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Abstract

Magnetoresistance effects are becoming one of the most important magnetic sensor technologies
for a wide variety of applications, e.g. the automotive industry and biomedical applications.
Within this master thesis simulation results for magnetoresistance sensors utilizing perpendicular
anisotropy with an emphasis on angle-sensing are presented. Basically all magnetoresisitve sensors
currently on the market are sensitive to magnetic fields in plane of the magnetic material, therefore
the basic idea in this work is to compensate the shape anisotropy, which is caused by the elongated
form of the sensor, with a perpendicular anisotropy in order to obtain a smooth hysteresis curve
for a field applied along the perpendicular axis.

The tool with which this is analyzed is micromagnetics. Micromagnetics has been applied
to applications such as magnetic storage, magnetic sensors and more with great success. Hence
embedding micromagnetism into a finite difference code is an eligible method to model this
concept.

The first part is focused on the physics behind these sensing devices and how such materials
are simulated using state of the art finite difference micromagnetic code, whereas the second part
presents the simulation results. We find that a sensor as described above, can yield linear transfer
curves, making it an attractive option for linear field sensors. Additionally if this sensor concept
is implemented as an angle sensor its performance is comparable to state-of-the-art Hall angle
sensing devices. However the performance is highly dependent on the position of the sensor.

Since the field of perpendicular magnetic anisotropy in sensors is still emerging new concepts
provide challenges as well as opportunities, therefore the aim of this work is to present promising
new sensor designs that provide an attractive alternative to current concepts.
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Kurzfassung

Magnetoresistive Effekte entwickeln sich zu einer der wichtigsten magnetischen Sensortechnolo-
gien für eine Vielzahl von Anwendungen, z.B. in der Automobilindustrie oder in biomedizinischen
Anwendungen. Diese Masterarbeit stellt Simulationsergebnisse für magnetoresistive Sensoren
mit senkrechter Anisotropie mit Schwerpunkt auf Winkelmessungen vor. Alle derzeit auf dem
Markt erhältlichen magnetoresistiven Sensoren sind empfindlich gegenüber Magnetfeldern in der
Ebene des magnetischen Materials, daher besteht die Grundidee dieser Arbeit darin, die durch
die längliche Form des Sensors verursachte Formanisotropie mit einer senkrechten Anisotropie zu
kompensieren, um eine glatte Hysteresekurve senkrecht zur Sensorebene zu erhalten.

Das Werkzeug zur Analyse ist der Mikromagnetismus. Mikromagnetismus wurde mit großem
Erfolg in Anwendungen wie magnetischen Speichermedien oder magnetischen Sensoren eingesetzt.
Daher ist die Einbettung des Mikromagnetismus in einen finiten Differenzcode eine geeignete
Methode, um dieses Konzept zu modellieren.

Der erste Teil konzentriert sich auf die Physik hinter diesen Sensoren und wie solche Mate-
rialien mit finiter Differenz unter Verwendung von fortgeschrittenem mikromagnetischem Code
simuliert werden kann, während der zweite Teil die Simulationsergebnisse präsentiert. Wir stellen
fest, dass ein Sensor, wie oben beschrieben, lineare Transferkurven liefern kann, was ihn zu
einer attraktiven Option für lineare Feldsensoren macht. Wird dieses Sensorkonzept zudem als
Winkelsensor realisiert, ist seine Performance mit den modernsten Hall-Winkelsensoren vergleich-
bar. Jedoch ist dies stark von der Position des Sensors abhängig.

Da sich das Feld der senkrechten magnetischen Anisotropie in Sensoren noch in der Entwick-
lung befindet, bieten neue Konzepte sowohl Herausforderungen als auch Chancen. Das Ziel dieser
Arbeit ist vielversprechende neue Sensordesigns zu präsentieren, die eine attraktive Alternative zu
bestehenden Konzepten bieten.
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List of symbols and default values

Unless specifically stated otherwise the following symbols were used

Symbol Description Unit
~H, µ0

~H = ~B Magnetic Field, Magnetic flux density A/m, T
~M , µ0

~M = ~J Magnetization, Polarization A/m, T
Ms, µ0Ms = Js Saturation magnetization, Saturation polarization A/m, T
~M
Ms

= ~m Normalized magnetization 1

A Exchange constant J/m
k1 ,k2, ks Magnetic anisotropy constant J/m3

Table 1: List of symbols frequently used in this thesis

Symbol Description Value
µ0 Vacuum permeability 4π · 10−7V s/Am
~ Reduced Planck constant 1.054571817... · 10−34Js
e Elementary charge 1.602176634 · 10−19C
me Electron mass 9.10938356 · 10−31kg

Table 2: List of physical constants used in this thesis

Unless specifically stated otherwise, the free layer materials of the micromagnetic simula-
tions can assumed to be Cobalt-Iron-Boron (CoFeB) or Cobalt-Platin multilayers (Co/Pt), both
materials can be used for both perpendicular sensor designs which are introduced in this thesis.

Parameter Description Value
µ0MS Saturation magnetization 1.58T
A Exchange constant 1.5 · 10−11J/m

Table 3: Micromagnetic parameters for CoFeB, the values are taken from [39]

Parameter Description Value
µ0MS Saturation magnetization 1.82T
A Exchange constant 3.1 · 10−11J/m

Table 4: Micromagnetic parameters for Co, the values are taken from [21]
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Chapter 1

Magnetism

The phenomenon of magnetism has engaged the interest of scientists for millennia. The ancient
Greeks were already familiar with the mysterious force which seemed to only have an effect on
iron. The Chinese were the first to discover an application in the form of a compass between 300
and 200 BC, although it hadn’t been used in navigation purposes until 1000 AD[17].

Scientific research in a more modern sense, began in the renaissance with William Gibert.
Gibert found that the function of the compass is based on the magnetic field the earth generates.
An understanding of the relationship between magnetism and electricity started to form in 1819
with Hans Christian Ørsted. He discovered by accident that an electric current can create a
magnetic field when he noticed the twitching of a compass needle near an electric wire. Another
breakthrough came from Andre-Marie-Amper, who came to the conclusion that a magnetic field
is created by charges in motion, these charges were later characterized as electrons. Additional
discoveries were made by scientists like Carl-Friedrich Gauss, Jean-Baptiste Biot, Felix Savart
and Michael Faraday, which further connected electricity to magnetism. James Clark Maxwell
gathered these insights by his colleagues and synthesized them into Maxwell’s equations, which
describe how electric- and magnetic fields are connected with each other and with electric charges
and currents under certain boundary conditions. They are a system of linear partial differential
equations that connect electricity, magnetism and optics into the field of electromagnetism.

A fundamental aspect of magnetism was discovered independently by Niels Bohr and J.H van
Leuwen. In their respective doctoral theses [18,19] it is shown that the phenomena of magnetism
is heavily connected to quantum mechanics. The Bohr-van Leeuwen theorem states that in a
uniform magnetic field and in thermal equilibrium, the magnetization of an electron gas in the
classic Drude-Lorentz model vanishes. Which means that a classical electron system cannot have
a magnetization when in thermal equilibrium, therefore magnetism is a quantum mechanical
phenomenon.

7



1.1 Magnetization, magnetic moment and Spin

The state of a magnet is described in terms of its magnetization ~M(~r) which is defined as the
magnetic dipole-moment ~md per volume V

~M =
~md

V
(1.1)

The magnetic moment ~md is given by

~md =
∑
i

~µ(~ri) =
∑
i

−g |e|
2me

~~S(~ri) =
∑
i

−gµB ~S(~ri) (1.2)

here ~µ(~ri) is the local magnetic moment of an atom or ion at the position ~ri, g is the Lande
factor (g ≈ 2 for metal systems with quenched orbital moment), µB is the Bohr magneton, e is

the charge of the electron, me is the electron mass and ~~S(~ri) is the spin angular momentum,
where ~ is the reduced Planck constant.

The length of the magnetization is independent of the strength of the external field | ~H(~r)|,
the length depends on the temperature T

| ~M | = Ms(T ) = Ms (1.3)

The temperature T is constant over the entire ferromagnetic body in micromagnetism.

1.2 Magnetic hysteresis

If the magnetization of a ferromagnetic material is driven to saturation by an external field, it will
not go back to zero once the field is removed. The amount of magnetization that it retains at zero
field is called its remanence. In order to drive the magnetization back to zero one needs to apply
the field in the opposite direction, the amount of field that is needed to completely demagnetise
the ferromagnetic body is called its coercivity. If alternating fields are applied to this material, the
magnetization will draw out a loop called a hysteresis loop. A significant number of literature, e.g.
[2,8,22] explains hysteresis with the creation and annihilation of magnetic domains. However the
Stoner-Wolfarth model, which will be discussed in detail later on, also predicts hysteresis, this is
particularly surprising since the stonar-wolfarth model describes macroscopic magnetic materials
as if they are single spins with a certain anisotropy axes, meaning there are no magnetic domains.

Figure 1.1: The hysteresis curve. Figure taken from [22]

1.3 Magnetic sensing

There are many ways to measure magnetic fields, most of them are based on the fundamental con-
nection between magnetic and electric phenomena. There is a wide variety of different concepts
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and technologies exploiting this connection. The respective technology used for an application
depends mostly on the expected field magnitude and range. Figure 1.2 gives a visualization of
the sensing regimes for different magnetic sensor technologies. Sensors based on the Hall-effect

Figure 1.2: Sensing regimes for various magnetic sensor technologies. The marks ’E’ and ’GMN’
indicate the strength of Earth’s magnetic field and geomagnetic noise respectively. Figure taken
from [23]

are still widely used for wheel speed sensing but they are slowly being replaced in parts by mag-
netoresistive technologies, this is due to their accuracy. For instance the detectivity, which is the
smallest difference in magnetic field which a sensor can register, that Hall sensors exhibit is of
100 nT/

√
Hz whereas magnetoresisitive technologies exhibit detectivities of 1 nT/

√
Hz[28].

An essential characteristic of not only magnetic sensors but all magnetic materials are the
M(H) curves for a periodically alternating field ~H along an axis. The M(H) curve depends
heavily upon the application. For instance a permanent magnet is required to have hard magnetic
characteristics like high remanence and coercitivity, since one wouldn’t want the permanent
magnet to change its magnetization too easily. The M(H) curve for magnetic sensing devices
is also referred to as the transfer curve. The ideal transfer curve can vary from sensor to sensor,
for our application the transfer curve should have soft magnetic characteristics, meaning that
the remanence and coercitivity are close to zero. A soft magnetic material exhibits no hysteresis,
making the transfer curve a bijective function, therefore one could form the inverse and a given
sensor readout value for M would therefore unambiguously correspond to a field value H.

1.4 Magnetoresistive effects

In this thesis an emphasis is put on magnetic sensors that exploit the giant magnetoresistance
(GMR) and tunneling magnetoresistence (TMR) effect. The GMR effect was discovered int the
late 1980s independently by Albert Fert [25] et al. and Peter Gruenberg et al. [27] and earned
both of them the 2007 Nobel Prize in Physics. Both noticed very large resistance changes in
materials comprised of alternating very thin layers of various metallic elements. The effect in
itself was not unheard of, since the anisotropic magnetoresistance (AMR) had been well known
since 1856 when it was discovered by Lord Kelvin. However GMR yielded significantly higher
changes in the resistance, hence the effect was labeled ’giant’.

GMR and TMR devices have a basic common structure: two ferromagnetic metal films which
are seperated by a nonmagnetic film. In the case of GMR that nonmagnetic film is a metal film,
whereas with TMR we have an insulator film. The electric resistance R of these devices depends
on the relative directions between the magnetization of both ferromagnetic films. If a magnetic
field ~H were to be applied it would cause a change in the direction of one ferromagnetic film, the
resistance R would therefore also change and thus showing the magnetoresistance (MR) effect,
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as seen in figure 1.2d. The magnetoresistance ratio is given by

χ =
R↑↓ −R↑↑

R↑↑
(1.4)

R↑↑ and R↑↓ indicate the resistances for the two magnetizations in parallel and in antiparallel.

1.4.1 Physics of GMR and TMR devices

Conductivity of a ferromagnetic metal(Two-Current-Model)

In nonmagnetic metals conduction electron are scattered by imperfections such as phonons or
lattice defects and the resistivity can be written as

ρ(T ) = ρ+ ρ0(T ) (1.5)

where the temperature independent term ρ0 is the resistivity which is based on scattering by
impurities and lattice defects and the second term ρ0(T ) is temperature dependent and due to
scattering by thermal phonons.

In ferromagnetic materials, however, the electrons are further scattered by magnons and
by magnetic impurities, which originate in interactions between magnetic moments of these
scattering centers and spins of conduction electrons. Electrons with spin parallel to the total
magnetization of the ferromagnetic metal, namely electrons with majority spin are indicated by
↑, whereby electrons antiparallel to the magnetization are called electron with minority spins and
are denoted by ↓. At temperatures significantly below the Curie-point TC magnon scattering
becomes negligibly small and the majority and minority ↓ spins don’t mix with each other [24]
during the scattering process. The electric current is therefore carried by electrons with ↑ and ↓
independently and therefore the conductivity σ is expressed by

σ = σ↑ + σ↓ σ↑,↓ = e2τ ↑,↓n↑,↓/m∗ (1.6)

here e is the electron charge, m∗ is the effective mass τ ↑,↓ is the relaxation time for the elec-
trons and n↑,↓ is the density of conduction electrons with majority and minority spin respectively.
Due to exchange interaction between the d-electrons the majority spin d↑-band and the minority
d↓-band shift relative to each other. The d↑-band shifts down by εx and the Fermi energy εF is
located above the d↑-band and vice versa for the d↓-band as shown in figure 1.3(a). Conduction
electrons belonging to the s↓-band are being scattered by magnetic impurities to the d↓-band,
where electrons have a bigger effective mass m∗ and contribute slightly to the electric conduction,
whereas electrons from the s↑ don’t scatter to the d↑ band due to the completely filled d↑-band at
εF . This means that τ ↓ < τ ↑ and therefore conductance asymmetry occurs, with the asymmetry
factor

α =
σ↑

σ↓
> 1 (1.7)

Calculated energy bands and tables with asymmetry factors α for 3d-transition metals can be
looked up in [24].

GMR devices

The electron trajectory for ↑(spin-up) and ↓(spin-down) electrons are shown schematically in figure
1.3(b). If the electron spin differs from the magnetization of the passing layer, the conduction
electron are scattered more strongly and vice versa.

A typical GMR device is a spin valve with a structure similar to the one shown in figure 1.3 (c).
It is made up of a ferromagnetic layer (PL) with pinned magnetization, another ferromagnetic layer
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(FL) with free magnetization and a nonmagnetic spacer layer (SL) for separating magnetically

both ferromagnetic layers. If an external magnetic field ~H is applied, the magnetization ~MPL

of the pinned layer wouldn’t change due to the adjacent antiferromagnetic layer (AL) but the

magnetization ~MFL changes its direction dependent on how ~H is applied.

Simple model for TMR ratio

A TMR device looks like the structure shown in figure 1.3(c) except that the nonmagnetic
spacer layer (SL) is replaced by an insulator film (I), this structure is also called ferromagnetic
tunnel junction, in other words a ferromagnetic tunnel junction is composed of two ferromagnetic
electrodes (1) and (2) separated by an insulator film (I). We assume that the separator film

(I) has a square barrier potential U , thickness t, and the magnetization of both electrodes ~M1,
~M2. Tunnel currents flow from (2) to (1) if a voltage is applied between (2) and (1) but at low

temperatures these currents can again be considered independently, where they consist of two
components ↑-spin electron and ↓-spin electrons.

Figure 1.3(e) shows the electron energy configurations for parallel and antiparallel alignment
in the junction. The Fermi level of (1) εf is lowered by eV relatively to electrode (2) and the
barrier height U0 is higher than the Fermi-level εf . The conduction electrons have approximately
kinetic energies which correspond to εF and tunnel through the barrier conserving their spins. In
the case of parallel alignment the electric conductance of the tunnel junction is given by

σ↑↑T ∝ exp(−AU1/2
0 )[D↑1(εF )D↑2(εF + eV ) +D↓1(εF )D↓2(εF + eV ))] (1.8)

where the exponential factor on the right hand side is the tunneling probability of the electrons
and D↑1,2 and D↓1,2 are the state densities for ↑- and ↓- spin electrons. For the antiparallel case the
↑-spin electrons move through the barrier form the majority band of electrode (1) to the minority
band of electrode (2) and vice versa therefore the conductance is

σ↑↑T ∝ exp(−AU1/2
0 )[D↑1(εF )D↓2(εF + eV ) +D↓1(εF )D↑2(εF + eV ))] (1.9)

Now we can calculate the TMR ratio

χ := (σ↑↑T − σ
↑↓
T )/σ↑↓T = 2(D↑1 −D

↑
1)(D↑2 −D

↑
2)/(D↑1D

↓
2 +D↓1D

↑
2) = 2P1P2/(1− P1P2) (1.10)

with Pi = (D↑i −D
↓
i )/(D

↑
i −D

↓
i ), i = 1, 2 and is determined by the polarization P1 and P2

of the ferromagnetic electrodes. This relation was found by Julliere[29] and was later confirmed
by Maekawa[30].

1.4.2 Vortex sensor

The vortex sensor is a fairly recent concept introduced by D.Suess et.al.[26] and was introduced
as a way to overcome the limitation of the (at that time) state of the art magneto resistance
sensors, e.g magnetic noise or a nonlinear hysteresis curves. This work will only use the vortex
sensor as a comparison when examining the performance of the sensor concepts which are at the
heart of this work. Therefore this section is supposed to give a short description of the vortex
sensor.

In thin ferromagnetic discs no direction in the plane of the disc is energetically favourable to
any other for the magnetization ~M , assuming there is no external field ~H. If the ratio between
the disk diameter D and the thickness t is within a certain range, the magnetic ground state
may be a vortex state, which means that the magnetic moments are aligned in concentric circles
a around a core, which is located in the centre of the disc, where the magnetization points out
of the plane. The symmetry of this system already gives 4 energetically equivalent states, since
there are 2 different directions for the core and the concentric circles respectively.
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Figure 1.3: (a) Schematic presentation of spin-polarized energy-bands in a ferromagnetic
metal.(b)Schematic for the two-currrent model of the GMR-effect, with a parallel circuit with
branches for spin-up spin-down current (c)Schematic presentation of a spin valve, where (AL) is
antiferromagnetic layer,(PL) a pinned magnetization layer,(SL) a nonmagnetic spacer layer and
(FL) a free magnetization layer (d)Schematic for a current magnetoresitive device. The magneti-
zation of the easy layer can be tilted easily if an external field is applied, while the magnetization
of the fixed layer remains unchanged (e) Schematic representation of the relevant energy-bands
for magnetic tunnel junctions. Figures taken from [24,28]
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Figure 1.4: Hystereses of a vortex sensor with corresponding magnetization configurations at
specific points of the hysteresis

Applying an in plane field ~H to a vortex state will displace the vortex core. The displacement
happens in such a manner, that magnetic moments parallel to the external field ~H are increased
and magnetic moments anti-parallel to the external field are decreased, as shown in figure 1.4.
Figure 1.4 was simulated with parameters for a CoFeB alloy with t = 1.3nm and D = 800nm.
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Chapter 2

Magnetic anisotropy

A characteristic property of magnetic materials is their anisotropy, which means that certain
magnetization directions are preferred, we call these easy axis and that others are avoided, these
are referred to as hard axis, as can be seen in Figure 2.1. These easy axes are undirected, meaning
that the energy does not depend on the sign of the magnetization:

Eani(~m) = Eani(−~m) (2.1)

The crystal anisotropy energy Eani is the work which needs to be done by the external influences in
order to move the magnetization away from the easy axis. The functional form of the energy can
be obtained phenomenologically. Typical anisotropy energy densities, also known as anisotropy
constants k can vary from 0.05MJ/m3 for bcc Fe and 0.5MJ/m3 for hcp Co to 10.0MJ/m3 for
rare-earth magnets[2]. Depending on which type of anisotropy is considered, the physical origin
of the anisotropy can vary, e.g. the magneto crystalline anisotropy, has its origins mainly in the
spin-orbit interaction, while other anisotropies are linked to induced anisotropies like shape-, or
magneto-elastic anisotropies. However the macroscopic contributions are quite similar, which will
be the topic of this section.

Figure 2.1: Schematic of various possible axis which can be magnetized for a fcc crystal. Here
(111) is the easy axes, while (100) is the hard axis. Figure taken from [7]
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2.1 Crystalline anisotropy

The origin of crystalline anisotropy lies in spin orbit coupling and crystal field interaction.In solids
the spin orbit coupling and the crystal-field splitting compete with each other. The latter favours
the suppression(quenching) of the orbital moment. Quenched orbitals tend to have more standing
wave-character and adapt more easily to the crystal-field than unquenched wave orbitals. The
result of this competition determines the degree of the orbital quenching and the magnitude of
the anisotropy. 3d electrons tend to have strong quenching, e.g. iron has a magnetization of 2.2
µB, where only roughly 5% of this moment stem from the orbit. 4f electrons in rare earth ions,
on the other hand, are close to the nucleus and therefore combine a weak crystal-field interaction
with a strong spin orbit coupling. This short section was only meant to briefly discuss the origin of
crystalline anisotropy for completeness sake, for a full derivation see [2]. The rest of this chapter
will deal with anisotropy in a more phenomenological way.

2.1.1 Uniaxial Anisotropy

Magnetic materials which exhibit a hexagonal or tetragonal crystal structure can be considered
isotrope in a plane which is perpendicular to a certain axis with direction ~u. This is valid for
crystal structures which have one single axis of high symmetry, in this case we are talking about
uniaxial anisotropy. If we consider the axis to be parallel to the z-axis in spherical coordinates we
can denote the energy density eani as

eani = k1sin
2θ + k2sin

4θ + .... (2.2)

where k1, k2 are the first and second order uniaxial anisotropy constants and θ is the angle between
the easy axis and the magnetization. Orders higher than 4 were ignored and odd order terms
are not included due to (2.1). This simple anisotropy-energy expression was derived by Neel[1],it
may be simple but it is nonetheless a powerful parametrization of the magnetic anisotropy. For
K1 > 0 the energy has a minimum at θ = 0 and θ = π, so that the easy axis is parallel to the
symmetry axis. If K1 < 0 the energy minimum is at θ = π/2, which means the magnetization
is free to rotate in the plane, which is known as easy-plane anisotropy. Figure 2.2 (a,b) shows
areas of constant energy density for uniaxial anisotropy. The crystalline anisotropy energy is then
given by

Eani =

∫
V

eani(~m)dV (2.3)

where the integral goes over the volume V of the magnetic body in question.

2.1.2 Cubic anisotropy

For a cubic system one can denote the contribution of the crystalline anisotropy to the free energy
density as

eani = k0 + k1(m2
xm

2
y +m2

ym
2
z +m2

zm
2
x) + k2(m2

xm
2
ym

2
z) + .... (2.4)

The first term on the right hand side can be dropped since it does not depend on ~m and we
are only interested in the change of energy, additionally one can drop the sixth order term, since
terms with k2 > 0 are only relevant if the magnetization favors easy axis along the diagonals of
the cube too, which is not relevant to this thesis. This leaves

eani ≈ k1(m2
xm

2
y +m2

ym
2
z +m2

zm
2
x) =

k1[(~a · ~m)2(~b · ~m)2 + (~b · ~m)2(~c · ~m)2 + (~c · ~m)2(~a · ~m)2]
(2.5)
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whereby ~a,~b and ~c are the unit vectors along the axes of a cubic crystal. It is quite obvious
that for k1 > 0 eani is minimal if the magnetization is parallel to one of the three axes, meaning
the easy axis for a cubic system are along the vectors ~a,~b,~c if k1 > 0. Figure 2.2 (c,d) shows
areas of constant energy density for cubic anisotropy. The anisotropy energy Eani can again be
calculated by (2.3)

Figure 2.2: Surfaces of constant energy density for uniaxial anistropy with k1 > 0(a),k1 < 0(b)
and for cubic anisotropy with k1 > 0(c),k1 < 0(d). Only the first order terms were taken into
consideration. Figure taken from [8]

2.2 Shape anisotropy

Shape or dipolar anisotropies have their origin in magnetostatic interaction between pairs of
magnetic dipoles ~mi, ~mj, located at ~ri, ~rj

Ems(i, j) = − 1

4µ0

3~mi · ~Rij ~mj · ~Rij − ~mi ~mjR
2
ij

R5
ij

(2.6)

where ~Rij = ~ri−~rj. The equation above however only takes into account one pair of dipoles,
in reality one has to sum over

∑
i>j Ems(i, j) and that becomes very quickly very cumbersome.

Therefore we replace the sums with integrals,
∑

i ..~mi =
∫
.. ~M(~r)dV and get

Ems = −1

2
µ0

∫
V

~Hd(~r) · ~M(~r)dV (2.7)

~Hd is the demagnetization field. Generally the demagnetization field depends on the position
within the magnetic material, but for ellipsoids it is constant inside the medium and can be
approximated to [10]

~Hd = −N ~M (2.8)

whereby N is the demagnetization tensor which will be further discussed later on when we talk
about how to calculate the demagnetization energy in micromagnetic modelling. However it has
the property trace(N) = 1 and has a simple form for the shape of an infinitely long wire, a sphere
and an infinite two dimensional plate [10]

Nsphere =

 1
3

0 0
0 1

3
0

0 0 1
3

 ,Nwire =

 1
2

0 0
0 1

2
0

0 0 0

 ,Nplate =

 0 0 0
0 0 0
0 0 1

 (2.9)
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Anisotropy Mechanism Uniaxial constant
Crystalline Crystal field ku = k1

Shape Magnetostatic ku = kshape = 1
2
µ0M

2
s

Stress Magnetoelastic ku = kstress = 3
2
λsσ

Table 2.1: Anisotropy constant with different sources which are relevant for the sensors at the
heart of this thesis

Using (2.8) and (2.7) we get

Ems =
1

2
µ0
~MN ~MV (2.10)

Magnetic layers can be described by the demagnetization tensor of the infinite plate. In a
coordinate system where the z-axis is parallel to the surface normal with Nplate we get

Ems =
1

2
µ0M

2
Scos

2(θ) = kshapesin
2(θ) + const. (2.11)

kshape =
1

2
µ0M

2
S (2.12)

This energy is minimized if the magnetization is oriented parallel to the plane.

2.3 Stress induced anisotropy

The interaction between the magnetization and the strains εij gives rise to a contribution to the
elastic energy of a magnetic solid. The magnetoelastic energy Eme is the increase in anisotropy
energy of a magnetic solid when it is submitted to stress. Its expression for a cubic crystal is
given as [11]

Eme
V

=
1

2
c11(ε2xx + ε2yy + ε2zz) +

1

2
c44(ε2xy + ε2yz + ε2zx)

+c12(εyyεzz + εxxεzz + εxxεyy)
(2.13)

cij are the elastic moduli which can be looked up in [11] for iron and nickel. Magnetostriction
is the change of the solids dimensions as its magnetic state is changed. It is measured by the
relative linear deformation ε

ε =
δl

l0
(2.14)

Where δl = l − l0 is the change in the linear dimension of the solid. The saturation magne-
tostriction λs, which is the magnetistriction corresponding to a solid magnetized to saturation is
related to Eme for a cubic crystal which is being submitted to a stress σ by

Eme
V

=
3

2
λsσsin

2(θ) (2.15)

where θ is the angle between the direction of magnetization and the direction along which the
magnetostriction is measured. This yields

kstress =
3

2
λsσ (2.16)
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2.4 Superposition of anisotropies

If a magnetic system is subject to two uniaxial anisotropies the free energy density is given as

eani = kasin
2(φa − θ) + kbsin

2(φb − θ) (2.17)

where θ is the angle to an arbitrary reference axis and φa, φb are the angle of the easy axis to
the same arbitrary reference axis respectively, as shown in figure 2.3.

Figure 2.3: Schematic of a magnetization which is superimposed by two uniaxial anisotropies.
Both anisotropy axes and the magnetization lie in the same plane.

The simplification which we assume, is that the magnetization lies in the same plane as the
anisotropies, this is reasonable for thin films. Generally speaking the resulting anisotropy of two
or more uniaxial anisotropies is not uniaxial, however the 2D in plane model is justified if some
other anisotropy (e.g. the shape anisotropy) forces the magnetization into the aforementioned
plane, therefore we assume that for this following calculation the 2D approximation is applicable
and with the identity sin2x = 1−cos2x

2
we can rewrite (2.17) as

eani =
ka
2

+
kb
2
− ka

2
cos2(θ − φa)−

kb
2
cos2(θ − φb) (2.18)

where the constant terms can be ignored since they don’t contribute to the magnetization dy-
namics. Using sine and cosine sum identities we can further write

eani = −

[
ka
2
cos2φa −

kb
2
cos2(θ − φb)

]
cos2θ −

[
ka
2
sin2φa −

kb
2
sin2(θ − φb)

]
sin2θ

= −kc
2
cos2(θ − φc)

(2.19)

where we have defined the new expressions kc the effective anisotropy resulting from the two
anisotropies and φc the angle of the new easy axis relative to the aforementioned referance axis.
Combining the anisotropies in two single expressions gives

kc
2
sin2φc :=

ka
2
sin2φa +

kb
2
sin2φb (2.20)

kc
2
cos2φc :=

ka
2
cos2φa +

kb
2
cos2φb (2.21)

In order to obtain an expression for kc we evaluate (kc
2
sin2φc)

2 + (kc
2
cos2φc)

2 and get

kc =
√
k2
a + k2

b + 2kakbcos2(φa − φb) (2.22)
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where we neglected the negative solution of the square root for kc. In order to obtain the

direction of the easy axis φc one simply needs to evaluate
kc
2
sin2φc

kc
2
cos2φc

φc =
1

2
arctan

kasin2φa + kbsin2φb
kacos2φa + kbcos2φb

(2.23)

where one has to be careful to evaluate the arctangent in the right quadrant, for instruction
on how to do that see [28].

2.5 Anisotropy field

A material parameter which will become useful later, when talking about calculating parameters
for the simulations is the anisotropy field ~HK . The anisotropy field describes how the crystalline
anisotropy effects the magnetization. Lets consider that the magnetization ~m rotates out of the
easy axis, the crystaline anisotropy would in that case create a torque which would push ~m back
to the easy axis, the anisotropy field, which is supposed to have the same effect as the crystaline
anisotropy, is parallel to the easy axis and its magnitude is such that its torque is that of the
crystaline anisotropy. As already stated in (2.2) the energy is dependent on the angle θ, then the
torque is the derivate of the energy with respect to the angle [9]

T =
∂e

∂θ
(2.24)

Using the Zeeman energy, which will be discussed more in depth later down the line, we can
write

eK = −µ0MsHKcos(θ) (2.25)

The associated torque for small θ is

Tk = µ0MSHKsin(θ) ≈ µ0MSHKθ (2.26)

Inserting the first order term of (2.2) into (2.24) yields

Tani = 2k1sin(θ)cos(θ) = k1sin(2θ) ≈ 2k1θ (2.27)

By definition[42] we know that TK = Tani which gives

HK =
2k1

µ0Ms

(2.28)

Lets consider something a little different to get a better understanding of HK . Applying an
external magnetic field ~H, wich is perpendicular to the easy axis, will increase θ due to the torque
~H creates. The total torque is set to zero to obtain the equilibrium condition

−µ0MSHcos(θ) + 2k1sin(θ)cos(θ) = 0 (2.29)

~M is parallel to the field ~H when sin(θ) = 1, this yields H = 2k1/(µ0Ms) = HK , which
means that saturation is reached when H = HK .
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Chapter 3

Micromagnetism

Hysteresis is a characteristic feature of magnets and its prediction is possible utilizing micro-
magnetism. In micromagnetism the input parameters are the microstructure(geometry) of the

magnetic system as well as Ms, k1, A ~HZee. Hysteresis has been known for quite some time be-
fore modern micromagnetics started with a paper by Landau and Lifschitz(1935) who put Blochs
ideas onto a physical basis.
Micromagnetism does not account for distinct magnetic spins but integrates quantum mechanical
effects that are essential to ferromagnetism,e.g. the exchange interaction, with a classical con-
tinuous field description of the magnetization, which means that one moves away from a discrete
lattice of atomic spins and adopts a continuous vector density ~M(~r). The main claim this model
makes is that the organizing forces within the magnetic material are strong enough to keep the
magnetization parallel on a characteristic length scale λ =

√
keff/A, where keff is the effective

anisotropy and A is the exchange constant, which is well above the lattice constant a. Therefore
it states

~Mi ≈ ~Mj for |~ri − ~rj| = a� λ (3.1)

~Mi and ~Mj are the magnetization at positions ~ri and ~rj respectively. Additionally one assumes

a homogeneous density of spins which means that the magnetization ~M(~r) has a constant norm

| ~M(~r)| = Ms and therefore can be written as a unit vector field ~m(~r)

~M(~r) = Ms ~m(~r) |~m(~r)| = 1 (3.2)

In the case of zero temperature, which will always be the case in the results of this work and
is often considered for micromagnetic modelling Ms is the saturation magnetization, which is
a material constant. Micromagnetics is often referred to as a semiclassical theory due to its
implementation of quantummechanical effects.

The fact that micromagnetism can predict hysteresis, magnetic switching processes and
domain-wall movement makes it perfect for the framework of the software with which the target
of this work is supposed to be reached.

3.1 Energy contributions

The total Gibbs-free energy of a ferromagnetic system is given by a number of energy-contributions
depending on the properties of the respective magnetic material.As already stated micromag-
naetics is composed in part of quantummechanics, therefore some of the contributions are of
quantummechanical origin.

3.1.1 Zeeman enegy

As already stated, magnetized bodies are characterized by their magnetic moments ~md = ~MV ,
this ~md is not to be confused with the normalized magnetization ~m. ~md is most easily probed by
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putting the dipole moments in an external magnetic field ~H, let us mention that here ~m is not
the normalized magnetization but the magnetic moment. The interaction between ~m and ~H is
given by:

EZee = −µ0 ~md · ~H (3.3)

This energy contribution is often referred to as Zeeman energy.

Figure 3.1: Magnetized bodies in a homogenous field: (a) a compass needle and (b) a magnetized
body

Figure 3.1(a) shows a very simple example. A compass needle is being subjected to an
external magnetic field,its Zeeman-Energy is given by EZee = −µ0Hmcos(θ), where θ is the
angle between the applied field and the magnetic-dipole moment. The lowest energy is obviously
obtained for θ = 2πn or ~m|| ~H. Meaning that EZee is minimal for a compass needle pointing
parallel to the applied magnetic field.
As already stated micromagnetics does not deal with single magnetic-dipole moments but has a
continuous magnetization across the ferromagnetic body(Figure 3.1(b)), which means one needs
to upgrade (3.3) to fit the continuous medium:

EZee = −µ0

∫
Ωm

Ms ~m(~r) · ~H(~r)d~r (3.4)

Here ~m is the normalized magnetization. The above equation yields the Zeeman energy of a
magnetic body Ωm.

3.1.2 Demagnetization Energy

The demagnetization energy accounts for the dipole-dipole interaction within a magnetic system.
Its name derives from the fact that magnetic systems energetically favor demagnetized states if
dipole-dipole interaction is the only thing they are subjected to, it is also referred to as magne-
tostatic energy or stray-field energy.
The demagnetization energy can be derived using Maxwells Equations for a vanishing electric
current ~je = 0:

∇ · ~B = 0, ∇× ~Hdem = 0 (3.5)

The magnetic flux ~B can than be written in terms of ~Hdem and ~M as:

~B = µ0( ~Hdem + ~M) (3.6)

The demagnitizing field ~Hdem is conservative due to (3.5), which means that ~Hdem has a

scalar potential u(~r), ~Hdem = −∇u and that (3.5) can be reduced to:
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∇ · (−∇u+ ~M) = 0 (3.7)

Assuming the magnetization is localized in a finite region, the boundary conditions for the
potential u(~r) are given in an asymptotical fashion by:

u(~r) = O(1/|~r|) for |~r| → ∞ (3.8)

This is referred to as open boundary condition since the potential is supposed to nullify at
infinity. Equation (3.7) is another form of Poisson’s equation

∆u = ∇ · ~M (3.9)

Meaning that one can express this potential u(~r) in terms of an integral equation using the
fundamental solution of the Laplacian that obviously meets the required open boundary condition
[3].

u(~r) = − 1

4π

∫
∇′ · ~M(~r′)

|~r − ~r′|
d~r′ (3.10)

This solution, same as (3.9), suffers from the problem that ~M(~r) is localized and therefore
~M(~r) jumps suddenly from Ms to zero. This sudden jump means that the divergence in (3.9) &

(3.10) is singular at the boundary of the magnetic body.

Figure 3.2: Magnetization ~M is defined within the magnetic region Ωm and continuously decreases
in shell region Ωt. Figure taken from [3].

This problem is rectified by considering a finite magnet with | ~M(~r)| = Ms for ~r ∈ Ωm, which
is surrounded by a thin shell Ωt where the magnetization decays continuously to zero, this is
shown in Fig. 3.3. Having done that, one can reduce (3.10) to an integration over Ωm ∪ Ωt,
furthermore the integral over Ωt is transformed with Green’s theorem∫

Ωt

∇′ · ~M(~r′)

|~r − ~r′|
d~r′ =

∫
∂Ωt

~M(~r′) · ~n
|~r − ~r′|

d~s′ −
∫

Ωt

~M(~r′) · ∇′ 1

|~r − ~r′|
d~r′ (3.11)

where d~s′ denotes the areal measure to ~x′ and ~n is an outward pointing normal vector. To
mimic a real magnet one has to consider the limit for a vanishing transition region Ωt ⇒ 0.
This means that the right hand side of 3.11 reduces to the boundary integral and since the
magnetization vanishes at the outer boundary the boundary integral vanishes too for the outer
boundary of Ωt. However the inner boundary of Ωt coincides with the outer boundary of the region
∂Ωm except for its orientation. Therefore the integral form of the magnetic scalar potential of
an ideal localized magnet in region Ωm reads as follows:

u(~r) = − 1

4π
[

∫
Ωm

∇′ ~M(~r′)

|~r − ~r′|
d~r′ −

∫
∂Ωm

~M(~r′) · ~n
|~r − ~r′|

d~s′] (3.12)

Applying Green’s theorem to (3.12) yields:

u(~r) =
1

4π

∫
Ωm

~M(~r′) · ∇′ 1

|~r − ~r′|
d~r′ (3.13)
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The demagnetization field ~Hdem can then be expressed as a convolution:

~Hdem(~r) = −∇u(~r) = − 1

4π

∫
Ωm

~M(~r′) · ∇∇′ 1

|~r − ~r′|
d~r′

=

∫
Ωm

~M(~r′)Ñ(~r − ~r′)d~r′ = ( ~M ∗ Ñ)(~r)

(3.14)

with the so called demagnetization tensor Ñ given by:

Ñ(~r − ~r′) = − 1

4π
∇∇′ 1

|~r − ~r′|
(3.15)

The energy contribution by the demagnetization energy is then given by:

Edem = −µ0

2

∫
Ωt

~M · ~Hdemd~r (3.16)

The factor 1/2 accounts for the quadratic dependence of the energy on the magnetization ~M .

3.1.3 Exchange energy

The exchange interaction is responsible for establishing magnetic order in magnetic materials,
this interaction has no classic analogue and arises from quantum mechanics.

In ferromagnetics two localized spins favor a parallel over an antiparallel spin, this originates
in the Coulomb energy of the two-electron system. The exchange between two individual spins
~Si, ~Sj can be described by the hamiltonian [5]

H = −2J ~Si · ~Sj (3.17)

where J is the exchange integral, which is a measure for the intensity of the interaction.
(3.17) is widely known as the Heisenberg model and is used for the description of many magnetic
properties. The interaction energy can than be written as

Eex
ij = −2JS2 ~mi · ~mj (3.18)

where we used the reduced magnetization ~m =
~M
Ms

with Ms for saturation magnetization.
When considering a continuous magnetization ~m(~r), the exchange energy associated with all
pairings of a single spin site at ~r is given by

Eex =
∑
i

Ji ~m(~r) · ~m(~r + ∆~ri)

=
∑
i

Ji[1−
1

2
(∇~mT ·∆~ri)2] +O(∆x3

i )
(3.19)

where the index i runs over all coupled spin sites ~ri, and Ji denotes the exchange integral between
the respective spins. (3.19) is obtained by application of the unit-vector identity (~n1 − ~n2)2 =
2− 2~n1 · ~n2 and performing a Taylor expansion of lowest order. To transition from the discrete
Heisenberg model to a continuous expression for Eex one integrates (3.19), while considering
regular spacing of spin sites ~ri and identical Ji and ∆~ri for each site. The most general form
yields:

Eex = C +

∫
Ωm

∑
i,j,k

Ajk
∂mi

∂rj

∂mi

∂rk
d~r (3.20)
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where the tensor Ajk is denoted as the exchange tensor. The exchange tensor is deeply connected
to the exchange integral[5] and yields the strength of the magnetic coupling and therefore mea-
sures how difficult it is for a given spin to deviate from the direction of the exchange field. The
term C results from the integration of the constant part of (3.19) and will be neglected in the
next step since it doesn’t depend on ~m and therefore doesn’t change the physics of the system.
With a proper choice of coordinate system the exchange tensor Ajk can be diagonalized [6]

Eex =

∫
Ωm

∑
i,j

Aj(
∂mi

∂r′j
)2d~r′ (3.21)

The exchange tensor Ajk can even further be simplified for cubic and isotropic lattice struc-
tures to the exchange constant A[5]

Eex =

∫
Ωm

A
∑
i,j

(
∂mi

∂rj
)2d~r =

∫
Ωm

A(∇~m)2d~r (3.22)

Crystalline anisotropy energy

As already stated the anisotropy energy favors the magnetization to be parallelly aligned to
certain axes, which are referred to as easy axes. This topic has already been sufficiently explored
in previous chapters, so let’s just for the sake of completion mention the most important properties
of the anisotropy energy, which are the following.

The easy axes are undirected for a unidirectional magnet and therefore the energy does not
depend on the sign of the magnetization

Eani(~m) = Eani(−~m) (3.23)

The anisotropy energy for a single easy axis is given by

Eani = −
∫

Ωm

[k1sin
2θ + k2sin

4θ + ....]d~r (3.24)

3.1.4 Other contributions

There are various other effects that may play vital roles in describing the magnetic system in
question.

For example the spins can be subjected to an antisymetric exchange interaction in addition to
the regular exchange interaction which was discussed before. This was discovered by Dzyloshinskii
[14] and Moriya [15] and is relevant for magnetic layers which have an interface to a heavy metal
layer. Another contribution that might be interesting if one where to expand the scope of this
thesis is the interlayer exchange energy, which was discovered by Rudermann and Kittel [11]. The
interlayer exchange energy gives rise to the idea that magnetic layers of a multilayer structure are
coupled even if they are separated by a nonmagnetic spacer layer.

However for this work only the above discussed contributions will be of relevance.

3.2 Static micromagnetism

In order to investigate the hysteresis of different magnetic devices one has to have a theory of
stable magnetization, enter static micromagnetics. In order for a magnetization to be stable it
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needs to minimize the total free energy E of the system with respect to ~m, in addition to fulfilling
the condition (3.2), therefore

min E(~m) subject to |~m(~r)| = 1 (3.25)

Since the solution ~m is a continuous vector field, variational calculus has to be applied in
order to solve for an energetic minimum. The condition brought forth is a functional differential
that vanishes for an arbitrary test function ~v ∈ Vm where Vm is the function space of ~m

δE(~m,~v) =
d

dε
E(~m+ e~v) = lim

ε→0

E(~m+ ε~v − E(~m))

ε
= 0 ∀ ~v ∈ Vm (3.26)

Alternatively one could formulate this condition considering the functional derivative δE/δ~m,
which is defined as ∫

Ωm

δE

δ~m
· ~v d~r = δE(~m,~v) ∀ ~v ∈ V 0

m (3.27)

where the function space V 0
m ⊂ Vm includes function within Vm that vanish on the boundary

~v(∂Ωm) = 0. However depending on the energy E, the differential δE as defined in (3.26) is
generally different than (3.27) by a boundary integral

δE(~m,~v) =

∫
Ωm

∂E

∂ ~m
· ~v d~r +

∫
∂Ωm

~B(~m) · ~v d~s ∀ ~v ∈ Vm (3.28)

This means that in order to solve the minimization problem, boundary conditions which are set
by ~B(~m) have to be take into account. Up until now, no effort has been made to include the
condition |~m| = 1 into our variational considerations. This is incorporated by applying Lagrange
multipliers, the derivation can be looked up in [3] it yields Brown’s condition

~m× ∂E

∂ ~m
= 0 (3.29)

and additionally gives the boundary condition

~m× ~B(~m) = 0 (3.30)

Zeeman energy

We obtain the energy differential for the Zeeman energy by variation of (3.4)

δEZee(~m,~v) =
d

dε

[
− µ0

∫
Ωm

Ms(~m+ e~vm) · ~H

]
(3.31)

= −
∫

Ωm

µ0Ms
~H (3.32)

This variation does not give rise to an additional boundary integral. Hence, the derivative and
boundary term ~B for the Zeeman energy are given by

∂EZee
∂ ~m

= −µ0Ms
~H, ~B = 0 (3.33)
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Demagnetization energy

The differential for the demagnetisation energy is obtained similarly to the differential of the
Zeeman energy. The only difference is that the demagnetization field ~Hdem( ~M) depends linearly
on the magnetization ~m, which yields a factor 2

δEdem(~m), ~v) =
d

dε

[
− µ0

2

∫
Ωm

Ms(~m+ ε~vm) · ~Hdem(~m+ ε~vm)d~r
]
ε=0

(3.34)

= −
∫

Ωm

µ0Ms
~Hdem · ~vmd~r (3.35)

The derivative and boundary term are the exact same as (3.33).

Exchange energy

The differential is derived from (3.22)

δEex(~m,~vm) =
d

dε

[ ∫
Ωm

A[∇(~m+ ε ~vm)]2d~r
]
ε=0

(3.36)

= 2

∫
Ωm

a∇~m · ∇~vmd~r (3.37)

In order to avoid spatial derivatives the next step is to integrate by parts

δEex = −2

∫
Ωm

[∇ · (A∇~m)] · ~vm d~r + 2

∫
∂Ωm

A
∂~m

∂~n
· ~vm d~s (3.38)

This latest expression is of the same form as (3.28), which makes it easy to identify δEex/δ ~m,

this also gives rise to a surface integral and thus to a boundary term ~B.

δEex
δ ~m

= −2∇ · (A∇~m) = −2A∆~m (3.39)

~B = 2A
∂~m

∂~n
= 0 (3.40)

Anisotropy energy

For the uniaxial anisotropy (3.33) the derivative and boundary terms for the first order anisotropy
are

δEani
δ ~m

= −2k1~eu(~eu · ~m) ~B = 0 (3.41)

Energy minimization with multiple contribution

In order to minimize the total energy of a system subject to multiple energy contributions the
added energy functional needs to fulfill Browns condition (3.29) and the boundary condition
(3.30). Lets consider a system which is subject to the exchange-, demagnetization-, crystaline
anisotropy- and zeeman energy, we get

~m× δE

δ~m
= ~m× (−2A∆~m− µ0Ms

~HDem − µ0Ms
~HZee − 2k1~eu(~eu × ~m)) = 0 (3.42)

~B = 2A
∂~m

∂~n
= 0 (3.43)
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3.3 Discretization with finite differences

Micromagnetism yields a set of nonlinear partial differential equations, which can be solved
analytically only for edge cases. Generally the solution of static micromagnetics calls for numerical
methods, of which there are plenty. In most cases a discretization for space and if necessary
time is introduced, the most popular methods are the finite-difference method (FDM)and the
finite-element method(FEM), where the magnetic region is subdivided into individual cells. The
difference is that the finite difference method usually requires a regular cuboid mesh while the
finite-element method works with irregular tetrahedral mashes. The method has to be carefully
chosen dependent on what problem is studied, which is why it was chosen for the simulation
of the sensors at the heart of this work. The finite difference method allows the application
of very fast algorithms if the restrictions for simple geometries is met. The cell size should be
chosen significantly small, so that the structure of the domain walls can be properly resolved.
The characteristic length for the domain wall width is the so called exchange length

λ =

√
A

keff
(3.44)

Finite differences in micromagnetics

keff is the effective anisotropy constant which includes contributions from the crystalline anisotropy
as well as the shape anisotropy, which originates in the demagnetizing field.

Demagnetizing field

The demagnetizing field introduced in previous chapters holds a very special place among the
energy contributions, because it is the only long-range interaction. Long-range interactions are
computationally expensive, therefore the choice of which spatial discretization to use is signifi-
cantly influenced by its demagnetizing-field algorithm.

The finite difference method solves partial differential equations by approximating the differ-
ential operators with finite-differences. The demagnetization-field(3.9) problem has the form of a
Poisson equation, meaning that one would have to approximate the Laplacian operator. However
this problem is complicated by the boundary condition(3.8), which prevents the restriction of the
computational domain to the magnetic region Ωm. Therefore the demagnetizing field is solved
by direct integration of (3.14).

We consider a cellwise constant normalized magnetization

~m(~r) = ~mi ∀ ~r ∈ Ωi, Ωm = ∪iΩi (3.45)

Inserting this discretization into the integral formulation(3.9) and then averaging over each
cell Ωi gives

~Hdem
i = Ms

∑
j

[
1

Vc

∫
Ωi

∫
Ωj

Ñ(~r − ~r′)d~rd~r′
]
~mj =

∑
j

Aijmj (3.46)

here Vc is the volume of the mesh cell and Aij denotes the linear demagnetization field
operator and not as before the exchange operator. Aij is a dense 3n× 3n matrix with n as the
number of simulation cells, meaning that this method scales with O(n2). The scaling can be
improved by exploiting the convolutional structure of (3.9). In order to preserve this structure
we have to restrict our discretization to be regular, meaning all mesh cells have the same shape
Ωref . The offset from one simulation cell ~ri to another ~rj is given by

~ri − ~rj =
∑
k

(ik − jk)∆rk (3.47)
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where ∆rk is the cell spacing in dimension k and ~ri, ~rj indicate the positions of two arbitrary
simulation cells, using this we get

Hdem
i = Ms

∑
j

[
1

Vi

∫∫
Ωref

Ñ

(∑
k

(ik − ij)∆rk + ~r − ~r′
)
d~rd~r′

]
mj = Ms

∑
j

Ñi−jmj (3.48)

Ñij =
1

Vi

∫∫
Ωref

Ñ

(∑
k

(ik − ij)∆rk + ~r − ~r′
)
d~rd~r′ (3.49)

The discrete demagnetization tensor Ñi−j has Πk(2nk − 1) ≈ 8n entries, with nk being the
number of cells in spatial dimension k, therefore the storage requirements have been reduced
from O(n2) to O(n).

However the computational complexity still remains to be O(n2). To reduce it the discrete
convolution is done in Fourier space where it reduces to a cellwise multiplication due to

F(Ñ ∗ ~m) = F(Ñ) · F(~m) (3.50)

The overall complexity of the demagnetization-field computation is given by the complexity of
the fouriertransform-computation, if fast-fouriertransform(FFT) is implemented this amounts to
O(nlogn). However the FFT requires the demagnetization tensor Ñi−j to be of the same size as
the discrete magnetization mi to perform cell-wise multiplication,this is obviously not the case
since mi has Πini cells and the demagnetization tensor has a size of Πi 2ni−1. This means that
the size of the discrete magnetization has to be expanded. Another issues is that all entries of
Ñi−j are considered for every field evaluation, i.e. unphysical distances like Ñ−1,−1 are being taken
into account. This is remedied by adding zero entries to the magnetization, which is referred to
as zero padding [31]. The convolution algorithm is visualized in figure 3.3, where ~M and Ñij

have been reduced to two dimension for the sake of simplicity. The result is of the size Πi2ni−1,
but physical meaningfulness is only to be found in the first Πini entries, the remaining ones can
be neglected. For three dimensional cuboid cells, Newell et al. derived an analytical formula for
Ñi−j[32], where Ñ1−1 is given as

Figure 3.3: Discrete convolution of ~M with Ñij. The colored blocks represent the convolutions
of the respective input values. Figure taken from [3]

Ñ1−1(~r,∆~r) =
1

4π∆r1∆r2∆r3

∑
i,j∈(0,1)

(−1)
∑

x ix+jx

f [r1 + (i1 − j1)∆r1, r2 + (i2 − j2)∆r2, r3 + (i3 − j3)∆r3]

(3.51)
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here f is defined as

f(r1, r2, r3) =
|r2|
2

(r2
3 − r2

1) sinh−1

(
|r2|√
r2

1 + r2
2

)

+
|r3|
2

(r2
2 − r2

1) sinh−1

(
|r3|√
r2

1 + r2
2

)

−|r1r2r3| tan−1

(
|r2r3|

r1

√
r2

1 + r2
2 + r2

3

)
+

1

6
(2r2

1 − r2
2 − r2

3)
√
r2

1 + r2
2 + r2

3

(3.52)

The other diagonal elements Ñ2−2, Ñ3−3 can be obtained by circular permutation of the
coordinates

Ñ2−2 = (~r,∆~r) = Ñ1−1[(r2, r3, r1), (∆r2,∆r3,∆r1)] (3.53)

Ñ3−3 = (~r,∆~r) = Ñ1−1[(r3, r1, r2), (∆r3,∆r1,∆r2)] (3.54)

The off-diagonal element Ñ1,2 is given by

Ñ1−2(~r,∆~r) =
1

4π∆r1∆r2∆r3

∑
i,j∈(0,1)

(−1)
∑

x ix+jx

g[r1 + (i1 − j1)∆r1, r2 + (i2 − j2)∆r2, r3 + (i3 − j3)∆r3]

(3.55)

where g is defined as

g(r1, r2, r3) = (r1r2r3) sinh−1

(
r3√
r2

1 + r2
2

)

+
r2

6
(3r2

3 − r2
2) sinh−1

(
r1√
r2

2 + r2
3

)

+
r1

6
(3r2

3 − r2
1) sinh−1

(
r2√
r2

2 + r2
3

)

−r
3
3

6
tan−1

(
|r1r2|

r3

√
r2

1 + r2
2 + r2

3

)
− r3r

2
2

6
tan−1

(
|r1r3|

r2

√
r2

1 + r2
2 + r2

3

)

−r3r
2
1

6
tan−1

(
|r2r3|

r1

√
r2

1 + r2
2 + r2

3

)
− r1r2

√
r2

1 + r2
2 + r2

3

3

(3.56)

The elements off the diagonal can be obtained similarly as in (3.57,3.58)

Ñ2−2 = (~r,∆~r) = Ñ1−1[(r2, r3, r1), (∆r2,∆r3,∆r1)] (3.57)

Ñ3−3 = (~r,∆~r) = Ñ1−1[(r3, r1, r2), (∆r3,∆r1,∆r2)] (3.58)

The discrete tensor Ñi−j is symmetric therefore the above equations can be used to calculate
the remaining elements of the tensor.
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Other contributions

The remaining contributions, namely the Zeeman-, Exchange-, and Anisotropy interactions are
either short-range or local interactions.

Local contributions to the anistropy energy or the zeeman energy are approximated cellwise

Hani
i =

2k1

µoMs

, Eani
i = −µ0Ms

~Hani · ~mi (3.59)

Ezee
i = −µ0Ms ~mi · ~H (3.60)

here Ei is the energy for the cell respectively.
The exchange field from equation (3.22) is calculated with the approximation of the second

derivative in lowest ordered centred finite-differences, which is

f ′′(x) ≈ f(x+ ∆x)− 2f(x) + f(x−∆x)

∆x2
(3.61)

The three dimensional Laplacian is then approximated by

∆~m ≈
∑
i

~m(~r + ∆ri~ei)− 2~m(~r) + ~m(~r −∆ri~ei)

∆r2
i

(3.62)

where the sum goes over the three spatial dimensions i, this results in the discretization of
the exchange field ~Hex

~Hex
j =

2A

µ0Ms

∆~mj ≈
2A

µ0Ms

∑
i

~m(~rj + ∆ri~ei)− 2~m(~rj) + ~m(~rj −∆ri~ei))

∆r2
i

(3.63)

The boundary condition ~B = ∂ ~m/∂n = 0 is implemented by adding virtual cells surrounding
the magnetic region Ωm, as seen in Figure 3.4. At the boundary x1 = 0 this leads to the following
equation (

∂m

∂xi

)
(0,j,k)

=
m(1,j,k) −m(−1,j,k)

2∆xi
= 0 (3.64)

which must hold for 0 ≤ j ≤ n2 − 1 and 0 ≤ k ≤ n3 − 1 and
gives m(−1,j,k) = m(1,j,k), this gives all the needed cells for the distinct field computations.

Figure 3.4: The blue squares represent the virtual cells surrounding the magnetic region Ωm.
Figure taken from [3]
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3.4 Available software packages

There are various software packages which implement the finite difference method with FFT
demagnetization field computation. Some of the most popular are
OOMMFF[33], Fidimag[34] and MicroMagus[35], all of these are running on central processing
units(CPUs).

However the recent advent of graphic processing units(GPUs) allowed significant increases
in the acceleration of scientific software. A popular open source package is magnum.fd[36],
another one which is based on the master thesis of Paul Thomas Heistracher[37] is magnum.af.
Throughout this work the latter two will be used.
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Chapter 4

Stoner Wolfarth

The first model that was able to describe the magnetism of small particles was developed by
Wohlfarth and Stoner in 1948 [12] and is still being used today. This theory treats the magnetic
particles as homogeneous single-domain systems with the shape of elongated ellipsoids. To start
this of we write the total energy of magnetic system as

E =

∫
V

{
A

[
∇~m

]2

+ k1eA(θ)− µ0

2
~M · ~Hd(M)− µ0

~M · ~H

}
dV (4.1)

The first term is always zero, since ∇ ~M = 0 for a homogenous magnetization. The stoner-
wolfarth model therefore corresponds to a simple micromagnetic approach where one neglects
the exchange term in the total free energy.

Let us consider a single-domain particle with the shape of an elongated rotationally symmetric
ellipsoid, with a homogenous magnetization and easy axis of magnetization along the z direction.
If an external magnetic field is added then (4.1) can be transformed to

E

V
= k1sin

2(θ) + k2sin
4(θ)− 1

2
µ0N⊥M

2
s sin

2θ

−1

2
µ0N‖M

2
s cos

2θ − µ0MsH · (cosθcosψ + sinθsinψcosφ)

(4.2)

whereby N⊥ and N‖ are the demagnitizing factors in perpendicular and parallel directions,
θ is the angle between the magnetization and the anisotropy axis, ψ is the angle between the
external field and the anisotropy axis, these angle are illustrated in Figure 4.1. The physical origin
of the anisotropy axis can be the shape- or a sum of crystal- and shape-effects.

If we apply our external magnetic field in z direction, we get φ = 0 and ψ = 0, and ignoring
second order anisotropy terms it yields

E

V
= k1sin

2θ − 1

2
µ0M

2
s (N⊥ −N‖)− µ0MSHcosθ (4.3)

To obtain the angle θ at which the energy is minimized one needs to compute the differential
of (4.3)

∂E(θ)

∂θ
= 2k1sin(θ)cos(θ)− µ0M

2
s sin(θ)cos(θ)(N⊥ −N||)− µ0MsHsin(θ) = 0 (4.4)

To define a minimum we compute the second derivitive, which yields the expression for the
coercive field HC
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HC =
2k1

µ0Ms

−Ms(N⊥ −N||) (4.5)

This result does not depend on the size of the magnet but only on its shape, in the limiting
cases of a sphere or a bidimensional plate one gets

Figure 4.1: Ellipsoidal particle in a magnetic field, showing the relative angles between the external
field H, the magnetization M and the anisotropy axis K

Hsph
C =

2k1

µ0Ms

(4.6)

and

Hpla
C =

2k1

µ0Ms

+Ms (4.7)

The latter of the two expressions will become essential when talking about the parameters of the
material we are going to simulate. For ψ = 0 (4.4) yields three solutions for the following angles:
θ = 0, θ = cos−1(µ0MsH/(2K1)), θ = π. The first and third solutions correspond to the energy
minimum, the second to the maximum. Since cos(µ0MsH/(2K1)) ≤ 1, this expression gives the
minimum field which is required to reverse the magnetization

HA =
2k1

µ0Ms

(4.8)

If we remember the section about the anisotropy field, HA is the exact same expression as the
anisotropy field, which is also the field needed to saturate or invert the magnetization, meaning
we arrived at the same result from two different angles.

Knowing the position of the minima one can derive the height of the barrier, corresponding
to ∆E = Emax − E(θ = 0) using algebra

∆E = k1V

(
1− H

HA

)2

(4.9)

which means that the barrier height is proportional to K1V and disappears for H = HA. The
curves for θ dependent energy E(θ) for different applied fields are plotted in figure 4.2

In the parallel and perpendicular case for H=0 the energy is minimized if the magnetization
points parallel or antiparallel towards the anisotropy, since it is required to obey (2.1). If for
the H 6= 0 case the field is applied parallelly, the energy is minimized for the direction in which
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Figure 4.2: Dependence of the energy as a function of the angle between the magnetization and
the anisotropy axis E(θ) in the Stoner-Wolfarth model, for different values of H for (a.) H parallel
to the easy axis(i.e. ψ = 0) (b.) H perpendicular to the easy axis (i.e. ψ = π/2) Figure taken
from [5]

the magnetic field points, since it basically acts like an additional anisotropy, with the exception
that it doesn’t obey (2.1). For a sufficiently strong field the minimum will be located along the
direction of H, for a weaker field E(θ) looks essentially similar to the case H = 0.

Lets now try to derive hysteresis curves with a stoner wolfarth particle. We are neglecting the
magnetostatic term and we look at the first and second derivative to obtain the minima of the
energy and the turning point, which corresponds to the point where the magnetization saturates,
respectively.

E = ksin2θ − µ0MsH‖cosθ − µ0MsH⊥sinθ (4.10)

∂E

∂θ
= 2ksin(θ)cos(θ) + µ0MsH‖sinθ − µ0MsH⊥cosθ = 0 (4.11)

∂2E

∂θ2
= 2k(cos2θ − sin2θ) + µ0MsH‖θ + µ0MsH⊥sinθ = 0 (4.12)

where we used H = H‖cos(φ) + H⊥sin(φ). In order to obtain expressions for the field that
is required to saturate the magnetization we look at
∂E
∂θ
sinθ + ∂2E

∂θ2
cosθ and ∂2E

∂θ2
sin θ − ∂E

∂θ
cosθ

µ0Ms

2K
H∗‖ = −cos3θ (4.13)

µ0Ms

2K
H∗⊥ = sin3θ (4.14)

H∗⊥ and H∗‖ are components of the saturation field. These last two equations form the famous
Stoner-Wolfarth asteroid, seen in figure 4.3 . The asteroid defines not only the stability limit
for equilibrium magnetization direction, but it enables us to determine graphically the possible
metastable magnetization directions for any given field H = H‖+H⊥ and therefore the hysteresis.
The procedure runs as follows: draw a tangent to the astroid from the endpoint of an arbitrary
field vector to a tangential point with parameter θ∗. The slope then fulfills the following equation,
this is illustrated in figure 4.3

µ0Ms

2K
H⊥ − sin3θ∗

µ0Ms

2K
H‖ + cos3θ∗

=
∂H∗⊥/∂θ

∂H∗‖/∂θ
=

∂sin3θ/∂θ

−∂cos3(θ)/∂θ
=

3sin2(θ)cos(θ)

3sin(θ)cos2(θ)
= tanθ∗ (4.15)
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The first left-hand term is derived by connecting the vector of the applied magnetic field and
the point on the stability limit belonging to θ∗, the centre part is simply the slope of the asteroid
at this point, which simplifies to tan(θ∗). However there are more than one possible tangent

points for a given field. For the asteroid shown in figure 4.3 we find four tangents if ~h lies inside
the asteroid and two otherwise, not all these solutions are stable. In the first case there are two
stable solutions while in the second there is only one. The stable solutions are those that have
the smaller angle relative to the easy axis. If one were to evaluate these solutions for a series of
field values one could derive a complete hysteresis curve for a simple uniaxial particle as shown
in figure 4.4.

Figure 4.3: The switching curve (b) of an unaixal particle (a) under influence of an external field
with the construction of the equilibrium magnetization directions ~m. The fields are denoted in
reduced units h = Hµ0Ms/2K. The dashed lines indicate unstable solutions. Figure taken from
[13]

Figure 4.4: Combining the stable solutions which are obtained by Stoner-Wolfarth yields a hys-
teresis curve of a uniaxial particle. Here longitudinal and transversal magnetization components
are shown as a function of the longitudnal field, for different values of the transverse reduced
field. Figure taken from [13]
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Chapter 5

Simulation of sensors with perpendicular
magnetic anisotropy

Before I present the results of this work in full detail, let me first use these opening paragraphs
to shortly outline the main results of this chapter.

There are two sensor designs which have been simulated. Firstly there is the out of plane(=OOP)
sensor, which is sensitive to in plane magnetic fields and owes its name to the fact that when
no magnetic field is applied, the magnetization points out of plane. Secondly there is the in
plane(=IP) sensor, which is sensitive to out of plane fields and whose magnetization points in
plane, hence the name. A schematic for both is shown in figure 5.1 and the idea behind both of
these can be read up on in the following section.

The first simulations which were conducted were of the hysteresis of artificial materials. This
means that the individual simulation parameters were taken from preceding publications[28,38,39].
However whether there are actually materials that possess this exact combination of parameters
has not been taken care of in this section. This was done in order to understand how the
individual parameters affect the hysteresis. Figure 5.2 and figure 5.4 show the variation of the
crystal anisotropy constant k and the saturation magnetization Ms respectively for the OOP
sensor, where one can see an increase of the slope of the hysteresis for increasing k and a
decrease of the slope of the hysteresis for decreasing Ms. The same parameter sweep can be
seen for the OOP sensor in figure 5.5 where the hysteresis were affected vice versa to the IP
sensor.

The theory of micromagnetism reduces to the stoner-wolfarth model if a magnetic systems
exhibits a single domain state. Therefore we used stoner-wolfarth in order to check our results
for the single domain state. Stoner-wolfarth equations can be used to calculate the magnetic
field at which the magnetization saturates and to determine the hysteresis of a certain magnetic
system. Both of these were compared to our simulation for single domain states, which yielded
a satisfying overlap, this can be seen in figure 5.6.

Additionally hysteresis which were presented in preceding papers[38,39] have been attempted
to reconstruct. Figure 5.7 shows the comparison between experimental[38,29] and simulated
data. The overall shape of the hysteresis has been replicated in all cases, however the actual
fields where the sensors saturate only overlap in the orders of magnitude but not in the values
themselves.

5.1 Sensor configuration

Let us briefly introduce the sensor designs we want to simulate.
Firstly there is the out of plane(=OOP) sensor. The magnitude of the perpendicular crys-

talline anisotropy k is chosen large enough, so that it overcompensates the shape anisotropy kSh,
meaning the magnetization of the free layer ~mfree points out of the plane, when no external field

is applied. However k shouldn’t be too big because if a magnetic field ~H were to be applied in
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plane, ~mfree should rotate towards the sensor plane until the magnetization is saturated in the
y-direction. The pinned layer magnetization ~mpinned is fixed in plane, see figure 5.1(a). All of this

means that the sensor is sensitive to in plane magnetic fields ~HIP , i.e. this sensor isn’t actually
sensitive to perpendicular or out of plane fields ~HOOP meaning this is not a z-sensitve sensor but
simply an in plane sensor, utilizing perpendicular crystal anisotropy.

Secondly we have the in plane sensor(=IP), which is basically the inverse concept of the

OOP sensor.When no field ~HOOP is applied the shape anisotropy kSh compensates the crystal
anisotropy k and ~mfree is in plane. If an out of plane field is applied ~HOOP the anistropy energy
together with the zeeman energy suffice to tilt the magnetization out of the plane until it is
completely perpendicular to the plane, see figure 5.1(b). Hence we get a sensor that is sensitive

to ~HOOP .

Figure 5.1: Schematics for both sensor designs. a.)The out of plane(=OOP) sensor has a free
layer in which the magnetization ~mfree points out of plane, while the pinned layer ~mpinned points
in plane. b.) The in plane(=IP) sensors magnetization, within the free layer, ~mfree points in
plane and the pinned magnetization ~mpinned points out of plane.

5.2 Hysteresis with artificial materials

In order to get a feeling for how the individual input parameters change the properties of the
magnetic materials as a first step we conduct parameter studies for artificial materials. None of
the individual parameters are unphysical, meaning all of them can be found in magnetic materials,
but whether there is a specific material that has this exact combination of parameters is neglected,
hence artificial materials. However the individual values are not completely made up they are
inspired by [28]. The input parameters are unless stated otherwise as shown in table 5.1

Symbol Description Value
k Crystal anisotropy constant 1.2MJ/m3

Ms Saturation Magnetization 1.75T
A Exchange constant 15pJ/m
h,w, t height, width, thickness 6µm, 1µm, 5nm
~m0,IP Initial magnetization for IP [0,1,0]
~m0,OOP Initial magnetization for OOP [0,0,1]

Table 5.1: List of input parameters inspired by [28]

The domainwall width is as already stated given by (3.44), the cell will be chosen accordingly
to this since it is essential for the cell to be small enough in order to resolve domain walls.
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5.2.1 IP sensor

Parameter study of k

In figure 5.2 hysteresis are shown for the IP sensor as a function of the anisotropy constant as
well as certain snapshots from the magnetization configuration, which were made with Paraview.
We observe a linear response for small fields, increasing k increases the permeability. This is
intuitively clear since the crystal anisotropy points in the z-direction, and the crystal anisotropy
gives the direction and the magnitude in which the magnetization energy is minimized. This
means that with rising crystal anisotropy constant the field which is needed in order to entirely
tilt the magnetization in the z-direction becomes less. Figure 5.2 also illustrates the magnetization
configuration for different hysteresis at different points. For crystal anisotropy constants lower
than 1.0MJ/m3 the hystersis curves are linear, additionally the magnetization configuration
does not exhibit any domainwalls, in other words the magnetization is monodomain. But above
1.0MJ/m3 the hystereses is not linear anymore, and the domain configuration does not turn
smoothly anymore but the monodomain breaks up into something that might be referred to
as maze domain structures. To look further into what happens between k = 1.0MJ/m3 and
k = 1.2MJ/m3 we further resolve the anisotropy constant and simulate additional anisotropies.
It is quite unrealistic to actually resolve these anisotropies in the experiment, but this doesn’t
matter right now since at the moment we simulate artificial materials. Figure 5.3 shows that
the change from uniform magnetization to maze domain structures begins around 1.08MJ/m3.
Already at zero field a very faint domain structure can be seen, however this domain structure
exhibits a hexagonal grid of sorts. It gets much clearer if one increases the crystalline anisotropy
constant k to 1.12MJ/m3. The domains form a hexagonal grid which can also be found in [43],
however if one were to expand the scope of this thesis, further studying this structure and what
gives cause to it would be an option.

Figure 5.2: Hysteresis of IP sensors as a function of the crystalline anisotropy constant k. Different
points within the hysteresis are highlighted, with the matching magnetization configuration below.
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Figure 5.3: The variation in k was resolved more finely in order to examine when the configuration
changes from uniform to maze-like. A hexagonal magnetic domain structure is highlighted and
zoomed in.
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Parameter study of Ms

Next we look at a parameter study of the saturation magnetization Ms. The only interactions
which are affected by the saturation magnetization is the demagnetization energy and the Zeeman
energy. We have already shown that the demagnetization contribution can be looked at as an
anisotropy in the case that the magnetization remains homogeneous. Since we are using magnetic
layers this means that, as we showed before, the demagnetization contribution can be looked at
as an anisotropy that points along the longest axis of the magnetic layer, which in this case is
the y-direction. Meaning that with increasing Ms the shape-anisotropy increases, in other words
a bigger field is needed to tilt the magnetization ~m out of the plane if Ms increases, as can be
seen in figure 5.4.

Figure 5.4: Hysteresis of the IP sensor as a function of the saturation magnetization Ms, the
parameters that aren’t specifically mentioned in the legend were taken from table 5.1

5.2.2 OOP

Parameter study of k & Ms

For the OOP sensors one should note that here all hysteresis curves are in the y-direction, not
in the z-direction since the OOP sensors are sensitive to fields which are parallel to y. Since the
initial magnetization ~m for the magnetic material is pointing towards the z-direction the anisotropy
constant k is significantly larger than before in order to compensate the shape anisotropy entirely
and let ~m point out of the plane. Increasing k would mean that it is even more strongly bound
to the z-direction, which means that in order to fully tilt this magnetization in the y-direction,
the bigger the anisotropy constant the bigger a field is needed to saturate ~m, see figure 5.5(a).
In contrast the variation of the saturation magnetization Ms, which is directly linked to the
demagnetization energy acts as an anisotropy in the y-direction, which increases the permeability
if Ms is increased, see figure 5.5(b). In other words Ms takes the same role that k does in the
IP sensor.
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Figure 5.5: Hysteresis curves of the OOP sensor as a function of a.) the anisotropy constant k
b.) the magnetization saturation Ms. The input values are taken from table 5.1 unless they are
specifically stated in the legend

.
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5.3 Checking the results using Stoner-Wolfarth

In this section we will try to give our results more validity by attempting to reproduce the
stoner wolfarth-model. The Stoner-Wolfarth model was established in the previous chapter,
it is applicable when magnetic structures exhibit uniform magnetic domains,in this case it is
indistinguishable from micromagnetics. There are two ways that we are going to examine how
well Stoner-Wolfarth is fulfilled. Firstly we are going to look at how well the equations that
are established in chapter 4 are met. Additionally the Stoner-Wolfarth model predicts certain
hysteresis for certain angles between the easy-axis and the applied field, therefore we can compare
what Stoner-Wolfarth yields versus what we get with our micromagnetic simulation software. The
equation that needs to be fulfilled are obtained by combining (4.6) and (2.28) which yields

keff = k1 + kshape = k1 −
J2
s

2µ0

(5.1)

HC =
2keff
µ0Ms

(5.2)

where keff is the effective anisotropy and HC is the anisotropy field or in other words, as already
shown, it is the field at which the sensor saturates. The only difference between (4.6) and (5.1)
is the minus in front of the shape anisotropy. This is due to the fact that the shape anisotropy
points in the negative z-direction. With the given parameters for the two sensors keff can be
calculated and from that the anisotropy field HC , the anisotropy field is the same as the magnetic
field which needs to be applied in order to fully tilt the magneitzation, this can be checked with
our micromagnetic difference code. The sensors for which this will be shown is the IP-sensor with
k = 1.0MJ/m3, the rest of the parameters needed for the simulation can be looked up in table
5.1. The same could of course also be done with an OOP-sensor.

The calculation yields µ0HC = 313mT , meaning that the magnetization should saturate in
the z-direction at B = 313mT , in figure 5.6 it can be seen that simulating the SW model with
micromagnetics leads to the correct hysteresis, since the magnetization saturates at B = 300mT ,
meaning that the equations are met. Stoner Wolfarth is of course capable of more than just
predicting HC , it can also yield the entire hysteresis curve. This was already shown before and
can be looked up for various angles between the easy axis and the applied magnetic field θ in
figure 4.4. Figure (5.6) shows the hysteresis for the simulation of such a sensor, one can see
that it is in good agreement with the theoretical result from figure 4.4, meaning that the Stoner-
Wolfarth model has successfully been reproduced.

5.4 Hysteresis with real matariels

In this chapter we will try to recreate hysteresis from [39]. The materials which is chosen to be
simulated is Cobalt-Iron-Boron(CoFeB), a rare earth transition metal alloy.

In [39] magnetic tunnel junctions were fabricated by employing the material combination
CoFeB-MgO. The material parameters used for the simulations can be looked up in table 3,
and are also taken from the same paper. The crystalline anisotropy constant k depends on the
thickness of the CoFeB layer tCoFeB

k =
ki

tCoFeB
(5.3)

with ki = 1.3MJ/m2. The comparison between the simulations and the experiments can be
seen in figure 5.7. The in- and out of plane hysteresis was simulated for two different thicknesses,
which are t = 2.0nm and t = 1.3nm, by changing the thickness t one also changes the crystalline
anisotropy constant k. Due to (5.3) with decreasing the thickness t one increases the anisotropy
k in the z-direction which causes the in and out of plane loop to flip between the two thicknesses.
That same phenomenon was simulated, which is illustrated in figure 5.7 . For t = 2.0nm the out
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Figure 5.6: In order to check whether the micromagnetic software in use could replicate Stoner-
Wolfarth, simulations for a material which has uniform magnetization were conducted where the
angle θ between easy axis(=z-direction) and the applied field were changed for an IP-sensor with
k = 1.0MJ/m3. ±µ0HC were inserted in order to show that the stoner equations are fulfilled.

of plane loop from [39] has a linear form, this is also reproduced by our simulation, however it
saturates at around 500mT whereas the experimental hysteresis saturates at 450mT . The out of
plane loop switches at zero field in the experiment[39], this is reproduced by our simulations. For
t = 1.3nm the simulated in plane loop matches better with the experiment since both simulation
and experiment saturate at around 400mT for the out of plane loop, there is again switching at
the zero field, which is also predicted by our simulations.

Figure 5.7: A comparison of simulated and experimental data of the perpendicular anisotropy
sensors, for the CoFeB[39] alloy with the thicknesses t = 1.3nm,t = 2.0nm was made. Graphs
that have the same letter in their tag are to be compared with each other, graphs with ”1” in
their tag are simulations while graphs with ”2” in their tag are experiments. A2,B2 are taken
from [39].
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Chapter 6

Angle sensing with perpendicular
anisotropy devices

Magnetic angle sensors consist of a permanent magnet on a rotating shaft and one or more
magnetic field sensors attached to a silicon die. The magnet is a diametrically magnetized pill,
meaning that it is a cylindrical magnet, whose magnetization points in plane, as can be seen in
figure 6.5. The magnetic sensors are supposed to detect the field of the rotating magnet and
conclude back the angle of rotation. This part of the thesis will focus on how such a sensing con-
cept can be implemented using magnetic sensors which utilize perpendicular magnetic ansiotropy
and the errors which arise from the sensor elements themselves and assembly tolerances. Let us
again shortly sum up our findings before we discuss the results in detail.

The first thing that has to be considered is the placement of the sensors relative to the
magnet, this is what we refer to as sensor configuration. The configuration for the sensors differs
for the two sensor designs. For the OOP case we place the sensor centrally above the magnet,
which we refer to as the axial setup, for the IP case we place 4 sensors above the magnet in a
circle with a phase shift of 90◦, which is called the differential setup, both setups are illustrated
in figure 6.2.

In order to have functioning sensors one would like to have magnetic materials which are single
domain throughout their entire hysteresis and additionally we would like for our sensors to have
the same linear range for the sake of comparability. In order to obtain both, the stoner-wolfarth
model was again used to calculate the crystal anisotropy k for a sensor that would saturate at
100mT , how to calculate this in detail is explained within one of the following chapters.

The first simulations of these sensor devices as angle sensors can be seen in figure 6.4. The
OOP sensor shows no angle error, however the IP sensor shows a significant angle error. The
error of the IP sensor was simulated for different positions of the four sensors. This can be seen
in figure 6.6. Through that we show that the IP sensor can be used as an angle sensor in the
differential setup if the applied in plane magnetic fields are constant, which is only true for certain
positions.

As a next step different external error sources were implemented in order to see how they
effect the angle sensing performance. Firstly a mechanical stress was implemented by applying a
uniaxial anisotropy of ks = 1.4kJ/m3 in the in plane direction. Figure 6.7 shows the angle error
when being subject to an additional anisotropy generated by a mechanical stress, where the OOP
sensor error increases significantly while the IP sensor remains unchanged. Secondly bias fields
were applied in out of plane and in plane directions, as can be seen in figures 6.8, 6.9 and 6.10.
For out of plane bias fields the errors remain unchanged, whereas with in plane fields the angle
error for all sensors increases significantly. Finally the IP and OOP sensors were offset in plane,
which basically means that the entire sensor configuration was moved in the x-direction relative
to the magnet. This of course gives an angle error that even the most perfect angle sensor would
show, since the magnetic field that the sensor is subject to changes. This is shown in figure 6.12
for the IP sensor and in figure 6.13a.) for the OOP sensor. The solution is then shown in figure
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6.14 and 6.13b.) where one can see that a relatively low angle error is given for an offset of up
to 0.9mm if the right position for both sensors is chosen.

Lastly an autocalibration was implemented, in order to nullify the external errors, as can be
seen in figures 6.15 and 6.16. The autocalibration worked well for the OOP sensor however not
so much for the IP sensor.

6.1 Sensor Magnet Setup

Let us first discuss how to setup our magnets to our sensors because it is not as straightforward
as one may think.

Lets begin with our OOP-sensor, since it is the more obvious one. Let me just mention here,as
a quick reminder that the OOP sensor is sensitive to in-plane fields, and its fixed layer is in plane.

The OOP sensor will be placed centrally above the magnet. At this position it will recieve a
circular field of the form

~B = B ·

cosφsinφ
0

 (6.1)

With B being the amplitude of the field and φ being the angle of the magnet, which is also the
value one wants to measure. Ideally the magnetization, which is subjected to such a field, should
have a similiar form

~m = m ·

cosφsinφ
0

 (6.2)

If this is the case one can simply use the arcus-tangent of the x- and the y-signal and thereby
calculate the magnetic field

φ = atan

(
mx

my

)
= atan

(
sin(φ)

cos(φ)

)
(6.3)

Since one sensor can only measure one component, we actually need to place 2 sensors centrally
above the magnet right next to each other, as can be seen in figure 6.2 a.), in this figure the 2
sensors are drawn eccentrically far apart from one another for the sake of clearity, in reality those
sensors would be as close to each other as technically possible. We will refer to this setup as the
axial setup.

Let us now discuss how to setup our IP sensors. One might naively try to implement this
sensor the same way as it was set up for the OOP sensor. However this would be nonsensical
because this would mean that the magnetization would be in the plane, if this were the case
the perpendicular anisotropy would never be triggered meaning that the sensor would work as a
simple MR-angle sensor. One might jump next to a solution where the field is not applied along
the x-y plane but along the y-z or x-z plane in order to utilize the magnetic anisotropy. However
this is also not a viable solution, because if one wants to measure the angle of the magnetization
in a plane the anisotropy should be the same in all direction of that plane. This is true for
the OOP sensing setup because the measuring plane is subject to the shape anisotropy in all
directions of that plane. If one were to utilize the y-z plane for the IP sensor, the anisotropy in
z direction would be that of the crystalline magnetic anisotropy and the y-direction would have
the shape anisotropy. One might try to make these anisotropies equal, however in that case one
would open a whole other source of errors.

The solution is inspired by [41]. 4 IP sensors are placed above the permanent magnet in a
circle with a phase difference of 90◦ between the individual sensors. Two parameters are crucial
when talking about this setup , firstly the leseradius(=lr), which is the distance from the centre
of that circle to the sensors, and secondly the airgap(=ag) which is the distance between the
surface of the magnet and the circle which is formed by the sensors, as can be seen in figure
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6.1, additionally 6.2 b.) gives a 3-dimensional view of the setup. The magnetic signals in the
z-direction can be written as

m1,z = mcos(φ)

m2,z = msin(φ)

m3,z = −mcos(φ)

m4,z = −msin(φ)

(6.4)

Figure 6.1: Schematic showing the positions of the 4 IP-sensor in the differential setup relative
to the cylindrical magnet that is turned by φ, the magnetization signals mi,z(φ) are as shown in
(6.4).

Next the angle can be calculated by computing the differences of the opposing signals and
afterwards again evaluating the arcus-tangent of the fraction

φ = atan

(
m2,z −m4,z

m3,z −m1,z

)
= atan

(
sin(φ)

cos(φ)

)
(6.5)

Technically not all four sensors are needed, to simply measure the angle 2 would suffice, however
using 4 can become advantageous when external errors are introduced, for example homogeneous
bias fields in z-direction would be compensated by using 4 instead of 2 sensors. In the following
we will refer to this as the differential setup.

6.2 Sensor Parameters

For angle sensing we would like to our sensors to exhibit a shape anisotropy which is the same
along every direction in plane of the sensor, in order to obtain this we will change from our elliptic
form to a circular form with a diameter of 800nm. Our sensors are also required to have uniform
magnetisation and should saturate at around 100mT . In order to obtain this the Stoner-Wolfarth
model is applied, to calculate our perpendicular crystalline anisotropy k. We will use the same
equations as before but manipulate them slightly to get an equation for the anisotropy.

k = ±keff − kshape = ±HcJs
µ02

+
J2
s

2µ0

(6.6)

the only thing of note that has changed is that we have to be careful with the sign of the
effective anisotropy keff . The sign of keff did not matter before, because it only affected wether
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Figure 6.2: The setups for magnet to sensors for our two distinct sensors a.) the OOP sensor has
the axial setup where two sensors are placed centrally, with a certain airgap above the magnet
b.) the IP sensor has the differential setup where the sensors are placed in a circle with a certain
distance from the central point (=leseradius) and with a gap between the circle formed by the
sensors and the magnet (=airgap). The black arrows represent the direction of the magnetization
for a certain magnetic field.

OOP IP Vortex
k[MJ/m3] 1.0 0.079 \
Js[T ] 1.53 0.5 1.75

A[pJ/m] 15.0 15.0 15.0
t[nm] 1.3 3.5 65
D[nm] 800 800 800

Geometry Disk Disk Disk

Table 6.1: The table shows the input values which have led to the hysteresis shown in figure 6.3

HC is positive or negative, however wether we assume keff to be positive or negative changes
the value of k. If we want to calculate k for the OOP sensor we assume that keff > 0 because
the magnetization points out of plane, and we assume keff < 0 for the IP sensor because the
magnetization points in plane.

For the OOP sensor we will use the saturation magnetization Ms and exchange constant A
from table 3. Using the equation from above, where we choose keff to be positive it yields
k = 1.0MJ/m3. We use table 4 to obtain all the necessary data to calculate k, where we choose
keff to be negative, this yields k = 79kJ/m3.

In figure 6.3 the hysteresis for these materials with the newly calculated k can be seen, in
addition to the vortex sensor which is shown for comparisons sake. The input values which have
led to these hysteresis are shown in table 6.1. Since the hysteresis are quite similiar, these three
sensors are quite comparable when it comes to angle sensing.

6.3 Simulating perfectly aligned angel sensors

To start off we will simulate perfectly aligned sensors, meaning the only error comes from our
sensor performance, without any external sources, because we want to make sure our concepts
work.

The magnetic field ~B which is input into the simulation obviously varies for the two sensor
concepts. For OOP we approximate the field with (6.1). This is quite accurate since centrally
above such a magnet the field looks exactly like this, the only discrepancy is that we don’t have
one sensor positioned above, but two next to each other, meaning that both sensors get a slightly
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Figure 6.3: The hysteresis curves for the three sensors, of which there are the Co/Pt sensor which
is used as an IP-sensor, the CoFeB sensor which is here being utilized as an OOP sensor and the
vortex sensor which is used as a comparison to the other two.

different field, however this difference is negligible and will be dealt with later on.
In order to simulate the IP sensor we approximate the magnetic field ~B with a magnetic dipole

~B =
µ0

4π

3~r(~r · ~m)

|~r|5
− ~m|~r|2

|~r|5
(6.7)

this approximation makes sense since in a far enough distance the magnet and the dipole field
do look exactly the same, however this approximation is no longer valid if we start talking about
misalignment or similar issues, but in order to test our concepts it will suffice.

Figure 6.4: The angle-error, meaning the difference between the actual angle of the magnet φ
minus the measured angle φ′ of different angle sensing concepts and different magnitudes of the
magnetic field were simulated and plotted against the actual angle.

Figure 6.4 shows the angle-error of the individual sensor concepts, where B denotes the
maximum field which is applied. Vortex and OOP exhibit no angle error independent of how big
the field is, however the IP sensor shows a significant angle error around and above 1◦ for all
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applied fields, with a smaller field yielding a smaller angle error, which is unintuitive, considering
that sensors usually work better when the applied magnetic field ~B increases. However this
train of thought doesn’t work in this case. The 4 IP sensors are subjected to fields which
they don’t measure, namely in-plane fields. Since the sensor is circular, only the transversal
component Btrans =

√
B2
x +B2

y is relevant, additionally the transversal field can be looked at,
as an additional in plane anisotropy. The transversal field is not constant for every angle, which
means that every one of the 4 sensors has a different in-plane anisotropy, which yields this high
error. Therefore one would have to find a position where Btrans = const. ∀ φ, in order to do
that we created a phase plot where the maximum angle error is plotted against leseradius and
airgap. The contour plot is shown in figure 6.6a.). One can see that the angle error goes towards
zero if the transversal field is constant for all angles φ of the magnet, it is also evident that there
is a line where this condition is met, one can calculate analytically where the transversal field is
linear, a solution is that it is linear for

√
2lr = ag, which is the dashed line in figure 6.6a.). The

areas with angle errors exceeding 1◦, are either due to the field being bigger than the sensing
regime, meaning B > 100mT or due to a very non-linear transversal field.

Now that we have found a way for all our sensors to have angle errors that are near zero,
we move away from the dipole approximation in order to implement a real magnetic field. The
material that was chosen for the permanent magnet is NdFeB with a saturation magnetization
of Ms = 1.6T [40] in the form of a cylinder with a diameter of 6mm and a thickness of 2.5mm.
The magnetic field was calculated by calculating the demagnetizing field of such a geometry in
an airbox with magnum.af.

Figure 6.5: A cylindrical magnet with an in-plane magnetzation of Ms = 1.6T , a diameter of
6mm and a thickness of 2.5mm was simulated in order to obtain the true field an in plane sensor
in differential setup would be subjected to.

In figure 6.5 one can see the magnetic field which is generated by a magnet as it is described
above and figure 6.6b.) shows the angel error, when the sensors are being subjected to a field
as shown in figure 6.5, as a function of the leseradius and airgap of our sensor setup, again the
applied field is inserted for certain positions of the sensors. It becomes again apparent that the
angle error is around zero when the transversal field is constant. We omitted showing the angle
error for the Vortex and OOP sensor being submitted to a real magnet, because the difference is
not noticeable. We have now shown that our two perpendicular anisotropy angle sensing concepts
exhibit angle error of zero when being submitted to a real magnet and the positions are chosen
properly.
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Figure 6.6: The angle error of the IP sensor, in the differential setup, as a function of the
leseradius and the airgap was calculated with a.) the field approximated by a magnetic dipole.
The angle errors are near zero are when Btrans = const., additionally a dashed line was added
which shows where ag =

√
2lr, which is where the condition for Btrans = const. is met b.) the

field of a cylindrical magnet with the magnetization in plane, again angle errors are near zero for
fields that are constant in plane. The perpendicular and transversal fields were added at certain
positions to again emphasize the dependence of the angle error on the applied fields.
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In the next chapters we will discuss what happens if they aren’t perfectly aligned but exhibit
imperfections which give rise to further angle errors.

6.4 Stress induced anisotropy

Whenever a ferromagnetic sensor is attached to a wafer it will be subject to a mechanical stress,
which means that in turn it will gain a uniaxial anisotropy which could potentially be a source for
angle errors. Bachleitner[28] compared the anisotropy fields of large unstructured wafer fragments
which have been put under mechanical stress in experiments to micromagnetic simulations of a
CoFeB film, which brought him to the conclusion that the mechanical stress can be simulated by
applying an additional anisotropy of kS = 1.4kJ/m3 which is directed in plane. Figure 6.7 shows
the simulation results for the different sensor concepts when they are being subject to a stress
induced anisotropy kS = 1.4kJ/m3. Both the Vortex and the OOP-sensor show a significant
increase in angle error from 0◦ to around 0.6◦, with the maximum error being around φ = 45◦.
This shape can be explained by looking at the angles between the stress induced anisotropy and
the external field. As already mentioned we can think of the stress as an additional anisotropy in
plane therefore we can write the stress-induced anisotropy field

~Hani = k(~eani · ~m)~eani (6.8)

~HS = kS(~eS · ~m)~eS (6.9)

If there is no stress being applied to the sensor the magnetization always aligns parallel to the
external field. If the stress is applied parallel to the external field meaning ~HS|| ~H then we have
no angle error since the magnetization is already along the direction favoured by the stress, in
figure 6.7 this is the case at φ = 0. In case the external field is perpendicular to the field ~Hs ⊥ ~H
the scalar product becomes zero and the angle error vanishes, meaning that the maximum error
must be right inbetween those two angels which is φ = 45◦, which is exactly what the figure 6.7
is showing.

Additionally the OOP and Vortex sensors seem to be indifferent to the magnitude of the field
which is applied. Looking at the average anisotropy field

〈 ~HS〉 = 〈kS(~eS · ~m)~es〉 = kS(~eS · 〈~m〉)~es (6.10)

it is obvious that the anisotropy field is liner in 〈m〉 meaning that an increase in the anisotropy
field, automatically causes an increase in the average magnetization 〈~m〉 hence the angle error is
independent of the applied field.

For the IP sensor in differential setup the stress seems to make no difference. The IP sen-
sors are not measuring in plane fields, but only out of plane fields, meaning that an additional
anisotropy in plane should not affect the angle error whatsoever, as can be seen in figure 6.7.

6.5 Bias field

A sensor in application could very well be exposed to various stray fields which result in an
effective bias field, especially in the automotive industry, where other magnetic devices might be
in operation. For this case we will treat in plane biases and out of plane biases separately, since
our sensors are energetically symmetric in plane this is a sensible approach.

Out of plane bias field

An out of plane bias field does not affect the IP sensor in the differential setup. When a bias
field ~Bb,z is applied in z-direction, the magnetic field which is of sine- or cosine form is raised
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Figure 6.7: Mechanical stress is being simulated by adding another in plane anisotropy of ks =
1400kJ/m3 to all three sensor concepts.

B1z = Bcos(φ) +Bb,z, which also raises the magnetization m1z = msin(φ) +mb,z however the
differential setup cancels this out. We write the ”corrupted” angle φ′ as

φ′ = arctan
msin(φ) +mb,z −msin(φ)−mb,z

mcos(φ) +mb,z −mcos(φ)−mb,z

= arctan
sinφ

cosφ
= φ (6.11)

This can be seen in figure 6.8.
The OOP-sensor is also not affected by out of plane bias fields but for completely different

reasons. Having a constant field in z-direction, will simply tilt the magnetization towards the
z-direction, however these sensors are sensitive to in-plane fields meaning the tilt towards the
z-direction doesn’t change the angle the OOP sensor yields, as can be seen in figure 6.8.

Figure 6.8: An out of plane bias field Bb,z = 10mT has been applied to both sensor concepts.
The angle error is unaffected by the bias fields, if they are applied along the z-direction.

In plane bias fields

In plane bias fields ~Bb are much more significant for the sensors at the heart of this work.
IP sensors will exhibit an increase in angle error because the transversal field ~Btrans,bias is not
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constant anymore

~Btrans =
√
B2
x +B2

y =
√

(Basinφ)2 + (Bacosφ)2 = Ba = const. (6.12)

~Btrans,bias =
√

(Bx +Bb)2 +B2
y =

√
B2
a + 2Bacos(φ)Bb +B2

b 6= const. (6.13)

where Ba is the amplitude of the applied in plane fields. This increase can be seen in figure
6.9 for Ba = 15mT,Bb = 2mT . This error can be reduced if a position is chosen, where the
amplitude Ba of the magnetic field is increased, as can be seen by the low angle error in figure
6.9 for Ba = 100mT,Bb = 2mT . 1D-Hall sensors are only sensitive to the sensing direction.
Therefore if one were to utilize Hall sensors, which are sensitive to out of plane magnetic fields,
in the differential setup, an in-plane bias would not affect the angle error. This is also shown in
figure 6.9.

Figure 6.9: An in plane bias field of Bb = 10mT has been applied to the IP-sensor. For comparison
sake the angle error for a Hall sensor under the same bias-field is also shown.

Figure 6.10: a.) Various out of plane bias fields have been applied to the OOP sensor, in order

to study the error-dependence of the bias field. b.) When a bias field ~Bb is applied to the axial
setup, the entire sensing plane is shifted, meaning that even a Hall sensor yields a significant
angle error.

For the OOP-sensor the rotational field is being offset by a bias field vector ~Bb in the Bx−By

diagram, as can be seen in figure 6.10 b.). If the field is parallel to the bias, the angle error will
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vanish and if the field is perpendicular to the bias field the error can be easily calculated with
err = 90− atan(Ba/Bb), where Ba is the amplitude of the rotational field. For a bias of 2mT
and an amplitude of 20mT we get an error of 5.8◦, as seen in figure 6.10 a.). This error can of
course be reduced by introducing a bigger amplitude, however one is limited by the linear range
of the sensor. Implementing 1D-Hall sensors with the axial setup will always yield the same error
as the OOP sensor, since the entire sensing plane is moved by ~Bb, this is illustrated in figure 6.10
a.).

6.6 Sensor offset

Whenever sensor systems are being assembled there is always the possibility for manufacturing
errors, a very common one is the sensor offset. A sensor is offset if it’s position relative to the
magnet is shifted with respect to its ideal position. Here we will only take into consideration
offsets along the x-y plane and since we have an in plane symmetry it doesn’t make a difference
in which direction the sensor is offset. z-directions are being ignored since moving any of these
sensors along the z-direction results in nothing but changing the magnitude of the magnetic field,
and this effect has already been discussed.

Let us begin by discussing the IP sensor being offset in x-direction theoretically. Figure 6.11
a.) shows a schematic for a perfectly aligned sensor with leseradius lr , while 6.11 b.) shows a
sensor which is offset by off . Therefore the magnetic field that two of the four sensors recieve
is phase shifted by α.

Figure 6.11: a.) Perfectly aligned sensor with leseradius lr b.) Sensor offset by off in x-direction

To understand how the magnetic signals change qualitatively we consider sensor 1 as it is
shown in figure 6.11 a.). If we use the same origin and denote the position ~r1 of sensor 1 in polar
coordinates we can write them as ~r1 = (lr, 90), where lr denotes the leseradius, we ignore the
z-component the sensor obviously has in this example, since it doesn’t transform under an offset
in x-direction. If the sensor is offset in positive x-direction we can write the altered position as
~r′1 = (lr+x, 90−α), where x is a certain distance. By the change in angular coordinate the field
will also exhibit a phase shift by α and changing the radial coordinate will alter the amplitude of
the magnetic signal. This yields

B1,z = Bcosφ⇒ B′1,z = BAcos(φ+ α)

B2,z = Bsinφ⇒ B′2,z = BBsinφ

B3,z = −Bcosφ⇒ B′3,z = −BAcos(φ− α)

B4,z = −Bsinφ⇒ B′4,z = −BCsin(φ)

(6.14)
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where B′i,z is the altered magnetic field at the offset position. We further write

B1,z −B3,z = BAcos(φ+ α) +BAcos(φ− α) = 2BAcos(α)cosφ

B2,z −B4,z = (BB +BC)sinφ
(6.15)

φ ≈ atan
(BB +BC)sinφ

Bacosα
2

cosφ
= C ∗ sinφ

cosφ
(6.16)

C =
BB +BC

2BAcos(α)
(6.17)

C can be seen as an indicator for how big the angle error will become and since C is directly
linked to the error induced by the offset we call C the offset-factor, for a low angle error the
offset-factor needs to be C ≈ 1. Keep in mind that in these past equations we have exclusively
been talking about the magnetic field, meaning that this error source does not exclusively depend
on sensor performance but on the overall design of this sensor setup. To really grasp what this
means let us consider a perfect magnetic sensor. A perfect sensor always aligns its magnetization
perfectly along the components of the magnetic field which it measures. The Hall sensor has such
properties. Therefore if we have 4 Hall sensors which are offset by a certain distance, although
they perfectly measure the magnetic field, they would still exhibit a systematic angle error, due
to the fact that they measure the magnetic fields at wrong position. This is why in this chapter
the error an IP- or OOP sensor exhibits under a certain offset, will be compared to the error
perfect/Hall sensors would make.

Figure 6.12: Phase plots and contour plots for C and Hz-error respectively with lr = 1.4mm and
lr = 0.1mm, since the plots are quite similiar it is quite obvious that the deviation from C = 1
is a good indicator for the error produced by the magnetic field Hz-error.

Furthermore we could have just as easily substituted the magnetic field with the magnetization
in the above equations and it would have been just as true. Figure 6.12 shows the dependence
of C and the angle error of a perfect/Hall sensor on offset and airgap for the different leseradius
lr = 0.1mm and lr = 1.4mm. One can sumize that the change in leseradius doesn’t effect
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the error since both contour plots for lr = 0.1mm and lr = 1.4mm are identical. Additionally
the notion that the deviation from C = 1 is an indicator for the magnitude of the error of the
magnetic field is proven because the phase plots for C and the Hz-error are identical.

Figure 6.14 shows the IP-sensor errors when being offset for varying leseradius and airgaps.
For lr = 0.1mm, ag = 1.0mm one can see that when not being offset this position has an angle
error around zero, this can also be seen in the phase plot a.) at the position which is marked
with an orange marker, however the orange line for b.) shows that this position when being offset
will submit large angle errors due to the magnetic field being misaligned, e.g. a misalignment of
0.6mm already yields a 1◦ angle error from the magnetic field alone.

The configuration lr = 0.1mm, ag = 2.0mm will again give a vanishing angel error when
it is perfectly aligned. Additionally it sits in a sweet spot where even if the sensor is offset by
0.9mm the sensor only has an angle error of 0.32◦, which is relatively low. However as can be
seen in the blue line in b.) this sensor configuration sits at a point where all the lines for the
different angle errors intersect, which means that even if this sensor has a slightly different airgap
than ag = 2.0mm it could mean a drastic increase in angle error.

A sensor sitting at lr = 1.4mm, ag = 2.0mm will also have an angle error around zero,
however in a.) the position of the sensor is marked with a red dot, one can see that this sensor
lies at a position where all the contour lines lie very close next to each other, meaning that again
a slight misaligned airgap could mean a drastically different angle error, Additionally the error
highly increases when being offset, which is partly due to the error of the field as can be seen by
the red line in c.) and also potentially due to the fact that if the offset gets that big the sensor
gets pushed more towards a position where the transversal field is not linear anymore.

Decreasing the airgap to ag = 1.0mm and leaving the leseradius at lr = 1.4mm will leave
the sensor with a non vanishing angle error, as can be seen in a.) where the position was marked
with a green dot. This is caused by the nonlinearity of the transversal field at this point. However
as can be seen with the green line in c.) the sensor sits slightly above where all the contour lines
meet meaning that the offset doesn’t influence the angle error as much as it does with the other
positions.

If a sensor in the axial setup is offset it will also yield an error, even if the sensor perfectly
aligns its magnetization along the applied magnetic field, this is shown in figure 6.13a.). The error
made by the perfect sensor is heavily dependent on the airgap that is chosen. For ag = 1mm the
error is significantly lower than for bigger airgaps. However the errors seem to decrease for an
increasing airgap. The angle error an OOP sensor makes when offset is shown in figure 6.13b.),
where it is shown that the trend predicted by the error for a perfect sensor shown in figure 6.13a.)
is reproduced. Meaning that for ag = 1.0mm the OOP sensor has the smallest angle error. The
angle error decreases with increasing airgaps however the difference in the angle-error for the
OOP sensor is quite insignificant, as can be seen in 6.13b.) for ag = 3mm and ag = 6mm,
meaning that the solution for an OOP sensor that is somewhat insensitive to offset is utilizing an
airgap of around 1mm.
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Figure 6.13: a.) The error has been calculated for a sensor which perfectly measures the applied
field for varying airgap and offset, i.e a Hall-sensor b.) The error for an OOP-sensor for certain
airgaps with varying offset, the colours in the graph were chosen so that they would mach the
lines from a.) in order to show the connection between the error of a perfect/Hall sensor and the
error of an OOP sensor.

Figure 6.14: a.): Contour plot for the angle error of a perfectly aligned IP-PMA angle-sensor
dependent on the leseradius and the airgap, individual positions have been marked with colorized
dots. b.): Contour plot for the angle-error the magnetic field gives, or in other words the error a
perfect sensor would make, dependent on offset and airgap for lr = 0.1mm, lines were drawn to
match the colours of the positions for ag = 1.0mm and ag = 2.0mm,c.): same as b.) but for
lr = 1.4mm d.):Angle error an IP-PMA makes when being offset in the x-direction, the colours
of the plots were matched to the colour of the dots in a.) and to the lines in b.) and c.)

,
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6.7 Autocalibration

We have now considered a couple of environmental sources of error, an effective method to reduce
these is to implement an autocalibration. The basic idea is following, the magnetization signals,
which are measured, have the form of a sine- or cosine-function with the same amplitude and
a vanishing phase shift, if there are no external errors. However if external errors occur, they
alter the individual amplitudes of the magnetization signals and phase shift the signals towards
each other, as has been shown in previous sections. Therefore we let the magnet turn one period
and we record all the magnetization signals, afterwards we take the maximum mi,max and the
minimum mi,min, where mi is one of the magnetization signals, that are needed in order to
calculate the angle φ, i.e. for the IP sensor mi = {m1,z,m2,z,m3,z,m4,z} and for the OOP
sensor mi = {mx,my}. We then write

ai =
mi,max −mi,min

2
(6.18)

bi =
mi,max +mi,min

2
(6.19)

m′i =
mi

ai
− bi
ai

(6.20)

obviously ai is there in order to fix the amplitude and bi is supposed to realign the phase shift.
This autocalibration will not work for every application, however there are plenty of cases where
such postprocessing methods are being used. We will now take a look at how this autocalibration
works on our different error sources.

Stress induced anisotropy

In a previous chapter we established, that an applied stress will make a significant change in the
angle error of the OOP- and Vortex sensors , however not the IP-sensor, as can be seen in figure
6.7. How the stress performs after the autocalibration can be seen in figure 6.15.

Figure 6.15: An autocalibration has been applied to our results for the angle error of different
sensors for B = 20mT , where the stress in x-direction induces an anisotropy ks = 1.4kJ/m3,
which causes an external error source.

The error of the Vortex sensor was reduced by a factor of 4 while the error of the OOP-
sensor has vanished entirely, meaning that the autocalibration is very effective when it comes
to eradicating the errors caused by stress. The IP-sensor has never been effected by the stress
induced anisotropy meaning that the autocalibration is of no effect when applied to the IP-sensor.
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Bias field

Bias fields increase the angle error of all our sensor concepts in a significant way, if they are
applied in the x-direction, why and by how much the angle error gets increased has already been
discussed and can be looked up in figures 6.9 and 6.10. Figure 6.16 shows how the autocalibration
can help rectify this error source. The error of the Vortex sensor was reduced by a factor of more
than 10 while the error which the OOP sensor yields has vanished completely. The magnetization
signal of the OOP sensor in the x-direction mx can be written analogously to the magnetic field
in x-direction when a bias field is present

mx = msin(φ) +mb (6.21)

where m is the amplitude of the magnetization signal and mb is the bias-magnetization which
is caused by the bias field. Applying equations (6.18-6.20) to (6.21) yields

m′x =
msin(φ) +mb

1
2
[m+mb − (−m+mb)]

−

[
m+mb −m+mb

m+mb − (−m+mb)

]
= sin(φ) (6.22)

Additionally applying (6.18-6.20) to the magnetization signal in y-direction
my = mcos(φ) obviously yields m′y = cos(φ). Therefore in theory the error caused by a bias
field in x-direction should be reduced by applying such an autocalibration, additionally the case
for a bias field in y-direction could be calculated similarly to (6.22), meaning that a bias-field in
y-direction would also have no effect on the measured angle ,if such an autocalibration were to
be applied.

However the autocalibration does not to seem to be doing much for the IP-sensor. The IP-
sensors error stems from the fact that the additional bias makes the transversal field not linear
anymore, which cannot be fixed by such a simple autocalibration.

Figure 6.16: An autocalibration has been applied to our results for the angle error of different
sensors where a bias-field of 2mT in x-direction was applied.
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