

MASTERARBEIT / MASTER'S THESIS

Titel der Masterarbeit / Title of the Master's Thesis

"Vergleichende Untersuchungen zu Hammerklavierklängen"

verfasst von / submitted by

Ai Taniguchi, BA

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Arts (MA)

Wien / Vienna, 2018

Studienkennzahl It. Studienblatt / degree programme code as it appears on the student record sheet:

A 066 836

Studienrichtung It. Studienblatt / degree programme as it appears on the student record sheet:

Musikwissenschaft

Betreut von / Supervisor: Univ.-Prof. Dr. Christoph Reuter

Danksagung

Zuallererst möchte ich mich bei Herrn Prof. Dr. Christoph Reuter ganz herzlich bedanken, durch den ich die systematische Musikwissenschaft kennengelernt habe und dem ich es auch verdanke, dass ich überhaupt auch auf *Music Information Retrieval* aufmerksam gemacht worden bin. Ohne seine tatkräftige Unterstützung hätte ich auch niemals diese Arbeit schreiben können, denn neben Beratung und Betreuung versorgte er mich mit wichtiger Literatur, stellte Ton-Daten zur Verfügung und half mir bei den Berechnungen.

Auch gilt mein Dank Frau Isabella Czedik-Eysenberg vom Institut für Musikwissenschaft der Universität Wien, deren Skript zur Berechnung erst diese Arbeit ermöglicht hat.

Danke auch an das Ehepaar Frau Tomoko und Professor Jin Yamana, den Besitzern des "Hauptdarstellers" dieser Arbeit, dem Rosenberger-Flügel. Sie haben mir für die Tonaufnahmen nicht nur das Instrument zur Verfügung gestellt, sondern mich auch tatkräftig unterstützt, besonders Frau Yamana, die sonst professionelle Hammerklavierkonzerte gibt, spielte geduldigst mehr als 1000 Töne und musste auch alle paar Minuten nachstimmen, bis schließlich alle Aufnahmen geschafft waren. Prof. Yamana vermittelte mir sehr viel Wissen über alte Instrumente und zeigte und erklärte mir ausführlichst die Bauweise und Technik des Rosenberger-Flügels.

Mein besonderer Dank gilt meinem Freund Ralf Windhab, der mir beim Verarbeiten der Daten und Erstellen der Grafiken eine sehr große Hilfe war und der auch regelmäßig meine Arbeit korrigierte und in gutes Deutsch verwandelte.

Auch vielen Dank an meine Freundin Ruly Nemoto, die mich immer aufgemuntert und aufgeheitert hat, die Fertigstellung dieser Arbeit leider nicht mehr erleben durfte.

Nicht zuletzt möchte ich mich auch bei meinen Eltern in Japan bedanken, die mir nicht nur meinen Aufenthalt hier in Österreich sowie mein Studium ermöglicht haben, sondern mich auch immer wieder zum Weiterarbeiten motiviert haben.

Ohne die Hilfe und Unterstützung von euch allen hätte ich das niemals schaffen können. Danke vielmals!

Inhaltsverzeichnis

A	bbil	dun	gsverzeichnis	Ш
T	abel	len	verzeichnisV	/II
1	E	Einle	eitung	1
2	S	Stan	d der Klang- und Klavier-Forschung	3
	2.1	9	Saite und Anschlag	3
	2.2	9	Schwingungen und Klangfarbe	5
	2.3	Š	Stimmung und Inharmonizität	6
	2.4]	Resonanzboden-Schwingung und Schall-Leistung	7
	2.5]	Klang-Analyse und -Synthese	8
	2.6]	Fazit der bisherigen Forschung	9
3	E	Einf	ührung in die Geschichte des Hammerklaviers	10
4	N	Mes	smethodik	17
	4.1]	Der Rosenberger-Flügel	17
	4.2]	Mozarts Walter-Flügel	22
	4.3	,	Ton-Aufnahmen	24
	4	1.3.1	Rosenberger-Flügel	24
	4	1.3.2	2 Mozart-Flügel	26
	4.4]	Music Information Retrieval	26
	4.5	•	Verwendete Software	28
	4	1.5.1	MATLAB	28
	4	1.5.2	2 MIRtoolbox	30
	4	1.5.3	B MATLAB-Skript	32
5	N	Mes:	sergebnisse	33
	5.1	1	Auswirkungen der Pedale beim Rosenberger-Flügel	33
	5	. 1 1	AttackTime	33

	5.1.2	2	Brightness	39
	5.1.3	3	Entropy	46
	5.1.4	4	HarmonicEnergy	52
	5.1.5	5	HarmonicPercussiveRatio	58
	5.1.0	5	Lenght	65
	5.1.7	7	LoudnessSone	72
	5.1.8	3	PercussiveEnergy	78
	5.1.9)	ReleaseTime	84
	5.1.	10	Roughness	91
	5.1.	11	SpectralCentroid	98
	5.1.	12	SpectralFlatness	105
	5.1.	13	SpectralFluxMean	111
	5.2	Klä	nge Fagott-Pedal im Vergleich zu Original-Fagott 1	18
	5.3	Erg	ebnisse im Vergleich zum Mozart-Hammerflügel 1	128
6	Zusa	amr	nenfassung und Ausblick1	135
	6.1	Zus	ammenfassung1	135
	6.2	Aus	sblick 1	136
7	Lite	ratı	ırverzeichnis1	137
8	Anh	ang	; 1	147
	8.1	Fag	ott-Vergleichswerte	47
	8.2	Wei	rte der Klangdeskriptoren	155
	8.3	Abs	stract	94

Abbildungsverzeichnis

Abbildung 1: Hammermechanik nach de Zwolle, um 1440 (Quelle: Ahrens 1999:18)	12
Abbildung 2: Portrait Bartolomeo Cristoforis (Quelle: Restle 2000: 82)	
Abbildung 3: Skizze der Cristoforischen Hammermechanik von Maffei, 1711 (Quelle: Restle 1991, S. 80) 14
Abbildung 4: Inschrift des Rosenberger-Flügels (Foto: Taniguchi)	
Abbildung 5: Der Rosenberger-Flügel (Foto: Yamana)	17
Abbildung 6: Abmessungen der Tasten (Skizze: Taniguchi)	18
Abbildung 7: Die Mechanik des Rosenberger-Flügels (Foto: Taniguchi)	19
Abbildung 8: Hämmer des Rosenberger-Flügels (Foto: Taniguchi)	20
Abbildung 9: Foto und Skizze der Pedale (Quelle: Yamana)	21
Abbildung 10: Fagott-Leiste (Foto: Taniguchi)	21
Abbildung 11: Detailansicht der Fagott-Leiste (Foto: Taniguchi)	22
Abbildung 12: Position der Messmikrophone	
Abbildung 13: Wissenschaftlichen Disziplinen des MIR (Quelle: Gäbler 2009, S.10)	27
Abbildung 14: Screenshot der Programmoberfläche von MATLAB (Taniguchi)	29
Abbildung 15: Hauptfunktionen der MIRtoolbox (Quelle: Lartillot und Toiviainen 2007)	31
Abbildung 16: Aktuelle Funktionen der MIRtoolbox (Quelle: Lartillot und Toiviainen 2007)	31
Abbildung 17: attackTime für pp und forte	33
Abbildung 18: attackTime für pp und Shift pp	
Abbildung 19: attackTime für forte und Shift forte	34
Abbildung 20: attackTime für pp und Moderator pp	
Abbildung 21: attackTime für pp und Moderator forte	
Abbildung 22: attackTime für Moderator pp und Moderator forte	
Abbildung 23: attackTime für pp und Doppel-Moderator	
Abbildung 24: attackTime für pp und Shift & Moderator	
Abbildung 25: attackTime für pp und Shift & Doppel-Moderator	
Abbildung 26: attackTime für Shift & Moderator und Shift & Doppel-Moderator	
Abbildung 27: attackTime für pp und Fagott	
Abbildung 28: attackTime für pp und Fagott & Shift & Moderator	
Abbildung 29: brightness für pp und forte	
Abbildung 30: brightness für pp und Shift-pp	
Abbildung 31: brightness für forte und Shift forte	
Abbildung 32: brightness für pp und Moderator pp	
Abbildung 33: brightness für pp und Moderator forte	
Abbildung 34: brightness für Moderator pp und Moderator forte	
Abbildung 35: brightness für pp und Doppel-Moderator	
Abbildung 36: brightness für pp und Shift & Moderator	
Abbildung 37: brightness für pp und Shift & Doppel-Moderator	
Abbildung 38: brightness für Shift & Moderator und Shift & Doppel-Moderator	
Abbildung 39: brightness für pp und Fagott	
Abbildung 40: brightness für pp und Fagott & Shift & Moderator	
Abbildung 41: entropy für pp und forte	
Abbildung 42: entropy für pp und Shift-pp	
Abbildung 43: entropy für forte und Shift forte	
Abbildung 44: entropy für pp und Moderator pp	
Abbildung 45: entropy für pp und Moderator forte	
Abbildung 46: entropy für Moderator pp und Moderator forte	
Abbildung 47: entropy für pp und Doppel-Moderator	
Abbildung 48: entropy für pp und Shift & Moderator	
Abbildung 49: entropy für pp und Shift & Doppel-Moderator	
Abbildung 50: entropy für Shift & Moderator und Shift & Doppel-Moderator	
Abbildung 51: entropy für pp und Fagott	51

	ür pp und Fagott & Shift & Moderator	
_	cEnergy für pp und forte	
_	cEnergy für pp und Shift-pp	
Abbildung 55: harmonic	Energy für forte und Shift forte	53
Abbildung 56: harmonic	cEnergy für pp und Moderator pp	54
	cEnergy für pp und Moderator forte	
Abbildung 58: harmonie	cEnergy für Moderator pp und Moderator forte	55
	cEnergy für pp und Doppel-Moderator	
Abbildung 60: harmonic	cEnergy für pp und Shift & Moderator	56
Abbildung 61: harmonic	cEnergy für pp und Shift & Doppel-Moderator	56
Abbildung 62: harmonic	Energy für Shift & Moderator und Shift & Doppel-Moderator	57
	cEnergy für pp und Fagott	
	cEnergy für pp und Fagott & Shift & Moderator	
	cPercussiveRatio für pp und forte	
_	cPercussiveRatio für pp und Shift-pp	
_	cPercussiveRatio für forte und Shift forte	
_	cPercussiveRatio für pp und Moderator pp	
	PercussiveRatio für pp und Moderator forte	
	cPercussiveRatio für Moderator pp und Moderator forte	
•	cPercussiveRatio für pp und Doppel-Moderator	
	cPercussiveRatio für pp und Shift & Moderator	
_	cPercussiveRatio für pp und Shift & Doppel-Moderator	
	cPercussiveRatio für Shift & Moderator und Shift & Doppel-Moderator	
	cPercussiveRatio für pp und Fagott	
	cPercussiveRatio für pp und Fagott & Shift & Moderator	
	r pp und forter	
	r pp und Shift-pp	
	r forte und Shift forte	
	r pp und Moderator pp	
	r pp und Moderator forte	
	r Moderator pp und Moderator forte	
	r pp und Doppel-Moderatorr	
	r pp und Shift & Moderatorr	
	r pp und Shift & Doppel-Moderatorr	
	r Shift & Moderator und Shift & Doppel-Moderator	
	r pp und Fagottr	
	r pp und Fagott & Shift & Moderator	
	Sone für pp und forte	
_		
	Sone für pp und Shift-pp	
	Sone für forte und Shift forte	
	Sone für pp und Moderator pp	
	Sone für pp und Moderator forte	
_	Sone für Moderator pp und Moderator forte	
_	Sone für pp und Doppel-Moderator	
	Sone für pp und Shift & Moderator	
	Sone für pp und Shift & Doppel-Moderator	
	Sone für Shift & Moderator und Shift & Doppel-Moderator	
	Sone für pp und Fagott	
	sSone für pp und Fagott & Shift & Moderator	
	iveEnergy für pp und forte	
	iveEnergy für pp und Shift-pp	
	iveEnergy für forte und Shift forte	
	iveEnergy für pp und Moderator pp	
	iveEnergy für pp und Moderator forte	
	iveEnergy für Moderator pp und Moderator forte	
	iveEnergy für pp und Doppel-Moderator	
Abbildung 108: percuss.	iveEnergy für pp und Shift & Moderator	82

Abbildung 109: percussiveEnergy für pp und Shift & Doppel-Moderator	82
Abbildung 110: percussiveEnergy für Shift & Moderator und Shift & Doppel-Moderator	83
Abbildung 111: percussiveEnergy für pp und Fagott	
Abbildung 112: percussiveEnergy für pp und Fagott & Shift & Moderator	84
Abbildung 113: releaseTime für pp und forte	85
Abbildung 114: releaseTime für pp und Shift-pp	
Abbildung 115: releaseTime für forte und Shift forte	
Abbildung 116: releaseTime für pp und Moderator pp	
Abbildung 117: releaseTime für pp und Moderator forte	
Abbildung 118: releaseTime für Moderator pp und Moderator forte	
Abbildung 119: releaseTime für pp und Doppel-Moderator	
Abbildung 120: releaseTime für pp und Shift & Moderator	
Abbildung 121: releaseTime für pp und Shift & Doppel-Moderator	
Abbildung 122: releaseTime für Shift & Moderator und Shift & Doppel-Moderator	
Abbildung 123: releaseTime für pp und Fagott	
Abbildung 124: releaseTime für pp und Fagott & Shift & Moderator	
Abbildung 125: roughness für pp und forte	
Abbildung 126: roughness für pp und Shift-pp	
Abbildung 127: roughness für forte und Shift forte	
Abbildung 128: roughness für pp und Moderator pp	
Abbildung 129: roughness für pp und Moderator forte	
Abbildung 130: roughness für Moderator pp und Moderator forte	
Abbildung 131: roughness für pp und Doppel-Moderator	
Abbildung 132: roughness für pp und Shift & Moderator	
Abbildung 133: roughness für pp und Shift & Doppel-Moderator	
Abbildung 134: roughness für Shift & Moderator und Shift & Doppel-Moderator	
Abbildung 135: roughness für pp und Fagott & Shift & Moderator	
Abbildung 136: roughness für pp und Fagott	
Abbildung 137: spectralCentroid für pp und forte	
Abbildung 138: spectralCentroid für pp und Shift-pp	
Abbildung 139: spectralCentroid für forte und Shift forte	
Abbildung 140: spectralCentroid für pp und Moderator pp	
Abbildung 141: spectralCentroid für pp und Moderator forte	
Abbildung 142: spectralCentroid für Moderator pp und Moderator forte	
Abbildung 143: spectralCentroid für pp und Doppel-Moderator	
Abbildung 144: spectralCentroid für pp und Shift & Moderator	102
Abbildung 145: spectralCentroid für pp und Shift & Doppel-Moderator	103
Abbildung 146: spectralCentroid für Shift & Moderator und Shift & Doppel-Moderator	103
Abbildung 147: spectralCentroid für pp und Fagott	104
Abbildung 148: spectralCentroid für pp und Fagott & Shift & Moderator	104
Abbildung 149: spectralFlatness für pp und forte	
Abbildung 150: spectralFlatness für pp und Shift-pp	106
Abbildung 151: spectralFlatness für forte und Shift forte	106
Abbildung 152: spectralFlatness für pp und Moderator pp	
Abbildung 153: spectralFlatness für pp und Moderator forte	
Abbildung 154: spectralFlatness für Moderator pp und Moderator forte	
Abbildung 155: spectralFlatness für pp und Doppel-Moderator	
Abbildung 156: spectralFlatness für pp und Shift & Moderator	
Abbildung 157: spectralFlatness für pp und Shift & Doppel-Moderator	
Abbildung 158: spectralFlatness für Shift & Moderator und Shift & Doppel-Moderator	
Abbildung 159: spectralFlatness für pp und Fagott	
Abbildung 160: spectralFlatness für pp und Fagott & Shift & Moderator	
Abbildung 161: spectralFluxMean für pp und forte	
Abbildung 162: spectralFluxMean für pp und Shift-pp	
Abbildung 163: spectralFluxMean für forte und Shift forte	
Abbildung 164: spectralFluxMean für pp und Moderator pp	
Abbildung 165: spectralFluxMean für pp und Moderator forte	
Additionally 103. Specialitianization for and production for terministic specialities	114

Abbildung 166: spectralFluxMean für Moderator pp und Moderator forte	114
Abbildung 167: spectralFluxMean für pp und Doppel-Moderator	
Abbildung 168: spectralFluxMean für pp und Shift & Moderator	115
Abbildung 169: spectralFluxMean für pp und Shift & Doppel-Moderator	116
Abbildung 170: spectralFluxMean für Shift & Moderator und Shift & Doppel-Moderator	116
Abbildung 171: spectralFluxMean für pp und Fagott	117
Abbildung 172: spectralFluxMean für pp und Fagott & Shift & Moderator	117
Abbildung 173: Fagott-Vergleich: annoyance	119
Abbildung 174: Fagott-Vergleich: attackTime	120
Abbildung 175: Fagott-Vergleich: brightness	120
Abbildung 176: Fagott-Vergleich: entropy	121
Abbildung 177: Fagott-Vergleich: roughness	122
Abbildung 178: Fagott-Vergleich: spectralCentroid	123
Abbildung 179: Fagott-Vergleich: spectralFlatness	123
Abbildung 180: Fagott-Vergleich: spectralFluxMean	124
Abbildung 181: Fagott-Pedal und Fagott pp im Vergleich, mfcc 1-8 sowie mfcc 1-13	125
Abbildung 182: Fagott-Pedal und Fagott pp im Vergleich, mfcc2-8 sowie mfcc 2-13	126
Abbildung 183: Fagott-Pedal und Fagott ff im Vergleich, mfcc2-8 sowie mfcc 2-13	126
Abbildung 184: Fagott-Pedal und Fagott ff im Vergleich, mfcc 1-8 sowie mfcc 1-13	127
Abbildung 185: Vergleich Mozart - Rosenberger: attackTime	128
Abbildung 186: Vergleich Mozart - Rosenberger: entropy	129
Abbildung 187: Vergleich Mozart - Rosenberger: harmonicPercussiveRatio	130
Abbildung 188: Vergleich Mozart - Rosenberger: lenght	130
Abbildung 189: Vergleich Mozart - Rosenberger: lowEnergy	131
Abbildung 190: Vergleich Mozart - Rosenberger: smoothness	131
Abbildung 191: Vergleich Mozart- und Rosenberger-Flügel: mfcc 2-8 sowie mfcc 2-13 in pianissim	10132
Abbildung 192: Vergleich Mozart- und Rosenberger-Flügel: mfcc 1-8 sowie mfcc 1-13 in pianissim	10132
Abbildung 193: Vergleich Mozart- und Rosenberger-Flügel: mfcc 2-8 sowie mfcc 2-13 in fortissime	
Abbildung 194: Vergleich Mozart- und Rosenberger-Flügel: mfcc 1-8 sowie mfcc 1-13 in fortissime	o134

Tabellenverzeichnis

Tabelle 1: Saitenlängen und Durchmesser	19
Tabelle 2: attackTime-Durchschnittswerte aller Töne	39
Tabelle 3: brightness-Durchschnittswerte aller Töne	45
Tabelle 4: entropy-Durchschnittswerte aller Töne	51
Tabelle 5: harmonicEnergy-Durchschnittswerte aller Töne	58
Tabelle 6: harmonicPercussiveRatio-Durchschnittswerte aller Töne	65
Tabelle 7: lenght-Durchschnittswerte aller Töne	71
Tabelle 8: loudnessSone-Durchschnittswerte aller Töne	78
Tabelle 9: percussiveEnergy-Durchschnittswerte aller Töne	84
Tabelle 10: releaseTime-Durchschnittswerte aller Töne	90
Tabelle 11: roughness -Durchschnittswerte aller Töne	97
Tabelle 12: spectralCentroid-Durchschnittswerte aller Töne	104
Tabelle 13: spectralFlatness-Durchschnittswerte aller Töne	111
Tabelle 14: spectralFluxMean-Durchschnittswerte aller Töne	117
Tabelle 15: Durchschnittliche annoyance-Werte für Fagott-Pedal und Fagott	119
Tabelle 16: Durchschnittliche attackTime-Werte für Fagott-Pedal und Fagott	120
Tabelle 17: Durchschnittliche brightness-Werte für Fagott-Pedal und Fagott	121
Tabelle 18: Durchschnittliche entropy-Werte für Fagott-Pedal und Fagott	121
Tabelle 19: Durchschnittliche roughness-Werte für Fagott-Pedal und Fagott	122
Tabelle 20: Durchschnittliche spectralCentroid-Werte für Fagott-Pedal und Fagott	123
Tabelle 21: Durchschnittliche spectralFlatness-Werte für Fagott-Pedal und Fagott	124
Tabelle 22: Durchschnittliche spectralFluxMean-Werte für Fagott-Pedal und Fagott	124
Tabelle 23: mfcc für Klavier und Fagott	128
Tabelle 24: mfcc-Werte für Mozart- und Rosenberger-Flügel in pp	133
Tabelle 25: mfcc-Werte für Mozart- und Rosenberger-Flügel in fortissimo	134

1 Einleitung

Im Mittelpunkt dieser vorliegenden Masterarbeit steht ein seltenes, noch im Originalzustand erhaltenes Hammerklavier, gebaut in Wien von Michael Rosenberger um 1820,
dessen Besonderheit die Anzahl der Pedale ist. Es sind insgesamt sechs an der Zahl,
fünf dienen der Klang-Modifizierung der Klaviertöne, darunter eines, das den Klang
eines Fagotts nachbildet und das sechste, das "Türkische Pedal" erzeugt zusätzliche
Effekte, die Trommel und Becken als eine Art Begleitung zur Verfügung stellen sollen.
Da auch zur Blütezeit der Hammerflügel Anfang des 19. Jahrhunderts Instrumente mit
solch zahlreichen Pedalen eher selten anzutreffen waren, beschäftigt sich diese Arbeit
hauptsächlich mit folgender Frage:

Wirken sich überhaupt, und falls ja, wie genau die verschiedenen Pedale und Spielweisen auf die Klangeigenschaften des Instruments aus?

Darüber hinaus soll auch herausgefunden werden, ob denn die mithilfe des Fagott-Pedals erzeugten Töne tatsächlich so klingen wie die eines originalen Fagotts. Zusätzlich sollen noch die Klangeigenschaften des Rosenberger-Hammerflügels mit denen des berühmten Mozart-Hammerflügels verglichen werden.

Im Anschluss an die Einleitung wird ein Überblick über die historische und aktuelle Klang- und Klavier-Forschung gegeben, danach wird im dritten Abschnitt eine Einführung in die Geschichte des Hammerklaviers verfasst, um die Leserinnen und Leser mit den Ursprüngen und der geschichtlichen Entwicklung der in dieser Arbeit hauptsächlich untersuchten Instrumente vertraut zu machen.

Im vierten Abschnitt erfolgt die Vorstellung der untersuchten Instrumente, neben dem bereits erwähnten Rosenberger-Hammerflügel noch ein ebenfalls in Wien gebautes, historischen Hammerklavier, das als Mozart-Hammerflügel bekannt ist und von Anton Walter um 1780 hergestellt worden ist. Es wird auch der Ablauf und Aufbau der Tonaufnahmen, sowie die für die Analyse und Auswertung verwendeten Software erläutert.

Im Hauptteil dieser Arbeit erfolgt eine detaillierte Erfassung und Auswertung der Klangcharakteristika der Töne, die durch Einsatz der verschiedenen Pedale und deren Kombinationen erzeugt worden sind. Dies geschieht mittels Methoden des *Music*

Information Retrieval, durch Skripte basierend auf der Software-Plattform MATLAB. Mit denselben Methoden werden auch Tonaufnahmen des Mozart-Hammerflügels sowie eines echten Fagotts analysiert und für sämtliche Töne zahlreiche Klangparameter berechnet und daraus für eine bessere Übersichtlichkeit Diagramme erstellt, um verschiedene Vergleiche durchführen zu können.

Den Abschluss bildet eine Zusammenfassung der Arbeit und der gewonnenen Erkenntnisse sowie ein Ausblick auf zukünftige, vertiefende Untersuchungen.

2 Stand der Klang- und Klavier-Forschung

Laut Nakamura begannen die ersten Versuche akustischer Forschung des Klaviers mit Helmholtz Ende des 19. Jahrhunderts, die gründliche wissenschaftliche Forschung begann dann ab ungefähr 1920. Wie auch bei anderen Instrumenten beobachtbar, dürfte die nach langen Jahren der Entwicklung und Verbesserung schließlich festgelegte und nicht mehr veränderte Form des Klaviers dazu beigetragen haben, dass sich die Wissenschaft dafür zu interessieren begann. Dabei spezialisierte man sich auf Themen-Bereiche, die grob wie folgt eingeteilt werden können: 1. Saite und Anschlag, 2. Schwingungen und Klangfarbe, 3. Stimmung und Inharmonizität, 4. Resonanzboden-Schwingung und Schallausbreitung sowie 5. Klang-Analyse und -Synthese (Nakamura 1979: 447).

2.1 Saite und Anschlag

Die Erforschung von Saite und Anschlag begann mit Kaufmanns Dissertation 1895 mit dem Thema "Ueber die Bewegungen geschlagener Saiten" (Kaufmann 1895) und erlebte ihre Blütezeit in den 1920 und 1930er Jahren, zahlreiche Studien wurden von indischen Wissenschaftern durchgeführt, z.B. Raman und Banerji, die in "On Kaufmann's Theory of the Impact of the Pianoforte Hammer" Kaufmanns Theorien bestätigten (Raman und Banerji 1920), oder auch Bhargava und Ghosh 1924 mit "Elastic impact of pianoforte hammer" (Bhargava und Ghosh 1924: 1141-1148). Ghosh schrieb noch mehrere Artikel über den Hammer-Anschlag, wie 1926 "On the Choice of Striking Point in the Pianoforte String", 1927, A note on the Elastic Impact of a Piano forte Hammer" und 1934 "On the Hertzian Impact of an Elastic Hammer on a Damped Piano forte String" (Ghosh 1926, 1927 und 1934). George und Beckett untersuchten 1927 die Energie angeschlagener Saiten in "The Energy of the Struck String" (George und Beckett 1927), Panchanon Das veröffentlichte 1928 "Theory of the Elastic Piano forte Hammer" (Das 1928) und Banerji und Ganguli 1929 "The Duration of Contact between the Piano forte String and a Hard Hammer" (Banerji und Ganguli 1929). Kock stellt 1937 in "The Vibrating String Considered as an Electrical Transmission Line" eine Analogie zwischen Klaviersaiten und elektrischen Übertragungsleitungen her und verglich den Strom in der Leitung mit der Verschiebung und die Spannung mit dem Impuls und kam zum Ergebnis, dass durch eine Erhöhung der Saitenspannung eine gleichmäßigere Ausbreitungsgeschwindigkeit der verschiedenen Teiltöne erreicht wird und die Verzerrungen, die durch das Vorhandensein von inharmonischen Obertönen verursacht werden, reduziert werden können. Deb analysierte in "Dynamics of the Piano forte String and Hammer" 1972 die Kräfte, die der Hammer während der Kontaktperiode auf die Saite ausübt und konnte Werte, die Ghosh experimentell ermittelt hatte, bestätigen (Deb 1971). Bacon und Bowsher ermittelten 1978 in "A Discrete Model of a Struck String" mithilfe eines Computer-Modells Daten für das Anschlagen eines Hammers mit gegebener Anfangsgeschwindigkeit und Masse an neunundneunzig möglichen Stellen und konnten Übereinstimmungen der Modellrechnungen mit bereits veröffentlichten experimentellen Ergebnissen erzielen (Bacon und Bowsher 1978). Lottermoser publizierte 1974 "Zum Anschlag des Klaviers" (Lottermoser 1974) und Fricke berichtete 1982 in "Hammerberührungsdauer und Saitenform bei der angeschlagenen Klaviersaite" über die Ergebnisse einer Untersuchung, bei der mithilfe einer Hochgeschwindigkeitskamera die Berührungsdauer des Hammers beim Anschlag gemessen und die darauf folgenden Schwingungen der Saite erfasst worden sind (Fricke 1982). Hall untersuchte 1986 in "Piano string excitation in the case of small hammer mass", wie sich verschiedene Hammermassen auf die Kontaktzeit mit der Saite und die resultierende Saitenbewegung auswirken (Hall 1986). Im zweiten Teil ihrer dreiteiligen Reihe "From touch to string vibrations" mit dem Titel "II: The motion of the key and hammer" beschrieben Askenfelt und Jansson 1991 die Ergebnisse einer experimentellen Studie über die Bewegung von Tasten und Hammer mittels eines optischen Positionsmess-Systems. Sie untersuchten typische Hammer- und Tastenbewegungen in verschiedenen dynamischen Abstufungen, Beschleunigungskräfte sowie Resonanzen und diskutierten mögliche Einflüsse von Pianisten auf die Saitenschwingungen über Hammer-Resonanzen. 1991 berichtete Fricke in "Der Einfluss des Hammers auf Saitenschwingung und Klangqualität bei Flügeln" über Resultate eines Versuchs, wie sich verschiedene Hämmer (neu, abgespielt, gestochen, ...) auf die Saitenschwingung und Klangqualität auswirken. Dies wurde mittels magnetischer Induktion gemessen. (Fricke 1991). 1993 publizierten Askenfelt und Jansson den letzten Teil ihrer dreiteiligen Reihe "From touch to string vibrations" mit dem Titel "III: String motion and spectra", in dem sie eine experimentelle Studie der Wellenbewegung von Klaviersaiten und die dazugehörigen Spektren beschrieben. Sie erfassten die Saitenbewegungen mit einer elektrodynamischen Methode und analysierten u.a. die Wechselwirkungen zwischen Hammer und Saite, Einflüsse der Hammereigenschaften und Wechselwirkungen zwischen Dämpfer und Saite (Askenfelt und Jansson 1993). Conklin beschäftigte sich 1996 im dreiteiligen Artikel "Design and tone in the mechanoacoustic piano" mit verschiedenen Aspekte des Klaviers, in "Part I. Piano hammers and tonal effects" mit den Hämmern und in "Part III. Piano strings and scale design" mit den Saiten (Conklin 1996a, 1996b).

2.2 Schwingungen und Klangfarbe

Backhaus führte 1932 in "Über die Bedeutung der Ausgleichsvorgänge in der Akustik" die ersten systematischen Untersuchungen zur objektiven Erfassung der Einschwingvorgänge durch (Backhaus 1932). Zu den frühesten Arbeiten, die sich mit Schwingungen und Klangfarbe beschäftigten, gehört die 1935 von Wolf und Sette publizierte "Some Applications of Modern Acoustic Apparatus: Investigations on Piano Tones", in welcher sie kurz zuvor in den Bell Telephone Laboratories entwickelte Geräte, namentlich "High Speed Level Recorder", "Crystal Harmonic Analyzer" und "Reed Frequency Analyzer" verwendeten, um Nachhallmessungen, Lautsprecher-Antwortmessungen, Geräuschanalysen und auch Klavierklanganalysen vorzunehmen (Wolf und Sette 1935). Vierling führte 1937 in "Über Klaviersaitenschwingungen" ebenfalls Messungen durch (Vierling 1937) und Schuck und Young untersuchten 1943 in "Observations on the Vibrations of Piano Strings" das Verhalten einzelner, angeschlagener Saiten in ihren normalen Positionen durch Messung der Frequenzen und Amplituden ihrer Teiltöne als Funktionen der Zeit nach dem Schlag (Schuck und Young 1943). Martin untersuchte 1947 in "Decay Rates of Piano Notes" Abklingraten bei Aufnahmen von Pianino, Baby Grand Piano und elektronischem Spinett (Martin 1947). Kirk führte 1959 in "Tuning Preferences for Piano Unison Groups" Vergleichspräferenztests mit verschiedenen Unisono-Stimmungen durch, um die bevorzugten Stimmungen herauszufinden (Kirk 1959). Fletcher, Blackham und Stratton konstruierten für die 1962 erschienene Studie "Quality of Piano Tones" einen Synthesizer, um 100 reine Töne erzeugen zu können. Um einen idealen Klang finden zu können, wurden acht Zuhörern

diese synthetischen Töne zum Vergleich mit echten Tönen präsentiert und sie mussten dann entscheiden, welche Töne real und welche synthetischen sind (Fletcher, Blackham und Stratton 1962). Hundley, Benioff und Martin untersuchten 1978 in "Factors contributing to the multiple rate of piano tone decay" Ursachen für die Verringerung der Rate des Klaviertonabfalls mit der Zeit der Tondauer (Hundley, Benioff und Martin 1978). Weinreich entwickelte 1977 in "Coupled piano strings" und 1979 in "The Coupled Motions of Piano Strings" theoretische Ausdrücke, die zeigten, wie die Rate der Energieübertragung auf den Steg als Funktion der Zeit (einschließlich des Phänomens vom Nachklang) abhängig ist von Steg-Admittanz, Hammer-Unregelmäßigkeiten und dem genauen Zustand, in dem das Klavier gestimmt ist (Weinreich 1977 und 1979). Bluttner führte 1982 "Objektive und subjektive Untersuchungen zum Einschwingen von Pianoklängen" durch (Bluttner 1982) und Bachmann, Bückner und Kohl wandten 1989 in "Feinstrukturanalyse des Einschwingens eines Pianoklanges" die autoregressive Spektralanalyse zum Berechnen sehr detailreicher Spektren aus kurzen Signalausschnitten an und fanden beim Untersuchen des Einschwingens eines Pianotons heraus, dass die gesamte, aus der Fourieranalyse viel längerer Aufnahmen bekannte Teiltonstruktur, schon nach den ersten beiden Grundwellenperioden voll entwickelt ist (Bachmann, Bückner und Kohl 1989). Reuter untersuchte 1995 in "Der Einschwingvorgang nichtperkussiver Musikinstrumente" die Bedeutung des Einschwingvorgangs für die Wahrnehmung von Instrumentalklangfarben und zeigte auf, dass es seit den Anfängen der Klangfarbenforschung zu vielen widersprüchlichen und fehlerbehafteten Ergebnissen gekommen war, die unter Berücksichtigung des aktuellen physikalischen, psycho- und instrumentenakustischen Kenntnisstandes diskutiert wurden. Er kam zum Ergebnis, dass sich zahlreiche widersprüchlichen Angaben zur Bedeutung des Klangbeginns erklären lassen, wenn der Einschwingvorgang in Beziehung zur Grundtonhöhe und zur Position des ersten Formanten untersucht wird, was durch Experimente bestätigt wird.

2.3 Stimmung und Inharmonizität

Eine der ersten Arbeiten, die sich mit der Stimmung von Klavieren beschäftigten, ist "The Principles Underlying the Tuning of Keyboard Instruments to Equal Tempera-

ment" von Harker 1937 (Harker 1937). White veröffentlichte 1937 in "Practical Tests for Determining the Accuracy of Piano forte Tuning" eine Methode für genaues Stimmen (White 1937). Railsback beschrieb 1937 in "A Chromatic Stroboscope" ein Stroboskop, welches ein direktes Ablesen jeglicher Tonhöhe mit einer größeren Genauigkeit als derjenigen des Ohres erlaubte und die Resultate in Notenschrift anstelle der Frequenz anzeigte. 1939 veröffentlichte er in "Scale Temperament as Applied to Piano Tuning" Durchschnitts-Stimmkurven von 16 Klavieren, die alle Differenzen zwischen normaler Klavierstimmung und gleichtemperierter Skala aufwiesen (noch heute bekannt als Railsback-Kurve) und zeigte auch Stimmkurven drei Tage sowie ein Jahr nach der Stimmung (Railsback 1937 und 1939). Shankland und Coltman gaben 1939 in "The Departure of the Overtones of a Vibrating Wire From a True Harmonic Series" drei Lösungsvorschläge, wie sich Inharmonizitäten bei vibrierenden Drähten vermeiden lassen (Shankland und Coltman 1939). 1949 zeigte Young in "Influence of Humidity on the Tuning of a Piano", wie sich über einen Zeitraum von zwei Jahren Änderungen der Luftfeuchtigkeit auf die Stimmung eines Flügels auswirkt und in "Inharmonicity of Plain Wire Piano Strings" 1952 stellte er Formeln zur Berechnung der Inharmonizität auf (Young 1949 und 1952). 1963 diskutierte Kent in "Influence of Irregular Patterns in the Inharmonicity of Piano Tone Partials upon Tuning Practice" den Einfluss der Saiten-zu-Saiten-Muster der Inharmonizität auf das Klavierstimmen innerhalb der Oktave (Kent 1963). 1968 verglichen Wolf und Müller in "Normal Vibration Modes of Stiff Strings" das theoretische und experimentelle Verhalten einer steifen Stahlsaite, die unter eingespannten Rahmenbedingungen vibriert.

2.4 Resonanzboden-Schwingung und Schall-Leistung

Obwohl viele Klavierbauer mit großem Aufwand die Weiterentwicklung und Verbesserung von Resonanzböden betrieben und zahlreiche Patente anmeldeten, wurden fast keine wissenschaftlichen Arbeiten darüber verfasst, eine der wenigen stammte von Lieber 1966: "Der Einfluss des Resonanzbodens auf den Pianoklang" (Lieber 1966). Auch Arbeiten über Schall-Leistung waren eher spärlich, Sivian, Dunn und White führten 1931 in "Absolute Amplitudes and Spectra of Certain Musical Instruments and

Orchestras" Messungen zur Schall-Leistung verschiedener Instrumente durch (Sivian, Dunn und White 1931). Bilhuber und Johnson untersuchten 1940 in "The Influence of the Soundboard on Piano Tone Quality" Schwingungen des Resonanzbodens, um durch Modifikationen die Klangstärke und Qalität zu erhöhen (Bilhuber und Johnson 1940). Clarke verwendete 1978 in "The Analysis of Multiple Resonance in a Vibrating Mechanical System by the Use of the Electrical Transmission Line Analogy" u.a. Analogien aus der elektrischen Netzwerktheorie zur Analyse mechanischer Schwingungssysteme (Clarke 1978). Bork untersuchte 1992 in "Klanguntersuchungen an Klavieren und Flügeln" mithilfe eines Fast-Fourier-Transform-Analysators den vom Resonanzboden ausgehenden Schalldruck (Bork 1992).

2.5 Klang-Analyse und -Synthese

Ungefähr ab der Mitte des 20. Jahrhunderts wurden die Klangcharakteristika von Klavieren untersucht, um Töne für elektro-mechanische und später auch elektronische Klaviere herstellen zu können, die denen von echten Klavieren ähnlich sind. Eine der ersten Arbeiten zu diesem Thema publizierte Quitter 1958 mit "Research and Development on the Piano", in der er eine physikalische Basis zur Ton-Erzeugung und -Modifikation aufstellte (Quitter 1958). Dijksterhuis und Verhey untersuchten 1969 in "An Electronic Piano" Klavierklänge, um ein elektronisches Klavier konstruieren zu können (Dijksterhuis und Verhey 1969). Risset definierte 1971 in "An introductory catalogue of computer synthesized sounds" Klangfarbe und Textur von Tönen in der Programmiersprache MUSIC V (Risset 1971). Hiller und Ruiz stellten 1971 in "Synthesizing Musical Sounds by Solving the Wave Equation for Vibrating Objects" Ableitungen aus der Wellengleichung von Differentialgleichungen vor, die die Schwingungen von schwingenden Objekten beschrieben und zeigten, wie musikalische Klänge aller Art mit einem digitalen Computer erzeugt werden können, indem ein neuer konzeptioneller Ansatz verwendet wird (Hiller und Ruiz 1971). Weyer analysierte 1976 in "Time-Frequency-Structures in the Attack Transients of Piano and Harpsichord Sounds" detailliert den zeitlichen Verlauf von Amplitude und Frequenz des aufsteigenden Piano-Klangs und maß auch die Saiten-Inharmonizität (Weyer 1976). Reiß untersuchte 1979 in "Klanganalysen von Klavier- und Orgelklängen" Tonbandaufnahmen mithilfe eines Oszillografen (Reiß 1979). Nicht mit technischen Mitteln, sondern durch Hörtests versuchte Meyer 1980 in "Akustische Untersuchungen an Klavieren, Teil II Qualitätsbestimmung durch Hörtests" subjektive, musikalisch empfundene Klangbewertungen zu erreichen (Meyer 1980). 1986 beschäftigten sich Fricke und Gätjen in "Klangliche Ähnlichkeiten zwischen modernen Flügeln und Hammerklavieren" mit dem Moderator des Hammerklaviers, der durch ein Tuch zwischen Hammer und Saiten den Klang des Hammerklaviers in die Nähe des Klanges von modernen Flügeln bringen sollte. Die Messungen wurden durch Anbringen eines Magneten an die Saiten und Erfassung der Veränderung des Magnetfelds durchgeführt (Fricke und Gätjen 1986). 1996 stellte Fricke in "Die Klangcharakteristik von zwei Hammerflügeln des Musikwissenschaftlichen Instituts der Universität zu Köln, erklärt durch Anschlagbewegung und Saitenanregung" anhand von Spektren der Saitenschwingungen dar, wie sich zwei Hammerflügel unterscheiden. Diese Untersuchungen wurden wieder durch Messung der Veränderung des Magnetfelds von an den Saiten befestigten Magneten vorgenommen (Fricke 1996).

2.6 Fazit der bisherigen Forschung

Wie in diesem Kapitel an der bei weitem nicht vollständigen Auflistung wichtiger Arbeiten zu den verschiedenen Teilgebieten der Klavierklang-Forschung veranschaulicht wurde, beschäftigen sich zahlreiche Wissenschafter seit ungefähr 100 Jahren mit diesem Thema und haben wichtige Ergebnisse und Erkenntnisse veröffentlicht. Aus heutiger Sicht erscheinen jedoch die meisten dieser Arbeiten und die darin verwendeten Techniken und Methoden antiquiert und obsolet, obwohl sie zum Entstehungszeitpunk am aktuellsten Stand der Technik waren. Durch die aktuelle Methode des *Music Information Retrieval* stehen uns zurzeit Möglichkeiten zur Verfügung, die Klangcharakteristika von Tönen oder Geräuschen bis ins letzte Detail festzustellen und zu beschreiben und auch die geringsten Unterschiede zwischen identisch klingenden Tönen herauszufinden.

3 Einführung in die Geschichte des Hammerklaviers

Ein genauer Zeitpunkt für den Beginn der Entwicklung und des Baus von Instrumenten, bei denen die gespannten Saiten mit Hämmern angeschlagen werden, kann nicht eindeutig angegeben werden. Wie Restle schreibt, gibt es vereinzelt Berichte über prähistorische Funde in verschiedenen Ländern, besonders im asiatischen Raum, wie z.B. einen Artikel aus dem Jahr 1935 aus der Zeitschrift für Instrumentenbau, in dem von einem 5000-jährigem Klavier berichtet wurde:

"Wie … berichtet, wurden … bei Peking … die Reste eines Instruments gefunden, das unser Klavier im Prinzip vorausgenommen hat. Die Chinesen des dritten vorchristlichen Jahrtausends haben sich einen Rahmen mit Resonanzboden gebaut, über den sie elf Saiten spannten, und weitere Vorrichtungen lassen erkennen, daß die Saiten auch damals schon mit kleinen Hämmerchen angeschlagen wurden. … Das Instrument ist anscheinend von den Chinesen später wieder vergessen worden, da es sich in jüngeren Ausgrabungsschichten bisher nicht gefunden hat." (Anonym, Ein 5000 jähriges Klavier?, in: Zeitschrift für Instrumentenbau 55 (1934/35), 264 zit. n. Restle 1991. S. 15f)

Da in dem Artikel jedoch genauere Angaben fehlten, konnten die Aussagen nicht verifiziert werden, auch blieb unklar, unklar, ob das ausgegrabene Instrument über eine Klaviatur verfügt hatte, was nach Restle das entscheidende Merkmal eines Tasteninstruments ist (Restle 1991, S. 16).

Laut aktuellen Forschungen kann angenommen werden, dass der Vorläufer des Hammerklaviers, das Cembalo, Ende des 14. Jahrhunderts vom Wiener Arzt Hermann Poll¹ erfunden wurde. Der 1370 in Wien geborene Poll studierte zunächst und unterrichtete dann in den 1390er Jahren an der Universität in Wien Naturwissenschaften, Musik und Patrologie und begann auch ein Medizinstudium. Auf dem Weg nach Pavia, wo er 1398 Doktor der Medizin wurde, schrieb ihm ein Jurist ein Empfehlungsschreiben, in dem er als Erfinder eines Instruments namens "Clavicembalum" genannt wurde (Restle 1991, S. 17f). Eventuelle Weiterentwicklungen oder neue Erfindungen blieben jedoch aus, da Poll, nachdem er ab 1398 Leibarzt des deutschen Königs Ruprecht von der Pfalz

¹ * 1370 Wien, † 1401 Nürnberg

wurde, im Jahre 1401 eines Mordkomplotts verdächtigt und schließlich hingerichtet wurde (Flotzinger 2001, Oesterreichisches Musiklexikon online).

Anfang des 15. Jahrhunderts verbreiteten sich verschiedene Arten von Saitenclavieren, wie zahlreiche Beschreibungen und Aufzählungen in Texten und Traktaten belegen, z.B. wird 1404 ein "Clavicymbolum" in den Minneregeln Eberhards von Cersne, 1434 ein Clavichord im Traktat De Musica von Giorgi Anselmi angeführt und Paulus Paulirinus listet um 1440 in seinem Traktat De Musica neunzehn Saiteninstrumente auf, darunter "Monocordum, Clavicordium und Clavicimbalum" (Restle 1991, S. 18-20).

Um 1440 verfasste der im holländischen Zwolle geborene Henri Arnaut de Zwolle² einen Traktat, der als Auflistung sämtlicher im 15. Jahrhundert existierenden Geräte gilt und unter anderem eine riesige Anzahl von Musikinstrumenten, Maschinen und Uhren auflistet, zum Teil auch detailliert beschreiben und mit Skizzen und Bauplänen versehen. In diesem Werk ist auch die älteste bekannte bauliche Beschreibung eines Cembalos enthalten, zusammen mit maßstabgetreuen Zeichnungen und Größenangaben. Neben Beschreibungen und Skizzen von den damals üblichen Kiel- und Zupfmechaniken findet sich in dem Traktat auch erstmals eine Konstruktionszeichnung und Erläuterung einer Hammermechanik, bei der die Taste ein mit Blei beschwertes Teil gegen ein bei den Saiten liegendes Hindernis stößt, wodurch dieses gegen die Saite prallt und dann wieder zurückfällt (Abbildung 1). Restle bezeichnet diese Mechanik als simple und geniale Vorform der späteren Prellmechanik, die zeigte, wie einfach aufgebaut eine Hammermechanik im Vergleich zu den komplizierten Kielmechaniken sein konnte (vgl. Restle 1991, S. 21-26).

² * um 1400; † 6. September 1466 in Paris

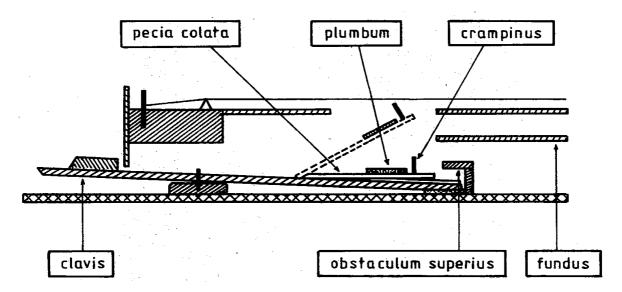


Abbildung 1: Hammermechanik nach de Zwolle, um 1440 (Quelle: Ahrens 1999:18)

Obwohl Instrumente mit Hammermechanik bereits ab Beginn der Ära der Saitenklaviere im 15. Jahrhundert erwähnt werden, scheinen sie nicht sehr verbreitet gewesen zu sein, was Restle einerseits auf die Namensgebung zurückführt, da solche Instrumente nicht etwa als "Hammerclavier" bezeichnet wurden, sondern nach ihrer äußeren Form, z.B. "Clavichord" oder "Clavizimbalum" genannt wurden (vgl. Restle 1991, S. 27). Andererseits vertritt Restle auch die Meinung, dass ein weiterer Grund für die seltenen Beschreibungen von Tasteninstrumenten mit Hammermechanik in der Musik vor 1600 zu suchen sei, bei welcher Instrumente nur zur "Auskolorierung des vokalen Stimmgerüsts" dienten und sich dem "wohlgebildeten Tonsatz unterzuordnen" hatten (vgl. Restle 1991, S. 57-58).

Zu den wenigen dokumentierten Instrumenten gehören drei »pian e forte« des ersten namentlich bekannten Klaviermachers, Hippolito Cricca, die in mehreren Dokumenten um 1599 erwähnt wurden (Henkel 1996, MGG). Ebenso die einen großen Raum ausfüllende "Machina Organica" von Michele Todini³ um 1670, eine Kombination einer Orgel mit einem Geigenwerk, einem Clavicytherium und drei kleinen spinettartigen Instrumenten mit Hammermechanik (Latcham 2006, S. 289).

Trotz dieser bereits seit Jahrhunderten existierenden Instrumente mit einfacher Hammermechanik gilt Bartolomeo Cristofori⁴ in sämtlicher aktueller Literatur als eigent-

³ 1616–1690

⁴ * 4. März 1655 in Padua; † 27. Januar 1731 in Florenz

licher Erfinder des Hammerklaviers, nur bei den Angaben des exakten Zeitpunktes gibt es ziemliche Abweichungen. Besonders bei bereits etwas älteren Werken wurde öfters das Jahr 1709 als Geburtsstunde des Hammerklaviers bezeichnet, da in diesem Jahr der Veroneser Schriftsteller Marchese Scipione Maffei auf einer Reise nach Florenz die Instrumente Cristoforis kennen lernte und im Jahr 1711 darüber ausführlich schrieb (vgl. Restle 1991, S. 73). Unter anderem Kowar (1978, S.3f), Honegger (1981, S.366) und Baines (1982, S.88f) nahmen das Jahr 1709 als Erfindungsjahr an, Junghanns war 1960 der Meinung, dass Cristofori im Jahr 1711 das Hammerklavier erfand (Junghanns 1960 S. 27). Ab den 1990er Jahren setzte sich in der Literatur dann das Jahr 1698 als Geburtsstunde des Hammerklaviers durch, so z.B. bei Blüthner-Haessler 1991 (S. 8f), Raeburn 1993 (S. 51), Restle 1991 (S. 62) und 2001 S. 80f, jedoch auch schon bei Clemencic 1974 (S. 104f). Abbildung 2 zeigt ein mittlerweile verschollenes Portrait Bartolomeo Cristoforis von einem unbekannten Künstler, datiert 1726.

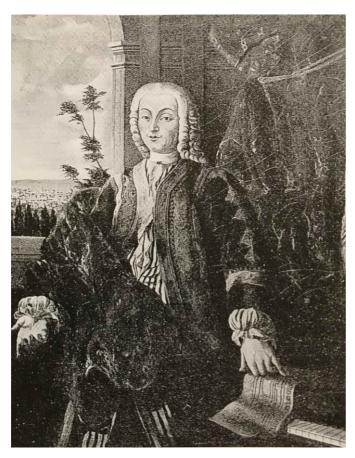


Abbildung 2: Portrait Bartolomeo Cristoforis (Quelle: Restle 2000: 82)

Bartolomeo Cristofori war ab 1690 Angestellter am Hof der Medici in Florenz, wo seine Arbeit hauptsächlich aus Wartung, Reparatur und Umbauten von bereits vorhandenen

Tasten-Instrumenten, sowie dem Neubau von Spinetten und Cembali bestand, zeitweise reparierte, wartete und baute er auch Orgeln und Streichinstrumente. Außerdem war er als Kustos der Instrumentensammlung der Medici tätig, u.a. verantwortlich für Einkauf, Transport und Instandhaltung von Musikinstrumenten, erstellte auch regelmäßig Inventarlisten der im Besitz der Medici befindlichen Sammlung und ist damit der erste bekannte Kustos einer Instrumentensammlung überhaupt. Über seine Forschungen, die er neben seiner beruflichen Tätigkeit durchführte ist wenig bekannt und auch ob er bei der Entwicklung seiner Mechaniken Anleihen und Anregungen bei in der Sammlung der Medici vorhandenen Instrumenten mit primitiver Hammermechanik nahm, ist laut Restle nicht sicher. Aus Aufzeichnungen des Musikers Francesco Maria Mannucci ist bekannt, dass Cristofori im Jahre 1698 seinem Herrn ein fertiges, ausgereiftes Modell seiner von ihm entwickelten Hammermechanik präsentierte, welches er "Cimbalo con piano e forte" nannte, da durch seine Mechanik erstmals durch die Stärke des Anschlags ein gezieltes Leise- und Lautspielen möglich war (vgl. Restle 1991, S. 61-66).

Bis zu seinem Tod 1731 entwickelte Cristofori noch einige verbesserte Modifikationen seiner Hammermechanik. Die in drei erhaltenen Flügeln aus den Jahren 1720, 1722 und 1726 vorhandene Mechaniken zeigen, dass in diesen frühen Modellen bereits fast alle Elemente einer aktuellen Mechanik enthalten waren und eine für ihre Zeit äußerst komplizierte Technik aufwiesen (Abbildung 3).

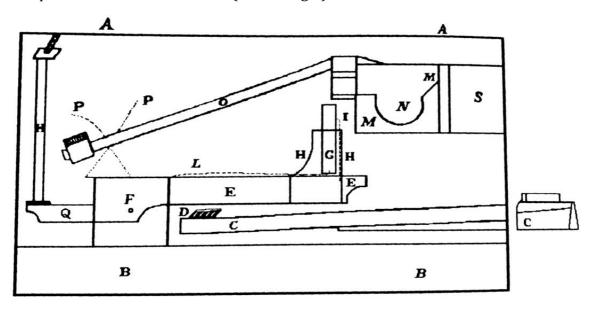


Abbildung 3: Skizze der Cristoforischen Hammermechanik von Maffei, 1711 (Quelle: Restle 1991, S. 80)

Die Aufzeichnungen Maffeis wurden 1725 von Johann Ulrich König in Hamburg als deutsche Übersetzung unter folgendem Titel veröffentlicht: "Des Marchese Scipione Maffei, Beschreibung eines neu erfundenen Clavecins, auf welchem das piano und forte zu haben, nebst einigen Betrachtungen über die Musicalische Instrumente". Dadurch lernte der deutsche Orgel- und Instrumentenbauer Gottfried Silbermann dieses neue Instrument kennen und begann es nachzubauen. 1732 übergab er sein erstes "Piano Fort" dem sächsischen König, der großen Gefallen daran gefunden hatte und 1736 fertigte er ein zweites Instrument, auf dem möglicherweise Johann Sebastian Bach gespielt hatte. Da ein einige Jahre später von Silbermann gebauter Flügel auf den Millimeter genau mit dem von Cristofori 1726 gebautem übereinstimmte, kann man annehmen, dass Silbermann diesen Flügel vermessen hatte (vgl. Restle 1991, S. 262-69). Als Silbermanns bekanntester Schüler gilt Johann Andreas Stein, der später die Hammermechanik entscheidend verbesserte und perfektionierte, die dann als sie von Wiener Klavierbauern übernommen wurde, als "Wiener Mechanik" bekannt wurde.

Im deutschen Sprachraum war bis zum Ende des 19. Jahrhunderts nicht Cristofori, sondern der deutsche Organist Christoph Gottlieb Schröter als Erfinder der Hammermechanik bekannt, wie Oscar Paul noch 1868 in seiner Geschichte des Claviers schrieb:

"Als Genie ist … Christoph Gottlieb Schröter zu bezeichnen, dessen neue Erfindung der Hammermechanik zu manchen Erörterungen und Streitigkeiten Veranlassung gegeben hat. … Cristofali (sic!) blieb ziemlich vereinzelt, obgleich seine Hammermechanik eine offenbare Nachbildung der Schröterschen ist." (Paul 1868:85-105)

Schröter, der seit 1732 Organist in Nordhausen war, schreibt in einem Brief 1747, dass er angeblich die Hammermechanik erfunden hätte. Er behauptete, schon zwischen 1717 und 1721 am Dresdner Hof zwei Modelle von Hammermechaniken vorgestellt zu haben, die er selbständig und ohne Beeinflussung von Cristofori erfunden hätte. Obwohl er noch lange Zeit als Erfinder der Hammermechanik galt, hatten seine Modelle anscheinend keinerlei Auswirkungen auf die Konstruktion von Instrumenten, da keine Belege dafür existieren (vgl. Restle 1991, S. 116-133).

Nach dem Tod Johann Andreas Steins 1792 hatte dessen Tochter Nanette die Produktion nach Wien verlegt, das mit mehr als 380 Klaviermachern um 1830 (lt. Meglitsch 2003, S.18) bald als Hochburg des Klavierbaus gelten sollte. Zu den bekanntesten

zählen Gabriel Anton Walter⁵, Ferdinand Hofmann⁶, Johann Schan(t)z⁷ und Johann Andreas Streicher⁸, die alle eine leicht veränderte, verbesserte Mechanik nach Andreas Stein verbauten. Ab dem Ende des 19. Jahrhunderts gab es beim Hammerflügelbau technisch nur noch geringe Verbesserungen, eine Besonderheit entstand jedoch ab 1800 in Wien, der Einbau von Pedalen, um den Klavierklang orchestral werden zu lassen, wie Fagott- und Janitscharenzug mit Trommeln und Glöckchen. Diese Zusatzpedale erfreuten sich größter Beliebtheit, so dass sie von sämtlichen Klavierbauern verwendet wurden, bis sie um 1840 in Misskredit gerieten und verschwanden (vgl. Restle 1991, S. 270). Das Ende der Hammerklavierära wurde um 1860 durch die Entwicklungen des deutschen Klavierbauers Heinrich Engelhard Steinweg⁹ eingeläutet, der in die USA emigrierte und dort unter dem Namen Steinway mit seinem Sohn Henry unter anderem die Flügelmechanik und den Gussrahmen entwickelte, wodurch die technische Entwicklung zum modernen Klavier weitgehend abgeschlossen wurde. (vgl. Restle 2000, S. 87).

⁵ * 5. Februar 1752 in Neuhausen auf den Fildern (Vorderösterreich); † 11. April 1826 in Wien

⁶ * 1757 (Ort unbek.), † 26.1.1829 in Wien

⁷ * 1762 in Böhmen); † 1828 in Wien

^{8 * 13.} Dezember 1761 in Stuttgart; † 25. Mai 1833 in Wien

^{9 * 22.} Februar 1797 in Wolfshagen im Harz; † 7. Februar 1871

4 Messmethodik

4.1 Der Rosenberger-Flügel

Dieses Instrument wurde um 1820 von Michael Rosenberger in Wien gebaut, die Inschrift lautet: "Michael Rosenberger, Bürger in Wien".

Abbildung 4: Inschrift des Rosenberger-Flügels (Foto: Taniguchi)

Über den Instrumentenbauer ist leider nicht sehr viel bekannt, er wurde am 13. April 1766 in Frohnhof, Franken, geboren und kam vermutlich um 1786 nach Wien, da er am 7. Oktober 1796 die Bürgerrechte erhielt, die man frühestens nach zehn Jahren erhalten konnte. Er war, wie viele andere Klavierbauer auch, ebenfalls als Orgelbauer tätig, er erhielt z.B. 1826 ein fünfjähriges Privileg "auf eine Verbesserung an dem Zungenwerke der orgelartigen Instrumente" (Kees 1830, Kap. XXIV S. 8-9). Rosenberger starb am 12. November 1832 in Wien, seine Klavierbau-Firma wurde von seinem Neffen Peter Rosenberger (geb. 1798) weitergeführt.

Abbildung 5: Der Rosenberger-Flügel (Foto: Yamana)

Der Rosenberger-Flügel verfügt über 75 Tasten und einen Tonumfang von *Kontra-F* bis *g4*, also etwas mehr als sechs Oktaven und war laut dem Besitzer, Prof. Yamana, vermutlich zum Spielen für vier Hände gedacht, denn nur für eine Person alleine ist es z.B. unmöglich, die bei Verwendung des Fagott-Pedals oft gleichzeitig benötigten Shiftund Moderator-Pedale zu betätigen. Einen weiteren Hinweis auf das vierhändige Spiel liefert auch die Anordnung der Pedale, die am Häufigsten verwendeten Dämpfer- und Moderator-Pedale befinden sich in der Mitte, wodurch sie für zwei Personen gut erreichbar sind. Das Türkische Pedal wurde durch die Position ganz rechts wahrscheinlich meistens durch einen zweiten Spieler betätigt.

Die Länge des Flügels beträgt 227 Zentimeter, was ungefähr einem modernen Halbkonzertflügel entspricht, im Vergleich zu heutigen Instrumenten dagegen deutlich geringer fällt die Breite mit 109 cm und die Höhe des Körpers mit ca. 33 cm aus, die Höhe der Füße misst knapp 56 cm.

Abbildung 6 zeigt die Abmessungen der Tasten, die weißen sind 13,6 cm lang und 2,15 cm breit, die schwarzen 8,6 cm lang und 0,89 cm breit.

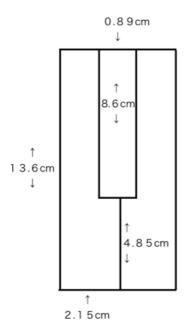


Abbildung 6: Abmessungen der Tasten (Skizze: Taniguchi)

Die Saiten aus Stahldraht sind bei sämtlichen Tönen dreichörig ausgeführt, bis F sind sie mit Messing umhüllt, die genauen Längen und die Durchmesser der Saiten sind in Tabelle 1 angeführt:

Ton	Kontra-F	С	С	c1	c2	c3	c4	g4
Saiten- länge in cm	176,4	156,7	118,9	55,2	28	18,3	6,8	4,8
Durch- messer in mm	1,28	1,07	0,9	0,8	0,7	0,68	0,6	0,56

Tabelle 1: Saitenlängen und Durchmesser

Der Flügel verfügt, wie üblich für in Wien gebaute Instrumente dieser Epoche, über eine Wiener Mechanik, die in Abbildung 7 zu sehen ist.

Abbildung 7: Die Mechanik des Rosenberger-Flügels (Foto: Taniguchi)

Abbildung 8 zeigt eine Detailaufnahme zweier Hämmer, deren Köpfe mit Schafsleder bespannt sind, das Holz ist laut Aussage des Besitzers wahrscheinlich Birne, als dämpfende Unterlage dient Schafwolle. Neben den Hämmern sind Eisenstangen mit Filzplättchen am oberen Ende zu sehen, diese dienen zum Anheben des Dämpfers beim Anschlag.

Abbildung 8: Hämmer des Rosenberger-Flügels (Foto: Taniguchi)

Eine Besonderheit dieses Rosenberger-Flügels sind die sechs Pedale mit folgenden Funktionen, in Klammer die im 19. Jahrhunderts gebräuchlichen Bezeichnungen laut dem Besitzer Prof. Yamana:

- 1. Shift (Verschiebung / Harmonicazug): verschiebt Mechanik, Hämmer treffen nur zwei von jeweils drei Saiten => Klang wird weicher
- 2. Dämpfer (Fortezug): Fortepedal, hebt alle Dämpfer => Klang wird lauter und voller
- 3. Moderator (Pianozug): Filz-Streifen zwischen Hammer und Saite => Klang wird deutlich leiser und weicher
- 4. Doppel-Moderator (Pianissimozug): zwei Filz-Streifen zwischen Hammer und Saite => Klang wird noch viel leiser und weicher
- 5. Fagott (Fagottzug): gerolltes Pergament drückt auf Saiten => Fagott-ähnlicher Klang
- 6. Türkisches Pedal (Türkische Musik / Janitscharenzug / Paukenzug / Tschinellen / Glöckchen): Glocke, Becken und Trommel je nach Stärke des Anschlags: bei sehr leichtem Drücken erklingt eine Glocke, bei leichtem Drücken Glocke und Becken und beim Drücken mit normaler Stärke ertönen Glocke, Becken und Trommel

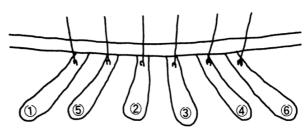


Abbildung 9: Foto und Skizze der Pedale (Quelle: Yamana)

In Abbildung 10 ist die Leiste mit Pergament zu sehen, die bei Betätigung des Fagott-Pedals auf die Saiten gedrückt wird, die Gesamtlänge beträgt 69 cm, die Länge des Pergaments 57 cm, deshalb wird nur der Bereich der tiefsten 32 Töne von F1 bis c1 abgedeckt.

Abbildung 10: Fagott-Leiste (Foto: Taniguchi)

Abbildung 11 zeigt eine Detail-Ansicht der Fagott-Leiste, deutlich zu erkennen ist das Pergament aus Schaf-Haut:

Abbildung 11: Detailansicht der Fagott-Leiste (Foto: Taniguchi)

Der Rosenberger-Flügel steht in einem Raum mit einer Fläche von ca. 40 m² zusammen mit drei anderen historischen Tasteninstrumenten.

4.2 Mozarts Walter-Flügel

Wann genau der einzige noch erhaltene Flügel aus Mozarts Besitz vom berühmten Wiener Klavierbauer Gabriel Anton Walter ¹⁰ hergestellt wurde, ist nicht bekannt, Wolfgang Amadeus Mozart hat das Instrument wahrscheinlich um 1782 erworben, denn im Dezember 1781 spielte er noch auf einem geliehenen Augsburger Klavier.

Mozarts Walter-Flügel ist ein relativ schlichtes Instrument ohne aufwändige Verzierungen aus Nussbaum-Holz, für die 61 Tasten, die fünf Oktaven von *Kontra-F1* bis *f3*

 $^{^{10}}$ * 1752 in Neuhausen auf den Fildern (damls Vorderösterreich); † 11. April 1826 in Wien

umfassen, wurden nicht das wertvolle Elfenbein, sondern nur gewöhnliches Bein sowie Ebenholz verwendet.

Die Länge beträgt ungefähr 2,20 Meter, was von der Länge her einem heutigen Halb-konzertflügel entspricht, mit einer Breite von genau einem Meter ist er jedoch deutlich schmäler als heutige Klaviere, die durch den mittlerweile deutlich erweiterten Tonumfang ca. 150cm breit sind. Fast schon unglaublich gering ist das Gewicht, während ein moderner Halbkonzertflügel ca. 400-500 kg wiegt, hat Mozarts Walter-Flügel gerade einmal 85 Kilogramm, konnte also von zwei bis drei Männern problemlos getragen werden. Dies war auch öfters der Fall, wie aus einem Brief Leopold Mozarts während eines Wien Aufenthalts 1785 an seine Tochter hervorging:

"Deines Bruders Fortepiano Flügel ist wenigst 12 mahl, seit dem [ich] hier bin, aus dem Hause ins Theater oder in ein andres Haus getragen worden." (Mozarthaus Vienna 2012: 2)

Wie bei zahlreichen Instrumenten dieser Zeit hatte auch Mozarts Walter-Flügel keine Pedale, sondern nur einen sogenannten Moderator-Zug, bei dessen Betätigung ein Filzstreifen zwischen die Hämmer und Saiten geschoben wird, was den Klang dämpft und leiser macht. Nachträglich wurden auch zwei Kniehebel eingebaut, die wie ein modernes Forte-Pedal die Dämpfung anheben, diese Funktion war vorher nur durch ein Fixieren mit Handhebeln möglich. Wann genau dieser Umbau vorgenommen worden ist, ob noch zu Mozarts Lebzeiten oder auch später, lässt sich nicht mit Gewissheit beantworten. Da in der Vergangenheit an Mozarts Walter-Flügel zahlreiche weitere Umbauten vorgenommen und auch manche Teile ausgetauscht worden sind, ist zwar noch heute das Spielen möglich, wie jedoch der Originalzustand zu Mozarts Zeiten gewesen ist, lässt sich nicht mehr feststellen (vgl. Watanabe 2000, S. 590-609 & 630-633 u. Mozarthaus Vienna 2012: 2-3).

4.3 Ton-Aufnahmen

4.3.1 Rosenberger-Flügel

Die Klangaufnahmen des Rosenberger-Flügels fanden am 2. Jänner 2015 im Haus der Besitzer des Instruments, dem Ehepaar Yamana in Osaka, Japan statt. Dazu wurden zwei Behringer ECM8000 Kondensator-Messmikrophone, die an einem Steinberg UR22 Audio-Interface angeschlossen waren, verwendet. Ein Mikrofon wurde ca. 30 Zentimeter oberhalb der Stelle, wo die Saiten angeschlagen werden und 20 cm horizontal von den Hämmern in der Mitte angebracht, das zweite Mikrofon wurde ungefähr in der Höhe des Kopfes des Spielers, ca. 50 cm vor den Tasten platziert (siehe Abbildung 12).

Abbildung 12: Position der Messmikrophone

Nach sehr sorgfältiger Stimmung durch die Besitzer wurden die Töne der Reihe nach, jeweils vom tiefsten bis zum höchsten Ton, von Frau Tomoko Yamana, einer professionellen Hammerklavier-Spielerin, gespielt und in insgesamt elf Varianten aufgenommen, in Klammer sind die jeweils betätigten Pedale angegeben:

- 1. pp
- 2. forte
- 3. Shift pp (Pedal 1)
- 4. Shift forte (Pedal 1)

- 5. Moderator pp (Pedal 3)
- 6. Moderator forte (Pedal 3)
- 7. Doppel-Moderator (Pedal 4)
- 8. Shift & Moderator (Pedale 1 & 3)
- 9. Shift & Doppel Moderator (Pedale 1 & 4)
- 10. Fagott (Pedal 5)
- 11. Fagott & Shift & Moderator (Pedale 5 & 1 & 3)

Der Einfachheit halber werden in dieser Liste und im weiteren Verlauf die Bezeichnungen *pp* (*pianissimo*) und *forte* für die beim normalen Spielen möglichst leise sowie möglichst lauteste Spielweisen verwendet. Der Grund, weshalb für die Tonaufnahmen diese 11 Spiel-Varianten verwendet worden sind, ist laut dem Besitzer, Prof. Yamana, der ebenfalls wie seine Gattin ein erfahrener Hammerklavier-Spieler ist, dass diese Spielvarianten die im 19. Jahrhundert am gebräuchlichsten waren. Dies ist unter anderem in Schiedmayers "Kurze Anleitung zu einer richtigen Kenntnis und Behandlung der Forte-Pianos" angeführt (Schiedmayer 1824: 21).

Die letzten beiden Aufnahme-Varianten mit dem Fagott-Pedal umfassen nur jeweils 32 Töne von F1 bis c1, da das Pergament, das den Fagott-Effekt erzeugt, durch die Länge von 57 cm nicht weiter reicht.

Ein großes Problem bei den Aufnahmen war, dass sich das Instrument durch Spielen der Tonleitern sehr rasch verstimmte und deshalb in regelmäßigen Abständen nachgestimmt werden musste. Bis schließlich alle Töne, insgesamt fast 800, aufgezeichnet waren, dauerte es mehr als zwölf Stunden.

Ebenfalls als sehr aufwendig stellte sich die Nachbearbeitung und Aufbereitung der Töne heraus, die jeweils bis zu einer Stunde langen Aufnahme-Sessions wurden mit dem Freeware-Programm Audacity¹¹ in Einzeltöne geteilt, die Ansagen des jeweiligen Tones sowie verstimmte Töne, die nach Stimmung erneut aufgenommen worden waren, wurden herausgeschnitten. Schlussendlich wurden dann alle Einzeltöne mit aus-

_

¹¹ https://www.audacityteam.org (abgerufen am 15.10.2018)

sagekräftigen, nummerierten Dateinamen versehen und je nach Aufnahme-Variante in das entsprechend Verzeichnisse sortiert.

4.3.2 Mozart-Flügel

Die Messung wurden von Claudio Albrecht, Isabella Czedik-Eysenberg und Christoph Reuter vom Institut für Musikwissenschaft der Universität Wien am 3.2.2016 im Museum "Mozartwohnhaus" in Salzburg durchgeführt. Zum Einsatz kamen vier Messmikrofone (Esper K4), von denen je zwei hinter der Hammermechanik über den Saiten des Flügels und zwei bei den Ohren des Spielers positioniert wurden.

Für die Klänge wurden die einzelnen Tasten manuell über die gesamte Klaviatur in drei Dynamikstufen (*p, mf, ff*) angeschlagen. Dieser Vorgang wurde bei aktiviertem Moderatorzug, bei dem sich ein Filzteppich über die Saiten legt und diese abdämpft, in zwei Dynamikstufen (*p, ff*) wiederholt (Albrecht, Czedik-Eysenberg und Reuter 2016).

4.4 Music Information Retrieval

Music Information Retrieval (abgekürzt MIR) bedeutet wörtlich übersetzt "Abrufen/Abfrage von Musik Informationen" und bezeichnet eine interdisziplinäre Wissenschaft, die sich zum Ziel gesetzt hat, zahlreiche Informationen rechnerisch aus Musikdateien zu gewinnen und diese dann zu speichern und weiter zu verarbeiten.

Downie gibt als Definition folgendes an:

"Music Information Retrieval (MIR) ist ein multidisziplinäres Forschungsbestreben, das danach strebt, innovative inhaltsbasierte Such-Schemata, neuartige Schnittstellen und sich entwickelnde vernetzte Liefer-Mechanismen zu entwickeln, um den enormen weltweiten Musikbestand zugänglich für Alle zu machen." (Übersetzung Taniguchi)

Gäbler erstellte folgende Grafik, die die wichtigsten, an MIR beteiligten wissenschaftlichen Disziplinen übersichtlich veranschaulicht:

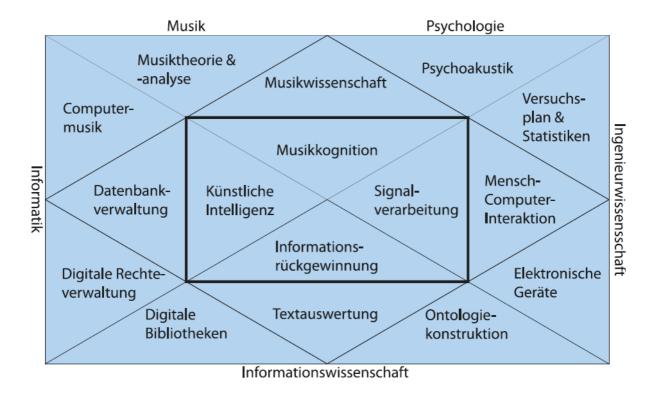


Abbildung 13: Wissenschaftlichen Disziplinen des MIR (Quelle: Gäbler 2009, S.10)

Music Information Retrieval entstand als Unterdisziplin des "Information Retrieval", eine Wissenschaft, die ihre Anfänge in den 1940er Jahren nahm, als die Lagerung und Wiedergewinnung von immer umfangreicher werdenden Text-Informationen zunehmend schwieriger wurde. Ein Problem zum Beispiel war, dass wichtige Informationen in der Fülle von Informationen ignoriert wurden, da sie nicht gefunden werden konnten, was zu einer Vervielfachung von Arbeit und Aufwand führte. Mit dem Aufkommen von Computern entstanden zwar Systeme zur Speicherung von Informationen, die Wiederauffindung war jedoch nicht sehr effektiv und so suchte die Disziplin des Information Retrieval nach Lösungen, die Effektivität zu verbessern (vgl. Rijsbergen 1975, S. 3).

Der Begriff *Information Retrieval* wurde das erste Mal 1950 vom amerikanischen Computer-Wissenschafter Calvin N. Mooers¹² verwendet, der nach Möglichkeiten suchte, gespeicherte Informationen rasch finden zu können. Seine Definition lautete:

"Information Retrieval ist die Erkenntnis und Lokalisierung von gespeicherten Informationen, damit diese verwendet werden können. Damit sich der

^{12 * 24. 10 1919} in Minneapolis; † 1. 12 1994 in Cambridge (Massachusetts)

Abruf von Informationen rechnet, muss sichergestellt sein, dass gespeicherte Informationen tatsächlich von dem Mitarbeiter, der sie benötigt, erkannt, gefunden und verwendet werden. Wenn gespeicherte Informationen aus irgendeinem Grund nicht verwendet werden, entsteht ein wirtschaftlicher Verlust, der durch die uns jetzt zur Verfügung stehenden Techniken vermieden werden könnte." (Mooers 1950, S. 2-3, Übersetzung Taniguchi)

Heute zielt MIR unter anderem darauf ab, semantisch aussagekräftige Informationen automatisch aus verschiedensten Erscheinungen von Musiktiteln, wie z.B. einer digitalen Audiodatei, einer Webseite einer Musikgruppe, Liedtexten oder auch Tweet zu extrahieren.

Ein wichtiger Ansatz in *Music Information Retrieval* ist die Beschreibung von Musik über rechnerisch ermittelte Merkmale, die laut Knees und Schedl (2015) grob in Musikinhalt, Musikkontext, Nutzereigenschaften und Nutzerkontext kategorisiert werden können.

Während auf Musikinhalten basierende Merkmale direkt aus dem Audiosignal der Musikdatei gewonnen werden, bezieht sich der Musikkontext auf Informationsteile, die nicht in der eigentlichen Audiodatei codiert sind, jedoch eine wichtige Rolle bei der menschlichen Wahrnehmung von Musik spielen, wie Liedtexte, Hintergrund der Künstler oder das Cover eines Albums. Nutzereigenschaften beziehen sich auf die demografischen Informationen des Zuhörers, musikalische Bildung und Erfahrung, Vorlieben und Geschmack sowie Persönlichkeitsmerkmale. Der Benutzerkontext umfasst sowohl Aspekte der Umgebung als auch physische und mentale Aktivitäten des Musikhörers (vgl. Knees und Schedl 2015, S. 1133-1134).

4.5 Verwendete Software

4.5.1 MATLAB

MATLAB ist eine Software-Plattform, die vom amerikanischen Unternehmen MathWorks entwickelt und vertrieben wird, die optimiert wurde, technische und wissenschaftliche Probleme zu lösen und die erhaltenen Ergebnisse grafisch darzustellen.

Der Name MATLAB leitete sich vom Begriff MATrix LABoratory ab, da MATLAB Berechnungen unter Verwendung von Matrizen durchführt.

(https://de.mathworks.com/help/matlab/learn matlab/product-description.html (abgerufen am 13.10.2018))

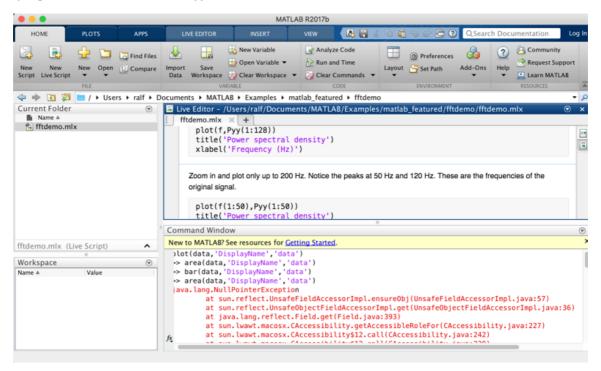


Abbildung 14: Screenshot der Programmoberfläche von MATLAB (Taniguchi)

Die von Millionen von Ingenieuren und Wissenschaftern am häufigsten genutzten Anwendungsgebiete sind u.a. Datenanalyse, drahtlose Kommunikation, Deep Learning, Computer Vision, Signalverarbeitung, quantitatives Finanz- und Risk-Management, Robotik sowie Steuerungs- und Regelungssysteme.

Wie der Hersteller weiters auf seiner Webseite angibt, kombiniert MATLAB eine Desktop-Umgebung für iterative Analysen und Entwicklungsprozesse mit einer Programmiersprache, in der Matrix-basierte Mathematik direkt formuliert werden kann (siehe https://de.mathworks.com/products/matlab.html (abgerufen am 13.10.2018)).

Diese ebenfalls MATLAB genannte high-level Programmiersprache ist matrixbasiert und laut Hersteller der weltweit natürlichste Weg, computergestützte Mathematik auszudrücken. Eingebaute Grafiken machen es einfach, Erkenntnisse aus Daten zu gewinnen und zu visualisieren.

Mit MATLAB erzeugte Dateien, Skripte, Programme, Daten, Beispiele, usw. können in einem Paket, einer sogenannten Toolbox, gebündelt und so mit anderen Benutzern geteilt werden. Es gibt mittlerweile hunderte von Toolboxen zu den verschiedensten Anwendungen und Bereichen, die großteils kostenlos, einige aber auch kommerziell vertrieben werden (Details unter: https://de.mathworks.com/help/matlab/creating-help.html (abgerufen am 13.10.2018)).

Eine dieser Toolboxen, MIRtoolbox wird im Verlauf dieser Arbeit zur Analyse der Tondaten herangezogen.

4.5.2 MIRtoolbox

MIRtoolbox enthält eine integrierte Zusammenstellung von in MATLAB geschriebenen Funktionen, um musikalische Merkmale wie Tonalität, Rhythmus, Strukturen usw. aus Audiodateien zu extrahieren und einen Überblick über Berechnungsansätze im Bereich des Music Information Retrieval geben zu können.

Laut den Entwicklern Lartillot und Toiviainen (2007) basiert das Design auf einem modularen Framework, bei dem die verschiedenen Algorithmen in Abschnitte, formalisiert mit einem minimalen Satz elementarer Mechanismen, zerlegt werden und damit das Grundvokabular der Toolbox bilden, welches dann frei auf neue Art artikuliert werden kann. Diese elementaren Mechanismen integrieren alle verschiedenen Varianten, die von alternativen Ansätzen vorgeschlagen werden und die Benutzer auswählen und parametrisieren können, einschließlich neuer Strategien, die Lartillot und Toiviainen entwickelt haben. Zusätzlich zu den grundlegenden Rechenprozessen enthält die Toolbox auch Werkzeuge zur Extraktion musikalischer High-Level-Merkmale, deren alternative Strategien und Mehrfachkombinationen vom Benutzer ausgewählt werden können (vgl. Lartillot und Toiviainen 2007).

Abbildung 15 zeigt einen Überblick über die Hauptfunktionen, die in der ersten Version der Toolbox implementiert waren. Alle verschiedenen Prozesse beginnen mit dem Audiosignal (links) und bilden eine Kette von nach rechts ablaufenden Operationen. Die vertikale Disposition der Prozesse weist auf eine zunehmende Komplexität der Operationen hin, von der einfachsten Berechnung (oben) bis zur detaillierteren auditorischen Modellierung (unten).

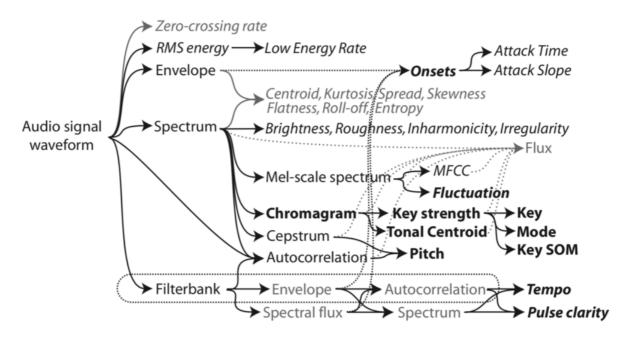


Abbildung 15: Hauptfunktionen der MIRtoolbox (Quelle: Lartillot und Toiviainen 2007)

Mittlerweile wurde der Funktionsumfang der MIRtoolbox erheblich erweitert, die aktuelle Version 1.7 (Stand Oktober 2018) enthält mehr als 50 Audio- und Musikmerkmals-Extraktoren und statistische Deskriptoren. Ein Überblick über die meisten Funktionen ist in der folgenden Abbildung zu sehen:

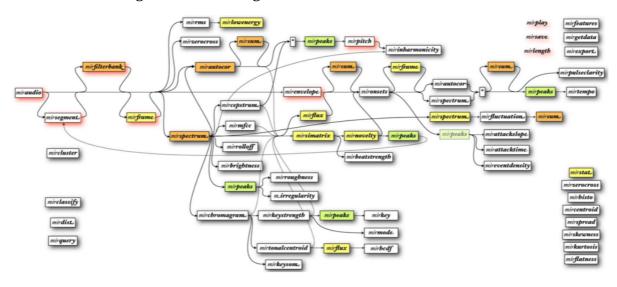


Abbildung 16: Aktuelle Funktionen der MIRtoolbox (Quelle: Lartillot und Toiviainen 2007)

4.5.3 MATLAB-Skript

Für die Analysen in dieser Arbeit wurde ein von Frau Isabella Czedik-Eysenberg vom Institut für Musikwissenschaft der Universität Wien erstelltes MATLAB-Skript verwendet, das unter Anwendung der MIRtoolbox sowie LoudnessToolbox und TSM-Toolbox folgende Funktionen berechnet, von denen jedoch nur einige relevant sind und zur Analyse verwendet werden:

absBrightness, annoyance, brightness, brightness2, entropy, envelopeFlatness, envelope-Kurtosis, firstAttackTime, formants1, formants2, formants3, hardness harmonicEnergy, harmonicPercussiveRatio, inharmonicity, length, lengthTrimmed loudnessSone, low-CentroidRate, lowEnergy, mfcc1-mfcc13, partial1Strength - partial12Strength, percussiveEnergy, pitch, pitchForHighFrequencies, pitchForLowFrequencies, relativePartial1Strength, releaseTime, roughness, smoothness, spectralCentroid, spectralFlatness, spectralFluxMean, spectralFluxMedian, spectralKurtosis, spectralRolloff, speechness, tonalEnergy, unpleasantness, zeroCrossingRate

5 Messergebnisse

5.1 Auswirkungen der Pedale beim Rosenberger-Flügel

5.1.1 AttackTime

Der Wert *attackTime*, auf Deutsch Einschwingzeit, ist die Zeitdauer von der ersten messbaren Schwingung bis zum Erreichen eines stabilen Klangs, welches mit dem Erreichen eines bestimmten Amplitudenwerts definiert wird (Reuter 1995, S. 21-29). Zwischen den Tönen, die *piano* gespielt werden, und den *forte*-Klängen ist fast kein Unterschied auszumachen. Nur beim *d2* differenzieren die Werte beträchtlich, was aber eventuell ein Artefakt bei der Aufnahme sein kann (Abbildung 17). Die berechneten Werte reichen bei *pianissimo* von 17 ms bis 73 ms mit einem Mittelwert von 37 ms und bei den *forte*-Tönen von 17 ms bis 54 ms mit einem Mittelwert von 35 ms.

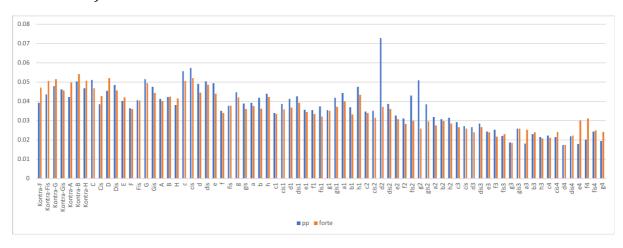


Abbildung 17: attackTime für pp und forte

Auch bei den mit dem Shift-Pedal gespielten Tönen ist bei der *attackTime* wenig Unterschied zu den *pianissimo*-Tönen zu erkennen (Abbildung 18), ihre Werte reichen von 17 ms bis 58 ms, der Durchschnitt ist 37 ms, also fast identisch mit den *pianissimo*-Tönen.

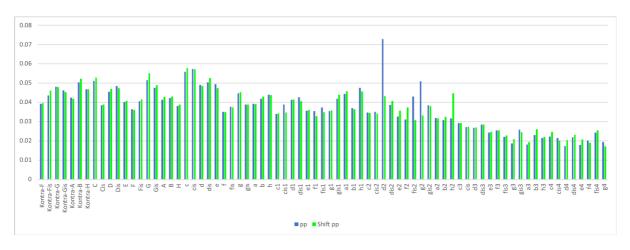


Abbildung 18: attackTime für pp und Shift pp

Bei *forte* gespielten Tönen hat das Drücken des Shift-Pedals wenig Auswirkung auf die *attackTime*, nur in der obersten Oktave sind die Unterschiede etwas größer (Abbildung 19). Die *attackTime* reicht von 19 ms bis 54 ms mit einem Mittel von 37 ms, was den *forte*-Tönen mit Zahlen von 17 ms bis 54 ms und einem Mittelwert von 35 ms stark ähnelt.

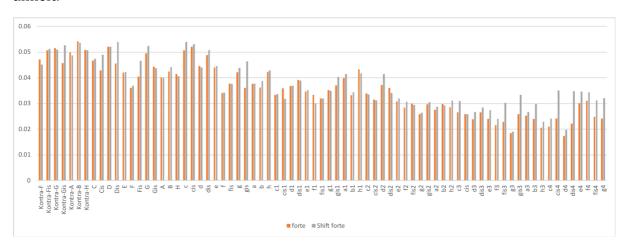


Abbildung 19: attackTime für forte und Shift forte

Auch wenig Auswirkung auf die *attackTime* hat das Moderator-Pedal, hier sind wie zuvor ebenfalls nur im obersten Bereich Unterschiede deutlich sichtbar (Abbildung 20). Die Berechnungen ergeben etwas höhere Werte von 23 ms bis 67 ms mit einem Mittel von 39 ms, verglichen mit den *pianissimo*-Tönen von 17 ms bis 73 ms und einem Durchschnitt von 37 ms.

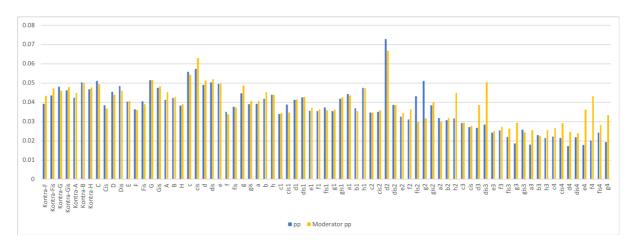


Abbildung 20: attackTime für pp und Moderator pp

Im Vergleich zu pedallos gespielten Tönen zeigen sich bei Tönen, die mit Moderator-Pedal in *forte* gespielt werden, ähnlich den vorigen Beispielen auch hier nur im mittleren und oberen Bereich deutliche Unterschiede (Abbildung 21). Die *attackTime*-Werte erstrecken sich bei den *Moderator-forte*-Tönen von 18 ms bis 54 ms mit einem Mittel von 37 ms, bei den *pianissimo*-Tönen von 17 ms bis 73 ms mit dem identischen Mittelwert von 37 ms.

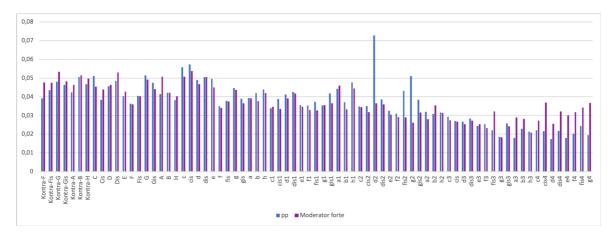


Abbildung 21: attackTime für pp und Moderator forte

Wird mit gedrücktem Moderator *forte* gespielt, hat das auch nur geringe Auswirkungen auf die *attackTime*-Werte, die sich von 18 ms bis 54 ms mit einem Mittel von 37 ms erstrecken, die Einschwingzeiten sind geringfügig kürzer als bei leise gespielten *Moderator*-Tönen, welche Werte von 23 ms bis 67 ms mit einem Mittel von 39 ms ergeben (Abbildung 22).

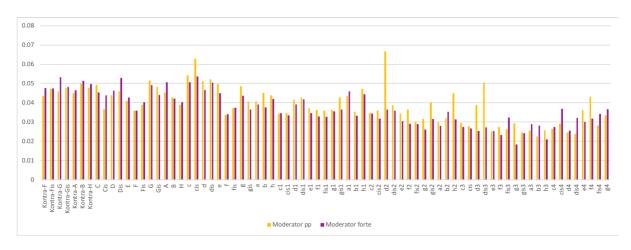


Abbildung 22: attackTime für Moderator pp und Moderator forte

Schon etwas mehr Einfluss auf die *attackTime*-Werte hat das Doppel-Moderator-Pedal, besonders im oberen Drittel ist eine deutliche Erhöhung der Einschwingzeit zu beobachten (Abbildung 23). Die berechneten Werte von 27 ms bis 80 ms mit einem Mittel von 44 ms bestätigen ebenfalls, dass die Einschwingzeit länger ist als bei den *pianissimo*-Tönen mit Werten von 17 ms bis 73 ms und einem Mittelwert von 37 ms.

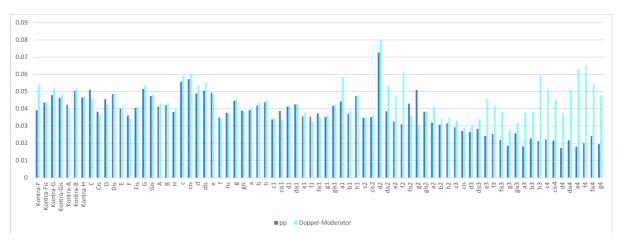


Abbildung 23: attackTime für pp und Doppel-Moderator

Werden Shift- und Moderator-Pedal gemeinsam betätigt, hat das nur in der obersten Oktave erkennbaren Einfluss auf die *attackTime* (Abbildung 24). Die errechneten Werte gehen hier von 20 ms bis 59 ms, der Durchschnitt beträgt 39 ms.

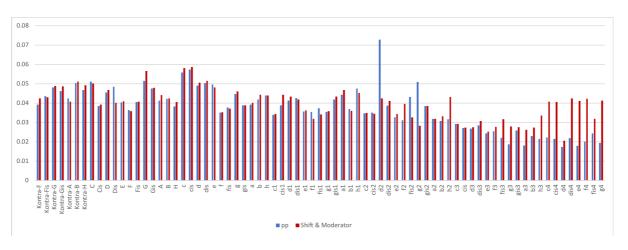


Abbildung 24: attackTime für pp und Shift & Moderator

Wie bereits ohne, ist auch diesmal mit Shift-Pedal eine Wirkung des Doppel-Moderators im oberen Drittel deutlich erkennbar (Abbildung 25) und besonders in der obersten Oktave sind die *attackTime*-Werte ungefähr doppelt so hoch. Die Werte reichen insgesamt von 29 ms bis 79 ms mit einem Mittel von 46 ms. Betrachtet man nur den Bereich ab *dis3* zeigt sich für Töne mit gleichzeitig gedrückten Shift- und Moderator-Pedalen hier ein Mittelwert von 52 ms, während er im selben Bereich für pedalloses *pianissimo* nur 22 ms beträgt.

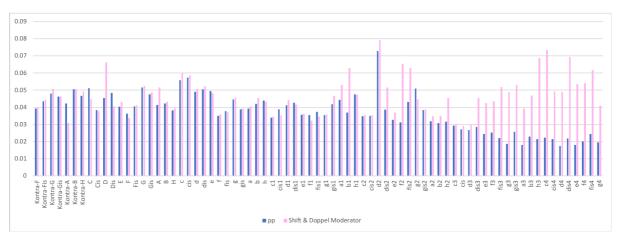


Abbildung 25: attackTime für pp und Shift & Doppel-Moderator

Ein Vergleich von Moderator und Doppel-Moderator bei gleichzeitig getretenem Shift-Pedal zeigt ebenfalls deutlich die Wirkung des Doppel-Moderators auf die *attackTime*-Werte, die beim einfachen Moderator von 20 ms bis 59 ms mit einem Mittel von 39 ms reichen, bei Doppel-Moderator hingegen reichen die *attackTime*-Zahlen von 29 ms bis 79 ms mit einem Durchschnittswert von 46 ms (Abbildung 26).

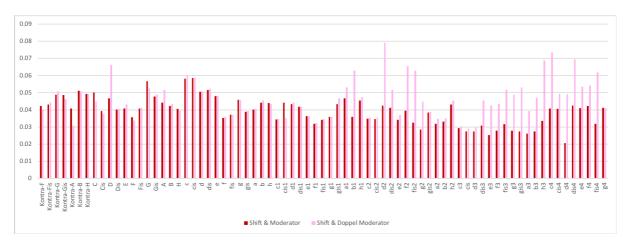


Abbildung 26: attackTime für Shift & Moderator und Shift & Doppel-Moderator

Das Aktivieren des Fagott-Pedals scheint nur geringe Auswirkungen auf die *atta-ckTime* zu haben, sie verkürzt sich sogar bei einigen Tönen, besonders in der obersten Oktave (Abbildung 27). Für Töne mit Fagott-Pedal betragen die Zeiten von 32 ms bis 58 ms mit Mittelwert 43 ms, für pedallose *pianissimo-*Töne reichen sie von 34 ms bis 57 ms mit einem Durchschnitt von 44 ms.

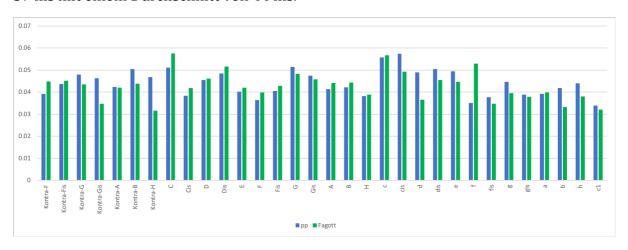


Abbildung 27: attackTime für pp und Fagott

Werden zusätzlich zum Fagott- noch Shift- und Moderator-Pedal betätigt, ändern sich die *attackTime*-Werte nur geringfügig (Abbildung 28), sie betragen von 34 ms bis 56 ms, der Durchschnitt ist 43 ms, das sind fast dieselben Werte wie bei den pedallosen *pianissimo*-Tönen (34 ms bis 57 ms, Durchschnitt von 44 ms).

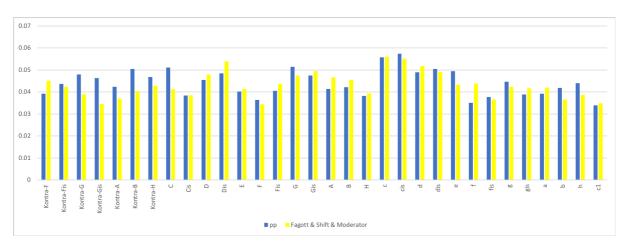


Abbildung 28: attackTime für pp und Fagott & Shift & Moderator

	pp	forte	Shift pp	Shift f	Mod. pp	Mod. f	DoppM.	S & Mod.	S & D-M	Fagott	F&S&M
MIN	0,01733	0,01742	0,01708	0,01900	0,02250	0,01842	0,02783	0,02058	0,02900	0,03167	0,03433
MAX	0,07283	0,05417	0,05775	0,05392	0,06675	0,05375	0,08008	0,05867	0,07925	0,05750	0,05600
MEAN	0,03705	0,03551	0,03685	0,03746	0,03902	0,03709	0,04388	0,03934	0,04616	0,04315	0,04346

Tabelle 2: attackTime-Durchschnittswerte aller Töne

5.1.2 Brightness

Brightness-Werte beschreiben die Helligkeit eines Tones, sie werden aus Frequenzen über 1500 Hz berechnet und die Resultate mit Zahlen zwischen 0 und 1 ausgedrückt (Lartillot 2017, S.129). Beim ersten Vergleich mit Tönen, die ohne jegliche Pedale gespielt werden, fällt auf, dass bis ungefähr zur obersten Oktave die brightness-Werte der forte gespielten Töne höher sind, sie also heller klingen (Abbildung 29). Über den kompletten Tonbereich erreichen die pianissimo-Töne brightness-Werte von 0,02 bis 0,85 (Mittel: 0,25), die forte-Töne von 0,14 bis 0,79 (Mittel: 0,37). Im Bereich bis d3 beträgt die Durchschnittshelligkeit von pianissimo 0,12 und von forte mehr als das Doppelte, nämlich 0,27.

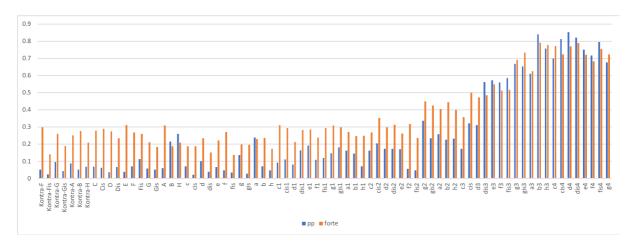


Abbildung 29: brightness für pp und forte

Wird das Shift Pedal gedrückt, erhöhen sich die meisten *brightness*-Werte leicht bis zum *fis2*, im oberen Bereich sind sie dann etwas verringert (Abbildung 30). Für die gesamte Reihe reicht die Helligkeit von 0,05 bis 0,82 mit einem Mittel von 0,24. Bis zum *fis2* ist der Durchschnitt von *pianissimo* 0,1, mit Shift-Pedal 0,11, darüber dann für *pianissimo* 0,56 und für Shift 0,49.

Abbildung 30: brightness für pp und Shift-pp

Wird mit getretenem Shift-Pedal *forte* gespielt, verringern sich die *brightness*-Werte fast aller Töne etwas (Abbildung 31). Die Durchschnittshelligkeit von *forte* beträgt 0,37, zusätzlich mit Shift ist sie dann 0,33.

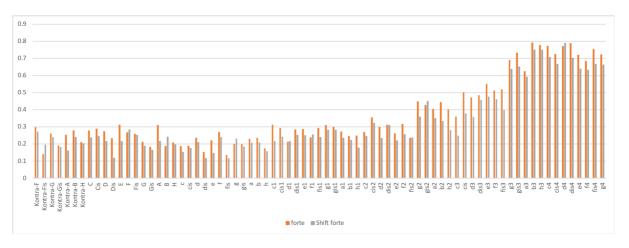


Abbildung 31: brightness für forte und Shift forte

Das einfache Moderator-Pedal in *pianissimo* hat auf die *brightness*-Werte nur geringe Auswirkungen, bis auf wenige Ausnahmen, wie bei *f2* und *fis2* verringern sie sich ein wenig (Abbildung 32). Die Helligkeitswerte der *pianissimo*-Töne reichen von 0,02 bis 0,85 (Mittel: 0,25), mit Moderator sind sie geringfügig niedriger mit Zahlen von 0,02 bis 0,8 und dem Durchschnittswert 0,2.

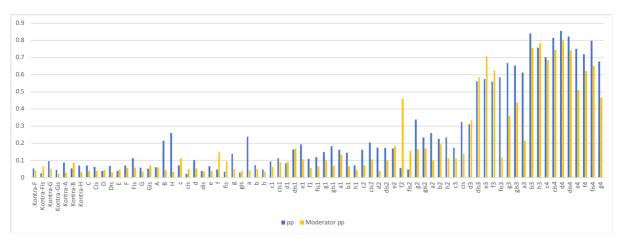


Abbildung 32: brightness für pp und Moderator pp

Im Vergleich zu pedallos gespielten Tönen zeigen sich bei Tönen, die mit Moderator-Pedal in *forte* gespielt werden, bis zum *d3* fast ausnahmslos zum Teil deutlich höhere *brightness*-Werte (Mittel: 0,21), bei den obersten Tönen hingegen sind sie niedriger (Mittel: 0,59). Bei den *pianissimo*-Tönen beträgt der Mittelwert bis zum *d3* 0,12 und danach 0,7 (Abbildung 33).

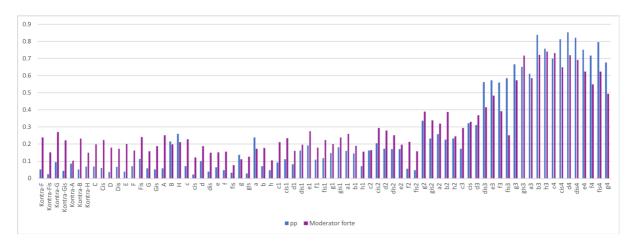


Abbildung 33: brightness für pp und Moderator forte

Bei mit aktivem Moderater *forte* gespielten Tönen sind teilweise deutlich erhöhte *brightness*-Werte mit einigen wenigen Ausnahmen fast über den gesamten Umfang erkennbar, in der obersten Oktave sind sie jedoch meistens geringfügig niedriger (Abbildung 34). Während bei *Moderator-pp*-Tönen die *brightness*-Werte von 0,02 bis 0,8 reichen und durchschnittlich 0,2 betragen, reichen die Werte der *Moderator-forte*-Töne von 0,08 bis 0,74 mit dem Mittelwert 0,3. Bis *a3* beträgt der *brightness*-Mittelwert der *Moderator-forte*-Töne 0,24, bei den verbleibenden höheren Tönen 0,66, bei den Tönen mit Moderator in *pianissimo* bis *a3* 0,13, danach 0,68.

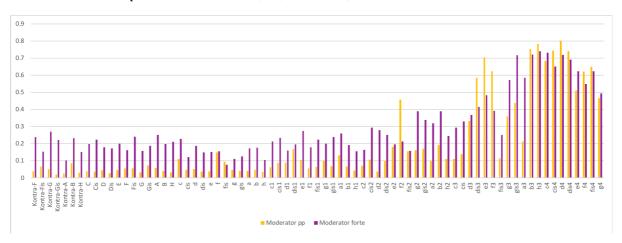


Abbildung 34: brightness für Moderator pp und Moderator forte

Das Doppel-Moderator-Pedal hat, anders als das einfache Moderator-Pedal, auf die *brightness*-Werte deutlich sichtbare Auswirkungen, bis auf ganz wenige Ausnahmen, wie z.B. bei *f*, *gis*, *f2*, *fis2* und *dis3* verringern sie sich teilweise beträchtlich (Abbildung 35). Die Helligkeitswerte der *pianissimo*-Töne reichen von 0,02 bis 0,85 (Mittel: 0,25),

mit Doppel-Moderator sind sie markant niedriger mit Werten von 0,02 bis 0,7 und einem Mittelwert von 0,16.

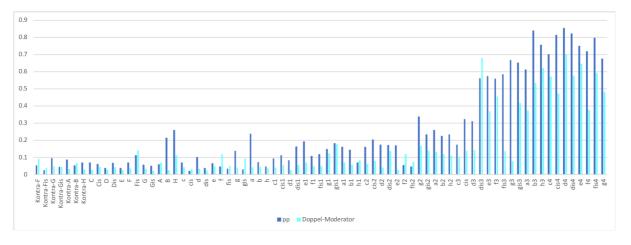


Abbildung 35: brightness für pp und Doppel-Moderator

Wird mit gleichzeitig getretenen Shift- und Moderator-Pedalen gespielt, verringern sich die *brightness*-Werte fast aller Töne etwas (Abbildung 36). Während die *brightness*-Werte der *pianissimo*-Töne von 0,02 bis 0,85 mit dem Mittel von 0,25 reichen, gehen die Werte der *Shift- & Moderator*-Töne von 0,03 bis 0,73 mit einem mittleren Wert von 0,19.

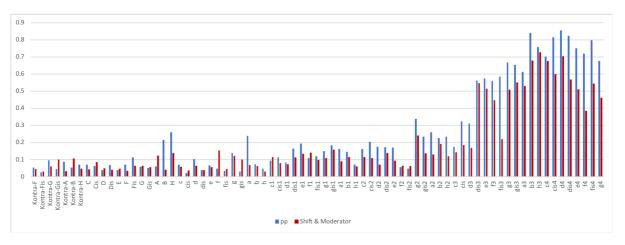


Abbildung 36: brightness für pp und Shift & Moderator

Ähnlich dem Doppel-Moderator alleine ist auch gemeinsam mit dem Shift-Pedal eine Wirkung über den gesamten Tonumfang deutlich erkennbar (Abbildung 37) und bis auf wenige Ausnahmen sind die *brightness*-Werte erheblich niedriger. Bei den *Shift-& Doppel-Moderator*-Tönen reichen die Werte von 0,01 bis 0,79 mit einem Mittel von

0,15, während sich die *brightness*-Werte der *pianissimo*-Töne von 0,02 bis 0,85 mit einem Mittel von 0,25 erstrecken.

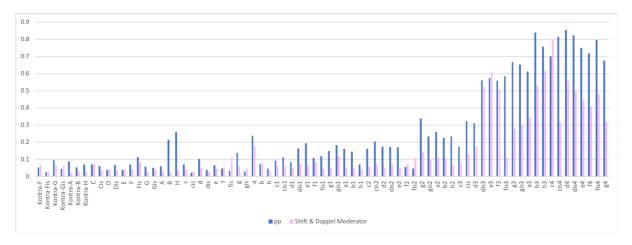


Abbildung 37: brightness für pp und Shift & Doppel-Moderator

Ein Vergleich von Moderator und Doppel-Moderator bei gleichzeitig getretenem Shift-Pedal zeigt, dass die *brightness*-Werte bis auf wenige Ausnahmen beim Doppel-Moderator niedriger sind. Sie betragen beim einfachen Moderator von 0,03 bis 0,73 mit einem Mittel von 0,19, bei Doppel-Moderator 0,02 bis 0,79 mit einem Durchschnittswert von 0,15 (Abbildung 38).

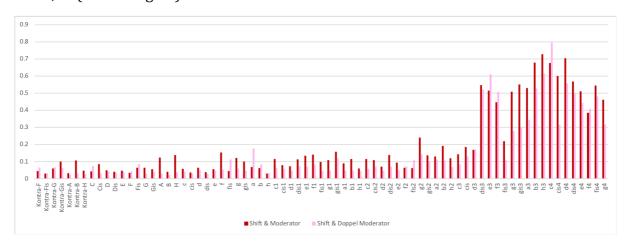


Abbildung 38: brightness für Shift & Moderator und Shift & Doppel-Moderator

Besonders auffällig ist die Wirkung des Fagott-Pedals auf die Ton-Helligkeit, bis auf *Kontra-B* sind die *brightness*-Werte erheblich höher als bei den pedallosen *pianissimo*-Tönen (Abbildung 39). Während sich die *brightness*-Werte der *pianissimo*-Töne in diesem Bereich von 0,02 bis 0,46 mit einem Durchschnittswert von 0,1 erstrecken, betra-

gen die Werte mit Fagott-Pedal von 0,17 bis 0,55 mit dem fast vierfachen Mittel von 0,38.

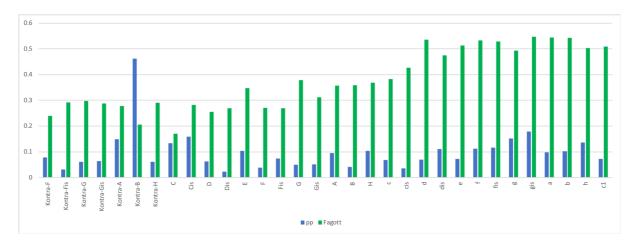


Abbildung 39: brightness für pp und Fagott

Auch wenn zusätzlich zum Fagott- noch die Shift- und Moderator-Pedale betätigt werden, bleiben die *brightness*-Werte besonders in der oberen Hälfte ausgesprochen hoch (Abbildung 40), sie betragen von 0,05 bis 0,48, der Durchschnitt ist 0,25.

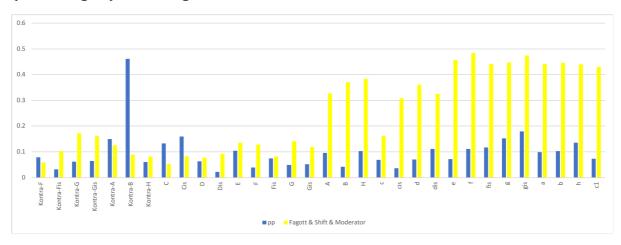


Abbildung 40: brightness für pp und Fagott & Shift & Moderator

	pp	forte	Shift pp	Shift f	Mod. pp	Mod. F	Dopp	S & Mod.	S & D-M	Fagott	F&S&M
MIN	0,022100	0,135943	0,045882	0,116009	0,020634	0,078536	0,020366	0,029827	0,021127	0,075386	0,032073
MAX	0,854117	0,791959	0,828093	0,789557	0,802838	0,741465	0,700247	0,726420	0,793970	0,311689	0,353432
MEAN	0,253790	0,366787	0,237686	0,324593	0,198688	0,296966	0,161191	0,192643	0,150812	0,187841	0,153609

Tabelle 3: brightness-Durchschnittswerte aller Töne

5.1.3 Entropy

Der englische Begriff *entropy* (dt.: Entropie) steht in der Informationstheorie als Maß für die Informationsdichte oder den Informationsgehalt einer Nachricht und beschreibt im Audiobereich die Komplexität eines Klanges.

Beim ersten Vergleich fällt auf, dass bis ungefähr zur obersten Oktave die meisten *ent-ropy*-Werte der Töne, die ohne jegliche Pedale gespielt werden, etwas höher sind, bei den höchsten Tönen sind dann jedoch die *pianissimo*-Werte etwas höher. Die Werte der *pianissimo*-Töne reichen von 0,55 bis 0,89, der Mittelwert beträgt 0,66, bei den *forte* gespielten Tönen erstrecken sich die *entropy*-Werte von 0,61 bis 0,86, der Durchschnitt ist mit 0,7 geringfügig höher (Abbildung 41).

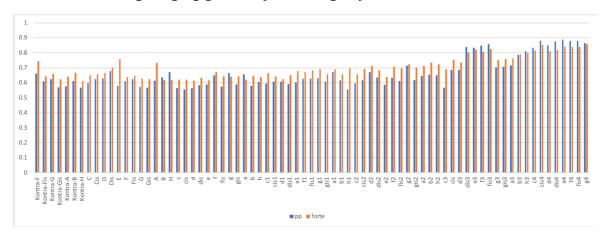


Abbildung 41: entropy für pp und forte.

Beim Betätigen des Shift-Pedals ist fast kein Unterschied der *entropy*-Werte im Vergleich zu den pedallosen *pianissimo*-Tönen erkennbar, sie reichen von 0,54 bis 0,91 und der Durchschnittswert ist genau wie bei den reinen *pp*-Tönen 0,66 (Abbildung 42).

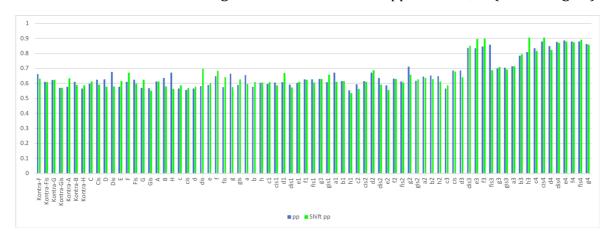


Abbildung 42: entropy für pp und Shift-pp

Wird mit gedrücktem Shift-Pedal *forte* gespielt, sind bis auf wenige Ausnahmen fast keine Unterschiede zu den Tönen beim *forte*-Spiel alleine wahrnehmbar (Abbildung 43). Der Mittelwert aller *forte*-Töne beträgt 0,7 und der Durchschnitt aller *Shift*- & *forte*-Töne beträgt fast identische 0,69.

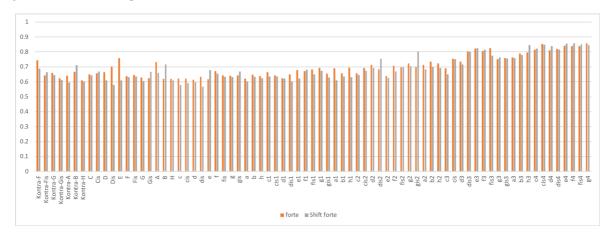


Abbildung 43: entropy für forte und Shift forte

Bei aktiviertem Moderator ist bei den *entropy*-Werten ebenfalls fast kein Unterschied im Vergleich zu den pedallosen *pianissimo*-Tönen über den kompletten Tonumfang zu bemerken (Abbildung 44). Dieser Umstand zeigt sich im Durchschnittswert, der für *pianissimo* 0,66 beträgt und auch für Moderator *pp* ist dieser exakt gleich mit ebenfalls 0,66.

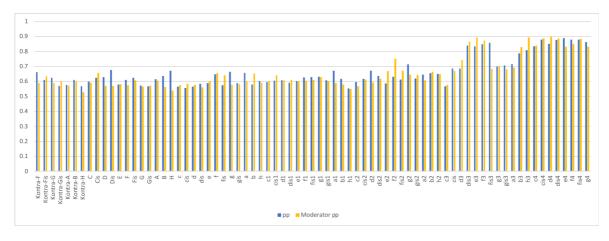


Abbildung 44: entropy für pp und Moderator pp

Wird mit Moderator-Pedal *forte* gespielt, sind die *entropy*-Werte über den größten Teil des Tonumfangs etwas höher als bei den pedallosen *pianissimo*-Tönen, nur bei den höchsten Tönen sind sie etwas niedriger. Der *entropy*-Mittelwert über den kompletten

Tonumfang beträgt für die *pianissimo*-Töne 0,66, für die *Moderator-forte*-Töne ist er mit 0,68 eine Spur höher (Abbildung 45).

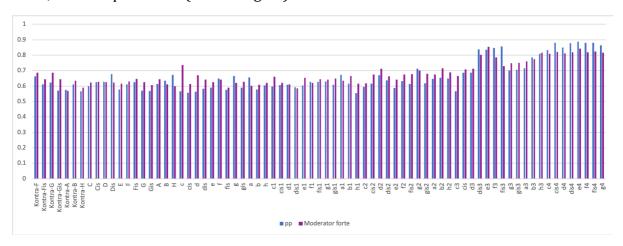


Abbildung 45: entropy für pp und Moderator forte

Ebenfalls sehr gering ist Unterschied der *entropy*-Werte zwischen Tönen, die mit Moderator-Pedal *pianissimo* gespielt werden (*entropy*-Werte von 0,53 bis 0,9) und den *forte*-Tönen mit Moderator (*entropy*-Werte von 0,57 bis 0,85), über die meisten Töne sind die Werte der *Moderator-forte*-Töne geringfügig höher, im höchsten Bereich sind sie etwas niedriger (Abbildung 46). Der *entropy*-Durchschnittswert über den gesamten Tonbereich beträgt für die *Moderator*-Töne in *pianissimo* 0,66 und für die *Moderator*-Töne in *forte* 0,68.

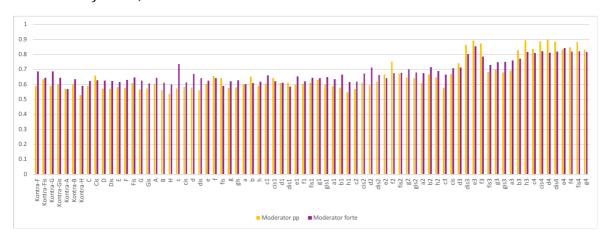


Abbildung 46: entropy für Moderator pp und Moderator forte

Die Betätigung des Doppel-Moderators hat auf die *entropy*-Werte im Vergleich zu den pedallosen *pianissimo*-Tönen jedoch keinen erkennbaren Einfluss (Abbildung 47). Sie

erstrecken sich von 0,54 bis 0,9 (bei *pp*: 0,55 bis 0,89) und auch der Durchschnittswert ist mit 0,65 fast gleich dem der *pp*-Töne mit 0,66.

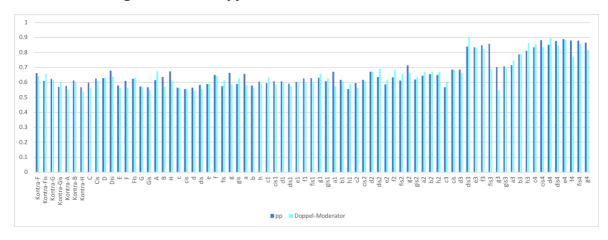


Abbildung 47: entropy für pp und Doppel-Moderator

Werden Shift- und Moderator-Pedal gleichzeitig betätigt, ist der Unterschied der *ent-ropy*-Werte von 0,54 bis 0,86 im Vergleich zu den pedallosen *pianissimo*-Tönen mit Werten von 0,55 bis 0,89 nur äußerst gering (Abbildung 48). Auch beim Mittelwert aller Töne ist beim Shift- und Moderator-Pedal mit 0,65 fast keine Differenz zum Mittelwert der *pianissimo*-Töne mit 0,66 auszumachen.

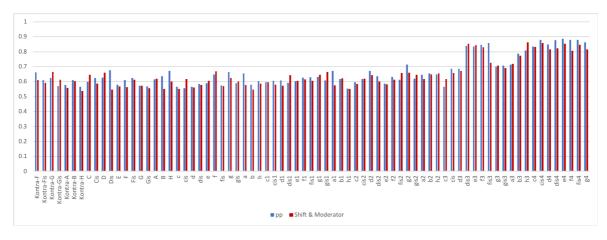


Abbildung 48: entropy für pp und Shift & Moderator

Bei gleichzeitiger Betätigung von Shift sowie des Doppel-Moderators ist ähnlich des Moderators alleine bei den *entropy*-Werten kein Unterschied im Vergleich zu den pedallosen *pianissimo*-Tönen erkennbar (Abbildung 49). Die Werte erstrecken sich von 0,53 bis 0,92 (bei *pp*: 0,55 bis 0,89), der Durchschnittswert für Shift und Doppel-Moderator ist 0,65, ab *cis1* dann für *pianissimo* 0,425 und für Shift und Doppel-Moderator 0,656.

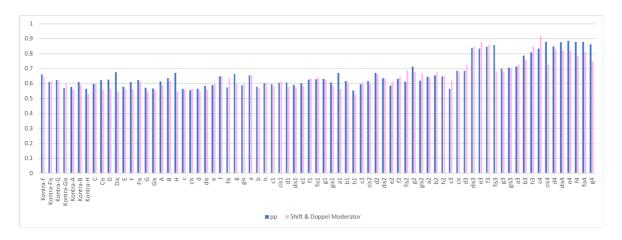


Abbildung 49: entropy für pp und Shift & Doppel-Moderator

Ebenfalls so gut wie keinen Unterschied gibt es bei den *entropy*-Werten zwischen Tönen, die mit für Shift- und Moderator-Pedal gespielt werden (*entropy*-Werte von 0,54 bis 0,86) und den Tönen mit Shift- und Doppel-Moderator-Pedal (*entropy*-Werte von 0,53 bis 0,92), wie in Abbildung 50 ersichtlich. Auch die durchschnittlichen Werte sind mit jeweils 0,65 identisch.

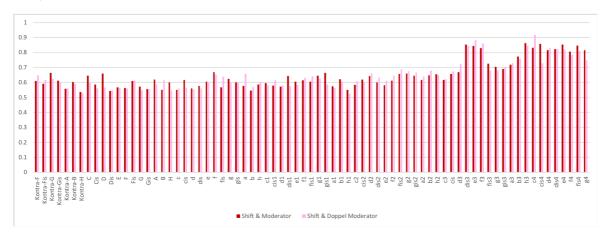


Abbildung 50: entropy für Shift & Moderator und Shift & Doppel-Moderator

Beim aktiven Fagott-Pedal ist ein Unterschied der *entropy*-Werte zu den Werten der pedallosen *pianissimo*-Tönen erkennbar, bis auf vier Ausnahmen sind sie durchwegs etwas höher (Abbildung 51). Die *entropy*-Werte der *Fagott-Pedal*-Töne umfassen einen Bereich von 0,56 bis 0,72 mit einem Mittelwert von 0,66, bei den *pianissimo*-Tönen reichen diese von 0,56 bis 0,68 mit einem Mittelwert von 0,61.

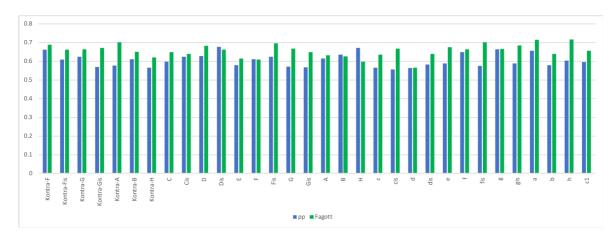


Abbildung 51: entropy für pp und Fagott

Ähnlich verhält es sich mit dem Unterschied der *entropy*-Werte zwischen den pedallosen *pianissimo*-Tönen (*entropy*-Werte von 0,56 bis 0,68, der Durchschnittswert beträgt 0,61) und den Tönen, die mit den Fagott-, Shift- und Moderator-Pedalen (*entropy*-Werte von 0,53 bis 0,74, Durchschnitt ist 0,64) gespielt werden (Abbildung 52). Auch diese sind bis auf fünf Ausnahmen immer etwas höher.

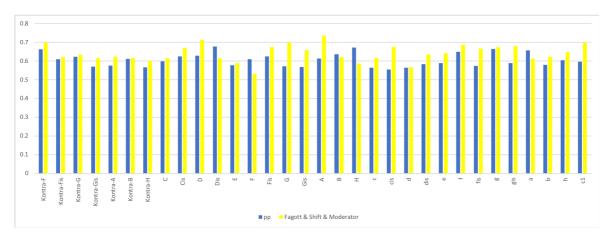


Abbildung 52: entropy für pp und Fagott & Shift & Moderator

	pp	forte	Shift pp	Shift f	Mod. pp	Mod. F	DoppM.	S & Mod.	S & D-M	Fagott	F & S & M
MIN	0,554386	0,610387	0,535557	0,566348	0,527999	0,567793	0,539233	0,536705	0,525465	0,564711	0,531445
MAX	0,887606	0,857500	0,905538	0,857399	0,898629	0,853794	0,902500	0,863150	0,917571	0,716904	0,735755
MEAN	0,663232	0,699867	0,660175	0,687366	0,656352	0,678663	0,653535	0,649978	0,647305	0,656543	0,642148

Tabelle 4: entropy-Durchschnittswerte aller Töne

5.1.4 HarmonicEnergy

Der Parameter *harmonicEnergy* (dt. harmonische Energie) beschreibt die Energie eines Signals, die durch die harmonischen Teiltöne erklärt wird. Der Wert wird berechnet, indem die Energie der Teiltöne, die zu einer bestimmten Zeit erfasst werden, summiert wird (Peeters et. al. 2011: 8).

Betrachtet man die Töne, die ohne Einsatz von Pedalen gespielt werden, fällt auf, dass bei sämtlichen *forte*-Tönen die *harmonicEnergy*-Werte deutlich höher sind als bei den *pianissimo*-Tönen (Abbildung 53). Die *harmonicEnergy*-Werte der *pianissimo*-Töne reichen von 0,001 bis 0,008 mit einem Mittelwert von 0,004, die der *forte*-Töne von 0,005 bis 0,02 mit dem dreifachen Mittelwert 0,012.

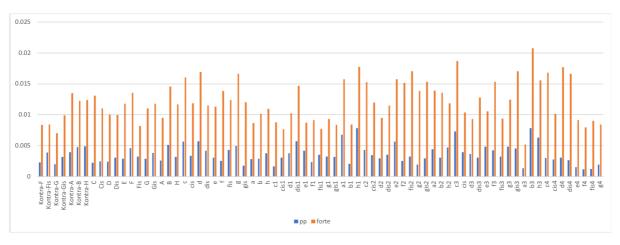


Abbildung 53: harmonicEnergy für pp und forte

Nicht sehr viel Einfluss auf die *harmonicEnergy*-Werte hat das Shift-Pedal, im unteren Drittel sind die Werte meist gleich oder etwas höher (Mittelwert *pp*: 0,004, *Shift-pp*: 0,004), ab dem *f* sind sie dann aber größtenteils niedriger (Mittelwert *pp*: 0,004, *Shift-pp*: 0,003) und reichen bei den *pianissimo*-Tönen von 0,001 bis 0,008 mit einem Mittelwert von 0,004, die *harmonicEnergy*-Werte der *Shift-pp*-Töne reichen von 0,001 bis 0,008 mit dem ähnlichen Mittelwert von 0,003 (Abbildung 54).

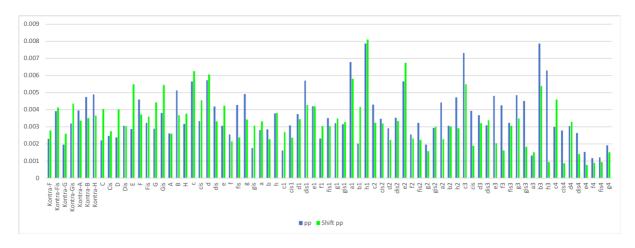


Abbildung 54: harmonicEnergy für pp und Shift-pp

Auch bei den *forte* gespielten Tönen ist der Einfluss des Shift-Pedals nicht sehr auffällig, die *harmonicEnergy*-Werte erscheinen aber bei Betrachtung der Messwerte doch bis auf einige wenige Ausnahmen geringfügig niedriger (Abbildung 55) und reichen von 0,005 bis 0,021 mit einem Mittelwert von 0,012, die der *Shift-forte*-Töne von 0,005 bis 0,021 mit dem ähnlichen Mittelwert von 0,01.

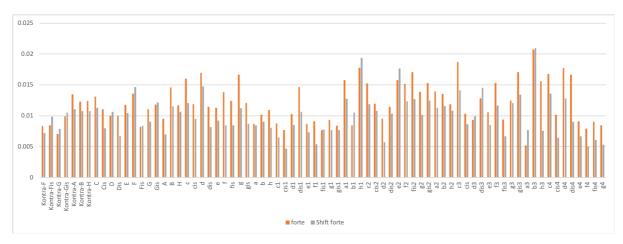


Abbildung 55: harmonicEnergy für forte und Shift forte

Interessant sind die Messungen der *harmonicEnergy*-Werte beim Einsatz des Moderator-Pedals, bis zum *b2* sind sie nur vereinzelt niedriger als die der reinen *pianissimo*-Töne, erst ab dem *h2* sind sie deutlich niedriger (Abbildung 56). Der *harmonicEnergy*-Mittelwert der *pianissimo*-Töne beträgt bis zum *b2* 0,004, der der *Moderator pp*-Töne gleiche 0,004, ab dem *h2* ist das Mittel für *pp* 0,004, für *Moderator-pp*-Töne jedoch nur ungefähr ein Viertel davon, nämlich 0,001. Die *harmonicEnergy*-Werte der *pianissimo*-

Töne reichen von 0,001 bis 0,008 mit einem Mittelwert von 0,004, die der *Moderator- pp*-Töne von 0 bis 0,01 mit dem etwas niedrigeren Mittelwert von 0,003.

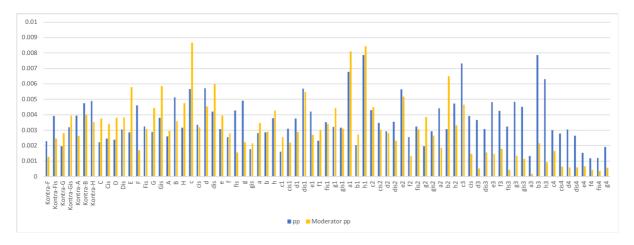


Abbildung 56: harmonicEnergy für pp und Moderator pp

Wird mit Moderator-Pedal *forte* gespielt, sind die *harmonicEnergy*-Werte deutlich höher als bei den pedallosen *pianissimo*-Tönen. Der *harmonicEnergy*-Mittelwert über den kompletten Tonumfang beträgt für die *pianissimo*-Töne 0,004, für die *Moderator-forte*-Töne genau dreimal so hohe 0,011 (Abbildung 57).

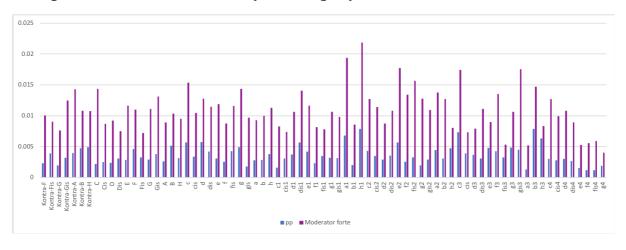


Abbildung 57: harmonicEnergy für pp und Moderator forte

Beim Vergleich der *harmonicEnergy*-Werte von Tönen, die mit Moderator-Pedal gespielt werden, zeigt sich ein großer Unterschied in der Spielweise, bei *forte* sind sämtliche Werte auffallend höher als bei *pianissimo* (Abbildung 58). Während die *harmonicEnergy*-Werte der *Moderator-pp*-Töne von 0 bis 0,01 mit einem Mittelwert von 0,003 reichen, erstrecken sich die Werte der *Moderator-forte*-Töne von 0,000 bis 0,022 mit einem 3,6-mal so hohem Mittelwert von 0,011.

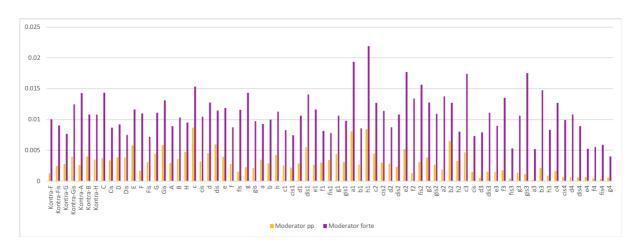


Abbildung 58: harmonicEnergy für Moderator pp und Moderator forte

Kommt der Doppel-Moderator zu Einsatz, zeigt sich, dass die *harmonicEnergy*-Werte in den unteren zwei Dritteln des Tonumfangs fast immer höher sind, ab dem *d2* sind sie dann jedoch bis auf einige wenige Ausnahmen durchgehend niedriger (Abbildung 59). Bis zum *cis2* betragen die *harmonicEnergy*-Mittelwerte von *pianissimo*-Tönen ohne Pedal 0,004 und für *Doppel-Moderator*-Töne 0,005, ab *d2* sind es dann für *pp*-Töne ebenfalls 0,004, für die *Doppel-Moderator*-Töne jedoch nur 0,002. Über den kompletten Tonbereich reichen die *harmonicEnergy*-Werte der *pianissimo*-Töne von 0,001 bis 0,008 mit einem Mittelwert von 0,004, die der *Doppel-Moderator*-Töne von 0,001 bis 0,01 mit einem etwas höheren Mittelwert von 0,004.

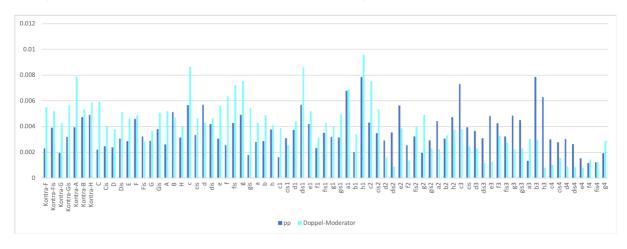


Abbildung 59: harmonicEnergy für pp und Doppel-Moderator

Wird mit gleichzeitig getretenen Shift- und Moderator-Pedalen gespielt, sind die *har-monicEnergy*-Werte fast aller Töne etwas höher (Abbildung 60). Besonders deutlich ist dies in den unteren zwei Dritteln des Tonbereichs sichtbar, im obersten Drittel sind

die Unterschiede, obwohl bis auf einzelne Ausnahmen immer noch vorhanden, nicht mehr so deutlich ausgeprägt. Während die *harmonicEnergy*-Werte der *pianissimo*-Töne von 0,001 bis 0,007 mit dem Mittel von 0,004 reichen, gehen die Werte der *Shift-* & *Moderator*-Töne von 0,001 bis 0,012 mit einem mittleren Wert von 0,005.

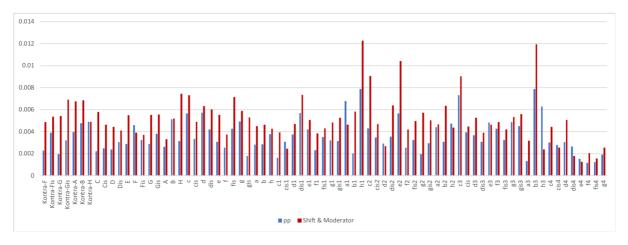


Abbildung 60: harmonicEnergy für pp und Shift & Moderator

Werden Shift- und Doppel-Moderator-Pedale gemeinsam betätigt, sind die *harmonicEnergy*-Werte in der unteren Hälfte des Tonbereichs bis auf wenige Ausnahmen höher, in der oberen Hälfte dagegen fast immer ungefähr gleich oder niedriger als die der pedallosen *pianissimo*-Töne (Abbildung 61). Über den kompletten Tonbereich reichen die *harmonicEnergy*-Werte der *pianissimo*-Töne von 0,001 bis 0,008 mit einem Mittelwert von 0,004, die der *Shift- & Doppel-Moderator*-Töne von 0,001 bis 0,007 mit einem identen Mittelwert von 0,004. Vergleicht man die Mittelwerte bis zum *f1*, so beträgt der Wert für die *pianissimo*-Töne 0,004, für die *Shift- & Doppel-Moderator*-Töne 0,005, ab dem *fis1* sind es dann für *pp* 0,004 und für *Shift- & Doppel-Moderator* nur noch 0,003.

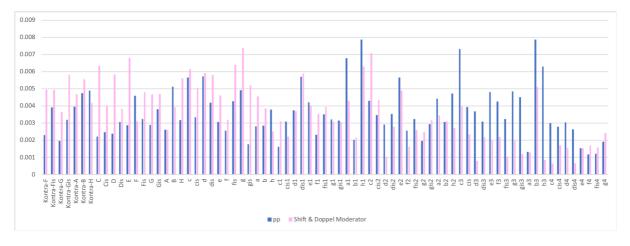


Abbildung 61: harmonicEnergy für pp und Shift & Doppel-Moderator

Ein Vergleich von Moderator und Doppel-Moderator bei gleichzeitig getretenem Shift-Pedal zeigt, dass die *harmonicEnergy*-Werte bis auf wenige Ausnahmen beim Doppel-Moderator teils erheblich niedriger sind. Sie betragen beim einfachen Moderator von 0,001 bis 0,012 mit einem Mittel von 0,005, beim Doppel-Moderator 0,001 bis 0,007 mit einem Durchschnittswert von 0,004 (Abbildung 62).

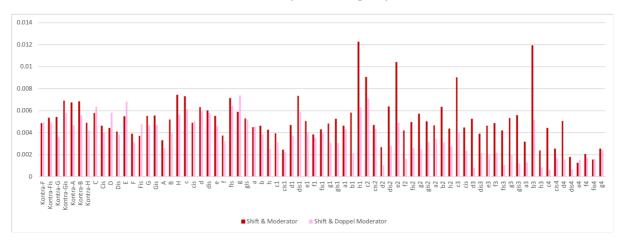


Abbildung 62: harmonicEnergy für Shift & Moderator und Shift & Doppel-Moderator

Nicht sehr auffällig ist die Wirkung des Fagott-Pedals auf die die *harmonicEnergy*-Werte, sie sind aber bis auf einige Ausnahmen ein wenig höher als bei den pedallosen *pianissimo*-Tönen (Abbildung 63). Während sich die *harmonicEnergy*-Werte der *pianissimo*-Töne in diesem Bereich von 0,002 bis 0,006 mit einem Durchschnittswert von 0,003 erstrecken, reichen die Werte mit Fagott-Pedal von 0,002 bis 0,008 und der Mittelwert ist mit 0,005 etwas höher.

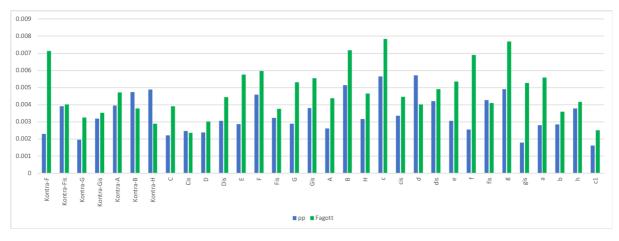


Abbildung 63: harmonicEnergy für pp und Fagott

Eine nicht eindeutige Situation ergibt sich, wenn zusätzlich zum Fagott- noch die Shift- und Moderator-Pedale betätigt werden, ohne erkennbares Muster sind die *harmonicEnergy*-Werte der *pianissimo*-Töne teilweise höher, teilweise jedoch auch niedriger als die *harmonicEnergy*-Werte der *Fagott-, Shift-* & *Moderator*-Töne (Abbildung 64). Für die *pianissimo*-Töne beträgt der Mittelwert 0,003 und für die *Fagott-, Shift-* & *Moderator*-Töne gleiche 0,003.

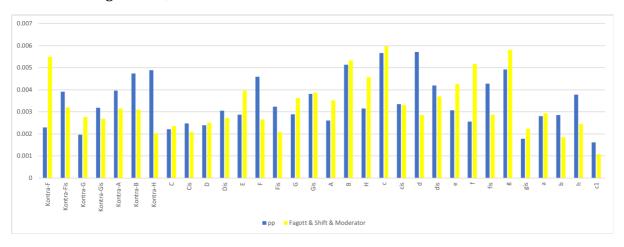


Abbildung 64: harmonicEnergy für pp und Fagott & Shift & Moderator

	pp	forte	Shift pp	Shift f	Mod. pp	Mod. F	DoppM.	S & Mod.	S & D-M	Fagott	F&S&M
MIN	0,001172	0,005205	0,000765	0,004692	0,000158	0,004012	0,000795	0,001270	0,000637	0,002365	0,001090
MAX	0,007861	0,020749	0,008100	0,020938	0,008666	0,021878	0,009590	0,012254	0,007373	0,007850	0,005971
MEAN	0,003610	0,012065	0,003304	0,010023	0,003010	0,010833	0,004032	0,005130	0,003623	0,004751	0,003320

Tabelle 5: harmonicEnergy-Durchschnittswerte aller Töne

5.1.5 HarmonicPercussiveRatio

Beim ersten Vergleich mit Tönen, die ohne jegliche Pedale gespielt werden, fällt auf, dass die *harmonicPercussiveRatio*-Werte der *forte* gespielten Töne durchgehend niedriger sind als die der *pianissimo*-Töne (Abbildung 65), bei beiden Tönen sind die Werte ungefähr ab der Mitte, genau von *dis1* bis *f3* deutlich höher als im restlichen Bereich. Über den kompletten Tonbereich erreichen die *pianissimo*-Töne *harmonicPercussive-Ratio*-Werte von 1,71 bis 25,94 (Mittel: 7,82), die *forte*-Töne von 1,06 bis 18,73 (Mittel: 5,95), im Bereich von *dis1* bis *f3* beträgt der mittlere Wert der *harmonicPercussiveRatio*

von *pianissimo* 13,42 und von *forte* ebenfalls fast das Doppelte des Gesamtbereichs, nämlich 9,61.

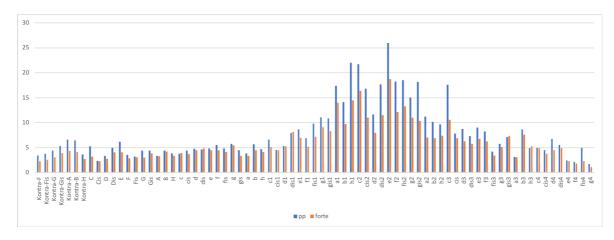


Abbildung 65: harmonicPercussiveRatio für pp und forte

Wird das Shift Pedal gedrückt, erhöhen sich die meisten *harmonicPercussiveRatio*-Werte leicht und genau wie bei den Tönen ohne Pedal ist auch hier der Bereich von *dis1* bis *f3* deutlich höher als der Rest. Für die gesamte Shift-Reihe reicht die *harmonicPercussiveRatio* von 1,43 bis 31,43 mit einem Mittel von 8,06, im Bereich von *dis1* bis *f3* beträgt der mittlere Wert 14,36.

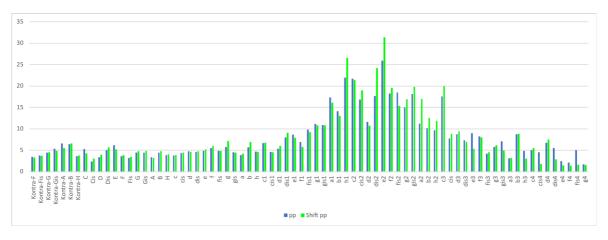


Abbildung 66: harmonicPercussiveRatio für pp und Shift-pp

Auf *forte* gespielte Töne hat das Shift-Pedal keinen allzu großen Einfluss, ungefähr bis zur Mitte werden die *harmonicPercussiveRatio*-Werte etwas höher, danach mehrheitlich niedriger. Auch hier ist der allgemein erhöhte Abschnitt von *dis1* bis *f3* erkennbar (Abbildung 67). Über den gesamten Tonumfang reichen die *harmonicPercussiveRatio*-Werte für die *forte*-Töne von 1,06 bis 18,73 mit einem Mittelwert von 5,95, für die *Shiftforte*-Töne von 1,29 bis 21,72 mit einem fast gleichen Mittelwert von 6,00. In der

unteren Hälfte beträgt der Mittelwert der *forte*-Töne 4,13 und der der *Shift-forte*-Töne 4,41, in der oberen Hälfte sind es dann 7,82 sowie 7,63.

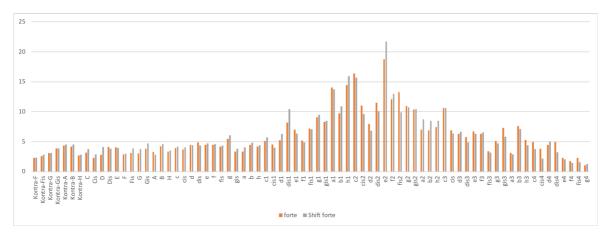


Abbildung 67: harmonicPercussiveRatio für forte und Shift forte

Ein interessantes Ergebnis zeigen die *harmonicPercussiveRatio*-Werte der Töne mit Moderator: ungefähr bis zur Hälfte sind alle Werte teilweise deutlich höher, in der oberen Hälfte nur noch vereinzelt höher, meistens aber niedriger. Über den gesamten Tonumfang reichen die *harmonicPercussiveRatio*-Werte für die *pianissimo*-Töne von 1,705 bis 25,94 mit einem Mittelwert von 7,82, für die *Moderator-pp*-Töne von 1,28 bis 24 mit einem Mittelwert von 8,36. In der unteren Hälfte beträgt der Mittelwert der *pianissimo*-Töne 5,01 und der der *Moderator-pp*-Töne 7, in der oberen Hälfte sind es dann 10,70 sowie 9,76 (Abbildung 68).

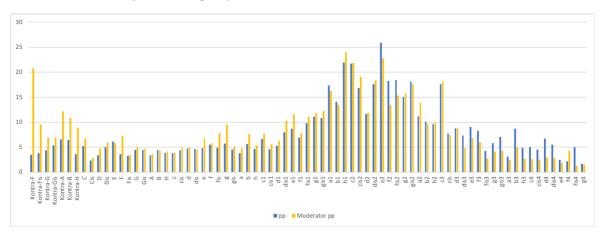


Abbildung 68: harmonicPercussiveRatio für pp und Moderator pp

Die *harmonicPercussiveRatio*-Werte für *forte* gespielte Töne mit Moderator-Pedal sind bis auf ganz wenige Ausnahmen über den kompletten Tonumfang niedriger als die der pedallosen *pianissimo*-Töne (Abbildung 69). Über den gesamten Tonumfang reichen

die Werte für die *pianissimo*-Töne von 1,7 bis 25,94 mit einem Mittel von 7,82, für die *Moderator forte*-Töne von 1,2 bis 19,92 mit einem Mittel von 6,05.

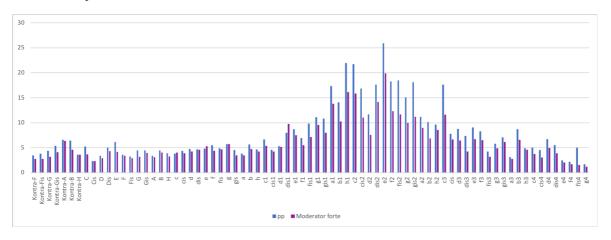


Abbildung 69: harmonicPercussiveRatio für pp und Moderator forte

Ein Vergleich der mit Moderator-Pedal gespielten Tönen zeigt, dass die *harmonicPercussiveRatio*-Werte bei *pianissimo* gespielten Tönen bis zum *e3* teils deutlich höher sind, bei den verbleibenden Tönen sind sie jedoch bis auf das *f4* und das *g4* niedriger als bei *forte* gespielten Tönen (Abbildung 70). Während über den gesamten Bereich bei *Moderator-pp*-Tönen die *harmonicPercussiveRatio*-Werte von 1,28 bis 24 reichen und durchschnittlich 8,36 betragen, reichen die Werte der *Moderator-forte*-Töne von 1,2 bis 19,92 mit dem Mittelwert 6,05. Bis *e3* beträgt der *harmonicPercussiveRatio*-Mittelwert der *Moderator-pp*-Töne 9,67 und bei *Moderator forte* 6,62, bei den verbleibenden höheren Tönen in *pp* 3,15 und in *forte* 3,78.

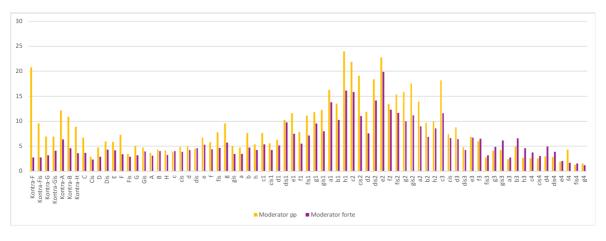


Abbildung 70: harmonicPercussiveRatio für Moderator pp und Moderator forte

Kommt das Doppel-Moderator-Pedal zum Einsatz, sind die *harmonicPercussiveRatio*-Werte bis zum *g1* etwas höher, danach bis auf vier Ausnahmen (*g3*, *e4*, *f4* und *g4*) teils

markant niedriger (Abbildung 71). Über den gesamten Tonbereich reichen die *harmonicPercussiveRatio*-Werte bei *Doppel-Moderator*-Tönen von 2,26 bis 20,29 mit durchschnittlichen 6,86, bei pedallosen *pianissimo*-Tönen von 1,7 bis 25,94 mit dem Mittelwert 7,82. Bis *g1* beträgt der *harmonicPercussiveRatio*-Mittelwert der *Doppel-Moderator*-Töne 5,99 und bei *pianissimo* 5,17, ab *gis1* dann bei den Tönen mit Doppel-Moderator-Pedal 7,8 und bei den ohne Pedal in *pianissimo* deutlich höhere 10,69.

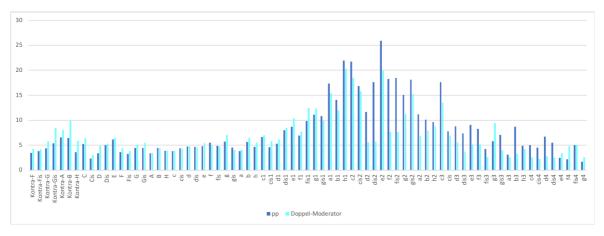


Abbildung 71: harmonicPercussiveRatio für pp und Doppel-Moderator

Ein ähnliches Bild wie beim Doppel-Moderator zeigt sich bei Tönen die mit Shift- und Moderator-Pedalen gespielt werden, auch hier sind die *harmonicPercussiveRatio*-Werte bis zum *e1* meistens etwas höher, danach bis auf sechs Ausnahmen ebenfalls teils deutlich niedriger (Abbildung 72). Über den gesamten Tonbereich reichen die Werte bei *Shift- & Moderator-*Tönen von 1,2 bis 24,67 mit durchschnittlichen 7,42, bei pedallosen pianissimo-Tönen von 1,7 bis 25,94 mit dem Mittelwert 7,82. Bis *e1* beträgt der *harmonicPercussiveRatio-*Mittelwert der *Shift- & Moderator-*Töne 5,38 und bei pianissimo 4,83, ab *f1* dann bei den Tönen mit Shift- und Moderator-Pedal 9,31 und bei denen ohne Pedal in *pianissimo* ebenfalls deutlich höhere 10,58.

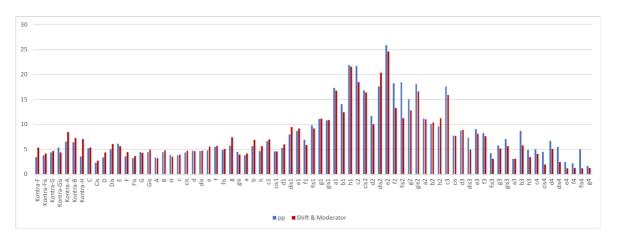


Abbildung 72: harmonicPercussiveRatio für pp und Shift & Moderator

Sehr ähnlich sind auch die Ergebnisse, wenn zusätzlich zum Shift-Pedal auch das Doppel-Moderator-Pedal verwendet wird: auch hier sind die *harmonicPercussiveRatio*-Werte diesmal bis zum *h1* bis auf wenige Ausnahmen etwas höher, danach ebenfalls abgesehen von wenigen Ausnahmen wieder erheblich niedriger (Abbildung 73). Die *harmonicPercussiveRatio*-Werte über den gesamten Tonumfang reichen bei den *Shift-& Doppel-Moderator*-Tönen von 2,02 bis 25,14 mit durchschnittlichen 7,29, bei pedallosen *pianissimo*-Tönen von 1,7 bis 25,94 mit dem Mittelwert von 7,82. Bis zum *h1* beträgt der *harmonicPercussiveRatio*-Mittelwert der *Shift- & Doppel-Moderator*-Töne 7,29 und bei *pianissimo* 6,18, ab *c2* dann bei den Tönen mit Shift- und Doppel-Moderator-Pedal 7,3 und bei denen ohne Pedal in *pianissimo* wiederum deutlich höhere 10,02.

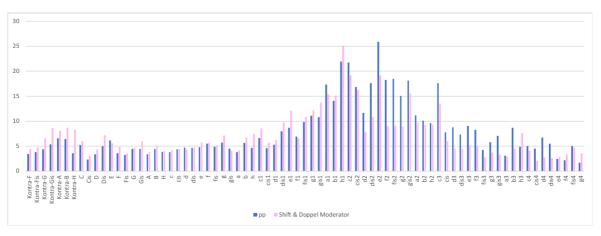


Abbildung 73: harmonicPercussiveRatio für pp und Shift & Doppel-Moderator

Keine eindeutige Tendenz ist im Vergleich von Moderator- mit dem Doppel-Moderator-Pedal, jeweils zusammen mit dem Shift-Pedal zu erkennen, die *harmonicPercussiveRatio*-Werte sind sehr ähnlich, nur in der oberen Hälfte scheinen die Werte der *Shift*-

und Moderator-Töne etwas höher zu sein, was auch durch die Durchschnittswerte über den gesamten Tonumfang von 7,42 und 7,29 bestätigt wird (Abbildung 74).

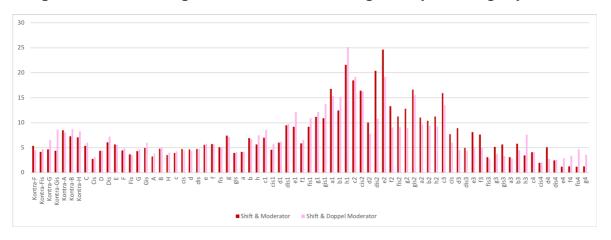


Abbildung 74: harmonicPercussiveRatio für Shift & Moderator und Shift & Doppel-Moderator

Wieder etwas eindeutiger ist die Wirkung des Fagott-Pedals auf die die *harmonicPercussiveRatio*-Werte, sie sind bis auf eine Ausnahme beim *d* durchgehend niedriger als bei den pedallosen *pianissimo*-Tönen (Abbildung 75). Während sich die *harmonicPercussiveRatio*-Werte der *pianissimo*-Töne in diesem Bereich von 2,35 bis 6,64 mit einem Durchschnittswert von 4,6 erstrecken, reichen die Werte mit Fagott-Pedal von 2,01 bis 5,03 und der Mittelwert ist mit 3,26 deutlich niedriger.

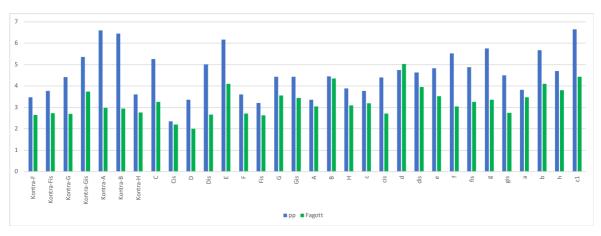


Abbildung 75: harmonicPercussiveRatio für pp und Fagott

Nicht mehr ganz so eindeutig zeigen sich die *harmonicPercussiveRatio*-Werte, wenn zusätzlich zum Fagott- noch die Shift- und Moderator-Pedale betätigt werden, hierbei sind die *harmonicPercussiveRatio*-Werte der *pianissimo*-Töne zwar überwiegend etwas höher, in der unteren Ton-Hälfte jedoch auch einige Male niedriger als die *harmonicPercussiveRatio*-Werte der *Fagott-, Shift- & Moderator*-Töne (Abbildung 76). Für die

pianissimo-Töne beträgt der Mittelwert 4,6 und für die *Fagott-, Shift- & Moderator*-Töne etwas niedrigere 3,95.

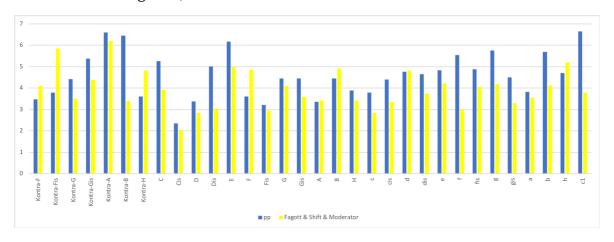


Abbildung 76: harmonicPercussiveRatio für pp und Fagott & Shift & Moderator

	pp	forte	Shift pp	Shift f	Mod. pp	Mod. F	DoppM.	S & Mod.	S & D-M	Fagott	F & S & M
MIN	1,705496	1,062651	1,427656	1,286215	1,277554	1,195192	2,258243	1,196230	2,015954	2,011266	2,051623
MAX	25,94155	18,73381	31,43228	21,72145	23,99801	19,91923	20,29358	24,66537	25,13807	5,027700	6,199558
MEA	7,819760	5,950370	8,057663	6,002392	8,362316	6,052529	6,855742	7,422806	7,291483	3,259416	3,952606

Tabelle 6: harmonicPercussiveRatio-Durchschnittswerte aller Töne

5.1.6 Lenght

Der Wert *lenght* gibt die Länge eines Tons in Sekunden an, wie zu erwarten klingen tiefe Töne deutlich länger als hohe, wie deutlich in den folgenden Abbildungen zu sehen ist. Im direkten Vergleich ohne Pedale wird deutlich, dass die Töne *forte* gespielt deutlich länger klingen als *pianissimo*. Die Länge der *pianissimo*-Töne reicht von 0,89 s bis 30,62 Sekunden mit einem Mittel von 12,87 s, die der *forte*-Töne von 1,01 s bis 40,38 Sekunden, der Mittelwert ist hier 15,45 s (Abbildung 77).

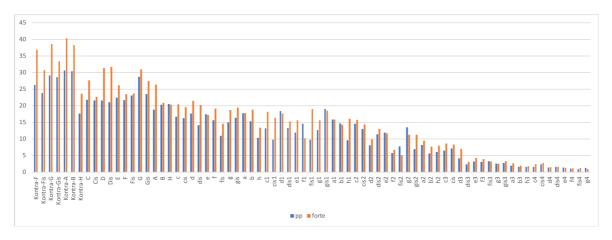


Abbildung 77: lenght für pp und forte

Beim Einsatz des Shift-Pedals, das den Ton weicher macht, wodurch man annehmen könnte, dass die Länge kürzer wird, ist jedoch bis auf einige Ausnahmen eine Erhöhung der *lenght*-Werte festzustellen. Die Länge der pedallosen *pianissimo*-Töne reicht von 0,89 s bis 30,62 Sekunden mit einem Mittel von 12,87 s, die der *Shift-pp*-Töne von 0,92 s bis 41,07 Sekunden, der Mittelwert ist 15,13 s (Abbildung 78).

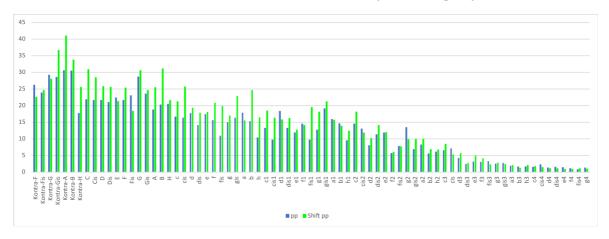


Abbildung 78: lenght für pp und Shift-pp

Auch bei *forte* gespielten Tönen ist eine Veränderung durch das Shift-Pedal zu sehen, die *lenght*-Werte der meisten Töne sind ebenfalls höher als ohne Pedal (Abbildung 79). Die Länge der *forte*-Töne reicht von 1,01 s bis 40,38 Sekunden, der Mittelwert ist 15,45 s, die der *Shift-forte*-Töne von 1,15 s bis 40,77 s mit einem etwas höheren Mittel von 17,21 Sekunden.

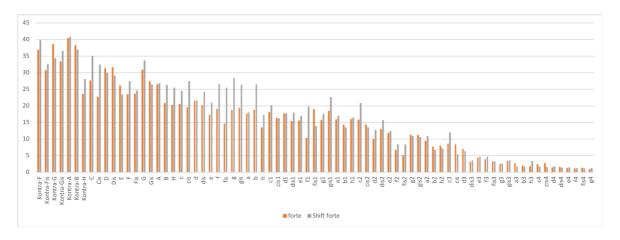


Abbildung 79: lenght für forte und Shift forte

Auch das Moderator-Pedal, das durch Einbringen eines Filz-Streifens zwischen Hammer und Saite den Klang deutlich leiser und weicher macht, führt nicht bei allen Tönen zu einer Verkürzung der Länge des Klanges, bei zahlreichen Tönen, besonders im tieferen Bereich, wird die Klangdauer erhöht. Während die Länge der *pianissimo*-Töne von 0,89 s bis 30,62 Sekunden mit einem Mittel von 12,87 s reicht, betragen die Werte mit Moderator in *pianissimo* von 0,58 s bis 31,42 s mit einer Durchschnittslänge von 12,36 Sekunden (Abbildung 80).

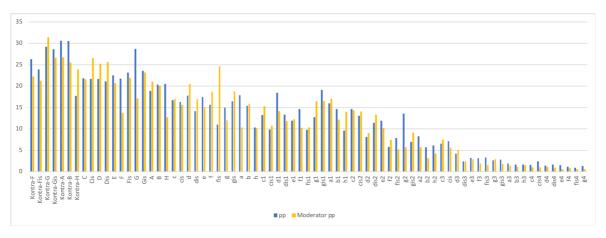


Abbildung 80: lenght für pp und Moderator pp

Wird das Moderator-Pedal in *forte* verwendet, wird die Klangdauer im Vergleich zu pedallosen *pianissimo*-Tönen bis auf 12 Töne durchgehend teils deutlich verlängert. Reichen die Längen der *pianissimo*-Töne von 0,89 s bis 30,62 Sekunden mit einem Mittel von 12,87 s, betragen die Werte mit Moderator in *forte* von 1,02 s bis 39,34 s mit einer Durchschnittslänge von 15,65 Sekunden (Abbildung 81).

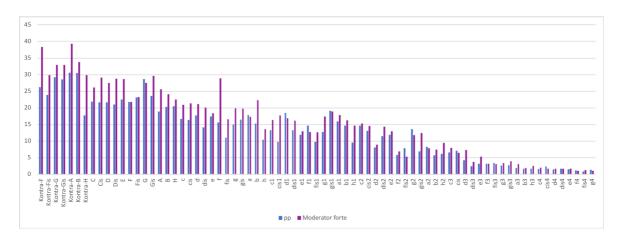


Abbildung 81: lenght für pp und Moderator forte

Ein Vergleich der mit Moderator-Pedal gespielten Tönen zeigt, dass die *lenght*-Werte bei *forte* gespielten Tönen bis auf 3 Noten (*fis, d2* und *f2*) deutlich höher sind als bei *pianissimo* gespielten Tönen (Abbildung 82). Während die *lenght*-Werte bei *Moderator-pp*-Tönen über den gesamten Bereich von 0,58 s bis 31,42 s reichen und durchschnittlich 12,36 s betragen, reichen die Werte der *Moderator-forte*-Töne von 1,02 s bis 39,35 s mit dem Mittelwert von 15,65 s.

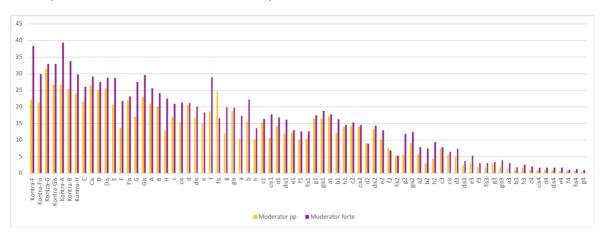


Abbildung 82: lenght für Moderator pp und Moderator forte

Da bei Betätigung des Doppel-Moderator-Pedals zwei Lagen Filz zwischen Hämmer und Saiten geschoben werden, um den Ton weicher und leiser zu machen, kann man annehmen, dass sich die Klangdauer verkürzt. Wie jedoch Abbildung 83 zeigt, ist dies nicht immer der Fall, besonders in der unteren Hälfte sind die meisten *lenght*-Werte höher als bei den *pianissimo*-Tönen ohne Pedal. Über den kompletten Tonumfang reichen die *lenght*-Werte der *pianissimo*-Töne von 0,89 s bis 30,62 Sekunden mit einem Mittel von 12,87 s, die der *Doppel-Moderator*-Töne von 0,52 s bis 36,22 Sekunden mit

einem Mittelwert von 13,23 s. Bis zum *d1* ist das Mittel der *pp*-Töne 19,98 s und das der *Doppel-Moderator*-Töne 21,92 s, ab dem *dis1* ist es dann 7,29 s sowie 6,4 s.

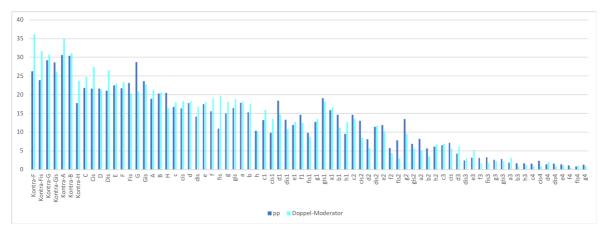


Abbildung 83: lenght für pp und Doppel-Moderator

Ein ähnliches Bild zeigt sich bei den *lenght*-Werten der Töne, die mit Shift- und Moderator-Pedal gespielt werden, diese sind ebenfalls fast alle höher im Vergleich zu den *pp*-Tönen, die *lenght*-Werte der *pianissimo*-Töne betragen im Mittel 12,87 s, die der *Shift- & Moderator*-Töne 15,28 Sekunden (Abbildung 84).

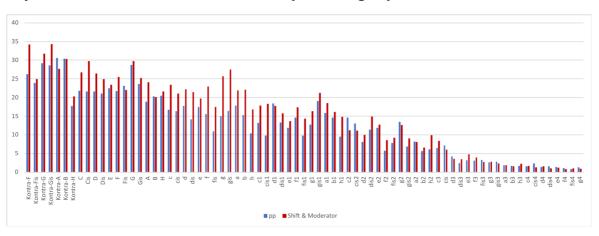


Abbildung 84: lenght für pp und Shift & Moderator

Fast gleich ist die Situation der *lenght*-Werte bei Tönen, die mit Shift- und Doppel-Moderator-Pedal gespielt werden, auch diese sind ebenfalls fast alle höher im Vergleich zu den *pp*-Tönen, die *lenght*-Werte der *pianissimo*-Töne betragen im Mittel 12,87 s, die der *Shift- & Doppel-Moderator*-Töne 14,18 Sekunden (Abbildung 85).

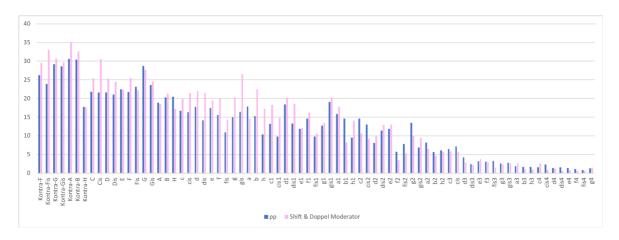


Abbildung 85: lenght für pp und Shift & Doppel-Moderator

Ein direkter Vergleich der *lenght*-Werte von Tönen mit Shift-Pedal und gleichzeitig betätigten Moderator- sowie Doppel-Moderator-Pedalen zeigt, dass fast kein Unterschied zu sehen ist (Abbildung 86). Über den gesamten Tonumfang ist die Durchschnittslänge der *Shift- & Moderator*-Töne 15,28 s und die der Shift- & *Doppel-Moderator*-Töne 14,18 s.

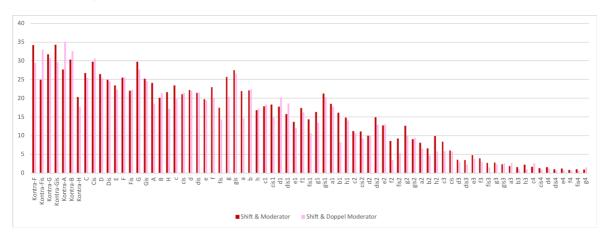


Abbildung 86: lenght für Shift & Moderator und Shift & Doppel-Moderator

Ein deutlicher Einfluss auf die *lenght*-Werte ist bei Verwendung des Fagott-Pedals bemerkbar, bis auf einige Ausnahmen sind sie deutlich niedriger. Die *lenght*-Werte der *pp*-Töne reichen in diesem Bereich von 10,37 s bis 30,62 Sekunden mit einem Durchschnitt von 20,3 s, während die Werte der *Fagott*-Töne von 5,17 s bis 28,92 s mit einem Durchschnitt von 17,31 Sekunden reichen (Abbildung 87).

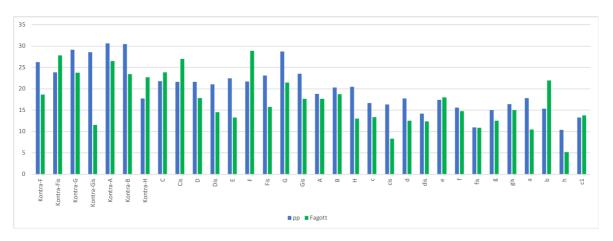


Abbildung 87: lenght für pp und Fagott

Ebenso ist bei Verwendung des Fagott-Pedals zusammen mit Shift- und Moderator-Pedalen ein deutlicher Einfluss auf die *lenght*-Werte bemerkbar, auch hier sind sie bis auf einige Ausnahmen deutlich niedriger. Die *lenght*-Werte der *pp*-Töne reichen in diesem Bereich von 10,37 s bis 30,62 Sekunden mit einem Durchschnitt von 20,3 s, während die Werte der *Fagott & Shift & Moderator*-Töne von 2,36 s bis 26,72 s mit einem Durchschnitt von nur 15,85 Sekunden reichen (Abbildung 88).

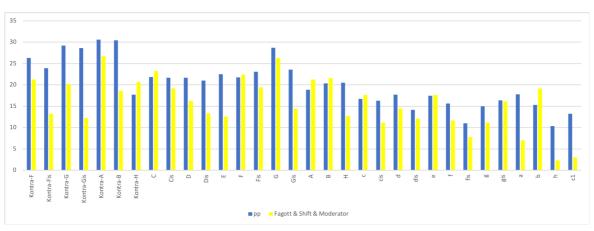


Abbildung 88: lenght für pp und Fagott & Shift & Moderator

	pp	forte	Shift pp	Shift f	Mod. pp	Mod. F	DoppM.	S & Mod.	S & D-M	Fagott	F & S & M
MIN	0,89268	1,01407	0,91981	1,14833	0,57845	1,01694	0,51847	0,84697	0,64416	5,16489	2,36284
MAX	30,62022	40,37639	41,07200	40,76956	31,42401	39,34807	36,22220	34,32748	35,08359	28,92448	26,70588
MEAN	12,87105	15,44640	15,13173	17,21032	12,36290	15,64515	13,22630	15,28352	14,18064	17,30707	15,84593

Tabelle 7: lenght-Durchschnittswerte aller Töne

5.1.7 LoudnessSone

Die *loudness* (dt. Lautheit) ist ein Begriff aus der Psychoakustik der angibt, wie Menschen die subjektiv empfundene Lautstärke eines Schallereignisses beurteilen, die Maßeinheit der Lautheit ist das Sone (Hellbrück und Ellermeier 2004: 81).

Betrachtet man die *loudnessSone*-Werte der Töne ohne Pedaleinsatz ist sehr gut erkennbar, dass die Werte beim *forte*-Spiel durchgehend um ein Mehrfaches höher sind als bei *pianissimo* (Abbildung 89). Während bei *pianissimo-Tönen* die *loudnessSone*-Werte von 1,5 bis 6,1 Sone mit einem Durchschnitt von 3,1 Sone reichen, erstrecken sie sich bei *forte*-Tönen von 6,2 bis 15,3 Sone und der Mittelwert ist mit 9,3 Sone dreimal so hoch.

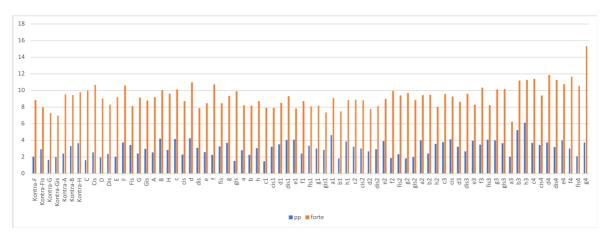


Abbildung 89: loudnessSone für pp und forte

Das Shift-Pedal erfüllt hier seine Aufgabe, den Ton weicher und leiser zu machen, denn bei fast allen Tönen sind die *loudnessSone*-Werte etwas niedriger als ohne Pedal. Der Durchschnitt bei *pianissimo* beträgt 3,1 Sone, mit Shift-Pedal 2,8 Sone (Abbildung 90).

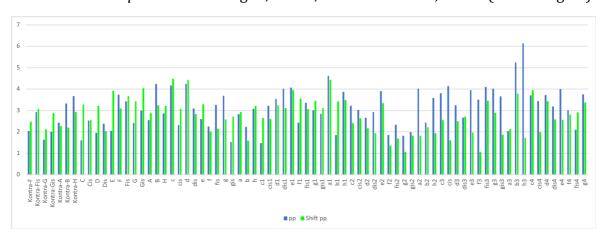


Abbildung 90: loudnessSone für pp und Shift-pp

Die Wirkung des Shift-Pedals bleibt auch bei *forte* gespielten Tönen bestehen, die Lautheit wird durch Verwendung des Shift-Pedals fast ausnahmslos geringer, der durchschnittliche *loudnessSone*-Wert über den gesamten Tonumfang beträgt bei *forte-Tönen* 9,3 Sone, bei *Shift-forte-*Tönen deutlich niedrigere 8,0 Sone (Abbildung 91).

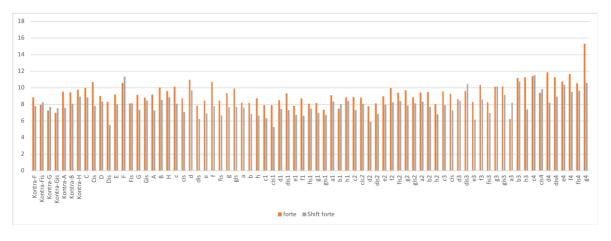


Abbildung 91: loudnessSone für forte und Shift forte

Auch das Moderator-Pedal hat einen großen Einfluss auf die Lautheit, bei fast allen Tönen sind die *loudnessSone*-Werte teils deutlich niedriger, ganz besonders auffällig ist der Bereich der obersten 20 Töne, in dem die *loudnessSone*-Werte bei *Moderator*-Tönen überdurchschnittlich niedrig im Vergleich zu den pedallosen *pianissimo*-Tönen sind (Abbildung 92). Über den gesamten Tonumfang ist der durchschnittliche *loudnessSone*-Wert bei *pp*-Tönen 3,1 Sone, bei *Moderator*-Tönen 2,1 Sone, bis zum *b2* 2,9 und 2,3 Sone, ab dem *h2* dann 3,7 Sone bei *pianissimo*- und nur noch 1,3 Sone bei *Moderator*-Tönen.

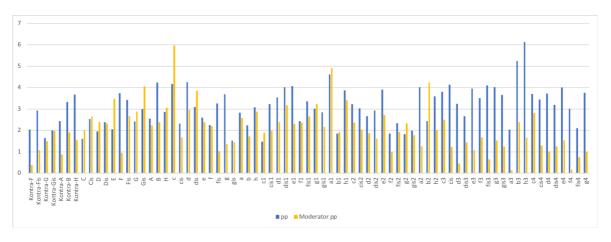


Abbildung 92: loudnessSone für pp und Moderator pp

Wird in *forte* gespielt, ist trotz Verwendung des Moderator-Pedals die Lautheit ausnahmslos deutlich höher als bei *pianissimo*-Tönen (Abbildung 93). Der durchschnittliche *loudnessSone*-Wert über den gesamten Tonumfang beträgt bei *pianissimo*-Tönen 3,1 Sone, bei *Moderator-forte*-Tönen deutlich höhere 8,1 Sone.

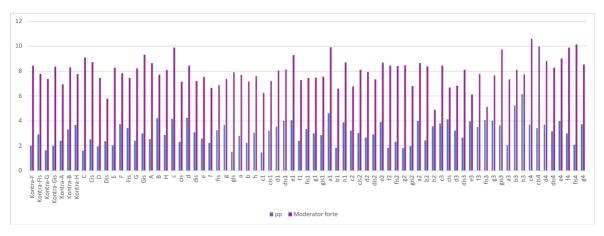


Abbildung 93: loudnessSone für pp und Moderator forte

Ein Vergleich des Moderator-Pedals jeweils in *pianissimo* und in *forte* zeigt, dass die *loudnessSone*-Werte bei den *Moderator-forte*-Tönen mit durchschnittlichen 7,9 Sone ausnahmslos deutlich höher sind als bei den *Moderator-pp*-Tönen mit 2,1 Sone (Abbildung 94).

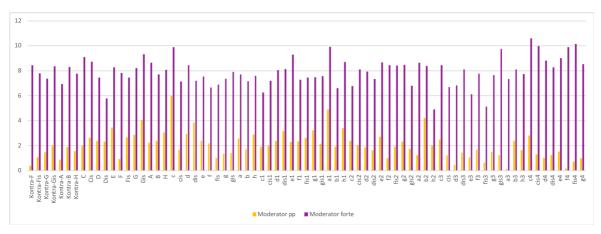


Abbildung 94: loudnessSone für Moderator pp und Moderator forte

Kein eindeutiges Ergebnis ist bei den *loudnessSone*-Werten der Töne mit Doppel-Moderator zu erkennen. Sind die Werte in der unteren Ton-Hälfte eher höher als die der *pianissimo*-Töne ohne Pedal, sind sie bei den oberen Tönen vorwiegend niedriger (Abbildung 95). Über den gesamten Tonbereich reichen die *loudnessSone*-Werte bei *pianissimo*-Tönen von 1,5 bis 6,1 Sone mit einem Durchschnitt von 3,1 Sone, die Werte

der *Doppel-Moderator*-Töne von 0,7 bis 5,0 Sone mit durchschnittlichen 2,7 Sone. Bis zum *dis1* ist der Mittelwert der *pianissimo*-Töne 2,8 Sone, der der *Doppel-Moderator*-Töne etwas höhere 3,1 Sone, ab dem *e1* sind es dann 3,3 Sone für *pp* und nur noch 2,3 Sone für die *Doppel-Moderator*-Töne.

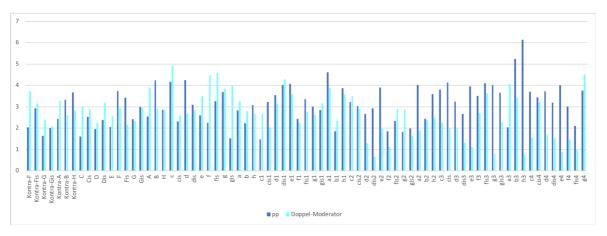


Abbildung 95: loudnessSone für pp und Doppel-Moderator

Noch unausgewogener sind die *loudnessSone*-Werte bei Einsatz von Shift- und Moderator-Pedalen, hier sind sie über den gesamten Tonumfang mehrheitlich höher aber auch häufig niedriger. Die *loudnessSone*-Werte reichen bei *pianissimo*-Tönen von 1,5 bis 6,1 Sone mit einem Durchschnitt von 3,1 Sone, die Werte der *Shift- und Moderator*-Töne von 2,1 bis 7,5 Sone mit durchschnittlichen 3,7 Sone.

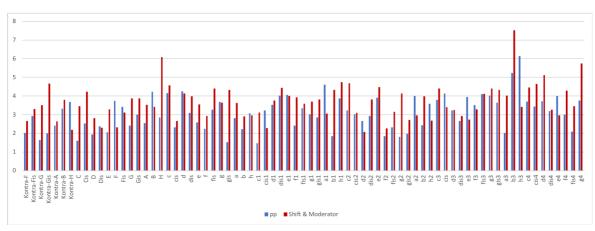


Abbildung 96: loudnessSone für pp und Shift & Moderator

Bei Tönen mit Shift- und Doppel-Moderator-Pedalen verhält es sich ähnlich wie bei den *loudnessSone*-Werten bei Tönen mit Doppel-Moderator. Auch hier sind die Werte in der unteren Ton-Hälfte eher höher als die der *pianissimo*-Töne ohne Pedal, bei den oberen Tönen sind sie dann vorwiegend niedriger (Abbildung 97). Über den gesamten

Tonbereich reichen die *loudnessSone*-Werte bei *pianissimo*-Tönen von 1,5 bis 6,1 Sone mit einem Durchschnitt von 3,1 Sone, die Werte der *Shift- & Doppel-Moderator*-Töne von 0,5 bis 4,3 Sone mit durchschnittlichen 2,4 Sone. Bis zum *c1* ist der Mittelwert der *pianissimo*-Töne 2,7 Sone, der der *Shift- & Doppel-Moderator*-Töne fast identische 2,9 Sone, ab dem *cis1* sind es dann 3,4 Sone für *pp* und nur noch 2,0 Sone für die *Shift- & Doppel-Moderator*-Töne.

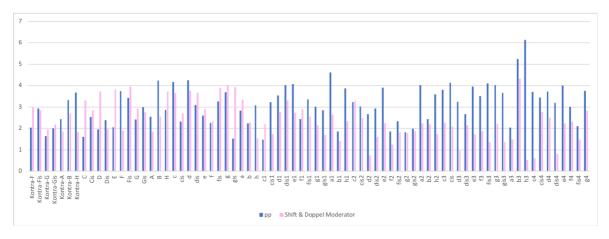


Abbildung 97: loudnessSone für pp und Shift & Doppel-Moderator

Im Vergleich zwischen Moderator- und Doppel-Moderator-Pedal, jeweils zusammen mit dem Shift-Pedal, sind bis auf wenige Ausnahmen bei den tiefen Tönen fast durchgehend die *loudnessSone*-Werte der *Shift- & Doppel-Moderator*-Töne deutlich niedriger. Über den kompletten Tonumfang reichen die Werte der *Shift- und Moderator*-Töne von 2,1 bis 7,5 mit durchschnittlichen 3,7 Sone, die Werte der *Shift- & Doppel-Moderator*-Töne von 0,5 bis 4,3 mit durchschnittlichen 2,4 Sone (Abbildung 98).

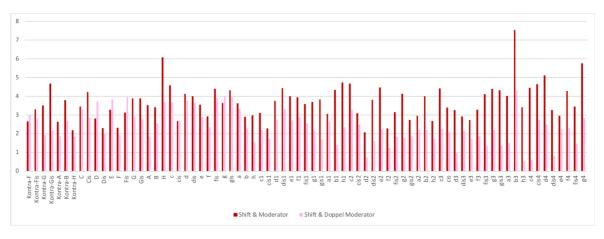


Abbildung 98: loudnessSone für Shift & Moderator und Shift & Doppel-Moderator

Einen deutlich erkennbaren Einfluss auf die Lautheit hat das Fagott-Pedal, denn bis auf zwei Töne (*Kontra-H* und *d*) sind die *loudnessSone*-Werte bei sämtlichen Tönen höher als bei den *pianissimo* Tönen ohne Pedal (Abbildung 99). In diesem Bereich reichen die *loudnessSone*-Werte der pianissimo-Töne von 1,48 bis 4,24 Sone mit dem Durchschnittswert von 2,74 Sone, die Werte der Fagott-Töne von 2,77 bis 7,99 Sone mit dem fast doppelt so hohen Mittelwert von 5,07 Sone.

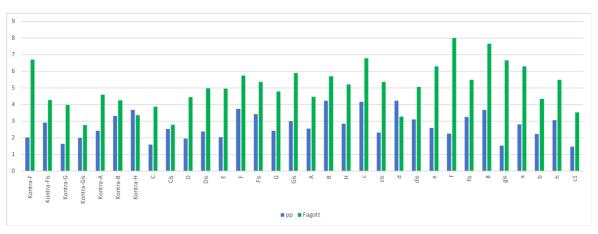


Abbildung 99: loudnessSone für pp und Fagott

Nicht mehr ganz so eindeutig sind die *loudnessSone*-Werte, wenn zusätzlich zum Fagott-Pedal noch die Shift- und Moderator-Pedale betätigt werden. In diesem Fall sind die *loudnessSone*-Werte zwar größtenteils höher, vorwiegend im unteren Tonbereich auch bei acht Tönen jedoch niedriger als die *loudnessSone*-Werte der pedallosen *pianissimo*-Töne. Während in diesem Bereich die loudnessSone-Werte der *pianissimo*-Töne von 1,48 bis 4,24 Sone mit dem Durchschnittswert von 2,74 Sone reichen, betragen die Werte der *Fagott- & Shift- & Moderator*-Töne von 1,42 bis 6,76 Sone mit dem nur etwas höheren Mittelwert von 3,38 Sone.

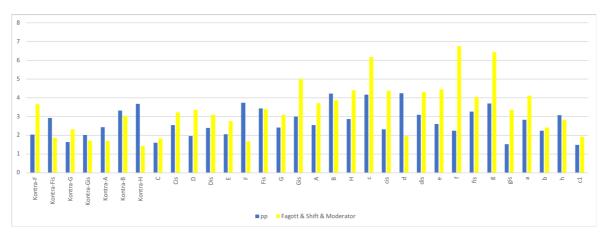


Abbildung 100: loudnessSone für pp und Fagott & Shift & Moderator

	pp	forte	Shift pp	Shift f	Mod. pp	Mod. F	DoppM.	S & Mod.	S & D-M	Fagott	F & S & M
MIN	1,477820	6,231540	1,059107	5,281740	0,136826	4,908610	0,655399	2,081285	0,529373	2,766262	1,421258
MAX	6,137644	15,30868	4,488291	11,53738	5,970584	10,59553	4,947723	7,527986	4,321043	7,993096	6,758078
MEAN	3,086941	9,249442	2,774316	8,003560	2,046408	7,931174	2,667379	3,673541	2,387418	5,073923	3,383299

Tabelle 8: loudnessSone-Durchschnittswerte aller Töne

5.1.8 PercussiveEnergy

Die *percussiveEnergy*-Werte der Töne ohne Pedale zeigen einen interessanten Verlauf, da die Werte am unteren sowie oberen Ende des Tonbereichs am höchsten sind und ungefähr eine Oktave oberhalb der Mitte am niedrigsten. Verglichen mit den *pianissimo-percussiveEnergy*-Werten, die von 0,0001 bis 0,0015 mit einem Mittelwert von 0,0006 reichen, sind die Werte der *forte*-Töne deutlich höher, sie erstrecken sich von 0,0008 bis 0,0079, der Mittelwert beträgt 0,0026 (Abbildung 101).

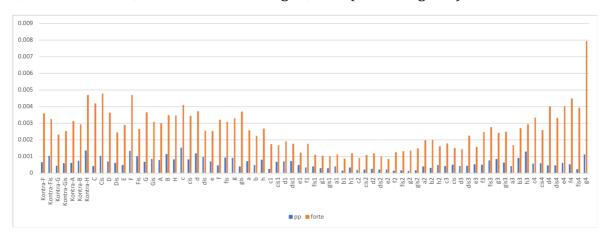


Abbildung 101: percussiveEnergy für pp und forte

Auch beim Verwenden des Shift-Pedals zeigen sich die höchsten *percussiveEnergy*-Werte am Anfang sowie Ende des Tonbereichs, sie sie erstrecken sich von 0,0001 bis 0,0016 mit einem Mittelwert von 0,0006 und sind fast identisch mit den Werten der pedallosen *pianissimo*-Tönen, die von 0,0001 bis 0,0015 mit einem Mittelwert von 0,0006 reichen (Abbildung 102).

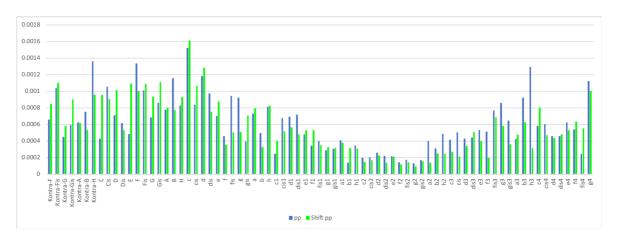


Abbildung 102: percussiveEnergy für pp und Shift-pp

Wird mit aktivem Shift-Pedal *forte* gespielt, sind die *percussiveEnergy*-Werte über den gesamten Tonumfang, abgesehen von einigen wenigen Ausnahmen, etwas niedriger als die Werte der pedallosen *forte*-Töne. Deren *percussiveEnergy*-Werte reichen von 0,0008 bis 0,0079 mit einem Durchschnittswert von 0,0026, die *percussiveEnergy*-Werte der *Shift-forte*-Töne von 0,0007 bis 0,0049 mit dem Mittelwert von 0,0021 (Abbildung 103).

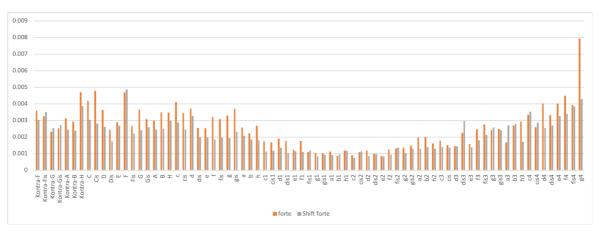


Abbildung 103: percussiveEnergy für forte und Shift forte

Die *percussiveEnergy*-Werte der mit Moderator-Pedal *pianissimo* gespielten Töne sind bis auf einige Ausnahmen im unteren Tonbereich, wo sie teilweise erheblich höher sind, in den anderen Bereichen meistens etwas niedriger, in den höchsten zwei Oktaven dann deutlich niedriger (Abbildung 104). Die pedallosen *pianissimo*-Töne reichen von 0,0001 bis 0,0015 mit einem Mittelwert von 0,0006, die *Moderator-pp*-Töne von 0,0001 bis 0,0023 mit einem Mittelwert von 0,0005.

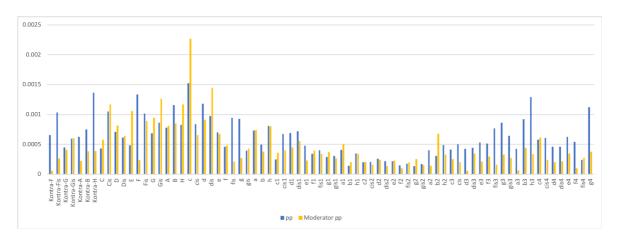


Abbildung 104: percussiveEnergy für pp und Moderator pp

Das Moderator-Pedal hat bei Tönen, die *forte* gespielt werden, nur einen geringen Einfluss auf die *percussiveEnergy*-Werte, diese sind ähnlich den *forte*-Tönen ohne Moderator. Über den gesamten Tonumfang reichen die pedallosen *pianissimo*-Töne von 0,0001 bis 0,0015 mit einem Mittelwert von 0,0006, die *Moderator-pp*-Töne von 0,0008 bis 0,0040 mit einem Mittelwert von 0,0022 (Abbildung 105).

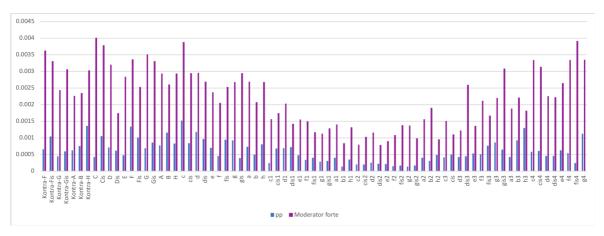


Abbildung 105: percussiveEnergy für pp und Moderator forte

Ein Vergleich des Moderator-Pedals jeweils in *pianissimo*- und in *forte*-Spielweise zeigt, dass die *percussiveEnergy*-Werte bei den *Moderator-forte*-Tönen mit durchschnittlichen 0,0022 ausnahmslos deutlich höher sind als bei den *Moderator-pp*-Tönen mit dem Durchschnitt von 0,0005 (Abbildung 106).

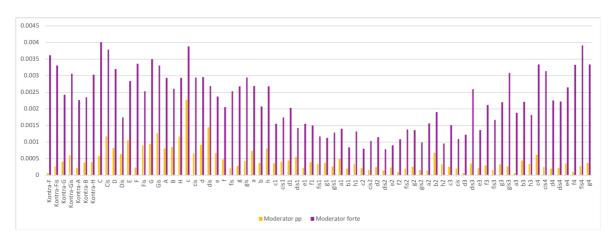


Abbildung 106: percussiveEnergy für Moderator pp und Moderator forte

Die *percussiveEnergy*-Werte der mit Doppel-Moderator-Pedal gespielten Töne sind, ähnlich dem einfachen Moderator, bis auf einige Ausnahmen in den unteren zwei Dritteln des Tonbereichs, teilweise erheblich höher, im oberen Drittel dann niedriger (Abbildung 107). Die *percussiveEnergy*-Werte der pedallosen *pianissimo*-Töne reichen über den gesamten Tonbereich von 0,0001 bis 0,0015 mit einem Mittelwert von 0,0006, die Werte der *Doppel-Moderator*-Töne von 0,0002 bis 0,0023 mit einem Mittelwert von 0,0007. Bis zum *d2* ist der Mittelwert der *pp*-Töne 0,0007, der der *Doppel-Moderator*-Töne etwas höhere 0,0009, ab dem *dis2* sind es dann 0,0005 sowie 0,0004.

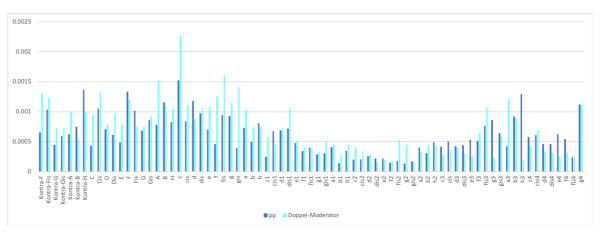


Abbildung 107: percussiveEnergy für pp und Doppel-Moderator

Werden Shift- und Moderator-Pedale gleichzeitig betätigt, sind die *percussiveEnergy*-Werte fast ausnahmslos höher als die der *pianissimo*-Töne ohne Pedal (Abbildung 108). Die *percussiveEnergy*-Werte der pedallosen *pianissimo*-Töne reichen über den gesamten Tonbereich von 0,0001 bis 0,0015 mit einem Mittelwert von 0,0006, die Werte der *Shift & Moderator*-Töne von 0,0003 bis 0,0021, der Durchschnitt beträgt hier 0,0009.

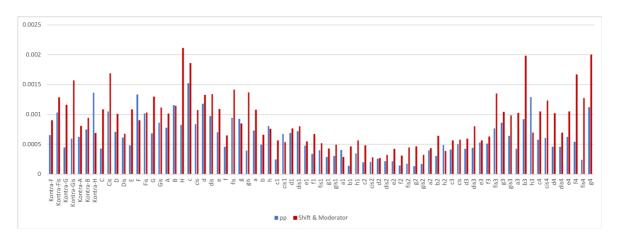


Abbildung 108: percussiveEnergy für pp und Shift & Moderator

Kommen gleichzeitig die Shift- und Doppel-Moderator-Pedale zum Einsatz, sind die *percussiveEnergy*-Werte im unteren Tonbereich vorwiegend höher, danach vorwiegend niedriger als die der pedallosen *pianissimo*-Töne. Über den gesamten Tonbereich sind die *percussiveEnergy*-Werte identisch, bei beiden Spielweisen reichen sie von 0,0001 bis 0,0015 auch der Mittelwert beträgt jeweils 0,0006 (Abbildung 109).

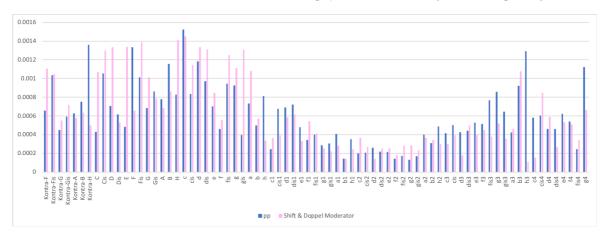


Abbildung 109: percussiveEnergy für pp und Shift & Doppel-Moderator

Im Vergleich zwischen Moderator- und Doppel-Moderator-Pedal, jeweils zusammen mit dem Shift-Pedal, sind bis auf wenige Ausnahmen bei den tiefen Tönen fast durchgehend die *percussiveEnergy*-Werte der *Shift- & Doppel-Moderator*-Töne etwas niedriger. Über den kompletten Tonumfang reichen die Werte der *Shift- und Moderator*-Töne von 0,0003 bis 0,0021 mit durchschnittlichen 0,0009, die Werte der *Shift- & Doppel-Moderator*-Töne von 0,0001 bis 0,0015 mit durchschnittlichen 0,0006 (Abbildung 110).

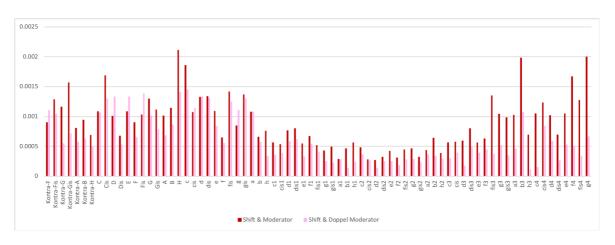


Abbildung 110: percussiveEnergy für Shift & Moderator und Shift & Doppel-Moderator

Das Fagott-Pedal hat einen deutlich erkennbaren Einfluss auf die *percussiveEnergy*-Werte, denn wie auch bei den *loudnessSone*-Werten sind auch hier bis auf zwei Töne (*Kontra-H* und *d*) die *percussiveEnergy*-Werte bei sämtlichen Tönen höher als bei den *pianissimo*-Tönen ohne Pedal (Abbildung 111). In diesem Bereich reichen die *percussiveEnergy*-Werte der *pianissimo*-Töne von 0,0002 bis 0,0015 mit dem Durchschnittswert von 0,0008, die Werte der *Fagott*-Töne von 0,0006 bis 0,0027 mit dem fast doppelt so hohen Mittelwert von 0,0015.

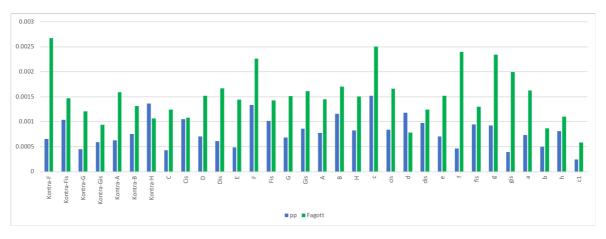


Abbildung 111: percussiveEnergy für pp und Fagott

Auch bei Verwendung von Fagott- Shift- und Moderator-Pedalen sind die *percussive-Energy*-Werte bei den meisten Tönen etwas höher als bei den *pianissimo*-Tönen ohne Pedal, der Unterschied ist jedoch nicht mehr so ausgeprägt wie bei reinen Fagott-Tönen (Abbildung 112). In diesem Bereich reichen die *percussiveEnergy*-Werte der *pianissimo*-Töne von 0,0002 bis 0,0015 mit dem Durchschnittswert von 0,0008, die Werte

der *Fagott- & Shift- & Moderator-*Töne von 0,0003 bis 0,0021 mit dem Mittelwert von 0,0009.

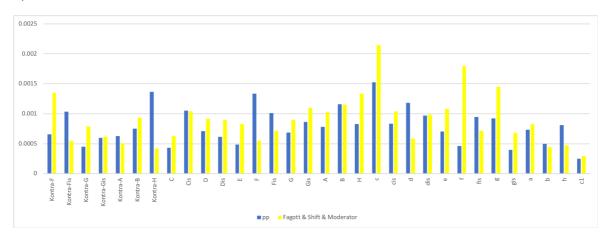


Abbildung 112: percussiveEnergy für pp und Fagott & Shift & Moderator

	pp	forte	Shift pp	Shift f	Mod. pp	Mod. F	DoppM.	S & Mod.	S & D-M	Fagott	F&S&M
MIN	0,000134	0,000843	0,000093	0,000750	0,000061	0,000782	0,000150	0,000273	0,000110	0,000585	0,000297
MAX	0,001522	0,007936	0,001612	0,004871	0,002270	0,004006	0,002267	0,002115	0,001453	0,002677	0,002144
MEAN	0,000610	0,002584	0,000577	0,002095	0,000462	0,002228	0,000709	0,000898	0,000620	0,001520	0,000898

Tabelle 9: percussiveEnergy-Durchschnittswerte aller Töne

5.1.9 ReleaseTime

Mit "release time" (dt. Ausschwing- oder Ausklingzeit) wird die Zeitspanne vom Loslassen der Taste bis zum Erreichen des Null-Pegels bezeichnet. Bei sämtlichen releaseTime-Vergleichen fällt auf, dass die Werte der untersten 18 Töne sehr niedrig sind, ob es sich um ein Artefakt handelt, oder eine Eigenart des Rosenberger-Flügels vorliegt, kann ohne weitere Aufnahmen und Analysen, auch von anderen Instrumenten, nicht beantwortet werden. Im Vergleich der beiden Spielweisen ohne Pedal, *pianissimo* und *forte*, sind bei den untersten 18 Töne die *releaseTime*-Werte der *forte*-Töne sehr ähnlich denen der *pianissimo*-Töne, bei den höheren Tönen sind sie dann bis auf wenige Ausnahmen höher (Abbildung 113). Über den gesamten Tonbereich reichen die *releaseTime*-Werte der *pianissimo*-Töne von 0,01 s bis 0,48 s mit dem Durchschnittswert von 0,11 s, die Werte der *forte*-Töne reichen von 0,01 s bis 0,64 s, das Mittel beträgt 0,16 Sekunden.

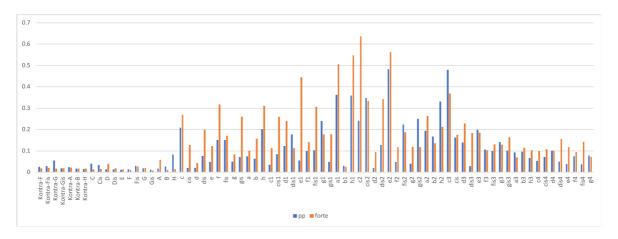


Abbildung 113: releaseTime für pp und forte

Bei den mit dem Shift-Pedal gespielten Tönen ist bei der *releaseTime* wenig Unterschied zu den *pianissimo*-Tönen zu erkennen (Abbildung 114), ihre Werte reichen von 0,01 s bis 0,55 s mit dem Durchschnittswert von 0,10 s, also fast gleich wie die *pianissimo*-Töne.

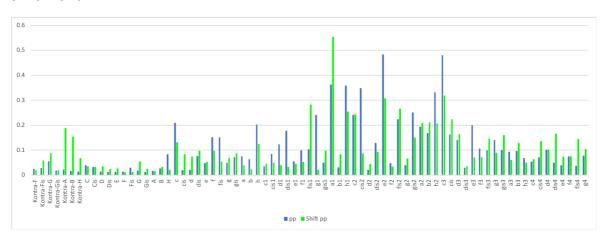


Abbildung 114: releaseTime für pp und Shift-pp

Bei *forte* gespielten Tönen hat das Drücken des Shift-Pedals wenig Auswirkung auf die *releaseTime*, nur im mittleren Tonbereich sind die Unterschiede etwas größer (Abbildung 115). Die *releaseTime* reicht von 0,01 s bis 0,82 s mit einem Mittel von 0,14 s, die Werte der *forte*-Töne mit Zahlen von 0,01 s bis 0,55 s und einem Mittelwert von 0,1 Sekunden sind also etwas höher.

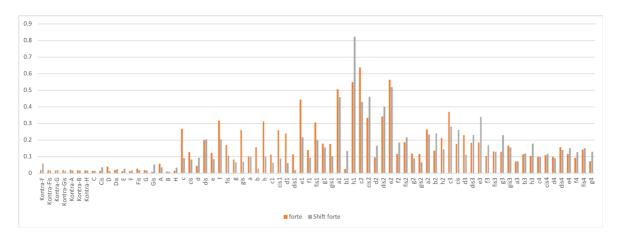


Abbildung 115: releaseTime für forte und Shift forte

Ebenfalls wenig Auswirkung auf die *releaseTime* hat das Moderator-Pedal, hier sind nur vereinzelt größere Unterschiede sichtbar (Abbildung 116). Die Berechnungen ergeben etwas niedrigere Werte von 0,01 s bis 0,47 s mit einem Mittel von 0,09 Sekunden, verglichen mit den *pianissimo*-Tönen von 0,01 s bis 0,48 s und einem Durchschnitt von 0,11 Sekunden.

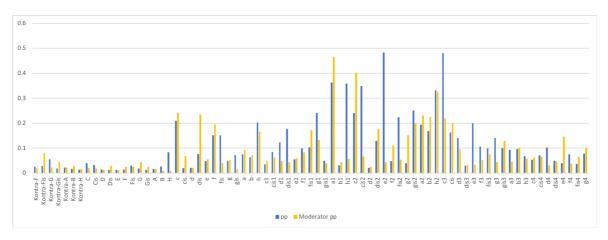


Abbildung 116: releaseTime für pp und Moderator pp

Im Vergleich zu pedallos gespielten Tönen zeigen sich bei Tönen, die mit Moderator-Pedal in *forte* gespielt werden, besonders im mittleren Bereich zum Teil deutlich höhere *releaseTime*-Werte die sich von 0,01 s bis 0,64 s mit einem Mittel von 0,15 s erstrecken, die Ausschwingzeiten sind etwas länger als bei pedallosen *pianissimo*-Tönen, die Werte von 0,01 s bis 0,48 s mit einem Mittel von 0,1 s aufweisen (Abbildung 117).

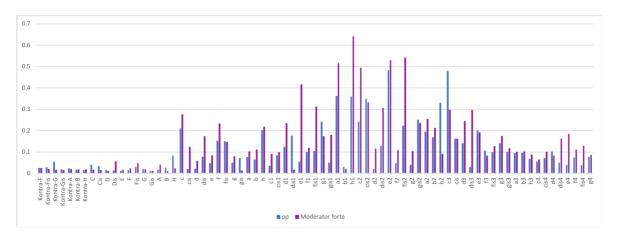


Abbildung 117: releaseTime für pp und Moderator forte

Wird mit gedrücktem Moderator *forte* gespielt, hat das besonders im mittleren Tonbereich deutliche Auswirkungen auf die *releaseTime*-Werte, die sich von 0,01 s bis 0,64 s mit einem Mittel von 0,15 s erstrecken, die Ausschwingzeiten sind geringfügig länger als bei leise gespielten *Moderator*-Tönen, die Werte von 0,01 s bis 0,47 s mit einem Mittel von 0,09 s ergeben (Abbildung 118).

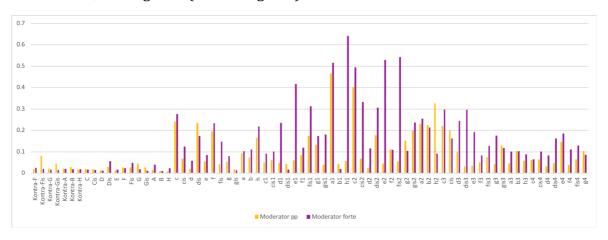


Abbildung 118: releaseTime für Moderator pp und Moderator forte

Das Doppel-Moderator-Pedal hat, ähnlich dem einfachen Moderator-Pedal, auf die *releaseTime*-Werte keine allzu große Auswirkungen, bis auf einige Ausnahmen verringern sie sich meistes etwas im Vergleich zu den *pianissimo*-Tönen (Abbildung 119). Die Ausklingzeiten der *pianissimo*-Töne reichen von 0,01 s bis 0,48 s (Mittel: 0,11 Sekunden), mit Doppel-Moderator sind sie etwas niedriger mit Werten von 0,01 s bis 0,43 s und einem Mittelwert von 0,09 Sekunden.

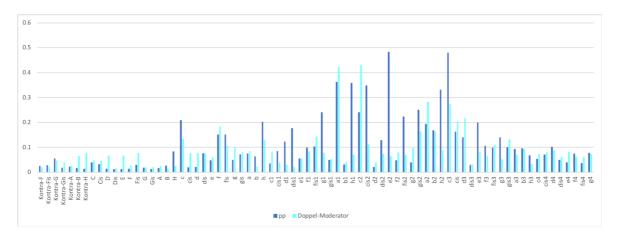


Abbildung 119: releaseTime für pp und Doppel-Moderator

Wird mit gleichzeitig getretenen Shift- und Moderator-Pedalen gespielt, verringern sich die *releaseTime*-Werte bei einigen Tönen etwas, sind aber bei der Mehrzahl der Töne etwas höher (Abbildung 120). Während die *releaseTime*-Werte der *pianissimo*-Töne von 0,01 s bis 0,48 s mit dem Mittelwert von 0,11 s reichen, gehen die Werte der *Shift- und Moderator*-Töne von 0,01 s bis 0,8 s mit einem genau gleichen mittleren Wert von 0,11 Sekunden.

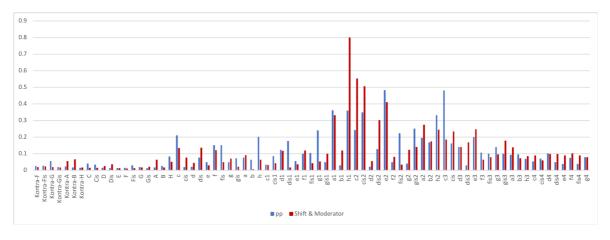


Abbildung 120: releaseTime für pp und Shift & Moderator

Ähnlich dem Doppel-Moderator alleine ist auch gemeinsam mit dem Shift-Pedal eine Wirkung über den gesamten Tonumfang, bis auf wenige Ausnahmen, vorwiegend im untersten sowie obersten Bereich, erkennbar (Abbildung 121), die *releaseTime*-Werte sind meist etwas niedriger. Die Werte der *Shift- & Doppel-Moderator*-Töne reichen von 0,01 s bis 0,31 s mit einem Mittel von 0,07 s, während sich die *releaseTime*-Werte der *pianissimo*-Töne von 0,01 s bis 0,48 s mit einem Mittel von 0,11 s erstrecken.

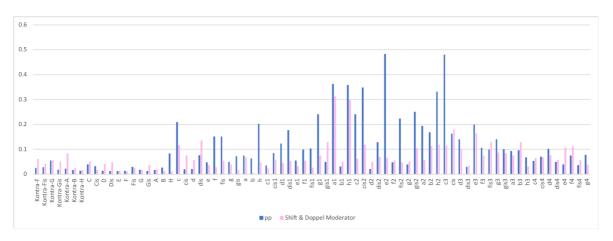


Abbildung 121: releaseTime für pp und Shift & Doppel-Moderator

Ein Vergleich von Moderator und Doppel-Moderator bei gleichzeitig getretenem Shift-Pedal zeigt, dass die *releaseTime*-Werte im unteren Tonbereich beim Doppel-Moderator etwas höher, dann jedoch meist niedriger sind. Sie betragen bei *Shift- & Moderator*-Tönen von 0,01 s bis 0,8 s mit einem Mittelwert von 0,11 s, bei *Shift- & Doppel-Moderator*-Tönen von 0,01 s bis 0,31 s mit einem Durchschnittswert von 0,07 Sekunden (Abbildung 122).

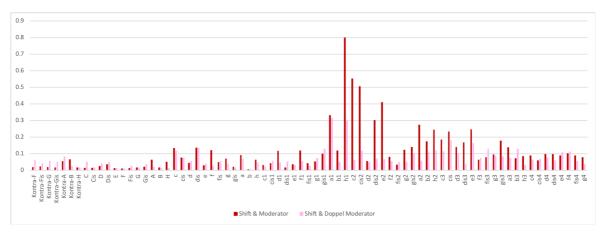


Abbildung 122: releaseTime für Shift & Moderator und Shift & Doppel-Moderator

Nicht sehr auffällig ist die Wirkung des Fagott-Pedals auf die Ausklingzeit, mit einigen Ausnahmen sind die *releaseTime*-Werte aber etwas höher als bei den pedallosen *pianissimo*-Tönen (Abbildung 123). Während sich die *releaseTime*-Werte der *pianissimo*-Töne in diesem Bereich von 0,01 s bis 0,21 s mit einem Durchschnittswert von 0,05 s erstrecken, betragen die Werte mit Fagott-Pedal von 0,01 s bis 0,31 s mit dem Mittel von 0,08 Sekunden.

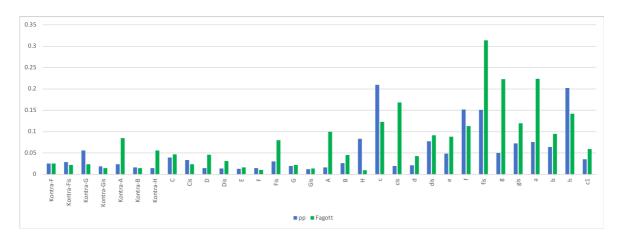


Abbildung 123: releaseTime für pp und Fagott

Wenn zusätzlich zum Fagott- noch die Shift- und Moderator-Pedale betätigt werden, sind die *releaseTime*-Werte besonders in der oberen Hälfte teilweise deutlich höher, insgesamt sind sie jedoch geringfügig niedriger als die Werte der *pianissimo*-Töne (Abbildung 124). Die *releaseTime*-Werte der *pianissimo*-Töne erstrecken sich in diesem Bereich von 0,01 s bis 0,21 s mit einem Durchschnittswert von 0,05 s, die Werte mit Fagott-Pedal betragen von 0,01 s bis 0,19 s mit dem Mittel von 0,06 Sekunden.

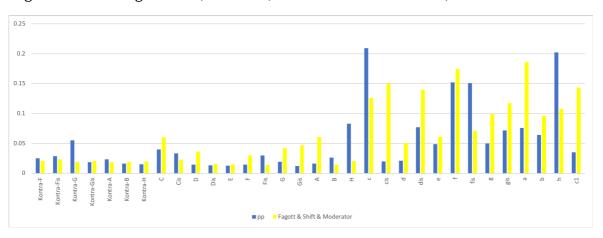


Abbildung 124: releaseTime für pp und Fagott & Shift & Moderator

	pp	forte	Shift pp	Shift f	Mod. pp	Mod. F	DoppM.	S & Mod.	S & D-M	Fagott	F & S & M
MIN	0,012336	0,009070	0,011973	0,009433	0,008345	0,009615	0,013787	0,005805	0,005986	0,009252	0,013787
MAX	0,483447	0,637279	0,553651	0,823039	0,466032	0,641814	0,430295	0,800000	0,313651	0,313469	0,185941
MEAN	0,107545	0,154592	0,103126	0,140921	0,088862	0,147996	0,088289	0,112801	0,069387	0,077647	0,063855

Tabelle 10: releaseTime-Durchschnittswerte aller Töne

5.1.10 Roughness

Roughness (dt.: Rauhigkeit), auch als sensorische Dissonanz bezeichnet, entspricht dem Phänomen der Schwebung, wenn mehrere Töne mit fast der gleichen Frequenz, jedoch mit nur einigen wenigen Hz Unterschied klingen. Wenn die Rauhigkeit hoch ist, werden die Töne als härter, zahlreiche Schwebungen/Modulationen enthaltend, empfunden. Diese Definition und die Berechnung wurde bereits 1965 von Plomp und Levelt vorgeschlagen (Lartillot 2017: 135), in der MIRtoolbox erfolgt die Feststellung durch Berechnen der Spitzen des Spektrums und dem Durchschnitt aller Dissonanzen zwischen allen möglichen Spitzen-Paaren (Lartillot 2014: 11).

Vergleicht man die *roughness*-Werte der pedallosen Spielweisen *pianissimo* und *forte*, fällt auf, dass die Werte der *forte*-Töne die der *pianissimo*-Töne teilweise um mehr als das Zwanzigfache überragen (Abbildung 125). Über den gesamten Tonumfang reichen die *roughness*-Werte der *pianissimo*-Töne von 0,24 bis 56, Durchschnittswert ist 7,80, bei den *forte*-Töne erstrecken sich die *roughness*-Werte von 14,32 bis 693, der Durchschnittswert beträgt 21-mal so hohe 164.

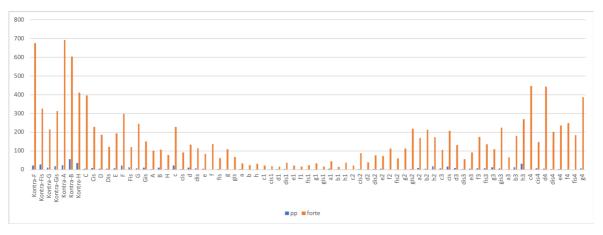


Abbildung 125: roughness für pp und forte

Das Shift-Pedal bei *pianissimo*-Spielweise verringert bis auf wenige Ausnahmen die *roughness*-Werte im Vergleich zum pedallosen Spiel. Über den gesamten Tonumfang reichen die *roughness*-Werte der *pianissimo*-Töne von 0,24 bis 56, Durchschnittswert ist 7,80, bei den *Shift-pp*-Tönen erstrecken sich die *roughness*-Werte von 0,25 bis 39, der Durchschnittswert beträgt 5,90 (Abbildung 126).

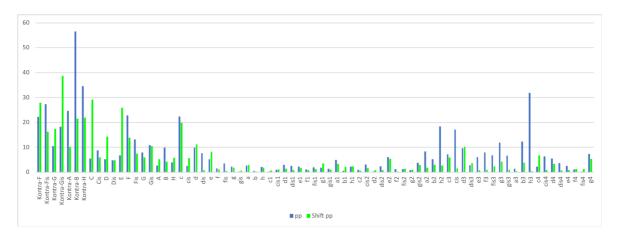


Abbildung 126: roughness für pp und Shift-pp

Ebenfalls erwartungsgemäß ist der Einfluss des Shift-Pedals auf das *forte*-Spiel, hier werden die *roughness*-Werte bei fast allen Tönen merklich verringert (Abbildung 127). Die *roughness*-Werte der *forte*-Töne erstrecken sich über den kompletten Tonumfang von 14,32 bis 693, der Durchschnittswert beträgt 164, die Werte der *Shift-forte*-Töne reichen von 4,49 bis 512 mit einem Mittel von 100.

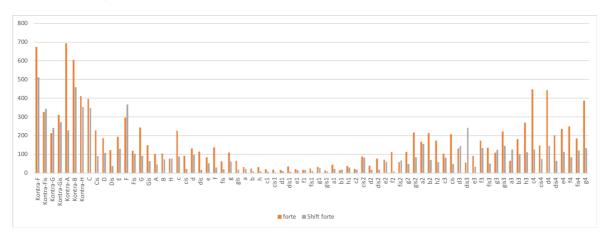


Abbildung 127: roughness für forte und Shift forte

Interessante Ergebnisse zeigen die Ergebnisse für das Moderator-Pedal in *pianissimo*, im unteren Drittel sind die *roughness*-Werte meist höher als die der pedallosen Töne in *pp*, im mittleren Drittel sind beide Werte fast gleich und im oberen Drittel sind die Werte durchgehend erheblich niedriger (Abbildung 128). Bis zum *dis* ist der Mittelwert der *pp*-Töne 14,76, der Wert der *Moderator-pp*-Töne 16,12, von *e* bis *b2* 2,43 sowie 2,54 und ab dem *h2* 8,09 für *pp* sowie deutlich niedrigere 0,81 für *Moderator-pp*. Über den gesamten Tonbereich betrachtet sind die Werte sehr ähnlich, sie reichen von

0,24 bis 56, der Durchschnittswert ist 7,8, bei den *Moderator-pp*-Tönen erstrecken sich die *roughness*-Werte von 0,01 bis 54, der Durchschnittswert beträgt 6,22.

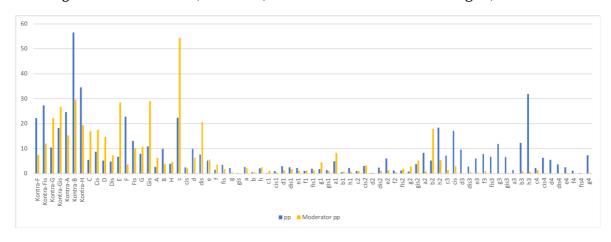


Abbildung 128: roughness für pp und Moderator pp

Beim Vergleich der pedallosen *pianissimo*-Töne mit *Moderator-forte*-Tönen fällt auf, dass deren *roughness*-Werte die der *pianissimo*-Töne teilweise um ein Vielfaches überragen, besonders bei der tiefsten Oktave (Abbildung 129). Beim *Kontra-F* ist z.B. der *roughness*-Wert vom *pianissimo*-Ton 22,22, der vom *Moderator forte*-Ton sogar 932, mehr als vierzig Mal so hoch. Über den gesamten Tonumfang reichen die *roughness*-Werte der *pianissimo*-Töne von 0,24 bis 56, Durchschnittswert ist 7,80, bei den *Moderator-forte*-Töne erstrecken sich die *roughness*-Werte von 12,25 bis 932, der Durchschnittswert beträgt 16-mal so hohe 124.

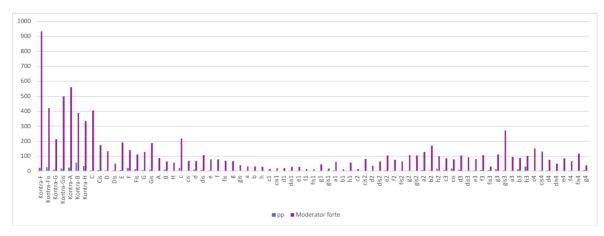


Abbildung 129: roughness für pp und Moderator forte

Ein ähnliches Bild zeigt sich beim Vergleich des Moderator-Pedals, einmal in *pianis-simo* und einmal in *forte*, auch hier überragen die *roughness*-Werte der *Moderator-forte*-Töne die Werte der *Moderator-pp*-Töne teilweise um ein Vielfaches, besonders

bei der tiefsten Oktave (Abbildung 130). Auch hier ist der Unterschied besonders beim *Kontra-F* extrem, der *roughness*-Wert vom *Moderator-pp*-Ton beträgt 7,52, der vom *Moderator-forte*-Ton sogar 932, fast 124 Mal so hoch. Die *roughness*-Werte der *Moderator-pp*-Töne reichen über den gesamten Tonumfang von 0,01 bis 54, Durchschnittswert ist 6,22, bei den *Moderator-forte*-Töne erstrecken sich die *roughness*-Werte von 12,25 bis 932, der Durchschnittswert beträgt fast 20 Mal so hohe 124.

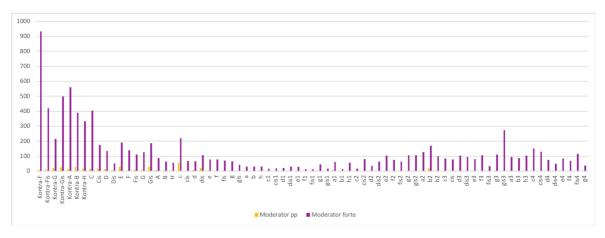


Abbildung 130: roughness für Moderator pp und Moderator forte

Auch bei Verwendung des Doppel-Moderator-Pedals ergibt sich eine ähnliche Situation wie zuvor beim Moderator-Forte-Pedal, auch hier überragen die *roughness*-Werte der *Doppel-Moderator*-Töne die Werte der pedallosen *pianissimo*-Töne teilweise um ein Vielfaches, besonders im Bereich der tiefsten Oktave, im obersten Drittel sind sie jedoch durchwegs niedriger (Abbildung 131). Der Unterschied ist wieder besonders beim *Kontra-F* beträchtlich, jedoch nicht mehr so extrem, der *roughness*-Wert vom *pianissimo*-Ton beträgt 22,22, der vom *Doppel-Moderator*-Ton ziemlich genau zehnmal so hohe 221. Über den gesamten Tonumfang reichen die *roughness*-Werte der *pianissimo*-Töne von 0,24 bis 56, der durchschnittliche Wert beträgt 7,80, bei den *Doppel-Moderator*-Töne erstrecken sich die *roughness*-Werte von 0,15 bis 221, der Durchschnittswert beträgt nur etwas mehr als das Doppelte, nämlich 17,37.

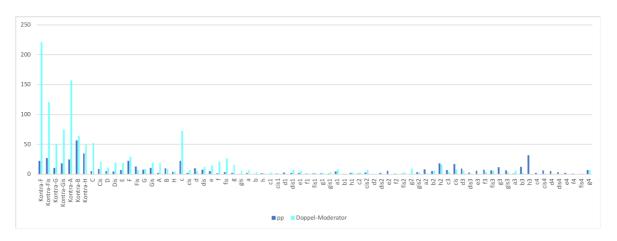


Abbildung 131: roughness für pp und Doppel-Moderator

Nicht mehr so extrem große Unterschiede gibt es bei den *roughness*-Werten der Shiftund Moderator-Töne, sie sind, wieder vorwiegend im tiefsten Tonbereich, nur maximal viermal so hoch wie die Werte der *pianissimo*-Töne (Abbildung 132). Gesamt betrachtet erstrecken sich die *roughness*-Werte der *pianissimo*-Töne von 0,24 bis 56, Mittelwert ist 7,80, bei den *Shift- & Moderator*-Tönen erstrecken sich die *roughness*-Werte von 0,86 bis 124, der Durchschnittswert beträgt ebenfalls nur etwas mehr als das Doppelte, nämlich 18,16.

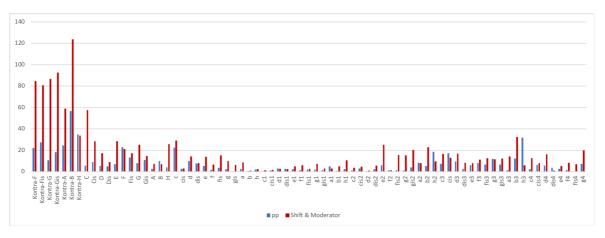


Abbildung 132: roughness für pp und Shift & Moderator

Fast dieselben Ergebnisse zeigen sich bei den *roughness*-Werten der *Shift- & Doppel-Moderator*-Töne, diese sind, wieder vorwiegend im tiefsten Tonbereich, deutlich höher als die Werte der *pianissimo*-Töne, besonders auffällig ist wieder das *Kontra-F*, im obersten Drittel sind sie dann jedoch durchwegs niedriger (Abbildung 133). Total betrachtet erstrecken sich die *roughness*-Werte der *pianissimo*-Töne von 0,24 bis 56,

Mittelwert ist 7,80, bei den *Shift- & Doppel-Moderator*-Tönen reichen die *roughness*-Werte von 0,09 bis 147, der Durchschnittswert beträgt nur etwas höhere 11,84.

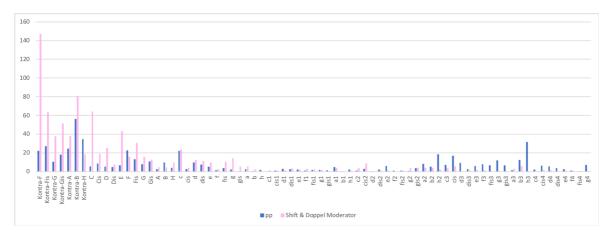


Abbildung 133: roughness für pp und Shift & Doppel-Moderator

Beim Vergleich von Moderator mit Doppel-Moderator bei gleichzeitig getretenem Shift-Pedal zeigt sich, dass die *roughness*-Werte der *Shift- & Doppel-Moderator*-Töne fast immer etwas niedriger sind, nur im unteren Tonbereich sind einige wenige Male die *Shift- & Moderator*-Töne etwas höher. Die *roughness*-Werte betragen bei *Shift- & Moderator*-Tönen von 0,86 bis 124 mit einem Mittelwert von 18,16, bei *Shift- & Doppel-Moderator*-Tönen von 0,09 bis 147 mit einem geringfügig niedrigeren Durchschnittswert von 11,84 (Abbildung 134).

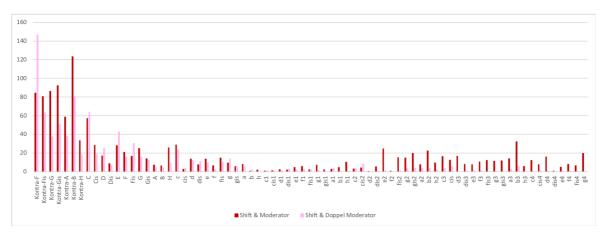


Abbildung 134: roughness für Shift & Moderator und Shift & Doppel-Moderator

Beim Einsatz des Fagott-Pedals sind bei sämtlichen Tönen die *roughness*-Werte bis auf drei Ausnahmen (*Kontra-B, Kontra-H* und *d*) etwas höher als bei den *pianissimo*-Tönen, nur bei *Kontra-F* und *Kontra-Fis* jedoch deutlich höher. In diesem Bereich erstrecken sich die *roughness*-Werte der *pianissimo*-Töne von 0,24 bis 56,49 mit einem

Durchschnitt von 11,19, die Werte der Fagott-Töne reichen von 0,55 bis 377, der Durchschnittswert beträgt 36,86.

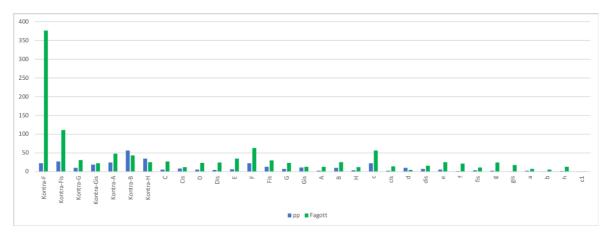


Abbildung 135: roughness für pp und Fagott & Shift & Moderator

Werden zusammen mit dem Fagott-Pedal auch die Shift- und Moderator-Pedale betätigt, sind ungefähr bei der Hälfte der Töne die *roughness*-Werte etwas höher als bei den *pianissimo*-Tönen und auch hier nur bei Kontra-F und Kontra-Fis deutlich höher. Die *roughness*-Werte der *pianissimo*-Töne reichen von 0,24 bis 56 mit einem Durchschnitt von 11,19, die Werte der *Fagott*-Töne von 0,68 bis 194, der Durchschnittswert beträgt 16,87.

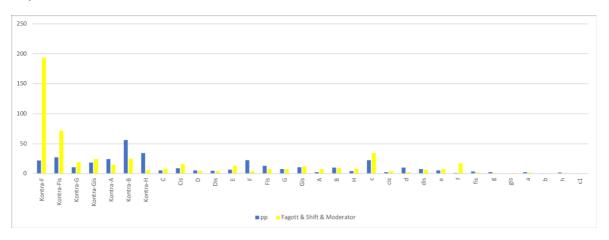


Abbildung 136: roughness für pp und Fagott

	pp	forte	Shift pp	Shift f	Mod. pp	Mod. F	DoppM.	S & Mod.	S & D-M	Fagott	F&S&M
MIN	0,2363	14,3195	0,2505	4,4887	0,0054	12,2452	0,1535	0,8561	0,0861	0,5526	0,6785
MAX	56,4942	693,1396	38,6476	511,9782	54,3466	932,3866	221,0780	123,5033	146,9229	376,8105	193,8234
MEAN	7,7956	163,9858	5,9033	100,2646	6,2195	124,3840	17,3664	18,1621	11,8385	36,8637	16,8730

Tabelle 11: roughness -Durchschnittswerte aller Töne

5.1.11 SpectralCentroid

SpectralCentroid (dt.: Schwerpunkt des Spektrums) ist laut Isabella Czedik-Eisenberg bei der Extraktion von Klangfarben-Eigenschaften ein recht verbreitetes Maß (Peeters 2004; Schubert et al. 2004; Lartillot et al. 2007, zit.n. Czedik-Eisenberg 2016: 18). Sie meint auch, dass der *spectralCentroid*-Wert stark mit der wahrgenommenen Helligkeit eines Klanges assoziiert ist und besonders beim Vergleich von Klängen eine starke Aussagekraft besitzt (Czedik-Eisenberg 2016: 18-19).

Vergleicht man die *spectralCentroid*-Werte der *pianissimo*- sowie *forte*-Töne ohne Pedal, sind in den unteren zwei Dritteln des Tonbereichs keine großen Unterschiede erkennbar, bei den zehn höchsten Tönen sowie den vier Tönen von *dis3* bis *fis3* sind die Werte der *pianissimo*-Töne deutlich höher als die der *forte*-Töne, die jedoch ebenfalls deutlich höher sind als bei den restlichen Tönen (Abbildung 137). Die *spectralCentroid*-Werte der *pianissimo*-Töne erstrecken sich von 430 bis 22.236, der Mittelwert ist 3.946, die *spectralCentroid*-Werte der *forte*-Töne reichen von 869 bis 9.081, hier beträgt der Mittelwert 2.452.

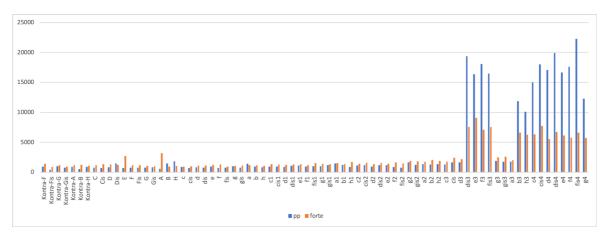


Abbildung 137: spectralCentroid für pp und forte

Ein ähnliches Bild zeigt sich bei den *spectralCentroid*-Werten beim Vergleich von *pianissimo*- und *Shift-pp*-Tönen, auch hier sind bei fast allen Tönen die Werte ungefähr im gleichen Bereich zwischen 1.000 und 2.000, nur bei den zehn höchsten Tönen sowie den vier Tönen von *dis3* bis *fis3* sind sie wieder um ein Vielfaches höher, diesmal ist aber keine eindeutige Tendenz auszumachen (Abbildung 138). Insgesamt reichen die *spectralCentroid*-Werte der *Shift-pp*-Töne von 605 (pp. 430) bis 27.175 (pp. 22.236),

der Mittelwert ist mit 4.053 geringfügig höher als der Mittelwert der *pianissimo*-Töne mit 3.946. Interessant ist der *spectralCentroid*-Wert von 1.652 bei *fis3*, gespielt mit Shift in *pianissimo*, deutlich niedriger als der Wert ohne Pedal mit 16.483. Dieses Phänomen zeigt sich auch bei allen folgenden Vergleichen, nur bei diesem Ton ist der *spectralCentroid*-Wert, egal mit welchem Pedal gespielt, immer deutlich niedriger als der des pedallosen Tons.

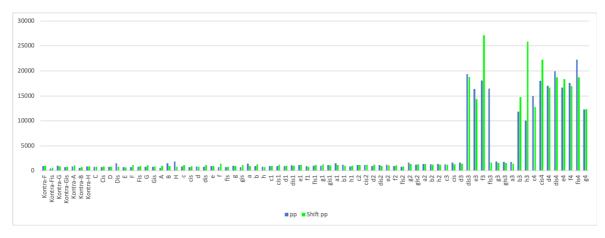


Abbildung 138: spectralCentroid für pp und Shift-pp

Bei *forte* gespielten Tönen hat das Shift-Pedal keinen allzu großen Einfluss auf die *spectralCentroid*-Werte (Abbildung 139). Über den gesamten Tonumfang reichen die Werte für die *forte*-Töne von 869 bis 9.081 mit einem Mittelwert von 2.452, für die *Shift-forte*-Töne von 842 bis 10.516 mit einem fast gleichen, nur minimal höheren Mittelwert von 2.456.

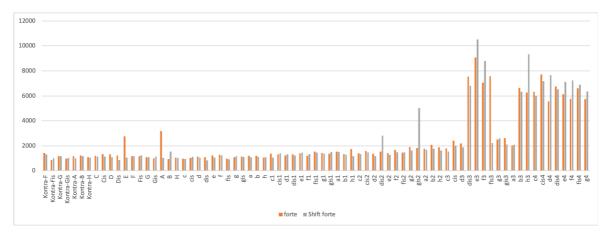


Abbildung 139: spectralCentroid für forte und Shift forte

Bei den *spectralCentroid*-Werten der mit Moderator gespielten Töne in *pianissimo* im Vergleich mit *pianissimo*-Tönen ohne Pedal, ist über den größten Teil des Tonumfangs

keine eindeutige Tendenz erkennbar, nur bei den zehn höchsten Tönen sowie den vier Tönen von *dis3* bis *fis3* sind sie mit Ausnahme des *fis3* und des *e4* teils deutlich höher als die Werte der pedallosen *pianissimo*-Töne (Abbildung 140). Insgesamt erstrecken sich die *spectralCentroid*-Werte der *Moderator-pp*-Töne von 416 (pp. 430) bis 26.698 (pp. 22.236) der Mittelwert ist mit 4.599 deutlich höher als der Mittelwert der *pianis-simo*-Töne mit 3.946.

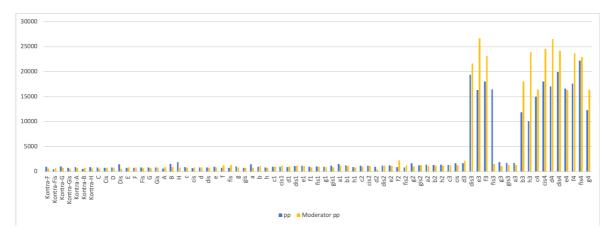


Abbildung 140: spectralCentroid für pp und Moderator pp

Auch bei den *spectralCentroid*-Werten für *forte* gespielte Töne mit Moderator-Pedal zeigt sich ein ähnliches Bild wie bei den vorherigen Vergleichen, in den unteren zwei Dritteln des Tonbereichs sind sämtliche Werte sehr ähnlich und nur bei den zehn höchsten Tönen sowie von *dis3* bis *fis3* sind beide Werte deutlich höher. In diesem Fall sind die *spectralCentroid*-Werte der *Moderator-forte*-Töne deutlich niedriger als die der pedallosen *pianissimo*-Töne (Abbildung 141). Über den gesamten Tonumfang reichen die Werte für die *pianissimo*-Töne von 430 bis 22.236 mit einem Mittel von 3.946, für die *Moderator-forte*-Töne von 787 bis 9.009 mit einem Mittelwert von 2.282.

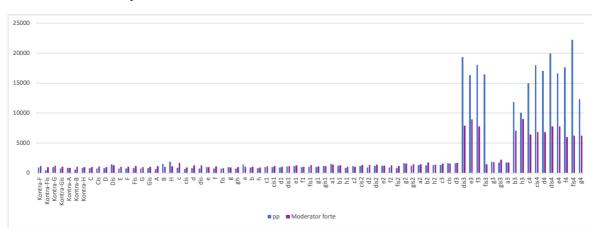


Abbildung 141: spectralCentroid für pp und Moderator forte

Beim Vergleich der *spectralCentroid*-Werte von Tönen, die mit Moderator Pedal gespielt werden, zeigen sich größtenteils keine deutlichen Unterschiede, nur bei den zehn höchsten Tönen sowie den vier Tönen von *dis3* bis *fis3* sind die *spectralCentroid*-Werte der *pianissimo* gespielten Töne deutlich niedriger als die Werte der *Moderator-pp*-Töne (Abbildung 142). Während über den gesamten Bereich bei *Moderator-pp*-Tönen die *spectralCentroid*-Werte von 416 bis 26.698 reichen und durchschnittlich 4.599 betragen, reichen die Werte der *Moderator-forte*-Töne nur von 787 bis 9.009 mit dem knapp halben Mittelwert von 2.282.

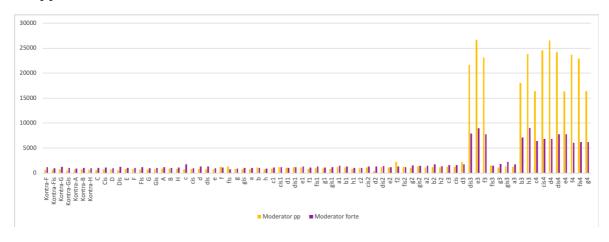


Abbildung 142: spectralCentroid für Moderator pp und Moderator forte

Die Betätigung des Doppel-Moderators, der durch zwei Filz-Streifen zwischen Hammer und Saite den Klang noch leiser und weicher macht als der einfache Moderator, hat nur einen geringen Einfluss auf die *spectralCentroid*-Werte. Auch hier sind beide Werte bei den zehn höchsten Tönen sowie den vier Tönen von *dis3* bis *fis3* deutlich höher als bei den restlichen Tönen, es lässt sich jedoch keine eindeutige Tendenz erkennen (Abbildung 143). Bei Betrachtung der Daten zeigt sich, dass über den gesamten Tonumfang der Durchschnittswert für die *pianissimo*-Töne 3.946 beträgt und für die *Doppel-Moderator*-Töne mit 3.647 geringfügig niedriger ist.

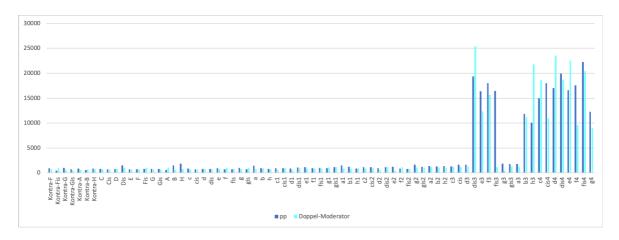


Abbildung 143: spectralCentroid für pp und Doppel-Moderator

Bei gleichzeitiger Betätigung von Shift- und Moderator-Pedal sind ebenfalls beide *spectralCentroid*-Werte bei den zehn höchsten Tönen sowie den vier Tönen von *dis3* bis *fis3* deutlich höher als bei den restlichen Tönen, hier erkennt man jedoch klar, dass die Werte der pedallosen *pianissimo*-Töne fast ausnahmslos etwas höher sind (Abbildung 144). Über den gesamten Tonumfang beträgt der durchschnittliche *spectral-Centroid*-Wert für die *pianissimo*-Töne 3.946, für die *Shift- & Moderator*-Töne deutlich niedrigere 2.987.

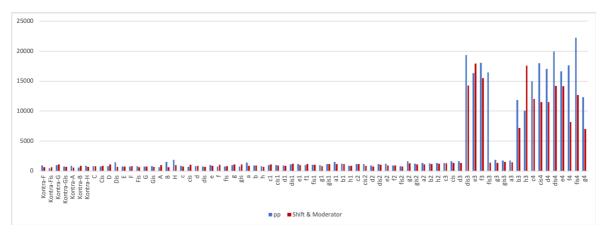


Abbildung 144: spectralCentroid für pp und Shift & Moderator

Ein ähnliches Bild zeigt sich, wenn man die Auswirkungen einer gleichzeitigen Betätigung von Shift- und Doppel-Moderator-Pedal auf die *spectralCentroid*-Werte betrachtet. Auch hier sind im Vergleich zu den restlichen Tönen beide Werte bei den zehn höchsten Tönen sowie den vier Tönen von *dis3* bis *fis3* deutlich höher, bis auf vier Ausnahmen sind hier die *spectralCentroid*-Werte der pedallosen *pianissimo*-Töne deutlich höher als die Werte der *Shift- & Doppel-Moderator*-Töne (Abbildung 145). Über den

gesamten Tonumfang erstrecken sich die *spectralCentroid*-Werte für die *pianissimo*-Töne von 430 bis 22.236 mit einem Durchschnittswert von 3.946, für die *Shift- & Dop-pel-Moderator*-Töne von 517 bis 29.329 mit einem etwas niedrigeren Mittelwert von 3.295.

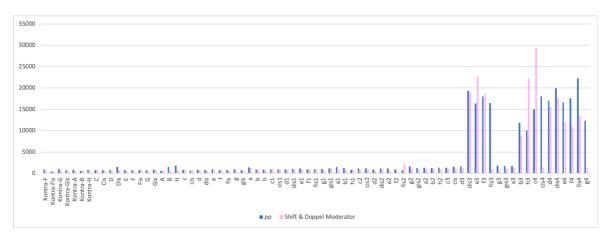


Abbildung 145: spectralCentroid für pp und Shift & Doppel-Moderator

Im Vergleich von Moderator- mit dem Doppel-Moderator-Pedal, jeweils zusammen mit dem Shift-Pedal sind die *spectralCentroid*-Werte zwar ähnlich, die Werte der *Shift- & Doppel-Moderator*-Töne allerdings etwas höher (Abbildung 146), was durch die Durchschnittswerte über den gesamten Tonumfang von 2.987 für *Shift- & Moderator*-Töne sowie 3.295 für *Shift- & Doppel-Moderator*-Töne bestätigt wird.

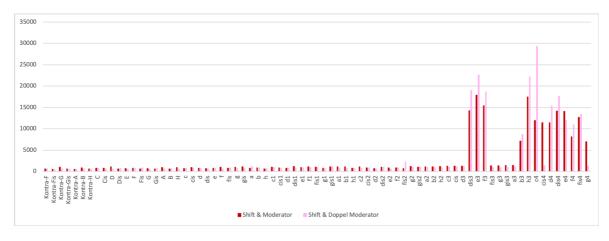


Abbildung 146: spectralCentroid für Shift & Moderator und Shift & Doppel-Moderator

Wiederum etwas eindeutiger ist die Wirkung des Fagott-Pedals auf die die *spectral-Centroid*-Werte, bis auf wenige Ausnahmen sind sie durchwegs etwas höher als bei den pedallosen *pianissimo*-Tönen (Abbildung 147). Insgesamt erstrecken sich die *spectral-Centroid*-Werte der *pianissimo*-Töne von 430 bis 1.862 mit einem Durchschnittswert

von 899, die Werte mit Fagott-Pedal reichen von 698 bis 1.810 und der Mittelwert ist mit 1.128 etwas höher.

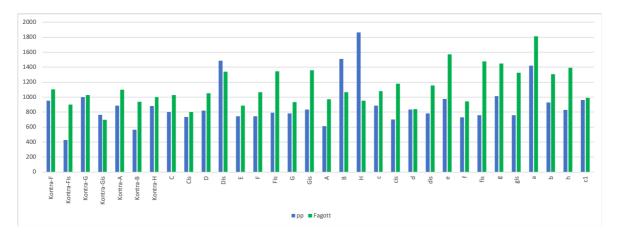


Abbildung 147: spectralCentroid für pp und Fagott

Einen vergleichbaren Einfluss auf die die *spectralCentroid*-Werte hat das Fagott-Pedal mit gleichzeitig betätigten Shift- & Moderator-Pedalen, bei fast sämtlichen Tönen sind die Werte etwas höher als die der pedallosen *pianissimo*-Töne (Abbildung 148). Über den kompletten Tonbereich erstrecken sich die *spectralCentroid*-Werte der *pianissimo*-Töne von 430 bis 1.862 mit einem Mittelwert von 899, die Werte der *Fagott-* & *Shift-* & *Moderator*-Töne reichen von 522 bis 1.728 und der Mittelwert ist mit 1.088 ebenfalls etwas höher.

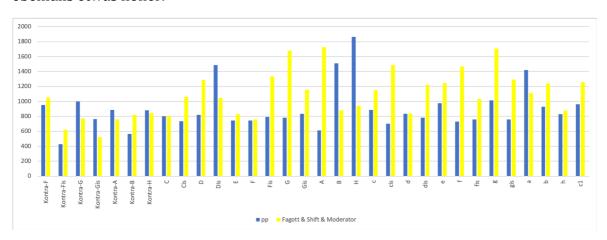


Abbildung 148: spectralCentroid für pp und Fagott & Shift & Moderator

	pp	forte	Shift pp	Shift f	Mod. pp	Mod. F	DoppM.	S & Mod.	S & D-M	Fagott	F&S&M
MIN	430,1777	869,160	604,535	841,844	416,113	787,438	445,575	561,131	517,031	698,369	521,693
MAX	22236,21	9081,362	27174,83	10515,74	26697,72	9008,689	25409,20	17910,76	29328,64	1809,922	1728,263
MEAN	3945,881	2451,733	4052,656	2456,123	4599,287	2282,036	3646,576	2986,787	3295,039	1127,752	1088,328

Tabelle 12: spectralCentroid-Durchschnittswerte aller Töne

5.1.12 SpectralFlatness

Der Parameter *spectralFlatness* (dt.: spektrale Planheit) ist ein Deskriptor in der digitalen Signalverarbeitung, der dazu verwendet wird, den Charakter eines Klanges zu definieren (Madhu 2009: 1195 - 1196).

Beim Vergleich der *spectralFlatness*-Werte bei pedallosen Tönen in *pianissimo* und *forte* ist zu erkennen, dass sie ähnlich den *spectralCentroid*-Werten fast über den gesamten Tonbereich ziemlich gleichmäßig niedrig sind, nur bei den zehn höchsten Tönen sowie den vier Tönen von *dis3* bis *fis3* sind sie jedoch deutlich erhöht und bis auf einige wenige Ausnahmen sind die Werte der *pianissimo*-Töne deutlich höher (Abbildung 149). Die *spectralFlatness*-Werte erstrecken sich bei den *pianissimo*-Tönen über einen Bereich von 0,002 bis 0,295, der Mittelwert ist 0,054, bei den *forte*-Tönen reichen die Werte von 0,001 bis 0,193, der Durchschnittswert beträgt 0,036.

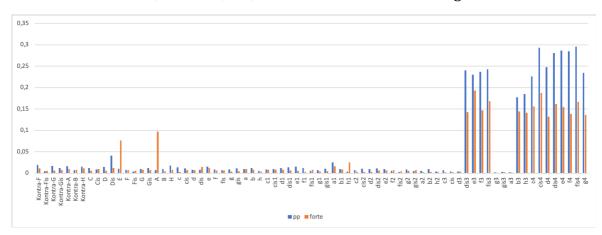


Abbildung 149: spectralFlatness für pp und forte

Bei Verwendung des Shift-Pedals ähneln die *spectralFlatness*-Werte denen der *pianis-simo*-Töne und sind manchmal auch etwas höher (Abbildung 150). Über den gesamten Tonumfang erstrecken sich die *spectralFlatness*-Werte bei den *pianissimo*-Tönen von 0,002 bis 0,295, der Mittelwert ist 0,054, bei den *Shift*-Tönen in *pianissimo* reichen die Werte von 0,003 bis 0,326, der Durchschnitt ist mit 0,054 geringfügig höher.

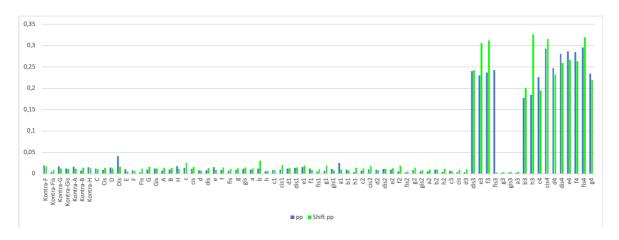


Abbildung 150: spectralFlatness für pp und Shift-pp

Bei den *forte* gespielten Tönen ist der Einfluss des Shift-Pedals bei einigen wenigen Tönen sehr auffällig, wie z.B. beim *dis2* und *gis2* sind die *spectralFlatness*-Werte der *Shift-forte*-Töne deutlich höher als die Werte der *forte*-Töne, bei manchen, wie bei *E, A* sowie *fis3*, sind sie jedoch deutlich niedriger (Abbildung 151). Die *spectralFlatness*-Werte der *forte*-Töne reichen von 0,001 bis 0,193 mit einem Mittelwert von 0,036, die der *Shift-forte*-Töne sind in einem ähnlichen Bereich, sie erstrecken sich von 0,001 bis 0,212 mit dem etwas höheren Mittelwert von 0,041.

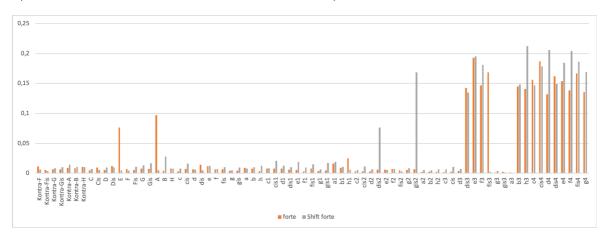


Abbildung 151: spectralFlatness für forte und Shift forte

Auch das Moderator-Pedal hat insgesamt betrachtet nur wenig Einfluss auf die *spectralFlatness*-Werte, es ist keine eindeutige Erhöhung oder Absenkung der Werte zu beobachten (Abbildung 152). Über den gesamten Tonumfang reichen die *spectralFlatness*-Werte bei *pp*-Tönen von 0,002 bis 0,295, der durchschnittliche Wert ist 0,054, bei *Moderator-pp*-Tönen erstrecken sich die Werte von 0,002 bis 0,311, der Mittelwert ist hier fast identische 0,055.

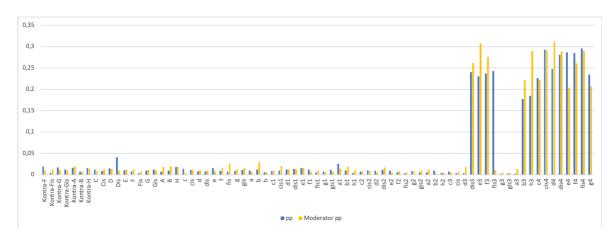


Abbildung 152: spectralFlatness für pp und Moderator pp

Im Vergleich zu pedallos gespielten Tönen in *pianissimo* zeigen sich bei Tönen, die mit Moderator-Pedal in *forte* gespielt werden, bis auf einige Ausnahmen zum Teil deutlich niedrigere *spectralFlatness*-Werte (Abbildung 153). Während über den gesamten Bereich bei pedallosen *pianissimo*-Tönen die *spectralFlatness*-Werte von 0,002 bis 0,295 reichen und durchschnittlich 0,054 betragen, reichen die Werte der *Moderator-forte*-Töne von 0,001 bis 0,311 mit dem niedrigeren Mittelwert von 0,034.

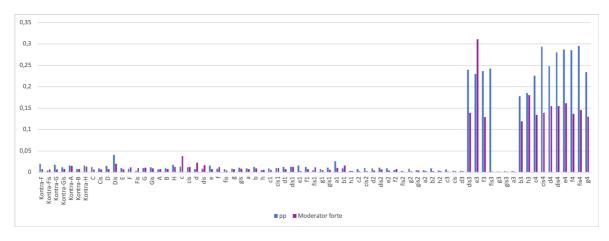


Abbildung 153: spectralFlatness für pp und Moderator forte

Ein Vergleich der *spectralFlatness*-Werte von Tönen, die mit Moderator Pedal einmal *pianissimo* und einmal *forte* gespielt werden, zeigen sich bis auf wenige Ausnahmen niedrigere Werte für *forte*-Töne, besonders bei den zehn höchsten Tönen sind sie teilweise merklich niedriger als die Werte der *Moderator-pp*-Töne (Abbildung 154). Während über den gesamten Bereich bei *Moderator-pp*-Tönen die *spectralFlatness*-Werte von 0,002 bis 0,311 reichen und durchschnittlich 0,055 betragen, reichen die Werte

der *Moderator-forte-*Töne von 0,001 bis 0,311 mit dem niedrigeren Mittelwert von 0,034.



Abbildung 154: spectralFlatness für Moderator pp und Moderator forte

Bei den mit Doppel-Moderator-Pedal gespielten Tönen ist keine eindeutige Tendenz erkennbar. Die *spectralFlatness*-Werte sind über den gesamten Tonumfang teilweise höher, teilweise niedriger als die Werte der *pianissimo*-Töne ohne Pedal (Abbildung 155). Die *spectralFlatness*-Werte der *pianissimo*-Töne reichen von 0,002 bis 0,295 und betragen durchschnittlich 0,335, die der *Doppel-Moderator*-Töne erstrecken sich von 0,002 bis 0,307 mit einem etwas niedrigeren Mittelwert von 0,048.

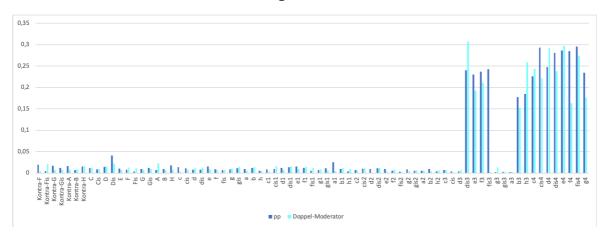


Abbildung 155: spectralFlatness für pp und Doppel-Moderator

Bei Tönen mit Shift- und Moderator-Pedalen ist bei den meisten Tönen keine eindeutige Tendenz erkennbar, bei den höchsten Tönen sind die *spectralFlatness*-Werte jedoch mit wenigen Ausnahmen teilweise deutlich niedriger als die Werte der *pianissimo*-Töne ohne Pedal (Abbildung 156). Die *spectralFlatness*-Werte der *pianissimo*-Töne erstrecken sich von 0,002 bis 0,295 und betragen durchschnittlich 0,054, die der

Shift & Moderator-Töne reichen von 0,001 bis 0,250 mit einem etwas geringeren Mittelwert von 0,043.

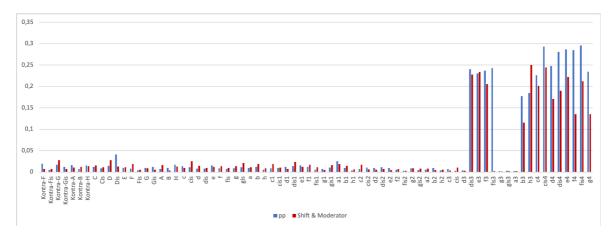


Abbildung 156: spectralFlatness für pp und Shift & Moderator

Fast das gleiche Bild zeigt sich bei Tönen mit Shift- und Doppel-Moderator-Pedalen, auch hier ist bei den meisten Tönen keine eindeutige Tendenz ersichtlich, nur bei den höchsten Tönen sind die *spectralFlatness*-Werte fast ausnahmslos niedriger als die Werte der *pianissimo*-Töne ohne Pedal (Abbildung 157). Während sich die *spectral-Flatness*-Werte der *pianissimo*-Töne von 0,002 bis 0,295 erstrecken und durchschnittlich 0,054 betragen, reichen die Werte der *Shift- & Doppel-Moderator*-Töne von 0,001 bis 0,340 mit einem geringeren Mittelwert von 0,042, der fast gleich mit dem Mittelwert der *Shift- & Moderator*-Töne ist.

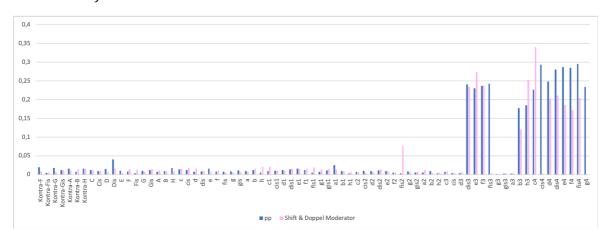


Abbildung 157: spectralFlatness für pp und Shift & Doppel-Moderator

Ein Vergleich der *spectralFlatness*-Werte der Töne mit Shift-Pedal und zusätzlich mit Moderator- sowie Doppel-Moderator-Pedal zeigt, dass fast keine Unterschiede bestehen. Besonders in den tieferen drei Vierteln sind die Werte bei den meisten Tönen fast

gleich, bei den höchsten Tönen sind zwar Differenzen erkennbar, da jedoch keine Abweichung dominiert, ist der Durchschnitt wieder ausgeglichen (Abbildung 158). Dies wird in den fast identischen *spectralFlatness*-Durchschnitts-Werten sichtbar, sie betragen 0,043 für *Shift- & Moderator*-Töne sowie 0,042 für *Shift- & Doppel-Moderator*-Töne.

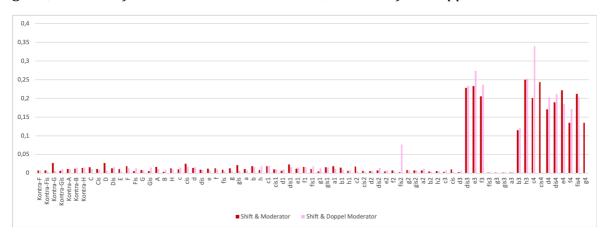


Abbildung 158: spectralFlatness für Shift & Moderator und Shift & Doppel-Moderator

Ebenfalls nicht sehr auffällig scheint die Wirkung des Fagott-Pedals auf die *spectral-Flatness*-Werte zu sein, sie sind bei fast allen Töne ungefähr gleich wie bei den pedallosen *pianissimo*-Tönen, nur bei *Kontra-F* und *Kontra-B* sind sie auffallend niedriger (Abbildung 159). Die *spectralFlatness*-Werte der *pianissimo*-Töne reichen über den gesamten Tonbereich von 0,003 bis 0,176 mit dem Durchschnittswert von 0,018, die Werte mit Fagott-Pedal von 0,003 bis 0,040 und der Mittelwert ist mit 0,009 nur halb so hoch.

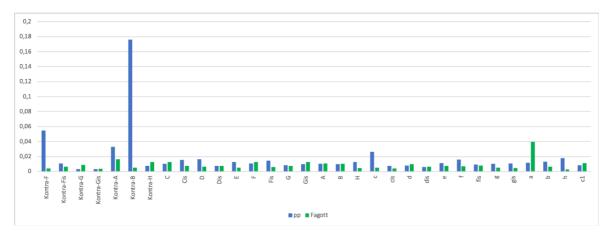


Abbildung 159: spectralFlatness für pp und Fagott

Fast die gleiche Wirkung auf die *spectralFlatness*-Werte hat das Fagott-Pedals zusammen mit Shift- und Moderator-Pedalen, die Werte sind bei fast allen Töne ohne eindeu-

tig erkennbare Tendenz ungefähr gleich, nur beim *G* und *A* sind sie deutlich höher, beim *Kontra-F* und *Kontra-B* deutlich niedriger als die Werte der pedallosen *pianis-simo-*Töne (Abbildung 160). Die *spectralFlatness-*Werte der *pianissimo-*Töne reichen über den gesamten Tonbereich von 0,003 bis 0,176 mit dem Durchschnittswert von 0,018, die Werte mit Fagott-, Shift- und Moderator-Pedal von 0,002 bis 0,046, der Mittelwert ist mit 0,012 geringfügig niedriger.

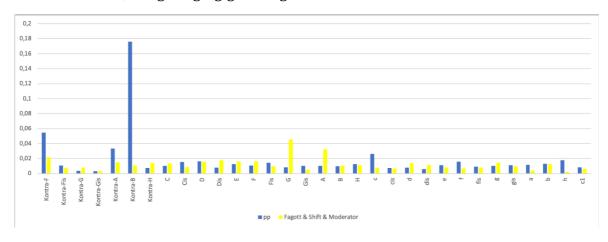


Abbildung 160: spectralFlatness für pp und Fagott & Shift & Moderator

	pp	forte	Shift pp	Shift f	Mod. pp	Mod. F	DoppM.	S & Mod.	S & D-M	Fagott	F & S & M
MIN	0,001844	0,001493	0,002973	0,001037	0,002173	0,001365	0,001554	0,001346	0,000740	0,002806	0,002311
MAX	0,295290	0,192715	0,325720	0,212259	0,311073	0,310988	0,307124	0,249710	0,340056	0,039554	0,045570
MEAN	0,054236	0,036411	0,055840	0,041178	0,054884	0,033637	0,047612	0,042824	0,041568	0,008768	0,012340

Tabelle 13: spectralFlatness-Durchschnittswerte aller Töne

5.1.13 SpectralFluxMean

Der Wert spectralFluxMean (eng. Spectral Flux Mean = mittlerer spektraler (Schall-)Fluss) lässt sich aus den Änderungen zwischen zwei aufeinander folgenden Frames berechnen (Lartillot und Toiviainen 2007:2).

Beim Vergleich der pedallosen Spielweisen fällt auf, dass die *spectralFluxMean*-Werte der *forte*-Töne bis auf eine einzige Ausnahme beim *Kontra-Fis* bei allen Tönen deutlich höher sind als bei den *pianissimo*-Tönen (Abbildung 161). Die *spectralFluxMean*-Werte reichen bei *pp* von 0,28 bis 5,07 mit einem Mittelwert von 1,05, bei den *forte*-Tönen von 1,01 bis 12,77, der Mittelwert ist mit 3,4 mehr als dreimal so hoch.

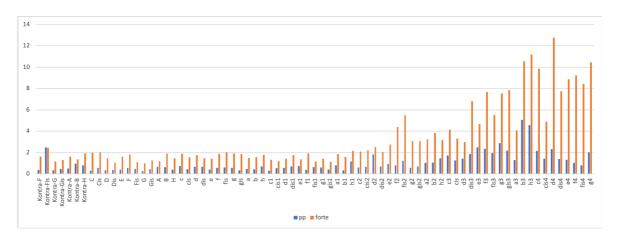


Abbildung 161: spectralFluxMean für pp und forte.

Beim Betätigen des Shift-Pedals ist kein deutlicher Unterschied der *spectralFluxMean*-Werte im Vergleich zu den pedallosen *pianissimo*-Tönen erkennbar, nur im obersten Drittel scheinen die meisten Werte der *pianissimo*-Töne höher zu sein (Abbildung 162). Über den gesamten Tonbereich erstrecken sich die *spectralFluxMean*-Werte der *pp*-Töne von 0,28 bis 5,07 mit einem Mittelwert von 1,05, bei den *Shift*-Tönen in *pp* von 0,3 bis 3,39, der Mittelwert ist mit 0,79 etwas niedriger.

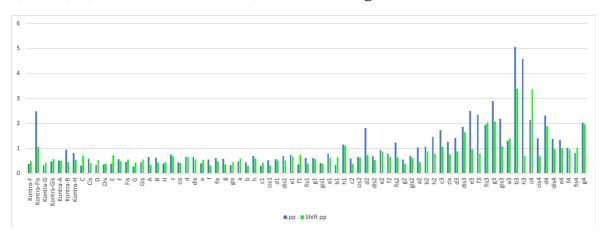


Abbildung 162: spectralFluxMean für pp und Shift-pp

Wird mit gedrücktem die Shift-Pedale *forte* gespielt, sind besonders im obersten Drittel etwas niedrigere Werte als beim *forte-*Spiel alleine wahrnehmbar (Abbildung 163). Der Mittelwert aller *forte-*Töne beträgt 3,4 und der Durchschnitt aller *Shift-* & *forte-*Töne beträgt 2,63.

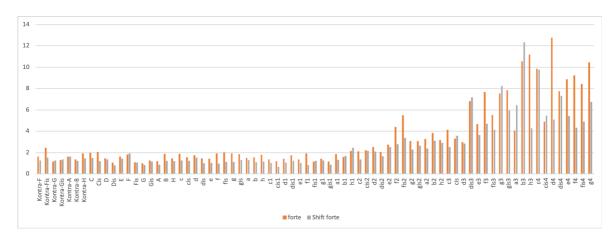


Abbildung 163: spectralFluxMean für forte und Shift forte

Bei aktiviertem Moderator sind bei den *spectralFluxMean*-Werten besonders im höchsten Drittel deutliche Unterschiede im Vergleich zu den pedallosen *pianissimo*-Tönen zu sehen, bis auf wenige Ausnahmen sind sie deutlich niedriger (Abbildung 164). Dieser Unterschied zeigt sich ebenfalls im Durchschnittswert, der für *pianissimo*-Töne in den ersten zwei Dritteln 0,65 und für *Moderator pp*-Töne fast gleiche 0,64 beträgt. Im letzten Drittel beträgt der Mittelwert für *pp*-Töne 2,05 und für *Moderator pp*-Töne nur 0,87.

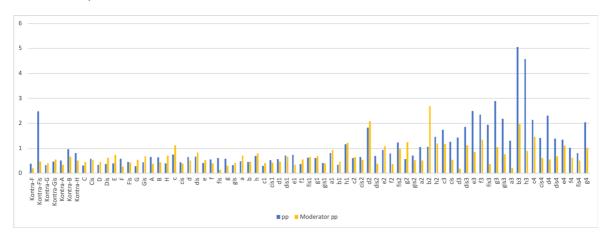


Abbildung 164: spectralFluxMean für pp und Moderator pp

Besonders auffällig ist der Unterschied der *spectralFluxMean*-Werte zwischen Tönen, die mit Moderator-Pedal *pianissimo* gespielt werden (*spectralFluxMean*-Werte von 0,28 bis 5,07, Durchschnitt: 1,05) und den *forte*-Tönen mit Moderator (*spectralFlux-Mean*-Werte von 0,8 bis 9,52, Durchschnitt: 5,41), auch hier ein besonders deutlicher Unterschied im oberen Drittel der Tonreihe (Abbildung 165).

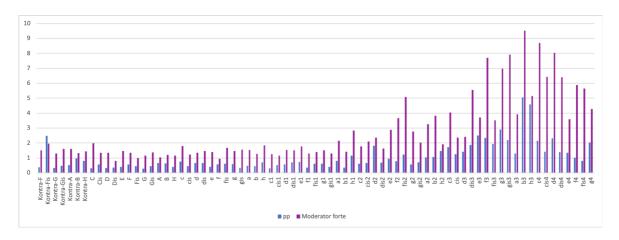


Abbildung 165: spectralFluxMean für pp und Moderator forte

Ein Vergleich des Moderator-Pedals jeweils in *pianissimo* und in *forte* zeigt, dass die *spectralFluxMean*-Werte bei den *Moderator-forte*-Tönen mit durchschnittlichen 2,77 ausnahmslos deutlich höher sind als bei den *Moderator-pp*-Tönen mit 0,7.

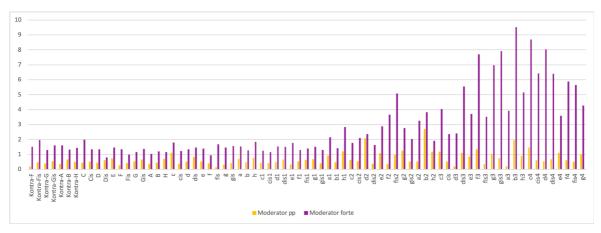


Abbildung 166: spectralFluxMean für Moderator pp und Moderator forte

Bei Betätigung des Doppel-Moderators sind bei den *spectralFluxMean*-Werten keine deutlichen Unterschiede im Vergleich zu den pedallosen *pianissimo*-Tönen erkennbar (Abbildung 167). Über den gesamten Tonbereich reichen die *spectralFluxMean*-Werte bei *pianissimo*-Tönen von 0,28 bis 5,07 mit einem Durchschnitt von 1,05, die Werte der *Doppel-Moderator*-Töne von 0,21 bis 3,01 mit einem fast identischen Durchschnitt von 1,0.

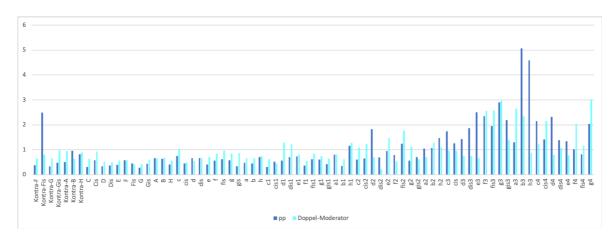


Abbildung 167: spectralFluxMean für pp und Doppel-Moderator

Werden Shift- und Moderator-Pedal gleichzeitig betätigt, ist der Unterschied der *spectralFluxMean*-Werte von 0,802 bis 0,091 im Vergleich zu den pedallosen *pianis-simo*-Tönen mit Werten von 0,943 bis 0,025 nicht sehr deutlich ausgeprägt (Abbildung 168). Auch beim Mittelwert aller Töne ist beim Shift- und Moderator-Pedal mit -0,498 keine große Differenz zum Mittelwert der *pianissimo*-Töne mit 0,522 auszumachen.

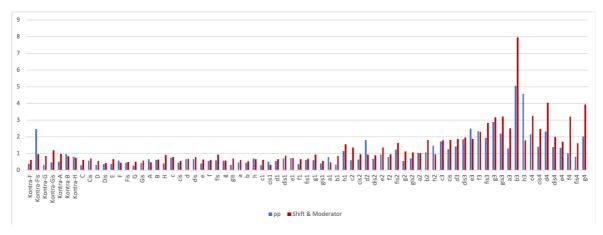


Abbildung 168: spectralFluxMean für pp und Shift & Moderator

Bei gleichzeitiger Betätigung von Shift sowie des Doppel-Moderators ist ähnlich des Moderators alleine bei den *spectralFluxMean*-Werten kein prägnanter Unterschied im Vergleich zu den pedallosen *pianissimo*-Tönen erkennbar (Abbildung 169). Über den gesamten Tonbereich reichen die *spectralFluxMean*-Werte bei *pianissimo*-Tönen von 0,28 bis 5,07 mit einem Durchschnitt von 1,05, die Werte der *Shift- & Doppel-Moderator*-Töne von 0,33 bis 4,78 mit einem ähnlichen Durchschnitt von 0,92.

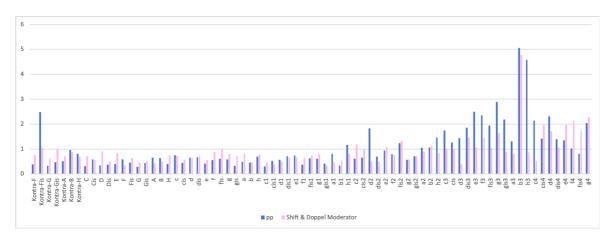


Abbildung 169: spectralFluxMean für pp und Shift & Doppel-Moderator

Ziemlich deutlich erkennbar ist der Unterschied der *spectralFluxMean*-Werte zwischen Tönen, die mit Shift- und Moderator-Pedal gespielt werden (*spectralFluxMean*-Werte von 0,33 bis 7,96, Mittel: 1,34) und den Tönen mit Shift- und Doppel-Moderator-Pedal (*spectralFluxMean*-Werte von 0,33 bis 4,78, Mittel: 0,92), hier ebenfalls ein besonders auffälliger Unterschied im oberen Drittel der Tonreihe (Abbildung 170).

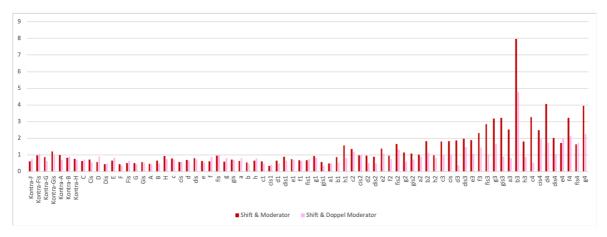


Abbildung 170: spectralFluxMean für Shift & Moderator und Shift & Doppel-Moderator

Beim aktiven Fagott-Pedal ist ein deutlicher Unterschied der *spectralFluxMean*-Werte zu den Werten der pedallosen *pianissimo*-Tönen sichtbar, bis auf wenige Ausnahmen im untersten Bereich sind die Werte der *Fagott-Pedal*-Töne deutlich höher (Abbildung 171). Die *spectralFluxMean*-Werte der *Fagott-Pedal*-Töne umfassen einen Bereich von 0,41 bis 4,63 mit einem Mittelwert von 1,09, bei den *pianissimo*-Tönen reichen diese von 0,28 bis 2,48 mit einem Mittelwert von 0,57.

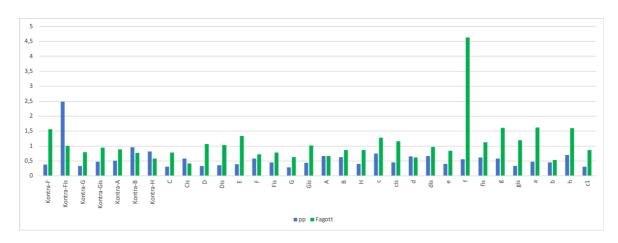


Abbildung 171: spectralFluxMean für pp und Fagott

Nicht mehr ganz so deutlich, aber noch sehr gut erkennbar ist der Unterschied der *spectralFluxMean*-Werte zwischen den pedallosen *pianissimo*-Tönen (Werte von 0,28 bis 2,48, Durchschnittswert beträgt 0,57) und den Tönen, die mit den Fagott-, Shiftund Moderator-Pedalen (*spectralFluxMean*-Werte von 0,32 bis 1,93, Durchschnitt ist 0,77) gespielt werden (Abbildung 172).

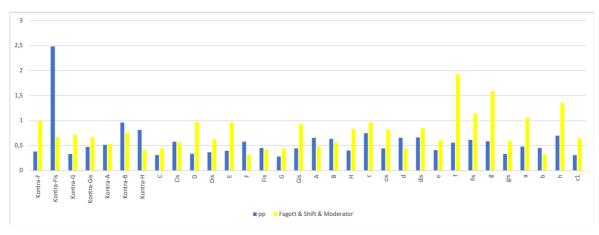


Abbildung 172: spectralFluxMean für pp und Fagott & Shift & Moderator

	pp	forte	Shift pp	Shift f	Mod. pp	Mod. F	DoppM.	S & Mod.	S & D-M	Fagott	F & S & M
MIN	0,281927	1,011955	0,301769	0,671668	0,147047	0,799091	0,208185	0,332655	0,329301	0,414952	0,322111
MAX	5,066409	12,76610	3,385682	12,34700	2,694577	9,515308	3,011021	7,960119	4,782701	4,633362	1,934226
MEAN	1,045826	3,397283	0,790341	2,628460	0,701121	2,769338	1,001600	1,336693	0,915986	1,087101	0,770484

Tabelle 14: spectralFluxMean-Durchschnittswerte aller Töne

5.2 Klänge Fagott-Pedal im Vergleich zu Original-Fagott

Wie vorher bereits in Kapitel 4.1 erwähnt, wird beim Rosenberger-Flügel das Simulieren von Fagott- Klängen durch gerolltes, mit Seide bezogenes Pergament erreicht, das zwischen Saiten und Hämmer geschoben wird, dieser "Fagott-Effekt" funktioniert jedoch nur bei tiefen Tönen, bei den höheren führt er zu keinem hörbaren Ergebnis. Aus diesem Grund wirkt das Fagott-Pedal nur auf 32 Töne, vom *Kontra-F* bis zum *c1*.

Beim originalen Fagott, beginnt der Ambitus nicht ganz so tief wie der des Rosenberger-Tonumfangs, nämlich beim *Kontra-B* und erstreckt sich ebenfalls über 32 Töne, bis zum *f1*. Der Bereich, in dem also beide Instrumente die gleichen Töne erzeugen können, reicht über 27 Töne, vom *Kontra-B* bis zum *c1*, für sämtliche folgende Berechnungen und Analysen der Klangeigenschaften wird auch nur dieser Tonbereich herangezogen. Von diesen 27 Tönen wurden mithilfe dem in Kapitel 4.5.3 vorgestellten Skript diverse Klangdeskriptoren berechnet. Da beim echten Fagott die Tonwerte für *pianissimo* und *fortissimo* zur Verfügung standen, werden beide verwendet, um etwaige Unterschiede erkennen zu können. Die Fagott-Klänge des Rosenberger-Flügels dagegen wurden mit ganz normaler Anschlagstärke, also nicht *pianissimo* oder *fortissimo* gespielt, da sonst laut Besitzer der Fagott-Effekt nicht zufriedenstellend funktioniert. Für die Vergleiche werden sowohl die nur mit dem Fagott-Pedal gespielten Töne, als auch die Töne analysiert, die wie von Schiedmayer empfohlen, zusätzlich mit Shift- und Moderator-Pedalen gespielt worden sind (Schiedmayer 1824: 21).

Der erste Wert, *annoyance* (eng. annoyance = Ärgernis, Belästigung) gibt an, wie ärgerlich oder unangenehm ein Geräusch klingt und wird üblicherweise nicht zur Klangbeschreibung von Tönen verwendet, weil aber die Werte in diesem Fall durchaus interessant sind, führe ich sie an.

Bei sämtlichen Tönen des Rosenberger-Flügels sind die *annoyance*-Werte im negativen Bereich, während sie für Töne des Fagotts bis auf zwei Ausnahmen im positiven Bereich sind (Abbildung 173). Abgesehen von der Gegensätzlichkeit sind jedoch die jeweiligen *annoyance*-Werte ziemlich ähnlich, beim Fagott sind die Werte der *fortissimo*-Töne durchwegs höher als die der *pianissimo*-Töne, beim Klavier sind die Werte der mit Fagott-, Shift- und Moderator-Pedalen gespielten Töne fast durchwegs niedriger als die der nur mit Fagott-Pedal gespielten Töne. Beim Fagott-Pedal alleine reichen sie von -0,54 bis -0,05, der Mittelwert beträgt -0,28, mit den zusätzlichen Pedalen von

-0,79 bis -0,14, der Mittelwert ist -0,42, beim Fagott in *pp* erstrecken sich die *anno-yance*-Werte von -0,03 bis 0,49, der Durchschnitt ist 0,3, beim Fagott in *ff* von 0,09 bis 0,75, der Durchschnitt beträgt 0,54.

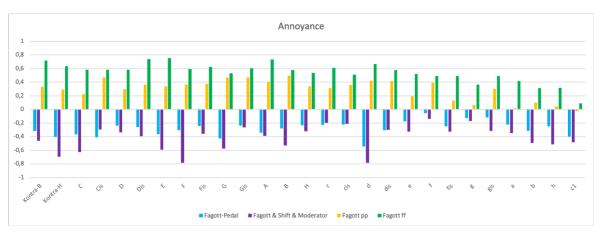


Abbildung 173: Fagott-Vergleich: annoyance

	Fagott-Pedal	F & S & M	Fagott pp	Fagott ff
MIN	-0,543000647	-0,784953983	-0,026324235	0,088848033
MAX	-0,054390811	-0,138133845	0,493843411	0,752252261
MEAN	-0,283500824	-0,416234546	0,294869241	0,541841963

Tabelle 15: Durchschnittliche annoyance-Werte für Fagott-Pedal und Fagott

Die *attackTime*-Werte, die die Einschwingungszeit darstellen, sind bei den beiden Klavier-Varianten sehr ähnlich und immer etwas niedriger als bei den Fagott-Tönen in *fortissimo*, bei den *pianissimo*-Tönen dagegen sind die Werte meistens deutlich höher (Abbildung 174). Beim Fagott-Pedal alleine reichen die *attackTime*-Werte von 32 ms bis 58 ms, der Mittelwert beträgt 43 ms, mit den zusätzlichen Pedalen fast identisch von 34 ms bis 56 ms, der Mittelwert ist 44 ms, beim Fagott in *pp* erstrecken sich die Werte von 66 ms bis 0,16 s, der Durchschnitt ist 0,1 s, beim Fagott in *ff* von 44 ms bis 81 ms, der Durchschnitt beträgt 57 ms.

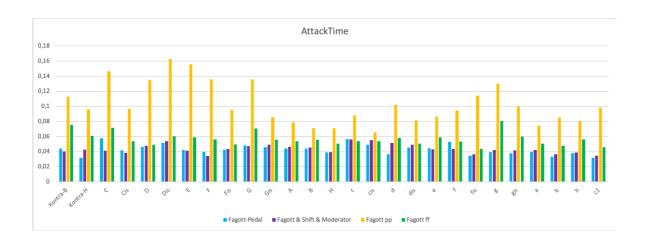


Abbildung 174: Fagott-Vergleich: attackTime

	Fagott-Pedal	F & S & M	Fagott pp	Fagott ff
MIN	0,031666667	0,034333333	0,065668934	0,043537415
MAX	0,057500000	0,056000000	0,162902494	0,080544218
MEAN	0,042950617	0,043861111	0,102971361	0,056867389

Tabelle 16: Durchschnittliche attackTime-Werte für Fagott-Pedal und Fagott

Bei den *brightness*-Werten fällt auf, dass diese bei fast allen Tönen des Rosenberger-Flügels meist deutlich höher sind als die der *pianissimo* gespielten Fagott-Töne, nur bei den tieferen Tönen sind einige Werte der *fortissimo* gespielten Fagott-Töne etwas höher, insgesamt klingt aber das Klavier etwas heller (Abbildung 175). Der *brightness*-Mittelwert des Fagott-Pedals ist mit 0,19 ungefähr viermal so hoch wie der des Fagotts in *pp* mit 0,05 und auch der *brightness*-Mittelwert der Fagott- & Shift- & Moderator-Pedale ist mit 0,17 etwas höher als der des Fagotts in *ff* mit 0,15.

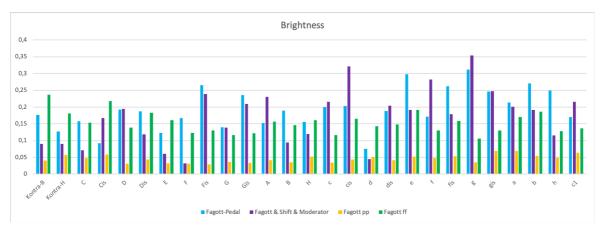


Abbildung 175: Fagott-Vergleich: brightness

	Fagott-Pedal	F & S & M	Fagott pp	Fagott ff
MIN	0,075385952	0,032073358	0,029494254	0,106088652
MAX	0,311689403	0,353432034	0,069562124	0,237359046
MEAN	0,193405781	0,171121144	0,045763773	0,153387317

Tabelle 17: Durchschnittliche brightness-Werte für Fagott-Pedal und Fagott

Nur ein geringer Unterschied ist bei den *entropy*-Werten zu beobachten, sie sind für alle Töne des Flügels etwas höher als die Werte der Fagott-Töne, bei beiden Instrumenten sind sie über den gesamten Tonumfang relativ gleichmäßig verteilt (Abbildung 176). Die *entropy*-Werte des Rosenberger-Flügels erstrecken sich mit Fagott-Pedal von 0,57 bis 0,71, Durchschnittswert ist 0,65, zusätzlich mit Shift- und Moderator-Pedal von 0,53 bis 0,74, der Durchschnitt ist fast gleich mit 0,64. Beim Fagott reichen die Werte in *pp* von 0,47 bis 0,58, der Mittelwert beträgt 0,51, in *ff* sind die *entropy*-Werte etwas höher, von 0,52 bis 0,65, der Mittelwert ist 0,59.



Abbildung 176: Fagott-Vergleich: entropy

	Fagott-Pedal	F & S & M	Fagott pp	Fagott ff
MIN	0,564710535	0,531444621	0,473255511	0,515738254
MAX	0,716904199	0,735754648	0,580501162	0,651726065
MEAN	0,652644852	0,642798660	0,513626063	0,590224882

Tabelle 18: Durchschnittliche entropy-Werte für Fagott-Pedal und Fagott

Sehr deutlich ist der Unterschied bei den *roughness*-Werten, hier ist die Rauhigkeit des Fagotts um ein Vielfaches höher als die des Klaviers, deren Werte im Diagramm fast nicht zu erkennen sind (Abbildung 177). Über den gesamten Tonumfang reichen die *roughness*-Werte des Flügels beim Fagott-Pedal alleine von 0,55 bis 63,31, der

Mittelwert ist 21,87, zusätzlich mit Shift- und Moderator-Pedalen von 0,68 bis 34,12 mit einem Mittel von 8,0, hingegen beim Fagott in *pp* erstrecken sich die Werte von 14,08 bis 2.622, der Durchschnitt ist 826,43, beim Fagott in *ff* sind die *roughness*-Werte noch deutlich höher, sie erstrecken sich von 22,53 bis 3.358 mit einem Durchschnitt von 1.257, das ist mehr als das 57-fache des Mittels des Fagott-Pedals und sogar das 157-fache des Durchschnitt-Werts von Fagott-, Shift- und Moderator-Pedal.

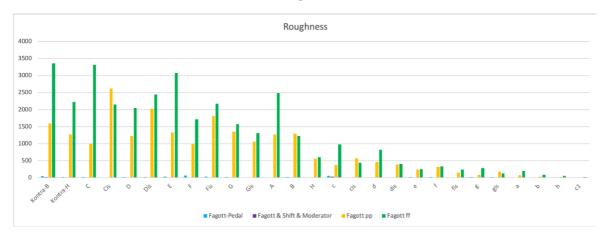


Abbildung 177: Fagott-Vergleich: roughness

	Fagott-Pedal	F & S & M	Fagott pp	Fagott ff
MIN	0,55260753	0,67854052	14,0754078	22,5342088
MAX	63,3111364	34,1181459	2622,00574	3358,19706
MEAN	21,8733625	8,00352414	826,434184	1257,53415

Tabelle 19: Durchschnittliche roughness-Werte für Fagott-Pedal und Fagott

Beim Vergleich der *spectralCentroid*-Werte sind auf den ersten Blick, wie in Abbildung 178 zu erkennen ist, keine sehr großen Unterschiede auszumachen, nur die Werte der Fagott *pp*-Töne sind durchgehend am Tiefsten, die Werte des Fagott-Pedals sowohl mit als auch ohne Zusatz-Pedale sowie des Fagotts in *ff* sind jedoch relativ ähnlich. Über den gesamten Tonumfang reichen die *spectralCentroid*-Werte des Flügels beim Fagott-Pedal alleine von 801 bis 1810, der Mittelwert ist 1158, zusätzlich mit Shift- und Moderator-Pedalen von 760 bis 1728 mit einem fast identischen Mittel von 1151, beim Fagott in *pp* erstrecken sich die Werte von 582 bis 959, der Durchschnitt ist mit 733 deutlich am Niedrigsten, beim Fagott in *ff* sind die *spectralCentroid*-Werte am Höchsten, sie erstrecken sich von 998 bis 1879 mit einem Durchschnitt von 1244.

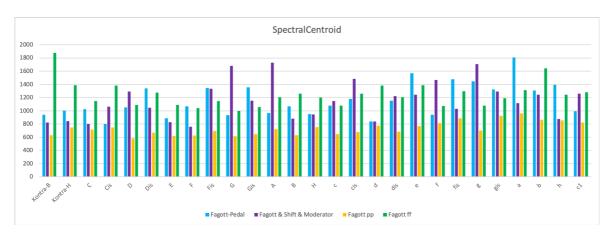


Abbildung 178: Fagott-Vergleich: spectralCentroid

	Fagott-Pedal	F & S & M	Fagott pp	Fagott ff
MIN	801,643366	760,417661	581,936865	997,92357
MAX	1809,92212	1728,26287	958,944148	1878,9748
MEAN	1157,59648	1151,94259	733,271917	1244,19112

Tabelle 20: Durchschnittliche spectralCentroid-Werte für Fagott-Pedal und Fagott

Die *spectralFlatness*-Werte sind bei fast allen Tönen des Rosenberger-Flügels deutlich niedriger als alle Töne des Fagotts bis auf zwei Ausnahme beim *G* und *A*, wo die Werte von Fagott- & Shift- & Moderator-Pedal sehr hoch sind (Abbildung 179). Die *spectral-Centroid*-Werte des Flügels reichen beim Fagott-Pedal alleine von 0,003 bis 0,046, der Mittelwert ist 0,009, zusätzlich mit Shift- und Moderator-Pedalen von 0,002 bis 0,046 mit einem Mittel von 0,013, beim Fagott in *pp* erstrecken sich die Werte von 0,01 bis 0,03, der Durchschnitt ist 0,02, beim Fagott in *ff* reichen die *spectralCentroid*-Werte von 0,021 bis 0,062 mit einem Durchschnitt von 0,039.

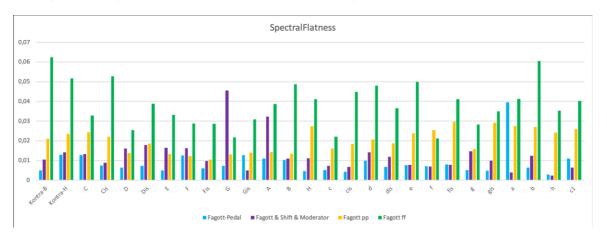


Abbildung 179: Fagott-Vergleich: spectralFlatness

	Fagott-Pedal	F & S & M	Fagott pp	Fagott ff
MIN	0,00280642	0,00231082	0,01042018	0,02121035
MAX	0,03955361	0,04556981	0,02970654	0,06240887
MEAN	0,00889938	0,01259956	0,02014904	0,03851069

Tabelle 21: Durchschnittliche spectralFlatness-Werte für Fagott-Pedal und Fagott

Sehr interessant sind die *spectralFluxMean*-Werte, hier sind die Werte der Fagott-Töne durchwegs deutlich höher als die Werte des Rosenberger-Flügels, die im Diagramm kaum zu sehen sind. Die *spectralFluxMean*-Werte des Flügels reichen beim Fagott-Pedal alleine von 0,41 bis 4,53, der Mittelwert ist 1,10, zusätzlich mit Shift- und Moderator-Pedalen von 0,32 bis 1,93 mit einem fast gleichen Mittel von 0,78, beim Fagott in *pp* erstrecken sich die Werte von 6,25 bis 14,86, der Durchschnitt ist 9,83, beim Fagott in *ff* reichen die *spectralFluxMean*-Werte von 7,51 bis 19,36 mit einem Durchschnitt von 10,39.

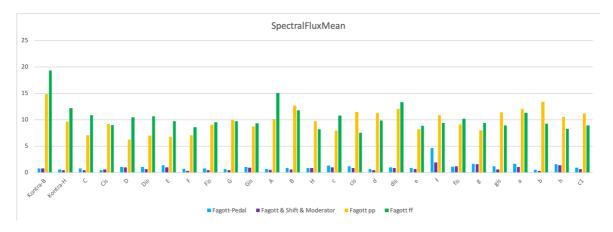


Abbildung 180: Fagott-Vergleich: spectralFluxMean

	Fagott-Pedal	F & S & M	Fagott pp	Fagott ff
MIN	0,41495192	0,32211111	6,25147243	7,50972831
MAX	4,63336163	1,93422622	14,8554759	19,3612149
MEAN	1,09592928	0,78056082	9,83179226	10,3861906

Tabelle 22: Durchschnittliche spectralFluxMean-Werte für Fagott-Pedal und Fagott

Eine weitere Möglichkeit zur Feststellung der unterschiedlichen Klangeigenschaften ist durch Bestimmung der Mel-Frequenz-Cepstrum-Koeffizienten (*mfcc*). Das Mel, benannt nach dem englischen Wort *melody*, ist die Maßeinheit für die psychoakustische

Größe der Tonheit mit dem Formelzeichen Z und beschreibt die empfundene Tonhöhe. Zum ersten Mal beschrieben wurden das Mel sowie die Mel-Skala, basierend auf einem Ton mit der Frequenz f = 1000Hz, der mit dem Wert Z = 1000 mel festgelegt wurde, 1937 von Stevens, Volkman und Newmann (Stevens et. al. 1937: 185-190). Der Begriff Cepstrum wurde 1963 von Bogert, Healy und Tukey durch Umkehrung der ersten vier Buchstaben des englischen Wortes Spectrum eingeführt und bezeichnet das Spektrum des Frequenzspektrums eines Signals (Bogert et. al. 1963: 209-243). Neben dem DFT-Cepstrum werden typischerweise 13 *mfc*-Koeffizienten häufig zur automatisierten Spracherkennung verwendet (Pfister und Kaufmann 2008:94), jedoch auch zur Musikanalyse, um diese in verschiedene Genre einteilen zu können, zu diesem Zwecke leisten die ersten fünf Koeffizienten die besten Dienste (Tsanetakis und Cook 2002: 295). In Abbildung 181 ist zunächst ein Vergleich des Fagott-Pedals des Rosenberger-Flügels ohne sowie mit Zusatz-Pedalen mit einem echten Fagott in *pianissimo* zu sehen, zuerst *mfcc* 1-8, dann *mfcc* 1-13.

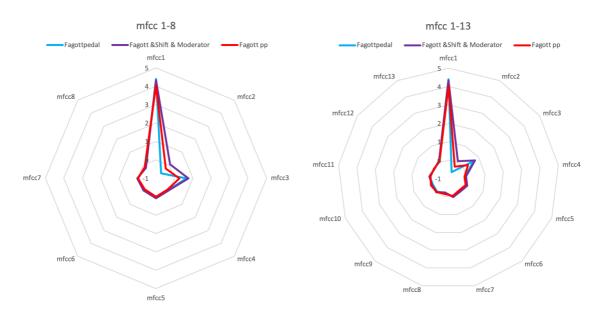


Abbildung 181: Fagott-Pedal und Fagott pp im Vergleich, mfcc 1-8 sowie mfcc 1-13

Da sämtliche *mfcc1*-Durchschnittswerte sehr ähnlich sind (4 bis 4,5), jedoch durch die große Abweichung von den anderen Werten (maximal 0,75) die Diagramme unübersichtlich erscheinen, folgen zur besseren Erkennbarkeit in Abbildung 182 zusätzlich die Diagramme der *mfcc*-Werte 2-8 sowie 2-13.

Auffallend ist, dass es in Bezug auf die Mel-Frequenz-Cepstrum-Koeffizienten sehr große Ähnlichkeiten gibt, nur bei *mfcc2* sind die Werte des Fagott-Pedals unter und die

des Fagott-Pedals mit zusätzlichen Shift- und Moderator-Pedalen über den Fagott-Werten und bei *mfcc3* sind die Durchschnittswerte beider Klavier-Varianten etwas höher.

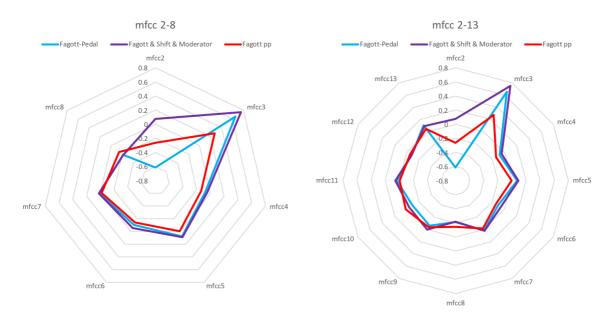


Abbildung 182: Fagott-Pedal und Fagott pp im Vergleich, mfcc2-8 sowie mfcc 2-13

Fast keine Ähnlichkeiten sind bei den Mel-Frequenz-Cepstrum-Koeffizienten zu erkennen, wenn die Klavier-Tönen mit Fagott-Tönen in *fortissimo* verglichen werden, bis auf einige wenige Werte sind die Abweichungen teilweise sehr stark (Abbildung 183).

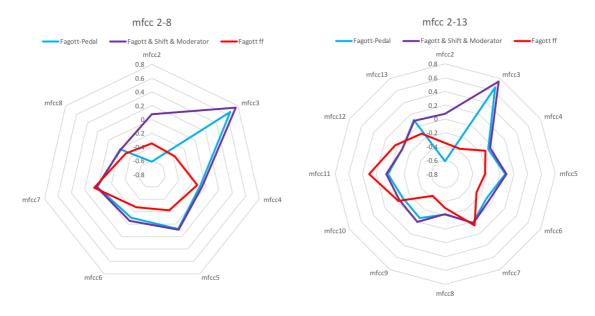


Abbildung 183: Fagott-Pedal und Fagott ff im Vergleich, mfcc2-8 sowie mfcc 2-13

Der Vollständigkeit halber wird in Abbildung 184 noch einmal derselbe Vergleich gezeigt, diesmal jedoch mit sämtlichen *mfcc*- Durchschnittswerten von 1-8 sowie 1-13.

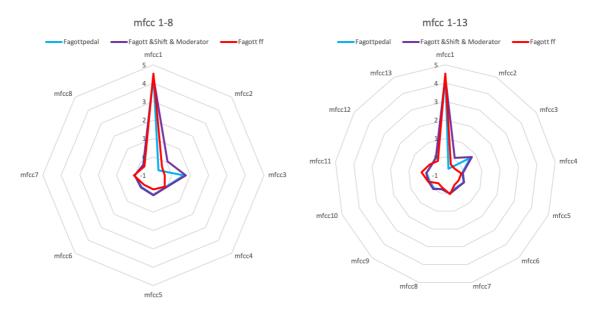


Abbildung 184: Fagott-Pedal und Fagott ff im Vergleich, mfcc 1-8 sowie mfcc 1-13

Ein interessantes Ergebnis zeigt dieser Vergleich auch betreffs der Aussage von Schiedmayer, wonach das Fagott-Pedal bei Fortepianos immer zusammen mit den Shift- und Moderator-Pedalen verwendet werden müsse, um einen dem originalen Fagott ähnlichen Klang zu erhalten (Schiedmayer 1824: 21). Sowohl bei den in diesem Kapitel angeführten Analysen der Klangdeskriptoren als auch bei den Mel-Frequenz-Cepstrum-Koeffizienten sind keine gravierenden Unterschiede zwischen Fagott-Pedal ohne und Fagott-Pedal mit Zusatz-Pedalen erkennbar. Ob das in diesem Fall eher ein zufälliges Resultat ist, oder ob es an der Klavierbau-Kunst von Michael Rosenberger liegt, dass das Fagott-Pedal auch alleine eine brauchbare Simulation des Fagott-Klanges ermöglicht, kann in dieser Arbeit nicht beantwortet werden, dazu müssten weitere Untersuchungen mit verschiedenen anderen Instrumenten durchgeführt werden.

In Tabelle 23 sind die detaillierten *mfcc*-Durchschnittswerte für Töne des Rosenberger-Flügels mit Fagott-Pedal allein, Fagott-Pedal zusätzlich mit Shift- und Moderator-Pedalen sowie des Fagotts sowohl in *pianissimo* als auch in *fortissimo* angeführt.

	mfcc1	mfcc2	mfcc3	mfcc4	mfcc5	mfcc6	mfcc7	mfcc8	mfcc9	mfcc10	mfcc11	mfcc12	mfcc13
Fagottpedal	4,393	-0,613	0,656	-0,076	0,075	-0,103	0,014	-0,211	-0,062	-0,094	0,030	-0,080	0,106
F.&S.&Mod.	4,329	0,077	0,756	-0,047	0,091	-0,056	0,024	-0,217	0,002	-0,037	0,054	-0,080	0,092
Fagott pp	4,030	-0,262	0,275	-0,134	-0,004	-0,140	-0,020	-0,146	-0,037	0,015	-0,009	-0,056	0,046
Fagott ff	4,519	-0,350	-0,375	-0,122	-0,220	-0,273	0,060	-0,310	-0,435	-0,015	0,304	0,036	-0,123

Tabelle 23: mfcc für Klavier und Fagott

5.3 Ergebnisse im Vergleich zum Mozart-Hammerflügel

Beim klanglichen Vergleich des Rosenberger-Flügels mit dem Mozart-Flügel von Walter ist wie beim Fagott ebenfalls ein direkter Ton zu Ton-Vergleich möglich, da sich diese Instrumente den gleichen Tonraum teilen. Der Rosenberger-Flügel verfügt zwar über 14 Tasten mehr, diese werden aber nicht für den Vergleich herangezogen, um exakte Ergebnisse zu erreichen. Wie bei den vorigen Vergleichen wurden auch hier mithilfe dem in Kapitel 4.5.3 vorgestellten Skript einige aussagekräftige Klangdeskriptoren berechnet, die in Folge vorgestellt werden.

Die *attackTime*-Werte sind für die Töne beider Instrumente relativ ähnlich, in der unteren Ton-Hälfte sind die Zeiten des Mozart-Flügels länger, in der oberen Ton-Hälfte dann die des Rosenberger-Flügels (Abbildung 185). Über den gesamten Tonumfang reichen die *attackTime*-Werte der Töne des Mozart-Flügels von 17 ms bis 76 ms, der Mittelwert ist 43 ms, die Werte des Rosenberger-Flügels erstrecken sich von 24 ms bis 73 ms, der Mittelwert ist fast gleich mit 41 ms.

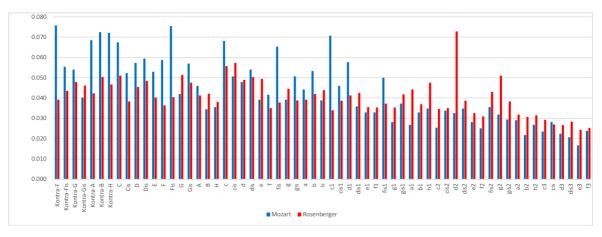


Abbildung 185: Vergleich Mozart - Rosenberger: attackTime

Interessant sind die *entropy*-Werte, beim Betrachten der Abbildung 186 fällt sofort auf, dass diese für sämtliche Töne des Mozart-Flügels fast gleich sind und immer im Bereich von 0,9 liegen, ebenso die Werte des Rosenberger-Flügels, die konstant etwas niedriger sind und bis auf die höchsten drei Töne immer im Bereich von 0,6 liegen, nur bei diesen sind die Werte mit ungefähr 0,8 etwas höher, bleiben aber auch unter denen des Mozart-Flügels. Diese Gleichmäßigkeit zeigt sich auch in den berechneten *entropy*-Werten, die beim Mozart-Flügel von 0,87 bis 0,96 mit einem Mittelwert von 0,94 reichen, beim Rosenberger-Instrument sind die Werte im Bereich von 0,55 bis 0,85, der Mittelwert beträgt 0,63.

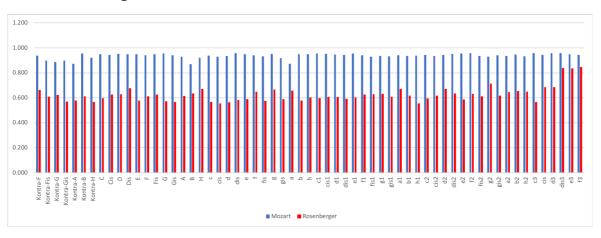


Abbildung 186: Vergleich Mozart - Rosenberger: entropy

Nicht ganz so gleichmäßig erscheinen die *harmonicPercussiveRatio*-Werte, hier fällt in Abbildung 187 sofort auf, dass im mittleren Tonbereich die Werte des Mozart-Flügels erheblich höher sind, im obersten Tonbereich sind dann die Werte des Rosenberger-Flügels deutlich höher. Über den kompletten Tonumfang erstrecken sich die *harmonicPercussiveRatio*-Werte des Mozart-Flügels von 1,67 bis 24,71, der Durchschnittswert ist 8,83, die Werte des Rosenberger-Flügels reichen von 2,35 bis 25,94, der Durchschnitt ist mit 8,52 fast gleich.

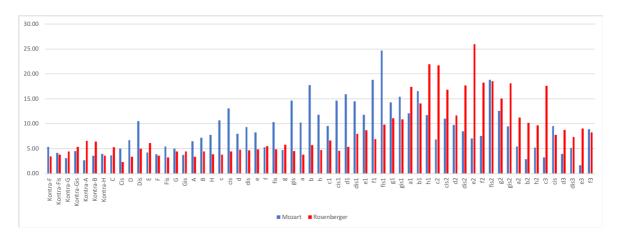


Abbildung 187: Vergleich Mozart - Rosenberger: harmonicPercussiveRatio

Eine deutliche Tendenz ist bei Betrachtung der *lenght*-Werte in Abbildung 188 zu erkennen, über fast den kompletten Tonumfang sind die Werte des Rosenberger-Flügels teilweise deutlich höher, nur bei den höchsten vier Tönen ist es umgekehrt, da sind die Werte des Mozart-Flügels leicht höher. Die *lenght*-Werte reichen beim Instrument von Mozart von 3,7 s bis 14,3, der Durchschnittswert ist 8,3 Sekunden, beim Rosenberger sind es 2,4 s bis 30,6 s, der durchschnittliche *lenght*-Wert beträgt fast doppelt so hohe 15,4 Sekunden.

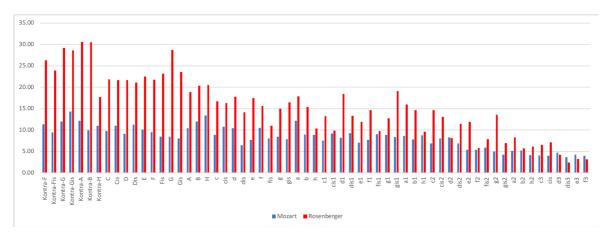


Abbildung 188: Vergleich Mozart - Rosenberger: lenght

Sehr ähnlich sind die *lowEnergy*-Werte bei beiden Instrumenten, wie in Abbildung 189 gut zu erkennen ist, mit nur wenigen Ausnahmen sind sie bei fast allen Tönen des Mozart-Flügels etwas höher und reichen von 0,57 bis 0,89, der Mittelwerte beträgt 0,72. Beim Rosenberger-Flügel erstrecken sich die *lowEnergy*-Werte von 0,55 bis 0,8 mit durchschnittlichen 0,63.

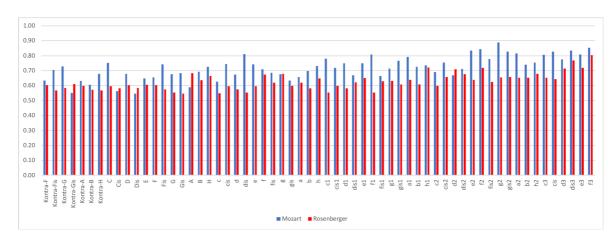


Abbildung 189: Vergleich Mozart - Rosenberger: lowEnergy

Wie sich in Abbildung 190 gut erkennen lässt, sind die *smoothness*-Werte bis auf wenige Ausnahmen, vorwiegend im mittleren Bereich, bei fast allen Tönen des Rosenberger-Flügels teilweise deutlich höher als die Werte des Mozart-Flügels, die von 0,19 bis 1,5 mit einem Mittelwert von 0,45 reichen. Die *smoothness*-Werte des Rosenberger-Flügels umfassen einen Bereich von 0,3 bis 1,53, der Durchschnittswert beträgt 0,72.

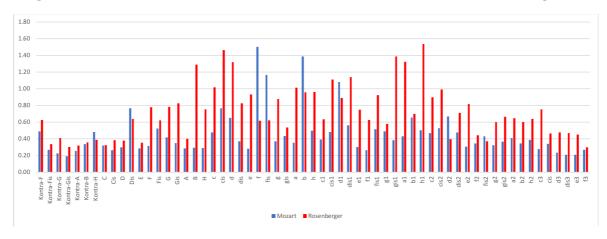


Abbildung 190: Vergleich Mozart - Rosenberger: smoothness

Ein Vergleich der *mfcc*-Mittelwerte von Tönen gespielt in *pianissimo* ohne Pedaleinsatz zeigt, dass sich die Klangeigenschaften beider Instrumente ziemlich ähneln und nur bei *mfcc2* ein größerer Unterschied besteht (Abbildung 191).

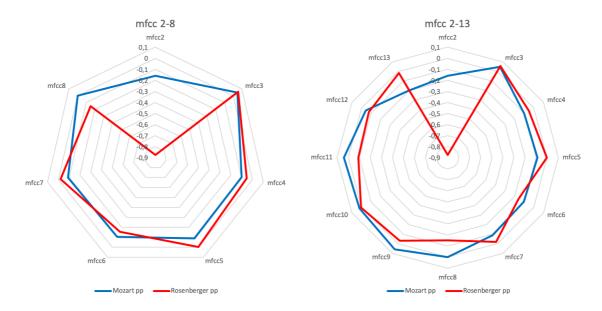


Abbildung 191: Vergleich Mozart- und Rosenberger-Flügel: mfcc 2-8 sowie mfcc 2-13 in pianissimo

Abbildung 192 zeigt noch einmal denselben Vergleich, diesmal mit sämtlichen *mfcc*-Durchschnittswerten von 1-8 sowie 1-13.

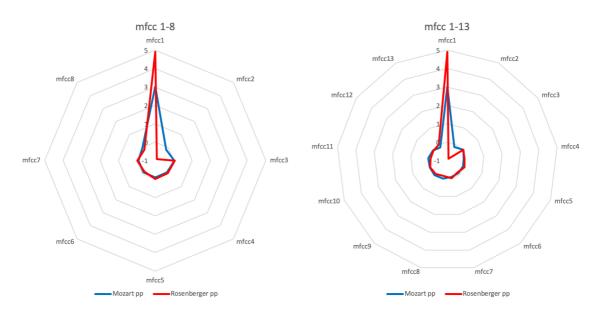


Abbildung 192: Vergleich Mozart- und Rosenberger-Flügel: mfcc 1-8 sowie mfcc 1-13 in pianissimo

In Tabelle 24 sind die detaillierten *mfcc*-Mittelwerte für Töne des Mozart-Flügels sowie des Rosenberger-Flügels in *pianissimo* angeführt.

	mfcc1	mfcc2	mfcc3	mfcc4	mfcc5	mfcc6	mfcc7	mfcc8	mfcc9	mfcc10	mfcc11	mfcc12	mfcc13
Mozart	3,019	-0,160	0,048	-0,100	-0,089	-0,103	-0,090	-,000	0,057	0,021	0,038	-0,043	-0,197
Rosenberger	4,914	-0,875	0,057	-0,052	-0,004	-0,156	-0,021	-0,152	-0,033	0,003	-0,091	-0,075	-0,017

Tabelle 24: mfcc-Werte für Mozart- und Rosenberger-Flügel in pp

Ein ähnliches Bild ergibt auch der Vergleich der *mfcc*-Durchschnittswerte von Tönen gespielt in *fortissimo* ohne Pedaleinsatz, in Abbildung 193 ist zu erkennen, dass die Klangeigenschaften beider Instrumente ebenfalls ziemlich ähnlich sind und wie bereits zuvor, besteht auch in *fortissimo*-Spielweise nur bei *mfcc2* ein größerer Unterschied.

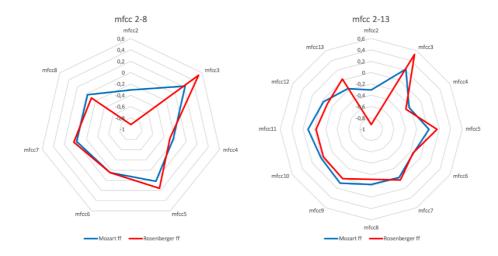


Abbildung 193: Vergleich Mozart- und Rosenberger-Flügel: mfcc 2-8 sowie mfcc 2-13 in fortissimo

In Abbildung 194 ist noch einmal dieser Vergleich mit sämtlichen *mfcc*-Werten von 1-8 sowie 1-13 zu sehen.

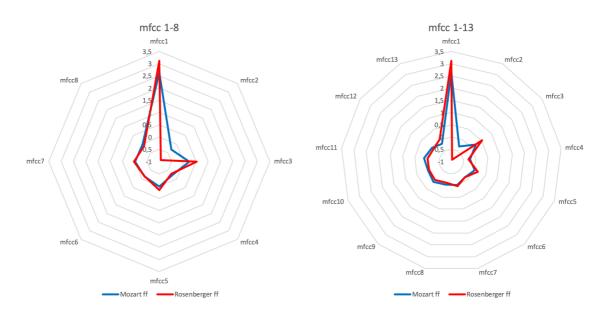


Abbildung 194: Vergleich Mozart- und Rosenberger-Flügel: mfcc 1-8 sowie mfcc 1-13 in fortissimo

Tabelle 25 zeigt die detaillierten *mfcc*-Mittelwerte für Töne des Mozart-Flügels sowie des Rosenberger-Flügels in *fortissimo*.

	mfcc1	mfcc2	mfcc3	mfcc4	mfcc5	mfcc6	mfcc7	mfcc8	mfcc9	mfcc10	mfcc11	mfcc12	mfcc13
Mozart	2,631	-0,308	0,223	-0,232	0,019	-0,148	-0,021	-0,026	0,100	0,016	0,114	-0,029	-0,173
Rosenberger	3,115	-0,915	0,527	-0,293	0,157	-0,154	0,033	-0,115	0,006	-0,026	-0,030	-0,107	0,020

Tabelle 25: mfcc-Werte für Mozart- und Rosenberger-Flügel in fortissimo

6 Zusammenfassung und Ausblick

6.1 Zusammenfassung

Nach der Einleitung dieser Masterarbeit, in der die Inhalte präsentiert worden waren, wurde ein Überblick über die historische und aktuelle Klang- und Klavier-Forschung verfasst. Darauf folgte eine Einführung in die Geschichte des Hammerklaviers, um die Leserinnen und Leser mit den Ursprüngen und der geschichtlichen Entwicklung der in dieser Arbeit hauptsächlich untersuchten Instrumenten, zwei in Wien gebauten, historischen Hammerklavieren, eines gebaut von Michael Rosenberger um 1820, das andere, als Mozart-Flügel bekannte, von Anton Walter um 1780, vertraut zu machen. Anschließend wurden die untersuchten Instrumente, die Tonaufnahmen, sowie die für die Analyse und Auswertung verwendete Software vorgestellt.

Im Hauptteil dieser Arbeit wurden die Tonaufnahmen von den zwei Hammerklavieren sowie eines Fagotts mittels Methoden des Music Information Retrieval, genau gesagt, mittels auf der Software-Plattform MATLAB basierender Skripte analysiert und für sämtliche Töne zahlreiche Klangparameter berechnet. Weil diese Mengen an Daten nur schwer überblickbar sind, wurden aus ihnen übersichtliche Diagramme erstellt, die verschiedene Vergleiche ermöglichten. Da der Rosenberger-Flügels eine Besonderheit aufweist, nämlich sechs Pedale, von denen fünf der Klang-Modifizierung sowie der Nachahmung eines Fagotts dienen und das sechste, das sogenannte "Türkische Pedal" Trommel und Becken als Art Begleitung zur Verfügung stellt, wurden besonders die durch die verschiedenen Pedale ermöglichten Spielweisen analysiert, um festzustellen, ob überhaupt und wie genau sich deren Einsatz auf die Klangeigenschaften auswirkt. Bei einer Betrachtung von 13 Klangdeskriptoren zeigte sich im Vergleich von Spielweisen ohne und mit den verschiedenen Pedal-Kombinationen, dass die Verwendung der Pedale tatsächlich teils drastische Auswirkungen auf die Klangcharakteristika der Töne hat und durch zahlreiche Klangvariationen zweifelsohne zu einem abwechslungsreichen Spiel beitragen kann.

Der Vergleich der mit dem Fagott-Pedal erzeugten Töne mit den Tonaufnahmen eines echten Fagotts zeigte, dass bei den meisten betrachteten Klangdeskriptoren es sehr deutliche Unterschiede gibt und die mithilfe des Fagott-Pedals erzeugten, durchaus zwar entfernt Fagott-ähnlichen Töne Anfang des 19. Jahrhunderts zwar eine nette Spielerei und wahrscheinlich eine beeindruckende Attraktion gewesen sein mochten, sie aber keinesfalls als Ersatz für ein echtes Fagott dienen können.

Interessantes zeigte der Vergleich des Rosenberger-Flügels mit dem Mozart-Flügel, obwohl letzterer bereits 40 Jahre früher gebaut worden war und sich in der Zwischenzeit zahlreiche Veränderungen und Verbesserungen bei der Klavier-Konstruktion etabliert hatten, sind die Klangeigenschaften beider Instrumente sehr ähnlich.

6.2 Ausblick

Die in dieser Arbeit erstellten Tonaufnahmen und Analysen beziehen sich größtenteils nur auf ein Instrument, einen Flügel von Michael Rosenberger. Da die Tonaufnahmen aus organisatorischen Gründen sowie mangels finanzieller Mittel nicht unter idealen Bedingungen durchgeführt werden konnten und teilweise Störgeräusche sowie Artefakte enthalten, bestünde noch großes Verbesserungspotential. Idealerweise wären Aufnahmen in einem komplett schallgedämmten Raum, um auch besonders leise *pianissimo*-Töne ohne störende Umgebungsgeräusche und äußere Einflüsse aufzeichnen zu können.

Für weitere Untersuchungen äußerst interessant wären Ton-Aufnahmen zahlreicher unterschiedlicher Tasteninstrumente aus den verschiedensten Epochen bis hin zu gegenwärtigen, modernen Klavieren mit anschließender Analyse und Berechnung der Klangcharakteristika, um einen umfassenden Vergleich sowie die klangliche Veränderung und Entwicklung im Laufe der Zeit dokumentieren zu können.

Da sich mittels Methoden des *Music Information Retrieval* sehr detaillierte Klangeigenschaften ermitteln lassen, wäre es auch sehr interessant, bei modernen Flügeln Messungen und Analysen mit verschiedenen Anschlag-Techniken und -Varianten durchzuführen und ihre Einflüsse auf die Klangfarbe zu ermitteln.

7 Literaturverzeichnis

- Ahrens, Christian. 1999. *Hammerklaviere mit Wiener Mechanik.* = Fachbuchreihe Das *Musikinstrument 71*. Frankfurt a. M.: Bochinsky.
- Albrecht, Claudio, Isabella Czedik-Eysenberg und Christoph Reuter. 2016 "W. A. Mozarts Hammerflügel im Vergleich Klanganalyse und Sample Library", Poster, DGM-Tagung 2016.
- Askenfelt, Anders und Erik V. Jansson. 1991. "From touch to string vibrations. II: The motion of the key and hammer". In: *The Journal of the Acoustical Society of America*. *Vol.90(5)*: 2383-2393.
- Askenfelt, Anders und Erik V. Jansson. 1993. "From touch to string vibrations. III: String motion and spectra". In: *The Journal of the Acoustical Society of America. Vol.93(4)*: 2181-2196.
- Bachmann, W., H. Bücker und B. Kohl. 1989. "Feinstrukturanalyse des Einschwingens eines Pianoklanges". In: *Acta Acustica united with Acustica 68 (2)*: 123–30.
- Backhaus, Herrmann. 1932. "Über die Bedeutung der Ausgleichsvorgänge in der Akustik". In: *Zeitschrift für technische Physik 13 (1)*: 31–46.
- Backhaus, Herrmann. 1937. "Nichtstationäre Schallvorgänge". In: *Ergebnisse der exakten Naturwissenschaften*. Berlin, Heidelberg: 237–94.
- Bacon, Richard A. und J. M. Bowsher. 1978. "A Discrete Model of a Struck String". In: *Acta Acustica united with Acustica 41 (1)*: 21–27.
- Badura-Skoda, Eva. 1988. Zur Frühgeschichte des Hammerklaviers. Tutzing: Schneider.
- Baines, Anthony. 1996. *Lexikon der Musikinstrumente*. Stuttgart Kassel: Metzler Bärenreiter.
- Banerji, D. und R. Ganguli. 1929. "The duration of contact between the pianoforte string and a hard hammer". In: *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 7 (42)*: 345–52.
- Bas de Haas, W. und Frans Wiering. 2011. "Hooked on Music Information Retrieval". In: *Empirical Musicology Review, 01 April 2011, Vol.5(4): 176-185*, 176.

- Bhargava, S. und R. N. Ghosh. 1924. "Elastic impact of pianoforte hammer". In: *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 47* (282): 1141–48.
- Bilhuber, Paul H. und C. A. Johnson. 1940. "The Influence of the Soundboard on Piano Tone Quality". In: *The Journal of the Acoustical Society of America* 11(3): 311–20.
- Blackham, E. D. 1965. "The Physics of the Piano". In: Scientific American 13: 88–99.
- Blüthner-Haessler, Ingbert. 1991. *Pianofortebau.* = Fachbuchreihe Das Musikinstrument 53. Frankfurt am Main: Bochinsky.
- Bluttner, Franz. 1982. "Objektive und subjektive Untersuchungen zum Einschwingen von Pianoklängen". In: *Das Musikinstrument 31*: 1140–46.
- Bogert, B. P., M. J. Healy und J. W. Tukey. 1963. "The quefrency analysis of time series for echoes: cepstrum, pseudo-autocovariance, cross-cepstrum and saphe cracking". In: *Proceedings of the Symposium on Time Series Analysis Vol. 15*: 209–43.
- Bork, Ingolf. 1992. "Klanguntersuchungen an Klavieren und Flügeln". In: *Instrumentenbau Zeitschrift 46 (7/8)*: 56–63.
- Burgoyne, J. A., I. Fujinaga und J. Stephen Downie. 2015. *Music Information Retrievel. A New Companion to Digital Humanities*. Chichester: Wiley/Blackwell: 213-228.
- Casey, M. A., R. Veltkamp, M. Goto, M. Leman, C. Rhodes und M. Slaney. 2008. "Content-Based Music Information Retrieval: Current Directions and Future Challenges". In: *Proceedings of the IEEE 96 (4)*: 668–96.
- Clarke, R. J. 1978. "The Analysis of Multiple Resonance in a Vibrating Mechanical System by the Use of the Electrical Transmission Line Analogy". In: *Acta Acustica united with Acustica 40 (1)*: 34–39.
- Clemencic, René. 1974. *Alte Musikinstrumente*. Erlesene Liebhabereien. Stuttgart: Parkland.
- Cole, Michael. 1998. *The pianoforte in the classical era*. Oxford: Clarendon Press.
- Conklin Jr., Harold A. 1996a. "Design and tone in the mechanoacoustic piano. Part I. Piano hammers and tonal effects". In: *The Journal of the Acoustical Society of America Vol.99 (6)*: 3286–96.

- Conklin Jr., Harold A. 1996b. "Design and tone in the mechanoacoustic piano. Part III. Piano strings and scale design". In: *The Journal of the Acoustical Society of America Vol.100 (3)*: 1286–1300.
- Czedik-Eysenberg, Isabella. 2016. Music Information Retrieval und Klangfarbe 'Timb-Ret': ein interaktives System zur inhaltsbasierten Suche komplexer Klänge anhand von High-Level-Deskriptoren. Masterarbeit. Universität Wien.
- Das, Panchanon. 1927. "Theory of the elastic pianoforte hammer". In: *Proceedings of the Physical Society 40 (1)*: 29.
- De Haas, W. B. 2012. *Music information retrieval based on tonal harmony*. Dissertation. Utrecht University.
- Deb, K. K. 1972. "Dynamics of the pianoforte string and hammer". In: *Journal of Sound* and *Vibration 20 (1)*: 1–7.
- Dijksterhuis, P. R. und T. Verhey. 1969. "An Electronic Piano". In: *Journal of the Audio Engineering Society 17 (3)*: 266–271.
- Downie, J. Stephen. 2003. "Music information retrieval". In: *Annual Review of Information Science and Technology*, 2003, Vol.37(1): 295-340.
- Downie, J. Stephen. 2004. "The Scientific Evaluation of Music Information Retrieval Systems: Foundations and Future". In: *Computer Music Journal Vol.28(2)*: 12-23.
- Fletcher, Harvey, E. Donnell Blackham und Richard Stratton. 1962. "Quality of Piano Tones". In: *The Journal of the Acoustical Society of America Vol.34(6)*: 749–61.
- Flotzinger, Rudolf. 2001. "Poll, Hermann", in: *Oesterreichisches Musiklexikon online*. https://www.musiklexikon.ac.at/ml/musik P/Poll Hermann.xml (abgerufen am 13.10.2018).
- Fricke, Jobst Peter. 1982. "Hammerberührungsdauer und Saitenform bei der angeschlagenen Klaviersaite". In: *Fortschritte der Akustik FASE/DAGA 1982*: 891–94.
- Fricke, Jobst Peter. 1985. "Zyklische Spektren tiefer Klaviersaiten". In: *Fortschritte der Akustik DAGA 1985*: 439–42.
- Fricke, Jobst Peter. 1987. "Der Einfluss des Hammers auf Saitenschwingung und Klangqualität bei Flügeln". In: *Fortschritte der Akustik - DAGA 1987*, Sonderdruck

- Fricke, Jobst Peter. 1996. "Die Klangcharakteristik von zwei Hammerflügeln des Musikwissenschaftlichen Instituts der Universität zu Köln, erklärt durch Anschlagbewegung und Saitenanregung". In: *Zur Geschichte des Hammerklaviers = Michaelsteiner Konferenzberichte Bd. 50*, Michaelstein: Inst. für Aufführungspraxis: 156–70.
- Fricke, Jobst Peter und B. Gätjen. 1991. "Klangliche Ähnlichkeiten zwischen modernen Flügeln und Hammerklavieren". In: *Fortschritte der Akustik DAGA 1986*, 393-96.
- Fuchs, Helmut. 1973. "Zur Akustik des Klavieres I Mechanische Impedanz von Saite und Resonanzboden". In: *Das Musikinstrument 22(1)*: 35-37.
- Gängler, Thomas. 2009. *Metadaten und Merkmale zur Verwaltung von persönlichen Musiksammlungen*. Belegarbeit. Technische Universität Dresden
- George, W. H. und H. E. Beckett. 1927. "The Energy of the Struck String." In: *Proceedings* of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character (1905-1934), Vol.116(773): 115-140.
- Ghosh, R. N. 1926. "On the choice of striking point in the pianoforte string". In: *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1* (4): 875–85.
- Ghosh, R. N. 1927. "A note on the elastic impact of the pianoforte hammer". In: *Proceedings of the Physical Society 40 (1)*: 224.
- Ghosh, R. N. 1934. "On the Hertzian impact of an elastic hammer on a damped pianoforte string". In: *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 17 (113)*: 521–44.
- Giordano, Nicholas J. 2010. *Physics of the piano*. Oxford: Oxford Univ. Press.
- Hall, Donald E. 1986. "Piano string excitation in the case of small hammer mass". In: *The Journal of the Acoustical Society of America 79*: 141–47.
- Harker, Herrenden G. F. 1937. "The Principles Underlying the Tuning of Keyboard Instruments to Equal Temperament". In: *The Journal of the Acoustical Society of America* 8 (4): 243–56.

- Hellbrück, Jürgen und Wolfgang Ellermeier. 2004. *Hören*. Göttingen [u.a.]: Hogrefe, Verl. f. Psychologie.
- Helmholtz, Hermann von. 1863. *Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik*. Braunschweig: Vieweg.
- Henkel, Hubert. 1996. "Art. Klavier" *MGG Online*. https://www-mgg-online-com.uac-cess.univie.ac.at/mgg/stable/13635 (abgerufen am 13.10.2018).
- Hiller, Lejaren und Pierre Ruiz. 1971. "Synthesizing Musical Sounds by Solving the Wave Equation for Vibrating Objects: Part 1". In: *Journal of the Audio Engineering Society 19 (6)*: 462–470.
- Hopfner, Rudolf, Alfons Huber und Beatrix Darmstädter. 2008. *Das Wiener Klavier bis* 1850: Bericht des Symposiums "Das Wiener Klavier bis 1850" veranstaltet von der Sammlung alter Musikinstrumente des Kunsthistorischen Museums Wien. Wien: Musikantiquariat und Verlag Hans Schneider.
- Hundley, Chase T., Hugo Benioff und Daniel W. Martin. 1978. "Factors contributing to the multiple rate of piano tone decay". In: *The Journal of the Acoustical Society of America 64 (5)*: 1303–9.
- Jung, Karl. 1964. "Harmonische und unharmonische Obertöne bei Klaviersaiten". In: *Das Musikinstrument 13*: 756–58.
- Junghanns, Herbert. 1960. *Der Piano- und Flügelbau*. = *Fachbuchreihe Das Musikinstru- ment 4*. Frankfurt a. M.: Verl. Das Musikinstrument.
- Kaufmann, Walter. 1894. *Ueber die Bewegungen geschlagener Saiten*. Berlin: Buchdr. v. Funcke & Naeter.
- Kees, Stephan Ritter von. 1830. Systematische Darstellung der neuesten Fortschritte in den Gewerben und Manufacturen und des gegenwärtigen Zustandes derselben. Wien: Verlag Carl Gerold.
- Kent, Earle L. 1963. "Influence of Irregular Patterns in the Inharmonicity of Piano-Tone Partials upon Tuning Practice". In: *The Journal of the Acoustical Society of America 35 (11)*: 1909–1909.
- Kirk, Roger E. 1959. "Tuning Preferences for Piano Unison Groups". In: *The Journal of the Acoustical Society of America 31 (12)*: 1644–48.

- Knees, Peter und Markus Schedl. 2015. "Proceedings of the 38th International ACM SIGIR Conference on research and development in information retrieval".
- Kock, Winston E. 1937. "The Vibrating String Considered as an Electrical Transmission Line". In: *The Journal of the Acoustical Society of America 8*: 227–33.
- Kowar, Helmut. 1978. Die Klangspektren von Hammerklavieren.
- Lartillot, Olivier. 2014. "MIR toolbox PRIMER for absolute beginners with concrete musical applications". https://www.jyu.fi/hytk/fi/laitokset/mutku/en/rese-arch/materials/mirtoolbox/Primer (abgerufen am 13.10.2018).
- Lartillot, Olivier. 2017. "MIR toolbox 1.7 User's Manual". https://www.jyu.fi/hytk/fi/laitokset/mutku/en/research/materials/mirtoolbox/manual1-7.pdf (abgerufen am 13.10.2018).
- Lartillot, Olivier und Petri Toiviainen. 2007. *MIR in Matlab (II): A Toolbox for Musical Feature Extraction from Audio.* Proceedings of the 10th International Conference on Digital Audio Effects, Bordeaux, France. https://dblp.unitrier.de/rec/html/conf/ismir/LartillotT07 (abgerufen am 13.10.2018).
- Lartillot, Olivier, Petri Toiviainen und Tuomas Eerola. 2007. *A Matlab Toolbox for Music Information Retrieval*. Bd. 4. Data Analysis, Machine Learning and Applications.
- Latcham, Michael und Rencontres Internationales Harmoniques. 2006. *Music of the past, instruments and imagination: proceedings of the harmoniques International Congress, Lausanne 2004*. Bern: Peter Lang.
- Lieber, Edgar. 1966. "Der Einfluss des Resonanzbodens auf den Pianoklang". In: *Das Musikinstrument 15*: 858–64.
- Lottermoser, Werner. 1974. "Zum Anschlag des Klaviers". In: *Instrumentenbau-Zeitschrift 28*: 624.
- Lustig, Monika. 1996. *Zur Geschichte des Hammerklaviers*. = *Michaelsteiner Konferenz-berichte 50*. Michaelstein: Inst. für Aufführungspraxis.
- Madhu, Nilesh. 2009. "Note on measures for spectral flatness". In: *Electronics Letters* 45: 1195 1196
- Martin, Daniel W. 1947. "Decay Rates of Piano Notes". In: Journal of the Acoustical

- Society of America 1947 19 (4): 535-41.
- Maunder, Charles R. F. 1998. *Keyboard instruments in eighteenth-century Vienna*. Oxford [u.a.]: Clarendon Press.
- Meglitsch, Christina. 2003. *Clavierland Wien*. Dissertation. Universität Wien.
- Meyer, Andreas. 1980. "Akustische Untersuchungen an Klavieren, Teil II Qualitätsbestimmung durch Hörtests". In: *Das Musikinstrument 29(11)*: 1432–41.
- Meyer, Jürgen und Alois Melka. 1983. "Messung und Darstellung des Ausklingverhaltens von Klavieren". In: *Das Musikinstrument 32*: 1049–69.
- Mooers, Calvin N. 1951. *Making information retrieval pay. = Zator technical bulletin no.* 55, 13 l. Boston: Zator Co.
- Müller, Meinard. 2007. *Information retrieval for music and motion*. Berlin [u.a.]: Springer.
- Nakamura Isao. 1979. "Piano no Onkyō-gakuteki no Tenbō (Ein Überblick über die akustische Klavier-Forschung)". In: *The Journal of The Acoustical Society of Japan 35(8)*: 447-55.
- Orio, Nicola. 2006. "Music Retrieval: A Tutorial and Review". In: *Foundations and Trends*® *in Information Retrieval 1 (1)*: 1–90.
- Pardo, Bryan. 2006. "Music information retrieval". In: *Communications of the ACM Vol.49 (8)*: 28–31.
- Paul, Oscar. 1868. Geschichte des Claviers vom Ursprunge bis zu den modernsten Formen dieses Instruments nebst einer Uebersicht über die musikalische Abteilung der Pariser Weltausstellung im Jahre 1867. Leipzig: A. H. Payne.
- Peeters, Geoffroy. 2004. "A large set of audio features for sound description (similarity and classification) in the CUIDADO project". CUIDADO I.S.T. Project Report.
- Peeters, Geoffroy, Bruno Giordano, P. Susini, Nicolas Misdariis und Stephen Mcadams. 2011. "The Timbre Toolbox: Extracting audio descriptors from musical signals". In: *The Journal of the Acoustical Society of America 130*: 2902–16.
- Pfister, Beat und Tobias Kaufmann. 2008. *Sprachverarbeitung: Grundlagen und Methoden der Sprachsynthese und Spracherkennung*. Berlin Heidelberg: Springer.

- Pollens, Stewart. 1995. *The early pianoforte*. Cambridge musical texts and monographs. Cambridge [u.a.]: Cambridge Univ. Press.
- Quitter, J. 1958. "Research and development on the piano". In: *IRE Transactions on Audio AU-6 (5)*: 96–103.
- Raeburn, Michael. 1993. Geschichte der Musik. München [Mainz]: Kindler Schott.
- Railsback, O. L. 1937. "A Chromatic Stroboscope". In: *The Journal of the Acoustical Society of America 9 (1)*: 37–42.
- Railsback, O. L. 1938. "Scale Temperament as Applied to Piano Tuning". In: *The Journal of the Acoustical Society of America 9 (3)*: 274–274.
- Raman, C. V. und Bhabonath Banerji. 1920. "On Kaufmann's Theory of the Impact of the Pianoforte Hammer". In: *Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 97 (682)*: 99–110.
- Reiß, Karl. 1979. "Klanganalysen von Klavier- und Orgelklängen". In: *Das Musikinstrument 28*: 1198–1201.
- Restle, Konstantin. 1991. *Bartolomeo Christofori und die Anfänge des Hammerclaviers: Quellen, Dokumente und Instrumente des 15. bis 18. Jahrhunderts*. München: Ed. Maris.
- Restle, Konstantin und Attila Csampai. 2000. *Faszination Klavier 300 Jahre Pianofortebau in Deutschland*. München [u.a.]: Prestel.
- Reuter, Christoph. 1995. *Der Einschwingvorgang nichtperkussiver Musikinstrumente*. = *Europäische Hochschulschriften: Reihe 36*, Musikwissenschaft 148. Frankfurt am Main, Wien [u.a.]: Lang.
- Reuter, Christoph. 2002. *Klangfarbe und Instrumentation.* = *Systemische Musikwissenschaft 5*. Frankfurt am Main, Wien [u.a.]: Lang.
- Rijsbergen, C. J. van. 1975. *Information retrieval*. London [u.a.]: Butterworths.
- Rimbault, Edward F. 1860. *The pianoforte, its origin, progress, and construction*. London: Cocks & Co.
- Risset, J. C. 1971. *An introductory catalogue of computer synthesized sounds*. Murray Hill: Bell Telephone Laboratories.

- Rowland, David. 1993. *A history of pianoforte pedalling.* = *Cambridge musical texts and monographs.* Cambridge [u.a.]: Cambridge Univ. Pr.
- Ruf, Wolfgang und Christian Ahrens. 1991. *Lexikon Musikinstrumente*. Mannheim Wien [u.a.]: Meyers Lexikonverl.
- Sadie, Stanley. 2001. *The new Grove dictionary of music and musicians*. London New York, NY: Macmillan Grove.
- Schiedmayer, Johann Lorenz. 1824. *Kurze Anleitung zu einer richtigen Kenntnis und Behandlung der Forte-Pianos*. Tübingen: Gulde.
- Schubert, Emery; Wolfe, Joe und Tarnopolsky, Alex. 2004. "Spectral centroid and timbre in complex, multiple instrumental texture". In: *Proceedings of the international conference on music perception and cognition*, Illinois: North Western University: 112–116.
- Schuck, O. H. und R. W. Young. 1943. "Observations on the Vibrations of Piano Strings". In: *The Journal of the Acoustical Society of America 15 (1)*: 76–76.
- Sethares, William A. 2005. *Tuning, timbre, spectrum, scale*. Berlin [u.a.]: Springer.
- Shankland, R. S. und J. W. Coltman. 1939. "The Departure of the Overtones of a Vibrating Wire From a True Harmonic Series". In: *The Journal of the Acoustical Society of America 10 (3)*: 161–66.
- Siedenburg, Kai, Ichiro Fujinaga und Stephen McAdams. 2016. "A Comparison of Approaches to Timbre Descriptors in Music Information Retrieval and Music Psychology". In: *Journal of New Music Research 45 (1)*: 27–41.
- Sivian, L. J., H. K. Dunn und S. D. White. 1931. "Absolute Amplitudes and Spectra of Certain Musical Instruments and Orchestras". In: *The Journal of the Acoustical Society of America 2 (3)*: 330–71.
- Stevens, S. S., J. Volkmann und E. B. Newman. 1937. "A Scale for the Measurement of the Psychological Magnitude Pitch". In: *The Journal of the Acoustical Society of America 8 (3)*: 185–90.
- Tzanetakis, G. und P. Cook. 2002. "Musical genre classification of audio signals". In: *IEEE Transactions on Speech and Audio Processing, July 2002, Vol.10(5)*: 293-302.

- Vierling, Oskar. 1937. "Über Klaviersaitenschwingungen". In: *Mitteilung aus dem Institut für Schwingungsforschung an der Technischen Hochschule Berlin*: 103–5.
- Voigt, Wolfgang und Christoph Reuter. 2005. Vergleichende Untersuchungen zur Klangerzeugung und Klangfarbe historischer Gitarren und Zistern. = Michaelsteiner Konferenzberichte 66. Dößel: Janos Stekovics.
- Watanabe Yoshio. 2000. Early Keyboard Instruments Cembalo · Fortepiano. Tokio: Shoseki
- Weinreich, Gabriel. 1977. "Coupled piano strings". In: *The Journal of the Acoustical Society of America 62 (6)*: 1474–84.
- Weinreich, Gabriel. 1979. "The Coupled Motions of Piano Strings". In: *Scientific American 240 (1)*: 118–27.
- Weyer, R.-D. 1976. "Time-Frequency-Structures in the Attack Transients of Piano and Harpsichord Sounds". In: *Acta Acustica united with Acustica 35 (4)*: 232–52.
- White, William Braid. 1937. "Practical Tests for Determining the Accuracy of Pianoforte Tuning". In: *The Journal of the Acoustical Society of America 9 (1)*: 47–50.
- Wolf, Dietrich und Helmut Müller. 1968. "Normal Vibration Modes of Stiff Strings". In: *The Journal of the Acoustical Society of America* 44 (4): 1093–97.
- Wolf, S. K. und W. J. Sette. 1935. "Some Applications of Modern Acoustic Apparatus: Investigations on Piano Tones". In: *The Journal of the Acoustical Society of America 6 (3)*: 160–68.
- Young, Robert W. 1949. "Influence of Humidity on the Tuning of a Piano". In: *The Journal of the Acoustical Society of America 21 (6)*: 580–85.
- Young, Robert W. 1952. "Inharmonicity of Plain Wire Piano Strings". In: *The Journal of the Acoustical Society of America 24 (3)*: 267–73.

8 Anhang

8.1 Fagott-Vergleichswerte

Fagott-Vergleichswerte: Annoyance

	F-Pedal	F & S & M	Fagott pp	Fagott ff
Kontra-B	-0,3161315	-0,4638926	0,33173748	0,71525515
Kontra-H	-0,4068148	-0,6944788	0,29008446	0,63615913
С	-0,3686514	-0,6269254	0,22172761	0,58127618
Cis	-0,4120402	-0,2939034	0,47030163	0,58128962
D	-0,2396258	-0,336487	0,29924221	0,58237863
Dis	-0,258741	-0,3942464	0,36643133	0,73903091
E	-0,3614627	-0,5938862	0,33736761	0,75225226
F	-0,3051278	-0,7843086	0,36228732	0,5935821
Fis	-0,2456782	-0,3562581	0,37400167	0,62374319
G	-0,4256668	-0,5755109	0,47089796	0,53040569
Gis	-0,2402572	-0,2639905	0,46870976	0,60237598
A	-0,3439673	-0,3909343	0,40727384	0,73089644
В	-0,2802146	-0,5314795	0,49384341	0,57845581
Н	-0,2348527	-0,3228615	0,33681375	0,53351581
С	-0,2258278	-0,1951268	0,31254852	0,61047111
cis	-0,2230524	-0,2142571	0,36172368	0,50883853
d	-0,5430006	-0,784954	0,42271832	0,66324841
dis	-0,3083771	-0,3031012	0,41584564	0,5758758
e	-0,1758453	-0,3284086	0,19487385	0,52154485
f	-0,0543908	-0,1381338	0,3923493	0,49089489
fis	-0,2479107	-0,3256659	0,1309903	0,48931838
g	-0,1283398	-0,1729066	0,06496656	0,36549376
gis	-0,1214059	-0,3183184	0,30102009	0,48888791
a	-0,2235413	-0,3450674	0,01629363	0,41715789
b	-0,3176409	-0,4905331	0,1002802	0,31185012
h	-0,2466106	-0,5117093	0,04346362	0,31668641
c1	-0,399347	-0,4809873	-0,0263242	0,08884803
MIN	-0,5430006	-0,784954	-0,0263242	0,08884803
MAX	-0,0543908	-0,1381338	0,49384341	0,75225226
MEAN	-0,2835008	-0,4162345	0,29486924	0,54184196

Fagott-Vergleichswerte: AttackTime

	F-Pedal	F & S & M	Fagott pp	Fagott ff
Kontra-B	0,04383333	0,04041667	0,11283447	0,07546485
Kontra-H	0,03166667	0,04275	0,09614512	0,06095238
С	0,0575	0,04133333	0,14657596	0,07147392
Cis	0,04183333	0,03858333	0,09687075	0,05405896
D	0,04616667	0,04791667	0,13460317	0,04897959
Dis	0,05166667	0,05383333	0,16290249	0,06022676
E	0,042	0,04133333	0,15564626	0,05877551
F	0,03983333	0,03433333	0,13569161	0,05623583
Fis	0,04275	0,04366667	0,0954195	0,04970522
G	0,04833333	0,04741667	0,13569161	0,0707483
Gis	0,04583333	0,04941667	0,08562358	0,05587302
A	0,04408333	0,04658333	0,07873016	0,05369615
В	0,04425	0,04541667	0,07111111	0,0555102
Н	0,03891667	0,03941667	0,07111111	0,05079365
С	0,05675	0,056	0,08816327	0,05405896
cis	0,04933333	0,05508333	0,06566893	0,05369615
d	0,03658333	0,05175	0,10195011	0,05804989
dis	0,0455	0,04916667	0,08126984	0,05079365
e	0,04466667	0,04325	0,08671202	0,05877551
f	0,05291667	0,04375	0,09469388	0,05333333
fis	0,03466667	0,03658333	0,11428571	0,04353741
g	0,03958333	0,04233333	0,13024943	0,08054422
gis	0,03783333	0,04166667	0,09977324	0,05986395
a	0,03983333	0,04208333	0,07437642	0,05043084
b	0,03325	0,03658333	0,08526077	0,04789116
h	0,038	0,03875	0,08054422	0,05623583
c1	0,03208333	0,03483333	0,098322	0,04571429
MIN	0,03166667	0,03433333	0,06566893	0,04353741
MAX	0,0575	0,056	0,16290249	0,08054422
MEAN	0,04295062	0,04386111	0,10297136	0,05686739

Fagott-Vergleichswerte: Brightness

	F-Pedal	F & S & M	Fagott pp	Fagott ff
Kontra-B	0,17659407	0,09050194	0,04081116	0,23735905
Kontra-H	0,12700444	0,08989175	0,05784459	0,18132486
С	0,15805331	0,0708151	0,04788133	0,15374618
Cis	0,09213083	0,16760388	0,05804025	0,21826228
D	0,192475	0,1944019	0,0315468	0,13922201
Dis	0,18766251	0,11831644	0,04357947	0,18293543
E	0,12318644	0,06112448	0,03254014	0,16124953
F	0,16729479	0,03207336	0,03081215	0,12280597
Fis	0,2658331	0,23933189	0,02949425	0,13045464
G	0,13935017	0,13830067	0,03603045	0,11666303
Gis	0,23543144	0,20946181	0,03323491	0,12202107
A	0,15271454	0,23102652	0,04154702	0,15664594
В	0,18987145	0,09404541	0,0352859	0,14654206
Н	0,15518599	0,11943655	0,05170175	0,16064131
С	0,19948205	0,21611854	0,03440453	0,11663261
cis	0,20354426	0,32141721	0,0436891	0,1651874
d	0,07538595	0,04456865	0,05153708	0,14326351
dis	0,18808902	0,204635	0,04115734	0,14858872
е	0,29759525	0,19194134	0,05256153	0,19138847
f	0,17151389	0,28173975	0,047825	0,1299506
fis	0,26165229	0,17886514	0,05279142	0,159234
g	0,3116894	0,35343203	0,03557636	0,10608865
gis	0,2459792	0,24691062	0,06948548	0,1301571
a	0,2132928	0,20147676	0,06956212	0,17033092
b	0,27091404	0,19171212	0,05399398	0,18627345
h	0,24998829	0,11585614	0,048763	0,12808991
c1	0,17004155	0,2152659	0,06392478	0,13639887
MIN	0,07538595	0,03207336	0,02949425	0,10608865
MAX	0,3116894	0,35343203	0,06956212	0,23735905
MEAN	0,19340578	0,17112114	0,04576377	0,15338732

Fagott-Vergleichswerte: Entropy

	F-Pedal	F & S & M	Fagott pp	Fagott ff
Kontra-B	0,65018477	0,61648861	0,54021294	0,64158541
Kontra-H	0,61964498	0,59991033	0,58050116	0,64850973
С	0,64787707	0,6144801	0,55097406	0,62058187
Cis	0,63893285	0,67005401	0,55229295	0,65172607
D	0,68355692	0,71401717	0,5031556	0,63672029
Dis	0,66278089	0,61469084	0,5300877	0,63624596
E	0,61544522	0,58845015	0,52277269	0,58383685
F	0,60842009	0,53144462	0,51170532	0,56094449
Fis	0,69598147	0,67445106	0,5263259	0,59372535
G	0,66764096	0,70035546	0,52746295	0,59752087
Gis	0,64823631	0,65944282	0,48288477	0,56574007
A	0,63249866	0,73575465	0,51966362	0,61199018
В	0,62590429	0,62014759	0,51215512	0,61909899
Н	0,59868921	0,58780788	0,51305456	0,60351251
С	0,63645202	0,61774014	0,49051133	0,56911435
cis	0,66695768	0,67614976	0,49973321	0,57688237
d	0,56471053	0,5673081	0,52244125	0,58334548
dis	0,63970815	0,63554928	0,50920076	0,61990941
e	0,67523809	0,64124935	0,47794488	0,60461461
f	0,66295998	0,68696674	0,48304826	0,5360156
fis	0,70138743	0,66674784	0,47325551	0,56259121
g	0,66628765	0,67301881	0,47930274	0,51573825
gis	0,68496019	0,67934787	0,50418306	0,54854686
a	0,71495078	0,61400415	0,51510866	0,56525743
b	0,63926585	0,62264265	0,53022883	0,60648972
h	0,7169042	0,64814549	0,51001681	0,53687699
c1	0,65583473	0,69919833	0,49967908	0,53895091
MIN	0,56471053	0,53144462	0,47325551	0,51573825
MAX	0,7169042	0,73575465	0,58050116	0,65172607
MEAN	0,65264485	0,64279866	0,51362606	0,59022488

Fagott-Vergleichswerte: Roughness

	F-Pedal	F & S & M	Fagott pp	Fagott ff
Kontra-B	43,4132752	24,7286695	1596,91702	3358,19706
Kontra-H	25,7344057	5,85875616	1271,21259	2227,69883
С	27,6729383	8,45703739	998,387634	3317,29243
Cis	12,0262715	15,9546839	2622,00574	2156,93453
D	23,3986417	4,32726956	1224,22482	2048,34022
Dis	24,0517014	4,03260233	2024,56596	2443,0865
E	34,9010738	13,2280033	1334,17561	3079,46416
F	63,3111364	4,31369062	984,502787	1716,94817
Fis	30,2746332	7,9786336	1810,12889	2170,24251
G	23,9365313	7,66252636	1356,07096	1567,71559
Gis	13,0653686	12,8319931	1066,30579	1308,34232
A	13,092473	8,00841556	1267,06357	2482,98493
В	25,0424116	9,34964643	1293,36551	1227,93013
Н	12,1432108	8,23158599	562,748129	607,19154
С	56,3681882	34,1181459	372,402968	979,936652
cis	14,3541435	4,20187855	577,344435	434,917475
d	5,10877953	2,35687555	459,8451	820,558329
dis	16,1999665	6,38775333	387,832941	410,922967
e	25,5172683	7,71935679	238,15577	250,368457
f	21,2537301	17,1912557	308,724355	331,858426
fis	11,3424785	1,74632849	151,287495	241,738241
g	24,1182927	1,6146848	85,5266236	278,744636
gis	17,6699878	1,04816918	174,753755	126,642042
a	7,22311131	1,71736643	77,1779172	202,439063
b	5,54397457	0,67854052	32,6345814	82,7190365
h	13,2641859	1,32924404	22,2865964	57,6736489
c1	0,55260753	1,02203888	14,0754078	22,5342088
MIN	0,55260753	0,67854052	14,0754078	22,5342088
MAX	63,3111364	34,1181459	2622,00574	3358,19706
MEAN	21,8733625	8,00352414	826,434184	1257,53415

Fagott-Vergleichswerte: Spectral Centroid

	F-Pedal	F & S & M	Fagott pp	Fagott ff
Kontra-B	937,879186	822,41693	632,479264	1878,9748
Kontra-H	1002,03231	844,487019	747,5617	1385,49611
С	1027,93678	801,693096	715,715898	1145,83799
Cis	801,643366	1060,61235	747,953948	1379,77788
D	1051,94332	1290,05083	581,936865	1088,93368
Dis	1341,18723	1046,093	669,810036	1276,21179
E	886,698307	829,538387	620,602461	1090,55649
F	1067,63869	760,417661	625,994717	1041,08557
Fis	1346,25421	1333,98829	693,242186	1146,86713
G	934,752356	1677,95615	617,397225	997,92357
Gis	1357,65471	1155,17519	649,227611	1056,75615
A	969,193123	1728,26287	723,86166	1203,96449
В	1067,71776	883,399588	633,790728	1260,74836
Н	951,100811	942,971224	754,709003	1199,46574
С	1078,47774	1150,14317	647,07479	1079,60335
cis	1177,70543	1484,28512	680,960739	1261,72809
d	839,618872	838,855772	774,096253	1381,93842
dis	1155,40141	1220,31438	685,880196	1206,8383
e	1569,85857	1244,5047	770,715071	1385,48768
f	942,300886	1465,01657	814,73905	1075,88043
fis	1477,87351	1030,58267	887,57428	1298,12026
g	1446,42133	1707,4821	700,057589	1076,45342
gis	1323,57874	1293,35949	926,159828	1190,89175
a	1809,92212	1113,53715	958,944148	1314,94401
b	1305,59522	1241,39034	863,238565	1643,99063
h	1392,95074	877,960947	852,512587	1243,92576
c1	991,76833	1257,95495	822,105356	1280,75829
MIN	801,643366	760,417661	581,936865	997,92357
MAX	1809,92212	1728,26287	958,944148	1878,9748
MEAN	1157,59648	1151,94259	733,271917	1244,19112

Fagott-Vergleichswerte: SpectralFlatness

	F-Pedal	F & S & M	Fagott pp	Fagott ff
Kontra-B	0,00499562	0,01045392	0,02098913	0,06240887
Kontra-H	0,0128552	0,01419347	0,02347569	0,05161097
С	0,01282836	0,01335508	0,02441152	0,03285221
Cis	0,0075022	0,00894634	0,02211088	0,05266433
D	0,00647197	0,0160369	0,01374181	0,02544234
Dis	0,00728332	0,01779555	0,01852511	0,03879794
E	0,00502916	0,01645629	0,01325271	0,03313211
F	0,01260566	0,01628934	0,01224768	0,02873382
Fis	0,00606093	0,0097304	0,01042018	0,02865741
G	0,00730031	0,04556981	0,01315608	0,02164406
Gis	0,01277857	0,00494331	0,01396645	0,0309793
A	0,01100807	0,03230123	0,01430768	0,03869881
В	0,01030976	0,01089412	0,01342262	0,048667
Н	0,00467934	0,01113189	0,02729935	0,04117939
С	0,0052403	0,0073059	0,01609456	0,02204183
cis	0,0042082	0,00676548	0,01835947	0,04484367
d	0,00986762	0,01411606	0,02067422	0,04798916
dis	0,00671902	0,01179084	0,01878266	0,03659712
e	0,00766156	0,00773832	0,02390618	0,04999672
f	0,00709089	0,00696941	0,02540281	0,02121035
fis	0,00797964	0,00784583	0,02970654	0,04103827
g	0,0051747	0,01463613	0,01596702	0,02828924
gis	0,00477388	0,00985807	0,0291164	0,03495478
a	0,03955361	0,00396278	0,02749813	0,04122265
b	0,00643601	0,01237087	0,02704691	0,060533
h	0,00280642	0,00231082	0,02424342	0,03530743
c1	0,01106302	0,00641991	0,0258989	0,04029577
MIN	0,00280642	0,00231082	0,01042018	0,02121035
MAX	0,03955361	0,04556981	0,02970654	0,06240887
MEAN	0,00889938	0,01259956	0,02014904	0,03851069

Fagott-Vergleichswerte: SpectralFluxMean

	F-Pedal	F & S & M	Fagott pp	Fagott ff
Kontra-B	0,76562726	0,76308568	14,8554759	19,3612149
Kontra-H	0,58681828	0,41165833	9,63239007	12,1626025
С	0,78462944	0,44490158	7,04704828	10,8306975
Cis	0,41495192	0,56280845	9,21883972	8,95994263
D	1,06663384	0,97844928	6,25147243	10,4644042
Dis	1,03613363	0,62486006	6,97365654	10,6604097
E	1,34192429	0,95854827	6,74997234	9,74229223
F	0,72549179	0,32211111	7,07439492	8,58501678
Fis	0,78167324	0,4187861	9,02335377	9,50050796
G	0,63020078	0,44736459	9,889867	9,69168768
Gis	1,01905661	0,93619499	8,73553128	9,32185069
A	0,66665276	0,48263139	10,0933365	15,081199
В	0,86149223	0,55950893	12,6642148	11,8215662
Н	0,86172637	0,83439175	9,74347055	8,21621046
С	1,27374106	0,96798836	7,92994261	10,780507
cis	1,16280231	0,82162121	11,4704025	7,50972831
d	0,61426832	0,43792093	11,2962889	9,8376325
dis	0,97422735	0,84482445	12,0665255	13,3101287
е	0,83916596	0,60549509	8,20107581	8,84104363
f	4,63336163	1,93422622	10,8339967	9,38152576
fis	1,12447039	1,13763645	9,14291493	10,2198506
g	1,61384962	1,593996	8,00879796	9,40756371
gis	1,19745682	0,59488282	11,3940385	8,94832736
a	1,61522675	1,05700763	12,0403485	11,3366184
b	0,53421893	0,33412881	13,3846683	9,27389375
h	1,59370715	1,35423219	10,5430288	8,23063133
c1	0,8705818	0,64588159	11,1933379	8,95009156
MIN	0,41495192	0,32211111	6,25147243	7,50972831
MAX	4,63336163	1,93422622	14,8554759	19,3612149
MEAN	1,09592928	0,78056082	9,83179226	10,3861906

8.2 Werte der Klangdeskriptoren

AttackTime

	pp	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
Kontra-F	0,039166667	0,047083333	0,039666667	0,045083333	0,043416667	0,047583333	0,054	0,042333333	0,039833333	0,04475	0,045083333
Kontra-Fis	0,043583333	0,050666667	0,046	0,051166667	0,047333333	0,047416667	0,043166667	0,043	0,044333333	0,045083333	0,042416667
Kontra-G	0,048	0,0515	0,047916667	0,050916667	0,045916667	0,05325	0,051666667	0,04875	0,050666667	0,0435	0,038833333
Kontra-Gis	0,04625	0,04575	0,045166667	0,052583333	0,047833333	0,048166667	0,048083333	0,048666667	0,04625	0,03475	0,0345
Kontra-A	0,042333333	0,04975	0,041833333	0,048666667	0,044916667	0,046416667	0,040083333	0,04075	0,030833333	0,042083333	0,037083333
Kontra-B	0,050416667	0,054166667	0,05225	0,053583333	0,049916667	0,0515	0,0515	0,051083333	0,050666667	0,043833333	0,040416667
Kontra-H	0,04675	0,050833333	0,046833333	0,050583333	0,04775	0,049666667	0,047083333	0,04925	0,04925	0,031666667	0,04275
С	0,051083333	0,04675	0,05275	0,047416667	0,049333333	0,045333333	0,04575	0,050166667	0,04475	0,0575	0,041333333
Cis	0,038416667	0,042833333	0,038916667	0,049	0,03675	0,043833333	0,036833333	0,03925	0,037833333	0,041833333	0,038583333
D	0,0455	0,052	0,046916667	0,052083333	0,043916667	0,04625	0,042666667	0,04675	0,066333333	0,046166667	0,047916667
Dis	0,0485	0,045583333	0,047416667	0,053916667	0,045916667	0,052916667	0,0495	0,040166667	0,040583333	0,051666667	0,053833333
E	0,04025	0,042	0,04075	0,04225	0,04075	0,042666667	0,040833333	0,040833333	0,043166667	0,042	0,041333333
F	0,036333333	0,036	0,036083333	0,036916667	0,036	0,035916667	0,03425	0,03575	0,033666667	0,039833333	0,034333333
Fis	0,0405	0,040416667	0,0415	0,046583333	0,038916667	0,040333333	0,041083333	0,04075	0,041083333	0,04275	0,043666667
G	0,0515	0,0495	0,055	0,052416667	0,051666667	0,049083333	0,05375	0,056666667	0,052416667	0,048333333	0,047416667
Gis	0,0475	0,044333333	0,048833333	0,043666667	0,04825	0,044083333	0,04825	0,047833333	0,048833333	0,045833333	0,049416667
Α	0,041333333	0,040166667	0,04275	0,040083333	0,045166667	0,050666667	0,043083333	0,044166667	0,051666667	0,044083333	0,046583333
В	0,042166667	0,042416667	0,042916667	0,044166667	0,04275	0,042083333	0,0435	0,042333333	0,043333333	0,04425	0,045416667
Н	0,038166667	0,0415	0,038833333	0,040583333	0,038916667	0,040333333	0,039583333	0,040583333	0,039416667	0,038916667	0,039416667
С	0,05575	0,050583333	0,05775	0,053916667	0,054333333	0,05075	0,059333333	0,058166667	0,060083333	0,05675	0,056
cis	0,057333333	0,052083333	0,057083333	0,053083333	0,062916667	0,05375	0,060333333	0,058666667	0,05875	0,049333333	0,055083333
d	0,049	0,044583333	0,048416667	0,044	0,051333333	0,04675	0,053666667	0,0505	0,050666667	0,036583333	0,05175
dis	0,050416667	0,04875	0,052583333	0,05075	0,052083333	0,0505	0,055166667	0,0515	0,052166667	0,0455	0,049166667
е	0,0495	0,044	0,04725	0,044583333	0,04975	0,045	0,048	0,048	0,04825	0,044666667	0,04325
f	0,035	0,034	0,034833333	0,03425	0,033666667	0,034	0,034416667	0,03525	0,035916667	0,052916667	0,04375
fis	0,03775	0,03775	0,037333333	0,037583333	0,03725	0,0375	0,037333333	0,037166667	0,037083333	0,034666667	0,036583333
g	0,044666667	0,042083333	0,045333333	0,043833333	0,048666667	0,04375	0,045666667	0,045916667	0,045583333	0,039583333	0,042333333
gis	0,038916667	0,036083333	0,03875	0,046333333	0,040666667	0,036416667	0,038583333	0,038916667	0,039166667	0,037833333	0,041666667
а	0,03925	0,037583333	0,039	0,03775	0,040666667	0,039083333	0,04075	0,040083333	0,0405	0,039833333	0,042083333

b	0,041916667	0,036166667	0,042916667	0,03875	0,04525	0,037583333	0,043416667	0,04425	0,045333333	0,03325	0,036583333
h	0,043916667	0,042333333	0,043833333	0,042833333	0,043916667	0,042	0,044833333	0,043833333	0,04325	0,038	0,03875
c1	0,033916667	0,033333333	0,034333333	0,033666667	0,03425	0,034583333	0,034666667	0,034333333	0,0345	0,032083333	0,034833333
cis1	0,03875	0,035916667	0,034666667	0,03175	0,034583333	0,033416667	0,033583333	0,04425	0,035166667		
d1	0,04125	0,03675	0,041416667	0,036833333	0,0415	0,039083333	0,041416667	0,043333333	0,044166667		
dis1	0,042583333	0,039166667	0,040583333	0,038833333	0,04275	0,04175	0,042833333	0,041833333	0,0415		
e1	0,035583333	0,034583333	0,036	0,035166667	0,037166667	0,034583333	0,037833333	0,03625	0,036333333		
f1	0,035416667	0,033416667	0,03275	0,030083333	0,036333333	0,032833333	0,0325	0,031916667	0,032333333		
fis1	0,037333333	0,032	0,034916667	0,032	0,035833333	0,032666667	0,035	0,034083333	0,034666667		
g1	0,035416667	0,035166667	0,03575	0,034916667	0,03625	0,035583333	0,036583333	0,035833333	0,035916667		
gis1	0,041833333	0,037083333	0,043916667	0,04025	0,042666667	0,0365	0,042416667	0,043333333	0,04675		
a1	0,044333333	0,039916667	0,045583333	0,041416667	0,0435	0,046	0,058583333	0,04675	0,053		
b1	0,037	0,03325	0,036416667	0,034416667	0,035416667	0,03325	0,0395	0,035916667	0,062916667		
h1	0,047583333	0,043333333	0,045666667	0,04175	0,04725	0,044416667	0,048416667	0,045333333	0,047333333		
c2	0,03475	0,033916667	0,034583333	0,0335	0,034666667	0,034416667	0,03475	0,034833333	0,035416667		
cis2	0,035083333	0,0315	0,034166667	0,031166667	0,035833333	0,031833333	0,03625	0,0345	0,035416667		
d2	0,072833333	0,03725	0,043166667	0,041416667	0,06675	0,036583333	0,080083333	0,0425	0,07925		
dis2	0,038666667	0,036	0,040666667	0,034083333	0,038666667	0,035916667	0,053583333	0,041083333	0,051583333		
e2	0,032583333	0,03075	0,035666667	0,032	0,0345	0,030416667	0,047333333	0,03425	0,037		
f2	0,031083333	0,028333333	0,03725	0,030666667	0,036416667	0,029166667	0,0615	0,0395	0,065333333		
fis2	0,043083333	0,029916667	0,030666667	0,029333333	0,029833333	0,029	0,03575	0,0325	0,062916667		
g2	0,051	0,025916667	0,033083333	0,026416667	0,031583333	0,026083333	0,030416667	0,028333333	0,04475		
gis2	0,038416667	0,029666667	0,038166667	0,0305	0,04	0,0315	0,038416667	0,0385	0,038833333		
a2	0,031916667	0,027583333	0,031666667	0,02875	0,029916667	0,028	0,04125	0,031916667	0,03475		
b2	0,03075	0,02975	0,0325	0,02925	0,032	0,035416667	0,034416667	0,033083333	0,035		
h2	0,031583333	0,0285	0,04475	0,031083333	0,044916667	0,031416667	0,034916667	0,043166667	0,0455		
c3	0,02925	0,026583333	0,029166667	0,030916667	0,029416667	0,0275	0,033	0,029166667	0,030166667		
cis3	0,027083333	0,025916667	0,027333333	0,025916667	0,02775	0,026666667	0,029	0,027333333	0,029		
d3	0,026666667	0,023916667	0,027	0,02675	0,038666667	0,025333333	0,03025	0,027416667	0,029666667		
dis3	0,028416667	0,026583333	0,028416667	0,028333333	0,050416667	0,02725	0,034	0,03075	0,045333333		
e3	0,024333333	0,024	0,02475	0,027416667	0,025166667	0,025333333	0,046	0,02525	0,042416667		
f3	0,025333333	0,021583333	0,0255	0,024	0,027333333	0,02325	0,041916667	0,02775	0,0435		
fis3	0,022083333	0,022916667	0,022833333	0,03025	0,026333333	0,03225	0,03825	0,031583333	0,051833333		
g3	0,018583333	0,018416667	0,020916667	0,019	0,029333333	0,018416667	0,027833333	0,027833333	0,048833333		
gis3	0,02575	0,025916667	0,024416667	0,033416667	0,0245	0,02425	0,03175	0,027416667	0,053083333		
a3	0,018083333	0,025333333	0,019333333	0,026666667	0,0255	0,029	0,03775	0,026166667	0,03925		

b3	0,022916667	0,024	0,026	0,02975	0,0225	0,02825	0,038166667	0,02725	0,047		
h3	0,021416667	0,020666667	0,022	0,022833333	0,025666667	0,020916667	0,059333333	0,033583333	0,068833333		
c4	0,022166667	0,021083333	0,02475	0,024083333	0,0265	0,027333333	0,0515	0,04075	0,0735		
cis4	0,0215	0,024083333	0,020083333	0,035	0,029166667	0,036833333	0,045416667	0,040583333	0,049166667		
d4	0,017333333	0,017416667	0,020416667	0,01975	0,024583333	0,025583333	0,037	0,020583333	0,049		
dis4	0,021833333	0,022166667	0,02325	0,03475	0,023833333	0,032166667	0,05125	0,0425	0,0695		
e4	0,017916667	0,030083333	0,02075	0,034666667	0,036166667	0,030083333	0,063	0,041	0,053416667		
f4	0,020166667	0,031083333	0,019	0,034333333	0,043166667	0,031833333	0,065083333	0,042166667	0,054083333		
fis4	0,024333333	0,024833333	0,025333333	0,031166667	0,02825	0,034166667	0,054666667	0,031833333	0,06175		
g4	0,019416667	0,024083333	0,017083333	0,032083333	0,033416667	0,036666667	0,047916667	0,04125	0,040916667		
	pp	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
MIN	0,017333333	0,017416667	0,017083333	0,019	0,0225	0,018416667	0,027833333	0,020583333	0,029	0,031666667	0,034333333
MAX	0,072833333	0,054166667	0,05775	0,053916667	0,06675	0,05375	0,080083333	0,058666667	0,07925	0,0575	0,056
MEAN	0,037046667	0,035505556	0,036854444	0,037462222	0,039015556	0,037094444	0,043883333	0,039344444	0,046163333	0,043153226	0,043462366

Brightness

	рр	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
Kontra-F	0,052402068	0,298329343	0,078785593	0,272204872	0,040025972	0,238381871	0,090523732	0,044852402	0,06500031	0,224675271	0,119832209
Kontra-Fis	0,025213009	0,140965173	0,048972967	0,19610688	0,065878126	0,153039168	0,038688147	0,029827242	0,032315672	0,11657956	0,048037555
Kontra-G	0,0957196	0,261078056	0,110635673	0,239640616	0,051179684	0,271531224	0,047267819	0,060136099	0,066941643	0,167374695	0,077303407
Kontra-Gis	0,044193583	0,191077768	0,069003276	0,182151301	0,02063383	0,221853857	0,044166501	0,099789858	0,062225189	0,09213246	0,04286669
Kontra-A	0,087233436	0,251950198	0,169346747	0,161153437	0,027533367	0,103779506	0,032922259	0,032895503	0,021127025	0,170385295	0,068832424
Kontra-B	0,052216065	0,277915589	0,052400338	0,240309477	0,086630926	0,233177404	0,066039626	0,105701101	0,029054251	0,176594069	0,090501942
Kontra-H	0,069836147	0,209967798	0,094142224	0,203002657	0,030896681	0,150917057	0,030004001	0,047292024	0,02478102	0,127004439	0,089891749
С	0,06983809	0,278808418	0,081522692	0,2388339	0,038431754	0,198369374	0,027827969	0,042181404	0,073423102	0,158053314	0,070815095
Cis	0,06148326	0,288961554	0,08091072	0,245902517	0,037521725	0,223939942	0,045431543	0,084610191	0,032666951	0,092130831	0,167603885
D	0,037284601	0,274223998	0,079347625	0,217486506	0,044932575	0,179534621	0,027426144	0,049497024	0,043538128	0,192475003	0,194401901
Dis	0,067793491	0,234583535	0,058573094	0,119043511	0,0290439	0,173894914	0,042660578	0,040795118	0,036268963	0,187662509	0,11831644
E	0,03889277	0,311990819	0,059166562	0,217394575	0,046594182	0,200712621	0,025557233	0,046127413	0,040515491	0,123186442	0,061124482
F	0,070654221	0,268425021	0,17497048	0,285216715	0,056257175	0,161964941	0,036643156	0,034979226	0,042204946	0,167294791	0,032073358
Fis	0,113668419	0,259821377	0,124615782	0,252837906	0,056507314	0,241542251	0,140746145	0,063628529	0,084564798	0,2658331	0,239331892
G	0,057571576	0,211959965	0,149630456	0,188166975	0,033410258	0,159158729	0,034780314	0,064553735	0,027509908	0,139350173	0,138300666
Gis	0,051643005	0,183368776	0,082884303	0,164896809	0,072346763	0,187532874	0,02036589	0,056146823	0,039057782	0,235431442	0,209461814
Α	0,059568682	0,309783247	0,115993925	0,21774977	0,059010249	0,252308762	0,069457742	0,122243207	0,029820592	0,152714545	0,231026521
В	0,215055856	0,188042709	0,094141781	0,242334455	0,042443415	0,198900205	0,025757105	0,041185993	0,021975896	0,189871449	0,094045408
Н	0,259963603	0,208702825	0,080430967	0,19765009	0,033492639	0,211962238	0,112231695	0,138846869	0,038239087	0,155185986	0,119436546
С	0,070893534	0,187240278	0,072484069	0,153415159	0,112534222	0,229153216	0,042782594	0,057239533	0,039506462	0,199482053	0,21611854
cis	0,022099984	0,188228172	0,063982829	0,176856205	0,047871446	0,122963978	0,031243005	0,035385096	0,029938728	0,203544264	0,32141721
d	0,101680055	0,235215635	0,094940651	0,211071966	0,053065365	0,188871974	0,033435167	0,063751547	0,048341564	0,075385952	0,04456865
dis	0,039100626	0,152770694	0,179772008	0,116324644	0,036440266	0,149933967	0,023410946	0,038664868	0,02812392	0,188089023	0,204634996
е	0,065784337	0,221744762	0,100312164	0,147468776	0,03929208	0,152970207	0,045846934	0,055719389	0,046053734	0,297595247	0,191941343
f	0,046966989	0,270518672	0,213007721	0,241067202	0,150561185	0,157189536	0,118579203	0,152246298	0,052276906	0,171513891	0,281739751
fis	0,033999258	0,135942854	0,061828814	0,116008891	0,094569699	0,078536067	0,050395358	0,044522038	0,112931586	0,261652286	0,178865137
g	0,137744175	0,198872471	0,077416508	0,231798297	0,048001699	0,11188749	0,040417117	0,120123784	0,058557118	0,311689403	0,353432034
gis	0,028955775	0,197337144	0,158449406	0,185818266	0,04061651	0,127410222	0,094429056	0,100700732	0,046317438	0,245979199	0,246910617
а	0,238556818	0,229703747	0,06502012	0,205235857	0,041862245	0,17232316	0,04214001	0,068660197	0,176323848	0,2132928	0,201476762
b	0,071470451	0,236213683	0,083625852	0,207820385	0,04831696	0,176580764	0,044395834	0,061294313	0,08291811	0,270914037	0,191712122
h	0,047520669	0,174013477	0,058936201	0,157890585	0,034789936	0,105375523	0,037157683	0,030604067	0,032519892	0,249988294	0,115856139
c1	0,093191631	0,311629126	0,16391869	0,217061384	0,061680994	0,212671321	0,039974332	0,113933883	0,060637834	0,170041555	0,215265901

cis1	0,112398313	0,293801024	0,13239033	0,241814536	0,088864056	0,234195701	0,056221961	0,079710419	0,058254795	
d1	0,082098175	0,213024908	0,10731322	0,216228254	0,09071685	0,160886462	0,024744524	0,073215493	0,047292172	
dis1	0,163614765	0,283798455	0,123488778	0,25307415	0,169657377	0,196805376	0,055006777	0,113241544	0,072737344	
e1	0,19283345	0,286192107	0,202001584	0,250739449	0,105345028	0,275286244	0,069388571	0,134230467	0,069464858	
f1	0,109264332	0,238090756	0,109318663	0,254969235	0,056073947	0,179387476	0,048629574	0,140610437	0,083529193	
fis1	0,119094158	0,293949293	0,134766868	0,241044291	0,063886083	0,224844911	0,048262691	0,098586381	0,045650057	
g1	0,148525033	0,309954497	0,194869949	0,282854295	0,101689337	0,200089061	0,12268485	0,109282626	0,045930682	
gis1	0,18227292	0,29903412	0,213041513	0,282784201	0,067984673	0,238773184	0,176494014	0,157618556	0,119169688	
a1	0,161615093	0,271178662	0,166048113	0,236633394	0,133299194	0,261077189	0,069662388	0,089269062	0,046644705	
b1	0,145097793	0,246872543	0,118225128	0,223687251	0,066166001	0,191291904	0,0579817	0,115761736	0,046902272	
h1	0,070693583	0,249707251	0,065288052	0,17802419	0,044314704	0,156146173	0,081924273	0,059161704	0,04259845	
c2	0,162121909	0,269252612	0,152861107	0,245558309	0,071052353	0,165389277	0,062015436	0,115449085	0,056447619	
cis2	0,205019864	0,354039052	0,205241738	0,322079279	0,107047218	0,293995579	0,079499663	0,108509144	0,070269626	
d2	0,173345383	0,29874057	0,211989368	0,23411133	0,037407652	0,279951579	0,041043857	0,069811061	0,046330835	
dis2	0,172082028	0,3130034	0,086768242	0,311066945	0,099179502	0,252607085	0,135919623	0,137843936	0,071098034	
e2	0,171075084	0,261541175	0,113105221	0,220068992	0,182707738	0,196748622	0,028348228	0,093167951	0,048467525	
f2	0,05555877	0,317462295	0,066571319	0,257556161	0,458747336	0,214154239	0,118588094	0,064054749	0,071338508	
fis2	0,047429356	0,236225961	0,045881591	0,23765449	0,155799483	0,157801282	0,073528914	0,061850721	0,109369418	
g2	0,3372118	0,449142089	0,153546639	0,358596507	0,163023531	0,39083788	0,167452093	0,23919497	0,143392105	
gis2	0,233918253	0,426261945	0,160621805	0,45007667	0,171050993	0,339496219	0,139584029	0,136732623	0,101476557	
a2	0,25874864	0,40471935	0,161119661	0,351225608	0,099765188	0,319055116	0,130898236	0,130664798	0,109684928	
b2	0,225707899	0,444586081	0,160128691	0,333150812	0,192482383	0,389029276	0,119036676	0,191678243	0,107177592	
h2	0,233420691	0,400793399	0,112680791	0,281176665	0,112127658	0,246255335	0,110898308	0,119948981	0,0675723	
с3	0,173971346	0,358940981	0,10156947	0,248086212	0,112432522	0,294759541	0,104324298	0,143002324	0,082227886	
cis3	0,322116279	0,500595321	0,143460537	0,378041777	0,138559506	0,329785574	0,139021667	0,185568226	0,129324896	
d3	0,310946793	0,471623056	0,176396214	0,357708719	0,333162505	0,369539265	0,143029481	0,16814051	0,172232101	
dis3	0,561590697	0,48532124	0,554006143	0,457750736	0,585324136	0,416423321	0,679379227	0,546416163	0,519654657	
e3	0,57286651	0,549645227	0,626588604	0,476800016	0,704559138	0,482981598	0,370119353	0,513661252	0,608912479	
f3	0,559598536	0,513170831	0,716473701	0,461580202	0,622673635	0,392903303	0,454360446	0,445777432	0,508450184	
fis3	0,584674466	0,517536421	0,252683115	0,397609398	0,116635184	0,251952212	0,136993625	0,218869727	0,110294162	
g3	0,667455743	0,690698232	0,551517801	0,637230436	0,35969452	0,572524957	0,077894139	0,507140745	0,277469202	
gis3	0,652342979	0,73404413	0,521550262	0,651406772	0,438701442	0,717787517	0,416827813	0,550553097	0,302137283	
a3	0,611365944	0,625641591	0,504940872	0,593532885	0,21436189	0,585868722	0,374189605	0,529632461	0,343626061	
b3	0,839413013	0,791958739	0,789008754	0,749470051	0,754215505	0,720982944	0,533643414	0,677526952	0,526135238	
h3	0,757180536	0,777762956	0,828093347	0,751125881	0,78296396	0,741464701	0,621022763	0,726420473	0,613318516	
c4	0,70042481	0,773295379	0,68362307	0,707905452	0,683277879	0,732595702	0,571622431	0,676364132	0,793969999	

cis4	0,813110485	0,724467395	0,768763598	0,667019929	0,744499976	0,650357691	0,472248126	0,599367941	0,313541464		
d4	0,854117034	0,770753631	0,819761185	0,789557025	0,802838385	0,718679543	0,70024716	0,702881375	0,557099751		
dis4	0,821703044	0,788817499	0,690798435	0,702503337	0,739966228	0,690953433	0,575569014	0,567719157	0,499565188		
e4	0,750719106	0,721423585	0,653709711	0,638721012	0,510365558	0,623450664	0,646828061	0,51010777	0,441216694		
f4	0,717295739	0,68359986	0,673434286	0,63405507	0,62160379	0,548673818	0,375809302	0,385144275	0,408138132		
fis4	0,795997408	0,755457219	0,730890849	0,667538518	0,64933128	0,623346466	0,593613966	0,544930789	0,479892873		
g4	0,676028894	0,723535483	0,642714844	0,662760249	0,465682103	0,494921209	0,482070011	0,461287996	0,317180409		
	рр	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
MIN	0,022100	0,135943	0,045882	0,116009	0,020634	0,078536	0,020366	0,029827	0,021127	0,075386	0,032073
MAX	0,854117	0,791959	0,828093	0,789557	0,802838	0,741465	0,700247	0,726420	0,793970	0,311689	0,353432
MEAN	0,253790	0,366787	0,237686	0,324593	0,198688	0,296966	0,161191	0,192643	0,150812	0,187841	0,153609

Entropy

	рр	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
Kontra-F	0,66161285	0,74495541	0,63165345	0,68860165	0,58952569	0,68712343	0,64038966	0,61131485	0,64870103	0,68881712	0,69929462
Kontra-Fis	0,60996965	0,64373706	0,60791773	0,66535792	0,63411732	0,64445114	0,65851213	0,59064971	0,61714062	0,66283793	0,62081713
Kontra-G	0,62327666	0,65917592	0,62550625	0,64523887	0,58878168	0,68635011	0,61474205	0,665428	0,62545012	0,66393158	0,63475828
Kontra-Gis	0,56989496	0,62367276	0,57140256	0,61210698	0,60135213	0,64462094	0,60253411	0,6133796	0,60055695	0,67050706	0,61478873
Kontra-A	0,57632694	0,64116233	0,63352042	0,59521298	0,57124655	0,56779298	0,55206631	0,5591097	0,5607501	0,70187602	0,62351692
Kontra-B	0,61088347	0,66738325	0,58882413	0,71208193	0,60084176	0,6353045	0,60041048	0,60331146	0,59046476	0,65018477	0,61648861
Kontra-H	0,5664165	0,61038691	0,58652335	0,60183376	0,52799948	0,58902723	0,53923291	0,53670546	0,53068175	0,61964498	0,59991033
С	0,59849408	0,65047935	0,61332127	0,6433176	0,59069328	0,62279404	0,56303561	0,64565994	0,59675865	0,64787707	0,6144801
Cis	0,62480956	0,65657312	0,59169491	0,66904376	0,65705139	0,6269738	0,60925114	0,58767233	0,56103027	0,63893285	0,67005401
D	0,62785381	0,6646423	0,57787678	0,60910983	0,56991403	0,62436946	0,63076621	0,6587321	0,56886211	0,68355692	0,71401717
Dis	0,67694559	0,70084637	0,58073851	0,57974131	0,57000778	0,6219128	0,63834841	0,54530397	0,54616882	0,66278089	0,61469084
E	0,57835692	0,75765657	0,61550173	0,61004727	0,58125161	0,61463563	0,56159833	0,56800083	0,56485548	0,61544522	0,58845015
F	0,6104681	0,63750924	0,67158278	0,63044465	0,57441936	0,6307502	0,56227343	0,56199492	0,56162996	0,60842009	0,53144462
Fis	0,6244144	0,6444174	0,59974623	0,63563276	0,60868924	0,64619157	0,62951849	0,61139461	0,61161002	0,69598147	0,67445106
G	0,57125655	0,62773461	0,62497584	0,60541518	0,56554405	0,62438621	0,56701903	0,57163677	0,54902738	0,66764096	0,70035546
Gis	0,5676059	0,62465977	0,55229031	0,66595454	0,57272613	0,60608738	0,5468803	0,55600197	0,5553777	0,64823631	0,65944282
Α	0,61392599	0,73228051	0,61363568	0,65924838	0,60460221	0,64444106	0,67424072	0,61926724	0,58853692	0,63249866	0,73575465
В	0,63540656	0,61845123	0,58027007	0,71665854	0,56176053	0,6115479	0,56916241	0,55036152	0,61649953	0,62590429	0,62014759
Н	0,67209923	0,61935909	0,5637489	0,60902456	0,53819521	0,59896734	0,60867881	0,60062877	0,54648256	0,59868921	0,58780788
С	0,56494837	0,62173638	0,58623989	0,57945935	0,57431091	0,73703711	0,56057708	0,55173064	0,56159674	0,63645202	0,61774014
cis	0,55555636	0,62222386	0,56831489	0,59211724	0,5831934	0,61354493	0,5506701	0,61841743	0,56563892	0,66695768	0,67614976
d	0,56463991	0,61390712	0,57717687	0,59734837	0,57674266	0,66941601	0,54584353	0,55978124	0,55311638	0,56471053	0,5673081
dis	0,58315861	0,63259872	0,6968769	0,56634751	0,56119718	0,6415339	0,55834635	0,57740503	0,56179408	0,63970815	0,63554928
е	0,58897074	0,61715958	0,60118615	0,67931809	0,60370578	0,62409725	0,58967067	0,60493162	0,60129304	0,67523809	0,64124935
f	0,64887252	0,6713107	0,68484067	0,65393138	0,65590751	0,6418751	0,64246201	0,66901809	0,65310925	0,66295998	0,68696674
fis	0,57461218	0,64262591	0,64111487	0,63342712	0,64047915	0,58933982	0,61384025	0,56893507	0,63868345	0,70138743	0,66674784
g	0,66468043	0,63970168	0,57576129	0,63214626	0,5766533	0,61970375	0,58628731	0,62426484	0,59799609	0,66628765	0,67301881
gis	0,5887685	0,64180466	0,62669298	0,66814794	0,58047935	0,62686509	0,62636721	0,59968386	0,59837728	0,68496019	0,67934787
а	0,6561717	0,62182328	0,59672267	0,6016362	0,60159185	0,60146148	0,58085883	0,57689862	0,65828953	0,71495078	0,61400415
b	0,5785254	0,64666913	0,60845341	0,6340198	0,65185745	0,60763795	0,5637983	0,54585733	0,56906456	0,63926585	0,62264265
h	0,60401696	0,63882241	0,60660333	0,62366472	0,59051273	0,61918737	0,59330893	0,58752435	0,60442264	0,7169042	0,64814549
c1	0,59617675	0,66385245	0,60828214	0,63613544	0,60368731	0,66036221	0,63443538	0,59586809	0,58209112	0,65583473	0,69919833

cis1	0,60627653	0,64372245	0,58733431	0,63503851	0,64161333	0,62003099	0,58543722	0,57869095	0,61600942	
d1	0,60734147	0,62309965	0,67028713	0,62221691	0,60877581	0,60977576	0,59891827	0,573048	0,58061886	
dis1	0,59130168	0,64986482	0,57385156	0,60255848	0,6099452	0,58451674	0,57713986	0,6444168	0,57553148	
e1	0,60346875	0,67773814	0,6100452	0,62195497	0,59980452	0,65424588	0,60117192	0,6059149	0,58467126	
f1	0,62632123	0,67098265	0,62444894	0,68010945	0,60476414	0,62081124	0,60064799	0,61492199	0,63265049	
fis1	0,62800717	0,6823274	0,60478796	0,65019292	0,61066242	0,64288409	0,59670994	0,6049096	0,64070463	
g1	0,63051049	0,69341751	0,62955308	0,67363935	0,62986471	0,64240332	0,65780727	0,64477488	0,62629013	
gis1	0,60750261	0,65573069	0,65763316	0,62983356	0,60248656	0,64791341	0,62590435	0,66436522	0,58625642	
a1	0,67098323	0,69079261	0,61077112	0,60956412	0,58815	0,6335978	0,57427854	0,57569541	0,56247592	
b1	0,61611498	0,65604395	0,616131	0,63626499	0,57886521	0,6646482	0,60540676	0,62243689	0,60449494	
h1	0,55438594	0,69594191	0,53555722	0,63139387	0,54823256	0,61631795	0,59083076	0,55215684	0,52546504	
c2	0,59512812	0,65676836	0,56258154	0,6442081	0,56846081	0,61752305	0,56184012	0,58456131	0,60877062	
cis2	0,61623704	0,69204762	0,61030573	0,67336946	0,61137928	0,6733345	0,60766134	0,62076758	0,59955262	
d2	0,67093041	0,71344209	0,68813623	0,69235624	0,59430551	0,71227037	0,67032354	0,6430285	0,66264276	
dis2	0,63568475	0,68280425	0,59249034	0,75324176	0,61807133	0,66368718	0,69047141	0,60175872	0,633295	
e2	0,58670833	0,63904164	0,5564099	0,62590042	0,66809486	0,64182484	0,61882698	0,58283832	0,61351313	
f2	0,63218236	0,70560394	0,62889347	0,66856145	0,75148819	0,67550023	0,68231926	0,61276707	0,64522826	
fis2	0,61219835	0,69663255	0,60591234	0,69761149	0,67210412	0,67713909	0,65602555	0,65650986	0,68794599	
g2	0,71298431	0,7228171	0,65677589	0,70541544	0,64597924	0,70092397	0,66348405	0,65896009	0,67617282	
gis2	0,61851426	0,70060797	0,62730637	0,80267433	0,64247144	0,67871531	0,63422106	0,6458453	0,66581063	
a2	0,64526646	0,71429424	0,63584069	0,68211558	0,60876341	0,67358819	0,66922746	0,61744669	0,64177431	
b2	0,65413302	0,73566686	0,62822695	0,70011747	0,66440797	0,71486557	0,67291046	0,64809641	0,67945982	
h2	0,64908323	0,72223221	0,61293677	0,69357733	0,64735107	0,68787007	0,66948052	0,65486309	0,65075694	
с3	0,56642433	0,69004286	0,58697754	0,65062143	0,57776154	0,6651865	0,60339854	0,61717023	0,6224794	
cis3	0,68553346	0,75432341	0,67789603	0,75121393	0,66795261	0,70709487	0,68180147	0,65850303	0,67430702	
d3	0,68539344	0,73559741	0,6420104	0,71635522	0,74124951	0,7128348	0,66421726	0,67046228	0,72299433	
dis3	0,83830055	0,80319922	0,85182382	0,800352	0,86412154	0,8030735	0,90250024	0,85270239	0,845307	
e3	0,83469091	0,82172537	0,89696215	0,82368768	0,89303867	0,85379397	0,83044673	0,84396838	0,88102704	
f3	0,84739683	0,80531901	0,89968008	0,81451156	0,87273195	0,78469183	0,82471864	0,83084576	0,86132851	
fis3	0,85745508	0,82507798	0,68946944	0,77467234	0,68214242	0,72976469	0,68674238	0,72588672	0,67990955	
g3	0,70081874	0,75238614	0,70882353	0,76327156	0,70136748	0,74883504	0,54814678	0,70588759	0,68184448	
gis3	0,70612523	0,75855859	0,69288978	0,75593621	0,67980054	0,75045906	0,69584297	0,69154236	0,70224168	
a3	0,7152537	0,76381449	0,71515449	0,75881357	0,69227958	0,76000599	0,74291691	0,7196327	0,72773088	
b3	0,78618678	0,78863046	0,79468725	0,77877791	0,82925981	0,77255772	0,78867014	0,77324243	0,7588604	
h3	0,80921623	0,79750343	0,9055385	0,84697259	0,89389465	0,81652283	0,86315402	0,86315024	0,84569848	
c4	0,83374277	0,8145486	0,81706887	0,8215785	0,83831284	0,80975871	0,85330022	0,83235598	0,91757057	

cis4	0,88008011	0,85193263	0,90545795	0,84855272	0,88775828	0,82002345	0,8325579	0,85710597	0,72838791		
d4	0,84967133	0,80983262	0,82208476	0,8380947	0,89862925	0,81158902	0,89617098	0,81607526	0,82859619		
dis4	0,87654343	0,81926282	0,86973346	0,81620725	0,88561457	0,8189537	0,84896525	0,82257732	0,82167456		
e4	0,8876063	0,84098625	0,8789222	0,85535914	0,83276969	0,84334107	0,88251712	0,85436846	0,81935329		
f4	0,87910364	0,8390862	0,8738988	0,85739926	0,84749048	0,81925466	0,7717578	0,8053847	0,78536019		
fis4	0,87878179	0,83977831	0,89099306	0,85099331	0,88349895	0,82227219	0,8567851	0,84686839	0,81093014		
g4	0,86372378	0,85750042	0,85781547	0,84540291	0,83167452	0,81555253	0,81434895	0,81500147	0,7461514		
	рр	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
MIN	0,554386	0,610387	0,535557	0,566348	0,527999	0,567793	0,539233	0,536705	0,525465	0,564711	0,531445
MAX	0,887606	0,857500	0,905538	0,857399	0,898629	0,853794	0,902500	0,863150	0,917571	0,716904	0,735755
MEAN	0,663232	0,699867	0,660175	0,687366	0,656352	0,678663	0,653535	0,649978	0,647305	0,656543	0,642148

HarmonicEnergy

	pp	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
Kontra-F	0,00229504	0,008345906	0,002783369	0,007200916	0,001269384	0,010020491	0,005489553	0,004865753	0,004924569	0,007129308	0,005496135
Kontra-Fis	0,003911019	0,008430268	0,004115615	0,009888162	0,002464694	0,009012716	0,005189916	0,0053594	0,004937656	0,004012945	0,003194919
Kontra-G	0,001963665	0,007023111	0,002596364	0,00786726	0,002807561	0,007652384	0,004251283	0,005408652	0,003633862	0,003254638	0,002771055
Kontra-Gis	0,003194188	0,009894408	0,004350933	0,010529212	0,0039453	0,012485849	0,005689828	0,006927261	0,005802564	0,003524606	0,002682382
Kontra-A	0,003954828	0,013491905	0,003362251	0,011059764	0,002621307	0,014271328	0,0078927	0,006734874	0,00467416	0,004725573	0,003151495
Kontra-B	0,004747638	0,012283564	0,003510466	0,010748235	0,004017536	0,010823663	0,005332799	0,006841727	0,005549923	0,003773957	0,00311049
Kontra-H	0,004892652	0,012402972	0,003649122	0,010746942	0,003516977	0,010779947	0,005888816	0,00490388	0,004163016	0,002896467	0,002034543
С	0,002216442	0,013090271	0,004040347	0,01130737	0,003748277	0,014349662	0,005911016	0,005774456	0,006343905	0,003898753	0,002364004
Cis	0,002467064	0,011022265	0,002736983	0,007993123	0,003396491	0,00867764	0,004055732	0,004631052	0,004014913	0,002365314	0,002090725
D	0,002384471	0,0100148	0,004021311	0,010646136	0,003814546	0,009236238	0,003810896	0,004420864	0,005826643	0,003020733	0,002504424
Dis	0,003054369	0,009980823	0,003038443	0,006723674	0,003824946	0,007499705	0,005142846	0,004110471	0,003827503	0,004433429	0,002716354
E	0,002867791	0,011764167	0,005489823	0,010435162	0,005796245	0,011619848	0,0046124	0,005495264	0,006803534	0,005752328	0,003966795
F	0,004596087	0,013574872	0,003729435	0,014634637	0,001710998	0,010962726	0,004879457	0,0039081	0,00310577	0,005976829	0,002656463
Fis	0,003231155	0,00820772	0,003600834	0,008386674	0,003071961	0,007211572	0,002839892	0,003707904	0,004797693	0,003764325	0,002071096
G	0,002889126	0,011045874	0,004430663	0,009031701	0,004446259	0,01112468	0,003687306	0,005531471	0,004671868	0,005314994	0,003624072
Gis	0,003809546	0,011815923	0,005448957	0,012186557	0,005866199	0,013123142	0,005070682	0,005558664	0,004705018	0,005540513	0,003887699
Α	0,002610844	0,009502924	0,002590943	0,006966822	0,002964766	0,00893864	0,005199154	0,003296516	0,002594846	0,004386553	0,003511583
В	0,005131478	0,014570089	0,003686796	0,011526696	0,0035889	0,010354306	0,004694557	0,005195788	0,003939491	0,00718149	0,005330784
Н	0,003159112	0,011664508	0,003766553	0,010648824	0,0047574	0,009515203	0,004002495	0,007456597	0,005612589	0,004656924	0,0045722
С	0,005660501	0,016018274	0,006245462	0,012067368	0,008666258	0,015377408	0,008656566	0,007301322	0,006135874	0,007849815	0,005971115
cis3	0,003348386	0,011878616	0,004559939	0,009520681	0,003186133	0,010448141	0,004649677	0,00490565	0,005031389	0,004451534	0,003308277
d	0,005711553	0,016937384	0,006050465	0,014773519	0,004544702	0,012743372	0,004300404	0,006315105	0,005909657	0,004023011	0,002859931
dis	0,004198687	0,011471343	0,003327655	0,008148925	0,005979523	0,011443266	0,004638123	0,006004808	0,005797667	0,004916514	0,003691446
е	0,003063492	0,011290889	0,004238755	0,009224711	0,003944645	0,011885677	0,005634237	0,005529834	0,004613087	0,005361781	0,004256606
f	0,002550406	0,013841879	0,002138382	0,008448914	0,002789689	0,008731187	0,006344222	0,003744571	0,003195938	0,006906828	0,00516487
fis	0,004272345	0,012401936	0,002391598	0,008430218	0,001557945	0,011590937	0,007241884	0,007131656	0,006407908	0,00410537	0,002865467
g	0,004916908	0,016657506	0,003415348	0,011222111	0,002232202	0,014367855	0,00753581	0,005884088	0,007372607	0,007688228	0,005817872
gis	0,001773825	0,012037497	0,003053572	0,008664217	0,002140485	0,009716715	0,005438096	0,005291111	0,005209036	0,005260788	0,002221201
а	0,002807702	0,008691667	0,003321626	0,008464457	0,003475501	0,009273949	0,004269115	0,004508644	0,004541218	0,005579063	0,002946034
b	0,002852861	0,010146971	0,002271382	0,009024114	0,002899314	0,009973007	0,00487628	0,004633935	0,003845334	0,003589636	0,001844096
h	0,003775799	0,010949226	0,003800643	0,008033869	0,00428247	0,011263175	0,004132073	0,004277058	0,002510695	0,004171065	0,002458183
c1	0,001616018	0,008766551	0,002710692	0,006486967	0,002552775	0,008249541	0,003872625	0,003943755	0,003099844	0,002509161	0,001090127

cis1	0,003084468	0,007666627	0,00236242	0,004691806	0,002208401	0,007415617	0,002559912	0,002457864	0,002215574	
d1	0,003749875	0,01025578	0,003435139	0,008531545	0,002872789	0,010647282	0,004404866	0,004689734	0,003691189	
dis1	0,005703876	0,014660067	0,004263721	0,010602137	0,005485639	0,014042165	0,008615973	0,007356863	0,005883827	
e1	0,004202777	0,008703566	0,00418157	0,007330667	0,00268306	0,011611218	0,005184375	0,00507605	0,004011167	
f1	0,002321154	0,00912436	0,003031289	0,005389436	0,002996316	0,008140265	0,003157694	0,003853784	0,003525802	
fis1	0,003516549	0,007694654	0,003035465	0,007768603	0,003410151	0,007805838	0,004271663	0,004286445	0,003943314	
g1	0,003205306	0,009303866	0,003482095	0,007700826	0,004429719	0,010631019	0,004004524	0,004817918	0,00308322	
gis1	0,003157043	0,008383899	0,003283994	0,007679774	0,003092426	0,00981377	0,004968309	0,005261404	0,003054182	
a1	0,00678651	0,015756311	0,005806494	0,01277057	0,008109802	0,019380619	0,006888117	0,004621169	0,004297595	
b1	0,002022928	0,008443674	0,004157627	0,010484814	0,002717894	0,008578937	0,003411997	0,005825883	0,002146584	
h1	0,00786109	0,017772968	0,008099663	0,019391598	0,008422133	0,021877973	0,009589639	0,012254306	0,00628716	
c2	0,004299858	0,015263292	0,003231798	0,011855547	0,00449436	0,012683458	0,007528563	0,009055018	0,007070679	
cis2	0,003474172	0,011946262	0,003198296	0,010836984	0,003033855	0,011417836	0,005352255	0,004702893	0,004336063	
d2	0,002921208	0,009496373	0,002227863	0,005754595	0,002815544	0,00876537	0,001609979	0,002674101	0,001032285	
dis2	0,003535348	0,011471837	0,003334794	0,010311733	0,002308314	0,010796024	0,000892194	0,006388608	0,002795335	
e2	0,005655131	0,01577271	0,006733418	0,017680562	0,005171328	0,017741941	0,003847804	0,010426141	0,004893824	
f2	0,002546417	0,015171106	0,002326316	0,012328514	0,001320269	0,013430395	0,001353759	0,004206918	0,001621523	
fis2	0,003228222	0,017037953	0,002241035	0,012669666	0,003056594	0,01566614	0,003977101	0,004977304	0,002593767	
g2	0,001963075	0,013873835	0,001568795	0,010139579	0,003844194	0,012764153	0,004895848	0,005706535	0,002478188	
gis2	0,00292985	0,015307389	0,002994475	0,012464633	0,002640794	0,010948692	0,002305091	0,005039633	0,003178721	
a2	0,004413784	0,013912969	0,002278728	0,011301906	0,001872393	0,013769317	0,002249995	0,004670753	0,00344677	
b2	0,003071761	0,01355225	0,003029037	0,01157326	0,006495901	0,012724481	0,003328685	0,006366255	0,003107972	
h2	0,00472746	0,011857128	0,002916457	0,010799856	0,003296488	0,008037447	0,003721294	0,00436794	0,002710349	
с3	0,007311309	0,018695301	0,005489629	0,014084813	0,004653934	0,017402404	0,003787358	0,009025875	0,00397534	
cis3	0,003927898	0,010349581	0,001882943	0,008606614	0,0014683	0,007305241	0,002465321	0,004462952	0,002348935	
d3	0,003668134	0,0093088	0,003219546	0,009926981	0,000522952	0,007904927	0,002299462	0,005266358	0,000795014	
dis3	0,003078564	0,012798121	0,003378716	0,014522866	0,001566327	0,011103064	0,001153121	0,003918308	0,002166995	
e3	0,004814011	0,010570918	0,002042397	0,008525375	0,001457019	0,008983871	0,001291531	0,004638116	0,002010333	
f3	0,004256767	0,015312322	0,001613694	0,011656425	0,001785181	0,013548354	0,003259652	0,004861701	0,002199194	
fis3	0,003230659	0,009392275	0,003070242	0,006678226	0,000424868	0,005326464	0,002752362	0,004211093	0,001044927	
g3	0,004850907	0,012434882	0,003483147	0,012058282	0,001357118	0,010611247	0,0022524	0,005311357	0,001969428	
gis3	0,004514003	0,017062915	0,001837422	0,01342915	0,001132522	0,017533512	0,00229857	0,005596353	0,001184557	
a3	0,001325261	0,005205264	0,001504475	0,007679536	0,000158296	0,005216952	0,003046736	0,003162432	0,0012776	
b3	0,007855957	0,020749206	0,005374329	0,020938248	0,002151388	0,014734667	0,002988039	0,011944123	0,005112169	
h3	0,006299208	0,015579867	0,000943282	0,00757833	0,000911756	0,00831337	0,000805256	0,002369226	0,000844584	
c4	0,003000216	0,016792635	0,004597041	0,013563664	0,001656605	0,012700992	0,001036846	0,004440598	0,00063702	

cis4	0,002787125	0,01014359	0,000882204	0,006415136	0,000641539	0,009902813	0,001561984	0,002563539	0,001699331		
d4	0,003039443	0,017717204	0,003285983	0,012813104	0,000600654	0,010805708	0,000892573	0,005074268	0,0015504		
dis4	0,002637553	0,016628956	0,001405407	0,009035111	0,00059868	0,008921072	0,000820299	0,00178103	0,000654089		
e4	0,001532947	0,009116708	0,000764727	0,006669371	0,000666476	0,005268218	0,000794677	0,001270103	0,001533353		
f4	0,001171863	0,007933557	0,000904749	0,005002652	0,000425456	0,005547961	0,001460911	0,002055319	0,001711095		
fis4	0,001217609	0,009036825	0,000926413	0,006113132	0,000359222	0,005885109	0,00122081	0,001549869	0,001578083		
g4	0,001915375	0,008427212	0,001519559	0,005330743	0,000576762	0,004012225	0,002895935	0,002555091	0,002415834		
	рр	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
MIN	0,001172	0,005205	0,000765	0,004692	0,000158	0,004012	0,000795	0,001270	0,000637	0,002365	0,001090
MAX	0,007861	0,020749	0,008100	0,020938	0,008666	0,021878	0,009590	0,012254	0,007373	0,007850	0,005971
MEAN	0,003610	0,012065	0,003304	0,010023	0,003010	0,010833	0,004032	0,005130	0,003623	0,004751	0,003320

HarmonicPercussiveRatio

	рр	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
Kontra-F	3,469639217	2,316053654	3,272310764	2,368542297	20,78116606	2,766041175	4,22031849	5,386485502	4,441487936	2,657952882	4,100398162
Kontra-Fis	3,781304353	2,584848513	3,73935094	2,817542383	9,571207435	2,730248554	4,199856442	4,165271716	4,707067286	2,725300668	5,838077287
Kontra-G	4,413051247	3,092405906	4,549251245	3,13768913	6,953084028	3,195199701	5,81624944	4,697917568	6,577939487	2,701310624	3,513292831
Kontra-Gis	5,368236259	3,908016682	4,821147669	3,87939923	6,909316595	4,073417582	8,483859479	4,401677671	8,614556484	3,748360187	4,386994972
Kontra-A	6,59405607	4,339328966	5,503570042	4,5575492	12,1850341	6,346791942	8,088169162	8,498520749	8,064596878	2,974583691	6,199558182
Kontra-B	6,454978801	4,178056306	6,561108908	4,515740823	10,87717878	4,602575796	9,918024487	7,295561722	8,727238617	2,954420973	3,387902196
Kontra-H	3,613754296	2,710285297	3,82035619	2,812717887	8,939436293	3,566738434	5,861008887	7,040739243	8,295302489	2,765526257	4,819139456
С	5,259587338	3,203891749	4,282876867	3,772599416	6,69438476	3,660150649	6,411427896	5,387732379	6,006026409	3,264801697	3,918153466
Cis	2,34559875	2,302829251	3,029527797	2,861967954	2,904390528	2,294927692	3,045327482	2,739651693	3,093047139	2,211883644	2,051623057
D	3,366412133	2,828132297	3,991845148	4,14215754	4,705943718	2,914783238	4,867031663	4,402022052	4,380882364	2,011265572	2,826789887
Dis	5,007794208	4,1042911	5,71534965	3,84640679	5,947194515	4,314863795	5,319407142	6,082565026	7,225132822	2,668418317	3,043059501
E	6,163256644	4,068413893	5,20803441	3,958007441	5,857030738	4,133614051	6,501594194	5,653686543	5,583565182	4,100105906	4,982973055
F	3,603659837	2,901949949	3,849319499	3,02307877	7,290565058	3,41955365	4,378785475	4,4450901	4,880200802	2,717823622	4,854198411
Fis	3,212226182	3,096324402	3,434257096	3,869833406	3,459882501	2,858893311	3,835249771	3,674949347	3,552218266	2,639219417	2,944114137
G	4,443172917	3,034446463	4,80072462	3,753436386	5,002078842	3,196042244	5,062169955	4,302980714	4,676620987	3,564050611	4,109607724
Gis	4,44332839	3,837355283	4,896129812	4,72205495	4,704101186	3,960384704	5,503078258	4,975750804	6,009222277	3,439488411	3,588067692
Α	3,352604219	3,271191544	3,237439101	2,84845346	3,678159033	3,073632645	3,423463969	3,251861989	3,80323643	3,048420585	3,423401066
В	4,452207691	4,219371069	4,748335344	4,599622349	4,274460226	4,010942311	4,392678855	4,829262864	5,061950629	4,34892199	4,909777447
Н	3,883092179	3,383185187	4,040716134	3,559510356	4,147784659	3,261618807	3,877129679	3,518547969	3,992135495	3,097051262	3,427963734
С	3,780546075	3,957885765	3,880158556	4,206031922	3,904146351	4,026754266	3,881002472	3,937961055	4,231345966	3,190756594	2,823674727
cis	4,402095826	3,703592816	4,440992455	4,042228983	4,886832961	3,89195052	4,328882156	4,717155114	4,475679795	2,720838242	3,356577586
d	4,757026964	4,482757229	4,627725803	4,419545256	4,946252604	4,266105497	4,802265538	4,685030125	4,370350217	5,027699573	4,819564534
dis	4,640217576	4,869602984	4,778669469	4,354302987	4,500947403	4,626991449	4,602854899	4,766886845	4,768314319	3,952863339	3,736714096
е	4,831132503	4,503610305	5,204984495	4,683424411	6,74914646	5,334538079	5,472671339	5,566783246	5,830978318	3,525842453	4,22017774
f	5,532583916	4,482665981	5,990380698	4,588547986	5,777580904	4,357255578	5,048079281	5,73176203	5,72022888	3,040440573	2,996719404
fis	4,885019525	4,157359997	4,852210907	4,368576611	7,791388934	4,660269272	4,714257894	5,081046522	5,151090878	3,258369991	4,049295867
g	5,753037061	5,481324927	7,175403796	6,091095003	9,567877254	5,704857698	7,072690497	7,438591318	7,166687292	3,367935594	4,188660765
gis	4,499025226	3,381094952	4,413799214	3,824915826	5,028480785	3,45683975	4,008142569	3,97091138	4,105741785	2,753085507	3,292324828
a	3,828707479	3,352637284	4,180505414	4,040966355	4,712720561	3,438520013	4,111240316	4,158999803	4,193927584	3,481226172	3,564342523
b	5,680722396	4,495081385	6,912354942	4,813593946	7,642568368	4,767196832	6,506613631	6,920893438	6,749298799	4,106773701	4,11656745
h	4,693706247	4,157958353	4,611284468	4,421450209	5,344760794	4,23764239	5,537930146	5,657937764	7,479852397	3,805077989	5,200072774
c1	6,6453112	5,113951367	6,752400241	5,719926486	7,605748988	5,386221259	7,017984141	6,986596969	8,570804018	4,431499764	3,793593239

cis1	4,597487461	4,5282419	4,56354841	4,018100619	5,573487126	4,248738566	5,784360574	4,602518731	5,71499263	
d1	5,322953198	5,265331374	6,05352168	6,311807778	6,308426815	5,143155805	6,177968701	6,031027854	6,233326425	
dis1	7,985940986	8,192526022	9,11081216	10,43196716	10,24338368	9,759906033	8,519334449	9,467745214	9,729931711	
e1	8,694880243	6,997468424	7,897947691	6,380316446	11,62232662	7,514989775	10,37933785	9,228447752	12,09182254	
f1	6,918759213	5,185823425	5,744090405	4,862392389	7,882256552	5,527851422	7,728000002	5,84265969	6,585985157	
fis1	9,834011979	7,184700323	9,22984149	7,096110413	11,12956876	7,14959739	12,44730068	9,215240869	10,89234804	
g1	11,11402724	9,08346524	10,81961947	9,506838584	11,7969995	9,564185903	12,39921446	11,17837881	12,18387595	
gis1	10,85643997	8,304541287	10,82826907	8,477591394	12,24427653	7,972567796	9,896723457	10,92964246	13,69890759	
a1	17,37546873	14,01991603	16,06731068	13,72092879	16,25113929	13,76614801	15,45461584	16,77229679	15,34658266	
b1	14,09817381	9,716806032	13,07296908	10,90789654	13,54762584	10,24528002	11,94176368	12,42987761	15,17807013	
h1	21,96824256	14,475627	26,58509274	15,95468185	23,99801772	16,17391531	20,29358187	21,62721604	25,13807432	
c2	21,71269068	16,41647441	21,41894069	15,69858743	21,89152591	15,85991244	18,50742657	18,50764964	19,15164642	
cis2	16,83879648	11,00703394	18,9629591	9,624860171	19,14263834	11,04111355	15,780113	16,42426043	16,27160531	
d2	11,65625898	7,973844145	10,72922338	6,831894045	11,92368959	7,573048664	5,557701968	10,06880917	7,75785287	
dis2	17,65399018	11,52282407	24,20114657	10,09312767	18,42788875	14,12803874	5,706984272	20,36765037	10,82161955	
e2	25,94155701	18,7338108	31,43228339	21,72145177	22,82820905	19,91923233	19,90476127	24,66537232	19,17558588	
f2	18,25300257	12,11445814	19,55677939	13,00646012	13,42108687	12,32044547	7,619942433	13,28937173	9,032133602	
fis2	18,50926132	13,29700687	15,36854906	9,917952281	15,38331348	11,66020856	7,650806724	11,28112696	9,14186412	
g2	15,0652836	10,9851748	16,90838629	10,73185954	15,82860173	10,00188001	11,27611855	12,79938369	8,946964902	
gis2	18,13475677	10,40285232	19,84152725	10,44867353	17,55416866	11,18175678	15,19057836	16,61920034	15,59042954	
a2	11,20760317	7,036399865	17,02446622	8,701445233	13,96261826	8,950878138	6,872921434	11,07160655	9,669845036	
b2	10,14074251	6,880403004	12,53576053	8,461816188	9,712735304	6,874764138	7,948608887	10,39080052	9,353819448	
h2	9,65013155	7,416499181	11,863505	8,518247874	9,945327769	8,553075524	8,805611073	11,27996368	9,248814184	
с3	17,59903934	10,60627844	20,02654921	10,64306997	18,16733214	11,58205676	13,48702852	15,94985006	13,52055609	
cis3	7,793053001	6,874215011	8,844196855	6,358652054	7,418323325	6,641647153	6,923773831	7,739190763	5,990450476	
d3	8,767036705	6,295438027	9,447602911	6,687271312	8,767410445	6,433825311	5,603873154	8,887532368	4,500436697	
dis3	7,352271331	5,7541612	6,94379921	4,860131433	4,775622769	4,213726765	3,758774638	4,930693031	4,413605672	
e3	9,023044762	6,747352585	5,358776887	6,321153463	6,858331348	6,741828026	5,161755111	8,119037021	5,171616734	
f3	8,276412551	6,280877082	8,014433036	6,530975433	5,984941767	6,471927911	5,158613482	7,666386292	4,922650398	
fis3	4,224755234	3,416310799	4,563998277	3,16440058	2,7205151	3,188384549	2,624039143	3,108220826	2,769417781	
g3	5,806359644	5,144026223	6,144924243	4,719844631	4,106749589	4,858933642	9,40895659	5,152385794	3,751622947	
gis3	7,084673077	7,313310108	4,95803868	5,825094783	4,232305267	6,162325539	3,977356954	5,681130649	3,311194278	
a3	3,134926961	3,098434571	3,176161767	2,856375899	2,374051358	2,765081905	2,54415907	3,10935935	2,811919363	
b3	8,708504404	7,63058566	8,829151296	7,162009732	4,973255756	6,605032039	3,266960135	5,83137517	4,541090645	
h3	4,889785037	5,294608694	3,034420691	4,394949642	2,695755275	4,583482061	4,235937647	3,424815787	7,654777493	
c4	5,020833585	4,92026897	5,543894835	3,764306035	2,63384984	3,730835048	2,583753526	4,111131224	4,115755596	

cis4	4,506932187	3,797874458	1,822306873	2,184628929	2,56446385	3,013640326	2,258243355	2,003658799	2,015953999		
d4	6,734851448	4,467971439	7,513884958	5,034391459	2,99356343	4,978449846	2,73290305	5,111900806	2,750926302		
dis4	5,532684575	4,926239228	2,883243511	3,215755092	2,852673929	3,900637835	2,534660403	2,465115751	2,582020203		
e4	2,458498635	2,312833473	1,436871167	2,047971181	1,91955074	2,025948148	3,375377234	1,19622994	2,911866188		
f4	2,160601789	1,779005979	1,427656025	1,469396171	4,331619216	1,656517463	4,825613356	1,261798048	3,41190115		
fis4	5,01467509	2,29415894	1,674912893	1,60689738	1,277554039	1,523927282	4,991501223	1,226474106	4,65221172		
g4	1,705496157	1,062650655	1,540862241	1,286214847	1,565672237	1,195191648	2,574164971	1,273068513	3,59844252		
	рр	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
MIN	1,705496	1,062651	1,427656	1,286215	1,277554	1,195192	2,258243	1,196230	2,015954	2,011266	2,051623
MAX	25,941557	18,733811	31,432283	21,721452	23,998018	19,919232	20,293582	24,665372	25,138074	5,027700	6,199558
MEAN	7,819760	5,950370	8,057663	6,002392	8,362316	6,052529	6,855742	7,422806	7,291483	3,259416	3,952606

Length

	рр	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
Kontra-F	26,26807292	36,91496875	22,638875	39,78503125	22,26773958	38,35	36,22219792	34,19335417	29,49238542	18,69108333	21,22858333
Kontra-Fis	23,90070833	30,72948958	24,64296875	32,51089583	21,27807292	29,88825	31,6201875	24,93986458	32,93623958	27,82491667	13,24708333
Kontra-G	29,18592708	38,62219792	28,03663542	34,29723958	31,42401042	32,906	30,72838542	31,69621875	30,72838542	23,77216667	20,1730625
Kontra-Gis	28,61005208	33,42015625	36,65630208	36,53533333	26,64538542	32,93623958	26,0405	34,32747917	29,70008333	11,55338542	12,21877083
Kontra-A	30,62021875	40,37638542	41,072	40,7695625	26,675625	39,34807292	34,932375	27,67369792	35,08359375	26,49416667	26,705875
Kontra-B	30,46642708	38,28951042	33,78308333	36,989	25,49609375	33,81332292	31,12536458	30,33521875	32,56038542	23,43946875	18,63060417
Kontra-H	17,73188542	23,64529167	25,62215625	28,03545833	23,92770833	29,8069375	23,69663542	20,30773958	17,71470833	22,74671875	20,69284375
С	21,84815625	27,67603125	30,91089583	35,07	21,56573958	26,08428125	24,77492708	26,71528125	25,455125	23,9009375	23,27086458
Cis	21,67466667	22,72479167	28,5215	32,46998958	26,50525	29,15158333	27,429375	29,78165625	30,57976042	27,05132292	19,15435417
D	21,63265625	31,37785417	25,8751875	29,9916875	25,20309375	27,55538542	21,380625	26,46325	25,32911458	17,8101875	16,21398958
Dis	21,04459375	31,71390625	25,58114583	29,15158333	25,66514583	28,77353125	26,54726042	24,9510625	24,48901042	14,57579167	13,29463542
E	22,47276042	26,14821875	21,33861458	23,354875	20,70854167	28,73152083	22,93482292	23,43888542	22,32573958	13,33664583	12,62255208
F	21,72153125	23,51336458	25,42572917	27,40329167	13,71251042	21,753125	23,31779167	25,53439583	25,556125	28,92447917	22,38334375
Fis	23,11255208	23,71890625	18,44011458	24,61059375	21,93553125	23,2195625	20,33048958	22,04253125	22,22086458	15,76505208	19,43880208
G	28,71235417	30,92373958	30,60273958	33,67014583	17,12040625	27,49966667	20,8655	29,78238542	27,64233333	21,47184375	26,32263542
Gis	23,57622917	27,42832292	24,68192708	26,50097917	23,1125625	29,63971875	22,79155208	25,18127083	24,53926042	17,69109375	14,40967708
Α	18,868125	26,42963542	25,50228125	26,82198958	20,97251042	25,60929167	21,25784375	24,07558333	18,51144792	17,69109375	21,29351042
В	20,33048958	20,86551042	31,13775	26,39396875	20,08082292	24,11125	20,61582292	20,11647917	21,32917708	18,72545833	21,57885417
Н	20,519875	20,31341667	21,64989583	25,50179167	12,74546875	22,49742708	16,36373958	21,59557292	17,18409375	13,04970833	12,7671875
С	16,69514583	20,47640625	21,30219792	24,42065625	16,92332292	20,93819792	17,95557292	23,42101042	19,851625	13,34307292	17,5915625
cis	16,32570833	19,59085417	25,6966875	27,4679375	15,5488125	21,34760417	18,23020833	21,11325	21,48384375	8,3166875	11,19427083
d	17,73969792	21,54925	19,37470833	21,72364583	20,50285417	21,11325	18,1975	22,15964583	22,02339583	12,57857292	14,49151042
dis	14,17541667	20,20310417	17,82145833	24,20884375	16,92765625	20,06140625	16,85136458	21,46204167	21,55469792	12,39327083	12,11532292
е	17,45630208	17,30370833	18,05580208	21,05330208	15,06921875	18,3283125	18,06126042	19,75075	19,46735417	18,03945833	17,60345833
f	15,63641667	19,18771875	20,80682292	26,5944375	18,72255208	28,93811458	19,03564583	22,985	20,10460417	14,76425	11,68258333
fis	10,98861458	14,64198958	19,83319792	25,51261458	24,62164583	16,58665625	19,76404167	17,46135417	14,37754167	10,91613542	7,7641875
g	14,993625	18,76813542	17,02261458	28,353625	11,9650625	19,90944792	18,17884375	25,74279167	20,36447917	12,53198958	11,21164583
gis	16,41516667	19,493	22,88039583	26,33854167	18,73238542	19,74948958	18,81198958	27,4529375	26,50658333	15,01775	16,14097917
а	17,82936458	17,80155208	15,47901042	18,07276042	10,35410417	17,2939375	18,13534375	21,96684375	14,62369792	10,4931875	7,078895833
b	15,34425	18,85938542	24,70121875	26,5114375	15,77547917	22,26419792	17,4954375	22,11376042	22,44470833	21,96834375	19,21539583
h	10,37023958	13,45505208	16,47423958	17,32748958	10,17433333	13,61913542	10,20614583	16,80240625	17,28985417	5,164885417	2,36284375
c1	13,25814583	18,18072917	18,54171875	20,14976042	15,26	16,37579167	15,94916667	17,86896875	18,3448125	13,78321875	2,969958333

cis1	9,804322917	16,4071875	16,40059375	16,28633333	10,7425625	17,74533333	13,53092708	18,34519792	14,79217708	
d1	18,441875	17,70358333	15,82709375	17,7255625	14,1505625	16,83565625	14,6845	17,78708333	20,20848958	
dis1	13,28703125	15,37884375	16,25557292	17,9650625	11,8368125	16,13471875	10,81983333	15,82269792	18,57152083	
e1	11,92910417	15,62055208	12,7333125	16,99385417	12,26528125	12,94644792	12,76627083	13,69572917	12,10488542	
f1	14,60979167	10,28992708	14,09563542	19,75145833	10,21520833	12,69376042	12,48720833	17,37179167	16,27534375	
fis1	9,7889375	19,0329375	19,53173958	13,88908333	10,37121875	12,64541667	8,77159375	14,3615	10,645875	
g1	12,71211458	15,6888125	18,16221875	17,54386458	16,45096875	17,4000625	13,54616667	16,33592708	13,48864583	
gis1	19,089375	18,50564583	21,26652083	22,65483333	16,50205208	18,86851042	18,14280208	21,2191875	20,30414583	
a1	15,91833333	15,93411458	15,69746875	17,05422917	17,07001042	17,79571875	16,59670833	18,50565625	17,7799375	
b1	14,672	14,34069792	13,94628125	13,48877083	12,1635625	16,23385417	11,24853125	16,18652083	8,23525	
h1	9,592010417	16,04454167	12,44754167	16,50205208	13,9620625	14,60889583	12,66840625	14,87709375	14,10405208	
c2	14,6178125	15,80207292	18,22364583	20,83964583	14,29964583	15,32482292	13,61029167	11,25942708	10,71146875	
cis2	13,02698958	14,4056875	11,94877083	13,50423958	14,08753125	14,58244792	8,502010417	11,1356875	9,279739583	
d2	8,090177083	9,975072917	10,18685417	12,72827083	9,02203125	8,937333333	5,760552083	10,03860417	9,890354167	
dis2	11,41520833	13,02478125	14,16841667	15,77797917	13,34244792	14,35902083	11,71170833	14,88847917	12,98241667	
e2	11,9235	11,7540625	11,96584375	12,47413542	10,20804167	12,91888542	10,31392708	12,72828125	13,067125	
f2	5,783041667	6,70025	6,1095	8,394729167	7,461979167	6,933427083	4,492739583	8,5871875	3,507510417	
fis2	7,841229167	5,191125	7,778885417	8,371260417	5,253479167	5,28465625	3,0554375	9,259833333	5,347010417	
g2	13,54115625	11,27140625	9,852802083	10,9103125	5,674385417	11,81304167	9,543291667	12,66420833	9,981770833	
gis2	6,934854167	11,31292708	10,03452083	10,59491667	9,07134375	12,45121875	5,665208333	9,06259375	9,430354167	
a2	8,26578125	9,500395833	9,9995	10,95391667	5,726510417	7,836739583	5,13109375	8,16946875	6,540833333	
b2	5,691489583	7,687885417	6,864802083	6,777239583	3,1346875	7,425197917	3,467427083	6,584604167	4,728302083	
h2	6,12928125	7,98559375	6,812270833	7,19753125	4,220458333	9,439104167	6,6896875	9,96446875	5,76153125	
с3	6,56709375	8,633541667	8,510958333	12,03092708	7,565302083	7,915541667	6,864802083	8,440916667	5,901635417	
cis3	7,145010417	8,388375	5,332489583	5,40253125	5,595166667	6,5145625	5,533864583	6,015458333	5,787802083	
d3	4,229208333	7,0574375	5,700239583	6,409489583	5,017260417	7,35515625	6,216854167	3,590010417	2,889520833	
dis3	2,420770833	3,184625	2,823604167	3,577958333	2,40746875	3,7470625	2,987010417	3,507645833	2,228854167	
e3	3,213125	4,334197917	4,972645833	4,66103125	2,886302083	5,274770833	5,314666667	4,794041667	3,830666667	
f3	3,137125	3,946572917	4,168885417	4,733229167	1,928635417	3,139020833	1,719625	4,016885417	2,995375	
fis3	3,343666667	3,25659375	2,335333333	3,25934375	1,602854167	3,119895833	1,817385417	2,779708333	1,498645833	
g3	2,61115625	2,574375	2,844072917	2,69696875	2,86859375	3,358947917	2,304677083	2,844072917	2,329197917	
gis3	2,795041667	3,358947917	2,402739583	3,65315625	1,863354167	3,898333333	2,280166667	2,378229167	2,6724375	
a3	1,93690625	2,746	2,157572917	1,71625	1,373	3,113760417	3,21184375	1,863364583	2,770520833	
b3	1,68965625	1,983166667	1,303302083	1,701791667	1,12190625	1,8581875	0,9023125	1,5900625	1,07221875	
h3	1,6976875	1,834760417	2,084541667	3,3740625	1,527114583	2,588166667	1,194072917	2,276447917	0,91484375	
c4	1,59615625	2,474447917	1,783989583	1,698708333	0,967645833	2,004333333	1,09253125	1,739322917	2,662291667	

cis4	2,362375	2,775145833	1,4725625	1,57253125	0,965520833	1,672520833	0,8426875	1,375427083	0,936947917		
d4	1,433989583	1,516833333	1,21975	1,83534375	1,115489583	1,666802083	2,095291667	1,60253125	1,196895833		
dis4	1,65109375	1,625385417	1,16690625	1,3454375	0,896958333	1,735364583	0,858395833	1,0640625	0,64415625		
e4	1,469697917	1,31259375	0,995510417	1,483979167	0,6084375	1,69965625	1,178322917	1,239739583	0,804125		
f4	1,144052083	1,206895833	0,9198125	1,259739583	0,85553125	1,038364583	0,51846875	0,84696875	0,671291667		
fis4	0,892677083	1,3554375	1,166895833	1,148333333	0,619864583	1,25403125	1,066927083	1,066927083	0,70128125		
g4	1,36115625	1,014072917	1,09834375	1,23546875	0,578447917	1,0169375	0,918385417	0,928375	1,48540625		
	pp	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
MIN	0,89268	1,01407	0,91981	1,14833	0,57845	1,01694	0,51847	0,84697	0,64416	5,16489	2,36284
MAX	30,62022	40,37639	41,07200	40,76956	31,42401	39,34807	36,22220	34,32748	35,08359	28,92448	26,70588
MEAN	12,87105	15,44640	15,13173	17,21032	12,36290	15,64515	13,22630	15,28352	14,18064	17,30707	15,84593

LoudnessSone

	pp	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
Kontra-F	2,027020327	8,822907755	2,473326546	7,800605856	0,386143138	8,440935384	3,714801149	2,660062184	2,982560977	6,692454779	3,650626821
Kontra-Fis	2,924756431	7,964078792	3,075581755	8,231796793	1,070045987	7,788018793	3,146335675	3,297938187	2,847501447	4,286227953	1,856562797
Kontra-G	1,643012926	7,252981124	2,117491397	7,68508495	1,481819448	7,373665737	2,393728612	3,507993026	1,947316167	3,971267154	2,311613389
Kontra-Gis	2,005803032	6,956703915	2,88504257	7,542897223	1,972727518	8,365169855	2,085372381	4,672856908	2,17572632	2,766262153	1,717583195
Kontra-A	2,423579543	9,521009929	2,261579108	7,586943392	0,878809154	6,933434398	3,276150287	2,636794425	1,858270282	4,593502886	1,699348995
Kontra-B	3,317899225	9,423677819	2,205424964	8,071797053	1,903611447	8,309926099	2,595750466	3,799467331	2,693345573	4,247573888	3,039420605
Kontra-H	3,678796938	9,789885858	2,92882838	8,919666538	1,548791497	7,758406939	2,834356909	2,191063292	1,824186178	3,363963085	1,421258211
С	1,606654586	9,993092212	3,277196522	8,832946922	1,996166186	9,094857809	2,995291228	3,450841203	3,303091652	3,863110728	1,829723001
Cis	2,536341845	10,67510942	2,549984032	7,823221682	2,650704058	8,723275593	2,860063769	4,232832388	2,840285671	2,796058096	3,225038403
D	1,952688417	9,027513639	3,203852336	8,314879207	2,386592883	7,460972366	2,227498657	2,817503891	3,713805206	4,441425022	3,354751085
Dis	2,386088878	8,283715808	2,033847379	5,527865825	2,317255393	5,787750625	3,181575669	2,305615299	1,974011722	4,976449768	3,088591248
E	2,052161964	9,202200506	3,92449692	8,012926236	3,465286448	8,276557069	2,582525826	3,28655883	3,825846431	4,958342427	2,743934732
F	3,739809466	10,56886786	3,096572164	11,34640466	0,943140239	7,815736223	2,950780283	2,327144402	1,91007255	5,753727175	1,681565066
Fis	3,428715429	8,115996368	3,670687664	8,135253245	2,661854112	7,455914813	2,150021491	3,126922463	3,955946287	5,368508893	3,395550441
G	2,419314693	9,121651706	3,419046349	7,302442838	2,87725489	8,205897996	2,331477432	3,881131617	2,932088552	4,785422221	3,097010749
Gis	2,999113841	8,787536094	4,038441874	8,459630734	4,052482446	9,322161847	2,936136478	3,881752581	2,766901156	5,895293654	5,013258279
Α	2,545556126	9,165698617	2,876037862	7,290419185	2,229096247	8,631622296	3,88442391	3,532590391	1,842792608	4,477535899	3,715645481
В	4,227772809	10,01437641	3,237413783	8,561750871	2,383449339	7,711516744	2,934141187	3,418665814	2,546433996	5,709443122	3,8616013
Н	2,855580164	9,611357215	3,206128926	8,827463335	3,061180581	8,075356584	2,865438776	6,080610615	3,722050828	5,220847531	4,401974975
С	4,163993172	10,11239587	4,488291232	8,075748694	5,970583986	9,893712155	4,947722933	4,576284655	3,661338342	6,780981762	6,176352456
cis	2,316159093	8,700965291	3,080030526	7,04239887	1,669733836	7,151827692	2,60293416	2,671806166	2,693694095	5,35536433	4,373679193
d	4,242830142	10,98044105	4,434030519	9,684684583	2,961617962	8,448280099	2,671968769	4,136958524	3,748161625	3,268718703	1,963671313
dis	3,097392444	7,884347783	2,826499822	6,270599912	3,847642524	7,20611809	2,830178061	3,995572049	3,663702475	5,06217671	4,326758942
е	2,58973883	8,446344504	3,295197144	6,877928109	2,38792566	7,53163922	3,48124442	3,547518953	2,892806193	6,285941048	4,455463333
f	2,248111046	10,73484963	2,017798713	7,760416901	2,194575144	6,667926148	4,478488558	2,927729412	2,339292096	7,993095679	6,758077969
fis	3,262899201	8,445798095	2,152728342	6,67454235	1,018679172	6,898363959	4,583793695	4,404962581	3,908980791	5,485370232	4,037456093
g	3,688212168	9,365624809	2,576496263	7,672365047	1,351016742	7,3742175	3,84537811	3,638961053	4,015690298	7,64657448	6,424217886
gis	1,526364997	9,921821546	2,719718268	7,678176978	1,432091949	7,896540032	3,967687386	4,324662353	3,935128662	6,661338982	3,361191883
а	2,820565244	8,226327158	2,920687406	7,573228927	2,580482354	7,701289657	3,266198431	3,621877662	3,337414944	6,286043971	4,117362461
b	2,235891556	8,166010245	1,593483392	6,860970375	1,712586408	7,178534868	2,791394251	2,913229564	2,274129014	4,342733085	2,416178597
h	3,073529552	8,695411217	3,201760717	6,635484347	2,881640344	7,605134335	2,66684247	2,974386264	1,542392729	5,490819711	2,831771732
c1	1,477819537	7,919412649	2,641115816	6,340857685	1,890261249	6,269997076	2,654663128	3,112437733	2,193048464	3,538975279	1,918336132

cis1	3,225584107	7,887890702	2,600126485	5,28173989	1,976927269	7,189568091	2,036247335	2,280821747	1,741729013	
d1	3,536299822	8,508354708	3,248815737	7,443212101	2,379210621	8,038583231	3,12837091	3,76278796	2,76013612	
dis1	4,024579993	9,327028954	3,107886985	7,305227064	3,166751915	8,121167643	4,274698779	4,435449914	3,300210427	
e1	4,064886945	7,843846732	3,954636657	6,726836858	2,299652497	9,292921732	3,583488531	4,006760155	2,72242589	
f1	2,423515991	8,715194312	3,551443067	6,614499782	2,363522299	7,298450829	2,249466331	3,938029942	2,889881975	
fis1	3,353556315	8,075100509	3,052829741	7,50156508	2,650928756	7,456393974	2,746591065	3,592797711	2,544783566	
g1	3,015286485	8,179769075	3,433886059	6,966864486	3,224669439	7,474892341	2,612550662	3,704108652	2,147841105	
gis1	2,850463432	7,374045234	3,114270138	6,701832688	2,158838058	7,558297488	3,152548448	3,825650043	1,688713681	
a1	4,615501137	9,085879745	4,434788044	8,317648791	4,902280463	9,905615574	3,873529539	3,063249302	2,643501759	
b1	1,848772519	7,493535585	3,422874049	8,018999298	1,924577858	6,592816327	2,346359187	4,333585116	1,398983554	
h1	3,873622791	8,853794382	3,491525147	8,437200039	3,406496472	8,709729939	3,573777267	4,743504947	2,334487713	
c2	3,225185493	8,887383578	2,422587155	7,329589724	2,369093401	6,763666047	3,483482241	4,67985538	3,289290868	
cis2	3,022512861	8,792955771	2,629908515	8,087410092	2,02964265	8,095531462	2,913707718	3,093772473	2,483329345	
d2	2,667510626	7,786933237	2,168273406	5,916456943	1,866368905	7,925602308	1,284659039	2,081285482	0,723687766	
dis2	2,934219567	8,109458722	1,930216499	6,847185225	1,615507603	7,331918577	0,655398796	3,80867749	1,598366196	
e2	3,910364403	8,98518946	3,332343127	7,960166808	2,712694199	8,685470531	1,962824645	4,476314654	2,242476657	
f2	1,855835631	9,953424596	1,35120318	8,267773739	1,00099418	8,447220263	1,129986823	2,271478201	1,238862606	
fis2	2,328231256	9,408799597	1,680335905	8,411815075	1,920105271	8,426342817	2,915041855	3,157144091	1,819050318	
g2	1,814090726	9,694758964	1,061512581	7,886333428	2,327809339	8,480131937	2,874041272	4,140773817	1,777032949	
gis2	1,982234744	8,852278414	1,826489395	8,107237222	1,762630742	6,797045674	1,623031172	2,727606066	1,864116518	
a2	4,010859096	9,440640487	1,817599611	8,331154532	1,262556038	8,653032218	1,884821702	2,961761423	2,23040946	
b2	2,435581317	9,467166464	2,223448357	7,696935839	4,226448849	8,380270397	2,385442928	3,995808032	2,180846074	
h2	3,583137377	8,040003084	1,940755679	6,803117807	2,000506139	4,908609544	2,488187286	2,678597323	1,739281201	
с3	3,803864998	9,549727595	2,548837536	7,894286696	2,495830772	8,459563741	2,248537786	4,409570199	2,258738537	
cis3	4,139728632	9,287042771	1,599683616	7,281130564	1,217738779	6,681758497	1,984730952	3,404348422	2,083961707	
d3	3,233542371	8,652648889	2,489472083	8,398541544	0,443544289	6,839365463	1,986763285	3,26000278	0,963796102	
dis3	2,669919537	9,601495124	2,710855144	10,44389263	1,437010084	8,111109368	1,328729959	2,928797015	2,148012056	
e3	3,955114836	8,295338575	1,972422298	6,146254808	1,082992802	6,112961137	1,109781879	2,736016634	1,721863924	
f3	3,506144034	10,31402371	1,059106857	8,573325024	1,675628892	7,759669161	2,697225182	3,287042366	1,867285939	
fis3	4,093284345	8,244814673	3,459631509	6,96234597	0,64810163	5,127872172	3,61700815	4,118908875	1,362623933	
g3	4,015679936	10,1031837	2,901054893	10,17334934	1,517396714	7,642178927	0,778384579	4,395804375	2,212134724	
gis3	3,646112194	10,14929296	1,870841731	9,120932482	1,238969571	9,756370379	2,277192878	4,325902229	1,363641299	
a3	2,029551157	6,231539685	2,127704959	8,216557487	0,136826349	7,341804052	4,068020102	4,027366113	1,490253995	
b3	5,242002792	11,1677863	3,79397541	10,73800358	2,386253762	8,111857682	3,403567206	7,527986275	4,321043274	
h3	6,137643586	11,24908823	1,715343605	7,381572009	1,651436996	7,740136317	0,782643579	3,423314117	0,529373402	
c4	3,707251205	11,38936085	3,949660881	11,53738418	2,812707475	10,5955373	1,571959299	4,456076525	0,596784972	

cis4	3,444766474	9,412263561	1,984922739	9,834222673	1,297151929	9,976717584	3,217872236	4,645809524	2,753468386		
d4	3,728040564	11,85888867	3,437562901	8,188808517	1,016021255	8,825952685	1,702392311	5,121194264	2,492426283		
dis4	3,186650182	11,25950705	2,57923812	8,937584901	1,252154958	8,279125294	1,52589121	3,267351655	0,809934793		
e4	4,006076381	10,77442799	2,556133552	10,32928777	1,541450681	9,020500868	0,872474391	2,964442752	2,23754437		
f4	3,006229642	11,6674505	2,807201093	9,471270594	0,159513781	9,886378219	1,457714915	4,289021296	2,316980028		
fis4	2,098849427	10,53004301	2,909632351	9,666413593	0,751643553	10,14021179	0,996754491	3,460131839	1,471032463		
g4	3,754116034	15,30867975	3,373835815	10,58962834	1,004728145	8,540965805	4,513187588	5,751902748	2,828005644		
	рр	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
MIN	1,477820	6,231540	1,059107	5,281740	0,136826	4,908610	0,655399	2,081285	0,529373	2,766262	1,421258
MAX	6,137644	15,308680	4,488291	11,537384	5,970584	10,595537	4,947723	7,527986	4,321043	7,993096	6,758078
MEAN	3,086941	9,249442	2,774316	8,003560	2,046408	7,931174	2,667379	3,673541	2,387418	5,073923	3,383299

PercussiveEnergy

	рр	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
Kontra-F	0,00065839	0,003597	0,00085	0,00303	6,1E-05	0,003618	0,001297	0,000901	0,001106	0,002677	0,001345
Kontra-Fis	0,00103603	0,003261	0,0011	0,00351	0,00027	0,0033	0,001236	0,001285	0,001047	0,001473	0,000547
Kontra-G	0,00045053	0,002309	0,00058	0,00254	0,00041	0,002428	0,000735	0,001161	0,000552	0,0012052	0,000789
Kontra-Gis	0,00059516	0,002532	0,0009	0,00271	0,0006	0,003063	0,000739	0,001574	0,000719	0,0009407	0,000615
Kontra-A	0,00062572	0,003133	0,00062	0,00245	0,00022	0,002261	0,000997	0,000807	0,00058	0,0015934	0,000509
Kontra-B	0,00075166	0,002937	0,00053	0,00238	0,00038	0,002348	0,000548	0,000945	0,000634	0,0013128	0,000932
Kontra-H	0,00136217	0,004688	0,00096	0,00387	0,00039	0,003033	0,001003	0,000692	0,000499	0,0010691	0,00042
С	0,00042947	0,00418	0,00096	0,00304	0,00058	0,004006	0,000937	0,001089	0,00107	0,0012454	0,000628
Cis	0,00105292	0,004785	0,00091	0,0028	0,00117	0,003781	0,001331	0,001691	0,001301	0,0010817	0,00104
D	0,00070833	0,003626	0,00101	0,00261	0,00081	0,0032	0,000783	0,001009	0,001334	0,0015167	0,000918
Dis	0,00061487	0,00244	0,00053	0,00175	0,00064	0,001742	0,000967	0,000677	0,000531	0,0016702	0,000893
E	0,00048312	0,002896	0,00109	0,00267	0,00106	0,002833	0,000785	0,001088	0,001337	0,0014407	0,000826
F	0,00133414	0,004699	0,001	0,00487	0,00024	0,003356	0,001194	0,000902	0,000659	0,0022641	0,000549
Fis	0,00101369	0,002657	0,00109	0,00221	0,00089	0,002529	0,000758	0,001035	0,001389	0,0014283	0,000713
G	0,00068568	0,003659	0,00094	0,00241	0,00094	0,003502	0,00075	0,0013	0,001013	0,0015105	0,000901
Gis	0,00086041	0,003075	0,00111	0,00259	0,00127	0,003306	0,000924	0,001118	0,000788	0,0016102	0,0011
Α	0,00077904	0,002999	0,0008	0,00245	0,00081	0,002935	0,001523	0,001014	0,000682	0,0014517	0,001026
В	0,00115802	0,003483	0,00078	0,00251	0,00085	0,002604	0,00111	0,001148	0,000862	0,0017042	0,001151
Н	0,0008279	0,00346	0,00093	0,00297	0,00117	0,002936	0,001043	0,002115	0,001409	0,0015027	0,001334
С	0,00152178	0,004098	0,00161	0,00288	0,00227	0,003883	0,002267	0,001858	0,001453	0,0025046	0,002144
cis	0,00083659	0,003439	0,00107	0,00246	0,00066	0,002939	0,001117	0,001073	0,001146	0,0016642	0,001039
d	0,00118157	0,003713	0,00128	0,00328	0,00091	0,002956	0,000882	0,001331	0,001334	0,0007866	0,000584
dis	0,0009716	0,002562	0,00075	0,002	0,00144	0,00269	0,001064	0,001339	0,00131	0,0012448	0,000988
е	0,0007023	0,002536	0,00088	0,00198	0,00067	0,002371	0,001074	0,001092	0,000845	0,0015232	0,001079
f	0,00046101	0,003216	0,00036	0,00185	0,00048	0,002053	0,001256	0,000652	0,000558	0,0023954	0,001794
fis	0,00094508	0,003082	0,0005	0,00195	0,00021	0,002531	0,001614	0,00142	0,00125	0,0012976	0,000715
g	0,00092464	0,003299	0,00051	0,00193	0,00027	0,002673	0,001143	0,000851	0,001111	0,0023388	0,001446
gis	0,00039584	0,003699	0,00071	0,00232	0,00043	0,002939	0,001411	0,00137	0,001308	0,0019931	0,000683
а	0,00073195	0,002582	0,0008	0,00209	0,00074	0,002685	0,001036	0,001082	0,00108	0,0016261	0,000826
b	0,00049781	0,002232	0,00033	0,00186	0,00038	0,00207	0,000743	0,000664	0,00057	0,0008677	0,000445
h	0,00081091	0,002675	0,00082	0,00182	0,0008	0,002682	0,000745	0,00076	0,000338	0,0011027	0,000473
c1	0,00024677	0,00174	0,0004	0,00113	0,00036	0,001557	0,000576	0,000565	0,000362	0,0005848	0,000297

cis1	0,00067502	0,001685	0,00052	0,00117	0,0004	0,001739	0,000456	0,000539	0,000391	
d1	0,00069329	0,00191	0,00056	0,00137	0,00045	0,002029	0,000702	0,000766	0,000585	
dis1	0,0007207	0,001775	0,00048	0,00104	0,00056	0,001428	0,001058	0,000804	0,000618	
e1	0,00048113	0,001239	0,00053	0,00114	0,00023	0,001549	0,000503	0,000547	0,000332	
f1	0,00034494	0,001775	0,00053	0,00111	0,00039	0,001501	0,000413	0,000673	0,000543	
fis1	0,00039984	0,001117	0,00035	0,00118	0,00035	0,001169	0,000389	0,000521	0,000411	
g1	0,00028862	0,001033	0,00033	0,00082	0,00037	0,001126	0,000325	0,000432	0,000254	
gis1	0,00030576	0,001019	0,00032	0,00093	0,00026	0,001289	0,000516	0,000496	0,000223	
a1	0,0004076	0,001123	0,00038	0,00092	0,0005	0,001406	0,000448	0,000289	0,000285	
b1	0,00014221	0,000879	0,00032	0,00097	0,0002	0,000842	0,000285	0,000467	0,000144	
h1	0,00035075	0,001194	0,00031	0,00118	0,00035	0,001316	0,000456	0,000566	0,000245	
c2	0,00019902	0,000924	0,00015	0,00075	0,00021	0,000796	0,000402	0,000483	0,000367	
cis2	0,00020636	0,001085	0,00017	0,00114	0,00016	0,001031	0,000338	0,000286	0,000268	
d2	0,00025974	0,001201	0,00023	0,00084	0,00024	0,001153	0,000287	0,000273	0,000142	
dis2	0,0002199	0,000993	0,00014	0,00097	0,00014	0,000782	0,00015	0,000325	0,000254	
e2	0,00021612	0,000843	0,00021	0,00082	0,00023	0,000907	0,000198	0,000423	0,000253	
f2	0,0001455	0,001249	0,00012	0,00094	9,9E-05	0,001086	0,000177	0,000315	0,000181	
fis2	0,0001746	0,001309	0,00015	0,00136	0,0002	0,001386	0,000524	0,000451	0,000284	
g2	0,00013379	0,001361	9,3E-05	0,00105	0,00026	0,001366	0,000457	0,000469	0,000288	
gis2	0,00017018	0,001488	0,00016	0,00131	0,00016	0,000991	0,000159	0,000325	0,000234	
a2	0,00039982	0,001973	0,00014	0,00129	0,00014	0,001561	0,000323	0,000438	0,000366	
b2	0,0003099	0,002	0,00025	0,00139	0,00068	0,001903	0,000439	0,000643	0,000345	
h2	0,00048898	0,001623	0,00025	0,00129	0,00033	0,000958	0,000436	0,000389	0,000297	
с3	0,0004164	0,001795	0,00027	0,0014	0,00026	0,001509	0,000281	0,000568	0,000301	
cis3	0,00050454	0,001509	0,00021	0,00136	0,0002	0,0011	0,000356	0,000576	0,000393	
d3	0,00042769	0,001445	0,00034	0,00146	6,2E-05	0,001219	0,000397	0,000597	0,000179	
dis3	0,00044125	0,002252	0,00051	0,00297	0,00035	0,002598	0,000307	0,000803	0,000498	
e3	0,00053042	0,001578	0,0004	0,00139	0,00021	0,001365	0,000251	0,000567	0,000396	
f3	0,00051385	0,002462	0,0002	0,0018	0,0003	0,002117	0,00064	0,000635	0,000449	
fis3	0,00076752	0,002767	0,00068	0,00212	0,00016	0,001671	0,001073	0,001355	0,000377	
g3	0,0008595	0,002422	0,00058	0,00257	0,00033	0,0022	0,000232	0,001048	0,00052	
gis3	0,00064517	0,002481	0,00036	0,00243	0,00027	0,003079	0,000597	0,000986	0,000355	
a3	0,00042438	0,00168	0,00047	0,0027	6,6E-05	0,001886	0,001209	0,001025	0,000461	
b3	0,00092157	0,002693	0,00063	0,00279	0,00045	0,002211	0,00089	0,001985	0,001077	
h3	0,00129322	0,002937	0,00031	0,00173	0,00034	0,001814	0,000193	0,000697	0,00011	
c4	0,00058133	0,003348	0,0008	0,00353	0,00062	0,003339	0,000423	0,001054	0,000156	

cis4	0,00060574	0,002594	0,00047	0,00287	0,00024	0,003133	0,000695	0,001234	0,000845		
d4	0,00046114	0,004025	0,00044	0,00256	0,0002	0,002255	0,000337	0,00102	0,00059		
dis4	0,00045943	0,003315	0,00048	0,0027	0,00022	0,002224	0,000322	0,000696	0,000268		
e4	0,00062535	0,004021	0,00053	0,00327	0,00035	0,002649	0,000251	0,001051	0,000534		
f4	0,00054212	0,004485	0,00063	0,0034	9,9E-05	0,003332	0,00032	0,001669	0,00051		
fis4	0,00024488	0,00394	0,00055	0,00385	0,00028	0,003914	0,000245	0,001274	0,000345		
g4	0,00112198	0,007936	0,001	0,0043	0,00038	0,003342	0,001124	0,002003	0,000667		
	рр	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
MIN	0,000134	0,000843	0,000093	0,000750	0,000061	0,000782	0,000150	0,000273	0,000110	0,000585	0,000297
MAX	0,001522	0,007936	0,001612	0,004871	0,002270	0,004006	0,002267	0,002115	0,001453	0,002677	0,002144
MEAN	0,000610	0,002584	0,000577	0,002095	0,000462	0,002228	0,000709	0,000898	0,000620	0,001520	0,000898

ReleaseTime

	pp	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
Kontra-F	0,025034014	0,018684807	0,02031746	0,059319728	0,019954649	0,024126984	0,019954649	0,019229025	0,06185941	0,02521542	0,02122449
Kontra-Fis	0,028480726	0,020136054	0,058049887	0,016870748	0,081088435	0,02031746	0,022312925	0,023582766	0,042630385	0,021587302	0,023401361
Kontra-G	0,055510204	0,017777778	0,088344671	0,018321995	0,022131519	0,017414966	0,046258503	0,020136054	0,056780045	0,023764172	0,019229025
Kontra-Gis	0,018684807	0,018866213	0,019954649	0,014693878	0,04553288	0,015419501	0,041179138	0,017052154	0,050612245	0,014693878	0,020861678
Kontra-A	0,023219955	0,021768707	0,18829932	0,017959184	0,022312925	0,019591837	0,025941043	0,05478458	0,083628118	0,084535147	0,018866213
Kontra-B	0,016507937	0,017959184	0,154013605	0,016870748	0,028662132	0,01814059	0,064580499	0,065124717	0,025034014	0,014693878	0,019410431
Kontra-H	0,014875283	0,016507937	0,068752834	0,01723356	0,016870748	0,018321995	0,078548753	0,016507937	0,016870748	0,056235828	0,019591837
С	0,039727891	0,014693878	0,03537415	0,015238095	0,019591837	0,016326531	0,046258503	0,015600907	0,050612245	0,046984127	0,060226757
Cis	0,033197279	0,015782313	0,033378685	0,036643991	0,017959184	0,014512472	0,045714286	0,014512472	0,016870748	0,023764172	0,022494331
D	0,014512472	0,040997732	0,03537415	0,013061224	0,013424036	0,012517007	0,067301587	0,025941043	0,041179138	0,046077098	0,036643991
Dis	0,013424036	0,019591837	0,02430839	0,025759637	0,029387755	0,056780045	0,016145125	0,037188209	0,04861678	0,031020408	0,015782313
E	0,012517007	0,013424036	0,026666667	0,028117914	0,011791383	0,01723356	0,067301587	0,011972789	0,012879819	0,015782313	0,014875283
F	0,014693878	0,012879819	0,011972789	0,017596372	0,025941043	0,023038549	0,026666667	0,011428571	0,011609977	0,01015873	0,029931973
Fis	0,029931973	0,027573696	0,012335601	0,019954649	0,026122449	0,047709751	0,078185941	0,012154195	0,026848073	0,079455782	0,013786848
G	0,019229025	0,020136054	0,055510204	0,017596372	0,044081633	0,017777778	0,020498866	0,017414966	0,017777778	0,021768707	0,042086168
Gis	0,012335601	0,009070295	0,025034014	0,053333333	0,026122449	0,011247166	0,020136054	0,020498866	0,036462585	0,013968254	0,046984127
Α	0,016507937	0,058231293	0,015600907	0,035736961	0,015056689	0,039365079	0,026122449	0,064399093	0,021950113	0,099591837	0,060408163
В	0,026485261	0,009795918	0,033015873	0,009433107	0,01015873	0,009614512	0,013786848	0,017596372	0,013061224	0,045170068	0,014512472
Н	0,083265306	0,015782313	0,021768707	0,034285714	0,008344671	0,023764172	0,026122449	0,051156463	0,011972789	0,009251701	0,02031746
С	0,20952381	0,268662132	0,131519274	0,092335601	0,242176871	0,27555556	0,13478458	0,133151927	0,117006803	0,123174603	0,126258503
cis	0,019773243	0,12861678	0,0830839	0,083265306	0,067845805	0,124807256	0,076190476	0,07600907	0,075464853	0,167981859	0,150204082
d	0,021043084	0,044263039	0,074376417	0,094512472	0,020680272	0,057324263	0,077460317	0,044988662	0,056235828	0,042630385	0,050793651
dis	0,077278912	0,199002268	0,097596372	0,203900227	0,235464853	0,17414966	0,075102041	0,135328798	0,136054422	0,09106576	0,139863946
е	0,048798186	0,123356009	0,052426304	0,084535147	0,055328798	0,083628118	0,058956916	0,03047619	0,03755102	0,088163265	0,061133787
f	0,151836735	0,317460317	0,098503401	0,205170068	0,195192744	0,233287982	0,183764172	0,121360544	0,027755102	0,113197279	0,174512472
fis	0,151111111	0,170521542	0,053333333	0,107210884	0,04154195	0,147482993	0,107029478	0,048979592	0,056054422	0,313469388	0,071292517
g	0,050068027	0,08399093	0,070204082	0,066213152	0,053151927	0,078911565	0,101405896	0,069659864	0,039909297	0,223129252	0,098684807
gis	0,072018141	0,260861678	0,087800454	0,070204082	0,017596372	0,013605442	0,081451247	0,021950113	0,01723356	0,119183673	0,117006803
a	0,075646259	0,102312925	0,039909297	0,100136054	0,092879819	0,101950113	0,084716553	0,090521542	0,068390023	0,223854875	0,185941043
b	0,064036281	0,157097506	0,023038549	0,02739229	0,072562358	0,11047619	0,023401361	0,005804989	0,005986395	0,094331066	0,095782313
h	0,20244898	0,312018141	0,124444444	0,099591837	0,165986395	0,217868481	0,129705215	0,063310658	0,046802721	0,142040816	0,107755102
c1	0,035011338	0,112834467	0,04553288	0,064943311	0,049160998	0,090702948	0,082176871	0,032108844	0,024489796	0,05877551	0,143492063

cis1	0,085260771	0,259773243	0,049886621	0,089251701	0,063129252	0,100136054	0,039909297	0,043356009	0,058594104	
d1	0,123356009	0,24	0,040272109	0,061496599	0,048072562	0,235464853	0,029206349	0,117369615	0,046077098	
dis1	0,17723356	0,113741497	0,032471655	0,019047619	0,043356009	0,017414966	0,021405896	0,017052154	0,053514739	
e1	0,055510204	0,44462585	0,045170068	0,216054422	0,060045351	0,416326531	0,055147392	0,036281179	0,032653061	
f1	0,099229025	0,141133787	0,053151927	0,09414966	0,083628118	0,118639456	0,083809524	0,119183673	0,053333333	
fis1	0,103582766	0,306031746	0,281723356	0,200453515	0,172879819	0,312199546	0,142947846	0,043174603	0,026485261	
g1	0,241088435	0,177959184	0,020680272	0,15600907	0,13260771	0,173786848	0,078185941	0,052970522	0,075464853	
gis1	0,049342404	0,177052154	0,098503401	0,102494331	0,040090703	0,179591837	0,053151927	0,099954649	0,129705215	
a1	0,362267574	0,506666667	0,553650794	0,460045351	0,466031746	0,51537415	0,42430839	0,331791383	0,313650794	
b1	0,030657596	0,024671202	0,08399093	0,133514739	0,043537415	0,019954649	0,041179138	0,120090703	0,051519274	
h1	0,358820862	0,548208617	0,255056689	0,823038549	0,057142857	0,641814059	0,070566893	0,8	0,298956916	
c2	0,241451247	0,637278912	0,243265306	0,430113379	0,401814059	0,49414966	0,430294785	0,552018141	0,062403628	
cis2	0,34829932	0,334875283	0,0861678	0,461678005	0,067120181	0,332698413	0,112290249	0,506303855	0,119365079	
d2	0,020680272	0,095056689	0,046077098	0,165986395	0,025578231	0,116281179	0,040453515	0,05478458	0,049705215	
dis2	0,12861678	0,342131519	0,09324263	0,401632653	0,177414966	0,305306122	0,073106576	0,302947846	0,069659864	
e2	0,483446712	0,563265306	0,307845805	0,519183673	0,044081633	0,528435374	0,065306122	0,411247166	0,065124717	
f2	0,048798186	0,117732426	0,03446712	0,185941043	0,110294785	0,109387755	0,08	0,080907029	0,055147392	
fis2	0,223673469	0,188117914	0,266666667	0,216054422	0,054240363	0,54185941	0,071292517	0,035192744	0,048435374	
g2	0,039546485	0,120090703	0,066031746	0,089795918	0,152018141	0,10430839	0,097414966	0,123537415	0,050612245	
gis2	0,250884354	0,117369615	0,150929705	0,066938776	0,199183673	0,237278912	0,163809524	0,139501134	0,104671202	
a2	0,194829932	0,26430839	0,208072562	0,233650794	0,230385488	0,254875283	0,282993197	0,273922902	0,058049887	
b2	0,168163265	0,136054422	0,211337868	0,24	0,225306122	0,213877551	0,162721088	0,174331066	0,113015873	
h2	0,331247166	0,212426304	0,206984127	0,145668934	0,325623583	0,090340136	0,088526077	0,244172336	0,118639456	
с3	0,48	0,369160998	0,319092971	0,28154195	0,219501134	0,297142857	0,273378685	0,184671202	0,115011338	
cis3	0,162721088	0,176326531	0,223854875	0,261405896	0,200816327	0,161814059	0,204263039	0,234920635	0,181043084	
d3	0,140226757	0,229478458	0,165079365	0,113741497	0,096870748	0,24399093	0,217868481	0,141133787	0,101587302	
dis3	0,029569161	0,183764172	0,036099773	0,230748299	0,032108844	0,296054422	0,031201814	0,167981859	0,03537415	
e3	0,199727891	0,185034014	0,071111111	0,339410431	0,03446712	0,192108844	0,081451247	0,246893424	0,164716553	
f3	0,106122449	0,103401361	0,072380952	0,169795918	0,052063492	0,083446712	0,065306122	0,064036281	0,075464853	
fis3	0,099229025	0,132063492	0,145668934	0,128798186	0,075102041	0,127891156	0,110839002	0,079092971	0,130068027	
g3	0,140952381	0,129160998	0,089433107	0,229659864	0,043356009	0,175238095	0,051882086	0,095963719	0,088526077	
gis3	0,100680272	0,165079365	0,160907029	0,155827664	0,129705215	0,117188209	0,131882086	0,17814059	0,083809524	
a3	0,093605442	0,069659864	0,061496599	0,07292517	0,045895692	0,100680272	0,070566893	0,138231293	0,074739229	
b3	0,095782313	0,115011338	0,128435374	0,119183673	0,102494331	0,102857143	0,093786848	0,072018141	0,128798186	
h3	0,067482993	0,103582766	0,050249433	0,177777778	0,058594104	0,088163265	0,032108844	0,084172336	0,031927438	
c4	0,053877551	0,099591837	0,063673469	0,098503401	0,06276644	0,064036281	0,072018141	0,09015873	0,064943311	

cis4	0,071111111	0,10829932	0,135873016	0,117006803	0,065124717	0,101405896	0,079637188	0,060226757	0,067482993		
d4	0,101950113	0,100861678	0,101587302	0,09106576	0,03138322	0,082539683	0,087437642	0,097052154	0,0769161		
dis4	0,050068027	0,156734694	0,165260771	0,141133787	0,046984127	0,162539683	0,060589569	0,097959184	0,05877551		
e4	0,039365079	0,117369615	0,0738322	0,150566893	0,145487528	0,184671202	0,081632653	0,089433107	0,107573696		
f4	0,074920635	0,094512472	0,074557823	0,128435374	0,037732426	0,111020408	0,064217687	0,101405896	0,111746032		
fis4	0,037369615	0,143492063	0,144761905	0,151655329	0,064580499	0,128435374	0,061315193	0,088707483	0,056235828		
g4	0,078367347	0,072562358	0,105578231	0,130249433	0,101950113	0,085986395	0,073106576	0,077823129	0,038276644		
	рр	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
MIN	0,012336	0,009070	0,011973	0,009433	0,008345	0,009615	0,013787	0,005805	0,005986	0,009252	0,013787
MAX	0,483447	0,637279	0,553651	0,823039	0,466032	0,641814	0,430295	0,800000	0,313651	0,313469	0,185941
MEAN	0,107545	0,154592	0,103126	0,140921	0,088862	0,147996	0,088289	0,112801	0,069387	0,077647	0,063855

Roughness

	pp	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
Kontra-F	22,22053	675,4748	27,94	511,97818	7,51682	932,3866	221,078	84,6109	146,923	376,8105	193,823
Kontra-Fis	27,37697	327,1799	16,3655	343,05778	12,0344	420,9265	121,1691	80,7725	63,4212	111,538	71,6279
Kontra-G	10,5393	214,4585	17,4041	242,10384	22,2944	214,4105	50,94254	86,5552	37,7465	30,74914	19,1043
Kontra-Gis	18,34531	312,7587	38,6476	271,29563	26,7952	499,1096	75,01255	92,5367	51,3978	22,23009	24,3646
Kontra-A	24,6027	693,1396	10,1558	228,94063	15,3244	559,6176	157,056	58,8555	38,2242	47,72928	14,9216
Kontra-B	56,49416	603,8857	21,5705	459,50533	29,564	388,8875	64,29312	123,503	80,8381	43,41328	24,7287
Kontra-H	34,62147	411,2648	21,9149	352,68485	19,4679	333,7495	49,37856	33,8351	18,4962	25,73441	5,85876
С	5,586962	396,2221	29,1421	347,55605	16,9651	404,1002	52,75768	57,445	64,1081	27,67294	8,45704
Cis	8,864063	228,0767	6,0108	91,520141	17,6455	173,9709	21,07701	28,5727	19,0749	12,02627	15,9547
D	5,275217	187,4071	14,3337	108,19447	14,7714	134,1787	11,03521	17,3466	25,5254	23,39864	4,32727
Dis	4,857047	123,2263	4,85936	37,475602	7,35877	51,5647	19,58387	8,96026	7,49406	24,0517	4,0326
Е	6,834792	194,7559	25,9919	130,33209	28,5261	191,2063	19,14914	28,3669	42,972	34,90107	13,228
F	22,76082	297,3376	13,9544	367,10391	3,69288	140,1247	29,38775	21,1242	15,7913	63,31114	4,31369
Fis	13,19846	119,6997	7,5545	103,22676	10,2813	111,1809	6,937677	17,1317	30,5283	30,27463	7,97863
G	7,882876	244,2948	5,94459	93,442879	10,7932	128,3487	8,723506	25,2489	15,8816	23,93653	7,66253
Gis	10,93039	150,1624	10,4865	64,308959	29,0341	186,2495	19,73201	14,5522	12,7883	13,06537	12,832
Α	2,6852	101,2996	5,18416	47,663942	6,39373	88,53154	18,5562	7,43399	4,81282	13,09247	8,00842
В	9,936214	106,2517	4,23154	74,332086	3,88723	64,81566	9,052248	6,98263	4,66966	25,04241	9,34965
Н	3,999955	78,50363	5,76956	78,27241	4,73729	57,31921	4,631982	25,9389	9,37954	12,14321	8,23159
С	22,35482	227,432	19,9051	89,755511	54,3466	218,8084	72,71468	29,0461	23,9093	56,36819	34,1181
cis	2,517403	92,52411	5,62602	23,478906	2,13852	69,79652	6,997737	2,86499	4,25025	14,35414	4,20188
d	9,957712	133,2524	11,2124	97,950023	6,35638	67,21632	5,376223	14,1555	12,3305	5,10878	2,35688
dis	7,67006	115,4359	0,8557	17,75049	20,7287	107,2559	12,15356	7,97532	11,5334	16,19997	6,38775
е	5,232918	85,38527	8,27315	53,93237	5,73287	78,06937	14,88949	13,9782	9,93169	25,51727	7,71936
f	1,530068	137,8065	1,20976	30,65537	3,63423	78,65696	21,50844	6,79286	2,62436	21,25373	17,1913
fis	3,622657	61,60692	0,61254	21,810861	1,78329	70,10794	26,73014	15,3185	10,5614	11,34248	1,74633
g	2,293424	108,9416	1,82463	61,829668	0,62656	66,95645	16,08291	9,79897	14,2666	24,11829	1,61468
gis	0,324693	67,10092	0,78331	19,941889	0,13295	41,52303	6,214985	6,26087	5,59134	17,66999	1,04817
а	2,634767	33,00046	2,94582	23,184527	2,25411	30,75002	7,34032	8,51764	5,75195	7,223111	1,71737
b	0,639419	24,02771	0,25055	10,009766	0,74	30,72703	3,498091	1,14784	2,52833	5,543975	0,67854
h	2,070119	32,21788	1,79587	10,009841	2,57059	29,8456	2,44688	2,26564	0,11743	13,26419	1,32924
c1	0,236255	21,46553	0,7774	6,8329556	1,09015	16,1323	3,016602	1,33228	1,48695	0,552608	1,02204

cis1	0,97899	19,11016	1,09127	4,4887118	0,6187	19,03615	1,097419	1,5283	1,03377	
d1	2,951472	17,27687	1,42469	11,443108	1,35197	20,55894	1,35815	2,6174	1,72265	
dis1	2,579353	36,89024	0,92214	7,6790118	1,90558	29,89689	7,934489	2,45103	3,42249	
e1	2,208852	21,48165	1,71957	15,319421	1,08822	28,40579	6,241549	5,05655	2,4705	
f1	1,19566	16,75869	0,81796	17,638364	1,24251	13,82838	1,358035	5,97761	3,21192	
fis1	1,962501	24,71316	1,25637	10,905115	1,34417	12,24523	2,157065	2,51884	2,6305	
g1	1,87431	33,69776	3,51635	29,300587	4,50042	45,07457	2,755665	7,41155	2,04452	
gis1	1,443519	15,5859	1,03354	9,9871373	1,0548	17,73754	3,396859	2,84707	0,80968	
a1	4,957144	45,28836	3,45998	22,808125	8,39891	62,66268	8,384208	3,07083	4,01802	
b1	0,554502	14,31947	2,09661	19,677375	0,90244	13,47169	1,469584	5,12618	0,34302	
h1	2,239845	37,5369	2,47094	31,207891	0,68848	56,35483	2,796697	10,5549	1,1889	
c2	0,990272	22,75359	0,6268	18,614732	1,1913	15,61353	2,757025	3,50227	3,95367	
cis2	3,079519	88,7123	1,7793	83,177445	3,29115	81,23078	6,962364	4,56992	8,67775	
d2	0,358901	39,37193	0,80103	17,679571	0,3407	35,48948	0,879612	0,85606	0,08611	
dis2	2,380807	77,57557	0,92435	19,64108	1,14975	65,05694	0,574018	5,61922	1,30671	
e2	6,076372	72,32792	5,42479	60,687132	1,39908	104,7065	0,632446	25,0914	1,63496	
f2	1,297448	113,724	0,29045	9,0313231	0,53496	75,2615	0,635026	1,31131	0,49825	
fis2	1,28232	59,09694	1,41026	68,509589	1,99441	64,27638	3,644365	15,5235	1,42833	
g2	0,857778	113,3227	1,07255	49,076058	2,91403	106,8634	9,611314	15,2203	3,79736	
gis2	3,87916	217,9525	2,92952	85,936972	5,29772	105,2701	2,753983	20,0956	4,06841	
a2	8,342756	169,0304	1,79088	157,67793	0,95527	127,2892	1,91243	7,80788	4,07386	
b2	5,276445	212,928	2,93408	70,297357	17,9632	170,0031	6,148385	22,8858	4,27376	
h2	18,4596	173,2936	2,64188	58,919436	5,41114	100,4588	15,85165	9,67636	2,45122	
сЗ	7,258128	104,4077	5,9549	82,761135	1,4892	85,18416	3,68182	16,5897	3,80656	
cis3	17,10253	207,7678	1,57712	49,665488	3,03612	78,66933	7,787276	12,9578	5,55203	
d3	9,588747	132,5177	10,1496	144,86842	0,12887	103,9851	5,728688	16,9752	0,1073	
dis3	2,82269	55,96957	3,74957	242,65819	0,59408	93,84464	0,947044	8,2555	1,56196	
e3	6,085553	91,77922	0,91534	34,290754	0,38403	81,22327	0,92188	8,01319	2,08862	
f3	7,884721	174,5279	1,05318	133,33761	0,94197	106,8543	3,883187	11,1599	1,64641	
fis3	6,770934	136,4116	2,41222	51,857644	0,07093	32,30914	6,094305	12,5268	0,57787	
g3	11,96476	109,3162	4,20756	125,19623	0,20654	111,5455	0,400398	11,7324	0,72624	
gis3	6,6697	223,3747	1,04987	145,79364	0,3341	273,2637	2,771161	12,2349	0,4345	
a3	1,496485	66,31627	0,49792	127,42733	0,00537	95,44814	5,802143	14,3672	3,09885	
b3	12,3725	180,8097	3,90258	102,20407	1,04831	88,49097	2,572664	32,3888	6,22851	
h3	31,92475	269,8477	0,45345	111,7997	0,71957	102,9709	0,291718	6,05264	0,15038	
c4	2,211296	447,0369	6,78023	125,93093	1,42485	152,3893	0,779214	12,6222	0,30696	

cis4	6,444259	147,4982	0,87464	76,134446	0,2332	130,9546	1,511852	7,87732	1,85643		
d4	5,522409	443,8292	3,41992	145,93214	0,18592	76,32686	0,828361	16,2138	1,43116		
dis4	3,752987	201,803	0,77311	66,869641	0,09629	50,72265	0,153485	1,0476	0,1801		
e4	2,585075	236,5775	0,92914	112,6271	0,26189	85,33733	0,41683	5,43643	1,08645		
f4	1,18717	249,1924	1,32796	85,474657	0,02719	67,71465	0,356001	8,17162	1,1277		
fis4	0,312434	184,8261	1,34902	121,65441	0,18767	116,1034	0,994857	7,00375	0,92989		
g4	7,386255	386,7821	5,40226	133,52231	0,32764	38,14573	6,721695	19,9846	0,88528		
	рр	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
MIN	0,2363	14,3195	0,2505	4,4887	0,0054	12,2452	0,1535	0,8561	0,0861	0,5526	0,6785
MAX	56,4942	693,1396	38,6476	511,9782	54,3466	932,3866	221,0780	123,5033	146,9229	376,8105	193,8234
MEAN	7,7956	163,9858	5,9033	100,2646	6,2195	124,3840	17,3664	18,1621	11,8385	36,8637	16,8730

SpectralCentroid

	pp	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
Kontra-F	951,2996762	1427,989314	1011,756619	1304,6406	615,3115067	1177,567809	762,5625286	629,2125344	701,2259313	1102,391586	1051,448821
Kontra-Fis	430,1777495	869,1596321	604,5352716	996,5410923	688,7748548	971,4645535	920,6587908	614,0858793	517,0308843	902,967244	620,9237844
Kontra-G	998,6449295	1185,267187	895,694086	1183,07673	744,7606324	1219,896673	639,5043436	1103,162372	690,6437383	1029,988911	771,9090189
Kontra-Gis	761,3926405	963,5868184	771,4297425	1021,181484	555,6336093	1063,489482	549,9198671	693,9516608	648,9323283	698,3691186	521,6930088
Kontra-A	884,1196461	1173,136666	1063,845181	1014,601125	708,0628514	898,3649076	573,2975274	561,1314938	547,2986404	1099,256854	758,079083
Kontra-B	565,5962047	1234,274548	749,7174874	1158,911089	757,0312328	1067,099422	724,5838648	898,3011319	680,3177465	937,8791856	822,4169299
Kontra-H	880,0303644	1083,952357	850,0842343	1058,06734	668,3138348	967,0403221	737,3007196	681,2307294	656,6529473	1002,032307	844,4870186
С	801,9235981	1208,185491	777,9242809	1141,541843	589,2366963	1016,275552	702,0807999	825,9344725	852,7934421	1027,936777	801,6930964
Cis	733,8537835	1351,295049	883,6482249	1145,678133	746,2908826	1107,735467	633,8495229	853,0417442	655,7378834	801,6433658	1060,612348
D	819,8287838	1321,256433	809,4124755	1092,221882	764,2073702	976,5086683	764,7051024	1122,806031	590,4485329	1051,943316	1290,050829
Dis	1487,334569	1229,560879	802,4600378	854,1170725	561,6469648	1259,870495	994,7491731	703,2962101	730,352346	1341,187226	1046,093005
Е	743,6285892	2747,862587	641,7355086	1047,220621	808,01702	1057,994699	648,8045337	770,8771622	612,8077074	886,6983071	829,5383868
F	745,2611171	1185,346995	1134,47604	1169,469192	823,659515	1034,529687	731,4154949	833,7299721	799,6527153	1067,638687	760,4176608
Fis	790,6269046	1166,86037	947,1510978	1234,75969	702,7868184	1175,47963	999,6524771	659,6064099	871,8941992	1346,254208	1333,988291
G	783,6247945	1094,263706	1104,546463	1092,319521	682,4148015	990,4270137	684,56285	735,947223	616,2577583	934,752356	1677,956154
Gis	832,9108964	1004,035674	883,4155509	1150,000133	790,9208015	1063,512645	638,7093882	695,3364298	767,9241693	1357,654715	1155,175188
Α	611,6720378	3192,185148	1001,957099	1044,39565	913,1464893	1159,222723	1072,711889	974,6768874	663,4102236	969,193123	1728,262865
В	1509,478085	959,0824215	921,1197266	1552,076748	910,256578	1038,907355	562,7876875	663,3048815	658,9721691	1067,717755	883,3995883
Н	1862,203073	1062,519842	802,4262314	1040,076448	841,0914885	1127,264386	825,2396533	981,6667454	678,5789122	951,1008109	942,9712242
С	887,4617267	970,5349287	1139,22707	932,9352643	774,8003954	1727,300134	639,6688031	755,0187028	799,0430628	1078,477738	1150,143168
cis	700,7626653	1018,071625	850,1411137	1104,334442	796,9837597	958,9608689	683,2414638	1028,759741	827,2588116	1177,705432	1484,285121
d	834,8323295	1132,352693	834,7612291	1046,684786	808,6270952	1315,489746	732,5632474	861,6346288	866,7941522	839,6188723	838,8557715
dis	782,1557089	1099,311907	1138,963777	841,843726	760,7060703	1291,416219	724,8479681	724,5586139	685,410908	1155,401407	1220,31438
е	975,5589235	1225,314534	927,1276121	1071,436933	782,7422995	978,3527808	772,4999949	868,6274273	796,6364313	1569,858571	1244,504696
f	730,2866089	1291,692655	1411,416967	1229,014541	1252,909349	1097,225798	987,3138753	1042,829388	685,3150197	942,3008859	1465,016572
fis	759,5588396	960,7179504	771,6192118	928,9656635	1301,751245	787,4382769	798,0336085	797,4321607	886,2079923	1477,873514	1030,582668
g	1013,459514	1076,403985	910,8934525	1184,797182	825,5378896	917,6605849	750,1561009	1083,917915	779,9261362	1446,42133	1707,482097
gis	758,0714958	1147,745452	1173,997366	1111,706037	740,8022167	1001,158224	998,9223792	1134,644036	716,4272101	1323,578743	1293,359491
а	1421,267097	1197,958301	914,5337541	1088,949532	776,8174434	1052,027677	779,2069508	865,0381293	1144,6783	1809,922117	1113,537154
b	929,4350936	1187,769505	1288,051803	1110,970887	1133,595167	1068,901728	860,4106828	939,053373	933,3136515	1305,595217	1241,390337
h	829,6861193	1058,933961	755,5237281	1084,94121	750,8069108	907,765887	710,941739	704,6089772	763,9016759	1392,950743	877,960947
c1	963,1636916	1357,009013	964,187146	1059,717259	924,6145434	1120,065332	668,0365518	1115,658893	998,0739744	991,76833	1257,954951

cis1	972,346961	1317,369153	1232,473391	1397,5588	1163,386617	1177,381621	951,3375238	922,8719149	827,0395035	
d1	909,5755098	1239,186188	1017,900881	1311,039941	1007,955767	1062,89435	551,3564479	844,1291642	869,6406284	
dis1	1086,015491	1310,562475	1002,812498	1217,136959	1177,049608	1161,567776	956,3539805	1235,232364	921,3203161	
e1	1147,318904	1385,904666	1241,765047	1443,382041	1074,948575	1307,015088	866,3826062	979,3475106	912,1526183	
f1	971,046423	1195,623772	792,1625372	1332,780306	830,313579	1077,142211	869,6497209	1156,825344	1006,735521	
fis1	1028,011045	1550,975785	1158,537603	1448,902992	958,9580139	1319,177427	888,5879671	1039,145724	1056,319741	
g1	981,1420555	1433,152705	1260,129686	1370,730412	881,8601098	1079,869921	1054,41434	809,8610814	771,0254306	
gis1	1169,264179	1367,858543	1104,370682	1514,23776	816,6211018	1176,639988	1186,187407	1151,385153	1151,344979	
a1	1507,910365	1551,753568	1170,029249	1524,120147	1189,626225	1428,806712	884,7499998	1147,062001	932,4113116	
b1	1227,525935	1349,907485	981,1139632	1298,325294	1099,902064	1315,48718	874,3603915	1144,207203	732,0827996	
h1	885,5555645	1730,065784	987,0193533	1159,117522	833,7938943	1038,770348	967,0467992	850,7022538	819,1198747	
c2	1145,273791	1409,824461	1149,3292	1350,838469	958,5040212	1027,260953	880,6270613	1148,206048	801,7163045	
cis2	1182,149765	1588,39562	1246,372324	1483,312962	1075,301614	1317,994881	956,1875879	901,4574704	883,2310527	
d2	938,6077542	1378,810428	1211,502966	1161,145983	416,1130547	1325,362698	610,3470603	731,0718732	683,4744562	
dis2	1175,247997	1548,14816	966,9074493	2809,067829	1197,44162	1381,288327	1134,366483	1073,975715	1037,397263	
e2	1215,472837	1432,921235	1102,104972	1289,328506	1122,790401	1206,269408	445,5745444	905,2836797	700,3052728	
f2	909,595265	1673,335397	1066,201023	1494,398287	2213,795486	1314,202852	1124,638708	946,5695759	878,1606418	
fis2	801,3007835	1456,212512	904,2833654	1497,724557	1244,5987	1164,856725	836,566595	743,3111087	2280,39245	
g2	1645,680586	1907,047352	1346,209643	1637,580084	1004,220136	1559,889528	1063,879863	1273,16726	1112,130878	
gis2	1233,901995	1828,778653	1271,014534	5039,820902	1304,085125	1450,157333	1068,0702	1118,428804	1043,584016	
a2	1360,978522	1776,810466	1338,864454	1671,634577	1101,168016	1436,441713	1147,900859	1129,966097	1086,168158	
b2	1302,817417	2072,623796	1249,494273	1756,551246	1193,613571	1749,709711	1106,309871	1168,517568	1072,597911	
h2	1360,32289	1869,775568	1254,072446	1636,684482	1196,549744	1378,742196	1102,219271	1219,115801	958,8077316	
с3	1325,964676	1797,856979	1259,596693	1554,01857	1233,621176	1570,550465	1198,41037	1286,83565	1111,596286	
cis3	1633,544596	2425,369674	1307,146179	2013,066632	1254,655521	1586,682938	1130,449639	1365,509731	1124,115587	
d3	1639,53575	2181,170587	1469,410482	1885,774878	2154,33989	1724,583959	1310,730004	1358,953763	1268,01439	
dis3	19377,83347	7542,023721	18813,18306	6820,67854	21676,31514	7923,264512	25409,20905	14281,42444	19023,64848	
e3	16356,15236	9081,361894	14359,03404	10515,74808	26697,72029	8961,947248	12384,87808	17910,76003	22675,94779	
f3	18053,1639	7077,951031	27174,83665	8808,436249	23157,0384	7782,694518	15675,25298	15483,75814	18680,71963	
fis3	16483,41086	7579,029783	1652,049542	2233,610964	1501,699824	1473,069251	1184,723732	1412,557165	1032,3788	
g3	1878,740564	2497,796952	1569,250643	2577,761711	1111,311821	1811,379356	450,6806993	1369,170653	890,8457717	
gis3	1772,390825	2615,168854	1582,055798	2113,817889	1319,560156	2225,916782	1305,579063	1498,376801	1117,805543	
a3	1771,790798	2016,696114	1460,968184	2066,710399	1283,273782	1752,791739	1208,870137	1461,725153	1242,021668	
b3	11855,41318	6638,960961	14774,67306	6342,80407	18019,71827	7098,313192	11193,10203	7169,95235	8782,784585	
h3	10082,18422	6286,765732	25893,82966	9346,180647	23879,2164	9008,68933	21801,50445	17551,42216	22239,69073	
c4	15001,62421	6317,000049	12773,72376	6009,934171	16415,48762	6436,691027	18566,47729	12024,54645	29328,64583	

cis4	18021,18666	7715,793824	22249,35149	7168,330193	24534,30104	6818,840141	11016,22706	11495,56087	1408,443141		
d4	17050,04012	5568,073351	16658,46851	7672,804966	26558,07126	6859,954611	23547,37674	11506,31131	15467,06474		
dis4	19915,17774	6749,948452	18747,07562	6518,183407	24223,53469	7775,413292	18754,72888	14187,74411	17697,70917		
e4	16632,58017	6133,613041	18385,7492	7114,858081	16325,24229	7793,761773	22526,62176	14164,27069	11994,36477		
f4	17612,3123	5765,504995	16945,65904	7227,61347	23721,93658	6032,635079	9567,194085	8175,209975	10981,56263		
fis4	22236,21884	6611,098811	18724,47281	6909,450353	22934,33227	6228,038703	20406,17599	12703,94974	13375,33984		
g4	12305,5	5720,085624	12356,23011	6366,794586	16380,32186	6234,171463	9054,978017	7038,033667	1324,117114		
	рр	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
MIN	430,1777495	869,160	604,535	841,844	416,113	787,438	445,575	561,131	517,031	698,369	521,693
MAX	22236,21884	9081,362	27174,837	10515,748	26697,720	9008,689	25409,209	17910,760	29328,646	1809,922	1728,263
MEAN	3945,881794	2451,733	4052,656	2456,123	4599,287	2282,036	3646,576	2986,787	3295,039	1127,752	1088,328

SpectralFlatness

	рр	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
Kontra-F	0,019860992	0,011278268	0,0170722	0,006048673	0,010422904	0,007750857	0,004233012	0,006915055	0,00779682	0,004325133	0,021644474
Kontra-Fis	0,00458591	0,005301878	0,008596138	0,003709953	0,012409473	0,006637754	0,021236689	0,007172709	0,004971497	0,006717443	0,007290263
Kontra-G	0,017234305	0,006457698	0,011604927	0,008482912	0,010025686	0,006744481	0,006894325	0,027396945	0,006710484	0,008998514	0,007801659
Kontra-Gis	0,012062889	0,006855444	0,011416542	0,010085737	0,009465738	0,007645108	0,007073404	0,006858284	0,011477444	0,003807058	0,003177964
Kontra-A	0,015800966	0,009199601	0,011353267	0,014340711	0,019750719	0,014815014	0,007605736	0,010714867	0,010815124	0,016455405	0,014771252
Kontra-B	0,007407135	0,008263424	0,013712909	0,010955166	0,006730114	0,007882986	0,008680815	0,011936357	0,014460451	0,004995616	0,010453918
Kontra-H	0,015724135	0,010887969	0,012917712	0,010326113	0,014806281	0,012968153	0,016175418	0,013970686	0,014875432	0,012855204	0,014193469
С	0,012336607	0,005021628	0,01089526	0,007171959	0,008723457	0,006868256	0,011895261	0,015777595	0,011333336	0,012828364	0,013355084
Cis	0,008914452	0,009922933	0,013860253	0,005462282	0,012569758	0,006658244	0,008349602	0,011502677	0,009169853	0,007502204	0,008946343
D	0,01476801	0,005819937	0,012017121	0,009417432	0,01404572	0,00720495	0,015397805	0,027524753	0,006567113	0,006471969	0,0160369
Dis	0,040651671	0,011815158	0,016158325	0,009743762	0,009427951	0,020139306	0,021848979	0,013280297	0,01627378	0,007283322	0,017795555
E	0,009996932	0,076247325	0,00440069	0,004715452	0,011750407	0,006326563	0,007278504	0,010859154	0,004166636	0,005029163	0,016456294
F	0,008031096	0,007360722	0,007020425	0,004091527	0,01301169	0,012047944	0,01261954	0,018426256	0,013874647	0,012605655	0,016289344
Fis	0,003707526	0,005436294	0,012384187	0,010823195	0,007829843	0,00982022	0,010970693	0,005171742	0,012729719	0,006060933	0,009730399
G	0,009822626	0,007863857	0,016379137	0,01295049	0,011299641	0,010707362	0,008272575	0,008759488	0,007274374	0,00730031	0,045569815
Gis	0,011696914	0,007437023	0,012187918	0,016488323	0,010596004	0,009324721	0,009857463	0,005354101	0,014788699	0,012778574	0,004943308
Α	0,007122048	0,096891127	0,014019815	0,005182594	0,017931639	0,007482684	0,022479479	0,016509305	0,010938542	0,011008072	0,032301227
В	0,009282388	0,004370759	0,013477663	0,028052465	0,019789055	0,007606354	0,006398764	0,00379305	0,009141527	0,010309759	0,010894123
Н	0,017439838	0,007809495	0,011004135	0,007802066	0,018578104	0,012105799	0,007524749	0,012647619	0,008797128	0,00467934	0,011131893
С	0,013438165	0,003346526	0,025207577	0,00780976	0,004535981	0,038275989	0,003155461	0,009932942	0,015114757	0,005240301	0,007305899
cis	0,011530798	0,007408393	0,015064106	0,01599797	0,010992739	0,012115021	0,007739543	0,02521693	0,017973616	0,004208203	0,006765484
d	0,007683123	0,006901583	0,007344369	0,006151537	0,010543949	0,022036959	0,010888309	0,014165061	0,016081426	0,009867615	0,014116061
dis	0,008007437	0,014669755	0,013235058	0,005146364	0,00915034	0,016682657	0,013192332	0,009656785	0,009195505	0,006719022	0,011790844
е	0,015646176	0,011932341	0,009015271	0,012530478	0,007646357	0,007234226	0,008527251	0,012012295	0,006897747	0,00766156	0,007738324
f	0,008644644	0,006649394	0,014329901	0,007335762	0,015429475	0,012156119	0,006944721	0,013381192	0,009847238	0,007090891	0,006969407
fis	0,007132469	0,006480142	0,010938906	0,010375874	0,025914225	0,004384869	0,007141476	0,009205737	0,005775238	0,007979645	0,007845829
g	0,008368367	0,004187783	0,013208117	0,00487473	0,01214664	0,007646027	0,010381462	0,013466433	0,005618787	0,0051747	0,014636129
gis	0,011032674	0,004641906	0,014681598	0,009481399	0,015643109	0,008520973	0,014091898	0,021479627	0,006322099	0,004773878	0,009858073
а	0,009193417	0,009242244	0,012234868	0,007942755	0,005850006	0,007654259	0,005643718	0,011570363	0,007055957	0,039553608	0,003962781
b	0,012251204	0,007645286	0,030495977	0,010333181	0,028161549	0,008797044	0,013923825	0,019077981	0,015806333	0,006436009	0,012370865
h	0,005084161	0,003875434	0,006010577	0,012391193	0,005246716	0,006094994	0,004731796	0,008473984	0,020062533	0,002806419	0,002310819
c1	0,009082235	0,008096166	0,00906838	0,008326627	0,008399265	0,006068128	0,003678133	0,018438877	0,020217487	0,011063016	0,006419914

cis1	0,009791858	0,007766652	0,020673117	0,020806235	0,020602609	0,009853813	0,016731638	0,010174412	0,010168178	
d1	0,012193606	0,00760184	0,012812735	0,01252953	0,013009405	0,007832451	0,006762942	0,006733501	0,010082206	
dis1	0,013477971	0,006341183	0,014359121	0,010359056	0,013180535	0,012802902	0,014916416	0,02365785	0,015771964	
e1	0,015716835	0,005621431	0,01839981	0,019050605	0,016401787	0,002983715	0,009602415	0,012157478	0,014889605	
f1	0,012227792	0,00303983	0,008601752	0,009854795	0,0058632	0,007930533	0,014142053	0,017097452	0,015880025	
fis1	0,005212317	0,007792577	0,010167438	0,014973267	0,010344459	0,011821449	0,012002652	0,011088405	0,018906438	
g1	0,00739383	0,004040546	0,018463457	0,006493386	0,005906912	0,005465581	0,00871631	0,004282314	0,013199861	
gis1	0,010786168	0,004720936	0,008222753	0,017353444	0,007412886	0,005659392	0,006232007	0,015944212	0,014927179	
a1	0,025541992	0,016305036	0,009545877	0,018993847	0,014720413	0,010069277	0,00417601	0,018350894	0,012084815	
b1	0,009590486	0,008869366	0,006958267	0,010721928	0,018514015	0,015666948	0,010797497	0,014966851	0,008367918	
h1	0,00355877	0,025154524	0,013864237	0,005902672	0,010133113	0,00273516	0,009624746	0,005961419	0,007651731	
c2	0,007150736	0,003415592	0,011713715	0,005450942	0,007954479	0,002903368	0,005378447	0,01732043	0,005858989	
cis2	0,010372259	0,003096208	0,01765061	0,011366048	0,008618032	0,002575706	0,010981205	0,006427486	0,004591991	
d2	0,009478913	0,002996426	0,0082609	0,006555086	0,005518842	0,00392472	0,001554171	0,005197914	0,006450972	
dis2	0,010844215	0,006263763	0,011201448	0,076560364	0,017296479	0,006605924	0,012011777	0,007126853	0,013920772	
e2	0,009244208	0,006383626	0,012605533	0,005586567	0,004383651	0,004476972	0,003604205	0,004785621	0,007771818	
f2	0,005112181	0,007106722	0,018778321	0,007150083	0,008009298	0,007509937	0,007984503	0,007001942	0,005672965	
fis2	0,003277682	0,004846974	0,005309942	0,003070521	0,005612666	0,001402	0,002121313	0,002897558	0,076237448	
g2	0,008610949	0,005354926	0,013789641	0,008301616	0,007717859	0,002434233	0,004228498	0,008531732	0,006999277	
gis2	0,005008677	0,006703844	0,008048392	0,168339978	0,008584036	0,004473761	0,005886902	0,007602749	0,006996317	
a2	0,00508844	0,002238925	0,009134738	0,005735349	0,011650589	0,002721308	0,005193723	0,00758858	0,012438743	
b2	0,009218154	0,002648171	0,009356272	0,005162388	0,002173039	0,002491101	0,003398741	0,004283061	0,003948671	
h2	0,003854622	0,002551727	0,010953017	0,006920378	0,004254586	0,002854236	0,006383745	0,005095215	0,005386938	
с3	0,007004171	0,002017994	0,005312597	0,006634205	0,004616302	0,002155463	0,007046687	0,003833303	0,008702658	
cis3	0,003382182	0,002507034	0,009860738	0,010722302	0,007659441	0,00263797	0,001687729	0,0105928	0,00368444	
d3	0,003436931	0,003600019	0,010647778	0,007075987	0,017757488	0,002547669	0,007993168	0,002861034	0,006423993	
dis3	0,24016177	0,142418475	0,242262687	0,134584158	0,261287687	0,139332076	0,307124297	0,228159005	0,234007846	
e3	0,229863033	0,192714904	0,305026949	0,194746459	0,306698003	0,310988002	0,192060527	0,233346614	0,273879807	
f3	0,236828662	0,146738709	0,312210438	0,180993932	0,275406054	0,128928228	0,2112571	0,205600802	0,23734368	
fis3	0,242581823	0,168440736	0,002972552	0,002323416	0,010111626	0,001870014	0,002208518	0,002119242	0,003742691	
g3	0,0018441	0,001493191	0,004827759	0,003586114	0,00528211	0,001541489	0,013647732	0,001346052	0,001393757	
gis3	0,002799398	0,002306001	0,004386197	0,001495378	0,004377193	0,001365427	0,002638456	0,001884399	0,00304194	
a3	0,002451134	0,001592877	0,00487331	0,001037307	0,012948901	0,00163965	0,002046823	0,002098521	0,003486285	
b3	0,177487802	0,144595409	0,200134611	0,148226315	0,221092364	0,119200552	0,152611299	0,114993089	0,120300318	
h3	0,184885523	0,140620135	0,325719735	0,212259107	0,289511458	0,180150095	0,258485304	0,249709566	0,252643751	
c4	0,225990282	0,155946991	0,194519069	0,146516372	0,221806168	0,133643968	0,243116989	0,200997821	0,340056098	

cis4	0,293149108	0,186964372	0,315587003	0,178283814	0,291672529	0,139033707	0,221264518	0,243951523	0,00228431		
d4	0,247659162	0,132150708	0,231524637	0,205723993	0,31107261	0,154328859	0,291807409	0,171174106	0,20247925		
dis4	0,280634099	0,161897604	0,258725992	0,148820025	0,287936832	0,154656546	0,238003645	0,190104048	0,2114885		
e4	0,286750221	0,153833276	0,266594207	0,184383789	0,203538719	0,161110321	0,297119256	0,221721146	0,185318296		
f4	0,285048903	0,138292102	0,26366226	0,203810485	0,260422335	0,136459421	0,162998255	0,135080959	0,171642442		
fis4	0,295289656	0,166850597	0,319607247	0,186340775	0,289354777	0,145399725	0,273891299	0,212118045	0,204622895		
g4	0,234156967	0,135629122	0,219359093	0,169009123	0,207029249	0,130171663	0,176640898	0,135156179	0,000739854		
	pp	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
MIN	0,0018441	0,001493191	0,002972552	0,001037307	0,002173039	0,001365427	0,001554171	0,001346052	0,000739854	0,002806419	0,002310819
MAX	0,295289656	0,192714904	0,325719735	0,212259107	0,31107261	0,310988002	0,307124297	0,249709566	0,340056098	0,039553608	0,045569815
MEAN	0,054235985	0,036410514	0,05583999	0,041178128	0,05488359	0,033636791	0,047612194	0,042823618	0,041568253	0,008768341	0,012339803

SpectralFluxMean

	рр	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
Kontra-F	0,383584908	1,624186155	0,49113798	1,250478185	0,194730962	1,503590075	0,649925086	0,623070758	0,745973012	1,556225044	0,997999113
Kontra-Fis	2,484816284	2,457173366	1,053137956	1,512139697	0,475022543	1,959525366	0,811024286	0,964822102	1,05274903	1,003125962	0,670292664
Kontra-G	0,333160784	1,157262146	0,42615184	1,273561803	0,411932715	1,291269327	0,663086741	0,868072691	0,629296482	0,796907309	0,714091086
Kontra-Gis	0,472211532	1,280058843	0,574302832	1,371834319	0,550031487	1,612336985	0,968371846	1,210269443	1,022160738	0,951184768	0,660601901
Kontra-A	0,511788179	1,615972127	0,515419745	1,625316913	0,346252593	1,604388026	0,948748554	0,996685207	0,70303706	0,88969981	0,537368937
Kontra-B	0,960969291	1,36395575	0,445606143	1,212942301	0,667444096	1,329553931	0,632986012	0,830017222	0,885393995	0,765627258	0,763085681
Kontra-H	0,81407829	1,927443985	0,537948633	1,472109166	0,509670309	1,437428158	0,888047983	0,756419949	0,692411745	0,586818279	0,411658334
С	0,3129477	1,995987693	0,702168702	1,504937683	0,459015532	1,974941785	0,640808273	0,632340464	0,709591888	0,784629439	0,444901584
Cis	0,580358584	2,038086503	0,421569136	1,187740716	0,51947422	1,349011657	0,93410186	0,721141242	0,557534726	0,414951918	0,562808452
D	0,338466889	1,458206154	0,537898114	1,362088769	0,450935026	1,35660683	0,517405952	0,56534147	0,901872035	1,066633843	0,978449278
Dis	0,363254738	1,048007251	0,403752162	0,810750531	0,623468766	0,79909139	0,49254341	0,437663302	0,491606053	1,036133625	0,624860056
E	0,395278853	1,622276019	0,72212173	1,431085185	0,743281829	1,47618142	0,567800236	0,664640229	0,827370878	1,341924295	0,958548272
F	0,57819476	1,814562373	0,484575914	1,910029303	0,264658423	1,338173565	0,57465366	0,454046465	0,357264133	0,725491788	0,322111111
Fis	0,454057666	1,104547305	0,560123819	1,057396284	0,422294451	0,983286267	0,415610798	0,502322171	0,640824416	0,781673236	0,418786097
G	0,281926627	1,011954558	0,424666476	0,826125884	0,545068777	1,154360228	0,428229306	0,515907894	0,451708991	0,630200784	0,447364588
Gis	0,443071704	1,261570637	0,558816938	1,165504133	0,675734307	1,360734237	0,610323723	0,581211774	0,530324071	1,019056613	0,936194987
Α	0,658787341	1,19547962	0,340897823	0,866675292	0,390310878	1,047974898	0,655164054	0,474216145	0,43767346	0,666652757	0,482631391
В	0,634451801	1,889003126	0,424502292	1,210733814	0,447471936	1,21104967	0,681466393	0,645724456	0,491433249	0,861492229	0,559508933
Н	0,405188905	1,464734697	0,440182253	1,206765935	0,710953221	1,17020123	0,559199156	0,930355892	0,742028014	0,861726368	0,834391747
С	0,750353714	1,886961648	0,690739346	1,24617517	1,123538725	1,805372115	1,027564917	0,790366358	0,729064583	1,273741057	0,967988362
cis	0,447001347	1,551387636	0,419503077	1,211718066	0,389066657	1,2337236	0,490782608	0,564790551	0,573548935	1,162802313	0,821621207
d	0,658307666	1,771565307	0,655913829	1,517182541	0,511392777	1,348840489	0,547103135	0,697214957	0,65341324	0,614268322	0,437920929
dis	0,662583617	1,470337853	0,562564605	0,997002662	0,837429242	1,461703574	0,679940929	0,800057723	0,731747896	0,974227353	0,844824448
е	0,409416811	1,423078994	0,528404778	1,01599723	0,531702357	1,3995749	0,703491871	0,6365396	0,554116375	0,83916596	0,605495093
f	0,559119431	1,906238028	0,319519173	0,966480383	0,395693215	0,950249872	0,846336794	0,615499139	0,877097991	4,633361629	1,934226222
fis	0,614238546	2,009454549	0,495026604	1,112230138	0,147046742	1,674331613	0,954517023	0,947381787	1,001161562	1,124470393	1,13763645
g	0,583417303	1,912489285	0,36503006	1,114504901	0,304116298	1,473784594	0,843067104	0,582720362	0,79897574	1,613849623	1,593995999
gis	0,331574656	1,844276466	0,463753872	1,280527726	0,425634095	1,564574136	0,873006529	0,720576629	0,706136287	1,197456816	0,594882823
а	0,481017381	1,481373837	0,594377199	1,308769523	0,708634125	1,529547108	0,666265989	0,628950087	0,812530956	1,615226749	1,057007632
b	0,450034883	1,556206477	0,301769276	1,087455593	0,467060021	1,28862106	0,660794635	0,544440215	0,475697914	0,534218931	0,33412881
h	0,701248991	1,79374143	0,584835094	1,177330536	0,789574806	1,834967732	0,747532799	0,661236671	0,774212068	1,593707147	1,354232191
c1	0,306172029	1,345486945	0,432679474	1,031002297	0,419202623	1,25352461	0,625596593	0,618191388	0,459291264	0,870581796	0,645881588

cis1	0,526823578	1,19825407	0,318048193	0,67166838	0,42630301	1,152438225	0,44356014	0,332655063	0,390425312	
d1	0,566890128	1,415603495	0,511457468	1,076266712	0,469661272	1,539077845	1,283419062	0,664957392	0,479400735	
dis1	0,705763879	1,748166212	0,52336241	1,235108937	0,661642158	1,513145852	1,233037722	0,88081656	0,648539796	
e1	0,737359328	1,351202002	0,665516463	1,016773605	0,34336166	1,764689542	0,822232069	0,731024587	0,668137028	
f1	0,367199089	1,924079239	0,747470931	0,84569381	0,553977285	1,29696139	0,554069437	0,67042059	0,638697488	
fis1	0,622288773	1,166784771	0,408348792	1,219155097	0,648740497	1,386212958	0,848267954	0,686765313	0,742507815	
g1	0,612349975	1,424582694	0,569661932	1,250579355	0,679908489	1,519623215	0,748343992	0,935627931	0,794901907	
gis1	0,415229075	1,146194337	0,369998668	0,878538045	0,402176348	1,310186868	0,651180102	0,565838168	0,329300713	
a1	0,805719985	1,85876574	0,635484982	1,323546054	0,930610558	2,152441879	0,808900246	0,482710829	0,475834542	
b1	0,346174755	1,590789613	0,652989	1,694992181	0,467321475	1,413533554	0,620437177	0,860775506	0,528048547	
h1	1,1596411	2,154350243	1,111292718	2,447297054	1,215346575	2,837591418	1,269184883	1,560705168	0,809334396	
c2	0,605486468	2,103250668	0,390932882	1,356361435	0,649793858	1,772757003	1,082513148	1,367025618	1,186489557	
cis2	0,652647705	2,227558966	0,632949852	2,153524897	0,539104568	2,093225865	1,2341835	0,975271841	0,984236511	
d2	1,824203688	2,515632066	0,723811679	2,078988046	2,090518371	2,375115158	0,708601114	0,947253807	0,497556696	
dis2	0,691614808	2,066099672	0,535895848	1,650654152	0,386873229	1,642256029	0,208184956	0,896012754	0,489836096	
e2	0,941831806	2,738546345	0,871784855	2,524390998	1,093209577	2,877824487	1,474415278	1,372888608	1,072513426	
f2	0,792783448	4,41493371	0,666336212	2,790608855	0,363594691	3,671378182	0,530324752	0,95590153	0,747354268	
fis2	1,238014976	5,493801394	0,645175816	3,371890841	0,974757159	5,077358499	1,772607658	1,656204422	1,312527898	
g2	0,56267408	3,068489515	0,382664441	2,274323735	1,244307267	2,7676748	1,12418354	1,135311971	0,584911667	
gis2	0,707453892	3,074218296	0,612888841	2,649697167	0,530728681	2,036677538	0,621259542	1,072125299	0,713375768	
a2	1,046265723	3,261737912	0,460368537	2,398920518	0,51334075	3,262421369	0,705165783	1,027810665	0,893288352	
b2	1,067217124	3,831517492	0,886313527	3,104263084	2,694576698	3,818497609	1,290605729	1,824268659	1,114598625	
h2	1,467791115	3,184576171	0,797242076	2,897630195	1,19023435	1,912346573	1,106796606	0,970749106	0,831313359	
с3	1,737641664	4,128869317	1,063821736	2,529720101	1,181873533	4,050684256	0,954265537	1,803154246	1,00624096	
cis3	1,262545464	3,322233554	0,758999345	3,566353323	0,533597878	2,364841333	0,962004614	1,81792158	1,008416832	
d3	1,429345683	2,977576401	0,890518325	2,839960199	0,185383098	2,407484556	0,745868272	1,876726171	0,389068384	
dis3	1,864066074	6,822176098	1,646986526	7,164218423	1,114593521	5,54124212	0,748309464	1,968381296	1,456056234	
e3	2,500363197	4,677762178	0,973916211	3,656208306	0,850175633	3,709447411	0,66063534	1,879196492	1,05899321	
f3	2,351116534	7,682393491	0,804922091	4,693142343	1,346684214	7,711919548	2,565552014	2,308534866	1,442040793	
fis3	1,948675004	5,517360475	2,029256518	4,136424298	0,368231839	3,511671401	2,571580954	2,843028407	1,037373005	
g3	2,896218104	7,544608128	2,069460237	8,230973033	1,053549294	6,961799402	2,969279069	3,176753347	1,644689167	
gis3	2,188071358	7,840465219	1,078574336	5,95430197	0,769058617	7,924861186	1,392530698	3,226017573	0,894232563	
a3	1,307053667	4,069811559	1,388956224	6,445779774	0,22096329	3,932456941	2,647072973	2,525788702	0,808641973	
b3	5,066408863	10,56120084	3,385681577	12,34700406	1,970103135	9,515307817	2,341793997	7,960118711	4,782700984	
h3	4,58345986	11,17970494	0,699180649	4,284811651	0,899611008	5,144467299	0,874463098	1,7962974	0,862845579	
c4	2,146497291	9,86537918	3,364918301	9,770907373	1,455670663	8,690575051	1,229116423	3,259709816	0,518987551	

cis4	1,414192368	4,896351203	0,688027093	5,459043096	0,609166659	6,421095878	2,149898552	2,481135627	1,963950552		
d4	2,315524052	12,76610534	1,8974951	5,089761557	0,551654521	8,039900639	0,807399165	4,048086012	1,719400492		
dis4	1,386422169	7,737103784	0,984808823	7,323846247	0,677814362	6,397573146	1,074614794	2,006894584	1,05156291		
e4	1,343924972	8,852485198	1,014069341	5,427433083	1,10081971	3,583761936	0,77498565	1,714482699	1,974038247		
f4	1,021823166	9,239036217	0,956671935	4,335613286	0,625285913	5,887897961	2,032926276	3,229116624	2,129410702		
fis4	0,81210527	8,430740952	1,02267672	4,910400931	0,516784191	5,648508158	1,159685811	1,634272016	1,719810041		
g4	2,037017667	10,44265723	1,957544748	6,733097117	1,025143415	4,282867379	3,011021261	3,941019607	2,280142476		
	рр	forte	Shift pp	Shift forte	Moderator pp	Moderator forte	Doppel-Modera- tor	Shift & Modera- tor	Shift & Doppel Moderator	Fagott	Fagott & Shift & Moderator
MIN	0,28	1,01	0,30	0,67	0,15	0,80	0,21	0,33	0,33	0,414951918	0,322111111
MAX	5,07	12,77	3,39	12,35	2,69	9,52	3,01	7,96	4,78	4,633361629	1,934226222
MEAN	1,05	3,40	0,79	2,63	0,70	2,77	1,00	1,34	0,92	1,087101044	0,770484249

8.3 Abstract

Gegenstand dieser Arbeit sind Tonaufnahmen und Klanganalysen eines historischen Hammerklaviers, gebaut von Michael Rosenberger um 1820, das über sechs Pedale verfügt. Davon dienen fünf der Klang-Modifizierung sowie der Nachahmung eines Fagotts und das sechste, das sogenannte "Türkische Pedal" stellt Trommel und Becken als Art Begleitung zur Verfügung. Mittels Methoden des Music Information Retrieval, nämlich auf der Software-Plattform MATLAB basierender Skripte wurden für sämtliche Töne, aufgenommen in verschiedenen Spielweisen und mehreren Pedalkombinationen, zahlreiche Klangparameter berechnet und analysiert, um festzustellen, ob überhaupt und wie genau sich der Einsatz der Pedale auf die Klangeigenschaften auswirkt. Bei einer Betrachtung von 13 Klangdeskriptoren zeigte sich im Vergleich von Spielweisen ohne und mit den verschiedenen Pedal-Kombinationen, dass die Verwendung der Pedale tatsächlich teils drastische Auswirkungen auf die Klangcharakteristika der Töne hat und durch zahlreiche Klangvariationen zweifelsohne zu einem abwechslungsreichen Spiel beitragen kann. Darüber hinaus zeigte ein Vergleich der mit dem Fagott-Pedal erzeugten Töne mit den Tonaufnahmen eines originalen Fagotts, dass es bei den meisten betrachteten Klangdeskriptoren sehr deutliche Unterschiede gibt und die mithilfe des Fagott-Pedals erzeugten, durchaus zwar entfernt Fagott-ähnlichen Töne Anfang des 19. Jahrhunderts zwar eine nette Spielerei und wahrscheinlich eine beeindruckende Attraktion gewesen sein mochten, sie aber keinesfalls als Ersatz für ein echtes Fagott dienen können.

Beim Klang-Vergleich des Rosenberger-Flügels mit dem Mozart-Flügel, gebaut von Anton Walter um 1780, zeigte sich, dass die Klangeigenschaften beider Instrumente sehr ähnlich sind, obwohl der Mozart-Flügel bereits 40 Jahre früher gebaut worden war und sich in der Zwischenzeit zahlreiche Veränderungen und Verbesserungen bei der Klavier-Konstruktion etabliert hatten.