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Abstract

We establish basis and anti-basis theorems for a broad collection of recurrence
notions appearing in descriptive, measurable, and topological dynamics, and show
that such notions cannot characterize the existence of invariant probability measures
in the descriptive milieu.
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Zusammenfassung

Wir zeigen Basis- und Antibasisresultate für eine Vielzahl von Rekurrenzarten,
die in deskriptiver, maßtheoretischer und topologischer Dynamik auftreten und
zeigen, dass solche Rekurrenzbedingungen nicht die Existenz von invarianten
Wahrscheinlichkeitsmaßen im deskriptiven Kontext charakterisieren können.
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Chapter 1

Introduction

1.1 Descriptive Set Theory and group actions

Descriptive set theory is the study of definable subsets of Polish spaces, i.e.,
separable completely metrizable spaces. Typical examples are the Cantor space
(2N), the Baire space (NN), and the set of real numbers (R). In these spaces, Borel
sets can be classified in hierarchies according to the complexity of their definitions.
Starting with the open subsets of a Polish space X, we obtain the Borel hierarchy
by closing under countable unions and complements:

Σ0
1 = {U : U is open},

Π0
α = {A | ∼A ∈ Σ0

α},

Σ0
α = {

⋃
n∈N

Aαn : Aαn ∈ Παn ,αn < α}.

It is well known that (Σ0
n \ Σ0

n)σ, (Π0
n \Π0

n)σ, and Σ0
n+1 coincide on metric spaces

(see, for example, [Kec95, §11.B]). Σ0
2-sets are also referred to as Fσ-sets and

Π0
2-sets are also referred to as Gδ-sets. We say that a set A ⊆ X is Borel if

A ∈ Σ0
α for some α < ω1. A Borel space whose σ-algebra arises as above from

the open sets of a Polish space is called a standard Borel space. It is well known
that all uncountable standard Borel spaces are Borel isomorphic. Above the Borel
sets, analytic sets are continuous images of Borel sets, and co-analytic sets are
complements of analytic sets.
An equivalence relation on a standard Borel space X is a transitive, symmetric and
reflexive relation E on X. It is Borel if E is a Borel subset of X ×X.

An action of a group G on a set X is a map G × X → X, denoted by
(g,x) 7→ g · x such that the following hold:
• ∀g,h ∈ Gx ∈ X g · (h · x) = (gh) · x,
• ∀x ∈ X 1G · x = x.
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Given an action of G on a set X (in short G y X), let EXG denote its orbit
equivalence relation given by x EXG y if there exists a g ∈ G such that g · x = y.
The set Gx is called the orbit of x. A set C ⊆ X is invariant if GC = C and a
Borel probability measure on X is invariant if g∗µ = µ for every g ∈ G. When X
is a standard Borel space, a Borel equivalence relation F on X is smooth if there
is a standard Borel space Z for which there is a Borel function π : X → Z such
that x F y ⇐⇒ π(x) = π(y) for all x, y ∈ X. An example of a non-smooth Borel
equivalence relation is E0 defined on 2N by x E0 y if there exists n ∈ N such that
x(m) = y(m) for all m ≥ n.

We say that a set Y ⊆ X is complete if X = GY , and σ-complete if there is a
countable set H ⊆ G for which X = HY . When G y X is continuous and Y is
open, these notions are equivalent.

1.2 The scope

The main part of this thesis consists of a joining of the articles [IM17] and [IM19],
where the first one is slightly generalized to a setting that the second paper suggests.
Both papers are joint work with Benjamin Miller.

It is well-known that if ν is a Borel probability measure on X and T is a
Borel automorphism on X, then the inexistence of a weakly-wandering ν-positive
set yields a T -invariant Borel probability measure µ � ν (see [Zak93] for the
generalization to groups of Borel automorphisms). We introduce a generalized
notion of recurrence and show that recurrence conditions do not yield invariant
Borel probability measures in the descriptive set-theoretic milieu, in the sense
that if a Borel action of a locally compact Polish group on a standard Borel space
satisfies such a condition but does not have an orbit supporting an invariant Borel
probability measure, then there is an invariant Borel set on which the action satisfies
the condition but does not have an invariant Borel probability measure.

Given an ordered family (O,�) of mathematical structures and an upward-
closed property Φ of structures in O, a basis for the family OΦ = {O ∈ O | Φ(O)}
under � is a set B ⊆ OΦ with the property that ∀O ∈ OΦ ∃B ∈ B B � O.
Singleton bases are particularly useful, as their existence ensures that satisfying Φ
is equivalent to containing a copy of a canonical structure. Even when there are no
small bases, the existence of a basis consisting solely of particularly simple structures
nevertheless yields substantial insight into the nature of Φ. Here we show that
this is the case for myriad properties of actions of locally-compact Polish groups,
including non-smoothness, the inexistence of suitably-large weakly-wandering Borel
sets, and weak mixing.
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Chapter 1 Introduction

In Chapter 2 we consider a generalized notion of recurrence. Suppose that
d ∈ Z+ and X is a set, and Gy X is an action. For all sets R ⊆ X{0,...,d}, define
∆XG (R) = {g ∈ G{1,...,d} | ∃x ∈ X gx ∈ R}, where g ∈ G{0,...,d} is the extension of
g given by g0 = 1G. When F ⊆ ⋃

d∈Z+ P(P(G{1,...,d})) is a family of upward closed
families, i.e., for all d ∈ Z+ and F ∈ F ∩P(P(G{1,...,d})) the family F is upward
closed in P(G{1,...,d}), and ∅ ∈ H is a subset of ⋃

d∈Z+ P(X{0,...,d}), we say that a
set Y ⊆ X is (F ,H)-transient if there exists d ∈ Z+, H ∈ H∩P(X{0,...,d}), and
F ∈ F ∩P(P(G{1,...,d})) for which ∆XG (Y

{0,...,d} \H) /∈ F . When C is an invariant
subset of X and Γ is a subset of P(C), we say that G y C is (F ,H)-recurrent
on Γ if no set A ∈ Γ is (F ,H)-transient, if H = {∅} we just say that the action is
F -recurrent and if F = {F} is single family, we omit the brackets in the definitions
of recurrence and transience. This generalizes the usual notion of recurrence in
topological dynamics, where one says that a continuous-in-X action of a group on
a topological space X is (F ,H)-recurrent if it is (F ,H)-recurrent on non-empty
open sets.

When G is a group and X is a Polish space, the decomposition into minimal
components of a continuous-in-X action Gy X is the equivalence relation on X
given by x FXG y ⇔ Gx = Gy. Let (Un)n∈N be a countable basis for the topology
of X and define the map ϕ : X → 2N by ϕ(x)(n) = 1 if and only if x ∈ GUn. Then
x FXG y ⇔ ϕ(x) = ϕ(y) and since the preimage of any open set under ϕ is Fσ, it
follows that FXG is Gδ and smooth. Furthermore, for each FXG -class C, the action
Gy C is minimal, in the sense that every orbit is dense. When G is a topological
group and X is Borel, the recurrence spectrum of a Borel action G y X is the
collection of all pairs (F ,H), where F ⊆ ⋃

d∈Z+ P(P(G{1,...,d})) is a family of
upward closed families and ∅ ∈ H is a countable subset of ⋃

d∈Z+ P(X{0,...,d}) such
that every H ∈ H is closed whenever τ is a topology on X generating its Borel sets
such that Gy X is continuous, such that every smooth Borel superequivalence
relation F of EXG has an equivalence class C for which Gy C is (F ,H)-recurrent
on σ-complete Borel sets. We establish the basic properties of the recurrence
spectrum of a Borel action of a Polish group on a standard Borel space, which
codifies the suitably robust forms of recurrence that it satisfies.

We show that locally-compact non-compact Polish groups have free Borel
actions on Polish spaces with maximal recurrence spectra.

We generalize the generic compressibility theorem of Kechris-Miller (see [KM04,
Theorem 13.1]) to Borel actions of locally compact Polish groups on standard Borel
spaces. We simultaneously replace comeagerness with a stronger notion under
which the recurrence spectrum is invariant, thereby ensuring that no condition on
the latter yields an invariant Borel probability measure.

In Chapter 3, we introduce the actions in our bases. In the special case of
Z-actions, these are made up of actions induced by transformations obtained via

3



cutting and stacking with a sufficiently quickly growing number of insertions at each
stage. In order to endow our actions with appropriate topologies and handle groups
other than Z, we use quotients associated with cocycles to generalize the cutting
and stacking construction to produce continuous minimal actions of non-compact
locally-compact Polish groups G on locally-compact Polish spaces. We refer to
these actions as being obtained through expansive cutting and stacking. More
generally, we define continuous disjoint unions of such actions.

In Chapter 4, we consider a refined notion of recurrence. Given d ∈ Z+ and a
binary relation R on a set X, we say that a sequence x ∈ X{0,...,d} is R-discrete
if there do not exist distinct i, j ≤ d for which xi R xj . The orbit relation on X
associated with an action Gy X and a set K ⊆ G is given by x RXK y ⇐⇒ x ∈
Ky. Note that the set F dK = {x ∈ X{0,...,d} | x is notRXK-discrete} is closed for
every d ∈ Z+, compact set K ⊆ G, and continuous action Gy X. Given d ∈ Z+

and a set S ∈ P(G{1,...,d}) we define the family FS = {F ⊆ G{1,...,d} | F ∩ S 6= ∅}.
Note that any upward closed family F ⊆ G{1,...,d} is an intersection of families of the
form FS for a suitable family of S ∈ P(G{1,...,d}). Given an exhaustive increasing
sequence (Kn)n∈N of compact subsets of G, i.e., an increasing sequence of compact
subsets of G such that each compact set K ⊆ G is contained in Kn for some n ∈ N
and a family S ⊆ ⋃

d∈Z+ P(G{1,...,d}), we say that a set Y ⊆ X is expansively
S-transient if Y is ({FS | S ∈ S}, {F dKn

| n ∈ N, d ∈ Z+} ∪ {∅})-transient,
i.e., if there exist d ∈ Z+, a compact set K ⊆ G, and S ∈ S ∩ P(G{1,...,d}) for
which ∆XG ({y ∈ Y {0,...,d} | y is RXK-discrete}) ∩ S = ∅. We say that a G-action by
homeomorphisms of a topological space is expansively S-recurrent if no non-empty
open set is expansively S-transient, and a Borel G-action on a standard Borel space
X is σ-expansively S-transient if X is a union of countably-many expansively-S-
transient Borel sets. We note that every minimal continuous G-action on a Polish
space is either expansively S-recurrent or σ-expansively (

⋃
g∈G gSg−1)-transient.

Given a family S of subsets of ⋃
d∈Z+ P(G{1,...,d}), we say that a Borel G-action

on a standard Borel space is σ-expansively S-transient if it is σ-expansively S-
transient for some S ∈ S. A homomorphism from Gy X to Gy Y is a function
ϕ : X → Y with the property that ϕ(g · x) = g · ϕ(x) for all g ∈ G and x ∈ X, a
stabilizer-preserving homomorphism is a homomorphism whose restriction to each
orbit is injective, and an embedding is an injective homomorphism.

Building on arguments of [Wei84], we show that if S is a non-empty countable
family, then among all non-σ-expansively-(⋃g∈G gSg−1)-transient Borel G-actions
on Polish spaces, those obtained via expansive cutting and stacking form a basis
under continuous embeddability. Similarly, we show that if S is a family of non-
empty countable families, then among all non-σ-expansively-{⋃g∈G gSg−1 | S ∈ S}-
transient Borel G-actions on Polish spaces, those that are continuous disjoint unions
of actions obtained via expansive cutting and stacking form a basis under continuous
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Chapter 1 Introduction

stabilizer-preserving homomorphism.
Building on arguments of [EHW98], we show that if S is a non-empty countable

family and Gy X is a non-σ-expansively-(⋃g∈G gSg−1)-transient Borel action on a
Polish space, then there is a family O of 2ℵ0-many non-σ-expansively-(⋃g∈G gSg−1)-
transient Borel actions on Polish spaces such that every action in O admits a
continuous embedding into Gy X, but every Borel G-action on a standard Bor-
el space admitting a Borel stabilizer-preserving homomorphism to at least two
actions in O is σ-expansively {G}-transient. Building on this, we show that if S
is a family of non-empty countable families and G y X is a non-σ-expansively-
{⋃g∈G gSg−1 | S ∈ S}-transient Borel action on a Polish space, then there is no
countable basis, under Borel stabilizer-preserving homomorphism, for the family
of non-σ-expansively-{⋃g∈G gSg−1 | S ∈ S}-transient Borel G-actions on Polish
spaces that admit a continuous stabilizer-preserving homomorphism to Gy X.

In Chapter 5, we turn our attention to actions that are particularly simple from
the descriptive-set-theoretic point of view. A reduction of an equivalence relation
E on X to an equivalence relation F on Y is a function π : X → Y such that
w E x ⇐⇒ π(w) F π(x) for all w,x ∈ X, so, in particular, a Borel equivalence
relation on a standard Borel space is smooth if it admits a Borel reduction to equality
on a standard Borel space, and a Borel action Gy X on a standard Borel space is
smooth if EXG is smooth. It is easy to see that the latter notion is equivalent to σ-
expansive {G}-transience, from which it follows that the family of actions obtained
via expansive cutting and stacking is a basis, under continuous embeddability, for
the family of all non-smooth Borel G-actions on Polish spaces. This generalizes
and strengthens the original Glimm-Effros dichotomy [Gli61; Eff65], as well as the
subsequent results of [SW82; Wei84] (and strengthens the corresponding special
case of [HKL90]). It also follows that if Gy X is a non-smooth Borel action on a
Polish space, then there is no basis of cardinality strictly less than 2ℵ0 , under Borel
stabilizer-preserving homomorphism, for the family of non-smooth Borel G-actions
on Polish spaces that admit a continuous embedding into Gy X. This negatively
answers Louveau’s question as to whether there is a singleton basis, under Borel
embeddability, for the family of all non-smooth Borel Z-actions on standard Borel
spaces.

In an attempt to salvage the hope underlying Louveau’s question, we also
consider Borel free G-actions on standard Borel spaces that contain a basis, in
the sense that their non-smooth G-invariant Borel restrictions form a basis, under
Borel embeddability, for the family of all non-smooth Borel free G-actions on
standard Borel spaces. We show that this notion is robust, in the sense that it
remains unchanged if Borel embedding is replaced with Borel stabilizer-preserving
homomorphism. Recalling that the diagonal product of Gy X and Gy Y is the
action Gy X × Y given by g · (x, y) = (g · x, g · y), we also show that a Borel free
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action Gy X on a standard Borel space contains a basis if and only if Gy X ×Y
is non-smooth for every non-smooth Borel free action G y Y on a standard
Borel space. Examples of such actions include all continuous free G-actions on
compact Polish spaces, as well as all Borel free G-actions on standard Borel spaces
that are invariant with respect to some Borel probability measure µ on X. Let
s denote the shift on the class of N-sequences given by sn(g) = gn+1, and define
IP(g) = {gs | s ∈ 2<N} for all g ∈ GN, where gs = ∏

n<|s| g
s(n)
n for all s ∈ 2<N.

Letting Scb denote the family of sets of the form {IP(sn(g))IP(sn(g))−1 | n ∈ N},
where g ∈ GN is an injective sequence for which IP(g)IP(g)−1 is closed and discrete,
we show that if G is abelian, then a Borel free G-action on a standard Borel space
contains a basis if and only if it is not σ-expansively Scb-transient. It follows that
among all Borel free G-actions on Polish spaces that contain a basis, those that are
continuous disjoint unions of actions obtained via expansive cutting and stacking
form a basis under Borel stabilizer-preserving homomorphism. It also follows that
if G y X is a Borel free action on a Polish space containing a basis, then there
is no countable basis, under Borel stabilizer-preserving homomorphism, for the
family of Borel free G-actions on Polish spaces that contain a basis and admit a
continuous stabilizer-preserving homomorphism to Gy X.

We also consider sets Y ⊆ X that are weakly wandering, in the sense that there
is an infinite set S ⊆ G such that Y is S-wandering, i.e., such that g−1Y ∩h−1Y = ∅
for all distinct g,h ∈ S and sets Y ⊆ X that are very weakly wandering, in the sense
that there are arbitrarily large finite sets S ⊆ G such that Y is S-wandering. We
show that the existence of weakly-wandering and very-weakly-wandering suitably-
complete Borel sets, as well as suitably-complete Borel sets satisfying the minimal
non-trivial notion of transience corresponding to the failure of the strongest notion
of recurrence, can be characterized in terms of the recurrence spectrum. Our
arguments also yield complexity bounds leading to implications between many of
these notions. For instance, it follows that ifX is a standard Borel space, T : X → X
is a Borel automorphism, and there is no smooth Borel superequivalence relation F
of EXT with the property that there is a weakly-wandering (T � C)-complete Borel
set for every F -class C, then there is no locally-weakly-wandering T -complete Borel
set, where a set is locally-weakly-wandering if its intersection with each EXT -class is
weakly-wandering.

Letting Swwσ denote the family of sets consisting of a single closed discrete
infinite subset of G of the form SS−1, and Sσww denote the family of countable
sets of closed discrete infinite subsets of G of the form SS−1, we note that a Borel
free G-action on a standard Borel space admits a weakly-wandering σ-complete
Borel set if and only if it is σ-expansively {⋃g∈G gSg−1 | S ∈ Swwσ}-transient,
whereas the underlying space is a union of countably-many weakly-wandering Borel
sets if and only if it is σ-expansively {⋃g∈G gSg−1 | S ∈ Sσww}-transient. These
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Chapter 1 Introduction

notions are the same for minimal continuous free actions, but the latter is strictly
weaker outside of the minimal case. Strengthening the earlier measure-theoretic
result, we show that the failure of either of these properties ensures that the action
in question contains a basis. We also show that if G admits a compatible two-sided-
invariant metric, then the failure of either of these properties is strictly stronger
than containing a basis. It also follows that among all Borel free G-actions on Polish
spaces that do not have one of these properties, those that are continuous disjoint
unions of actions obtained via expansive cutting and stacking form a basis under
Borel stabilizer-preserving homomorphism. In addition, we show that if Gy X is
a Borel free action on a Polish space that does not have one of these properties,
then there is no countable basis, under Borel stabilizer-preserving homomorphism,
for the family of Borel G-actions on Polish spaces that do not have the property
and admit a continuous stabilizer-preserving homomorphism to G y X. This
answers [EHN93, Question 1] concerning the circumstances under which a Borel
Z-action on a standard Borel space admits a weakly-wandering σ-complete Borel
set.

The main result of [EHN93] is the existence of a Borel Z-action on a standard
Borel space that admits neither an invariant Borel probability measure nor a
weakly-wandering σ-complete Borel set. Their example is a disjoint union of
2ℵ0-many Z-actions obtained via expansive cutting and stacking. We show that
there is an example that is itself obtained via expansive cutting and stacking, and
retains the advantages of the more recent examples appearing in [Mil04; Tse15], in
that the same straightforward argument not only rules out weakly-wandering σ-
complete Borel sets, but also σ-complete Borel sets satisfying still weaker wandering
conditions, yielding a structurally simpler negative answer to [EHN93, Question
2].

In Chapter 6, we turn our attention towards mixing conditions. An action
G y X by homeomorphisms of a topological space is topologically transitive if
∆XG (U × V ) 6= ∅ for all non-empty open sets U ,V ⊆ X. More generally, such an
action is topologically d-transitive if G y Xd is topologically transitive. In the
special case that d = 2, we also say that Gy X is weakly mixing. Fix a countable
dense subset H of G. Setting Stdt = H{1,...,2d−1}{g ∈ G{1,...,2d−1} | ∀0 < i <
d g2i+1 = g1g2i}, we note that a topologically-transitive continuous G-action on a
Polish space with no open orbits is topologically d-transitive if and only if it is not
σ-expansively (

⋃
g∈G gStdtg−1)-transient. It follows that among all topologically-d-

transitive continuous G-actions on Polish spaces with no open orbits, those obtained
via expansive cutting and stacking form a basis under continuous embeddability.
It also follows that if G y X is a topologically-d-transitive continuous G-action
on a Polish space with no open orbits, then there is no basis of cardinality strictly
less than 2ℵ0 , under Borel stabilizer-preserving homomorphism, for the family of
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topologically-d-transitive continuous G-actions on Polish spaces with no open orbits
that admit a continuous embedding into Gy X.

A Borel action G y X on a standard Borel space is ergodic with respect to
a Borel measure µ on X if every G-invariant Borel set is µ-conull or µ-null, and
weakly mixing with respect to µ if G y X ×X is (µ× µ)-ergodic. In the spirit
of [SW82; Wei84], we show that if G is abelian, then a Borel action Gy X on a
standard Borel space is weakly mixing with respect to a Polish topology compatible
with the Borel structure of X on a G-invariant closed set if and only if it is weakly
mixing with respect to a G-invariant σ-finite Borel measure on X.

We also note if G has a compatible two-sided-invariant metric and Gy X is
a continuous action on a Polish space with no open orbits satisfying any mixing
condition at least as strong as weak mixing, then there is no basis of cardinality
strictly less than the additivity of the meager ideal on R, under continuous stabilizer-
preserving homomorphism, for the family of continuous G-actions on Polish spaces
with no open orbits satisfying the mixing condition and admitting a continuous
embedding into Gy X.

We say that a continuous action Gy X on a Polish space with no open orbits
is mildly mixing if Gy X × Y is topologically transitive for every topologically-
transitive continuous action Gy Y on a Polish space with no open orbits. Letting
Smm denote the family of sets consisting of a single closed discrete subset of G
of the form gIP(g)IP(g)−1, where g ∈ G and g ∈ GN is injective, we note that a
topologically-transitive continuous G-action on a Polish space with no open orbits
is mildly mixing if and only if it is not σ-expansively {⋃g∈G gSg−1 | S ∈ Smm}-
transient if and only if there is a non-σ-expansively {⋃g∈G gSg−1 | S ∈ Smm}-
transient continuous disjoint union of G-actions obtained via expansive cutting
and stacking that admits a continuous stabilizer-preserving homomorphism to
Gy X.

A continuous action Gy X on a Polish space is strongly mixing if ∆XG (U × V )
is co-compact for all non-empty open sets U ,V ⊆ X. Letting Ssm denote the
family of sets consisting of a single closed discrete infinite subset of G, we note that
a topologically-transitive continuous G-action on a Polish space with no open orbits
is strongly mixing if and only if it is not σ-expansively {⋃g∈G gSg−1 | S ∈ Ssm}-
transient if and only if there is a non-σ-expansively {⋃g∈G gSg−1 | S ∈ Ssm}-
transient continuous disjoint union of G-actions obtained via expansive cutting
and stacking that admits a continuous stabilizer-preserving homomorphism to
Gy X.

In Chapter 7 we gather some results that do not fit into the context of the
previous chapters but are nevertheless of interest in their own right. The conjugation
action of F2 on the space of its subgroups is universal among countable Borel
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Chapter 1 Introduction

equivalence relations under Borel reducibility [TV99]. We give a different proof of
this fact.

Given a continuous action Gy X and d ∈ Z+ we say that Gy X is strongly
d-mixing if ∆XG (Πk≤dUk) contains the complement of {g ∈ G{1,...,d} | ∃i 6= j ∈
{0, ..., d}gig−1

j ∈ K} for some compact set K ⊂ G for all non-empty open sets Uk
for k ∈ {0, ..., d}. For countable groups we construct minimal actions of G which
are strongly d-mixing but not strongly (d+ 1)-mixing for every d ∈ Z+.

At last we give an example of a countably infinite family of actions of the free
group in at least two generators whose induced Borel equivalence relations are
universal among countable Borel equivalence relations under Borel embeddability
such that the diagonal product action for any two distinct actions from this family
is smooth.
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Chapter 2

Recurrence and measures

2.1 The recurrence spectrum

Suppose that G y X is a group action.We start with the following observation
which ensures that the notions of completeness and σ-completeness coincide under
mild hypothesis on open sets.

Proposition 2.1.1. Suppose that G is a topological group, H ⊆ G is dense, X
is a topological space, Gy X is an action, and U ⊆ X has the property that for
every x ∈ U the set {g | gx ∈ U} contains a non-empty open subset of G. Then
GU = HU . In particular, if Gy X is continuous-in-G and U ⊆ X is open, then
GU = HU .

Proof. If V ⊆ G is non-empty and open and g ∈ G, then there exists h ∈ gV −1 ∩H,
thus g ∈ HV , hence HV = G. Now, suppose that x ∈ U . If V ⊆ {g | gx ∈ U}
is non-empty and open, then Gx = HV x ⊆ HU thus GU = HU . If G y X is
continuous-in-G and U is open, then for every x ∈ U there is an open neighborhood
V ⊆ G of 1G for which V x ⊆ U , thus by the previous argument GU = HU .

We will abuse language by saying that a subset of X is ℵ0-universally Baire
if its preimage under every Borel function from a Polish space to X has the
Baire property, and an ℵ0-universally Baire equivalence relation E on X smooth
if there is no Borel function π : 2N → X such that x E0 y ⇔ π(x) E π(y).
The Harrington-Kechris-Loveau generalization of the Glimm-Effros dichotomy (see
[HKL90, Theorem 1.1]) ensures that this is compatible with the usual notion of
smoothness for Borel equivalence relations on standard Borel spaces.

Proposition 2.1.2. Suppose that G is a group, X is a Polish space, G y X is
continuous-in-X, B ⊆ X is EXG -invariant, C ⊆ X is an EXG -invariant Gδ set for
which Gy C is topologically transitive and in which B is comeager, and F is a
smooth ℵ0-universally-Baire superequivalence relation of EBG . Then there is an
F -class that is comeager in C.
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Proof. Fix a dense Gδ set C ′ ⊆ C contained in B, and note that F has the Baire
property in C ′ × C ′, thus in C × C. The straightforward generalization of the
Becker-Kechris criterion for continuously embedding E0 from orbit equivalence
relations induced by groups of homeomorphisms (see [BK96, Theorem 3.4.5]) to
superequivalence relations of such orbit equivalence relations (see, for example,
[KMS14, Theorem 2.1]) ensures that the union of F and (C \ B) × (C \ B) is
non-meager in C ×C, so the Kuratowski-Ulam theorem (see, for example, [Kec95,
Theorem 8.41]) yields an F -class that is non-meager and has the Baire property in
C, thus comeager in C by topological transitivity.

The following fact is the obvious generalization of Pettis’s Lemma (see, for
example, [Kec95, Theorem 9.9]) to group actions.

Proposition 2.1.3. Suppose that G is a group, X is a Baire space, G y X
is continuous-in-X, d ∈ Z+, R ⊆ X{0,...,d} is closed, (Vk)k≤d is a sequence of
non-empty open subsets of X, and Bk is comeager in Vk for all k ≤ d. Then
∆XG ((Πk≤dVk) \R) ⊆ ∆XG ((Πk≤dBk) \R).

Proof. If g ∈ ∆XG ((Πk≤dVk) \R), then there exists x ∈ ⋂
k≤d(gk)

−1Vk such that
gx /∈ R. Fix an open neighborhood of V ⊆ ⋂

k≤d(gk)
−1Vk of x with the property

that (Πk≤dgkV ) ∩R = ∅. As (gk)−1Bk is comeager in (gk)
−1Vk for all k ≤ d, it

follows that ⋂
k≤d(gk)

−1Bk is comeager in ⋂
k≤d(gk)

−1Vk and therefore intersects
V , from which it follows that g ∈ ∆XG ((Πk≤dBk) \R).

We next note that, under mild hypotheses, (F ,H)-recurrence propagates to
(F ,H)-recurrence on non-meager sets with the Baire property. When Y is a
topological space, we use F(Y ) to denote the family of all closed subsets of Y .

Proposition 2.1.4. Suppose that G is a group, X is a Baire space, F ⊆⋃
d∈Z+ P(P(G{1,...,d})) is a family of upward closed families, ∅ ∈ H ⊆ ⋃

d∈Z+

F(X{0,...,d}) and Gy X is continuous-in-X and (F ,H)-recurrent. Then Gy X
is (F ,H)-recurrent on non-meager sets with the Baire property.

Proof. If B ⊆ X is a non-meager set with the Baire property, then there is a
non-empty open set U ⊆ X in which B is comeager, and Proposition 2.1.3 ensures
that ∆XG ((Πk≤dU) \R) ⊆ ∆XG ((Πk≤dB) \R), i.e., if B is (F ,H)-transient, then
U is (F ,H)-transient.

As a theorem of Becker-Kechris ensures that every Borel action of a Polish
group on a standard Borel space is Borel isomorphic to a continuous action on a
Polish space (see [BK96, Theorem 5.2.1]), the following observation ensures that,
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Chapter 2 Recurrence and measures

under mild hypotheses, the notion of recurrence spectrum is robust, in the sense
that it does not depend on the particular notion of definability, and in the sense
that it is invariant under passage to sufficiently large EXG -invariant subsets.

Proposition 2.1.5. Suppose, that G is a separable group, X is a Polish space,
G y X in continuous, F ⊆ ⋃

d∈Z+ P(P(G{1,...,d})) is a family of upward closed
families, ∅ ∈ H ⊆ ⋃

d∈Z+ F(X{0,...,d}), and B ⊆ X is EXG -invariant and comeager
in every FXG -class. Then the following are equivalent:
(1) Every smooth ℵ0-universally-Baire superequivalence relation F of EBG has a

class C for which Gy C is (F ,H)-recurrent on σ-complete ℵ0-universally-
Baire sets.

(2) There is an FXG -class C for which Gy C is (F ,H)-recurrent.

Proof. To see (1) ⇒ (2), note that FXG |B is a smooth ℵ0-universally-Baire su-
perequivalence relation of EBG and fix an FXG class C for which G y B ∩ C is
(F ,H)-recurrent on σ-complete ℵ0-universally-Baire sets. To see that Gy C is
(F ,H)-recurrent, suppose that U ⊆ C is a non-empty open set, and note that the
minimality of Gy C ensures that U is complete and therefore σ-complete by Propo-
sition 2.1.1, thus ∆XG (U

{0,...,d} \H) ∈ F for all d ∈ Z+, F ∈ F ∩P(P(G{1,...,d}))
and H ∈ H∩F(X{0,...,d}). To see (2)⇒ (1), fix an FXG -class C for which Gy C is
(F ,H)-recurrent, and suppose that F is a smooth ℵ0-universally-Baire superequiv-
alence relation of EBG . Proposition 2.1.2 then yields an F -class D that is comeager
in C. To see that G y D is (F ,H)-recurrent on σ-complete ℵ0-universally-
Baire sets, suppose that A ⊆ D is such a set, and note that σ-completeness
ensures that A is non-meager in C. Fix a dense Gδ set C ′ ⊆ C contained in
D, and note that A ∩ C ′ has the Baire property in C ′, thus Proposition 2.1.4
ensures that ∆XG (A

{0,...,d} \H) ∈ F for all d ∈ Z+, F ∈ F ∩P(P(G{1,...,d})) and
H ∈ H∩F(X{0,...,d}).

Let Γ̌ denote the family of sets whose complements are in Γ, let Γ \ Γ denote
the family of differences of sets in Γ, and let Γσ denote the family of countable
unions of sets in Γ. The horizontal sections of a set R ⊆ X × Y are the sets of
the form Ry = {x ∈ X | x R y}, whereas the vertical sections of a set R ⊆ X × Y
are the sets of the form Rx = {y ∈ X | x R y}. Given a family of upward closed
families F ⊆ ⋃

d∈Z+ P(P(G{1,...,d})) and ∅ ∈ H ⊆ ⋃
d∈Z+ F(X{0,...,d}), we say that

F is Γ-on-open if for all d ∈ Z+, F ∈ F ∩ P(P(G{1,...,d})), and all open sets
U ⊆ G{0,...,d} ×X the set {x ∈ X | Ux ∈ F} is in Γ. Given a superequivalence
relation E of EXG , we say that an action Gy X is E-locally (F ,H)-recurrent on
Γ if for all B ∈ Γ, there is an E-class C such that ∆XG ((B ∩C){0,...,d} \H) ∈ F
for all d ∈ Z+, F ∈ F ∩P(P(G{1,...,d})) and H ∈ H∩F(X{0,...,d}). We next note
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that, under mild hypotheses, the recurrence spectrum can also be characterized in
terms of local recurrence of Gy X itself.

Proposition 2.1.6. Suppose that G is a separable group, X is a Polish space,
G y X is continuous, Γ ⊆ P(X) is a family of ℵ0-universally-Baire sets con-
taining the open sets and closed under finite intersections and finite unions,
F ⊆ ⋃

d∈Z+ P(P(G{1,...,d})) is a countable family of upward closed families,
∅ ∈ H ⊆ ⋃

d∈Z+ F(X{0,...,d}) is countable, and F is Γ̌-on-open. Then the fol-
lowing are equivalent:
(1) There is an FXG -class C for which Gy C is (F ,H)-recurrent.
(2) The action G y X is FXG -locally (F ,H)-recurrent on σ-complete (Γ \ Γ)σ

sets.

Proof. To see ¬(2) ⇒ ¬(1), observe that if B ⊆ X is a σ-complete (Γ \ Γ)σ set,
then it is non-meager and has the Baire property in every FXG -class and if B ∩C is
(F ,H)-transient for every such class, then there is no FXG -class for which Gy C
is (F ,H)-recurrent by Proposition 2.1.4.
To see ¬(1)⇒ ¬(2), fix a basis (Un)n∈N for the open subsets of X. For all n ∈ N,
d ∈ Z+, and H ∈ H ∩ F(X{0,...,d}), define V H

n = {(g,x) ∈ G{1,...,d} ×X | g ∈
∆XG ((Un ∩ [x]FX

G
){0,...,d} \H)}. Observe that if (g,x) ∈ V H

n , then the minimality

of G y [x]FX
G

yields h ∈ G for which g(hx) ∈ U{0,...,d}
n \H, so the continuity of

G{0,...,d} y X{0,...,d} yields open neighborhoods of Ug of g and Ux of x such that
g′hUx ⊆ U

{0,...,d}
n \H for all g′ ∈ Ug, thus Ug × Ux ⊆ V H

n , hence V H
n is open. It

follows that the FXG -invariant sets AH,F
n = {x ∈ GUn | (V H

n )x /∈ F} are in Γ for
all F ∈ F ∩P(P(G{1,...,d})). Let π : N → N× {(H,F) ∈ H×F | ∃d ∈ Z+H ⊆
X{0,...,d}F ⊆ P(G{1,...,d})} be a bijection and define An = A

projH×F (π(n))
projN(π(n))

. Then
the sets Bn = An \

⋃
m<nAm are in Γ \ Γ, thus the set B =

⋃
n∈NBn ∩UprojN(π(n))

is in (Γ \ Γ)σ. But if there is no FXG -class C for which Gy C is (F ,H)-recurrent,
then B is complete, and therefore σ-complete by Proposition 2.1.1, thus Gy X is
not FXG -locally (F ,H)-recurrent on σ-complete (Γ \ Γ)σ sets.

We next show that, under an additional mild hypothesis on G, Propositions
2.1.3, 2.1.4, and 2.1.5 can be strengthened so as to show that the recurrence
spectrum is also robust in the sense that it does not depend on whether the
underlying notion of recurrence is local.
The following fact is a somewhat more intricate generalization of the special case
of Pettis’s Lemma for second-countable groups to topologically-transitive actions
of such groups.
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Chapter 2 Recurrence and measures

Proposition 2.1.7. Suppose that G is a second-countable Baire group, X is
a second-countable Baire space, G y X is continuous, U ⊆ X is non-empty
and open, B ⊆ U is comeager, d ∈ Z+, and H ⊆ X{0,...,d} is closed. Then
∆XG ((U ∩Gx){0,...,d} \H) ⊆ ∆XG ((B ∩Gx){0,...,d} \H) for comeagerly many x ∈ X.

Proof. We write ∀∗x ∈ X ϕ(x) to indicate that {x ∈ X | ϕ(x)} is comeager. As the
fact that Gy X is continuous-in-X ensures that it is open, it follows that {(g,x) ∈
G×X | g ·x /∈ U \B} is comeager, so the set C = {x ∈ X | ∀∗g ∈ Gg ·x /∈ U \B}
is comeager by the Kuratowski-Ulam theorem. Observe that if h′ ∈ G and x ∈ X,
then {g ∈ G | g · x /∈ h′(U \B)} = h′{g ∈ G | g · x /∈ U \B}, so the fact that
G y X is continuous-in-X also ensures that if x ∈ C and h ∈ G{1,...,d}, then
∀∗g ∈ Gg ·x /∈ ⋃

k≤d hk(U \B), in which case the fact that ⋂
k≤d hkU \

⋂
k≤d hkB ⊆⋃

k≤d hk(U \B) therefore implies that ∀∗g ∈ Gg · x /∈ ⋂
k≤d hkU \

⋂
k≤d hkB. Note

that for all h ∈ G{1,...,d}, the fact that Gy X is continuous-in-X ensures that the
set {y | hy ∈ U{0,...,d} \H} is open, so the fact that G y X is continuous-in-G
implies that if x ∈ C and {y | hy ∈ U{0,...,d} \H}∩Gx is non-empty, then there are
non-meagerly many g ∈ G for which g · x ∈ {y | hy ∈ U{0,...,d} \H}. In particular,
since {y | hy ∈ U{0,...,d} \H} \ {y | hy ∈ B{0,...,d} \H} ⊆ ⋂

k≤d hkU \
⋂
k≤d hkB,

it follows that if x ∈ C and {y | hy ∈ U{0,...,d} \H} ∩Gx is non-empty, then so
too is {y | hy ∈ B{0,...,d} \H} ∩Gx, hence ∆XG ((U ∩Gx){0,...,d} \H) ⊆ ∆XG ((B ∩
Gx){0,...,d} \H) for all x ∈ C.

We next note that, under mild hypotheses, (F ,H)-recurrence of topologically
transitive actions not only propagates to (F ,H)-recurrence on non-meager sets
with the Baire property, but to its EXG -local strengthening.

Proposition 2.1.8. Suppose that G is a second-countable Baire group, X is a
second-countable Baire space, F ⊆ ⋃

d∈Z+ P(P(G{1,...,d})) is a family of upward
closed families, ∅ ∈ H ⊆ ⋃

d∈Z+ F(X{0,...,d}) is countable, and Gy X is (F ,H)-
recurrent, and topologically transitive. Then G y X is EXG -locally (F ,H)-
recurrent on non-meager sets with the Baire property.

Proof. Suppose that B ⊆ X is a non-meager set with the Baire property, and fix a
non-empty open set U ⊆ X in which B is comeager. The topological transitivity
of G y X ensures that the set C = {x ∈ X | Gx is dense} is comeager, and
Proposition 2.1.7 implies that the set DH

d = {x ∈ X | ∆XG ((U ∩Gx){0,...,d} \H) ⊆
∆XG ((B ∩Gx){0,...,d} \H), comeager for all d ∈ Z+ and H ∈ H ∩ F(X{0,...,d}).
So it only remains to observe that if x ∈ C ∩ ⋂

d∈Z+,H∈H∩F(X{0,...,d})D
H
d , then

∆XG (U
{0,...,d} \H) ⊆ ∆XG ((U ∩Gx){0,...,d} \H) ⊆ ∆XG ((B ∩Gx){0,...,d} \H) for all

d ∈ Z+ and H ∈ H ∩ F(X{0,...,d}), thus ∆XG ((B ∩Gx){0,...,d} \H) ∈ F for all
d ∈ Z+, F ∈ F ∩P(P(G{1,...,d})) and H ∈ H∩F(X{0,...,d}).
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We can now establish the promised robustness result.
Proposition 2.1.9. Suppose that G is a second countable Baire group, X is a
Polish space, G y X is continuous, F ⊆ ⋃

d∈Z+ P(P(G{1,...,d})) is a family of
upward closed families, ∅ ∈ H ⊆ ⋃

d∈Z+ F(X{0,...,d}) is countable, and B ⊆ X is
EXG -invariant and comeager in every FXG -class. Then the following are equivalent.
(1) Every smooth ℵ0-universally-Baire superequivalence relation F of EBG has

a class C for which G y C is ECG -locally (F ,H)-recurrent on σ-complete
ℵ0-universally-Baire sets.

(2) There is an FXG -class C for which Gy C is (F ,H)-recurrent.

Proof. To see (1) ⇒ (2), note that FXG |B is a smooth ℵ0-universally-Baire su-
perequivalence relation of EBG and fix an FXG -class C for which G y B ∩ C
is ECG -locally (F ,H)-recurrent on σ-complete ℵ0-universally-Baire sets. To see
that G y C is (F ,H)-recurrent, suppose that U ⊆ C is a non-empty open
set, and note that the minimality of G y C ensures that U is complete and
therefore σ-complete by Proposition 2.1.1, thus there exists x ∈ C such that
∆XG ((U ∩ Gx){0,...,d} \H) ∈ F for all d ∈ Z+, F ∈ F ∩ P(P(G{1,...,d})) and
H ∈ H∩F(X{0,...,d}), thus Gy C is ECG -locally (F ,H)-recurrent on non-empty
open sets, thus (F ,H)-recurrent. To see (2)⇒ (1), fix an FXG -class C for which
G y C is (F ,H)-recurrent, and suppose that F is a smooth ℵ0-universally-
Baire superequivalence relation of EBG . Proposition 2.1.2 then yields an F -class
D that is comeager in C. To see that G y D is EDG -locally (F ,H)-recurrent
on σ-complete ℵ0-universally-Baire sets, suppose that A ⊆ D is such a set, and
note that σ-completeness ensures that A is non-meager in C. Fix a dense Gδ
set C ′ ⊆ C contained in D, and note that A ∩C ′ has the Baire property and is
non-meager in C ′, thus Proposition 2.1.8 ensures that there exists x ∈ C ′ such
that ∆XG ((A ∩Gx){0,...,d} \H) ∈ F for all d ∈ Z+, F ∈ F ∩P(P(G{1,...,d})) and
H ∈ H∩F(X{0,...,d}).

2.2 The strongest notion of recurrence

Recall that for a subset S ⊆ G{1,...,d} the set FS denotes the family of sets
T ⊆ G{1,...,d} such that T ∩ S 6= ∅. Note that a set Y ⊆ G is FS-transient if
∆XG (Y

{0,...,d}) ∩ S = ∅, i.e., if SY ∩ Y {1,...,d} = ∅ in which case we just say that Y
is S-transient. When K ⊆ G is compact, we define the set CdK = {g ∈ G{1,...,d} |
∃i 6= j ∈ {0, ..., d}gigj−1 ∈ K} and the set Dd

K to be the complement of CdK .
Proposition 2.2.1. Suppose that G is a topological group, X is a Hausdorff space,
Gy X is continuous, K ⊆ G is compact, x ∈ X is not fixed by any element of K.
Then there is a CdK-transient open neighborhood of x.

16
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Proof. For each g ∈ K, the fact that X is Hausdorff yields open neighborhoods
Vg ⊆ X of x and Wg ⊆ X of gx such that Vg and Wg are disjoint. The conti-
nuity of G y X yields open neighborhoods Ug ⊆ G of g and V ′g ⊆ Vg of x for
which UgV

′
g ⊆ Wg, thus (UgV ′g) ∩ V ′g = ∅. The compactness of K then yields

a finite set F ⊆ K for which K ⊆ ⋃
g∈F Ug, in which case V =

⋂
g∈F V

′
g is a

K-transient open neighborhood of x. If g ∈ ∆XG (V
{0,...,d}) and i 6= j ∈ {0, ..., d}

then (gigj−1)(gjx) = gix thus gigj−1 /∈ K hence g /∈ CdK .

It follows that upward closed families F ⊆ P(G{1,...,d}) whose corresponding
notions of recurrence are realizable by suitable free actions necessarily contain Dd

K ,
for all compact sets K ⊆ G not containing 1G.

Proposition 2.2.2. Suppose that G is a topological group, X is a Hausdorff
space, F ⊆ ⋃

d∈Z+ P(P(G{1,...,d})) is a family of upward closed families, ∅ ∈ H ⊆⋃
d∈Z+ F (X{0,...,d}), and Gy X is (F ,H)-recurrent, continuous, and free. Then

for all d ∈ Z+, every F ∈ F ∩P(P(G{1,...,d})) contains Dd
K for all compact K ⊆ G

not containing 1G.

Proof. This is a direct consequence of Proposition 2.2.1.

When X is a topological space and d ∈ Z+, recall that a continuous-in-X
action Gy X is strongly d-mixing if ∆XG (Πk≤dUk) contains Dd

K for some compact
set K ⊆ G for all sequences (Uk)k≤d of non-empty open subsets of X, G y X
is strongly mixing if G y X is strongly 1-mixing, and strongly (< ω)-mixing if
Gy X is strongly d-mixing for all d ∈ Z+.

Proposition 2.2.3. Suppose that G is a topological group, X is a topological
space, F ⊆ P(G{1,...,d}) is the family of subsets of G{1,...,d} containing Dd

K for
some compact 1G /∈ K ⊆ G, and G y X is continuous-in-X, F-recurrent, and
topologically transitive. Then Gy X is strongly d-mixing.

Proof. Given a sequence (Uk)k≤d of non-empty open subsets of X, the topo-
logical transitivity of G y X recursively yields g ∈ G{1,...,d} and non-empty
opens sets Vk ⊆ U0 for k ≤ d for which gkVk ⊆ Uk and Vk+1 ⊆ Vk for
k < d, so the fact that G y X is F-recurrent ensures that ∆XG (V

{0,...,d}
d )

contains Dd
K for some compact 1G /∈ K ⊆ G. As h ∈ ∆XG (V

{0,...,d}
d ) ⇔

h(Vd) ∩ V
{1,...,d}
d 6= ∅ ⇔ (gkhk)k∈{1,...,d} ∈ ∆XG (Πk∈{0,...,d}gkVd), it follows that

g∆XG (V
{0,...,d}
d ) = ∆XG (Πk∈{0,...,d}gkVd), so ∆XG (Πk<dUd) contains g∆XG (V

{0,...,d}
d )

and thus Dd⋃
i,j≤d giKgj

−1 since Dd⋃
i,j≤d giKgj

−1 ⊆ gDd
K .
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It follows that the existence of a suitable free Borel action of G whose recurrence
spectrum contains F , where F ⊆ P(G{1,...,d}) is the family of subsets of G{1,...,d}

containing Dd
K for some compact 1G /∈ K ⊆ G, is equivalent to the existence of a

suitable continuous strongly-d-mixing free action of G.

Proposition 2.2.4. Suppose that G is a separable group, X is a Polish space,
G y X is continuous, d ∈ Z+, and F ⊆ P(G{1,...,d}) is the family of subsets
of G{1,...,d} containing Dd

K for some compact 1G /∈ K ⊆ G. Then F is in the
recurrence spectrum of Gy X if and only if there is an equivalence class C of FXG
for which Gy C is strongly d-mixing.

Proof. If F is in the recurrence spectrum of Gy X, then Propositions 2.1.5 and
2.2.3 imply that there is an equivalence class C of FXG for which Gy C is strongly
d-mixing. It remains to show that if there is an equivalence class C of FXG for which
G y C is strongly d-mixing, then G y C is F-recurrent. Suppose that U ⊆ C
is non-empty and open. Then we can find an open and symmetric neighborhood
W ⊆ G of 1G and a non-empty open subset V ⊆ U such thatW dV ⊆ U . Then find
a compact set K ⊆ G such that Dd

K ⊆ ∆CG(V
{0,...,d}). Suppose that g /∈ CdK\W .

If g ∈ Dd
K , then g ∈ ∆CG(V

{0,...,d}) and if g ∈ CdK \ CdK\W then there exists
0 ≤ d′ < d, g′ ∈ Dd′

K and an injective map f : d′ → d such that gf(i) = g′i for all
i ∈ {1, ..., d′} and gj ∈ W d{g′1, ..., g′d′}) for all j ∈ {1, ..., d}. As there exists x ∈ V
such that g′x ∈ V {1,...,d′} we obtain that gjx ∈ W dV ⊆ U for all j ∈ {1, ..., d} thus
g ∈ ∆CG(V

{0,...,d}), hence Dd
K\W ⊆ ∆CG(U

{0,...,d}).

To our surprise, we were unable to find a proof in the literature of the fact that
locally-compact non-compact Polish groups have free strongly mixing continuous
free actions on Polish spaces. In a pair of private emails, Glasner-Weiss suggested
that the strengthening in which the underlying space is compact should be a
consequence of the generalizations of the results of [Wei84] to locally compact groups,
and that a substantially simpler construction should yield the aforementioned
result. However, we give an elementary proof by checking that the action of
G by left multiplication on the space F(G) of closed subsets of G is strongly
(< ω)-mixing, where F(G) is equipped with the Fell topology generated by the
sets VK = {F ∈ F(G) | F ∩K = ∅} and WU = {F ∈ F(G) | F ∩U 6= ∅}, where
K ⊆ G is compact and U ⊆ G is open. It is well known that F(G) is a compact
Polish space (see, for example, [Kec95, Exercise 12.7]).

Proposition 2.2.5. Suppose that G is a locally compact non-compact Polish
group. Then there is a Polish space X for which there is a free continuous action
Gy X which is strongly (< ω)-mixing.
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Chapter 2 Recurrence and measures

Proof. While it is well-known that G y F(G) is continuous, we will provide a
proof for the reader’s convenience. Towards this end, it is sufficient to show that
if g ∈ G,F ∈ F(G), and UgF is an open neighborhood of gF , then there are
open neighborhoods Ug ⊆ G of g and UF ⊆ F(G) of F for which UgUF ⊆ UgF .
Clearly we can assume that UgF = VK for some compact K ⊆ K or UgF = WU

for some open set U ⊆ G. In the former case, it follows that F ∩ g−1K = ∅, so
the local compactness of G ensures that for all h ∈ K there are a pre-compact
open neighborhood Ug,h of g and an open neighborhood Vg,h of h such that
F ∩Ug,h

−1
Vg,h = ∅, and the compactness of K yields a finite set L ⊆ K such that

K ⊆ ⋃
h∈L Vg,h, in which case the sets Ug =

⋂
h∈L Ug,h and UF = V

U−1
g K

are as
desired. In the latter case, there exists h ∈ F for which gh ∈ U , so there are open
neighborhoods Ug ⊆ G of g and Uh of h such that UgUh ⊆ U , thus the sets Ug and
WUh

are as desired.
Given d ∈ Z+ and non-empty open subsets Ui for i ≤ d we need to show that
∆XG (Πi≤dUi) contains Dd

L for some compact set L ⊆ G. Assume that Ui =
VKi
∩⋂

j<ni
WUi,j for ni ∈ Z+ and i ≤ d whereKi ⊆ G are compact and Ui,j ⊆∼ Ki

are open and pre-compact for all j < ni and i ≤ d. Set L =
⋃
i,i′≤d,j<ni

Ki′U
−1
i,j

and suppose that g ∈ Dd
L. Choose gi,j ∈ Ui,j for j < ni and i ≤ d and set

F = {g−1
i gi,j | j < ni, i ≤ d}. To see that gF ∈ Πi≤dUi note that giF ∩Ui,j 6= ∅

for all j < ni, i ≤ d and the L-discreteness of g and the fact that Ki is disjoint
from Ui,j for all j < ni ensures that giF ∩Ki = ∅ for all i ≤ d.
The free part of the action Gy F(G) is the set X of F ∈ F(G) that are not fixed
by any non-identity element of G. The local-compactness and separability of G
ensure that X is the intersection of countable many sets of the form XK = {F ∈
F(G) | ∀g ∈ K gF 6= F}, where K ⊆ G \ {1G} is compact. As Proposition 2.2.1
ensures that each XK is open, it follows that X is Gδ and therefore Polish. To see
that Gy X is the desired action, it only remains to establish that X is comeager.
And for this, it is sufficient to show that if K ⊆ G \ {1G} is compact, then XK is
dense. To this end, suppose that U = VL ∩

⋂
i<nWUi

is non-empty, where L ⊆ G
is compact and Ui ⊆∼ L is open for all i < n, and fix gi ∈ Ui for all i < n. As G is
locally compact, by passing to open neighborhoods of gi contained in Ui, we can
assume that each of the sets Ui is pre-compact. As G is not compact, there exists
g ∈∼ (L∪⋃

i<nK
−1Ui). Then the set F = {g} ∪ {gi | i < n} is in U , and the fact

that F ∩Kg = ∅ ensures that F ∈ XK .

2.3 Generic compressibility

Suppose that E is a Borel equivalence relation on X that is countable, in the
sense that all of its equivalence classes are countable. We say that a function
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ρ : E → (0,∞) is a cocycle if ρ(x, z) = ρ(x, y)ρ(y, z) whenever x E y E z. When
ρ : E → (0,∞) is a Borel cocycle, we say that a Borel measure µ on X is ρ-
invariant if µ(T (B)) =

∫
B ρ(T (x),x) dµ(x) for all Borel sets B ⊆ X and Borel

automorphisms T : X → X such that graphT ⊆ E. We say that ρ is aperiodic if∑
y∈[x]E ρ(y,x) =∞ for all x ∈ X. Here we generalize the following fact to orbit

equivalence relations induced by Borel actions of locally compact Polish groups,
while simultaneously strengthening comeagerness to a notion under which the
recurrence spectrum is invariant.

Theorem 2.3.1 (Kechris-Miller). Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, and ρ : E → (0,∞) is an aperiodic
Borel cocycle. Then there is an E-invariant comeager Borel set C ⊆ X that is null
with respect to every ρ-invariant Borel probability measure.

A function ϕ : X → Z is E-invariant if ϕ(x) = ϕ(y) whenever x E y. The
E-saturation of a set Y ⊆ X is the set of x ∈ X for which there exists y ∈ Y such
that x E y. We say that a Borel probability measure µ on X is E-quasi-invariant
if the E-saturation of every µ-null set N ⊆ X is µ-null. Let P (X) denote the
standard Borel space of Borel probability measures on X (see, for example, [Kec95,
§17.E]). The push-forward of a Borel measure µ on X through a Borel function
ϕ : X → Y is the Borel measure ϕ∗µ on Y given by (ϕ∗µ)(B) = µ(ϕ−1(B)) for
all Borel sets B ⊆ Y .

Proposition 2.3.2. Suppose that X is a standard Borel space, E is a countable
Borel equivalence relation on X, and ϕ : X → P (X) is an E-invariant Borel
function such that µ is E-quasi-invariant and ϕ−1(µ) is µ-conull for all µ ∈ ϕ(X).
Then there is a Borel cocycle ρ : E → (0,∞) such that µ is ρ-invariant for all
µ ∈ ϕ(X).

Proof. By standard change of topology results (see, for example, [Kec95, §13]), we
can assume that X is a zero-dimensional Polish space. Fix a compatible complete
ultrametric on X. By [FM77, Theorem 1], there is a countable group Γ of Borel
automorphisms of X whose induced orbit equivalence relation is E. For all γ ∈ Γ,
define ργ : Xγ → (0,∞) by ργ(x) = limε→0((γ−1)∗ϕ(x))(B(x, ε))/ϕ(x)(B(x, ε)),
where Xγ is the set of x ∈ X for which this limit exists and lies in (0,∞).

Note that if γ ∈ Γ, µ ∈ ϕ(X), and ψ : X → (0,∞) is a Radon-Nikodým
derivative of (γ−1)∗µ with respect to µ (see, for example, [Kec95, §17.A]), then
the straightforward generalization of the Lebesgue density theorem for Polish
ultrametric spaces (see, for example, [Mil08a, Proposition 2.10]) to integrable
functions ensures that ψ(x) = limε→0

∫
B(x,ε) ψ dµ/µ(B(x, ε)) = ργ(x) for µ-almost

all x ∈ X.
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Chapter 2 Recurrence and measures

It immediately follows that for all γ ∈ Γ, the complement of Xγ is null with
respect to every µ ∈ ϕ(X). Moreover, if B ⊆ X is Borel, γ, δ ∈ Γ, and µ ∈ ϕ(X),
then

(γδ)−1
∗ µ(B) =

∫
δ(B)

ργ(x) dµ(x)

=
∫
B
ργ(δ · x) d((δ−1)∗µ)(x)

=
∫
B
ργ(δ · x)ρδ(x) dµ(x),

so the almost-everywhere uniqueness of Radon-Nikodým derivatives ensures that
the set of x ∈ X for which there exist γ, δ ∈ Γ such that ργδ(x) 6= ργ(δ · x)ρδ(x) is
null with respect to every µ ∈ ϕ(X).

Let N denote the E-saturation of the union of these sets, and let ρ : E → (0,∞)
be the extension of the constant cocycle on E � N given by ρ(γ · x,x) = ργ(x) for
all γ ∈ Γ and x ∈ X.

As a consequence, we obtain the following.

Theorem 2.3.3. Suppose that X is a Polish space, E is a Borel equivalence
relation on X admitting a Borel complete set B ⊆ X on which E is countable, F is
a superequivalence relation of E for which every F -class is Gδ and the F -saturation
of every open set is Borel, and ϕ : X → P (X) is an E-invariant Borel function for
which every measure µ ∈ ϕ(X) has µ-conull ϕ-preimage and concentrates off of
Borel sets on which E is smooth. Then there is an E-invariant Borel set C ⊆ X
that is comeager in every F -class, but null with respect to every measure in ϕ(X).

Proof. By the Lusin-Novikov uniformization theorem (see, for example, [Kec95,
Theorem 18.10]), there is a Borel extension π : X → B of the identity function
on B whose graph is contained in E. Fix a sequence (εn)n∈N of positive real
numbers whose sum is 1, in addition to a countable group {γn | n ∈ N} of Borel
automorphisms of B whose induced orbit equivalence relation is E � B, and define
ψ : B → P (B) by ψ(x) = ∑

n∈N(γn ◦ π)∗ϕ(x)/εn. As each ν ∈ ψ(B) is (E � B)-
quasi-invariant, Proposition 2.3.2 yields a Borel cocycle ρ : E � B → (0,∞) such
that every ν ∈ ψ(B) is ρ-invariant.

Given ν ∈ ψ(B), fix x ∈ B for which ν = ψ(x), set µ = ϕ(x), and observe
that ν(ψ−1(ν)) ≥ µ(ϕ−1(µ)) = 1. Moreover, as E is smooth on the periodic part
P = {x ∈ B | ∑

y∈[x]E�B ρ(y,x) <∞} of ρ (see, for example, [Mil08b, Proposition
2.1.1]), and therefore on its E-saturation, it follows that [P ]E is null with respect
to every measure in ϕ(X), thus P is null with respect to every measure in ψ(B).

By the proof of Theorem 2.3.1 (see [KM04, Theorem 13.1]), there is a Borel set
R ⊆ NN×B, whose vertical sections are (E � B)-invariant and null with respect to
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every ρ-invariant Borel probability measure, such that every x ∈ B is contained in
comeagerly-many vertical sections of R. It follows that the vertical sections of the
set S = (id× π)−1(R) are E-invariant and null with respect to every measure in
ϕ(X), and every x ∈ X is contained in comeagerly-many vertical sections of S. The
Kuratowski-Ulam theorem therefore ensures that for all x ∈ X, comeagerly-many
vertical sections of R are comeager in [x]F .

By [Sri79], there is a Borel set D ⊆ X intersecting every F -class in a single
point. As the F -saturation of every open set is Borel, the usual proof of the Mont-
gomery-Novikov theorem that the pointclass of Borel sets is closed under category
quantifiers (see, for example, [Kec95, Theorem 16.1]) shows that {(b,x) ∈ NN×X |
Rb is comeager in [x]F} and {(b,x) ∈ NN ×X | Rb is non-meager in [x]F} are
Borel, so [Kec95, Theorem 18.6] yields a Borel function β : D → NN such that
Rβ(x) is comeager in [x]F for all x ∈ D. Then the set C =

⋃
x∈D Rβ(x) ∩ [x]F is as

desired.

We say that a function ρ : G×X → (0,∞) is a cocycle if ρ(gh,x) = ρ(g,h ·
x)ρ(h,x) for all g,h ∈ G and x ∈ X. When ρ : G×X → (0,∞) is a Borel cocycle,
we say that a Borel measure µ on X is ρ-invariant if µ(gB) =

∫
B ρ(g,x) dµ(x) for

all Borel sets B ⊆ X and group elements g ∈ G. The following fact is the desired
generalization of Theorem 2.3.1.
Theorem 2.3.4. Suppose that G is a locally compact Polish group, X is a Polish
space, G y X is a continuous action, F is a superequivalence relation of EXG
for which every F -class is Gδ and the F -saturation of every open set is Borel,
and ρ : G×X → (0,∞) is a Borel cocycle with the property that every G-orbit
is null with respect to every ρ-invariant Borel probability measure. Then there is
a G-invariant Borel set C ⊆ X that is comeager in every F -class, but null with
respect to every ρ-invariant Borel probability measure.

Proof. By [Kec92, Theorem 1.1], there is a complete Borel set B ⊆ X on which
EXG is countable. Fix a ρ-invariant uniform ergodic decomposition ϕ : X → P (X)
of Gy X (see [GS00, Theorem 5.2]), and appeal to Theorem 2.3.3.

We next check that the special case of Theorem 2.3.4 for F = FXG provides a
proper strengthening of Theorem 2.3.1. While this can be seen as a consequence
of the Kuratowski-Ulam theorem, we will show that the usual proof of the latter
easily adapts to yield a generalization to a natural class of equivalence relations
containing FXG .
Theorem 2.3.5. Suppose that X is a second-countable Baire space, E is an
equivalence relation on X such that every E-class is a Baire space and the E-
saturation of every open subset of X is open, and B ⊆ X has the Baire property.
Then:
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Chapter 2 Recurrence and measures

(1) ∀∗x ∈ X B has the Baire property in [x]E.
(2) B is comeager ⇐⇒ ∀∗x ∈ X B is comeager in [x]E.

Proof. We begin with a simple observation.

Lemma 2.3.6. Suppose that U ⊆ X is a non-empty open set and V ⊆ U is a
dense open set. Then [V ]E is dense in [U ]E .

Proof. IfW ⊆ X is open and [V ]E ∩W = ∅, then V ∩ [W ]E = ∅, so the openness of
[W ]E ensures that V ∩ [W ]E = ∅, thus the density of V implies that U ∩ [W ]E = ∅,
hence [U ]E ∩W = ∅.

To see the special case of (=⇒) of (2) when B ⊆ X is open, note that if
U ⊆ X is non-empty and open, then Lemma 2.3.6 yields that [B ∩U ]E is dense
in [U ]E , and therefore ∀∗x ∈ X (x ∈ [U ]E =⇒ x ∈ [B ∩ U ]E), or equivalently,
∀∗x ∈ X (U ∩ [x]E 6= ∅ =⇒ B ∩ U ∩ [x]E 6= ∅). As X is second countable, it
follows that ∀∗x ∈ X B is dense in [x]E .

To see (=⇒) of (2), suppose that B ⊆ X is comeager, fix dense open sets
Bn ⊆ X for which ⋂

n∈NBn ⊆ B, and appeal to the special case for open sets to
obtain that ∀∗x ∈ X ⋂

n∈NBn is comeager in [x]E .
To see (1), fix an open set U ⊆ X for which B 4 U is meager, and note that

∀∗x ∈ X B 4 U is meager in [x]E , by (=⇒) of (2).
To see (⇐=) of (2), suppose that B is not comeager, fix a non-empty open

set V ⊆ X in which B is meager, note that ∀x ∈ V V ∩ [x]E 6= ∅, and appeal to
(=⇒) of (2) to obtain that ∀∗x ∈ X B ∩ V is meager in [x]E , thus ∀∗x ∈ V B is
not comeager in [x]E .

Finally, we check that no condition on the recurrence spectrum can yield the
existence of an invariant Borel probability measure. When B is a subset of X and
H ⊆ ⋃P(X{0,...,d}), we denote {H ∩B{0,...,d} | d ∈ Z+,H ∈ H∩P(X{0,...,d})} by
H � B.

Theorem 2.3.7. Suppose that G is a locally compact Polish group, X is a standard
Borel space, Gy X is Borel, and ρ : G×X → (0,∞) is a Borel cocycle for which
every G-orbit is null with respect to every ρ-invariant Borel probability measure.
Then there is a G-invariant Borel set B ⊆ X that is null with respect to every
ρ-invariant Borel probability measure but for which (F ,H) is in the recurrence
spectrum of G y X if and only if (F ,H � B) is in the recurrence spectrum of
Gy B.
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Proof. We can assume that X is a Polish space and G y X is continuous. By
Theorem 2.3.4, there is an EXG -invariant Borel set B ⊆ X that is comeager in every
FXG -class, but null with respect to every ρ-invariant Borel probability measure.
Proposition 2.1.5 then ensures that (F ,H) is in the recurrence spectrum of Gy X
if and only if (F ,H � B) is in the recurrence spectrum of Gy B.
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Chapter 3

A generalization of cutting and
stacking

3.1 Quotients

Given a topological space X and an equivalence relation E on X, we endow X/E
with the topology consisting of all sets U ⊆ X/E for which ⋃

U is an open subset
of X. We begin by noting a sufficient condition under which such quotients are
Polish spaces.

Proposition 3.1.1. Suppose that X is a Polish space and E is an equivalence
relation on X for which every E-class is closed, E-saturations of open sets are
open, and there is a basis of open sets U ⊆ X such that [U ]E ⊆ [U ]E. Then X/E
is a Polish space.

Proof. The fact that every E-class is closed ensures that X/E is T1, and the
fact that X is second countable implies that so too is X/E, for if (Un)n∈N is a
basis for X, then ([Un]E/E)n∈N is a basis for X/E. To see that X/E is regular,
note that if V ⊆ X/E is an open neighborhood of [x]E , then there is an open
neighborhood U ⊆ ⋃

V of x such that U ⊆ ⋃
V and [U ]E ⊆ [U ]E , in which case

[U ]E/E = [U ]E/E ⊆ [U ]E/E ⊆ V . The Urysohn metrization theorem (see, for
example, [Kec95, Theorem 1.1]) therefore ensures that X is metrizable. As the
surjection π : X → X/E given by π(x) = [x]E is continuous and open, it follows
that X/E is Polish (see, for example, [Kec95, Theorem 8.19]).

In the special case that X is locally compact, so too is the quotient.

Proposition 3.1.2. Suppose that X is a locally-compact Polish space and E is
a closed equivalence relation on X for which E-saturations of open sets are open.
Then X/E is a locally-compact Polish space.
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Proof. To see that X/E is Hausdorff, note that if [x]E and [y]E are distinct
elements of X/E, then there are open neighborhoods U ⊆ X of x and V ⊆ X
of y whose product is disjoint from E, in which case [U ]E/E and [V ]E/E are
disjoint open neighborhoods of x and y. As the function π : X → X/E given by
π(x) = [x]E is continuous, it follows that if U ⊆ X is an open set with compact
closure, then the set π(U) = [U ]E/E is compact, so [U ]E is closed, thus [U ]E/E is
an open set with compact closure and [U ]E ⊆ [U ]E , hence X/E is locally compact
and Proposition 3.1.1 ensures that it is Polish.

Suppose that R and S are binary relations on X and Y . A homomorphism
from R to S is a function ϕ : X → Y for which (ϕ× ϕ)(R) ⊆ S, a reduction
of R to S is a homomorphism from R to S that is also a homomorphism from
∼R to ∼S, an embedding of R into S is an injective reduction of R to S, and an
isomorphism of R with S is a surjective embedding of R into S. Note that if G
is a group and G y X is an action by homomorphisms from E to E, then it is
an action by isomorphisms of E with E, and we obtain an action Gy X/E by
setting g · [x]E = [g · x]E for all g ∈ G and x ∈ X.

Proposition 3.1.3. Suppose that G is a topological group, X is a topological space,
E is an equivalence relation on X for which the E-saturation of every open set is
open, and Gy X is a continuous action by homomorphisms from E to E. Then
Gy X/E is continuous.

Proof. Suppose that g ∈ G, x ∈ X, and W ⊆ X/E is an open neighborhood of
g · [x]E . Then there are open neighborhoods U ⊆ G of g and V ⊆ X of x such
that UV ⊆ ⋃

W , in which case U and [V ]E/E are open neighborhoods of g and
[x]E such that U([V ]E/E) ⊆ W .

Suppose that G is a group, X is a set, and E is an equivalence relation on X.
A function ρ : E → G is a cocycle if ρ(x, z) = ρ(x, y)ρ(y, z) for all x E y E z. This
trivially implies that ρ(x,x) = 1G for all x ∈ X, thus ρ(x, y) = ρ(y,x)−1 for all
x E y.

More generally, we say that a function P : E → P(G) \ {∅} is a cocycle if
P (x, z) = P (x, y)g for all x E y E z and g ∈ P (y, z). This trivially implies
that 1G ∈ P (x,x) for all x ∈ X, so P (x, y) = P (y,x)−1 for all x E y, thus
P (x, z) = gP (y, z) for all x E y E z and g ∈ P (x, y).

Let S(G) denote the set of all subgroups of G. We say that a function G : X →
S(G) is compatible with a cocycle ρ : E → G if Gxρ(x, y) = ρ(x, y)Gy for all
x E y, in which case we define P : E → P(G) \ {∅} by setting P (x, y) = ρ(x, y)Gy.
Observe that if x E y E z and g ∈ P (y, z), then there exists h ∈ Gz for which
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g = ρ(y, z)h, and it follows that P (x, z) = ρ(x, z)Gz = ρ(x, y)ρ(y, z)Gzh =
ρ(x, y)Gyρ(y, z)h = P (x, y)g, thus P is a cocycle.

The orbit cocycle on EXG associated with an action G y X is given by
PXG (x, y) = {g ∈ G | x = g · y}. For each cocycle P : E → P(G) \ {∅}, de-
fine EP ⊆ E by x EP y ⇐⇒ 1G ∈ P (x, y). Suppose now that EXG ⊆ E and
PXG (x, y) ⊆ P (x, y) for all x EXG y. If g ∈ G and x E y, then the facts that
g ∈ P (g · x,x) and g−1 ∈ P (y, g · y) ensure that P (g · x, g · y) = gP (x, y)g−1, so
x EP y =⇒ g · x EP g · y, thus Gy X is an action by homomorphisms from EP
to EP . The fact that g−1 ∈ P (y, g · y) also implies that P (x, g · y) = P (x, y)g−1,
so [x]EP

= g · [y]EP
⇐⇒ 1G ∈ P (x, g · y) ⇐⇒ g ∈ P (x, y), thus P factors over

EP to the orbit cocycle of Gy X/EP .
Let G y G×X denote the action given by g · (h,x) = (gh,x), set I(G) =

G×G, identify the product of equivalence relations E on X and F on Y with
the equivalence relation on X × Y given by (x1, y1) (E × F ) (x2, y2) ⇐⇒
(x1 E x2 and y1 F y2), and let P denote the cocycle on I(G) × E given by
P ((g,x), (h, y)) = gP (x, y)h−1. Clearly EG×XG ⊆ I(G) × E. Moreover, if
g ∈ G and (h,x) ∈ G×X, then P (g · (h,x), (h,x)) = ghP (x,x)h−1, so g ∈
P (g · (h,x), (h,x)), thus PG×XG (g · (h,x), (h,x)) ⊆ P (g · (h,x), (h,x)).

Recall that an equivalence relation on a topological space is minimal if its
equivalence classes are dense.

Proposition 3.1.4. Suppose that G is a topological group, X is a topological space,
E is a minimal equivalence relation on X for which the E-saturation of every open
set is open, and P : E → P(G) \ {∅} is a cocycle. Then G y (G×X)/EP is
minimal.

Proof. Suppose that W ⊆ (G ×X)/EP is a non-empty G-invariant open set.
Then there are non-empty open sets U ⊆ G and V ⊆ X with the property that
U × V ⊆ ⋃

W . The fact that ⋃
W is G-invariant then ensures that G× V ⊆ ⋃

W .
To see that G×X ⊆ ⋃

W , suppose that g ∈ G and x ∈ X, fix y ∈ V such that
x E y, fix h ∈ gP (x, y), and observe that 1G ∈ gP (x, y)h−1 = P ((g,x), (h, y)), so
the EP -invariance of ⋃

W ensures that it contains (g,x).

Recall that, when Y is a topological space, we use F(Y ) to denote the family
of all closed subsets of Y and we equip F(Y ) with the Fell topology generated
by the sets of the form {F | F ∩K = ∅} and {F | F ∩ U 6= ∅}, where K ⊆ Y
is compact and U ⊆ Y is open. We say that a function ϕ : X → F(Y ) is upper
semi-continuous if it is continuous with respect to the topology generated by the
sets of the former type, and lower semi-continuous if it is continuous with respect
to the topology generated by the sets of the latter type.
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We say that a sequence (En)n∈N of subequivalence relations of E is exhaustive
if E =

⋃
n∈NEn.

Proposition 3.1.5. Suppose that G is a topological group, X is a topological space,
E is an equivalence relation on X, and P : E → F(G) is a cocycle for which there
is an exhaustive increasing sequence (En)n∈N of subequivalence relations of E such
that En-saturations of open sets are open and P � En is lower semi-continuous for
all n ∈ N. Then EP -saturations of open sets are open.

Proof. Suppose that U × V ⊆ G×X is an open rectangle. Given (g,x) ∈ [U ×
V ]E

P
, fix (h, y) ∈ U × V for which (g,x) EP (h, y), as well as n ∈ N for which

x En y, and open neighborhoods Ug,Uh ⊆ G of g and h for which Ugg−1Uh ⊆ U .
As g−1h ∈ P (x, y), there is an open neighborhood Vx× Vy ⊆ X × V of (x, y) with
the property that g−1Uh ∩ P (x′, y′) 6= ∅ for all (x′, y′) ∈ En ∩ (Vx × Vy). Define
V ′x = Vx ∩ [Vy]En , and note that if (g′,x′) ∈ Ug × V ′x, then there exists y′ ∈ Vy for
which x′ En y′, and since g−1Uh ∩ P (x′, y′) 6= ∅, there exists h′ ∈ g′P (x′, y′) ∩U ,
so (g′,x′) EP (h′, y′), thus Ug × V ′x ⊆ [U × V ]E

P
.

Recall that an increasing sequence (Kn)n∈N of compact subsets of G is exhaus-
tive if every compact subset of G is contained in some Kn.

Proposition 3.1.6. Suppose that G is a locally-compact separable group. Then
there is an exhaustive increasing sequence (Kn)n∈N of compact subsets of G.

Proof. Fix a countable dense set D ⊆ G and a non-empty open set U ⊆ G with
compact closure. As D−1g is dense and therefore intersects U for all g ∈ G, it
follows that G = DU . Fix an enumeration (gn)n∈N of D, set Fn = {gm | m ≤ n}
and Kn = FnU for all n ∈ N, and observe that if K ⊆ G is compact, then the fact
that K ⊆ DU yields n ∈ N for which K ⊆ FnU ⊆ Kn.

For each set K ⊆ G and cocycle P : E → F(G), define RXK = P−1({H ⊆ G |
H ∩K 6= ∅}). Note that the relations RXK associated with an action and its orbit
cocycle coincide. We say that P is (En,Kn)n∈N-expansive if RXKn

⊆ En for all
n ∈ N.

Proposition 3.1.7. Suppose that G is a locally-compact group, X is a Polish space,
E is an equivalence relation on X, P : E → F(G) is a cocycle, (Kn)n∈N is an
exhaustive increasing sequence of compact subsets of G, and there is an exhaustive
increasing sequence (En)n∈N of closed subequivalence relations of E such that P is
(En,Kn)n∈N-expansive and P � En is upper semi-continuous for all n ∈ N. Then
EP is closed.
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Proof. If ((g,x), (h, y)) ∈ ∼EP , then x E y =⇒ g−1h /∈ P (x, y). The fact that
every topological group is regular yields an open neighborhood Ug ×Uh ⊆ G×G
of (g,h) for which U−1

g Uh is compact and x E y =⇒ P (x, y) ∩ U−1
g Uh = ∅. Fix

n ∈ N sufficiently large that U−1
g Uh ⊆ Kn, as well as an open neighborhood

Vx × Vy ⊆ X × Y of (x, y) with the property that P (x′, y′) ∩ U−1
g Uh = ∅ for all

(x′, y′) ∈ En ∩ (Vx × Vy), and observe that (Ug × Vx)× (Uh × Vy) is disjoint from
EP .

We say that an equivalence relation E on a metric space X is locally generated
by continuous actions of compact Polish groups if X is the union of E-invariant
open sets U ⊆ X for which there are compact Polish groups G and continuous
actions Gy U such that E � U = EUG . Note that every such equivalence relation
is necessarily closed, for if (x, y) ∈ E, then it is the limit of a sequence (xn, yn)n∈N
of elements of E, and if U ⊆ X is an E-invariant open neighborhood of x for
which there is a compact Polish group G and a continuous action G y U such
that E � U = EUG , then by passing to a terminal subsequence, we can assume that
xn ∈ U for all n ∈ N, in which case there is a sequence (gn)n∈N of elements of G
such that gn · xn = yn for all n ∈ N, and by passing to infinite subsequences, we
can assume that (gn)n∈N converges to some g ∈ G, so g · x = y, thus x E y.

Proposition 3.1.8. Suppose that G is a locally-compact Polish group, X is a
metric space, E is an equivalence relation on X, P : E → F(G) is a cocycle,
(Kn)n∈N is an exhaustive increasing sequence of compact subsets of G, and there
is an exhaustive increasing sequence (En)n∈N of subequivalence relations of E such
that En is locally generated by continuous actions of compact Polish groups, P is
(En,Kn)n∈N-expansive, and P � En is upper semi-continuous for all n ∈ N. Then
[R]E

P
⊆ [R]E

P
for all sets R ⊆ G×X with the property that projG(R) is compact.

Proof. Suppose that (g,x) ∈ [R]E
P
, and fix a sequence (gn,xn)n∈N of elements of

[R]E
P
for which (gn,xn)→ (g,x), as well as a sequence (hn, yn)n∈N of elements of

R such that (gn,xn) EP (hn, yn) for all n ∈ N. By passing to infinite subsequences,
we can assume that (hn)n∈N converges to some h ∈ G. As the closure of {gn |
n ∈ N} ∪ {hn | n ∈ N} is compact, so too is the closure of {g−1

n hn | n ∈ N}. Fix
m ∈ N for which the latter set is contained in Km. As g−1

n hn ∈ P (xn, yn) for
all n ∈ N, it follows that xn Em yn for all n ∈ N. Fix an Em-invariant open
neighborhood V ⊆ X of x, a compact Polish group K, and a continuous action
K y V such that EVK = Em � V . By passing to terminal subsequences, we can
assume that xn ∈ V for all n ∈ N, so there is a sequence (kn)n∈N of elements of K
such that yn = kn · xn for all n ∈ N. By passing to infinite subsequences, we can
assume that (kn)n∈N converges to some k ∈ K, in which case (yn)n∈N converges
to the point y = k · x, so x Em y and (hn, yn) → (h, y), thus (h, y) ∈ R. To see
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that (g,x) EP (h, y), note that if U ⊆ G is an open neighborhood of g−1h, then
g−1
n hn ∈ U for all but finitely many n ∈ N, so P (xn, yn)∩U 6= ∅ for all but finitely
many n ∈ N, so the local compactness of G and upper semi-continuity of P � Em
ensure that g−1h ∈ P (x, y).

Suppose that P : E → P(G) and Σ : F → P(G). A homomorphism from P to Σ
is a homomorphism ϕ from E to F such that P (x, y) ⊆ Σ(ϕ(x),ϕ(y)) for all x E y,
a reduction of P to Σ is a reduction ϕ of E to F such that P (x, y) = Σ(ϕ(x),ϕ(y))
for all x E y, and an embedding of P into Σ is an injective reduction of P to Σ.
Given an action G y Y and a function ϕ : X → Y , define ϕG : G×X → Y by
ϕG(g,x) = g · ϕ(x).

Proposition 3.1.9. Suppose that G is a group, X and Y are sets, E is an
equivalence relation on X, P : E → P(G) \ {∅} is a cocycle, and G y Y is an
action.
(1) If ϕ : X → Y is a homomorphism from P to P YG , then ϕG/EP is a homo-

morphism from Gy (G×X)/EP to Gy Y .
(2) If ϕ : X → Y is a reduction of P to P YG , then ϕG/EP is an embedding of

Gy (G×X)/EP into Gy Y .

Proof. If ϕ : X → Y is a homomorphism from P to P YG , g,h ∈ G, and
w E x, then P ((g,w), (h,x)) = gP (w,x)h−1 ⊆ gP YG (ϕ(w),ϕ(x))h−1 =
P YG (ϕG(g,w),ϕG(h,x)), so ϕG is a homomorphism from P to P YG , and therefore
factors over EP to a homomorphism from P/EP to P YG , thus to a homomorphism
from Gy (G×X)/EP to Gy Y .

Similarly, if ϕ : X → Y is a reduction of P to P YG , g,h ∈ G, and w E x, then
P ((g,w), (h,x)) = gP (w,x)h−1 = gP YG (ϕ(w),ϕ(x))h−1 = P YG (ϕG(g,w),ϕG(h,
x)), so ϕG is a reduction of P to P YG , and therefore factors over EP to an embedding
of P/EP into P YG , thus to an embedding of Gy (G×X)/EP into Gy Y .

3.2 Cutting and stacking

For all n ∈ N, let E0,n(N) denote the equivalence relation on NN given by
a E0,n(N) b ⇐⇒ ∀m ≥ n am = bm, and define E0(N) =

⋃
n∈NE0,n(N).

For all s ∈ (
⋃
d∈Z+ G{1,...,d})<N, define Xs =

∏
n<|s|{0, . . . , |sn|}, and for all

g ∈ (
⋃
d∈Z+ G{1,...,d})N, set Tg =

⋃
n∈NXg�n and Xg =

∏
n∈N{0, . . . , |gn|}, and

let �g be the cocycle on E0(N) � Xg given by �g((0)n a (k) a c, (0)n a (0) a
c) = (gn)k for all n ∈ N, c ∈ Xsn+1(g), and 1 ≤ k ≤ |gn|. We say that a function
G : Xg → S(G) is compatible with g if it is compatible with �g. For every such G,
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define Pg,G : E0(N) � Xg → G by Pg,G(c, d) = �g(c, d)Gd, and set Eg,G = EPg,G
and Xg,G = (G×Xg)/Eg,G.

In the special case that G is the function 1G with constant value {1G},
we use Pg, Eg, and Xg to denote Pg,G, Eg,G, and Xg,G. When G = Z and
∀n ∈ N∀k < |gn| (gn)k+1 > (gn)k +

∑
m<n(gm)|gm|, it is not difficult to see that

G y Xg is essentially generated by the automorphism obtained via cutting and
stacking with stacks of height |gn|+ 1 and (gn)k+1 − 1− (gn)k −

∑
m<n(gm)|gm|

insertions between the kth and (k+ 1)st levels of the nth stack.
For all s ∈ Tg, define gs = ∏

n<|s|(gn)s(n).

Proposition 3.2.1. Suppose that G is a group, g ∈ (
⋃
d∈Z+ G{1,...,d})N, G : Xg →

S(G) is compatible with g, n ∈ N, c ∈ Xsn(g), and s, t ∈ Xg�n. Then Pg,G(s a
c, t a c) = gsG(0)nac(gt)−1.

Proof. As

Pg,G(s a c, t a c) = �g(s a c, t a c)Gtac

= �g(s a c, (0)n a c)�g((0)n a c, t a c)Gtac

= �g(s a c, (0)n a c)G(0)nac�g((0)n a c, t a c),

it is sufficient to show that �g(s a c, (0)n a c) = gs for all n ∈ N, c ∈ Xsn(g), and
s ∈ Xg�n. But if this holds at n and c ∈ Xsn+1(g), k ≤ |gn|, and s ∈ Xg�n, then

�g(s a (k) a c, (0)n a (0) a c)

= �g(s a (k) a c, (0)n a (k) a c)�g((0)n a (k) a c, (0)n a (0) a c)

= gs(gn)k
= gsa(k),

so it holds at n+ 1.

Given a binary relation R on X, we say that a sequence (Xi)i∈I of subsets of
X is R-discrete if every element of ∏

i∈I Xi is R-discrete. For all n ∈ N, define
IP(g � n) = {gs | s ∈ Xg�n}. We say that (g, G) is (Kn)n∈N-expansive if
gnG(0)n+1ac is RGIP(g�n)−1KnIP(g�n)-discrete for all n ∈ N and c ∈ Xsn+1(g). In the
special case that G = 1G, we say that g is (Kn)n∈N-expansive.

Proposition 3.2.2. Suppose that G is a topological group, (Kn)n∈N is an increas-
ing sequence of compact subsets of G, g ∈ (

⋃
d∈Z+ G{1,...,d})N, G : Xg → S(G) is

compatible with g, and (g, G) is (Kn)n∈N-expansive. Then Pg,G is (E0,n(N) �
Xg,Kn)n∈N-expansive.
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Proof. Simply observe that if n ∈ N, c ∈ Xsn+1(g), j, k ≤ |gn| are distinct, and s, t ∈
Xg�n, then (gn)jG(0)n+1ac ∩ (gs)−1Kngt(gn)k = ∅, so gs(gn)jG(0)n+1ac(gn)−1

k

(gt)−1 ∩Kn = ∅, thus Proposition 3.2.1 ensures that Pg,G(s a (j) a c, t a (k) a
c) ∩Kn = ∅.

We say that an action of a locally compact Polish group is obtained via expansive
cutting and stacking if it is of the form Gy Xg,G, where g ∈ (

⋃
d∈Z+ G{1,...,d})N,

G : Xg → F(G) ∩ S(G) is compatible with g and continuous, and (g, G) is
(Kn)n∈N-expansive for some exhaustive increasing sequence (Kn)n∈N of compact
subsets of G.

Proposition 3.2.3. Suppose that G is a locally-compact Polish group and Gy X
is obtained via expansive cutting and stacking. Then X is a locally-compact Polish
space and Gy X is minimal and continuous.

Proof. Fix an exhaustive increasing sequence (Kn)n∈N of compact subsets of G,
g ∈ (

⋃
d∈Z+ G{1,...,d})N, as well as a continuous function G : Xg → F(G) ∩ S(G)

compatible with g for which (g, G) is (Kn)n∈N-expansive and Gy X is Gy Xg,G.
As E0(N) � Xg is minimal, Proposition 3.1.4 implies that G y Xg,G is minimal.
Proposition 3.2.1 ensures that Pg,G � (E0,n(N) � Xg) is continuous for all n ∈ N.
As (E0,n(N) � Xg)-saturations of open sets are open for all n ∈ N, Proposition
3.1.5 implies that Eg,G-saturations of open sets are open, so Proposition 3.1.3
ensures that G y Xg,G is continuous. Proposition 3.2.2 ensures that Pg,G is
(E0,n(N) � Xg,Kn)n∈N-expansive. As E0,n(N) � Xg is closed for all n ∈ N,
Proposition 3.1.7 implies that Eg,G is closed. As G×Xg is a locally-compact
Polish space, Proposition 3.1.2 ensures that so too is Xg,G.

The composition of relations R ⊆ X × Y and S ⊆ Y × Z is given by RS =
{(x, z) ∈ X ×Z | ∃y ∈ Y x R y S z}.

Proposition 3.2.4. Suppose that Gy X is a continuous action of a topological
group on a topological space, K,L ⊆ G are compact, R ⊆ X ×X is closed, and
(x, y) ∈ ∼RXK−1RR

X
L . Then there are open sets UK ⊇ K and UL ⊇ L and open

neighborhoods Vx and Vy of x and y such that (Vx × Vy) ∩RXU−1
K

RRXUL
= ∅.

Proof. The fact that R is closed ensures that for all (g,h) ∈ K × L, there
are open neighborhoods Wg,h,x,Wg,h,y ⊆ X of g · x and h · y such that R ∩
(Wg,h,x ×Wg,h,y) = ∅. As G y X is continuous, there are open neighbor-
hoods Ug,h,x,Ug,h,y ⊆ G of g and h and Vg,h,x,Vg,h,y ⊆ X of x and y such that
Ug,h,xVg,h,x ⊆ Wg,h,x and Ug,h,yVg,h,y ⊆ Wg,h,y. As K × L is compact, there is a
finite set F ⊆ K × L such that K × L ⊆ ⋃

(g,h)∈F Ug,h,x ×Ug,h,y. Define F ′ =

32



Chapter 3 A generalization of cutting and stacking

{F ′ ⊆ F | L ⊆ ⋃
(g,h)∈F ′ Ug,h,y}, and observe that the sets UK =

⋃
(g,h)∈F Ug,h,x,

UL =
⋂
F ′∈F ′

⋃
(g,h)∈F ′ Ug,h,y, Vx =

⋂
(g,h)∈F Vg,h,x, and Vy =

⋂
(g,h)∈F Vg,h,y are as

desired.

A homomorphism from ρ : E → G to Σ : F → P(G) is a homomorphism
from the function P : E → P(G) given by P (w,x) = {ρ(w,x)} to Σ. Given
an equivalence relation E on X and a binary relation R on X, we say that a
function ϕ : Xg → X is doubly (R, (Kn)n∈N)-expansive with respect to a co-
cycle P : E → P(G) \ {∅} if it is a homomorphism from ∼E0,n(N) � Xg to
∼RXKnIP(g�n)RR

X
IP(g�n)−1Kn

for all n ∈ N. When R is equality on X, we say
that ϕ is doubly (Kn)n∈N-expansive. As before, we say that (g, G) is doubly
(Kn)n∈N-expansive if gnG(0)n+1ac is RG(IP(g�n)−1KnIP(g�n))2-discrete for all n ∈ N
and c ∈ Xsn+1(g).

Proposition 3.2.5. Suppose that G is a locally-compact separable group, (Kn)n∈N
is an exhaustive increasing sequence of compact subsets, g ∈ (

⋃
d∈Z+ G{1,...,d})N,

E is an equivalence relation on a set X, P : E → P(G) \ {∅} is a cocycle, and
ϕ : Xg → X is a doubly-(Kn)n∈N-expansive homomorphism from �g to P . Then
the function G : Xg → S(G) given by Gc = P (ϕ(c),ϕ(c)) is compatible with g,
(g, G) is doubly (Kn)n∈N-expansive, and ϕ is a reduction of Pg,G to P .

Proof. To see that G is compatible with g, note that

�g(c, d)Gd = �g(c, d)P (ϕ(d),ϕ(d))
= P (ϕ(c),ϕ(d))
= P (ϕ(c),ϕ(c))�g(c, d)
= Gc�g(c, d).

To see that (g, G) is doubly (Kn)n∈N-expansive, suppose that n ∈ N, c ∈
Xsn+1(g), j, k ≤ |gn| are distinct, and s, t ∈ Xg�n. The fact that P (ϕ(s a
(j) a c),ϕ(t a (k) a c)) and KnIP(g � n)IP(g � n)−1Kn are disjoint ensures
that so too are P (ϕ(s a (j) a c),ϕ((0)n+1 a c)) and KnIP(g � n)IP(g �
n)−1KnP (ϕ(t a (k) a c),ϕ((0)n+1 a c)). As gr(gn)iG(0)n+1ac = P (ϕ(r a
(i) a c),ϕ((0)n+1 a c)) for all (r, i) ∈ {(s, j), (t, k)}, it follows that gnG(0)n+1ac

is RG(IP(g�n)−1KnIP(g�n))2-discrete.
To see that ϕ is a homomorphism from Pg,G to P , simply observe that if n ∈ N,

c ∈ Xsn(g), and s, t ∈ Xg�n, then Pg,G(s a c, t a c) = �g(s a c, t a c)P (ϕ(t a
c),ϕ(t a c)) = P (ϕ(s a c),ϕ(t a c)).

To see that ϕ is a homomorphism from ∼E0(N) � Xg to ∼E, note that if
c, d ∈ Xg are E0(N)-inequivalent but ϕ(c) E ϕ(d), then Kn ∩ P (ϕ(c),ϕ(d)) = ∅
for all n ∈ N, so ϕ(c) and ϕ(d) are E-inequivalent.
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A homomorphism parameter for an action Gy X of a group by homeomor-
phisms of a Polish space is a sequence of the form P = (dPX , (εPn )n∈N, gP ,VP ),
where dPX is a compatible complete metric on X, (εPn )n∈N is a sequence of positive
real numbers converging to zero, gP ∈ (

⋃
d∈Z+ G{1,...,d})N, and VP is a countable

basis for X.
A P -code is a sequence V ∈ (VP )N such that, for all n ∈ N, the following

hold:
(1) ∀k ≤ |gPn | (gPn )kVn+1 ⊆ Vn.
(2) ∀s ∈ XgP �{0,...,n} diamdP

X
((gP )sVn+1) ≤ εPn .

Condition (1) yields that if c ∈ XgP and n ∈ N, then (gP )c�(n+1)Vn+1 =

(gP )c�n(gn)c(n)Vn+1 ⊆ (gP )c�nVn, so condition (2) implies that we obtain a
continuous function ϕP ,V : XgP → X by letting ϕP ,V(c) be the unique element of⋂
n∈N(gP )c�nVn.

Proposition 3.2.6. Suppose that Gy X is an action of a group by homeomor-
phisms of a Polish space, P is a homomorphism parameter, and V ∈ (VP )N is a
P -code. Then ϕP ,V is a homomorphism from �gP to PXG .

Proof. Simply observe that

{�gP ((0)n a (k) a c, (0)n a (0) a c) · ϕP ,V((0)n a (0) a c)}

= {(gPn )k · ϕP ,V((0)n a (0) a c)}
=

⋂
m∈N(gPn )k(gP )(0)

na(0)ac�mVn+1+m

=
⋂
m∈N(gP )(0)

na(k)ac�mVn+1+m

= {ϕP ,V((0)n a (k) a c)}

for all n ∈ N, c ∈ Xsn+1(gP ), and k ≤ |gPn |.

An embedding parameter for an action G y X of a σ-compact group by
homeomorphisms of a Polish space is a sequence of the form P = (dPX , (εPn )n∈N, gP ,
(KP

n )n∈N,RP ,VP ) with the property that the sequence P ′ = (dPX , (εPn )n∈N, gP ,VP )
is a homomorphism parameter, (KP

n )n∈N is an exhaustive increasing sequence of
compact subsets of G, and RP is a closed binary relation on X.

A P -code is a P ′-code V ∈ (VP )N such that gPnVn+1 is RX
LP

n
RPRX

LP
n
-discrete,

where LPn = IP(gP � n)−1KP
n IP(gP � n), for all n ∈ N.

Proposition 3.2.7. Suppose that G y X is an action of a σ-compact group by
homeomorphisms of a Polish space, P is an embedding parameter, and V ∈ (VP )N
is a P -code. Then ϕP ,V is doubly (RP , (KP

n )n∈N)-expansive.
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Proof. Note that if n ∈ N, c, d ∈ Xsn+1(gP ), s, t ∈ XgP �n, and j, k ≤ |gPn | are
distinct, then ϕP ,V(r a (i) a c) ∈ IP(gP � n)(gPn )iVn+1 for all i ∈ {j, k} and r ∈
{s, t} by Propositions 3.2.1 and 3.2.6, in which case (ϕP ,V(s a (j) a c),ϕP ,V(t a
(k) a d)) /∈ RX

KP
n IP(gP �n)R

PRXIP(gP �n)−1KP
n
, as gPnVn+1 isRXLP

n
RPRX

LP
n
-discrete.

3.3 Continuous disjoint unions

We associate with each function g : I → (
⋃
d∈Z+ G{1,...,d})N the set Xg = {(i, c) ∈

I × NN | c ∈ Xg(i)} and the cocycle �g : (= × E0(N)) � Xg → G given by
�g((i, c), (i, d)) = �g(i)(c, d). We say that a function G : Xg → S(G) is compatible
with g if G(i) is compatible with g(i) for all i ∈ I, in which case we define
Pg,G : (= × E0(N)) � Xg → S(G) by Pg,G((i, c), (i, d)) = Pg(i),G(i)(c, d), and
set Eg,G = EPg,G

and Xg,G = (G×Xg)/Eg,G. We say that (g, G) is (Kn)n∈N-
expansive if (g(i), G(i)) is (Kn)n∈N-expansive for all i ∈ I. We say that an action
of a locally compact Polish group is a continuous disjoint union of actions obtained
via expansive cutting and stacking if it is of the form G y Xg,G, where I is a
Polish space, g : I → (

⋃
d∈Z+ G{1,...,d})N is continuous, G : Xg → F(G) ∩ S(G)

is both compatible with G and continuous, and (g, G) is (Kn)n∈N-expansive for
some exhaustive increasing sequence (Kn)n∈N of compact subsets of G.

Proposition 3.3.1. Suppose that G is a locally-compact Polish group and Gy X
is a continuous disjoint union of actions obtained via expansive cutting and stacking.
Then X is Polish and Gy X is continuous.

Proof. Fix a exhaustive increasing sequence (Kn)n∈N of compact subsets of G,
a Polish space I, a continuous function g : I → (

⋃
d∈Z+ G{1,...,d})N, and a con-

tinuous function G : Xg → F(G) ∩ S(G) compatible with g for which (g, G) is
(Kn)n∈N-expansive and G y X is G y Xg,G. Note that (=×E0,n(N)) � Xg is
locally generated by continuous actions of compact groups, ((=×E0,n(N)) � Xg)-
saturations of open sets are open, and Proposition 3.2.1 ensures that Pg,G �
((=×E0,n(N)) � Xg) is continuous for all n ∈ N. Proposition 3.1.5 ensures that
Eg,G-saturations of open sets are open. As Proposition 3.2.2 implies that Pg,G
is ((=×E0,n(N)) � Xg,Kn)n∈N-expansive, Proposition 3.1.7 yields that Eg,G is
closed, thus Xg,G is Polish by Propositions 3.1.1 and 3.1.8. Proposition 3.1.3
ensures that Gy Xg,G is continuous.

The stabilizer function associated with an action Gy X is given by Stab(x) =
{g ∈ G | g · x = x} for all x ∈ X.
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Proposition 3.3.2. Suppose that Gy X is a continuous action of a topological
group on a Hausdorff space. Then the corresponding stabilizer function is upper
semicontinuous.

Proof. If K ⊆ G is compact, then Stab−1({F ⊆ G | F ∩K = ∅}) = {x ∈ X |
¬x RXK x}, and the latter set is open by Proposition 3.2.4.

A function ϕ : X → Y between topological spaces is Baire class one if the
preimage of every open subset of Y is Fσ. In the special case that Y is second
countable, this is equivalent to the existence of a sequence (Fn)n∈N of closed subsets
of X for which the preimage of every open subset of Y is a union of sets along
(Fn)n∈N.

Proposition 3.3.3. Suppose that X is a topological space, Y is a locally-compact
regular second-countable space, and ϕ : X → F(Y ) is upper semicontinuous. Then
ϕ is Baire class one.

Proof. If U ⊆ Y is open, then there are compact setsKn ⊆ Y with the property that
U =

⋃
n∈NKn, so ϕ−1({F ⊆ Y | F ∩U 6= ∅}) = ⋃

n∈N ϕ
−1({F ⊆ Y | F ∩Kn 6= ∅}

), and the latter set is Fσ.

A universal embedding parameter for a Borel action G y X of a locally-
compact Polish group on a Polish space is a sequence of the form P =
(dPG, dPX , (εPn )n∈N, (FPn )n∈N, (KP

n )n∈N,RP ,UP ,VP , (WP
n )n∈N) for which there is

a Polish topology τ on X such that X and (X, τ ) have the same Borel sets,
G y (X, τ ) is continuous, dPG is a compatible complete metric on G, dPX is a
compatible complete metric on (X, τ ), (εPn )n∈N is a sequence of positive real
numbers converging to zero, (FPn )n∈N is a sequence of closed subsets of (X, τ )
such that the preimage of every open subset of F(G) under the stabilizer function
is a union of sets along (FPn )n∈N, (KP

n )n∈N is a exhaustive increasing sequence of
compact subsets of G containing 1G, RP is a closed binary relation on (X, τ ), UP
is a countable basis for G, VP is a countable basis for (X, τ ), and (WP

n )n∈N is a
sequence of dense open subsets of (X, τ ) for which the topology ⋂

n∈NW
P
n inherits

from (X, τ ) is finer than that it inherits from X.
For all n ∈ N, d ∈ (Z+)n, and U ∈ ∏

m<nP(G){0,...,dm}, define IP(U) = {Us |
s ∈ ∏

m<n{0, . . . , dm}}, where Us =
∏
m<n(Um)sm for all s ∈ ∏

m<n{0, . . . , dm}.
A P -code is a pair (U, V) ∈ (

∏
n∈N

∏
m<n(UP ){0,...,dm})× (VP )N, where d ∈

(Z+)N, such that for all n ∈ N, the following hold:
(1) ∀m < n∀k ≤ dm ((Un+1)m)k ⊆ ((Un)m)k.
(2) ∀m ≤ n∀k ≤ dm diamdP

G
(((Un+1)m)k) ≤ εPn .
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(3) ∀s ∈ ∏
m≤n{0, . . . , dm} Us

n+1Vn+1 ⊆ Us�n
n Vn.

(4) ∀s ∈ ∏
m≤n{0, . . . , dm} diamdP

X
(Us

n+1Vn+1) ≤ εPn .

(5) ∀s ∈ ∏
m≤n{0, . . . , dm} Us

n+1Vn+1 ⊆ WP
n .

(6) ∀s ∈ ∏
m≤n{0, . . . , dm}∃F ∈ {FPn ,∼FPn } Us

n+1Vn+1 ⊆ F .
(7) (((Un+1)n)kVn+1)k≤dn is RX

LP
n
RPRX

LP
n
-discrete, where

LPn = IP(Un+1 � n)−1KP
n IP(Un+1 � n).

(8) ∀m ≤ n 1G ∈ ((Un+1)m)0.
Let IP denote the set of all P -codes. Conditions (1) and (2) ensure that we
obtain a continuous function gP : IP → (

⋃
d∈Z+ G{1,...,d})N by letting (gPn (U, V))k

be the unique element of ⋂
n>m((Un)m)k. Conditions (3) and (4) imply that

we obtain a continuous function ϕP : XgP → (X, dPX) by letting ϕP ((U, V), c)
be the unique element of ⋂

n≥m Us
nVn. Define GP : XgP → F(G) ∩ S(G) by

GP = Stab ◦ ϕP .

Proposition 3.3.4. Suppose that Gy X is a Borel action of a locally-compact
Polish group on a Polish space, P is a universal embedding parameter, and (U, V)
is a P -code. Then ϕP : XgP → X and GP are continuous.

Proof. As condition (5) ensures that ϕP (XgP ) ⊆
⋂
n∈NW

P
n , it follows that

ϕP : XgP → X is continuous.
To see that GP is continuous, note that if ((U, V), c) ∈ XgP and U ⊆ F(G)

is an open neighborhood of the stabilizer of ϕP ((U, V), c), then there exists n ∈ N
with the property that ϕP ((U, V), c) ∈ FPn and Stab(FPn ) ⊆ U , so condition (6)
ensures that Uc�(n+1)

n+1 Vn+1 ⊆ FPn , thus GP ((NU�(n+2)×NV�(n+2))×Nc�(n+1)) ⊆
U .
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Transience

4.1 Basis theorems

Given a sequence d ∈ NN, we say that a set T ⊆ ⋃
n∈N

∏
m<n{0, . . . , dm} is dense if

for all s ∈ ⋃
n∈N

∏
m<n{0, . . . , dm}, there exists t ∈ T such that s v t. Given a set

S ⊆ ⋃
d∈Z+ P(G{1,...,d}), we say that a sequence g ∈ (

⋃
d∈Z+ G{1,...,d})N is S-dense

if for all S ∈ S, there are densely-many g ∈ G such that there are v-densely-many
t ∈ Tg for which ggtg|t|(ggt)−1 ∈ S.

Proposition 4.1.1. Suppose that G is a topological group, (Kn)n∈N is an ex-
haustive increasing sequence of compact subsets of G, S ⊆ ⋃

d∈Z+ P(G{1,...,d}),
g ∈ (

⋃
d∈Z+ G{1,...,d})N is S-dense, G : Xg → S(G) is compatible with g, and

(g, G) is (Kn)n∈N-expansive. Then Gy Xg,G is expansively S-recurrent.

Proof. Suppose that d ∈ Z+, K ⊆ G is compact, S ∈ S ∩ P(G{1,...d}), and
V ⊆ Xg,G is a non-empty open set. Fix s ∈ Tg and a non-empty open set
U ⊆ G for which U ×Ns ⊆

⋃
V . As g is S-dense, there exist g ∈ U , n ∈ N,

and t ∈ Xg�n for which g−1Kg ⊆ Kn, s v t, and ggtgn(ggt)−1 ∈ S. Fix c ∈
Xsn+1(g). Proposition 3.2.1 yields that Pg,G((g, t a (j) a c), (g, t a (k) a c)) =

ggt(gn)jG(0)n+1ac(gn)−1
k (ggt)−1 for all j, k ≤ d. As (g, G) is (Kn)n∈N-expansive,

the latter set is disjoint from K whenever j 6= k, so the sequence x ∈ V {0,...,d} given
by xk = [(g, t a (k) a c)]Eg,G is RXg,G

K -discrete. But xk = ggt(gn)k(ggt)−1 · x0

for all 1 ≤ k ≤ d, so ∆Xg,G
G ({y ∈ V {0,...,d} | y is RXg,G

K -discrete}) ∩ S 6= ∅.

If S is conjugation invariant and a continuous action is not σ-expansively
S-transient, then it is somewhere expansively S-recurrent:

Proposition 4.1.2. Suppose that G y X is an action of a group by homeo-
morphisms of a second-countable topological space whose open subsets are Fσ,
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S ⊆ ⋃
d∈Z+ P(G{1,...,d}), and X is not a union of countably-many expansively-

(
⋃
g∈G gSg−1)-transient closed sets. Then there is a G-invariant non-empty closed

set C ⊆ X such that Gy C is expansively S-recurrent.

Proof. As X is second countable, there is a maximal open set V ⊆ X contained
in a union of countably-many expansively (

⋃
g∈G gSg−1)-transient closed sets. To

see that the G-invariant non-empty closed set C = ∼V is as desired, suppose
that W ⊆ C is an expansively (

⋃
g∈G gSg−1)-transient open set, and fix an open

set W ′ ⊆ X such that W = C ∩W ′, as well as closed sets Cn ⊆ X for which
W ′ =

⋃
n∈NCn. As the sets C ∩Cn are expansively (

⋃
g∈G gSg−1)-transient, the

maximality of V ensures that it contains W ′, thus W = ∅.

Given a binary relation R on X, we say that a point x ∈ X is R-expansively
S-recurrent if for all open neighborhoods V ⊆ X of x, d ∈ Z+, compact sets
K ⊆ G, and S ∈ S ∩P(G{1,...,d}), there exists g ∈ S such that x ∈ ⋂

k≤d(gk)
−1V

and g · x is RXK−1RR
X
K-discrete. In the special case that R is equality, we say that

x is expansively S-recurrent.

Proposition 4.1.3. Suppose that G is a locally-compact separable group, S ⊆⋃
d∈Z+ P(G{1,...,d}) is countable, and Gy X is an expansively S-recurrent continu-

ous action on a second-countable topological space. Then there are comeagerly-many
expansively S-recurrent points.

Proof. By Proposition 3.1.6, we need only show that if V ⊆ X is a non-empty
open set, d ∈ Z+, K ⊆ G is compact, and S ∈ S ∩P(G{1,...,d}), then there exist
g ∈ S and a non-empty open set W ⊆ ⋂

k≤d(gk)
−1V for which gW is RXK-discrete.

But this is a straightforward consequence of Proposition 3.2.4.

Let ≤lex denote the linear ordering of N<N given by s <lex t ⇐⇒ (|s| <
|t| or (|s| = |t| and sδ(s,t) < tδ(s,t))), where δ(s, t) is the least natural number for
which sδ(s,t) 6= tδ(s,t), and let 〈·〉 : 2<N → N denote the isomorphism of ≤lex � 2<N

with ≤. For all d ∈ 2N, g ∈ (
⋃
d∈Z+ G{1,...,d})N, and G : Xg → F(G) ∩ S(G),

define both g ∗ d ∈ (
⋃
d∈Z+ G{1,...,d})N and G ∗ d : Xg∗d�n → F(G) ∩ S(G) by

(g ∗ d)n = g〈d�n〉 and (G ∗ d)c = Gϕd(c), where ϕd : NN → NN is given by ϕd(b) =⊕
n∈N bn a (0)〈b�(n+1)〉−〈b�n〉−1.

Proposition 4.1.4. Suppose that Gy X is a Borel action of a locally-compact
Polish group on a Polish space, P is a universal embedding parameter, S ⊆⋃
d∈Z+ P(G{1,...,d}) is countable, and G y (X, dPX) has comeagerly-many RP -

expansively S-recurrent points. Then there is a P -code (U, V) such that gP (U, V) ∗
d is S-dense for all d ∈ 2N.
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Proof. Fix a countable dense set H ⊆ G, and define T =
⋃
h∈H h

−1Sh.
Lemma 4.1.5. There exists a sequence T ∈ T N with the property that ∀d ∈
2N∀T ∈ T ∃∞n ∈ N T = T〈d�n〉.

Proof. Fix an enumeration (Tn)n∈N of T , as well as a sequence (kn)n∈N of natural
numbers such that ∀k ∈ N∃∞n ∈ N kn = k, and define T〈s〉 = Tk|s| for all
s ∈ 2<N.

Lemma 4.1.6. There exists a sequence s ∈ ∏
n∈N

∏
m<n{0, . . . , dm} such that

supp(s〈t〉) ⊆ {〈t � n〉 | n < |t|} for all t ∈ 2<N, and supp(s) ⊆ {〈d �
n〉 | n ∈ N} =⇒ ∃n ∈ N (s v s〈d�n〉 and T = T〈d�n〉) for all d ∈ 2N,
s ∈ ⋃

n∈N
∏
m<n{0, . . . , dm}, and T ∈ T .

Proof. Fix natural numbers dn > 0 such that Tn ⊆ G{1,...,dn} for all n ∈ N, and
recursively define s〈t〉 = s a (0)〈t〉−|s|, where t ∈ 2<N and s is the ≤lex-least element
of ⋃

n≤|t|
∏
m<n{0, . . . , dm} such that supp(s) ⊆ {〈t � `〉 | ` < |t|} but there does

not exist ` < |t| for which s v s〈t�`〉 and T〈t�`〉 = T〈t〉.

Set U0 = ∅ and fix a non-empty set V0 ∈ VP . We will recursively find
gn ∈ G{1,...,dn}, sequences (((Un+1)m)k)k≤dm,m≤n of non-empty sets in UP , and
non-empty sets Vn+1 ∈ VP such that:
(1) ∀m < n∀k ≤ dm ((Un+1)m)k ⊆ ((Un)m)k.
(2) ∀m ≤ n∀k ≤ dm diamdP

G
(((Un+1)m)k) ≤ εPn .

(3) ∀s ∈ Xg�{0,...,n} Us
n+1Vn+1 ⊆ gs�nVn.

(4) ∀s ∈ Xg�{0,...,n} diamdP
X
(Us

n+1Vn+1) ≤ εPn .

(5) ∀s ∈ Xg�{0,...,n} Us
n+1Vn+1 ⊆ WP

n .
(6) ∀s ∈ Xg�{0,...,n}∃F ∈ {FPn ,∼FPn } Us

n+1Vn+1 ⊆ F .
(7) (((Un+1)n)kVn+1)k≤dn is RX

LP
n
RPRX

LP
n
-discrete.

(8) ∀m ≤ n∀k ≤ dm (gm)k ∈ ((Un+1)m)k.
Suppose that n ∈ N and we have already found g � n, Un, and Vn. Fix an RP -

expansively T -recurrent point yn ∈ gsnVn, and define L′n = IP(g � n)−1KP
n IP(g �

n). Then there exists gn ∈ Tn for which yn ∈
⋂
k≤dn

(gn)
−1
k gsnVn and gn · yn

is RXgsnL′n
RPRXL′n(gsn )−1-discrete. Set gn = (gsn)−1gngsn . Then the point xn =

(gsn)−1 · yn is in ⋂
k≤dn

(gn)−1
k Vn and gn · xn is RXL′nR

PRXL′n-discrete. For all s ∈∏
m≤n{0, . . . , dm}, the regularity ofX and the fact that gs ·xn = gs�n(gn)s(n) ·xn ∈

gs�nVn yield an open neighborhoodWs ⊆ X of gs ·xn whose closure is contained in
gs�nVn and whose dPX -diameter is at most εPn , and the continuity of Gy (X, dPX)
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yields open neighborhoods Um,s ⊆ G of (gm)s(m) and an open neighborhood Vs ⊆ X

of xn for which (
∏
m≤n Um,s)Vs ⊆ Ws, in which case the intersections ((Un+1)m)k

of the sets Um,s where k = s(m) and the intersection Vn+1 of the sets Vs satisfy
conditions (3) and (4). The regularity of G ensures that we can thin down the
sets ((Un+1)m)k to neighborhoods of (gm)k satisfying conditions (1) and (2). For
all s, t ∈ ∏

m<n{0, . . . , dm} and s′, t′ ∈
∏
m≤n{0, . . . , dm} such that s′(n) 6= t′(n),

Proposition 3.2.4 yields open neighborhoods (Us,s′,t,t′)m ⊆ G of (gm)s(m) and
(Vs,s′,t,t′)m ⊆ G of (gm)t(m) for all m < n, (U ′s,s′,t,t′)m ⊆ G of (gm)s′(m) and
(V ′s,s′,t,t′)m ⊆ G of (gm)t′(m) for all m ≤ n, and Ws,s′,t,t′ ⊆ X of xn with the
property that the product of (∏m<n(Us,s′,t,t′)m)

−1KP
n (

∏
m<n(U

′
s,s′,t,t′)m)Ws,s′,t,t′

with (
∏
m<n(Vs,s′,t,t′)m)

−1KP
n (

∏
m<n(V

′
s,s′,t,t′)m)Ws,s′,t,t′ is disjoint from RP , so

we obtain sets satisfying condition (7) by replacing ((Un+1)m)k with its inter-
section with the sets (Us,s′,t,t′)m where k = s(m), (U ′s,s′,t,t′)m where k = s′(m),
(Vs,s′,t,t′)m where k = t(m), and (V ′s,s′,t,t′)m where k = t′(m), and Vn+1 with its
intersection with the sets Ws,s′,t,t′ . As the intersection Wn of the sets (gs)−1WP

n

for s ∈ ∏
m≤n{0, . . . , dm} is dense, there exists x′n ∈ Vn+1 ∩Wn. For all s ∈∏

m≤n{0, . . . , dm}, the continuity of Gy X yields open neighborhoods U ′m,s ⊆ G

of (gm)s(m) and V ′s ⊆ X of x′n for which (
∏
m≤n U

′
m,s)V

′
s ⊆ WP

n , in which case
we obtain sets satisfying condition (5) by replacing each ((Un+1)m)k with its
intersection with the sets U ′m,s where k = s(m) and Vn+1 with its intersection
with the sets V ′s . Note that if s ∈ Xg�{0,...,n}, then there is a non-empty open
set W ′s ⊆ gsVn+1 contained in FPn or ∼FPn , and the continuity of Gy X yields
neighborhoods U ′′m,s ⊆ ((Un+1)m)s(m) of (gm)s(m) and a non-empty open set
V ′′s ⊆ Vn+1 for which (

∏
m≤n U

′′
m,s)V

′′
s ⊆ W ′s, so by replacing ((Un+1)m)s(m) with

U ′′m,s and Vn+1 with V ′′s , we obtain sets satisfying the instance of condition (6)
at s. By recursively applying this observation to each s ∈ ∏

m≤n{0, . . . , dm}, we
obtain sets satisfying condition (6). Replacing each of the sets ((Un+1)m)k with
non-empty subsets in UP and Vn+1 with a non-empty subset in VP , this completes
the construction.

To complete the proof, it only remains to note that (U, V) is a P -code,
gP (U, V) ∗ d is S-dense for all d ∈ 2N, and g = gP (U, V).

We next characterize σ-expansive (
⋃
g∈G gSg−1)-transience:

Theorem 4.1.7. Suppose that G is a locally-compact Polish group, I is a finite
set, (Xi)i∈I is a sequence of Polish spaces, and (G y Xi)i∈I is a sequence of
Borel actions such that Stab(xi) = Stab(xj) for all distinct i, j ∈ I, xi ∈ Xi, and
xj ∈ Xj, and S ⊆

⋃
d∈Z+ P(G{1,...,d}) is a countable non-empty set. Then the

following are equivalent:
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(1) The action Gy ∏
i∈I Xi is not σ-expansively (

⋃
g∈G gSg−1)-transient.

(2) There is an expansively S-recurrent action, obtained via expansive cutting and
stacking, that admits a Baire-measurable stabilizer-preserving homomorphism
to each Gy Xi.

(3) There is an expansively S-recurrent action, obtained via expansive cutting
and stacking, that admits a continuous embedding into each Gy Xi.

Proof. Clearly (3) =⇒ (2).
To see ¬(1) =⇒ ¬(2), observe that if Gy X is a continuous action on a Polish

space that admits a Baire-measurable stabilizer-preserving homomorphism to each
Gy Xi, then it admits a Baire-measurable stabilizer-preserving homomorphism
to Gy ∏

i∈I Xi, and since pullbacks of expansively (
⋃
g∈G gSg−1)-transient sets

through stabilizer-preserving homomorphisms are expansively (
⋃
g∈G gSg−1)-tran-

sient, it follows that if Gy ∏
i∈I Xi is σ-expansively (

⋃
g∈G gSg−1)-transient, then

G y X admits an expansively S-transient non-meager Baire-measurable set, in
which case Propositions 3.2.4 and 2.1.3 ensure that G y X is not expansively
S-recurrent.

To see (1) =⇒ (3), appeal to [BK96, Theorem 5.2.1] to obtain a Polish topology
τi on each Xi for which Xi and (Xi, τi) have the same Borel sets and Gy (Xi, τi)
is continuous, and set X =

∏
i∈I Xi and τ =

∏
i∈I τi. By Proposition 4.1.2, there is

a G-invariant non-empty closed set C ⊆ (X, τ ) such that Gy (C, τ ) is expansively
S-recurrent, so Proposition 4.1.3 ensures that Gy (C, τ ) has comeagerly-many
expansively S-recurrent points. Set R =

⋃
i∈I{(x, y) ∈ X ×X | xi = yi}. As

Stab(xi) = Stab(xj) for all distinct i, j ∈ I, xi ∈ Xi, and xj ∈ Xj , it follows
that every expansively S-recurrent point is R-expansively S-recurrent. As the
“identity” function from (C, τ ) to C is Borel, and therefore Baire measurable,
there is a comeager subset of (C, τ ) on which it is continuous, in which case the
topology that the comeager subset inherits from τ is finer than that it inherits
from X. In particular, it follows that there is a universal embedding parameter
P for Gy C such that dPC is compatible with (C, τ ) and RP = R, in which case
Proposition 4.1.4 yields a P -code (U, V) for which gP (U, V) is S-dense. Propo-
sition 3.3.4 ensures that GP (U, V) is continuous, Proposition 3.2.7 implies that
each of the functions ϕi = projXi

◦ ϕP ((U, V), ·) is a doubly-(KP
n )n∈N-expansive

homomorphism from �gP (U,V) to P
Xi
G , and Proposition 3.2.5 yields that GP (U, V)

is compatible with gP (U, V), (gP (U, V), GP (U, V)) is (KP
n )n∈N-expansive, and

each ϕi is a reduction of PgP (U,V),GP (U,V) to P
Xi
G . Then Gy XgP (U,V),GP (U,V)

is obtained via expansive cutting and stacking. Proposition 3.1.9 yields that
each (ϕi)G/EgP (U,V),GP (U,V) is an embedding of G y XgP (U,V),GP (U,V) into
Gy Xi, and Proposition 4.1.1 implies that Gy XgP (U,V),GP (U,V) is expansively
S-recurrent.
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The σ-expansive-transience spectrum of G y X is the family of all count-
able non-empty sets S ⊆ ⋃

d∈Z+ P(G{1,...,d}) for which G y X is σ-expansively
(
⋃
g∈G gSg−1)-transient.

Theorem 4.1.8. Suppose that Gy X is a Borel (continuous) action of a locally-
compact Polish group on a Polish space. Then there is a continuous disjoint
union of actions obtained via expansive cutting and stacking that has the same
σ-expansive-transience spectrum as G y X and admits a Borel (continuous)
stabilizer-preserving homomorphism to Gy X.

Proof. By [BK96, Theorem 5.2.1], it is sufficient to establish the parenthetical
(continuous) version of the theorem. Towards this end, fix a universal embed-
ding parameter P for G y X such that dPX is compatible with X and RP is
equality on X. Proposition 3.3.4 ensures that ϕP and GP are continuous, Propo-
sitions 3.2.6 and 3.2.7 imply that ϕP ((U, V), ·) is a doubly-(KP

n )n∈N-expansive
homomorphism from �gP (U,V) to PXG for all P -codes (U, V), and Proposition
3.2.5 yields that GP is compatible with gP , (gP , GP ) is (KP

n )n∈N-expansive, and
ϕP ((U, V), ·) is a reduction of PgP (U,V),GP (U,V) to PXG for all P -codes (U, V). It
follows that G y XgP ,GP is a continuous disjoint union of actions obtained via
expansive cutting and stacking, and Proposition 3.1.9 implies that (ϕi)G/EgP ,GP

is a stabilizer-preserving homomorphism from G y XgP ,GP to G y X. To
see that the σ-expansive-transience spectrum of G y X is contained in that of
G y XgP ,GP , observe that if S ⊆ ⋃

d∈Z+ P(G{1,...,d}) is a countable non-empty
set for which Gy X is σ-expansively (

⋃
g∈G gSg−1)-transient, then the fact that

pullbacks of expansively (
⋃
g∈G gSg−1)-transient sets through stabilizer-preserving

homomorphisms are themselves expansively (
⋃
g∈G gSg−1)-transient ensures that

Gy XgP ,GP is σ-expansively (
⋃
g∈G gSg−1)-transient. To see that the two spectra

actually coincide, note that if S ⊆ ⋃
d∈Z+ P(G{1,...,d}) is a countable non-empty

set for which Gy X is not σ-expansively (
⋃
g∈G gSg−1)-transient, then Proposi-

tion 4.1.4 yields a P -code (U, V) for which gP (U, V) is S-dense, in which case
Propositions 3.2.4, 4.1.1, and 2.1.3 ensure that Gy XgP ,GP is not σ-expansively
(
⋃
g∈G gSg−1)-transient.

4.2 Anti-basis theorems

We begin with the following observation:
Proposition 4.2.1. Suppose that G y X is a continuous action of a locally-
compact separable group on a Polish space, S ⊆ ⋃

d∈Z+ P(G{1,...,d}) is a countable
non-empty set, and ∅ ∈ H ⊆ ⋃

d∈Z+ F (X{0,...,d}) is countable. Then the following
are equivalent:
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(1) The pair ({FS | S ∈ S},H) is not in the recurrence spectrum of Gy X.
(2) There exists gn ∈ G, Sn ∈ S, and (FgnSng

−1
n

, gnH)-transient Σ0
2 sets Bn for

which X =
⋃
n∈NBn.

Proof. Note that if U ⊆ G{1,...,d} ×X, d ∈ Z+, S ∈ S ∩P(G{1,...,d}), and x ∈ X,
then Ux ∈ FS ⇔ x ∈ ⋃

g∈S Ug, so {FS | S ∈ S} is Σ0
1-on-open and the claim

immediately follows from the proof of Proposition 2.1.6.

Recall that we use ∀∗x ∈ X ϕ(x) to indicate that {x ∈ X | ϕ(x)} is comeager,
and ∃∗x ∈ X ϕ(x) to indicate that {x ∈ X | ϕ(x)} is non-meager. An almost
stabilizer-preserving-homomorphism from a continuous action Gy X to a Borel
action G y Y is a function ϕ : X → Y such that Stab(ϕ(x)) ⊆ Stab(x) and
∀∗g ∈ G g · ϕ(x) = ϕ(g · x) for comeagerly many x ∈ X.

Proposition 4.2.2. Suppose that G is a locally-compact Polish group, X is a
Polish space, Y and Z are standard Borel spaces, Gy X is a continuous action,
Gy Y is a Borel action, ϕ : Y → Z is a G-invariant Borel function, and R is the
set of z ∈ Z for which there is a Borel almost stabilizer-preserving-homomorphism
from Gy X to Gy ϕ−1({z}). Then R is analytic.

Proof. Fix a compact zero-dimensional Polish topology τ on X whose Borel sets
coincide with those of X, and recall that every Borel function ϕ : (X, τ ) → Y is
continuous on a comeager set (see, for example, [Kec95, Theorem 8.38]), every
continuous function ϕ : (B, τ )→ Y on a Gδ set B ⊆ (X, τ ) is the restriction of a
Baire-class-one function on (X, τ ) (see, for example, [Kur58, §3.31.6]), and every
Baire class one function ϕ : (X, τ )→ Y is a pointwise limit of continuous functions
(see, for example, [Kec95, p. 24.10]). It follows that R is the set of z ∈ Z for which
there are continuous functions ϕn : (X, τ )→ Y such that:
(1) ∀∗x ∈ X ϕ(limn→∞ ϕn(x)) = z.
(2) ∀∗x ∈ X Stab(limn→∞ ϕn(x)) ⊆ Stab(x).
(3) ∀∗x ∈ X∀∗g ∈ G g · limn→∞ ϕn(x) = limn→∞ ϕn(g · x).

As there is a Polish topology on the set of continuous functions from (X, τ ) to
Y with respect to which the evaluation function (f ,x) 7→ f(x) is Borel (see, for
example, [Kec95, Theorem 4.19]) and the pointclass of Borel sets is closed under
category quantification (see, for example, [Kec95, Theorem 16.1]), it follows that R
is analytic.

The following observation yields our primary means of producing incompatible
actions:
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Proposition 4.2.3. Suppose that G is a locally-compact Polish group, g ∈
(
⋃
d∈Z+ G{1,...,d})N, G : Xg → F(G) ∩ S(G) is compatible with g and continuous,

(Kn)n∈N is an exhaustive increasing sequence of compact subsets of G with the
property that (g, G) is doubly (Kn)n∈N-expansive, and d0, d1 ∈ 2N are distinct.
Then no expansively-{G}-recurrent continuous action G y X on a Polish space
admits a Borel almost stabililzer-preserving-homomorphism ϕi to Gy Xg∗di,G∗di

for all i < 2.

Proof. Suppose, towards a contradiction, that there are such almost stabilizer-
preserving-homomorphisms. Then there is a compact set L ⊆ G with the property
that the set B =

⋂
i<2 ϕ

−1
i (Li) is non-meager, where Li = (L×Xg∗di

)/Eg∗di,G∗di

for all i < 2. Fix m ∈ N sufficiently large that L ∪ L−1L ⊆ Km and d0 �
{0, . . . ,m} 6= d1 � {0, . . . ,m}, set K = KmIP(g � {0, . . . , 〈(1)m〉}), and fix a
non-empty open set V ⊆ X in which B is comeager. As G y X is expansively
{G}-recurrent, there exist g ∈ G and x ∈ V ∩ g−1V for which ¬x RXKK−1 g · x. By
Proposition 3.2.4, there are open neighborhoods U ⊆ G of g and W ⊆ V of x for
which UW ⊆ V and RXKK−1 ∩ (W × UW ) = ∅. As ∀h ∈ U∀∗y ∈ W h · y ∈ B,
the Kuratowski-Ulam theorem (see, for example, [Kec95, Theorem 8.41]) ensures
that ∀∗y ∈ W∀∗h ∈ U h · y ∈ B, so the definition of almost stabilizer-preserving-
homomorphism yields h ∈ U and y ∈ B ∩ h−1B with the property that ¬y RXKK−1

h · y, Stab(ϕi(y)) ⊆ Stab(y) for all i < 2, and ϕi(h · y) = h · ϕi(y) for all i < 2,
so PXg∗di,G∗di

G (ϕi(h · y),ϕi(y)) = hStab(ϕi(y)) ⊆ hStab(y) = PXG (h · y, y) for all
i < 2.

For all i, j < 2, fix gi,j ∈ L and ci,j ∈ Xg∗di
such that ψi(hj · y) is the

Eg∗di,G∗di
-class of (gi,j , ci,j). Note that for all i < 2, there exists mi ≥ m for

which ci,0(mi) 6= ci,1(mi), since otherwise Proposition 3.2.1 ensures that LIP(g �
{0, . . . , 〈(1)m〉})IP(g � {0, . . . , 〈(1)m〉})−1L−1 ∩ PXG (y,h · y) 6= ∅, contradicting
the fact that ¬y RXKK−1 h · y.

For all i < 2, let mi be the maximal natural number with the property that
ci,0(mi) 6= ci,1(mi), set ci = smi+1(ci,0) = smi+1(ci,1) and ni = 〈di � {0, . . . ,mi}〉,
and fix i < 2 with the property that ni > n1−i. As LIP(g � {0, . . . ,n1−i})IP(g �
{0, . . . ,n1−i})−1L−1 ∩ PXG (y,h · y) 6= ∅ and PXG (y,h · y) ⊆ LIP(g � {0, . . . ,ni −
1})(gni)(ci,0)ni

(G∗di)(0)mi+1aci
(gni)

−1
(ci,1)ni

IP(g � {0, . . . ,ni−1})−1L−1 by Propo-
sition 3.2.1, the fact that ni ≥ 〈d � {0, . . . ,m}〉 ≥ m contradicts the double
(Kn)n∈N-expansivity of (g, G).

We now establish our primary anti-basis results:

Theorem 4.2.4. Suppose that G is a locally-compact Polish group, S ⊆ ⋃
d∈Z+

P(G{1,...,d}) is a non-empty countable set, and G y X is a non-σ-expansively-
S-transient Borel action on a standard Borel space. Then there is a family B
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of continuum-many G-invariant Borel subsets of X on which G y X is not
σ-expansively-S-transient such that every non-σ-expansively-{G}-transient Borel
action on a standard Borel space admits a Borel stabilizer-preserving homomorphism
to at most one action of the form Gy B, where B ∈ B.

Proof. Fix an exhaustive increasing sequence (Kn)n∈N of compact subsets of G.
By Proposition 4.1.4 and Theorem 4.1.7, we can assume that G y X is of
the form G y Xg,G, where g ∈ (

⋃
d∈Z+ G{1,...,d})N and g ∗ d is S-dense for all

d ∈ 2N, G : Xg → F(G) ∩ S(G) is compatible with g and continuous, and (g, G)
is doubly (Kn)n∈N-expansive. Proposition 4.2.3 then ensures that the family
B = {(G× ϕd(Xg∗d))/Eg,G | d ∈ 2N} is as desired.

Theorem 4.2.5. Suppose that G is a locally-compact Polish group, Gy X is a
Borel action on a standard Borel space, and O is a countable family of non-σ-
expansively-{G}-transient Borel actions on standard Borel spaces. Then there is a
Borel G-action on a standard Borel space that admits a Borel stabilizer-preserving
homomorphism to Gy X and has the same σ-expansive-transience spectrum as
Gy X, but to which no action in O admits a Borel almost stabilizer-preserving-
homomorphism.

Proof. By Proposition 4.2.1, we can assume that each action in O is continuous
and minimal. Fix a universal embedding parameter P , and let R be the set of
pairs ((U, V), d) ∈ IP × 2N with the property that no action in O admits a Borel
almost stabilizer-preserving-homomorphism to Gy XgP (U,V)∗d,GP (U,V)∗d.

Proposition 4.2.2 ensures that R is co-analytic, whereas Proposition 4.2.3 implies
that every vertical section of R is co-countable. The usual uniformization results
for co-analytic sets with large vertical sections (see, for example, [Kec95, Corollary
36.24]) therefore yield a Borel uniformization δ : IP → 2N of R. Define g : IP →
(
⋃
d∈Z+ G{1,...,d})N and G : Xg → F(G)∩S(G) by g(U, V) = gP (U, V) ∗ δ(U, V)

and G(U, V) = GP (U, V) ∗ δ(U, V).
The usual change-of-topology results (see, for example, [Kec95, §13]) and

Proposition 3.3.1 ensure that G y Xg,G is a Borel action on a standard Borel
space. Note that if ϕ : Xg∗d → X is given by ϕ((U, V), c) = (ϕP ◦ ϕδ(U,V))(c),
then ϕ/Eg,G is a stabilizer-preserving Borel homomorphism from G y Xg,G to
Gy X.

To see that the σ-expansive-transience spectrum of G y Xg,G is contained
in that of Gy X, note that if S ⊆ ⋃

d∈Z+ P(G{1,...,d}) is a countable non-empty
set for which G y X is not σ-expansively S-transient, then Proposition 4.1.4
yields (U, V) ∈ IP for which g(U, V) is S-dense, so Proposition 4.1.1 ensures that
G y Xg(U,V),G(U,V) is expansively S-recurrent, thus Proposition 2.1.3 implies
that Gy Xg,G is not σ-expansively S-transient.
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To see that none of the actions Gy Y in O admit a Borel almost-stabilizer-
preserving-homomorphism ϕ to G y Xg,G, note that the minimality of G y Y
would otherwise yield (U, V) ∈ IP with the property that ϕ−1(Xg(U,V),G(U,V)) is
comeager, contradicting the fact that ((U, V), δ(U, V)) ∈ R.
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Chapter 5

Wandering

5.1 Smoothness

A transversal of an action Gy X is a set Y ⊆ X containing exactly one point of
every orbit. Burgess has shown that a Borel action of a Polish group on a standard
Borel space is smooth if and only if it has a Borel transversal [Bur79].

Proposition 5.1.1. A Borel action Gy X of a locally-compact Polish group on
a standard Borel space is smooth if and only if it is σ-expansively {G}-transient.

Proof. By [BK96, Theorem 5.2.1], we can assume that X is Polish and Gy X is
continuous. Fix a compatible complete metric d on X.

To see (=⇒), fix a Borel transversal B ⊆ X of Gy X, and let s be the unique
function from X to B whose graph is contained in EXG . As the graph of s is Borel,
so too is s (see, for example, [Kec95, Theorem 14.12]). It follows that if K ⊆ G
is compact, then KB is Borel, for if H is a countable dense subset of K, then
x ∈ KB ⇐⇒ x ∈ Ks(x) ⇐⇒ ∀ε > 0∃h ∈ H d(x,h · s(x)) < ε for all x ∈ X.
But if (Kn)n∈N is a sequence of compact subsets of G whose union is G, then
(KnB)n∈N is a sequence of expansively {G}-transient Borel sets whose union is X.

To see (⇐=), suppose that (Bn)n∈N is a sequence of expansively {G}-transient
Borel sets whose union is X, and fix compact sets Kn ⊆ G such that EXG � Bn ⊆
RXKn

for all n ∈ N. Then the uniformization theorem for Borel subsets of the plane
with non-meager vertical sections (see, for example, [Kec95, Corollary 18.7]) ensures
that the corresponding sets Cn = {x ∈ X | ∃∗g ∈ G g · x ∈ Bn} are Borel and
there are Borel functions ϕn : Cn → Bn whose graphs are contained in EXG . For
all n ∈ N, Proposition 3.2.4 ensures that EXG � Bn is closed, which easily implies
that EXG � Bn is smooth (see, for example, [Kec95, Exercise 18.20]), thus so too
is G y Cn. As the sets Cn are G-invariant and X =

⋃
n∈NCn, it follows that

Gy X is smooth.
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We now establish our strengthening of the Glimm-Effros dichotomy for Borel
actions of locally-compact Polish groups on Polish spaces:

Theorem 5.1.2. Suppose that Gy X is a Borel action of a locally-compact Polish
group on a Polish space. Then the following are equivalent:
(1) The action Gy X is not smooth.
(2) There is a Baire-measurable stabilizer-preserving homomorphism from a G-

action obtained via expansive cutting and stacking to Gy X.
(3) There is a continuous embedding of a G-action obtained via expansive cutting

and stacking into Gy X.

Proof. As the proof of Proposition 4.1.1 shows that every G-action obtained via
expansive cutting and stacking is expansively {G}-recurrent, the desired result
follows from Theorem 4.1.7 and Proposition 5.1.1.

We now establish our anti-basis theorem for non-smooth Borel actions of
locally-compact Polish groups on standard Borel spaces:

Theorem 5.1.3. Suppose that G y X a non-smooth Borel action of a locally-
compact Polish group on a standard Borel space. Then there is a family B of
continuum-many G-invariant Borel subsets of X on which Gy X is non-smooth
such that every non-smooth Borel G-action on a standard Borel space admits a Bor-
el stabilizer-preserving homomorphism to at most one action of the form Gy B,
where B ∈ B.

Proof. Again appealing to the proof of Proposition 4.1.1 to see that every G-action
obtained via expansive cutting and stacking is expansively {G}-recurrent, the
desired result follows from Theorem 4.2.4 and Proposition 5.1.1.

5.2 Containing bases

The following fact is a local refinement of our promised results on the robustness of
the property of containing bases and its characterization via diagonal products:

Theorem 5.2.1. Suppose that G y X and G y Y are Borel free actions of a
locally-compact Polish group on Polish spaces. Then the following are equivalent:
(1) The action Gy X × Y is not smooth.
(2) There is a Baire-measurable stabilizer-preserving homomorphism from a G-

action obtained via expansive cutting and stacking to Gy X and Gy Y .
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(3) There is a continuous embedding of a G-action obtained via expansive cutting
and stacking into Gy X and Gy Y .

Proof. Once more appealing to the proof of Proposition 4.1.1 to see that every
action obtained via expansive cutting and stacking is expansively {G}-recurrent,
the desired result follows from Theorem 4.1.7 and Proposition 5.1.1.

When g ∈ GN, we use Xg, Eg, and Xg to denote Xh, Eh, and Xh, where
h ∈ (G{1})N is given by (hn)1 = gn for all n ∈ N. In light of Theorems 5.1.2
and 5.2.1, the fact that every homomorphism between free actions is stabilizer
preserving, and the fact that there is a continuous embedding of Gy X(gsn )n∈N

into G y Xg whenever g ∈ (
⋃
d∈Z+ G{1,...,d})N, (kn)n∈N is a strictly increasing

sequence of natural numbers, and sn ∈ Tg is supported on [kn, kn+1) for all n ∈ N,
the following fact ensures that continuous free actions of locally-compact Polish
groups on compact Polish spaces contain bases:

Proposition 5.2.2. Suppose that G is a locally-compact Polish group, (Kn)n∈N is
an exhaustive increasing sequence of compact subsets of G, Gy X is a continuous
action on a compact Polish space, and g ∈ (

⋃
d∈Z+ G{1,...,d})N is (Kn)n∈N-expansive.

Then there exist a strictly increasing sequence (kn)n∈N of natural numbers, sequences
sn ∈ Tg with non-trivial support contained in [kn, kn+1) for all n ∈ N, and a
continuous homomorphism from Gy X(gsn )n∈N to Gy X.

Proof. The following fact will allow us to mimic the proof of the existence of
G-invariant non-empty closed sets on which Gy X is minimal.

Lemma 5.2.3. If x ∈ X and y ∈ ⋂
n∈N (IP(sn(g)) \ {1G}) · x, then ⋂

n∈N
(IP(sn(g)) \ {1G}) · y ⊆

⋂
n∈N (IP(sn(g)) \ {1G}) · x.

Proof. It is sufficient to show that if z ∈ ⋂
n∈N (IP(sn(g)) \ {1G}) · y, n ∈ N, and

W ⊆ X is an open neighborhood of z, thenW intersects (IP(sn(g)) \ {1G}) ·x. Fix
a sequence s ∈ Tsn(g) with non-trivial support for which sn(g)s · y ∈ W . As Gy X
is an action by homeomorphisms, there is an open neighborhood V ⊆ X of y such
that sn(g)sV ⊆ W . Fix t ∈ Xsn+|s|(g) with the property that sn+|s|(g)t · x ∈ V ,
and observe that sn(g)sat · x = sn(g)ssn+|s|(g)t · x ∈ sn(g)sV ⊆ W and the
(Kn)n∈N-expansivity of g ensures that sn(g)sat 6= 1G.

By Lemma 5.2.3, there is an ordinal λ for which there is a maximal sequence
(xα)α<λ such that xα ∈

⋂
β<α (IP(sn(g)) \ {1G}) · xβ but (IP(sn(g)) \ {1G}) · xα

6= ⋂
β<α (IP(sn(g)) \ {1G}) · xβ for all α < λ. Fix any point x ∈ ⋂

α<λ (IP(sn(g))\
{1G}) · xα, and observe that x is {IP(sn(g)) \ {1G} | n ∈ N}-recurrent.
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Fix a sequence (εn)n∈N of positive real numbers converging to zero, as well
as a compatible complete metric on X, and set k0 = 0 and V0 = X. We will
recursively construct kn+1, sn, and open neighborhoods Vn+1 of x. Given n ∈ N
for which we have already found kn and Vn, fix a sequence sn ∈ Tg, whose support
is non-empty and contained in [kn,∞), for which gsn · x ∈ Vn, set kn+1 = |sn|, and
fix an open neighborhood Vn+1 ⊆ X of x such that Vn+1 ⊆ Vn ∩ (gsn)−1Vn and
diam(gsVn+1) ≤ εn for all s ∈ Tg of length kn+1.

Define a continuous function ϕ : X(gsn )n∈N → X by ϕ(c) = the unique element
of ⋂

n∈N(gsn)c�nn∈NVn. Then ϕG/E(gsn )n∈N is a homomorphism from Gy X(gsn )n∈N
to Gy X by the proof of Proposition 3.2.6.

In light of Theorem 5.2.1, the following fact ensures that Borel-probability-
measure-preserving Borel free actions of locally-compact Polish groups on standard
Borel spaces contain bases:

Proposition 5.2.4. Suppose that G is a locally-compact Polish group, X and Y
are standard Borel spaces, Gy X is a Borel action that is invariant with respect
to a Borel probability measure µ on X, and G y Y is a Borel action for which
Gy X × Y is free and smooth. Then Gy Y is smooth.

Proof. Fix a Borel transversal B ⊆ X × Y of Gy X × Y , and define ϕ : X × Y →
G by letting ϕ(x, y) be the unique g ∈ G for which g · (x, y) ∈ B. Let P (Y ) denote
the standard Borel space of Borel probability measures on Y (see, for example,
[Kec95, §17.E]), and define ν : Y → P (G) by ν(y) = ϕ(·, y)∗µ. If H ⊆ G and
y ∈ Y , then

ν(y)(H) = µ({x ∈ X | ∃h ∈ H h · (x, y) ∈ B})
= µ({x ∈ X | (x, y) ∈ H−1B}),

so the G-invariance of µ ensures that if g ∈ G, then

ν(g · y)(H) = µ(g−1 · {x ∈ X | (x, g · y) ∈ H−1B})
= µ({x ∈ X | (g · x, g · y) ∈ H−1B})
= µ({x ∈ X | (x, y) ∈ (Hg)−1B})
= ν(y)(Hg).

But if K ⊆ G is compact and g /∈ K−1K, then K ∩Kg = ∅, in which case
{y ∈ Y | ν(y)(K) > 1/2} is σ-expansively {G}-transient, thus Theorem 5.1.1
ensures that Gy Y is smooth.

We next characterize expansive {G}-recurrence of products with free actions
obtained via expansive cutting and stacking:
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Proposition 5.2.5. Suppose that G is a locally-compact Polish group, X is a
Polish space, G y X is a continuous free action, and g ∈ (

⋃
d∈Z+ G{1,...,d})N.

Then G y X ×Xg is expansively {G}-recurrent ⇐⇒ G y X is expansively
{IP(sn(g))IP(sn(g))−1 | n ∈ N}-recurrent.

Proof. To see (=⇒), suppose that K ⊆ G is compact, n ∈ N, and V ⊆ X is a
non-empty open set, and fix an open neighborhood U ⊆ G of 1G with compact
closure and a non-empty open set V ′ ⊆ X for which UV ′ ⊆ V . As Gy X ×Xg is
expansively {G}-recurrent, it follows that ∆XG (V

′×V ′)∩∆Xg
G ((U−1×N(0)n)/Eg×

(U−1 ×N(0)n)/Eg) * U−1KU . But U∆XG (V
′ × V ′)U−1 = ∆XG (UV

′ × UV ′) and
Proposition 3.2.1 ensures that ∆Xg

G ((U−1 ×N(0)n)/Eg × (U−1 ×N(0)n)/Eg) =

U−1IP(sn(g))IP(sn(g))−1U , so ∆XG (V × V ) ∩ IP(sn(g))IP(sn(g))−1 * K.
To see (⇐=), suppose that K ⊆ G is compact, s ∈ Tg, U ⊆ G is a non-

empty open set with compact closure, and V ⊆ X is a non-empty open set.
Then ∆XG ((Ugs)−1V × (Ugs)−1V ) ∩ IP(s|s|(g))IP(s|s|(g))−1 * (Ugs)−1KUgs by
expansive {IP(sn(g))IP(sn(g))−1 | n ∈ N}-recurrence. But ∆XG ((Ugs)−1V ×
(Ugs)−1V ) = (Ugs)−1∆XG (V × V )Ugs and UgsIP(s|s|(g))IP(s|s|(g))−1(Ugs)−1

= ∆Xg
G ((U × Ns)/Eg × (U × Ns)/Eg) by Proposition 3.2.1, so ∆XG (V × V ) ∩

∆Xg
G ((U ×Ns)/Eg × (U ×Ns)/Eg) * K.

We now establish a local version of the promised characterization of free actions
containing bases in the abelian case:

Theorem 5.2.6. Suppose that Gy X is a Borel free action of a locally-compact
Polish group on a standard Borel space and g ∈ (

⋃
d∈Z+ G{1,...,d})N is expansive.

(1) If Gy X ×Xg is smooth, then Gy X is σ-expansively
(
⋃
g∈G g{IP(sn(g))IP(sn(g))−1 | n ∈ N}g−1)-transient.

(2) If G is abelian, then the converse holds.

Proof. By [BK96, Theorem 5.2.1], we can assume that X is Polish and G y
X is continuous. Proposition 4.2.1 ensures that G y X is σ-expansively
(
⋃
g∈G g{IP(sn(g))IP(sn(g))−1 | n ∈ N}g−1)-transient if and only if there does not

exist x ∈ X for which Gy [x]FX
G

is expansively {IP(sn(g))IP(sn(g))−1 | n ∈ N}-
recurrent, and Proposition 5.2.5 implies that the latter condition holds if and
only if there does not exist x ∈ X for which G y [x]FX

G
× Xg is expansively

{G}-recurrent. So it is enough to prove the analog of the theorem in which the
σ-expansive (

⋃
g∈G g{IP(sn(g))IP(sn(g))−1 | n ∈ N}g−1)-transience of Gy X is

replaced with the condition that there is no x ∈ X for which Gy [x]FX
G
×Xg is

expansively {G}-recurrent.
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To see the analog of (1), appeal to Proposition 5.1.1 to see that Gy X ×Xg
is σ-expansively {G}-transient, in which case Proposition 2.1.3 ensures that there
does not exist x ∈ X for which Gy [x]FX

G
×Xg is expansively {G}-recurrent.

To see the analog of (2), note that if K ⊆ G is compact, V ×W ⊆ X ×Xg is
open, and x ∈ X, then the minimality of G y [x]FX

G
ensures that V ∩ [x]FX

G
6=

∅ ⇐⇒ V ∩Gx 6= ∅ ⇐⇒ x ∈ GV , and the freeness of G y X implies that
E
X×Xg
G � ((V ∩ [x]FX

G
) ×W ) ⊆ R

X×Xg
K ⇐⇒ V ∩ (∆Xg

G (W ×W ) \K)−1V ∩

[x]FX
G

= ∅ ⇐⇒ V ∩ (∆Xg
G (W ×W ) \K)−1V ∩ Gx = ∅ ⇐⇒ x /∈ G(V ∩

(∆Xg
G (W ×W ) \K)−1V ), so the set of x ∈ X for which V ∩ [x]FX

G
is non-empty

but EX×Xg
G � ((V ∩ [x]FX

G
)×W ) ⊆ R

X×Xg
K is a difference of two G-invariant open

sets. Appeal to Proposition 3.1.6 to obtain an exhaustive increasing sequence
(Km)m∈N of compact subsets of G, fix an enumeration (Vn ×Wn)n∈N of a basis
for X ×Xg, and for all (m,n) ∈ N×N, let Um,n be the set of x ∈ X for which
Vn ∩ [x]FX

G
is non-empty but EX×Xg

G � ((Vn ∩ [x]FX
G
) ×Wn) ⊆ R

X×Xg
Km

. Fix a
countable dense set H ⊆ G. Then the sets of the form Um,n ∩ (gVn× hWn), where
g,h ∈ H and m,n ∈ N, cover X ×Xg, and the fact that G is abelian ensures that
they are expansively {G}-transient, so Proposition 5.1.1 implies that Gy X ×Xg
is smooth.

The promised basis theorem easily follows:

Theorem 5.2.7. Suppose that Gy X is a Borel (continuous) free action of an
abelian locally-compact Polish group on a Polish space that contains a basis. Then
there is a continuous disjoint union of actions obtained via expansive cutting and
stacking that contains a basis and admits a Borel (continuous) stabilizer-preserving
homomorphism to Gy X.

Proof. By Theorems 4.1.8, 5.1.2, and 5.2.6.

We similarly obtain the promised anti-basis theorem:

Theorem 5.2.8. Suppose that Gy X is a Borel free action of an abelian locally-
compact Polish group on a standard Borel space containing a basis, and O is a
countable family of non-smooth Borel actions on standard Borel spaces. Then
there is a Borel G-action on a standard Borel space that admits a Borel stabilizer-
preserving homomorphism to Gy X and contains a basis, but to which no action
in O admits a Borel almost stabilizer-preserving-homomorphism.

Proof. By Theorems 4.2.5, 5.1.2, and 5.2.6.
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Chapter 5 Wandering

5.3 Complete transient sets

When S ⊆ ⋃
d∈Z+ P(G{1,...,d}), we say that a set Y ⊆ X is S-transient if there

exist d ∈ Z+ and S ∈ S ∩P(G{1,...,d}) with the property that ∆XG (Y
{0,...,d})∩ S =

∅. Note that if S ⊆ G, then a set Y ⊆ X is S-wandering if and only if it
is {SS−1 \ {1G}}-transient. We say that a G-action by homeomorphisms of a
topological space is S-recurrent if it is FS-recurrent, and a Borel G-action on
a standard Borel space X is σ-S-transient if X is a union of countably-many
S-transient Borel sets.

Proposition 5.3.1. Suppose that G is a separable group, X is a Polish space,
G y X is continuous, d ∈ Z+, and S ⊆ G{1,...,d}. Then the following are
equivalent:
(1) The family FS is not in the recurrence spectrum of Gy X.
(2) There is a smooth ℵ0-universally Baire superequivalence relation F of EXG for

which each action Gy [x]F has an S-transient σ-complete ℵ0-universally-
Baire set.

(3) The action Gy X has an S-transient σ-complete Σ0
2 set.

(4) Gy X is σ-(⋃g∈G g{S}g−1)-transient.

Proof. As a set Y ⊆ X is S-transient if and only if ∆XG (Y
{0,...,d}) /∈ FS Proposition

2.1.5 yields (1) ⇔ (2). Note that if U ⊆ G{1,...,d} ×X and x ∈ X, then Ux ∈
FS ⇔ x ∈ ⋃

g∈S Ug, so FS is Σ0
1-on-open. As a set Y ⊆ X is S-transient if and

only if ∆XG ((Y ∩C){0,...,d}) /∈ FS for all equivalence classes C of FXG , Proposition
2.1.6 yields (1) ⇔ (3). Obviously (3) ⇒ (4) and Proposition 2.1.3 implies that
(4)⇒ (1).

For a set S ⊆ ⋃
d∈Z+ P(G{1,...,d}), we say that a set Y ⊆ X is S-transient if

there is a set S ∈ S for which Y is S-transient.

Proposition 5.3.2. Suppose that G is a separable group, X is a Polish space,
G y X is continuous, and S ⊆ ⋃

d∈Z+ P(G{1,...,d}). Then the following are
equivalent:
(1) There exists S ∈ S for which the family FS is not in the recurrence spectrum

of Gy X.
(2) There exist S ∈ S and a smooth ℵ0-universally Baire superequivalence relation

F of EXG for which each action G y [x]F has an S-transient σ-complete
ℵ0-universally-Baire set.

(3) The action Gy X has an S-transient σ-complete Σ0
2-set.
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Proof. This is a direct consequence of Proposition 5.3.1.

We say that a set Y ⊆ X is non-trivially d-transient if there is a set S ⊆ G{1,...,d}

intersecting every set of the form Dd
K for K ⊆ G compact for which Y is S-transient.

Proposition 5.3.3. Suppose that G is a separable group, X is a Polish space,
Gy X is continuous, d ∈ Z+, and Sd is the family of subsets of G{1,...,d} which
intersect every set of the form Dd

K where K ⊆ G is compact. Then the following
are equivalent:

(1) There exists S ∈ Sd for which the family FS is not in the recurrence spectrum
of Gy X.

(2) There exist S ∈ Sd and a smooth ℵ0-universally Baire superequivalence
relation F of EXG for which each action G y [x]F has an S-transient σ-
complete ℵ0-universally-Baire set.

(3) The action Gy X has a non-trivially-d-transient σ-complete Σ0
2 set.

Proof. Observe that a set Y ⊆ X is non-trivially d-transient if and only if it is
Sd-transient, and appeal to Proposition 5.3.2.

Proposition 5.3.4. Suppose that G is a topological group, X is a topological space,
G y X is continuous, and U ⊆ X is a non-empty open set. Then there exist a
non-empty open set V ⊆ U and an open neighborhood W ⊆ G of 1G for which
W {1,...,d}∆XG (V

{0,...,d})W−1 ⊆ ∆XG (U
{0,...,d}).

Proof. The continuity of G y X yields a non-empty open set V ⊆ U and
an open neighborhood W ⊆ G of 1G for which WV ⊆ U . To see that
W {1,...,d}∆XG (V

{0,...,d})W−1 ⊆ ∆XG (U
{0,...,d}), note that if g ∈ ∆XG (V

{0,...,d}),
w0 ∈ W and w1 ∈ W {1,...,d}, then there exists x ∈ V for which gx ∈ V {1,...,d}, in
which case w1gw−1

0 (w0x) ∈ U{1,...,d}, thus w1gw−1
0 ∈ ∆XG (U

{0,...,d}).

Proposition 5.3.5. Suppose that G is a locally compact group, X is a topological
space, Gy X is continuous, d ∈ Z+, and S ⊆ G{1,...,d} intersects every set of the
form Dd

K where K ⊆ G is compact. Then every S-transient non-empty open set
U ⊆ X has a non-empty open subset V ⊆ U such that for all dense sets H ⊆ G,
there is a function ϕ : S → H with the property that ϕ(S) intersects every set of
the form Dd

K where K ⊆ G is compact and V is ϕ(S)-transient.

Proof. By Proposition 5.3.4 there exist a non-empty open set V ⊆ U and an open
neighborhood of W ⊆ G of 1G for which W {1,...,d}∆XG (V

{0,...,d}) ⊆ ∆XG (U
{0,...,d}).

As G is locally compact we can assume that W is pre-compact. As H ⊆ G is dense,
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Chapter 5 Wandering

there is a function ϕ : S → H{1,...,d} with the property that ϕ(g) ∈ (W−1){1,...,d}g
for all g ∈ S. Then S ⊆ W {1,...,d}ϕ(S), so ϕ(S) intersects every set of the form Dd

K
where K ⊆ G is compact and W {1,...,d}∆XG (V

{0,...,d}) ∩ S ⊆ ∆XG (U
{0,...,d}) ∩ S = ∅,

so ∆XG (V
{0,...,d}) ∩ ϕ(S) ⊆ ∆XG (V

{0,...,d}) ∩ (W−1){1,...,d}S = ∅, thus V is ϕ(S)-
transient.

Given a superequivalence relation E of EXG , we say that a set Y ⊆ X is E-
locally non-trivially-d-transient if its intersection with each E-class is non-trivially
d-transient. Given S ⊆ P(G{1,...,d}) define the family FS =

⋂
S∈S FS .

Proposition 5.3.6. Suppose that G is a locally compact Polish group, X is a
Polish space, G y X is continuous, d ∈ Z+, Fd ⊆ P(G{1,...,d}) is the family of
subsets of G{1,...,d} containing Dd

K for some compact 1G /∈ K ⊆ G, and Sd is the
family of subsets of G{1,...,d} which intersect every set of the form Dd

K where K ⊆ G
is compact. Then the following are equivalent:
(1) The family Fd is not in the recurrence spectrum of Gy X.
(2) The family FSd

is not in the recurrence spectrum of Gy X.
(3) There is a smooth ℵ0-universally Baire superequivalence relation F of EXG

for which each action Gy [x]F has an EXG -locally non-trivially-d-transient
σ-complete ℵ0-universally-Baire set.

(4) The action G y X has an FXG -locally-non-trivially-d-transient σ-complete
Σ0

4 set.

Proof. As FSd
is the family of subsets of G{1,...,d} containing a set of the form Dd

K
for some compact K ⊆ G, Proposition 2.2.4 yields (1) ⇔ (2). As a set Y ⊆ X
is EXG -locally non-trivially-d-transient if and only if ∆XG ((C ∩ Y ){0,...,d}) /∈ FSd

for all equivalence classes C of EXG , Proposition 2.1.9 yields (2) ⇔ (3). The
fact that every FXG -locally non-trivially-d-transient set Y ⊆ X is EXG -locally non-
trivially-d-transient yields (4) ⇒ (2). To see (2) ⇒ (4), fix a countable dense
set H ⊆ G, and let Td denote the family of sets T ⊆ H{1,...,d} which intersect
every set of the form Dd

K where K ⊆ G is compact. Observe that if condition
(2) holds, then Proposition 2.1.5 ensures that there is no equivalence class C of
FXG for which G y C is FSd

-recurrent, so Proposition 5.3.5 implies that there
is no equivalence class C of FXG for which G y C is FTd

-recurrent, thus FTd
is

not in the recurrence spectrum of G y X. Fix an increasing sequence (Kn)n∈N
of compact subsets of G that is exhausting in the sense that every compact set
K ⊆ G is contained in some Kn, and note that if U ⊆ G{1,...,d} ×X and x ∈ X,
then Ux ∈ FTd

⇔ ∃n ∈ NH{1,...,d} ⊂ CdKn
∪ Ux, so FTd

is Σ0
3-on-open. As every

set Y ⊆ X with the property that ∆((C ∩ Y ){0,...,d}) /∈ FTd
for all equivalence

classes C of FXG is FXG -locally non-trivially-d-transient, Proposition 2.1.6 yields
condition (4).
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5.4 Weak wandering

Given a set S ⊆ G{1,...,d}, we say that a set Y ⊆ X is S-wandering if Y is
SS−1 \ {(1G)i∈{1,...,d}}-transient. We say that Y d-weakly wandering if there exists
an infinite set S ⊆ G{1,...,d} for which Y is S-wandering. Note that Y is weakly
wandering when it is 1-weakly wandering.

Proposition 5.4.1. Suppose that G is a separable group, X is a Polish space,
G y X is continuous, d ∈ Z+, and S is the family of sets of the form SS−1 \
{(1G)i∈{1,...,d}}, where S ⊆ G{1,...,d} is infinite. Then the following are equivalent:
(1) There exists S ∈ S for which the family FS is not in the recurrence spectrum

of Gy X.
(2) There exist an infinite set S ⊆ G{1,...,d} and a smooth ℵ0-universally Baire

superequivalence relation F of EXG for which each action G y [x]F has an
S-wandering σ-complete ℵ0-universally-Baire set.

(3) The action Gy X has a d-weakly-wandering σ-complete Σ0
2 set.

Proof. It follows immediately from Proposition 5.3.2.

Give a superequivalence relation E of EXG , we say that a set Y ⊆ X is E-locally-
d-weakly-wandering if its intersection with each E-class is d-weakly-wandering.

Proposition 5.4.2. Suppose that G is a Polish group, X is a Polish space,
G y X is continuous, d ∈ Z+, and Sd is the family of sets of the form SS−1 \
{(1G)i∈{1,...,d}}, where S ⊆ G{1,...,d} is infinite. Then the following are equivalent:

(1) The family FSd
is not in the recurrence spectrum of Gy X.

(2) There is a smooth ℵ0-universally Baire superequivalence relation F of EXG
for which each action G y [x]F has an EXG -locally-d-weakly-wandering σ-
complete ℵ0-universally-Baire set.

(3) The action Gy X has an FXG -locally-d-weakly-wandering σ-complete (Σ1
1 \

Σ1
1)σ set.

Proof. As a set Y ⊆ X is EXG -locally-d-weakly wandering if and only if ∆XG ((Y ∩
C){0,...,d}) /∈ FSd

for all equivalence classes C of EXG , Proposition 2.1.9 yields
(1) ⇔ (2). Note that if U ⊆ G{1,...,d} × X, then Ux ∈ FSd

⇔ ∀(gi)i∈N ∈
(G{1,...,d})N∃i 6= j (gi = gj) or gig−1

j ∈ Ux, so FSd
is Π1

1-on-open. As a set Y ⊆ X

is FXG -locally-d-weakly wandering if and only if ∆XG ((Y ∩C){0,...,d}) /∈ FSd
for all

equivalence classes C of FXG , Proposition 2.1.6 yields (1)⇔ (3).
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Chapter 5 Wandering

We say that a set Y ⊆ X is very weakly d-wandering if there are arbitrarily
large finite sets S ⊆ G for which Y is S-wandering.

Proposition 5.4.3. Suppose that G is a separable group, X is a Polish space, Gy
X is continuous, d ∈ Z+, and Sd is the family of sets of the form ⋃

n∈N SnS
−1
n \

{(1G)i∈{1,...,d}}, where Sn ⊆ G{1,...,d} has cardinality n for all n ∈ N. Then the
following are equivalent:
(1) There exists S ∈ Sd for which the family FS is not in the recurrence spectrum

of Gy X.
(2) There exist sets Sn ⊆ G{1,...,d} of cardinality n and a smooth ℵ0-universally

Baire superequivalence relation F of EXG for which each action Gy [x]F has
a σ-complete ℵ0-universally-Baire set that is Sn-wandering for all n ∈ N.

(3) The action Gy X has very-weakly-d-wandering σ-complete Σ0
2 set.

Proof. Observe that if Sn ⊆ G{1,...,d} for all n ∈ N, then a set Y ⊆ X is Sn-
wandering for all n ∈ N if and only if it is ⋃

n∈N SnS
−1
n \ {(1G)i∈{1,...,d}}-transient,

and appeal to Proposition 5.3.2.

Although we are already in position to establish the analog of Proposition
5.4.2 for very weak d-wandering, the following observation will allow us to obtain a
substantially stronger complexity bound.

Proposition 5.4.4. Suppose that G is a topological group, X is a topological space,
Gy X is continuous, and S ⊆ G. Then every S-wandering non-empty open set
U ⊆ X has a non-empty open subset V ⊆ U such that for all dense sets H ⊆ G,
there is an injection ϕ : S → H with the property that V is ϕ(S)-wandering.

Proof. By Proposition 5.3.4, there exist a non-empty open set V ⊆ U and an open
neighborhoodW ⊆ G of 1G for whichW−1∆XG (V

{0,1})W ⊆ ∆XG (U
{0,1}). Note that

if g,h ∈ S and (Wg)(Wh)−1∩∆XG (V
{0,1}) 6= ∅, then the fact that (Wg)(Wh)−1 =

Wgh−1W−1 yields that gh−1 ∈ W−1∆XG (V
{0,1})W ⊆ ∆XG (U

{0,1}), thus g = h.
But if H ⊆ G is dense, then there is a function ϕ : S → H with the property
that ϕ(g) ∈ Wg for all g ∈ S, and it follows that is injective and V is ϕ(S)-
wandering.

Given a superequivalence relation E of EXG , we say that a set Y ⊆ X is E-
locally very-weakly-wandering if its intersection with each E-class is very weakly
wandering.

Proposition 5.4.5. Suppose that G is a Polish group, X is a Polish space, Gy X
is continuous, and S is the family of sets of the form ⋃

n∈N SnS
−1
n \ {1G}, where

Sn ⊆ G has cardinality n for all n ∈ N. Then the following are equivalent:
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(1) The family FS is not in the recurrence spectrum of Gy X.
(2) There is a smooth ℵ0-universally Baire superequivalence relation F of EXG

for which each action G y [x]F has an EXG -locally very weakly wandering
σ-complete ℵ0-universally-Baire set.

(3) The action Gy X has an FXG -locally-very-weakly-wandering σ-complete Σ0
4

set.

Proof. As a set Y ⊆ X is EXG -locally very-weakly-wandering if and only if ∆XG ((C ∩
Y ){0,1}) /∈ FS for all equivalence classes C of EXG , Proposition 2.1.9 yields
(1)⇔ (2). The fact that every FXG -locally very-weakly-wandering set Y ⊆ X is EXG -
locally very-weakly-wandering yields (3)⇒ (2). To see (1)⇒ (3), fix a countable
dense setH ⊆ G, and let T denote the family of sets of the form ⋃

n∈N TnT
−1
n \{1G},

where Tn ⊆ H has cardinality n for all n ∈ N. Now observe that if condition (1)
holds, then Proposition 2.1.5 ensures that there is no equivalence class C of FXG
for which G y C is FS-recurrent, so Proposition 5.4.4 implies that there is no
equivalence class C of FXG for which G y C is FT -recurrent, thus FT is not in
the recurrence spectrum of G y X. Note that if U ⊆ G×X and x ∈ X, then
Ux ∈ FT ⇔ ∃n ∈ N∀(hi)i<n ∈ Hn∃i 6= j (hi = hj orhih−1

j ∈ Ux), so FT is Σ0
3-

on-open. As every set Y ⊆ X with the property that ∆XG ((Y ∩C){0,1}) /∈ FT for
all equivalence classes C of FXG is FXG -locally very-weakly-wandering, Proposition
2.1.6 yields condition (3).

The following fact ensures that if G y X is a minimal continuous action,
then the existence of a weakly-wandering σ-complete Borel set is equivalent to the
existence of a cover by countably-many weakly-wandering Borel sets:

Proposition 5.4.6. Suppose that G is a separable group, S ⊆ ⋃
d∈Z+ P(G{1,...,d}),

and Gy X is a σ-(⋃g∈G gSg−1)-transient minimal continuous action on a Baire
space. Then there exists S ∈ S for which there is an {S}-transient complete open
set.

Proof. Fix an S-transient non-meager Borel set B ⊆ X, as well as S ∈ S for which
B is {S}-transient, and a non-empty open set V ⊆ X in which B is comeager.
Then Proposition 2.1.3 ensures that V is {S}-transient, and the minimality of
Gy X implies that it is complete.

The following fact ensures that the above assumption of minimality is neces-
sary:

Proposition 5.4.7. Suppose that G is a locally-compact Polish group, (Kn)n∈N
is an exhaustive increasing sequence of compact subsets of G, and g ∈ GN is
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Chapter 5 Wandering

doubly (Kn)n∈N-expansive. Then there is a continuous disjoint union Gy X of
free actions obtained via expansive cutting and stacking, a continuous surjective
homomorphism ϕ : X → 2N from EXG to equality, and a complete open set V ⊆ X
such that V ∩ ϕ−1({d}) is IP(g ∗ d)-wandering for all d ∈ 2N, but for all sets
S ⊆ G with non-compact closure, there is at most one d ∈ 2N with the property
that Gy ϕ−1({d}) is σ-expansively {S}-transient.

Proof. We first note a pair of lemmas:
Lemma 5.4.8. Suppose that d, e ∈ 2N are distinct, K,L ⊆ G are compact, and
S ⊆ KIP(g ∗ d)IP(g ∗ d)−1K−1. Then the closure of LIP(g ∗ e)IP(g ∗ e)−1L−1 ∩S
is compact.

Proof. Let s be the maximal common initial segment of d and e. As g is doubly
(Kn)n∈N-expansive, there is a natural number n > 〈s〉 such that gm /∈ (IP(g �
m)−1(K−1L)±1IP(g � m))2 for all m ≥ n, in which case a straightforward calcula-
tion reveals that

LIP(g ∗ e)IP(g ∗ e)−1L−1 ∩ S
⊆ KIP(g ∗ d)IP(g ∗ d)−1K−1 ∩LIP(g ∗ e)IP(g ∗ e)−1L−1

⊆ KIP(g � n)IP(g � n)−1K−1 ∩LIP(g � n)IP(g � n)−1L−1,

so it only remains to note that the latter set is compact.

Lemma 5.4.9. Suppose that K ⊆ G is compact, but the closure of S ⊆ G is not
compact. Then there exists d ∈ 2N such that for all e ∈ ∼{d}, there is a (Kn)n∈N-
expansive {S}-dense sequence ge ∈ GN for which KIP(ge)IP(ge)−1K−1 ∩ IP(g ∗
e)IP(g ∗ e)−1 = {1G}.

Proof. Fix a countable dense set H ⊆ G, as well as a sequence h ∈ HN such
that ∀h ∈ H∃∞n ∈ N h = hn, and a sequence s ∈ ∏

n∈N 2n such that {sn | n ∈
N and h = hn} is v-dense for all h ∈ H. As the closure of S is not compact, Lemma
5.4.8 yields d ∈ 2N such that S * LIP(g ∗ e)IP(g ∗ e)−1L−1 for all e ∈ ∼{d} and
compact sets L ⊆ G, in which case a simple recursive construction yields ge ∈ GN

such that:
(1) ∀n ∈ N (ge)n /∈ IP(ge � n)KnIP(ge � n)−1.
(2) ∀n ∈ N (ge)n ∈ (gsn

e )−1h−1
n Shngsn

e .
(3) ∀n ∈ N (ge)n /∈ IP(ge � n)−1K−1IP(g ∗ e)IP(g ∗ e)−1KIP(ge � n).

The first condition ensures that ge is (Kn)n∈N-expansive, the second condition im-
plies that ge is {S}-dense, and the third condition yields thatKIP(ge)IP(ge)−1K−1

∩IP(g ∗ e)IP(g ∗ e)−1 = {1G}.
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Fix an open neighborhood U ⊆ G of 1G with compact closure, let I be the set of
(d, gd) ∈ 2N×GN for which gd is (Kn)n∈N-expansive and UIP(gd)IP(gd)−1U−1 ∩
IP(g ∗ d)IP(g ∗ d)−1 = {1G}, and define X = Xproj

GN�I . Then G y X is a
continuous disjoint union of actions obtained via expansive cutting and stacking, the
function ϕ : X → 2N given by ϕ([(g, ((d, gd), c))]Eproj

GN �I
) = d is a homomorphism

from EXG to equality, and V = (U ×Xproj
GN�I)/Eproj

GN�I is a complete open set.
Proposition 3.2.1 ensures that V ∩ ϕ−1({d}) is IP(g ∗ d)-wandering for all

d ∈ 2N. If the closure of S ⊆ G is not compact, then Lemma 5.4.9 yields d ∈ 2N such
that for all e ∈ ∼{d}, there is an {S}-dense sequence ge ∈ Ie, thus Gy ϕ−1({e})
is not σ-expansively {S}-transient by Propositions 4.1.1 and 2.1.3. If d ∈ 2N,
e ∈ ∼{d}, and ge ∈ Ie, then G y Xge is not {IP(g ∗ e)IP(g ∗ e)−1 \ {1G}}-
recurrent, and therefore not expansively {(g ∗ e)(N)}-recurrent, so Proposition
4.1.1 ensures that ge is not {(g ∗ e)(N)}-dense, thus Lemma 5.4.9 implies that
there is a {(g ∗ e)(N)}-dense sequence gd ∈ Id, hence ϕ is surjective.

We next note a restriction on the sets S ⊆ G appearing in the definition of
weak wandering in the topological setting:
Proposition 5.4.10. Suppose that G y X is a continuous action of a locally-
compact Polish group on a Polish space, S ⊆ G, and there is an S-wandering
non-empty open set U ⊆ X. Then S is closed and discrete.

Proof. Otherwise, there is an injective sequence (gn)n∈N of elements of S that
converges to some g ∈ G, so gng−1 → 1G. But if x ∈ U , then gng−1 · x → x, so
there exists n ∈ N such that gmg−1 ·x ∈ U for allm ≥ n, thus g−1 ·x ∈ ⋂

m≥n g
−1
m U ,

a contradiction.
Proposition 5.4.11. Suppose that G is a locally-compact Polish group and the
closure of S ⊆ G is not compact. Then there is an infinite set T ⊆ S for which
TT−1 is closed and discrete.

Proof. Fix an increasing sequence (Un)n∈N of open subsets of G with compact
closures whose union is G, and recursively construct gn ∈ S \ (U±1

n {gi | i < n}) for
all n ∈ N. To see that the set T = {gn | n ∈ N} is as desired, note that for all g ∈ G,
there exists n ∈ N such that g ∈ Un, but TT−1 ∩Un ⊆ {gig−1

j | i, j < n}.

Clearly {S \ {1G}}-transience implies expansive {S}-transience. When S is
closed and discrete, a natural weakening of the converse also holds:
Proposition 5.4.12. Suppose that G y X is a Borel free action of a locally-
compact Polish group on a standard Borel space, S ⊆ G is closed and discrete,
and B ⊆ X is an expansively {S}-transient Borel set. Then B is a union of
finitely-many {S \ {1G}}-transient Borel sets.
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Proof. Fix a compact set K ⊆ G for which RBS ⊆ RBK . As Gy X is free, it follows
that RBS ⊆ RBK∩S . As S is closed and discrete, it follows that K ∩ S is finite. Set
F = (K ∩ S)±1 \ {1G}, and note that RXF is a Borel graph of vertex degree |F |,
and therefore has a Borel (|F |+ 1)-coloring (see [KST99, Proposition 4.6]), so B
is the union of (|F |+ 1)-many {S \ {1G}}-transient Borel sets.

In light of Proposition 5.3.1, the following fact characterizes both the existence
of a weakly-wandering σ-complete Borel set and the existence of a cover by weakly-
wandering Borel sets:

Proposition 5.4.13. Suppose that G y X is a Borel free action of a locally-
compact Polish group on a standard Borel space and S ⊆ P(G). Then the following
are equivalent:
(1) There are infinite sets Sn ∈

⋃
S∈S P(S) and Sn-wandering Borel sets Bn ⊆ X

for which X =
⋃
n∈NBn.

(2) There are infinite sets Tn ∈
⋃
S∈S P(S) for which TnT−1

n is closed and discrete
with the property that Gy X is σ-expansively (

⋃
g∈G g{TnT−1

n | n ∈ N}g−1)-
transient.

Proof. To see (1) =⇒ (2), note first that we can assume that X is Polish and Gy
X is continuous by [BK96, Theorem 5.2.1]. Proposition 2.1.3 then ensures that for
all x ∈ X, there exists n ∈ N for which Gy [x]FX

G
is not {SnS−1

n \ {1G}}-recurrent,
in which case Proposition 5.4.10 implies that Sn is closed and discrete. Define
N = {n ∈ N | Sn is closed and discrete}, and for all n ∈ N , appeal to Proposition
5.4.11 to obtain an infinite set Tn ⊆ Sn for which TnT−1

n is closed and discrete. Then
Proposition 4.2.1 ensures that G y X is σ-(⋃g∈G g{TnT−1

n \ {1G} | n ∈ N}g−1)-
transient, and therefore σ-expansively (

⋃
g∈G g{TnT−1

n | n ∈ N}g−1)-transient.
To see (2) =⇒ (1), appeal to Proposition 5.4.12 to see that G y X is

σ-(⋃g∈G g{TnT−1
n \ {1G} | n ∈ N}g−1)-transient.

We next note that finite changes to S have little influence on the existence of
large S-wandering Borel sets:

Proposition 5.4.14. Suppose that G y X is a Borel free action of a locally-
compact Polish group on a standard Borel space, g ∈ G, S ⊆ G is countable,
and B ⊆ X is an S-wandering Borel set. Then B is a union of countably-many
({g} ∪ S)-wandering Borel sets.

Proof. We can assume that g /∈ S. Note that for all x ∈ B, there is at most one pair
(h, y) ∈ S ×B for which g−1 · x = h−1 · y. Let ϕ : B ⇀ B be the partial function
sending x to y. The freeness of Gy X ensures that ϕ is fixed-point free, in which
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case graphϕ±1 is a graph generated by a Borel function, and therefore has a Borel
ℵ0-coloring (see [KST99, Proposition 4.5]), thus B is a union of countably-many
({g} ∪ S)-wandering Borel sets.

In light of Theorem 5.1.2, the following fact ensures that if a free Borel action
does not contain a basis, then it admits a weakly-wandering σ-complete Borel
set:

Proposition 5.4.15. Suppose that G y X is a Borel free action of a locally-
compact Polish group on a standard Borel space, g ∈ (

⋃
d∈Z+ G{1,...,d})N is expansive,

and Gy X ×Xg is smooth. Then Gy X admits a g(N)-wandering σ-complete
Borel set.

Proof. Appeal first to Theorem 5.2.6 to see that G y X is σ-expansively
(
⋃
g∈G g{g(N \ n)g(N \ n)−1 | n ∈ N}g−1)-transient. The expansivity of g yields

that g(N)g(N)−1 is closed and discrete, so G y X is σ-(⋃g∈G g {g(N \
n)g(N \ n)−1 \{1G} | n ∈ N}g−1)-transient by Proposition 5.4.12, thus σ-
(
⋃
g∈G g{g(N)g(N)−1 \ {1G}}g−1)-transient by Proposition 5.4.14, in which case

Proposition 5.3.1 yields a g(N)-wandering σ-complete Borel set.

The following fact yields a sufficient condition for the existence of a non-smooth
restriction with a suitably transient complete Borel set:

Proposition 5.4.16. Suppose that G is a locally-compact Polish group, (Kn)n∈N
is an exhaustive increasing sequence of compact subsets of G, g ∈ GN is (Kn)n∈N-
expansive, S ⊆ G is disjoint from a neighborhood of 1G, and there is no compact set
K ⊆ G with the property that IP(g)IP(g)−1 ⊆ K−1SK. Then there is a G-action
obtained via expansive cutting and stacking that admits a continuous embedding
into Gy Xg and an {S}-transient non-empty open set.

Proof. Note that for all compact sets K ⊆ G and n ∈ N, there exist s0, s1 ∈ 2<N for
which sn(g)s1(sn(g)s0)−1 /∈ K ∪K−1SK. Fix an open neighborhood U ⊆ G of 1G
with the property that U is compact and S ∩UU−1 = {1G}, recursively find `n ∈ N
and s0,n, s1,n ∈ 2`n such that hn /∈ IP(h � n)−1(Kn ∪U−1SU)IP(h � n) for all n ∈
N, where hn = g

⊕
m<n s0,ms

∑
m<n `m(g)s1,n(s

∑
m<n `m(g)s0,n)−1(g

⊕
m<n s0,m)−1 for

all n ∈ N, and define ϕ : 2N → 2N by ϕ(c) = ⊕
n∈N sc(n),n. Then h is (Kn)n∈N-

expansive, so Gy Xh is obtained via expansive cutting and stacking, ϕG factors
over Eh and Eg to a continuous embedding of G y Xh into G y Xg, and
Proposition 3.2.1 ensures that (U × 2N)/Eh is an {S}-transient non-empty open
set.
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For each set N , let [N ]ℵ0 denote the family of countably-infinite subsets of
N , and for each sequence of sets (Xn)n∈N , define lim supn∈N Xn = {x | ∃∞n ∈
N x ∈ Xn}. We say that a sequence h ∈ GN is sufficiently (Kn)n∈N-expansive if
the following hold, where Hn = {hm | m < n}:
(1) ∀n ∈ N hn /∈ (KnHnH

−1
n )3KnHn.

(2) ∀n ∈ N∀m > n
hn /∈ KnhmH−1

n KnHnh−1
m KnHn ∪KnHnh−1

m KnhmH−1
n KnHn ∪

K−1
n Hnh−1

m K−1
n HnH

−1
n K−1

n hm ∪KnHnH
−1
n KnHnh−1

m Knhm.
(3) ∀K ⊆ G compact∀N ∈ [N×N]ℵ0∃M ∈ [N ]ℵ0

lim sup(m,n)∈M Khmh−1
n Khnh−1

m K is compact.

Proposition 5.4.17. Suppose that G is a non-compact locally-compact Polish group
that admits a compatible two-sided-invariant metric, and (Kn)n∈N is an increasing
sequence of compact subsets of G. Then there is a sufficiently-(Kn)n∈N-expansive
sequence h ∈ GN.

Proof. The primary observation is as follows:
Lemma 5.4.18. Suppose that K ⊆ G is compact and H ∈ [G]ℵ0 . Then there
exists H ′ ∈ [H ]ℵ0 such that lim supg∈H ′ KgKg−1K is compact.

Proof. By [Kle52, p. 1.5], there is a conjugation-invariant open neighborhood U ⊆ G
of 1G with compact closure. Fix a finite set F ⊆ G for which K ⊆ FU . By a
straightforward induction, it is sufficient to show that for all f ∈ F and H ∈ [G]ℵ0 ,
there existsH ′ ∈ [H ]ℵ0 for which lim supg∈H ′ Kgfg−1KU is compact. Towards this
end, we can assume that there is a set H ′ ∈ [H ]ℵ0 for which ⋂

g∈H ′ Kgfg
−1KU 6= ∅.

Fix h ∈ H ′, and note that ∀g ∈ H ′ gfg−1 ∈ K−1Khfh−1KK−1UU−1, so⋃
g∈H ′ Kgfg

−1KU ⊆ KK−1Khfh−1KK−1KUU−1U . As the latter set has com-
pact closure, so too does lim supg∈H ′ Kgfg−1KU .

As G is not compact, there is a discrete set G0 ∈ [G]ℵ0 . Given n ∈ N,
Gn ∈ [G0]ℵ0 , and h � n, set Hn = {hm | m < n} and define

Lg,n = KngH
−1
n KnHng

−1KnHn ∪KnHng
−1KngH

−1
n KnHn ∪

K−1
n Hng

−1K−1
n HnH

−1
n K−1

n g ∪KnHnH
−1
n KnHng

−1Kng

for all g ∈ Gn, and observe that four successive applications of Lemma 5.4.18 yield a
set G′n ∈ [Gn]ℵ0 with the property that the closure of lim supg∈G′n Lg,n is compact.
As Gn is discrete and infinite, there exists hn ∈ Gn \ ((KnHnH

−1
n )3KnHn ∪

lim supg∈G′n Lg,n), in which case the set Gn+1 = {g ∈ G′n | hn /∈ Lg,n} is infinite.
Clearly h is as desired.
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The following observation ensures that one can obtain a Borel free action
Gy X that contains a basis and admits a weakly-wandering σ-complete Borel set
by fixing an exhaustive increasing sequence (Kn)n∈N of compact subsets of G and a
sufficiently-(Kn)n∈N-expansive sequence h ∈ GN, and taking a continuous disjoint
union of the actions and weakly-wandering sets obtained by applying Proposition
5.4.16 to every (Kn)n∈N-expansive sequence g ∈ GN with S = h(N)h(N)−1 \
{1G}:

Proposition 5.4.19. Suppose that G is a locally-compact Polish group, (Kn)n∈N
is an exhaustive increasing sequence of compact subsets of G, g ∈ GN is (Kn)n∈N-
expansive, and h ∈ GN is sufficiently (Kn)n∈N-expansive. Then there is no compact
set K ⊆ G with the property that IP(g)IP(g)−1 ⊆ K−1h(N)h(N)−1K.

Proof. Suppose, towards a contradiction, that there is such a K, and set Hn =
{hm | m < n} for all n ∈ N. The (Kn)n∈N-expansivity of g ensures that g(N) is
closed, discrete, and infinite, so by passing to a subsequence of g, we can assume that
there is a strictly increasing sequence k ∈ NN such that gn ∈ K−1(hknH

−1
kn

)±1K for
all n ∈ N. By passing to a terminal segment of g, we can assume that KK−1 ⊆ Kk0 .
Lemma 5.4.20. For all n ∈ N, the set IP(g � n)gn(IP(g � n))−1 is contained in
K−1(hknH

−1
kn

)±1K.

Proof. Granting that we have established the lemma below n, suppose that
s, t ∈ 2n, fix k ∈ N for which gsgn(gt)−1 ∈ K−1(hkH−1

k )±1K, and note that
gsgn(gt)−1 ∈ K−1HknH

−1
kn
KK−1(hknHkn)

±1KK−1HknH
−1
kn
K. A simple calcula-

tion then reveals that if k 6= kn and ` = max(k, kn), then h` ∈ (K`H`H
−1
` )3K`H`,

contradicting the sufficient (Kn)n∈N-expansivity of h.

Lemma 5.4.21. Suppose that k,m ∈ N. Then there exists n ∈ N and t ∈ 2n such
that ∀s ∈ 2m gsata(1) ∈ K−1(hkm+n(Hkm+n \Hk)

−1)±1K.

Proof. Suppose that the lemma fails, and fix n ∈ N for which km+n ≥ k. Then
there exist i ∈ {±1}, s0, s1 ∈ 2m, and distinct t0, t1 ∈ 22 such that ∀j <
2 gsja(0)natja(1) ∈ K−1(hkm+n+2H

−1
k )iK, and ` ∈ {m+ n,m+ n+ 1} for which

gs0a(0)nat0(gs1a(0)nat1)−1 ∈ K−1(hk`
H−1
k`

)±1K. A simple calculation then yields
that hk`

∈ Kk`
hkm+n+2H

−1
k`
Kk`

Hk`
h−1
km+n+2

Kk`
Hk`
∪Kk`

Hk`
h−1
km+n+2

Kk`
hkm+n+2

H−1
k`
Kk`

Hk`
, which contradicts the sufficient (Kn)n∈N-expansivity of h.

In particular, there exist sequences sn ∈ 2<N such that gϕ(ta(1)) ∈ K−1

(hk
n+

∑
m≤n

|sm|
(Hk

n+
∑

m≤n
|sm|
\Hk

n+
∑

m<n
|sm|

)−1)±1K for all n ∈ N and t ∈ 2n,

where ϕ : 2<N → 2<N is given by ϕ(t) = ⊕
n<|t| sn a tn.

66



Chapter 5 Wandering

Lemma 5.4.22. Suppose that i ∈ {±1}, n ∈ N, `0, `1 ∈ [kn+
∑

m<n |sm|,
kn+

∑
m≤n |sm|), t0, t1 ∈ 2n, and gϕ(tja(1)) ∈ K−1(hk

n+
∑

m≤n
|sm|

h−1
`j
)iK for all

j < 2. Then `0 = `1.

Proof. Observe that if `0 6= `1, k = kn+
∑

m≤n |sm|, and ` = max(`0, `1), then
K−1H`H

−1
` KK−1(hkH−1

` )iK ∩K−1(hkh−1
` )iK 6= ∅, so a straightforward calcu-

lation reveals that h` ∈ K−1
` H`h−1

k K−1
` H`H

−1
` K−1

` hk ∪K`H`H
−1
` K`H`h−1

k K`hk,
contradicting the sufficient (Kn)n∈N-expansivity of h.

In particular, there are integers `i,n ∈ [kn+
∑

m<n |sm|, kn+∑
m≤n |sm|) such that

gϕ(ta(1)) ∈ ⋃
i∈{±1}K

−1(hk
n+

∑
m≤n

|sm|
h−1
`i,n

)iK for all n ∈ N and t ∈ 2n. Fix N ∈

[N]ℵ0 with the property that the closure Li of lim supn∈N K−1(hk
n+

∑
m≤n

|sm|
h−1
`i,n

)i

KK−1(hk
n+

∑
m≤n

|sm|
h−1
`i,n

)−iK is compact for all i ∈ {±1}, as well as n ∈ N such

that L−1 ∪ L1 ⊆ Kn, and i < 2, N ′ ∈ [N \ (n+ 2)]ℵ0 , and distinct t0, t1 ∈ 22

with the property that gϕ((0)natja(0)n′−n−2a(1)) ∈ K−1(hk
n′+

∑
m≤n′ |sm|

h−1
`i,n′

)iK

for all j < 2 and n′ ∈ N ′. Then gϕ((0)nat0)(gϕ((0)nat1))−1 ∈ Li, contradicting the
(Kn)n∈N-expansivity of g.

We now establish our basis and anti-basis theorems for our two notions of
admitting large weakly-wandering Borel sets:

Theorem 5.4.23. Suppose that G y X is a Borel (continuous) free action of
an locally-compact Polish group on a Polish space that does not admit a weakly-
wandering σ-complete Borel set. Then there is a continuous disjoint union of actions
obtained via expansive cutting and stacking that does not admit a weakly-wandering
σ-complete Borel set but does admit a Borel (continuous) stabilizer-preserving
homomorphism to Gy X.

Proof. By Theorem 4.1.8, Proposition 5.3.1, and Theorem 5.4.13.

Theorem 5.4.24. Suppose that G y X is a Borel (continuous) free action of
an locally-compact Polish group on a Polish space that does not admit a cover by
countably-many weakly-wandering Borel set. Then there is a continuous disjoint
union of actions obtained via expansive cutting and stacking that does not admit
a cover by countably-many weakly-wandering Borel sets but does admit a Borel
(continuous) stabilizer-preserving homomorphism to Gy X.

Proof. By Theorems 4.1.8 and 5.4.13.
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Theorem 5.4.25. Suppose that Gy X is a Borel free action of a locally-compact
Polish group on a standard Borel space that does not admit a weakly-wandering
σ-complete Borel set, and O is a countable family of non-smooth Borel actions on
standard Borel spaces. Then there is a Borel G-action on a standard Borel space
that admits a Borel stabilizer-preserving homomorphism to Gy X and does not
admit a weakly-wandering σ-complete Borel set, but to which no action in O admits
a Borel almost stabilizer-preserving-homomorphism.

Proof. By Theorems 4.2.5 and 5.2.1, Proposition 5.3.1, and Theorem 5.4.13.

Theorem 5.4.26. Suppose that Gy X is a Borel free action of a locally-compact
Polish group on a standard Borel space that does not admit a cover by countably-
many weakly-wandering Borel sets, and O is a countable family of non-smooth Borel
actions on standard Borel spaces. Then there is a Borel G-action on a standard
Borel space that admits a Borel stabilizer-preserving homomorphism to G y X
and does not admit a cover by countably-many weakly-wandering Borel sets, but to
which no action in O admits a Borel almost stabilizer-preserving-homomorphism.

Proof. By Theorems 4.2.5, 5.2.1, and 5.4.13.

Recall that a set Y ⊆ X is EXG -locally very-weakly-wandering if for all n ∈ N
and x ∈ X, there is a set S ⊆ G of cardinality n such that Gx∩ Y is S-wandering.

Proposition 5.4.27. Suppose that gn = 3n for all n ∈ N. Then there is neither a
Z-invariant Borel probability measure on Xg nor a smooth Borel superequivalence
relation F of EXg

Z such that Z y [x]F admits a EXG -locally-very-weakly-wandering
complete Borel set for all x ∈ Xg.

Proof. A straightforward induction shows that for every z ∈ Z there exists a unique
pair (F0,F1) of disjoint finite sets F0,F1 ⊆ N such that z = ∑

k∈F0 3k −∑
k∈F1 3k.

This implies that the sets Bk
n = ({k} ×N(0)n+1)/Eg for k ∈ [0, 3n) are pairwise

disjoint for n ∈ N. If µ is a Z-invariant Borel measure on Xg, a straightforward
calculation shows that µ(Xg) ≥ µ(

⋃
k<3n Bk

n) = 3n/2n+1µ(({0}× 2N)/Eg) for all
n ∈ N. It follows that µ(Xg) ∈ {0,∞}.

As Proposition 3.2.3 ensures that Z y Xg is minimal, Proposition 5.4.5
ensures that it is enough to show that there exists no very-weakly-wandering
non-empty open set. But if U = ({n} ×Ns)/Eg for some n ∈ N and s ∈ 2<N,
then ∆XG (U

{0,1}) = 3|s|Z. Suppose that U is S-wandering for a set S ⊆ Z of
cardinality strictly greater than 3|s|. Then there exist i ∈ Z and j, k ∈ S such
that j− k = i · 3|s| ∈ 3|s|Z = ∆XG (U

{0,1}), contradicting the fact that ∆XG (U
{0,1})∩

((S − S) \ {0}) = ∅.
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Remark 5.4.28. The odometer on 3N is the isometry σ : 3N → 3N given by
σ((2)n a (i) a c) = (0)n a (i+ 1) a c, where c ∈ 3N and i < 2. It is easy to
see that the above action Z y Xg is Borel isomorphic to that generated by the
restriction of σ to the saturation of 2N.
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Chapter 6

Mixing

6.1 Weak mixing

Given a family S ⊆ ⋃
d∈Z+ P(G{1,...,d}), we say that an action G y X by home-

omorphisms of a topological space is S-transitive if ∆XG (
∏
k≤d Vk) ∩ S 6= ∅ for all

d ∈ Z+, S ∈ S ∩P(G{1,...,d}), and sequences (Vk)k≤d of non-empty open subsets
of X.

Proposition 6.1.1. Suppose that G is a group, S ⊆ ⋃
d∈Z+ P(G{1,...,d}), and

Gy X is an S-transitive action by homeomorphisms of a topological space. Then
Gy X is ⋃

d∈Z+ G{1,...,d}(S ∩P(G{1,...,d}))G-transitive.

Proof. Note that if d ∈ Z+, g ∈ G{0,...,d}, h ∈ G{1,...,d}, and (Xk)k≤d is a sequence
of subsets of X, then

h ∈ ∆XG (
∏
k≤d gkXk) ⇐⇒ g0X0 ∩

⋂
1≤k≤d h

−1
k gkXk 6= ∅

⇐⇒ X0 ∩
⋂

1≤k≤d(g
−1
k hkg0)−1Xk 6= ∅

⇐⇒ (g−1
k hkg0)1≤k≤d ∈ ∆XG (

∏
k≤dXk)

⇐⇒ h ∈ (gk)1≤k≤d∆XG (
∏
k≤dXk)g

−1
0 .

It follows that if S ∈ S ∩ P(G{1,...,d}) and (Uk)k≤d is a sequence of non-empty
open subsets of X, then the fact that ∆XG (

∏
k≤d gkUk) ∩ S 6= ∅ ensures that

∆XG (
∏
k≤d Uk) ∩ (g−1

k )1≤k≤dSg0 6= ∅.

Proposition 6.1.2. Suppose that G is a topological group, X is a topological
space, H ⊆ G is dense, S ⊆ ⋃

d∈Z+ P(G{1,...,d}), and G y X is continuous,⋃
d∈Z+ H{1,...,d}(S ∩P(G{1,...,d}))-recurrent, and topologically transitive. Then

Gy X is S-transitive.

Proof. Suppose that d ∈ Z+, S ∈ S ∩ P(G{1,...,d}), and (Uk)k≤d is a sequence
of non-empty open subsets of X. Set V0 = U0, and construct h ∈ H{1,...,d}
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by recursively appealing to the topological transitivity of G y X to obtain
hk+1 ∈ H such that the set Vk+1 = hk+1Uk+1 ∩ Vi is non-empty for all k < d.
As ∆XG (V

{0,...,d}
d ) ∩ hS 6= ∅, the same calculation as in the proof of Proposition

6.1.1 reveals that ∆XG ((h)
−1Vd) = h−1∆XG (V

{0,...,d}
d ), so ∆XG ((h)

−1Vd)∩ S 6= ∅. As
(hk)

−1Vd ⊆ Uk for all k ≤ d, it follows that ∆XG (
∏
k≤d Uk) ∩ S 6= ∅.

Observe that if G y X is a continuous action of a locally-compact Polish
group on a Polish space, x ∈ X, and Gx is non-meager, then there is a compact set
K ⊆ G for which Kx is non-meager, and therefore comeager in some non-empty
open set U ⊆ X, in which case the fact that Kx is closed ensures that U ⊆ Kx,
thus Gx = GU is an expansively-{G}-transitive open orbit.
Proposition 6.1.3. Suppose that Gy X is a continuous action of a topological
group on a Hausdorff space with no open orbits, K ⊆ G is compact, d ∈ Z+, and
(Uk)k≤d is a sequence of non-empty open subsets of X. Then there are non-empty
open sets Vk ⊆ Uk for which (Vk)k≤d is RXK-discrete.

Proof. By the obvious induction, it is sufficient to show that for all distinct j, k ≤ d,
there are non-empty open sets Vj ⊆ Uj and Vk ⊆ Uk such that Vj ∩KVk = ∅.
Towards this end, fix xk ∈ Uk, and note that Uj * Gxk, since otherwise GUj = Gxk,
contradicting the fact that Gxk is not open. Fix xj ∈ Uj \KUk, and observe that
Proposition 3.2.4 yields open neighborhoods Vj ⊆ Uj of xj and Vk ⊆ Uk of xk such
that Vj ∩KVk = ∅.

Along similar lines, we say that Gy X is expansively S-transitive if ∆XG ({y ∈∏
k≤d Vk | y is RXK-discrete}) ∩ S 6= ∅ for all d ∈ Z+, compact sets K ⊆ G,

S ∈ S ∩P(G{1,...,d}), and sequences (Vk)k≤d of non-empty open subsets of X.
Proposition 6.1.4. Suppose that d ∈ Z+, G y X is a continuous action of
a locally-compact Polish group on a Polish space, and H ⊆ G is dense. Then
G y X is topologically d-transitive and has no open orbits if and only if it is
topologically transitive and expansively (

⋃
g∈G gH

{1,...,2d−1}{g ∈ G{1,...,2d−1} | ∀0 <
i < d g2i+1 = g1g2i}g−1)-recurrent.

Proof. Clearly Gy Xd is topologically transitive if and only if Gy X is {{g ∈
G{1,...,2d−1} | ∀0 < i < d g1g2i = g2i+1}}-transitive. By Proposition 6.1.1, the
latter condition holds if and only if G y X is H{1,...,2d−1}{g ∈ G{1,...,2d−1} |
∀0 < i < d g1g2i = g2i+1}-transitive. By Proposition 6.1.3 and the comment
immediately preceding it, the conjunction of this with the inexistence of open
orbits is equivalent to the expansive H{1,...,2d−1}{g ∈ G{1,...,2d−1} | ∀0 < i <
d g1g2i = g2i+1}-transitivity of G y X. And this holds if and only if G y X is
expansively H{1,...,2d−1}{g ∈ G{1,...,2d−1} | ∀0 < i < d g1g2i = g2i+1}-recurrent and
topologically transitive, by Proposition 6.1.2.
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We now establish our basis theorem for weakly-mixing continuous actions of
Polish groups:

Theorem 6.1.5. Suppose that G y X is a topologically-transitive continuous
action of a locally-compact Polish group on a Polish space with no open orbits.
Then the following are equivalent:
(1) The action Gy X is weakly mixing.
(2) There is a Baire-measurable stabilizer-preserving homomorphism from a

weakly-mixing G-action obtained via expansive cutting and stacking to Gy X.
(3) There is a continuous embedding of a weakly-mixing G-action obtained via

expansive cutting and stacking into Gy X.

Proof. By Theorem 4.1.7 and Proposition 6.1.4.

We now establish our anti-basis theorem for weakly-mixing continuous actions
of Polish groups:

Theorem 6.1.6. Suppose that G y X is a weakly-mixing continuous action of
a locally-compact Polish group on a Polish space. Then there is a family A of
continuum-many weakly-mixing continuous G-actions on Polish spaces that admit
continuous embeddings into Gy X such that every non-smooth Borel G-action on
a standard Borel space admits a Borel stabilizer-preserving homomorphism to at
most one action in A.

Proof. By Theorem 4.2.4 and Propositions 5.1.1 and 6.1.4.

We now establish the promised equivalence of the measure-theoretic and topo-
logical notions of weak mixing:

Theorem 6.1.7. Suppose that Gy X is a continuous action of an abelian locally-
compact Polish group on a Polish space. Then the following are equivalent:
(1) There is a G-invariant σ-finite Borel measure µ on X with respect to which

Gy X is weakly mixing.
(2) There is a G-invariant closed set C ⊆ X for which Gy C is weakly mixing.

Proof. To see (1) =⇒ (2), let C be the complement of the union of all µ-null
non-empty open sets U ⊆ X, and observe that if U ,U ′,V ,V ′ ⊆ C are non-empty
open sets, then the G-saturations of U × V and U ′ × V ′ are (µ× µ)-conull, thus
∆C×CG ((U × V )× (U ′ × V ′)) 6= ∅.

To see (2) =⇒ (1), we first note the following:

73



Lemma 6.1.8. Suppose that x ∈ C and Gx is an open subset of C. Then x is the
unique element of Gx, and therefore of C.

Proof. Note that if g ∈ G and U ⊆ G, then RGxgU = (g, 1G)RGxU . It follows that if
H ⊆ G is a countable dense set, H ′ = H × {1G}, and U ⊆ G is a non-empty open
set, then Gx×Gx =

⋃
h∈H R

Gx
hU = H ′RGxU , so RGxU is not meager.

Proposition 3.1.2 easily implies that G/Stab(x) is a Hausdorff space. It follows
that if x is not the unique element of Gx, in which case Stab(x) 6= G, then there are
disjoint non-empty open sets U ,V ⊆ G/Stab(x). As G is abelian, it follows that
RGx⋃

U and RGx⋃
V are disjoint G-invariant non-meager sets with the Baire property,

contradicting the fact that Gy C ×C is topologically transitive.

If C is a singleton, then any finite Borel measure concentrating on C is as desired.
Otherwise, fix a countable dense subgroup H of G, and observe that by the proof of
Theorem 6.1.5 and Lemma 6.1.8, we can assume that Gy X is of the form Gy Xh,
where h ∈ (H{1,...,3})N is expansive and ∀h ∈ H∃∞n ∈ N h(hn)1(hn)2 = (hn)3.

For each n ∈ N, let Gn denote the digraph on 2n consisting of all pairs
(s, t) ∈ 2n × 2n such that supp(s) ⊆ supp(t) and supp(t) \ supp(s) is a singleton.

Lemma 6.1.9. Suppose that n ∈ N. Then there there is a partial injection
ϕ : 2n ⇀ 2n whose graph is contained in Gn and whose domain has cardinality
2n − ( n

dn/2e).

Proof. For all m ≤ n, define Sm = {s ∈ 2n | |supp(s)| = m}.
If m < n, A ⊆ Sm, and B = {t ∈ Sm+1 | ∃s ∈ A s Gn t}, then |Gn ∩

(A×B)| = (n−m)|A| and |G−1
n ∩ (B × Sm)| = (m+ 1)|B|, so (n−m)|A| ≤

(m+ 1)|B|. It follows that if m+ 1 ≤ n−m, or equivalently, if m ≤ (n− 1)/2,
then |A| ≤ |B|, in which case Hall’s marriage theorem (see, for example, [HV50])
yields an injection ϕm : Sm → Sm+1 whose graph is contained in Gm.

If m < n, A ⊆ Sm+1, and B = {s ∈ Sm | ∃t ∈ A s Gn t}, then |G−1
n ∩

(A×B)| = (m+ 1)|A| and |Gn ∩ (B × Sm+1)| = (n−m)|B|, so (m+ 1)|A| ≤
(n−m)|B|. It follows that if n−m ≤ m+ 1, or equivalently, if m ≥ (n− 1)/2,
then |A| ≤ |B|, in which case one more application of Hall’s marriage theorem
yields an injection ϕm+1 : Sm+1 → Sm whose graph is contained in G−1

m .
Finally, define ϕ =

⋃
m≤(n−1)/2 ϕm ∪

⋃
m>(n−1)/2 ϕ

−1
m+1, and note that

|∼dom(ϕ)| = |Sn|+
∑
dn/2e≤m<n |Sm| − |Sm+1| = |Sdn/2e| = ( n

dn/2e).

Let µ be the N-fold power of the uniform probability measure on {0, 1, 2, 3}.
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Lemma 6.1.10. Suppose that ε > 0, n ∈ N, h ∈ H, and s, t ∈ 4n × 4n. Then
there exist a clopen set C ⊆ Ns0 ×Ns1 and continuous functions ϕi : C → Nti with
the property that ϕ0 × ϕ1 is injective, (µ× µ)(C) ≥ (1− ε)(µ× µ)(Ns0 ×Ns1),
and �h(c0,ϕ0(c0, c1))h = �h(c1,ϕ1(c0, c1)) for all (c0, c1) ∈ C.

Proof. It is well-known that ( k
dk/2e)/2k converges to zero, so there exists k ∈ N

for which ( k
dk/2e)/2k < ε. For all ` ∈ N, appeal to Lemma 6.1.9 to obtain a

partial injection ϕ` : 2` ⇀ 2` whose graph is contained in G` and whose domain has
cardinality 2`− ( `

d`/2e). For all (u0,u1) ∈ 4≤N× 4≤N, let K(u0,u1) be the set of k ∈⋂
i<2 dom(ui) with the property that h−1(hs0)−1ht0(ht1)−1hs1(hk+n)1(hk+n)2 =

(hk+n)3 and ((u0)k, (u1)k) ∈ {(0, 2), (1, 3)}. As K(c0,c1) is infinite for (µ× µ)-
almost every (c0, c1) ∈ 4N × 4N, there exists m ∈ N such that (µ× µ)({(c0, c1) ∈
4N × 4N | |K(c0�m,c1�m)| < k}) + ( k

dk/2e)/2k < ε. For all K ⊆ m, let (kKi )i<|K| be
the strictly increasing enumeration of K. For all r0, r1 ∈ 4m\K , set UK,(r0,r1) =

{(u0,u1) ∈ 4m × 4m | K = K(u0,u1) and ∀i < 2 ri v ui}, and define ψK,(r0,r1)

: UK,(r0,r1) → 2|K| by ψK,(r0,r1)(u0,u1)i = (u0)kK
i
. Define π : 4m × 4m ⇀ 4m × 4m

by π(u0,u1) = (ψ−1
K,(r0,r1)

◦ ϕ|K| ◦ ψK,(r0,r1))(u0,u1), where K = K(u0,u1) and
ri = ui � (m \K) for all i < 2, and observe that the partial function (si a ui a
ci)i<2 7→ (ti a πi(u0,u1) a ci)i<2 is as desired, by Proposition 3.2.1.

Fix a Haar measure µG on G. Clearly Gy G× 4N is invariant with respect to
µG × µ, and the latter is Eh-invariant.

Lemma 6.1.11. Suppose that B ⊆ (G × 4N) × (G × 4N) is G-invariant and
(Eh ×Eh)-invariant. Then B or ∼B is (µG × µ)× (µG × µ)-null.

Proof. Suppose that B is (µG×µ)× (µG×µ)-positive. Then Fubini’s theorem (see,
for example, [Kec95, §17.A]) yields g0 ∈ G such that the set B(g0,g1) = {(c0, c1) ∈
4N× 4N | ((g0, c0), (g1, c1)) ∈ B} is (µ×µ)-positive for a µG-positive set of g1 ∈ G.
Lemma 6.1.10 ensures that if ε > 0, g1 ∈ G, h ∈ H, s ∈ ⋃

n∈N 4n × 4n, and
B(g0,g1) has density strictly greater than 1− ε in Ns0 ×Ns1 , then B(g0,g1h) has
density strictly greater than 1− ε in 4N × 4N for all h ∈ H. It follows that if
g1 ∈ G and (µ× µ)(B(g0,g1)) > 0, then (µ× µ)(B(g0,g1h)) = 1 for all h ∈ H,
so (µ× µ)(B(g0,g1)) = 1 for µG-almost all g1 ∈ G, since the uniqueness of Haar
measure up to a scaling factor ensures that H y G is ergodic with respect to µG.
As B is G-invariant, it follows that B is (µG × µ)× (µG × µ)-conull.

It follows that the restriction of µG × µ to any Borel transversal of Eh induces
the desired measure on Xh.

75



Remark 6.1.12. While the above arguments work just as well for topological
d-transitive when d > 2, this does not yield any greater generality, as these notions
coincide with weak mixing for abelian groups.

We next turn our attention to anti-basis theorems for strengthenings of weak
mixing. The primary observation we will use to obtain such results is the follow-
ing:

Proposition 6.1.13. Suppose that G is a Polish group that admits a compatible
two-sided-invariant metric, Gy X is a continuous action on a non-empty Polish
space, Gy Y is a continuous action on a Polish space with at least two elements,
and G y X × Y is topologically transitive. Then there exist x ∈ X and a G-
invariant dense Gδ set C ⊆ Y for which there is no continuous homomorphism
ϕ : X → Y from Gy X to Gy Y with the property that ϕ(x) ∈ C.

Proof. Fix a compatible complete metric on X, positive real numbers εn → 0,
non-empty open sets W0,W1 ⊆ Y with disjoint closures, and open neighborhoods
U ⊆ G of 1G and non-empty open sets W ′0,W ′1 ⊆ Y such that UW ′i ⊆ Wi for all
i < 2. By [Kle52, p. 1.5], we can assume that U is conjugation invariant. Fix
natural numbers in < 2 and non-empty open sets Vn ⊆ Y such that for all i < 2
and non-empty open sets V ⊆ Y , there are infinitely many n ∈ N for which in = i
and Vn ⊆ V .

Set U0 = X. Given n ∈ N and a non-empty open set Un ⊆ X, fix gn ∈
∆X×YG ((Un× Vn)× (Un×W ′in)) and non-empty open sets Un+1 ⊆ X and V ′n ⊆ Vn
such that diam(Un+1) ≤ εn, Un+1 ∪ gnUn+1 ⊆ Un, and gnV ′n ⊆ W ′in .

Let x be the unique point of ⋂
n∈N Un. Note that for all i < 2 and n ∈ N, the

open set Vi,n =
⋃
i=im,m≥n V

′
m is dense, thus so too is the Gδ set D =

⋂
i<2,n∈N Vi,n.

Fix a countable dense set H ⊆ G, and observe that the Gδ set DH =
⋂
h∈H h

−1D is
also dense. Noting that ∀g ∈ G∀∗y ∈ Y g · y ∈ DH , the Kuratowski-Ulam theorem
ensures that the G-invariant set C = {y ∈ Y | ∀∗g ∈ G g · y ∈ DH} is comeager.
By [Vau75, Corollary 1.8], it is also Gδ.

Suppose now that ϕ : X → Y is a continuous homomorphism from G y X
to G y Y . To see that ϕ(x) /∈ C, it is sufficient to show that if y ∈ C, then
gn · y 6→ y, since gn · x → x. Towards this end, fix i < 2 for which y /∈ Wi, as
well as g ∈ G for which g · y ∈ DH . As G = UH, there exists h ∈ H for which
g−1 ∈ Uh. As the set N = {n ∈ N | hg · y ∈ V ′n and i = in} is infinite, it only
remains to note that if n ∈ N , then gn · y ∈ gnUhg · y = Ugnhg · y ⊆ Wi.

In order to apply this result to obtain lower bounds on the cardinalities of bases
consisting solely of weakly mixing actions, we will need the following straightforward
observation:

76



Chapter 6 Mixing

Proposition 6.1.14. Suppose that G is a group, G y X is a weakly-mixing
action by homeomorphisms of a topological space, Gy Y is a minimal action by
homeomorphisms of a topological space, and there is a continuous homomorphism
ϕ : X → Y from Gy X to Gy Y . Then Gy X × Y is topologically transitive.

Proof. Suppose that U × V ,U ′ × V ′ ⊆ X × Y are non-empty open sets. As
G y Y is minimal, the sets ϕ−1(V ) and ϕ−1(V ′) are non-empty. As G y X
is weakly mixing, the set ∆X×XG ((U × ϕ−1(V ))× (U ′ × ϕ−1(V ′))) is non-empty.
But the fact that ϕ is a homomorphism ensures that this set is contained in
∆X×YG ((U × V )× (U ′ × V ′)).

As a corollary, we obtain the following:

Theorem 6.1.15. Suppose that G is a Polish group that admits a compatible two-
sided-invariant metric and A is a non-empty class of minimal continuous G-actions
on Polish spaces of cardinality at least two that is closed under restrictions to G-
invariant dense Gδ sets. Then any basis B for A under continuous homomorphism
consisting solely of weakly-mixing actions has cardinality at least the additivity of
the meager ideal.

Proof. Fix an action Gy X in A, and suppose, towards a contradiction, that there
is an enumeration (G y Xα)α<κ of B of length strictly less than the additivity
of the meager ideal. For all α < κ, Proposition 6.1.14 ensures that Gy X ×Xα

is topologically transitive, so Proposition 6.1.13 yields a G-invariant dense Gδ
set Cα ⊆ X for which there is no continuous homomorphism from G y Xα to
Gy Cα. Fix a dense Gδ set C ⊆

⋂
α<κCα. Then ∀g ∈ G∀∗x ∈ X g · x ∈ C, so the

Kuratowski-Ulam theorem ensures that ∀∗x ∈ X∀∗g ∈ G g · x ∈ C, in which case
B = {x ∈ X | ∀∗g ∈ G g · x ∈ C} is a G-invariant dense Gδ set for which no action
in B admits a continuous homomorphism to Gy B, the desired contradiction.

6.2 Mild mixing

We begin this section with an alternative characterization of mild mixing:

Proposition 6.2.1. Suppose that G y X is a continuous action of a locally-
compact Polish group on a Polish space with no open orbits and (Kn)n∈N is an
exhaustive increasing sequence of compact subsets of G. Then G y X is mildly
mixing if and only if G y X × Xg is topologically transitive for all (Kn)n∈N-
expansive sequences g ∈ GN.
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Proof. By Proposition 3.2.3, it is sufficient to show (⇐=). Towards this end,
suppose that Gy Y is a topologically-transitive continuous G-action with no open
orbits, and fix y ∈ Y for which [y]FY

G
is comeager. The minimality of Gy [y]FY

G

ensures that it is topologically transitive. It also ensures that it has no open orbits,
since otherwise [y]FY

G
would itself be an orbit of Gy Y , and since it is non-meager

in Y , it would necessarily be open in Y .

Lemma 6.2.2. There exist a (Kn)n∈N-exhaustive sequence g ∈ GN and a contin-
uous homomorphism ϕ : Xg → [y]FY

G
from Gy Xg to Gy Y .

Proof. While it is easy enough to establish this directly, we will use the tools at
hand: By Theorem 6.1.5, there exist a sequence g ∈ GN, a continuous function
G : Xg → F(G)∩S(G) compatible with �g for which (g, G) is (Kn)n∈N-expansive,
and a continuous embedding ψ : Xg,G → [y]FY

G
from Gy Xg,G to Gy Y . As the

function π : Xg → Xg,G given by π([(g,x)]Eg) = [(g,x)]Eg,G is a homomorphism
from Gy Xg to Gy Xg,G, the function ϕ = ψ ◦ π is as desired.

Suppose now that U0,U1 ⊆ X and V0,V1 ⊆ Y are non-empty open sets.
The fact that [y]FY

G
is comeager ensures that it intersects each Vi, so the fact

that G y [y]FY
G

is minimal implies that the pullback of each Vi through ϕ is
non-empty. The topological transitivity of G y X ×Xg therefore implies that
∆X×Xg
G (

∏
i<2 Ui × ϕ−1(Vi)) is non-empty, and since ϕ is a homomorphism, this set

is contained in ∆X×YG (
∏
i<2 Ui × Vi), so the latter set is non-empty as well.

In light of Proposition 6.2.1, the following facts can be viewed as local refine-
ments of further alternative characterizations of mild mixing:

Proposition 6.2.3. Suppose that Gy X is a continuous action of a topological
group on a topological space and g ∈ (

⋃
d∈Z+ G{1,...,d})N. Then G y X ×Xg is

topologically transitive if and only if Gy X is {IP(sn(g))IP(sn(g))−1 | n ∈ N}-
transitive.

Proof. Note that if G y Y is topologically transitive, then G y X × Y is topo-
logically transitive if and only if ∆XG (U × V ) ∩ ∆YG(W ×W ) 6= ∅ for all non-
empty open sets U ,V ⊆ X and W ⊆ Y , since ∆XG (U × V ) ∩ ∆YG(W × gW ) =
g(∆XG (U × g−1V ) ∩ ∆YG(W ×W )) for all g ∈ G. In particular, this holds when
Y = Xg, since Proposition 3.1.4 ensures that Gy Xg is minimal.

To see (=⇒), suppose that n ∈ N and V ,W ⊆ X are non-empty open sets, and
fix an open neighborhood U ⊆ G of 1G and non-empty open sets V ′,W ′ ⊆ X such
that UV ′ ⊆ V and UW ′ ⊆ W . Then ∆XG (V

′ ×W ′) ∩ ∆Xg
G ((U−1 ×N(0)n)/Eg ×
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(U−1 ×N(0)n)/Eg) 6= ∅. But U∆XG (V
′ ×W ′)U−1 = ∆XG (UV

′ ×UW ′), and it fol-
lows from Proposition 3.2.1 that ∆Xg

G ((U−1 ×N(0)n)/Eg × (U−1 ×N(0)n)/Eg) =

U−1IP(sn(g))IP(sn(g))−1U , so ∆XG (V ×W ) ∩ IP(sn(g))IP(sn(g))−1 6= ∅.
To see (⇐=), suppose that s ∈ Tg, and U ⊆ G and V ,W ⊆ X are non-empty

open sets, and observe that ∆XG ((Ugs)−1V × (Ugs)−1W )∩ IP(s|s|(g))IP(s|s|(g))−1

6= ∅. Noting that UgsIP(sng)IP(sng)−1(Ugs)−1 ⊆ ∆Xg
G ((U ×Ns)/Eg × (U ×

Ns)/Eg) by Proposition 3.2.1, the fact that ∆XG ((Ugs)−1V × (Ugs)−1W ) =

(Ugs)−1∆XG (V ×W )Ugs ensures that ∆XG (V ×W ) ∩ ∆Xg
G ((U ×Ns)/Eg × (U ×

Ns)/Eg) 6= ∅.

Proposition 6.2.4. Suppose that G y X is a continuous action of a locally-
compact Polish group on a Polish space and g ∈ (

⋃
d∈Z+ G{1,...,d})N. Then the

following are equivalent:
(1) The action G y X ×Xg is topologically transitive and the action G y X

has no open orbits.
(2) The action G y X is topologically transitive and expansively {gIP(sn(g))

IP(sn(g))−1 | g ∈ G and n ∈ N}-recurrent.

Proof. Note that G y X ×Xg is topologically transitive if and only if G y X
is {IP(sn(g))IP(sn(g))−1 | n ∈ N}-transitive, by Proposition 6.2.3. The latter
condition holds if and only if Gy X is {gIP(sn(g))IP(sn(g))−1 | g ∈ G and n ∈
N}-transitive, by Proposition 6.1.1. The conjunction of this with the inexistence of
open orbits is equivalent to the expansive {gIP(sn(g))IP(sn(g))−1 | g ∈ G and n ∈
N}-transitivity of G y X, by Proposition 6.1.3 and the comment immediately
preceding it. And the latter condition holds if and only if Gy X is expansively
{gIP(sn(g))IP(sn(g))−1 | g ∈ G and n ∈ N}-recurrent and topologically transitive,
by Proposition 6.1.2.

As a consequence, we obtain a necessary and sufficient condition for an intran-
sitive minimal continuous action to be mildly mixing:

Theorem 6.2.5. Suppose that G y X is an intransitive minimal continuous
action of a locally-compact Polish group on a Polish space. Then the following are
equivalent:
(1) The action Gy X is mildly mixing.
(2) There is a continuous disjoint union of actions that is obtained via expansive

cutting and stacking that is not σ-expansively {⋃g∈G gSg−1 | S ∈ Smm}-
transient but admits a continuous stabilizer-preserving homomorphism to
Gy X.
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Proof. Fix an exhaustive increasing sequence (Kn)n∈N of compact subsets of G.
To see (1) =⇒ (2), note that if S ∈ ⋃ Smm, then there exist g ∈ G and a

(Kn)n∈N-expansive sequence g ∈ (
⋃
d∈Z+ G{1,...,d})N for which gIP(g)IP(g)−1 ⊆ S.

As the intransitivity and minimality of Gy X rule out the existence of open orbits,
Proposition 6.2.4 ensures that Gy X is expansively {gIP(g)IP(g)−1}-recurrent,
so Lemma 2.1.3 implies that Gy X is not σ-expansively (⋃g∈G g{S}g−1)-transient,
thus Theorem 4.1.8 yields the desired disjoint union and embedding.

To see (2) =⇒ (1), given a sequence g ∈ (
⋃
d∈Z+ G{1,...,d})N that is (Kn)n∈N-

expansive, observe that if g ∈ G, n ∈ N, and S = gIP(sn(g)) IP(sn(g))−1,
then G y X is not σ-expansively ⋃

g∈G g{S}g−1-transient, so the minimality of
Gy X ensures that it is expansively {S}-recurrent. As Gy X is topologically
transitive, Proposition 6.2.4 implies that Gy X ×Xg is topologically transitive,
so Proposition 6.2.1 yields that Gy X is mildly mixing.

We now establish the corresponding anti-basis theorem:

Theorem 6.2.6. Suppose that G is a Polish group that admits a compatible two-
sided-invariant metric and A is a non-empty class of mildly-mixing minimal con-
tinuous G-actions on Polish spaces of cardinality at least two that is closed under
restrictions to G-invariant dense Gδ sets. Then any basis B for A under continuous
homomorphism has cardinality at least the additivity of the meager ideal.

Proof. Exactly as in the proof of Theorem 6.1.15, albeit without the need for
Proposition 6.1.14.

6.3 Strong mixing

We begin this section with two local refinements of characterizations of strong
mixing:

Proposition 6.3.1. Suppose that G y X is a continuous action of a locally-
compact Polish group on a topological space. Then G y X is strongly mixing if
and only if it is (⋃ Ssm)-transitive.

Proof. This is a straightforward consequence of the fact that a closed subset of G
is compact if and only if it does not have a closed discrete infinite subset.

Proposition 6.3.2. Suppose that G y X is a continuous action of a locally-
compact Polish group on a Polish space. Then G y X is strongly mixing and
has no open orbits if and only if it is topologically transitive and expansively
(
⋃ Ssm)-recurrent.
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Proof. Note that Gy X is strongly mixing if and only if it is (⋃ Ssm)-transitive,
by Proposition 6.3.1. The conjunction of the latter condition with the inexistence
of open orbits is equivalent to the expansive (

⋃ Ssm)-transitivity of G y X, by
Proposition 6.1.3 and the comment immediately preceding it. And the latter condi-
tion holds if and only if Gy X is expansively (

⋃ Ssm)-recurrent and topologically
transitive, by Proposition 6.1.2.

As a consequence, we obtain a necessary and sufficient condition for an intran-
sitive minimal continuous action to be strongly mixing:

Theorem 6.3.3. Suppose that G y X is an intransitive minimal continuous
action of a locally-compact Polish group on a Polish space. Then the following are
equivalent:
(1) The action Gy X is strongly mixing.
(2) There is a continuous disjoint union of actions obtained via expansive cutting

and stacking that is not σ-expansively {⋃g∈G gSg−1 | S ∈ Ssm}-transient
but admits a continuous stabilizer-preserving homomorphism to Gy X.

Proof. To see (1) =⇒ (2), note that the intransitivity and minimality of Gy X
ensures that there are no open orbits, in which case Proposition 6.3.2 implies that
Gy X is expansively (

⋃ Ssm)-recurrent, so Lemma 2.1.3 implies that Gy X is
not σ-expansively {⋃g∈G gSg−1 | S ∈ Ssm}-transient, thus Theorem 4.1.8 yields
the desired disjoint union and embedding.

To see (2) =⇒ (1), observe that Gy X is not σ-expansively {⋃g∈G gSg−1 |
S ∈ Ssm}-transient, so the minimality of G y X ensures that it is expansively
(
⋃ Ssm)-recurrent. As Gy X is topologically transitive, Proposition 6.3.2 implies
that it is strongly mixing.
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Chapter 7

Miscellaneous

In this chapter we gather some results that do not fit into the context of the
previous chapters but are nevertheless of interest in their own right.

7.1 Conjugation action on subgroups

Suppose, G is a countable group. The space of subgroups of G can be realized as
a compact subset S(G) of 2G, by identifying a subgroup with its characteristic
function. G acts continuously by conjugation on S(G).

Lemma 7.1.1. Suppose N is a normal subgroup of G, then the quotient map
π : G → G/N induces a continuous injection of ψ : S(G/N) → S(G), defined
by ψ(H) = π−1(H), which is an invariant embedding of ES(G/N)

G/N to ES(G)G . The
image of S(G/N) under ψ consists of all subgroups of G containing N .

Proof. Note that H0,H1 ∈ S(G/N) are ES(G/N)
G/N related, if and only if there

is a h ∈ G/N such that hH0h−1 = H1, if and only if there is a g ∈ G such
that gπ−1(H0)g−1 = π−1(H1). Thus ψ is an invariant embedding of ES(G/N)

G/N to
E
S(G)
G .

If H is a subgroup of G, then S(H) is a compact subspace of S(G) by identi-
fying H0 ∈ S(H) with its characteristic function in S(G). Note that ES(H)

H is a
subequivalence relation of ES(G)G restricted to S(H). Assume that H ∈ S(G) is
malnormal in G, i.e., whenever g ∈ G \H, then gHg−1 ∩H = {1G}. Then E

S(H)
H

coincides with ES(G)G restricted to S(H), since if gH0g−1 = H1 for some g ∈ G and
H0,H1 ∈ S(H), then either H0 and H1 equal {1G}, or g is actually in H, because
of the malnormality of H in G. In either case H0 and H1 are ES(H)

H -related. There
is a malnormal subgroup of F2 which is isomorphic to Fω, for example the group
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that is generated by the set {alblal | l > 0} where a, b are free generators of F2 (see
[KS71] p. 950). This shows the following:

Proposition 7.1.2 (S. Thomas, B. Velickovic, [TV99]). There exists a continuous
embedding of ES(Fω)

Fω
into ES(F2)

F2
.

Suppose, that G acts onH by group-automorphisms. Then define the semidirect
product of G and H to be the group GnH with underlying set G×H and with
the group operation given by (g0,h0) · (g1,h1) = (g0g1,h0(g0(h1))). The action
of G on H propagates to an action of G on S(H) by g ·H0 = {gh | h ∈ H0}
for g ∈ G and H0 ∈ S(H). Let i : S(H) → S(GnH) be the map sending
H0 ∈ S(H) to {1G} ×H0. Then GnH acts via conjugation on i(S(H)) by
(g,h) ·H0 = (g,h)H0(g,h)−1 = (g,h)H0(g−1, g−1h−1) = h(g ·H0)h−1.

Lemma 7.1.3. Suppose G is a countable group, H is an abelian group and G

acts on H by group-automorphisms. Then i is an invariant embedding of ES(H)
G to

E
S(GnH)
GnH . It is also an G-invariant embedding of the action of G on S(H) to the

action of G viewed as a subgroup of GnH by conjugation on S(GnH).

Proof. Just note that, in the special case in which H is abelian, GnH acts on
i(S(H)) by (g,h) · i(H0) = i(g ·H0) for (g,h) ∈ GnH and H0 ∈ S(H).

For any countable group G and countable abelian group A, let A[G] be the
group with underlying set {(ag)g∈G ∈ AG | |{g ∈ G : ag 6= 0A}| < ∞} and
pointwise addition. Let G act on A[G] by h(ag)g∈G = (ah−1g)g∈G. This is an
action by group-automorphisms. Let GnA[G] be the corresponding semidirect
product.

Lemma 7.1.4. The map ϕ : S(A)G → S(A[G]) sending x ∈ S(A)G to the group
A[G]∩Πg∈Gx(g) is an injective homomorphism of the shift-action of G on S(A)G
to Gy S(A[G]).

Proof. Note that for h ∈ G and x ∈ S(A)G the element (ag)g∈G ∈ ϕ(hx) if and
only if ag ∈ x(h−1g) for all g ∈ G if and only if ahg ∈ x(g) for all g ∈ G if and
only if (ag)g∈G ∈ hϕ(x). Note that ϕ is injective since, if πh : A[G] → A is the
projection defined by πh((ag)g∈G) = ah, then x(h) = πh(ϕ(x)) for all x ∈ S(A)G
and h ∈ G. To see that ϕ is continuous just note that if (ag)g∈G ∈ A[G], F ⊆ G
is the finite set of g ∈ G for which ag 6= 0A, for any g ∈ G the set Ug ⊆ S(A)G is
the clopen set of all x ∈ S(A)G with πg(x) containing ag, and U ⊆ A[G] is the
clopen set of all subgroups of A[G] containing (ag)g∈G , then ϕ−1(U) =

⋂
g∈F Ug

and thus ϕ−1(U) is also clopen.
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Chapter 7 Miscellaneous

Combing Lemmas 7.1.3 and 7.1.4 we immediately obtain:

Theorem 7.1.5. Suppose G is a countable group and A is a countable abelian group.
Then there is a continuous invariant-embedding ϕG : S(A)G → S(GnA[G]) of
E
S(A)G

G to ES(GnA[G])
GnA[G] .

Remark 7.1.6. Suppose that G is a countable group, A is a countable abelian
group, and µ is an invariant and ergodic probability measure for the shift action
of G on S(A)G. Then the push-forward (ϕG)∗(µ) is invariant and ergodic with
respect to the conjugation action of GnA[G] on S(GnA[G]) and also µ is weakly
mixing with respect to the conjugation action of GnA[G] if it is weakly mixing
with respect to the conjugation action of G.

Proof. By Lemma 7.1.3 this is immediate from the observation that if Gy (X,µ)
is ergodic, then also the action GnH y (X,µ), given by (g,h)x = gx is ergodic,
for any countable group H. And this follows from the fact that a set A ⊆ X is
G-invariant if and only if it is GnH-invariant.

Note that there are countable abelian groups A such that S(A) is uncountable,
for example Q or the infinite direct sum of Z/2Z. Let A be such a group. By
Theorem 7.1.5 there is a continuous invariant-embedding ϕFω : S(A)Fω → S(Fω n
A[Fω]) of ES(A)

Fω

Fω
to ES(FωnA[Fω ])

FωnA[Fω ]
. Now (Fω nA[Fω]) is a factor of Fω and thus

by Lemma 7.1.1 there is an invariant embedding of ES(FωnA[Fω ])
(FωnA[Fω ])

to ES(Fω)
Fω

. Now,
S(A) is Borel isomorphic to R and thus putting all together we obtain an invariant
Borel embedding of the induced orbit equivalence relation of the shift action of
Fω on RFω to the induced orbit equivalence relation of the conjugation action
of Fω on its subgroups. The former is an invariantly universal countable Borel
equivalence relation and it follows that ES(Fω)

Fω
is an invariantly universal countable

Borel equivalence relation as well.
Combining Proposition 7.1.2 and the preceding observation we obtain:

Theorem 7.1.7 (S. Thomas, B. Velickovic, [TV99]). ES(F2)
F2

is a universal countable
Borel equivalence relation.

Now, F2 is a quotient of every free group Fn for 2 ≤ n ≤ ω, so by Lemma 7.1.1
we obtain:

Theorem 7.1.8 (S. Thomas, B. Velickovic, [TV99]). ES(Fn)
Fn

is a universal count-
able Borel equivalence relation for every 2 ≤ n ≤ ω.
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For a group G and H ∈ S(H) let N(H) = {g ∈ G | gHg−1 = H} denote
its normalizer, i.e., the stabilizer of H under the conjugation action of G. For a
group G let SNS(G) be the space of selfnormalizing subgroups of G, i.e., those
subgroups for which N(H) = H. It is a Gδ subspace of S(G). To see this, note
that its complement is the countable union of the closed sets Fg = {H ∈ S(G) |
g /∈ H ∧ gHg−1 = H} for g ∈ G. For any countable group G, let FG be the free
group with generating set {ag | g ∈ G}. Then G acts on FG by permuting the
generators by left translation, i.e., g ∈ G is the unique automorphism from FG
to FG which sends ah to agh for every h ∈ G. This action induces a continuous
action of G on S(FG). Define a map ϕ : 2G → S(FG) by letting ϕ(x) be the group
generated by all ag such that x(g) = 1. Then ϕ is continuous and injective. Note
that ϕ(2G) is a partial transversal for the action of FG by conjugation on S(FG).
To see this, suppose towards a contradiction, that there are distinct x0,x1 ∈ 2G
and h ∈ FG such that ϕ(x0) = hϕ(x1)h−1. Then one can assume, by changing
the roles of x0 and x1 if necessary, that there is a g ∈ G such that x0(g) = 1
and x1(g) = 0. Let ϕg be the unique homomorphism of FG to Z defined by
ϕg(ag) = 1 and ϕg(ah) = 0 if h 6= g. Then ϕg(H0) = Z and hH1h−1 ⊆ ker(ϕg),
a contradiction. Also note that ϕ is a G-embedding of the shift action of G on 2G
to the action of G on S(FG). To see this, let x ∈ 2G and g ∈ G. Then ah ∈ ϕ(gx)
if and only if (gx)(h) = 1, if and only if x(g−1h) = 1, if and only if ag−1h ∈ ϕ(x),
thus gϕ(x) = ϕ(gx). Now, consider S(FG) as a closed (Gn FG-invariant) subset
of S(Gn FG) and suppose that ϕ(x0) = (g,h) · ϕ(x1) for some x0,x1 ∈ 2G and
(g,h) ∈ GnFG, i.e., ϕ(x0) = h(g ·ϕ(x1))h−1. Since ϕ(2G) is a partial transversal
for the action of FG on S(FG), this implies that h(g · ϕ(x1))h−1 = g · ϕ(x1), so,
since g ·ϕ(x1) = ϕ(g ·x1) and ϕ is injective, ϕ is an embedding of the induced orbit
equivalence relation of the shift action of G on 2G to ES(GnFG)

GnFG
. Note that if x ∈ 2G

is in the free part Fr(2G) of the shift action, then if (g,h)ϕ(x)(g,h)−1 = ϕ(x)
we get that hϕ(gx)h−1 = ϕ(x). This implies that ϕ(gx) = ϕ(x) since ϕ(2G) is a
partial transversal for the action of FG on S(FG), but then g = 1G, since x is in the
free part of the shift action, thus hϕ(x)h−1 = ϕ(x). But since ϕ(x) is malnormal
in FG this implies that h ∈ ϕ(x). This shows that ϕ(Fr(2G)) ⊆ SNS(Gn FG).
Now, Gn FG is a factor of Fω and since the map ψ from Lemma 7.1.1 sends
SNS(Gn FG) to SNS(Fω), we obtain the following:

Proposition 7.1.9. For every countable group G there is a continuous embedding
of EFr(2

G)
G to ESNS(Fω)

Fω
.

Note that on the other hand, the induced equivalence relation of the action of
G by conjugation on its malnormal subgroups is smooth, since the sets Ag = {H ∈
S(G) | H ismalnormal and g ∈ H} are partial transversals for all g ∈ G \ {1G}.
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Iterating N : S(G) → S(G) and taking unions at limit ordinals eventually
yields a selfnormalizing group. The following observations shows that there exist
countable groups for which the set of subgroups for which this process ends at the
whole group is co-analytic hard.

For a group G and an action G y X define a group T (G,X) as follows. Its
underlying set will be T (G,X) = {f ∈ G(X<N) | |{s ∈ X<N : f(s) 6= 1G}| <∞}.
Define for every f ∈ T (G,X) an map σf : X<N → X<N by recursively letting
σf (∅) = ∅ and σf (s)(k) = f(σf (s|k)) · s(k) for all k ∈ dom(s). Note that σf
sends Xn bijectively to Xn. To see this, note that it sends X0 to X0. Assuming
that σf sends Xn bijectively to Xn, note that if s, t ∈ Xn+1 and σf (s) = σf (t),
then σf (s|n) = σf (t|n) and thus s|n = t|n and σf (s)(n) = f(σf (s|n)) · s(n) =
σf (t)(n) = f(σf (s|n)) · t(n), thus s(n) = t(n), so s = t. If s ∈ Xn+1, then
take t ∈ Xn with σf (t) = s|n and choose x ∈ X such that f(σf (t|n)) · x = s(n).
Then σf (t

_x) = s. Now define a group operation on T (G,X) by (f ◦ g)(s) =

f(s)g(σ−1
f (s)) for f , g ∈ T (G,X) and s ∈ X<N. 1T (G,X) is given by 1T (G,X)(s) =

1G for all s ∈ G<N. Next we show that σf◦g = σf ◦ σg. Again we show this level
by level, the case n = 0 being trivial. So suppose that σf◦g(s) = (σf ◦ σg)(s)
for all s ∈ Xn. If s ∈ Xn+1 then σf◦g(s)(n) = (f ◦ g)(σf◦g(s|n)) · s(n) =
(f ◦ g)(σf (σg(s|n)) · s(n) = f(σf (σg(s|n))g(σg(s|n)) · s(n) and (σf ◦σg)(s)(n) =
(σf (σg(s))(n) = f(σf (σg(s))|n)) · σg(s)(n) = f(σf (σg(s|n))) · g(σg(s|n)) · s(n).
Next, we show that ◦ is associative: Let f , g,h ∈ T (G,X), s ∈ X<N and observe
that ((f ◦ g) ◦ h)(s) = (f ◦ g)(s)h(σ−1

f◦g(s)) = f(s)g(σ−1
f (s))h(σ−1

g σ−1
f (s)) =

f(s)(g ◦ h)(σ−1
f (s)) = (f ◦ (g ◦ h))(s). Finally note that the inverse of f ∈

T (G,X) is given by f−1(s) = f−1(σf (s)) for s ∈ X<N. Note that σf (s) = s

if and only if f(s|k) · s(k) = s(k) for all k ∈ dom(s). For a tree T ⊆ X<N

define its pruning derivative by T ′ = {t ∈ T | ∃x ∈ X t_x ∈ T} and the group
H(T ) ⊆ T (G,X) by H(T ) = {f ∈ T (G,X) | ∀t ∈ T f(t) = 1G}.

Lemma 7.1.10. H(T ′) ⊆ N(H(T )).

Proof. Observe that for f ∈ H(T ′), t ∈ T , and g ∈ H(T ) we obtain σf (t) = t,
thus (fgf−1)(t) = f(t)(gf−1(t)) = f(t)g(t)f−1(t) = f(t)f−1(t) = 1G.

Note that if t ∈ T ′, x ∈ X such that t_x ∈ T , g ∈ H(T ), f ∈ T (G,X) with
f(t) 6= 1G, and σf (t) = t, then σ−1

f (t_x) = t_(f−1(t)x) and σ−1
g (t_y) = t_y for

every y ∈ X, thus f ◦ g ◦ f−1(t_x) = f(t_x)g(t_(f−1(t)x))f−1(t_(f−1(t)x)).
Now, if there exist x ∈ X such that t_x ∈ T and t_(f−1(t)x) /∈ T then any
g ∈ H(T ) with g(t_(f−1(t)x)) 6= f−1(t_x)f(t_(f−1(t)x)) witnesses that f /∈
N(H(T )). In the special case whereG acts on itself by left translation we abbreviate
T (G,G) by T (G).
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Proposition 7.1.11. If G is a countable group such that each non-trivial element
has infinite order, then there is a continuous injective map ϕ : Tr(N)→ S(T (G))
such that N(ϕ(T )) = ϕ(T ′) for all T ∈ Tr(N) and if Tn ∈ Tr(N) for n ∈ N is
decreasing, then ϕ(⋂n∈N Tn) =

⋃
n∈N ϕ(Tn).

Proof. By the previous paragraph and Lemma 7.1.10, all we have to show is
that there is a sequence (gn)n∈N such that for all g ∈ G and n ∈ N there exists
m ∈ N such that gmgn is not in {gn | n ∈ N}. To see this, given such a sequence,
define ϕ0 : N<N → G<N recursively by ϕ0(∅) = ∅ and having defined ϕ0 on
Nn, define ϕ0(s_m) = ϕ0(s)_gm for all s ∈ Nn and m ∈ N. Then define
ϕ1(T ) = {ϕ0(t) | t ∈ T} and ϕ(T ) = H(ϕ1(T )) for all trees T on N. Now, given a
tree T on N, t ∈ T ′, and g ∈ G there exists n ∈ N such that ϕ0(t_n) ∈ ϕ1(T ) and
ϕ0(t)_(ggn) /∈ ϕ1(T ) implying the first part of the proposition. If Tn ∈ Tr(N)
for n ∈ N is decreasing, then ϕ(

⋂
n∈N Tn) ⊇

⋃
n∈N ϕ(Tn) and if f ∈ ϕ(⋂n∈N Tn)

then f ∈ ϕ(TN ) for some N ∈ N since |{s ∈ GG<N | f(s) 6= 1G}| <∞. It remains
to show the existence of (gn)n∈N. To do this, let (hn)n∈N be an enumeration
of G and define g0 = h0. Having already defined g0, ..., gn, let gn+1 be any
element in the complement of {hlgk | l, k ≤ n}. To see that this works, let
n ∈ N and g ∈ G and let N ∈ N such that g = hN . Let m be maximal such
that gmgn ∈ {gk | k ≤ max(n,N)}. Then for any p > max(n,N) we get that
gm+1gn ∈ {hlgk | l, k ≤ p}, thus gm+1gn /∈ {gn | n ∈ N}.

7.2 Some remarks on strong mixing for countable
groups

Let G be a countable group. When K ⊆ G, we say that h ∈ G{1,...,d} is K-discrete
if h is RGK-discrete, where G acts on itself by left multiplication. When X is a
topological space and d ∈ Z+, recall that a continuous-in-X action G y X is
strongly d-mixing if ∆XG (Πk≤dUk) contains every K-discrete sequence h ∈ G{1,...,d}

for some compact set K ⊆ G for all sequences (Uk)k≤d of non-empty open subsets
of X and G y X is strongly (< ω)-mixing if it is strongly d-mixing for every
d ∈ Z+.

Proposition 7.2.1. Suppose that (Fn)n∈N is an increasing sequence of finite
subsets of G such that ⋃

n∈N Fn = G and 1G ∈ F0, 2 ≤ D ≤ ω, and g ∈
(
⋃
d∈Z+ G{1,...,d})N and (dn)n∈N are sequences such that gn ∈ G{1,...,dn}, gn is

Fn-discrete for every n ∈ N, S = {gn | n ∈ N}, and for every d < D the set
{n ∈ N | dn = d} is finite. Then there exists a Polish space XS, a continuous,
minimal, and free action Gy XS that is strongly d-mixing for all d < D, and an
open set US ⊆ XS that is {gn}-transient for every n ∈ N.
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Proof. Consider 2G with the product topology and let G act on 2G via the shift
action defined by (gx)(h) = x(g−1h) for all g,h ∈ G and x ∈ 2G. Define the set
TS = {x ∈ 2G | x(1G) = 1 ∧ ∀g ∈ S ∃0 < i ≤ |g|x(g−1

i ) = 0}. Then TS is non-
empty, closed, and {gn}-transient for all n ∈ N. Let τ be the topology generated by
the product topology on 2G and the sets gTS for g ∈ G. By Lemmas 13.2 and 13.3
of [Kec95] τ is a Polish topology. Let X0 denote the τ -open and G-invariant set GTS .
Given d < D and non-empty open sets Ul ⊆ X0 for l ≤ d we show that there exists a
finite set K ⊆ G such that every K-discrete sequence in G{1,...,d} is in ∆X0

G (Πl≤dUl).
We can assume that Ul is of the form Nsl

∩⋂
k≤Kl

elkTS ⊆ X0 for Kl ∈ N, elk ∈ G for
k ≤ Kl, sl ∈ 2<N and l ≤ d. We can further assume that F = dom(sl) for all l ≤ d,
elk ∈ F for k ≤ Kl, l ≤ d, and F is symmetric for some finite set F ⊆ G. Let xl ∈ Ul
for l ≤ d. Choose N ∈ N such that F 2 ∪ F ⋃

{(p,i)∈N×N|dp≤d,i∈{1,...,dp}}{(gp)i}F ⊆
FN . Let M = {(gm)i | i ∈ {1, ..., dm},m < N}. If h ∈ G{1,...,d} is (FN ∪ FMF )-
discrete we define xh by

(1) xh(f) = xl(hlf) for f ∈ h−1
l F and l ≤ d,

(2) xh(f) = 0 for f /∈ ⋃
l≤d h−1

l F .

This is well-defined since h−1
i F ∩ h−1

j F = ∅ for i 6= j ≤ d, since h is F 2-
discrete. We now show that hlxh ∈ Ul for all l ≤ d. Certainly hlxh ∈ Nsl

for l ≤ d. Also hlxh(e
l
k) = xl(e

l
k) = 1 for all k ≤ Kl and l ≤ d. It remains

to show that for every m ∈ N and k ≤ Kl there exists 0 < i ≤ dm such that
hlxh(e

l
k(gm)

−1
i ) = 0. Condition (2) implies that this is always the case when

there exists 0 < i ≤ dm with h−1
l elk(gm)

−1
i /∈ ⋃

j≤d h−1
j F . So suppose that

there exists k ≤ Kl and m ∈ N such that h−1
l elk(gm)

−1
i ∈ ⋃

j≤d h−1
j F for all

0 < i ≤ dm. If h−1
l elk(gm)

−1
i ∈ h−1

l F for some 0 < i ≤ dm, then (gm)i ∈
F−1elk ⊆ F 2 ⊆ FN . Since gn is FN -discrete for all n ≥ N this implies m < N .
If then h−1

l elk(gm)−1
p ∈ ⋃

j∈{0,...,d}\{l} h−1
j F for some p ∈ {1, ..., dm} \ {i}, then

hjh−1
l ∈ FMF for some j ∈ {0, ..., d} \ {l} contradicting the FMF -discreteness

of h. Thus h−1
l elk(gm)

−1
i ∈ h−1

l F for all 0 < i ≤ dm and since xl ∈ Ul
there exists 0 < i ≤ dm such that (hlxh)(e

l
k(gm)

−1
i ) = xl(e

l
k(gm)

−1
i ) = 0.

If h−1
l elk(gm)

−1
i ∈ ⋃

j∈{0,...,d}\{l} h−1
j F for all 0 < i ≤ dm, then necessarily

dm > d since otherwise hjh
−1
l ∈ F

⋃
{(p,i)∈N×N|dp≤d,i∈{1,...,dp}}{(gp)i}F ⊆ FN

for some j ∈ {0, ..., d} \ {l}. So there exists j ∈ {0, ..., d} \ {l} such that there
are distinct i0, i1 ∈ {1, ..., dm} with h−1

l elk(gm)
−1
i0 , h−1

l elk(gm)
−1
i1 ∈ h−1

j F , thus
(gm)i0(gm)−1

i1 ∈ F
2. Thus again m < N , but then hjh

−1
l ∈ FMF , contradicting

the FMF -discreteness of h. Thus we have shown that hlxh ∈ Ul for all l ≤ d.
For all g ∈ G \ {1G} the set {x ∈ 2G | gx = x} has empty interior. To see this
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suppose that U = Ns ∩
⋂
k≤K ekTS is non-empty open for some s ∈ 2<N,K ∈ N

and ek ∈ G for k ≤ K. If F = dom(s), we can assume that ek ∈ F for k ≤ K, F is
symmetric, and it contains 1G and g. Choose m ∈ N such that F 2 ⊆ Fm and dk ≥ 2
for all k ≥ m, and N > m such that F (gl)−1

i F ⊆ FN for all l ≤ m, i ∈ {1, ..., dl}.
Let x ∈ U . Define x′ ∈ 2G by x′ � F = x � F , x′((gN )1) = 1 and x′(h) = 0
for all h /∈ (F ∪ {(gN )1}). Then g−1(gN )1 /∈ F ∪ {(gN )1}, thus gx′ 6= x′ and if
ek(gl)−1

i = (gN )1 for some l ∈ N, i ∈ {1, ..., dl}, and k ≤ K, then l > m and
thus gl is F -discrete and dl ≥ 2 implying that x′ ∈ U . Let XS be the τ -dense,
G-invariant Gδ set on which G y X0 is free and every orbit is dense and set
US = TS ∩XS .

As a corollary we obtain the following:

Proposition 7.2.2. Let G be a countable group and d ∈ Z+. Then there exists a
free continuous action on a Polish space which is strongly d-mixing but not strongly
(d+ 1)-mixing.

Proof. Let (Fn)n∈N be an increasing sequence of finite subsets of G such that⋃
n∈N Fn = G and 1G ∈ F0. For any sequence g ∈ (G{1,...,d+1})N such that gn is

Fn-discrete for all n ∈ N Proposition 7.2.1 yields a free continuous action Gy XS ,
where S = {gn | n ∈ N}, which is strongly d-mixing and an open set US which
is {gn}-transient for every n ∈ N. Thus US is S-transient, thus G y XS is not
strongly (d+ 1)-mixing.

Proposition 7.2.3. Suppose (Fn)n∈N is an increasing sequence of symmetric
finite subsets of G such that ⋃

n∈N Fn = G, (dn)n∈N and g ∈ (
⋃
d∈Z+ G{1,...,d})N

are sequences such that gn ∈ G{1,...,dn}, the set {n ∈ N | dn = d} is finite for every
d ∈ Z+ , gn is Fn{(gm)i(gm)−1

j | m < n, i, j ≤ dm}Fn-discrete for all n ∈ N,
Ai ⊆ N are infinite for i ∈ 2, and Si = {gn | n ∈ Ai} for i ≤ 2. Then the
actions of G on XSi

are strongly (< ω)-mixing and gn ∈ ∆
XS0
G (U{0,...,dn}) for every

non-empty open set U ⊆ XS0 and all but finitely many n ∈ A1 \A0.

Proof. Let {ain | n ∈ N} be the increasing enumeration of Ai and write gi for
(gai

n
)n∈N and din for dai

n
for i ∈ {0, 1}. By Proposition 7.2.1 the actions Gy XSi

are strongly (< ω)-mixing for all i ∈ {0, 1}. Now assume that W ⊆ XS0 is a
non-empty open set of the form W = Ns ∩

⋂
k≤K ekUS0 for some s ∈ 2<N,K ∈ N,

and ek ∈ G for k ≤ K. We can assume that F = dom(s), ek ∈ F for k ≤ K, and
F is symmetric for some finite F ⊆ G. Let N ∈ N such that F ∪ F 2 ⊆ FN . Let
m ∈ N be such that a1

m ∈ A1 \A0 and a1
m > N . We show that ⋂

i≤d1
m
(g1
m)
−1
i W

is non-empty. With the notation of Proposition 7.2.1 it is sufficient to show that⋂
i≤d1

m
(g1
m)
−1
i U is non-empty where U = Ns ∩

⋂
k≤K ekTS0 since ⋂

i≤d1
m
(g1
m)
−1
i W

is comeager in ⋂
i≤d1

m
(g1
m)
−1
i U . Let x ∈ U and define:
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(1) xm(f) = x((g1
m)if) for f ∈ (g1

m)
−1
i F and i ≤ d1

m,
(2) xm(f) = 0 for f /∈ ⋃

i≤d1
m
(g1
m)
−1
i F .

This is well-defined since (g1
m)
−1
i F ∩ (g1

m)
−1
j F = ∅ for i 6= j ≤ d1

m, since g1
m is F 2-

discrete. As in Proposition 7.2.1 we now show that (g1
m)ixm ∈ U for all i ≤ d1

m. Cer-
tainly (g1

m)ixm ∈ Ns for i ≤ d1
m and thus (g1

m)ixm(ek) = x(ek) = 1 for all i ≤ d1
m

and k ≤ K. It remains to show that for every l ∈ N and k ≤ K there exists 0 < j ≤
d0
l such that ((g1

m)ixm)(ek(g0
l )
−1
j ) = 0. Condition (2) implies that this is always

the case when there exists 0 < j ≤ d0
l with (g1

m)
−1
i ek(g0

l )
−1
j /∈ ⋃

p≤d1
m
(g1
m)
−1
p F .

So suppose that there exist k ≤ K and l ∈ N such that (g1
m)
−1
i ek(g0

l )j
−1 ∈⋃

p≤d1
m
(g1
m)
−1
p F for all 0 < j ≤ d0

l . If (g1
m)
−1
i ek(g0

l )r
−1 ∈ ⋃

p∈{0,...,d1
m}\{i}(g

1
m)
−1
p F

for some 0 < r ≤ d0
l , then (g1

m)p(g1
m)
−1
i ∈ FN{(gq)u(gq)−1

v | q ≤ a0
l ,u, v ≤ dq}FN

for some p ∈ {0, ..., d1
m} \ {i} and (g0

l )r ∈ FN{(gq)u(gq)−1
v | q ≤ a1

m,u, v ≤ dq}FN
contradicting the Fa1

m
{(gq)u(gq)−1

v | q < a1
m,u, v ≤ dq}Fa1

m
-discreteness of g1

m

or the Fa0
l
{(gq)u(gq)−1

v | q < a0
l ,u, v ≤ dq}Fa0

l
-discreteness of g0

l depending on
whether a0

l < a1
m or a1

m < a0
l . Thus ek(g0

l )
−1
r ∈ F for all 0 < r ≤ d0

l and since
x ∈ U there exists 0 < r ≤ d0

l such that xm((g1
m)
−1
i ek(g0

l)
−1
r ) = x(ek(g0

l)
−1
r ) = 0.

This shows that xm ∈
⋂

0≤i≤d1
m
(g1
m)
−1
i U .

Let [N]N denote the infinite subsets of N. Define the quasi-order v∗ of almost
inclusion on [N]N by A v∗ B if A \B is finite. When R is a relation on a set
X and S is a relation on a set Y , a cohomomorphism from (X,R) to (Y ,S) is a
homomorphism from the complement of R to the complement of S.

Proposition 7.2.4. Suppose that G is a countable group, F ⊆ P(G) is the family
of infinite subsets of G, X is a Polish space, and G y X is continuous and
F-recurrent. Let O be the family of continuous and free G-actions on Polish
spaces with σ-expansive-transience spectrum contained in that of Gy X for which
there exists a continuous and surjective homomorphism to G y X and let 4
denote the quasi order of Baire measurable homomorphisms on O. Then there
exists a cohomomorphism from ([N]N,w∗) to (O,4). In case Gy X is free, the
σ-expansive-transience spectra of all elements in O coincide with that of Gy X.

Proof. We begin with a simple lemma.

Lemma 7.2.5. Suppose X is a topological space, Gy X is continuous-in-X, and
G y X is F-recurrent, K ⊆ G is finite, d ∈ Z+, and U ⊆ X is non-empty open.
Then there exists h ∈ ∆XG (U

{0,...,d}) such that h is K-discrete.
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Proof. Recursively construct non-empty open subsets Vk−1 ⊆ U and hk for k ∈
{1, ..., d} such that hkVk ⊆ Vk−1 and (hk)k∈{1,...,d} is K-discrete. Put V0 = U .
Having defined V0, ...,Vk−1 and h1, ..., hk−1 there exists hk ∈ ∆XG (Vk−1 × Vk−1) \
(K ∪⋃

i∈{1,...,k−1} (K
−1hi ∪Khi)), since Gy X is F -recurrent. Then there exists

Vk ⊆ Vk−1 such that hkVk ⊆ Vk−1. This finishes the recursive construction and h
is as desired, since Vd ⊆

⋂
i∈{0,...,d} h−1

i U .

Let (Fn)n∈N be an increasing sequence of finite subsets of G such that⋃
n∈N Fn = G and 1G ∈ F0, let (Vn)n∈N be a basis for the topology of

X, β : N × N → N a bijection, and p = proj0 ◦ β−1. Recursively choose
gn ∈ ∆XG (V

{0,...,n}
p(n) ) which is Fn{(gm)i(gm)−1

j | m < n, i, j ≤ m}Fn-discrete. For
any infinite subset A ⊆ N define the set ϕ(A) = {β(n, k) | n ∈ N, k ∈ A},
let (aAn )n∈N be the increasing enumeration of ϕ(A), let gA = (gaA

n
)n∈N, and

define XA = X ×Xϕ(A) and let G y XA be the diagonal product action. By
Proposition 7.2.1 the action of G on Xϕ(A) is topological (< ω)-strongly mixing.
Given any non-empty family S ⊆ ⋃

d∈Z+ P(G{1,...,d}), a Polish space C, and
an expansively S-recurrent action G y C, the diagonal product action of G
on C ×Xϕ(A) is again expansively S-recurrent thus the σ-expansive-transience
spectrum of G y XA is contained in that of G y X by Proposition 4.1.2
and if G y X is free they coincide. Note that the projection of XA onto
its first coordinate is a continuous surjective homomorphism. Now, suppose
A,B ⊆ N are infinite, A 6v∗ B, and there is a Baire-measurable homomor-
phism ψ : XB → XA. Since XA =

⋃
g∈G g(X × Uϕ(A)), there is a g ∈ G

such that ψ−1(g(X × Uϕ(A))) is non-meager, thus since ψ−1(g(X × Uϕ(A))) =

gψ−1(X × Uϕ(A)) the set ψ−1(X × Uϕ(A)) is non-meager. Then there exist non-
empty open sets Vm ⊆ X and U ⊆ Xϕ(B) such that ψ−1(X × UA) is comeager
in Vm × U , thus ∆XB

G ((Vm × U){0,...,d}) ⊆ ∆XB
G ((ψ−1(X × UA)){0,...,d}) for all

d ∈ Z+, thus ψ−1(X ×UA) is gAn -transient for all n ∈ N but by Proposition 7.2.3
there exist n, k ∈ N such that β(m, k) = n, k ∈ A \B and (Vm ×U){0,...,d} is not
gAn -transient - a contradiction.

7.3 Universal actions with smooth products

The actions obtained by cutting and stacking all have the property that their
induced Borel equivalence relations are hyperfinite. Here we give an example of
a countably infinite family of actions of the free group in at least two generators
whose induced Borel equivalence relations are universal among countable Borel

92



Chapter 7 Miscellaneous

equivalence relations under Borel embeddability such that the diagonal product
action for any two distinct actions from this family is smooth.

Proposition 7.3.1. Suppose that G is a countable group and G1 and G2 are
subgroups of G for which gG1g−1 ∩G2 = {1G} for every g ∈ G. Then there are
standard Borel spaces X1 and X2 and Borel actions of G on X1 and X2, such that
E

2G1\{0}Gi

Gi
Borel embeds into EXi

G for i = 1, 2 and the Borel equivalence relation
induced by the diagonal product action of G on X1 ×X2 is smooth.

Proof. For i ∈ {1, 2} define ϕi : 2Gi → 2G by ϕi(x)(g) = x(g) for all g ∈ Gi and
ϕi(x)(g) = 0 for all g /∈ Gi and set Yi = ϕi(2Gi \ {0}Gi). Let G act on 2G by
the shift action. Set Xi = G · Yi for i ∈ {1, 2}. Then ϕi is a Borel embedding
of E2Gi\{0}Gi

Gi
into EXi

G for i = 1, 2. Consider the diagonal product action of G
on X1 ×X2 and let (x1,x2) be in X1 ×X2. Then there exists h ∈ G such that
h · x1 ∈ Y1. So, ⋃

g∈G Y1 × gY2 is a complete section for EX1×X2
G . It suffices to

show that Y1 × gY2 is a partial transversal for all g ∈ G. To this end assume
that h · (x1,x2) ∈ Y1 × gY2 for some (x1,x2) ∈ Y1 × gY2. Then necessarily h ∈ G1
and h · x2 = (hg) · y′ = g · y′′, for some y′, y′′ ∈ Y2. Thus g−1hg ∈ G2 and hence
h ∈ gG2g−1 ∩G1, so h = 1.

Proposition 7.3.2. Suppose that N ∈ N \ 2∪ {ω} and FN is the free group in N
generators. Then there exist standard Borel spaces Xn and actions FN y Xn for
n ∈ N for which EXn

FN
is a universal countable Borel equivalence relation and for

any distinct n,m ∈ N the action FN y Xn ×Xm is smooth.

Proof. By [KS71] p. 950 there exists a malnormal subgroup H of FN which is
isomorphic to Fω. Let {xn | n ∈ N} be a set of free generators for H. Suppose
that An ⊂ N are pairwise disjoint for n ∈ N and let GA be the group generated by
{xn | n ∈ A} and A ⊆ N. Note that FN , GAn , and GAm fulfill the conditions of
Proposition 7.3.1 for all distinct n,m ∈ N. It remains to notice that E2Fω\{0}Fω

Fω
is

a universal countable Borel equivalence relation.
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