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A B S T R A C T

Quantum entanglement is an essential feature of quantum physics
and an important resource for applications in quantum information
processing and quantum communication, including prominent exam-
ples such as quantum teleportation and quantum cryptography, as
well as for fundamental tests of quantum theory. This thesis explores
the generation and verification of continuous wave optomechanical
entanglement between a light mode and a multimode mechanical os-
cillator.

The optomechanical system consists of a thin silicon nitride mem-
brane placed within a high finesse Fabry-Pérot cavity. It is succes-
sively improved and verified to operate in the strong cooperativity
regime, a necessary condition for the generation of entanglement.

A pulsed-continuous verification protocol is applied to correlation
measurements with strong cooperativity. The results demonstrate
that the naive approach of filtering a single high-Q mode to obtain a
witness for entanglement is not viable. The multimode nature of the
mechanics has to be, and is, explicitly considered in the evaluations
as well as spectral features of the detection scheme, thereby paving
the way towards multimode optomechanical entanglement.

Z U S A M M E N FA S S U N G

Quantenverschränkung ist ein wesentliches Merkmal der Quanten-
physik und sie findet Anwendung in der Quanteninformationsverar-
beitung und Quantenkommunikation. Prominente Beispiele hierfür
sind Quantenteleportation, Quantenkryptographie sowie fundamen-
tale Tests der Quantentheorie. Diese Arbeit befasst sich mit der Er-
zeugung und dem Nachweis von optomechanischer Verschränkung
kontinuierlicher Variablen zwischen einer Licht-Mode und einem me-
chanischen Multimoden-Oszillator.

Das optomechanische System besteht aus einer Siliziumnitrid-
Membran, die sich in einem Fabry-Pérot Resonator mit einer hohen
Finesse befindet. Das System wurde optimiert und operiert nachweis-
lich im Bereich starker Kooperativität, einer notwendigen Bedingung
für die Erzeugung von Verschränkung.

Ein gepulst-kontinuierliches Protokoll zum Nachweis von Ver-
schränkung ist auf Korrelationsmessungen im Bereich starker Koope-
rativität angewendet worden. Die Ergebnisse demonstrieren, dass
der übliche Ansatz, bei dem eine mechanische Mode hoher Güte
isoliert wird um Verschränkung nachzuweisen, nicht anwendbar ist.
Der Multimodenaspekt der Membran muss und wird in der Auswer-
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tung explizit berücksichtigt, genauso wie spektrale Eigenschaften der
Detektion, wodurch der Weg zu optomechanischer Multimodenver-
schränkung geebnet wird.
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Part I

I N T R O D U C T I O N





1
I N T R O D U C T I O N

Quantum entanglement is the most distinctive feature exhibited by
quantum mechanics. It is the manifestation of inseparable quantum
correlations between two or more physical systems, and an impor-
tant resource that allows for tests of fundamental aspects of quantum
physics as well as applications in quantum communication, computa-
tion and information, such as quantum networks [79] and potentially
unbreakable quantum key distribution, in a regime inaccessible by
classical physics.

Recently, solid-state mechanical devices have become available in
the quantum regime. They show significant potential to be an en-
gineerable interface to other quantum systems, essentially by entan-
gling mechanical motion with other degrees of freedom.

The ultimate goal of the presented experiment is the generation
and verification of steady-state continuous variable entanglement be-
tween an optical field and a mechanical system. This is done by using
the tools of cavity quantum optomechanics (CQOM) as described in
the following section. A brief history of the concept of entanglement
as well as its verification and impact on modern physics is given, be-
fore presenting the key features addressed within the presented work
and how it distinguishes itself from past works.

Cavity quantum optomechanics

The optomechanical interaction between mechanical and electromag-
netic degrees of freedom arises from the radiation pressure coupling
due to momentum transfer of photons from the light field to the me-
chanical oscillator. Oftentimes, that is by photons being reflected off
a micromechanical mirror.

Cavity quantum optomechanics is the field of resonantly enhanced
optomechanical interaction by means of a cavity, which can enable
the preparation and control of macroscopic oscillators into quantum
states of motion. This paves the way towards fundamental tests of
quantum physics with unprecedentedly large masses, as well as to-
wards applications in sensing and quantum information processing.

First experimental demonstrations of radiation pressure forces on
a mechanical system, as described by Maxwell’s equations, were by
means of the light mill configuration in 1901 [95]. In 1909 Einstein
studied the statistics of radiation pressure forces onto a movable mir-
ror [51]. But it wasn’t until 1967, in the era of modern physics, that
Braginsky studied ponderomotive effects of microwave and optical ra-
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4 introduction

diation fields onto a mirror [34], followed by the first demonstration
of damping of the motion of a mirror by radiation in 1970 [129].

Recent advances in microfabrication produced mechanical oscilla-
tors with a wide range of sizes, featuring exceptionally low mechan-
ical decoherence (losses) and sufficiently large susceptibility towards
radiation pressure forces. These micro- and mesoscopic mechanical
oscillators revealed a new parameter regime between kilogram scale
mirrors in advanced gravitational wave interferometers like advanced
LIGO on the one hand, and picogram-scale nanophotonic devices on
the other hand, opening the field of cavity enhanced quantum op-
tomechanics [27]. By now, a wide range of optomechanical systems
has entered the quantum regime, allowing for fundamental tests of
quantum theory on unprecedented large scales and pioneering work
towards applications in quantum information processing.

Recent experimental efforts include the ground state cooling of mi-
cromechanical membranes and silicon nanobeams coupled to radia-
tion fields by Teufel et al. [126] and Chan et al. [39]. These experi-
ments demonstrated the preparation of a mesoscopic mechanical sys-
tem into a state with on average less than one quantum excitation of
motion.

The strong cooperativity regime for a micromechanical oscillator
has been entered by Gröblacher et al. in [63] and quantum coherent
coupling, which is the coherent coupling between light and mechan-
ics exceeding the optical decay of the cavity and the dissipation to
the thermal bath of the oscillator, has been realized in toroidal op-
tical microcavities by Verhagen et al. [134], in principle allowing the
coherent exchange of quantum states between light fields and me-
chanical systems and vice versa. Concurrently, quantum coherent
transfer has also been realized with microwave resonators coupled
to drum modes of mechanical oscillators by Palomaki et al. [100] and
O’Connell et al. [97].

Ponderomotive squeezing of light has been demonstrated by Purdy
et al. [110], Safavi-Naeini et al. [116] and Brooks et al. [35], enabling
the generation of squeezing within the interferometric device itself to
surpass the shot noise limit of displacement sensing. These results are
particularly interesting for the improvement of gravitational wave de-
tectors, without relying on external sources of squeezing by nonlinear
crystals and parametric down conversion [89]. Recently, mechanical
squeezing of motion has been demonstrated by Wollman et al. [146],
Clark et al. [43] and Palomaki et al. [101].

Position measurements solely limited in precision by the back ac-
tion of quantum noise onto the mirror have been achieved with mi-
cromechanical membranes by Purdy et al. [109] and recently in the
audio band frequency regime by Cripe et al. [45], enabling the demon-
stration of quantum non-demolition position measurements.
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Feedback control at the thermal dissipation timescale by Wilson et
al. [143] has been realized, enabling the stable control of a mechani-
cal system in a desired (prepared) quantum state. Recently, feedback
cooling into the quantum ground state has been reported by Rossi et
al. [115].

All these remarkable experiments rely on one or more of the fol-
lowing requirements, such as sideband resolution (i.e. the cavity line
width is much smaller than the mechanical frequency) or the strong
coupling regime (i.e. the optomechanical coupling strength surpass-
ing the cavity line width). But the single most important figure of
merit for enabling true quantum mechanical features in an optome-
chanical system is the quantum cooperativity. It is defined as the
ratio of the coherent optomechanical coupling strength due to radi-
ation pressure forces, to the product of all decoherence mechanisms
present in the system, usually the decay rate of the optical cavity, the
mechanical decoherence and the coupling to the thermal bath at a
given temperature (see chapter 4.2.2).

The necessary condition for carrying out optomechanical experi-
ments at the quantum level, such as the generation of entanglement,
is the so called strong cooperativity regime, where the optomechani-
cal coupling strength surpasses all decoherence rates in the system.

Quantum entanglement

Quantum entanglement is likely the most defining phenomenon of
quantum physics. It has become famous through the Gedankenexperi-
ment by A. Einstein, B. Podolsky and N. Rosen from 1935 [50] (EPR
paradox), in which they show that entanglement is inconsistent with a
complete description of physical reality through quantum theory. The
term entanglement was first introduced by E. Schrödinger who consid-
ered it not one but rather the characteristic trait of quantum mechanics,
in [118]. Over the course of the last decades, quantum entanglement
has been found to be a rich source for applications such as in quan-
tum teleportation and quantum cryptography. In principle allowing
the implementation of secure communication protocols and more ef-
ficient computational algorithms that are not achievable by classical
physics.

J. S. Bell’s no-go theorem from 1964 [30] gave experimentalists a
strong tool at hand to solve the dispute among physicists about the
EPR experiment. The first experimental test on a variant of Bell’s the-
orem has been conducted in 1972 by Freedman and Clauser [53]. It
wasn’t before the early 80’s that experimental Bell tests were con-
ducted on calcium cascade sources by A. Aspect, P. Grangier, J. Dal-
ibardand and G. Roger [23, 24], that violated the Bell’s theorem and
ruled out theories of local hidden variables, which were claimed to be
needed by the EPR publication. A wide range of Bell tests has been
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conducted over the course of the following decades, while another
milestone has been reached by Weihs et al. in Innsbruck (1998) [139],
which closed the locality loophole. Another breakthrough has been
reached by the realization of the so called loophole-free Bell tests in
2015. Three different realizations have been presented, with the first
using entangled pairs of electron spins in diamond, spatially sepa-
rated by more than one kilometer and the other two using entangled
pairs of photons [60, 121]. Rosenfeld et al. [114] added a Bell test by
measuring atomic spin states of entangled atoms separated by 398 m.

In contrast to these experiments involving pairs of entangled parti-
cles, steady-state continuous variable entanglement is needed for the
efficient implementation of a vast number of protocols. Prominent ex-
amples are the generation of large keys for quantum key distribution
and quantum computing. Light-mechanics entanglement is particu-
larly interesting for quantum nodes in quantum networks, by send-
ing the light from node to node and storing information locally in the
mechanics. Optomechanical systems are especially intriguing as they
are inherently constituting a light-mechanics interface for quantum
information networks has been shown by [91, 106, 107].

A protocol for the generation of steady-state continuous variable
optomechanical entanglement between an electromagnetic radiation
field and a massive mechanical oscillator has been proposed by Vitali
et al. in 2007 [136]. The authors consider a movable mirror as part of a
Fabry-Pérot resonator being pumped by a laser drive, that is the laser
frequency to be the sum of the cavity resonance and the mechanical
resonant frequency. Stokes scattering towards lower frequencies cre-
ates an entangled pair consisting of a photon and a phonon at the me-
chanical resonant frequency of the mirror. This is the optomechanical
analog to parametric down-conversion when generating squeezing of
light in nonlinear crystals.

Genes et al. [58] expanded this approach by analyzing the medi-
ation of the inaccessible intra-cavity light-mechanics entanglement
onto the output modes of the cavity, which can be measured with
photodetectors to prove the intra-cavity entanglement.

These entanglement schemes rely on a break-down of the rotat-
ing wave approximation (RWA) and are therefore always operated
close to instability. An alternative approach proposed by Hofer et al.
[69] suggests a pulsed scheme to circumvent instabilities. The pro-
posal presents a pump-probe scheme consisting of two steps. In the
first step, a blue-detuned pulse is sent into the cavity, generating en-
tangled photon-phonon pairs by Stokes scattering towards the cav-
ity resonance. In the second step, a red-detuned pulse is sent into
the cavity, these lower energy photons will preferably be scattered
onto cavity resonance (anti-Stokes scattering) by absorbing the en-
ergy from a phonon and therefore swap the mechanical state onto
the light field. Effectively, the entanglement between the first pulse
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and the mechanics is transferred onto entanglement between the two
light pulses. The verification takes place by carefully analyzing the
correlations between these pulses after leaving the optomechanical
cavity. This protocol has been successfully used to entangle the mo-
tion of a micromechanical disc to a microwave radiation field in an
inductor-capacitor (LC) resonator [99].

Towards multimode optomechanical entanglement

Here, we will detail experimental efforts towards the generation of
continuous variable steady-state optomechanical entanglement of a
silicon nitride membrane incorporated into a high finesse Fabry-Pérot
cavity. We will put particular emphasize on unique experimental chal-
lenges of this inherently multimode physical system, which has not
been considered in previous works.

The presented optomechanical system is simpler than many other
systems and solely relies on a single laser beam pumping the op-
tomechanical cavity close to its resonance. Neither non-classical light
sources nor ground state cooling of the mechanical oscillator are nec-
essary to begin with. Two-mode squeezing (anti-Stokes) and beam
splitter (Stokes) interaction will simultaneously scatter photons into
red- and blue-detuned sidebands. These sidebands are recorded in
reflection of the optomechanical cavity and the entanglement veri-
fication step is solely applied in post-processing, which allows for
flexibility.

The multimode aspect of SiN membranes will be considered while
designing and implementing the experiment towards reaching the
strong cooperativity regime, which is the single most important fig-
ure of merit for the generation of optomechanical entanglement.

The setup leads to unique experimental challenges which we ad-
dress experimentally and also in our analysis in post-processing, e.g.
low frequency laser noise and detector characteristics.

1.1 outline of this thesis

The remainder of this thesis is divided into the following parts:
Part two presents the theoretical tools that are necessary for the un-

derstanding of the remainder of this thesis. Chapter 2 deals with the
basics of the quantum description of light and mechanics. Chapter 3

discusses the theory of different detection methods to characterize the
state of a light field. Chapter 4 introduces the optomechanical inter-
action and the linearization of the optomechanical Hamiltonian, the
core elements to describe the physics of the coupled light-mechanics
systems, as well as the two-mode squeezing and beam splitter inter-
actions, which are the fundamental processes for the generation and
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verification of optomechanical entanglement. We conclude with defin-
ing the quantum cooperativity.

Part three, is composed of chapters 5 to 7. It focuses on the exper-
imental techniques to building up the backbone of the experimental
efforts. Chapter 5 starts with the description of the main laser source,
the description of laser noise in the sideband picture and the intro-
duction of the high finesse filter cavity, which is used to filter classical
noise on the laser to achieve a shot noise limited laser drive for the op-
tomechanical system. We will see that this is an important detail not
addressed by the quantum cooperativity. The chapter concludes with
the generation of a second laser beam that can be independently ma-
nipulated and is often used to characterize the optomechanical cou-
pling strength. Chapter 6 deals with the dual-rail homodyne setup
used in this experiment to simultaneously measure the amplitude
and phase quadrature of the light exiting the optomechanical cavity,
which is then used to reconstruct the full state of the optomechanical
system and to retrieve quantum correlations between the light and
mechanics. Chapter 7 describes the techniques used to stabilize the
distinctive optical cavities and interferometers necessary to run the
full experiment.

Part four focuses on the optomechanical system and stable oper-
ation in the strong cooperativity regime for the generation of op-
tomechanical entanglement. The mechanical resonator is introduced
in chapter 8, with special emphasis on the effective mass of the mem-
brane. We introduce the mechanical quality factor, its measurement
and efforts towards increasing the quantum cooperativity by reduc-
ing dissipation of the mechanical oscillator to its environment. Special
emphasis is given on the multimode nature of silicon nitride mem-
branes. Chapter 9 features the optomechanical cavity, its alignment
procedure and its modification over time to increase stability, ther-
malization and optomechanical coupling strength. A method to in-
corporate membranes into the optomechanical cavity is given, which
reliably results in high mechanical quality factors and low optical
losses. The remainder of the chapter focuses on the characterization
of the experimental parameters entering the quantum cooperativity,
showing that the experiment reaches the strong cooperativity regime
necessary for the generation of optomechanical entanglement.

Part five starts with chapter 10 and a brief discussion of optome-
chanical entanglement protocols, which is followed by the intro-
duction of the pulsed-continuous entanglement protocol used in
this work. The pulsed-continuous protocol is a two step generation-
verification scheme, that can be applied entirely in post-processing.
The data acquisition procedure by means of a dual-rail homodyne
detector scheme and the calibration of the data is described with
emphasis on the detector frequency response. Chapter 11 presents
a number of evaluations of simulated data sets with realistic laser
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noise and detector frequency response models. The focus lies on
simulations with realistic parameters and comparisons of genuine
single mode systems with real, inherently multimode micromechan-
ical membranes. The simulations are followed by evaluations of
experimental data taken while the experiment was operated in the
strong cooperativity regime. We find that our results indicate the
presence of multimode optomechanical entanglement. However, an
unquestionable statement about entanglement can not be made at
this point. Chapter 12 discusses two roads towards the verification of
entanglement with the presented system: The first way is by means
of low frequency laser noise reduction, as it is believed to corrupt
the measurements presented in chapter 11; and the second way is by
further improvements of the quantum cooperativity.

The thesis ends with chapter 13 by providing a short summary of
the presented manuscript.





Part II

T H E O RY

The following chapters are meant to set the theoretical
background for the remainder of this thesis. Most of the
topics presented here are well known and for further read-
ing I want to refer to the overview articles in quantum
optomechanics that have been published over the years
[25, 64, 93] and the more comprehensive review articles
by Aspelmeyer et al. [27] and Y. Chen [42]. More sources
are referenced when needed.

Chapter 2 introduces the basic quantum mechanical de-
scriptions of mechanical systems and of light. Most of
these aspects introduced here are used throughout the rest
of this thesis.

Chapter 3 discusses the different methods for the detec-
tion of light. Starting from a simple power measurement
over balanced homodyne detection to a the dual-rail detec-
tion scheme, a setup that allows the full characterization
of the quantum state. Dual-rail detection is applied in the
experiment to derive the covariance matrix of a generated
entangled state and to deduce the verification and amount
of entanglement.

Chapter 4 deals with the basics of the optomechanical in-
teraction. We will derive the interaction Hamiltonian in
the linearized regime and discuss the two main interac-
tion types, namely the two-mode squeezing that can gen-
erate entanglement between photons and phonons and
the beam splitter interaction which can swap a mechan-
ical phonon onto a detectable photon.

We close by giving a brief summary and discussing the
quantum cooperativity, the ratio of the optomechanical
coupling strength to all decoherence channels available in
the system. We will see that the so called strong coop-
erativity regime, the regime where the coupling strength
surpasses all decoherence channels, is a necessary condi-
tion for the generation of entanglement. This statement
will in turn set the benchmark for the experimental efforts
presented in the remainder of this thesis.





2
T H E O RY O F L I G H T A N D M E C H A N I C S

In this chapter, I will introduce the theory of mechanical oscillators
and their quantum nature to a level that is important to describe the
experiments I am going to present. These concepts will be picked
up in chapter 8 and further explored, with a focus on our particular
implementation.

This description of the quantum nature of light, coherent states and
optical cavities, is by no means exhaustive. The intention is to give
the reader the most important expressions that will be needed rou-
tinely when introducing the optomechanical coupling, treating our
laser source (chapter 5) and detection schemes (chapter 3) used in
our experiment and our specific optomechanical system (chapter 9).

2.1 a review of mechanical oscillators

Cavity optomechanics is the research field that studies mechanical
systems, e.g. mechanical oscillators, that are coupled to optical de-
grees of freedom, i.e. an optical cavity mode. We will start the de-
scription and brief overview of mechanical resonators in this section.
Many of the concepts presented here will be further discussed in
great detail over the course of this thesis, mainly in chapter 8, when
we will see our specific mechanical oscillator.

At this point we want to restrict ourselves to the simple example of
a one dimensional (1D) harmonic oscillator featuring a single mode
of vibration at an angular frequency ωm. We will always deal with
mechanical systems suffering from mechanical losses γ and experi-
encing external forces Fext. The equation of motion (EoM) for the posi-
tion coordinate x(t) of such an oscillator is given by

mẍ(t) + mγẋ(t) + kx(t) = Fext(t), (2.1)

in which m is the mass of the resonator and k = mω2
m the spring

constant of the system. Note that in chapter 8 we will extend this
equation and look into a more general and detailed approach of the
concept of mass, damping and spring constant. There we will also
look into the normal modes of the mechanical resonators used in this
thesis, namely silicon nitride membranes, because their multimode
nature will play a significant role in our experiment.

13
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Quantum harmonic oscillator

For the moment we will stay with the 1D harmonic oscillator, as
depicted in figure 2.1 a), and look at its quantum mechanical descrip-
tion. We consider a mechanical resonator with a pair of canonical
coordinates with x(t) being the position coordinate and p(t) = mẋ(t)
the resonator’s momentum. The total energy is the sum of kinetic and
potential energy and is given by the Hamiltonian H = Ekin + Epot.

We quantize the Hamiltonian by replacing the canonical variables
x and p by their equivalent quantum operators x̂ and p̂, which must
fulfill the canocial commutation relation

[x̂, p̂] = ih̄. (2.2)

The Hamilton operator is then given by the equation

Ĥ =
1
2
(

p̂2/m + mω2
m x̂2) . (2.3)

At this point we will introduce the phonon creation, b̂†, and annihila-
tion, b̂, operators defined by the relations

x̂ = xZPF

(
b̂ + b̂†

)
, (2.4)

p̂ = −imωmxZPF

(
b̂− b̂†

)
, (2.5)

while xZPF =
√

h̄/2mωm denotes the zero-point fluctuations (ZPF) and
b̂, b̂† fulfill the commutation relation[

b̂, b̂†
]
= 1. (2.6)

Inserting equations 2.4 and 2.5 into equation 2.3 yields the second
form of the Hamilton operator as a function of creation and annihila-
tion operators

Ĥ = h̄ωm

(
b̂†b̂ +

1
2

)
. (2.7)

To find solutions for b̂ and b̂† we apply the Heisenberg formalism. The
Heisenberg equation for the mechanical annihilation operator reads

db̂
dt

=
i
h̄

[
Ĥ, b̂

]
. (2.8)

Applying the commutator and using equation 2.6 the equation reads

db̂
dt

= −iωmb̂ (2.9)

with the solutions

b̂(t) = b̂0 e−iωmt, (2.10)

b̂†(t) = b̂†
0 eiωmt, (2.11)
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in which the zero index in b̂0 and b̂†
0 denotes the operators at time

t = 0 and simply taking the Hermitian conjugate of b̂ to get the solu-
tion for b̂†. These solutions can be seen as a rotation in the complex
plane with the frequency ωm or as an angle ωmt.

We will also introduce the phonon number operator

n̂ = b̂†b̂, (2.12)

which is defined via the eigenvalue equation

n̂ |n〉 = n |n〉 , n ∈N0. (2.13)

Here the eigenvalue n is the phonon number and the eigenstate |n〉
the n-phonon state of the system, i.e. n excitations within the oscil-
lator. In the vacuum state |0〉 (zero-phonon state) the so called zero-
point energy 1

2 h̄ωm remains in the Hamiltonian 2.7. Generally, the
energy eigenvalues are given by the equation

Ĥ |n〉 = En |n〉 , (2.14)

and the equidistant energy eigenvalues are

En = h̄ωm

(
n +

1
2

)
, n ∈N0. (2.15)

As an example, figure 2.1 b) shows the ground state and the first two
excitations of the mechanical mode.

The expectation value of the position operator in the vacuum state
yields the zero-point fluctuations (

〈
0
∣∣ x̂2

∣∣ 0
〉
)1/2 = xZPF and the ex-

pectation value of the phonon number operator n̂ yields the average
number of phonons n̄ = 〈n̂〉.

The mechanical noise spectrum

In the laboratory we will usually not only face a single oscillation x(t)
at frequency ωm but a large number of different mechanical modes,
each oscillating at its own frequency ωmi , suffering some amount
of loss γi and experiencing fluctuating forces. Therefore, for conve-
nience in an experimental investigation, we will instead frequently
look at the noise spectrum of the mechanical system, which will
allow us to easily select signals and assign them to the respective me-
chanical mode and also to read off noise levels, scaling and frequency
dependencies of different noise sources.

We get the description of x(t) in frequency space by means of the
Fourier transform (FT) over the time scale τ of a realization of a mea-
surement (here, I am closely following [27] and will make clear when
I differ with my notation)

x̃(ω) = FT(x(t)) =
1√
τ

∫ τ

0
dt x(t)e−iωt. (2.16)
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Figure 2.1: Quantum harmonic oscillator. a) schematic of a harmonic oscilla-
tor with its position operator x̂ = xZPF

(
b̂ + b̂†

)
and resonant frequency ωm

and coupled to a bath with temperature T at a rate γ. b) Harmonic poten-
tial and quantized energy levels En = h̄ωm (n + 1/2) (dashed grey lines). c)
The noise power spectral density of a mechanical oscillator with a peak at
its resonant frequency ωm. The area below the spectral density (light green
area) yields the energy of the mechanical mode.

The spectral density is obtained by averaging over individual mea-
surements

〈 ∣∣ x̃(ω)
∣∣ 2〉. For a stationary process the Wiener-Khinchin

theorem relates the spectral density of x(t) with the Fourier transform
of the autocorrelation function of it via

lim
τ→∞

〈 ∣∣ x̃(ω)
∣∣ 2〉 = ∫ ∞

−∞
dt 〈x(t)x(0)〉 eiωt ≡ Sxx(ω), (2.17)

while the latter is the definition of the noise power spectral den-
sity (NPS) Sxx(ω) (The single-sided NPS is defined by Sx(ω) ≡ 2×
Sxx(ω)). The noise power spectral density is an easily measurable
quantity in the laboratory and the Wiener-Khinchin theorem (equa-
tion 2.17) allows us to calculate the variance of x∫ ∞

−∞
dω

Sxx(ω)

2π
=
〈

x2〉 ∝ 〈E〉 , (2.18)

which is directly a measure for the temperature T of the oscillator
when we apply the equipartition theorem 〈E〉 = kBT/2. We will fre-
quently make use of this relation experimentally, to obtain quantities
like the optical cooling power and from that the optomechanical cou-
pling strength in our experiment, see chapter 9.

We have introduced several basic aspects of mechanical resonators
in this section, they will all be either used or further explored over
the course of this thesis.

2.2 an overview of the description of light

We want to continue with the second building block of an optome-
chanical system, namely the optical cavity. We will start with the
quantization of the electromagnetic field, which is well described in
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quantum optics textbooks like Gerry and Knight [59], Walls and Mil-
burn [138] and Loudon [88]. Then, we will briefly discuss the quan-
tum fluctuations of light fields and close with a short description of
optical cavities.

The quantum description of light

Let us consider a linear cavity with perfectly conducting walls at z =

0 and z = L along the z direction. Solutions of the electromagnetic
wave equation derived by Maxwell’s equations can be found to have
solutions of the form

Ex(z, t) = E0 × x(t) sin(kz), (2.19)

By(z, t) = B0 × p(t) cos(kz), (2.20)

while k = ω/c is the wave vector of the fields, c is the speed of light
and ω is one of the longitudinal resonant frequencies ωi = iπc/L, i ∈
N+ of the fields.

The classical field energy of an electromagnetic field is given by the
Hamiltonian

H =
1
2

∫ L

0
dz
(

ε0E2(z, t) +
1
µ0

B2(z, t)
)

, (2.21)

while ε0 and µ0 are the vacuum permittivity and permeability.
Inserting the solutions 2.19 and 2.20 into equation 2.21 leads to

H =
1
2
(

p2 + ω2x2) . (2.22)

In this form the Hamiltonian is formally equivalent to the one of a
harmonic oscillator (see equation 2.3) with unity mass. Dropping scal-
ing factors, we can now identify x and p = ẋ as canonical variables
of position and momentum.

Once again we quantize the harmonic oscillator for the light field by
replacing the canonical variables q and p by their equivalent quantum
operators x̂ and p̂.

Again, it will be useful for later discussions (which incidentally also
avoids the introduction of labels for x̂ and p̂ to differentiate between
light and mechanics) to introduce creation and annihilation operators
for the light mode

â =
ωx̂ + i p̂√

2h̄ω
, â† =

ωx̂− i p̂√
2h̄ω

, and vice versa (2.23)

x̂ =

√
h̄

2ω

(
â + â†

)
, p̂ = i

√
h̄ω

2

(
â− â†

)
, (2.24)

which, just like the mechanical creation and annihilation operators,
fulfill the commutation relation

[
â, â†] = 1. Similarly to equation 2.7,

we can rewrite the Hamiltonian 2.22 as

H = h̄ω

(
â† â +

1
2

)
. (2.25)
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Applying the Heisenberg equation we get formally equivalent solu-
tions to equations 2.10 and 2.11, reading

â(t) = â0 e−iωt, (2.26)

â†(t) = â†
0 eiωt. (2.27)

(2.28)

Similarly, the average number of photons n̄ph =
〈
n̂ph
〉

is given by
the average of the photon number operator n̂ph = â† â. And the energy
eigenvalues (figure 2.2 b)) are

Enph = h̄ω

(
nph +

1
2

)
, nph ∈N0. (2.29)

The corresponding eigenstates |n̂〉 are the so called Fock or number
states, which form a complete set of an orthonormal basis, i.e. they
fulfill the relations〈

n
∣∣ n′
〉
= δn,n′ , (2.30)

∞

∑
n=0
|n〉 〈n| = 1, (2.31)

with δn,n′ being the Kronecker delta symbol. Therefore, any state can
be written as a linear combination of Fock states and we will make
use of that relation in the next section when we discuss coherent
states.

We have seen that the quantum description of both the mechani-
cal resonator as well as the cavity light fields, are identical to that of
the quantum harmonic oscillator. We will make use of this when dis-
cussing the optomechanical interaction of the two systems. A notable
difference when comparing the Hamiltonians of the two systems, is
the frequency of oscillations. For cavity photons in the optical domain
(ω ≈ 2π × 1015) we obtain ωm/ω ≈ 10−9.

Coherent states

At this point we want to briefly discuss the quantum mechanical de-
scription of some specific light fields and their statistics and noise
properties. The starting point is given by the eigenvalue equation of
the annihilation operator

â |α〉 = α |α〉 , α ∈ C, (2.32)

with complex eigenvalue α and eigenstate |α〉. Clearly the eigenstate
can be written as a linear combination of Fock states |α〉 = ∑∞

n=0 cn |n〉,
with complex coefficients cn. By applying the number operator n̂ onto
the linear combination of number states and forcing the resulting
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state |α〉 to be normalized, that is | 〈α | α〉 |2 = 1, it can be shown
that the coefficients are given by the following expression

|α〉 = e−|α|
2

∞

∑
n=0

αn
√

n!
|n〉 . (2.33)

This is the so called coherent state represented in the Fock basis. To
understand the physical meaning of α, we calculate the expectation
value of the photon number operator, which we already know to be
n̄ph =

〈
n̂ph
〉
, with respect to the coherent state |α〉 and find:

n̄ph = 〈α | n̂ | α〉 =
〈

α
∣∣∣ â† â

∣∣∣ α
〉
= |α|2, (2.34)

therefore |α|2 is simply the average number of photons n̄ph and α can
be seen as the complex amplitude of the light field. Moreover, the
product of the uncertainty,

∆Ô =

√〈
Ô2 −

〈
Ô
〉2
〉

, (2.35)

for a given operator Ô, of position and momentum operator (see equa-
tion 2.24 for x̂ and p̂ in terms of creation and annihilation operators),
with respect to a coherent state yields

∆x̂ · ∆ p̂ =

√
h̄

2ω
×
√

h̄ω

2
=

h̄
2

, (2.36)

hence, coherent states are states of minimum uncertainty, just like the
vacuum state.

One common way to visualize a coherent state is by means of polar
coordinates for the amplitude α = |α|e−iφ. Therefore a coherent state
equals a vacuum state displaced by its amplitude |α| and rotating
with frequency ω = φ̇.

A similar way to visualize a coherent state is by means of the so
called amplitude and phase quadratures, X̂ and Ŷ, which are defined
as the real and imaginary part of the annihilation operator

X̂ =
1
2

(
â + â†

)
(2.37)

Ŷ =
1
2i

(
â− â†

)
, (2.38)

(2.39)

while X̂ is the so called amplitude and Ŷ the phase quadrature, ful-
filling the Heisenberg uncertainty relation

∆X̂ · ∆Ŷ ≥ 1 (2.40)

and equality reached for coherent states |α〉. This notation is illus-
trated in the so called ball-on-stick graphs (figure 2.2 c)). The descrip-
tion of light modes via its quadratures is commonly used when speak-
ing of the detection of light and the reconstruction of the covariance
matrix and will be regularly used throughout this thesis (e.g. chapter
3).



20 theory of light and mechanics

Quantum fluctuations and statistics

So far, we know that the average number of photons n̄ph equals the
squared amplitude |α|2 of the light field. At this point, we want to
extend our analysis and study the fluctuations of the photon number.
Successive use of the eigenvalue equation 2.32 yields the following
expression for the uncertainty of the photon number

∆n =

√〈
n̂2 − 〈n̂〉2

〉
= n̄1/2

ph , (2.41)

in which ∆n =
√

Var(n) is the standard deviation of n and 〈· · ·〉
denotes the expectation value. Using equations 2.33 and 2.34 yields

P(n) = | 〈n | α〉 |2 = e−n̄ph
n̄n

ph

n!
(2.42)

as the probability to detect n photons in the state |α〉. This is a Pois-
sonian distribution and the source for the quantum fluctuations of
the laser light, also known as the quantum shot noise. Note, that the
relative fluctuation is decreasing with n

∆n
n̄ph

=
1

n̄1/2
ph

(2.43)

and therefore, the relative photon number becomes more defined
with larger n, that is the classical limit. This is just another reason
why coherent states are said to be the quantum counterpart of classi-
cal fields.

There are two main manifestations of the quantum shot noise that
we will encounter in a typical optomechanical experiment: The first
is the fluctuating number of photons reflected off and therefore cou-
pling to the mechanical oscillator. This causes a random motion of
the oscillator; the so called quantum back-action noise. The second
manifestation is the fluctuating number of photons at the detection
apparatus which causes the so called read-out noise. Quantum noise,
however, is only observed once the laser beam is sufficiently cleansed
from classical noise sources.

2.3 the optical cavity

Next, we will continue with the optical degree of freedom of n op-
tomechanical system: The optical cavity or resonator, see figure 2.2 a).
In this chapter, we will studdy the empty cavity, before we introduce
the mechanical resonator and study the optomechanical interaction.

Two mirrors separated by a distance L will exhibit an interference
condition that builds up standing waves inside the cavity. This config-
uration is called the Fabry-Pérot resonator (cavity). Multiples of half
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Figure 2.2: Quantum physical description of light. a) Illustration of an op-
tical cavity of length L with input coupler decay rate κex and all other loss
contributions summed up in κ0. Input laser drive towards the z-direction
and intra cavity field â, building up a standing wave. b) Energy levels of the
electromagnetic field at frequency ω � ωm. Note, that while the mathemat-
ical description is identical to the description of the mechanical harmonic
oscillator, optical frequencies are so high (terahertz), that for all practical
purposes, it is a valid assumption, that the light is considered to be coupled
to a zero temperature bath. c) Ball-on-stick diagram, illustrating a coherent
state of amplitude |α| and angle φ (φ̇ = ω) in the basis of the quadrature op-
erators X̂ and Ŷ. The fluctuations around the mean amplitude, the standard
deviations ∆X̂ and ∆Ŷ equal unity for a coherent state |α〉.

the optical wavelength λ will fit into the cavity such that the interfer-
ence condition reads

n× λ

2
= L, n ∈N+. (2.44)

The distance of two successive longitudinal resonances in fre-
quency, the so called free spectral range (FSR), is given by

ωFSR = π
c
L

, (2.45)

in which c is the speed of light inside the resonator.
A photon inside the cavity will have a finite life time τ due to

imperfect reflectivity of the mirrors and additional losses within the
cavity. The attributed cavity decay rate for intensity within the cavity
is given by κ = τ−1 and is the full width at half maximum of the
cavity spectrum.

Another frequently used parameter is the finesse

F ≡ ωFSR

κ
, (2.46)
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a parameter that is giving the average number of round trips for a
photon inside the cavity.

For us it is important to distinguish between losses attributed to
the residual transmission of the input mirror that will let photons
couple into and out of the cavity at a rate κex, and all other loss chan-
nels within the cavity such as absorption and scattering of photons
out of the light mode and residual transmission losses through the
end mirror denoted by κ0.

Typically, we will send some input power

P = h̄ωl

〈
â†

in âin

〉
(2.47)

at laser frequency ωl , described by the annihilation operator âin, onto
the cavity. The amount of light coupled into the cavity is determined
by the transmission of the input mirror and is

√
κex âin. The input-

output theory specifies the field reflected off the Fabry-Pérot cavity
to follow

âout = âin −
√

κex â, (2.48)

while â denotes the intra-cavity field amplitude and
√

κex â the
amount of it that leaks out of the cavity through the input mirror.

The Heisenberg equation for the time evolution of the intra-cavity
field is given by [26]

˙̂a = −κ

2
â +
√

κex âin + i∆â. (2.49)

On the right hand side, the first term is the loss rate of the intra-cavity
field, the second term denotes the input field coupling into the cavity
and the third term is the evolution of the intra-cavity field, where we
used the commonly chosen rotating frame at laser frequency ωl with
the transformation âold = e−iωl t ânew. And ∆ = ωl −ωcav the detuning
of the laser with respect to the cavity resonance.

The classical field amplitudes can be obtained by taking the expec-
tation value, as we have seen in the last section. For that case the
steady-state solution reads

〈â〉 =
√

κex

κ/2− i∆
〈âin〉 . (2.50)

The prefactor is the so called optical transfer function or optical sus-
ceptibility

χopt(ω) =

√
κex

κ/2− i(ω−ωcav)
. (2.51)

We will frequently make use of the last two expressions as for de-
termining the optomechanical coupling strength for a given detuning
∆ of the laser light with respect to the cavity resonance.
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D E T E C T I O N S C H E M E S

Throughout the experimental setup, the detection of light fields by
means of photodetectors play a crucial role. The applications of pho-
todetectors range from DC coupled detectors for alignment purposes
and laser power monitoring to two channelled DC and/or AC cou-
pled detectors that simultaneously provide laser power monitoring
as well as AC signals that can be used for cavity length and laser fre-
quency stabilization. We also use balanced homodyne detection for
quantum shot noise limited detection of the mechanical oscillators
motion and dual-rail homodyne detection for the state reconstruction
of the optomechanical system. For early work on homodyne detection
I refer to Yuen and Shapiro [151], for further reading and detailed
descriptions I want to recommend Bachor and Ralph’s textbook [28]
(chapter 7 and 8) and the theses by Mehmet [94] and Vahlbruch [130].

We will break down the optical field operators into the sum of
a strong DC component α chosen to be real and a fluctuating term
â, while dismissing second order fluctuations. We choose to express
the number operator in terms of the fluctuations δ of amplitude and
phase quadratures instead of the fluctuations of the annihilation and
creation operators:

n̂ = (α∗ + δâ†)(α + δâ) (3.1)

≈ α2 + α(δâ† + δâ) (3.2)

≈ α2 + αδX̂ (3.3)

and similarly

∆2n̂ = α2∆2X̂. (3.4)

3.1 direct detection

First of all, I want to consider the case of a light field impinging on
a single detector, figure 3.1 a). The most important part of a photode-
tector is the photodiode (PD), a semi-conductor that converts photons
(light) to electrons. The photocurrent generated by a light field is pro-
portional to the number of photons impinging on the diode

i(t) ∝ n̂(t) ≈ α2 + αδX̂(t). (3.5)

Oftentimes the photocurrent is amplified and transformed into a volt-
age by means of a transimpedance amplifier. In case of the detection
of mechanical motion at a sideband frequency ωm, this voltage is high
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pass filtered and then can be Fourier transformed, e.g. by a spectrum
analyzer, to display the variance of the signal [94]. Mathematically
the Fourier transform of the photocurrent reads

i(ω) ∝ α2 + αδX̂(ω), (3.6)

omitting the high pass filtered DC contribution (i(ω = 0) ∝ α2), the
variance reads

Vari(ω) ∝ α2 〈(δX̂(ω))2〉 ≡ α2Var(X), (3.7)

in which the equivalent symbol defines the variance of the amplitude
quadrature of the light field.

To summarize, the direct measurement of a light field by means
of a single photodetector is a measurement of the amplitude quadra-
ture X̂ amplified by the amplitude α. No other quadrature, i.e. no
phase information, is accessible by a single detector measurement.
Also, for a real laser beam, the fluctuations (variance) on the light
field might be spoiled by classical laser noise making it more difficult
to perform shot noise limited measurements. Though, for many ap-
plications, such as monitoring laser power, generating error signals
and classical amplitude noise measurements, the detection by means
of a single detector is sufficient.

3.2 balanced homodyne detection

Next, we want to consider a slightly more delicate but much more
powerful detection scheme; the balanced homodyne detection. For
the moment we look at a beam splitter with two input and two output
ports, figure 3.1 b). We consider the optical fields â and b̂ being coher-
ent and both impinging at the two input ports of the beam splitter
with amplitude (power) reflectivity r (R = r2) and amplitude (power)
transmission t (T = t2). Using matrix formalism, the output fields are
connected to the input fields by the relation [152](

ĉ

d̂

)
=

(
t r

−r t

)(
â

b̂

)
. (3.8)

The beam splitter is assumed to be lossless and perfectly balanced,
such that R = T = 0.5. Under these circumstances the output fields
are defined by

ĉ = +tâ + rb̂ =
1√
2

(
+â + b̂

)
, (3.9)

d̂ = −râ + tb̂ =
1√
2

(
−â + b̂

)
. (3.10)

As we do not want to lose any information, we will use two pho-
todetectors, one measuring the output field ĉ and the other the field
d̂. The photocurrent of the first detector is calculated as
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ic(t) ∝ ĉ† ĉ =
1
2
(â† + b̂†)(â + b̂),

=
1
2
(â† â + (â†b̂ + b̂† â) + b̂†b̂),

≈ 1
2
(α2 + α(δâ† + δâ)) · · ·

+
1
2
(αβeiΘ + αδb̂e−iΘ + δâ†βeiΘ + δâ†δb̂eiΘ) · · ·

+
1
2
(αβe−iΘ + αδb̂†eiΘ + δâβe−iΘ + δâ†δb̂e−iΘ) · · ·

+
1
2

e−iΘeiΘ(β2 + β(δb̂† + δb̂)),

≈ 1
2
(α2 + β2 + 2αδX̂a + 2βδX̂b + 2αβ cos Θ) · · ·

+
1
2
(α(δb̂e−iΘ + δb̂†eiΘ) + β(δâe−iΘ + δâ†eiΘ))

in which both fields have been linearized and the amplitude α has
been chosen to be real and a relative phase eiΘ (between signal and
local oscillator) has been introduced for b̂. We introduce generalized
quadratures of the fluctuation for an arbitrary phase angle Θ; they
read δX̂Θ

a = 1/2(δâe−iΘ + δâ†eiΘ) and δX̂Θ
b = 1/2(δb̂e−iΘ + δb̂†eiΘ),

respectively.
Finally, we consider the field α to be the weak signal field we want

information for and β the strong local oscillator, i.e. β � α. The pho-
tocurrent simplifies to

ic(t) ∝ ĉ† ĉ ≈ β2

2
+ βδX̂b + βδX̂Θ

a (3.11)

and a similar calculation for the output port d̂ at the second detector
yields

id(t) ∝ d̂†d̂ ≈ β2

2
+ βδX̂b − βδX̂Θ

a . (3.12)

Looking at the last two equations strongly suggests one should
calculate the difference current of the two detectors

i−(t) = ic(t)− id(t) ∝ 2βδX̂Θ
a . (3.13)

This result clearly demonstrates the full power of balanced homodyne
detection; the resulting difference current is proportional to the gener-
alized fluctuations δX̂Θ

a of the weak signal beam and amplified by the
strong amplitude of the local oscillator. Any quadrature of the weak
signal can be measured by carefully choosing the phase Θ. Note, that
δX̂Θ=0 deg

a = 1/2(δâ + δâ†) = δX̂a equals the amplitude quadrature
and δX̂Θ=90 deg

a = 1/2(δâ + δâ†) = δŶa equals the phase quadrature
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Figure 3.1: Illustration of detection schemes. The classical mean amplitude
is given by α and β� α in case of the strong local oscillator. a) Direct detec-
tion: The signal is simply detected by a single photodiode, which produces
a current proportional to the light impinging on the detector and therefore
measuring the amplitude quadrature X̂ of the signal. b) Balanced homo-
dyne detection: The signal and local oscillator are combined on a balanced
beam splitter, they interfere and after equal path lengths hit two detectors.
The difference of the two currents can be proportional to any quadrature
X̂Θ of the signal by tuning the relative phase between signal and local os-
cillator via a phase shifter Θ. c) Dual-rail homodyne detection: The signal
is first split into two beams that are each detected by means of balanced
homodyne detection. The local oscillators of each detector can be set to two
orthogonal quadratures, such that simultaneous measurements of two or-
thogonal quadratures X̂Θ and X̂Θ+90° is possible. In particular, it is possible
to choose the amplitude and phase quadratures X̂ and Ŷ to reconstruct the
full state of the measured light mode. Note, however, that the beam split-
ter used to split up the signal in the first place, introduces one unit of snot
noise through its open port, which needs to be taken into account for proper
characterizations.

of the weak signal. Moreover, the fluctuations of the strong local os-
cillator cancel out, such that their noise budgets do not contribute to
the signal.

Measurements of the variance of the difference current, e.g. by
means of a spectrum analyzer, yields

Vari−(ω) ∝ β2Var(δX̂Θ
a ), (3.14)

which is a convenient result, as blocking the weak signal input
port and replacing it with vacuum fluctuations with a variance of
Var(δX̂vacuum) = 1, is an easy way to calibrate the signal Var(δX̂Θ

a ) in
units of shot noise.

3.3 dual-rail homodyning and covariance matrix

All states we are dealing with, such as coherent and thermal states
and also squeezed states, fall under the category of Gaussian states.
An important trait of Gaussian states is that they remain Gaussian if
only linear operations are applied, which will be the case in all our
experiments.
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Consider a Gaussian state ρ with n-modes and the column vector

R =
(
X̂1, Ŷ1, · · · , X̂n, Ŷn

)>
(3.15)

in which the entries Ri consist of the n pairs of amplitude X̂i and
phase Ŷi quadrature operators. This description fully characterizes all
n modes of the Gaussian state ρ. The state ρ is then fully characterized
by its second moments (the first order moments are a displacement
in phase space and can be neglected after applying a proper trans-
formation [18], see figure 2.2 c)). The first moments are given by the
expectation values of the vector

R̄ =
(〈

X̂1
〉

,
〈
Ŷ1
〉

, · · · ,
〈

X̂n
〉

,
〈
Ŷn
〉)>

, (3.16)

and the covariance matrix (CM) σ with the matrix elements

σij =
1
2
〈

RiRj + RjRi
〉
− 〈Ri〉

〈
Rj
〉

. (3.17)

In section 3.2 we saw that we can measure any quadrature by
means of homodyne detection. This approach can be expanded by
means of dual-rail (or 8-port) homodyne detection [137], where the
signal is split up by a balanced beam splitter and sent to two ho-
modyne detectors, one measuring the amplitude quadrature and one
measuring the phase quadrature (see figure 3.1 c) for an illustration).
Note that by introducing a balanced beam splitter to split the signal,
one unit of vacuum noise is added through the unused beam splitter
port.

This detection scheme allows us to characterize the Gaussian opti-
cal quantum states in all our experiments. It will be our main detec-
tion scheme after bringing the optomechanical system into the strong
cooperativity regime and describing our entanglement protocol and
present measurements towards multimode optomechanical entangle-
ment in chapters 10 and 11.





4
I N T R O D U C T I O N T O C AV I T Y O P T O M E C H A N I C S

The source of optomechanical interaction of an optical field with a
mechanical oscillator in the simplest case, is due to the reflection of a
photon and consequently the momentum change of ∆pph = 2h/λph

which applies a radiation force Frad = d
dt (∆pph), depending on the

total photon flux, onto the mechanical oscillator. We will make use
of the Hamiltonian formulation of light and mechanics from the last
chapter and for the remainder of this chapter we will stick to the
standard model of optomechanics, a Fabry-Pérot cavity with a mov-
able end-mirror, where the first being the optical and the latter the
mechanical degree of freedom (see figure 4.1 for reference). We will
expand this description at a later stage, when we introduce our op-
tomechanical setup of choice, namely the membrane in the middle
setup, a thin dielectric film placed inside a high finesse Fabry-Pérot
cavity.

4.1 hamilton formalism

The starting point of our discussions will be the Hamilton operator
H0 for the optical field and the mechanical oscillator as two uncou-
pled quantum harmonic oscillators. Note, that the theory presented
here is not original and follows mainly the review of cavity optome-
chanics by Aspelmeyer et al. [27]. Deviations in the notations will be
marked and other sources are cited when used.

The bare Hamiltonian reads

Ĥ0 = h̄ωcav â† â + h̄ωmb̂†b̂, (4.1)

here we used the creation and annihilation operator description and
restricted ourselves to a single mechanical mode with frequency ωm

and a single optical mode, that is the cavity resonance ωcav closest to
the driving laser frequency ωl . The optomechanical coupling arises
from the fact that the movable mirror changes its position due to
radiation pressure forces and vice versa the moving mirror changes
the cavity resonance frequency depending on its position x. A Taylor
expansion yields

ωcav(x) ≈ ωcav + x
∂ωcav

∂x
+O(x)2 + · · · , (4.2)

where for the purposes of this thesis the linear term is sufficient, such
that we neglect quadratic and higher order terms O(x)≥2. A detailed
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Figure 4.1: Prototype optomechanical system. The so called end mirror con-
figuration, a Fabry-Pérot cavity of length L featuring a light end mirror with
a mechanical degree of freedom x̂ coupled to the cavity photons â† â via ra-
diation pressure at a rate g. The mechanical oscillator is coupled to a heat
bath at temperature T at a rate n̄γ and the optical cavity mode with decay
rate κ and pumped via a driving field âdrive detuned by ∆ with respect to
the cavity.

derivation can be found in the literature [85]. We follow the notation
from [27] and introduce the optical frequency shift per displacement
G = −∂ωcav/∂x and insert 4.2 into equation 4.1, which gives rise to a
coupling term

h̄ωcav(x)â† â ≈ h̄(ωcav − Gx̂)â† â (4.3)

and the interaction part of the Hamiltonian using equation 2.4 reads

Ĥint = −h̄g0 â† â(b̂ + b̂†). (4.4)

Here we introduced the optomechanical single photon coupling
strength

g0 = GxZPF, (4.5)

while G = ωcav/L for a Fabry-Pérot cavity of length L. The negative
sign in equation 4.4 corresponds to a reduction of both the cavity
frequency and the energy for positive displacements x > 0. The ra-
diation pressure force associated with the optomechanical interaction
is then given by

F̂rad = −dĤint

dx̂
= h̄Gâ† â. (4.6)

Note that we restricted ourselves to the case of the so called disper-
sive coupling, where the cavity frequency is depending on the mirror
position. There are of course other systems where different kinds of
optomechanical coupling can arise. For instance, the so called dissi-
pative coupling for a thin dielectric membrane inside a Sagnac inter-
ferometer [78, 149], where the cavity decay rate κ(x) is depending on
the mirror position.
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4.2 linearized optomechanics

The optomechanical interaction (equation 4.4) is a three-wave mixing
process and inherently nonlinear. For most optomechanical systems
and also in the context of this thesis, it is legitimate to apply the so-
called linear approximation by rewriting the annihilation operator as
the sum of small fluctuations δâ around the (real) coherent mean field
cavity amplitude α = α† =

√
n̄cav (subsection 2.2), such that

â = α + δâ. (4.7)

Using this approximation, the photon number operator becomes

â† â = (α + δâ)† × (α + δâ) (4.8)

= α2︸︷︷︸
O(α2)

+ αδâ + αδâ†︸ ︷︷ ︸
O(α1)

+ δâδâ†︸ ︷︷ ︸
O(α0)

. (4.9)

The first term applies a DC radiation pressure force onto the mirror,
shifting it into a new equilibrium position. We introduce a new posi-
tion operator x̂new = x̂old + ∆x̂ ≡ x̂ that takes this shift into account.

The second term is linear in α and the one we keep, while the third
term is smaller by at least one order of the field amplitude O(α1). The
linearized interaction Hamiltonian becomes

Ĥ(lin)
int = −h̄g0α(δâ + δâ†)(b̂ + b̂†). (4.10)

The full Hamiltonian of the optomechanical system is then given
by

Ĥlin = −h̄∆δâ†δâ + h̄ωmb̂†b̂− h̄g(δâ + δâ†)(b̂ + b̂†), (4.11)

where we introduced the laser drive and switched to the rotating
frame with a unitary transformation at laser frequency ωl . In this
frame the optical field is now oscillating at a frequency given by the
detuning ∆ = ωl − ωcav between laser drive and cavity resonance.
Note, that we already took care of the shift by the average radiation
pressure force. We also introduced the so called optomechanical cou-
pling strength

g = g0α = g0
√

n̄cav, (4.12)

which is the single photon coupling strength amplified by the total
number of cavity photons.
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Figure 4.2: Red- and blue detuned drive of an optomechanical cavity with
line width κ (grey line). Yellow modes depict the driving laser, red-detuned
(∆ = −ωm) in figure a) and blue-detuned (∆ = +ωm) in figure b). In case of
red-detuning. Stokes scattering creates a lower energy sideband (red modes)
and anti Stokes scattering creates a higher energy sideband (blue modes). a)
In case of a red-detuned drive, the up-scattering resonates in the cavity,
while the lower energy sideband is reduced, effectively cooling the mechan-
ical oscillator. The Hamiltonian (eq. 4.13) reduces to the beam splitter inter-
action, which swaps the mechanical state onto the light and vice verse. b) In
case of a blue-detuned drive, the down-scattered sideband is resonant and
the higher energy sideband is decreased, effectively heating, or amplifying,
the oscillators motion. The Hamiltonian (eq. 4.14) reduces to the two mode
squeezing interaction, where pairs of phonons and photons are created, that
can lead to quantum correlations and ultimately entanglement between the
mechanics and light.

Red-detuning

There are three different choices for the detuning of the laser drive
with respect to the cavity and each case gives rise to different appli-
cations in optomechanics.

To start with, we assume the laser drive to be red-detuned by one
mechanical resonance, e.g. ∆ = −ωm, as depicted in figure 4.2 a). The
Hamiltonian (4.11) reduces to the optical and mechanical harmonic
oscillators at frequency ωm. The effective interaction Hamiltonian re-
duces to the so called beam-splitter (BS) interaction

Ĥbs = −h̄g(δâb̂† + δâ†b̂), (4.13)

which describes the creation of a resonant photon at the cost of a
mechanical phonon, or vice versa (figure 4.3 a)). Therefore, this inter-
action can be used to swap energy between the optical field and the
mechanics, while the other two interaction terms are non-resonant. A
red-detuned drive is used for sideband cooling [92, 117] of the me-
chanical oscillator.



4.2 linearized optomechanics 33

Figure 4.3: Photon-phonon illustration of the optomechanical interaction. a)
Beam splitter interaction: Red-detuned drive at ωl . The low frequency pho-
ton is scattered resonantly to ωcav, taking the missing energy ωm from the
mechanical oscillator. b) Two mode squeezing: A blue-detuned photon is
decaying into a correlated photon-phonon pair and thereby also amplifying
the mechanical motion.

Blue-detuning

The second interesting case is the blue-detuned drive at ∆ = +ωm

(figure 4.2 b)), where the two resonant interactions being the simulta-
neous creation (annihilation) of a photon and phonon pair (figure 4.3
b)). The effective Hamiltonian in this case reduces to

Ĥtms = −h̄g(δâ†b̂† + δâb̂), (4.14)

the so called two-mode squeezing (TMS) Hamiltonian, as it can cre-
ate highly correlated and entangled photon-phonon pairs, being the
optomechanical analogue to optical down-conversion. We will make
use of this interaction in the remainder of this thesis as the source
for the generation of optomechanical entanglement. In contrast to the
red-detuned case, the creations of phonons is an effective heating of
the mechanical mode and can yield to instabilities in the system.

Resonant drive

In case of a resonant drive (∆ = 0) both interactions contribute
equally as in equation 4.11. Note, that b̂ + b̂† ∝ x, which will in-
duce phase shifts on the light field and in combination with a phase
measurement, to position measurements with high sensitivity, as in
gravitational wave detectors. Furthermore, this case can be used to
generate ponderomotive squeezing [35, 116] or perform quantum
non-demolition measurements (QND).

4.2.1 Quantum Langevin equations

To summarize the description of the optomechanical system, we want
to treat the quantum operators of the mechanics and light in the
Heisenberg picture and write down their equations of motion. We
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choose the linearized operators and drop the δ since we are only in-
terested in the fluctuations, e.g. δâ→ â. Additionally, we will describe
the mechanical part by the position and momentum operators x̂ and
p̂. And the optical subsystem by the quadrature operators X̂ and Ŷ.

The so called linearized quantum Langevin equations read

˙̂x = +ωm p̂, (4.15)

˙̂p = −ωm x̂− γ p̂−
√

2g(â + â†)−
√

2γ f̂ , (4.16)

˙̂a = −(i∆ + κ)â− i
√

2gx̂−
√

2κâin, (4.17)

while κ denotes the cavity decay rate, γ the mechanical decay rate
and g the optomechanical coupling strength. The operator f̂ is the
stochastic Brownian noise term and âin the quantum noise coupling
into the system by the full cavity line width. Both are assumed to
describe Markovian processes and therefore being delta-correlated,
fulfilling

〈
âin(t)â†

in(t
′)
〉
= δ(t− t′) and (in the limit of high tempera-

tures)
〈

f̂ (t) f̂ (t′) + f̂ (t′) f̂ (t)
〉

/2 = (n̄+ 1/2)δ(t− t′), while δ denotes
Kronecker delta function and n̄ is the mean number of phonons in the
mechanical system.

4.2.2 Summary and quantum cooperativity

The goal of the last three chapters was to provide an overview and
explain the basic theory of mechanical oscillators and light, of optical
resonators and the detection of output modes, and finally the foun-
dations of optomechanics.

We studied the quantum mechanical description of mechanical res-
onators and used that to derive the zero point fluctuations and the en-
ergy levels and number of phonons of the harmonic oscillator. Then,
after Fourier transforming the solution of its equation of motion, we
connected the spectral noise density to the variance of the position co-
ordinate and the temperature. Both quantities will be used frequently
in the experiment, as measurements of the spectral noise density are
being used to study the performance of the mechanical resonator in
chapter 8 and for determining the optomechanical coupling strength
via the evaluation of spectra taken while sideband cooling the me-
chanics.

Then, we continued with the description of quantum states of light
and its statistics, ultimately giving rise to quantum noise. The descrip-
tion of optical cavities build the basis of main building blocks of the
experiment, such as the optomechanical cavity 9 and the filter cavity
in chapter 5.

The theory of the detection of light is crucial, not only for the daily
work in the laboratory, but also for the verification of entanglement,
as we will see in chapter 10, because ultimately, any type of entangle-
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ment verification will rely on measurements of the output modes of
the optomechanical cavity.

Finally, we brought the mechanical and optical subsystems to-
gether and introduced the optomechanical interaction mediated by
radiation pressure forces. We linearized the dynamics and differ-
entiated between different type of interactions, depending on the
detuning of the input laser beam with respect to the cavity resonance,
effectively choosing between the beam splitter interaction, which can
give rise to swap the mechanical state onto the light field, and the two
mode squeezing interaction, which produces pairs of photons and
phonons which can give rise to quantum correlations and ultimately
entanglement between the light and the mechanics.

The linearized Langevin equations including thermal and quantum
noise sum up the foundations of the optomechanical interaction used
within this thesis, from basic applications like sideband cooling up to
the entanglement protocol used for the generation and verification of
steady-state continuous variable multimode entanglement.

The figure of merit for the generation of optomechanical entangle-
ment (and also other quantum effects in such systems) is the so called
quantum cooperativity

C =
4g2

κγ(n̄ + 1)
, (4.18)

which is the ratio of the coherent optomechanical interaction strength
g, to the different decoherence rates in the experiment, i.e. the optical
decay rate κ, the mechanical dissipation at a rate γn̄.

The so called strong cooperativity regime, C > 1, is a necessary
condition to reveal quantum effects such as the generation of entan-
glement. The ingredients of the cooperativity are important to under-
stand to come up with a feasible set of parameters, which can push
the system into the strong cooperativity regime.

It is useful to rephrase equation 4.18 in an experimentally more
accessible way. By replacing γ = ωm/Q, the cavity line width κ and
optomechanical coupling strength g by the cavity finesse F , input
power Pin and mass m, as well as n̄ by the temperature T for n̄ � 1,
we can obtain

C =
32h̄
π
× F

2Pin

λc
× Q

mωmkBT
, (4.19)

with the reduced Planck constant h̄, the speed of light c, the Boltz-
mann constant kB. We use a laser with a wavelength of λ = 1064 nm
and a cryogenic environment of T = 8 K. We further aim for a short
5.5 mm cavity with a moderate finesse of F = 5000. Moreover, we
plan to use a thin silicon nitride membrane as our mechanical os-
cillator incorporated into the optical cavity. We aim at a resonance
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Figure 4.4: Quantum cooperativity as a function of experimental parame-
ters, see main text. Depicted is the quantum cooperativity as a function of
mechanical quality factor and cavity input power. The strong cooperativ-
ity regime is accessible for a wide range of input powers and mechanical
quality factors (different shades of red).

frequency of ωm = 2π × 1 MHz and a mass of m = 10 ng. Figure 4.4
shows the cooperativity as a function of input power and mechanical
quality factor for the mentioned parameters. For a wide range of
feasible combinations of Pin and Q, strong cooperativity C > 1 is
accessible.

The following chapters deal with the description and understand-
ing of these parameters and their realization, paving the way to the
strong cooperativity regime. Additionally, we will see that other ex-
ternal parameters are crucial too, if aiming for the generation and
verification of optomechanical entanglement. The most prominent is-
sues are classical laser noise, the characteristics of the photodetectors
and a proper characterization of the experiment. Ultimately, the inher-
ent multimode nature of our mechanical oscillators play a significant
role towards entanglement, since it first seems to hinder entangle-
ment, but if properly taken into account, is a source of richer physics.



Part III

E X P E R I M E N TA L S E T U P

In this part of the thesis, we give an overview of the full
experimental setup and focus on the main building blocks
that do not enter the cooperativity directly, but can indi-
rectly prevent the generation and verification of optome-
chanical entanglement.

Chapter 5 deals with the stable laser source and the reduc-
tion of classical laser noise by means of a high finesse filter
cavity operated in double pass configuration to achieve a
quantum noise limited laser drive for the optomechanical
cavity. We will describe the generation of a second laser
beam that is phase coherent with the signal beam, which
can be individually controlled and is used for characteriza-
tion of the optomechanical cavity and coupling strength.

Chapter 6 features the dual-rail homodyne detection
scheme necessary for simultaneous measurements of the
phase and amplitude quadratures of the light, which is
needed for a full reconstruction of the generated entan-
gled state. We will focus on the experimental realization of
the shot noise limited detection, the alignment procedure
and the characterization of the detectors.

Chapter 7 deals with the fact that every optical beam on
the table needs to be stabilized with respect to a reference.
This is not only important for stable operation of the ex-
periment, but also to have a defined and fixed detuning
between the input laser and optomechanical cavity, or be-
tween signal and local oscillator to measure a well defined
quadrature of the signal. I will discuss the different exper-
imental techniques used to stabilize the optomechanical
cavity, the filter cavity, the cooling beam filter cavity and
the (in total) four homodyne detectors.

A full overview of the experimental setup is given by fig-
ure 4.5, which also includes the optomechanical cavity in
a cryogenic environment.
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Figure 4.5: Full experimental scheme.





5
L A S E R L I G H T P R E PA R AT I O N

5.1 laser source and classical noise

The main laser source is a single-frequency continuous-wave (CW)
solid-state laser from InnoLight GmbH [1], now Coherent Inc. [2].
The specific model (Prometheus, datasheet at [2]) is a Nd:YAG laser
with a pump diode at 808 nm that emits roughly 1 W laser power
at 1064 nm and up to 20 mW phase-coherent laser light at 532 nm
via single-pass second harmonic generation. The Prometheus and the
two output modes are illustrated in figure 5.1 b).

The laser features a monolithic resonator, consisting of a single
Nd:YAG crystal [54, 55, 75]. The specific design is called nonplanar
ring oscillator (NPRO, see figure 5.1 a)) and its biggest benefit is its
unidirectional operation, which allows for long-term high-power ap-
plications. In contrast, linear resonators are either limited in output
power or in lifetime due to spatial hole burning at the nodes of the
standing wave. A ring-resonator features two counter propagating
travelling waves and unidirectional operation is achieved by apply-
ing losses to one of the two waves. Due to the nonplanarity of the
design (two of the corner sides that give rise to total internal reflec-
tion are slightly tilted relative to the plane of incidence), the NPRO
slightly rotates the polarisation during each round trip. Applying a
magnetic field along the longer dimension of the crystal counteracts
the rotation via the Faraday effect of the Nd:YAG and due to the non-
planar design for one circulation direction. Therefore, it effectively
leads to lower optical losses at the polarization dependent reflection
coating of the front face of the crystal, while the polarization rotation
is further increased for the counter-circulating wave.

It is crucial for the presented experiment to be able to slowly vary
the laser frequency by more than a FSR of the optomechanical cav-
ity, allowing to find the TEM00 mode and to maximize the mode
matching to it. Our Prometheus system can tune the laser frequency
by about 40 GHz by means of changing the laser crystal tempera-
ture and stabilizing it with ≈ 1 Hz bandwidth, which fulfills our re-
quirements. The frequency stability of 2 MHz/min agrees with the
1− 2 MHz/min frequency shifts observed in our laboratories.

At the same time, a fast actuator is needed to be able to account for
relative frequency jitter between the laser resonator and the optome-
chanical cavity up to audio frequencies. Our Prometheus laser has a
built-in piezoelectric transducer (piezo) pushing on the laser crystal
and therefore changing the resonator length and frequency. The max-
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Figure 5.1: NPRO design and Prometheus laser. a) Schematics of the mono-
lithic NPRO crystal design. The 808 nm pump field enters the crystal and
the active medium resonates at 1064 nm. b) Photo of the Prometheus laser
with drawn lines in red and green depicting the output of the main 1064 nm
laser mode as well as the frequency doubled light at 532 nm. c) Photographs
of the front panel of the controller featuring the input for laser temperature
and laser piezo, as well as the diode current of the NPRO and the phase
matching temperature of the second harmonic generation.

imum bandwidth of the piezo is about 100 kHz, the stroke per volt
is 2 MHz, while the maximum tuning range is ±65 MHz, which is
sufficient for our purposes. We mainly scan over the optomechanical
cavity resonance and sidebands to create feedback signals, see chap-
ter 7. Figure 5.1 c) shows the front panel of the controller unit with
the inputs for laser crystal temperature and piezo, as well as the cur-
rent of the pump diodes and the phase matching temperature for the
second harmonic generation.

A stable cavity mode is guaranteed by a slightly convex output
plane. The spectral line width is supposed to be ≈ 1 kHz integrated
over 100 ms and the output mode is a single TEM00 mode.

5.2 laser light modulation and laser noise

Quantum noise

Ultimately, even an ideal laser system is subject to laser noise due to
the quantum nature of light (see section 2.2) i.e. the quantum fluctua-
tions of the photon number of a given state (equation 2.43). Therefore
the resulting quantum noise power spectral density for a laser beam
with power P0 = h̄ωn and a measurement bandwidth of 1 Hz reads

Sqq =
hcP0

λ
(5.1)

where c denotes the speed of light and λ is the laser wavelength. This
is the so called photon shot noise and it prominently couples into
the experiment at two places. First, inside the optomechanical cavity,
the fluctuating power interacts with the mechanical oscillator and im-
prints a random displacement noise onto the latter. Here, we usually
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Figure 5.2: Laser modulation in the sideband picture. a) Laser amplitude
modulation at frequencies ±ωmod. The sidebands rotate in opposite direc-
tions and the vectorial addition cancels out all contributions within the imag-
inary axis (phase), effectively yielding an amplitude modulation of the car-
rier within the real axis. b) Laser phase modulation at frequencies ±ωmod.
The sidebands rotate in opposite directions and the vectorial addition can-
cels out all contributions within the real axis (amplitude), effectively yield-
ing a phase modulation of the carrier within the imaginary axis. This figure
is derived from [131].

use the term radiation pressure shot noise or quantum back-action
noise. Second, at the detection of the cavity output fields the fluctua-
tions of photons will yield fluctuations of the generated photocurrent
of the detector [36]

SI I =

√
ηe2

h̄2ω2
× Sqq, (5.2)

where e is the electron charge and η the detection efficiency. The
shot noise has two important and notable characteristics: First its fre-
quency independence (or whiteness) and second that fluctuations of
the power are proportional to the square root of the power. Whereas
for classical noise (next section) the fluctuations are directly propor-
tional to the power. This means, that the ratio of quantum to classical
laser noise

Sqq

Scl
∝

1√
P0

(5.3)

will increase for lower laser power. Therefore, a quantum noise lim-
ited laser drive can be achieved by simply arbitrarily reducing the
laser power, while the the real challenge lies in being shot noise lim-
ited at large powers that are needed to boost the optomechanical cou-
pling strength g = g0

√
n̄cav.

Classical laser noise

In reality, all lasers are imperfect and perturbations due to e.g. fluc-
tuations of pump power, vibrations of the laser resonator or thermal
effects, might induce additional noise onto the laser field. We will re-
fer to the excess noise as classical laser noise and distinguish between
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amplitude (intensity) and phase (frequency) noise.

One approach to model amplitude and phase noise is by means of
amplitude and phase modulation of the laser field at a given modula-
tion frequency ωmod and amplitude (am) and phase (pm) modulation
depths mam, mpm � 1. The equations for the laser field would then
have the form

aameiωl t = a0 (1 + mam cos (ωmodt)) eiωl t (5.4)

apmeiωl t = a0ei(ωl t+mpm cos(ωmodt)) (5.5)

which, using Bessel functions and the limit of small modulation
depths (see [131] for the full derivation), yield the sideband descrip-
tion of the laser noise at a given modulation frequency

aameiωl t = a0

(
eiωl t +

1
2

mamei(ωl+ωmod)t +
1
2

mamei(ωl−ωmod)t
)

,

(5.6)

apmeiωl t ≈ a0

(
eiωl t +

i
2

mamei(ωl+ωmod)t +
i
2

mamei(ωl−ωmod)t
)

.

(5.7)

Therefore, laser amplitude noise can be modeled as two correlated
sidebands rotating in phase with the carrier light at ±ωmod, while
laser phase noise is modeled by two correlated sidebands rotating
out of phase with the carrier at ±ωmod. Altogether, the first pair of
sidebands will only affect the amplitude (length of the carrier in fig-
ure 5.2 a)) and the second pair of sidebands will (in first order) only
affect the phase (angle of the carrier with respect to the imaginary
axis) of the laser field. This model is depicted in figure 5.2 b) which is
inspired and reproduced from [131]. It not only serves as a good intu-
itive picture and model of noise, but is also useful when we come to
use electro optical modulators (EOM) at various points of this thesis,
e.g. for the generation of a secondary cooling beam or the generation
of error signals for locking the various cavities in the experimental
setup.

This intuitive picture can also be applied for classical laser noise,
as correlated sidebands at each modulation frequency and even for
quantum noise as uncorrelated sidebands at all frequencies, effec-
tively leading to a cylindrical shaped noise around the frequency
axis.

At the end of this section we discuss where these noise sources
enter the presented setup and how they influence the experimental
efforts. We emphasize that our entanglement protocol is based on a
resonant laser drive with respect to the optomechanical cavity. There-
fore, laser amplitude noise will yield fluctuations of the intra cavity
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Figure 5.3: Frequency to amplitude noise conversion. Consider an optical
cavity with line width κ. If the laser beam is stabilized with some detuning
with respect to the resonance, laser frequency noise (green modulation) will
modulate the detuning of the laser and produce amplitude noise fluctua-
tions (yellow modulation) on the output light, determined by the slope (line
width) of the cavity. Therefore, especially in case of a high finesse cavity, it
is important to lock the laser very close to the resonance of the cavity to
minimize the effect, as in first order there is no conversion (zero slope).

power, which is coupled to the mechanical oscillator. These fluctua-
tions will drive the oscillator and produce noise. If the classical am-
plitude noise level is too high or the optical input power too large
(see equation 5.3), it can mask the intrinsic thermal motion of the
oscillator and/or overcome the coherent quantum noise drive of the
mechanics.

Phase noise on the other hand can be also seen as frequency
noise, as the frequency is the difference of phase over time, f (t) =

(2π)−1dφ/dt. As the laser is locked to the resonance of the cavity,
frequency noise should ideally not drive the mechanics in first order.
Note, that whenever we are not ideally on cavity resonance, which
is to some extent always the case, frequency noise will be converted
to amplitude noise and, as described, affect the oscillator motion by
laser amplitude noise. The frequency- to amplitude-noise conversion
is illustrated in figure 5.3.

Both classical noise sources will also enter the detection of the cav-
ity output modes, but this problem is moved to the discussion of our
balanced homodyne detection schemes.

Summary

The monolithic design makes the laser highly frequency stable (and
the slightly convex output plane yields a stable cavity) as relative
fluctuations of the resonators length ∆l/l are very small, which
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would usually be converted to relative frequency fluctuations ∆ f at
frequency f , following the equation [36]

∆ f = f × ∆l
l

. (5.8)

The laser intensity noise is specified as < −135 dB/Hz for frequen-
cies above 20 kHz. The Nd:YAG laser has a broad and large peak
in its intensity noise spectrum at around 1 MHz due to the laser re-
laxation oscillations. This peak is completely removed (damped) by
an active intensity noise stabilization, the so called noise eater. The
amplitude and frequency noise properties of NPRO lasers are well
studied within the scope of gravitational-wave detection (e.g. [36, 81–
83]) and they have proven to be low-noise laser sources for quantum
optomechanical experiments.

5.3 the filter cavity

Nonplanar ring oscillators prove to be stable and low-noise laser
sources used in a vast amount of optical and optomechanical ex-
periments. However, the experiment presented here requires a shot
noise limited input field for membrane frequencies above 500 kHz.
At these sideband frequencies and for typical input powers used here,
the Prometheus is still limited by classical laser noise, which needs to
be filtered and reduced. One way to reduce classical noise is by means
of an optical filter cavity (FC).

Note, that the filter cavity presented here is described in the PhD
thesis of Hannes Böhm [33]. It has been further investigated and char-
acterized by Jason Hölscher-Obermaier, who has conducted most of
the filtered and unfiltered laser noise measurements [70].

Optical filter cavities (sometimes referred to as mode-cleaner cavi-
ties) are an important tool in many quantum optomechanical experi-
ments and the backbone of the experimental setup presented here.

Our filter cavity serves several purposes. It is used as a beam posi-
tion and beam size reference on the optical table for all optical com-
ponents and cavities following the filter cavity, even if the laser source
needs to be replaced or repaired.

Furthermore, the filter cavity serves as a spatial and temporal mode
filter [142]. When the cavity TEM00 mode is stabilized to the laser
(or vice versa), it will only transmit that mode and reflect higher-
order modes, featuring different spatial shapes and frequencies, that
might be partially existent in the incoming laser beam. Therefore, the
transmission of the FC consists of a single Gaussian mode, which is
very desirable for most experiments.



5.3 the filter cavity 47

Optical low pass filter

The single most important purpose of the filter cavity is its charac-
teristic to perform as a first-order optical low pass filter. Picture the
laser carrier on resonance with the filter cavity. Due to its line width
κFC, it will act as an optical low pass for frequencies outside of its
bandwidth and therefore reduce laser noise at sideband frequencies
above its line width according to its transfer function. The transfer
functions [112] for single pass and double pass filtering are given by

χ
(1)
FC (ω) =

 1

1 +
(

ω
κFC

)
1

, (5.9)

χ
(2)
FC (ω) =

 1

1 +
(

ω
κFC

)
2

, (5.10)

where κFC is the line width of the filter cavity (optical low pass). Filter
functions are usually visualized and quantified by means of Bode
plots, a log-log plot of the filter transfer functions magnitude |χFC|
and a lin-log plot of the filters phase arg χFC.

The line width κFC is in this context referred to as the corner fre-
quency of the filter cavity, where

χ
(1)
FC (ω = κFC)| = 1/2 = −3 dB, and (5.11)

χ
(2)
FC (ω = κFC)| = 1/4 = −6 dB. (5.12)

Above the corner frequency the first (second) order reduces ampli-
tude noise by 1/100 = −20 dB (1/1002 = −40 dB) per decade, which
is depicted in figure 5.4 for the two configurations of our specific filter
cavity in each, single and double pass.

To get strong suppression of classical laser noise at frequencies
above 500 kHz, a high finesse filter cavity with small line width of
≈ 50 kHz is needed, ideally operated in double pass configuration.

Realization of the filter cavity

The filter cavity used in this experiment is a three-mirror cavity (see
figure 5.5) consisting of two plane mirrors that are rotated by 45°
with respect to the straight line defined by the incoming and outgo-
ing light. These mirrors build up the short side of an isosceles triangle
with the waist of the cavity being between them. The third (end) mir-
ror is placed further away and is almost hit under normal incidence.

The plane mirrors are fixed to a spacer made of a single block of
Invar, which is a nickel-iron alloy that features an exceptionally low
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Figure 5.4: Filter cavity transfer functions. Performance of a single pass (first
order) and double pass (second-order) filter cavity in low finesse and high
finesse operation with corresponding line widths (corner frequencies) of
κLF = 650 kHz and κHF = 48 kHz of our actual filter cavity, marked as
dashed grey lines. The single pass traces (pink) yield −3 dB noise reduction
at the respective corner frequencies, while the double pass traces (purple)
achieve −6 dB. We aim for high finesse double pass operation for correlation
measurements, as we then hit the shot noise level at around 500 kHz (see
figure 5.6), far below the membrane modes we are interested at (≥ 1 MHz).

thermal expansion coefficient αinvar = 1× 10−6 m/K around room
temperature. This choice reduces the length noise due to thermal
fluctuations and therefore the frequency noise significantly (see equa-
tion 5.8 from the discussion of phase noise). Additionally, the end
mirror is held by an adjustable mount to properly align the cavity
mode. In fact, the mirror is glued to a piezo which can be used as an
actuator for fast length stabilization of the filter cavity with respect
to the laser source. The cavity itself is stiff and relatively light, to be
able to easily follow the input signal for length stabilization. The cav-
ity foot is massive and placed on a vibration isolating rubber sheet,
following a heavy and weak design rule to be more insensitive to
incoming vibrations from the optical table and surroundings. Addi-
tionally, as there are many acoustic noise sources in the laboratory,
a surrounding box out of acoustic isolating foam is built around the
filter cavity.

The end mirror is highly reflective and curved for cavity stability
(1 m radius of curvature), whereas the coatings of the plane mirrors
are polarization dependent. Therefore by changing the input polar-
ization with a λ/2 waveplate placed directly in front of the filtering
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parameter symbol value

Power reflectivities (nominal) Rin/out 99.97 % max.

Rend 99.99 %

Radius of curvature RoCend 2 m

Cavity waist size wFC 500 µm

Round trip length LFC 60 cm

Free spectral range ωFSR/2π 500 MHz

parameter and symbol low finesse high finesse

HWHM, κFC/2π 650 kHz 48 kHz

Finesse, F 380 5200

Single pass transmission* 505 mW 306 mW

63.6 % 38.2 %

Double pass transmission* 300 mW 105 mW

37.7 % 13.1 %

Table 5.1: Filter cavity parameters. Measured and partly taken from [33, 70].
The asterisk marks power transmission measurements retaken at a later
stage, after carefully cleaning the filter cavity mirrors in situ. Preceding
was a continuous degradation of the power transmission with time, likely
caused by outgassing of the glue used to fix the end mirror of the filter cavity
and which subsequently laid down on the highly reflective coating causing
additional internal losses. The transmissions are measured with respect to
800 mW incoming laser power.
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Figure 5.5: Illustration of the filter cavity. a) Photo of the filtering cavity
(FC). The Invar spacer building the three mirror optical cavity is covered
by acoustic noise absorbing foam, as noise sources from all over the labo-
ratory can affect the performance of the FC. b) Schematic of the FC A set
of lenses and mirrors is used to mode match the incoming laser light onto
the cavity mode. A Faraday rotator is splits up the incoming light from the
returning mode from the FC. A λ/2 waveplate can switch between high and
low finesse operation. The light transmitted (single pass) through the FC is
focused onto a mirror, which throws the mode back onto the FC, effectively
turning the FC into a second order optical low pass filter.

cavity, one can switch between the high finesse (small line width) and
low finesse (large line width) mode (see table 5.1 for all parameters).

Low finesse operation is useful for daily operation, alignment and
characterization of most experimental parameters, since the stabiliza-
tion of the cavity length is easier for larger line widths (see noise noise
performance at low frequencies in figure 5.6) and more laser power
is available in transmission, as shown in table 5.1.

The main feature of high finesse operation is the small band width
of around 50 kHz, which we exploit to filter classical laser noise at
sideband frequencies above its line width.

The laser output is first transmitted through a Faraday isolator to
reduce possible back-reflections from the filter cavity, which could
distort the laser functionalities or even damage the laser. Afterwards
a set of lenses and mirrors are used to mode match the incoming
laser light to the filter cavity. In single pass transmission of the cavity
we use another adjustable mirror and lense to focus the transmission
onto a plane mirror with high reflectivity. This highly reflective mir-
ror, if placed in the focus of the lens, throws back the mode, which is
still resonant with the cavity. This allows us to use the FC in double
pass configuration, which effectively transforms the FC into a second
order low pass filter for classical laser noise.

A careful characterization of the amplitude and frequency noise in
transmission of the filtering cavity is given by Jason Hölscher [70]. In
short, the filtering effect of the cavity in high finesse and double pass
configuration is sufficient to push the classical laser amplitude noise
well below the shot noise: Amplitude noise is shot noise limited at
frequencies above 500 kHz and already deeply reduced by the 1/ω2
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Figure 5.6: Filter cavity noise performance. Noise measurements in double
pass configuration. A balanced detector scheme is used, where each pho-
todetector detects 5 mW optical power. The subtracted signal yields the shot
noise of the light (grey line) and the sum yields the classical amplitude noise,
which is here given in units of shot noise. While low finesse operation yields
a shot noise limited light mode at frequencies above ≥ 3 MHz, high finesse
operation already hits the shot noise floor at ≥ 500 kHz in accordance with
figure 5.4 and far below the membrane modes we are interested in, at fre-
quencies above > 1 MHz. Note, however, that the high finesse operation
does end up increasing low frequency noise at frequencies below ≤ 50 kHz,
which is likely due to the imperfections of the cavity length stabilization.

behavior of the double pass filter at 1 MHz. Note, that the filtering
cavity needs to be carefully locked on resonance, such that incoming
frequency noise is not turned into amplitude noise in transmission of
the cavity. The operation of the filter cavity ensures a shot noise lim-
ited laser drive of the optomechanical cavity at sideband frequencies
of our mechanical oscillators and for typical input powers to reach
the strong cooperativity regime.

5.4 creation of a detuned secondary laser beam

To be able to characterize the parameters of the quantum coopera-
tivity independently, we partly rely on radiation pressure sideband
cooling of the membrane motion or on optomechanically induced
transparency (OMIT) to determine the single photon coupling strength
g0. To perform such measurements, one ideally would need a second
laser with independent frequency detuning relative to the main laser
and a fixed phase relation. We chose to generate this second beam
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(the so called cooling beam) from our initial laser system (with the
first beam being called the signal beam) via the following approach.

Step 1: Sideband modulation. A fraction of the main laser light is
split by a half waveplate and a polarizing beam splitter. The light is
coupled into a single mode polarization maintaining fiber and then
propagates through a GHz electro optical phase modulator (EOM),
which is used to modulate the beam with roughly one free spectral
range of the optomechanical cavity, e.g. ωcool ≈ ωFSR ≈ 2π × 30 GHz.

Step 2: Sideband extraction. Fiber coupled EOM’s have a large mod-
ulation depth and get a significant amount of the carrier into the side-
bands, at the cost of higher order sidebands, such that sidebands at
integer multiples of±ωcool are generated (compare with equation 5.7).
We want to extract one of the first order sidebands. This is achieved
by a free space broadband filter cavity. The requirements on the fil-
tering cavity are relaxed due to prefiltering the light by a free space
volume holographic grating and the large modulation frequency (free
spectral range of the optomechanical cavity), such that κcool � ωcool
is easily achieved by a short cavity, consisting of two mirrors directly
glued on a ring piezo, which is used to lock the cavity length to the
laser frequency.

Step 3: Additional functionality. After the generation and extraction
of the so called cooling beam, it is coupled into a second GHz mod-
ulator. This allows for the generation of new modulation sidebands,
e.g. for producing an error signal for the optomechanical cavity, or
MHz sweeps for mapping the cavity line width or optomechanical
induced transparency. It is also possible to apply GHz sweeps for
scanning a full free spectral range of the optomechanical cavity for
mode matching and alignment purposes. The main purpose of the
cooling beam is sideband cooling for determining the optomechani-
cal coupling strength g0, through carefully choosing the first modula-
tor modulation frequency to be red detuned with the optomechanical
cavity, e.g. ωcool = ωFSR −ωm.

Step 4: The cooling beam is being re-united with the signal beam
on a polarizing beam splitter. It has a set of lenses and mirrors such
that it can be matched to the signal beam and the optomechanical
cavity. The separation of one free spectral range and the choice of
perpendicular polarizations for the signal and cooling beam ensures
that no parasitic effects between both beams occur.

The schematic of the generation of the secondary cooling beam that
is phase coherent with the signal beam and its implementation is de-
picted in figure 5.7. Among other applications, we shall make use of
this beam for sideband cooling and optomechanically induced trans-
parency measurements for the characterization of the optomechanical
cavity as described in chapter 9.
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Figure 5.7: Generation of the cooling beam. Some part of the filtered light
from the main laser source is being separated (red) and coupled into an in-
fiber electro optical phase modulator (EOM), which is deeply modulating
the light with approximately one free spectral range of the optomechanical
cavity. The goal is to filter a single first order sideband that is phase coher-
ent with the main laser and that can be used for several applications that
need two-tone input, i.e. using one beam to lock the optomechanical cavity
and use the second for characterizing the optomechanical coupling strength.
The modulated light consists of the carrier and components of the first and
higher order modes. By transmission through a volume holographic grat-
ing (VHG) a pre-filtering takes place due to displacement as a function of
frequency. One first order sideband is then mode matched to a short linear
cavity that is locked in transmission of the first order sideband, such that all
other modes are reflected. This so called cooling beam can be used to lock
the laser to the optomechanical cavity (20 MHz modulation for PDH lock), a
broadband EOM can be used to sweep the beam for probing the cavity line
width or for optomechanically induced transparency (OMIT) measurements
and a homodyne detector for collecting data.
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H O M O D Y N E D E T E C T O R S

6.1 experimental setup

Schematically, the core of homodyne detection lies in the interference
at the beam splitter and the detection of its output ports by two de-
tectors, see chapter 3.2 for reference. Experimentally, however, several
additional components play a crucial role.

We will start with the preparations of the signals and local oscilla-
tors, continue with the alignment of the beams onto each detector and
close with the processing of the DC and AC signals of the detectors.

The signal

The signal consists partly of the light directly reflected off the optome-
chanical cavity (OMC), that is, higher order modes due to the finite
mode matching, the TEM00 mode partly reflected at the input cou-
pler and the PDH locking sidebands at ±20 MHz off-resonant with
the OMC. The rest of the signal is generated within the OMC by the
cavity field interacting with the membrane, starting at sideband fre-
quencies of around 1 MHz.

A small fraction of the signal (usually 1 − 2 µW) is split off and
sent to the PDH detector to generate a locking signal. The rest of the
signal beam (< 50 µW) is divided by a polarizing beam splitter (PBS)
equally between the phase and amplitude detectors.

The local oscillator

For a proper homodyning signal, a strong and phase coherent beam
is necessary. The local oscillator (LO) is taken from the same laser
source after transmission through the filter cavity. The beam path
is artificially extended to match the signal path length and is then
reflected off a highly reflective mirror glued to a piezo. This piezo
is used to adjust the relative phase between LO and signal. Typical
LO powers are > 5 mW per detector, therefore at least a factor of 100
larger than the signal.

Alignment cavity

Each homodyne detector needs to be aligned properly to maximize
the interference between the two respective input beams. Therefore,
the frequencies, spatial modes, polarization and propagation of the
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signal and LO must match. The frequency is given by the common
laser source and the polarization is cleaned by means of a PBS.

The alignment of the spatial modes and propagation is set by a
three lens system in the returning signal and another lens system in
the LO path. Additionally, each of the four inputs of the two detectors
has a set of mirrors for mode matching purposes.

However, it is useful to not directly monitor the homodyne subtrac-
tion signal as there are too many independent degrees of freedom
to be optimized. A reliable and easy way to align the detectors is by
means of an alignment cavity. We incorporate a flip mirror after one
of the beam splitter ports and send the light to a short linear cav-
ity glued into a piezo. The piezo is scanned and all four beams are
then aligned onto this alignment cavity while monitoring the mode
matching of its fundamental resonance.

Beam splitter and detectors

To achieve an optimal subtraction of the individual detectors, it is
crucial that the beam splitter is perfectly balanced. Note, that real
beam splitter coatings aren’t arbitrarily close to a 50/50 balancing. It
is possible, however, to fine tune the balancing by incorporating the
beam splitter onto a rotational mount, as the coating’s reflectivity will
be slightly dependent on the angle of incidence of the signals/local
oscillators. This step has to be iterated with the step before.

After all beams and the beam splitter are aligned well, the positions
of the detectors themselves should be optimized, as the beam could
be chopped at the edges of the diodes. We use highly curved lenses to
focus the beams onto the detectors, such that we can locate the beams
well within the center of the diodes.

Diodes and electronic circuits

We use InGaAs diodes from Laser Components [3], optimized for
high quantum efficiencies of ≥ 95 % and low dark noise levels, a
large band width due to low capacities of 15− 20 pF without a bias
voltage and a diameter of 500 µm and an anti reflective coating with
a power reflectivity smaller than 0.05 % for an angle of incidence
around 20°.

The electronic circuit of the detectors has been designed and re-
alized by Hannes Böhm within our group and details of the circuit
boards can be found in his PhD thesis [33]. In short, the photocur-
rent is divided into a slow DC channel with roughly 30 kHz band
width and a fast AC channel, where the low frequency component
is blocked by a capacitor. The DC channels are used for locking and



6.2 detector characterization 57

will be discussed in chapter 7.6. The AC channel contains the small
signals at sideband frequencies, which can be amplified by a tran-
simpedance amplifier. Large gains are possible before saturating the
electronics because of the absence of the large DC component. To
achieve a decent subtraction by means of a large common mode rejec-
tion of classical laser noise, the detector characteristics such as gains
and corner frequencies of filters has been matched as close to each
other as possible.

Amplification and filtering

The subtracted signal is low pass filtered by two high order low pass
filters with corner frequencies around 13 MHz to aggressively filter
the Pound-Drever-Hall (PDH) modulation frequency at 20 MHz, with-
out influencing the flat, shot noise dominated range containing the
membrane signals. Otherwise, the PDH modulation can saturate the
amplifier or limit the range and therefore the resolution of the data
aquisition card (DAQ).

The filtered signal of each homodyne setup is being amplified by
low noise variable gain high speed amplifiers from Femto [4] model
DHPCA-100. A wide range of gain settings is important to take ad-
vantage of the full range of the DAQ for shot noise and dark noise
measurements not featuring mechanical signals with a 40 dB signal
to noise ratio.

The filtered homodyne signals can subsequently be fed into a spec-
trum analyzer to measure the noise power spectrum, or into the DAQ
for the measurement of time traces.

6.2 detector characterization

This section summarizes the results of optimally aligned detectors
and the characteristics of the diodes.

The mode matchings of each signal and local oscillator onto the
alignment can surpass 95 %. Then, the interference on the beam split-
ters needs to be characterized. This is done by closing one photodiode
and choosing equal power for the incoming signal and local oscillator.
By scanning the phase of the LO it is possible to measure the interfer-
ence fringe (figure 6.1 a)) whose quality is describes by means of the
visibility

vis. =
Vmax −Vmin

Vmax + Vmin
, (6.1)

where Vmax is the peak value of the fringe and Vmin the voltage
measured at the minimum. It is crucial to measure both values with
respect to the actual zero of the closed detector, as a residual bias volt-
age would distort the visibility. Note, that for perfect interference and
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equal power Vmin = 0 and the visibility reaches 100 %. We regularly
achieve visibilities of > 92 %, limited by the mode matching of the
optomechanical cavity and the modulation depth of the PDH modu-
lation, as the higher order modes and the modulation sidebands will
be reflected directly at the optomechanical cavity and degrade the
optimal interference at the beam splitters.

The subtraction of the individual photocurrents will strongly sup-
press classical amplitude noise as that noise is correlated in both
outputs of the beam splitter and then subtracted. We quantify the
common mode rejection by turning off the noise eater of the laser
and measurements of the laser relaxation oscillation peak at frequen-
cies of interest, namely around 1 MHz. Comparing the noise power
spectra of the sum current (full classical laser noise) to the differ-
ence current (shot noise limited detection) yields the suppression of
the relaxation oscillation peak, see figure 6.1 b). We achieve common
mode rejections of at least 45 dB which is roughly a factor of > 31 000.

Finally, figure 6.1 c) displays the frequency response of the detec-
tors. Dark traces are shot noise measurements (no signal) and light
traces are dark noise traces. The grey curve shows the spectrum ana-
lyzer dark noise as a reference. The spectrum is shot noise limited by
one order of magnitude compared to dark noise starting at≥ 500 kHz.
The high pass at frequencies below 500 kHz is due to the splitting of
AC and DC detector channels. Moreover, the spectrum is flat at mem-
brane mechanical frequencies of above 1 MHz. Both detectors show
the same characteristics, which is important to equally measure the
phase and amplitude quadrature of the light.
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Figure 6.1: Homodyne detector characterizations. a) Homodyne visibility
measurement. A visibility of only ≈ 42 % for visualization purposes. b)
Common mode rejection. Measurement of the laser relaxation oscillation
peak for the sum and difference measurement of the local oscillator (5 mW
per detector). This equals the suppression of classical laser noise by the bal-
anced detection scheme. c) Noise power spectrum for shot noise and dark
noise measurements. Flat and equal shot noise limited detection for both de-
tectors above membrane resonant frequencies of ≥ 500 kHz (see main text
for details).
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C AV I T Y L O C K I N G S C H E M E S

From the beginning of the thesis, we assumed to have stable lasers
and optical cavities, e.g. fixed cavity resonance frequencies. We also
studied the behavior of the linearized optomechanical interaction for
different and stable detunings of the laser with respect to the optome-
chanical cavity and even when speaking of our homodyne detection
scheme, we assumed to be able to have a fixed relative phase between
the signal and the local oscillator.

Real systems in the laboratory, however, are subject to a manifold of
external noise sources from the vibrations of the ground floor, acous-
tics, electronic noise, thermal drifts and many more. Therefore it is
highly nontrivial to have stable references or stable relative phases of
different beams on the optical table.

In this chapter we will provide a short explanation on how feed-
back control systems are appropriate to measure the deviations from
a chosen setpoint and how to adequately manipulate this signal to
create a so called error signal, which can be fed back into an actuator
to stabilize the system around its setpoint. Here, I use and recom-
mend the books by Saulson [111] and Abramovici [17], since both are
on point fast track guides for scientists, not familiar with feedback
control theory and offer applications in optics.

The most important locking schemes used within this experiment
are described, focusing on the lock of the filter cavity, the optome-
chanical cavity and the two homodyne detectors.

7.1 feedback control systems

Feedback control systems are used to stabilize a parameter to a
known and desired reference. This happens by means of a feedback
control loop (FCL), as depicted in figure 7.1. A description of the main
components of a FCL and its operation is following. We will make
use of the notations used in [17].

• The plant is the system whose output parameter we want to
control. Initially, the output is the sum of its free-running output
and any disturbances coupling into the signal, e.g. drifts and
fluctuations.

• The sensor is used to detect the plant’s output, usually by gen-
erating some sort of voltage. Note, that it is desirable that the
sensor produces a signal linear to the plant.
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• The detected signal is inverted and compared to a known ref-
erence value. This produces the so called error signal, which
is a measure of the deviations of the system that need to be
corrected.

• The controller is used to manipulate the error signal by appro-
priately filtering and amplifying the error signal.

• The actuator is the component that can effectively act onto the
plant and influence its output.

Figure 7.1: Feedback control systems. Basic schematic to control the output
of the apparatus of interest, the plant, that is suffering from disturbances.
A part of its output is detected by the sensor, which compares the inverted
output with the desired reference, yielding the error signal. The controller is
appropriately manipulating the error signal, such that it can be fed into an
actuator that is able to correctly influence the plant’s output. A typical plant
is a cavity whose output is monitored by a photodetector. The error signal
is shaped within a PID controller and fed into a piezo that can actuate the
length and therefore the frequency of the cavity with respect to the input
laser frequency.

If the signal of the sensor is very close to the reference, the error
signal diminishes and the plant’s output is close to the desired ref-
erence. However, if the plant’s output is disturbed, an error signal
proportional but inverted with respect to the disturbance is produced
and used to bring the plants output closer to the reference. Note that
we simplified the full system by leaving out additional noise sources
that can enter at each of the other components. We also neglected
the fact that the inputs and outputs of each component might have
different unit, which needs to be taken into account when setting up
a control loop.

The theory on feedback control systems is usually treated by means
of Laplace transformations of the transfer functions of each compo-
nent of the loop, whereby the involved equations are transformed to
simple algebraic equations. We denote the transfer functions of the
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components as B(s), G(s), A(s), P(s), in accordance with figure 7.1,
and the complex Laplace coordinate s = σ + iω, while ω = 2πω is
the angular frequency. The transfer functions provide the output sig-
nal (voltage) for a given input signal and are therefore denoting the
response of each component for a signal at a given frequency.

The function

L(s) = B(s)G(s)A(s)P(s) (7.1)

is the so called open loop transfer function. It is the answer to the
question, what the full loop will do to a given disturbance, and it
needs to be shaped in a desirable way, e.g. amplified to increase the
error signal within some bandwidth and low pass filtered to cut off
high frequency contribution that would for instance excite resonances
of the actuator and therefore introduce instabilities of the loop.

It can be shown [17] that the ratio of the sensors output voltage
and the reference voltage, the so called closed loop transfer function,
is given by

vsensor(s)
vreference(s)

=
L(s)

1 + L(s)
. (7.2)

In case of high open loop gains L(s) � 1, the closed loop transfer
function becomes unity. The intuitive picture is that the controlled
output of the plant is following the given reference or, in other words,
the plant output is locked to a stable reference signal.

7.2 basics on the stabilization of optical experiments

In optical experiments, such as interferometers or high finesse res-
onators, we are mainly interested in controlling the length and there-
fore the resonance frequency with respect to the input laser frequency,
or vice versa. These are our plants which are subject to external dis-
turbances, such as thermal drifts in the laboratory, acoustic noise or
vibrations of the surroundings. Photodiodes serve as our sensors and
read out the light returning from the cavities and convert the signal
into a voltage. The error signal is further shaped by means of an
FPGA based PID box and its amplified output voltage is then sent to
the actuator, usually divided into: a) Peltier elements on laser crystals
or cavity spacers to account for slow but large drifts due to tempera-
ture drifts in the laboratory on the order of ≤ 5 Hz b) Piezo-electric
transducers on mirror mounts to change the path, cavity and/or laser
crystal length with a large bandwidth ≈ 10 kHz.

The missing ingredient is the generation of an appropriate error
signal, which should be linear to deviations from the reference, e.g.
linear to an unintentional detuning between the light frequency and
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Figure 7.2: Phase in reflection of a cavity. Phase shift φ(∆) as function of
detuning with respect to the cavity resonance, equation 7.3. The detuning
∆ is given in units of cavity line widths κ. The phase has a zero-crossing
and sign flip at the cavity resonance and produces a linear signal for small
detuning. It fulfills all necessary features that are needed for an error sig-
nal. Note, that a second beam far off from resonance is needed as a stable
reference. Stable means in this context, that it does not change its phase
for a small detuning, such that it can be used to measure the phase of the
resonant beam of interest.

the cavity resonance and also featuring a sign flip to discriminate be-
tween lower or higher frequencies (lengths). Note, that the resonance
itself is symmetric and simply measuring the reflected power will not
provide any information about a positive or negative detuning.

We want to consider the phase of the light reflected off an optical
cavity, which is given by the argument of the optical transfer function
(equation 2.51)

φ(∆) = arctan
(<(χopt)

=(χopt)

)
≈ arctan(2∆/κ) ≈ 2∆/κ− 1

3
(2∆/κ)3 + · · · ,

(7.3)

where we assumed only small losses within the cavity κex ≈ κ and
used the Taylor series of the arctan for small detunings.

Therefore, the phase of the light reflected off a cavity accumulates
a phase linear to the detuning ∆ and with a sign flip around the
resonance ∆ = 0, which is fulfilling our requirements for an error
signal.

Largely detuned light modes, e.g. light modes far off from the cav-
ity resonance, are insensitive to small detunings, since the arctan flat-
tens for large positive (negative) values at +π/2 (−π/2), see figure
7.2.

To be able to measure the phase φ(∆), a stable reference is needed.
However, we just found that modes far off from resonance are insen-
sitive and therefore appropriate to be used as such a reference.



7.3 polarization lock of the filter cavity 65

The following sections describe the different locking schemes,
mainly distinguishable by the source of the stable reference for the
generation of the error signal.

7.3 polarization lock of the filter cavity

Figure 7.3: Polarization lock setup used to lock the filtering cavity. Con-
sider operation of the filter cavity in h-polarization. The polarization of the
incoming beam is slightly wrong, such that a residual amount of light in
v-polarization (far from resonance) is reflected. The dispersion-shaped error
signal (phase of the h-pol. light in reflection of the cavity) can be measured
with respect to the light in h-polarization. This is done by splitting the po-
larizations at a polarizing beam splitter and taking the difference of the in-
dividual photocurrents. The error signal is filtered and amplified and then
fed back onto the piezo which can move the end-mirror of the cavity and
stabilize its resonance onto the frequency of the incoming laser light.

The filtering cavity has two modes of operation, the low and high
finesse modes as described in section 5.3. The operation mode is cho-
sen by the polarization of the incoming light, let’s say horizontally
polarized (h-pol). The cavity itself is highly birefringent, such that
the vertically polarized (v-pol) light is off-resonant and can be used
as a phase reference for the generation of an error signal as described
by equation 7.3, to follow the laser frequency.

This method goes back to the work of Hänsch and Couillaud [65]
who showed that by using this method a dispersion-shaped error
signal can be generated with a zero-crossing and sign flip around the
resonance.

Such an error signal can be retrieved by splitting the horizontally
and vertically polarized contributions of the reflected light at a polar-
izing beam splitter and the detection of each polarization by means
of a photodiode. The full setup is depicted in figure 7.3 and figure 7.4
shows a a measurement of the difference and sum currents for a scan
of the cavity length by one free spectral range. While the sum current
features the total power reflected off the cavity, the difference current
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Figure 7.4: Polarization lock of the filter cavity. Opaque traces depict
scanned data and light traces feature the running control loop. The error
signal (blue) features a steep linear slope with a zero-crossing around the
resonance (green). Turning the stabilization on will keep the error signal at
zero and the power level on the maximum of the resonance (dashed grey
box). Note, that our PID electronics working point has an offset of 1.25 V,
which is our imaginary zero level.

features the dispersion-shaped error signal, which can be used to sta-
bilize the filter cavity by means of a feedback control loop. The error
signal is manipulated by a PID controller to appropriately shape the
open loop transfer function and find suitable trigger conditions for
the cavity mode we want to lock on. The output of the PID is ampli-
fied and then fed back into the piezo, which is controlling the length
of the filter cavity, such that it follows the laser frequency.

Choosing the correct setpoint of the error signal and therefore
matching the zero-crossing of the error signal with the cavity reso-
nance is crucial, such that residual frequency noise is not converted
into amplitude noise in transmission of the filtering cavity, as has
been discussed in chapter 5.2. After successfully locking the filter
cavity to the free-running laser, the filter cavity can passively filter
classical laser noise of the laser due to its finite line width.

The major upsides of this locking scheme is that it does not rely
on additional modulations of the light field and it is easy and cheap
to design and build. However, the size and signal to noise ratio de-
pends on the relative retardation (path length difference) between the
different polarizations, which is given by the birefringence of the cav-
ity and is not readily tunable. Also, the locking point itself is affected
by low frequency classical laser noise, that is, the width of the error
signal trace in 7.4.
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Figure 7.5: Polarization lock setup. b) Experimental scheme of the cooling
beam filter cavity. The incoming light is strongly modulated with roughly
one free spectral range of the optomechanical cavity (≈ 29 GHz) such that
one of the first order sidebands need to be filtered from the carrier and sev-
eral higher order sidebands, see chapter 5.4. A volume holographic grating
(VHG) will do a pre-filtering by displacing the individual beams. The lock
itself relies on a slight misalignment of the incoming beam, such that the
TEM00 (red) and TEM10 (blue) modes hit a split diode (compare with a)).
While the TEM00 is symmetric, the TEM10 features a zero-crossing and sign
flip, such that taking the difference current will yield an appropriate error
signal that can be fed into the piezo actuating the cavity length.

7.4 tilt lock of the cooling beam filter cavity

A very similar error signal can be generated by using a higher order
cavity mode as a stable phase reference [120]. This is possible because
of the different Gouy phase of different Hermite–Gaussian modes.

We consider a resonant TEM00 mode and an off-resonant TEM10

mode due to a slightly misaligned incoming laser beam. Note, that
the TEM00 has a symmetric electric field amplitude and a maximum
at its center, while the amplitude of the TEM10 mode has a zero-
crossing and a sign flip at the very same position. This is illustrated
in figure 7.5 a) and the setup is depicted in figure 7.5 b).

The detection of the sum of both fields by means of a segmented
photodiode yields the total reflected power of the light in case of
the sum of the photocurrents, and a suitable error signal in case of
the difference current. A measurement of these signals for the lock
of the filter cavity used to filter and create the cooling beam for our
experiment (see chapter 5.4) is depicted in figure 7.6. Note, that the
abundance of modes comes from the fact that we strongly modulate
the laser to create sidebands at roughly one free spectral range of
the optomechanical cavity, but the strength of the modulation also
creates higher order sidebands and the purpose of this filter cavity is
to filter a single first order sideband by stabilizing the cavity to it and
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Figure 7.6: Tilt lock of the cooling beam filter cavity. The purpose of this
filter cavity is to transmit the first sideband at the next free spectral range
of the optomechanical cavity. The deep modulation of the carrier will create
higher order sidebands, which explains the abundance of resonances and
error signals. The carrier and the first sideband are marked by dashed grey
boxes. Note, that the tilt lock alignment is optimized to feature a proper
error signal for the sideband we are interested in. Opaque traces depict
scanned data and light traces feature the running control loop. The error
signal (blue) features a steep linear slope with a zero-crossing around the
resonance (green). Turning the stabilization on will keep the error signal at
zero and the power level on the maximum of the resonance. Note, that our
PID electronics working point has an offset of 1.25 V, which is our imaginary
zero level.

filtering all other (off-resonant) modes.

This so called tilt locking scheme is also easy to implement and
does not rely on modulation sidebands as a reference. But it is
strongly susceptible to changes of the alignment and beam pointing.

7.5 pound-drever-hall lock of the optomechanical

cavity

The locking scheme used for locking the laser to our optomechanical
cavity is the so called Pound-Drever-Hall lock [49], which is described
in detail by E. Black in [31, 32]. The basic idea is to use a known phase
modulation on the light field as phase reference.

An intuitive picture of the generation of the error signal is obtained
by recalling the sideband picture of a phase modulation, figure 5.2 b)
in chapter 5.2. After a quarter oscillation period of the modulation
frequency, both sidebands will be collinear with the carrier along the
real axis, but feature opposite signs. For a carrier ecaxtly on cavity
resonance, bot sidebands will have the same magnitude and the in-
terference of all beams will cancel out, providing a zero-crossing at
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Figure 7.7: Pound-Drever-Hall lock of the optomechanical cavity. Opaque
traces depict scanned data and light traces feature the running control loop.
The modulation sideband frequencies in the error and power signals are
depicted by grey arrows. The error signal (blue) features a steep linear slope
with a zero-crossing around the resonance (green). Turning the stabilization
on will keep the error signal at zero and the power level on the maximum of
the resonance (note, that the signal of the PDH detector is inverted). Note,
that our PID electronics working point has an offset of 1.25 V, which is our
imaginary zero level.

resonance. A slight detuning in any direction will produce a signal
linear in detuning, but with different signs and therefore a signal that
is eligible for use as an error signal.

The technical setup is shown in figure 7.8 and consists of an elec-
tro optical phase modulator (EOM), a photodiode measuring the
reflected carrier and both sidebands and generating a high frequency
signal and a mixer, where the diode signal is mixed with the modula-
tion frequency with a correct phase setting, basically filtering the fre-
quency components around the modulation frequency and swapping
it to low sideband frequencies around DC, which are appropriate
to drive a piezo. This signal can be filtered by PID electronics and
needs to be low pass filtered to remove high frequency components
from the mixing process. Afterwards the signal can be fed back into
the laser, forcing the laser beam to resonate with the optomechanical
cavity. Note, that the very same signal can be used to stabilize the
cavity length to the laser frequency. However, for stability reasons,
we decided to remove all moving parts from the optomechanical
cavity which needs to be placed within a cryostat that can introduce
mechanical instabilities. Therefore, we use the laser piezo for a fast
control of the laser frequency onto the optomechanical cavity.

Figure 7.7 features measured power and error signals for the
Pound-Drever-Hall technique. This technique relies on modulation
sidebands (in our case at ±ωmod/2π = ±20 MHz, which is one or-
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Figure 7.8: Pound-Drever-Hall locking scheme. The incoming light is modu-
lated by the PDH modulation frequency (in our case 20 MHz), while the car-
rier enters the optomechanical cavity (OMC) on resonance, the modulation
sidebands are far outside the cavity line width and reflected. A frequency
jitter of the light or of the cavity length will detune the input mode from
the cavity resonance or vice versa. Carrier light is reflected and the inter-
ference of it with the modulation sidebands produce the PDH error signal
as described in the main text. After appropriately filtering the signal, it is
used as a feedback signal onto the laser piezo, which then is stabilized to
the optomechanical cavity length. The very same setup is also realized for
the cooling beam, such that signal or cooing beam can be used to stabilize
the laser, depending on the measurements one wants to take. Note, that the
filter cavity is in between laser and the OMC and its length is stabilized to
the laser frequency.

der of magnitude larger than the optomechanical cavity line width)
and it gives us the possibility to adjust the demodulation phase and
modulation depths to optimize the signal to noise ratio of the error
signal. The error signal can also be used to determine the cavity line
width, because the known modulation frequency can be used as a
calibration for the x-axis of the traces shown in figure 7.7. Moreover,
the generated signal can be very sensitive and indeed, oftentimes it
is favorable to use the error signal for the optimization of the mode
matching instead of the direct power of the reflected light. Ultimately,
the PDH modulation is also used for the stabilization of the am-
plitude quadrature measurement, as we will be shown in the next
section.

7.6 dc subtraction lock of the homodyne detectors

We conclude with the stabilization of the homodyne detectors. The
homodyne detectors themselves rely on the interference of the signal
and local oscillator fields. Scanning the phase of the local oscillator
by means of a piezo leads to a sinusoidal swapping of the power be-
tween the two photodiodes. This interference fringe can be measured
by splitting the photocurrent of the detectors by means of a slow
DC channel and a fast AC channel. While the latter is used for the
shot noise limited measurements of the mechanics, the DC channel
(subtraction of the DC signals of the individual detectors) features
the fringe. Note, that we intend to apply a dual-rail detection scheme
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to simultaneously measure the phase and amplitude quadrature.

Figure 7.9: Phase homodyne stabilization. Depicted in opaque is the DC sub-
traction of the individual detectors. The zero-crossing of the fringe coincides
with the phase quadrature (indicated by grey arrows), such that the signal
can be readily fed back into the laser piezo setting the phase of the local os-
cillator. For comparison, the locked time signal of phase homodyne in light
blue.

The phase quadrature is coincident with the zero-crossing of the
interference fringe, see figure 7.9. Therefore, for small deviations
around that position, the fringe singal can be approximated by a lin-
ear slope with sign flip around the phase quadrature which coincides
with the zero-crossing. For that reason, this signal can be directly fed
back to the piezo, thereby setting the phase of the local oscillator to
stabilize the detector onto the phase quadrature.

The amplitude quadrature coincides with the maximum (or mini-
mum) of the DC subtraction channels. To first order, there is no signal
produced at all at these positions of the fringe. However, the signal
beam also contains the Pound-Drever-Hall sideband, used for lock-
ing the optomechanical cavity in the first place. Therefore, the phase
signal we are interested in is also contained around the sidebands
at the modulation frequency, which are detected by the AC channels
of the homodyne detectors. Hence, we split a part of the AC signal
and demodulate it with the PDH frequency. This way, we can tune
the modulation phase and generate an interference fringe that is ap-
propriately shifted with respect to the DC subtracted fringe. Choos-
ing the correct demodulation phase will create an interference signal
with zero-crossing coinciding with the maximum (or minimum) of
the DC subtracted light. This signal can be fed back to the piezo set-
ting the local oscillator phase to hold the homodyne detector at the
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Figure 7.10: Amplitude homodyne stabilization. Dark orange features the
direct subtraction of the individual detectors, while the amplitude quadra-
ture coincides with the maxima of this trace (grey arrows). Mixing the AC
subtraction of the detectors with the PDH modulation frequency and tun-
ing the phase correctly, can yield the very same fringe shifted appropriately
such that its zero-crossing coincides with the maxima of the DC subtraction
(grey arrows). Using the error signal to lock around the zero-crossing (light
blue trace) will keep the direct subtraction onto its amplitude quadrature
(light orange curve).

amplitude quadrature at all times. Both signals are depicted in figure
7.10 to further illustrate the procedure.



Part IV

T H E O P T O M E C H A N I C A L S Y S T E M

The field of cavity quantum optomechanics features a rich
number of mechanical oscillators, spanning from kg mir-
rors at the advanced LIGO detectors [87], over µm-scale
toroid microcavities on a chip [80, 123], to photonic crystal
nano beams [41], photonic crystal “zipper” cavities [40],
and cold atoms coupled to optical cavities [124].

In this work we focus on 100 kHz to several MHz microme-
chanical silicon nitride (SiN) membrane oscillators, which
correspond to side lengths between 200 µm and 1.5 mm.
Jack Harris discovered the exceptional mechanical and
optical properties of commercially available1 SiN mem-
branes in 2008 [153] and moreover studied the optome-
chanical coupling of a membrane inside a Fabry-Pérot
cavity [74].

This part contains the centerpiece of the experiment in this
thesis: The micromechanical oscillator and the optome-
chanical cavity.

Chapter 8 starts by discussing the fabrication of SiN mem-
branes and continues with their optical and mechanical
properties. A description of the multimode nature of thin
films follows, with special focus on the concept of effec-
tive mass. We continue with introducing the mechanical
Q factor, which is the figure of merit for the mechani-
cal performance of mechanical oscillators and enters the
cooperativity via the mechanical dissipation rate γ. We
continue with measurements of Q factors and discussions
on the different loss channels limiting the mechanical per-
formance. I present high Q factors of above 5× 106 for a
number of mechanical modes covering a broad frequency
range by means of a phononic bandgap. The highest
measured quality factor in our laboratories is as high as
Q = 34.2× 106. Such Q factors are necessary to reach the
strong cooperativity regime and these kind of phononic
bandgap membranes are later used in correlation mea-
surements presented in chapter 11

The chapter ends with a brief look at a more exotic ma-
terial (within the field of optomechanics), which in prin-
ciple offers the possibility for the fabrication of stacked
membranes onto a Bragg mirror. Such a system can yield
a dramatic increase of the effective optomechanical cou-
pling strength.
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Chapter 9 introduces the optomechanical system itself: A
thin SiN membrane incorporated into a high finesse Fabry-
Pérot cavity, i.e. the membrane in the middle cavity. The
optomechanical coupling strength for that system is de-
scribed for two different experimental realizations: First,
the membrane being placed in the center the cavity. Sec-
ond, the membrane being directly clamped on a flat end-
mirror. The physical and experimental advantages of the
latter configuration are discussed as well as its experimen-
tal realization. The cryogenic system is introduced, which
is necessary to cool the thermal bath of the membrane as
the average phonon number directly enters the coopera-
tivity. A detailed presentation and discussion of all mea-
surements for the characterization of the parameters that
enter the cooperativity is given: The optomechanical cou-
pling strength, the cavity line width, the mechanical deco-
herence as well as the mean number of photons. I show
that the experiment is operating in the strong cooperative
regime; the necessary condition for generating optome-
chanical entanglement in the presented setup.

1 Commercially available SiN membranes from Norcada Inc., www.norcada.com.

www.norcada.com
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M I C R O M E C H A N I C A L M E M B R A N E S

The goal of this chapter is to introduce silicon nitride micromechan-
ical membranes and motivate why they are good candidates for the
generation of multimode optomechanical entanglement.

I will first describe the material properties of silicon nitride and
then combine these parameters with a model of a thin film to cal-
culate the mechanical resonances of SiN membranes and compare
them with experimental measurements. Afterwards, I continue with
the optical properties of thin SiN membranes, which is the motiva-
tion to place them inside a Fabry-Pérot cavity instead of using them
in an end-mirror configuration. The concept of effective mass follows,
which describes the interaction of different mechanical modes with
a Gaussian cavity mode. This concept is important as it replaces the
physical mass in the optomechanical coupling strength.

The second part of this chapter is dedicated to the description of
mechanical decoherence and losses, as well as the mechanical qual-
ity factor. The so called Q factor is the figure of merit to determine
the mechanical performance of an oscillator. Q measurements for a
large number of different membranes are presented and discussed,
slowly converging to the optimal choice for the presented experi-
ment: a trade-off between largest Q factors and reducing the num-
ber of mechanical modes that significantly interact with the cavity
field. Phononic bandgap shields are introduced next, which provide
large Q factors for a large amount of mechanical modes over a wide
spectral range. The latter is necessary to bring the multimode optome-
chanical system into the strong cooperativity regime, a necessary con-
dition for entanglement measurements as presented in chapters 10

and 11.
This chapter closes with a brief glance at InGaP membranes, which

I had the chance to characterize and which in principle offer the possi-
bility to fabricate a stack of membranes, thereby effectively increasing
the coupling strength.

8.1 properties and fabrication of high stress silicon

nitride films

Over the course of this thesis the micromechanical oscillators of
choice will be high stress silicon nitride (SiN) membranes, with vary-
ing thicknesses between 30 and 50 nm and side lengths from 250 to
500 µm. They are typically suspended in 200 µm thick and 5 to 10 mm
wide silicon (Si) frames, as depicted in figure 8.1.

77
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The technique to deposit thin SiN films on silicon wafers is called
low pressure chemical vapour deposition (LPCVD) [77]. It is conducted
at low pressures of approximately 375 mbar and high temperatures
of around 820 ◦C, which features slow deposition rates and therefore
uniform films. We are mainly interested in high stress (> 1 GPa) me-
chanical oscillators, which typically display high frequencies and low
mechanical dissipation. High stress builds up when cooling the chip
after deposition due to a mismatch of the thermal expansion coeffi-
cient of the Si frame and SiN in its stoichiometric composition (Si3N4).

Afterwards, a photoresist mask is applied to the backside of the
chip and the desired shape of the membrane is etched through the
resist via electron beam lithography (e-beam). Potassium hydroxide
(KOH) is used to etch through the remaining Si layer to release the
freestanding SiN window (compare with figure 8.1, bottom left).

The mechanical, optical and thermal parameters used over the
course of this chapter are collected in table 8.1.

Figure 8.1: Schematic and photography of a SiN membrane. A top view
and view through a cut at the middle of the membrane is depicted on
the left side. Typical silicon frame dimensions {Lx, Ly, Lth} are around
{5 mm, 5 mm, 200 µm}, while we focus on SiN windows with dimensions
{lx, ly, lth} of up to {500 µm, 500 µm, 50 nm}. The right side features a pho-
tography of a commercially available SiN membrane from Norcada Inc. [5].

8.2 optical properties of a thin film

In addition to the fabrication process and mechanical properties of
SiN membranes, we will now focus on the optical properties of thin
SiN films to understand why they are suitable and how they can be
incorporated into optomechanical experiments. Therefore, the goal
of this section is to study the reflection, transmission, absorption and
the refractive index of a thin SiN membrane.

We will make use of the transfer matrix approach [48] for a two
dimensional thin film (lx, ly � λ, lz � λ), which links the electromag-
netic field amplitudes E(0) and H(0) at the front boundary of the
membrane with the wavelength dependent refractive index n(λ), to
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material property value for sin

Young’s modulus, E (GPa) 200− 400

Poisson ratio, ρ 0.27

Tensile stress, T (MPa) 800− 1200

Densitiy, ρ (103 kg/m3) 2.7

Index of refraction, n 2.011 at 1064 nm

1.996 at 1550 nm

Absorption coefficient, k 1.5× 10−4

Thermal expansion coefficient, α (10−6 m/K) 2.3

Heat capacity per unit volume, Cv (J/m3K) 710

Coeff. of thermal diffusion, D (10−3 Wm2/J) 9.29

Table 8.1: Material properties of SiN. Values extracted from [5, 56, 77, 90,
108, 125, 133, 141].

Figure 8.2: Reflection and transmission at a thin film. Side view of the mem-
brane with thickness lz and index of refraction n(λ) surrounded by air/vac-
uum. The transfer matrix M links the incident (Ei) and reflected (Er) field
amplitudes at position 0 to the transmitted (Et) field amplitude after passing
the membrane via equation 8.1.

the transmitted fields E(lz) and H(lz) at position lz, the rear boundary,
via (

E(lz)

H(lz)

)
= M

(
E(0)

H(0)

)
, (8.1)

with the transfer matrix

M =

(
cos ∆φ sin ∆φ/k

−k sin ∆φ cos ∆φ

)
. (8.2)

Here, ∆φ = knlz denotes the phase difference due to the SiN film and
k = 2π/λ is the wave vector of the laser light. The refractive index
for wavelengths used in this work is n ≈ 2, see references [90, 108]
and table 8.1.
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From equation 8.1 one can calculate the fraction of the incident am-
plitude field that is reflected off (transmitted through) the membrane,
defined by the equation r = Er/Ei (t = Et/Ei) to be [119]

r =
(1/n− n) sin ∆φ

(n + 1/n) sin ∆φ− 2i cos ∆φ
, (8.3)

t =
−2in

(n + 1/n) sin ∆φ− 2i cos ∆φ
. (8.4)

Figure 8.3: (Top) Power reflectivity as a function of membrane thickness for
1064 nm (Blue) and 1550 nm (Magenta). The maximum for each wavelength
is located at λ/8 and reaches ≈ 0.37 = 37 %. Typical membranes used in
this work are typically 40 nm thick (Green dotted line) with power reflec-
tivities R1064 = 10 % and R1550 = 5 %. (Bottom) R in dependence of laser
wavelength for a 40 nm membrane.

In the absence of absorption, the power reflection R = |r|2 and
transmission T = |t|2 coefficients fulfill the relation R + T = 1. The
power reflectivity R is depicted in figure 8.3 as a function of mem-
brane thickness lz (Top) and laser wavelength λ (Bottom). For typ-
ically used SiN membranes of thickness lz ≈ 40 nm the resulting
power reflectivity at 1064 nm wavelength is only around R1064 = 10 %.

Because of their low reflectivities, SiN membranes are not suitable
for use as an end mirror in a two-mirror optomechanical cavity. As
we will see when we study the membrane in the middle configura-
tion, strong coupling can be achieved when placing the membrane
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inside a high finesse Fabry-Pérot cavity. This is indeed possible with-
out spoiling the cavity finesse because of the low absorption rates [74,
144].

However, real membranes are never perfectly reflective or transmis-
sive, i.e. some part of the light traveling through the substrate will be
absorbed. An elegant way to consider absorption in the model is via
the concept of a complex index of refraction n→ n + i · k, in which n
still indicates the phase velocity, and k, the absorption coefficient, indi-
cates the amount of attenuation while traveling through the medium.
The absorption of SiN is found to be very small, calculations in [56]
indicate k = 1.5× 10−4 and the absorption has been measured to be
6.9 cm−1 at 1064 nm in [125].

8.3 transversal mechanical modes of a 2d membrane

In this section we will consider a thin membrane in the x-y plane and
the aim is to study its transversal motion u(x, y, t). This motion is
described by an elastic wave equation [84]

ρ
∂2u
∂t2 +

El2
z

12(1− σ2)
∆2u = 0. (8.5)

Here, ∆ denotes the (two dimensional) Laplace operator, E, the
Young’s modulus, lz is the thickness of the membrane and ρ is
the Poisson ratio of the membrane. Considering the support of the
membrane within its frame as the boundary condition (the frame is
fixed), a set of solutions for a rectangular membrane can be found
[84] as

um,n(x, y, t) = am,n cos(ωm,nt) sin(mπx/lx) sin(mπy/ly), (8.6)

ωm,n = π

√√√√T
ρ

(
m2

l2
x
+

n2

l2
y

)
, (8.7)

with T as the tensile stress of the membrane, n and m as the so called
mode numbers, the solutions um,n(x, y, t) are the mode shape func-
tions that are normalized to the maximum displacement and ωm,n

are the resonant (characteristic) frequencies of the membrane and the
first mechanical resonances are depicted in figure 8.5. Note that in
case of a square membrane ωi,j = ωj,i are degenerate. Real mem-
branes, however, are not perfectly symmetric thus these modes be-
come quasi-degenerate. A comparison of a measured spectrum of a
membrane and a fit to the theoretical model to this measurement is
depicted in figure 8.4.
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Figure 8.4: Comparison of a measured spectrum with the theoretical model
of a square membrane. The noise power spectrum (NPS) of a Norcada Inc.
membrane is measured by homodyne detection and is shown in green. Ver-
tical grey lines show the resonance frequencies of the membrane fitted to
the spectrum, as predicted by equation 8.7. The measured fundamental
frequency is ω1,1 = 2π × 635.7 kHz, the fitted fundamental resonance is
= 2π × 635.6 kHz and obtained by fitting the tensile stress T = 540 MPa.
The dimension mismatch between lx = 495 µm and ly = 499 µm is fitted to
match the observed non-degeneracy of the (1, 2) and (2, 1) mode and the
material parameters are as in table 8.1. All modes visible in the measure-
ment, including the quasi degenerate modes, are well predicted by theory.
The first eleven modes are marked by arrows. Note that some membrane
peaks are not visible in the spectrum, which will be explained in the next
section, when we investigate the effective mass of the membrane.

8.4 concept of modal and effective mass

In the next chapter we want to study more deeply the equation of
motion of a SiN membrane, therefore we will describe the membrane
as a harmonic oscillator. Before doing that we need to carefully study
the different concepts of mass.

Let us assume, for the moment, that the membrane moves uni-
formly in the perpendicular direction of its surface. In that case the
mode function would simplify to u(x, y) = 1 and the mass of the
membrane could be determined by integrating the mass density ρ

over the volume of the membrane; this is the so called physical mass:

mphy = ρ
∫ lx

0

∫ ly

0

∫ lz

0
dx dy dz (1)2 = ρ× lxlylz. (8.8)
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Figure 8.5: Contour plots of the mode shape functions um,n(x, y) (Equation
8.6) of a rectangular membrane, omitting their time dependencies. The (1, 1)
mode is the so called fundamental (drum head) mode of the membrane and
features the lowest frequency as determined by equation 8.7. Higher order
modes with equal mode numbers m = n have frequencies ωm,m = m×ω1,1.
Also, modes with equal odd mode numbers (E.g. (1, 1) and (3, 3)) have anti-
nodes in the center of the membrane, whereas modes with equal and even
mode numbers (E.g. (2, 2) and (4, 4))

However, as has been shown in the last section, the membrane has
numerous different modes um,n(x, y) and for each of those, one has to
calculate what part of the membrane is actually moving. This leads
to the modal mass

mm,n = ρ
∫ lx

0

∫ ly

0

∫ lz

0
dx dy dz (um,n(x, y))2, (8.9)

for each respective mode (m, n), in which the information of the mov-
ing parts of the membrane is encoded into um,n(x, y). Note that the
mass density ρ and the integral over the thickness lz of the membrane
remain constant.

Furthermore, we have no direct access to measure the displacement
of the membrane directly. In fact, we solely rely on the optical read
out of the motion with laser light and detect the light on photodiodes
for further analysis. However, the light mode itself has a certain shape,
usually a Gaussian TEM00 mode, such that the optically probed dis-
placement [132]

D =
∫ lx

0

∫ ly

0

∫ lz

0
dx dy dz (um,n(x, y)× w(x, y)) (8.10)

is determined by the mechanical mode u(x, y) and the normalized op-
tical intensity distribution w(x, y). The displacement D is oftentimes
referred to as the overlap of the mechanical and the optical modes.
Besides the read-out of the membrane motion, the overlap also mod-
ifies the optomechanical interaction between the membrane motion
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and the cavity mode, see chapter 9.3.2. This modification is usually
built in as a modification of the modal mass of the membrane and is
called the effective mass [105]

meff =
mm,n

D2 . (8.11)

As can be seen from this equation, a probing beam exactly matching
the mechanical mode shape will lead to D = 1 and minimum effective
mass meff = mm,n of the (m, n) mode. In the remainder of this thesis
the index effective will be dropped most of the time and context will
ensure what definition needs to be considered at a given moment.

Any mode mismatch will lead to D < 1 and therefore the respec-
tive mode will appear to be heavier meff > mm,n. In the extreme case
of the optical beam averaging over the mechanical mode shape yield-
ing zero overlap D → 0 (e.g. figure 8.6, plot b) and d)), the respective
mode will appear to have an infinite effective mass meff → ∞. This
effectively means that the optomechanical coupling is weak (i.e. van-
ishes), as the light is not sensitive to the motion of the oscillator. Sev-
eral examples for mechanical mode functions and a Gaussian optical
mode are given in figure 8.6.

8.5 equation of motion of a driven oscillator

At this point we want to look at the equation of motion of a driven
oscillator. This will lead to the mechanical susceptibility or transfer
function of a mechanical oscillator, which is standard approach to
clearly study the features of a resonator. It is also the foundation of
the following sections and chapters dealing with dissipation, thermal
noise and mechanical quality factors.

Each degree of freedom, e.g. each mechanical mode of the mem-
brane, can be modeled by a harmonic oscillator driven by some exter-
nal force Fext via [47]

mẍ(t) + mω2
mx(t) = Fext(t), (8.12)

where ωm = 2π fm is the angular resonance frequency and m is the
effective mass of a given mechanical mode of the membrane. At this
point, we will consider a single mechanical mode. The extension of
the following discussion to a multimode system is trivial. In reality,
however, every oscillator experiences some sort of damping. There-
fore we will expand equation 8.12 by two damping mechanisms. The
first is the velocity dependent viscous damping at a rate γ, which
describes the damping due to residual gas. It will be briefly intro-
duced in section 2.1. The second is the so called structural damping
term, which can be seen as an expansion of Hooke’s law. It general-
izes the spring constant k = mω2

m by adding an imaginary phase lag
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Figure 8.6: Depiction of mechanical mode shape functions (green) and opti-
cal read-out (purple) to illustrate the concept of overlap functions and the
effective mass of a mechanical mode. The optical read-out is the TEM00 cav-
ity mode with a beam waist radius of 75 µm. Additionally, each subplot
features one of the first four mechanical modes with equal mode numbers
m = n for a 500 µm SiN membrane. Here we look at cuts along the x-axis
of the membrane. All functions are depicted in normalized units (normal-
ized with respect to its respective maximum). If the optical and mechanical
modes overlap perfectly, there is no modification of the modal mass of the
specific mechanical mode. Subplots a) and c) show an overlap of roughly
30 %. Calculating the overlap integral (equation 8.10) for b) and d) lead to
zero overlap and therefore infinite effective mass. In the experiment, how-
ever, the alignment of the optical beam with respect to the membrane is not
perfect, such that there is a residual overlap.

φ to k(1 + iφ). The full equation of motion of a damped harmonic
oscillator under the influence of an external force would then be

mẍ(t) + γẋ(t) + k(1 + iφ)x(t) = Fext(t). (8.13)

This equation can be solved in the Fourier space by means of the
Fourier transformations

x̃(ω) =
∫ ∞

−∞
dt x(t)e−iωt, (8.14)

F̃ext(ω) =
∫ ∞

−∞
dt Fext(t)e−iωt, (8.15)

of the position x(t) and external force Fext(t), while ω = 2π f is the
angular frequency. Replacing all time dependent variables in the sec-
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ond order differential equation 8.13, leads to an algebraic equation
that is easily solvable. The solution is defined as the mechanical sus-
ceptibility, oftentimes referred to as transfer function:

χ(ω) =
x̃(ω)

F̃ext(ω)
=

1
m [(ω2

m −ω2) + i(γω/m + φω2
m)]

. (8.16)

The transfer function provides the frequency response of a mechan-
ical oscillator under the influence of an external force Fext. Whereas
the absolute value

|χ(ω)| = 1
m
√
(ω2

m −ω2)2 + (γω/m + φω2
m)

2
(8.17)

describes the actual displacement and the argument

arg χ(ω) = arctan
ω2

m −ω2

γω/m + φω2
m

(8.18)

specifies the phase lag between the applied force and the response
of the oscillator. The transfer function is depicted in figure 8.7. While
the external force is white, which is to say that it has a flat frequency
response, the transfer function ensures that the displacement shows
the typical behavior of a harmonic oscillator. That is, a sharp peak at
its resonance, a constant tracking at low frequencies and the 1/mω2

behavior at higher frequencies.
Transfer functions are useful for several reasons. Among other fea-

tures, they plainly picture the response of an oscillator below, around
and above its resonant frequency. Moreover, we will face transfer
functions at various points of the experimental setup. For instance
the transfer functions of optical filters such as the filter cavity (chap-
ter 5.3), detector responses (chapters 6 and 10.4), electronic low and
high pass filters, etc. These are all either useful tools to achieve cer-
tain goals, or they are experimental features that need to be carefully
taken into account to correctly characterize the setup.

8.6 fluctuations and dissipation

As a starting point to introduce important quantities such as thermal
noise spectral densities and mechanical quality factors, I like to in-
troduce the fluctuation-dissipation theorem (FDT). Many parts of this
section are derived from Peter Saulson’s textbook [111]. The FDT, in
its general form formulated by H. B. Callen [37], states that any dissi-
pation (loss) channel will generate fluctuations (noise) and vice versa.
It can be applied to any linear system in thermal equilibrium with
its environment. We will make use of the theorem to link mechani-
cal loss to thermal force and position noise. Quantitatively, the FDT
states that the single-sided thermal force noise spectral density Sth

F
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of the thermal force power spectrum 4kbT<(Z( f )) and the thermal
position noise spectral density Sth

x fulfill the following equations

Sth
F = 4kBT<(Z( f )), (8.19)

Sth
x =

kBT
π2 f 2<(Y( f )), (8.20)

while T is the bath temperature, kB denotes Boltzmann’s constant,
Y( f ) the admittance and

Z( f ) =
F( f )
ẋ( f )

=
F( f )

2πi f x( f )
(8.21)

is the impedance of the system. At this point we followed the notation
from [111] and replaced the angular frequency with the frequency
f = ω/2π in units of Hz: The quantity that is being measured in the
laboratory.

Note, that the less intuitive quantities admittance and impedance
can be expressed through the intuitive and accessible transfer func-
tion χ, see equation 8.16. Inserting χ in equation 8.20 allows us to
study the thermal noise power spectrum for different damping mech-
anisms. To investigate both damping mechanisms separately, we suc-
cessively set either γ or φ to zero, yielding

Svis
x ( f ) =

4kBTγ

mπ2 [( f 2
m − f 2)2 + f 2γ2]

, φ = 0, (8.22)

Sstr
x ( f ) =

4kBT f 2
mφ

m2π f [( f 2
m − f 2)2 + 4π2 f 4

mφ2]
, γ = 0. (8.23)

The thermal noise due to viscous damping is, for instance, the correct
model for the oscillator damped by air or residual gas in a vacuum
chamber. On the other side, the structural damping model is applied
when investigating the losses within the oscillator due to internal fric-
tion. The off-resonant behavior for the two loss channels is different
due to the additional f dependency in the denominator of structural
damping power spectrum. However, both models behave similarly
around the mechanical resonance. Note, increasing and decreasing
the losses will only affect the shape of the respective noise spectrum,
e.g. broadening and narrowing of the resonance peak (see inset of
figure 8.7). That is, a redistribution of the amount of energy stored in
the resonance compared to the noise level at all other frequencies. The
thermal energy, which is proportional to the area below the function
Sx( f ), is only affected by the temperature T of the bath.

8.7 the quality factor q

A very useful approach to characterize and compare losses of res-
onators, is by means of the quality factor Q. There are several defini-
tions that become approximately identical in the limit of large Q’s.
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Figure 8.7: Mechanical transfer function and the definition of the mechani-
cal quality factor. Depicted is the transfer function |χ( f )| of the fundamen-
tal mode of a SiN membrane with 10 pg effective mass, 1 MHz resonant
frequency and a quality factor of Q = 106. For frequencies far below the
resonance, the response becomes unity and the mechanics will follow the
external force. For frequencies far above the resonance, it features the typi-
cal ∼ 1/mω2 behavior. The resonance for high Q oscillators becomes a sharp
peak with an full width at half maximum that can become sub Hz. The two
definitions of the quality factor in frequency space can be easily illustrated
in this figure. The first is the ratio of the transfer function at the resonance
divided by its DC response, Q = |χ( fm)|/|χ(0)|. And the second is the ratio
of the resonant frequency and the full width at half maximum, Q = fm/∆ f .
The inset pictures a frequency range of ±1 kHz around the resonance fm for
varying quality factors from Q = 104 . . . 107. It can be seen that the width of
the resonance peak becomes narrower and therefore the amount of energy
stored withing the resonance scales with the quality factor of the membrane.

We will begin in the frequency domain, where the quality factor is
defined by

Q =
fm

∆ f
=
|χ( fm)|
|χ(0)| , (8.24)

with fm being the resonant frequency, ∆ f being the full width half
maximum (FWHM) of the resonance and χ being the transfer function.
This definition is depicted in 8.7. The ratio essentially indicates how
much energy the oscillator can store in its resonance fm.

Since ∆ f can become sub Hz for high Q resonators like SiN mem-
branes (compare with inset in figure 8.7), it can be hard to measure
experimentally. We follow [111] and give an equivalent (for Q � 1)
definition in the time domain

Q = 2π
E

∆E
, (8.25)
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in which, E is the energy stored in the resonator and ∆E is the energy
loss per cycle.

Let’s say that we apply some external force to the oscillator and
thereby drive it at its resonance fm. If we quickly turn off the external
force, the overall motion of the resonator can be described by

x(t) = x0 × cos(2π fmt)× exp(−t/τ), (8.26)

which is a composition of the amplitude x0 at the moment when the
external drive is turned off, the oscillation of the resonator at its reso-
nant frequency and an overall envelope function with a characteristic
decay time τ, that is linked to the quality factor by the relation

Q = π fmτ. (8.27)

We will make use of this approach to measure the quality factor of
our mechanical devices in the remainder of this chapter.

In reality there can be many different loss mechanisms contributing
to the overall quality factor of the devices. As the losses can be added
(equation 8.13) and are inversely proportional to the quality factor,
the overall Q is the inverse sum of Q factors attributed to each loss
channel

1
Q

=
1

Qvis
+

1
Qstr

+
1

Qclamping
+ . . . , (8.28)

while Qvis = ωm/γ and Qstr = 1/φ are the quality factors attributed
to viscous and structural damping and Qclamping is attributed to me-
chanical loss due to clamping, gluing or any other mount of the mem-
brane into the optomechanical cavity. Clamping will be discussed fur-
ther when I describe the optomechanical system in the next chapter.
An elegant way to bypass clamping losses is by means of a phononic
shield for the membrane as have been done within the presented
work, see section 8.10.

8.8 q measurement apparatus

The quality factor of the membrane has been introduced and at this
point it will be explained how it is measured experimentally by
means of ring-down measurements. Throughout the duration of this
thesis, ring-down measurements have been performed in different
setups and with varying schemes. At this point I will describe a test
setup and results of ring-down measurements performed on a large
number of different membranes. The main parts of the test setup are
a fiber optic interferometer and a cryostat containing the membrane.
The setup is illustrated in figure 8.8.
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Figure 8.8: Illustration of fiber optical Q measurement test setup. A fiber
laser is split into signal and local oscillator. The latter is coupled through
a fiber stretcher that can actuate on the phase, which is used to lock the
homodyne detectors. The signal is transmitted through a Faraday rotator.
The fiber is fed into the cryostat and after being coupled out of the fiber, the
light is being focused onto the membrane. The membrane is clamped (see
main text) onto a chip holder that is thermalized through copper braids.
The membrane can be brought into the focus of the light by means of a
stack of positioners. A piezo is attached to the chip and can be driven with
white noise to excite the membrane motion for ring-down measurements.
The light reflected off the membrane is being coupled back into the fiber
and into the signal port of the fiber beam splitter. The beam splitter outputs
are again coupled into free-space and focused onto two photodetectors. The
difference current is plugged into the spectrum analyzer to perform zero-
span measurements to resolve the ring-down. Pictures of the cryostat, the
positioner stack and a clamped membrane can be found in figure 8.9.

We use a liquid helium flow cryostat from Janis Research [7] to cool
a small vacuum chamber down to roughly 5 K. The vacuum is pro-
vided by a turbomolecular pump model HiPace 80 from Pfeiffer Vac-
uum [8], which quickly reaches pressures on the order of 10−6 mbar.

The chamber contains a stack of x, y and z positioners from at-
tocube systems [6] that holds a small sample holder made out of
copper for thermalization. The membrane under test can be clamped,
glued or simply laid down onto the copper sample holder. Addition-
ally to the membrane, a small piezo is attached to the chip. This piezo
can be driven by white noise or specific frequencies to excite the me-
chanical modes of the membrane. The positioners are cryogenically
compatible and allow lateral and longitudinal alignment of the mem-
brane with respect to the beam of a measurement laser.

The measurement laser enters the chamber through a fiber collima-
tor attached to the optical viewport of the cryostat. The light reflected
off the membrane, i.e. the light that recorded the phase information
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Figure 8.9: Interior of the cryostat amd clamped membrane. Picture a) fea-
tures the interior of the cryostat, with the cold plate, Attocube positioner
stack [6] and copper braids for thermalization. b) is a close up of the chip
(membrane holder) with attached temperature sensor and piezo and c) fea-
tures the chip with a clamped SiN membrane by means of Teflon clamps.

of the membrane motion, gets fetched by the same collimator if the
membrane is aligned well with respect to the waist of the light mode.

The light from the laser source is split into a signal beam interact-
ing with the membrane and a local oscillator (LO). The local oscillator
is traveling through a fiber stretcher which acts as a phase shifter and
which is used as an actuator to stabilize the relative phase of LO and
signal. Both signal (after interacting with the membrane) and LO are
combined at a balanced (50/50) fiber BS. The two outputs of the BS
exit fiber collimators and are focused down onto two photodetectors
and are therefore performing a balanced homodyne detection. The
difference of the slow (DC) channels yields the interference fringe
when the LO is being scanned by the fiber stretcher. This signal pro-
vides the error signal to lock the interferometer. The difference of the
fast (AC) channels of the detectors ultimately yields the spectrum of
the membrane motion measured with a spectrum analyzer.

Mechanical modes can be identified by our model (equation 8.7)
and then selectively excited by a function generator and the piezo
clamped next to the membrane. We get a time-resolved measurement
of the ring-down by measuring the band power at a high rate with a
large resolution bandwidth (usually around 2 kHz) compared to the
width of the mechanical resonance at exactly the resonant frequency.
The band power is measured in units of dB m, which is a logarith-
mic scale, turning the exponential decay in equation 8.26 into a linear
decay. The decay time τ can be extracted via a linear fit to the data
and the quality factor of the membrane is then derived by Q = π fmτ.
Figure 8.10 shows the ring-down of the (3, 3) mode of a 500 µm by
500 µm Norcada [5] membrane at room temperature and at around
5 K, yielding quality factors of QRT = 0.57× 106 at room temperature
and QLT = 22.4× 106 at low temperature for a resonant frequency of
fm = 1.22 MHz. The highest measured quality factor in our laborato-
ries were measured for a similar device reaching a low temperature
quality factor of QLT = 34.2× 106 at 865 kHz.
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Figure 8.10: Ring-down measurement performed on the (3, 3) mode of a
500 × 500 µm Norcada membrane inside our fiber setup. Depicted is the
band power over time, measured with a spectrum analyzer in zero-span
mode. Therefore measuring the band power at a single frequency, e.g.
fm = 1.22 MHz, with a band width of 2 kHz. Light green traces are mea-
sured data while dark green depicts the fitted exponential, which yields the
time constant τ according to equation 8.26. The resulting low temperature
quality factor is then QLT = π fmτ = 22.4× 106. The inset shows a simi-
lar measurement of the same membrane and mode at room temperature,
yielding QRT = 0.57× 106.

8.9 q measurements and discussions on damping mech-
anisms in sin membranes

This section is dedicated to discussions of a broad spectrum of Q
measurements that I have performed on commercially available SiN
membranes as well as custom made membranes by collaborators at
TU Delft. These discussions will mostly deal with what is currently
known about SiN membranes in general and how I empirically im-
proved their performance within our optomechanical system.

Measurements on commercially available membranes from Nor-
cada [5] have been performed on devices with side lengths ranging
from 0.5 mm up to 1.5 mm. We solely chose a thickness of 50 nm since
thicker membranes would increase the effective mass and yield larger
absorptions in the material, as has been shown earlier in this chapter.

Figure 8.11 shows room temperature and low temperature mea-
surements at around 5 K taken inside a Helium flow cryostat. De-
picted are data points of three different devices with side lengths of
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0.5 mm. The data illustrates several important facts that I will address
in the following paragraphs.

Clamping techniques and overcoming scattering results

It is plainly visible that the results scatter by several orders of magni-
tude (see Nor. 1 and Nor. 2 in figure 8.11 for reference). The reason for
this is that the devices are always connected to the outside world, usu-
ally by a metal holder, a positioner or a mirror. In any case, it can be
a low Q environment and the contact between a low Q holder and a
high Q membrane will yield some momentum transfer of membrane
oscillations to the holder at some characteristic timescale τclamping ∼
Qclamping. This effect is also called radiation damping and it can be
reduced through a mismatch between membrane and silicon chip
(frame) size, as explained and observed by [22].

Oftentimes, the fundamental mode suffers the most from losses.
This is because, as one can see in figure 8.5, the fundamental mode
has the largest extent over the surface of the membrane and one com-
mon loss channel is the friction of bending parts of the membrane
where it is suspended within the silicon chip. Higher order modes
suffer less from this effect as they are more confined to the membrane
center.

When membranes are incorporated into optomechanical systems,
the chip needs to be somehow clamped. Clamping, however, is a del-
icate business. On the one hand the chip needs to be fixed to, let’s
say, a mirror and the chip must stay fixed when cooling down to
Helium temperatures (which involves different contractions of optics,
metals, screws and the membrane itself) and additionally one has to
guarantee thermalization of the membrane with its environment. The
two main approaches to fix membrane chips onto a sample holder, e.g.
the optomechanical cavity, are by means of rigidly clamping them via
PTFE (Teflon) or metal clamps, or by gluing them with a thermally
conductive epoxy, e.g. Stycast [9].

Over the course of hundreds of measurements on several dozen
devices, I empirically converged my experience into the following
procedure that produced reliably good Q factors exceeding 107 (see
Nor. 3 in figure 8.11):

• Avoid any clamping mechanism. Therefore, a vertically oriented
setup where the membrane only experiences conservative (loss-
free) gravitational forces is preferable.

• If that is not possible: Minimize the contact area between the
membrane chip and its holder.
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• Use preferably copper or other materials with good thermal con-
ductivity as chip holders. Ensure thermalization by polishing
the membrane holder with µm roughness polishing sheets.

• Additionally, Apiezon - a low temperature and high-vacuum
compatible grease with good thermal conductivity - can be ap-
plied to the chip holder. Remove the bulk of the grease with
acetone, such that only a thin layer remains on the holder. In
addition to improved thermalization, the membrane adheres to
the grease and stays fixed during a cool-down.

• To ensure that the membrane does not slip from the chip when
initially pumping down the vacuum chamber, the silicon chip
should be clamped from the sides with PTFE (Teflon) clamps.
Because of the large mismatch of the thermal expansion coeffi-
cients, αPTFE = 112× 10−6 m/K � 16.7× 10−6 m/K = αcopper

[10], the Teflon clamps will contract and therefore release the
silicon chip at low temperatures.

This procedure yields quite consistently quality factors of above
1× 107, as for Nor. 3 in figure 8.11. Which is comparable to the best
results reached for commercially available membranes without any
special designs.

Increasing Q at low temepratures

The second important result is the increase of the quality factor with
cooling down the membrane to cryogenic temperatures. Here, several
effects take place at the same time. We know from equation 8.28 that,
for instance, large losses due to clamping can limit the quality factor
of a device and therefore mask other loss contributions like internal
friction of the suspended membrane, or gas damping at a given pres-
sure in the vacuum chamber. Yet, several isolated statements can be
made. Some are more of a technical nature and others demonstrating
physical effects. If possible, use the procedure presented earlier in
this section to avoid clamping losses due to rigid clamping or joints
from gluing.

Residual gas damping due to momentum transfer to air molecules
will exhibit another dissipation channel and limit the overall qual-
ity factor. This effect is depending on the velocity of the motion
and therefore a viscous damping mechanism (section 8.6). Quick
measurements in our test setup were usually conducted at pres-
sures of around 10−5 mbar. Sometimes I would wait until reaching
10−6 mbar. Low temperature measurements always reached the range
of 10−7 mbar due to additional cryogenic pumping, i.e. the effect of
trapping particles at cold surfaces. Figure 8.12 shows the Q factor as



8.9 q measurements and discussions on damping mechanisms in sin membranes 95

Figure 8.11: Q measurements on high stress Norcada membranes. This plot
focuses on measurements performed after using the clamping procedure
described in the main text. It allows for more predictable and repeatable
Q factors. Note, that dark markers correspond to room temperature and
light markers to measurements at cryogenic temperatures. The most impor-
tant features are the following. First, lowest frequency modes, especially the
fundamental mode, show larger discrepancies between room temperature
and cryogenic temperatures. Second, for higher order modes, room temper-
ature Q’s seem to saturate at 106, while the mechanical quality increases
by roughly one order of magnitude to 107 at low temperatures. And third,
even though this clamping technique gives quite consistently good Q values
at low temperatures, there is still some scattering for specific modes, which
can spoil experiments relying on a multimode system in the strong cooper-
ativity, e.g. the entanglement protocol presented in chapter 10. These points
will be addressed in the following sections to improve the performance of
our membranes.

a function of residual gas damping in the vacuum chamber using the
relation [29, 57]

Qair = (π/2)3/2
√

R0T/Mm

p
lzρ fm, (8.29)

which is further described in the caption. It shows that the maximum
Q factor that can be reached at low temperatures and corresponding
pressures of below 10−6 mbar (dashed gray line) is approximately
4× 108, which is larger than any of my measurements. Our quality
factors are therefore not limited by residual air damping.

Thermoelastic loss is the dissipation of energy due to stretching or
compression of the resonators material. This increases or decreases
the temperature of the material locally, which leads to temperature
gradients and a heat flow that dissipates a fraction of the oscillation
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energy in the material [61, 141] and vice versa. The fluctuation dissi-
pation theorem states that a fluctuation in the temperature yields a
displacement noise. This is a structural damping mechanism as de-
scribed in section 8.6 and its loss angle (phase lag) is given by the
relation [62]

φthermoel. =
Eα2T

Cv

ωmτd

1 + ω2
mτ2

d
, (8.30)

in which E is the Young’s modulus, α the thermal expansion coeffi-
cient, Cv the heat capacity per unit volume and τd/l2

z /π2D a material
and geometry dependent time constant and D is the thermal diffu-
sivity. Computing this equation, with the numerical value of the pa-
rameters taken from table 8.1, for a membrane mode with frequency
ωm = 2π × 1.2 MHz and thickness lz = 40 nm at room temperature,
yields φthermoel. = 1.17× 10−7 and ultimately Qthermoel. = 8.5× 106.
This value is just a guide value since several parameters do vary or
are not exactly known. Thermoelastic damping can be limiting for
smaller membranes with higher resonances or for higher modes of a
given membrane. The same calculation for the very same membrane
at liquid Helium temperatures yields a quality factor of 5.1× 108,
which, on the one hand can explain the increase of the Q factor with
temperature and on the other hand means that we are not limited by
thermoelastic losses at low temperatures.

Membrane dimensions and stress

The final point I want to address is the interdependence between
Q factors, membrane dimensions and stress. We decided to go with
smaller membranes to, first of all, push the fundamental frequency of
the membrane further away from low frequency classical laser noise
and to create a more sparse mechanical mode spectrum. It was al-
ready known from earlier work [145] that the quality factor scales
with side length and stress, but scales inversely with membrane thick-
ness. It was indicated that Q ∼ (lx/lz)2 for lx/lz < 105 [38], which we
can deeply fulfill.

We chose to use membranes with side lengths of around 300 µm
and keep small thicknesses of around 40 nm. Additionally we aimed
for even higher tensile stress to achieve higher mechanical mode fre-
quencies. These membranes got fabricated by our group member and
microfabrication expert Claus Gärtner at the facilities of TU Delft,
Netherlands, and under supervision of our collaborator Prof. Simon
Gröblacher. The results are depicted and discussed in figure 8.13. Us-
ing the average Q factor of the fundamental mode of the Nor. 1 de-
vice from figure 8.11 and using the (lx/lz)2 dependency introduced
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Figure 8.12: Molecular gas damping as a limit of the mechanical quality
factor. Solid lines are depicting resonant frequencies at 400 kHz, the low-
est frequencies we deal with in this work presented, and dashed lines
denote resonances at 1.2 MHz, frequencies where entanglement measure-
ments have been conducted. Dark green lines apply to room temperature
(RT) and light green lines to 5 K (LT). We see that, while Q measure-
ments at room temperature at rather high pressures of above 10−4 mbar
can limit the quality factor, low and room temperature Q measurements
at pressures below 10−6 mbar (grey line) are never limited by residual gas
damping. This curves are generated via the molecular damping relation
[29, 57] Qair = (π/2)3/2

√
R0T/Mm

p lzρ fm, in which R0 = 8.31 J/molK is the
gas constant, Mm = 29 g/mol is the molar mass of the surrounding air,
ρ = 2700 kg/m3 the mass density, lz = 40 nm the thickness, fm the mechani-
cal resonance of the membrane, T the temperature and p the pressure of the
environment.

in the last paragraph, we can calculate expected quality factor of the
membranes fabricated in Delft. For a membrane with a side length
of 284 µm, the expected Q factor would be 13.4× 106 × (284/500)2 ≈
4.3× 106. The actual measured value is 5.6× 106, which is reason-
ably close. The discrepancy can be explained by the enhanced tensile
stress of approximately 20 % compared to Norcada membranes. High
tensile stress membranes show in general higher quality factors than
low stress membranes. More careful studies of low and high stress
membranes and the impact of cooling SiN resonators to liquid He-
lium temperatures, show that the dissipation decreases with temper-
ature and the ultimate quality factors are determined by the tensile
stress. High stress membranes show a better performance by means
of smaller mechanical dissipation of around two orders of magnitude
compared to low stress resonators [122].
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Figure 8.13: Q measurements on custom made SiN membranes, designed
by us and fabricated by Claus Gärtner at the facilities of TU Delft, Nether-
lands. The main motivations were the fabrication of smaller membranes
with higher stress, to decrease the mass, increase the resonance frequency
and decrease the number of modes within the line width of our optome-
chanical cavity. While the tensile stress is approximately 20 % higher than
for Norcada membranes and the fundamental frequency has been shifted
from roughly 400 kHz to 1.2 MHz, significantly lowering the number of me-
chanical modes in the frequency bandwidth of the optomechanical cavity
and also pushing the frequencies of interest to a region with much lower
laser noise, according to equation 5.10. Dark markers, again, correspond to
RT and light markers to LT. Note, that the absolute Q’s are lower than for
the larger Norcada membranes. The effect is in accordance to the size ratio
of the membranes, see main text. On the other side, the problem of lower
order modes suffering disproportionately from mechanical losses has been
solved by the frame (chip) to window ratio, as the relative difference be-
tween RT and LT is similar across all modes. Yet, the absolute performance
of individual modes still varies by one order of magnitude and potentially
spoiling the performance of other mechanical modes.

Summary

I presented an empirically developed approach that reliably decou-
ples a membrane from losses that appear when mechanically clamp-
ing or gluing a membrane onto a holder. It can be stated that resid-
ual gas damping is negligible in our systems and the scaling of Q
factors with membrane dimensions and the effect of higher tensile
stress were in accordance with other studies. At least at low tem-
peratures and for smaller membranes we are not yet (solely) limited
by intrinsic losses, but also by radiation dissipation. That is the cou-
pling of a high Q membrane to its low Q environment, to which it is
connected. This effect is also varying from mechanical mode to me-
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chanical mode, since it depends on matching eigenfrequencies of the
membrane with phonons from its environment. This limiting factor
for our type of membranes is in agreement with careful studies pre-
sented in [135]. We will follow their approach in the next section to
introduce a higher frequency/size mismatch of the membrane to its
frame and environment, not only by further increasing the mismatch
of membrane to frame size ratio, but also by means of carefully shap-
ing the membrane frame in a way to decouple the membrane modes
at frequencies we are interested in from phonons of the environment.

8.10 a phononic shield for sin membranes

In this section we will study a method to fully decouple the high
Q membrane from its low Q environment and thereby minimizing
the membrane losses due to mechanical coupling to the environment.
This decoupling is achieved by means of a phononic crystal struc-
ture [128, 150], which yields an energy bandgap for phonons, thus
reducing the radiation damping of the membrane modes within a
certain frequency range. Our structures have been designed with fi-
nite element modeling (FEM) using COMSOL. The calculations have
been made by Laurin Steidle under supervision and instructions of
Witlef Wieczorek in Vienna. Further improvements have been added
by Richard Norte and the fabrication was done by Claus Gärtner,
both within Simon Gröblacher’s group at TU Delft, Netherlands.

The isolation comes from a repetitive sequence of unit cells, which
need be designed in a way to not show eigenmodes in the phonon
dispersion and therefore to form an energy bandgap. The procedure
begins by starting with an arbitrarily shaped unit cell, e.g. a rectangle,
and then calculating the range of wave vectors for this design by ap-
plying a periodic boundary condition on the solutions. The design is
then iteratively modified and re-evaluated until it features a desired
frequency region without eigenmodes, i.e. the phononic bandgap.
The suppression comes from destructive interference at the periodic
structure. This procedure is done most efficiently by FEM modeling
(COMSOL) and an optimization algorithm. The final design is then
used as a mask to release the periodic structure by removing the ex-
cess silicon from the frame material. The cell in the middle of the
structure, the so called defect cell, contains the SiN membrane.

Figure 8.14 a) shows one implementation of a unit cell with cham-
fers and embedded bridges and b) a plain rectangular design with
bridges at the border of the cell. In c) the simulated noise power spec-
trum from FEM simulations of the design from figure a) is depicted,
as well as a simulation of the membrane NPS without the lattice. This
design yields a broad bandgap from 1 to ∼ 3.1 MHz and a second
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Figure 8.14: Phononic bandgap membrane design. Figure a) features a
bandgap design with chamfered edges of a rectangular cell with embedded
bridges. This design shows a broader spectral bandgap compared to design
b) with rectangular cells and attached bridges. The simulated displacement
noise spectrum of design a) is shown in plot c) in light green. Dark green
shows the NPS of the same but non-patterned chip (and no membrane).
The grey region depicts the frequency ranges of the phononic shield show-
ing several orders of magnitude less motion at the region of the membrane
and its resonances. These simulations are provided by courtesy of Laurin
Steidle.

bandgap from 3.4 to ∼ 4.2 MHz.

The actual realization of a phononic shield membrane and its per-
formance are depicted in figure 8.15. Figures a) and b) feature a photo-
graph and a drawing of the defect cell containing the SiN membrane.
Figure c) shows the measured noise power spectra on the defect cell
and directly on the membrane, while the full chip is excited by white
noise applied to a piezo close to the chip. The measurement on the
defect cell features several orders of magnitude less noise power for
resonances within the bandgap region. This is the case, because in-
coming phonons from the environment destructively interfere as the
periodic structure and are reflected. Therefore, the high Q membrane
resonances within the bandgap do not couple to the low Q environ-
ment, minimizing radiation losses of the membrane modes.

Measurements of the quality factor of two phononic bandgap
membranes are shown in Figure 8.16, while the device PS3.1 is the
one, where entanglement measurements have been performed on, see
chapter 11. The excitation of mechanical modes within the bandgap of
such shielded membranes is highly non-trivial, since the membranes
where specifically designed to not transmit vibrations through the
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chip to the membrane. The measurements were conducted in-situ
within the optomechanical cavity and the excitation was performed
via blue-detuned drive of the cavity. A detailed description of the
procedure will follow in the next chapter (in section 9.3.3), where I
will present and characterize the full optomechanical system. At this
point we will restrict ourselves to the results of the measurements,
which feature low temperature Q factors above 4× 106 for all rele-
vant modes modes within the half width at half maximum (HWHM)
of the optomechanical cavity of ≤ 2.7 MHz and therefore paving the
way towards bringing the multimode optomechanical system into the
strong cooperativity regime.

Figure 8.15: Phononic bandgap membranes and noise power measurements.
Figure a) shows a photograph of the phononic bandgap membrane later
used for entanglement measurements. Photo and fabrication were both by
Claus Gärtner. Figure b) shows a schematic and the dimensions of our de-
fect cell (light green) with the SiN membrane (dark green). The size of the
membrane and the tensile stress achieved during the fabrication together
with our model for the membrane yield a fundamental frequency of around
1.2 MHz. Due to fabrication constraints we combined the chamfered design
with attached bridges in between the unit cells, that is basically a combi-
nation of the designs a) and b) in 8.14. Figure c) shows the noise power
spectrum measured on the membrane (dark green) and on the defect cell
(light green), while white noise is applied to the holder of the chip, there-
fore exciting many modes in the full chip. The measurement on the defect
cell shows that its modes can only be excited outside of the bandgap. Exci-
tations of modes within the bandgap (gray shaded area) are strongly sup-
pressed (≈ −110 dB m compared to −80 up to −20 dB m). Therefore, exter-
nal phonons at frequencies outside of the bandgap do not transmit through
the shield and do not reach the membrane. Therefore, membrane modes
which lie within the bandgap are not excited by the applied white noise.
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Figure 8.16: Q measurements on phononic bandgap membranes. One mem-
brane each from two different batches of phononic bandgap membranes
produced at TU Delft. All measurements yield Q factors above a million, ex-
cept of the highest measured mode of the PS10.1 device, which lies outside
of the designed bandgap area (grey shaded region). All low temperature
(light green markers) quality factors within the phononic bandgap and with-
ing the HWHM of the optomechanical cavity yield Q’s larger than 4× 106,
bringing the full multimode system, consisting of the membrane and the
Fabry-Pérot cavity (see chapter 9) in which it is placed, into the strong coop-
erativity regime.

8.11 a first glance at indium gallium phosphide mem-
branes

Before moving to the realization of the optomechanical cavity, I want
to briefly present Q measurements on InGaP membranes. InGaP
membranes combine the benefits of realizing high stress thin films
with the possibility to fabricate a stack of membranes, which even-
tually can lead to an enhancement of the optomechanical coupling
strength.

Within the last years a series of publications discussed the possi-
bility to resonantly enhance the optomechanical coupling strength by
using a number of membranes placed within a Fabry-Pérot interfer-
ometer. The stack of membranes can form a series of (sub-)cavities
resonantly enhancing the interaction and yielding a large effective
optomechanical coupling strength between the cavity mode and the
membrane stack. The initial proposal was by Xuereb et al. in [147, 148].
An analysis for two membranes has been given by J. Li et al. [86] and
the topology has been recently realized by Piergentili et al. [104] for
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a pair of low and high stress membranes, reaching a factor of ≈ 2.5
larger coupling strengths compared to the single membrane case.

However, it is inconvenient to clamp a stack of membranes onto
each other, as the stack will quickly limit the length of the cavity,
especially because piezos need to be incorporated to set the exact
distances between each membrane to fulfill a resonance condition.
Additionally, the system will become mechanically unstable and hard
to control when the number of elements increases.

A different approach would be by means of microfabrication of a
stack of membranes with the correct thickness and spacing, prefer-
ably onto a highly reflective Bragg mirror. A promising material to
fabricate a stack of membrane stacks is InxGa1-xP. At the same time,
thin InGaP films can feature high stress, one of the main reasons that
SiN membranes exhibit high quality factors.

Garrett Cole designed and fabricated a batch of ≈ 30 nm thick
InxGa1-xP (InGaP) membranes grown on GaAs. The optical charac-
terization has been conducted within the group of Cindy A. Regal at
JILA in Boulder Colorado, while the measurements of the mechani-
cal quality factors were conducted by me within our laboratories in
Vienna. The results have been jointly published by G. D. Cole et al. in
[44].

Measurements of the quality factor on four different InGaP mem-
branes have been made in our fiber setup at room temperature and
at low temperature (17 K). The results are plotted in figure 8.17. Note
that the room temperature values scatter widely and especially low
order modes exhibit low quality factors. Also, almost all measure-
ments at low temperature yield Q factors of 1− 2× 106, similar to
the high stress SiN membranes in figure 8.11. In fact, the InGaP mem-
branes tested here feature a tensile stress of about 200 MPa. Further
reduction of the In content should increase the stress to values around
1 GPa [44] and hence comparable Q’s as the high stress SiN mem-
branes.

Measurements of the optical losses by incorporating the mem-
branes into high finesse cavities yields optical losses of 40 ppm due
to scatter and absorption, proving that InGaP membranes are eligible
mechanical oscillators for optomechanical experiments and promis-
ing candidates towards the fabrication of vertically stacked mem-
branes with large effective coupling strengths, theoretically feasible
to reach the single photon strong coupling regime.
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Figure 8.17: Q measurements on InGaP membranes. Q measurements at
room temperature (dark) show a similar behavior as SiN membranes: Low
order modes are more susceptible to mechanical losses due to coupling to
the environment. Low temperature measurements at 17 K (light) show al-
most without exceptions values above 1× 106. Note that the InGaP mem-
branes tested here have rather low tensile stress. It can be assumed that high
stress versions would yield fundamental resonant frequencies of 1 MHz and
above, just like thin SiN membranes.
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O P T O M E C H A N I C A L C AV I T Y

This chapter introduces the optomechanical cavity (OMC), which con-
sists of a silicon nitride membrane (see chapter 8) placed inside a high
finesse Fabry-Pérot cavity. This system is known as the membrane-in-
the-middle (MIM) cavity.

I will first describe the optomechanical interaction of a membrane
placed inside an optical cavity and distinguish two cases: First, the
membrane placed at the center of the cavity. And second, the mem-
brane placed directly at the end of the cavity. It will be shown that
the latter approach has several experimental benefits. The membrane-
at-the-end optomechanical cavity is designed and realized, including
the thermalization of the membrane within the cryogenic system and
at high vacuum. This will minimize the coupling to the environment
and therefore n̄γ, which directly improves the quantum cooperativity.

Next, the experimental setup around the optomechanical cavity
and the cryostat is presented and discussed, as these elements are
the main tool to characterize the quantum cooperativity. The remain-
der of the chapter deals with a step by step characterization of the
optical parameters, the single photon coupling strength and in-situ
measurements of the quality factor of the membrane. The chapter
closes with a summary and discussion of the achieved quantum co-
operativity, showing that the system is operating in the strong coop-
erativity regime and that it should therefore exhibit the generation of
optomechanical entanglement.

9.1 the membrane-in-the-middle cavity

The goal of this section is to introduce the description of the full op-
tomechanical experimental system, which is a thin dielectric silicon
nitride membrane placed into a high finesse Fabry-Pérot cavity. The
reflectivity of the membrane is too small for the standard end-mirror
configuration in optomechanics, but we will see that placing the
membrane inside a cavity leads to similar optomechanical coupling
strengths as a high reflectivity membrane in the end-mirror configu-
ration.

Figure 9.1 depicts the basic topology of the MIM system. We con-
sider a thin membrane with amplitude reflectivity r and transmission
t, as described in chapter 8, and a single-sided high finesse Fabry-
Pérot cavity. The cavity consists of an input coupler with r2

1 + t2
1 =

1, δ1 = 0 and an end-mirror with r2
2 + t2

2 = 1, δ2 = 0, separated by

105
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Figure 9.1: Schematic of the membrane-in-the-middle cavity. The bare Fabry-
Pérot cavity is formed by two curved mirrors with amplitude reflectivities
r1,2, transmissions t1,2 and absorptions δ1,2. The outer fields consist of the
incoming laser beam ain and the reflected and transmitted beams aref and
aout = 0 as we consider a single-sided cavity. While the intra-cavity fields
are split by the thin membrane placed within the resonator and forming two
coupled sub-cavities. The illustration helps to write down the set of coupled
equations for all fields, see main text. The membrane position xm is defined
relative to the cavity center at L/2.

a distance L, while r1,2, t1,2, δ1,2 are the amplitude reflectivities, trans-
missions and losses. The membrane is placed somewhere between
the mirrors and its position is described by xm, which is measured
with respect to the center L/2 of the cavity.

By using the boundary conditions at each mirror and the mem-
brane, one can derive the following set of coupled equations for the
classical electric field amplitudes

a1 = it1ain + ra2eikL1 , (9.1)

a2 = ra1eikL1 + ita4eikL2 , (9.2)

a3 = ita1eikL1 + ra4eikL2 , (9.3)

a4 = r2a3eikL2 , (9.4)

aref = it1a2eikL1 + r1ain, (9.5)

aout = it2a3eikL3 , (9.6)

in which k = 2π/λ is the wave vector of the light and ikL1 and ikL2

the accumulated phase in the left sub-cavity and right sub-cavity, re-
spectively, given by L1 = L/2 + xm and L2 = L− L1. For a derivation
of the solutions for the cavity resonance frequency fcav and the op-
tomechanical coupling strength gm ≡ 2πd × fcav/dxm, I refer to the
work of [74, 145] and only present the results and discuss the solu-
tions with regard to the setup presented in this work.

The cavity resonance in units of the free spectral range is given by

ωcav/ωFSR = 2π× fcav/ωFSR = cos−1(|r| cos(2kxm)) + arg(r), (9.7)
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in which r is the membrane reflectivity as in equation 8.3. The com-
plex argument (or phase) of r is giving an offset to the resonance,
while the resonant condition is mainly given by the laser wavelength
λ = 2π/k and the membrane position xm and reflectivity r. Figure
9.2 shows several consecutive free spectral ranges of the membrane-
in-the-middle cavity as a function of the membrane position xm. De-
pending on its position and reflectivity, the membrane does alter the
effective free spectral range (FSR) with respect to the bare cavity FSR.

Figure 9.2: Resonant frequency of the membrane-in-the-middle cavity in
units of bare free spectral range for different membrane reflectivities (r =
0.00− 0.99 from lighter to darker traces), as a function of the microscopic
position of the membrane in units of the laser wavelength. Note, the offset
due to the argument of r is ignored here. Depending on its position within
the standing wave of the optomechanical cavity, the membrane does alter
the frequency of consecutive resonances. For high reflective membranes (r ≈
1) placed at nodes or anti-nodes of the cavity, the system effectively acts
as a resonator with half the length and therefore twice the free spectral
range. This effect is seen in the darkest trace with r = 0.99 at the position
xm = 0.5×λ). Note, that this plot assumes the membrane is macroscopically
placed close to the center of the cavity, i.e. xm � 1.

The solution for the optomechanical coupling for the membrane-in-
the-middle system as a function of membrane position for xm ≈ 0, i.e.
membrane placed closely to the center of the cavity, is given by the
derivative of the resonance frequency

gm(xm) ≡
dωcav

dxm
= −g0

2|r| sin(2kxm)

(1− |r|2 cos2(2kxm))1/2 . (9.8)

This function is plotted in figure 9.3 in units of a hypothetical and
equivalent end-mirror coupling strength g0 = ωcav/L and as a func-
tion of the membrane position. The main feature here is that the mem-
brane coupling is a periodic function of membrane position. At nodes
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Figure 9.3: Membrane-in-the-middle (MIM) coupling strength. Depicted are
several realizations of equation 9.8 in units of g0 as a function of the mem-
brane position in units of the laser wavelength for the membrane being
placed close to the center of the cavity, xm � 1. Nodes and anti-nodes of
the cavity standing wave correspond to the zero-crossings of the traces. In
between are maxima of the coupling strength, which in case of a perfectly
reflecting membrane (r = 1) reach gm = 2g0. Essentially splitting the system
into a cavity of length L/2 for a photon on either side of the membrane and
therefore twice the single photon coupling strength as g0 ∝ 1/L.

of the intra-cavity field, e.g. 2kxm = m× π (the numerator becomes
zero) and at anti-nodes, e.g. 2kxm = (2m + 1)× π (the denominator
becomes infinite) the coupling strength becomes zero. The maximum
coupling strength in between those points and for a perfectly reflect-
ing membrane (r = 1) is twice the end-mirror coupling, i.e. gm = 2g0.
Figure 9.3 depicts several traces for different membrane reflectivities.

The takeaway is that placing a thin membrane with moderate re-
flectivity inside a Fabry-Pérot resonator leads to similar coupling
strengths as the standard end-mirror configuration. Therefore, com-
bining the advantageous mechanical and optical properties of silicon
nitride membranes with the simplicity of the well studied Fabry-Pérot
cavity is a valid combination to pursue. Note, that the solutions for
the resonances and coupling strengths are derived for the case of the
membrane placed (macroscopically) close to the center of the cavity.

9.2 experimental design : membrane at the end

Over the course of assembling and operating the presented exper-
iment, several iterations of membrane-in-the-middle cavities have
been designed, realized and characterized. While the very first de-
signs leaned towards the initial proposed system, i.e. membrane
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placed close to the center of the cavity, newer designs featured a
topology where the membrane is placed very close to a high re-
flective flat end-mirror. This approach was motivated by ease of
alignment and mechanical stability, but it has physical advantages
also. The membrane in the center design and its disadvantages are
shown and discussed in figure 9.4. Here, we will directly continue
with the membrane at the end design.

Figure 9.4: Old membrane-in-the-middle design. a) Picture of the membrane-
in-the-middle cavity spacer, consisting of two spacers holding the input cou-
pler and end mirror respectively, while the membrane is clamped onto a sep-
arate chip fixed onto the end-mirror spacer, see b). Each spacer is connected
via adapter plates to a 3d µm-precision positioning stage for alignment pur-
poses. b) The membrane chip is embedded within the end-mirror spacer
and can be aligned within the x − y plane by means of two screws press-
ing the chip against two springs. The whole procedure is time consuming
and the outcome is very susceptible to external forces, e.g. when mounting
the cavity back into the cryostat, or when cooling the system, which cause
the membrane to tilt with respect to the cavity mode. A well aligned cav-
ity mode (picture c) can be distorted by membrane tilt and produce images
like in d). Tilt strongly increases losses within the system and therefore we
moved to the more mechanically stable and easier to align membrane at the
end configuration.

Wilson [145] derives a modification of equation 9.8, which features
an envelope function transforming the peak coupling values as the
membrane is moved towards either of the cavity mirrors. The cou-
pling strength reads

g̃m(xm) ≈
gm(xm)

g0 − gm(xm)× (xm/L)
, (9.9)

and allows a comparison of the coupling strength for different mem-
brane positions. These two cases, as well as the full envelope across
the full length of the cavity is depicted in figure 9.5. The main mes-
sage is that the periodic behavior is maintained at all positions and
that the end-mirror configuration is slightly advantageous in terms
of optomechanical coupling strength.

The main experimental advantages are a strongly simplified align-
ment procedure, since the number of degrees of freedom is reduced
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Figure 9.5: Optomechanical coupling for a membrane-in-the-middle (MIM)
cavity. a) Shows the coupling strength gm across the full lengths of a 5 mm
long cavity, for a mechanical oscillator with a frequency of 1 MHz and an
amplitude reflectivity of 35 % and 40 nm thickness. The left side marks the
end-mirror configuration and features a slightly larger optomechanical cou-
pling strength compared to the center of the cavity. b) and c) depict a zoom
into a position at the end-mirror and the middle of the cavity respectively,
with the membrane at the end topology providing a larger gm. The reason
for the asymmetry is that the end-mirror reflectivity is higher than the in-
put coupler reflectivity (R2 > R1) and the sub-cavity with the end-mirror
has a higher finesse and therefore a larger power build-up and effectively
more light interacting with the membrane (compared to the lower finesse
sub-cavity, if the membrane is placed closer to the input coupler).

and a more rigid and compact design that allows for a shorter cav-
ity that is less susceptible towards external vibrations and features
almost no membrane tilt during cool downs in the cryostat.

Our specific design currently in use is depicted in figure 9.6. The
cavity consists of a spacer holding a flat end-mirror (1.0 inch diam-
eter) and the SiN membrane (A). Spacer A is connected to the cold
plate of the cryostat via an adapter plate (C). The flat end-mirror is
embedded in a drill-hole and fixed by a thin ring that pushes the
mirror uniformly against the spacer and keeps it there. Between each
mirror-to-metal connection, a thin layer of Teflon is used to prevent
the substrates from being scratched. Only the outer parts of the mirror
are resting on a hole in the spacer, such that most of the mirror coat-
ings are bare, providing enough space to carefully place a glued chip
(SiN membrane chip on empty Si chip, see chapter 8.9) and clamp
it to the spacer with metal or Teflon clamps, see figure 9.6 c). These
clamps can be fixed via screws onto four indentations, which are four
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Figure 9.6: CAD drawings of the optomechanical cavity. a) and b) show a
sectional view from the front and back of the cavity. The length of the cavity
(mirror to mirror) is 5.5 mm and the diameter of the full spacer is 5 cm. The
mirrors are clamped uniformly onto the spacers by means of a ring. c) The Si
chip to which the SiN phononic bandgap membrane is glued, is fixed onto
the flat end-mirror by clamps. Four long screws running through a hollow
cylinder and a spring are used to fix the spacers to each other during the
alignment procedure. The springs are short-circuited by the cylinders when
the spacers are finally bolted together.

small areas on the outer part of the spacer A, each shifted by 90° with
respect to each other. These areas also offer space for small sized sil-
icon diode based temperature sensors from Lake Shore Cryotronics
[9] for thermalization measurements close to the membrane.

The second spacer (B) contains the input coupler, which is a 0.5
inch (diameter) mirror with 10 cm radius of curvature. The input cou-
pler is also fixed to its spacer via a ring clamping it to an indented
part of the coupler. Additionally, the outer side of the spacer con-
tains several threaded holes to fix temperature sensors or piezos for
shaking the spacer and exciting the membrane motion for ring-down
measurements. The two mirrors form a 5.5 mm long, hemispherical
optical cavity. The cavity waist (radius) is positioned on the flat mir-
ror, close to the membrane and has a nominal size of w0 = 88 µm.

Most of the metal parts, like spacer A and B, are made of copper
to achieve fast and good thermalization at cryogenic temperatures
below 10 K. This is assured by the choice of material, since copper has
roughly a thermal conductivity of about 400 W/mK, which is larger
than that of most other materials. Additionally, each connection of
different parts features a boundary resistance Rbd that determines the
temperature drop across an interface of two metals. It is a function
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of the microscopical contact area and the pressure applied to bolt the
two surfaces [113]. We carefully polish all areas such that heat will
be transferred across and tightly bolt them together. For polishing,
we start off with sandpaper and then apply fiber polishing paper to
reach µm-level roughness.

We use nickel plated screws out of brass, since brass has a good
thermal conductivity and a larger coefficient of thermal expansion
compared to copper, such that screw-joints will remain tight while
cooling down and not loosen during thermalization.

The optical properties are mainly given by the reflectivities of the
mirrors and are summarized in table 9.1. The end-mirror has a nomi-
nal transmission of T2 ≤ 2 ppm and the input coupler transmission is
T1 ≈ 950 ppm. These parameters are chosen to ensure a single-sided
cavity, even in the presence of additional losses due to scatter, absorp-
tion, tilt or diffraction of the membrane and due to the fact that the
membrane is slightly off the cavity waist position due to the finite
thickness of the chip. The nominal (calculated from the data sheets
of the mirrors) empty cavity Finesse is Fempty ≈ 6600. The empty
free spectral range of ωFSR/2π = 27.3 GHz is given by the nomi-
nal cavity length of L = 5.5 mm. The deduced cavity line width is
κ/2π = 2.1 MHz, keeping us in the so called bad cavity limit (ωm < κ)
and ensuring efficient scattering into the Stokes and anti Stokes side-
bands for a resonant laser drive. The cavity parameters are listed and
compared to experimentally obtained values in table 9.1.

In summary, we chose a quasi monolithic cavity design to ensure
optimal mechanical stability, a short resonator length to increase the
single photon coupling strength and to minimize the heat-load onto
the Helium flow cryostat and achieve good thermalization.

9.2.1 The alignment procedure

The costs of leaving out any positioners and piezos are plain, e.g.
in situ re-alignment of the cavity or the membrane during a cool-
down is not possible. Furthermore, the microscopical placement of
the membrane with respect to the standing wave is random for each
cool-down.

Fortunately, the design proves to be very stable such that all the
downsides do not impose serious problems. Once correctly aligned,
membrane tilt does not occur, even after several cool-downs, which
can be necessary to reach the maximum coupling strength as every
cool-down is random. No increase of optical (finesse) or mechanical
losses have been observed over the course of weeks and over 10 cool-
downs.



9.2 experimental design : membrane at the end 113

As mentioned earlier, placing the membrane in the center of the
Fabry-Pérot cavity proved to be difficult to align in the first place
and it regularly suffered from membrane tilt during cool-downs. The
two mirrors need to form a stable cavity mode and, in addition to
that, the membrane needs to be aligned properly in several ways: The
membrane needs to be placed into the cavity waist laterally (which is
defined by the position of the flat end-mirror) as it behaves like a par-
tially reflective flat mirror and will introduce losses the further it is
away from the end-mirror. Then, the membrane must properly over-
lap with the cavity waist transversally (effective mass) to optimize the
coupling. On top of that, the membrane must not exhibit any tip and
tilt with respect to the cavity axis as that would significantly distort
the cavity mode and decrease the finesse of the optomechanical cavity.
These challenges are partly illustrated in figure 9.4 a) to d).

In contrast, when placing the membrane directly onto the flat end-
mirror, significant tilt was only observed once out of two dozen in-
stallments (if following the membrane gluing procedure from chapter
8.9). In terms of internal alignment, only the input coupler needs to
be aligned correctly to build up a cavity mode and to hit the mem-
brane in its center. The membrane then automatically sits within a
couple of µm close to the cavity waist (transversally) and all other
alignments remain to be externally. Also, small misalignments dur-
ing a cool-down can be addressed by external re-alignments that are
accessible at all times.

The common alignment procedure is outlined in the following and
diagrammed in figures 9.6 and 9.8, which help understanding the
procedure:

• Align the laser beam externally by a set of mirrors and a lens
system, i.e. mode matching. Guide the beam straight through
the center of the cryostat windows in a plane parallel to the
optical table. Use the lens system to focus the beam at the lateral
position of the end-mirror by using a laser viewing card or a
camera.

• In transmission of the cryostat’s rear window, collect the light
from the laser and from an LED and produce a sharp image
at the position of the CCD camera (see figure 9.8). Align the
camera by means of tip and tilt (perpendicular to the light) and
transversal translation to hit the center.

• Mount the end-mirror with membrane chip (spacer A) onto
the adapter plate into the cryostat. Fix the spacer at a position,
where the incoming beam is reflected back into itself and the
residual transmission through the end-mirror and the LED light
produce a clear image in the CCD.
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• Align the reflected light onto the Pound-Drever-Hall locking
detector by the mirror set and lens system.

• Add spacer B and the input coupler (IC). It is helpful to use the
cooling beam (see chapter 5.4) at this stage, because it can be
swept by a 40 GHz > ωFSR modulation to scan over a full free
spectral range of the cavity.

• The screws used to fix spacer B to A are not directly pressing the
two spacers onto each other, but are running through a hollow
cylinder and a spring. The dimensions are chosen in a way, that
when tightening the screws, the springs will kick in first and
hold the full spacer together, while offering the opportunity to
align the input coupler in the plane perpendicular to the beam
direction.

• A good starting point for achieving a cavity power build-up is
to initially place the IC in a way that the direct reflection of
it hits the PDH detector. Move the IC around until the TEM00

cavity mode is found on the CCD.

• Next, the cavity mode needs to hit the center of the membrane
by transversally shifting the IC. This can be done manually by
hand or by means of a set of µm precision positioners attached
to the IC by an additional adapter plate.

• The four screws can be slowly tightened, up to the point where
the hollow cylinders bypass the springs and rigidly fix all parts
together to form a quasi monolithic block.

• External mode matching can be optimized by means of maxi-
mizing the coupling into the TEM00. Eventually, it is necessary
to slightly optimize the PDH detector and the CCD camera po-
sitions after mode matching.

This procedure leads repeatedly to a well aligned and stable mem-
brane at the end cavity. The whole procedure may take as little as
several minutes overall, including opening and closing the cryostat
and pumping the chamber. Therefore, this system is also convenient
for testing purposes (e.g. Q measurements of several membranes) on
a daily basis.

9.2.2 The cryogenic system and thermalization

The optomechanical cavity needs to be placed in high vacuum, to
reach Q factors as large as 1× 107 and above (see the discussion of
air damping in figure 8.12), and it needs to be thermalized to tem-
peratures as low as ≈ 10 K to reduce the average number of phonons
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Figure 9.7: The cryogenic setup. a) A CAD drawing of the vertically
mounted cryostat, which is partly transparent for better visualization. The
optomechanical cavity (OMC) is mounted on the gold plated cold plate. A
copper thermal shield covers the membrane and is also thermalized at the
base temperature to serve as an 4 K environment for the OMC and limits
room temperature radiation heating up the membrane. The final temper-
atures at which the membrane typically thermalizes are between 8 and
10 K. The lid contains a viewport for optical access and is tightened by
turning on the vacuum pump and compressing a Viton o-ring seal. b) Pic-
ture of the cryostat with mounted Helium supply and return pipelines. The
feedthroughs feature wires for vacuum and thermal sensors as well as a
piezo. c) Close-up of the open cryostat without thermal shield and lid. The
OMC (without input coupler) is shown and the membrane (with its bandgap
structure) is placed at its center.

in the membrane. The cryostat serves that purpose and basically re-
duces n̄γ in the quantum cooperativity.

In the experiment presented, we use a liquid Helium continuous
flow cryostat from Janis Research Company [7] with the sample
placed in vacuum. The full system is illustrated in figure 9.7 and
consists of a cold finger (plate), radiation shield, sample holder,
feedthroughs and a cryogenic transfer line for the liquid Helium sup-
ply. The incorporation of the cryogenic system into the remainder of
the experiment can be seen in figure 9.8.

The transfer line can be connected to a liquid Helium dewar to sup-
ply the cryostat with Helium and cool it down to temperatures as low
as 4.2 K. During the cool-down the low temperature liquid will boil
and the gas will leave the system via the return line. During this pro-
cess, the boiling will cause large vibrations that can be seen as a jitter
in the error signal of the OMC. After thermalization of the cold plate
the system becomes vibrationally quite as it does not include any
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moving metal parts, i.e. compared to a pulse-tube system. Together
with the quasi monolithic design of the optomechanical cavity, the
laser stabilization onto the cavity yields long-term stability enabling
long measurement runs without interruptions.

The feedthroughs enable us to lay wires into the sample chamber.
These include wires for temperature sensors for measurements at the
cold plate and directly at the OMC and a voltage supply for a piezo
used for ring-down measurements. Additionally, a vacuum sensor is
connected to determine the vacuum level reached inside the chamber
as well as a vacuum hose connected to the pump-station. The hose
is cemented to damp mechanical vibrations of the pump-station and
limit their impact on the cryogenic system. We use a pump-station
from Pfeiffer Vacuum Technology AG [8] consisting of a scroll pump
to provide the necessary pre-vacuum for the turbomolecular pump,
which reaches levels as low as 1× 10−5 mbar at room temperature.
After cooling down the system, cryogenic pumping will kick in and
the final vacuum reached is below < 1× 10−6 mbar. The vacuum is
limited by residual outgassing of components and the vacuum seals
in use.

The final temperature of the membrane is usually between 8 to
10 K. Apart from the low vibrations, another upside of this cryostat is
a quick cool-down time of around 30 min. The membrane finally ther-
malizes after roughly 60 min, which can be monitored by the shift
of the resonant frequency due to the contractions while cooling. A
heater is included to rapidly heat-up the system overnight, such that
cool-downs on a daily basis are possible. The only downside com-
pared to a closed cycle pulse tube cryostat or a dilution refrigerator
is that it cannot be run indefinitely as the cool-down is limited to the
amount of liquid Helium in the dewar, e.g. typically one day.

9.3 characterization of the system

After introducing the optomechanical system, it is time to character-
ize it and bring it into the strong cooperativity regime. A simplified
schematic of the different tools present to characterize and operate
the optomechanical system are illustrated in figure 9.8.

9.3.1 The optical parameters

Mode matching

After following the alignment procedure from the last section, we
start with the mode matching of the optomechanical cavity. The mode
matching is defined as the ratio between the amount of power cou-
pled into the TEM00 mode of the OMC and the sum of all modes. A
straightforward way to do this is by locking the laser to the cavity and
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Figure 9.8: Simplified schematic of the optomechanical cavity setup. The
optomechanical cavity is placed within the Helium flow cryostat. A scroll
pump and a turbomolecular pump reach high vacuum before the cryostat
can be cooled. A piezo, temperature sensors and a vacuum sensor are con-
nected inside of the cryostat via feedthroughs. The cavity can be pumped
by the main signal beam at 1064 nm and by the cooling beam shifted by one
free spectral range of the cavity (see chapter 5.4). Both beams can generate a
Pound-Drever-Hall locking signal and therefore be used for stabilizing the
laser to the cavity. A third beam, the Q measurement beam from a different
laser source at 1550 nm can be used to probe the membrane displacement
without imposing cavity optomechanical effects such as cooling and heating.
Each beam features a spare electro optical phase modulator (EOM) for the
generation of single frequency sidebands or sweeping sidebands for probing
purposes. All three beams have a respective homodyne detector for detect-
ing the phase quadrature, while the signal beam also has a detector for the
amplitude quadrature to reconstruct the state of the system or correlation
measurements described in part five of this thesis. A red LED is used to
illuminate the membrane. Two CCD’s in transmission of the cryostat can be
used for imaging of the membrane and cavity mode: with one CCD sensitive
at 1064 nm and the other at 1550 nm.

monitoring the DC channel of the PDH detector on an oscilloscope.
Since the laser piezo is only able to scan over a small fraction of the
full free spectral range (FSR), it is necessary to slowly tune the laser
temperature over one FSR while rapidly scanning the laser simulta-
neously. A specific cavity mode can be identified by looking at the
image of it on the CCD (see figure 9.8 in transmission of the OMC).
The voltage of the PDH resonance is proportional to the power of the
light mode, such that the measurement of all voltages Vm,n for all res-
onances (m, n) seen on the PDH detector can be used to calculate the
mode matching of the (0, 0) mode via the relation

MM(0,0) = ∑
m=0

∑
n=0

V0,0

Vm,n
, (9.10)

while n and m are the mode numbers and run from zero to the high-
est mode visible on the detector. It is useful to look at the height of
the error signal (see chapter 7) instead of the resonance (cavity dip),
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as the noise on the error signal is filtered and the signal is ampli-
fied, yielding a better signal to noise ratio and more accurate mea-
surements. For symmetry reasons, the (1, 0) and (0, 1) modes need
to vanish, when the (0, 0) mode is aligned perfectly. Once the mode
matching reaches values above 90 %, we found best performance by
minimizing the (1, 0) and (0, 1) modes.

If membrane tilt (compare figure 9.4 c) and d)) is minimal, it is
possible to reach mode matching values of mm(0,0) ≥ 95 %, which is
limited by a combination of residual membrane tilt, residual diffrac-
tion at the membrane window and small mode distortions by the
curved (10 cm) input coupler.

A good mode matching is important for two reasons. Any light not
coupled into the fundamental mode of the cavity does not interact
with the membrane. Also, it is reflected back to the PDH detector
and decreases the signal to noise ratio of the locking detector and
therefore also the feedback and the stability of the optomechanical
system.

Note, that during a cool-down, all spacers and screws will slightly
contract and move relatively to each other. Therefore, it is ideal to
measure and optimize the mode matching after cooling down and
before continuing with further measurements.

Free spectral range and cavity length

Considering the relatively short (nominal) cavity length of just
5.5 mm, errors in the manufacturing of the spacers, polishing of
all parts and contraction while cooling, can lead to a significantly
different cavity length and FSR.

One straightforward method to determine the FSR is by sending
two independent beams onto the same resonance of the optomechan-
ical cavity, and then shifting the frequency of one beam until it enters
the cavity at the next resonance. Then, the FSR is equal to the fre-
quency difference of the beams.

We do exactly this by sending the signal beam in and tuning the
temperature of the laser until it resonates. Then the cooling beam
is sent to the OMC and its modulation frequency is swept until the
adjacent resonance is found.

Both modes can be monitored on the oscilloscope by measuring
the DC channel of the PDH detector. This measurement method is
slightly corrupted by the small birefringence between the different
polarizations of the two beams. This effect can be accounted for, by
intentionally changing the signal beam’s polarization and measuring
the frequency difference between its vertically and horizontally po-
larized parts. However, the measured effect is on the order of several
MHz and negligible, since it is smaller than one percent of the nomi-
nal FSR.
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Figure 9.9: Cavity line width from error signal fit. The main signal beam
with PDH sidebands at ± fmod is scanned over the cavity resonance. A mea-
surement of the error signal taken with an oscilloscope is depicted in light
purple and a fit of the PDH error signal is plotted in dashed dark purple
lines. The distance of the outer zero-crossings correspond to twice the mod-
ulation frequency and can be used to calibrate the time-axis into absolute
frequency units. The difference of the turning points of the centered zero-
crossing is equal to the full width at half maximum (2κ) of the carrier light.
These two distances are depicted in green and can be compared to each
other to determine the cavity line width κ.

The measured empty cavity free spectral range is ωFSR/2π =

28.947 GHz, which corresponds to a cavity length of L = 5.18 mm.
This value is needed together with the cavity line width to determine
the cavity finesse and optical losses of the system as will be shown in
the following section.

The cavity line width and optical losses

The second important optical parameter is the optical cavity line
width. It enters the quantum cooperativity directly and can be, to-
gether with the FSR, used to calculate the finesse of the cavity and
therefore the additional internal cavity losses.

We present two methods to determine the line width. The first is
by using the PDH modulation frequency as a frequency-ruler and the
second is by sweeping a weak probing sideband over the resonance.

The first method, takes advantage of the fact, that we exactly know
what the PDH modulation frequency is, in our case ωmod = 2π ×
20 MHz. This method is useful to quickly measure the line width and
determine the losses of the system after alignment or after thermal-
ization during a cool-down. On the other hand, it is susceptible to
the exact phase relation between the modulation and demodulation
signals of the error signal, and is also affected by the nonlinearity of
the piezo while scanning over the full range.
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The PDH method is based on the fact that the Pound-Drever-Hall
error signal features three zero crossings when the laser frequency
is swept over the cavity resonance. One at the carrier frequency and
two at fmod = ±20 MHz with respect to the carrier. The frequency
difference between these sidebands is precisely known as we set it
with a function generator. This information can be used to calibrate
the x-axis of the oscilloscope traces (time). The turning points of the
zero-crossing of the carrier beam is equal to the full width at half
maximum (2× κ) of the cavity resonance. The latter can be compared
to the known frequency difference of the sidebands to calculate the
cavity line width κ. It is important to carefully choose the relative
phase of the modulation and demodulation signals of the detec-
tor and fit the error signal to retrieve the distance of the sideband
zero-crossings (= 2 fmod = 40 MHz) and the distance of the turning
points around the centered zero-crossing of the carrier. Comparing
these distances yields the cavity line width κ. Figure 9.9 gives an ex-
ample of measurement data and its fit. Since we determined the free
spectral range independently, we can now calculate the cavity finesse.

The second method to determine the cavity line width makes use
of a probing sideband that is swept over the cavity resonance. This
scheme is equivalent to a measurement of optomechanically induced
transparency (OMIT), which is the radiation pressure based optome-
chanical analog of electromagnetically induced transparency (EIT) in
atomic physics. It is the effect of the reflection of a weak probing
beam on cavity resonance due to destructive interference with the
anti-Stokes scattered photons of the red-detuned pump beam [76,
140].

The optomechanical cavity is locked on resonance by a weak sig-
nal beam. The cooling beam (chapter 5.4) is placed red-detuned
with respect to the cavity resonance. Another electro optical phase
modulator (EOM) is used to create sidebands on the cooling beam
that are continuously sweeping from the carrier towards higher and
lower frequencies. The upper sideband probes the cavity resonance.
The cooling beam and its upper probing sideband are measured by
homodyne detection in reflection of the cavity. The signal is then
measured by a network analyzer, which compares the homodyne
signal to the sweep that is used to generate the sideband. Figure
9.10 illustrates a measurement of the magnitude and phase of the
signal. These measurements are divided by a measurement far off
resonance, such that spectral features (transfer functions) of the de-
tector, the EOM and other electronics are accounted for. Fitting a
Lorentzian to the cavity dip in magnitude and the turning points of
the phase yields the line width κ. The resulting finesse is 6499± 316,
which matches very well with the nominal value of 6500.
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Figure 9.10: Sideband probing of cavity resonance. Measured magnitude
a) and phase b) of the light reflected off the optomechanical (light purple)
cavity. The cooling beam is red-detuned and at DC frequency. The probing
sideband sweeps over the cavity resonance and maps the line width in its
amplitude response in a) and in its dispersion shaped phase response in b).
A fit of both functions is plotted in dashed dark purple lines: The distance
to cavity resonance (i.e. minimum in magnitude and zero-crossing in phase)
is 14.67± 0.149 MHz and the finesse is 6499± 316, which matches very well
with the nominal value of 6500.

The DC trace of the same PDH detector, together with power meter
measurements of the incoming, reflected and transmitted light, which
are proportional to the squares of the amplitudes ain, aref and aout (see
figure 9.1 for reference), and their relations, equations 9.5 and 9.6, can
be used to determine the power transmission of each mirror and the
total losses of the system. A third independent equation for our three
unknown variables is given by the finesse F ≈ π/(1− r1r2) of the
cavity [16].

The results for κ, F , t2
1, t2

2 and the losses δ for the optomechanical
cavity (with and without a SiN membrane incorporated) can vary a
lot. The empty cavity is, for instance, heavily dependent on how clean
the mirrors are. We use a polymer called First Contact [11] to remove
dust and other large particles from the mirror coatings that otherwise
could scratch it while cleaning it. After using the polymer solution,
one can use lense paper and acetone to clean the surface. A good way
to dry the coating without leaving residuals and produce stains on
it is by blowing off the acetone with a clean source of Helium/Nitro-
gen until the whole surface is dry. With the membrane incorporated



122 optomechanical cavity

on the other side, any misalignments, i.e. membrane tilt, can yield
a significant decrease of the finesse (increase of κ) due to additional
losses.

Average results for the empty cavity finesse are around Fempty ≈
6500 and around F ≈ 6200 for the full optomechanical cavity. We
believe this is mainly limited by diffraction at the membrane window,
the membrane being slightly off the cavity waist and residual tilt,
scattering and absorption. A full set of measurements and fits can be
found in table 9.1.

Two methods to measure the cavity line width and determine the
cavity finesse have been presented. The PDH locking signal method,
which is a quick method after re-assembling the optomechanical cav-
ity. And the probing sideband method that yields more accurate re-
sults and that is less susceptible to error sources. Next, I showed how
to obtain the mirror transmissions and internal cavity losses. The re-
sults are summarized in table 9.1 and are in good agreement with the
designed values and data sheets of the mirror coatings.

The cavity line width is κ/2π ≈ 2.34 MHz > 1.2 MHz = ωm, such
that the optomechanical system is operated in the bad cavity regime,
which is a necessary condition for the efficient application of the en-
tanglement protocol discussed in chapter 10. In addition, the cavity
length has been successively reduced until reaching the current value
of 5.18 mm. A short cavity length increases the single photon coupling
strength that is discussed in the following section.
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parameter , symbol empty membrane

Cavity length, L 5.18 mm -

(5.5 mm)

Free spectral range, ωFSR/2π 28.95 GHz -

(27.3 GHz)

Cavity line width, κ/2π 2.25 MHz 2.34 MHz

(2.1 MHz)

Finesse, F (PDH method) 6438

(sideband probe) 6499 6179

(6500)

Input mirror transmission, T1 936 ppm 960 ppm

(950 ppm)

Output mirror transmission, T2 0.7 ppm 0.4 ppm

(<2 ppm)

Additional losses, δ 38 ppm 56 ppm

Table 9.1: Nominal and measured optical cavity parameters extracted from
the error signal and sideband probing. Results of the PDH error signal
method for determining the optical line width (see figure 9.9) and cavity
finesse. Power meter measurements of the input, transmitted and reflected
light yield the power transmissions of the mirrors and the additional losses.
The power transmission of the mirrors are in good agreement with the nom-
inal values given in parentheses.
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9.3.2 Single photon coupling and cooling

The goal of this section is to determine the single photon coupling
strength g0 as it determines how strongly a single photon interacts
with the membrane. The presented approach utilizes the effects of
optomechanical radiation pressure cooling on the mechanical reso-
nant frequency ωm and mechanical damping γ. I will first provide a
short description of the physics, explain the experimental procedure
and then discuss measurements.

The starting point is the classical version of the set of linearized
optomechanical equations of motion, given by taking the average of
their quantum counterparts from chapter 4.2.1. These equations can
be solved in frequency space (Fourier transformation) and in the pres-
ence of the optomechanical interaction leads to a modified version of
the interaction free mechanical susceptibility χ(ω), which has been al-
ready derived in chapter 8 equation 8.16. The real and imaginary part
of the modified susceptibility lead to modifications of the resonant
frequency δωm(ω) and impose an additional damping rate γopt(ω)

onto the mechanical oscillator [27], reading

δωm(∆) = n̄cavg2
0

2∆
κ2/4 + ∆2 , (9.11)

γopt(∆) = n̄cavg2
0

(
κ

κ2/4 + (∆ + ωm)2 −
κ

κ2/4 + (∆−ωm)2

)
,

(9.12)

which assume a high Q oscillator (Q � 1), the so called bad cavity
limit (κ � ωm) and a weak laser drive (κ � g), which are all given in
the system presented here.

The modification of the resonance frequency

ωm,eff = ωm + δωm(∆) (9.13)

is the so called optical spring effect [72, 98], and the additional optical
damping term leads to an effective mechanical damping

γeff = γm + γopt(∆). (9.14)

Depending on the laser detuning ∆, the optomechanically added
damping rate can flip its sign and either increase the effective damp-
ing and cool the oscillator motion (red-detuning) or cause anti-
damping and heat the oscillator motion (blue-detuning), compare
with chapter 4.2. In the sideband resolved regime κ � ωm, the ratio
of cooling (anti-Stokes) to heating (Stokes) photons can be improved
and efficient cooling as well as ground state cooling can be achieved
[117, 126].
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Figure 9.11: Noise power spectra for a sideband cooled mechanical mode.
Cooling power of 2 mW in green and 4 mW in blue. Note, that the x-axis
is shifted by 1.2 MHz and the blue curves by another 2 kHz for a clearer il-
lustration. Measurements starts far off red-detuned (≈ −10 ωm) with almost
no cooling effect and with strongest interaction at −ωm (darkest traces). The
shift of the resonant frequency as well as the broadening mechanical line
width are clearly visible and used to determine the single photon coupling
strength in figure 9.12.

Experimentally, the cooling beam is used to lock the laser to the op-
tomechanical cavity (OMC) and the signal beam is used for cooling.
Note that for this measurement cooling and signal beam change their
roles, because here we want to characterize the coupling strength of
the signal beam, as the coupling comes from the cooling effect, which
can be slightly different for the two beams due to different polariza-
tions and mode matchings.

The goal is to measure δωm(∆) and γopt(∆) as a function of detun-
ing and fit equations 9.11 and 9.12. The cavity line width κ has been
measured independently (see section 9.3.1) and the number of cavity
photons n̄cav can be retrieved by power meter measurements of the
incoming light. Therefore, the single photon coupling strength g0 is
the only free parameter to be fitted.

Noise power spectra of the fundamental mechanical mode are mea-
sured for a set of different detunings ∆ (see figure 9.11). These spectra
are fitted to obtain the full mechanical line width γeff of the mechan-
ical peak and the modified resonant frequency ωm,eff. These, in turn,
are plotted and fitted in figure 9.12 a) and b). A fit of this data set
yields a single photon coupling strength of g0 = 2π × 46.2 Hz. This
is the single photon coupling strength obtained by a 2 µW cooling
beam coupled to the fundamental resonance of a membrane with
resonant frequency 2π × 1.2 MHz. This value is very close to the
maximum theoretical value of 47 Hz calculated via equation 9.8 for
5.18 mm cavity and 2π × 1.2 MHz membrane sitting in the center of
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Figure 9.12: Radiation pressure sideband cooling to determine the single
photon optomechanical coupling strength. Optical spring effect, that is the
shift of the mechanical resonance frequency, in a) and the full mechanical
damping rate in b). The data is taken from fits of noise power spectra mea-
sured for different detunings ∆, a subset of these spectra is plotted in figure
9.11. Data is depicted in light purple and a fit of equations 9.11 and 9.12

is plotted in dashed dark purple lines. The resulting single photon optome-
chanical coupling strength is g0 = 2π × 46.2 Hz.

the optical intra-cavity mode.

At this point, I want to take a brief detour and discuss the amount
of cooling and the final phonon occupation number for the presented
noise power measurements in figure 9.11. Naively, one would assume
the ratio of phonon numbers to be inversely proportional to the ratio
of mechanical damping rates, i.e. n̄fin/n̄th = γm/(γm + γopt). How-
ever, the quantum back-action noise onto the membrane will produce
a fluctuating force onto the mechanical motion and therefore drive
the membrane, which is a heating mechanism. This effect leads to a
minimal number of phonons that reads n̄min = (κ/4ωm)2 [27], which
limits ground state cooling to systems operated in the sideband re-
solved regime [117], as (κ/4ωm)2 � 1 for κ � ωm.

Our system is not sideband resolved and operates in the bad cavity
limit. Strongest cooling is reached in the dark blue trace of figure
9.12. The red-detuning during this measurement was ∆ ≈ −ωm and
the final occupation number is

n̄fin =
γmn̄th + γoptn̄min

γm + γopt
= 13.1, (9.15)
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with γm = 1 Hz, γopt = 2346 Hz, n̄min = 1.27 and n̄th = 27635 at a
bath temperature Tbath ≈ 10 K.

Next, we address the fact that each mechanical mode has a differ-
ent mode shape and will therefore couple differently to the TEM00

cavity mode. We dealt with this fact by introducing the concept of
the effective mass in chapter 8.4, which replaces the physical mass
within the single photon coupling strength.

There are two approaches to determine the g0 for each mechanical
mode. One can either measure it in the way just presented for the fun-
damental resonance, which can be automated but yet still time con-
suming. Or, one can determine the displacement of the cavity mode
with respect to the membrane center and calculate the effective mass
of each mode, giving a correction factor to the coupling strength of
the first mechanical resonance [96]

g0,(n,m) = η(n,m)(x, y)g0, (9.16)

while (x, y) is the lateral displacement of the cavity mode with re-
spect to the membrane center and η(n,m) is a variation of the overlap
integral now applied to g0 instead of the mass as in equation 8.10. The
displacement can be retrieved by imaging of the membrane and the
cavity mode as shown in figure 9.4 c) and figure 9.13 b) and c). The
image is produced by red LED light shining through the optomechan-
ical cavity and producing an image on a CCD camera in transmission
of the cryostat. The overlap function can be calculated by

η(n,m)(x, y) = e−
w2

m
8 (n2k2+m2k2) sin(nkx) sin(mky), (9.17)

while k is the wave vector and wm ≈ w0 the beam waist at the mem-
brane position.

A list of single photon coupling strengths for a number of mechan-
ical modes is given in table 9.2. The calculations assume a coupling
strength of g0/2π = 40 Hz for the fundamental mechanical mode, i.e.
the (1, 1) mode. Moreover, the lateral shift (imperfect alignment) of
the membrane with respect of the cavity mode is 5 µm in one direc-
tion and 10 µm in the perpendicular direction. We use this method
during the evaluation of multimode entanglement measurements in
chapter 11.
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# (n, m) frequency fm (MHz) coupling g0/2π (Hz)

01 (1, 1) 1.183 40.0

02 (2, 1) 1.869 13.5

03 (1, 2) 1.872 7.08

04 (2, 2) 2.366 2.67

05 (3, 1) 2.643 18.0

06 (1, 3) 2.649 21.3

07 (3, 2) 3.015 3.75

08 (2, 3) 3.018 8.49

09 (4, 1) 3.445 13.9

10 (1, 4) 3.454 7.86

11 (3, 3) 3.550 12.4

Table 9.2: Single photon coupling strength for the first 11 membrane modes.
A g0 of 2π × 40 Hz is assumed for the fundamental mode. Moreover, the
membrane is considered to be shifted off the center of the cavity mode by
5 µm in one direction and 10 µm in the perpendicular direction. The modes,
frequencies and coupling strengths are for a real membrane used for entan-
glement measurements in chapter 11 and the g0 of higher order modes are
calculated by equations 9.16 and 9.17.

9.3.3 In situ Q measurements

Measurements of the mechanical quality factor have been discussed
in detail in chapter 8. However, for a full characterization of the exper-
iment during entanglement measurements, it is necessary to measure
the Q factor in situ: That is for a membrane incorporated within the
optomechanical cavity, inside the cryostat and at low temperatures.

While in principle it is possible to use the same approach as in
chapter 8, which is to excite the membrane by applying a modulation
signal onto a piezo clamped onto the cavity spacer at a position close
to the membrane, there are several additional points to consider.

First, the read-out must be done at a wavelength that does not expe-
rience the optical cavity when impinging onto the input coupler. The
slightest detuning from the cavity resonance would end up in signifi-
cant cooling and alter the ring-down time (γm → γopt). Therefore, we
use a second laser source at a different wavelength where the reflec-
tivities of the cavity mirrors are too low to yield to a cavity build-up
and therefore too low for optomechanical radiation pressure effects.
The laser model is a Cobrite fiber laser from ID Photonics GmbH
[12] at 1550 nm, which is amplified by a fiber amplifier to roughly
≈ 100 mW. A homodyne detection scheme for this beam has been
implemented, see figure 9.8.
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Figure 9.13: In situ Q measurements and imaging. a) A ring-down Q mea-
surement for a phononic bandgap membrane excited by blue-detuned drive
of the optomechanical cavity. This measurement yields 7.68× 106. Imaging
of the phononic bandgap structure and the TEM00 mode in b) and TEM01
mode in c). The structured Si frame is visible in black, while the removed
parts are transparent (red). The center of each picture features the defect cell
with the mainly transparent membrane in its center (also in red). These im-
ages can be used to determine the displacement between cavity mode and
membrane for calculating the coupling strength of higher order mechanical
modes (or the effective mass). Subfigures d) and e) show the imaging of
the 1550 nm light. In d) the light is hitting the membrane directly, while the
beam is misaligned in e) to image the membrane position by scattered light.
Imaging is very important for Q measurements as the 1550 nm light does
not resonate and no other tools can be applied to hit the membrane directly.

Second, the phononic bandgap structure decouples the membrane
window in the defect cell from its environment. Therefore excitations
from a piezo are strongly suppressed until they reach the membrane,
compare with figure 8.14 c). Here, we used two alternative methods.
The first method relies on an intensity modulator in the 1550 nm beam
path that can strongly modulate the intensity of the light field with
the resonant frequency of the mechanics, effectively driving the mem-
brane by a modulated force on it. The second method uses the signal
beam, which can be slowly scanned over the cavity resonance and
drive the system once it is blue-detuned. Rapidly turning off the sig-
nal beam by a shutter and continuously measuring the membrane
motion via the 1550 nm light allows for an easy and reliable way to
excite phononic bandgap membranes.

Figure 9.13 a) shows a ring-down of the fundamental mode of a
phononic bandgap membrane measured with the blue-detuned sig-
nal beam method. The remaining figures show signal beam (b) and
c)) as well as the 1550 nm light in d) and e). Details are given in the
caption. The Q factor in this measurement is 7.68× 106. This value
is, after following the discussions from chapter 8, at the higher end
for a 340 µm sized membrane. It is also large enough to push the op-
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tomechanical system into the strong cooperativity regime as will be
discussed in the next section.

9.4 summary and the strong cooperativity regime

The mechanical oscillators have been introduced and discussed in
chapter 8, with focus on understanding the different mechanical loss
mechanisms and the improvement of the mechanical quality factor
for a multitude of mechanical modes. The results were consistently
large quality factors ranging between 4× 106 and 7.3× 106 for me-
chanical modes in a large frequency range from 1 to 4 MHz.

This chapter introduced the optomechanical cavity and studied the
optomechanical interaction of a thin SiN membrane placed inside a
high finesse Fabry-Pérot resonator. The realization of this system has
been presented as well as an extensive characterization of the full
optomechanical system and all parameters entering the quantum co-
operativity

C =
4g2

κγn̄
=

32h̄
π
× F

2Pin

λc
× Q

mωmkBT
. (9.18)

Here, the cavity line width κ and the average photon number that en-
ters the optomechanical coupling strength g =

√
ncavg0 are replaced

by the easily measurable input power Pin and cavity finesse F . The
mechanical line width γ is replaced by the resonant frequency ωm

and the quality factor Q, which are retrieved from the noise power
spectrum and ring-down measurements. And the average phonon
number is replaced by the bath temperature T.

For the measured and presented parameters in this chapter, an in-
put power of Pin = 10 µW leads to a quantum cooperativity of C = 1.0
and therefore Pin > 10 µW leads to operation in the strong coop-
erativity regime. This is the main experimental achievement on the
generation of entanglement in this thesis and it paves the way for en-
tanglement measurements that are following in the next part of the
thesis.



Part V

T O WA R D S O P T O M E C H A N I C A L
E N TA N G L E M E N T

The last part of this thesis is dedicated to the verification
of optomechanical entanglement by the membrane-in-the-
middle optomechanical system.

In chapter 10, we will briefly look at the history of pro-
posals for optomechanical entanglement protocols. Ulti-
mately, the pulsed-continuous entanglement protocol is
introduced, which is a variant of the pulsed protocol by
Hofer and Hammerer [69]. Whereas the pulsed protocol
has been successfully applied to LC circuits in the mi-
crowave regime [99], the pulsed-continuous protocol is
here applied to a continuous variable multimechanical
mode system in the optical regime. At the end of the
chapter, we will discuss the data acquisition and the most
important details of the calibration of the measured data.

Chapter 11 starts with showing several sets of evaluations
on simulated data including a model of classical laser
noise of the free-running laser as well as the detector char-
acteristics (frequency response). We will see that simula-
tions of a genuinely single mode system will yield entan-
glement when operated in the strong cooperativity regime.
This statement, however, is not true for a multimode sys-
tem. It will be shown that flattening the detector charac-
teristics as well as multimode evaluations are crucial for
the verification of entanglement with our multimode mi-
cromechanical membranes. Evaluations of measurements
are presented while operating the system in the strong
cooperativity regime. We will see that multimode evalu-
ations show promising results towards the verification of
optomechanical entanglement, yielding an entanglement
witness as close as 3 % to the entanglement bound that
needs to be crossed.
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The future prospects of the presented experiment are dis-
cussed in chapter 12. We will discuss low frequency laser
noise as an effect that corrupts the performance of the ex-
periment, as well as a larger cooperativity to improve the
generated entanglement. An elegant solution for the low
frequency laser noise problem is presented, as well as fea-
sible ways to increase the quantum cooperativity to a level
where we, with our current results and understanding, as-
sume to witness entanglement.

We will close the thesis with a summary of the main
achievements and results in chapter 13.







10
E N TA N G L E M E N T P R O T O C O L

This chapter provides a theoretical understanding of the generation
and verification of steady-state continuous variable entanglement in
optomechanical systems. For a general reading on quantum entangle-
ment I want to refer to Horodecki et al. [71]. An overview of continu-
ous variable entanglement with Gaussian states as being used in this
thesis is given by Adesso and Illuminati in [19].

The basic formalism on optomechanics is given in chapter 4, and
further reading on optomechanics can be found in the review article
by Aspelmeyer et al. [27]. The starting point for the protocol used
within the presented experiment is the work by Vitali et al. [136] and
Genes et al. [58].

The general idea for the so called pulsed-continuous entanglement
protocol that is used in this thesis goes back to the work on pulsed
entanglement by Hofer and Hammerer [69]. That work has been
extended to time-continuous systems in [66–68]. The code applied
to the experimental data has been developed by several individu-
als, mainly Jason Hölscher-Obermaier, who has described it in detail
within his thesis [70], Sebastian Hofer, Corentin Gut and Witlef Wiec-
zorek. Many of the presented plots in the following sections are based
on evaluations and simulations conducted by Corentin Gut.

We will see that this protocol, when applied to an inherently mul-
timode mechanical system such as the membrane in the middle
optomechanical topology, can generate and verify entanglement if
operated in the strong cooperativity regime. The main advantages
of this protocol are that it relies neither on ground state cooling of
the mechanics nor an (unstable) blue-detuned drive. It works in the
presence of sufficiently low classical laser noise and the verification
can be performed in post-processing.

The remainder of this chapter is mainly based on the linearized op-
tomechanical Hamiltonian (equation 4.11), the derived interactions
between light and mechanics for a red-detuned and blue-detuned
laser drive and the dynamics given by the quantum Langevin equa-
tions, section 4.2.1.

At the end of this chapter, the focus is put on the acquisition and
the post-processing of the experimental data. The goal is to prepare
the data obtained by dual-rail homodyne measurements which is sub-
ject to dark noise, detector efficiencies and homodyne visibilities, suf-
ficient to apply the covariance matrix formalism.

135
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10.1 generation of optomechanical entanglement

The generic optomechanical system is a cavity, consisting of an optical
cavity mode coupled to an end-mirror featuring a harmonic degree
of freedom. The interaction between these modes in the linearized
regime is given by the linearized optomechanical Hamiltonian (4.11).

For a blue-detuned drive, ∆ = +ωm, we expect enhanced Stokes
scattering onto the cavity resonance. This two-mode squeezing inter-
action generates correlated pairs of photons and phonons. Which, in
the right parameter regime, can generate measurable entanglement
between optical and mechanical quadratures.

Vitali et al. [136] consider the linearized Langevin equations for the
amplitude and phase quadratures of the light and mechanics and
derive the steady-state (4× 4) covariance matrix σij (3.17) in the pres-
ence of input quantum noise and thermal noise. Since we consider
Gaussian states and are restricted to linear operations, the covari-
ance matrix is sufficient to fully characterize the generated state. A
frequently used measure for bipartite entanglement with Gaussian
states is the so called logarithmic negativity EN , which verifies entan-
glement for EN (σij) > 0 [18, 20, 21]. By assuming stability conditions
by applying the Routh-Hurwitz criterion [46], robust optomechanical
entanglement for a sufficiently strong coupling can be obtained for
realistic experimental parameters.

However, we have seen that a blue-detuned drive can heat the me-
chanics and generate instabilities, even for the smallest input powers
and detuning, and this heating can prevent the system from develop-
ing a steady-state. For strong coupling, the rotating-wave approxima-
tion (RWA) breaks down and Stokes terms mix in, which heat the sys-
tem and cause instabilities. Additionally, Vitali et al. [136] assume that
the internal cavity and mechanical modes are experimentally accessi-
ble, which is not the case. These issues have been addressed by Genes
et al. [58] and Paternostro et al. [102]. The detection of entanglement is
realized by analyzing the mediated entanglement on the experimen-
tally accessible output light modes after exiting the optomechanical
cavity, effectively transferring the light-mechanics entanglement onto
light-light entanglement.

A red-detuned drive cools the mechanics and allows for stronger
pumping of the cavity. For properly designed experimental parame-
ters [58], a red-detuned pump can indeed generate steady-state op-
tomechanical entanglement, that is, by means of a strong pump very
close to the instability region. A discussion of the right parameters is
given by Hofer in [66–68]. Most importantly, he shows that generally,
operation in the strong cooperativity regime is a necessary condition
for entanglement.
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Figure 10.1: Pulsed protocol schematic. Two step pump-probe protocol. a)
Entanglement generation. A blue-detuned pulse is sent into the cavity. The
two-mode squeezing interaction is enhanced and will scatter photons onto
cavity resonance and create entangled photon-phonon pairs. The light cou-
pled out of the cavity will now contain photons on cavity resonance (yellow).
b) Entanglement swapping. A red-detuned pulse is sent into the cavity. This
time the beam splitter interaction is favored and scatters photons upwards
in frequency onto cavity resonance, effectively swapping the mechanical
state onto the the light field. Therefore, the light-mechanics entanglement is
mediated to light-light entanglement. This entanglement can be verified by
measuring both pulses which are time-wise separated and analyze them for
correlations, see main text.

10.2 pulsed entanglement generation and verification

A different approach by means of a pulsed pump-probe protocol,
originally presented in [69] and pictured in figure 10.1, avoids con-
tinuous heating that causes instabilities and prevents establishing a
steady-state. We do not apply this protocol experimentally, but it will
help to develop and understand the following pulsed-continuous
protocol that we use.

First, a blue-detuned pulse (∆ = +ωm) is sent into the optomechan-
ical cavity (see figure 10.1 a)). The cavity will favor Stokes scattering
and the interaction is dominated by two-mode squeezing equivalent
to parametric down-conversion. A blue-detuned photon at ωcav + ωm

will be annihilated and an entangled pair of a photon at ωcav and a
phonon at ωm will be created, effectively entangling motional quanta
of the oscillator with single photons in the intra-cavity mode.

The pulse will then exit the optomechanical cavity and contain the
entangled photon at the cavity resonant frequency, which is entan-
gled with the mechanics.

Second, a red-detuned pulse (∆ = +ωm) is sent into the optome-
chanical cavity (see figure 10.1 b)). Now, the cavity will favour anti-
Stokes scattering and the and the interaction is dominated by the
beam splitter interaction. A red-detuned photon at ωcav −ωm will be
annihilated and a resonant photon at ωcav is created by absorbing
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Figure 10.2: Continuous entanglement generation. The optomechanical cav-
ity with line width κ isdriven by a single beam close to the cavity resonance.
Since the cavity is operated in the bad cavity regime (κ > ωm) both, two-
mode squeezing (TMS) as well as beam splitter (BS) interaction will appear
simultaneously and continuously. The full signal reflected off the cavity can
be detected and appropriate filter functions can be applied to separate the
TMS (entangling) mode in time and frequency from the BS (read-out) mode.
These modes can be further analyzed in a similar way as in the pulsed pro-
tocol.

the energy of a photon at ωm and therefore effectively swapping the
mechanical state onto a photon in the intra-cavity mode.

The pulse will then exit the optomechanical cavity and contain a
photon that inherits the entanglement from the mechanics, which has
been entangled with the first blue-detuned pulse.

The entangled output modes can be detected by means of homo-
dyne detection and the entanglement can be verified by calculating
the correlations and an entanglement measure or witness. Discussion
of the full dynamics and the right parameter regime can be found
in [66, 67]. This pulsed protocol does not rely on the formation of a
steady-state such that it is stable by pumping with a blue-detuned
pulse. Moreover, the entanglement is unambiguous since the pulses
are separated in time and not overlapping.

This scheme has been successfully applied to a membrane capaci-
tively coupled to an LC circuit in the microwave regime [99].

10.3 pulsed-continuous entanglement protocol

We combine the previous ideas by generating entanglement with
a single, slightly red-detuned drive and a system operated in the
strong cooperativity regime. Verification is performed by applying
the pulsed protocol in post-processing.

Consider an optomechanical system in the bad cavity regime, ωm ≤
κ, driven close to the cavity resonance ωdrive ≈ ωcav as depicted in fig-
ure 10.2. The intra-cavity light mode is interacting with the oscillating
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membrane, which will lead to modulation sidebands at ±ωm. This is
analogue to the Stokes and anti-Stokes scattering picture discussed
earlier. Light scattered downwards in frequency results in two-mode
squeezing by generating a red-detuned photon at ωcav − ωm and a
phonon at ωm that are entangled. Simultaneously, upwards scattered
light will absorb a phonon and results in swapping of the mechanical
state onto a photon at frequency ωcav + ωm. Therefore, the genera-
tion of light-mechanics entanglement and its mediation to detectable
light-light entanglement occur in parallel. It is important to stress that
there is no inherent time-wise separation, but rather two spectrally
separated components.

The carrier light and the sidebands exit the optomechanical cavity
and are detected by the dual-rail homodyne setup. Time traces of
the amplitude and phase quadratures of the light are recorded for
post-processing. The main idea is to cut this data into blocks of a
given time period and analyze two consecutive blocks for quantum
correlations. This is done by correctly applying mode functions to the
signal in these two blocks.

A profound derivation and explanation of this method applied to
our system has been given by Jason Hölscher-Obermaier in [70] chap-
ter 5.3. I will solely render the most important details to provide an
understanding of the following results of simulations and measure-
ments of correlation data.

Consider the signal beam returning from the optomechanical cavity
and containing the red-shifted sideband (entanglement mode) and
the blue-shifted sideband (read-out mode) denoted by its annihilation
operator âsig. We introduce the following mode functions to extract
the correct sidebands

α(t) = Nα × exp(+iωmt)× exp(+Γt), t ≤ 0, (10.1)

β(t) = Nβ × exp(−iωmt)× exp(−Γt), t ≥ 0, (10.2)

in which Nα,β are normalization factors. α(t) is applied to the signal
âsig within the first block, whereas β(t) is applied to the second block.
The envelopes exp(±Γt) make sure to emphasize the end and be-
ginning of the first and second light mode respectively. Since at first
the correlations will be large and then get diminished over time, Γ
is closely connected to the mechanical decoherence rate. The rotating
terms ± exp(iωmt) make sure to select the correct sideband, which
is the red-shifted entanglement mode rotating at −ωm and the blue-
shifted read-out mode rotating at +ωm. The envelopes as well as the
rotating contributions are plotted in figure 10.3.
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Figure 10.3: Filtering effect of mode functions in time and frequency. A plot
of the mode function from equation 10.1 and 10.2 which are applied to the
signal âsig. For negative times, the mode function α(t) is applied to retrieve
the entangling mode, which is the light scattered into the red sideband (red
traces) by the TMS itneraction. For positive times, the mode function β(t) is
applied to retrieve the read-out mode, which is the light scattered into the
blue sideband (blue traces) by the BS interaction. Red and blue sidebands
are rotating with −ωm and +ωm respectively. Solid dark lines feature the
envelope of the mode function (absolute part). Light lines are used for the
oscillating real (solid) and imaginary (dashed) part, which are used to yield
the amplitude and phase quadrature of the resulting modes. Reproduced
from [70] (figure 5.1 in chapter 5.3).

By applying the mode functions onto the signal, new operators can
be defined that are separated in time and localized in frequency. Their
annihilation operators read

â(t) =
∫ 0

−∞
α(τ − t)âsig(τ)dτ, (10.3)

b̂(t) =
∫ +∞

0
β(τ − t)âsig(τ)dτ. (10.4)

We will refer these modes as the entanglement and read-out modes,
as their confinement in time and frequency makes them treatable in
a similar way as pulses in the pulsed protocol.

The amplitude and phase quadratures are derived by taking the
real and imaginary parts of the annihilation operators and read

Q̂ = <(â), P̂ = =(â), (10.5)

X̂ = <(b̂), Ŷ = =(b̂), (10.6)

in which we dropped the time dependence in the notations and use
Q̂, P̂ for the entangling mode and X̂, Ŷ for the read-out mode, respec-
tively, such that numeral indices remain free for denoting the various
mechanical modes that will create sidebands at numerous frequencies
in our multimode system.
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As in chapter 3 we can define the vector

R =
(
Q̂, P̂, X̂, Ŷ

)>
(10.7)

and the covariance matrix

σ =


〈Q2〉 〈QP〉 〈QX〉 〈QY〉

〈QP〉 〈P2〉 〈PX〉 〈PY〉

〈QX〉 〈PX〉 〈X2〉 〈XY〉

〈QY〉 〈PY〉 〈XY〉 〈Y2〉

−

〈Q〉2 〈Q〉〈Q〉 〈Q〉〈X〉 〈Q〉〈Y〉

〈Q〉〈P〉 〈P〉2 〈P〉〈X〉 〈P〉〈Y〉

〈Q〉〈X〉 〈P〉〈X〉 〈X〉2 〈X〉〈Y〉

〈Q〉〈Y〉 〈P〉〈Y〉 〈X〉〈Y〉 〈Y〉2

 ,

(10.8)

in which the top-left quarter corresponds to the entangling mode and
the bottom-right quarter to the read-out mode. Note that we drive the
cavity by a shot noise limited laser beam, i.e. a coherent state, while
the membrane is initially in a thermal state. Coherent and thermal
states are both Gaussian and we only apply linear operation on them,
such that the resulting modes are also Gaussian. Thus, the covariance
matrix is sufficient to fully characterize the produced state and we
can apply an entanglement witness like the logarithmic negativity to
quantify the correlations, i.e. optomechanical entanglement occurs if
EN (σ) > 0 [18, 20, 21]. In any case, a statement about entanglement is
connected to quantum correlations between a linear combination of
the measured quadratures. Moreover, entanglement is connected to
correlations that squeeze some quadrature of the above state below
the quantum shot noise level.

The presented approach can be readily expanded for a multimode
system. Appropriate entangling and read-out mode functions can be
defined similarly to equations 10.1 and 10.2, by adjusting the fre-
quency ωmi and envelope Γi for the i-th mechanical mode. These
mode functions can be applied to the signal âsig which contains side-
bands at each mechanical resonance that is interacting with the intra-
cavity mode. This procedure yields a pair of pulse modes âi(t) and
b̂i(t) for each interacting mechanical mode. Their quadratures Q̂i, P̂i
for the entangling pulse and X̂i, Ŷi for the read-out pulse enter a gen-
eralized vector

R =
(
Q̂1, P̂1, X̂1, Ŷ1, · · · , Q̂n, P̂n, X̂n, Ŷn

)>
, (10.9)

in which n is the total number of considered mechanical modes. The
covariance matrix is then defined as

σij =
1
2
〈

RiRj + RjRi
〉
− 〈Ri〉

〈
Rj
〉

, (10.10)

as introduced earlier in equation 3.17.
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The remainder of this thesis will show correlation measurements
and attempts to verify bipartite entanglement between light-light
pulses as defined during this section. To apply this protocol we will
need to plug the frequencies ωmi and envelopes Γi into an evaluation
code. The frequencies can be easily obtained by calculating the noise
power spectrum of the time traces, whereas the entanglement witness
(e.g. logarithmic negativity) can be evaluated and plotted for differ-
ent Γ, i.e. the spectral width of the pulses. The continuous variable
entanglement comes from the fact that we obtain a steady-state and
that independent of at what point in time we apply our analysis, it
should yield the same entangled quantum state.

10.4 data acquisition and post-processing

The dual-rail homodyne detection scheme provides us with the phase
and amplitude quadratures of the light modes. However, measure-
ments are not ideal and subject to unwanted noise sources and sig-
nals as well as frequency dependent transfer functions of the devices
that are used to measure and process the signals we are interested at.
We need to account for these effects and correctly calibrate the volt-
ages measured with the detectors. A measurement consists of three
different time traces: Signal traces of the light that is reflected off the
optomechanical cavity. Shot noise traces of the local oscillator. Dark
noise traces of the homodyne detectors.

I will discuss the main steps between the filtering, amplification
and acquisition of the homodyne signals and the post-processing and
calibration of the measured time traces.

Acquisition

The detection scheme and its characterization have been discussed in
chapter 6. The homodyne traces are measured with a NI PXI-5122

DAQ card from National Instruments [13]. The card has two input
channels and uses 14-bit resolution analog-to-digital converters. We
typically use an input impedance of 50 Ω to impedance match our
detectors, an input range of 200 mV and set a sampling frequency of
100 MHz with an external clock (function generator).

One has to consider the following points to appropriately and ef-
fectively use our data collection system:

• Avoid saturation that can damage the DAQ card: The mechani-
cal signals we are interested at are weak modulation sidebands
around a strong carrier field at DC frequency. The unfiltered
DC component will dominate the input of the card and there-
fore limit the voltage range and resolution of the small MHz
sidebands we are interested in, or even saturate and damage
the DAQ. We filter the DC component of the signal with a high
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Figure 10.4: Detector characteristics: Schematics and noise power spectrum.
a) Filtering scheme. Each detector signal is high pass filtered on the detectors
circuit board to prevent the following components from saturations. After
taking the difference of the photocurrents, the PDH modulation is filtered
by two notch filters. A high order low pass filter makes sure to filter all
signals before the Nyquist frequency to avoid aliasing effects. A voltage
amplifier makes sure to use the full input range of the DAQ where the
homodyne signal is measured. b) The resulting detector characteristics as
a noise power spectrum (phase detector). The high pass sits at a frequency
below ≈ 300 kHz and followed by the mechanical spectrum from roughly
1 − 15 MHz. Two notch filters at 20 MHz filter the PDH modulation and
a high order anti-alias filter is placed at frequencies ≥ 30 MHz to hit the
dark noise level of the DAQ just below the Nyquist frequency of fNyquist =
50 MHz. The filtering scheme as well as the resulting detector characteristics
are matched for both homodyne detectors.

pass filter on each individual photodetector. The high pass ag-
gressively filters the strong DC component as well as low fre-
quency laser noise with large amplitudes.

• Prevent aliasing effects: Aliasing is an effect that causes differ-
ent signals to become indistinguishable from each other when
sampled. This effect is observed if the sampling rate is smaller
than twice the largest frequency component on the measured
signal, the so called Nyquist frequency fNyquist = 0.5× fsampling.
We avoid aliasing effects by low pass filtering all frequency
components of our time series below the Nyquist frequency
fNyquist = 50 MHz according to a typical sampling rate of
fsampling = 100 MHz. We do this by low pass filtering the ho-
modyne signals with a high order filter model BLP-30+ from
[14], which passes signals from DC to its corner frequency at
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approximately 30 MHz and then aggressively filters the signal
down to the dark noise level at the Nyquist frequency.

• Avoid saturations of the DAQ due to the Pound-Drever-Hall
modulation frequency: The generation of the PDH error sig-
nal relies on a moderate modulation of the signal beam that is
sent onto the optomechanical cavity. This modulation at fPDH =

20 MHz is approximately 30 dB stronger than the mechanical
sidebands and would saturate the DAQ. We filter the PDH mod-
ulation by two narrow notch filters around 20 MHz, each with
an attenuation of ≥ 15 dB.

• Make use of the full input range and resolution of the DAQ:
As mentioned at the beginning of this section, we will need
to measure signal, shot noise and dark noise time series. Each
will feature a different noise power level and needs to be am-
plified by a different gain to make use of the full range of the
DAQ card. We use a low-noise variable-gain high-speed ampli-
fier from Femto [4] model DHPCA-100. Typical amplifications
are 30 dB, 40 dB and 50 dB for signal, shot noise and dark noise
time series and an input voltage range of 200 mV of the DAQ
card.

The full filtering scheme between the detection by the photodiodes
and the acquisition by the DAQ system is illustrated in figure 10.4
a) and the resulting detector characteristics in form of a noise power
spectrum is shown in figure 10.4 b).

Detector and electronics inversion

As discussed in section 10.3, a statement about entanglement is con-
nected to squeezing of some linear combination of quadratures mea-
sured in the experiment. Therefore, optomechanical signal measure-
ments need to be compared to shot noise measurements to calibrate
the measured signal traces in volt to units of shot noise, whereas the
variance of shot noise quadratures are typically set to 1/2.

We found that our analysis of time series data suffers from the de-
tector and subsequent electronic characteristics (see figure 10.4 b)) as
the measured shot noise is not perfectly flat. The physical intuition
as to why a non-flat detector response disturbs the calibration is the
following: Shot noise is a perfectly uncorrelated white noise source,
and phase and amplitude quadrature measurements will yield a co-
variance matrix with 1/2 on its diagonal, and zeros elsewhere. A non-
flat detector and electronics response will shape the shot noise noise
power spectrum and this will introduce spurious correlations that al-
ter the shot noise and its covariance matrix. Therefore, a non-flat shot
noise measurement is not appropriate to calibrate signal time traces
to shot noise units.
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Figure 10.5: Non-flat vs. flattened noise power spectra. Direct NPS of raw
signal and shot noise data in light blue (signal) and light yellow (shot noise).
NPS of the flattened, i.e. inversed filters applied to the raw data, NPS in blue
and yellow. The detector inversion is applied to the low frequency high pass
filter, the notch filters at the PDH modulation and the slightly descending
low pass behavior visible from approximately 10 MHz onwards. Note, that
the inversion applied to the signal trace does artificially increase the low
frequency laser noise.

An appropriate way to account for the non-flat detector and elec-
tronics response is by means of measuring and characterizing all fil-
ters that shape the recorded time trace characteristics, calculate the
inverted filters and apply them to the measured time series. Tobias
Westphal, a postdoctoral researcher in our group, suggested a proce-
dure for modeling filters based on poles and zeros. From a data set
of all electronics’ transfer functions and noise power spectra of shot
noise measurements, one can provide an inverse filter to flatten the
detector characteristics in post-processing. I provided the data and To-
bias Westphal modeled an inverse filter which can be applied to our
time series. The model included the high pass filter below 300 kHz,
the notch filters at 20 MHz and the slightly descending low pass be-
havior starting at approximately 1 MHz to 30 MHz before the aliasing
filter kicks in (see figure 10.4 b)).

The noise power spectra (NPS) for non-flat and flattened signal
and shot noise traces calculated from time series are depicted in fig-
ure 10.5. The resulting shot noise NPS is flat up to approximately
30 MHz with a small residual feature of the notch filters at 20 MHz.
This method greatly improved the performance of the shot noise cali-
bration of our data sets. The effect on the expected entanglement will
be shown and more deeply discussed in simulations in chapter 11.1.
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Calibration and post-processing

After the acquisition of experimental data and the inversion of the de-
tector characteristics, the signal traces that can contain entanglement,
need to be calibrated from units of volts to units of shot noise. There-
fore, the shot noise time series itself needs to be calibrated, including
the effects of dark noise, detector efficiencies as well as homodyne
visibilities.

The step-by-step procedure is given by the following list:

1. Shot noise conversion factor: The integrated shot noise limited
noise power spectrum (NPS) should lead to quadrature val-
ues of 1/2. We calculate the NPS of the measured shot noise
time trace and determine the bandpower in a frequency region
where the measurement is shot noise limited (see figure 10.5).
This bandpower density is then extrapolated over the full fre-
quency range from DC to the Nyquist frequency. A conversion
factor for the shot noise time series is obtained by multiplying
the full bandpower by the Nyquist frequency and forcing it to
be 1/2. The same calibration factor is used for the dark noise
time series.

2. Signal conversion factor: The signal time series might have a
different conversion factor, as all measurements need to be con-
ducted successively and the additional power in the signal as
well as small laser power drifts might change the shot noise
floor. The calibration factor is obtained in the same way as for
the shot noise with one important exception: The signal NPS
features mechanical resonances such that we restrict the shot
noise limited band power to be extrapolated to the widest shot
noise limited region, i.e. between the first and second mechani-
cal resonance.

3. Computation of the covariance matrices (CM): The CM’s of the
signal, σ, shot noise, σshot, and dark noise, σdark, time series are
computed in units of shot noise. Note, the shot noise CM should
be a diagonal matrix with entries of 1/2.

4. Dark noise correction: The dark noise is uncorrelated at the level
of CM’s. Therefore, the dark noise CM can be subtracted from
the signal CM, σ → σ− σdark , and the shot noise CM, σshot →
σshot − σdark.

5. Detector quantum efficiencies η and homodyne visibilities ν

have been both discussed in chapter 6. The quantum efficiency
of our detectors is η ≈ 95 %. Non-ideal quantum efficiencies
can be treated as an attenuation of the optical power. The ho-
modyne visibility, ν ≈ 90− 95 %, is a measure of interference
between the signal and the local oscillator at the homodyne
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beam splitter. Therefore, the homodyne visibility only enters
signal measurements and does not affect shot noise measure-
ments, which is only a measurement of the local oscillator, in
which no interference takes place.

The transformations of the covariance matrices of the signal and
shot noise are given by the following equations [70]:

σ→ σ− (1− ην2)σshot

η2ν2 , (10.11)

σshot →
σshot

η
, (10.12)

in which the shot noise CM on the right hand side of both equa-
tions is the uncorrected CM.

6. Shot noise correction of the signal: The dual-rail homodyne de-
tection scheme (see chapter 3.3) relies on adding a 50 : 50 beam
splitter to equally split the signal between the phase and am-
plitude homodyne detector. The open port of this beam split-
ter adds one additional shot noise unit on the signal time se-
ries. On the level of covariance matrices, the corrected signal
CM is obtained by subtraction of one unit of shot noise CM:
σ → σ− σshot. This is valid as the additional shot noise in that
open beam splitter port is uncorrelated to the signal coming
from the optomechanical cavity.

Summary

This chapter introduced the pulsed-continuous entanglement proto-
col that is applied to the presented optomechanical experiment. It
is based on a continuous wave interaction between the cavity light
mode and the multimode mechanical membrane placed inside the
cavity. The verification is applied to the light modes exiting the op-
tomechanical cavity, which are detected by a dual-rail homodyne de-
tection scheme. Mode functions are applied to the time series to spec-
trally and time wise defined pulses that are then analyzed at the level
of covariance matrices. We concluded by explaining the data acquisi-
tion, post-processing and calibration of the detected light modes.

The following chapter will provide results on simulations and ex-
perimentally obtained data, by applying the pulsed-continuous en-
tanglement protocol and the calibration procedure presented in this
chapter.





11
C O R R E L AT I O N M E A S U R E M E N T S

Our multimode optomechanical system has been introduced in chap-
ter 8 and brought into the strong cooperativity regime in chapter
9. Operating the experiment in the strong cooperativity regime
should enable the generation of continuous wave optomechanical
entanglement with the presented experiment. In chapter 10 a pulsed-
continuous entanglement protocol has been presented, which offered
a way to generate and verify such entanglement. Moreover, the data
acquisition as well as the required post-processing and calibration
steps, have been discussed in section 10.4.

This chapter presents the results of measurements taken in the
strong cooperativity regime. I will briefly summarize the experimen-
tal parameters in table 11.1, which are obtained by the methods pre-
sented in chapters 8 and 9. Then, several single mode and multimode
simulations are presented, emphasizing the necessity of evaluating
the multimode system to successfully verify the generated entan-
glement. The simulations are followed by experimental results of
measurements taken in the strong cooperativity regime. We finish
with discussions on the result of the experiment.

The resulting plots will feature an entanglement witness [52, 73],
that verifies entanglement when its experimental value is lower than
one shot noise unit (0.5), i.e. displaying squeezing of some linear com-
bination of the measured and post-processed phase and amplitude
quadratures. To prove that the system is performing accurately, we
will also evaluate shot noise time series, which should lie directly at
a witness value of 0.5.

All analysis, including the entanglement witness, is a function of
the spectral width, Γ, of the mode functions used to define the en-
tangling and read-out modes in the entanglement protocol (see chap-
ter 10.3). We expect the optimal Γ to be in between the mechanical
decoherence rate n̄γ and the optomechanical interaction rate g2/κ.
Whereas this condition is straightforward for the evaluation of a sin-
gle mechanical mode, this is non-trivial for multimode evaluations, as
each mode features its own interaction and decoherence rate. There-
fore, the witness is evaluated and plotted as a function of different
Γ, where wide Γ correspond to short pulses in time (susceptible to
too short interaction times) and narrow Γ correspond to long pulses
(susceptible to mechanical decoherence).

Note, that the code for the data evaluation as well as the simu-
lations have been written and used by Witlef Wieczorek, Sebastian
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Hofer and Jason Hölscher-Obermaier. Currently the code is main-
tained, improved and expanded by Corentin Gut, who ran the code
for the presented simulations and evaluations of experimental data.
I contributed with the experimental data presented in this chapter,
which were measured together with the aid of Joshua Slater.

11.1 entanglement simulations

This section is dedicated to the evaluation of simulated signal and
shot noise data using the experimental parameters in table 11.1. Two
important parameters that are not included in table 11.1 is the clas-
sical laser amplitude and phase phoise. These were included in the
simulations in accordance to measurements of the free-running laser
performance in transmission of the high finesse filter cavity, see chap-
ter 5 and the thesis of Jason Hoelscher Obermaier for details on the
measurements [70]. We will also compare a flat detector response to
simulations with a detector response that includes all the experimen-
tal filters.

The title of each figure will include information about whether a
single mode or multimode system is simulated. Furthermore, the title
includes the type of the detector characteristics, which is either non-
flat, i.e. the realistic detector response in the experiment, or flat, i.e.
flattened as described in chapter 10.4. If all traces feature the same
optical power, that value will be included in the title, otherwise the
input power is contained in the legend.

Evaluation of simulated signal time series will be plotted in differ-
ent shades of purple, shot noise traces are depicted in gray and a
light gray line at a witness value of 0.5 separates non-entangled data
points (≥ 0.5) from entangled data points (< 0.5).

The legend contains information about which mechanical modes
are included in the evaluation of the respective trace: ’Sig #1 20 µW’
indicates a single mode evaluation of the first mechanical mode and a
signal input power of 20 µW. Whereas ’Sig #1#2#3 100 µW’ indicates
a multimode evaluation of the first three mechanical modes (ordered
by frequency) and a signal input power of 100 µW.

We will start with the single mode case and a non-flat detector re-
sponse as encountered in the experiment. Single mode simulations
for different input powers are shown in 11.1 a) and feature entangle-
ment for an input power of 20 µW and a quantum cooperativity as
low as C20 µW = 2. Two additional features are displayed and impor-
tant in this figure: First, larger input powers not only lead to smaller
witness values, but also feature larger optimal pulse widths Γ (shorter
pulses). This is because the interaction rate g2/κ increases and the
quantum correlations build up over a shorter timescale. Second, the
evaluation of simulated shot noise data yields a witness value of 0.5 in
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parameter , symbol units value

Fundamental mode, ωm rad Hz 2π × 1.18× 106

Quality factor, Q 1 7.3× 106

Mechanical line width, γ = ωm/Q rad Hz 1.02

Bath temperature, Tb K 10

Thermal occupation, n̄ = kbT/h̄ωm 1 1.76× 105

Laser wavelength, λ nm 1064

Laser frequency, ωlaser = 2πc0/λ rad Hz 2π × 2.82× 1014

Detuning, ∆ = ωlaser −ωcavity rad Hz −2π × 200× 103

Cavity line width (HWHM), κ rad Hz 2π × 2.46× 106

Mode matching 1 0.93

Homodyne visibility, ν 1 0.95

Homodyne efficiency, η 1 0.95

Max. input power, Pin, µW 12

Single photon coupling strength, g0 rad Hz 2π × 40

Optomechanical coupling strength, g rad Hz 2π × 205× 103

Mechanical decoherence rate, n̄γ, Hz 28.5× 103

Interaction rate, g2/κ, Hz 8.57× 103

Quantum cooperativity, C = 4g2/κγn̄ 1 1.2

Table 11.1: Experimental parameters for the following entanglement evalua-
tions. All parameters were determined during one measurement run using
the methods presented in chapter 8 and 9. These parameter set is also used
for the following entanglement simulations in section 11.1. Note, that the de-
rived values for the optomechanical coupling strength, the interaction rate,
the mechanical decoherence rate and the quantum cooperativity are given
for the maximum experimental input power of 12 µW and for the funda-
mental mechanical mode ωm.
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accordance to theory. However, for large pulse widths the shot noise
curve falls below 0.5 and becomes correlated. The reason for that is
that if the pulses become too broad they start to probe frequencies of
the laser’s noise power spectrum where the shot noise is no longer
white, see light yellow shot noise trace in figure 10.4. This effect is
not problematic as long as the optimal pulse width lies in a region
with the correct shot noise behavior. If that is not the case anymore,
the detector characteristics need to be inverted to improve the results
of the evaluations by maintaining a flat noise power spectrum over a
wider range probed by broader pulses.

Experimental data, however, will not be single mode due to the
multimode nature of the SiN membrane, which can not be ignored.
Figure 11.1 b) presents simulations of a multimode membrane and
single mode evaluations of the first five (ordered by frequency) me-
chanical modes for 20 µW input power. A comparison of the funda-
mental mechanical mode (#1) in the single mode simulation, which
was entangled, to the multimode simulation, shows that a simple sin-
gle mode evaluation does not anymore demonstrate the quantum cor-
relations. In fact, all sufficiently strong interacting modes become cor-
related and we lose the quantum correlations by partially tracing over
all modes but the one we are interested at.

We will now attempt to demonstrate the quantum correlations
by taking into account the multimode nature of the mechanics by
multimode evaluations of the same simulated data. Figure 11.1 c)
shows simulated data for 20 µW input power (as in figure b) as well
as for 50 µW and 100 µW. The displayed traces show multimode
evaluations including the first three mechanical modes for each in-
put power. There are two notable results in these evaluations: First,
by only considering the first three mechanical modes, the signal
traces show genuine multimode entanglement in the sense that their
witness value falls below the threshold of 0.5, i.e. the three mode
evaluation for 100 µW yields a witness of approximately 0.46− 0.47,
which is very close to the single mode system for the same power
(approximately 0.45). Second, as the mode functions that define the
pulse modes grow in number or become broader, a broader frequency
range is covered by them. The broader the frequency span, the less
flat the total covered shot noise range probed by the modes becomes.
Therefore, the shot noise evaluation starts to show wrong behaviors
at smaller pulse widths and stronger than in case of a single mode
evaluation. Therefore, the entangled signal traces are not trustworthy.
To investigate this problem further, an inverse detector model was
applied to the simulated date in figure 11.1 c). The results of eval-
uations on the flattened simulations are shown in figure 11.2. The
figure shows that by flattening the detector response, a flat shot noise
trace is obtained and the signal traces show the expected behavior,
i.e. featuring an optimal pulse width that yields to entanglement.
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Therefore, the detector response needs to be fixed when we evaluate
experimental data by the same inversion procedure. Figure 11.2 also
shows single mode evaluations of the multimode system, which are
obtained by tracing out the second and third mode. The entanglement
vanishes as a result of this procedure. This means that multimode
evaluations are necessary for the verification of optomechanical en-
tanglement in our multimode system.

In summary, we compared single mode and multimode evaluations
of simulated data for single mode and multimode mechanical sys-
tems, while making sure to use experimentally feasible parameters,
the frequency response of our homodyne detectors as well as includ-
ing classical laser noise. The single mode evaluations showed that
while for a single mode system entanglement is generated and veri-
fied, that is not the case if only one mechanical mode is evaluated in a
multimode simulation. However, multimode evaluations can retrieve
quantum entanglement. This happens at the cost of a higher number
of mode functions. In this case, the evaluation of shot noise, which
acts like a benchmark for our evaluation protocol, artificially shows
entanglement because of the non-flat detector response (see figure
11.1 c)).

In terms of the evaluation of experimental data however, we expect
to generate entanglement when operating in the strong cooperativ-
ity regime. Moreover, the simulations indicate that the multimode
nature of the membrane needs to be considered by applying mul-
timode evaluations containing more than the fundamental mode of
the membrane. And finally, to produce trustworthy results, the non-
flat detector characteristics need to be fixed by the presented methods
in chapter 10.4.
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Figure 11.1: Comparison of single mode and multimode entanglement sim-
ulations. The entanglement witness is plotted as a function of pulse widths
Γ. The shot noise threshold separates entanglement data points (< 0.5) from
non-entangled points. Figure a) shows evaluations of a single mode sys-
tem for different input powers. Entanglement is clearly witnessed for input
powers as low as 20 µW. Figure b) shows single mode evaluations of the first
five modes of a multi mode simulation. The fundamental mode, and also the
next four following modes, if individually analyzed get fairly close to the en-
tanglement threshold set by the show noise. However, single mode analysis
of a multimode system does not yield entanglement, regardless regardless
of which mode one analyses. Figure c) shows that by considering several
mechanical modes in the evaluation, most of the entanglement is retrieved,
but at the cost of non-flat shot noise behavior. The results are discussed in
detail in the main text.
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Figure 11.2: Multimode simulations of flattened detector response. This fig-
ure shows the same multimode simulations as presented in figure 11.1 c).
The only difference is that before analysis the entanglement witness, we
first apply an inverse filter model to flatten the detector response. The re-
sult is a flat shot noise behavior, that does not dive below the entanglement
threshold of 0.5. Moreover, the signal behaves normal, i.e. it shows an opti-
mal pulse width that yields entanglement. Single mode evaluations of the
multimode simulations are displayed with dashed lines for all powers. The
single mode evaluations are obtained by tracing out the second and third
mechanical modes, which has the consequence that the entanglement van-
ishes. The conclusion for further evaluations of experimental data is that
both detector inversion and multimode evaluations are necessary to obtain
optomechanical entanglement in our multimode system.
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11.2 evaluation of experimental data

In this section, results of three different experiments will be presented
and discussed. The measurement runs were taken at input powers of
6, 9 and 12 µW, with corresponding quantum cooperativities C of 0.6,
0.9 and 1.2. The experimental parameters are summarized in table
11.1.

The results are presented as entanglement witnesses as a function
of pulse widths, i.e. the same way as for the simulations in section
11.1. As the simulations suggested, we will only evaluate data with
flattened detector response (see figure 11.1 c)).

Each plot will include a horizontal light gray line at a witness value
of 0.5, dividing data points that demonstrate entanglement (below
0.5) from data points that do not (above 0.5). Shot noise evaluations
are depicted in dark gray and signal measurements occur in three
different color schemes: Single mode evaluations are plotted in green
traces, two mode evaluations are plotted in purple and multimode
(three or more modes) evaluations are depicted in blue.

A complete visualization of all measurements and combinations of
different mechanical modes are given at the end of this chapter in
figures 11.7 (6 µW), 11.8 (9 µW) and 11.9 (12 µW).

The main text will show figures of a subset of all data points, to
discuss specific aspects of the evaluations more precisely.

First, we want to look at the power scaling of the entanglement
witness as a function of input power. Figure 11.3 contains the single
mode evaluation of the fundamental mechanical mode for each input
power, as well as a simulated trace for 20 µW. The 6 and 9 µW curves
together with the simulation, show an expected trend towards smaller
witness values and closer to the entanglement threshold of 0.5.

However, the 12 µW measurement is pulled off and does not fit
into the trend. We do not understand this behavior but the best es-
timate is that because this data has been measured with the highest
possible optical input power, the system was nearly unstable and the
stabilization of the optomechanical cavity was also unstable. From ex-
perience, we know that operation close to instability generated excess
noise that severely affected the performance of the experiment. The
influence of excess low frequency laser noise is discussed in greater
detail in the next chapter 12.1.

Figure 11.3 contains several vertical lines: A black dashed line
indicates the mechanical decoherence rate n̄γ = 28 kHz at a bath
temperature of Tb = 10 K. The dashed green lines depict the inter-
action rate g2/κ for each measurement (matching colors), which are
4.3 kHz, 6.45 kHz and 8.6 kHz from lower to larger optical powers.
Since, decreasing Γ leads to very long pulses that are computation-
ally too demanding to evaluate, the evaluation of experimental data
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Figure 11.3: Single mode entanglement witness as a function of input power.
Green traces depict single mode evaluations of the fundamental membrane
mode as a function of the pulse width. Vertical dashed green (matching
colors) lines indicate the corresponding interaction rates, g2/κ, and the black
dashed line depicts the mechanical decoherence rate, n̄γ. The purple trace
shows a simulated trace for comparison. The results are discussed in the
main text.

ends earlier. At any rate, we expect the optimal pulse width that
minimizes each witness curve to be below the decoherence rate and
above the interaction rate, which is the case for all three measure-
ments. Note that the interaction rate is smaller than the decorence
rate. This means that by the time significant interaction has taken
place, non-negligible mechanical decoherence has already leveraged.
The interaction rate needs to be increased by a factor of four to match
and surpass the mechanical decoherence rate. This corresponds to a
quantum cooperativity of C ≈ 4 for which single mode entanglement
for a genuine single mode system is expected.

We will now study the behavior of the entanglement evaluation
when expanding the evaluation by including more mechanical modes.
Figure 11.4 a) shows different combinations of single mode and mul-
timode evaluations. The shot noise evaluations for each combination
are plotted on top of each other in gray.

The fundamental, the fifth and the sixth mechanical mode are the
modes with the largest single photon coupling strengths: g#1

0 = 40 Hz,
g#5

0 = 18 Hz and g#6
0 = 23.3 Hz, compare with table 9.2. The quantum

cooperativities are approximately C5, C6 ≈ 0.4 < 1.2 = C1. These
values are calculated by equation 4.19 with parameters obtained by
the methods in chapter 9 and for this experiment summarized in ta-
ble 11.1. Therefore, we do not expect entanglement from single mode
evaluations of the fifth and sixth mode (as we just have seen, we
would expect single mode entanglement for C ≈ 4), but the coopera-
tivity is on the order of one and therefore large enough to expect some
contribution to a multimode evaluation. The purple traces in figure
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Figure 11.4: Multimode entanglement witness curves. a) Singe mode (green),
two mode (purple) and three mode (blue) evaluation of the measurement
taken with 12 µW input power. Shot noise traces plotted on top of each other
in gray. b) Zoom around the entanglement threshold at 0.5. Plotted are the
shot noise traces with matching colors to their corresponding signal traces
from figure a). The frequency span where the shot noise curves are flat are
shaded in light green. The results are discussed in the main text.

11.4, which illustrate two-mode evaluations, show that the combina-
tion of the first and fifth/sixth mode lead to an improved entangle-
ment witness. This can be enhanced further by evaluating the witness
for the three modes all together in figure 11.4 (blue trace). The take
away is that the performance of the entanglement verification is im-
proved significantly by explicitly taking into account the multimode
nature of the membranes.

Figure 11.4 b) shows a zoom-in around the witness threshold. De-
picted are the shot noise evaluations of the same single mode and
multimode evaluations as in a). Note that in this figure all shot noise
traces feature the same trace color as the signals, such that each curve
can be assigned and more importantly, distinguished from each other.
There are two main issues with the shot noise evaluations: First, there
is an offset of around 4 % in contrast to the ideal shot noise level of
0.5. This indicates that there is some residual bias in the calibration
of the shot noise band power. This problem is currently under inves-
tigations. Second, the shot noise evaluation dives below 0.5 at broad
pulse widths. However, the slope of the shot noise diving is success-
fully reduced in contrast to non-flat detector responses and is flat up
to pulse widths of approximately 160 kHz (light green shaded area),
which spans the region where we expect to find entanglement and
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Figure 11.5: Best witness for the current calibration method. Multimode
evaluation of the first, fifth and sixth modes, i.e. the three modes with
the strongest coupling strengths. Signal evaluation in blue and shot noise
evaluation in red. However, the signal curve dives below the shot noise for
pulse widths that exhibit an expected flat shot noise behavior (green shaded
area). Sub shot noise witness values for the signal trace are an indication for
squeezing and hence, for entanglement. While all data points correspond
to physical covariance matrices, they all have witness values larger than 0.5.
Since we are shot noise limited at the sideband frequencies we are interested
at, we assume that the shot noise offset comes from an imperfect calibration
of the experimental data. The optimization of the calibration procedure is
work in progress.

thus we can ignore it (see figure 11.1 a) and c) and figure 11.8 b)).

The best entanglement witness results have been obtained with
multimode evaluations of the 9 µW data set. Figure 11.5 shows multi-
mode evaluations of the #1#5#6 mode combination. The signal trace
is depicted in blue and the corresponding shot noise trace in red. The
signal evaluation dives below shot noise for pulse widths from ap-
proximately 20 kHz up to 80 kHz, which is in line with the interaction
and mechanical decoherence rates of modes constituting this combi-
nation of modes. The smallest witness value is 0.515 for a pulse width
of 40 kHz, where the shot noise trace behaves well, i.e. is flat (green
shaded area). This value is only 3 % or 0.13 dB above the entangle-
ment witness threshold at 0.5. The sub shot noise witness of this mode
combination is an indicator for squeezing and therefore, for genuine
multimode optomechanical entanglement. However, this evaluation
appears to be subject to an error in the calibration as the shot noise
traces are not around the witness value 0.5. Since we are shot noise
limited in the frequency range of interest (500 kHz to 5 MHz), we ex-
pect that the current calibration method can be optimized to remove
the offset in the witness curves of the experimental data.

A recently updated version of the calibration is acknowledging the
fact that both detectors are slightly different (level of measured noise
power spectra and homodyne detector visibilities). Results of a four-
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Figure 11.6: Best witness for an updated calibration method. Same data
set as in figure 11.5 but with a new calibration method and a four mode
evaluation. This plot features the same qualitative behavior except that the
modified calibration successfully removes the shot noise witness offset in
the interesting pulse width band, i.e. flat shot noise (green shaded area).
The signal trace reaches an entanglement witness of 0.487 which is 2.6 %
or 0.11 dB below the shot noise and the entanglement witness bound. Note
that in contrast to figure 11.5, all data points are unphysical, i.e. the corre-
sponding covariance matrix does not resemble a physical state. Therefore,
this calibration is work in progress.

mode evaluation (#1#2#5#6) of the same 9 µW data set used in figure
11.5 yields to a well behaving shot noise curve, i.e. flat and offset-free
(green shaded area). The entanglement witness of the signal (blue)
dives below the entanglement witness by 2.6 % or 0.11 dB. This result
indicates that entanglement is present for this four-mode evaluation.
In contrast to figure 11.5, all data points are unphysical, which means
that the variances of phase and amplitude quadratures violate the
Heisenberg uncertainty relation. We assume that this issue still rises
from imperfect calibration of the data. A second possible explanation
is noise of the system, as the shot noise curve should ideally be at 0.5.
Up to now, this ambiguity could not be resolved and the calibration
procedure is still under investigation.

Before summarizing the thesis, the next chapter discusses low fre-
quency laser noise in the detection as a an experimental issue that
decreases the performance of the optomechanical system. Further-
more, several possible improvements to the experimental setup are
discussed, which could increase the cooperativity to a a regime where
the current protocol would clearly witness entanglement.
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Figure 11.7: Entanglement witness evaluations for 6 µW input power.
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Figure 11.8: Entanglement witness evaluations for 9 µW input power. Note
that figure c) is zoomed-in and discussed in detail in figure 11.5 earlier.
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Figure 11.9: Entanglement witness evaluations for 12 µW input power.
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F U T U R E P R O S P E C T S

This chapter discusses two potential bottlenecks that limit the current
performance of the experiment and the measurements presented in
chapter 11. We will discuss both issues and provide promising solu-
tions to overcome these hurdles. At the end of this chapter,

The first problem that we could track down is excess low frequency
classical laser noise. The laser noise model used in the simulations
was based on measurements made in transmission of the filter cav-
ity, but for a free-running laser. We found additional low frequency
laser noise on the laser light when the laser was further locked to
the optomechanical cavity. Second, the inversion of the detector char-
acteristics, especially the flattening of the high pass filter, not only
flattens the shot noise noise power spectrum, but it also increases
the low frequency noise contributions for signal measurements. This
effect can be seen in figure 10.5. The mode functions that define the
pulses used in the pulsed-continuous protocol are then also subject
to this excess classical noise.

To further explore these issues, extensive simulations have been
performed to evaluate the expected entanglement as a function of im-
proved quantum cooperativities and increased low frequency laser
noise. These simulations are shown in figure 12.1 and will be dis-
cussed in the following sections.

The presented data made thorough troubleshooting necessary. Ul-
timately, classical laser noise has been found to be the main reason
for the difference between simulations and experimental data. The
noise model used for simulations is based on a free-running laser,
while during measurements the laser is locked to the optomechanical
cavity (OMC). Laser noise measurements, while locked to the OMC,
revealed excess laser noise at frequencies below 100 kHz. Though
being far off from mechanical resonances, the spectrally broad mode
functions (≈ 100 kHz) still collected low frequency laser noise. This
has been confirmed by simulations in which the classical noise in the
model has been scaled up.

On the other hand, increasing the quantum cooperativity further
would not only increase the generated entanglement in the first place,
but it would also allow for increased pulse length and therefore de-
creased spectral width of the mode functions.
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Figure 12.1: Entanglement witness as a function of improved quantum coop-
erativities and increased low frequency laser noise. Simulations for a quan-
tum cooperativity of 5 in figure a) and 10 in figure b). The entanglement
witness is plotted increasing excess low frequency laser noise, while x = 0
corresponds to our laser noise model of the free-running laser and x = 1
features a increased laser phase noise and amplitude noise according to
measurements from figure 12.2. Each data point corresponds to the opti-
cal pulse width that minimizes the entanglement witness. The results are
discussed in the main text.

Figure 12.1 contains entanglement simulations for moderately in-
creased cooperativities (5 and 10) and an artificially increased laser
noise from the current model (free-running laser) linearly increased
to values measured while the laser is locked to the OMC. Note that
the presented simulations are a worst case scenario, as the excess laser
noise is conservatively modeled by a linearly falling function to match
the observed low frequency noise. Therefore, these simulations will
overestimate classical noise at larger frequencies, i.e. around the me-
chanical membrane modes, and therefore are more pessimistic than
the real system. In fact, it can be assumed that the real system will
perform better than the curves in figure 12.1 imply.

These graphs show that it is necessary to significantly reduce low
frequency laser noise, or to remove it completely, i.e. x = 0 in figure
12.1, where laser noise is not increased by the OMC lock. This state-
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Figure 12.2: Low frequency laser noise characterization. NPS of simulated
(single mode) data based on the free-running laser noise model are depicted
in purple traces. NPS of the phase and amplitude homodyne detectors of
the entanglement measurements from chapter 11 are plotted in blue curves.
A difference of one order of magnitude for the amplitude detector and a
difference of four orders of magnitude for the phase detectors are visible in
a low frequency span from DC to approximately 300 kHz.

ment is at least true for moderate and realistic improvements of the
quantum cooperativity.

The remainder of this chapter discusses ways to remove the clas-
sical low frequency laser noise and to simultaneously improve the
cooperativity. This should allow one to enter a regime where optome-
chanical entanglement can be significantly inferred by our protocol.

12.1 low frequency laser noise

We start the discussion of excess low frequency laser noise by first
determining the difference between the actual noise power spectra
(NPS) of the flattened data from chapter 11 and of the simulations
based on the noise model for the free-running laser. The resulting
NPS are shown in figure 12.2. While the low frequency (DC to
300 kHz) laser noise on the amplitude quadrature is only moderately
underestimated in the simulations, the phase quadrature is underes-
timated by almost four orders of magnitude.

The discrepancy has been traced back to the fact that the laser noise
model has been measured in transmission of the filter cavity, but with
a free-running laser, while for correlation measurements, the laser
needs to be stabilized to the optomechanical cavity. The source of this
excess noise is assumed to be the full locking scheme of the main
components: Laser, filter cavity and optomechanical cavity. The laser
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is stabilized to the OMC through the FC, while the latter is following
the laser frequency, see chapter 5. This is indicated by some measure-
ments of the laser noise for different lock settings of the filter cavity.
While a significant reduction of the noise is possible, it is question-
able wheter we can remove the excess noise entirely. For this reason
we aimed for a better and more elegant solution to this problem.

A different approach to remove the low frequency noise is based on
optimization of the homodyne balancing of each detector, as for an
ideal beam splitter all classical noise should be canceled. As shown in
chapter 6, strong common mode rejection is already obtained, which
couldn’t be improved by optimizing the alignment. On the other
hand, the slightest misalignment does significantly increase the re-
maining noise. We decided to try to measure the individual AC sig-
nals of each detectors of the phase homodyne setup and to apply
the subtraction in post-processing. The results of the difference of
detector A and B are shown in figure 12.3, for different weightings
according to the equation iA − b · iB. The results are compared to the
noise power spectrum of the direct analog subtraction of each detec-
tors and show that the full excess noise could be subtracted that way.
Note that for these measurements, the OMC was not locked. This
remains to be tested.

This approach seems to be promising for improving the perfor-
mance of the experiment, as it gives us more flexibility and control,
can remove the excess low frequency laser noise, as well as grant us
a detector response that is easier to model and therefore to flatten.
More tests need to be performed and additional components are go-
ing to be needed to fully implement this on all photodiodes of both
homodyne detectors.

12.2 improvements on the quantum cooperativity

The quantum cooperativity can be increased by either raising the sin-
gle photon coupling strength g0, or by raising the optical input power
and thereby the intra-cavity photon number n̄cav, or by decreasing the
crucial decoherence rates for the given system. These are the mechan-
ical line width γ, the optical line width κ and the thermal occupation
number n̄.

An improvement of the mechanical line width can go along with
increasing the size of the membrane for lower resonant frequencies
and larger mechanical quality factors, see chapter 8. However, we
chose the current size to shift the first mechanical resonance as far
as possible towards larger frequencies to maximize the distance to
low frequency laser noise, as well as to increase the spectral distance
to higher order modes and thereby limit the maximum number of
modes that efficiently interact with the light field.
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Figure 12.3: Single detector measurements and subtraction. Calculated noise
power spectra from time series of individually measured detectors, but with
subtraction in post-processing of the phase homodyne setup. Here, each AC
channel is treated as described in section 10.4, with the only exception be-
ing that the subtraction is skipped and done in post-processing. By adding
a parameter b and calculating the difference, iA − b · iB, of the individually
acquired time series, an optimal value for b can be found that optimized
the difference and the low frequency laser noise. Three different combina-
tions are shown in this figure and the inset zooms into the residual classical
laser noise below 80 kHz. For b = 1.02, all classical noise if removed (broad
features as well as sharp spikes).

Soft clamped membranes with room temperature quality factors
as high as Q = 2.1× 108 have been fabricated [127], and very re-
cently membranes with Q = 1× 109 have reached a cooperativity
of C = 119 in an optomechanical cavity [115]. These ultra-coherent
mechanical resonators feature only a narrow spectral bandwidth of
around 200 kHz within which exist half a dozen high-Q mechanical
modes. Around the bandgap, a vast amount of mechanical modes
exist. From our current understanding, and the results showed in
chapter 11, it cannot be assumed that the increased cooperativity will
make up for the large number of mechanical modes and other spec-
tral features outside the bandgap of soft clamped membranes. There-
fore, we still believe that the current membranes used in our system
are the best choice for a trade-off between mechanical quality factor,
resonant frequencies and effective mass.

The average phonon number is determined by the bath tempera-
ture. The membrane thermalizes at approximately 10 K as Helium
flow cryostats typically feature a large temperature gradient between
the cold finger and the membrane placed in the optomechanical cav-
ity. We have other cryostats available, that cool the membrane down
to lower temperatures. These include pulse tube coolers, which offer
advantages like long term operations and thermalization at 4 K. We
have shown that our optomechanical cavity can be locked in such
a pulse tube cryostat, despite the large amount of vibrational noise.
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We have also low noise dilution refrigerators such as a model from
Bluefors [15], that could yield even lower temperatures. Membranes
in similar systems have been thermalized at bath temperatures of
360 mK [103]. A more conservative value of 1 K would improve the
quantum cooperativity by a factor ×10. The necessary modifications
to place the optomechanical system into the dilution refrigerator are
challenging, partially because proper thermalization requires careful
engineering and is not guaranteed. Thus, this solution is more suit-
able as a back-up plan and short term solutions with similar impact
should be prioritized.

The design of the optomechanical cavity sets the optomechanical
coupling g as well as the cavity decay rate κ. Since we want to operate
in the bad cavity regime it is not desirable to drastically change the
design of the cavity. However, it is possible to significantly increase
the input power that is impinging on the optomechanical cavity. For
the current system, as characterized in chapter 9, the maximum input
power realized during the measurements presented in chapter 11 was
12 µW. This is one order of magnitude below the Routh-Hurwitz sta-
bility criterion [46] and also one order of magnitude below the limit
set by optical bistability due to the DC component of the radiation
pressure force (equation 4.9).

We attributed issues of stabilizing and locking the system at larger
input powers solely to technical reasons, e.g. residual heating of
the membrane while scanning over the cavity resonance to find the
locking position. One idea to circumvent this problem is based on a
two-tone scheme. We could use the cooling beam (see chapter 5.4)
to lock the cavity very close it its resonance. The optical power of
the cooling beam could be chosen to be very small (2 − 3 µW) to
ensure stable locking and avoid instabilities from being too close to
the blue-detuned heating side of the resonance. Then the signal beam
that is used to pump the optomechanical cavity and generate the
entanglement, is sent off-resonantly to the cavity. By setting its mod-
ulation frequency, which determins the frequency difference between
cooling beam and signal beam, it is possible to bring the signal beam
to a specific red-detuning in a controlled way. Afterwards, the optical
power could be increased by an electronically controlled waveplate
and polarizing beam splitter. First attempts of this method made it
possible to reproducibly lock the cavity with approximately 80 µW.
However, this method needs to be characterized more carefully, e.g.
check if the gain in input power is also possible for the optimal single
photon coupling strength.

In conclusion, two methods have been presented that would in-
crease the quantum cooperativity. The first is the reduction of n̄ by
moving the optomechanical cavity into a different cryostat. The sec-
ond is by increasing the input power in a reliable and controlled way.
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Conservatively estimated, each approach can presumably increase
the quantum cooperativity by at least a factor of five. Based on our
current results presented in chapter 11, either improvement will push
the system into a realm where we expect to generate and verify strong
optomechanical entanglement.
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S U M M A RY

Quantum entanglement is one of the most intriguing features of quan-
tum physics and a rich resource for fundamental tests of physics as
well as for future applications in quantum communication, compu-
tation and information. Optomechanical experiments are especially
exciting systems, as they inherently constitute a light-mechanics in-
terface interesting for quantum information networks.

In this thesis we presented a membrane-in-the-middle optomechan-
ical system to pursue the generation and verification of multimode
optomechanical entanglement with continuous variables.

The main experimental achievement was the operation of the op-
tomechanical cavity in the strong cooperativity regime. As a conse-
quence, the system operates in a regime where the generation of op-
tomechanical entanglement is expected.

Furthermore, the so called pulsed-continuous entanglement proto-
col has been applied to time series measurements while operating in
the strong cooperativity regime. Simulations have been presented that
show that genuine multimode entanglement can occur naturally via
a multimode oscillator like our SiN membranes, while single mode
entanglement is consequently almost absent. Experimental results fea-
tured a three-mode entanglement witness which dives below the shot
noise evaluation, which is an indication for squeezing and hence en-
tanglement. Both traces show an offset above the entanglement bound
at 0.5, whereby the smallest signal witness is as low as 0.515. This
value is only 3 % or 0.13 dB above the entanglement threshold at 0.5.

An updated calibration method succeeds at removing the shot
noise offset and yields to a signal witness that is 2.6 % or 0.11 dB
below the entanglement threshold. Whereas these results are unphys-
ical, they are indicating moderate genuine multimode entanglement.
The calibration procedure is subject to current work.

Two different possible improvements have been presented, which
in principle could improve the system sufficiently such that optome-
chanical entanglement can be significantly inferred. First, the acqui-
sition of single photodiode time traces and the subtraction in post-
processing is a promising way to reduce low frequency classical laser
noise, which we believe limits the performance of the current data
evaluation. The second improvement involves increasing the quan-
tum cooperativity by reducing the average number of phonons via
improved cryogenic cooling or by increasing the optical input power
in a controlled way. Both directions are in principle sufficient to in-
crease the quantum cooperativity to a level where we, with our cur-
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rent understanding, expect to witness strong genuine multimode op-
tomechanical entanglement.
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