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Abstract

Although clathrate hydrates occur in large amounts in the deep see and in

permafrost regions, the phase diagram of a CO2-H2O binary system has not been

completely discovered yet. Different experiments showed the existence of a CO2-

hydrate phase different from all known phases. Recently Amos et al. provided the

structure of this phase and called it χ-phase[1]. In this study, we used molecular

dynamics simulations to find the stability region of the χ-phase. Using rigid

nonpolarizable models (TIP4P/Ice for water and TraPPE for carbon dioxide), first

the melting line of both, the sI-phase and the χ-phase were determined. Afterwards,

using a method based on thermodynamic integration, the solid-solid coexistence

line between the χ-phase and the sI-phase and the solid-solid coexistence line

between the χ-phase and ice VI + CO2 I have been computed. Knowing the different

coexistence lines, it was possible to determine the stability region of the χ-phase in

the phase diagram.
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Zusammenfassung

Obwohl Gashydrate in großen Mengen in der Tiefsee und im Permafrost vorkommen

und als mögliche Energiequelle der Zukunft gelten, ist das Phasendiagramm des

binären CO2-H2O-Systems noch immer nicht zur Gänze bekannt. Verschiedene

Experimente zeigen die Existenz einer Phase, die von allen bekannten Phasen

verschieden ist. Vor kurzem wurde eine Struktur der Phase von Amos et

al. publiziert und diese wurde aufgrund einer auftretenden chiralen Struktur

„χ-Phase“ genannt [1]. In dieser Arbeit verwenden wir Molekulardynamik-

Simulationen, um den Stabilitätsbereich der χ-Phase zu finden. Dazu wurden

starre, nicht polarisierbare Modelle für Wasser (TIP4P/Ice) und für CO2 (TraPPE)

verwendet. Zuerst wurde die Schmelzlinie der χ-Phase und der sI-Phase berechnet.

Danach wurde eine Methode, die auf thermodynamischer Integration beruht,

verwendet, und die Koexistenzlinie zwischen der χ-Phase und der sI-Phase, um

die Koexistenzlinie zwischen der χ-Phase und Eis VI + CO2 I zu bestimmen. Mit

diesen Koexistenzlinien war es möglich, den Stabilitätsbereich im Phasendiagramm

einzugrenzen.
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1. INTRODUCTION

Clathrate hydrates are crystalline solids based on water. Physically they resemble

to ice in which gas molecules are trapped inside cages of hydrogen bonded water

molecules. The water network which operates as host would in absence of gas

molecules, called guests, be unstable and collapse into ice or water. However,

clathrate hydrates do not form a compound in a chemical definition, because the

formation process is a first order phase transition and not a chemical reaction.

Research on clathrate hydrates has been very intense in the last years, because of

the huge amount of methane (CH4) that has been discovered in hydrate deposits in

permafrost regions and in the sea floor of continental margins [2–5]. Kvenvolden [2]

and Makogon [6] assume that that the gas reserves in known hydrate reservoirs

are twice as large as those contained in fossil fuel reserves. Therefore clathrate

hydrates could be a key future energetic source, but many technical challenges

concerning exploitation have to be solved first [7–9]. A second remarkable scientific

and practical interest in clathrate hydrates is the possibility to replace CH4 with CO2

in natural clathrate hydrates [10–12]. Since CO2 is responsible for about 64% of the

enhanced greenhouse effect [13], a major environmental challenge is to reduce the

amount of CO2 released into the atmosphere. Recent experimental studies propose

that the replacement of CH4 with CO2 is possible, which could make it possible to

store CO2 permanently [14–17].

In this context the research in CO2-hydrates became more important in the last

years. A powerful tool to study the microscopic structure of CO2 clathrate hydrates

and the correlation with macroscopic properties are molecular-scale computer

simulations. Phenomena which occur at an atomistic scale, for example the

hydrate nucleation, metastability or the growth mechanism of hydrates, can often

not be observed from experiments. Therefore these phenomena have been

studied intensively [18] using computer simulations and lead to a fundamental

physicochemical understanding of many processes. In the center of this simulations

have been the sI-phase of clathrate hydrates, which can be a host for both CO2 and

CH4 molecules.

Very recent experiments suggest that there exists a different type of CO2 clathrate

hydrate occurring at higher pressures [19, 20]. Massani et al. showed that this new

type of clathrate hydrate can be produced by a first order phase transition starting

from sI-phase of a CO2-hydrate [19]. The first structural description of this new

type of clathrate hydrate was made by Amos et al. in 2017 using neutron and X-

ray diffraction [1]. The water network is unrelated to any experimentally known

ice, silica, or zeolite network. Instead it is related to two Zintl compounds. The

guest molecules are not trapped into cages, but rather move freely inside of large
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open spiral channels. In these channels, the CO2 molecules are forming chiral

spirals, therefore the phase is also called chiral-phase (χ-phase). Since the guest

molecules can move freely in the channels the guest to host ratio is very variable, an

energetically optimal ratio is not proposed so far.

Until now, no Molecular Dynamics simulation has been performed on this new

type of clathrate hydrate. In this work the melting curve of the sI-phase and the

χ-phase of CO2-hydrates have been calculated for a fixed guest to host molecule

ratio performing two-phase coexistence simulations using GROMACS, a modern

Molecular Dynamics simulation software package[21]. Subsequently, the solid-solid

coexistence line of the sI-phase and the χ-phase and the solid-solid coexistence line

of the χ-phase and a system, in which ice VI and solid CO2 occur separated, were

computed. The position of the coexistence line were limited to certain pressure areas

which allowed the comparison to experimental results.

Summarizing, the main aim of this thesis is the computation of the stability region

of the sI-phase and the χ-phase of CO2-clathrate hydrates and of ice VI and

CO2 separated. This allows a classification of the phase diagram of binary CO2-

H2O-systems and lead to a deeper understanding of the χ-phase of CO2-clathrate

hydrates.
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2. STRUCTURES

2.1 Clathrate Hydrates

Gas hydrates have been discovered by Sir Humphry Davy in 1810 when he noticed

that a solution of water and chlorine gas can form a solid above the melting

temperature of ice [22]. The first practical relevance of gas hydrates was found by

Hammerschmidt in 1934. He discovered that gas pipelines in Candada have been

plugged by hydrates [23]. This is a problem which still plagues oil and gas industry

since gas hydrates cause blockages in pipelines [24].

Clathrate hydrates are (nonstoichiometric) crystalline solids formed by water and

gas molecules [25]. There is a range of possible guest molecules such as methane,

carbon dioxide, ethane, propane, isobutane or nitrogen [26]. The crystalline

structure is formed by a water host lattice encaging guest molecules. This leads to a

very stable structure which could be stable at temperatures where water normally is

expected to be liquid [27].

Many different gas hydrates are known, the three most common structures are

sI , sI I and sH [25, 27]. sI already exists at low pressures as many experiments

show [20, 28, 29]. Hirai et al. used Raman spectroscopy and XRD to show the

transformation of sI to ice VI and sII at ∼ 0.5 GPa [30]. On further compressions

the structure transforms to ice VII and ice VIII and solid CO2 [30]. At even higher

pressures a transformation to the sH structure occurs. The for this work relevant sI

structure is described in more detail in section 2.1.1.

Even though many different gas hydrates are known, the variety seems small

compared to the riches of other network-forming materials as for example zeolites.

The reason for this is that four-membered rings more likely formed in Si−O-based

tetrahedral networks than in water networks [1]. The tendency to form four-

membered rings increases in water networks at high pressures [31]. Therefore it

seems reasonable that more hydrates remain to be discovered at high pressures.

One new structure proposed by Amos et. al. is based on neither a known ice

structure nor a hydrate, but instead related to a Zintl phase [1]. This structure has

a chiral network topology and hence differs qualitatively from clathrate hydrates. A

detailed description of the chiral hydrates follows in section 2.1.2.

2.1.1 sI Phase of CO2-Hyrdate

At most natural pressures, temperatures and gas compositions the sI-structure

is the most stable phase of binary CO2-H2O-systems [32]. The discovery of the



4 STRUCTURES

structure of the sI-phase is a process which took more than two decades of X-ray

diffraction experiments [25]. In the late 1940s and early 1950s, von Stackelberg et al.

summarized different diffraction experiments [33, 34] and together with other works

from von Stackelberg and Müller [35], Claussen [36, 37], and Pauling and Marsh [38]

the two clathrate phases sI and sII were determined.

The structure is a Weaire-Phelan structure which includes that it is cubic and has

space group Pm3̄n. The lattice parameter has a length of 12.07 Å[39] measured at 0◦C

with CO2 guest molecules. The unit cell contains six tetradecathedron cages, 51262,

and two pentagonal dodecathedron cages 512 [40]. These eight cavities are build by

46 H2O molecules. One unit cell can contain up to 8 gas molecules, experimental

results suggest that between 80% and 100% of the cages are occupied [39, 41, 42].

(a) (b)

Figure 1: Projections of sI -Clathrate created with VMD [43]: (a) x-z view, (b) y-z view. This
configuration is composed by two unit cells, each containing 46 H2O (H-white and O-red)
molecules and 8 CO2 (C-blue and O-yellow) molecules.

2.1.2 Chiral Phase of CO2-Hydrate

The existence of a phase which is not the sI-phase in a binary CO2-H2O-system

around a pressure of approximately 1 GPa was known from several experiments. For

example, Massani et al.[19] and Bollengier et al. [20] demonstrated its existence and

called the structure filled ice, but they could not provide a structural description.

The first description of the structure was proposed by Amos et al. in 2017 [1], using

neutron and X-ray diffraction and calculations based on density functional theory

(DFT). They recognized the water network, which plays the role of the host in the

clathrate-hydrate structure, and described it as ice XVII (also denoted as C0). Ice

XVII was known before from Raman spectroscopy and it was known that it can trap

H2 molecules [44]. However, that it can also form a stable phase with trapped CO2

molecules was unknown until 2017.

The structure has the feature, that the CO2 molecules are not trapped in cages, but

they are trapped in channels. In these channels the CO2 molecules are ordered along
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(a) (b)

Figure 2: Projections of χ-Clathrate created with VMD: (a) x-z view, (b) y-z view. This
configuration is composed by 4× 4× 4 unit cells, each containing 6 H2O (H-white and O-red)
molecules and alternating 1 CO2 (C-blue and O-yellow) or 2 CO2 molecules.

a spiral which lead to a chiral structure, this is why the new phase is denoted as χ-

phase. The empty ice XVII structure is a crystalline structure which has hexagonal

symmetry and spacegroup P6122.

This topology is not related to any other hydrate phase, ice phase, silica phase or

zeolite network, but found in the Zintl phases NaGaSn5 and Na2ZnSn5 [45][46]. The

unit cell is hexagonal/trigonal with a = 6.2753(5) Å and c = 6.2988(6) Å. Oxygen

of CO2 is on 6b(0.08618,0.1724,0.25), 12c(0.189(3),0.061(4),0.044(3)), carbon is on

12c(0.233(3),0.017(3),0.044(3)).

The arrangement of the χ-phase including the channel structure allows in principle

any guest molecule to host molecule ratio. Amos et al. showed that the maximum

guest to host ratio is 1:3.5. A higher ratio would lead to unstable hydrates because

the repulsion between the CO2 molecules is too strong [1].

2.2 Ice

The phase diagram of water is very complex. There are numerous triple points

leading to many different ice forms. Using cluster analysis ice can be divided into

high-pressure ices (ice VII, ice VIII, ice X), low-pressure ices (ice Ih, ice Ic, ice XI) and

others, which are in a modest pressure range between 200 MPa and 2000 MPa [47].

Ices from the last cluster are the most important ones for this work, because they

occur in the same temperature and pressure range as sI-hydrate and χ-hydrate do.
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Ice VI plays an outstanding role in examining hydrates, because there are suspicions

that a phase transition between hydrates and ice VI is possible [19].

Figure 3: Pressure-temperature phase diagram of water. Note that in this phase diagram only
the stable phases are shown. Ice XVII is not shown in this diagram, because without guest

molecules it is not stable. The orange dots show triple points and the red dots indicate critical
points. The orange lines refer to low density amorphous (LDA) and high density amorphous

(HDA) ice. Figure from [48].

Figure 3 shows the phase diagram of water [48]. Only the stable phases are shown,

therefore ice XVII, which forms the host network of the χ-phase of CP2-hydrates as

discussed in section 2.1.2 but is unstable without a guest molecule, is not shown in

this diagram.

The central part of the phase diagram (in a region around 1 GPa) is very complex.

Since this is the region which is relevant for the average surface conditions on Earth,

Mars and Venus there is a special interest in understanding this part of the phase

diagram. A phase diagram of only this region can be found in section 4.2.1 where it

is compared to different water models.

2.2.1 Ice VI

The unit cell of ice VI is tetragonal with dimensions a = 6.27 Å and c = 5.79 Å and

contains ten water molecules. It is in space group P42/nmc and has a density of

1.31 gcm−3 [49]. There are 45 symmetrically distinct configurations leading to 576
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possible arrangements of the water molecules in the unit cell under consideration of

the ice-rules [50]

Ice VI has at least four triple-points (three of them are experimentally well

established), potentially there could be two more triple points if there exists a

low temperature proton-ordered ice [50]. The triple point with ice II and ice VI

is estimated at a temperature of −55 ◦C and a pressure of 620 MPa. The triple

point with ice V and liquid water is at a temperature of −0.16 ◦C and a pressure of

632.4 MPa. The triple point of ice VI, ice VII and ice VIII is at a temperature of 5 ◦C

and a pressure of 2.1 GPa and the triple point of ice VI, ice VII and liquid water is at a

temperature of 118 ◦C and a pressure of 2.216 GPa.

Figure 4: Projection Ice VI created with VMD: This configuration is composed of 4×2 unit cells,
each containing 10 H2O (H-white and O-red) molecules.

2.3 Carbon Dioxide

The first systematic investigation of carbon dioxide (CO2) was made by Joseph Black

in 1757, he called the gas "fixed air". In 1782 Antoine Lavoisier identified "fixed

air" as a combination of carbon and oxygen. At the end of the 18th century the

solubility of CO2 in water was studied. This was the starting point for the industrial

use of CO2 for mineral water and soft drinks. In the 1830th Charles Thilorier was

the first one able to produce solid CO2 which occurred during the evaporation of

liquid CO2. Using compressors for higher pressure the production of solid CO2 was

improved and the first dry ice industry was built up in 1925 [51]. In the 20th century

new crystalline structures for CO2 were discovered, at the moment there are seven

different structures known. Below a pressure of 10 GPa the only stable crystalline

structure is dry ice, which is scientifically known as CO2 phase I [52]. This structure
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can also exist at modest pressure and temperature regions in which also clathrates

and ice VI can exist.

2.3.1 CO2 I

The first structural description of CO2 phase I was made by Bart Olinger [38] in 1952.

He used a high pressure X-ray diffraction technique which allowed him to measure

CO2 at 296 K from 1 GPa to 10 GPa. He compared the results with different CO2 I

models and was so able to find the space group of CO2 phase I. The structure is a

face centered cubic structure and is part of symmentry group Pa3. There are 4 CO2

molecules per unit cell with 20 external degrees of freedom (12 pseudo-translational

vibrations and 8 pseudo-rotational librations) [53, 54].

Figure 5: Projection CO2 I: This configuration is composed of 2×2 unit cells, each containing 4
CO2 (C-blue and O-yellow) molecules.

Despite a fundamental understanding of the phase diagram of CO2 being important

for several reasons, many aspects of solid CO2 are unknown so far [52]. CO2 I is

one of nature’s most common molecular crystals, it occurs in the Earth’s atmosphere

and is ubiquitous on other planets, and therefore very relevant in the field of

astrochemistry. Nevertheless there are many gaps in the phase diagram of CO2 and

therefore there are intense experimental efforts today to explore the high-pressure

temperature range of the phase-diagram [55].

For CO2 I the transition mechanism which allows a transformation to CO2 phase III,

phase VI, phase IV and maybe phase II is still not completely understood yet [56].

Li et al. assume that the most accurate phase diagram of CO2 is a composite from

experimental data of Litasov et al. [57], Giordano et al. [58, 59] and Iota et al. [60, 61].

Even though a intensive experimental effort is made, the prediction of the phase
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diagram is hard due to large hysteresis effects and the metastability of phase III and

more research in the field is necessary.
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3. BACKGROUND

In this chapter the theoretical background for understanding Molecular Dynamics

simulations is provided. In section 3.1 necessary physical principles are discussed.

The main emphasis in this section is on statistical mechanics, a detailed

introduction to statistical mechanics is provided in Elementary Principles of

Statistical Mechanics by J. W. Gibbs [62]. Thermodynamic principles are not

discussed in this chapter, the book Thermodynamics: An Engineering Approach

by Y. A. Cengel and M. A. Boles [63] serves as a good introduction.

In section 3.2 the principles of Molecular Dynamics simulations are discussed.

Understanding Molecular Simulation: From Algorithms to Applications by D. Frenkel

and B. Smit [64] and The Art of Molecular Dynamics by D. C. Rapaport [65] provide

detailed introductions to Molecular Dynamics simulations and serve as reference for

section 3.2.

3.1 Statistical Mechanics

3.1.1 Fundamental Principles

Statistical Mechanics is used to study systems with a large degree of freedom. In

particular a concept is given which describes the relation between macroscopic

observations (macro states) and microscopic configurations of a certain system

(micro states). Since time and length scales of macroscopic phenomena are much

larger than molecular dimensions not individual micro states but an ensemble of all

micro states is considered.

A micro state determines the state of a classical N -particle system under the Born-

Oppenheimer approximation with two 3N dimensional vectors

rN = (r1,r2,r3, ...,rN )

pN = (p1,p2,p3, ...,pN ),
(1)

where N is the total number of particles in the system, ri is position of the i-

th particle and pi is the momentum of the i-th particle. rN and pN span a 6N

dimensional phase space, each micro state is represented by a single point in the

phase space.
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The total energy of a system is given by the Hamiltonian function

H(rN ,pN ) =
N∑

i=1

p2
i

2mi
+U (rN ). (2)

Using Hamiltonian equations of motion for Cartesian coordinates

ṙ = ∂H

∂p
ṗ =−∂H

∂r
, (3)

the Newtonian equations of motion are following directly:

ṙi = pi

mi
,

mi r̈i = Fi (rN ) =−∇U (rN ).
(4)

This is a set of 6N coupled ordinary first-order differential equations which can be

solved in principle with initial conditions {rN (0),pN (0)}. The solution yields to a

trajectory {rN (t ),pN (t )} in the phase space, which completely determines the system

for all times t.

Since many Hamiltonian equations can not be solved analytically it is often

necessary to solve the equations approximately with numerical methods.

3.1.2 Time Average, Ensemble Average and Ergodicity

In Molecular Dynamics simulations it is often important to compute averages of

certain quantities, because macroscopic phenomena are related to the averages on

a microscopic scale.

The time average of an observable A(rN ,pN ) of a trajectory is given by

At = lim
τ→∞

1

τ

τ∫
0

dt A(rN (t ),pN (t )). (5)

A second way of calculating averages is the ensemble average. An ensemble is the

collection of all possible micro states which can occur under given conditions. The

ensemble average of an observable A(rN ,pN ) is given by:

〈A〉 =
∫

drN dpN f (rN ,pN )A(rN ,pN ), (6)

where f (rN ,pN ) is the probability density function of micro state {rN ,pN }.

In Statistical Mechanics it is often necessary to accept the Ergodic Hypothesis. The

Ergodic Hypothesis claims that for large time scales the volume of a phase space
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region is proportional to the time a system spends in micro states with the same

energy. An alternative formulation is that a system is called ergodic, when the time

average is equivalent to the ensemble average on a large time scale:

At = 〈A〉. (7)

Proving ergodicity is often impossible though it is often reasonable and necessary to

assume that a system is ergodic.

3.1.3 Correlation Functions

Since MD simulations are discrete and finite all computed quantities are affected

by statistical errors. Trajectories are calculated by solving the equations of motion

for a finite number of steps M and for a finite step size ∆t . Therefore (5) can be

approximated by calculating

A = 1

M

M∑
i=1

A(rN
i (t ),pN

i (t )), (8)

where A denotes the sample average. It is easy to show that A is an unbiased

estimator of the expectation of A by showing 〈A〉 = 〈A〉, where Ai is the abbreviation

for A(rN
i (t ),pN

i (t )).

The variance measures how far a set of numbers is spread out from their average. In

statistics variance plays a central role because it contains a lot of information about

the quality of a test set. Mathematically variance is defined as the expectation of the

squared deviation of a random variable from its mean:

V ar (A) = 〈A2〉−〈A〉2 (9)

Here it was assumed that the configurations in the sample are statistically

independent. In MD simulations, however, configurations are correlated to each

other which needs to be taken into account for the calculation of statistical errors.

Since one assumes that the trajectory is stationary, the expression 〈Ai A j 〉− 〈Ai 〉〈A j 〉
should only depend on the separation between time step i and time step j the

variance can be rewritten as

V ar (A) = 1

M 2

M∑
i=1

M−i∑
k=1−i

[〈Ai Ai+k〉−〈Ai 〉〈Ai+k〉] . (10)
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By summing from k = −∞ to k = ∞, the following definition of normalized time

autocorrelation function is reasonable:

CA(k) = 〈A(rN
i )A(rN

i+k )〉−〈A(rN
i )〉〈A(rN

i+k )〉
〈A2〉−〈A〉2

. (11)

The correlation length τA is defined by

τA =
∞∑
0

CA(k). (12)

The variance of the sample average can be finally written as

V ar (A) = 2τA

M
V ar (A). (13)

From (13) it can be concluded that a large sample size improves statistical accuracy.

Correlations effectively reduce the sample size by a factor 1
2τA

.

3.1.4 Thermodynamic Ensembles

Each Molecular Dynamics simulation generates a configurations which correspond

to a certain thermodynamic ensemble. The most conventional MD algorithm as it

is discussed in 3.2 studies the evolution of N particles in a Volume V . The energy

is preserved due to Hamiltonian mechanics. Since N , V and E are constrained

the microcanonical ensemble is also called (NV E)-ensemble. If the Ergodicity

Hypothesis is used, then the time averages in such MD simulations are equivalent

to the ensemble averages of a microcanonical ensemble.

For experimentalists on the other hand it is often easier to control parameters

as temperature or pressure. Therefore other ensembles are designed in which

other macroscopic parameters than N , V and E are constrained. One ensemble is

assigned to each combination of constraints.

In the thermodynamic limit N →∞ and V →∞ such that N
V = ρ = const fluctuations

cease and different ensembles become indistinguishable.

Each ensemble can be represented by a partition function. The partition function is

a dimensionless function of state variables of a system. Partition functions are often

useful, because most thermodynamic variables can be expressed in therms of it.

Microcanonical Ensemble

The microcanonical ensemble is also denoted as (NV E)-ensemble and corresponds

to an isolated system (a system which can not exchange energy or particles with

the environment) with a specified total energy. Per definition all micro states with
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Figure 6: Overview of the relevant statistical ensembles of this work. Figure from Master thesis
of Elija Feigl [66]

N -particles, a volume V and an energy
[
E − ∆

2 ,E + ∆
2

]
have the same probability to

occur. This probability is described by the probability density function fNV E :

fNV E = 1∫
drN dpNδ

(
H(rN ,pN )−E

)δ(
H(rN ,pN )−E

)
. (14)

The partition function ΩNV E of the microcanonical ensemble describes the total

number of micro states with energy E . It is expressed as

ΩNV E = 1

N !(2π~)3N

∫
drN dpNδ

(
H(rN ,pN )−E

)
. (15)

Here the factor 1
N ! is needed due to the assumption that the N particles are

indistinguishable.

Canonical Ensemble

A systems with a fixed volume V and a fixed number of particles N , but which,in

contrast to the microcanonical, can exchange thermal energy with a heat bath can

be described with a canonical ensemble. Due to the contact of the system with the

heat bath the temperature T is a constraint. Therefore the canonical ensemble is

also denoted as (NV T )-ensemble.

The probability to find a system in a certain state is described by the probability

density function fNV T :

fNV T = 1∫
drN dpN e−βH(rN ,pN )

e−βH(rN ,pN ). (16)
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e−βH(rN ,pN ) is called Boltzmann-factor, β= 1
kB T is called reciprocal temperature and

kB is the Boltzmann constant.

The assigned partition function QNV T is expressed as:

QNV T = 1

N !(2π~)3N

∫
drN dpN e−βH(rN ,pN ). (17)

Isothermal-Isobaric Ensemble

A system which is in contact with a heat-bath and which can expand or shrink,

but which can not exchange particles with its environment can be described

with an isothermal-isobaric ensemble. Since volume and energy can change

temperature and pressure fluctuate around constant equilibrium values. Therefore

the isothermal-isobaric ensemble is also denoted as (N pT )-ensemble.

The isothermal-isobaric ensemble is important in chemistry because chemical

reactions normally take place under constant pressure and temperature.

The probability to find a system in a certain state is given by the density function

fN pT :

fN pT = 1∫ ∞
0 dV

∫
drN dpN e−β[H(rN ,pN )+pV ]

e−β[
H(rN ,pN )+pV

]
. (18)

The assigned partition function ∆N pT is given by:

∆N pT = βp

N !(2π~)3N

∫
dV

∫
drN dpN e−β[

H(rN ,pN )+pV
]

(19)

3.2 Molecular Dynamics Simulations

The central purpose of a MD simulation is solving the equations of motion to study

the time evolution of a classical many-body system. There are many different ways

of implementing MD simulations, however the basic structure has always a similar

form as in algorithm 1.

Each MD simulation starts with the initialization according to the provided input

data. Central for the global algorithm is the input of the potential energy V as a

function of the position of the particles in the system. Other quantities which my

be initialized are the box size, masses, the number of particles, periodic boundary

conditions, etc. Further information for the initialization is provided in section 3.2.2.

After the initialization, in a for-loop over M time steps of size ∆t the three

subroutines force, integrate and averages carry out the main part of the MD

simulation. The subroutine force computes the forces on all particles. This includes
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Algorithm 1 Global MD algorithm

1: call init() . initialization
2: t= 0
3: for M steps do
4: call force() . compute forces
5: call integrate() . integrate EOM
6: t+=∆t . increase time step
7: call averages() . compute averages
8: end for

the calculation of the forces of all non-bonded particles Fi = ∑
j Fi j plus the forces

occurring due to bonded interactions plus restraining and external forces. Further

information for the computation of the forces can be found in section 3.2.3.

After the computation of the forces the subroutine integrate integrates the EOM:

ṙ = ∂H

∂p
ṗ =−∂H

∂r
. (20)

There are many different possibilities how to integrate the EOM. The relevant aspects

of the integration step are further discussed in section 3.2.4. The two subroutines

force and integrate compute the time evolution of the initialized system and

represent the core of the algorithm.

Finally the subroutine averages computes all kind of averages which are necessary

for analyzing properties of the system each time step.

3.2.1 Instability, Shadow Hamiltonian

Before discussing each step in algorithm 1 in detail it is necessary to prove if the

whole procedure can reproduce the dynamics of a simulated system. For the prove

one can start with the Hamiltonian in Cartesian coordinates:

H(rN ,pN ) =
N∑

i=1

p2
i

2mi
+U (rN ). (21)

Using the Hamiltonian EOM (3) the following equations of motion have to be solved

ṙi = pi

mi
,

ṗi = Fi(rN ) =−∇riU (rN ),
(22)

where Fi is the force exerted on particle i . For a N -body-system there are 6N coupled

first order differential equations.

Starting from some initial condition xN
0 = {rN

0 ,pN
0 } the equations of motion 22 are
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solved for small time steps ∆t and produce a discrete trajectory xN
t (xN

0 ) in phase

space. For a small time step the hope is that the discrete trajectory is close to the real

trajectory of the particle.

A displacement δxN
0 = {δrN

0 ,δpN
0 } in the initial condition leads to a new trajectory

with starting condition xN ′
0 = xN

0 + δxN
0 . It turns out that the initially small

displacement grows exponentially∣∣δxN
t

∣∣∼ ∣∣δxN
0

∣∣eλt , (23)

where λ is the Lyapunov exponent. In a system of N particles there are 6N such

Lyapunov exponents. Consequently small displacements which are unavoidable

due to the numerical integration of the equations of motion grow exponentially and

lead to completely different trajectories. The growth of the displacement is also

called Lyapunov instability and due to the instability accurate long-time predictions

in many real world applications are impossible.

To understand why MD simulations are nevertheless meaningful, despite the

displacement of the analytical trajectories grows exponentially, it is necessary to

define time reversibility of an algorithm.

As discussed in section 3.1.1 Newtonian and Hamiltonian mechanics are time

reversible and conserving phase space volume and energy. Hence integration

algorithms should also obey these fundamental symmetries. Considering a

trajectory xN (t ) in phase space as solution of the equations of motion, if the very

same trajectory but time reversed is also a solution of the same equations of motions,

then the dynamics are said to be time reversible.

Integration methods which are conserving the energy exactly do not exist, however,

there are integration methods which are time reversible and which are conserving

phase space volume. Algorithms which are conserving phase space volume are also

called symplectic algorithms. One example for a symplectic algorithm is the velocity

Verlet algorithm which is discussed in section 3.2.4.

For a integration method it is important to be symplectic not only because one

would like to obey the fundamental properties of the Hamiltonian dynamics but also

because symplectic algorithms have a shadow Hamiltonian HS .

By backward error analysis it is possible to show that starting from a specific

initial state and using a symplectic algorithm of order n with finite time step ∆t

for the Hamiltonian H(rN ,pN ) one gets a discrete trajectory that lies on the exact

continuous trajectory that has the same initial state and which is generated by a

shadow Hamiltonian HS = H +∆H , where ∆H = O (∆t n). This holds if the potential

energy function U (rN ) is analytic.
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During a MD simulation with a symplectic algorithm one does not obtain a

trajectory that conserves H but one that conserves HS , which differs from the

original Hamiltonian by a term of oder O (∆t N ). Therefore in contrast to non

symplectic algorithms, symplectic algorithms show no long-time drift of the energy

but only fluctuations of order O (∆t N ).

Whenever one deals with quantities that do not depend on slightly different

Hamiltonians, as it is often the case in MD calculations, the existence of the shadow

Hamiltonian guarantees correct predictions.

3.2.2 Initialization

The first step of each simulation is the initialization. During the initialization the

initial positions and velocities are assigned to all particles in the system. The

positions of the particles must be chosen in a way to be compatible with the

structure which should be simulated. If velocities can not be provided it is possible

to generate them. There are different possibilities how to generate velocities, in

GROMACS the Maxwell-Boltzmann distribution for the velocities vi , i = 1, . . . ,3N

at temperature T is chosen:

p(vi ) =
√

mi

2πkB T
e
−mi v2

i
2kB T , (24)

where kB is Boltzmann’s constant. This is accomplished by the generation of

12 random numbers Rk in the range 0 ≤ Rk < 1, subtracting 6 of the sum and

multiplying the result with the standard deviation of the velocity distribution
√

kB T
mi

.

The in this way generated energy does not correspond perfectly to the temperature T,

therefore it is necessary to remove the center-of-mass motion and scale the velocities

in a way that the total energy corresponds to the temperature T.

3.2.3 Calculating Forces

The computation of the forces acting on each particle in the system is typically the

computationally most expensive part of MD simulations. Considering force models

which are pairwise additive (which are used in this work, see section 4.1) each

particle can interact with N −1 neighbors leading to a total of N (N−1)
2 interactions for

a system of N particles. This implies that the time which is necessary to evaluate the

forces scales as O (N 2). Fortunately there are techniques to make the computation

more efficient. It is possible to distinguish between short-range and long-range

interactions in a way that for long-range forces the time scales as O (N ), rather than

O (N 2). This is discussed in more detail in section 3.2.6 and section 3.2.7. For

finding all particles in the short-range area it is necessary to use neighbor searching
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algorithms. There exist different efficient techniques to generate lists in which the

neighbors of each particle can be stored. The generation of this lists is in principle

O (N 2) which is quite expensive, but the lists have the advantage that it is not

necessary to recompute them each time step. Furthermore it is possible to reduce

the costs to O (N ) if a cutoff-scheme is used as discussed in section 3.2.6.

3.2.4 Integrating the Equations of Motion

There are numerous methods for solving the set of differential equations, for

example Runge-Kutta methods, Predictor-corrector method or Linear multistep

methods.

All of them have different advantages and disadvantages, generally they should be

fast, require less memory and should permit the use of a large time step.

Velocity Verlet Algorithm

The velocity verlet algorithm is a commonly used integration method which is also

used in the context of this work. It can be derived from the Taylor expansion of r(t +
∆t ) and the time reversed Taylor expansion of r(t ):

r(t +∆t ) = r(t )+v(t )∆t + F(t )

2m
∆t 2 +O (∆t 3) (25)

r(t ) = r(t +∆t )−v(t +∆t )∆t + F(t +∆t )

2m
∆t 2 +O (∆t 3) (26)

By inserting (25) in (26) one gets the following equation

v(t +∆t ) = v(t )+ F(t )+F(t +∆t )

2m
∆t +O (∆t 2) (27)

which, together with (25, forms the velocity Verlet algorithm. The velocity Verlet

algorithm is time reversible, as can be shown by applying the algorithm using

inverted momenta which is necessary to obey Hamilton mechanics.

For proving phase space volume conservation it is necessary to use the Liouville’s

theorem (see chapter 4, Frenkel & Smit [64]).

3.2.5 Periodic Boundary Conditions

Usually MD simulations should predict properties of macroscopic systems (∼ 1023

particles), however present-day computer simulations can handle simulations in a

range of a few hundred to a few million particles. For such small systems the ratio

between surface and internal particles is much higher than the ratio in macroscopic
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systems, therefore it is not safe to assume that the choice of the boundary conditions

is negligible.

In order to simulate bulk phases it is essential to assume that the simulated

N -particle system is surrounded by infinite bulk. Therefore periodic boundary

conditions (PBC) are applied. Using PBC, the volume containing the N particles of

the simulation, called simulation box, is treated as primitive cell. By duplicating this

primitive cell an infinite periodic lattice of identical cells is created (see figure 7). A

certain particle can now not only interact with the particle in the simulation box but

also with all other particles in this infinite arrangement. Assuming interactions to be

pairwise additive, the total potential energy of the particles in the simulation box is

given by

Utot = 1

2

′∑
i , j ,n

u
(∣∣ri j +nL

∣∣) , (28)

where L is the diameter of the simulation box (which for convenience is assumed to

be cubic) and n = (nx ,ny ,nz) with nx ,ny ,nz ∈ N addressing a certain periodic image.

The prime indicates that the term i = j is excluded when n =~0.

Figure 7: Two dimensional visualization of periodic boundary conditions. A particle (gray)
leaving the primitive cell (yellow) along the right arrow and enters the primitive cell on the
opposing side of the primitive cell. Figure from M. O. Steinhauser [67].

Although using PBC is a very effective method for simulating certain systems, it is

necessary to be aware of correlations produced by PBC which are not occurring in

macroscopic systems.
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3.2.6 Truncation of Interactions

Since often only short-range interactions are important, infinite sums as in 28

become finite by truncating interactions beyond a certain cutoff distance rc .

Interactions between a particle and its neighboring particles are only computed,

when their distance is smaller than rc . The resulting error can be made arbitrary

small by choosing rc sufficiently large. Using a cutoff radius (28) can be rewritten as

Utot =
∑
i< j

uc (ri j )+UL , (29)

where uc stands for the truncated potential energy function and UL for the

remaining long-range interaction correction.

There are different methods to truncate the potential. The simplest truncation is the

one explained above by just calculating interactions within a certain cutoff distance

rc . A more common choice in MD simulations is to truncate and shift the potential,

such that the potential vanishes at the cutoff radius:

utr−sh(r ) =
u(r )−u(rc ), for r ≤ rc

0, for r > rc

. (30)

The additional shift has the advantage that there are no discontinuities in the

potential and hence the intermolecular forces are always finite.

A third way of truncation is using minimal image convention. In this case the

truncation is not spherical, instead the interaction of a particle i with particle j is

always with the particle j in the nearest periodic image.

3.2.7 Long-Range Correction

Using a truncation as described in section 3.2.6 there are different correction

techniques for including long-range interactions. Corrections are necessary,

because otherwise serious differences occur. The simplest correction is a tail

correction. The pair potential u(r ) gets truncated and a remaining contribution

can be estimated as:

Ut ai l =
Nρ

2

∞∫
rc

dr u(r )4πr 2. (31)

This expression can be solved in certain cases analytically. If this is not possible

advanced methods are necessary, in this work Particle-mesh Ewald summation

(PME) was used.
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Particle-Mesh Ewald Summation

Particle-mesh Ewald (PME) is a method developed by Tom Darden, Darrin York and

Lee Pedersen in 1994 for evaluation electrostatic energies and forces of large periodic

systems [68]. It is based on Ewald summation, which is named after Paul Peter Ewald

who has used this method in 1921 to calculate optical and electrostatic potentials

of grid potentials [69]. PME has the advantage that it scales with N log N and is

therefore superior to classical Ewald summation for almost all systems.

The main ideal of Ewald summation is to rewrite the used potential U as a sum of two

potentials, one for short-range interactions Usr and one for long-range interactions

Ul r :

Utot =Usr +Ul r . (32)

This has a huge advantage since the short-range term converges quickly in

real space, the long-range term on the other side converges quickly in Fourier

(reciprocal) space. The short-range term can be typically computed easily since

a suitable cutoff makes the system small. For the long-range part it is necessary

to find a convenient mathematical form to handle the computational costs. The

chosen form is most typically a Gaussian charge distribution around all occurring

charges. The position of the charges can be described with a Dirac delta distribution.

In principle the long-range potential is the sum of all energies in a unit cell and the

energies with all other particles in the system:

El r =
∫ ∫

drdr′ρtot (r)ρuc (r′)ϕ(r− r′), (33)

where ρuc (r′) is the charge density of the unit cell, ρtot (r) is the charge density of the

total system and ϕ(r− r′) is the chosen form of the potential. ρuc (r′) and ρtot (r) can

be described by using Dirac delta distribution:

ρuc (r) =∑
k

qkδ(r− rk ), (34)

where k represents charged particles and qk is the charge of particle k and

ρtot (r) = ∑
n1,n2,n3

∑
k

qkδ(r− rk −n1a1 −n2a2 −n3a3) (35)

where n1,n2,n3 are integers and a1,a2,a3 are the lattice vectors of the unit cell.

ρtot (r) can be represented by the convolution of the lattice function L(r) and the

ρuc (r) which is in Fourier space simply the product:

ρ̃tot (k) = L̃(k) · ρ̃uc (k), (36)
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where

L(r) = ∑
n1,n2,n3

δ(r−n1a1 −n2a2 −n3a3) (37)

has in Fourier space the form

L̃(k) = (2π)3

Ω

∑
m1,m2,m3

δ(r−m1b1 −m2b2 −m3b3), (38)

where b1,b2 and b3 are the reciprocal lattice vectors and Ω is the volume of the unit

cell. The single-particle potential v(r)

v(r) =
∫

dr′ρuc (r′)ϕ(r− r′) (39)

can be presented in Fourier space as

Ṽ (k) = ρ̃uc (k) · Φ̃(k). (40)

This allows to write the long-range energy as

El r =
∫

drρtot (r)v(r). (41)

Using Parseval’s theorem the long-range energy can be written as sum

El r =
1

Ω

∑
m1,m2,m3

∣∣ρ̃uc (k)
∣∣2
Φ̃(k). (42)

3.2.8 Constraints

Considering the simulation of molecules, a problem which can occur is that

intermolecular motions such as bond vibrations are on an other time scale than

the interaction of molecules. For simulating bond vibrations a very small time step

would be necessary which has the disadvantage that the dynamics of the whole

system are evolving very slow. There are different approaches for handling this

problem. One approach is to assume that molecules are rigid. This approximation

is reasonable, because due to the typically small amplitude of bond vibrations the

shape of the molecule is influenced only little. For water additionally the stretching

mode is almost always in the quantum mechanical ground state which justifies

the approximation of a rigid molecule. The most common ways to guarantee rigid

molecules are using quaternions or constraint algorithms.
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Using a constraint algorithm one imagines that each constraint is maintained by

a constraint force. It is then possible to solve the EOM considering the constraint

forces. Considering n constraints, each constraint is described by a function

σα(rN ) = 0 (43)

where α = 1, . . . ,n. The constraint algorithm is based on the method of Lagrange

multipliers, the modified Lagrangian has the following form:

L ′ =L −
n∑
α=1

λασα(rn) (44)

where λα are Lagrange multipliers. Using the Lagrangian EOM

d

dt

∂L ′

∂ṙ
− ∂L ′

∂r
= 0 (45)

one gets

mi r̈i =−∇iU −
n∑
α=1

λα∇iσα = Fi +
n∑
α=1

Gα
i . (46)

where Gα
i denote the constraint forces. These are the adopted EOM which have to

be solved for the dynamics of the system. Still it is necessary to find the Lagrange

multipliers which are undefined so far. It is possible to show, that the Lagrange

multipliers are given by

Λ=M−1(F +T ) (47)

where

Fα =∑
i

1

mi
Fi ·∇iσα (48)

Mαβ =
∑

i

1

mi
∇iσα ·∇iσβ (49)

Tα = Tr
(∑

i j
∇i∇ jσαṙi ṙ j

)
. (50)

The solution of the adapted EOM in formula 46 together with the Lagrange

multiplier obtained by formula 47 give the solution of the exact EOM. However,

it is not guaranteed that these solutions hold for the approximated MD simulations.

Therefore some different methods have been developed which maintain the

constraints exactly in the approximation of MD simulations. The most famous

algorithm is the SHAKE algorithm [70]. In this work the chosen method was using
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the constraint algorithm LINCS [71] developed by Hess, Bekker, Berendsen and

Fraaije in 1997.

LINCS

Using the notation used by Hess et al. [71] the Newtonian EOM can be written as

d2r

dt 2
= M−1F (51)

where F is a 3N force vector and M is a 3N ×3N diagonal matrix which contains the

masses of the particles. There are K independent constraint equations

g (r)i =
∣∣∣ri1 − ri2

∣∣∣−di = 0 (52)

where i = 1, . . . ,K and di is the bond length between particle i1 and particle i2. Using

again the method of Lagrange multiplier the adopted EOM has the form

−M
d2r

dt 2
+BTλ+F = 0 (53)

where Bhi = ∂gh
∂ri

. Replacing λ the EOM to be solved has the form

d2r

dt 2
= (I−TB)M−1F−T

dB

dt

dr

dt
(54)

where I is the unity and T = M−1BT(BM−1BT)−1 is the matrix which transforms

motions in the constrained coordinates into motions in Cartesian coordinates.

Using a Leap-Frog integration scheme to solve this equation the new positions can

be computed by

rn+1 = runc
n+1 −M−1Bn(BnM−1BT

n )−1(Bnrunc
n+1 −d) (55)

here d is the vector containing all constrained bond lengths. Inverting (BnM−1BT
n )

needs half of the CPU time and has to be done every time step. Therefore the

following transformation is made

(BnM−1BT
n )−1 = S(I−An)−1S (56)

where

S = Diag

(√
1

m11

− 1

m12

, · · · ,

√
1

mK1

− 1

mK2

)
. (57)
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In this form the following expansion can be used

(I−An)−1 = I+An +A2
n + . . . (58)

which reduces the computational costs extremely. In GROMACS this expansion was

improved by using the approximation

(I−An)−1 = I+An +·· ·+ANi
n + (A∗

n + . . .A∗Ni
n )ANi

n (59)

where A∗
n all elements except those that couple constraints within rigid triangles

are zero and N − i is the order or the expansion. A detailed explanation of this

approximation can be found in the P-LINCS paper by Hess [72].

3.2.9 Temperature and Pressure Coupling

Applying the procedure discussed so far in section 3.2 will result in a simulation of

the microcanonical ensemble, since the number of particles N can not change, the

volume V of the simulation box is fixed and the energy E is constrained by the EOM.

For performing simulations in the canonical ensemble (NVT) or in the isothermal-

isobaric ensemble (NVT) it is necessary to control temperature and pressure

explicitly. For temperature control it is necessary to use a thermostat, for pressure

control a barostat is needed.

There are two different approaches for sampling a different ensemble. Either the

time evolution from the Newtonian EOM gets combined with appropriate stochastic

steps or the Hamiltonian gets modified resulting in modified equations of motion.

The second approach was introduced by Andersen [73] in 1979 and is the most

common used in MD simulations. There exist many different thermostats and

barostats, for this work Nosé-Hoover thermostat and Parrinello-Rahman barostat

were used.

Nosé-Hoover Thermostat

The Nosé-Hoover thermostat is an algorithm to keep a constant temperature in a

MD simulation. Originally it was developed by Nosé in 1984 [74], one year later it

was improved bei Hoover [75]. A heat bath consisting of only one imaginary particle

achieves constant temperature conditions during the simulation. The imaginary

particle introduces an additional degree of freedom which checks if the temperature

is too low or too high compared to the target temperature. This degree of freedom

is denoted as s, the corresponding momentum is denoted as ps . The adapted



28 BACKGROUND

Hamiltonian which includes the additional degree of freedom has the following

form:

HN H (rN ,pN , ps , s) =
N∑

i=1

p2
i

2mi s2
+U (rN )+ p2

s

2Q
+ g kB T ln(s) . (60)

The parameter Q is called thermostat mass and has the units of energy·time2. It

determines how quickly the thermostat relaxes. T is the desired temperature and

g has to be chosen in a way, that the microcanonical distribution in the 6N + 2

phase space yields a canonical distribution in the 6N phase space spanned by N

real particles.

Using virtual coordinates and defining a friction coefficient ζ

r′i = ri

p′
i =

pi

s

t ′ =
∫ t dt

s

ζ := ps

Q

(61)

the EOM to the Hamiltonian HN H have the following form:

dr′i
dt ′

= p′
i

mi

dp′
i

dt ′
= Fi −ζp′

i

dζ

dt ′
= 1

Q

[
N∑

i=1

p′2
i

mi
−3N kB T

]
dln(s)

dt ′
= ζ.

(62)

Introducing ζ in the Hamiltonian HN H and finding g = 3N the Hamiltonian has the

form:

HN H (rN ,pN ,ζ, s) =
N∑

i=1

p2
i

2mi s2
+U (rN )+ ζ2Q

2
+3N kB T ln(s) . (63)

For this Hamiltonian it can be easily shown that the energy is conserved. and that

the resulting EOM in equation 62 are unique.

Using Nosé-Hoover EOM it is possible to understand the way the thermostat

works. The third equation in (62) determines the sign of the friction coefficient by

comparing (twice) the kinetic energy
∑N

i=1
p′2

i
mi

to (twice) the average kinetic energy

3N kB T . If the kinetic energy is larger than the average kinetic energy for temperature
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T , than the rate of the change of the friction coefficient ζ is positive. Equation two

in (62) couples the friction coefficient to the momentum. If the friction coefficient

is positive, then the momenta get decelerated and the kinetic energy of the system

decreases.

Equation 62, line 3, furthermore shows that the thermostat does not react

instantaneously, but the time derivative reacts. This mechanism is called integral

feedback. The reaction time of the thermostat is controlled by the parameter Q. For

large values of Q the thermostat reacts quickly resulting in a larger disturbance in

the dynamics of the system. The goal is finding a Q as large as possible affecting

the dynamics as little as possible. As a measure for the disturbance of the dynamics

one can use the velocity autocorrelation function. The thermostat will change the

velocity autocorrelation function but it should not be changed qualitatively.

Parrinello-Rahman Barostat

For a isothermal-isobaric ensemble it is not only necessary to control temperature

but also to control pressure. The Parrinello-Rahman barostat is named after M.

Parrinello and A. Rahman who have designed the barostat in 1981 [76]. The

Parrinello-Rahman barostat is commonly used in combination with Nosé-Hoover-

thermostat. For simplification here only the Parrinello-Rahman modification of the

NH-EOM are shown.

Vectors of the simulation box are represented in a matrix b which obeys the following

EOM:

d2b

dt 2
=V W−1bT−1(P−Pr e f ). (64)

V denotes the volume of the simulation box, W is a matrix parameter which controls

the strength of the coupling. The matrix P denotes the current pressure and the

matrix Pr e f denotes the reference pressure. The Newtonian EOM is then modified

in the following way:

d2ri

dt 2
= Fi

mi
−M

dri

dt
(65)

M = b−1

[
b

dbT

dt
+ db

dt
bT

]
bT−1 (66)

If the strength of the coupling W−1 is zero, then M is zero and the adopted EOM 65 is

unchanged compared to the Newtonian EOM. The strength of the coupling depends
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on the isothermal compressibility matrix β, the pressure time constant τp and the

largest box matrix element L:

W−1 = 4π2β

3τ2
p L

. (67)

Often it is recommendable to use the PR-barostat only for equilibrated systems.

If the barostat is used in a system with a pressure far away from the equilibration

pressure the system starts to oscillate and could even crash.

3.3 Software

3.3.1 GROMACS

Gromacs, GROningen MAchine for Chemical Simulations [21] [77] is a MD software

package mainly designed for biophysical applications. The development started

in 1991 at the University of Groningen, Netherlands, in the Biophysical Chemistry

department. GROMACS is free, open-source and released under the GNU Lesser

General Public License (LGPL).

GROMACS has implemented all standard algorithms needed for MD simulations

(e.g. Nosé-Hoover thermostat, Parrinello-Rahman barostat, PME, PBC, velocity-

Verlet-algorithm, etc.). It can run in parallel, which was crucial for using the

Vienna Scientific Cluster (VSC), a supercomputer cluster operated by University

of Vienna, TU Wien and University of Natural Resources and Life Sciences,

Vienna (BOKU). Furthermore many different analysis tools are available. A

documentation of all provided algorithms is available at http://manual.gromacs.
org/documentation/.

For this thesis GROMACS version 2016.4, released on September 15, 2017, was used.

http://manual.gromacs.org/documentation/
http://manual.gromacs.org/documentation/
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4. MOLECULAR MODELS AND SIMULATION
DETAILS

For MD simulations of CO2-hydrates it is necessary to model water molecules and

to model CO2 molecules. The modelling consists of two parts: On the one hand it

is necessary to define how the molecules interact, for that it is necessary to define

different potentials to simulate occurring force fields. This is presented in section

4.1. On the other hand it is necessary to consider static properties of molecules. Such

static properties the atoms which form a molecule, the masses, virtual particles, etc.

are defined in the topology of a molecule. The used water model is discussed in

section 4.2, the model for the CO2 molecules is discussed in section 4.3.

4.1 Interaction Functions and Force Fields

As discussed in section 3.2 it is necessary to calculate the forces on each particle

in a MD simulation. Therefore the choice of the potentials in a system has a large

impact on the dynamics of the system. As mentioned before the true interaction is

given by solutions of quantum mechanical differential equations as the Schrödinger

equation or the Dirac equation for all electrons and nuclei. Since such systems are

generally not possible to solve it is necessary to make assumptions for the potentials.

In principle one can assume that the potential functions can be subdivided into

three parts:

– Non-bonded: Usually non-bonded interactions are Van der Waals interactions

and electrostatic interactions.

– Bonded: Bonded interactions are necessary for modeling covalent bond-

stretching, angle-bending or dihedrals.

– Restraints: Special potentials impose restraints on the motion of the system to

avoid rearrangements of critical parts during relaxation.

4.1.1 Non-bonded Interactions

Interactions can be simulated by implementing potentials. The potentials evoke a

force field which leads to interactions between molecules. Therefore the choice of
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the force field is crucial. In general the potential energy U can be described as the

sum of n-body potentials un :

U =
N∑
i

u1(ri )+
N∑
i , j

i< j

u2(ri ,r j )+
N∑

i , j ,k
i< j<k

u3(ri ,r j ,rk )+ . . . (68)

u1 denotes the one-body term, ui denotes the i -body term. The one-body term is

only meaningful in the presence of a external force field, because without an external

force field the energy of the atoms should not depend on the position. Assuming

the absence of an external force field the potential depends only of the relative

interatomic distances ri j =
∣∣r j − ri

∣∣ and the bond angles θi j k . The potential function

reduces to the form:

U =
N∑
i , j

i< j

u2(ri j )+
N∑

i , j ,k
i< j<k

u3(ri j ,ri k ,θi j k )+ . . . (69)

Since three- and higher-body problems are numerically expensive, the potentials

have to be approximated as pairwise-additive potentials where many-body

potentials are embedded:

U =
N∑
i , j

i< j

ue f f
2 (ri j ). (70)

Such an approximation is often called effective pair potential. A pair potential can

be empirical, when it should simply reproduce experimental results. An example for

this is the Lennard-Jones potential, or it can be derived from fundamental physical

laws like for instance the Coulomb potential.

Lennard-Jones Potential

The Lennard-Jones interaction is an approximation for the interaction between

neutral atoms or molecules [78]. It was first proposed by John Lennard-Jones in 1924

and its most common form is

uLJ (ri j ) = 4εi j

[(
σi j

ri j

)12

−
(
σi j

ri j

)6 ]
(71)

where σi j is the distance at which the inter-particle potential is zero and εi j is the

depth of the potential well. The term r 6 describes the attraction at long ranges

which are mainly the Van der Waals force and the dispersion force, the r−12 term

describes the Pauli repulsion due overlapping electron orbitals and is therefore
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relevant at short ranges. The potential can be simplified by using Lorentz-Berthelot

rules proposed by H. A. Lorentz [79] and D. Berthelot [80]:

σi j = 1

2
(σi i +σ j j )

εi j =
√
εi iε j j .

(72)

The L-J potential is limited by two parameters εi j and σi j which determine the

energy and length scale. This has the consequence that the potential is unique and

can not be fitted to properties of real materials. Nevertheless the L-J potential is very

popular in MD simulations.

The most wide spread alternative is the Buckingham potential [81] proposed by

R. Buckingham. The repulsive r−12 term is replaced by an exponential term

Ae−Br which has the advantage that the repulsion can be modeled more precisely.

However, if r → 0 the exponential term Ae−Br converges while the r−6 diverges

which may be problematic if one is dealing with very short range distances.

Coulomb Potential

The Coulomb potential is the central potential for charged particles. It was

developed by Charles Augustin de Coulomb in 1785 and is fundamental for

electrostatics. The potential has the form:

uC (ri j ) = 1

4πε0

qi q j

ri j
, (73)

where ε0 is the electric constant, qi is the charge of particle i and q j is the charge of

particle j . Since the decay r−1 is slow, the error is large when using a cutoff-scheme.

It is either necessary to use advanced cutoff schemes like a cutoff in combination

with a shift and additionally long-range corrections or it is necessary to introduce a

reaction field which is a method to simulate long-range interactions.

4.1.2 Bonded Interactions

Bonded interactions are the interactions within a molecule. They are not only

pair interactions but also 3- and 4-body interactions. Bonded interactions can be

subdivided into bond stretching interactions which are 2-body interactions, angle-

bending interactions which are 3-body interactions and dihedral-angle interactions

which are 4-body interactions. In this section the discussion of bond-stretching

potentials and angle-bending potentials will be very rudimentary because the used

models for water and carbon dioxide are rigid. Neither bond-stretching nor angle-
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bending occurs. Since in this work no structures with dihedral properties occur this

potential will be neglected.

Bond-stretching Potentials

The simplest bond-stretching potential is a harmonic potential,

ub(ri j ) = 1

2
kb

i j

(
ri j −bi j

)2 (74)

where kb
i j is the harmonic force constant and bi j is the equilibrium bond length.

Many more potentials, for instance the Morse potential, the cubic potential or the

FENE potential can be found in the GROMACS user manual in chapter 4.2 [82].

Angle-bending Potentials

The simplest angle-bending interaction is a harmonic potential and has the same

form as equation 74:

ua(θi j k ) = 1

2
kθi j k

(
θi j k −θ0

i j k

)2
. (75)

Again kθi j k is a harmonic force constant and θ0
i j k is the undeflected angle. θi j k can

be computed by

θi j k = arccos

(
ri j · r j k

ri j r j k

)
(76)

and is hence depending on the positions of three particles.

Alternative angle-bending potentials as the cosine based angle potential or the Urey-

Bradley potential can be found in the GROMACS user manual in chapter 4.2 [82].

4.1.3 Restraints

Restraints are special potentials which are used to restrain the motion of the system.

This could be necessary to include certain knowledge from experimental results in

the system or to avoid disastrous deviations. Typically restraints are implemented

by applying an energy penalty if a particle is deviating from a certain value. One has

to realize that in GROMACS restraints and constraints are two different concepts.

Constraints are needed to fix bond lengths and angles whereas restraints favor

certain constellations.
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Different restraint algorithms allow to implement restraints for bond lengths, bond

angles, dihedrals or orientations of certain vectors. A list of all available restraint

algorithms for GROMACS can be found in the user manual in chapter 4.2 [82].

4.2 Water Models

Since H2O is one of the most important molecules in MD simulations there are

dozens of different water models. Classifying all those models is nearly impossible,

however, the three main categories to classify them are the number of interaction

points (which are called sites), the flexible or rigid nature of the model and the

inclusion of polarization effects. In this work the used water model is TIP4P/Ice

which is discussed in detail in section 4.2.1.

4.2.1 TIP4P/Ice Potential

Figure 8: TIP4P model of H2O molecule. There are four interaction points: one oxygen atom O
(red), two hydrogen atoms H (green) and one dummy atom M (blue) which is located near the
oxygen atom along the bisector of the HOH angle. Figure from Sklogwiki [83].

The TIP4P/Ice potential (Transferable Intermolecular Potential with 4 Points) was

developed by J. L. F. Abascal, E. Sanz, R. García Fernández and C. Vega in 2005 to

reproduce the coexistence lines of different ice forms [84]. The potential is rigid,

planar and has four interaction points: one oxygen atom O, two hydrogen atoms H

and one dummy atom M which is located near the oxygen atom along the bisector of

the HOH angle (see figure 8). This dummy particle has the purpose of a charge site

which improves the electrostatic distribution of the molecule. This setup is based on

the Bernal-Fowler model published in 1933 [85]. The used potential is the Lennard-

Jones potential combined with the Coulomb potential:

U =U LJ +UC =
N∑
i , j

i< j

(
4εi j

[(
σi j

ri j

)12

−
(
σi j

ri j

)6 ]
+ 1

4πε0

qi q j

ri j

)
(77)
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using the parameters given in table 1.

Table 1: Parameters of TIP4P/Ice water model

ε/kB (K ) σ (Å) q (e) Geometry

O 10.61 3.1668 0.0 O-H: 0.9572 Å
H 0.0 0.0 0.5897 O-M: 0.1577 Å
M 0.0 0.0 -1.1794 H-O-H: 104.5◦

The masses are carried by the oxygen and by the hydrogen atoms. The oxygen

atom has a mass of 15.9994 u, the hydrogen atom carries a mass of 1.008 u. The

phase diagram calculated with this model can be seen in figure 9. The blue stars are

the experimental coexistence lines of different ice structures and liquid water. The

black dotted line is the phase diagram computed with the TIP4P potential proposed

by Jorgensen et al. in 1983 [86]. The red line shows the coexistence lines using

the TIP4P/Ice potential. The shift of the stability regions of ice II, ice III, ice V

and ice VI of approximately 15 K for TIP4P/Ice and approximately 50 K for TIP4P is

conspicuous.

Figure 9: Phase diagram of water using TIP4P (black) and TIP4P/Ice (red) water in comparison
to experimental results. Figure from Abascal et al.[84].

4.3 CO2 Models

A number of models has been proposed to simulate properties of CO2, but only,

the MSM model [87, 88], the EMP2 model by Harris and Yung, 1995 [89], the exp-
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6-variant of this model by Potoff et al., 1999 [90] and the TraPPE model by Potoff

and Siepmann, 2001 [91] are optimized for simulating phase equilibria. Since for

the EMP2 model and for the exp-6-variant often special combinig rules are required

the chosen potential for this work has been the TraPPE potential. This is done

in agreement to other works in the field, e.g.Míguez et al. [92] or Sarupria and

Debenedetti [93].

4.3.1 TraPPE Potential

The TraPPE potential (Transferable Potentials for Phase Equilibria) was developed

by J. J. Potoff and J. I. Siepmann in 2001 for describing the vapor-liquid equilibria

of mixtures containing alkanes, carbon dioxide, and nitrogen [91]. The molecule is

rigid, linear and has 5 sites. The carbon atom and two oxygen atoms are the LJ site

and the Coulomb site, these three interaction points are along one line. Along the

same line are two virtual particles, each moved outside of the molecule along the

line, carrying half of the mass of the molecule (each virtual atom carries a mass of

22.0049 u).

Figure 10: TraPPE model of CO2 molecule: There are five interaction points: one carbon atom
(blue), two oxygen atoms O (red) and two virtual sites (gray) which are located next two the
oxygen atoms.

The used potential is a combination of LJ-potential and Coulomb potential and has

the form

U =U LJ +UC =
N∑
i , j

i< j

(
4εi j

[(
σi j

ri j

)12

−
(
σi j

ri j

)6 ]
+ 1

4πε0

qi q j

ri j

)
. (78)

The used parameters are listed in table 2.

Table 2: Parameters of TraPPE CO2 model

ε/kB (K ) σ (Å) q (e) Mass (u) Geometry

C 27-0 2.80 0.70 0.0 C-O: 1.086378 Å
O 79.0 3.05 0.35 0.0 O-V: 0.1978245 Å
V 0.0 0.0 0.0 22.0049

In principle the TraPPE potential would also allow to introduce an angle depending

harmonic term and a torsion term. Since in this work the TraPPE potential is used
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for trapped, single CO2-molecules the torsion term can be neglected obviously. The

angle depending term is neglected for comparability reasons, because other works

in the field (e.g.Míguez et al. [92] or Sarupria and Debenedetti [93]) neglect it and

therefore it is easier to compare results.
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5. TWO PHASE COEXISTENCE LINE OF CO2

HYDRATES

In this section the prediction of the two phase coexistence line for both, sI -hydrate

and χ-hydrate, is presented. There exist several ways for finding the melting

temperature of a certain structure. In this work the chosen method was using a two

phase system, one phase is the hydrate to observe, the other phase is a mixture of

CO2 molecules and H2O molecules. For this systems NPT MD simulations along

different isobars have been performed. For each pressure the MD simulations

have been performed for different temperatures. The evolution of the system for

a fixed pressure and a fixed temperature has been analyzed. Depending on whether

the potential energy is increasing or decreasing the hydrate is growing or melting.

Using bisection the melting temperature for each pressure was found by finding the

temperature interval in which on one boundary of the interval the potential energy

is increasing while on the other boundary the potential energy is decreasing.

5.1 Initial Configuration

For both hydrates, sI and χ, a two phase coexistence system has been prepared. One

phase was the hydrate for which the melting temperature should be observed, the

other phase was a mixture of CO2 and H2O molecules. Detailed information to the

initial configurations is provided in section 5.1.1 and 5.1.2.

5.1.1 sI-Hydrate

For sI the unit cell was replicated 2 times in each direction. A occupancy rate of

100% was chosen, therefore the unit cell is built of 46 H2O molecules and 8 CO2

molecules, leading to a guest to host ration of 1 : 5.75. Hence the bulk phase contains

368 H2O molecules and 64 CO2 molecules and has a size of 2.324 × 2.324 × 2.324

nm3. The second phase containing a mixture of CO2 molecules and H2O molecules

was built of 368 H2O molecules and 64 CO2 molecules. This phase has been relaxed

separately from the hydrate for 500 ps in an NVT MD simulation with a fixed volume

of 2.324×2.324×2.324 nm3 and a temperature of 293 K.

After the relaxation of the CO2-H2O-mixture it was merged along the z-dimension

with the hydrate such that the interface of hydrate and mixture was in the x-y plane.

The total number of water molecules was 736, the total number of CO2 molecules

was 128. The two phase system was relaxed for 500 ps in a NPT simulation at a

temperature of 263 K and a pressure of 500 bar.
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5.1.2 χ-Hydrate

The structure for the χ-hydrate is taken from Amos et. al. [1]. The unit cell in the

structure of Amos et. al. contains 6 H2O and 6 CO2 molecules. Since the guest

to host ratio is flexible as discussed in section 2.1.2 it was adapted to the ratio of

the sI-hydrate in section 5.1.1. Therefore five CO2 molecules have been removed

which leads to a guest to host ration of 1:6. This unit cell was duplicated 4 times in

each direction leading to 384 H2O molecules and 64 CO2 molecules and a box size of

2.51×2.1737×2.519nm3. Three additional CO2 molecules are placed along the chiral

channels of the χ-hydrate. This leads to a guest to host ratio of 1:5.73. This hydrate

phase was relaxed for 500 ns in a NVT MD simulation with a temperature of 23 K and

a pressure of 5000 bar.

The liquid phase containing a CO2-H2O-mixture was prepared analogously to the

way described in section 5.1.1. 368 H2O molecules and 64 CO2 molecules are

relaxed with an NVT MD simulation in a volume of 2.51× 2.1737× 2.519nm3 with

a temperature of 293 K and a pressure of 5000 bar. Then the χ-hydrate and the

liquid phase were merged along the z direction and relaxed in a NPT simulation at a

temperature of 250 K and a pressure of 5000 bar.

5.2 Calculation of Liquid-Solid Coexistence Line

For calculating the two phase coexistence line of sI-hydrate the initial configurations

discussed in section 5.1.1 were used. With these configurations NPT MD simulations

were performed along different isobars of 10, 20, 40, 100, 200, 400, 500, 600, 700, 800,

900, 1000, 1500 MPa. For each of these pressures two temperatures were determined,

one low temperature T1 for which the hydrate is shrinking and one high temperature

T2 for which the hydrate phase is melting during the time evolution of the system.

Whether the hydrate was growing or shrinking could also be determined in the

potential energy of the system. If the potential energy was increasing the hydrate

was melting, if the potential energy was decreasing the hydrate was growing.

After the determination of the temperature for which the potential energy was

increasing T2 and one for which the potential energy was decreasing T1 the

intermediate temperature T3 = T1+T2
2 was calculated and for this intermediate

temperature a NPT MD simulation at the same pressure was performed. For this

MD simulation again the development of the potential energy was analyzed. If the

potential energy was increasing, the intermediate between T1 and T3 was chosen as

the temperature for the next MD simulation, if the potential energy was increasing

the intermediate between T2 and T3 was chosen. This bisection was performed until
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for every pressure a final equilibrium state with an uncertainty of ±1K was identified

(see figure 11a). The growing of the sI-hydrate phase can be seen in figure 12.
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Figure 11: Evolution of the potential energy as a function of time of the initial two phase
configuration. NPT MD simulation of: (a) sI-hydrate/CO2-H2O-mixture at 1000 bar and
temperatures from 278 K to 300 K (b) χ-hydrate/CO2-H2O-mixture at 1000 bar and temperatures
from 245 K to 278 K
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Figure 12: Snapshots of layer by layer sI-hydrate growth created with VMD. Beginning at a
separated two phase system the hydrate grows in both sides, enabled by using PBC.
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Figure 13: Snapshots of layer by layer χ-hydrate growth created with VMD. Beginning at a
separated two phase system the hydrate grows in both sides, enabled by using PBC.

The bisection method was very useful for finding the coexistence line sI-hydrate for

pressures up to 5000 bar, however for other configurations or higher pressures it

reached its limits very fast. For the sI-hydrate with pressures higher than 5000 bar

the hydrate structure stopped growing, it was either able to stay equal size or to

melt. The reason was, that if the temperature was too low, in the initially liquid CO2-

H2O-mixture the molecules were moving very little or were building an amorphous

structure which prevented the hydrate from growing. Since in this process the

identification whether the hydrate was growing or keeping equal size was very hard

by using the potential energy, instead the density profile was calculated to identify

the behavior of the hydrate.

A similar problem occurred for the χ-hydrate system. For low pressures (pressures

below 5000 bar) the growing process of the hydrate was very slow. However, at these

pressures also the melting process was very quick and so it was possible to use the

bisection method between an increasing potential energy and a potential energy

which is constant or slightly decreasing. For higher pressures it was again necessary
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to use the density profile of the two phase system to identify the behavior of the χ-

hydrate.

5.2.1 Density Profile

Whether the hydrate structures were growing or shrinking was also possible to

observe in the corresponding density profiles along the z-axis. The calculation of

the density profile along the z-axis is straight forward. First the simulation box is

subdivided into equally sized slabs with a thickness ∆z. The slabs are indexed by

an integer b. Furthermore considering PBC the slabs are extended in the x-y-plane.

Each slab contains the region b∆z ≤ z < (b +1)∆z. This allows defining an indicator

function δb for the slab b:

δb(z) =
1 if b ≤ z/∆z < b +1

0 otherwise
(79)

Using the indicator function the density profile can be calculated by

ρb = (LxLy∆z)−1 = ∑
i∈ atoms

δb(zi )pi (80)

where Lx and Ly are the sides of the periodic cell, zi is the z-coordinate of the atom i

and p is the property for which the density profile should be calculated (for instance

the pi is the mass of atom i if the mass profile is calculated). This algorithms is

implemented in the VMD package density profile tool by Toni Giorgino [94].

The density profiles in figure 14 show the number density profile and are using slab

size of ∆z = 0.1 Å. For the number density profile the property p is chosen as pi = 1.

The density profile was both calculated for CO2 and H2O separately, the sI-hydrate

and the χ-hydrate. The initial density functions show the average density profiles

of the first 50 frames of the trajectories, the final density profiles show the average

density profiles of the last 400 frames.

The density profiles of the sI-hydrate system and the χ-hydrate system (figure 14)

confirm that the sI-hydrate system was able to grow fast (compare the initial state

of the sI-hydrate/CO2-H2O-mixture in figure 14a with the final state in figure 14b)

whereas the growth of the χ-hydrate system was very slow (again compare the initial

state of the χ-hydrate/CO2-H2O-mixture in figure 14c with the final state in figure

14d). Due to the slow process it is not possible to reach a pure χ-hydrate system in

a reasonable computing time, though it is possible to see that the periodic part in

figure 14d is larger than in figure 14c.
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(b) Final state sI-hydrate/CO2-H2O-mixture
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(c) Initial state χ-hydrate/CO2-H2O-mixture

0 10 20 30 40 50
z [Å]

0.00

0.01

0.02

0.03

0.04

0.05

 [a
to

m
s Å

3 ]

CO2
H2O

(d) Final state χ-hydrate/CO2-H2O-mixture

Figure 14: Snapshots of the density profiles along z-axis of (a) initial configuration of sI-
hydrate/CO2-H2O-mixture at 1000 bar and 278 K (b) final state of sI-hydrate/CO2-H2O-mixture at
1000 bar and 278 K (c) initial configuration of χ-hydrate/CO2-H2O-mixture at 1000 bar and 262 K
(d) final state of χ-hydrate/CO2-H2O-mixture at 1000 bar and 262 K

.

5.3 Solid-Liquid Coexistence Line

Using the bisection method described in section 5.2 for each of the pressures 10, 20,

40, 100, 200, 400, 500, 600, 700, 800, 900, 1000, 1500 MPa a corresponding melting

temperature was calculated for both, the sI-hydrate system and the χ-hydrate

system. For the χ-phase additionally the pressures 1100, 1200, 1300, 1400 MPa

have been computed. The results are summarized in figure 15. In this figure the

orange data points represent the two-phase coexistence of sI-hydrate and H2O-CO2-

mixture, the green data points represent the two-phase coexistence ofχ-hydrate and

H2O-CO2-mixture. For pressures up to 900 MPa the error of the method is 2 K. For

higher pressures the error is 5 K for the sI-hydrate and 3 K for the χ-hydrate. All

calculated coexistence temperatures T3 are listed in table 3. The blue data points

are the computed phase diagram of water using TIP4P/ice by Abascal and Vega [84].

The errors of the coexistence temperatures T3 at high pressures are bigger than at low

pressures. This is, because at high pressures the formation of hydrates is very slow
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Figure 15: PT projection of the two-phase coexistence line of sI-hydrate with H2O-CO2-mixture
and χ-hydrate with H2O-CO2-mixture. The orange and green data points are calculated in the
way discussed in section 5.2. The blue data points are from the computed phase diagram of
water using TIP4P/ice by Abascal and Vega [84].

Table 3: Two-phase coexistence temperatures (T3) at different pressures obtained using
bisection method. The estimated error in T3 is shown between parentheses.

P [MPa] T sI
3 [K] T χ

3 [K]

10 288(2) 261(2)
20 293(2) 261(2)
40 293(2) 263(2)
100 295(2) 269(2)
200 295(2) 272(2)
400 291(2) 283(2)
500 288(2) 288(2)
600 281(2) 291(2)
700 276(2) 294(2)
800 267(2) 296(2)
900 250(5) 298(3)
1000 244(5) 300(3)
1100 - 303(3)
1200 - 305(3)
1300 - 306(3)
1400 - 305(3)
1500 244(5) 300(3)

or stops completely since the CO2-H2O-mixture becomes less fluid (or is forming an

amorphous CO2 filled ice if the temperature is low enough). Therefore close to the

two-phase coexistence line the time which is necessary to determine T3 is so long

that it is not within current computing possibilities.
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The simulated curve of sI-hydrate is in good agreement with the experimental

values of Massani, Mitterdorfer and Loerting [19]. A shift of the coexistence line

of approximately 15 K which occurred in a previous work of Míguez et al. [92] does

not occur in the simulation method chosen in this work. The reason could be that

Míguez et al. have chosen to compute the three-phase coexistence line whereas

in this work the two-phase coexistence line has been computed. In a three-phase

system (sI-hydrate-H2O-CO2) the CO2 molecules have to diffuse through the slab

of liquid H2O to reach the sI-hydrate surface whereas in a two-phase system the

growing process of the hydrate can start immediately.

Nakano et al. showed that the coexistence curve has a maximum temperature

of 294.0 K at a pressure of 328 MPa [29]. A shifted maximum also occurs in the

work of Míguez et al. around 90 MPa. This clear maximum can not be seen in

this work, since for both, 100 MPa and 200 MPa a maximum temperature of 295 K

occurs. Though it is likely that a maximum temperature occurs between 100 MPa

and 200 MPa. Furthermore Nakano et al. showed that for pressures lower than the

pressure where the maximum temperature is reached the slope dp/dT > 0 whereas

in higher pressure regions dp/dT < 0 holds. Excluding the point at a pressure of

100 MPa this relations also hold in this work.
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6. SOLID-SOLID COEXISTENCE

In chapter 5 the coexistence line of sI-hydrate and a CO2-H2O-mixture and the

coexistence line of χ-hydrate and a CO2-H2O-mixture were computed by using a

two phase coexistence. The calculation of the coexistence line of sI-hydrate and χ-

hydrate can not be done analogously for several reasons. First of all it is not possible

for geometric reasons. The unit cell of sI-hydrate and χ-hydrate have different

dimensions, therefore it is not possible to unify them to a single simulation box. This

is even more complicated by the fact that the unit cell of sI is a cuboid whereas the

unit cell ofχ is triclinic. Basically simulations could work by using a thin liquid phase

between the two solid phases. However, this simulation would be computationally

expensive and therefore alternative concepts are favored.

6.1 Coexistence of sI-Hydrate and χ-Hydrate

6.1.1 Theory

To get around the problem of solid-solid interface the coexistence line was

determined indirectly by using the state function of the isothermal-isobaric

ensemble:

βG =− ln(∆), (81)

where β= 1
kB T and ∆N pT is the partition function:

∆N pT = βp

N !(2π~)3N

∫
dV

∫
drNdpNe−β[H(rN,pN)+pV ]. (82)

Inserting equation 82 in equation 81 and taking the derivative in directionβ one gets:

∂βG

∂β
=−kB T −〈U 〉N pT −〈pV 〉N pT . (83)

This can be integrated in the range β1 to β2:

β2G2 −β1G1 =
β2∫
β1

∂βG

∂β
dβ=

=−
β2∫
β1

(〈U 〉N pT +〈pV 〉N pT +kB T
)

dβ=−
T2∫

T1

〈U 〉N pT +〈pV 〉N pT +kB T

kB T 2
dT

(84)
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Considering figure 16 the following equation holds:

0 = ∆(βG)12 +∆(βG)13 −∆(βG)23

= (βG)χ,mi x − (βG)sI ,mi x + (βG)sI ,mi x

− (βG)sI ,χ− (βG)χ,mi x + (βG)sI ,χ.

(85)

Here eachβG is marked with two indices and each index is representing a phase. The

integration of equation 84 is done for a certain system (the sI-phase, the χ-phase

or the CO2-H2O-mixture) and the limits of the integral are always certain melting

temperatures T1,T2,T3. The two indices represent the value of βG evaluated at the

melting temperature of the binary system of the two indices. The sum of the integrals

84 of all three systems (the sI-phase, the χ-phase or the CO2-H2O-mixture) has to be

zero (compare figure 16). The temperatures TsI ,mi x and Tχ,mi x can be computed as

discussed in chapter 5. The results can be plugged into equation 85. This results in

an equation where only TsI ,χ is unknown and which can be solved for TsI ,χ. With this

procedure it is possible to find for every fixed pressure the coexistence temperature

TsI ,χ.

T [K]

 G

p=const

T1 = TsI, mix

T2 =
T , mix

T3 = TsI,

G23

G13

G12

CO2-H2O-mixture
-hydrate

sI-hydrate

Figure 16: The blue line represents the product of the Gibbs energy and β for a constant
pressure p. The green line represents the same product for sI-hydrate, the orange line for χ-
hydrate. TsI ,mi x is the coexistence temperature of sI-hydrate and CO2-H2O-mixture at pressure
p, Tχ,mi x is the coexistence temperature with the χ-hydrate. TsI ,χ is the coexistence temperature
of the two hydrates, which should be calculated

The basic structure of the algorithm is summarized in 2.
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Algorithm 2 solid-solid-coexistence

1: for p in pressures do
2: call coex_sI_mix() . compute TsI ,mi x

3: call coex_chi_mix() . compute Tχ,mi x

4: for T in temperatures do
5: call E() . compute U (T )+pV (T )+kB T
6: end for
7: integrate() . Integrate equation 84 three times with different limits
8: solve . Solve equation 85 for TsI ,χ

9: end for

6.1.2 Computation of Internal Energy

For finding the coexistence temperature of sI-hydrate and χ-hydrate using the way

described in section 6.1.1 it is necessary to know the internal energy of sI-hydrate,

χ-hydrate and the CO2-H2O-mixture as a function of pressure and temperature.

Therefore each of the three systems was relaxed at each of the pressures 10, 20, 40,

100, 200, 400, 500, 600, 700, 800, 900, 1000, 1200, 1300, 1400, 1500 MPa for 500 ps

with constant volume at a temperature of 100 K.

For the sI-hydrate a the system had a size of 2×2×2 cages with an occupancy rate

of 100% and a total of 368 H2O molecules and 64 CO2 molecules. The χ-hydrate had

a size of 4×4×4 cages, each consisting of 6 H2O molecules and one CO2 molecule.

Three additional CO2 molecules were added in the channels of the χ-hydrate such

that the ration between CO2 and H2O molecules is approximately the same in the sI-

hydrate and in the χ-hydrate (1 : 5.75 in the sI-hydrate and 1 : 5.73 in the χ-hydrate).

The CO2-H2O-mixture was built of 368 H2O-molecules and 64 CO2-molecules.

For each of the three systems at each pressure for each temperature between 180 K

and 300 K with a step size of 10 K a 2 ns NPT-simulation was carried out using a step

size of 2 fs. From this simulation the average internal energy for each temperature

and pressure combination was calculated by using the internal energy and the

volume of every 100th step starting from step 500.000. Since the used systems have

different numbers of particles it is furthermore necessary to normalize the internal

energies and the volumes by dividing the average internal energy and the volumes

by the number of particles.

For each pressure the temperatures had to be increased step by step and the

simulations had to be done one after each other, with that, the heating process was

very continuously and the relaxation times were short. The result for a pressure of

900 MPa can be seen in figure 17.
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Figure 17: 〈U 〉+〈pV 〉+kB T as a function of temperature T for a pressure of 900 MPa. The red
dots represent the energy of the liquid CO2-H2O-mixture, the blue dots represent the sI-phase
and the orange dots the χ-phase. The green dots show the energy of the separated ice VI +
CO2 I system.

6.1.3 Computation of Coexistence Temperature

After the computation of the average internal energy 〈U 〉N pT depending on

pressure and temperature for sI-hydrate, χ-hydrate and the CO2-H2O-mixture it

was necessary to integrate − 〈U 〉N pT +〈pV 〉N pT +kB T
kB T 2 as it is shown in equation 84. The

integration had to be done three times. The first time it had to be done for the

average internal energy of the CO2-H2O-mixture in the range TsI ,mi x to Tχ,mi x .

Secondly it had to be done for the χ-hydrate system using the limits Tχ,mi x and

χ,sI and thirdly it had to be done for the sI-hydrate system in inverse direction using

the limits TsI ,mi x and TsI ,χ. Integrating the sI-hydrate system in inverse direction

was necessary to use TsI ,mi x as a reference point for the integration. The upper limit

TsI ,χ of the last two integrations is still unknown.

By using the three integrals and equation 85 it was then possible to find the unknown

coexistence temperature TsI ,χ. Therefore all temperatures in the range from 120 K to

300 K with a step size of 1 K were plugged into the upper boundary of the second and

the third integral. Then the results of the integrations could be used for equation

85. If a temperature had solved the equation, this temperature would have been the

searched coexistence temperature TsI ,χ.

Figure 18 shows the result of the procedure for a pressure of 500 MPa and a pressure

of 600 MPa. At the intersection of the orange line which represents the sI-hydrate

and the green line which represents the χ-hydrate equation 85 is fulfilled and

therefore the temperature of the intersection point is the searched coexistence
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(a) Gibbs free energy for a pressure of 500 MPa
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(b) Gibbs free energy for a pressure of 600 MPa

Figure 18: Each line represents the result of the integration in equation 84. The blue line
represents the integration of the average internal energy of the CO2-H2O-mixture, the orange
line of the sI-hydrate and the green line of the χ-hydrate. If the green and the orange line would
intersect, the temperature at the intersection point would be the coexistence temperature. Since
the orange line is above the green line for a pressure of 500 MPa and below the green line for
a pressure of 600 MPa the pressures at which the two lines intersect are between 500 MPa and
600 MPa.
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temperature TsI ,χ. Neither in figure 18a nor in figure 18b there is an intersection

of the orange line and the green line. In figure 18a it would be possible, that the

intersection point is below 180 K. In figure 18b the orange line and the green line are

very parallel, therefore there it is not possible to suspect any intersection point. At

low pressures (≤ 500 MPa) the line of the sI-hydrate is above the line of theχ-hydrate,

at high pressures (≥ 600 MPa) it is reversed. This has the consequence, that only in

the region where the line of the sI-hydrate and the line of the χ-hydrate are nearly

on top of each other a coexistence temperature below the melting temperatures of

the hydrates occurs.

The region in which the line of the sI-hydrate and the χ-hydrate are on top of each

other is between 500 MPa and 600 MPa. In this small region the line of the sI-hydrate

and the χ-hydrate intersect at temperatures below the melting temperatures of the

hydrates. This is also the region in which the melting curves of sI-hydrate and χ-

hydrate are intersecting).

At pressures below the intersection point the sI-hydrate is more stable than the χ-

hydrate since the melting curve of sI-hydrate is above the melting curve ofχ-hydrate.

At pressure above approximately 600 MPa the χ-hydrate is more stable than the sI-

hydrate.

6.2 Coexistence of χ-Hydrate and Ice VI + CO2 I

Experiments suggest, that the χ-hydrate occurs only in a region between 300 MPa

and 1000 MPa [19, 20]. At lower pressures the sI-hydrate is more stable, which was

also verified in section 6.1. At higher pressures solid CO2 and ice VI are separated

and more stable than hydrates [19, 20]. To verify this the whole procedure described

in section 6.1 can be done again with solid CO2 and ice VI instead of sI-hydrate.

Again first of all the computation of the internal energy is necessary. This has

to be done separately for solid CO2 and for ice VI. The work of Datchi et al.

shows, that up to a pressure of 10 GPa the most stable solid CO2 phase is Phase

I [95]. The CO2 I system was built of 6 × 6 × 6 unit cells with a total of 864 CO2

molecules. The ice VI system was built of 4 × 4 × 4 unit cells with a total of 640

H2O molecules. The simulation parameters are the same as used in section 6.1.2.

After the computation of the internal energy for all pressures and temperatures a

normalization to the average internal energy per particle was necessary, considering

that the ratio between CO2 and H2O molecules has to be 1 : 5.75.

After the computation of the average internal energies the integration step was

necessary. As limits Tχ,mi x , Tmi x,i ce V I are used, Tχ,i ce V I should be calculated.

The reason for choosing the melting temperature of ice VI and not the melting
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temperature of CO2 1 is, that the coexistence line of CO2 1 is above the line of ice

VI (for pressures higher than 200 MPa), which implicates that ice VI is melting first.

In contrast to the previous calculation of the coexistence line of the sI-phase and the

χ-phase it was now possible to compute coexistence points and not only the limits

in which the coexistence points must occur. It was possible to find six coexistence

points in pressures between 700 MPa and 1200 MPa. Figure 19 shows the intersection

point for a pressure of 1000 MPa. The coexistence pressures and temperatures can

be found in table 4.
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Figure 19: Each line represents the result of the integration in equation 84 for a pressure of
1000 MPa. The blue line represents the difference of the integration of the average internal
energy of ice VI + CO2 I and the χ-phase, the orange line represents the difference of ice VI
+ CO2 I and the CO2-H2O-mixture and the green line represents the difference of the χ-phase
and the CO2-H2O-mixture. The intersection temperature of the green line and the orange line
is the coexistence temperature of the χ-phase and ice VI + CO2 I.

Table 4: Six coexistence points between the χ-phase and ice VI + CO2 I have been found using
thermodynamic integration.

P [MPa] T [K]

700 123(2)
800 165(2)
900 200(2)
1000 222(2)
1100 249(2)
1200 280(2)

Finding melting points at higher pressures (in the used resolution the next higher

pressure would have been 1300 MPa was not possible, because at this pressure the

melting point would have been above the melting line of ice VI and of the χ-phase.
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In principle the thermodynamic integration method could also work for systems

above the melting temperature. Here some adjustments of the MD simulation

settings would be necessary. The pressure coupling is done with a Parrinello-

Rahman barostate, therefore above the melting temperature of the χ-phase or ice VI

it would be necessary to use isotropic coupling. The temperature for which isotropic

coupling is necessary has to be chosen manually and this has not be done in this

work.

6.3 Overview of Coexistence Lines

A summary of the calculated coexistence regions can be seen in figure 20. The red

area between 500 MPa and 600 MPa marks the region in which the coexistence line of

the sI-phase and the χ-phase is located. At lower pressures the most stable hydrate

phase is the sI-phase. The green points are showing the coexistence line of the χ-

phase and ice VI + CO2 I. Between the coexistence line of the sI-phase and the χ-

phase (red) and the coexistence line of the χ-phase and ice VI + CO2 I the most stable

phase is the χ-phase. At higher pressures ice VI + CO2 I is the most stable phase.
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Figure 20: Computed coexistence regions of sI-phase, χ-phase and ice VI + CO2 I. The red
region show the limits in which the coexistence pressure of the sI-phase and the χ-phase of
CO2 hydrate must be, the green markers shows the coexistence line of the χ-phase and ice VI
and CO2 I. The blue dots show the computed melting curve of the sI-phase, the purple dots
show the computed curve of the χ-phase.
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6.4 Experimental Comparison

This result is also confirmed by different experiments. Massani, Mitterdorfer and

Loerting showed the existence of a phase which they called FI (filled ice) in a region

between 300 MPa and 1000 GPa[19]. In lower pressure regions they showed the

existence of sI-hydrate, in higher pressure regions they found experimentally solid

CO2 I and ice VI separated (see figure 21). Massani et al. gave no description of

the structure which they called FI, but if one assumes that the filled ice structure is

the same structure which is in this work called χ-hydrate, then basically the results

of Massani et al. match with the results calculated in section 6.1 and section 6.2.

There are slight differences in the coexistence pressures, in this work the coexistence

pressure of sI-hydrate and χhydrate is between 500 MPa and 600 MPa. In the work

of Massani et al. it is about 200 MPa lower. The coexistence line between χ-hydrate

and ice VI and CO2 I separated runs in this work from a pressure of 700 MPa with a

assigned temperature of 123 K to a pressure of 1200 MPa with a temperature of 280 K.

The curvature of this coexistence line differs from the curvature of the calculations

from Massani et al. However, despite from the curvature of the coexistence line the

region in which the coexistence occurs is very similar and the assumption that the

χ-phase is the same as FI in the work of Massani et al. seems to be very reasonable.

The gray data points in figure 21 represent experiments of Hirai et al. [30] which

show a similar region of a hydrate structure as it is shown by Massani et al. The gray

squares are selected data points of Bollengier et al. which represent a phase called

high pressure hydrate (HP hydrate). Here it is again possible to suspect that this HP

hydrate, for which no structural description is provided, is the same as theχ-hydrate.

In figure 21 there are two regions highlighted which are called "CO2(s) + LDA" and

"CO2(s) + HDA". This represents CO2 I and low density amorphous ice and CO2 and

high density amorphous ice respectively. These structures occur at low temperatures

(below 150 K respectively 200 K) and a structural description is not provided. In this

thesis these structures have been neglected, though in principle it should be possible

to compute a solid-solid coexistence exactly the same way as it has been done before,

provided that a description of the amorphous structure exists.

Figure 22 is from the work of Bollengier et al. In several experiments they showed the

stability region of sI-hydrate (green diamonds) a phase they called CO2 high pressure

(HP) hydrate (blue diamonds) and the stability region of ice VI and CO2 I separated

(red squares). Additionally they measured the melting curve of ice VI (black pluses)

and the melting of ice VI saturated with CO2 (red crosses). The results are similar to

the results of Massani et al. and the results of this work. At pressures below 700 MPa

they found sI-hydrate and at pressures between 700 MPa and 1 GPa they showed

the existence of the CO2 HP hydrate. Since they only examined temperatures above

240 K, these results match with the results of Massani et al. if again the HP hydrate
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Figure 21: Pressure-temperature phase diagram in a H2O-CO2 system. The gray squares
represent experiments of Bollengier et al.[20], the gray circles represent experiments of Hirai et
al.[30], Both show the existence of a CO2-hydrate. The red, blue and brown arrows represents
experiments of Massani et al. and show the regions of filled ice, CO2 I + ice VI separated and
sI-hydrate, respectively [19]. The gray line shows the occurrence of CO2 I and a low density
amorphous and a high density amorphous phase. The light gray dotted curve is the melting
curve of CO2 I. Figure from Massani et al.[19].

corresponds to the FI and the χ-phase. A slight difference is, that for temperatures

below 260 K a direct coexistence of sI-hydrate and ice VI and CO2 I separated was

found. This direct coexistence does not occur in the work of Massani et al. and does

also not occur in this thesis.

6.5 Shape of Coexistence Lines

The method for computing the solid-solid coexistence pressures used in this work

has a resolution of 100 MPa. Even though this resolution allows a wide range

of possible shapes of the coexistence line of the sI-phase and the χ-phase a big

curvature as it appears at high temperatures in the work of Massani et al. is out

of range.

The region in which the experimental coexistence line of the sI-phase and the χ-

phase occurs is between approximately 500 MPa and 900 MPa and at a temperature
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Figure 22: Pressure-temperature phase diagram in a H2O-CO2 system. The green diamonds
show the stability region of sI-hydrate, the white diamond shows the dissociation of sI-hydrate,
the blue diamond shows the stability region of a CO2 high pressure hydrate. The red squares
represent ice VI and CO2 I separated, the black and red pluses show the melting curve of ice
VI and ice VI saturated with CO2 respectively. All these data points are measured by Bollengier
et al.[20]. The upward triangles show the melting curve of sI-hydrate measured by Takenouchi
and Kennedy [28], leftward triangles: Ohgaki and Hamanak [96], rightward triangles: Nakano
et al.[29], downward triangles: Manakov et al.[97]. The purple line is the melting curve of CO2

I. The black lines in background show the phase diagram of H2O. Figure from Bollengier et al.
[20]

between 230 K and 280 K. In this region there are not only the sI-phase and the χ-

phase stable but also ice V and CO2 I. It is possible that there is not a direct transition

between the sI-phase and the χ-phase but instead a transition from the sI-phase to

ice V + CO2 I separated and then to the χ-phase. For finding the stability region for

this transition way a solid-solid simulation of theχ-phase and ice V + CO2 I separated

and a solid-solid simulation of the sI-phase and ice V + CO2 I separated would be

necessary. This can be done by using the integration procedure introduced at the

beginning of this chapter.

A similar problem occurs at slightly lower pressures and temperatures. In the region

between 300 MPa and 500 MPa at temperatures between 100 K and 230 K ice II and

CO2 I separated is a third additional stable phase and it is possible that it occurs

as intermediate phase in a transition from the sI-phase to the χ-phase. Again

additional solid-solid simulations would be necessary to understand if a transition

with this intermediate product occurs.
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The next step to compute a more detailed shape of the transition lines could

be by using Gibbs-Duhem integration introduced by David Kofke [98][99]. The

Clausius-Clapeyron equation (derived by Rudolf Clausius [100] and Benoît Paul

Émile Clapeyron [101])
dp

dT
= ∆H

T∆V

where p is the pressure T the temperature holds along the transition line of two

phases. ∆V is the volume difference of the two phases and ∆H is the difference

in enthalpy. Using a given point on the coexistence line the integration of the

Clausius-Clapeyron equation can be started and the transition line can be computed

this way. For the given problem of this thesis this procedure can be used using

the sI-phase and the χ-phase. As starting point for the integration a point at low

temperatures between 500 MPa and 600 MPa can be used. Since the starting point

must be very precise, because otherwise the coexistence line would be diverge, it

would previously be necessary to use thermodynamic integration in a pressure range

between 500 MPa and 600 MPa to find suitable starting pressure and temperature.

Gibbs-Duhem integration could also be used to refine the shape of the transition

line between the χ-phase and ice VI + CO2 I. A suitable starting point would be at a

pressure of700 MPa and a temperature of 123 K.

Using these two methods, the solid-solid integration method with ice V and ice II

and the Gibbs-Duhem integration it could be possible to refine the shape of the

coexistence line of the different phases.
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7. CONCLUSION

This thesis is devoted to study the phase diagram of a binary system containing CO2

and H2O molecules. In such binary systems in certain temperature and pressure

ranges the molecules can form CO2-clathrate-hydrates. The focus of this work is

to find the stability region of the χ-phase of CO2-clathrate-hydrates. Molecular

Dynamics simulations allow to compute the phase diagram and are therefore an

excellent alternative to experiments.

The first step of reproducing certain parts of the phase diagram is to chose suitable

models for the occurring molecules in the simulations. TIP4P/ice is commonly used

to reproduce different ice phases in the phase diagram of water, therefore it was

chosen as model for the hydrate phases which can occur at similar temperatures

and pressures. For CO2 TraPPE was chosen to model the molecules. For a

better understanding of the influence of the model it would be possible to redo

the calculations using alternative models, for example TIP4P/2005 for H2O and

EPM2[89] or ZD[102] for CO2. Especially the CO2 alternatives would be interesting in

further investigations because Amos et al. showed that the CO2-molecules in the χ-

phase are slightly bended but TraPPE has a fixed angle whereas EMP2 and ZD would

allow to reproduce the bending.

With the chosen models the next step was to find the solid-liquid transition

temperatures for a range of pressures for both, the sI-phase and the χ-phase. This

was done by using a two phase model where the hydrate and a mixture of CO2

and water coexist. The two phase system was relaxed for a range of temperatures

and pressures. Knowing that the coexistence temperature is between the lowest

temperature at which the hydrate is melting and the highest temperature at which

the hydrate is growing, the coexistence temperature can be found using a bisection

method.

For a further determination of the stability regions of different hydrates it was

necessary to find the solid-solid coexistence line between the sI-phase and the χ-

phase of the CO2-hydrates and theχ-phase and ice VI and CO2 I separated. Since two

solid phases can not be simulated in a direct coexistence system a workaround using

thermodynamic integration was found. This integration method allowed finding

the coexistence temperature between two solids for a certain pressure. Again by

scanning a range of pressures, the pressure at which the two solids coexist was found.

With this method a coexistence line of the sI-phase and the χ-phase was found

between 500 MPa and 600 MPa and the coexistence line of the χ-phase and ice VI

+ CO2 I was running from (700 MPa, 123 K) to (1200 MPa, 280 K). At low pressures

(<500 MPa) the most stable solid phase is the sI-phase, at pressures between 600 MPa
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and 1200 MPa it is the χ-phase and at higher pressures water and CO2 are separated

and occur as ice VI and CO2 I.

The stability regions of the sI-phase, of the χ-phase and of ice VI + CO2 I separated

approximately match with experimental results of Bollengier et al. [20] and Massani

et al. [19]. Despite a slight shift in the pressure of the coexistence lines the

fundamental setup of the phase diagram is the same. Compared to experimental

results the shape of the coexistence line differs. For more knowledge on the shape

of the coexistence lines further simulations using different ice phases would be

necessary. Specially the coexistence line of the χ-phase with ice V and CO2 I

separated at higher temperatures (T>200 K) and with ice II and CO2 I separated at

lower temperatures would be interesting.
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