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Abstract

A single underdamped and self-propelled Brownian particle in a three dimensional har-
monic trap was studied theoretically and simulated using Langevin dynamics. The di-
rection of the particle’s propelling force is undergoing underdamped rotational diffusion.
In the limit of small rotational diffusion constants compared to the trap frequency the
second moments of the velocity and the position are found analytically. Outside of this
limit the second moments can be described using the power spectrum of the propelling
direction. Using numerical integration the second moments show resonant behaviour
with respect to the rotational diffusion constant.

In the limit of fast rotational diffusion it can be shown that the equipartition theorem
is fullfilled and an effective temperature can be ascribed to the particle.

The theoretical work is supported by Langevin dynamics simulations.

Zusammenfassung

Die Statistik eines einzelnen aktiven brownschen Teilchens in einem harmonischen Poten-
tial wurde bei niedriger Reibung theoretisch untersucht und mittels Langevin-Dynamik
simuliert. Die Richtung der Aktivitdt des Teilchens unterlag dabei der brownschen Be-
wegung. Im Grenzfall sehr langsamer Rotationsdiffusion der Aktivitatsrichtung im Ver-
gleich zur Frequenz des Potentials konnten die zweiten Momente der Position und der
Geschwindigkeit des Teilchens analytisch hergeleitet werden. Auferhalb dieses Grenzfalls
konnen diese zweiten Momente bestimmt werden, indem das Leistungsspektrum der Ak-
tivitdtsrichtung ausgewertet wird. Mittels numerischer Integration der zweiten Momente
zeigen sich Resonanzeffekte in Abhéngigkeit der Rotationsdiffusionkonstante.

Nur im Grenzfall rascher Rotationsdiffusion l&sst sich zeigen, dass dem Gleichverteilungs-
gesetz geniige getan wird und dem Teilchen eine effektive Temperatur zugeordnet werden
kann.

Die theoretische Arbeit wird durch die Ergebnisse der Langevin-Dynamik-Simulation
bestatigt.
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Introduction

The statistical description of systems far from equilibrium is a growing research topic
in physics. Especially so-called “active particles” and the related “active matter” have
been extensively investigated experimentally and theoretically in the last decade. Active
particles refer to a whole class of biological and physical entities, which can take up energy
from the environment and transform it into kinetic energy, e.g. motile cells, molecular
motors and Janus particles, the term can also be used for describing the movement of
higher organisms such as birds and fish and even humans [21].

The experiments and theoretical descriptions range from the first modeling of the
motile cells’ erratic movement [3| to today’s studies of the behaviour in complex and
crowded environments [2]. These particles show new properties, that might be used to
transport nanoscopic cargoes, for expample in health care.

Most of this research is focused on active motion in low Reynold’s number regimes -
neglecting inertia. This approach is justified, when studying motile cells and molecular
motors in water and similar fluids. But e.g. active particles in dusty plasmas [22]
would be subject to inertia. The first self-propelled particles in such a regime have been
theoretically proposed [1]. In an underdamped regime new phenomena could occur. For
example Kéahlert and Lowen describe the case of a harmonically trapped inactive particle
subject to an externally imposed oscillatory shear flow. They find resonant behaviour in
this case [11].

The present work generalizes this approach to an active Brownian particle, like a
Janus particle, in three dimensions and studies it’s simulated behaviour in a harmonic
potential. The work from Ké&hlert and Lowen suggests that there might be a resonance
- this shall be further investigated using Langevin dynamics simulations on a general
model for underdamped active particles.

This thesis is organized as follows:

I will review the theoretical foundation for Brownian (inactive) particles in Chapter 1
“Brownian Motion”. On the one hand should the simulation for small activity strengths
converge to this case, and on the other will results and mathematical tools introduced in
this chapter be important for the theoretical description of active particles.

In Chapter 2 “Active Particles” the widely used overdamped case and the model of
the freely rotating, underdamped case, that has been studied for the present thesis, are
discussed in theoretical terms. With an emphasis on the case of the underdamped, freely
rotating particle in a harmonic potential.

The results of the simulation and the comparison with the theoretical hypothesis from
Chapter 2 are found in Chapter 3 “Simulations”, as are the descriptions of the algorithms
used.



Contents

In Chapter 4 “Conclusions” the important results will be reviewed and an outlook for
further research will be given.

A major part of this work was the development and the testing of the simulation.
Some results of the extensive simulation testing are given in the appendix.



1. Brownian Motion

1.1. The freely diffusing particle - from Einstein to Langevin

The Brownian motion and Brownian particle is named after the British botanist Robert
Brown (1773 - 1858) who described in 1827 the erratic motion of pollen grains in water.
Studying Brownian motion one stands on the shoulders of giants like Albert Einstein,
Marian Smoluchowski, George Uhlenbeck, Leonard Ornstein and Paul Langevin. That
seems like a lot of brain power working on a problem that started with the botanist’s
observation. But by studying the particle’s erratic movement the concept of stochastic
differential equations had to be introduced. Today stochastic differential equations are
present in physics, biology and even finance mathematics, describing stock prices.

1.1.1. The Einstein formula

Albert Einstein (1879 - 1955) proposed 1905 a mathematical theory for the erratic mo-
evement of the pollen grains based on the atomistic concept [9] - at a time when the
atomistic concept was still a hypothesis and controversially debated in the physics com-
munity [13]. Einstein assumed, that the grain pollens move, because they are hit by
water molecules. These collisions are of random strength and direction, and will cancel
each other out over long periods of time. But for short times it’s possible to have more
molecules colliding with, for example, the right side of the particle - driving it to the left.
He first showed, that for small spheres suspended in a liquid the diffusion constant D
depends only on the coefficient of viscosity n and on the radius of the suspended particles

r.
_RT 1

=— (1.1)
Ny 6rpr
where R is the universal gas constant (well known from experiments at that time), T the
temperature of the liquid and N4 the Avogadro constant. One way to put the atomistic
theory on firm ground was measuring the Avogadro constant in different ways, hoping for
results which were in good accordance to each other. Einstein’s theory provided another
way to measure the Avogadro constant.

Let 7 be a time interval big enough to neglect inertia, like Einstein proposed, and
therefore assume the displacements of the suspended particles as mutually independent.
The displacements A should follow a symmetric probability density ¢, where ¢(A) is
bigger than zero only for small values of A. Following Einstein one can write a particle
distribution function p(x,t) for n particles distributed on the x-axis at time t. Hence:

/00 plx,t)dx =n (1.2)

(o)




1. Brownian Motion

Using the small time interval z one can write

dp(x,t)
ot
Another way to obtain p(x,t + 7) is by using the distribution of displacements ¢(A). The

number of the particles in the interval [x, x + dx] at a time ¢ + 7 can be expressed using
¢(A) and the distribution function p(x,t) at time t as:

plx,t+17)=plx,t)+7- (1.3)

plx,t+1)dx = dx-/mp(x+A, 1) p(A) dA

—00

Let’s expand p(x + A, t) in powers of A

then

o 00 2 o
p(x,t+r)dxzdx-(p(x,t)/_ ¢(A)dA+%[ A¢(A)dA+%/_ A72¢>(A)dA+...)

Using that the integral /_0:0 A*$(A) dA vanishes if k is odd or k = 0:

32 00 A2
p(x,t+1')dx=dx-(p(x,t)+a—x§[w %¢(A)dA+...) (1.4)

Because we assumed ¢(A) to be only bigger than zero for small displacements, powers of
A* upwards will be neglected. Comparing (1.3) to (1.4) Einstein arrived at

0p(x,t) _/°° A? d?p(x, t)
N T DR AC R v

and, after defining D = % / ” A—QQS(A) dA, one arrives at the well-known diffusion equation

o 2
Opte,t) _ 0%p(x.1)
ot Ox2
Assuming as initial condition p(x,0) = n-§(x), with d(x) being the delta-distribution, the
solution is known as:

2
ex/4Dt

n
- V4rxD \/?
Now let’s calculate the mean squared distance from the origin for one particle (setting
n=1):

p(x, 1)

(x?) :/ x2p(x, t) dx
1 . 2 —x2/4D¢
= x‘e dx
V47TDt -[oo




1.1. The freely diffusing particle - from FEinstein to Langevin

In x-direction the distribution function is equal to a normal distribution with mean zero
and variance 2Dt and therefore we obtain the so-called Einstein formulas:

(x?) = 2Dt (1.5)

As can be seen in Fig. 1.1 the trajectories and MSD for different instances of the process
can differ widely from each other. But statistical properties can still be derived and will
be obeyed.
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Figure 1.1.: (a) Five simulated typical trajectories for one-dimensional Brownian particles (b) the
theoretical mean square displacement 2Dt as a black line and five simulated square
displacements.

Combining the two results for D, egs. (1.1) and (1.5), one gets

&%) _RT 1

2t Na ' 6nr

and therefore the Avogadro constant could be measured indirectly by determining the
mean squared displacement of the particle with respect to time:

2t RT

A Nobel Prize has been awared to the french physicist Jean-Baptiste Perrin (1870 - 1942)
in 1926 for the measurement of the Avogadro constant in different ways, including the
one formulated above.



1. Brownian Motion

1.1.2. The Langevin equation

For a Langevin Dynamics simulation, as was used for the present work, it’s important to
know the underlying equations of motion. While Einstein obtained his results using the
distribution function p(x, t) for the Brownian particles, Langevin proposed the governing
equations of motion. Changing the Newtonian ansatz from a known force F(x, t) to a sum
of forces, one represented by a random variable F,(t), and the other the force of friction
—Yov, one gets the Langevin equation in a similar notation as de Haas-Lorentz [8] used
first in 1913:

mov = —ypv + F(t) (1.6)

The random force is not wholly unknown. It should model the random interactions
between the Brownian particle and the molecules of the medium. Over a long period of
time the average of F, should be zero, otherwise we would get a net flow of Brownian
particles over time. And the force should have no “memory”. Writing this in mathematical
terms, using the Dirac-delta §:

(Fr(2)) =0 (17)
(F.(t)Fo(t)) = 2m?S 8(t — t') (1.8)

where S symbolizes the “strength” of the random force.

Following Ornstein’s approach in “On the Brownian Motion” [15] we will calculate the
important statistical values for this equation.

Using & = );n—o and A = %, one can integrate the Langevin equation (1.6):

t
v=uvye ! + e_gt/O etSA(s) ds (1.9)

where vy is the initial velocity of the particle. Calculating the expectation value of Eq.
(1.9) and using the first property (1.7) of F,.(t), one finds

() =vpet! (1.10)

where the expectation value should be understood as an ensemble average. Einstein used
a time interval 7 large enough to neglect any memory effects of the displacements, but
the Langevin equation leads to a memory effect for the velocity. Einsteins time interval
needs to be much bigger than % to justify his assumption.

Let’s look at the second moment of the velocity, first squaring Eq. (1.9), then averaging
and again using the first property (1.7) of F.(t), the result is

t 2
(V) = Ve 2 4 7 %1 . <(/ e SA(s) ds) > (1.11)
0

The integral in the second term deserves a closer look, the product of the integrals can
be written as a two-dimensional integral:

g g Es Es’ ’ ’
<‘/0 ‘/0 e*’e A(s)A(s)dsds>



1.1. The freely diffusing particle - from FEinstein to Langevin

The value of e£6*5) is, with respect to the ensemble average, constant and we can write

! ! E(s+s’) ’ ’
/0 /0 e (A(s) A(s")) ds ds

Now using the second property (1.8) of the random force leads to

t pt
/ / ef 625 5(s — s')ds ds’
0 0

Integrating over s using the delta-distribution’s definition f f(x)8(x —xp)dx = f(x0)

t S
28 / e ds’ =2 . (e%t - 1)
0 3

inserting this in Eq. (1.11):

S
(V%) = vEe 2 + 2 (1 - e’2§t) (1.12)
In the limit ¢ — oo the particle should eventually arrive at a mean squared velocity
dictated by the equipartition theorem as (v?) = kBTT, where kg is the Boltzmann constant

and T the temperature of the solvent. Comparing this to the Eq. (1.12) from above, one
can calculate the strength S as

kgT
S=&-22 (1.13)
m
Let’s look at the mean squared displacement (MSD) next by multiplying the Langevin
equation with x, (‘Zl—’t‘ =o):
d’x ¢ dx LA
—x=-f—x+Ax
dt? dt
Using % SX = %% -2 and %x = %dd—x: does change the equation to
1 (d?x? dx? 9
— == +E—]|=0v"+A
2 ( di? 3 dt ) © *

Taking the ensemble average, one arrives at
, d, o 2
TS0+ EL () = 207 + (Ax)

We know (v?) from Eq. (1.12), therefore we only have to take a closer look at (Ax).
Integrating Eq. (1.9) again, one obtains

X =x0+ z)—;(1 - e_gt) + %—/OtA(s) : (1 - eg(s_t)) ds
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multiplying this equation with A(t) and taking the ensemble average

(Ax) = (A) xo +(A) U—;(l —e* t) + % / t(A(t)A(s)>(1 - eﬁ(s-”) ds
0

If one uses both properties (1.7) and (1.8) of the random force F,, then

(Ax) = é/0t255(t—s) (1 - e§<s—f>)ds =0

This only holds for equal times (A(t) x(¢)) as Manoliu and Kittel [14] showed. This is also

in accordance with our physical intuition of the problem. While the random acceleration

should not be depending on the position of the particle at that time, these accelerations

have an impact on the particle’s position at a later time. Now we’ll use this result and
Eq. (1.12) averaging over all initial velocities ((v3) = %)

2

7 x%) +§%(x2) = 2?

This can be solved by using the following ansatz:

_ S
(x?) = co + cre §t+2?t
The integration constants can be calculated, assuming that at t+ = 0 the MSD and its
first derivative are zero. Hence the solution reads:

2§ _
(x?) = g(§t—1+e gt) (1.14)
While S only determines the slope of the MSD, the value of ¢ is also responsible for
the shape of the curve, as can be seen in Fig. 1.2. For short times, meaning &t < 1, the
curve mimics a particle in a ballistic regime. In the limit of £t > 1 one arrives at a linear

function for the MSD
(x%y=—=1t

which is exactly the Einstein formula (1.5), if one uses Eq. (1.13) and identifies D = Iif—g.
This diffusion constant D is identical to the diffusion constant Einstein was using, defined

in Eq. (1.1), if one keeps in mind that kg = NL; and Einstein uses the Stokes friction for
a spherical particle with radius r, hence ¢ = 6”%.

The autocorrelation function (v(t) v(t+7)) is easily obtained from Eq. (1.9). Rewriting
this equation to vy = v(t) and o(t + r), and multiplying by v(t), one gets

o) o(t + 1) = v(t)%e 5T +vpe T / e“SA(s) ds
0
where 7 > 0. Now taking the average and using the equilibration limit (v(t)?) = %

(v@)v(t + 1)) = g et

10



1.1. The freely diffusing particle - from FEinstein to Langevin
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Figure 1.2.: The MSD for Brownian particles following Eq. (1.14) (a) for three different values
of S with £ =1 (b) for three different values of £ with S =1

1.1.3. The Fokker-Planck equation

Instead of solving the equation of motion, in our case the Langevin equation, one can also
take a look at the time dependent probability distribution function for the problem. The
equation that describes the time dependence of the probability distribution function for
Markovian processes is called Fokker-Planck equation. Each Langevin equation has an
equivalent Fokker-Planck equation. First we will derive the general form of the Fokker-
Planck equation and then apply it to the problem of the free Brownian particle, which
we have discussed in the previous section.

We want to derive the differential equation describing the time dependence of a two-
dimensional probability distribution function p(a,t), where a is a continous variable -
called state - and t denotes the time, as usual. The expression p(a,t)da describes the
probability to find the system in a state [a, a+da] at time ¢. It should describe a Markovian
process with the transition rate w(a, a’; t) denoting the probability to transition from state
a’ to state a at the time ¢t. The corresponding Master-Equation' reads

o .
% = _/da/ [(A)(a, a’; t)p(a/’ t) - (o(a', a, t)P(a, t)]

This equation describes the influx to p(a,t) by summing all other states’ probability
distribution at a’ up, weighted by their transition probability to land in a. Tt also
describes the outflux by subtracting the transition probability to leave the state a in

I'more on Markovian processes and the Master equation is found e.g. in G. Ropke, “Statistische

Mechanik und das Nichtgleichgewicht” [18]

11



1. Brownian Motion

favor of state a’. Let’s rewrite the equation a little bit

odp(a,t)

ey :/w(a,a';t)p(a',t)da’—p(a, t)/w(a',a; t)da’

It’s reasonable to assume, that the changes of a are small, i.e. that w(a, a’;t) is a sharply
peaked function around a’. Substitutions will lead us to

op(a,t)
ot

= /w(a,a -b;t)pla—>b,t)db - p(a, t)/a)(a +b,a;t)db
We can Taylor expand w(a,a —b;t)p(a —b,t) at a=a + b:

(a +b))" o"

w(a,a—b: t)p(a—bt)—z(a o [w(a+ba £ pla, t)]

= w(a+b,a;t)p(a, t)+Z( :)n o [w(a+b a;t) p(a, t)]

Hence

0 o
p(aatt) /w(a+ba t)p(a, t)db+/z( b) C;’)

- p(a, t)/a)(a +b,a;t)db

w(a+b,a;t)p(a, t)] db

The first and third term on the right hand side cancel each other out, and if we rewrite
the second term and substitute b = a’ — a, we arrive at the Kramers-Moyal Expansion:

9 " !
p(a ) Z( ) (_) [ctn(a £) pla )]

= /(a’ —a)"w(d’,a;t)da’

At_>0 . /(a —a)"P(a’,t + Atl|a, t)da’
where P(a’,t + At|a, t) denotes the conditional probability, that the system is in state a’
at time t + At if at time ¢ the system was in state a. The «, are called moments of the
transition probabilities.

If a, = 0 for all n > 3, then the Kramers-Moyal expansion ends after the second term
and the resulting equation is called Fokker-Planck equation:

2
apgz’ D _ _ai[al(a 1) p(a, t)] + ;%[sz(ﬂla t)pa, t)]

After formulating the Fokker-Planck equation we will apply it to the Langevin equation
of the free Brownian particle (1.6) and calculate the time-dependent probability distri-
bution of the velocity p(v,t). We integrated the Langevin equation in the last section

12



1.1. The freely diffusing particle - from FEinstein to Langevin

and obtained a solution for o(¢) under the assumption that the initial velocity is v, see
Eq. (1.9). Let’s calculate the moments of the transition probabilities a; and ao:

= A
ay At—»OAt/ (v —1vg) - P(v, ty + At|vg, tg) do

The integral is equal to the expectation value of (v(ty + At) — vg) under the assumption
that v(ty) = vy, hence:

1
a; = lim —{(ov(tg + At) — v
1 A} 0At< (to t) (to))

Using the Eq. (1.10) and ty = 0, one obtains

1
= lim — - =&t
a = lim —= (U(O) e v(O))

= —£0(0)

because the right hand side of the first line equals the first derivative of v(t) at t = 0.
For the second moment we will use the Eq. (1.12) for (v(t)?):

Jim (@A) - w)?)

o =

= AhmoA—t[vg e 2N 4 -(1 ‘2§Af) 202e 0 4 o

t—

S 1 —EAt
= - lim —[e 2t _1 +UO lim — e 262 41 21}0 lim

§ a0 At At—0 At At—0 At

-2¢ -2¢ 3

=28

Using de I’Hospital to calculate the last two limits. The Fokker-Planck equation for the
velocity of the Brownian motion therefore reads

ap(v,t) 0 s
S = £ [0p(©.0]+ S = p(o,1)

From this equation one can get the stationary solution py(v) for p(v, t) by setting ap (v D =

0.
2

o) + S pofo)] =

integrating this equation leaves us with the Well—known Maxwell-Boltzmann velocity dis-
tribution

¢ 1/2
po(v) = (%) L e (1.15)

While the thermal fluctuations, represented by S, broadens the curve, if the temperature
rises, the friction & sharpens the peak and counteracts the thermal fluctuations, see Fig.
1.3.

13



1. Brownian Motion
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Figure 1.3.: The velocity distribution for Brownian particles following Eq. (1.15) (a) for three
different values of S with & =1 (b) for three different values of ¢ with S =1

1.1.4. The Wiener-Khinchin theorem
Let’s denote the Fourier transform a(w) of a function a(t) defined as

a(w) = /_00 a(t)e 't dt

and the inverse Fourier transform
1 ® ~ iwt
a(t) = — a(w) e’ dw
21 J_o

The power spectrum of the function is then defined as

Sa(@) = (la()])

and S;(w) dw is physically the mean intensity in the frequency interval [w,w + dw]. The
theorem of Wiener and Khinchin states the connection between the autocorrelation func-
tion (ACF) (a(t) a(t + 7)) and the spectral density S,(w):

Sa(w) = [oo(a(t) a(t +7))e T dr

(9]

(a(t)a(t + 1)) = % / Sa(w) e’ " dw

Now we will apply this theorem to the Langevin equation to calculate the velocity’s
power spectrum (|9(w)|?). In Fourier space the time differential can be easily rewritten

14



1.2. Brownian motion in a harmonic potential

as:

d d . .
—o(t) = —/f}(m)e’”t dow = /iwz? e 3)

dt dt
o\
dt = 10

Therefore we can rewrite the Langevin equation in Fourier space as:

hence

2ot = —o(t) + Al)

dt
(i + &) 0(w) = A(w)

_ (|A@)*)

So(@) = (|o()|?) = Wwwg

with A(t) being a stochastic process, still having the properties we defined earlier in
subsec. 1.1.2, namely (A(t)) = 0 and (A(t) A(t")) = 25 6;_4. Then the power spectrum of
the random acceleration can be calculated using the Wiener-Khinchin theorem

(|A(w)]?) = / (AW A(t + 1)) e @7 dr (1.16)
= / 2558(r) e 7T dr
=28
and therefore
25
So(w) = Tra? (1.17)
Using this result, we can also calculate the power spectrum of the position Sy(w), using
%x = v, hence

iwx =0
and by squaring and averaging

1 28

Si() = (K@) = (9 = = - oo

1.2. Brownian motion in a harmonic potential

The problem of a Brownian particle in a harmonic trap will be discussed using the
Langevin equation with an additional force. The potential reads U = k—;x with ks

15



1. Brownian Motion
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Figure 1.4.: The power spectra Sy(w) (full) and S,(w) (dashed) for Brownian particles following
Eq. (1.4) (a) for three different values of S with & =1 (b) for three different values
of £ with § = 1

denoting the spring constant of the force F = —VU = —k,x. Putting it all together one
arrives at the two coupled differential equations:

dx

E—U

d
m d_z; = —yv + Fp(t) — ksx

For the random force F,(t) the same restrictions are still in place:

(F(1)) =0
(FA(H)F, () = 2m?S - 8(t — t')

For brevity’s sake we will write the equation, using wg = k—”sl, At) = F’T(t) and & = %:

dv
i —Ev+ A(t) - a)gx

The corresponding Fokker-Planck equation for the probability density p(x, v, t) reads

ap dp o, Op 0’p I
et s’ £ _e¢Z L =
ot T Vax T 90% g0 T 552 T 5ot

This equation can be solved in the stationary limit % =0:

po(x, v, 1) = C - e~ Eksx®/2S | g=E0?/28
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1.2. Brownian motion in a harmonic potential

The obtained solution equals two Maxwellian distributions, one for the velocity and one
for the position. The constant C can be easily calculated by requiring

/ / po(x,v)dxdv =1

One can calculate the autocorrelation functions for the position first and then follow
up with differentiation of the obtained result to get the crosscorrelation for position and
velocity and finally the autocorrelation for the velocity. To do this we will follow Coffey’s
“The Langevin equation” [7] by rewriting the Langevin equation for the positions

2
dr?

Now changing to Fourier space

x(t) + §%x(t) + wpx(t) = A(t)

—0’% + iwx + a)gfc = A(w)
and calculating the power spectrum, using Sa(w) = 285, see Eq. (1.16):

28

Sx(@) = (w(z] - w?)? + w2&?

(1.18)

Note that the power spectrum of the velocity can easily be obtained using w?Sy = S,.
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Figure 1.5.: The power spectra Sy(w) (full) and S,(w) (dashed) for Brownian particles following
Eq. (1.18) (a) for three different values of S with & = 1 (b) for three different values
of £ with S=1

Using the Wiener-Khinchin theorem we can now obtain the autocorrelation function:

0o —-iwT
e

dw
oo (0] — 0?)? + 02E2

Ot + D) = o

17



1. Brownian Motion

This integral can be solved by applying the residue theorem to it. Therefore the integral
should be written as contour integral in the complex plane. The residues are located at

wg —0? = xitw
§ 2 §2 §
— —
® = £ Wy~ = EOLEL

2
where a)% =’ - % denotes the natural frequency of the damped oscillator. We assume

7 > 0 and let w = a + ib be a complex number, then the numerator of the fraction is
eY"*7 and the contour of the complex plane should be closed by a semicircle in the
lower half plane. Therefore only the residues with negative complex values are needed
to solve the integral w = +w; — ig. We obtain:

S [ e 9T deo
() x(t+1)) = [m (@1 —iE/2) (@ —1 + iE/2) @ + o1 —iE/2) @ + o1 + iE)2)
o S e—i(wl—i§/2)r e—i(—(ul—i§/2)r
M [(—i§>(2w1 ZiE)2w1) | (~201 — iE)(—201)(—id)

25 _gep [(2w1 +if) - eI + 2 — if) - ei")”]
= ———¢
2l & 4o} + £

now taking advantage of the definition of a)% to simplify 4@% +&2 = 40)8 and rearranging
inside the brackets lets us use Euler’s formula:

(x()x(t + 1)) = —5 e /2 [2&)1 -(ei“)” + e_i””) —if - (ei”” - e_i“)”) ] =
dwgwr &
2 cos(w1 1) 2isin(w17)
S —&7/2 é: :
=—ze€ cos(w17) + = sin(w1 1)
wy€ 201

We can utilise this result to calculate the missing cross-correlations and the autocorrela-
tion of the velocity:

()0t + 7)) = (x(0) ~ex(t) = - (x(0)x(t 4 7)

S —&7/2 §2 :
———e -—+ W sin(w17)
2 4
§(,<)0 ) ——

wg—E2/4

S
= —— ¢ "2 sin(w 1)
Ewr

For the second cross-correlation we will use the stationarity by shifting the time axis by
-1

()Xt + 7)) = (o x(t = ) x(1)) =~ (x(0) (0 + ) =

_ S e

2 sin(wy 1)
fwr

18



1.2. Brownian motion in a harmonic potential

The velocity auto-correlation function is therefore

2
(v(t)v(t + 1)) = —;?(x(t) x(t + 1))

S
=Z e 82 cos(wrT) - i sin(w17)
§ 20)1
From this correlations one can obtain (x?) = wi% = r]:f;Tg and the expectation value for
0 0

the potential energy (Epor) = %ks(x2) = %kBT, using wg = % This result fulfills the

ksT
2 = =E=, hence (Ekin) =

equipartition theorem. Likewise for the kinetic energy (v?) ? =

%m(v2) = %kBT.

1.2.1. Inactive particle in an oscillatory shear flow

Kéhlert and Lowen [11] studied the case of a deterministic oscillatory shearing force
driving an inactive particle in a harmonic potential. They solved the case of one particle
analytically and used Langevin dynamic simulations to tackle the problem of multiple
particles. This case is relevant for the present work, because the active particle could
be thought of as a inactive particle driven by an rotating external force. The important
difference is, that the active particle’s force is rotating via rotational diffusion, while
the oscillatory shear force studied by K&hlert and Lowen is strictly deterministic. The
differences become greater when viewing multiple particles, because each active particle
has it’s own rotating force, while the shear force is imposed on all particles.

They first studied the problem of one particle in an oscillatory shear flow, with shear
frequency Q, imposing the force fihear = €5y cos(Qt) in x-direction. Using the present
work’s notation, where m denotes the mass, & the friction and introducing the shear rate
as §, the one particle problem in a harmonic potential with trap frequency wg reads

x () = Al) x (1) + {(t)
where y(t) = (vx(t), vy(t), x(t), y(t))T describes the two-dimensional velocity (vy, vy) and
position (x,y) of the particle. The vector {(t) = (fx(t), fy(t), 0, 0)" /m describes the
stochastic acceleration of the Brownian particle with

@0y =0, (W) =Dt ~1)

where D denotes the diffusion matrix

1000
b 2ksT {010 0
m |0 00 0
0000

The coefficient matrix A(t) is given by
-£ 0 —(ug &5 cos(Qt)

0 - 0 —w?
Alt) =1 og 0 0
0 1 0 0
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1. Brownian Motion

The shear flow only affects the x-direction, therefore the equations for v,(t) and y(t) are
equal to the ones of an inactive particle in a harmonic trap and have been discussed in
sec. 1.2.

Interestingly the solution shows for the cross moments (x(t) y(t)) and (v.(t)vy(t)) and
the second moments (x?) and (v2) resonance effects for the amplitudes of these moments.
The cross moments are given as

(x(t) y(t)) = Wi (kBT ) Axy cos(Q1 + ¢y
ma)o

(0x(t) vy (1)) = Wi (kBT ) Ap,o, 0S(Qt + o 0,)
ma,

0

where Wi = sf/wg denotes the Weissenberg number, Q = Q/wy and € = &/wy. The
amplitudes are

4E? + 02 1/2
A= (@ onueet + (@ - 4)2]]
02 1/2
w (@ QPR+ (22 - 4)2]]

and the phase angles

Q?+ 482 +1) ]
— 402 + 482(Q2 - 2)

~ g 3Q2% -
tan ¢uxvy = [ 2§2 ]

And the second moments for x and v, are given as

tan ¢y = EQ[Q4

2
Lt»Q =1+ WIQ[dx + Axx COS(2Qt + ¢XX)]
kT /maw§
2
M =1+ Wi2 dx + Av, v, COS(2QL + ¢o, o
[ . ( )
kpT/mop ’ ’

The corresponding amplitudes and phase angles are quite lengthy and can be looked
up in [11]. Much more enlightening are the plots of the amplitudes, phase angles and
constant terms in figures 1.6 and 1.7

While the cross moments peak at Q/wy = 2 for low friction £/wy ~ 1072, the second
moments show two peaks. One at Q/wg = 1 and the other at Q/wy = 2. At intermediary
friction &/wp ~ 107! the first peak becomes dominant for (x?).
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Figure 1.6.: (a) and (b) show the phase angles
and (c¢) and (d) the Amplitudes of
(xy) and (vxvy), Reprinted figure
with permission from [11] Copy-
right 2018 by the American Phys-

1.3. Threedimensional case

amplitude
e i
S oo D oo =

[\~
(==}

—
o

constant term

2
2

Figure 1.7.: (a) and (b) show the Amplitudes,
(¢) and (d) the constant terms
of (x2(t)) and (v2(t)), Reprinted
figure with permission from [11]
Copyright 2018 by the American

ical Society Physical Society

1.3. Threedimensional case

The different components of the velocity and position in three dimensional space of the
Brownian motion are independent from each other and therefore the results from above,
all obtained for the one-dimensional Langevin equation, can be easily generalized to three
dimensions. Because the simulations for the present thesis are done in three dimensions
the important results for this case will be summarized here. The positions will be denoted
as ¥ = (x1,x2,x3) and the velocities as ¥ = (v, va, v3).

1.3.1. Free Brownian motion

The initial position in phase space is (Xp,7p). The Langevin equation for the problem

reads 5z .
X N v__ L -
a =Y ar T Al

with the following properties for the random acceleration A= (A1,Ag,A3),and S = ¢& kBTT
(Ai®) =0 (A1) A;(t")) =256;;6(t — ')

Important means are ({.)z, denoting the mean under the assumption of ©(0) = ¥p):
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1. Brownian Motion

(@)g, = Do e (0%)g, = T 2! + (1—e‘25’*‘)

@) =8 (@ =50%) = B (g1 )
(Ekin) = %m% = SkpT

The velocity’s autocorrelation reads, for 7 > 0
3S
(B3t + 1)) = 7 e st

The Fokker-Planck equation for the probability distribution function p(o, t) reads
9p(T, 1) al. .
— p(@,1)

52
TR A R T A

and the stationary solution dp(0)/dt = 0 is

3/2
_£=2
o= (g55)
The power spectra for the position and velocity read:
1 6S 6S

v(w) =72, 9

(0= Era

1.3.2. Brownian motion in a harmonic potential

The Langevin equation for the problem reads
ax do L= 2o
E:v E:—§U+A(t)—w0x
The Fokker-Planck Equation for the probability distribution p(X, o, t) is

op Op  5.0p O
ar 0oz 055 = Sam2 T gzt

0x?
The stationary solution dpg/dt = 0 reads:

po.5.) = CehTIE5 (58S

The auto- and cross-correlation have been obtained as - noting that w; is defined via

2 &
w} = wg + 5

(XOX(t+1))y = = t7/2 [cos(wlr) + i sin(wq r)]
0§ 2&)1

@O()X(t + 1))y = —(X(t)D(t + 7)) = ;75 e /2 sin(wi 1)
1

<v(t)v(t+f)>— § et/

cos(w1t) — 2—5)1 sin(wq r)]
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1.3. Threedimensional case

The power spectra are

6S 6S

Sz(w) = @ =P + 0 Sp(w) = (020 — w)? + €2

The means of the squares fulfill the equipartition theorem:

() =3 (Epot) =

a)gf

<52> = 3% (Ekin) =

SkgT
SkgT

3 3
TN

V] [SUR ] [V
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2. Active Particles

2.1. Introduction

Active particles can be defined as particles undergoing Brownian motion, which can take
up energy from the surrounding and convert it into an kinetic energy. This definition
is broad enough to enclose motile cells, Brownian motors and artificial self-propelled
particles.

There are two dominant models for active particles: the rotational diffusive and the
run-and-tumble model. The present work uses only the rotational diffusive model, be-
cause it’s physically closer to most artificial active particles. The run-and-tumble model
is more suited for bacteria, which change their activities direction with a mean tumble
rate of . Tailleur and Cates [5] studied in which cases these two models are identical,
with respect to phase separation.

2.2. Overdamped active particles

The overdamped case is insofar interesting for the present thesis, because it’s the best
studied case for active particles. The analytical description of the particle’s motion is
possible in this case, see Ref. [27], and the results of the theory will provide a first test
for my simulation, as it should converge to the overdamped active particle if the friction
rises. Here, I will present only the most important results for this case.

The equations of motion in the two-dimensional case read

% =wva cos(p) + 2D1 {x,  y=wva sin(p) + 2Dy, ¢ =+2Dr{,

where vy is the “strength” of the activity, Dr and Dy are the diffusion constants for
translation and rotation, respectively, ¢ denotes the angle between the activity’s direction
and the x-axis and {, ¢, and {, are independent white noise stochastic processes with
zero mean and unit variance.

Assuming that x(0) = xp, y(0) = yo and ¢(0) = ¢o these equations can be integrated,
using W} = fOt {i(t")dt’ to denote the Wiener process, with i = x, y, ¢:

t
X =x0+ UA/ cos(p(t")) dt” + y2DTW;*
0

t
Yy =1o + Z)A/ Sil’l((p(t/)) dt/ + \/2DTWty
0
¢ = o +V2DrW,”
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2. Active Particles

While Lowen et al. present in Ref. [27]| only the equations of motion and the analytical
solution to the position’s average and the MSD I will use the space a master thesis grants
and present the steps leading to the solution in the appendix. Taking the averages, using
(WhH =0 and (ei("’0+mwt¢)) = ¢! . ¢Prt (see Appendix B.1.1), one obtains, see Ref.
27],

(x —xq) = o4 (1 - e_DRt) - cos(¢po)

(y—vo) = g—:: : (1 - e_DRt) - sin(¢o)

(@=¢0)=0

The difference to the passive particle can be seen in the expectation value for the x-
component of the position. If the initial value of the activity’s direction is chosen as
@o = 0 and therefore parallel to the positive x-axis, the particle will at first move along
this direction. This movement lasts until the activity’s direction is randomized enough by
the rotational diffusion. Before this happens the particle moves in x-direction to a mean
value of v4 Dl‘zl, letting us define 7z = DI;1 as characteristic time scale for the overdamped
Brownian rotational motion before rotational diffusion randomizes the direction of the
activity.

The mean squared displacement can be calculated, as has been done by Lowen et al.
[27], using (W;) = 0, (W?2) = t and (cos(¢(t")) cos(p(t"’)) +sin(ep(t")) sin(e(t""))) = e~ Dr(t"=t)
(see Appendix B.1.2):

7)2 1)2
(x=x0)+@—1p)?) = [4Dr + 22| -t + 22 . [ PrE
Dg Dj

for long times t > g the MSD converges to [4Dt + QUi/DR]l' and is therefore steeper
than the expected 4Drt for an inactive particle. One could define, in an analogous way
to the passive Brownian particle, an effective diffusion coefficient Deg = Dt +0124 /2Dg and
for long times compare the diffusion of the active particle with the diffusion of a passive
Brownian particle with a higher effective temperature

D
Y= off = L . (DT +U§\/2DR)

ks ks
This might lead to the assumption that active particles are equivalent to hotter inactive
particles, but this picture only holds in simple cases, as Tailleur and Cates show in their
study of active paricles in external potentials [26].

Now to the velocities of the active particle. The means are

Ter =

(%) =ovae P " cos(po)  (9) =vae " sin(po)
and the velocity’s second moment (3?) = (x? + §?) can be calculated, using (¢;) = 0 and
({7 =1, as
(7%) = v (cos(p(t))) + 2Dr + vi(sin®(p(t))) + 2D

= 4DT + Z)i
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2.3. Underdamped active particles

The mean velocity reminds one of the Brownian particle’s mean velocity, if they are
subject to inertia. Setting Ty = v4 - (cos(@g), sin(pp)) makes these equations identical to
the ones from Ornstein and Uhlenbeck, see Eq. (1.10), where the rotational diffusion
constant takes the role of the friction.

It’s mathematically more complex to investigate an active particle with two rotational
freedoms (¢, 0) for the direction of the particle’s activity (sin(8) cos(¢), sin(0) sin(g), cos(0)).
The MSD and the average position can be calculated using spherical harmonics like Lowen
et al. did in Ref. [27]. Denoting the particles position at time t as ¥ and the angles
defining the initial condition of the activity’s direction as (¢g,0p) one obtains:

1o sin(6y) cos(¢o)
(¥ —Xp) = 5 D_A (1 - e_QDRt) - | sin(6p) sin(¢g)
R cos(6y)

2 2
(R—-F0)%) = 6Dy + 2A Y )
Dgr 2 \ Dp

e 2Prl _ 1] (2.1)

2.3. Underdamped active particles

Underdamped active particles have been investigated, e.g. by Schweitzer et al. [21] and
Schimansky-Geier et al. [17] theoretically, but these usually assumed, that the activity’s
direction is identical to the direction of the particle’s velocity. This assumption enables
one to analytically obtain the mean squared displacement, stationary velocity distribution
and other statistically relevant parameters. These assumption can be extended to the
model of the present paper, if the activity’s rotation is slow compared to the velocity
relaxation time and the activity is high compared to the particle’s mean speed resulting
from thermal diffusion.

2.3.1. Underdamped and freely rotating

In the present thesis the case of an underdamped active particle in three dimensions,
where the activity’s direction is undergoing rotational diffusion is investigated. The
friction forces use Stokes’ friction coefficients, for the translation yr = 67nR and for the
rotation yg = 87nR3, where 5 is the viscosity of the medium and R the particle’s radius.
The activity is modeled as a force in the activity’s direction a, with |a| = 1. The strength
of the force is chosen in a manner that the average speed of the particle approaches a
fixed value of vy for a fixed direction, fl—f = (0, 0, 0). T assume that the direction of the
particle, similar to a Janus particle [4], is undergoing rotational diffusion with a diffusion

coefficient Dg = %. The particle also experiences the translational diffusion of a passive
Brownian particle with the diffusion coefficient D = k)‘f—TT.
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2. Active Particles

Accordingly, the Langevin equations read

dx
3 2.2
=0 (2.2)
do . . P

m i —y10 + yroaa + ,/2yTDT {r (2.3)
da .
d—‘; = &xad (2.4)

do - >
=== 1R + \J2v2DR (R (2.5)

where (g ; and {7 ; are independent Gaussian processes with zero mean and unit variance
and ¢& denotes the angular velocity of the direction d@. The mass of the particle is m and
the moment of inertia I = %mR2 for a spherical particle. A similar approach has been used
by Enculescu et al. [10], with the difference, that they used to model the activity with a
fixed velocity, instead of a fixed acceleration. Their approach leads to an additional term
of +va(d x @) for the derivative of the translational momentum, which ensures that the
particle, even if it is rotating very fast, keeps a mean speed of vs. The equations above
imply that for a fast rotating particle, the active term nearly vanishes, because the force
yrvaa changes direction faster than the velocity of the particle can, due to inertia.

The angular velocity is undergoing Brownian motion like we studied in section 1.1.2.

YR

Using these results we can write, using &g = % and &(0) = &y:

t
& = @ e Rl 4 g ¢R! / k! \[2E2Dg (p(t') dt’
0

(B) = By e R

and for the mean squared angular velocity
(&?) = &F e 2R! 4+ 3ErDp - (1 - e—QfRf)

The equipartition theorem for the three rotational degrees of freedom is obeyed in the

long run (¢ — o), if one keeps in mind that Dg = % and
. 3
(Erot) = 51(0)2) = 5 kgT

The problem of describing the statistical parameters, especially the distribution and the
autocorrelation function, of a unit vector’s underdamped Brownian motion on a sphere
has been tackled by, amongst others, Sack [19], Steele [24, 25] and Lewis et al. [12].
While Sack used the Liouville’s equation and continued fractions to arrive at the complex
polarization, Steele and Lewis focused on the autocorrelation function. Lewis et al. [12]
derived a series to represent {a(t)) and (a(t) a(t+7)) which is not easily extended to higher
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2.3. Underdamped active particles

orders. I will therefore use Steele’s approximation for the autocorrelation function, which
reads in the notation used in this work

{a(t)a(t + 1)) = exp [ -2 % (§RT + e tRT 1)] (2.6)
R

Steele mentions that this equation is a good approximation if &g/Dg > i, but gets worse
for smaller values. In case of a small friction - ég/Dg < % - one can expect, the the unit
vector should oscillate and this should be seen in the ACF. But Steele’s approximation is

positive and decreasing monotonously for all times, independent of the choice of ég/Dg.

1 > T T T
"\, £/Dgp=1/4 —
LY, §/Dr=1—~- 1
0.8 | ‘»\\ £/Dg =9/4 ] 0.9
N\ 0.8
20.6 Y 0.7
N \ 0.6
TE/O 4 ‘\‘ 0.5
= \
= 03
0.2 b .
\"\‘ 0.2
s 0.1
! T 0
-4-3-2-10 1 2 3 4
0 0.5 115 2 oy
T/§”
(a) (b)

Figure 2.1.: (a) Steele’s approximation for the ACF of a unit vector undergoing Brownian motion
for different values of ratios of ég/Dg. (b) Non-normalized velocity distribution Py (%)
at v, =0, for vy =2 and & Dy = 1.

If the characteristic rotation time (|&|)~t = \/7I/8kgT of the particle' is smaller than
the velocity’s memory §;1 and the activity’s strength v, is high compared to the ther-
mal fluctuations /kgT/m then the velocity of the particle will be mostly parallel to the
activity’s direction. This is similar to the case described by Schimansky-Geier et al. [17]
as “Active Brownian particles with velocity-dependent friction”. The equation then reads

do

i —&ro (1 - %) + 2§%DTQ:T (2.7)

The first term is positive, if the particle has a speed smaller than v4 and therefore pumps
energy into the system. If the speed is higher than v, then the friction term dissipates

I'Tn the case of no friction, this expression is equal to the mean rotation time. For frictions bigger than
zero the mean rotation time will be bigger than (|&])~'. Lewis et al. defined in Ref. [12] r1 = +/I/kpT
as mean thermal angular period
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2. Active Particles

energy. Modeling the active force in this formulation as a friction was first done by
Schienbein and Gruler in 1993 [20]. The stationary velocity distribution for Eq. (2.7)

reads
Py(0) = Ne_(|5|_UA)2/(2§TDT)

and can be seen in Fig. 2.1b. In three dimensions this distribution looks like a spherical
shell, with the maximum at |9] = v4.

2.4. Active particles in a harmonic potential

2.4.1. Overdamped case

Overdamped active Brownian particles in a radially symmetric trapping potential have

been studied analytically and via simulation by Pototsky and Stark [16]. Besides studying

the case of a single particle, they applied the dynamic density functional theory (DDFT)

of interacting active particles to calculate a stationary radial distribution function for

multiple particles. Important for the present work is their solution for a single particle in

2D traps, because the simulation should mimic their results in the case of high friction.
They start at the overdamped equations

¥=—pVU +vad+E(t), ad=7lt)xa

where X is the particles position, the unit vector a the activity’s direction, U(X) the
trapping potential, u the mobility, v4 the activity and 5 (t) and 7(t) represent translational
and rotational noise, respectively. These random terms fulfill (g(t)g(t’)) =2pkgTo(t—t")
and (f(t)i(t")) = 2D, 8(t — /).

They solve the Smoluchowski equation for this problem to calculate the probability
density p(X,a, t) and arrive at partial differential equations for the effective probability
flux, which are not generally integrable. Only for small and large rotational diffusion
coefficients D, is the equation solvable. For convience let’s define the Peclet number
Pe = (dva)/(pkpT), with d being the diameter of the particle. The Peclet number is
measure for how much influence the activity of the particle has, compared to the thermal
fluctuations.

In the case of small rotational diffusion the activity’s direction a is nearly constant, as
far as the potential U is concerned. Therefore the activity and the trapping potential’s
force can be written as the force originating from an effective potential Ueg. This shifts the
minimum of the potential from |Fy| = 0 to the one obeying the condition dU;frf(r) |r=r, = Pe.
The particle will behave as an inactive Brownian particle in the effective potential. The
distribution along a radius approximated to the zeroth order of D, is obtained as

pgo)(r) =27 Ce U Iy(Per) (2.8)

where Iy(x) is the modified Bessel function of the first kind. The shape of the distribu-
tion function p©(r) is highly dependent on the Peclet number. For small values of Pe
translational diffusion prevails and the particle stays near the origin. For large values
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2.4. Active particles in a harmonic potential

the center of the effective potential shifts far enough to get a maximum of p(r) at rog > 0.
The transition is located at the critical Peclet number Pe(®) = v2U"’(0). The distribution
alon a radius for strong trapping can be seen in Fig. 2.2 (a).

In the limit of large rotational diffusitivity the distribution function along a radius
changes to a bell shape with maximum at r = 0. They find that there is for each Peclet
number a specific value of D, to provoke the change in shape of the distribution function.

If the typical rotation time g—i of the particle is much smaller than the run-up time of

82U (r)
or?

-1
the potential 7, = |r:r0] then a bell-shaped distribution around r = 0 is to be

expected.

Pototsky and Stark simulated the case of one particle in the harmonic potential and
could verify their analytical results for the radial distribution function with respect to
the rotational diffusion coefficient and to the strength activity. As one can see in Fig.
2.2 (b) the mean radius of the particle increases monotonically with decreasing D,, up

to a value obeying the equation d%—y)h:m = Pe.

—_

o | 1 |1 1+
0 50 100 150 200
Pe

radial density

o
n

0.5

Figure 2.2.: (a) The density along a radius for slow rotational diffusivity at different Peclet num-
bers. The full lines represent the numerical solution of the Langevin equations, the
dashed lines Eq. (2.8) (b) Transition from fast to slow rotational diffusivity at fixed
Peclet number Pe=20. From [16]

2.4.2. Underdamped and freely rotating

The equation (2.3) is changed by adding the external force f;ot = —ksX, where kg denotes
the spring constant of the potential and reads
do 2

mE:—YT5+yTvA5—kS5c’+ QYTDTgT

31



2. Active Particles

The trap frequency of the potential is wg = ,/% and we will use &1 = % where conve-

nient. I will take a similar approach to Pototsky and Stark [16], discussed in a previous
subsection 2.4.1, splitting the problem in the slow rotation and the fast rotation of the
activity’s direction.

The problem looks similar to the one studied by Kahlert and Lowen [11], with the accel-
eration imposed by the activity érvaa(t) playing the part of the shear flow &7 sy cos(Qt).
The main difference, making the analytical description far more complicated, is the
stochastic direction a(t) of the acceleration. Nonetheless one can expect resonance ef-
fects, if the mean rotation frequency of the activity’s direction equals the oscillation
frequency wp.

2.4.2.1. Slow rotation
If the characteristic time of the particle’s rotation 7z = (|@|)~! is large compared to the

run-up-time of the potential w%) and the value of yrv,4 is small enough, then the activity’s
force f,(t) = yrvaa(t) is nearly constant for the time-scale of the oscillation wio Therefore

the particle will be subject to an effective force feff = yrvad — ksX . This force can be

rewritten as feg = —k; (55 — ’/Tkﬂﬁ). This is the force of an harmonic potential with the

I2°4 3. Aslong as @ doesn’t change the particle will oscillate around this

new minimum, like an inactive particle, following the equation:

minimum at

- N 1 - N -
v = —§T’U + ; fd—}‘(X) + 2§72"DT §T

We can treat this equation, like the one for the Brownian particle in sec. 1.2. To derive
the potential energy, we will use the Fourier transform and the Wiener-Khinchin-theorem,

assuming @ as constant. Writing wg = k—r;, rg = ’/Tkﬂ for brevity’s sake:
~ ot 2
(—0® + wg)? + %oﬂ] X2 = (wg ro @ 8(w) + A[2E2Dy - gT) (2.9)

Taking the average on both sides, keeping in mind that {; has zero mean, therefore ¢;
too, and with the above definition a power spectrum of Sy = 1 we obtain the position’s
power spectrum Sz. Using the Wiener-Khinchin-theorem leads to the auto-correlation
function

K X(t+71)) = rg +3- gT—l;T ce~trT/2 . [cos(wlr) + St sin(wlf)] (2.10)
(/)0 2&)1

2
where (uf = (ug - %T. For 7 = 0 we obtain

&rDr
2
)

F)y=rg+3- (2.11)
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2.4. Active particles in a harmonic potential

and for the potential energy

2 2
moyi mo, 3
(Epot) = TO(xQ(t)) = 20 r§ tSIT Dr

B

using Dr = kT and rg from above:
Yr 0

2.9
Yrvs 3

E = —= 4+ —kgT 2.12

(Epot) ok, + 5 <B ( )

The kinetic energy would be, for quasi-static @, only as big as the stochastic term
allows: (Egin) = %kBT. We obtain the autocorrelation function of the velocity by taking
the second negative derivative of the position’s autocorrelation function:

(O(t)0(t + 7)) = 37Dt e 172 | cos(w 1) — % sin(w17) (2.13)
1

this is exactly the autocorrelation for the inactive particle, as expected.

The energies stop following the equipartition theorem for slow rotation and active
particles. For quasi-static @ the kinetic energy will be equal to the inactive particle
%kBT. It’s easy to see in Eq. (2.12) that the potential energy is the sum of an inactive
part and an active part.

In the long run the activity’s direction a should be equi-distributed over the unit
sphere. Slow changes, as assumed above with g > w% and vgwp > yrva, will result
in slow changes of the minimum and the particle has time to follow accordingly. In the
equilibrium state (+ — o) the probability distribution is radial symmetric. The maxima

of the distribution should be found at the circle with radius rg = Y?’A, for rg > Iy.

The distribution of the position p(X) should be proportional to e PUer() and therefore

p(X)=C- o~ Uert(X)

The effective potential reads Usg = % (X — rga)®. Simplifying and using ¥> = r? and
denoting the angle between a and X as ¢: Ueg = % r2 — keror cos(y) + % ré. The
distribution then reads ,

,5(}", lp) — Cl . e—ksr [2+ksror cos(y)

absorbing the constant term of the potential into the constant C;. To obtain the distri-
bution along a radius, we will need to integrate over . This approach is very similar to
the one Pototsky and Stark [16] used, and yields

p(r) = 2 Ce ks’ /2 In(yrvar)

where C can be calculated using the normalization fooo p(r)dr =1, and Iy(x) denotes the
modified Bessel function of the first kind.

The velocities for a slow rotating particle should stay Gaussian distributed. The exact
treatment of the distribution’s second moment follows in the next subsection.
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2. Active Particles

2.4.2.2. Rotation period near oscillation period

Pototsky and Stark [16] found in their study of the overdamped active particle in a
harmonic potential only a transition from the state of the fast rotation to the slow
rotation. In constrast to this paper I expect to find resonant behaviour of the particle
for the underdamped case, like Kéhlert et al. [11] did for a deterministic force.

This expectation can be justified as follows: The activity is pumping additional energy
into the system, which is dissipated through (translational) friction. The amount of
energy per unit time that can be absorbed by the system is highly dependend on the
frequency of the activity. While K&hlert et al. used an external force with a single
frequency, the frequency spectrum of the stochastic activity is continuous. It can be
analyzed by examining the power spectrum of the activity’s direction.

The total absorbed energy per unit time P, is then, see e.g. Chandler’s “Introduction
to modern statistical mechanics” [6] chapter 8, proportional to

Paps o / w?Sk(w) Si(w) dw (2.14)

where S; denotes the power spectrum of the position of the unpertubed, inactive particle,
Sz the power spectrum of the force disturbing the system, consisting of the random
thermal fluctuations and the activity, and w the frequency.

The power spectrum of the inactive particle has been calculated in sec. 1.3.2 as

2
SL = 047 Dr
* (wg - w?)? + w%’%

The perturbation’s power spectrum is defined as
2>
Because the activity and the random thermal fluctuations are independent, the power

spectrum of the total force is essentially the sum of the power spectrum of the thermal
fluctuation, which is known from subsec. 1.1.4, and the power spectrum of the activity’s

force:
2 . 2
> = vigf% . < /e’”t a(t)dt >

The last expression is simply the power spectrum of the activity’s direction S; and can be
calculated via the Wiener-Khinchin theorem if the autocorrelation function {(a(t) a(t + 7))
is known. Using the autocorrelation function, see Eq. 2.6:

Sp(w) = <‘ / e’ [v4 &7 d(t) + 282D {r(D)] dt

Sactive(®) = <‘ / et va T 5(t) dt

Sz(w) = /e_iwf(c_i(t) alt+r1))ydr (2.15)
:/exp{—Q% (1+iﬁ)§RT+6_§RT—1]}dT (2.16)
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2.4. Active particles in a harmonic potential

Now we can rewrite Eq. (2.14) as

Paps = C- / ) w*SL(w) - (6£2D1 + V42 Sa(w)) dw (2.17)

(%)

To calculate C, let’s compare the integral above with the power that should be dissipated
by the friction term of the Langevin equation in the case of an inactive particle. The

work the friction force —y ¥ performs is simply —y 0 d¥. The corresponding power, being

work per unit time, is therefore —y 0 i—’f. This means that the mean dissipated power for

an inactive particle is:
Pyis = —y (3%) = =3y mkgT

Then C can be calculated requiring stationarity Pgig + Paps = 0 with vy = 0, as

For an active particle we can write
2
Pyis = =y — (Exkin)
m
Paps + Pgis = 0
Cv%Es / ©?Sk(w) Sz(w) dw + C6 E2Dr / ©?Sk(w) dw — 2&r (Exin) = 0

The second term should evaluate to the case of the inactive particle with 2&r (Exin, passive) =
3ér kT

m2 §T’0124 0 2 i 3
(Exin) = kB_T i [Oo S (w) Sz(w) dw + §kBT

Because the integral in the last equation is independent from the activity va, the ki-
netic energy and the second moment of the velocity distribution are always going to rise
quadratically with respect to v4. It’s not so simple for the friction &7, because Sy and S;
both change with respect to & and the integral is not analytically solvable.

The integrals (2.17) and (2.16) can be solved numerically, to discuss the expected
absorbed power, see Fig. 2.3.

Now to the potential energy and the second moment of the position(¥?). In the subsec.
2.4.2.1 concerning the slow rotating particle, we calculated (¥?) via Fourier transforma-
tion of the Langevin equation. Furthermore we assumed that the activity’s direction @

is constant and therefore d = @ §(w). Let’s now drop the last assumption and rewrite Eq.
(2.9):

~\2
(—a)2 + 0)(2))2 + %w2] . 3_6)2 = (§T VA a+ 2§%DT ET) (218)

One can now write for the power spectrum of the position, using that (ET) =0, (|g:T|2) =3

and that é:)T and a are mutually independent:
% vi Sz(w) 6§%DT

(~w? + a)g)2 + %wz (—w? + a)g)2 + %wz

Sz(w) =
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2. Active Particles

The second term is equal to the position’s power spectrum of an inactive particle, splitting
the total power spectrum into an active and an inactive part. The ACF of the position
then reads, using the Wiener-Khinchin theorem

(o)

L 1 .
GEOF(+ 1) = o / S2() €7 doo
” —00
0o 2 02 S~(w) eiwr _ _
T2 - a2 2 2.2 de + (X(t) X(t + T))inactive
—o0 (0% + 0f)? + Erw

FOF(+ 1) = 5

This can be further simplified by using the power spectrum of the inactive particle Si?

V2 o, .
(X()X(t+ 1)) = 1% / S2(w) Sz(w) " dw + (X(t) X(t + 7))inactive
127kgT J_ o *

To obtain the potential energy, we are only interested in (X¥?), setting 7 = 0 and using

22\, . _ qkpT.
<x >1nact1ve - 3wgm -

2 00
-9 YT Uy i kgT
= Si(w)Sz(w)d 3———
@ =t [ S s do + o

The potential energy reads

ks yr v* o 3
(Epot) = YT A/ S}C(w)Sa(w)dw+§k3T (2.19)

2477.'kBT —00

This calculation can also be done for the velocity. The power spectrum of the velocity is
easily obtained by Sz = w?Sz. Following the train of thought from above, one arrives at

2 00
S0y _ YT Uy 2ci R ksT
(0%) = T2nksT [00 S (w) Sz(w)dw + 3 -

and for the kinetic energy

myrovy [ . 3
(Bin) = 58 [ 050 S5(0)do + ShaT (2.20)

24xkpT J_o
which is exactly the same result - notice, that mér = yr - as obtained above using the
absorbed power of the harmonic oscillator. Note that these derivations are independent
of the way a(t) is obtained.

The kinetic and potential energy have been determined by numerically calculating
the integrals in eqs. (2.19) and (2.20) and plottet in Fig. 2.3. The potential energy
transitions for high friction from the slow rotating case of (see Eq. (2.12) above) to the
fast rotating case. If the friction decreases, the potential energy can show a peak at
intermediate rotation frequencies.

The kinetic energy will always have a peak with respect to the rotational frequency, and
the value of the frequency is depending on ér. One can see, that the lower the viscosity
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2.4. Active particles in a harmonic potential

the nearer is the peak of the kinetic energy to (|&|)/wo = 1. If the mean rotation time
of the particle is near to the frequency of the harmonic trap the absorbed power should
be at a maximum and therefore the kinetic energy too. The exact value of {|@|) for the
maximum is not easy to find via the numerical solution, because the slope is quite flat
over a wide range of values. For ér/wp = 0.5 it seems that the maximum is indeed at a
(|&]) higher than the natural oscillation frequency, see Fig. 2.3b, and at &r/wy = 0.25
the maximum is definitely nearer to (|&d|) = wg. Because the absolute value of the active
force depends on the activity’s strength v4 and the friction ér the maximum value of
the absorbed power decreases with decreasing friction. If one would keep the active
force constant over different values of ér by defining vq = iT the maximum value of the
absorbed power would rise with decreasing friction &r. One can also see that for fast
rotations the equipartition theorem seems to be obeyed again.

2.4.2.3. Fast rotation

If the rotation is fast with respect to the oscillation period, then the active force will
appear as random, equi-distributed force to the potential. The force exerted by the
activity will sum up to zero, over one period of oscillation and therefore the behaviour of
the particle shouldn’t differ from a passive particle. There will be occurances, when the
preferred direction will change slower, then the particle will get a boost in that direction.
This should be equivalent to a stochastic force, like we introduced for the Brownian
motion. Added to the Brownian Motion the particle already performs, it should look like
a Brownian motion in a heat bath with a higher temperature. Therefore the positions and
velocities should stay Gaussian distributed, but with (¥?) and (%) rising with respect to
the activity va.

For the frequencies where S1 > 0 one can assume that the power spectrum of the
activity’s direction is nearly constant Sz(w) = 5z(0), see Fig. 2.4.

Using the derivation from before, we can state that

(Exin) = m? &1V 54(0) /waSi(w)dw+§k T
kin k T 245 ¢ - 3 9 B
integration yields

2 §T kBT 3
E ‘4. —— + ~kgT
< k1n> k T 2 a(0)37l' m +2 B

Yro A 3
= Sz(0) + =kgT
] a( )+ 2 B
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2. Active Particles

E/kpT

E/kpT

(161 /wo
(a)

(@])/wo
(b)

Figure 2.3.: Numerical solutions of the integral in Eq. (2.20) for the potential energy (full) and

38

Eq. (2.19) for the kinetic energy (dashed) for different values of the translational
friction ér/wo with respect to the rotational diffusion (|&|)/wo. The natural oscilla-

tion frequency w; = ‘/wg — £2/4 is highlighted as a vertical line in the bottom graph,
for each of the solutions. The activity’s strength was fixed at va/+/kgT/m =8
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2.4. Active particles in a harmonic potential
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Figure 2.4.: The power spectra for the inactive particle in a harmonic potential S‘ and S‘ and
the power spectra obtained by integrating Steele’s approximation for “two different
mean rotational frequencies (|@|) with é&r = 0.5, wg = 1, m = 1. One can clearly see
that the power spectrum for the fast rotating particle ({|&|) = 21) is nearly constant
where SL. > 0.

And the potential energy can be written as

ks}’T ‘A ;
(Epot) = Sirks TS (0)/ S.(w)dow + kBT
ks}’T Rs YT Uy kgT
= Sz k T
= Ykt a3 e mog | 20
_ Yr UA

53(0) + ngT

which is identical to the kinetic energy, as proposed.
For the effective temperature one obtains:

YT A
12 kg

Tog =T + S2(0)
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3. Simulations

In this chapter I will present the algorithms used for the Langevin dynamics simulations.
While the translational motion uses the unmodified OVRVO algorithm by Sivak, Chodera
and Crooks [23], the algorithm had to be modified for the rotational motion.

The rotational motion has been studied via simulation using two different dynamics.
The first dynamic views the source of the activity as moving on the surface of the particle,
using the tangential velocity w and the position of the source a - I shall call it moving
source (MS)-dynamics, while the sphere’s coordinate system doesn’t rotate. For small
rotational friction this leads to movement of the source on great circles on the sphere.
The second algorithm for rotational motion uses the angular velocity & and the activity’s
direction @, as we discussed in the previous chapter, this dynamics will be called rotating
sphere (RS)-dynamics, while the source stays fixed in the sphere’s coordinate system.

Subsequently the results of the simulations will be compared with the theoretical work
from the previous chapter.

3.1. The algorithms

3.1.1. Moving source-dynamics

For the translation and the rotation of the particle I used the OVRVO algorithm by
Sivak, Chodera and Crooks [23]. The dynamics of the rotating unit vector are obtained
imagining the source of the activity is moving on the surface of the sphere, therefore
the algorithm had to be adjusted for the constraint of the rotation, namely the activity’s
direction a should stay a unit vector and the tangential velocity w should stay perpendic-
ular to the direction, i. e. a-w = 0. The continuous equations read, using the tangential
velocity instead of the angular velocity:

da
= 3.1
il (3.1)
dw . P
IE = —YRW + 2)/RDR é/R (32)
where yp = 877R? is the Stokes’ friction coefficient, with 7 the viscosity and R the
particles radius. I is the sphere’s momentum of inertia and Dy = ]ff—RT is the rotational

diffusion coefficient. The moments of the random process gj r are defined as ({z ;) = 0 and
(ri(t) {r j(t")) = 6;;6(t — t') for i, j = 1, 2, 3, §;; being the Kronecker-delta and 6(t —t’)
the delta distribution. Defining &g := YTR, the second equation can be written as:

dw

i —ErW + 4/2E2Dg Cr
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3. Simulations

To take one time step from n to n + 1 of the size At the algorithm of Sivak and Chodera
for the set of equations (3.1) and (3.2) reads:

Vv(n + %) = Vew(n) + V(1 — ¢)&Dr {(n + %)
Zi(n+1) :Ei(n)+b-At-17v(n+%)
Vv(n + 1) \/_w(n + ) + /(1 = ¢)érDg {(n)

where ¢ = exp(—£&gAt) and {; are independent normally distributed random variables with

a mean of zero and a variance of one and b = \/mt nh (SZRM). These equations do

not ensure, that @ stays on the unit sphere |a| = 1 and that the tangential velocity is
perpendicular to a.

One has therefore to introduce a constraint ©(a,), where @, = d(n). Because the
constraint should keep the position @, on a sphere of radius R it reads ©(@,) = a2 — R?
and therefore %@(En) = 2a,. The equations have to be rewritten to:

Wyt = —Veri, + (I - 0)érDr E,H% — L VO(Z,)

En+1 = 5,1 + bAt - 1711)”+1
W1 = Ve W,y 1 + V(1 = O&Dr - { = 22VO(Fns1)

The Langragian multipliers 1; and A have to be chosen in a way that ©(d,.1) = 0 and
171’)n+1'V®(an+1) =0= 171’)n+1 : 5n+1 =0.

Gt = Gy + b A ( AN RN (T AN 2an)

Apse1 = —2bAt A a, +d, + b At ( —Vew, + (1 - ¢)érDg fm%) (3.3)

=:Cn

Now let’s make sure that the vector stays on the sphere ©(a@,,1) =0
n+1 -R*=0
(=2b At M +Cn)> —=R> =0
G, = 4b At 1,C,d, + b2 AL 1232 —R2 =0
(46> A2, %) A2 — (4b At Codiy)Ay + Cl-R=0
using ©(@,) = 0, therefore @ = R? :

= - 2
Ab*At*R*AT — 4b At Cpandy +C, =R =0
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3.1. The algorithms

solving the quadratic equation yields

4b At Crd, + \/(41; At Coiin)? - A(4B2ALRRC,” — R?))
a 8b2At2R2

A

C_>na_;1 + \/(5,161_;1)2 - R2(5n2 - R2)
2b At R?

Only one of the two solutions can be the Langragian multiplier that is needed. For
small time steps the value of d,y; should be approximately a,. Using this criteria lets
one choose the right solution for A;.

For small At the vector 5n is approximately d@,. For the positive sign, using @2 = R?:

A=

2 R+ YR -R(R2-R) 2R 1
! 2b At R 2bAtR2 b At
putting this in (3.3) yields
- - 1. -
ns1 ~ dp — 2b Atm a, = —ay

The positive sign puts one on the other side of the sphere.
And looking at the negative sign, using @2 = R?:

R2 — \/R4 _RQ(RQ _R2) ~

AT~
1 2b At R2

0

ani1 ~ ap —0=a,

keeps a, nearly constant for very small At. The first Langrangian multiplier therefore
reads:

Cd,, - \/(éa;)z — R%(C2 - R?)
- 2b At R?

Let’s look at A3. This parameter should make sure, that the velocity stays perpendicular
to the sphere. And therefore

M

W1 VO(dp41) = 0
Wnt1 2Gp41 =0

Wnt1dpt1 = 0

[ - \/EVVM% + V(1 = ©)&rDg {ns1 — /1266(5“1)] dn+1 =0
yielding
(\/E 5,,4,% — /(1 = ¢)érDr gn+1) dn+1

=2
2 an+1

Ao =
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. =9 _ 2
and using a,,; = R

\/EVVM% — /(1 = c)érDg En+1) dn+1

2R?

Ay =

as long as R > 0 this fraction exists.
The algorithm reads:

1. Draw three random numbers {,,1 = (gvn%’l, §n+%’2, §n+%,3) from a Gaussian distri-

+2

bution with ({,H%,i) =0 and <§3+l i) =1lfori=1,2,3.
5

2. Compute C, = an, +bAt(— Vew, ++/(1 —c)§RDRgzn+%)

3. Determine the Langrange multiplier A;

Cory ~ \J(Co)? - RA(C2 - R?)
2b At R?

A=

4. Calculate the intermediate velocity
Wyt = =V + V(1 = 0)&rDp E,H% — 1, VO(@,)

5. Get the new positions
En+1 = 5,1 + bAt\X)m_%

6. Draw three new random numbers g:n following the instructions in 1.

7. Determine the Langrange multiplier Ay

\/EVVM% — /(1 = c)érDr En+1) dn+1

=2
2 an+1

Ay =

8. Get the new velocity
Wni1 = —Ve Wit + V(1 = )érDp vt — A2VO(dni1)

3.1.2. Rotating sphere-dynamics

The rotating sphere-dynamics uses a rotating sphere, with the unit vector fixed in the
sphere’s coordinate system. Using the Eq. 2.4 and 2.5 and defining &g := YTR leads to the
following set of equations:
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3.1. The algorithms

da

—_— =W

dt

w=&dXa

dd . >
T —ERd + |262DR {r

To take one time step from n to n + 1 of the size At the OVRVO algorithm reads

5)(;1 + %) = Ved(n) + (1 - ¢)éxDr {(n + %)

J)(n + %) X ﬁ(n)]
(f)(n + 1) = \/EcT)(n + %) + /(1 = ¢)¢rDg g(n)

where ¢ = exp(—&grAt) and {; are independent normally distributed random variables with

Zi(n+1):c_i(n)+b~At-

a mean of zero and a variance of one and b = \/ ﬁ tanh (gRQAt). This algorithm doesn’t

ensure that a stays on the unit sphere, because we are not taking infinite small steps
which are perpendicular to a.

For each step we take, we want the direction a to move a length of b-At- ‘Z) n+% xE(n)‘

on the unit sphere’s surface. This length is equal to the angle the direction should change,
because the sphere has a radius of one. To change the direction accordingly, we simply

cT)(n + %) x d(n) ) and direction cT)(n + %) x d(n) to a(n)
and normalize the result, see Fig. 3.1.
The algorithm then reads:

add an vector of length tan (b <At -

(1) 3(n+ 3) = VEa0) + VT B En + 3)

|

oY

n+ %) x a(n)

2) W(n+%)=tan(b-At-

(f)(n + %) x d(n)

(f)(n + %) x a(n)

a(n) + Vv(n + %)

(3) a(n+1 -

a(n) + Vv(n + %)
(4) (f)(n + 1) = \/E(B(n + %) + /(1 = ¢)érDg g:)(n)
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Figure 3.1.: Sketch of the changes made to the algorithm, where w = b - At - [[&(n + %) X Ei(n)],

an, = a(n) and apy1 = a(n +1).

3.1.3. Translational motion

Like in the last section the algorithm by Sivak, Chodera and Crooks [23] will be used to
simulate the free translational motion, governed by the Langevin equation

dx .
=2 _3
dt
do - 5 2 >
i =810 + Erva - d + 2E7Dr - {1
where ér = ’% and érvaa will be treated as an external force. For the particle in the

2

harmonic potential U = %J? an additional external force will be added fpot = —k¢X,
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3.2. Underdamped active particles

where ks denotes the spring constant. The algorithm then reads
1 1
(1) 5(}1 + Z) =+cd(n) + (1 - c)érDr {(n + 5)

(2)5(n+1):v(n+l)+&M
2 2 2 m

(3) J'C’(n + 1) = X(n) + bAtv(n + %)

() 6(n+ §) _ a(n+ 1) LA fn )
4 2 2 m

(5) 6n+1) = Ve ( )+v<1—c>§TDR§<n+1>

where ¢ = exp( ErAt), f (n) denotes force acting on the particle at timestep n and the
components of { (n) and { (n+ 2) are independent, normally distributed random variables
with zero mean and a variance of one. The time-step rescaling is done by multiplication

with b = \/ﬁ tanh (Mt)

Because the activity is treated as an external force, the rotational step from a(n) to
a(n+ 1) has to take place between steps (3) and (4) of the translational algorithm.

3.2. Underdamped active particles

The units used for this section are Ey = kgTy = 1, the particle’s radius [y as unit length,
the particle’s mass my as unit mass, vy = v Eg/mg and ty = ly/vp.

As discussed in subsec. 2.4.2.2 the power spectrum of the rotation will be analyzed
and compared with Steele’s approximation Eq. (2.6). As can be seen in Fig. 3.2 the
approximation holds for (|@|) ~ wp and smaller (|@|) for both rotational dynamics, but
deviates for higher rotation frequencies. Unsurprisingly Steele’s approximation holds
far longer for the RS-dynamics. The approximations also deviates if the friction gets
lower. The ACF of the MS-dynamics arrives at negative values for fast rotations and low
friction, implying that the activity’s direction moves in average at least a fourth of the
great circle, before rotational diffusion randomizes the direction. In contrast the ACF
of the RS-dynamics arrives near zero and rises again for fast rotation and low friction,
because the activity’s direction only moves on great circles if it’s perpendicular to the
angular velocity. The activity’s direction is therefore more likely to arrive at values near
the starting value, than at angles bigger than /4.

Because the interesting part of our analysis lies in this range of the rotational fre-
quency, I still expect the resonance phenomenon, despite the deviations from Steele’s
approximation.

For the overdamped active particle the mean squared displacement could be solved
analytically, see Eq. (2.1). For small frictions &7, £€g < 1 the rotational diffusion constant
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Figure 3.2.: Autocorrelation functions for the activity’s direction d(t) (crosses for the MS-
dynamics, circles for the RS-dynamics) and Steele’s approximation (line) Eq. (2.6)

for decreasing friction from (a) érty = 4.5 ,(b) &érto = 1.5 to (c) érto = 0.75
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3.2. Underdamped active particles

increases and the formula reads in the limit Dy > vi

(¥ —X0)*) = 6Drt

In Fig. 3.3 one can see that the overdamped formula arrives at a linear function for small
frictions. The simulation shows for such small frictions, that - like for an inactive particle
- the particle’s MSD looks ballistic for small times.

2000 .
1800 L &rto=0.15 + —
1600 | érto=0.75 x //
1400 F érto=15 x = B
3] -
= 1200 érto=15 © ///i - .
1000 - th=150 = P o
NS §T 0 o / L acn ] ‘ U
= 800 = : "
~ 600 — = / . n [ ] e ,<><»“><’"
400 T /i/;/;/. ,. ;»,X-x»»x“ -
0 Xx;ﬁg g 8090 R US0 p.o-g0-0-H-
(R R KRR *
0O

15 20 25 30
t/to
Figure 3.3.: The mean squared displacement as function of time for various frictions ér (rota-

tional: & = %ﬁ). Simulated values are represented as dots, the lines represent
MSD for the overdamped limit, see Eq. (2.1).

Let’s take a look at the velocity distribution function. In Fig. 3.4 one can see, that the
distributions are crater-like, if the activity is high enough. In 3D the distribution then

y
The higher the particle’s mean rotation time is with respect to §;1, i.e. if D < &r, the
nearer the mean speed of the particle will get to v4. In Fig. 3.4 one can see, that the
maximum of the distribution is considerably smaller than v4 with &/Dg = 3.

looks like a spherical shell, with the maximum of the distribution at /o2 + 02 + 02 < va.
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Figure 3.4.: The (vy, v,) - distribution for different activity strengths (a) va/vg = 1.36 (b) va/vy =
5.45 (C) Z)A/U(] = 109 (d) UA/U(] = 13.6 at §T tp = 1.5 and <|&)_i> tp = 2.2. The
distribution is not as sharp as the one in 2.1b, because it is the marginal distribution
and not the cut at v, = 0.



3.3. Underdamped active particles in a harmonic potential

3.3. Underdamped active particles in a harmonic potential

3.3.1. Units and particle properties

For convenience the results will be presented with respect to reduced units. The energy
unit Eg is defined via the unit temperature Ty as Eg = kgTy. The frequency unit cor-
responds to the trap frequency wg = 1. The mass unit is equal to the particle’s mass
mo = 1. All other units needed for the present thesis can be derived from this three, e. g.

the unit length is Iy = /Eg/ mowg and the unit velocity is vg = lpwg. Then the diffusion

2w0 lg

constants are Dy /wg = §T+ and Dgr/wy = 5RZER

@0

3.3.2. Slow rotation

To study the case of a slow rotation compared to the oscillation period a ratio of about
(|B])/wo =~ 1/12 was chosen. For slow rotation both rotational dynamics provide the
same results. In subsection 2.4.2.1 was proposed that in the case of a nearly constant
activity direction the particle would be subject to an effective potential with a minimum

at
_ YT?A

o ks
If the direction changes slowly enough the potential’s minimum will change too, but the
radius of the location will be constant and the particle has enough time to accommodate
to this new minimum. The radial distribution for different activities v4 of the particle is
shown in Fig. 3.5b. The distribution along a radius changes from the inactive particle
for small vy to a distribution centered around a distinct radius rg. The radius’ mean
value for ry > Iy is expected to be:

" = Lo, (3.4)
)

For small activities rg < [y the expectation value will be equal to that of an inactive
particle. The simulation is in good agreement with this assumption as can be seen in
Fig. 3.6a. The description using an effective potential is sufficient for the case of a slow
rotating particle and describes the radial distribution. A two-dimensional histogram of
the position’s first and second component can be seen in Fig. 3.10. While at low activity
strengths the distribution is Gaussian distributed, one can see that for higher activity
the distribution will transform into a ring-like distibution.

Furthermore I gave an analytical solution for the potential energy. While the kinetic
and the rotational energy stay nearly constant, as we would expect for inactive particles
at %Eo, the potential energy rises quadratically with respect to the activity. This is con-
firmed by the simulation, as can be seen in Fig. 3.7a. Furthermore it rises quadratically
with the friction constant, see Fig. 3.7b. One can see that for high values of érvy4 the
kinetic energy starts to deviate from the constant value, because the changes of ér vy a(t)
start to be bigger than our assumption allows for.
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Figure 3.5.: (a) distribution of the position’s x-coordinate with respect to different activities va;
(b) distribution along a radius with respect to different activities v4 (both done at
§T/w0 = 0.52)
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3.3. Underdamped active particles in a harmonic potential

The simulation is furthermore in good accordance with the assumption that the velocity
distribution doesn’t deviate from an inactive particle, if the rotation is slow enough. This
can be seen in Fig. 3.8 for a range of activity strengths. The velocity’s autocorrelation
function, as shown in Fig. 3.9b, does confirm that the velocity doesn’t deviate from the
one of an inactive particle.

The ACF for the position has also been calculated in subsec. 2.4.2.1 and the simula-
tion’s results confirm this derivation, see Fig. 3.9a. The deviation from the theory occur
when the changes of vaéra get too big. The bigger the product vs &7 the bigger the
impact of even slow changes of a(t), and therefore the assumption is only valid if v &7 ‘Zl—‘f
is small enough.
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3. Simulations

3.3.3. Rotation period near oscillation period

Let’s look at the total absorbed power

P,hs < g—'%vi / w? Sz(w) S;(a)) do (3.5)

Comparing it to the kinetic energy yields:

p 3 02 _— 3
(Eiin)/Eo = =22 4+ 2 = é:T—A/ w?Sk(w) Sz(w) do + 5

2t 2" 2471'&)00(2]

(o)

For the power spectrum of the activity’s direction S; the autocorrelation function was
calculated based on the time series obtained from the simulation. For the position’s
power spectrum Si)_c, the analytic solution is known from Eq. (1.18) and was used for
the numerical integration of the integral in (3.5). Comparing the power spectra resulting
from the two different rotational dynamics shows, that they differ mostly for small friction
and higher values of the mean angular velocity (|@|). As can be seen in Fig. 3.11 the
MS-dynamics shows in the power spectrum a distinct peak for lower frictions, because
the activity’s direction tends to rotate on great circles. The RS-dynamics first shows a
knee in the power spectrum, very near to = {|@|), and at low frictions a small peak,
but the global maximum of the power spectrum tends to stay at w = 0.

4.5 ——— 04 0.2
4 fr/w0 =0.25 — | o5 0.18
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Figure 3.11.: Power spectra of the activity’s direction S;(w) for different values of the average ab-
solute value of the angular velocity (|&])/wo (a) 0.87 (b) 3.5 (c) 8.7. Both dynamics
are plotted, the MS-dynamics with full lines, the RS-dynamics with dashed lines.

Using the power spectra of the two algorithms to calculate the absorbed energy using
the integral from Eq. (3.5) yields Fig. 3.12. The absorbed energy is for slow and fast
rotation nearly zero, but for intermediate average angular velocities they show a peak.
The higher the friction the higher is the value of the average angular velocity, where the
peak is located. As we have discussed in the power spectrum and ACF of the activity’s
direction the differences between the two different rotational dynamics is mostly at low
friction and higher average angular velocities. But while the power spectra are qualitively
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3.3. Underdamped active particles in a harmonic potential

different the absorbed power derived from these show the same characteristica and differ
only quantitively.
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Figure 3.12.: Numerical integration of (3.5) using the simulated ACF for the activity’s direction,
for different values of the translational friction &7 with respect to the mean angular
velocity (|&]). Both rotational dynamics are shown, the MS-dynamics (full) and the
RS-dynamics (dashed). For the underdamped case is natural oscillation frequency

w1 = yJod — £2/4 highlighted as a vertical line in (b).

The calculated absorbed energy does indeed have an impact on the system. In Figs.
3.13 and 3.14 the potential and kinetic energies obtained from the simulation are plotted
with respect to the mean angular velocity. The kinetic energy equals the one calculated
via the absorbed power. As shortly discussed in sec. 2.4.2.2 the absorbed energy can
only be dissipated via translational friction and this friction only rises with the particle’s
speed.

In the case of a damped, but not overdamped, system at &r/wg = 1.0 the potential
energy dominates. Steele’s approximation and both algorithms are in good agreement in
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this case. As can be seen the potential energy only transitions from the state of the slow

rotating particle with (E,qt)/Eg = (Z—‘(‘)‘ . i—f)) + % to the one of the fast rotating particle
with Epot/Eg ~ 1.5. The kinetic energy has a peak at about (|@|)/wy = 2 with a value
of approximately 3Ey. The figures for the kinetic and potential energy are similar to
those obtained via numerical integration, using Steele’s approximation. The important
features are the same: the peak in the potential energy at lower friction, the peak in the
kinetic energy and the limits for high and low rotation frequencies. This confirms the
derivations done in subsec. 2.4.2.2.

While the mean kinetic and potential energies both rise with the square of the activity
va the description with respect to the translational friction & is more complicated, as
can be seen in Fig. 3.15. The kinetic energy rises with the friction until a threshold
value, which depends on the rotation frequency.

The histograms for the potential and kinetic energies in Fig. 3.16 illustrate the be-
haviour of the second moments of the position and velocity. The shape of the histograms
is identical for both rotation algorithms. While to position’s second moment transitions
from the “hotter” inactive state at fast rotations via a very broad distribution - which
only occurs at small friction values - to the distinct peak, where the particle oscillates in
the effective potential. The distribution of the kinetic energy is for fast and slow rotation
very similar and is at it’s broadest at about {|&|)/wg = 1.6 .
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Figure 3.13.: The average kinetic and potential energy at va/vy = 2.7 and &r/wp = 1, 0.5 and

0.25 (from top to bottom) with respect to the rotation frequency Dgr/wy. The
numerically solved Eq. (2.19) and (2.20) have been plottet as Epot, Th and Exin, Th,
respectively, using the simulated AFC, while E5 , and Ef; have been obtained using
Steele’s approximation. Both rotational algorithms are shown , the one using the
tangential velocity (full lines) and the one using the angular velocity (dashed lines).
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Figure 3.14.: The average kinetic and potential energy at va/vy = 8.2 and &r/wg = 1, 0.5 and
0.25 (from top to bottom) with respect to the rotation frequency (|@|)/wo. The
numerically solved Eq. (2.19) and (2.20) have been plottet as Epot, Th and Exin, Th ,
respectively, using the simulated AFC, while ES and Ey;  have been obtained using
Steele’s approximation. Both rotational dynamics are shown , the MS-dynamics
(full lines) and RS-dynamics (dashed lines).
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Figure 3.15.: The average kinetic energy (points) with respect to the translational friction &7 for
different rotation frequencies (|@|) at an activity of va/vy = 2.7. Both rotational
dynamics return identical results for this range of rotation frequencies and frictions.
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3.3.4. Fast rotation

A rotational diffusion constant of (|&|)/wg = 21 has been used to arrive at the fast
rotation limit.

In sec. 2.4.2.3 the foundation of the theory for fast rotating particle, was the assump-
tion that the force due to the activity acts like a random white noise for the harmonic
potential. To justify this assumption the power spectrum of the activity’s direction S;
should be nearly constant over the frequencies which are important to the potential, i.e.
where S}C(w) ©? > 0. Looking at Fig. (3.17) the simulation confirms this assumption.
While S; changes drastically over the important frequencies at (|@|)/wo = 1.7, the power
spectrum stays nearly constant for (|&d|)/wp = 87, but the values differ between the two
different rotational dynamics.
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Figure 3.17.: The power spectrum of the activity’s direction S; y1g, obtained by the MS-dynamics,
and Sz gs, obtained by the RS-dynamics, for (a) (|&|)/wo = 87 fast rotation, (b)

{|&])/wy = 1.7 near resonance and w? S; for &r/wo = 0.52. For the relevant frequen-

2

cies, where S;a) > (, the activity’s power spectrum is nearly constant for a fast

rotating particle.

It has been shown in subsec. 2.4.2.3 that the equipartition theorem holds in the limit
of the fast rotation )

Yro 3

(Exin)/Eo = (Epot)/Eo = 50 2530 + 3

UOOJO

If the friction is fixed, the kinetic and potential energy will just depend on square of
the activity’s strength v4. In the case of &7/wy = 0.52 and {|@|)/wo = 21 and using the
algorithm for the tangential velocity the function after evaluating the power spectrum
reads

3
(Exin) /Eo = (Epot}/Eo = 0.0093 03 + (3.6)

In Fig. (3.18) one can see, that indeed the theoretical work is in good agreement with
the simulation. Using Steele’s approximation for Sz(w) the deviation for fast rotating
particles is quite high, it would give us a function of (Ekn)/Eo = 0.02 vi + 1.5. As

62



3.3. Underdamped active particles in a harmonic potential

discussed before Steele’s approximation is not in agreement with the simulation of the
fast rotating particle.

The result for the effective temperature doesn’t converge to the overdamped limit
presented in sec. 2.2, because our model treats the activity as a force with a fixed absolute
value, independent of the rotation period. The overdamped model always assumes a
speed of v4, regardless of the rotation period. As can be seen in the speed distributions,
see Fig. 3.19, the fast rotation hinders the particle from arriving at a mean speed of v4.

If the mean rotation time is small with respect to the oscillation time of the particle,
then we expect Gaussian distributions for the components of velocity and position. Only
the variance of the distribution should be subject to change, if the activity v4 rises. This
can be quantified using the energies, described by Eq. (3.6), above:

@) = o) () = =)
0

The simulation agrees with this assumption and the distributions can be seen in Fig.
3.20. Accordingly the shape of the speed and radial distribution should not change, these
can be seen in Fig. 3.19.

The ACFs of the position and the velocity, see Fig. 3.21, only solidify the equality
between the inactive particle in a harmonic potential and the fast rotating, active particle.
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Figure 3.18.: Energies with respect to (a) activity va, at ér/wo = 0.5 (b) translational friction &
at va/vg = 13.5. For the fit see Eq. (3.6).
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3. Simulations
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Figure 3.19.: Distributions of (a) the position’s radius r (b) the speed |7| of the particle with
different, activities vy at ér/wo = 0.52

0.45 . . . 0.45 . :
0.4 i Z}A/Uo =1.36 - 0.4 H Z}A/Uo =1.36 i
0.35 ‘ vafvg = 2.72 -] 0.35 \ =2.72 -]
63 X va/vg =5.44 - 63 =544 .
g : vafvg =136 -] : £ =136 -
30'25 vAfvg =272 -] 0.25 =272 ]
go02 - 0.2 I
H0.15 0.15
0.1 R 0.1 i
0.05 0.05 \
N /, N
0 0
=15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15
x/lo v/vg
(a) (b)

Figure 3.20.: Distributions of a (a) position component (b) velocity component with different
activities vg at &r/wo = 0.5
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3.3. Underdamped active particles in a harmonic potential
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Figure 3.21.: Normalized ACFs for the (a) position (b) velocity for different activity strengths
valvg at Er/wo = 0.5. Dots are obtained from the simulation the lines represents
the analytical solutions for the inactive particle
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4. Conclusion

In the present thesis the case of an underdamped active particle in a harmonic potential
has been investigated.

The harmonically trapped particle was at first studied theoretically, where the partition
in slow, fast and medium rotation with respect to the oscillation period simplified the
problem.

In the simplest case, the slow rotation, the power spectrum and the ACF of the po-
sition and velocity could be obtained analytically by means of an effective harmonic
potential. Therefore the potential and kinetic energy and the shape of the position and
velocity distribution functions could be predicted. The simulation for the slow rotation
at {|&|)/wg ~ 1/12 was in good agreement with the theoretical work. These results
are independent of the details of how the activity’s direction moves. In this case both
rotational dynamics used in this thesis have been in full agreement.

To address the challenge of a mean rotation time near the oscillation period the sum
of the active force and the thermal fluctuations was treated as a perturbation of the
harmonic oscillator. Studying the power absorbed by the particle lead to an - at least
numerically - simple expression for the particle’s kinetic energy. An equivalent expression
has been obtained by calculating the power spectrum and Fourier transforming it at 7 = 0,
to obtain the second moments of the position and velocity distribution. Therefore the
kinetic and the potential energy could be described using the power spectrum of the
activity’s direction. This expression predicts a peak in the kinetic energy if the particle
rotates approximately as fast as it oscillates for all friction values. The potential energy
showed a peak at about (|@|)/wo = 1 only for low friction. For high friction values and
slow particle rotation Steele’s approximation yields results which are in good agreement
with the simulation using both different rotational dynamics. For low friction values and
faster particle rotation the RS-dynamics produced results which were in better agreement
with Steele’s approximation than the MS-dynamics. Despite the qualitative differences
in the power spectra of the activity’s direction obtained by the two rotational dynamics,
the results for the second moments of the position and velocity only differed slightly.

For predictions in an experimental framework one could either try to measure the di-
rection’s autocorrelation function or obtain the autocorrelation function via simulating a
rotating unit vector. Two different rotational dynamics and the corresponding algorithms
for this problem has been presented in section 3.1.

For the fast rotating particle the expression for the kinetic and potential energy from
the medium rotation time can be reused. These expressions could be further simplified by
assuming that the power spectrum is nearly constant in the relevant interval around wg.
Furthermore it has been shown that the equi-partition would hold again and therefore
that the particle would just behave like an hotter inactive particle. The corresponding
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4. Conclusion

temperature can be derived from the kinetic energy. For the simulation of the fast
rotating a particle a rotational diffusion coefficient of (|&|)/wg = 21 has been chosen and
the results are in good agreement with the theory.

The study of the activity’s direction’s autocorrelation function revealed, that there
is still theoretical work to be done. While Steele’s approximation is sufficient for the
overdamped case, the case of an underdamped rotating unit vector is still hard to tackle
analytically in a way that is numerically easy to use.

Pototsky and Stark [16] studied not only the single particle case, but also multiple
interacting particles. One could study underdamped, interacting active particles in a
harmonic trap and compare the results to the overdamped results from Pototsky and
Stark [16].
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A. Testing the Simulation

A.1. Brownian particle

A.1.1. Free particle

The parameters defining the motion of the Brownian particle are the friction &, the mass
m and the temperature T:

dx do L=
E—’U E——§U+A(t)

with the following properties for the random acceleration A= (A1,Ag,A3),and S = & kBTT
Ai) =0 (A1) Aj(t)) =25 6;;6(t - t')

Then, see sec. 1.3,

(#=%)?) = 2—? (gt—1+e—ff) (A1)
(BBt + 1)) = ?e-ﬁf (A.2)

1 3/2 2
po(vy) = (%) e Eux/2S (A.3)

Setting m = 1, kgT = 1/300 and varying & shows good agreement between simulation and
theory, see Fig. A.1.

A.1.2. In harmonic potential

An additional parameter is added in terms of the potential’s frequency wg. The equations
read: e s
X 3 -
— =0 —=-(0+AM)+ iR
n priaiad (t) + g

A.2. Overdamped active particle

The MSD for the active particle has been obtained by Lowen et al. [27] as:
2 2
5> 52 Uy 1 (va
- =|(6Dr + =—|t+=-|=—
(= 70)°) ( T+DR) +3 (DR)

Now testing this for different values of v4 at & = 100, with R =1, kgT =1 and m = 1
shows good agreement between simulation and theory, Fig. A.3.

e 2Prl _ 1] (A.4)
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Figure A.1.: (a) The MSD and (b) the ACF of the velocity for three different values of &; (c) the
distribution of v, for different values of kgT at & = 0.5. The simulation is plotted
as dots, Eq. (A.1) , (A.2), (A.3) respectively as black line.
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Figure A.2.: (a) and (b) show the distribution of x and v, for different values of T respectively.
The ACF (x(t) x(t+1)), (0(t) 9(t+1)) and the cross-correlation function (¥(t) o(t+1))
for different values of ¢ are plotted in (c).
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Figure A.3.: MSD for the overdamped (&7 = 100) active particle for different activity strengths
va. Simulation is plotted as dots, Eq. (A.4) as line.
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B. Supplementary Calculations

B.1. Overdamped active particles

B.1.1. Position’s expectation value

The equations to average are x = xo + va - [ cos(p(t))dt’ + VZDrW; and y = yo +
VA - /ot sin(p(t")) dt’ + V2D WY, with @(t) = @o + V2DgW,. The Wiener process W/ is
(0, t)-distributed, therefore (W) =0 (i = x, y, ¢). Hence

(x— x0) = va /0 (cos(yDRWE) dt
(y—y0) = va /0 (sin(yEDRW)) dt’
Let’s take a closer look at (cos(a - W;)) using the Euler formula:
(cos(pg +a-Wy)) = <%{ei(‘”0+awt)}> = ‘R{ei‘po <eiaW‘)}

To calculate the expectation value, we will use that W; is A47(0, t)-distributed and get:

; 2
<ezaWt X, g=X /2t dx

) = L /00 el
V27Tt —00
—(x2/2t-iax) dx

1 ‘/"O
= — e
V27Tt —00

by completing the square and substituting y = x/V2t — ia/V2:

: 1 o0 _ \/2__- \/5)2_ 2/2
<elaWt> — / e (x/V2t-ia/ a dx
V27l't —00

1 _a2/2 0 _y2
=——¢ : e \/Zdy
V2t —00
1
=

2
ea/2

Using the above result, we obtain

(cos(po + V2DrW,")) = cos(po) - e P&
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B. Supplementary Calculations

and subsequently:

(x — x0) = va - cos(gp) - /e_DRt/ dt’

= g—';: : (1 - e_DRt) - cos(¢po)

For the average of the y-position (y), we use that (sin(a-W;)) = S{eiqvo (ei“Wf)} = sin(¢g) -
e Prt to obtain
v _ .
y-v) = D—A : (1 —e DRt) - sin(go)
R

B.1.2. Mean squared displacement

For the mean squared displacement ((F —79)?) = {(x —x0)? + (y — yo)?) we will at first look
at (x — xp)? and (y — yop)? seperately:

t 2 t
((x = x0)%) =04 - ( / Cos((p(t'))dt’) + 20, - / cos(p(t") dt’ - 2Dy W + 2D (W[)?
0 0

averaging the above expression, using the properties for a Wiener process W;: (W;) =0
and (Wf) =t , and writing the squared integral as two integrals:

((x = x0)?) = 0% / t / t(cos(go(t’)) cos(p(t”))) dt”’ dt’ + 2Dyt (B.1)
0 0

The interesting part is the two-dimensional integral, it’s argument is the autocorrelation
function of the angle’s cosine. Using ¢(t) = @o + V2Dg - W) =: ¢, we will take a closer
look

t t
[ [ tcostorcostpm arar -
0 0

t t t t
= / / (cos(py) cos(p)y dt” dt” + / / (cos(py) cos(p)y dt” dt”
o Jr 0 Jrr

The two integrals in the last line are identical, because the argument of the mean com-
mutes, and using the property of the Wiener process, that Wy» = Wy + Wpr — Wp =

Wy + Wy and @y := @pr — @p = V2Dg ftf” &,(s)ds we obtain

t pt
2 / / (cos(@s) cos(@y + @)y dt” dt’
0 t’

now using cos(a + b) = cos(a) cos(b) — sin(a) sin(b)

t t
2 /0 [ (cost ) costiur-) - (costpesintipe) sintprr-p) de”
t/
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B.1. Overdamped active particles

because Wy describes the Wiener process up to t’ and Wp»_pthe process from ¢’ to t”” these
are independent from each other, and therefore the angles ¢, and ¢;»_;» are independent
and we can write:

t t
2 [ [ tcostpuncostori) - (costie) sinpe ) intprr—p) de”
0 t’
After rewriting the two-dimensional integral we will put it back in Eq. (B.1)
2 2 ! ! 2
6 =203 [ [ (costpe)costpuro) - (costpe)sintipe))sin(pur-r) e e + 2Dt
0 t’
In an analogous manner, using sin(a + b) = sin(a) cos(b) + cos(a) sin(b) one can obtain
t t
=202 [ [ tsin oo eos(uri) + (costpe) sin(pu)) Sin(prr—e) de” dt” + 2Dge
0 t
We can now calulate the MSD
t t
(x* +y?) = 203 / / (cos? () + sin(pp))(cos(@pr_p)) dt” dt’ + 4Drt
0 t’

and using the result from the previous section B.1.1 (cos(@_y)) = e PRE"=1)

t t
(x*+1y%) = 21}%/ / e PRE"=1) Q4 A" + ADyt
o Jr

L :
= 203/ —(1 —e—DR(f—”) dt’ + 4Drt
o D

R
1 1
= 2’0124[— b= —2(1 - e_DRt) + 4DTt
Dgr D,
202 202
=[4Dy + =2 | .+ =2 . [ePr! -1
Dg D3
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