

MAGISTERARBEIT / MASTER’S THESIS

 Titel der Magisterarbeit / Title of the Master‘s Thesis

verfasst von / submitted by

Tomislav Maruščak

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Magister der Sozial- und Wirtschaftswissenschaften (Mag. rer. soc. oec.)

Wien, 2018 / Vienna 2018

Studienkennzahl lt. Studienblatt /

degree programme code as it appears on

the student record sheet: A 066 951

Studienrichtung lt. Studienblatt /

degree programme as it appears on

the student record sheet: Magisterstudium Statistik

Betreut von / Supervisor:

ao. Univ.-Prof. Dipl.-Ing. Dr.

Erhard Reschenhofer

Mitbetreut von / Co-Supervisor:

„Data Analytics for Smart Product Config-

uration – Statistical Analysis of Operational

Log Data in a Smart City Platform“

Abstract

The analysis of log files has attracted an unprecedented attention of scientific community

in the last decade. While usage of log files for debugging purposes is common, the analysis

for optimization and further purposes is an open hot topic in literature. Unleashing the full

potential of log file analysis is prevented by a number of obstacles, e.g. lack of standards,

heterogeneity of features (mostly nominal, but also natural text), etc.

This thesis proposes a statistical approach for automatizing the analysis of log files. In

particular, we present a set of methods for the extraction of relevant metrics from semi-

structured log files and structural break tests to detect abrupt changes in these metrics. In

addition we introduce means to identify deviations from expected system behaviour and to

dynamically tune thresholds for the detection of anomalous system conditions. Proposed

methodology was successfully tested by using actual log file from a real-world implementation.

The work performed in this thesis is a part of the H2020 EU-funded project “SUPER-

SEDE”. Parts of this thesis will be included in the upcoming project deliverable D2.5DataA-

nalysis v2.

Keywords: data analysis, smart city platform, rule evaluation, KPI extraction, structural

break tests, kernel density estimation, operational log data, nominal variables

2

Abstract

Die Analyse von Log-Daten bekommt im letzten Jahrzehnt zunehmende Auf-

merksamkeit in der Wissenschaft. Während die Verwendung von Log-Daten für

Debugging schon üblich ist, ist deren Analyse zur Optimierung und zu sonstige

Zwecken ein offenes Problem in der Literatur. Das volle Potential der Analyse von

Log-Daten wird eingeschränkt durch unterschiedliche Hindernisse, wie z.B. keine

(fehlende) Standards oder heterogene Variablen (sie können, unter anderem, nomi-

nal, aber auch alltägliche Sprache sein).

Diese Magisterarbeit schlägt eine statistische Vorgehensweise für die Analyse

von Log-Daten vor. Insbesondere stellen wir eine Menge von Verfahren dar, sowohl

zur Ableitung von wichtigen Maßen aus semi-strukturierten Log-Daten, als auch

Strukturbruchtests zur Feststellung von plötzlichen Änderungen in diesen Maßen.

Zusätzlich dazu führen wir Wege zur Erkennung von Abweichungen vom erwarte-

ten Verhalten des Systems ein, und zur dynamischen Anpassung der Grenzen zur

Erkennung eines atypischen Zustands des Systems. Die vorgeschlagene Methodik

wird an Daten einer Implementierung aus der realen Welt erfolgreich getestet.

Die Arbeit, die in dieser Magisterarbeit präsentiert worden ist, ist ein Teil des

H2020 EU-geförderten Projektes “SUPERSEDE”. Teile davon werden im kommen-

den Deliverable D2.5DataAnalysis v2 enthalten sein.

Stichwörter: datenanalyse, smart-city-platform, rule-evaluation, KPI extrachie-

rung, nominale variablen, strukturbruchtests, kerndichteschätzer, operative log da-

ten

3

Acknowledgement

I would first like to thank my thesis advisor ao. Univ.-Prof. Dipl.-Ing. Dr.

Erhard Reschenhofer of the Faculty of Business, Economics and Statistics at

University of Vienna. The door to Prof. Reschenhofer’s office was always

open whenever I ran into a trouble spot or had a question about my research

or writing. He allowed this paper to be my own work, yet pointed me in the

right direction.

I would also like to thank Dr. techn. Danilo Valerio from SIEMENS AG

Österreich, who mentored me from a corporate point of view, and enabled my

embarking on a career at SIEMENS AG. He was also a second reader of this

thesis, and I am gratefully indebted to his for his very valuable comments on

this thesis.

Without their passionate participation and input, the thesis could not have

been successfully conducted. Thank you.

Author

Tomislav Maruščak

4

Contents

1 Introduction 9

1.1 On the Statistical Analysis of Log Files 9

1.2 What is SUPERSEDE? . 11

1.2.1 Thesis Contribution to SUPERSEDE 12

1.3 Problem Definition . 14

2 Domain Description 15

2.1 Smart City Information Ecosystem 15

2.2 The Data . 16

2.2.1 Features . 18

3 Data Preprocessing 19

3.1 MethodName Clustering . 19

3.2 SessionID . 21

3.3 Response Duration . 23

3.3.1 Descriptives . 27

3.4 Extracting Further Metrics . 29

4 Data Analysis 30

4.1 Structural Breaks Tests . 30

4.1.1 F-Tests . 31

4.1.2 Generalized Fluctuation Tests 34

4.1.3 Use Cases . 37

4.1.3.1 Structural Break Based Alerts 37

4.1.3.2 Response Duration Based Alerts 40

4.1.3.3 Predictive Alerts in Response Duration 43

4.2 Detecting the Periodicities . 46

4.2.1 Kernel Density Estimation 46

4.2.2 Use Case . 48

4.3 Periodicity Violation Based Alerts 50

4.3.1 Anomaly Detection . 50

4.3.2 Modelling of the Deviation of Periodicity 51

5

4.3.3 Use Case . 54

5 Implementation of the Rules in SUPERSEDE 56

5.1 R Scripts . 57

6 Conclusions 58

Appendices 59

A getThresholds.r 59

B hourlyRespDurEvaluate.r 63

C structuralBreakTests.r 67

D periodicityBreak.r 72

6

List of Figures

1 The SUPERSEDE vision [2] . 11

2 The proposed SUPERSEDE cycle 12

3 Smart City Information Ecosystem 15

4 A fragment of the monitoring log . 16

5 A schematic display of the information ecosystem 17

6 Clustered method names using the Levenstein’s similarity measure,

for the first 100 unique method names 20

7 Unexpected behaviour in the SessionID variable 21

8 Response duration over the APIs, cropped at 60 seconds 23

9 Distributions of request durations . 25

10 Distribution of requests and durations 27

11 Distributions of request durations . 28

12 Artificial examples of structural breaks 31

13 An example of structural break detection on the New Haven temper-

ature data . 35

14 Alerts raised by the structural break tests for the /consumption-da-

ta/comparison method . 38

15 Alerts raised by the structural break tests for the /consumption-da-

ta/comparison/getMaxDate method 39

16 Extraction of metric . 41

17 Alerts raised by the too slow local response duration 43

18 Alerts raised by the forecasting of the response duration for the who

methods . 45

19 Kernel density estimation example 47

20 Periodicity detection for three selected methods 49

21 Window based anomaly detection . 51

22 Automated periodicity detection . 52

23 Alerts raised by the changes in periodicity for exemplary methods . 55

24 Rule adaptation and evaluation pipeline 56

7

List of Tables

1 Description of the SUPERSEDE working packages 12

2 Summary of the development of the structural break tests 33

3 Some kernels . 47

4 Scripts . 57

8

1 Introduction

The activity of billions of electronic devices and software systems is monitored,

traced, and saved in so called log files. These log files are of crucial importance in

case a problem occurs and the cause has to be identified, but can also be used for

additional purposes. The information contained in a log file can be used to optimize

already operational systems, to recognize design flaws, to detect security threats,

to identify bottlenecks, and many more. A growing trend relates to the usage of

log files to predict upcoming errors before they occur.

Formally, a log file in the information science context is defined as the automat-

ically produced and time-stamped documentation of events relevant to a particular

system [1]. Log files can be divided into several families, depending on their nature.

Each family has its own peculiarities, which makes it impossible to talk about log

data analysis as a unique problem. A thorough review of the common problems in

the log file analysis can be found in [7].

In a test setting a debugger can exploit the information from the logs manually.

This works when the target of the analysis is defined. Due to the quantity of the

data coming from a real, live system, it is impossible to approach it manually. The

quantity of the data may be addressed by abstraction [14, 25], which is a process

of grouping together the similar log entries arising in the short time, due to the

fact that they could be coming the same fault which propagates to the system,

therefore not bringing any new information. Zheng et al. [28] were able to filter

similar events and compress the file by as much as 99.97%. Another big topic in

the log file analysis is the lack of format, in the general case. Software developers

may be writing the events in natural language, possibly with time stamp and some

variables. Log parsing [15] may be necessary in order to achieve structure.

1.1 On the Statistical Analysis of Log Files

Sensor data, that could be generated by a variety of relatively inexpensive sensors

installed on any type of machinery, can record valuable information about a ma-

chine’s state, like operating temperature, vibration, RPM, etc., making it easier to

directly apply statistical tools and methods. Data collected from sensors is usually

9

straightforward to analyse as it comes as a series of unidimensional readings over

the time, forming a time series.

Log files differ considerably from sensor data. The files may be very heteroge-

neous, highly depending on the use case, as well as the way the software developer

designed and implemented them (meaning that there is no unique standard). Most

messages are written in plain text, and it is possible that not all of the possibly

relevant information is logged. What is often missing is the context of the event

logged. If the software developer imagined that the main use of the logs would

be for debugging, it is likely that he wouldn’t keep track of the successful events.

Apart from the issue that software log data are mostly textual, they are also com-

ing at random times, which are depending on the users’ activity. Due to the

current lack of standards, the developers have the freedom to choose how the logs

are generated. That can mean that the messages are stored as text messages with

a time stamp, generating a semi-structured output, or as a series of nominal vari-

ables, outputting a structured log. This prevents the direct application of machine

learning approaches, as they require numeric inputs. As a result it is necessary

to pre-process log files to extract the right metrics from logs in a meaningful way,

before applying desired statistical tools on it.

The difference in the analysis of the log data is not only huge among the sensor

log data and software usage log data, but also among the sensor log data for various

machines, or for the software logs, among the types of software. The analysis

is also depending on the goals (use) of the data - printer logs could be used for

troubleshooting, while web browsing data could be used to monitor and optimize

network flows, improve ads or recognize intrusion attempts [21].

Apart from the issues stated before, metrics extracted from the log data may

not (always) fulfil the formal statistical assumptions of the methods we would like

to use, etc. Furthermore, the same use cases among different companies could be

generating different types of data, or their needs from the data could vary, making it

impossible to simply directly apply the same approach, and automate the analysis

in that way.

Oliner et al. [21] have provided an overview of typical problems while dealing

with log data, as well as some suggestions.

10

1.2 What is SUPERSEDE?

The SUPERSEDE 1 project is based upon the assumption that the current software

engineering methods and tools are still poorly exploiting the increasing volume of

available user feedback and context data, hindering the creation, evolution and

adaptation of software services and applications that fulfil end-user expectations

on quality of experience (QoE) and quality of service (QoS). The overall project

objective is to deliver methods and tools to support decision-making in the evolution

and adaptation of software services and applications by exploiting end-user feedback

and runtime data, with the overall goal of improving end-users’ QoE.

Figure 1: The SUPERSEDE vision [2]

The vision of the project is summarized in Figure 1. End-user feedback is avail-

able in online forums, app stores, social networks and novel direct feedback channels,

which connect software applications and service users to developers. Runtime data

can be gathered from environmental sensors, monitoring infrastructure, usage logs,

etc. End-user feedback and data will be analysed to support decision-making tasks

both for (i) software evolution and (ii) adaptation. Software evolution decision-

making performed by analysts, system architects, developers and project managers

will facilitate faster innovation cycles that deliver early value to a wide target of

1This section is partially following the official project documentation published at https://www.supersede.eu/

project/objectives/

11

https://www.supersede.eu/project/objectives/
https://www.supersede.eu/project/objectives/

potential customers. Examples are the identification of new business use cases; the

discovery and prioritization of new requirements; the identification of issues to be

solved through software evolution; the definition of test cases; and strategic / release

planning, based on the analysis of past series of software evolution cycles.

Software adaptation will occur at runtime not only to match the personal char-

acteristics of the end-user (either as individual or as instance of a type of user), but

also to respond timely to quickly changing context conditions [2].

Working Package Description

WP1 Feedback and Data Collection

WP2 Feedback and Data Analysis

WP3 Requirements For Methods and Tools

WP4 Enacting the Decisions

WP5 Software Tool Suite

WP6 Use Case Validation

WP7 Dissemination and Exploitation

WP8 Project Management

Table 1: Description of the SUPERSEDE working packages

1.2.1 Thesis Contribution to SUPERSEDE

Figure 2: The proposed SUPERSEDE cycle

The collect step consists of the gathering of the data from the end-users, the

execution context and usage logs. The data is passed on to WP Analyse to

provide results and visualizations extracted from the maintenance logs and the

12

feedback data, ideally automating the generation of user models from the patterns

of usage, and deriving the indicators for the QoE. The decide step takes the outputs

of my analyses in order to derive appropriate decision-making models that can be

fed by user feedback and monitoring logs to enable automated and semi-automated

decision making– either by defining the software evolution tasks (by e.g. identifying

new users’ requirements, or issues to be solved through software maintenance -

in the next versions) or by performing dynamic software adaptation (e.g. getting

recommendations about actions to be implemented to keep the QoS at a good level).

The act step would then implement the decided changes at the right moment (i.e.

schedule and assess the impact of the executed actions). This is displayed in Figure

2.

This thesis falls in the context of the WP Analyse. The goal is to improve the

Event-Condition-Action (ECA) rules, which are currently mostly threshold-based,

whereby the thresholds mostly have to be manually defined. They are used to

raise alerts from the software monitoring as well as feedback data to the upcoming

working packages. We wish to enrich these rules with more sophisticated methods,

in a way that the current marked events would still be captured, as well as some

further ones. Predicting the inadequate system states, which could negatively reflect

on the users’ QoE, allows us to raise an alert to the software developers, allowing

them to react, either in a way of software runtime adaptation, or by directing the

evolution of the software according to the (predicted) users’ needs. The descriptive

analysis will allow to correctly identify the most interesting use cases, which will be

described in the coming chapters (2,3).

Ideally, an automated rule extraction system would be developed, that generates

rules and thresholds automatically, based on feedback and monitoring data. The

feasibility of this will not be covered in the scope of this thesis. Due to the lack

of the reliable feedback data, the focus will be on detecting of anomalies in the

monitoring data. The more concrete application of SUPERSEDE in the SIEMENS

use case will be described in Section 2.1.

Parts of this thesis will be published in the scope of the project’s documentation

and deliverables.

13

1.3 Problem Definition

This thesis tackles most of the problems described above. In particular:

• too many method names for meaningful clustering of data

• extraction of relevant numerical KPIs (key performance indicators) from cate-

goric data

• definition of response duration as a time difference between users request and

system’s response

• extraction of trends in the response duration data

• response duration forecasting

• detection of abrupt changes in these trends

• identification of deviations of periodicity.

14

2 Domain Description

2.1 Smart City Information Ecosystem

As a part of the Aspern Smart City Research group [6], Siemens AG Österreich

has developed the “smart city information ecosystem”, which is a platform between

API providers, which provide access to specific datasets, and app developers, who

utilize the data to provide a service to their users.

Figure 3: Smart City Information Ecosystem

The interaction between API providers and app developers occur via REST API.

Every (in-)direct call of the APIs is logged. We monitor this activity at different

places within the ecosystem (see Section 2.2 and Figure 4), which generates different

logs, that are semantically interconnected.

This represents one source of our data. API providers, app developers or their

end-users may further provide feedback data. After it is preprocessed with natural

language processing and semantics analysis tools, is it joined to the rest of the data.

The idea is to use the data from these two separate sources to extract some

insights about the problems that may arise. This describes the collect step of the

SUPERSEDE proposed iterative cycle, described in Section 1.2.1 and depicted in

Figure 2.

15

Another goal is to extract user intentions from their comments, perform cus-

tomer segmentation and derive metrics from the data that would be good indicators

for QoS.

Then comes the decide step, in which we would like to derive (semi-) automated

decision making models that can be fed by the outputs of my analysis. They would

be able to identify the users needs, that could be implemented in the next versions,

or perform a dynamic software adaptation meaning that it maintains the software’s

QoS at a good level while running.

The last step of the cycle implements the decided changes at the right moment,

i.e. performs scheduling of the executed actions.

2.2 The Data

A snapshot of the original log data is shown in Figure 4. The data contains method

calls, the time stamp, and some other parameters that are mainly categorical. Since

most of the approaches I intend to use rely on numbers rather than on unordered

categories, the first challenge we face is to deduce metrics from these categories

in a meaningful way. Since we deal with software usage logs, a non-constant ∆t

(meaning a constant frequency), prevents us to (directly) use time series approach.

Figure 4: A fragment of the monitoring log

16

Monitoring logs trace the user’s activity and the corresponding system responses.

While response times mostly depend on user enquiries (together with the overall

system load), the users’ enquiries come at random times. A variety of approaches

will be tested in order to address these challenges.

Further properties of the data will be investigated as well, since the deviation

from any found regularities in the data might also give us an insight into the overall

system health.

grid-data-ui

grid-data-rest

apartment-data-ui

apartment-data-rest

building-data-ui ASCR app

building-data-
rest

consumption-data-
rest

grid-data-oauth2_1

grid-data

apartment-data-
oauth2_1

apartment-data

consumption-data-
oauth2_1

building-data-
oauth2_1

building-data consumption-data

WSO2 API Manager

ecosys_core

Figure 5: A schematic display of the information ecosystem

The implemented ecosystem schematics is displayed in Figure 5. E.g., a user

clicks on a button in his app, which implicitly calls grid-data-ui service in our

ecosystem. The request is prepared and forwarded to the service grid-data-rest.

All of the requests go through the ecosys core service, before (if necessary) they

go through grid-data-oauth2 1 and grid-data services and access the database.

The response then follows the same path back to the user. Each of the services is

17

monitors inputs and outputs, in the features defined in the coming chapter. This

generates several log files that are interconnected, so I merge them before the data

preprocessing.

2.2.1 Features

For each row, we record the following:

• TIMESTAMP – in the format: yyyy-mm-dd TZ hh:mm:ss.ms,

• SOURCE – which one of the services in Figure 5 is an event coming from,

• CLASS – the java class where the event originated,

• USER – MD5 of the user name if the user is logged in,

• ROLE – the role of the user (publisher or developer),

• SESSION ID – a unique value for a pair request–response,

• EVENT TYPE – either get or post, login or logout,

• DIRECTION – either request or response,

• METHOD NAME – full path of the method being called,

• CONTENT TYPE – the format of the body (JSON, TXT, XML),

• CONTENT – if the event was successful, the body in the predefined format,

else one of the error messages (error, failure, network error, success with error

message etc.)

18

3 Data Preprocessing

Due to the issues defined earlier, we cannot use the data directly, so we pre-process

it in order to extract the meaningful metrics, to apply our proposed tools on.

3.1 MethodName Clustering

The method name (see previous section) is the name of the REST API being

called (e.g. getWeather). It may or may not include some parameters (e.g.

getWeather/city=VIENNA) and attributes (e.g. getWeather/city=VIENNA?temp=-

celsius). While the attributes are easier to strip (being (almost) always after the

“?” sign in the url, the parameters may be masked on the left side of it. To make

it easier to inspect, I plotted the method names in a hierarchical dendrogram, with

clearly set boundaries between clusters, where the distance measure for clustering

was given by Levenstein’s string (dis-)similarity measure as defined in equation (2).

The illustrative clustering for the first 100 methods is displayed in Figure 6.

Formally, Levenshtein distance [19] leva,b(|a|, |b|) between two strings a, b (of

lengths |a| and |b| respectively) is given recursively by

leva,b(i, j) =

max(i, j), if min(i, j) = 0,

min

leva,b(i− 1, j) + 1

leva,b(i, j − 1) + 1

leva,b(i− 1, j − 1) + I{ai 6=bj}

otherwise.
(1)

This is basically a count of either character replacements, insertions, or deletions

to convert one string into the other. From distance function, we can easily derive

the Levenshtein similarity measure (∈ [0, 1]):

levenshteinSim(a, b) = 1−
leva,b(|a|, |b|)
max(|a|, |b|)

(2)

Based on method names, a cut-off point was determined for which the strings

would be clustered together. From the 570 unique method names (without the

parameters), 132 clusters with similarity of more than 18% have been found. This

is a reasonable amount that can further be cross-checked and edited manually, and

adjusted if necessary. It can further be manually grouped to 32 groups of methods,

19

/comparison
/comparison/
/comparison/11
/comparison/111
/comparison/117
/comparison/−1
/comparison/1
/comparison/81
/comparison/60
/comparison/40
/comparison/4
/comparison/46
/comparison/44
/comparison/3
/comparison/34
/comparison/36
/comparison/37
/comparison/52
/comparison/2
/comparison/62
/comparison/82
/comparison/72
/comparison/5
/comparison/56
/comparison/8
/comparison/85
/comparison/90
/comparison/96
/comparison/97
/comparison/73
/consumption−data/comparison
/consumption−data/comparison/
/consumption−data/comparison/11
/consumption−data/comparison/117
/consumption−data/comparison/−1
/consumption−data/comparison/1
/consumption−data/comparison/81
/consumption−data/comparison/60
/consumption−data/comparison/40
/consumption−data/comparison/4
/consumption−data/comparison/46
/consumption−data/comparison/44
/consumption−data/comparison/3
/consumption−data/comparison/34
/consumption−data/comparison/36
/consumption−data/comparison/37
/consumption−data/comparison/52
/consumption−data/comparison/2
/consumption−data/comparison/62
/consumption−data/comparison/82
/consumption−data/comparison/72
/consumption−data/comparison/5
/consumption−data/comparison/56
/consumption−data/comparison/8
/consumption−data/comparison/85
/consumption−data/comparison/90
/consumption−data/comparison/96
/consumption−data/comparison/97
/consumption−data/comparison/73
/consumption−data/comparison/getMaxDate
/apartment−data/trends
/apartment−data/trends/
/apartment−data/trends/5
/apartment−data/trends/apartments
/building−data/trends/apartments
/apartment−data/trends/getMaxDate
/apartment−data/trends/getMinDate
/building−data/trends/getMaxDate
/building−data/trends/getMinDate
/building−data/trends
/building−data/trends/buildings
/trends
/trends/
/trends/apartments
/trends/buildings
/gmds
/gmds/
/gmds/mappings
/gmds/subnets
/comparison/getMaxDate
/gmds/getMaxDate
/gmds/getMinDate
/trends/getMaxDate
/trends/getMinDate
/building−data/trends/downloadBuildingDataCSV
/trends/downloadBuildingDataCSV
/gmds/downloadVoltageDataCSV
/gmds/downloadVoltageDataJSON
/grid−data/gmds/downloadVoltageDataCSV
/gmds/getVoltageData
/apartment−data/trends/readingsExtended
/trends/readingsExtended
/apartment−data/trends/getRecordCount
/building−data/trends/getRecordCount
/grid−data/gmds/getRecordCount
/gmds/getRecordCount
/grid−data/gmds
/grid−data/gmds/getMaxDate
/grid−data/gmds/getMinDate
/grid−data/gmds/subnets

Figure 6: Clustered method names using the Levenstein’s similarity measure, for the first 100 unique method names

20

based on frequency of calls and similarity of paths. The clustering dendrogram

can be seen in Figure 6. Each color is representing a new cluster, and Levenshtein

distance between the clusters is proportional to the length of the branches.

These methods may further be grouped in meaningful APIs, by analysing the

nested structure of method paths.

3.2 SessionID

Figure 7: Unexpected behaviour in the SessionID variable

As presented earlier, user activity is being logged in a form of a REQUEST entry,

followed by a RESPONSE as a system’s reaction. They are two separate lines in the

log file, which can be matched by the unique identifier SessionID. Note that they

may or may not be stored as consecutive lines, for example if requests are coming

faster than its corresponding response can be delivered (e.g. the request is requiring

a database access that, depending on the form, in extreme cases, could take up to

several minutes).

This means that each SessionID should appear exactly twice, which is not always

21

the case. It happens that there exists a unique value of SessionID, corresponds

exclusively to the request or to the response, which could mean that its matching

pair wasn’t logged. It also happens that the same SessionID is held for hundreds of

lines, as can be seen in Figure 7, which shows the number of repetitions of a unique

SessionID value, if it’s greater than 2.

It was among the first indicators of unexpected system behaviours visible in

the data, which is forwarded to the system developers for further investigation.

The causes have been traced back to some not elegant implementations, that were

adequate at an earlier time point, but aren’t sufficient for current versions and use

cases. Mind that this is exactly what the SUPERSEDE proposes, to make use of the

monitoring logs in order to assist the software evolution and adaptation processes.

In 99.2% of the entries, the SessionID feature is behaving as expected. This

means that only a few data has to be discarded.

22

3.3 Response Duration

Figure 8: Response duration over the APIs, cropped at 60 seconds

After initial preprocessing of SessionIDs, it is possible to compute response duration

by taking the time difference from a request to its corresponding response, matched

by a (now) unique SessionID.

It is interesting to observe rising trends in response durations for different APIs,

but then again, there are certain “cut-off” points, different across the APIs and

their methods, where the trends seem to reset, as displayed in Figure 8. The points

are response durations, plotted over time, and the y−axis is cropped at 60 seconds.

The furthest outliers go up to 9 hours, but they are extremely rare.

Response durations somewhat correlate (Figure 9), mainly because they all de-

pend on the time variable. It is also visible that correlations between the APIs that

lay on the same path (in a sense of the request propagation described in Section

23

2.2, Figure 5)) are higher. These multiple objects, that I consider to be different

APIs (because by definition of domain experts they are), sometimes call the same

database, which is a bottleneck for the information flow. Databases grow over time,

queries of some APIs last proportionally longer, which is seen in the correlation

with the time stamp variable.

24

(a) Boxplots of log transformed response duration per API

(b) Response duration correlation per API

Figure 9: Distributions of request durations

Raising alerts should be based on the averaged values (or some other statistic),

25

since it’s always possible that a single user (unintentionally) generates a complex

enquiry which may result in longer operation. Such an isolated event should not be

considered alarming, and no action should be taken in that case.

Response duration, when observed per Java method (see Figure 8), also shows

interesting changes (breaks) in trends. We would like to be able to detect these

trends, as well as those changes automatically. Knowing this, we can also base the

alerts on forecasted response duration more reliably, in order to launch an alert,

before the response duration goes critical. In this case, since the bottleneck for the

response duration is access to the database, and the database is growing linearly

over time, the increasing trend in response duration is also linear. This is a good

sign, because of simplicity of forecasting models, i.e. it enables raising a yellow alert

before response duration becomes critical. Clearly, a red alert could be raised if

the actual response duration became critical. Regardless of that, the mere use case

can easily be implemented in other SUPERSEDE partners or future users, who

also monitor systems’ response duration and take actions if a response is too slow

(e.g. change resolution in video stream if the network connection shows signs of

congestion etc.).

Thresholds for response time are computed by extracting the trends in response

duration data and estimating expected range for future measurements. The goal

is to raise alerts if a current threshold is exceeded or if it is about to be exceeded.

Response times may vary depending on an exact method that is monitored, meaning

that each method will have its own dynamic threshold.

Even though this system is developed on a specific use case, the solution is

portable, as long as the measured points refer to a signal that shows long-term trends

and short-term fluctuations (e.g., response times, network throughput, bit error

rate, video frame errors, etc.). This is particularly important for the application of

the method into the project use cases.

26

3.3.1 Descriptives

(a) Distribution of requests and durations over time, during the hour

(b) Distribution of requests and durations over time, during the day

Figure 10: Distribution of requests and durations

As a part of initial analyses of the response duration behaviour, distributions of

method calls has been checked per minute, hour, day, etc. We notice an increase

in average response duration, as well as in total method calls every hour around a

full hour, and every day at 9 AM. This is depicted in Figures 10 and 11, and is a

27

first indication that there could be a periodicity in method calls. This topic will be

covered in Section 4.2.

(a) Boxplots of response duration over hour

(b) Boxplots of response duration over day

(c) Histogram of response durations, cropped at 40s

Figure 11: Distributions of request durations

In Figure 10 points represent requests, that come over time (x−axis), and on

the y−axis is difference from the full hour, and midnight respectively. Colour and

size of each point represent response duration, for the request that started at that

28

particular time, and all responses that take 800 seconds or more are of the same

shade of red. The maximum amount of response duration is 9.19 hours. It is

interesting to see that during the busiest time of an hour, is where the worst values

of the response durations lay. This is visible as horizontal “lines”, but there are

also several days that were especially problematic, where the reddest points form

vertical “lines”. The effect of hourly influence is however not visible on the box-

plots of response duration per hour, or per day (Figure 11). Further changes in the

system behaviour are also apparent, e.g. the point where the hourly checks have

started (start of the green lines in the figure), as well as 10-minute checks (time

point where the dots suddenly become more dense).

3.4 Extracting Further Metrics

Since each line of the log file includes internal success evaluation of the event,

stored in the Content feature, the first and the most obvious thing is to check

how do they appear over time. A surge of failures in a short time might be a

good indication of problems in the system, network, database etc. Kernel density

estimates could be proven useful for this use case as well: for each of the possible

values in the Content feature, we sub-select them from the data and count their

appearances in the given time window (by using KDE and adjusting the bandwidth

parameter - see Section 4.2.1). The higher (broader) the bandwidth, the smoother

the resulting function. An example of that can be seen in Figure 19. Red markers

at the bottom indicate appearance of an event, and the curves are estimating the

probability distribution based on the observed events. In this case it is done with

a Gaussian kernel estimator. Since the formal output is a probability distribution

function, the y scale is defined so that the function integrates to 1. This condition

is, however, not necessary for this application, since the gotten numbers will be

scaled and weighted anyway in future steps.

This is one possible way to convert discrete categorical variable into a continuous,

numerical one. Instead of working with original nominal values, for each of the

levels, we are working with the probability of its appearance in a certain time,

basing these probabilities on real observations.

29

4 Data Analysis

By this point, we already addressed some of the problems defined in Section 1.3.

A way to tackle the problem of changing linear trends (as described in Section

3.3) are structural break tests.

I will go around the categorical features and random times of the events both

with kernel density estimation, as announced in Section 3.4. I will also use KDE

to automate the periodicity detection of the methods (see Section 4.3), and to re-

imagine anomaly detection in detection of a deviation from the periodicity, since

the structural break tests do not seem to be powerful enough in this use case.

4.1 Structural Breaks Tests

A structural break is any change in time series that may cause errors in prediction.

E.g. it occurs when linear regression coefficients aren’t independent of time. This

kind of break may happen in various ways - the slope may change or the intercept

may change, while variance either changes or stays the same. We can know the

time of the break, or it can be unknown.

We can group hypothesis of breaks in several different categories:

• a single break in mean with a known breakpoint: we use it to test for a break

on the historic data,

• a known number of breaks in mean with unknown breakpoints,

• an unknown number of breaks in mean with unknown breakpoints: will be

useful for automation of testing of the future data,

• breaks in variance.

in Figure 12 there was only one break at the point x = 2. On second subfigure we

see an example of joined data coming from two different programs, where again the

Chow’s test as defined in equation (7) can be used to confirm the existence of two

intercepts.

30

Figure 12: Artificial examples of structural breaks

4.1.1 F-Tests

Consider a general setup: linear regression model for which we assume that a break

in one or more parameters occurred in period τ :

yt = x′tβ1 + εt, if t ∈ [1, τ]

= x′tβ2 + εt, if t ∈ [τ + 1, T]
(3)

31

or, more compactly:

yt = x′tβ1 + I{t≤τ}x′tγt + εt, if t ∈ [1, T] (4)

where

I{t>τ} = 0, if t ≤ τ,

I{t>τ} = 1, if t > τ,

γ = β2 − β1.

Assume that the x’s are weakly exogenous and the ε are homoskedastic and not

autocorrelated. Under additional regularity conditions regarding the joint x and ε

process, the OLS (ordinary least squares) estimator of 4 is consistent, asymptotically

normal and asymptotically efficient.

Tests of structural change are testing the null hypothesis of no structural change,

meaning the coefficients are stable, vs. the alternative that the coefficients are time

dependant.

H0 :γ = 0 βt = β0 ∀t ∈ {1, . . . , n}

H1 :γ 6= 0 or ∃t0, t1 :βt0 6= βt1 t0, t1 ∈ {1, . . . , n}

The first such a test was proposed by Chow [11] in 1960, as a test of whether

the coefficients on different data (sub)sets were equal. It is most commonly used in

the analysis of time series to test for the presence of a structural break at a known

time τ .

Let SC be the sum of squared residuals from combined data, S1 be the sum

of squared residuals from the first group, and S2 be the sum of squared residuals

from the second group. N is the total number of observations, k is the number of

parameters. The Chow’s test statistic [11] is:

SC = ε′ε (5)

Sj = ε′jεj , j =

 1, for t ≤ τ,

2, for t > τ
(6)

F =

SC−(S1+S2)
k

S1+S2
N−2k

∼ F (k, n− 2k) (7)

32

The test is, however, only powerful in the situation where the breaking point is

known, and unique, while the residual variance remains constant before and after

the break.

Over the years, several generalizations of the test have been proposed. A brief

overview can be found in Table 2.

Quandt [23] first proposed the supF test as the likelihood ratio test for detecting

structural change with an unknown breakpoint. The idea is to compare the Chow’s

F statistic over all possible breakpoints ti, and take their supremum. Although the

idea is simple, its optimality properties, as well as the asymptotic distributions have

only been shown 33 years later by Andrews [5]. This test, as well as some others,

mostly assume homoskedasticity.

Maasoumi et al. [20] developed the likelihood based MZ test for simultaneous

change in regression coefficients and error variances at a fixed and known breakpoint.

A natural generalization is the supMZ test, which compares the MZ scores

over all possible breakpoints. According to Ahmed et al. [4], it can be used to

test for a single unknown simultaneous break in mean and variance. The authors

compared it to the supF test proposed by Quandt [23], concluding that the loss

of power by testing for structural change in variance is negligible, while the gain

in power under heteroskedasticity is huge [4]. However, their proof was a series of

Monte-Carlo simulations, followed by an empirical example.

Assumptions

Test Comment Breaking point Variance Source

F known homoskedastic Chow [11]

sup F unknown homoskedastic Quandt [23], Andrews [5]

MZ

simultaneous change in regression

coefficients and error variances at a

known point

known heteroskedastic Maasoumi et al. [20]

sup MZ proof by Monte-Carlo simulations unknown heteroskedastic Ahmed et al. [4]

Table 2: Summary of the development of the structural break tests

All of the tests presented in Table 2 assume that the data is linear, and that there

is only one breakpoint. There are further tests that are based on generalized fluc-

tuation tests as proposed by Leisch et al. [18], that are able to detect various types

33

of structural changes. Some of these approaches and tests have been implemented

in R package strucchange by Zeileis et al. [26].

Structural break tests for non linear models is a subject that hasn’t been thor-

oughly studied yet. Kapetanios [17] relies on neural networks to approximate the

conditional expectation of dependent variable, and testing the residuals with stan-

dard residual based structural break tests as described in Section 4.1.1. They offered

a Monte Carlo proof. Hoyo et al. [16] propose a more advanced approach for testing

of parameter consistency of non-linear models, as well the asymptotic properties for

their method. This will, due to unnecessary, not be covered in the scope of this

thesis. However, it may be relevant for partners where response duration doesn’t

show linear trends.

4.1.2 Generalized Fluctuation Tests

Fluctuation tests can be based on estimates (mostly OLS) or on residuals.

Tests based on estimates rely on the idea that a structural change would be

manifested in the measurable difference between regression coefficients of the whole

data and the regression coefficients of a subset of the data. If there are no structural

changes, the coefficients remain (almost) constant over time. An empirical process

can here be derived by taking the differences between subsample estimates and the

overall estimate. The subsamples are either chosen recursively, meaning that they

start with the first k observations, and including the coming observation stepwise,

or by a moving constant-width window.

Under the null hypothesis the processes should not stray too far away from zero.

Asymptotic properties of these processes are known [18], meaning that the bounding

processes can be calculated, which are only crossed with a desired probability α.

If an empirical process fluctuates heavily and crosses the boundaries at a specific

time, there is enough evidence that a structural break occurred at that time. In this

case, recursive estimates process will have a peak around the breakpoint, whereas

the moving estimates (ME) process would have a strong shift [26]. For simplicity,

we apply the principle of the structural break tests on a sensor data of yearly

temperature averages in New Haven, CT. It can be seen in Figure 13.

Fluctuation processes can be calculated based on cumulative or moving sums

34

Figure 13: An example of structural break detection on the New Haven temperature data

(abbreviated: CUSUM or MOSUM respectively) of either the OLS-residuals or

recursive residuals (one step forecasting errors).

The CUSUM test, as proposed by Page [22], Brown et al. [8] is based on the

cumulative sum of recursive residuals. If there is a change in the structure, the

process will leave its zero mean around the breakpoint, because the one step fore-

casting errors would grow. The OLS based tests have similar properties to the

estimates-based processes and under the alternative of a unique change point, the

OLS-CUSUM would show a peak, while the OLS-MOSUM would show a shift

35

around the change point.

By using the strucchange package for R Zeileis et al. [26] we implemented a

methodology to address the following tests:

• Rec-CUSUM

• OLS-CUSUM

• Rec-MOSUM

• OLS-MOSUM

The efp() function from strucchange takes as input a signal and returns a

one-dimensional empirical process of sums of residuals. The process can either be

based on recursive residuals or on OLS residuals and it will contain cumulative

sums or moving sums of residuals in a certain window based subset of the data. For

the processes based on moving sums, all estimations are done for observations in

a moving data window, whose width is determined by h and which is moving over

the whole sample [27].

For the types:

• RE

• ME

a k-dimensional process will be returned, if k is a number of regressors (features)

in the model, as it is based on recursive OLS estimates of the regression coefficients

or moving OLS estimates respectively. Recursive estimates test is also called fluc-

tuation test, therefore setting type to “fluctuation” was used to specify it in earlier

versions of strucchange. It still can be used now, but will be forced to “RE” [27].

And for the types:

• Score-CUSUM

• Score-MOSUM

a k+1-dimensional process will be returned, one for each score of the regression

coefficients and one for the scores of the variance. The process gives the decorrelated

cumulative sums of the ML scores (in a Gaussian model) or first order conditions

respectively (in an OLS framework) [27].

If there is a single structural change point τ , the recursive CUSUM path starts to

depart from its mean 0 at τ . Brownian bridge type paths will have their respective

36

peaks around τ . Brownian bridge increments type paths should have a strong

change at τ [27].

There is a plot() function for the output objects of efp(), i.e. a class efp, that

plots the process’ path together with the corresponding boundaries, that defaults

to α = 0.05. The boundaries may be extracted separately by using a boundary()

function. The most relevant function is the significance test, which returns a p-value,

is implemented under sctest() [26, 27].

4.1.3 Use Cases

Focus of my analyses will mainly lie on various aspects of response duration and

periodicity of some of the methods. As described in Section 3.4, it is possible to

extract more metrics from the logs, as well as from user behaviour (by including

the feedback data), but they will not be considered in the scope of this thesis.

4.1.3.1 Structural Break Based Alerts

Before we begin with response duration modelling, we need to focus on observed

trends in response duration, and breaks in their structure. Response duration data

has linear trends, but they break, and before we use it for forecasting, we need to

address this. This will be an alert for itself, as well as a base for better forecasting

of response duration (see Section 4.1.3.3).

For validation we apply statistical tests described in Section 4.1.2 on method

/consumption-data/comparison. The data is split in weekly subsets (windows)

and structural break tests are performed every week. In case of no breaks, the

window was appended by the data from the coming week, and the test was per-

formed again. In case of a structural break, the data before the break was removed,

meaning the starting period for the next test is the last (tested) structural break,

and the process repeats. The reason for this is that none of the tests were UMP

(uniformly most powerful) for testing of hypotheses of more than one breaks in the

data, so this way we make sure that, per each test performed, there is at most one

structural break in the data. It implicitly enables approximation of a time point of

structural breaks, even for the tests that do not return it by default.

37

(a)

(b)

(c)

(d)

Figure 14: Alerts raised by the structural break tests for the /consumption-data/comparison method

38

(a)

(b)

(c)

(d)

Figure 15: Alerts raised by the structural break tests for the /consumption-data/comparison/getMaxDate method

39

Tests from the function strucchange::efp() were performed at α = 0.05 level

of significance. α = 0.1 was tried out, while output for some of the tests wasn’t

very different, for others it was too sensitive. From Figure 14 it is clearly visible

that only a couple of weekly delimiters were detected as structural breaks by all of

the tests at this level of significance. It is interesting to note that none of the tests

gave exactly the same output. Additionally, a cold-start phenomenon was present:

before working reliably, most of the tests needed some time (i.e. more data) to

gather enough evidence (and reduce the p−value enough) in order to successfully

reject the null hypothesis of no structural change.

To see how the tests behave on a method with no apparent structural changes, a

series of benchmarking tests was performed on the method /consumption-data/c-

omparison/getMaxDate. Results are depicted in Figure 15. Here, as expected, less

break points are detected. The detected break points may be caused by change

in variance, which is less obvious to the naked eye than the change in intercept or

slope.

4.1.3.2 Response Duration Based Alerts

Raising an alarm is only possible when having a predefined threshold. This is

also something we would like to have automatised, rather than having to define it

manually, as covered in Section 3.3 It is only then possible to check if the trends

seem to cross the threshold in near future, which will be covered in the next section.

40

(a) Distribution of requests and durations over time, during the hour

(b) Daily measures of response duration

Figure 16: Extraction of metric

Due to the high amount of requests, most of which being processed fairly quick,

averaged daily/ hourly response duration is not a good enough measure to detect

bad time windows. We need a measure that would be more sensitive to outliers, but

not too sensitive, since they do last up to 9 hours. In Figure 16b daily average, daily

3rd interquartile and daily 99th percentile are compared. There is an indication that

these could be a better statistic than the mean, because they capture the skewness

of the data better. Since we want to be able to detect a sudden change in its

behaviour, we differentiate the daily 3rd interquartile, and its peaks do seem to

capture well the most critical days of the overall response duration. This means

that this measure is good enough to base our threshold computation on, and it

enables staying tuned with changes in the system, while eliminating the need of

having to define thresholds manually. We do however set the boundaries for such

41

a limit, not allowing it to fall less than 7 sec, or rise above 60 sec, meaning - if the

dynamically extracted threshold is less than 7 seconds, do not raise alerts, and if

it’s above 60 seconds, raise it unconditionally (independent of the system’s state).

We replayed the historical data collected during the project, to test proper

functioning of threshold computation. The data refers to the response time of an

API that shows heavy short-term fluctuations. Figure 17 shows response time signal

in a test period (second half of February 2018). Black lines connect the hourly mean

response duration values. The blue line connects threshold values. Green line in the

bottom is the lower bound for response duration, manually set to 7 seconds, meaning

we would not react to thresholds that are lower than 7 seconds. If the hourly based

metric exceeds the extracted thresholds, an alarm is raised, and marked with the red

cross on the x-axis. We see that there are less long-term fluctuations of the signal,

causing the dynamic threshold to stay almost constant. It is interesting to note that

in this case the alarms seem to occur regularly every day. In Subfigure 17b we plot

the occurrence of alarms by time-of-day. This plot uncovers another phenomenon:

most of the alarms occur between 6 and 9 am. The reason for this is that, in this

time window, maintenance works in the databases are active, leading to overall

decrease of system performance. This shows that dynamic thresholding is robust

against regular maintenance windows and continues to provide proper alarms. It is

also interesting to notice that for some days (towards the end of February), alarms

are raised for almost every hour. The reason for this is that the hourly averages are

higher than in the weeks before, and that even though the threshold is adapting,

alarms are still raised.

42

(a)

(b)

Figure 17: Alerts raised by the too slow local response duration

4.1.3.3 Predictive Alerts in Response Duration

A level of complexity in forecasting is added by the found structural breaks (covered

in Section 4.1.3.1), so the linear models used to capture trends had to be updated

on a weekly basis too, while only considering data since the last break (because the

points before it do not belong to the same trend, and would only deteriorate the

forecasting accuracy).

For each of the weeks in validation, a prediction of the linear trend was compared

to the quantile based threshold. In case the trend would hit the threshold in the

coming time window, an alert was raised in advance (on the weekly cut-off points

– where it was calculated), allowing for a preventive action to be taken.

43

The whole process can be seen on one example in Figure 18, where the method-

ology was applied on the two methods that show very different behaviour of the

response duration trends.

44

(a) /consumption-data/comparison/getMaxDate method

(b) /consumption-data/comparison/ method

Figure 18: Alerts raised by the forecasting of the response duration for the who methods

Blue lines represent structural breaks detected by the OLS-CUSUM test (as

presented) with the level of significance of α = 0.05. Red line shows the dynamically

45

updating threshold for response duration. It grows at a slow pace, allowing for a

reasonable increase in response duration (which depends on the growing databases,

as described in Section 3.3). If the sub-trends (green line) suddenly shows growth

that is too steep, it would cross the automatically derived thresholds in the coming

time window and an alert would be raised in advance.

In first case, since the OLS-CUSUM test detected a structural break (possibly

falsely), and the next trend is calculated from that point onward, there are less

points which makes it easier to influence the slope of the linear model, making it

steep and raising an preventive alarm at that point. However, one false positive

is considered better than missing out of one true positive - it is better to be too

sensitive than not being sensitive enough.

In the second case we show that the proposed system raises more alarms, on the

right spots.

4.2 Detecting the Periodicities

4.2.1 Kernel Density Estimation

Kernel density estimation (KDE) is a non-parametric method to estimate the prob-

ability density function of a certain random variable. It belongs to non-parametric

statistics, because instead of assuming the distribution of a random variable, and

then estimating the parameters, it estimates the distribution function from the data

directly. It can be interpreted as a continuous form of a histogram.

Let (x1, x2, . . . , xn) be a univariate i.i.d. sample taken from a distribution with

an unknown density function f . Its kernel density estimator is:

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K

(
x− xi
h

)
(8)

where K is the kernel, a non-negative function that integrates to one, and h > 0

is a smoothing parameter called bandwidth. There are several options to choose

from for both the kernel (some of them are presented in Table 3) and the bandwidth

[24], highly depending on our questions of the data. The impact of the choice of

bandwidth and kernel to the out-coming function is presented in Figure 19.

46

(a) Various bandwidths for the Gaussian kernel on a simulated example

(b) Various kernels

Figure 19: Kernel density estimation example

Kernel function Definition Support

Uniform K(u) = 1
2

|u| ≤ 1

Triangular K(u) = (1− |u|) |u| ≤ 1

Epanechnikov K(u) =
3

4
(1− u2) |u| ≤ 1

Quartic K(u) =
15

16
(1− u2)2 |u| ≤ 1

Cosine K(u) =
π

4
cos(π

2
u) |u| ≤ 1

Gaussian K(u) =
1
√

2π
e−

1
2
u2

u ∈ R

Table 3: Some kernels

47

Although they were constructed to estimate the probability distribution of a

random variable based on the observed events, I will use them across the analysis

to generate continuous signals (curves) from the discrete values. They also represent

a good way to go around the issues of random times of the inputs, because of their

representation in R. In theory, the output is a continuous function defined on the

〈−∞,∞〉, in R however, they are stored as a set of pairs (x, f(x)) with a constant

∆x, which we can define, based on our needs. This solves two problems at once

– the problem of random x and it quantifies the discrete appearances of a certain

categoric event.

4.2.2 Use Case

Since the methods are now meaningfully grouped and further clustered in corre-

sponding APIs (see Section 3.1), periodicities in their calls can investigated. We

assume, they are mostly (or up to a certain extent) called on demand, but there is

an indication that there may be some automated processes (e.g. system self-checks),

which call the methods on a regular basis (see Figure 10 a) and b)).

I used both Fourier decomposition, as well as autocorrelation function, to test

this hypothesis. Fourier decomposition allows an estimation of spectral density

of a signal. It is a common method to examine the signal power over frequency,

showing if a signal has dominant frequencies. Autocorrelation function however

measures the signal’s dependency on the previous terms (lags). If the signal is an

estimation of the probability of event’s appearance (and here it is, as covered in

Section 4.2.1), the autocorrelation would show peaks at the period(s) as well. Note

that both methods require a signal, meaning a continuous numeric feature, rather

than a nominal one. Here’s where the KDE come in handy.

Corresponding plots are visible in Figure 20, and are showing peaks at the ex-

pected locations. However, not all methods from the logs show the same behaviour,

meaning not all of them have the same periods, or even stable periods - they seem

to change (possibly with system’s updates or downgrades).

48

(a) Longer period

(b) Unstable period

(c) Shorter period

Figure 20: Periodicity detection for three selected methods

49

In Figure 20 periods are evident from the following:

• time difference ∆t between two successive method calls is (at most) equal to

the period (top left sub-plot),

• functions are being called on every full hour, or at 10 min intervals (top right

sub-plot),

• autocorrelation function of the signal generated from the density function shows

the most significant lags on the expected places (bottom left sub-plot)

• periodogram shows higher power over the expected frequency (bottom right

sub-plot)

Over time, we can see that even the periodicity may vary, i.e. it’s not always

exactly an hour between the two method calls. Maybe the system is smart enough

to compensate for the current system overload by not running the periodic checks

when programmed to, but in a more convenient time point.

In some cases, periodic checks were completely skipped. In case a system over-

load is the cause of this, we want to measure these deviations as an indicator that

everything is running within predefined parameters.

We will employ kernel density functions as described in Section 4.2.1 to estimate

the distribution of ∆t as defined above, and we will measure the abrupt changes in

that distribution as a sign of disturbances in the system. How this works can be

seen in Figure 22.

4.3 Periodicity Violation Based Alerts

Some methods show periodic behaviour, as announced in Section 3.3. Any regularity

found in the data that can be measured, can be converted into a rule. A violation

of that regularity indicates that something unexpected occurred. We need to be

able to detect the existence of a period that changes, as well as quantify when it

does not change per se but becomes irregular.

4.3.1 Anomaly Detection

One of the simplest ideas in anomaly detection is to analyze the window based

sub-sequences of a given sequence in order to derive a set of allowed ones [9, 10].

50

For this we need to define the window length w, suggested to be equal to the (or a

multiple of) the period length, if any, and a hop length h, suggested to be less than,

or equal to the period. It is obvious that the larger values of w, h would save on

the computations, but if we pick them too large, we risk missing out the anomaly.

Let’s make an example. Given a series abcabcabc, and a window length w = 3,

the only possible sub-sequences are abc, bca, and cab, regardless of the hop size.

However, if we consider a series abccabcabc, the ability of the detection of the

anomaly depends on the chosen hop size h. In Figure 21 we can see how this

process works, and the found anomalies (sub-segments not found in the expected

set of sub-segments). It is also visible how choosing the wrong hop size h would

prevent the anomaly to be detected.

Figure 21: Window based anomaly detection

4.3.2 Modelling of the Deviation of Periodicity

We use Kernel Density Estimator (KDE) to automate the detection of periodicity.

Under the assumption that periodic methods would be called more often with the

∆t that (at most) equals to the period (in times of user inactivity), the distribution

function of ∆t would have peaks at the period(s) (see Figure 22).

51

Figure 22: Automated periodicity detection

We use KDE to estimate the probability distribution of requests over the hour,

and thereby generating our usable version of the abcabcabc sequence, enabling a

modification of the proposed window based anomaly detection to be applied here.

This distribution changes along with the changes in periodicity of the called meth-

ods. A difference of the distribution of requests per hour was calculated for each

new week, vs. the last 5 weeks. A measure of difference of distributions was a

numeric version of the L2 distance measure:

d(f, g) =

√∫ ∞
−∞

(f(x)− g(x))2dx (9)

A numeric version because of the way how R stores kernel density functions, as

a set of pairs (xi, yi), i ∈ I, I is a set of indices. We can use the Darboux – Stieltjes

[12, 13] inspired approximation of the integral. Let f : [a, b] → R be a bounded

function, and let P = (x0, x1, . . . , xn) be a partition of a segment [a, b]. Let further:

Mi = sup
x∈[xi−1,xi]

f(x)

mi = inf
x∈[xi−1,xi]

f(x)

(10)

52

The upper Darboux sum of f with respect to P is:

Uf,P =
n∑
i=1

(xi − xi−1)Mi (11)

and the lower Darboux sum of f with respect to P is:

Lf,P =
n∑
i=1

(xi − xi−1)mi (12)

The upper Darboux integral of f is

Uf = inf{Uf,P : P is a partition of [a, b]} (13)

The lower Darboux integral of f is

Lf = sup{Lf,P : P is a partition of [a, b]} (14)

If ∀ε > 0 there exists a partition Pε of [a, b] such that Uf,Pε −Lf,Pε < ε, then we

call the common value the Darboux integral. We also say that f is (Darboux-)

integrable [3] and set:

∫ b

a
f(x)dx = Uf = Lf (15)

Since we do not know the behaviour of the function on the segments [xi−1, xi],

or more exactly, we only know the values of f on bordering points (xi)i∈I , instead of

supremum and infimum of the f on the segments, we use the linear approximation,

meaning the averages of f on the segments. Given all this, equation (9) in my case

becomes:

dnum(f, g) =

√√√√√∑
x∈P
i≥1

(
f(xi−1) + f(xi)

2
− g(xi−1) + g(xi)

2

)2

∆x (16)

where ∆x is constant.

We can control the relative error by choosing higher number of steps n in KDE,

thus reducing the ∆x. The function’s behaviour we cannot control (partially we can

– by choosing a broader bandwidth parameter), but since our functions f, g ∈ C1 are

continuous (as defined in (17) – they are a finite sum of continuous and bounded

53

functions, as defined in Section 4.2.1, equation (8)), they cannot go too wild on the

narrow segments [xi−1, xi]:

for f : D → R

∀ε > 0, ∃δ > 0, ∀x ∈ D :

|x− x0| < δ ⇒ |f(x)− f(x0)| < ε

(17)

The error of the numeric integration is then limited by an upper bound:

ε ≤ ∆x

2

∑
i

(f(xi−1) + f(xi)) (18)

Joining the approximations from equations (17) and (18) we get the relative error:

εrel ≤
‖εcont.‖∞
|f(x)|

≤ 5 · 10−5 (19)

4.3.3 Use Case

Figure 23 shows the hourly distribution of requests of three selected REST services

(subfigures a, b, and c, respectively). These services differ in terms of their period-

icity. The first one shows hourly and 10-minutely periods. The second one shows

exclusively 10-minute periods. The third shows exclusively hourly periods. Each

dot represents a method call. The y-axis represents the time the call was recorded

(in terms of minutes within the hour). On the right panel we depict the KDE of the

hourly distribution of calls for the whole history. Red line represents the change of

the distribution of the newest calls compared to history (differential). Peaks in the

red line imply changes in periodicity (or irregularities). The system detects these

peaks by comparing them with a threshold, represented by the blue line.

We verified that the proposed measure reacts properly to the changes of peri-

odicity. Obviously, application of such a methodology is only meaningful in case of

periodic service calls.

Note that irregularities that can be found with this method are complementary

to the one detected with structural break tests. We verified that structural break

tests are not statistically powerful enough to detect irregularities in periodicity.

54

(a)

(b)

(c)

Figure 23: Alerts raised by the changes in periodicity for exemplary methods

55

5 Implementation of the Rules in SUPERSEDE

Figure 24: Rule adaptation and evaluation pipeline

Figure 24 shows the steps of the rule adaptation and evaluation work-flow. A

monitor collects data from a system and creates event-based log files (see Section

1.2.1, and Figure 2). These files are processed and split into historical and current

data. The time window t can be chosen depending on the use case. Generally

speaking, right operands (thresholds) are extracted from historical data and capture

the overall state of the system, while left operands (evaluating metrics) are extracted

from the most recent t time units. This describes the dynamic rule adaptation

concept.

More concretely, the threshold for response time is computed every 24 hrs. Two

ECA rules are evaluated every hour based on this computed threshold, i.e., one for

the detection and one for the prediction of the exceeding of the threshold. The other

two rules (structural break alarm and periodicity violation) are inherently dynamic,

as they detect changes in the statistical properties of the signal by measuring its

deviations from history. Structural break test continuously tests if there has been a

breach in the linear trend of the new data compared to the old data, i.e., testing if

the new data belongs to the same (linear) trend of the old data. Proposed periodicity

validation checks are a probability-based method, calculating the distributions of

the hourly requests, thus enabling the detection of periods (times of the hour where

the requests are denser) and irregularities.

56

5.1 R Scripts

The first argument of each script (input data path) is mandatory. The rest is

optional (scripts assume the arguments to have some default paths). A summary

of the scripts is described in Table 4.

Script Inputs Outputs Syntax Remark

getThresholds.r
Data ALL;

methodClustering;
thresholds

getThresholds.r

<Data ALL>

<thresholds>

<methodClustering>

to be run every 24 hours,

with all of the available

data by that time point

hourlyRespDurEvaluate.r

Data 1hr;

thresholds;

methodClustering;

RD alarms

hourlyRespDurEvaluate.r

<Data 1hr>

<thresholds>

<RD alarms>

<methodClustering>

to be run every hour, on

the data of the previous

hour

structuralBreakTests.r

Data ALL;

lastStrucChange;

methodClustering

lastStrucChange;

SBT alarms

structuralBreakTests.r

<Data ALL>

<lastStrucChange.csv>

<SBT alarms.csv>

<methodClustering>

to be run every 24 hours,

with all of the available

data by that time point.

lastStrucChange is being

updated with every run

periodicityBreak.r
Data ALL;

methodClustering
Per alarms

periodicityBreak.r

<Data ALL>

<Per alarms>

<methodClustering>

to be run every 24 hours,

with the data of the last

5 weeks (or all data)

Table 4: Scripts

The getThreshold.r script extracts thresholds (right operands) from the moni-

toring data for each service, every 24 hours, as defined in Section 4.1.3.2. It requires

all of the logs by that point and outputs the thresholds per API/Service.

The hourlyRespDurEvaluate.r script extracts left operands from the most

recent data (to be evaluated with the output of the previous script). It requires the

logs of the past hour, and outputs the APIs that broke their thresholds.

The structuralBreakTests.r script takes all of the data, and every 24h per-

forms the structural break test described in Section 4.1.3.1. It outputs the list of

the APIs that have had their structure broken and updates the joint table with all

of the last structural breaks.

The periodicityBreak.r script takes all of the data and tests every 24h if there

has been a change in the previously detected periodicity, as described in Section

4.3.2.

The code is listed in the appendix.

57

6 Conclusions

We propose a statistical approach of automating the rule extraction for operational

log data. It is possible that the same approach can be applied on the data with

similar properties.

By using the kernel density estimation, we detect if a certain method (or more

generally, class in a nominal variable) is periodic. The periodicity in live and busy

systems may be violated depending on the overall system load, and this property

can be measured to estimate the health state of the system.

Furthermore, each query log that tracks user requests and system responses,

automatically tracks response duration. Response duration shows trends as well,

which may break (due to a system upgrade or migration). Statistical break tests

have shown to be a reliable statistical tool to detect breaks in trends, thus enabling

more reliable forecasting and raising alerts in the future.

They are developed for breaks in linear trends, and under some non-trivial con-

straints. There is a lot of space for their generalization to further cases, but due to

the complexity of their asymptotic properties, it has not been done yet.

58

Appendices

A getThresholds.r

args = commandArgs(t r a i l i n g O n l y=TRUE)

t . start =Sys . time ()

t e s t i f t h e r e i s a t l e a s t one argument : i f not , re turn an

error

i f (length (args)==0) {

stop (”At l e a s t one argument must be supp l i ed (input f i l e) ” ,

ca l l .=FALSE)

}

i f (length (args)==1) {

de f a u l t output f i l e

args [2] = ” thrsh out . csv ”

}

i f (length (args)==2) {

de f a u l t input f i l e

args [3] = ” MethodClustering . csv ”}

######################################

##i n i t i a l s e tup

Function to check whether package i s i n s t a l l e d

in s ta l l . req . i f . not <− function (mypkg) {

i f (! i s . e lement (mypkg , instal led . packages () [, 1])) {

in s ta l l . packages (mypkg) } else { l ibrary (mypkg , character . only =

TRUE) }}

#misc

options (repos = ” http : //cran . r e d i r i s . e s/”)

options (d i g i t s . s e c s = 3)

Sys . se tenv (LANGUAGE=”en”)

Sys . s e t l o c a l e (”LC ALL” , ” Engl i sh ”)

59

lower bound=7

upper bound=60

#requ i r ed packages

packages=c (

” data . t ab l e ” ,

”R. f i l e s e t s ” ,

” RecordLinkage ”)

#check i f r e qu i r ed packages are i n s t a l l e d , i n s t a l l i f not , e l s e−

r e qu i r e

sapply (packages ,FUN=in s ta l l . req . i f . not)

######################################

program . . .

#args=(”C:\\Users \\Z003TF1W\\Google Drive \\Siemens\\Code\\SVN\\

part −00000”)

co ln=c (”LogType” , ”Timestamp . o ld ” , ” Class ” , ”User” , ” Role” , ” Sess ionID

” ,

”EventType” , ” D i r e c t i on ” , ”MethodNameOrig” , ”ContentType” , ”

Content” , ”TransID”)

keep=c (1 , 2 , 6 , 8 , 9)

my. data <− f r ead (args [1] , col .names = coln [keep] ,

s e l e c t=keep ,

header=FALSE, f i l l =TRUE, sep=” | ” , blank . l ines . sk ip

=T, dec=” , ” ,quote=’ ’)

my. data=my. data [LogType==”TRACE” , . (Timestamp . old , MethodNameOrig ,

Di rect ion , Sess ionID)]

my. data=my. data [D i r e c t i on !=””]

my. data [, c (”MethodNameOnly” , ”MethodParams”) :=data . table (t (sapply (

lapply (

60

as . character (my. data$MethodNameOrig) , function (x) {

y=s tr sp l i t (x , ”?” , f i x e d=T) [[1]]

i f (length (y)==0){return (c (”” , ””)) }

i f (length (y)==1){return (c (y [1] , ””)) }

else {return (y [1 : 2]) }}) , ” [”)))]

my. data [, MethodParams:=NULL]

#de l e t e the p r e f i x e s

to . de l=c (” http : // l o c a l h o s t :6080 ” , ” http : // l o c a l h o s t ” , ” http : //demo

ecosys :6080/ e co sy s co r e /apiconsume/ c a l l ” ,

” http : // 1 0 . 5 0 . 1 . 1 0 0 : 6 0 8 0 ” , ” http : // 1 0 . 5 0 . 1 . 1 0 0 ” , ” c a l l ” , ”

http : // 1 2 7 . 0 . 0 . 1 : 6 0 8 0 ”)

for (i in 1 : length (to . de l)) {

ind . here=grep (to . de l [i] ,my. data$MethodNameOnly , va lue=F, f i x e d=T)

i f (length (ind . here)==0) next

my. data [ind . here , MethodNameOnly:=gsub (to . de l [i] , ”” ,

MethodNameOnly , f i x e d=T)]}

my. data [, Timestamp:=as . POSIXct (s t rpt ime (Timestamp . old , ”%Y−%m−%d

%H:%M:%OS”))]

#my. data [i s . na (Timestamp) ,Timestamp . o ld]

meth . n . c l=f r ead (args [3] , sep=” ; ”)

#meth . n . c l=f read (”C:\\Users \\Z003TF1W\\Google Drive \\Siemens\\

Code\\SVN\\MethodCluster ing . csv ” , sep =”;”)

i n d i c=match(my. data$MethodNameOnly , meth . n . c l $MethodNameOnly)

my. data [, MethodNameOnlyGrouped := meth . n . c l [ind i c , ”ClusterName”]]

my. data [, API := meth . n . c l [ind i c , ”API”]]

#in case o f new unseen method names

#######################################

i f (nrow(my. data [i s . na(MethodNameOnlyGrouped)])>0){

61

Newclust=apply (my. data [i s . na(MethodNameOnlyGrouped) , . (unique (

MethodNameOnly))] , 1 , function (x) { l evenshte inS im (x , as . character (

meth . n . c l $MethodNameOnly)) })

nc l . maxind=apply (Newclust , 2 , which .max)

nc l .max=numeric (length (nc l . maxind))

for (i in 1 : length (nc l . maxind)) {

nc l .max[i]= Newclust [nc l . maxind [i] , i]}

toch=i s . na(my. data [, MethodNameOnlyGrouped])

i n d i c=match(my. data [i s . na(MethodNameOnlyGrouped) ,MethodNameOnly] ,

my. data [i s . na(MethodNameOnlyGrouped) ,unique (MethodNameOnly)])

my. data [toch , MethodNameOnlyGrouped := meth . n . c l [nc l . maxind , ”

ClusterName”] [i n d i c]]

my. data [toch , API:= meth . n . c l [nc l . maxind , ”API”] [i n d i c]] }

dur=my. data [, . (Time=min(Timestamp) ,RESPONSE=max(Timestamp) ,

REQUEST=min(Timestamp) , Method=head (MethodNameOnlyGrouped , 1) ,

API=head (API , 1) , .N) ,by=” Sess ionID ”]

dur [, Duration :=RESPONSE−REQUEST]

dur=dur [Duration>0

& Duration<5000

& Duration !=In f ,]

df out=dur [, quantile (Duration , 0 . 7 5 , na .rm=T) ,by=”Method”]

colnames (df out)=c (”GroupedMethodName” , ” DurationThresh ”)

df out [DurationThresh==Inf , DurationThresh :=NA]

df out [DurationThresh<lower bound , DurationThresh :=lower bound]

df out [DurationThresh>upper bound , DurationThresh :=upper bound]

write . csv (df out , f i l e=args [2] , row .names=FALSE)

paste (” Execution durat ion : ” ,round(Sys . time ()−t . start , 2) , ’ seconds .

’)

62

B hourlyRespDurEvaluate.r

args = commandArgs(t r a i l i n g O n l y=TRUE)

t . start =Sys . time ()

t e s t i f t h e r e i s a t l e a s t one argument : i f not , re turn an

error

#args=(”C:\\Users \\Z003TF1W\\Google Drive \\Siemens\\Code\\SVN\\

part−e va l ”)

i f (length (args)==0) {

stop (”At l e a s t one argument must be supp l i ed (input f i l e) ” ,

ca l l .=FALSE)

}

i f (length (args)==1) {

de f a u l t input f i l e

args [2] = ” thrsh out . csv ”

}

i f (length (args)==2) {

de f a u l t output f i l e

args [3] = ”alarm . csv ”

}

i f (length (args)==3) {

de f a u l t input f i l e

args [4] = ” MethodClustering . csv ”}

######################################

##i n i t i a l s e tup

Function to check whether package i s i n s t a l l e d

in s ta l l . req . i f . not <− function (mypkg) {

i f (! i s . e lement (mypkg , instal led . packages () [, 1])) {

in s ta l l . packages (mypkg) } else { l ibrary (mypkg , character . only =

TRUE) }}

#misc

63

options (repos = ” http : //cran . r e d i r i s . e s/”)

options (d i g i t s . s e c s = 3)

Sys . se tenv (LANGUAGE=”en”)

Sys . s e t l o c a l e (”LC ALL” , ” Engl i sh ”)

#requ i r ed packages

packages=c (

” data . t ab l e ” ,

”R. f i l e s e t s ” ,

” RecordLinkage ”)

#check i f r e qu i r ed packages are i n s t a l l e d , i n s t a l l i f not , e l s e−

r e qu i r e

sapply (packages ,FUN=in s ta l l . req . i f . not)

######################################

program . . .

#dat = read . t a b l e (args [1] , header=TRUE)

#fread in s t ead

co ln=c (”LogType” , ”Timestamp . o ld ” , ” Class ” , ”User” , ” Role” , ” Sess ionID

” ,

”EventType” , ” D i r e c t i on ” , ”MethodNameOrig” , ”ContentType” , ”

Content” , ”TransID”)

keep=c (1 , 2 , 6 , 8 , 9)

my. data <− f r ead (args [1] , col .names = coln [keep] ,

s e l e c t=keep ,

header=FALSE, f i l l =TRUE, sep=” | ” , blank . l ines . sk ip

=T, dec=” , ” ,quote=’ ’)

my. data=my. data [LogType==”TRACE” , . (Timestamp . old , MethodNameOrig ,

Di rect ion , Sess ionID)]

my. data=my. data [D i r e c t i on !=””]

my. data [, Timestamp:=as . POSIXct (s t rpt ime (Timestamp . old , ”%Y−%m−%d

%H:%M:%OS”))]

64

my. data [i s . na(Timestamp) , Timestamp:=as . POSIXct (s t rpt ime (Timestamp

. old , ”%Y−%m−%dT%H:%M:%OS%z”))]

my. data [, c (”MethodNameOnly” , ”MethodParams”) :=data . table (t (sapply (

lapply (

as . character (my. data$MethodNameOrig) , function (x) {

y=s tr sp l i t (x , ”?” , f i x e d=T) [[1]]

i f (length (y)==0){return (c (”” , ””)) }

i f (length (y)==1){return (c (y [1] , ””)) }

else {return (y [1 : 2]) }}) , ” [”)))]

my. data [, MethodParams:=NULL]

#de l e t e the p r e f i x e s

to . de l=c (” http : // l o c a l h o s t :6080 ” , ” http : // l o c a l h o s t ” , ” http : //demo

ecosys :6080/ e co sy s co r e /apiconsume/ c a l l ” ,

” http : // 1 0 . 5 0 . 1 . 1 0 0 : 6 0 8 0 ” , ” http : // 1 0 . 5 0 . 1 . 1 0 0 ” , ” c a l l ” , ”

http : // 1 2 7 . 0 . 0 . 1 : 6 0 8 0 ”)

for (i in 1 : length (to . de l)) {

ind . here=grep (to . de l [i] ,my. data$MethodNameOnly , va lue=F, f i x e d=T)

i f (length (ind . here)==0) next

my. data [ind . here , MethodNameOnly:=gsub (to . de l [i] , ”” ,

MethodNameOnly , f i x e d=T)]}

my. data [, Timestamp:=as . POSIXct (s t rpt ime (Timestamp . old , ”%Y−%m−%d

%H:%M:%OS”))]

meth . n . c l=f r ead (args [4] , sep=” ; ”)

i n d i c=match(my. data$MethodNameOnly , meth . n . c l $MethodNameOnly)

my. data [, MethodNameOnlyGrouped := meth . n . c l [ind i c , ”ClusterName”]]

my. data [, API := meth . n . c l [ind i c , ”API”]]

#in case o f new unseen method names

i f (nrow(my. data [i s . na(MethodNameOnlyGrouped)])>0){

Newclust=apply (my. data [i s . na(MethodNameOnlyGrouped) , . (unique (

MethodNameOnly))] , 1 , function (x) { l evenshte inS im (x , as .

65

character (meth . n . c l $MethodNameOnly)) })

nc l . maxind=apply (Newclust , 2 , which .max)

nc l .max=numeric (length (nc l . maxind))

for (i in 1 : length (nc l . maxind)) {

nc l .max[i]= Newclust [nc l . maxind [i] , i]}

toch=i s . na(my. data [, MethodNameOnlyGrouped])

i n d i c=match(my. data [i s . na(MethodNameOnlyGrouped) ,MethodNameOnly

] ,my. data [i s . na(MethodNameOnlyGrouped) ,unique (MethodNameOnly

)])

my. data [toch , MethodNameOnlyGrouped := meth . n . c l [nc l . maxind , ”

ClusterName”] [i n d i c]]

my. data [toch , API:= meth . n . c l [nc l . maxind , ”API”] [i n d i c]] }

dur=my. data [, . (Time=min(Timestamp) ,RESPONSE=max(Timestamp) ,

REQUEST=min(Timestamp) , Method=head (MethodNameOnlyGrouped , 1) ,

API=head (API , 1) , .N) ,by=” Sess ionID ”]

dur [, Duration :=RESPONSE−REQUEST]

dur=dur [Duration>0

& Duration<5000

& Duration !=In f ,]

df out=dur [,mean(Duration) ,by=”Method”]

colnames (df out)=c (”GroupedMethodName” , ” ResponseDuration ”)

th r s=f r ead (args [2] , sep=” , ”)

se tkey (thrs , GroupedMethodName)

setkey (df out , GroupedMethodName)

write . csv (df out [th r s] [ResponseDuration>DurationThresh] , f i l e=

args [3] , row .names=FALSE)

paste (” Execution durat ion : ” ,round(Sys . time ()−t . start , 2) , ’ seconds .

’)

66

C structuralBreakTests.r

args = commandArgs(t r a i l i n g O n l y=TRUE)

t . start =Sys . time ()

t e s t i f t h e r e i s a t l e a s t one argument : i f not , re turn an

error

i f (length (args)==0) {

stop (”At l e a s t one argument must be supp l i ed (input f i l e) ” ,

ca l l .=FALSE)

}

i f (length (args)==1) {

de f a u l t output f i l e

args [2] = ”SBT alarms . csv ”

}

getOption (data tab l e . f r ead . dec . l o c a l e)

######################################

##i n i t i a l s e tup

Function to check whether package i s i n s t a l l e d

in s ta l l . req . i f . not <− function (mypkg) {

i f (! i s . e lement (mypkg , instal led . packages () [, 1])) {

in s ta l l . packages (mypkg) } else { l ibrary (mypkg , character . only =

TRUE) }}

#misc

options (repos = ” http : //cran . r e d i r i s . e s/”)

options (d i g i t s . s e c s = 3)

Sys . se tenv (LANGUAGE=”en”)

Sys . s e t l o c a l e (”LC ALL” , ” Engl i sh ”)

#requ i r ed packages

packages=c (

” data . t ab l e ” ,

”R. f i l e s e t s ” ,

67

” RecordLinkage ” ,

” strucchange ”

)

#check i f r e qu i r ed packages are i n s t a l l e d , i n s t a l l i f not , e l s e−

r e qu i r e

sapply (packages ,FUN=in s ta l l . req . i f . not)

######################################

program . . .

#dat = read . t a b l e (args [1] , header=TRUE)

#fread in s t ead

#args=(” ecosys consumption . l o g .2018−01−10”)

my. data <− f r ead (args [1] , header=FALSE, sep=” | ” , blank . l ines . sk ip

=T)

colnames (my. data)=c (”LogType” , ”Timestamp . o ld ” , ” Class ” , ”User” , ”

Role” , ” Sess ionID ” , ”EventType” , ” D i r e c t i on ” , ”MethodNameOrig” , ”

ContentType” , ”Content” , ”TransID”)

my. data=my. data [LogType==”TRACE” , . (Timestamp . old , MethodNameOrig ,

Di rect ion , Sess ionID)]

my. data=my. data [D i r e c t i on !=””]

my. data [, c (”MethodNameOnly” , ”MethodParams”) :=data . table (t (sapply (

lapply (

as . character (my. data$MethodNameOrig) , function (x) {

y=s tr sp l i t (x , ”?” , f i x e d=T) [[1]]

i f (length (y)==0){return (c (”” , ””)) }

i f (length (y)==1){return (c (y [1] , ””)) }

else {return (y [1 : 2]) }}) , ” [”)))]

my. data [, MethodParams:=NULL]

68

#de l e t e the p r e f i x e s

to . de l=c (” http : // l o c a l h o s t :6080 ” , ” http : // l o c a l h o s t ” , ” http : //demo

ecosys :6080/ e co sy s co r e /apiconsume/ c a l l ” ,

” http : // 1 0 . 5 0 . 1 . 1 0 0 : 6 0 8 0 ” , ” http : // 1 0 . 5 0 . 1 . 1 0 0 ” , ” c a l l ” , ”

http : // 1 2 7 . 0 . 0 . 1 : 6 0 8 0 ”)

for (i in 1 : length (to . de l)) {

ind . here=grep (to . de l [i] ,my. data$MethodNameOnly , va lue=F, f i x e d=T)

i f (length (ind . here)==0) next

my. data [ind . here , MethodNameOnly:=gsub (to . de l [i] , ”” ,

MethodNameOnly , f i x e d=T)]}

my. data [, Timestamp:=as . POSIXct (s t rpt ime (Timestamp . old , ”%Y−%m−%

dT%H:%M:%OS%z”))]

meth . n . c l=f r ead (” MethodClustering . csv ” , sep=” ; ”)

i n d i c=match(my. data$MethodNameOnly , meth . n . c l $MethodNameOnly)

my. data [, MethodNameOnlyGrouped := meth . n . c l [ind i c , ”ClusterName”]]

my. data [, API := meth . n . c l [ind i c , ”API”]]

#in case o f new unseen method names

######################################

i f (nrow(my. data [i s . na(MethodNameOnlyGrouped)])>0){

Newclust=apply (my. data [i s . na(MethodNameOnlyGrouped) , . (unique (

MethodNameOnly))] , 1 , function (x) { l evenshte inS im (x , as .

character (meth . n . c l $MethodNameOnly)) })

nc l . maxind=apply (Newclust , 2 , which .max)

nc l .max=numeric (length (nc l . maxind))

for (i in 1 : length (nc l . maxind)) {

nc l .max[i]= Newclust [nc l . maxind [i] , i]}

toch=i s . na(my. data [, MethodNameOnlyGrouped])

i n d i c=match(my. data [i s . na(MethodNameOnlyGrouped) ,MethodNameOnly

] ,my. data [i s . na(MethodNameOnlyGrouped) ,unique (MethodNameOnly

69

)])

my. data [toch , MethodNameOnlyGrouped := meth . n . c l [nc l . maxind , ”

ClusterName”] [i n d i c]]

my. data [toch , API:= meth . n . c l [nc l . maxind , ”API”] [i n d i c]] }

dur=my. data [, . (Time=min(Timestamp) ,RESPONSE=max(Timestamp) ,

REQUEST=min(Timestamp) , Method=head (MethodNameOnlyGrouped , 1) ,

API=head (API , 1) , .N) ,by=” Sess ionID ”]

dur [, Duration :=RESPONSE−REQUEST]

dur=dur [Duration>0

& Duration<5000

& Duration !=In f ,]

uniqm=dur [, . N,by=Method] [, Method] ##########################

l a s t change=f r ead (” lastStrucChg . csv ”)

l a s t change [, V1:=as . POSIXct (V1)]

lastchcomp=las t change

t e s t . type=c (”Rec−CUSUM” , ”OLS−CUSUM” , ”Rec−MOSUM” , ”OLS−MOSUM”)

for (l in 1 : length (uniqm)) {

for (j in 1 : length (t e s t . type)) {

dd=dur [Method==uniqm [l] , . (as . numeric (Duration) ,Time)]

sbt=dd

colnames (sbt)=c (” Se s s i on Duration ” , ”Timestamp”)

l a s t chg1=la s t change [Method==uniqm [l] , V1]

tmpdat=sbt [Timestamp > l a s t chg1]

i f (nrow(tmpdat)<20){break}

p=s c t e s t (with (tmpdat , e fp (Se s s i on Duration˜as . numeric (

Timestamp) , dynamic=T, type=t e s t . type [j] , h=0.15)))$p . va lue

i f (i s . na(p)) {p=1}

70

i f (p<0.05){

l a s t change [Method==uniqm [l] , V1:=tmpdat [,max(Timestamp)]]

break}

}}

se tkey (lastchange , Method)

se tkey (lastchcomp , Method)

paste (lastchcomp [l a s t change] [V1 !=i . V1 , . (Method , i . V1)])

#las t change=dur [,min(Time) , by=Method]

write . csv (las tchange , f i l e=” lastStrucChg . csv ” , row .names=FALSE)

write . csv (lastchcomp [l a s t change] [V1 !=i . V1 , . (Method , i . V1)] , f i l e=

args [2] , row .names=FALSE)

paste (” Execution durat ion : ” ,round(Sys . time ()−t . start , 2) , ’ seconds .

’)

71

D periodicityBreak.r

args = commandArgs(t r a i l i n g O n l y=TRUE)

t . start =Sys . time ()

t e s t i f t h e r e i s a t l e a s t one argument : i f not , re turn an

error

i f (length (args)==0) {

stop (”At l e a s t one argument must be supp l i ed (input f i l e) ” ,

ca l l .=FALSE)

}

i f (length (args)==1) {

de f a u l t output f i l e

args [2] = ”SBT alarms . csv ”

}

getOption (data tab l e . f r ead . dec . l o c a l e)

######################################

##i n i t i a l s e tup

Function to check whether package i s i n s t a l l e d

in s ta l l . req . i f . not <− function (mypkg) {

i f (! i s . e lement (mypkg , instal led . packages () [, 1])) {

in s ta l l . packages (mypkg) } else { l ibrary (mypkg , character . only =

TRUE) }}

#misc

options (repos = ” http : //cran . r e d i r i s . e s/”)

options (d i g i t s . s e c s = 3)

Sys . se tenv (LANGUAGE=”en”)

Sys . s e t l o c a l e (”LC ALL” , ” Engl i sh ”)

#requ i r ed packages

packages=c (

” data . t ab l e ” ,

”R. f i l e s e t s ” ,

72

” RecordLinkage ” ,

” strucchange ”

)

#check i f r e qu i r ed packages are i n s t a l l e d , i n s t a l l i f not , e l s e−

r e qu i r e

sapply (packages ,FUN=in s ta l l . req . i f . not)

######################################

program . . .

#dat = read . t a b l e (args [1] , header=TRUE)

#fread in s t ead

#args=(” ecosys consumption . l o g .2018−01−10”)

my. data <− f r ead (args [1] , header=FALSE, sep=” | ” , blank . l ines . sk ip

=T)

colnames (my. data)=c (”LogType” , ”Timestamp . o ld ” , ” Class ” , ”User” , ”

Role” , ” Sess ionID ” , ”EventType” , ” D i r e c t i on ” , ”MethodNameOrig” , ”

ContentType” , ”Content” , ”TransID”)

my. data=my. data [LogType==”TRACE” , . (Timestamp . old , MethodNameOrig ,

Di rect ion , Sess ionID)]

my. data=my. data [D i r e c t i on !=””]

my. data [, c (”MethodNameOnly” , ”MethodParams”) :=data . table (t (sapply (

lapply (

as . character (my. data$MethodNameOrig) , function (x) {

y=s tr sp l i t (x , ”?” , f i x e d=T) [[1]]

i f (length (y)==0){return (c (”” , ””)) }

i f (length (y)==1){return (c (y [1] , ””)) }

else {return (y [1 : 2]) }}) , ” [”)))]

my. data [, MethodParams:=NULL]

73

#de l e t e the p r e f i x e s

to . de l=c (” http : // l o c a l h o s t :6080 ” , ” http : // l o c a l h o s t ” , ” http : //demo

ecosys :6080/ e co sy s co r e /apiconsume/ c a l l ” ,

” http : // 1 0 . 5 0 . 1 . 1 0 0 : 6 0 8 0 ” , ” http : // 1 0 . 5 0 . 1 . 1 0 0 ” , ” c a l l ” , ”

http : // 1 2 7 . 0 . 0 . 1 : 6 0 8 0 ”)

for (i in 1 : length (to . de l)) {

ind . here=grep (to . de l [i] ,my. data$MethodNameOnly , va lue=F, f i x e d=T)

i f (length (ind . here)==0) next

my. data [ind . here , MethodNameOnly:=gsub (to . de l [i] , ”” ,

MethodNameOnly , f i x e d=T)]}

my. data [, Timestamp:=as . POSIXct (s t rpt ime (Timestamp . old , ”%Y−%m−%

dT%H:%M:%OS%z”))]

meth . n . c l=f r ead (” MethodClustering . csv ” , sep=” ; ”)

i n d i c=match(my. data$MethodNameOnly , meth . n . c l $MethodNameOnly)

my. data [, MethodNameOnlyGrouped := meth . n . c l [ind i c , ”ClusterName”]]

my. data [, API := meth . n . c l [ind i c , ”API”]]

#in case o f new unseen method names

######################################

i f (nrow(my. data [i s . na(MethodNameOnlyGrouped)])>0){

Newclust=apply (my. data [i s . na(MethodNameOnlyGrouped) , . (unique (

MethodNameOnly))] , 1 , function (x) { l evenshte inS im (x , as .

character (meth . n . c l $MethodNameOnly)) })

nc l . maxind=apply (Newclust , 2 , which .max)

nc l .max=numeric (length (nc l . maxind))

for (i in 1 : length (nc l . maxind)) {

nc l .max[i]= Newclust [nc l . maxind [i] , i]}

toch=i s . na(my. data [, MethodNameOnlyGrouped])

i n d i c=match(my. data [i s . na(MethodNameOnlyGrouped) ,MethodNameOnly

] ,my. data [i s . na(MethodNameOnlyGrouped) ,unique (MethodNameOnly

74

)])

my. data [toch , MethodNameOnlyGrouped := meth . n . c l [nc l . maxind , ”

ClusterName”] [i n d i c]]

my. data [toch , API:= meth . n . c l [nc l . maxind , ”API”] [i n d i c]] }

dur=my. data [, . (Time=min(Timestamp) ,RESPONSE=max(Timestamp) ,

REQUEST=min(Timestamp) , Method=head (MethodNameOnlyGrouped , 1) ,

API=head (API , 1) , .N) ,by=” Sess ionID ”]

dur [, Duration :=RESPONSE−REQUEST]

dur=dur [Duration>0

& Duration<5000

& Duration !=In f ,]

uniqm=dur [, . N,by=Method] [, Method] ##########################

l a s t change=f r ead (” lastStrucChg . csv ”)

l a s t change [, V1:=as . POSIXct (V1)]

lastchcomp=las t change

t e s t . type=c (”Rec−CUSUM” , ”OLS−CUSUM” , ”Rec−MOSUM” , ”OLS−MOSUM”)

for (l in 1 : length (uniqm)) {

for (j in 1 : length (t e s t . type)) {

dd=dur [Method==uniqm [l] , . (as . numeric (Duration) ,Time)]

sbt=dd

colnames (sbt)=c (” Se s s i on Duration ” , ”Timestamp”)

l a s t chg1=la s t change [Method==uniqm [l] , V1]

tmpdat=sbt [Timestamp > l a s t chg1]

i f (nrow(tmpdat)<20){break}

p=s c t e s t (with (tmpdat , e fp (Se s s i on Duration˜as . numeric (

Timestamp) , dynamic=T, type=t e s t . type [j] , h=0.15)))$p . va lue

i f (i s . na(p)) {p=1}

75

i f (p<0.05){

l a s t change [Method==uniqm [l] , V1:=tmpdat [,max(Timestamp)]]

break}

}}

se tkey (lastchange , Method)

se tkey (lastchcomp , Method)

paste (lastchcomp [l a s t change] [V1 !=i . V1 , . (Method , i . V1)])

#las t change=dur [,min(Time) , by=Method]

write . csv (las tchange , f i l e=” lastStrucChg . csv ” , row .names=FALSE)

write . csv (lastchcomp [l a s t change] [V1 !=i . V1 , . (Method , i . V1)] , f i l e=

args [2] , row .names=FALSE)

paste (” Execution durat ion : ” ,round(Sys . time ()−t . start , 2) , ’ seconds .

’)

76

References

[1] What is log (log file)? - definition. URL http://whatis.techtarget.com/

definition/log-log-file.

[2] SUPERSEDE H2020 Project: “SUpporting evolution and adaptation of PER-

sonalized Software by Exploiting contextual Data and End-user feedback”,

grant agreement no: 644018, 2015. URL www.supersede.eu.

[3] Darboux integral, Feb 2018. URL https://en.wikipedia.org/wiki/

Darboux_integral.

[4] Mumtaz Ahmed, Gulfam Haider, and Asad Zaman. Detecting structural

change with heteroskedasticity. Communications in Statistics - Theory and

Methods, 46(21):1044610455, Oct 2016. doi: 10.1080/03610926.2016.1235200.

[5] Donald W. K. Andrews. Tests for parameter instability and structural change

with unknown change point. Econometrica, 61(4):821, 1993. doi: 10.2307/

2951764.

[6] ASCR. Web, Sep 2017. URL http://www.ascr.at/en/.

[7] Joop Aué. Log analysis from A to Z: A literature survey. Master’s thesis,

2016.

[8] R. L. Brown, J. Durbin, and J. M. Evans. Techniques for testing the constancy

of regression relationships over time. Journal of the Royal Statistical Society.

Series B (Methodological), 37(2):149–192, 1975. ISSN 00359246. URL http:

//www.jstor.org/stable/2984889.

[9] Varun Chandola, Deepthi Cheboli, and Vipin Kumar. Detecting anomalies in

a time series database. 2009.

[10] Deepthi Cheboli. Anomaly detection of time series. Master’s thesis, 2010.

[11] Gregory C. Chow. Tests of equality between sets of coefficients in two linear

regressions. Econometrica, 28(3):591, 1960. doi: 10.2307/1910133.

77

http://whatis.techtarget.com/definition/log-log-file
http://whatis.techtarget.com/definition/log-log-file
www.supersede.eu
https://en.wikipedia.org/wiki/Darboux_integral
https://en.wikipedia.org/wiki/Darboux_integral
http://www.ascr.at/en/
http://www.jstor.org/stable/2984889
http://www.jstor.org/stable/2984889

[12] Allan Cortzen. Darboux integral. URL http://mathworld.wolfram.com/

DarbouxIntegral.html.

[13] D.J. Foulis and M.A. Munem. After Calculus–analysis. Dellen Publishing Com-

pany, 1989. ISBN 9780023391309. URL https://books.google.de/books?

id=kSMnAQAAIAAJ.

[14] Xiaoyu Fu, Rui Ren, Jianfeng Zhan, Wei Zhou, Zhen Jia, and Gang Lu.

Logmaster: Mining event correlations in logs of large-scale cluster systems.

2012 IEEE 31st Symposium on Reliable Distributed Systems, 2012. doi:

10.1109/srds.2012.40.

[15] Pinjia He, Jieming Zhu, Shilin He, Jian Li, and Michael R. Lyu. An evaluation

study on log parsing and its use in log mining. 2016 46th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN), 2016.

doi: 10.1109/dsn.2016.66.

[16] J. Del Hoyo, G. Llorente, and C. Rivero. Testing for constant parameters in

nonlinear models: A quick procedure with an empirical illustration. Computa-

tional Economics, 2017. doi: 10.1007/s10614-017-9693-5.

[17] George Kapetanios. Testing for structural breaks in nonlinear dynamic models

using artificial neural network approximations. SSRN Electronic Journal, Jan

2003. doi: 10.2139/ssrn.358340.

[18] Friedrich Leisch, Kurt Hornik, and Chung-Ming Kuan. Monitoring structural

changes with the generalized fluctuation test. Econometric Theory, 16(6):

835854, 2000. doi: 10.1017/s0266466600166022.

[19] V. I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions

and Reversals. Soviet Physics Doklady, 10:707, February 1966.

[20] Esfandiar Maasoumi, Asad Zaman, and Mumtaz Ahmed. Tests for structural

change, aggregation, and homogeneity. Economic Modelling, 27(6):13821391,

2010. doi: 10.1016/j.econmod.2010.07.009.

78

http://mathworld.wolfram.com/DarbouxIntegral.html
http://mathworld.wolfram.com/DarbouxIntegral.html
https://books.google.de/books?id=kSMnAQAAIAAJ
https://books.google.de/books?id=kSMnAQAAIAAJ

[21] Adam Oliner, Archana Ganapathi, and Wei Xu. Advances and challenges in

log analysis. Communications of the ACM, 55(2):55, Jan 2012. doi: 10.1145/

2076450.2076466.

[22] E. S. Page. Continuous inspection schemes. Biometrika, 41(1/2):100, 1954.

doi: 10.2307/2333009.

[23] Richard E. Quandt. Tests of the hypothesis that a linear regression system

obeys two separate regimes. Journal of the American Statistical Association,

55(290):324, 1960. doi: 10.2307/2281745.

[24] Murray Rosenblatt. Remarks on some nonparametric estimates of a density

function. Ann. Math. Statist., 27(3):832–837, 09 1956. doi: 10.1214/aoms/

1177728190. URL https://doi.org/10.1214/aoms/1177728190.

[25] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, S. Ma, R. Vilalta,

and A. Sivasubramaniam. Critical event prediction for proactive management

in large-scale computer clusters. Proceedings of the ninth ACM SIGKDD inter-

national conference on Knowledge discovery and data mining - KDD 03, 2003.

doi: 10.1145/956750.956799.

[26] Achim Zeileis, Friedrich Leisch, Kurt Hornik, and Christian Kleiber. struccha-

nge: An R-package for testing for structural change in linear regression models.

Journal of Statistical Software, 7(2), 2002. doi: 10.18637/jss.v007.i02.

[27] Achim Zeileis, Friedrich Leisch, Kurt Hornik, and Christian Kleiber. Testing,

monitoring, and dating structural changes [R package strucchange version 1.5-

1], Jun 2015. URL https://cran.r-project.org/package=strucchange.

[28] Ziming Zheng, Zhiling Lan, Byung H. Park, and Al Geist. System log pre-

processing to improve failure prediction. 2009 IEEE/IFIP International Con-

ference on Dependable Systems and Networks, 2009. doi: 10.1109/dsn.2009.

5270289.

79

https://doi.org/10.1214/aoms/1177728190
https://cran.r-project.org/package=strucchange

	Introduction
	On the Statistical Analysis of Log Files
	What is SUPERSEDE?
	Thesis Contribution to SUPERSEDE

	Problem Definition

	Domain Description
	Smart City Information Ecosystem
	The Data
	Features

	Data Preprocessing
	MethodName Clustering
	SessionID
	Response Duration
	Descriptives

	Extracting Further Metrics

	Data Analysis
	Structural Breaks Tests
	F-Tests
	Generalized Fluctuation Tests
	Use Cases
	Structural Break Based Alerts
	Response Duration Based Alerts
	Predictive Alerts in Response Duration

	Detecting the Periodicities
	Kernel Density Estimation
	Use Case

	Periodicity Violation Based Alerts
	Anomaly Detection
	Modelling of the Deviation of Periodicity
	Use Case

	Implementation of the Rules in SUPERSEDE
	R Scripts

	Conclusions
	Appendices
	getThresholds.r
	hourlyRespDurEvaluate.r
	structuralBreakTests.r
	periodicityBreak.r

