

MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

„A Fuzzy Logic-based Framework for Intrusion Classification in

Corporate Network“

verfasst von / submitted by

Milos Avakumovic BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Diplom-Ingeneur (Dipl.-Ing.)

Wien, 2018 / Vienna 2018

Studienkennzahl lt. Studienblatt / A 066 926

degree programme code as it appears

on the student record sheet:

Studienrichtung lt. Studienblatt / Masterstudium Wirtschaftsinformatik

degree programme as it appears on

the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Dipl.-Ing. Dr. Dr. Gerald Quirchmayr

1

As the number of hacking and intrusion attacks is increasing each year, Intrusion

Detection Systems are becoming an extremely important component of the network

security system. It is necessary to design system security mechanisms in a manner that

identify unauthorized access to computer resources and data. Since complete

prevention of unauthorized access is impossible, today's security systems aim to

detect unauthorized intrusions and undertake a certain action before an unauthorized

action causes damage.

No matter how effectively may Intrusion Detection Systems be identifying malicious

activities, false alarms are a significant limitation nowadays, though. With an

intention of making a step forward in overcoming this obstacle, the thesis proposes an

Intrusion Detection System based on Fuzzy Logic that is able to provide a better

classification rate in intrusion detection focusing on anomaly detection issues, i.e. the

situations when a regular traffic is wrongly classified as an intrusion. Arriving packets

are correctly treated as the system is firstly trained using a specific dataset and then

verified by the predefined Fuzzy Logic Controller and Fuzzy Rules.

The Fuzzy framework establishment is based on the selection of most relevant input

data which will contribute to higher precision of the classification rate. For this

purpose, it is demonstrated how Fuzzy models can be used as an approach for

intrusion classification and to improve the understanding and analysis of network

input data.

ABSTRACT

2

Durch die stetig wachsende Zahl an Hacker Angriffen und unautorisierten Zugriffen

entgegenzuwirken, kommen Segmente wie das Intrusion Detection Systems immer

mehr zum Einsatz. Man ist gezwungen, eine sichere Methode zu wählen die für die

Autorisierung sowie für den Schutz der Daten verantwortlich ist. Eine Volle

Sicherheit vor unautorisierten Zugriffen gibt es leider nicht. Dadurch fokussieren sich

Netzwerkspezialisten solche Vorfälle immer schneller aufzudecken und zu

unterbinden.

Unabhängig davon wie effektiv die Sicherheitssysteme heute funktionieren, werden

diese durch falsche Alarmsignale sabotiert (eingeschränkt). Um das Ganze zu

vereinfachen und um dieses Hindernis zu überwinden, gibt das Intrusion Detection

System auf der Basis von Fuzzy Logic Vorschläge. Dadurch ist eine bessere

Klassifikationsrate bei der Erkennung von unautorisierten Zugriffen gegeben.

Ankommende Datenpakete werden erstmal durchgeschleift, da das System zunächst

anhand eines bestimmten Datensatzes „lernt“. Des weiteren wird ein vordefinierter

Fuzzy Logic Controller mit den dazugehörigen Fuzzy-Regeln für die Verifizierung

der Datenpakete genutzt.

Die Fuzzy-Framework basiert auf der Auswahl der relevantesten Eingabedaten, die zu

einer höheren Genauigkeit der Klassifikationsrate beiträgt. Aus diesem Grund wird

veranschaulicht, wie Fuzzy-Modelle funktionieren und uns helfen können, solche

Angriffe zu klassifizieren und eingehende Datenpakete besser zu durchleuchten.

3

First I wish to express gratitude to my thesis advisor Univ.-Prof. Dipl.-Ing. DDr.

Gerald Quirchmayr of the Faculty of Computer Science at University of Vienna. Prof.

Quirchmayr was always open for any kind of question or consultation about my

research or writing. He supported me during the whole process and steered me in the

right direction whenever it was needed.

ACKNOWLEDGEMENTS

4

Abstract .. 1

Acknowledgements .. 3

Table of Contents ... 4

List of Abbreviations ... 6

List of Figures .. 7

List of tables ... 8

Chapter 1 Introduction ... 9

1.1. Background and Motivation .. 9

1.2. Goals and Expected Outcomes .. 11

Chapter 2 Literature Review .. 13

Chapter 3 Intrusion Detection System: The Theoretical Background 14

3.1. Intrusion Detection .. 14

3.1.1. Network-based Intrusion Detection ... 15

3.1.2. Anomaly Detection .. 15

3.2. Fuzzy Logic ... 16

3.3. Existing Approaches for Intrusion Detection .. 17

3.3.1. Data Mining Techniques for Network Intrusion Detection 18

3.3.2. Artificial Neural Networks for Network Intrusion Detection 20

Chapter 4 Problem Description .. 22

Chapter 5 Framework Concept .. 24

5.1. Framework Design .. 24

5.2. Framework Architecture ... 25

5.3. Model Structure ... 26

TABLE OF CONTENTS

5

5.3.1. Tools for Cleaning and Classification of Data 27

5.3.2. Fuzzy Logic Controller .. 27

Chapter 6 Prototype Implementation ... 30

6.1. Training Data... 30

6.1.1. Data Attributes ... 30

6.1.2. Types of Attacks .. 32

6.2. Construction of the Model... 33

6.2.1. Data Processing .. 34

6.2.2. Fuzzy Inference System ... 36

6.2.3. Evaluation of FIS ... 38

Chapter 7 Test and Evaluation ... 39

7.1. Setup and Validation of Fuzzy Inference System ... 39

7.2. NSL-KDD Dataset .. 43

7.3. Analysis of Two Specific Groups of Attacks .. 45

Conclusion ... 48

Bibliography .. 50

Appendix A Testing Documentation .. 53

Appendix B Source Code.. 60

6

ALDAPA Algorithms, Data mining and Parallelism research group

ANN Artificial Neural Network

ANSI American National Standard Institute

DARPA Defense Advanced Research Projects Agency

DM Data Mining

DOS Denial of Service

DR Detection Rate

FAR False Alarm Rate

FCM Fuzzy C-Mean

FIS Fuzzy Inference System

FN False Negative

FP False Positive

IDS Intrusion Detection System

IPS Intrusion Prevention System

KDD Knowledge Discovery and Data Mining

MIT Massachusetts Institute of Technology

NSL Network Socket Layer

R2L Remote to Local (User)

SIGKDD Special Interest Group on Knowledge Discovery and Data Mining

TN True Negative

TP True Positive

U2R User to Root

LIST OF ABBREVIATIONS

7

Figure 1 Annual number of recorded data breaches in the United States [2] 10

Figure 2 Survey conducted by Forrester's Business Technographics (sample of 818

participants in November 2003 and 639 participants in June 2004) 11

Figure 3 Conventional membership function .. 16

Figure 4 Continuous membership function.. 17

Figure 5 Real-time anomaly detection system ... 24

Figure 6 IDS multilayered architecture.. 25

Figure 7 Intrusion detection system ... 26

Figure 8 Fuzzy logic controller .. 28

Figure 9 Number of normal connections and attacks in the original KDD CUP ’99

10% dataset, very small values are enlarged in figure right .. 34

Figure 10 Some results extracted from data printed by kddcup_analysis.m 34

Figure 11 Number of normal connections and attacks in the cleaned KDD CUP ’99

10% dataset, very small values are enlarged in figure right .. 35

Figure 12 Classification of the KDD CUP ’99 10% dataset (normal and four groups of

attacks) ... 36

Figure 13 Number of detected normal connections with respect to number of clusters

for the KDD CUP ’99 10% dataset .. 41

LIST OF FIGURES

8

Table 1 An overview of Data mining techniques .. 18

Table 2 Standard Metric and Confusion Matrix .. 22

Table 3 Basic features of individual TCP connections .. 31

Table 4 Content features within a connection suggested by domain knowledge 31

Table 5 Traffic features computed using a two-second time window 31

Table 6 Traffic features (Table 5) for destination host .. 32

Table 7 Attacks classified by four groups with definition from MIT Lincoln

Laboratory .. 32

Table 8 Confusion matrix for cleaned and classified the KDD CUP ‘99 10% dataset

when subclustering option is used ... 40

Table 9 Confusion matrix for cleaned and classified the KDD CUP ‘99 10% dataset

when 16 clusters are selected ... 42

Table 10 Confusion matrix for cleaned and classified the KDD CUP ‘99 10% dataset

when 4 clusters are selected and only two groups normal and attack 43

Table 11 Confusion matrix for the cleaned and classified NSL-KDD datasets (16

clusters) .. 44

Table 12 Confusion matrix for the cleaned and classified NSL-KDD datasets (16

clusters) – symbolic attributes included in calculations .. 44

Table 13 Comparison of specific types of attack between the original KDD Cup ’99

and the 10% KDD Cup ’99 datasets .. 45

Table 14 Confusion matrix for the cleaned and classified KDD CUP ‘99 10% dataset

with 24 attributes are included in the calculation (attributes from Table 4 excluded) 46

Table 15 Frequency of occurrence for attributes belonging to the group in Table 5 ... 47

LIST OF TABLES

9

Information technology development in the field of data collection, processing and

distribution is additionally accelerated by the needs of modern business. Modern

business is increasingly based on Internet, i.e. there exist various forms of electronic

commerce. This way of doing business produces new risks to the security of

information systems. Rapid development of information technology and the

unstoppable growth of its application in all areas of human activity are increasing its

vulnerability and exposure to potential hazards, especially because of the inevitable

interdependence of the human factor and information system.

1.1. BACKGROUND AND MOTIVATION

Successful business operations of any organization are based on availability and

proper functioning of all information system elements. However, new threats are

posed every day by individuals and organizations that attack and abuse information

systems. Since the information system supplies the necessary information to all other

parts of an organization for its decision-making process, its security is of a great

significance.

A massive flow of information between information systems is exposed to attacks by

unauthorized users. Attackers access information systems, causing great damage to

the overall operations of an organization. According to the reports by the U.S. Federal

Agencies [1], the number of security incidents has been increasing over time. As

presented in Figure 1, the trend is not consistent, but it is obvious that the number of

network intrusions has increased sharply in the last decade. The increase in the

number of breaches implies the greater number of data records exposed to attackers.

[2]

CHAPTER 1

INTRODUCTION

10

Figure 1 Annual number of recorded data breaches in the United States [2]

It is also important to emphasize the fact that the tools for carrying out attacks on

information systems are becoming easier to use. According to reports from the Nato

[3], extensive IT skills are not required anymore in order to be able to attack a system

because of the constant growth of new and more sophisticated tools which can be

used to carry out these attacks.

Because of this, organizations recognize a need for implementing information security

management systems. This type of system reduces the possibility of an attack, either

external or internal. Apart from that, by managing data security it also allows

management to monitor and supervise all processes and reduce business risks to a

minimum level. By using information security management system, a corporation is

able to achieve information security in three main aspects: confidentiality, integrity

and availability.

However, the main consideration of corporations used to be the costs of system

implementation and maintenance. The cost of introducing information protection

systems was mistakenly considered to be high in comparison to the cost incurred by

security breaches. But an increase in the amount of attacks recovery costs has led to a

growth of interest in the introduction of preventive and protective mechanisms.

Organizations today realize that internal threats can be equally dangerous as external

ones, or even more. According to a survey conducted by Forrester in November 2003

and June 2004, investments in strengthening the security of information systems

increased. [4] An overview is presented in Figure 2.

11

Figure 2 Survey conducted by Forrester's Business Technographics (sample of 818

participants in November 2003 and 639 participants in June 2004)

These pivotal background factors (rise in the number of attacks and growth of

investment in security systems) represent an incentive for further research of the

subject. Having in mind that no system can be perfectly secured, there is a need for

constant improvement of protection mechanisms. Hence, the motive behind this thesis

is to contribute to current knowledge in this field by researching the possibilities of

usage of Fuzzy Logic technique for the purpose of intrusion detection.

1.2. GOALS AND EXPECTED OUTCOMES

The main goal of this thesis is to produce a theoretical framework of the Intrusion

Detection System (IDS) which is based on Fuzzy Logic.

Additionally, the practical part of the thesis is focused on the improvement of the

successfully classified network intrusions rate. For this purpose, four types of

remotely launched attacks will be used: Denial of Service, User to Toot, Remote to

User and Probe.

The primary focus of the practical part is to present the techniques for more effective

analysis of network input data and to identify which input attributes are the most

relevant for the Fuzzy rules generation process. As a result of this analysis, the rules

are going to be more specified and improved.

The expected outcome of the research is to improve the classification rate for all types

of attacks by generating a set of more reliable Fuzzy rules. These Fuzzy rules are

12

obtained by processing input data and selecting the most relevant attributes from the

given base of inputs.

13

The theoretical part of the thesis was written by consulting all the relevant sources

such as books, scientific papers and web sources. In addition to that, the conclusions

and main points made by experts at various workshops, conferences and seminars are

also part of the used literature. The results of various pieces of research were also

taken into account when analyzing the theoretical background of this subject. The

most relevant sources were also used to present the existing approaches for

improvement of successful classification rate.

The research and construction of the framework concept are based on the usage of the

KDD Cup ’99 dataset as the input for further experimental analysis. The Fuzzy C-

Mean algorithm is used as a main data mining technique to improve the successful

classification rate of all types of attacks.

The main research based on the implementation of Fuzzy Logic used in the theoretical

background as well as in the construction of the proposed framework was conducted

and presented by the authors Shanmugavadivu and Nagarajan. [5]

CHAPTER 2

LITERATURE REVIEW

14

CHAPTER 3

INTRUSION DETECTION SYSTEM: THE

THEORETICAL BACKGROUND

Considering the complexity of any information security management system, it can be

easily concluded that a single line of defense is not sufficient. That is why

organizations use “defense in depth” – a layered protection mechanism for the critical

components of the information system. It does not rely on a single security control but

combines complementary security mechanisms, strengthening the security of

information systems.

To withstand attacks, information security management system applies “defense in

depth” by ensuring the following:

• Defense in more places - set up protective mechanisms at multiple

locations to protect the information system against internal and external

attacks

• Layered defense - set up multiple protective mechanisms so that an

attacker must go through several layers to get to critical information

• Intrusion Prevention System (IPS) - set up a system for prevention of

intrusions into an information system

• Intrusion Detections System - set up a system for detection of intrusions

into information system

Therefore, IDS is considered to be the essential part of the successful maintenance of

information system security.

3.1. INTRUSION DETECTION

An Intrusion detection system represents a part of technologies used to raise the

overall level of security of information system. It gathers information from defined

input and analyzes it to detect illegal activities and abuses of the system in which it is

located. Main operations are based on monitoring a specific part of a system, and

analysis of headers and content of packets and data at various layers of the system

stack to identify unusual activities and attacks.

15

RFC 2828 defines intrusion detection as “a security service that monitors and

analyzes system events for finding and providing real-time or near real-time warning

of attempts to access system resources in an unauthorized manner”. [6]

The American National Standard Institute (ANSI) defines intrusion detection as “a

process of monitoring the events occurring in a computer system or network and

analyzing them for signs of intrusions, defined as attempts to compromise the

confidentiality, integrity, availability, or to bypass the security mechanisms of a

computer or network”. [7]

3.1.1. Network-based intrusion detection

There are different approaches that can be used as the basis for division of IDSs. The

most common one is based on the information source. In other words, the part of the

system that is monitored by the IDS is used as the information source. Apart from

Host-based IDSs that supervise the work of a host, the most important are Network-

based IDSs that supervise the processes within a network.

A Network-based IDS, as its name suggests, monitors the entire network or its

segment, depending on its position in the network topology. The main operation is

based on capturing and analyzing packets that traverse the network.

A Network-based IDS is often composed of a series of simple sensors, located in

different points inside the network. Sensors monitor and analyze network traffic

locally, and then report detected attacks to the central management console. Many

sensors are designed for "deceptive" mode, so that an attacker would not be able to

detect their presence and location.

The main advantage of a network-based IDS is that several well-distributed network-

based IDSs can monitor a large network. The implementation of a network-based IDS

has small impact on the existing network. In fact, it is usually a passive device that

scans the network traffic without affecting normal operations in the network.

3.1.2. Anomaly detection

An Anomaly detection system discovers computer or network intrusions. This is a

process where tracked activities are compared to the ones considered as expected

behavior patterns. IDS technologies based on anomaly detection have profiles that

16

represent normal behavior. These profiles are usually produced by using audit records

that are already generated by the system. The main benefit of this approach is that

unknown threats can be discovered very effectively. [8] For example, if a computer

becomes infected by a new malicious program which consumes a lot of resources,

sends large number of e-mails, initiates many network connections or another manner

of behavior that is different from the already established profile for the computer, it is

then clear that such behavior is not compatible with the usual one. The malicious

program would be detected due to a significant deviation from the previously

established profile and behavior.

As said, a generated default profile can be static or dynamic. Once generated, the

static profile cannot be changed, unless an IDS is triggered to generate a new profile.

A dynamic profile adjusts itself as new events are observed, so it learns and adapts

constantly. As the systems and networks are changing during time, the proper

behavior is changing too, so a static profile will eventually become inaccurate, which

implies that it should be periodically generated. Dynamic profiles do not have this

problem.

3.2. FUZZY LOGIC

There are situations where it is not possible to represent a knowledge of system in a

precise manner. In other words, sometimes it is not enough to rely on Binary logic

where something is either black or white. To overcome the limit of classical Binary

logic, Fuzzy Logic can be used to widen the range of options (all shades of gray).

To compare Binary and Fuzzy logic, a typical example is reviewed. It is a process of

determination of belonging to a set of tall people. Conventional boundaries are strictly

determined (Figure 3), so two people are classified differently even though their

height varies with just a few centimeters. [9]

Figure 3 Conventional membership function

17

The approach above would make sense in a case of an abstract representation, such as

numbers. It could be said that all numbers greater than a specific number are in

general “larger” (than it number) and that smaller numbers in comparison with the

specific number are in general “smaller” (than it number). However, when something

is conditioned by age and social characteristics, such as estimation whether a person is

high or not, setting such a sharp boundary does not make sense. That is why a

continuous membership function is introduced to determine whether and how tall the

person is (Figure 4).

Figure 4 Continuous membership function

Continuous membership function gives an opportunity to consider to whom it applies

(children, female persons or to all adults, etc.). The only requirement is that

membership function needs to be scaled between 0 and 1, which defines membership

level of a variable to the function. [10]

3.3. EXISTING APPROACHES FOR INTRUSION DETECTION

The development of the Intrusion System has gone through different phases. In 1972,

James P. Anderson pointed out the gravity of computer security issues. The main

problem, still present nowadays, was segmenting the network into domains, providing

unobstructed information flow between them, but with keeping the integrity and

security of every domain. [11]

During the 1980s the same author was working on improving security auditing and

surveillance. He takes credit for the original idea behind automated intrusion

detection. This postulate represents the core of misuse detection. With the analysis of

audit data, the first attack patterns were made, and they were used in the process of

intrusion detection. [12]

The first model of real-time intrusion detection was developed between 1984 and

1986 by Dorothy Denning and Peter Neumann. The aim was to detect various types of

18

security violations. The idea behind this model was to track regular activities in the

system and identify malicious activities. It focused on the basic system activities

without having information about system security shortcomings. [13]

In the mid-1990s, the US Army was developing a prototype which was

commercialized during the year 1995. This model was working real-time, using

misused detection as engine. In 1997 RealSecure tool was released for commercial

use and was running on Windows platform. [14]

Until the 2000s firewalls were used mostly because of their capability of processing

traffic more quickly since they did not do deep packet inspection. But, at the

beginning of the 2000s, new types of attacks able to pass the firewall started to

appear, which made IDS main security mechanism. [15] Some organizations still used

IPS which is positioned between home network and the internet. It functions in a way

that drops each packet which it recognizes as an attack. Every packet needs to be

checked and compared with signature entries in a database, which is constantly

growing due to novel attacks. A problem that occurs is a large number of dropped

packets that are in fact not malicious. Also, a large signature database is used to

hinder IPS performance. Due to these problems, organizations turned to IDS, which is

located aside. When a threat is detected, IDS does not drop the packet, but alerts the

organization so that the management could decide how to proceed. Later, popularity

of IPS began to grow again, after signature database was optimized and only most

relevant signatures were used. [16]

3.3.1. Data Mining Techniques for Network Intrusion

Detection

One of recent algorithms which is applied for patterns discovery from big data for

intrusion detection is Data mining (DM). DM extracts knowledge from data. [17] It

establishes a relationship within data samples which enables it to detect anomalous

patterns. There are numerous DM techniques. An overview is presented in Table 1.

Table 1 An overview of Data mining techniques

Data Mining technique Characteristic

Feature selection data analysis “Discard all data attributes that have

insufficient level of predictive information or

19

do not have it all to create a group of suitable

attributes” [18]

Classification analysis “Assign attacks to classes according to values

of attack’s data attributes; could be used for

anomaly and misuse; in misuse, training data

is used to learn classifiers of different types

used for detection of known intrusions; in

anomaly, training data is used to establish

normal behavior pattern; classification could

be used for learning and detection of

intrusions” [19]

Clustering analysis “Assign attacks to clusters based on distance

measurements made on attacks; unsupervised

learning process; similarity measure

represents an important factor in grouping

observations” [19]

Association and correlation analysis “Discover association relationships between

specific attributes in dataset” [19]

Stream data analysis “Attacks are dynamic by nature, so it

perceives data streams as a whole since a

record might be normal on its own but

malicious if viewed as part of sequence” [19]

Distributed data mining “Attacks could be performed from different

locations and target different destinations, so

it analyses data from several network

locations” [19]

Visualization and querying tools “Graphical user interface enables users to

view classes, associations, clusters, etc.” [19]

Currently, clustering is the most used data mining technique for intrusion detection.

Various researchers have proposed many different clustering techniques so far. In the

group of many algorithms, Fuzzy C-Mean is considered very efficient. [20], [21], [5],

20

[22] Some of notable frameworks are constructed by using other algorithms such as

Classification and Regression Tree [23] and Genetic algorithm combined with Fuzzy

Logic. [24], [25]

In spite of improvements which can be made by implementation of these data mining

techniques, there are still some downsides that should be taken into consideration. The

main weakness of data mining approaches refers to data correlation. When the system

has not collected sufficient audit trail data, it cannot reach full potential. Another

drawback is that correlation between entities does not imply causation. So, it can be

possible to have hundreds of data correlated, with only a few of them that are

worthwhile.

3.3.2. Artificial Neural Networks for Network Intrusion

Detection

Artificial Neural Network (ANN) is also a very intensively researched approach. The

concept of Intrusion detection using neural networks is based on the fact that a user

leaves a print when using a system. So, neural network is used to identify the print

and the users based on their specific behavior patterns.

ANN represents a collection of artificial neurons which are connected and interactive

throughout operations of processing the signals. It is modeled like a human brain.

Neurons and connections have a weight that adjusts as learning process proceeds. The

weight represents the strength of the signal at a connection. The connections between

neurons are activated if the condition set by the so-called activation function has been

fulfilled. [26]

Some of efficient applications of the ANN are also done by using different algorithms

such as Multilayer Perception, Radial Base Function, Logistic Regression, Voted

Perception [27], Radial Basis Functions [28] and Multy Layer Back Propagation [29].

There is also a tendency to compare outputs generated by different algorithms such as

Feed Forward Neural Network, Probabilistic Neural Network and Radial Basis Neural

Network classifiers. [30]

The neural network approach can accomplish an excellent job in structuring a profile

of user behavior that is adaptable over time. However, the potential drawback of ANN

21

might be the scalability of neural network systems. That problem might appear in a

situation when the number of users exceeds the size of small or medium enterprises.

Intrusion Detection System is an essential part of “defense in depth” architecture.

When malicious behavior is noticed, an alarm is raised allowing administrators to

react according to the security policy. Because of that, the main objective of such a

system is to treat the input data properly.

22

CHAPTER 4

PROBLEM DESCRIPTION

To achieve good performance predictions, IDS must meet two criteria:

• It must be able to accurately identify an intrusion

• It must not identify a regular action in the network environment as an

intrusion

Assessing IDS performance prediction includes Detection Rate (DR) and False Alarm

Rate (FAR). DR is defined as the ratio of the number of correctly detected attacks and

the total number of attacks, while FAR is defined as the ratio of the number of normal

connections that are incorrectly classified as attacks and the total number of normal

connections. [31] The data on which the DR and FAR are determined can be

presented via the confusion matrix. It consists of the following elements: True

Negative (TN), False Positive (FP), False Negative (FN) and True Positive (TP),

where:

• TN - correctly indicates connections that are normal (regular) traffic

• FP - indicates normal connections that are wrongly classified as non-

regular (intrusions)

• FN - indicates non-regular connections (intrusions) that are wrongly

classified as regular

• TP - correctly indicates connection that are non-regular (intrusions)

Table 2 Standard Metric and Confusion Matrix

STANDARD METRIC

IDS OUTPUT

NORMAL INTRUSION

ACTUAL STATUS

OF TRAFFIC RECORD

NORMAL TN FP

INSTRUSION FN TP

Among all issues that might appear, FP alarms are the most common problem

someone must deal with when implementing an IDS. Almost every rule can cause an

23

FP alarm. The main issue is that FP alarms can undermine valid IDS alerts. It is

possible to have one IDS sensor that generates thousands of alerts caused by a single

rule. Additionally, reviewing large volume of alerts and logic can be overwhelming

and time consuming to an analyst. As an assumption, if there are around 100 alarms

on daily basis, an analyst has a few minutes to review each of them. Due to this

approach it is a common situation that alerts causing repetitive FP alarms are

overlooked or ignored, so that a company is not able to realize and examine the actual

problem.

24

As it is mentioned in the Chapter 1, one of the goals of this research is to provide

theoretical framework of corporate network-based Intrusion Detection System which

uses Fuzzy Logic as its engine.

5.1. FRAMEWORK DESIGN

The anomaly or outlier detection technique, in case of intrusion detection, identifies

anomalous user behavior which does not match the expected behavior patterns. This

technique ensures that the process will take place in real time. All input data should

pass directly through anomaly detection system, undergo an assessment, and be

isolated and checked again if there is any doubt of intrusion (Figure 5).

Figure 5 Real-time anomaly detection system

The amount of data passing through the system is usually large. Data is very different

in nature. Construction of anomaly-based intrusion detection system requires a model

of normal and anomalous behavior. Fortunately for a corporate network, but delicate

from the mathematical point of view, the system is dealing with a large number of

normal data (up to 99%). Anomalous data represents low percentage of data. Because

of such uneven distribution, it is difficult to get a system that correctly detects the

difference between normal and anomalous. It is even more difficult to apply this

system in real-time.

Before moving on to the construction of the system, it is necessary to provide a

representative data sample that consists of different types of attacks, as well as normal

packets. This data will be used for the training of the system. It is important to treat

CHAPTER 5

FRAMEWORK CONCEPT

25

the data properly and prepare it for further processing. All irregularities of data and

unnecessarily data should be filtered out.

The next step is the selection of relevant attributes that will be applied for intrusion

detection. Fuzzy logic is applied as anomaly-based intrusion detection data mining

technique.

As a final step, it is necessary to choose the environment in which the intrusion

detection code will be developed. The code should be as universal as possible, based

on reliability and scalability. Scalability of the solution is of great importance since

both the corporate network that should be secured and the attackers’ techniques have

been constantly changing.

5.2. FRAMEWORK ARCHITECTURE

The proposed intrusion detection system represents a multilayered security

mechanism based on very simple but powerful Pipe-And-Filter architecture. [32]

This way of implementing the system enables more efficient and sophisticated

analysis, since the data could be tracked after every iteration during the processing.

The system architecture consists of three layers: Sensor, Detection and Reaction

(Figure 6). [33]

Figure 6 IDS multilayered architecture

The Sensor layer represents the interface to network elements. Raw data is collected

by various agents that acquire different types of packets based on protocol types used

on Network (ICMP) and Transport layer (TCP, UDP). Agents filter out unnecessary

input data and trigger initial data processing that provides valuable information

needed to construct an event. The event consists of predefined attributes.

26

The Detection layer is the core architecture element. Data processing is done here in

order to prepare the data for Fuzzy Logic part of the layer. Additionally, classifiers

assess at this layer the events passed from the Sensor layer and check if malicious

behavior exists (anomaly detection). Fuzzy logic is the main data mining technique

used for the process of determination whether a packet is corrupted or not. In case of

an attack, an alert is generated and forwarded to the Reaction layer.

It is the Reaction layer where final processing is done. The alerts are aggregated

according to the type of an attack that they belong to. The final output is reflected in

security analyst action made according to the provided information. Learned

signatures could be added to the IPS engine database. An important characteristic of

this layer is its possibility of reporting, which could be useful for forecasting and

generation of custom reports for the management.

5.3. MODEL STRUCTURE

Intrusion detection system needs appropriate data for the system training and testing.

Agents in the Sensor layer are in charge of this step. Due to an inability to simulate

real-traffic scenarios, certain datasets will be used. They consist of already generated

events. The Detection layer consists of the tools for cleaning and classification of

training/testing data and the tools for intrusion detection. These tools are the engine of

the system. The final output, an alert, is forwarded to the Reaction layer. Based on the

implemented logic or simply an analyst’s estimation, it is decided how an alert will be

treated.

Figure 7 Intrusion detection system

The steps which take place in the system are illustrated in Figure 7. The system

consists of two flows. One flow is related to the training data and the other to the

testing data. However, it is obvious that the training and testing data pass through the

same processing mechanisms and that the tools for data training may also be used for

processing of the testing data.

27

5.3.1. Tools for cleaning and classification of data

In the absence of streaming data from a corporate network, a database is selected as a

training and testing dataset. The database is used for the design of data processing

tools: a tool for data analyzing, for duplicates cleaning and for incomplete data

cleaning. In case of training data, this type of processing is carried out using some

existing software. Since the same tools are applied for testing and for real-time

intrusion detection, they are developed and included in the framework.

The second step is attribute analysis. The attributes have symbolic as well as

numerical values. Symbolic attributes can be used in anomaly detection system, built

on Fuzzy logic, only if the symbolic values are replaced by numerical ones. The tool

for analysis of symbolic attributes is constructed in order to collect as much

information as possible and to get familiarized with common trends in data.

The scalability of the system also represents an important part of implementation.

This characteristic applies especially to the tools intended for numerical attributes.

The tool for classification and selection of this type of attributes is built in such a way

that it can be easily adapted and modified according to additional needs or

requirements.

In order to use Fuzzy C-Mean clustering, the method that is selected to be the main

data mining technique as a part of intrusion detection system, data must be converted

into an appropriate format. The first series of formatting is performed with the

previously mentioned tools. Final formatting, or the normalization of data, is

performed on the data to which clustering is applied.

5.3.2. Fuzzy logic controller

Clustering method is used as data mining technique and embedded into the intrusion

detection system. The clustering methods are extensively studied since they can

perform successful natural grouping of data from large databases into meaningful

subgroups called clusters. Fuzzy C-mean clustering enables each data point to belong

to several clusters and the degree of membership can be defined and controlled by a

certain parameter. The number of clusters can also be defined, or other techniques can

be applied for determination of cluster number.

28

The heart of intrusion detection system, Fuzzy logic controller, is illustrated in Figure

8. The all Fuzzy processing elements are also presented through the controller

illustration.

Figure 8 Fuzzy logic controller

The input data are non-fuzzy numbers. At the beginning, data need to be fuzzified.

This means that a degree to which they belong to certain Fuzzy set needs to be

determined. This part of procedure is performed using Fuzzy C-Mean clustering.

Membership functions and a rule matrix are also derived from the results obtained

using Fuzzy C-Mean clustering. In the end, a Fuzzy signal is transformed back to a

non-fuzzy data.

5.3.2.1. Fuzzy C-Mean clustering algorithm

The Fuzzy C-Mean clustering [34], [7] is based on the minimization of the following

objective function. The Matlab help and documentation website were used as a

resource of algorithm explanation. [35]

“D is the number of data points, N is the number of clusters, xi is i-th data point, cj is

the center of j-th cluster. The Fuzzy partition matrix exponent m controls the degree

of fuzzy overlap, the number of data points that have significant membership in more

than one cluster. The value of the exponent, marked m, is grater than 1. The degree of

membership of xi in j-th cluster is given by coefficient μij. The sum of μij values for a

data point is one.” [35]

The Fuzzy C-mean clustering is based on the following algorithm defined in [35]:

29

1. “Initialization of the cluster membership coefficient μij

2. Calculation of cluster center

3. Applying following formula to update coefficient μij

4. Calculating objective function Jm

5. Repeating steps 1-4 until solution converge or maximum number of iterations

is reached” [35]

30

The prototype implementation process consists of the following components:

selection of appropriate training data, selection of an appropriate environment for the

code development and development of the testing system.

6.1. TRAINING DATA

The dataset from the KDD CUP 1999 contest is selected as the training data. This

dataset was uploaded from the community for data mining, data science and analytics

(SIGKDD) website. [36] The contest data represents a version of data prepared by

Massachusetts Institute of Technology (MIT) Lincoln Labs for the 1998 DARPA

Intrusion Detection Evaluation Program. The complete explanation of DARPA can be

found at the website of MIT Lincoln Lab. [37]

6.1.1. Data attributes

The dataset consists of entries recorded during seven weeks of real network traffic. It

has almost half a billion records. There are 41 attributes plus an attribute determining

whether connection is normal or an attack. One row of data from the KDD CUP ‘99

dataset is presented below

Table 3: 0, tcp, http, SF, 181, 5450, 0, 0, 0,

Table 4: 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

Table 5: 8, 8, 0, 0, 0, 0, 1, 0, 0,

Table 6: 9, 9, 1, 0, 0.11, 0, 0, 0, 0, 0,

Connection: normal

The lists of the attributes of the KDD Cup ‘99 contest data, as well as the description

and type, are presented in Tables 3, 4, 5 and 6. As data source [36] was used.

CHAPTER 6

PROTOTYPE IMPLEMENTATION

31

Table 3 Basic features of individual TCP connections

 Attribute name Description Type

1 duration length (number of seconds) of the connection continuous

2 protocol_type type of the protocol, e.g. tcp, udp, etc. symbolic

3 service network service on the destination, e.g., http, telnet,

etc.

symbolic

4 flag normal or error status of the connection symbolic

5 src_bytes number of data bytes from source to destination continuous

6 dst_bytes number of data bytes from destination to source continuous

7 land 1 if connection is from/to the same host/port 0

otherwise

symbolic

8 wrong_fragment number of "wrong" fragments continuous

9 urgent number of urgent packets continuous

Table 4 Content features within a connection suggested by domain knowledge

 Attribute name Description Type

10 hot number of "hot" indicators continuous

11 num_failed_logins number of failed login attempts continuous

12 logged_in 1 if successfully logged in 0 otherwise symbolic

13 num_compromised number of "compromised" conditions continuous

14 root_shell 1 if root shell is obtained 0 otherwise symbolic

15 su_attempted 1 if "su root" command attempted 0 otherwise symbolic

16 num_root number of "root" accesses continuous

17 num_file_creations number of file creation operations continuous

18 num_shells number of shell prompts continuous

19 num_access_files number of operations on access control files continuous

20 num_outbound_cmds number of outbound commands in an ftp session continuous

21 is_host_login 1 if the login belongs to the "host" list 0

otherwise

symbolic

22 is_guest_login 1 if the login is “guest login” 0 otherwise symbolic

Table 5 Traffic features computed using a two-second time window

 Attribute name Description Type

23 count number of connections to the same host as the

current connection in the past two seconds

continuous

32

24 serror_rate % of connections that have "SYN" errors continuous

25 rerror_rate % of connections that have "REJ" errors continuous

26 same_srv_rate % of connections to the same service continuous

27 diff_srv_rate % of connections to different services continuous

28 srv_count number of connections to the same service as the

current connection in the past two seconds

continuous

29 srv_serror_rate % of connections that have "SYN" errors continuous

30 srv_rerror_rate % of connections that have "REJ" errors continuous

31 srv_diff_host_rate % of connections to different hosts continuous

Table 6 Traffic features (Table 5) for destination host

 Attribute name Desription Type

32 dst_host_count count for destination host continuous

33 dst_host_srv_count srv_count for destination host continuous

34 dst_host_same_srv_rate same_srv_rate for destination host continuous

35 dst_host_diff_srv_rate diff_srv_rate for destination host continuous

36 dst_host_same_src_port_rate same_src_port_rate for destination host continuous

37 dst_host_srv_diff_host_rate diff_host_rate for destination host continuous

38 dst_host_serror_rate serror_rate for destination host continuous

39 dst_host_srv_serror_rate srv_serror_rate for destination host continuous

40 dst_host_rerror_rate rerror_rate for destination host continuous

41 dst_host_srv_rerror_rate srv_serror_rate for destination host continuous

6.1.2. Types of attacks

The data set consists of 22 types of attacks. All 22 types of attacks are classified into 4

major groups: Denial of service (DoS), Probing, Remote to local (R2L) and User to

root (U2R). [37] Short definitions of the groups are given in Table 7.

Table 7 Attacks classified by four groups with definition from MIT Lincoln

Laboratory

Group Attacks Definitions

DoS back, land, neptune, pod, smurf, teardrop “Attacker makes some computing or

memory resource too busy or too full

to handle legitimate requests, or denies

legitimate users access to a machine”

33

[38]

Probe ipsweep, nmap, portsweep, satan “Programs that can automatically scan

a network of computers to gather

information or find known

vulnerabilities” [38]

R2L ftp_write, guess_passwd, imap, multihop,

phf, spy, warezclient, warezmaster

“Attacker who has the ability to send

packets to a machine over a network

but who does not have an account on

that machine and exploits some

vulnerability to gain local access as a

user of that machine” [38]

U2R buffer_overflow, loadmodule, perl,

rootkit

“Attacker starts out with access to a

normal user account on the system

(perhaps gained by sniffing

passwords, a dictionary attack, or

social engineering) and is able to

exploit some vulnerability to gain root

access to the system” [38]

Since the original KDD CUP ’99 dataset contains around 5 million samples, the

operation with this amount of data is far beyond the capabilities of an average desktop

computer. Instead of that, the KDD CUP ’99 10% dataset with 494021 samples is

used in further calculations.

There are also datasets derived from the KDD CUP ’99 in which it is attempted to

eliminate problems identified in the original dataset like a great number of duplicates

or incomplete data. The Dataset used in parallel to the KDD CUP ‘99 data is the NSL-

KDD dataset (25192 samples) [39] from the Canadian Institute for Cybersecurity,

University of New Brunswick.

6.2. CONSTRUCTION OF THE MODEL

Intrusion detection system is developed in the Matlab using Fuzzy logic toolbox. The

entire code is given in Appendix B. It is separated into two main parts. The first part

represents the code for analysis and cleaning of data and selection of relevant

attributes. This part also consists of a code used for the construction of the Fuzzy

34

Inference System (FIS) to which training data is pushed. The second part is a code

used for testing, i.e. for the evaluation of FIS with different testing data.

6.2.1. Data processing

Data analysis is currently performed only for symbolic attributes. This type of

analysis is introduced in the code to get familiarized with data trends. The

distributions of values for all symbolic attributes, that is the number of normal and

attack connections in the original uncleaned dataset, are illustrated in Figure 9.

Figure 9 Number of normal connections and attacks in the original KDD CUP ’99

10% dataset, very small values are enlarged in figure right

This analysis is not applied to the final selection and data cleaning, but it provides

some useful information. It could be noticed that only 22 connections have defined

attribute “land” (value one) while other 493999 have value zero. Additionally, the

attribute “is_host_login” has value equal to zero in every record, which means that

none of the connections in 10% database is from the host, so this parameter can be

ignored in further analysis. The results obtained while using the KDD CUP ’99 10%

dataset for attributes “land” and “is_host_login” are presented in Figure 10. The other

data printed by kddcup_analysis.m is given in Appendix A.

land - 1 if connection is from/to the same host/port 0 otherwise

0 493999
1 22

1 if the login belongs to the "host" list 0 otherwise

0 494021

Figure 10 Some results extracted from data printed by kddcup_analysis.m

35

The part of the model related to processing of data also includes a tool for the dataset

cleaning. Importance of duplicates cleaning is obvious when comparing the output in

Figure 9, where the number of normal/attack connections for the KDD CUP ’99 10%

data is illustrated before cleaning of duplicates, and output in Figure 11, where the

connections are presented after the cleaning is done.

Figure 11 Number of normal connections and attacks in the cleaned KDD CUP ’99

10% dataset, very small values are enlarged in figure right

In the original KDD CUP ’99 10% dataset the number of “smurf” attack records is

much larger than number of normal connections, “neptune” attack records, or any

other attack group. After cleaning of duplicates, however, the normal connections are

the most present group of data. This subject is discussed in detail in Chapter 7.

The classification of data is also performed in this part of the code. Data is classified

into the group of normal connections or four major attack groups (Figure 12). The

classification is necessary for clustering that takes place in the Fuzzy logic controller.

36

Figure 12 Classification of the KDD CUP ’99 10% dataset (normal and four groups

of attacks)

Cleaned and classified data is forwarded to the FIS since the efficiency of the FIS

depends on the form of the data.

6.2.2. Fuzzy inference system

6.2.2.1. Data normalization

Data is normalized before applying clustering method. This process represents the

fuzzification. Normalization is performed using Matlab function “mapstd”. Function

“mapstd” processes matrices by mapping each row's means to 0 and deviations to 1.

[7] Syntax of the function is as follows

[Y,PS] = mapstd(X,ymean,ystd)

“where X is the matrices, ymean and ystd are optional parameters, Y is resulting

matrices and PS is carrying process settings that allow consistent processing of

values. Function “mapstd” has option “reverse” which is used afterwards to convert

output data back to original units, which is known as defuzzification.” [35]

6.2.2.2. Generation of FIS - genfis

Fuzzy C-Mean clustering is used as an option of Matlab Fuzzy Logic Toolbox

function “genfis” – generate FIS. The function “genfis” generates Fuzzy Inference

System from data. [7]

Synatx of “genfis” function is as follows

fis = genfis(inputData,outputData,options)

37

Training data is provided to “genfis” function as an input. Options field is used to

select Fuzzy C-Mean (FCM) clustering (option “FCMClustering”) as a method to

generate Fuzzy System. In case of FCM clustering, each input variable has one

'gaussmf' input membership function for each Fuzzy cluster. One rule is generated for

each fuzzy cluster. Finally, each output variable has one output membership function

for each fuzzy cluster. Options field is also defined by selecting Mamdani over

Sugeno system. These two systems are most commonly used Direct Fuzzy inference

methods. The difference between them lies in a way how an output is acquired. The

membership function type of output variable is 'gaussmf' for Mamdani system. To

generate the output of FIS the following steps are applied:

1.”determining a set of Fuzzy rules,

2. fuzzifying the inputs using the input membership functions,

3. combining the fuzzified inputs according to the Fuzzy rules to establish a

rule strength,

4. finding the consequence of the rule by combining the rule strength and the

output membership function,

5. combining the consequences to get an output distribution, and

6. defuzzifying the output distribution”. [40]

When defining options, it is possible to select a number of clusters for FCM

clustering. If it is not defined, “genfis” estimates the number of clusters using

subtractive clustering method.

6.2.2.3. Fuzzy logic designer

The Fuzzy logic designer can be used to design FIS. An example is given in Appendix

B. Also, the designer can be used to see result of FIS generated by “genfis” and to

make modifications, if necessary. In the model, the FIS is saved to a file that will be

used afterwards for testing, but the inspection of FIS is enabled by starting the Fuzzy

logic designer.

The syntax to start the designer is as follows

fuzzyLogicDesigner(fuzzySys)

38

6.2.3. Evaluation of FIS

Matlab function “evalfis” performs evaluation of the Fuzzy inference system and

calculates the results by using input data that needs to be tested and the FIS

constructed by “genfis”. The function is used in kddcup_fis.m code to evaluate

training results and in kddcup_test.m code to calculate results for testing dataset. Two

codes are given in Appendix B.

The syntax for “evalfis” is as follows

output= evalfis(input,fismat)

where input is data that needs to be evaluated using Fuzzy inference system

fismat.

39

The intrusion detection system is constructed using Fuzzy C-Mean clustering as a data

mining technique. The clustering results are used by the Matlab to define membership

functions and the rule matrix. The System is trained and tested with the KDD CUP

’99 dataset and other datasets derived from it.

7.1. SETUP AND VALIDATION OF FUZZY INFERENCE

SYSTEM

The original KDD Cup ’99 10% dataset is used. In the beginning, the dataset

contained 494021 samples, 280790 “smurf” attacks, 107201 “neptune” attacks, and

97278 normal connections. The number of other attacks is much lower. After normal

connections, the most frequent type of data is “back” attack which appeared 2203

times (Figure 9, Chapter 6). The most numerous attacks in original 10% dataset

belong to DoS group.

Having excluded symbolic attributes, the number of attributes reduces from 41 to 33.

After cleaning of duplicates the dataset contains 145585 samples, which is around

30% of the original 10% dataset. The most numerous are normal connection.

“Neptune” is now the most numerous attack group. When classified into four major

groups, normal connections still occurred more often than then DoS, Probe, R2L, and

U2R (Figure 11, Chapter 6).

For classification purpose, symbolic values of normal connections and names of four

attack types are replaced by numbers from one to five. After cleaning and

classification into normal and four major attack group, the data is used for

construction of the FIS. There is a possibility in the written code to choose a number

of clusters or to select a default value which will trigger a subclustering method to

obtain the number of clusters. In the first series of calculations, the default value is

selected. The first conclusion is that the subclustering method is very time and

memory consuming, especially compared to the option when the number of clusters is

CHAPTER 7

TEST AND EVALUATION

40

manually defined. The time spent for automatic subclustering was around 90 minutes.

The difference in results for two options is also checked and is presented below.

The first notable results are recorded when 6 clusters are obtained by the subclastering

method. The Resulting confusion matrix for cleaned and classified original 10%

dataset is presented in Table 8.

Table 8 Confusion matrix for cleaned and classified the KDD CUP ‘99 10% dataset

when subclustering option is used

 Truth

P
re

d
ic

te
d

 normal dos probe r2l u2r total

normal 80853 1330 314 949 44 83490

dos 2351 52540 1500 10 6 56407

probe 4628 702 316 40 2 5688

r2l 0 0 0 0 0 0

u2r 0 0 0 0 0 0

total 87832 54572 2130 999 52 145585

Overall accuracy, calculated by summing the number of correctly classified values

and dividing the sum by the total number of values, is 91.84%. Two types of attack,

R2L and U2R, are not detected at all. Problem is that most of these attacks are

detected as normal connections. 95% of R2L and 84.61% of U2R are treated as

normal packets. When it comes to Probe attack, 85.23% are detected as attacks but

70.42% are detected as a wrong attack group (DoS).

When the number of clusters is selected in advance, the time needed for calculation

and output of results lasts less than a minute. It is noticed that the increase of cluster

number has very little influence on precision rate and it does not influence at all the

number of detected attacks. The only improvement that can be observed is in the

number of correctly detected normal connections (Figure 13).

41

Figure 13 Number of detected normal connections with respect to number of clusters

for the KDD CUP ’99 10% dataset

To confirm the assertion above, 16 clusters are selected alongside the same

preprocessing rules as in the previous case. The Confusion matrix for this case is

presented in Table 9. The number of correctly detected normal connections increased,

as well as the number of correctly detected DoS and Probe attacks. The other two

types of attacks are still not detected. The overall accuracy is now 94.28%. Normal

packets are treated correctly in 96.46% of cases. Similar performance is achieved in

case of DoS records (95.74%). It is obvious that normal and DoS connections are the

most numerous sample groups.

42

 Table 9 Confusion matrix for cleaned and classified the KDD CUP ‘99 10% dataset

when 16 clusters are selected

 Truth

P
re

d
ic

te
d

 normal dos Probe r2l u2r total

normal 84725 1316 360 986 47 87434

dos 1564 52252 1489 5 3 55313

probe 1543 1004 281 8 2 2838

r2l 0 0 0 0 0 0

u2r 0 0 0 0 0 0

total 87832 54572 2130 999 52 145585

When training data is classified into a normal connection group and an attack group

(when only 2 groups are applied) and 4 clusters are selected, overall accuracy is

93.82%. the Confusion matrix for this case is presented in Table 9. This way of

system setup produces a more consistent result since both normal and attack groups

have a solid classification rate. 81612 of total 87832 normal records are treated as

regular traffic and 54981 of total 57753 attack records are treated as malicious data.

The way of labeling data on a higher level, as normal or attack, provides more

training data that belong to one single attack group. Like in previous cases, it is

obvious that DoS are the most numerous attack group and thus mostly contribute to

good overall accuracy related to the attack group. This could mean that the number of

training data has a great influence on prediction rate. The same could be assumed for

normal data since it is the most present in the dataset. Further on, additional analysis

is performed.

43

Table 10 Confusion matrix for cleaned and classified the KDD CUP ‘99 10% dataset

when 4 clusters are selected and only two groups normal and attack

 Truth

P
re

d
ic

te
d

 normal attack total

normal 81612 2772 84384

attack 6220 54981 61201

total 87832 57753 145585

7.2. NSL-KDD DATASET

In the previous section the setup of the Fuzzy logic system based on Fuzzy C-Mean

clustering and the first steps of training are presented. The training was conducted

with the original KDD Cup ’99 10% dataset with symbolic attributes excluded and

data cleaned from duplicates. With the mentioned operations, the dataset is reduced to

30% of the previous number of samples but it is even smaller in size after symbolic

attributes are deleted.

The result looks quite satisfactory according to the accuracy achieved (more than

90%). When attention is paid to details it is obvious that some types of attacks are not

detected at all and attacks that are misclassified are mostly detected as normal

connections.

The next dataset used for training of the system is one of the NSL-KDD datasets [38]

with 125974 samples. The same type of cleaning and classification is applied. After

processing, a few samples are discarded. The resulting number is 125941. Overall

accuracy is 87.84%. The confusion matrix for this case is presented in Table 11.

44

Table 11 Confusion matrix for the cleaned and classified NSL-KDD datasets (16

clusters)

The same problem appears as in case of usage of the original dataset. Good prediction

accuracy is achieved for normal connections, DoS and probe. R2L and U2R are again

not detected. R2L and U2R attacks, that are misclassified, are mostly detected as

normal connections.

In the next iteration, symbolic values of attributes in the NSL-KDD database are

replaced by numbers so that all attributes can be used in Fuzzy calculations. Resulting

accuracy for the above dataset with all 41 attributes included is 86.36%. It is almost

equivalent to the one achieved previously. The Confusion matrix for this case is

illustrated in Table 12.

Table 12 Confusion matrix for the cleaned and classified NSL-KDD datasets (16

clusters) – symbolic attributes included in calculations

Truth

P
re

d
ic

te
d

 normal dos probe r2l u2r Total

normal 59458 1402 537 863 44 62304

dos 4386 44064 5864 86 6 54406

probe 3499 443 5241 46 2 9231

r2l 0 0 0 0 0 0

u2r 0 0 0 0 0 0

total 67343 45909 11642 995 52 125941

The advantage of this approach is that less misclassified attacks are detected as

normal connections. When the NSL-KDD database is classified only into normal and

 Truth
P

re
d

ic
te

d

 normal dos probe r2l u2r Total

normal 61746 2173 951 916 44 65830

dos 2242 41924 3729 39 3 47937

probe 3355 1812 6962 40 5 12174

r2l 0 0 0 0 0 0

u2r 0 0 0 0 0 0

total 67343 45909 11642 995 52 125941

45

attack, the accuracy is increased to 92.05%. It turns out that the behavior of this

database is the same as in the case of the original KDD CUP ’99 10% database.

7.3. ANALYSIS OF TWO SPECIFIC GROUPS OF ATTACKS

Normal connections and two major groups of attacks with large number of samples,

DoS and Probe, are successfully detected in the previously presented calculations.

Because of the large number of data, these groups raise the percentage of the accuracy

of the result. The problem arises in two major attack groups, R2L and U2R, that have

disproportional number of samples compared to the other groups. The problem arises

for both datasets.

In order to process more training data related to these two attack groups, the original

KDD CUP ’99 dataset is analyzed. The idea is to isolate all corresponding records and

add them to the original KDD CUP ’99 10% dataset. It turns out that the original

dataset has only 52 U2R records which are already presented in 10% dataset. The

same is found out regarding R2L records. The original dataset contains 2183 records,

but after cleaning of duplicates and incomplete data, the number is lowered to 999

records which are present in 10% dataset. An overview is presented in Table 13. This

situation represents a limitation of input data since it is not possible to process

additional data and try to increase prediction accuracy of the two specific types of

attacks.

Table 13 Comparison of specific types of attack between the original KDD Cup ’99

and the 10% KDD Cup ’99 datasets

 Before preprocessing After preprocessing

KDD Cup ’99 10% KDD Cup ’99 KDD Cup ’99 10% KDD Cup ’99

r2l 2183 1231 999 999

u2l 52 52 52 52

The solution for the problem of attacks’ detection coming from groups with small

number of samples may be in the selection of appropriate continuous attributes. The

analysis is carried out in such a way that the attributes belonging to a particular group

are ejected from the calculation and the solution is tested. The goal is to obtain

knowledge by each iteration. “Trial and error” learning method is repeated until

improvement is reached. The confusion matrix from one of these tests is presented in

Table 14.

46

Table 14 Confusion matrix for the cleaned and classified KDD CUP ‘99 10% dataset

with 24 attributes are included in the calculation (attributes from

Table 4 excluded)

Truth
P

re
d

ic
te

d

 normal dos probe r2l u2r total

normal 75432 13 50 96 9 75600

dos 9227 52895 840 534 18 63514

probe 3034 1664 1240 63 24 6025

r2l 139 0 0 306 1 446

u2r 0 0 0 0 0 0

total 87832 54572 2130 999 52 145585

The attributes presented in

Table 4 are excluded from calculations. The reason for this lies in data analysis before

it is pushed to the FIS but after all preprocessing is done. 75956 of total 125941

records have none of these attributes defined, which represents 60.31%. 46011 of total

125941 records have one of these attributes defined, which represents 36.53%.

According to this information, it is assumed that this attribute group could be

excluded in further steps. Table 15 shows the frequency of occurrence for each of 13

parameters of the group.

47

Table 15 Frequency of occurrence for attributes belonging to the group in Table 5

Number of defined attributes Number of records Share (%)

none 75956 60.311

1 46011 36.534

2 1572 1,248

3 2236 1.775

4 55 0.044

5 40 0.032

6 61 0.048

7 7 0.006

8 3 0.002

9 0 0.000

10 0 0.000

11 0 0.000

12 0 0.000

13 0 0.000

The overall accuracy of the test presented in Table 14 is 90.52%. The accuracy

increases with the increase of cluster number. Once again, an increase in accuracy is

achieved due to an increase of correctly detected groups with a large number of

samples but, as illustrated in Table 14, approximately 30% of attacks belonging to the

R2L group are correctly detected. Approximately 60% is detected as other groups of

attacks and only 10% is detected as normal connections. The U2R group is not

detected with this selection of attributes. This leads to the conclusion that more

detailed attribute analysis may lead to an increase of classification rate of R2L and

even U2R.

48

Network intrusion detection systems become important because the number of

intrusion incidents has been increasing. Although current systems can offer a certain

level of protection, they do show vulnerabilities in process of detecting novel attacks,

which leads to an unacceptable level of false alarms rate. Therefore, the proposed

framework based on Fuzzy decision-making module and Fuzzy C-Means algorithm

represents an additional approach for detection of various types of network intrusions.

The records from the KDD Cup ‘99 dataset are used as a main source of data for

training and testing. Additionally, in a phase of testing the NSL-KDD dataset is used.

The best achieved overall performance is 94.28%. The result is recorded when 16

clusters and 5 groups (normal and 4 types of attack) are defined. The conclusion is

that normal and DoS records contribute most to the achieved result since prediction

rate for both groups is above 95%. Two types of attacks, R2L and U2R, are not

detected at all. Nevertheless, the limited number of samples in the dataset related to

R2L and U2R should be taken into account.

The overall performance of 93.82% is achieved when 4 clusters and 2 groups (normal

and attack) are defined. Similar to the previous case, normal and DoS records make

the biggest contribution to the overall result.

After detailed testing and analysis of different test scenarios and setups, it can be

concluded that the number of training records has a great influence on prediction

accuracy. In other words, the more data is used as input, the more precise is prediction

accuracy. Based on the given analysis, it could be said that this system can achieve a

solid performance when working on big data.

It is important to emphasize that the attribute analysis process should be paid a great

attention to because by filtering them, prediction accuracy can be drastically

improved. This is proven when specific filtering of attributes is applied, which

resulted in the improvement of prediction accuracy for R2L (approximately 30%).

CONCLUSION

49

To conclude, this thesis contributes to the topic of intrusion detection, while at the

same time it opens certain new questions for further research. First of all, additional

samples related to R2L and U2R should be simulated and added to the existing

datasets. Besides that, the process of analysis of all attributes and determination of

their correlation should be treated in more detail. It can lead to determination of the

most relevant attributes which may result in significant improvement of classification

rate. Last but not least, the classification rate may also be improved by tuning

membership function and Fuzzy rules which may enable capturing new types of

network incidents more precisely.

50

[1] "DataBreaches: Information security," [Online]. Available:

https://www.databreaches.net/category/commentaries-and-analyses/.

[2] "Data breaches," [Online]. Available: https://digitalguardian.com/blog/history-data-breaches.

[3] "Nato: Review Magazine," [Online]. Available: https://www.nato.int/docu/review/.

[4] "Forrester: Business Technographics," [Online]. Available:

https://www.forrester.com/data/business/surveys.

[5] R. Shanmugavadivu and N. N, NETWORK INTRUSION DETECTION SYSTEM USING

FUZZY, Indian Journal of Computer Science and Engineering (IJCSE).

[6] H. Tipton F and M. Krause, Information Security Management Handbook, CRC Press, p. 1978,

2000.

[7] A. Babak and A. Hamid, Emerging Trends in ICT Security, Morgan Kaufmann, p. 285, 2013.

[8] A. K. Jones and R. S. Sielken, Computer System Intrusion Detection: A Survey, University of

Virginia.

[9] "Mathematical Introduction to Fuzzy logic," [Online]. Available:

https://www.maplesoft.com/applications/view.aspx?SID=1409&view=html.

[10] "Calvin: Defining Fuzzy Sets," [Online]. Available:

https://www.calvin.edu/~pribeiro/othrlnks/Fuzzy.

[11] J. P. Anderson, Computer Security Technology Planning Study, James P. Anderson Co., 1972.

[12] J. P. Anderson, Computer Security Threat Monitoring and Surveillance, James P. Anderson Co.,

1980.

[13] D. E. Denning, An Intrusion-Detection Model, IEEE, 1986.

[14] G. Bruneau, The History and Evolution of Intrusion Detection, SANS Institute, 2001.

[15] "The Evolution of Firewalls: Past, Present & Future," [Online]. Available:

https://www.informationweek.com/partner-perspectives/the-evolution-of-firewalls-past-present-

and-future.

[16] "The Evolution of Intrusion Detection/Prevention," [Online]. Available:

https://www.secureworks.com/blog/the-evolution-of-intrusion-detection-prevention.

[17] T. Lappas and K. Pelechrinis, Data Mining Techniques for (Network) Intrusion Detection

Systems, UC Riverside.

BIBLIOGRAPHY

51

[18] I. Guyon and E. A, An Introduction to Variable and Feature Selection, Journal of Machine

Learning Research, p.1157-1182, 2003.

[19] H. Jiawei and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kufmann, 2011.

[20] A. Husagic-Selman, Intrusion Detection System using Fuzzy Logic, Southeast Europe Journal of

Soft Computing

[21] L. Jianxiong and B. S. M, Mining fuzzy association rules and fuzzy frequency eisodes for

intrusion detection, 2000: p. 687-703.

[22] S.P. Thakare and M.S. Ali, NETWORK INTRUSION DETECTION SYSTEM & FUZZY

LOGIC, BIOINFO Security Informatics,p. 23-27, 2012.

[23] A. F. A. Pinem and E. B. Setiawan, Implementation of Classification and Regression Tree and

Fuzzy Logic Algorithm for IDS, 3rd International Conference on Information and

Communication Technology, 2015.

[24] H. Mostaque Md. Morshedur, Network Intrusion Detection System Using Genetic Algorithm and

Fuzzy Logic, International Journal of Innovative Research in Computer and Communication

Engineering, 2013.

[25] B. Kavitha, S. Karthikeyan and P. Sheeba Maybell, Emerging Intuitionistic Fuzzy Classifiers for

Intrusion Detection System, JOURNAL OF ADVANCES IN INFORMATION

TECHNOLOGY, 2011.

[26] "Overview and Applications of Artificial Neural Networks," [Online]. Available:

https://medium.com/@xenonstack/overview-of-artificial-neural-networks-and-its-applications-

2525c1addff7.

[27] S. Singh and M. Bansal, mprovement of Intrusion Detection System in Data Mining using Neural

Network, International Journal of Advanced Research in Computer Science and Software

Engineering, 2013.

[28] U. Ahmed and A. Masood, Host based intrusion detection using RBF neural networks, Emerging

Technologies, 2009. ICET 2009. International Conference, 2009.

[29] D. R. Jawale and B. V.K., A Novel Approach for Classification and Detection Network Intrusion

Detection System Using ANN, International Journal of Advanced Research in Computer Science

and Software Engineering, 2014.

[30] S. Devaraju and S. Ramakrishnan, Performance analysis of intrusion detection system using

various neural network classifiers, Recent Trends in Information Technology (ICRTIT), 2011.

[31] S. O. Al-mamory and F. S. Jassim, On the designing of two grains levels network intrusion

detection, Elsevier, p. 15-25, 2015.

[32] "Pipe and Filter Architecture," [Online]. Available:

http://www.dossier-andreas.net/software_architecture/pipe_and_filter.html.

[33] "Instrusion Detection: Layered approach," [Online]. Available:

https://www.ies.uni-kassel.de/intrusion_detection.

[34] J. Bezdek, "Pattern Recognition with Fuzzy Objective Function Algoritms," Plenum Press, New

York, 1981.

52

[35] "Matlab documentation," [Online]. Available:

https://www.mathworks.com/help/matlab/index.html.

[36] "KDD Cup 1999: Computer network intrusion detection," [Online]. Available:

http://kdd.ics.uci.edu/databases/kddcup99/task.html.

[37] M. L. Laboratory, "DARPA Intrusion Detection Evaluation," [Online]. Available:

https://www.ll.mit.edu/ideval/data/1998data.html.

[38] S. Ranka, A. Banerjee, K. Kishore Biswas, S. Dua, P. Mishra, R. Moona, S.-H. Poon and C.-L.

Wand, Contemporary Computing, Springer, p. 220, 2010.

[39] "NSL-KDD dataset," [Online]. Available:

http://www.unb.ca/cic/datasets/nsl.html.

[40] "Mamdani’s Fuzzy Inference Method," [Online], Available:

http://www.cs.princeton.edu/cources/archive/fall07/cos436/HIDDEN/Knapp/fuzzy004.htm.

53

Below presented documentation is for KDD CUP ’99 10% dataset. For other datasets

changes were applied to kddcup_analysis.m before execution.

Analysis of symbolic attributes of original data

Normal - attacks

back. 2203
buffer_overflow. 30
ftp_write. 8
guess_passwd. 53
imap. 12
ipsweep. 1247
land. 21
loadmodule. 9
multihop. 7
neptune. 107201
nmap. 231
normal. 97278
perl. 3
phf. 4
pod. 264
portsweep. 1040
rootkit. 10
satan. 1589
smurf. 280790
spy. 2
teardrop. 979
warezclient. 1020
warezmaster. 20

Type of the protocol, e.g. tcp, udp, etc.

icmp 283602
tcp 190065
udp 20354

Network service on the destination, e.g., http, telnet, etc.

IRC 43
X11 11
Z39_50 92
auth 328
bgp 106
courier 108
csnet_ns 126
ctf 97

APPENDIX A

TESTING DOCUMENTATION

54

daytime 103
discard 116
domain 116
domain_u 5863
echo 112
eco_i 1642
ecr_i 281400
efs 103
exec 99
finger 670
ftp 798
ftp_data 4721
gopher 117
hostnames 104
http 64293
http_443 99
imap4 117
iso_tsap 115
klogin 106
kshell 98
ldap 101
link 102
login 104
mtp 107
name 98
netbios_dgm 99
netbios_ns 102
netbios_ssn 107
netstat 95
nnsp 105
nntp 108
ntp_u 380
other 7237
pm_dump 1
pop_2 101
pop_3 202
printer 109
private 110893
red_i 1
remote_job 120
rje 111
shell 112
smtp 9723
sql_net 110
ssh 105
sunrpc 107
supdup 105
systat 115
telnet 513
tftp_u 1
tim_i 7
time 157
urh_i 14
urp_i 538
uucp 106
uucp_path 106
vmnet 106

55

whois 110

Normal or error status of the connection

OTH 8
REJ 26875
RSTO 579
RSTOS0 11
RSTR 903
S0 87007
S1 57
S2 24
S3 10
SF 378440
SH 107

land - 1 if connection is from/to the same host/port 0 otherwise

0 493999
1 22

1 if successfully logged in 0 otherwise

0 420784
1 73237

1 if root shell is obtained 0 otherwise

0 493966
1 55

1 if "su root" command attempted 0 otherwise

0 494009
1 6
2 6

1 if the login belongs to the "host" list 0 otherwise

0 494021

1 if the login is guest login 0 otherwise

0 493336
1 685

* Count how many times each group of attack appears in original data
and plot graph (values in descendant order)...

Analysis of symbolic attributes after duplicates were removed

Normal - attacks

back. 968
buffer_overflow. 30
ftp_write. 8
guess_passwd. 53
imap. 12
ipsweep. 651
land. 19
loadmodule. 9
multihop. 7
neptune. 51820

56

nmap. 158
normal. 87832
perl. 3
phf. 4
pod. 206
portsweep. 416
rootkit. 10
satan. 906
smurf. 641
spy. 2
teardrop. 918
warezclient. 893
warezmaster. 20

Type of the protocol, e.g. tcp, udp, etc.

icmp 2406
tcp 130913
udp 12267

Network service on the destination, e.g., http, telnet, etc.

IRC 43
X11 11
Z39_50 91
auth 328
bgp 104
courier 108
csnet_ns 126
ctf 97
daytime 103
discard 116
domain 114
domain_u 5425
echo 112
eco_i 916
ecr_i 1027
efs 101
exec 98
finger 668
ftp 798
ftp_data 4592
gopher 117
hostnames 103
http 62054
http_443 99
imap4 117
iso_tsap 115
klogin 106
kshell 98
ldap 101
link 102
login 103
mtp 107
name 98
netbios_dgm 98
netbios_ns 102
netbios_ssn 107

57

netstat 95
nnsp 105
nntp 108
ntp_u 290
other 4769
pm_dump 1
pop_2 101
pop_3 200
printer 108
private 49057
red_i 1
remote_job 120
rje 111
shell 111
smtp 9721
sql_net 110
ssh 105
sunrpc 107
supdup 105
systat 115
telnet 512
tftp_u 1
tim_i 5
time 139
urh_i 14
urp_i 443
uucp 105
uucp_path 106
vmnet 106
whois 110

Normal or error status of the connection

OTH 7
REJ 14712
RSTO 569
RSTOS0 11
RSTR 425
S0 42278
S1 57
S2 24
S3 10
SF 87459
SH 34

land - 1 if connection is from/to the same host/port 0 otherwise

0 145566
1 20

1 if successfully logged in 0 otherwise

0 74032
1 71554

1 if root shell is obtained 0 otherwise

0 145531
1 55

58

1 if "su root" command attempted 0 otherwise

0 145574
1 6
2 6

1 if the login belongs to the "host" list 0 otherwise

0 145586

1 if the login is guest login 0 otherwise

0 144901
1 685

* Count how many times each group of attack appears in data after cleaning
and plot graph (values in desendant order)...

Individual attacks compared to normal data

normal = 87832
attack = 57753

Generate fuzzy inference system (FIS)...
Iteration count = 1, obj. fcn = 472618.048943
Iteration count = 2, obj. fcn = 355638.303479
Iteration count = 3, obj. fcn = 355607.243265
Iteration count = 4, obj. fcn = 355398.905748
Iteration count = 5, obj. fcn = 354007.783208
Iteration count = 6, obj. fcn = 345187.694169
Iteration count = 7, obj. fcn = 303310.645801
Iteration count = 8, obj. fcn = 230586.177592
Iteration count = 9, obj. fcn = 202604.601890
Iteration count = 10, obj. fcn = 187861.145303
Iteration count = 11, obj. fcn = 173084.885252
Iteration count = 12, obj. fcn = 158127.450175
Iteration count = 13, obj. fcn = 150796.932600
Iteration count = 14, obj. fcn = 147799.246684
Iteration count = 15, obj. fcn = 145815.380628
Iteration count = 16, obj. fcn = 143599.500727
Iteration count = 17, obj. fcn = 139406.425212
Iteration count = 18, obj. fcn = 132455.630481
Iteration count = 19, obj. fcn = 124493.216022
Iteration count = 20, obj. fcn = 118235.245152
Iteration count = 21, obj. fcn = 114411.124282
Iteration count = 22, obj. fcn = 109075.032389
Iteration count = 23, obj. fcn = 105648.342882
Iteration count = 24, obj. fcn = 105366.125478
Iteration count = 25, obj. fcn = 105353.532887
Iteration count = 26, obj. fcn = 105351.090722
Iteration count = 27, obj. fcn = 105349.963688
Iteration count = 28, obj. fcn = 105349.321548
Iteration count = 29, obj. fcn = 105348.929933
Iteration count = 30, obj. fcn = 105348.684665
Iteration count = 31, obj. fcn = 105348.529400
Iteration count = 32, obj. fcn = 105348.430686
Iteration count = 33, obj. fcn = 105348.367820
Iteration count = 34, obj. fcn = 105348.327757
Iteration count = 35, obj. fcn = 105348.302220
Iteration count = 36, obj. fcn = 105348.285941

59

Iteration count = 37, obj. fcn = 105348.275565
Iteration count = 38, obj. fcn = 105348.268950
Iteration count = 39, obj. fcn = 105348.264734
Iteration count = 40, obj. fcn = 105348.262047
Iteration count = 41, obj. fcn = 105348.260334
Iteration count = 42, obj. fcn = 105348.259242
Iteration count = 43, obj. fcn = 105348.258547
Iteration count = 44, obj. fcn = 105348.258103
Iteration count = 45, obj. fcn = 105348.257821
Iteration count = 46, obj. fcn = 105348.257640
Iteration count = 47, obj. fcn = 105348.257526
Iteration count = 48, obj. fcn = 105348.257452
Iteration count = 49, obj. fcn = 105348.257406
Iteration count = 50, obj. fcn = 105348.257376
Iteration count = 51, obj. fcn = 105348.257357
Iteration count = 52, obj. fcn = 105348.257345
Iteration count = 53, obj. fcn = 105348.257337

Saving fuzzy C-means clustering results

Saving fuzzy inference system (FIS) to file
>>

60

For kddcup_analysis.m dataset must be organized as original KDD CUP ’99 10%

dataset. For other datasets changes must be applied to code or to dataset.

close all;
clear
clc

%% input/output
% name of input and output files
tableName = 'kddcup.data_10_percent_corrected.txt';
uniqueTableName = 'T_unique.dat';
fcmOut = 'out.dat';
fisOut = 'myfis.fis';

% number of clusters (0 if subclustering)
numClast = 8;

% if attacks are grouped in four groups group = 4 if in normal-attack group = 2
group = 4;

% selection of attributes - only continuous attributes
attributesName = {...

'dur', ...
'src_bytes', ...
'dst_bytes', ...
'wrong_fragment', ...
'urgent', ...
'hot', ...
'num_failed_logins', ...
'num_compromised', ...
'root_shell', ...
'num_root', ...
'num_file_creations', ...
'num_shells', ...
'num_access_files', ...
'num_outbound_cmds', ...
'count', ...
'srv_count', ...
'serror_rate', ...
'srv_serror_rate', ...
'rerror_rate', ...
'srv_rerror_rate', ...

APPENDIX B

SOURCE CODE

61

'same_srv_rate', ...
'diff_srv_rate', ...
'srv_diff_host_rate', ...
'dst_host_count', ...
'dst_host_srv_count', ...
'dst_host_same_srv_rate', ...
'dst_host_diff_srv_rate', ...
'dst_host_same_src_port_rate', ...
'dst_host_srv_diff_host_rate', ...
'dst_host_serror_rate', ...
'dst_host_srv_serror_rate', ...
'dst_host_rerror_rate', ...
'dst_host_srv_rerror_rate'...
'label'};

%% analysis KDD cup data and generate cleaned table
kddcup_analysis(tableName, group, uniqueTableName);

%% Generate fuzzy inference system (FIS)
disp(' ')
disp('Generate fuzzy inference system (FIS)...')
[out, myfis] = kddcup_fis(uniqueTableName, attributesName, numClast);

% display results
disp(' ')
disp('Saving fuzzy C-means clustering results')
save(fcmOut,'out','-ascii');
disp(' ')
disp('Saving fuzzy inference system (FIS) to file')
writefis(myfis,fisOut);

% calculate and print confusion matrix
if group == 4
 conf(5);
else
 conf(2);
end

function [] = kddcup_analysis(filename, group, uniqueTableName)
% import data
T = readtable(filename);

%% analysis of symbolic attributes
disp(' ');
disp(' Analysis of symbolic attributes of original data');
disp('--');
n_a = categorical(T.normal_attack);
disp(' ');
disp(' Normal - attacks');
disp('--');

62

summary(n_a);
T.protocol_type = categorical(T.protocol_type);
disp(' ');
disp(' Type of the protocol, e.g. tcp, udp, etc.');
disp('--');
summary(T.protocol_type);
T.service = categorical(T.service);
disp(' ');
disp(' Network service on the destination, e.g., http, telnet, etc.');
disp('--');
summary(T.service);
T.flag = categorical(T.flag);
disp(' ');
disp(' Normal or error status of the connection');
disp('--');
summary(T.flag);
T.land = categorical(T.land);
disp(' ');
disp(' land - 1 if connection is from/to the same host/port 0 otherwise ');
disp('--');
summary(T.land);
T.logged_in = categorical(T.logged_in);
disp(' ');
disp(' 1 if successfully logged in 0 otherwise');
disp('--');
summary(T.logged_in);
T.root_shell = categorical(T.root_shell);
disp(' ');
disp(' 1 if root shell is obtained 0 otherwise');
disp('--');
summary(T.root_shell);
T.su_attempted = categorical(T.su_attempted);
disp(' ');
disp(' 1 if "su root" command attempted 0 otherwise');
disp('--');
summary(T.su_attempted);
T.is_host_login = categorical(T.is_host_login);
disp(' ');
disp(' 1 if the login belongs to the "host" list 0 otherwise');
disp('--');
summary(T.is_host_login);
T.is_guest_login = categorical(T.is_guest_login);
disp(' ');
disp(' 1 if the login is guest login 0 otherwise');
disp('--');
summary(T.is_guest_login);

%% Count how many times each group of attack appears in original data and plot graph
figure
subplot(1,2,1)
disp(' ')

63

disp('* Count how many times each group of attack appears in original data');
disp(' and plot graph (values in desendant order)...');
tmp(:,1) = unique(T.normal_attack,'stable');
tmp(:,2) = cellfun(@(x) sum(ismember(T.normal_attack,x)),tmp(:,1),'un',0);
tmp = sortrows(tmp, 2,'descend');
bar(1:23,cell2mat(tmp(:,2)));
set(gca,'TickLabelInterpreter', 'none');
set(gca,'yscale','linear')
ax = gca;
ax.XTick = 1:23;
ax.XTickLabels = {string(tmp(:,1))};
ax.XTickLabelRotation = 45;
ylabel('number');
axis tight;
grid;
subplot(1,2,2)
bar(4:23,cell2mat(tmp(4:23,2)));
set(gca,'TickLabelInterpreter', 'none');
set(gca,'yscale','linear')
ax = gca;
ax.XTick = 4:23;
ax.XTickLabels = {string(tmp(4:23,1))};
ax.XTickLabelRotation = 45;
ylabel('number');
axis tight;
grid;

%% cleaning duplicates I
T_unique = unique(T);

% analysis of symbolic attributes
disp(' ');
disp(' Analysis of symbolic attributes after duplicates were removed');
disp('--');
n_a = categorical(T_unique.normal_attack);
disp(' ');
disp(' Normal - attacks');
disp('--');
summary(n_a);
T_unique.protocol_type = categorical(T_unique.protocol_type);
disp(' ');
disp(' Type of the protocol, e.g. tcp, udp, etc.');
disp('--');
summary(T_unique.protocol_type);
T_unique.service = categorical(T_unique.service);
disp(' ');
disp(' Network service on the destination, e.g., http, telnet, etc.');
disp('--');
summary(T_unique.service);
T_unique.flag = categorical(T_unique.flag);
disp(' ');

64

disp(' Normal or error status of the connection');
disp('--');
summary(T_unique.flag);
T_unique.land = categorical(T_unique.land);
disp(' ');
disp(' land - 1 if connection is from/to the same host/port 0 otherwise ');
disp('--');
summary(T_unique.land);
T_unique.logged_in = categorical(T_unique.logged_in);
disp(' ');
disp(' 1 if successfully logged in 0 otherwise');
disp('--');
summary(T_unique.logged_in);
T_unique.root_shell = categorical(T_unique.root_shell);
disp(' ');
disp(' 1 if root shell is obtained 0 otherwise');
disp('--');
summary(T_unique.root_shell);
T_unique.su_attempted = categorical(T_unique.su_attempted);
disp(' ');
disp(' 1 if "su root" command attempted 0 otherwise');
disp('--');
summary(T_unique.su_attempted);
T_unique.is_host_login = categorical(T_unique.is_host_login);
disp(' ');
disp(' 1 if the login belongs to the "host" list 0 otherwise');
disp('--');
summary(T_unique.is_host_login);
T_unique.is_guest_login = categorical(T_unique.is_guest_login);
disp(' ');
disp(' 1 if the login is guest login 0 otherwise');
disp('--');
summary(T_unique.is_guest_login);

%% Count how many times each group of attack appears in data after cleaning and plot
graph
figure
subplot(1,2,1)
disp(' ')
disp('* Count how many times each group of attack appears in data after cleaning');
disp(' and plot graph (values in desendant order)...');
tmp(:,1) = unique(T_unique.normal_attack,'stable');
tmp(:,2) = cellfun(@(x) sum(ismember(T_unique.normal_attack,x)),tmp(:,1),'un',0);
tmp = sortrows(tmp, 2,'descend');
bar(1:23,cell2mat(tmp(:,2)));
set(gca,'TickLabelInterpreter', 'none');
set(gca,'yscale','linear')
ax = gca;
ax.XTick = 1:23;
ax.XTickLabels = {string(tmp(:,1))};
ax.XTickLabelRotation = 45;

65

ylabel('number');
axis tight;
grid;
subplot(1,2,2)
bar(3:23,cell2mat(tmp(3:23,2)));
set(gca,'TickLabelInterpreter', 'none');
set(gca,'yscale','linear')
ax = gca;
ax.XTick = 3:23;
ax.XTickLabels = {string(tmp(3:23,1))};
ax.XTickLabelRotation = 45;
ylabel('number');
axis tight;
grid;
%%
label = zeros(height(T_unique),1);
if (group == 4)

for i = 1:height(T_unique)
if(isequal(T_unique.normal_attack{i},'normal.'))

label(i,1) = 1;
elseif(isequal(T_unique.normal_attack{i},'back.') || ...

isequal(T_unique.normal_attack{i},'land.') || ...
isequal(T_unique.normal_attack{i},'neptune.') || ...
isequal(T_unique.normal_attack{i},'pod.') || ...
isequal(T_unique.normal_attack{i},'smurf.') || ...
isequal(T_unique.normal_attack{i},'teardrop.'))
label(i,1) = 2;

elseif(isequal(T_unique.normal_attack{i},'ipsweep.') || ...
isequal(T_unique.normal_attack{i},'nmap.') || ...
isequal(T_unique.normal_attack{i},'portsweep.') || ...
isequal(T_unique.normal_attack{i},'satan.'))
label(i,1) = 3;

elseif(isequal(T_unique.normal_attack{i},'buffer_overflow.') || ...
isequal(T_unique.normal_attack{i},'loadmodule.') || ...
isequal(T_unique.normal_attack{i},'perl.') || ...
isequal(T_unique.normal_attack{i},'rootkit.'))
label(i,1) = 5;

else
label(i,1) = 4;

end
end
T1 = table(label);
T_unique.normal_attack = [];
T_unique = [T_unique T1];

%% cleaning duplicates II
T_unique2 = unique(T_unique);

%% histogram normal - attacks
figure
C = categorical(T_unique2.label,[1 2 3 4 5],{'normal','dos','probe','r2l','u2r'});

66

h = histogram(C,'BarWidth',0.7);
ylabel('number');
grid
disp(' ');
disp('Individual attacks compared to normal data');
disp('--');
disp(['normal = ', num2str(h.Values(1))]);
disp(['dos = ', num2str(h.Values(2))]);
disp(['probe = ', num2str(h.Values(3))]);
disp(['r2l = ', num2str(h.Values(4))]);
disp(['u2r = ', num2str(h.Values(5))]);

else
for i = 1:height(T_unique)

if(isequal(T_unique.normal_attack{i},'normal.'))
label(i,1) = 1;

else
label(i,1) = 2;

end
end
T1 = table(label);
T_unique.normal_attack = [];
T_unique = [T_unique T1];

%% cleaning duplicates II
T_unique2 = unique(T_unique);

%% histogram normal - attacks
figure
C = categorical(T_unique2.label,[1 2],{'normal','attack'});
h = histogram(C,'BarWidth',0.7);
ylabel('number');
grid
disp(' ');
disp('Individual attacks compared to normal data');
disp('--');
disp(['normal = ', num2str(h.Values(1))]);
disp(['attack = ', num2str(h.Values(2))]);

end

writetable(T_unique2,uniqueTableName);
end

function [out, correl, myfis] = kddcup_fis(tablename, attribute_name, numClast)
% training data input
T = readtable(tablename);
train = T{:, attribute_name};
trainRes = train(:,end);
trainData = train(:,1:end-1);

67

% training data normalization
[trainDataMap, ~] = mapstd(trainData);
[trainResMap, trainRes_ps] = mapstd(trainRes);

%% generate fuzzy inference system structure from data with genfis

% FCM clastering - clastering type Mamdani
if (numClast ~= 0)

opt = genfisOptions('FCMClustering','FISType','mamdani','NumClusters',numClast);
else

opt = genfisOptions('FCMClustering','FISType','mamdani');
end
myfis = genfis(trainDataMap,trainResMap,opt);

% starting fuzzy logic designer
fuzzyLogicDesigner(myfis);

%% evaluation of fis
trainOut = evalfis(trainDataMap,myfis);

% convert training data output back into the original units
out11 = mapstd('reverse',trainOut,trainRes_ps);
out12 = mapstd('reverse',trainResMap,trainRes_ps);
tmp1 = 0; tmp2 = 0; tmp3 = 0;
for i = 1:length(out11)

tmp1 = tmp1 + (out11(i,1) - mean(out11))*(out12(i,1) - mean(out12));
tmp2 = tmp2 + (out11(i,1)-mean(out11))^2;
tmp3 = tmp3 + (out12(i,1)-mean(out12))^2;

end
correl = tmp1 / sqrt(tmp2 * tmp3);

% training result and original data (out11 and out12)
out = [out11 out12];
end

function [out] = kddcup_test(tablename, attribute_name, myfisName)
% training data input
T = readtable(tablename);
test = T{:, attribute_name};
myfis = readfis(myfisName);
testRes = test(:,end);
testData = test(:,1:end-1);

% test data normalization
[testDataMap, ~] = mapstd(testData);
[testResMap, testRes_ps] = mapstd(testRes);

%% evaluation of fis with genfis results

68

testOut = evalfis(testDataMap,myfis);

% convert testing data output back into the original units
out11 = mapstd('reverse',testOut,testRes_ps);
out12 = mapstd('reverse',testResMap,testRes_ps);

% testing result and original data (out11 and out12)
out = [out11 out12];

end

function [] = conf(n)
load('out.dat');
outputs = round(out(:,1));
target = out(:,2);

% calculate confusion matrix
m = n + 1;
confm = zeros(m,m);
for i = 1:length(outputs)
 confm(outputs(i),target(i)) = confm(outputs(i),target(i)) + 1;
 confm(m,target(i)) = confm(m,target(i)) + 1;
end

% calculate totals and accuracy
accu = 0;
for i = 1:n
 for j = 1:n
 confm(i,m) = confm(i,m) + confm(i,j);
 end
 confm(m,m) = confm(m,m) + confm(i,m);
 accu = accu + confm(i,i);
end
accu = 100*accu/confm(m,m);

% display result for accuracy and confusion matrix
disp(' ')
disp(['overall accuracy = ' num2str(accu) '%'])
disp(' ')
disp('confusion matrix')
disp(' ')
disp(confm)

