
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

When Inertia Matters
Simulating Underdamped Active Particles in a Harmonic Potential

verfasst von / submitted by

Mag. rer. nat. Alexander Hummelbrunner, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2018 / Vienna, 2018

Studienkennzahl lt. Studienblatt / A 066 876
degree programme code as it appears on
the student record sheet:

Studienrichtung lt. Studienblatt / Masterstudium Physik
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Dr. Christoph Dellago





Danksagung

Zuerst möhte ih mih bei einigen Personen bedanken, die diese Arbeit erst ermögliht

haben.

Zuallererst bedanke ih mih bei meinem Betreuer Prof. Christoph Dellago, der mir

niht nur ermöglihte, ein eigenes Thema zu verfolgen, sondern mir auh die nötige Zeit

dafür gab. Er fand für meine Anliegen stets Zeit und die Diskussionen mit ihm haben der

Arbeit neuen Shwung verliehen. Ebenso möhte ih mih bei den weiteren Mitgliedern

des �Stohasti Thermodynamis�-Teams Max Innerbihler und Vitor Wenin bedanken,

die bei unseren regelmäÿigen Tre�en meine Fortshritte kritish unter die Lupe nahmen.

Mein Dank gilt auh meinen Studienkolleginnen und Studienkollegen ohne deren Un-

terstützung der Abshluss des Studiums shwieriger geworden wäre und niht so viel

Freude bereitet hätte.

Zu guter Letzt danke ih meiner Familie, insbesondere meiner Frau Barbara, die mein

Studium von Beginn an förderte. Nur ihre fortwährende Unterstützung erlaubte es mir

neben der Betreuung unseres Sohnes auh diese Arbeit fertig zu stellen.





Abstrat

A single underdamped and self-propelled Brownian partile in a three dimensional har-

moni trap was studied theoretially and simulated using Langevin dynamis. The di-

retion of the partile's propelling fore is undergoing underdamped rotational di�usion.

In the limit of small rotational di�usion onstants ompared to the trap frequeny the

seond moments of the veloity and the position are found analytially. Outside of this

limit the seond moments an be desribed using the power spetrum of the propelling

diretion. Using numerial integration the seond moments show resonant behaviour

with respet to the rotational di�usion onstant.

In the limit of fast rotational di�usion it an be shown that the equipartition theorem

is full�lled and an e�etive temperature an be asribed to the partile.

The theoretial work is supported by Langevin dynamis simulations.

Zusammenfassung

Die Statistik eines einzelnen aktiven brownshen Teilhens in einem harmonishen Poten-

tial wurde bei niedriger Reibung theoretish untersuht und mittels Langevin-Dynamik

simuliert. Die Rihtung der Aktivität des Teilhens unterlag dabei der brownshen Be-

wegung. Im Grenzfall sehr langsamer Rotationsdi�usion der Aktivitätsrihtung im Ver-

gleih zur Frequenz des Potentials konnten die zweiten Momente der Position und der

Geshwindigkeit des Teilhens analytish hergeleitet werden. Auÿerhalb dieses Grenzfalls

können diese zweiten Momente bestimmt werden, indem das Leistungsspektrum der Ak-

tivitätsrihtung ausgewertet wird. Mittels numerisher Integration der zweiten Momente

zeigen sih Resonanze�ekte in Abhängigkeit der Rotationsdi�usionkonstante.

Nur im Grenzfall rasher Rotationsdi�usion lässt sih zeigen, dass dem Gleihverteilungs-

gesetz genüge getan wird und dem Teilhen eine e�ektive Temperatur zugeordnet werden

kann.

Die theoretishe Arbeit wird durh die Ergebnisse der Langevin-Dynamik-Simulation

bestätigt.
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Introdution

The statistial desription of systems far from equilibrium is a growing researh topi

in physis. Espeially so-alled �ative partiles� and the related �ative matter� have

been extensively investigated experimentally and theoretially in the last deade. Ative

partiles refer to a whole lass of biologial and physial entities, whih an take up energy

from the environment and transform it into kineti energy, e.g. motile ells, moleular

motors and Janus partiles, the term an also be used for desribing the movement of

higher organisms suh as birds and �sh and even humans [21℄.

The experiments and theoretial desriptions range from the �rst modeling of the

motile ells' errati movement [3℄ to today's studies of the behaviour in omplex and

rowded environments [2℄. These partiles show new properties, that might be used to

transport nanosopi argoes, for expample in health are.

Most of this researh is foused on ative motion in low Reynold's number regimes -

negleting inertia. This approah is justi�ed, when studying motile ells and moleular

motors in water and similar �uids. But e.g. ative partiles in dusty plasmas [22℄

would be subjet to inertia. The �rst self-propelled partiles in suh a regime have been

theoretially proposed [1℄. In an underdamped regime new phenomena ould our. For

example Kählert and Löwen desribe the ase of a harmonially trapped inative partile

subjet to an externally imposed osillatory shear �ow. They �nd resonant behaviour in

this ase [11℄.

The present work generalizes this approah to an ative Brownian partile, like a

Janus partile, in three dimensions and studies it's simulated behaviour in a harmoni

potential. The work from Kählert and Löwen suggests that there might be a resonane

- this shall be further investigated using Langevin dynamis simulations on a general

model for underdamped ative partiles.

This thesis is organized as follows:

I will review the theoretial foundation for Brownian (inative) partiles in Chapter 1

�Brownian Motion�. On the one hand should the simulation for small ativity strengths

onverge to this ase, and on the other will results and mathematial tools introdued in

this hapter be important for the theoretial desription of ative partiles.

In Chapter 2 �Ative Partiles� the widely used overdamped ase and the model of

the freely rotating, underdamped ase, that has been studied for the present thesis, are

disussed in theoretial terms. With an emphasis on the ase of the underdamped, freely

rotating partile in a harmoni potential.

The results of the simulation and the omparison with the theoretial hypothesis from

Chapter 2 are found in Chapter 3 �Simulations�, as are the desriptions of the algorithms

used.
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Contents

In Chapter 4 �Conlusions� the important results will be reviewed and an outlook for

further researh will be given.

A major part of this work was the development and the testing of the simulation.

Some results of the extensive simulation testing are given in the appendix.
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1. Brownian Motion

1.1. The freely di�using partile - from Einstein to Langevin

The Brownian motion and Brownian partile is named after the British botanist Robert

Brown (1773 - 1858) who desribed in 1827 the errati motion of pollen grains in water.

Studying Brownian motion one stands on the shoulders of giants like Albert Einstein,

Marian Smoluhowski, George Uhlenbek, Leonard Ornstein and Paul Langevin. That

seems like a lot of brain power working on a problem that started with the botanist's

observation. But by studying the partile's errati movement the onept of stohasti

di�erential equations had to be introdued. Today stohasti di�erential equations are

present in physis, biology and even �nane mathematis, desribing stok pries.

1.1.1. The Einstein formula

Albert Einstein (1879 - 1955) proposed 1905 a mathematial theory for the errati mo-

evement of the pollen grains based on the atomisti onept [9℄ - at a time when the

atomisti onept was still a hypothesis and ontroversially debated in the physis om-

munity [13℄. Einstein assumed, that the grain pollens move, beause they are hit by

water moleules. These ollisions are of random strength and diretion, and will anel

eah other out over long periods of time. But for short times it's possible to have more

moleules olliding with, for example, the right side of the partile - driving it to the left.

He �rst showed, that for small spheres suspended in a liquid the di�usion onstant D

depends only on the oe�ient of visosity η and on the radius of the suspended partiles

r :

D =
RT

NA
· 1

6πηr
(1.1)

where R is the universal gas onstant (well known from experiments at that time), T the

temperature of the liquid and NA the Avogadro onstant. One way to put the atomisti

theory on �rm ground was measuring the Avogadro onstant in di�erent ways, hoping for

results whih were in good aordane to eah other. Einstein's theory provided another

way to measure the Avogadro onstant.

Let τ be a time interval big enough to neglet inertia, like Einstein proposed, and

therefore assume the displaements of the suspended partiles as mutually independent.

The displaements ∆ should follow a symmetri probability density ϕ, where ϕ(∆) is
bigger than zero only for small values of ∆. Following Einstein one an write a partile

distribution funtion ρ(x, t) for n partiles distributed on the x-axis at time t . Hene:∫ ∞

−∞
ρ(x, t)dx = n (1.2)
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1. Brownian Motion

Using the small time interval τ one an write

ρ(x, t + τ ) = ρ(x, t) + τ · ∂ρ(x, t)
∂t

(1.3)

Another way to obtain ρ(x, t + τ ) is by using the distribution of displaements ϕ(∆). The
number of the partiles in the interval [x, x + dx] at a time t + τ an be expressed using

ϕ(∆) and the distribution funtion ρ(x, t) at time t as:

ρ(x, t + τ )dx = dx ·
∫ ∞

−∞
ρ(x + ∆, t)ϕ(∆)d∆

Let's expand ρ(x + ∆, t) in powers of ∆

ρ(x + ∆, t) = ρ(x, t) + ∆ ∂ρ
∂x
+

∆
2

2

∂2ρ

∂x2
+ . . .

then

ρ(x, t + τ )dx = dx ·
(
ρ(x, t)

∫ ∞

−∞
ϕ(∆)d∆ + ∂ρ

∂x

∫ ∞

−∞
∆ϕ(∆)d∆ + ∂

2ρ

∂x2

∫ ∞

−∞

∆
2

2
ϕ(∆)d∆ + . . .

)

Using that the integral

∫ ∞
−∞ ∆

kϕ(∆)d∆ vanishes if k is odd or k = 0:

ρ(x, t + τ )dx = dx ·
(
ρ(x, t) + ∂

2ρ

∂x2

∫ ∞

−∞

∆
2

2
ϕ(∆)d∆ + . . .

)
(1.4)

Beause we assumed ϕ(∆) to be only bigger than zero for small displaements, powers of

∆
4
upwards will be negleted. Comparing (1.3) to (1.4) Einstein arrived at

τ
∂ρ(x , t)
∂t

=

∫ ∞

−∞

∆
2

2
ϕ(∆)d∆ · ∂

2ρ(x, t)
∂x2

and, after de�ning D = 1

τ

∫ ∞
−∞

∆
2

2
ϕ(∆)d∆, one arrives at the well-known di�usion equation

∂ρ(x, t)
∂t

= D
∂2ρ(x, t)
∂x2

Assuming as initial ondition ρ(x, 0) = n ·δ (x), with δ (x) being the delta-distribution, the
solution is known as:

ρ(x, t) = n√
4πD

· e
−x2/4Dt
√
t

Now let's alulate the mean squared distane from the origin for one partile (setting

n = 1):

〈x2〉 =
∫ ∞

−∞
x2ρ(x, t)dx

=

1√
4πDt

∫ ∞

−∞
x2e−x

2/4Dt dx
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1.1. The freely di�using partile - from Einstein to Langevin

In x-diretion the distribution funtion is equal to a normal distribution with mean zero

and variane 2Dt and therefore we obtain the so-alled Einstein formula:

〈x2〉 = 2Dt (1.5)

As an be seen in Fig. 1.1 the trajetories and MSD for di�erent instanes of the proess

an di�er widely from eah other. But statistial properties an still be derived and will

be obeyed.
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Figure 1.1.: (a) Five simulated typial trajetories for one-dimensional Brownian partiles (b) the

theoretial mean square displaement 2Dt as a blak line and �ve simulated square

displaements.

Combining the two results for D, eqs. (1.1) and (1.5), one gets

〈x2〉
2t
=

RT

NA
· 1

6πηr

and therefore the Avogadro onstant ould be measured indiretly by determining the

mean squared displaement of the partile with respet to time:

NA =
2t

〈x2〉 ·
RT

6πηr

A Nobel Prize has been awared to the frenh physiist Jean-Baptiste Perrin (1870 - 1942)

in 1926 for the measurement of the Avogadro onstant in di�erent ways, inluding the

one formulated above.
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1. Brownian Motion

1.1.2. The Langevin equation

For a Langevin Dynamis simulation, as was used for the present work, it's important to

know the underlying equations of motion. While Einstein obtained his results using the

distribution funtion ρ(x, t) for the Brownian partiles, Langevin proposed the governing

equations of motion. Changing the Newtonian ansatz from a known fore F (x, t) to a sum
of fores, one represented by a random variable Fr (t), and the other the fore of frition

−γ0v, one gets the Langevin equation in a similar notation as de Haas-Lorentz [8℄ used

�rst in 1913:

m Ûv = −γ0v + Fr (t) (1.6)

The random fore is not wholly unknown. It should model the random interations

between the Brownian partile and the moleules of the medium. Over a long period of

time the average of Fr should be zero, otherwise we would get a net �ow of Brownian

partiles over time. And the fore should have no �memory�. Writing this in mathematial

terms, using the Dira-delta δ :

〈Fr (t)〉 = 0 (1.7)

〈Fr (t) Fr (t ′)〉 = 2m2S δ (t − t ′) (1.8)

where S symbolizes the �strength� of the random fore.

Following Ornstein's approah in �On the Brownian Motion� [15℄ we will alulate the

important statistial values for this equation.

Using ξ =
γ0
m

and A = Fr
m
, one an integrate the Langevin equation (1.6):

v = v0 e
−ξ t
+ e−ξ t

∫ t

0

eξ sA(s)ds (1.9)

where v0 is the initial veloity of the partile. Calulating the expetation value of Eq.

(1.9) and using the �rst property (1.7) of Fr (t), one �nds

〈v〉 = v0 e−ξ t (1.10)

where the expetation value should be understood as an ensemble average. Einstein used

a time interval τ large enough to neglet any memory e�ets of the displaements, but

the Langevin equation leads to a memory e�et for the veloity. Einsteins time interval

needs to be muh bigger than

m
γ
to justify his assumption.

Let's look at the seond moment of the veloity, �rst squaring Eq. (1.9), then averaging

and again using the �rst property (1.7) of Fr (t), the result is

〈v2〉 = v2

0
e−2ξ t + e−2ξ t ·

〈( ∫ t

0

eξ sA(s)ds
)2〉

(1.11)

The integral in the seond term deserves a loser look, the produt of the integrals an

be written as a two-dimensional integral:〈 ∫ t

0

∫ t

0

eξ seξ s
′
A(s)A(s ′)ds ds ′

〉

8



1.1. The freely di�using partile - from Einstein to Langevin

The value of eξ (s+s
′)
is, with respet to the ensemble average, onstant and we an write∫ t

0

∫ t

0

eξ (s+s
′)〈A(s)A(s ′)〉 ds ds ′

Now using the seond property (1.8) of the random fore leads to

∫ t

0

∫ t

0

eξ (s+s
′) 2S δ (s − s ′)ds ds ′

Integrating over s using the delta-distribution's de�nition

∫
f (x)δ (x − x0)dx = f (x0)

2S

∫ t

0

e2ξ s
′
ds ′ =

S

ξ
·
(
e2ξ t − 1

)

inserting this in Eq. (1.11):

〈v2〉 = v2

0
e−2ξ t +

S

ξ
·
(
1 − e−2ξ t

)
(1.12)

In the limit t → ∞ the partile should eventually arrive at a mean squared veloity

ditated by the equipartition theorem as 〈v2〉 = kBT
m , where kB is the Boltzmann onstant

and T the temperature of the solvent. Comparing this to the Eq. (1.12) from above, one

an alulate the strength S as

S = ξ
kBT

m
(1.13)

Let's look at the mean squared displaement (MSD) next by multiplying the Langevin

equation with x , (dx
dt
= v):

d2x

dt2
x = −ξ dx

dt
x +Ax

Using

d2x
dt2

· x = 1

2

d2x2

dt2
−v2

and

dx
dt x =

1

2

dx2

dt does hange the equation to

1

2
·
(
d2x2

dt2
+ ξ

dx2

dt

)
= v2

+Ax

Taking the ensemble average, one arrives at

d2

dt2
〈x2〉 + ξ d

dt
〈x2〉 = 2〈v2〉 + 〈Ax〉

We know 〈v2〉 from Eq. (1.12), therefore we only have to take a loser look at 〈Ax〉.
Integrating Eq. (1.9) again, one obtains

x = x0 +
v0

ξ

(
1 − e−ξ t

)
+

1

ξ

∫ t

0

A(s) ·
(
1 − eξ (s−t )

)
ds

9



1. Brownian Motion

multiplying this equation with A(t) and taking the ensemble average

〈Ax〉 = 〈A〉 x0 + 〈A〉 v0
ξ

(
1 − e−ξ t

)
+

1

ξ

∫ t

0

〈A(t)A(s)〉
(
1 − eξ (s−t )

)
ds

If one uses both properties (1.7) and (1.8) of the random fore Fr , then

〈Ax〉 = 1

ξ

∫ t

0

2S δ (t − s)
(
1 − eξ (s−t )

)
ds = 0

This only holds for equal times 〈A(t)x(t)〉 as Manoliu and Kittel [14℄ showed. This is also

in aordane with our physial intuition of the problem. While the random aeleration

should not be depending on the position of the partile at that time, these aelerations

have an impat on the partile's position at a later time. Now we'll use this result and

Eq. (1.12) averaging over all initial veloities (〈v2

0
〉 = S

ξ ):

d2

dt2
〈x2〉 + ξ d

dt
〈x2〉 = 2

S

ξ

This an be solved by using the following ansatz:

〈x2〉 = c0 + c1e−ξ t + 2
S

ξ 2
t

The integration onstants an be alulated, assuming that at t = 0 the MSD and its

�rst derivative are zero. Hene the solution reads:

〈x2〉 = 2S

ξ 3

(
ξt − 1 + e−ξ t

)
(1.14)

While S only determines the slope of the MSD, the value of ξ is also responsible for

the shape of the urve, as an be seen in Fig. 1.2. For short times, meaning ξt ≪ 1, the

urve mimis a partile in a ballisti regime. In the limit of ξt ≫ 1 one arrives at a linear

funtion for the MSD

〈x2〉 = 2S

ξ 2
t

whih is exatly the Einstein formula (1.5), if one uses Eq. (1.13) and identi�es D = kBT
mξ .

This di�usion onstant D is idential to the di�usion onstant Einstein was using, de�ned

in Eq. (1.1), if one keeps in mind that kB =
R
NA

and Einstein uses the Stokes frition for

a spherial partile with radius r , hene ξ =
6πrη

m
.

The autoorrelation funtion 〈v(t)v(t+τ )〉 is easily obtained from Eq. (1.9). Rewriting

this equation to v0 = v(t) and v(t + τ ), and multiplying by v(t), one gets

v(t)v(t + τ ) = v(t)2e−ξ τ +v0e−ξ τ
∫ τ

0

eξ sA(s)ds

where τ > 0. Now taking the average and using the equilibration limit 〈v(t)2〉 = S
ξ

〈v(t)v(t + τ )〉 = S

ξ
· e−ξ τ

10



1.1. The freely di�using partile - from Einstein to Langevin
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Figure 1.2.: The MSD for Brownian partiles following Eq. (1.14) (a) for three di�erent values

of S with ξ = 1 (b) for three di�erent values of ξ with S = 1

1.1.3. The Fokker-Plank equation

Instead of solving the equation of motion, in our ase the Langevin equation, one an also

take a look at the time dependent probability distribution funtion for the problem. The

equation that desribes the time dependene of the probability distribution funtion for

Markovian proesses is alled Fokker-Plank equation. Eah Langevin equation has an

equivalent Fokker-Plank equation. First we will derive the general form of the Fokker-

Plank equation and then apply it to the problem of the free Brownian partile, whih

we have disussed in the previous setion.

We want to derive the di�erential equation desribing the time dependene of a two-

dimensional probability distribution funtion p(a, t), where a is a ontinous variable -

alled state - and t denotes the time, as usual. The expression p(a, t)da desribes the

probability to �nd the system in a state [a,a+da] at time t . It should desribe a Markovian

proess with the transition rate ω(a,a′; t) denoting the probability to transition from state

a′ to state a at the time t . The orresponding Master-Equation

1

reads

∂p(a; t)
∂t

=

∫
da′

[
ω(a,a′; t)p(a′, t) −ω(a′,a; t)p(a, t)

]
This equation desribes the in�ux to p(a, t) by summing all other states' probability

distribution at a′ up, weighted by their transition probability to land in a. It also

desribes the out�ux by subtrating the transition probability to leave the state a in

1

more on Markovian proesses and the Master equation is found e.g. in G. Röpke, �Statistishe

Mehanik und das Nihtgleihgewiht� [18℄
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1. Brownian Motion

favor of state a′. Let's rewrite the equation a little bit

∂p(a, t)
∂t

=

∫
ω(a,a′; t)p(a′, t)da′ − p(a, t)

∫
ω(a′,a; t)da′

It's reasonable to assume, that the hanges of a are small, i.e. that ω(a,a′; t) is a sharply
peaked funtion around a′. Substitutions will lead us to

∂p(a, t)
∂t

=

∫
ω(a,a − b; t)p(a − b, t)db − p(a, t)

∫
ω(a + b,a; t)db

We an Taylor expand ω(a,a − b; t)p(a − b, t) at a = a + b:

ω(a,a − b; t)p(a − b, t) =
∞∑
n=0

(a − (a + b))n
n!

∂n

∂an

[
ω(a + b,a; t)p(a, t)

]

= ω(a + b,a; t)p(a, t) +
∞∑
n=1

(−b)n
n!

∂n

∂an

[
ω(a + b,a; t)p(a, t)

]

Hene

∂p(a, t)
∂t

=

∫
ω(a + b,a; t)p(a, t)db +

∫ ∞∑
n=1

(−b)n
n!

∂n

∂an

[
ω(a + b,a; t)p(a, t)

]
db

− p(a, t)
∫

ω(a + b,a; t)db

The �rst and third term on the right hand side anel eah other out, and if we rewrite

the seond term and substitute b = a′ − a, we arrive at the Kramers-Moyal Expansion:

∂p(a, t)
∂t

=

∞∑
n=1

(−1)n
n!

(
∂

∂a

)n [
αn(a, t)p(a, t)

]

αn =

∫
(a′ − a)nω(a′,a; t)da′

= lim
∆t→0

1

∆t

∫
(a′ − a)nP(a′, t + ∆t |a, t)da′

where P(a′, t + ∆t |a, t) denotes the onditional probability, that the system is in state a′

at time t + ∆t if at time t the system was in state a. The αn are alled moments of the

transition probabilities.

If αn = 0 for all n ≥ 3, then the Kramers-Moyal expansion ends after the seond term

and the resulting equation is alled Fokker-Plank equation:

∂p(a, t)
∂t

= − ∂
∂a

[α1(a, t)p(a, t)] +
1

2

∂2

∂a2
[α2(a, t)p(a, t)]

After formulating the Fokker-Plank equation we will apply it to the Langevin equation

of the free Brownian partile (1.6) and alulate the time-dependent probability distri-

bution of the veloity p(v, t). We integrated the Langevin equation in the last setion

12



1.1. The freely di�using partile - from Einstein to Langevin

and obtained a solution for v(t) under the assumption that the initial veloity is v0, see

Eq. (1.9). Let's alulate the moments of the transition probabilities α1 and α2:

α1 = lim
∆t→0

1

∆t

∫ ∞

−∞
(v −v0) · P(v, t0 + ∆t |v0, t0)dv

The integral is equal to the expetation value of (v(t0 + ∆t) − v0) under the assumption

that v(t0) = v0, hene:
α1 = lim

∆t→0

1

∆t
〈v(t0 + ∆t) − v(t0)〉

Using the Eq. (1.10) and t0 = 0, one obtains

α1 = lim
∆t→0

1

∆t
·
(
v(0) e−ξ ·∆t −v(0)

)
= −ξ v(0)

beause the right hand side of the �rst line equals the �rst derivative of v(t) at t = 0.

For the seond moment we will use the Eq. (1.12) for 〈v(t)2〉:

α2 = lim
∆t→0

1

∆t
〈(v(∆t) −v0)2〉

= lim
∆t→0

1

∆t

[
v2

0
· e−2ξ∆t + S

ξ
·
(
1 − e−2ξ∆t

)
− 2v2

0
e−ξ∆t +v2

0

]

= −S
ξ

lim
∆t→0

1

∆t

(
e−2ξ∆t − 1

)
︸                     ︷︷                     ︸

−2ξ

+v2

0
lim
∆t→0

1

∆t

(
e−2ξ∆t + 1

)
︸                     ︷︷                     ︸

−2ξ

−2v2

0
lim
∆t→0

e−ξ∆t

∆t︸       ︷︷       ︸
−ξ

= 2S

Using de l'Hospital to alulate the last two limits. The Fokker-Plank equation for the

veloity of the Brownian motion therefore reads

∂p(v, t)
∂t

= ξ
∂

∂v
[v p(v, t)] + S ∂

2

∂v2
p(v, t)

From this equation one an get the stationary solution p0(v) for p(v, t) by setting ∂p(v,t )
∂t =

0.
d2

dv2
p0(v) +

ξ

S

d

dv
[v · p0(v)] = 0

integrating this equation leaves us with the well-known Maxwell-Boltzmann veloity dis-

tribution

p0(v) =
(
ξ

2πS

)1/2
· e−ξv2/2S

(1.15)

While the thermal �utuations, represented by S , broadens the urve, if the temperature

rises, the frition ξ sharpens the peak and ounterats the thermal �utuations, see Fig.

1.3.
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1. Brownian Motion
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Figure 1.3.: The veloity distribution for Brownian partiles following Eq. (1.15) (a) for three

di�erent values of S with ξ = 1 (b) for three di�erent values of ξ with S = 1

1.1.4. The Wiener-Khinhin theorem

Let's denote the Fourier transform ã(ω) of a funtion a(t) de�ned as

ã(ω) =
∫ ∞

−∞
a(t) e−iωt dt

and the inverse Fourier transform

a(t) = 1

2π

∫ ∞

−∞
ã(ω) eiωt dω

The power spetrum of the funtion is then de�ned as

Sa(ω) = 〈|ã(ω)|2〉

and Sa(ω)dω is physially the mean intensity in the frequeny interval [ω,ω + dω]. The
theorem of Wiener and Khinhin states the onnetion between the autoorrelation fun-

tion (ACF) 〈a(t)a(t + τ )〉 and the spetral density Sa (ω):

Sa(ω) =
∫ ∞

−∞
〈a(t)a(t + τ )〉 e−iωτ dτ

〈a(t)a(t + τ )〉 = 1

2π

∫ ∞

−∞
Sa(ω) eiωτ dω

Now we will apply this theorem to the Langevin equation to alulate the veloity's

power spetrum 〈|ṽ(ω)|2〉. In Fourier spae the time di�erential an be easily rewritten

14



1.2. Brownian motion in a harmoni potential

as:

d

dt
v(t) = d

dt

∫
ṽ(ω)eiωt dω =

∫
iωṽ · eiωt dω

hene

˜(
dv

dt

)
= iωṽ

Therefore we an rewrite the Langevin equation in Fourier spae as:

d

dt
v(t) = −ξv(t) +A(t)

(iω + ξ ) ṽ(ω) = Ã(ω)

Sv (ω) = 〈|ṽ(ω)|2〉 = 〈|Ã(ω)|2〉
ξ 2 +ω2

with A(t) being a stohasti proess, still having the properties we de�ned earlier in

subse. 1.1.2, namely 〈A(t)〉 = 0 and 〈A(t)A(t ′)〉 = 2S δt−t ′. Then the power spetrum of

the random aeleration an be alulated using the Wiener-Khinhin theorem

〈|Ã(ω)|2〉 =
∫ ∞

−∞
〈A(t)A(t + τ )〉 e−iωτ dτ (1.16)

=

∫ ∞

−∞
2S δ (τ ) e−iωτ dτ

= 2S

and therefore

Sv (ω) =
2S

ξ 2 +ω2
(1.17)

Using this result, we an also alulate the power spetrum of the position Sx (ω), using
d
dt
x = v, hene

iωx̃ = ṽ

and by squaring and averaging

Sx (ω) = 〈|x̃(ω)|2〉 = 1

ω2
〈|ṽ |2〉 = 1

ω2
· 2S

ξ 2 + ω2

1.2. Brownian motion in a harmoni potential

The problem of a Brownian partile in a harmoni trap will be disussed using the

Langevin equation with an additional fore. The potential reads U = ks
2
x2 with ks

15



1. Brownian Motion
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Figure 1.4.: The power spetra Sx (ω) (full) and Sv (ω) (dashed) for Brownian partiles following

Eq. (1.4) (a) for three di�erent values of S with ξ = 1 (b) for three di�erent values

of ξ with S = 1

denoting the spring onstant of the fore F = −∇U = −ksx . Putting it all together one

arrives at the two oupled di�erential equations:

dx

dt
= v

m
dv

dt
= −γv + Fr (t) − ksx

For the random fore Fr (t) the same restritions are still in plae:

〈Fr (t)〉 = 0

〈Fr (t)Fr (t ′)〉 = 2m2S · δ (t − t ′)

For brevity's sake we will write the equation, using ω2

0
=

ks
m , A(t) = Fr (t )

m and ξ =
γ

m :

dv

dt
= −ξv +A(t) −ω2

0
x

The orresponding Fokker-Plank equation for the probability density p(x,v, t) reads

∂p

∂t
+v
∂p

∂x
−ω2

0

x
∂p

∂v
= S
∂2p

∂x2
+

∂

∂v
(ξvp)

This equation an be solved in the stationary limit

∂p0
∂t
= 0:

p0(x,v, t) = C · e−ξ ksx2/2S · e−ξv2/2S
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1.2. Brownian motion in a harmoni potential

The obtained solution equals two Maxwellian distributions, one for the veloity and one

for the position. The onstant C an be easily alulated by requiring∫ ∞

−∞

∫ ∞

−∞
p0(x,v)dx dv = 1

One an alulate the autoorrelation funtions for the position �rst and then follow

up with di�erentiation of the obtained result to get the rossorrelation for position and

veloity and �nally the autoorrelation for the veloity. To do this we will follow Co�ey's

�The Langevin equation� [7℄ by rewriting the Langevin equation for the positions

d2

dt2
x(t) + ξ d

dt
x(t) +ω2

0
x(t) = A(t)

Now hanging to Fourier spae

−ω2x̃ + iωx̃ +ω2

0
x̃ = Ã(ω)

and alulating the power spetrum, using SA(ω) = 2S , see Eq. (1.16):

Sx (ω) =
2S

(ω2

0
−ω2)2 +ω2ξ 2

(1.18)

Note that the power spetrum of the veloity an easily be obtained using ω2Sx = Sv .
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Figure 1.5.: The power spetra Sx (ω) (full) and Sv (ω) (dashed) for Brownian partiles following

Eq. (1.18) (a) for three di�erent values of S with ξ = 1 (b) for three di�erent values

of ξ with S = 1

Using the Wiener-Khinhin theorem we an now obtain the autoorrelation funtion:

〈x(t)x(t + τ )〉 = 2S

2π

∫ ∞

−∞

e−iωτ

(ω2

0
−ω2)2 +ω2ξ 2

dω
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1. Brownian Motion

This integral an be solved by applying the residue theorem to it. Therefore the integral

should be written as ontour integral in the omplex plane. The residues are loated at

ω2

0
−ω2

= ±iξω

ω = ±i ξ
2
±
√
ω2

0
− ξ 2

4
= ±ω1 ± i

ξ

2

where ω2

1
= ω2

0
− ξ 2

4
denotes the natural frequeny of the damped osillator. We assume

τ > 0 and let ω = a + ib be a omplex number, then the numerator of the fration is

eyτ−ixτ and the ontour of the omplex plane should be losed by a semiirle in the

lower half plane. Therefore only the residues with negative omplex values are needed

to solve the integral ω = ±ω1 − i ξ2 . We obtain:

〈x(t)x(t + τ )〉 = S

π

∫ ∞

−∞

e−iωτ dω
(ω −ω1 − iξ/2)(ω −ω1 + iξ/2)(ω +ω1 − iξ/2)(ω +ω1 + iξ/2)

= −2πi S
π

[
e−i(ω1−iξ /2)τ

(−iξ )(2ω1 − iξ )(2ω1)
+

e−i(−ω1−iξ /2)τ

(−2ω1 − iξ )(−2ω1)(−iξ )

]

=

2iS

2iω1ξ
e−ξ τ /2

[ (2ω1 + iξ ) · e−iω1τ + (2ω1 − iξ ) · eiω1τ

4ω2

1
+ ξ 2

]

now taking advantage of the de�nition of ω2

1
to simplify 4ω2

1
+ ξ 2 = 4ω2

0
and rearranging

inside the brakets lets us use Euler's formula:

〈x(t)x(t + τ )〉 = S

4ω2

0
ω1ξ

e−ξ τ /2
[
2ω1 ·

(
eiω1τ

+ e−iω1τ

)
︸                ︷︷                ︸

2 cos(ω1τ )

−iξ ·
(
eiω1τ − e−iω1τ

)
︸               ︷︷               ︸

2i sin(ω1τ )

]
=

=

S

ω2

0
ξ
e−ξ τ /2

[
cos(ω1τ ) +

ξ

2ω1

sin(ω1τ )
]

We an utilise this result to alulate the missing ross-orrelations and the autoorrela-

tion of the veloity:

〈x(t)v(t + τ )〉 = 〈x(t) d
dτ
x(t)〉 = d

dτ
〈x(t)x(t + τ )〉

= − S

ξω2

0

e−ξ τ /2
[
ξ 2

4ω1

+ ω1︸︷︷︸
ω2

0
−ξ 2/4

]
sin(ω1τ )

= − S

ξω1

e−ξ τ /2 sin(ω1τ )

For the seond ross-orrelation we will use the stationarity by shifting the time axis by

−τ :

〈v(t)x(t + τ )〉 = 〈 d
dτ

x(t − τ )x(t)〉 = − d

dτ
〈x(t)x(t + τ )〉 =

=

S

ξω1

e−ξ τ /2 sin(ω1τ )
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1.2. Brownian motion in a harmoni potential

The veloity auto-orrelation funtion is therefore

〈v(t)v(t + τ )〉 = − d2

dτ 2
〈x(t)x(t + τ )〉

=

S

ξ
e−ξ τ /2

(
cos(ω1τ ) −

ξ

2ω1

sin(ω1τ )
)

From this orrelations one an obtain 〈x2〉 = S
ω2

0
ξ
=

kBT

mω2

0

and the expetation value for

the potential energy 〈E
pot

〉 = 1

2
ks 〈x2〉 = 1

2
kBT , using ω2

0
=

k
m
. This result ful�lls the

equipartition theorem. Likewise for the kineti energy 〈v2〉 = S
ξ =

kBT
m , hene 〈E

kin

〉 =
1

2
m〈v2〉 = 1

2
kBT .

1.2.1. Inative partile in an osillatory shear �ow

Kählert and Löwen [11℄ studied the ase of a deterministi osillatory shearing fore

driving an inative partile in a harmoni potential. They solved the ase of one partile

analytially and used Langevin dynami simulations to takle the problem of multiple

partiles. This ase is relevant for the present work, beause the ative partile ould

be thought of as a inative partile driven by an rotating external fore. The important

di�erene is, that the ative partile's fore is rotating via rotational di�usion, while

the osillatory shear fore studied by Kählert and Löwen is stritly deterministi. The

di�erenes beome greater when viewing multiple partiles, beause eah ative partile

has it's own rotating fore, while the shear fore is imposed on all partiles.

They �rst studied the problem of one partile in an osillatory shear �ow, with shear

frequeny Ω, imposing the fore f
shear

= ξ Ûs y cos(Ωt) in x-diretion. Using the present

work's notation, where m denotes the mass, ξ the frition and introduing the shear rate

as Ûs, the one partile problem in a harmoni potential with trap frequeny ω0 reads

Ûχ (t) = A(t)χ (t) + ζ (t)
where χ (t) = (vx (t), vy (t), x(t), y(t))T desribes the two-dimensional veloity (vx ,vy ) and
position (x,y) of the partile. The vetor ζ (t) = (fx (t), fy (t), 0, 0)T /m desribes the

stohasti aeleration of the Brownian partile with

〈ζ (t)〉 = 0, 〈ζ (t)ζT (t ′)〉 = D δ (t − t ′)
where D denotes the di�usion matrix

D =
2ξkBT

m

©«

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

ª®®®¬
The oe�ient matrix A(t) is given by

A(t) =
©«

−ξ 0 −ω2

0
ξ Ûs cos(Ωt)

0 −ξ 0 −ω2

0

1 0 0 0

0 1 0 0

ª®®®¬
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1. Brownian Motion

The shear �ow only a�ets the x-diretion, therefore the equations for vy (t) and y(t) are
equal to the ones of an inative partile in a harmoni trap and have been disussed in

se. 1.2.

Interestingly the solution shows for the ross moments 〈x(t)y(t)〉 and 〈vx (t)vy (t)〉 and
the seond moments 〈x2〉 and 〈v2

x 〉 resonane e�ets for the amplitudes of these moments.

The ross moments are given as

〈x(t)y(t)〉 =Wi

(
kBT

mω2

0

)
Axy cos(Ωt + ϕxy)

〈vx (t)vy (t)〉 =Wi

(
kBT

mω2

0

)
Avxvy cos(Ωt + ϕvxvy )

where Wi = Ûsξ/ω2

0
denotes the Weissenberg number, Ω̄ = Ω/ω0 and ξ̄ = ξ/ω0. The

amplitudes are

Axy =

[
4ξ̄ 2 + Ω̄

2

(ξ̄ 2 + Ω̄2)[4ξ̄ 2Ω̄2
+ (Ω̄2 − 4)2]

]1/2

Avxvy =

[
Ω̄
2

(ξ̄ 2 + Ω̄2)[4ξ̄ 2Ω̄2
+ (Ω̄2 − 4)2]

]1/2
and the phase angles

tanϕxy = ξ̄ Ω̄

[
Ω̄
2
+ 4(ξ̄ 2 + 1)

Ω̄4 − 4Ω̄2
+ 4ξ̄ 2(Ω̄2 − 2)

]

tanϕvxvy =
ξ̄

Ω̄

[
3Ω̄2 − 4

Ω̄2 − 2ξ̄ 2 − 4

]

And the seond moments for x and vx are given as

〈x2(t)〉
kBT/mω2

0

= 1 +Wi

2[dx +Axx cos(2Ωt + ϕxx )]

〈v2
x (t)〉

kBT/mω2

0

= 1 +Wi

2[dx +Avxvy cos(2Ωt + ϕvxvy )]

The orresponding amplitudes and phase angles are quite lengthy and an be looked

up in [11℄. Muh more enlightening are the plots of the amplitudes, phase angles and

onstant terms in �gures 1.6 and 1.7

While the ross moments peak at Ω/ω0 = 2 for low frition ξ/ω0 ≈ 10−2, the seond

moments show two peaks. One at Ω/ω0 = 1 and the other at Ω/ω0 = 2. At intermediary

frition ξ/ω0 ≈ 10−1 the �rst peak beomes dominant for 〈x2〉.
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1.3. Threedimensional ase

Figure 1.6.: (a) and (b) show the phase angles

and () and (d) the Amplitudes of

〈x y〉 and 〈vxvy〉, Reprinted �gure

with permission from [11℄ Copy-

right 2018 by the Amerian Phys-

ial Soiety

Figure 1.7.: (a) and (b) show the Amplitudes,

() and (d) the onstant terms

of 〈x2(t)〉 and 〈v2

x (t)〉, Reprinted

�gure with permission from [11℄

Copyright 2018 by the Amerian

Physial Soiety

1.3. Threedimensional ase

The di�erent omponents of the veloity and position in three dimensional spae of the

Brownian motion are independent from eah other and therefore the results from above,

all obtained for the one-dimensional Langevin equation, an be easily generalized to three

dimensions. Beause the simulations for the present thesis are done in three dimensions

the important results for this ase will be summarized here. The positions will be denoted

as ®x = (x1,x2,x3) and the veloities as ®v = (v1,v2,v3).

1.3.1. Free Brownian motion

The initial position in phase spae is (®x0, ®v0). The Langevin equation for the problem

reads

d ®x
dt
= ®v d ®v

dt
= −ξ ®v + ®A(t)

with the following properties for the random aeleration

®A = (A1,A2,A3), and S = ξ kBT
m

〈Ai (t)〉 = 0 〈Ai (t)Aj (t ′)〉 = 2S δi jδ (t − t ′)

Important means are (〈.〉 ®v0
denoting the mean under the assumption of ®v(0) = ®v0):
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1. Brownian Motion

〈®v〉 ®v0
= ®v0 e−ξ t 〈®v2〉 ®v0

= ®v2

0
e−2ξ t + 3S

ξ
·
(
1 − e−2ξ t

)

〈®v2〉 = 3S
ξ

〈(®x − ®x0)2〉 = 6S
ξ 3

(
ξt − 1 + e−ξ t

)
〈Ekin〉 = 3

2
m S

ξ
=

3

2
kBT

The veloity's autoorrelation reads, for τ ≥ 0

〈®v(t) ®v(t + τ )〉 = 3S

ξ
e−ξ t

The Fokker-Plank equation for the probability distribution funtion p(®v , t) reads
∂p(®v , t)
∂t

= ξ · ∂
∂ ®v

[
®v p(®v , t)

]
+ S · ∂

2

∂ ®v2
p(®v , t)

and the stationary solution ∂p0(®v)/∂t = 0 is

p0(®v) =
(
ξ

2πS

)3/2
e−ξ ®v2/2S

The power spetra for the position and veloity read:

S ®x (ω) =
1

ω2
· 6S

ξ 2 +ω2
S ®v (ω) =

6S

ξ 2 +ω2

1.3.2. Brownian motion in a harmoni potential

The Langevin equation for the problem reads

d ®x
dt
= ®v d ®v

dt
= −ξ ®v + ®A(t) −ω2

0
®x

The Fokker-Plank Equation for the probability distribution p(®x , ®v, t) is
∂p

∂t
+ ®v ∂p
∂®x −ω2

0
®x ∂p
∂ ®v = S

∂2p

∂®x2 +
∂

∂ ®v (ξ ®vp)

The stationary solution ∂p0/∂t = 0 reads:

p0(®x , ®v, t) = C e−ξ ks ®x
2/2S e−ξ ®v2/2S

The auto- and ross-orrelation have been obtained as - noting that ω1 is de�ned via

ω2

1
= ω2

0
+

ξ 2

4

〈®x(t) ®x (t + τ )〉 = 3S

ω2

0
ξ
e−ξ τ /2

[
cos(ω1τ ) +

ξ

2ω1

sin(ω1τ )
]

〈®v(t) ®x (t + τ )〉 = −〈®x(t) ®v(t + τ )〉 = 3S

ξω1

e−ξ τ /2 sin(ω1τ )

〈 ®v(t) ®v(t + τ )〉 = 3S

ξ
e−ξ τ /2

[
cos(ω1τ ) −

ξ

2ω1

sin(ω1τ )
]
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1.3. Threedimensional ase

The power spetra are

S ®x (ω) =
6S

(ω2

0
−ω2)2 +ω2ξ 2

S ®v (ω) =
6S

(ω2

0
/ω −ω)2 + ξ 2

The means of the squares ful�ll the equipartition theorem:

〈®x2〉 = 3 S
ω2

0
ξ

〈Epot 〉 = 3

2
m S

ξ =
3

2
kB T

〈®v2〉 = 3 S
ξ 〈Ekin〉 = 3

2
m S

ξ =
3

2
kB T
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2. Ative Partiles

2.1. Introdution

Ative partiles an be de�ned as partiles undergoing Brownian motion, whih an take

up energy from the surrounding and onvert it into an kineti energy. This de�nition

is broad enough to enlose motile ells, Brownian motors and arti�ial self-propelled

partiles.

There are two dominant models for ative partiles: the rotational di�usive and the

run-and-tumble model. The present work uses only the rotational di�usive model, be-

ause it's physially loser to most arti�ial ative partiles. The run-and-tumble model

is more suited for bateria, whih hange their ativities diretion with a mean tumble

rate of α . Tailleur and Cates [5℄ studied in whih ases these two models are idential,

with respet to phase separation.

2.2. Overdamped ative partiles

The overdamped ase is insofar interesting for the present thesis, beause it's the best

studied ase for ative partiles. The analytial desription of the partile's motion is

possible in this ase, see Ref. [27℄, and the results of the theory will provide a �rst test

for my simulation, as it should onverge to the overdamped ative partile if the frition

rises. Here, I will present only the most important results for this ase.

The equations of motion in the two-dimensional ase read

Ûx = vA cos(φ) +
√
2DT ζx , Ûy = vA sin(φ) +

√
2DT ζy , Ûφ =

√
2DR ζφ

where vA is the �strength� of the ativity, DT and DR are the di�usion onstants for

translation and rotation, respetively, φ denotes the angle between the ativity's diretion

and the x-axis and ζx , ζy and ζφ are independent white noise stohasti proesses with

zero mean and unit variane.

Assuming that x(0) = x0, y(0) = y0 and φ(0) = φ0 these equations an be integrated,

usingW i
t =

∫ t
0
ζi (t ′)dt ′ to denote the Wiener proess, with i = x, y, φ:

x = x0 +vA

∫ t

0

cos(φ(t ′))dt ′ +
√
2DTW

x
t

y = y0 +vA

∫ t

0

sin(φ(t ′))dt ′ +
√
2DTW

y
t

φ = φ0 +
√
2DRW

φ
t
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2. Ative Partiles

While Löwen et al. present in Ref. [27℄ only the equations of motion and the analytial

solution to the position's average and the MSD I will use the spae a master thesis grants

and present the steps leading to the solution in the appendix. Taking the averages, using

〈W i
t 〉 = 0 and 〈ei(φ0+

√
2DRW

φ
t )〉 = eiφ0 · e−Dr t

(see Appendix B.1.1), one obtains, see Ref.

[27℄,

〈x − x0〉 =
vA

DR
·
(
1 − e−DR t

)
· cos(φ0)

〈y − y0〉 =
vA

DR
·
(
1 − e−DR t

)
· sin(φ0)

〈φ − φ0〉 = 0

The di�erene to the passive partile an be seen in the expetation value for the x-

omponent of the position. If the initial value of the ativity's diretion is hosen as

φ0 = 0 and therefore parallel to the positive x-axis, the partile will at �rst move along

this diretion. This movement lasts until the ativity's diretion is randomized enough by

the rotational di�usion. Before this happens the partile moves in x-diretion to a mean

value of vA D
−1
R , letting us de�ne τR = D

−1
R as harateristi time sale for the overdamped

Brownian rotational motion before rotational di�usion randomizes the diretion of the

ativity.

The mean squared displaement an be alulated, as has been done by Löwen et al.

[27℄, using 〈Wt 〉 = 0, 〈W 2

t 〉 = t and 〈cos(φ(t ′)) cos(φ(t ′′))+ sin(φ(t ′)) sin(φ(t ′′))〉 = e−Dr (t ′′−t ′)

(see Appendix B.1.2):

〈(x − x0)2 + (y − y0)2〉 =
[
4DT + 2

v2

A

DR

]
· t + 2

v2

A

D2

R

·
(
e−DR t − 1

)

for long times t ≫ τR the MSD onverges to [4DT + 2v2

A/DR ] t and is therefore steeper

than the expeted 4DT t for an inative partile. One ould de�ne, in an analogous way

to the passive Brownian partile, an e�etive di�usion oe�ient D
e�

= DT +v
2

A/2DR and

for long times ompare the di�usion of the ative partile with the di�usion of a passive

Brownian partile with a higher e�etive temperature

T
e�

=

γD
e�

kB
=

γ

kB
·
(
DT +v

2

A/2DR
)

This might lead to the assumption that ative partiles are equivalent to hotter inative

partiles, but this piture only holds in simple ases, as Tailleur and Cates show in their

study of ative pariles in external potentials [26℄.

Now to the veloities of the ative partile. The means are

〈 Ûx〉 = vA e−Dr t cos(φ0) 〈 Ûy〉 = vA e−Dr t sin(φ0)
and the veloity's seond moment 〈®v2〉 = 〈 Ûx2 + Ûy2〉 an be alulated, using 〈ζi〉 = 0 and

〈ζ 2i 〉 = 1, as

〈®v2〉 = v2

A〈cos2(φ(t))〉 + 2DT +v2

A〈sin2(φ(t))〉 + 2DT
= 4DT +v

2

A
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2.3. Underdamped ative partiles

The mean veloity reminds one of the Brownian partile's mean veloity, if they are

subjet to inertia. Setting ®v0 = vA · (cos(φ0), sin(φ0)) makes these equations idential to

the ones from Ornstein and Uhlenbek, see Eq. (1.10), where the rotational di�usion

onstant takes the role of the frition.

It's mathematially more omplex to investigate an ative partile with two rotational

freedoms (φ,θ ) for the diretion of the partile's ativity (sin(θ ) cos(φ), sin(θ ) sin(φ), cos(θ )).
The MSD and the average position an be alulated using spherial harmonis like Löwen

et al. did in Ref. [27℄. Denoting the partiles position at time t as ®x and the angles

de�ning the initial ondition of the ativity's diretion as (φ0,θ0) one obtains:

〈®x − ®x0〉 =
1

2

vA

DR

(
1 − e−2DR t

)
· ©«
sin(θ0) cos(φ0)
sin(θ0) sin(φ0)

cos(θ0)
ª®¬

〈(®x − ®x0)2〉 =
(
6DT +

v2

A

DR

)
t +

1

2

(
vA

DR

)2 [
e−2DR t − 1

]
(2.1)

2.3. Underdamped ative partiles

Underdamped ative partiles have been investigated, e.g. by Shweitzer et al. [21℄ and

Shimansky-Geier et al. [17℄ theoretially, but these usually assumed, that the ativity's

diretion is idential to the diretion of the partile's veloity. This assumption enables

one to analytially obtain the mean squared displaement, stationary veloity distribution

and other statistially relevant parameters. These assumption an be extended to the

model of the present paper, if the ativity's rotation is slow ompared to the veloity

relaxation time and the ativity is high ompared to the partile's mean speed resulting

from thermal di�usion.

2.3.1. Underdamped and freely rotating

In the present thesis the ase of an underdamped ative partile in three dimensions,

where the ativity's diretion is undergoing rotational di�usion is investigated. The

frition fores use Stokes' frition oe�ients, for the translation γT = 6πηR and for the

rotation γR = 8πηR3, where η is the visosity of the medium and R the partile's radius.

The ativity is modeled as a fore in the ativity's diretion ®a, with | ®a | = 1. The strength

of the fore is hosen in a manner that the average speed of the partile approahes a

�xed value of vA for a �xed diretion,

d ®a
dt
= (0, 0, 0). I assume that the diretion of the

partile, similar to a Janus partile [4℄, is undergoing rotational di�usion with a di�usion

oe�ient DR =
kBT
γR

. The partile also experienes the translational di�usion of a passive

Brownian partile with the di�usion oe�ient DT =
kBT
γT

.
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2. Ative Partiles

Aordingly, the Langevin equations read

d ®x
dt
= ®v (2.2)

m
d ®v
dt
= −γT ®v + γTvA ®a +

√
2γ 2
T
DT ®ζT (2.3)

d ®a
dt
= ®ω × ®a (2.4)

I
d ®ω
dt
= −γR ®ω +

√
2γ 2RDR

®ζR (2.5)

where ζR,i and ζT ,i are independent Gaussian proesses with zero mean and unit variane

and ®ω denotes the angular veloity of the diretion ®a. The mass of the partile is m and

the moment of inertia I = 2

5
mR2 for a spherial partile. A similar approah has been used

by Enulesu et al. [10℄, with the di�erene, that they used to model the ativity with a

�xed veloity, instead of a �xed aeleration. Their approah leads to an additional term

of +vA( ®ω × ®a) for the derivative of the translational momentum, whih ensures that the

partile, even if it is rotating very fast, keeps a mean speed of vA. The equations above

imply that for a fast rotating partile, the ative term nearly vanishes, beause the fore

γTvA®a hanges diretion faster than the veloity of the partile an, due to inertia.

The angular veloity is undergoing Brownian motion like we studied in setion 1.1.2.

Using these results we an write, using ξR =
γR
I
and ®ω(0) = ®ω0:

®ω = ®ω0 e
−ξRt
+ e−ξR t

∫ t

0

eξRt
′
√
2ξ 2

R
DR ®ζR(t ′)dt ′

〈 ®ω〉 = ®ω0 e
−ξRt

and for the mean squared angular veloity

〈 ®ω2〉 = ®ω2

0
e−2ξRt + 3ξRDR ·

(
1 − e−2ξR t

)

The equipartition theorem for the three rotational degrees of freedom is obeyed in the

long run (t → ∞), if one keeps in mind that DR =
kBT
I ξR

and

〈E
rot

〉 = 1

2
I 〈 ®ω2〉 = 3

2
kBT

The problem of desribing the statistial parameters, espeially the distribution and the

autoorrelation funtion, of a unit vetor's underdamped Brownian motion on a sphere

has been takled by, amongst others, Sak [19℄, Steele [24, 25℄ and Lewis et al. [12℄.

While Sak used the Liouville's equation and ontinued frations to arrive at the omplex

polarization, Steele and Lewis foused on the autoorrelation funtion. Lewis et al. [12℄

derived a series to represent 〈®a(t)〉 and 〈®a(t) ®a(t+τ )〉 whih is not easily extended to higher
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2.3. Underdamped ative partiles

orders. I will therefore use Steele's approximation for the autoorrelation funtion, whih

reads in the notation used in this work

〈®a(t) ®a(t + τ )〉 = exp

[
− 2

DR

ξR

(
ξRτ + e

−ξRτ − 1

)]
(2.6)

Steele mentions that this equation is a good approximation if ξR/DR > 1

4
, but gets worse

for smaller values. In ase of a small frition - ξR/DR < 1

4
- one an expet, the the unit

vetor should osillate and this should be seen in the ACF. But Steele's approximation is

positive and dereasing monotonously for all times, independent of the hoie of ξR/DR .
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Figure 2.1.: (a) Steele's approximation for the ACF of a unit vetor undergoing Brownian motion

for di�erent values of ratios of ξR/DR . (b) Non-normalized veloity distribution P0( ®v)
at vz = 0, for vA = 2 and ξT DT = 1.

If the harateristi rotation time 〈| ®ω |〉−1 =
√
π I/8kBT of the partile

1

is smaller than

the veloity's memory ξ−1T and the ativity's strength vA is high ompared to the ther-

mal �utuations

√
kBT/m then the veloity of the partile will be mostly parallel to the

ativity's diretion. This is similar to the ase desribed by Shimansky-Geier et al. [17℄

as �Ative Brownian partiles with veloity-dependent frition�. The equation then reads

d ®v
dt
= −ξT ®v

(
1 − vA

| ®v |

)
+

√
2ξ 2TDT

®ζT (2.7)

The �rst term is positive, if the partile has a speed smaller than vA and therefore pumps

energy into the system. If the speed is higher than vA then the frition term dissipates

1

In the ase of no frition, this expression is equal to the mean rotation time. For fritions bigger than

zero the mean rotation time will be bigger than 〈| ®ω |〉−1. Lewis et al. de�ned in Ref. [12℄ τ1 =
√
I/kBT

as mean thermal angular period
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2. Ative Partiles

energy. Modeling the ative fore in this formulation as a frition was �rst done by

Shienbein and Gruler in 1993 [20℄. The stationary veloity distribution for Eq. (2.7)

reads

P0(®v) = N e−( | ®v |−vA)2/(2ξTDT )

and an be seen in Fig. 2.1b. In three dimensions this distribution looks like a spherial

shell, with the maximum at | ®v | = vA.

2.4. Ative partiles in a harmoni potential

2.4.1. Overdamped ase

Overdamped ative Brownian partiles in a radially symmetri trapping potential have

been studied analytially and via simulation by Pototsky and Stark [16℄. Besides studying

the ase of a single partile, they applied the dynami density funtional theory (DDFT)

of interating ative partiles to alulate a stationary radial distribution funtion for

multiple partiles. Important for the present work is their solution for a single partile in

2D traps, beause the simulation should mimi their results in the ase of high frition.

They start at the overdamped equations

Û®x = −µ∇U +vA ®a + ®ξ (t), Û®a = ®η(t) × ®a

where ®x is the partiles position, the unit vetor ®a the ativity's diretion, U (®x) the

trapping potential, µ the mobility, vA the ativity and

®ξ (t) and ®η(t) represent translational
and rotational noise, respetively. These random terms ful�ll 〈 ®ξ (t) ®ξ (t ′)〉 = 2 µ kB T δ (t−t ′)
and 〈®η(t)®η(t ′)〉 = 2Dr δ (t − t ′).
They solve the Smoluhowski equation for this problem to alulate the probability

density ρ(®x , ®a, t) and arrive at partial di�erential equations for the e�etive probability

�ux, whih are not generally integrable. Only for small and large rotational di�usion

oe�ients Dr is the equation solvable. For onviene let's de�ne the Pelet number

Pe = (d v
A

)/(µkBT ), with d being the diameter of the partile. The Pelet number is

measure for how muh in�uene the ativity of the partile has, ompared to the thermal

�utuations.

In the ase of small rotational di�usion the ativity's diretion ®a is nearly onstant, as

far as the potential U is onerned. Therefore the ativity and the trapping potential's

fore an be written as the fore originating from an e�etive potentialU
e�

. This shifts the

minimum of the potential from |®r0 | = 0 to the one obeying the ondition
dU

e�

(r )
dr

|r=r0 = Pe.
The partile will behave as an inative Brownian partile in the e�etive potential.The

distribution along a radius approximated to the zeroth order of Dr is obtained as

ρ
(0)
s (r ) = 2π C e−U (r ) I0(Pe r ) (2.8)

where I0(x) is the modi�ed Bessel funtion of the �rst kind. The shape of the distribu-

tion funtion ρ(0)(r ) is highly dependent on the Pelet number. For small values of Pe

translational di�usion prevails and the partile stays near the origin. For large values
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2.4. Ative partiles in a harmoni potential

the enter of the e�etive potential shifts far enough to get a maximum of ρ(r ) at r0 > 0.

The transition is loated at the ritial Pelet number Pe

(c)
=

√
2U ′′(0). The distribution

alon a radius for strong trapping an be seen in Fig. 2.2 (a).

In the limit of large rotational di�usitivity the distribution funtion along a radius

hanges to a bell shape with maximum at r = 0. They �nd that there is for eah Pelet

number a spei� value of Dr to provoke the hange in shape of the distribution funtion.

If the typial rotation time

π 2

Dr
of the partile is muh smaller than the run-up time of

the potential τr =

[
∂2U (r )
∂r 2

|r=r0
]−1

then a bell-shaped distribution around r = 0 is to be

expeted.

Pototsky and Stark simulated the ase of one partile in the harmoni potential and

ould verify their analytial results for the radial distribution funtion with respet to

the rotational di�usion oe�ient and to the strength ativity. As one an see in Fig.

2.2 (b) the mean radius of the partile inreases monotonially with dereasing Dr , up

to a value obeying the equation

dU (r )
dr |r=r0 = Pe.

Figure 2.2.: (a) The density along a radius for slow rotational di�usivity at di�erent Pelet num-

bers. The full lines represent the numerial solution of the Langevin equations, the

dashed lines Eq. (2.8) (b) Transition from fast to slow rotational di�usivity at �xed

Pelet number Pe=20. From [16℄

2.4.2. Underdamped and freely rotating

The equation (2.3) is hanged by adding the external fore

®f
pot

= −ks ®x , where ks denotes
the spring onstant of the potential and reads

m
d ®v
dt
= −γT ®v + γT vA ®a − ks ®x +

√
2γ 2
T
DT ®ζT

31



2. Ative Partiles

The trap frequeny of the potential is ω0 =

√
ks
m and we will use ξT =

γT
m where onve-

nient. I will take a similar approah to Pototsky and Stark [16℄, disussed in a previous

subsetion 2.4.1, splitting the problem in the slow rotation and the fast rotation of the

ativity's diretion.

The problem looks similar to the one studied by Kählert and Löwen [11℄, with the ael-

eration imposed by the ativity ξTvA®a(t) playing the part of the shear �ow ξT Ûs y cos(Ωt).
The main di�erene, making the analytial desription far more ompliated, is the

stohasti diretion ®a(t) of the aeleration. Nonetheless one an expet resonane ef-

fets, if the mean rotation frequeny of the ativity's diretion equals the osillation

frequeny ω0.

2.4.2.1. Slow rotation

If the harateristi time of the partile's rotation τR = 〈| ®ω |〉−1 is large ompared to the

run-up-time of the potential

2

ω0
and the value of γTvA is small enough, then the ativity's

fore fa(t) = γTvA®a(t) is nearly onstant for the time-sale of the osillation

1

ω0
. Therefore

the partile will be subjet to an e�etive fore

®f
e�

= γTvA ®a − ks ®x . This fore an be

rewritten as

®f
e�

= −ks
(
®x − γTvA

ks
®a
)
. This is the fore of an harmoni potential with the

minimum at

γTvA
ks

®a. As long as ®a doesn't hange the partile will osillate around this

new minimum, like an inative partile, following the equation:

Û®v = −ξT ®v +
1

m
®f
e�

(®x) +
√
2ξ 2TDT

®ζT

We an treat this equation, like the one for the Brownian partile in se. 1.2. To derive

the potential energy, we will use the Fourier transform and the Wiener-Khinhin-theorem,

assuming ®a as onstant. Writing ω2

0
=

ks
m
, r0 =

γT vA
ks

for brevity's sake:

[
(−ω2

+ω2

0
)2 + ξ 2Tω2

]
· ®̃x2 =

(
ω2

0
r0 ®a δ (ω) +

√
2ξ 2
T
DT · ®̃ζT

)2
(2.9)

Taking the average on both sides, keeping in mind that ζi has zero mean, therefore ζ̃i
too, and with the above de�nition a power spetrum of Sζ = 1 we obtain the position's

power spetrum S ®x . Using the Wiener-Khinhin-theorem leads to the auto-orrelation

funtion

〈®x(t) ®x(t + τ )〉 = r2
0
+ 3 · ξTDT

ω2

0

· e−ξT τ /2 ·
[
cos(ω1τ ) +

ξT

2ω1

sin(ω1τ )
]

(2.10)

where ω2

1
= ω2

0
− ξ 2T

4
. For τ = 0 we obtain

〈®x2(t)〉 = r2
0
+ 3 · ξTDT

ω2

0

(2.11)
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2.4. Ative partiles in a harmoni potential

and for the potential energy

〈E
pot

〉 =
mω2

0

2
〈®x2(t)〉 =

mω2

0

2
r2
0
+

3

2
γT DT

using DT =
kBT
γT

and r0 from above:

〈E
pot

〉 =
γ 2Tv

2

A

2ks
+

3

2
kBT (2.12)

The kineti energy would be, for quasi-stati ®a, only as big as the stohasti term

allows: 〈Ekin〉 = 3

2
kBT . We obtain the autoorrelation funtion of the veloity by taking

the seond negative derivative of the position's autoorrelation funtion:

〈®v(t) ®v(t + τ )〉 = 3ξTDT e
−ξT τ /2

[
cos(ω1τ ) −

ξT

2ω1

sin(ω1τ )
]

(2.13)

this is exatly the autoorrelation for the inative partile, as expeted.

The energies stop following the equipartition theorem for slow rotation and ative

partiles. For quasi-stati ®a the kineti energy will be equal to the inative partile

3

2
kBT . It's easy to see in Eq. (2.12) that the potential energy is the sum of an inative

part and an ative part.

In the long run the ativity's diretion ®a should be equi-distributed over the unit

sphere. Slow hanges, as assumed above with τR ≫ 2

ω0
and v0ω0 ≫ γTvA, will result

in slow hanges of the minimum and the partile has time to follow aordingly. In the

equilibrium state (t → ∞) the probability distribution is radial symmetri. The maxima

of the distribution should be found at the irle with radius r0 =
γTvA
ks

, for r0 ≫ l0.

The distribution of the position ρ(®x) should be proportional to e−βUe�( ®x ) and therefore

ρ(®x) = C · e−Ue�( ®x )

The e�etive potential reads U
e�

=
ks
2
(®x − r0 ®a)2. Simplifying and using ®x2 = r2 and

denoting the angle between ®a and ®x as ψ : U
e�

=
ks
2
r2 − ks r0 r cos(ψ ) + ks

2
r2
0
. The

distribution then reads

ρ̃(r ,ψ ) = C1 · e−ks r
2/2+ks r0r cos(ψ )

absorbing the onstant term of the potential into the onstant C1. To obtain the distri-

bution along a radius, we will need to integrate over ψ . This approah is very similar to

the one Pototsky and Stark [16℄ used, and yields

ρ(r ) = 2π C e−ks r
2/2 I0(γTvAr )

where C an be alulated using the normalization

∫ ∞
0
ρ(r )dr = 1, and I0(x) denotes the

modi�ed Bessel funtion of the �rst kind.

The veloities for a slow rotating partile should stay Gaussian distributed. The exat

treatment of the distribution's seond moment follows in the next subsetion.
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2. Ative Partiles

2.4.2.2. Rotation period near osillation period

Pototsky and Stark [16℄ found in their study of the overdamped ative partile in a

harmoni potential only a transition from the state of the fast rotation to the slow

rotation. In onstrast to this paper I expet to �nd resonant behaviour of the partile

for the underdamped ase, like Kählert et al. [11℄ did for a deterministi fore.

This expetation an be justi�ed as follows: The ativity is pumping additional energy

into the system, whih is dissipated through (translational) frition. The amount of

energy per unit time that an be absorbed by the system is highly dependend on the

frequeny of the ativity. While Kählert et al. used an external fore with a single

frequeny, the frequeny spetrum of the stohasti ativity is ontinuous. It an be

analyzed by examining the power spetrum of the ativity's diretion.

The total absorbed energy per unit time P
abs

is then, see e.g. Chandler's �Introdution

to modern statistial mehanis� [6℄ hapter 8, proportional to

P
abs

∝
∫

ω2S i®x (ω)S ®f (ω)dω (2.14)

where S i®x denotes the power spetrum of the position of the unpertubed, inative partile,

S ®f the power spetrum of the fore disturbing the system, onsisting of the random

thermal �utuations and the ativity, and ω the frequeny.

The power spetrum of the inative partile has been alulated in se. 1.3.2 as

S i®x =
6 ξ 2T DT

(ω2

0
−ω2)2 +ω2ξ 2

T

The perturbation's power spetrum is de�ned as

S ®f (ω) =
〈����
∫

eiωt [vA ξT ®a(t) +
√
2ξ 2
T
DT ®ζT (t)]dt

����
2〉

Beause the ativity and the random thermal �utuations are independent, the power

spetrum of the total fore is essentially the sum of the power spetrum of the thermal

�utuation, whih is known from subse. 1.1.4, and the power spetrum of the ativity's

fore:

S
ative

(ω) =
〈����
∫

eiωt vA ξT ®a(t)dt
����
2〉
= v2

Aξ
2

T ·
〈����
∫

eiωt ®a(t)dt
����
2〉

The last expression is simply the power spetrum of the ativity's diretion S ®a and an be

alulated via the Wiener-Khinhin theorem if the autoorrelation funtion 〈®a(t) ®a(t +τ )〉
is known. Using the autoorrelation funtion, see Eq. 2.6:

S ®a(ω) =
∫

e−iωτ 〈®a(t) ®a(t + τ )〉 dτ (2.15)

=

∫
exp

{
− 2

DR

ξR

[
(1 + i ω

2DR
) ξR τ + e−ξRτ − 1

] }
dτ (2.16)
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2.4. Ative partiles in a harmoni potential

Now we an rewrite Eq. (2.14) as

P
abs

= C ·
∫ ∞

−∞
ω2S i®x (ω) · (6ξ

2

TDT +v
2

Aξ
2

T S ®a(ω))dω (2.17)

To alulate C, let's ompare the integral above with the power that should be dissipated

by the frition term of the Langevin equation in the ase of an inative partile. The

work the frition fore −γ ®v performs is simply −γ ®v d®x . The orresponding power, being

work per unit time, is therefore −γ ®v d ®x
dt . This means that the mean dissipated power for

an inative partile is:

P
dis

= −γ 〈®v2〉 = −3γ mkBT

Then C an be alulated requiring stationarity P
dis

+ P
abs

= 0 with vA = 0, as

C =
m2

kBT
· 1

12π

For an ative partile we an write

P
dis

= −γ 2

m
〈E

kin

〉

P
abs

+ P
dis

= 0

Cv2

Aξ
2

T

∫
ω2S i®x (ω)S ®a (ω)dω +C 6 ξ 2TDT

∫
ω2S i®x (ω)dω − 2ξT 〈Ekin〉 = 0

The seond term should evaluate to the ase of the inative partile with 2ξT 〈E
kin,passive〉 =

3ξT kBT

〈E
kin

〉 = m2

kBT

ξTv
2

A

24π

∫ ∞

−∞
ω2S i®x (ω)S ®a (ω)dω +

3

2
kBT

Beause the integral in the last equation is independent from the ativity vA, the ki-

neti energy and the seond moment of the veloity distribution are always going to rise

quadratially with respet to vA. It's not so simple for the frition ξT , beause S ®x and S ®a
both hange with respet to ξ and the integral is not analytially solvable.

The integrals (2.17) and (2.16) an be solved numerially, to disuss the expeted

absorbed power, see Fig. 2.3.

Now to the potential energy and the seond moment of the position〈®x2〉. In the subse.

2.4.2.1 onerning the slow rotating partile, we alulated 〈®x2〉 via Fourier transforma-

tion of the Langevin equation. Furthermore we assumed that the ativity's diretion ®a
is onstant and therefore ®̃a = ®a δ (ω). Let's now drop the last assumption and rewrite Eq.

(2.9): [
(−ω2

+ω2

0
)2 + ξ 2Tω2

]
· ®̃x2 =

(
ξT vA ®̃a +

√
2ξ 2
T
DT ®̃ζT

)2
(2.18)

One an now write for the power spetrum of the position, using that 〈 ®̃ζT 〉 = 0, 〈| ®̃ζT |2〉 = 3

and that

®̃ζT and ®̃a are mutually independent:

S ®x (ω) =
ξ 2T v

2

A S ®a (ω)
(−ω2

+ω2

0
)2 + ξ 2Tω2

+

6ξ 2TDT

(−ω2
+ω2

0
)2 + ξ 2Tω2
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2. Ative Partiles

The seond term is equal to the position's power spetrum of an inative partile, splitting

the total power spetrum into an ative and an inative part. The ACF of the position

then reads, using the Wiener-Khinhin theorem

〈®x(t) ®x (t + τ )〉 = 1

2π

∫ ∞

−∞
S ®x (ω) eiωτ dω

〈®x(t) ®x (t + τ )〉 = 1

2π

∫ ∞

−∞

ξ 2T v
2

A S ®a(ω) eiωτ

(−ω2
+ω2

0
)2 + ξ 2

T
ω2

dω + 〈®x(t) ®x (t + τ )〉
inative

This an be further simpli�ed by using the power spetrum of the inative partile S i®x

〈®x(t) ®x(t + τ )〉 =
γTv

2

A

12πkBT

∫ ∞

−∞
S i®x (ω)S ®a (ω) e

iωτ dω + 〈®x(t) ®x(t + τ )〉
inative

To obtain the potential energy, we are only interested in 〈®x2〉, setting τ = 0 and using

〈®x2〉
inative

= 3 kBT

ω2

0
m
:

〈®x2〉 =
γT v

2

A

12πkBT

∫ ∞

−∞
S i®x (ω)S ®a (ω)dω + 3

kBT

ω2

0
m

The potential energy reads

〈E
pot

〉 =
ks γT v

2

A

24πkBT

∫ ∞

−∞
S i®x (ω)S ®a (ω)dω +

3

2
kBT (2.19)

This alulation an also be done for the veloity. The power spetrum of the veloity is

easily obtained by S ®v = ω
2S ®x . Following the train of thought from above, one arrives at

〈®v2〉 =
γT v

2

A

12πkBT

∫ ∞

−∞
ω2S i®x (ω)S ®a (ω)dω + 3

kBT

m

and for the kineti energy

〈E
kin

〉 =
mγT v

2

A

24πkBT

∫ ∞

−∞
ω2S i®x (ω)S ®a (ω)dω +

3

2
kBT (2.20)

whih is exatly the same result - notie, that mξT = γT - as obtained above using the

absorbed power of the harmoni osillator. Note that these derivations are independent

of the way ®a(t) is obtained.
The kineti and potential energy have been determined by numerially alulating

the integrals in eqs. (2.19) and (2.20) and plottet in Fig. 2.3. The potential energy

transitions for high frition from the slow rotating ase of (see Eq. (2.12) above) to the

fast rotating ase. If the frition dereases, the potential energy an show a peak at

intermediate rotation frequenies.

The kineti energy will always have a peak with respet to the rotational frequeny, and

the value of the frequeny is depending on ξT . One an see, that the lower the visosity
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2.4. Ative partiles in a harmoni potential

the nearer is the peak of the kineti energy to 〈| ®ω |〉/ω0 = 1. If the mean rotation time

of the partile is near to the frequeny of the harmoni trap the absorbed power should

be at a maximum and therefore the kineti energy too. The exat value of 〈| ®ω |〉 for the
maximum is not easy to �nd via the numerial solution, beause the slope is quite �at

over a wide range of values. For ξT /ω0 = 0.5 it seems that the maximum is indeed at a

〈| ®ω |〉 higher than the natural osillation frequeny, see Fig. 2.3b, and at ξT /ω0 = 0.25

the maximum is de�nitely nearer to 〈| ®ω |〉 = ω0. Beause the absolute value of the ative

fore depends on the ativity's strength vA and the frition ξT the maximum value of

the absorbed power dereases with dereasing frition. If one would keep the ative

fore onstant over di�erent values of ξT by de�ning vA =
1

ξT
the maximum value of the

absorbed power would rise with dereasing frition ξT . One an also see that for fast

rotations the equipartition theorem seems to be obeyed again.

2.4.2.3. Fast rotation

If the rotation is fast with respet to the osillation period, then the ative fore will

appear as random, equi-distributed fore to the potential. The fore exerted by the

ativity will sum up to zero, over one period of osillation and therefore the behaviour of

the partile shouldn't di�er from a passive partile. There will be ouranes, when the

preferred diretion will hange slower, then the partile will get a boost in that diretion.

This should be equivalent to a stohasti fore, like we introdued for the Brownian

motion. Added to the Brownian Motion the partile already performs, it should look like

a Brownian motion in a heat bath with a higher temperature. Therefore the positions and

veloities should stay Gaussian distributed, but with 〈®x2〉 and 〈®v2〉 rising with respet to

the ativity vA.

For the frequenies where S i®x ≫ 0 one an assume that the power spetrum of the

ativity's diretion is nearly onstant S ®a(ω) = S ®a (0), see Fig. 2.4.
Using the derivation from before, we an state that

〈E
kin

〉 = m2

kBT

ξT v
2

A

24π
S ®a(0)

∫ ∞

−∞
ω2S i®x (ω)dω +

3

2
kBT

integration yields

〈E
kin

〉 = m2

kBT

ξT v
2

A

24π
S ®a(0) 3π

kBT

m
+

3

2
kBT

=

γTv
2

A

8
S ®a(0) +

3

2
kBT
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Figure 2.3.: Numerial solutions of the integral in Eq. (2.20) for the potential energy (full) and

Eq. (2.19) for the kineti energy (dashed) for di�erent values of the translational

frition ξT /ω0 with respet to the rotational di�usion 〈| ®ω |〉/ω0. The natural osilla-

tion frequeny ω1 =

√
ω2

0
− ξ 2/4 is highlighted as a vertial line in the bottom graph,

for eah of the solutions. The ativity's strength was �xed at vA/
√
kBT/m = 8
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Figure 2.4.: The power spetra for the inative partile in a harmoni potential S i®x and S i®v and

the power spetra obtained by integrating Steele's approximation for two di�erent

mean rotational frequenies 〈| ®ω |〉 with ξT = 0.5, ω0 = 1, m = 1. One an learly see

that the power spetrum for the fast rotating partile (〈| ®ω |〉 = 21) is nearly onstant

where S i®x ≫ 0.

And the potential energy an be written as

〈E
pot

〉 =
ks γT v

2

A

24πkBT
S ®a(0)

∫ ∞

−∞
S i®x (ω)dω +

3

2
kBT

=

ks γT v
2

A

24πkBT
S ®a(0) · 3

kBT

mω2

0

+

3

2
kBT

=

γT v
2

A

8
S ®a(0) +

3

2
kBT

whih is idential to the kineti energy, as proposed.

For the e�etive temperature one obtains:

T
e�

= T +
γT v

2

A

12kB
S ®a (0)
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3. Simulations

In this hapter I will present the algorithms used for the Langevin dynamis simulations.

While the translational motion uses the unmodi�ed OVRVO algorithm by Sivak, Chodera

and Crooks [23℄, the algorithm had to be modi�ed for the rotational motion.

The rotational motion has been studied via simulation using two di�erent dynamis.

The �rst dynami views the soure of the ativity as moving on the surfae of the partile,

using the tangential veloity ®w and the position of the soure ®a - I shall all it moving

soure (MS)-dynamis, while the sphere's oordinate system doesn't rotate. For small

rotational frition this leads to movement of the soure on great irles on the sphere.

The seond algorithm for rotational motion uses the angular veloity ®ω and the ativity's

diretion ®a, as we disussed in the previous hapter, this dynamis will be alled rotating

sphere (RS)-dynamis, while the soure stays �xed in the sphere's oordinate system.

Subsequently the results of the simulations will be ompared with the theoretial work

from the previous hapter.

3.1. The algorithms

3.1.1. Moving soure-dynamis

For the translation and the rotation of the partile I used the OVRVO algorithm by

Sivak, Chodera and Crooks [23℄. The dynamis of the rotating unit vetor are obtained

imagining the soure of the ativity is moving on the surfae of the sphere, therefore

the algorithm had to be adjusted for the onstraint of the rotation, namely the ativity's

diretion ®a should stay a unit vetor and the tangential veloity ®w should stay perpendi-

ular to the diretion, i. e. ®a · ®w = 0. The ontinuous equations read, using the tangential

veloity instead of the angular veloity:

d ®a
dt
= ®w (3.1)

I
d ®w
dt
= −γR ®w +

√
2γ 2RDR

®ζR (3.2)

where γR = 8πηR3 is the Stokes' frition oe�ient, with η the visosity and R the

partiles radius. I is the sphere's momentum of inertia and DR =
kBT
γR

is the rotational

di�usion oe�ient. The moments of the random proess

®ζR are de�ned as 〈ζR,i 〉 = 0 and

〈ζR,i (t) ζR, j (t ′)〉 = δi jδ (t − t ′) for i, j = 1, 2, 3, δi j being the Kroneker-delta and δ (t − t ′)
the delta distribution. De�ning ξR :=

γR
I , the seond equation an be written as:

d ®w
dt
= −ξR ®w +

√
2ξ 2

R
DR ®ζR
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3. Simulations

To take one time step from n to n + 1 of the size ∆t the algorithm of Sivak and Chodera

for the set of equations (3.1) and (3.2) reads:

®w
(
n +

1

2

)
=

√
c ®w(n) +

√
(1 − c)ξRDR ®ζ (n + 1

2
)

®a
(
n + 1

)
= ®a(n) + b · ∆t · ®w

(
n +

1

2

)

®w
(
n + 1

)
=

√
c ®w

(
n +

1

2

)
+

√
(1 − c)ξRDR ®ζ (n)

where c = exp(−ξR∆t) and ζi are independent normally distributed random variables with

a mean of zero and a variane of one and b =

√
2

ξR∆t
tanh

(
ξR∆t
2

)
. These equations do

not ensure, that ®a stays on the unit sphere | ®a | = 1 and that the tangential veloity is

perpendiular to ®a.
One has therefore to introdue a onstraint Θ(®an), where ®an = ®a(n). Beause the

onstraint should keep the position ®an on a sphere of radius R it reads Θ(®an) = ®a2n − R2

and therefore

®∇Θ(®an) = 2®an . The equations have to be rewritten to:

®wn+ 1

2

= −
√
c ®wn +

√
(1 − c)ξRDR ®ζn+ 1

2

− λ1 ®∇Θ(®xn)
®an+1 = ®an + b∆t · ®wn+ 1

2

®wn+1 = −
√
c ®wn+ 1

2

+

√
(1 − c)ξRDR · ®ζ − λ2 ®∇Θ(®xn+1)

The Langragian multipliers λ1 and λ2 have to be hosen in a way that Θ(®an+1) = 0 and

®wn+1
®·∇Θ(®an+1) = 0 ⇐⇒ ®wn+1 · ®an+1 = 0.

®an+1 = ®an + b ∆t
(
−
√
c ®wn +

√
(1 − c)ξRDR ®ζn+ 1

2

− λ1 2®an
)

®an+1 = −2b ∆t λ1 ®an + ®an + b ∆t
(
−
√
c ®wn +

√
(1 − c)ξRDR ®ζn+ 1

2

)
︸                                                   ︷︷                                                   ︸

=: ®Cn

(3.3)

Now let's make sure that the vetor stays on the sphere Θ(®an+1) = 0:

®a2n+1 − R2 = 0

(−2b ∆t λ1®an + ®Cn)2 − R2 = 0

®Cn
2 − 4b ∆t λ1 ®Cn ®an + 4b2∆t2λ21®a2n − R2 = 0

(4b2∆t2 ®an2) λ21 − (4b ∆t ®Cn ®an)λ1 + ®Cn
2 − R2 = 0

using Θ(®an) = 0, therefore ®a2n = R2 :

4b2∆t2R2λ2
1
− 4b ∆t ®Cn ®anλ1 + ®Cn

2 − R2 = 0
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3.1. The algorithms

solving the quadrati equation yields

λ±
1
=

4b ∆t ®Cn ®an ±
√
(4b ∆t ®Cn ®an

)2 − 4(4b2∆t2R2( ®Cn
2 − R2))

8b2∆t2R2

λ±
1
=

®Cn ®an ±
√
( ®Cn ®an)2 − R2( ®Cn

2 − R2)
2b ∆t R2

Only one of the two solutions an be the Langragian multiplier that is needed. For

small time steps the value of ®an+1 should be approximately ®an . Using this riteria lets

one hoose the right solution for λ1.

For small ∆t the vetor ®Cn is approximately ®an . For the positive sign, using ®a2n = R2:

λ+
1
≈ R2 +

√
R4 − R2(R2 − R2)
2b ∆t R2

=

2R2

2b ∆t R2
=

1

b · ∆t
putting this in (3.3) yields

®an+1 ≈ ®an − 2b ∆t
1

b ∆t
®an = −®an

The positive sign puts one on the other side of the sphere.

And looking at the negative sign, using ®a2n = R2:

λ−
1
≈ R2 −

√
R4 − R2(R2 − R2)
2b ∆t R2

= 0

®an+1 ≈ ®an − 0 = ®an
keeps ®an nearly onstant for very small ∆t . The �rst Langrangian multiplier therefore

reads:

λ1 =
®C ®an −

√
( ®C ®an)2 − R2( ®C2 − R2)
2b ∆t R2

Let's look at λ2. This parameter should make sure, that the veloity stays perpendiular

to the sphere. And therefore

®wn+1
®∇Θ(®an+1) = 0

®wn+1 2®an+1 = 0

®wn+1 ®an+1 = 0[
−
√
c ®wn+ 1

2

+

√
(1 − c)ξRDR ®ζn+1 − λ2 ®∇Θ(®an+1)

]
®an+1 = 0

yielding

λ2 =

(√
c ®vn+ 1

2

−
√
(1 − c)ξRDR ®ζn+1

)
®an+1

2 ®a2n+1
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3. Simulations

and using ®a2n+1 = R2

λ2 =

(√
c ®wn+ 1

2

−
√
(1 − c)ξRDR ®ζn+1

)
®an+1

2R2

as long as R > 0 this fration exists.

The algorithm reads:

1. Draw three random numbers

®ζn+ 1

2

= (ζn+ 1

2
,1, ζn+ 1

2
,2, ζn+ 1

2
,3) from a Gaussian distri-

bution with 〈ζn+ 1

2
,i 〉 = 0 and 〈ζ 2

n+ 1

2
,i
〉 = 1 for i = 1, 2, 3.

2. Compute

®Cn = ®an + b ∆t
(
− √

c ®wn +

√
(1 − c) ξRDR ®ζn+ 1

2

)

3. Determine the Langrange multiplier λ1

λ1 =
®Cn ®an −

√
( ®Cn ®an)2 − R2( ®C2

n − R2)
2b ∆t R2

4. Calulate the intermediate veloity

®wn+ 1

2

= −
√
c ®wn +

√
(1 − c)ξRDR ®ζn+ 1

2

− λ1 ®∇Θ(®an)

5. Get the new positions

®an+1 = ®an + b ∆t ®wn+ 1

2

6. Draw three new random numbers

®ζn following the instrutions in 1.

7. Determine the Langrange multiplier λ2

λ2 =

(√
c ®wn+ 1

2

−
√
(1 − c)ξRDR ®ζn+1

)
®an+1

2 ®a2n+1

8. Get the new veloity

®wn+1 = −
√
c ®wn+ 1

2

+

√
(1 − c)ξRDR ®ζn+1 − λ2 ®∇Θ(®an+1)

3.1.2. Rotating sphere-dynamis

The rotating sphere-dynamis uses a rotating sphere, with the unit vetor �xed in the

sphere's oordinate system. Using the Eq. 2.4 and 2.5 and de�ning ξR :=
γR
I
leads to the

following set of equations:
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3.1. The algorithms

d ®a
dt
= ®w

®w = ®ω × ®a
d ®ω
dt
= −ξR ®ω +

√
2ξ 2RDR

®ζR

To take one time step from n to n + 1 of the size ∆t the OVRVO algorithm reads

®ω
(
n +

1

2

)
=

√
c ®ω(n) +

√
(1 − c)ξRDR ®ζ (n + 1

2
)

®a
(
n + 1

)
= ®a(n) + b · ∆t ·

[
®ω
(
n +

1

2

)
× ®a(n)

]

®ω
(
n + 1

)
=

√
c ®ω

(
n +

1

2

)
+

√
(1 − c)ξRDR ®ζ (n)

where c = exp(−ξR∆t) and ζi are independent normally distributed random variables with

a mean of zero and a variane of one and b =

√
2

ξR∆t
tanh

(
ξR∆t
2

)
. This algorithm doesn't

ensure that ®a stays on the unit sphere, beause we are not taking in�nite small steps

whih are perpendiular to ®a.
For eah step we take, we want the diretion ®a to move a length of b ·∆t ·

���� ®ω
(
n+ 1

2

)
× ®a(n)

����
on the unit sphere's surfae. This length is equal to the angle the diretion should hange,

beause the sphere has a radius of one. To hange the diretion aordingly, we simply

add an vetor of length tan

(
b ·∆t ·

���� ®ω
(
n + 1

2

)
× ®a(n)

����
)
and diretion ®ω

(
n + 1

2

)
× ®a(n) to ®a(n)

and normalize the result, see Fig. 3.1.

The algorithm then reads:

(1) ®ω
(
n +

1

2

)
=

√
c ®ω(n) +

√
(1 − c)ξRDR ®ζ (n + 1

2
)

(2) ®w
(
n +

1

2

)
= tan

(
b · ∆t ·

���� ®ω
(
n +

1

2

)
× ®a(n)

����
) ®ω

(
n + 1

2

)
× ®a(n)���� ®ω

(
n + 1

2

)
× ®a(n)

����

(3) ®a
(
n + 1

)
=

®a(n) + ®w
(
n + 1

2

)
����®a(n) + ®w

(
n + 1

2

)����
(4) ®ω

(
n + 1

)
=

√
c ®ω

(
n +

1

2

)
+

√
(1 − c)ξRDR ®ζ (n)
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3. Simulations

Figure 3.1.: Sketh of the hanges made to the algorithm, where ®w = b · ∆t ·
[
®ω
(
n + 1

2

)
× ®a(n)

]
,

®an = ®a(n) and ®an+1 = ®a(n + 1).

3.1.3. Translational motion

Like in the last setion the algorithm by Sivak, Chodera and Crooks [23℄ will be used to

simulate the free translational motion, governed by the Langevin equation

d ®x
dt
= ®v

d ®v
dt
= −ξT ®v + ξTvA · ®a +

√
2ξ 2
T
DT · ®ζT

where ξT =
γT
m and ξTvA ®a will be treated as an external fore. For the partile in the

harmoni potential U = ks
2
®x2 an additional external fore will be added

®f
pot

= −ks ®x ,
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3.2. Underdamped ative partiles

where ks denotes the spring onstant. The algorithm then reads

(1) ®v
(
n +

1

4

)
=

√
c ®v(n) +

√
(1 − c)ξTDT ζ

(
n +

1

2

)

(2) ®v
(
n +

1

2

)
= v

(
n +

1

2

)
+

b∆t

2

®f (n)
m

(3) ®x
(
n + 1

)
= ®x(n) + b ∆t v

(
n +

1

2

)

(4) ®v
(
n +

3

4

)
= ®v

(
n +

1

2

)
+

b∆t

2

®f (n + 1)
m

(5) ®v(n + 1) =
√
c ®v

(
n +

3

4

)
+

√
(1 − c)ξTDR ®ζ (n + 1)

where c = exp(−ξT∆t), ®f (n) denotes fore ating on the partile at timestep n and the

omponents of

®ζ (n) and ®ζ (n + 1

2
) are independent, normally distributed random variables

with zero mean and a variane of one. The time-step resaling is done by multipliation

with b =

√
2

ξT∆t
tanh

(
ξR∆t
2

)
.

Beause the ativity is treated as an external fore, the rotational step from ®a(n) to
®a(n + 1) has to take plae between steps (3) and (4) of the translational algorithm.

3.2. Underdamped ative partiles

The units used for this setion are E
0

= kBT0 = 1, the partile's radius l0 as unit length,

the partile's mass m
0

as unit mass, v0 =
√
E0/m0 and t0 = l0/v0.

As disussed in subse. 2.4.2.2 the power spetrum of the rotation will be analyzed

and ompared with Steele's approximation Eq. (2.6). As an be seen in Fig. 3.2 the

approximation holds for 〈| ®ω |〉 ≈ ω0 and smaller 〈| ®ω |〉 for both rotational dynamis, but

deviates for higher rotation frequenies. Unsurprisingly Steele's approximation holds

far longer for the RS-dynamis. The approximations also deviates if the frition gets

lower. The ACF of the MS-dynamis arrives at negative values for fast rotations and low

frition, implying that the ativity's diretion moves in average at least a fourth of the

great irle, before rotational di�usion randomizes the diretion. In ontrast the ACF

of the RS-dynamis arrives near zero and rises again for fast rotation and low frition,

beause the ativity's diretion only moves on great irles if it's perpendiular to the

angular veloity. The ativity's diretion is therefore more likely to arrive at values near

the starting value, than at angles bigger than π/4.
Beause the interesting part of our analysis lies in this range of the rotational fre-

queny, I still expet the resonane phenomenon, despite the deviations from Steele's

approximation.

For the overdamped ative partile the mean squared displaement ould be solved

analytially, see Eq. (2.1). For small fritions ξT , ξR ≪ 1 the rotational di�usion onstant
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Figure 3.2.: Autoorrelation funtions for the ativity's diretion ®a(t) (rosses for the MS-

dynamis, irles for the RS-dynamis) and Steele's approximation (line) Eq. (2.6)

for dereasing frition from (a) ξT t0 = 4.5 ,(b) ξT t0 = 1.5 to () ξT t0 = 0.75
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3.2. Underdamped ative partiles

inreases and the formula reads in the limit DR ≫ v2

A

〈(®x − ®x0)2〉 = 6DT t

In Fig. 3.3 one an see that the overdamped formula arrives at a linear funtion for small

fritions. The simulation shows for suh small fritions, that - like for an inative partile

- the partile's MSD looks ballisti for small times.
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Figure 3.3.: The mean squared displaement as funtion of time for various fritions ξT (rota-

tional: ξR =
10

3
ξT ). Simulated values are represented as dots, the lines represent

MSD for the overdamped limit, see Eq. (2.1).

Let's take a look at the veloity distribution funtion. In Fig. 3.4 one an see, that the

distributions are rater-like, if the ativity is high enough. In 3D the distribution then

looks like a spherial shell, with the maximum of the distribution at

√
v2
x +v

2
y +v

2
z ≤ vA.

The higher the partile's mean rotation time is with respet to ξ−1T , i.e. if DR ≪ ξT , the

nearer the mean speed of the partile will get to vA. In Fig. 3.4 one an see, that the

maximum of the distribution is onsiderably smaller than vA with ξT /DR = 3.
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Figure 3.4.: The (vx , vy) - distribution for di�erent ativity strengths (a)vA/v0 = 1.36 (b) vA/v0 =
5.45 () vA/v0 = 10.9 (d) vA/v0 = 13.6 at ξT t0 = 1.5 and 〈| ®ω |〉 t0 = 2.2. The

distribution is not as sharp as the one in 2.1b, beause it is the marginal distribution

and not the ut at vz = 0.
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3.3. Underdamped ative partiles in a harmoni potential

3.3. Underdamped ative partiles in a harmoni potential

3.3.1. Units and partile properties

For onveniene the results will be presented with respet to redued units. The energy

unit E0 is de�ned via the unit temperature T0 as E0 = kBT0. The frequeny unit or-

responds to the trap frequeny ω0 = 1. The mass unit is equal to the partile's mass

m0 = 1. All other units needed for the present thesis an be derived from this three, e. g.

the unit length is l0 =
√
E0/m0ω

2

0
and the unit veloity is v0 = l0ω0. Then the di�usion

onstants are DT /ω0 =
1

ξT /ω0
and DR/ω0 =

2ω0l
2

0

5R2ξR
.

3.3.2. Slow rotation

To study the ase of a slow rotation ompared to the osillation period a ratio of about

〈| ®ω |〉/ω0 ≈ 1/12 was hosen. For slow rotation both rotational dynamis provide the

same results. In subsetion 2.4.2.1 was proposed that in the ase of a nearly onstant

ativity diretion the partile would be subjet to an e�etive potential with a minimum

at

r0 =
γTvA

ks

If the diretion hanges slowly enough the potential's minimum will hange too, but the

radius of the loation will be onstant and the partile has enough time to aommodate

to this new minimum. The radial distribution for di�erent ativities vA of the partile is

shown in Fig. 3.5b. The distribution along a radius hanges from the inative partile

for small vA to a distribution entered around a distint radius r0. The radius' mean

value for r0 ≫ l0 is expeted to be:

〈r〉 = ξT

ω2

0

vA (3.4)

For small ativities r0 ≪ l0 the expetation value will be equal to that of an inative

partile. The simulation is in good agreement with this assumption as an be seen in

Fig. 3.6a. The desription using an e�etive potential is su�ient for the ase of a slow

rotating partile and desribes the radial distribution. A two-dimensional histogram of

the position's �rst and seond omponent an be seen in Fig. 3.10. While at low ativity

strengths the distribution is Gaussian distributed, one an see that for higher ativity

the distribution will transform into a ring-like distibution.

Furthermore I gave an analytial solution for the potential energy. While the kineti

and the rotational energy stay nearly onstant, as we would expet for inative partiles

at

3

2
E0, the potential energy rises quadratially with respet to the ativity. This is on-

�rmed by the simulation, as an be seen in Fig. 3.7a. Furthermore it rises quadratially

with the frition onstant, see Fig. 3.7b. One an see that for high values of ξT vA the

kineti energy starts to deviate from the onstant value, beause the hanges of ξT vA ®a(t)
start to be bigger than our assumption allows for.
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Figure 3.5.: (a) distribution of the position's x-oordinate with respet to di�erent ativities vA;

(b) distribution along a radius with respet to di�erent ativities vA (both done at

ξT /ω0 = 0.52)
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Figure 3.6.: the simulated means of the position's radius and Eq. (3.4) (a) at ξT /ω0 = 0.5 (b) at

vA/v0 = 2.7
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3.3. Underdamped ative partiles in a harmoni potential

The simulation is furthermore in good aordane with the assumption that the veloity

distribution doesn't deviate from an inative partile, if the rotation is slow enough. This

an be seen in Fig. 3.8 for a range of ativity strengths. The veloity's autoorrelation

funtion, as shown in Fig. 3.9b, does on�rm that the veloity doesn't deviate from the

one of an inative partile.

The ACF for the position has also been alulated in subse. 2.4.2.1 and the simula-

tion's results on�rm this derivation, see Fig. 3.9a. The deviation from the theory our

when the hanges of vAξT ®a get too big. The bigger the produt vA ξT the bigger the

impat of even slow hanges of ®a(t), and therefore the assumption is only valid if vA ξT
d ®a
dt

is small enough.
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Figure 3.7.: Mean kineti, potential and rotational energies at (a) ξT /ω0 = 0.52 with respet to

di�erent ativities (b) vA/v0 = 2.73 with respet to di�erent fritions ξT - 'Theory'

denotes Eq. (2.12)
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Figure 3.8.: The distributions of (a) the veloity's �rst omponent vx , (b) the speed | ®v | of the
partile at ξT /ω0 = 0.5 for di�erent ativity strengths vA.
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Figure 3.9.: Normalized ACFs for the (a) position (b) veloity for di�erent ativity strengths

vA/v0 at ξT /ω0 = 0.5. Dots are obtained from the simulation the lines represent Eq.
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Figure 3.10.: The (x , y) - distribution for di�erent ativity strengths (a) vA/v0 = 1.36 (b) vA/v0 =
2.72 () vA/v0 = 5.45 (d) vA/v0 = 10.9 at ξT /ω0 = 0.5.
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3. Simulations

3.3.3. Rotation period near osillation period

Let's look at the total absorbed power

P
abs

∝ ξ 2Tv
2

A

∫
ω2 S ®a (ω)S i®x (ω)dω (3.5)

Comparing it to the kineti energy yields:

〈E
kin

〉/E0 =
Pabs

2ξT
+

3

2
=

ξTv
2

A

24πω0v
2

0

∫ ∞

−∞
ω2S i®x (ω)S ®a (ω)dω +

3

2

For the power spetrum of the ativity's diretion S ®a the autoorrelation funtion was

alulated based on the time series obtained from the simulation. For the position's

power spetrum S i®x the analyti solution is known from Eq. (1.18) and was used for

the numerial integration of the integral in (3.5). Comparing the power spetra resulting

from the two di�erent rotational dynamis shows, that they di�er mostly for small frition

and higher values of the mean angular veloity 〈| ®ω |〉. As an be seen in Fig. 3.11 the

MS-dynamis shows in the power spetrum a distint peak for lower fritions, beause

the ativity's diretion tends to rotate on great irles. The RS-dynamis �rst shows a

knee in the power spetrum, very near to ω = 〈| ®ω |〉, and at low fritions a small peak,

but the global maximum of the power spetrum tends to stay at ω = 0.
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Figure 3.11.: Power spetra of the ativity's diretion S ®a(ω) for di�erent values of the average ab-
solute value of the angular veloity 〈| ®ω |〉/ω0 (a) 0.87 (b) 3.5 () 8.7. Both dynamis

are plotted, the MS-dynamis with full lines, the RS-dynamis with dashed lines.

Using the power spetra of the two algorithms to alulate the absorbed energy using

the integral from Eq. (3.5) yields Fig. 3.12. The absorbed energy is for slow and fast

rotation nearly zero, but for intermediate average angular veloities they show a peak.

The higher the frition the higher is the value of the average angular veloity, where the

peak is loated. As we have disussed in the power spetrum and ACF of the ativity's

diretion the di�erenes between the two di�erent rotational dynamis is mostly at low

frition and higher average angular veloities. But while the power spetra are qualitively
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3.3. Underdamped ative partiles in a harmoni potential

di�erent the absorbed power derived from these show the same harateristia and di�er

only quantitively.
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Figure 3.12.: Numerial integration of (3.5) using the simulated ACF for the ativity's diretion,

for di�erent values of the translational frition ξT with respet to the mean angular

veloity 〈| ®ω |〉. Both rotational dynamis are shown, the MS-dynamis (full) and the

RS-dynamis (dashed). For the underdamped ase is natural osillation frequeny

ω1 =

√
ω2

0
− ξ 2/4 highlighted as a vertial line in (b).

The alulated absorbed energy does indeed have an impat on the system. In Figs.

3.13 and 3.14 the potential and kineti energies obtained from the simulation are plotted

with respet to the mean angular veloity. The kineti energy equals the one alulated

via the absorbed power. As shortly disussed in se. 2.4.2.2 the absorbed energy an

only be dissipated via translational frition and this frition only rises with the partile's

speed.

In the ase of a damped, but not overdamped, system at ξT /ω0 = 1.0 the potential

energy dominates. Steele's approximation and both algorithms are in good agreement in
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3. Simulations

this ase. As an be seen the potential energy only transitions from the state of the slow

rotating partile with 〈E
pot

〉/E0 =
(
vA
v0

· ξTω0

)2
+

3

2
to the one of the fast rotating partile

with E
pot

/E0 ≈ 1.5. The kineti energy has a peak at about 〈| ®ω |〉/ω0 = 2 with a value

of approximately 3E0. The �gures for the kineti and potential energy are similar to

those obtained via numerial integration, using Steele's approximation. The important

features are the same: the peak in the potential energy at lower frition, the peak in the

kineti energy and the limits for high and low rotation frequenies. This on�rms the

derivations done in subse. 2.4.2.2.

While the mean kineti and potential energies both rise with the square of the ativity

vA the desription with respet to the translational frition ξT is more ompliated, as

an be seen in Fig. 3.15. The kineti energy rises with the frition until a threshold

value, whih depends on the rotation frequeny.

The histograms for the potential and kineti energies in Fig. 3.16 illustrate the be-

haviour of the seond moments of the position and veloity. The shape of the histograms

is idential for both rotation algorithms. While to position's seond moment transitions

from the �hotter� inative state at fast rotations via a very broad distribution - whih

only ours at small frition values - to the distint peak, where the partile osillates in

the e�etive potential. The distribution of the kineti energy is for fast and slow rotation

very similar and is at it's broadest at about 〈| ®ω |〉/ω0 = 1.6 .
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Figure 3.13.: The average kineti and potential energy at vA/v0 = 2.7 and ξT /ω0 = 1, 0.5 and

0.25 (from top to bottom) with respet to the rotation frequeny DR/ω0. The

numerially solved Eq. (2.19) and (2.20) have been plottet as E
pot, Th

and E
kin, Th

,

respetively, using the simulated AFC, while ES
pot

and ES
kin

have been obtained using

Steele's approximation. Both rotational algorithms are shown , the one using the

tangential veloity (full lines) and the one using the angular veloity (dashed lines).
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Figure 3.14.: The average kineti and potential energy at vA/v0 = 8.2 and ξT /ω0 = 1, 0.5 and

0.25 (from top to bottom) with respet to the rotation frequeny 〈| ®ω |〉/ω0. The

numerially solved Eq. (2.19) and (2.20) have been plottet as E
pot, Th

and E
kin, Th

,

respetively, using the simulated AFC, while ES
pot

and ES
kin

have been obtained using

Steele's approximation. Both rotational dynamis are shown , the MS-dynamis

(full lines) and RS-dynamis (dashed lines).
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Figure 3.16.: Distributions of the potential and kineti energy, respetively. Values obtained at

ξT /ω0 = 0.5 and vA/v0 = 8
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3. Simulations

3.3.4. Fast rotation

A rotational di�usion onstant of 〈| ®ω |〉/ω0 = 21 has been used to arrive at the fast

rotation limit.

In se. 2.4.2.3 the foundation of the theory for fast rotating partile, was the assump-

tion that the fore due to the ativity ats like a random white noise for the harmoni

potential. To justify this assumption the power spetrum of the ativity's diretion S ®a
should be nearly onstant over the frequenies whih are important to the potential, i.e.

where S i®x (ω)ω
2 ≫ 0. Looking at Fig. (3.17) the simulation on�rms this assumption.

While S ®a hanges drastially over the important frequenies at 〈| ®ω |〉/ω0 = 1.7, the power

spetrum stays nearly onstant for 〈| ®ω |〉/ω0 = 87, but the values di�er between the two

di�erent rotational dynamis.
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Figure 3.17.: The power spetrum of the ativity's diretion S ®a,MS

, obtained by the MS-dynamis,

and S ®a,RS , obtained by the RS-dynamis, for (a) 〈| ®ω |〉/ω0 = 87 fast rotation, (b)

〈| ®ω |〉/ω0 = 1.7 near resonane and ω2 S i®x for ξR/ω0 = 0.52. For the relevant frequen-

ies, where S i®xω
2 ≫ 0, the ativity's power spetrum is nearly onstant for a fast

rotating partile.

It has been shown in subse. 2.4.2.3 that the equipartition theorem holds in the limit

of the fast rotation

〈E
kin

〉/E0 = 〈E
pot

〉/E0 =
γTv

2

A

8v2

0
ω0

S ®a (0) +
3

2

If the frition is �xed, the kineti and potential energy will just depend on square of

the ativity's strength vA. In the ase of ξT /ω0 = 0.52 and 〈| ®ω |〉/ω0 = 21 and using the

algorithm for the tangential veloity the funtion after evaluating the power spetrum

reads

〈E
kin

〉/E0 = 〈E
pot

〉/E0 = 0.0093v2

A +
3

2
(3.6)

In Fig. (3.18) one an see, that indeed the theoretial work is in good agreement with

the simulation. Using Steele's approximation for S ®a (ω) the deviation for fast rotating

partiles is quite high, it would give us a funtion of 〈E
kin

〉/E0 = 0.02v2

A + 1.5. As

62



3.3. Underdamped ative partiles in a harmoni potential

disussed before Steele's approximation is not in agreement with the simulation of the

fast rotating partile.

The result for the e�etive temperature doesn't onverge to the overdamped limit

presented in se. 2.2, beause our model treats the ativity as a fore with a �xed absolute

value, independent of the rotation period. The overdamped model always assumes a

speed of vA, regardless of the rotation period. As an be seen in the speed distributions,

see Fig. 3.19, the fast rotation hinders the partile from arriving at a mean speed of vA.

If the mean rotation time is small with respet to the osillation time of the partile,

then we expet Gaussian distributions for the omponents of veloity and position. Only

the variane of the distribution should be subjet to hange, if the ativity vA rises. This

an be quanti�ed using the energies, desribed by Eq. (3.6), above:

〈®x2〉 = 2

ω2

0
m
〈E

pot

〉 〈®v2〉 = 2

m
〈E

kin

〉

The simulation agrees with this assumption and the distributions an be seen in Fig.

3.20. Aordingly the shape of the speed and radial distribution should not hange, these

an be seen in Fig. 3.19.

The ACFs of the position and the veloity, see Fig. 3.21, only solidify the equality

between the inative partile in a harmoni potential and the fast rotating, ative partile.

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40 45

E
/E

0

vA/v0

E
pot

E
kin

E
rot

Theory

(a)

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6

E
/E

0

xiT /ω0

E
pot

E
kin

E
rot

P
abs

/(2ξT )

(b)

Figure 3.18.: Energies with respet to (a) ativity vA, at ξT /ω0 = 0.5 (b) translational frition ξT
at vA/v0 = 13.5. For the �t see Eq. (3.6).
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Figure 3.19.: Distributions of (a) the position's radius r (b) the speed | ®v | of the partile with

di�erent ativities vA at ξT /ω0 = 0.52
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Figure 3.20.: Distributions of a (a) position omponent (b) veloity omponent with di�erent

ativities vA at ξT /ω0 = 0.5
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Figure 3.21.: Normalized ACFs for the (a) position (b) veloity for di�erent ativity strengths

vA/v0 at ξT /ω0 = 0.5. Dots are obtained from the simulation the lines represents

the analytial solutions for the inative partile
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4. Conlusion

In the present thesis the ase of an underdamped ative partile in a harmoni potential

has been investigated.

The harmonially trapped partile was at �rst studied theoretially, where the partition

in slow, fast and medium rotation with respet to the osillation period simpli�ed the

problem.

In the simplest ase, the slow rotation, the power spetrum and the ACF of the po-

sition and veloity ould be obtained analytially by means of an e�etive harmoni

potential. Therefore the potential and kineti energy and the shape of the position and

veloity distribution funtions ould be predited. The simulation for the slow rotation

at 〈| ®ω |〉/ω0 ≈ 1/12 was in good agreement with the theoretial work. These results

are independent of the details of how the ativity's diretion moves. In this ase both

rotational dynamis used in this thesis have been in full agreement.

To address the hallenge of a mean rotation time near the osillation period the sum

of the ative fore and the thermal �utuations was treated as a perturbation of the

harmoni osillator. Studying the power absorbed by the partile lead to an - at least

numerially - simple expression for the partile's kineti energy. An equivalent expression

has been obtained by alulating the power spetrum and Fourier transforming it at τ = 0,

to obtain the seond moments of the position and veloity distribution. Therefore the

kineti and the potential energy ould be desribed using the power spetrum of the

ativity's diretion. This expression predits a peak in the kineti energy if the partile

rotates approximately as fast as it osillates for all frition values. The potential energy

showed a peak at about 〈| ®ω |〉/ω0 = 1 only for low frition. For high frition values and

slow partile rotation Steele's approximation yields results whih are in good agreement

with the simulation using both di�erent rotational dynamis. For low frition values and

faster partile rotation the RS-dynamis produed results whih were in better agreement

with Steele's approximation than the MS-dynamis. Despite the qualitative di�erenes

in the power spetra of the ativity's diretion obtained by the two rotational dynamis,

the results for the seond moments of the position and veloity only di�ered slightly.

For preditions in an experimental framework one ould either try to measure the di-

retion's autoorrelation funtion or obtain the autoorrelation funtion via simulating a

rotating unit vetor. Two di�erent rotational dynamis and the orresponding algorithms

for this problem has been presented in setion 3.1.

For the fast rotating partile the expression for the kineti and potential energy from

the medium rotation time an be reused. These expressions ould be further simpli�ed by

assuming that the power spetrum is nearly onstant in the relevant interval around ω0.

Furthermore it has been shown that the equi-partition would hold again and therefore

that the partile would just behave like an hotter inative partile. The orresponding
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4. Conlusion

temperature an be derived from the kineti energy. For the simulation of the fast

rotating a partile a rotational di�usion oe�ient of 〈| ®ω |〉/ω0 = 21 has been hosen and

the results are in good agreement with the theory.

The study of the ativity's diretion's autoorrelation funtion revealed, that there

is still theoretial work to be done. While Steele's approximation is su�ient for the

overdamped ase, the ase of an underdamped rotating unit vetor is still hard to takle

analytially in a way that is numerially easy to use.

Pototsky and Stark [16℄ studied not only the single partile ase, but also multiple

interating partiles. One ould study underdamped, interating ative partiles in a

harmoni trap and ompare the results to the overdamped results from Pototsky and

Stark [16℄.
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A. Testing the Simulation

A.1. Brownian partile

A.1.1. Free partile

The parameters de�ning the motion of the Brownian partile are the frition ξ , the mass

m and the temperature T :

d ®x
dt
= ®v d ®v

dt
= −ξ ®v + ®A(t)

with the following properties for the random aeleration

®A = (A1,A2,A3), and S = ξ kBT
m

〈Ai (t)〉 = 0 〈Ai (t)Aj (t ′)〉 = 2S δi jδ (t − t ′)
Then, see se. 1.3,

〈(®x − ®x0)2〉 =
6S

ξ 3

(
ξt − 1 + e−ξ t

)
(A.1)

〈®v(t) ®v(t + τ )〉 = 3S

ξ
e−ξ t (A.2)

p0(vx ) =
(

1

2πS

)3/2
e−ξv

2
x /2S

(A.3)

Settingm = 1, kBT = 1/300 and varying ξ shows good agreement between simulation and

theory, see Fig. A.1.

A.1.2. In harmoni potential

An additional parameter is added in terms of the potential's frequeny ω0. The equations

read:

d ®x
dt
= ®v d ®v

dt
= −ξ ®v + ®A(t) +ω2

0
®x

A.2. Overdamped ative partile

The MSD for the ative partile has been obtained by Löwen et al. [27℄ as:

〈(®x − ®x0)2〉 =
(
6DT +

v2

A

DR

)
t +

1

2

(
vA

DR

)2 [
e−2DR t − 1

]
(A.4)

Now testing this for di�erent values of vA at ξT = 100, with R = 1, kBT = 1 and m = 1

shows good agreement between simulation and theory, Fig. A.3.
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Figure A.1.: (a) The MSD and (b) the ACF of the veloity for three di�erent values of ξ ; () the

distribution of vx for di�erent values of kBT at ξ = 0.5. The simulation is plotted

as dots, Eq. (A.1) , (A.2), (A.3) respetively as blak line.
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Figure A.2.: (a) and (b) show the distribution of x and vx for di�erent values of T respetively.

The ACF 〈®x(t) ®x(t+τ )〉, 〈®v(t) ®v(t+τ )〉 and the ross-orrelation funtion 〈®x(t) ®v(t+τ )〉
for di�erent values of ξ are plotted in ().
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A.2. Overdamped ative partile
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B. Supplementary Calulations

B.1. Overdamped ative partiles

B.1.1. Position's expetation value

The equations to average are x = x0 + vA ·
∫ t
0
cos(φ(t ′))dt ′ +

√
2DTW

x
t and y = y0 +

vA ·
∫ t
0
sin(φ(t ′))dt ′ +

√
2DTW

y
t , with φ(t) = φ0 +

√
2DRW

φ
t . The Wiener proess W i

t is

N (0, t)-distributed, therefore 〈W i
t 〉 = 0 (i = x, y, φ). Hene

〈x − x0〉 = vA
∫ t

0

〈cos(
√
2DRW

φ

t ′ )〉 dt ′

〈y − y0〉 = vA
∫ t

0

〈sin(
√
2DRW

φ

t ′ )〉 dt ′

Let's take a loser look at 〈cos(a ·Wt )〉 using the Euler formula:

〈cos(φ0 + a ·Wt )〉 = 〈ℜ
{
ei(φ0+aWt )

}
〉 = ℜ

{
eiφ0 〈eiaWt 〉

}

To alulate the expetation value, we will use thatWt is N (0, t)-distributed and get:

〈eiaWt 〉 = 1√
2πt

∫ ∞

−∞
eiax · e−x2/2t dx

=

1√
2πt

∫ ∞

−∞
e−(x

2/2t−iax ) dx

by ompleting the square and substituting y = x/
√
2t − ia/

√
2:

〈eiaWt 〉 = 1√
2πt

∫ ∞

−∞
e−(x/

√
2t−ia/

√
2)2−a2/2 dx

=

1√
2πt

e−a
2/2 ·

∫ ∞

−∞
e−y

2
√
2t dy

=

1√
π
e−a

2/2 ·
√
π

= e−a
2/2

Using the above result, we obtain

〈cos(φ0 +
√
2DRW

φ

t ′ )〉 = cos(φ0) · e−DR t
′
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and subsequently:

〈x − x0〉 = vA · cos(φ0) ·
∫

e−DR t
′
dt ′

=

vA

DR
·
(
1 − e−DR t

)
· cos(φ0)

For the average of the y-position 〈y〉, we use that 〈sin(a ·Wt )〉 = ℑ
{
eiφ0 〈eiaWt 〉

}
= sin(φ0) ·

e−Dr t
, to obtain

〈y − y0〉 =
vA

DR
·
(
1 − e−DR t

)
· sin(φ0)

B.1.2. Mean squared displaement

For the mean squared displaement 〈(®r − ®r0)2〉 = 〈(x −x0)2 + (y −y0)2〉 we will at �rst look
at (x − x0)2 and (y − y0)2 seperately:

〈(x − x0)2〉 = v2

A ·
( ∫ t

0

cos(φ(t ′))dt ′
)2
+ 2vA ·

∫ t

0

cos(φ(t ′))dt ′ ·
√
2DTW

x
t + 2DT (W x

t )2

averaging the above expression, using the properties for a Wiener proess Wt : 〈Wt 〉 = 0

and 〈W 2

t 〉 = t , and writing the squared integral as two integrals:

〈(x − x0)2〉 = v2

A

∫ t

0

∫ t

0

〈cos(φ(t ′)) cos(φ(t ′′))〉 dt ′′ dt ′ + 2DT t (B.1)

The interesting part is the two-dimensional integral, it's argument is the autoorrelation

funtion of the angle's osine. Using φ(t) = φ0 +
√
2DR ·W φ

t =: φt we will take a loser

look ∫ t

0

∫ t

0

〈cos(φt ′) cos(φt ′′)〉 dt ′′ dt ′ =

=

∫ t

0

∫ t

t ′
〈cos(φt ′) cos(φt ′′)〉 dt ′′ dt ′ +

∫ t

0

∫ t

t ′′
〈cos(φt ′) cos(φt ′′)〉 dt ′ dt ′′

The two integrals in the last line are idential, beause the argument of the mean om-

mutes, and using the property of the Wiener proess, that Wt ′′ = Wt ′ +Wt ′′ −Wt ′ =

Wt ′ +Wt ′′−t ′ and φt ′′−t ′ := φt ′′ − φt ′ =
√
2DR

∫ t ′′
t ′ ξφ(s)ds we obtain

2

∫ t

0

∫ t

t ′
〈cos(φt ′) cos(φt ′ + φt ′′−t ′)〉 dt ′′ dt ′

now using cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

2

∫ t

0

∫ t

t ′
〈cos2(φt ′) cos(φt ′′−t ′)〉 − 〈cos(φt ′) sin(φt ′) sin(φt ′′−t ′)〉 dt ′′ dt ′
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beauseWt ′ desribes the Wiener proess up to t ′ andWt ′′−t ′the proess from t ′ to t ′′ these
are independent from eah other, and therefore the angles φt ′ and φt ′′−t ′ are independent
and we an write:

2

∫ t

0

∫ t

t ′
〈cos2(φt ′)〉〈cos(φt ′′−t ′)〉 − 〈cos(φt ′) sin(φt ′)〉〈sin(φt ′′−t ′)〉 dt ′′ dt ′

After rewriting the two-dimensional integral we will put it bak in Eq. (B.1)

〈x2〉 = 2v2

A

∫ t

0

∫ t

t ′
〈cos2(φt ′)〉〈cos(φt ′′−t ′)〉 − 〈cos(φt ′) sin(φt ′)〉〈sin(φt ′′−t ′)〉 dt ′′ dt ′ + 2DT t

In an analogous manner, using sin(a + b) = sin(a) cos(b) + cos(a) sin(b) one an obtain

〈y2〉 = 2v2

A

∫ t

0

∫ t

t ′
〈sin2(φt ′)〉〈cos(φt ′′−t ′)〉 + 〈cos(φt ′) sin(φt ′)〉〈sin(φt ′′−t ′)〉 dt ′′ dt ′ + 2DT t

We an now alulate the MSD

〈x2 + y2〉 = 2v2

A

∫ t

0

∫ t

t ′
〈cos2(φt ′) + sin2(φt ′)〉〈cos(φt ′′−t ′)〉 dt ′′ dt ′ + 4DT t

and using the result from the previous setion B.1.1 〈cos(φt ′′−t ′)〉 = e−DR (t ′′−t ′)

〈x2 + y2〉 = 2v2

A

∫ t

0

∫ t

t ′
e−DR (t ′′−t ′) dt ′′ dt ′ + 4DT t

= 2v2

A

∫ t

0

1

DR

(
1 − e−DR (t−t ′)

)
dt ′ + 4DT t

= 2v2

A

[
1

DR
· t − 1

D2

R

(
1 − e−DR t

)]
+ 4DT t

=

[
4DT +

2v2

A

DR

]
· t +

2v2

A

D2

R

·
(
e−DR t − 1

)
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