Lniversitat
wien

DISSERTATION/DOCTORAL THESIS

Titel der Dissertation / Title of the Doctoral Thesis

“Generalized notions of recurrence: Bases and the
existence of invariant probability measures”

verfasst von / submitted by
Manuel Jirgen Inselmann

angestrebter akademischer Grad / in partial fulfilment of the requirements for
the degree of

Doktor der Naturwissenschaften (Dr. rer. nat.)

Wien, 2019/ Vienna, 2019

Studienkennzahl It. Studienblatt /

degree programme code as it appears on A 796 605 405
the
student record sheet:

Dissertationsgebiet It. Studienblatt:
field of study as it appears on the student Mathematik
record sheet:

Betreut von / Supervisor: Univ.-Prof. Benjamin Miller, PhD






Abstract

We establish basis and anti-basis theorems for a broad collection of recurrence
notions appearing in descriptive, measurable, and topological dynamics, and show

that such notions cannot characterize the existence of invariant probability measures
in the descriptive milieu.

il






Zusammenfassung

Wir zeigen Basis- und Antibasisresultate fiir eine Vielzahl von Rekurrenzarten,
die in deskriptiver, mafitheoretischer und topologischer Dynamik auftreten und
zeigen, dass solche Rekurrenzbedingungen nicht die Existenz von invarianten
Wahrscheinlichkeitsmaflen im deskriptiven Kontext charakterisieren konnen.
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Chapter 1

Introduction

1.1 Descriptive Set Theory and group actions

Descriptive set theory is the study of definable subsets of Polish spaces, i.e.,
separable completely metrizable spaces. Typical examples are the Cantor space
(2M), the Baire space (NV), and the set of real numbers (R). In these spaces, Borel
sets can be classified in hierarchies according to the complexity of their definitions.
Starting with the open subsets of a Polish space X, we obtain the Borel hierarchy
by closing under countable unions and complements:

¥ = {U : Uis open},

9 = {A] ~A e 20,

¥ = U Aa, : Ao, €14, 0 < a}.
neN

It is well known that (X2 \ Z9),, (IT2 \ I12),, and X2, coincide on metric spaces
(see, for example, [Kec95, §11.B]). X9-sets are also referred to as F,-sets and
Hg—sets are also referred to as Gg-sets. We say that a set A C X is Borel if
A € X0 for some @ < wy. A Borel space whose o-algebra arises as above from
the open sets of a Polish space is called a standard Borel space. 1t is well known
that all uncountable standard Borel spaces are Borel isomorphic. Above the Borel
sets, analytic sets are continuous images of Borel sets, and co-analytic sets are
complements of analytic sets.

An equivalence relation on a standard Borel space X is a transitive, symmetric and
reflexive relation F on X. It is Borel if E is a Borel subset of X x X.

An action of a group G on a set X is a map G x X — X, denoted by
(g,2) — g -z such that the following hold:

e VgheGuzeXg-(h-x)=(gh)-x,
e Ve Xlg -z =ux.



Given an action of G on a set X (in short G ~ X), let Eg denote its orbit
equivalence relation given by x Eé( y if there exists a g € G such that g-z = y.
The set Gz is called the orbit of . A set C C X is invariant if GC = C and a
Borel probability measure on X is invariant if g.u = p for every g € G. When X
is a standard Borel space, a Borel equivalence relation F' on X is smooth if there
is a standard Borel space Z for which there is a Borel function 7: X — Z such
that  Fy <= w(z) = n(y) for all z,y € X. An example of a non-smooth Borel
equivalence relation is Eq defined on 2N by z Eq y if there exists n € N such that
z(m) = y(m) for all m > n.

We say that a set Y C X is complete if X = GY, and o-complete if there is a
countable set H C G for which X = HY. When G ~ X is continuous and Y is

open, these notions are equivalent.

1.2 The scope

The main part of this thesis consists of a joining of the articles [IM17] and [IM19),
where the first one is slightly generalized to a setting that the second paper suggests.
Both papers are joint work with Benjamin Miller.

It is well-known that if v is a Borel probability measure on X and T is a
Borel automorphism on X, then the inexistence of a weakly-wandering v-positive
set yields a T-invariant Borel probability measure p > v (see [Zak93| for the
generalization to groups of Borel automorphisms). We introduce a generalized
notion of recurrence and show that recurrence conditions do not yield invariant
Borel probability measures in the descriptive set-theoretic milieu, in the sense
that if a Borel action of a locally compact Polish group on a standard Borel space
satisfies such a condition but does not have an orbit supporting an invariant Borel
probability measure, then there is an invariant Borel set on which the action satisfies
the condition but does not have an invariant Borel probability measure.

Given an ordered family (O, <) of mathematical structures and an upward-
closed property @ of structures in O, a basis for the family Op = {O € O | ®(0)}
under < is a set B C Og with the property that VO € OpdB € B B < O.
Singleton bases are particularly useful, as their existence ensures that satisfying &
is equivalent to containing a copy of a canonical structure. Even when there are no
small bases, the existence of a basis consisting solely of particularly simple structures
nevertheless yields substantial insight into the nature of ®. Here we show that
this is the case for myriad properties of actions of locally-compact Polish groups,
including non-smoothness, the inexistence of suitably-large weakly-wandering Borel
sets, and weak mixing.



Chapter 1 Introduction

In Chapter 2] we consider a generalized notion of recurrence. Suppose that
deZt and X is a set, and G ~ X is an action. For all sets R C X104} define
AE(R) = {g € GILd | 3z € X gx € R}, where g € G104} is the extension of
g given by 8y = 1g. When F C Ugezt P(P(GH-8)) is a family of upward closed
families, i.c., for all d € Z* and F € FNP(P(GH4)) the family F is upward
closed in P(G{L+4) and ) € H is a subset of Ugez+ P(X 10 we say that a
set Y C X is (F,H)-transient if there exists d € Z1, H € HNP(X{04) and
F € FOP(P(GL4h) for which AZ (Y104 \ H) ¢ F. When C is an invariant
subset of X and T is a subset of P(C), we say that G ~ C is (F,H)-recurrent
on I if no set A € T is (F,H)-transient, if H = {0} we just say that the action is
F-recurrent and if F = {F} is single family, we omit the brackets in the definitions
of recurrence and transience. This generalizes the usual notion of recurrence in
topological dynamics, where one says that a continuous-in-X action of a group on
a topological space X is (F,H)-recurrent if it is (F,H)-recurrent on non-empty
open sets.

When G is a group and X is a Polish space, the decomposition into minimal
components of a continuous-in-X action G ~ X is the equivalence relation on X
given by z FA y < Gz = Gy. Let (Uy)nen be a countable basis for the topology
of X and define the map ¢ : X — 2N by (z)(n) = 1 if and only if z € GU,,. Then
z FA y < ¢(r) = p(y) and since the preimage of any open set under ¢ is Fy, it
follows that Fé( is G5 and smooth. Furthermore, for each Fg -class C, the action
G ~ C'is minimal, in the sense that every orbit is dense. When G is a topological
group and X is Borel, the recurrence spectrum of a Borel action G ~ X is the
collection of all pairs (F,H), where F C Ugez+ P(P(GIL-1)) is a family of
upward closed families and §) € H is a countable subset of Ugez+ P (X 10-4}) such
that every H € H is closed whenever 7 is a topology on X generating its Borel sets
such that G ~ X is continuous, such that every smooth Borel superequivalence
relation F of EX has an equivalence class C for which G ~ C is (F, H)-recurrent
on o-complete Borel sets. We establish the basic properties of the recurrence
spectrum of a Borel action of a Polish group on a standard Borel space, which
codifies the suitably robust forms of recurrence that it satisfies.

We show that locally-compact non-compact Polish groups have free Borel
actions on Polish spaces with maximal recurrence spectra.

We generalize the generic compressibility theorem of Kechris-Miller (see [KM04,
Theorem 13.1]) to Borel actions of locally compact Polish groups on standard Borel
spaces. We simultaneously replace comeagerness with a stronger notion under
which the recurrence spectrum is invariant, thereby ensuring that no condition on
the latter yields an invariant Borel probability measure.

In Chapter [3] we introduce the actions in our bases. In the special case of
Z-actions, these are made up of actions induced by transformations obtained via



cutting and stacking with a sufficiently quickly growing number of insertions at each
stage. In order to endow our actions with appropriate topologies and handle groups
other than Z, we use quotients associated with cocycles to generalize the cutting
and stacking construction to produce continuous minimal actions of non-compact
locally-compact Polish groups G on locally-compact Polish spaces. We refer to
these actions as being obtained through expansive cutting and stacking. More
generally, we define continuous disjoint unions of such actions.

In Chapter |4, we consider a refined notion of recurrence. Given d € Z* and a
binary relation R on a set X, we say that a sequence x € XA0d} is R-discrete
if there do not exist distinct ¢, 7 < d for which x; R ;. The orbit relation on X
associated with an action G ~ X and a set K C G is given by = R% Yy <= x €
Ky. Note that the set Ff = {x € X0} | xisnot R¥-discrete} is closed for
every d € Z™, compact set K C G, and continuous action G ~ X. Given d € Z™*
and a set S € P(GU4) we define the family Fg = {F € G4 | FN S £ ¢}
Note that any upward closed family F C G4} is an intersection of families of the
form Fg for a suitable family of S € P(G{l4}). Given an ezhaustive increasing
sequence (Kyp)pen of compact subsets of G, i.e., an increasing sequence of compact
subsets of G such that each compact set K C G is contained in K, for some n € N
and a family S C Ugez+ P(GU8) we say that a set Y C X is expansively
S-transient if Y is ({Fg | S € S}{F | n € N,d € ZT} U {0})-transient,
i.e., if there exist d € Z*, a compact set K C G, and S € SNP(GL4) for
which AZ ({y € Y{%d} |y is R¥-discrete}) NS = (). We say that a G-action by
homeomorphisms of a topological space is expansively S-recurrent if no non-empty
open set is expansively S-transient, and a Borel G-action on a standard Borel space
X is o-expansively S-transient if X is a union of countably-many expansively-S-
transient Borel sets. We note that every minimal continuous G-action on a Polish
space is either expansively S-recurrent or o-expansively (UQGG gS g_l)—transient.
Civen a family S of subsets of Ugez+ P(G11+4), we say that a Borel G-action
on a standard Borel space is o-expansively S-transient if it is o-expansively S-
transient for some S € 8. A homomorphism from G ~ X to G ~ Y is a function
@: X — Y with the property that p(g-x) =g-p(x) forall g € Gand z € X, a
stabilizer-preserving homomorphism is a homomorphism whose restriction to each
orbit is injective, and an embedding is an injective homomorphism.

Building on arguments of [Wei84], we show that if S is a non-empty countable
family, then among all non-o-expansively-(Ugeq 9S g~ 1)-transient Borel G-actions
on Polish spaces, those obtained via expansive cutting and stacking form a basis
under continuous embeddability. Similarly, we show that if & is a family of non-
empty countable families, then among all non-o-expansively-{Ugcq 95 g 1| S eS8}
transient Borel G-actions on Polish spaces, those that are continuous disjoint unions
of actions obtained via expansive cutting and stacking form a basis under continuous
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stabilizer-preserving homomorphism.

Building on arguments of [EHWO98|, we show that if S is a non-empty countable
family and G ~ X is a non-o-expansively-(Ugeq gSg~')-transient Borel action on a
Polish space, then there is a family O of 280-many non-o-expansively-(Ugeq 9Sg~1)-
transient Borel actions on Polish spaces such that every action in O admits a
continuous embedding into G ~ X, but every Borel G-action on a standard Bor-
el space admitting a Borel stabilizer-preserving homomorphism to at least two
actions in O is g-expansively {G}-transient. Building on this, we show that if S
is a family of non-empty countable families and G ~ X is a non-o-expansively-
{Ugec 989~ | S € 8}-transient Borel action on a Polish space, then there is no
countable basis, under Borel stabilizer-preserving homomorphism, for the family
of non-o-expansively-{Ugecc 98 g~ ' | S € 8}-transient Borel G-actions on Polish
spaces that admit a continuous stabilizer-preserving homomorphism to G ~ X.

In Chapter 5], we turn our attention to actions that are particularly simple from
the descriptive-set-theoretic point of view. A reduction of an equivalence relation
E on X to an equivalence relation F' on Y is a function 7: X — Y such that
wEx < 7w(w) F n(x) for all w,z € X, so, in particular, a Borel equivalence
relation on a standard Borel space is smooth if it admits a Borel reduction to equality
on a standard Borel space, and a Borel action G ™~ X on a standard Borel space is
smooth if Eé is smooth. It is easy to see that the latter notion is equivalent to o-
expansive {G }-transience, from which it follows that the family of actions obtained
via expansive cutting and stacking is a basis, under continuous embeddability, for
the family of all non-smooth Borel G-actions on Polish spaces. This generalizes
and strengthens the original Glimm-Effros dichotomy [Gli61; Eff65], as well as the
subsequent results of [SW82; Wei84] (and strengthens the corresponding special
case of [HKL90]). It also follows that if G ™~ X is a non-smooth Borel action on a
Polish space, then there is no basis of cardinality strictly less than 280 under Borel
stabilizer-preserving homomorphism, for the family of non-smooth Borel G-actions
on Polish spaces that admit a continuous embedding into G ~ X. This negatively
answers Louveau’s question as to whether there is a singleton basis, under Borel
embeddability, for the family of all non-smooth Borel Z-actions on standard Borel
spaces.

In an attempt to salvage the hope underlying Louveau’s question, we also
consider Borel free G-actions on standard Borel spaces that contain a basis, in
the sense that their non-smooth G-invariant Borel restrictions form a basis, under
Borel embeddability, for the family of all non-smooth Borel free G-actions on
standard Borel spaces. We show that this notion is robust, in the sense that it
remains unchanged if Borel embedding is replaced with Borel stabilizer-preserving
homomorphism. Recalling that the diagonal product of G ~ X and G ~ Y is the
action G ~ X x Y given by ¢+ (x,y) = (¢g-x,9-y), we also show that a Borel free



action G ™~ X on a standard Borel space contains a basis if and only if G ~ X x Y
is non-smooth for every non-smooth Borel free action G ~ Y on a standard
Borel space. Examples of such actions include all continuous free G-actions on
compact Polish spaces, as well as all Borel free G-actions on standard Borel spaces
that are invariant with respect to some Borel probability measure p on X. Let
s denote the shift on the class of N-sequences given by $,(g) = gn+1, and define
IP(g) = {g°| s € 2<N} for all g € GN, where g* = [Tn<|s| gf’z(n) for all s € 2<N,
Letting S, denote the family of sets of the form {IP(s"(g))IP(s"(g))~! | n € N},
where g € G is an injective sequence for which IP(g)IP(g) ™! is closed and discrete,
we show that if GG is abelian, then a Borel free G-action on a standard Borel space
contains a basis if and only if it is not o-expansively S -transient. It follows that
among all Borel free G-actions on Polish spaces that contain a basis, those that are
continuous disjoint unions of actions obtained via expansive cutting and stacking
form a basis under Borel stabilizer-preserving homomorphism. It also follows that
if G ~ X is a Borel free action on a Polish space containing a basis, then there
is no countable basis, under Borel stabilizer-preserving homomorphism, for the
family of Borel free G-actions on Polish spaces that contain a basis and admit a
continuous stabilizer-preserving homomorphism to G ~ X.

We also consider sets Y C X that are weakly wandering, in the sense that there
is an infinite set S C G such that Y is S-wandering, i.e., such that g7 'Y NA™Y = ()
for all distinct g, h € S and sets Y C X that are very weakly wandering, in the sense
that there are arbitrarily large finite sets S C G such that Y is S-wandering. We
show that the existence of weakly-wandering and very-weakly-wandering suitably-
complete Borel sets, as well as suitably-complete Borel sets satisfying the minimal
non-trivial notion of transience corresponding to the failure of the strongest notion
of recurrence, can be characterized in terms of the recurrence spectrum. Our
arguments also yield complexity bounds leading to implications between many of
these notions. For instance, it follows that if X is a standard Borel space, T: X — X
is a Borel automorphism, and there is no smooth Borel superequivalence relation F
of E%( with the property that there is a weakly-wandering (7' | C')-complete Borel
set for every F-class C, then there is no locally-weakly-wandering T-complete Borel
set, where a set is locally-weakly-wandering if its intersection with each E%( -class is
weakly-wandering.

Letting Syws denote the family of sets consisting of a single closed discrete
infinite subset of G of the form SS~!, and Syuw denote the family of countable
sets of closed discrete infinite subsets of G of the form SS~!, we note that a Borel
free G-action on a standard Borel space admits a weakly-wandering o-complete
Borel set if and only if it is o-expansively {Ujcq gSg7' | S € Syuwo }-transient,
whereas the underlying space is a union of countably-many weakly-wandering Borel
sets if and only if it is o-expansively {Uzeq 98 g1 | S € Syww}-transient. These
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notions are the same for minimal continuous free actions, but the latter is strictly
weaker outside of the minimal case. Strengthening the earlier measure-theoretic
result, we show that the failure of either of these properties ensures that the action
in question contains a basis. We also show that if G admits a compatible two-sided-
invariant metric, then the failure of either of these properties is strictly stronger
than containing a basis. It also follows that among all Borel free G-actions on Polish
spaces that do not have one of these properties, those that are continuous disjoint
unions of actions obtained via expansive cutting and stacking form a basis under
Borel stabilizer-preserving homomorphism. In addition, we show that if G ~ X is
a Borel free action on a Polish space that does not have one of these properties,
then there is no countable basis, under Borel stabilizer-preserving homomorphism,
for the family of Borel G-actions on Polish spaces that do not have the property
and admit a continuous stabilizer-preserving homomorphism to G ~ X. This
answers [EHN93| Question 1] concerning the circumstances under which a Borel
Z-action on a standard Borel space admits a weakly-wandering o-complete Borel
set.

The main result of [EHN93] is the existence of a Borel Z-action on a standard
Borel space that admits neither an invariant Borel probability measure nor a
weakly-wandering o-complete Borel set. Their example is a disjoint union of
2Ro_many Z-actions obtained via expansive cutting and stacking. We show that
there is an example that is itself obtained via expansive cutting and stacking, and
retains the advantages of the more recent examples appearing in [Mil04; |Tsel5|, in
that the same straightforward argument not only rules out weakly-wandering o-
complete Borel sets, but also o-complete Borel sets satisfying still weaker wandering
conditions, yielding a structurally simpler negative answer to [EHN93, Question
2].

In Chapter [6] we turn our attention towards mixing conditions. An action
G ~ X by homeomorphisms of a topological space is topologically transitive if
A)G( (U x V) #  for all non-empty open sets U,V C X. More generally, such an
action is topologically d-transitive if G ~ X% is topologically transitive. In the
special case that d = 2, we also say that G ~ X is weakly mizing. Fix a countable
dense subset H of G. Setting S;qy = H{b2-11{g ¢ GIL-24-1} | vo < 4 <
d g2i+1 = g192i}, we note that a topologically-transitive continuous G-action on a
Polish space with no open orbits is topologically d-transitive if and only if it is not
o-expansively (UgeG gSiarg~!)-transient. It follows that among all topologically-d-
transitive continuous G-actions on Polish spaces with no open orbits, those obtained
via expansive cutting and stacking form a basis under continuous embeddability.
It also follows that if G ~ X is a topologically-d-transitive continuous G-action
on a Polish space with no open orbits, then there is no basis of cardinality strictly
less than 2% under Borel stabilizer-preserving homomorphism, for the family of



topologically-d-transitive continuous G-actions on Polish spaces with no open orbits
that admit a continuous embedding into G ~ X.

A Borel action G ~ X on a standard Borel space is ergodic with respect to
a Borel measure 1 on X if every G-invariant Borel set is p-conull or p-null, and
weakly mizing with respect to p if G ~ X x X is (pu x p)-ergodic. In the spirit
of [SW82; \Wei84], we show that if G is abelian, then a Borel action G ~ X on a
standard Borel space is weakly mixing with respect to a Polish topology compatible
with the Borel structure of X on a G-invariant closed set if and only if it is weakly
mixing with respect to a G-invariant o-finite Borel measure on X.

We also note if G has a compatible two-sided-invariant metric and G ~ X is
a continuous action on a Polish space with no open orbits satisfying any mixing
condition at least as strong as weak mixing, then there is no basis of cardinality
strictly less than the additivity of the meager ideal on R, under continuous stabilizer-
preserving homomorphism, for the family of continuous G-actions on Polish spaces
with no open orbits satisfying the mixing condition and admitting a continuous
embedding into G ~ X.

We say that a continuous action G ~ X on a Polish space with no open orbits
is mildly mixing it G ~ X X Y is topologically transitive for every topologically-
transitive continuous action G ~ Y on a Polish space with no open orbits. Letting
S.um denote the family of sets consisting of a single closed discrete subset of G
of the form gIP(g)IP(g)~!, where g € G and g € GY is injective, we note that a
topologically-transitive continuous G-action on a Polish space with no open orbits
is mildly mixing if and only if it is not o-expansively {Uzeq 9S gt S € Smm}-
transient if and only if there is a non-o-expansively {Uyeq 989" | S € Smm}-
transient continuous disjoint union of G-actions obtained via expansive cutting
and stacking that admits a continuous stabilizer-preserving homomorphism to
G X.

A continuous action G~ X on a Polish space is strongly mizing if Aé{ (UxV)
is co-compact for all non-empty open sets U,V C X. Letting Sg,;, denote the
family of sets consisting of a single closed discrete infinite subset of GG, we note that
a topologically-transitive continuous G-action on a Polish space with no open orbits
is strongly mixing if and only if it is not o-expansively {Uyeq 959" | S € Saom}-
transient if and only if there is a non-o-expansively {Ujeq 9Sg™"' | S € Som}-
transient continuous disjoint union of G-actions obtained via expansive cutting

and stacking that admits a continuous stabilizer-preserving homomorphism to
G X.

In Chapter [7] we gather some results that do not fit into the context of the
previous chapters but are nevertheless of interest in their own right. The conjugation
action of F5 on the space of its subgroups is universal among countable Borel
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equivalence relations under Borel reducibility [TV99]. We give a different proof of
this fact.

Given a continuous action G ~ X and d € Z" we say that G ~ X is strongly
d-mizing if A%{(HkgdUk) contains the complement of {g € G{l-d | 3 #£ j
{0,...,d} gg, €K } for some compact set K C G for all non-empty open sets Uy,
for k € {0, ...,d}. For countable groups we construct minimal actions of G which
are strongly d-mixing but not strongly (d + 1)-mixing for every d € Z*.

At last we give an example of a countably infinite family of actions of the free
group in at least two generators whose induced Borel equivalence relations are
universal among countable Borel equivalence relations under Borel embeddability
such that the diagonal product action for any two distinct actions from this family
is smooth.






Chapter 2
Recurrence and measures

2.1 The recurrence spectrum

Suppose that G ~ X is a group action.We start with the following observation
which ensures that the notions of completeness and o-completeness coincide under
mild hypothesis on open sets.

Proposition 2.1.1. Suppose that G is a topological group, H C G is dense, X
is a topological space, G ™~ X is an action, and U C X has the property that for
every x € U the set {g | gr € U} contains a non-empty open subset of G. Then
GU = HU. In particular, if G ~ X is continuous-in-G and U C X is open, then
GU = HU.

Proof. If V C G is non-empty and open and g € G, then there exists h € gV 1N H,
thus ¢ € HV, hence HV = G. Now, suppose that x € U. f V C {g | gz € U}
is non-empty and open, then Gxr = HVx C HU thus GU = HU. It G ~ X is
continuous-in-G and U is open, then for every x € U there is an open neighborhood
V C G of 1 for which Vo C U, thus by the previous argument GU = HU. X

We will abuse language by saying that a subset of X is Ng-universally Baire
if its preimage under every Borel function from a Polish space to X has the
Baire property, and an Ng-universally Baire equivalence relation £ on X smooth
if there is no Borel function 7 : 28 — X such that = Eg y < 7n(z) E n(y).
The Harrington-Kechris-Loveau generalization of the Glimm-Effros dichotomy (see
[HKL90, Theorem 1.1]) ensures that this is compatible with the usual notion of
smoothness for Borel equivalence relations on standard Borel spaces.

Proposition 2.1.2. Suppose that G is a group, X is a Polish space, G ~ X is
continuous-in-X, B C X is Eé( -invariant, C' C X is an Eg -invariant Gy set for
which G ~ C' is topologically transitive and in which B is comeager, and F' is a
smooth Np-universally-Baire superequivalence relation of Eg . Then there is an
F-class that is comeager in C'.

11



Proof. Fix a dense G5 set O’ C C contained in B, and note that F has the Baire
property in C’ x C’, thus in C' x C. The straightforward generalization of the
Becker-Kechris criterion for continuously embedding Ey from orbit equivalence
relations induced by groups of homeomorphisms (see [BK96, Theorem 3.4.5]) to
superequivalence relations of such orbit equivalence relations (see, for example,
[KMS14, Theorem 2.1]) ensures that the union of F' and (C'\ B) x (C'\ B) is
non-meager in C' X C, so the Kuratowski-Ulam theorem (see, for example, [Kec95,
Theorem 8.41]) yields an F-class that is non-meager and has the Baire property in
C, thus comeager in C' by topological transitivity. X

The following fact is the obvious generalization of Pettis’s Lemma (see, for
example, [Kec95, Theorem 9.9]) to group actions.

Proposition 2.1.3. Suppose that G is a group, X is a Baire space, G ~ X
is continuous-in-X, d € Z*, R C X10d} g closed, (Vi)r<q is a sequence of
non-empty open subsets of X, and By is comeager in V) for all £ < d. Then
A (TIr<aVi) \ R) € AZ ((Tk<aBy) \ R).

Proof. 1f g € AZ((TTx<qVi) \ R), then there exists z € Np<q(gs) Vi such that
gz ¢ R. Fix an open neighborhood of V' C Ny<q(g;) Vi of x with the property
that (ITg<4g;V) N R = 0. As (g;,) "' By is comeager in (g) "1V}, for all k < d, it
follows that Ng<q(gi) ' By is comeager in Nj<4(7y) Vi and therefore intersects
V, from which it follows that g € AZ ((TTx<4Bx) \ R). X

We next note that, under mild hypotheses, (F,H)-recurrence propagates to
(F,H)-recurrence on non-meager sets with the Baire property. When Y is a
topological space, we use F(Y) to denote the family of all closed subsets of Y.

Proposition 2.1.4. Suppose that G is a group, X is a Baire space, F C
Ugez+ P(P(G18)) is a family of upward closed families, § € H C Ugeg+
F(Xx10d) and G ~ X is continuous-in-X and (F, H)-recurrent. Then G ~ X
is (F,H)-recurrent on non-meager sets with the Baire property.

Proof. If B C X is a non-meager set with the Baire property, then there is a
non-empty open set U C X in which B is comeager, and Proposition [2.1.3] ensures
that A ((TT;<4U) \ R) € A ((IT;<4B) \ R), i.e., if B is (F,H)-transient, then
U is (F,H)-transient. b

As a theorem of Becker-Kechris ensures that every Borel action of a Polish

group on a standard Borel space is Borel isomorphic to a continuous action on a
Polish space (see |BK96, Theorem 5.2.1]), the following observation ensures that,

12



Chapter 2 Recurrence and measures

under mild hypotheses, the notion of recurrence spectrum is robust, in the sense
that it does not depend on the particular notion of definability, and in the sense
that it is invariant under passage to sufficiently large Eé( -invariant subsets.

Proposition 2.1.5. Suppose, that G is a separable group, X is a Polish space,
G ~ X in continuous, F C Ugez+ P(P(GH4)) is a family of upward closed
families, § € H C Ugezs F(X108) and B C X is EZ-invariant and comeager
in every Fé( -class. Then the following are equivalent:

(1) Every smooth Np-universally-Baire superequivalence relation F' of Eg has a
class C for which G ~ C'is (F,H)-recurrent on o-complete Rp-universally-
Baire sets.

(2) There is an FZ-class C for which G ~ C' is (F, H)-recurrent.

Proof. To see (1) = (2), note that FX|B is a smooth Rg-universally-Baire su-
perequivalence relation of Eg and fix an Fé( class C' for which G ~ BNC' is
(F,H)-recurrent on o-complete Rp-universally-Baire sets. To see that G ~ C'is
(F,H)-recurrent, suppose that U C C' is a non-empty open set, and note that the
minimality of G ~ C ensures that U is complete and therefore o-complete by Propo-
sition , thus AY (U0 B\ H) € F for all d € ZF, F € FNP(P(GH-d))
and H € HNF(Xdh) Tosee (2) = (1), fix an F& -class C for which G ~ C'is
(F,H)-recurrent, and suppose that F' is a smooth Rg-universally-Baire superequiv-
alence relation of Eg . Proposition m then yields an F'-class D that is comeager
in C. To see that G ~ D is (F,H)-recurrent on o-complete Ng-universally-
Baire sets, suppose that A C D is such a set, and note that o-completeness
ensures that A is non-meager in C. Fix a dense Gg set ¢/ C C contained in
D, and note that AN C’ has the Baire property in C’, thus Proposition [2.1.4]
ensures that AX (A0~ \ H) € F for all d € Z+, F € FNP(P(GIL)) and
H e HnF(X0dhy, =

Let T denote the family of sets whose complements are in T, let T \ T denote
the family of differences of sets in I', and let I'; denote the family of countable
unions of sets in I'. The horizontal sections of a set R C X x Y are the sets of
the form RY = {z € X | x R y}, whereas the vertical sections of a set R C X xY
are the sets of the form R, = {y € X | R y}. Given a family of upward closed
families F C Ugez+ P(P(GH3)) and 0 € H C Ugez+ F(X 104 we say that
F is T-on-open if for all d € ZT, F € FNP(P(GH-)) and all open sets
U C G0 5 X the set {x € X | U® € F} is in I. Given a superequivalence
relation E of Eg;(, we say that an action G ~ X is E-locally (F,H)-recurrent on
T if for all B € T, there is an E-class C such that AZ (BN C){0d\ o) ¢ F
for all d € Z+, F € FAP(P(GILH4)) and H € #H N F(X1%4) We next note
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that, under mild hypotheses, the recurrence spectrum can also be characterized in
terms of local recurrence of G ~ X itself.

Proposition 2.1.6. Suppose that G is a separable group, X is a Polish space,
G ~ X is continuous, I' € P(X) is a family of Np-universally-Baire sets con-
taining the open sets and closed under finite intersections and finite unions,
F C Ugez+ P(P(GH41)) is a countable family of upward closed families,
0 € H C Ugegs F(X104) is countable, and F is T-on-open. Then the fol-
lowing are equivalent:

(1) There is an FZ-class C for which G ~ C' is (F,H)-recurrent.

(2) The action G ~ X is FA-locally (F,H)-recurrent on o-complete (I'\T),
sets.

Proof. To see —=(2) = —(1), observe that if B C X is a o-complete (I'\ T), set,
then it is non-meager and has the Baire property in every Fé( -class and if BNC'is
(F,H)-transient for every such class, then there is no FZ-class for which G ~ C
is (F,H)-recurrent by Proposition [2.1.4]

To see =(1) = —(2), fix a basis (Uy),en for the open subsets of X. For all n € N,
deZt, and H € H FXOd) define VH = {(g,2) € Gl-D x X | g €
AE (U N [x]Fé(){O""’d} \ H)}. Observe that if (g, z) € V7, then the minimality

of G ~ [az]Fé{ yields h € G for which g(hz) € AN \ H, so the continuity of
Gl0-d} ~ X104} vields open neighborhoods of Ug of g and U, of x such that
g'hU, C Uéo"”’d} \ H for all g’ € Ug, thus Ug x U, C V.| hence V,!! is open. It

follows that the FZ-invariant sets AZ" = {z € GU,, | (VH)* ¢ F} are in T for
all F e FNP(P(GHM)) Let n: N> Nx {(H,F) e HxF|3IdeZ HC

X{0dt 7 € P(GL4)} be a bijection and define A, = Agizj:g(xﬂfx)(n)). Then

the sets B, = A \ Up<n Am are in T'\ T, thus the set B = U,,ey Bn N Uprojy (x(n))
is in (T'\T)y. But if there is no F& -class C for which G ~ C'is (F,H)-recurrent,
then B is complete, and therefore o-complete by Proposition 2.1.1] thus G ~ X is

not FA-locally (F,H)-recurrent on o-complete (I'\T), sets.
X

We next show that, under an additional mild hypothesis on G, Propositions
2.1.3 2.1.4 and can be strengthened so as to show that the recurrence
spectrum is also robust in the sense that it does not depend on whether the
underlying notion of recurrence is local.

The following fact is a somewhat more intricate generalization of the special case
of Pettis’s Lemma for second-countable groups to topologically-transitive actions
of such groups.
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Chapter 2 Recurrence and measures

Proposition 2.1.7. Suppose that G is a second-countable Baire group, X is
a second-countable Baire space, G ~ X is continuous, U C X is non-empty
and open, B C U is comeager, d € Z*, and H C X{%4} is closed. Then
AE(UNG) 02\ H) € AZ (BN Gx)%4\ H) for comeagerly many z € X.

Proof. We write V*z € X ¢(z) to indicate that {z € X | ¢(x)} is comeager. As the
fact that G ~ X is continuous-in-X ensures that it is open, it follows that {(g,z) €
GxX|g-xz¢U\DB} is comeager, sotheset C ={z € X |V'ge Gg-x ¢ U\ B}
is comeager by the Kuratowski-Ulam theorem. Observe that if ' € G and z € X,
then {g € G| g-2 ¢ W(U\B)} =h{ge G|g-x ¢ U\ B}, so the fact that
G ~ X is continuous-in-X also ensures that if z € C and h € Gl then
V*g € Gg-x ¢ Up<qhi(U\ B), in which case the fact that Ng<qhrU \ Np<qhxB C
Uk<a by (U \ B) therefore implies that V*g € G g+ = & Nk<ghyU \ Ng<q i B. Note
that for all h € G114} the fact that G ~ X is continuous-in-X ensures that the
set {y | hy € U4\ H} is open, so the fact that G ~ X is continuous-in-G
implies that if z € C' and {y | hy € U{%4}\ H} NGz is non-empty, then there are
non-meagerly many g € G for which ¢ -z € {y | hy € U{%4}\ H}. In particular,
since {y | hy € UOI\ H}\ {y | hy € B3\ H} € Mg iU \ Mg i B,
it follows that if z € C and {y | hy € U1\ H} NGz is non-empty, then so
too is {y | hy € BI04\ I} N Ga, hence A (U N Gz)0d\ H) C AZ (BN
Gz )10\ H) for all z € C. b

We next note that, under mild hypotheses, (F,H)-recurrence of topologically
transitive actions not only propagates to (.7: , H)—recurrence on non-meager sets
with the Baire property, but to its Eé( -local strengthening.

Proposition 2.1.8. Suppose that G is a second-countable Baire group, X is a
second-countable Baire space, F C Ugez+ P(P(GU%)) is a family of upward
closed families, § € H C Ugez+ F (X104 is countable, and G ~ X is (F, H)-
recurrent, and topologically transitive. Then G ~ X is EX-locally (F,H)-
recurrent on non-meager sets with the Baire property.

Proof. Suppose that B C X is a non-meager set with the Baire property, and fix a
non-empty open set U C X in which B is comeager. The topological transitivity
of G ~ X ensures that the set C = {x € X | Grisdense} is comeager, and
Proposition implies that the set DY = {z € X | AZ((UNGz){0d\ H) C
AE (BN Gx)102\ H), comeager for all d € Z+ and H € H N F(X0dh),
A U0\ 1) € AX((UNGx) 03\ H) € AZ (BN Gx)04h\ H) for all
d € 7t and H € HNF(X0d) thus AX (BN Gz)0-4\ H) € F for all
deZt, Fe FOP(P(G4)) and H € H N F(X10-dhy, =
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We can now establish the promised robustness result.

Proposition 2.1.9. Suppose that G is a second countable Baire group, X is a
Polish space, G ~ X is continuous, F C Ugez+ P(P(G13)) is a family of
upward closed families, § € H C Ugez+ F(X104) is countable, and B C X is
Eé( -invariant and comeager in every Fé( -class. Then the following are equivalent.

(1) Every smooth Ny-universally-Baire superequivalence relation F of EF has
a class C for which G ~ C' is E§-locally (F,H)-recurrent on o-complete
Ng-universally-Baire sets.

(2) There is an FZ-class C for which G ~ C is (F,H)-recurrent.

Proof. To see (1) = (2), note that FZ|B is a smooth Rp-universally-Baire su-
perequivalence relation of Eg and fix an Fé( -class C' for which G ~ BNC
is Eg—locally (F,H)-recurrent on o-complete Rp-universally-Baire sets. To see
that G ~ C is (F,H)-recurrent, suppose that U C C is a non-empty open
set, and note that the minimality of G ~ C ensures that U is complete and
therefore o-complete by Proposition thus there exists x € C' such that
AE(UNGe) 0B\ H) € Fforall d € ZT, F € FnP(P(GH%)) and
H e HNF(X0dh) thus G ~ C is ES-locally (F,H)-recurrent on non-empty
open sets, thus (F,H)-recurrent. To see (2) = (1), fix an FZ-class C for which
G ~ C is (F,H)-recurrent, and suppose that F is a smooth Ng-universally-
Baire superequivalence relation of Eg . Proposition then yields an F'-class
D that is comeager in C. To see that G ~ D is EZ-locally (F,H)-recurrent
on o-complete Np-universally-Baire sets, suppose that A C D is such a set, and
note that o-completeness ensures that A is non-meager in C. Fix a dense G
set C' C C contained in D, and note that AN C’ has the Baire property and is
non-meager in C’; thus Proposition ensures that there exists = € C' such
that AZ((ANGz){0~\ H) € Fforall d € Z+, F ¢ FnP(P(G1%)) and
H e HNF(X0dh), =

2.2 The strongest notion of recurrence

Recall that for a subset S C Gl the set Fg denotes the family of sets
T C G1Ldh guch that TN S # (). Note that a set Y C G is Fg-transient if
AV S =, ie., if SY NY @ = () in which case we just say that V
is S-transient. When K C G is compact, we define the set C¢ = {g € Gt1-d} |
Ji #j €{0,..,d} g8 ' € K} and the set D% to be the complement of C¢.

Proposition 2.2.1. Suppose that G is a topological group, X is a Hausdorff space,
G "~ X is continuous, K C (G is compact, € X is not fixed by any element of K.
Then there is a C’}l(—transient open neighborhood of x.
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Chapter 2 Recurrence and measures

Proof. For each g € K, the fact that X is Hausdorff yields open neighborhoods
Vy € X of x and W, C X of gz such that V, and W, are disjoint. The conti-
nuity of G ~ X yields open neighborhoods U, C G of g and Vg C V, of x for
which UyV) € Wy, thus (U,Vy) NV, = 0. The compactness of K then yields
a finite set F' C K for which K C UgGFU , in which case V = NgeF Vé is a
K-transient open neighborhood of z. If g € Aé(V{O"“’d}) and i # j € {0,...,d}
then (gig; 1) (gjr) = giv thus g;g; ' ¢ K hence g ¢ C%. =

It follows that upward closed families F C P(G{l""’d}) whose corresponding
notions of recurrence are realizable by suitable free actions necessarily contain Djl(,
for all compact sets K C G not containing 1.

Proposition 2.2.2. Suppose that G is a topological group, X is a Hausdorff
space, F C Ugez+ P(P(GIL-41)) is a family of upward closed families, (§ € H C
Ugez+ F(X10@) "and G ~ X is (F,H)-recurrent, continuous, and free. Then
for all d € ZF, every F € FNP(P(GI-)) contains DY for all compact K C G
not containing 1.

Proof. This is a direct consequence of Proposition [2.2.1] =

When X is a topological space and d € Z™, recall that a continuous-in-X
action G ~ X is strongly d-mixing if AZ (IT<4Uy) contains D% for some compact
set K C G for all sequences (Ug)g<q of non-empty open subsets of X, G ~ X
is strongly mixing if G ~ X is strongly 1-mixing, and strongly (< w)-mixing if
G ~ X is strongly d-mixing for all d € ZT.

Proposition 2.2.3. Suppose that G is a topological group, X is a topological
space, F C P(GIL-4) is the family of subsets of G-+ containing D% for
some compact 1g € K C G, and G ~ X is continuous-in-X, F-recurrent, and
topologically transitive. Then G ~ X is strongly d-mixing.

Proof. Given a sequence (Uy)r<q of non-empty open subsets of X, the topo-
logical transitivity of G ~ X recursively yields g € Gl and non-empty
opens sets Vi, C Uy for k < d for which giVy € U and Vi1 C Vi for
k < d, so the fact that G ~ X is F-recurrent ensures that Ag(VjO’”"d})
contains D}i( for some compact 1o ¢ K C G. As h € Aé(Vd{O’""d}) &
h(Va) NV £ 0 & (ghi)keqt,ay € AF (Mieqo...a8Va), it follows that
0,....d _ . 0,....d
gAé(Vd{ = A (Myeqo,..ay8kVa), so AZ (ITy<qUqg) contains gAg(Vd{ h

and thus DY . since D4 . CegD%. X
Ui,jgdging ! Um-gdging 1= 8K
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It follows that the existence of a suitable free Borel action of G whose recurrence
spectrum contains F, where F C P(G{L4}) is the family of subsets of G{1-d}
containing D&i( for some compact 1o ¢ K C G, is equivalent to the existence of a
suitable continuous strongly-d-mixing free action of G.

Proposition 2.2.4. Suppose that G is a separable group, X is a Polish space,
G ~ X is continuous, d € ZT, and F C P(G{lv'"’d}) is the family of subsets
of G114} containing D}l( for some compact 1o ¢ K C G. Then F is in the
recurrence spectrum of G ~ X if and only if there is an equivalence class C' of Fé(
for which G ~ C' is strongly d-mixing.

Proof. If F is in the recurrence spectrum of G ™~ X, then Propositions [2.1.5] and
imply that there is an equivalence class C' of Fé( for which G ~ C' is strongly
d-mixing. It remains to show that if there is an equivalence class C' of Fgf for which
G ~ (' is strongly d-mixing, then G ~ C' is F-recurrent. Suppose that U C C
is non-empty and open. Then we can find an open and symmetric neighborhood
W C G of 14 and a non-empty open subset V' C U such that W2V C U. Then find
a compact set K C G such that D¢ C Ag(V{O""’d}). Suppose that g & C’;l(\w.

If g € D&, then g € Ag(V{OV'“d}) and if g € C% \ C’;l(\w then there exists
0<d <d, g e Djié and an injective map f : d’ — d such that gy(;) = g; for all
i€{l,...d}and gj € WHgl,....gl,}) for all j € {1,...,d}. As there exists x € V
such that g’z € ViLd} we obtain that giz € WAV C U for all j € {1,...,d} thus
gc Ag(V{OV“"d}), hence Dg{\w C Ag(U{O,...,d})_ 5

To our surprise, we were unable to find a proof in the literature of the fact that
locally-compact non-compact Polish groups have free strongly mixing continuous
free actions on Polish spaces. In a pair of private emails, Glasner-Weiss suggested
that the strengthening in which the underlying space is compact should be a
consequence of the generalizations of the results of [Wei84] to locally compact groups,
and that a substantially simpler construction should yield the aforementioned
result. However, we give an elementary proof by checking that the action of
G by left multiplication on the space F(G) of closed subsets of G is strongly
(< w)-mixing, where F(G) is equipped with the Fell topology generated by the
sets Vg = {F € F(G) | FNK =0} and Wy = {F € F(G) | FNU # 0}, where
K C G is compact and U C G is open. It is well known that F(G) is a compact
Polish space (see, for example, |[Kec95|, Exercise 12.7]).

Proposition 2.2.5. Suppose that G is a locally compact non-compact Polish
group. Then there is a Polish space X for which there is a free continuous action
G ~ X which is strongly (< w)-mixing.
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Proof. While it is well-known that G ~ F(G) is continuous, we will provide a
proof for the reader’s convenience. Towards this end, it is sufficient to show that
if g € G,F € F(G), and Uyp is an open neighborhood of gF', then there are
open neighborhoods Uy C G of g and Up C F(G) of F for which U,Up C Uyp.
Clearly we can assume that Uyp = Vi for some compact K C K or Uyp = Wy
for some open set U C G. In the former case, it follows that FNg 'K = 0, so
the local compactness of G ensures that for all h € K there are a pre-compact
open neighborhood Uy of g and an open neighborhood V,; of h such that

F ﬁ@fl‘/g’h = (), and the compactness of K yields a finite set L C K such that
K C Uner Vy,n, in which case the sets Uy = Nper Uy and Up = VFK are as
desired. In the latter case, there exists h € F' for which gh € U, so theli]e are open
neighborhoods Uy, C G of g and Uj, of h such that U,Uj, C U, thus the sets U, and
Wy, are as desired.

Given d € Z* and non-empty open subsets U; for i < d we need to show that
Aé( (IL;<4qU;) contains D([i, for some compact set L C G. Assume that U; =
Vi, "Nj<n, WUZ-_J- for n; € Z+ and i < d where K; C G are compact and Uij C~ K;
are open and pre-compact for all j < n; and i < d. Set L = U; yr<q j<n, Ki’Ui,_jl
and suppose that g € D%. Choose g;j € U;j for j < n; and ¢ < d and set
F = {g;lgi,j | j < ni,i <d}. To see that gF € IT;<4U; note that g, F NU; j # ()
for all 7 < n;,2 < d and the L-discreteness of g and the fact that K; is disjoint
from Uj ; for all j < n; ensures that g, ' N K; = () for all i < d.

The free part of the action G ~ F(G) is the set X of F' € F(G) that are not fixed
by any non-identity element of G. The local-compactness and separability of G
ensure that X is the intersection of countable many sets of the form Xx = {F €
F(G) | Vg € K gF # F}, where K C G\ {1¢} is compact. As Proposition [2.2.1]
ensures that each X is open, it follows that X is G5 and therefore Polish. To see
that G ~ X is the desired action, it only remains to establish that X is comeager.
And for this, it is sufficient to show that if K C G\ {1¢} is compact, then X is
dense. To this end, suppose that U = Vi, NN, Wy, is non-empty, where L C G
is compact and U; C~ L is open for all i < n, and fix g; € U; for all t <n. As G is
locally compact, by passing to open neighborhoods of g; contained in U;, we can
assume that each of the sets U; is pre-compact. As G is not compact, there exists
g €~ (LUUjcp, K~1U;). Then the set F' = {g}U{g; | i <n} isin U, and the fact
that N Kg = 0 ensures that F' € Xk. =

2.3 Generic compressibility

Suppose that E is a Borel equivalence relation on X that is countable, in the
sense that all of its equivalence classes are countable. We say that a function
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p: E— (0,00) is a cocycle if p(x,2) = p(z,y)p(y, z) whenever x E y E z. When
p: E — (0,00) is a Borel cocycle, we say that a Borel measure p on X is p-
invariant if u(T(B)) = [gp(T(x),x) du(z) for all Borel sets B C X and Borel
automorphisms 7': X — X such that graphT C E. We say that p is aperiodic if
Yyelz)p Py, x) = oo for all z € X. Here we generalize the following fact to orbit
equivalence relations induced by Borel actions of locally compact Polish groups,
while simultaneously strengthening comeagerness to a notion under which the
recurrence spectrum is invariant.

Theorem 2.3.1 (Kechris-Miller). Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, and p: E — (0,00) is an aperiodic
Borel cocycle. Then there is an E-invariant comeager Borel set C C X that is null
with respect to every p-invariant Borel probability measure.

A function p: X — Z is E-invariant if p(x) = ¢(y) whenever  F y. The
E-saturation of a set Y C X is the set of x € X for which there exists y € Y such
that  EY'y. We say that a Borel probability measure p on X is E-quasi-invariant
if the E-saturation of every p-null set N C X is p-null. Let P(X) denote the
standard Borel space of Borel probability measures on X (see, for example, [Kec95,
§17.E]). The push-forward of a Borel measure p on X through a Borel function
@: X — Y is the Borel measure @,pu on Y given by (¢uu)(B) = u(¢~1(B)) for
all Borel sets B C Y.

Proposition 2.3.2. Suppose that X is a standard Borel space, E is a countable
Borel equivalence relation on X, and ¢: X — P(X) is an E-invariant Borel
function such that p is E-quasi-invariant and @~ (i) is p-conull for all i € p(X).
Then there is a Borel cocycle p: E — (0,00) such that p is p-invariant for all

1e e(X).

Proof. By standard change of topology results (see, for example, [Kec95, §13]), we
can assume that X is a zero-dimensional Polish space. Fix a compatible complete
ultrametric on X. By |[FM77, Theorem 1], there is a countable group T" of Borel
automorphisms of X whose induced orbit equivalence relation is E. For all v € T',
define py: Xy — (0,00) by py(2) = limeso (71w (2)) (B(z,)) /o (2) (B(z,€)),
where X, is the set of x € X for which this limit exists and lies in (0, 00).

Note that if v € T, p € p(X), and ¢p: X — (0,00) is a Radon-Nikodym
derivative of (y~1).u with respect to u (see, for example, [Kec95, §17.A]), then
the straightforward generalization of the Lebesgue density theorem for Polish
ultrametric spaces (see, for example, [Mil08a, Proposition 2.10]) to integrable
functions ensures that ¢)(z) = lime—0 [g(y o) ¥ dp/p(B(z,€)) = py(z) for p-almost
all x € X.
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It immediately follows that for all v € I, the complement of X, is null with
respect to every u € p(X). Moreover, if B C X is Borel, 7,0 € T, and p € p(X),
then

(v6): ' u(B) = /5(3) py(@) du(z)
= [, py(8-2) d((571)ap) (2)
- /B py(6 - 2)ps(x) du(x),

so the almost-everywhere uniqueness of Radon-Nikodym derivatives ensures that
the set of 2 € X for which there exist v, 6 € T such that p,s(z) # py(0-2)ps(x) is
null with respect to every p € p(X).

Let N denote the E-saturation of the union of these sets, and let p: £ — (0, 00)
be the extension of the constant cocycle on E [ N given by p(7 - x,z) = py(x) for
ally el and x € X. X

As a consequence, we obtain the following.

Theorem 2.3.3. Suppose that X is a Polish space, E is a Borel equivalence
relation on X admitting a Borel complete set B C X on which E is countable, F is
a superequivalence relation of E for which every F-class is Gs and the F'-saturation
of every open set is Borel, and p: X — P(X) is an E-invariant Borel function for
which every measure p € (X)) has p-conull p-preimage and concentrates off of
Borel sets on which E is smooth. Then there is an E-invariant Borel set C C X
that is comeager in every F-class, but null with respect to every measure in p(X).

Proof. By the Lusin-Novikov uniformization theorem (see, for example, [Kec95,
Theorem 18.10]), there is a Borel extension 7: X — B of the identity function
on B whose graph is contained in E. Fix a sequence (e;),en of positive real
numbers whose sum is 1, in addition to a countable group {7, | n € N} of Borel
automorphisms of B whose induced orbit equivalence relation is F | B, and define
: B — P(B) by ¥(z) = en(mom)«p(x)/en. As each v € (B) is (E | B)-
quasi-invariant, Proposition yields a Borel cocycle p: E [ B — (0,00) such
that every v € ¢(B) is p-invariant.

Given v € ¥(B), fix x € B for which v = ¢(z), set n = ¢(x), and observe
that (v~ 1(v)) > u(e=1(n)) = 1. Moreover, as E is smooth on the periodic part
P={z€B|Xyculps, p(y,z) < oo} of p (see, for example, [Mil0O8b, Proposition
2.1.1]), and therefore on its E-saturation, it follows that [P]g is null with respect
to every measure in ¢(X), thus P is null with respect to every measure in ¢ (B).

By the proof of Theorem (see [KMO4, Theorem 13.1]), there is a Borel set
R C NN x B, whose vertical sections are (E | B)-invariant and null with respect to
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every p-invariant Borel probability measure, such that every x € B is contained in
comeagerly-many vertical sections of R. It follows that the vertical sections of the
set S = (id x 7)1} (R) are E-invariant and null with respect to every measure in
©(X), and every z € X is contained in comeagerly-many vertical sections of S. The
Kuratowski-Ulam theorem therefore ensures that for all x € X, comeagerly-many
vertical sections of R are comeager in [z]p.

By [Sri79], there is a Borel set D C X intersecting every F-class in a single
point. As the F-saturation of every open set is Borel, the usual proof of the Mont-
gomery-Novikov theorem that the pointclass of Borel sets is closed under category
quantifiers (see, for example, [Kec95, Theorem 16.1]) shows that {(b, z) € N¥ x X |
Ry is comeager in [z]r} and {(b,z) € NN x X | R, is non-meager in [z]p} are
Borel, so [Kec95, Theorem 18.6] yields a Borel function 5: D — NN such that
Rpy(y) is comeager in [z]p for all z € D. Then the set C' = Uyep Ry(y) N [2]F is as
desired. X

We say that a function p: G x X — (0,00) is a cocycle if p(gh,z) = p(g,h -
z)p(h,z) for all g,h € G and z € X. When p: G x X — (0,00) is a Borel cocycle,
we say that a Borel measure p on X is p-invariant if p(gB) = [ p(g,x) du(x) for
all Borel sets B C X and group elements g € G. The following fact is the desired
generalization of Theorem [2.3.1]

Theorem 2.3.4. Suppose that G is a locally compact Polish group, X is a Polish
space, G ~ X is a continuous action, F is a superequivalence relation of Eé(
for which every F-class is G5 and the F'-saturation of every open set is Borel,
and p: G x X — (0,00) is a Borel cocycle with the property that every G-orbit
s null with respect to every p-invariant Borel probability measure. Then there is
a G-invariant Borel set C' C X that is comeager in every F'-class, but null with
respect to every p-invariant Borel probability measure.

Proof. By |Kec92, Theorem 1.1], there is a complete Borel set B C X on which
EX is countable. Fix a p-invariant uniform ergodic decomposition ¢: X — P(X)
of G ~ X (see |[GS00, Theorem 5.2]), and appeal to Theorem X

We next check that the special case of Theorem for FF = Fé( provides a
proper strengthening of Theorem [2.3.1] While this can be seen as a consequence
of the Kuratowski-Ulam theorem, we will show that the usual proof of the latter
easily adapts to yield a generalization to a natural class of equivalence relations
containing Fé( .

Theorem 2.3.5. Suppose that X is a second-countable Baire space, E is an
equivalence relation on X such that every E-class is a Baire space and the E-
saturation of every open subset of X is open, and B C X has the Baire property.
Then:
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Chapter 2 Recurrence and measures

(1) V*x € X B has the Baire property in [z]g.
(2) B is comeager <= V*x € X B is comeager in [z]|g.

Proof. We begin with a simple observation.

Lemma 2.3.6. Suppose that U C X is a non-empty open set and V' C U is a
dense open set. Then [V]g is dense in [U]g.

Proof. IfW C X isopenand [V]|pNW = 0, then V N [W]g = 0, so the openness of
[W] g ensures that V N [W]g = 0, thus the density of V' implies that U N [W]g = 0,
hence [UlpNW = 0. 53

To see the special case of (=) of (2) when B C X is open, note that if
U C X is non-empty and open, then Lemma yields that [BNU]g is dense
in [U]g, and therefore V*'x € X (z € [Ulp = x € [BNU]g), or equivalently,
Ve e X (UN[zlp #0 = BNUN[zlp # 0). As X is second countable, it
follows that V*z € X B is dense in [z]g.

To see (=) of (2), suppose that B C X is comeager, fix dense open sets
B, C X for which N,ey Br C B, and appeal to the special case for open sets to
obtain that V*x € X N,cn By is comeager in [z]p.

To see (1), fix an open set U C X for which B A U is meager, and note that
V*r € X B AU is meager in [z]g, by (=) of (2).

To see (<=) of (2), suppose that B is not comeager, fix a non-empty open
set V' C X in which B is meager, note that Vo € V V N [z]g # 0, and appeal to
(=) of (2) to obtain that V*z € X BNV is meager in [z]|p, thus V*z € V B is
not comeager in [z|p. X

Finally, we check that no condition on the recurrence spectrum can yield the
existence of an invariant Borel probability measure. When B is a subset of X and
HC UP(X{O""’d}), we denote {HN B4 | deZt HeH ﬂP(X{O""’d})} by
H | B.

Theorem 2.3.7. Suppose that G is a locally compact Polish group, X is a standard
Borel space, G ~ X is Borel, and p: G x X — (0,00) is a Borel cocycle for which
every G-orbit is null with respect to every p-invariant Borel probability measure.
Then there is a G-invariant Borel set B C X that is null with respect to every
p-invariant Borel probability measure but for which (F,H) is in the recurrence
spectrum of G ~ X if and only if (F,H | B) is in the recurrence spectrum of
G~ B.
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Proof. We can assume that X is a Polish space and G ~ X is continuous. By
Theorem , there is an Eé( -invariant Borel set B C X that is comeager in every
Fé( -class, but null with respect to every p-invariant Borel probability measure.
Proposition then ensures that (F,H) is in the recurrence spectrum of G ~ X
if and only if (F,H [ B) is in the recurrence spectrum of G ~ B. X
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Chapter 3

A generalization of cutting and
stacking

3.1 Quotients

Given a topological space X and an equivalence relation £ on X, we endow X /FE
with the topology consisting of all sets U C X /FE for which JU is an open subset
of X. We begin by noting a sufficient condition under which such quotients are
Polish spaces.

Proposition 3.1.1. Suppose that X is a Polish space and E is an equivalence
relation on X for which every E-class is closed, E-saturations of open sets are
open, and there is a basis of open sets U C X such that [U|g C [U]lg. Then X/E
is a Polish space.

Proof. The fact that every FE-class is closed ensures that X /FE is T, and the
fact that X is second countable implies that so too is X /E, for if (Up),en is a
basis for X, then ([U,|g/FE)nen is a basis for X/ E. To see that X /E is regular,
note that if V' C X /FE is an open neighborhood of [z]g, then there is an open
neighborhood U C UV of z such that U C UV and [U]g C [U]g, in which case
[Ulg/E = [Ulg/E C [U]lg/E C V. The Urysohn metrization theorem (see, for
example, |[Kec95, Theorem 1.1]) therefore ensures that X is metrizable. As the
surjection m: X — X /F given by w(z) = [z]g is continuous and open, it follows
that X /F is Polish (see, for example, [Kec95, Theorem 8.19]). =

In the special case that X is locally compact, so too is the quotient.

Proposition 3.1.2. Suppose that X is a locally-compact Polish space and E is
a closed equivalence relation on X for which E-saturations of open sets are open.
Then X/ E is a locally-compact Polish space.
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Proof. To see that X/E is Hausdorff, note that if [z]gp and [y]g are distinct
elements of X /F, then there are open neighborhoods U C X of z and V C X
of y whose product is disjoint from E, in which case [U]g/F and [V]g/E are
disjoint open neighborhoods of x and y. As the function 7: X — X /F given by
7(x) = [x]g is continuous, it follows that if U C X is an open set with compact
closure, then the set 7(U) = [U]g/E is compact, so [U]g is closed, thus [U]g/E is
an open set with compact closure and [U]g C [U]g, hence X/ E is locally compact
and Proposition [3.1.1] ensures that it is Polish. b

Suppose that R and S are binary relations on X and Y. A homomorphism
from R to S is a function ¢: X — Y for which (¢ x p)(R) C S, a reduction
of R to S is a homomorphism from R to S that is also a homomorphism from
~R to ~S, an embedding of R into S is an injective reduction of R to S, and an
isomorphism of R with S is a surjective embedding of R into S. Note that if G
is a group and G ~ X is an action by homomorphisms from E to E, then it is
an action by isomorphisms of E with F, and we obtain an action G ~ X/ FE by
setting g - [¢]g = [g- z]p for all g € G and z € X.

Proposition 3.1.3. Suppose that G is a topological group, X is a topological space,
E is an equivalence relation on X for which the E-saturation of every open set is
open, and G ~ X is a continuous action by homomorphisms from E to E. Then
G~ X/FE is continuous.

Proof. Suppose that g € G, x € X, and W C X /F is an open neighborhood of
g+ [x]g. Then there are open neighborhoods U C G of g and V C X of x such
that UV C UW, in which case U and [V]g/FE are open neighborhoods of g and
[x] g such that U([V]g/E) C W. b

Suppose that G is a group, X is a set, and F is an equivalence relation on X.
A function p: E — G is a cocycle if p(x,z) = p(x,y)p(y, z) for all z E y E z. This
trivially implies that p(z,2) = 1g for all z € X, thus p(z,y) = p(y,z)~! for all
x Ey.

More generally, we say that a function P: E — P(G) \ {0} is a cocycle if
P(z,z) = P(x,y)g for all z F y E z and g € P(y,z). This trivially implies
that 1g € P(z,7) for all 2 € X, so P(x,y) = P(y,r)~! for all + E y, thus
P(z,z) = gP(y,z) forall x Ey E z and g € P(z,y).

Let S(G) denote the set of all subgroups of G. We say that a function G: X —
S(G) is compatible with a cocycle p: E — G if Ggp(z,y) = p(z,y)Gy for all
x E y, in which case we define P: E — P(G) \ {0} by setting P(z,y) = p(z,y)Gy.
Observe that if + E y E z and g € P(y, 2), then there exists h € G, for which
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Chapter 3 A generalization of cutting and stacking

g = p(y,z)h, and it follows that P(z,z) = p(z,2)G, = p(z,y)p(y, 2)G.h =
p(z,y)Gyp(y, z)h = P(z,y)g, thus P is a cocycle.

The orbit cocycle on Eé( associated with an action G ~ X is given by
PX(z,y) = {g € G| = g-y}. For each cocycle P: E — P(G)\ {0}, de-
fine Ep C Eby x Epy < 1g € P(x,y). Suppose now that Eé( C E and
PX(z,y) C P(x,y) for all 2 EX y. If ¢ € G and = E y, then the facts that
g€ P(g-z,7v)and g-! € P(y,g-y) ensure that P(g-z,9-y) = gP(x,y)g" !, so
xEpy=—-g-x Ep g-y, thus G ~ X is an action by homomorphisms from Ep
to Ep. The fact that g=! € P(y, g-y) also implies that P(x,g-y) = P(z,y)g ",
so [2]gp, =9 WlE, <= lg € P(z,9-y) <= g € P(x,y), thus P factors over
Ep to the orbit cocycle of G ~ X/ FEp.

Let G ~ G x X denote the action given by g - (h,x) = (gh,x), set I[(G) =
G x G, identify the product of equivalence relations E on X and F on Y with
the equivalence relation on X x Y given by (z1,y1) (EXF) (22,y2) <=
r1 E g and y1 F y9), and let P denote the cocycle on I(G) x E given by
P((g,2),(h,y)) = gP(x,y)h~'. Clearly ES** C I(G) x E. Moreover, if
g € G and (h,x) € Gx X, then P(g-(h,z),(h,z)) = ghP(z,z)h', so g €
P(g ’ (h,%), (h,l‘)), thus PgXX(g' (h,l’), (ham)) c P(g ’ (h7 :L'), (h,l‘)).

Recall that an equivalence relation on a topological space is minimal if its
equivalence classes are dense.

—

Proposition 3.1.4. Suppose that G is a topological group, X is a topological space,
E is a minimal equivalence relation on X for which the E-saturation of every open
set is open, and P: E — P(G)\ {0} is a cocycle. Then G ~ (G x X)/FEp is
minimal.

Proof. Suppose that W C (G x X)/FEp is a non-empty G-invariant open set.
Then there are non-empty open sets U C G and V C X with the property that
UxV CYUW. The fact that W is G-invariant then ensures that G x V C JW.
To see that G x X C UW, suppose that g € G and z € X, fix y € V such that
x By, fix h € gP(x,y), and observe that 1 € gP(z,y)h~! = P((g,2), (h,y)), so
the Ep-invariance of J TV ensures that it contains (g, x). b

Recall that, when Y is a topological space, we use F(Y') to denote the family
of all closed subsets of Y and we equip F(Y') with the Fell topology generated
by the sets of the form {F | FNK = 0} and {F | FNU # 0}, where K C Y
is compact and U C Y is open. We say that a function p: X — F(Y) is upper
semi-continuous if it is continuous with respect to the topology generated by the
sets of the former type, and lower semi-continuous if it is continuous with respect
to the topology generated by the sets of the latter type.
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We say that a sequence (E),),ecn of subequivalence relations of F' is ezhaustive

Proposition 3.1.5. Suppose that G is a topological group, X is a topological space,
E is an equivalence relation on X, and P: E — F(G) is a cocycle for which there
is an exhaustive increasing sequence (Eyn)pen of subequivalence relations of E such
that E,,-saturations of open sets are open and P | E, is lower semi-continuous for
all n € N. Then Ep-saturations of open sets are open.

Proof. Suppose that U x V' C G x X is an open rectangle. Given (g,z) € [U x
V]EF’ fix (h,y) € U x V for which (g,2) Ep (h,y), as well as n € N for which
x Ey y, and open neighborhoods U,, U, C G of g and h for which Ugg_th cUu.
As g7'h € P(z,y), there is an open neighborhood V; x V;; € X x V of (z,y) with
the property that ¢~1U, N P(2,y') # 0 for all (2/,y') € E, N (Vi x V). Define
Vi =VyN[VylE,, and note that if (¢’,2") € U, x VJ, then there exists y' € Vj, for
which 2/ E, v/, and since ¢g~'U;, N P(a2',%') # 0, there exists ' € ¢'P(2',y') NU,
so (¢,2") B (W, y'), thus Uy x V; C [U x V]p_. b

Recall that an increasing sequence (K, ),en of compact subsets of G is exhaus-
tive if every compact subset of G is contained in some K.

Proposition 3.1.6. Suppose that G is a locally-compact separable group. Then
there is an exhaustive increasing sequence (Kp)nen of compact subsets of G.

Proof. Fix a countable dense set D C G and a non-empty open set U C G with
compact closure. As D7 lg is dense and therefore intersects U for all ¢ € G, it
follows that G = DU. Fix an enumeration (g, )nen of D, set F, = {gm | m < n}
and K,, = F,U for all n € N, and observe that if K C G is compact, then the fact
that K C DU yields n € N for which K C F,,U C K. X

For each set K C G and cocycle P: E — F(G), define Ry = P"'({H C G |
HNK #0}). Note that the relations R associated with an action and its orbit
cocycle coincide. We say that P is (E,, K,,),en-ezpansive if R%n C E, for all
n € N.

Proposition 3.1.7. Suppose that G is a locally-compact group, X is a Polish space,
E is an equivalence relation on X, P: E — F(G) is a cocycle, (Ky)peN S an
exhaustive increasing sequence of compact subsets of G, and there is an exhaustive
increasing sequence (Ep)pen of closed subequivalence relations of E such that P is
(B, Kp)pen-ezpansive and P | E, is upper semi-continuous for all n € N. Then
E+ is closed.
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Proof. If ((9,x), (h,y)) € ~Ep, then v Ey => g~ 'h ¢ P(z,y). The fact that
every topological group is regular yields an open neighborhood Uy x U, € G x G
of (g, h) for which U, 1Uj, is compact and » E'y = P(z,y) N U, U, = . Fix
n € N sufficiently large that U U, € K,, as well as an open neighborhood
Vi x Vy € X xY of (x,y) with the property that P(2',y") N U 1U;, =  for all
(«',y") € EnN (Vg x V), and observe that (U, x V;) x (U, x V) is disjoint from
E+. X

We say that an equivalence relation £ on a metric space X is locally generated
by continuous actions of compact Polish groups if X is the union of E-invariant
open sets U C X for which there are compact Polish groups G and continuous
actions G ~ U such that £ [ U = Eg . Note that every such equivalence relation
is necessarily closed, for if (z,y) € E, then it is the limit of a sequence (s, Yn )neN
of elements of F, and if U C X is an F-invariant open neighborhood of x for
which there is a compact Polish group G and a continuous action G ~ U such
that £ | U = Eg, then by passing to a terminal subsequence, we can assume that
xy, € U for all n € N, in which case there is a sequence (g, )nen of elements of G
such that g, -, = y, for all n € N, and by passing to infinite subsequences, we
can assume that (gn)neN converges to some g € GG, so g-x =y, thus x F y.

Proposition 3.1.8. Suppose that G is a locally-compact Polish group, X is a
metric space, E is an equivalence relation on X, P: E — F(G) is a cocycle,
(Kp)neN s an ezhaustive increasing sequence of compact subsets of G, and there
is an exhaustive increasing sequence (Ep)nen of subequivalence relations of E such
that E, is locally generated by continuous actions of compact Polish groups, P is
(En, Kn)pen-ezpansive, and P | E, is upper semi-continuous for alln € N. Then
[R]EF c [ﬁ]EF for all sets R C G x X with the property that proj(R) is compact.

Proof. Suppose that (g,z) € [R] B and fix a sequence (9n, Tn)nen of elements of
[R]p; for which (gn,x5) — (g, %), as well as a sequence (hn, Yn)nen of elements of
R such that (g, zn) Ep5 (hn,yn) for all n € N. By passing to infinite subsequences,
we can assume that (hy),en converges to some h € G. As the closure of {g, |
n € N}U{h, | n € N} is compact, so too is the closure of {g, 'k, | n € N}. Fix
m € N for which the latter set is contained in K,,. As g, 'h, € P(xp,y,) for
all n € N, it follows that z,, F,, y, for all n € N. Fix an E,,-invariant open
neighborhood V' C X of z, a compact Polish group K, and a continuous action
K ™~ V such that E}g = E,, [ V. By passing to terminal subsequences, we can
assume that 2, € V for all n € N, so there is a sequence (ky,),en of elements of K
such that v, = ky, -z, for all n € N. By passing to infinite subsequences, we can
assume that (k,),cy converges to some k € K, in which case (yp),en converges
to the point y = k-, so x Ep, y and (hn,yn) — (h,y), thus (h,y) € R. To see
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that (g,2) E5 (h,y), note that if U C G is an open neighborhood of g~ 1h, then
g, Yhy, € U for all but finitely many n € N, so P(zy,y,) NU # 0 for all but finitely
many n € N, so the local compactness of G and upper semi-continuity of P | E,,
ensure that g~'h € P(z,y). X

Suppose that P: E — P(G) and Z: F — P(G). A homomorphism from P to %
is a homomorphism ¢ from E to F such that P(x,y) C Z(p(z),¢(y)) forallz E vy,
a reduction of P to X is a reduction ¢ of E to F such that P(z,y) = Z(o(2),¢(y))
for all x E y, and an embedding of P into X is an injective reduction of P to X.
Given an action G ~ Y and a function ¢: X — Y, define pg: G x X — Y by

vc(g,7) =g ¢(x).

Proposition 3.1.9. Suppose that G is a group, X and Y are sets, E is an
equivalence relation on X, P: E — P(G) \ {0} is a cocycle, and G ~'Y is an
action.
(1) If p: X — Y is a homomorphism from P to Pg, then g/ Ep is a homo-
morphism from G ~ (G x X)/Ep to G Y.

(2) If o: X — Y is a reduction of P to Pk, then vq/ Ep is an embedding of
G (GxX)/EpintoGNY.

Proof. If ¢: X — Y is a homomorphism from P to Pg, g,h € G, and
w B, then P((g,w),(hz)) = gP(w,s)h"' C gPY(p(w), p(z))h ! =
PY (pc(g,w), pc(h,x)), so ¢ is a homomorphism from P to PY, and therefore
factors over E5 to a homomorphism from P/ Es to PY . thus to a homomorphism
from G~ (Gx X)/EptoG Y.

Similarly, if p: X — Y is a reduction of P to Pg, g,h € G, and w E z, then

P((g,w), (h,x)) = gP(w,x)h™" = gP% (p(w),p(x))h~" = P%(vc(g,w), pc(h,
r)), s0 g is a reduction of P to Pé;/ , and therefore factors over £ to an embedding
of P/E5 into PY, thus to an embedding of G ~ (G x X)/Ep into G AY. &

3.2 Cutting and stacking

For all n € N, let Eg,(N) denote the equivalence relation on NN given by
a Egn(N) b <= Vm > n ap = by, and define Eq(N) = U,en Eon(N).
For all s € (Ugez+ G1@) <N define X, = [Tn<|s/{0, .- - Isnl}, and for all
g € (Ugezr G N set Ty = Unen Xgm and Xg = [Ien{0,...,[gnl}, and
let & be the cocycle on Eg(N) [ Xg given by g((0)™ ~ (k) ~ ¢, (0)" ~ (0) ~
c) = (gn)k for all n € N, ¢ € Xgni1(g), and 1 < k < [gy|. We say that a function
G: Xg — S(G) is compatible with g if it is compatible with g. For every such G,
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define Pg g: Eo(N) | Xg = G by Pg g(c,d) = g(c,d)Gy, and set Eg g = Em
and Xg,G = (G X Xg)/Eg,G

In the special case that G is the function 1g with constant value {15},
we use Pg, Fg, and Xg to denote Pg g, Fg g, and Xgg. When G = Z and
Vn € NVE < |gn| (8n)r+1 > (8n)k + Xim<n(8m)|g,|, it is not difficult to see that
G ~ Xg is essentially generated by the automorphism obtained via cutting and
stacking with stacks of height |g,| + 1 and (gn)r+1 — 1 — (&n)k — Xim<n(8m)|gn|
insertions between the k™ and (k + 1)*" levels of the n'® stack.

For all s € Ty, define g° = Hn<|s|(g7)s(n)-

Proposition 3.2.1. Suppose that G is a group, g € (Ugez+ G{l""’d})N, G: Xg —
S(G) is compatible with g, n € N, ¢ € Xgn(g), and s,t € Xgp,. Then Pga(s ~

et~ C) = gsG(O)n,\C(gt)il.
Proof. As

Peg(s ~c,t~c)= g(s~et ~ )Gy
= g5~ (0)" ~0) g((0)" ~ et~ )G
= g(s 2 ¢,(0)" ~ )G(gn~c g((0)" ~ et ~ o),

it is sufficient to show that g(s ~¢,(0)" ~c) =g’ foralln € N, ¢ € Xgn(g), and
s € Xgpp- But if this holds at n and ¢ € Xsnt1(g)s k <|gn|, and s € Xg}y,, then

so it holds at n + 1. <

Given a binary relation R on X, we say that a sequence (X;);cs of subsets of
X is R-discrete if every element of [[;c; X; is R-discrete. For all n € N, define
IP(g | n) = {g° | s € Xgi}. We say that (g,G) is (K,)nen-ezpansive if
gnG(gyn+inc I8 R%(grn)_lKnIP(gm)—discrete for all n € N and ¢ € Xgn+1(g). In the
special case that G = 1, we say that g is (K, ),eN-ezpansive.

Proposition 3.2.2. Suppose that G is a topological group, (Kp)nen is an increas-
ing sequence of compact subsets of G, g € (Ugez+ GIbMN G: Xg — S(G) is
compatible with g, and (g, G) is (Kpn)pen-ezpansive. Then Pg g is (Eopn(N) |
X, Kn)pen-ezpansive.
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Proof. Simply observe that if n € N, ¢ € Xgn+1(g), J, b < |g,| are distinct, and s,t €

Xg[m then (Q)J'C’"(O)Tl+1f\cm (gs)_lKngt(gin)k =0, so gs(gin)jG(O)"+1f\c(§)lzl
(g')~' N K, = 0, thus Proposition ensures that Pg g (s ~ (j) ~ ¢,t ~ (k) ~
c)NK, =10. b

We say that an action of a locally compact Polish group is obtained via expansive
cutting and stacking if it is of the form G ~ Xg @, where g € (Ugez+ G- dh)N,
G: Xg — F(G)NS(G) is compatible with g and continuous, and (g, G) is
(Kp)nen-expansive for some exhaustive increasing sequence (K, ),en of compact
subsets of G.

Proposition 3.2.3. Suppose that GG is a locally-compact Polish group and G ~ X
is obtained via expansive cutting and stacking. Then X is a locally-compact Polish
space and G ~ X is minimal and continuous.

Proof. Fix an exhaustive increasing sequence (Kj,),en of compact subsets of G,
g € (Ugez+ G T)N as well as a continuous function G: Xg — F(G) NS(G)
compatible with g for which (g, G) is (Kj,)pen-expansive and G ~ X is G ~ Xg G-
As Eg(N) [ Xg is minimal, Proposition implies that G ~ X @ is minimal.
Proposition ensures that Pg ¢ | (Eo,n(N) [ Xg) is continuous for all n € N.
As (Eo,(N) | Xg)-saturations of open sets are open for all n € N, Proposition
implies that Fg g-saturations of open sets are open, so Proposition
ensures that G ~ Xg g is continuous. Proposition ensures that Pg g is
(Eon(N) [ Xg, Kp)pen-expansive. As Eg,(N) [ Xg is closed for all n € N,
Proposition @ implies that Fg g is closed. As G x Xg is a locally-compact
Polish space, Proposition ensures that so too is Xg g. =

The composition of relations R C X xY and S C Y x Z is given by RS =
{(r,2) e XxZ|JyeYxRyS z}.

Proposition 3.2.4. Suppose that G ~ X is a continuous action of a topological
group on a topological space, K, L C G are compact, R C X x X 1is closed, and
(z,y) € NR%,lRRf. Then there are open sets Ug O K and U, O L and open
neighborhoods V, and Vy, of x and y such that (V; x V) N R)U(_l RR)U(L = 0.

K

Proof. The fact that R is closed ensures that for all (g,h) € K x L, there
are open neighborhoods Wy p, ., Wyp, € X of g-x and h-y such that RN
(Wohae X Wyny) = 0. As G ~ X is continuous, there are open neighbor-
hoods Uy p 2, Ugny € G of g and h and Vyp, 4, Vypy € X of x and y such that
UghzVohe © Wyne and UgpyVyny € Wyny. As K x L is compact, there is a

finite set F* C K x L such that K x L C U(gn)er Ughaz X Ugpy. Define F =
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{F" C F| L CUgner Ughy}, and observe that the sets Ux = Uy nyer Ug e

UL — mF’E]‘—/ U(g,h)EF’ Ug,h,ya Vx = m(g,h)EF ‘/g,h,am and Vy = m(g,h)GF ‘/g,h,y are as
desired. =

A homomorphism from p: E — G to £: F — P(G) is a homomorphism
from the function P: E — P(G) given by P(w,z) = {p(w,z)} to X. Given
an equivalence relation £ on X and a binary relation R on X, we say that a
function ¢: Xg — X is doubly (R, (Ky)nen)-€ezpansive with respect to a co-
cycle P: E — P(G)\ {0} if it is a homomorphism from ~Eq,(N) [ Xg to
NRﬁnIP(grn)RRI{’(g[n)—lKn for all n € N. When R is equality on X, we say
that ¢ is doubly (Kp),en-expansive. As before, we say that (g, G) is doubly
(Kn)nen-ezpansive if G gynt1 . 18 RgP(grn)_lKnIP(gM))z—discrete forallm € N

and ¢ € Xgn+1(g).

Proposition 3.2.5. Suppose that G is a locally-compact separable group, (Ky)pen
is an ezhaustive increasing sequence of compact subsets, g € (Ugez+ G{l""’d})N,
E is an equivalence relation on a set X, P: E — P(G) \ {0} is a cocycle, and
01 Xg = X is a doubly-(Ky)nen-expansive homomorphism from g to P. Then
the function G: Xg — S(G) given by G. = P(¢(c),¢(c)) is compatible with g,
(g, G) is doubly (Kp)pen-expansive, and ¢ is a reduction of Pg g to P.

Proof. To see that G is compatible with g, note that

glc,d)Ga = g(c,d)P(p(d), p(d))
= P(p(c),¢(d))
= P(¢(c),¢(c)) glc,d)
= G, g(c,d).

To see that (g, G) is doubly (K, ),en-expansive, suppose that n € N, ¢ €
Xenti(g), Jok < |gn| are distinct, and s,t € Xgp,. The fact that P(p(s ~
() ~¢),o(t ~ (k) ~ ¢)) and K,IP(g | n)IP(g | n)" 'K, are disjoint ensures
that so too are P(p(s ~ (j) ~ ¢),9((0)"™ ~ ¢)) and K,IP(g | n)IP(g |
n) K P(p(t ~ (k) ~ ¢),0((0)"! ~ ¢)). As g (8n)iG(gyni1ne = Plo(r ~
(1) ~ ), ((0)" ~ ¢)) for all (r,i) € {(s,4), (t,k)}, it follows that .G gyn+1.
is RgP(gFn)*lKnIP(g[n))Q_discrete'

To see that ¢ is a homomorphism from Pg g to P, simply observe that if n € N,
¢ € Xgn(g), and s,t € Xgpp, then Pgg(s ~c,t ~c) = (s ~ et ~ ) P(p(t ~

.ot ~e)) = Plo(s ~ o), ol ~ )

To see that ¢ is a homomorphism from ~Eq(N) | Xg to ~E, note that if
¢,d € Xg are Eo(N)-inequivalent but ¢(c) E ¢(d), then K, N P(¢(c),p(d)) =0
for all n € N, so p(¢) and p(d) are E-inequivalent. b

33



A homomorphism parameter for an action G ~ X of a group by homeomor-
phisms of a Polish space is a sequence of the form P = (d;, (57]13)n€N7 gl VP),
where d§ is a compatible complete metric on X, (65 JneN Is a sequence of positive
real numbers converging to zero, g’ € (Ugez+ G{l’“"d})N, and VT is a countable
basis for X.

A P-code is a sequence V € (VP)N such that, for all n € N, the following
hold:

(1) Vk < lgp| (87)k Vi1 C V.

(2) Vs € Xgriqo,..ny diamye ((87)° Vi) < ey
Condition (1) yields that if ¢ € Xgzp and n € N, then (gDl D)V, =
(87)" (&) e(n)Vnr1 C (87)1"V,, so condition (2) implies that we obtain a
continuous function @V : Xgp — X by letting P ’V(c) be the unique element of
ﬂneN(gP)crnVn-

Proposition 3.2.6. Suppose that G ~ X is an action of a group by homeomor-
phisms of a Polish space, P is a homomorphism parameter, and V € (VP)N s a
P-code. Then ¢V is a homomorphism from gP to Pé(.

Proof. Simply observe that

{ gr((0)" ~ (k) ~ ¢, (0)" ~ (0) ~ ¢) - "V ((0)" ~ (0) ~ )}
={(gl)n 90’(0)7“\() ¢)}

- ﬂme (gﬁ)k( )(O Vn+1+m
= ﬂmeN(gP)( Qe mvn+1+m
= {"V((0)" ~ (k) ~ ¢)}
for all n € N, ¢ € Xgur1(gp), and k < [gy]. X

An embedding parameter for an action G ~ X of a o-compact group by
homeomorphisms of a Polish space is a sequence of the form P = (d%, (1) ,en, g7,
(KD )nen, RY, VT with the property that the sequence P’ = (d%, (eF'),.en, 8T, V)
is a homomorphism parameter, (Kf Jnen is an exhaustive increasing sequence of
compact subsets of G, and R” is a closed binary relation on X.

A P-code is a P'-code V € (VP)N such that gl'V, .1 is R RPR p-discrete,
where LZ = IP(g” | n) ' KPTP(g” | n), for all n € N.
Proposition 3.2.7. Suppose that G ~ X is an action of a o-compact group by

homeomorphisms of a Polish space, P is an embedding parameter, and V € (VP)N
is a P-code. Then ©™V is doubly (RT, (KT),cn)-expansive.
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Proof. Note that if n € N, ¢,d € Xeni1(gPy, 8,1 € XgPpp, and j,k < |gP| are
distinct, then oV (r ~ (i) ~ ¢) € IP(g” | n)(gl)iVpy1 foralli € {j,k} and r €
{s,t} by Propositions[3.2.1/and [3.2.6, in which case (P V(s ~ (j) ~c), DV (t ~

(k) ~d)) ¢ Rfslp(gp [n)RPRl)g(gP n)-LEPs S glVy 41 is RfﬁRprﬁ-discrete. =

3.3 Continuous disjoint unions

We associate with each function g: I — (Ugez+ G{l"“’d})N the set Xg = {(i,¢) €
IxNN | ¢ e Xg(iy} and the cocycle g: (= xEo(N)) | Xg — G given by

g((i,¢),(i,d)) = gu)(c,d). We say that a function G: Xg — S(G) is compatible
with g if G(¢) is compatible with g(¢) for all ¢ € I, in which case we define
Pga: (= xEo(N)) [ Xg = S(G) by Pga((i,c), (i,d)) = Pgpy.qplcd), and
set Bg g = Ep— and Xg g = (G x Xg)/Egg. We say that (g, G) is (K})pen-

g,G
expansive if (g(i), G(7)) is (Kp)pen-expansive for all i € I. We say that an action

of a locally compact Polish group is a continuous disjoint union of actions obtained
via expansive cutting and stacking if it is of the form G ~ Xz g, where [ is a
Polish space, g: I — (Ugez+ G173 is continuous, G: Xg — F(G)NS(G)
is both compatible with G and continuous, and (g, G) is (K, ),en-expansive for
some exhaustive increasing sequence (K ),cn of compact subsets of G.

Proposition 3.3.1. Suppose that G is a locally-compact Polish group and G ™~ X
s a continuous disjoint union of actions obtained via expansive cutting and stacking.
Then X is Polish and G ~ X s continuous.

Proof. Fix a exhaustive increasing sequence (Kp,),cn of compact subsets of G,
a Polish space I, a continuous function g: I — (Ugez+ G{l""’d})N, and a con-
tinuous function G: Xg — F(G) NS(G) compatible with g for which (g, G) is
(K )nen-expansive and G ~ X is G v Xg . Note that (= x Eg,(N)) [ Xg is
locally generated by continuous actions of compact groups, ((= % Eo,(N)) [ Xg)-
saturations of open sets are open, and Proposition ensures that Pg g |
((=xEopn(N)) [ Xg) is continuous for all n € N. Proposition ensures that
FEg g-saturations of open sets are open. As Proposition implies that Pg g
is ((=x Eopn(N)) [ Xg, Ky, )nen-expansive, Proposition yields that Fg g is
closed, thus Xg g is Polish by Propositions and [3.1.8]  Proposition [3.1.3]
ensures that G ~ Xg g is continuous. X

The stabilizer function associated with an action G ~ X is given by Stab(z) =
{geG|g-x=u}foralzeX.
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Proposition 3.3.2. Suppose that G ~ X is a continuous action of a topological
group on a Hausdorff space. Then the corresponding stabilizer function is upper
semicontinuous.

Proof. If K C G is compact, then Stab '({F C G | FNK = 0}) = {z € X |
- R)Ig x}, and the latter set is open by Proposition X

A function ¢: X — Y between topological spaces is Baire class one if the
preimage of every open subset of Y is F,. In the special case that Y is second
countable, this is equivalent to the existence of a sequence (F,),en of closed subsets
of X for which the preimage of every open subset of Y is a union of sets along

(Fn)nGN-

Proposition 3.3.3. Suppose that X is a topological space, Y is a locally-compact
regular second-countable space, and ¢: X — F(Y') is upper semicontinuous. Then
@ is Baire class one.

Proof. If U C Y is open, then there are compact sets K,, C Y with the property that
U=UnpenEKn,s509 " ({F CY [ FNU #0}) = Upeny '({F CY | FN K, # 0}
), and the latter set is Fy,. b

A universal embedding parameter for a Borel action G ~ X of a locally-
compact Polish group on a Polish space is a sequence of the form P =
(dP7 d§7 (55)7161\% (Ff)néNv (KTJLD)HGNa RP7UP7 VP? (WTILD)HGN) for which there is
a Polish topology 7 on X such that X and (X,7) have the same Borel sets,
G ~ (X,7) is continuous, df is a compatible complete metric on G, d¥ is a
compatible complete metric on (X,7), (¢]),en is a sequence of positive real
numbers converging to zero, (FF'),cy is a sequence of closed subsets of (X, 7)
such that the preimage of every open subset of F(G) under the stabilizer function
is a union of sets along (FX),cn, (KP),en is a exhaustive increasing sequence of
compact subsets of G containing 1, R” is a closed binary relation on (X, 7), U”
is a countable basis for G, V¥ is a countable basis for (X,7), and (W,['),cx is a
sequence of dense open subsets of (X, 7) for which the topology N,eN Wf inherits
from (X, 7) is finer than that it inherits from X.

Foralln € N, d € (Z1)", and U € [Inep P(G)10dm}  define IP(U) = {U* |
$ € [Imnen{0, ..., dn}}, where US = [I,cn(Un)s,, forall s € [1,<n{0,...,dn}

A P-code is a pair (U, V) € (ITnen [men (U )10 dmb) 5 (VPN where d €
(Zt)N, such that for all n € N, the following hold:

(1) Vm < nVk < dy, ((Un+1)m)k - ((Un)m)k
(2) ¥m < nVk < dn diamge ((Ung1)m)i) < el
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3) Vs € [ln<ni0, ..., dn} m C Uir”Vn-
4) Vs € ngn{o, ooy dm} diade; (UfL—HVn—H) < 67113'

(3)

(4)

(5) Vs € [ln<n{0s - dm} US 1 Vi CWE.

(6) Vs € [Tn<ni0, ..., dn}3F € {FF ~FP}Y US|V, CF.
(7) ((Unt1)n)kVat1)k<d, is RfﬁRPR)L(E—discrete, where

LY =1P(U,y1 [ n) 'KPIP(U,yq [ 0).

(8) Vm <n lg € ((Up+1)m)o-
Let Ip denote the set of all P-codes. Conditions (1) and (2) ensure that we
obtain a continuous function g”: Ip — (Ugez+ GU@)N by letting (g2 (U, V),
be the unique element of N,5.,((Up)m)r. Conditions (3) and (4) imply that
we obtain a continuous function ¢’ : Xgp — (X,d%) by letting o ((U,V),c)
be the unique element of N>, UsV,. Define GF: Xgp — F(G)NS(G) by
GT = Stabo F.

Proposition 3.3.4. Suppose that G ~ X is a Borel action of a locally-compact
Polish group on a Polish space, P is a universal embedding parameter, and (U, V)
is a P-code. Then @' : Xer — X and GP are continuous.

Proof. As condition (5) ensures that ¢f (Xgr) € Mpen WPF it follows that
ol Xgr — X is continuous.

To see that G* is continuous, note that if ((U,V),¢) € Xgp and U C F(G)
is an open neighborhood of the stabilizer of ¢ ((U, V), ¢), then there exists n € N
with the property that o ((U,V),c) € FF and Stab(F!") C U, so condition (6)
ensures that US4V, € B thus GP((Ngynez) X M) % Nog) €

U. %
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Chapter 4

Transience

4.1 Basis theorems

Given a sequence d € NN we say that a set T C Upen [Ineni0s - - -, dm} is dense if
for all s € UpenTm<ni0, ..., dmn}, there exists t € T such that s C ¢. Given a set
S C Ugez+ P(GH-4) we say that a sequence g € (Ugez+ G119 N is S-dense
if for all S' € S, there are densely-many g € GG such that there are C-densely-many
t € Ty for which ggtgm(ggt)*l es.

Proposition 4.1.1. Suppose that G is a topological group, (K,)pen s an ex-
haustive increasing sequence of compact subsets of G, S C Ugez+ P(G{l""’d}),
g € (Ugezr G s S-dense, G: Xg — S(G) is compatible with g, and
(8, G) is (Kn)pen-expansive. Then G ™~ Xg G is expansively S-recurrent.

Proof. Suppose that d € Z*, K C G is compact, S € SﬂP(G{L'"d}), and
V C Xg @ is a non-empty open set. Fix s € Ty and a non-empty open set
U C @G for which U x Ny C UV. As g is S-dense, there exist ¢ € U, n € N,
and t € Xg, for which ¢ 'Kqg C K,, s C t, and ggtgn(gglt)_1 € S. Fixce
Xgnt1(g)- Proposition yields that Pg g ((g,t ~ (4) ~¢),(g,t ~ (k) ~¢)) =
98" (87) G (0)n+1-c(8n)y, (98") 7" forall j,k < d. As (g,G) is (Kn)nen-expansive,
the latter set is disjoint from K whenever j # k, so the sequence x € V10,....d} given
by o = [(g,t ~ (k) ~ )], ¢ 18 Rig(g’c—discrete. But 2, = ggt(gn)r(9g’) ! 20
forall 1 <k <d, so Aség’c({y € Vi0dd |y s Riig’G—discrete}) ns # 0. b

If § is conjugation invariant and a continuous action is not o-expansively
S-transient, then it is somewhere expansively S-recurrent:

Proposition 4.1.2. Suppose that G ~ X is an action of a group by homeo-
morphisms of a second-countable topological space whose open subsets are Fy,
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S C Ugez+ P(G{l""’d}), and X s not a union of countably-many expansively-
(UgeG gSg~1)-transient closed sets. Then there is a G-invariant non-empty closed
set C' C X such that G ~ C s expansively S-recurrent.

Proof. As X is second countable, there is a maximal open set V' C X contained
in a union of countably-many expansively (Uyeq 9S g~1)-transient closed sets. To
see that the G-invariant non-empty closed set C' = ~V is as desired, suppose
that W C C' is an expansively (Ugeq 9S g~ 1)-transient open set, and fix an open
set W/ C X such that W = CNW’, as well as closed sets C;, C X for which
W' = Upen Cn. As the sets C'NC,, are expansively (Uzeq gSg~1)-transient, the
maximality of V ensures that it contains W', thus W = (). b

Given a binary relation R on X, we say that a point x € X is R-expansively
S-recurrent if for all open neighborhoods V' C X of x, d € Z*, compact sets
K C G, and S € SNP(GH4}) | there exists g € S such that @ € Np<q(gy) "'V
and g - x is R§_1 RR%—discrete. In the special case that R is equality, we say that
x is expansively S-recurrent.

Proposition 4.1.3. Suppose that G is a locally-compact separable group, S C
Ugez+ P(GU8) is countable, and G ~ X is an expansively S-recurrent continu-
ous action on a second-countable topological space. Then there are comeagerly-many
expansively S-recurrent points.

Proof. By Proposition [3.1.6], we need only show that if V' C X is a non-empty
open set, d € ZT, K C G is compact, and S € SN P(G’{l"“’d}), then there exist
g € S and a non-empty open set W C N<q(gy) 'V for which gW is Ry-discrete.
But this is a straightforward consequence of Proposition [3.2.4] X

Let <jx denote the linear ordering of N<N given by s <jox t <= (|s] <

[t] or (|s| = [t| and s5(5 ) < ts(s4))), Where 0(s, 1) is the least natural number for
o<N

s,t
which s;5(54) 7 ts(s,), and let (-): 2<N — N denote the isomorphism of <jey |
with <. For all d € 2N, g € (Ugez+ GV and G: Xz — F(G) N S(G),
define both g+ d € (Ugez+ GIH N and G« d: Xewdin — F(G)NS(G) by
(g+d)n = g and (G xd)c = G, (¢), Where pg: NN — NN is given by ¢4(b) =
Bnen bn ~ (0)O1F1))=bIn)=1

Proposition 4.1.4. Suppose that G ~ X is a Borel action of a locally-compact
Polish group on a Polish space, P is a universal embedding parameter, & C
Ugez+ P(GH8) s countable, and G ~ (X,d%) has comeagerly-many RF-
expansively S-recurrent points. Then there is a P-code (U, V) such that gP(U, V) x
d is S-dense for all d € 2N.
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Proof. Fix a countable dense set H C G, and define 7 = Upey h~'Sh.

Lemma 4.1.5. There exists a sequence T € TN with the property that Vd €
Ny eTI®neNT = T(d[n)

Proof. Fix an enumeration (7},),en of T, as well as a sequence (ky,),en of natural
numbers such that Vk € N3*n € N k, = k, and define T, = Tkm for all

s € 2<N, -

Lemma 4.1.6. There exists a sequence s € [I,enILn<n{0,...,dn} such that
supp(sy) € {(t [ n) | n < [t} for all t € 2<N " and supp(s) € {(d |
n) | n € N} = 3In € N (s E sgppandT = Tgy) for all d € oN
$ € Upen IIm<n{0,...,dn}, and T € T.

Proof. Fix natural numbers d,, > 0 such that T,, C Giliwdn} for all n € N, and
recursively define Sty =S (O)<t>_‘s|7 where ¢ € 2<N and s is the <o, -least element
of Up<pt| [Tm<n{0; - .., dm} such that supp(s) C {(t [ £) | £ < [t|} but there does
not exist £ < [t[ for which s C s and Ty = T . 5

Set Uy = () and fix a non-empty set Vi € VP We will recursively find
g, € Gildn}  sequences (((Unt1)m) k) k<dy.m<n of non-empty sets in UF, and
non-empty sets V1 € VI such that:

(1) Vm < nVk < dp (Unt1)m)ie € ((Un)m)k-
2) Vm < n¥k < dy, diamge (((Uni1)m)r) < el

(2)

(3) Vs € Xg1{0...n} Uss1Vai1 C g° "V,

(4) Vs € Xgpo,...np diamge (U 41 Vingr) < En-

(5) Vs € Xgif0,..n} Usi1 Va1 C WYL

(6) Vs € Xgjqo,..my3F € {E),~F } Up 1 Vg1 C F.
(7) (((Un41)n)kVat1)r<d, is RfﬁRprﬁ—discrete.

(

8) Ym < nVk < d,, (%)k € ((Un+1)m)k-

Suppose that n € N and we have already found g | n, Uy, and V,,. Fix an R"-
expansively 7 -recurrent point y, € g5"V,,, and define L, = IP(g | n) 'K IP(g |
n). Then there exists g, € T, for which y, € Ng<q, (g?);lgS”Vn and Gp, - Yn
is Ré‘;n I RP Rﬁb(gsn)_l—discrete. Set g, = (g") 'g,g®". Then the point x, =
(g%) 7!y is in Ni<a, (81)r Vo and &, - oy, is Ri(,nRPRi(,n—discrete. For all s €
[In<n{0, ..., dn}, the regularity of X and the fact that g* - z,, = g*" (8n)s(n) " n €

g51"V, vield an open neighborhood Wy C X of g° - x,, whose closure is contained in
g*I"V,, and whose di-diameter is at most £/, and the continuity of G ~ (X, d%)
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yields open neighborhoods U, s C G of (&) s(m) and an open neighborhood Vs € X
of @y, for which (TT,;,<;, Um,s)Vs € W, in which case the intersections ((Upn41)m)
of the sets Uy, s where k = s(m) and the intersection V,,41 of the sets V satisfy
conditions (3) and (4). The regularity of G ensures that we can thin down the
sets ((Up+1)m)r to neighborhoods of (g,) satisfying conditions (1) and (2). For
all 5,t € [n<n{0,...,dp} and &', t" € [1,,<,{0, ..., d)} such that §'(n) # t'(n),
Proposition yields open neighborhoods (Us g t¢)m C G of (8mn)sm) and
(Vssrt)m © G of (8n)y(m) for all m < n, (U g, y)m C G of (8n)y(m) and

(V! w)m C G of (gim)t/(m) for all m < n, and W, ¢, € X of x, with the

S

property that the product of (Hm<n(U57s’,t7t’)m)_lKg(Hm<n( ;75/7t,t/)m)Ws,s’,t,t’
with (Hm<n(1/375/7t’t/)m)_1Kf(Hm<n(VS”S,’t’t,)m)Ws’S/’t’t/ is disjoint from RY, so
we obtain sets satisfying condition (7) by replacing ((Up+1)m)r with its inter-
section with the sets (Us ¢ ¢ )m where k = s(m), (Ug g4 y)m Where k = s'(m),
(Vs,s" 4,0/ )m Where k = t(m), and (V{ o, ;1)m where k = #'(m), and V41 with its
intersection with the sets Wy ¢ . As the intersection W), of the sets (g* y“twkP
for s € [ln<n{0,...,dm} is dense, there exists z;, € V11 NW,. For all s €
[Im<ni0, ..., dm}, the continuity of G ~ X yields open neighborhoods Uy, ; € G
of (8m)s(m) and V] € X of &, for which ([Tp<, Uy s)Vy € W, in which case
we obtain sets satisfying condition (5) by replacing each ((Up41)m )i with its
intersection with the sets Uy, , where k = s(m) and V11 with its intersection
with the sets V/. Note that if s € Xgl10,..,n}, then there is a non-empty open
set W! C g°V,,41 contained in FX or ~FF and the continuity of G ~ X yields
neighborhoods Uy, o € ((Un+1)m)s(m) of (8m)s(m) and a non-empty open set
Vi € Vi for which (TT<n Upn 5) V' € Wy, so by replacing ((Up+1)m) s(m) With
Up.s and V41 with V{, we obtain sets satisfying the instance of condition (6)
at s. By recursively applying this observation to each s € [,,<,{0,...,dn}, we
obtain sets satisfying condition (6). Replacing each of the sets ((Up41)m)r with
non-empty subsets in U and V,,;1 with a non-empty subset in V¥, this completes
the construction.

To complete the proof, it only remains to note that (U, V) is a P-code,
g”(U, V) xd is S-dense for all d € 2, and g = g"'(U, V). b

We next characterize o-expansive (Ugeg gS gil)-transience:

Theorem 4.1.7. Suppose that G is a locally-compact Polish group, I is a finite
set, (X;)ier is a sequence of Polish spaces, and (G ~ X;)ics is a sequence of
Borel actions such that Stab(z;) = Stab(z;) for all distinct i,j € I, x; € X;, and

zj € X;, and S C Ugez+ P(GIL4Y s a countable non-empty set. Then the
following are equivalent:
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(1) The action G ™~ Tlier Xi is not o-expansively (Ugeq gSg~1)-transient.
(2) There is an expansively S-recurrent action, obtained via expansive cutting and

stacking, that admits a Baire-measurable stabilizer-preserving homomorphism
to each G ~ X;.

(8) There is an expansively S-recurrent action, obtained via expansive cutting
and stacking, that admits a continuous embedding into each G ~ X;.

Proof. Clearly (3) = (2).

To see =(1) = —(2), observe that if G ~ X is a continuous action on a Polish
space that admits a Baire-measurable stabilizer-preserving homomorphism to each
G ~ X, then it admits a Baire-measurable stabilizer-preserving homomorphism
to G ~ [1ies Xi, and since pullbacks of expansively (Ujeq gSg™")-transient sets
through stabilizer-preserving homomorphisms are expansively (Ugeq 9Sg~1)-tran-
sient, it follows that if G ~ [[;c; X; is o-expansively (UgeG gS g*Ig)—transient, then
G ~ X admits an expansively S-transient non-meager Baire-measurable set, in
which case Propositions [3.2.4] and [2.1.3] ensure that G ~ X is not expansively

S-recurrent.

To see (1) = (3), appeal to [BK96, Theorem 5.2.1] to obtain a Polish topology
7; on each X; for which X; and (X;, 7;) have the same Borel sets and G ~ (X;, 7;)
is continuous, and set X = [[;c; X; and 7 = [[;c7 7i. By Proposition , there is
a G-invariant non-empty closed set C' C (X, 7) such that G ~ (C, 7) is expansively
S-recurrent, so Proposition ensures that G ~ (C, 7) has comeagerly-many
expansively S-recurrent points. Set R = U;c/{(z,y) € X x X | x; = y;}. As
Stab(z;) = Stab(z;) for all distinct 4,5 € I, z; € X;, and z; € X, it follows
that every expansively S-recurrent point is R-expansively S-recurrent. As the
“identity” function from (C,7) to C is Borel, and therefore Baire measurable,
there is a comeager subset of (C,7) on which it is continuous, in which case the
topology that the comeager subset inherits from 7 is finer than that it inherits
from X. In particular, it follows that there is a universal embedding parameter
P for G ~ C such that df is compatible with (C,7) and RY = R, in which case
Proposition [4.1.4] yields a P-code (U, V) for which g¥ (U, V) is S-dense. Propo-
sition ensures that G (U, V) is continuous, Proposition implies that
each of the functions ¢; = projy, o "' ((U,V),-) is a doubly-(K} ) en-expansive

homomorphism from ,r (g v) to Pg i and Proposition [3.2.5| yields that G (U, V)
is compatible with g’ (U, V), (g (U, V),GP(U,V)) is (K, cn-expansive, and
each ; is a reduction of Per(y vy ar(u,v) to Pgi. Then G ~ X,r(u vy P (U V)
is obtained via expansive cutting and stacking. Proposition yields that
cach (pi)c/ Egp(uv),cP(u,v) 18 an embedding of G ~ Xop(y v) gr(u,v) into
G ~ X;, and Proposition implies that G ~ XgP(U’V)yGP(va) is expansively
S-recurrent. X
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The o-expansive-transience spectrum of G ~ X is the family of all count-
able non-empty sets S C Ugez+ P(G{l""’d}) for which G ~ X is o-expansively
(Ugeq 9Sg~1)-transient.

Theorem 4.1.8. Suppose that G ~ X is a Borel (continuous) action of a locally-
compact Polish group on a Polish space. Then there is a continuous disjoint
union of actions obtained via expansive cutting and stacking that has the same
o-expansive-transience spectrum as G ™~ X and admits a Borel (continuous)
stabilizer-preserving homomorphism to G ~ X.

Proof. By [BK96, Theorem 5.2.1], it is sufficient to establish the parenthetical
(continuous) version of the theorem. Towards this end, fix a universal embed-
ding parameter P for G ~ X such that d§ is compatible with X and RF is
equality on X. Proposition Im' ensures that ¢ and G* are continuous, Propo-
sitions [3.2.6| and [3.2.7 imply that ¢ ((U,V),-) is a doubly-(K}), cn-expansive
homomorphism from gry v to PX for all P-codes (U, V), and Proposition
yields that GP is compatible with g©, (g”, GF) is (K[), cn-expansive, and
v ((U,V),) is a reduction of Pgr(y vy gP(u.v) to PX for all P-codes (U, V). It
follows that G~ X,p gp Is a continuous disjoint union of actions obtained via
expansive cutting and stacking, and Proposition implies that (y;)q/ Eqpr gr
is a stabilizer-preserving homomorphism from G ~ Xgpgp to G ~ X. To
see that the o-expansive-transience spectrum of G ~ X is contained in that of
G ~ Xgp gr, observe that if S C Ugez+ P(GL4) is a countable non-empty
set for which G ~ X is o-expansively (Uyeq 9Sg~!)-transient, then the fact that
pullbacks of expansively (Ugeg gSg~1)-transient sets through stabilizer-preserving
homomorphisms are themselves expansively (Ugeq 9S g~1)-transient ensures that
G N Xgp gP 18 o-expansively (Ugeg gSg~!)-transient. To see that the two spectra

actually coincide, note that if S C Ugecz+ P(G{l’“"d}) is a countable non-empty
set for which G ~ X is not o-expansively (Ujeq 9S g~1)-transient, then Proposi-
tion [4.1.4] yields a P-code (U, V) for which g (U, V) is S-dense, in which case
Propositions [3.2.4} [4.1.1} and [2.1.3) ensure that G ™ X p gp is not o-expansively
(Ugeg 9Sg™"1)-transient. b

4.2 Anti-basis theorems

We begin with the following observation:

Proposition 4.2.1. Suppose that G ~ X is a continuous action of a locally-
compact separable group on a Polish space, S C Ugep+ P(G{l"“’d}) is a countable
non-empty set, and § € H C Ugeg+ F(X0-8) s countable. Then the following
are equivalent:
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(1) The pair ({Fs | S € S}, H) is not in the recurrence spectrum of G ™~ X.

(2) There exists g, € G, Sy, € S, and (ansng;hgn?-l)—tmnsient ¥ sets By, for
which X = U,en Bn.-

Proof. Note that if U € G4} x X, d e Zt, S e SOP(G{l"“’d}), and z € X,
then U* € Fg < © € Uyes Uy, so {Fg | S € S} is Xi-on-open and the claim
immediately follows from the proof of Proposition [2.1.6] X

Recall that we use V*z € X ¢(x) to indicate that {z € X | ¢(x)} is comeager,
and Iz € X ¢(z) to indicate that {x € X | p(x)} is non-meager. An almost
stabilizer-preserving-homomorphism from a continuous action G ~ X to a Borel
action G ~ Y is a function ¢: X — Y such that Stab(¢(z)) C Stab(z) and
V¥g € G g-p(x) = p(g-x) for comeagerly many = € X.

Proposition 4.2.2. Suppose that G is a locally-compact Polish group, X is a
Polish space, Y and Z are standard Borel spaces, G ™~ X is a continuous action,
G Y is a Borel action, ¢: Y — Z is a G-invariant Borel function, and R is the
set of z € Z for which there is a Borel almost stabilizer-preserving-homomorphism
from G ~ X to G ~ ¢~ Y({z}). Then R is analytic.

Proof. Fix a compact zero-dimensional Polish topology 7 on X whose Borel sets
coincide with those of X, and recall that every Borel function ¢: (X,7) — Y is
continuous on a comeager set (see, for example, [Kec95, Theorem 8.38]), every
continuous function ¢: (B,7) — Y on a Gs set B C (X, 7) is the restriction of a
Baire-class-one function on (X, 7) (see, for example, [Kur58, §3.31.6]), and every
Baire class one function ¢: (X,7) — Y is a pointwise limit of continuous functions
(see, for example, [Kec95, p. 24.10]). It follows that R is the set of z € Z for which
there are continuous functions ¢,: (X,7) — Y such that:

(1) V*z € X p(limp—oo on(x)) = 2.

(2) V*z € X Stab(lim, oo ¢n(x)) C Stab(z).

(3) V*'z € XV*g € G g-limy 00 () = limy 00 (g - ).
As there is a Polish topology on the set of continuous functions from (X, 7) to
Y with respect to which the evaluation function (f,x) — f(x) is Borel (see, for
example, [Kec95, Theorem 4.19]) and the pointclass of Borel sets is closed under

category quantification (see, for example, [Kec95, Theorem 16.1]), it follows that R
is analytic. X

The following observation yields our primary means of producing incompatible
actions:
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Proposition 4.2.3. Suppose that G is a locally-compact Polish group, g €
(Ugez+ GIL-dHN G Xg = F(G)NS(G) is compatible with g and continuous,
(Kp)neN is an exhaustive increasing sequence of compact subsets of G with the
property that (g, G) is doubly (K,)nen-expansive, and dy,dy € 2N are distinct.
Then no expansively-{G}-recurrent continuous action G ~ X on a Polish space
admits a Borel almost stabililzer-preserving-homomorphism o; to G ™ Xgud; Grd;
for alli < 2.

Proof. Suppose, towards a contradiction, that there are such almost stabilizer-
preserving-homomorphisms. Then there is a compact set L C G with the property
that the set B = ;<2 p; '(L;) is non-meager, where L; = (L X Xgud; )/ Eged; Gud,
for all i < 2. Fix m € N sufficiently large that LU L™'L C K, and dy |
{0,...,m} # di | {0,...,m}, set K = K,IP(g | {0,...,{((1)™)}), and fix a
non-empty open set V' C X in which B is comeager. As G n X is expansively
{G}-recurrent, there exist g € G and x € V N g~'V for which -z RﬁK,l g-x. By
Proposition [3.2.4] there are open neighborhoods U C G of g and W C V' of x for
which UW C V and Ry, i N(W x UW) = 0. AsVh € UV'y € W h-y € B,
the Kuratowski-Ulam theorem (see, for example, [Kec95, Theorem 8.41]) ensures
that V*y € WVY*h € U h-y € B, so the definition of almost stabilizer-preserving-
homomorphism yields & € U and y € BN h~!B with the property that —y R% K-1
h -y, Stab(;(y)) C Stab(y) for all i < 2, and ¢;(h-y) = h-¢i(y) for all i < 2,
SO Pégg*di’G*di(cpi(h -y), pi(y)) = hStab(yp;(y)) C hStab(y) = Pa (h-y,y) for all
1< 2.

For all i,j < 2, fix g;; € L and ¢;; € Xguq, such that ¢;(h? - y) is the
Eg.d, G+a;-class of (gi,j,ciyj). Note that for all ¢ < 2, there exists m; > m for
which ¢; 0(m;) # ¢i,1(m;), since otherwise Proposition ensures that LIP(g |
{0,...,(()™PIP(g | {0,.... ()™} LN PX(y,h-y) # 0, contradicting
the fact that —y R%K_l h-y.

For all ¢ < 2, let m; be the maximal natural number with the property that
cio(m;) # ci1(my), set ¢; = ™ (c;0) =™ (¢ 1) and n; = (d; | {0,...,m;}),
and fix ¢ < 2 with the property that n; > n1_;. As LIP(g | {0,...,n1—;})IP(g |
{0,...,n— ) 'L N P& (y,h-y) # 0 and P¥(y,h-y) C LIP(g | {0,...,n; —
1})(%)(@,0)% (G di) (gymi+i (gim)(_czlll)nﬁIP(g 1 {0,...,n; —1})"LL~! by Propo-
sition [3.2.1], the fact that n; > (d | ,{0:. ..,m}) > m contradicts the double
(Kp)nen-expansivity of (g, G). b

We now establish our primary anti-basis results:

Theorem 4.2.4. Suppose that G is a locally-compact Polish group, S C Ugez+
P(G{l’“"d}) is a non-empty countable set, and G ~ X is a non-o-expansively-
S-transient Borel action on a standard Borel space. Then there is a family B
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of continuum-many G-invariant Borel subsets of X on which G ~ X is not
o-expansively-S-transient such that every non-o-expansively-{G}-transient Borel
action on a standard Borel space admits a Borel stabilizer-preserving homomorphism
to at most one action of the form G ~ B, where B € B.

Proof. Fix an exhaustive increasing sequence (Kp,),ecn of compact subsets of G.
By Proposition and Theorem [.1.7, we can assume that G ~ X is of
the form G ~ Xg g, where g € (Ugez+ Gl N and g« d is S-dense for all
de 2N, G: Xg — F(G)NS(G) is compatible with g and continuous, and (g, G)
is doubly (K, ),en-expansive. Proposition then ensures that the family
B ={(G x p4(Xgea))/ Egc | d € 2V} is as desired. b

Theorem 4.2.5. Suppose that G is a locally-compact Polish group, G ~ X is a
Borel action on a standard Borel space, and O is a countable family of non-o-
expansively-{G}-transient Borel actions on standard Borel spaces. Then there is a
Borel G-action on a standard Borel space that admits a Borel stabilizer-preserving
homomorphism to G ~ X and has the same o-expansive-transience spectrum as
G ~ X, but to which no action in O admits a Borel almost stabilizer-preserving-
homomorphism.

Proof. By Proposition [£.2.1], we can assume that each action in O is continuous
and minimal. Fix a universal embedding parameter P, and let R be the set of
pairs ((U,V),d) € Ip x 2N with the property that no action in © admits a Borel
almost stabilizer-preserving-homomorphism to G ~ XgP(U’V)*d’GP(U’V)*d.

Proposition[4.2.2]ensures that R is co-analytic, whereas Proposition [£.2.3|implies
that every vertical section of R is co-countable. The usual uniformization results
for co-analytic sets with large vertical sections (see, for example, [Kec95, Corollary
36.24]) therefore yield a Borel uniformization 6: Ip — 2N of R. Define g: Ip —
(Ugez+ G @)N and G: Xz — F(G)NS(G) by g(U, V) = g’ (U, V) %6(U, V)
and G(U,V) = GF(U,V)*§(U, V).

The usual change-of-topology results (see, for example, |[Kec95, §13]) and
Proposition ensure that G ~ X @ is a Borel action on a standard Borel
space. Note that if ¢: Xg.g — X is given by o((U, V), c) = (¢pr o p5u,v))(c),
then @/ Eg g is a stabilizer-preserving Borel homomorphism from G ~ X g to
G X.

To see that the o-expansive-transience spectrum of G ~ X&G is contained
in that of G ~ X, note that if S € Ugez+ P(GH%) is a countable non-empty
set for which G ~ X is not o-expansively S-transient, then Proposition
yields (U, V) € Ip for which g(U, V) is S-dense, so Proposition ensures that
G ~ Xgu,v),G(u,v) is expansively S-recurrent, thus Proposition implies
that G ~ Xg g is not o-expansively S-transient.
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To see that none of the actions G ~ Y in O admit a Borel almost-stabilizer-
preserving-homomorphism ¢ to G ~ X4 @, note that the minimality of G ~ Y
would otherwise yield (U, V) € Ip with the property that ¢ (Xyu v).quv)) is
comeager, contradicting the fact that ((U,V),d6(U,V)) € R. b
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Chapter 5
Wandering

5.1 Smoothness

A transversal of an action G ~ X is a set Y C X containing exactly one point of
every orbit. Burgess has shown that a Borel action of a Polish group on a standard
Borel space is smooth if and only if it has a Borel transversal [Bur79).

Proposition 5.1.1. A Borel action G ~ X of a locally-compact Polish group on
a standard Borel space is smooth if and only if it is o-expansively {G}-transient.

Proof. By [BK96, Theorem 5.2.1], we can assume that X is Polish and G ~ X is
continuous. Fix a compatible complete metric d on X.

To see (=), fix a Borel transversal B C X of G ~ X, and let s be the unique
function from X to B whose graph is contained in Eé( . As the graph of s is Borel,
so too is s (see, for example, [Kec95, Theorem 14.12]). It follows that if K C G
is compact, then KB is Borel, for if H is a countable dense subset of K, then
r€ KB <= x € Ks(z) <= Ve >03h € H d(z,h-s(x)) <eforall z € X.
But if (K, )nen is a sequence of compact subsets of G whose union is G, then
(KnB)nen is a sequence of expansively {G}-transient Borel sets whose union is X.

To see (<=), suppose that (B ),ecn is a sequence of expansively {G }-transient
Borel sets whose union is X, and fix compact sets K, C G such that Eé( I By C
R%n for all n € N. Then the uniformization theorem for Borel subsets of the plane
with non-meager vertical sections (see, for example, [Kec95| Corollary 18.7]) ensures
that the corresponding sets Cy, = {xr € X | 3*g € G g-2 € B,} are Borel and
there are Borel functions ¢, : C,, — B, whose graphs are contained in Eé( . For
all n € N, Proposition ensures that Eé( | B, is closed, which easily implies
that Eé( | By, is smooth (see, for example, [Kec95, Exercise 18.20]), thus so too
is G ~ Cy,. As the sets (), are G-invariant and X = U, ey Cp, it follows that
G ~ X is smooth. X
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We now establish our strengthening of the Glimm-Effros dichotomy for Borel
actions of locally-compact Polish groups on Polish spaces:

Theorem 5.1.2. Suppose that G ~ X is a Borel action of a locally-compact Polish
group on a Polish space. Then the following are equivalent:

(1) The action G ~ X is not smooth.

(2) There is a Baire-measurable stabilizer-preserving homomorphism from a G-
action obtained via expansive cutting and stacking to G ~ X.

(3) There is a continuous embedding of a G-action obtained via expansive cutting
and stacking into G ~ X.

Proof. As the proof of Proposition shows that every G-action obtained via
expansive cutting and stacking is expansively {G}-recurrent, the desired result
follows from Theorem and Proposition [5.1.1] X

We now establish our anti-basis theorem for non-smooth Borel actions of
locally-compact Polish groups on standard Borel spaces:

Theorem 5.1.3. Suppose that G ~ X a non-smooth Borel action of a locally-
compact Polish group on a standard Borel space. Then there is a family B of
continuum-many G-invariant Borel subsets of X on which G ~ X is non-smooth
such that every non-smooth Borel G-action on a standard Borel space admits a Bor-
el stabilizer-preserving homomorphism to at most one action of the form G ~ B,
where B € B.

Proof. Again appealing to the proof of Proposition to see that every G-action
obtained via expansive cutting and stacking is expansively {G}-recurrent, the
desired result follows from Theorem [4.2.4] and Proposition [5.1.1] =

5.2 Containing bases

The following fact is a local refinement of our promised results on the robustness of
the property of containing bases and its characterization via diagonal products:

Theorem 5.2.1. Suppose that G ~ X and G ~ Y are Borel free actions of a
locally-compact Polish group on Polish spaces. Then the following are equivalent:

(1) The action G ~ X XY is not smooth.

(2) There is a Baire-measurable stabilizer-preserving homomorphism from a G-
action obtained via expansive cutting and stacking to G ~ X and G Y.
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(8) There is a continuous embedding of a G-action obtained via expansive cutting
and stacking into G ~ X and G Y.

Proof. Once more appealing to the proof of Proposition to see that every
action obtained via expansive cutting and stacking is expansively {G }-recurrent,
the desired result follows from Theorem 4.1.7| and Proposition [5.1.1} X

When g € GV, we use Xg, Eg, and Xg to denote Xy, Ey, and Xy, where
h € (GUHN is given by (hy,); = g, for all n € N. In light of Theorems
and [5.2.1], the fact that every homomorphism between free actions is stabilizer

preserving, and the fact that there is a continuous embedding of G ~ X(gS”)neN

into G~ Xg whenever g € (Ugez+ G N (k) pen is a strictly increasing
sequence of natural numbers, and s, € Ty is supported on [kn, knt1) for all n € N,
the following fact ensures that continuous free actions of locally-compact Polish
groups on compact Polish spaces contain bases:

Proposition 5.2.2. Suppose that G is a locally-compact Polish group, (Kp)neN 18
an ezhaustive increasing sequence of compact subsets of G, G ~ X is a continuous
action on a compact Polish space, and g € (Ugez+ GUIN is (K,),en-ezpansive.
Then there exist a strictly increasing sequence (kp)nen of natural numbers, sequences
sn € Tg with non-trivial support contained in [k, kn+1) for alln € N, and a
continuous homomorphism from G X(gS")neN to G ~ X.

Proof. The following fact will allow us to mimic the proof of the existence of
G-invariant non-empty closed sets on which G ~ X is minimal.

Lemma 5.2.3. If z € X and y € Npeny (IP(s?(g)) \ {1¢}) -z, then N,en
(IP(s*(g)) \ {1c}) -y € Nuen (IP(s"(g)) \ {1c}) - 2.

Proof. Tt is sufficient to show that if z € N,cy (IP(s*(g)) \ {1¢}) -y, n € N, and
W C X is an open neighborhood of z, then W intersects (IP(s"(g)) \ {1¢}) - =. Fix
a sequence s € Tgn(g) with non-trivial support for which §"(g)%-y € W. AsG ~ X
is an action by homeomorphisms, there is an open neighborhood V' C X of y such
that s"(g)*V C W. Fixt € Xgn+1sl () With the property that smtsl(g)t .z e V,

and observe that s"(g)*™ -z = s"(g)*s"t1l(g)! - € s"(g)*V C W and the
(Kp)pen-expansivity of g ensures that s"(g)5™! # 1¢. =

By Lemma [5.2.3] there is an ordinal A\ for which there is a maximal sequence
(Ta)a<x such that z, € Ng<q (IP(s™(8)) \ {16}) - 25 but (IP(s*(g)) \ {1¢}) - za
# Na<a (IP(s"(g)) \ {1a}) - x5 for all & < A. Fix any point x € N4y (IP(s"(g))\

{1g}) - xa, and observe that z is {IP(s"(g)) \ {1g} | » € N}-recurrent.
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Fix a sequence (e,),cn of positive real numbers converging to zero, as well
as a compatible complete metric on X, and set kg = 0 and Vy = X. We will
recursively construct kj+1, sn, and open neighborhoods V,, 11 of x. Given n € N
for which we have already found %,, and V,,, fix a sequence s,, € T, whose support
is non-empty and contained in [ky,, c0), for which g** - x € V},, set k41 = |sp], and
fix an open neighborhood V;,41 € X of x such that V11 C V,, N (g* )"V, and
diam (g°Vi41) < ey, for all s € Ty of length Ky 1.

Define a continuous function ¢: X(gsn) . — X by ¢(c) = the unique element

of ﬂneN(gS”)szNVn. Then gpg/E(gsn)n . is @ homomorphism from G' ~ X(gsn)neN

to G ~ X by the proof of Proposition X

In light of Theorem the following fact ensures that Borel-probability-
measure-preserving Borel free actions of locally-compact Polish groups on standard
Borel spaces contain bases:

Proposition 5.2.4. Suppose that G is a locally-compact Polish group, X andY
are standard Borel spaces, G ™~ X is a Borel action that is invariant with respect
to a Borel probability measure p on X, and G ~Y is a Borel action for which
G ~ X XY is free and smooth. Then G ~'Y is smooth.

Proof. Fix a Borel transversal B C X xY of G » X x Y, and define p: X XY —
G by letting ¢(x,y) be the unique g € G for which g (z,y) € B. Let P(Y') denote
the standard Borel space of Borel probability measures on Y (see, for example,
[Kec95, §17.E]), and define v: Y — P(G) by v(y) = ¢(-,y)«p. If H C G and
y €Y, then

v(y)(H) = p({z € X | 3h € H h-(z,y) € B})

= u({z e X | (z,y) € H1B}),
so the G-invariance of p ensures that if g € G, then

v(g-y)(H) =p(g {z € X | (2,9-y) € H'B})
=pu({re X |(g9-2,9-y) € H'B})
= p({z € X | (z,y) € (Hg)"'BY})
= v(y)(Hy).
But if K C G is compact and ¢ ¢ K 'K, then KN Kg = 0, in which case

{y € Y | v(y)(K) > 1/2} is o-expansively {G}-transient, thus Theorem [5.1.1]
ensures that G ~ Y is smooth. X

We next characterize expansive {G}-recurrence of products with free actions
obtained via expansive cutting and stacking:
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Proposition 5.2.5. Suppose that G is a locally-compact Polish group, X 1is a
Polish space, G ~ X is a continuous free action, and g € (Ugez+ G1bdHN,
Then G ~ X x Xg is expansively {G}-recurrent <= G ~ X is expansively
{IP(s™(g))IP(s™(g))~! | n € N}-recurrent.

Proof. To see (=), suppose that K C G is compact, n € N, and V C X is a
non-empty open set, and fix an open neighborhood U C G of 14 with compact
closure and a non-empty open set V/ C X for which UV' C V. As G n~ X x Xg is

expansively {G} recurrent, it follows that AZ (V! x V)N AX E((U1 X Ngyn)/ Eg X

(U x Noyn)/ Eg) € UT'KU. But UAX(V’ x VYU = AX(UV’ X UV’) and
Proposition 3.2.1 ensures that AG (U™ x Ngyn)/ Eg x (U x N n)/Eg) =
UP(s"(g))IP(s"(g)) U, so AZ(V x V) NIP(s"(g))IP(s"(g g K.

To see (<=), suppose that K C G is compact, s € Tg, U C @ is a non-
empty open set with compact closure, and V C X is a non—empty open set.
Then A% ((Ug®) 'V x (Ug®)~'V) NIP(s"!(g))IP(sFl(g)) ! & (Ug®) 'KUg® by
expansive {IP(s"(g))IP(s"(g))~! | n € N}-recurrence. But AX((Ug®)~!V x
(Ug) V) = (Ug)) 'AX(V x V)Ug® and Ug'TP(sl(g))IP(s"((g)) 1 (Ug") !

A§§ (U x Ni)/Eg x (U x Ny)/Eg) by Proposition [3.2.1] so AZ(V x V) n
ARE(U x N2/ Eg x (U x N.)/Eg) € K. b

We now establish a local version of the promised characterization of free actions
containing bases in the abelian case:

Theorem 5.2.6. Suppose that G ~ X is a Borel free action of a locally-compact
Polish group on a standard Borel space and g € (Ugez+ G{l""’d})N s expansive.
(1) If G ~ X x Xg is smooth, then G ~ X is o-expansively
(Ugea 9{IP(s"(g))IP(s"(g)) " | n € N}g~')-transient.
(2) If G is abelian, then the converse holds.

Proof. By |BK96, Theorem 5.2.1], we can assume that X is Polish and G ~
X is continuous. Proposition ensures that G ~ X is o-expansively
(Ugea 9{IP(s"(g))IP(s"(g)) " | n € N}g~!)-transient if and only if there does not
exist z € X for which G ~ [z] px is expansively {IP(s"(g))IP(s"(g)) ! | n € N}-

recurrent, and Proposition implies that the latter condition holds if and
only if there does not exist € X for which G ~ [z] px % Xg is expansively

{G}-recurrent. So it is enough to prove the analog of the theorem in which the
o-expansive (Ugeq g{IP(s"(g))IP(s"(g)) ! | n € N}g~!)-transience of G ~ X is
replaced with the condition that there is no € X for which G ~ [z] FX % Xg is

expansively {G}-recurrent.
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To see the analog of (1), appeal to Proposition to see that G ~ X x Xg
is o-expansively {G}-transient, in which case Proposition ensures that there
does not exist x € X for which G ~ [x] FX X Xg is expansively {G}-recurrent.

To see the analog of (2), note that if K C G is compact, V x W C X x Xg is
open, and z € X, then the minimality of G ~ [m]Fég ensures that V' N [x]Fég +

) < VNGr #0 <= =z € GV, and the freeness of G ~ X implies that

By e ) (VN [a]gx) x W) C Ry ™8 = VN (ALEW x W)\ K)"lv N

flpx =0 — VAAEW xW\K)"WNGr =0 < ¢ GVn

(Agg(W x W)\ K)~1V), so the set of z € X for which V' N [x]Fé{ is non-empty

but Eé( X ) (VN x] Fgf) x W) C R%XXg is a difference of two G-invariant open

sets. Appeal to Proposition to obtain an exhaustive increasing sequence

(Km)men of compact subsets of G, fix an enumeration (V,, X W, ),cn of a basis

for X x Xg, and for all (m,n) € Nx N, let U, be the set of z € X for which

Vo N [a:]Fé( is non-empty but EgXXg (Ve [x]Fé() x Wy) C Ré:fgg. Fix a

countable dense set H C G. Then the sets of the form Uy, , N (gVy, x kW, ), where
g,h € H and m,n € N, cover X x Xg, and the fact that G is abelian ensures that
they are expansively {G}-transient, so Proposition implies that G ~ X x Xg
is smooth. %4

The promised basis theorem easily follows:

Theorem 5.2.7. Suppose that G ~ X is a Borel (continuous) free action of an
abelian locally-compact Polish group on a Polish space that contains a basis. Then
there is a continuous disjoint union of actions obtained via expansive cutting and
stacking that contains a basis and admits a Borel (continuous) stabilizer-preserving
homomorphism to G ~ X.

Proof. By Theorems [£.1.8] [5.1.2] and [5.2.6] X

We similarly obtain the promised anti-basis theorem:

Theorem 5.2.8. Suppose that G ~ X is a Borel free action of an abelian locally-
compact Polish group on a standard Borel space containing a basis, and O is a
countable family of non-smooth Borel actions on standard Borel spaces. Then
there is a Borel G-action on a standard Borel space that admits a Borel stabilizer-
preserving homomorphism to G ~ X and contains a basis, but to which no action
in O admits a Borel almost stabilizer-preserving-homomorphism.

Proof. By Theorems [£.2.5] [5.1.2] and [5.2.6] X
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Chapter 5 Wandering

5.3 Complete transient sets

When S C Ugez+ P(G14) | we say that a set Y C X is S-transient if there
exist d € ZT and S € SNP (G4 with the property that AZ (V{040 =
(). Note that if S C G, then a set Y C X is S-wandering if and only if it
is {SS~1\ {1g}}-transient. We say that a G-action by homeomorphisms of a
topological space is S-recurrent if it is Fg-recurrent, and a Borel G-action on
a standard Borel space X is o-S-transient if X is a union of countably-many
S-transient Borel sets.

Proposition 5.3.1. Suppose that G is a separable group, X is a Polish space,
G ~ X is continuous, d € Zt, and S C GUD . Then the following are
equivalent:

(1) The family Fg is not in the recurrence spectrum of G ~ X.

(2) There is a smooth Rg-universally Baire superequivalence relation F of Eg for
which each action G ~ [x|p has an S-transient o-complete Ro-universally-
Baire set.

(8) The action G ~ X has an S-transient o-complete 3.9 set.
(4) G ~ X is 0-(Ugeq 9{S}tg™")-transient.

Proof. Asaset Y C X is S-transient if and only if AZ (Y{0d}) ¢ Fg Proposition
yields (1) & (2). Note that if U € GIl@ x X and = € X, then U® €
Fs e x € Ujes Uy, so Fg is ¥0-on-open. As a set Y C X is S-transient if and
only if Aé( (YN C){O’“"d}) ¢ Fg for all equivalence classes C' of Fé( , Proposition
yields (1) < (3). Obviously (3) = (4) and Proposition implies that
(4) = (1). X

For a set S C Ugez+ P(GIL4) we say that a set Y C X is S-transient if
there is a set S € S for which Y is S-transient.

Proposition 5.3.2. Suppose that G is a separable group, X is a Polish space,
G ~ X is continuous, and S C Ugez+ P(GU+). Then the following are
equivalent:

(1) There exists S € S for which the family Fg is not in the recurrence spectrum
of G ~ X.

(2) There exist S € S and a smooth No-universally Baire superequivalence relation
F of EX for which each action G ~ [z]p has an S-transient o-complete
No-universally-Baire set.

3) The action G ~ X has an S-transient o-complete X9-set.
( p 2
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Proof. This is a direct consequence of Proposition [5.3.1 X

We say that a set Y C X is non-trivially d-transient if there is a set § C G{1--d}
intersecting every set of the form D;i( for K C G compact for which Y is S-transient.

Proposition 5.3.3. Suppose that G is a separable group, X is a Polish space,
G ~ X is continuous, d € Zt, and Sy is the family of subsets of G4} which
intersect every set of the form D}l{ where K C G is compact. Then the following
are equivalent:

(1) There exists S € Sy for which the family Fg is not in the recurrence spectrum
of G v X.

(2) There exist S € Sg and a smooth No-universally Baire superequivalence
relation F of EZ for which each action G ~ [z]p has an S-transient o-
complete No-universally-Baire set.

(3) The action G ~ X has a non-trivially-d-transient o-complete %9 set.

Proof. Observe that a set Y C X is non-trivially d-transient if and only if it is
Sg-transient, and appeal to Proposition [5.3.2] X

Proposition 5.3.4. Suppose that G is a topological group, X is a topological space,
G ~ X is continuous, and U C X is a non-empty open set. Then there exist a

non-empty open set V. C U and an open neighborhood W C G of 1g for which
W{l,...,d}Aé((V{O,...,d})Wfl C Aé((U{O,,d})

Proof. The continuity of G ~ X yields a non-empty open set V. C U and
an open neighborhood W C G of 1g for which WV C U. To see that
W{l""’d}Ag(V{O’””d})W_l C A)G((U{O”'“d}), note that if g € Aé(v{o’”"d}),
wy € W and wi € Wil--4} then there exists z € V for which gr € Viladh i
which case wigwy ' (wor) € U@ thus wigwy ' € AZ (U104}, =

Proposition 5.3.5. Suppose that G is a locally compact group, X is a topological
space, G ~ X is continuous, d € Zt, and S C G4} intersects every set of the
form D}l( where K C G is compact. Then every S-transient non-empty open set
U C X has a non-empty open subset V- C U such that for all dense sets H C G,
there is a function ¢ : S — H with the property that o(S) intersects every set of
the form D$- where K C G is compact and V is (S)-transient.

Proof. By Proposition there exist a non-empty open set V C U and an open

neighborhood of W C G of 1¢ for which Wl @ AX (V10-dby € AX (U710},
As G is locally compact we can assume that W is pre-compact. As H C G is dense,
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Chapter 5 Wandering

there is a function ¢ : § — H{L-»@ with the property that ¢(g) € (W—1){ldg
forall g € S. Then § € W{b-dy(9), s0 (S) intersects every set of the form D%
where K C G is compact and Wb AX (V{0dhyn g € AX (U NS =,
so AX (V0B np(S) € AZ(VI0d) n (W-H{bdts = ¢ thus V is o(S)-

transient. X

Given a superequivalence relation E of Eé{ , we say that aset Y C X is F-
locally non-trivially-d-transient if its intersection with each E-class is non-trivially
d-transient. Given S C P(G11+4}) define the family Fs = Nges Fs-

Proposition 5.3.6. Suppose that G is a locally compact Polish group, X is a
Polish space, G ™~ X 1is continuous, d € 2™, F; C P(G{l""’d}) is the family of
subsets of G1bt containing Dji( for some compact 1¢ ¢ K C G, and Sy is the
family of subsets of G144 which intersect every set of the form D;l( where K C G
is compact. Then the following are equivalent:

(1) The family Fy is not in the recurrence spectrum of G ~ X.
(2) The family Fs, is not in the recurrence spectrum of G ~ X.

(8) There is a smooth Ng-universally Baire superequivalence relation F of Eé(
for which each action G ~ [x]p has an Eé(-locally non-trivially-d-transient
o-complete Ng-universally-Baire set.

(4) The action G ~ X has an F();(—locally—non—trim’ally—d—tmnsz’ent o-complete
20 set.

Proof. As Fg, is the family of subsets of G4} containing a set of the form Dg(
for some compact K C G, Proposition 2.2.4 yields (1) < (2). Asaset Y C X
is EX-locally non-trivially-d-transient if and only if AX ((C' N Y){0dh) ¢ Fg.
for all equivalence classes C' of EX | Proposition yields (2) < (3). The
fact that every Fé( -locally non-trivially-d-transient set Y C X is Eé( -locally non-
trivially-d-transient yields (4) = (2). To see (2) = (4), fix a countable dense
set H C G, and let T; denote the family of sets T" C H {L-d} which intersect
every set of the form D;i( where K C (G is compact. Observe that if condition
(2) holds, then Proposition ensures that there is no equivalence class C' of
Fé( for which G ~ C is Fg,-recurrent, so Proposition implies that there
is no equivalence class C' of Fé( for which G ~ C'is Fr,-recurrent, thus Fr, is
not in the recurrence spectrum of G ~ X. Fix an increasing sequence (Kj),en
of compact subsets of G that is exhausting in the sense that every compact set
K C @ is contained in some K, and note that if U C GUlodl o X and z € X,
then U* € Fr, < dn € N g {l-d} C’}l(n uU?", so Fr, is ¥9-on-open. As every
set Y C X with the property that A((C' NY){%dt) ¢ Fr for all equivalence
classes C' of Fg is Fé( -locally non-trivially-d-transient, Proposition yields
condition (4). X
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5.4 Weak wandering

Given a set S C G} we say that a set Y C X is S-wandering if YV is
SS=H\ {(16)iequ,....ay -transient. We say that Y d-weakly wandering if there exists

an infinite set S C Gt for which Y is S-wandering. Note that Y is weakly
wandering when it is 1-weakly wandering.

Proposition 5.4.1. Suppose that G is a separable group, X is a Polish space,

G ~ X is continuous, d € Z*, and S is the family of sets of the form SS~1\

{(1G)ie{1,...,d}}> where S C GL-d} g infinite. Then the following are equivalent:

(1) There exists S € S for which the family Fg is not in the recurrence spectrum
of G v X.

(2) There exist an infinite set S C G4 and a smooth Ro-universally Baire
superequivalence relation F of E’g for which each action G ~ [x]p has an
S-wandering o-complete No-universally-Baire set.

(3) The action G ~ X has a d-weakly-wandering o-complete 28 set.
Proof. 1t follows immediately from Proposition [5.3.2} X

Give a superequivalence relation E of Eé( , we say that aset Y C X is E-locally-
d-weakly-wandering if its intersection with each F-class is d-weakly-wandering.

Proposition 5.4.2. Suppose that G is a Polish group, X is a Polish space,
G ~ X is continuous, d € Z+, and Sy is the family of sets of the form SS~'\
{(1@)%{1’...@}}, where S C GLdt s infinite. Then the following are equivalent:

(1) The family Fs, is not in the recurrence spectrum of G ~ X.

(2) There is a smooth Ng-universally Baire superequivalence relation F' of Eé(
for which each action G ~ [x]p has an Eé(—locally—d—weakly—wandem’ng o-
complete No-universally-Baire set.

(3) The action G ~ X has an Fé(—locally—d—weakly-wandem’ng o-complete (X1
¥1)o set.

Proof. As aset Y C X is EZ-locally-d-weakly wandering if and only if AX((Y N
C’){O""’d}) ¢ Fs, for all equivalence classes C' of Eé( , Proposition yields
(1) & (2). Note that if U C G x X, then U” € Fs, & Y(gi)ien €
(GIL NG £ (g = g5) orgigj_1 € U%, so Fg, is I1}-on-open. Asaset Y C X
is F&-locally-d-weakly wandering if and only if A ((Y N C){0dh) ¢ Fg for all
equivalence classes C' of FZ, Proposition m yields (1) & (3). b
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Chapter 5 Wandering

We say that a set Y C X is very weakly d-wandering if there are arbitrarily
large finite sets S C G for which Y is S-wandering.

Proposition 5.4.3. Suppose that G is a separable group, X is a Polish space, G
X is continuous, d € Z, and S; is the family of sets of the form Upen SnSy*\
{(1a)icqr,....ay}, where Sy C G} has cardinality n for all n € N. Then the
following are equivalent:

(1) There exists S € Sy for which the family Fg is not in the recurrence spectrum
of G v X.

(2) There exist sets Sy C GUdd of cardinality n and a smooth Ry-universally
Buaire superequivalence relation F of Eé( for which each action G ~ [z]p has
a o-complete No-universally-Baire set that is Sp-wandering for all n € N.

(3) The action G ~ X has very-weakly-d-wandering o-complete 28 set.

Proof. Observe that if S, C GiLd} for all m € N, then a set YV C X is G-
wandering for all n € N if and only if it is Upen SnS; {(16)icqu,... ay J-transient,
and appeal to Proposition [5.3.2} X

Although we are already in position to establish the analog of Proposition
for very weak d-wandering, the following observation will allow us to obtain a
substantially stronger complexity bound.

Proposition 5.4.4. Suppose that G is a topological group, X is a topological space,
G ~ X is continuous, and S C G. Then every S-wandering non-empty open set
U C X has a non-empty open subset V- C U such that for all dense sets H C G,
there is an injection ¢ : S — H with the property that V is ¢(S)-wandering.

Proof. By Proposition [5.3.4] there exist a non-empty open set V' C U and an open
neighborhood W C G of 1¢ for which WA (VI0Ihw € AX(U1%1}). Note that
if g,h € Sand (Wg)(Wh)"1nAZ (VIOG1}) 2£ 0, then the fact that (Wg)(Wh) ! =
Wgh™'W=! yields that gh=! € WIAZ (VIO C AZ (U0, thus g = h.
But if H C G is dense, then there is a function ¢ : S — H with the property
that p(g) € Wy for all ¢ € S, and it follows that is injective and V is ¢(S)-
wandering. X

Given a superequivalence relation E of Eé(, we say that a set Y C X is F-
locally very-weakly-wandering if its intersection with each E-class is very weakly
wandering.

Proposition 5.4.5. Suppose that G is a Polish group, X is a Polish space, G ™~ X
is continuous, and S is the family of sets of the form Upen SnSy '\ {1g}, where
Sn € G has cardinality n for all n € N. Then the following are equivalent:
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(1) The family Fs is not in the recurrence spectrum of G ™~ X.

(2) There is a smooth Rg-universally Baire superequivalence relation F of Eé(
or which each action G ™~ |x|F has an -locally very weakly wandering
hich each action G h EX -locall kl deri
o-complete No-universally-Baire set.

(3) The action G ~ X has an Fé(—locally—very—weakly—wandering o-complete L
set.

Proof. Asaset Y C X is EZ-locally very-weakly-wandering if and only if A% ((C'N
V)OI ¢ Fs for all equivalence classes C' of EX | Proposition yields
(1) < (2). The fact that every FZX-locally very-weakly-wandering set Y C X is Eg -
locally very-weakly-wandering yields (3) = (2). To see (1) = (3), fix a countable
dense set H C G, and let T denote the family of sets of the form U,,eny 70T, 1\ {1¢},
where T,, C H has cardinality n for all n € N. Now observe that if condition (1)
holds, then Proposition ensures that there is no equivalence class C' of Fé(
for which G ~ C' is Fs-recurrent, so Proposition implies that there is no
equivalence class C' of Fé( for which G ~ C'is Fy-recurrent, thus F7 is not in
the recurrence spectrum of G ~ X. Note that if U C G x X and z € X, then
U™ € Fr < 3n € NV(hi)icn € H"3i # j (hi = hjorhsh}' € U”), so Fr is §-
on-open. As every set Y C X with the property that Ag((Y N C’){O’l}) ¢ Fr for
all equivalence classes C' of Fé( is Fé( -locally very-weakly-wandering, Proposition

yields condition (3). X

The following fact ensures that if G ~ X is a minimal continuous action,
then the existence of a weakly-wandering o-complete Borel set is equivalent to the
existence of a cover by countably-many weakly-wandering Borel sets:

Proposition 5.4.6. Suppose that G is a separable group, S C Ugez+ P(GH-}),
and G ~ X is a 0-(Ugeq gSg~Y)-transient minimal continuous action on a Baire
space. Then there exists S € S for which there is an {S}-transient complete open
set.

Proof. Fix an S-transient non-meager Borel set B C X, as well as S € § for which
B is {S}-transient, and a non-empty open set V' C X in which B is comeager.
Then Proposition ensures that V' is {S}-transient, and the minimality of
G ~ X implies that it is complete. X

The following fact ensures that the above assumption of minimality is neces-
sary:

Proposition 5.4.7. Suppose that G is a locally-compact Polish group, (Kyn)pen
is an ezhaustive increasing sequence of compact subsets of G, and g € GN is
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Chapter 5 Wandering

doubly (Kp)nen-expansive. Then there is a continuous disjoint union G ~ X of
free actions obtained via expansive cutting and stacking, a continuous surjective
homomorphism ¢: X — N from Eé( to equality, and a complete open set V C X
such that V 0o 1 ({d}) is IP(g * d)-wandering for all d € 2N, but for all sets
S C G with non-compact closure, there is at most one d € 2N with the property
that G ~ o~ 1({d}) is o-expansively {S}-transient.

Proof. We first note a pair of lemmas:

Lemma 5.4.8. Suppose that d,e € 2N are distinct, K, L C G are compact, and
S C KIP(g+d)IP(g*d) 'K ~'. Then the closure of LIP(g*e)IP(gxe) 'L~'NS
is compact.

Proof. Let s be the maximal common initial segment of d and e. As g is doubly
(Kp)nen-expansive, there is a natural number n > (s) such that g, ¢ (IP(g |
m)~Y(K~1L)*IP(g | m))? for all m > n, in which case a straightforward calcula-
tion reveals that

LIP(gxe)IP(gxe) 'L71NS
C KIP(g*d)IP(g*d) 'K *NLIP(g*e)IP(g*e) L1
C KIP(g | n)IP(g [ n) 'K~ "N LIP(g | n)IP(g [ n) 'L,

so it only remains to note that the latter set is compact. 53

Lemma 5.4.9. Suppose that K C G is compact, but the closure of S C G is not
compact. Then there exists d € 2V such that for all e € ~{d}, there is a (K},)pen-
expansive {S}-dense sequence g, € G for which KIP(g.)IP(g.) 'K~ NIP(g *

e)IP(g*e)~t = {1g}.

Proof. Fix a countable dense set H C G, as well as a sequence h € HY such
that Yh € H3*n € N h = h,,, and a sequence s € [],cn 2" such that {s, | n €
N and h = h,,} is C-dense for all h € H. As the closure of S is not compact, Lemma
5.4.8 yields d € 2N such that S ¢ LIP(gx*e)IP(g*e) 'L~ for all e € ~{d} and
compact sets L C G, in which case a simple recursive construction yields g, € GN
such that:

(1) ¥n € N (ge)n & IP(ge | n)K,IP(ge [ n)~".
(2) ¥n €N (ge)n € (g5")~"hy, ' Shagd™.
(3) Vn € N (ge)n € IP(ge | n) 'K ~'P(g*e)IP(g*e) ' KIP(ge | n).

The first condition ensures that ge is (K, ),cn-expansive, the second condition im-
plies that g is {S}-dense, and the third condition yields that KTP(g)IP(g.) 1K 1
NIP(gxe)IP(gxe)~! = {1g}. I
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Fix an open neighborhood U C G of 15 with compact closure, let I be the set of
(d,gq) € 2N x GN for which gg is (K,)pen-expansive and UIP(gg)IP(gq)'U 1 N
IP(g +d)IP(g*d)~! = {1g}, and define X = Xprojni7- Then G ~ X is a
continuous disjoint union of actions obtained via expansive cutting and stacking, the

function p: X — 2N given by o([(g, ((d, g4), c))]EpijN ;) = d is a homomorphism

from Eé( to equality, and V = (U x XpijN I 1)/ EpijN 17 is a complete open set.

Proposition ensures that V N¢~1({d}) is IP(g * d)-wandering for all
d € 2N, Tf the closure of S C G is not compact, then Lemmayields d € 2N such
that for all e € ~{d}, there is an {S}-dense sequence g, € I, thus G ~ p~({e})
is not o-expansively {S}-transient by Propositions and . If d € 2N,
e € ~{d}, and g. € I, then G ~ Xg, is not {IP(g=e)IP(gxe) 1\ {1a}}-
recurrent, and therefore not expansively {(g *e)(N)}-recurrent, so Proposition
ensures that g. is not {(gxe)(N)}-dense, thus Lemma implies that
there is a {(g * e)(N)}-dense sequence g4 € Iy, hence ¢ is surjective. b

We next note a restriction on the sets S C GG appearing in the definition of
weak wandering in the topological setting:

Proposition 5.4.10. Suppose that G ~ X is a continuous action of a locally-
compact Polish group on a Polish space, S C G, and there is an S-wandering
non-empty open set U C X. Then S is closed and discrete.

Proof. Otherwise, there is an injective sequence (gn)nen of elements of S that
converges to some g € GG, so gng*1 — 1g. But if z € U, then gng*1 - — X, SO
there exists n € N such that g,,g ' -2 € Uforallm >n, thusg~' -z € Nm>n g;LlU,
a contradiction. X

Proposition 5.4.11. Suppose that G is a locally-compact Polish group and the
closure of S C G is not compact. Then there is an infinite set T' C S for which
TT=' is closed and discrete.

Proof. Fix an increasing sequence (Up),en of open subsets of G with compact
closures whose union is G, and recursively construct g, € S\ (UF'{g; | i < n}) for
all n € N. To see that the set T = {g,, | n € N} is as desired, note that for all g € G,
there exists n € N such that g € Uy, but 7T ' nU, C {gigj_1 | i,7 <n}. X

Clearly {S\ {1¢}}-transience implies expansive {S}-transience. When S is
closed and discrete, a natural weakening of the converse also holds:

Proposition 5.4.12. Suppose that G ~ X is a Borel free action of a locally-
compact Polish group on a standard Borel space, S C G 1is closed and discrete,
and B C X is an expansively {S}-transient Borel set. Then B is a union of
finitely-many {S \ {1q}}-transient Borel sets.

62



Chapter 5 Wandering

Proof. Fix a compact set K C G for which Rg C RI% As G ~ X is free, it follows
that R? C Rgﬂ g- As S'is closed and discrete, it follows that K NS is finite. Set
F = (KnNS)*\ {1}, and note that R¥ is a Borel graph of vertex degree |F|,
and therefore has a Borel (|F| + 1)-coloring (see [KST99, Proposition 4.6]), so B
is the union of (|F| 4+ 1)-many {S\ {15} }-transient Borel sets. =

In light of Proposition [5.3.1} the following fact characterizes both the existence
of a weakly-wandering o-complete Borel set and the existence of a cover by weakly-
wandering Borel sets:

Proposition 5.4.13. Suppose that G ~ X is a Borel free action of a locally-
compact Polish group on a standard Borel space and S C P(G). Then the following
are equivalent:

(1) There are infinite sets Sy, € Uses P(S) and Sy-wandering Borel sets By, C X
for which X = Uyen Bn-

(2) There are infinite sets Ty, € Uges P(S) for which T,/ T, 1 is closed and discrete
with the property that G ~ X is o-expansively (Ugeq 9{Tn Ty, * | n € N}g™1)-
transient.

Proof. To see (1) = (2), note first that we can assume that X is Polish and G ~
X is continuous by [BK96, Theorem 5.2.1]. Proposition then ensures that for
all z € X, there exists n € N for which G ~ [z] X is ot {8,871\ {15} }-recurrent,
in which case Proposition [5.4.10] implies that S, is closed and discrete. Define
N ={n e N| S, is closed and discrete}, and for all n € N, appeal to Proposition
to obtain an infinite set 13, C S,, for which 7,7, 1is closed and discrete. Then
Proposition ensures that G ~ X is 0-(Ugeq 9{Tn T, ' \ {1} | n € N}g™1)-
transient, and therefore o-expansively (Ujeq g{TnT}, ' | n € N}g~!)-transient.

To see (2) = (1), appeal to Proposition [5.4.12 to see that G ~ X is
o-(Ugec T T\ {1g} | n € N}g~1)-transient. =

We next note that finite changes to S have little influence on the existence of
large S-wandering Borel sets:

Proposition 5.4.14. Suppose that G ~ X is a Borel free action of a locally-
compact Polish group on a standard Borel space, g € G, S C G 1is countable,
and B C X is an S-wandering Borel set. Then B is a union of countably-many
({9} U S)-wandering Borel sets.

Proof. We can assume that g ¢ S. Note that for all x € B, there is at most one pair

(h,y) € S x B for which g=' -2 = h~!-y. Let ¢: B — B be the partial function
sending = to y. The freeness of G ™~ X ensures that ¢ is fixed-point free, in which
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case graphp™! is a graph generated by a Borel function, and therefore has a Borel
Ng-coloring (see [KST99, Proposition 4.5]), thus B is a union of countably-many
({g} U S)-wandering Borel sets. b

In light of Theorem [5.1.2] the following fact ensures that if a free Borel action
does not contain a basis, then it admits a weakly-wandering o-complete Borel
set:

Proposition 5.4.15. Suppose that G ~ X is a Borel free action of a locally-
compact Polish group on a standard Borel space, g € (Ugez+ G{l’“"d})N 1S erpansive,
and G ~ X x Xg is smooth. Then G ~ X admits a g(N)-wandering o-complete
Borel set.

Proof. Appeal first to Theorem [5.2.6] to see that G ~ X is o-expansively
(Ugec 9{g(N\ n)g(N\n)~! | n € N}g~!)-transient. The expansivity of g yields
that g(N)g(N)™! is closed and discrete, so G ~ X is 0-(Useqg {g(N\
n)g(N\n)~! \{1g} | n € N}g!)-transient by Proposition [5.4.12] thus o-
(Ugee 9{g(N)g(N) =1\ {1¢}}g~!)-transient by Proposition [5.4.14] in which case
Proposition yields a g(N)-wandering o-complete Borel set. X

The following fact yields a sufficient condition for the existence of a non-smooth
restriction with a suitably transient complete Borel set:

Proposition 5.4.16. Suppose that G is a locally-compact Polish group, (Ky)pen
is an ezhaustive increasing sequence of compact subsets of G, g € G s (Kp)nen-
expansive, S C G is disjoint from a neighborhood of 1, and there is no compact set
K C G with the property that IP(g)IP(g)™! C K~1SK. Then there is a G-action
obtained via expansive cutting and stacking that admits a continuous embedding
into G ~ Xg and an {S}-transient non-empty open set.

Proof. Note that for all compact sets K C G and n € N, there exist sg, s1 € 2<N for
which s"(g)*1(s"(g)*°) ! ¢ K UK 1SK. Fix an open neighborhood U C G of 14
with the property that U is compact and SNUU ™! = {15}, recursively find £, € N
and so.p, 51,5, € 2/ such that h, ¢ IP(h | n)~} (K, UULSU)IP(h | n) for alln €
N, where h,, = gOm<n 0ms2men fm (g)s1n (s2men fm (g)20m) =1 (gBmen 0m) =1 for
all n € N, and define ¢: 2V — 2N by ¢(c) = Bpen Se(n),n- Then his (K5)nen-
expansive, so G n Xy, is obtained via expansive cutting and stacking, ¢ factors
over By and Eg to a continuous embedding of G ~ X} into G ~ Xg, and
Proposition ensures that (U x 2V)/ By, is an {S}-transient non-empty open
set. X
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For each set N, let [N]®0 denote the family of countably-infinite subsets of
N, and for each sequence of sets (X )nen, define limsup,cy X, = {z | I%n €
N z € X,,}. We say that a sequence h € GN is sufficiently (Kpn)nen-expansive if
the following hold, where H,, = {h,, | m < n}:

(1) VneNh, ¢ (K, H,H, )3 K, H,.
(2) Vn e NYm >n
h, ¢ K,h, H, 'K, H,h 'K, H,UK,H,h 'K, H, 'K, H, U
K Hh 'KV H Ho K hy, U K Hy Hy VK Hy by P hy,
(3) VK C G compactVN € [N x NJ¥3IM g [N]Ro
lim sup, yepr Khmhy ' Khyh LK is compact.

Proposition 5.4.17. Suppose that G is a non-compact locally-compact Polish group
that admits a compatible two-sided-invariant metric, and (Ky)peN @S an increasing
sequence of compact subsets of G. Then there is a sufficiently-(Ky,),eN-expansive
sequence h € GN,

Proof. The primary observation is as follows:

Lemma 5.4.18. Suppose that K C G is compact and H € [G]®0. Then there
exists H' € [H]® such that lim supgep KgKg~1K is compact.

Proof. By [Kle52, p. 1.5], there is a conjugation-invariant open neighborhood U C G
of 1 with compact closure. Fix a finite set F' C G for which K C FU. By a
straightforward induction, it is sufficient to show that for all f € F and H € [G]™,
there exists ' € [H]™ for which lim supgepr Kgfg KU is compact. Towards this
end, we can assume that there is a set H' € [H]M for which Nger Kgfg ' KU # 0.
Fix h € H’, and note that Yg € H' ¢gfg ! € K'Khfh 'KK-'UU!, so
Ugernr Kgfg ' KU C KK 'Khfh 'KK"'KUU'U. As the latter set has com-
pact closure, so too does limsup ¢ g Kgfg 'KU. O

As G is not compact, there is a discrete set Gy € [G]N0. Given n € N,
Gn € [Gol]®0, and h | n, set H, = {h,, | m < n} and define

Lgm = KngHr:lKang_lKan U Kang_lKnan_lKan U
K, 'Hyg 'K Hy Hy VK g U K H Hy VK Hyg ™ Ko
for all g € GG, and observe that four successive applications of Lemma [5.4.18|yield a
set G! € [Gn]N0 with the property that the closure of lim SUPgeqt Lgn is compact.
As G, is discrete and infinite, there exists h, € G, \ (K,H,H,)3K,H, U

limsupyecr Lgn), in which case the set Gpy1 = {g € G}, | hyy & Ly} is infinite.
Clearly h is as desired. X
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The following observation ensures that one can obtain a Borel free action
G ~ X that contains a basis and admits a weakly-wandering o-complete Borel set
by fixing an exhaustive increasing sequence (K, ),cn of compact subsets of G and a
sufficiently-( K, ) ,en-expansive sequence h € GN, and taking a continuous disjoint
union of the actions and weakly-wandering sets obtained by applying Proposition
5.4.16| to every (K,)nen-expansive sequence g € GY with S = h(N)h(N)~!\

{lg}:

Proposition 5.4.19. Suppose that G is a locally-compact Polish group, (Ky)pen
is an exhaustive increasing sequence of compact subsets of G, g € GN s (Kp)nen-
expansive, andh € GN is sufficiently (Kp)nen-ezpansive. Then there is no compact
set K C G with the property that IP(g)IP(g)™' € K~'h(N)h(N)'K.

Proof. Suppose, towards a contradiction, that there is such a K, and set H,, =
{hy, | m < n} for all n € N. The (K, ),cn-expansivity of g ensures that g(N) is
closed, discrete, and infinite, so by passing to a subsequence of g, we can assume that
there is a strictly increasing sequence k& € NN such that g, € K~!(hy, H " DELK for
all n € N. By passing to a terminal segment of g, we can assume that KK~ C K ko -

Lemma 5.4.20. For all n € N, the set IP(g | n)g,(IP(g | n))~! is contained in
K= (hy, H D)K.

Proof. Granting that we have established the lemma below n, suppose that
s,t € 2", fix k € N for which g°g,(g')™! € K~1(hyH;)*'K, and note that
g'gn(g) ! € K~'Hy, H; ' KK (hy,, Hy, ) X' KK 1 Hy, H; ' K. A simple calcula-

tion then reveals that if k # k;,, and ¢ = max(k, k;,), then hy € (KgHgH[1)3KgHg,
contradicting the sufficient (K}, ),cn-expansivity of h. 53

Lemma 5.4.21. Suppose that k,m € N. Then there exists n € N and ¢ € 2" such
that Vs € 27 gt~ ¢ K=Y(hy,  (Hy, .\ Hy) D)K.

Proof. Suppose that the lemma fails, and fix n € N for which k,,4+,, > k. Then
there exist ¢ € {£1}, sg,s1 € 2", and distinct tp,t; € 22 such that Vj <
2 g%~ (0)"~1~(1) ¢ K~ Y(hy, . ., Hy')'K, and ¢ € {m+n,m+n+ 1} for which
g#0~(0)" o (g1~ (0)"~h)—1 ¢ K‘l(hker_ll)ﬂK. A simple calculation then yields

~1 ~1 ~1
that by, € Ky by, Ho Ky Hyhy Ky Hy, UK Hghy Kby
Hy, 'K i, Hy,, which contradicts the sufficient (K,),en-expansivity of h. =

In particular, there exist sequences s, € 2<N such that g‘”(t“(l)) e K1

(hy S |(Hk S el \ Hy, oS )" HFK for all n € N and t € 27,
n m<n sm n m<n sSm n

where ¢: 2<N — 2<N i5 given by ¢(t) = Drn<jt| Sn ™ tn.

m<n |lsm|
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Lemma 5.4.22. Suppose that i € {£1}, n € N, {,{; € [kn+2  Joml
kn+zmgn|sm|)’ to,t1 € 2", and g#i~()) € K~'(hy, hzjl)iK for all
j < 2. Then fy = {.

n+2m§n [sm|

Proof. Observe that if lo # (1, k = k, v . |sm|» and ¢ = max({y, (1), then

K'HH ' KK (h,H,; ') K 0 K~ (h;h, 1)K # 0, so a straightforward calcu-
lation reveals that hy € K, ' H/h, 'K, " H,H, ' K, "hy, U KyHyH,; 'K Hehy P Kohy,
contradicting the sufficient (K, ), en-expansivity of h. =

In particular, there are integers (;, € [k, 4y o lsml Ry || ) SUCh that

gSO(t’“(l)) € Uz‘e{il} K_l(hk S | |h[1 )ZK for all n € N and_t e 2™ Fix N €
n m<n sm i,n

[N]R0 with the property that the closure L; of lim sup,,cy K ~(

-1
KK (hkn+2m§n lsm| hei’n
that L3 ULy C Ky, and i < 2, N' € [N\ (n+2)]%, and distinct tg,t; € 22

h hfl )
knJerSn [sm| ez,n)
)UK is compact for all i € {1}, as well as n € N such

with the property that g#((0)"~t~0)""*~1) ¢ g=1(p, ) ‘hzll)iK
n mgn/ sSm ,mn

for all j < 2 and n’ € N’. Then g#((0)"~t0) (g#((0)"~11))=1 ¢ [, " contradicting the

(Kpn)nen-expansivity of g. b

We now establish our basis and anti-basis theorems for our two notions of
admitting large weakly-wandering Borel sets:

Theorem 5.4.23. Suppose that G ~ X is a Borel (continuous) free action of
an locally-compact Polish group on a Polish space that does not admit a weakly-
wandering o-complete Borel set. Then there is a continuous disjoint union of actions
obtained via expansive cutting and stacking that does not admit a weakly-wandering
o-complete Borel set but does admit a Borel (continuous) stabilizer-preserving
homomorphism to G ~ X.

Proof. By Theorem Proposition [5.3.1], and Theorem [5.4.13] X

Theorem 5.4.24. Suppose that G ~ X is a Borel (continuous) free action of
an locally-compact Polish group on a Polish space that does not admit a cover by
countably-many weakly-wandering Borel set. Then there is a continuous disjoint
union of actions obtained via expansive cutting and stacking that does not admit
a cover by countably-many weakly-wandering Borel sets but does admit a Borel
(continuous) stabilizer-preserving homomorphism to G ~ X.

Proof. By Theorems [£.1.8] and [5.4.13] X
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Theorem 5.4.25. Suppose that G ~ X is a Borel free action of a locally-compact
Polish group on a standard Borel space that does not admit a weakly-wandering
o-complete Borel set, and O is a countable family of non-smooth Borel actions on
standard Borel spaces. Then there is a Borel G-action on a standard Borel space
that admits a Borel stabilizer-preserving homomorphism to G ~ X and does not
admit a weakly-wandering o-complete Borel set, but to which no action in O admits
a Borel almost stabilizer-preserving-homomorphism.

Proof. By Theorems [4.2.5] and [5.2.1 Proposition and Theorem 5.4.13] ®

Theorem 5.4.26. Suppose that G ~ X is a Borel free action of a locally-compact
Polish group on a standard Borel space that does not admit a cover by countably-
many weakly-wandering Borel sets, and O is a countable family of non-smooth Borel
actions on standard Borel spaces. Then there is a Borel G-action on a standard
Borel space that admits a Borel stabilizer-preserving homomorphism to G ~ X
and does not admit a cover by countably-many weakly-wandering Borel sets, but to
which no action in O admits a Borel almost stabilizer-preserving-homomorphism.

Proof. By Theorems [£.2.5] [5.2.1] and [5.4.13] X

Recall that a set Y C X is Eé( -locally very-weakly-wandering if for all n € N
and x € X, there is a set S C G of cardinality n such that Gz NY is S-wandering.

Proposition 5.4.27. Suppose that g, = 3" for alln € N. Then there is neither a
Z-invariant Borel probability measure on Xg nor a smooth Borel superequivalence

relation F' of E§g such that Z ~ [z]p admits a Eé(—locally—very—weakly—wandermg
complete Borel set for all v € Xg.

Proof. A straightforward induction shows that for every z € Z there exists a unique
pair (Fp, F1) of disjoint finite sets Fy, F1 C N such that z = Y4 p, 38 — Srer, 3%
This implies that the sets BY = ({k} x Noyn+1)/ Eg for k € [0,3") are pairwise
disjoint for n € N. If i1 is a Z-invariant Borel measure on Xg, a straightforward
calculation shows that p(Xg) > p(Ugp<sn BY) = 37/27 1 u(({0} x 2N) / Eg) for all
n € N. Tt follows that (Xg) € {0, 00}.

As Proposition ensures that Z ~ Xg is minimal, Proposition
ensures that it is enough to show that there exists no very-weakly-wandering
non-empty open set. But if U = ({n} x Ny)/Eg for some n € N and s € 2<%,
then AZ(U{01) = 3551Z. Suppose that U is S-wandering for a set S C Z of
cardinality strictly greater than 35/, Then there exist ¢ € Z and j,k € S such
that j —k = i35l € 31512 = AZ (U101} contradicting the fact that A (U101 N

((5=5)\{0}) =0. =
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Remark 5.4.28. The odometer on 3N is the isometry o: 3¥ — 3N given by
o((2)" ~ (i) ~¢) = (0)" ~ (i+1) ~ ¢, where ¢ € 3N and i < 2. Tt is easy to
see that the above action Z ~ X is Borel isomorphic to that generated by the
restriction of o to the saturation of 2N.
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Chapter 6
Mixing

6.1 Weak mixing

Given a family § C Ugez+ P(G{l’"“d}), we say that an action G ~ X by home-
omorphisms of a topological space is S-transitive if AZ (TTp<q Vi) NS # 0 for all
dezt, S eSnNP(GIL) and sequences (Vi)r<q of non-empty open subsets
of X.

Proposition 6.1.1. Suppose that G is a group, S C Ugez+ P(G{l’“"d}), and
G ~ X is an S-transitive action by homeomorphisms of a topological space. Then

G~ X is Ugezr GIbdH (S 0P (G4 G-transitive.

Proof. Note that if d € ZT, g € G104 h € GILd} and (X},)p<q is a sequence
of subsets of X, then
h € AS (Tk<a 96 Xk) <= 90Xo N Mi<k<a by gu X5 # 0
= XoNMi<p<algy hrgo) ' Xi # 0
= (g5 "hrgo)1<k<a € AY (Tp<a Xi)
= h € (gr)1<rh<adE (r<a Xr)gp -

It follows that if S € SNP(GU4) and (U )k<d is a sequence of non-empty
open subsets of X, then the fact that AZ (ITx<qgrUx) NS # 0 ensures that

AE (Hk<a Ur) N (9 1<k<aSgo # 0. x
Proposition 6.1.2. Suppose that G is a topological group, X is a topological
space, H C G is dense, S C Ugez+ P(G{l“”’d}), and G ~ X s continuous,
Ugez+ HE (SN P(GIL4))recurrent, and topologically transitive. Then
G ~ X is S-transitive.

Proof. Suppose that d € Zt, S € SNP(GIL4) and (Up)p<q is a sequence
of non-empty open subsets of X. Set Vj = Uy, and construct h € H{L-d}
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by recursively appealing to the topological transitivity of G ~ X to obtain
hg+1 € H such that the set Vi1 = hr41Ug1 NV, is non-empty for all £ < d.

As A)G((Vjo""’d}) N hS # ), the same calculation as in the proof of Proposition
6.1.1{reveals that Ag((ﬁ)_lvd) = h_lAé{(V;O""’d}), SO Aé((ﬁ)_lvd) NS 0. As
(hi) 'Va C Uy, for all k < d, it follows that A (ITg<q Ux) NS # 0. =

Observe that if G ~ X is a continuous action of a locally-compact Polish
group on a Polish space, x € X, and Gz is non-meager, then there is a compact set
K C G for which Kx is non-meager, and therefore comeager in some non-empty
open set U C X, in which case the fact that Kz is closed ensures that U C K,
thus Gx = GU is an expansively-{G }-transitive open orbit.

Proposition 6.1.3. Suppose that G ~ X is a continuous action of a topological
group on a Hausdorff space with no open orbits, K C G is compact, d € Z", and
(Uk)k<a is a sequence of non-empty open subsets of X. Then there are non-empty
open sets Vi, C Uy for which (Vi,)r<q is Ri-discrete.

Proof. By the obvious induction, it is sufficient to show that for all distinct 7,k < d,
there are non-empty open sets V; C U; and Vj, C Uy such that V; N KV, = 0.
Towards this end, fix zj, € U, and note that U g Gy, since otherwise GU; = Gy,
contradicting the fact that Gy, is not open. Fix x; € U; \ KUy, and observe that
Proposition yields open neighborhoods V; C U; of z; and Vj, C Uy, of xj, such
that V; N KV, = 0. <

Along similar lines, we say that G ~ X is ezpansively S-transitive if Aé{ {y €
[Me<a Vi | yis R¥-discrete}) NS # () for all d € Z*, compact sets K C G,
S € SNP(GH-4) and sequences (Vj)p<q of non-empty open subsets of X.

Proposition 6.1.4. Suppose that d € ZT, G ~ X is a continuous action of
a locally-compact Polish group on a Polish space, and H C G is dense. Then
G ~ X 1is topologically d-transitive and has no open orbits if and only if it is
topologically transitive and expansively (Ugeg gH{l’“"Qd_l}{g e GiL2d-1} | VO <
i < d goir1 = g1g2iyg~ ') -recurrent.

Proof. Clearly G ~ X% is topologically transitive if and only if G ~ X is {{g €
GiL-2d-1} | VO < i < d g192i = g2i+1}}-transitive. By Proposition [6.1.1, the
latter condition holds if and only if G ~ X is H{b-2d-1 1 ¢ Gil2d-1} |
VO < i < d g192; = goi+1}-transitive. By Proposition and the comment
immediately preceding it, the conjunction of this with the inexistence of open
orbits is equivalent to the expansive H{l""’Qd*l}{g e G241} | VO < i <
d g192i = go2i+1}-transitivity of G ~ X. And this holds if and only if G ~ X is
expansively H{lv“"Qd_l}{g e GiL-2d-1} | VO < i < d g192i = g2i+1}-recurrent and
topologically transitive, by Proposition [6.1.2} b
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We now establish our basis theorem for weakly-mixing continuous actions of
Polish groups:

Theorem 6.1.5. Suppose that G ~ X is a topologically-transitive continuous
action of a locally-compact Polish group on a Polish space with no open orbits.
Then the following are equivalent:

(1) The action G ~ X is weakly mizing.

(2) There is a Baire-measurable stabilizer-preserving homomorphism from a
weakly-mizing G-action obtained via expansive cutting and stacking to G ~ X.

(3) There is a continuous embedding of a weakly-mizing G-action obtained via
expansive cutting and stacking into G ~ X.

Proof. By Theorem [4.1.7] and Proposition [6.1.4] X

We now establish our anti-basis theorem for weakly-mixing continuous actions
of Polish groups:

Theorem 6.1.6. Suppose that G ~ X is a weakly-mixzing continuous action of
a locally-compact Polish group on a Polish space. Then there is a family A of
continuum-many weakly-mixing continuous G-actions on Polish spaces that admit
continuous embeddings into G ™~ X such that every non-smooth Borel G-action on
a standard Borel space admits a Borel stabilizer-preserving homomorphism to at
most one action in A.

Proof. By Theorem [£.2.4] and Propositions [5.1.1 and [6.1.4] X

We now establish the promised equivalence of the measure-theoretic and topo-
logical notions of weak mixing:

Theorem 6.1.7. Suppose that G ~ X is a continuous action of an abelian locally-
compact Polish group on a Polish space. Then the following are equivalent:

(1) There is a G-invariant o-finite Borel measure p on X with respect to which
G ~ X is weakly mizing.

(2) There is a G-invariant closed set C' C X for which G ~ C' is weakly mizing.

Proof. To see (1) = (2), let C be the complement of the union of all y-null
non-empty open sets U C X, and observe that if U, U’,V, V' C C are non-empty
open sets, then the G-saturations of U x V and U’ x V' are (u x p)-conull, thus
Agxo((U X V) x (U x V") #0.

To see (2) = (1), we first note the following:

73



Lemma 6.1.8. Suppose that x € C' and Gz is an open subset of C'. Then x is the
unique element of Gz, and therefore of C.

Proof. Note that if g € G and U C G, then Rgg = (g, 1g)R§*. 1t follows that if
H C G is a countable dense set, H' = H x {1g}, and U C G is a non-empty open
set, then Gx X Gx = Upen Rg{} = H'RG* so Rgx is not meager.

Proposition easily implies that G/Stab(x) is a Hausdorff space. It follows
that if z is not the unique element of Gz, in which case Stab(z) # G, then there are
disjoint non-empty open sets U,V C G/Stab(x). As G is abelian, it follows that
RG”’UU and RBIV are disjoint G-invariant non-meager sets with the Baire property,
contradicting the fact that G ~ C' x C' is topologically transitive. I

If C'is a singleton, then any finite Borel measure concentrating on C'is as desired.
Otherwise, fix a countable dense subgroup H of G, and observe that by the proof of
Theorem and Lemmal6.1.8] we can assume that G ~ X is of the form G ~ Xy,
where h € (H{L+3HN is expansive and Yh € H3%°n € N h(h,)1(h,)2 = (hy,)3.

For each n € N, let GG,, denote the digraph on 2" consisting of all pairs
(s,t) € 2" x 2™ such that supp(s) C supp(¢) and supp(t) \ supp(s) is a singleton.

Lemma 6.1.9. Suppose that n € N. Then there there is a partial injection
p: 2" — 2" whose graph is contained in G, and whose domain has cardinality

Proof. For all m < n, define S,,, = {s € 2" | |supp(s)| = m}.

Ifm<mn AC Sy, and B = {t € S;,41 | 3s € A s G, t}, then |G, N
(Ax B)| = (n—m)|A| and |G;' N (B x Sp)| = (m+1)|B|, so (n —m)|A| <
(m+1)|B|. It follows that if m + 1 < n —m, or equivalently, if m < (n—1)/2,
then |A| < |B|, in which case Hall’s marriage theorem (see, for example, [HV50])
yields an injection ¢, : Sy, — Sm+1 whose graph is contained in G,.

Ifm<n, AC Spi1,and B = {s € S, | 3t € A s Gy t}, then |G, ' N
(Ax B)| = (m+1)|A] and |G, N (B X Spp+1)| = (n—m)|B|, so (m+1)]A] <
(n—m)|B|. Tt follows that if n —m < m + 1, or equivalently, if m > (n—1)/2,
then |A| < |B|, in which case one more application of Hall’s marriage theorem
yields an injection @;,41: Smt1 — Sy whose graph is contained in G;}.

Finally, define ¢ = Uy<(n—1)/2 ¢m UUm>(n-1)/2 gO,fnlﬂ, and note that
|[~dom()| = [Sul + Xpn/21<men [9ml = [Smatl = [Sry21| = (1))27)- =

Let u be the N-fold power of the uniform probability measure on {0, 1,2, 3}.
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Lemma 6.1.10. Suppose that ¢ > 0, n € N, h € H, and s,t € 4" x 4™. Then
there exist a clopen set C' C N, x Ny, and continuous functions ¢;: C' — N, with
the property that g X ¢1 is injective, (ux u)(C) > (1 —&)(u x u)(Nsy X Ny )5
and (co, po(co,c1))h = nl(er,¢1(co,c1)) for all (co, 1) € C.

Proof. 1t is well-known that ([k];ﬂ)/ 2F converges to zero, so there exists k € N

for which ([k%])/2k < e. For all £ € N, appeal to Lemma [6.1.9| to obtain a

partial injection ¢p: 2¢ — 2¢ whose graph is contained in Gy and whose domain has
cardinality 2¢ — (Vfﬂ)' For all (ug,u1) € 45N x 45N et K(yg,ur) be the set of k €
Ni<2 dom(u;) with the property that h=1(h% )~ hto (h1) = h®1 (hy )1 (hpin)2 =
(hg4n)s and ((uo)k, (u1)r) € {(0,2),(1,3)}. As K(g ) is infinite for (u x p)-
almost every (cg,c1) € 4N x 4N, there exists m € N such that (2 x u)({(co,c1) €
k
4N s 4N | K (cotmyertm)| < K}) + ((k/ﬂ)/Qk < e. For all K C m, let (k:z‘K)KIK\ be
the strictly increasing enumeration of K. For all ro,r; € 4™K set U K, (roy) =
{(uo,u1) € 4™ x 4™ | K = Ky ) and Vi < 2 7, © w;}, and define ¢y ()
P UK (ro) = 21Kl by VK (r,r) (U0, u1)i = (uo) . Define 1 47 x 47 — 47 x 4™

-1
by 7I-(U07Ul) = (¢K,(ro,r1) O PIK|° wK,(ro,rl))(u()aul)7 where K = K(uo,ul) and
ri =u; | (m\ K) for all i < 2, and observe that the partial function (s; ~ u; ~
¢i)ica = (ti ~ mi(ug, u1) ~ ¢;)ico is as desired, by Proposition m =

Fix a Haar measure pug on G. Clearly G ~ G x 4N is invariant with respect to
g X p, and the latter is Ey-invariant.

Lemma 6.1.11. Suppose that B C (G x 4Y) x (G x 4Y) is G-invariant and
(En X Ey)-invariant. Then B or ~B is (ug x p) X (pug x p)-null.

Proof. Suppose that B is (ug X p) X (g x p)-positive. Then Fubini’s theorem (see,
for example, [Kec95, §17.A]) yields gy € G such that the set By, ;) = {(co,c1) €
AN 5 4N | ((go, o), (91, ¢1)) € B} is (u x p)-positive for a pg-positive set of g; € G.
Lemma [6.1.10| ensures that if ¢ > 0, g1 € G, h € H, s € Upen4" x 4", and
B(gy,g1) has density strictly greater than 1 —e in Ny, x N, then B, o p) has
density strictly greater than 1 —e in 4N x 4N for all h € H. It follows that if
g1 € G and (% p1)(B(gy 1)) > 0, then (ux p1)(Bgy gn)) = 1 for all h € H,
80 (X p)(Bgy,g1)) = 1 for pg-almost all g1 € G, since the uniqueness of Haar
measure up to a scaling factor ensures that H ™~ G is ergodic with respect to ug.
As B is G-invariant, it follows that B is (ug X p) x (pg x p)-conull. X

It follows that the restriction of ug X p to any Borel transversal of Ey induces
the desired measure on Xp,. X
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Remark 6.1.12. While the above arguments work just as well for topological
d-transitive when d > 2, this does not yield any greater generality, as these notions
coincide with weak mixing for abelian groups.

We next turn our attention to anti-basis theorems for strengthenings of weak
mixing. The primary observation we will use to obtain such results is the follow-

ing:

Proposition 6.1.13. Suppose that G is a Polish group that admits a compatible
two-sided-invariant metric, G ~ X is a continuous action on a non-empty Polish
space, G ™Y is a continuous action on a Polish space with at least two elements,
and G ~ X XY is topologically transitive. Then there exist x € X and a G-
invariant dense Gg set C' C'Y for which there is no continuous homomorphism
0: X =Y from G~ X to G Y with the property that p(x) € C.

Proof. Fix a compatible complete metric on X, positive real numbers ¢, — 0,
non-empty open sets Wy, W1 C Y with disjoint closures, and open neighborhoods
U C G of 1¢ and non-empty open sets W), W{ C Y such that UW, C W; for all
i < 2. By |[Kleb2, p. 1.5], we can assume that U is conjugation invariant. Fix
natural numbers ,, < 2 and non-empty open sets V,, C Y such that for all 7 < 2
and non-empty open sets V' C Y, there are infinitely many n € N for which ¢, =1

and V,, C V.

Set Up = X. Given n € N and a non-empty open set U, C X, fix g, €
ALY ((Un x V) x (Un, x W/ )) and non-empty open sets U, 41 € X and V;) C V,
such that diam (Up11) < €n, Uny1 U gnUny1 € Uy, and g, V,, C W/ .

Let x be the unique point of N,en Up. Note that for all ¢ < 2 and n € N, the
open set Vi = Uizi,,.m>n Vi, is dense, thus so too is the G set D = ;<2 nen Vim-
Fix a countable dense set H C G, and observe that the Gs set Dy = e h 1D is
also dense. Noting that Vg € GV*y € Y ¢g-y € Dy, the Kuratowski-Ulam theorem
ensures that the G-invariant set C = {y € Y |V*g € G g-y € Dg} is comeager.
By [Vau75, Corollary 1.8], it is also Gy.

Suppose now that ¢: X — Y is a continuous homomorphism from G ~ X
to G ~ Y. To see that p(z) ¢ C, it is sufficient to show that if y € C, then
gn -y /4 y, since g, - — x. Towards this end, fix i < 2 for which y & W;, as
well as g € G for which g-y € Dy. As G = UH, there exists h € H for which
gl € Uh. Astheset N ={n € N|hg-y €V andi = i,} is infinite, it only
remains to note that if n € N, then g, -y € g, Uhg -y = Ug,hg-y C W;. X

In order to apply this result to obtain lower bounds on the cardinalities of bases
consisting solely of weakly mixing actions, we will need the following straightforward
observation:
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Chapter 6 Mixing

Proposition 6.1.14. Suppose that G is a group, G ~ X is a weakly-mizring
action by homeomorphisms of a topological space, G ™Y is a minimal action by
homeomorphisms of a topological space, and there is a continuous homomorphism
p: X =Y fromGX toGNAY. Then G ~ X XY is topologically transitive.

Proof. Suppose that U x V,U' x V! C X x Y are non-empty open sets. As
G ~ Y is minimal, the sets p~1(V) and ¢~ 1(V’) are non-empty. As G ~ X
is weakly mixing, the set AY** (U x ¢ H(V)) x (U’ x ¢~ (V")) is non-empty.
But the fact that ¢ is a homomorphism ensures that this set is contained in
ASY (U V) x (U x V")), =

As a corollary, we obtain the following:

Theorem 6.1.15. Suppose that G is a Polish group that admits a compatible two-
sided-invariant metric and A is a non-empty class of minimal continuous G-actions
on Polish spaces of cardinality at least two that is closed under restrictions to G-
invariant dense G§ sets. Then any basis B for A under continuous homomorphism
consisting solely of weakly-mizing actions has cardinality at least the additivity of
the meager ideal.

Proof. Fix an action G ~ X in A, and suppose, towards a contradiction, that there
is an enumeration (G ™ X4)a<k of B of length strictly less than the additivity
of the meager ideal. For all o < k, Proposition ensures that G ~ X x X,
is topologically transitive, so Proposition yields a G-invariant dense Gg
set Cyp C X for which there is no continuous homomorphism from G ~ X, to
G "~ Cy. Fix a dense G set C' C Nyer Co. Then Vg € GV*2x € X g-2 € C, so the
Kuratowski-Ulam theorem ensures that V*x € XV*g € G g-x € C, in which case
B={re X |YV'geGyg-xec C}isa G-invariant dense G5 set for which no action
in B admits a continuous homomorphism to G ~ B, the desired contradiction.

6.2 Mild mixing

We begin this section with an alternative characterization of mild mixing:

Proposition 6.2.1. Suppose that G ~ X 1is a continuous action of a locally-
compact Polish group on a Polish space with no open orbits and (Kp)nen s an
erhaustive increasing sequence of compact subsets of G. Then G ~ X is mildly
mizing if and only if G ~ X x Xg is topologically transitive for all (Ky)nen-
expansive sequences g € GN.
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Proof. By Proposition [3.2.3] it is sufficient to show (<=). Towards this end,
suppose that G ~ Y is a topologically-transitive continuous G-action with no open
orbits, and fix y € Y for which [y] FY is comeager. The minimality of G ~ [y] FY

ensures that it is topologically transitive. It also ensures that it has no open orbits,
since otherwise [y] FY would itself be an orbit of G ™~ Y, and since it is non-meager

in Y, it would necessarily be open in Y.

Lemma 6.2.2. There exist a (K}, ),en-exhaustive sequence g € G and a contin-
uous homomorphism ¢: Xg — [y] Fy from G~ XgtoGNY.

Proof. While it is easy enough to establish this directly, we will use the tools at
hand: By Theorem , there exist a sequence g € GN , a continuous function
G: Xg — F(G)NS(G) compatible with g for which (g, G) is (K, ),en-expansive,
and a continuous embedding ¢: Xg g — [y]Fg from G ~ Xg g to G ~ Y. As the
function 7: Xg — Xg g given by 7([(g,7)]g,) = [(9,7)]E, ¢ 15 @ homomorphism
from G ~ Xg to G ~ X g, the function ¢ = 1 o7 is as desired. 5

Suppose now that Uy, U; € X and Vp,V; C Y are non-empty open sets.
The fact that [y] FY is comeager ensures that it intersects each V;, so the fact
that G ~ [y] FY s minimal implies that the pullback of each V; through ¢ is
non-empty. The topological transitivity of G ~ X x Xg therefore implies that
AgXXg(HKZ U; x o~ 1(V;)) is non-empty, and since ¢ is a homomorphism, this set
is contained in AY XY ([Tj<2 U x V;), so the latter set is non-empty as well. b

In light of Proposition the following facts can be viewed as local refine-
ments of further alternative characterizations of mild mixing:

Proposition 6.2.3. Suppose that G ~ X is a continuous action of a topological
group on a topological space and g € (Ugez+ G{L“"d})N. Then G ~ X x Xg is
topologically transitive if and only if G ~ X is {IP(s"(g))IP(s"(g))~!' | n € N}-
transitive.

Proof. Note that if G ~ Y is topologically transitive, then G ~ X x Y is topo-
logically transitive if and only if AZ (U x V) NAL(W x W) # § for all non-
empty open sets U,V C X and W C Y, since AZ (U x V) NAL(W x gW) =
g(AZ(U x g7'V) N AL(W x W)) for all g € G. In particular, this holds when
Y = Xg, since Proposition ensures that G ~ Xg is minimal.

To see (=), suppose that n € N and V,W C X are non-empty open sets, and
fix an open neighborhood U C G of 1¢ and non-empty open sets V', W/ C X such

that UV’ C V and UW' € W. Then AZ(V' x W) N AZE (U™ x Ngyn) / Bg %
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(U™t X Nigyn)/ Eg) # 0. But UAZ (V' x WU~ = AZ(UV' x UW), and it fol-
lows from Proposition [3.2.1] that Ai%g((U_1 X Nigyn)/ Eg x (U1 X Ngyn)/ Eg) =
U~P(s"(g))IP(s"(g)) ~1U, so AZ(V x W) NIP(s"(g))IP(s"(g)) ! # 0.

To see (<=), suppose that s € Ty, and U C G and V, W C X are non-empty
open sets, and observe that AZ ((Ug®) ™'V x (Ug®)~'W) NIP (sl (g))IP(sl*l (g)) !
+ (). Noting that Ug*IP(s"g)IP(s"g) 1 (Ug®) ™! € ALE((U x Ni)/Eg x (U x
N5)/Eg) by Proposition the fact that Ag((UgB;)_lV x (Ug®)™'W) =
(Ug®) 1A (V x W)Ug® ensures that AZ (V x W) NAGE (U x Ny)/Eg x (U x
N.)/Eg) # 0. .

Proposition 6.2.4. Suppose that G ~ X 1is a continuous action of a locally-
compact Polish group on a Polish space and g € (Ugez+ G{L“"d})N. Then the
following are equivalent:

(1) The action G ~ X x Xg is topologically transitive and the action G ~ X
has no open orbits.

(2) The action G ~ X is topologically transitive and expansively {gIP(s"(g))
IP(s"(g))~! | g € G and n € N}-recurrent.

Proof. Note that G ~ X x Xg is topologically transitive if and only if G ~ X
is {IP(s"(g))IP(s"(g))~! | n € N}-transitive, by Proposition [6.2.3] The latter
condition holds if and only if G ~ X is {gIP(s"(g))IP(s"(g)) " | g € G and n €
N}-transitive, by Proposition The conjunction of this with the inexistence of
open orbits is equivalent to the expansive {gIP(s"(g))IP(s"(g)) "' | g € G and n €
N}-transitivity of G ~ X, by Proposition and the comment immediately
preceding it. And the latter condition holds if and only if G ~ X is expansively
{gIP(s"(g))IP(s"(g)) ! | ¢ € G and n € N}-recurrent and topologically transitive,
by Proposition [6.1.2 X

As a consequence, we obtain a necessary and sufficient condition for an intran-
sitive minimal continuous action to be mildly mixing:

Theorem 6.2.5. Suppose that G ~ X is an intransitive minimal continuous
action of a locally-compact Polish group on a Polish space. Then the following are
equivalent:

(1) The action G ~ X is mildly mizing.

(2) There is a continuous disjoint union of actions that is obtained via expansive
cutting and stacking that is not o-expansively {Ugecq gSg ' | S € Spm}-
transient but admits a continuous stabilizer-preserving homomorphism to
G X.
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Proof. Fix an exhaustive increasing sequence (Kp,),en of compact subsets of G.

To see (1) = (2), note that if S € USm, then there exist g € G and a
(Ky)nen-expansive sequence g € (Ugez+ GH@)N for which gIP(g)IP(g)~! C S.
As the intransitivity and minimality of G ™~ X rule out the existence of open orbits,
Proposition ensures that G ~ X is expansively {gIP(g)IP(g)~!}-recurrent,
so Lemma implies that G ~ X is not o-expansively (UgeG g{S}g~1)-transient,
thus Theorem yields the desired disjoint union and embedding.

To see (2) = (1), given a sequence g € (Ugez+ GUb- N that is (K, )nen-
expansive, observe that if ¢ € G, n € N, and S = gIP(s"(g)) IP(s"(g)) 1,
then G ~ X is not o-expansively Ugeq {5 }g~!-transient, so the minimality of
G ~ X ensures that it is expansively {S}-recurrent. As G ~ X is topologically
transitive, Proposition implies that G ~ X x X is topologically transitive,
so Proposition yields that G ™~ X is mildly mixing. X

We now establish the corresponding anti-basis theorem:

Theorem 6.2.6. Suppose that G is a Polish group that admits a compatible two-
sided-invariant metric and A is a non-empty class of mildly-mizing minimal con-
tinuous G-actions on Polish spaces of cardinality at least two that is closed under
restrictions to G-invariant dense G sets. Then any basis B for A under continuous
homomorphism has cardinality at least the additivity of the meager ideal.

Proof. Exactly as in the proof of Theorem [6.1.15] albeit without the need for
Proposition [6.1.14} %

6.3 Strong mixing

We begin this section with two local refinements of characterizations of strong
mixing:

Proposition 6.3.1. Suppose that G ~ X is a continuous action of a locally-
compact Polish group on a topological space. Then G ~ X is strongly mizing if
and only if it is (U Ssm)-transitive.

Proof. This is a straightforward consequence of the fact that a closed subset of G
is compact if and only if it does not have a closed discrete infinite subset. X

Proposition 6.3.2. Suppose that G ~ X is a continuous action of a locally-
compact Polish group on a Polish space. Then G ~ X is strongly mizing and
has no open orbits if and only if it is topologically transitive and expansively
(U Ssm)-recurrent.
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Proof. Note that G ~ X is strongly mixing if and only if it is (IS4 )-transitive,
by Proposition The conjunction of the latter condition with the inexistence
of open orbits is equivalent to the expansive (IS, )-transitivity of G ~ X, by
Proposition [6.1.3] and the comment immediately preceding it. And the latter condi-
tion holds if and only if G ~ X is expansively (S, )-recurrent and topologically
transitive, by Proposition [6.1.2] X

As a consequence, we obtain a necessary and sufficient condition for an intran-
sitive minimal continuous action to be strongly mixing:

Theorem 6.3.3. Suppose that G ~ X is an intransitive minimal continuous
action of a locally-compact Polish group on a Polish space. Then the following are
equivalent:

(1) The action G ~ X is strongly mizing.

(2) There is a continuous disjoint union of actions obtained via expansive cutting
and stacking that is not o-expansively {Ugeq gSg~1 | S € Sy }-transient
but admits a continuous stabilizer-preserving homomorphism to G ~ X.

Proof. To see (1) = (2), note that the intransitivity and minimality of G ~ X
ensures that there are no open orbits, in which case Proposition [6.3.2] implies that
G ~ X is expansively (U Sgp )-recurrent, so Lemma implies that G ~ X is
not o-expansively {Ugeq 95 g7 ' | S € Sy }-transient, thus Theorem yields
the desired disjoint union and embedding.

To see (2) = (1), observe that G ~ X is not o-expansively {Ujeq 9Sg™" |
S € S, }-transient, so the minimality of G ~ X ensures that it is expansively
(US8sm)-recurrent. As G ~ X is topologically transitive, Proposition implies
that it is strongly mixing. X
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Chapter 7

Miscellaneous

In this chapter we gather some results that do not fit into the context of the
previous chapters but are nevertheless of interest in their own right.

7.1 Conjugation action on subgroups

Suppose, G is a countable group. The space of subgroups of G can be realized as
a compact subset S(G) of 2¢, by identifying a subgroup with its characteristic
function. G acts continuously by conjugation on S(G).

Lemma 7.1.1. Suppose N is a normal subgroup of G, then the quotient map

7 : G — G/N induces a continuous injection of ¢ : S(G/N) — S(G), defined
by ¢(H) = 7~ 1(H), which is an invariant embedding of Eg(ﬁ\,/N) to Eg(G). The
image of S(G/N) under ¢ consists of all subgroups of G containing N.

S(G/N) . .
Proof. Note that Hy, H € S(G/N) are Eqyn related, if and only if there

is a h € G/N such that hHoh~' = Hj, if and only if there is a ¢ € G such

that gr—'(Hp)g~! = #=1(H;). Thus % is an invariant embedding of E‘(S;(/Cji[/N) to
Eg(G). X

If H is a subgroup of G, then S(H) is a compact subspace of S(G) by identi-

fying Hp € S(H) with its characteristic function in S(G). Note that Ef](H) is a

() pestricted to S(H). Assume that H € S(G) is

malnormal in G, i.e., whenever g € G\ H, then gHg ' N H = {15}. Then E}?[(H)

coincides with Eg(G) restricted to S(H ), since if gHog~ ' = H; for some g € G and

Hy, Hy € S(H), then either Hy and Hy equal {15}, or ¢ is actually in H, because

of the malnormality of H in G. In either case Hy and H; are Eg(H)—related. There

is a malnormal subgroup of F5 which is isomorphic to F,,, for example the group

subequivalence relation of Eg
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that is generated by the set {a'b'a’ | I > 0} where a, b are free generators of I (see
[KS71] p. 950). This shows the following:

Proposition 7.1.2 (S. Thomas, B. Velickovic, [TV99]). There exists a continuous
embedding of E}SQEF”) into EI‘EQ(FQ).

Suppose, that G acts on H by group-automorphisms. Then define the semidirect
product of G and H to be the group G X H with underlying set G x H and with
the group operation given by (go, ko) - (91, h1) = (g0g1, ho(go(h1))). The action
of G on H propagates to an action of G on S(H) by ¢g- Hy = {gh | h € Hy}
for g € G and Hy € S(H). Let i : S(H) — S(G x H) be the map sending
Hy € S(H) to {1g} x Hp. Then G x H acts via conjugation on i(S(H)) by
(9.h)- Ho= (g,h)Ho(g,h)~" = (g, h)Ho(g~ ", g~ 'h™") = h(g- Ho)h™".

Lemma 7.1.3. Suppose G is a countable group, H is an abelian group and G
acts on H by group-automorphisms. Then i is an invariant embedding of Eg(H) to

(GxH)

Eglx o . It is also an G-invariant embedding of the action of G on S(H) to the
action of G viewed as a subgroup of G X H by conjugation on S(G x H).

Proof. Just note that, in the special case in which H is abelian, G X H acts on

i(S(H)) by (g,h)-i(Hy) =i(g- Hp) for (9,h) € Gx H and Hy € S(H). =

For any countable group G and countable abelian group A, let A[G] be the
group with underlying set {(az)gec € A% | |[{g € G : ay # 04} < oo} and
pointwise addition. Let G act on A[G] by h(ag)gec = (aj-14)geq- This is an
action by group-automorphisms. Let G X A[G] be the corresponding semidirect
product.

Lemma 7.1.4. The map ¢ : S(A)% — S(A[G]) sending = € S(A) to the group
A[G] N1 eqz(g) is an injective homomorphism of the shift-action of G on S(A)“
to G ~ S(A[G)).

Proof. Note that for h € G and z € S(A)Y the element (ay)yec € ¢(hz) if and
only if ay € x(h™!g) for all g € G if and only if ap, € z(g) for all g € G if and
only if (ag)gec € he(z). Note that ¢ is injective since, if 13, : A[G] — A is the
projection defined by 71,((ag)gec) = an, then x(h) = m(p(x)) for all z € S(A)“
and h € G. To see that ¢ is continuous just note that if (ag)geq € A[G], F C G
is the finite set of g € G for which a, # 04, for any g € G the set U, C S(A)% is
the clopen set of all z € S(A)Y with m,(x) containing a,, and U C A[G] is the
clopen set of all subgroups of A[G] containing (ag)seq , then ¢ (U) = Nyer Uy
and thus ¢~ 1(U) is also clopen. =
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Combing Lemmas [7.1.3] and [7.1.4) we immediately obtain:

Theorem 7.1.5. Suppose G is a countable group and A is a countable abelian group.

Then there is a continuous invariant-embedding pg : S(A)¢ — S(G x A[G]) of
S(A)¢ S(GxA[G])
Eg to EGMA[G} :

Remark 7.1.6. Suppose that G is a countable group, A is a countable abelian
group, and p is an invariant and ergodic probability measure for the shift action
of G on S(A)¢. Then the push-forward (¢g)«(p) is invariant and ergodic with
respect to the conjugation action of G X A[G] on §(G X A[G]) and also i is weakly
mixing with respect to the conjugation action of G x A[G] if it is weakly mixing
with respect to the conjugation action of G.

Proof. By Lemma this is immediate from the observation that if G ~ (X, u)
is ergodic, then also the action G X H ~ (X, ), given by (g, h)z = gz is ergodic,
for any countable group H. And this follows from the fact that a set A C X is
G-invariant if and only if it is G X H-invariant. 53

Note that there are countable abelian groups A such that S(A) is uncountable,
for example QQ or the infinite direct sum of Z/2Z. Let A be such a group. By
Theorem [7.1.5| there is a continuous invariant-embedding g, : S(A)f* — S(F, x

Fu
A[F,]) of Efﬂu(jA) to E?ii&??jfw]). Now (F,, x A[F,]) is a factor of F,, and thus
. o . S(Fux A[F,)) S(Fu)
by Lemma [7.1.1| there is an invariant embedding of E(Fw[xA[Fw]) to B 7. Now,

S(A) is Borel isomorphic to R and thus putting all together we obtain an invariant
Borel embedding of the induced orbit equivalence relation of the shift action of
F, on R to the induced orbit equivalence relation of the conjugation action
of F,, on its subgroups. The former is an invariantly universal countable Borel

equivalence relation and it follows that Eg(Fw)

. “7 is an invariantly universal countable
Borel equivalence relation as well.

Combining Proposition [7.1.2] and the preceding observation we obtain:

Theorem 7.1.7 (S. Thomas, B. Velickovic, [TV99]). EgQ(F?) is a universal countable
Borel equivalence relation.

Now, F» is a quotient of every free group Fy, for 2 < n < w, so by Lemma [7.1.1]
we obtain:

Theorem 7.1.8 (S. Thomas, B. Velickovic, [TV99]). E}?;EF”) is a universal count-
able Borel equivalence relation for every 2 <n < w.
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For a group G and H € S(H) let N(H) = {g € G | gHg™! = H} denote
its normalizer, i.e., the stabilizer of H under the conjugation action of G. For a
group G let SNS(G) be the space of selfnormalizing subgroups of G, i.e., those
subgroups for which N(H) = H. It is a G subspace of S(G). To see this, note
that its complement is the countable union of the closed sets Fy, = {H € S(G) |
g¢ HANgHg™ ' = H} for g € G. For any countable group G, let Fg be the free
group with generating set {ay | ¢ € G}. Then G acts on Fg by permuting the
generators by left translation, i.e., g € G is the unique automorphism from Fg
to Fg which sends ay, to ag for every h € GG. This action induces a continuous
action of G on S(Fg). Define a map ¢ : 2¢ — S(Fg) by letting () be the group
generated by all a4 such that z(g) = 1. Then ¢ is continuous and injective. Note
that ©(2%) is a partial transversal for the action of F by conjugation on S(Fg).
To see this, suppose towards a contradiction, that there are distinct zg, z; € 2¢
and h € Fg such that p(x9) = he(x1)h~!. Then one can assume, by changing
the roles of zp and z; if necessary, that there is a ¢ € G such that x¢(g) = 1
and z1(g) = 0. Let ¢, be the unique homomorphism of Fg; to Z defined by
wg(ag) = 1 and p4(ap) = 0 if h # g. Then ¢4(Ho) = Z and hHih ™1 C ker(ipy),
a contradiction. Also note that ¢ is a G-embedding of the shift action of G on 2¢
to the action of G on S(Fg). To see this, let z € 2¢ and g € G. Then ay, € ¢(gz)
if and only if (gz)(h) = 1, if and only if (g~'h) = 1, if and only if a,-1; € ¢(z),
thus gp(x) = ¢(gz). Now, consider S(F) as a closed (G X Fg-invariant) subset
of S(G x Fg) and suppose that p(zg) = (g,h) - @(x1) for some zg, 1 € 2¢ and
(g9,h) € G Fg, ie., o(xo) = h(g-@(x1))h~!. Since p(2%) is a partial transversal
for the action of Fiz on S(Fg), this implies that k(g - o(x1))h™ = g-¢(z1), so,

since g- (1) = ¢(g-x1) and ¢ is injective, ¢ is an embedding of the induced orbit

equivalence relation of the shift action of G on 2¢ to Eg(ﬁf; FG). Note that if 2 € 2¢

is in the free part F'r(2) of the shift action, then if (g,h)e(z)(g,h)™" = o(z)
we get that ho(gz)h™" = ¢(z). This implies that ¢(gz) = ¢(z) since ¢(29) is a
partial transversal for the action of Fgz on S(Fg), but then g = 14, since x is in the
free part of the shift action, thus hyp(x)h~! = ¢(z). But since ¢(z) is malnormal
in Fg this implies that h € p(x). This shows that ¢(Fr(2¢)) € SNS(G x Fg).
Now, G X Fg is a factor of F, and since the map 1 from Lemma sends
SNS(G X Fg) to SNS(F,,), we obtain the following:

Proposition 7.1.9. For every countable group G there is a continuous embedding

G
of EgT(Q ) to Egi\/s(F“).

Note that on the other hand, the induced equivalence relation of the action of
G by conjugation on its malnormal subgroups is smooth, since the sets A, = {H €
S(G) | Hismalnormaland g € H} are partial transversals for all g € G\ {15}
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Iterating N : S(G) — S(G) and taking unions at limit ordinals eventually
yields a selfnormalizing group. The following observations shows that there exist
countable groups for which the set of subgroups for which this process ends at the
whole group is co-analytic hard.

For a group G and an action G ~ X define a group T(G, X) as follows. Its
underlying set will be T(G, X) = {f € G | {s € X<N: f(s) # 1g}| < o0}
Define for every f € T(G,X) an map o : XN — X<N by recursively letting
op(0) = 0 and of(s)(k) = f(op(slk)) - s(k) for all k € dom(s). Note that o
sends X" bijectively to X™. To see this, note that it sends X? to X°. Assuming
that oy sends X™ bijectively to X™, note that if s, € X" " and o¢(s) = o(t),
then of(s|n) = o¢(t|n) and thus sjn = t|n and o¢(s)(n) = f(os(s|n)) - s(n) =
or(t)(n) = f(os(sn)) - t(n), thus s(n) = t(n), so s = t. If s € X""!, then
take t € X" with o¢(t) = s|n and choose x € X such that f(o¢(t|n)) -z = s(n).
Then o¢(t"x) = s. Now define a group operation on T(G,X) by (fog)(s) =
f(s)g(afl(s)) for f,g € T(G,X) and s € X<N. (e, x) s given by 1y x)(s) =
1 for all s € G<N_ Next we show that Ofog = 0f00g. Again we show this level
by level, the case n = 0 being trivial. So suppose that oto4(s) = (o0 0y)(s)
for all s € X" 1If s € X" then o0y(s)(n) = (fog)(oog(sln)) - s(n) =
(f 09) (o4 (0 (s1n)) - 5(n) = F (o7 (sIm) Yo (slm)) - 5(1) and. (377 075) (5) () =
(77(05(8)) (%) = 1 (077(05(5))I)) - ()(n) = (o5 (y(sIn))) - glorg(sIn)) - s(r).
Next, we show that o is associative: Let f,g,h € T(G, X),s € X< and observe
that ((£09)° H)3) = (7 0)(h(rpd, () = Fe)alay ()l o7 () =
f(s)(goh)(oy 1(s)) = (fo(goh))(s). Finally note that the inverse of f €

T(G,X) is given by f~1(s) = f~1(o4(s)) for s € X<N. Note that of(s) = s
if and only if f(s|k)-s(k) = s(k) for all k& € dom(s). For a tree T € X<N
define its pruning derivative by 77 = {t € T | 3z € X t" 2 € T} and the group
H(T)CT(G,X)by HT)={feT(G,X) |Vt eTf(t) =1g}.

Lemma 7.1.10. H(T') C N(H(T)).

Proof. Observe that for f € H(T"),t € T, and g € H(T) we obtain of(t) = t,
thus (fgf =) () = f(t)(gf (1)) = f(R)g(t)f (1) = F(O)f 71 (1) = Le- 2

Note that if t € 77, x € X such that t "z € T, g € H(T), f € T(G, X) with
f(t) # 1g,and 04(t) = t, then U;I(tﬁaz) =t~ (f1(t)x) and o, 1 (t7y) =ty for
every y € X, thus fogo f~'(t7a) = f(t"x)g(t™ (f~ (t)x)) [ (¢ (f1(t)z)).
Now, if there exist z € X such that t"x € T and ¢t~ (f~1(¢)x) ¢ T then any

g € H(T) with gt~ (f~Y(t)x)) # f~1(t"2)f(t"(f~1(t)z)) witnesses that f ¢
N(H(T)). In the special case where G acts on itself by left translation we abbreviate
T(G,G) by T(G).
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Proposition 7.1.11. If G is a countable group such that each non-trivial element
has infinite order, then there is a continuous injective map ¢ : Tr(N) — S(T(G))
such that N(o(T)) = o(T") for all T € Tr(N) and if T, € Tr(N) forn € N is
decreasing, then o(Muen Tn) = Unen ¢(Th)-

Proof. By the previous paragraph and Lemma all we have to show is
that there is a sequence (g, )nen such that for all ¢ € G and n € N there exists
m € N such that ¢"g, is not in {g, | n € N}. To see this, given such a sequence,
define ¢o : NN — G<N recursively by ¢o(#)) = 0 and having defined g on
N, define @o(s™m) = ¢o(s) " gm for all s € N® and m € N. Then define
01(T) ={po(t) |t € T} and (T) = H(p1(T)) for all trees T on N. Now, given a
tree T on N, t € T', and g € G there exists n € N such that ¢o(t"n) € ¢1(T) and
©00(t) " (ggn) & ¢1(T) implying the first part of the proposition. If T, € Tr(N)
for n € N is decreasing, then ¢(Np,enTn) 2 Unen ¢(Th) and if f € o(NpenTn)
then f € p(Tx) for some N € N since [{s € Ge™" | f(s) # 1g}| < oo. It remains
to show the existence of (gn)nen. To do this, let (hy),eny be an enumeration
of G and define g9 = hg. Having already defined gy, ..., g, let g,4+1 be any
element in the complement of {hjgr | I,k < n}. To see that this works, let
n € Nand g € G and let N € N such that ¢ = hy. Let m be maximal such
that ¢™gn € {gr | ¥ < max(n,N)}. Then for any p > max(n, N) we get that
9" gn € {hgi | 1,k < p}, thus g™ g, & {gn | n € N}. X

7.2 Some remarks on strong mixing for countable
groups

Let G be a countable group. When K C G, we say that h € G4} is K -discrete
if h is R%Y(—discrete, where G acts on itself by left multiplication. When X is a
topological space and d € Z*, recall that a continuous-in-X action G ~ X is
strongly d-mixing if AX (ITy<qUy) contains every K-discrete sequence h € G{1--d}
for some compact set K C G for all sequences (Uy)x<q of non-empty open subsets
of X and G ~ X is strongly (< w)-mixing if it is strongly d-mixing for every
deZr.

Proposition 7.2.1. Suppose that (Fy,),eN is an increasing sequence of finite
subsets of G such that Up,enFr, = G and 1g € Fy, 2 < D < w, and g €
(Ugezs GIL N and (d,)pen are sequences such that g, € G-dn} g s
F,-discrete for every n € N, S = {g, | n € N}, and for every d < D the set
{n € N | d,, = d} is finite. Then there exists a Polish space Xg, a continuous,
minimal, and free action G ~ Xg that is strongly d-mixing for all d < D, and an
open set Ug C Xg that is {gy, }-transient for every n € N.
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Proof. Consider 2¢ with the product topology and let G act on 2 via the shift
action defined by (gx)(h) = z(g~'h) for all g,h € G and z € 2¢. Define the set
Ts = {r €29 | 2(1g) = 1AVYg € ST0 < i < |g|a(g; ') = 0}. Then Ty is non-
empty, closed, and {g, }-transient for all n € N. Let 7 be the topology generated by
the product topology on 2¢ and the sets g7y for g € G. By Lemmas 13.2 and 13.3
of [Kec95| 7 is a Polish topology. Let X denote the 7-open and G-invariant set GTy.
Given d < D and non-empty open sets U; C X for [ < d we show that there exists a
finite set K C G such that every K-discrete sequence in Gld} igin Aéo (IL<aUy).
We can assume that Uj is of the form N, N Nk<k, eﬁcTS C Xy for K; € N, 62 € G for
k< K, 5 €2Nand [ < d. We can further assume that F = dom(s;) for all I < d,
egc € Ffor k < K;,l <d, and F' is symmetric for some finite set F' C G. Let x; € U
for I < d. Choose N € N such that F?U FU{(pi)eNxN|dp<d,ic{1,....d,}}1(8p)i I C
Fy. Let M = {(gn)i | i€ {1,....dn},m < N}. If h € GIbd} is (Fy U FMF)-
discrete we define xy, by

(1) zn(f) = z(hyf) for f € H;IF and | < d,
(2) en(f) =0 for f & Uicghy F.

This is well-defined since h; 'F ﬂﬁj_lF = () for i # j < d, since h is F*-
discrete. 'We now show that hyzy, € U for all | < d. Certainly hjay, € N,
for | < d. Also hyzp(el) = xy(el) = 1 for all k < K; and [ < d. It remains
to show that for every m € N and k£ < K there exists 0 < i < d,,, such that
hyan(ek(gm); ') = 0. Condition (2) implies that this is always the case when
there exists 0 < ¢ < d,, with El_legc(gm)i_l ¢ Ujgdﬁj_lF. So suppose that
there exists k¥ < K; and m € N such that Hl_lei(gm)i_l € Ujgdﬂj_lF for all

0 <i<dy If Hl_le%(gm);l € EZ_IF for some 0 < i < d,, then (gm): €
F*16§C C F? C Fy. Since g, is Fy-discrete for all n > N this implies m < N.
If then Hl_lei:(gm)gl € Uje{o,....ap\ {1} Hj_lF for some p € {1,...,dn} \ {i}, then
hjh; ' € FMF for some j € {0,...,d} \ {I} contradicting the F'M F-discreteness
of h. Thus Hl_lei:(gm);l € Hl_lF for all 0 < ¢ < d,, and since x; € U
there exists 0 < i < dy, such that (hyay)(el(gm)i’) = 2(ek(gn);) = 0.
If Hl_lefg(gm)i_l € Uje{O,...,d}\{l}Hj_lp for all 0 < ¢ < d,, then necessarily
dp > d since otherwise hjhy € FU(mensiid,<dic(i,..a, ()i} F € F
for some j € {0,...,d} \ {l}. So there exists j € {0,...,d} \ {{} such that there
are distinct 49,71 € {1,...,d;,} with H;leé(gm);)l,ﬁfleé(gm);l € H;lF, thus
(&m)io(8m);," € F2. Thus again m < N, but then Hjﬂfl € FMF, contradicting
the F'M F-discreteness of h. Thus we have shown that h;zy, € U; for all [ < d.

For all g € G\ {1g} the set {x € 2¢ | gx = 2} has empty interior. To see this
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suppose that U = Ny NNg<k exT’s is non-empty open for some s € 2N K eN
and ey € G for k < K. If F = dom(s), we can assume that e, € F for k < K, F'is
symmetric, and it contains 1¢ and g. Choose m € N such that F2 C F,,, and dj, > 2
for all k > m, and N > m such that F(g;);'F C Fy for all I <m,i € {1,...,d;}.
Let 2 € U. Define ' € 26 by 2/ | F = [F,x((gN))—landx(h)—O
for all h ¢ (FU{(gn)1}). Then g_l(gN)l ¢ FU{(gn)1}, thus gz’ # 2’ and if
er(g);t = (gn)1 for some I € N, i € {1,....,d;}, and k < K, then | > m and
thus g; is F-discrete and d; > 2 implying that 2’ € U. Let Xg be the 7-dense,
G-invariant Gs set on which G ~ Xj is free and every orbit is dense and set
Us =TsN Xg. X

As a corollary we obtain the following:

Proposition 7.2.2. Let G be a countable group and d € Z. Then there exists a
free continuous action on a Polish space which is strongly d-mizing but not strongly
(d+ 1)-mizing.

Proof. Let (F,),en be an increasing sequence of finite subsets of G such that
Unen £ = G and 1g € Fp. For any sequence g € (G{l"“’dJrl})N such that g, is
F,,-discrete for all n € N Proposition yields a free continuous action G ~ Xg,
where S = {g, | n € N}, which is strongly d-mixing and an open set Ug which
is {gy }-transient for every n € N. Thus Ug is S-transient, thus G ~ Xg is not
strongly (d + 1)-mixing. =

Proposition 7.2.3. Suppose (F,)nen @S an increasing sequence of symmetric
finite subsets of G such that Upen Fr = G, (dp)nen and g € (Ugegs G1L-dhN
are sequences such that g, € G1b-dn}  the set {n € N | d,, = d} is finite for every
d €7’ , gy is Fr{(8m) (gm) Y 'm < n,i,j < dn}F,-discrete for all n € N,
A; € N are infinite for i € 2 and S; = {gn | n € A;} fori < 2. Then the

X
actions of G on Xg, are strongly (< w)-mizing and gy, € AGSO (UA0dn}Y for every
non-empty open set U C Xg, and all but finitely many n € Ay \ Ao.

Proof. Let {a’, | n € N} be the increasing enumeration of A; and write g’ for
(84 Jnen and d. for d,i for i € {0,1}. By Proposition the actions G ~ Xg,
are strongly (< w)-mixing for all ¢ € {0,1}. Now assume that W C Xg, is a
non-empty open set of the form W = Ny N Nx< exUs, for some s € 2<N K e N,
and ey € G for kK < K. We can assume that F' = dom(s), e € F for k < K, and
F' is symmetric for some finite F' C G. Let N € N such that FUF? C Fy. Let
m € N be such that a;, € A1\ Ag and a, > N. We show that N,z (g},); tw
is non-empty. With the notation of Prop081t10n it is sufficient to show that
Ni<al (8h); 1U is non-empty where U = N, N ﬂk<K exTs, since Ni<q (gh,); Tw

is comeager in ;<41 (g);'U. Let x € U and define:
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(1) @m(f) = =((gh,)if) for f € (gh,); ' F and i < dj,,
(2) wm(f) =0 for f & Uica (g8h); ' F.

This is well-defined since (gl,);F N (gh); VP =0 fori#j<d., since g} is F2-

discrete. As in Proposition [7.2.1|we now show that (g )iz, € U foralli < d!,. Cer-
tainly (gl,)izm € N for i < dl and thus (gl )izm(ex) = z(e) = 1 for all i < dl,
and k < K. It remains to show that for every [ € N and k£ < K there exists 0 < j <
dY such that ((gh,)izm)(ex (g?)_l) = 0. Condition (2) implies that this is always

the case when there exists 0 < j < d with (gl,); ek(gl) ¢ Up<d1 (gm) lp.

So suppose that there exist & < K and I € N such that (gl,); ex(g?);” i €

Up<ar, (85, ' F for all 0 < j < d}. If (gm) len(g)), € Upefo,..ab i} (8m)p ' F
for some 0 < r < dY then (gl )p(gl)it € Fnv{(89)u(8)y! | ¢ < @l u,v < dj}Fx
for some p € {0,...,d> }\ {i} and (g9), € Fn{(8y)u(8; ) Yg<al, u,v<d}Fy
contradicting the Fa%{(g)u(g)gl | ¢ < al,u,v < dq}Fa%—discreteness of gl
or the Fa?{(gﬁi,)u(f)_1 | q < al,u,v < d,}F, o-discreteness of g? depending on
whether af < al, or al, < af. Thus ex(g?); ! € F for all 0 < r < d) and since
x € U there exists 0 < r < dY such that z,,((gl,); ter(g%); 1) = x(ek(g D) =0.
This shows that =, € Nycj<q (81,); U,

X

Let [N]Y denote the infinite subsets of N. Define the quasi-order C* of almost
inclusion on [N]N by A C* B if A\ B is finite. When R is a relation on a set
X and S is a relation on a set Y, a cohomomorphism from (X, R) to (Y, S) is a
homomorphism from the complement of R to the complement of S.

Proposition 7.2.4. Suppose that G is a countable group, F C P(G) is the family
of infinite subsets of G, X is a Polish space, and G ~ X is continuous and
F-recurrent. Let O be the family of continuous and free G-actions on Polish
spaces with o-expansive-transience spectrum contained in that of G ~ X for which
there exists a continuous and surjective homomorphism to G ~ X and let <X
denote the quasi order of Baire measurable homomorphisms on O. Then there
exists a cohomomorphism from ([N]N, 3%) to (O,<). In case G ~ X is free, the
o-expansive-transience spectra of all elements in O coincide with that of G ~ X.

Proof. We begin with a simple lemma.

Lemma 7.2.5. Suppose X is a topological space, G ~ X is continuous-in-X, and
G ~ X is F-recurrent, K C G is finite, d € Z", and U C X is non-empty open.
Then there exists h € Aé(U{O’“"d}) such that h is K-discrete.
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Proof. Recursively construct non-empty open subsets Vi,_1 C U and hy for k£ €
{1,...,d} such that hyVy, € Vi1 and (hg)peqr,.. qp is K-discrete. Put Vp = U.
Having defined Vg, ..., Vi_1 and hy, ..., h;_1 there exists hy € Aé(Vk_l X Vi_1) \
(KUUieqt,.. k13 (K~'h; UKh;)), since G ~ X is F-recurrent. Then there exists
Vi € Vi—1 such that h; V), C Vi._1. This finishes the recursive construction and h

. . . 1
is as desired, since Vg C Nigqo,...ay by U. 5

Let (Fn)nen be an increasing sequence of finite subsets of G such that
Unen Fn = G and 1g € Fp, let (Vi)neny be a basis for the topology of
X, B : NxN — N a bijection, and p = proj,o 3~1. Recursively choose
gn € Ag(%{(%“’n}) which is Fn{(ng)z(ng)J_1 | m < n,i,j < m}F,-discrete. For
any infinite subset A C N define the set p(A) = {B(n,k) | n € N, k € A},
let (a4)nen be the increasing enumeration of ¢(A), let gt = (g, 4)nen, and
define X4 = X x Xo(A) and let G ~ X4 be the diagonal product "action. By
Proposition the action of G on X4 is topological (< w)-strongly mixing.
Given any non-empty family S C Ugez+ P(G{l""’d} ), a Polish space C, and
an expansively S-recurrent action G ~ C, the diagonal product action of G
on C X X,(4) is again expansively S-recurrent thus the o-expansive-transience
spectrum of G ™~ X4 is contained in that of G ~ X by Proposition
and if G ~ X is free they coincide. Note that the projection of X4 onto
its first coordinate is a continuous surjective homomorphism. Now, suppose
A, B C N are infinite, A [Z* B, and there is a Baire-measurable homomor-
phism ¢ : Xp — X4. Since X4 = Ugeq 9(X X Uya)), there is a g € G
such that ¢~ (g(X x Uy(s))) is non-meager, thus since ¢! (g(X x Uya))) =
g (X x Ugu(ay) the set X x Ug(a)) is non-meager. Then there exist non-
empty open sets V;;, C X and U C X such that Y=Y X x Uy) is comeager
in Vp, x U, thus A)G(B((Vm x U){0-dhy A)G(B((@/}fl(X x Up)) {04y for all
d e Z*, thus ¢ 1(X x Uy) is g2-transient for all n € N but by Proposition
there exist n, k € N such that 3(m, k) =n, k € A\ B and (V;, x U){0-4} is not
g;?—transient - a contradiction.

X

7.3 Universal actions with smooth products

The actions obtained by cutting and stacking all have the property that their
induced Borel equivalence relations are hyperfinite. Here we give an example of
a countably infinite family of actions of the free group in at least two generators
whose induced Borel equivalence relations are universal among countable Borel
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equivalence relations under Borel embeddability such that the diagonal product
action for any two distinct actions from this family is smooth.

Proposition 7.3.1. Suppose that G is a countable group and Gyi and Go are
subgroups of G for which gG1g~' NG = {1g} for every g € G. Then there are
standard Borel spaces X1 and Xo and Borel actions of G on X1 and X2, such that

G
2 oy Borel embeds into EG fori=1,2 and the Borel equivalence relation
mduced by the diagonal product action of G on X1 X Xa is smooth.

Proof. For i € {1,2} define ¢; : 2 — 2C by ;(z)(g) = z(g) for all g € G; and
0i(z)(g) = 0 for all g ¢ G; and set V; = ¢;(2¢°\ {0}%). Let G act on 2¢ by
the shift action. Set X; = G-V for i € {1,2}. Then ¢; is a Borel embedding

of E2 Aoy into E “ for i = 1,2. Consider the diagonal product action of G
on X1 x Xo and let (:L’l,IL’Q) be in X7 x X3. Then there exists h € G such that
h-r1 € Y1. So, Ugeg Y1 X gY2 is a complete section for EélXXQ. It suffices to
show that Y7 x gYs is a partial transversal for all ¢ € GG. To this end assume
that h- (z1,22) € Y1 X gYs for some (x1,x2) € Y1 x gYa. Then necessarily h € Gy
and h-z9 = (hg) -y = g-y", for some ¢/, y" € Ya. Thus g~ 'hg € G5 and hence
h € gGag ' NGy, s0 h=1. X

Proposition 7.3.2. Suppose that N € N\ 2U {w} and Fy is the free group in N
generators. Then there exist standard Borel spaces X,, and actions Fn m X, for
n € N for which Eﬁ;’ s a universal countable Borel equivalence relation and for
any distinct n,m € N the action Fy ~ X,, X X, is smooth.

Proof. By [KS71] p. 950 there exists a malnormal subgroup H of F which is
isomorphic to F,. Let {z), | n € N} be a set of free generators for H. Suppose
that A, C N are pairwise disjoint for n € N and let G4 be the group generated by

{zp | n € A} and A C N. Note that Fy, Gg4,, and G4,, fulfill the conditions of

Foy Foy
Proposition |7.3.1| for all distinct n, m € N. It remains to notice that E2 MOP i

a universal countable Borel equivalence relation. X
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