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ABSTRACT  
 

The objective of this thesis was to evaluate whether the final output of structure-based 

pharmacophore virtual screening can be a valid input for machine learning methods in 

order to obtain predictions for a compound to induce DART. This thesis started with a 

list of proteins, that are supposed to participate in the molecular initiating event of a 

DART adverse outcome pathway, taken from the Crackit DART challenge. We 

downloaded all the PDBs associated with the UniprotIDs to generate structure-based 

pharmacophore models.  The pharmacophore models were subsequently used for 

screening. The virtual screening output was used to create a model whose prediction 

was compared with the prediction of a model made using a set of fingerprints 

calculated based on the dataset.



 
 

 

ZUSAMMENFASSUNG 
 

Das Ziel dieser Diplomarbeit war es zu bestimmen, ob die Ergebnisse einer 

Pharmakophor–Datenbankdurchsuchung zum Erstellen von Computermodelle durch 

maschinelles Lernen verwendet werden können, um zu bestimmen welche 

chemischen Verbindungen zu DART führen können. Diese Diplomarbeit basiert auf 

einer Liste von Proteinen, die vermutlich am DART Signalweg beteiligt sind. Die Liste 

wurde von Crackit DART challenge erstellt. Zuerst wurden alle PDBs mit 

dazugehörigen UniprotIDs heruntergeladen, um die strukturbasierte 

Pharmakophormodelle zu erstellen, die dann für die Datenbankduchsuchung 

verwendet wurden. Abschließend wir haben die Modelle erstellt, deren Voraussagen 

verglichen wurden. 
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1 GENERAL BACKGROUND 
 

1.1 Developmental toxicity 
 

Developmental toxicity is a field that is receiving an increasing attention nowadays. It 

associates any adverse toxic effect to the embryo development or fetus. One of the 

causes of developmental toxicity are chemicals, that could affect embryo development 

in different ways. On the one side the chemicals could act directly on the cells of the 

embryo or fetus and cause cell damages or cell death, leading to the abnormal 

development. On the other side, the chemicals can cause a mutation in the parent’s 

germ cells, which can be then transmitted to the fertilized ovum. The mutation in 

fertilized ovum can lead to abnormal embryo development. In the developmental 

toxicity studies there are two important dose descriptors to which the toxicity level is 

referred. The lowest observed adverse effect level (LOAEL) is referred as a 

measurement of how toxic the chemicals can be. It is the dose minimum at which 

observed adverse effect on the organism are recognized [1]. Therefore, Organization 

for economic Co-operation and development (OECD) have developed the testing 

guidelines  for research on the test animals  in the field of developmental and 

reproductive toxicity to determine the toxic potential of different chemicals [2]. 

The 3 basic types of developmental toxicity are: 

• Embryolethality: Failure to conceive, spontaneous abortion 

• Embryotoxicity: Growth retardation or delayed growth of specific organ 

• Teratogenicity: irreversible conditions that leave permanent birth defects in live 

offspring 
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1.2 Embryonal development 
 

The first stage of embryonal development starts with the formation of zygote as a 

product of the fusion of male and female pronuclei. As the Zygote is transported to the 

uterus, its cells undergo mitotic division, forming so called blastomeres. Blastomeres 

continuously divide themselves and produce the inner and outer cells, forming a cavity 

which is known as a blastocyst. Due to the further cell division the inner cells will form 

the embryo and the outer cell layer will form the trophoblast, that is essential for 

intrauterine mammalian development. 

The second stage known as implantation is achieved when the blastocyst reaches the 

uterine wall and implants inside. However, if the endometrium is not fully developed, 

the blastocyst cannot embed itself into endometrium and the implantation fails. If the 

implantation succeeds the throphoblast cells fuse with each other, forming the 

syncytiotrophoblast, that secures blastocyst to the endometrium. In this stage the 

trophoblast starts with production of human chorionic gonadotropin (hCG), that is 

important for the development of the embryo [3].
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Figure 1. The stages of embryonal development taken from 
https://opentextbc.ca/anatomyandphysiology/chapter/28-2-embryonic-development/

 

Additionally, different signaling pathways are responsible for developmental stages of 

embryo and determine to high extent the later development. Therefore any mutation 

or disruption in those pathways can lead to severe malformation or disturbed 

development [4].  

The crucial morphogenetic process occurs during the blastogenesis, which extends 

throughout the first 4 weeks of embryonal development. In this stage the embryo is 

more susceptible to different factors that could affect it and lead to a variety of  different 

developmental abnormalities  such as growth restriction, miscarriage or later on  fetal 

death [5].   
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1.3 Animal studies
 

Most of the studies done in this field are animal-based studies. However, in vivo 

studies are mostly time consuming, expensive [6] and can result in the lack of scientific 

certainty [7] which  includes the challenges in extrapolation of findings from animals to 

humans [8]. Thus, alternative methods to predict the developmental toxicity which 

include model organism such as Drosophila [9], as well as zebrafish embryo [10] or 

mammalian embryo culture [11] have been proposed. The data generated in these 

model organisms and human cells facilitates the translation to the effects in humans 

[12]. Therefore, the Crackit Challenge 26 - based on the principles of the 3R`s - is 

trying to use cell based methods and computational approaches to predict DART 

effects. The assumption behind it is, that the molecular initiating event caused by 

molecular reaction at a molecular level could induce an adverse effect in the organism 

(AOP).  

 

 

1.4 NC3R
 

NC3R`s is the scientific organization in UK which is trying to provide a framework for 

more appropriate animal research.  The principles of the organization are based on 

3R`s (Replacement, Reduction, Refinement) in animal research.  

The Replacement is considered as a method to avoid or replace the use of animals in 

research. The aim is to accelerate the development of new research approaches to 

obtain reliable results. There are two categories: full and partial Replacement.  

• The full Replacement is considered as a restraint to use the animals in the 

research.  

• The partial Replacement method is based on the use of animals, which are 

considered as uncapable of suffering, according to current scientific thinking. 

The second principle, Reduction, refers to the methods that reduce the number of 

animals used in the experiments. However, it also includes the maximization of data 

through usage of other methods to obtain replicable results. 
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The third principle, Refinement, refers to the methods, that avoid pain, distress and 

harm of the animals, in all stages of animal use. 

 

1.5 Crackit Challenge 
 

CRACKIT is the project, that is trying to deliver the new technologies with 3R benefit. 

It has been developed in order to facilitate the collaboration between pharmaceutical, 

chemical and academical branches in order to accelerate the development and 

availability of different 3R approaches.  

A Crackit project is divided into two parts: Crackit Challenges and Crackit Solutions, 

to maximize scientific and commercial benefits of the new technologies.  

A Crackit Challenge is based on funding different collaborations between 

pharmaceutical or chemical industries and academics to solve scientific and business 

challenges involving animals in research.  

A Crackit Solution is a technology hub, developed to accelerate the development of 

different methods with 3R`s impact and its scientific application  in order to get better 

commercial benefits [13]. 

One of the Crackit Challenges, on which my thesis is based on, is the DART Challenge 

(Developmental and reproductive toxicity).  

 

1.5.1 DART Challenge

 

Developmental and reproductive toxicity testing are focusing on estimating the effect 

of chemicals on adult fertility and sexual behavior, implantation and the development 

of the embryo. However, DART toxicity studies are animal-based studies, which are 

often time consuming and the application to the humans is not clear.  Therefore, 

researchers are trying to use cell-based or computational methods in order to discover 

different chemicals with DART effect. The DART pathway is based on the concept of 

adverse outcome pathway (AOP), that links the molecular initiating event caused by 

chemical interaction on the molecular level with the adverse effect on the organism. 

Considering the fact that many mechanisms could be involved in a DART AOP, 
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scientists are trying to use the data obtained in human cells and non-mammalian 

model organism in a DART AOP in order to improve the translation of the data 

obtained in these systems to effects in humans.  

The DART Challenge is sponsored by Shell and Syngenta with the aim  

• to develop the data strategy on how to properly relate the data between a 

compound and effect, or between specific gene and specific physiology for 

model organisms, such as human, mouse, rat, etc 

• to properly match the relationship between genes and physiology in order to 

apply it to humans  

 

 Considering this, the Crackit project a provided a list of proteins that are supposed to 

be involved in the DART pathway [12]. 

 

Figure 2. Short overview of Crackit Project taken from https://crackit.org.uk
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2 AIM OF THE RESEARCH

 
The aim of this thesis was to evaluate whether the final output of structure-based 

pharmacophore virtual screening can be a valid input for machine learning methods in 

order to obtain predictions for a compound to induce DART. 

This thesis started with a list of proteins, that are supposed to participate in the 

molecular initiating event of a DART adverse outcome pathway, taken from the Crackit 

DART challenge. The first step was to download all the PDBs associated with the 

UniprotIDs, in order to generate structure-based pharmacophore models.  The 

pharmacophore models were subsequently used for screening of the Toxref database. 

The virtual screening output was used to create a model whose prediction was 

compared with the prediction of a model made using a set of fingerprints calculated 

based on the dataset. 
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3 COMPUTATIONAL METHODS 

 

3.1 KNIME - Konstanz Information Miner
 

Knime is an open source software, which provides a platform for enabling data 

visualization and interactive execution of a data pipeline. Throughout Knime, it is 

possible to process data from different research areas as part of one workflow. For 

data science, a Knime workflow has a crucial significance, because it enables the 

documentation of a large amount of data, and it makes reproducible science easier. 

A Knime workflow contains an extensive catalogue of different nodes from different 

research areas to create cross-domain workflows. A node is the smallest processing 

unit in Knime that is executed to perform a specific task. To create a workflow the 

nodes are connected between each other, as each node has an input and an output 

port in order to transfer the data [14]. 

One of the important Knime strengths are the data analysis and machine learning 

functions, that were used in this thesis [14]. 

 

Figure 3. A part of the Knime workflow for the developmental toxicity
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3.2 Pharmacophore modelling 
 

The pharmacophore concept was first introduced in 1909 by Ehrlich [15], who 

described a pharmacophore as a molecular framework that carries special drug 

features, responsible for drug`s biological activity. The recent definitions define 

pharmacophore as a three dimensional arrangement  of chemical features necessary 

for the ligand molecule to interact with proteins in a specific binding mode [16]. The 

3D arrangement of chemical features represents the chemical functionalities of active 

small molecules such as hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), 

hydrophobic areas, positively or negatively charged areas and metal coordinating 

areas [17]. The three dimensional chemical feature allows easy interpretability and 

efficient implementation of high-throughput virtual screening methods [18]. 

 There are two types of pharmacophore models: 

• Ligand-based pharmacophore model, which are based on a set of known 

ligands and their activity at a given protein. It uses chemical features from the 

3D structure of a set of known ligands that are representative for protein-ligand 

interactions. The first step of this approach is a creation of a conformational 

space for the ligands to represent the conformational flexibility of the ligands. 

The second step is to align the multiple ligands and to determine the essential 

chemical features to construct the pharmacophore model [15]. 

• Structure-based pharmacophore model uses the 3D structure of the protein-

ligand complex. It includes the analysis of the chemical features in the binding 

site and their spatial bonds. This approach is only applied when the 3D structure 

of the protein-ligand complex is known. However, a frequently encountered 

problem is the presence of too many chemical features, as pharmacophore 

models with more than 7 chemical features are too selective for the virtual 

screening of different databases [15].
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3.3 LigandScout
 

LigandScout is the software used in this thesis to perform the structure-based 

pharmacophore modelling of the crystal structures derived from Protein Data Bank. 

The software  uses different algorithms to perform alignments and to represent ligand-

protein interactions [19]. 

The pharmacophore interactions are represented through different interactions, such 

as hydrogen bond acceptors and donors, charge and lipophilic interactions [20]. 

LigandScout uses all available chemical features in order to analyze the ligand-

macromolecule interaction [17], whereas different features are characterized 

differently (Figure 4): 

• Yellow spheres represent lipophilic areas 

• Red arrows represent hydrogen bond acceptor  

• Green arrows represent hydrogen bond donor  

• Blue circles represent aromatic structures 

• Grey spheres represent the exclusion volume coat 

• Red spheres represent negative ionizable areas 

• Blue spheres represent positive ionizable areas 

• Blue cones represent metal binding feature 
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Figure 4. The pharmacophore of the PDB (1IOO) in LigandScout 

 

The hydrogen bond distance is set to be in the range between 2.5 and 3.8 Å by default, 

and the angles between donor and acceptor are stated to be ideal of 180∘.  

Hydrophobic areas are represented as spheres. However, the hydrophobic spheres 

are placed only if there are hydrophobic areas within a distance range of 1-5 Å at the 

macromolecule side. 

Additionally, if the program recognizes for all atoms or groups which are protonated or 

deprotonated at physiological pH an interaction partner in the distance range within a 

1.5-5.6 Å, it adds the feature or sphere to the charged group [17].  

As an additional chemical feature, the program includes the excluded volume spheres 

regarding areas which are inaccessible for the ligands in order to reflect possible steric 

restrictions [21].
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3.4 The Protein Data Bank
 

The Protein Data Bank is a worldwide archive for experimentally determined, atomic-

level three dimensional structures of biological macromolecules [22], which was 

established in 1971 [23]. It contains approximately 130,000 protein structures (May 

2017) from multiple species [24]. The PDB includes a wide range of macromolecules 

including enzymes, membrane proteins, protein bound to DNA and some viruses [25]. 

Most of the atomic structures of proteins in the PDB were determined by X-Ray 

crystallography, some of them with NMR spectroscopy and cryo-electron microscopy. 

Each PDB entry is characterized by a 4-character PDB identifier [26] as it is presented 

in Figure 5. All PDB entries include atomic structure information, experimental 

procedures, data about small molecules, and structure determination data.  

 

 

Figure 5. One of the Protein Data Bank entries  
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3.5 BINDING MOAD – Mother of all Database

 
Binding MOAD  is a large collection of high resolution structures from PDB with ligand 

annotation (valid/invalid) and protein classification (enzyme/non enzyme) [27], 

updated till 2014 [28]. It includes all entries of the Protein data bank, but it excludes 

structures which are inappropriate. It retains only those structures whose resolution is 

better than 2.5 A. The Binding MOAD distinguishes between small molecules which 

are considered as a part of the crystallization matrix or an artifact of the protein and 

therefore are stated as invalid ligands. On the other hand it considers small biological 

molecules like agonists, antagonists, inhibitors, cofactors as valid ligands [29]. The 

focus lies on small molecules bound to the protein, so peptides containing more than 

10 amino acids or chains containing more than 4 nucleic acids are not considered as 

being relevant. This makes MOAD much more appropriate in categorizing ligands, 

when compared with the Protein Data Bank, which does not distinguish between valid 

and invalid ligands.  

 

Figure 6. Binding MOAD (small section) 
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3.6 Toxicity Reference Database (ToxRef)

 
The Toxicity Reference Database was created to present the data from the guideline 

in vivo toxicity studies. It contains the review of the submitted toxicity studies, known 

as data evaluation records for roughly 400 chemicals from the U.S. EPA’s Office of 

Pesticide Programs (OPP). The data included five types of studies from a variety of 

species: developmental in rat and rabbit, subchronic in rat and mouse, reproductive in 

rat, chronic or cancer in rat or mouse. The doses are given in part per million or in 

mg/kg, based on the body weight and food consumption. Moreover, the observed 

effects were described on the all dose levels. The critical level at which a distinct effect 

was observed is described as LOAEL, whereas the level where there was no effect 

observed  is termed NOAEL [30]. 
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4 COMPUTATIONAL APPROACH

 
In this thesis we used the Knime software to process the large amount of data obtained 

in this thesis and to develop a workflow which enables the interactive data 

visualization.

 

4.1 Knime workflow
 

This thesis was based on the list of proteins, that are supposed to participate in 

development of developmental toxicity (Appendix) [12]. Each protein sequence can be 

characterized by a specific UniprotID, therefore the corresponding UniprotIDs are 

usually attributed to each protein. Starting from a list containing 182 UniprotIDs we 

developed a Knime workflow to download all crystal structures available in the Protein 

Data Bank which correspond to the UniprotIDs present on the list. 

 

4.2 PDB Download
 

First and foremost, we made a table that contains UniprotIDs and the protein name as 

columns. In order to download the PDBs, the first part of the Knime workflow was 

developed. The first node used was the Loop start node to use each UniprotID iteration 

to download the PDB. To download all the PDBs the query was defined and used as 

input for the node PDB Connector Custom Report. Through this node we retrieve the 

PDBs and it enables also the selection of specific properties, such as 

• Structure summary: resolution, release date, classification  

• Ligand details: Ligand smiles, InChI Key, LigandID, Ligand Name 

• Binding affinity: Kd, EC50, IC50 

• Biological details: source, plasmid name, taxonomy ID 

To close a loop, the Loop end node was used to obtain the necessary PDBs as it was 

shown in Figure 7.  
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Figure 7. Knime pathway to download PDB from Protein Data Bank based on the UniprotID 

 

4.3 Binding MOAD Integration
 

The biggest advantage of the MOAD is the clear separation between valid and invalid 

Ligands, such as artifacts or solvents. To clearly state which ligands from downloaded 

PDB are valid for this thesis, the information regarding the ligands that are present in 

the Binding MOAD were integrated in the second part of the Knime workflow. First, a 

csv file containing Binding MOAD data was downloaded from the website. Some 

manual editing was necessary to transform it into the desired format. 

The resulting table containing the desired characteristics was then created (Figure 8). 
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Figure 8. shows small section from Binding MOAD 

 

Inside the metanode named PDB-MOAD Confrontation (Figure 9) the Protein Data 

Bank Ligands were confronted with MOAD Ligands. First, the Group Loop Start was 

executed to group all the PDB-IDs from the Protein Data Bank, having the same 

UniprotID as a criterion.  
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Figure 9. MOAD and PDB confrontation

 

Using the Rule Engine node, the validity of the Ligand was checked for the entries 

downloaded from Protein Data Bank, thanks to the comparison with MOAD.  If the 

Ligand is present in the PDB database but not in MOAD, an additional column is added 

to the table with the statement “Ligand is not part of the MOAD”.  

However, the MOAD database contains multimeric ligands which are not correctly 

read in the PDB database. Therefore, additional descriptions of the ligands were 

added to the table with Java Snippet node. The multimeric ligands could this way be 

compared between PDB and MOAD. An alert was added if the LigandID downloaded 

from the Protein Data Bank and Ligand ID from MOAD match, but do not correspond 

completely as it is presented in Figure 10. 

 

 

Figure 10. Java Snippet node configure window
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However, considering that the column LigandID contained missing values, the Missing 

value node was integrated into the workflow (Figure 9), in order to replace the missing 

values with the expression “Ligand not present”. To close the loop, End Loop node 

was executed with the obtained results.

 

4.4 Interactive Visualization
 

After the results were obtained by combining the PDB and MOAD Databases, the next 

step was to represent the collected data in tables and a sunburst chart. In order to 

achieve this, the metanode Interactive Visualization was used. First, as a best way to 

represent the data in a Sunburst chart, the Color Manager node was used to add a 

color for each UniprotID. Afterwards, the node Date Field Extractor was used to extract 

the release date and the resolution of the structure. These two data were then 

combined in an interactive scatter plot having the value “Resolution” on Y axis and the 

value “Release Date” on the X axis (Figure 11). 

 

Figure 11. Scatter plot includes Resolution value on the Y axis and Release Date on the X axis

 

Additionally, to have a better overview of the collected data, the additional ligand 

information was added to the table. The Rule Engine node was used to state the ligand 

presence in the PDB. Furthermore, the Missing Value Nodes state whether the 



20 
 

LigandID in the MOAD Database matches the LigandID in the PDB Database. The 

resulting table allows us to choose the characteristics of the ligands (Figure 12).  

 

 

Figure 12. Additional information about ligands 

 

Considering the large amount of collected data, The Color Manager node was used to 

add a color for each Source entry from PDB to have a better overview about the 

proteins as it can be seen in Figure 13. 
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Figure 13. Color Manager node shows the color attributed to the source

 

As additional information, the metanode Interactive Visualization contains LigandID 

information of different PDBs. The view allows us to have a better overview whether 

the Ligand is present or not, and if the structure downloaded from PDB is also present 

in MOAD or not. In the case when the Ligand is present, additional information is stated 

such as whether the Ligand is valid or not, or parts of the protein in the PDB and MOAD 

do not match. 
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Figure 14. represents the table where additional information is stated for Ligands of PDB and MOAD

 

4.5 PDB Saver
 

Afterwards, to download the selected PDBs we used the Group Loop start node, in 

order to group the PDBs using UniprotID as a criterion. As a next step the Group by 

node was executed to group all PDBs and PDB structures and simultaneously avoid 

all the duplicates due to different ligands for every PDB chain. However, Chunk Loop 

start node was executed afterwards, because PDB Saver node needs single PDBs as 

an input to download the selected one. In order to download it, the Java Edit Variable 

node was executed to define the location of the subfolders and the name of the 

subfolders, in this case the UniprotID and the name of the protein (i.e. P10275 - 

Androgen receptor). The Create Folder node was executed to create subfolders 

containing PDBs inside of the main folder. The PDB Saver node was executed to save 

the PDB copy on the local computer. Using the Loop End node each PDB was 

downloaded and saved in specific subfolders.  
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Figure 15. Knime workflow to save the downloaded PDBs on the local computer

 

4.6 Ligand extraction
 

Considering the large amount of downloaded data, we decided to focus only on 

UniprotIDs derived from humans. However, even after choosing to focus only on 

human PDBs we still had a large amount of data for structure-based modelling. The 

next step was to search the literature to determine which of the ligands are involved in 

causing developmental toxicity. In order to extract all the ligands from data file 

containing all downloaded data, the Column Filter node was used to filter the columns 

containing LigandID, Ligand Smiles, UniProtID, PDB-ID and InChI Key. The GroupBy 

node grouped all the columns except the UniprotID column (Figure 16). 

 

Figure 16. Knime workflow to extract the ligands  
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However, considering that ions or salts are recognized as ligands, the Element filter 

node enables to filter the molecules based on elements. In this case, we decided to 

keep specific elements in column Ligand Smiles (Figure 17).  

 

Figure 17. Element Filter node Configure window 

 

Additionally, with the node Molecular properties additional molecular properties were 

calculated and added to the table, in this case number of heavy atoms and molecular 

weight. These properties were used as an input for the Library filter node in which we 

filtered the molecules with specific molecular weight and number of heavy atoms to 

obtain a more appropriate list of the ligands (Figure 18).  
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Figure 18. Represents the characteristics which were chosen to filter the ligands 

 

 

4.7 Creating structure-based pharmacophore models
 

127 PDB were retrieved from Protein Data Bank. For each of those a structure-based 

pharmacophore model was made using LigandScout. After the PDB was retrieved in 

LigandScout, the pharmacophore features were created by choosing the option Create 

a pharmacophore in LigandScout. After creating the pharmacophores, exclusion 

volume coat was added to the pharmacophore to increase the selectivity of the 

pharmacophore. The exclusion volume matches the positions that are sterically 

claimed by macromolecular environment. Therefore, we had to check whether we 

could change some exclusion spheres to get more selective models and to possibly 

increase the enrichment. After adding exclusion volume, the next step was to look 

whether some distinct feature vectors could be changed, considering the binding site 

amino acids, distance range of the bond, etc. The hydrogen bond vectors were 

changed by choosing the option Convert the selected vector features if there was the 

possibility to interact with 2 or more protein atoms and generate in this way too many 

features.  
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Figure 19.   PDB 1T65   before changing pharmacophore features and after       

 

 

4.8 Database selection
 

In this thesis the following databases were considered:  

• Toxrefdb_nel_lel_noael_loael_summary_AUG2014_FOR_PUBLIC_RELEAS

E [31]: The database was taken from Toxcast website, in which all chemicals 

were tested in vivo whether they cause or not developmental toxicity. This 

database includes 11.815 compounds. The Toxref file contains columns with 

information such as chemical name, Loael, Nel, the source of the data, and 

guidelines. Moreover, the chemicals in this database were divided into 

categories based on the effect that they were causing, such as maternal, 

reproductive, developmental, etc. In addition, for each chemical it was stated 

on which species the experiment was done, what was the highest and what 

was the lowest used dose. In the LOAEL column, the effect was described with 

numbers (0,1,2,3) with zero meaning no effect. However, this datafile lacks 

explanation about the methods how the researcher determined whether the 

effect of the chemicals was the strongest one or not. For this reasons, we 

decided not to proceed with it. 

• Toxrefdb_study_tg_effect_endpoint_AUG2014_FOR_PUBLIC_RELEASE 

[31]: This database contains the chemicals that definitely caused the lowest 

observed effect. However, the chemicals were divided into two groups 
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characterized with 0 and -1. In the zero group the researcher tested chemicals 

for which they expected to observe LOAEL. In the -1 group the researcher 

tested chemicals for which they were not sure whether the chemicals could 

induce developmental toxicity. Moreover, this file does not contain a SMILES 

column or an InchI Key, but contains the CAS number of the substance, which 

will be used in the further Knime workflow.  This file contains 17.098 compounds 

(Figure 21). The Toxref dataset was used as active compounds in our virtual 

screening. 

 

Figure 20. short overview of the Toxref table  

 

• The Drugbank database: The drugbank compounds were used as inactive 

compounds for the virtual screening. This database consists of 2.141 

compounds. 

Furthermore, as it was previously mentioned in 4.6 Ligand Extraction, we used the 

literature to determine a list of ligands that could cause developmental toxicity. The 

ligands which are involved in causing developmental toxicity were added to the Toxref 

list under the assumption that they are active compounds.
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4.9 Dataset preparation
 

In this thesis the screening was performed with the Toxref dataset which contained 

17.098 entries. As it was previously mentioned that this database file does not include 

the Smiles column that is important for further steps. Therefore, the Toxref file was 

merged to the Toxcast release file (SDF file), which contains all chemicals which were 

released from Toxcast or Tox21 database. Tox21 (Toxicology in the 21st century) is a 

collaboration between several federal agencies with the aim to develop better 

assessment methods to determine whether certain chemicals can cause negative 

health effects [32]. The Toxref file and the SDF file were joined together with the Joiner 

node. In the configure window of the Joiner node, the option Inner joiner was chosen 

based on the CAS number of the substance. As a result, we obtained 14.935 

chemicals with the Joiner node, with the necessary chemical properties of the 

molecules. This file contains all chemicals that are found to cause different toxicities 

such as maternal, reproductive etc. With the Row filter node all other effect categories 

were removed from the table except developmental toxicity. At this point the database 

contained 6.115 chemicals. However, considering that the same chemicals were used 

in different experiments and different results were obtained, this dataset contains 

several duplicates as it can be seen in Figure 21.  

 

Figure 21. Small section of Toxref (Data duplicates)
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In order to prepare the dataset for screening, the node Standard properties was 

executed. With this node additional information about molecular weight of the 

substances was calculated and merged to the table. This output of the Standard 

properties node was used as an input for the Row filter node to filter the substances 

based on their molecular weight. As output 6.025 chemicals were obtained. However, 

the compounds contained salts as a part of their structure and to remove it the RDKit 

salt stripper was executed. 

 

Figure 22. shows one compound containing salt which was removed with the RDKit salt stripper node 

 

Considering the potential presence of duplicates, the node Duplicate remover was 

used. The final output of this node contained 468 compounds.  

At this point the list of ligands was prepared also for the virtual screening. First, the 

CDK to Molecule node was used to convert the CDK molecules into SDF molecules. 

Moreover, the Table Merger node was executed to merge the Toxref dataset with the 

Ligand list. Considering both datasets as active compounds the Rule Engine node was 

used to classify all the compounds as active ones (Figure 23).  
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Figure 23. Rule Engine configure window

 

Additionally, to avoid duplicates the node Duplicate Remover was added to the 

workflow. The resulting table contains 468 entries. 

In order to screen the database with the previously made pharmacophore models, the 

conformation of the molecules was computed with the Icon node as it can be seen in 

Figure 24. 
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Figure 24. Icon configure window

 

The output of the Icon node was used for the LDB Writer node to create a screening 

library which can be read in LigandScout (ldb file). 

 

 

4.10   Virtual Screening 
 

Finally, the virtual screening was performed with the Toxref dataset in Knime, as active 

compounds. As previously mentioned the list with ligands that can cause 

developmental toxicity according to the literature was added to the Toxref dataset as 

active compounds. On the other side, the drug bank dataset was used as inactive 

compounds. In Knime the node Activity Profiling was used to screen the database 

against the pharmacophore models. The result of the screening was displayed in a 

heat map, where hits were represented with red colors (Figure 25). 
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Figure 25.  Small section of Heat map (active compounds) 

  

 

 

4.11  Machine learning methods
 

Machine learning methods are used widely in order to analyze high-throughput data 

to solve  important biological questions [33].  The structure-based pharmacophore 

models were made in order to perform virtual screening to get an output data.  The 

virtual screening output was used as an input for different machine learning methods 

to see if using the SBP information will give models with good predictivity.  

First and foremost, the workflow was started with Column List Loop start node in order 

to use each pharmacophore columns in the input table as an iteration. After 

aggregating all the pharmacophore columns with Column Aggregator node and using 

a function sum to count all the hits, another column with the sum of all hits was added 

to the table. 
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4.12  Machine learning method 1 
 

The first machine learning method was random forest, through which the sum of the 

pharmacophore hits was described with a bit vector. Each pharmacophore hit was 

classified as 1, whereas 0 was used when the pharmacophore did not hit the 

compound. In this case a bit vector was seen as a sequence of hits (i.e. 0001100010). 

The Random Forest method uses the sequence of hits bit vector as a pharmacophore 

description. 

In order to perform the validation of the models, the dataset was divided into training 

(70%) and test set (30%). The random forest method uses decision trees algorithm to 

build a model out of the data set. The node Random Forest learner uses the training 

set and builds a model based on the cross validation method. The node Random 

Forest Predictor uses the test set to test the model and to make predictions.  

 

Figure 26. Machine learning method 1 

 

Therefore, to evaluate the performance of the model, the parameters sensitivity and 

specificity were taken into account to test the accuracy of our models [34]. In the 

random forest algorithm the sensitivity is classified as percentage  of active  

compounds correctly classified as active, whereas the specificity is referred to as 

percentage  of inactive  compounds correctly classified as inactive [34]. Specificity and 

Sensitivity value range from 0 to 1, whereas zero value states that the search did not 

yield any actives (Sensitivity) or inactive (Specificity). On the other side the value 1 

indicates that all actives (Sensitivity) or inactives (Specificity) could be retrieved [18]. 

Moreover, one important parameter for evaluation of the model performance is 

balanced accuracy, which in this case was 0,5. 
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Sensitivity      TPR = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

Specificity        TNR= 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

 

4.13  Machine learning method 2 
 

The second method used as descriptors the output of the pharmacophore screening 

and, by the means of Attribute selected classifier node, tried to identify the best 

combination of descriptors to build a model. The dataset was divided into training 

(70%) and test set (30%) with the Partitioning node. In order to avoid the column 

duplicates, the node Low variance filter was executed to remove all the column 

duplicates which could affect the variance. If the variance is too low, the possibility to 

distract certain machine learning algorithms is much higher. Executing the node X-

Partitioner the training set was divided into 5 subsets, four used as a training and one 

as a test set. The training set will be used as an input for the node Attribute selected 

classifier, which makes a model for a training set. To evaluate the model, the WEKA 

predictor node was executed, which uses the test set from X-Partitioner node to 

evaluate the output of Attribute selected classifier node. The Weka predictor node 

output serves as an input for the X-Aggregator which aggregates cross-validation 

results and outputs the prediction for the model.  

 

Figure 27. Machine learning method 2
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4.14  Machine learning method 3 
 

In the third method we used a user-defined threshold. The pharmacophore screening 

results were aggregated under the new column „sum“, that represented how many 

pharmacophores a compound hits. For example, if the chosen threshold was 4, the 

molecule was classified as active (1) if it hits 4 or more pharmacophores, otherweise 

was assigned as inactive (0). The data set was divided into training (70%) and test set 

(30%) using Partitioning node, considering the activity column. The training set was 

used as an input for Low variance node, in order remove double-compatible columns. 

The execution of the Reference Column filter we aggregated the training and test set, 

whereas the String to number node was integrated to convert the string into integer. 

The output of this node was used for Scorer node, that compared two columns by their 

attribute values and creates confusion matrix.  

 

Figure 27. Machine learning method 3

 

4.15  Machine learning method 4
 

In the fourth machine learning method, we calculated the ratio of active and inactive 

compounds that were retrieved by each pharmacophore, and then we used this value 

to select only the one with the highest ratio. First the dataset was divided into active 

and inactive compounds using the activity column. Considering that the table contains 

duplicate columns, which could affect the machine learning results, the Low variance 

node was executed before dividing the dataset to remove the duplicates.  Afterwards, 

integrating the Transpose node allows the swapping of columns and rows. Moreover, 

for active and inactive compounds the Column Aggregator node was executed to sum 

all the pharmacophores and to use the sum as an input for Math Formula node to 
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count the ratio between the actives and the sum. The same workflow was performed 

for the inactive compounds and both tables were joined with the Joiner node. In order 

to calculate the ratio of active and inactive compounds for each pharmacophore 

created, the Math Formula node was integrated again, and the results were obtained.  

 

 

Figure 28. The analysis of the ratio of actives and inactive  

 

Furthermore, using the Row filter node only those pharmacophores were kept for 

which the ratio between active and inactive is higher than 1 to see if the balanced 

accuracy would improve.  Afterwards, the parameters were optimized with the 

Parameter optimization Loop Start node to maximize the parameter to obtain higher 

balanced accuracy.  The joined dataset was divided into training and test set with the 

Partitioning node. These two sets were used to make a prediction in order to evaluate 

the pharmacophore model. This part of the workflow was similar to the others before 

it, however the difference is that in this one the threshold was optimized.  
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Figure 29. Optimized threshold
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5 DISCUSSION AND RESULTS

 
First and foremost, this thesis was based on the list of the proteins created by the 

Crackit Challenge, that could potentially participate in the DART adverse outcome 

pathway and lead to developmental toxicity. Based on the previously mentioned 

protein list, using UniprotID as a start point for this research, a Knime workflow was 

developed to download all PDB-IDs associated with these UniprotIDs. As a result, 

out of 182 UniprotIDs we obtained 2.170 PDB-IDs. The Protein Data Bank is a 

large archive of crystal structures, but there are still some crucial disadvantages of 

PDB. Crystallization products, ions or salts are classified as ligands in PDB, even 

though they are not. They are all seen as Ligands and therefore it is not possible 

to differentiate between them.  

As a solution for this problem, Binding MOAD was integrated in the Knime workflow 

to compare it with PDB. The main difference between MOAD and PDB is a strict 

classification of ligands. MOAD distinguishes between valid and invalid ligands. 

Therefore, with MOAD invalid ligands such as salts or ions were removed, and only 

valid ligands were kept.  

In the metanode Interactive Visualization we used colors to represent the following 

characteristics:  

• source 

• UniprotID and PDB 

•  ligand presence  

Considering that the PDBs obtained with the Knime workflow were not only human, 

different colors were attributed to different species in order to distinguish them. 

Furthermore, to each UniprotID specific colors were attributed.  
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Figure 30. Sunburst chart represents the source, Ligand presence, whether the Ligand is part of MOAD 
and UniprotID 

 

Considering the number of PDBs that were downloaded, we decided that my focus 

should be only on UniprotIDs that contain at least one human PDB. Therefore, I 

selected only UniprotIDs which contained at least one human PDB. Finally, I obtained 

88 UniprotIDs which corresponded to a total of 2.139 human PDB-IDs. However, 

considering the still large amount of data, the next step was to determine which of the 

Ligands in the downloaded PDBs were causing developmental toxicity according to 

the literature.  

The literature used was the Pubmed official site, on which I focused only on in vivo 

research. However, each research outcome depends on the conditions under which 

the research was performed. The same drug was used in different experiments and 

on different species under different conditions. For this reason, it was not possible to 

clearly label all the compounds. Furthermore, another limitation is in the species 

differences: sensitivity to the compound or incomplete understanding of the 

mechanism leading to the AOP between animals and humans [35]. Based on the 

literature research I obtained 26 UniprotIDs with 127 PDBs with Ligands causing 

developmental toxicity.  
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Afterwards, structure-based pharmacophores were made out of 127 PDBs with 

ligands causing developmental toxicity. Changing the features of the pharmacophores 

for some of the PDBs was not necessary, as the automatically made pharmacophores 

in LigandScout were fitting all the criteria previously explained in Paragraph 4.7. The 

pharmacophores were saved and used for screening of a set of actives and inactives. 

However, the screening results showed that the pharmacophores which were not 

further elaborated had in general lower level of selectivity. 

 

As it was stated before, the screening was performed using compounds from Toxref 

database as active and those in Drugbank as inactive. The Toxref database contains 

468 chemicals tested to determine whether these could lead to developmental toxicity 

or not. However, the LOAEL is stated with values 1 and 0, whereas 1 stands for the 

effect observed but not expected and 0 stands for effect was observed and expected. 

Therefore, all the compounds in this database were classified as active. On the other 

hand, the Drugbank dataset was used under the assumption that all compounds inside 

are approved and the possibility to obtain hits from the Drugbank dataset is small. 

Unfortunately, the obtained screening results showed a different outcome. The 

screening of the active dataset resulted in 302 active compounds, whereas the 

screening of the inactive dataset resulted in 2.141 hits.   

 

 

In order to test the final output of the pharmacophores, different machine learning 

methods were integrated in the workflow. The pharmacophore models were used as 

descriptors for each method. One of them was random forest, which used a bit vector 

based on the hits of the pharmacophores. A bit vector is a sequence of a 

pharmacophore hits, used as a descriptor. Moreover, it uses training to build a model 

using different cross-validation algorithms, whereas the test set is used to evaluate the 

performance of the model. However, the results with this method were not good, 

considering that the balanced accuracy was 0.502, which is not different from random 

selection.  
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 Positive (actual) 
Negative 
(actual) 

Positive (predicted) 3 137 

Negative 
(predicted) 3 1088 

Figure 31. Confusion matrix (Machine learning method 1) 

 

Sensitivity Specificity Balanced Accuracy 

0.021 0.997 0.509 

Figure 32. Sensitivity, Specifity and Balanced accuracy value (Machine learning method 1) 

 

The second method was a stratified sampling method, in which the training set was 

split into small subsets, whereas the last subset is seen as test set. This method also 

uses a training set to build a model, which was evaluated with the test set and resulted 

in different number of compounds compared to other machine learning methods 

(Figure 34). However, also the results obtained with this method were not satisfying, 

the balanced accuracy was 0,502.

 

 Positive (actual) 
Negative 
(actual) 

Positive 
(predicted) 4 323 

Negative 
(predicted) 15 2529 

Figure 33. Confusion matrix (Machine learning method 2) 

 

 

 

Sensitivity Specificity Balanced Accuracy 

0.012 0.994 0.502 

Figure 34. Sensitivity, Specifity and Balanced accuracy values (Machine learning method 2) 

 

In the third machine learning method the data set was divided into training set and test 

set to build a model. In order to consider whether the compound is active or inactive 

the threshold was specified by the user. Even with different threshold values (from 1 

to 5), the balanced accuracy did not improve (Figure 36).  
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 Positive (actual) 
Negative 
(actual) 

Positive 
(predicted) 38 102 

Negative 
(predicted) 234 857 

Figure 35. Confusion matrix (Machine learning method 3) 

 

Sensitivity Specificity Balanced Accuracy 

0.271 0.786 0.528 

Figure 36. Sensitivity, Specifity, Balanced accuracy values (Machine learning method 3)

In the fourth attempt the ratio of the actives and inactives was calculated and only 

those pharmacophores were kept for which the ratio was higher than 1. The active 

and inactive compounds were joined again and the dataset was divided into training 

and test set to build a model. In this method the threshold was automatically optimized. 

Even though we maximized the parameter to improve the balanced accuracy the 

results were only slightly different (Figure 39).
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 Positive (actual) 
Negative 
(actual) 

Positive 
(predicted) 5 135 

Negative 
(predicted) 18 1073 

Figure 37. Confusion matrix (Machine learning method 4) 

  

Sensitivity Specificity Balanced Accuracy 

0.036 0.984 0.510 

Figure 38. Sensitivity, Specifity and Balanced accuracy (Machine learning method 4) 

 

The methods described above used pharmacophore models as descriptors for model 

making. As it was stated before, the pharmacophore models did not show the 

necessary selectivity. Moreover, machine learning methods were used to test whether 

the final output of the virtual screening by pharmacophores would give good 

predictions. In all four cases the output was not different from random selection. 

However, towards the end of the production of this thesis, a workflow for automatic 

model generation was published by the Knime team. The Knime workflow 

04_Analytics/11_Optimization/08_Model_Optimization_and_Selection (Comparison 

Workflow) was used as a reference. It uses an advanced parameter optimization 

protocol with four different machine learning methods. Using a dataset prepared for 

virtual screening, the following fingerprints were calculated and deployed as 

descriptors for developing models and for evaluation of the model performance. 

• ECFC6 

• ECFP4 

• ECFP6 

• AtomPair 

• RDKit 

 The dataset was divided into training (80%) and test set (20%) using node 

Partitioning. Different metanodes were included into the workflow to optimize the 

parameters and to build a model for developmental toxicity. 
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Than we run the before mentioned workflow with our dataset, to compare the results. 

This allowed us to see if the results obtained with our method would be attributable to 

the dataset selection, or to the inability of the pharmacophore models to prefer actives 

over inactives. As it can be seen in Figure 40, the balanced accuracy was 0.72, which 

is considerably better than the results obtained with the machine learning methods 

that use the pharmacophore output as an input.  

 

 

 

Figure 39. The end result of the Comparison Workflow 

 

This significantly better result showed that the poor performance obtained with our 

pharmacophore models was not caused by the compound selection. On the other side, 

the machine learning methods used in my workflow were using the result of 

pharmacophore screening as descriptor. This result suggests that the poor 

performance obtained with our models was not the dataset selection itself. However, 

there are many reasons which could lead to this result.  
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1. This thesis was started based on the list of protein targets which are supposed 

to be involved in developmental toxicity provided by the Crackit Challenge. In 

most of the cases there is no confirmation that these proteins cause 

developmental toxicity. Considering the large amount of data we obtained by 

downloading the PDBs, we focused only on those PDBs having ligands which 

are toxic according the literature. Therefore, there is a probability of having toxic 

ligands in other PDBs which were not taken into account, because there are no 

studies done with the aim to determine if those ligands could lead to 

developmental toxicity.  

2. The pharmacophore models made were based on molecules tested in vivo, not 

on enzymes. This means that overall it was not possible to have a model 

validation for the pharmacophores using the dataset.  

3. The Drugbank compounds were used as inactive compounds under the 

assumption that my pharmacophore models will not hit any of the Drugbank 

molecules.  
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6 CONCLUSION

 
The developmental toxicity field is getting a lot of attention. Considering the fact that 

most of the research is performed on animals, which is time consuming and expensive, 

introducing new computational methods is a reasonable way to try to discover to which 

extent some chemicals could affect the development of an embryo. Furthermore, 

keeping in mind the harm that these animals must experience, in order for chemicals 

to be tested is also a great disadvantage. Therefore, the Crackit Challenge 26 is aiming 

to reduce the animal-based research in this field in order to get more reliable results 

and to reduce danger for animals. 

Within this diploma thesis my aim was to discover whether the inclusion of structural 

information in the model generation would lead to models with good predictivity. This 

was realized by using the output of the virtual screening pharmacophore as an input 

for machine learning methods. The results obtained with random forest or stratified 

sampling methods were not different from random selection considering that balanced 

accuracy was 0,5. To evaluate if the problem was residing in the dataset itself, we run 

the dataset in a comparison workflow which includes only information from the ligands. 

The best model generated had a balanced accuracy of 0,72.  

Unfortunately, the poor predictivity of the results obtained with our pharmacophore-

based methods are the sum of a series of limitations and approximations that had to 

be made. For this reason, at the moment, this approach is mainly limited by the lack 

of:  

• a validated list of proteins directly involved in Developmental toxicity 

• a dataset of the molecules tested on the target and a consequent database of 

proven inactive compounds 

• the number of available crystal structures 

When the aforementioned limitations will be overcome, this approach might result to 

be a valid tool to investigate developmental toxicity from the in-silico perspective.
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6.1 TABLE OF ABBREVIATIONS 
 

Abbreviation  Meaning 

Uniprot Universal Protein Database  

PDB Protein Databank 

Toxref database Toxicity Reference Database 

 

DART 

Developmental and reproductive toxicity 

MOAD Mother of all databases 

TP True positive 

TN True negative 

FP False positive 

FN False negative 

LOAEL Lowest observed adverse effect level 

NOAEL No observed adverse effect level 

OECD Organization for economic Co-operation 

and development  

AOP Adverse observed effect 
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6.4 APPENDIX 
 

List of protein targets or biological pathways that may participate in the molecular 

iniatiating event of a DART adverse outcome pathway.  

 

Name of Target Protein/pathway Target/Receptor Code 

Androgen Receptor AR 

Aryl hydrocarbon Ah 

Bone protein-matrix gla protein MGP 

Cyclooxygenase-1 COX1 

Cytochrome P450 (CYP26) CYP26 

Cytochrome P450 aromatase (CYP19) CYP19 

Dihydrofolate reductase DHFR 

FGF signalling pathway FGFR 

Hedgehog signalling pathway SHH 

Hedgehog signalling pathway PTCH 

Hedgehog signalling pathway SMO 

Histone deacetylase HDAC 

N-methyl-D-aspartate-receptors NMDA 

Oestrogen Receptor: alpha Era 

Oestrogen Receptor: beta Erb 

Peroxisome proliferator activated receptor PPARA 

Retinoic acid receptor (alpha) RARA 

Retinoic acid receptor (beta) RARB 

Retinoic acid receptor (gamma) RARC 

Thymidylate synthase inhibition TYMS 

Thyroid hormone receptor (alpha) TR (alpha) 

Thyroid hormone receptor (beta) TR (beta) 

Microtubule depolymerisation TUB 

Microtubule stabilisation TUB 

VEGF signalling pathway VEGFR2 

WNT signalling pathway WNT 
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Cereblon CRBN 

Acetyl-CoA carboxylase ACC1/2 

Copper chelation   

dihydroorotate dehydrogenase inhibition dhod 

HPPD inhibition hpd 

orthosteric nAChR agonists nAChR (embryonic) 

5alpha Reductase SRD5A2, also SRD5A1 & 

SRD5A3 

Acetylcholinesterase Inhibition AChE 

Angiotensin II receptor antagonist AGTR1, AGTR2 

Angiotensin-converting enzyme (ACE) ACE 

Carbonic anhydrase   

DNA polymerases   

GABA-A receptor agonist GABARA 

Glucocorticoid receptor GR 

Lysyl oxidase   

Opiate agonist ZOR, MOR, other 

subtypes? 

Other enzymes involved in folate production & 

inhibition 

  

Phosphodiesterases   

Reductase involved in Vitamin K recycling   

Ribonucleotide diphosphate reductase   

Type III deiodinase DIO3 

Vitamin D receptor VDR 

Farnesyl pyrophosphase synthetase FPPS 

GABA A receptor antagonists GABARA 

mevalonate / cholesterol pathway CYP51 

mevalonate / cholesterol pathway CYP17 

mevalonate / cholesterol pathway INSIG1, INSIG2 

mevalonate / cholesterol pathway Sc5d 

mevalonate / cholesterol pathway Dhcr24 
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mevalonate / cholesterol pathway DHCR7 

mevalonate / cholesterol pathway NSDHL 

 


