € dom(QF) and supp(u) C U can be approximated in the norm of
dom(Q¥E) by elements of By (U, E). By the above, we obtain uy, € By (M, E) with ug — u
in dom(Q¥). Let ¢ € C*™(M,][0,1]) be such that supp(¢) C U and @lsupp(u) = 1. Clearly,
wug|v € By (U, E), and a computation as in (3.2.3) again gives convergence of pug|y to uly
in dom(QE).

Proposition 3.2.4. Let M C M’ and E be as above. Then

(i) (M, E) N dom(95*) = By(M, E),
(ii) Q.(M, E) Ndom(Q¥) = By (M, E), and
(iii) Qo(M, E) Ndom(OF) = {u € By(M, E) : 0%u € By (M, E)}.
Moreover, 05" = 0F1 on By(M, E) and OF = 0F9F 1 4+ 9519F on Q.(M, E) N dom(OF).

Remark 3.2.5. Item of Proposition says that the smooth (on M) elements u
belonging to dom(0F) satisfy 0-Neumann boundary conditions on M, i.e.,

ins(,01y(u)lopr =0 and ins(l,o,l)(gEu)bM =0. (3.2.4)

Therefore, the equation OFu = v is really a boundary value problem in disguise, called the

0F -Neumann problem.

Proof of Proposition[3.2.7. From , it is clear that 0£* and OF agree with the
respective differential operators on the intersection of Q.(M, E) with their domains.

We show the rest of the statements by following the arguments of [FK72, Propositions 1.3.2].
For u,v € Q.(M, E), we have

(0" u, v) = (u,0"v) + /aM“nS(uovw(u% v) duon,

see the computation in . If u € By(M, E), then the boundary term vanishes, so that
u € dom((5E|Qc(M7E))*) = dom(9%*), since Q.(M, E) is a core for 0L by Proposition
and the closure of a densely defined operator has the same adjoint as the original operator.
Conversely, if u € Q.(M, E) N dom(9%*), then

(u,0"v) = (0 u, v) = (95T, v) = (u, 8%v) + / (ins(o.1)(u), v) dpgnr
oM
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for all v € Q.(M, E). This means that [, (insg0.1y(u),v) duars = 0 for all v € Qc(M, E),
hence ins(,0.1)(u)|oar = 0. This shows

Since Q.(M, E) C dom(9%), see , we also have Q.(M, E) Ndom(Q¥) = Q.(M, E)N
dom(0E)Ndom(0Z*) = By (M, E), so that |(ii)| follows. Similarly, is an easy consequence
of

Definition 3.2.6. The closed operator

n
NP =@ N(L. (M, E),0f)
p=0
on L3 ,(M,E) from Proposition is called the 9¥-Neumann operator. We denote its
restriction to L2 (M, E) by leq.

Thus, N¥: img(O¥) — L3 (M, E) is defined as the inverse to DE’dom(DE)mker(DE)L. If
img(ng) is closed in Lf,’q(M , E), see Lemma for general conditions equivalent to this,
then we extend N, as N &0 to a bounded operator on L2 (M,E) = img(ng)GBimg(nyq)L.

The general Proposition shows that the F-Neumann operator is important if one
wants to study the solutions u € dom(9%) of the inhomogeneous equation

0Fy = v, (3.2.5)

with v € img(0Z) C ker(9%) given. In fact, S¥ = 0L*NE on img(9L) Nimg(OF), where
SP: img()) — L (M, E)

is the canonical (or minimal) solution operator to the F-equation, which is defined as giving
the solution to of minimal norm, see for the precise definition. Again, we denote
by Szfq the restriction to szq(M, E). In case N¥ is a bounded operator, then so is S¥ and
the equality S* = 0Z* N¥ holds on all of L%},(M , ), see Proposition m Moreover, leq
is compact if and only if Sf’q and Szfq 11 are, see Proposition m In the case where N]fq is
bounded, item of Proposition implies that we can, given v € img(9%) N L}%’q(]\/f7 E),

always find u = S%v € dom(95) N L2 (M, E) such that

2 1 2
40 < g J, e (3:25)

For extensive surveys of the L? theory of 8, with a focus on bounded pseudoconvex domains
in C™, see [CSO01} Str10].

Very simple conditions for the boundedness and compactness of the 9“-Neumann operator,

with L a line bundle, are given in the next Proposition:

Proposition 3.2.7. Suppose L — M’ is a Hermitian holomorphic line bundle, and M C
M’ is a Levi pseudoconvex open subset with smooth boundary. Let sj: M — R be as in
Example|3.1.21), and take 1 < g < n. Then we have:
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. L - . . L - . L
(i) Oy, is a Fredholm operator (equivalently: N, is bounded and dim(ker(Oy ,)) < oo,
see Remark if
lim inf (s1(x) + - - + sq(x)) > 0.

M>x—o0

(i7) Dﬁq has discrete spectrum (equivalently: N,’;jq is compact and dim(ker(D,f;’q)) < o0) if

li - — )
pdm (s51(2) + -+ (@) = oo
Here, the limits have to be understood as x leaving every compact subset of M, i.e., either

going to infinity or approaching the boundary of M.

Proof. By Proposition the space By1(M,L) is a form core for Dﬁyq. Now the
statement follows from (3.1.29) and Theorem see also Theorems [2.2.9 and [2.2.12]

An analogous result to Proposition for D& 4 is obtained by replacing L with L ® K},
see Remark The conditions in Proposition [3.2.7] are not sharp, of course. For example,
if & C C™ is a bounded (Levi) pseudoconvex open subset, then D:ﬁq is automatically Fredholm
for L the trivial Hermitian line bundle (where s; = 0 for all j) and ¢ > 1, see for instance
[Str10, Proposition 2.7].

3.2.1. L? Serre duality. Let E — M be a Hermitian holomorphic vector bundle over a
Hermitian manifold. Since complex manifolds come with an orientation, we have the Hodge
star operator ¥ : AT*M ® E — AT*M ® E*, see appendix for the general theory, and
this operator maps APIT*M ® E to A" P~ 9T*M ® E*, where n is the complex dimension of
M. As dimg(M) = 2n is even, we obtain (¥*)~! = (=1)P*9%E" on APAT*M © E*. Tt follows
from Proposition that also

%o dbT = (—1)PH9F oxF and FFo dbe = (—1)p+qdﬁg oxP (3.2.7)
on QOP4(M, E). It follows that
981 = FF 09 0xP and dyf = —F 0 dfyoFE,

The following result can be found in [CS12], where an in-depth account of L? Serre duality

is given.

Theorem 3.2.8 (L? Serre duality). Let E — M be a Hermitian holomorphic vector

bundle over a Hermitian manifold. The Hodge star operator

*: L J(M,E) — L (M, E*)

n—en—e
restricts to antiunitary mappings dom(92*) — dom(9%") and dom(9F*) — dom(9%L"), all
equipped with the graph norms, and satisfies
(i) ¥F 0 9P = (—1)PH99E" o %
(1) ®F 0 0L = (—1)P+19F" o %F | and
(iii) ¥F o OF = OF oxF
on Lf),q(M, E), where OF" is the Laplacian of the Hilbert complex (L2_, (M, E*),0F").

n—p,e
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Proof. On the level of differential operators, we have (3.2.7)). Therefore,
FEull? + 1107 % ul* = [lull® + |95 Fu|?

for all u € Q.(M,E). Since Q.(M,E) is dense in dom((0F)s) by definition, it follows
that ** maps dom(9Z*) = dom((0F1),) to dom(0F"), and it is easy to see that then also
OF" o xF = (—1)PT9%F 0 9E* must hold. This shows and |(i)| follows from applied
to E* instead of F, and taking adjoints (note that ¥ is self-adjoint up to a sign factor by

(A.2.2))). Finally, is a straightforward consequence of |(i)| and

Corollary 3.2.9. If M is a complete Hermitian manifold and E — M is a Hermitian
holomorphic vector bundle, then ¥ o OF = OF" o %P,

Proof. Since M is complete, the Dolbeault Laplacian OOF is essentially self-adjoint on
Q.(M, E), see Corollary [1.4.13] hence its self-adjoint extension (0F from Theorem coin-

cides with (3.2.1)).

3.2.2. A property of the essential spectrum of Dg.. Let again £ — M be a
Hermitian holomorphic vector bundle over a Kéhler manifold. The goal of this section is
to show that, under certain pseudoconvexity assumptions on the manifold and positivity of
curvature requirements, the discreteness of spectrum of OF “percolates” up the Dolbeault
complex, in the sense that if Dg 4 has discrete spectrum, then the same holds true for Dg g+
This property is well-known in the case of a bounded pseudoconvex domain M in C", see
[Fu08, Proposition 2.2] or |Str10, Proposition 4.5]. Moreover, this holds also for the weighted
O-equation on C", and where the weight is plurisubharmonic, see [Has14]. Recall from
Example[B.3.7] that this latter case may be obtained by choosing F to be the trivial line bundle
on C”, but with nontrivial Hermitian metric. For a general vector bundle, this condition will
have to be replaced by a curvature condition.

The proofs rely on the fact that, if {X7/ }?:1 is a (constant, since we are still on C")
orthonormal frame field for 7'M, then the isometry L2 (M,E) — L2 (M, E)®" given
by u +— %(iHSXj (u))}_, restricts to a bounded operator from dom( f,q) to dom( Eq,1)®”

assuming the previously mentioned pseudoconvexity and curvature assumptions hold. The

)

problem is that, if M is a Hermitian manifold, we do not have global frames for 7% M available,
so we have to use local frames and patch the results together. Moreover, the derivatives of the
frame elements will have to be controlled. This patching procedure works if M is of 1-bounded
geomelry in the sense of section as we will see below.

As in the beginning of section we will assume that M’ is a Kédhler manifold, M C M’
an open subset with (empty in case M = M’) smooth boundary OM C M’ such that M is
complete, and £ — M a Hermitian holomorphic vector bundle. Let ¥ be a collection of
(relatively) open subsets of M, and put U := Jy ¢y V. The first step is to show that if ¥ is
nice enough, then we can control inf U(Dg) by knowing about the bottom of the spectra of
the O, see Propositionbelovv7 and where Dg and D]ﬁ; are defined as in Deﬁnition
What we are doing here is showing that certain spectral properties of (0¥ localize, similarly
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as it is done in [Str10, Proposition 4.4] (but since we are working on possibly unbounded
manifolds, we will need some control on the geometry). But first, a Lemma:

Lemma 3.2.10. Let ¥ and U be as above. Suppose that oy, V € ¥, is a family of
functions in C*°(U, [0, 1]) such that ¥ and (py)vey have the following properties:
(i) There exists a number N > 0 such that (y¢; V # 0 implies |I| < N for all subsets
I C ¥ (ie., ¥V has uniformly finite intersection multiplicity).
(i) The functions o}, form a partition of unity subordinate to ¥, i.e., supp(py) C V for
Ve andYyeypb=1onU.
(7ii) y = SUPy cy ||d90v|!%oo(U,T*U) < Q.
If u € dom(QE), then (pyu)ly € dom(QE) for all V € ¥, and

> QV(evu, pvu) < N [ul® +2QF (u, u). (3.2.8)
Vey
Conversely, if u € dom(Q¥E), then (pyruo)|y € dom(QE) for all V! € ¥, and
> QU (pvruo, pyrug) < YN||ull? + 2Q7 (u, w), (3.2.9)

{V/'e?:vV'NV#£0}

where ug € Li.(U N M, E) is the extension of u by zero outside of V.

Proof. Let u € dom(QF) and V € #. Then ug € dom(QF) by Lemma thus

ovug € dom(Q¥) by Example [1.4.10 and therefore (pyu)|y € dom(QE) since supp(pyu) C
V. Moreover,

Q¥ (vu, pvu) = QF (wvug, pvuo) = |95 + 95™) (pvuo)||* <
< Ndpv |7 oo sz an [ulvI® + 2llov (9% + 057) (uo) |17,

see the computation in (3.2.3)), and Remark for the validity of the Leibniz rule. Adding

these estimates, we arrive at

Y Q¥ (evu,pvu) < Y (llulvl® + 2llev (@5 + 05) wo) 1?) = v D llulvl® + 2QF (u, ).
Vey Vey Vey
(3.2.10)

Note that assumption |(i)|implies that ¥ is at most countable, for if we take a countable basis
for the topology of U, then we may assume that each basis element is contained in a single
V € ¥, hence intersects at most N elements of . Fix a bijection N — ¥ k — Vkﬁ With
the finite Borel measure v(A) == [, |u|>duy on U, we have

Yo lulvl? =" v(Vi) = v(U) + > v(V;n Vi) < Nv(U) = Nul)?,
vey k=1 j<k

with N := maxgeny #{j € N: V; NV}, # 0}, the maximal number of intersections that elements
of ¥ have amongst each other. Together with (3.2.10f), this shows ({3.2.8]).

4In the case where ¥ is finite, we may add countably many empty sets to obtain a bijection N — 7.
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Now let V, V' € ¥ and u € dom(Q¥). As before, one argues that (v ug)|y € dom(QE),
and virtually the same computation shows that (3.2.9) also holds.

Proposition 3.2.11. Let ¥ and (py)vey be as in Lemma|3.2.1(, Then

%(infa(Dg) —9N) < ‘}nf// inf o(0F) < 2inf o(OF) + yN. (3.2.11)
€

Proof. By (3.2.8)), we have, for V € ¥,

(inf inf o (OF)) Jul® < > (inf o (OF)) | pvull® <
Vey Vey

< > QF(pvu, pvu) <Nl + 2QF (u, u)
ver

for all u € dom(QE). Since inf o(QF) is the largest lower bound for QE, the right hand part
of (3.2.11)) follows. The same reasoning applied to gives

(inf o (OF))[ul® = D (inf o(TF)) vruol* <
Viey

< > Qilevruo,pvrug) < YN [Jul]® + 2QF (u, u),
Viey

hence inf o(OF) > 1(inf o(OF) — YN) for all V € 7.
Next, we take, for each V' € ¥, a suitable orthonormal frame of T7%'V to bound the bottom
of the spectrum of Dﬁpyq in terms of infU(D‘E/’p’qfl). The results from Proposition [3.2.11| then

allow us to transfer these bounds to Dg, with U := J 7. Again, we outsource some of the

computations to a Lemma:

Lemma 3.2.12. Let U C M be open and suppose that (w]) _, s an orthonormal frame
of TYOU. Then

Z ’dlo insg;, ( ] < 2q|d u‘Q - (Qnmax{\V@kyz 1<k < n})\u\2

pointwise on U for every u € QP4(U, E).

Proof. Let X be a complex vector field on M. By the derivation rule for the exterior
covariant derivative (see (|A.1.4))), we have

insx odyy = (dfy 0 e(X”))T = £(A(X?))T = (e(X*) 0 dfy)T = £(A(X"))T = dryl o insx,

where e(a): A**T*M @ E — A**T*M ® E is exterior multiplication with o € A**T*M
Therefore,

3 |l (insg, (u)[F <23 | insg, (dfg(u))E +23 | (0w’ tuf?
j=1 j=1 j=1

n
E, g
< 2qldygul? + 2 (0w ?ul?
j=1
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by Lemma where |£(0w)T| denotes the (fiberwise) operator norm. Now
|e(0w)!| = |e(0w)| < |0w| < |VT| = |V,
which finishes the proof.

Proposition 3.2.13. Let ¥ be a collection of open subsets of M, and (ov)yvey a family
of functions with the properties|(i) . to|(iii) as in Lemma m 3.2.10. Suppose that, in addition,

(iv) for every V € ¥, there exists an orthonormal frame (XV) _, of TV such that

== X o'}
K ‘S/uglglfgnllv 70 < o0.

Assume that 0 < p<n, 1 <qg<n, and

(iREEATTM A AWE (), WE (w)) > cl|ul|®  and (3.2.12)
/ Z(u,u) dugar > 0 (3.2.13)
oMNU

for some constant ¢ € R and all u € Bp’q(U E), where U == U7 and \IIE s as in 1)
and £ is defined in Definition . Then there exists a constant C' = C(n q,N,v,k,¢) >0
such that

inf o(0f,,_1) < C+8info(0f,,,)- (3.2.14)

Proof. Let V € #. The orthonormal frame (X V) ", from our assumption |(iv)|induces an
isometry L2 (V, E) — qu (V, E)®™ given by u \/q(msXv( ))j—1, see Lemma [B.2.3, By
' J
the global Bochner—Kodaira—Nakano formula (3.1.33) we have, for every u € By/(V, E),

1 n 1 L n—p,0 . ~
p Z Q msXv lnSXv 5 Z (degm g TM’T(lnsX]y (u))”2+
]:1 :
+ ([iRPEATTITM A A (ins v (@), insyv (@) + / Z(ins v (u), ins v (u)) duaM),
J ] oMV J J

where @ := UF (u), which by using Lemma as well as Lemma [3.2.12 (recall from (3.1.35)

the local formula for i RE®A""TM Aev A) can be estimated from above by

2)lary™" POTMAg? ¢ L2 p « [ REGNTIOTM A NG, )+

-1 2n .
N ZL(u,u) dpanr + —(maX{HVXJVH%OO 1< < n})HuH2 (3.2.15)
q oOMNV q
By our assumption (3.2.13)), we have
—1
== L(u,u)dpsy < 2/ L(u,u) dpgn, (3.2.16)
q oMnV oMNV
and (3.2.12)) yields

Q;1<<iRE®An—p,0TM/\eVAa’ ﬂ» < 2<<iRE®An_p’OTMAevAﬂ, 17>>+|C| <2q_ql) ||u||2 (3217)
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Using and again applying (3.1.33)), we see that (3.2.15]) is dominated by

-1 2 1)+ 2
208 () + (1el(2- )+ 25 Jul? = 208 () + AL 2

Put C == M It follows that

n

1 .
(lnfU(Dqu 1))”””2 q Z(lnfU(DVn,q 1))” lnSXJV (U)H2 <
7j=1

1 " ~
- Z 1nsXv ),insyv (1)) < 2QF (u, u) + C|lul®.
q o J

By Proposition BYA(V,E) is a form core for OF |, hence

D,q,V"

inf o(0f,,1) < 2info(0f,,) + C.

Together with (3.2.11)), this implies

S (i 0(OF,,1) —4N) < inf info(0F,, ) <
< C+2.inf o(0,,) < C+2(N +2inf o(0F,,),
hence
infU(Dg’]Lq_l) < 2C + 5yN + 8inf U(Dg,p,q)v

as claimed.

By applying Theorem and the above results, we obtain also a bound for the bottom
of the essential spectrum of ng:

Theorem 3.2.14. Let M’ be a Kdhler manifold, M C M’ an open subset with smooth
boundary OM C M’ such that M is complete, E — M' a Hermitian holomorphic vector
bundle, p > 0, and ¢ > 1. Let ¥ be an open cover of M with the properties to of
Lemma [3.2.10) and [(iv)| of Proposition|3.2.15, Suppose that

(iRESA™POTM n AWE (w), WE(u)) > cul?  and (3.2.18)
L (u,w) dpgyr >0 (3.2.19)
oM

for some constant ¢ € R and allu € By} (M \ K, E), with K C M a compact subset and where
\I/f is as in (3.1.31). Then

inf . (O < C—|—8inf0€(D£q),

gq—l)

with the constant C computed as in the proof of Proposition . In particular, if qu 1
has discrete spectrum, then so does D]If q
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Of course, (3.2.18)) continues to hold for u € BYY (M, E) by continuity, but the constant
may be worse than what one gets by restricting to forms with support outside some compact
set.

Proof. Let XA < inf ae(Dg 4—1)- By Theorem m there exists a compact subset Ko C M
such that infa(Dg?anl) > )\, with U := M \ Ky. Without loss of generality, K C Ky. Let
¥ ={VNU:V € ¥}. Then ¥’ still has the properties required by Proposition and
with ¥’ = U. It follows that

A< ian(D57p7q_1) <C+ Sian(Dgp,q),
hence A < C' + 8inf 0.(15, ), again by Theorem and the claim follows.
Positivity of vector bundles. The requirement (3.2.19) is satisfied precisely if M is ¢-Levi

pseudoconvex at all points of M. One way to make sure that (3.2.18]) is satisfied is by
requiring that the curvature of E® A" POT M is semipositive in the sense of Nakano |[Nak55]:

Definition 3.2.15. A Hermitian holomorphic vector bundle £ — M is called Nakano

semipositive at © € M if

E( 0 o)
> (RP(55 g% )eas €8) wjaTig > 0 (3.2.20)
Jik,o8
for all u =37, , uja a%j ®eq € TIOM ® E,, where (z1,...,2,) are holomorphic coordinates

of M around z and {e, }, is an orthonormal basis of E,. If the inequality is strict for
u # 0, then E is called Nakano positive at x. Moreover, E is called Nakano (semi) positive
if it has the corresponding property at all points z € M. Similarly, the concept of Nakano
(semi) negativity is defined.

Remark 3.2.16. (i) It is easy to see that E is Nakano semipositive at z if and only if
n
>~ (@) oinsg, ) ® R (wj, wp)u,u) > 0 (3.2.21)
k=1
holds for all u € AY'T*M @ E, or, equivalently, all u € A*'T*M ® E,, where {w, }i—q is an
orthonormal basis of TO1M. On A™'T*M ® E,, (3.2.21)) is the same as

(iRE Ney Au,u) >0, (3.2.22)

see Remark [3.1.201
(ii) The inequality (3.2.21)) continues to hold for u € APIT M ® E,. This can be seen by
induction: if (3.2.21)) is true on AP9~1T*M ® E, with ¢ > 2, then also

((e(@®) o insg,) ® RE (wj, @y )u, u) =
k=1
1

N

— (((e@®) o insg, ) ® RE(w;,wy)) insg,, (u), insg,, (u)) >0
9= 1 =1 k=1
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for all w € APYT}M ® E, by Lemma B.2.3] If (3.2.21)) is strict for nonzero (p,q — 1)-forms,
then this will also hold for (p, q)-forms (if u = w’/ AWK ® e # 0 with |J| = p, |K| = ¢, and
e € E,, then at least one of insg,, (u) will also be nonzero).

Remark 3.2.17. There is also the notion of Griffiths (semi) positive vector bundles |Gri69|,
where the defining inequality only needs to hold on elementary tensors, i.e., for all
u=Z®e,with Z € T}°M and e € E,. Thus, E is Griffiths semipositive at z € M if and
only if

(RE(Z,Z)e,e) >0
holds for all Z € T}°M and e € E,. In the language of Remark this means that
sj(e) >0 forall 1 < j <nandall e € E,. Letting Z = (X —iJX), see , this is seen
to be equivalent to
(iRE(X,JX)e,e) >0 (3.2.23)
forall X € T, M and e € E,. The strict inequalities give the corresponding concept of Griffiths
positivity, and Griffiths (semi) negative vector bundles are defined in a similar fashion.

Evidently, the condition of Griffiths (semi) positivity is formally weaker than Nakano
(semi) positivity, and there are examples of Griffiths semipositive bundles that are not Nakano
semipositive, see [Dem12, Example VII.6.8]H On the other hand, the two concepts clearly
coincide for line bundles, which are then simply called (semi) positive. By , a positive
line bundle L — M defines a Kihler metric on M via ¢(X,Y) :=iR"(X,JY) € End(L) = C.
The fact that this is Kéhler can be seen with the second Bianchi identity or by looking
at R in a trivialization of L, see Example m

Since RF"(X,Y) = —(R¥(X,Y))*, see Example a Hermitian holomorphic vector
bundle is Griffiths (semi) positive if and only if its dual E* is Griffiths (semi) negative, but
this is not true for Nakano (semi) positivity, see again [Dem12, Example VIL.6.8].

Example 3.2.18. If L := M x C — M is the trivial line bundle with metric |(x,v)|* =
|v2e=#(*) for a smooth function ¢: M — R, see Example m then the curvature of L is
RY = 00¢. Therefore, L being semipositive is equivalent to ¢ being plurisubharmonic, while

L is positive exactly when ¢ is strictly plurisubharmonic.

For more examples and properties of (Nakano) positive vector bundles, we refer to text-
books on complex geometry, for instance [Dem12; Ohsl5]. In light of (3.2.18) and Re-

mark [3:2.16, we define:

Definition 3.2.19. A Hermitian holomorphic vector bundle £ — M is called ¢-Nakano
lower semibounded if there is ¢ € R such that

> ((e(@®) o insg; ) ® RE (wj, Wy )u, u) > clul?
k=1

SHowever, Griffiths positivity of E implies Nakano positivity of E ® det(E), see [DS80] or [Dem12, Theo-
rem VIL.8.1].
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holds for all u € A®IT*M ® E, and all z € M. Equivalently,
(iRE Aoy Atyu) > cluf?

for all u € A™IT*M ® E, see Remark [3.1.20l The largest ¢ for which this holds is denoted by
Nak,(E). If E is g-Nakano lower semibounded for all ¢ (equivalently: for ¢ = 1), then we call
it simply Nakano lower semibounded.

Example 3.2.20. We always have

n
<<€(@k) o iIlSwj) ® RE(U)J,@]C)U, u> >
J,k=1
n
> 3 |(e@) o insg,) © RE(wy, m)Jul?
k=1
n
> Y RE (g ful? by Lemma [BZ3
k=1
n 1/2
> —n( Z \RE(wj,wk)F) || by Hoélder’s inequality
k=1
> —n|RE||ul?

Thus, if R” is bounded (i.e., the function = — |RF|, is bounded on M), then E is Nakano
lower semibounded. In particular, if (M, J, g) is a Kéhler manifold of O-bounded geometry, see
section then TM (hence also T%°M) is a Nakano lower semibounded vector bundle.

Example 3.2.21. If L — M is a Hermitian holomorphic line bundle, and s;: M — R,
1 < j < n are as in Example then L is g-Nakano lower semibounded if and only if
814 -4 84 > c for some c € R.

Example 3.2.22. Using Example it is easy to see that if E — M and F — M
are two ¢-Nakano lower semibounded vector bundles, then the tensor product £ ® F' — M is
again ¢-Nakano lower semibounded, with Nak,(E ® F') = Nak,(E) + Nak,(F').

The assumptions |(i)| to of Lemma |3.2.10| and of Proposition [3.2.13| are satisfied if

M’ is a Kahler manifold of 1-bounded geometry. Riemannian manifolds of bounded geometry
will be discussed in section [4.I], but we will state the corresponding result here:

Theorem 3.2.23. Let M C M’ be a q-Levi pseudoconvez open subset of a Kihler manifold
of 1-bounded geometry, with smooth boundary OM C M’, and let E — M be a Hermitian
holomorphic vector bundle such that E|p is q-Nakano lower semibounded. If ng_l has

discrete spectrum, then so does ng.

Proof. From Lemma [4.1.11, we know that there are geodesic balls {B(zy,7) : k € N}
that cover M’ and with the properties required by Theorem |3.2.14l Intersecting these balls
with M, we obtain a cover of M with the same properties. Since M is g-Levi pseudoconvex,
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(3.2.19)) is satisfied. By Examples [3.2.20{and |3.2.22] the bundle E|y; ® A" POT M is g-Nakano
lower semibounded, hence (3.2.18]) also holds true. We conclude the proof by applying
Theorem [3.2.14]

Remark 3.2.24. (i) If M C M’ is bounded (hence with compact closure, since M’ is
complete), then the curvature condition on E|y; in Theorem [3.2.23]is of course vacuous.
(ii) If M is a (Levi) pseudoconvex domain in C" with smooth boundary, and £ — M is a

Nakano semipositive vector bundle, then retracing the proof of Proposition [3:2.13] we find

1 & . .

- Z QE(msz (u),insx; (u)) < QF (u,u)

q j=1
for all uw € By (M, E), with (X;)7_; some constant global orthonormal frame of TOI N =~
M x C", since all the terms involving estimates of the derivatives of X; do not appear.

Consequently, the Fredholmness of (0 (i.e., whether (0F has a spectral gap) also percolates up
the OF-complex in this case. This is included in the orginal result of Fu [Fu08, Proposition 2.2].

Using L? Serre duality, one immediately obtains a result similar to Theorem [3.2.23] valid
for complete Kéahler manifolds:

Corollary 3.2.25. Let M be a (complete) Kdihler manifold of 1-bounded geometry, and
let E— M be a Hermitian holomorphic vector bundle such that E* is (n — q)-Nakano lower
semibounded. If ngﬂ has discrete spectrum, then so does ng.

Proof. By Theorem and our assumption, (JF 1 has discrete spectrum. From

n—p,n—q—

Theorem [3.2.23] it follows that OOF° also has discrete spectrum, and applying Theo-

n—p,n—q

rem again, we see that Dg ¢ also has this property.






CHAPTER 4

Applications of magnetic Schrodinger operator theory

Let (M, g) be a (oriented) Riemannian manifold, and let E — M be a Hermitian vector
bundle. Then every connection V on E and section V' € I'(M,End(E)) defines an elliptic
differential operator

Hyy =AY +V:T(M,E) - T(M,E),

called a generalized Schrodinger operator, where AF is the Bochner Laplacian from Exam-
ple [I.1.2] This is an operator of Laplace type and, conversely, any Laplace type operator is
of this form, see section In case FE is a line bundle, V is a metric connection, and V is
self-adjoint, operators of the form Hyy are sometimes called magnetic Schrédinger operators.
The reason for this terminology is that, if M = R"™ and £ = M x C — M for the moment,
with sections of F being identified with complex valued functions on R", then every metric
connection on E is of the form V = d + ia for some real 1-form a = 774 a;jdz; on R".
Moreover, End(FE) is trivial for any line bundle E, hence we may identify V' with a function
on M. Therefore, Hy y is of the form

n d 2
—Z (CZ.T'+iaj) —|—V,

J=1 J

which is the quantum Hamiltonian of a particle moving in an electric field V' and magnetic field
B = da, the latter being the curvature of V. In this setting, a is called the magnetic vector
potential. In this chapter, we will study spectral properties of Hy y when E is a (possibly
nontrivial) line bundle. Most of the results will need the base manifold M to have some form
of bounded geometry, which is why we will study those manifolds in section The theory
will be applied, in section to the Dolbeault Laplacian on complete Kédhler manifolds (again
with some bounded geometry assumptions) on top degree forms with values in a Hermitian
holomorphic line bundle.

4.1. Riemannian manifolds of bounded geometry

Let (M, g) be a Riemannian manifold. In this section, we will only consider the case where
M has no boundary. For p € M, we denote by exp,: %, C T,M — M the (Riemannian)
ezponential map, defined by exp,,(v) := v,(1), where v, is the unique geodesic starting at p
and with initial velocity v, and ), is the set of vectors for which this is possible, i.e., those
v € T,M with the property that v, is defined at least on [0,1]. Then %, is open in T, M,
the exponential map exp, is smooth, and in fact a diffeomorphism on a neighborhood of
0 € T,M by the inverse function theorem, since Tyexp,: To(T,M) = T,M — T,M is the

79
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identity map. The curves (t) := exp,(tv) are geodesics for ¢ € [0,1] and v € &, with initial
velocity 4(0) = v. The injectivity radius of (M, g) at a point p € M is the supremum of all
r > 0 such that exp, restricts to a diffeomorphism on Br,(0,7), where Br,u(0,7) is the
open ball in (T),M, g,) around 0 and with radius 7. The image of this ball under exp, is then
B(p,r) :={q € M : dy(p,q) < r}, the open ball for the Riemannian distance from (L.4.1]).
The injectivity radius of (M, g), denoted by rinj(M, g), is the infimum over all injectivity radii
at points p € M. For proofs of the above facts and more about the exponential map, see
[Lee09, chapter 13].

Definition 4.1.1. A connected Riemannian manifold (M, g) is said to be of k-bounded
geometry if its injectivity radius rinj(M, g) is positive, and there exist constants C; > 0 such
that |[VIRM| < Cj for all 0 < j < k, where VIRM is the j* covariant derivative of the
Riemannian curvature tensor of M, see section If (M, g) is of k-bounded geometry for
all k£ € N, then it is said to be of bounded geometry.

Remark 4.1.2. (i) All Riemannian manifolds of k-bounded geometry are complete due to
the bound on the injectivity radius, see |[Eic08, Proposition 2.2].

(ii) We want to point out that there is also a concept of bounded geometry for manifolds
with boundary, see [Sch01].

(iii) There is also a notion of bounded geometry for vector bundles: a Hermitian (or Rie-
mannian) vector bundle E — M with metric connection V is called a Hermitian (Riemannian)
vector bundle of k-bounded geometry if M is a Riemannian manifold of k-bounded geometry,
and the curvature of V satisfies [V/IRV| < C; for all 0 < j < k, uniformly on M. Again, E
is said to be of bounded geometry if this holds for all £ € N. Most prominently, the tangent
bundle as well as all tensor bundles of a manifold of bounded geometry (with the Levi-Civita

connection) are Riemannian vector bundles of bounded geometry [Eld13, p. 45].

Manifolds of bounded geometry come with a nice cover by open subsets, namely the
geodesic balls B(p,r) for fixed r < riyj(M, g) small enough, see Proposition below,
where it will also be shown that there are nice partitions of unity and local frames of the
tangent bundle TM — M adapted to (a refinement of) this cover. Recall that any choice of
orthonormal basis {e; }?:1 of T,M, with p € M fixed, gives rise to a chart of M via

B(p,r) — Bgn(0,7) CR™, ¢+ (exp,or) (q),

where 7: R" — T,M is the isometry 7(t1,...,t,) = tie; + --- + tpe,. These charts are
called (Riemannian) normal coordinates. Lemma[4.1.6) will show that the distortion of normal
coordinates can be uniformly bounded on a manifold of 0-bounded geometry. Since proofs
of this seem to be hard to find, we shall provide one here. As a preparation, we need some
prerequisites, including the Rauch comparison theorem, which we will discuss in section [4.1.1
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Sectional curvature. Let p € M and X,Y € T,M be two linearly independent vectors.
Then the quantity

K(IT) = (RM(X,Y)Y, X)
[ XPIY]? = (X, Y)?

depends only on the two-dimensional subspace II := span({X,Y'}) of T,,M, and is called the
sectional curvature of M associated with II. Thus, K can be viewed as a (smooth) function on
the 2-Grassmannian bundle over M. One can show (see |[Lee97, Proposition 8.8]) that K (II) is
the Gaussian curvatureﬂ of the two-dimensional submanifold Sty = exp,(IINV) C M at p € S,
where V' C T}, M is any neighborhood of 0 such that exp,: V' — expp(V) is a diffeomorphism.
Note that St is the set of points reached after unit time by geodesics emanating from p
with initial velocities in IINV. If M C R3 is a two-dimensional submanifold, then Gauss’s
Theorema Egregium states that K (T,M) is equal to the product of the principal curvatures
(i.e., the eigenvalues of the shape operator) of M at p € M, see for instance |Lee97} section 8].
The sectional curvatures actually fully determine the Riemann curvature tensor, see [Lee97),
Lemma 8.9].

Example 4.1.3. One can show that any complete, simply-connected Riemannian manifold
with constant sectional curvature is isometric to one of these three model spaces, called space

forms:

(i) The Euclidean space R™ has zero curvature, hence also constant sectional curvature

K =0.

(ii) The sphere 0B(0, R) C R" of radius R > 0 with its induced metric has constant sectional
curvature 1/R2.

(iii) If R > 0, then the hyperbolic space H'; may be defined as taking the upper half-space
{zx € R" : z,, > 0} and equipping it with the metric

R2
—2((dx1)®2 + oo (don)®?).

n
It has constant sectional curvature —1/R2.

For a proof, see [Lee97, Theorem 11.12].

Jacobi fields. Recall that a (smooth) vector field along a curve v: I — M, with I C R
an interval, is a (smooth) map X : I — T'M such that X (t) € T,y M for all ¢ € I. In other
words, X defines a section of the pullback bundle v*TM — I. A prime example of this
is the derivative ¥ of the curve 7. The Levi-Civita connection on T'M gives a connection
YV T(I,y*TM) — QY(I,v*TM), and on I we have the constant vector field e: I — T'I =

I xR, e(t) = (t,1). Thus, we may define covariant differentiation along -y as
T(I,y*TM) = T(I,v*TM), X — X":=(7"V)eX = inse((v*V)X).

IThe Gaussian curvature of a Riemannian 2-manifold S at = € S is defined as (R (&, 7)n,€)/(|¢1*|n)? —
(€,m)?) for any basis {&,n} of Tw.S, see [Lee97, p. 144].
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This construction satisfies the Leibniz rule
(FX) = f'X + fX'
for all f € C*°(I,R), and is metric compatible in the sense that
(XY =(X")Y)+ (X,Y)

for all vector fields X, Y along 7, where f’ and (X,Y’)” are just the usual derivatives of functions
from I to R. By definition, a curve v: I — M is geodesic if and only if (%)’ = 0. The above also
allows us to define second (and higher) covariant derivatives of X along 7. If X' = 0, then X
is called parallel. The length of any parallel field is constant, since %\X 1)? = 2(X', X) = 0.

Similarly, one may define sections of a vector bundle £ — M along ~, and if a connection
on F is chosen, one also obtains a derivative operator I'(I,v*E) — I'(I,v*E), o + o', see
[Lee09, section 12.3].

A vector field J along a geodesic «y is said to be a Jacobi field if

J" 4+ RM(J,4)% =0, (4.1.1)

where RM € Q2?(M,End(TM)) is the Riemann curvature tensor of M. The Jacobi equa-
tion may be solved uniquely if appropriate initial data is given: for every Xg, Yy €
Tty M, there is a unique Jacobi field J along v such that J(tp) = Xo and J'(t) = Yo,
see [Lee97, Proposition 10.4]. Jacobi fields are related to variations of geodesics. To illus-
trate some of this, suppose that (t) = exp,(tv) is a radial geodesic, and consider the map
['(s,t) = exp,(t(v + sYp)), defined for ¢ € [0,1] and |s| small enough. Put

J(t) = (s, t)|s=0 = t(T}w exp,) (Yo). (4.1.2)

Then T' is what is called a wvariation through geodesics, and by general considerations, see
[Lee97, Theorem 10.2], J is a Jacobi field along v, and we have J(0) = 0 as well as J'(0) =
(Tyexp,) (Vo) = Y.

A vector field X along a curve + is called tangential if X (t) is a multiple of #(¢) for all
t € I, and normal if (X(t),%(t)) = 0 for all t € I. If J is a tangential Jacobi field along a
geodesic v, then J” = 0 by ({.1.1)), hence J(t) = (at+b)¥(t) with some a,b € R for all t € I by
the uniqueness of Jacobi fields. Regarding normal Jacobi fields, one has the following result

for manifolds of constant sectional curvature:

Lemma 4.1.4. If M has constant sectional curvature C € R, and v: I — M with 0 € I
is a unit speed geodesic, then the normal Jacobi fields along v with J(0) = 0 are given by
J(t) = u(t)E(t), where E is a normal vector field along v with E' =0, and

t, C=0
u(t) = % sin (VCOt), C>0
\/% sinh (v—-Ct), C <O0.
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Proof. See |Lee97, Lemma 10.8]. The proof uses the fact that on manifolds with constant
sectional curvature C € R, the Riemann curvature tensor has the simple form

RM(X,Y)Z =C((Y,Z)X — (X, Z)Y),
so that the Jacobi equation for a normal field along v becomes J” + CJ = 0.

Conjugate points. If ~: [a,b] — M is a geodesic in M, then ¢ := ~(b) is said to be
conjugate to p := ~y(a) along 7 if there is a Jacobi field J along v with J(a) =0 = J(b) but
J # 0. Conjugate points describe the failure of the Riemannian exponential map to be a
diffeomorphism: if p € M, v € %, and q = exp,(v), then exp, is a local diffeomorphism
around v if and only if ¢ is not conjugate to p along the geodesic (t) := exp,(tv), t € [0, 1],
see [Lee97, Proposition 10.11]. On a sphere S in R™ of radius R, the exponential map is a
diffeomorphism on Br,s(0,7R) for any p € S, hence geodesics with length less than 7R have
no conjugate points.

4.1.1. The Rauch comparison theorem. We are now ready to formulate Rauch’s

comparison theorem:

Theorem 4.1.5 (Rauch comparison theorem). Let M and N be Riemannian manifolds
of the same dimension, v: [0,T] = M and o: [0,T] — N be unit speed geodesics, and J and
W be Jacobi fields along v and o, respectively. Assume that

(i) J(0) =0 and W(0) =0,

(ii) |J'(0)| = [W'(0)],
(iii) (¥(0), J'(0)) = (6(0), W'(0)),

(iv) v has no conjugate points on [0,T], and

(v) for all t € [0,T] and any two-dimensional subspaces H%t) C TyyM and ., c TN

(t)
containing y(t) and &(t), respectively, we have

K(T1,) > K(T1),).
Then o has no conjugate points on [0,T], and |J(t)| < |W(t)| for all t € [0,T].

Proof. See [Car92, Theorem 2.3]. The statement of the theorem can also be found in
[Lee97, Theorem 11.9], with the small difference that it is stated there only for normal Jacobi
fields. But if J and W have tangential parts Jj and W), respectively, then J)(t) = (at +b)¥(t)
and W (t) = (ct + d)d(t). By the initial condition b=d=0, and by we have a = c,
so that [J)(t)| = [W) /()| for all ¢ € [0, T]. Therefore, it suffices to only consider normal fields.
Of course, is vacuous in this case, since 0 = (¥, J)" = (¥, J’) for normal J, and similarly
for W.

Our application of Theorem is to obtain uniform two-sided bounds on the derivative
of the Riemannian exponential map, given global bounds on the sectional curvature. An
explicit statement of the following Lemma can be found in [Roe88, Lemma 2.2]. As a proof
seems to be hard to find, we shall provide it here.
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Lemma 4.1.6. Let (M, g) be a Riemannian manifold with positive injectivity radius and
sectional curvatures uniformly bounded from above and below,

_C<KI)<C (4.1.3)

with C > 0 and for all two-dimensional subspaces 11 C T,M and every p € M. Then there
exist 0 < 1 < rinj(M, g) and Cy,Cy > 0 such that

1
@\X] < [(Ty exp,) X| < C1|X]| (4.1.4)
for allp e M, all 0 # v € Br,p(0,7), and all X € T,M.

Proof. The proof will work by comparing M to the spaces with constant sectional curva-

tures £=C'. We take

0 <7 < min {rinj(M, g),ﬂ/(2\/5)}, (4.1.5)
the reason for which will become apparent in the proof. Let J be the Jacobi field along the
unit speed geodesic v: [0,7] — M, 7(t) := exp,(tv/|v|), such that J(0) = 0 and J'(0) = X.
By , we have J(t) = t(T},)|y| €xp,)(X). Because r < riyj(M, g), the geodesic v does not
have any conjugate points.

We first show the upper bound in Consider the hyperbolic space N = H? N
with n the dimension of M. By Example N has constant sectional curvature —C'. Let
o:[0,7] = N be any unit speed geodesic, and W a Jacobi field along ¢ with W (0) = 0 and
W’(0) chosen such that [W’(0)| = |X| and (6(0), W'(0)) = (v, X). Then J and W satisfy the
requirements of Theorem hence

t(Tho )10y €xpp) X | < [W ()]
for t € [0,7]. Write W = W) + W, with W a tangential field along o, and W normal. Then
W (t) = (at + b)&(t) and W (t) = \%Csinh(\fCt)E(t) with a,b € R and E a normal field
along o satisfying E’ = 0, see Lemma We have W) (0) = 0, hence b = 0 since 6(0) # 0
(geodesics can’t change their speed), and VV‘"(O) = ad(0) as well as W/ (0) = E(0). Therefore,
X7 = [W(0)]* = [W[(0)]” + [WL(0)* = a® + |E(0)*.
In particular, |a| < |X| and |E(0)| < |X]|, hence also |E(t)| < |X| because E is parallel.

Combining this, we arrive at

L .
£2](Thoy o) expp) X |* < (W) ()1 + WL < 21X + 5smh2 (VOuIx|*.

Dividing by #?, we find
sinh?(v/Ct
[(Tous1o) expy) X|* < (1 + (2)>le2
(VCt)
for t € (0,7]. Plugging in t = |v|, and using that s + sinh?(s)/s? is increasing on [0, 00), we
see that

) 1/2
|(Tv expp)X| < (1 + W sinh? (\/ET)> |X|
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To prove the lower bound in , we consider the sphere N = 9B(0,1/v/C) C R*H!
instead, with constant sectional curvature C. As before, we choose a unit speed geodesic
o:[0,7] — N and a Jacobi field W along o with W(0) = 0 and such that |[W’'(0)| = | X|
and (6(0),W’'(0)) = (v, X). Note that o has no conjugate points, hence Theorem is
applicable (the roles of J and W now being interchanged!) and yields

W (t)] < t[(Th 0| expp) X |

for t € [0,7]. As before, and using Lemma we have

1 i
—— sin
VC

with E a parallel normal field along o, and | X|? = a? + |E(t)|?. Therefore,

Wi (t) = ato(t) and W (t) = (VCHE(t),

1
(Ty o ex0p) X2 = W (O + [WL(E)|? = ¢ + e sin? (VCt)|E(t)|?

holds for ¢ € [0, r]. Dividing by 2, we arrive at

sin 2
WY oy

for t € (0,7] C (0,7/(2/C)]. On this interval, we have sin(v/Ct)/(v/Ct) > sin(r/2)/(7/2) =

2/m, hence

|amww%mﬁzf+<

2
|(Ttv/\v| epr)X| > ;‘X|
It remains to plug in t = |v|.

Remark 4.1.7. In Lemma [£.1.6] we didn’t really need the injectivity radius to be positive,
in the sense that if (M, g) is a Riemannian manifold (without boundary) that satisfies the
sectional curvature bound , then the proof shows that there are constants C7,Co > 0
such that holds for all p € M, r > 0 sufficiently small, v € Br,(0,7), and X € T, M.
Here, r sufficiently small means that r be less than the injectivity radius of (M, g) at p, and
satisfies r < 7/(2V/C), see . The point is that the constants are still independent of p,
although of course the radius r for which it even makes sense to talk about normal coordinates
on a ball with that radius around p will vary with p.

4.1.2. Properties of manifolds of bounded geometry. We will now state the prop-
erties of manifolds of bounded geometry that we will use in the sequel. These concern the
existence of bump functions with uniform properties, as well as covers by geodesic balls and
associated partitions of unities, also enjoying uniform estimates.

Remark 4.1.8. (i) Using Lemma and Remark it is easy to see that if (M, g)
has uniformly bounded sectional curvature, then the coefficients gfj of the metric in normal
coordinates ¢, := (exp, o)~ !| g, around a sufficiently small ball B(p, r) are bounded from
above and below, independent of p. Indeed, for y € Bgn (0, 1), the coefficients gfj (y) are just
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the components of the bilinear form (7* exp g)(y) on R" with respect to the standard basis
of R™. We have, with v, w € R",

|(exp; g) (y) (’U, 'U})| = |gexpp(y) (Ty epr(’U), Ty expp(w))‘ <
< ‘gexpp(y)HTy €XPp |2|'UHU)‘ = \/E|Ty CXPp ‘2’U|‘w|a

where n is the dimension of M, where we have used that | gexpp(y)|2 = E;h,?l:(fv[ ) lg(e;, er)

dim (M), with {ej}dim(M) M. Therefore, |(7* exp;, g)(y)| <

j=1
V/n|Tyexp, |. Similarly, we have the lower bound

?=

an orthonormal basis of Texpp(y)

(expp o)) =
(T exp,) ! |

(ii) It is harder to argue that this also holds for derivatives of the metric coefficients: in
[Kau76|, it was shown that if |[R™| < Cp and |[VRM| < Cj, then also the Christoffel symbols
with respect to normal coordinates (of sufficiently small radius) are bounded, uniformly
in p € M. Equivalently, the derivatives of the metric coefficients in such coordinates are
also uniformly bounded. This was extended to arbitrary derivatives by Eichhorn in [Eic91),
Corollary 2.6]: if (M, g) is open and complete and satisfies |V/RM| < C; for 0 < j < k, then
the derivatives of order up to k of the metric coefficients in normal coordinates around p € M,
and with sufficiently small radius r, are also bounded, uniformly in p.

(iii) There is also a corresponding result for vector bundles, see [Eic91, Theorem 3.2].
Assume that (M, g) is of k-bounded geometry, and that £ — M is a Hermitian vector bundle,
equipped with a metric connection. Suppose moreover that F is of k-bounded geometry too,
in the sense of Remark Then there is r > 0 and constants 6’7 > 0 such that

00T < O (4.1.6)

for all multiindices [y| < k-1, all 1 <, <rank(E), and all 1 <i < dim(M). Here, I'; are
the connection coefficients of the connection on F with respect to a synchronous framing, i.e.,
with respect to an orthonormal frame (£7, ... ,5%) of E| B(p,r) Obtained by parallel transporting
an orthonormal basis of £, along the radial geodesics in B(p, r). Thus, >33 I'f3&h = Vgi 55 or,
equivalently, f“ﬁ = (Vgi 5%, €P), and the point is that the estimates are again uniform
inpe M.

Lemma 4.1.9. Let (M, g) be a Riemannian manifold of 0-bounded geometry. There exists
r € (0,71nj(M, g)) and a constant C > 0 with the following property: for all p € M, there
exists a smooth function f,: M — [0,1] such that

(i) supp(fp) € B(p,7),
(i) | dfpll Lo a0+ 00y < C, and
(iii) [y 1 fpl? dpig = 1/C.

Proof. Take r € (0,rinj(M, g)) small enough such that the conclusion of Lemma [4.1.6]
holds, and such that the coefficients of the metric in normal coordinates on B(p,r) are
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uniformly bounded, independent of p, see Remark Let f € C2°(Bgrn(0,7),[0,1]) be any
nonzero function, and put f, = f o cp;l: B(p,r) — [0,1], where ¢, = (exp,, oT)|Bzn (0,r) and
7: R" — T, M is an isometry such that ¢, is orientation preserving. Then f, has compact
support in B(p,r), and we extend it by zero to all of M. For X € T, M, we have

()] = (Tefy)X| = [T, 1000 © Toipy X1 < |dF (0 @)|(Tuloxpy )X < Colldf 2| X]

by Lemma hence [|dfp ||z < Cal|df|| L. Moreover,

/ | fol? voly = / (Ifp? 0 0p) ppvoly
M B]R"(Ovr)

= [F () det(g?; ()" dA(W) = CllF 725y (0
Bgn (0,1) / e

independent of p, with A\ the Lebesgue measure, and where gfj are the metric coefficients with

respect to the normal coordinate chart ¢,, and the constant C is a lower bound on det(gfj)l/ 2,

¢f., Remark

Recall that if £ — M is a vector bundle with connection V and 7: [a,b] — M is a
smooth curve, then parallel transport along v is defined as the linear map Py: E, ) — Ey @)
given by P,(u) = 0,,(b), where o, is the unique parallel (in the sense that (o) = 0)
section of E along v such that o, ,(a) = u. Then P, is a linear isomorphism and if E is
equipped with a Hermitian metric and V is a metric connection, then P, will be an isometry.
Note that P, commutes with parallel endomorphisms of E, i.e., with those endomorphisms
A € I'(M,End(F)) satistying Vx(As) = A(Vxs) for all X e I'(M,TM) and s € I'(M, E).

Proposition 4.1.10. Let (M, g) be a noncompact manifold of 1-bounded geometry. Then
there exists ro € (0,7inj(M, g)) such that for all 0 < r < g there is

(i) a countable cover {B(pk,r)}r>1 of M by geodesic balls, and a number N > 0 such that
Nies B(pr,r) # 0 implies |J| < N for all subsets J C N (i.e., the cover has uniformly
finite intersection multiplicity),

(ii) a sequence of functions o € C*(M,[0,1]) such that supp(pr) C B(pk,7), ey 03 = 1,
and with supyey ||dek| Lo < 0o, and

(iii) for every k € N, an orthonormal frame (¥, ... €F) of TM|B(p, ) with

sup sup \Vﬁf\z < 0.
k,j z€B(p,r)

Proof. For ()| and see [Eld13, Lemma 2.16 and Corollary 2.18], [Shu92, Lemma 1.2

and Lemma 1.3], or [Kaal3, Lemma 2.4]. Pick an orthonormal basis (e},...,e¥) of T, M,

and denote by (&F,...,&F) the frame of T M| B(py,r) that is obtained by parallel transporting
the basis of T}, M along the radial geodesics in B(p,r). In other words, 5;“(36) = ka,m(ef)a



88 4. APPLICATIONS OF MAGNETIC SCHRODINGER OPERATOR THEORY

with ypq: [0,1] = M, t — exp, (texp,'(x)). Then

n
IVEE e = sup |[Vx&lla < sup > [X||Vo,&h]o <
|X]=1 |X1=1,=1

< sup ST IXTS(@)eb < sup 37 XIS ()], (4.1.7)
IX|=1%75 IX|=1%5

where I'7; are the Christoffel symbols corresponding to the trivialization of M | B(py.,r) induced
by the frame (&F,...,¢F) and the normal coordinates, and X = X?0; with 9; the normal
coordinate vector fields. By the discussion about bundles of bounded geometry in Remark [£.1.8]
IT'¢5(x)| is bounded by constants uniform in z € B(pg,7), k € N, and @ € {1,...,n}. Let |¢[
denote the Euclidian norm on R™. If | X| = 1, then |g(z)'/?X|, = 1, where we view g(z) as
the symmetric matrix (g;;j(z));; (components in normal coordinates on B(py,r)), and X as
the vector (X!,..., X"™). It follows that

X°] < X e = [g(@) " 2g(2)' 2 X |, < g(2) 72 gy l9(@) 2 X, = [l9(@) 7] gy
(4.1.8)
for 1 < i < n, where ||| ggn) is the operator norm. If |g¥| < Cy on B(py,r) as in Re-
mark [1.1. then [[g(z)"!| g@n) < tr(g(z)~?) < nCo, and hence ||g(x) /2| pgn) < VnCy,
uniformly in € B(pg,r), and not depending on k and r. Combining this with
and finishes the proof.

Since Kéhler manifolds are also Riemannian manifolds, we may consider K&hler manifolds
of bounded geometry. The next result is just a simple adaptation of Proposition [£.1.10] to this

case:

Lemma 4.1.11. Let M be a Kdhler manifold of 1-bounded geometry and complex dimen-
sion n, and let {B(pg,r)}r>1 be a cover of M as in Proposition|4.1.10. Then for every k € N

there exists an orthonormal frame (X¥, ..., Xk) of T1’0M|B(pk,r) with

sup sup ]VXJ]?‘LU < 00.
k.j x€B(py,r)

Moreover, (Y’f, . ,Yﬁ) is an orthonormal frame of T M| g

property.

pr,r) With the same boundedness

Proof. Choose an orthonormal basis (w}, ..., wk) of T)OM. Then (ef,)2" | from
is an orthonormal basis of T}, M, which we extend to an orthonormal frame (¢f,... €5 ) of
TM|p(p, ) as in Proposition Since M is Kéahler, the complex structure J is parallel
for the Levi-Civita connection, see Theorem If x € B(pg,r) and v denotes the radial

geodesic from py, to z, then &8, = P, (ekF)), and

J (€551 (x) — ih;(w)) = TP, (e5;_y — ;) = PyJ (eh;_y —ieh;) =

= Py (e5; +ies; 1) = (851 (z) — igh;(x)),
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since the parallel transport commutes with the parallel endomorphism J. Therefore,
1
k. k -k
Xj = ﬁ(&j—l —Z§2j)
defines an orthonormal frame of TV9M over B(py,r), and with the required properties. The
. ~k -k
claim about (X7,...,X

) 1s immediate.

4.2. Schrodinger operators on line bundles over manifolds of bounded geometry

Let (M, g) be a Riemannian manifold, and let £ — M be a Hermitian vector bundle. Let
V be a metric connection on E and V: E — E a self-adjoint bundle endomorphism. We
consider the generalized Schrédinger operator

HV,V = VTV + V,

and we will always make the assumption that Hy y is lower semibounded. In case M is

complete and without boundary, this implies that Hy y is essentially self-adjoint, see Theo-

rem For U C M an open subset, define

(Hv,vs,s)
s[>

Then €y y(U) is equal to inf o((Hy), v|,)Fr), the bottom of the spectrum of the Friedrichs

extension of Hyy, v, : [e(U, E) = T'(U, E), see Example

v (U) = inf{ . s € To(M, E) \ {0} with supp(s) C U}. (4.2.1)

Remark 4.2.1. (i) Suppose that A: dom(A) C L?*(M,E) — L*(M,E) is a lower semi-
bounded self-adjoint extension of Hy y. Then £y (U) > inf o(Ay) for every open subset U
of M, where Ay is defined in Definition From Theorem [2.2.8] we obtain

lim &v,v (M \ K) = inf o,(A). (4.2.2)

(ii) Let (Un)nen be a sequence of open subsets of M with U,, = oo as n — 00, meaning
that for all compact K C M there is ng € N such that U,, C M \ K for all n > ny. Then

lim inf v,y (Un) > inf o (A), (4.2.3)

Indeed, let A be an accumulation point of n — Ev v (Uy,), with limg_,o Ev v (Uy,) = A for
some subsequence k +— U,,. Without loss of generality, we can assume that U,, C M \ Kj,
where (Kj)ren is an exhaustion of M by compact subsets. It follows from (4.2.2)) that

A= lim Eyy(Uy,) > lim Eyy(M \ Ki) =limEy v (M \ K) > inf 0. (A).
k—ro0 k—ro0 K

The following result and its proof are motivated by [Iwa86, Main Theorem]| (see also
[Shu99, Theorem 6.10]):

Lemma 4.2.2. Let M be a Riemannian manifold of 1-bounded geometry, £ — M a
Hermitian vector bundle, V a connection on E, and V' «a self-adjoint bundle endomorphism of
E. Assume that Hy y is lower semibounded and essentially self-adjoint on T'o(M, E). Then
the following are equivalent:
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(i) The closure of Hy vy has discrete spectrum.
(71) limy_y o0 Ev v (B(zg, 1)) = 00 for all sequences xy, € M with xy, — oo as k — oo and all
r > 0 small enough.

Proof. If the spectrum of Hy y is discrete, then clearly condition holds, see .
Conversely, suppose that is true. We show that there is a proper smooth function ¢: M —
[C,00), where C' € R will be determined later, such that (Hy ys,s) > [, ¥]s|*dug for
all s € I'.(M, E), from which the claim follows by using Theorem and essential self-
adjointness of Hy y .

If M is compact, there is nothing to show due to , so we may assume that M is
noncompact. Let {B(xy,7)}r>1 be a countable cover of M by geodesic balls as in Proposi-
tion with associated functions ¢y € C*°(M,[0,1]). Then z; — oo as k — oo, for if a
subsequence would stay in a compact subset of M, it would have a limit point in M, contra-
dicting the fact that this cover has uniformly finite intersection multiplicity. For s € T'.(M, E)

we have the localization formula
o0
(Hovs,s) =Y ((Hvv(ews), ers) — llder @ s|?),
k=1

which follows from

Re((Vs, V(¢is))

i

(VVs,s)

T
I

)

Re( Vs, dor @ (wrs) + 0xV(prs))

e
Il
—_

M

Re(@r Vs, dpr, @ s + V(pps))

B
Il
—

i

Re((V(prs) — dor @ s, dor, ®@ 5+ V(pps))

T
I

((VIV(ors), prs) — lder @ s||).

M

e
I
—

Since supp(gps) C B(wg,r), we have (Hy v (¢ks), pxs) > Ev.v (B(zg,7))ll@rs|?, hence

(Hv,vs,s) Z 8v v(B(zk,7))eh — |d<Pk\2) |s|? dpug.
M =1
Let ¢: M — R denote the function defined by the sum. Then % is smooth and maps M
to [C,00), where C' = inf o(Hy ) — supyen ||d@k|| L. Moreover, ¢: M — [C, c0) is proper:
if A € R, then we find ko € N such that v v (B(xg, 7)) > A for all k > ko, i.e., ) > X — Ny
on Ug>g, B(wk,7), a set whose complement is bounded, hence with compact closure by the

Hopf-Rinow theorem. Here, N > 0 is the intersection multiplicity of the cover {B(xy,)}i>1,
see Proposition 4.1.10, and ~y := supey ||d¢k||zec. This completes the proof.
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Remark 4.2.3. General conditions for the essential self-adjointness of Schrodinger operators
on Riemannian manifolds (not only acting on line bundles) can be found in [BMS02|, see also

Theorem [L.4. 15l

In what follows, we are mostly concerned with Schrédinger operators acting on sections of
Hermitian line bundles, and where the connection is a metric connection. Note that for a line
bundle L, the endomorphism bundle End(L) is trivial via M x C — End(L), (z,t) — tidg,.
This allows us to identify V canonically with a smooth function on M, and Q!(M,End(L))
with QY(M, C). We will use the fact that the set of metric connections on a given line bundle
L — M may be described as the affine space {V® +ia ®idr, : o € Q'(M,R)} for any given

metric connection V? on L, see (A.1.3)).

Lemma 4.2.4 (Gauge invariance). Let U C M be a simply connected open subset. Then
Evv(U) =&y v (U) for any two metric connections V and V' on L|y with the same curvature.

Proof. This is a geometric reinterpretation of the corresponding property of scalar Schréd-
inger operators on R", see for instance [Lei83, Theorem 1.2]. The difference of the two metric
connections is a purely imaginary one-form, i.e., V — V' = ia ® id;, with a € Q'(U,R). Since
the curvatures agree, we have da = 0. Indeed, d¥ = dV' + ie(w), and hence

RY Aoy s =dYV (Vs) =dY' (V's +ia®s) +ia A (Vs+ia®s) = RY Aey s +ida® s

for all s € T'(U, L). Because U is simply connected, de Rham’s theorem implies that there is
g € C*°(U,R) such that a = dg. For s € I'.(M, E') with support in U, we compute

V(eT¥s) = —ie Wdg@s+e 9(V's+idgos)=e 9V's,
hence
(Hvy(e™9s),e7"s) = /M ((V(e™)s, V(e™¥s)) + (V(e79s),e7"s)) dpg = (Hyrvs, s,
and therefore Ev v (U) = Ev/ v (U).

The following Lemma extends [Iwa86, Proposition 3.2] to Riemannian manifolds of 0-

bounded geometry:

Lemma 4.2.5. Let M be a Riemannian manifold of 0-bounded geometry. There exists
p > 0 with the following property: if r € (0,p), x € M, and B € Q*(B(x,r)) is a closed
two-form, then there is a € Q' (B(z,r)) such that da = B and

lallLr (B, ar) < Cp(MI Bl Le(B(ar), a2+ 1)
for all 1 < p < oo, where Cy(r) > 0 depends only on p, v, and on the geometry of M, but not
onx e M.

Proof. Let p > 0 be such that the distortion of normal coordinates on balls of radius at most
p is uniformly bounded on M, see Lemma Take B € Q?(B(x,r)) as in the assumption
and put B = ¢*B, where ¢, = (exp, o) Ban (0,r) are Riemannian normal coordinates, with
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7: R™ — T, M any orthonormal map (i.e., a choice of orthonormal basis of T,,M), chosen in
a way that @, preserves the orientations. Then B is an element of Q2(Bg»(0,r)), closed by
naturalityﬂ of the exterior derivative, and the construction in [Iwa86, Proposition 3.2] yields
a € QY(Bgn(0,7)) such that da = B and

@l Lo (Bgn (0,1),77R7) < Cp(P)| Bl Lo (Ban (0,r),42R7)

for all 1 < p < oo. This can be achieved by taking

1
ay(v) = ][ / B tt(y—2) (t(y — 2),v) dt dA(2),
B]R'n (O,T) 0

with y € Brn(0,7) and v € T, (Bgrn(0,r)) = R", and where f « dX\ denotes the average with
respect to Lebesgue measure. Define a := (¢, !)*a@. Then da = B, again by naturality, and

we have

lpzal(y) = Typal ™ (lal o we)(y) and  |03Bl(y) < |Tywal® (1Bl o 92)(y),

where |Typ,| is the operator norm. By Lemma and Remark there is C' > 0 such
that 1/C < |Typ,| < C and 1/C < det(gj”j(y))l/2 < C uniformly in y € Bgrn(0,r), and
independent of x € M. Here, gj; are the metric coefficients with respect to the chart ¢;.
Putting this together, we obtain

/ la|P vol, = / (lal? o pz) prvol,
B(z,r) Bgn (0,r)

<[ el gl dettai ) ar)
Bgn (0,7
< Cp“/ [eial(y) dA(y)
B]RTL(O,T‘)
<CriGor [ eiBi) i)
BRTL(Oﬂ”)

< O, ()P /B o 0B 2)w) detla ) X0)

= O, () / IBP? vol,,
B(z,r)

with A the Lebesgue measure on R™. Now put C,(r) = C3T2/PC,(r).

Consider now a local trivialization ¢ : p~1(U) =, U x C of L over an open subset U C M.
Then there is o, € Q1(U, C) such that

((idp=p @) o Vo ) f = (d+ ay) f

for every function f € C*°(U) = I'(U,U x C). Indeed, the difference of two connections is
a one-form (with values in End(L), which is trivial), and we may use the trivial connection

2This means that d commutes with pullbacks.
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d on U x C — U. For the exterior covariant derivative, this means (idy7«y @) o dV o
(idarr @ ™1) = d + e(ay) on Q(U). Note that the curvature of V is on U given by

RV |y = doy ®idg, € Q*(U,End(L)), (4.2.4)
because
RY Ayu=d"d"u

= (idar=v @Y ") (d + (o)) (idpr-v @)u

= (idpr+y @) (AT + d(ay AT) + ay A+ o A g A T)

= (idar-y @y ") (dovy A 1)

=doy Nu
for u € Q(U,L), where @ = (idpp+p ®Y)u € Q(U,C). While o, depends on the choice
of trivialization, this shows that its exterior derivative do,, is a global object. If L carries

a Hermitian metric, then there is a smooth function wy: U — R such that [y~ (y,\)| =
|Ale=w¢®) for all (y,\) € U x C. Indeed, wy(y) = —log | (y, 1)].

Lemma 4.2.6. Let V be a metric connection on a Hermitian line bundle L — M, and
let V: L — L be a self-adjoint vector bundle morphism. Suppose that U C M is open and
contmctz’bleﬂ and p: M — [0,1] is smooth with supp(p) C U. Then

. . 2 2 2
gecgl(fU’R)/U (loy — dwy +idg|” + [V|) dpg = Ev v (U)ol 72ar) — 4l 22000 720

where 1 is any local trivialization of L over U, and where a, € QY (U, C) and wy, € C*(U,R)

are as above.

Proof. The proof is a modification of [Iwa86, Lemma 5.1] to accommodate globally non-
trivial line bundles. Because U is contractible, L|y is trivial. Let ¢: p~1(U) — U x C be
a local trivialization of L, and let W: U x C — U x C be the vector bundle isomorphism
(y,\) — (y,e_w’#(y))\). Then g = W o1 is also a local trivialization of L over U, and
[ H(y, )|z = A Tt follows that (idp«ps @)t od o1l is a metric connection on L|y. Since

Vi = (idrar o) ' o (idpar @W) o (d+ a) o W 04y =
= (idp«pr @%0) " 0 (d + ayy — dwy) 0 g
and V is a metric connection, we see that i(cy — dwy) € QY(U,R). Put

s = 1/;0_1 o (idy,¢lv): U — L,

3A topological space X is called contractible if X is homotopy equivalent to a point. Equivalently, the
identity map on X is null-homotopic. All vector bundles over a contractible manifold are trivial, see [Moo01}
p. 15].
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so that s is a compactly supported section of L over U which extends to a section of L
over M by setting it to zero outside of supp(¢). Evidently, |s|2 = |p|*> < 1. Moreover, for
g € C*(U,R), the connection V' := V|y + idg ® idy, on L|y is metric compatible, and

v's 2=

Fe oL = lde + o(ay — dwy + idg)
= |do|* + |¢(ay — dwy + idg)|* < |dep|? + oy — dwy + idg|?,

since the expression in the parentheses is purely imaginary, and |¢| < 1. Because ddg = 0, we
have RV = RVIV, and Lemma implies

/U (I — duwy, + idg]? + V1) djay + ldolZaag.nry >

> [ (Vslhesror + (Vaishe) g = (s, s) >
> Evv(U) IsI2r,1) = Evv(U) l@ll72(ar -
Since ¢ and g € C*°(U,R) were arbitrary, the claim follows.

We now show that the appropriate generalization of [Iwa86, Theorem 5.2] continues to hold
for Schrédinger operators acting on the sections of line bundles over manifolds of 1-bounded
geometry:

Theorem 4.2.7. Let L — M be a Hermitian line bundle over a noncompact Riemannian
manifold of 1-bounded geometry, and let Hy y = VIV + V be a generalized Schridinger
operator for a metric connection V and self-adjoint morphism V: L — L. Assume that Hy v

has a lower semibounded self-adjoint extension with discrete spectrum. Then

lim (IRV> + |V|) dpy = o0

T—00 B(z,r)

for all r > 0.

Proof. It suffices to prove the claim for » > 0 small enough, and we take r so that
item |(ii)| of Lemma and Lemma work out. Let (zj)ren be a sequence in M with
xp — 00 as k — oo. For every k € N, we find ¢ € C*>(M, [0, 1]) with supp(¢r) C B(zg, 1),
Jas lexl? dpg = 1, and such that supyey [|dgl| oo (a7 1) < 00, see Lemma m Since V is
a metric connection, we have RV = day, ®idy on B(xg,r) with iay, € QY(B(zg,r),R) for
any choice of local trivializations 9y, L|g(s, ») — B(zg, ) x C, see . By Lemma m
there are ap € Q' (B(zy,r),R) with daj = idovy, and

/ RV dyy = / |da¢k|2dugzc/ a2 dpg,
B(xk’r) B((Ek,"’) B((Ek,T)

with C' > 0 independent of € M. Since day = id(oy, — dwy,) and B(zg,r) is simply
connected, there is g, € C°(B(xg,7),R) such that ar — iay, + idwy, = dgi, i.e., ap =
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icvy, — idwy, — dgy. Using Lemma [4.2.6} we find
/B( (C_l‘RV‘Q +[VI]) dug > EV,V(B(fL’kaT))HSOkH%Z(M) - HdSOkH%Z(M,T*M)-
T,

If A denotes a lower semibounded self-adjoint extension of Hy - with discrete spectrum, then
we have lim infy_, Ev v (B(zg, 7)) > inf o.(A) = oo by (4.2.3)), so the claim follows.

Remark 4.2.8. On R™, it is possible to characterize the discreteness of spectrum of operators
of the form —A+V (i.e., Schrodinger operators without magnetic field) by considering integrals
of |V over sets which go to infinity, similarly to Theorem This is done in [Mol53], and
uses the concept of Wiener capacity of compact subsets of R”. There has also been progress to
extend this to magnetic Schrodinger operators, see [KMS04; [KMS09], but while some of those
results are available on manifolds of bounded geometry, it is not clear what their geometric

interpretation is, or if they can be generalized to the case of nontrivial line bundles.

4.3. The Dolbeault Laplacian on top degree forms

We now study the operator (0¥ on the upper end of the 8¥-complex, i.e., on (p, n)-forms.
By 1} and 1} and using that e(w’) insz, = §;, on A°"T*M ® E, we see that DOEJL

has the form

n
200, = ANTTTMEE 4 NP (id, 0.0 py @RE (wy, ;) + tr (R "M (w;, ;). (4.3.1)
j=1
We are interested in deciding from curvature quantities of M and E whether Dgn has discrete
spectrum or not. The next simple and well-known Proposition shows that the situation is
uninteresting if M is a relatively compact domain in a larger manifold to which F extends.
The idea is that Dgn is just a bounded perturbation of the (Bochner) Laplacian with Dirichlet
boundary conditions, for which it follows from Rellich’s theorem that it has discrete spectrum.

Proposition 4.3.1. Let M C M’ be a bounded open subset of a complete Kdihler manifold,
and let E — M be a Hermitian holomorphic vector bundle. Then Df’n has discrete spectrum
for0<p<n.

Proof. The domain of the quadratic form of Dgn is dom(9Z*) = dom((9F'1)s), hence the
space QP"(M, E) of compactly supported (p,n)-forms is a form core for Df,n- Since M is

relatively compact and F is defined in a neighborhood of M, the zeroth order term X¥ in
(3.1.4) is bounded from below, say by C' € (—oo, —1], since

[KE] = Jep(RYTTMEE) < 5 D [RMTTMEE (¢, 1) <
j<k

1/2
< \/n(2n+1) (ZlR“’"T*MM(ej,ek)I?) = \/n(2n + 1) |RNTMEE| - (43.9)

Jj<k



96 4. APPLICATIONS OF MAGNETIC SCHRODINGER OPERATOR THEORY

where the first inequality is due to (|1.1.16f) and (1.1.17) and the second comes from Hélder’s
inequality. We have

2Q" (u,w) = (Vu, Vu) + (&P, u) = Clful® + | Vul?

for all u € Q2"(M, E), with V the connection on A»"T*M ® E induced from the Levi-Civita
connection on T'M and the Chern connection on F, as usual. Therefore,

lallFgs (ararm e arsmy = ul? + 1Vull? < (1= O)lul® + 2@ (u, u) < (1 = O)||ulfomgey.

and this inequality extends to v € dom(Q¥) N LIQM(M , E) by density, showing that the inclu-
sion dom(Q%) N Lfm(M7 E) — H}(M,AP"T*M ® E) is continuous. But by Theorem m
the inclusion of this Sobolev space into LZ’H(M , E) is compact, hence the same is true for
dom(Q¥) N L2 ,(M,E) — L2, (M, E). By Corollary OF, therefore has discrete spec-

trum.

Since A% T*M and A™"T*M are line bundles, the results from section are applicable
if E is also a line bundle. We have the following result:

Theorem 4.3.2. Let L — M be a Hermitian holomorphic line bundle over a Kdhler
manifold of 1-bounded geometry, and let p € {0,n}. Assume that

(i) O, has discrete spectrum, or
(ii) for some 0 < q <n—1, L is (¢ + 1)-Nakano lower semibounded and 0% has discrete
spectrum.

Then

lim |RY|? dpy = oo (4.3.3)

T—r00 B(:E,T)

for all ¥ > 0 small enough.

Proof. By Theorem we have Dﬁ,n = ANTTTMBL 4 o (RAPPTMELY where ¢, is the
Clifford action on AP*T*M @ L. By (4.3.2)),

’CP(RAP”T*M@)L)‘ < /n(zn + 1) ‘RAP"T*M@)L‘.

Therefore, if the spectrum of Dfm is discrete, Theorem m gives

lim (|RATTTMOL2 o Jp(2n + 1) [RA T MOL)) dpy, = oo

T—00 B(x,r)

for all » > 0 small enough. Now by Holder’s inequality,

1/2
/ ]RAP"T*M®L]dug < \@(/ ‘RAP»'T*M®L|2 d,ug> ,
B(z,r) B(z,r)
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with C' = sup, ¢ g (B(z, r))ﬁ Consequently,
/ |[RATTTMBLI2 gy 5 00 as z — 00,
B(z,r)

which is the same as (4.3.3) since the curvature of AP*T*M is bounded due to M having
0-bounded geometry. In the case where L is (¢ + 1)-Nakano lower semibounded, we use
Theorem [3.2.23] to reduce this case to the first one.

A version of Theorem for the case M = C" will appear as joint work with Friedrich
Haslinger in [BH17, Theorem 4.1] (see also Corollary below).

4.3.1. The weighted 0-complex on C". Consider the trivial line bundle L := C"xC —
C™, equipped with a Hermitian metric. According to Example this means that there
is a smooth function ¢: C" — R such that (u,v) = uve™% for u,v € C*(C",C) 2 I'(C", L),
and the curvature of the Chern connection on L is given by ddp € Q1(C"). Therefore, L is
Nakano lower semibounded if and only if the complex Hessian of ¢,

(P )"
H‘P(Z) T (azjazk (Z))j’sz

is a lower semibounded matrix, with lower bound ¢ € R independent of z € C™. In particular,

this is true if ¢ is plurisubharmonic, where one can choose ¢ = 0. Denote by s1(z) < - -+ < 5,(2)
the eigenvalues of H,(2) in increasing order (see also Example [3.1.21). If L is Nakano lower
semibounded, then s; > ¢ (see Example [3.2.21)) and

n n

2
tr(HZ) = Z s? = <Z sj> -2 Z sjsk < tr(Hy)? —n(n —1)c?.
j=1

j=1 i<k
Moreover, the norm B +— |B| on the n X n complex matrices is equivalent to the Schatten
norm B  tr(|B|?)'/? = tr(B*B)'/?, and we have
|RE?2 = |00y)? < Ctr(HyHy) = Ctr(Hf’) < Ctr(Hy)? — n(n —1)0c (4.3.4)
for some constant C' > 0.

Corollary 4.3.3. Let p: C" — R be smooth and denote by L the trivial line bundle over
C™ with fiber metric e=%, as above. If L is Nakano lower semibounded and D(jiq has compact
resolvent for some 0 < q < n, then
lim Ap)2d\ = 400 4.3.5
lm [ @) (4:3.5)
Proof. This follows immediately from Theorem|4.3.2/and (4.3.4)), and the fact that 4 tr(H,) =
Ap.

AThe supremum is finite because in normal coordinates around x and with small enough radius, the metric
coefficients g;; have uniform two-sided bounds, independent of x, see Remark hence pgy(B(z,r)) =
I det(g%)'/? dX is also bounded from both sides.

rn (0,7) J
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Remark 4.3.4. The condition 1’ is not sufficient for D& ¢ With 0 < g <n—1, to have
discrete spectrum. This can be seen by considering decoupled weights, see Remark [5.3.9

Remark 4.3.5. If ¢: C* — R is such that tr(H,) satisfies the reverse Holder condition,

< ]é te(HL,)" dA)l/r <cC ]{9 te(H,,) dA

for some r > 2, some C > 0, and all balls B C C", where fB dX\ denotes the average over
B for the Lebesgue measure, then Holder’s inequality implies that can be replaced by
the formally weaker condition of

Jim. o) tr(Hy,) d\ = +o0. (4.3.6)
The class of functions satisfying one of these reverse Holder conditions equals A = Uy>1 Ay,
where A, are the Muckenhoupt classes, see [Ste93, Theorem 3, p. 212]. Every positive
polynomial belongs to As. In fact, |P|* € A, for p > 1if —1 < ad < p — 1, where d is the
degree of P, see [Ste93, 6.5, p 219].

In the proof of Theorem from which ultimately Theorem followed, we did
not really need M to be of bounded geometry. Rather, we used a sequence of functions
r € C*(M,[0,1]) that have uniform lower bounds on their L? norm and uniform upper
bounds on their derivatives, and with supp(pr) C B(xg,r) for some sequence z; — oo as
k — oo and fixed r > 0. Examples of manifolds where sequences of this kind are not available
are open subsets 2 of C" that are quastbounded, that is, they satisfy

lim dist(z,00) = 0. (4.3.7)
Q3z—00
Quasibounded domains often appear as counterexamples in Sobolev space theory, see [AF03,
p. 6.9]. Thus, if Q is not quasibounded, then there exists r > 0 and a sequence zj € 2
such that zy — oo as k — oo and B(zg,r) C  for all £ € N. Translating a fixed function
p € C*(B(0,r),[0,1]), we obtain:

Theorem 4.3.6. Assume that Q C R" is open and not quasibounded, and let L — Q) be
a Hermitian line bundle. Let V be a connection on L, and let V€ C*®(£2,R) be a function
such that the magnetic Schrodinger operator VIV +V has a lower semibounded self-adjoint
extension with discrete spectrum. Then

lim (IRV] 4 |V]) d\ = oo

k=00 J B(xy,r)

for every sequence xy €  and all r > 0 such that x, — oo as k — oo and B(xg,r) C Q for
all k € N.

Corollary 4.3.7. Assume that 2 C C" is open and not quasibounded, and let L — Q be
the trivial Hermitian holomorphic line bundle, with metric given by e~% for a smooth function

0: Q =R, see Example . Suppose
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(i) D&n has discrete spectrum, or
(ii) Q is smoothly bounded and Levi pseudoconvex, L is Nakano lower semibounded, and
D&q has discrete spectrum for some 0 < q < n.

Then
lim tr(H,)?d\ = 0o

F=00 ) B(z.)
for every sequence z, € Q and all r > 0 such that zj — 00 as k — oo and B(zg,r) C Q for
all k € N.






CHAPTER 5

The (essential) spectrum of the Dolbeault Laplacian on

product manifolds

In this chapter we are concerned with the spectral theory of the Laplacian of a tensor
product of two Hilbert complexes. The Hilbert space of the tensor product of two Hilbert
complexes (H,d) and (H',d’) is given by the tensor product of graded Hilbert spaces, and the
differential is the closure of @, ;—;(d; ® idg; +0; ® d,.), where o; is multiplication by (—1)7
on Hj, see section [5.1] for the detailed definitions. Our main result is the following:

Theorem 5.1.3. Let (H,d) and (H',d') be two Hilbert complezxes, with Laplacians A and
A, respectively. If A denotes the Laplacian of the tensor product Hilbert complex (H,d) ®
(H',d'), then

o(A;) = U (0(Aj) +0(A})) (5.1.4)
k=i
and
0B = | (0(B) + o(A0) U (r(2) + 0. (A}). (5.1
k=i

Here, o(A;) and o.(A;) are the spectrum and the essential spectrum of A;, respectively,
and we use Minkowski sums in order to add sets of real numbers. In particular, the sum
oe(Aj) + o(A}) is meant to be empty if 0.(4;) is empty. Equations and are
obtained by first showing that the Laplacian of the tensor product is an appropriate direct
sum of the closures of A; ®id a + idpy; ®A},, and then computing the (essential) spectrum
of these operators by using the Borel functional calculus for strongly commuting tuples of
normal operators, see appendix [C.1}

The results are motivated by questions arising in the O-Neumann problem on Hermitian
manifolds, which is essentially the study of the (Gaffney extension of the) complex Laplacian,

OF 1= 9B~ + BEE™,

with E — M a Hermitian holomorphic vector bundle, £ the (weak extension of) the Dolbeault
operator acting on E-valued differential forms, and 55’* its Hilbert space adjoint with respect
to the L? inner product induced by the metrics. Since 0% maps (p, q) forms to (p, g+ 1) forms
and squares to zero, we obtain, for every 1 < p < dim¢ (M), a Hilbert complex which we
denote by (L2 ,(M, E), 0F), with L2 (M, E) being the space of square-integrable (p, q) forms
on M with values in F.

101
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The Cauchy-Riemann equations on product domains have been studied previously in
[Chal0; (CS11; |[Ehs07; Fu07; Kra8§|. In [Chal0], Chakrabarti computes the spectrum of O for

M x N, the product of two Hermitian manifolds. If we denote, for the moment, the complex

MxN

g, then its spectrum according to [Chal(] is

Laplacian on the (p, ¢) forms on M x N by O

U(D%IXN) = U (U(D%q/) + U(D]])\’[’,q”))'

Pip=p
q'+q"=q

One of our goals was to find a similar formula for the essential spectrum. If we allow for forms
with values in Hermitian holomorphic vector bundles, say £ — M and F — N, then the
natural bundle to consider over M x N is EXF = 7}, E @ nx F, with mps: M x N — M and
nn: M x N — N the projections, and it turns out that DgiEF is unitarily equivalent to the
Laplacian of the tensor product of the Hilbert complexes (La. (M, E),0EF) and (La. (N, F),0F).

Therefore, we obtain

cO5) = U (0@5y) +a@f) (5.0.1)
q+q"=q
and
UE(DOE:?F) = U (UC(DOE’q/) + O'(l:lg:q//)) U (U(ng/) + GE(D(}]T(]”)) (502)
q+q"=q

from and . Both equations have their expected analogues for (p, q) forms with
p # 0, but this will require taking an additional direct sum, see Theorem [5.3.1

We are also interested in questions regarding the compactness of minimal solution operators
to the inhomogeneous 0F-equation. Closely related to this is compactness of the 9-Neumann
operator, which is the inverse of 0¥ (modulo its kernel). Whether the d-Neumann operator
is compact can be read off from the essential spectrum of O, and therefore provides
a way to decide compactness for product manifolds in terms of the corresponding property of
the factors.

We point out that these above questions have already been investigated for certain special
product manifolds. As a standard counterexample, Krantz [Kra88] shows that the minimal
solution operator to the d-equation for (0, 1)-forms on the unit bidisc in C? fails to be compact.

Haslinger and Helffer consider in [HHO7, Proposition 4.6] the weighted O-problem on C",
which can be understood as the corresponding problem for the trivial line bundle on C"
with nontrivial fiber metric: the pointwise norm of a function f: C* — C is then given
by |f|?e~% for some given smooth function ¢: C" — R. They show that if ¢ is decoupled,
©(z) = p1(21) + -+ + pn(zn), and there exist 1 < j < n such that the Bergman space of
entire functions on C, square integrable with respect to e=%i A (with A the Lebesgue measure),
has infinite dimension, then the d-Neumann operator for the weighted problem on C" is not
compact on (0,1) forms. The question of whether the conclusion extends to higher degree
forms was left unanswered. Indeed, the method of proof seems unsuitable for treating anything
but (0,1) forms, since they basically consider a solution operator for the product complex
which only agrees with the minimal one for (0,1) forms, see the arguments in [CS11]. The
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deeper reason for this is that the kernel of 9 does not play nicely with respect to the product
structure, while L? cohomology (the kernel of the Laplacian) does. This is expressed in the
Kiinneth formula (which holds more generally for tensor products of Hilbert complexes, see
Proposition E Note that the weighted problem with decoupled weights is covered by
our results since, geometrically, it corresponds to considering the line bundle ® _ m; Ej over
C", where Ej; is the trivial line bundle over C with fiber metric e”%, and 7;: C* — C the
projection onto the j** factor. We will discuss this in more detail in section

The extension of [HHO7, Proposition 4.6] will then be Theorem where we show that
the 9-Neumann operator for the product of n Riemann surfaces (and vector bundles over
them) is in fact not compact on (0, ¢)-forms with 0 < ¢ < n — 1, provided at least one factor
has an infinite dimensional Bergman space.

The results in this chapter have been published in [Ber16.

5.1. Tensor products of Hilbert complexes

For two Z-graded vector spaces A = @,z A; and B = @,y B;, we denote by A® B their
graded tensor product, which is the graded vector space

A®B=@A®B); with (A®B);:= P A4;® B;. (5.1.1)
€L jt+k=i
If H and K are Z-graded Hilbert spaces, and if only finitely many H; and K; are nonzero,
then we write H ® K for the tensor product of graded Hilbert spaces,

HoK=@H®K); with (H®K);= P H;® K.
€7 J+k=i
If A; with ¢ € Z is a sequence of vector spaces, then by A, we mean the graded vector space
P,cz Ai. In the case where A; is only defined for a subset of Z, we extend this sequence by
zero. We use the same convention for (finitely many) Hilbert spaces, graded vector bundles

and sequences of linear operators. Finally, the tensor product of Hilbert complexes is defined
as in [BL92|:

Definition 5.1.1. Given two Hilbert complexes (H,D,d) and (H',D’,d"), their tensor
product complex (H ® H',d & d') is given by the tensor product of graded Hilbert spaces and
(d ® d'); is the closure of

D (dj0idy +o;@d,): (D@ D) = (D@ D)1, (5.1.2)
k=i
where o;: H; — H; is the multiplication by (—1)7. It is straightforward to verify that this

again defines a Hilbert complex. Note that the domain of d & d’ is, in general, strictly larger
than D ® D’. We denote this tensor product complex by (H,d) ® (H',d') .= (H & H',d® d').

Proposition 5.1.2. Let (H,d) and (H',d’) be two Hilbert complexes, A and A’ their
respective Laplacians.
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(i) The Laplacian of (H,d) & (H',d") on (H & H'); is the closure of
@ (Aj® idH]/C +idpy; ®A}): (dom(A) ® dom(A")); — (H & H'),. (5.1.3)
jk=i
(ii) If both d and d' have closed range, then so does d & d'. Moreover, we have the Kiinneth
formula
HH®H , d®d)=H(H,d) &HH ),
meaning
HHGH ddd)= P H(H,d)&H(H )
k=i
or all i € Z, where the tensor products HI(H,d) & H*(H',d') are with respect to the
J

natural Hilbert space structure on the cohomology spaces.
Proof. By general principles, (d ® d’)* is the adjoint of the operator ((5.1.2). It follows that

dod); 2> P (& @idy +o; @ dy).
k=i

If A denotes the Laplacian of the tensor product complex, then this gives

Ai=de®d)(dé&d)+d&d)1(d®d)f ;D

> (D @iy +o0d))( B @iy +o0d))+
J+k=i Jt+k=i

B @ougrged)( B @y oed))
jt+k=i—1 Jjt+k=i-1

and the latter operator is an extension of

P (Ajeidy +idy, @A+ (d5_105)@dj+(0j41d)) Odi_ +(djog) di_y +(0j1d5_1) @d}).
k=i

Since 0j41d; = —djoj and 0;1d;_; = —d;_,0;, the cross terms vanish, and because the
domain of the whole i*® component is dom(A;) ® dom(A},), the whole expression is equal
to the operator with domain @), ;—; dom(A;) ® dom(A}). It is a general fact that
for self-adjoint operators T" and S on Hilbert spaces H and K, respectively, the operator
T ®idg +idg @S is essentially self-adjoint, see [RS80, Theorem VIIIL.33]. By the above, A;
is a self-adjoint extension of and must therefore equal its closure. This shows For

the proof of [(ii)] we refer to [BL92, Corollary 2.15] or [CS11} Theorem 4.5].

Using Proposition and the results on the spectra of the (closures of the) operators
Aj ®id H, T idg; ®A], from appendix we are now able to show our main result:

Theorem 5.1.3. Let (H,d) and (H',d') be two Hilbert complexes, with Laplacians A and
A, respectively. If A denotes the Laplacian of the tensor product Hilbert complexr (H,d) ®
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(H',d'), then

(D)= | (o(A)) +a(A}) (5.1.4)
J+k=i
and
ge(Ai) = | (0e(A)) + a(A)) U (0(Ag) + ae(A})). (5.1.5)
jtk=i

Proof. The spectrum of the direct sum of finitely many self-adjoint operators decomposes
as the union of the spectra of the individual operators, and the same holds for the essential
spectrum. Indeed, let T}, 1 < n < N be normal operators on Hilbert spaces H,, and denote the
spectral measure of T}, by P,. Put T := @)_, T), on dom(T) = @Y_, dom(T},) C ®_, H,, =
H and define P(M) == @N_, P,(M) for Borel sets M C C. Then P is a spectral measure,
and for z = (2,)_; € dom(T) and y = (y,)Y_; € H we have

N N
/@ ZEOYEDY /@ AP0 0) = S T} = (T,),

so that P is the spectral measure associated to T by the spectral theorem, and the (essential)

spectrum of 7' decomposes as the union of the (essential) spectra of the T, as is easily seen from

Definition Now (j5.1.4) and (j5.1.5]) follow from Proposition and Theorem
Remark 5.1.4. Due to our choice of having Hilbert complexes Z-graded and with H; =0

for |i| large, it may appear at first glance that there are contributions of many “zero” operators

in (5.1.4) and (5.1.5)), simply by choosing j and k large enough and with opposite sign (so

that j + k = 7). This is not an issue since those zero operators act on the zero Hilbert space,
so they are invertible and therefore have empty spectrum (and not {0}!). In fact, in
and , only the terms with j € supp(H,d) and k € supp(H’,d') contribute, where the
support of a Hilbert complex (H,d) is the finite set

supp(H,d) ={i€Z:H; #0} ={i € Z:D; #0.}.
Evidently, supp((H,d) ® (H',d")) = supp(H,d) + supp(H’, d").
We next give a characterization for the compactness of NV for the tensor product complex

by using formula (5.1.5). This characterization is simpler and more insightful if the Hilbert

complexes are nondegenerate in the following sense:

Definition 5.1.5. A Hilbert complex (H,d) will be called nondegenerate if d;_; # 0 or
d; # 0 for all i € supp(H,d).

Lemma 5.1.6. Let (H,d) be a nondegenerate Hilbert complex. Then o(A;) € {0} for all
i € supp(H,d), i.e., o(4A;) is not empty and also not the singleton {0}.

Proof. Let i € supp(H,d). We have A; = 0 if and only if d; = 0 and d_; = 0. Indeed,
if A; =0, then dom(A;) = ker(4A;) = H; and ker(4;) = ker(d;) Nker(d}_,), so d; = 0 and
d;_; = 0. The other implication is obvious. Since the differentials are densely defined and
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closed, this is equivalent to d; = 0 and d;—1 = 0. But if d; = d;_1 = 0, then D; = 0 by our
non-degeneracy assumption, a contradiction to i € supp(H,d). Therefore, A; # 0. Since
H; # 0, we have o(A;) # 0. If 0(A;) = {0}, then supp(P;) = {0} with P; the spectral measure
associated to A; as in the spectral theorem, and hence A; = f (0} idg dP; = 0, a contradiction.
It follows that o(A;) # {0}.

Theorem 5.1.7. Let (H,d) and (H',d') be two Hilbert complezxes, with Laplacians A and
A, respectively. Assume that d and d' have closed range (in all degrees). Denote by N the
inverse of the Laplacian for (H,d) ® (H',d’) as in Proposition m Then the following are
equivalent:
(i) Ni: (H® H'); — (H ® H'); is a compact operator.
(i7) Ni‘Hj@)Hz'c: H; ® H], — H; ® H}, is a compact operator for all j,k € Z with j +k = i.
(iit) oe(Aj) + o (A}) € {0} and 0(Aj) 4+ 0.(A},) € {0} for all j,k € Z with j+ k = i.
If, in addition, (H,d) and (H',d") are nondegenerate, then the above are also equivalent to:
(iv) 0c(Aj) = 0e(A}) =0 for all j € supp(H,d) and k € supp(H',d’) with j + k = i.
(v) 0e(A;) =0, where A is the Laplacian for the tensor product complex.
(vi) For all j € supp(H,d) and k € supp(H',d’) with j +k =1,

dim(H?(H,d)) < oo and dim(H*(H',d')) < oo,
and the operators

N;(H,d): Hi — H; and Ny(H',d'): Hj, — Hj,
are compact.

Proof. From Proposition we know that d®d’ has closed range, hence N; is a bounded
operator for all i € Z by Lemma[1.2.5] By Proposition [1.2.8 and (5.1.5)), N; is compact if and
only if

oe(B) + o (ML) € {0} and o(A,)+ (M) € {0} (5.1.6)
for all j,k € Z such that j + k = 14, so |(i)k={(iii)l The equivalence |(i)k=](ii)| is obvious as

the Laplacian of the tensor product complex, and hence also IV;, respects the decomposition
(H®H'); = @j+k:i Hj ® Hy.

Now assume that (H,d) and (H’,d') are nondegenerate. If both j € supp(H,d) and
k € supp(H',d'), then o(A;) € {0} and o(A}) € {0} by Lemma It is clear that
0e(Aj) = 0c(A)) = 0 for j and k as in implies for those j and k. If H; or
Hj is trivial, then holds since the Laplacian is then the zero operator with empty
spectrum. This shows = Conversely, if holds true, suppose j € supp(H,d) and
k € supp(H',d') with j +k = i. Then o(A;) € {0} and o(A},) € {0} by Lemma and
hence forces o.(A;) = ae(A}) = 0.

The equivalence is clear from and non-degeneracy. We have o.(A;) = 0 if
and only if N;(H,d) is compact (so that o.(A;) C {0}) and dim (ker(A;)) = dim(H? (H,d)) <
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oo (so that 0 & o.(A;) by item of Proposition [1.2.6)), and similarly for o.(A}). This
shows |(iv)={(vi)

We now provide several immediate corollaries concerning the non-compactness of N and,

by Proposition [I.2.8] non-compactness of the minimal solution operators.

Corollary 5.1.8. Let (H,d) and (H',d’) be two nondegenerate Hilbert complexes as in
Theorem . Assume that there is j € Z such that Nj(H,d) is not compact on H;. Then

Njip: (H® H')jyp — (H® H')jy,
is not compact either for all k € supp(H',d').

Proof. In this case, j € supp(H,d) and o.(A;) is not empty (it contains values other than

0) by Proposition Now apply Theorem

Corollary 5.1.9. Let (H,d) and (H',d’) be two nondegenerate Hilbert complexes as in
Theorem . Let A and A’ be their respective Laplacians and denote by A the Laplacian
of the tensor product compler (H & H' d & d').

(i) If there exists i € Z such that
dim (ker(A;)) = dim(H(H & H',d & d')) = oo,

then N;: (H ® H'); — (H &® H'); is not compact.
(ii) If there exists j € Z such that

dim (ker(A;)) = dim (3’ (H,d)) = oo,

then Njig: (H® H')jpr — (H ® H')j+ is not compact for all k € supp(H',d').

Proof. In the first case 0 € o.(A;), while j € supp(H,d) and 0 € g.(A;) in the second
case. Now apply Theorem [5.1.7

5.2. Tensor products of complexes of differential operators

Consider two complexes of differential operators, say (E,d”) and (F,d") over manifolds
M and N, respectively. We proceed similarly to the construction of the tensor product of
Hilbert complexes in order to obtain a complex of differential operators on M x N. Set

(E®F); = P E;RE,
j+k=i

where E; X Fy, = (73, E;) ® (75 Fk), with mpr: M x N — M and ny: M X N — N the
projections, is a vector bundle over M x N with fiber (E}), ® (Fj)y over (z,y) € M x N. If
M and N are Riemannian and all vector bundles are Hermitian, then M x N and (E ® F);
are also equipped with metrics in a canonical way.

By I'«(M, E,) we denote the Z-graded vector space @, I'c(M, Ej;). Similarly, we define
the space T'.(N, F,). Their graded tensor product I'.(M, E,) ® T'.(N, F,) is then defined as
in (5.1.1). The following Lemma can be found in [BL92] p. 110]:
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Lemma 5.2.1. If (E,d”) and (F,d") are complexes of differential operators, then there
exists a unique complex of differential operators

dP*F: To(M x N,(E® F);) = To(M x N,(E ® F)i11)

such that the diagram

dP@d” dP@d” dP@d"
... dfedl doed? Fedf

FC(M, E-) ® FC(N, F.))z FC(M, E-) ® FC(N, FO))Z'+1

J/Li J/LiJrl

T.(M x N,(E® F);) —&"

dE®F dE®F

FC(MXN7(E®F)1'+1) —

commutes, where d¥ ® d¥' is given by

P [ @idr,(vp) +05 @ d): (Te(M, Ee) @ To(N, Fy))i = (Fe(M, Ey) ® Te(N, F))it1,
k=i
(5.2.1)
with o;: To(M, E;) — To(M, E;) the multiplication by (—1)7, and

ti: (Co(M, Eq) ® To(N, Fy)); = To(M x N, (E® F);)

is the canonical inclusion given by i(s @ t)(x,y) = s(z) @ t(y) for s € T'e(M,E;) and
t € To(N, Fy). If (E,d¥) and (F,d") are elliptic complezes, then so is (E ® F,d"®F).

In the proof of Lemma one uses the fact that, via ¢;, the space (I'.(M,E,) ®
['.(N, F,)); is sequentially dense in I'.(M x N, (E ® F);) for the usual LF-topology on this
space.

Example 5.2.2. Let M and N be smooth manifolds, and consider their de Rham com-
plexes
4} QI(M) = QIFN(M)  and  dy s QE(N) — QETH(N),
where Q4(M) == I'.(M,AT*M) and similarly for QF(N), so that F; = AIT*M and Fy =

AFT*N in the language of Lemma Since the cotangent bundle of the product M x N
splits as T*(M x N) Z 73, (T*M) @ 75 (T*N), we get

ANT*(M x N)= P my(MNT*M) @ ny(A'T*N) = P (NWT*M)R (AFT*N)  (5.2.2)
J+k=i j+k=i

from the properties of the exterior algebra functor, hence (F ® F'); is the vector bundle of
i-forms on M x N, and

dF®F T (M x N,A'T*(M x N)) — To(M x N, A"\ T*(M x N))

is the de Rham differential for the product manifold, since this obviously extends (5.2.1)) by the
Leibniz rule for the exterior derivative. Note that when accounting for the isomorphism (5.2.2]),
the map t;: @ p—; W(M) @ QE(N) — QL(M x N) is given by 1;(w ® 1) = 7w A TR
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Example 5.2.3. Let M and N be complex manifolds, £ — M and F — N two holomor-
phic vector bundles, and consider, for fixed 1 < p’ < dim¢(M) and 1 < p” < dimg(N), the
Dolbeault complexes

0F o QF (M, E) — QU *"Y(M,E) and 8%, ,: QF*(N,F) — QU **Y(N, F),

where le’q/ (M, E) =T.M, AP T ® E) denotes the space of compactly supported smooth
(p',q') forms on M with values in E. One might expect the resulting tensor product complex
on M x N to be the 9¥¥F _complex, with EX F := 7}, E @ 75 F, restricted to those (p'+p”, q)
forms which are sections of

7o (AP OT* M) @ 7y (AP OT*N) @ A% T*(M x N) @ (ER F). (5.2.3)
This is true up to a sign factor. Consider the cochain complex
0f @ (=179 . QF (M, E) ® QF (M, F) — QF*(M, E) ® Q' *(M, F)

as in ((5.2.1)), and the dense inclusions (for the LF-topology)

VAN Vi

B (QF (M E)®QE (N, F))g —» @ Te(MxN,(APT*M@E)R(A” " T*NQF))
q'+q"=q
(5.2.4)

given, as in Lemma/ by L{;/’q/ (w®mn) = myw®myn. We denote the right hand side of
(} by Q.(E, F)bP". Note that this may be identified with the space of smooth compactly
supported sections of (5.2.3]). According to the bundle isomorphism

AP#IT*(M % N) ® (E X F) o~ @ (Ap/’qlT*M ® E) X (Ap/lquT*N ® F),

p'+p"=p
/ I
q'+q"=q

/)

the full space of (p,q) forms decomposes as QPY(M x N, EX F) = @, i, Qe(E, )P
Now for w € ch’,’q,(M,E) and n € Q{z”’q”(]\f, F) with p' +p"” = p and ¢’ + ¢" = ¢, we have

Lg/’p” (wen) € Q(E, F ){]’,’p” and, with 0F¥" being understood as up to the above isomorphism,

O (P (w @) = w3 (0 gw) @ mhn + (—1)? mhw @ wh (=17 0f nm) € Qe(E, F)E 1
because the total degree of w is p’ + ¢/, and this is precisely L{I)/’p”((gg’, ® (—l)plggu o) (w®n)).

0% o1

(QF(B) ® Q2 (F))q (Q2*(B) ® 9 (F))g41

awZ i
LP 3P LP sP
q q+1

QP+ a(M x N, ER F) — 070 gt at i (\ x N, ER F)

By Lemma the restriction of 9F%F to Q.(E, F)EP" is the unique complex of differential
L o via 2" Note that the situation is somewhat simpler

(as simple as in Example [5.2.2)) if one only considers (0, ¢) forms.

operators extending 55’. ® (—1)p/5
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We now extend the above situation to the level of Hilbert complexes obtained from (E, d¥)
and (F,d"). First note that the inclusions ¢; extend to a unitary isomorphism of graded
Hilbert spaces

p= @i LAM, E) & LA(N, F) = L*(M x N,(E ® F),),
i

where L?(M, E,) = @; L*(M, E;), and similarly for L*(N, F,) and L*(M x N,(E ® F),).
The next result is Lemma 3.6 in [BL92):

Lemma 5.2.4. Let (E,dE) and (F, df) be complexes of differential operators with Her-

dF®F) their tensor product as in

mitian bundles over Riemannian manifolds, and (E ® F,
Lemmal5.2.1. Then the diagram

E 5 JF E 4 JF E 4 JF
B qom((dP @ dF);) % dom((dE & dF )ipr) T

Eliz El’ti-ﬁ»l

diu®" i ®F dEeF

E®F di®"
LA dom(diﬂ%> ) ——=—— dom( L et

commutes, where d2, dX and dZ®T denote the (differentials of the) Hilbert complexes of the
weak extensions of d¥, d¥ and dF®F, respectively, and dE & df is the differential of the
tensor product Hilbert complex, see Definition[5.1.1. In other words, i is a unitary equivalence
between (L*(M, E,),dE) & (L?(N, F,),dL) and (L*(M x N,(E ® F).),d2®F). An analogous

statement holds for the strong extensions.

In particular, Lemma implies that the Gaffney extension of the d*®f-Laplacian,
which is the Laplacian of the Hilbert complex (L?(M x N, (E ® F),),dE®F), see , is
a self-adjoint extension of the d®F-Laplacian on L?>(M x N,(E ® F),) that is unitarily
equivalent to the Laplacian of the Hilbert complex (L?(M, E,) ® L*(N, F,),d% ® df). As a
consequence, the two Laplacians share all of their spectral and operator theoretic properties.

5.3. Applications to the 0F*/'-complex

We will now apply the general theory developed in the previous sections to the -Neumann
problem. For a Hermitian manifold M and a Hermitian holomorphic vector bundle E over
M, we consider, for fixed 1 < p < dim¢ (M), the Dolbeault complex

oF . QP (M, E) — QP*TY (M, E), (5.3.1)
see appendix [B] and its Laplacians
OF, = 05108 + 9F0% 1. Qp(M, E) — QP(M, E),

where 0F1 is the formal adjoint to 7. Recall from section that this operator has a
self-adjoint extension, called the Dolbeault Laplacian with 0-Neumann boundary conditions,
given by

Oy, =040 + 0505 : dom(D ) C L2 (M, E) — L2 (M, E)
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with domain
dom(0Y,) = {u € dom(0%) N dom(05*) : Ofu € dom(8}*) and 05 € dom(dL)},

where we denote by 0 the weak extension of to a closed operator from L§7Q(M , E) to
L2 +1(M, E), see section and we write 02 for its Hilbert space adjoint (02)* = (9FT1),,
see . As usual, Liq(M, E) = L*(M,APT*M ® E) denotes the space of square-
integrable (p,q) forms on M with values in E. In this way, we obtain a Hilbert complex
(L2 (M, E),d%) with Laplacian OF, for every 1 < p < dim¢(M).

The inverse of [0, in the sense of Proposition is customarily called the 0-Neumann
operator and denoted by N¥. We denote by leq and qu the restrictions of N¥ and S¥,
respectively, to szq(M, E). By Lemma N, is bounded if and only if 0F on both
(p,q — 1) and (p, q) forms has closed range. In this case, the minimal (or canonical) solution
operator S to the 9¥-equation is also bounded on L2 (M, E) and on L2 1 1(M,E), and we
have

GE _ 55,*NE

on L2 (M, E) by Proposition m The cohomology of the Hilbert complex (L2 ,(M, E), oF)
is the L2-Dolbeault cohomology,

K3 (M, B) = HI(Ly o(M, E),0) = ker(9y) N Ly (M, E) / img(9y) N Ly 4 (M, E),

and its reduced cohomology is the reduced L?-Dolbeault cohomology,

H3 (M, B) = H1(Ly o(M, E),0y) = ker(9y) N Ly, (M, E) / img(9F) N L3 (M, E),
which is canonically isomorphic to ker(C},). For instance,
A%(M, E) = ker(0E) N L*(M, E) = ker(928%) n L*(M, B) = H)J (M, E) (5.3.2)

is the space of square-integrable holomorphic sections of F, called the Bergman space of
E — M. Of course, the cohomology spaces g_fzgg (M, E) and JTC%QI (M, E) coincide if 0F has
closed range in L2 (M, E). Our main result for this section is the following:

Theorem 5.3.1. Let E — M and ' — N be Hermitian holomorphic vector bundles over
Hermitian manifolds. Then, for 0 < p,q < dim¢(M) + dimc(N),

@By = ) (o(@E ) +a(@h ) (5.3.3)
p'+p’=p
q'+q"=q
and
Ue(Dg;EF) = U (O’e([lpE/"q/) + U(Dﬁl,q”)) U (U(D§7q/) + O'e(Dg/’q//)), (534)
p'+p"=p
q'+q"=q

where p' and ¢’ range over {0,...,dimc(M)}, and p” and ¢ range over {0, ..., dimc(N)}.
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Proof. Fix p’ and p” for the moment and denote by L?(E, F)g/’p// the completion of the
space Q.(E, F )g,’p” as in Example with respect to the induced Hermitian structures.
Consider the Hilbert complex (L?(E, F )I.)/’p g OEKEY " obtained by taking the weak extension
of 0F®F | restricted to Q.(F, F)fl’p”, to a closed operator on L?(FE, F)g"p". By Lemma [5.2.1

and Example [5.2.3] we know that this Hilbert complex is unitarily equivalent to
(L%/’.(M, E) @ L]29”,0(N’ F)v 55 @ (_1)1)/55)7

which is the tensor product of (LIQJ,7.(M,E),55) and (Lg,,,(N, F),(=1)PdF), as in Defini-
tion Now for 0 < p, ¢ < dim¢c(M) + dimg(N), we have
L2 (MxNERF)= @ LYEFPY,
p'+p"'=p

which is due to the fact that M x N is Hermitian and hence forms with different bidegree (but
same total degree) are orthogonal. It follows that (L2 ,(M x N,E X F),05%F) is unitarily
equivalent to the direct sum of Hilbert complexes

D (L2u(M,E),05) & (L2, J(N.F), (~1)P D). (5.3.5)

p'+p""=p

Equations and now follow immediately from , and . Note
that the Laplacians of (Lz,,y.(N, F), (=1 8F) and (Lz,,,(N, F),0F) coincide and are equal
to Dg,,.

Since the J-complex is nondegenerate in the sense of Definition [5.1.5, we obtain the
following characterization of compactness of the &-Neumann operator from Theorem [5.1.7]

Theorem 5.3.2. Let E — M and ' — N be Hermitian holomorphic vector bundles over
Hermitian manifolds such that 0F and 0F have closed range (in all bidegrees). Then for
0 <p,q <dimc(M) + dimc(N), the following are equivalent:

(i) The d-Neumann operator NEXE: L2 (M x N,ERF) — L2 (M x N, EXF) is compact.
(ii) oo (OEX) = 0.
(iii) UE(DE,H,) = 06(55,7q,,) =0 forall0 <p',q¢ < dimc(M) and 0 < p",¢" < dimc(N) with
o +p'=pandq +q" =q.
(iv) For all0 < p', ¢ < dimc(M) and 0 < p”,q¢" < dimc(N) withp'+p”" =p and ¢ +¢" = q,
the L?-Dolbeault cohomology spaces

HY (M, E)  and HE,T (N, F)
have finite dimension and the 0-Neumann operators
NPE/’q/i L§/7q/(M, E) — LIZ)/,(]/(M7 E) and lefl,q// . L?)//’q//(N, F) — Lz//’q//(N, F)

are compact.

Corollary 5.3.3. Let E — M and F' — N be Hermitian holomorphic vector bundles over
complex manifolds such that 0% and 0F have closed range (in all bidegrees).
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(i) If the L?-Dolbeault cohomology space HYI(M x N,EX F) has infinite dimension, then
NEEE. L2 (M xN,ERF)— L2 (M xN,ERF)

15 not compact.

11) If either of the Bergman spaces
(i) g
A (M,E) = L*(M,E)NO(M,E) or A*(N,F)=L*(N,F)nO(N,F)

of holomorphic L? sections of E, respectively F, has infinite dimension, then NIEFF 18
not compact for all 0 < p,q < dimc(N), respectively 0 < p,q < dimc(M).

Proof. This follows immediate from Corollary by using A?(M,E) = ker(Dgo) =
H)Y(M,E) as in (5.3.2).

Remark 5.3.4. () We can use higher degree L2-Dolbeault cohomology spaces of one fac-
tor instead of the Bergman spaces as in Corollary [5.3.3] to conclude non-compactness, see

Corollary

(ii) The above results also apply when replacing 9% by the minimal (or strong) extensions
(i.e., the closure) of 0F: OP4(M, E) — QPI+tL(M, E), see section and similarly for OF.
This follows immediately from the fact that Lemma[5.2.4] also holds for the minimal extensions
of differential operators.

(iii) We refer to section for general conditions on when (0¥ has closed range (and this
in turn implies the same property for 3% by Lemma .

Example 5.3.5. Let £ — M and F' — N be as in Theorem and set m := dim¢ (M)
and n := dimc(N). Assume that N is compact, so that ae(D{iq”) = forall 0 < ¢” <n (see
for instance Theorem [2.2.8)). Then

JE(DOEEF) = U (Je(ng/) + U(ng_q/))
max{g—n,0}<¢’'<m
by 1} From Theorem it follows that N(ﬁ;gF is compact if and only if NéEq, is compact
and dim(ﬂ-f%gq/ (M,E)) < oo for all max{q —n,0} < ¢ <m.

5.3.1. Products of Riemann surfaces. The statement of Theorem [5.3.1] can readily
be generalized to the product of a finite number of manifolds and vector bundles. We will
conclude this section by considering the situation of several one-dimensional factors. Recall
that a Riemann surface is a complex manifold of dimension one. For simplicity, we will only

treat (0,q) forms, and we abbreviate
DqE = ng, Sf = S[fq, and Nf = N(fq.

Theorem 5.3.6. Let M;, 1 < j < n with n > 2 be Hermitian Riemann surfaces and
E; — M; Hermitian holomorphic vector bundles, such that 0Fi has closed range for all j. Put

M:=Mx---xM, and E=mE\®- - - @m E,,
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with wj: M — M, the projections.
(i) The operator NF is compact if and only if, for all 1 < j < n, the minimal solution
operator Sfj is compact and dim(A%(M;, E;)) < co.
(ii) The operator N is compact if and only if, for all 1 < j < n, the minimal solution
operator Sfj is compact and dim(.’)-f%gl(Mj,Ej)) < 00.

(#ii) The operator Nf with g € {1,...,n — 1} is compact if and only if both N and NF are
compact. (Equivalently: SlEj is compact for all 1 < j < n and all factors have finite
dimensional L?-Dolbeault cohomology.)

(iv) If NF is not compact, then Nf is also not compact for g € {0,...,n — 1}.

(v) If Nf is not compact, then N(f is also not compact for g € {1,...,n}.

(vi) If N£ is not compact for some qo € {1,...,n — 1}, then Nf is also not compact for all
qge{l,...,n—1}.

(vii) IfSFj is not compact for some 1 < j < n, then Nf is not compact for all g € {0,...,n}.

(viii) If there exists jo € {1,...,n} such that the Bergman space A?(Mj,, E;,) has infinite
dimension, then NqE s mot compact for all0 < g <mn—1.

Proof of Theorem|5.3.6]. The appropriate formula for the essential spectrum of Df in the

case of several factors is

n
E.; E.
o@H= U U (JQ(DK;)+ ZU(DKJJ_/)>, (5.3.6)
Kne{(),l}" Jj=1 J'#5
j= Ki=a
and compactness of NqE is equivalent to ae(DqE ) = 0 by item |(v)| of Theorem Concerning
(i)} we have
n
E. E.
7@ = U (2:00) + 3 o(@;),
J=1 J'#3

hence o.(OF) C {0} if and only if ae(ng) = () for all 1 < j < n. This is the case if and only if
all N, are compact (so that o, (0 ) C {0}) and dim(A2(M;, E;)) = dim (K9 (M;, E;)) < oo
(so that 0 & oo (OL7) by item of Proposition [1.2.6). Because compactness of Np7 is
equivalent to compactness of both S(? I =0 and Sf 7 (see Proposition , follows. For
we use the same argument with the formula

n
7@ = U (7.@P) + X o@)).
Jj=1 J'#7

Note that and are applications of the several factor version of item of Theorem
If g€ {1,...,n — 1}, then for every 1 < j < n, there are K € {0,1}" and K’ € {0,1}" which
contribute to || and with K; = 0 and K; = 1. Thus, ae(DqE) = () if and only if
ae(DOEj) = 0.(0;7) =0 for all 1 < j < n, and this is equivalent to N&’ and N¥ being compact
by the arguments in|(i)| and This proves

Suppose NSE is not compact. Then there must exist jo € {1,...,n} such that Ue(DSEjO) + (.
Let ¢ € {0,...,n — 1} and pick K C {0,1}" with 3°7_; K; = ¢ and K}, = 0. Then O’e(DqE)
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E E
contains the infinite (since [0,” and O;” are unbounded self-adjoint operators) set
JO 4 Z DK |
J'#jo

SO Nf is not compact. This proves and a similar argument shows If there is
qo € {1,...,n — 1} such that Nf; is not compact, then one of NéE and Nf is not compact by

(iii), and [(vi)| follows by combining and For combine (1)| to |(iii)|

If jo is as in |(viii)} then N, fails to be compact by |(i), and hence NE is not compact
forqe{0,...,n—1} by

Remark 5.3.7. Theorem [5.3.6] holds more generally for the tensor product of n Hilbert
complexes of the form 0 — Hy — Hy — 0. Note that in such a complex, dy: Hy — H;i can

be an arbitrary densely defined and closed operator.

Of course, the value of Theorems and depends on the number of situations in
which one can prove or even characterize (non-) compactness of the -Neumann or minimal

solution operators. One such situation will be discussed in Theorem [5.3.8 below.

5.3.2. The weighted J-complex on C": decoupled weights. Let ; C C for 1 <
Jj < n be open sets, and consider the trivial line bundles E; := Q; x C — €2;. The choice of a
metric on E; corresponds to picking a function ¢; € C*°(Q2;,R), with the metric then being
determined by |(z,v)|? = |v|? e™%(3) for (z,v) € E;, see Example . Identifying sections
of E; with complex-valued functions on (2;, the norm on L? (€5, E]) becomes

130, = [ 1FGIRe )
Q;
with A being Lebesgue measure on C. The product manifold € := €y x --- x ,, carries the
trivial line bundle F = 7{E ® - - - @ m) B, = Q x C, where 7;: Q — ) is the projection onto
the j* factor, with induced fiber metric

)

|(21, ey Zny v)|2 = ’U|2 6—(901(21)+~~~+tpn(zn))

and the integrated norm is

e = [ £GP e ara),
where A is now the Lebesgue measure on C™ and ¢: 2 — R is

o(21, .. yzn) = (mie1+ -+ 7o) (21, -y 2n) = ©1(21) + - pn(2n)-

We say that ¢ is a decoupled weight. Hence, under the canonical identification of sections
of E with functions on €, the Hilbert space L?(€2, E) of square-integrable sections of E is
isomorphic to the standard L? function space for the measure e %\ on €, which we denote
by L?(2,e~?)). An analogous statement holds for the spaces of E-valued (p,q) forms.

Of course, all statements of Theorem apply in this setting. We denote 5; = ob
and (0¥ := OF if F is as above. In the following Theorem, we will consider the case where
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2; =C forall 1 <j <n and all Ap; define nontrivial doubling measures. This means that
¢; is not harmonic and there is C' > 0 such that fBQT(Z) Agp;d\ < CfBr(z) Agjd) for all
z € Cand r > 0. It is known from [MOO09| (or [HHO7, Theorem 2.3], with slightly stronger
assumptions) that, under these conditions, SlE 7 is compact if and only if

Zlggo Apjd\ = 400 (5.3.7)
Bi(z)
holds. Using this condition and our previous results, we can characterize compactness of the
O-Neumann operator in terms of the decoupled weight:

Theorem 5.3.8. Let p; € C%(C,R) for 1 < j < n with n > 2, and set p(z1,...,2,) =
w1(z1) + -+ + on(2zn). Assume that all p; are subharmonic and such that Ay; defines a
nontrivial doubling measure. Then

(i) dim (ker(COF o)) = dim (A*(C", e~ %)) = oo,
(i) ker(Og ) = 0 for ¢ > 1,
(iii) Ng, is bounded for 0 < ¢ <n,
(iv) N(‘fq with 0 < ¢ < n —1 is not compact, and
(v) N, is compact if and only if

lim tr(Hy,) dX\ = oo, (5.3.8)

Z—00 Bl(Z)
where H, = (82¢/82j8§k)2k:1 is the complex Hessian of ¢, see section .

Proof. From [MMOO3|, Theorem C], it follows from our assumptions on ¢ that d,, has
closed range in L§ ;(C,e™%7) for all j. By Proposition this also implies that 0,, has
closed range in L%yq((C”, e~ %) for all 0 < g < n, so that the -Neumann operator is bounded

by Lemma
Moreover, ker(Dg,jl) =0 for all j. In fact, by 1| we have

2O, u) > / RE (V22 NI L)y dz]? e #1dA = / ApsluilPe?idy  (5.3.9)
C C

for all forms v = u;dz € dom(é’;j) N Q%L(C), where we have used that RE = 9dp; =
%Acpj dz N dz, see Example [B.3.7, and that \/5% and %d? are orthonormal sections of
THOC™ and (T%1C™)*, respectively. If u € ker(Dg’jl), then u is smooth by elliptic regularity,
and if zg is such that Ag;(z9) > 0 (note that Ap; > 0 everywhere by subharmonicity), then
u = 0 in a neighborhood of zy by . But then u = 0 everywhere since C is connected
and by using a unique continuation principle of Aronszajn, see |[Aro57| or [Deml12, p. 333].
We also have ker(l]gﬂq) = 0 for all ¢ > 1, either by combining the above with the Kiinneth

formula,

ker(Of ) = P ker(0g,) & - - - & ker(OOF7 ), (5.3.10)
q1t-+qn=q
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see Proposition where & denotes the Hilbert space tensor product, or directly by using
the same argument as above, i.e., applying to the higher dimensional problem and
using that H, # 0 at one point.

As a mnontrivial doubling measure, Ayp; satisfies fc Apjd\ = oco. Indeed, by [Hei01}
Exercise 13.1] or [Chr91, Lemma 2.1], there exists a > 0 such that

(R> / Agoj dA < / AQOj dA
r Br(2) Br(2)

for all z € C" and 0 < r < R, so just fix > 0, choose z such that Ag;(z) # 0, and let
R — oco. Consequently, the weighted Bergman space A%(C,e~%i) has infinite dimension by
[RS06, Theorem 3.2]. This also implies, by , that dim (ker(CJ)) = oo. On the other
hand, dim (A2%(C,e%)) = oo for at least one 1 < j < n implies that N, cannot be compact
for 0 < g < n —1, see Theorem This finishes the proof of to

Again by Theorem @ N, is compact if and only if all fo 1 are compact, which is the
case if and only if @ holds for all 1 < j < n. It remains to show that this is equivalent
to . By a simple scaling argument, the claim is equivalent to

n—1 n
/ tr(Hw)dA:W Z/ Apjd\ =00 as z=(z1,...,2) = 00,
B1(z1)X-xBn(zn) 4 j=1" B1(zj)
(5.3.11)
and if (5.3.7)) holds for all 1 < j < n, then (5.3.11]) is also satisfied. Conversely, if ([5.3.11)) is

true, then choosing z = Cej, with ¢ € C and ey, the k" standard basis vector of C” implies

/ Agpkd)\—FZ/ Apjd\ =00 as (— oo,
Bi1(¢) j#k  B1(0)

so that lim¢_,o [ Bi(0) Agy d\ = oo since the second term is bounded. This shows |(v)| and
concludes the proof.

Remark 5.3.9. (i) The doubling condition is satisfied if the Ap; belong to A, see [Ste93,
p. 196], where we recall from Remark that A, is the union of the Muckenhoupt classes.
As an example, z — [2]|* is in A, for p > 1 if and only if —2 < a < 2(p — 1), and defines a
doubling measure for —2 < a, cf. [Ste93| 6.4, p. 218]. Since A|z|* = a?|z|*"2, we see that
@j(z) = |2|* satisfies the assumptions of Theorem for all a > 4 (so that ¢ is at least
C?).

(ii) Let n > 2 and consider the weight function

p(z) = |z, (5.3.12)
7j=1

where aj € R, aj > 4. Then ¢ € C?(C",R) and by the above
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Therefore it follows from T heoremmthat Ng, with 0 < ¢ < n—11is not compact while N,
is compact. Hence, the necessary condition of Corollary fails to be sufficient for
compactness of Ng‘? g for0 < ¢ < n—1in general. Of course, by Remarkand Theoremm
the integral condition (4.3.5) is both necessary and sufficient for compactness of N(f ,, for
plurisubharmonic decoupled weights ¢ with tr(H,) € A, such as .

(iii) Using a variation of the above decoupled weights, one easily sees that, for ¢ > n/2,
there is a plurisubharmonic function ¢,: C"* — R, such that N(f % is compact precisely for

q < k <n. Indeed, one may take

0q(21, s 2n) = (21, s 2= D)+ 12, - 5 20) %
Then both of the spaces A2(C4~1, e=%1) and A2(C" 9+ e=%2), where p1: CI7! = R, ¢(z) =
|24, and @o: C" 9Tt — R, ¢9(2) := |z|*, have infinite dimension by a result of Shigekawa

[Shi91, Lemma 3.4]: If ¢: C™ — R is a smooth function such that
. 2 _
zlggo|z| s1(2) = 400, (5.3.13)

where s; is the smallest eigenvalue of H,, then A%(C", e~%) has infinite dimensionH Moreover,
the 0-Neumann operators N(f 2 are compact for ¢ > 1 and j € {1,2}, as is easily deduced
by verifying that lim, ,o $1(z) = oo, which implies the compactness of N(f é by (3.1.29)
and Theorem Since n —q+1<n/2+ 1 impliesn — g+ 1 <n/2 < g — 1, one obtains
from Theorem that N§,. is compact exactly for k = ¢ — 14 j with j > 1, as claimed.

ICondition (5.3.13) is not sharp: the function ¢(z1,z2) = |21|* + |z122|*> on C? does not satisfy (5.3.13).

Nevertheless, the corresponding space A?(C?, e %) is of infinite dimension since it contains all polynomials in

z1, see the computation in [Hasl4, p. 125].



APPENDIX A

Background on differential geometry

We provide here some of the needed background on differential geometry. As a general
assumption, all our manifolds are C'*° smooth and second countable. The tangent bundle of a
manifold M is denoted by T'M, and its dual by 7% M. For any smooth map f: M — N between
manifolds and p € M, we have the induced tangent maps T}, f: T,M — Ty N. If E — M is
any (smooth) vector bundle over M, then we write I'(M, E) for the space of smooth sections
of B, with a special notation for QF(M, E) := I'(M, A*T* M ® E), the space of smooth k-forms
on M with values in E. Equivalently, these are the C°°(M)-multilinear alternating maps
(M, TM)** — T'(M,E). We write AT*M = @, A*T*M and Q(M, E) = T'(M,AT*M ®
E) =@, QF(M, E). The bundle of endomorphisms of F is denoted by End(E) — M, and if
F — M is another vector bundle, then Hom (E, F') — M is the bundle of morphisms from E
to F.

If A€ Hom(E; ® E2, F') is a morphism of vector bundles, then we will agree that forming
the expression A(s ® t) with s € Ej and t € E5 means that s and ¢ are assumed to be in the
fibers of E1 and E5 over the same point of M. For a tangent vector X € T'M, we have the
insertion operator insx : A*T*M — A*~1T*M, defined by

inSX<’U,)(Y1, ey Yk,1> = ’Ll,()(7 Yl, ceey Yk) (AOl)

for every u € AFT*M. If o € AT*M, then we have the exterior multiplication morphism
e(a): AT*M — AT*M, defined by

e(@)u = aAu.

Both insx and e(«) extend to E-valued forms by insx (u® e) = insx (u) ® e, and similarly for
e(a). We shall also sometimes see these two maps as ins: TM @ AT*"M @ E — AT*M ® E
and e: T*M @ A T*M @ E — AT*M ® E (specializing to the wedge product with one-forms),
with ins(X ® u) == insx(u) and e(a ® u) = e(a)(u).

Most of the material here can be found in standard textbooks on differential geometry,
for instance [Leel3| or [Lee09).

A.1. Connections and exterior covariant derivatives

Let M be a smooth manifold and £ — M a smooth real or complex vector bundle. A
(linear) connection on E is a (real resp. complex) linear map V: I'(M, E) — QY(M, E) =
(M, T*M ® E), such that Vx(fs) = X(f)s+ fVxs forall f e C®(M), X € (M, TM),
and s € I'(M, E), where one writes Vxs := insx(Vs) = (Vs)(X). Put differently, one has

119
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V(fs) =df ® s+ fVs as E-valued 1-forms. Connections on vector bundles E, F' — M give
rise to connections on the bundles E® F, E® F, E*, A*E, and so on. In particular, every
connection V'™ on the tangent bundle TM — M defines a connection on AT* M, satisfying

VA M(anB) = VAT ManB4+a AV M3
for all differential forms o and 8 on M and vector fields X, and
(VEM(@)(Y) = X(a(Y)) - «(VEY)

for a € QY(M) and X,Y € T'(M,TM). This connection is simply the restriction of the one
induced on tensor fields.

Example A.1.1. (i) If (M,g) is a Riemannian manifold, then there exists a unique
connection V on T'M such that VxY — Vy X = [X,Y] for all X,Y € I'(M,TM) (i.e., this
connection is torsion free), and such that

Z(9(X,Y))=9(VzX,Y) 4+ g(X,VzY) (A.1.1)

for all vector fields X,Y, Z on M. The latter property is equivalent to Vg = 0, where V now
also denotes the induced connection on T*M ® T*M, which g is a section of. This is called
the Levi—Civita connection.

(ii) If E is any (real or) complex vector bundle with Hermitian metric h, then there always
exist connections V on F such that

X(h(s,1)) = h(Vxs,t) + h(s, Vxt)

holds for all (real) vector fields X € I'(M,TM) and all smooth sections s,t of E. Such
connections are called Hermitian, metric compatible, or compatible with the Hermitian metric.
If E — M is a (complex) Hermitian vector bundle with metric connection V, then we may
also compute covariant derivatives in complex directions. If Z € I'(M,TM ®g C), then it
follows that i Im(Z)(h(s,t)) = h(iViy(2)s,t) — h(8,iVim(z)t), hence

Z(h(s,t)) = h(Vzs,t) + h(s, V1) (A.1.2)
is the extension of ({A.1.1) to Hermitian metrics and complex vector fields.

If V and V' are two connections on a vector bundle 7: £ — M, then their difference
V — V/ satisfies

(V-V)(fs)=df @ s+ fVs—df @ s — fV's = f(V—V')s,

so that V — V’ is given by the action of a bundle morphism E — A'T*M ® E, hence there
is A € Q1(M,End(E)) with (V — V')s = As. Conversely, given any connection V and any
one-form A with values in End(F), the operator V + A is again a connection on E, so that
the set of all connections on E may be described as the affine space

{(V+A:AcQ(M,End(E))}
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for any given reference connection V. If, in addition, £ is Hermitian, then it is easy to see
that the set of all metric connections on E is given by

(V+A:Ae Q' (M End(E)) and A(X)* = —A(X) for all X € TM}, (A.1.3)

again with V any given reference metric connection.

Let ¢: 7~ 1(U) — U x R” be a local trivialization of E over an open subset U C M. The
trivial connection (fi,..., fn) + (df1,...,df,;) on U x R” defines a connection (idp+yy @1 ~1) o
(d,...,d) ot on 7~ Y(U) — U, and it follows from the above that for any connection V on E
there exists a one-form 6, € Q' (U, End(E)) such that

(Vs)|r = ((dry @) o (d,...,d) oth + 0y)s|y.

We call 0, the connection form associated to V and . If {;: U — 7 1(U), 1< j <r,is the
local frame obtained from 1, i.e., &;(z) == ¥ ~"!(z,e;) with e; the j*® standard unit vector in
R", then

Vx&j = 0y(X)E;

A.1.1. Exterior covariant derivatives. Let £ — M be a vector bundle. Every con-

nection V on E extends uniquely to a family of linear operators
dV: QF(M,E) — Q(M, E),

called the exterior covariant derivative associated to V, such that dVs = Vs for s € I'(M, E)
and

dV(aAu) =da Au+ (=DFa A dVu (A.1.4)
for all a € Q(M) and u € QF(M, E). One can show that

dVu(Xo,. ... Xp) = > (—1)IVx, (w(Xo,- ..\ Xiy- oo, Xp)+
0<i<k
+ 3 (UMYX, X5], Xoy e Xy Xy, Xg), (ALLB)
0<i<j<k

for u € QF(M, E) and vector fields Xy, ..., Xy, where as usual )/(\Z means that X; is omitted.
If VI'M is a torsion free connection on M, and V¥ is a connection on E — M, then these
induce a connection V on A*T*M®FE, and 1} implies that AV’ = 50%, where e: T*M ®
(A*T*M ® E) — A*T'T*M ® E is the wedge product map, cf., [Lee09, Theorem 12.56]. Note

that
4V = AV, (A.1.6)

for every local frame {e; }?i:n;(M)

of TM, and where {¢/ }3“:1\/11 is the corresponding dual frame
of T*M. In cases where the choice of a connection V on E is implied, we will often write d¥
instead of dV.

If u € QF(M,E) and v € QY (M, E*), then their wedge product u Aey v € QFF(M) is
obtained by combining the wedge product on forms with the evaluation morphism ev: F ®

E* - C, s®t — t(s). We can also define the wedge product v Aey w in the obvious way,
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and then we have u Ay v = (—1)*v Ay u. If V is a connection on E with induced exterior
covariant derivative d¥, and if d¥": Q(M, E*) — Q(M, E*) denotes the exterior covariant

derivative induced by the dual connection on E*, then this pairing satisfies
d(u Ney v) = dPu Ney v + (fl)ku Ney dF7 0. (A.1.7)
Indeed, first note that if s € I'(M, E) and t € I'(M, E*), then
d(t(s))(X) = t(Vxs) + (Vxt)(s) = (475 Aev 1)(X) + (5 Aey 47 1)(X)

holds for every vector field X. Thus, the definition of the induced connection on E* is
equivalent to the derivation rule d(t(s)) = d¥s Ay t + 5 Aoy d¥ . By linearity, it suffices to
establish foru=a®sand v=B®t with a € QF(M), B € QY(M), s € I'(M, E), and
t € I'(M,E*). Then u Aey v = t(s) a A f and

d(u Ney v) =
=d(t(s)a A p)
=d(t(s)) ANaAB+t(s)da A B+ (—1)Ft(s)a ndB
= (dEs Nyt + 5 Ay AE ) NN B+ (A ® 5) Ney (BRE) + (=1 (@ 5) Aoy (dB D 1)
= (da@s+ (=1 aAdFs) Ay (BR1) + (1) (@ @ 8) Aoy (B @t + (—1)'B A dE"t)
=d%(a®s) Aev (BOT) + (1) (a @ 5) Ney d7 (B D 1)
= dPu Ney v + (—l)ku Ney dF v,
which is exactly (A.1.7). More generally, if A: £ ® E' — E” is a bundle morphism, and all
three vector bundles come equipped with connections such that
Vx(A(8®t)) = A(sz®t) +A(S®th) (A.1.8)
is valid for all vector fields X and sections s and ¢ of E and E”, respectively, then one shows
that
d¥" (unav) =dPurg v+ (=1)Funy dFv (A.1.9)
for all u € Q% (M, E), v € QY(M, E'), see |Bal06, p. 5], and where the wedge product u A4 v €
QFY(M, E") is defined by using A, i.e., (a®s)Aa(B®1) == (aAB)®A(s®t). The requirement
(A.1.8) may be restated as VA = 0, with V the induced connection on Hom(E ® E’, E"). For
example, this assumption is valid for the evaluation morphism ev: Hom(F,E') ® E — E’,

where the connection on Hom (F, E') is the one induced from the connections on E and E’,
see |[Lee09|, Proposition 12.62].

A.1.2. Curvature. If V is a connection on E, with exterior covariant derivative dV,

then we may form the operator

d¥odV:T(M,E)— Q*(M,E).
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For a function f € C°°(M) and a section s € I'(M, E), it follows that
(d¥ odV)(fs)=dY(df @ s+ fd"s) = —df NdVs+df AdYs+ f(d¥ odV)s = f(d" 0d")s

since d? = 0, hence dV o dV is actually given by the action of a vector bundle morphism
E — A’T*M ® E. Tt follows that there is a two-form RY € Q?(M,End(FE)) such that
dVdVs = RY Aey s holds for all s € T'(M, E), where ev: End(E) ® E — E is the evaluation
map. Since, for o € QF(M) and s € T'(M, E),

(@ odV)a®s)=d(da®s+ (—1)fands) =
= (=)*dandVs+ (=1)fdand s +a A (d¥ odY)s =
=aA(RY Neys) = RY Ney (@ ® s),

the equality (d¥ o dY)u = RV Aey u continues to hold for u € Q(M, E).

Definition A.1.2. The differential form RY € Q2(M,End(FE)) is called the curvature
(form) of V. The connection V is called flat if RV = 0, i.e., if (Q®(M, E),dV) is a cochain

complex.

Remark A.1.3. If s is a section of E and X and Y are two vector fields on M, then (A.1.5)
applied to the one-form Vs implies

RY(X,Y)s = (dV(Vs))(X,Y)
= Vx((Vs)(Y)) = V¥ ((Vs)(X)) = (Vs)([X,Y])
= VXVYS — VyVXS — V[X,Y]S‘

Remark A.1.4. While dV does not square to zero in general, one has
dVRY =0, (A.1.10)

where here dV is really the exterior covariant derivative associated to the connection induced
on End(E). It follows from (dV)3u = dV(RY Aeytt) = (dV RY) Aoy i+ RY Ny dVu (by )
and (dV)3u = (dV)?dVu = RV Aey dVu, and is called the second Bianchi identity, see [Lee09,
section 12.11].

Example A.1.5. Let E — M be a vector bundle with connection V¥. On E*, we have
the dual connection V¥, defined by (V¥ ¢)(s) :== X (p(s)) — ¢(VEs) for s € T'(M, E) and
0 € T(M,E*). If RF and RF" denote the curvatures of V¥ and VF", respectively, then a
quick computation using Remark [A.1.3] shows that

(RP(X,Y)e)(s) = —p(RF(X,Y)s),

ie., RF'(X,Y) = —(RF(X,Y))* € End(E*), the dual operator. If E is equipped with a
Hermitian metric (e, ), and E* carries the dual metric, defined such that (u(s),c(t)) g+ =
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(t,s)g, with ¢: E'— E* the (conjugate linear) metric isomorphism, then ¢(s)(t) = (¢, s) and
the above implies
(RE(X,Y)s,t) g = —(RE"(X,Y)u(t), 1(s)) (A.1.11)
for s,t e I'(M, E).
Now suppose that F is Hermitian with metric (o, ¢}, and V¥ is a metric connection. Then
(RE(X,Y)s,t) = —(s, RE(X,Y)t) (A.1.12)
forall X,Y € I'(M,TM) and s,t € I'(M, E) since, by Remark
(RP(X,Y)s,t) = (VxVys,t) — (VyVxs, t) — (Vixy]s,t)
= X (Vys,t) — (Vys,Vxt) — Y(Vxs,t) + (Vxs, Vyt)—
— [X,Y](s,t) + (s, Vix,y1t)
= XY (s,t) — X(s,Vyt) — Y{(s,Vxt) + (s, VyVxt)—
—YX(s,t) +Y(s,Vxt) + X(s,Vyt) — (s, VxVyt)—
— [X,Y[{s,t) + (s, Vix,y1t)
= (5,(VyVx = VxVy + Vix y))t)
= —(s, RE(X,Y)t).
In particular,
REY(X,Y)u(s) = L(R¥(X,Y)s) (A.1.13)
by combining the above.
Remark A.1.6. Let (E, (s, #)) be a Hermitian vector bundle, with metric connection V¥

and associated curvature RF. For fixed e € E,, the map (X,Y) — (RE(X,Y)e,e) is a
Hermitian quadratic form on T, M ®g C, since

(RE(X, Ve, ) = —(e, RE(X, Y)e) = (RE(Y, X)e, e)
by (A.1.12). In particular, there exists an orthonormal C-basis {{;}_; of (M ®g C, (¢, ¢))
such that (RE(&;,&,)e, e) = rj(e)d;x for all 1 < 4,k < n, with rj(e) € R.

Example A.1.7. Let E — M and F — M be two vector bundles with connections V¥
and V', respectively, and let VF®F be the tensor product connection on F ® F, defined by
Vi (s@t) = VEs @t + 5@ VEL. Denote by RE, RF| and RF®F the curvatures of these
connections. Then RE®F = RE @ idp +idg @R in the sense that

RE®F(X Y)=RE(X,Y)®idp +idg ®RF (X,Y) € T(M,End(E ® F))
for all vector fields X,Y € I'(M,TM). Indeed, for s € I'(M, E) and t € I'(M, F'), we have
RE®F £y (s @t) = dEOT (PO (s @ t)) = dB®T (dFsngt + sAgd"t) =
= (dPdPs) Aot + sAg(dFd"t) = (RY Aoy 8)Agt + sAg(RE Aoy t),

where Ag is the wedge product combined with the morphism idggr: EQ F — E® F.
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Example A.1.8. Let E — M be a vector bundle with connection V¥ and curvature R”.
The induced connection on AF is the restriction of the connection on C® E @ E®? & --- @
E®rank(E) £ antisymmetric tensors, hence satisfies VAE f = df, VAEs = VEs, and

VAE(a A B) = VAPa A B+ anVAE

forall fe C*(M),se I'(M,FE), X e I'(M,TM), and «, 5 € I'(M,AFE). The curvature of
VAE then satisfies
RM(anB) = RMMa A B+ an RS

for a, 8 € T'(M, AE). Consequently, RM preserves the grading of AE. A special case is the
determinant line bundle of E, defined by det(F) := A"E, with r the rank of E. It’s curvature

is given by
RIEN (X Y) = tr(RE(X,Y)).

Indeed, let {e;}7_; be a basis for E,, and let {¢;}7_; be the corresponding dual basis of E.
Then

T
RIENX YY(er A Nep) = Zel A--Nej 1 ARE(X,Y)ej Aejii A Aey

—ZZQ@]C XYe])el/\ “Nej_1NegNejrr---Nep
j=1k=1

—Zgoj XYe])el/\ A ey
:tr(RE(X, Y))(er A--- Aey),

as claimed.

Definition A.1.9. Let (M, g) be a Riemannian manifold. The curvature form of the Levi-
Civita connection on TM is denoted by RM € Q%(M,End(TM)) and is called the Riemann

curvature tensor.
The Riemann curvature tensor enjoys the following additional symmetries:
RM(X,Y)Z + RM(Y,2)X + RM(Z,X)Y =0 (first Bianchi identity) (A.1.14)
g(RM(X,Y)Z,W) = g(RM(Z, W)X,Y) (pair symmetry) (A.1.15)

for all X,Y,Z, W € TM, see |[Lee09, Theorem 13.19].

A.2. The Hodge star operator

For a Hermitian vector bundle E — M over an oriented Riemannian manifold of dimension

m, the Hodge star operator is the unique (conjugate linear) bundle map

AT MQFE — A"*T*M @ E*
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such that (u,v) vol;, = u Aey 20 holds for all u,v € AT*M ® E, where voly is the volume
form induced by the orientation and the metric. If x: A*T*M @ C — A*T*M ® C is the
complex linear extension of the real Hodge star operator, then ¥ = (x o conj) ® h, where conj
is complex conjugation on A*T*M ® C, and h: E — E* is the conjugate linear isomorphism
induced by the Hermitian metric. It follows that ¥ is a fiberwise surjective isometry with
inverse given by (x*)7! = o¥ o %" where o¥ € End(A*T*M ® E) satisfies

(_1)k(m—k)

E B .
o Ao E = idpkr+ meE

see for instance [Lee09 Proposition 9.25]. This also implies

ol = FEGE (oPFE 7 = 5EZE5E = o (o 2% % = o7 = oP'%F (A.2.1)
as well as
F) = F) =% (A.2.2)
since ¥F is antiunitary, so that o®%*" is the adjoint of .

Proposition A.2.1. Let X be a vector field on M, and let a be a one-form. Then
(X" Au) = (=1)Finsx(FPu)  and o AFPu = (=1)* 1% (ins s w) (A.2.3)
holds for all E-valued k-forms u.
Proof. We have
(v, X° A u) vol, = (insx v, u) voly = insx (v) Aey ¥ u =

= insx (v Aey o) — (=1)F 1o Aoy insx (FFu) = (—1)%(v, ) "L insx (%Fu)) vol,

for all (k + 1)-forms v and k-forms u, where we have used that v Aey *”u = 0 for dimensional
reasons. Therefore, X’ A u = (—1)F(*F)"linsx(¥*u), and this implies the first formula.

Similarly,
0 Aev (@ AFFU) = (=1)F (@ Av) Aoy Fou = (= 1) Ha A v, u) vol, =
= (=1)* v, ins 4 (u)) volg = (=1)* 0 Aoy % (ins .z (u))
for all (k — 1)-forms v and all k-forms u.

Proposition A.2.2. Let E — M be a Hermitian vector bundle over an oriented Rie-
mannian manifold (M, g), and let V¥ be a metric connection on E, with dual connection
VE . If VE and VE" denote the connections on AT*M @ E and AT*M ® E* induced by the
Levi-Civita connection on M, and VE and VE", respectively, then

Vg 0¥E2¥Eovg

for every complex vector field Z € T'(M,TM ®g C).
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Proof. The Riemannian volume form vol, is parallel for the Levi-Civita connection: for a
real vector field X on M, there is f € C°°(M) with V xvol, = f voly, hence
0= X (1) = X(|voly|*) = 2(V xvolg, voly) = 2f[vol,|* = 2f,

which shows that Vyvol, = 0, and this continues to hold for complex vector fields. We
compute, with v € QF(M, E) and v € Q™ *(M, E),

Vz((u,v) voly) = Z((u, v)) voly, = (VEu,v) volg+ (u, 6%1)) voly = ﬁgu/\w;Ev—l—u/\cv?E%%v,
see (A.1.2)). On the other hand,
Vz((u,v) voly) = Vz(u Aey ?Ev) = 6§u Nov F20 + U Aey ﬁg*iEv,

where Ehe covariant derivatives are compatible with Aq, by li Therefore, U Aoy *2 %gv =
U Ney V??E v holds for all u, which implies the result.

Proposition A.2.3. Let E — M be a Hermitian vector bundle over an oriented Rie-
mannian manifold of dimension m, and let V be a connection on E, with induced exterior
covariant derivative d¥: Q*(M, E) — Q*TY(M, E), see appendiz . Then

*E o dBT = (~1)*dE" o %F  and d¥ T oFE = (—1)M1%E o ¢E

on QF(M, E), where d¥1 is the formal adjoint of d¥, and d¥": Q*(M, E*) — Q*t1(M, E*) is
the exterior covariant derivative associated to the dual connection on E*.

Proof. Let u € QF(M, E) and v € Qm*1(M, E*). Then

(45 FEy, o)) = / (A5 FE ) Aoy 750
M

_ / (dFPu Moy T 0) — (— 1) F5P 0 pgy dPF5°0) by (ALT)
M

_ m—k+1 [ LE E_E* .
— ev
(—1) / FUNey d7FT v since v has compact support

M

= (—l)m_k“/ o Aoy T P FEAEZE since (xF7)7t = o %F
M

= (=) FH(FEEy, o PR dERE b)) by the definition of %

= ()" EEu, % P dPE v) by (A21)

= (—DFFFu, #EdP o F5E ) since oPdf = (1) 1dFoP

= (=D*(u, dfcE%E v) since ¥ is an isometry

= (=D*(dP T, oPZE v) by the definition of d®

= (-1 (F"d"Tu, v) by (A.2.2),

which shows the first formula. Applying it to £* instead of E yields

oE o dE T oxE :?EOGE* odE*’T)oiE = (—1)m_k¥Eo(dEo¥E*)o¥E = (—l)k'HUE* oxfodf
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on QOF(M, E), which implies the second formula.



APPENDIX B

Background on complex and Hermitian geometry

In this appendix, we provide the needed background on Hermitian geometry in a condensed
form. In particular, we discuss the splitting of the tangent bundle of a complex manifold
induced by its complex structure, the Dolbeault operator 0¥, and the basics on Hermitian
holomorphic vector bundles, such as the Chern connection and its curvature. More detailed
introductions can be found in [Bal06; Huy05; |Wel08|, which is where most of the content of

this appendix was taken from.

B.1. Complex manifolds

An almost complex manifold is a smooth manifold M together with a bundle endomor-
phism J: TM — TM such that J?> = —idyy. On an almost complex manifold (M, J),
the complexified tangent bundle TM ®g C splits into THOM @ T M, corresponding to the

eigenvalues +7 of the complex linear extension of J to TM ®g C. The maps
1
(TM,J) — (T*OM,4), X — X10 = 5 (X —iJX) (B.1.1)

and
1
(TM,J) = (T%'M,4), X — X% = 5(X +iJX) (B.1.2)
are complex linear and conjugate linear isomorphisms, respectively, where we will always use

multiplication by 4 in the second factor of TM ®g C as its complex structure. For the bundle
of k-forms, we get a splitting into bidegrees (p, q),

ANTMerC)* = P A(TYM)* @ AT M)* = P APIT*M,
p+q=Fk pt+a=k
where APAT*M = AP(THOM)* @ A9(TOIM)*. Let I, 4: A(T*M ®gr C) — AP4T*M denote
the projections. One has
ST PTUIe0) (v, v) = a(Jur, - Jog) (B.1.3)
pt+q=k

for all « € A¥(T*M ®g C) and v1,...,v;, € TM ®g C, see [Huy05, p. 28]. In particular, a
two-form « is of bidegree (1,1) if and only if a(v,w) = a(Jv, Jw) for all v,w € TM ®g C.

The wedge product extends to bilinear maps

Az APAT* M < APSCT* M — APTPatd Tx

129
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We denote by QP9(M) the smooth sections of AP4T™*M, and by Q(M,C) = D, , (M)
the space of all smooth complex differential forms. Starting from the exterior derivative, we

may define
0 =Tlpp140d: QPU(M) — QPTHUM) and 0 =TI, 441 0 d: QP4(M) — QPITL(M),

and we extend them complex linearly to Q(M, C).

In general d # O + 0, but we have equality in the case when M is a complex manifold.
By this, we mean an even dimensional manifold in which the transition functions between
charts may be chosen to be biholomorphic, under the usual identification R*® = C*. If
p: U — V is such a chart, with U C M and V C C" open subsets, then by using its derivative
To: TM|y — C", we obtain a well-defined almost complex structure on M by pulling back
the operator of multiplication with i on C". In other words, JX = (T¢) 1 (iT¢(X)) for
X € TM|y. Writing ¢ = (21, ..., 2y), and putting x; := Re(zy) and yi := Im(zy), we see that

J(@ik) = (Tp) iegp—1) = (Tp) (ear) = (;Zk
and
J(a)  (To) ien) = (Tp) L(—enpy) = —=2
Oy 2k 2%—1 Fon

for 1 <k < n, and where ¢; € R?" are the standard unit vectors. In particular,

9 _ (6)1”_1(8_.6) a2 (8)“_1(6*8)
0z, o ox 2 ox Z(’?yk & 0%y, o ox 2 ox Zayk

are pointwise linearly independent sections of 7V M|y and 7% M|y, respectively. For dimen-
sional reasons, they form a frame of these complex vector bundles, with corresponding dual
frames given by

dz = dzp +idy, and dzp = dxy — idyy.
With these notations, one has

" 5 N
af:,;%(f)dzk and af:kz::laizk(f)d?k

for f € C*°(U,C) and, most importantly, a computation shows that d = d + 9. Thus, if M
is a complex manifold, 0 = d? = 0% + 99 + 90 + 0%, and comparison of the bidegrees of the
individual terms yields

?=9>=00+00 =0.

It is remarkable that the converse also holds: if d = 0 4 0, then the almost complex manifold
(M, J) admits in a unique way the structure of a complex manifold such that J is the almost
complex structure induced from the holomorphic charts of that structure, as above. In this
case, one says that the almost complex structure is integrable. This is the famous Newlander—
Nirenberg theorem [NN57].
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B.2. Hermitian manifolds

A complex manifold M together with a Riemannian metric g on M is called a Hermitian
manifold if g is compatible with the complex structure,

9(JX,JY)=g(X,Y)

for all vector fields X and Y on M. Associated to such a compatible Riemannian metric is
the positive definite Hermitian form

MX,Y) = g(X,Y) —ig(JX,Y) (B.2.1)

on the complex vector bundle (T'M, J). This means that h is sesquilinear (i.e., h(JX,Y) =

ih(X,Y) and h(X,JY) = —ih(X,Y)), positive definite, and satisfies h(X,Y) = h(Y, X). The
Riemannian metric ¢ may also be extended to TM ®g C in a sesquilinear fashion, denoted

by (e, ), so that
(X @AY @pu) =Apg(X,Y).
It follows that (e,e) is a positive definite Hermitian metric on (T'M ®g C, i), and complex

conjugation satisfies (Z1, Za) = (Z1, Za) = (Z3, Z1). The splitting TM @g C = T*OM T M
is orthogonal for this inner product, since

(X —iJX,)Y +iJY) =g(X,Y) —ig(JX,Y) —ig(X,JY) —g(JX,JY) =0.
A similar computation shows that
(X —iJX,)Y —iJY) =2h(X,Y) (B.2.2)

for all X, Y € TM, so that h = 2(e, ) under the isomorphism (T'M,J) = (T*°M,4) from
. We will write | X| = \/(X, X) for the pointwise norm induced by (e, ¢), and |e|, for
its value at € M. Orthogonality in TM ®g C, TYOM, or T%' M, will always taken to be
with respect to (e, »), unless otherwise specified.

Let {w;}7_, be a local frame of T"°M. Then

1 - i _
€251 = ﬁ(wj +w;) and ey = Jeyj_1 = ﬁ(wj — wWj) (B.2.3)

for 1 < j < n defines a frame of TM C TM ®g C. Denote by {w’}7_; the corresponding dual
frame of (T19M)*. Tt follows that

, 1 A . ,
Xt = \ﬁ(uﬂ + @) and €% = 7%(10] —w’) (B.2.4)

defines the dual coframe to {e;}2",. Note that if {w;}7_; is orthonormal in (THOM, (s, ),
then {ej}?", is a (real) local orthonormal frame of (T'M, g). Similarly, we have the complex
local orthonormal frames {eg;—1}7_ and {ez;}7_ of (T'M, J, h).
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B.2.1. Kihler manifolds. A Hermitian manifold (M, J,g) is called Kdhler if dw = 0,
where

w(X,Y) = g(JX,Y) = —Im(h(X,Y))
is called the Kdhler form associated to g and J. Since
W(JX,TX) = g(J°X,JY) = —g(X,JY) = w(X,Y),

the Kéhler form is of bidegree (1, 1), see (B.1.3). An excellent introduction to Kéhler manifolds
is [Bal06]. The following result gives a few characterizations of the Kéhler condition:

Theorem B.2.1. Let (M, J,g) be a Hermitian manifold, with Kdhler form w as above.
The following are equivalent:
(i) dw =0, i.e., (M, J,g) is a Kihler manifold.
(i) VJ =0, where V is the connection on End(T M) induced by the Levi-Civita connection.
(iii) The (complexified) Levi-Civita connection preserves the subbundles TY°M and T M
of TM ®p C.
(iv) The Chern connection (see appendi:c of the Hermitian holomorphic vector bundle
(T'M,h), with h as in , is equal to the Levi—Civita connection.
(v) For every x € M there exists ¢ € C°(U,R), with U an open neighborhood of x, such
that w|y = i00p.

Proof. See |[Bal06, Theorem 4.17].

Example B.2.2. Products, submanifolds, and coverings of Kéhler manifolds are again
Kéhler (all equipped with the induced structures). For dimensional reasons, all Hermitian
Riemann surfaces (one-dimensional complex manifolds) are Kihler, since dw € Q3(M) = 0
in this case. The space C™ with the Euclidean metric is Kéhler, and the complex projective
spaces CP" are compact Kéhler manifolds if equipped with the Fubini—Study metric, see
[Bal06, Examples 4.10] for its construction.

B.2.2. Some exterior algebra identities. For X € TM ®g C, we denote by bX = X°
the dual 1-form, defined by X’ := (o, X) € T"M ®r C, and we let §: T*M @r C - TM @ C,
also denoted by a + af, be the inverse map. It follows that insx (o) = a(X) = (X, af). Note
that both X — X and a — of are conjugate linear maps. If X € T2OM, then X’ vanishes
on T M, so that we may identify X° with an element of (TYOM)* = AYOT* M, and similarly
for X € T%' M. We define a Hermitian metric on 7*M ®g C by

(o, B) = (B*,af),

so that £ and b become anti-isometries, called the musical isomorphisms.

The Hermitian metric (e, ¢} also induces Hermitian metrics on the bundles APT* M in the
usual way. Since TM ®@g C = TVOM @ T%' M is an orthogonal decomposition, it follows that
AT*M @r C = @, , AP7T* M also has this property. For a complex vector X € T, M ®g C,
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we let insy : A®(T,M ®@g C)* — A*~1(T,M ®g C)* denote the insertion operator (or interior
product), defined by

insx(a)(Y1,..., Y1) = (X, Y1,..., Y1)
for a € AF(T,M @ C)*. We have the identity (insx)* = £(X”), where the left-hand side
denotes the adjoint operator with respect to (e, ¢),. This operator satisfies the derivation rule
insy (a A B) = insy (a) A B+ (—1)Fa Ainsx (3)
for all o € A¥(T, M ®@g C)* and 8 € A*(T, M ®g C)*. In particular,
insy oe(Y”) +e(Y?) oinsy = insx (Y?) = (X, Y).
If F is a Hermitian vector bundle over M, then the insertion operator extends to
insx: AT;M @ E, - AT, M ® E,

by letting it act as the identity on F,, and we also obtain an operator insx: Q(M, FE) —
Q(M, E) for every smooth vector field X € I'(M,TM ®g C).

Lemma B.2.3. Let x € M, and {w;}_, be an orthonormal basis of T;" M.
(i) For all u,v € APYT}M ® E,,

Z (insy; (u),insy; (v)) = p(u,v) and Z insg, (u), insg, (v)) = q(u, v).
7j=1

(ii) For all § € TyM @ C and uw € APYT}M ® E,,

| insg (w)] < [&]]ul.

(iii) For all u,v € APYTIM @ Ep, a € TiM, and X € T,M ®g C,

n
> {(a Ainsx) insg, (u), insg, (v)) = (¢ — 1){( A insx )u, v).
j=1
Proof. For write u = ZZ,’K Y om W K,m (w‘] A @K) ® Sm, with the s, € E, forming
an orthonormal basis. Here, the primed sum means that summation is taking place over
all increasing maps J: {1,...,p} — {1,...,n} and K: {1,...,¢} — {1,...,n}, and v’ =
w/M A @) with WX defined similarly. Then

n
> = 3" ussml? and Y |insg, () Z SIS xkDlwsgml? (B.2.5)

JK m j=1 j=1 JK m

where Y is the characteristic function of img(K). For all K in this sum, there are exactly
q of the j € {1,...,n} where xk(j) = 1. Therefore, >°7_; |insg; (u u)|? = q|u|?. This together
with the polarization identity shows the second formula, and the first one follows by a similar

argument.
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If§eTeM®C, then § =377 (€, wj)w; + 371 (§,W;)W;, and hence

n n
inse (u Z &, wj) insy, ( Z &, ;) insg; (u).
]:]_ :

Since the summands of the two sums are mutually orthogonal, we have

n

|inse (w)[* = D (€, w)) PPl insw, (w)|* + Y (€, w)) | insg, (w)* <

=1 i=1
< (Ll wl? + 30 e w) ) ul® = JgPlul?
=1 j=1

where the inequality is due to | ins,, (u)[* = >0k Yo X ()|, km|? < |ul?, and similarly for

insg,, cf., (B.2.5). This shows

Finally, we have

n

> {(a A insx) insg, (u), insg, (v)) = Z (insy (insg, (u)), ins,: (insg; (u))) =

j=1 j=1
n
= (insg, (insx (u)), insg, (ins,: (u))) = (¢ — 1){(a A insx)u, v)
j=1
by and using that the insertion operators anticommute. This shows

B.3. Hermitian holomorphic vector bundles

Let E — M be a complex vector bundle over a complex manifold M. Then we have
QY M, E) = QMM E) @ Q% (M, E), and any connection V on E decomposes as V =
V0 4+ VOl with

v (M, E) - Q" (M,E) and V%!':T(M,E)— Q"{(M,E). (B.3.1)
It follows that
VIOfs)=oaf @ s+ Vs and VO(fs)=0f®s+ Vs (B.3.2)

for all f € C°(M,C) and s € T'(M, E). Any linear operators as in (B.3.1]) and satisfying
(B.3.2)) are called connections of type (1,0), respectively of type (0,1). Since M is a complex

manifold, d = 0+ 9, and hence the sum of a connection of type (1,0) and a connection of type
(0,1) is a connection in the usual sense. If dv: Q(M, E) — Q(M, E) is the exterior covariant
derivative associated to V, then dV splits as d¥ = dYO + d(Y 1, Where

dYo(QP9(M, E)) C 7T I(M,E) and  dY,(9(M, E)) C Q9 (M, B),

Moreover, dlv’o only depends on V9 and dOVJ only depends on V%!, Alternatively, one may
extend V0 and V%! directly as in {D to obtain d1v70 and dgl, respectively.
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If {wj}?=1 is a local frame of TV9M, we have dV = eF A ﬁek =wl A %wj + w7 A 6@. by

{j where e, and e* are as in {j and 1 , and V is the connection induced on

AT*M ® E by the Chern connection on E and any torsion free connection on T'"M. Therefore,
dXO =wl A ﬁwj and dOVJ = A 6@].. (B.3.3)

Assume now that 7w: E — M is a holomorphic vector bundle, i.e., E and M are complex
manifolds, 7 is holomorphic, and the local trivializations E|y — U X Crak(E) may be chosen
to be biholomorphic. A connection V on F is called compatible with the holomorphic structure
if V%1s = 0 for all local holomorphic sections s of E. Let (§j)§:1 be a holomorphic frame for
E over an open subset U C M, with r the (complex) rank of E. Then any section s € I'(M, E)
may be written over U as s|y = 37, s;§; for certain functions s; € C*°(U,C). If V is
compatible with the holomorphic structure of E, then

r

(V0’18)|U = 2(55]' X fj + Sjvo’lfj) = ngj' (%9 fj, (B.3.4)
j=1

j=1
so that the (0, 1)-part of such a connection does not depend on the specific connection. Con-
versely, defines a connection of type (0,1) on E since the transition functions between
two holomorphic frames of E are holomorphic. We denote this connection of type (0,1) and
its extension to differential forms by

oF: Q% (M, E) — Q***(M, E).

A (local) section of E is holomorphic if and only if it is annihilated by 0F. If u = > =10 ®E;
is an element of Q(U, E), with a; € Q(U) and (;)j—; as above, then

oFu = Zéaj ®&;j.
j=1

Note that 9% = 0 implies (0¥)? = 0, so that we obtain the cochain complexes
0 oF 1 o EL2 n
0= QMM E) — QP (M, E) — -+ — QP"(M,E) — 0 (B.3.5)

for 1 < p < n, collectively called the Dolbeault complex. Details on the definition and properties
of 0¥ can be found, for instance, in [Dem12; Dem13; Huy05; MMO7; WelO8|. Since 0F is
equal to I, ;41 0dY on QP4(M, E), where IT,, ,: AT*M ® E — AP9T*M ® E is the projection,
the principal symbol (see section of 0F reads

Symb(9F)(€)u = T, 411 (E Au) = % A (B.3.6)

for u € QP4(M, E), where ¢! = %(5 + iJ¢&) is the component of £ ® 1 € T*"M ®g C in
(T%*M)*. Here, the complex structure on T*M is defined by (Ja)(X) = a(JX), and one has
the isomorphisms (T10M)* = (T*M)10 and (T M)* = (T* M), see [Huy05, Lemma 1.2.6].

Proposition B.3.1. If (E, (e, *)) is a Hermitian holomorphic vector bundle, then there
exists a unique metric connection on E which is compatible with the holomorphic structure.
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Proof. See for example [Wel08, Theorem 2.1] or [Bal06, Theorem 3.18].

Definition B.3.2. The connection from Proposition |B.3.1|is called the Chern connection
for (E, (e, )). We write d¥ for the exterior covariant derivative associated to it, and R¥ for

its curvature. By the above, 0¥ = dgl.

Proposition B.3.3. The curvature of the Chern connection on (E, (e, #)) is a (1,1)-form
with values in End(E), i.e., R¥ € QYY(M,End(F)). Equivalently, RF(JX,JY) = RE(X,Y)
forall X, Y € TM, see (B.1.3)).

Proof. See |[Bal06, Proposition 3.21] or [Huy05, Proposition 4.3.8].

Remark B.3.4. As in Remark we can diagonalize the quadratic form (X,Y) —
(RE(X,Y)e,e) on T,M ®g C for fixed e € E, to obtain an orthonormal basis {£;}2";, where

— J=1
n is the complex dimension of M, such that (RE(&;,€,)e, e) = rj(e)d k., with r;(e) € R. Since
RE(JX,JY) = R¥(X,Y) by Proposition we may choose this basis to also diagonalize
J, meaning that we can find an orthonormal basis {w;}7_; of (T1OM, (e, #)) such that
(RP(wj, Wr)e, €) = s;(e)d;
for some s;(e) € R, 1 < j < n. Since {w;}}_, is then orthonormal in 7' M, and
(RF(wj, wy)e, e) = —(RF (wy,w;)e, €) = —sp.(e)dn,
we find that {r;(e)}72; = {s;(e)}j U {=s;(e)}j=1-

Example B.3.5. The tangent bundle TM — M of a Hermitian manifold (M, J,g) is
a particular example of a Hermitian holomorphic vector bundle, with Hermitian metric A
given by (B.2.1). The identification (T'M,J,h) — (TVOM,i,2(s,¢)), X = (X —iJX), is a
complex linear isometry, see , and T1°M is made into a Hermitian holomorphic vector
bundle in this way.

Let VZ"*M be the Chern connection for (THOM, (o, o). If Z = Z10+ 7% € I(M, TM ®g
C) with Z%0 € T¥OM and Z%! € T M is a complex vector field, then we put

VxZ = Vg "Mz 4 gIOM 70T, (B.3.7)

It follows that V is a connection on the complex vector bundle T'M ®g C which by construction
preserves the splitting TM ®r C = TYOM & T%'M. Because VIHM is metric compatible,
we have

X (VW) = (VE MV, W) 4+ (v, v M W)
for all X € T'(M,TM) and V,W € I'(M, T"°M), and hence

(V)(Y, Z> + <Y, VXZ> =
_ <v§1,0Myl,O’ Z1’0> + <W, V§1’OMW> + <Y170’V§I,OMZ1,O> + <V§I,OMW’W> _
_ X<Y1’0,Z1’0> —{—X(ZOvl,YO’l) = XY, Z)
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for complex vector fields Y and Z, where we have used that complex conjugation is an anti-
isometry THOM — TO1M. This shows that V is a metric connection on (TM ®g C, (s, *)).
IfY € T'(M,TM) is a real vector field, then Y10 = L(Y —iJY) and Y*! = L(Y +4JY), and

therefore

1 —_——
VxY = (VE MY = idY) + VEMY +3JY)) = Re (V5 (Y —iJY))

is also real, showing that V restricts to a connection on the subbundle TM C TM ®g C.

Now let VI™ be the Chern connection for (T'M,h). As we have the isomorphism
(TM,h) = (TYOM,2(s,)) of Hermitian holomorphic vector bundles, given by , the
Chern connection VI'"M of (TYOM, (s, +)) must have the form

1,0 1 1,0 . 1 .
vTOM Y10y = 5(v§ My —iJY)) = §(V§MY —iJ VMY ) = (VY)Y (B.3.8)

for XY € T(M,TM). In particular, VEMY = Re(VE "M (Y —iJY)), hence VIM coincides
with the restriction of V to TM C T'M ®g C as defined above, and V is the C-linear extension
of VIM to TM ®g C. As stated in Theorem VTM equals the Levi-Civita connection
if (M, g) is Kéhler. Since V'™ is metric compatible, it satisfies

Z(WX,Y)) = h(VzX,Y) + h(X,VY)

for all X,Y,Z € I'(M,TM), and taking the real part of this equation shows that V7 is also
compatible with g.
Let RT"*M and RTM denote the curvatures of VI M and vI'M , respectively. By 1}

and Remark we have

RTM(X,Y)(Z2"0) = (R™(X,Y)7)"’
for all X,Y,Z € T'(M, TM).

Remark B.3.6. The restriction of V from (B.3.7) to T%'M is also a metric connection
(with respect to (e, #)), given by

v My = yIOMY, (B.3.9)

Its curvature satisfies

RT"'M(X VYW = RT"M (X, YW (B.3.10)
for X, Y € T(M,TM) and W € I'(M, T%'M). In particular, this also has bidegree (1,1). If
Z € T'(M,TM), then we can reformulate (B.3.10) as RT""M (X, v)(Z2%!) = (RTM(X,Y)Z)"L,

Example B.3.7. Let M be a complex manifold, and consider a Hermitian metric (e, )
on the trivial line bundle L := M xC — M. If e: M — L, e(z) = (z,1) denotes the constant

section, then

= —logole,e)
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is a smooth, real-valued function on M. Under the identification I'(M, L) = C*°(M, C), we
have

(f,9)e = ((x, f(2)), (x,9(2))) = f(2)g(2) (e(x), e(x)) = f(x)g(x) e ¥
Conversely, any smooth function ¢: M — R gives rise to a Hermitian metric on L in this way.
We have du = du — dp A for v € Q(M, L) = Q(M,C). Indeed,

d(f,9) = (df NG+ [ Ndg— fgndp)e™? =
= ((d=02)f NG+ [N (d=0p)g)e”” = ((d = dp)f.g) + (f,(d = Dp)g),
s0 (d — 8¢)|ce(ar,c) is the Chern connection on L, and hence d“(a® f) = da® f + (—1)ka A
(d—0p)f = d(fa) — 0¢ A (fa) for all k-forms a. Consequently, dfo = 0 —€(0¢). The
curvature form of L acts on u € Q(M,C) as
R Aev u = dldbu = d?u — d(0p Au) — 0 Adu+ o A Do Au = —(ddp) Au = ddp A,
hence RF = 00p € QVY (M) = QY (M, End(L)).
Example B.3.8. Similarly to Example if L is a general (possibly non-trivial)

Hermitian holomorphic line bundle over M, then on any open subset U over which L is trivial,

say via ¥: L|y — U x C, the metric will take the form

(s,8)e = (07 (W(s(2))), 0~ ((4(2)))) = pra(¥(s(x))pra(d () e,

with ¢ == —logo(e,e): U — R and e(x) := ¥~ (z,1). The curvature equals R|;; = 00¢ €
QLY U) =2 QYY(U,End(L)). In particular, R” is a closed real (1,1)-form.



APPENDIX C

Background on functional analysis

In this appendix, we collect some of the necessary background on the analysis of self-adjoint
operators on Hilbert spaces. Fix (complex) Hilbert spaces Hj, Ho, and Hs. The following
basic definitions and facts can be found in any textbook which treats unbounded operators,
for instance [Sch12; Wei80].

By a (linear) operator from Hy to Hs, we mean a linear map 7': dom(7T) — Hy, with
dom(7") a linear subspace of Hj, called the domain of T. We shall write T': H; ~» Ha to
signify that T" may only be partially defined. An extension of T is a operator S: Hy ~» Ho
such that dom(7) C dom(S) and S|gom(ry = T In other words, Graph(7) C Graph(S5),
where Graph(7T') := {(z,Tz) : * € dom(T)} C Hy x Hs is the graph of T', which is why we
write 7' C S if S extends T. Operator equalities are always understood to mean that both
operators have the same graph. If 77,75: Hy ~» Hos, then their sum 77 4+ T5 is the operator
with dom (77 + T) := dom(T1) Ndom(7T») and (71 + Ts)x = Tix + Tex for z € dom(Ty + T5).
Similarly, if S: Hy ~» Hs, then the composition ST: H; ~» Hj is defined on dom(ST) :=
dom(T)NT~!(dom(S)) C Hy by (ST)x := S(T(z)). Anoperator T: Hy ~ Hj is called densely
defined if dom(T') is dense in Hy, and closed if Graph(T') is closed in Hy x Hy. If T is closed and
dom(T) is closed in Hy, then T is bounded by the closed graph theorem, and may be extended
to a bounded operator on all of H; by setting it to zero on dom(7)+ C Hy. If T is closed,
then dom(7T') is a Hilbert space when equipped with the graph norm z +— (||z||? + || Tz||*)"/2.
Any dense subspace D C dom(T') is then called a (operator) core for T'. Equivalently, T" is the
closure of T'|p. The range of an operator T': Hy ~» Hj is its image img(T") := T'(dom(T")) C Ha.
The range of a closed operator T is closed if and only if there is C' > 0 such that ||Tx| > C||z||
holds for all x € dom(T) Nker(T)*, see for instance [Hor65, Theorem 1.1.1].

Suppose now that T: H; ~» Hj is densely defined. Then its adjoint T*: Hy ~~ Hj is
defined by

dom(T™) := {y € Hy : © — (Tx,y) is H;-continuous on dom(T)}

and Ty = x, for y € dom(7T™), where x,, € H; is the unique vector (by the Riesz represen-
tation theorem) such that (T'z,y) = (x,xy) holds for x € dom(7"). Then T™ is closed, and
densely defined if and only if T is closable (i.e., admits a closed extension). In the latter case,
T = T** is the closure of T (i.e., the smallest closed extension). Moreover, ker(T*) = img(T)*.
If T is densely defined and closable, then T* = (T)*. If T, Ty: Hy ~ Hoy are densely defined
operators such that 77 + T5 is densely defined, then 77 + T3 C (Th + To)*. If S: Hy ~~ Hj
and ST is densely defined, then 7%S* C (ST)*.

139
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C.1. Spectral theory of strongly commuting normal tuples

By Proposition [5.1.2] the spectrum of the Laplacian for the tensor product of two Hilbert
complexes is determined by the closures of the operators A; ® id H + idg, ®A, with A and
A’ being the Laplacians for the individual factors. Hence we are led to consider operators
of the form T' ® idx +idy ®S, where 1" and S are normal operators on Hilbert spaces H
and K, respectively. We will make use of the Borel functional calculus for tuples of strongly
commuting normal operators.

Let (H,(e,*)) be a Hilbert space. A densely defined operator T': H ~~ H is called self-
adjoint if T* = T, including domains. More generally, T: H ~» H is called normal if it is
closed and satisfies T*T = T'T*. By [Sch12, Proposition 3.25], this is the case if and only if
dom(7T) = dom(T™*) and ||Tz| = ||T*z|| for all x € dom(T"). Recall that a spectral measure
on a measurable space (S,X) is a strongly countably additive map P: ¥ — Z(H) with
values in the orthogonal projections of a Hilbert space H and such that P(S) = idy. Thus,
P(UjZ, Mj)z = 3272, P(Mj)x for every sequence of mutually disjoint sets M; € ¥ and all
x € H, with convergence in the norm topology of H. If z,y € H, then M +— (P(M)x,y) is a
complex measure on S, denoted simply by (Px,y). For each measurable f: S — CU{o0} such
that f is finite almost everywhere (for P), one defines the spectral integral |, gfdP: H~H
as the operator characterized by

dom</SfdP> = {er:/S]de(Pm,a;)<oo}
(o)) fraons

for all z € dom( [y fdP) and y € H. Then
() ([ fdP)z|]* = [4|f|? d(Px,x) for « € dom([s f dP),
(ii) [ fdP is bounded if and only if f is P-essentially bounded, i.e., f € L*®(S, P), with

operator norm || [ f dP[| = || fll £ (s,p),

(iii) [ f dP is a normal operator, and

(iv) [g fdP is the adjoint of [ f dP. In particular, [ f dP is self-adjoint if and only if f is
real-valued P-almost everywhere.

and

We refer to [Sch12l section 4.3.2] for this and more. The spectral theorem says that normal
operators are characterized by spectral integrals: for each normal operator 7' on H, there is a
unique spectral measure Pr: B(C) — £ (H) on the Borel subsets of C such that

T = / ide dPr.
C

Moreover, supp(Pr) = {z € C: Pr(B:(z)) # 0 for all ¢ > 0} is precisely the spectrum o(T)
of T', hence we may also write T' = fU(T) ide dPr = f(c Xo(T) dPr. The eigenvalues of T' are
the complex numbers A such that ker(T'— Aidg) # 0. In terms of the spectral measure, this is
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equivalent to Pr({\}) # 0, with Pr({\}) being the orthogonal projection onto the associated
eigenspace ker(T' — \idp).

Definition C.1.1. A tuple T := (11, ...,T),) of normal operators on a Hilbert space H
is said to be strongly commuting if all their spectral projections Pr, (M), for M C C Borel
measurable and 1 < k < n, mutually commute.

Let T = (T1,...,T,) be a strongly commuting normal tuple on H. The spectral theorem
for strongly commuting normal tuples (see [Sch12, Theorem 5.21]) gives the existence of a
unique spectral measure P on the Borel sets of C™ such that

Tk:/ deP(Zl,...,Zn)

for all 1 < k <n. This measure is called the joint spectral measure for the tuple T', and it is
in fact the product of the spectral measures of 17, ...,T),, in the sense that

P(My x -« x My) = Pr, (M) -+ Pr, (M)
for Borel sets Mj, C C, 1 < k < n, and where Pr, is the spectral measure of T}.

Definition C.1.2. Let T' = (T4, ..., T,) be a strongly commuting tuple, with joint spectral
measure P. The joint spectrum of T is the support of P,

o(T) ={z€C": P(B.(z)) # 0 for all e > 0},

where B:(z) denotes the open ball in C" with radius € and center z. The joint essential

spectrum of T is
oe(T) = {z € C" : rank(P(B:(z))) = oo for all £ > 0}.
The complement of 0.(T') in o(T) is called the joint discrete spectrum of the tuple T,
o4(T) == {z € C" : e > 0 such that 0 < rank(P(B:(z))) < oo for all € € (0,¢0)}.

For n = 1, these definitions reduce to the usual ones for a single operator. The joint
essential spectrum is closed in o(T"), and o4(7T) is discrete, but there may be other isolated
points in o(T) \ 04(T), namely eigenvalues with associated eigenspace of infinite dimension.
Such eigenvalues would then belong to o¢ (7).

Proposition C.1.3. Let T = (T1,...,T,) be a strongly commuting normal tuple on a
Hilbert space H. Suppose that D C (p—; dom(T}) is a core of T}, for every 1 < k < nE|

(1) z € o(T) if and only if there is a sequence x; € D such that liminf;_, ||z;|| > 0 and
lim; o0 (Tha; — zixj) =0 for all1 < k < n.
(ii) z € oo(T) if and only if there is a sequence x; € D such that x; — 0 weakly in H,
liminf;_,o [|z;|| > 0, and imj_o(Thz; — 2xz;) = 0 for all 1 < k < n.
LCommon cores always exist for strongly commuting normal tuples, see [Sch12, Corollary 5.28]. In fact, if

P is the joint spectral measure of T', then | J3_, img(P({z € C" : |zx| < N for all k})) has this property, and
is also a core for all T}, .
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A sequence as in (respectively |(ii)]) is called a Weyl sequence (respectively singular
Weyl sequence) for (T, z).

Proof. The characterization of the joint spectrum can be found in [Sch12, Proposition 5.24].
Let z € 0.(T') and denote by P the joint spectral measure of T'. By definition, rank(P(B;/;(2))) =
oo for all j > 1, so there are unit vectors y; = P(By/;(2))y; for j € N, and since the rank
stays infinite, we can choose y; — 0 weakly as j — oco. Clearly, y; € dom(T}) for all k, and

n
STl = [ e PP < 177,
k=1 1/5\%
so that (T — z;)y; — 0 as j — oo for all 1 < k < n. Now choose z; € D such that
|z —y;l <1/j and ||Tpx; — Try;l| < 1/j for all 1 <k < n. Then (T}, — 2z)x; = 0 as j — oo
and liminf; ||z;|| > liminf;(||y;|| — ||z; — y;l|) = 1, as well as z; — 0 weakly, so (z;);jen has
the desired properties.

To show the converse, we adapt the proof of [Wei80, Theorem 7.24]. Let z; € H be a
weak null sequence of vectors x; € D C (;_; dom(7T}), and such that liminf;_, ||z;]| > 0
and limj_,oo (Thxj; — zpxj) = 0 for all 1 < k < n. Assume that there exists ¢ > 0 such that
rank(P(B:(z))) < oo, so that the projection P(B.(z)) is compact. Then P(B.(z))z; — 0 in
H and

> It = 20 = [ =P aptwye.a)

> / lw — 2|2 d(P(w);, z)
Cn\Be(z)

> ([ ) = [ o) dP@.a))
= *(llz;11* = I1P(Be(2))a51°).
Thus, there exists 1 < k < n such that liminf;_, ||Tk2; — zx2;|| > 0, a contradiction.

Definition C.1.4. Let T = (T3,...,T),) be a strongly commuting normal tuple, with
joint spectrum o(7") C C". If f: o(T) — CU {+o0} is an almost everywhere finite Borel
measurable function, then we can use the joint spectral measure to define the normal operator

F(T) = fap.
o(T)

The assignment f — f(7T) is called the Borel functional calculus for strongly commauting

normal tuples.
The spectrum of this operator is then the P-essential range of f,
o(f(T)) = {A € C: P(F(B-(N))) # 0 for all £ > 0},
and its essential spectrum is

oe(f(T)) = {\ € C:rank(P(f ' (B:(\)))) = oo for all £ > 0}.
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Both of these formulas follow from the fact that the spectral measure associated to f(7') is
Po f~!, where f~! is the preimage map on the Borel sets of C.

Theorem C.1.5 (Spectral mapping theorem). Let T = (T4,...,T,) be a tuple of pairwise
strongly commuting normal operators, and let f: o(T) — C be a continuous function. Then

o(f(T)) = f(o(T)) and o.(f(T)) 2 f(oe(T)).

If f is also proper (meaning preimages of compact sets are compact), then
o(f(T)) = f(a(T)) and oc(f(T)) = floe(T)).

Proof. The spectral mapping theorem for the joint spectrum is well-known and can be
found in [Sch12, Proposition 5.25]. The proof of o.(f(T)) 2 f(0oe(T)) is similar to the
corresponding inclusion for the joint spectrum: If A € f(o.(T)) and € > 0, then there is
z € 0.(T) with |f(z) — A] < €/2. Since f is continuous, there exists § > 0 such that
Bs(z) € f~Y(B.()\)). Because z is in the joint essential spectrum, P(Bs(z)) and hence also
P(f~Y(B.(\))) has infinite rank, meaning A € o.(f(T)).

Now let f: o(T) — C be proper. Then f is a closed map, see [Pal70, Corollary], hence
we only have to show o¢(f(T)) C f(0c(T)). If X & f(0.(T)), then we can separate the point
A € C from the closed set f(oe(T')), so there exists € > 0 such that B.(A) N f(o.(T)) = 0. By
applying f~1, we find that f~1(B-(\)) Noo(T) = 0. As f is proper, the set V := f~1(B.(\))
is a compact subset of o(T") contained in the joint discrete spectrum, implying that P(V') and
hence P(f~1(B.()\))) has only finite dimensional range. Therefore, A & o.(f(T)).

If H and K are Hilbert spaces, then we denote by H & K their Hilbert space tensor product,
which is the completion of the algebraic tensor product H ® K with respect to the usual inner
product, defined on elementary tensors by (z ® y, 2’ @ y') = (z,2")(y,y’). We require a few
basic facts about the tensor product of unbounded operators, see [Sch12, section 7.5] for a
reference. If T and S are closable linear operators on H and K, respectively, then the induced
operators T ® S and T ® idy +idx ®S on dom(T) ® dom(S) C H & K are closable. We
denote the closure of T ® S by T'® S. If both T and S are densely defined and closable,
then (T ® S)* = T* @ S*. Our principal example of a strongly commuting tuple will be the
following:

Lemma C.1.6. Let T and S be normal operators on Hilbert spaces H and K, respectively.
Then the operators T ®idx and idg &S form a strongly commuting normal pair on the Hilbert
space H® K. We have

o(T ®idg,idy ®S) = o(T) x o(9) (C.1.1)
and
oe(T ®idg,idg ®S) = (0e(T) x 0(9)) U (o(T) x 0(9)). (C.1.2)

Proof. The spectral measures of T & idx and idg ®S are, respectively, given by

M Pp(M)&idg  and N — idg ®Pg(N),
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where Pr and Pg are the spectral measures of T" and S, respectively. Therefore, the joint
spectral measure of the pair (T' ® idg,idy ®S) is given on rectangles M x N C C? by
Pr(M) & Ps(N), and its image is
img(Pr(M) & Ps(N)) = img(Pr(M)) & img(Ps(N)).
Indeed, we have img(Pr(M)® Ps(N)) 2 img(Pr(M)® Ps(N)) = img(Pr(M)) ® img(Ps(N))
and hence also img(Pr(M) ® Ps(N)) 2 img(Pr(M)) ® img(Ps(NN)) since the orthogonal
projection Pr(M) & Ps(N) has closed range. The other inclusion is clearﬂ as Pr(M) ® Ps(N)
factors through
Pr(M)® Ps(N): H® K — img(Pr(M)) ® img(Ps(N)) — H & K.

Now it follows that the image of Pr(M) & Ps(N) is nonzero (resp. infinite dimensional) if
and only if both factors are nonzero (resp. at least one of them has infinite dimension and
the other is nonzero). Since the products of open discs form a basis for the topology of C2,

the result follows immediately.

Remark C.1.7. The inclusion “2” in (C.1.2) can also be seen by using singular Weyl
sequences. Indeed, suppose that A € 0.(T) and p € o(S). Then there exist sequences of unit
vectors x,, € dom(7") and y,, € dom(S) with z,, — 0 weakly and such that

(T —Nzp, —0 and (S —p)y, —0
as n — oo. But then the weak null sequence z, == z,, ® y, € dom(7T") ® dom(S) satisfies
(T ®idg —N)zp — 0 and  (idy &S — )z, — 0
as m — 00, so that (), ) is in the joint essential spectrum of (T ® idg,idy ®.9).

Theorem C.1.8. Let T' and S be self-adjoint operators on Hilbert spaces H and K,

respectively. Put
A= [ (t+s)dP(t,s),
RQ
where P is the joint spectral measure of the pair (T @ idf,idy ©S). Then A is the closure of
the operator T ® idi +idy ®5 on H & K. Moreover,

0(A)=0(T)+0c(S) and 0c(A) D 0.(T)+0c(S)Ua(T)+ oc(5). (C.1.3)
If, in addition, T and S are lower semibounded, then
o(A)=0c(T)+0c(S) and 0c(A) = (0e(T)+0(S)) U (a(T) + 0e(S)). (C.1.4)

Proof. It is easy to show that A is a self-adjoint extension of T ® idx +idyg ®S. Because
T®idg +idg ®S is essentially self-adjoint, see [RS80, Theorem VIII.33], A must be its closure.

Equation ((C.1.3)) follows from Lemma and Theorem by applying it to the function
f:C?> = C, f(t,s) =t +s. If T and S are lower semibounded, then so are T ® idx and

2And in fact true for arbitrary bounded operators on H and K.
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idg ®S, and hence o(T ® idg,idg ®S) is contained in [¢,00) X [¢,00) for some ¢ € R. On

this set, f is proper and ((C.1.4)) follows, again, from Lemma and Theorem

Remark C.1.9. Of course, the joint spectrum of (T ® idg,idy ©S) and the spectrum of
the closure of T'® idg +idy ®S are well-known in the literature, see for instance [Schl2,
Lemma 7.24] or [RS80, Theorem VIII.33]. However, the corresponding statements regarding
their essential spectrum, as well as the spectral mapping theorem for o.(f(7')), seem to be
new (at least to the knowledge of the author).

C.2. Self-adjoint operators and their quadratic forms

Let (Hi,(*,*)m,), (H2,(*,*)m,), and (H,(e,*)) be (complex) Hilbert spaces. Recall
that a linear operator T': dom(7') C H; — Hp is closed (meaning that its graph is closed
in Hy X Hy) if and only if dom(7') is a Hilbert space with respect to the inner product
(x,y) — (x,y)m, + (Tx,Ty)m,. This is called the graph inner product, and the resulting norm
is called the graph norm. A symmetric operator T on (H, (e, *)) is called lower semibounded
if there exists m € R with (Tx,z) > m/||z||? for all z € dom(T'), and we write T > mI in this
case.

By a quadratic form on H, we mean a sesquilinear (i.e., conjugate linear in the second
argument if complex scalars are used) map @: dom(Q) x dom(Q) — C with a linear subspace
dom(Q) C H, called the domain of Q). Any quadratic form can be recovered by its restriction
to the diagonal of dom(Q) x dom(Q) by the polarization identity

4Q(z,y) = Qz +y, v +y) — Qz —y,x —y) +iQ(x + iy, x +iy) — iQ(z — iy, z —iy). (C.2.1)

An analogous formula holds in the case of real scalars. A quadratic form @ on H is called
Hermitian if Q(z,y) = Q(y, x) for all 2,y € dom(Q), densely defined if dom(Q) is dense in
H, and lower semibounded if Q(z,x) > m|z||? for all x € dom(Q), and we write Q > m in
this case. A lower semibounded quadratic form @ > m is called closed if dom(Q) is a Hilbert
space for the inner product (z,y) — (1 — m){(x,y) + Q(z,y), and closable if there is a closed
quadratic form which extends (). The smallest closed extension of @ is then called its closure.
When talking about convergence in dom(Q), we will always refer to convergence with respect
to this inner product.

Definition C.2.1. Let A be a self-adjoint operator on H. Then A defines a densely
defined Hermitian quadratic form on H by means of

dom(Q4) = {ac € H: /o—(A) IA| d(Pa(N)x, ) < oo} and Qa(z,y) = /O'(A) Ad(Pas(N)x,y)

for x,y € dom(Q4), where P4 is the spectral measure associated to A = fU(A) idg dP4 by the
spectral theorem.



146 C. BACKGROUND ON FUNCTIONAL ANALYSIS

Often, it is easier to work with @) 4 instead of with A directly. If a,b € R with a < b, then
img(P4([a,b])) € dom(Q4), and we have

Qa(z,x) :/ Ad(P4(X)Pa([a,b])x, Pa([a, b])x) :/ Ad(Py(N)x, z)
o(A) o(A)N[a,b]

for all x = P4([a,b))z € img(Pa([a,b])). Therefore, a||z|? < Qa(x,z) < b|jz||? for those .
An analogous statement holds for a = —oco or b = +o00. By the functional calculus, we have
dom(Q,4) = dom(|A|'/?) and

Qa(z,y) = (UalA"2, |A]'?y),

where Uy, is the partial isometry from the polar decomposition A = Ua|A| of A, see [Sch12,
Proposition 10.4]. One can show that

Qa(z,y) = (Az,y) (C.2.2)

for all z € dom(A) and y € dom(Q4), and that A is lower semibounded if and only if @ 4 has
this property (with the same lower bound, the largest of which is given by inf o(A)). In this
case, Q4 is automatically closed. If A > mlI, then we have dom(Q4) = dom((A — mI)'/?)
and

Qa(z,y) = (A —mI) 2z, (A — mI)'?y) + m(z,y),

see [Sch12, Proposition 10.5]. If A is nonnegative, i.e., A > 0, then this reduces to Q4(x,y) =
<A1/ 2, AY/ 2y). The correspondence between lower semibounded self-adjoint operators and
closed densely defined lower semibounded quadratic forms is bijective, meaning that for every
such quadratic form @ there is a unique self-adjoint operator A such that Q@ = @ 4, see [Sch12,
Theorem 10.7]. The operator A is given by

dom(A) = {z € dom(Q) : there is z; € H such that
Q(z,y) = (2,y) for all y € dom(Q)} (C.2.3)

and Az = z, for € dom(A). By the Riesz representation theorem, dom(A) is therefore the
set of all x € dom(Q) with the property that y — Q(z,y) is H-continuous on dom(Q).

Example C.2.2. If T is a lower semibounded symmetric operator, then the quadratic form
Qr: dom(T) x dom(T') — C, Qr(z,y) = (Tx,y), is closable, and the self-adjoint operator
associated with its closure is called the Friedrichs extension of T, see |[Sch12) section 10.4].
We will denote the Friedrichs extension of T' by Tr. In particular, dom(7") is a form core for
T, but not necessarily an operator core. The bottom of the spectrum of T is then given by

it o(zy) =int { 530 1o € dom(m)\ (03,

since it is equal to the largest lower bound of Qr.
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As discussed, a core for a closed operator T is a dense subspace of dom(7") for the topology
induced by the graph norm. Similarly, Dy C dom(Q) is called a core for the closed (lower
semibounded) quadratic form @ if Dy is dense in dom(Q). If A > mlI is a self-adjoint operator,
then Dy C dom(Q4) is called a form core for A if Dy is a core for Q4. By , we have

#ldomi@n) = 0 = mllel + Qa(w 2) = (1 m)|a|]* + (Az,z) <
3 1
< (1= m)lal® + | Asllfa] < (5 = m )l + 5l 42]? < Clolfoneay (C:24)

for all # € dom(A) and with C' := max {3 —m, 3}, where [|*||qom(q,) is the norm on dom(Q ),
and similarly for |[¢||qom(4), 0 that the inclusion dom(A) < dom(Q4) is continuous. Moreover,
dom(A) is actually a core for @ 4, see [Sch12, Proposition 10.5], hence this inclusion is denseH
As the inclusion is even Lipschitz, it follows that any core Dy C dom(A) for A is also a form
core for A. Indeed, if x € dom(Q4), then we find z € dom(A) and yx € Dy with z; — z in

dom(Q4) and [|yx — 2k |ldom(a) < 7 for all k € N, and hence (C.2.4) gives
Ve

l2 = ytllaom(@a) < 12 = 2klldom@a) + VCI2k = kldom(a) < 12 = Ttllaom(@a) + 1~ = 0

as k — oo, showing that yr — = in dom(Q4).

Example C.2.3. Let T be a closed, densely defined operator from H; to Hs. Then T*T
is self-adjoint and nonnegative on Hi, and we have dom(Qr+7) = dom(T) and Qr-r(z,y) =
(Tx, Ty)p,, so that the Hilbert spaces dom(Qp+r) and dom(T) agree. Indeed, (T*T)"/? = |T|
by definition, hence dom(Qr+7) = dom(|T"|) = dom(7’), and

Qrer(z,z) = |(T*T)"?|® = |||T|e|* = | Tx||?

for all x € dom(T"), see [Sch12, Lemma 7.1] for the last step, and the claim now follows
from the polarization identity (C.2.1). In particular, it follows that dom(7*T) C dom(T) is
a dense inclusion, so that the former space is a core for T. One can also use the bijective
correspondence between nonnegative self-adjoint operators and nonnegative quadratic forms
to show that T*T is self-adjoint in the first place, see [Sch12, Example 10.5].

Example C.2.4 (Form sums of operators). Suppose that A and B are two lower semi-
bounded self-adjoint operators on a Hilbert space H. The operator sum A 4+ B, with domain
dom(A+ B) = dom(A) Ndom(B), need not be self-adjoint in general. One obstruction is that
the domain of A + B may not be dense in H, so that its adjoint may not even well-defined.

However, under the weaker assumption of dom(Q4) N dom(Qp) being dense in H, the
operator sum has a self-adjoint extension, called the form sum, which is the operator associated
to the quadratic form (z,y) — Qa(z,y) + Qp(z,y), with domain dom(Q4) Ndom(Qp), see
[Sch12, Proposition 10.22] for the details. In fact, this sum is automatically closed and lower
semibounded, and the assumption states that it is densely defined, so the claim follows from

3More generally, dom(f(A)) N dom(g(A)) is a common core for both f(A) and g(A) for arbitrary Borel
functions f,g: o(A) — C.
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the correspondence of quadratic forms with self-adjoint operators. The form sum of A and B
is denoted by A + B. There are examples with dom(A + B) = {0}, but the form sum A + B
being well-defined, see [Sch12, Example 10.10].
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Abstract

This thesis is concerned with questions regarding the spectral theory of the Dolbeault
Laplacian with 0-Neumann boundary conditions, considered as a self-adjoint operator acting
on the space of square integrable differential forms on a Hermitian manifold. The corresponding
boundary value problem, called the 9-Neumann problem, arises naturally in the investigation
of the (inhomogeneous) Cauchy-Riemann equations through the methods of (L2-) Hodge
theory. In this way, spectral properties of the Dolbeault Laplacian give information on
the solvability of the Cauchy—Riemann equations and, by extension, on the construction
of holomorphic functions (or, more generally, sections of holomorphic vector bundles) with
prescribed properties. The Dolbeault Laplacian is the Laplacian of the elliptic Dolbeault
complex, which generalizes the Wirtinger derivative ¢/dz of single variable complex analysis,
and its L? realization with d-Neumann boundary conditions corresponds to the weak extension
of the Dolbeault complex. Therefore, we also discuss in detail aspects of the spectral theory
of self-adjoint extensions of elliptic differential operators in a general setting. For a lot of
the results, we consider the d-Neumann problem on Kihler manifolds with some bounded
geometry, in order to show that previously known theorems in the setting of (domains in)
C™ continue to hold more generally. One of these is that the discreteness of spectrum of
the Dolbeault Laplacian “percolates” up the Dolbeault complex, provided some boundary
and curvature assumptions are made. Therefore, necessary conditions for the discreteness of
spectrum can be studied on the top end of the Dolbeault complex, where the Laplacian reduces
to a somewhat more tractable operator, which we analyze with methods from Schrédinger
operator theory. In the last chapter, we consider the 9-Neumann problem for the product of
two Hermitian manifolds, and describe the (essential) spectrum of the Laplacian in terms of
the spectra of the Laplacians on the individual factors.
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Zusammenfassung

Diese Dissertation beschéftigt sich mit der Spektraltheorie des komplexen Laplaceopera-
tors mit O-Neumann Randbedingungen, aufgefasst als selbstadjungierter Operator wirkend
auf dem Raum der quadratintegrablen Differentialformen einer Hermiteschen Mannigfaltig-
keit. Das zugehorige Randwertproblem, das &-Neumann Problem, tritt in natiirlicher Weise
bei der Behandlung der (inhomogenen) Cauchy-Riemann Gleichungen im Rahmen der (L2-)
Hodge-Theorie auf. Durch diesen Zusammenhang geben spektraltheoretische Eigenschaften
des komplexen Laplaceoperators Einsichten in die Losbarkeit der Cauchy—Riemann Gleichun-
gen und, in weiterer Folge, in die Konstruktion von holomorphen Funktionen (allgemeiner:
Schnitten von holomorphen Vektorbiindeln) mit vorgeschriebenen Eigenschaften. Zum kom-
plexen Laplaceoperator gehort der elliptische Dolbeault-Komplex, eine Verallgemeinerung
der Wirtingerableitung ¢/dz aus der komplexen Analysis einer Verdnderlichen, und die L2-
Realisierung mit 0-Neumann Randbedingungen entspricht der schwachen Erweiterung des
Dolbeault-Komplexes. Aus diesem Grund behandeln wir hier auch Teile der Spektraltheorie
von allgemeinen selbstadjungierten Erweiterung von elliptischen Differentialoperatoren auf
Mannigfaltigkeiten. Fiir viele der Resultate betrachten wir das d-Neumann Problem auf
Kahler-Mannigfaltigkeiten mit beschriankter Geometrie, was es uns erlaubt, bekannte Sét-
ze iiber das -Neumann Problem auf (Gebieten im) C" zu verallgemeinern. Einer dieser
Sétze besagt, dass sich die Diskretheit des Spektrums des komplexen Laplaceoperators im
Dolbeault-Komplex nach oben fortpflanzt falls gewisse Annahmen an die Kriimmung und den
Rand des betrachteten Gebietes gemacht werden. Daher lassen sich notwendige Bedigungen
fiir die Diskretheit des Spektrums auf dem oberen Ende des Dolbeault-Komplexes formulie-
ren, wo der komplexe Laplaceoperator eine einfachere Form annimmt, die wir mit Hilfe von
Methoden der Theorie von Schrédingeroperatoren studieren. Im letzten Kapitel betrachten
wir das d-Neumann Problem auf dem Produkt zweier Hermitescher Mannigfaltigkeiten und
beschreiben das (wesentliche) Spektrum des komplexen Laplaceoperators durch das Spektrum

der Laplaceoperatoren der beiden Faktoren.
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