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Preface

The work presented in this dissertation was performed between February 2015 and March
2018 at the Pharmacoinformatics Research Group of the University of Vienna, under the

supervision of Prof. Gerhard F. Ecker.

Part I describes the motivation behind the work, provides the biological background of ABC-
transporters and introduces the structure-based methods used in this thesis. It includes two
book chapters containing major contributions of the thesis author. While a certain
information overlap is inevitable, the individual scopes of the parent volumes are different,
which has been stated in the introductory part of each section. Finally, the contributions of

this thesis are listed.

Part II, Chapter 3 focuses on ligand-based approaches to address the prominent problem of
imbalanced datasets in the field of drug discovery. It reports the results obtained after
evaluating the performance of seven distinct meta-classifiers in predicting transporter-related

hepatotoxicity endpoints.

Part II, Chapter 4 reports the structure-based work undertaken during this period. The results
presented in the BCRP study are so far unpublished, but a synthesis-oriented manuscript is in

preparation in collaboration with Dr. Vittorio Pace (University of Vienna).

Finally, part III contains the concluding discussion of the Thesis. The major contributions of
each chapter are discussed as well as the main outcomes and take-home-messages of these

studies.

The compounds used in the BCRP study (Chapter 4.2) were synthesised by Dr. Vittorio Pace
(University of Vienna). In vitro assays for BCRP inhibition for those compounds were
performed by Anna Cseke and Dr. Katrin Wlcek at the University of Vienna under the

supervision of Prof. Gerhard F. Ecker.
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I. Background



1. Introduction

1.1 Motivation and aim of the thesis

The ATP-binding cassette transporters (ABC transporters) are a superfamily of active
transmembrane proteins that selectively aid the movement of molecules in the cell by binding
to them and undergoing a conformational change [1]. These transporters participate in active
transport, i.e. they hydrolyze ATP and use the energy to transport their substrates. Some of
these transporters transfer a large number of structurally and functionally diverse cytotoxic
compounds including toxins of natural origin. The overexpression of such transporters has
been implicated in multidrug resistance (MDR), a phenomenon in which a cell (cancerous or
bacterial) becomes resistant to multiple drugs [2](Figure 1). Thus, besides protecting the cells
and tissues against toxic agents, an increase in the efflux activity leads to resistance of tumor
cells to a variety of drugs commonly used in chemotherapy [3—5]. Two primary members of
the ABC family involved in cancer multidrug resistance are P-glycoprotein (P-gp, gene

ABCBJ1) and the breast cancer resistance protein (BCRP, gene ABCG2).
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Figure 1: MDR as a result of the overexpression and/or increased efflux activity of ABC transporters
[3-5]. Reprinted and edited by permission from Springer Nature: Nature Reviews Cancer, Fletcher et

al.[6], copyright 2010.



Failure of several anticancer drug therapies has marked the MDR-related ABC-transporters
as one of the widely studied transporters [7—11]. With an aim to overcome MDR, inhibitors
of these transporters have been extensively studied [12, 13]. Due to toxicity concerns, none
has reached the market yet [8, 14-16]. After several years of research, it can be understood
that inhibiting ABC-transporters may not be the best solution to overcome MDR [9, 17, 18].

However, this had little impact on the increasing interest in studying these transporters.

Most ABC-transporters are expressed under normal physiological conditions in important
tissues and membranes such as intestine, liver, kidney, placenta, testis and the capillary
endothelial cells of the brain [19, 20]. They influence the absorption, distribution,
metabolism, excretion and toxicity (ADMET) of pharmacological agents [21, 22]. Genetic
variations in their related genes are known to cause a large number of disorders in humans,
such as cystic fibrosis, cholesterol and bile transport defects, neurological disease, to name a
few [23]. ABC transporters expressed in liver canaliculi in particular (P-gp, BSEP, BCRP,
MRP2 and MRP4), are responsible for efflux of many drugs and other xenobiotics [24, 25].
Dysfunction of any of these transporters or their inhibition by small molecules is known to
lead to drug-drug interactions and drug-induced liver injuries [26-30]. In this context,
regulatory authorities and organizations such as the United States Food and Drugs
Administration (US FDA) and the International Transporter Consortium (ITC) recommends
screening of candidate drugs for inhibition of P-gp, BCRP and BSEP [31-33]. Therefore,
understanding the molecular basis of inhibition of these relevant ABC-transporters by small
molecules is highly essential to be able to develop comprehensive in silico models that can

predict these interactions.

Lack of substantial structural information at higher resolutions, limits the structure-based
drug design studies for predicting inhibitors of the ABC transporters [34-36]. Thus far, in
silico studies to predict inhibitors primarily focused on ligand-based approaches such as
quantitative structure-activity relationship (QSAR) modeling and machine learning [37].
While these models have proved to be efficient, they do not consider the properties of the
protein and thus a lot of information necessary for understanding the inhibition process is
ignored. Another problem associated with ligand-based studies is the increasing amount of
data generated in drug discovery. In this context, problems data imbalance is being frequently

reported in the literature [38—40] The field of toxicity is no exception and considering the



number of liver transporters implicated in serious adverse events, it is essential to deal with

this issue and provide recommendations to handle such datasets.

The general purpose of this thesis is to provide the community with useful in silico
models to evaluate the probability of a new compound to be a canalicular liver ABC-
transporter inhibitor by employing structure-based modeling approaches. We hope to
gain a better understanding of the mechanism of inhibition itself and also evaluate data
transferability across species in development of predictive in vivo and in vitro models.
Furthermore, a comprehensive comparison of different machine learning methods is
expected to resolve the limitations associated with data imbalance and provide

guidelines for handling highly imbalanced datasets.

In the light of this, we performed structure-based modeling of three liver canalicular
transporters BSEP, BCRP and P-glycoprotein. The release of an experimentally determined
crystal structure of BCRP facilitated us to propose a binding hypothesis that could explain the
activity trends within an inhibitor class. Further, a comprehensive comparison of the binding
sites of human, rat and mouse P-gp transporters helped us to evaluate the transferability of in
vitro human P-gp data for development of models to predict in vitro and in vivo outcomes in
rat and mouse. We also addressed the issue of learning on imbalanced datasets by evaluating
seven distinct meta-classifiers on different datasets in the toxicity domain that are known to

possess a varying degree of class imbalance.

We believe that the outcomes of this work would improve the understanding of the
transporter mechanism at the molecular level and help us filter out unwanted compounds or
prioritize interesting candidates in the early stages of drug discovery in an effort to save time

and money.



1.2 Biological background of liver ABC transporters

ABC transporters can be further classified into exporters and importers. Depending on their
architecture and mechanism, the importers can be further grouped into two classes (I and II)
[41-44]. Humans possess a total of 49 ABC-transporters, which can be divided into seven
subfamilies [45], ABCA to ABCG. These groups include transmembrane drug transporters,
ion transporters, peptide transporters and others. The ubiquitous ABC transporters are
characterized by two nucleotide-binding domains (NBD) and two transmembrane domains
(TMD). Conformational changes in TMD, driven by the ATP hydrolysis on the NBD, result
in an alternating access from inside and outside of the cell, facilitating a unidirectional
transport across the lipid bilayer [44] (Figure 2). Few ABC-transporters are referred to as
"half-transporters". Their genes encode only for one transmembrane and one nucleotide
binding domain, which necessitates the dimerization of these transporters in order to be
functional. The first structural insights on the tertiary structure of ABC transporters were
based on the nucleotide-binding domain (NBD) of histidine permease, determined at atomic
resolution [46]. By 2009, eight crystal structures of complete ABC transport proteins were
solved by X-ray crystallography [47]. Figure 3 represents the ribbon representations of
different ABC proteins and their localization within the bilayer membrane. Since then,
several other full-length structures of ABC export proteins were solved at the atomic level,

providing detailed insights about their conformational variability [48].
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Figure 2: Schematic representation of the Transport cycle for ABC exporters. Reprinted and edited
by permission from The American Association for the Advancement of Science: Science, Dong et al.

[49], copyright 2005.



Figure 3: Ribbon representations of different ABC proteins. (a) Sav1866 (Dawson and Locher et al.
[50]). (b) MalFGK2 in complex with MBP (Oldham et al.[51]). (¢) ModBC in complex with ModA
(Hollenstein et al.[52]). (d) BtuCD (Locher ef al.[53]). (e) Putative metal chelate transporter H10796
(Pinkett et al.[54]). (f) Methionine transporter MetNI (Kadaba et al.[55]). (g-i) Lipid flippase MsbA
from Salmonella typhimurium, Vibrio cholera, and Escherichia coli, respectively (Ward et al.[56]). (j)
Mouse Pgp (Aller et al.[57]). Reprinted by permission from Springer Nature: Cellular and Molecular
Life Sciences, Kos and Ford et al. [47], copyright 2009.

Till date, P-glycoprotein (Pgp, MDR1, ABCB1), an efflux transporter, is the most extensively
studied ABC protein. Together with breast cancer resistance protein (BCRP, ABCG2) and
multidrug resistance-associated protein 1 (MRP1, ABCC1), Pgp is well known for its role in
MDR in tumor cells [58]. These transporters share a low sequence similarity when their
transmembrane domains (TMDs) are compared, which could explain the differences in their

substrate and inhibitor specificities [47].

In the following sections, we detail the structure, function, and small molecule interactions of

the three liver ABC-transporters of significant relevance to this thesis work.

1.2.1 P-glycoprotein (P-gp)

P-glycoprotein (gene ABCB1) was the first membrane protein identified to be able to confer
multidrug resistance to cancer cells [23]. In 1976, Juliano and Ling linked MDR to the

expression of a membrane protein, P- glycoprotein in Chinese hamster ovary cell line [59].



Later, the structure was determined in 2009 by Aller and coworkers [57], which was further
improved by Li et al. [60] in 2014. P-gp is a "full transporter,” i.e. the ABCB1 gene encodes
for two transmembrane domains (TMDs) and two nucleotide binding domains (NBD's) that
constitute the transporter. The two TMD and NBD regions of the transporter differ in their

amino acid sequence.

In humans, P-gp is expressed in the blood-brain barrier, placenta, testis, hepatocytes, exocrine
cells of the pancreas, gastrointestinal tract, kidney, bladder, spleen and lungs among other
tissues [61, 62]. In case of cancer, P-gp expression increases in colon, kidney, adrenal gland,

pancreas and other tumour cells [63, 64].

P-gp influences the ADMET (absorption, distribution, metabolism, excretion, and toxicity)
properties of many compounds. If a drug is a substrate of P-gp, it could face the risk of
increased metabolism in intestinal cells. Besides, if the co-administered drugs are substrates
or inhibitors of P-gp, their pharmacokinetic profiles can be altered by P-gp modulating
compounds, due to drug-drug interaction, leading to severe side effects [65—-67]. Digoxin, an
inhibitor of the cardiac Na+/K+-ATPase used for treating heart failures or arrhythmia, is a
classic example of drug-drug interactions in the context of P-gp. Digoxin is a substrate of P-
gp and is excreted by the kidneys. Inhibition of this transporter by quinidine or ritonavir has
caused decreased clearance of digoxin [68, 69], which could potentially lead to
cardiotoxicity. Thus, early identification of P-gp inhibitors is highly important in drug safety

considerations.

1.2.2 Bile salt export pump (BSEP)

BSEP (gene ABCBI11) is an ABC transporter of the B subfamily and is primarily expressed
in the cholesterol-rich canalicular membrane of hepatocytes [70]. It facilitates secretion of
bile salts from the liver into the bile canaliculi [70-72]. Bile salts are conjugated bile acids
which are negatively charged at physiological pH. Bile acids are products of the catabolism
of cholesterol in the liver [73—75]. They conjugate with phospholipids to form micelles,
which increase their excretability into bile and thus promote digestion and absorption of
dietary fat [76]. Bile salts, through an enterohepatic cycle, are transported from the liver to

bile to duodenum and again back into the enterohepatic blood circulation. They are then



picked up by the transporter Na'-taurocholate cotransporting polypeptide (NTCP) at the

basolateral membrane of hepatocytes [25].

Genetic variations in ABCBI11 result in different forms of progressive familial intrahepatic
cholestasis (PFIC) [77, 78]. PFIC is characterized by an early onset of cholestasis and

eventually leads to liver cirrhosis and failure [79-81].

BSEP is inhibited by many drugs and drug metabolites [27, 82, 83]. This is a potential
mechanism leading to drug-induced cholestasis. Thus BSEP is a crucial transporter protein
that is often studied in the recent research on drug safety. Drugs such as bosentan, rifampicin,
troglitazone [84] cause intracellular accumulation of bile salts which is an unwanted effect
directly related to the inhibition of BSEP. In few cases, it could result in liver injury and
thereby liver transplantation. Dysfunction of individual bile salt transporters such as BSEP,
due to genetic mutation, suppression of gene expression, disturbed signaling, or steric
inhibition, are other factors leading to cholestatic liver disease. Therefore, it is highly
essential to screen for BSEP inhibition in the drug discovery pipeline to limit the post-

marketing drug withdrawals associated with drug-induced liver toxicity.

1.2.3 Breast cancer resistance protein (BCRP)

Breast cancer research protein (BCRP) was first identified in 1998 [4, 85]. Thereafter, a large
number of BCRP inhibitors and substrates were reported, which not only include therapeutic
agents but also physiological substances such as estrone-3-sulfate and uric acid. Taylor et al.
have recently reported a crystal structure of the transporter, determined by cryo-electron
microscopy [86], that provides the first high-resolution insight into a human multidrug
transporter. Two cholesterol molecules were observed to be bound in the multidrug binding
pocket, which is located in a central, hydrophobic, inward-facing translocation pathway.
Today, BCRP (~655 amino acids) is considered among the three major transporters
responsible for drug resistance in mammalian cells [87]. It is a half ABC transporter, with
one nucleotide-binding domain (NBD) and one membrane-spanning domain (MSD) [88, 89].
Topologically, the N-terminal of BCRP contains the cytoplasmic NBD while the C-terminal
contains the TMD, which is a characteristic of the G-subfamily of the ABC transporters.
While multimerized forms of BCRP have been reported [90-92], but be functional, it is



supposed to be in a homodimer state [93, 94]. Readers can refer to the work by Ni et al. [88]

for greater details on the structural and functional aspects of BCRP.

BCRP is highly expressed inthe intestinal epithelium, the liver hepatocytes, the renal
proximal tubular cells, the endothelial cells of brain microvessels, and the apical membranes
of the placental syncytiotrophoblasts [95]. Thus it plays an important role in the absorption,
distribution, elimination of drugs and endogenous compounds, as well as tissue protection
against xenobiotic exposure. Consequently, the FDA perceived it among the key drug
transporters for clinical drug disposition [71, 95]. Although a large number of substrates and
inhibitors are already known, the structure-activity relationship (SAR) trend is not clearly
known for this elusive transporter [96]. Furthermore, several single nucleotide
polymorphisms (SNPs) were already reported [97-100] for this transporter, including a few
that may alter pharmacokinetics and lead to drug toxicity. For example, SNP Q141K,
frequently found among the Asian population (35%) [101], leads to decrease in membrane
expression and ATPase activity [102]. Variation of BCRP function by small molecule
inhibitors could also lead to drug-drug interactions. For instance, when the chemotherapeutic
agent topotecan (a substrate of BCRP) was administered orally along with elacridar (inhibitor
of BCRP with an IC50 below 1 uM) [103, 104], it doubled the bioavailability and tripled the
peak plasma concentration of topotecan [105]. Therefore, it is highly essential to prevent such

drug-drug interactions that can lead to toxicity.



1.3 Structure-based Methods in Computational Drug Design

Development of faster computers has led to their increasing use in studying biomolecular
processes. With a large number of protein structures yet to be resolved and increasing
availability of tertiary structure prediction tools and servers, protein structure prediction
serves as an appropriate alternative in cases where it is not feasible to determine the structure
of interest using experimental techniques [106, 107]. Furthermore, computational modeling
of 3D protein structures is among the most common starting points for drug design in both

academic and industrial pharmaceutical research.

Below we describe the computational methods which were widely used in this thesis.

1.3.1 Homology modeling

Experimental techniques such as nuclear magnetic resonance (NMR) and X-ray diffraction
can resolve the protein's three-dimensional structure [108, 109], but are challenged by several
limitations which include the size of the protein, costs involved and difficulty in purification
or crystallization [110, 111]. Homology modeling, also known as comparative modeling,
refers to construction of an atomic resolution model of a protein from its amino acid sequence
and the experimentally determined 3D structure of a template protein with which it shares
reasonable sequence identity [106, 112—-116]. It is based on the assumption that proteins
sharing similar sequences form similar structure. Due to the challenges associated with other
methods, homology modeling has become one of the most used and reliable method. Figure 4

lists different steps in homology modeling.
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Figure 4: Steps of homology modeling. Reprinted by permission from Annual Reviews, Inc: Annual

review of biophysics, Marti-Renom et al.[117], copyright 2008.

The first step is to construct a multiple sequence alignment between the sequences of the
target protein and the identified template protein. For this, sequence similarity is performed
by using BLAST searches [118—120] against sequences of known structures and other
sequences of proteins from the same family as the query. This helps to get an estimate of
consensus sequence motifs, the degree of conservation and general features of the family.
Then the obtained alignment is corrected for positions of insertions and deletions, accurate
alignment of active site residues and also conserved residues. Next step is to construct
backbone and model loops, generate side chains and optimize conformations using the
software like MODELER [121, 122]. This tool requires three input files: an alignment of the
template and the target sequence, the template PDB structure and a script containing the

commands and file paths.
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In case of complex models, use of multiple softwares/servers and a comparison of the results
is recommended. Finally, the generated structure model is optimized and validated. For this,
the final model is selected from a pool of generated models, based on energy functions,
Ramachandran plots and agreement with mutational data. The Discrete Optimized Protein
Energy (DOPE) [123] function assesses the model quality using a statistical potential
function. Third-party tools such as PROCHECK [124] also facilitate calculation of
Ramachandran plots [125] while the QMEAN server can be used to obtain a Z-score [126,
127], which indicates the deviation from experimental structures. At times, errors in
backbone could lead to an incorrect prediction of rotamers. These can be corrected by
performing refinements and by applying energy minimization using different types of force
fields. The models could still consist errors and require further validation if the bond angles,

lengths, torsion angles, etc. are within the desired ranges.

Homology modeling has been successful in drug design, providing more insights into the
architecture and function of the protein[128]. In our case, based on sequence identity and
resolution, the corrected mouse P-gp (4MIM) structure was selected as the template for

homology modeling of BSEP and P-gp.

1.3.2 Molecular docking

Molecular docking is a prominent computational technique in structural biology and
computer-aided drug design, useful in predicting the binding modes of a ligand within the
binding pockets in the three-dimensional structure of a protein. It is widely employed for
tasks such as virtual screening, generation of hypotheses for target inhibition by a ligand and
lead optimization. The technique was first reported in the 1980s [129]. Over the time, the
algorithms have evolved and many standalone docking tools such as AutoDock [130],
GLIDE [131, 132], GOLD [133, 134] and several online services (ZDOCK [135, 136],

SwissDock [137]) are now available.

AutoDock is the most commonly used open-source docking software that is freely available
for academic research [130]. It supports flexible side chains, checks the syntactic correctness
of the input, verifies invariance of the covalent bond lengths and avoids imposing artificial

restrictions. Another popular package Schrodinger [138, 139], though not freely available, is

12



a comprehensive software suite with packages for lead discovery, lead optimization, target
preparation, docking and various modeling tools with options for automation. Schrodinger's
Glide [131, 132] package enables docking of flexible ligands by grid construction in rigid
protein models and rapid sampling of the conformational, orientational, and positional
degrees of freedom of the ligand. Another method available in Schrodinger is induced-fit
docking (IFD) [140, 141] wherein protein flexibility can also be accounted. It employs Prime
package along with Glide to explore all possible binding modes and possible conformational
changes in the receptor’s active sites. In IFD, the ligand is docked using Glide which
generates different ligand poses, followed by the structure prediction using the Prime module
to accommodate the ligand by reorienting nearby side chains. Then the residues and ligand
are minimized and all the ligands are re-docked into their corresponding low energy protein

structures. Prime’s advance refinement process further enhances the accuracy of Glide.

Genetic Optimization of Ligand Docking (GOLD) [133, 134] is an another widely used
commercial docking software. GOLD facilitates users to define the protein binding pocket
with a radius along the given coordinates or by a reference ligand from a co-crystal structure.
On the protein and the ligand surfaces, hydrophobic and hydrogen bond (HB) fitting points
are then created. Protein flexibility can be accounted by a brute force exploration of all
possible angles or as defined in a rotamer database [142]. Additionally, the location and
orientation of water molecules can also be predicted. Furthermore, a harmonic potential can
be used to fix the distance between two atoms (within the protein and/or between protein and
ligand atoms). This is especially useful to reduce the number of docking poses in concurrence

with the experimental data (when available).

GOLD uses a genetic algorithm to generate a docking pose. For this,
1) Bit strings (chromosome) are generated from the ligand torsional angles.
2) A scoring function is then applied and two random poses are selected and weighted by
their score.
3) Of those two chromosomes, genetic operations of mutation, crossover and migration
are applied.

Steps 1-3 are repeated, until the desired number of poses are obtained.

The strength of molecular docking is its capability to provide insights into different binding

possibilities, that can be used for screening of large compound libraries and also as a tool for

13



defining a starting complex for molecular dynamics (MD) simulations. Depending on the
focus of the study, docking poses can be generated by either using constraints into a specific
binding pocket or without any constraints, which provide a probability distribution of the
binding mode. The docking poses can be further clustered on the basis of their placement into
specific binding pockets. Further, it is also recommended to energy minimize the ligand and
residues within a certain radius for re-scoring purposes. An elaborated overview of different

software available for docking is provided by Pagadala et al. [143].

1.3.2.1 Scoring functions

Scoring functions are mathematical methods used to predict the binding affinity between the
ligand and active site of the protein structure after they are docked. They can be divided into

three classes:

Force-field based scoring functions - These scoring functions are estimated on the basis of
intermolecular van der Waals and electrostatic interactions between all atoms of the protein

and the ligand using a force field used in molecular dynamics (MD) simulations [ 144, 145].

Knowledge-based scoring functions - Also known as statistical potential functions. These
are based on the probability of finding protein and ligand atoms within a certain distance
estimated by observing intermolecular close contacts in 3D databases like Protein Data Bank
(PDB) [146] and Cambridge Structural Database (CSD) [147]. This method is based on the
assumption that close intermolecular interactions between certain functional groups which
occur more frequently in comparison to others are likely to be energetically favourable [148—

151].

Empirical scoring functions - It is the most commonly employed category of scoring
functions, the reason being that these are faster than force-field based scoring functions and
more reliable than the knowledge-based scoring functions. They are based on different types
of interaction between the ligand and the receptor protein [152]. They consist of energy terms
with coefficients determined by multiple linear regression (MLR) trained on experimental

protein-ligand complexes.
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Scoring functions can also be applied after docking, i.e. re-scoring. This would also allow
obtaining a consensus scoring from multiple scoring functions, which could be used to
prioritize a binding hypothesis [153]. The GOLD software provides several scoring functions,
such as GoldScore [133, 154], ChemScore [152, 154], ChemPLP [155] and the Astex
Statistical Potential (ASP) [156]. GoldScore is a force-field based scoring function. This
performs well but is relatively slow compared to ChemPLP. ChemPLP is a piecewise linear
potential function that uses the Ants algorithm[155]. ChemScore is mostly used in the case of
metal complexes since it contains terms for that [152]. Glide [131, 132] scoring function from
Schrodinger [138, 139] is reported to outperformed GOLD against the same target in a

similar virtual screening experiment [143].

The external scoring function X-Score[157], which is validated against a set of 800 protein-
ligand complexes is also known to perform well in most cases. It uses the van der Waals and
electrostatic terms and also approximates the ligand entropic contribution by taking its

number of rotatable bonds into account[158].

Though the scoring functions are very useful in screening large compound libraries, they are
limited by low predictability. This is due to the fact that these scoring functions estimate
score based on a single snapshot of the protein-ligand complex whereas binding affinity is
related to a Boltzmann weighted average of different states of a complex. Furthermore, many
scoring functions do not account for desolvation, the entropy of the binding pocket and
interactions with water. Further, studies reported that machine-learning methods outperform
Multiple Linear Regression (MLR) trained scoring functions[159]. Nonetheless, the choice of
the scoring function strongly depends on the research question and a combination of several

scoring functions, referred to as consensus scoring, is recommended [160].

1.3.3 Hierarchical Clustering

Hierarchical clustering is a useful method to cluster the poses of different ligands with same
scaffold [161]. It is believed that ligands that share a common chemical scaffold fit in the
same fashion in a protein binding pocket [161-163]. The docking poses can be clustered
based on the root mean square distance (RMSD) matrix of the heavy atoms in the Euclidean

space. The large number of poses in a typical range of 2 A indicates that the binding modes
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have higher probabilities of being active. For this, the scaffolds of ligands are first extracted
from docking poses and saved as SMILES strings with coordinates in the database. Next,
different clustering methods such as complete-linkage method can be used to cluster the
poses with least distance together and construct a dendrogram. Further, a cut-off on the
RMSD can be used to remove the outliers from the cluster. Visual inspection of the

dendrogram facilitates the selection of a cut-off value on the RMSD.

In our study, clustering of arylmethyloxyphenyl derivatives docked into the BCRP binding

pocket helped us to propose a binding hypothesis for the series of analogues.

1.3.4 Molecular Dynamics Simulations

Molecular dynamics (MD) is a computer-aided simulation method to study the dynamic
movement of atoms and molecules[164]. It is an important tool in drug discovery [165],
which facilitates simulation of both individual membrane proteins and more complex
systems[166]. MD simulations provide a detailed description of particles in motion as a
function of time by iteratively solving Newton's classical equation of motion for each
molecule [167]. MD simulations are particularly useful when the system cannot be studied by
the experimental methods such as mass spectroscopy or crystallization methods such as NMR
or X-ray crystallography [168]. Therefore, they hold great significance in understanding the
physical basis of the structure and function of proteins and other biological macromolecules

[113].

In an MD simulation, interactions between the atoms can be defined by different potential
energy functions of a given force field (OPLS [169], CHARMM [170, 171] or GROMOS
[172]). The bonded interactions within the system such as stretching, bending and dihedral
terms are modeled by employing harmonic potentials while the non-bonded interactions are
described by the Lennard-Jones potential for van der Waals interactions and by the
Coulomb's law for electrostatic interactions. Calculation of the non-bonded terms is
computationally expensive, which necessitates the employment of algorithms such as

SHAKE [173] or LINCS [174] that correct for the interatomic distance in every step.
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Protein systems are typically simulated in a box using periodic boundary conditions in order
to emulate crystal structure conditions and to prevent undesirable boundary effects [175—
177]. Membrane proteins should be placed in a lipid bilayer which approximates their
indigenous biological conditions. Further, the system is energy minimized to get rid of any
overlapping van der Waals cores. The book “Molecular Modeling of Proteins™ [178] provides

an excellent review on various aspects of these issues.

A general protocol to setup an MD simulation, as described by Jurik et. al.[113], can be found
below:

1) select the forcefield taking into account the parameters for the protein and the ligand

2) place the protein into the membrane

3) solvate the system and add ions to neutralize excess charges and adjust the final ion

concentration

4) perform energy minimization on the system

5) run MD for ~5-10ns with restraints on all protein heavy atoms

6) equilibrate without restraints

7) run production MD

8) perform analysis

The main advantage of using MD is that it strives to mimic the structure of interest and can
be effective in comprehending the structure-to-function relationships of macromolecular
structures [164]. Multiple conformations are generated, that could describe protein-ligand
interactions in the dimension of time. Furthermore, it is possible to achieve precise
interaction energy values that facilitate the interpretation of ligand binding and unbinding
events. A classical MD simulation, unlike Monte Carlo or Markov Chain methods, does not
efficiently sample the conformational space. Based on the starting structure, the trajectories
could be confined within a multidimensional energy minimum. This limitation can be
handled by increasing the simulation time or by employing enhanced sampling techniques
such as steered molecular dynamics or essential dynamics[164]. Further, recent advancement
in computational hardware, especially the use of graphical processing units (GPUs) and high
performance computing (HPC) clusters facilitate simulation of much larger systems in shorter

times, allowing greater conformational changes to be sampled [179].

17



1.4 Contribution of this thesis

We hope that this thesis work sheds light on the thus far unexplored protein-ligand
interactions to reveal the molecular basis of inhibition of ABC-transporters. This would
facilitate the development of in silico prediction models and assist lead optimization. Due to
the constraints on data availability and duration of the Ph.D. thesis, we focused on the ABC-
transporters BSEP, BCRP and P-gp. Since multiple ligand-based studies have already
reported prediction models for inhibition of these transporters, we primarily focused on

structure-based approaches.

More precisely, the key contributions of this thesis are:

- A benchmarking study to evaluate the performance of seven different meta-classifiers in
handling imbalanced drug discovery datasets: Bagging, under-sampled stratified bagging,

cost-sensitive classifier, MetaCost, threshold selection, SMOTE and ClassBalancer.

- Comparative structural modeling of human BSEP and structure-based classification of

BSEP/ABCBI11 inhibitors.

- Protein-ligand interaction fingerprint (PLIF) based method and analysis for identification of
functional group-binding site residue interactions that reveal the molecular basis of inhibition

of the transporter protein by a wide range of ligands.

- A hypothesis for the molecular basis of the inhibition of BCRP by arylmethyloxyphenyl
analogues using the BCRP crystal structure.

- Structure-based approaches to compare the binding site interaction profiles of human, rat

and mouse P-gp to evaluate the transferability of in vitro human activity data in the

development of in vivo prediction models for rat and mouse.
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2. Status quo in field

2.1 Transporter in Hepatotoxicity

Eleni Kotsampasakou, Sankalp Jain, Daniela Digles Gerhard F. Ecker, Transporter in

Hepatotoxicity, Computational Toxicology: Risk Assessment for Pharmaceutical and

Environmental Chemicals, 2nd edition, Sean Ekins, ISBN: 978-1-119-28256-3

In the following chapter, we summarize the role of different transporters in hepatotoxicity.
We then briefly describe the data sources available and the difficulties in obtaining the data
for the related transporters proteins. Further, we present different ligand-based and structure-
based studies performed to predict in silico whether a small molecule is an inhibitor or a
substrate of a given transporter. We also mention the in vitro models available to predict liver
toxicity. The majority of these models focus on predicting BSEP inhibition, which is directly

related to liver toxicity.

E. Kotsampasakou wrote the introduction, basolateral transporter and canalicular transporter,
D. Digles wrote Data Sources for Transporters in Hepatotoxicity, S. Jain performed the
literature search and wrote In Silico Transporters Models, ligand-based approaches and

structure-based approaches, G.F. Ecker supervised the work and revised the chapter.
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6.1 Introduction

Transmembrane transporters are essential for regulation of the uptake and
efflux of endobiotics and xenobiotics at the cellular level as well as in barrier
tissues (e.g., blood—brain barrier, kidney, liver, enterocytes). Among them,

Computational Toxicology: Risk Assessment for Chemicals, First Edition. Edited by Sean Ekins.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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Figure 6.1 Transporters located in the hepatocyte. The medium grey symbols represent the
canalicular transporters and dark grey ones the basolateral transporters. Cycles represent
uptake transporters and ellipses refer to efflux transporters. The arrows define the direction
of transport.

hepatic transporters possess a vital role, as the liver is the main organ of
metabolism and detoxification [1, 2]. Figure 6.1 depicts the main hepatic
transporters and their respective location in the hepatocyte. In the following
section, we will briefly introduce their significance in selected liver toxicity
manifestations.

6.2 Basolateral Transporters

Regarding the basolateral uptake transporters, the sodium (Na*) taurocholate
co-transporting polypeptide (NTCP) is quite important in the enterohepatic
circulation of bile salts, thus contributing to liver homeostasis [3, 4]. It has
been proposed that the mechanistic basis of some hepatotoxic — and, in par-
ticular, cholestatic - drugs includes the inhibition of NTCP [5]. In addition, the
potential association of organic anion transporting polypeptides 1B1 and 1B3
(OATP1B1 and OATP1B3) inhibition with hyperbilirubinemia, a pathological
accumulation of conjugated or unconjugated bilirubin in sinusoidal blood [6, 7],
is worth mentioning. Hyperbilirubinemia can be drug-induced [6, 7] or genet-
ically induced, such as in the case of the Rotor syndrome [7-13]. Figure 6.2
shows the cycle of bilirubin and how transporters might be involved in the
development of this condition.
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Bilirubin cycle in liver
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Figure 6.2 The cycle of bilirubin in the liver. Bilirubin is taken up from sinusoidal blood by
OATP1B1 and OATP1B3. It is metabolized by UGT1A1 into mono- and bi-glucuronidated
products that are exported into bile primarily by MRP2 and in smaller extent (smaller arrow)
by BCRP. A portion of the glucuronidated or unglucuronidated bilirubin is effluxed into
sinusoidal blood by MRP4 and the cycle is repeated. Source: Adapted from Sticova and Jirsa
2013 [11].

Canalicular

For the other major basolateral uptake transporters, such as the organic
anion transporters (OATs) and the organic cation transporters (OCTs), there is
low incidence for a potential role in toxicity phenotypes in the liver. However,
there is one exception, namely, some polymorphisms and mutations in human
OCT1 that lead to decreased transport activity of OCT1 in the liver, which
can obstruct the biliary excretion of hydrophobic cationic drugs [14].

Regarding the basolateral efflux transporters, the organic solute transporter
alpha-beta (OSTa—OSTp) dimer is upregulated as a protective mechanism
against the accumulation of toxic bile salts in the hepatocyte [15]. The same
accounts for most of the multidrug resistance-associated proteins (MRPs).
Several reviews describe an increase in mRNA levels of MRP1, MRP3, MRP4,
and MRP5 [4], as well as an increase in protein levels of MRP3 and MRP4
[16] in hepatobiliary pathological conditions. Moreover, MRP3 as well as
MRP1 may act as a compensatory mechanism to alleviate the potential toxic
effects of high bile acid concentrations in the liver, when the canalicular
efflux transporters such as the bile salt export pump (BSEP) and multidrug
resistance-associated protein 2 (MRP2) are blocked [1, 17].
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6.3 Canalicular Transporters

For canalicular transporters, the most prominent example is the contribution
of both genetically — [3, 18—21] and drug-induced [18, 20, 22—24] BSEP inhibi-
tion in the development of cholestatic conditions. MRP2, due to its important
role in bilirubin and bile salts transport, is also suggested to be correlated with
drug-induced hyperbilirubinemia [11, 25] and cholestasis [26—28]. Similarly,
BCRP is also believed possibly contribute to the efflux of bilirubin conjugates
into bile [11]. Deficiency of BCRP is also suspected to result in accumulation
of toxic bile salts in the liver, which induce toxicity issues [29]. MDR3 main-
tains the integrity of the membrane and conducts the phospholipid flow across
the canalicular membrane of the hepatocyte [30]. It has also been associated
with genetically — [1, 16, 26, 29-33] and drug-induced [16, 26, 29, 30, 34, 35]
cholestatic conditions.

Furthermore, MDR1 (P-glycoprotein, P-gp) is also expressed in the liver.
MDRI1 plays a prominent role in drug resistance during cancer therapy [36,
37] and has also been associated with drug-drug interactions. Nevertheless, in
most of the cases of drug-induced hepatotoxicity or cholestasis, the implication
of P-gp is attributed to its localization in several organ membranes and its
great number of its substrates, rather than to direct effects in the liver [38, 39].

The ATP-binding cassette subfamily G members 5 and 8 (ABCG5 and
ABCGS) heterodimer, the ATPase class I type 8B member 1, also known as
ATPase-aminophospholipid transporter (ATP8B1 or FIC1), the multidrug and
toxin extrusion transporter 1 (MATEL), the cystic fibrosis transmembrane
conductance regulator (CFTR), the copper-transporting P-type ATP-ase
(ATP7B), and the manganese transporter SLC30A10 are also liver transporters
with an important physiological role. Despite the fact that they are associated
with several diseases — including manifestations of liver toxicity, to our
knowledge they are not associated with any pathological drug-induced liver
condition.

With this list of transporters and their important role it becomes evident,
that any distortion in the proper function of hepatic transporters might result
in manifestation of hepatotoxic phenomena. Therefore, knowledge of the
inhibitory profile of drugs currently in the market, as well as the ones under
development, is vital in order to avoid potential side effects. One step in this
direction is the collection of the available data and another step further is the
development of robust predictive models for these transporters.

6.4 Data Sources for Transporters in Hepatotoxicity

Currently several large-scale initiatives collect and predict toxicity data for
both drugs and environmental chemicals. These include, among others,
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projects funded by the innovative medicines initiative (IMI) such as eTOX
(http://www.etoxproject.eu/) and MIP-DILI (http://www.mip-dili.eu/), the
Horizon 2020 EU-ToxRisk project (www.eu-toxrisk.eu) and the Toxicology in
the 21st Century (Tox21) initiative [40] (http://tox21.org). EU-ToxRisk aims
at advancing in vitro and in silico tools for toxicology, thereby focusing on
mechanism-based approaches. Adverse outcome pathways (AOPs) introduced
by the Organisation for Economic Co-operation and Development (OECD)
play an important role here. One example for an AOP relevant to hepatotoxicity
is “cholestatic liver injury induced by inhibition of the BSEP (ABCB11)” [41].

Searching for data on hepatotoxicity in bioactivity databases, such as
ChEMBL [42, 43] or PubChem [44], is difficult owing to the way biological
data are organized. While searches for bioactivity data for protein targets
are straightforward, hepatotoxicity as a “target” is more difficult to define.
For example, an assay search in ChEMBL version 22 [43] (accessed October
5, 2016) for “hepatotoxicity” returns 585 different assays mentioning hepa-
totoxicity in the assay description. Here, the target is for example the tissue
Liver, the cell-line hepatocyte, or the general target ADMET. However, the
phenotype “hepatotoxicity” is available as target directly (CHEMBL1697861)
and is connected with 31 assays. These include, among others, datasets mined
from literature [45, 46], the drug induced liver injury prediction system
(DILIps) training set [47], and the food and drug administration (FDA) liver
toxicity knowledge base benchmark dataset (LTKB-BD) [48]. Of note for
hepatotoxicity, but not yet available in ChEMBL, is a recent work by Chen
et al. [49], where a reference list for drug-induced liver injury (DILI) was
presented.

While identifying activity values for a specific transporter is more straight-
forward, interpreting the data can be challenging. As an example, a search for
BCRP easily identifies the human protein (CHEMBL6020), which shows a total
of 1799 bioactivity values. While a large portion of the values are reported as
IC,, values in nanomolar (nM) units (615), others are given as inhibition in
percentage (357), activity in percentage or fold increase of control (278), or
EC,, in nM (213). Several activities are reported as ratios (58) or other activ-
ity types (275), for example, fluorescence intensity, drug transport, intrinsic
activity, or permeability. This makes a direct comparison of the values rather
difficult. In addition, measurements of different assay setups cannot always be
directly compared, as shown for P-gp inhibitors [50].

To retrieve bioactivity values for transporters (e.g., to build computational
models), a list of relevant transporters is needed first. This can be achieved
by reviewing the literature, but data collections such as the Gene Ontology
(geneontology.org) [51] can be helpful as well. For example, the molecu-
lar function of “canalicular bile acid transmembrane transporter activity”
(GO:0015126) can be used to retrieve a list of BSEP proteins from different
organisms.
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6.5 InSilico Transporters Models

Table 6.1 summarizes some of the available computational models of hepatic
transporters implicated in hepatotoxicity, namely, BSEP, MRP2, MDRI,
BCRP, MATE1, OCT1, OCT2, OATP1B1, OATP1B3, MRP3, MRP4, NTCP,
ASBT, and OATPs. Owing to the heterogeneity of experimental reports
in terms of assay types, test concentrations, and experimental conditions,
most computational studies focus on classification models of varying pre-
diction performances. These models are built to distinguish inhibitors from
non-inhibitors [79]. Only a few models for prediction of binding affinity or
inhibition at a quantitative level are available. Their predictivity is usually
limited to small sets of compounds with measurements from assays with
similar experimental conditions [79].

6.6 Ligand-Based Approaches

Considerable progress has been made in the development of in silico prediction
models for canalicular transporters such as BSEP, MRP2, MDR1, and BCRP. In
addition, there were also recent advances for in silico models for basolateral
transporters.

6.7 OATP1B1 and OATP1B3

Karlgren et al. proposed a computational model for OATP1B1 [52] based
on 146 compounds (2/3 training set; 1/3 test set) using orthogonal partial
least-squares discriminant analysis (OPLS-DA). The model used a set of
molecular descriptors and achieved a performance of 80% sensitivity and 91%
specificity for a test set. Subsequently, they reported classification models for
OATP1B1, OATP1B3, and OATP2B1 inhibitors at a 20 puM potency threshold,
with accuracies between 75% and 93% [53]. Following a proteochemomet-
ric modeling approach, De Bruyn et al. [80] combined protein-based and
ligand-based molecular descriptors using random forest (RF) as classifier.
They used 2,000 compounds for training and 54 compounds as an external
test set. An additional OATP1BI1 classification model was published by van
de Steeg et al. [81] Their Bayesian model was based on a training set of 437
compounds (37 inhibitors and 400 non-inhibitors) and an internal set of 155
compounds for validation (12 inhibitors and 143 non-inhibitors), resulting
from the screening of a commercial library of 640 FDA-approved drugs. The
overall model performance was greater than 80%, both for leave-one-out
cross-validation and external validation. Kotsampasakou et al. [54] developed
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a set of classification models for OATP1B1 and OATP1B3 inhibition based on
1,700 curated compounds from the literature. Virtual screening of DrugBank
drugs followed by biological testing of 10 top-ranked hits confirmed the
validity of the models, yielding in an accuracy of 90% for OATP1B1 and 80%
for OATP1B3, respectively.

6.8 NTCP

A study by Greupink et al. [56] proposed a ligand-based common feature
pharmacophore model consisting of two hydrogen bond acceptors and three
hydrophobic features. This model, based on five NTCP substrates, was then
applied to screen large chemical libraries. In the virtual screening procedure,
10 compounds were selected out of which 6 notably inhibited taurocholate
uptake in NTCP overexpressing cells.

6.9 OCT1

Three pharmacophore models have been reported for OCT1 so far [82-84].
Ahlin et al. [57] investigated the inhibition patterns of OCT1 using registered
oral drugs to develop predictive computational models. Increased lipophilicity
and positive net charge were found to be key physicochemical properties that
positively correlated with OCT1 inhibitory activity. Moreover, dipole moment
and multiple hydrogen bonds were found to be negatively correlated. The data
were used to generate orthogonal partial least-squares projection to latent
structures discriminant analysis (OPLS-DA) models for OCT1 inhibitors so
as to discriminate the inhibitors from the non-inhibitors. The final model
correctly predicted 82% of the inhibitors and 88% of the non-inhibitors from
the test set.

6.10 OCT2

A 2D-QSAR model based on 34 OCT2 inhibitors that inhibit tetraethylammo-
nium (TEA) transport was reported by Suhre et al. [58]. Another study by Zolk
et al. [85] analyzed 26 commonly used drugs for inhibition of MPP* uptake. A
significant correlation was found between the topological polar surface area
(TPSA) and activity on MPP* uptake inhibition. Kido et al. [86] experimentally
screened 910 compounds, of which 244 compounds inhibited OCT2-mediated
transport of 4-(4-(dimethylamino)styryl)-N-methylpyridinium(ASP*). Using
computational analysis, molecular charge was identified as one of the key
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properties for differentiating inhibitors from non-inhibitors. The 10 most
potent OCT?2 inhibitors were used to generate a two-point pharmacophore,
showing a pattern of an ion-pair interaction site and a hydrophobic aromatic
site separated by 5.0 A.

Xu et al. [59] designed a scheme for screening combinations of pharma-
cophores based on hypotheses established using 162 OCT2 inhibitors. The
final model comprises four individual pharmacophores. The combinatorial
model provided an overall accuracy of about 70% on a test set containing 81
OCT?2 inhibitors and 218 non-inhibitors.

6.11 MRP1, MRP3, and MRP4

van Zanden et al. [60] studied the effect of flavonoids on MRP1 and MRP2
transfected MDCKII cells. A QSAR model for the inhibition of MRP1 was
obtained [60]. Pharmacophore-based models are reported for MRP1 inhibition
by Chang et al. [87], Tawari et al. [61], and Pajeva et al. [62].

Owing to lack of experimental measurements, very few computational
studies exist for the basolateral bile acid efflux transporters MRP3 and MRP4
(Table 6.1). Sedykh et al. [55] reported classification models of MRP4 inhibitors
at a 10 pM threshold with accuracy of 70% on external dataset. The modeling
was based on a rather small set of 64 molecules. In a recent study, Akanuma
et al. [88] attempted structural analysis of MRP4 transport for several groups
of B-lactam antibiotics.

6.12 BSEP

For the human BSEP, Warner et al. [20] used a recently described in vitro mem-
brane vesicle BSEP inhibition assay to quantify transporter inhibition for a set
of 624 compounds. A support vector machine (SVM) learning model, employ-
ing in-house descriptor sets comprising 2D, 3D, and fingerprint-like features,
led to prediction accuracy of 87%. Relating a set of physicochemical proper-
ties of the compounds to BSEP inhibition, they demonstrated that lipophilicity
and molecular size are significantly correlated with BSEP inhibition. The model
could be further used to minimize the propensity of drug candidates to inhibit
BSEP. Saito et al. [63] reported a BSEP inhibition model based on multiple
linear regression using 37 diverse druglike compounds and their chemical frag-
ment descriptors. However, the model was not validated further to evaluate its
applicability. The model proposed by Hirano et al. [89], based on as few as 37
compounds, does not allow in silico profiling of chemically diverse compound
libraries. Later, Pedersen et al. [90] built two OPLS-DA models on 163 com-
pounds. They report an accuracy of 89% on a test set of randomly selected 86
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compounds. Nevertheless, none of the aforementioned models were applied in
prospective studies to mark BSEP inhibitors in real-life settings.

In a more recent study, Montanari et al. [65] developed a classification
model based on a set of physicochemical descriptors. The model revealed the
importance of hydrophobicity, aromaticity, and H-bond donor characteristics
in distinguishing inhibitors from non-inhibitors. One major finding of these
studies was bromocriptine - a known drug - being identified as BSEP inhibitor.
The accuracies of the BSEP models on external datasets ranged from 70%
to 90%.

6.13 MRP2

Several publications have proposed prediction models for MRP2 inhibition
(Table 6.1) using linear and nonlinear modeling methods. For linear models,
mainly partial least squares (PLS) regression and discriminant analysis were
used, while nonlinear modeling methods include SVM, k-nearest neighbors
(kNN), and RF [55, 64, 91]. Ng et al. developed a QSAR model of binding affin-
ity to rat MRP2 for 25 methotrexate analogs as well as a pharmacophore for
their binding mode [66]. Zhang et al. [91] have constructed a pharmacophore
for MRP2 inhibitors, which performed slightly worse than their SVM-based
model. Pinto et al. [68] applied different machine learning methods for the
development of models for putative substrate/non-substrate classification for
MRP2. Although the prediction performance is not excellent, the study can be
marked as the first of its kind for classification of a huge set of putative MRP2
substrates and non-substrates.

6.14 MDR1/P-gp

P-gp is a thoroughly studied ABC transporter protein. A number of
ligand-based approaches have been proposed already, including conven-
tional methods such as Hansch analysis, linear and nonlinear classification
algorithms, pharmacophore modeling, and even more advanced methods such
as supervised and unsupervised artificial neural networks [92—-97]. One of the
groundbreaking contributions is the work of Broccatelli ez al. [69], who used a
combination of molecular field analysis, pharmacophore-based representation
of the compounds, as well as physicochemical descriptors to develop both
global and local models for P-gp inhibitors. The final model indicated that
flexibility, hydrophobic surface area, and log P are the discriminating physico-
chemical properties for inhibitors and non-inhibitors. The model, which was
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based on 1275 compounds extracted from 61 studies, also points toward shape,
a 3D descriptor/feature, as a crucial discriminative property. With a reported
accuracy of 86%, the model demonstrated a sensitivity of 0.9, a specificity of
0.8, and Cohen’s kappa of 0.7 when tested on an external set. In addition to
binary classifiers, a number of other 2D-QSAR models [98—107] and machine
learning methods were successfully applied for prediction of P-gp substrates
and inhibitors [108, 109].

Wang et al. [109] used unsupervised machine learning methods such as
Kohonen self-organizing maps, which were also employed to predict P-gp sub-
strates and inhibitors. The best model, based on a dataset of 206 compounds,
correctly predicted 83% of substrates and 81% of inhibitors. Models based
on recursive partitioning and Naive Bayes methods were developed by Chen
et al. [70] on a dataset containing 1273 compounds. The best model accurately
predicted 81% of the compounds in the test dataset. Klepsch et al. [71] used
BestFirst as a feature selection method using a dataset of 1608 P-gp inhibitors
and non-inhibitors. Random forest and SVM models were reported as the
best classifiers, accurately predicting a total of 86% and 83% of the training set
compounds and 73% and 75% of the test set compounds, respectively.

Different studies, employing a range of simple to complex methods, showed
satisfactory prediction performance and have contributed to identification of
molecular features that are involved in P-gp mediated MDR reversal. However,
the applicability of the models is questionable, taking into account the still rel-
atively small number of molecules investigated in each of these studies [110].

6.15 MDR3

Multidrug resistance protein 3 (MDR3) is the closest homologe to P-gp sharing
a sequence identity of 75%. Only five substrates could be identified in previous
studies [111]. Regarding inhibitors, a study by He et al. [34] led to the discov-
ery of nine drugs that inhibit MDR3, while a more recent study by Mahdi et al.
showed inhibition of MDR3 by antifungal azoles. In addition, their data indi-
cated a potential increased cholestatic effect in case of simultaneous inhibition
of BSEP and MDR3 [35]. However, this information is not sufficient to establish
in silico prediction models.

6.16 BCRP

Several global machine learning-based classification models have been
proposed to predict BCRP inhibition. Eric et al. [72] extracted and merged

32

157



158

Computational Toxicology

literature data on BCRP inhibition to build neural network and SVM models
based on 96 compounds. The models provided test set accuracies over 82%,
sensitivities over 83%, and specificities over 80%. Matsson and colleagues [73]
developed models that could distinguish BCRP inhibitors from non-inhibitors
using a diverse training set of 80 compounds and the descriptors log D and
polarizability. The best model had a sensitivity of 83% and a specificity of 76%
on a test set of 43 compounds. Pan et al. [74] developed a Bayesian classi-
fication model and a set of pharmacophores on 203 compounds. Screening
the collaborative drug discovery (CDD) database [112] with these models led
to selection and testing of 33 compounds. Among them, two compounds,
flunarizine and pimozide, showed significant BCRP inhibition at 10 pM. All
these models were built on rather small datasets, without using all the data
available at the respective times of their studies.

Montanari et al. [113] compiled the largest set of 978 BCRP compounds
available up to now by extracting information from 47 different studies. The
authors reported an accuracy of 0.92 and an area under the ROC curve (AUC)
of 0.85 in cross validation based on a naive Bayes model. Later on, this dataset
was used [75] to build a global binary classification model for prediction of
BCRP inhibition. The final model was used to screen all the approved drugs in
DrugBank to identify potential BCRP inhibitors. Ten drugs were selected and
tested in BCRP-expressing PLB985 cells. Among them, two drugs, cisapride
(IC;, = 0.4 pM) and roflumilast (IC,, =0.9 pM), showed inhibition in the sub
micromolar range.

6.17 MATE1

Protein-ligand interactions for organic cation transporters and the multidrug
and toxin extrusion (MATE) transporter have been investigated using pharma-
cophores and quantitative structure-activity relationships [58, 82, 85, 86, 114].
In a recent study, Astorga et al. [114], characterized the relative selectivity of
MATE1 and MATE2-K for some clinically important organic cations (OCs).
Novel inhibitors for these transporters were identified and predictive models of
MATE]1 selectivity were developed. Using the IC., values, a common-feature
pharmacophore could be developed along with quantitative pharmacophores
for hMATEL]. Furthermore, a Bayesian model suggesting molecular features
favoring and not favoring the interaction of ligands with hMATE1 was intro-
duced [114].

In another study, Wittwer et al. [115] proposed an RF classification model to
identify MATELI inhibitors and non-inhibitors. The average AUC for 10 tests
was 0.70 + 0.05 (permutation test; p-value < 0.0001), indicating that models of
good quality had been obtained.

33



Transporters in Hepatotoxicity

6.18 ASBT

Efforts from Zheng et al. [67, 77], Rais et al. [78, 116], and Gonzilez et al. [76]
provided several QSAR models and pharmacophore models for ASBT binding
affinity, with R* values between 0.68 and 0.89. All were trained on small
congeneric series of conjugated bile acid derivatives. Classification QSARs of
ASBT inhibitors based on 10 and 100 pM potency thresholds were reported
by Sedykh et al. [55] and Zheng et al. [67], respectively.

To summarize this part, based on the data presented in Table 6.1, confined
size of datasets has been a major limitation in developing highly accurate in
silico prediction models to identify the drug interaction potential of hepatic
transporters. The conformational flexibility of membrane transporters, the
diverse chemical space covered by their substrates, and the inconsistency
in data availability from experimental assays limit the predictive power of
computational models even further.

6.19 Structure-Based Approaches

As stated earlier, the nonnavailability of resolved 3D structures of a number of
membrane transporters is the reason for limited progress in structure-based
approaches for transporter interaction prediction. However, in recent years, a
number of 3D structures of ABC transporters have been resolved [117, 118].
Thus, improved performance of experimental approaches [119] has led to the
development of structure-based models with decent performance.

Bikadi et al. [120] used SVM prediction and molecular docking approaches
to predict P-gp substrate binding modes. Dolghih et al. [121] separated P-gp
binders from non-binders via induced fit docking into the crystal structure of
mouse P-gp (PDB ID: 3G60) [117] and using the docking score for subsequent
classification. Further, Chen et al. [93] performed docking studies using
245 P-gp substrates and non-substrates, but could not clearly separate them
on the basis of the Glide docking scores [122]. Klepsch et al. [123] docked a set
of propafenones into a homology model of human P-gp. The study revealed
that the binding poses are consistent with QSAR data, indicating that the
observations can be exploited in identification of new P-gp inhibitors [124].
This study was further extended to structure-based classification of nearly
2000 compounds, which showed a prediction accuracy of 61% for the external
test set compounds [71].

Although ligand-based approaches, owing to their high speed and accura-
cies, remain the method of choice for classification of transporter ligands,
structure-assisted docking models show reasonable prediction accuracies
in addition to providing valuable information on putative protein-ligand
interactions at the molecular level.
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6.20 Complex Models Incorporating Transporter
Information

As described in the introduction, there is ample of evidence for the associa-
tion between hepatic transporters and toxicity manifestations in the liver. This
knowledge generated the idea that transporter information (inhibition, expres-
sion, or upregulation) could be incorporated within in vitro or in silico models,
together with other assay data and physicochemical and/or biological descrip-
tors. This is also in line with the FDA recommendations for transporters to
be tested during drug development [125, 126]. Curiously, despite the fact that
information on drug-transporter interactions is quite important and there are
several in vitro and in silico models available for transporters per se, as out-
lined in the next section, there are only few studies combining the transporters
information with other data.

6.21 In Vitro Models

There have been some well-established assays for hepatic transporters inhibi-
tion to predict liver toxicity. Especially in the case of BSEP, whose inhibition is
linked with cholestasis, the respective screening is considered essential at the
early stages of drug development. However, although there are several meth-
ods to measure BSEP inhibition, not all of them are equally suitable. In their
review, Kis et al. [22] describe several appropriate in vitro methods that can
predict BSEP-drug interactions. Furthermore, Szakdcs et al. present several in
vitro methods and models for elucidating the ADMET profile of ABC trans-
porters [127].

Thomson et al. have proposed a combination of assays for cytotoxicity [128].
Their suggestion is the use of a hazard matrix based on covalent binding, in con-
junction with an array of five in vitro assays, addressing cytotoxicity in different
cell lines and inhibition of the canalicular transporters BSEP and MRP2, with
individual cutoff values for each assay. Aleo et al. have shown that the severity of
human DILI is highly associated with the dual inhibition of mitochondrial func-
tion and BSEP, flagging them as two very important liability factors that should
be checked during pharmaceutical screening [129]. Another study by Schadt
et al. [130] proposed a methodology based on a compilation of assays to predict
DILI for drug candidates. Among these assays are BSEP inhibition, glutathione
adduct assay, CYP3A time-dependent inhibition, cytotoxicity in human hepa-
tocytes, mitochondrial toxicity, and cytotoxicity in NIH 3T3 mouse fibroblasts.
As a training set, 81 marketed or withdrawn compounds with differing DILI
classes (according to FDA) were used. The resulted modeling approach yielded
a performance of 79% overall accuracy, 76% sensitivity, and 82% specificity for
the external test set composed of 39 compounds [130].
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On asslightly different level, Dawson et al.s’ [18] testing of 85 drugs for human
BSEP inhibition, as well as its rat ortholog Bsep, followed by statistical analysis
showed that inhibition of BSEP/Bsep correlates with the drug potential to cause
DILI with an r*=0.94. Moreover, all drugs with human BSEP IC,, < 300 pM
had molecular weight > 250, ClogP > 1.5, and nonpolar surface area > 180 A
[18].

Similarly, in the work of Kock et al. [131], 88 drugs (100 pM) were investigated
regarding their inhibitory effect on MRP3- and MRP4-mediated substrate
transport. 50 BSEP non-inhibitors (24 non-cholestatic; 26 cholestatic) and 38
BSEP inhibitors (16 non-cholestatic; 22 cholestatic) were examined. MRP4
inhibition was associated with an increased cholestatic risk among BSEP
non-inhibitors. In this group, for each 1% increase in MRP4 inhibition, the
odds of the drug being cholestatic increased by 3.1%. By implementing a cutoff
value of 21% for inhibition, which predicted a 50% chance of cholestasis, 62% of
the cholestatic drugs inhibited MRP4 (P < 0.05). Nevertheless, merely 17% of
non-cholestatic drugs were MRP4 inhibitors. Among BSEP inhibitors, MRP4
inhibition did not provide additional predictive value for cholestatic potential,
as almost all BSEP inhibitors were also MRP4 inhibitors. The study failed to
prove statistically significant association of MRP3 inhibition and cholestasis,
regardless of the drug’s capability to inhibit BSEP.

6.22 Multiscale Models

During the last decades, there has been a vast development in biomedical
research, which allows the investigation of biological systems with higher
level of detail and accuracy [132]. Multiscale models, that is, complex mod-
els that couple high- and low-resolution models thus allowing the study
of biological systems from atomic to macroscopic levels [133], have made
considerable contribution in this direction. The virtual liver network (VLN)
is a characteristic example where several multiscale models are combined
to simulate the function of a single organ [132]. Similar initiatives have also
taken place previously for heart, such as the Virtual Heart (http://thevirtual
heart.org/) [134] and the Living Heart Project (http://www.3ds.com/products-
services/simulia/solutions/life-sciences/the-living-heart-project/) [135]. They
combine information from the level of molecular targets, move toward
molecular pathways/processes, then cellular/tissue processes, and end up at
a tissue or whole-organ endpoint. This approach, apart from modeling the
physiological function of an organ, can further be implemented for modeling
whole-organ toxicity [136]. These multiscale models might facilitate the
discovery of potentially hazardous drugs/chemicals at the early stages of drug
discovery in a more efficient way than the single models, as more parameters
that contribute to toxicity are taken into account.
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In this direction, Diaz Ochoa et al. [137] developed a multiscale modeling
framework for spatiotemporal prediction of substances’ distribution that may
result in hepatotoxicity. This framework consists of cellular models, a 2D liver
model, and a whole-body model. Several mechanistic, genome-based in silico
cells composite the 2D liver model and the whole-body model, including also
the function of MRP2, MRP3, and MRP4. In principle, they use cellular sys-
tems for kinetic modeling and their aim was not only to calculate the drug
concentration in the organ, but also the cell viability [137].

Another systems biology approach based on the analysis of dynamic adapta-
tions in parameter trajectories (ADAPT) pointed out the important role of liver
X receptor (LXR) activation for the development of steatosis [138]. Hijmans
et al. showed that both input and output fluxes to hepatic triglyceride content
can be induced by LXR activation, and during the early stages of LXR activa-
tion, steatosis can be induced by just a small imbalance between input/output
fluxes of triglycerides. For the modeling analysis, mRNA levels of several mice
genes were used, including Abcgl, which is known for its major role in choles-
terol efflux from macrophage foam cells [139], and Abcg5, which forms a het-
erodimer with Abcg8 to translocate cholesterol and other plant sterols from the
canalicular membrane into bile [16, 19, 39].

In addition, recent modeling approaches in our lab concerning prediction
of hepatotoxicity endpoints by incorporating transporter interaction profiles
follow the multiscale model concept. Apart from the prediction of hepato-
toxicity endpoints, these models also aim to investigate the putative link of
transporters inhibition with the respective toxicity endpoints. Initially, we used
physicochemical descriptors of chemical compounds together with predictions
of OATP1B1 and OATP1B3 inhibition [54] to predict hyperbilirubinemia
[140]. In total a dataset of 836 compounds (86 positives and 749 negatives)
for hyperbilirubinemia was used for training. Combination of MetaCost [141]
and SMO (the SVM implementation in the WEKA [142] software package)
using 93 interpretable 2D MOE [143] descriptors gave a performance of 68%
accuracy and AUC. However, with respect to hyperbilirubinemia-transporter
association, we only saw a weak relationship. For sure, more studies are
expected in this field, which will allow targeting complex in vivo endpoints
on a more sophisticated level than conventional machine learning methods
currently allow.

6.23 Outlook

Transmembrane transport proteins represent a considerable fraction of the
human genome. Their substrates cover a broad chemical space and range from
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neurotransmitters via hormones up to a large panel of xenobiotics. Further-
more, they are also strongly involved in ADME and toxicity. One of the organs
where a proper transporter homeostasis plays an important role is the liver.
Imbalance in the function of the numerous transport proteins expressed in the
liver has a big impact in its physiological function and subsequently in human
health.

In the past decade, the community has faced a tremendous increase in knowl-
edge on transmembrane transporters, their function, and their ligands. Several
high-resolution structures were deposited in the Protein Data Bank, and spe-
cialized databases composed of inhibitors and substrates for transport proteins
became available. These served in the development of in silico models for pre-
dicting transporter ligands. However, coverage is still quite limited and there is
a strong need for high-quality data for particular transporters (NTCP, MRPs,
MDR3) in order to develop more robust models for transporter inhibition. Fur-
thermore, as generally observed for all target classes, the data available suffer
from a “positive data bias,” that is, they are heavily biased toward biologically
active compounds. In addition, in most cases, the respective assay conditions
are not available in a standardized form, which renders it difficult to compare
data retrieved from different assays. Thus, it would be of major importance
to have public available data depositories, which allow the deposition of both
positive and negative data. These transporter data hubs should also follow the
findable accessible, integratable reuse (FAIR) principles of data access [144] and
allow data upload in a standardized format, especially with respect to assay
conditions.

With respect to in silico toxicity prediction tools, multiscale models and vir-
tual organs might be the near future of toxicity prediction. They are able to cap-
ture the necessary information from the molecular interaction with individual
targets to the cellular response up to the whole tissue or organ. Of course, this is
a complex challenge, but the first success stories for the heart demonstrate the
advantage of a more holistic view on organ function and dysfunction. In addi-
tion, in this case, high-quality data are the key. They need to be provided on
different levels, ranging from molecular interactions up to time/concentration
series of solutes. In our opinion, all the tools necessary to pursue such a task for
the liver are there already, and it just needs a concerted effort to make it happen.

Finally, following the increasing automation in life sciences, genotyping of
patients will become routine soon. This opens up the whole field of single
nucleotide polymorphisms (SNPs) and their consequences on response rates
to medication. In addition, in the field of transporters, numerous SNPs are
known which influence function and ligand recognition. This will add another
layer of complexity to holistic prediction tools, but finally will link transporter
informatics to precision medicine.
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The shift in paradigm from ‘one-drug-one-target’ to ‘one-drug-many-targets’ is marked by
several current drugs that specifically interact with multiple biological targets. Similarities
and synergies and even more importantly side effects and adverse reactions demand a most
thorough development process covering as many factors as possible. Computational methods
often provide highly useful platforms to tackle these issues due to their immense flexibility
and ability to deal with big data. In this chapter, we present a workflow for systematic
extraction and curation of data for multiple drug targets from the public domain and provide
insights into how such data can be employed in the development of ligand and structure-
based approaches while discussing the bottlenecks to be considered with respect to data

analysis.
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Abstract
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Multi-target drug design is an innovative new paradigm in the drug development process. With the help of 8
growing open data sources, in silico modeling approaches have become successtul tools to discover and
investigate multi-target drugs. In this chapter, we describe a workflow for retrieving and curating informa-
tion for multiple drug targets from the open domain, provide insights into how the retrieved data can be
employed in ligand and structure-based approaches, and discuss the hurdles to consider with respect to data

analysis.

Keywords KNIME workflow, Ligand-based design, Molecular docking, Molecular dynamics simula-
tion, Multi-target drug design, Open data, Protein homology modeling, Structure-based design

1 Introduction

Multi-target drug design is an emerging new paradigm to treat
complex diseases by regulating multiple targets at the same time to
achieve the desired physiological responses [1—4]. Traditionally,
drugs have been designed to selectively modulate a so-called on-tar-
get in order to avoid side effects by modulating “oft-targets.” How-
ever, several approved drugs retrospectively have been shown to hit
more than one target, which turned out to contribute to the thera-
peutic efficacy [5, 6]. Furthermore, in recent years many drugs failed
in phase II clinical trials because of a lack of therapeutic efficacy
[7]. Therefore, multi-target drug design represents an innovative
principle to overcome lack of efficacy. Different approaches to dis-
cover and investigate multi-target drugs have been reviewed by
Zhang et al. [8] addressing data-driven, ligand-based, or structure-
based methods [4, 9-14]. Most of these methods focus on drug
repurposing (i.e., to find new targets for known drugs) such as the
ligand-based methods SPIDER [15] and SEA [16], which are based
on 2D fingerprint or 3D shape similarity. Furthermore, structure-
based methods such as TarFisDOCK [17], INVDOCK [14, 18], or

Stefanie Kickinger, Eva Hellsberg, and Sankalp Jain contributed equally to this work.
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VinaMPI [18] could be used to dock potential ligands into many
target structures at the same time [ 19, 20]. With the help of growing
open data sources such as Open PHACTS [21], ChEMBI [22], and
freely available medicinal chemistry literature, data-driven in silico
modeling approaches have also proven to be capable of etfectively
identifying protein-ligand interactions at an early stage in the drug
discovery pipeline [23]. However, increase in complexity and size
and diversity of public data sources necessitate judicious curation of
the data before using them. With the availability of workflow tools
like KNIME [24] or pipeline pilot [25], complex querying for
multiple drug targets became a feasible task without the need of
comprehensive programming skills [26]. In this chapter, we present
a protocol which starts with mining the Open PHACTS Discovery
Platform to collect a data-set of suitable size and quality for
subsequent structure-based selectivity profiling studies. As concrete
case study, we chose the human serotonin (hSERT) and dopamine
transporter (hDAT). Both proteins belong to the neurotransmitter
sodium symporter family which represents the largest group of
transporters in the human genome. hSERT and hDAT are responsi-
ble for the reuptake of serotonin and dopamine, respectively, from
the presynaptic cleft after signaling [27, 28]. Numerous drugs have
been developed which interact with these transporters and are used
as therapeutic agents to treat neurological disorders such as depres-
sion. In addition, there is a wealth of compounds which are abused as
illicit drugs [28-30]. Even though hSERT and hDAT share high
sequence and structural similarity, they fulfill different physiological
roles. Substances increasing dopamine levels in the mesolimbic path-
way of the brain can influence the reward system, whereas increased
levels of serotonin are involved in several other neurotransmitter
systems, most importantly influencing mood [31]. A profound
understanding of the structural basis for hSERT and hDAT ligand
selectivity is therefore of major interest for designing ligands that
either hit one of these transporters or both. This chapter will tackle
this research question by reviewing the data mining and curating
process for hNSERT and hDAT bioactivities present in the linked open
data domain. This is followed by a comprehensive scatfold analysis in
order to analyze the chemical space, which allowed to identify a
congeneric series of compounds suitable for structure-activity rela-
tionship studies and experimental data guided ligand docking. The
power of this protocol is based on the combination of mining the
available knowledge in the open data domain and its breakdown to
concrete molecular interactions. This chapter thus gives an overview
of the overall workflow, points out the potential of retrieving data for
multiple drug targets from the open domain, provides insights into
structure-based approaches, and discusses the hurdles to be consid-
ered in data analysis.
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2 Materials

Data retrieval and scaffold analysis

Knime [24 ]: Knime is an open-source platform that provides an
integrated solution for the data mining process across the drug
discovery pipeline. It can be downloaded from https://www.
knime.com /software. It also provides a visual assembly of data
workflows drawn from an extensive repository of tools. Addi-
tionally, it also offers nodes for machine learning (classification
and regression analysis).

Homology modeling

MODELLER [32]: Modeller is a widely used open-source soft-
ware for comparative modeling of protein three-dimensional
structures. The program also incorporates limited functions for
ab initio structure prediction of loop regions of proteins, which
are often highly variable even among homologous proteins and
thus difficult to predict by homology modeling. It can be down-
loaded from https: //salilab.org/modeller.

Molecular docking and visualization

Schrodinger [33]: Schrodinger is one of the leading commercial
software packages in the field of drug design. It includes small
molecule modeling and simulations, macromolecular modeling
and simulations, lead discovery, and lead optimization, visualiza-
tion, and automation (https: //www.schrodinger.com/maestro).
Glide [34] is the molecular docking module in Schrodinger that
places the ligand in the protein binding pocket and ranks the
generated poses with an empirical scoring function.

Molecular Operating Environment (MOE) [35]: MOE is a
commercial drug discovery software platform that integrates
visualization, modeling, and simulations, as well as methodology
development, in one package (http: //www.chemcomp.com/).

Molecular dynamics

Desmond [36]: Desmond is a freely available software package
developed at D. E. Shaw Research to perform high-speed molec-
ular dynamics simulations of biological systems (http://www.
deshawresearch.com/index.html). Schrodinger provides an
easy-to-use graphical user interface for performing molecular
dynamics simulations with Desmond [37].
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3 Methods

3.1 Data Collection
and Data Mining

Sophisticated approaches are necessary to tackle multi-target drug
design. The great variety of methodological possibilities demands
well-informed decisions on which individual path to embark. In this
section, we describe the methods in detail which we used to retrieve
and curate information on two drug targets. Note that this example
was driven by the solid basis of available experimental data and
previous findings on these drug targets. All technical parameters
described in the methods section are either the default options
recommended by the software developers or adapted due to specific
biological evidence relevant for the focus of the study.

Open data sources such as ChEMBL [22], DrugBank [38], KEGG
[39], or Open PHACTS [21] provide a large collection of linked
information on compounds including their structures, biological
targets, pathways, bioactivities, and experimental details on
biological assays. ChEMBL and other resources extract their infor-
mation from the literature in an automated or semiautomated fash-
ion. The collected data therefore originate from a variety of different
resources resulting in a collection of bioactivity data of different
activity endpoints (K, ICsg, % inhibition, etc.) that was measured
in different assay types and under varying assay conditions (se¢ Note
1). However, using such diverse data for modeling or virtual screen-
ing was reported to show inconsistent performance, and hence
recommendations were proposed to deal with the experimental
uncertainty associated with such data [40, 41]. For our case study,
bioactivity data for hRSERT and hDAT were extracted from the Open
PHACTS Discovery Platform via a KNIME workflow. The applica-
tion programming interface (API) call was used to retrieve pharma-
cology data from ChEMBL20 for both proteins. In the present case
study, we decided to include the bioactivity endpoints ICsg and K,
because these bioactivities have been demonstrated to be most reli-
ably in large data analysis [41, 42 ] and because they can be correlated
with each other. In order to investigate the uncertainty of the data
that was introduced by combining these different activity endpoints
from different assays, the correlation between plCsy and pKk;
(p = negative log) values from duplicate measurements for hSERT
and hDAT was calculated. This showed that the observed correla-
tions are within the same range as the calculated correlations for
duplicate measurements within only one of the activity endpoints
[43]. As a next step, classification of the data into active and inactive
compounds has to be performed in order to extract the actives.
Setting reasonable activity thresholds is a challenging task, and it
requires considering the focus of the study. In the present case, the
thresholds were tailored according to the lowest known activity
endpoints (IC5¢ and Kj) that still showed pharmacological activity.
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If a dataset is used for calculating structure-activity relationships
(SAR), the compounds must be measured for the same activity
endpoint (i.e., either IC5( alone or K; alone). However, if a dataset
is designed for the construction of machine learning models, also the
use of activity annotations is possible (i.e., active, 1, inactive, 0). In
this scenario, the data from different endpoints can be merged
(as described above). To increase the accuracy of the classification
of the dataset, data points close to the activity thresholds might be
omitted. Inconsistent data points with conflicting activity data
should in general be omitted from the dataset. In order to visualize
the diversity of the dataset and to see if there are scaffolds showing
pronounced selectivity for one or both targets, Bemis-Murcko scaf-
fold analysis [44] was performed. Out of the 53 most populated
scaffolds, four scaffolds were identified as hDAT selective, 10 as
hSERT selective, and 24 as promiscuous. In order to perform quan-
titative structure-activity relationship (SAR) calculations, scaffolds
that contained congeneric series of compounds, which showed selec-
tivity for one of the targets and were measured in the same assay,
were prioritized. A congeneric series of 56 compounds sharing a
cathinone substructure was identified that showed pronounced
selectivity for hDAT over hSERT. A detailed description of the
KNIME workflow for data retrieval, filtering, preprocessing, and
analyses can be found in [43]. The whole workflow can be down-
loaded from myExperiment [45 ]. Out of the whole set of derivatives,
six compounds were further selected for subsequent structure-based
studies in order to link the observed selectivity profile to specific
molecular interactions.

In general, ligand-based methods can be used to find trends in the
data (as discussed above) or to classify compounds with machine
learning methods. However, their application depends strongly on
the data quality. In our case study, we analyzed the SAR of the
56 cathinones to get first insights which molecular features trigger
their selectivity profiles. Since the compounds show selectivity for
hDAT (over hSERT), we performed multiple linear regression
(classical Hansch analysis) with hDAT pICsg values and selectivity
(= log(hSERT ICs,/hDAT ICs)) as dependent variables using a
limited set of descriptors characterizing the molecules (Van der
Waals volume (overall, Ca- and N-substituents), partition coeffi-
cient (log P (o/w)), molar refractivity, constants for the substitu-
ents on the aromatic ring, and indicator variables for meta- and
para-substitutions). Briefly, both calculated equations showed a
first trend that the substituent on the Ca-atom to the carbonyl
group of the compounds influences hDAT activity and selectivity.
Details on the approach can be found in [43]. This information is
subsequently used to guide the prioritization of docking poses.
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3.3 Structure-Based
Methods

3.3.1 Homology
Modeling

Structure-based methods require 3D coordinates from available
high-resolution crystal structures, NMR experiments, or homolo-
gous template structures. A plethora of crystal structures is depos-
ited in the Protein Data Bank [46] (PDB, www.rcsb.org) and can
be downloaded free of charge. All selected crystal structures should
be checked thoroughly whether the resolution and B-factors are
appropriate, if certain amino acids are annotated with multiple
possible rotamers, and if there are relevant amino acids missing
(see Note 2). This procedure can be performed with commercial
protein visualization software (MOE [35] or Schrodinger Suite
[33]) or free software (VMD [47] or pymol [48]). A lot of infor-
mation can be already taken from the downloaded pdb files them-
selves, as they are written in text format and include the
experimental data and setup. A visual inspection of PDB structures
is also possible in a web browser using the LiteMol viewer [49, 50 ]
in PDBe (https: //www.ebi.ac.uk/pdbe/) [51]. Since many crystal
structures are models retrieved by X-ray crystallography based on
experimentally measured diffraction patterns, it is furthermore
advisable to check the placement of the protein and its ligands in
the experimentally measured electron density map [31, 52]. Elec-
tron density maps can be visualized with commercial software
(Schrodinger [33], MOE [35]) and free software (Coot [53]) or
in the web browser (LiteMol [49, 50], PDBe [51]). By considering
the abovementioned procedures, one can identify the areas of the
crystal structure where the structure can be trusted or should be
taken with caution. In the case of our study, no crystal structures of
hSERT and hDAT were resolved back then. Consequently, homol-
ogy modeling needs to be performed to obtain decent models
based on suitable template crystal structures.

Homology modeling or comparative modeling refers to the tech-
nique of using a resolved crystal structure to model an unknown
homologous protein structure. It is believed that overall fold is far
more conserved among different proteins than sequence identity
[54]. There are four crucial steps in homology modeling. First, a
suitable crystal structure is chosen as a template. At the time this
analysis was performed, the PDB provided two ditferent types of
homologous template structures for modeling hSERT and hDAT:
crystal structures of the bacterial leucine transporter (LeuT,
sequence 20%) [55] and the drosophila dopamine transporter
(dDAT, sequence identity 70%) [56]. In the present case study,
the dDAT PDB structure 4M48 was chosen as the most suitable
template due to higher sequence identity and the fact that it shows
the desired outward-open conformation (see Note 3). Second, the
desired protein sequence needs to be aligned with the template
structure. This task was performed with the tool ClustalX [57]. All
12 transmembrane helices (TMs) of hSERT and hDAT are highly
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conserved and can be easily aligned with the template structure.
Third, models are generated and refined, e.g., with the program
Modeller, which was also the program of choice in this study
[32]. Within Modeller it is possible to also implement experimental
data in the model generation process by setting restraints for sec-
ondary structure elements, disulfides or salt bridges. Fourth, the
models’ quality needs to be assessed with help of, e.g., the DOPE
score (see Note 4) [58]. Additional quality assessment can be
performed with ProCHECK (https://www.ebi.ac.uk /thornton-
srv/software/PROCHECK /index.html) [58, 59] and ProQM
(http: //bioinfo.ifm.liu.se /ProQM /index.php) [60]. Procheck
additionally provides Ramachandran plots and information on resi-
due properties. ProQM was specifically optimized for membrane
proteins. Nevertheless, the quality of the homology model depends
highly on the quality of the available crystal structures and the
amount of available structural information. A more detailed
description of homology modeling was recently provided by Lush-
ington [61]. The generated hSERT and hDAT homology models
were then further used for molecular docking experiments.

Molecular Docking is a common method in structure-based drug
design to calculate the possible positions of a ligand in the binding
site of its target protein. A great variety of software packages is
available that provide ditferent algorithms and all kinds of settings
[62]. In the present example, six selected compounds of'a congeneric
series sharing a cathinone scaffold were docked into the central
binding site of both the homology models of hDAT and hSERT
with Glide 6.8 [34] from the Schrodinger release 2015-2 [33]. In
Glide, the protein is kept rigid during the docking process, and the
ligands are placed into the space between defined binding site resi-
dues. This setting was sufficient for our task, as we were docking
small compounds with respect to the outward-open binding site of
the transporters and we wanted to keep the side chain rotamers of
the homology models as close as possible to the dDAT template
crystal structure 4M48 at this stage. Furthermore, we restrained the
cationic amine function of the compounds to be placed within 2—4 A
to the carbonyl oxygen of 76 in hDAT and Y95 of hSERT, because
several X-ray structures of related proteins with co-crystallized
ligands are available in the PDB showing a similar distance (for
further details, see [43]). The decision on how much flexibility
should be allowed during the docking process is strongly depending
on the availability of experimental data—which is very rich in this
case. Consequently, the introduced bias caused by applying docking
constraints was justified by the available experimental data. The
models and ligands were prepared in the Schrodinger suite using
default options (see Note 5). Once the docking output is generated,
which usually results in about 100 poses per ligand, a reasonable pose
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3.3.3 Molecular
Dynamics Simulations

analysis and interpretation approach are needed. The poses are
ranked by a specific docking score, which gives an orientation how
well the program was able to place the ligand into the defined
binding site. The docking score includes relevant energetic and steric
terms to achieve a most accurate placement and ranking. The Glide-
Score (used in this study) consists of such components (van der
Waals energy, Coulomb energy, lipophilic term, hydrogen-bonding
term, metal-binding term, as well as several rewards and penalties for
relevant features) [33] to predict the binding mode of the ligand
most accurately. However, these algorithms cannot include individ-
ual information such as the details known from biological experi-
ments about proposed binding modes for a certain target. In this
case a common scaffold clustering approach of all gained poses is
recommended [63]. In this approach, the common scatfold shared
by all docked ligands is extracted, and an RMSD matrix of all poses is
generated from these atoms. Subsequently, the clusters are calculated
at a defined similarity level which corresponds to the maximal dis-
tance within a cluster in Angstrém. This helps to bundle the large
amount of poses into assessable bins which can be analyzed for
common characteristics and compared with the knowledge from
biological experiments in a more quantitative way. The analysis of
the docking study revealed certain trends explaining the observed
ligand selectivity of hSERT over hDAT showing slightly more nega-
tive overall glide scores, less steric clashes, and hydrogen bonding
exclusively in hDAT.

In general, molecular dynamics (MD) simulations are used to study
the motions of molecules over time and are therefore the method of
choice to characterize dynamic interactions within and between
biomolecules. Using such methods requires a lot of considerations
regarding the force field, ligand parameters, membrane and solvent
type, ion concentration, system size, and many more. Experimental
data about the respective systems and facts from profound literature
ideally guide these decisions. The book Molecular Modeling of
Proteins [64] provides an excellent review on various aspects of
these issues. This case study focuses on the protein-ligand interac-
tions between cathinone compounds and hSERT and hDAT. Inves-
tigating the structure-activity relationships of these compounds and
a subsequent docking study showed trends in the ligand selectivity
and provided possible binding modes. To further evaluate these
hypotheses, MD simulations of one compound representing the
previous findings (see [43]) were conducted. In this context, the
primary aim is to verify the stability of the complexes gained from
docking and to review the motions of the ligand inside the binding
site over time. MD simulations are computationally expensive and
need comprehensive analysis, so it is crucial to take the actual
research question into consideration before choosing the simulation
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settings. For example, the simulation time to check the ligand stabil-
ity can be short (20 ns) if the binding mode is well defined, whereas
free simulation of unbinding might take up to micro or even milli-
seconds [65-67]. For this study, a system instability or an unfavor-
able starting pose of the ligand would already be observed within the
first nanoseconds of the simulation, because the biological data
provide a solid basis for our current understanding. The major
criteria to prove stability is a convergence of the root-mean-square
deviation (RMSD) of the protein and the ligand in unrestrained
simulations. For the protein, it is important to solely consider the
RMSD of the backbone atoms as the higher side chain movement
could hide major conformational changes in the backbone. The
stability of the protein-ligand interactions can be observed by inves-
tigating all interactions of the ligand with the protein residues over
the whole simulation time. This identifies the involved residues and
shows the duration of each interaction. Key interactions should be
present over the whole simulation time. The structure-based part of
this work was all done in the Schrédinger software suite [33]. The
MD simulations were prepared in Maestro 10.2 [68] and conducted
in 20 ns simulations with Desmond 4.2 [69]. The MD studies
showed that the selected poses were stable and could also confirm
the observed trends in the ligand selectivity profiles for the two target
proteins.

Designing ligands which target multiple targets with a defined
affinity pattern represents a powerful approach to overcome lack
of efficacy. With this case study, we present a holistic workflow
starting from data mining across public data sources and ending
with molecular dynamics simulations of a concrete ligand-
transporter complex, which revealed the stability of the ligand-
binding mode suggested by experimental data guided docking. As
parts of the protocols described are implemented in KNIME work-
flows, they can be easily adapted to other targets of interest.

4 Notes

1. In ChEMBL, more than 5000 measurement types are consid-
ered including, e.g., “%max,” “Activity,” “Efficacy,” “EC50,”
“Kd,” and “Residual Activity” [41]. Depending on the focus of
the study, these filters can be modified.

2. If there are several rotamers possible fitting in the observed
electron density, the “right” rotamer is not necessarily the one
selected by the crystallographer! High B-values are also an indi-
cator for high flexibility. Make sure to check which rotamer is
relevant for the specific research question.
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3. When dealing with flexible proteins such as transporters, choos- 396
ing the right conformation of your template structure is essen- 397
tial. We believe that classical inhibitors most probably bind and 398
stabilize the outward-open conformation of the transporter and 399
therefore hinder the transporter from adopting other conforma- 400
tions in the transport cycle [55]. Substrates most likely bind to 401
the occluded transporter state as the translocation process 402
requires among others the adaptation of an outward-occluded 403
transporter conformation [70]. 404
4. The DOPE score is the most widely used quality assessment 405
parameter even though it is only optimized for soluble proteins 406
[58]. It has been successfully used for scoring homology models 407
of different membrane proteins [71, 72], nevertheless, it is 408
advisable to not only rely on this parameter when modeling 409
membrane proteins. Scores specifically optimized for membrane 410
proteins such as the ProQM score should be taken into consid- 411
eration as well for selecting the best model. 412
5. The Schrodinger Suite [ 33 ] offers preparation modules for both 413
proteins and ligands. It is strongly recommended to conduct 414
both preparation and docking procedure in the same software 415
package as the used algorithms are compatible. 416
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3. Ligand-based studies

Quantitative structure-activity relationship (QSAR) methods have been highly successful in
modeling physicochemical and biological properties of small molecules. They facilitate
screening of millions of compounds with a goal to accurately distinguish active compounds
from inactive compounds. These methods are also beneficial in understanding the change in
activity of a molecule due to changes in its structure. Besides being a low-cost approach,
modeling of large chemical libraries has become highly productive with QSAR modeling.
Additionally, it is possible to predict properties of non-existing and non-synthesized
compounds [180, 181]. These factors significantly affect the success of drug discovery and

development.

On the other hand, unfavourable safety, efficacy and pharmacokinetic profiles have been the
major reasons contributing to the failure of the majority of candidate drugs, thereby
hampering the success of drug discovery projects to incur huge burden on pharmaceutical
companies [182]. Therefore, early identification of lead compounds with unacceptable
ADMET profile is highly essential. In this respect, data mining techniques employing
machine- learning methods (e.g., support vector machines and decision trees) are highly
essential to construct models using these large datasets and establish a relationship between
compounds and observed activity. However, the non-balanced and diversified nature of
chemical datasets present a challenging problem in the successful application of these

techniques and need to be dealt with.
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3.1 Comparing the performance of meta-classifiers — A case study
on a set of imbalanced data sets relevant for prediction of liver

toxicity

Sankalp Jain, Eleni Kotsampasakou, and Gerhard F. Ecker

J Comput Aided Mol Des 1-8. doi: 10.1007/s10822-018-0116-z

In the following study, we evaluated the performance of seven distinct meta-classifiers
namely 1) Bagging, 2) Under-sampled stratified bagging, 3) Cost-sensitive classifier, 4)
MetaCost, 5) Threshold Selection, 6) SMOTE and 7) ClassBalancer on four datasets that are
directly (cholestasis) or indirectly (via inhibition of organic anion transporting polypeptide
1B1 and 1B3) related to hepatotoxicity with varying degree of class imbalance. We used
three different sets of molecular descriptors for model development. From the investigated
meta-classifiers, Stratified Bagging provided the highest balanced accuracies while MetaCost
and CostSensitiveClassifier achieved better sensitivity. The findings are expected to improve

the understanding and selection of an optimal strategy to handle imbalanced datasets.

E. Kotsampasakou compiled the datasets, generated the models developed in WEKA (for
Random Forest, Cost-sensitive classifier, MetaCost, Threshold Selection, SMOTE and
ClassBalancer), did the statistical testing. S. Jain performed the modeling on OCHEM for
Bagging and Stratified Bagging, wrote the R code to generate the plots and wrote the
manuscript. G.F. Ecker supervised the work and revised the manuscript. All three authors

participated in the original design of the study.
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Abstract

Cheminformatics datasets used in classification problems, especially those related to biological or physicochemical proper-
ties, are often imbalanced. This presents a major challenge in development of in silico prediction models, as the traditional
machine learning algorithms are known to work best on balanced datasets. The class imbalance introduces a bias in the
performance of these algorithms due to their preference towards the majority class. Here, we present a comparison of the
performance of seven different meta-classifiers for their ability to handle imbalanced datasets, whereby Random Forest is
used as base-classifier. Four different datasets that are directly (cholestasis) or indirectly (via inhibition of organic anion
transporting polypeptide 1B1 and 1B3) related to liver toxicity were chosen for this purpose. The imbalance ratio in these
datasets ranges between 4:1 and 20:1 for negative and positive classes, respectively. Three different sets of molecular
descriptors for model development were used, and their performance was assessed in 10-fold cross-validation and on an
independent validation set. Stratified bagging, MetaCost and CostSensitiveClassifier were found to be the best performing
among all the methods. While MetaCost and CostSensitiveClassifier provided better sensitivity values, Stratified Bagging
resulted in high balanced accuracies.

Graphical Abstract

Imbalanced Data Machine Learning
Methods
Baggi CostSensitive
ag8ING Classifier
\ ? MetaCost S(ratlfled
> _ Baggin
’ (o l prp— Threshold
Selection

Class
Balancer

Keywords Imbalanced datasets - Machine learning - Classification model - Meta-classifiers - Stratified bagging - Cost
sensitive classifier

Abbreviations
AUC Area under the ROC curve
Sankalp Jain and Eleni Kotsampasakou have contributed equally HTS High throughput screening

to this manuscript. MCC Matthews correlation coefficient
OATPIB1 Organic anion transporting polypeptide 1B1

Electronic supplementary material The online version of this OATPIB3  Anion transporting polypeptide 1B3
article (https://doi.org/10.1007/s10822-018-0116-z) contains
supplementary material, which is available to authorized users. RF Random Forest
sd Standard deviation
Extended author information available on the last page of the article
Published online: 06 April 2018 @ Springer

67



Journal of Computer-Aided Molecular Design

SMOTE Synthetic minority over-sampling technique
SVM Support vector machines
Introduction

A wide range of classification and regression methods have
been applied in QSAR studies. However, many classification
methods assume that datasets are balanced in terms of the
number of instances of each class and thus give equal impor-
tance to all classes, often resulting in classification models
of poor accuracy [1, 2]. A major problem that arises in this
context is class imbalance, i.e. the number of instances of
one class substantially differ from those of the other classes.
Especially in the field of drug discovery, imbalanced data-
sets [2—4] need to be frequently dealt with [2]. Character-
istically, a classifier developed on an imbalanced data set
shows a low error rate for the majority class and a high error
rate for the minority class [5, 6]. Nevertheless, a few studies
pointed out that the class imbalance is not a main obstacle
in learning [7, 8], and several methods have been developed
to address this issue. These methods can be broadly divided
into (1) data-oriented/re-sampling techniques; (2) algorithm-
oriented methods; and (3) combinatorial/ensemble/hybrid
techniques [2, 3,7, 9, 10].

Several studies compared classifiers that handle imbal-
anced datasets. Schierz et al. [11] compared four WEKA
classifiers (Naive Bayes, SVM, Random Forest and J48 tree)
and reported SVM and J48 to be the best performing for bio-
assay datasets. Lin and Chen in 2013 found SVM threshold
adjustment as the best performing classifier (among linear
discriminant analysis, Random Forest, SVM and SVM-
threshold adjustment) to deal with imbalanced HTS datasets
[9]. Later, Zakarov et al. used under-sampling and thresh-
old selection techniques on several imbalanced PubChem
HTS assays to test and develop robust QSAR models in the
program GUSAR [12]. In a recent study, Razzaghi et al.
reported multilevel SVM-based algorithms to outperform
conventional SVM, weighted SVM, neural networks, linear
regression, Naive Bayes and C4.5 tree using public bench-
mark datasets having imbalanced classes and missing values
and real data in health applications [13].

A comprehensive comparison of the performance of dif-
ferent meta-classifiers on datasets with different levels of
class imbalance, which would provide guidance for choos-
ing the appropriate method for an imbalanced dataset, has
not been attempted so far. Herein, we evaluated the perfor-
mance of seven distinct meta-classifiers from the three afore-
mentioned categories on four datasets from the toxicology
domain. The imbalance ratio of the datasets ranges from
1:4 to 1:20 for the positive and the negative class, respec-
tively. The meta-classifiers were applied to build classifi-
cation models based on three different sets of descriptors.

@ Springer
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Considering its wide applicability in modeling imbalanced
datasets, Random Forest was used as the common base-clas-
sifier for all models [14—18]. Further, we discuss the reasons
behind the superior performance of certain meta-classifiers
in comparison to the others while explaining their intrinsic
limitations.

Methods
Training datasets

Four different datasets from the biomedical sciences domain
were used in this study. Two of these are the OATP1B1 and
OATP1B3 inhibition datasets consisting of 1708 and 1725
compounds, respectively. Both were compiled and used in
our previous study that reported classification models for
OATPI1B1 and 1B3 inhibition [19]. The other two datasets
come from the toxicology domain and are related to drug-
induced cholestasis for human data and animal data which
comprise 1766 and 1578 compounds, respectively. Both
datasets were published in a previous study that reported
computational models for hepatotoxicity and other liver tox-
icity endpoints [20].

External test datasets

The external test sets for OATP1B1 and 1B3 inhibition
from our previous study served as test datasets in this study
[19]. The test set for human cholestasis was compiled in
two stages from two previous studies [21]. The positives for
human cholestasis were compiled from literature [22-25]
and from the SIDER v2 database [26, 27]. As cholestasis is
one of the three types of drug induced liver injury (DILI),
and the compounds that are negative for DILI will also be
negative for cholestasis, the negatives for drug-induced liver
injury compiled in a previous study [21] were used as nega-
tives for cholestasis. Overall, the external human cholestasis
dataset consisted of 231 compounds. No data were available
for animal cholestasis to be used as an external test data-
set. The composition and degree of class imbalance of each
training and test dataset is presented in Table 1.

The chemotypes in the datasets were curated using the
following protocol:

Removed all inorganic compounds according to chemical
formula in MOE 2014.09 [28].

Removed salts and compounds containing metals and/or
rare or special atoms.

Standardized chemical structures using Francis Atkinson
Standardiser tool [29].

Removed duplicates and permanently charged com-
pounds using MOE 2014.09 [28].
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Table 1 An overview of the training and test datasets used in this study

Dataset name Total number of Number of Number of Imbalance ratio (nega-  Source
compounds positives negatives tives: positives)

OATP1B1 inhibition training 1708 190 1518 8:1 Kotsampasakou et al. [19]
OATPI1BI1 inhibition testing 201 64 137 2:1 Kotsampasakou et al. [19]
OATP1B3 inhibition training 1725 124 1601 13:1 Kotsampasakou et al. [19]
OATP1B3 inhibition testing 209 40 169 4:1 Kotsampasakou et al. [19]
Cholestasis human training 1766 347 1419 4:1 Mulliner et al. [20]
Cholestasis human testing 231 53 178 3:1 Kotsampasakou et al. [21]
Cholestasis animal training 1578 75 1503 20:1 Mulliner et al. [20]

— 3D structures were then generated using CORINA (ver-
sion 3.4) [30], and energy minimized with MOE 2014.09
[28], using default settings (Forcefield MMF94x, gradi-
ent 0.05 RMS kcal/mol/AZ, preserving chirality).

Molecular descriptors

Three different sets of descriptors were calculated for each
of the datasets:

1. All 2D MOE [28] descriptors (192 descriptors in total).

2. ECFP6 fingerprints (1024 bits) calculated with RDKit
[31].

3. MACCS fingerprints (166 bits), calculated with PaDEL
software [32].

Machine learning methods

Random Forest [33] implemented in the WEKA software
suite [34, 35] was used as a base-classifier along with all the
meta-learning methods evaluated in this study. The number
of trees was arbitrarily set to 100 (default), since it has been
shown that the optimal number of trees is usually 64—128,
while further increasing the number of trees does not neces-
sarily improve the model’s performance [36]. The following
meta-classifiers were investigated: (1) Bagging, (2) Under-
sampled stratified bagging, (3) Cost-sensitive classifier, (4)
MetaCost, (5) Threshold Selection, (6) SMOTE and (7)
ClassBalancer.

1. Bagging (Bootstrap AGGregatING) [37] is a machine
learning technique that is based on an ensemble of mod-
els developed using multiple training datasets sampled
from the original training set. It calculates several mod-
els and averages them to produce a final ensemble model
[37]. A traditional bagging method generates multiple
copies of the training set by selecting the molecules
with replacement from training set in a random fashion.

69

Because of random sampling, about 37% of the mol-
ecules are not selected and left out in each run. These
samples create the “out-of-the-bag” sets, which are used
for testing the performance of the final model. A total
of 64 models were used for our analysis, since it was
shown in an earlier study by Tetko et al. [38] that larger
numbers of models per ensemble (e.g. 128, 256, 512
and 1024) did not significantly increase the balanced
accuracy of models.

2. Under-sampled stratified bagging [2, 8, 38] In this

method, the total bagging training set size is double the
number of the minority class molecules. Although a
small set of samples was selected each time, the major-
ity of molecules contributed to the overall bagging pro-
cedure, since the datasets were generated randomly. The
performance of the developed models is tested with mol-
ecules from the “out-of-the-bag” set [38]. Since only one
way of stratified learning, i.e., under-sampling stratified
bagging, was used in the study, we refer to it as “Strati-
fied Bagging”.

Bagging and Stratified Bagging were used as imple-
mented in the Online Chemical Modeling Environ-
ment (OCHEM) [39, 40]. For other meta-classifiers,
WEKA(v. 3-7-12) [34, 35] was used.

3. Cost sensitive classifier [2—4, 10, 11] is a meta-classi-

fier that renders the base classifier cost-sensitive. Two
methods can be used to introduce cost-sensitivity: (i)
reweighting training instances according to the total cost
assigned to each class, i.e. the weights are applied dur-
ing learning, or; (ii) predicting the class with minimum
expected misclassification cost (rather than the most
likely class), i.e. the “cost-sensitive” is introduced in
the test phase. In our case, the cost sensitivity was intro-
duced according to method (i) using the CostSensitive-
Classifier from the set of meta-classifiers of the WEKA
software [34, 35].

4. MetaCost [41] is another application that provides the

methodology to perform cost-sensitive training of a clas-
sifier in a generalized meta-learning manner independent
of the underlying classifier. It is a combination of Cost-
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sensitive meta-classifier and Bagging [37]. The algo-
rithm uses class-relabeling, i.e. it modifies the original
training set by changing the class labels to the so-called
“optimal classes”. The classifier is then trained on this
modified training set, which results in having the error
rate minimized according to the cost matrix provided
to the MetaCost algorithm. This implementation uses
all bagging iterations when reclassifying training data.
MetaCost is advantageous as, unlike CostSensitiveClas-
sifier, a single cost-sensitive classifier of the base learner
is generated, thus giving the benefits of fast classifica-
tion and interpretable output (if the base learner itself is
interpretable). MetaCost further differs from traditional
bagging by the fact that the number of examples in each
resample may be smaller than the training set size. This
variation improves the efficiency of the algorithm. More
details about the method can be found in [41].

For both CostSensitiveClassifier and MetaCost, sev-
eral trials of different cost matrices were applied, until
a satisfactory outcome was retrieved.
ThresholdSelector [42] is a meta-classifier implemented
in WEKA [34, 35] that sets a threshold on the probabil-
ity output of a base-classifier. Threshold adjustment for
the classifier’s decision is one of the methods used for
dealing with imbalanced datasets [2, 43]. By default, the
WEKA probability threshold to assign a class is 0.5, i.e.
if an instance is attributed with a probability of equal or
less than 0.5, it is classified as negative for the respec-
tive class, while if it is greater than 0.5, the instance is
classified as positive. For our study, the optimal thresh-
old was selected automatically by the meta-classifier by
applying internal fivefold cross validation to optimize
the threshold according to FMeasure (Eq. 7), a measure
of a model’s accuracy which considers both precision
and sensitivity [44].

SMOTE [45] (Synthetic minority over-sampling tech-
nique) increases the minority class by generating new
“synthetic” instances based on its number of nearest
neighbours. SMOTE, as implemented in WEKA, was
used to generate synthetic examples. For our study, five
nearest neighbours of a real existing instance (minor-
ity class) were used to compute a new synthetic one.
For different datasets, different percentages of SMOTE
instances were created, which can be found in the sup-
plementary information (Table S1). The complete algo-
rithm is explained in [45].

ClassBalancer [34, 35, 46] reweights the instances so
that the sum of weights for all classes of instances in
the data is the same, i.e. the total sum of weights across
all instances is maintained. This is an additional way to
treat class imbalance, unlike CostSensitiveClassifier or
MetaCost, which try to minimize the total misclassifica-
tion cost.
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With respect to parameters, not for all classifiers a param-
eter optimization was performed. For instance, no parameters
were adjusted for ClassBalancer since it automatically reas-
signs weights to the instances in the dataset such that each
class has the same total weight [46]. For Bagging and Strati-
fied Bagging, the only parameter to optimize would be the
number of bags. In our case, the number of bags was adjusted
to 64 as a previous study [38] suggests that generation of 64
models provides satisfactory results without exponentially
increasing the computational cost. In case of ThresholdSe-
lector, an optimal threshold was selected automatically via
fivefold cross-validation before selecting the final model on
the basis of FMeasure. For both CostSensitiveClassifier and
MetaCost, the cost for misclassification was initially applied
in accordance with the imbalance ratio, which, in case it did
not provide a sensitivity of at least 0.5, was further increased
to arrive at the final model. In case of SMOTE, similar prin-
ciples were applied: initially, the number of the synthetic
instances created was set to a number that balances the two
classes. If insufficient, it was further increased until no fur-
ther improvement in sensitivity (with no reduction in speci-
ficity) was observed. The detailed parameter settings of the
best performing models for each method are provided in the
supplementary material (Table S1).

Validation

All models were evaluated in a 10-fold cross-validation fol-
lowed by an external validation performed on independent
test sets, except for Bagging and Stratified Bagging. For
Bagging and Stratified Bagging, since multiple training data-
sets were generated by selecting the molecules with replace-
ment from training set in a random fashion, this leaves out
about 37% of the instances in each run. Therefore, these
molecules that constitute the ‘out-of-the-bag’ sets are later
used for testing the performance of the final model.

Model performance assessment: selection
of the optimal method

Prior to identifying the best performing method, an opti-
mal model for each meta-classifier was selected. The best
parameters for the model were selected using linear search
(as explained in the “Methods” section). For all models, dif-
ferent performance measures including sensitivity (Eq. 1),
specificity (Eq. 2), accuracy (Eq. 3), balanced accuracy
(Eq. 4), Matthews correlation coefficient (MCC, Eq. 5), area
under the curve (AUC) and precision (Eq. 6) were calculated.
A model was considered eligible for selection if the 10-fold
cross-validation provided a sensitivity value of at least 0.5
and a specificity value not less than 0.5. As the datasets are
relevant to different toxicological endpoints, sensitivity was
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considered more important. For a highly imbalanced data-
set, accuracy may be misleading. Therefore we considered
balanced accuracy (which considers both sensitivity and
specificity) as a more appropriate performance measure to
compare different classifiers for their ability to handle imbal-
anced datasets. If two models provided the same sensitivity,
the model that demonstrated higher balanced accuracy was
prioritized for selection. Furthermore, 20 iterations were per-
formed by varying the seed for cross validation [by assigning
values from 1 (default) to 20]. For Bagging and Stratified
Bagging, the 20 iterations were performed by changing the
random seed for the Random Forest generation by assigning
values from 1 (default) to 20. After cross-validation, average
values for different performance measures were calculated
and compared. The best method was then evaluated by per-
forming a statistical t-test in R [47], as well as on the basis of
the performance on external test sets. The individual settings
used in selecting the best model for each meta-classifier can
be found in the supplementary information (Table S1).

Sensitivity = __1r
V= @pr (1)
e TN
Specificity = N+ FP) )
(TP +TN)
Accuracy = 3)
(TP + FP + TN + FN)
Balanced Accuracy = l( (p) (TN) > @)
2\ (TP +NP)  (IN + FP)
MCC = {(TP X TN) — (FP X FN)}

{(TP + FP) X (TP + FN) X (TN + FP) X (TN + FN)}1/2
(5)
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Fig.1 Comparison of performances of different meta-classifiers on
test sets a OATP1BI1 inhibition b OATP1B3 inhibition ¢ human chol-
estasis. x-axis corresponds to the sensitivity and on the y-axis is the
specificity. The squares correspond to MOE descriptors, the trian-
gles correspond to ECFP6 fingerprints and the circles correspond to
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TP
Precision = # (6)
(TP + FP)
FMeasure = ST ) S @)
(2TP + FP + FN)

TP: true positives; TN: true negatives; FP: false positives;
FN: false negatives.

Results and discussion

Tables S2-S5 in the supplementary material report the per-
formance measures for predictions on all datasets used in
this study. The performance values of the base-classifier
(Random Forest) are also reported to facilitate a comparison
with the investigated methods. For each dataset, the mean
and the standard deviation values of performance of the best
performing models (based on 20 iterations) were calculated
and are reported in Tables S6-S9 (supplementary material).
Figure la—c, Figure S1(a—d) in the supplementary material
provide a comparison of performances of different meta-
classifiers on the three test datasets (no test set available for
animal cholestasis) and four training sets respectively.
Irrespective of the dataset and the descriptor set used,
Random Forest was found to be the weakest performing clas-
sifier as anticipated. Except on the test dataset for human
cholestasis, Random Forest alone did not yield a sensitivity
greater than 0.5, which indicates that assistance of a meta-
classifier indeed consistently improves performance when
handling imbalanced datasets. Among the Meta-Classifier
based methods, bagging provided the lowest performance.
A simple reason behind the failure of Bagging is that it only

Cholestasis Human - Test Set

(c)
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MACKCS fingerprints. Each classifier is depicted in a different color:
red for RF standalone, green for Bagging, blue for Stratified Bagging,
dark pink for CostSensitiveClassifier, cyan for MetaCost, yellow for
ThresholdSelector, orange for SMOTE and dark violet for ClassBal-
ancer. Please note that the scaling for the two axes are different
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does resampling without any effort to balance or weight the
two classes.

Threshold Selection was frequently found to be among
the good performing methods. In many cases, this classifier
could handle imbalance very well. However, the sensitivity
measures were poor in comparison to other classifiers. This
could be due to the fact that the thresholds were selected
on the basis of FMeasure, as accuracy and specificity are
not suitable due to the high impact of the majority class. If
the selection of best models is done purely on the basis of
sensitivity, this classifier yields very good sensitivity val-
ues (0.8—1.0), however with a radical decrease in specificity
(0.2-0). Notably, Threshold Selection provided better results
in combination with a second meta-classifier. But since the
aim of the study was to compare the classifiers individually,
this trend was not investigated further.

Stratified Bagging, CostSensitiveClassifier and Meta-
Cost were consistently the best performing classifiers in
both cross-validation and test set validation for all the data-
sets (see Fig. 1, Figure S1 in the supplementary material).
Further, the t-test on the basis of 95% confidence interval
(exact p-values not shown here) indicated a statistically
significant difference in performance between the selected
methods (meta-classifiers). The statistical test was per-
formed pair-wise for all the obtained performance meas-
ures, with more stress on sensitivity and balanced accuracy.
Both MetaCost and CostSensitiveClassifier tended to yield
higher sensitivities while Stratified Bagging, on the other
hand, was found to be superior in terms of MCC, balanced
accuracy and AUC. An advantage of Stratified Bagging is
that it is a straightforward method with only one parameter
to optimize, i.e. the number of bags. On the other hand, cost-
sensitive approaches tend to give more weight to sensitivity
when needed, which is an advantage for toxicity prediction.
Although both methods provided comparable performances,
the cost that had to be applied was greater in case of Cost-
SensitiveClassifier in comparison to MetaCost. This is due
to the fact that the latter is a hybrid classifier which com-
bines Bagging with the application of a cost, thus equili-
brating the dataset more easily. It should further be noted
that the computational cost for MetaCost is higher than that
for CostSensitiveClassifier. On the other hand, Stratified
Bagging is not computationally demanding (for the optimal
parameter of 64 bags). Since each bag is double the size of
the minority class, the calculation of models using Stratified
Bagging requires less computational time, compared to the
models built using Bagging (the bags are of the same size
as the training set) and MetaCost (includes both bagging
and weighting).

SMOTE and ClassBalancer were only in a few cases able
to provide a sensitivity of at least 0.5 in both cross-validation
and test set evaluation. Considering its reputation in han-
dling such problems, the poor performance of SMOTE was
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quite surprising. We assume that the small size of the data-
sets could be the primary reason behind SMOTE’s poor per-
formance. The datasets used in this study are much smaller
in size compared to the HTS datasets in which the minority
class has enough instances for SMOTE to generate synthetic
instances, although the overall imbalance ratio is typically
in the range of 100:1 [12, 45, 48].

With respect to the different sets of descriptors used, the
performance of the classifiers on different datasets remained
almost the same. Of all the descriptors, 2D MOE descrip-
tors and MACCS fingerprints provided the best performance
across many of the datasets, while ECFP6 fingerprints
consistently performed lower. Considering the amount of
information encoded in ECFP6 (1024 bits) in comparison
to MACCS fingerprints (166 bits) and the MOE descriptors,
it might be assumed that the poor performance of ECFP6
is subject to the individual datasets in this study. This also
highlights the fact that sometimes simple set of descriptors
could provide better results than complex and highly popu-
lated descriptors. Moreover, in other recent studies [49-51]
different descriptor and fingerprint combinations did not
demonstrate significant differences in performance.

Overall, the best classifiers performed well regardless of
the type of data (toxicity endpoint or a general or specific
in vitro endpoint), the type and number of descriptor sets
used, or the degree of class imbalance. However, there were
instances where a dataset related to in vivo toxicity (animal
cholestasis) could not be successfully handled by the best
classifiers. Finally, highly sophisticated meta-classifiers
such as Stratified Bagging and MetaCost, that combine re-
sampling and a way to weight the two classes, performed in
principle better than Bagging and ClassBalancer.

Conclusions

In this study, we compared the performance of seven differ-
ent meta-classifiers for their ability to handle imbalanced
datasets. We demonstrated that, for all datasets used in the
study, Stratified Bagging performed at least as good as cost-
sensitive approaches such as MetaCost and CostSensitive-
Classifier and in most cases outperformed them. Random
Forest (as a standalone classifier) and Bagging were unable
to address the imbalance issue. Interestingly, the choice of
descriptors did not play a substantial role in ranking the
performance of different classifiers. Thus, considering that
Stratified Bagging can be directly used in combination with
any machine-learning method without parameter optimiza-
tion, a general recommendation for handling imbalanced
datasets is to wrap the modeling process in the stratified bag-
ging loop. However, one should also consider the computa-
tional cost, as extensive re-sampling can be computationally
expensive. Therefore, a method that balances between the
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complexity of the algorithm and computational cost would
be an ideal choice to obtain optimal results.
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4. Structure-based studies

The modern pharmaceutical research aims to develop novel molecules with a desired
bioactivity profile against one or more drug targets and, at the same time, avoid unwanted
side effects. In this regard, it is very important to elucidate drug-target interactions as this
information could provide insights into the mode of action for a particular bioactive
molecule[112]. Increasing availability of protein 3D structures in the Protein Data Bank
(PDB) [183] and advancements in the computational techniques has motivated researchers all

over the world for a structure-based elucidation of protein targets.
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4.1 Structure-based modeling studies on BSEP

4.1.1 Structure based classification for bile salt export pump (BSEP)

inhibitors using comparative structural modeling of human BSEP

Sankalp Jain, Melanie Grandits, Lars Richter, Gerhard F. Ecker

J Comput Aided Mol Des 31:507-521. doi: 10.1007/s10822-017-0021-x

In this study, we present a homology model of BSEP developed using the corrected mouse P-
glycoprotein structure (PDB ID: 4M1M) that was used for molecular docking, in order to
predict BSEP inhibitors and non-inhibitors. Among the several docking protocols employed,
the best performing one correctly predicted 88% of the compounds in the training set and
77% of the compounds in an external test set. Further, we analyzed the protein-ligand
interaction fingerprints, which revealed certain functional group-binding site residue
interactions that could play a key role in ligand binding. Finally, combining the structure-
based model with our previously published ligand-based classification model in a sequential

order (sequential modeling) improved the precision and reduced the calculation time.

S. Jain performed the study and wrote the manuscript. M. Grandits assisted with molecular
dynamics simulation and revised the manuscript. S. Jain and L. Richter performed the
protein-ligand interaction fingerprint (PLIF) analysis. G.F. Ecker supervised the work and

revised the manuscript.
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Abstract The bile salt export pump (BSEP) actively
transports conjugated monovalent bile acids from the
hepatocytes into the bile. This facilitates the formation of
micelles and promotes digestion and absorption of dietary
fat. Inhibition of BSEP leads to decreased bile flow and
accumulation of cytotoxic bile salts in the liver. A number
of compounds have been identified to interact with BSEP,
which results in drug-induced cholestasis or liver injury.
Therefore, in silico approaches for flagging compounds as
potential BSEP inhibitors would be of high value in the
early stage of the drug discovery pipeline. Up to now, due
to the lack of a high-resolution X-ray structure of BSEP,
in silico based identification of BSEP inhibitors focused
on ligand-based approaches. In this study, we provide a
homology model for BSEP, developed using the corrected
mouse P-glycoprotein structure (PDB ID: 4M1M). Subse-
quently, the model was used for docking-based classifica-
tion of a set of 1212 compounds (405 BSEP inhibitors, 807
non-inhibitors). Using the scoring function ChemScore,
a prediction accuracy of 81% on the training set and 73%
on two external test sets could be obtained. In addition, the
applicability domain of the models was assessed based on
Euclidean distance. Further, analysis of the protein-ligand
interaction fingerprints revealed certain functional group-
amino acid residue interactions that could play a key role
for ligand binding. Though ligand-based models, due to
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their high speed and accuracy, remain the method of choice
for classification of BSEP inhibitors, structure-assisted
docking models demonstrate reasonably good prediction
accuracies while additionally providing information about
putative protein—ligand interactions.

Keywords BSEP - Structure-based classification -
Drug-induced cholestasis - Inhibiton - Transporters -
Classification model

Introduction

Transmembrane transport proteins selectively aid in the
translocation of molecules across biological membranes
by binding the substrate molecules followed by a confor-
mational change [1]. Members of the ATP-binding cassette
(ABC) superfamily facilitate the transport of their solutes
by using the energy from hydrolysis of ATP. While some
ABC-transporters allow specific passage of inorganic ions,
others facilitate ATP-dependent transport of organic com-
pounds including xenotoxins, short peptides, lipids, bile
acids, glutathione, and glucuronide conjugates. There-
fore, ABC-transporters affect the absorption, distribution,
metabolism, excretion and toxicity of numerous pharmaco-
logical agents. Genetic variations in the genes that encode
these transporters lead to disorders such as cystic fibrosis,
cholesterol and bile transport defects, as well as neurologi-
cal diseases [2].

The bile salt export pump (BSEP, gene ABCBI11) is a
canalicular-specific exporter predominantly expressed in
the cholesterol-rich apical membrane of hepatocytes [3].
BSEP facilitates secretion of bile salts from the liver into
the bile canaliculi [4-6]. The main function of bile acids
is to promote digestion and absorption of dietary fat via
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formation of micelles [7]. Apart from this, they are increas-
ingly being shown to have hormonal actions throughout the
body [8, 9]. Variations in the ABCBI11 gene result in dif-
ferent forms of progressive familial intrahepatic cholestasis
(PFIC) [10, 11]. PFIC is characterized by an early onset of
cholestasis and eventually leads to liver cirrhosis and fail-
ure [12-14].

Inhibition of BSEP can result in accumulation of bile
salts in the liver, which is considered to be a primary
mechanism leading to drug-induced cholestasis—one of
the reasons for drug-induced liver injury (DILI) [15-17].
By inhibiting BSEP, drugs such as bosentan, rifampicin
and troglitazone cause intracellular accumulation of bile
salts and decreased bile flow [18]. Dysfunction due to sup-
pression of gene expression, disturbed signaling or steric
inhibition are other important factors leading to DILI [19].
In its Guideline on the Investigation of Drug Interactions
(effective: January 2013), the European Medicines Agency
(EMA) indicated that BSEP inhibition assessment should
be “preferably investigated”. Additionally, EMA states:
“If in vitro studies indicate BSEP inhibition, adequate
biochemical monitoring including serum bile salts is rec-
ommended during drug development” [20]. Furthermore,
studies indicate that a majority of drugs that showed
in vitro inhibition of BSEP have led to DILI, suggesting
that decreased BSEP inhibition is likely to be associated
with reduced risk for DILI [17, 21, 22].

With the increasing knowledge of the importance of
ABC-transporter for ADMET, also in silico models for
predicting ligand-transporter interaction became available
[23]. With respect to BSEP, QSAR modeling was applied
by Warner et al. [24] in which a support vector machine
(SVM) model provided the highest accuracy of 87% in the
classification of BSEP inhibitors and non-inhibitors on a
dataset of 624 compounds [24]. Our group recently pub-
lished a classification model based on a set of 670 com-
pounds, which allowed the identification of bromocrip-
tine as a BSEP inhibitor [25]. With first X-ray structures
of ABC-transporters being published, also structure-based
models became available. Bikadi et al. used SVM to predict
P-gp substrate binding modes [26, 27]. Dolghih et al. sepa-
rated P-gp binders from non-binders by applying induced
fit docking into the crystal structure of mouse P-gp using
the docking score for classification [28]. High area under
the curve (AUC) scores of 0.93 and 0.90, respectively were
observed for two independent datasets (126 and 64 com-
pounds, respectively). Also Chan et al. [29] evaluated the
prediction capability of docking by using 245 P-gp sub-
strates and non-substrates, but the classes were not clearly
separated based on the Glide docking scores.

Klepsch et al. [30] showed that docking of a set of
propafenones into a homology model of human P-gp
reveals poses consistent with QSAR data, and that this can
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be exploited for the identification of new P-gp inhibitors
[31]. Recently, this was enhanced towards a structure-based
classification of almost 2000 compounds [32]. Although
the docking-based classification showed significantly
lower performance than ligand-based models derived from
machine learning, it offers information on the molecular
basis of protein ligand interaction.

Up to now, due to the lack of a high-resolution X-ray
structure of BSEP, no structure-based studies have been
performed for this protein. In the present study, we use
comparative modeling [33] to create a protein homology
model for BSEP by using the corrected mouse P-glycopro-
tein structure (PDB ID: 4M1M) as template. Subsequently,
we developed structure-based classification models using
a dataset comprising 408 compounds (113 inhibitors and
295 non-inhibitors) as training set and two external test
sets containing 166 compounds (44 inhibitors and 122 non-
inhibitors) and 638 compounds (248 inhibitors and 390
non-inhibitors), respectively.

Materials and methods
Dataset

A set of 408 compounds (113 inhibitors and 295 non-inhib-
itors) from the work of Warner et al. [24] was used as the
training set and another set containing 166 compounds (44
inhibitors and 122 non-inhibitors) from Pedersen et al. [34]
was used as external test set. Both studies provide in vitro
inhibition data on human BSEP. While Warner et al. classi-
fied compounds with a mean 1C5, <300 pM as BSEP inhib-
itors, in our study we decided to use a much lower thresh-
old (mean IC5;,<10 pM) in order to retain only strong
inhibitors. Compounds with mean ICs,>300 pM were
considered non-inhibitors, and the remaining compounds
were excluded from the dataset. Finally, we have a total of
113 strong inhibitors and 295 non-inhibitors. The Pedersen
et al. data set is based on inhibition of bile salt export pump
(BSEP)-mediated taurocholate (TA) transport in inverted
membrane vesicles. After removal of compounds that over-
lapped with those in our training set, we had a total of 166
compounds (44 strong inhibitors and 122 non-inhibitors) to
be used as external test set. In addition, a dataset provided
by AstraZeneca within the framework of the IMI project
eTOX (http://www.etoxproject.eu) was used as a second
external test set to further evaluate our models. The data
was measured in a [3H]-taurocholate transport assay per-
formed in Sf21 membrane vesicles using the protocol as
described by Dawson et al. [17] and contains the BSEP
inhibitory potencies of 1092 compounds as ICs, values.
Removing the overlapping compounds from the first two
datasets resulted in 638 compounds (248 inhibitors and 390
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non-inhibitors). All datasets were standardized using the
protocol previously described in Montanari et al. [25] and
Pinto et al. [35].

Homology modeling

For human BSEP (UNIPROT ID: 095342), based on
sequence identity and atomic resolution, the corrected
mouse P-glycoprotein structure (PDB ID: 4MIM) was
selected as the most structurally related template protein.
Multiple homology models were constructed using MOD-
ELLER 9.13 [36] and the Prime module in Maestro [37,
38]. Energy minimized models were then evaluated using
DOPE score [39], and GA341 score [40, 41]. The quality
of the stereochemical parameters and the normality of the
structures were checked using the PROCHECK program
included in the PDBsum analysis [42]. Ramachandran plot
[43] and G-factor [44], and finally the Q-score [45, 46] val-
ues were evaluated to identify the top ranked homology
model.

Molecular dynamics simulation

Molecular dynamics (MD) simulation was carried out in
Gromacs 5.0.4 [47-50] using the GROMOS 54a7 force-
field [51]. The protein was placed inside a rectangular box
of size 16x16x 16 nm’ including approximately 34,000
simple point charge (SPC) water molecules [52]. Sodium
and chloride ions were added to gain a neutral system.
Energy minimization was carried out with a maximum
force of 1000 kJ/mol/nm using the steepest descent algo-
rithm. After the minimization, a NVT equilibration was
performed at a constant temperature of 300 K for 100 ps.
Followed by a NPT equilibration step for 1 ns, with the
pressure set constant at 1 atm and a constant temperature of
300 K. The production simulation was performed at 300 K
for 20 ns. The LINCS algorithm [53] was used to constrain
the covalent bonds and PME [54] was used to calculate the
electrostatic interactions during the simulation. The stabil-
ity of the protein structure was evaluated by calculating the
secondary structure over the simulation time according to
the Kabsch and Sander rules [55] and the root-mean-square
fluctuation (rmsf) of active site residues (Fig. S1 in the sup-
plementary material). All graphs were created using the
XMGrace tool [56].

Molecular docking and scoring

In order to avoid any bias in the docking studies, the
binding site was defined as the complete TM region,
taking 20 A around the coordinate of the center point to
allow subsequent flexible docking studies of a series of
BSEP inhibitors. The protein was prepared using Protein
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Preparation Wizard of the Schrodinger Suite (2015) [57,
58]. During this process, hydrogen atoms were added,
and optimal protonation states and ASN/GLN/HIS flips
were determined. To assess their correct protonation
states, ligands were prepared using the LigPrep module
of Schrodinger Suite [58, 59] which produces low-energy
3D structures that can be further used for docking stud-
ies. The OPLS_2005 force field was used for the minimi-
zation of the structures. Different ionization states were
generated by adding or removing protons from the ligand
at a target pH of 7.0+2.0 using Epik version 3.1 [60,
61]. Tautomers were generated for each ligand. To gener-
ate stereoisomers, the information on chirality from the
input file for each ligand was retained as is for the entire
calculation. This gave a dataset of 1865 structures (318
inhibitors and 1547 non-inhibitors) for the training set,
2009 structures (858 inhibitors and 1151 non-inhibitors)
for the external test set from Pedersen et al. and 1560
structures (668 inhibitors and 892 non-inhibitors) for the
external test set from AstraZeneca, which were used for
docking with the genetic algorithm-based GOLD suit
(version 5.2.0) [62, 63].

All the docking runs were performed in high-throughput
mode with GOLD. The fitness functions GoldScore (GS)
and ChemScore (CS) were used. GlideXP [64, 65] dock-
ing from Maestro was also used in order to compare differ-
ent scoring functions. Finally, all the poses were rescored
using an external scoring function, XScore [66]. To gain
deeper insights on the binding modes of BSEP inhibitors
and non-inhibitors, the protein-ligand interaction finger-
prints (PLIF) of the resultant complexes were retrospec-
tively analyzed.

Machine learning-based model building

The open source software WEKA (version 3.7.10) [67]
was used for building binary classification models. The
machine learning classifiers: J48, Random Forest, REP-
Tree, LibSVM and Naive Bayes were used with the default
parameters along with tenfold internal cross-validation.

Network-based representation of the dataset

Tanimoto (Tc) similarities between the inhibitors and non-
inhibitors of the training set were calculated using MACCS
fingerprints [68]. A chemical space network (CSN) [69, 70]
was constructed and analyzed in order to assess the struc-
tural similarity shared by the compounds of both groups.
To show connections between the compounds, a threshold
value of 0.7 was set based on the average of Tanimoto max-
similarity in the dataset.
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Functional group analysis

Functional group analysis was performed in two stages.
First, the substructure patterns of 100 functional groups in
SMARTS notation were extracted from the Daylight web-
site (http://www.daylight.com/dayhtml_tutorials/languages/
smarts/smarts_examples.html#GROUP). Next, the pattern
matching was performed using the SMARTSQueryTool
implemented in the Chemistry Development Kit (CDK)
[71]. For each functional group, the occurrences of the
fragments in a given set of molecules were calculated.

Protein ligand interaction fingerprints (PLIF)

A PLIF summarizes the interactions between a ligand and a
protein using a fingerprint scheme. Here we generated three
types of PLIFs that differ in the information encoded. In
the first approach, the PLIF encodes the residues involved
in an interaction with the ligand in each bit. The second
one encodes not only the residue but also the nature of the
interaction (e.g. hydrogen bond donor) with the ligand. The
third category encodes the functional group of the ligand
that interacts with the residue. All the PLIF bits were cal-
culated with the MOE [72] built-in function CalculateRaw-
Interactions using a 1% threshold for molecular interactions
and a 20% threshold for surface contacts. The function was
embedded in an SVL in-house script and was post pro-
cessed to enable to calculate functional group PLIFs.

Applicability domain assessment

An applicability domain (AD) analysis was performed to
evaluate if the chemical space covered by the training set
used for developing the model is applicable to predict the
outcomes of the test sets used to evaluate the model per-
formance. Therefore, AD could provide a first hint if a
new chemical structure is covered within the chemical
structures or descriptor space of the training set. Many
approaches were proposed to estimate AD, for instance
based on descriptor ranges, Euclidean distance or probabil-
ity density, each having their pros and cons. In this study,
we implemented the Euclidean distance approach using the
KNIME [73] node APD [74, 75] to evaluate if the test sets
are within the AD of the training set.

Performance evaluation

In order to evaluate the quality of our classification models
based on the docking studies, we used standard parameters
such as count of true positives (TP), false positives (FP),
true negatives (TN) and false negatives (FN). Sensitivity
(Eq. 1), specificity (Eq. 2) and accuracy (Eq. 3) values were
calculated for each model based on the aforementioned
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parameters to estimate its performance in classifying inhib-
itors and non-inhibitors. To measure the overall quality of
the model, the G-mean (Eq. 4), which takes into account
both sensitivity and specificity, and the Matthews’s correla-
tion coefficient (MCC, Eq. 5) were also calculated.

Sensitivity = —
= (TP+FN) M
s N
Spectfeity = N Fp) @
(TP +TN)
Accuracy = ?3)
(TP + FP + TN + FN)
G—mean = \/ Sensitivity X Specificity 4@

B {(TP X TN) — (FP X FN)}
{(TP + FP) X (TP + FN) X (TN + FP) x (TN + FN)}'/?
)

mcc

Calculating the probability of prediction

We examined the distribution of docking scores [Chem-
score, Goldscore, GlideXP, Xscore (Chemscore) and
Xscore (Goldscore)] for the training set molecules. Based
on the minimum and maximum score values, the scores
were binned in different intervals. Each bin is characterized
by the corresponding number of inhibitors and non-inhib-
itors. Based on these values, we calculated the probability
for a molecule to be an inhibitor or a non-inhibitor. A p
value (Chi square test) is calculated for each bin to identify
the best scoring range that can be used to separate inhibi-
tors from non-inhibitors.

Results and discussion
Chemical space network of the dataset

Figure 1 shows the CSN with well-resolved community
structures for a set of inhibitors and non-inhibitors from the
training set. The representative compounds of some com-
munities are shown in Fig. S2 in the supplementary mate-
rial. Major community structures [69] (communities with
at least five representative members) were algorithmically
detected and are color-coded. For our CSN designs, the
Fruchterman—Reingold algorithm [76] was applied. The
node size is proportional to the activity value (pICs) i.e.
the more active the compound, the bigger the node size and
vice versa.

A majority of the nodes do not have a connection indi-
cating a high structural diversity in the training dataset. The
test dataset from Pedersen et al., showed only three clusters
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in the CSN with at least five representative members (Fig.
S3 in the supplementary material).

Homology modeling

Applying the Prime module from Maestro (Schrddinger,
Inc. V-10.1.013), a set of homology models of BSEP were
created and refined, using the refined mouse P-gp struc-
ture as template (PDB ID: 4M1M). The sequence align-
ment was done using Prime’s alignment program STAin
maestro [37, 38] (Fig. S4 in the supplementary material).
Analyzing the models with the structure assessment pro-
gram PROCHECK [42], the best model had a normalized
Dope score of —0.625, G-factor —0.12, and Qmean score
of 0.597. Furthermore, the Ramachandran plot (Fig. S5
in the supplementary material) showed excellent results,
with only 1.9% of residues in generously allowed or dis-
allowed regions. These were all located in the nucleotide
binding domains (NBD) or extracellular loops (ECL), and
are therefore not involved in drug binding (Fig. S6 in the
supplementary material). Based on the study by Mochizuki
et al., Asn109, Asnl116, Asn122, and Asnl25 are residues
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predicted to be potential glycosylation sites in the extracel-
lular loop (No.1) (EL No.l1) of human BSEP [77]. In our
final BSEP homology model (Fig. 2), these residues were
also found in EL No.1, thus occurring in the correct region
of the transmembrane domain (TMD, Fig. S7 in the sup-
plementary material). For further validation, the best model
based on normalized Dope score and Qmean score was
subject to molecular dynamics simulations for 20 ns. Both
the secondary structure of the protein (Fig. 3) as well as the
root mean square fluctuation (RMSF<0.25 nm) of active
site residues showed the stability of the structure.

Docking (structure-based classification)

We recently could demonstrate that a validated homology
model of P-glycoprotein allowed docking-based classifica-
tion of inhibitors and non-inhibitors with reasonable perfor-
mance [32]. Thus, in this study we extended this approach
also to BSEP, using a set of 408 compounds (113 inhibi-
tors and 295 non-inhibitors) published by Warner et al.
[24] as training set and two data sets as external test set
(see “Materials and methods” section). The scores obtained
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(b)

(c)

Fig. 2 Homology model structure of human BSEP in the inward-facing state. a Front view of the transporter. b Side view after a 90° rotation. ¢

Top view from the extracellular space
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Fig. 3 Secondary structure of the protein over the simulation time

from different fitness functions were binned and the inter-
section point of the curves for inhibitors and non-inhibitors
in the training set served as classification criterion (Fig. 4).
Respective confusion matrix parameters and other perfor-
mance measures are summarized in Table 1. The Chem-
Score docking run using Xscore as rescoring function
retrieved the best performing model with AUC (0.918)
and MCC (0.689) measures comparable to the models
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developed by Warner et al. [24] and Montanari et al. [25].
This model accurately predicted 88% of the training set
compounds and 72% of the external test set compounds
derived from Pedersen et al. [34] as well as 77% of a set
of AstraZeneca internal compounds. The area under the
ROC curve (AUC) measure, being independent from class
distribution [78, 79], is a good metric for evaluating per-
formance of virtual screening approaches. High AUC val-
ues (above 0.8) were observed, indicating a high capacity
of the model in ranking compounds by their probability of
being inhibitors of BSEP (Figs. S8-S12 in the supplemen-
tary material). The results from the AD assessment also
show that all compounds from both test sets were found to
be within the chemical domain of the training compounds
(Table S1 in the supplementary material). Interestingly, the
accuracy of predictions did not improve when a consensus
of different scoring functions was used.

Probability of prediction

For the training set using ChemScore scoring, bin 3540
gave the maximum number of inhibitors. 88% of inhibi-
tors and 12% of non-inhibitors had the docking score in
this range with a p value of 5.9 x 107%. For both test sets, at
least 75% of the inhibitors were found to be in this range.
Results for different scoring functions can be found in the
Table S2 in the supplementary material. Also with the
rescoring of ChemScore using Xscore, a particular range
could be defined which significantly distinguishes between
inhibitors and non-inhibitors. However, this is not the case
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Fig. 4 Distribution of BSEP inhibitors and non-inhibitors (training set) based on ChemScore scoring. Sensitivity, specificity, precision and
MCC were calculated from the confusion matrix based on the intersection point of both curves

Table 1 Models obtained from

: . . Scoring function Intersection point AUC  Sensitivity = Specificity Accuracy G-mean MCC
different scoring functions
based on the training set ChemScore 29.50 0.87  0.60 0.88 0.81 0.73 0.50
GoldScore 53.50 082 0.74 0.75 0.75 0.74 0.45
GlideXP —6.80 0.77 0.80 0.65 0.69 0.72 0.39
Xscore (ChemScore)  6.15 0.92 0.71 0.95 0.88 0.82 0.69
Xscore (GoldScore) 6.10 093 0.68 0.95 0.88 0.80 0.68

The scoring function in brackets were used to generate the docking poses

for GoldScore scoring. With this scoring function no par-
ticular docking score range could be identified for the three
sets (training set, both test sets) to differentiate between
the two classes of compounds with a significant p value.
Similar results were obtained using the GlideXP scoring
function.

Analysis of protein ligand interactions

The Maestro tool allows the computation of different
molecular interactions between binding site residues and
the corresponding ligand conformation. In this study, the
receptor—ligand interaction fingerprint analysis was per-
formed both for the true positives (TPs) and for the true
negatives (TNs) on the basis of the docking poses gener-
ated. For the training set (Fig. 5) and the two external test
sets (Figs. S13, S14 in the supplementary material), the
inhibitors showed significantly more hydrophobic interac-
tions with Phe334, Leu364, Tyr772, Phe776 and Leul026
than non-inhibitors. More than 75% of the inhibitors in the
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training set and the external test sets showed hydrophobic
interactions with Phe334 and Tyr772 (Fig. 5a). In contrast,
non-inhibitors showed a higher number of hydrogen bond
interactions than inhibitors (Fig. 5b), which points towards
the fact that non-inhibitors are more hydrophilic.

The significant contribution of hydrophobic interactions
prompted us to assess the importance of simple molecu-
lar descriptors such as logP and molecular weight. Fig-
ure 6 represents the distribution of molecular weight and
logP(o/w), respectively, for the training set compounds.
Similar distributions, represented in Fig. S15 in the sup-
plementary material, were observed with the external
test sets from Pedersen et al. [34] and from AstraZeneca
(Fig. S16 in the supplementary material). As proposed by
Warner et al. [24], molecular properties such as molecu-
lar weight (MW) and logP(o/w) could separate the groups
quite well (Table 2). At the intersection of MW =390 and
logP(o/w)=3.6, 79 and 77% of the compounds were clas-
sified correctly. Accordingly, compounds with a molecu-
lar weight of 390 or higher or a logP of 3.6 or higher were
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Fig. 5 a Hydrophobic interaction, b hydrogen bond interaction fingerprints of true positives (TP) and true negatives (TN) of the training set.
The classification of the compounds is based on the ChemScore scoring function

considered as inhibitors while others were considered as
non-inhibitors.

The models based on docking scores (ChemScore
and XScore) in combination with molecular weight and
logP(o/w) (each normalized) outperformed the other mod-
els in terms of MCC and precision. ChemScore and XScore
based models, when combined with the physicochemi-
cal properties [molecular weight and logP(o/w)] correctly
predicted 87 and 88% of training set compounds, giving a
MCC value of 0.673 and 0.701 respectively. These models
also showed high accuracies as compared to other models
for the two external test sets. Detailed accuracy measures
are presented in Table S3 in the supplementary material.

Also when poses, generated with GoldScore scor-
ing function and rescored with XScore, were combined
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with the normalized molecular weight and logP(o/w), it
provided accuracies comparable to the former models
(Table S3 in the supplementary material). This indicates
that considering physicochemical properties of molecules
that influence their activity significantly improves the per-
formance of structure-based prediction models.

Distribution of BSEP inhibitors and non-inhibitors using
different scoring functions and in combination with phys-
icochemical properties (molecular weight, logP) are pre-
sented in Figs. S17-S32 in the supplementary material. A
single intersection point could not be obtained, when the
rescoring using Xscore (pose generated with GoldScore)
was combined with logP(o/w) and thus was not used for the
classification of inhibitors and non-inhibitors (Fig. S31 in
the supplementary material).
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Molecular weight 390 0.76 0.80 0.79 0.78 0.54
logP 3.6 0.57 0.87 0.77 0.71 0.47
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Using the best performing docking scores (Chem-
Score, XScore) and the descriptors (molecular weight
and logP(o/w)) as parameters, we additionally developed
machine-learning based binary classification models using
J48, Random Forest, REPTree, LibSVMand Naive Bayes in
WEKA [67]. These models performed well with accuracies
and MCC values (Table S4 in the supplementary material)
comparable to those from machine-learning based classifi-
cation models of Warner et al. [24] and our models previ-
ously developed [25].

Analysis of functional groups and protein-ligand
interactions

Next, we investigated the distribution of functional groups
between inhibitors and non-inhibitors to identify structural
features that are responsible for differences in the activity
(inhibitor vs. non-inhibitor). About 70 SMARTS patterns
representing the most common functional groups were
extracted from the Daylight website (http://www.daylight.
com/dayhtml_tutorials/languages/smarts/smarts_examples.
html). Basically, groups such as halide/halogen, ether, car-
bonyl, vinyl carbons (sp2 hybridized) and amide were more
frequently found in the inhibitors compared to the non-
inhibitors (Fig. 7, S33 in the supplementary material). This
further points towards more hydrophobic-driven interac-
tions for inhibitors.

In addition, we also identified the most frequently
occurring interactions between residues and functional
groups for the training set compounds. A heat map
(Fig. 8a) was generated to illustrate the outcomes of
PLIF analysis by displaying the contact residues against
the functional groups of the interacting ligands. The
color scale represents the amount of ligands which are
involved in interactions. Therefore, the most significant

m inhibitor ™ non-inhibitor

Frequency (%)
[ - [o} )
o o o o

0

interactions between a specific residue and a specific
functional group could be visually detected.

We found that the interactions of arene and carbonyl
functional groups with tyrosine and leucine are more
prominently found among the inhibitors in comparison
to the non-inhibitors. We furthered with retrospective
assessment of the docking results to check the pres-
ence of the aforementioned interactions and evaluated
the chances to prioritize a compound as a BSEP inhibi-
tor. Figure 8b represents the docking pose of Glimepir-
ide (yellow) in which its carbonyl groups interact with
the residues Tyr337, Tyr772 and Asn996. The residue
Leu364 shows a hydrophobic interaction with the arene
moiety of the ligand. Similarly, the functional group-
residue interactions were confirmed to be present in
the docking results of both external test datasets (Figs.
S34-S36 in the supplementary material).

Although the functional groups analysis suggests that
halide/halogen, carbonyl, ether, vinyl and amide groups
were significantly over represented in the inhibitors, only
carbonyl group, amide were found to frequently interact
with the protein. According to the heat map (Fig. 8a), hal-
ide/halogen and vinyl groups do not appear to have a sig-
nificant number of contacts with the residues. At the same
time, arene was found at a similar rate in inhibitors (nearly
95%) and non-inhibitors (nearly 85%), but the PLIF analy-
sis revealed that the arene moiety participates in a signifi-
cant number of interactions with residues such as Leu364
and Leul026. This indicates that significant differences in
the functional group composition between inhibitors and
non-inhibitors (Fig. 7) does not necessarily indicate or pro-
vide an outlook on the nature of interactions. This would
rather depend on the position of these functional groups in
the molecular structure, nature of the binding site residues
as well as the size of the binding pocket.
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Table 3 Ligand-based and

- . Model type TP TN FP FN  Sensitivity Specificity ~Accuracy MCC  Precision
structure-based classification
LBC 30 104 9 9 077 0.92 0.88 0.69 0.77
SBC_C 27 91 22 12 0.69 0.81 0.78 0.47 0.55
SBC_G 26 79 34 13 0.67 0.70 0.69 0.33 0.43
SBC_C_X 27 9% 17 12 0.69 0.85 0.81 0.52 0.61
LBC+SBC_C 24 107 6 15 0.62 0.95 0.86 0.62 0.80
LBC+SBC_C_X 25 108 5 14 0.64 0.96 0.88 0.66 0.83
Consensus 27 106 12 0.69 0.94 0.88 0.66 0.79

The best model of the combined approach is highlighted in bold as well as the ligand-based classification

TP true positives, TN true negatives, FP false positives, FN false negatives, LBC Ligand-based classifi-
cation (Montanari et al. [25]), SBC_C Structure-based classification using ChemScore scoring function,
SBC_G Structure-based classification using GoldScore scoring function, SBC_C_X Structure-based clas-
sification using ChemScore scoring function (rescoring using Xscore). Consensus Combination of LBC,

SBC_C and SBC_C_X

Finally, preliminary results show that the PLIF can also
be used as predictor for inhibitor/non inhibitor properties
by calculating the Tanimoto distance to known inhibitors.
A more detailed description of this approach can be found
in the supplementary material.

Analysis of misclassified compounds

Nearly 90 compounds, altogether from different datasets,
were incorrectly classified by all the four scoring functions
used in the study. More than 59% of the training set com-
pounds and 48% of the test set compounds were correctly
classified by all the scoring functions. Of the 19 misclassi-
fied compounds from the training set, nine were predicted
as inhibitors and ten were predicted as non-inhibitors.

The training set compound Ebselen was wrongly pre-
dicted as non-inhibitor by all scoring functions. Examin-
ing its molecular properties revealed that both molecular
weight (274) and logP(2.74) fall in the range of non-inhib-
itors (Table 2). Moreover, the structure of Ebselen was
found to be structurally more similar to a set of non-inhib-
itors compared to the set of inhibitors. Benzylpenicillin
(Penicillin G) also belongs to the property space of non-
inhibitors (molecular weight=333.38 and logP=1.74).
Interestingly, both Ebselen and Benzylpenicillin are strong
inhibitors (ICs5,< 10 pM) [24]. On the other hand, Phytom-
enadione (molecular weight=450.70, logP =9.05), despite
being a non-inhibitor (ICy, Y >1000), was always misclas-
sified as inhibitor. Similar trend was noticed in both exter-
nal test sets. In total, six inhibitors and 13 non-inhibitors
were misclassified from the Pedersen et al. [34] dataset.
Interestingly, all six inhibitors were found to be strongly
hydrophobic and the molecular properties of about 80%
of the non-inhibitors fall in the range of inhibitors. This
strengthens the inclusion of this physicochemical proper-
ties into the classification model.
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Combining ligand- and structure-based classification
(sequential modeling)

Although the structure-based models performed reason-
ably well, ligand-based methods are considerably faster and
perform equally well. Thus, we evaluated if a sequential
approach that starts with a ligand-based method and pro-
ceeds with screening the positives using structure-based
models would improve the precision and reduce the false
positives. Therefore, we used an external test set contain-
ing 39 inhibitors and 113 non-inhibitors as a starting point.
After applying ligand-based classification using the work-
flow from Montanari et al. [25], 30 inhibitors were cor-
rectly predicted (TPs) and there were nine FPs, which leads
to a precision of 0.77. After application of our structure-
based model based on ChemScore and rescoring using
XScore, the precision improved to 0.83, reducing the
number of FPs to 5. Further performance measures on the
sequential approach are provided in Table 3. Thus, com-
bining ligand- and structure-based models in a sequential
setting increased the precision and reduced the calculation
time. This might be a versatile approach to reduce the num-
ber of FPs when performing large scale in silico screening.

Conclusion

Development of structure-based methods for transmem-
brane transporters of the ABC-family has been less pro-
nounced due to limited availability of experimentally
determined 3D structures. However, recent efforts that
used homology models of P-glycoprotein provide promis-
ing evidences that structure-based classification methods
can be applied to these highly flexible and promiscuous
proteins. In this study, we used comparative modeling
to generate a homology model for the ABC-transporter
BSEP and developed structure-based models to classify
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inhibitors and non-inhibitors. Including logP and molecu-
lar weight as an additional layer of information besides
the scoring function further increased the performance
of the models. PLIF analysis revealed certain functional
group-residue interactions that could help to understand
the molecular basis of inhibition of the transporter pro-
tein by a wide range of ligands. Applicability domain of
the models was assessed using Euclidean distance. Fur-
thermore, we estimated the probability of prediction by
employing a binning scheme and identified a docking
score range that can distinguish a majority of inhibitors
from non-inhibitors with high confidence. Finally, com-
bining the structure-based model with our previously
published ligand-based classification model in a sequen-
tial order provided additional improvement.

Combining ligand- and structure-based models to
enhance the performance of virtual screening is of course
not a new approach. For receptors and enzymes identifica-
tion of new ligands quite often starts with a pharmacoph-
ore-based screening followed by docking of the top-ranked
hits to further refine the shopping list [80]. However, in
case of ABC-transporters such as P-glycoprotein, which
shows a pronounced polyspecificity in its ligand profile,
there is a broad variety of pharmacophore models available.
This would render a sequential approach quite challenging.
Furthermore, due to the eminent role of ABC-transporters
like P-gp, BSEP, and the breast cancer protein (BCRP) in
ADME and toxicity, the focus for in silico screening lays
more on flagging potentially toxic compounds rather than
on the identification of new inhibitors for further develop-
ment as drug candidates. In this setting, machine learning-
based classification models might be a better tool for a first
computational pre-screening. Therefore, a workflow com-
prising of prescreening with simple descriptors, classifica-
tion by machine learning techniques and post processing by
structure-based methods might be the workflow of choice
to provide accurate prediction combined with additional
information on the molecular basis of compound-trans-
porter interaction.
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4.2 Structure-based modeling studies on BCRP

BCRP and P-gp have multiple common substrates and inhibitors [184, 185]. Several drugs
including anti-cancer agents, statins, antibiotics and environmental toxins are BCRP
substrates [186]. As stated earlier, BCRP also plays a major role in cancer resistance and
tumor progression/development [186—188]. Recently, a cryo-electron microscopy structure of
BCRP was published by Taylor et al. [86] that provided the first high-resolution insight into
this human multidrug transporter. This motivated us to perform structure-based studies on

BCRP.

4.2.1 A hypothesis of the molecular basis for inhibition of BCRP by
arylmethyloxyphenyl analogues using the BCRP crystal structure

In the following chapter, we employed a structure-based modeling approach to elucidate
molecular hypothesis for the binding of arylmethyloxyphenyl derivatives to BCRP. The
structure-activity relationship knowledge from ligand-based investigations guided us through
the quest for a flexible depiction of the protein side. Our binding hypothesis suggests that the
activity of arylmethyloxyphenyl derivatives is driven by strong hydrophobic interactions and

provides a rationale for the development of highly potent derivatives.

This work was performed in collaboration with Dr. Vittorio Pace (University of Vienna) and

a synthesis-oriented manuscript is in preparation and is planned to be submitted soon.
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A hypothesis of the molecular basis for inhibition of BCRP by
arylmethyloxyphenyl analogues using the BCRP crystal structure

Introduction

In 2006, Colabufo etal. [I] published a medicinal chemistry study in which
arylmethyloxyphenyl derivatives and their potential use as P-glycoprotein inhibitors was
explored. A set of eight derivatives was synthesized and tested for their ability to revert P-
gp-mediated vinblastine transport in human epithelial colorectal adenocarcinoma cells (Caco-
2). Two compounds obtained EC50 values below 30 uM and showed no ATPase activation.
Further exploration of the arylmethyloxyphenyl scaffold followed [2, 3].

The most potent P-gp modulators from these studies [2, 3] were tested for their ability to
inhibit the bile salt export pump (BCRP) in [3H]-mitoxantrone displacement assays. The
tests revealed high inhibitory activity of amino derivatives (ECso <2 puM) towards the
transporter. Based on these findings, Dr. Vittorio Pace group at University of Vienna further
synthesized arylmethyloxyphenyl analogues. Six of these analogues were tested in an
intracellular mitoxantrone accumulation assay in PLB985 cells overexpressing BCRP [4, 5]
and a spread of 0.12 — 18 uM in IC50 was observed (Figure 1). From these findings, some
structure-activity relationships (SAR) could be inferred. It was shown that a lipophilic linker
(SM-562, SM-565), connecting ring B and C, was more favourable than a hydrophilic linker
(GP199-1, GP196-2). Furthermore, it was noted that a carbonyl moiety was less favourable
than a hydroxyl moiety in the linker region. Additional increase in activity was observed by

the introduction of methoxy moieties at ring A (GP199-1 versus GP196-2, GS4 versus GS3).

The inferred SAR in conjunction with the release of the BCRP crystal structure in May 2017
[6] motivated us to conduct structure based studies with the aim to propose a binding mode
that could explain the spread in activity within the arylmethyloxyphenyl series. BCRP is a
half transporter containing one nucleotide binding domain and one transmembrane domain.
Thus, in order to be functional, the transporter has to undergo dimerization [7, 8], which

renders the transporter symmetric.
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Figure 1: Ligand structures and codes along with their activity values (ICso) used in the

study.

Method

Molecular Docking

For the docking studies, 6 arylmethyloxyphenyl derivatives (Figure 1) were selected with
their known SAR. LigPrep module of Schrodinger Suite [9, 10] was then used to generate
their correct protonation states for these derivatives. The OPLS 2005 force field was applied
for the minimization of the structures. Different ionization states were generated by adding or
removing protons from the ligand at a target pH of 7.0 + 2.0 using Epik version 3.1 [11, 12] .
Tautomers were also generated for each ligand. To generate stereoisomers, the information
on chirality from the input file for each ligand was retained as is for the entire calculation.
Further ConfGen module from Schrodinger Suite [9, 13] was used to generate maximum
possible conformations of the input ligand, which were then used for the docking studies.
This gave us a dataset of 1588 ligands. PDB structure (PDB: 5NJ3) retrieved from Protein
Data Bank database was prepared for docking procedure using Protein Preparation Wizard of

the Schrodinger Suite (2015) [9, 14]. During the protein preparation, hydrogen atoms were
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added, water molecules were removed, and correct bond types were set. As the active site is

not known, complete transmembrane domain was defined as the binding site (Figure 2).

Figure 2: Structure of human ABCG?2 and its potential ligand-binding site.

All the docking runs were performed in high-throughput mode with GOLD [15, 16]. The
implemented Gold scoring function “GoldScore” was used for evaluation of the complexes.
A total of 5 poses per conformation were generated, which led us to 7940 poses. This would
help us avoid any bias introduced by scoring functions, as large amount of docking poses was

generated.

Clustering of docking poses

A RMSD matrix of all 7940 poses was generated on basis of the common scaffold of the 6
arylmethyloxyphenyl derivatives. The matrix was used for cluster analysis applying complete

linkage algorithm in R[17]. A clustering height of 2 A was used.

Result and Discussion

Cluster Analysis
Although docking simulations have their limitations depending on the validity of the target
structure, the results of docking of the 6 arylmethyloxyphenyl derivatives into BCRP crystal
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structure (PDB: 5NJ3) are very consistent.

A total of 109 clusters were obtained. Highly populated clusters that contained poses of all
docked compounds are considered the most promising. Cluster 2 was the only cluster that
contained greater than 50 poses per ligand and was selected for further analysis (Figure 3). In
cluster 2, the top docking poses of the 6 compounds are largely overlapping (Figure 4). While
ring B consistently shows pi-pi and hydrophobic interactions with Phe439 (chain A), ring A
and C are accommodated in identical hydrophobic sub pockets of the homodimer shaped by
residues Phe431, Phe432, Asn436, Val546. Interestingly, the main scaffold of the ligands
shows itself features of symmetry (Figure 1). All derivatives show strong hydrophobic
interaction of ring A with Phe432 (chain A), ring B with Phe439 (chain A), ring C with
Phe439 (chain B) (Figure 5).

Our binding hypothesis suggest that the activity of arylmethyloxyphenyl derivatives is driven
by strong hydrophobic interactions.

Figure 3: Distribution of poses of cluster 2 in the human ABCG2
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Figure 4: Top scored poses of the 6 arylmethyloxyphenyl derivatives. SM-562 (Green), SM-
565 (Blue) GP199-1 (Yellow), GP196-2 (Pink), GS4 (Grey), GS3 (Dark blue)

Figure 5: Hydrophobic interactions for SM-562. Ring A interacts with Phe432 (chain A),
ring B with Phe439 (chain A), ring C with Phe439 (chain B).

The retrieved binding mode (cluster 2) was compared with the SAR found in the six
analogues. Our binding hypothesis provides a rationale for the highest activity of SM-562
(IC50 = 0.12 uM) and SM-565 (IC50 = 0.30 uM) in the dataset. Poses of these ligands can
adopt a conformation that allows additional pi-pi interaction of ring C with Phe439 (chain B)
(Figure 6). The SAR shows that additional -OCH3 groups at ring A or C lead to increase in
activity, as reflected in compounds SM-562 and SM-565. These facts align with our binding
mode as the additional -OCH3 groups would occupy the hydrophobic sub pockets
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surrounding ring A and C more efficiently (Figure 7). In detail, the methoxy moiety (-OCH3)
at ring A interacts with Phe431 (chain A, chain B) and Met 549 (chain A) through
hydrophobic interactions. The methoxy moiety at ring C at meta and para position show
strong hydrophobic interaction with Phe 439 (chain B) and Phe 432 (chain B) respectively
(Figure 5). Further evidence is found in the compound pair GP199-1 and GP196-2. Here the
loss of methoxy group in ring A (GP196-2) leads to 4 times lower activity. This could be due
to the loss of hydrophobic interactions between the methoxy moiety and Phe 431 (chain A,
chain B), and Met 549 (chain A). Similar observation was obtained for GS4 (I50= 7.1 uM)
and GS3 (I50= 18 uM).
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Figure 6: (A) SM-562, (B) SM-565 showing Pi-Pi interactions of ring B with Phe439 (chain A)
and ring C with Phe439 (chain B).

Figure 7: Top poses of the 6 arylmethyloxyphenyl derivatives aligned in the hydrophobic
binding pocket. SM-562 (Green), SM-565 (Blue) GP199-1 (Yellow), GP196-2 (Pink), GS4
(Grey), GS3 (Dark blue)
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GP199-1 differs from SM-565 by an additional hydroxyl group in the linker between ring B
and C. The addition of the polar substituent led to a 4-fold decrease in activity, which can
also be reflected in our binding hypothesis. The introduced polar hydroxyl-group is partly
solvent exposed but it also placed in unfavourable hydrophobic environment shaped by
phenylalanine. The activity of arylmethyloxyphenyl is further diminished by exchanging the
hydroxyl group in the linker by a carbonyl moiety, exemplified by the GP199-1(1.4) and GS4
(7.1) pair. While GP199-1 is flexible enough to sustain partial solvation in our binding
hypothesis, the introduction of a carbonyl-moiety leads to a twist in ligand conformation,
forcing the carbonyl-moiety to be deeply buried in the hydrophobic pocket (Figure 8).
Additionally we performed docking pose analysis using SeeSAR[18] to check for the
desolvation penalty for the carbonyl analogues GS4 and GS3 versus its hydroxy analogues
GP199-1 and GP196-2, respectively. For the carbonyl (=O) of GS4, we observed Hyde
score[19, 20] of +5.5 KJ/mol (ligand desolvation energy of +6.4 KJ/mol and receptor
desolvation energy of -1.1KJ/mol). When this carbonyl moiety was replaced by hydroxy
(GP199-1), the Hyde score was only -0.1 KJ/mol (ligand desolvation energy of +1.1 KJ/mol
and receptor desolvation energy of -1.2 KJ/mol). Similar outcome was observed for
GS3(ligand desolvation energy of +6.3 KJ/mol and receptor desolvation energy of -
3.6KJ/mol) and GP196-2 (ligand desolvation energy of +0.7 KJ/mol and receptor desolvation
energy of -1.2 KJ/mol)). Thus the drop in GS4 and GS3 activity to GP199-1 and GP196-2,

respectively could be due to the desolvation penalty of carbonyl moiety at the linker.

Figure 8: Pose orientation of GP199-1 (Yellow), GS4 (Grey).
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Conclusion

In this study, we identified the binding mode of arylmethyloxyphenyl analogues in BCRP by
means of molecular docking. Our binding hypothesis suggests that the activity of
arylmethyloxyphenyl derivatives is driven by strong hydrophobic interactions. In order to
overcome the difficulties of docking scoring functions in pose ranking, we applied an
unconventional protocol that prioritized poses which show a high degree of SAR congruency.
The pose evaluation leads to one sound binding mode, which after additional experimental
validation can guide rational optimization of this compound class towards high potency.
Furthermore, the uncovered ligand orientation may also be helpful to improve the
mechanistic understanding of BCRP inhibition and could invoke the design of novel
experiments. While further validations remain to be performed, we report here for the first
time a binding hypothesis for arylmethyloxyphenyl inhibitors of BCRP that fit with the

experimental data.
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4.3 Data transferability for Predictive in silico Modeling

The efflux transporter P-glycoprotein (P-gp) is a protein of high interest in drug discovery
among other major anti-targets. In early stages of drug development, the pharmacokinetic and
toxicity profiles of a drug candidate are determined in animal models (usually rodents) before
being tested in humans. European Union initiatives such as the Horizon 2020 EU-ToxRisk
project (www.eu-toxrisk.eu) drive the required paradigm shift in toxicological testing from
‘black box’ animal testing towards a toxicological assessment based on human cell responses
[189—-191]. Similar initiatives across the world are progressing towards the 3R goals -

refinement, reduction and replacement of animal trials [192—194].

In the light of this, besides developing predictive in silico models for the identification of
inhibitors of human P-gp, it is beneficial to establish predictive models for mouse and rat to
reduce the number of compounds to be tested in later stages. Though a substantial amount of
experimental data against human P-gp is already available and has been utilized for the
development of in silico models [195, 196], sufficient data is not available to build predictive
models for rat and mouse P-gp. Further, lack of availability of an experimentally determined
three-dimensional (3D) structure for human P-gp also limits the development of reliable
structure-based models. Thus, employing the human P-gp data in the structure-based
modeling of resolved 3D structures, for instance the mouse P-gp structure, would reveal

potential ligand-target interactions with high certainty.
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4.3.1 Interspecies comparison of putative ligand binding sites of human, rat
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In the following manuscript, we used a structure-based approach to compare the binding site
interaction profiles of human, rat and mouse P-gp to assess if in vitro human activity data
could be successfully employed for development of in vivo prediction models for rodents. A
comparison of the per-residue interaction energies of the docking poses and analysis of the
protein-ligand interaction fingerprints indicate a significant overlap between the binding site
interacting residues across the three species. This would help to improve our understanding of
protein-ligand interactions at the molecular level, stimulating scientists to conduct new
experiments and thus aid to extrapolation of molecular hypotheses from rodents to humans

and vice-versa.

S. Jain performed the study and wrote the manuscript. M. Grandits and G.F. Ecker

supervised the work and revised the manuscript.
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Abstract

Prior to the clinical phases of testing, safety, efficacy and pharmacokinetic profiles of lead
compounds are evaluated in animal studies. These tests are primarily performed in rodents,
such as mice and rats. In order to reduce the number of animal experiments, computational
models that predict the outcome of these studies and thus aid in prioritization of preclinical
candidates are heavily needed. However, although computational models for human off-

target interactions with decent quality are available, they cannot easily be transferred to
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rodents due to lack of respective data. In this study, we assess the transferability of human P-
glycoprotein activity data for development of in silico models to predict in vivo effects in rats
and mouse using a structure-based approach. P-glycoprotein (P-gp) is an ATP-dependent
efflux transporter that transports xenobiotic compounds such as toxins and drugs out of cells
and has a broad substrate and inhibitor specificity. It influences the bioavailability and
toxicity of drugs and plays a major role in multidrug resistance. Comparing the binding site
interaction profiles of human, rat and mouse P-gp derived from docking studies with a set of
common inhibitors suggests that the inhibitors share potentially similar binding modes. These
findings encourage the use ofin vitro human P-gp data for predicting in vivo effects in

rodents and thus contributes to the 3Rs of animal experiments.

Keywords:

Species differences, P-glycoprotein, binding site comparison, transmembrane domain,

protein-ligand interaction fingerprint.

1. Introduction

The efflux transporter P-glycoprotein (P-gp) is a protein of high interest among other major
anti-targets (Cramer et al., 2007). It is expressed in tissues such as intestine, liver, kidney,
placenta, testis, and in the capillary endothelial cells of the brain (Seelig, 1998; Thiebaut et
al., 1987), and plays an important role in the absorption, distribution and excretion of many
drugs. Overexpression of P-gp has been implicated in resistance to multiple chemotherapeutic
drugs and is a widely accepted mechanism underlying multidrug resistance (Aller et al.,
2009; Fojo et al., 1987; Widmer et al., 2003). Co-administration of a P-gp inhibitor with a
drug can lead to altered disposition of the latter, resulting in elevated plasma levels of the
drug which could lead to adverse effects (Bussey, 1982; Tsuji, 2002; Verschraagen et al.,
1999). In this respect, the United States Food and Drug Administration (US FDA) guidance
requires new drug candidates to be routinely screened against P-gp as part of the clinical drug
interaction studies (“Clinical Drug Interaction Studies — Study Design, Data Analysis, and
Clinical Implications Guidance for Industry,” 2017; Klepsch et al., 2011). Therefore,
computational methods that characterize P-gp interactions and thus guide the prioritization of
compounds in the early phase of the drug discovery process are of considerable interest

(Schneider, 2010).
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In early stages of drug development, pharmacokinetic and toxicity profiles of a candidate
drug are evaluated in animal models (typically rats or mouse) prior to the clinical phases of
testing in humans. A substantial amount of experimental data against human P-gp is already
available and has been utilized for the development of in silico models (see e.g.
livertox.univie.ac.at). However, besides developing in silico models for the prediction of
ligands for human P-gp, it would be beneficial to also establish models for rat and mouse P-
gp in order to predict the outcomes of preclinical animal studies. Unfortunately, limited
availability of experimental data for rat and mouse P-gp restricts the development of such
models. In this context the question arises, whether predicted interaction profiles of ligands
with human P-gp could be transferred to rodent P-gp. This would require a comprehensive
comparison of the putative binding sites of the P-gp structures across species. Literature
sheds little light on this, suggesting the need for exploration of species-related differences in
P-gp mediated drug transport activity (Martignoni et al., 2006; Schwab et al., 2003;
Suzuyama et al., 2007).

Inhibition of P-gp activity as a result of drug interactions has been reported in both animals
and humans (Bussey, 1982; Choo et al., 2000; Pedersen, 1985), but only a few studies
discussed species-related differences in the inhibitory effects on the P-gp function (Chu et al.,
2013; Suzuyama et al., 2007; Zolnerciks et al., 2011). A few studies proposed moderate
species differences, human vs. rat (Molden et al., 2000), human vs. mouse (Adachi et al.,
2001; Lin and Yamazaki, 2003) and also among the three species (human vs. rat vs. mouse)
(Katoh et al., 2006), while a few other studies reported no significant differences between
human, rat and mouse P-gp (Chu et al., 2013; Feng et al., 2008; Hsiao and Unadkat, 2012).
However, it must be noted that only a small number of compounds were tested in these
studies. It might thus well be that the inhibitory effects on P-gp-mediated drug transport are
subjective to both the chemical structure of substrates/inhibitors and to the species. Moreover,
it is not yet clear if the possible species differences in the inhibitory effects of P-gp activity

are due to differences in binding site residues of P-gp, which is therefore worth investigating.

To the best of our knowledge, no computational study compared the binding site interaction
profiles of P-gp across different species (human, rat and mouse) so far. In this study, we used
a structure-based approach to compare their binding sites in order to derive information
concerning potential species differences in P-gp-mediated drug transport. Since an X-ray

crystal structure is available for mouse P-gp alone, homology modeling was performed to
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construct the models for human P-gp and for rat P-gp. Subsequently, docking of common
inhibitors of rat, mouse and human P-gp was performed. Next, known inhibitors of human P-
gp were docked into the models of the three species followed by an analysis of the
interactions between the inhibitors and binding site residues. The interaction profiles of the P-
gp binding sites of the three species were then compared to evaluate the transferability of in

vitro human P-gp data for development of models to predict effects in rat and mouse.

2. Methodology
2.1. Dataset

A substantial amount of human P-gp data is made publicly available through previous
literature reports (Broccatelli et al., 2011; Chen et al., 2011; Klepsch et al., 2014). However,
due to the limited availability of rat P-gp data in public domain bioactivity databases such as
ChEMBL(Gaulton et al., 2012; Willighagen et al., 2013) and BindingDB(Liu et al., 2007), an
exhaustive literature search was performed. A total of 18 rat P-gp inhibitors could be
identified that are known to also inhibit both human P-gp and mouse P-gp. Due to the
inconsistencies in the assay conditions, these compounds unfortunately could not be utilized
to compare inhibitory profiles across the species. Suzuyama et al. (Suzuyama et al., 2007)
studied the species differences (human, monkey, canine, rat and mouse) in the inhibitory
effects of the prototype P-gp inhibitors quinidine and verapamil. These two drugs served as
the starting point for in silico comparison of binding site interaction profiles across the
species. Further, we also extracted the human P-gp data from Broccatelli ef al. (Broccatelli et
al., 2011) in order to perform protein-ligand interaction fingerprint (PLIF) analysis and to
identify the common functional group residue interactions among the three species. The
dataset was standardized according to the procedure described in Pinto et al., 2012. (Pinto et
al., 2012) The final dataset contained a total of 1161 compounds (612 inhibitors and 549 non-
inhibitors).

2.2. Homology modeling
For human P-gp (UNIPROT ID: P08183), rat P-gp (MDR1a-UNIPROT ID: Q9JK64;
MDR1b-UNIPROT ID: P43245) and mouse P-gp (mdrlb-UNIPROT ID: P06795), the
corrected mouse P-gp structure (mdrla-UNIPROT ID: P21447; PDB ID: 4MIM) was
selected as the most structurally related template protein. Rat and mouse P-gp proteins are

encoded by two paralogous genes namely MDR1a and MDR1b that show a sequence identity
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of 83% (Chu et al., 2013; Devault and Gros, 1990). Therefore, we constructed in total four
homology models to consider the paralogs too. Homology models were constructed using
MODELLER 9.13 (Eswar et al., 2007) and the Prime module in Maestro (Schrodinger, Inc.
V-10.1.013)(Jacobson et al., 2004, 2002). The energy minimized models were further
evaluated using DOPE score (Shen and Sali, 2006) and GA341 score (John and Sali, 2003;
Melo et al., 2002). Quality of the stereochemical parameters and the normality of the
structures were checked using the PROCHECK program, included in the PDBsum analysis
(Laskowski et al., 1993). Ramachandran plot (Zhou et al., 2011) and G-factor (Engh and
Huber, 1991), and finally the Q-score (Benkert et al., 2008, 2009) values were evaluated to
identify the best homology models. The electrostatic potential surface (EPS) of each of the
three best models for the three species was also calculated and compared using MOE 2013

(Molecular Operating Environment (MOE), 2013.08, n.d.).

2.3. Sequence alignment
Sequence alignment was performed using ClustalX (Larkin et al., 2007) and verified by
including secondary structure predictions. Subsequently, the alignment was analyzed using

Jalview (Supplementary Fig. S1-S4) (Clamp et al., 2004; Waterhouse et al., 2009).

2.4. Binding site identification and molecular docking
In order to avoid any bias, the binding site for all five structures was defined as the complete
transmembrane region, taking 20 A around the coordinate of the center point to allow
subsequent flexible docking of a series of P-gp inhibitors. The protein was prepared using the
Protein Preparation Wizard of the Schrodinger Suite (2015) (Sastry et al., 2013; Schrodinger
Release 2015-1: Maestro, version 10.1, Schrodinger, LLC, New York, NY, 2015., n.d.).
Hydrogen atoms were added, and optimal protonation states and ASN/GLN/HIS flips were
determined. To assess their correct protonation states, ligands were prepared using the
LigPrep module of the Schrodinger Suite, (Schrédinger Release 2015-1: LigPrep, version
3.3, Schrodinger, LLC, New York, NY, 2015., n.d., Schrodinger Release 2015-1: Maestro,
version 10.1, Schrodinger, LLC, New York, NY, 2015., n.d.) which produces low-energy 3D
structures that can be used for docking. The OPLS 2005 force field was used for
minimization of the structures. Different ionization states were generated by adding or
removing protons from the ligand at a target pH of 7.0+2.0 using Epik version 3.1.,
(Greenwood et al., 2010; Shelley et al., 2007) and tautomers were generated for each ligand.

To generate stereoisomers, the information on chirality from the input file for each ligand
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was retained as is for the entire calculation. All docking runs were performed in high-
throughput mode with GlideXP(Friesner et al., 2006; Halgren et al., 2004) docking in
Maestro. We also used the genetic algorithm-based GOLD suit (version 5.2.0) (Jones et al.,
1997; Verdonk et al., 2003) for docking.

2.5. Protein ligand interaction fingerprint (PLIF)
A PLIF summarizes the interactions between a ligand and a protein using a molecular
fingerprint scheme. We generated two types of PLIFs that differ in the information encoded.
The first PLIF encodes residues involved in an interaction with the ligand at each bit position.
The second type encodes the functional group of the ligand that interacts with the residue. For
this, the substructure patterns of 100 functional groups (in SMARTS notation) were extracted
from the Daylight website
(http://www.daylight.com/dayhtml tutorials/languages/smarts/smarts examples.html#GROU
P). All PLIF bits were calculated with the MOE 2013 (Molecular Operating Environment
(MOE), 2013.08, n.d.) built-in function CalculateRawlInteractions using a 1% threshold for

molecular interactions and a 20% threshold for surface contacts. The function was embedded
in an in-house SVL script and was post-processed to enable calculation of functional group

PLIFs.

3. Results and Discussion

Predicting interactions of small molecules with membrane protein structures has always been
challenging. Nevertheless, visualization of the 3D models contributes to the comprehension
of the physical and chemical properties of these biomolecules, and of their intermolecular
interactions with endogenous and exogenous compounds. Due to the lack of crystal structures
for human and rat P-gp, homology modeling and computational ligand docking were used to

generate structure-based hypotheses for protein-ligand-interactions.

3.1. Homology modeling
ABC transporters are transmembrane proteins that are in general difficult to be resolved via
crystallization (Klepsch et al., 2010). In such cases, homology modelling is the method of

choice for structure-based studies. The homology models generated in this study resemble the
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open-inward (or apo/ground) state of P-gp. This state was considered because it resembles the

first step of the basic catalytic cycle for drug-binding in P-gp (Wilkens, 2015).

Since January 2014, a refined X-ray structure of a eukaryotic ABC efflux pump, ABCBI1
(mouse) is available (Li et al., 2014) (PDB code: 4M1M, resolution: 3.8 A). High sequence
identities with human MDR1 (86%), rat MDR1a (94%), rat MDR1b (82%), mouse mdrlb
(83%) and a moderate resolution of 3.8 A renders 4M1M a reasonable template for homology
modeling (Pajeva et al., 2009). Moreover, the secondary structure elements (NBDs and
TMDs) are also conserved among the species. When only the TMD was analysed, the
sequence identity is greater than 85% for all structures (Supplementary Fig. S5). The best
models had a normalized Dope score of less than —0.6, G-factors less than —0.12, and Qmean
scores of greater than 0.60 (see Table 1). For all modelled structures, the Ramachandran plot
(Supplementary Fig. S6-S9) showed excellent results with less than 1.9% of residues in
generously allowed or disallowed regions. All of these residues are located in the nucleotide
binding domains (NBD) or extracellular loops (ECL) and are therefore not involved in drug
binding (Supplementary Fig. S10-S13). Table 1 summarizes the model assessment details for
the best structure. The X-ray crystal structure and site directed mutagenesis studies on
ABCBI serve as validity tests for both helix orientation in the template (Ward et al., 2007),
and the alignment used for ABC transporter modelling (Supplementary Fig. S1-S4). The
homology models as well as the crystal structure displayed a V-shaped structure with

analogos domain orientations.

Table 1: Results from the stereochemical validation of the homology models.

Model Dope score | G-factor | Qmean score | Residues in generously allowed

or disallowed regions (%)

Human MDR1 -0.633 -0.13 0.68 1.7
Rat MDR1a -0.795 -0.03 0.70 1.7
Rat MDR1b -0.703 -0.16 0.65 1.8
Mouse mdrlb -0.808 -0.06 0.69 2.0
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3.2. Sequence alignment and binding site analysis
The amino acid sequence is highly conserved among the three species (Supplementary Fig.

S5), suggesting a high structural similarity (see Table 2).

Table 2: Sequence identity/similarity [%] between human, rat and mouse P-gp.

Human- Rat MDR1a | Rat MDRI1b [ Mouse Mouse
MDRI1 mdrla mdrlb
Human- 100 87/93 80/90 86/92 80/90
MDRI1
Rat MDR1a 87/93 100 84/91 94/97 84/92
Rat MDR1b 80/90 84/91 100 82/91 93/97
Mouse 86/92 94/97 82/91 100 83/91
mdrla
Mouse 80/90 84/92 93/97 83/91 100
mdrlb

Experimental techniques such as cysteine and arginine scanning and photoaffinity labeling
were previously employed to determine the drug binding sites of P-gp (Loo and Clarke, 2008;
Pleban et al., 2005; Seeger and van Veen, 2009; Shilling et al., 2006). Multiple binding sites
were identified and binding at different sites could lead to different inhibitory effects. Well
characterized binding sites are the ones of Hoechst 33342 and Rhodamine, the so called H-
sites and R-site (Loo and Clarke, 2002; Qu and Sharom, 2002). Studies also suggest the
presence of an allosteric regulatory site as well as a progesterone and prazosin binding region
(Martin et al., 2000; Shapiro et al., 1999). The H-site and R-site residues, (characterized by
Ferreira et.al (Ferreira et al., 2013)) of the three species were compared and showed a high
sequence identity. This would indicate the similar arrangement of the binding sites residues
and thus further pointing to the presence of a similar binding/interaction profile of the
inhibitors. Mostly identical or similar residues were present in the five structures. The H-site
and R-site had 77% and 65% residues identical within the three species. Those residues
which show a difference, have mostly similar properties. For example, Glul80 in mouse

mdrla is replaced with Aspartic Acid in mouse mdrlb and in ratMDR1b. Both residues are
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charged and have acidic properties. In a few instances, charged (basic) amino acids are
replaced by polar (neutral) or hydrophobic (aliphatic) amino acids in the other species but
most of these residues did not participate in interactions with docked ligands. In general, the
H-site has a higher percentage of charged residues (lysine, histidine, and glutamic acid
residues), while the R-site has a high number of glycine, glutamine, and proline residues.
Interestingly, threonine and tyrosine were not found in the H-site and R-sites, respectively. A
detailed comparison of the H-site and R-site residues of the five structures is shown in
Supplementary Table S1. These observations signify the harmony of electrostatic properties
and molecular features of the drug recognition site (central binding cavity) in the three
species. Supplementary Fig. S14-S18 represents the electrostatic potential surface (EPS) of
the substrate recognition area of each of the ABC-transporter models. The EPS of the
substrate recognition area in the TMDs of the human model is neutral with negative and

weakly positive areas, similar to the EPS of rat and mouse models.

3.3. Molecular Docking
In order to analyze the putative binding pocket of the transport protein in the three species,
we proceeded with docking of a set of inhibitors. Ligand docking is a commonly used
approach to identify ligand-protein interactions. However, in case of P-gp, this appears to be
challenging due to various reasons. Firstly, P-gp possesses a high degree of flexibility with a
large binding cavity consisting of multiple binding sites. Secondly, it can harbor more than
one ligand simultaneously (Loo et al., 2003a; Lugo and Sharom, 2005). And finally, lack of a
high resolution crystal structure of human P-gp necessitates the use of homology models,
which add additional layers of uncertainty. A large binding pocket could also be seen in a
recent structure (PDB id : 4M1M) wherein large cyclopeptides bind at different sites with
partially overlapping residues (Li et al., 2014). Some of these residues are identical to those
involved in rhodamine or verapamil binding (Loo et al., 2006; Loo and Clarke, 1997). Other
studies reported different prazosin binding sites in hamster (Isenberg et al., 2001) and human
P-gp (Ambudkar et al., 2003). Overall, it is understood that P-gp possesses a huge binding
pocket with at least four distinct binding sites, with TM 6 as the helix primarily involved in
binding (Klepsch et al., 2010). Therefore, we considered the complete TMD as drug binding
site (DBS) and generated a large number of docking poses to prevent any bias introduced by

scoring functions.
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We started with docking of verapamil and quinidine into the binding pocket (complete TMD)
of all models. These two compounds were chosen since ICsy values measured under the same
assay conditions were available for all three species. Our study revealed that the top ranked
docking poses of verapamil were found in the R-site of P-gp in all three species, which is in
agreement with previous reports (Ferreira et al., 2013). The top scored docking pose for each
of the five models was found in the same region of the binding pocket (R-site) are shown in

Fig. 1.

Fig. 1: Best scored docking pose of verapamil: green (human MDR1), yellow (rat MDR1a),
pink (rat MDR1b), red (mouse mdrla), blue (mouse mdrlb), secondary structure of human P-

&p-

We used the GlideXP scoring function from Maestro (Friesner et al., 2006; Halgren et al.,
2004) to evaluate the binding poses. GlideXP docking also provides the per residue
interaction energies for a particular docking pose. For each model, the residue interaction
energy (RIE) for the top scored docking poses was calculated. Phe303, Tyr307, Tyr310,
Phe336, Phe343, Phe728, Phe983, Met986 and GIn990 (numbering according to human-
MDR1) are residues that showed more negative interaction energy values in all three species,
indicating their higher contribution to binding. Residue interaction energies for all residues
which are involved in interactions with verapamil can be seen in Supplementary Table S2.
For example, the residues corresponding to Tyr307 in human MDRI1 are Tyr306 (RIE:-3.229
kcal/mol), Tyr306 (RIE:-3.714 kcal/mol), Try303 (RIE:-6.96 kcal/mol) and Tyr299 (RIE:-5.1
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kcal/mol) in rat MDR1a, rat MDR1b, mouse mdrla and mouse mdr1b, respectively. Each of
these residues contributes to the binding with more negative interaction energy. We observed
less negative RIE values with residues which are different within the species (e.g. human
MDRI1: Met68, rat MDR1a: Leu67, rat MDR1b: Leu66, mouse mdrla and mdrlb: Met67),
suggesting their small influence on - and involvement in - interactions with verapamil. Thus,
the comparison of the per residue interaction energies of the best docking pose of the three
species revealed that similar binding site residues (as per the alignment) are involved in

strong interactions with the ligand (see Fig. 2).

=4—RIE_human MDR1
—@-RIE_rat MDR1a

Residue interaction energy (kcal/mol)

RIE_rat MDR1b

=>=RIE_mouse mdrla

! =#=RIE_mouse mdrlb

Fig. 2: Residue interaction energy for common interaction residues in human MDRI, rat
MDR1a, rat MDR1b, mouse mdrla and mouse mdrlb. x-axis denotes residue number in the
order human MDRI1, rat MDR1a, rat MDR1b, mouse mdrla and mouse mdrlb, y-axis

denotes the corresponding residue interaction energy (kcal/mol).

In case of quinidine, the human MDRI1 residues Phe336 (RIE:-2.41 kcal/mol), GIn725 (RIE:-
11.577 kcal/mol), Phe728 (RIE:-2.479 kcal/mol), Ser979 (RIE:-1.535 kcal/mol), Phe983
(RIE:-8.114 kcal/mol) and Met986 (RIE:-2.162 kcal/mol) interacted with greater negative
interaction energies. The corresponding residues in rat MDR1a, rat MDR1b, mouse mdrla
and mouse mdrlb that demonstrated more negative interaction energies can be found in
Supplementary Table S3. Supplementary Fig. S19 shows the RIE for common residues
involved in interaction in human MDR1, rat MDR1a, rat MDR 1b, mouse mdrla and mouse

mdrlb with the top scored docking pose of quinidine. Replacing a phenyl alanine in human
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(Phe303) and mouse (Phe299 in mdrla and mdrlb) with another hydrophobic residue, for
instance Tyr302 in MDR1a and MDRI1b, still showed negative RIE values. Supplementary

Fig. S20 shows the top scored docking poses of quinidine in the five models.

Thus, similar amino acids, as observed with verapamil and quinidine, also confirm the
homogeneous nature of the binding site residues in different species. This would further
support the hypothesis of similarity in their binding sites. Site directed mutagenesis studies on
human ABCBI also indicated that 1le306 (TMHS5) (Loo et al., 2006; Loo and Clarke, 2005),
[1e340 (TMH®6) (Loo and Clarke, 2002), Phe343 (TMHG6) (Loo et al., 2003b, 2006), Phe728
(TMH7) (Loo et al., 2006), and Val982 (TMHI12) (Loo and Clarke, 2002, 2005) may
participate in ligand binding. As shown in Fig. 3, these residues may form a substrate
recognition site in the human ABCBI model. The involvement of these residues in ligand

binding was also confirmed by Li et al (Aller et al., 2009; Li et al., 2014).
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Fig. 3: Key residues of the substrate recognition site in the human ABCB1 model from

literature (Loo et al., 2003b, 2006, Loo and Clarke, 2002, 2005).

In our previous work, we demonstrated that the Chemscore scoring function from the GOLD
docking suit facilitated docking-based classification of inhibitors and non-inhibitors for P-
gp(Klepsch et al., 2014) and the bile salt export pump (BSEP) (Jain et al., 2017) with
reasonable accuracies. Therefore, we used the Chemscore scoring function to perform

docking of all human P-gp inhibitors into human MDR1, rat MDR1a, rat MDR1b, mouse
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mdrla, and mouse mdrlb structures in order to compare the interaction profiles of the

binding site residues in the three species via PLIF analysis.

3.4. Protein ligand interaction fingerprint (PLIF)
Maestro allows computation of different molecular interactions between binding site residues
and a ligand in a specific pose. A PLIF summarizes the interactions between a ligand and a
protein using a fingerprint scheme. It provides a detailed picture of the binding modes of
different inhibitors. We retrospectively analyzed the PLIFs of complexes of verapamil and
quinidine with structures of all three species (human MDR1, rat MDR1a, rat MDR 1b, mouse
mdrla and mouse mdrlb) derived from docking, in order to compare their interaction
profiles. In case of verapamil, in human MDRI, around 70% of the poses showed
hydrophobic interactions with Phe336, 1le340, Phe343, Phe728 and Met986. Also, over 85%
of the poses displayed interaction with Met69, Tyr310, Tyr 953, Phe983 (Fig. 4). In the rat
structure, more than 73% of the residues showed interaction with Phe328, Phe335, Phe720,
Met978 and over 85% residues showed interaction with Phe295, 11e298, Tyr299, Tyr302,
Phe975 (Fig. 4). The percentage of binding poses in which specific residues are involved in
interactions with verapamil in rat MDR1b, mouse mdrla, and mouse mdr1b models can also

be seen in Fig. 4. Supplementary Fig. S21 provides the same information for quinidine.
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Fig. 4: Hydrophobic interactions common in human MDR1, rat MDR1a, rat MDR1b, mouse
mdrla and mouse mdrlbfor verapamil. X-axis denotes residue number in the order human
MDRI1, rat MDR1a, rat MDR1b, mouse mdrla and mouse mdrlb, Y-axis denotes frequency

of interacting residues (%).
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For both verapamil and quinidine, the interacting residues that contributed to a significant
number of binding poses were at similar positions in the 3D structures of the five transporters
(Fig. 4, Supplementary Fig. S21). Specifically, for verapamil, Tyr310 (human MDRI),
Tyr302 (rat MDR1a), Tyr310 (rat MDR1b), Tyr309 (mouse mdrla and mdrlb) showed an
interaction in more than 95% of the poses in all five docked structures. Interestingly, when an
amino acid in one species was replaced with another amino acid in another species, a similar
percentage of docking poses interacted with this residue. For instance, the exchange of [1e340
in human MDRI1 with Leucine in rat MDR1b and mouse mdrlb showed hydrophobic
interactions in almost 80% of the poses for verapamil, indicating that the interaction pattern
did not change when two hydrophobic residues were interchanged. Similar PLIF-based
observations could be inferenced after evaluation of the docking poses of quinidine for the
three species. However, due to the lower degree of freedom (flexibility) of quinidine,

relatively fewer docking poses could be obtained.

We also identified the interacting residues for a set of 612 human P-gp inhibitors that were
docked into these five structures. For human P-gp, more than 70% of the inhibitors interacted
with 11e306, Tyr310, Phe336, Phe343, Tyr953, Phe983 and Met986. Fig. 5 shows interacting
residues common to human, rat and mouse structures. Supplementary Table S4 lists the
occurrence of commonly interacting residues in the three species. PLIFs obtained from
docking of a diverse set of human P-gp inhibitors into the five models revealed that similar
residues were involved in the interactions, thereby further strengthening the existence of

analogous binding site residues and interaction profiles in the three species.
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Fig. 5: Hydrophobic interactions common in human MDR1, rat MDR1a, rat MDR1b, mouse
mdrla and mouse mdrlb for human P-gp inhibitors. X-axis denotes residue number in the
order human MDRI1, rat MDR1a, rat MDR1b, mouse mdrla and mouse mdrlb, y-axis

denotes frequency of interacting residues (%).

3.5. Analysis of the interactions of functional groups with protein residues
Investigation of the functional group-residue interactions for the set of 612 P-gp inhibitors
docked revealed similar interaction patterns with all three species. Functional groups ether,
carbonyl, alkyl carbon, nitrogen and arene showed more prominent interactions with Tyr310,
Phe343, Phe983, and Met986 (numbering as per human MDR1). Corresponding residues in
other species that participated in interactions are shown in Supplementary Table S5. To
illustrate the outcomes, a heat map (Fig. 6, Supplementary Fig. S22-S25) plotting the
interacting residues against the functional groups of ligands was generated. The color scale of
the heat map represents the number of inhibitors involved in a particular interaction between
a specific residue and a specific functional group. Thus, the most significant interactions

could be visually identified.
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Fig. 6: Heat map illustrating the PLIF analysis of the human P-gp inhibitors for human
MDRI1. X-axis denotes contact residues. Y-axis denotes functional groups of the ligand

which are showing an interaction with the residue. Color scale signifies the number of

interacting ligands.

In the three species, the H-site and R-site showed high sequence identity, suggesting the
presence of similar residues at specific positions in the 3D structure. Additionally, similar
functional group-residue interaction patterns were observed for human (MDR1), rat (rat
MDRI1a, rat MDR1b) and mouse (mouse mdrla, and mouse mdrlb) (Supplementary Fig.
S22-S25). This further strengthens the idea of utilizing human P-gp activity data, collated

from in vitro studies, for structure-based modeling of rodent ligand-target interactions.

A study by Schwab et al. (Schwab et al., 2003) reported comparable 1Csy values in a calcein-
AM assay for human MDR1, mouse mdrla and mouse mdrlb for 28 reference compounds.
Zolnerciks et al.(Zolnerciks et al., 2011) also observed comparable ICsy values for a set of
compounds against human and rat P-gp transporter and also suggested that multiple P-gp
substrates would be needed to accurately predict clinically significant P-gp drug interactions,
in both in vitro and in vivo (including human) drug-drug interaction studies. As mentioned
earlier, Suzuyama et al. (Suzuyama et al., 2007) evaluated the inhibitory effects of quinidine
and verapamil on P-gp-mediated drug transport using MDRI1 transfected cell lines of
different species. As a common observation, although the ICsy values differ between the

species, it was less than 10-fold. This along with our molecular docking and PLIF analysis
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results signify the possibility of similar interaction profiles in the three species (human, rat
and mouse), suggesting the usability and transferability of in vitro human data for

development of prediction models for rat and mouse.

4. Conclusion

P-glycoprotein is a transmembrane efflux transporter that plays an important role in drug
absorption, disposition, metabolism, and toxicity. It is essential to investigate the interactions
of P-gp with candidate drugs not only to understand the contribution of P-gp to the
pharmacological properties of candidate drugs, but also to evaluate their drug-drug
interaction (DDI) profiles and thereby their clinical implications. In this regard, it is
important to understand the binding site interaction profiles of P-gp in rodents which is
poorly addressed so far due to the limited availability of experimental data. In this
communication, we compared the P-gp binding sites across human, rat and mouse using
molecular docking and protein-ligand interaction fingerprint analysis. To the best of our
knowledge, this is the first in silico study of its kind that compares the binding sites across
three different species with emphasis on their inhibitory interaction profile. Our results show
a significant overlap between the binding site interacting residues across the three species.
This strengthens the likelihood of similar binding mode of human, rat and mouse P-gp
inhibitors, thus supporting the transferability of in vitro human P-gp data for development of
computational models to predict effects in rat and mouse. As shown recently, the
incorporation of predicted ligand transporter interaction profiles increases the performance of
selected in vivo toxicity prediction models. The transferability of human P-gp data to rodent
in silico models might thus increase the predictivity of rodent in vivo toxicological outcomes,

which was a major aim of the eTOX project (www.etoxproject.eu) (Briggs et al., 2012;

Hartmann and Pognan, 2017). This will subsequently improve the quality of drug candidates
while lowering the attrition rate during subsequent phases of drug development, and, most

remarkably, reduce the number of animal experiments in preclinical studies.
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This thesis aims to investigate the potential of structural-based modeling methods to provide
detailed insights into the mechanism of inhibition of membrane-associated liver transporters
(BSEP, BCRP and P-gp), which might assist in the development of in silico prediction
models and lead optimization. The transporters studied are implicated in multidrug resistance
and hepatotoxicity. Exploring the mechanisms of inhibition of these transporters is highly
essential not only to understand the pharmacological behavior of candidate drugs, but also to
evaluate the potential drug-drug interaction liabilities and their clinical implications. Part I,
section 1.2 provides the biological background of these transporters and emphasizes on their

role in liver toxicity.

A majority of the in silico studies related to these transporters focused on ligand-based
approaches that include QSAR modeling, pharmacophore modeling and machine learning
methods, among others [37]. However, ligand-based models do not consider the structural
aspects of the protein that are valuable in understanding the inhibition process. The lack of
high-resolution structural information has been a primary reason behind the limited focus on
structure-based approaches. Section 2.1 provides a detailed overview of the currently
available ligand-based and structure-based models to predict inhibitors of different liver
transporters. Experimentally resolved protein structures deposited in the Protein Data Bank
and the inhibitors and substrates available from other dedicated resources serve in the
development of in silico models for predicting transporter ligands. However, the coverage is
still limited as high-quality data is still not available for certain transporters (e.g. NTCP,
MRPs and MDR3).

Currently, a vast amount of open data is being generated in the drug discovery domain. In the
light of this, issues with imbalanced datasets are frequently reported [38, 39, 197-199].
Chapter 3, section 3.1 in part II emphasizes on the problems with learning from imbalanced
data and details various approaches to address them. Seven distinct meta-classifiers were
evaluated on four highly imbalanced datasets to identify that while MetaCost and
CostSensitiveClassifier achieve better sensitivities, Stratified Bagging provides the best
balanced accuracies. An additional advantage of Stratified Bagging is that it is
computationally less expensive and can be directly combined with any machine-learning
method without any parameter optimization. In general, a method that balances between the
complexity of the algorithm and the computational cost should be considered an ideal choice

to obtain optimal results. On this basis, we provided a general recommendation to wrap the
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modeling process in the stratified bagging loop when handling imbalanced data sets.
Nevertheless, the performance of an in silico model depends on both quantity and quality of
the underlying data. With few exceptions, such as P-gp, BCRP and BSEP, the limited
availability of activity data in the public domain has been a major limiting factor in
developing reliable models for ABC transporters. This highlights the need for publicly
available data repositories that facilitate the deposition of high-confidence activity data

comprising both positive and negative results.

Chapter 4 in part II presents the results of the structure-based studies on the three liver
transporters (BSEP, BCRP and P-gp). Recent studies that employed homology models of P-
glycoprotein provide promising evidences that structure-based classification methods could
be valuable in studying these highly flexible and promiscuous transporters [196]. Section
4.1.1 reports a homology model for BSEP and the structure-based models to classify
inhibitors and non-inhibitors. The significance of hydrophobic interactions of the inhibitors
guided us to use molecular weight and logP(o/w) as additional descriptors, which further
improved the prediction performance. Molecular docking enables the exploration of protein-
ligand interactions, which facilitates understanding the biology at the molecular level and
provides the rationale for the discovery, design, and development of safer and effective drugs.
In our study, PLIF analysis revealed that certain functional group-amino acid residue
interactions play a key role in ligand binding. While the functional groups halide, carbonyl,
ether, vinyl and amide are overrepresented among the inhibitors, specific groups such as
carbonyl and amide frequently participated in the interactions with the protein. The
interactions of arene and carbonyl groups with tyrosine and leucine residues were more
prominently noticed among inhibitors as compared to the non-inhibitors. These insights could
further guide lead optimization. Thus, a sequential modeling approach, i.e. combining the
structure-based model with ligand-based classification model would be a valuable approach

to reduce the number of false positives in large-scale virtual screening efforts.

Structure-based methods can only be as good as the information they are provided with. The
recent release of the BCRP crystal structure [86] motivated us to conduct structure-based
studies with the aim to propose a binding mode that could explain the spread in activity
within the arylmethyloxyphenyl series (Section 4.2.1). Our binding hypothesis, based on the
results from docking studies, suggests that the activity of arylmethyloxyphenyl analogues is
driven by strong hydrophobic interactions with residues Phe431, Phe432 and Phe439 that are
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consistently involved in aromatic (pi-pi) and hydrophobic interactions. Thus, structure-based
exploration of protein-ligand interactions is valuable in understanding the SAR of ligands
which would be further useful in the development of potent and selective inhibitors for

BCRP.

Development of in silico models that can predict in vitro and in vivo outcomes in animals is a
valuable approach to reduce the number of animal experiments in preclinical development.
However, limited availability of experimental data on rat and mouse P-gp activity restricts the
development of such models. Section 4.3.1 presents the results from our structure-based
assessment of the transferability of in vitro human P-gp data for development of in silico
models to predict outcomes in rodents. We identified that similar binding site residues are
involved in interactions across the three species, which strengthens the likelihood of similar
binding modes for their inhibitors. To the best of our knowledge, this is the first in silico
study of its kind that compares the binding sites of a protein across three different species
with an emphasis on the interaction profiles of their inhibitors. However, only a small number
of compounds were employed to validate the docking studies due to the limited availability of
high-confidence experimental data in the public domain. Data from proprietary sources such

as the pharmaceutical industry should be valuable for a more comprehensive validation.

Taken together, availability of high-resolution structures is a prerequisite, especially when
studying membrane proteins. The lack of resolution therefore generates a blurry layer of
uncertainty on top of the investigated problem and presents a challenging scenario to reveal
useful structural insights. Performing docking or applying scoring functions on low-
resolution structures for pose selection adds another layer of uncertainty and may as well lead
to artefacts that do not represent the correct binding modes [200]. Therefore, these
approaches have to be cautiously employed and must be completed by evidences gathered
about the protein and the ligands of interest [201]. Nevertheless, since understanding the
mechanism of inhibition of transporters is crucial, structure-based methods are essentially an

ideal choice.

In a nutshell, this thesis work provides structural insights into the inhibition of three liver
transporters (BSEP, BCRP and P-gp). The comparative modeling approach was successful in
facilitating a better understanding of the mechanisms of inhibition while also emphasizing

that structural information from the protein structure is essential for complete understanding
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of the ligand SAR. Further, the protein-ligand interaction fingerprint (PLIF) analysis
identified the most frequently occurring interactions between binding site residues and
specific functional groups that provide detailed insights to understand the molecular basis of

inhibition of the transporter proteins by a wide range of ligands.
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Tables

Table S1.Tuned settings of the best performing models for each meta-classifier/method

a. OATP1BI1 dataset

Method 2D MOE | ECFP6 MACCS fingerprints
descriptors fingerprints

Stratified Bagging - - -

CostSensitiveClassifier | cost 30:1 cost 100:1 cost 100:1
matrix: [0.0, 1.0; | matrix: [0.0, 1.0; | matrix: [0.0, 1.0;
30.0, 0.0] 100.0, 0.0] 100.0, 0.0]

MetaCost cost 10:1 cost 30:1 cost 25:1
matrix: [0.0, 1.0; | matrix: [0.0, 1.0; | matrix: [0.0, 1.0; 25.0,
10.0, 0.0] 30.0, 0.0] 0.0]

SMOTE 1500%  synthetic | 2000% synthetic | 1500% synthetic
instances instances instances

b. OATP1B3 dataset

Method 2D MOE | ECFP6 MACCS fingerprints
descriptors fingerprints

Stratified Bagging - - -

CostSensitiveClassifier | cost 70:1 cost 280:1 cost 200:1
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matrix: [0.0, 1.0; | matrix: [0.0, 1.0; | matrix: [0.0, 1.0;
70.0, 0.0] 280.0, 0.0] 200.0, 0.0]

MetaCost cost 13:1 cost 50:1 cost 40:1
matrix: [0.0, 1.0; | matrix: [0.0, 1.0; | matrix: [0.0, 1.0; 40.0,
13.0, 0.0] 50.0, 0.0] 0.0]

SMOTE 1500%  synthetic | 2000% synthetic | 1300% synthetic
instances instances instances

¢. Cholestasis human dataset

Method 2D MOE | ECFP6 MACCS fingerprints
descriptors fingerprints

Stratified Bagging cost 2:1 cost 2:1 cost 2:1

CostSensitiveClassifier | cost 14:1 cost 12:1 cost 12:1
matrix: [0.0, 1.0; | matrix: [0.0, 1.0; | matrix: [0.0, 1.0; 12.0,
14.0, 0.0] 12.0, 0.0] 0.0]

MetaCost cost 8:1 cost 8:1 cost 8:1
matrix: [0.0, 1.0; | matrix: [0.0, 1.0; 8.0, | matrix: [0.0, 1.0; 8.0,
8.0, 0.0] 0.0] 0.0]

SMOTE 1300%  synthetic | 3000% synthetic | 1300% synthetic
instances instances instances

cost 2:1 for Stratified Classifier: Stratified bagging used in combination with MetaCost with
matrix: [0.0, 1.0; 2.0, 0.0]. For the case of human cholestasis dataset, Stratified Bagging on its
own was not able to handle the dataset in such satisfactory way. Thus Stratified Bagging was
combined with the application of a slight cost of 2:1 in favor of the minority class

d. Cholestasis animal dataset

Method 2D MOE | ECFP6 MACCS fingerprints
descriptors fingerprints

Stratified Bagging cost 2:1 cost 2:1 cost 2:1

CostSensitiveClassifier | cost 450:1 cost 500:1 cost 500:1
matrix: [0.0, 1.0; | matrix: [0.0, 1.0; | matrix: [0.0, 1.0;
450.0, 0.0] 500.0, 0.0] 500.0, 0.0]

MetaCost cost 45:1 cost 45:1 cost 50:1
matrix: [0.0, 1.0; | matrix: [0.0, 1.0; | matrix: [0.0, 1.0; 50.0,
45.0, 0.0] 45.0, 0.0] 0.0]

SMOTE 3000%  synthetic | 3000% synthetic | 3000% synthetic
instances instances instances

cost 2:1 for Stratified Classifier: Stratified bagging used in combination with MetaCost with
matrix: [0.0, 1.0; 2.0, 0.0]. For the case of animal cholestasis dataset, Stratified Bagging on its
own was not able to handle the dataset in such satisfactory way. Thus Stratified Bagging was
combined with the application of a slight cost of 2:1 in favor of the minority class.
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Figures

Figure S1 (a-d). Comparison of performances of different meta-classifiers on the four training
datasets (after one round of 10-fold cross validation). x-axis corresponds to the sensitivity and on
the y-axis is the specificity. The squares correspond to MOE descriptors, the triangles correspond
to ECFP6 fingerprints and the circles correspond to MACCS fingerprints. Each classifier is
depicted in a different color: red for RF standalone, green for Bagging, blue for Stratified Bagging,
dark pink for CostSensitiveClassifier, cyan for MetaCost, yellow for ThresholdSelector, orange
for SMOTE and dark violet for ClassBalancer.
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6. Supplements to Section 4.1.1

Supplementary Material

Structure Based Classification for Bile Salt Export Pump (BSEP)
Inhibitors using Comparative Structural Modeling of Human
BSEP

Sankalp Jain®, Melanie Grandits?, Lars Richter?, Gerhard F. Ecker®

“University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090
Vienna, Austria

E-Mail: gerhard.f.ecker@univie.ac.at; Phone: +43-1-4277-55110; eFax: +43-1-4277-855110
Tables

Table S1. Summary view of the applicability domain (AD) analysis with information about
the percentage of the reliable and the unreliable predictions.

Test set (Pedersen et al.)

Scoring function Reliable percentage | Unreliable AD limit
(%) percentage (%) (Threshold)

Chemscore 100 (166/166) 0 (0/166) 4.302
Xscore chemscore 100 (166/166) 0 (0/166) 0.564
Goldscore 100 (166/166) 0 (0/166) 8.809
Xscore goldscore 100 (166/166) 0 (0/166) 0.552
Glidescore 99.4 (165/166) 0.60 (1/166) 1.393
Test set (AstraZeneva-unpublished et al.)

Chemscore 100 (638/638) 0 (0/638) 4.302
Xscore _chemscore 99.7 (636/638) 0.30 (2/638) 0.564
Goldscore 99.8 (637/638) 0.20 (1/638) 8.809
Xscore goldscore 99.8 (637/638) 0.20 (1/638) 0.552
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Figures

Figure S1. Residues which show hydrophobic interactions with a high interaction rate and a

low root mean square fluctuation.

Figure S2. CNS representation of the training set compounds based on MACCS Tc similarity
threshold of 0.70. Communities with at least five representative members are color coded.
Also shown below are the few exemplary compound (with their IC50 value in pM) of

highlighted communities.
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Three exemplary compounds from Cluster 1:




Figure S3. CNS representation of the test set compounds (Pedersen et al.) based on MACCS
Tc similarity threshold of 0.70. Communities with at least five representative members are
color coded. Also shown are the few exemplary compound of these communities.
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Figure S4.Sequence alignment of human BSEP with corrected mouse P-glycoprotein
structure (PDB ID: 4M1M). The residues are colored according to the ClustalX scheme using
Jalview.
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Figure S5. Ramachandran plot for the final homology model of human BSEP taken from
PDBsum.
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Figure S6. Residues that are present in the disallowed region in the final BSEP homology

model.

Figure S7. The location of Asnl09, Asnl16, Asnl22 and Asnl25 in EL1 of the BSEP
homology model. The carbon atoms of the amino acids are colored in yellow for a better

visibility.
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Figure S8. The ROC curve of ChemScore scores of training set compounds. The area under
the ROC curve is 0.87.
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Figure S9. The ROC curve of GoldScore scores of training set compounds. The area under
the ROC curve is 0.82.
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Figure S10. The ROC curve of GlideXP scores of training set compounds. The area under the
ROC curve is 0.77.
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Figure S11. The ROC curve of Xscore(ChemScore) scores of training set compounds. The
area under the ROC curve is 0.92.
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Figure S12. The ROC curve of Xscore(GoldScore) scores of training set compounds. The
area under the ROC curve is 0.93.
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Figure S13. (a) Hydrophobic interaction - (b) hydrogen bond interaction fingerprints of true

positives (TPs) and true negatives (TNs) of the test set (Pedersen et al.). The classification of
the compounds is based on the ChemScore scoring function.
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Figure S14. (a) Hydrophobic interaction - (b) hydrogen bond interaction fingerprints of true
positives (TPs) and true negatives (TNs) of the test set (AstraZeneca-unpublished). The
classification of the compounds is based on the ChemScore scoring function.
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Figure S15. Distribution of BSEP inhibitors and non-inhibitors based on the (a) Molecular
Weight (b) logP(o/w) of the test set (Pedersen et al.)
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Figure S16. Distribution of BSEP inhibitors and non-inhibitors based on the (a) Molecular
Weight (b) logP(o/w) of the test set (AstraZeneca-unpublished)
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Figure S17. Distribution of BSEP inhibitors and non-inhibitors (training set) based on
GoldScore scoring. Sensitivity, specificity, precision and MCC were calculated from the
confusion matrix based on the intersection point of both curves.
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Figure S18. Distribution of BSEP inhibitors and non-inhibitors (training set) based on
GlideXP scoring. Sensitivity, specificity, precision and MCC were calculated from the
confusion matrix based on the intersection point of both curves.
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Figure S19. Distribution of BSEP inhibitors and non-inhibitors (training set) based on
rescoring using Xscore score (poses generated using ChemScore). Sensitivity, specificity,
precision and MCC were calculated from the confusion matrix based on the intersection point
of both curves.
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Figure S20. Distribution of BSEP inhibitors and non-inhibitors (training set) based on
rescoring using Xscore score (poses generated using GoldScore). Sensitivity, specificity,
precision and MCC were calculated from the confusion matrix based on the intersection point
of both curves.
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Figure S21. Distribution of BSEP inhibitors and non-inhibitors (training set) based on
ChemScore scoring and molecular weight. Sensitivity, specificity, precision and MCC were
calculated from the confusion matrix based on the intersection point of both curves.
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Figure S22. Distribution of BSEP inhibitors and non-inhibitors (training set) based on

ChemScore scoring and logP. Sensitivity, specificity, precision and MCC were calculated
from the confusion matrix based on the intersection point of both curves.
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Figure S23. Distribution of BSEP inhibitors and non-inhibitors (training set) based on
ChemScore scoring and Molecular Weight and logP. Sensitivity, specificity, precision and

MCC were calculated from the confusion matrix based on the intersection point of both
curves.
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Figure S24. Distribution of BSEP inhibitors and non-inhibitors (training set) based on
GoldScore rescoring and Molecular Weight. Sensitivity, specificity, precision and MCC were
calculated from the confusion matrix based on the intersection point of both curves.
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Figure S25. Distribution of BSEP inhibitors and non-inhibitors (training set) based on
GoldScore scoring and logP. Sensitivity, specificity, precision and MCC were calculated from

the confusion matrix based on the intersection point of both curves.
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Figure S26. Distribution of BSEP inhibitors and non-inhibitors (training set) based on
GoldScore scoring and Molecular Weight and logP. Sensitivity, specificity, precision and
MCC were calculated from the confusion matrix based on the intersection point of both

curves.

~—inhibitor

non-inhibitor

Frequency (%)

Sensitivity = 0.88
Specificity = 0.85
MCC=0.68

Intersection point = 0.7

1 2 3 4 5 6 7 8 9 10

™ GoldScore + Molecular Weight + logP(o/w)

Figure S27. Distribution of BSEP inhibitors and non-inhibitors (training set) based on Xscore
(ChemScore) and Molecular Weight. Sensitivity, specificity, precision and MCC were
calculated from the confusion matrix based on the intersection point of both curves.
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Figure S28. Distribution of BSEP inhibitors and non-inhibitors (training set) based on Xscore

(ChemScore) and logP. Sensitivity, specificity, precision and MCC were calculated from the
confusion matrix based on the intersection point of both curves.
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Figure S29. Distribution of BSEP inhibitors and non-inhibitors (training set) based on Xscore
(ChemScore) and Molecular Weight and logP. Sensitivity, specificity, precision and MCC
were calculated from the confusion matrix based on the intersection point of both curves.
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Figure S30. Distribution of BSEP inhibitors and non-inhibitors (training set) based on Xscore
(GoldScore) and Molecular Weight. Sensitivity, specificity, precision and MCC were
calculated from the confusion matrix based on the intersection point of both curves.
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Figure S31. Distribution of BSEP inhibitors and non-inhibitors (training set) based on Xscore

(GoldScore) and logP. Sensitivity, specificity, precision and MCC were calculated from the
confusion matrix based on the intersection point of both curves.
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Figure S32. Distribution of BSEP inhibitors and non-inhibitors (training set) based on Xscore
(GoldScore) and Molecular Weight and logP. Sensitivity, specificity, precision and MCC
were calculated from the confusion matrix based on the intersection point of both curves.
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Figure S33. Distribution of functional groups in the test set (a) Pedersen et al. (b)
AstraZeneca (unpublished) dataset classified using ChemScore rescoring function.
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Figure S34. Heat map from PLIF analysis for training set non-inhibitors (x-axis: contact

residues; y-axis: functional groups in the ligand showing interaction with the residue; color
scale: number of interacting ligands).

Figure S35.Heat map from PLIF analysis for test set (a) inhibitors (b) non-inhibitors
(Pedersen et al.) (x-axis: contact residues; y-axis: functional groups in the ligand showing
interaction with the residue; color scale: number of interacting ligands).
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Figure S36.Heat map from PLIF analysis for test set (a) inhibitors (b) non-inhibitors
(AstraZeneca-unpublished) (x-axis: contact residues; y-axis: functional groups in the ligand

showing interaction with the residue; color scale: number of interacting ligands).
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Classification using Protein Ligand Interaction Fingerprints (PLIF)

Finally, we wanted to assess a measure of PLIF homogeneity within the inhibitors of the
training set. Therefore, we calculated the Tanimoto coefficients for each inhibitor versus the
remaining inhibitors on basis of their PLIFs, and finally averaged the resulting coefficients.
The averaged PLIF Tanimoto coefficient describes an inhibitor’s PLIF similarity in relation to
all inhibitors. The same procedure was undertaken for all inhibitors in the training set. From
the distribution of averaged coefficients we calculated the mean and the standard deviation.
Finally, a critical value was defined by subtraction of the standard deviation from the mean.
This critical value was used as a threshold to classify compounds as inhibitors or non-
inhibitors from the test dataset. To classify a test compound with this approach, the PLIF
vector of the compound is used to calculate Tanimoto similarites against all compounds of the
inhibitors in the training set. After averaging the calculated coefficients of the test compound,
the resulting mean is compared against the critical value. If the averaged Tanimoto
coefficients of the test compound is greater than the critical value, it is classified as an
inhibitor, otherwise as a non-inhibitor. The PLIF-based classification provided accuracy
measures comparable to those obtained from the docking score based classification (Table S5
in the supplementary material).

Moreover, information obtained using PLIF analysis in a sequential fashion i.e. reassessment
of true positives and false positives obtained via the docking score based classification using
PLIF-based similarity, improved the classification precision for both the training and the
external test datasets (Table S5 in the supplementary material). The highest precision was
obtained using the third PLIF approach that encoded residues along with the functional groups
of the interacting ligand. Using this method, we achieved a precision of 0.87 (accuracy =
84%) for the training set. The same model showed a precision of 0.72 for the test dataset from
Pedersen et al. [34] (accuracy = 84%) and 0.79 for the test dataset from AstraZeneca
(accuracy = 76%). Overall, the number of false positives could be significantly reduced using
the PLIF based classification.
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7. Supplements to Section 4.3.1

Supplementary Material
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Appendix
Supplementary Tables

Supplementary Table S1. Mapped residues in the H-site and R-site in the five models. For
example, residue His61 in human corresponds to His60 (rat MDR1a), His59 (rat MDR1Db),
His60 (mouse mdrla) and His60 (mouse mdrlb).

Human MDR1 |RatMDRl1a | Rat MDR1b | Mouse mdrla | Mouse mdrlb
H-site

His61 His60 His59 His60 His60
Vall25 Valll7 Vall24 Vall2l Vall24
Leul26 Leull18 Leul25 Leul22 Leul25
Alal29 Alal2l Alal28 Alal25 Alal28
GInl132 GInl124 GIn131 GIn128 GIn131
Vall33 Vall25 Vall32 Vall29 Vall32
Trpl136 Trpl28 Trpl35 Trpl132 Trpl135
Cys137 Cys129 Cysl36 Cys133 Cys136
Asnl83 Asnl75 Asnl82 Asnl79 Asnl82
Glulg84 Glul76 Aspl83 Glul80 Aspl83
Gly185 Glyl177 Gly184 Gly181 Gly184
Ile186 lle178 Ile185 lle182 Ile185
Gly187 Gly179 Gly186 Glyl183 Gly186
Aspl88 Aspl180 Aspl87 Aspl84 Aspl87
1le190 lle182 Leul89 1le186 1le189
Gly191 Gly183 Gly190 Gly187 Gly190
Met192 Met184 Met191 Met188 Met191
Phe194 Phel86 Phel93 Phe190 Phe193
GIn195 GIn187 GIn194 GIn191 GIn194
Leu245 GIn237 GIn244 His241 GIn244
Ser344 Ser336 Ser343 Ser340 Ser343
Val345 Val337 1le344 Val341 lle344
GIn347 GIn339 His346 GIn343 His346
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Ser349 Ser341 Ala348 Ser345 Ala348
Pro350 Pro342 Pro349 Pro346 Pro349
Ser351 Asn343 Asn350 Asn347 Asn350
Glu353 Glu345 Glu3s2 Glu349 Glu3s2
Ala354 Ala346 Ala353 Ala350 Ala353
Ala355 Ala347 Ala354 Ala351 Ala354
Arg680 Gly642 Arg678 Arg676 Arg678
Lys681 Glu673 Arg679 Lys677 Arg679
Leu682 Leu674 Leu680 Leu678 Leu680
Leu879 Leu871 Leu879 Leu875 Leu877
Ser880 Ser872 Ser880 Ser876 Ser878
Leu884 Leu876 Leu884 Leu880 Leu882
Ala901 Ala893 Ala901 Ala897 Ala899
Lys934 Lys926 Lys934 Lys930 Lys932
Phe938 Phe930 Phe938 Phe934 Phe936
Phe942 Phe934 Phe942 Phe938 Phe940
Ser943 Ser935 Ala943 Ser939 Ser941
GIn946 GIn938 GIn946 GIn942 GIn9%44
Ala947 Ala939 Ala947 Ala943 Ala945
Tyr950 Tyr942 Tyr950 Tyr946 Tyr948
Asp997 Asp989 Asp997 Asp993 Asp995
Lys1000 Lys992 Lys1000 Lys996 Lys998
R-site

Ala233 Ala225 Ala232 Ala229 Ala232
Thr240 Thr232 Thr239 Thr236 Thr239
Asp241 Asp233 Asn240 Asp237 Asn240
Leu244 Leu236 Leu243 Leu240 Leu243
Leu245 GIn237 GIn244 His241 GIn244
11293 11e285 11292 11289 11292
Asn296 Asn288 Asn295 Asn292 Ser295
11e299 Met291 11298 Met295 11e298
Gly300 Gly292 Gly299 Gly296 Gly299
Phe303 Phe295 Tyr302 Phe299 Tyr302
Leu304 Leu296 Leu303 Leu300 Leu303
11e340 I1e332 Leu339 Ile336 Leu339
Phe343 Phe335 Phe342 Phe339 Phe342
Ser344 Ser336 Ser343 Ser340 Ser343
Val345 Val337 Ile344 Val341 Ile344
Gly346 Gly338 Gly345 Gly342 Gly345
GIn347 GIn339 His346 GIn343 His346
Ala348 Ala340 Leu347 Ala344 Leu347
Ser349 Ser341 Ala348 Ser345 Ala348
Pro350 Pro342 Pro349 Pro346 Pro349
Glyu353 Glu345 Glu3s2 Glu349 Glu3s2
GIn678 GIn670 GIn676 GIn674 GIn676
Asp679 Asp671 Glu677 Asn675 Glu677
Arg680 Gly672 Argb78 Argb76 Argb78
Asn721 Asn713 Asn719 Asn717 Asn719
Leu724 Leu716 1le722 Leu720 11e722
GIn725 GIn717 GIn723 GIn721 GIn723
Phe728 Phe720 Phe726 Phe724 Phe726
Ser766 Ser758 Ser764 Ser762 Ser764
Thr769 Thr761 Thr767 Thr765 Thr767
Phe770 Phe762 Tyr768 Phe766 Tyr768
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GIn773 GIn765 GIn771 GIn769 GIn771
Gly774 Gly766 Gly772 Gly770 Gly772
Phe777 Phe769 Phe775 Phe773 Phe775
Gly778 Gly770 Gly776 Gly774 Gly776
Gly782 Glu774 Glu780 Glu778 Glu780
Ala823 Ala815 Ser821 Ala819 Ser821

GIn824 GIn816 Asn822 GIn&20 Ser822

Val825 Val817 Val823 Val821 Val823
Lys826 Lys818 Lys824 Lys822 Lys824
Gly827 Gly819 Gly825 Gly823 Gly825
Gly989 Gly981 Gly989 Gly985 Gly987
GIn990 GIn982 Asn990 GIn986 Asn988
Ser992 Ser984 Ser992 Ser988 Ser990

Ser993 Ser985 Ser993 Ser989 Ser991

Phe994 Phe986 Phe994 Phe990 Phe992
Ala995 Ala987 Ala995 Ala991 Ala993
Pro996 Pro988 Pro996 Pro992 Pro994
Asp997 Asp989 Asp997 Asp993 Asp995
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Supplementary Figures

Supplementary Fig. S1. Sequence alignment of human MDR1 with corrected mouse P-
glycoprotein structure (PDB ID: 4M1M). The residues are colored according to the ClustalX
scheme using Jalview.
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Supplementary Fig. S2. Sequence alignment of rat MDR 1a with corrected mouse P-
glycoprotein structure (PDB ID: 4M1M). The residues are colored according to the ClustalX
scheme using Jalview.
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Supplementary Fig. S3. Sequence alignment of rat MDR1b with corrected mouse P-
glycoprotein structure (PDB ID: 4M1M). The residues are colored according to the ClustalX
scheme using Jalview.
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Supplementary Fig. S4. Sequence alignment of mouse mdr1b with corrected mouse P-
glycoprotein structure (PDB ID: 4M1M). The residues are colored according to the ClustalX
scheme using Jalview.
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Supplementary Fig. S5. Sequence alignment of human MDR1, rat MDR1a, rat MDR1b,
mouse mdrla and mouse mdrlb. TMD’s are indicated in boxes.
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Supplementary Fig. S6. Ramachandran plot for the final homology model of human MDR1
taken from PDBsum.
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Supplementary Fig. S7. Ramachandran plot for the final homology model of rat MDR 1a
taken from PDBsum.
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Supplementary Fig. S8. Ramachandran plot for the final homology model of rat MDR1b
taken from PDBsum.
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Supplementary Fig. S9. Ramachandran plot for the final homology model of mouse mdrlb
taken from PDBsum.
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Supplementary Fig. S10. Residues that are present in the disallowed region in the final
human MDR1 homology model

Supplementary Fig. S11. Residues that are present in the disallowed region in the final rat
MDR1a homology model
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Supplementary Fig. S12. Residues that are present in the disallowed region in the final rat

MDR1b homology model
Supplementary Fig. S13. Residues that are present in the disallowed region in the final

mouse mdrlb homology model



Supplementary Fig. S14. Electrostatic potential surface (EPS) of the central binding cavity
of human MDRI1. Binding site surface detected using Site Finder from MOE 2013. EPS
generated at the dummy atoms in the central binding cavity.

Supplementary Fig. S15. Electrostatic potential surface (EPS) of the central binding cavity
of rat MDR1a. Binding site surface detected using Site Finder from MOE 2013. EPS
generated at the dummy atoms in the central binding cavity.
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Supplementary Fig. S16. Electrostatic potential surface (EPS) of the central binding cavity
of rat MDR1b. Binding site surface detected using Site Finder from MOE 2013. EPS
generated at the dummy atoms in the central binding cavity.

Supplementary Fig. S17. Electrostatic potential surface (EPS) of the central binding cavity
of mouse mdrla. Binding site surface detected using Site Finder from MOE 2013. EPS
generated at the dummy atoms in the central binding cavity.
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Supplementary Fig. S18. Electrostatic potential surface (EPS) of the central binding cavity
of mouse mdr1b. Binding site surface detected using Site Finder from MOE 2013. EPS
generated at the dummy atoms in the central binding cavity.
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Supplementary Fig. S19 . Residue interaction energy for common interaction residues in
human MDR1, rat MDR1a, rat MDR 1b, mouse mdrla and mouse mdrlb. x-axis denotes
residue number in the order human MDR1, rat MDR 1a, rat MDR 1b, mouse mdrla and mouse
mdrlb, y-axis denotes the corresponding residue interaction energy (kcal/mol).
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Supplementary Fig. S20. Binding poses for Quinidine.

Residues: Human MDRI1 (grey), Rat MDR1a (orange), Rat MDR1b (blue purple), Mouse
mdrla (maroon), Mouse mdrlb (turquoise).

Quinidine: Green (Human MDR1), Yellow (Rat MDR1a), Pink (Rat MDR1b), Red (Mouse
mdrla), Blue (Mouse mdrlb)

Supplementary Fig. S21. Hydrophobic interactions common in human MDR1, rat MDR 1a,
rat MDR 1b, mouse mdrla and mouse mdrlb for quinidine. x-axis denotes residue number in
the order human MDRI1, rat MDR 1a, rat MDR 1b, mouse mdrla and mouse mdrlb, y-axis
denotes frequency of interacting residues (%).
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Supplementary Fig. S22. Heat map illustrating the PLIF analysis of the human P-gp
inhibitors for rat MDR1a. x-axis denotes contact residues. y-axis denotes functional groups of
the ligand which are showing an interaction with the residue. Color scale denotes number of
interacting ligands.
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Supplementary Fig. S23. Heat map illustrating the PLIF analysis of the human P-gp
inhibitors for rat MDR1b. x-axis denotes contact residues. y-axis denotes functional groups of
the ligand which are showing an interaction with the residue. Color scale denotes number of
interacting ligands.
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Supplementary Fig. S24. Heat map illustrating the PLIF analysis of the human P-gp
inhibitors for mouse mdrla. x-axis denotes contact residues. y-axis denotes functional groups
of the ligand which are showing an interaction with the residue. Color scale denotes number
of interacting ligands.
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Supplementary Fig. S25. Heat map illustrating the PLIF analysis of the human P-gp
inhibitors for mouse mdr1b. x-axis denotes contact residues. y-axis denotes functional groups
of the ligand which are showing an interaction with the residue. Color scale denotes number
of interacting ligands.
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8. Publications and posters

Book Chapters

e Eleni Kotsampasakou, Sankalp Jain, Daniela Digles and Gerhard F. Ecker, Transporter in
Hepatotoxity, Computational Toxicology: Risk Assessment for Pharmaceutical and
Environmental Chemicals, 2nd edition, Sean Ekins, ISBN: 978-1-119-28256-3

e Stefanie Kickinger, Eva Hellsberg, Sankalp Jain and Gerhard F. Ecker, Linked open data:
ligand-transporter interaction profiling and beyond, Multi-Target Drug Design Using

Chem-Bioinformatic Approaches, (Submitted on 15" March 2018)

Publications

e Sankalp Jain, Melanie Grandits, Gerhard F. Ecker, Interspecies comparison of ligand
binding sites of the human, rat and mouse P-glycoprotein, European Journal of
Pharmaceutical Sciences (Submitted on 21°° March 2018, under peer review)

e Sankalp Jain, Eleni Kotsampasakou, Gerhard F. Ecker, Comparing the performance of
meta-classifiers—a case study on selected imbalanced data sets relevant for prediction
of liver toxicity, J Comput Aided Mol Des 1-8. doi: 10.1007/s10822-018-0116-z.

e Sankalp Jain, Melanie Grandits, Lars Richter, Gerhard F. Ecker, Structure based
classification for bile salt export pump (BSEP) inhibitors using comparative structural
modeling of human BSEP, J Comput Aided Mol Des 31:507-521. doi: 10.1007/s10822-
017-0021-x.

e Pradeep Kumar Naik, Sankalp Jain, Piyush Ranjan and Dipankar Sengupta, TpPred: A tool
for hierarchical prediction of transport proteins using cluster of neural networks and
sequence derived features, International Journal of Computational Biology, 0003:44-58,
2012.

e Pradeep Kumar Naik, Piyush Ranjan, Pooja Kesari and Sankalp Jain, MetalloPred: A tool

for hierarchical prediction of metal ion binding proteins using cluster of neural
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networks and sequence derived features, Journal of Biophysical Chemistry, vol. 2 no. 2,
2011.

e Pradeep Kumar Naik, Mani Srivastava, Prasad Bajaj, Sankalp Jain, Abhishek Dubey,
Piyush Ranjan, Rishay Kumar and Harvinder Singh, The binding modes and binding
affinities of artemisinin derivatives with Plasmodium falciparum Ca2+-ATPase

(PfATP6), Journal of Molecular Modeling, vol. 16, no. 6, 2010.

Selected Posters

e Sankalp Jain, Melanie Grandits, Gerhard F. Ecker; “Comparison of P-glycoprotein
binding sites reveals a conservation of ligand binding modes in human, mouse and rat”;
German Conference on Chemoinformatics , Mainz, Germany

e Sankalp Jain, Melanie Grandits, Gerhard F. Ecker; “Structure Based Classification for
Bile Salt Export Pump (BSEP) Inhibitors by Comparative Structural Modeling of Human
BSEP”; Gordon Research Conference, Multi-Drug Efflux Systems, Galveston, TX/USA

e Sankalp Jain, Melanie Grandits, Gerhard F. Ecker; “Interspecies comparison of ligand
binding sites of the human, mouse and rat P-glycoprotein transporters”; MolTag Science
Day, Vienna, AUS

e Sankalp Jain, Melanie Grandits, Gerhard F. Ecker; “Ligand binding site comparison of
human, mouse and rat P-glycoprotein transpoeter”; 9th SFB 35 Symposium Vienna

e Sankalp Jain, Melanie Grandits, Gerhard F. Ecker; “Interspecies comparison of ligand
binding sites of the human, mouse and rat P-glycoprotein transporters”; 21st EuroQSAR
- 21st European Symposium on Quantitative Structure-Activity Relationship, Verona,
[taly

e Sankalp Jain, Melanie Grandits, Gerhard F. Ecker; “Comparative structural modeling of
human BSEP and Structure based classification for BSEP/ABCB11 Inhibitors” 8th SFB
35 Symposium, Vienna

e Sankalp Jain, Melanie Grandits, Gerhard F. Ecker; “Structure based classification for
BSEP/ABCB11 Inhibitors using comparative structural modeling of human BSEP”; 24th

Scientific Congress of the Austrian Pharmaceutical Society, Vienna
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e Sankalp Jain, Gerhard F. Ecker; “Comparative structural modeling of human BSEP and
Structure based classification for BSEP/ABCB11 Inhibitors”; 10th European Workshop

in Drug Design, Certosa di Pontignano, Siena, Italy
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9. List of Abbreviations

ABC-transporter: ATP-binding cassette transporter
MDR: multi-drug resistance

P-gp: P-glycoprotein

BCRP: breast cancer resistance protein

ADMET: absorption, distribution, metabolism, excretion and toxicity
BSEP: bile salt export pump

MRP: multidrug resistance-related protein

DILI: drug-induced liver injury

FDA: Food and Drugs Administration

ITC: International Transporter Consortium
QSAR: quantitative structure-activity relationship
NBD: nucleotide-binding domains

TMD: transmembrane domains

NTCP: Na'-taurocholate cotransporting polypeptide
PFIC: progressive familial intrahepatic cholestasis
MSD: membrane-spanning domain

SAR: structure-activity relationship

SNPs: single nucleotide polymorphisms

NMR: nuclear magnetic resonance

BLAST: Basic Local Alignment Search Tool
DOPE: Discrete Optimized Protein Energy
GOLD: Genetic Optimization of Ligand Docking
HB: hydrogen bond

MD: molecular dynamics

PDB: Protein Data Bank

CSD: Cambridge Structural Database

MLR: multiple linear regression

RMSD: root mean square distance

GPU: graphical processing units

HPC: high performance computing

Cryo-EM: cryo-electron microscopy
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AUC: area under the curve

CV: cross-validation

MCC: Matthews correlation coefficient
RF: random forest

ROC: receiver operating characteristics
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Abstract

ABC-transporters such as the bile salt export pump (BSEP), the breast cancer resistance
protein (BCRP) and P-glycoprotein (P-gp) play an important role in the pharmacokinetics of
several drugs and small molecules. Predicting inhibition of these transporters by small
molecules facilitates identification of potential drug-drug interactions and adverse effects
such as drug-induced liver injuries. Thus far, in silico identification of inhibitors is dominated
by ligand-based approaches that most often employed Quantitative structure—activity
relationship (QSAR) and machine learning methods. Although the models based on these
methods are reported to be efficient, they do not consider the properties of the protein and
thus fail to provide insights into the mechanism of inhibition. While structure-based studies
could investigate these details, the lack of high-resolution structural information and the

polyspecific binding behaviour of these transporters pose a serious obstacle.

This thesis outlines three independent studies that explore structure-based methods to
investigate the molecular basis of inhibition of transporter proteins relevant to liver toxicity
and another study that employs ligand-based methods to deal with the imbalanced datasets.
The structure-based studies presented here describe the use of homology modeling and
molecular docking to uncover the protein-ligand interactions involved in the mechanism of

inhibition.

In our first study, a homology model was constructed for BSEP, followed by the development
of structure-assisted, docking-based classification models for prediction of BSEP inhibitors.
Further, we analyzed the protein-ligand interaction fingerprints which revealed specific
functional group-amino acid residue interactions that could play a key role in ligand binding.
In the BCRP study, a structure-based modeling approach facilitated elucidation of binding
hypothesis for arylmethyloxyphenyl derivatives, which after experimental validations could
guide rational optimization of this compound class to improve potency. In the third study, we
compared the binding site interaction profiles of human, rat and mouse P-gp structures to
reveal a significant overlap between the binding site interacting residues which suggests the
transferability of in vitro human P-gp activity data in the development of in silico models to
predict in vitro and in vivo effects in rodents. In our ligand based study, we dealt with the

problem of learning on imbalanced datasets relevant to toxicity by evaluating the
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performance of seven distinct meta-classifiers and provided recommendations in choosing an

appropriate classifier depending on the dataset in hand.

The results of this thesis work further improve our understanding of protein-ligand
interactions at the molecular level, stimulating scientists to conduct new experiments and thus
also aid in the extrapolation of molecular hypotheses from rodents to humans and vice-versa.
Furthermore, combining ligand-based and structure-based approaches would significantly
enhance the performance of virtual screening experiments in drug discovery and provide
detailed insights on the molecular features involved in crucial interactions, thereby assisting

lead optimization.
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Zusammenfassung

ABC-Transporter wie z.B. die Gallensalzexportpumpe BSEP (bile salt export pump), der
Effluxtransporter BCRP (breast cancer resistance protein) oder das P-Glykoprotein (P-gp)
spielen eine wichtige Rolle in der Pharmakokinetik zahlreicher Wirkstoffe und kleiner
organischer Molekiile. Die Vorhersage der Transporterhemmung durch chemische
Verbindungen ermoglicht die Identifizierung von potenziellen Arzneistoffwechselwirkungen
und unerwiinschten Wirkungen wie z.B. der arzneistoffinduzierten Leberschidigung.
Heutzutage wird die Identifizierung von Hemmern mittels computergestiitzter Methoden von
ligandenbasierten Studien (z.B. QSAR (Quantitative Struktur Wirkungs Beziehung), Machine
Learning Methoden) dominiert. Obwohl die resultierenden Modelle als effizient gelten,
konnen sie die Proteineigenschaften nicht miteinbeziehen und daher keine Informationen iiber
den Mechanismus der Hemmung liefern. Diese Details konnen anhand strukturbasierter
Studien untersucht werden, jedoch ist sowohl der Mangel an hochaufgeldsten 3D-Strukturen

als auch die Polypharmakologie dieser Transporter problematisch.

Diese Dissertation umfasst drei unabhingige Studien, die strukturbasierte Methoden zur
Untersuchung der Transporterhemmung im Bereich der Lebertoxizitit auf molekularer Ebene
vorstellen sowie eine weitere ligandenbasierte Studie iiber Machine Learning fiir
imbalancierte Datensédtze. Die hier présentierten strukturbasierten Studien beschreiben die
Verwendung von Homologiemodellen und molekularem Docking zur Untersuchung der

Protein-Liganden-Wechselwirkungen, die dem Mechanismus der Hemmung zugrunde liegen.

In unserer ersten Studie wurde ein Homologiemodell von BSEP erstellt und anschlieBend
strukturunterstiitzte, dockingbasierte Klassifikationsmodelle zur Vorhersage von BSEP-
Inhibitoren entwickelt. Weiters haben wir die Protein Ligand Interaction Fingerprints
analysiert, welche spezifische Interaktionen zwischen funktionellen Gruppen der Liganden
und den Aminosduren des Proteins aufzeigen und damit eine Schliisselrolle in der
Ligandenbindung spielen konnten. In der BCRP Studie ermoglichte strukturbasiertes
Modeling die Aufkldrung der Bindungshypothese von Arylmethyloxyphenylderivaten welche
nach experimenteller Validierung zur rationalen Optimierung mit Potenzsteigerung dieser
Substanzklasse verwendet werden kann. In der dritten Studie verglichen wir die
Interaktionsprofile in der Bindungstasche der P-gp Strukturen von Mensch, Ratte und Maus.

Die Resultate zeigen signifikante Uberschneidungen bei den interagierenden Aminoséuren der
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Bindungstaschen, welche die Ubertragbarkeit humaner in vitro P-gp Aktivititsdaten fiir die
Entwicklung von in silico Modellen zur Vorhersage von Effekten in vitro als auch in vivo bei
Nagetieren nahelegen. In unserer ligandenbasierten Studie stellten wir uns der
Herausforderung durch unausgewogene Datensdtze mit Toxizitdtsrelevanz mittels
Evaluierung der Performance von sieben unterschiedlichen Meta-Klassifizierern und konnten
Empfehlungen zur Auswahl angemessener Klassifizierer in Abhéngigkeit desvorliegenden

Datensatzes abgeben.

Die Ergebnisse dieser Dissertation verbessern unser Verstindnis von Protein-Liganden-
Interaktionen auf der molekularen Ebene, inspirieren damit neue Experimente und
unterstiitzen die Extrapolierung molekularer Hypothesen vom Tierversuch zum Menschen
und wieder zuriick. Dariiber hinaus erhoht die Kombination von liganden- und
strukturbasierten =~ Methoden  die  Qualitdt  virtueller =~ Screenings  in  der
Medikamentenentwicklung und verschafft uns detailierte Einblicke in die relevanten
molekularen Eigenschaften wichtiger Wechselwirkungen, welche zur Unterstiitzung der

Leitstruktur-Optimierung beitragen.
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