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Abstract

Beobachtungen auf atomarer Ebene von Materialien werden oft unter Verwendung eines Trans-

missionselektronenmikroskops durchgeführt. Abhängig von der Beschleunigungsspannung der

Elektronen, kann der Strahl Defekte in der Probe induzieren. Dies geschieht wenn der Impuls

der einfallenden Elektronen hoch genug ist um Kohlenstoffatome aus dem Gitter herauszuschla-

gen. Atomistische Simulationen sind eine gute Möglichkeit solche Ereignisse zu testen und

vorherzusagen. Hier untersuchen wir, wie sich die Temperatur auf den Schwellwert für Atomver-

schiebungen auswirkt und wie dieser Effekt bei der Berechnung des Wirkungsquerschnitts berück-

sichtigt wird mithilfe einer auf Dichtefunktionaltheorie basierenden Tight Binding-Methode.
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Chapter 1

Introduction

1.1 Motivation

Atomic level observations of materials, are often carried out using a transmission electron mi-

croscope (TEM). In a TEM, a beam of accelerated electrons is transmitted through the sample,

interacting with it as it passes through. Depending on the acceleration voltage of the electrons,

the beam may induce defects in the sample. This happens when the momentum of the incoming

electrons is high enough to knock out carbon atoms from the lattice. Hence, the electron beam

of the TEM can alter the morphology of graphene, a carbon based two-dimensional material.

For example, it has been shown that the electron beam can be used to transform graphene

into single-atom carbon chains and carbon nano-ribbons [1, 2] or to transform a graphene flake

into a fullerene [3]. Another example of electron beam induced manipulation was presented in [4],

where graphene turned into an amorphous two-dimensional carbon membrane under exposure to

the electron beam.

In scanning transmission electron microscopy (STEM) [5], a highly focused electron beam

can be placed on one atom at a time. This small probe along with the tunable electron energy

have even made it possible to manipulate individual atoms (like Si) in the graphene lattice, as

was shown in [6].

Atomistic simulations are a good way to test and predict such events. In such simulations, one

needs a way to describe the interactions between atoms, for example, using analytical potentials.

These potentials are not computationally expensive, so they can be run on systems with a large

number of atoms. However, there are also more precise ways to test whether the predictions using

analytical potentials are trustworthy or not, for example with density functional theory (DFT) or
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1.1. MOTIVATION 1. Introduction

density functional tight-binding (DFTB), which are computational modeling methods based on

quantum mechanics.

DFT and DFTB [7] have previously been used to simulate displacements of carbon atoms

in graphene. In order to eject an atom out of the lattice, the energy transferred to the atom

needs to exceed the displacement threshold of it. Here, we study how the temperature affects the

displacement threshold and how to include this effect when calculating the displacement cross

section. An accurate description of the displacement cross section helps us understand how often

these displacements occur. Hence, this master’s thesis will investigate the irradiation effect of

the electron beam on carbon atoms in graphene at various temperatures by means of atomistic

simulations.

However, up to date, there is no theoretical model to predict the role of temperature on the

displacement cross-section of graphene. This master‘s thesis will investigate the irradiation effect

of the electron beam on carbon atoms in graphene at various temperatures by means of atomistic

simulations.
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1.2. GRAPHENE 1. Introduction

1.2 Graphene

Along the timeline of material science there have been some major breakthroughs, like the dis-

covery of polymers (1830), semi conductors (1833) and plastic (1941). In 2004, Andre Geim, a

physics professor at the University of Manchester, and his Ph.D. student, Konstantin Novoselov,

isolated the first two-dimensional (2D) material ever, a one-atom thick layer of carbon. Physi-

cists had speculated about such a material, called graphene, even though it had been argued in

1935 and 1937 [8, 9] that 2D materials were thermodynamically unstable because the thermal

fluctuations would become comparable to interatomic distances. So it was thought that graphene

would be unstable at room temperature. However, after a few unlucky attempts to publish their

discovery, in October 2004 their publication was accepted [10] and six years later they received

the Nobel prize in physics for it. Since then, graphene has been hailed as a miracle material.

Graphene is made out of a single layer of carbon atoms. These carbon atoms are tightly

bound in a 2D hexagonal lattice (Figure 1.1), this being the building block for other graphitic

materials. The lattice vectors can be written as

~a1 =
a

2

(
3,
√

3
)
, ~a2 =

a

2

(
3,−
√

3
)

(1.1)

where a ≈ 0.142 nm is the nearest neighbor carbon-carbon distance. This structure is built up

of two triangular sublattices, A (blue colored atoms) and B (red-colored). The three nearest-

a= 0.142 nm

A B

δ3
δ1

δ2

a1

a2

Figure 1.1: Lattice structure of graphene.
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1.2. GRAPHENE 1. Introduction

neighbour vectors are

~δ1 =
a

2

(
1,
√

3
)
, ~δ2 =

a

2

(
1,−
√

3
)
, ~δ3 = a (−1, 0) . (1.2)

The reciprocal lattice vectors ~b1 and ~b2 are given by

~b1 =
2π

3a

(
1,
√

3
)
, ~b2 =

2π

3a

(
1,−
√

3
)
. (1.3)

The important physics of graphene takes place at the corners of the Brillouin zone (Figure 1.2),

namely the two points of high symmetry K and K’:

~K ′ =

(
2π

3a
,

2π

3
√

3a

)
, ~K =

(
2π

3a
,− 2π

3
√

3a

)
. (1.4)

They are called Dirac points because the electron transport in their vicinity can be described

by the massless Dirac equation in two-dimensions [11]. This means that one can think of the

electrons as free massless Dirac particles moving at an effective velocity vF instead of interacting

with a periodic potential.

The electronic structure of one isolated C atom is (1s)2 (2s)2 (2p)4. Each carbon atom has

a total of six electrons; two on the inner shell and four on the outer shell. In graphene, three of

the outer electrons take part in chemical bonding, where the orbitals hybridize in such a way that

every carbon atom is strongly bonded to its neighbors by σ bonds. The σ-bonds consist of the

overlap of sp2 hybridized orbitals. The sp2 hybridization is the result of the combination of the

2s-orbital with two p-orbitals, the 2px and the 2py orbital as seen in Figure 1.3. These orbitals

have an angle of 120◦ between them and are responsible for the hexagonal structure of graphene.

M

K

K'

kx

ky b1

b2

Figure 1.2: Reciprocal lattice. First Brillouin zone with corresponding symmetry points.
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1.2. GRAPHENE 1. Introduction

Figure 1.3: Hybridization of carbon in the graphene lattice.

This leaves one free unhybridized orbital in the out-of-plane position, the 2pz or (π orbital)

which determines the electronic structure, because it allows the hopping of electrons between the

orbitals. Each carbon atom contributes to one 2pz-orbital as shown in Figure 1.4.

Figure 1.4: Hybridization of the out-of-plane orbitals and the π bonds.

One can imagine that in a real crystal, these 2pz-orbitals merge in such a way, that they create

a sort of ”cloud” beneath and above the graphene sheet.

Of particular importance for the electronic properties of graphene is the π-orbital. This single

carbon orbital, which is left unfilled by the electrons and which is oriented normal to the plane, can
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1.2. GRAPHENE 1. Introduction

shelter two electrons with spin ± 1
2
. The basis of electron states contains two π states belonging

to the atoms from sublattices A and B. In the nearest-neighbor approximation, considering only

hopping processes within the sublattices, the tight binding Hamiltonian for electrons in graphene

is described by the 2x2 matrix :

Ĥ(~k) =

 0 tS(~k)

tS?~k 0

 , (1.5)

where ~k is the wave vector, t the nearest-neighbor hopping energy and

S(~k) =
∑
δ

ei
~k~δ = 2 exp

(
ikxa

2

)
cos

(
kya
√

3

2

)
+ exp (−ikxa) . (1.6)

The energy bands, which describe the range of energies an electron may have, are derived from

this Hamiltonian and have the form [12]:

E(~k) = ±t|S(~k) = ±t
√

3 + f (k) (1.7)

with

f (k) = 2 cos
(√

3kya
)

+ 4 cos

(√
3

2
kya

)
cos

(
3

2
kxa

)
, (1.8)

where t is the approximated at about 2.8 eV. The plus sign corresponds to the upper π and the

minus sign to the lower π∗ band. One can calculate that S( ~K) = S( ~K ′) = 0, which means that

the bands are crossing.

Because of the network of sp2 hybridized bonds, graphene is the strongest material ever

measured [13]. It has a tensile strength of 130 GPa and a 2D elastic constant of about 300

N/m. Its thermal properties are equally remarkable. Graphene has a thermal conductivity of up

to 5000 W/m K at room temperature [14], which is about 20 times higher than that of copper.

Also it’s thermal expansion coefficient is negative and large [15], almost up to 10 times larger

than graphite. Graphene’s quality unveils itself also through it’s electronic properties. It is a

zero-gap semiconductor and the charge carriers have an electron mobility that can exceed 15,000

cm2/Vs even at room temperature [10, 16]. However, these remarkable electronic properties

are mostly determined by the defect-free pristine structure. So the electronic and transport

properties are sensitive to changes in the structure, such as having defects or impurities [17].

These deviations from the pristine structure can help reshape the electronic properties and achieve

new functionalities. The electron beam of a TEM can be used not only for the purpose of imaging

graphene, but also to alter the morphology and therefore change its properties.
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1.3. (SCANNING) TRANSMISSION ELECTRON MICROSCOPY 1. Introduction

1.3 (Scanning) transmission electron microscopy

In order to visualize atoms one can not use visible light because of its long wavelength. Light

microscopes can resolve images in the order of hundreds of nm, but this is not enough to get a

glimpse at the atomic structure of any material. To get a better understanding of the structure

of materials, electron microscopes have been designed [18]. As the name says, they use electrons,

which have wavelenghts in the order of pico meters (10−12 m), small enough to analyze materials

at the level of single atoms. Transmission electron microscopes (TEMs) and scanning transmission

electron microscopes (STEMs) [5] are powerful tools to image materials at atomic resolution.

This was made possible thanks to the advances made in instrumentation to suppress electron optic

aberrations [19–21]. A schematic comparison of both TEM and STEM is presented in Figure 1.5.

Field emission source

Aberration corrector

Objective lens

Objective aperture

Specimen

Annular dark-field detector

EELS spectrometer

Screen

Condenser aperture

CTEM STEM

Figure 1.5: Comparison between a conventional transmission electron microscope (CTEM) and

a scanning transmission electron microscope (STEM)

As is presented in Figure 1.5 in a conventional TEM the electrons produced are collected in

a condenser aperture and focused as a parallel beam on the specimen. After the electrons are

transmitted through the specimen, the objective aperture is used to exclude high-angle scattered
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1.3. (SCANNING) TRANSMISSION ELECTRON MICROSCOPY 1. Introduction

electrons. The beam gets collected by the objective lens, which is used to focus and magnify the

image. Since the lenses bend electrons of different energies (different wavelengths), it will result

in different focal lengths and this gives rise to chromatic aberrations. Also the electrons going

through the periphery of the lens will be refracted more than those passing along the axis, and

they will create spherical aberrations. Aberrations result in the blurring of the image and thus

loss of resolution. Because the aberrations of electromagnetic lenses are always positive it was

quite a challenge to overcome them. However, sextupole and octupole magnets can nowadays

be used to correct them. After the corrector, the electrons will hit a screen where the image is

recorded.

In Figure 1.5 one can see that in a STEM the focusing of the electron beam happens before

it hits the specimen. The field-emission gun provides with an electron beam (low energy spread),

which goes through the aberration corrector first and then is focused by the objective lens onto

the specimen. The elastically scattered electrons are collected by the annular dark-field detector

(ADF) and the image is formed. The high angle ADF detector makes it possible to form high

resolution images, where the contrast of an atom is directly related to the atomic number Z.

In terms of signal collection efficiency this gives an advantage and permits the main beam (in-

elastically scattered electrons) to pass on to the electron energy loss spectrometer (EELS). The

EELS spectrometer makes the elemental identification possible for low atomic number and light

elements such as C, O, N and others. In contrast to a TEM, where the sample is illuminated by

a parallel electron beam over the whole field of view, in a STEM a very precise, highly focused

electron beam scans over the designated area providing a resolution of ca. 1 Å. This makes the

STEM one of the most adequate tools to image graphene and other low dimensional solids with

an unprecedented quality.

Having such a small electron probe along with the tunable energy, the STEM is the right tool

to controllably manipulate atoms throughout the graphene lattice [6]. Electron bombardment

can prove to be useful. First, given that the transfer of energy can be tuned just around the

threshold value to create defects, individual defects may be generated. Second, the electron beam

is a sub-nanometric probe, allowing to controllably manipulate single atoms in low dimensional

solids. Thus, it is of scientific and technological importance to understand the effects of electron

irradiation.
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1.4. IRRADIATION EFFECTS ON SOLIDS 1. Introduction

1.4 Irradiation effects on solids

Radiation damage is one of the key limitations of transmission electron microscopy. Almost any

material could be resolved with the current instrumentation, but the concern is whether the

sample remains stable until the image is obtained.

When a highly energetic particle such as an electron hits the sample, different events of energy

or momentum transfer may take place. The most significant are:

• ionization of individual atoms,

• collective electronic excitations such as plasmons,

• bond breaking,

• phonon excitation,

• atom displacements (knock-on effect).

The energy of the incoming electrons is of particular importance since different events have

different energy dependencies. When we consider radiation effects in carbon-based materials,

it is useful to divide them into those that cause displacement of atoms and those that do not

(excitations). With increasing electron energy, excitations become less important whereas knock-

on effects rise.

1.4.1 Knock-on atom displacements

Transferred energies

When highly energetic electrons scatter from the electrostatic potential of the nuclei of the atoms

in the specimen, atom displacements may occur. These knock-on collision events are the most

notable effect of electron irradiation in carbon nanostructures. They lead to defect creation, such

as Stone-Wales [22] defects, and may help changing the morphology in such a manner that the

electronic and magnetic properties can be tailored [23].

Due to the great difference in mass between an electron and a nucleus, the amount of

transferred energy is limited. The momentum transfer is a result of the change in the direction

of the electron. The angular dependence of the transferred energy E to the nucleus is

E (θ) = Emax cos2(θ) (1.9)
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1.4. IRRADIATION EFFECTS ON SOLIDS 1. Introduction

where θ is the angle between the initial direction of the electron and the direction in which the

nucleus gets scattered and Emax is the maximum energy which is transferred to the nucleus by

a head-on collision (θ = 0). The geometry of scattering an electron to a nucleus is presented

in Figure 1.6.

Φ

nucleus

θ

Figure 1.6: Schematic of an electron-nucleus collision

If the energy transferred to the atom is large enough to produce a vacancy in the lattice

which does not spontaneously recombine, then the target atom is considered displaced (knocked

out). This minimum transferred energy needed to knock out an atom is called the displacement

threshold energy Ed.

In a TEM experiment it is worth considering the vibration of the atoms out-of-plane. Due to

momentum conservation, if an atom is hit by an electron while it happens to move parallel to

the incoming beam it can acquire a higher maximum transferred energy Emax than if it were at

rest [24]. To illustrate this situation, we need to consider a relativistic scattering process between

an electron and a nucleus. The electron (mass m, energy Ee, momentum pe), a relativistic projec-

tile, collides with a moving, non-relativistic target, the nucleus (mass M , energy En, momentum

pn). Taking into account that the energy and momentum are conserved we have the equations

Etot
e + Etot

n = Ẽe
tot

+ Ẽn
tot

(1.10)

and

~pe + ~pn = ~̃pe + ~̃pn (1.11)

where the quantities Ẽe
tot

, Ẽn
tot

and ~̃pe, ~̃pn represent the total energies and the momenta after the

collision for the electron and nucleus, respectively. We need to express the maximum transferred

energy to the nucleus Ẽn
tot

as a function of the kinetic energy of the electron E and the velocity

of the nucleus v. As can be seen in Figure 1.6 the electron and the nucleus scatter under different

13



1.4. IRRADIATION EFFECTS ON SOLIDS 1. Introduction

angles, φ and θ respectively, after the collision. Considering a head-on collision along the x-axis

in a two dimensional plane we can express the momentum conservation Equation 1.11

pex + pnx = |p̃e| · cosφ+ |p̃n| · cos θ (1.12)

and

pey + pny = |p̃e| · sinφ− |p̃n| · sin θ. (1.13)

In a pure head-on collision it is assumed that the nucleus only vibrates parallel to the direction of

the electron beam, neither having a component of momentum, and we can write pey + pny = 0.

Therefore we can express the nucleus scattering angle θ in terms of φ

sin θ =
|p̃e| · sinφ
|p̃n|

. (1.14)

Now, using the trigonometric identity cos2 θ + sin2 θ = 1 and substituting in Equation 1.12 we

get

pex + pnx = |p̃|e · cosφ+ |p̃n| ·

√
1− |p̃e|

2 · sin2 φ

|p̃n|2
. (1.15)

We can express the energy in terms of momentum according to the equation

Etot
e = Ee +mc2 =

√
p2exc

2 +m2c4, (1.16)

where Ee is the kinetic energy of the incoming electron, to get

pex =

√
Ee (Ee + 2mc2)

c2
. (1.17)

We can express the momentum pnx of the nucleus classically since the mass M is much larger

(∼ 104 times) than that of the electron as

pnx =
√

2MEn, (1.18)

where En = Mv2

2
is the kinetic component of the energy of the nucleus before collision.

Since the rest energies of both the electron and the nucleus do not change in the collision,

we can use the energy conservation relationship (Equation 1.10) to express the energy of the

electron after collision using only kinetic energies as

Ee + ���mc2 + En +
�
�
�Mv2

2
= Ẽe + ���mc2 + Ẽn +

�
�
�Mv2

2
(1.19)
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1.4. IRRADIATION EFFECTS ON SOLIDS 1. Introduction

Then we can use the relativistic energy-momentum relationship Equation 1.16 to express |p̃e|

as

|p̃e| =

√√√√Ẽe

(
Ẽe + 2mc2

)
c2

=

√√√√(Ee + En − Ẽn

)((
Ee + En − Ẽn

)
+ 2mc2

)
c2

. (1.20)

The kinetic energy of the electron Ee = eU (e.g 80 keV), where e is the elementary charge and U

the acceleration voltage, is much higher than that of the nucleus before the collision En ∼ 0.04 eV

or after Ẽn ∼ 10 eV. In earlier studies [24] and [25], the assumption that Ee+En−Ẽn ≈ Ee+En

was done. This approach is not well justified since En < Ẽn. One should either approximate

Ee + En − Ẽn ≈ Ee − Ẽn, for which the equation can only be solved numerically, or

Ee + En − Ẽn ≈ Ee, (1.21)

which delivers an algebraically solvable equation. Let us proceed to solve the better approximation.

Substituting for pex , pnx , p̃e and p̃n in Equation 1.15 we end up with this expression for the

momentum conservation

1

c

√
Ee (Ee + 2mc2)+

√
2MEn =

cosφ

c

√
Ee (Ee + 2mc2)+

√
2MẼn −

Ee (Ee + 2mc2) sin2 φ

2MẼnc2
.

(1.22)

Our goal is to solve Equation 1.22 for Ẽn, which corresponds to the maximum transferred energy

to the nucleus. To simplify the calculation we make the following substitutions:

r =
1

c

√
Ee (Ee + 2mc2) +

√
2MEn and t =

1

c

√
Ee (Ee + 2mc2). (1.23)

Equation 1.22 can thus be written as:

r = t cosφ+

√
2MẼn −

t2 sin2 φ

2MẼn

(1.24)

Bringing the cos term to the left side of the equation and squaring both sides leads to

r2 − 2rt cos θ + cos2 φt2 = 2MẼn −
t2 sinφ2

.
2MẼn (1.25)

We can further make the following substitution a = r2−2r cos θt+cos2 θt2 and then bring Equa-

tion 1.25 to a common denominator, from where we can solve the second order polynomial for

Ẽn

4M2Ẽ2
n − 2MẼna− t2

(
1− cos2 θ

)
= 0. (1.26)
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1.4. IRRADIATION EFFECTS ON SOLIDS 1. Introduction

Given the fact that the electron is backscattering, the angle φ = π (180◦) and therefore we

get the solution for Ẽn1,2

Ẽn1,2 =
2Ma±

√
4M2a2 + 16M2t2 (1− cos2 φ))

8M2
. (1.27)

If we set φ = π (180◦), one of the solutions will be equal to zero, and we are left with

Ẽn =
2Ma+ 2Ma

8M2
=

4M (r2 + 2rt+ t)

8M2
=

(r + t)2

2M
. (1.28)

Substituting r and t back in Equation 1.28 we get the maximum energy that an electron can

transfer to a nucleus of mass M that is moving with velocity v as

Emax (Ee, v) =

(
2
√
Ee (Ee + 2mc2) +Mvc

)2
2Mc2

, (1.29)

where the kinetic term of the electron can be directly linked to the acceleration voltage U and

the elementary charge e, Ee = eU . For the case where the target atoms is at rest, we set v=0

and see that by doing so we get

Emax (Ee) =
2Ee (Ee + 2mec

2)

Mc2
, (1.30)

which coincides with the equation derived in [26].

A comparison between the approximations and what energy values they deliver, can be seen

in Figure 1.7. One can tell from the plots, that the difference in the output these approximations

produce is negligible.
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Figure 1.7: (a) The maximum transferred energy Enum
max to a carbon atom for various atom

velocities v at 60 keV and 200 keV, calculated with the numerical approximation. At this scale,

the other two approximations would be indistinguishable from Enum
max . (b) The relative difference

between the other two approximations for the maximum transferred energy and the numerical

one.

Displacement cross section

A way to predict how often knock-on collisions occur [26] given a certain beam current density

j is to calculate the displacement rate p of each atom

p = σj, (1.31)

where σ is the displacement cross section. The cross section for Coulomb scattering between a

relativistic electron and a corresponding target nucleus was derived by N. Mott [27] as a solution

to the Dirac equation [28]. McKinley and Feshbach extended this work [29] to accurately describe

cross sections of ions up to a medium Z (atomic number)

σ (θ) = σR

[
1− β2 sin2(θ/2) + π

Ze2

h̄c
β sin(θ/2) (1− sin(θ/2))

]
, (1.32)

where β = v/c is the ratio between the electron speed and the speed of light and σR is the

classical Rutherford scattering cross section

σR =

(
Ze2

4πε02m0c2

)2
1− β2

β4
csc4(θ/2), (1.33)

where ε0 is the vacuum permittivity and m0 is the mass of the electron. Considering the notations

of Equation 1.9, we can write Equation 1.32 as a function of the energy E as in [28]

σ (E) =

(
Ze2

4πε02m0c2
Emax

E

)2
1− β2

β4

[
1− β2 E

Emax

+ π
Ze2

h̄c
β

(√
E

Emax

− E

Emax

)]
. (1.34)
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In a monoatomic gas, the energy transferred by the electron is converted to kinetic energy. The

same happens in a crystalline system whether or not the transferred energy exceeds the bonding

energy of the atom. Displacements can only occur if the transferred energy between the electron

and the atom is larger than the displacement threshold Ed [28]. Transferred energies lower than

displacement threshold are converted into vibrational energy of the lattice.

In order to quantify experimental irradiation, the total displacement cross section needs to

be considered. This is obtained by integrating the cross section from Equation 1.34 inside the

energy domain S where the displacement conditions are satisfied

σd =

∫
S(Emax>Ed)

σ (E)
4π

Emax

dE. (1.35)

Under the hypothesis that Ed is an isotropic function, Seitz and Koehler [30] derived the following

formula for the displacement cross section:

σd = 4π

(
Ze2

4πε02m0c2

)2
1− β2

β4

{
Emax

Ed

− 1− β2 ln

(
Emax

Ed

)
+π

Ze2

h̄c
β

[
2

(
Emax

Ed

)1/2

− ln

(
Emax

Ed

)
− 2

]}
. (1.36)

Equation 1.36 has been used to evaluate the total knock-on cross section in different materials

and also carbon nanostructures. Efforts have been done to improve the theoretical cross section

by assuming that the target atoms are moving. First Meyer et. al. [24] showed that under

80 keV electron irradiation, the defect free graphene lattice remained undisturbed and that the

knock-on damage begins a few keV above this energy. To theoretically predict the displacement

cross section they approximated the phonon distribution of the material using the Debye model.

They extracted the distribution of atom velocities from this model and calculated the maximum

transferred energy Emax (v, Ee) (Equation 1.29) as a function of electron energy Ee and atom

velocity v. Hence, if we assume that the lattice is static and that the target atom is at rest

(Equation 1.30), we fail to theoretically describe any displacements below 110 keV in carbon-

based materials as seen in Figure 1.8.

A further improvement to the non-static model was done by Susi et. al. [25] since the Debye

model does not properly describe two-dimensional systems. They extracted the out-of-plane

velocities vz from the phonon density of states (DOS). To estimate the DOS they calculated

the phonon dispersion relation with DFT using the ”frozen phonon method”. This was done by

individually displacing the two graphene unit cell atoms by 0.06 Å in all cartesian directions and
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Figure 1.8: Displacement cross section for the static lattice approximation

calculating the forces on all atoms in a 7x7 supercell. The Gaussian velocity distribution Pvz (v)

was calculated from the out-of-plane acoustical (ZA) and optical modes (ZO) of the DOS. The

probability distribution of the target atoms in the z direction follows the normal distribution with

a standard deviation equal to the temperature-dependent mean square velocity v2z (T ):

Pvz (v) =
1√

2πv2z (T )
exp

(
−v2z

2v2z (T )

)
(1.37)

The total cross section was then calculated by numerically integrating Equation 1.36 over all ve-

locities vz where the maximum transferred energy Emax (v, Ee) exceeds the displacement thresh-

old Ed

σ (E, v) =

∫
Emax(v,Ee)≥Ed

Pvz (v)σd (Emax (v, Ee)) dv. (1.38)

They compared the model with experimental data acquired with a STEM where the displace-

ment was measured for several acceleration voltages (see Figure 1.9). The 12C and 13C curves

in Figure 1.9 represent the best fit to the experimental data points 12C STEM and 13C STEM,

respectively, measured for graphene. Despite the improvement to the theoretical value, there

remains a possible discrepancy between the experimental fit and the theoretical curve calculated

with displacement threshold energies Ed and velocities vz from DFT simulations.

In this thesis the model is further expanded by including the temperature effect not just on the
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momentum transfer, but also on the displacement threshold and compared to the data measured

in [25]. In order to predict the role of the temperature, carbon displacement simulations were

carried out for graphene at various temperatures using molecular dynamics.
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Figure 1.9: Experimental (STEM) vs. theoretical displacement cross-section (DFT). Adapted

from Ref. [25]

1.5 Molecular dynamics

”At the very heart of any molecular dynamics scheme is the question of how to describe - that is

in practice how to approximate - the interatomic interactions”, Dominik Marx [31].

Molecular dynamics (MD) simulations are carried out in the hope of understanding the dy-

namic behavior of molecules in terms of their structure and the microscopic interaction between

their atoms. MD acts as a link between experiments and theory, the macroscopic world and the

microscopic length and time scales, providing us the means to learn some things, which cannot

be found in other ways. To make direct comparisons with experimental data, a good model of

molecular interactions is vital. The accuracy of the predictions they provide is subject to the

limitations imposed by computational power.

There are two major types of simulation methods for many-body systems, stochastic and

deterministic simulations, which are covered by the Monte Carlo (MC) [32] and the MD, respec-

tively. Monte Carlo simulations test the configuration space by trial moves of particles. Within

the so-called Metropolis algorithm [33], the energy change from step n to n + 1 is used as a
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trigger to accept or reject the new configuration [34],[35]. Low energy paths are always accepted,

while those with higher energy are accepted within a probability range governed by Boltzmann

statistics [34],[35]. By averaging over all the Monte Carlo steps, the properties of the system can

be calculated.

We can distinguish between three types of MD in terms of amount of empirical input and

accuracy:

• Classical,

• Semi-ab-initio and

• Ab-initio molecular dynamics

In the coming sections, the differences between those types of simulations will be discussed. For

now we will concentrate on what they all have in common. All of the above simulations consist

of the step-by-step numerical solution of classical equations of motion [36] [37], which are in the

Newton formalism

mir̈i = fi and fi = − ∂

∂ri
U
(
rN
)
, (1.39)

where fi is the force acting on atom i, which is derived from the potential energy U
(
rN
)
, where

rN = (r1, r2, ...rN) represents the complete set of 3N atomic coordinates.

For classical MD and semi-ab-initio calculations, the part of the potential energy U for the

interactions between atoms in the same molecule and those in other molecules is usually split

into one-body, two-body, three-body terms and has the form:

U(rN) =
∑
i

u (ri) +
∑
i

∑
j>i

v (ri, rj) +
∑
i

∑
j,k>i

v (ri, rj, rk) + ... (1.40)

The term u (r) represents an externally applied potential field. It is common to focus on the

pair potential v (ri, rj) or the atomic bond order potential described in section 2.1. The most

commonly used form of pair potential, is the Lennard-Jones two-body potential

vLJ = 4ε

[(σ
r

)12
−
(σ
r

)6]
. (1.41)

It is used to describe the interaction between a pair of neutral atoms or molecules. One parameter,

ε, is the depth of the potential well, which describes the region surrounding the lowest potential

energy point. σ describes the distance where the particle-particle interaction force is null, while

r is the distance between the particles. The ∝ r−12 term stands for the repulsion at short
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ranges between the particles, caused by the overlapping of electron orbitals [38]. The ∝ r−6 term

accounts for the the long range attraction. This potential was used in the earliest studies and gave

a very good approximation on the equilibrium state of argon [39]. Having defined the potential

energy function U
(
rN
)
, the atomic forces can be calculated as

fi = − ∂

∂ri
U
(
rN
)
. (1.42)

For simplicity, we can describe a structure composed of atoms with potential energy U
(
rN
)

and

coordinates rN = (r1, r2, ...rN) also in terms of kinetic energy K
(
pN
)

=
∑N

i=1 | pi |2 /2mi with

atomic momenta pN = (p1, p2, ...pN). The total energy or the hamiltonian can be written as

the sum of the kinetic and potential energy H = K +U . Now if we write the classical equations

of motion as

ṙi = ṗi/mi and ṗi = fi, (1.43)

we get a system of coupled ordinary differential equations. These equations need to be integrated

step-by-step numerically by the MD algorithm. The integration time step δt must not be too

large, since it may produce inaccurate results. A good example of an algorithm which allows the

use of longer timesteps without putting the accuracy of the simulations at risk is the ’velocity

Verlet’ algorithm [40], which can be written as:

pi

(
t+

1

2
δt

)
= pi (t) +

1

2
δtfi (t) (1.44)

ri (t+ δt) = ri + δtpi

(
t+

1

2
δt

)
/mi (1.45)

pi (t+ δt) = pi

(
t+

1

2
δt

)
+

1

2
δtfi (t+ δt) . (1.46)

After the step of Equation 1.45, the force is evaluated to give fi (t+ δt) for Equation 1.46. This

construction advances the coordinates and momenta over a timestep δt. The main attributes of

the Verlet algorithm are that it is time reversible; it requires just one force evaluation per step

and it is easy to program. Concerning MD, the main ingredients needed to start are:

• a model to describe the interaction between atoms, molecules etc.

• a integrator which shifts particle positions and velocities from time t to t+ δt,

• a microcanonical ensemble (NVE).
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These three essential quantities define a MD simulation. In this study, classical molecular dy-

namics and semi-ab-initio simulations have been carried out using the ’velocity Verlet’ algorithm.

In the next sections, the main aspects of classical molecular dynamics and ab-initio calculations

will be discussed including the methods used in this master thesis.

1.5.1 Classical molecular dynamics

MD is a well-established, powerful tool used to investigate many-body condensed matter systems

and biomolecular congregations. It uses predefined potentials and force fields based on empirical

data or on independent electronic structure calculations. In classical molecular dynamics, the in-

teratomic potentials are determined in advance. Particles will interact according to the predefined

potentials.

Since classical MD uses simple predefined potentials, they are not computationally expensive

and can be used to simulate a large number of atoms. The atoms interaction is mediated

by analytical potentials, solving Newton’s equation of motion for each particle numerically and

therefore yielding an approximation of the system’s time dependent behavior. The potential

of choice in this study is the second generation reactive empirical bond order potential energy

expression for hydrocarbons (REBO2) by Brenner et. al. [41]. We also tested analytical potentials

by Erhart and Albe [42], Tersoff [43], and Brenner [44]. However, it was the REBO2 potential (see

section 2.1) which described best the displacement threshold of carbon atoms from the graphene

lattice when compared to experimental data.

1.5.2 Ab-initio molecular dynamics

”Ab-initio” methods, in latin ”from the beginning” are purely theoretical ways to describe inter-

actions between atoms. They are based on various approximations, which are necessary in order

to solve Schrödinger’s equation for many-body systems.

In a real system, there are a series of electrostatic interactions between particles, such as

electron-nuclei attraction, electron-electron repulsion and nuclei-nuclei repulsion. The time-

independent Schrödinger equation does fur such a system depend on the positions of all electrons

ri and of all nuclei Ri

HΨ (ri, Ri) = EΨ (ri, Ri) , (1.47)

where E is the total energy of the system and Ψ is the wavefunction representing all the particles
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of the system. This equation cannot generally be solved. One can assume that the nuclei and

the electrons can be treated separately. The validity of this assumption is based on the mass

difference between the nuclei and the electrons, one proton being ≈ 1837 times heavier than one

electron. This is called the Born-Oppenheimer approximation

Ψ (ri, Ri) ≈ x (Ri) Ψ (ri) . (1.48)

The nuclei may be treated separately x (Ri) and as standing particles, given the fact that they

are that much heavier electrons. However, this simplification Ψ (ri) can still not be solved

analytically because of the correlation and exchange effects (Pauli exclusion principle and Coulomb

interaction) between the electrons. The solution is to treat each electron separately as moving

in a mean field potential V (r). So now we have N one-electron wave functions interacting with

the same mean field potential V (r)

− h̄2

2m
∇2Ψi (r) + V (r) Ψi (r) = εiΨi (r) , (1.49)

where Ψi (r) are the one-electron wave functions, ∇ the Nabla operator, h̄ the reduced Planck

constant, m the mass of the electron and εi the energy eigenvalues. The electrostatic interaction

of one electron with all other electrons can be described by the mean field potential. The N -

electron wave functions can be expressed in terms of electron density ρ (r) as

ρ (r) =
N∑
i

|φ (r)|2. (1.50)

According to Kohn and Sham [45], the one-electron Schrödinger equation of a fictional system of

non-interacting electrons can generate the same electron density as any other system of interacting

particles. Density functional theory (DFT) formulated by Hohenberg [46], Kohn and Sham is

based on the Born-Oppenheimer and the single-electron approximation, where the Hamiltonian

is

H = − h̄2

2m

∑
i

∇2
i +

∑
i

Vext (ri) +
1

2

∑
i 6=j

e2

|ri − rj|
. (1.51)

The fundamental proposition of DFT is that the ground state and excited state properties of a

system with many electrons, interacting through an external potential Vext, can be determined by

the electron density ρ (r). The Kohn-Sham DFT theory describes a system in which the energy

is expressed as a functional of the ground state density E [ρ].

24



Chapter 2

Methods

2.1 A second-generation reactive empirical bond order po-

tential (REBO2)

The reactive empirical bond order potential [44] is a classical potential energy expression for

carbon and hydrocarbon molecules that allows for bond making and breaking with appropiate

changes in atomic hybridization. REBO2 [41] yields an improved version of describing bond

energies, lengths, and force constants for carbon-carbon bonds when compared to its predecessor.

The basis of the potential described here is based on the general analytical form derived by Abell

from the chemical pseudopotential theory [47]. This form is based on a parametrized bond order

function, which is used to introduce many-body effects and chemical bonding into a pair potential.

Abell showed that the chemical binding energy Eb can be simply written as a sum over atomic

sites i

Eb =
∑
i

∑
j(>i)

[
V R (rij)− bijV A (rij)

]
. (2.1)

The sum in Equation 2.1 is over the nearest neighbors j of atom i, the functions V R (rij)

and V A (rij) are pair-additive interactions that represent interatomic repulsions (core-core) and

attraction from valence electrons, respectively. The term rij is the distance between pairs of

nearest-neighbor atoms i and j, and bij is the bond order [41], the number of chemical bonds

between atoms i and j. The empirical bond order function used here is written as

bij =
1

2

[
bσ−πij + bσ−πjj

]
+ bπij. (2.2)

25



2.2. DENSITY FUNCTIONAL TIGHT BINDING (DFTB) 2. Methods

Values for functions bσ−πij and bσ−πjj depend on the positions and bond angles for atoms i and j.

The function bπij is written as a sum of two terms:

bπij = ΠRC
ij + bDHij . (2.3)

The value of Πij depends on whether a bond between atoms i and j has a radical character or

not [48]. The term bDHij depends on the dihedral angle (angle between two intersecting planes of

atoms) for carbon-carbon double bonds. Equation 2.2 combined with Equation 2.1 are used to

define the covalent binding energy of any collection of carbon atoms or hydrogen.

In the second-generation potential (REBO2), the forms:

V R (r) = f c (r) (1 +Q/r)Ae−αr (2.4)

and

V A (r) = f c
∑
n=1,3

Bne
−βnr (2.5)

are used for the pair terms [41]. The distance between the atoms is r, and f c (r) limits the range

of the covalent interaction by assuming a value of one for nearest neighbours and zero for all the

other distances to the atoms. The repulsive pair interaction is given by the screened Coulomb

function Q and the attractive term by the bond order Bn.

2.2 Density functional tight binding (DFTB)

Classical interatomic potentials based on empirical data provided by experiments or ab-initio

calculations can be very fast and can give an accurate description of materials where the physical

properties are well understood. However, they neglect quantum mechanical effects and often fail

to describe geometries which are not included in their construction. On the other hand, ab-initio

calculations based on DFT represent a reliable point of reference against the experiments, but

too slow to describe large systems (some hundreds of atoms).

The density functional tight-binding (DFTB) method is based on the density functional the-

ory formulated by Kohn and Sham (KS-DFT) [49]. The DFTB method is less empirical than

classical MD since the parametrization is based on a number of DFT calculations and the elec-

tron correlation is included from the beginning. It consists of a series of models that are derived

from a Taylor series expansion of the KS-DFT total energy E [ρ] [49]. A reference density ρ0

is assumed and perturbed with some fluctuations ρ (r) = ρ0 (r) + δρ (r) instead of finding the
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electron density ρ (r) which minimizes the energy. The total energy is expanded in a Taylor series

up to the third order [49] and can be written as

E
[
ρ0 + δρ

]
= E0 [ρ0] + E1 [ρ0, δρ] + E2

[
ρ0, (δρ)2

]
+ E3

[
ρ0, (δρ)3

]
. (2.6)

Along the years, different models have been built depending on the terms of this expansion.

The first two terms of Equation 2.6, E0 [ρ0] and E1 [ρ0, δρ] contribute to the non-self-consistent

DFTB1 method [50, 51]. For systems where the charge transfer between atoms is small, or for

atoms of similar electronegativity, DFTB1 is very well suited because the higher order terms are

neglectable. The addition of the terms E2 and E3 contributes to the self-consistent charge (SCC)

DFTB2 [52] and DFTB3 [53] methods respectively.

In the DFTB approach (see Ref. [54]) every one-electron wavefunction ψ (r) is expressed as

a linear combination of atomic orbitals φµ and their coefficients cµ

ψ (r) =
∑
µ

cµφµ (r) . (2.7)

The main goal is to solve the eigenproblem∑
ν

Hσ
µνc

σ
ν = εσµ

∑
ν

, Sµνc
σ
ν (2.8)

where cσν represents the molecular orbital coefficient, εσµ is the energy eigenvalue, and

Hσ
µν = 〈φµ|H̃σ|φν〉 and Sµν = 〈φµ|φν〉 (2.9)

are the Hamiltonian and the overlap matrices, respectively. The spin state is indicated by the

index σ. The Hamiltonian matrix element Hσ
µν for the spin-polarized self-consistent charge (SCC),

with orbitals φµ and φν located on atoms A and B, respectively, can be written as

Hσ
µν =〈φµ|H̃0|φν〉+

1

2
Sµν

∑
C

∑
l′′∈C

(γAl,Cl′′ + γBl′,Cl′′) ∆qCl′′

± 1

2
Sµν

(∑
l′′∈A

WAll′′mAl′′ +
∑
l′′∈B

WBl′l′′mBl′′

)
. (2.10)

The first term of the matrix corresponds to the non-SCC DFTB1 method. The second term is

the SCC contribution, where the sum runs over all the shells l′′ of all atoms C in the system [54].
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The shift vector, γAl,Cl′′∆qCl′′ , which contains the SCC potential at site Al, can be constructed.

γ consists of a long-range Coulombic term and a short-range term S

γAl,Cl′′ =
1

RAC

− S (UA,l, UC,l′′ , RAC) . (2.11)

RAC gives the distance between atoms A and C and UA,l and UC,l′′ are the Hubbard parameters

for the atoms and shells [54]. The Hubbard model [55] is used to describe the hopping of electrons

between atoms in the tight-binding model and includes the on-site repulsion, which comes from

the Coulombic repulsion between electrons on the same orbital. The charge difference ∆qCl′′

represents the difference between the sum of the Mulliken charges on shell l of atom C and the

total charge on that shell in an isolated atom [54]. Mulliken charges are derived from the Mulliken

population analysis [56] and provide the means to estimate partial atomic charges. The third

term of Equation 2.10 contains the spin contributions.

DFTB requires two sorts of parameters. First, there are the electronic parameters regarding

the wave function and density confinement, which enter the first term [49] Equation 2.10, and the

Hubbard parameters and its derivatives, which are computed from DFT calculations and enter

the rest of the equation.

2.3 Atomic simulation environment

The atomic simulation environment (ASE) [57] is a software package written in the Python

programming language with the purpose of setting up and conducting atomistic simulations.

Calculations of forces, energy and other quantities can be performed. The NumPy library [58]

and the syntax of Python make it possible to perform complex simulation tasks. ASE can be used

as an a front-end for molecular dynamics to set up, perform, visualize, and analyze simulations.

2.3.1 Unit cell construction

The first thing to do in a atomistic simulation is to set up a cell of atoms. Atoms of different

chemical species are included in the Atoms object. They are given Cartesian coordinates and

have properties such as velocities, masses, or magnetic moments. Appendix A is an example of

a Python code to build up the unit cell of graphene. Using the Atoms object we can create

a system of two carbon atoms, set the distance between them and define the unit cell vectors.

Periodic boundary conditions apply to the created unit cell to mimic the behavior of an infinite
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system. This involves the copying of the system in the periodic directions, so that the system is

surrounded by an exact copy of itself. The structure is built and can be saved as a .POSCAR

file [59]. Using the built-in graphic user interface (GUI) of ASE one can visualize the atom

cell Figure 2.1. ASE GUI can also be used to add desired atoms to the system and manually

move them to different locations.

Figure 2.1: Orthorhombic graphene unit cell, as visualized with ASE GUI.

2.3.2 Unit cell relaxation

We perform a unit cell relaxation to make sure the potential energy of the system is as low as

possible. The bond length between the atoms in the unit cell must correspond to the one given by

the potential energy expression we use, in order to prevent strain effects. Appendix B calculates

the potential energy as a function of the volume of the unit cell. The structure optimization

algorithm starts from an initial guess for the atomic positions and tries to move the atoms to

minimize the potential energy using an iterative procedure until certain conditions are fulfilled.

The optimizer FIRE (fast inertial relaxation engine [60]) was used. It adds an artificial force term

to guide the atoms towards the steepest descent of the potential energy. If the atoms move

against the forces at some point, the forces are set to zero and the dynamic parameters are reset.

A Calculator needs to be attached to the Atoms object in order to deliver the potential energy;

in this case REBO2, this is an interatomic potential (see section 2.1). The properties that can

be obtained from the Atoms object depend on the type of calculator. Since we are trying to find

the optimal cell volume, the Trajectory object helps us store the Atoms information for each step

so in the end we can compare between them and choose the unit cell with the lowest potential

energy. We can use ASE GUI to select the frame where the potential energy has a minimum
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(see Figure 2.2) and save the optimized structure for further use. Now that we found the optimal

unit cell size in terms of the lowest potential energy, we can multiply the unit cell and build a

large cell of atoms and start thermalizing the structure.

Figure 2.2: Frames having different potential energies. Each frame corresponds to a different cell

volume.

2.3.3 Thermalization

In order to simulate events occurring at different temperatures, the structure needs to be ther-

malized. Therefore we need a molecular dynamics object that will move the atoms according to

their forces and integrate the second law of Newton numerically (see section 1.5). VelocityVerlet

is a suitable algorithm to describe dynamics in a NVE ensemble, where the Newton’s second law

is preserved and therefore also the number of atoms and volume of the system. For the velocity

distribution of the atoms we use the Maxwell-Boltzmann distribution. Appendix C is an example

of a code used to thermalize graphene at 300K. The reason we chose the temperature to be 600

K has to do with the fact that half of the thermal energy will go into the potential energy of the

atoms and the other half into their kinetic energy; in order to simulate 300 K we had to initialize

at 600 K. This time we also set up a DFTB Calculator to describe the interactions between the

atoms in the lattice for that particular temperature. After a number of timesteps the temperature

stabilizes (see Figure 2.3) and we can save the thermalized state (see Figure 2.4) as a trajectory

file. This trajectory file will contain information on the positions, velocities and forces of all the

atoms in the structure.
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Figure 2.3: Temperature of the system against the number of timesteps (δt = 1 fs).

Figure 2.4: Thermalized graphene structure of 450 atoms at 300 K.

2.3.4 Displacement simulations

The thermalized graphene structure can now be used to simulate STEM experiments, that is,

electrons scattering elastically from the carbon atoms in the lattice and leading to their displace-

ment. We will assume that the electron beam is perpendicular to the graphene plane, and will

transfer the carbon atoms the same amount of momentum they would receive from the electrons

experimentally.
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2.3. ATOMIC SIMULATION ENVIRONMENT 2. Methods

The code in Appendix E first loads a thermalized graphene structure. It then defines a

list of atoms that we want to displace. A loop will start over the desired atoms, finding the

displacement threshold using a DFTB calculator for each one in a given range of energy, 18.7

to 25 eV in steps of 0.1 eV. This runs until the displacement criterium is fulfilled: whether the

atom is 5 Å above the lattice or its velocity component starts pointing in the negative z-direction.

If the atom is not displaced, the trajectory is reloaded to the initial thermalized state and the

same procedure is repeated with a higher energy value until the atom gets displaced. Figure 2.5

depicts the displacement simulation at two different timesteps, t1 and t2, towards the beginning

of the displacement and towards the end of the displacement respectively. These simulations

were performed for both the interatomic potential REBO2 and the DFTB method.

t1 t2>t1

Figure 2.5: Displacing a carbon atom. Visualization of the simulation at two different timesteps.
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Chapter 3

Results

3.1 Displacement simulations

3.1.1 REBO2

We used ASE and ran the script in Appendix D with Python using the methodology described

in the previous section to displace carbon atoms. We took this approach to understand how the

displacement threshold of the carbon atoms is affected at different temperatures. The simulations

ran for a 800 carbon atom cell thermalized at 100, 200 and 300 K respectively. We decided upon a

cell of 800 atoms because it is the largest system we can treat effectively and it is large enough to

not suffer from boundary effects. Simulations on large atom cells would become computationally

too expensive. The first round of simulations at 300 K (Figure 3.1), already proved that the

spread in displacement thresholds Ed is quite large, going up +6 eV and only −2 eV below the 0

K displacement threshold (white bar), calculated to be 25.1 eV. We went to lower temperatures

to check how the distribution of displacement energies changes relative to the 300 K case and

whether or not the spread is similarly shifted towards higher Ed values (see Figure 3.2 and

Figure 3.3). Neither the 200 K nor the 100 K case gave any dramatic change in the direction of

the energy spread, which looks similarly shifted towards higher Ed values.

It is of importance to understand why the distribution of Ed‘s is shifted to higher values and

why an atom is easier or harder to eject, to find out the energy range one can operate an electron

microscope with the purpose of displacing atoms. We plotted several atom parameters against

the displacement value such as: in-plane velocity, out-of-plane velocity, z-position relative to the

neighbors, forces in-plane and out-of-plane. None of these resulted in any trend when compared
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3.1. DISPLACEMENT SIMULATIONS 3. Results

to the Ed. To check whether the position of the atoms in the lattice relative to each other play

a role or not, we looked at the graphene sheet at 0 K, chose an atom and changed its position

relative to one neighbor. We moved the atom in small increments towards and away from it

and ran displacement simulations to check how the Ed is affected (Figure 3.4). Regardless of

the displacement direction, the displacement threshold always increased, which explains why the

distribution was skewed towards higher Ed’s.

The interatomic potential REBO2 has given us a displacement threshold value of Ed = 25.1 eV

for 0 K (represented by the white line in Figure 3.1), which is quite far from DFT values [25] of

around 22 eV. When running displacement simulations on the thermalized structures, the spread

of the Ed values was large and unphysically shifted towards higher energy values. One would

expect a symmetrical distribution of the Ed values, since the contributions to the positions and

velocities of the atoms are equally distributed. Due to the obvious problems with REBO2 results,

we decided to check the results with a more accurate modeling method.
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Figure 3.1: Histogram showing the spread of Ed values at 300 K with REBO2. The white line

represents the Ed for 0 K.
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Figure 3.2: Histogram showing the spread of Ed values at 200 K with REBO2. The white line

represents the Ed for 0 K.
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Figure 3.3: Histogram showing the spread of Ed values at 100 K with REBO2. The white line

represents the Ed for 0 K.
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3.1. DISPLACEMENT SIMULATIONS 3. Results

Figure 3.4: Carbon atom moved from its initial position towards a neighbor or towards the middle

of the hexagon
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3.1. DISPLACEMENT SIMULATIONS 3. Results

3.1.2 DFTB

We ran another set of displacement simulations using the DFTB method. Again, we used ASE

and ran the simulations using the Python code in Appendix E. Since the DFTB approach is

computationally more expensive than REBO2, we thermalized a graphene cell with only 450

atoms at 75, 150, 225, 300, 350 and 450 K to find the displacement threshold.

We tested the whole cell for 150, 300 and 450 K, 400 atoms at 350 K, and only 119 displaced

atoms for 75 and 225 K, respectively. Just by looking at the histograms (see Figure 3.5) we

observe that the spread in the displacement threshold Ed is narrow at low temperatures with

values between 19 and 21 eV, and gets wider to a range of 18 to 22 eV as we go towards higher

temperatures. The displacement threshold for graphene at 0 K was calculated at 19.9 eV with

the DFTB method, and the spread of Ed is symmetric, unlike in the case of the classical potential

REBO2. We fitted a Gaussian function P (Ed) to the histograms in Figure 3.5 (black curves) to

describe the probability distribution of the displacement thresholds which has the following form:

P (Ed) =

√
2√
πw

e
−2

(
Ed−xc

w

)2

, (3.1)

where w is the width of the distribution, xc is the center of the distribution and Ed the displace-

ment threshold. In Figure 3.6 one can see that the distribution widths vary between 0.82 and

1.53 eV depending on the temperature.

We tried again to figure out how the displacement threshold is affected by the position of

the atoms in the lattice, and did again the experiment at 0 K where we moved one carbon

atom towards its next nearest neighbor and away from it. While testing different positions, we

noticed that at some point the Ed starts to decrease or increase depending on the direction of

the displacement from the initial position. However, the magnitude of the change in Ed was very

small (∼ 0.2 eV).
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Figure 3.5: DFTB histograms for the spread of the displacement threshold for the carbon atoms.
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Figure 3.6: Width of the distribution extracted from the Gaussian fits to the histograms in Fig-

ure 3.5.

Figure 3.7: Carbon atom moved from its initial position towards the nearest-neighbor and towards

the middle of the cell.

We pursued extracting information on the atoms velocities, positions, and forces and compare

them to their displacement threshold. For example, we expected to see a lower Ed for atoms

with a higher velocity component vz, but that was not the case. Plotting the displacement

threshold against the z-position of the atoms and doing a linear fit also did not give a clear

trend (see Figure 3.8). Even though at 300 and 450 K, it looked like it might play a role as

suggested by the the very low p value, which is a parameter that tests the null hypotheses,

the effect couldn’t be confirmed for 150 K. Therefore we took the 0 K lattice and carried out
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displacement simulations on a single atom with different intial z-positions. The results are shown

in table Table 3.1.

Figure 3.8: Distribution of displacement threshold Ed values at different temperatures as a

function of their z-position (left) and out-of-plane velocity component vz (right). The orange

lines represent the linear function fitted to the values. The p-value indicates whether or not the

results are significant.
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Despite the fact that the atom had a higher or lower z-position with respect to its neigh-

bors (see Figure 3.9), the atom only got ejected easier. Still there was no explanation to why we

need to transfer more energy to the atom in some cases. Since changing the initial conditions

of the atom alone failed to give us an explanation on the higher Ed values we went on looking

at the neighboring atoms. Next we displaced the carbon atom together with its three neighbors

and got the result shown in Table 3.2:

Table 3.1: z-displacement effect on the displacement threshold

z-displ. [Å] -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 0 0.1 0.15 0.2 0.25 0.3 0.35

Ed [eV] 19.0 19.5 19.5 19.6 19.7 19.8 0 19.8 19.7 19.5 19.3 19.1 18.8

Figure 3.9: Schematic of atom lying above the rest

Table 3.2: z-displacement of the atom and its 3 neighbors

z-displacement [Å] Ed [eV]

-0.2 21.7

-0.1 20.8

0 19.9

0.1 19.0

0.2 18.5
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Figure 3.10: Schematic of atom and neighbors positioned above the rest

These simulations finally revealed how the displacement threshold Ed is affected by the geometry

of the atoms in the cell. If the targeted atoms have a higher z -position relative to their neighbors,

the force which pulls the atom back to the lattice is easier to repel. Therefore, the atoms need

less energy to escape. To confirm the hypothesis we ran another set of simulations where the

three neighbors of the ejected atom had initial positive and negative momentum.

The results show that the energy needed to displace a carbon atom is also dependent on the

momentum of its neighbors. As depicted in Figure 3.11, if the ejected atom is not held back

by its neighbors, it can escape easier. One has to consider that even though the momenta are

pointing in the opposite direction of the ejection, the restoring forces are acting in the direction

of the ejection and help the atom get knocked out with less energy.

Table 3.3: Initial momentum to the neighbors of the atom to be ejected (see Figure 3.11).

~p [kg·m/s] Ed [eV]

-0.15 18.3

-0.1 18.9

-0.5 19.4

0.5 20.4

0.1 20.8

0.15 21.3
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p

Figure 3.11: Schematic of the atom about to be ejected and its neighbors with negative momen-

tum.
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3.2. IMPROVING THE THEORETICAL DISPLACEMENT CROSS SECTION 3. Results

3.2 Improving the theoretical displacement cross section

As was presented in Section 1.4.1, a series of improvements have been done to the model of

predicting the displacement cross section when operating TEMs at voltages below 110 keV. The

static lattice approximation was replaced by the the model where the target atoms were mov-

ing [24, 25]. Equation 1.38 predicted the displacement cross section most accurately by integrating

over a range of out-of-plane velocities vz, for which the maximum transferred energy Emax (Equa-

tion 1.29) was exceeding the displacement threshold Ed of the target atom. However, one can

see from the figure Figure 1.9 that there is still a possible discrepancy between the theoretical

curve and the experimental fit. Until now, all formulations have assumed that Ed is a constant.

Our simulations (Figure 3.5) clearly show that this is not an accurate approximation. The spread

in the displacement threshold values Ed is a consequence of the fact that atoms are not at their

equilibrium positions at any finite temperature.

For low temperatures (75, 150, 225 K) the distribution widths are narrow and vary between

0.82 and 1.1 eV (see Figure 3.6). The data points for 75 K and 225 K are less accurate since we

only tested 119 atoms, compared to the full lattice at 150 K. At higher temperatures (300, 350

and 450 K) the values are between 1.48 and 1.53 eV. This may have to do with the fact that the

vibration modes reach a saturation level around room temperature, or the DFTB method fails to

describe accurately the behavior of the atoms at high temperatures.

To improve the theoretical displacement cross section, we need to also include the distribu-

tion of displacement thresholds Ed when calculating the total cross section with Equation 1.38.

We included the distribution of displacement thresholds (see Equation 3.1) in the formula for

computing the total displacement cross section

σ (E, v, Ed (T )) =

∫
Emax(v,E)≥Ed

P (Ed (T ))Pvz (v)σd (Emax (E, v)) dvdEd. (3.2)

To evaluate Equation 3.2 we used Sage [61], an open-source mathematical software system based

on Python and built upon packages like NumPy, SciPy, matplotlib and many more. The script

in Appendix F calculates the velocity distribution Pvz from the phonon density of states taken

from [25], and then numerically integrates Equation 3.2 over all velocities vz where the maximum

transferred energy exceeded the displacement threshold (Emax ≥ Ed) and multiplies it with the

Gaussian displacement threshold distribution, to calculate the displacement cross section.
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Figure 3.12: Comparison of theoretical cross section values and the STEM (shaded area) and

DFT values from [25].

We computed the new displacement cross-section data and compared it with the experimental

data acquired with the STEM in [25] (Figure 3.12). The relative difference was calculated as

∆ =
σnew − σexp

σexp
. (3.3)

The black squares represent the displacement cross sections calculated with Equation 1.38 with

Ed=21.31 eV value from DFT. The displacement cross section calculated with Equation 3.2 for

the same Ed value with the spread of w = 1.29 eV (from DFTB+ 300 K), is much closer to

the experimental data (red circles). We also calculated the best two parameter-fit to the cross

section values by changing the displacement threshold Ed and the spread w, and compare them

to experimental data via Equation 3.3.
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Chapter 4

Conclusion

In this thesis, I have shown that the displacement threshold energy Ed should not be assumed

to have a constant value for systems at finite temperature. Instead, the threshold is affected by

the fact that the atoms are displaced from their equilibrium positions, which leads to a normal

distribution of values around the 0 K value. In addition, I have algebraically derived the formula to

calculate the maximum transferred energy in a relativistic scattering process between an electron

and a moving nucleus, and verified the validity of typically used approximations.

From the simulations with an interatomic REBO2 potential at different temperatures, we

noticed that there is a large spread in Ed values. We tried to figure out how the displacement

threshold is affected, but couldn’t reach a conclusion. The spread of displacement threshold

values was noticeable for the analytical potential simulations, but the location of the distribution

in terms of Ed was not physical. Therefore, we moved on to DFTB calculations for a more

accurate description of the displacements.

The DFTB simulations gave us a symmetric spread of energies in contrast to the REBO2

method. We discovered that the displacement threshold of the target atoms is strongly influenced

by its neighboring atoms. If the neighboring atoms have a initial momentum opposite to the

displacement direction of the target atom, the restoring force acting on the atom will be smaller,

and so it will be easier to knock out. On the contrary, if they have momentum in the same

direction as the target atom, the restoring force will be larger, and the atom will require more

energy to be knocked out.

It is typically assumed that the displacement threshold has a fixed value when the total

cross section is evaluated. However, our simulations show that this is an approximation. We

improved the model for evaluating the theoretical displacement cross section by including the
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4. Conclusion

effect the temperature has on the displacement thresholds. If we compare the old theoretical

values calculated for a displacement threshold of Ed = 21.31 eV to the same DFT value with an

added spread of w = 1.29 eV, there is a noticeable improvement in the match to the experimental

data. A two-parameter fit yields Ed = 21.57 eV, w = 1.77 eV, which further improves the

agreement. Additional improvements, such as ab-initio molecular dynamics simulations and more

precise measurements should allow us to improve the model. An accurate description of the

displacements of carbons atoms from graphene would be a step forward in understanding how to

also controllably manipulate heteroatoms such as silicon or nitrogen.
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A. UNIT CELL CONSTRUCTION

A Unit cell construction

import numpy.math.sqrt as sqrt

from ase import Atoms, io

# add 2 Carbon atoms

a = Atoms('C2')

# nearest neighbour carbon-carbon distance

a0=1.42

#set the unit cell vectors and scaled positions

a.set_cell([[a0*3/2,a0*sqrt(3)/2,0],[a0*3/2,-a0*sqrt(3)/2,0],

[0,0,10]])

a.set_scaled_positions([[1./3,1./3,0],[2./3,2./3,0]])

io.write('graphene_unit_cell.POSCAR',a)

49



B. UNIT CELL RELAXATION

B Unit cell relaxation

import numpy as np

import sys

from ase import Atoms, io

# import calculator

from atomistica import Rebo2

# object that stores temporal evolution of a system

from ase.io import Trajectory

# structure optimizer

from ase.optimize import FIRE

# load unit cell

name = sys.argv[1].replace('.POSCAR','')

atoms = io.read(name+'.POSCAR')

# define the calculator

calc = Rebo2()

# attach the calculator to the atoms object

atoms.set_calculator(calc)

cell = atoms.get_cell()

# define trajectory name and properties

traj = Trajectory(name+'_cellrlx.traj','w', properties=['energy','forces'])

# loop over different cell sizes to find the minimum energy unit cell

for x in np.linspace(0.9375, 1.0125, 20):

atoms.set_cell([cell[0] * x, cell[1] * x, cell[2]], scale_atoms=True)

opt = FIRE(atoms)

opt.run(fmax=0.01)

traj.write(atoms)
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C. THERMALIZATION

C Thermalization

import os, sys

from ase import Atoms

from ase.calculators.dftb import Dftb

from ase.io import Trajectory

from ase import io

# defines distribution of velocities at certain temperatures

from ase.md.velocitydistribution import MaxwellBoltzmannDistribution

# algorithm used to calculate dynamical properties

from ase.md.verlet import VelocityVerlet

from ase import units

import numpy as np

fname = 'dftb_graphene_sc15'

# load the atoms

system = io.read('dftb_relaxed_450atoms.POSCAR')

# set the calculator

calc = Dftb(label='carbon',

atoms=system,

kpts=(1,1,1),

Hamiltonian_MaxAngularMomentum_='',

Hamiltonian_MaxAngularMomentum_C='"p"')

system.set_calculator(calc)

# choose timestep

ts = 1

# set the temperature

temp = 600
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name=fname+"_MB_300Kelvin"

traj = Trajectory(name+".traj", 'w', system, properties={"energy",

"velocities", "forces"})

# apply distribution to the system

MaxwellBoltzmannDistribution(system, temp * units.kB)

# set VelocityVerlet as the integrator

dyn = VelocityVerlet(system, ts * units.fs)

# save trajectory for each timestep

dyn.attach(traj.write, interval=1)

# amount of timesteps to run

dyn.run(5000)

traj.close()
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D REBO2 displacement simulations

from ase import Atoms

from atomistica import Rebo2

from ase.io import Trajectory

from ase import io

from ase.md.velocitydistribution import MaxwellBoltzmannDistribution

from ase.md.verlet import VelocityVerlet

from ase import units

import numpy as np

import sys

fname = sys.argv[1].replace('.traj','') #load file

atoms = io.read(fname+'.traj')

calc = Rebo2()

atoms.set_calculator(calc)

ts = 0.3

atoms2 = atoms.copy()

#randomize the atom number about to knock out

for i in np.random.randint(501,800, size=33):

nat = i

print nat

name=fname+"_stat_at"+str(nat)

flog=open(name+'.txt','a')

flog.write('\n')

atoms = atoms2.copy()

calc = Rebo2()

atoms.set_calculator(calc)

dyn = VelocityVerlet(atoms, ts * units.fs, logfile='md.log')

for e in np.arange(24.5,29.0,0.1):
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D. REBO2 DISPLACEMENT SIMULATIONS

traj = Trajectory(name+"_E"+str(e)+".traj", 'w', atoms,

properties={"energy","velocities", "forces"})

dyn.attach(traj.write, interval=5)

atoms[nat].momentum[2]=(2*e*atoms[nat].mass)**0.5

dyn.run(600)

if atoms[nat].position[2] > 6.0:

print i, "Ejected at:", e

flog.write(',')

flog.write(str(e))

atoms = atoms2.copy()

calc = Rebo2()

atoms.set_calculator(calc)

dyn = VelocityVerlet(atoms, ts * units.fs)

flog.close()
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E DFTB+ displacement simulations

from ase import Atoms, io

from ase.calculators.dftb import Dftb

from ase.io import Trajectory

from ase.md.verlet import VelocityVerlet

from ase import units

import numpy as np

import sys

from ase.io.dftb import read_dftb_velocities, write_dftb_velocities

# load trajectory

fname = sys.argv[1].replace('.traj','')

system = io.read(fname+'.traj')

# choose timestep

ts = 0.3

atoms2 = system.copy()

# create the list of atoms to eject

a = np.arange(1,40,1)

b = np.arange(180,220,1)

c = np.arange(330,370,1)

indices = np.concatenate([a,b,c])

# loop over the atoms

for nat in indices:

print nat

name=fname+"_stat_at"

#open a .txt file to save the atom number and the displacement threshold

flog=open(name+'.txt','a')
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system = io.read(fname+'.traj')

flog.write(str(nat))

system = atoms2.copy()

calc = Dftb(label='carbon',

atoms=system,

kpts=(1,1,1),

Hamiltonian_MaxAngularMomentum_='',

Hamiltonian_MaxAngularMomentum_C='"p"',

)

system.set_calculator(calc)

dyn = VelocityVerlet(system, ts * units.fs, logfile='md.log')

# loop over different maximum transferred energies to the atom

for e in np.arange(18.7,25,0.1):

traj = Trajectory(name+"_E"+str(e)+"_"+str(nat)+".traj", 'w', system,

properties={"energy", "velocities", "forces"})

# saving the positions of all atoms to the trajectory every five time steps

dyn.attach(traj.write, interval=5)

# applying momentum in z-direction to the carbon atom

system[nat].momentum[2]=(2*e*system[nat].mass)**0.5

stop = False

# conditions to test whether the atom is displaced or not

for iterations in range(12):

dyn.run(50)

if system[nat].position[2] > 5.0:

print nat, "Ejected at:", e

flog.write(',')

flog.write(str(e))

stop = True
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break

if system.get_velocities()[nat,2] < 0:

print nat, "Stalled at:", e

break

if stop:

break

# add this line so that the old trajectory won't be overwritten with new data

system = atoms2.copy()

system.set_calculator(calc)

dyn = VelocityVerlet(system, ts * units.fs)

flog.write('\n')
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F Numerical integration of the displacement cross section

#DEFINE CONSTANTS, GET THE DENSITY OF STATES

M=12.011*1.660539040e-27

x=var('x')

v=var('v')

T=var('T')

E_d=21.14

eps_0 = 8.85418e-12

e = 1.60217662e-19

c = 299792458.0 # always use float values

m_0=9.10938356e-31

m_1=510998.0

Z = 6.0

hbar= 1.054571800e-34

T = 293.15

w=var('w')

w_z=1.0

k=1.38064852e-23

import numpy as np

import sys

# read the zdos data and normalize

data = np.loadtxt('path/zdos.csv',delimiter=',')

u = data[:,0]

y = data[:,1]

f = u * e / hbar #convert of the frequency axis from eV to 1/s

df=f[1]

int = sum(y)*df #define integral
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# normalize the data so that the integral over the zdos yields 2

ynorm = y * 2 / int

datanorm = data #save the normalized data

datanorm[:,0] = f

datanorm[:,1] = ynorm

np.save('path/zdos_normalized.npy', datanorm)

x = datanorm[:,0]

y = datanorm[:,1]

from sage.calculus.interpolation import spline

datalist = zip(x,y)

# equation (9) from Ref. [30], the part to be integrated

u = var('u')

f = (1/2+1/(exp(hbar*u/(k*T))-1))*u

#define the integrand

y2 = y.copy()

for i in srange(len(x)):

val = x[i]

y2[i] = f(u=(val+0.005))*y[i]

datalist2 = zip(x,y2)

#interpolate the integrand

integrand=spline(datalist2)

# CALCULATING THE DISPLACEMENT CROSS SECTION

cs = [0.0,0.0,0.0,0.0]

voltages = [85000.0,90000.0,95000.0,100000.0]

# experimental data from STEM

data = [0.0012,0.0109,0.0566,0.328]
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# calculate velocity from the density of states, Eq. (9) from Ref.[30]

v_z = (hbar/(2*M))*integrand.definite_integral(0,3e14)

# velocity distribution Equation (1.20)

P=1/sqrt(2*pi*v_z)*exp(-v^2/(2*v_z))

# defined after Eq. (21) from Ref.[30]

v_max= 8*sqrt(v_z)

err = 0.0

i = 0

E = var('E')

v = var('v')

E_e = var('E_e')

#define max. transferred energy Equation (1.13)

E_n=M*v^2/2

r=1/c*sqrt(E_e*(E_e+2*m_0*c**2))+M*v

t=1/c*sqrt((E_e+E_n)*(E_e+2*m_0*c^2+E_n))

E_max= (r+t)^2/(2*M)/e

# set initial value for the total displacement cross section, Eq. (3.2)

sigma_tot = 0.0

# width for 300K ~1.29 eV

wd = 1.29

# loop over different acceleration voltages

for U in srange(85000.0,105000.0,5000.0):

sigma= 0.0

sigma_tot = 0.0

beta= 0.0

e_val=21.3125

beta = sqrt(1-1/((U/m_1)+1)^2)
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E_e=e*U

# center of the distribution

xc = e_val

# width of the distribution

w = wd

dx = 0.1

x = np.arange(19.0,24.0,dx)

# gaussian distribution of displacement thresholds Eq. (3.1)

g = sqrt(2/pi)/w*exp(-2*((E-xc)/w)^2)

# loop to integrate the total cross section, Eq. (3.2)

for e_val in x:

sigma = 4*pi*(Z*e^2/(4*pi*eps_0*2*m_0*c^2))^2*((1-beta^2)/beta^4)*

(E_max/e_val-1-beta^2*ln(E_max/e_val)+pi*Z*e^2/

(hbar*c)*beta*(2*sqrt(E_max/e_val)-ln(E_max/e_val)-2))

sigma_tot += g(E=e_val)*numerical_integral(1e28*P(v=v)*

sigma(v=v,E_e=e*U)*heaviside(E_max(v=v,E_e=e*U)-e_val),

-v_max,v_max,rule=1,max_points=1000)[0]

sigma_tot *= dx

cs[i] = sigma_tot

print(U,N(cs[i]))

i = i+1

# calculates the deviation from the experiment (sigma_tot -sigma_experiment)/sigma_exp, Eq. (3.3)

for i in srange(4):

err += N(abs(cs[i]-data[i])/data[i])

print(err)

print(err)
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