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ABSTRACT

Dynamical reduction models propose a solution to the measurement problem in quantum
mechanics by introducing an ontologically objective mechanism for the collapse of a wave
function. By this mechanism the unobserved macroscopic superpositions are avoided.
Neutral mesons are particle-antiparticle oscillating and decaying systems. In this thesis
we provide an analysis of the two most promising collapse models, the QMUPL (Quantum
Mechanics with Universal Position Localization) model and the mass-proportional CSL
(Continuous Spontaneous Localization) model by computing the effects of a spontaneous
collapse to neutral meson systems. We investigate the effects of a spontaneous collapse
for a single neutral meson including the tiny violation of €2? symmetry, which is a
symmetry between matter and antimatter. Our results show a strong sensitivity to the
assumptions of the noise field underlying the dynamical reduction models. We find that
the decay dynamics in a neutral meson system can be recovered by the spontaneous
collapse dynamics, which allows us to predict the effective collapse rates solely based
on the measured frequency of the flavor oscillation and decay constants. Proceeding
to a system of two neutral kaons we explore the role played by the violation of the
€2” symmetry in the spontaneous collapse scenario and tests of the local realism. By
these means, neutral mesons are shown to be very sensitive to possible modifications of
the standard quantum theory, which make them a powerful system to study physical

scenarios which could solve the measurement problem in quantum mechanics.






ZUSAMMENFASSUNG

Dynamische Reduktionsmodelle erlauben eine Losung des Messungsproblems, indem
sie einen ontologisch objektiven Mechanismus fiir den Kollaps der Wellenfunktion ein-
fiithren. Dabei werden die unbeobachteten makroskopischen Uberlagerungen vermieden.
Neutrale Mesonen sind Teilchen-Antiteilchen oszillierende und zerfallende Systeme. In
dieser Dissertation fithren wir eine Analyse der beiden vielversprechendsten Kollapsmod-
elle, dem QMUPL Modell (Quantum Mechanics with Universal Position Localization)
und massenproportionalem CSL Modell (Continuous Spontaneous Localization), durch,
indem die Anderung der Mesonendynamik aufgrund eines spontanen Kollapses berech-
net wurde. Dabei wurde auch die kleine Verletzung der € 2?-Symmetrie, eine Symmetrie
zwischen Materie und Antimaterie, beriicksichtigt. Die Ergebnisse zeigen eine starke
Abhangigkeit von Annahmen iiber das Rauschfeld, die den dynamischen Reduktions-
modellen zugrunde liegen. Ein Ergebnis war, dass man die Standartzerfallsdynamik in
einem neutralen Mesonensystem aus der Dynamik des spontanen Kollapses ableiten
kann. Dadurch wurde es méglich effektiven Kollapsraten vorherzusagen, wozu nur die
gemessene Frequenz der Flavor-Oszillationen und die Zerfallskonstanten benotigt wur-
den. In einem weiteren Schritt wurden neutrale verschriankte Kaonenpaare betrachtet
und das Wechselspiel zwischen €22-Symmetrie Verletzung und spontanem Kollaps
fiir Tests des lokalen Realismus analysiert. Diese Arbeit zeigt, dass neutrale Meso-
nen sehr empfindlich beziiglich Modifikationen der Standard-Quantentheorie sind und
dadurch sehr machtige Werkzeuge sind, neue physikalische Szenarien zu untersuchen

und dadurch das Messungsproblem der Quantenmechanik zu beleuchten.
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NOTATION IN THIS THESIS

Name Value Description

LL Localization operator of the GRW model

A; Collapse operator of a general collapse model

re 107" m Coherence length in a collapse model

d Number of dimensions of the physical space

A Collapse rate in the GRW model

Am Collapse rate in a general collapse model

AGRW 10716 g1 Value of the collapse rate A proposed by
Ghirardi, Rimini and Weber

AAdler 1078+2 -1 Value of the collapse rate A proposed by Adler

Ag % Collapse rate in the QMUPL model

Y A-(vV4nrc)?® | Collapse rate in the CSL model

AcsL A Convention for A used for the CSL model

t Time

lpe) State vector

Wi Wiener process

Wit White noise

¢ Phase of the noise

E Stochastic average

|MOy, | M) Flavor eigenstates of neutral mesons

(Mg, |IMyg) Mass eigenstates of neutral mesons

M ?), |M g ) € 2P eigenstates of neutral mesons

K%y, 1K) Flavor eigenstates of neutral kaons

K1), |IKg) Mass eigenstates of neutral kaons

|K ?), IKg) €% eigenstates of neutral kaons

va Size of a wave packet

my Absolute masses of neutral mesons

Iy Decay rates of neutral mesons

Am Difference of masses of neutral mesons

9(0) Value of Heaviside function at zero

K Asymmetry of the noise




Name | Value Description

€ Indirect €22 violation parameter

le] (2.228+0.011)-10°3

arge | (43.5+0.5)°

p 1+¢

q 1-¢

N VIp12+1ql?

o 125;% =(Kr|Kg) Non-orthogonality of the mass eigenstates
oM Relative phase of the €2 eigenstates
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CHAPTER

INTRODUCTION

uantum mechanics has proven to be an exceedingly successful theory which

covers a plethora of physical phenomena at different energy scales and, up

to date, no experimental data are in contradiction. However, in its standard
formulation quantum theory is very counter-intuitive and meets conceptual problems.
In 1935 Einstein, Podolski and Rosen (EPR) raised the question whether quantum
mechanics is incomplete and tried to show its incompleteness in a gedanken experiment
with a pair of particles [1]. In 1964 Bell analyzed the point of view of EPR and derived
an inequality which shows that the predictions of quantum mechanics are incompatible
with local realism [2]. He showed that quantum mechanics shares a counter-intuitive
feature, nonlocality, “spooky action at a distance” due to Einstein. Moreover, Kochen
and Speaker have shown that quantum mechanics reveals contextuality [3, 4], which
means that the measured value of an observable depends on the choice of compatible
comeasured observables. Considering quantum mechanics as a fundamental theory also
superpositions of macroscopic objects, such as cats, should exist which are obviously not

observed in our daily world.

In the Copenhagen interpretation during a measurement process a breaking of the
superposition is mathematically postulated, but no detailed physical process has been
assigned to it. Moreover, a separation into macroscopic system (measurement apparatus)
and microscopic system (quantum system) is utilized but lacks a clear definition. Ruling
out unobserved macroscopic superpositions is the heart of the so-called measurement

problem or macro-objectification problem [5, 6]. One out of many possible solutions are
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CHAPTER 1. INTRODUCTION

dynamical reduction models, so-called collapse models, which introduce an ontologically
objective mechanism of the wave-function collapse. Since collapse models provide definite
predictions for the regime between microscopic and macroscopic they are experimentally
testable. Particularly, one of the popular collapse models, the QMUPL model, has been
investigated for the spontaneous radiation emission from a non-relativistic free charged
particle [7, 8] and put to an intensive experimental test by X-rays [9—11]. For another
popular and more physical collapse model, the CSL model, experiments with optome-
chanical cavities have been proposed [12—19], particularly to detect possible changes in
the spectrum of light which drives a mechanical oscillator [20, 21]. In another approach
a possible increase of equilibrium temperature of a mechanical oscillator produced by
the spontaneous collapse was revealed [22]. For neutral mesons (K-, B-, D-meson) and
neutrinos up to first order in time the effect of the mass-proportional CSL model was
derived and compared to decoherence models [23, 24] by checking the experimental
data [26—31]. Recently, upper bounds on collapse models have been derived for cold-atom
experiments [32] and the authors of Ref. [33] have shown that reduction models can lead

to a nontrivial contribution to an effective cosmological constant.

Flavour physics is a rich field within physics with many unique features, and new
facilities in the near future will tackle very precisely this regime of energy. Recently,
there has been great interest in using massive particle systems such as neutral mesons
in testing the very foundations of quantum mechanics. Such a unique laboratory as a
neutral meson system has been proposed not only to test the effect of the spontaneous col-
lapse [23, 24], but also to stress the notions of nonlocality [34—37] and contextuality [38]

as well.

In this thesis we analyze the flavor dynamics of neutral mesons in the context of
collapse models and deterministic hidden variable models. The thesis is organized as
follows. We start by an introduction into the measurement problem and collapse models
as one of its possible solution in Chapter 2. We discuss the GRW, QMUPL and CSL
collapse models and their framework, particularly their master equations and their
state vector equations. Next we turn to the hidden variable models and discuss a special
class of them, local hidden variable models resulting in Bell inequalities, in Chapter ??.
In Chapter 3 we discuss the phenomenology of neutral mesons, the role of discrete
symmetries and the Bell inequalities for a neutral kaon system. In Chapter 5, the main
result of the thesis is presented. We show how for a neutral meson system the effect
of the QMUPL and CSL collapse models can be included and computed through the

perturbative approach up to second order in time. These computations are lengthy and

12



involved, therefore, some substeps are given in detail in Appendix A for the QMUPL
model and in Appendix B for the CSL model including the computations with taking
into account €< violation, respectively. The correlation functions and their dependence
on the physics of the noise field are derived in Appendix C. We present the results, the
probabilities for the lifetime states and the flavor oscillating probabilities for the cases of
conserved €<% symmetry and its tiny violation. We analyze then different possibilities,
one allowing us an independent prediction of the effective collapse rate for the different
types of neutral mesons which can be compared to the experimental data. The needed
computations of the decay rates from the experimental data are provided in Appendix D.
We proceed by giving a physical meaning to the dependence on the correlation functions
of the Wiener process and finalize by developing a decoherence model that leads to the
same probabilities as the CSL model, but relies on strictly different physics. In Chapter 7
we extend our analysis to a system of two entangled neutral kaons and derive Bell
inequalities including effects of the CSL model. These inequalities provide bounds for
the collapse rate which is a natural constant to be compatible with local realism. Last

but not least we provide the conclusions and outlook in Chapter 8.

13






CHAPTER

SPONTANEOUS COLLAPSE MODELS

n this chapter we review some models of spontaneous collapse, i.e. dynamical

reduction models. These models are said to present a possible solution to the mea-

surement problem of quantum mechanics. These models assume that the collapse
of the wave function is an objective physical process. Thus, it provides a universal dy-
namics covering both microscopic and macroscopic systems. The first section reviews the
measurement problem of the quantum mechanics and introduces the basic ideas under-
lying the collapse models including the first model, the GRW (Ghirardi—-Rimini—Weber)
model [39]. In the following sections we introduce the two most popular collapse models
on the market, the QMUPL (Quantum Mechanics with Universal Position Localization)
model [40] and the CSL (Continuous Spontaneous Localization) model [41-43].

2.1 The measurement problem and the basic

concepts of collapse models

Although quantum mechanics has proven to be an exceedingly successful theory by
plethora of experiments during the last century, its standard formulation meets some
conceptual problems which motivates the scientific community to attempts of modifying
it. For instance, one of the most important problems of quantum mechanics is tied to
the superposition principle, which is one of its corner stones. A number of experiments

has confirmed that it holds on the microscopic scale. However, assuming that quantum
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CHAPTER 2. SPONTANEOUS COLLAPSE MODELS

mechanics is a fundamental theory, nothing forbids the superposition principle to hold
for macroscopic objects as well. Such superpositions lead to numerous paradoxes. For
instance, we do not find a table to be “here” and “there” or a cat to be “dead” and “alive” at
the same time. On the other hand, let us suppose a quantum system (microscopic) being in
a superposition of two eigenstates |a1) and |a9) of an observable A which we can measure
using a measurement apparatus (that is assumed to be macroscopic). Is is supposed to
hold quantum state |M) which corresponds to some pointer state, therefore the whole
system including the observed quantum system and the measurement apparatus holds

the following quantum state before the measurement
|1//before> = (aila1) +azlagz)) ® |IM). (2.1

The measurement entangles the quantum system and the measurement apparatus

leading to the following quantum state
Wafter) = aila1) ®|Mq)+azlaz) ®|Ms), (2.2)

which is a macroscopic superposition of two positions of the (macroscopic) pointer. Ob-
viously, such superpositions of the macroscopic objects is not observed in our quotidian
world. Ruling out them lies in the heart of the so-called measurement (or also called
macro-objectification) problem of the quantum mechanics.

In the Copenhagen interpretation of quantum mechanics one usually introduces two

different types of dynamics of the state of a closed quantum system

¢ a deterministic unitary time evolution governed by the corresponding Schrodinger

equation,

* a stochastic non-unitary reduction (collapse) of the wave function caused by a

measurement process which produces the Born’s rule.

In another words, the Copenhagen interpretation postulates that there exist two levels
of description of the nature, macroscopic one (measurement apparatus) and microscopic
one (quantum system), possessing different rules for the time evolution. However, it
does not provide any precise border between these two levels. Moreover, a measurement
process in the Copenhagen interpretation is postulated to force the reduction of the wave
function but neither equips the process of the reduction with any underlying mechanism
nor reveals whether this process has to be considered physically real.

In turn, the Copenhagen interpretation postulates the collapse but does not explain

it and in fact “sweeps the difficulties under the rug”. A more consistent solution to the
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2.2. THE GRW MODEL

measurement problem is proposed by the dynamical reduction models. They provide
a new universal dynamics which covers both microscopic and macroscopic levels as
well as in-between one. This dynamics includes the reduction of the wave function
as an objective physical process. This process can be briefly described as spontaneous
collapses of the wave function occurring randomly and permanently for any system.
The wave function of a microscopic system (e.g. a particle) undergoes a collapse rarely
and its evolution remains practically unchanged from that ruled by the corresponding
Schrodinger equation. However, a macroscopic system consists of many particles, and
its wave function will frequently undergo a collapse due to the single collapses of the
wave functions of the constituent particles. The modern collapse models introduce this
dynamics mainly by a modification of the standard Schrodinger equation which turns
then to a non-linear stochastic differential equation (SDE). In order to recover the
predictions of quantum mechanics the new modified dynamics should have the following

properties

* non-linearity: the new dynamics should break superpositions on a macroscopic

level, particularly during a measurement,

¢ stochasticity: the new dynamics should produce the quantum probabilities obeying

the Born’s rule,

* no superluminal signaling: the new dynamics should not be in conflict with the

special relativity.

2.2 The GRW model

The first consistent dynamical reduction model which proposed the new universal dynam-
ics was the GRW model introduced in 1985-1986 by Ghirardi, Rimini and Weber [39]. It
does not carry any state vector equation but provides the following set of the postulates

that rule the collapse dynamics for a system of N particles

* each particle undergoes a sudden localization at a random time ¢, and the wave

function of the system changes due to a sudden jump in the following way

Lidd(q1, ..., qN)
NLEd(d1, s Qi o NI

(pt(ql’"'aqi,"',XN) - (23)

where ¢:(qq,...,q;,...,qn) is the wave function of the whole system, and ﬁ; is the

jump operator which induces the localization of i-th particle around the point x,

17



CHAPTER 2. SPONTANEOUS COLLAPSE MODELS

the probability of a localization of i-particle around x is
pi®) = IILipiar, ... qi,.an)ll, (2.4)

* between the jumps the state of the system evolves due to Schrodinger equation,

namely

. d .
Lh@(/)t(qh ~»qN) = H¢u(qs,...,qn), (2.5)
where H is the standard Hamiltonian of the system,

* two new natural constants, A, the localization rate, and r¢, coherence length of

localization, are introduced,

* the localization operators of the GRW model are determined in the following way

1 (@;-%?
2r2

L = ¢, (2.6)

12

x = 2 \3/4
(nre)

where q; is the coordinate operator for i-th particle,

* the sudden localizations are distributed in time according to a Poissonian process
with the rate 1.

The values of the new constants were suggested by Ghirardi, Rimini and Weber
as rc =107 m and Agrw = 10716 s~1. The proposed value of the coherence length lies
between the typical inter-atomic scale 1071° m and the human-size scale 10~* m. The
proposed value of the localization rate is widely discussed. Particularly, Adler proposed

*2 571 in order to make collapse

another value of the localization rate, A4, = 1078
effective for such processes as latent image formation in photography which one can
refer to as a measurement process [44, 45].

In experiments one often cannot realize pure quantum states but rather statistical
mixtures which are described by density matrices. Therefore, it is important to consider

a master equation which expresses the collapse dynamics through the density matrix.

Ly|¢)
I Lxlp)]]

the following change of the corresponding density matrix, [¢){(¢p| —

around point x causes

Lalp)(pllx &
g - SiDce we

do not know in which point the spontaneous localization takes place the actual state

Indeed, a spontaneous localization of the state vector |¢) —

changes into a mixture of states [5]

fd x|</)><</)IL

|p) (Pl —
o IIL P12

f dx Ly dllx = TUGBI]. @.7)
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2.3. SPONTANEOUS COLLAPSE MODELS WITH A DYNAMICAL EQUATION

This leads to the following master equation for the density matrix p; = |¢;)(¢p;| of the
system with a given Hamiltonian H

d AN

—0, = —=[H,pd-Ap:—TIp:l|, 2.8

7P h[ pt] (Pt [Pt]) (2.8)
which reduces to the following master equation for the matrix elements p;(x,y) = (x|0:|y)
in the position basis

_ x—yl2

d N
Zhxy) = ~iH pix - A(1=e ¢ pix,y). (2.9)

2.3 Spontaneous collapse models with a dynamical

equation

The GRW model presented in the previous section introduces the collapse in the wave
function through the random discrete jumps. In contrast to nowadays investigated
collapse models, which describe the reduction of the wave functions as a continuous
process connected to a non-linear interaction of the quantum system with an external
noise field. Such models are the Quantum Mechanics with Universal Position Localization
(QMUPL) model [40] and the Continuous Spontaneous Localization (CSL) model in
its original [41, 42] and mass-proportional [43] versions. These models describe the
collapse as a continuous process by a SDE which turns out to be a non-linear stochastic
modification of the Schrodinger equation with the Hamiltonian H of the system under

investigation [46]
R N R Am N R 9
dlgy) = [—lHdH\/?tm Z(Ai_<Ai>t)dWi,t_?Z(Ai_<Ai>t) dt|lde), (2.10)
i=1 i=1

with A=1 and (Ai)t = <<pt|Ai|<pt> being the standard quantum mechanical expectation
value. Here A; are a set of N self-adjoint commuting operators related to the collapse,
Wi represent a set of N independent standard Wiener processes (which lead to the
white noise w; ; := %Wi,t), one for each collapse operator A;. The difference between the
dynamics provided by various collapse models ruled by the SDE (2.10) lies mainly in
the choice of the collapse operators A;. The constant A,, sets the strength of the collapse
processes which turns to be a new natural constant provided by the collapse model (in the
same manner as the constant 1 in the GRW model). Let us consider the corresponding
master equation for the density matrix p; = E[|¢;) (],

d A or ¥y A /"/m N A2 ~ &0 A
_Pt = —Z[H,pt]__Z({Ai,pt}_ZAiptAi)’ (211)
dt 2 =

19



CHAPTER 2. SPONTANEOUS COLLAPSE MODELS

where [ denotes averaging over the white noise and the curly brackets denotes an anti-
commutator. This equation has the same form as the Gorini—Kossakowski—Sudarshan—
Lindblad equation for an open system [64, 65] with the collapse operators A; as Lindblad
operators.

Finding a solution of a SDE is a non-trivial problem. However, the equations (2.10)
and (2.11) carry a very useful mathematical property which helps to find the solutions.
The physical predictions of these equations are invariant under a phase change in the
noise through the so-called “imaginary noise trick” [47, 48] which we generalize below in

several steps. Consider the following family of the dynamical equations

N
digr) = |-iHdt+V A ) CAi-BADIAW,,
i=1

A N A .
- S Y QA -2pAi A+ A Dt g,
i=1
where the coefficients (, B, Z, ,3, ¥ are arbitrary complex numbers. The corresponding

family of the master equations obtains then the form

d

— Pt

= —i[ﬁ,ﬁt]—%n{(fz‘i?—QBAi<Ai>t+77<Ai>?)ﬁt}

+po(T AT 2B A(Aiy+ 77 A0+ Am(CAs - BAide)po[0 As - B (Aie)

. A (=29«  2e. 2 A
~ilH, pd - LA+ T AT - 2107 AipiAs)
~ Am(ADFReT = 1BPpu+ Am Aio(B-CFAipu+ (B =" BpiAs).

Due to (2.11) the last two terms should cancel out, therefore we set Re = 8|2, f = (p*

and obtain the following families of the state vector equations
A N ~ ~
digy = |-iBdt+v Ay Y (CAi- BAie)dw;,
i=1

N
- 7’” > (CA2 25" AiA)+ (P + ImPHAF )t

i=1
and the density matrix equations

d iy Ay Am (s ia s e 42 24 A A
bt = l[H,Pt]——Z{(AiPt+( peA; —2[C] AiPtAi},

The last step is to simplify the obtained families of equations by taking =0, Imy =0

and ¢ = 1. It results in the following state vector equation

N N
didy) = [—iﬁdt+(\//1mZAidWi,t ?’”Z dt]l(/m (2.12)
i=1

i=1
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2.3. SPONTANEOUS COLLAPSE MODELS WITH A DYNAMICAL EQUATION

and the density matrix equation

d o Am s 28 A A

b = —L[H,pt]—?i;({Ai,pt}—Qlll Aipid;). (2.13)
Comparing the equation (2.13) with the collapse model master equation (2.11) we can see
that the equation (2.13) does the same job independently of the phase ¢ of { if its absolute
value is taken as |[{| = 1. Therefore, the equation (2.12) gives the same physical predictions
in terms of statistical expectations or probabilities for the outcomes of measurements
as the original collapse SDE (2.10). The statistics of outcomes of measurements of an
observable M is expressed as averages [E[((,thMI(,btﬂ =Tr[M E[l¢ps) (|11 = Tr[Mﬁt]. This
invariance forms the heart of the imaginary noise trick which we can use now to simplify

the dynamical equation of the collapse models under investigation
. , N Am X oy
dig) = [=iHdt+eVAn ) AidWie =23 A2dt|ign) (2.14)
i= i=

exploting the invariance of the corresponding master equation on the phase ¢ of ¢.

The new state vector equation (2.14) is written in the so-called It6 form. In general,
the white noise w; represents the change in time ¢ of the Wiener process W; (with
the definition W;-¢ = 0), where the term white (uncolored) refers to independent and
identically distributed growths of dW;, with a zero expectation value and a standard
deviation proportional to Vdt. The Wiener process can be identified with a temporal
integral of the white noise, W; = ftto wydt' [49]. This leads to a formal definition of
the white noise as a temporal derivative w; := %, although this derivative does not
exist since the Wiener process W; is nowhere differentiable [50], and in fact there is
no bijection between Wiener process and noise. After all one can define a stochastic
integral ftto G(t")dWy as a kind of Riemann—Stiltjes integral, which depends on the choice
of a sampling point in the interval [Z,¢ + dt]. A family of formalisms can be developed
depending on the choice of the sampling point. The two popular frameworks are the
It6 formalism, which chooses ¢ (left-hand endpoint of each time subinterval), and the
Stratonovich formalism, which chooses # + % (middle point of each time subinterval) [51].
The advantage of the Stratonovich formalism is that the differential and integration
procedures are those familiar from ordinary calculus. Therefore, we will stick to this
formalism. In the Stratonovich formalism equation (2.14) becomes a Schrodinger-like

equation (linear) with a random Hamiltonian
d A N
iZ100) = [H—e”p\//lm ZAiwi,t]kpt). (2.15)
i=1
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CHAPTER 2. SPONTANEOUS COLLAPSE MODELS

The equation (2.15) is much easier to solve and will be used later as the basic instru-
ment for the computations. In the following we use the phase ¢ = 0 to simplify the

computations.

2.3.1 Quantum Mechanics with Universal Position Localization
(QMUPL)

The QMUPL model was introduced by Diési in 1989 [40]. It is positioned as less realistic
compared the CSL model discussed below, particularly because of formulation of the
QMUPL model for distinguishable particles [6]. However, due to its simplicity it is
possible to generalize it in several ways, including non-dissipativity and non-white noise
field which leads to non-Markovianity of the collapse model [52—-54]. The QMUPL model
sets position operators in d-dimensional space as d collapse operators, A; = §;, which
can be combined in a single vector collapse operator, A = §. This choice of the collapse

operators leads to the following SDE for a single particle
_ N N N P A\ (2
dlgy) = [—szt+ Aq (q—((Dt)-th—?(q—(q}t) dt|lds), (2.16)

where Aq is the localization rate of the QMUPL model and W; = {Wy;,...,Wg ;} is the set
of d Wiener process, one for each space dimension. It should be noted that in contrast to
the GRW and CSL models the QMUPL model introduces only one constant Aq.

The master equation of the QMUPL model can be derived from one of the GRW model
as a limit of small coherence length . This means that the physical predictions of the
QMUPL model should not differ from those of the GRW model (and the CSL model as

well) for macroscopic systems. The master equation of the QMUPL model results in

d A A
—pux,y) = —ilH,p(x,y)]- —5&x-y)’pix,y), (2.17)
dt are

where p:(x,y) = (x|p¢|y). From (2.17) we can establish connection between the constants
of the QMUPL and GRW models, namely Ag = #
C

The corresponding simplified Schriodinger-like equation is

Loy = [A- g @wo]ioo, 2.18)

dawy dWy
Where W; = {W’t,..., Tt}
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2.3.2 Continuous Spontaneous Localization (CSL)

The more involved CSL model was developed in its original version by Ghirardi, Pearle
and Rimini in 1989-1990 [41, 42]. It is formulated through the second quantization
formalism describing a system of identical particles and operates with more tricky
collapse operators A; which act in a Fock space and therefore are replaced by a continuous

set of operators A(x), one for each point in space, namely

Aw) = ¥ [ dy ety -0 @ii) (2.19)
J

where uA/j .(¥) and v/ s(y) are the creation and annihilation operators of a particle of
type j and spin s in a point y. The smearing function g(y —x) is usually taken to be of a
Gaussian type

_ - - —(y—:u:)2/2r2
S0 amren ¢ v (220

where d reads the number of spatial dimensions and r¢ is the coherence length of the
CSL model which coincides with one of the GRW model. This choice of the collapse
operators defines the following SDE

dipy = [—iﬁdt+\/? f dx(A(x) - (Ax)))dW,(x)
-1 f dx(Ax) - (AN )2dt] s, 2.21)

where Wy(x) is now an ensemble of the Wiener processes, one for each point in space, and
vy is the localization rate provided by the CSL model.
The master equation of the CSL model for the system of N particles reads

d A Y
—pi(x,y) = -ilH,px,y)]- —F—+—
dtpt y PiX,y o(Vanro)
N N I!!iiﬂij\2 |yryﬂ2 \Xi*yJ‘IZ
. Z Z [e_ 4’% +e_ 4r% —26_ 4r% A
p(x,y), (2.22)
1=0,=0

where x = {X1,..., Xy} and X; is the position of i-th particle. For the single-particle case

equation (2.22) reduces to

_ Ix-yl?

da . R S B Y T2\ A
Py = SHpayI- ol T Jpy,  @29)

which coincides with the master equation of the GRW model. This gives rise to substitute
the localization rate y of the CSL model by the one 1 of the GRW model, namely
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y = A-(V4nrc)® which has now the units [m?/s]. A characteristic of the CSL model
is that all observable results will be proportional to the ratio y/r‘é being a rate or by
including all units the strength of the interaction. Furthermore, the QMUPL model can
be considered as the limit of the CSL model as well, as was mention in the previous
subsection.

In 1995 Ghirardi, Grassi and Benatti proposed an important improvement of the
CSL model, its mass-proportional version [43]. While the original CSL models introduces
density operators as collapse operators, its mass-proportional version uses mass density
operators which makes collapse dynamics dependent not only on number of particles but

on their masses as well. SDE is modified in the following way
A A - ) A ) _ ) _ "T ~
A) - Mx) = ) mjA;x) = ijfdy gy -, My,  (2.24)
J Jss

where m ; is the mass of a particle of the type j. This choice of the collapse operators

modifies equation (2.25) in the following way
aipo = [-irar+ X [ axtitoo- dteawico
0

- L [[axaire - iton 2 aeigo, (2.25)
2my

where m is a reference mass which is usually chosen to be the nucleon mass.

The corresponding simplified Schrodinger-like equation is

d . ) R
i) = [H—\/_?Z dxw(x, P &) )| Ip0), (2.26)

mo js

where w(x,t) is a noise which set to be white in time and Gaussian in space,

Flwx, Hwx',t)] = e 5t —t). (2.27)

1
Varro)
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CHAPTER

NEUTRAL MESON SYSTEMS

n this chapter we discuss the phenomenology of neutral mesons, which includes the
flavor oscillations. We focus generally on a neutral meson M° = {K°, D°, B, Bg}
and later stick to the particular case of a neutral kaon K°. We discuss the discrete
symmetries and their violation in the context of neutral mesons, particularly neutral
kaons. Last but not least we review the formalism of generalized Bell inequalities for a

system of entangled neutral kaons developed in [34-36].

3.1 Basic formalism of neutral mesons physics

A neutral meson M? is composed by a quark-antiquark pair bound by the strong interac-
tion, and both the particle state |M°) and the antiparticle state [M°) can decay trough
the weak interaction into the same final states. They can be distinguished by a flavor
quantum number .# called strangeness [60] which is conserved by the strong interaction

but violated by the weak interaction,
SIM% = M), (3.1)
1M = - MY, (3.2)
Therefore, neutral mesons have to be considered as a two-state system. Its most general
time evolution can be described by an infinite-dimensional vector in Hilbert space

which includes the components of both the flavor eigenstates |M°) and |M°) and all its

decay products. However, finding a solution for an infinite set of coupled differential
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equations is a cumbersome problem. Therefore, the dynamics of a M°? — M° oscillating
system is usually covered by an effective Schrodinger equation within Wigner—Weisskopf
approximation [61, 62] which turns out to be a proper simplification and takes into

account only the components of the flavor eigenstates,

~iHorrlyy), (3.3)
a(®)| MO + b(t)| MO, (3.4)

il )
di U4
lwe)

where the phenomenological (effective) Hamiltonian H, ff= M+ %f is non-Hermitian,
M = M" is the mass operator which describes the unitary part of the dynamics of a
neutral meson, and " = I'" covers the decay (non-unitary part).

It can be shown that the effect of the non-Hermitian part of the Hamiltonian (decay)
can be understood if the system is considered to be an open quantum system, i.e. a system
which interacts with the environment which is not available in general [63]. Then the
Schrodinger equation is turned to a Gorini—Kossakowski—Lindblad—Sudarshan master
equation [64, 65], where a Lindblad operator implies the transition from the surviving
part to the decaying part of the system under investigation. Consequently, the decay
property can be incorporated via a Lindblad operator into the quantum system and can
be physically understood as an interaction with a (virtual) environment. In quantum
field theory this environment would refer to the QCD vacuum. This in turn shows that
the total time evolution is a completely positive map. We will discuss this point in the
next chapter.

Diagonalizing the phenomenological Hamiltonian leads to two different mass eigen-
states (c=1)

A i
HeppIMp) = (mi+ T3 IMy). (3.5)

These two states |M1,) and |Mg) are eigenstates of the weak interaction and have distinct
masses, without loss of generality m;, denotes the lower one (L denotes “light”, H denotes
“heavy”). For all types of neutral mesons the decay rates I';,,['7 are approximately equal,
except for K-mesons whose decay rates differ by a huge factor about 600. Therefore, the
light mass eigenstate of a neutral kaon is denoted as the short-lived state |[M;) — |Kg)
with lifetime 75 = 0.89-1071%s and the heavy mass eigenstate is denoted as the long-lived
state [My) — |KL) with lifetime 7, =5.17-1078s.

The flavor eigenstates are conjugated by the combined operation €22,

€@IM° = e'M MO, (3.6)
€2\ MO e im0y, (3.7
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such that €2 = 1. The strong interaction does not change the flavor quantum number,
so the phase @)/ is unphysical and can be chosen arbitrarily. Usually one fixes ¢y =7
(and so we will do in Section 5.2). This means that €2 eigenstates can be defined in the

following way (with this phase convention)

0y _ 1 0 70

M = (1M 1), (3.8)
0y _ 1 0 70

M = (1M 11, (3.9

so that €2|M?) = |M?) and €2|MYJ) = —|MY).

Specifically for the neutral kaons we have the situation, that they can decay into
two different decay channels: two pions (1), with €22 = +1, or three pions (mn7r) with
€ = —1. If € symmetry is conserved then the mass eigenstates can be identified with
the €22 eigenstates such that the short-lived state decays into two pions |Kg) — |77)
and the long-lived state decays into three pions |Ky) — |nrnm).

In general, in the case of conserved €2 symmetry the relation between the flavor

eigenstates and mass eigenstates is given by

1
0y _
M0 = (M) + ML), (3.102)
-0\ 1
Y = (1M 1M1 (3.10b)

Solving the effective Schrodinger equation (3.3) we obtain the following dynamics of an

initial particle and antiparticle state,

1 r . r .
MOty = ﬁ(e_THte_lmHthH)+e_TLte_”"Lt|ML)), (3.11a)
_ 1 r . T .
01y = ﬁ(e_THte_‘mHthH)—e‘TLte_”"LtIML)). (3.11Db)

In this way we can find the probabilities of finding a meson or antimeson after a certain

time ¢ if a meson state |[M°%) was produced at ¢ =0,

1 Ty+T
P yro_ promp0(®) = Z(e_rHt +e 1t 19 Ltcos(tAm)), (3.12)
where Am = my — my, is the difference of masses. These probabilities show that the
neutral meson system reveals so-called flavor oscillations. This means that if, for exam-
ple, a kaon is produced, then it oscillates into an antikaon and vice versa, also called

strangeness oscillation.
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3.2 ¥22 violation

The existence of antiparticles was predicted by Dirac in 1928 [66]. They are interpreted
as mirror images of usual particles having the same mass and opposite electrical charge,
for example, a positively charged antielectron (positron) which was successfully demon-
strated in a controlled experiment by Anderson in 1933 [67]. Particles and antiparticles
are produced in pairs and annihilate each other leaving high-energy photons when they
come in contact. However, although in the aftermath of the Big Bang particles and
antiparticles should hav