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1 Introduction 

1.1 State of Research 
Ever since high-reflectivity dielectric coatings became available in the visible (VIS) 

range in the 1980s, it was also necessary to precisely and accurately measure the 

characteristics of such mirrors. Consequently, experimental schemes to measure 

mirror reflectance 𝑅𝑅 independent of light source intensity fluctuations were devel-

oped. These approaches are the so called cavity ring-down (CRD) setups, measuring 

the so-called cavity decay time 𝜏𝜏 directly (with a reflectance resolution as low as 

5ppm) [1]. This method is based on a technique published four years earlier, obtain-

ing the decay time by a measurement of the cavity-induced phase shift of an inten-

sity modulated source laser [2]. 

As the ring-down time does also depend on intracavity losses (e.g., gas absorption), 

CRD schemes were subsequently used in spectroscopy experiments with great suc-

cess (with [3] commonly accepted as the first in this series; a historical overview on 

CRD spectroscopy is given in [4, pp. 3–12]). 

With the advancements in high-reflectivity coatings and laser technology, extending 

applications to the near infrared (NIR) regime, came experiments demonstrating 

CRD experiments utilizing broadband Fabry-Pérot diode lasers at different wave-

lengths [5]–[7]. In the course of these measurements, optical feedback of the ring-

down cavity on the source laser was observed. This effect (already described for V-

shaped and Brewster angle cavities by Romanini et. al. in combination with distrib-

uted feedback (DFB) and extended cavity diode lasers) was either suppressed [5] or 

used for a better signal to noise ratio [6] in reflectance measurements. 

Many materials and technologies used to manufacture supermirrors in the VIS and 

NIR regimes cannot be transferred to the mid infrared (MIR) regime without major 

complications. Among other reasons, this is due to the fact that many optical mate-

rials become lossy or even opaque in the MIR regime [8]. As a result, it was only in 
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recent years that mirror reflectance in the MIR regime approached unity (e.g., 

99.97% at 3300 nm and 99.92% for crystalline coatings [8]). 

Whereas broadband NIR diode lasers used in previous CRD experiments exhibit a 

typical effective linewidth of approximately 3 nm [5], [6], typical genuine MIR 

Fabry-Pérot diode lasers, i.e. quantum cascade lasers (QCLs) and interband cascade 

lasers (ICLs), exhibit a spectrum spanning several tens of nanometers (see A 2.1). 

This lead previous efforts in the field of MIR CRD reflectometers to utilize frequency-

shifted NIR sources, e.g. optical frequency combs shifted to MIR wavelengths using 

an optical parametric oscillator [8], [9]. This approach is also superior to small lin-

ewidth MIR DFB sources due to its tuning range, comb structure, stability and beam 

quality.  
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1.2 Aims of the Thesis 
As already noted by Anderson in 1984 [1], mirror reflectance 𝑅𝑅 varies greatly, even 

for mirrors of (almost) identical specifications. What was true for coatings mirrors 

in the VIS range then, is true for MIR supermirror coatings today. This is due to in-

trinsic uncertainties involved in the production process [8]; e.g. long growth times 

compared to shorter-wavelength mirrors, as coating thickness increases with wave-

length (see 2.4). Especially for high-precision applications (e.g. the aforementioned 

CRD spectroscopy), it is therefore often necessary to perform precise, yet simple and 

reliable, measurements of basic mirror properties (this being reflectance 𝑅𝑅, trans-

mittance 𝑇𝑇 and residual losses𝑙𝑙) for each individual mirror. 

The thesis at hand aims to demonstrate the feasibility of such measurements for 

state-of-the-art crystalline mirror coatings in the MIR range with a cost-effective ap-

paratus. This is of equal interest for both manufacturers (offering characterization 

as a service) and research groups (providing them with a cost- and space-effective 

setup). Additionally, the mirror pair used in this setup is one of the first of its kind 

at a wavelength above 4 µm, demonstrating the advancements of mirror technology, 

constantly pushing to higher wavelengths. 

For this purpose, two setups were built. On the one hand, a CRD reflectometer using 

a MIR QCL source was designed. On the other hand, a simple direct transmittance 

measurement approach is implemented. This was feasible using a lock-in amplifier 

employing a white light source.  

All this was done with the additional goal of using robust, inexpensive, commercially 

available components. Additionally, the measurement uncertainties should be on 

par with more expensive solutions, and significantly smaller than the projected total 

loss (combined transmittance, absorbance, and scatter loss) of current super mirror 

technology.
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2 Basics and Theory 

Most CRD experiments make use of open resonators, i.e. two facing reflective sur-

faces without a waveguide in between (see 2.2). When these surfaces are spherically 

curved, the fitting solution for the resonant electrical field are so called Gaussian 

waves (see 2.1). Since many lasers are, in principle, also open resonators with an 

active medium, they often emit approximately Gaussian beams. Additionally, state-

of-the-art supermirror coatings are so-called DBR stacks (explained in 2.4), they 

work just as well if illuminated from the back. 

2.1 Gaussian Beams 
Gaussian waves are paraxial, i.e. they have a well-defined direction of propagation 

and exhibit a relatively small divergence. Therefore they are often called Gaussian 

beams [10, p. 195]. As a paraxial wave, the Gaussian beam must be a solution to the 

Helmholtz equation 

  2 2 ( ) 0k U r    (1) 

which is obtained by substituting the complex representation of the wavefunction 

 ( , ) ( ) iωtU r t U r e   (2) 

into the well-known wave equation 

 
2

2
2 2

1 0U
c t

        
  (3) 

where ∇2 is the Laplacian Operator in three dimensions and 𝑐𝑐 = 𝑐𝑐0 𝑛𝑛⁄  is the speed 

of light in a homogenous medium [11, pp. 45–46]. Herewith, I further introduced the 

wavenumber 𝑘𝑘 and angular frequency 𝜔𝜔 which are related to the wavelength 𝜆𝜆 and 

frequency 𝑓𝑓 by 

 2 2
c

ω π f
c λ

k π
     (4) 
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Defining the 𝑧𝑧-axis as the direction of propagation, the complex wavefunction 𝑈𝑈(𝑟𝑟) 

takes the form 

 ( ) ( ) ikzU r A r e   (5) 

where the paraxial approximation demands that the envelope 𝐴𝐴(𝑟𝑟) changes slowly 

with 𝜆𝜆, so that the wavefront normals are approximately parallel to the 𝑧𝑧-Axis (i.e., 

there is a well-defined direction of propagation) for small changes in 𝑧𝑧 (i.e. negligible 

divergence). Since that means 𝜕𝜕𝑧𝑧 ≪ 𝑘𝑘𝑘𝑘 and 𝜕𝜕𝑧𝑧2 ≪ 𝑘𝑘2𝐴𝐴, the Helmholtz Equation ap-

proximates to 

 
2 2

2 2 2 ( ) 0ik A r
x y z

            
  (6) 

Solving this equation for a paraboloidal wave and then shifting the solution by a con-

stant 𝑖𝑖𝑧𝑧𝑟𝑟 gives the complex envelope 𝐴𝐴(𝑟𝑟) of the Gaussian beam 

 
2

2 ( )( )
( )

ρik
q ziAA r e

q z


   (7) 

where 𝜌𝜌2 = 𝑥𝑥2 + 𝑦𝑦2 and 

 ( ) rq z z iz    (8) 

is the complex beam parameter and 𝑧𝑧𝑟𝑟 ∈ ℝ is called the Rayleigh range [11, pp. 81–

82]. The complex beam parameter 𝑞𝑞(𝑧𝑧) is related to the real parameters 𝑅𝑅(𝑧𝑧) and 

𝑤𝑤(𝑧𝑧), identified as beam radius of curvature (ROC) and beam width, respectively, by 

the equation 

 2
1 1
( ) ( ) ( )

λ
R πw

i
q z z z

    (9) 

Substituting (9) and (7) into (5) gives an expression for the complex amplitude 

 
2 2

0
0 2( , ) exp exp

( ) ( ) 2 ( ) G
w ρ ρU ρ z A i kz k φ

w z w z R z

                       
  (10) 

where 𝜑𝜑𝐺𝐺 = tan−1(𝑧𝑧 𝑧𝑧𝑟𝑟⁄ ) is called the Gouy-phase. Note that (10) gives 𝑈𝑈(𝜌𝜌, 𝑧𝑧) as a 

function of real, i.e. measurable, parameters: First, the beam waist 

 
 

0 2

( )

1 r

w zw
z z




  (11) 
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which is the minimum diameter of the Gaussian beam, located at𝑧𝑧 = 0. Secondly, the 

ROC is given by 

 
2

( ) 1 rzR z z
z

              
  (12) 

Since 𝑅𝑅 = ∞ at 𝑧𝑧 = 0, the phase front is plane at the beam waist position. Lastly, the 

Rayleigh range is given by 

 
2
0

Rz πw
λ

   (13) 

To emphasize the paraxial nature of the Gaussian beam, 𝑈𝑈(𝜌𝜌, 𝑧𝑧) is given as a function 

of radial distance 𝜌𝜌 and axial distance 𝑧𝑧 rather than 𝑟𝑟 (see Figure 1). This is especially 

useful in experiment: Regularly, beam properties are measured at fixed values of 𝑧𝑧, 

then deriving more fundamental parameters (e.g., the beam waist 𝑤𝑤0). 

 
Figure 1: The main illustration shows the 𝑤𝑤(𝑧𝑧) contour line of a Gaussian beam propagating in the 𝑧𝑧-
direction. Also labeled are the minimum beam diameter 𝑤𝑤0 = 𝑤𝑤(𝑧𝑧 = 0) and the Rayleigh range 𝑧𝑧𝑅𝑅. 
The inset shows the transverse beam profile at some arbitrary 𝑧𝑧-position, which exhibits the charac-
teristic Gaussian profile. Denoted in both schematics is the beam waist 𝑤𝑤(𝑧𝑧). From the inset it is ob-
vious, that only part of the beam intensity is inside the beam waist. 

 

For large 𝑧𝑧 (i.e. 𝑧𝑧 ≫ 𝑧𝑧𝑅𝑅) we derive from (11) the relation 

   0
0

0

w z θ z
z

w z     (14) 
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where 𝜃𝜃0 is the divergence half-angle [12, p. 80]. This angle describes the beam di-

vergence of the Gaussian beam as it propagates far away from 𝑧𝑧0, where the diver-

gence behaves linearly with 𝑧𝑧 as can be seen from (14). 

Equipped with the complex amplitude of the Gaussian beam (10) the optical inten-

sity is given as 

 
2 2

2 0
0 2

2( ) ( )
( )

,
(

x
)

e pwI U r I
w z w z

ρρ z
               

  (15) 

where 𝐼𝐼0 = |𝐴𝐴0|2 is introduced for convenience [11, p. 83]. From (15) the beam 

power can be derived by integration over a transverse plane at arbitrary and fixed 

axial position by 

  0 2
00

( )2, dρ
2

ρ z πρ πIP I w


    (16) 

The total optical power is therefore half the peak intensity 𝐼𝐼0 times the “beam area” 

[11, p. 85].  Rewriting (15) in terms of 𝑃𝑃 gives 

 
2

2 2
2, exp2( )

( ) ( )
ρPI ρ z

π ww z z
    


 

  (17) 

and therefore, the share of power inside an area of radius 𝜌𝜌0 is  

 0

2
0

2x
( )

1 2e pρinP
w

ρ
zP

   
  

  (18) 

where 𝑃𝑃in𝜌𝜌 is obtained as in (16), simply integrating from 0 to 𝜌𝜌0 instead [11, p. 85]. 

It is of note, that the “beam area”, or any circle with radius 𝜌𝜌0 = w(𝑧𝑧), only contains 

about 86.5% of the total beam power. This is of some importance when dealing with 

optical components, such as mirrors or lenses, and critical when building ultra-low-

loss optical resonators with ‘small’ mirrors (i.e. mirrors, whose area is comparable 

to the ‘beam area’ at the location of the mirror), as beam clipping upon reflection 

can lead to substantial power loss. 

Of course, beams emitted by real lasers are often not perfectly Gaussian. For exam-

ple, diode lasers often exhibit ellipticity. However, one can maintain the Gaussian 

description by analyzing a real beam in more than one axis and by introducing ad-

ditional parameters. The most common and basic correction to the Gaussian model 
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is given by the introduction of the 𝑀𝑀2 parameter, also called beam quality factor. 

This factor is introduced to all the above formulas by defining the divergence half-

angle as 

 2
0

0

M λθ
πw

   (19) 

instead of the definition given in (14). This essentially introduces a measure of 

‘Gaussianness’ to the description of real laser beams observed in experiment: A 

value of 𝑀𝑀2 = 1 corresponds to a perfectly Gaussian beam, while 𝑀𝑀2 > 1 for all 

other beam shapes. As will be derived in 2.2.2, spherical mirror resonators only ac-

cept Gaussian beams, so 𝑀𝑀2 is also a measure for the part of beam intensity one can 

hope to couple into an optical cavity on resonance. 

2.2 Optical Resonators 
There are many different types of optical resonators or cavities.1 However, their 

main purpose is to amplify light of certain wavelengths 𝜆𝜆 by meeting resonance con-

ditions. Furthermore, the underlying principle is always the same: Light is confined 

inside a structure of highly reflective surfaces to be reflected many times inside the 

resonator. This includes so-called closed resonators of different geometries (e.g. 

box-shaped), which confine light regardless of its direction of propagation. A sim-

pler form are open resonators: These only confine light along a certain direction of 

propagation. 

The simplest model for such an open resonator is two parallel and plane facing mir-

rors in presence of a plane wave propagating back and forth between them (see 

2.2.1). However, as already mentioned in 2.1, most coherent sources exhibit a quasi-

Gaussian beam profile. Therefore, 2.2.2 treats the theory on spherical mirror reso-

nators, which are more suitable in conjunction with the output of laser sources. 

2.2.1 Plane-Wave Plane Mirror Resonator 
A simple plane mirror resonator consists of two facing, flat (and, for now, ideal) mir-

rors, separated by a distance 𝑑𝑑, which are both parallel, to the 𝑧𝑧–axis. On the other 

hand, a plane wave propagating in the 𝑧𝑧 direction is described by its complex ampli-

tude 

                                                        
1 The terms “resonator” and “cavity” are used interchangeably in this thesis. 
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  ( ) expU z A ikz    (20) 

with a complex constant 𝐴𝐴. Looking at the phase arg�𝑈𝑈(𝑧𝑧)�, one finds that the wave-

fronts are perpendicular to the 𝑧𝑧–axis and separated from each other by a wave-

length 𝜆𝜆 = 2𝜋𝜋 𝑘𝑘⁄  [11, p. 47]. 

Inside the optical cavity, however, the original plane wave (20) will consequently be 

reflected from both mirrors. This also means, that interference occurs. For this in-

terference to be constructive, the wave must be self-reproducing, i.e. both direction 

±𝑧𝑧 and phase 𝜑𝜑 = 𝑘𝑘𝑘𝑘 must be the same after a round-trip inside the cavity. While 

the first condition, reproduction of direction, is trivially met for the given resonator, 

the second condition, phase reproduction, imposes an important condition: Since 

the mirror reflections contribute a phase shift of 𝜋𝜋 each per round-trip, or, in total, 

the phase shift due to the round-trip distance 2𝑑𝑑 must fulfil 

 2 2φ k d q π q      (21) 

for the wave to be self-reproducing [11, p. 314]. From that, using (4), one finds that 

the so-called resonant longitudinal modes of an optical cavity are given by 

 
2q
cf q
d

   (22) 

and the spacing between two such resonant modes, called the free spectral range, is 

 1 2FSR q q
cf f f
d     (23) 

This important result is also illustrated in Figure 2. Note that the condition is very 

strict, with resonance only occurring at the exact frequency of the associated reso-

nant longitudinal mode. 
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Figure 2: Intesity response function for a lossless resonator (top) and resonators with different loss 
factors a (bottom). 

 

For a plane wave inside this resonator we can now reach the following conclusion 

[11, p. 315]: Starting with a plane wave 𝑈𝑈0 of the form (20), one round-trip results 

in another wave 𝑈𝑈1. As already discussed, 𝑈𝑈1 must be identical to 𝑈𝑈0 except for a 

round-trip phase shift of 𝜑𝜑 = 𝑘𝑘2𝑑𝑑, i.e. 𝑈𝑈1 = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑈𝑈0. This process repeats for each 

round-trip, adding another wave 𝑈𝑈𝑞𝑞 = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑈𝑈0 to the superposition. The resulting 

wave is therefore described by the complex amplitude 

 
0q

qU U




   (24) 

with the magnitude �𝑈𝑈𝑞𝑞� being the same for every 𝑞𝑞, since the resonator is, by defi-

nition, lossless. As noted above, this will result in a buildup of power inside the cav-

ity, only if (21) is exactly met.  

Introducing losses to the resonator changes this situation: Again, starting with a 

complex amplitude 𝑈𝑈0, the complex amplitude 𝑈𝑈1 gets a round-trip phase added. 

However, now 𝑈𝑈1 is also attenuated by a factor 𝑎𝑎, so 

 1 0 0
iφU ae U hU    (25) 
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 Combining this with (24) one obtains 

 0
0

0
1

1
q

q

U h U U
h



 
   (26) 

since factoring out 𝑈𝑈0 gives a geometric series in ℎ. From that, one can calculate the 

spectral intensity response 

  
 

   
0

2
2

2 2

1

1 2 sin FSR

I a
I f U

f fπ π


 


  (27) 

in dependence on 𝑓𝑓 (for a given resonator of length 𝑑𝑑 with an attenuation factor 𝑎𝑎, 

see Figure 2), with 𝐼𝐼0 = |𝑈𝑈0|2 [11, pp. 316–317]. Here, the important quantity 

 
1 a
π a

 


  (28) 

called the cavity finesse, was introduced. Relation (27) is called the spectral re-

sponse of a two mirror resonator. Comparing this function with the results in (21)–

(23), one can observe the following: First, the spacing between two peaks in (27) is 

still given by the free spectral range (23). Secondly, the larger the finesse ℱ, the 

closer a lossy resonator resembles an ideal, i.e. lossless, cavity. Lastly, the lower the 

finesse ℱ, the broader is the FWHM Δ𝑓𝑓 of the peaks in (27). This relation can be 

expressed as [11, p. 72,318] 

 Δ if 1FSRff 


   (29) 

These facts are illustrated in Figure 2 and bear some importance for experimental 

implementations: As soon as resonators have losses, resonances do not only occur 

at the exact value of a longitudinal mode, but in a spectral region according to (29). 

Having shown the effects of resonator losses, we now move to their sources [11, p. 

318]: On the one hand, loss is introduced by absorption and scatter in the medium 

inside the cavity. This introduces an attenuation of exp(−2𝛼𝛼𝑚𝑚𝑑𝑑), with 𝛼𝛼𝑚𝑚 being the 

material-dependent absorption coefficient. On the other hand, there are loss mech-

anisms involving the individual cavity mirrors. In opposition to the reflectance per 

mirror 𝑅𝑅, the sum of all mirror losses is called total loss 𝐿𝐿. This total loss can be 

further discriminated by the involved mechanism: Transmittance 𝑇𝑇 (which is often 

desirable to some extent, see [8]), absorption 𝐴𝐴 and residual loss 𝑆𝑆. There are two 
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important contributors to 𝑆𝑆: Scatter and the fact that real mirrors have a limited 

aperture, whereas waves or beams, are, in principle, infinite (which led to (18)). As 

both 𝐴𝐴 and 𝑆𝑆 are nonrecoverable losses, they are often combined as residual loss 𝑙𝑙. 

Due to energy conservation this gives rise to the relation 

 


1
l

L

R T A S


      (30) 

For the round-trip attenuation of the intensity inside the two-mirror cavity, this nets 

to 

 22
1 2

mdαa R R e   (31) 

where 𝑅𝑅1 and 𝑅𝑅2 are the reflectances of the individual cavity mirrors and 𝛼𝛼𝑚𝑚 is the 

absorption coefficient of the medium inside the cavity. Assuming 𝛼𝛼𝑚𝑚 ≪ 1 and 𝑅𝑅1,2 ≈

1, the finesse (28) can therefore be expressed as 

 
1 21

2 md

π
R R α

 
      

  (32) 

Hence, the finesse is inversely proportional to the total cavity losses [1]. Since 

(𝑅𝑅1 + 𝑅𝑅2) 2⁄  is exactly the mean reflectance 𝑅𝑅�, (32) simplifies to 

 
m

π
L dα

 


  (33) 

Therefore, the finesse ℱ can be directly related to the total losses 𝐿𝐿 = 𝑇𝑇 + 𝐴𝐴 + 𝑆𝑆 of a 

single cavity mirror, if the cavity is built of two identical mirrors [1]. Of course, (33)

further simplifies in the case of negligible intra-cavity absorption, i.e. if 𝛼𝛼𝑚𝑚 ≪ 𝐿𝐿� (e.g., 

in vacuum). Successively, the mean mirror losses are inversely proportional to the 

finesse ℱ. 

Although all the above holds, for a flat mirror cavity to form a resonator, the two 

mirrors must be exactly parallel, to each other and to the wave fronts. Otherwise, 

the wave would exhibit a parallel misalignment after each round-trip. This means 

that flat mirror resonators are highly sensitive to misalignment and therefore im-

practical in real-world experiments [11, p. 327]. 
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2.2.2 Spherical Mirror Resonators 
As briefly mentioned at the beginning of this chapter, real lasers often emit (approx-

imately) Gaussian beams. As (10) and (12) have shown, a Gaussian beam’s wave 

fronts (i.e., planes of equal phase) are spherically curved. In particular, (10) gives 

the phase of a Gaussian beam as 

 
2

( , )
2 ( ) G

ρφ ρ z kz k φ
R z

     (34) 

which includes the second term, dependent on the transverse distance 𝜌𝜌. Hence, in 

general, a reflection from a flat mirror would impose a phase shift. In addition, the 

beam would not be refocused: Instead, according to (18), most of the Gaussian 

beam’s power would leak out of the cavity on each reflection, due to the beam’s di-

vergence. Only a resonator comprised of spherical mirrors allows for the confine-

ment of a Gaussian beam, i.e. the Gaussian beam is a mode of the spherical mirror 

resonator. 

The critical condition for confinement is that the two mirror’s radii of curvature 

(ROC) match the beam’s ROC at their respective positions [11, p. 332], i.e. 

 1 1

2 2

( )
( )

R R z
R R z



 
  (35) 

where 𝑅𝑅𝑖𝑖 is the ROC of the mirrors located at 𝑧𝑧1 and 

 2 1z dz    (36) 

The minus sign for 𝑅𝑅2 arises from the fact that the sign of 𝑅𝑅(𝑧𝑧) is dependent on the 

mirror location (𝑅𝑅(𝑧𝑧) < 0 for 𝑧𝑧 < 0), while the sign of 𝑅𝑅𝑖𝑖 is instead dependent on 

the mirror geometry (𝑅𝑅𝑖𝑖 < 0 for concave mirrors).2 Using (12), it follows from (35)

–(36) that 

 22 2
2

1

1 1

2

( )( )( )
( 2 )r

d R d R d R R dz
R R d

    


 
  (37) 

Since 𝑧𝑧𝑟𝑟 is real, i.e. 𝑧𝑧𝑟𝑟2 > 0, from that we also get the expression 

                                                        
2 In other words: Since the two mirrors of a simple resonator will always face each other, one of the 
mirror coordinate systems, used to define the mirror’s ROC (concave vs. convex), will always be lat-
erally inverted with respect to the coordinate system defined for the beam. 
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  (38) 

called the stability condition (see Figure 3) [11, p. 333], [13, p. 1314]. This relation 

is of prime importance for the construction of real cavities, since it defines stable 

resonator lengths 𝑑𝑑 for two mirrors with given ROCs 𝑅𝑅1 and 𝑅𝑅2. 

 
Figure 3: Stability diagram for a two-mirror resonator. Stable configurations are inside the green 
area. Some configurations with 𝑅𝑅1 = 𝑅𝑅2 have been highlighted. 

 

As indicated by (33), when measuring mirror properties, one often uses (nearly) 

identical mirrors [1]. This means, that both mirrors must be concave with 𝑅𝑅1 = 𝑅𝑅2. 

We have now ensured that the Gaussian beam shape retraces itself after a single 

round-trip, i.e. that a light wave described by (10) is confined, if (38) holds. 
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However, as shown for plane waves in 2.2.1, a resonant mode must also retrace the 

phase. In contrast to (20), the axial part of the Gaussian phase 

 (0, ) Gφ z kz φ    (39) 

is retarded by the Gouy phase 𝜑𝜑𝐺𝐺  compared to a plane wave. This results in a round-

trip phase shift of 2𝑘𝑘𝑘𝑘 − �𝜑𝜑𝐺𝐺(𝑧𝑧2) − 𝜑𝜑𝐺𝐺(𝑧𝑧1)� and, by means of (21), in the resonance 

frequencies 

 2 1( ) ( )G G
q FSR FSR

z zf qf φ φ
π

f
    (40) 

where the free spectral range between two adjacent longitudinal modes is identical 

to that of a planar mirror resonator of the same length with the resonances being 

shifted corresponding to the second term in (40). 

2.2.3 Transverse Modes 
For each longitudinal mode, sets of so-called transverse modes exists. This arises 

from the fact, that the Gaussian beam is not the only solution for (6). In fact, the 

Gaussian beam is fundamental to two complete orthogonal sets of solutions [11, pp. 

100–104], [13, pp. 1316–1317]. 

The first set of solutions, called the Hermite-Gaussian modes, is obtained by trying 

a more general solution for (6) by modulating the complex envelope of the Gaussian 

solution along the transverse Cartesian coordinates 𝑥𝑥 and 𝑦𝑦, i.e. making the separa-

tion ansatz 

  
   
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  (41) 

where 𝐴𝐴𝐺𝐺  is the complex envelope obtained in (7). Solving (6) for (41) leads to the 

solution 
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  (42) 

where 𝑙𝑙,𝑚𝑚 ∈ ℕ0, 𝐴𝐴𝑙𝑙,𝑚𝑚 is a constant, and 𝐻𝐻𝑛𝑛(𝑢𝑢) = (−1)𝑛𝑛𝑒𝑒𝑢𝑢2�𝑑𝑑𝑛𝑛𝑒𝑒−𝑢𝑢2 𝑑𝑑𝑢𝑢𝑛𝑛⁄ � is the Her-

mite polynomial of order 𝑛𝑛 [11, pp. 100–102], [14, p. 491]. The solution for 𝑙𝑙 = 𝑚𝑚 =
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0 is identical to (10), whereas for higher orders of 𝑙𝑙 and 𝑚𝑚, also called 𝑇𝑇𝑇𝑇𝑀𝑀𝑙𝑙𝑙𝑙 modes, 

more complex transverse intensity distributions arise. 

Although the Hermite-Gaussian modes form a complete set of solutions, i.e. every 

solution can be written as a superposition of Hermite-Gaussian modes, there is an-

other family of solutions, called the Laguerre-Gaussian modes, which is also a com-

plete and orthogonal set [15]. The Laguerre-Gaussian solution is obtained by rewrit-

ing the paraxial Helmholtz equation (6) in cylindrical coordinates and using the sep-

aration of variables in (𝜌𝜌,𝜑𝜑, 𝑧𝑧) to get the solution 
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  (43) 

where 𝑙𝑙,𝑚𝑚 ∈ ℕ0, 𝐴𝐴𝑙𝑙,𝑚𝑚 is a constant, and 𝐿𝐿𝑙𝑙,𝑚𝑚(𝑢𝑢) = (𝑒𝑒𝑢𝑢𝑢𝑢−𝑙𝑙 𝑚𝑚!⁄ )(𝑑𝑑𝑚𝑚𝑢𝑢𝑙𝑙+𝑚𝑚𝑒𝑒−𝑢𝑢 𝑑𝑑𝑢𝑢𝑚𝑚⁄ ) is 

the associated Laguerre polynomial of order 𝑙𝑙,𝑚𝑚 [14, pp. 491–492]. Again, the solu-

tion for 𝑙𝑙 = 𝑚𝑚 = 0 corresponds to the fundamental Gaussian beam. 

When comparing (42) and (43) with the fundamental Gaussian solution (10) there 

are some important observations: First, 𝑅𝑅(𝑧𝑧) remains unchanged, regardless of the 

transverse mode numbers 𝑙𝑙,𝑚𝑚; i.e. the confinement condition is the same for all 

transverse modes associated with a longitudinal mode 𝑓𝑓𝑞𝑞. In principle, this allows 

for the coexistence of several higher order modes in a resonator. Secondly, inspect-

ing the phase terms, one can see that the Gouy phase 𝜑𝜑𝐺𝐺  is multiplied by a factor 

dependent on the mode numbers 𝑙𝑙,𝑚𝑚, effectively shifting the resonance to higher 

frequencies by a small amount. Lastly, the higher the mode number, the larger is the 

transverse area with substantial power. Hence, for higher order modes to be excited, 

the resonator mirror’s aperture must be larger. Otherwise, the fundamental Gauss-

ian beam will resonate best, since it has the lowest losses [14, p. 492]. 

2.3 Cavity Ring-Down Reflectometers 
As already indicated in 2.2.1, the cavity finesse ℱ can be directly related to the losses 

𝐿𝐿 of a single cavity mirror. This result, obtained in (33), already suggests that a res-

onator consisting of two identical mirrors could be used as a reflectometer, since 

𝐿𝐿 = 1 − 𝑅𝑅. 
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As discussed in 2.2, when light is fed into a Fabry-Pérot cavity from a coherent 

source, a significant field will build up only when it is on (or near) a cavity resonance 

frequency.  Since both cavity mirrors exhibit a transmittance, 𝑇𝑇1 and 𝑇𝑇2, respectively, 

a certain fraction of the intracavity intensity 𝐼𝐼, given in (27), will be transmitted 

through each cavity mirror. We can relate the intensity transmitted through the sec-

ond mirror to the intracavity intensity by 

 trans 2I T I   (44) 

where 𝑇𝑇2 is the mirror’s transmittance. On the other hand, the intensity 𝐼𝐼in of the 

light incident on the first cavity mirror is only related to the intensity 𝐼𝐼0 by 

 0 1 inI T I   (45) 

since all further contributions to the intracavity field result from reflections of 𝐼𝐼0 

inside the cavity, as shown in (24)–(26). Consequently, the cavity transmittance is 

given by 
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  (46) 

and therefore, directly proportional to the intra-cavity intensity 𝐼𝐼 [11, pp. 321–322]. 

This means, that we can measure the intensity of the field leaking out of the cavity 

to obtain information about cavity characteristics. However, from (46), we can also 

see that such a direct measurement is dependent on the stability of 𝐼𝐼in and therefore 

not feasible when the fluctuation is on or above the same order of magnitude as the 

loss factor 𝑎𝑎, as is the case with highly reflective mirrors. 

However, another measurement approach, called cavity ring-down (CRD) scheme, 

can be used in such cases. Suppose that at some instant in time 𝑡𝑡off a significant field 

intensity 𝐼𝐼off has built up inside the cavity. If we now switch off the incoming inten-

sity 𝐼𝐼in very fast, the transmitted intensity 𝐼𝐼trans(𝑡𝑡) for 𝑡𝑡 > 𝑡𝑡off is not given by the 

steady-state solution in (46), but by the transient response of the cavity. This re-

sponse, however, is determined by an exponential decay with a constant 𝜏𝜏, which is 

determined by the round-trip cavity losses and the cavity length [1]. 

The exact derivation of intensity decay formula, given in full by [1], [16], and par-

tially in [4, pp. 16–17], shall be omitted here, as we won’t need any of the 
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intermediate results. However, we will justify the results in an approach that relies 

on these derivations. In the scenario of rapid laser shutoff at 𝑡𝑡off, the transmitted 

intensity for times 𝑡𝑡 > 𝑡𝑡off is well-described by the formula 

 trans off( ) t τI t I e   (47) 

where 𝐼𝐼off is the intensity at 𝑡𝑡off. Relating the round-trip attenuation factor (31) to 

the round-trip time 

 2
r

dt
c

   (48) 

we get, for the attenuation after 𝑛𝑛 round trips 
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2
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ff fo f

nL
ncτI e I a


   (49) 

since only the intensity attenuation due to cavity parameters can influence the sys-

tem [17, p. 357]. Therefore, the time constant 𝜏𝜏, called ring-down time or decay time, 

is defined by 
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  (50) 

where the approximation holds for 𝑎𝑎 ≈ 1. The ring-down time is therefore also con-

nected to the finesse by 

 πc τ
d

    (51) 

Consequently, and according to (32), the decay time is linked to the mean mirror 

reflectance 𝑅𝑅� by 

 1 1 m
dR L dα
τc

        
  (52) 

As the time trace is recorded as the voltage 𝑉𝑉trans of a photodiode in experiment, we 

must account for a possible offset voltage 𝑉𝑉offset, resulting in the model 

   oo fseff f t

t
τV t V e V


    (53) 

when determining 𝜏𝜏 directly from an oscilloscope trace. 
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It should be emphasized here, that the CRD method is therefore independent of both 

fluctuations in the source laser, used to excite a cavity resonance, and detector ab-

solute intensity calibration. Furthermore, the decay time 𝜏𝜏 is longer, the lower the 

cavity losses. Therefore, the better the mirrors we want to characterize by means of 

(52), the lower the demands on the setup in terms of response time (e.g. detector 

response). However, the setup response can be a limiting factor when using the sin-

gle exponential model (53), as is shown in [18]. 

2.4 Distributed Bragg Reflectors 
State of the art highly reflective coatings are most commonly designed as Distrib-

uted Bragg Reflectors (DBR), also called Bragg/DBR stacks, illustrated in Figure 4. 

These are stacks of alternating layers of high- and low-index dielectric optical mate-

rials. This index contrast causes a partial reflection of light waves/beams at each 

layer boundary. 

 
Figure 4: Working principle of a DBR mirror at normal incidence. Shown are the first 1.5 periods of a 
DBR mirror. The incoming lightwave (black) is partially transmitted (red) and reflected (green) at 
each interface between different media with refractive indices 𝑛𝑛1 = 1.5𝑛𝑛2 = 2𝑛𝑛0. At interfaces where 
the originating medium has a lower refractive index, external refraction occurs, and the reflected 
wave experiences a phase shift of Δ𝜑𝜑𝑒𝑒 = 𝜋𝜋. In the inverse case, internal reflection occurs, not adding 
a phase shift, i.e. Δ𝜑𝜑𝑖𝑖 = 0. Since the DBR stack is composed of layers with 𝜆𝜆𝑛𝑛0 4𝑛𝑛𝑖𝑖⁄  thickness, this leads 
to constructive interference of the incoming and all reflected waves. 

2.4.1 Basic Properties of Bragg Mirrors 
Assuming locally planar reflection (i.e. the reflecting surface is parallel to the im-

pinging light beam wave front at every point), normal incidence is ensured. The re-

flectance is therefore polarization-independent in this case. We start with a simple 
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DBR layout: A stack consisting of 1.5 periods, i.e. a single layer of high-index material 

followed by a single layer of low-index material, and again a high-index layer sur-

rounded by air (compare Figure 4). 

For such a DBR stack to be highly reflective at a certain wavelength, the reflected 

wave needs to interfere constructively with the incoming wave; i.e., for the phase 

difference, 

 
!

0 Δ 2rφ φ φ π    (54) 

We assume 𝑛𝑛1 > 𝑛𝑛2 > 𝑛𝑛0. Therefore, at the first boundary (air to high-index) 

 1rφ π   (55) 

The transmitted part of the incident wave passes into the high-index medium, there-

fore picking up a phase shift dependent on twice the optical width 

 1 1 1D n d   (56) 

of the layer. As internal reflection (𝑛𝑛1 > 𝑛𝑛2) does not contribute to the phase shift, 

the total phase shift for the part reflected at the boundary to the low-index material 

is 

 2 1 12r kdφ n   (57) 

Where k is the wave vector (which is a scalar in this case). The next reflection occurs 

at the boundary low- to high-index, therefore external reflection (𝑛𝑛2 < 𝑛𝑛1) occurs. 

In this case, there is an additional phase shift of 𝜋𝜋 upon reflection, amounting to a 

total phase shift of 

 3 1 1 2 22 2rφ πkn d kn d     (58) 

compared to the wave reflected directly off the surface. For constructive interfer-

ence to occur among these reflected waves 

 1 2 3r r rφ φ φ    (59) 

must hold. From condition (59) follows 𝐷𝐷1 = 𝐷𝐷2 = 𝜆𝜆center 4⁄  and, more general, 

 center

4n
λD    (60) 
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if low- and high-index is strictly alternated. This is true, because the phase shift of 

reflections off further stacks solely result in additional phase shifts of the same form 

as (57) and (58).  

On the other hand, the amplitude reflection and transmission coefficients for a single 

reflection off a non-lossy, nonmagnetic, dielectric material are given by [12, p. 211] 
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
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
  (61) 

and 
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  (62) 

respectively, for both 𝑠𝑠- and 𝑝𝑝-polarized light (if normal incidence is maintained). 

The corresponding single boundary reflectance 𝑅𝑅 is given by 
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and it follows from energy conservation that 

 1T R    (64) 

in the absence of  residual loss, i.e. if 𝑙𝑙 = 𝐴𝐴 + 𝑆𝑆 = 0, in agreement with (30). 

Assuming (60), the power reflectance of an 𝑁𝑁–periodic DBR surrounded by a single 

medium is consequently given by 
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  (65) 

It should be emphasized that this formula only gives the maximum reflectance of a 

given DBR stack. This maximum is located at the design wavelength defined by the 

layer thickness. However, DBRs exhibit a bandgap, i.e. a region of high reflectivity 

located around this maximum. More precise mirror designs are therefore often done 

numerically. 
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2.4.2 Transfer Matrix Modelling of DBR Mirrors 
To calculate the reflectance spectrum of a multi-layered medium, such as DBR struc-

tures, transmission matrix formalism is the most straightforward approach. Instead 

of the travelling wave approach employed in 2.2, summing up all the attenuated re-

flections, we now model the structure as a matrix product and impose correct 

boundary conditions. The result is the steady state solution without the need to 

track all individual reflections [12, p. 246]. 

The model for a paraxial optical structure (e.g. a system of lenses, mirrors, and/or 

slabs) can be modelled as follows: The light is represented by the respective wave-

functions of two plane waves travelling to the right and to the left. The superposition 

of these two waves is given by 

    1 1 1 1expU U V u ikz v ikz       (66) 

On the other hand, the propagation through the optical system is represented by the 

operation [19, p. 6] 
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  (67) 

where 𝑀𝑀, called transfer or transmission matrix, is a 2 × 2 matrix representing the 

action of the optical system on the wave. This matrix 𝑀𝑀 is usually the product of 

matrices, where a single matrix represents a single component of the optical system 

(e.g. a boundary between two materials, propagation through a thin lens). 

Imposing the correct boundary conditions, this can be used to determine the ampli-

tude reflectance and transmittance of a paraxial optical system. In the case of a DBR 

structure, 𝑏𝑏0 at the left of the optical structure is the complex amplitude of all left-

travelling (i.e. reflected) waves combined, i.e. the amplitude reflectance 𝑟𝑟. Since 

there is no light source to the right of the structure, 𝑢𝑢𝑇𝑇 = 1 − 𝑟𝑟 = 𝑡𝑡 (from (62)) and 

𝑣𝑣𝑇𝑇 = 0 (as all left travelling waves stem from reflection). In terms of (67), these 

boundary conditions can be expressed as [19, p. 7] 
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Fundamentally, a DBR structure consists layers of material of refractive index 𝑛𝑛𝑖𝑖 and 

thickness 𝑑𝑑𝑖𝑖 and the boundary surfaces between these layers. The transfer matrix 

for a layer of homogenous, non-lossy dielectric material is given by 
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as can be justified by the discussion in 2.4.1, whereas the transfer matrix for planar 

reflection (normal incidence) is given by 
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  (70) 

Therefore, a 𝑁𝑁. 5 period DBR with light incident from the left is modelled by the 

equation 
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  (71) 

where 𝑀𝑀𝑛𝑛0  and 𝑀𝑀𝑛𝑛𝑇𝑇  are matrices of the form (69) for the initial and terminal medium 

surrounding the DBR structure (in most cases this would be air and/or some optical 

substrate) and 𝑛𝑛1 > 𝑛𝑛2. Naturally, we assume that (60) holds for all 𝑀𝑀𝑛𝑛𝑎𝑎 , so that the 

DBR is a highly reflective mirror around 𝜆𝜆center.
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3 Experimental Setup and Results 

In the following chapter, the results of our measurements are presented and ana-

lyzed. In 3.1, we describe the cavity mirrors, present Fourier transform infrared 

spectrometer (FTIRS) measurements of the individual mirrors and develop a ‘mean-

mirror’ model to compare to the cavity ring-down (CRD) measurements. The CRD 

measurements themselves, as well as the used setup, are described in 3.2. There, we 

also discuss the influence of intra-cavity gas absorption, leading to a correction for 

the CRD results. Finally, in 3.3, the direct transmission measurements, performed 

with a single mirror, are shown and discussed. 

3.1 Crystalline Mirror Design 
The crystalline mirrors (serial numbers CMS1032 and CMS10333) characterized in 

this thesis were grown by CMS in a single coating run. These mirrors are designed 

as a 34.5 period DBR stack (see 2.4) of alternating GaAs and Al0.92Ga0.08As layers 

with a design central wavelength of 4.5 μm and a diameter of 8 mm. These DBR 

stacks were afterwards transferred to super-polished Si substrates with an ROC of 

1 m (for details on the substrate transfer process see [20]) and a diameter of 1”. The 

transmittance spectrum of the original mirror design, on which the parameters for 

the growth process were based, is show in Figure 5. 

After the growth process an X-ray microscope measurement was performed by the 

manufacturer. This measurement indicated that the DBR structure was slightly 

thicker, i.e. the center transmission wavelength was shifted towards higher wave-

lengths by about 1%. 

3.1.1 FTIRS Measurements of the Mirror Pair 
Due to the above-mentioned indications of deviations in the growth process, FTIRS 

measurements of the individual mirrors provided to us by CMS were conducted. For 

these transmittance measurements of the mirror specimen, a commercial FTIRS 

                                                        
3 More precisely, the substrates are serial numbered. It is therefore possible, that other coatings will 
be bonded to these substrates in the future. 
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(Bruker Vertex 80) was used. Measurements of the mirrors were taken in a nitrogen 

flooded environment to minimize excess losses due to gas absorption. The results of 

these measurements are shown in Figure 5. As can be seen from the plot, precise 

loss measurements below ~200 ppm are not feasible. 

 
Figure 5: FTIRS traces for CMS1032 (solid green line) and CMS1033 (solid blue line), alongside the 
initial mirror design (red line). The systematic shift of the mirror stopbands towards higher 
wavelengths is confirmed. Also shown are the best fit curves of the transfer matrix model for 
CMS1032 and CMS1033 (dashed green and blue lines, respectively). 

 

However, this measurement is useful to determine the center wavelength of the mir-

rors CMS1032 and CMS1033 more accurately. For this purpose, a model for the total 

transmittance 𝑇𝑇 was developed based on (71).4 This model assumes, that each indi-

vidual layer is of a constant 𝜆𝜆center/4 thickness and that there was no deviation from 

the Al0.92Ga0.08As alloy ratio (which would result in a different index of refraction 

for the lower-index layers). These assumptions are plausible, since parameters are 

held constant during the coating growth process. In other words, it is highly likely 

that all deviations from the original design are small systematic inaccuracies rather 

than tolerance-driven imprecisions. 

                                                        
4 For the Python 3 implementation of this optimization routine, the tmm package was used. This 
package for transfer matrix calculations is described by its creator in [19]. 
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This assumption was confirmed by the best fit of the aforementioned model to the 

FTIRS measurements for the individual mirrors. These best fit curves are also shown 

in Figure 5. The fitted parameter, the stopband center wavelength, is given by 

 center,1032 (4540.40 ) nm0.10λ    

and 

 center,1033 (4532.55 ) nm0.10λ    

for mirrors CMS1032 and CMS1033, respectively. This corresponds to a shift of mir-

ror center wavelength by 0.9% and 0.7% towards higher wavelengths, supporting 

the assumption of a systematic deviation from the originally projected 𝜆𝜆design of 

4500 μm by less than 1%. 

Data on the layers respective refractive indices were taken from [21], [22] for GaAs, 

from CMS for Al0.92Ga0.08As and [23], [24] for Si, while the refractive index of air was 

approximated as 𝑛𝑛air ≈ 1. 

The fitted model did not include free parameters for absorption losses in the DBR 

layers. This is because the transmission spectrum of a DBR stack is much less influ-

enced by additional absorption losses than the reflectance spectrum. 

Furthermore, the signal-to-noise ratio of the FTIRS method deteriorates below 

300 ppm, leading to a measurement uncertainty surpassing the expected mirror 

losses. This results in noisy data, which can be seen from the measurement data in 

Figure 5.  

Due to these reasons, neither absorption coefficients can be reliably fitted to the 

FTIRS data, nor can mirror reflectance be measured precisely by the FTIRS method. 

3.1.2 Correction of the Mirror Model 
Since the fitted values presented in 3.1.1 are shown to be shifted from the initial 

design, a new model to compare to the ring-down measurements is developed. 

For that purpose, the pointwise arithmetic mean of the two fit curves obtained in 

3.1.1 is taken to obtain the transmittance curve of a ‘mean mirror’. This approach is 

superior to a model that assumes a single mirror with center wavelength 

�𝜆𝜆center,1032 + 𝜆𝜆center,1033� 2⁄ . Such a simple model would deviate from the expected 
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ring-down cavity results in stopband width and minimal transmittance at the stop-

band center, as can be seen from (30) and (32). 

In contrast, the ring-down time depends on the mean of the cavity mirrors’ reflec-

tivity, as can be seen from (52). This makes the ‘pointwise mean mirror’ model, also 

shown in Figure 6, the ideal model for comparison to ring-down reflectance meas-

urements. 

 
Figure 6: Loss model for comparison to CRD measurements. Shown are the best fit curves for 
CMS1032 (dashed green line) and CMS1033 (dashed blue line) alongside the resulting mean mirror 
model (solid orange line). Compared to Figure 5, only the stopband center is shown, so that the dif-
ference between the curves is visible. 

 

From this model we expect a mean mirror total loss of 

 center( 4536nm) 171.2ppmλL    

in the limit of negligible residual loss, i.e. 𝑙𝑙 = 𝐴𝐴 + 𝑆𝑆 ≈ 0. 

3.2 Reflectance Measurements 
Based on the theory in 2.3, a cavity ring-down reflectometer was built from the mir-

rors described in 3.1. The setup is shown in Figure 7, whereas the parts are de-

scribed in detail in 3.2.1. The measurement results obtained with this setup are pre-

sented in 3.2.4. 
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3.2.1 Cavity Ring-Down Setup 
The cavity ring-down setup consisted of three main parts (compare Figure 7): First, 

the laser source and beam shaping; secondly, the measurement cavity (itself con-

sisting of the highly reflective mirror pair); thirdly, the measurement apparatus. 

The laser source is a commercially available Fabry-Pérot QCL diode (TL 

QF4550CM1, see A 2.1), mounted in a C-mount laser mount (TL LDMC20) and pow-

ered by a QCL current and TEC controller (TL ITC4002QCL). The emitted beam is 

collimated by an aspheric lens (TL C037TME-E) mounted directly to the laser 

mount. Subsequently, the collimated output is redirected to a retroreflector, which 

is used to tune the length of the beam path, followed by a mode-matching telescope, 

consisting of two concave lenses with focal lengths 40 mm and 50 mm (TL LA5370-

E and TL LA5763-E). For ease of alignment, a HeNe gas laser (Melles Griot, 𝜆𝜆 =

632.8 nm) was overlapped with the QCL beam. 

 

 
Figure 7: Schematic of the CRD setup. Following the beam path, the apparatus consisted of: A QCL 
diode laser with controller unit (omitted), the delay-stage (DS) for light path length tuning, mode 
matching lenses L1 and L2, the measurement cavity consisting of the mirror pair CMS1032 and 
CMS1033, a monochromator with focusing lenses L3 and L4 and a detector (DET), also with a focus-
ing lens L5. The detector is connected to both an oscilloscope (OSC) and a trigger circuit. The circuit 
is used to rapidly shut off the QCL and trigger a ring-down measurement on the OSC when the signal 
surpasses a predefined threshold. The measurement is then processed by a PC. (Illustration created 
with component library three by Alexander Franzen) 

 

The measurement cavity itself is built from the mirror pair CMS1032 and CMS1033, 

described in detail in 3.1. The cavity length was chosen as 

 (92.0 )cm0.1d     
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From that and the mirror’s ROC the resonant modes of the cavity could be derived, 

and the mode-matching telescope was adjusted to shape the collimated laser beam 

accordingly. We also ascertained, that the beam diameter at the cavity mirrors’ lo-

cation was much smaller than the mirror coating diameter. Therefore losses accord-

ing to (18) could be excluded. Furthermore, we ensured single TEM00 mode excita-

tion of the measurement cavity by means of a microbolometer camera. 

The acquisition apparatus is situated right behind the cavity. The first part is a re-

flection grating monochromator (Spectral Products CM110, see A 3). It was used to 

spectrally filter the light transmitted by the measurement cavity by means of a grat-

ing with 300 G/mm and a blaze wavelength of 𝜆𝜆𝐵𝐵 = 2500 nm. This was necessary to 

determine the mirror reflectance in a narrow wavelength range. Since slits of width 

300 μm were used for all measurements, the bandpass of the monochromator 𝜆𝜆𝐵𝐵𝐵𝐵 is 

between 2.8 nm and 3.0 nm, dependent on the center wavelength of transmission 

(manufacturer’s specifications). Together with the specified wavelength precision 

and accuracy Δ𝜆𝜆spec = ±0.7 nm (see A 3) this amounts to a total uncertainty of  Δ𝜆𝜆 =

Δ𝜆𝜆spec + 𝜆𝜆𝐵𝐵𝐵𝐵 2⁄  between 3.5 nm and 3.7 nm for wavelength measurements in our 

ring-down experiment. To minimize beam clipping at the entrance slit of the mono-

chromator, the beam was focused on the slit with a lens (focal length 40 mm, TL 

LA5370-E) and then recollimated behind the monochromator with an identical lens. 

The beam was then focused (lens of focal length 20 mm, TL LA5315-E) on an ampli-

fied, AC-coupled InAsSb detector (TL PDA10PT-EC, see A 2.3), connected to both an 

oscilloscope (Tektronix TBS2104) and a trigger circuit. The oscilloscope is, in turn, 

connected to a PC for automated acquisition. 

The trigger circuit (see A 1 for schematic) is connected to the oscilloscope and the 

laser diode controller. It is used to monitor the signal measured by the detector. As 

soon as this monitor signal reaches a predefined threshold, the trigger circuit sends 

a signal to both the laser diode controller and the oscilloscope, rapidly switching off 

the laser and triggering the acquisition of the ring-down signal. 

3.2.2 Optical Feedback 
As the cavity is aligned on resonance, a feedback effect on the Fabry-Pérot QCL can 

be observed. This effect leads to strong resonances, with much higher cavity trans-

mission than the expected steady-state baseline transmission. This feedback can 
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occur, because both the laser and the cavity mirrors are aligned to the same optical 

axis. Therefore, light reflected of the first cavity mirror is fed back into the laser’s 

cavity. 

This effect was observed in previous diode-laser CRD experiments with Fabry-Pérot 

cavities, for example by [6]. Several explanations for this kind of cavity feedback ex-

ist, a good overview is given in [25, pp. 184–189].  

We theorized that this feedback could be explained by a model of two coupled cavi-

ties. The first cavity in this model is the one between the laser’s HR back facet and 

the first ring-down cavity mirror, while the second cavity is the ring-down cavity 

itself. If this model is correct, length matching the cavity lengths (i.e., matching the 

FSR of both cavities) should yield optimal feedback. 

To further investigate this feedback behavior, the delay line (a hollow roof retrore-

flector on a mechanical stage) is used. When varying the length near the matching 

length (several millimeters) we observe a behavior that seemed to exhibit a perio-

dicity with length rather than a clear maximum at equal cavity lengths. The reso-

nances seem to change in shape periodically with length tuning, where short, pro-

nounced peaks alternate with more stable resonance patterns. 

3.2.3 Intracavity Gas Absorption 
As can be seen from (32), gas absorption would affect the estimation of mirror re-

flectance if it is not excluded (e.g., by evacuating the cavity) or accounted for sepa-

rately. Since an estimation for the absorption in ambient air is not feasible in the 

laboratory environment, the cavity is flooded with nitrogen for all ring-down meas-

urements presented in 3.2.4. 

For that purpose, a PVC tube of ≈ 25 mm diameter and a length slightly shorter than 

the distance 𝑑𝑑 is inserted between the mirrors CMS1032 and CMS1033. This tube is 

flooded with high-purity nitrogen gas (Air Liquide ALPHAGAZ 1 Nitrogen) through 

a single valve in the middle of the tube. The gas flux into the cavity is controlled by 

a pressure-reducing valve mounted directly on the gas cylinder. As can be seen in 

Figure 8 an increase in Finesse (according to (51) and (52), corresponding to a 

higher ring-down time and lower intracavity losses) with higher gas pressures on 

the pressure-reducing valve, i.e. higher flux. However, above a threshold pressure 

well below 0.1 bar, no further increase in finesse could be measured. Therefore, all 
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ring-down measurements were conducted with a pressure slightly above 0.1 bar to 

exclude any influence of ambient air. We further assume that this threshold corre-

sponds with the tube being entirely flooded by nitrogen gas. 

 
Figure 8: Influence of purging the measurement cavity with ppm level purity N2 gas. At each pressure 
level on the pressure-reducing valve, i.e. each level of gas flux into the cavity, two measurements 
were performed (orange triangles and red dots). While the pressure strictly increases from meas-
urement 1 to measurement 9, the coarse scale of the manometer only allowed to measure distinct 
pressure values for points 7, 8, and 9, which were recorded at 0.1 bar, 0.2 bar and 0.3 bar respec-
tively. As can be seen from the plot, a threshold is reached well below 0.1 bar. 

 

Based on this assumption, we can estimate the absorption coefficient 𝛼𝛼(𝜆𝜆). For this 

purpose, the absorption spectrum for a gas cell of length 92 cm filled according to 

the gas manufacturer’s specifications (see A 4) was simulated in the relevant spec-

tral region (Temperature 296 K, pressure 1 atm, using data from HITRAN2016 

[26]). The resulting absorption curve for the entire spectral region is shown in Fig-

ure 9. From that we can conclude that the contribution of gas absorption to the 

measured ring-down time, according to (32) and (52), is less than 25 ppm at all 

measurement points. 
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Figure 9: Calculated gas absorption (green curve) and the resulting corrections for our ring-down 
measurements (black dots). As can be seen, the vertical error interval is given by the extreme values 
of the absorption in the interval defined by the (horizontal) wavelength band. 

 

To estimate absorption for the respective ring-down measurements presented in 

3.2.4, in detail, the following procedure was employed: First, the bandpass of the 

reflection grating monochromator at the measurement wavelength was calculated 

according to the manufacturer’s specifications.5 Secondly, the gas absorption spec-

trum for the interval defined by this bandpass was taken. Thirdly, the mean over the 

interval was calculated. Lastly, both the minimum and maximum absorption value 

in this spectral interval were taken as the lower and upper bound of an error esti-

mation. This allows for a correction of the ring-down reflectance measurements by 

the contribution of gas absorption as well as an estimate of the systematic error in-

troduced by this method of reducing absorption. 

Table 1 gives the complete set of calculated values for the wavelengths at which 

ring-down measurements are taken. Note that the extrema given represent a 

                                                        
5 This bandpass is almost identical to the spectral interval defined by the wavelength error bars given 
in Table 2. However, the error bars also account for an additional uncertainty of ±0.7 nm due to lim-
ited precision and accuracy of the employed monochromator. 
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maximum error estimation, as absorption values for all possible spectral light inten-

sity distributions are within the given bounds. 

Table 1: Calculated values for the effect of gas absorption at the wavelengths where ring-down 
measurements were performed (compare 3.2.4)

 Wavelength 𝜆𝜆 (nm) Mean Gas absorption 𝑑𝑑𝛼𝛼𝑚𝑚 (ppm) 

4560.0 ± 3.0 23.8−0.7
+0.9 

4574.0 ± 2.9 20.4−0.9
+1.9 

4590.0 ± 2.9 16.8−0.7
+0.7 

4605.0 ± 2.9 13.9−0.6
+0.6 

4620.0 ± 2.9 11.8−0.5
+0.5 

4635.0 ± 2.9 9.8−0.4
+0.4 

4650.0 ± 2.9 8.2−0.4
+0.4 

4665.0 ± 2.8 6.6−0.3
+0.4 

4680.0 ± 2.8 5.9−0.9
+15.7 

4695.0 ± 2.8 4.0−0.2
+0.3 

 

3.2.4 Experimental Data and Results 
The reflectance measurements are performed in close succession with the proce-

dure being as follows: First the cavity is aligned to maximum transmission with the 

monochromator in zero order, i.e. without wavelength filtering. This involves the 

adjustment of the ring-down cavity mirrors, the delay stage, and modifying the laser 

diode current. Then, the monochromator is set to the desired wavelength. At this 

wavelength the signal is optimized again (solely by aligning the cavity mirrors). 

Then, several averaged ring-down traces were recorded at each wavelength (256 

averages per trace, 16–32 traces). A single exponential model, according to (53), was 

fitted to each individual averaged trace, resulting in a series of measured values for 

the ring-down time 𝜏𝜏(𝜆𝜆). To exclude any influence of shut-off processes and setup 

response time on the obtained results, we excluded the first 2.5 µs of each ringdown 

signal in the process of fitting. This approach is illustrated in Figure 10, where aver-

aged ring-down measurement curves for each wavelength are shown. 

As can be seen in Figure 11, these measurements exhibit a very high repeatability. 

From the measurement series depicted in Figure 11, we calculated the statistical 

mean and uncertainty for each 𝜏𝜏(𝜆𝜆), which are given in Table 2. These values were 

successively converted to finesse and reflectance values according to (51). Finally, 

by (52) and allowing for the corrections according to wavelength in Table 1, the 
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mean total loss 𝐿𝐿� per mirror was derived. An overview of these values and their re-

spective propagated uncertainties is given in Table 2. 

Table 2: Overview of the CRD measurement results. The uncertainty in 𝜏𝜏 results from the statistical 
variance of the measurement series alone. It is given as the ±1𝜎𝜎 standard error of the mean of the 
individual measurement series shown in Figure 11.

 𝜆𝜆 (nm) 𝜏𝜏 (μs) ℱ 𝐿𝐿� (ppm) per mirror 

4560.0 ± 3.7 15.17 ± 0.18 15530 ± 180 178.5−3.1
+3.3 

4574.0 ± 3.7 14.200 ± 0.047 14536 ± 51 195.7−1.7
+2.7 

4590.0 ± 3.7 12.725 ± 0.021 13027 ± 26 224.3−1.2
+1.2 

4605.0 ± 3.7 10.449 ± 0.050 10696 ± 52 279.8−2.1
+2.1 

4620.0 ± 3.6 8.327 ± 0.037 8525 ± 39 356.7−2.2
+2.2 

4635.0 ± 3.6 6.070 ± 0.026 6214 ± 28 495.8−2.7
+2.7 

4650.0 ± 3.6 4.1624 ± 0.0065 4261.1 ± 8.1 729.1−1.8
+1.8 

4665.0 ± 3.6 2.9779 ± 0.0069 3048.5 ± 7.8 1023.9−3.0
+3.1 

4680.0 ± 3.6 1.6394 ± 0.0022 1678.3 ± 2.9 1866.1−4.1
+18.9 

4695.0 ± 3.6 0.9833 ± 0.0023 1006.7 ± 2.6 3116.8−8.2
+8.3 

 

 

Subsequently, a best-fit curve was calculated for the gas absorption-corrected CRD 

data. It follows from (32) and (52) that the resulting reflectance data corresponds 

to the mean mirror reflectance 𝑅𝑅� of CMS1032 and CMS1033. Therefore, the CRD data 

and its best-fit are compared to the ‘mean mirror’ model (derived in 3.1.2) in Figure 

12.  As can be seen from that diagram, the CRD measurements are in good agreement 

with the model derived from FTIRS. 
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Figure 10: Typical ring-down curves per measurement wavelength (color according to wavelength) 
and according best-fit exponential curves (pink line). The best-fit curve is shown only in the range 
where the measurement data could be used. For times 𝑡𝑡 < 2.5 μs both, the setup response time and 
switch-off effects in the QCL source influenced the recorded signal. The varying signal-to-noise ratio 
is due to the spectral power density of the QCL source (see A 2.1). 
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Figure 11: CRD measurement results. The colored dots each depict a single value for the ring-down 
time 𝜏𝜏(𝜆𝜆), resulting from a best fit to single measured oscilloscope traces with 256 averages. Also 
shown in each plot is the mean ring-down time 𝜏𝜏̅(𝜆𝜆) (dark pink line), resulting from these measure-
ments, and the respective ±1𝜎𝜎 standard error of the mean interval (light pink bar). These results are 
also given in Table 2. The left-hand ordinate gives the 𝜏𝜏 value, while the right ordinate gives the cor-
responding finesse ℱ; note that the axis increment was varied to better visualize variation.  
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Figure 12: Comparison of the CRD results and the ‘mean mirror’ model developed in 3.1.2. Shown are 
the corrected mean loss data points (colored dots, according to Table 2), the best fit to this data 
(dashed blue line) and the mean mirror model (solid orange line). The ordinate error bars are mostly 
too small to be visible, refer to Table 2 for exact values. 

 

Note that the FTIRS model did not include residual loss 𝑙𝑙 (i.e., 𝐿𝐿 = 𝑇𝑇; or 𝐴𝐴 + 𝑆𝑆 = 𝑙𝑙 =

0 was assumed) due to the reasons mentioned in 3.1.1. Therefore, it is expected, that 

CRD measurements yield a slightly lower reflectance than the ‘mean mirror’ model. 

According to our best-fit model to the CRD data, the minimum mean single mirror 

losses are given by 

  center 4535nm 178.4ppmL λ     

for the tested mirror pair, which is only 7.2 ppm higher than the optimal value de-

rived from the FTIRS mode. Additionally, the mirror’s center wavelength of 𝜆𝜆center =

4535 nm is in excellent agreement with the 4536 nm expected from 3.1.2. 

An independent measurement of transmittance 𝑇𝑇, as described in 3.3, allows for an-

other consistency check. Furthermore, if 𝑅𝑅� and 𝑇𝑇 are known, we can give an estima-

tion for the residual loss 𝑙𝑙. 
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3.3 Transmittance Measurements 
In addition to the reflectance measurements presented in 3.2,  transmittance meas-

urements at several wavelengths were performed. As presented in 3.3.1, the ap-

proach involved a direct transmittance measurement with lock-in detection (in con-

trast to a scheme by [27], measuring transmittance directly in a CRD setup). The 

data obtained from these measurements is presented and analyzed in 3.3.2 

3.3.1 Experimental Setup 
For the transmittance measurements, we used a direct measurement approach with 

a white light source and a single mirror. An indirect approach, as in [27], where 

transmittance is derived from a measurement of incoming, transmitted, and re-

flected power of a cavity, is not feasible in our case. This is due to two major reasons: 

On the one hand, our laser exhibited a broadband spectrum (see A 2.1), making it 

impossible to determine at which exact wavelengths light was coupled into the cav-

ity; on the other hand, the feedback described in 3.2.2, all power measurements fluc-

tuated heavily with time. 

Therefore, we opted for a direct transmission measurement apparatus as shown in 

Figure 13. The underlying principle is to measure light intensity impinging on the 

detector (TL PDA20H-EC) both with and without the crystalline supermirror sample 

(same mirror type as described in 3.1) in the light path, resulting in measurement 

values for 𝐼𝐼trans and 𝐼𝐼tot, respectively. By then dividing these two quantities, one ob-

tains the transmittance 𝑇𝑇 = 𝐼𝐼trans 𝐼𝐼tot⁄ . The approach is feasible because the trans-

mittance is expected to be above 150 ppm in all cases. 

For the apparatus, a globar type white light source (TL SLS203L/M, see A 2.2) was 

favored over using the QCL source from 3.2. The advantages of this approach are the 

inherent stability of the thermal source paired with its superior spectral range cov-

erage. In fact, the spectral range had to be limited using an narrow optical bandpass 

filter (Spectrogon NB-4515-090, see A 5) to avoid problems with higher-order dif-

fraction in the monochromator (Spectral Products CM110, see A 3). The passband 

of the filter was tuned by tilting and heating.6 

                                                        
6 Heating was achieved by placing the filter in the filter holder of the globar light source. 
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Figure 13: Schematic of the direct transmission measurement setup. A white light source (WLS) is 
collimated by a lens (L1), then spectrally filtered by an optical bandpass filter (BP). The light is then 
chopped by a mechanical chopper wheel, focused by a lens (L1) on the monochromator entrance slit. 
After spectral filtering by means of the monochromator, the light is recollimated by a lens (L2). The 
intensity with and without sample mirror (SM) is measured by a photodiode detector (DET). Stray 
light is minimized by two iris diaphragms (‘pinholes’, PH1/PH2) and lens tubes (not depicted). The 
detector is connected to a lock-in amplifier (LIA), which also controls the chopper frequency. (Illus-
tration created with component library three by Alexander Franzen) 

 

One major drawback of the thermal source, however, is its low spectral power den-

sity. Measuring transmittances well below 0.05% therefore requires the use of a 

lock-in amplifier (Stanford Research Systems SR810 DSP) and longer integration 

time per measurement. Since a lock-in amplifier can only be used to enhance a peri-

odic signal, the light beam was modulated using a mechanical chopper wheel (TL 

MC2000B-EC). As indicated in the schematic in Figure 13, the chopper frequency 

was controlled by the internal reference signal generator of the lock-in amplifier. 

The signal of the lock-in amplifier was recorded via PC for data processing. This lock-

in measurement scheme allowed for both, a higher signal-to-noise ratio and a higher 

dynamic range of the apparatus. 

The chopping of the light beam, as well as multiple reflections in the setup, led to 

significant stray light. Therefore, lens tubes and iris diaphragms (‘pin holes’) were 

introduced to the apparatus. This suppressed the stray light to a satisfactory extent. 

For all data points presented in 3.3.2, the lock-in internal reference signal was set to 

180 Hz. The following procedure was used: First, the monochromator was adjusted 
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to the desired wavelength. If necessary, the optical filter was adjusted accordingly 

at this point. Secondly, a reference measurement without the mirror was done, re-

sulting in a measurement value for 𝑉𝑉tot ∝ 𝐼𝐼tot. Thirdly, the mirror was placed in the 

beam path and a measurement of 𝑉𝑉trans ∝ 𝐼𝐼trans was performed. Finally, the ob-

tained data points were averaged, resulting in a mean value for the transmittance 

𝑇𝑇(𝜆𝜆) at each measurement wavelength. 

3.3.2 Experimental Data and Results 
For the transmittance measurements, a single mirror, as described in 3.1, was used. 

The resulting data is shown in Table 1. It is of note, that the absolute uncertainty of 

𝑉𝑉tot is comparable to that of 𝑉𝑉trans. Since 𝑉𝑉tot is more than four orders of magnitude 

higher than 𝑉𝑉trans, the error is therefore negligible. As a result, the uncertainty of our 

transmission measurements is dominated by the error in the measurement of  𝑉𝑉trans. 

This error was estimated to be 10% based on the evaluation of the measurement 

series, resulting in the uncertainties shown in Table 3. 

Table 3: Direct transmission measurement results. Listed are the wavelength 𝜆𝜆 at which measure-
ments were taken, the total input power equivalent voltage 𝑉𝑉tot, the transmitted power equivalent 
voltage 𝑉𝑉trans and the resulting transmittance 𝑇𝑇 = 𝑉𝑉trans 𝑉𝑉tot⁄ . The uncertainty of 𝑉𝑉tot is negligible and 
therefore omitted.

 𝜆𝜆 (nm) 𝑉𝑉tot (mV) 𝑉𝑉trans (μV) 𝑇𝑇 (ppm) 

4450.0 ± 3.8 44.85 14.28 ± 1.43 319 ± 32 

4475.0 ± 3.8 33.90 6.83 ± 0.69 201 ± 21 

4500.0 ± 3.8 61.82 11.23 ± 1.13 182 ± 19 

4525.0 ± 3.7 61.31 9.40 ± 0.94 153 ± 16 

4550.0 ± 3.7 56.33 8.00 ± 0.80 142 ± 15 

4575.0 ± 3.7 44.34 7.91 ± 0.80 178 ± 18 

4600.0 ± 3.7 15.38 3.87 ± 0.39 251 ± 26 
 

 

In contrast to the measurements in 3.2, these results can be compared directly to 

the best-fit model for the FTIRS of mirror CMS1032. This comparison is depicted in 

Figure 14, where the transmittance measurement data, a best-fit to the data, and the 

FTIRS fit for CMS1032 are shown. 

As can be seen, the center wavelength of our best-fit model to transmission meas-

urements of  𝜆𝜆center,trans = (4532.1 ± 2.1) nm is shifted towards lower wavelengths 

when compared to FTIRS data in 3.1.1. This shift of approximately 8.3 nm is likely 

caused by errors in the transmittance measurements.  As this deviation is, however, 
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in the same range as the variation between coatings of the same coating run (see the 

comparison of CMS1032 and CMS1033 in 3.1.1), the transmittance data obtained by 

our measurements remains significant. 

 
Figure 14: Comparison of the transmittance measurement data (red dots) and a best-fit curve (or-
ange dashed line) to the best fit to FTIRS measurements of CMS1032 (green dash-dotted line). While 
the lower transmittance is expected due to residual loss 𝑙𝑙 in the coatings, the shift of the stopband 
center is attributed to measurement uncertainty.  

3.4 Discussion 
Since both the CRD measurements in 3.2 and the transmittance measurements in 

3.3 yielded mutually confirming results, we can estimate the expected residual loss 

𝑙𝑙 for crystalline substrate-transferred supermirror coatings to be in the range of 

𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒 ≈ (37 ± 18) ppm range at the stopband center. However, this estimate is of lim-

ited accuracy due to following reasons. 

First, ring-down measurements were conducted with a mirror pair, while transmit-

tance measurements were performed on a single mirror. While both results were 

expected and shown to be within less than 0.5% difference in stopband center wave-

length 𝜆𝜆center, we effectively compared a ‘mean mirror’ and a single mirror loss and 

transmittance curve. This will lead to small deviations compared to a direct absorp-

tion measurement. 
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Secondly, a nitrogen gas of higher purity should be used in future experiments. 

While the intracavity gas absorption correction, as realized in 3.2.3, is an acceptable 

approach, gas cylinder manufacturers tend to inaccurately specify residual trace 

gasses in ppm-purity gasses. This is less the case for ppb-level purity products. 

Therefore, higher purity gas would lead to a more accurate model, as gas absorption 

could be calculated more precisely. It would, however, not result in significantly 

lower intracavity gas absorption, as the lion’s share of absorption is already caused 

by nitrogen itself. 

Thirdly, the validity of the results obtained by the presented nitrogen-purging 

method needs to be confirmed. This should best be done by conducting similar 

measurements in vacuum. 

Lastly, the transmittance measurements should be systemized further. While our 

measurement principle will work for transmittances lower than 100 ppm, it would 

be favorable for the measurement uncertainty to improve several parts of the appa-

ratus. Some possible improvements are: the use a monochromator grating blazed 

closer to the mirror stopband wavelength, resulting in higher optical intensities; the 

use of a lowpass optical filter instead of a bandpass filter, also resulting in higher 

transmission; the use of advanced detection technology, obtaining a better signal-

to-noise ratio, especially when measuring transmitted optical power 𝐼𝐼trans ∝ 𝑉𝑉trans.
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4 Conclusion and Outlook 

All measurements conducted in course of the thesis can be considered a success with 

regards to the aims in 1.2. While CRD measurements, presented in 3.2, yielded re-

sults comparable in accuracy to much more expensive measurement approaches, 

e.g. [8]. We further demonstrated that our rather simple direct transmission meas-

urement approach is feasible for transmittances > 100 ppm with an error of 10%. 

The results obtained demonstrate the potential of our cost-effective apparatus. 

While the CRD measurements yielded a maximum reflectance of 𝑅𝑅� =

�0.9998215−(33)
+(31)�, the minimum transmittance was determined to be 𝑇𝑇 =

(142 ± 15) ppm. This allowed for an estimation of residual loss, in the order of 𝑙𝑙 =

(37 ± 18) ppm. 

This result also demonstrates that the relatively novel technique of substrate-trans-

ferred supermirrors is already on par with the specifications of established physical 

vapor deposition mirror coatings (e.g. the mirror pair used in [28]).7 As the mirrors 

used for the thesis at hand were the first of its kind at a wavelength above 4 µm, our 

results clearly illustrate the potential of substrate-transferred crystalline coatings. 

Moreover, our measurements have shown, that the assumption of ‘equal mirrors’, 

often made when determining mirror reflectance via the CRD method (e.g. by [8], 

[27]), is questionable. It would therefore be best practice to characterize three mir-

rors at a time, if available and feasible. Otherwise, at least a ‘mean mirror’ fit model, 

as demonstrated in 3.1.2, should be used instead of a single mirror transfer matrix 

model. 

Although the used mirrors performed very well in our setup, further investigative 

effort should be put in the exact determination of mirror birefringence in substrate-

transferred crystalline coatings. Previous estimates [8], [20] suggest, that 

                                                        
7 It is of note that we conducted a small number of comparison measurements on a pair of vapor-
deposition mirrors. These results indicate that their quality varies greatly, often yielding results far 
worse than the specified reflectance. However, this observation needs to be confirmed by systematic 
measurements. 
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birefringence is significantly higher when compared to state-of-the-art (vapor dep-

osition technology) supermirrors [28]. In principle, the setup used by Fleisher et.al. 

[28] could be adapted for that purpose with little effort. 

Lastly, we noticed that accurate measurements and/or models for the refractive in-

dex of AlGaAs with a high fraction of AlAs are not available to date. While accurate 

measurements were conducted for AlAs ratios in AlxGa1−xAs up to 𝑥𝑥 = 0.804 [29], 

and an advanced model based on these measurements exists [30], there is no pub-

lished data available for higher AlAs fractions, forcing researchers to use an older, 

less accurate model.
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Symbols and Abbreviations 

Symbols 
% percent (10−2) 
ppm parts per million (10−6) 
𝜏𝜏 cavity ring-down time, cavity decay time 
𝑥̅𝑥 arithmetic mean of a series of measurements for a quantity 𝑥𝑥 
𝜎𝜎 standard error of the mean 
𝑅𝑅 reflectance 
𝐿𝐿 total mirror loss (i.e., 𝐿𝐿 = 𝑇𝑇 + 𝐴𝐴 + 𝑆𝑆 = 𝑇𝑇 + 𝑙𝑙 ) 
𝑇𝑇 transmittance 
𝑙𝑙 residual loss (i.e., 𝑙𝑙 = 𝐴𝐴 + 𝑆𝑆) 

 

Abbreviations 
CMS Crystalline Mirror Solutions 
CRD cavity ring-down 
FTIRS Fourier Transform Infrared Spectrometer 
FWHM full width at half maximum 
ICL interband cascade laser 
MIR mid-infrared 
NIR near-infrared 
QCL quantum cascade laser 
ROC radius of curvature 
TEC thermoelectric cooling 
TEM transverse electro-magnetic 
TL Thorlabs 
VIS Visible 
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Appendix 

A 1 Trigger Circuit Schematic 
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A 2 Data Sheets Thorlabs8 
A 2.1 Fabry-Perot Quantum Cascade Laser (TL QF4550CM1) 

 
Thorlabs reference QCL spectrum at operating current 𝐼𝐼𝑜𝑜𝑜𝑜 = 963.1 mA9 

 
 

                                                        
8 If not stated otherwise, all data taken from PDF manuals found on the manufacturer’s website for 
the respective products (https://www.thorlabs.com, 26.02.2019) 
9 Taken from documentation for the serial numbered diode used in this experiment. Provided upon 
delivery by the manufacturer. 
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A 2.2 Stabilized Free Space IR Light Source (TL SLS203L/M) 

 
Typical Spectrum 
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A 2.3 InAsSb Amplified Detector with TEC (TL PDA10PT-EC) 

 
 

A 3 Data Sheet Spectral Products CM110 Monochromator10 
Design: Czerny-Turner, dual-grating turrets 
Focal Length: 110 mm 
f/#: 3.9 
Beam Path: Straight through standard, right angle provided on re-

quest. 
Wavelength Drive: Worm and wheel with microprocessor control and 

anti-backlash gearing. Bi-directional. Usable in positive 
or negative grating orders. 

Wavelength Precision: 0.2 nm 
Wavelength Accuracy: ±0.6 nm 
Slewing Speed: > 100 nm/s 
Stray Light: < 10−5 

                                                        
10 taken from the manufacturer’s product website (https://www.spectralprod-
ucts.com/cm110.html, 26.02.2019) 

https://www.spectralproducts.com/cm110.html
https://www.spectralproducts.com/cm110.html
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A 4 Air Liquide Alpha Gaz Nitrogen 1 Purity Specifications 
Gas Name Molar Fraction 
Nitrogen (𝑁𝑁2) ≥ 0.99999 
Water (𝐻𝐻2𝑂𝑂) ≤ 2 ppm 
Oxygen (𝑂𝑂2) ≤ 2 ppm 
Hydrocarbons (as 𝐶𝐶𝐻𝐻4) ≤ 0.2 ppm 

A 5 Data Sheet Spectrogon Narrow Bandpass Optical Filter11 

 

                                                        
11 taken from the manufacturer’s product site (http://www.spectrogon.com/wp-content/up-
loads/spectrogon/NB-4515-090-nm.pdf, 26.02.2019) 

http://www.spectrogon.com/wp-content/uploads/spectrogon/NB-4515-090-nm.pdf
http://www.spectrogon.com/wp-content/uploads/spectrogon/NB-4515-090-nm.pdf
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Abstract 

The thesis at hand describes reflectance 𝑅𝑅 and transmittance 𝑇𝑇 measurements per-

formed on a pair of substrate-transferred crystalline supermirrors centered at a 

wavelength of 4.54 µm. For this purpose, two low-cost, flexible and spectrally broad-

band measurement setups were built. For the reflectance measurements, a cavity 

ring-down scheme, using a Fabry-Pérot quantum cascade laser, was implemented. 

This setup exploited direct passive feedback effects of the measurement cavity on 

the source laser in a simple linear configuration. The transmittance was determined 

using a direct approach, comparing the intensity of both, the light incident on and 

the transmitted by the mirror coating; using a globar type white light source for 

power stability and lock-in detection to enhance the signal-to-noise ratio and dy-

namic range. In both setups, a reflection-grating monochromator was used to 

achieve spectrally resolved measurements. We measured a maximum reflectance 

𝑅𝑅 = �0.9998215−(33)
+(31)�, and minimum transmittance  𝑇𝑇 = (142 ± 15) ppm. Since 

𝑅𝑅 + 𝑇𝑇 + 𝑙𝑙 = 1, this allowed for an estimation of residual loss (absorption and scat-

ter) in the order of 𝑙𝑙 = (37 ± 18) ppm. Alongside these measurement results, the 

needed theoretical basics and models are derived and explained.
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Zusammenfassung 

Die vorliegende Arbeit beschreibt die Messung des Reflexionsvermögens 𝑅𝑅 und des 

Transmissionsvermögens 𝑇𝑇, durchgeführt an zwei kristallinen Superspiegeln mit ei-

ner Zentralwellenlänge von 4.54 µm. Zu diesem Zweck wurden zwei kostengünstige, 

flexible und spektral breitbandige Messaufbauten erstellt. Für die Reflexionsmes-

sungen wurde ein Cavity-Ringdown-Verfahren mit einem Fabry-Pérot-Quantenkas-

kadenlaser implementiert. Dieser Aufbau nutzte direkte passive Feedback-Effekte 

des Ringdown-Resonators auf den Quantenkaskadenlaser in einer einfachen linea-

ren Anordnung. Das Transmissionsvermögen wurde unter Verwendung eines direk-

ten Messansatzes bestimmt, wobei die Intensität, sowohl des einfallenden, als auch 

des von der Spiegelbeschichtung transmittierten Lichts verglichen wurde; dies un-

ter Verwendung einer ‚Globar‘-Weißlichtquelle zur Stabilisierung der Leistung ei-

nerseits, andererseits mit Hilfe eines Lock-In-Verstärkers um das Signal-Rausch-

Verhältnis und den Dynamikbereich zu verbessern. In beiden Messaufbauten wurde 

ein Reflexionsgitter-Monochromator verwendet, um spektral aufgelöste Messungen 

zu ermöglichen. Wir haben ein maximales Reflexionsvermögen 𝑅𝑅 =

�0.9998215−(33)
+(31)� und ein minimales Transmissionsvermögen 𝑇𝑇 = (142 ± 15) ppm 

gemessen. Da 𝑅𝑅 + 𝑇𝑇 + 𝑙𝑙 = 1 gilt, konnte der Restverlust (Absorption und Streuung) 

in der Größenordnung von 𝑙𝑙 = (37 ± 18) ppm bestimmt werden. Neben diesen 

Messergebnissen werden die benötigten theoretischen Grundlagen und Modelle ab-

geleitet und erläutert. 
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