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Abstra
t

A single underdamped and self-propelled Brownian parti
le in a three dimensional har-

moni
 trap was studied theoreti
ally and simulated using Langevin dynami
s. The di-

re
tion of the parti
le's propelling for
e is undergoing underdamped rotational di�usion.

In the limit of small rotational di�usion 
onstants 
ompared to the trap frequen
y the

se
ond moments of the velo
ity and the position are found analyti
ally. Outside of this

limit the se
ond moments 
an be des
ribed using the power spe
trum of the propelling

dire
tion. Using numeri
al integration the se
ond moments show resonant behaviour

with respe
t to the rotational di�usion 
onstant.

In the limit of fast rotational di�usion it 
an be shown that the equipartition theorem

is full�lled and an e�e
tive temperature 
an be as
ribed to the parti
le.

The theoreti
al work is supported by Langevin dynami
s simulations.

Zusammenfassung

Die Statistik eines einzelnen aktiven browns
hen Teil
hens in einem harmonis
hen Poten-

tial wurde bei niedriger Reibung theoretis
h untersu
ht und mittels Langevin-Dynamik

simuliert. Die Ri
htung der Aktivität des Teil
hens unterlag dabei der browns
hen Be-

wegung. Im Grenzfall sehr langsamer Rotationsdi�usion der Aktivitätsri
htung im Ver-

glei
h zur Frequenz des Potentials konnten die zweiten Momente der Position und der

Ges
hwindigkeit des Teil
hens analytis
h hergeleitet werden. Auÿerhalb dieses Grenzfalls

können diese zweiten Momente bestimmt werden, indem das Leistungsspektrum der Ak-

tivitätsri
htung ausgewertet wird. Mittels numeris
her Integration der zweiten Momente

zeigen si
h Resonanze�ekte in Abhängigkeit der Rotationsdi�usionkonstante.

Nur im Grenzfall ras
her Rotationsdi�usion lässt si
h zeigen, dass dem Glei
hverteilungs-

gesetz genüge getan wird und dem Teil
hen eine e�ektive Temperatur zugeordnet werden

kann.

Die theoretis
he Arbeit wird dur
h die Ergebnisse der Langevin-Dynamik-Simulation

bestätigt.
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Introdu
tion

The statisti
al des
ription of systems far from equilibrium is a growing resear
h topi


in physi
s. Espe
ially so-
alled �a
tive parti
les� and the related �a
tive matter� have

been extensively investigated experimentally and theoreti
ally in the last de
ade. A
tive

parti
les refer to a whole 
lass of biologi
al and physi
al entities, whi
h 
an take up energy

from the environment and transform it into kineti
 energy, e.g. motile 
ells, mole
ular

motors and Janus parti
les, the term 
an also be used for des
ribing the movement of

higher organisms su
h as birds and �sh and even humans [21℄.

The experiments and theoreti
al des
riptions range from the �rst modeling of the

motile 
ells' errati
 movement [3℄ to today's studies of the behaviour in 
omplex and


rowded environments [2℄. These parti
les show new properties, that might be used to

transport nanos
opi
 
argoes, for expample in health 
are.

Most of this resear
h is fo
used on a
tive motion in low Reynold's number regimes -

negle
ting inertia. This approa
h is justi�ed, when studying motile 
ells and mole
ular

motors in water and similar �uids. But e.g. a
tive parti
les in dusty plasmas [22℄

would be subje
t to inertia. The �rst self-propelled parti
les in su
h a regime have been

theoreti
ally proposed [1℄. In an underdamped regime new phenomena 
ould o

ur. For

example Kählert and Löwen des
ribe the 
ase of a harmoni
ally trapped ina
tive parti
le

subje
t to an externally imposed os
illatory shear �ow. They �nd resonant behaviour in

this 
ase [11℄.

The present work generalizes this approa
h to an a
tive Brownian parti
le, like a

Janus parti
le, in three dimensions and studies it's simulated behaviour in a harmoni


potential. The work from Kählert and Löwen suggests that there might be a resonan
e

- this shall be further investigated using Langevin dynami
s simulations on a general

model for underdamped a
tive parti
les.

This thesis is organized as follows:

I will review the theoreti
al foundation for Brownian (ina
tive) parti
les in Chapter 1

�Brownian Motion�. On the one hand should the simulation for small a
tivity strengths


onverge to this 
ase, and on the other will results and mathemati
al tools introdu
ed in

this 
hapter be important for the theoreti
al des
ription of a
tive parti
les.

In Chapter 2 �A
tive Parti
les� the widely used overdamped 
ase and the model of

the freely rotating, underdamped 
ase, that has been studied for the present thesis, are

dis
ussed in theoreti
al terms. With an emphasis on the 
ase of the underdamped, freely

rotating parti
le in a harmoni
 potential.

The results of the simulation and the 
omparison with the theoreti
al hypothesis from

Chapter 2 are found in Chapter 3 �Simulations�, as are the des
riptions of the algorithms

used.
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Contents

In Chapter 4 �Con
lusions� the important results will be reviewed and an outlook for

further resear
h will be given.

A major part of this work was the development and the testing of the simulation.

Some results of the extensive simulation testing are given in the appendix.
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1. Brownian Motion

1.1. The freely di�using parti
le - from Einstein to Langevin

The Brownian motion and Brownian parti
le is named after the British botanist Robert

Brown (1773 - 1858) who des
ribed in 1827 the errati
 motion of pollen grains in water.

Studying Brownian motion one stands on the shoulders of giants like Albert Einstein,

Marian Smolu
howski, George Uhlenbe
k, Leonard Ornstein and Paul Langevin. That

seems like a lot of brain power working on a problem that started with the botanist's

observation. But by studying the parti
le's errati
 movement the 
on
ept of sto
hasti


di�erential equations had to be introdu
ed. Today sto
hasti
 di�erential equations are

present in physi
s, biology and even �nan
e mathemati
s, des
ribing sto
k pri
es.

1.1.1. The Einstein formula

Albert Einstein (1879 - 1955) proposed 1905 a mathemati
al theory for the errati
 mo-

evement of the pollen grains based on the atomisti
 
on
ept [9℄ - at a time when the

atomisti
 
on
ept was still a hypothesis and 
ontroversially debated in the physi
s 
om-

munity [13℄. Einstein assumed, that the grain pollens move, be
ause they are hit by

water mole
ules. These 
ollisions are of random strength and dire
tion, and will 
an
el

ea
h other out over long periods of time. But for short times it's possible to have more

mole
ules 
olliding with, for example, the right side of the parti
le - driving it to the left.

He �rst showed, that for small spheres suspended in a liquid the di�usion 
onstant D

depends only on the 
oe�
ient of vis
osity η and on the radius of the suspended parti
les

r :

D =
RT

NA
· 1

6πηr
(1.1)

where R is the universal gas 
onstant (well known from experiments at that time), T the

temperature of the liquid and NA the Avogadro 
onstant. One way to put the atomisti


theory on �rm ground was measuring the Avogadro 
onstant in di�erent ways, hoping for

results whi
h were in good a

ordan
e to ea
h other. Einstein's theory provided another

way to measure the Avogadro 
onstant.

Let τ be a time interval big enough to negle
t inertia, like Einstein proposed, and

therefore assume the displa
ements of the suspended parti
les as mutually independent.

The displa
ements ∆ should follow a symmetri
 probability density ϕ, where ϕ(∆) is
bigger than zero only for small values of ∆. Following Einstein one 
an write a parti
le

distribution fun
tion ρ(x, t) for n parti
les distributed on the x-axis at time t . Hen
e:∫ ∞

−∞
ρ(x, t)dx = n (1.2)

5



1. Brownian Motion

Using the small time interval τ one 
an write

ρ(x, t + τ ) = ρ(x, t) + τ · ∂ρ(x, t)
∂t

(1.3)

Another way to obtain ρ(x, t + τ ) is by using the distribution of displa
ements ϕ(∆). The
number of the parti
les in the interval [x, x + dx] at a time t + τ 
an be expressed using

ϕ(∆) and the distribution fun
tion ρ(x, t) at time t as:

ρ(x, t + τ )dx = dx ·
∫ ∞

−∞
ρ(x + ∆, t)ϕ(∆)d∆

Let's expand ρ(x + ∆, t) in powers of ∆

ρ(x + ∆, t) = ρ(x, t) + ∆ ∂ρ
∂x
+

∆
2

2

∂2ρ

∂x2
+ . . .

then

ρ(x, t + τ )dx = dx ·
(
ρ(x, t)

∫ ∞

−∞
ϕ(∆)d∆ + ∂ρ

∂x

∫ ∞

−∞
∆ϕ(∆)d∆ + ∂

2ρ

∂x2

∫ ∞

−∞

∆
2

2
ϕ(∆)d∆ + . . .

)

Using that the integral

∫ ∞
−∞ ∆

kϕ(∆)d∆ vanishes if k is odd or k = 0:

ρ(x, t + τ )dx = dx ·
(
ρ(x, t) + ∂

2ρ

∂x2

∫ ∞

−∞

∆
2

2
ϕ(∆)d∆ + . . .

)
(1.4)

Be
ause we assumed ϕ(∆) to be only bigger than zero for small displa
ements, powers of

∆
4
upwards will be negle
ted. Comparing (1.3) to (1.4) Einstein arrived at

τ
∂ρ(x , t)
∂t

=

∫ ∞

−∞

∆
2

2
ϕ(∆)d∆ · ∂

2ρ(x, t)
∂x2

and, after de�ning D = 1

τ

∫ ∞
−∞

∆
2

2
ϕ(∆)d∆, one arrives at the well-known di�usion equation

∂ρ(x, t)
∂t

= D
∂2ρ(x, t)
∂x2

Assuming as initial 
ondition ρ(x, 0) = n ·δ (x), with δ (x) being the delta-distribution, the
solution is known as:

ρ(x, t) = n√
4πD

· e
−x2/4Dt
√
t

Now let's 
al
ulate the mean squared distan
e from the origin for one parti
le (setting

n = 1):

〈x2〉 =
∫ ∞

−∞
x2ρ(x, t)dx

=

1√
4πDt

∫ ∞

−∞
x2e−x

2/4Dt dx

6



1.1. The freely di�using parti
le - from Einstein to Langevin

In x-dire
tion the distribution fun
tion is equal to a normal distribution with mean zero

and varian
e 2Dt and therefore we obtain the so-
alled Einstein formula:

〈x2〉 = 2Dt (1.5)

As 
an be seen in Fig. 1.1 the traje
tories and MSD for di�erent instan
es of the pro
ess


an di�er widely from ea
h other. But statisti
al properties 
an still be derived and will

be obeyed.
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Figure 1.1.: (a) Five simulated typi
al traje
tories for one-dimensional Brownian parti
les (b) the

theoreti
al mean square displa
ement 2Dt as a bla
k line and �ve simulated square

displa
ements.

Combining the two results for D, eqs. (1.1) and (1.5), one gets

〈x2〉
2t
=

RT

NA
· 1

6πηr

and therefore the Avogadro 
onstant 
ould be measured indire
tly by determining the

mean squared displa
ement of the parti
le with respe
t to time:

NA =
2t

〈x2〉 ·
RT

6πηr

A Nobel Prize has been awared to the fren
h physi
ist Jean-Baptiste Perrin (1870 - 1942)

in 1926 for the measurement of the Avogadro 
onstant in di�erent ways, in
luding the

one formulated above.
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1. Brownian Motion

1.1.2. The Langevin equation

For a Langevin Dynami
s simulation, as was used for the present work, it's important to

know the underlying equations of motion. While Einstein obtained his results using the

distribution fun
tion ρ(x, t) for the Brownian parti
les, Langevin proposed the governing

equations of motion. Changing the Newtonian ansatz from a known for
e F (x, t) to a sum
of for
es, one represented by a random variable Fr (t), and the other the for
e of fri
tion

−γ0v, one gets the Langevin equation in a similar notation as de Haas-Lorentz [8℄ used

�rst in 1913:

m Ûv = −γ0v + Fr (t) (1.6)

The random for
e is not wholly unknown. It should model the random intera
tions

between the Brownian parti
le and the mole
ules of the medium. Over a long period of

time the average of Fr should be zero, otherwise we would get a net �ow of Brownian

parti
les over time. And the for
e should have no �memory�. Writing this in mathemati
al

terms, using the Dira
-delta δ :

〈Fr (t)〉 = 0 (1.7)

〈Fr (t) Fr (t ′)〉 = 2m2S δ (t − t ′) (1.8)

where S symbolizes the �strength� of the random for
e.

Following Ornstein's approa
h in �On the Brownian Motion� [15℄ we will 
al
ulate the

important statisti
al values for this equation.

Using ξ =
γ0
m

and A = Fr
m
, one 
an integrate the Langevin equation (1.6):

v = v0 e
−ξ t
+ e−ξ t

∫ t

0

eξ sA(s)ds (1.9)

where v0 is the initial velo
ity of the parti
le. Cal
ulating the expe
tation value of Eq.

(1.9) and using the �rst property (1.7) of Fr (t), one �nds

〈v〉 = v0 e−ξ t (1.10)

where the expe
tation value should be understood as an ensemble average. Einstein used

a time interval τ large enough to negle
t any memory e�e
ts of the displa
ements, but

the Langevin equation leads to a memory e�e
t for the velo
ity. Einsteins time interval

needs to be mu
h bigger than

m
γ
to justify his assumption.

Let's look at the se
ond moment of the velo
ity, �rst squaring Eq. (1.9), then averaging

and again using the �rst property (1.7) of Fr (t), the result is

〈v2〉 = v2

0
e−2ξ t + e−2ξ t ·

〈( ∫ t

0

eξ sA(s)ds
)2〉

(1.11)

The integral in the se
ond term deserves a 
loser look, the produ
t of the integrals 
an

be written as a two-dimensional integral:〈 ∫ t

0

∫ t

0

eξ seξ s
′
A(s)A(s ′)ds ds ′

〉

8



1.1. The freely di�using parti
le - from Einstein to Langevin

The value of eξ (s+s
′)
is, with respe
t to the ensemble average, 
onstant and we 
an write∫ t

0

∫ t

0

eξ (s+s
′)〈A(s)A(s ′)〉 ds ds ′

Now using the se
ond property (1.8) of the random for
e leads to

∫ t

0

∫ t

0

eξ (s+s
′) 2S δ (s − s ′)ds ds ′

Integrating over s using the delta-distribution's de�nition

∫
f (x)δ (x − x0)dx = f (x0)

2S

∫ t

0

e2ξ s
′
ds ′ =

S

ξ
·
(
e2ξ t − 1

)

inserting this in Eq. (1.11):

〈v2〉 = v2

0
e−2ξ t +

S

ξ
·
(
1 − e−2ξ t

)
(1.12)

In the limit t → ∞ the parti
le should eventually arrive at a mean squared velo
ity

di
tated by the equipartition theorem as 〈v2〉 = kBT
m , where kB is the Boltzmann 
onstant

and T the temperature of the solvent. Comparing this to the Eq. (1.12) from above, one


an 
al
ulate the strength S as

S = ξ
kBT

m
(1.13)

Let's look at the mean squared displa
ement (MSD) next by multiplying the Langevin

equation with x , (dx
dt
= v):

d2x

dt2
x = −ξ dx

dt
x +Ax

Using

d2x
dt2

· x = 1

2

d2x2

dt2
−v2

and

dx
dt x =

1

2

dx2

dt does 
hange the equation to

1

2
·
(
d2x2

dt2
+ ξ

dx2

dt

)
= v2

+Ax

Taking the ensemble average, one arrives at

d2

dt2
〈x2〉 + ξ d

dt
〈x2〉 = 2〈v2〉 + 〈Ax〉

We know 〈v2〉 from Eq. (1.12), therefore we only have to take a 
loser look at 〈Ax〉.
Integrating Eq. (1.9) again, one obtains

x = x0 +
v0

ξ

(
1 − e−ξ t

)
+

1

ξ

∫ t

0

A(s) ·
(
1 − eξ (s−t )

)
ds

9



1. Brownian Motion

multiplying this equation with A(t) and taking the ensemble average

〈Ax〉 = 〈A〉 x0 + 〈A〉 v0
ξ

(
1 − e−ξ t

)
+

1

ξ

∫ t

0

〈A(t)A(s)〉
(
1 − eξ (s−t )

)
ds

If one uses both properties (1.7) and (1.8) of the random for
e Fr , then

〈Ax〉 = 1

ξ

∫ t

0

2S δ (t − s)
(
1 − eξ (s−t )

)
ds = 0

This only holds for equal times 〈A(t)x(t)〉 as Manoliu and Kittel [14℄ showed. This is also

in a

ordan
e with our physi
al intuition of the problem. While the random a

eleration

should not be depending on the position of the parti
le at that time, these a

elerations

have an impa
t on the parti
le's position at a later time. Now we'll use this result and

Eq. (1.12) averaging over all initial velo
ities (〈v2

0
〉 = S

ξ ):

d2

dt2
〈x2〉 + ξ d

dt
〈x2〉 = 2

S

ξ

This 
an be solved by using the following ansatz:

〈x2〉 = c0 + c1e−ξ t + 2
S

ξ 2
t

The integration 
onstants 
an be 
al
ulated, assuming that at t = 0 the MSD and its

�rst derivative are zero. Hen
e the solution reads:

〈x2〉 = 2S

ξ 3

(
ξt − 1 + e−ξ t

)
(1.14)

While S only determines the slope of the MSD, the value of ξ is also responsible for

the shape of the 
urve, as 
an be seen in Fig. 1.2. For short times, meaning ξt ≪ 1, the


urve mimi
s a parti
le in a ballisti
 regime. In the limit of ξt ≫ 1 one arrives at a linear

fun
tion for the MSD

〈x2〉 = 2S

ξ 2
t

whi
h is exa
tly the Einstein formula (1.5), if one uses Eq. (1.13) and identi�es D = kBT
mξ .

This di�usion 
onstant D is identi
al to the di�usion 
onstant Einstein was using, de�ned

in Eq. (1.1), if one keeps in mind that kB =
R
NA

and Einstein uses the Stokes fri
tion for

a spheri
al parti
le with radius r , hen
e ξ =
6πrη

m
.

The auto
orrelation fun
tion 〈v(t)v(t+τ )〉 is easily obtained from Eq. (1.9). Rewriting

this equation to v0 = v(t) and v(t + τ ), and multiplying by v(t), one gets

v(t)v(t + τ ) = v(t)2e−ξ τ +v0e−ξ τ
∫ τ

0

eξ sA(s)ds

where τ > 0. Now taking the average and using the equilibration limit 〈v(t)2〉 = S
ξ

〈v(t)v(t + τ )〉 = S

ξ
· e−ξ τ

10



1.1. The freely di�using parti
le - from Einstein to Langevin
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Figure 1.2.: The MSD for Brownian parti
les following Eq. (1.14) (a) for three di�erent values

of S with ξ = 1 (b) for three di�erent values of ξ with S = 1

1.1.3. The Fokker-Plan
k equation

Instead of solving the equation of motion, in our 
ase the Langevin equation, one 
an also

take a look at the time dependent probability distribution fun
tion for the problem. The

equation that des
ribes the time dependen
e of the probability distribution fun
tion for

Markovian pro
esses is 
alled Fokker-Plan
k equation. Ea
h Langevin equation has an

equivalent Fokker-Plan
k equation. First we will derive the general form of the Fokker-

Plan
k equation and then apply it to the problem of the free Brownian parti
le, whi
h

we have dis
ussed in the previous se
tion.

We want to derive the di�erential equation des
ribing the time dependen
e of a two-

dimensional probability distribution fun
tion p(a, t), where a is a 
ontinous variable -


alled state - and t denotes the time, as usual. The expression p(a, t)da des
ribes the

probability to �nd the system in a state [a,a+da] at time t . It should des
ribe a Markovian

pro
ess with the transition rate ω(a,a′; t) denoting the probability to transition from state

a′ to state a at the time t . The 
orresponding Master-Equation

1

reads

∂p(a; t)
∂t

=

∫
da′

[
ω(a,a′; t)p(a′, t) −ω(a′,a; t)p(a, t)

]
This equation des
ribes the in�ux to p(a, t) by summing all other states' probability

distribution at a′ up, weighted by their transition probability to land in a. It also

des
ribes the out�ux by subtra
ting the transition probability to leave the state a in

1

more on Markovian pro
esses and the Master equation is found e.g. in G. Röpke, �Statistis
he

Me
hanik und das Ni
htglei
hgewi
ht� [18℄

11



1. Brownian Motion

favor of state a′. Let's rewrite the equation a little bit

∂p(a, t)
∂t

=

∫
ω(a,a′; t)p(a′, t)da′ − p(a, t)

∫
ω(a′,a; t)da′

It's reasonable to assume, that the 
hanges of a are small, i.e. that ω(a,a′; t) is a sharply
peaked fun
tion around a′. Substitutions will lead us to

∂p(a, t)
∂t

=

∫
ω(a,a − b; t)p(a − b, t)db − p(a, t)

∫
ω(a + b,a; t)db

We 
an Taylor expand ω(a,a − b; t)p(a − b, t) at a = a + b:

ω(a,a − b; t)p(a − b, t) =
∞∑
n=0

(a − (a + b))n
n!

∂n

∂an

[
ω(a + b,a; t)p(a, t)

]

= ω(a + b,a; t)p(a, t) +
∞∑
n=1

(−b)n
n!

∂n

∂an

[
ω(a + b,a; t)p(a, t)

]

Hen
e

∂p(a, t)
∂t

=

∫
ω(a + b,a; t)p(a, t)db +

∫ ∞∑
n=1

(−b)n
n!

∂n

∂an

[
ω(a + b,a; t)p(a, t)

]
db

− p(a, t)
∫

ω(a + b,a; t)db

The �rst and third term on the right hand side 
an
el ea
h other out, and if we rewrite

the se
ond term and substitute b = a′ − a, we arrive at the Kramers-Moyal Expansion:

∂p(a, t)
∂t

=

∞∑
n=1

(−1)n
n!

(
∂

∂a

)n [
αn(a, t)p(a, t)

]

αn =

∫
(a′ − a)nω(a′,a; t)da′

= lim
∆t→0

1

∆t

∫
(a′ − a)nP(a′, t + ∆t |a, t)da′

where P(a′, t + ∆t |a, t) denotes the 
onditional probability, that the system is in state a′

at time t + ∆t if at time t the system was in state a. The αn are 
alled moments of the

transition probabilities.

If αn = 0 for all n ≥ 3, then the Kramers-Moyal expansion ends after the se
ond term

and the resulting equation is 
alled Fokker-Plan
k equation:

∂p(a, t)
∂t

= − ∂
∂a

[α1(a, t)p(a, t)] +
1

2

∂2

∂a2
[α2(a, t)p(a, t)]

After formulating the Fokker-Plan
k equation we will apply it to the Langevin equation

of the free Brownian parti
le (1.6) and 
al
ulate the time-dependent probability distri-

bution of the velo
ity p(v, t). We integrated the Langevin equation in the last se
tion

12



1.1. The freely di�using parti
le - from Einstein to Langevin

and obtained a solution for v(t) under the assumption that the initial velo
ity is v0, see

Eq. (1.9). Let's 
al
ulate the moments of the transition probabilities α1 and α2:

α1 = lim
∆t→0

1

∆t

∫ ∞

−∞
(v −v0) · P(v, t0 + ∆t |v0, t0)dv

The integral is equal to the expe
tation value of (v(t0 + ∆t) − v0) under the assumption

that v(t0) = v0, hen
e:
α1 = lim

∆t→0

1

∆t
〈v(t0 + ∆t) − v(t0)〉

Using the Eq. (1.10) and t0 = 0, one obtains

α1 = lim
∆t→0

1

∆t
·
(
v(0) e−ξ ·∆t −v(0)

)
= −ξ v(0)

be
ause the right hand side of the �rst line equals the �rst derivative of v(t) at t = 0.

For the se
ond moment we will use the Eq. (1.12) for 〈v(t)2〉:

α2 = lim
∆t→0

1

∆t
〈(v(∆t) −v0)2〉

= lim
∆t→0

1

∆t

[
v2

0
· e−2ξ∆t + S

ξ
·
(
1 − e−2ξ∆t

)
− 2v2

0
e−ξ∆t +v2

0

]

= −S
ξ

lim
∆t→0

1

∆t

(
e−2ξ∆t − 1

)
︸                     ︷︷                     ︸

−2ξ

+v2

0
lim
∆t→0

1

∆t

(
e−2ξ∆t + 1

)
︸                     ︷︷                     ︸

−2ξ

−2v2

0
lim
∆t→0

e−ξ∆t

∆t︸       ︷︷       ︸
−ξ

= 2S

Using de l'Hospital to 
al
ulate the last two limits. The Fokker-Plan
k equation for the

velo
ity of the Brownian motion therefore reads

∂p(v, t)
∂t

= ξ
∂

∂v
[v p(v, t)] + S ∂

2

∂v2
p(v, t)

From this equation one 
an get the stationary solution p0(v) for p(v, t) by setting ∂p(v,t )
∂t =

0.
d2

dv2
p0(v) +

ξ

S

d

dv
[v · p0(v)] = 0

integrating this equation leaves us with the well-known Maxwell-Boltzmann velo
ity dis-

tribution

p0(v) =
(
ξ

2πS

)1/2
· e−ξv2/2S

(1.15)

While the thermal �u
tuations, represented by S , broadens the 
urve, if the temperature

rises, the fri
tion ξ sharpens the peak and 
ountera
ts the thermal �u
tuations, see Fig.

1.3.
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1. Brownian Motion
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Figure 1.3.: The velo
ity distribution for Brownian parti
les following Eq. (1.15) (a) for three

di�erent values of S with ξ = 1 (b) for three di�erent values of ξ with S = 1

1.1.4. The Wiener-Khin
hin theorem

Let's denote the Fourier transform ã(ω) of a fun
tion a(t) de�ned as

ã(ω) =
∫ ∞

−∞
a(t) e−iωt dt

and the inverse Fourier transform

a(t) = 1

2π

∫ ∞

−∞
ã(ω) eiωt dω

The power spe
trum of the fun
tion is then de�ned as

Sa(ω) = 〈|ã(ω)|2〉

and Sa(ω)dω is physi
ally the mean intensity in the frequen
y interval [ω,ω + dω]. The
theorem of Wiener and Khin
hin states the 
onne
tion between the auto
orrelation fun
-

tion (ACF) 〈a(t)a(t + τ )〉 and the spe
tral density Sa (ω):

Sa(ω) =
∫ ∞

−∞
〈a(t)a(t + τ )〉 e−iωτ dτ

〈a(t)a(t + τ )〉 = 1

2π

∫ ∞

−∞
Sa(ω) eiωτ dω

Now we will apply this theorem to the Langevin equation to 
al
ulate the velo
ity's

power spe
trum 〈|ṽ(ω)|2〉. In Fourier spa
e the time di�erential 
an be easily rewritten

14



1.2. Brownian motion in a harmoni
 potential

as:

d

dt
v(t) = d

dt

∫
ṽ(ω)eiωt dω =

∫
iωṽ · eiωt dω

hen
e

˜(
dv

dt

)
= iωṽ

Therefore we 
an rewrite the Langevin equation in Fourier spa
e as:

d

dt
v(t) = −ξv(t) +A(t)

(iω + ξ ) ṽ(ω) = Ã(ω)

Sv (ω) = 〈|ṽ(ω)|2〉 = 〈|Ã(ω)|2〉
ξ 2 +ω2

with A(t) being a sto
hasti
 pro
ess, still having the properties we de�ned earlier in

subse
. 1.1.2, namely 〈A(t)〉 = 0 and 〈A(t)A(t ′)〉 = 2S δt−t ′. Then the power spe
trum of

the random a

eleration 
an be 
al
ulated using the Wiener-Khin
hin theorem

〈|Ã(ω)|2〉 =
∫ ∞

−∞
〈A(t)A(t + τ )〉 e−iωτ dτ (1.16)

=

∫ ∞

−∞
2S δ (τ ) e−iωτ dτ

= 2S

and therefore

Sv (ω) =
2S

ξ 2 +ω2
(1.17)

Using this result, we 
an also 
al
ulate the power spe
trum of the position Sx (ω), using
d
dt
x = v, hen
e

iωx̃ = ṽ

and by squaring and averaging

Sx (ω) = 〈|x̃(ω)|2〉 = 1

ω2
〈|ṽ |2〉 = 1

ω2
· 2S

ξ 2 + ω2

1.2. Brownian motion in a harmoni
 potential

The problem of a Brownian parti
le in a harmoni
 trap will be dis
ussed using the

Langevin equation with an additional for
e. The potential reads U = ks
2
x2 with ks

15



1. Brownian Motion
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Figure 1.4.: The power spe
tra Sx (ω) (full) and Sv (ω) (dashed) for Brownian parti
les following

Eq. (1.4) (a) for three di�erent values of S with ξ = 1 (b) for three di�erent values

of ξ with S = 1

denoting the spring 
onstant of the for
e F = −∇U = −ksx . Putting it all together one

arrives at the two 
oupled di�erential equations:

dx

dt
= v

m
dv

dt
= −γv + Fr (t) − ksx

For the random for
e Fr (t) the same restri
tions are still in pla
e:

〈Fr (t)〉 = 0

〈Fr (t)Fr (t ′)〉 = 2m2S · δ (t − t ′)

For brevity's sake we will write the equation, using ω2

0
=

ks
m , A(t) = Fr (t )

m and ξ =
γ

m :

dv

dt
= −ξv +A(t) −ω2

0
x

The 
orresponding Fokker-Plan
k equation for the probability density p(x,v, t) reads

∂p

∂t
+v
∂p

∂x
−ω2

0

x
∂p

∂v
= S
∂2p

∂x2
+

∂

∂v
(ξvp)

This equation 
an be solved in the stationary limit

∂p0
∂t
= 0:

p0(x,v, t) = C · e−ξ ksx2/2S · e−ξv2/2S
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1.2. Brownian motion in a harmoni
 potential

The obtained solution equals two Maxwellian distributions, one for the velo
ity and one

for the position. The 
onstant C 
an be easily 
al
ulated by requiring∫ ∞

−∞

∫ ∞

−∞
p0(x,v)dx dv = 1

One 
an 
al
ulate the auto
orrelation fun
tions for the position �rst and then follow

up with di�erentiation of the obtained result to get the 
ross
orrelation for position and

velo
ity and �nally the auto
orrelation for the velo
ity. To do this we will follow Co�ey's

�The Langevin equation� [7℄ by rewriting the Langevin equation for the positions

d2

dt2
x(t) + ξ d

dt
x(t) +ω2

0
x(t) = A(t)

Now 
hanging to Fourier spa
e

−ω2x̃ + iωx̃ +ω2

0
x̃ = Ã(ω)

and 
al
ulating the power spe
trum, using SA(ω) = 2S , see Eq. (1.16):

Sx (ω) =
2S

(ω2

0
−ω2)2 +ω2ξ 2

(1.18)

Note that the power spe
trum of the velo
ity 
an easily be obtained using ω2Sx = Sv .
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Figure 1.5.: The power spe
tra Sx (ω) (full) and Sv (ω) (dashed) for Brownian parti
les following

Eq. (1.18) (a) for three di�erent values of S with ξ = 1 (b) for three di�erent values

of ξ with S = 1

Using the Wiener-Khin
hin theorem we 
an now obtain the auto
orrelation fun
tion:

〈x(t)x(t + τ )〉 = 2S

2π

∫ ∞

−∞

e−iωτ

(ω2

0
−ω2)2 +ω2ξ 2

dω

17



1. Brownian Motion

This integral 
an be solved by applying the residue theorem to it. Therefore the integral

should be written as 
ontour integral in the 
omplex plane. The residues are lo
ated at

ω2

0
−ω2

= ±iξω

ω = ±i ξ
2
±
√
ω2

0
− ξ 2

4
= ±ω1 ± i

ξ

2

where ω2

1
= ω2

0
− ξ 2

4
denotes the natural frequen
y of the damped os
illator. We assume

τ > 0 and let ω = a + ib be a 
omplex number, then the numerator of the fra
tion is

eyτ−ixτ and the 
ontour of the 
omplex plane should be 
losed by a semi
ir
le in the

lower half plane. Therefore only the residues with negative 
omplex values are needed

to solve the integral ω = ±ω1 − i ξ2 . We obtain:

〈x(t)x(t + τ )〉 = S

π

∫ ∞

−∞

e−iωτ dω
(ω −ω1 − iξ/2)(ω −ω1 + iξ/2)(ω +ω1 − iξ/2)(ω +ω1 + iξ/2)

= −2πi S
π

[
e−i(ω1−iξ /2)τ

(−iξ )(2ω1 − iξ )(2ω1)
+

e−i(−ω1−iξ /2)τ

(−2ω1 − iξ )(−2ω1)(−iξ )

]

=

2iS

2iω1ξ
e−ξ τ /2

[ (2ω1 + iξ ) · e−iω1τ + (2ω1 − iξ ) · eiω1τ

4ω2

1
+ ξ 2

]

now taking advantage of the de�nition of ω2

1
to simplify 4ω2

1
+ ξ 2 = 4ω2

0
and rearranging

inside the bra
kets lets us use Euler's formula:

〈x(t)x(t + τ )〉 = S

4ω2

0
ω1ξ

e−ξ τ /2
[
2ω1 ·

(
eiω1τ

+ e−iω1τ

)
︸                ︷︷                ︸

2 cos(ω1τ )

−iξ ·
(
eiω1τ − e−iω1τ

)
︸               ︷︷               ︸

2i sin(ω1τ )

]
=

=

S

ω2

0
ξ
e−ξ τ /2

[
cos(ω1τ ) +

ξ

2ω1

sin(ω1τ )
]

We 
an utilise this result to 
al
ulate the missing 
ross-
orrelations and the auto
orrela-

tion of the velo
ity:

〈x(t)v(t + τ )〉 = 〈x(t) d
dτ
x(t)〉 = d

dτ
〈x(t)x(t + τ )〉

= − S

ξω2

0

e−ξ τ /2
[
ξ 2

4ω1

+ ω1︸︷︷︸
ω2

0
−ξ 2/4

]
sin(ω1τ )

= − S

ξω1

e−ξ τ /2 sin(ω1τ )

For the se
ond 
ross-
orrelation we will use the stationarity by shifting the time axis by

−τ :

〈v(t)x(t + τ )〉 = 〈 d
dτ

x(t − τ )x(t)〉 = − d

dτ
〈x(t)x(t + τ )〉 =

=

S

ξω1

e−ξ τ /2 sin(ω1τ )
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1.2. Brownian motion in a harmoni
 potential

The velo
ity auto-
orrelation fun
tion is therefore

〈v(t)v(t + τ )〉 = − d2

dτ 2
〈x(t)x(t + τ )〉

=

S

ξ
e−ξ τ /2

(
cos(ω1τ ) −

ξ

2ω1

sin(ω1τ )
)

From this 
orrelations one 
an obtain 〈x2〉 = S
ω2

0
ξ
=

kBT

mω2

0

and the expe
tation value for

the potential energy 〈E
pot

〉 = 1

2
ks 〈x2〉 = 1

2
kBT , using ω2

0
=

k
m
. This result ful�lls the

equipartition theorem. Likewise for the kineti
 energy 〈v2〉 = S
ξ =

kBT
m , hen
e 〈E

kin

〉 =
1

2
m〈v2〉 = 1

2
kBT .

1.2.1. Ina
tive parti
le in an os
illatory shear �ow

Kählert and Löwen [11℄ studied the 
ase of a deterministi
 os
illatory shearing for
e

driving an ina
tive parti
le in a harmoni
 potential. They solved the 
ase of one parti
le

analyti
ally and used Langevin dynami
 simulations to ta
kle the problem of multiple

parti
les. This 
ase is relevant for the present work, be
ause the a
tive parti
le 
ould

be thought of as a ina
tive parti
le driven by an rotating external for
e. The important

di�eren
e is, that the a
tive parti
le's for
e is rotating via rotational di�usion, while

the os
illatory shear for
e studied by Kählert and Löwen is stri
tly deterministi
. The

di�eren
es be
ome greater when viewing multiple parti
les, be
ause ea
h a
tive parti
le

has it's own rotating for
e, while the shear for
e is imposed on all parti
les.

They �rst studied the problem of one parti
le in an os
illatory shear �ow, with shear

frequen
y Ω, imposing the for
e f
shear

= ξ Ûs y cos(Ωt) in x-dire
tion. Using the present

work's notation, where m denotes the mass, ξ the fri
tion and introdu
ing the shear rate

as Ûs, the one parti
le problem in a harmoni
 potential with trap frequen
y ω0 reads

Ûχ (t) = A(t)χ (t) + ζ (t)
where χ (t) = (vx (t), vy (t), x(t), y(t))T des
ribes the two-dimensional velo
ity (vx ,vy ) and
position (x,y) of the parti
le. The ve
tor ζ (t) = (fx (t), fy (t), 0, 0)T /m des
ribes the

sto
hasti
 a

eleration of the Brownian parti
le with

〈ζ (t)〉 = 0, 〈ζ (t)ζT (t ′)〉 = D δ (t − t ′)
where D denotes the di�usion matrix

D =
2ξkBT

m

©­­­«

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

ª®®®¬
The 
oe�
ient matrix A(t) is given by

A(t) =
©­­­«

−ξ 0 −ω2

0
ξ Ûs cos(Ωt)

0 −ξ 0 −ω2

0

1 0 0 0

0 1 0 0

ª®®®¬
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1. Brownian Motion

The shear �ow only a�e
ts the x-dire
tion, therefore the equations for vy (t) and y(t) are
equal to the ones of an ina
tive parti
le in a harmoni
 trap and have been dis
ussed in

se
. 1.2.

Interestingly the solution shows for the 
ross moments 〈x(t)y(t)〉 and 〈vx (t)vy (t)〉 and
the se
ond moments 〈x2〉 and 〈v2

x 〉 resonan
e e�e
ts for the amplitudes of these moments.

The 
ross moments are given as

〈x(t)y(t)〉 =Wi

(
kBT

mω2

0

)
Axy cos(Ωt + ϕxy)

〈vx (t)vy (t)〉 =Wi

(
kBT

mω2

0

)
Avxvy cos(Ωt + ϕvxvy )

where Wi = Ûsξ/ω2

0
denotes the Weissenberg number, Ω̄ = Ω/ω0 and ξ̄ = ξ/ω0. The

amplitudes are

Axy =

[
4ξ̄ 2 + Ω̄

2

(ξ̄ 2 + Ω̄2)[4ξ̄ 2Ω̄2
+ (Ω̄2 − 4)2]

]1/2

Avxvy =

[
Ω̄
2

(ξ̄ 2 + Ω̄2)[4ξ̄ 2Ω̄2
+ (Ω̄2 − 4)2]

]1/2
and the phase angles

tanϕxy = ξ̄ Ω̄

[
Ω̄
2
+ 4(ξ̄ 2 + 1)

Ω̄4 − 4Ω̄2
+ 4ξ̄ 2(Ω̄2 − 2)

]

tanϕvxvy =
ξ̄

Ω̄

[
3Ω̄2 − 4

Ω̄2 − 2ξ̄ 2 − 4

]

And the se
ond moments for x and vx are given as

〈x2(t)〉
kBT/mω2

0

= 1 +Wi

2[dx +Axx cos(2Ωt + ϕxx )]

〈v2
x (t)〉

kBT/mω2

0

= 1 +Wi

2[dx +Avxvy cos(2Ωt + ϕvxvy )]

The 
orresponding amplitudes and phase angles are quite lengthy and 
an be looked

up in [11℄. Mu
h more enlightening are the plots of the amplitudes, phase angles and


onstant terms in �gures 1.6 and 1.7

While the 
ross moments peak at Ω/ω0 = 2 for low fri
tion ξ/ω0 ≈ 10−2, the se
ond

moments show two peaks. One at Ω/ω0 = 1 and the other at Ω/ω0 = 2. At intermediary

fri
tion ξ/ω0 ≈ 10−1 the �rst peak be
omes dominant for 〈x2〉.
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1.3. Threedimensional 
ase

Figure 1.6.: (a) and (b) show the phase angles

and (
) and (d) the Amplitudes of

〈x y〉 and 〈vxvy〉, Reprinted �gure

with permission from [11℄ Copy-

right 2018 by the Ameri
an Phys-

i
al So
iety

Figure 1.7.: (a) and (b) show the Amplitudes,

(
) and (d) the 
onstant terms

of 〈x2(t)〉 and 〈v2

x (t)〉, Reprinted

�gure with permission from [11℄

Copyright 2018 by the Ameri
an

Physi
al So
iety

1.3. Threedimensional 
ase

The di�erent 
omponents of the velo
ity and position in three dimensional spa
e of the

Brownian motion are independent from ea
h other and therefore the results from above,

all obtained for the one-dimensional Langevin equation, 
an be easily generalized to three

dimensions. Be
ause the simulations for the present thesis are done in three dimensions

the important results for this 
ase will be summarized here. The positions will be denoted

as ®x = (x1,x2,x3) and the velo
ities as ®v = (v1,v2,v3).

1.3.1. Free Brownian motion

The initial position in phase spa
e is (®x0, ®v0). The Langevin equation for the problem

reads

d ®x
dt
= ®v d ®v

dt
= −ξ ®v + ®A(t)

with the following properties for the random a

eleration

®A = (A1,A2,A3), and S = ξ kBT
m

〈Ai (t)〉 = 0 〈Ai (t)Aj (t ′)〉 = 2S δi jδ (t − t ′)

Important means are (〈.〉 ®v0
denoting the mean under the assumption of ®v(0) = ®v0):

21



1. Brownian Motion

〈®v〉 ®v0
= ®v0 e−ξ t 〈®v2〉 ®v0

= ®v2

0
e−2ξ t + 3S

ξ
·
(
1 − e−2ξ t

)

〈®v2〉 = 3S
ξ

〈(®x − ®x0)2〉 = 6S
ξ 3

(
ξt − 1 + e−ξ t

)
〈Ekin〉 = 3

2
m S

ξ
=

3

2
kBT

The velo
ity's auto
orrelation reads, for τ ≥ 0

〈®v(t) ®v(t + τ )〉 = 3S

ξ
e−ξ t

The Fokker-Plan
k equation for the probability distribution fun
tion p(®v , t) reads
∂p(®v , t)
∂t

= ξ · ∂
∂ ®v

[
®v p(®v , t)

]
+ S · ∂

2

∂ ®v2
p(®v , t)

and the stationary solution ∂p0(®v)/∂t = 0 is

p0(®v) =
(
ξ

2πS

)3/2
e−ξ ®v2/2S

The power spe
tra for the position and velo
ity read:

S ®x (ω) =
1

ω2
· 6S

ξ 2 +ω2
S ®v (ω) =

6S

ξ 2 +ω2

1.3.2. Brownian motion in a harmoni
 potential

The Langevin equation for the problem reads

d ®x
dt
= ®v d ®v

dt
= −ξ ®v + ®A(t) −ω2

0
®x

The Fokker-Plan
k Equation for the probability distribution p(®x , ®v, t) is
∂p

∂t
+ ®v ∂p
∂®x −ω2

0
®x ∂p
∂ ®v = S

∂2p

∂®x2 +
∂

∂ ®v (ξ ®vp)

The stationary solution ∂p0/∂t = 0 reads:

p0(®x , ®v, t) = C e−ξ ks ®x
2/2S e−ξ ®v2/2S

The auto- and 
ross-
orrelation have been obtained as - noting that ω1 is de�ned via

ω2

1
= ω2

0
+

ξ 2

4

〈®x(t) ®x (t + τ )〉 = 3S

ω2

0
ξ
e−ξ τ /2

[
cos(ω1τ ) +

ξ

2ω1

sin(ω1τ )
]

〈®v(t) ®x (t + τ )〉 = −〈®x(t) ®v(t + τ )〉 = 3S

ξω1

e−ξ τ /2 sin(ω1τ )

〈 ®v(t) ®v(t + τ )〉 = 3S

ξ
e−ξ τ /2

[
cos(ω1τ ) −

ξ

2ω1

sin(ω1τ )
]
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1.3. Threedimensional 
ase

The power spe
tra are

S ®x (ω) =
6S

(ω2

0
−ω2)2 +ω2ξ 2

S ®v (ω) =
6S

(ω2

0
/ω −ω)2 + ξ 2

The means of the squares ful�ll the equipartition theorem:

〈®x2〉 = 3 S
ω2

0
ξ

〈Epot 〉 = 3

2
m S

ξ =
3

2
kB T

〈®v2〉 = 3 S
ξ 〈Ekin〉 = 3

2
m S

ξ =
3

2
kB T
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2. A
tive Parti
les

2.1. Introdu
tion

A
tive parti
les 
an be de�ned as parti
les undergoing Brownian motion, whi
h 
an take

up energy from the surrounding and 
onvert it into an kineti
 energy. This de�nition

is broad enough to en
lose motile 
ells, Brownian motors and arti�
ial self-propelled

parti
les.

There are two dominant models for a
tive parti
les: the rotational di�usive and the

run-and-tumble model. The present work uses only the rotational di�usive model, be-


ause it's physi
ally 
loser to most arti�
ial a
tive parti
les. The run-and-tumble model

is more suited for ba
teria, whi
h 
hange their a
tivities dire
tion with a mean tumble

rate of α . Tailleur and Cates [5℄ studied in whi
h 
ases these two models are identi
al,

with respe
t to phase separation.

2.2. Overdamped a
tive parti
les

The overdamped 
ase is insofar interesting for the present thesis, be
ause it's the best

studied 
ase for a
tive parti
les. The analyti
al des
ription of the parti
le's motion is

possible in this 
ase, see Ref. [27℄, and the results of the theory will provide a �rst test

for my simulation, as it should 
onverge to the overdamped a
tive parti
le if the fri
tion

rises. Here, I will present only the most important results for this 
ase.

The equations of motion in the two-dimensional 
ase read

Ûx = vA cos(φ) +
√
2DT ζx , Ûy = vA sin(φ) +

√
2DT ζy , Ûφ =

√
2DR ζφ

where vA is the �strength� of the a
tivity, DT and DR are the di�usion 
onstants for

translation and rotation, respe
tively, φ denotes the angle between the a
tivity's dire
tion

and the x-axis and ζx , ζy and ζφ are independent white noise sto
hasti
 pro
esses with

zero mean and unit varian
e.

Assuming that x(0) = x0, y(0) = y0 and φ(0) = φ0 these equations 
an be integrated,

usingW i
t =

∫ t
0
ζi (t ′)dt ′ to denote the Wiener pro
ess, with i = x, y, φ:

x = x0 +vA

∫ t

0

cos(φ(t ′))dt ′ +
√
2DTW

x
t

y = y0 +vA

∫ t

0

sin(φ(t ′))dt ′ +
√
2DTW

y
t

φ = φ0 +
√
2DRW

φ
t
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2. A
tive Parti
les

While Löwen et al. present in Ref. [27℄ only the equations of motion and the analyti
al

solution to the position's average and the MSD I will use the spa
e a master thesis grants

and present the steps leading to the solution in the appendix. Taking the averages, using

〈W i
t 〉 = 0 and 〈ei(φ0+

√
2DRW

φ
t )〉 = eiφ0 · e−Dr t

(see Appendix B.1.1), one obtains, see Ref.

[27℄,

〈x − x0〉 =
vA

DR
·
(
1 − e−DR t

)
· cos(φ0)

〈y − y0〉 =
vA

DR
·
(
1 − e−DR t

)
· sin(φ0)

〈φ − φ0〉 = 0

The di�eren
e to the passive parti
le 
an be seen in the expe
tation value for the x-


omponent of the position. If the initial value of the a
tivity's dire
tion is 
hosen as

φ0 = 0 and therefore parallel to the positive x-axis, the parti
le will at �rst move along

this dire
tion. This movement lasts until the a
tivity's dire
tion is randomized enough by

the rotational di�usion. Before this happens the parti
le moves in x-dire
tion to a mean

value of vA D
−1
R , letting us de�ne τR = D

−1
R as 
hara
teristi
 time s
ale for the overdamped

Brownian rotational motion before rotational di�usion randomizes the dire
tion of the

a
tivity.

The mean squared displa
ement 
an be 
al
ulated, as has been done by Löwen et al.

[27℄, using 〈Wt 〉 = 0, 〈W 2

t 〉 = t and 〈cos(φ(t ′)) cos(φ(t ′′))+ sin(φ(t ′)) sin(φ(t ′′))〉 = e−Dr (t ′′−t ′)

(see Appendix B.1.2):

〈(x − x0)2 + (y − y0)2〉 =
[
4DT + 2

v2

A

DR

]
· t + 2

v2

A

D2

R

·
(
e−DR t − 1

)

for long times t ≫ τR the MSD 
onverges to [4DT + 2v2

A/DR ] t and is therefore steeper

than the expe
ted 4DT t for an ina
tive parti
le. One 
ould de�ne, in an analogous way

to the passive Brownian parti
le, an e�e
tive di�usion 
oe�
ient D
e�

= DT +v
2

A/2DR and

for long times 
ompare the di�usion of the a
tive parti
le with the di�usion of a passive

Brownian parti
le with a higher e�e
tive temperature

T
e�

=

γD
e�

kB
=

γ

kB
·
(
DT +v

2

A/2DR
)

This might lead to the assumption that a
tive parti
les are equivalent to hotter ina
tive

parti
les, but this pi
ture only holds in simple 
ases, as Tailleur and Cates show in their

study of a
tive pari
les in external potentials [26℄.

Now to the velo
ities of the a
tive parti
le. The means are

〈 Ûx〉 = vA e−Dr t cos(φ0) 〈 Ûy〉 = vA e−Dr t sin(φ0)
and the velo
ity's se
ond moment 〈®v2〉 = 〈 Ûx2 + Ûy2〉 
an be 
al
ulated, using 〈ζi〉 = 0 and

〈ζ 2i 〉 = 1, as

〈®v2〉 = v2

A〈cos2(φ(t))〉 + 2DT +v2

A〈sin2(φ(t))〉 + 2DT
= 4DT +v

2

A
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2.3. Underdamped a
tive parti
les

The mean velo
ity reminds one of the Brownian parti
le's mean velo
ity, if they are

subje
t to inertia. Setting ®v0 = vA · (cos(φ0), sin(φ0)) makes these equations identi
al to

the ones from Ornstein and Uhlenbe
k, see Eq. (1.10), where the rotational di�usion


onstant takes the role of the fri
tion.

It's mathemati
ally more 
omplex to investigate an a
tive parti
le with two rotational

freedoms (φ,θ ) for the dire
tion of the parti
le's a
tivity (sin(θ ) cos(φ), sin(θ ) sin(φ), cos(θ )).
The MSD and the average position 
an be 
al
ulated using spheri
al harmoni
s like Löwen

et al. did in Ref. [27℄. Denoting the parti
les position at time t as ®x and the angles

de�ning the initial 
ondition of the a
tivity's dire
tion as (φ0,θ0) one obtains:

〈®x − ®x0〉 =
1

2

vA

DR

(
1 − e−2DR t

)
· ©­«
sin(θ0) cos(φ0)
sin(θ0) sin(φ0)

cos(θ0)
ª®¬

〈(®x − ®x0)2〉 =
(
6DT +

v2

A

DR

)
t +

1

2

(
vA

DR

)2 [
e−2DR t − 1

]
(2.1)

2.3. Underdamped a
tive parti
les

Underdamped a
tive parti
les have been investigated, e.g. by S
hweitzer et al. [21℄ and

S
himansky-Geier et al. [17℄ theoreti
ally, but these usually assumed, that the a
tivity's

dire
tion is identi
al to the dire
tion of the parti
le's velo
ity. This assumption enables

one to analyti
ally obtain the mean squared displa
ement, stationary velo
ity distribution

and other statisti
ally relevant parameters. These assumption 
an be extended to the

model of the present paper, if the a
tivity's rotation is slow 
ompared to the velo
ity

relaxation time and the a
tivity is high 
ompared to the parti
le's mean speed resulting

from thermal di�usion.

2.3.1. Underdamped and freely rotating

In the present thesis the 
ase of an underdamped a
tive parti
le in three dimensions,

where the a
tivity's dire
tion is undergoing rotational di�usion is investigated. The

fri
tion for
es use Stokes' fri
tion 
oe�
ients, for the translation γT = 6πηR and for the

rotation γR = 8πηR3, where η is the vis
osity of the medium and R the parti
le's radius.

The a
tivity is modeled as a for
e in the a
tivity's dire
tion ®a, with | ®a | = 1. The strength

of the for
e is 
hosen in a manner that the average speed of the parti
le approa
hes a

�xed value of vA for a �xed dire
tion,

d ®a
dt
= (0, 0, 0). I assume that the dire
tion of the

parti
le, similar to a Janus parti
le [4℄, is undergoing rotational di�usion with a di�usion


oe�
ient DR =
kBT
γR

. The parti
le also experien
es the translational di�usion of a passive

Brownian parti
le with the di�usion 
oe�
ient DT =
kBT
γT

.
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2. A
tive Parti
les

A

ordingly, the Langevin equations read

d ®x
dt
= ®v (2.2)

m
d ®v
dt
= −γT ®v + γTvA ®a +

√
2γ 2
T
DT ®ζT (2.3)

d ®a
dt
= ®ω × ®a (2.4)

I
d ®ω
dt
= −γR ®ω +

√
2γ 2RDR

®ζR (2.5)

where ζR,i and ζT ,i are independent Gaussian pro
esses with zero mean and unit varian
e

and ®ω denotes the angular velo
ity of the dire
tion ®a. The mass of the parti
le is m and

the moment of inertia I = 2

5
mR2 for a spheri
al parti
le. A similar approa
h has been used

by En
ules
u et al. [10℄, with the di�eren
e, that they used to model the a
tivity with a

�xed velo
ity, instead of a �xed a

eleration. Their approa
h leads to an additional term

of +vA( ®ω × ®a) for the derivative of the translational momentum, whi
h ensures that the

parti
le, even if it is rotating very fast, keeps a mean speed of vA. The equations above

imply that for a fast rotating parti
le, the a
tive term nearly vanishes, be
ause the for
e

γTvA®a 
hanges dire
tion faster than the velo
ity of the parti
le 
an, due to inertia.

The angular velo
ity is undergoing Brownian motion like we studied in se
tion 1.1.2.

Using these results we 
an write, using ξR =
γR
I
and ®ω(0) = ®ω0:

®ω = ®ω0 e
−ξRt
+ e−ξR t

∫ t

0

eξRt
′
√
2ξ 2

R
DR ®ζR(t ′)dt ′

〈 ®ω〉 = ®ω0 e
−ξRt

and for the mean squared angular velo
ity

〈 ®ω2〉 = ®ω2

0
e−2ξRt + 3ξRDR ·

(
1 − e−2ξR t

)

The equipartition theorem for the three rotational degrees of freedom is obeyed in the

long run (t → ∞), if one keeps in mind that DR =
kBT
I ξR

and

〈E
rot

〉 = 1

2
I 〈 ®ω2〉 = 3

2
kBT

The problem of des
ribing the statisti
al parameters, espe
ially the distribution and the

auto
orrelation fun
tion, of a unit ve
tor's underdamped Brownian motion on a sphere

has been ta
kled by, amongst others, Sa
k [19℄, Steele [24, 25℄ and Lewis et al. [12℄.

While Sa
k used the Liouville's equation and 
ontinued fra
tions to arrive at the 
omplex

polarization, Steele and Lewis fo
used on the auto
orrelation fun
tion. Lewis et al. [12℄

derived a series to represent 〈®a(t)〉 and 〈®a(t) ®a(t+τ )〉 whi
h is not easily extended to higher
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2.3. Underdamped a
tive parti
les

orders. I will therefore use Steele's approximation for the auto
orrelation fun
tion, whi
h

reads in the notation used in this work

〈®a(t) ®a(t + τ )〉 = exp

[
− 2

DR

ξR

(
ξRτ + e

−ξRτ − 1

)]
(2.6)

Steele mentions that this equation is a good approximation if ξR/DR > 1

4
, but gets worse

for smaller values. In 
ase of a small fri
tion - ξR/DR < 1

4
- one 
an expe
t, the the unit

ve
tor should os
illate and this should be seen in the ACF. But Steele's approximation is

positive and de
reasing monotonously for all times, independent of the 
hoi
e of ξR/DR .
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Figure 2.1.: (a) Steele's approximation for the ACF of a unit ve
tor undergoing Brownian motion

for di�erent values of ratios of ξR/DR . (b) Non-normalized velo
ity distribution P0( ®v)
at vz = 0, for vA = 2 and ξT DT = 1.

If the 
hara
teristi
 rotation time 〈| ®ω |〉−1 =
√
π I/8kBT of the parti
le

1

is smaller than

the velo
ity's memory ξ−1T and the a
tivity's strength vA is high 
ompared to the ther-

mal �u
tuations

√
kBT/m then the velo
ity of the parti
le will be mostly parallel to the

a
tivity's dire
tion. This is similar to the 
ase des
ribed by S
himansky-Geier et al. [17℄

as �A
tive Brownian parti
les with velo
ity-dependent fri
tion�. The equation then reads

d ®v
dt
= −ξT ®v

(
1 − vA

| ®v |

)
+

√
2ξ 2TDT

®ζT (2.7)

The �rst term is positive, if the parti
le has a speed smaller than vA and therefore pumps

energy into the system. If the speed is higher than vA then the fri
tion term dissipates

1

In the 
ase of no fri
tion, this expression is equal to the mean rotation time. For fri
tions bigger than

zero the mean rotation time will be bigger than 〈| ®ω |〉−1. Lewis et al. de�ned in Ref. [12℄ τ1 =
√
I/kBT

as mean thermal angular period
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2. A
tive Parti
les

energy. Modeling the a
tive for
e in this formulation as a fri
tion was �rst done by

S
hienbein and Gruler in 1993 [20℄. The stationary velo
ity distribution for Eq. (2.7)

reads

P0(®v) = N e−( | ®v |−vA)2/(2ξTDT )

and 
an be seen in Fig. 2.1b. In three dimensions this distribution looks like a spheri
al

shell, with the maximum at | ®v | = vA.

2.4. A
tive parti
les in a harmoni
 potential

2.4.1. Overdamped 
ase

Overdamped a
tive Brownian parti
les in a radially symmetri
 trapping potential have

been studied analyti
ally and via simulation by Pototsky and Stark [16℄. Besides studying

the 
ase of a single parti
le, they applied the dynami
 density fun
tional theory (DDFT)

of intera
ting a
tive parti
les to 
al
ulate a stationary radial distribution fun
tion for

multiple parti
les. Important for the present work is their solution for a single parti
le in

2D traps, be
ause the simulation should mimi
 their results in the 
ase of high fri
tion.

They start at the overdamped equations

Û®x = −µ∇U +vA ®a + ®ξ (t), Û®a = ®η(t) × ®a

where ®x is the parti
les position, the unit ve
tor ®a the a
tivity's dire
tion, U (®x) the

trapping potential, µ the mobility, vA the a
tivity and

®ξ (t) and ®η(t) represent translational
and rotational noise, respe
tively. These random terms ful�ll 〈 ®ξ (t) ®ξ (t ′)〉 = 2 µ kB T δ (t−t ′)
and 〈®η(t)®η(t ′)〉 = 2Dr δ (t − t ′).
They solve the Smolu
howski equation for this problem to 
al
ulate the probability

density ρ(®x , ®a, t) and arrive at partial di�erential equations for the e�e
tive probability

�ux, whi
h are not generally integrable. Only for small and large rotational di�usion


oe�
ients Dr is the equation solvable. For 
onvien
e let's de�ne the Pe
let number

Pe = (d v
A

)/(µkBT ), with d being the diameter of the parti
le. The Pe
let number is

measure for how mu
h in�uen
e the a
tivity of the parti
le has, 
ompared to the thermal

�u
tuations.

In the 
ase of small rotational di�usion the a
tivity's dire
tion ®a is nearly 
onstant, as

far as the potential U is 
on
erned. Therefore the a
tivity and the trapping potential's

for
e 
an be written as the for
e originating from an e�e
tive potentialU
e�

. This shifts the

minimum of the potential from |®r0 | = 0 to the one obeying the 
ondition
dU

e�

(r )
dr

|r=r0 = Pe.
The parti
le will behave as an ina
tive Brownian parti
le in the e�e
tive potential.The

distribution along a radius approximated to the zeroth order of Dr is obtained as

ρ
(0)
s (r ) = 2π C e−U (r ) I0(Pe r ) (2.8)

where I0(x) is the modi�ed Bessel fun
tion of the �rst kind. The shape of the distribu-

tion fun
tion ρ(0)(r ) is highly dependent on the Pe
let number. For small values of Pe

translational di�usion prevails and the parti
le stays near the origin. For large values
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the 
enter of the e�e
tive potential shifts far enough to get a maximum of ρ(r ) at r0 > 0.

The transition is lo
ated at the 
riti
al Pe
let number Pe

(c)
=

√
2U ′′(0). The distribution

alon a radius for strong trapping 
an be seen in Fig. 2.2 (a).

In the limit of large rotational di�usitivity the distribution fun
tion along a radius


hanges to a bell shape with maximum at r = 0. They �nd that there is for ea
h Pe
let

number a spe
i�
 value of Dr to provoke the 
hange in shape of the distribution fun
tion.

If the typi
al rotation time

π 2

Dr
of the parti
le is mu
h smaller than the run-up time of

the potential τr =

[
∂2U (r )
∂r 2

|r=r0
]−1

then a bell-shaped distribution around r = 0 is to be

expe
ted.

Pototsky and Stark simulated the 
ase of one parti
le in the harmoni
 potential and


ould verify their analyti
al results for the radial distribution fun
tion with respe
t to

the rotational di�usion 
oe�
ient and to the strength a
tivity. As one 
an see in Fig.

2.2 (b) the mean radius of the parti
le in
reases monotoni
ally with de
reasing Dr , up

to a value obeying the equation

dU (r )
dr |r=r0 = Pe.

Figure 2.2.: (a) The density along a radius for slow rotational di�usivity at di�erent Pe
let num-

bers. The full lines represent the numeri
al solution of the Langevin equations, the

dashed lines Eq. (2.8) (b) Transition from fast to slow rotational di�usivity at �xed

Pe
let number Pe=20. From [16℄

2.4.2. Underdamped and freely rotating

The equation (2.3) is 
hanged by adding the external for
e

®f
pot

= −ks ®x , where ks denotes
the spring 
onstant of the potential and reads

m
d ®v
dt
= −γT ®v + γT vA ®a − ks ®x +

√
2γ 2
T
DT ®ζT
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The trap frequen
y of the potential is ω0 =

√
ks
m and we will use ξT =

γT
m where 
onve-

nient. I will take a similar approa
h to Pototsky and Stark [16℄, dis
ussed in a previous

subse
tion 2.4.1, splitting the problem in the slow rotation and the fast rotation of the

a
tivity's dire
tion.

The problem looks similar to the one studied by Kählert and Löwen [11℄, with the a

el-

eration imposed by the a
tivity ξTvA®a(t) playing the part of the shear �ow ξT Ûs y cos(Ωt).
The main di�eren
e, making the analyti
al des
ription far more 
ompli
ated, is the

sto
hasti
 dire
tion ®a(t) of the a

eleration. Nonetheless one 
an expe
t resonan
e ef-

fe
ts, if the mean rotation frequen
y of the a
tivity's dire
tion equals the os
illation

frequen
y ω0.

2.4.2.1. Slow rotation

If the 
hara
teristi
 time of the parti
le's rotation τR = 〈| ®ω |〉−1 is large 
ompared to the

run-up-time of the potential

2

ω0
and the value of γTvA is small enough, then the a
tivity's

for
e fa(t) = γTvA®a(t) is nearly 
onstant for the time-s
ale of the os
illation

1

ω0
. Therefore

the parti
le will be subje
t to an e�e
tive for
e

®f
e�

= γTvA ®a − ks ®x . This for
e 
an be

rewritten as

®f
e�

= −ks
(
®x − γTvA

ks
®a
)
. This is the for
e of an harmoni
 potential with the

minimum at

γTvA
ks

®a. As long as ®a doesn't 
hange the parti
le will os
illate around this

new minimum, like an ina
tive parti
le, following the equation:

Û®v = −ξT ®v +
1

m
®f
e�

(®x) +
√
2ξ 2TDT

®ζT

We 
an treat this equation, like the one for the Brownian parti
le in se
. 1.2. To derive

the potential energy, we will use the Fourier transform and the Wiener-Khin
hin-theorem,

assuming ®a as 
onstant. Writing ω2

0
=

ks
m
, r0 =

γT vA
ks

for brevity's sake:

[
(−ω2

+ω2

0
)2 + ξ 2Tω2

]
· ®̃x2 =

(
ω2

0
r0 ®a δ (ω) +

√
2ξ 2
T
DT · ®̃ζT

)2
(2.9)

Taking the average on both sides, keeping in mind that ζi has zero mean, therefore ζ̃i
too, and with the above de�nition a power spe
trum of Sζ = 1 we obtain the position's

power spe
trum S ®x . Using the Wiener-Khin
hin-theorem leads to the auto-
orrelation

fun
tion

〈®x(t) ®x(t + τ )〉 = r2
0
+ 3 · ξTDT

ω2

0

· e−ξT τ /2 ·
[
cos(ω1τ ) +

ξT

2ω1

sin(ω1τ )
]

(2.10)

where ω2

1
= ω2

0
− ξ 2T

4
. For τ = 0 we obtain

〈®x2(t)〉 = r2
0
+ 3 · ξTDT

ω2

0

(2.11)
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and for the potential energy

〈E
pot

〉 =
mω2

0

2
〈®x2(t)〉 =

mω2

0

2
r2
0
+

3

2
γT DT

using DT =
kBT
γT

and r0 from above:

〈E
pot

〉 =
γ 2Tv

2

A

2ks
+

3

2
kBT (2.12)

The kineti
 energy would be, for quasi-stati
 ®a, only as big as the sto
hasti
 term

allows: 〈Ekin〉 = 3

2
kBT . We obtain the auto
orrelation fun
tion of the velo
ity by taking

the se
ond negative derivative of the position's auto
orrelation fun
tion:

〈®v(t) ®v(t + τ )〉 = 3ξTDT e
−ξT τ /2

[
cos(ω1τ ) −

ξT

2ω1

sin(ω1τ )
]

(2.13)

this is exa
tly the auto
orrelation for the ina
tive parti
le, as expe
ted.

The energies stop following the equipartition theorem for slow rotation and a
tive

parti
les. For quasi-stati
 ®a the kineti
 energy will be equal to the ina
tive parti
le

3

2
kBT . It's easy to see in Eq. (2.12) that the potential energy is the sum of an ina
tive

part and an a
tive part.

In the long run the a
tivity's dire
tion ®a should be equi-distributed over the unit

sphere. Slow 
hanges, as assumed above with τR ≫ 2

ω0
and v0ω0 ≫ γTvA, will result

in slow 
hanges of the minimum and the parti
le has time to follow a

ordingly. In the

equilibrium state (t → ∞) the probability distribution is radial symmetri
. The maxima

of the distribution should be found at the 
ir
le with radius r0 =
γTvA
ks

, for r0 ≫ l0.

The distribution of the position ρ(®x) should be proportional to e−βUe�( ®x ) and therefore

ρ(®x) = C · e−Ue�( ®x )

The e�e
tive potential reads U
e�

=
ks
2
(®x − r0 ®a)2. Simplifying and using ®x2 = r2 and

denoting the angle between ®a and ®x as ψ : U
e�

=
ks
2
r2 − ks r0 r cos(ψ ) + ks

2
r2
0
. The

distribution then reads

ρ̃(r ,ψ ) = C1 · e−ks r
2/2+ks r0r cos(ψ )

absorbing the 
onstant term of the potential into the 
onstant C1. To obtain the distri-

bution along a radius, we will need to integrate over ψ . This approa
h is very similar to

the one Pototsky and Stark [16℄ used, and yields

ρ(r ) = 2π C e−ks r
2/2 I0(γTvAr )

where C 
an be 
al
ulated using the normalization

∫ ∞
0
ρ(r )dr = 1, and I0(x) denotes the

modi�ed Bessel fun
tion of the �rst kind.

The velo
ities for a slow rotating parti
le should stay Gaussian distributed. The exa
t

treatment of the distribution's se
ond moment follows in the next subse
tion.
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2.4.2.2. Rotation period near os
illation period

Pototsky and Stark [16℄ found in their study of the overdamped a
tive parti
le in a

harmoni
 potential only a transition from the state of the fast rotation to the slow

rotation. In 
onstrast to this paper I expe
t to �nd resonant behaviour of the parti
le

for the underdamped 
ase, like Kählert et al. [11℄ did for a deterministi
 for
e.

This expe
tation 
an be justi�ed as follows: The a
tivity is pumping additional energy

into the system, whi
h is dissipated through (translational) fri
tion. The amount of

energy per unit time that 
an be absorbed by the system is highly dependend on the

frequen
y of the a
tivity. While Kählert et al. used an external for
e with a single

frequen
y, the frequen
y spe
trum of the sto
hasti
 a
tivity is 
ontinuous. It 
an be

analyzed by examining the power spe
trum of the a
tivity's dire
tion.

The total absorbed energy per unit time P
abs

is then, see e.g. Chandler's �Introdu
tion

to modern statisti
al me
hani
s� [6℄ 
hapter 8, proportional to

P
abs

∝
∫

ω2S i®x (ω)S ®f (ω)dω (2.14)

where S i®x denotes the power spe
trum of the position of the unpertubed, ina
tive parti
le,

S ®f the power spe
trum of the for
e disturbing the system, 
onsisting of the random

thermal �u
tuations and the a
tivity, and ω the frequen
y.

The power spe
trum of the ina
tive parti
le has been 
al
ulated in se
. 1.3.2 as

S i®x =
6 ξ 2T DT

(ω2

0
−ω2)2 +ω2ξ 2

T

The perturbation's power spe
trum is de�ned as

S ®f (ω) =
〈����
∫

eiωt [vA ξT ®a(t) +
√
2ξ 2
T
DT ®ζT (t)]dt

����
2〉

Be
ause the a
tivity and the random thermal �u
tuations are independent, the power

spe
trum of the total for
e is essentially the sum of the power spe
trum of the thermal

�u
tuation, whi
h is known from subse
. 1.1.4, and the power spe
trum of the a
tivity's

for
e:

S
a
tive

(ω) =
〈����
∫

eiωt vA ξT ®a(t)dt
����
2〉
= v2

Aξ
2

T ·
〈����
∫

eiωt ®a(t)dt
����
2〉

The last expression is simply the power spe
trum of the a
tivity's dire
tion S ®a and 
an be


al
ulated via the Wiener-Khin
hin theorem if the auto
orrelation fun
tion 〈®a(t) ®a(t +τ )〉
is known. Using the auto
orrelation fun
tion, see Eq. 2.6:

S ®a(ω) =
∫

e−iωτ 〈®a(t) ®a(t + τ )〉 dτ (2.15)

=

∫
exp

{
− 2

DR

ξR

[
(1 + i ω

2DR
) ξR τ + e−ξRτ − 1

] }
dτ (2.16)
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Now we 
an rewrite Eq. (2.14) as

P
abs

= C ·
∫ ∞

−∞
ω2S i®x (ω) · (6ξ

2

TDT +v
2

Aξ
2

T S ®a(ω))dω (2.17)

To 
al
ulate C, let's 
ompare the integral above with the power that should be dissipated

by the fri
tion term of the Langevin equation in the 
ase of an ina
tive parti
le. The

work the fri
tion for
e −γ ®v performs is simply −γ ®v d®x . The 
orresponding power, being

work per unit time, is therefore −γ ®v d ®x
dt . This means that the mean dissipated power for

an ina
tive parti
le is:

P
dis

= −γ 〈®v2〉 = −3γ mkBT

Then C 
an be 
al
ulated requiring stationarity P
dis

+ P
abs

= 0 with vA = 0, as

C =
m2

kBT
· 1

12π

For an a
tive parti
le we 
an write

P
dis

= −γ 2

m
〈E

kin

〉

P
abs

+ P
dis

= 0

Cv2

Aξ
2

T

∫
ω2S i®x (ω)S ®a (ω)dω +C 6 ξ 2TDT

∫
ω2S i®x (ω)dω − 2ξT 〈Ekin〉 = 0

The se
ond term should evaluate to the 
ase of the ina
tive parti
le with 2ξT 〈E
kin,passive〉 =

3ξT kBT

〈E
kin

〉 = m2

kBT

ξTv
2

A

24π

∫ ∞

−∞
ω2S i®x (ω)S ®a (ω)dω +

3

2
kBT

Be
ause the integral in the last equation is independent from the a
tivity vA, the ki-

neti
 energy and the se
ond moment of the velo
ity distribution are always going to rise

quadrati
ally with respe
t to vA. It's not so simple for the fri
tion ξT , be
ause S ®x and S ®a
both 
hange with respe
t to ξ and the integral is not analyti
ally solvable.

The integrals (2.17) and (2.16) 
an be solved numeri
ally, to dis
uss the expe
ted

absorbed power, see Fig. 2.3.

Now to the potential energy and the se
ond moment of the position〈®x2〉. In the subse
.

2.4.2.1 
on
erning the slow rotating parti
le, we 
al
ulated 〈®x2〉 via Fourier transforma-

tion of the Langevin equation. Furthermore we assumed that the a
tivity's dire
tion ®a
is 
onstant and therefore ®̃a = ®a δ (ω). Let's now drop the last assumption and rewrite Eq.

(2.9): [
(−ω2

+ω2

0
)2 + ξ 2Tω2

]
· ®̃x2 =

(
ξT vA ®̃a +

√
2ξ 2
T
DT ®̃ζT

)2
(2.18)

One 
an now write for the power spe
trum of the position, using that 〈 ®̃ζT 〉 = 0, 〈| ®̃ζT |2〉 = 3

and that

®̃ζT and ®̃a are mutually independent:

S ®x (ω) =
ξ 2T v

2

A S ®a (ω)
(−ω2

+ω2

0
)2 + ξ 2Tω2

+

6ξ 2TDT

(−ω2
+ω2

0
)2 + ξ 2Tω2
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The se
ond term is equal to the position's power spe
trum of an ina
tive parti
le, splitting

the total power spe
trum into an a
tive and an ina
tive part. The ACF of the position

then reads, using the Wiener-Khin
hin theorem

〈®x(t) ®x (t + τ )〉 = 1

2π

∫ ∞

−∞
S ®x (ω) eiωτ dω

〈®x(t) ®x (t + τ )〉 = 1

2π

∫ ∞

−∞

ξ 2T v
2

A S ®a(ω) eiωτ

(−ω2
+ω2

0
)2 + ξ 2

T
ω2

dω + 〈®x(t) ®x (t + τ )〉
ina
tive

This 
an be further simpli�ed by using the power spe
trum of the ina
tive parti
le S i®x

〈®x(t) ®x(t + τ )〉 =
γTv

2

A

12πkBT

∫ ∞

−∞
S i®x (ω)S ®a (ω) e

iωτ dω + 〈®x(t) ®x(t + τ )〉
ina
tive

To obtain the potential energy, we are only interested in 〈®x2〉, setting τ = 0 and using

〈®x2〉
ina
tive

= 3 kBT

ω2

0
m
:

〈®x2〉 =
γT v

2

A

12πkBT

∫ ∞

−∞
S i®x (ω)S ®a (ω)dω + 3

kBT

ω2

0
m

The potential energy reads

〈E
pot

〉 =
ks γT v

2

A

24πkBT

∫ ∞

−∞
S i®x (ω)S ®a (ω)dω +

3

2
kBT (2.19)

This 
al
ulation 
an also be done for the velo
ity. The power spe
trum of the velo
ity is

easily obtained by S ®v = ω
2S ®x . Following the train of thought from above, one arrives at

〈®v2〉 =
γT v

2

A

12πkBT

∫ ∞

−∞
ω2S i®x (ω)S ®a (ω)dω + 3

kBT

m

and for the kineti
 energy

〈E
kin

〉 =
mγT v

2

A

24πkBT

∫ ∞

−∞
ω2S i®x (ω)S ®a (ω)dω +

3

2
kBT (2.20)

whi
h is exa
tly the same result - noti
e, that mξT = γT - as obtained above using the

absorbed power of the harmoni
 os
illator. Note that these derivations are independent

of the way ®a(t) is obtained.
The kineti
 and potential energy have been determined by numeri
ally 
al
ulating

the integrals in eqs. (2.19) and (2.20) and plottet in Fig. 2.3. The potential energy

transitions for high fri
tion from the slow rotating 
ase of (see Eq. (2.12) above) to the

fast rotating 
ase. If the fri
tion de
reases, the potential energy 
an show a peak at

intermediate rotation frequen
ies.

The kineti
 energy will always have a peak with respe
t to the rotational frequen
y, and

the value of the frequen
y is depending on ξT . One 
an see, that the lower the vis
osity
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the nearer is the peak of the kineti
 energy to 〈| ®ω |〉/ω0 = 1. If the mean rotation time

of the parti
le is near to the frequen
y of the harmoni
 trap the absorbed power should

be at a maximum and therefore the kineti
 energy too. The exa
t value of 〈| ®ω |〉 for the
maximum is not easy to �nd via the numeri
al solution, be
ause the slope is quite �at

over a wide range of values. For ξT /ω0 = 0.5 it seems that the maximum is indeed at a

〈| ®ω |〉 higher than the natural os
illation frequen
y, see Fig. 2.3b, and at ξT /ω0 = 0.25

the maximum is de�nitely nearer to 〈| ®ω |〉 = ω0. Be
ause the absolute value of the a
tive

for
e depends on the a
tivity's strength vA and the fri
tion ξT the maximum value of

the absorbed power de
reases with de
reasing fri
tion. If one would keep the a
tive

for
e 
onstant over di�erent values of ξT by de�ning vA =
1

ξT
the maximum value of the

absorbed power would rise with de
reasing fri
tion ξT . One 
an also see that for fast

rotations the equipartition theorem seems to be obeyed again.

2.4.2.3. Fast rotation

If the rotation is fast with respe
t to the os
illation period, then the a
tive for
e will

appear as random, equi-distributed for
e to the potential. The for
e exerted by the

a
tivity will sum up to zero, over one period of os
illation and therefore the behaviour of

the parti
le shouldn't di�er from a passive parti
le. There will be o

uran
es, when the

preferred dire
tion will 
hange slower, then the parti
le will get a boost in that dire
tion.

This should be equivalent to a sto
hasti
 for
e, like we introdu
ed for the Brownian

motion. Added to the Brownian Motion the parti
le already performs, it should look like

a Brownian motion in a heat bath with a higher temperature. Therefore the positions and

velo
ities should stay Gaussian distributed, but with 〈®x2〉 and 〈®v2〉 rising with respe
t to

the a
tivity vA.

For the frequen
ies where S i®x ≫ 0 one 
an assume that the power spe
trum of the

a
tivity's dire
tion is nearly 
onstant S ®a(ω) = S ®a (0), see Fig. 2.4.
Using the derivation from before, we 
an state that

〈E
kin

〉 = m2

kBT

ξT v
2

A

24π
S ®a(0)

∫ ∞

−∞
ω2S i®x (ω)dω +

3

2
kBT

integration yields

〈E
kin

〉 = m2

kBT

ξT v
2

A

24π
S ®a(0) 3π

kBT

m
+

3

2
kBT

=

γTv
2

A

8
S ®a(0) +

3

2
kBT
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Figure 2.3.: Numeri
al solutions of the integral in Eq. (2.20) for the potential energy (full) and

Eq. (2.19) for the kineti
 energy (dashed) for di�erent values of the translational

fri
tion ξT /ω0 with respe
t to the rotational di�usion 〈| ®ω |〉/ω0. The natural os
illa-

tion frequen
y ω1 =

√
ω2

0
− ξ 2/4 is highlighted as a verti
al line in the bottom graph,

for ea
h of the solutions. The a
tivity's strength was �xed at vA/
√
kBT/m = 8
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Figure 2.4.: The power spe
tra for the ina
tive parti
le in a harmoni
 potential S i®x and S i®v and

the power spe
tra obtained by integrating Steele's approximation for two di�erent

mean rotational frequen
ies 〈| ®ω |〉 with ξT = 0.5, ω0 = 1, m = 1. One 
an 
learly see

that the power spe
trum for the fast rotating parti
le (〈| ®ω |〉 = 21) is nearly 
onstant

where S i®x ≫ 0.

And the potential energy 
an be written as

〈E
pot

〉 =
ks γT v

2

A

24πkBT
S ®a(0)

∫ ∞

−∞
S i®x (ω)dω +

3

2
kBT

=

ks γT v
2

A

24πkBT
S ®a(0) · 3

kBT

mω2

0

+

3

2
kBT

=

γT v
2

A

8
S ®a(0) +

3

2
kBT

whi
h is identi
al to the kineti
 energy, as proposed.

For the e�e
tive temperature one obtains:

T
e�

= T +
γT v

2

A

12kB
S ®a (0)
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3. Simulations

In this 
hapter I will present the algorithms used for the Langevin dynami
s simulations.

While the translational motion uses the unmodi�ed OVRVO algorithm by Sivak, Chodera

and Crooks [23℄, the algorithm had to be modi�ed for the rotational motion.

The rotational motion has been studied via simulation using two di�erent dynami
s.

The �rst dynami
 views the sour
e of the a
tivity as moving on the surfa
e of the parti
le,

using the tangential velo
ity ®w and the position of the sour
e ®a - I shall 
all it moving

sour
e (MS)-dynami
s, while the sphere's 
oordinate system doesn't rotate. For small

rotational fri
tion this leads to movement of the sour
e on great 
ir
les on the sphere.

The se
ond algorithm for rotational motion uses the angular velo
ity ®ω and the a
tivity's

dire
tion ®a, as we dis
ussed in the previous 
hapter, this dynami
s will be 
alled rotating

sphere (RS)-dynami
s, while the sour
e stays �xed in the sphere's 
oordinate system.

Subsequently the results of the simulations will be 
ompared with the theoreti
al work

from the previous 
hapter.

3.1. The algorithms

3.1.1. Moving sour
e-dynami
s

For the translation and the rotation of the parti
le I used the OVRVO algorithm by

Sivak, Chodera and Crooks [23℄. The dynami
s of the rotating unit ve
tor are obtained

imagining the sour
e of the a
tivity is moving on the surfa
e of the sphere, therefore

the algorithm had to be adjusted for the 
onstraint of the rotation, namely the a
tivity's

dire
tion ®a should stay a unit ve
tor and the tangential velo
ity ®w should stay perpendi
-

ular to the dire
tion, i. e. ®a · ®w = 0. The 
ontinuous equations read, using the tangential

velo
ity instead of the angular velo
ity:

d ®a
dt
= ®w (3.1)

I
d ®w
dt
= −γR ®w +

√
2γ 2RDR

®ζR (3.2)

where γR = 8πηR3 is the Stokes' fri
tion 
oe�
ient, with η the vis
osity and R the

parti
les radius. I is the sphere's momentum of inertia and DR =
kBT
γR

is the rotational

di�usion 
oe�
ient. The moments of the random pro
ess

®ζR are de�ned as 〈ζR,i 〉 = 0 and

〈ζR,i (t) ζR, j (t ′)〉 = δi jδ (t − t ′) for i, j = 1, 2, 3, δi j being the Krone
ker-delta and δ (t − t ′)
the delta distribution. De�ning ξR :=

γR
I , the se
ond equation 
an be written as:

d ®w
dt
= −ξR ®w +

√
2ξ 2

R
DR ®ζR
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3. Simulations

To take one time step from n to n + 1 of the size ∆t the algorithm of Sivak and Chodera

for the set of equations (3.1) and (3.2) reads:

®w
(
n +

1

2

)
=

√
c ®w(n) +

√
(1 − c)ξRDR ®ζ (n + 1

2
)

®a
(
n + 1

)
= ®a(n) + b · ∆t · ®w

(
n +

1

2

)

®w
(
n + 1

)
=

√
c ®w

(
n +

1

2

)
+

√
(1 − c)ξRDR ®ζ (n)

where c = exp(−ξR∆t) and ζi are independent normally distributed random variables with

a mean of zero and a varian
e of one and b =

√
2

ξR∆t
tanh

(
ξR∆t
2

)
. These equations do

not ensure, that ®a stays on the unit sphere | ®a | = 1 and that the tangential velo
ity is

perpendi
ular to ®a.
One has therefore to introdu
e a 
onstraint Θ(®an), where ®an = ®a(n). Be
ause the


onstraint should keep the position ®an on a sphere of radius R it reads Θ(®an) = ®a2n − R2

and therefore

®∇Θ(®an) = 2®an . The equations have to be rewritten to:

®wn+ 1

2

= −
√
c ®wn +

√
(1 − c)ξRDR ®ζn+ 1

2

− λ1 ®∇Θ(®xn)
®an+1 = ®an + b∆t · ®wn+ 1

2

®wn+1 = −
√
c ®wn+ 1

2

+

√
(1 − c)ξRDR · ®ζ − λ2 ®∇Θ(®xn+1)

The Langragian multipliers λ1 and λ2 have to be 
hosen in a way that Θ(®an+1) = 0 and

®wn+1
®·∇Θ(®an+1) = 0 ⇐⇒ ®wn+1 · ®an+1 = 0.

®an+1 = ®an + b ∆t
(
−
√
c ®wn +

√
(1 − c)ξRDR ®ζn+ 1

2

− λ1 2®an
)

®an+1 = −2b ∆t λ1 ®an + ®an + b ∆t
(
−
√
c ®wn +

√
(1 − c)ξRDR ®ζn+ 1

2

)
︸                                                   ︷︷                                                   ︸

=: ®Cn

(3.3)

Now let's make sure that the ve
tor stays on the sphere Θ(®an+1) = 0:

®a2n+1 − R2 = 0

(−2b ∆t λ1®an + ®Cn)2 − R2 = 0

®Cn
2 − 4b ∆t λ1 ®Cn ®an + 4b2∆t2λ21®a2n − R2 = 0

(4b2∆t2 ®an2) λ21 − (4b ∆t ®Cn ®an)λ1 + ®Cn
2 − R2 = 0

using Θ(®an) = 0, therefore ®a2n = R2 :

4b2∆t2R2λ2
1
− 4b ∆t ®Cn ®anλ1 + ®Cn

2 − R2 = 0
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3.1. The algorithms

solving the quadrati
 equation yields

λ±
1
=

4b ∆t ®Cn ®an ±
√
(4b ∆t ®Cn ®an

)2 − 4(4b2∆t2R2( ®Cn
2 − R2))

8b2∆t2R2

λ±
1
=

®Cn ®an ±
√
( ®Cn ®an)2 − R2( ®Cn

2 − R2)
2b ∆t R2

Only one of the two solutions 
an be the Langragian multiplier that is needed. For

small time steps the value of ®an+1 should be approximately ®an . Using this 
riteria lets

one 
hoose the right solution for λ1.

For small ∆t the ve
tor ®Cn is approximately ®an . For the positive sign, using ®a2n = R2:

λ+
1
≈ R2 +

√
R4 − R2(R2 − R2)
2b ∆t R2

=

2R2

2b ∆t R2
=

1

b · ∆t
putting this in (3.3) yields

®an+1 ≈ ®an − 2b ∆t
1

b ∆t
®an = −®an

The positive sign puts one on the other side of the sphere.

And looking at the negative sign, using ®a2n = R2:

λ−
1
≈ R2 −

√
R4 − R2(R2 − R2)
2b ∆t R2

= 0

®an+1 ≈ ®an − 0 = ®an
keeps ®an nearly 
onstant for very small ∆t . The �rst Langrangian multiplier therefore

reads:

λ1 =
®C ®an −

√
( ®C ®an)2 − R2( ®C2 − R2)
2b ∆t R2

Let's look at λ2. This parameter should make sure, that the velo
ity stays perpendi
ular

to the sphere. And therefore

®wn+1
®∇Θ(®an+1) = 0

®wn+1 2®an+1 = 0

®wn+1 ®an+1 = 0[
−
√
c ®wn+ 1

2

+

√
(1 − c)ξRDR ®ζn+1 − λ2 ®∇Θ(®an+1)

]
®an+1 = 0

yielding

λ2 =

(√
c ®vn+ 1

2

−
√
(1 − c)ξRDR ®ζn+1

)
®an+1

2 ®a2n+1
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3. Simulations

and using ®a2n+1 = R2

λ2 =

(√
c ®wn+ 1

2

−
√
(1 − c)ξRDR ®ζn+1

)
®an+1

2R2

as long as R > 0 this fra
tion exists.

The algorithm reads:

1. Draw three random numbers

®ζn+ 1

2

= (ζn+ 1

2
,1, ζn+ 1

2
,2, ζn+ 1

2
,3) from a Gaussian distri-

bution with 〈ζn+ 1

2
,i 〉 = 0 and 〈ζ 2

n+ 1

2
,i
〉 = 1 for i = 1, 2, 3.

2. Compute

®Cn = ®an + b ∆t
(
− √

c ®wn +

√
(1 − c) ξRDR ®ζn+ 1

2

)

3. Determine the Langrange multiplier λ1

λ1 =
®Cn ®an −

√
( ®Cn ®an)2 − R2( ®C2

n − R2)
2b ∆t R2

4. Cal
ulate the intermediate velo
ity

®wn+ 1

2

= −
√
c ®wn +

√
(1 − c)ξRDR ®ζn+ 1

2

− λ1 ®∇Θ(®an)

5. Get the new positions

®an+1 = ®an + b ∆t ®wn+ 1

2

6. Draw three new random numbers

®ζn following the instru
tions in 1.

7. Determine the Langrange multiplier λ2

λ2 =

(√
c ®wn+ 1

2

−
√
(1 − c)ξRDR ®ζn+1

)
®an+1

2 ®a2n+1

8. Get the new velo
ity

®wn+1 = −
√
c ®wn+ 1

2

+

√
(1 − c)ξRDR ®ζn+1 − λ2 ®∇Θ(®an+1)

3.1.2. Rotating sphere-dynami
s

The rotating sphere-dynami
s uses a rotating sphere, with the unit ve
tor �xed in the

sphere's 
oordinate system. Using the Eq. 2.4 and 2.5 and de�ning ξR :=
γR
I
leads to the

following set of equations:
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3.1. The algorithms

d ®a
dt
= ®w

®w = ®ω × ®a
d ®ω
dt
= −ξR ®ω +

√
2ξ 2RDR

®ζR

To take one time step from n to n + 1 of the size ∆t the OVRVO algorithm reads

®ω
(
n +

1

2

)
=

√
c ®ω(n) +

√
(1 − c)ξRDR ®ζ (n + 1

2
)

®a
(
n + 1

)
= ®a(n) + b · ∆t ·

[
®ω
(
n +

1

2

)
× ®a(n)

]

®ω
(
n + 1

)
=

√
c ®ω

(
n +

1

2

)
+

√
(1 − c)ξRDR ®ζ (n)

where c = exp(−ξR∆t) and ζi are independent normally distributed random variables with

a mean of zero and a varian
e of one and b =

√
2

ξR∆t
tanh

(
ξR∆t
2

)
. This algorithm doesn't

ensure that ®a stays on the unit sphere, be
ause we are not taking in�nite small steps

whi
h are perpendi
ular to ®a.
For ea
h step we take, we want the dire
tion ®a to move a length of b ·∆t ·

���� ®ω
(
n+ 1

2

)
× ®a(n)

����
on the unit sphere's surfa
e. This length is equal to the angle the dire
tion should 
hange,

be
ause the sphere has a radius of one. To 
hange the dire
tion a

ordingly, we simply

add an ve
tor of length tan

(
b ·∆t ·

���� ®ω
(
n + 1

2

)
× ®a(n)

����
)
and dire
tion ®ω

(
n + 1

2

)
× ®a(n) to ®a(n)

and normalize the result, see Fig. 3.1.

The algorithm then reads:

(1) ®ω
(
n +

1

2

)
=

√
c ®ω(n) +

√
(1 − c)ξRDR ®ζ (n + 1

2
)

(2) ®w
(
n +

1

2

)
= tan

(
b · ∆t ·

���� ®ω
(
n +

1

2

)
× ®a(n)

����
) ®ω

(
n + 1

2

)
× ®a(n)���� ®ω

(
n + 1

2

)
× ®a(n)

����

(3) ®a
(
n + 1

)
=

®a(n) + ®w
(
n + 1

2

)
����®a(n) + ®w

(
n + 1

2

)����
(4) ®ω

(
n + 1

)
=

√
c ®ω

(
n +

1

2

)
+

√
(1 − c)ξRDR ®ζ (n)
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3. Simulations

Figure 3.1.: Sket
h of the 
hanges made to the algorithm, where ®w = b · ∆t ·
[
®ω
(
n + 1

2

)
× ®a(n)

]
,

®an = ®a(n) and ®an+1 = ®a(n + 1).

3.1.3. Translational motion

Like in the last se
tion the algorithm by Sivak, Chodera and Crooks [23℄ will be used to

simulate the free translational motion, governed by the Langevin equation

d ®x
dt
= ®v

d ®v
dt
= −ξT ®v + ξTvA · ®a +

√
2ξ 2
T
DT · ®ζT

where ξT =
γT
m and ξTvA ®a will be treated as an external for
e. For the parti
le in the

harmoni
 potential U = ks
2
®x2 an additional external for
e will be added

®f
pot

= −ks ®x ,
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3.2. Underdamped a
tive parti
les

where ks denotes the spring 
onstant. The algorithm then reads

(1) ®v
(
n +

1

4

)
=

√
c ®v(n) +

√
(1 − c)ξTDT ζ

(
n +

1

2

)

(2) ®v
(
n +

1

2

)
= v

(
n +

1

2

)
+

b∆t

2

®f (n)
m

(3) ®x
(
n + 1

)
= ®x(n) + b ∆t v

(
n +

1

2

)

(4) ®v
(
n +

3

4

)
= ®v

(
n +

1

2

)
+

b∆t

2

®f (n + 1)
m

(5) ®v(n + 1) =
√
c ®v

(
n +

3

4

)
+

√
(1 − c)ξTDR ®ζ (n + 1)

where c = exp(−ξT∆t), ®f (n) denotes for
e a
ting on the parti
le at timestep n and the


omponents of

®ζ (n) and ®ζ (n + 1

2
) are independent, normally distributed random variables

with zero mean and a varian
e of one. The time-step res
aling is done by multipli
ation

with b =

√
2

ξT∆t
tanh

(
ξR∆t
2

)
.

Be
ause the a
tivity is treated as an external for
e, the rotational step from ®a(n) to
®a(n + 1) has to take pla
e between steps (3) and (4) of the translational algorithm.

3.2. Underdamped a
tive parti
les

The units used for this se
tion are E
0

= kBT0 = 1, the parti
le's radius l0 as unit length,

the parti
le's mass m
0

as unit mass, v0 =
√
E0/m0 and t0 = l0/v0.

As dis
ussed in subse
. 2.4.2.2 the power spe
trum of the rotation will be analyzed

and 
ompared with Steele's approximation Eq. (2.6). As 
an be seen in Fig. 3.2 the

approximation holds for 〈| ®ω |〉 ≈ ω0 and smaller 〈| ®ω |〉 for both rotational dynami
s, but

deviates for higher rotation frequen
ies. Unsurprisingly Steele's approximation holds

far longer for the RS-dynami
s. The approximations also deviates if the fri
tion gets

lower. The ACF of the MS-dynami
s arrives at negative values for fast rotations and low

fri
tion, implying that the a
tivity's dire
tion moves in average at least a fourth of the

great 
ir
le, before rotational di�usion randomizes the dire
tion. In 
ontrast the ACF

of the RS-dynami
s arrives near zero and rises again for fast rotation and low fri
tion,

be
ause the a
tivity's dire
tion only moves on great 
ir
les if it's perpendi
ular to the

angular velo
ity. The a
tivity's dire
tion is therefore more likely to arrive at values near

the starting value, than at angles bigger than π/4.
Be
ause the interesting part of our analysis lies in this range of the rotational fre-

quen
y, I still expe
t the resonan
e phenomenon, despite the deviations from Steele's

approximation.

For the overdamped a
tive parti
le the mean squared displa
ement 
ould be solved

analyti
ally, see Eq. (2.1). For small fri
tions ξT , ξR ≪ 1 the rotational di�usion 
onstant
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3. Simulations
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Figure 3.2.: Auto
orrelation fun
tions for the a
tivity's dire
tion ®a(t) (
rosses for the MS-

dynami
s, 
ir
les for the RS-dynami
s) and Steele's approximation (line) Eq. (2.6)

for de
reasing fri
tion from (a) ξT t0 = 4.5 ,(b) ξT t0 = 1.5 to (
) ξT t0 = 0.75
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3.2. Underdamped a
tive parti
les

in
reases and the formula reads in the limit DR ≫ v2

A

〈(®x − ®x0)2〉 = 6DT t

In Fig. 3.3 one 
an see that the overdamped formula arrives at a linear fun
tion for small

fri
tions. The simulation shows for su
h small fri
tions, that - like for an ina
tive parti
le

- the parti
le's MSD looks ballisti
 for small times.
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2
〉/
R
2
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ξT t0 = 0.15
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ξT t0 = 1.5

ξT t0 = 15

ξT t0 = 150

Figure 3.3.: The mean squared displa
ement as fun
tion of time for various fri
tions ξT (rota-

tional: ξR =
10

3
ξT ). Simulated values are represented as dots, the lines represent

MSD for the overdamped limit, see Eq. (2.1).

Let's take a look at the velo
ity distribution fun
tion. In Fig. 3.4 one 
an see, that the

distributions are 
rater-like, if the a
tivity is high enough. In 3D the distribution then

looks like a spheri
al shell, with the maximum of the distribution at

√
v2
x +v

2
y +v

2
z ≤ vA.

The higher the parti
le's mean rotation time is with respe
t to ξ−1T , i.e. if DR ≪ ξT , the

nearer the mean speed of the parti
le will get to vA. In Fig. 3.4 one 
an see, that the

maximum of the distribution is 
onsiderably smaller than vA with ξT /DR = 3.
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3. Simulations
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Figure 3.4.: The (vx , vy) - distribution for di�erent a
tivity strengths (a)vA/v0 = 1.36 (b) vA/v0 =
5.45 (
) vA/v0 = 10.9 (d) vA/v0 = 13.6 at ξT t0 = 1.5 and 〈| ®ω |〉 t0 = 2.2. The

distribution is not as sharp as the one in 2.1b, be
ause it is the marginal distribution

and not the 
ut at vz = 0.
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3.3. Underdamped a
tive parti
les in a harmoni
 potential

3.3. Underdamped a
tive parti
les in a harmoni
 potential

3.3.1. Units and parti
le properties

For 
onvenien
e the results will be presented with respe
t to redu
ed units. The energy

unit E0 is de�ned via the unit temperature T0 as E0 = kBT0. The frequen
y unit 
or-

responds to the trap frequen
y ω0 = 1. The mass unit is equal to the parti
le's mass

m0 = 1. All other units needed for the present thesis 
an be derived from this three, e. g.

the unit length is l0 =
√
E0/m0ω

2

0
and the unit velo
ity is v0 = l0ω0. Then the di�usion


onstants are DT /ω0 =
1

ξT /ω0
and DR/ω0 =

2ω0l
2

0

5R2ξR
.

3.3.2. Slow rotation

To study the 
ase of a slow rotation 
ompared to the os
illation period a ratio of about

〈| ®ω |〉/ω0 ≈ 1/12 was 
hosen. For slow rotation both rotational dynami
s provide the

same results. In subse
tion 2.4.2.1 was proposed that in the 
ase of a nearly 
onstant

a
tivity dire
tion the parti
le would be subje
t to an e�e
tive potential with a minimum

at

r0 =
γTvA

ks

If the dire
tion 
hanges slowly enough the potential's minimum will 
hange too, but the

radius of the lo
ation will be 
onstant and the parti
le has enough time to a

ommodate

to this new minimum. The radial distribution for di�erent a
tivities vA of the parti
le is

shown in Fig. 3.5b. The distribution along a radius 
hanges from the ina
tive parti
le

for small vA to a distribution 
entered around a distin
t radius r0. The radius' mean

value for r0 ≫ l0 is expe
ted to be:

〈r〉 = ξT

ω2

0

vA (3.4)

For small a
tivities r0 ≪ l0 the expe
tation value will be equal to that of an ina
tive

parti
le. The simulation is in good agreement with this assumption as 
an be seen in

Fig. 3.6a. The des
ription using an e�e
tive potential is su�
ient for the 
ase of a slow

rotating parti
le and des
ribes the radial distribution. A two-dimensional histogram of

the position's �rst and se
ond 
omponent 
an be seen in Fig. 3.10. While at low a
tivity

strengths the distribution is Gaussian distributed, one 
an see that for higher a
tivity

the distribution will transform into a ring-like distibution.

Furthermore I gave an analyti
al solution for the potential energy. While the kineti


and the rotational energy stay nearly 
onstant, as we would expe
t for ina
tive parti
les

at

3

2
E0, the potential energy rises quadrati
ally with respe
t to the a
tivity. This is 
on-

�rmed by the simulation, as 
an be seen in Fig. 3.7a. Furthermore it rises quadrati
ally

with the fri
tion 
onstant, see Fig. 3.7b. One 
an see that for high values of ξT vA the

kineti
 energy starts to deviate from the 
onstant value, be
ause the 
hanges of ξT vA ®a(t)
start to be bigger than our assumption allows for.
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Figure 3.5.: (a) distribution of the position's x-
oordinate with respe
t to di�erent a
tivities vA;

(b) distribution along a radius with respe
t to di�erent a
tivities vA (both done at

ξT /ω0 = 0.52)
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The simulation is furthermore in good a

ordan
e with the assumption that the velo
ity

distribution doesn't deviate from an ina
tive parti
le, if the rotation is slow enough. This


an be seen in Fig. 3.8 for a range of a
tivity strengths. The velo
ity's auto
orrelation

fun
tion, as shown in Fig. 3.9b, does 
on�rm that the velo
ity doesn't deviate from the

one of an ina
tive parti
le.

The ACF for the position has also been 
al
ulated in subse
. 2.4.2.1 and the simula-

tion's results 
on�rm this derivation, see Fig. 3.9a. The deviation from the theory o

ur

when the 
hanges of vAξT ®a get too big. The bigger the produ
t vA ξT the bigger the

impa
t of even slow 
hanges of ®a(t), and therefore the assumption is only valid if vA ξT
d ®a
dt

is small enough.
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Figure 3.7.: Mean kineti
, potential and rotational energies at (a) ξT /ω0 = 0.52 with respe
t to

di�erent a
tivities (b) vA/v0 = 2.73 with respe
t to di�erent fri
tions ξT - 'Theory'

denotes Eq. (2.12)
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Figure 3.8.: The distributions of (a) the velo
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tivity strengths vA.
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tivity strengths
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Figure 3.10.: The (x , y) - distribution for di�erent a
tivity strengths (a) vA/v0 = 1.36 (b) vA/v0 =
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3.3.3. Rotation period near os
illation period

Let's look at the total absorbed power

P
abs

∝ ξ 2Tv
2

A

∫
ω2 S ®a (ω)S i®x (ω)dω (3.5)

Comparing it to the kineti
 energy yields:

〈E
kin

〉/E0 =
Pabs

2ξT
+

3

2
=

ξTv
2

A

24πω0v
2

0

∫ ∞

−∞
ω2S i®x (ω)S ®a (ω)dω +

3

2

For the power spe
trum of the a
tivity's dire
tion S ®a the auto
orrelation fun
tion was


al
ulated based on the time series obtained from the simulation. For the position's

power spe
trum S i®x the analyti
 solution is known from Eq. (1.18) and was used for

the numeri
al integration of the integral in (3.5). Comparing the power spe
tra resulting

from the two di�erent rotational dynami
s shows, that they di�er mostly for small fri
tion

and higher values of the mean angular velo
ity 〈| ®ω |〉. As 
an be seen in Fig. 3.11 the

MS-dynami
s shows in the power spe
trum a distin
t peak for lower fri
tions, be
ause

the a
tivity's dire
tion tends to rotate on great 
ir
les. The RS-dynami
s �rst shows a

knee in the power spe
trum, very near to ω = 〈| ®ω |〉, and at low fri
tions a small peak,

but the global maximum of the power spe
trum tends to stay at ω = 0.
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Figure 3.11.: Power spe
tra of the a
tivity's dire
tion S ®a(ω) for di�erent values of the average ab-
solute value of the angular velo
ity 〈| ®ω |〉/ω0 (a) 0.87 (b) 3.5 (
) 8.7. Both dynami
s

are plotted, the MS-dynami
s with full lines, the RS-dynami
s with dashed lines.

Using the power spe
tra of the two algorithms to 
al
ulate the absorbed energy using

the integral from Eq. (3.5) yields Fig. 3.12. The absorbed energy is for slow and fast

rotation nearly zero, but for intermediate average angular velo
ities they show a peak.

The higher the fri
tion the higher is the value of the average angular velo
ity, where the

peak is lo
ated. As we have dis
ussed in the power spe
trum and ACF of the a
tivity's

dire
tion the di�eren
es between the two di�erent rotational dynami
s is mostly at low

fri
tion and higher average angular velo
ities. But while the power spe
tra are qualitively
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di�erent the absorbed power derived from these show the same 
hara
teristi
a and di�er

only quantitively.
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Figure 3.12.: Numeri
al integration of (3.5) using the simulated ACF for the a
tivity's dire
tion,

for di�erent values of the translational fri
tion ξT with respe
t to the mean angular

velo
ity 〈| ®ω |〉. Both rotational dynami
s are shown, the MS-dynami
s (full) and the

RS-dynami
s (dashed). For the underdamped 
ase is natural os
illation frequen
y

ω1 =

√
ω2

0
− ξ 2/4 highlighted as a verti
al line in (b).

The 
al
ulated absorbed energy does indeed have an impa
t on the system. In Figs.

3.13 and 3.14 the potential and kineti
 energies obtained from the simulation are plotted

with respe
t to the mean angular velo
ity. The kineti
 energy equals the one 
al
ulated

via the absorbed power. As shortly dis
ussed in se
. 2.4.2.2 the absorbed energy 
an

only be dissipated via translational fri
tion and this fri
tion only rises with the parti
le's

speed.

In the 
ase of a damped, but not overdamped, system at ξT /ω0 = 1.0 the potential

energy dominates. Steele's approximation and both algorithms are in good agreement in
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this 
ase. As 
an be seen the potential energy only transitions from the state of the slow

rotating parti
le with 〈E
pot

〉/E0 =
(
vA
v0

· ξTω0

)2
+

3

2
to the one of the fast rotating parti
le

with E
pot

/E0 ≈ 1.5. The kineti
 energy has a peak at about 〈| ®ω |〉/ω0 = 2 with a value

of approximately 3E0. The �gures for the kineti
 and potential energy are similar to

those obtained via numeri
al integration, using Steele's approximation. The important

features are the same: the peak in the potential energy at lower fri
tion, the peak in the

kineti
 energy and the limits for high and low rotation frequen
ies. This 
on�rms the

derivations done in subse
. 2.4.2.2.

While the mean kineti
 and potential energies both rise with the square of the a
tivity

vA the des
ription with respe
t to the translational fri
tion ξT is more 
ompli
ated, as


an be seen in Fig. 3.15. The kineti
 energy rises with the fri
tion until a threshold

value, whi
h depends on the rotation frequen
y.

The histograms for the potential and kineti
 energies in Fig. 3.16 illustrate the be-

haviour of the se
ond moments of the position and velo
ity. The shape of the histograms

is identi
al for both rotation algorithms. While to position's se
ond moment transitions

from the �hotter� ina
tive state at fast rotations via a very broad distribution - whi
h

only o

urs at small fri
tion values - to the distin
t peak, where the parti
le os
illates in

the e�e
tive potential. The distribution of the kineti
 energy is for fast and slow rotation

very similar and is at it's broadest at about 〈| ®ω |〉/ω0 = 1.6 .
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Figure 3.13.: The average kineti
 and potential energy at vA/v0 = 2.7 and ξT /ω0 = 1, 0.5 and

0.25 (from top to bottom) with respe
t to the rotation frequen
y DR/ω0. The

numeri
ally solved Eq. (2.19) and (2.20) have been plottet as E
pot, Th

and E
kin, Th

,

respe
tively, using the simulated AFC, while ES
pot

and ES
kin

have been obtained using

Steele's approximation. Both rotational algorithms are shown , the one using the

tangential velo
ity (full lines) and the one using the angular velo
ity (dashed lines).
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Figure 3.14.: The average kineti
 and potential energy at vA/v0 = 8.2 and ξT /ω0 = 1, 0.5 and

0.25 (from top to bottom) with respe
t to the rotation frequen
y 〈| ®ω |〉/ω0. The

numeri
ally solved Eq. (2.19) and (2.20) have been plottet as E
pot, Th

and E
kin, Th

,

respe
tively, using the simulated AFC, while ES
pot

and ES
kin

have been obtained using

Steele's approximation. Both rotational dynami
s are shown , the MS-dynami
s

(full lines) and RS-dynami
s (dashed lines).
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 energy (points) with respe
t to the translational fri
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di�erent rotation frequen
ies 〈| ®ω |〉 at an a
tivity of vA/v0 = 2.7. Both rotational

dynami
s return identi
al results for this range of rotation frequen
ies and fri
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Figure 3.16.: Distributions of the potential and kineti
 energy, respe
tively. Values obtained at

ξT /ω0 = 0.5 and vA/v0 = 8
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3.3.4. Fast rotation

A rotational di�usion 
onstant of 〈| ®ω |〉/ω0 = 21 has been used to arrive at the fast

rotation limit.

In se
. 2.4.2.3 the foundation of the theory for fast rotating parti
le, was the assump-

tion that the for
e due to the a
tivity a
ts like a random white noise for the harmoni


potential. To justify this assumption the power spe
trum of the a
tivity's dire
tion S ®a
should be nearly 
onstant over the frequen
ies whi
h are important to the potential, i.e.

where S i®x (ω)ω
2 ≫ 0. Looking at Fig. (3.17) the simulation 
on�rms this assumption.

While S ®a 
hanges drasti
ally over the important frequen
ies at 〈| ®ω |〉/ω0 = 1.7, the power

spe
trum stays nearly 
onstant for 〈| ®ω |〉/ω0 = 87, but the values di�er between the two

di�erent rotational dynami
s.
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Figure 3.17.: The power spe
trum of the a
tivity's dire
tion S ®a,MS

, obtained by the MS-dynami
s,

and S ®a,RS , obtained by the RS-dynami
s, for (a) 〈| ®ω |〉/ω0 = 87 fast rotation, (b)

〈| ®ω |〉/ω0 = 1.7 near resonan
e and ω2 S i®x for ξR/ω0 = 0.52. For the relevant frequen-


ies, where S i®xω
2 ≫ 0, the a
tivity's power spe
trum is nearly 
onstant for a fast

rotating parti
le.

It has been shown in subse
. 2.4.2.3 that the equipartition theorem holds in the limit

of the fast rotation

〈E
kin

〉/E0 = 〈E
pot

〉/E0 =
γTv

2

A

8v2

0
ω0

S ®a (0) +
3

2

If the fri
tion is �xed, the kineti
 and potential energy will just depend on square of

the a
tivity's strength vA. In the 
ase of ξT /ω0 = 0.52 and 〈| ®ω |〉/ω0 = 21 and using the

algorithm for the tangential velo
ity the fun
tion after evaluating the power spe
trum

reads

〈E
kin

〉/E0 = 〈E
pot

〉/E0 = 0.0093v2

A +
3

2
(3.6)

In Fig. (3.18) one 
an see, that indeed the theoreti
al work is in good agreement with

the simulation. Using Steele's approximation for S ®a (ω) the deviation for fast rotating

parti
les is quite high, it would give us a fun
tion of 〈E
kin

〉/E0 = 0.02v2

A + 1.5. As

62



3.3. Underdamped a
tive parti
les in a harmoni
 potential

dis
ussed before Steele's approximation is not in agreement with the simulation of the

fast rotating parti
le.

The result for the e�e
tive temperature doesn't 
onverge to the overdamped limit

presented in se
. 2.2, be
ause our model treats the a
tivity as a for
e with a �xed absolute

value, independent of the rotation period. The overdamped model always assumes a

speed of vA, regardless of the rotation period. As 
an be seen in the speed distributions,

see Fig. 3.19, the fast rotation hinders the parti
le from arriving at a mean speed of vA.

If the mean rotation time is small with respe
t to the os
illation time of the parti
le,

then we expe
t Gaussian distributions for the 
omponents of velo
ity and position. Only

the varian
e of the distribution should be subje
t to 
hange, if the a
tivity vA rises. This


an be quanti�ed using the energies, des
ribed by Eq. (3.6), above:

〈®x2〉 = 2

ω2

0
m
〈E

pot

〉 〈®v2〉 = 2

m
〈E

kin

〉

The simulation agrees with this assumption and the distributions 
an be seen in Fig.

3.20. A

ordingly the shape of the speed and radial distribution should not 
hange, these


an be seen in Fig. 3.19.

The ACFs of the position and the velo
ity, see Fig. 3.21, only solidify the equality

between the ina
tive parti
le in a harmoni
 potential and the fast rotating, a
tive parti
le.
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Figure 3.18.: Energies with respe
t to (a) a
tivity vA, at ξT /ω0 = 0.5 (b) translational fri
tion ξT
at vA/v0 = 13.5. For the �t see Eq. (3.6).
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Figure 3.19.: Distributions of (a) the position's radius r (b) the speed | ®v | of the parti
le with

di�erent a
tivities vA at ξT /ω0 = 0.52
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a
tivities vA at ξT /ω0 = 0.5
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Figure 3.21.: Normalized ACFs for the (a) position (b) velo
ity for di�erent a
tivity strengths

vA/v0 at ξT /ω0 = 0.5. Dots are obtained from the simulation the lines represents

the analyti
al solutions for the ina
tive parti
le
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In the present thesis the 
ase of an underdamped a
tive parti
le in a harmoni
 potential

has been investigated.

The harmoni
ally trapped parti
le was at �rst studied theoreti
ally, where the partition

in slow, fast and medium rotation with respe
t to the os
illation period simpli�ed the

problem.

In the simplest 
ase, the slow rotation, the power spe
trum and the ACF of the po-

sition and velo
ity 
ould be obtained analyti
ally by means of an e�e
tive harmoni


potential. Therefore the potential and kineti
 energy and the shape of the position and

velo
ity distribution fun
tions 
ould be predi
ted. The simulation for the slow rotation

at 〈| ®ω |〉/ω0 ≈ 1/12 was in good agreement with the theoreti
al work. These results

are independent of the details of how the a
tivity's dire
tion moves. In this 
ase both

rotational dynami
s used in this thesis have been in full agreement.

To address the 
hallenge of a mean rotation time near the os
illation period the sum

of the a
tive for
e and the thermal �u
tuations was treated as a perturbation of the

harmoni
 os
illator. Studying the power absorbed by the parti
le lead to an - at least

numeri
ally - simple expression for the parti
le's kineti
 energy. An equivalent expression

has been obtained by 
al
ulating the power spe
trum and Fourier transforming it at τ = 0,

to obtain the se
ond moments of the position and velo
ity distribution. Therefore the

kineti
 and the potential energy 
ould be des
ribed using the power spe
trum of the

a
tivity's dire
tion. This expression predi
ts a peak in the kineti
 energy if the parti
le

rotates approximately as fast as it os
illates for all fri
tion values. The potential energy

showed a peak at about 〈| ®ω |〉/ω0 = 1 only for low fri
tion. For high fri
tion values and

slow parti
le rotation Steele's approximation yields results whi
h are in good agreement

with the simulation using both di�erent rotational dynami
s. For low fri
tion values and

faster parti
le rotation the RS-dynami
s produ
ed results whi
h were in better agreement

with Steele's approximation than the MS-dynami
s. Despite the qualitative di�eren
es

in the power spe
tra of the a
tivity's dire
tion obtained by the two rotational dynami
s,

the results for the se
ond moments of the position and velo
ity only di�ered slightly.

For predi
tions in an experimental framework one 
ould either try to measure the di-

re
tion's auto
orrelation fun
tion or obtain the auto
orrelation fun
tion via simulating a

rotating unit ve
tor. Two di�erent rotational dynami
s and the 
orresponding algorithms

for this problem has been presented in se
tion 3.1.

For the fast rotating parti
le the expression for the kineti
 and potential energy from

the medium rotation time 
an be reused. These expressions 
ould be further simpli�ed by

assuming that the power spe
trum is nearly 
onstant in the relevant interval around ω0.

Furthermore it has been shown that the equi-partition would hold again and therefore

that the parti
le would just behave like an hotter ina
tive parti
le. The 
orresponding
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temperature 
an be derived from the kineti
 energy. For the simulation of the fast

rotating a parti
le a rotational di�usion 
oe�
ient of 〈| ®ω |〉/ω0 = 21 has been 
hosen and

the results are in good agreement with the theory.

The study of the a
tivity's dire
tion's auto
orrelation fun
tion revealed, that there

is still theoreti
al work to be done. While Steele's approximation is su�
ient for the

overdamped 
ase, the 
ase of an underdamped rotating unit ve
tor is still hard to ta
kle

analyti
ally in a way that is numeri
ally easy to use.

Pototsky and Stark [16℄ studied not only the single parti
le 
ase, but also multiple

intera
ting parti
les. One 
ould study underdamped, intera
ting a
tive parti
les in a

harmoni
 trap and 
ompare the results to the overdamped results from Pototsky and

Stark [16℄.
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A. Testing the Simulation

A.1. Brownian parti
le

A.1.1. Free parti
le

The parameters de�ning the motion of the Brownian parti
le are the fri
tion ξ , the mass

m and the temperature T :

d ®x
dt
= ®v d ®v

dt
= −ξ ®v + ®A(t)

with the following properties for the random a

eleration

®A = (A1,A2,A3), and S = ξ kBT
m

〈Ai (t)〉 = 0 〈Ai (t)Aj (t ′)〉 = 2S δi jδ (t − t ′)
Then, see se
. 1.3,

〈(®x − ®x0)2〉 =
6S

ξ 3

(
ξt − 1 + e−ξ t

)
(A.1)

〈®v(t) ®v(t + τ )〉 = 3S

ξ
e−ξ t (A.2)

p0(vx ) =
(

1

2πS

)3/2
e−ξv

2
x /2S

(A.3)

Settingm = 1, kBT = 1/300 and varying ξ shows good agreement between simulation and

theory, see Fig. A.1.

A.1.2. In harmoni
 potential

An additional parameter is added in terms of the potential's frequen
y ω0. The equations

read:

d ®x
dt
= ®v d ®v

dt
= −ξ ®v + ®A(t) +ω2

0
®x

A.2. Overdamped a
tive parti
le

The MSD for the a
tive parti
le has been obtained by Löwen et al. [27℄ as:

〈(®x − ®x0)2〉 =
(
6DT +

v2

A

DR

)
t +

1

2

(
vA

DR

)2 [
e−2DR t − 1

]
(A.4)

Now testing this for di�erent values of vA at ξT = 100, with R = 1, kBT = 1 and m = 1

shows good agreement between simulation and theory, Fig. A.3.
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Figure A.1.: (a) The MSD and (b) the ACF of the velo
ity for three di�erent values of ξ ; (
) the

distribution of vx for di�erent values of kBT at ξ = 0.5. The simulation is plotted

as dots, Eq. (A.1) , (A.2), (A.3) respe
tively as bla
k line.
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Figure A.2.: (a) and (b) show the distribution of x and vx for di�erent values of T respe
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The ACF 〈®x(t) ®x(t+τ )〉, 〈®v(t) ®v(t+τ )〉 and the 
ross-
orrelation fun
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for di�erent values of ξ are plotted in (
).
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A.2. Overdamped a
tive parti
le
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Figure A.3.: MSD for the overdamped (ξT = 100) a
tive parti
le for di�erent a
tivity strengths

vA. Simulation is plotted as dots, Eq. (A.4) as line.
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B. Supplementary Cal
ulations

B.1. Overdamped a
tive parti
les

B.1.1. Position's expe
tation value

The equations to average are x = x0 + vA ·
∫ t
0
cos(φ(t ′))dt ′ +

√
2DTW

x
t and y = y0 +

vA ·
∫ t
0
sin(φ(t ′))dt ′ +

√
2DTW

y
t , with φ(t) = φ0 +

√
2DRW

φ
t . The Wiener pro
ess W i

t is

N (0, t)-distributed, therefore 〈W i
t 〉 = 0 (i = x, y, φ). Hen
e

〈x − x0〉 = vA
∫ t

0

〈cos(
√
2DRW

φ

t ′ )〉 dt ′

〈y − y0〉 = vA
∫ t

0

〈sin(
√
2DRW

φ

t ′ )〉 dt ′

Let's take a 
loser look at 〈cos(a ·Wt )〉 using the Euler formula:

〈cos(φ0 + a ·Wt )〉 = 〈ℜ
{
ei(φ0+aWt )

}
〉 = ℜ

{
eiφ0 〈eiaWt 〉

}

To 
al
ulate the expe
tation value, we will use thatWt is N (0, t)-distributed and get:

〈eiaWt 〉 = 1√
2πt

∫ ∞

−∞
eiax · e−x2/2t dx

=

1√
2πt

∫ ∞

−∞
e−(x

2/2t−iax ) dx

by 
ompleting the square and substituting y = x/
√
2t − ia/

√
2:

〈eiaWt 〉 = 1√
2πt

∫ ∞

−∞
e−(x/

√
2t−ia/

√
2)2−a2/2 dx

=

1√
2πt

e−a
2/2 ·

∫ ∞

−∞
e−y

2
√
2t dy

=

1√
π
e−a

2/2 ·
√
π

= e−a
2/2

Using the above result, we obtain

〈cos(φ0 +
√
2DRW

φ

t ′ )〉 = cos(φ0) · e−DR t
′
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and subsequently:

〈x − x0〉 = vA · cos(φ0) ·
∫

e−DR t
′
dt ′

=

vA

DR
·
(
1 − e−DR t

)
· cos(φ0)

For the average of the y-position 〈y〉, we use that 〈sin(a ·Wt )〉 = ℑ
{
eiφ0 〈eiaWt 〉

}
= sin(φ0) ·

e−Dr t
, to obtain

〈y − y0〉 =
vA

DR
·
(
1 − e−DR t

)
· sin(φ0)

B.1.2. Mean squared displa
ement

For the mean squared displa
ement 〈(®r − ®r0)2〉 = 〈(x −x0)2 + (y −y0)2〉 we will at �rst look
at (x − x0)2 and (y − y0)2 seperately:

〈(x − x0)2〉 = v2

A ·
( ∫ t

0

cos(φ(t ′))dt ′
)2
+ 2vA ·

∫ t

0

cos(φ(t ′))dt ′ ·
√
2DTW

x
t + 2DT (W x

t )2

averaging the above expression, using the properties for a Wiener pro
ess Wt : 〈Wt 〉 = 0

and 〈W 2

t 〉 = t , and writing the squared integral as two integrals:

〈(x − x0)2〉 = v2

A

∫ t

0

∫ t

0

〈cos(φ(t ′)) cos(φ(t ′′))〉 dt ′′ dt ′ + 2DT t (B.1)

The interesting part is the two-dimensional integral, it's argument is the auto
orrelation

fun
tion of the angle's 
osine. Using φ(t) = φ0 +
√
2DR ·W φ

t =: φt we will take a 
loser

look ∫ t

0

∫ t

0

〈cos(φt ′) cos(φt ′′)〉 dt ′′ dt ′ =

=

∫ t

0

∫ t

t ′
〈cos(φt ′) cos(φt ′′)〉 dt ′′ dt ′ +

∫ t

0

∫ t

t ′′
〈cos(φt ′) cos(φt ′′)〉 dt ′ dt ′′

The two integrals in the last line are identi
al, be
ause the argument of the mean 
om-

mutes, and using the property of the Wiener pro
ess, that Wt ′′ = Wt ′ +Wt ′′ −Wt ′ =

Wt ′ +Wt ′′−t ′ and φt ′′−t ′ := φt ′′ − φt ′ =
√
2DR

∫ t ′′
t ′ ξφ(s)ds we obtain

2

∫ t

0

∫ t

t ′
〈cos(φt ′) cos(φt ′ + φt ′′−t ′)〉 dt ′′ dt ′

now using cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

2

∫ t

0

∫ t

t ′
〈cos2(φt ′) cos(φt ′′−t ′)〉 − 〈cos(φt ′) sin(φt ′) sin(φt ′′−t ′)〉 dt ′′ dt ′
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B.1. Overdamped a
tive parti
les

be
auseWt ′ des
ribes the Wiener pro
ess up to t ′ andWt ′′−t ′the pro
ess from t ′ to t ′′ these
are independent from ea
h other, and therefore the angles φt ′ and φt ′′−t ′ are independent
and we 
an write:

2

∫ t

0

∫ t

t ′
〈cos2(φt ′)〉〈cos(φt ′′−t ′)〉 − 〈cos(φt ′) sin(φt ′)〉〈sin(φt ′′−t ′)〉 dt ′′ dt ′

After rewriting the two-dimensional integral we will put it ba
k in Eq. (B.1)

〈x2〉 = 2v2

A

∫ t

0

∫ t

t ′
〈cos2(φt ′)〉〈cos(φt ′′−t ′)〉 − 〈cos(φt ′) sin(φt ′)〉〈sin(φt ′′−t ′)〉 dt ′′ dt ′ + 2DT t

In an analogous manner, using sin(a + b) = sin(a) cos(b) + cos(a) sin(b) one 
an obtain

〈y2〉 = 2v2

A

∫ t

0

∫ t

t ′
〈sin2(φt ′)〉〈cos(φt ′′−t ′)〉 + 〈cos(φt ′) sin(φt ′)〉〈sin(φt ′′−t ′)〉 dt ′′ dt ′ + 2DT t

We 
an now 
alulate the MSD

〈x2 + y2〉 = 2v2

A

∫ t

0

∫ t

t ′
〈cos2(φt ′) + sin2(φt ′)〉〈cos(φt ′′−t ′)〉 dt ′′ dt ′ + 4DT t

and using the result from the previous se
tion B.1.1 〈cos(φt ′′−t ′)〉 = e−DR (t ′′−t ′)

〈x2 + y2〉 = 2v2

A

∫ t

0

∫ t

t ′
e−DR (t ′′−t ′) dt ′′ dt ′ + 4DT t

= 2v2

A

∫ t

0

1

DR

(
1 − e−DR (t−t ′)

)
dt ′ + 4DT t

= 2v2

A

[
1

DR
· t − 1

D2

R

(
1 − e−DR t

)]
+ 4DT t

=

[
4DT +

2v2

A

DR

]
· t +

2v2

A

D2

R

·
(
e−DR t − 1

)
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