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Abstract

Quantum technologies promise to revolutionize the future of information processing

as they allow for applications such as perfectly secure communication and computers

that are able to perform specific computational tasks faster than any classical machine.

For this reason, quantum information science has come to represent one of the main

research fields in nowadays physics.

Single photons, the quanta of light, are a suitable platform for encoding and processing

quantum information. In particular, due to their mobility, photons are the most natural

choice for quantum communication.

One of the main drawbacks of single photons is their lack of interaction, which

complicates the realization of photonic “quantum transistors”, necessary for quantum

computation and simulation. Furthermore, in all experimental situations photons need

to propagate in non-ideal material media, which therefore present a finite amount of loss.

Photon loss induces errors in quantum computation protocols and hinders long-distance

quantum communication.

Many research efforts in quantum photonics are therefore devoted to overcoming

these problems through technological improvement. Interaction of single photons with

matter - atoms, molecules or solid state systems - can provide a solution to both issues.

Photon-photon interaction, in fact, can be realized by using material systems as mediators.

Losses in communication, instead, can be countered by quantum repeaters. These devices

are based on quantum memories that allow one to store the information carried by the

photons in the internal states of matter and retrieve it at a later moment.



Yet, the research endeavors in photonic quantum information processing are not

limited only to technical achievements. Important insights have also come from the

investigation of novel quantum phenomena opening up new quantum protocols, which

provide advantages over classical or previously designed ones.

This thesis covers both research directions and presents different kinds of experimental

projects. The first two projects describe the development and implementation of novel

quantum communication protocols. The third one consists in the realization of a narrow-

band single-photon source for interaction with atoms.

In the first quantum communication protocol, it is experimentally demonstrated that

a single photon in quantum superposition allows for the simultaneous transmission of two

classical bits between two distant parties in two opposite communication directions, an

impossible task in classical physics. This phenomenon is used to develop and implement a

secure quantum communication protocol, in which the communication direction between

the parties remains private.

In the second protocol the two parties aim to establish a secure shared cryptographic

key without employing quantum resources, which are delegated to an untrusted third

party, acting as a server. In this sense, this is a semi-quantum key distribution protocol.

The protocol is demonstrated and the secure key rate is extracted taking into account

the main experimental imperfections of the setup.

The third project is more technical. A source of photon pairs with spectral bandwidth

of about 10 MHz is built and characterized. Due to this narrow bandwidth, the produced

photons can be efficiently coupled to atomic hyperfine transitions. The photons are

emitted at a wavelength of 780 nm, and thus are tuned to the hyperfine transitions of

Rubidium D2 line. The source is based on cavity-enhanced spontaneous parametric

down conversion, which is a reliable, feasible and flexible technique for narrow-bandwidth

photon generation, and outperforms in brightness previous narrow-bandwidth sources

at the same wavelength. This resource is meant to be used for the realization of a

two-photon gate mediated by Rubidium atoms, in collaboration with external research

groups.



Zusammenfassung

Quantentechnologien versprechen die Zukunft der Informationsverarbeitung zu revo-

lutionieren, da sie Anwendungen, wie die perfekt sichere Kommunikation sowie den Bau

von Computern ermöglichen, die bestimmte Rechenaufgaben schneller als jede klassische

Maschine ausführen können. Aus diesem Grund ist die Quanteninformationsforschung zu

einem der Hauptforschungsbereiche der heutigen Physik geworden.

Einzelne Photonen, sogenannte Lichtquanten, sind eine geeignete Plattform zum

Kodieren und Verarbeiten von Quanteninformationen. Insbesondere aufgrund ihrer

Mobilität sind Photonen die natürlichste Wahl für Quantenkommunikation.

Einer der Hauptnachteile von Photonen ist die fehlende Wechselwirkung zwischen

ihnen, was die Realisierung von photonischen ”Quantentransistoren” behindert, die für

die Quantenberechnung und Quantensimulation notwendig sind. Außerdem müssen sich

die Photonen, unter experimentellen Bedingungen, in nicht idealen Medien ausbreiten,

was einen Lichtverlust verursachen kann. Der Verlust von Photonen führt zu Fehlern

in den Quantenberechnungsprotokollen und behindert die Quantenkommunikation über

große Entfernungen.

Viele Forschungsanstrengungen in der Quantenphotonik widmen sich daher der

Überwindung dieser Probleme durch technologische Verbesserungen. Die Wechselwirkung

einzelner Photonen mit Materie - Atomen, Molekülen oder Festkörpersystemen - kann

beide Probleme lösen. Es kann sogar eine Photon-Photon-Wechselwirkung unter Ver-

wendung von Materialsystemen als Mediatoren realisiert werden. Photonenverluste in

Quantenkommunikation können durch Quanten-Repeatern ausgeglichen werden. Diese



Geräte basieren auf Quantenspeichern, die realisiert werden, indem die getragenen In-

formationen in den internen Zuständen der Materie gespeichert und zu einem späteren

Zeitpunkt abgerufen werden können.

Die Forschungsarbeiten zur photonischen Quanteninformation beschränken sich jedoch

nicht nur auf technische Errungenschaften. Wichtige Erkenntnisse stammen ebenfalls aus

der Untersuchung neuartiger Quantenphänomene und -protokolle, die Vorteile gegenüber

klassischen beziehungsweise früheren Quantenprotokollen bieten.

Die vorliegende Arbeit umfasst beide Forschungsrichtungen und präsentiert ver-

schiedene experimentelle Projekte. Das erste Projekt beschreibt die Entwicklung und

Implementierung zweier neuartiger Quantenkommunikationsprotokolle. Das zweite Pro-

jekt besteht in der Realisierung einer schmalbandigen Einzelphotonenquelle für die

Wechselwirkung mit Atomen.

Im ersten Quantenkommunikationsprotokoll wird experimentell gezeigt, dass ein

einzelnes Photon in Quantenüberlagerung die gleichzeitige Übertragung von zwei klas-

sischen Bits zwischen zwei entfernten Parteien in zwei entgegengesetzten Kommunika-

tionsrichtungen ermöglicht, eine in der klassischen Physik unmögliche Aufgabe. Dieses

Phänomen wird verwendet, um ein sicheres Quantenkommunikationsprotokoll zu entwick-

eln und zu implementieren, bei dem die Kommunikationsrichtung zwischen den Parteien

privat bleibt.

Im zweiten Protokoll sollen die beiden Parteien einen sicheren gemeinsamen kryp-

tografischen Schlüssel einrichten, ohne Quantenressourcen zu verwenden, die an einen

nicht vertrauenswürdigen Dritten (einen Server) delegiert werden. In diesem Sinne handelt

es sich um ein Semiquantenschlüssel-Verteilungsprotokoll. Das Protokoll wird demon-

striert und die sichere Schlüsselrate unter Berücksichtigung wichtiger Schwachstellen des

experimentellen Aufbaus extrahiert.

Das zweite Projekt ist von rein technischer Natur. Eine Quelle von Photonenpaaren

mit einer spektralen Bandbreite von etwa 10 MHz wird aufgebaut und charakterisiert.

Aufgrund dieser schmalen Bandbreite, können die erzeugten Photonen effizient an atomare

Hyperfeinübergänge gekoppelt werden. Die Photonen werden bei einer Wellenlänge von



780 nm emittiert und sind somit auf die Hyperfeinübergänge der Rubidium-D2-Linie

abgestimmt. Die Quelle basiert auf cavity-enhanced spontaneous parametric down-

conversion, die eine zuverlässige, relativ einfache und flexible Technik für die Erzeugung

von Photonen mit schmaler Bandbreite darstellt und bezüglich ihrer Intensität frühere

Quellen übertrifft. Diese Ressource soll zur Realisierung eines durch Rubidiumatome

vermittelten Zwei-Photonen-Gates, in Zusammenarbeit mit externen Forschungsgruppen,

eingesetzt werden.



Contents

Introduction 1

1 Single Photons and Their Application to Quantum Information 5

1.1 Quantization of the electromagnetic field . . . . . . . . . . . . . . . . . . . 5

1.2 Fock states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Single-photon interference . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Photons and qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Photonic quantum computation and simulation . . . . . . . . . . . . . . . 23

1.6 Quantum communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6.1 Quantum Key Distribution . . . . . . . . . . . . . . . . . . . . . . 27

1.6.2 Quantum secure direct communication (QSDC) . . . . . . . . . . . 47

2 Generation of Single Photons Through Spontaneous Parametric Down-

conversion 50

2.1 Non-linear optical processes . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.1.1 Phase-matching techniques . . . . . . . . . . . . . . . . . . . . . . 54

2.2 Spontaneous parametric down-conversion . . . . . . . . . . . . . . . . . . 58

2.3 Cavity-enhanced SPDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.3.1 Optical resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.3.2 Parametric down-conversion in a cavity . . . . . . . . . . . . . . . 68

2.4 Correlation functions in SPDC . . . . . . . . . . . . . . . . . . . . . . . . 72

2.4.1 Signal-idler cross-correlation function . . . . . . . . . . . . . . . . . 72

I



Contents

2.4.2 Second-order auto-correlation function . . . . . . . . . . . . . . . . 74

2.4.3 Heralded second-order auto-correlation function . . . . . . . . . . . 77

3 Experimental Two-Way Communication with One Photon 79

3.1 Two-way communication with one particle . . . . . . . . . . . . . . . . . . 80

3.2 Application of TWCOP for anonymous communication . . . . . . . . . . . 82

3.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3.1 The single-photon source . . . . . . . . . . . . . . . . . . . . . . . 85

3.3.2 The TWCOP setup . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4 Demonstration of two-way signalling with one photon . . . . . . . . . . . 90

3.5 Implementation of the TWCOP-based communication protocol . . . . . . 96

3.5.1 Comparison to other quantum communication protocols . . . . . . 101

3.6 Summary of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4 A novel mediated SQKD protocol based on interaction-free measure-

ments 105

4.1 The protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3.1 Assumptions and Notation . . . . . . . . . . . . . . . . . . . . . . 112

4.3.2 Extraction of the secret key . . . . . . . . . . . . . . . . . . . . . . 116

4.4 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.4.1 Direct estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.4.2 Indirect estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.6 Summary of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5 Realization of a Narrow-Bandwidth Single-Photon Source Tuned to

Rubidium D2 Line 133

5.1 Narrow-bandwidth photons: state of the art . . . . . . . . . . . . . . . . . 134

II



Contents

5.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3 Source characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.3.1 Classical characterization of the OPO . . . . . . . . . . . . . . . . 148

5.3.2 Single-photon measurements . . . . . . . . . . . . . . . . . . . . . 154

5.4 Mode-selection Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.5 Summary of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Conclusions 167

List of Publications 169

Bibliography 170

III



Introduction

Quantum physics was one of the greatest achievements of the 20th century, as it

allowed scientists to describe with high precision the behaviour of matter at the smallest

scale, e.g. atoms and subatomic particles, and to reveal novel important properties of

radiation. The predictions of quantum physics were confirmed in a plethora of experiments

involving different systems and strongly contributed to the development of technologies

that are now part of our everyday life, such as lasers, silicon technology and magnetic

resonance, among others. At the same time, the fascinating and counter-intuitive concepts

of quantum physics challenged our interpretation of the world and triggered scientific and

philosophical investigations about the nature of reality. The development of quantum

theory, therefore, represented a revolution in physics, and in science in general.

A further step was made in the 1980s, when seminal works proposed to apply the ideas

and methods of quantum physics to computer and information science. In particular, in

1980 Paul Benioff proposed a quantum model of a Turing machine [1] and, two years later,

Richard Feynman suggested the idea of using quantum systems to efficiently simulate

other quantum-physical systems [2]. These two works mark the beginning of the fields of

quantum computation and simulation, which have attracted extensive interest in the last

decades due to the promise of largely overpowering classical computers and simulators

when performing specific tasks of high interest for fundamental and applied science, such

as factorization of large numbers [3] or simulation of complex molecules [4]. In parallel,

the field of quantum communication arose from the pioneering work of Bennett and

Brassard in 1984, who showed how the transmission of quantum states allows two distant
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Introduction

parties to establish a perfectly secure cryptographic key [5], thus bringing the eternal

fight between code makers and code breakers onto a more advanced level.

The final goal of these research branches is the realization of technologies going

beyond the capabilities of classical information processing. Two important examples, on

which many theoretical and experimental efforts are focused, are the universal quantum

computer, where “universal” means that the computer is able to perform any quantum

algorithm, and large-scale quantum-key-distribution networks enabling high key trans-

mission rates over distances of thousands of kilometers. Such achievements promise to

revolutionize information technology and, consequently, to deeply affect our society.

Despite the numerous efforts and the impressive technological advancement since the

1980s, practical quantum information devices overpowering their classical counterparts are

still not experimentally feasible. The fundamental reason is that the necessary quantum

resources for the realization of these devices are not easily generated and manipulated.

The race for the demonstration of useful quantum technologies involves many different

physical systems. Each system has its own pro and cons and is more suitable for some

applications than for others.

Single photons, i.e. the fundamental excitations of the electromagnetic field, present

the great advantages of high mobility, as they travel at the speed of light, which makes

them the preferred system for quantum communication, exactly as electromagnetic waves

are the main carries of classical information over long distances. Furthermore, they

exhibit low decoherence and are relatively easy to manipulate.

A significant drawback, however, is the lack of photon-photon interaction, which

prevents the all-photonic realization of a “quantum transistor” and therefore repre-

sents a problem for the implementation of universal quantum computing and quantum

simulation of interacting systems. This problem can be solved either by using matter

systems as mediators of the interaction [6] or, alternatively, by optical schemes that

exploit measurement-induced non-linear interactions and thus require a large number of

independent [7] or entangled [8] photons. Unfortunately, both possibilities are technically

challenging.

2
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Another major issue is photon loss, which is particularly relevant for long-distance

quantum communication. Analogously to the classical case, this issue can be addressed

by (quantum) repeaters [9], which are able to amplify the transmitted photon signal so

as to counter the losses and to extend the maximum communication distance. However,

these device have only been demonstrated in proof-of-principle implementations, as they

are based either on interaction with matter [10] or on entangled multi-photon states [11],

which both require complex experimental techniques. The result is that the integration of

quantum repeaters in practical quantum communication networks is beyond the current

state of the art.

The research endeavor in photonic quantum information processing is two-fold. On

the one hand, novel schemes for photonic quantum computation, simulation and communi-

cation are developed and demonstrated. They aim at showing new interesting advantages

with respect to classical protocols and at reducing the experimental complexity of the

currently existing quantum schemes. On the other hand, several efforts are devoted to

the improvement of technology for generation, guiding, manipulation and detection of

photons, as well as for their interface with other systems, such as atoms, molecules or

solid-state systems. Both research directions are important for approaching feasible and

useful applications.

Along the same line, this thesis presents two kinds of results in the field of quantum

information processing with single photons. Among the three reported experimental works,

two describe the proof-of-principle implementation of novel quantum communication

protocols and the third illustrates the realization of a source of narrow-band single

photons. Such a source is suitable for interaction of single photons with Rubidium atoms

and thus for the realization of two-photon gates and quantum memories, the latter being

an important component of quantum repeaters.

The thesis is structured as follows: first, in Chapter 1, the concept of single photon is

defined and its application to quantum information science is elucidated, with a special

focus on quantum communication. Then, the technique for photon generation that was

employed in all three experimental works, spontaneous parametric down-conversion,

3
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is explained in detail in Chapter 2. Chapters 3 and 4 describe the implementation

of the quantum communication protocols, and, finally, Chapter 5 details the realized

narrow-band single-photon source and its characterization.

4



Chapter 1

Single Photons and Their

Application to Quantum

Information

In this chapter, one of the fundamental concepts of quantum optics - the photon - is

introduced and its application to quantum information science is discussed. The chapter

starts with a description of the quantization of the electromagnetic field, which allows

for the introduction of photon-number states of light. The discussion then continues

with the description of single photons and their properties, with particular attention to

single-photon interference, which is important for the experiments reported in this thesis.

Finally, the field of quantum information science with single photons is reviewed, with

a special focus on quantum communication. This serves as a contextualization of the

quantum communication protocols presented in Chapters 3 and 4.

1.1 Quantization of the electromagnetic field

Quantum optics builds on classical electromagnetism. The transition between the two

theories is done by replacing all classical quantities describing the electromagnetic field

5



1.1 Quantization of the electromagnetic field

with operators acting on an abstract Hilbert space. In order to describe the quantization

of the electromagnetic field, it is useful to recall Maxwell’s equations in vacuum:

∇ ·B = 0

∇×E = −∂B
∂t

∇ ·E = 0

∇×B = ϵ0µ0
∂E

∂t

(1.1)

where E and B are the electric and magnetic fields, respectively, and ϵ0 and µ0 the

dielectric and magnetic constants. It is convenient to express the fields in terms of the

scalar and vector potential, φ and A, respectively. They are defined via the following

equations:

B = ∇×A, (1.2a)

E = −∇φ− ∂A

∂t
. (1.2b)

With these definitions, the two equations in the left column of Equations 1.1 are auto-

matically satisfied. The remaining two may be written as:

∇(∇ ·A)−∇2A+
1

c2
∂

∂t
∇φ+

1

c2
∂2A

∂t2
= 0, (1.3a)

∇2φ−∇ · ∂A
∂t

= 0, (1.3b)

where c =
√
ϵ0µ0 is the speed of light in vacuum. The potentials are not univocally

defined by Equations 1.2. In fact, the pairs of potentials A′, φ′ and A, φ, related by the

following gauge transformations:

A = A′ −∇ζ, (1.4a)

φ = φ′ +
∂ζ

∂t
, (1.4b)

with ζ arbitrary function, determine the same electric and magnetic field. Since fields

are observable quantities, whereas potentials are not, the two pairs in Equations 1.4 are

physically equivalent. In vacuum, starting from any pair of potentials A′ and φ′, it is

6



Chapter 1. Single Photons and Their Application to Quantum Information

always possible to choose ζ such that ∇ · A = 0 and φ = 0, a choice called Coulomb

gauge. Equation 1.3a then becomes:

∇2A− 1

c2
∂2A

∂t2
= 0. (1.5)

The electromagnetic field is assumed to be non-zero only in a limited region of free

space, a cube of side L and volume VQ = L3, to which periodic boundary conditions

are applied. This region of space is called quantization cavity and its volume is the

quantization volume. The purpose of this abstraction is simplifying the procedure from

the mathematical point of view. Quantization in full space can be analysed in the limit

L → ∞. Under these assumptions, the vector potential can be expressed in terms of

plane waves:

A(r, t) =
∑
k

∑
λ=1,2

ek,λ(Ak,λ(t)e
ik·r + c.c.), (1.6)

where ek,λ are unit polarization vectors and c.c stands for “complex conjugate”. The

periodic boundary conditions determine a discrete set of valid wave vectors k, with

components ki = 2π ni
L , where ni is an integer number and i = x, y, z. Due to the Coulomb

gauge condition ∇ · A = 0, each ek,λ must be perpendicular to the corresponding k.

Therefore each k affords only two independent polarization vectors, which can be chosen

to be orthogonal. Consequently, ek,λ · ek,λ′ = δλ,λ′ , with δ representing the Kronecker

delta. Each choice of k and λ determines a mode of the field.

Each mode must indipendently satisfy Equation 1.5, meaning that:

∂2Ak,λ(t)

∂t2
+ ωkAk,λ(t) = 0, (1.7)

where ωk = ck and k = |k|. Equation 1.7 describes a harmonic oscillator with angular

frequency ωk. Its solution is Ak,λ(t) = Ak,λe
−iωkt, with Ak,λ constant. The general

solution of Equation 1.5 in the quantization cavity is then:

A(r, t) =
∑
k

∑
λ=1,2

ek,λ(Ak,λe
i(k·r−ωkt) + c.c.). (1.8)

7



1.1 Quantization of the electromagnetic field

By applying Equations 1.2, the electric and magnetic field may be obtained, and conse-

quently the expression for the electromagnetic energy in the quantization cavity:

H =
∑
k,λ

ϵ0VQωk(Ak,λA
∗
k,λ + c.c.). (1.9)

Therefore, all the relevant electromagnetic quantities can be written in terms of harmonic

modes, corresponding to classical oscillators. The quantization is performed by replacing

these classical oscillators with their quantum counterparts.

The Hamiltonian operator for a set of quantum oscillators is:

Ĥ =
1

2

∑
k,λ

~ωk(âk,λâ
†
k,λ + h.c.), (1.10)

where âk,λ and â†k,λ are the destruction and creation operator for the oscillator character-

ized by k and λ, respectively, and h.c. stands for “hermitian conjugate”. The operators

âk,λ and â†k,λ satisfy the following canonical commutation relations:

[
âk,λ, âk′,λ′

]
= 0 (1.11a)[

â†k,λ, â
†
k′,λ′

]
= 0 (1.11b)[

âk,λ, â
†
k′,λ′

]
= δk,k′δλ,λ′ . (1.11c)

A comparison between Equation 1.9 and Equation 1.10 suggests the replacement:

Ak,λ →

√
~

2ϵ0VQωk
âk,λ. (1.12)

Thereby, the quantum vector potential and, consequently, the electric and magnetic field

8



Chapter 1. Single Photons and Their Application to Quantum Information

operators are:

Â(r, t) =
∑
k

∑
λ=1,2

ek,λ

√
~

2ϵ0VQωk
(âk,λe

i(k·r−ωkt) + h.c.), (1.13a)

Ê(r, t) =
∑
k

∑
λ=1,2

ek,λ

√
~ωk

2ϵ0VQ
(iâk,λe

i(k·r−ωkt) + h.c.), (1.13b)

B̂(r, t) =
∑
k

∑
λ=1,2

k× ek,λ

√
~

2ϵ0VQωk
(iâk,λe

i(k·r−ωkt) + h.c.). (1.13c)

In typical experimental situations, the fields are not confined in a closed region of

space but are described by waves travelling from sources to detectors. It is then convenient

to consider one of the sides of the quantization cavity being infinite, say along the z-axis.

As a consequence, the corresponding coordinate of the wave vectors k becomes continuous.

By neglecting the transverse coordinates and by examining only fields that propagate in

the positive z direction, it is possible to consider kz = k. The mathematical analysis can

be done equivalently using k or the frequency ω = ck.

If the distance between two consecutive allowed values of k (or ω) in the confined

case is ∆k(∆ω), all the continuous-mode quantities may be obtained from the following

substitutions [12]:

∑
k

→ 1

∆k

∞∫
0

dk → 1

∆ω

∞∫
0

dω, (1.14a)

δk,k′ → ∆kδ(k − k′) → ∆ωδ(ω − ω′), (1.14b)

âk,λ →
√
∆kaλ(k) →

√
∆ωaλ(ω), (1.14c)

where δ indicates the uni-dimensional Dirac delta. From expressions 1.14, it follows that[
aλ(ω), a

†
λ(ω

′)
]
= δ(ω − ω′)δλ,λ′ . In what follows every quantity is expressed in terms of

9



1.2 Fock states

the frequency ω. Since ∆ω = 2πc
L , the field operators in 1.13 become:

Ê(z, t) =
∑
λ=1,2

eλ

∞∫
0

dω

√
~ω

4πϵ0cAQ
(iâλ(ω)e

−iω(t−z/c) + h.c.), (1.15a)

B̂(z, t) = −i
∑
λ=1,2

z× eλ

∞∫
0

dω

√
~ω

4πϵ0c3AQ
(iâλ(ω)e

−iω(t−z/c) + h.c.), (1.15b)

where AQ =
VQ

L is the quantization area and z is the positive unit vector in the z direction.

1.2 Fock states

All the operators described in the previous section act on the state space of the electro-

magnetic field, which is the state space of a set of quantum harmonic oscillators.

This means that, for each mode of the field, there is a discrete set of orthonormal states

|nk,λ⟩, with nk,λ = 0, 1, 2, ..., for which [13]:

âk,λ|nk,λ⟩ =
√
nk,λ|nk,λ − 1⟩, (1.16a)

â†k,λ|nk,λ⟩ =
√
nk,λ + 1|nk,λ + 1⟩. (1.16b)

These are eigenstates of the single-mode energy operator Ĥk,λ:

Ĥk,λ|nk,λ⟩ =
1

2
~ωk(âk,λâ

†
k,λ + â†k,λâk,λ)|nk,λ⟩ = (nk,λ +

1

2
)~ωk|nk,λ⟩. (1.17)

Therefore, the possible values for the energy of the field in a single mode are discrete and

separated by the fixed quantity ~ωk. This quantity represents the energy of a photon in

the mode k, λ. Each state |nk,λ⟩ is associated to nk,λ photons in the corresponding mode.

It is then possible to define a single-mode photon-number operator n̂k,λ = â†k,λâk,λ which

commutes with Ĥk,λ. The states |nk,λ⟩ are eigenstates of n̂k,λ with eigenvalues nk,λ and

are therefore called single-mode photon-number states or, alternatively, Fock states.

A Fock state of the total electromagnetic field is a product of Fock states of all

10



Chapter 1. Single Photons and Their Application to Quantum Information

individual modes and can be described by a string of photon numbers in each mode:

|{nk,λ}⟩ = |nk1,1, nk1,2, nk2,1, nk2,2, ...⟩ =
∏
k,λ

|nk,λ⟩. (1.18)

The ground state of the system, |0⟩, also called vacuum state, is obtained when nk,λ = 0

for each value of k and λ. Interestingly, the energy of the field in this state is not 0, as:

Ĥ|0⟩ = 1

2

∑
k,λ

~ωk|0⟩. (1.19)

The quantity 1
2

∑
k,λ

~ωk is called zero-point energy or vacuum energy and is infinite. This

is a strange feature of the quantized electromagnetic field, which, however, does not

represent a problem in practice. In fact, only variations in the electromagnetic energy are

observable, which are always finite. In particular, energy differences in a given mode k, λ

can only be integer multiples of ~ωk. A measurement device is said to detect n photons

if it measures an energy difference of n~ωk.

A state of the field in the cavity can be pure or mixed. The most general pure state

is given by:

|ψ⟩ =
∑

{nk,λ}

c({nk,λ})|{nk,λ}⟩, (1.20)

where the sum is calculated over all possible sets of photon numbers and
∑

{nk,λ}
|c({nk,λ})|2 =

1. If there is a probability Pi, with i going from 1 to d, that the field is in the pure state

|ψi⟩, the resulting statistical mixture is described by the density operator:

ρ̂ =
d∑

i=1

Pi|ψi⟩⟨ψi|, (1.21)

with
d∑

i=1
Pi = 1.

The eigenstates of the total number operator n̂ =
∑
k,λ

n̂k,λ with eigenvalue n are called

n-photon states. In general they are superpositions of Fock states for which the n photons

are distributed among several modes. Single-photon states (n = 1) are particularly

11



1.2 Fock states

relevant for this dissertation. A general single-photon state involving m modes of the

field in the cavity can be written as:

|φ1⟩ =
m∑
j=1

cj |1j⟩, (1.22)

where |1j⟩ denotes the Fock state with one photon in the mode j and 0 photons in all the

other modes. Normalization imposes
∑
j
|cj |2 = 1. It is then useful to define a modified

creation operator â†φ by:

â†φ =
m∑
j=1

cj â
†
j , (1.23)

where â†j is the creation operator for the mode j. The operator â†φ creates a photon in

the state |φ1⟩, i.e. â†φ|0⟩ = |φ1⟩. It is easy to prove that
[
âφ, â

†
φ

]
= 1. By applying twice

the operator â†φ to the vacuum state, a two-photon state is created:

|φ2⟩ =
1√
2
(â†φ)

2|0⟩ =
m∑

j,s=1

cjcs|1j⟩|1s⟩. (1.24)

This procedure can be repeated n times to create an n-photon state. All n-photon states

created in this way are separable, meaning that they can be decomposed in the product

of n single-photon states. Each n-photon state that does not satisfy this property is said

to be entangled.

For instance, let us consider two wave vectors k1 and k2 having the same modulus

(i.e. the same frequency) but different directions. For each k two polarization directions

are possible, which are represented by the unit vectors eH and eV . The following

single-photon creation operators can be constructed:

â†i =
1√
2
(â†ki,H

+ â†ki,V
), (1.25)

with i = 1, 2. The operator â†i creates a single photon with wavevector ki in a balanced

12



Chapter 1. Single Photons and Their Application to Quantum Information

superposition of the two different polarization modes. The state:

â†1â
†
2|0⟩ =

1

2
(|1k1,H⟩|1k2,H⟩+ |1k1,H⟩|1k2,V ⟩+ |1k1,V ⟩|1k2,H⟩+ |1k1,V ⟩|1k2,V ⟩) (1.26)

is a two-photon separable state. In order to show an example of an entangled state, let us

only consider the terms with different polarizations in Equation 1.26. The corresponding

normalized state is:

1√
2
(|1k1,H⟩|1k2,V ⟩+ |1k1,V ⟩|1k2,H⟩) = 1√

2
(â†k1,H

â†k2,V
+ â†k1,V

â†k2,H
)|0⟩. (1.27)

This state, also called Bell state, cannot be obtained by applying a product of single-photon

creation operators to the vacuum. In such a case special correlations in polarization and

wavevector arise between the two photons, which are of high importance for quantum

physics [14] and have many applications in quantum information science, as discussed in

Sections 1.5 and 1.6.

In the case of travelling waves along the z-axis, the set of Fock states becomes

continuous. The quantum state of the field then describes an excitation with a central

frequency ω0 and a bandwidth B. If ω0 >> B, the integrals in Equations 1.15 can

be evaluated between −∞ and ∞ without introducing a significant error. In this

approximation, it is useful to define Fourier-transformed operators:

aλ(t) =
1√
2π

∞∫
−∞

dωâλ(ω)e
−iωt. (1.28)

Again,
[
aλ(t), a

†
λ(t

′)
]
= δ(t − t′)δλ,λ′ . The continuous-mode number operator is then

given by:

n̂ =
∑
λ=1,2

∞∫
−∞

dω â†λ(ω)â(ω) =
∑
λ=1,2

∞∫
−∞

dt â†λ(t)â(t). (1.29)

If the “narrow-bandwidth” approximation cannot be applied, only the first equality in the

previous equation is valid, with the integration limits going from 0 to ∞. The operator

13



1.3 Single-photon interference

â†λ(t)â(t) is the photon flux operator, Φ̂(t), corresponding to the number of photons

crossing the quantization area per unit time.

The action of â†λ(ω) on the vacuum state creates a single photon with polarization λ

and frequency ω. Such a field excitation is of course not realistic. As mentioned before,

a realistic field excitation should have a spectral structure with a central frequency and a

bandwidth, like in the classical case. This corresponds to a photon-wavepacket creation

operator, defined as:

â†f =

∞∫
−∞

dωf(ω)â†(ω), (1.30)

where, for simplicity the polarization index is omitted. The quantity |f(ω)|2 is the normal-

ized power spectrum of the electromagnetic excitation, which satisfies the normalization

condition
∞∫

−∞
dω|f(ω)|2 = 1. The action of the operator â†f on the vacuum state creates

a photon with a spectral structure that is determined by the function f(ω). The spectral

properties of the field excitation are then contained in the quantum state of the field.

1.3 Single-photon interference

In the previous section, the photon was defined as the fundamental field excitation, which

can occur either in a single mode or in a superposition of modes.

A single photon cannot be detected by two different measurement devices at the same

time, as this would imply a splitting of its energy, which is not predicted by quantum

optics. From this point of view, single photons behave like particles. However, photons

are used to describe the electromagnetic field and therefore they also possess wave-like

properties, expressed, for example, in single-photon interference, which will be analysed in

this section. This wave-particle dualism often leads to depicting the photon as a strange

particle, which can move from some point to another and be in different locations at the

same time. Although not rigorous, this description permits to avoid long explanations

and for this reason will be sometimes adopted in this thesis.

Single-photon interference is here discussed by examining what happens to a photon

14



Chapter 1. Single Photons and Their Application to Quantum Information

Figure 1.1: Input and output modes of a beam splitter. The beam splitter is an optical
element with two inputs and two outputs. The input modes in the figure are labelled with indices
“1” and “2”, whereas the output modes with “3” and “4”. The beam splitter transmits mode 1 (2)
into mode 4 (3) and reflects it into mode 3(4).

in a Mach-Zehnder interferometer. A basic element of such a device is the beam splitter,

which is therefore described from a quantum-optical point of view. A beam splitter

reflects and transmits light impinging on one of its two inputs according to the reflection

and transmission coefficients, R and T , respectively. Since reflection and transmission

may induce phase shifts in the field, R and T are in general complex. Here the coefficients

are assumed to be the same for both inputs of the beam splitter. If the beam splitter is

lossless, the corresponding quantum operator mus be unitary. From this condition, it

follows |R|2 + |T |2 = 1 and RT ∗ +R∗T = 0.

Let us consider single continuous modes of the field with a given polarization and wave

vector component k along the quantization axis, as discussed in the previous sections.

For simplicity the polarization index as well as the dependence of the modes on k or ω

are omitted. As depicted in Figure 1.1, the beam splitter has two input modes, 1 and

2, associated to waves travelling in different directions. The corresponding destruction

operators are indicated by â1 and â2, respectively. The output modes, 3 and 4 have

destruction operators â3 and â4. The input-output relations for a beam splitter in

classical electromagnetism are translated to analogous relations among the destruction
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1.3 Single-photon interference

operators[12]:

â3 = Râ1 + T â2, (1.31a)

â4 = T â1 +Râ2. (1.31b)

The creation and destruction operators for all modes satisfy the canonical commutation

relations defined in Equations 1.2. If the two input modes are independent, meaning that[
â1, â

†
2

]
= 0, it follows that also the two output modes are independent, i.e.

[
â3, â

†
4

]
= 0.

The photon-number operator in each arm is given by n̂i = â†i âi, with i = 1, 2, 3, 4.

Conservation of energy implies a photon-number conservation law : n̂1 + n̂2 = n̂3 + n̂4.

When there is only a single photon at input 1, the state of the field at the output is:

|ψ⟩out = R|1⟩3|0⟩4 + T |0⟩3|1⟩4. (1.32)

This state is sometimes described as single-photon entangled state, or also as an example

of entanglement with vacuum [15]. This notion derives from a more general definition

of entanglement than that provided in Section 1.2. In general, any state of a composite

system that cannot be written as a product of states of its subsystems is defined as

entangled. In the case of the state |ψout⟩ the two subsystems are mode 3 and mode 4,

in which the state space of the electromagnetic field is spanned by {|n3⟩} and {|n4⟩},

respectively, with n3,4 = 0, 1, 2, ... number of photons in the corresponding mode. The

state in Equation 1.32 cannot be written as a product of a Fock state for mode 3 and a

Fock state for mode 4, therefore it can be considered entangled. In this sense, a beam

splitter creates entanglement between its output modes.

A consequence of the structure of state |ψ⟩out is that detection (lack of detection) of

a photon in one of the two output arms, projects the other arm onto the vacuum state

(single-photon Fock state). If, instead, a photon trap is placed in one of the two arms, so

that it becomes impossible to know if that arm contains vacuum or one photon, then the

other arm is projected onto a statistical mixture of states |0⟩ and |1⟩, with respective

probabilities |R|2 and |T |2.
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Chapter 1. Single Photons and Their Application to Quantum Information

Figure 1.2: Sketch of a Mach-Zehnder interferometer. The Mach-Zehnder interferometer
is composed of two beam splitters, which are assumed to be identical, and two mirrors. The
mirrors steer the outputs of the first beam splitter to the inputs of the second beam splitter. The
input modes of the interferometer are labelled “mode 1” and “mode 2”; the output modes instead
“mode 3” and “mode 4”. The two paths from the first to the second beam splitter have length z1
and z2, respectively.

For single-photon input, the mean photon numbers at the outputs are respectively

⟨n̂3⟩ = |R|2 and ⟨n̂4⟩ = |T |2. This result is similar to the classical division of electro-

magnetic energy at a beam splitter. The photon-number correlations at the outputs are

instead fully quantum, as:

⟨n̂3n̂4⟩ = 0. (1.33)

This results comes from the fact that a photon can be detected only in one of the two

output arms, and therefore represents a signature of the particle aspect of single photons.

Let us now consider a Mach-Zehnder interferometer (MZI), as in Figure 1.2, which is

composed of two consecutive beam splitters placed such that the outputs of the first one

are the inputs of the second one. By assuming that the two beam splitters are identical,

the following input-output relations stand:

â3 = RMZ â1 + TMZ â2, (1.34a)

â4 = TMZ â1 +R′
MZ â2, (1.34b)
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1.3 Single-photon interference

where:

RMZ = R2ei
ω
c
z1 + T 2ei

ω
c
z2 , (1.35a)

R′
MZ = T 2ei

ω
c
z1 +R2ei

ω
c
z2 , (1.35b)

TMZ = RT (ei
ω
c
z1 + ei

ω
c
z2), (1.35c)

in which ω is the frequency of the photon, and z1 and z2 are the lengths of the two paths

from the first to the second beam splitter, respectively. The input-output relations of a

MZI are therefore formally identical to those of a beam splitter but they have different

coefficients, which include the phase accumulated by the photon in the propagation

between the two beam splitters. Analogously to the single beam splitter:

|RMZ |2 + |TMZ |2 = |R′
MZ |2 + |TMZ |2 = 1, (1.36a)

R
′
MZT

∗
MZ + TMZR

∗
MZ = 0. (1.36b)

The mean photon number at any of the outputs depends on the phase difference between

the paths. For instance, the mean photon number at output 4 is:

⟨n̂4⟩ = |TMZ |2 = 4|R|2|T |2 cos2
[
1

2

ω

c
(z1 − z2)

]
. (1.37)

When n identical single photons are sent consecutively to input 1 of the MZI, in

the limit of large n, n⟨n̂4⟩ detections are recorded at output 4. By varying the phase

difference, an interference pattern is observed, analogously to what is predicted by

classical electromagnetism. This interference cannot come from interaction among

different photons, as only one photon is sent to input 1 at a time. Interference therefore

is an effect that involves the single quanta of light independently. The photon in the

MZI therefore should be regarded as a simultaneous excitation of input, output and

internal spatial modes of the interferometer, as it happens for the spatial field distribution

of classical light. This is a typical wave-like feature, which, together with the particle

features discussed above, shows the dual nature of single photons. Any attempt to
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Chapter 1. Single Photons and Their Application to Quantum Information

“localize” the photon destroys interference, according to the which-path principle.

The previous analysis will now be extended to multi-mode light, where the multiple

modes are characterized by different frequencies ω. Assuming a narrow-band excitation,

the dependence of the beam splitter coefficients on ω can be neglected. Relations 1.31

then are also valid for the Fourier-transformed operators âi(t), with i = 1, 2, 3, 4. The

dependence of the acquired phase between the two beam splitters on frequency, instead,

cannot be neglected, and is incorporated in the Fourier-transformed operators. For

instance, the operator â4(t) for a MZI is given by:

â4(t) = RTâ1(t−
z1
c
) +RTâ1(t−

z2
c
) + T 2â2(t−

z1
c
) +R2â2(t−

z2
c
). (1.38)

If a photon-wavepacket characterized by the function f(ω) is considered at input 1, the

expectation value of the photon flux at output 4 is:

⟨Φ̂4(t)⟩ = |R|2|T |2|f(t− z1
c
) + f(t− z2

c
)|2, (1.39)

where f(t) is the Fourier transform of f(ω).

From the previous expression it is clear that single-photon interference cannot occur if

the quantity z2−z1
c is far larger than the time bandwidth of the function f(t). In this

case, in fact, the two wavepackets described by f(t− z1
c ) and f(t−

z2
c ) do not overlap.

Even though this effect is predicted by classical electromagnetism for a multi-mode input

field, a quantum-mechanical interpretation is also possible. If the path difference is large,

in fact, the two pulse contributions are fully distinguishable in time and therefore, by

recording the arrival time at the detector, it is possible to tell which way the photon

travelled. According to the which-path principle, this suppresses interference.

1.4 Photons and qubits

Single-photon states of light play an important role in quantum information science, as it

will be discussed in detail in the next sections. For this discussion, however, some basic
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concepts are needed, which are reviewed below.

The fundamental unit of digital information is the bit. It is a representation of a

binary digit, assuming a logical value of either “0” or “1”. A bit can be physically realized

by any classical system that has two stable states, such as the two possible directions of

magnetic moment in a medium or two voltage levels in a circuit. Analogously, the basic

unit of quantum information is the quantum bit, or qubit. Any quantum system with a

bi-dimensional Hilbert space may be used to encode a qubit, like, for instance, the spin-12

of a particle. Two possible states of a qubit are |0⟩ and |1⟩, which form an orthonormal

basis of the qubit Hilbert space, known as computational basis. But, in contrast to a

classical bit, a qubit can be in any superposition |ψ⟩ of these two states:

|ψ⟩ = α|0⟩+ β|1⟩, (1.40)

where α and β are complex numbers satisfying the normalization condition |α|2+ |β|2 = 1.

Due to this relation between the coefficients, Equation 1.40 may be re-written as:

|ψ⟩ = eiγ(cos
θ

2
|0⟩+ sin

θ

2
eiφ|1⟩), (1.41)

with γ, θ and φ real numbers. The phase factor eiγ represents a global phase with no

observable effect and can therefore be neglected. From Equation 1.41 it follows that each

state of a qubit can be univocally associated to a point on a sphere of unit radius, called

Bloch sphere (see Figure 1.3).

In order to describe a qubit, then, one needs to provide two real quantities. This implies

that a qubit contains an infinite amount of information, which is necessary for its full

characterization. In practice, however, this information is not accessible unless an infinite

number of measurements is performed.

Measuring the state |ψ⟩ of a qubit in an orthonormal basis results into two possible

outcomes, meaning that the measurement can provide only one (classical) bit of informa-

tion. By measuring a qubit of the form in Equation 1.40 in the computational basis, the

result “0” is obtained with probability |α|2 and the result “1” with probability |β|2. In
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Figure 1.3: Bloch sphere. Each pure state of a qubit can be associated to a point on the surface
of the Bloch sphere. The two poles of the sphere on the z axis correspond to the states |0⟩ and |1⟩,
respectively. The parameters θ and φ in Equation 1.41 are the spherical coordinates of the point
corresponding to |ψ⟩.

both cases, the superposition collapses onto a state of the computational basis after the

measurement. In order to fully determine α and β, one needs to perform measurements

in three different orthonormal bases on an infinite number of identically prepared qubits.

This solves the apparent paradox of the infinite amount of information.

A logic gate is an operation on bits that provides an output state after an input state

is given, thus converting information from one form to another. In the classical case, only

four single-bit gates are possible. On the contrary, there are infinite single-qubit gates,

which correspond to unitary operators acting on the qubit Hilbert space. Each possible

state of a qubit may be written as a vector matrix of the coefficients in the chosen basis.

The basis vectors are then

⎛⎝1

0

⎞⎠ and

⎛⎝0

1

⎞⎠, respectively. In this formalism, single-qubit

gates are expressed as 2× 2 matrices. For example, a very common single-qubit gate is

the Hadamard gate, H:

H =

⎛⎝1 1

1 −1

⎞⎠ , (1.42)

which converts the states |0⟩ and |1⟩ into the balanced superpositions |±⟩ = 1√
2
(|0⟩± |1⟩),
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respectively. The states |+⟩ and |−⟩ form another orthonormal basis.

In general, the Hilbert space of a system of N qubits is given by the tensor product

of the single-qubit Hilbert spaces and has dimension 2N . For instance, the generic state

of two qubits can be written as:

ψ = α00|00⟩+ α10|10⟩+ α01|01⟩+ α11|11⟩, (1.43)

with
∑

ij |αij |2 = 1. Multiple qubit states can be grouped in separable and entangled,

as already discussed in sections 1.2 and 1.3. A gate operating on N qubits is a unitary

operator in the corresponding Hilbert space and can therefore be represented as a 2N ×2N

matrix. An example is given by the controlled-not (CNOT) gate, UCNOT :

UCNOT =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (1.44)

The two qubits on which UCNOT acts are traditionally called control and target qubit,

respectively. In the computational basis the CNOT gate acts as follows: it flips the target

qubit if the control qubit is |1⟩, leaves it unaltered if the control qubit is |0⟩; the control

qubit instead is always left unaltered. This gate is particularly relevant, as it can be

shown that any multi-qubit gate can be decomposed in CNOT and single-qubit gates. In

this sense the CNOT gate is universal [16].

A crucial property of qubits is that they cannot be cloned. The no-cloning theorem

of quantum mechanics [17] states that it is not possible to create an identical copy of

an arbitrary unknown state. A cloning device, therefore, might work perfectly for some

states but necessarily gives approximate results for other states. This phenomenon has

important consequences in the field of quantum information, as explained in the next

sections.

Qubits can be encoded by using several degrees of freedom of different quantum
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systems, such as, among others, magnetic flux, charge and phase of superconducting

circuits [18], energy levels and nuclear spins of atoms [19] or trapped ions [20] and single

photons [21]. Photons offer many degrees of freedom for qubit encoding: spatial or

temporal, frequency, polarization, orbital angular momentum or photon number in a

given mode. Photonic qubits are mobile, easy to generate and exhibit low decoherence

because of their lack of interaction with the external environment. Single-qubit gates are

also relatively easy to realize. As an example, let us consider the case in which a qubit is

encoded in the spatial degree of freedom of a single photon, which can be in two spatial

modes a and b. The computational basis states are then defined as |0⟩ = |1⟩a|0⟩b and

|1⟩ = |0⟩a|1⟩b. Here, |0⟩ (|1⟩) represents the state in which there is one photon in mode a

(b) and no photon mode b (a). In this encoding system, also called dual-rail encoding,

all single-qubit gates can be performed with linear optical elements. For instance, the

Hadamard gate is realized by a simple 50:50 beam-splitter, as it can be deduced from

Equation 1.32.

The main disadvantage of photonic qubits is that light does not interact with itself.

Consequently, quantum gates requiring interaction among qubits, like the CNOT gate,

are not easily realized. These gates are based on optical non-linear effects, which are

usually very weak at low field intensities [22]. Non-linearities at single-photon level can

be obtained in atoms [23, 24, 25, 26, 27] or quantum dots [28], but these systems are

technically complicated and their performance as quantum gates is still not optimal.

However, some methods have been proposed to realize two-qubit gates without requiring

non-linearity, as discussed in the next section.

1.5 Photonic quantum computation and simulation

Quantum computation consists in the design and realization of algorithms employing

qubits and quantum-mechanical operations. In the past decades, a few relevant quantum

algorithms have been developed. These algorithms require fewer computational steps

than any known classical algorithm to solve some specific problems and therefore can
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lead to significantly faster computation. Important examples are Shor’s algorithm [3]

and Grover’s algorithm [29]. Shor’s algorithm allows one to factorize a prime number

with an exponentially lower number of steps with respect to the best known classical

algorithm. Grover’s algorithm, also called quantum search algorithm, achieves a quadratic

improvement in the task of searching for a specific element in an unordered database.

These results triggered many research efforts for the realization of quantum computers.

The most studied quantum computing architectures are the quantum circuit model

(QCM) and themeasurement-based quantum computation (MBQC). In QCM, computation

is performed by a sequence of quantum gates and qubits are typically initialized in one

of the computational basis states, analogously to classical schemes. MBQC requires

highly-entangled initial states, called graph or stabilizer states, on which single-qubit

measurements are performed. At each step of the computation, the measurement basis

depends on the previous measurement outcomes. The sequence of measurements then

determines the executed algorithm. These two architectures are equivalent in terms of

computational power but require different resources and have different properties.

Single photons may be used both for QCM and MBQC. The principal problem

represented by QCM with photonic qubits is the realization of two-qubit gates, as

explained in the previous section. A solution was provided by Knill, Laflamme and

Milburn, who proposed a scheme to perform universal quantum computation with linear

optical elements only [7]. The basic idea is that effective non-linear photon-to-photon

interactions, and therefore two-qubit gates, can be obtained probabilistically via projective

measurements. Ancillary photons are needed to increase the success probability of each

gate. The amount of necessary resources does not scale exponentially with the number

of gates, but in practice is still too high to be considered feasible in the near future.

A more suitable architecture for photonic quantum computing is MBQC. In this case,

two-qubit gates can be directly realized with linear optics, even though generation of

the necessary entangled multi-photon resource state still represents a major technical

challenge.

To date, the main factor preventing the realization of scalable photonic quantum
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computation is represented by the low performance of photon sources. In principle, they

need to deterministically provide indistinguishable Fock states at high rates, which may

then be manipulated to create graph states for MBQC.

Currently, the most common photon sources in quantum information laboratories

are those based on second- and third-order non-linear effects in dielectric materials

(see Chapter 2). They are flexible, robust, relatively easy to operate and can satisfy

all the requirements for an ideal photon source except for deterministic emission, as

they are based on stochastic processes. They can be made (near-) deterministic by

using multiplexing techniques, at the price of reducing the average emission rate or,

alternatively, increasing the necessary number of emitters [30, 31].

Alternatively, in the last years some solid state photon sources have proved to be

very promising [32]. Among them, InAs/GaAs quantum dots have shown the best

performance [33, 34] as single-photon emitters. They can produce photons with high

purity and a reasonable level of indistinguishability, which is a key requirement for

quantum interference. On the other hand, they are less flexible, require cryogenic

temperatures to be operated and are still not tunable enough to allow the generation

of identical photons from different emitters. A great potential advantage of solid state

sources, however, is that they are in principle able to directly generate large entangled

states [35, 36].

Besides the problems with the sources, noise constitutes another major technical

issue. It was shown, in fact, that scalable quantum computation is possible only if the

probability of error per qubit per gate is kept below a given threshold, which depends on

the architecture and the implemented error-correction codes. Currently, even the most

optimistic threshold values are too low to be experimentally realized [37, 38].

Finally, most MBQC photonic quantum computation schemes are based on adaptive

measurements [39], which require fast optical switches and detectors, with operation

frequencies of & 10 GHz. The realization of such devices, which should also be integrable

in the current quantum computation systems, still represents a technical challenge.

Because of all these difficulties, the construction of a photonic quantum computer
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simultaneously processing millions of qubits can only be a long-term goal. However,

there are highly interesting intermediate steps on the way to this final result. In fact,

already with a few tens of qubits, it is possible to perform computational tasks that

cannot be run on ordinary computers [40]. These tasks typically involve the simulation

of microscopic systems, whose analysis is particularly hard due to the large number of

parameters required to describe a quantum state. Indeed it is natural to think that

quantum systems can be simulated by other quantum systems: this is the basic idea of

quantum simulation.

In general, quantum simulation can be very useful in exploring properties of com-

plicated molecules, and therefore holds the promise to produce great advancements

in chemistry [41]. To date, there have been several proof-of-principle experiments in

quantum simulation, among which photonic architectures played an important role [42,

43]. The realization of simulations that are not executable on current computers is likely

to happen in a near future.

1.6 Quantum communication

Quantum communication is the transmission of a quantum state from a point of space

to another. Because of their mobility, photons are the main tool for this application,

exactly as electromagnetic waves are used for classical communication. There are several

forms of quantum communication, which differ in purposes, features, and requirements.

An important category of quantum communication protocols aims at reducing the

amount of information to be transmitted to or between different parties in order to

perform a shared computational task. The development and analysis of these protocols

constitutes the field of quantum communication complexity. To date, several quantum

schemes have been proposed to solve distributed computation problems more efficiently

than classical algorithms [44, 45, 46, 47, 48, 49, 50, 51]. Proof-of-principle demonstrations

of some of these theoretical proposals have also been realized [52, 53, 54, 55, 56].

A related but different question concerns the possibility of using quantum states
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to optimize the physical resources that are necessary to transfer a given amount of

information. This is the case of dense coding, which allows to transfer two bits of

information between two parties by sending only one qubit, with the assumption that

the parties pre-share an entangled state [57, 58, 59]. This can be seen as the opposite of

quantum teleportation, in which a single qubit state is transferred by communicating two

bits of information, still with the assumption that the parties already have an entangled

state [60, 61, 62, 63].

The most studied quantum communication protocols are the cryptographic ones, which

allow for information-theoretic secure transmission of classical bits between two parties.

This means that the transmitted strings of bits cannot be eavesdropped, independently

of the resources of the eavesdropper. For instance, the parties can use quantum states to

share a secure cryptographic key and then use it for classical encrypted communication.

This technique is called quantum key distribution (QKD). In case the message to be

communicated is directly encoded and transferred by means of quantum systems, the

parties are said to perform quantum secure direct communication (QSDC). These two

categories of protocols are analysed in further detail below. The analysis is limited to

protocols in the discrete-variable regime.

1.6.1 Quantum Key Distribution

A cryptographic key is a string of classical bits that allows for encryption and/or decryption

of a message, which thus becomes hidden. Despite the large number of proposed and

implemented schemes, the only provably secure cryptographic system known to date is

the one-time pad [64, 65]. In this system, the secret message is encrypted by adding

(modulo 2) each bit to a randomly generated key bit, whereas the decryption consists

in bit-by-bit subtraction of the key from the encrypted message. In order to obtain

unconditional security, the key must be used only once, hence the name of the system.

Therefore, the parties involved in the communication need to share as many keys as the

messages that are transferred, each key being a long, random sequence of bits. A crucial

question is then how to securely distribute the keys.
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QKD is a way to solve the key distribution problem, which, at least in principle,

completes the one-time pad protocol and thus allows for unconditionally secure commu-

nication. In practice, due to the imperfections of the employed devices, unconditional

security is actually never reached. Yet, QKD provides a security advantage with respect

to the currently used cryptographic techniques, which all rely on computational problems

that are hard to solve in reasonable time for a potential eavesdropper and thus could be

broken by advances in classical and quantum computation [66].

In a typical QKD scheme, two parties, conventionally called Alice and Bob, aim at

establishing a shared random sequence of bits, the key. To this purpose, they send and

receive quantum states through a quantum channel, which may also include intermediate

nodes. The quantum channel is assumed to be unsafe, meaning that is fully accessible

and modifiable by potential eavesdroppers. By manipulation and measurement of the

transferred qubits, Alice and Bob establish a raw key, i.e. they share two strongly

correlated but not identical, and only partially secret, strings of bits.

After this phase, they use a classical channel to perform an interactive post-processing

protocol, which allows them to distil two identical and completely secret copies of the key.

In order for QKD to be secure, the classical channel must be authenticated, meaning that

Alice and Bob identify themselves and the messages they send cannot be modified, even

though they may be read by a third party. This authentication requires a cryptographic

system as well, and consequently a key. QKD therefore allows two parties who already

share a secret key to extend it, in principle infinitely. For this reason, rather than

quantum key distribution it would be more precise to talk about quantum key growing.

Basic QKD protocols

In this section, some fundamental QKD protocols are presented. They constitute the

basis of most implementations realized to date and a reference for alternative protocols.

The first QKD scheme was proposed by Bennett and Brassard in 1984 and therefore

is called BB84 [5]. In this protocol, which is outlined in Figure 1.4, one of the parties, say

Alice, randomly prepares and sends qubits to the other, Bob, in two different orthonormal
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Figure 1.4: BB84 protocol. Alice sends a sequence of single photons to Bob that are prepared
at random in the states of the computational basis (C), |0⟩ and |1⟩, or diagonal basis (D), |+⟩ and
|−⟩. Bob performs for each photon a measurement in one of the two bases, selected at random,
i.e. he uses a device that steers the photon to either D0 or D1 according to the basis state.
The figure shows possible results obtained by Bob for a given sequence of bits encoded by Alice
and measurement bases selected by Bob. The corresponding sifted key bits are also shown. In
case Alice’s preparation basis and Bob’s measurement basis do not coincide, no sifted key bit is
established.

bases such that the scalar product between states of different bases is always 1
2 . For

instance, the two bases can be the computational basis {|0⟩, |1⟩} and the diagonal basis,

{|+⟩, |−⟩}, where |±⟩ = 1√
2
(|0⟩ ± |1⟩). The two states of each basis are associated to the

classical bits 0 and 1, respectively (for example |0⟩, |−⟩ → 0 and |1⟩, |+⟩ → 1).

Bob measures each received qubit in one of the two bases, selected at random,

and registers a raw-key bit according to the result of the measurement. When Bob’s

measurement basis coincides with Alice’s preparation basis, Bob correctly receives the

key bit prepared by Alice, otherwise Bob records the wrong key bit half of the time.

Therefore, the two strings corresponding to the sent and received raw key are not identical,

as they differ for one quarter of the bits.

After the raw-key transfer is over, Alice and Bob communicate through the authen-

ticated classical channel their basis choice for each qubit, but not the prepared state

(for Alice) or the measurement outcome (for Bob). They then discard all the bit digits

corresponding to different basis choices. This procedure is called sifting. Ideally, after

sifting, Alice’s and Bob’s key should be identical, but errors can arise due to experimental
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imperfections or the action of an eavesdropper. Alice and Bob then publicly reveal

part of the key to evaluate the so-called quantum bit error rate (QBER), defined as the

percentage of different bits in the two sifted-key strings. Assuming that all the errors in

the key are due to eavesdropping, the two parties can calculate the maximum amount of

information that is leaked out to the eavesdropper.

The last step of the protocol is the application of classical algorithms for error

correction and for reducing the amount of information transferred to the eavesdropper, a

process that is called privacy amplification [67]. The resulting key is free from errors and

fully secret, given that Bob receives more information than the eavesdropper, which can

be checked from the QBER. If that is not the case, no secret key can be established and

the sifted key is discarded.

Variations of the BB84 protocol using two states [68] and six states [69, 70] instead of

four have also been proposed.

A different approach to QKD was presented in 1991 by Arthur Eckert, who developed

a protocol based on entangled states, known as E91 protocol [71]. This scheme requires

Alice and Bob to share, for each iteration of the protocol, a singlet state of two spin-

1
2 particles, |ψ−⟩ = 1√

2
(| ↑⟩A| ↓⟩B − | ↓⟩A| ↑⟩B), where | ↑⟩ and | ↓⟩ denote the two

eigenstates of the spin component along the z-axis, whereas the subscripts A and B stand

for Alice and Bob, respectively. This state may be generated by one of the parties or,

alternatively, provided by an external server, which can be untrusted.

Each of the parties randomly measures the spin component along one of three possible

directions in the x− y plane, characterized by azimuthal angles Φ = 0, π
4 and π

2 for Alice,

and Φ = π
4 ,

π
2 and 3

4π for Bob. The measurement of the spin component along one of such

directions corresponds to a measurement in the basis { 1√
2
(| ↑⟩+eiΦ| ↓⟩), 1√

2
(| ↑⟩−eiΦ| ↓⟩)}.

After the measurement phase, Alice and Bob communicate their measurement choices

through the authenticated channel and divide the iterations in two groups, according

to whether they chose the same spin component (group 1) or not (group 2). For the

iterations of group 2, they reveal the outcome of the measurements and use them to

check for eavesdropping. The state |ψ−⟩, in fact, presents unique spin correlations that
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change if the protocol is disturbed by an eavesdropper. A test of these correlations is

called a Bell test [14, 72]. Analogously, when the state is provided by an external server,

the Bell test is used to check the honesty of the server. A dishonest server, in fact, may

send to the parties a state different from |ψ−⟩ in order to extract some information on

the key.

After verification, Alice and Bob use the iterations of group 1 to establish the shared

key, as, whenever they measure the same component of the spin (which occurs about 2
9

of the time), the measurement results are perfectly anti-correlated, but random.

Analogously to the BB84 protocol, the parties evaluate the QBER on a sub-set of

the key and, from that, they bound the maximum amount of information obtained by

the eavesdropper. Error correction and privacy amplification algorithms complete the

protocol. Note that for the protocol the two parties can use any of the four possible

Bell states: |ψ±⟩ = 1√
2
(| ↑⟩A| ↓⟩B ± | ↓⟩A ↑⟩B), |φ±⟩ = 1√

2
(| ↑⟩A| ↑⟩B ± | ↓⟩A ↓⟩B).

Furthermore, they can use any degree of freedom, not necessarily spin, for the qubit

realization.

In 1992 Bennett, Brassard and Mermin, inspired by the E91 protocol, proposed a

simpler scheme, the BBM92 protocol, in which Alice and Bob perform measurements

in only two bases, those corresponding to Φ = 0 and Φ = π
2 [73] (see Figure 1.5). In

this case, Alice and Bob only keep the iterations in which they performed the same

measurement, and sacrifice a large sub-set (more than half) of them to verify the

correlation of the measurement outcomes. If the correlations are as expected, they infer

absence of eavesdropping and honesty of the server. The iterations for which the outcomes

were not revealed are used for key generation. This protocol was shown to be equivalent

to BB84.

Since the development of these first protocols, much progress has been done in

QKD, both theoretically and experimentally [74, 75, 76]. The BB84 protocol, due to its

simplicity, still represents the basis of many implementations, although the basic scheme

has been modified to face all the theoretical and experimental challenges that arose in

the last decades, as it will be discussed in the next sections.
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Figure 1.5: E91 vs BBM92 protocols. In both protocols, Alice and Bob share a maximally-
entangled two-particle state, which here is assumed to be the singlet state |ψ−⟩. The states
| ↑⟩ and | ↓⟩ represent the two eigenstates of the spin component along the z axis. In the E91
protocol, sketched on the left, each of the parties performs measurements along three different spin
components in the x-y plane (where the x axis corresponds to Φ = 0). Two of the components are
the same for Alice and Bob, while the third is different. The parties use the iterations in which
they measured along the same component for key generation and the other iterations for a Bell
test, which is used to verify eavesdropping and honesty of the state provider, in the case that the
state is not generated by one of the parties. In the BBM92 protocol, outlined on the right, the two
parties perform measurements along the same two spin components and use part of the iterations
to verify for eavesdropping and provider honesty. The remaining ones are used for sharing the key.
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From the first experimental realization, showing QKD over a distance of 32.5 cm

in free-space [77], technology has reached a level allowing for satellite-based QKD over

distances of thousands of kilometers [78, 79, 80]. Regarding entanglement-based QKD,

after the first proof-of-principle realizations [81, 82, 83], experiments covering a record

distance of over 100 km in fibers were reported [84, 85]. Furthermore, protocols exploiting

entanglement in higher dimensions have been developed and successfully implemented [86,

87, 88, 89, 90, 91, 92]. These protocols attract attention from the quantum cryptography

community due to the possibility of transferring a high number of bits per photon.

Hacking techniques

In the ideal scenario of perfect devices, the possible attacks performed by a potential

eavesdropper, Eve, are grouped in three categories: individual, collective and coherent

attacks. In individual attacks, Eve acts on each qubit sent through the quantum

communication channel separately and independently. In the case of collective attacks,

Eve still interacts independently with each qubit exchanged by Alice and Bob but she

does it by using one or more independent ancillary qubits. At any point in time, she can

then perform a joint measurement on all the ancillas. Finally, coherent attacks are those

in which Eve prepares an entangled state of ancillary qubits to be interacted with the

qubits of the channel before being measured jointly. An information-theoretic (perfect)

secure protocol must be proven secure against all these possible attacks, which has been

done for the BB84 protocol and its entanglement-based version, BBM92 [93, 94, 95].

These security proofs also extend to the E91 protocol. Statistical effects due to the finite

size of the key should also be taken into account for practical applications [96].

Intuitively, the security of QKD is based on the fact that any attempt of measuring a

qubit alters it in a way that is detectable by the communication parties. At the same time,

the no-cloning theorem prevents Eve from copying the transmitted qubits and acting on

the copies without disturbing the original qubits. From the amount of alteration, Alice

and Bob quantify the maximum amount of information leaked to a third party and apply

techniques for its arbitrary reduction.

33



1.6 Quantum communication

As an example, the simplest individual attack in the BB84 protocol - the intercept-

resend attack - is considered. For this attack Eve measures each transferred qubit at

random in one of the two possible preparation bases and sends to Bob another qubit,

which is prepared according to the measurement outcome. Whenever Eve’s measurement

basis and Alice’s preparation basis do not coincide, which happens in 50% of the cases,

Bob receives the wrong qubit. This leads to an error in half of the useful cases for key

generation, thus determining a QBER of 25% in the sifted key. If Bob detects such a

large error, an intercept-resend attack is deduced and the key is discarded.

Even though the basic QKD protocols can be proven perfectly secure in the ideal

case, imperfections in the actually employed devices make other attacks possible and

thus complicate the security proofs. Any QKD set-up is composed of three parts: the

source, the quantum channel and the detection system. Even in the ideal case, Eve is

free to access and alter the quantum channel as she wishes, so attacks based on device

imperfections focus on the source or the detectors.

The main attack at the source level is the photon-number-splitting (PNS) attack

[97, 98]. This attack exploits the fact that the source can emit multiple copies of the

same qubit. In the language of single-photon sources, this means that the source emits

multi-photon components. For practical reasons, the most used photon sources for QKD

are phase-randomized attenuated lasers, as they are cheaper and simpler to use than

actual single-photon sources. They produce a state that can be described, for security

analysis, by the following density operator:

ρ̂ =
∞∑
n=1

P (n)|n⟩⟨n|, (1.45)

where |n⟩ is the n-photon Fock state in a given mode and P (n) = e−µ µn

n! is the Poisson

distribution in photon number with average µ. Security of most QKD protocols, including

BB84, is granted only for the single-photon component, therefore, typically, µ is set to be

lower than 1. Nevertheless, the multi-photon components may still be significant, thus

providing a tool for Eve to extract information on the key, as it is described below, with
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reference to a BB84 protocol in which Alice sends photons to Bob.

In a PNS attack, Eve performs a quantum non-demolition measurement [99, 100] on

each quantum signal sent by Alice. With this measurement Eve can infer the photon

number of the signal without destroying photons. If she obtains n = 1, she blocks the

signal, otherwise she splits it in two parts, keeps one of the parts for herself and sends the

other one to Bob. In order to compensate for the introduced losses, Eve can increase the

channel transmission, t, defined as the probability that a single photon leaving Alice’s

laboratory reaches Bob. Full compensation is possible only if t < pm, where pm is the

probability of multi-photon pulses. In this case, Eve obtains a copy of each qubit received

by Bob and, therefore, she can extract the full key after the information on the bases

is revealed during the sifting process. If t > pm, instead, Eve is forced to let some

single-photon pulses reach Bob, in order to stay undetected. Hence, she can obtain only

partial information on the key. The parameter pm therefore sets a lower bound to the

channel transmission, which limits the maximum distance for secure QKD.

Bob could, in principle, counter the described PNS attack by measuring the photon-

number statistics of the received pulses and comparing them with the expected specifica-

tions of the source specifications, provided by Alice, also taking into account the channel

losses. Unfortunately, this countermeasure can be neutralized by more sophisticated

PNS attacks, in which Eve blocks or releases the pulses sent by Alice such that the

photon-number statistics are preserved [101]. Luckily, a solution to this problem was

found in the decoy-state methods, which will be described in the next section.

A more dangerous class of attacks involves the detectors. The increased danger comes

from the fact that while Alice and Bob can somehow control what they emit, they are

forced to let signals from the outside reach their detection stages. These signals could be

used to change their devices in a way that is advantageous for eavesdropping. Among

the proposed attacks, the most powerful one is the detector-blinding attack [102], which

was also successfully demonstrated on some practical types of QKD sytems [103].

This attack exploits the fact that the typical detectors used in QKD, InGaAs/InP

avalanche photo-diodes (APD), can be switched by bright laser light between their two
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possible mode of operations - linear mode and geiger mode [104]. For QKD the APDs

are operated in geiger mode, meaning that they produce a macroscopic current when

hit by a single photon. When this current exceeds a certain threshold value Ith, set

by the read-out electronics, a “click”, i.e. a single-photon detection, is recorded. The

attack consists in “blinding” the detectors by sending a strong laser pulse, which makes

them switch to linear mode. In this regime, the detectors just provide a current that is

proportional to the input optical power. The threshold current Ith then sets a threshold

input optical power, Pth, above which a click is recorded.

After blinding Bob’s detectors, Eve can perform an intercept-resend attack where,

instead of sending single photons to Bob, she sends bright pulses with power P such that

P is above Pth, but
P
2 is not. Consequently, when Bob measures in a different basis than

Eve’s, the pulse is split in two pulses of half power and does not produce a single-photon

detection. All Bob’s detections, therefore, correspond to cases in which he chooses the

same basis as Eve, who can obtain full information on the key without increasing the

QBER.

There are several strategies to counter detection-based attacks. For instance, the

detection systems can be modified such that they are no longer vulnerable to one

or more given attacks. The drawback of this method is that the devices need to be

continuously upgraded as new attacks are discovered. Another possibility is including

detector imperfections in the security analysis of QKD protocols so as to calculate

the maximum amount of secure-key rate that is achievable. Modelling the detectors’

behaviour however is quite challenging due to the many possible effects that are involved.

Furthermore, in some cases, it is not possible for Alice and Bob to establish a secure key.

A more effective solution is to design new QKD protocols in which no assumption

on the detectors is made. With such schemes, in principle, the detectors can even be

controlled by the eavesdropper. This is the basic assumption of measurement-device-

independent (MDI) QKD, which will be described after the next section.
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Decoy-state method

The decoy-state method is an effective technique to detect and counter any PNS attack

[105, 106, 107, 108]. The starting point for the development of this method is the

consideration that a PNS attack causes an abnormally higher channel transmission

probability, or yield, for pulses containing more than one photon, than for single-photon

pulses. Alice and Bob can then test the photon-number-dependent yields of the channel

to detect potential PNS attacks.

In order to do that, Alice must use at least two different kinds of pulses, which are

sent at random: signal pulses, used for transmitting the key digits, and decoy pulses,

with different photon-number statistics, used for verification. Except for the different

statistics, the two categories of pulses must be completely identical so that Eve cannot

know whether a given measured photon number, n, comes from a signal or a decoy pulse.

This means that, even assuming the presence of an eavesdropper, the yield, yn, and the

error rate, en, for a pulse with photon number n, do not depend on which distribution

the pulse belongs to. In the verification phase, Alice reveals the position of the signal

and decoy states so that the channel yields can be characterized and a potential PNS

attack can be detected.

Decoy states may be generated by modulating the intensity of a single laser or,

alternatively, by using different lasers. Both techniques determine the generation of

pulses with different Poisson distributions, Pµ(n), with different values of µ. The overall

yeld and error rate for each decoy distribution are then, respectively:

Yµ =
∞∑
n=0

Pµ(n)yn (1.46)

QBERµ =
1

Yµ

∞∑
n=0

Pµ(n)enyn, (1.47)

from which the quantities yn and en can be extracted. In general, even in the case of an

attempted attack, Alice and Bob might still be able to establish a secret key. In order to

decide if that is the case and to calculate the secret key rate, they need to estimate the
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single-photon yield, y1 and error rate, e1, which can be obtained from Equations 1.46. In

practice, a good estimation is already possible with three values of µ, one for signal and

two for decoy states [107, 108].

The decoy-state technique allowed for an extension of the maximum distance at which

QKD can be performed, even when using an imperfect source. From the experimental

point of view, after the theoretical development of the decoy-state technique, several

implementations have been realized [109, 110, 111, 112]. Nowadays, this concept represents

a standard technique for QKD. Decoy-state QKD was demonstrated over 1200 km in

free-space satellite-based communication, using polarization encoding and reaching a

secure key rate of 1.1 kbit/s [79]. In fiber, a record distance of 421 km was covered, with

time-bin encoding and a secure key rate of 6.5 bits/s [113]. Over a shorter fiber distance

of 45 km, within Tokyo metropolitan area, a record secure key rate of 304.0 kbits/s was

reported using phase encoding [114].

Measurement-device-independent (MDI) QKD

The most practical solution to attacks at detection is the MDI-QKD protocol, developed

by Lo and collaborators in 2012 [115]. In this scheme, Alice and Bob do not perform any

detection, which is delegated to an untrusted third party, Charlie. However, the protocol

assumes that the sources of quantum states are trusted and do not present loopholes.

In MDI-QKD, each party generates at random one of the four possible BB84 states

and sends it to Charlie. Charlie, if honest, performs a Bell-state measurement on the

global state received by Alice and Bob, which consists in a simultaneous projection onto

the four Bell states used for the E91 protocol, |ψ±⟩ and |φ±⟩. The protocol is described

in terms of polarization. The two bases for encoding the BB84 states are then those of

linear polarizations {|H⟩, |V ⟩} and {|D⟩, |A⟩}, where D and A stand for “diagonal” and

“anti-diagonal”, and indicate polarization directions rotated counterclockwise by π
4 and3

4π

with respect to |H⟩, respectively. Here, |H⟩, |V ⟩, |D⟩, |A⟩, indicate single-photon states

in the polarization mode corresponding to the letters.

The protocol does not require Charlie to perform a complete Bell-state measurement,
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Figure 1.6: Setup for MDI-QKD. Alice and Bob send single-photon pulses, potentially together
with decoy states, to an untrusted party, Charlie, who is the only party performing detection.
Alice and Bob prepare each BB84 states at random and Charlie implements a partial Bell-state
measurement, capable of distinguishing |ψ−⟩ from |ψ+⟩. The pulses sent by Alice and Bob reach
a beam splitter (BS), which maps the state |ψ+⟩ into 1√

2
(|H⟩1|V ⟩1 − |H⟩2|V ⟩2) and the state

|ψ−⟩ into 1√
2
(|H⟩1|V ⟩2 − |V ⟩1|H⟩2), where 1 and 2 are the spatial modes at the outputs of the

beam splitter, respectively. The polarizing beam splitter (PBS) at each output transmits the
horizontal polarization and reflects the vertical one, therefore |ψ+⟩ determines a coincidence
between D1H and D1V or between D2H and D2V . By contrast, |φ−⟩ can only give coincidences
between D1H and D2V or between D1V and D2H . The other two Bell states are converted by the
beam splitter to states where both photons always have the same polarization and therefore do
not yield coincidences.

i.e. a measurement that can distinguish each Bell state from any other. Only distinction

between the states |ψ+⟩ and |ψ−⟩ is needed, which can be performed with linear optics

using the setup in Figure 1.6. The state |ψ+⟩ determines a coincidence between detectors

D1H and D1V or between D2H and D2V , whereas |ψ−⟩ makes detectors D1H and D2V or

D2H and D1V click simultaneously. By contrast, the states |φ+⟩ and |φ−⟩ do not cause

any coincidence detection.

Each product of BB84 states produced by Alice and Bob can be written in terms of

the four Bell states, as these constitute a basis of the four-dimensional space associated

to the polarization of the two photons. When Alice and Bob both choose to use the

H-V basis, coincidences arise only if they generate different states, as only the states

|H⟩A|V ⟩B and |V ⟩A|H⟩B contain |ψ+⟩ and |ψ−⟩. In the diagonal basis, instead, the

states |D⟩A|D⟩B and |A⟩A|A⟩B contain |ψ+⟩, while |D⟩A|A⟩B and |A⟩A|D⟩B contain
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|ψ−⟩. Therefore, based on which pair of detectors gives a coincidence, the parties can

deduce whether they encoded identical or different states. If the parties choose different

bases, the different encoded states are not distinguishable.

After performing the (partial) Bell-state measurement, Charlie announces the detec-

tion outcome. Alice and Bob, after the communication phase, declare their choices of

bases and only keep the iterations where coincidence events were recorded and they chose

the same basis. Using the information on which detectors fired, they can establish the

correlation between the encoded states and, consequently, they can share a sifted key.

As usual, they estimate the QBER on a sub-set of the key for detecting eavesdropping

and verifying Charlie’s honesty.

The decoy-state method may be applied to make the protocol secure against PNS

attacks. In this case, the fact that the detectors are not controlled by Alice and Bob

complicates the security analysis. Nevertheless, this analysis was conducted and several

decoy-state techniques for MDI-QKD have been proposed [76].

Experimentally, MDI-QKD presents an additional challenge with respect to the other

schemes discussed so far: the two states produced by Alice and Bob have to interfere1 at

Charlie’s station and, therefore, the corresponding photons have to be indistinguishable,

except for polarization. In particular, they need to arrive simultaneously at Charlie’s

beam splitter, which could be particularly challenging when applied to long distances.

Stabilization techniques for the length of the two paths between Alice and Charlie, and

Bob and Charlie, must therefore be enforced.

The feasibility of MDI-QKD was shown in 2013 by several groups [116, 117, 118, 119].

After those first demonstrations, effort has been put in extending the distance covered by

the protocols and in increasing the key rate. To date, a maximum distance of 404 km was

achieved in fiber using time-bin encoding, with a secret key rate of 3.2× 10−4 bits/s [120].

The highest reported key rate over long distance communication was 2.2 × 103 bits/s

over 102 km of fiber, with polarization encoding [121]. Finally, a real-world MDI-QKD

1The interference mentioned here is a two-photon interference and not the single-photon interference
described in Section 1.3
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network with three users and one untrusted relay was implemented in the city of Hefei in

China [122].

Technological challenges

Even though great progress has been made in the field of QKD since its original proposal,

the realization of a full, ideally world-wide, QKD network that can be used in everyday

life still represents a challenge. It has been proven that, without intermediate nodes,

the secure key rate shared by Alice and Bob is proportional to the transmittance of the

channel between them [123]. As the transmittance of optical fibers scales exponentially

with the distance, this strongly limits the maximum distance at which QKD can be

performed.

In classical optical communication, the problem of losses in optical fibers is solved

by using repeaters, which amplify the signal at intermediate nodes. In principle, this

concept can be applied also to quantum communication, but in this case the realization of

a repeater is far more complicated. A quantum repeater typically uses a combination of

entanglement swapping and purification in order to transport an entangled state through

long distance [9, 10]. In order to be effective, these schemes need to use quantum memories,

which typically require interactions between light and matter. Significant improvements

in the realization of light-matter hybrid systems would therefore allow for the realization

of a large-scale quantum network [124]. However, at the current technological stage the

performance of quantum memories is still limited both in terms of storage time and

fidelity of the retrieved state, which prevents the practical implementation of quantum

repeaters [125]. As an alternative, all-optical quantum repeaters have been proposed [11],

but they require large multi-photon entangled states, whose preparation is challenging,

as discussed already for MBQC.

A promising route to extend the distance covered by QKD is satellite communication.

Above a given height in the atmosphere, in fact, optical absorption is practically zero.

This allows to distribute keys between parties that are thousands of kilometers distant

on Earth, by using a satellite as a relay [79, 80]. This kind of configuration is also

41



1.6 Quantum communication

particularly suitable for MDI-QKD.

Besides extension of distance, another technological challenge consists in the realization

of compact and cheap devices for QKD, which can be practically and economically

convenient. The most natural solution is the employment of integrated devices, some of

which have already been demonstrated [126, 127, 128].

Important insights may also come from theoretical research. On the one hand, an

improved security analysis of the current protocols may result into higher secure key

rates, even without technological improvements; on the other hand, new protocols might

result in better performance or simpler setups, as it will be discussed in the next two

sections .

Twin-field QKD

A way to overcome the fundamental rate-distance limit of repeaterless QKD is twin-field

(TF) QKD, which was proposed in 2018 by Lucamarini et al. [129]. The inventors of this

protocol showed a quadratic improvement in the secure key rate, which is found to be

proportional to the square root of the channel transmittance between Alice and Bob. The

scheme is an example of MDI-QKD, based on single-photon interference and consequently

single-photon detection, instead of coincidence detection, which is the reason for the

quadratic improvement. A comparison of the rate-distance dependence for the main

QKD schemes developed so far can be found in Figure 1.7.

In TF-QKD, Alice and Bob both use phase-randomized dim laser pulses as sources,

together with decoy states. The parties apply two additional phases, φb and φk, which

can only be 0 or π and are selected at random. The value of the phase φb corresponds

to the basis choice of the BB84 protocol, while the value of φk determines the key bit.

The pulses are sent to a third party, Charlie, who interferes them at a beam splitter

and records single-photon detections at detectors D0 and D1 (see Figure 1.8). Charlie

publicly declares the detection result for each pulse. In the verification phase, Alice and

Bob declare for each pulse both the random phases applied to the pulses and the two

phases φb. According to which detector clicked, Alice and Bob can deduce the parity of
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Figure 1.7: Theoretical bounds and experimental results for QKD in fiber. The solid
lines indicate the theoretical bounds for different QKD schemes, where I indicates decoy-state
MDI-QKD, II general decoy-state QKD, III single-photon QKD and IV the theoretical bound
found in [123]. It is clear that ideal TF-QKD surpasses all these bounds at large distances,
approaching the single-repeater bound. Imperfect QKD instead surpasses the repeaterless bounds
only for a specific range of distances. The experimental results are shown with symbols and are
numbered in chronological order. The figure is adopted from [129].
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Figure 1.8: Sketch of TF-QKD scheme. Alice and Bob both have a light source (LS), which is
typically a laser, an intensity modulator (IM), a phase shifter (PS) and a variable optical attenuator
(VOA). The intensity modulator is used to randomly variate the average photon number in the
light signal for the decoy-state method. The phase shifter is used to apply the random phases as
well as the phases φb and φk. The variable optical attenuator is used to switch at random between
dim and bright pulses. The bright pulses are used to actively stabilize the interferometric paths.

the encoded bits and, consequently, establish a shared key.

Technically, the main challenge of the protocol is that single-photon interference

requires phase stability between the paths connecting Alice to Charlie and Bob to Charlie,

respectively. This can be achieved with active stabilization performed by Charlie, using

bright pulses (classical regime), which are sent at random by the two users.

Variations of the basic protocol have been proposed and analysed in the asymptotic-

key regime [130, 131, 132, 133] and some experiments proving the feasibility of the concept

have been realized [134, 135, 136, 137]. Recently, a TF-QKD protocol was implemented

over 509 km of optical fiber [138], showing a secure key rate of 1.79× 10−8 bits/s, which

surpasses the repeaterless bound in [123].

Semi-classical QKD

All the QKD protocols discussed up to now assume that both parties Alice and Bob are

“quantum” in nature. This means that both parties are allowed to prepare and/or measure

single-photon states (or laser light attenuated to single-photon level) in at least two bases.

In fact, if both parties are restricted to classical communication, unconditional security
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is impossible to achieve for the key distribution problem. A natural question then arises,

namely “how quantum” must a protocol actually be to obtain unconditional security?

This question, besides its fundamental interest, may have practical consequences, as

the quantum nature of the parties sets stricter technological requirements than classical

communication.

To help study this, the semi-quantum model of cryptography was introduced in 2007

by Boyer et al. [139]. In this model, one party, say Bob, is restricted to operations

on qubits that have a classical counterpart, such as preparation or measurement in

a single basis. By contrast, Alice is quantum, i.e. she is only limited by the laws

of physics. The Boyer protocol requires Alice and Bob to share a two-way quantum

communication channel. Alice sends Bob N qubits that are randomly prepared in the

four BB84 states. For each qubit, Bob can choose between two actions: measuring the

qubit in the computational basis and re-sending it in the same state he found, or reflecting

the qubit without any modification.

Bob sends the first qubit after receiving the last qubit from Alice, without altering the

qubits order. Consequently, Alice measures the qubits from Bob in the same basis in

which she prepared them.

After the communication is over, Alice reveals the bases she chose and Bob declares

his actions. They obtain the sifted key from the cases in which Alice prepared a qubit in

the computational basis and Bob measured. The cases in which Bob reflected the qubit

are used to detect the presence of eavesdroppers, while the cases in which Alice prepared

a qubit in the diagonal basis are discarded. Finally, as usual, Alice and Bob check the

QBER on a sub-set of the key and apply error correction and privacy amplification

algorithms. This protocol was proven to be robust, meaning that Alice and Bob can

always detect the attempts of the eavesdropping to obtain the key.

Most SQKD protocols up to this point have been theoretical in nature. In fact, on

the one hand they often require devices that are still far from actual realization, such

as quantum memories with long storage time; on the other hand they typically assume

perfect qubit channels, i.e., for instance, no photon loss and multi-photon emission are
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permitted for their security to be valid [140, 141, 142].

A few SQKD protocols facing these problems were proposed recently [143, 144],

although no full proof of security was provided. meaning that their key rates and noise

tolerances are still unknown. Indeed, up to this point, all information theoretic security

proofs of SQKD protocols have required perfect qubits as an assumption. Furthermore,

they have always been conducted in the asymptotic-key regime.

In 2015, a new semi-quantum protocol, referred to as a a mediated SQKD protocol,

was introduced [145], which allows two “classical” users to establish a shared secret

key with one another, using the help of a quantum server who must prepare, and later

measure, quantum bits. This quantum server does not need to be trusted, and in fact

could be an all-powerful adversary. For each iteration of the protocol, the server prepares

and sends to the parties the Bell state |φ+⟩ = 1√
2
(|0⟩A|0⟩B + |1⟩A|1⟩B), where A and B

stand for Alice and Bob. The two parties decide at random whether to reflect back the

received qubit or to measure it in the computational basis {|0⟩, |1⟩}.

The server performs a Bell measurement on the returned qubits and publicly declares

the result, in particular “1” if the two-qubit state is found to be in |φ+⟩ or“-1” in the

case of |φ−⟩. In absence of noise or eavesdropping, the results |ψ±⟩ are not possible.

After the quantum communication phase, Alice and Bob share their choices (reflection or

measurement) over an authenticated classical channel. They use the iterations in which

they both reflected the qubit for detecting eavesdropping and server dishonesty, as, in

those cases, the server should always declare “1”. For key generation, they only keep the

cases in which they both measured and the server declared “-1”. This choice turns to be

important for security, which was proven, but again, only for the perfect-qubit scenario

in the asymptotic-key regime.

The original mediated SQKD protocol and its subsequent variations [146, 147] require

the generation, manipulation and measurement of entangled states, which often represents

a technical challenge. Furthermore, in all of them, Alice and Bob need to be able to

generate quantum states in the computational basis, which, from the experimental point

of view, translates into generation of single photons. This means that, in practice, the
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parties must effectively provide quantum resources.

1.6.2 Quantum secure direct communication (QSDC)

Quantum secure direct communication (QSDC) unifies in one single technique QKD and

the subsequent encrypted classical communication. The goal of two parties performing

QSDC is not sharing a random sequence of bits but directly transferring a classical

meaningful message, which is encoded in quantum states.

In this case, however, it is harder to attain perfect security, as, contrary to QKD,

the parties cannot discard the message, or a part of it, if they realize that information

has leaked out to an eavesdropper. This complicates the design and implementation of

QSDC protocols. Furthermore, the practical advantages of QSDC over QKD followed

by classical communication are not fully clear. Nevertheless, QSDC is an interesting

intellectual problem and the methods developed in this field can be beneficial for quantum

communication in general, including QKD.

The first QSDC protocol was proposed by Boström and Felbinger in 2002 [148]. In

this scheme, the message receiver, say Bob, prepares the two-photon Bell state |ψ+⟩

for each iteration of the protocol and transmits one of the photons to the sender, Alice.

Alice randomly switches between two modes: message mode, with probability 1− c, and

control mode, with probability c. In the message mode, Alice performs one of the two

unitaries U0 and U1 on the received qubit, according to the message bit she wants to

encode, and returns the photon to Bob, who performs a Bell measurement to read out

the encoded bit. Here U0 is the identity, which leaves the qubit and the global state |ψ+⟩

unaltered, while U1 adds a π-phase to |1⟩ and leaves |0⟩ unchanged, thus transforming

the state |ψ+⟩ into |ψ−⟩.

In the control mode, Alice measures her qubit in the computational basis {|0⟩, |1⟩}

and communicates the result to Bob over an authenticated classical channel. Bob, then

performs the same measurements and check if the two results are compatible. This mode

is used to detect the presence of eavesdroppers. This scheme, also known as “ping-pong

protocol”, was shown to be quasi-secure, meaning that the information leakage about
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the message is not zero but asymptotically tends to zero as c is increased.

After the original proposal, several researchers showed that the ping-pong protocol is

vulnerable to attacks in case of losses or noise in the quantum channel between Alice and

Bob [149, 150, 151]. For this reason, some improvements were proposed. In particular,

Cai and Li [152] suggested to use two measurement bases instead of one in the control

mode, to attain security also in presence of losses and noise, and four operators instead of

two in the message mode in order to double the transmission capacity. Lucamarini and

Mancini [153] replaced the Bell states with simple BB84 states sent by Bob to Alice and

back. In this scheme, the two operators U0 and U1 become the identity and the bit flip

in both bases, respectively. The Bell state measurement performed by Bob is replaced by

a measurement in the same basis used for preparation and, in the control mode, Alice

not only measures in two bases but sends to Bob a BB84 state according to the result of

the measurement. In this way, the authors show that the protocol is quasi-secure also in

the case of losses and noise, and perfectly secure if used for QKD.

The first fully secure QSDC protocols, the two-step protocol and the quantum one-

time-pad protocol (also known as DL04) were presented by Deng, Long and collaborators

in 2003 and 2004, respectively [154, 155]. In both protocols security is ensured by

a procedure that is composed of two stages. In the first stage, one party distributes

quantum states to the other and, after that, both parties verify whether eavesdropping

occurred. In the second stage, the message is encoded and transferred by using the states

distributed in the first stage. If the distributed states were not eavesdropped during the

first stage, then the message is secure.

For instance, in the two-step protocol, Alice prepares a sequence of identical Bell pairs

and sends one photon of each pair to Bob. After Bob receives all the photons, the two

parties randomly select some pairs and perform measurements to detect eavesdropping.

This is the first stage. If no eavesdropping is detected, it means that Alice and Bob

safely share several copies of a Bell state. At this point Alice encodes message bits in

the photons she kept and sends them to Bob. Even if now an eavesdropper acts on the

channel between Alice and Bob, no information on the message can be extracted from a
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single photon that is part of a Bell pair. Alice may anyway randomly place some check

bits for additional eavesdropping detection and error checking.

The DL04 protocol adopts a similar procedure, but now, during the fist stage, the

receiver, Bob, sends BB84 states to Alice, who randomly performs measurements in two

bases on some of them, for verification purposes. If the verification is successful, she

encodes information in the remaining states and sends them back to Bob. Generalizations

of these schemes in higher dimensions were also proposed [106, 156, 157].

These protocols are not easily implementable, as they need quantum memories with

long storage times. However, some proof-of-principle implementations of the two-step

and the DL04 protocol were realized [158, 159, 160]. In particular, the experiment in

[159] used an atomic quantum memory to show the basic stages of the two-step protocol,

while in [158, 160] long fibers were used as memories. These realizations show that the

experimental requirements for QSDC still represent a challenge, preventing this technique

to be used for practical applications.
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Chapter 2

Generation of Single Photons

Through Spontaneous Parametric

Down-conversion

The technique used for single-photon generation in all the works comprising this Ph.D.

project, and described in the next chapters, is spontaneous parametric down-conversion

(SPDC). SPDC is a non-linear optical process occurring in non-centrosymmetric crystals,

which is largely used in quantum optics experiment. This chapter aims to give a general

picture of SPDC, and it is structured as follows. At first, some basic concepts of

second-order non-linear optics are introduced, then, SPDC is explained in detail, both

in single-pass and resonant configuration. In the end of the chapter, some methods for

temporal and spectral characterization of SPDC-based single-photon sources involving

quantum correlation functions are described. The present chapter serves in particular as

theoretical background for Chapter 5, which describes the realization and characterization

of a narrow-band SPDC-based single-photon source.
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2.1 Non-linear optical processes

Maxwell’s equation in a source-free dielectric medium involve four fields, the electric field

E, the magnetic field H, the electric flux density D and the magnetic flux density B. D

and B include the response of the medium, according to the following relations:

D = ϵ0E+P (2.1a)

B = µ0H+M, (2.1b)

where P and M are the polarization and the magnetization density of the medium,

defined as the average spatial density of total electric and magnetic dipole moment

induced by E and H, respectively. The fields P and M in turn depend on E and H via

expressions that are known as constitutive relations. In the following discussion, only

non-magnetic media are considered, for which M = 0 and P is a function of the electric

field only.

For applied electric fields that are small compared to the inter-atomic fields in the

medium, the function P(E) can be expanded in Taylor series around E = 0, thus

obtaining, in the general case of an anisotropic medium:

Pi = ϵ0(χijEj + χ
(2)
ijkEjEk + χ

(3)
ijklEjEkEl + ...), (2.2)

where the subscripts indicate the vectorial components of the fields and summation over

repeated indices is assumed. The tensor χ(n) is called n-th order non-linear susceptibility

and, in general, depends on spatial and temporal coordinates. In most cases, however,

this dependence can be neglected. Let us consider for simplicity the case of an isotropic

medium, where P and E are parallel. Equation 2.2 becomes:

P = ϵ0(χE+ χ(2)E2 + χ(3)E3 + ...). (2.3)

The terms in the series decrease in magnitude as the corresponding non-linear order
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increases, meaning that in most situations the sum can be truncated after the first few

addends. As this chapter aims to examine second-order non-linear effects, the sum is

truncated after the χ(2)-term. This kind of non-linearity vanishes in centrosymmetric

media, where χ(2) = 0. By separating the linear and non-linear contributions to P,

Equation 2.3 may be re-written as:

P = ϵ0χE+ ϵ0χ
(2)E2 = PL(E) +PNL(E), (2.4)

from which the equation governing the propagation of the field in the medium can be

derived [161]:

∇2E− 1

c2
∂2E

∂t2
= µ0

∂2PNL(E)

∂t2
, (2.5)

where c = c0
n , with c0 = (

√
ϵ0µ0)

−1 speed of light in vacuum and n =
√
1 + χ refractive

index of the medium. Equation 2.5 can be interpreted as a wave equation with a field-

dependent source, which is determined by the non-linear polarization. This differential

equation is at the core of non-linear optics.

In order to provide an intuitive picture of second-order non-linear processes, Equation

2.5 can be analysed in the framework of scattering theory. In this framework, an external

field E0 is incident on a finite non-linear medium, such as a non-linear crystal. The

non-linear polarization induced by E0, PNL(E0), behaves as a radiating source for a

secondary field, which, together with E0, determines the field E1. The field E1 in turn

produces a non-linear polarization PNL(E1), which is used to calculate the field E2 and

so on, iteratively. If the external field is weak enough, the procedure can be stopped at the

first iteration (first Born approximation [162]). By analysing PNL(E0) then, all processes

that take place in the crystal can be deduced. From this point on, the dependence of

PNL on E0 will be omitted for simplicity. Furthermore, the input field will be assumed

to have only one one vectorial component so that the analysis can be done in terms of

scalar quantities.

Let us consider a monochromatic wave incident on the crystal so that E0 = Re(Ae−iω0t)),
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where A is a complex quantity. Then:

PNL =
ϵ0χ

(2)

2
|A|2 + ϵ0χ

(2)

2
Re(A2e−2iω0t) = PNL(0) + PNL(2ω0). (2.6)

The non-linear polarization is composed of two terms: a DC term, called optical recti-

fication term, and a term at frequency 2ω0, which radiates a wave at double the input

frequency. This process is called second harmonic generation (SHG). Equation 2.6 shows

that the term PNL(2ω0), and consequently the generated second harmonic field, is pro-

portional to the square of the amplitude of the input field. This means that the second

harmonic intensity, I(2ω0) is proportional to the square of the input field intensity. It

can be also shown that I(2ω0) is proportional to the square of the length of the crystal

[163]. Second harmonic generation is a well-known process at the core of many non-linear

optical devices.

In the case of an external field comprising two monochromatic waves at frequencies

ω1 and ω2, meaning that E0 = Re(A1e
−iω1t) +A2e

−iω2t)), the non-linear polarization is

a sum of the following terms:

PNL(0) =
ϵ0χ

(2)

2
(|A1|2 + |A2|2), (2.7a)

PNL(2ω1) =
ϵ0χ

(2)

2
Re(A2

1e
−2iω1t), (2.7b)

PNL(2ω2) =
ϵ0χ

(2)

2
Re(A2

2e
−2iω2t), (2.7c)

PNL(ω+) = ϵ0χ
(2)Re(A1A2e

−i(ω1+ω2)t), (2.7d)

PNL(ω−) = ϵ0χ
(2)Re(A1A

∗
2e

−i(ω1−ω2)t). (2.7e)

The first term is again a DC optical rectification term, which is followed by two second

harmonic terms at double the incident frequencies. But this time two new terms appear:

PNL(ω+), which oscillates at the sum frequency ω1 + ω2, and PNL(ω−), at the difference

frequency ω1 − ω2. . The corresponding processes are called frequency up-conversion or

sum frequency generation (SFG) and frequency down-conversion or difference frequency
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generation (DFG), respectively. The non-linear interaction between optical waves therefore

induces a frequency mixing. By going beyond the first Born approximation, it is clear

that the generated SFG and DFG waves can interact with either of the two input fields

to produce radiation at the frequency of the other one. The second-order non-linearity

of the crystal therefore allows for mutual interaction among three waves at different

frequencies: this process is called three-wave mixing.

Let us then consider the interaction of three monochromatic plane waves with wave

vectors k1, k2 and k3, respectively. In order for the three-wave mixing process to be

efficient, additional spatial and temporal phase-matching conditions must be satisfied, so

as to avoid destructive interference effects. By assuming ω3 > ω1,2, the phase-matching

conditions are:

ω3 = ω1 + ω2, (2.8a)

k3 = k1 + k2. (2.8b)

When waves 1 and 2 are used as inputs, wave 3 is generated through frequency up-

conversion. If wave 3 is one of the two inputs, a frequency down-conversion takes place.

Normally, only one process among those described by equations 2.7 is permitted by the

phase-matching conditions 2.8.

SHG can be regarded as a special case of frequency up-conversion where ω1 = ω2.

Excluding SHG, equations of classical electromagnetism do not permit three-wave mixing

processes with a single input wave. However, quantum theory predicts the possibility of

a frequency down-conversion process for which only wave 3 is impinging onto the crystal.

This phenomenon is at the heart of the single-photon sources commonly used in quantum

optics experiments and will be described in Section 2.2.

2.1.1 Phase-matching techniques

In order to discuss how phase matching can be achieved in three-wave mixing processes,

let us consider for simplicity the case where all the waves are collinear. Equations 2.8
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then become:

ω3 = ω1 + ω2, (2.9a)

n3ω3 = n1ω1 + n2ω2 (2.9b)

where ni is the medium refractive index for wave i. In general, n1, n2 and n3 are different

because of dispersion, therefore the two phase-matching equations are independent.

Uusally, second-order non-linear crystals, such as beta barium borate (BBO), lithium

triborate (LBO), lithium niobate (LN) or potassium titanyl phosphate (KTP), are

birefringent. This means that the refractive indices n1, n2, n3 are generally dependent

on the polarization of the corresponding waves and the angles between their propagation

directions and the crystal optical axes. These additional degrees of freedom can be tuned

so as to simultaneously satisfy equations 2.9.

Birefringent crystals are grouped in uniaxial and biaxial. In uniaxial crystals, the

refractive index ne for light polarized along one of the crystal axes, often indicated as

the optical axis, is different from the refractive index no along the other two axes. The

two indices ne and no are called extraordinary and ordinary index, respectively. One of

the most used uniaxial crystals is BBO, which is a negative crystal, where “negative”

means that ne < no, with normal dispersion, i.e. ne,o(ωi) > ne,o(ωj) if ωi > ωj . Biaxial

crystals, such as KTP, instead, have a different refractive index for each crystal axis. In

general, a light beam propagating in a birefringent crystal at an arbitrary direction, k,

presents two polarization modes with refractive indices depending on k. In the case of a

uniaxial crystal, the propagation direction is identified by the angle θ between k and the

optical axis. In this situation, one polarization mode is perpendicular to the optical axis

and experiences the ordinary index no, while the other polarization mode has a non-zero

component along the optical axis and an (extraordinary) refractive index that depends

on θ, ne(θ). The index neθ reduces to ne for θ = 90◦.

Let us consider the case of three-wave mixing in a BBO crystal, with the three

waves propagating at an angle θ with respect to the optical axis. Two phase-matching
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configurations are possible: 1) type-I phase matching, where wave 1 and wave 2 have

the same polarization, in this case ordinary. It follows that wave 3 is extraordinarily

polarized. 2) Type-II phase matching, for which wave 1 and wave 2 are orthogonally

polarized. Wave 3 must then be ordinarily polarized. The phase-matching Equation 2.9b

in the two cases reads:

Type I → ne(ω3, θ)ω3 = no(ω1)ω1 + no(ω2)ω2, (2.10a)

Type II → ne(ω3, θ)ω3 = ne(ω1, θ)ω1 + no(ω2)ω2. (2.10b)

By tuning θ it is possible to achieve phase matching for a large range of frequencies.

For different crystals, the allowed combinations of polarizations may be different. For

example, in the case of type-I phase matching in a positive uniaxial crystal with normal

dispersion, wave 3 must be ordinarily polarized. The described phase-matching technique

is also called critical phase matching, due to its sensitivity to the alignment of the involved

light beams. A major problem of this technique is that when θ ≠ 90◦, the intensity

distribution of any extraordinary beam propagating in the birefringent crystal drifts away

from the direction of the wave vector. This phenomenon, called spatial walk-off [164],

limits the effective length along which the different waves interact, thus reducing the

efficiency of the process. Furthermore, the three interacting waves must have different

polarizations, meaning that only non-diagonal components of the second-order non-linear

susceptibility tensor χ
(2)
ijk play a role in the process. These components are usually smaller

than the diagonal ones.

A technique that overcomes these issues is quasi-phase matching (QPM). The basic

idea of QPM is compensating the phase mismatch between the interacting waves via

a periodic spatial modulation of the non-linear susceptibility. In fact, the mismatch

∆k = k3 − k2 − k1 is fully compensated if χ(2) = Csin(∆k · r), where C is a constant
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[163]. The phase-matching conditions then become:

ω3 = ω1 + ω2, (2.11a)

k3 = k1 + k2 +G, (2.11b)

where G is the wave vector associated to the modulation of the non-linear susceptibility.

Practically, it is hard to produce a continuous harmonic variation of the properties

of a medium, whereas simpler periodic structures are more feasible. In general, any

periodic function can be expanded in Fourier series, that is as a sum of harmonic terms

of the form Cmsin(Gm · r), with m = (m1,m2,m3) and mi integer for i = 1, 2, 3. Then,

quasi-phase matching is achieved if ∆k = Gm for a given value of m of the Fourier series.

The other harmonic components do not contribute to the non-linear conversion, as they

do not determine any compensation of the phase mismatch. A non-harmonic periodic

structure, however, results into a reduced effective non-linear susceptibility, thus leading

to a decrease in the efficiency of the non-linear process. Nevertheless, the absence of

spatial walk-off and the possibility to exploit larger components of the tensor χ
(2)
ijk make

this technique preferable to critical phase matching in many situations.

Let us focus on collinear QPM. The simplest periodic structure in this case corresponds

to a medium whose non-linear susceptibility is periodically reversed in sign along one

coordinate axis, say z. If the modulation period is Λ, the non-linear susceptibility can be

expanded in Fourier series as
+∞∑

l=−∞
Gl sin(Glz), with Gl = l 2πΛ and l integer number. For

QPM, it must be ∆k = l 2πΛ for some l. The choice l = 1 leads to the highest effective

non-linear susceptibility and, in fact, is the most common one [163]. Equations 2.9

become:

ω3 = ω1 + ω2 (2.12a)

n3ω3 = n1ω1 + n2ω2 +
2πc0
Λ

. (2.12b)

Here nothing is assumed about the polarization and the direction of incidence of the
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2.2 Spontaneous parametric down-conversion

Figure 2.1: QPM with a periodically-poled crystal. QPM can be realized by periodically
reversing the polarization vector in a ferroelectric non-linear crystal, thus obtaining a periodic
inversion of the non-linear susceptibility χ(2). In the figure, collinear parametric down-conversion
is shown, for which kp = ks + ki +G, where G = 2π

Λ
is the compensation term provided by the

periodic structure.

three waves, since QPM may be achieved for almost any combination of these variables

by suitably choosing the period Λ. Typically, in quasi-phase-matched processes the three

waves are polarized along the optical axes of the crystal. In addition to type-I and

type-II processes, a type-0 process is also possible, for which all the waves have the same

polarization and the non-linear susceptibility is larger. This shows the higher versatility

of QPM with respect to critical phase matching.

The main technique for the fabrication of the described periodic structure is called

periodic poling (PP) and is applied to ferroelectric media, such as KTP and LN [165]. It

consists in periodically reversing the direction of the permanent spontaneously-formed

electric polarization of the medium by exposing it to an electric field. Typical poling

periods are of the order of µm. An example of poled crystal in a collinear QPM

configuration is shown in Figure 2.1.

2.2 Spontaneous parametric down-conversion

Spontaneous parametric down-conversion (SPDC) is the second-order non-linear process

for which an input photon, the pump photon, at frequency ωp, is converted into two

photons at lower frequencies ωs and ωi, traditionally called signal and idler photon,

respectively. SPDC can be interpreted as an ordinary down-conversion process where the

signal and idler fields are seeded by the quantum fluctuations of vacuum, rather than

by classical macroscopic fields. As such, it requires a quantum-mechanical treatment.
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In this section, the expression of the quantum state produced by SPDC will be derived

and its properties described. For simplicity, the analysis will be restricted to a collinear

SPDC process in which the three interacting fields are linearly polarized plane waves.

The three wave vectors are assumed to be parallel to the z-axis; consequently the three

directions of polarization are along either the x- or y-axis. The non-linear medium is a

crystal of length L.

In the interaction picture, the state of the signal and idler fields at time t, |ψ(t)⟩ is

given by:

|ψ(t)⟩ = T̂ e
1
i~

∫ t
0 ĤI(t

′)dt′ |ψ(0)⟩, (2.13)

where ĤI is the interaction hamiltonian and T̂ is the time-ordering operator [13]. At time

t = 0, no generation has occurred yet, therefore |ψ(0)⟩ = |0⟩, where |0⟩ is the vacuum

state. If the interaction strength is small, the exponential function can be expanded in

Taylor series, of which only the first two terms are considered, thus obtaining:

|ψ(t)⟩ ≈

(
1 +

1

i~

∫ t

0
dt′ĤI(t

′)− 1

2~2

∫ t

0
dt′
∫ t

0
dt′′ĤI(t

′)ĤI(t
′′)

)
|0⟩. (2.14)

The addends in the previous expression are the first three terms of the Dyson series

associated to the quantum evolution operator [13]. The interaction energy in a generic

three-wave mixing process is given by [166]:

UI =
1

2

∫
V
dVPNL ·E =

1

2
ϵ0

∫
V
dV

3∑
j,k=1

χ
(2)
ijkEiEjEk, (2.15)

where V is the interaction volume. For the process under consideration, the sum in 2.15

reduces to only one term comprising the three scalar components of the interacting fields:

UI =
1

2
ϵ0deff

∫
V
dV EpEsEi, (2.16)

in which the subscripts p, s and i indicate pump, signal and idler, respectively, and the

quantity deff encloses the elements of the χ(2) tensor. From expression 2.16, the form of

59



2.2 Spontaneous parametric down-conversion

the operator ĤI can be deduced:

ĤI =
1

2
ϵ0deff

∫
V
dV Ê(+)

p Ê(−)
s Ê

(−)
i + h.c, (2.17)

where, according to equations 1.15, Ê
(+)
µ and Ê

(−)
µ are given by:

Ê(+)
µ = i

∫ ∞

0
dωµAµ(µ)âµ(ωµ)e

i(kµ(ωµ)z−ωµt), (2.18a)

Ê(−)
µ = −i

∫ ∞

0
dωµAµ(µ)â

†
µ(ωµ)e

−i(kµ(ωµ)z−ωµt), (2.18b)

with Aµ(ωµ) =
√

~ωµ

4πcϵ0n(ωµ)AQ
and µ = p, s, i. Assuming that the pump field comes from

a laser above threshold, its quantum properties can be neglected and the corresponding

operator be replaced by a classical field:

Ê(+)
p → Ep = Ap

∫ ∞

0
dωpα(ωp)e

i(kp(ωp)z−ωpt). (2.19)

Normally, the time interval between two consecutive photon emissions for an SPDC-based

single-photon source is far longer than the time interval in which the three fields interact.It

is then legitimate to assume that the final state is measured long after the interaction

is over. Furthermore, there is no reason why the system should keep a memory of the

initial time, which then can be taken to be −∞. These two considerations allow one to

extend the time integration limits in Equation 2.14 to infinity. In formulas:

∫ t

0
dt′ĤI(t

′)|0⟩ →
∫ ∞

−∞
dt′ĤI(t

′)|0⟩. (2.20)

After performing the volume and time integrals, it is obtained [166]:

∫ ∞

−∞
dt′ĤI(t

′)|0⟩ = (2.21)

= −2V ϵ0deffAp

∫ ∞

0
dωs

∫ ∞

0
dωiAs(ωs)Ai(ωi)α(ωs + ωi)φ(ωs, ωi)â

†
s(ωs)â

†
i (ωi)|0⟩,
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where

φ(ωs, ωi) = ei
∆k(ωs,ωi)l

2 sinc(
∆k(ωs, ωi)L

2
) (2.22)

and ∆k(ωs, ωi) = kp(ωs + ωi)− ks(ωs)− ki(ωi).

By defining the function Φ(ωs, ωi) as:

Φ(ωs, ωi) =
As(ωs)Ai(ωi)α(ωs + ωi)φ(ωs, ωi)√

N
, (2.23)

in which

N =

∫ ∞

0
dωs

∫ ∞

0
dωi|As(ωs)Ai(ωi)α(ωs + ωi)φ(ωs, ωi)|2, (2.24)

and by exploiting equations 2.21, 2.22 and 2.23, the state in 2.14 can be re-written as:

|ψ⟩ ≈ (1− |η|2

2
)|0⟩+ η|Φ1⟩+ η2|Φ2⟩, (2.25)

where:

|Φ1⟩ =
∫ ∞

0
dωs

∫ ∞

0
dωiΦ(ωs, ωi)â

†
s(ωs)â

†
i (ωi)|0⟩, (2.26)

|Φ2⟩ =
1

2

∫ ∞

0
dωs

∫ ∞

0
dωi

∫ ∞

0
dω

′
s

∫ ∞

0
dω

′
iΦ(ωs, ωi)Φ(ω

′
s, ω

′
i)â

†
s(ωs)â

†
i (ωi)â

†
s(ω

′
s)â

†
i (ω

′
i)|0⟩,

(2.27)

and

η =
2i
√
NV ϵ0deffAp

~
. (2.28)

This state comprises three terms, related to vacuum, two-photon and four-photon emission,

respectively. Note that the expansion of the evolution operator is truncated. The full

series, in fact, would also include a six-photon term, an eight-photon term and so on.

The quantity |η|2 represents the probability P1 that a pump photon is down-converted

to a signal-idler pair. Analogously, |η|4 is the probability P2 that two pairs are created

simultaneously from two pump photons. P1 and P2 are proportional to the first and

second power of the pump intensity, respectively, meaning that the ratio P2/P1 is linear
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in the pump power. This is true for all ratios Pn/Pn−1.

If signal and idler photons are spatially separated and one of the two fields, say

idler, is detected, two cases are possible, according to whether the detector can resolve

different photon numbers or not. If the detector is number-resolving and a given photon

number n is found for the idler, the signal is consequently projected onto the Fock state

associated to n. This occurs with probability Pn. By only keeping the cases in which the

detection result is n = 1, therefore, a perfect single-photon state is obtained in the signal

mode. In most experimental situations, however, detectors are not number-resolving,

therefore they can only distinguish between vacuum and a Fock state with n ̸= 0, without

determining the value of n. In this case, a detection at the idler projects the signal onto

a mixed state of Fock states with different photon numbers. At low pump power, for

which P2 << P1, this mixture can be approximated to a single-photon state. A successful

photon detection in the idler mode, therefore, heralds a single photon in the signal mode.

This heralding process effectively makes the non-linear crystal a single-photon emitter.

Without heralding, both signal and idler fields would be in a quantum superposition of

different photon numbers, with thermal statistics.

The spectral properties of the emitted photons are determined by the function

Φ(ωs, ωi), known as joint spectral amplitude. The quantity |Φ(ωs, ωi)|2 is called joint

spectral intensity and provides the probability that, given the creation of a photon pair,

the signal is emitted at frequency ωs and the idler at frequency ωi. Φ(ωs, ωi) comprises

four terms that are analysed below. As(ωs) and Ai(ωi) derive from the quantization

of the electric field and are generally slowly-varying functions of the frequency. The

function α(ωs + ωi) is the pump envelope from Equation 2.19, where ωp was replaced

by ωs + ωi, due to phase-matching condition 2.8a, which ensures conservation of energy.

The last term, φ(ωs, ωi), is called phase-matching function and is determined by the

properties of the non-linear crystal. As φ(ωs, ωi) contains a sinc function, its modulus

has a peak for ∆k(ωs, ωi) = 0, meaning that photons satisfying this condition have the

highest probability to be generated. This corresponds to phase-matching Equation 2.8b,

related to momentum conservation. The sinc function has a finite width in ∆k (see
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Figure 2.2: Phase-matching profile. The quantity |φ(ωs, ωi)|2 is plotted with respect to the

quantity ∆k(ωs,ωi)L
2

. The resulting profile is a sinc2-function centred at 0. The function reaches
half of the peak value for |∆k(ωs, ωi)|L = 2.78.

Figure 2.2), which allows for some phase mismatch among the three fields. This reflects

the quantum uncertainty in ∆k due to the spatial confinement of the fields in the crystal.

If the pump field is approximated as a monochromatic wave at frequency 2ω0, then

α(ωs + ωi) = δ(2ω0). This results in perfect correlation between the frequencies of signal

and idler photons. If a signal photon is emitted at frequency ωs, the corresponding

idler frequency is 2ω0 − ωs. In general, the degree of frequency correlation depends

on the product α(ωs + ωi)φ(ωs, ωi). Frequency correlations result into entanglement in

the frequency degree of freedom. By engineering pump envelope and phase-matching

function, it is possible to remove these correlations and to obtain a separable joint spectral

amplitude, meaning Φ(ωs, ωi) = ξ1(ωs)ξ2(ωi) [167].

The bandwidth of the emitted photons depends on the pump bandwidth as well as

the properties of the phase-matching function, and can be calculated from the marginal

frequency distributions of signal and idler, defined as fs(i) =
∫∞
0 dωi(s)|Φ(ωs, ωi)|2.

In the approximation of a monochromatic pump, a more insightful expression can be

obtained. Let us assume perfect phase matching for signal and idler frequencies ωs0 and

ωi0 so that ωp = ωs0 + ωi0 and ∆k(ωs0 , ωi0) = 0. ∆k may then be expanded in series
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around zero, till the first order:

∆k(ωs, ωi) ≈
∂∆k(ωs, ωi)

∂ωs
|ωs0 ,ωi0

(ωs − ωs0) +
∂∆k(ωs, ωi)

∂ωi
|ωs0 ,ωi0

(ωi − ωi0). (2.29)

Because of conservation of energy ωs − ωs0 = −(ωi − ωi0) = ∆ω. Therefore:

∆k(ωs, ωi) ≈
1

c0
(ngi(ωs0 , ωi0)− ngs(ωs0 , ωi0))∆ω, (2.30)

where ngi and ngs are the signal and idler group indices, respectively. Since the power

spectrum of the photons is proportional to the function sinc2(∆kL
2 ), the corresponding

frequency bandwidth (full width half maximum) is obtained from the condition |∆k| =
5.56
L :

∆ωFWHM = 5.56
c0

L|ngs(ωs0 , ωi0)− ngi(ωs0 , ωi0)|
. (2.31)

Degeneracy in signal and idler therefore provides large photon bandwidths, in the

monochromatic pump approximation. This approximation can be applied to a pump

laser with a spectral bandwidth that is far narrower than the width of the phase-matching

function.

2.3 Cavity-enhanced SPDC

As seen in Equation 2.31, the photon bandwidth for a monochromatic pump depends

on the length of the crystal and on the difference between the group indices for signal

and idler. The tunability of these parameters, however, is quite limited: in particular the

crystal length cannot be increased too much due to fabrication and practicality constraints.

The result is that the typical spectral bandwidth obtained in SPDC experiments ranges

from about 100 GHz to some THz [168]. The bandwidth can be reduced by orders of

magnitude via cavity-enhanced SPDC (CE-SPDC), in which the non-linear process takes

place inside an optical resonator. In this section this process will be analysed in more

detail. Before doing that some basic concepts of optical resonators will be recalled.
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2.3.1 Optical resonators

An optical resonator, or cavity, is a device that makes light propagate along a closed path.

For instance light can be guided in a closed loop or forced to bounce between two or

more (partially) reflective surfaces. Such a device can be used in many ways, for instance

as a filter, a frequency reference, an enhancement device for non-linear processes, among

others, and constitutes a fundamental element of lasers [169]. When an electromagnetic

field is confined in a region of space, Maxwell’s equations allow for discrete solutions for

the electromagnetic field, which are called cavity (or resonator) modes. They correspond

to waves that reproduce themselves after a round trip in the cavity.

Let us consider the case of a resonator composed of two mirrors with perfect reflectivity,

separated by a distance d. A fundamental requirement for a wave to be a cavity mode is

that the phase shift corresponding to a single round trip is an integer multiple of 2π. This

condition on the phase shift determines the frequencies that are allowed to propagate

in the resonator: νq = q c
2d , where c is the speed of light in the medium between the

mirrors and q is an integer. The frequency modes of the cavity are called longitudinal

modes. The separation between νq and νq+1 defines the free spectral range (FSR) , which

is equal to c
2d . The resonance frequencies νq correspond to monochromatic solutions of

the wave equation in the cavity with the boundary condition that the field is 0 at the

mirrors. This frequency selection can be explained in terms of interference. In fact, if

the round-trip phase shift for a given monochromatic wave in the cavity is not a multiple

of 2π, the field at any point of the resonator is given by a sum of infinite terms with

different phase, corresponding to different numbers of round trips. As these terms have

equal magnitude, the field is suppressed due to fully destructive interference.

If the mirrors are not perfect the condition on the phase shift relaxes, because the

sum providing the field in the resonator is this time composed of an infinite number of

terms with geometrically decreasing magnitude, as part of the energy is lost at each

bounce at the mirrors. In this case, the longitudinal modes of the cavity are not strictly

monochromatic but present a finite bandwidth ∆ν. The ratio between the FSR and

the bandwidth of the modes is determined by a parameter of the resonator, F , which is
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Figure 2.3: Intensity distribution of Hermite-Gauss modes. Each mode is characterized
by two integer numbers l and m, which determine the spatial properties of the related intensity
distribution. For instance the numbers of nodes in the horizontal and vertical direction are l and
m, respectively. The fundamental mode, also called TEM00 is obtained for l = m = 0.

called finesse. The finesse is connected to loss in the cavity by the following expression:

F =
π 4
√
ρ

1−√
ρ
, (2.32)

in which ρ is the round-trip power transmission of the resonator. With this definition of

the finesse, it results: F ≈ FSR
∆ν , where the approximation is valid in the low-loss regime.

Roughly speaking, the finesse can be interpreted as the average number of times a photon

travels a round trip of the resonator before leaving the cavity or being lost.

Besides the longitudinal modes, a resonator has also transverse modes. They are

related to the spatial distribution of the field in a plane perpendicular to the cavity axis

and depend on the cavity geometric properties. For a cavity with two spherical mirrors,

the transverse modes are described by Hermite-Gauss functions, which are characterized

by two integer numbers l and m (see Figure 2.3). These modes are indicated by TEMlm,

which is an acronym for “transverse electro-magnetic”. The fundamental mode TEM00

is the ordinary Gaussian beam. A mode of the cavity then is fully described by three

numbers: q, l and m, where q determines the longitudinal mode, and l,m determine its

transverse spatial distribution. Because of the phase properties of Gaussian modes, the
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Figure 2.4: Frequency dependence of intra-cavity intensity. The cavity spectrum is
composed of a set of peaks separated by a FSR. The shape of the peaks is Lorentzian, wit a
bandwidth approximately given, in the low-loss regime, by FSR

F .

frequency of a mode also depends on l,m. In particular, the resonance frequencies are

given by:

νq,l,m = qFSR + (l +m+ 1)
∆ζ FSR

π
, (2.33)

where ∆ζ is the difference in Gouy phase between the mirrors [163].

The frequency dependence of the field intensity inside the resonator for the funda-

mental mode in the low-loss regime is given by the function:

Ir(ν) =
Imax

1 + (2Fπ sin( πν
FSR))

2
, (2.34)

with Imax = I0
(1−√

ρ)2
and I0 the intensity entering the cavity. The maximum intensity

is reached when ν is a resonance frequency whereas the minimum is obtained at the

midpoints between two consecutive frequency modes. The frequency spectrum of the

light inside the resonator is therefore a sequence of peaks separated by the FSR, as

shown in Figure 2.4. By multiplying Ir(ν) by the transmittance of the output mirror the

transmitted intensity is obtained, which consequently also has a comb-like structure. In

the case of no internal losses, and if the transmittivity of the input and output mirrors
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are equal, all the resonant light incident on the resonator is transmitted. Because of

conservation of energy, each transmission peak corresponds to a reflection minimum and

vice versa. For this reason, a resonator can be used as a frequency filter.

2.3.2 Parametric down-conversion in a cavity

If a parametric down-conversion process takes place inside an optical resonator, the

resulting device takes the name of optical parametric oscillator (OPO). In an OPO, at

least one of the down-converted fields is reflected by the cavity mirrors and therefore

travels many times in the non-linear medium. This causes an enhancement of the SPDC

process due to the extension of the interaction length among the involved fields.

An OPO can work in different regimes of operation, according to how high the SPDC

pump power is with respect to the threshold power, defined as the pump power for which

the gain of the non-linear process equals the cavity round-trip loss for the generated

fields. Three regimes of operation are possible: 1) well above threshold, where a stable

classical oscillation can be sustained and the OPO basically produces coherent light,

like a laser, with the advantage that the emission frequencies are highly tunable; 2)

below/around threshold, used for the generation of non-classical macroscopic fields, such

as bright squeezed vacuum [170]; 3) far below threshold, for CE-SPDC. In the latter

regime, the cavity has the function of an active filter for the single photons. The SPDC

emission, in fact, is constrained to occur in the cavity modes only, which can easily have

a spectral bandwidth as narrow as 1− 10 MHz. The enhancement effect due to multiple

reflections in the cavity results into far higher single-photon rates, when compared to the

case of passive filtering at the same bandwidth [171, 172]. The following discussion will

be limited to this regime of operation, as it is the only relevant one for the experimental

work described in this thesis.

According to how many different fields are simultaneously resonant in the cavity, the

OPO can be singly, doubly or triply resonant. Single-resonance condition is attained when

only one of the generated fields, either signal or idler, is resonant to the cavity or when

they are both resonant but indistinguishable, like in the case of degenerate and collinear
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type-I SPDC. When signal and idler are distinguishable and both resonant to the cavity,

the OPO is doubly resonant. Triple-resonance condition means that the generated fields

and the pump are all simultaneously resonant. The more fields are resonant, the lower

the OPO threshold is. Here and throughout the thesis, only double-resonance condition

will be considered. For such a case, the threshold power is given by [173]

Pth =
2c0ϵ0npnsniλsλiA

2FsFi(2χ(2)L)2
, (2.35)

where the subscripts p, s and i indicate pump, signal and idler, respectively, c0 denotes the

speed of light in vacuum, ϵ0 the dielectric constant of vacuum, λ the wavelength, F the

cavity finesse, and n, L, A and χ(2) are the refractive index, the length, the illuminated

area and the second-order susceptibility of the non-linear medium, respectively.

Let us consider the case of cavity-enhanced collinear type-II SPDC. The analysis of

this process will be conducted by using the formalism of Section 2.2 and by assuming that

emission occurs only in the fundamental Gaussian mode so that higher-order transverse

modes can be neglected. The SPDC state can then be written in the form 2.25, with

a modified joint spectral amplitude,ΦR(ωs, ωi), which takes into account the presence

of the cavity. In order to obtain this result, it is enough to replace the phase-matching

function φ(ωs, ωi) in Equation 2.22 with φR(ωs, ωi), defined as [174]:

φR(ωs, ωi) = fs(ωs)fi(ωi)φ(ωs, ωi), (2.36)

with fs and fi functions describing the cavity modes. In particular:

fs,i(ωs,i) =

√
(1−R1s,i(1−R2s,i)(1− Ls,i)

1−
√
R1s,iR2s,i(1− Ls,i)eiζ(ωs,i)

, (2.37)

where R1s,i, R2s,i and Ls,i are the input (1) and output (2) mirror reflectivity and the

internal loss in the cavity (from mirror 1 to 2) for signal and idler, respectively. The

quantity ζ(ωs,i) is the round-trip phase shift, which depends on the signal/idler frequency.

The joint spectral intensity is proportional to |φR(ωs, ωi)|2 = |fs(ωs)|2|fi(ωi)|2|φ(ωs, ωi)|2.
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From Equation 2.37, it results:

|fs,i(ωs,i)|2 =
(1−R1s,i)(1−R2s,i)(1− Ls,i)

1 + (2Fπ sin
2(

ζ(ωs,i)
2 ))2

, (2.38)

which is of the same form as 2.34. It is then clear that the emission can only happen in

the modes of the cavity that fall within the phase-matching function.

With respect to the non-resonant case, the spectral brightness of the process, defined

as the number of generated photons per unit time, pump power and photon bandwidth

is enhanced by a factor M , given by:

M =

∫∞
0 dωs

∫∞
0 dωi|Φ(ωs, ωi)|2∫∞

0 dωs

∫∞
0 dωi|ΦR(ωs, ωi)|2

. (2.39)

It can be shown that M is proportional to FsFiηsηi [174], where Fs,i is the finesse for

signal/idler and ηs,i is the escape probability. This quantity is defined as the probability

that a generated photon leaves the cavity, which can be expressed as:

ηs,i =
1−R2s,i

1−R1s,iR2s,i(1− Ls,i)2
=

1−R2s,i

1− ρs,i
. (2.40)

In case R1s,i = 1 and Ls,i = 0, ηs,i = 1. The enhancement factor is then roughly

proportional to the finesse squared, assuming comparable values of F for signal and idler.

Increasing the finesse of the resonator therefore determines a quadratic increase in the

spectral brightness. If, however, for a given level of loss in the crystal, the finesse is

increased by choosing mirrors with higher reflectivity, the enhancement factor does not

increase quadratically. In this case, in fact, the escape probability is reduced, as it can

be seen from Equation 2.40. For each value of the internal loss, L, therefore, there is an

optimal value of the finesse for which the spectral brightness is maximum.

In a doubly resonant OPO, the FSR for the signal field, FSRs is different from that of

the idler field, FSRi. For this reason, corresponding longitudinal modes of signal and idler,

i.e. modes that are paired by the phase-matching conditions, are simultaneously resonant

only at certain frequencies. This concept is depicted in Figure 2.5, where the overlap
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Figure 2.5: Cluster effect in a double-resonant OPO. The longitudinal modes for signal
(idler) are shown in red (green) in the case of degenerate type-II phase matching. The two arrows
indicate the direction in which frequency increases. For maximum SPDC gain, the simultaneous
resonance of signal and idler should occur at the frequency for which the SPDC gain (black solid
curve) is maximum, as depicted in the figure. The overlap condition is periodic, but because of the
difference in free spectral range of signal and idler, the modes that are next to the fully overlapping
ones coincide only partially. This leads to a spectrum that is made of clusters of modes, separated
by FSRc (blue lines). In each cluster, a bright central mode is surrounded by weaker neighboring
modes. The main mode of the central cluster corresponds to degenerate emission, while the other
modes to non-degenerate emission. In this latter case, when the signal is emitted in one of the side
modes the cluster is emitted in the conjugate one such that signal and idler frequencies always
sum up to the pump frequency.
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of signal and idler modes indicates their simultaneous resonance. If two modes fully

overlap, their adjacent modes do it only partially. The full-overlap condition occurs again

after a certain number of free spectral ranges, Nc, for which Nc FSR− = (Nc − 1) FSR+,

where FSR− and FSR+ indicat, the smaller and the larger value between FSRs and FSRi,

respectively. The output spectrum is thus composed of clusters of modes, separated by a

cluster free spectral range, FSRc, given by:

FSRc = NcFSR− =
FSR−FSR+

FSR+ − FSR−
=

FSRsFSRi

|FSRs − FSRi|
. (2.41)

This has an effect on the enhancement factor, which becomes also proportional to the

cluster separation FSRc. The phenomenon of clustering is particularly relevant for this

thesis work, as discussed in Chapter 5.

2.4 Correlation functions in SPDC

A useful way to characterize SPDC-based single-photon sources consists of measuring

the correlation functions for the SPDC output state. These measurements are relatively

simple with respect to other methods and provide insights about the spectral and

temporal structure of the generated photons. Usually, three types of correlation functions

are measured: the signal-idler cross-correlation function, the second-order signal-signal

or idler-idler auto-correlation function and the second-order heralded auto-correlation

function. These quantities will be described in this section.

2.4.1 Signal-idler cross-correlation function

The signal-idler cross-correlation function at times t1 and t2 is defined as:

Gsi(t1, t2) = ⟨Ês
(−)

(t1)Êi
(−)

(t2)Êi
(+)

(t2)Ês
(+)

(t1)⟩, (2.42)

where the brackets indicate expectation value. Gsi(t1, t2) represents the probability of

detecting a signal photon at time t1 and an idler photon at time t2 with ideal detectors,
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i.e. detectors with 100 % detection efficiency and zero time jitter. The field operators are

evaluated at the detectors location. The cross-correlation function is strictly connected

to the joint spectral intensity via two-dimensional inverse Fourier transform. It can

be shown, in fact, that Gsi(t1, t2) is proportional to |
∫∞
0 dωsdωiΦ(ωs, ωi)e

−iωst1e−iωit2 |2

[166]. Expression 2.42 may be re-written in terms of the variables t and τ , where t = t1

and τ = t2 − t1. In most situations, only the dependence on τ is relevant for extracting

information on the source. In particular, if the pump field is stationary, Gsi(t, τ) is

independent of t, which can then be omitted. In this case, therefore, the cross-correlation

function can be measured by simply recording the coincidence counts between signal and

idler photons at different delays.

As in SPDC the signal and idler photons are produced together, the cross-correlation

function has a peak at τ = 0, assuming no delay between signal and idler is introduced

after photon generation. At large delays, i.e. for |τ | → ∞, instead, the signal and idler

detections are fully uncorrelated and therefore the quantum average in expression 2.42

factorizes in two independent terms:

Gsi(τ → ∞) = ⟨Ês
(−)

(0)Ês
(+)

(0)⟩⟨Êi
(−)

(τ)Êi
(+)

(τ)⟩. (2.43)

This implies that Gsi(0) >> Gsi(∞). The FWHM of the function Gsi(τ) defines the

correlation time, τc, which is related to the bandwidth of the signal and idler photons.

In case the two photons have the same bandwidth, as for degenerate type-I SPDC, τc

is simply proportional to the inverse of the photon bandwidth. For single-pass SPDC

processes, τc is typically of the order of 1− 10 ps [168]. Since the time resolution of the

available single-photon detectors is in the best case a few ps [175, 176], this means that

the cross-correlation function cannot be resolved in time and τc cannot be experimentally

evaluated. In these conditions, any measurement of the coincidence counts only provides

a characterization of the detectors jitter. However, for resonant SPDC the bandwidth of

the emitted photons is far narrower and consequently τc reaches values in the range of

10−100 ns [171, 172]. It is therefore possible to resolve Gsi(τ) and extract the correlation
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time.

Let us then consider a double-resonant CE-SPDC process pumped by a CW laser

beam that is approximated as a monochromatic wave. Signal and idler fields are both

assumed to be emitted in a single longitudinal mode of the cavity, described by the

Lorentzian function f(ωs,i) ∝ ((ωs,i−ωs0,i0)+iγs,i)
−1. Under these assumptions, the joint

spectral amplitude, ΦR, is a function of the frequency difference δω = ωs−ωs0 = ωi0 −ωi

only. Consequently, the cross-correlation function is proportional to the square modulus

of the one-dimensional inverse Fourier transform of ΦR, which is a double exponential

decay:

Gsi(τ) ∝ u(τ)e−2γsτ + u(−τ)e2γiτ , (2.44)

where u(τ) is the step function. In the multi-mode case Gsi(τ) has a comb structure

that is modulated by the single-mode cross-correlation function [177]. However, typically

the comb structure is experimentally not resolvable due to the detector jitter. In general

γs ≠ γi, therefore the correlation decay rate is different for positive and negative values

of τ . Based on Equation 2.44, the time constants τµ = 1
2γµ

= 1
2π∆νµ

can be defined, with

∆νµ frequency bandwidth and µ = s, i. Consequently, the correlation time is given by

τc = log 2 (τs + τi).

By defining an average time constant τ = τs+τi
2 and an average bandwidth ∆ν = 1

2πτ̄ ,

the following relation can be found ∆ν = log 2
πτc

. In the case that signal and idler have

the same bandwidth, the average bandwidth and the signal/idler photon bandwidth also

coincide.

2.4.2 Second-order auto-correlation function

Other important quantities that are useful for the characterization of SPDC-based single-

photon sources are the signal-signal and idler-idler auto-correlation functions. They

provide information on the statistics of the signal and idler fields, respectively. In general,

the normalized n-th order auto-correlation function for the field µ at times t1, ..., t2n is
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defined as[178]:

g(n)µ (t1, t2, ..., tn, tn+1, ..., t2n) =
⟨Êµ

(−)
(t1)...Êµ

(−)
(tn)Êµ

(+)
(tn+1)Êµ

(+)
(t2n)⟩

(⟨Êµ
(−)

(t1)Êµ
(+)

(t1)⟩...⟨Êµ
(−)

(t2n)Êµ
(+)

(t2n)⟩)1/2
.

(2.45)

In what follows, the second order auto-correlation function at times t and t+ τ will be

analysed in detail. This is given by:

g(2)µ (t, τ) =
⟨Êµ

(−))
(t)Êµ

(−)
(t+ τ)Êµ

(+)
(t+ τ)Êµ

(+)
(t)⟩

⟨Êµ
(−)

(t)Êµ
(+)

(t)⟩⟨Êµ
(−)

(t+ τ)Êµ
(+)

(t+ τ)⟩
. (2.46)

Analogously to expression 2.42, g
(2)
µ (t, τ) constitutes the probability of detecting a photon

at time t and another photon at time t+τ in the same mode µ (signal or idler), normalized

to the probability of two independent single detections at t and t+ τ . Throughout this

section, the function in 2.4.2 will be assumed to depend only on τ .

The value of the second-order auto-correlation function for τ = 0 is related to

the photon-number statistics of the SPDC state. In particular, it can be shown that

g
(2)
s (0) = g

(2)
i (0) = 2, which is a typical feature of thermal light [166]. In this case,

the second-order auto-correlation function can be expressed in terms of the first-order

auto-correlation function:

g(2)µ (τ) = 1 +

⏐⏐⏐⏐⏐⟨Êµ
(−)

(t)Êµ
(+)

(t+ τ)⟩

⟨Êµ
(−)

(t)Êµ
(+)

(t)⟩

⏐⏐⏐⏐⏐
2

= 1 + |g(1)µ (τ)|2. (2.47)

The term |g(1)µ (τ)|2 in 2.47 is proportional to 1
∫∞
0 dωµdωµ̂|Φ(ωµ, ωµ̂)|2e−ωµτ [166]. This

means that, once the joint spectral intensity is known, the second-order auto-correlation

function can also be calculated.

The auto-correlation measurement is usually performed by inserting a 50/50 beam-

splitter in the signal (or idler) arm and by detecting the photon coincidences at the two

output ports of the beam splitter at different delays. In case of single-pass SPDC, the

1if the pump field is non stationary this is true only for the time-averaged first-order auto-correlation
function
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temporal profile of g(2)(τ) typically cannot be resolved, because of the low time resolution

of the available single-photon detectors. The same happens for the peak value g(2)(0):

the only accessible quantity is an averaged value over the detector time jitter, which in

general is not 2. However, this apparent drawback turns out to be a resource for the

characterization of the modal structure of the emitted photons.

In the case of doubly resonant CE-SPDC, under the same assumptions made in

Section 2.4.1, one obtains, for both signal and idler:

g(2)(τ) =

{
1 + | 1

γi−γs
e−0.5(γi+γs)|τ |(γie

0.5(γi+γs)|τ | − γse
−0.5(γi+γs)|τ |)|2 γs ̸= γi,

1 + |e−γs|τ |(1 + γs|τ |)|2 γs = γi.

The above equation provides the auto-correlation function in the case that signal and idler

are emitted into a single longitudinal cavity mode. In the multi-mode case, interference

fringes below the single-mode envelope appear, which are usually non-resolvable by

the employed detection systems. Expression 2.4.2 can be approximated as a simpler

Lorentzian:

g(2)(τ) = 1 +
1

1 + (12(γs + γi)τ)2
. (2.48)

Note that, unlike cross-correlation, the auto-correlation peak is symmetric, independent

of signal and idler decay rates. The FWHM of the peak is given by the auto-correlation

time Tac = 4
γs+γi

. By assuming γs ≈ γi, one obtains Tac ≈ 2
log 2τc, meaning that the

auto-correlation time is about 3 times larger than the correlation time. This result implies

that the two-photon component in the signal/idler fields, related to the product of two

joint spectral amplitudes, are associated to a narrower frequency bandwidth than the

one-photon component, which includes a single joint spectral amplitude.

In general, it is not possible to measure the exact value of the auto-correlation function

at a given time delay τ0, but only the average quantity:

g(2)meas(τ0) =
1

2td

∫ τ0+td

τ0−td

g(2)(τ)dτ, (2.49)

where td is the detector time jitter. This becomes particularly relevant for τ0 = 0. In
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fact, the measured value of g(2)(0) depends on how many longitudinal modes are involved

in the averaging, as td usually covers many periods of mode beating. In particular [174]:

g(2)meas(0) ≈ 1 +
1

N
, (2.50)

where N is the average number of emitted longitudinal modes, obtained by considering

all the modes equally excited. The reader should note that in the case of ideal detectors,

with no jitter, the auto-correlation measurement would always provide g(2)(0) = 2.

2.4.3 Heralded second-order auto-correlation function

The measurement of the second-order auto-correlation function at τ = 0 for a source

producing a genuine single-photon Fock state, gives the result 0. The reason is evident:

since only one photon is excited, it is impossible to detect a coincidence at zero delay

at the output ports of the beam-splitter, at least in theory, as this would imply the

presence of two photons. In principle any ideal single-photon source should satisfy this

condition. However, in the case of SPDC-based single-photon sources g(2)(0) = 2. SPDC,

in fact, approximates genuine single-photon generation only if heralding is performed and

the pump power is low so that multi-photon emission can be neglected. The heralded

second-order auto-correlation function for an SPDC process in the low-pump-power

regime is then expected to mimic that of a Fock state. This quantity is defined as:

g
(2)
µh (t+ τ |t) = ⟨Êµ

(−)
(t)Êµ

(−)
(t+ τ)Êµ

(+)
(t+ τ)Êµ

(+)
(t)⟩pm

⟨Êµ
(−)

(t)Êµ
(+)

(t)⟩pm⟨Êµ
(−)

(t+ τ)Êµ
(+)

(t+ τ)⟩pm
, (2.51)

where µ = s, i and the average is evaluated on the post-selected state after detection of

a photon in the complementary mode µ̂. The function in Equation 2.51 expresses the

correlation between the simultaneous detection of a signal and idler photon at t and the

further detection of a signal or idler (according to whether µ = s or µ = i, respectively)

photon at time t+ τ . This quantity is measured in the same way as the non-heralded

auto-correlation, with the only difference that the signal detections are now heralded by
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an idler photon, or vice versa.

Assuming the dependence on t can be neglected, g
(2)
µh (τ) can be expressed as [179]

g
(2)
µh (τ) =

Pµµµ̂(τ)R(0)

Pµµ̂(τ)Pµµ̂(0)
, (2.52)

where Pµµµ̂ and Pµµ̂ are the probabilities of a double and triple coincidence detection

between the fields µ and µ̂, respectively and R(0) is the non-normalized first-order

correlation function at zero delay, which is assumed to be the same for signal and idler.

R(0) is proportional to the single-detection probability for signal and idler. However, the

actually measured correlation function, for instance for µ = s, is:

g
(2)
sh (τ) =

Nssi(τ)R0

Nsi(τ)Nsi(0)
, (2.53)

where R0 is the single-detection rate for the signal and the other terms are the coincidence

rates corresponding to the probabilities in 2.52. All these quantities are averaged over

the detector jitter τd and the coincidence rates include an additional average over the

coincidence window, τcoinc.

The function g
(2)
sh (τ) tends to 1 for large delays and decreases as τ → 0. The value

g
(2)
sh (0) quantifies multi-photon emission from the source, which decreases by decreasing

the pump power. In regime of low pump power and short coincidence windows, that is for

R0τcoinc << 1, due to the averaging over jitter and coincidence windows, g
(2)
sh (0) can be

approximated as R0τcoinc [179]. Measuring the heralded second-order correlation function

at zero delay, therefore, allows one to confirm that the source operates in low-gain regime

and can be approximated to a real single-photon source, but cannot provide a fully

quantitative indication of how good this approximation is [180].

78



Chapter 3

Experimental Two-Way

Communication with One Photon

In this chapter, the first part of the experimental work comprising the Ph.D. project

presented in this thesis is described. This work aims to experimentally demonstrate

two-way communication between two distant parties who can only exchange a single

quantum particle once. Such a task, based on quantum superposition, is impossible with

classical particles, as both parties would either need to exchange the same particle more

than once or simultaneously use more particles simultaneously.

The scheme for two-way communication with one particle (TWCOP) was proposed in

2018 by Del Santo and Dakić [181], and experimentally demonstrated for the first time

in this Ph.D. project, during which furthermore a novel anonymous and secure direct

communication protocol based on TWCOP was designed and implemented.

The chapter is structured as follows: first, TWCOP and the related anonymous and

secure protocol are explained; then, the setup for the implementation of the experiments

is described, and finally the experimental results are discussed.

This Chapter is entirely taken from the article “Experimental two-way communication

with one photon” by Francesco Massa et al., published in Advanced Quantum Technologies

in 2019. Some modifications are applied for readability improvement.
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3.1 Two-way communication with one particle

In order to explain TWCOP, let us consider a communication game in which a referee

assigns two random input bits, x and y, to two distant communication parties, Alice and

Bob, respectively. After receiving the bits, they are allowed to exchange one particle. The

time necessary for the exchange to be completed is indicated by τ , which then represents

the interval between the time at which the particle leaves Alice’s or Bob’s location and

the time at which it is detected. The time τ is assumed to be shorter than the time

required for a physical object to travel the distance between Alice and Bob more than

once. When the exchange is completed, the referee asks Alice and Bob to reveal two

output bits, a and b - they win the game if they both guess correctly the value of the

other player’s input (i.e. if a = y and b = x). This game can be considered a variation of

the well-known “Guess Your Neighbour’s Input” (GYNI) game [182].

Under the constraint that the parties can only exchange one classical particle within

the time window τ , only two possible causal relations between the variables x, y, a, and b,

are possible: either x influences a and b while y influences b only (corresponding to a one-

way communication from Alice to Bob), or y influences a and b while x influences a only

(one-way communication from Bob to Alice), as illustrated in Figure 3.1. Accordingly, the

joint probability distribution p(ab|xy) results in a classical mixture of the two one-way

signalling distributions. This imposes a maximal probability value of 1/2 of winning the

game [183].

The situation is different if the parties are allowed to share a quantum particle, which

is assumed here to be a single photon. The photon, in fact, can be prepared in a coherent

superposition:

|ψin⟩ =
1√
2
(â† + b̂†)|0⟩, (3.1)

where â† and b̂† are the photon creation operators at Alice’s and Bob’s locations, respec-

tively, and |0⟩ is the vacuum state. Alice and Bob can then encode the bits x and y in
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Figure 3.1: Communication between two distant parties with a classical particle. A
single carrier travelling with finite speed, bound by the speed of light, c, can transmit information
either from Alice to Bob (blue arrow) or from Bob to Alice (red arrow), if the time τ allowed for
the communication is shorter than the time the carrier takes to travel the distance between Alice
and Bob multiple times.

the phase of the photon, thus obtaining the state:

|ψencode⟩ =
1√
2
((−1)x â† + (−1)y b̂†)|0⟩. (3.2)

If a 50/50 beam splitter is placed at the centre of the path between Alice and Bob (see

Figure 3.2), due to single-photon interference, the final state of the photon is:

|ψfin⟩ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

â†|0⟩, if x = 0 and y = 0,

b̂†|0⟩, if x = 0 and y = 1,

−b̂†|0⟩, if x = 1 and y = 0,

−â†|0⟩, if x = 1 and y = 1.

(3.3)

This means that, by checking whether they detect the particle or not, Alice and Bob can

infer the parity, r, of x and y. This piece of information, combined with the knowledge

of their input bits, allows them to win the game with probability 1, thus demonstrating

genuine two-way communication.
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Figure 3.2: Scheme of two-way communication with a quantum particle. Alice and Bob,
who share a single photon in superposition, encode the bits to be transferred, x and y, in the
phase of the photon and send the photon to a beam splitter (BS). The photon travels to Alice
or Bob after the beam splitter based on the parity of the encoded bits. In this way each party
obtains the value of the bit encoded by the other one, and two-way communication is performed.
The superposition state of the photon thus corresponds to a superposition of the communication
directions.

3.2 Application of TWCOP for anonymous communica-

tion

The described scheme of TWCOP can be used as a primitive for a secure two-party

quantum communication protocol that bestows anonymity upon the direction of commu-

nication between Alice and Bob. This is achieved by converting the two-way scheme to a

direct messaging system in which only a single party transmits a message at a time and

the other transmits random bits.

The basic assumption of the protocol is that Alice and Bob share a quantum channel

and many copies of the required superposition state, |ψin⟩, which is known to be a

powerful recourse for secure communication [184]. Such states could be supplied on

demand via a trusted server, assuming the channel between the server and Alice, and the

server and Bob are secure from potential eavesdroppers. Alternatively, these superposition

states could, in theory, be produced and stored by the two parties when they meet and

then used at a later time. Prior to the protocol, each state |ψin⟩ is labelled with index i.

For the i-th round of communication, the parties encode the classical bits xi and

yi in the state |ψencode⟩i =
1√
2
((−1)xi â† + (−1)yi b̂†) |0⟩. Both send their parts of the

state |ψencode⟩i via the quantum channel and detect any returning photon. Detection of

a photon reveals the parity bit ri = xi ⊕ yi to each party.

Assuming Alice wishes to send an M -bit message {X1, . . . , XM} to Bob, the protocol
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may be described by the following sequence of steps:

1. Decline communication. If no message is to be sent, Alice and Bob select the

bits xi and yi uniformly at random.

2. Declaration of the communication direction. Alice initializes the communi-

cation by setting xi = 1 for d iterations of the protocol, where d is chosen to be

sufficiently large as to be sufficiently improbable to occur by chance. Detection of

d repeated xi = 1 results by Bob indicates that Alice intends to send a message.

Should Bob simultaneously declare his intention to communicate, the protocol is

aborted.

3. Transmission of the message. Alice sets xi = Xi, for i going from 1 to M . Bob

may or may not detect a photon, thus obtaining the parity value ri = yi ⊕Xi, from

which the bit Xi can be deduced.

4. Declaration of the end of the message. To end the message transmission,

Alice sends xi = 0 for d iterations of the protocol. Alice and Bob return to step 1.

The scheme is fully secure against a potential eavesdropper, Eve, acting on the

quantum channel between Alice and Bob, as interception of a photon between the two

parties can at most reveal the parity between xi and yi given by the position of the

photon after the interference at the central beam splitter. In fact, the four possible

states of |ψencode⟩ form two pairs that are identical under global phases, which cannot

be observed via measurement on single photons. As each bit yi is chosen uniformly at

random, the parity bit contains no information on xi, provided that yi is unknown, and

thus leaks no information on Alice’s message bit Xi. Bob’s input thus acts as a random

one-time pad. As communication is two-way, pad bits yi are also obtained by Alice, and

as such the scheme is anonymous in the direction of the message and the pad.

If Eve intercepts and replaces the resource state |ψin⟩ before it is received by the

parties, a man-in-the-middle attack may be successfully performed. Eve could, in fact,

prepare two single-photon superposition states and implement the TWCOP scheme
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Figure 3.3: Error correction performance. The plot shows the error probability per bit after
applying majority-voting error correction, pe, with respect to the number of encodings of each
bit, N . This dependence is shown for different values of the error probability per bit for the
uncorrected protocol, pb. The slope of the curve reduces as pb approaches 0.5.

separately with Alice and Bob. In this way she can obtain full information on the

encoded bits. This possibility is, however, excluded by the assumption that Alice and

Bob share many copies of the state |ψin⟩ prior to the beginning of the protocol.

The protocol as described above is not resistant to photon loss. Loss caused by

an erasure channel may result in no photon being detected by Bob when required,

causing a single bit error in the received message. Additional errors may be caused by

imperfections in the experimental setup, such as dephasing or non-optimal interference

visibility. However, errors can be overcome, without compromising security, by adding

redundancy to the protocol.

The simplest strategy for this purpose consists of repeating the encoding of each

message bit N times, with N being odd, and performing majority voting, meaning that

the result occurring at least N+1
2 times is chosen. If the probability of error per bit of the
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basic protocol is pb, the probability of error per bit after error correction, pe, is given by:

pe =
N∑

k=N+1
2

(
N

k

)
pkb (1− pb)

N−k. (3.4)

In Figure 3.3 the behaviour of pe with respect to N is shown for different values of pb.

It is clear that the higher pb is, the slower pe goes to 0 when increasing the number of

repetitions. When pb = 0.5, pe is independent of N , and for pb > 0.5 the majority-voting

procedure only worsens the overall probability of success. The transfer of many copies of

the same bit pair does not jeopardize the security of the protocol. In fact, Eve can only

obtain the (same) parity bit every time, which does not reveal any information about

the encoded bits.

3.3 Experimental setup

3.3.1 The single-photon source

The photon source used for the experimental implementation of the TWCOP scheme

and the related anonymous communication protocol is based on SPDC in a Sagnac

configuration [185].

Laser light at 394.5 nm (Toptica Blue Mode, fiber-coupled maximum power: 23 mW,

bandwidth: < 0.1 nm) impinges on a dual-wavelength polarizing beam splitter (DPBS),

after its polarization is set to diagonal. Here, “dual-wavelength” means that the device

works in the same way both at 394.5 nm and at 789 nm. The DPBS then splits the original

input beam into two equally intense output beams, which travel along the two possible

propagation directions (clockwise and counterclockwise) of a Sagnac interferometer,

composed of the DPBS and two mirrors (M) (see Figure 3.4). The interferometer contains

a 20-mm-long PPKTP crystal, phase-matched for type-II degenerate and collinear SPDC

at ambient temperature. The crystal, therefore, emits photon pairs at 789 nm in the

polarization state |H⟩s|V ⟩i, when pumped with horizontally-polarized light at 394.5 nm.

A dual-wavelength half-wave plate (DHWP) is placed in the interferometer such that the
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3.3 Experimental setup

Figure 3.4: Scheme of the single-photon source. A laser at 394.5 nm is diagonally polarized
after passing through a polarizing beam splitter (PBS) and a half-wave plate (HWP) (with a
beam dump (BD) collecting the rejected light from the PBS) and focused by a lens (L) onto a
PPKTP crystal (Raicol Crystals). The crystal is placed in a Sagnac loop, which is realized using
a dual-wavelength polarizing beam splitter (DPBS), a dual-wavelength half-wave plate (DHWP)
and two mirrors (M). A type-II degenerate SPDC process takes place in the crystal, which thus
converts a pump photon at 394.5 nm into two photons at 789 nm with orthogonal polarizations. As
photons are produced along both propagation directions of the pump beam in the interferometer,
the photonic state at the outputs 1 and 2 of the PBS is entangled. After filtering out the pump
by means of a dichroic mirror (DM) and two long-pass filters (LF), the generated photons are
coupled into single-mode fibers through two fiber couplers (FC): one of the photons is sent to
the setup for the implementation of TWCOP and the other is sent directly to a detector (DH)
to herald the presence of its twin. The use of a polarizer (P) ensures that a defined polarization
state is produced.
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Chapter 3. Experimental Two-Way Communication with One Photon

two counter-propagating beams at 397 nm are both horizontally polarized when they

impinge on the PPKTP. This allows for photon generation in both propagation directions

of the Sagnac loop.

The generated photons reach the DPBS and exit the interferometer to the output

modes 1 and 2. The photons propagating clockwise and counterclockwise produce the

output states |H⟩1|V ⟩2 and |V ⟩1|H⟩2, respectively. As these possibilities are coherently

superposed, the resulting emitted state, |ψ⟩, is entangled: |ψ⟩ = 1√
2
(|H⟩1|V ⟩2−|V ⟩1|H⟩2),

where the minus sign accounts for the phase shift between reflected and transmitted

outputs of the beam splitter. Note that, due to the presence of the DHWP, the signal

photons always exit to output 1, whereas idler photons always go to output 2. This

preserves the entanglement even in the case of non-degenerate emission or frequency

correlations between signal and idler photons. However, entanglement is not needed for

the experiments described in this chapter, which instead require a defined polarization

state. For this reason, a polarizer (P) selects only the term |V ⟩1|H⟩2 of the state |ψ⟩.

After the pump is filtered out, the generated photons are coupled to single-mode fibers -

one of them directly connected to detector DH (avalanche photo-diode, Excelitas SPCM

AQRH-13) to herald the other one, which is sent to the TWCOP setup.

At 7 mW of pump power, the source provides about 3× 104 coincidences/s between

DH and the detectors in the TWCOP setup. The corresponding heralded second-order

correlation function at zero delay is measured to be g
(2)
h (0) = 0.004±0.010, meaning that,

to a good level of approximation, the source emits single photons. This value was obtained

from Equation 2.53 by counting single detections, two- and three-fold coincidences

for 3 minutes. According to Equation 2.31 and assuming the pump monochromatic,

the bandwidth of the emitted photons is calculated to be: ∆ωFWHM = 700 GHz,

corresponding to a coherence time of 9 ps and a coherence length of 3 mm.

3.3.2 The TWCOP setup

The TWCOP setup is basically a Mach-Zehnder interferometer, as depicted in Figure

3.6. A heralded single photon is made to impinge on a 50/50 beam splitter, BS1, which
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Figure 3.5: Characterization of the liquid-crystal phase shifters. The characterization is
performed with laser light. The phase shifter to be characterized is rotated by 45◦ with respect to
the horizontal direction, and a polarizer is placed right after the device. The light transmitted
through the polarizer is monitored while varying the voltage applied to the phase shifter. The plots
report the dependence of the phase retardation between the two axes of the liquid crystals with
respect to the voltage for LCA (a) and LCB (b). The two devices are operated at the minimum (0
phase) and the maximum (π phase) of the curves.

puts the photon in a superposition of Alice’s and Bob’s locations. Alice and Bob each

encode their bits in the phase of the photon by means of a liquid-crystal phase shifter,

LCA (from Meadowlark Optics) for Alice and LCB (Thorlabs LCC1221-B) for Bob. The

slow axes of the two phase shifters are aligned to the photon polarization, which is set to

horizontal. The refractive index along these axes depends on the voltage applied to the

liquid crystal, meaning that the applied phase shift is tunable. Prior to the experiment,

the dependence of the phase shift on the applied voltage is characterized, and the values

of the voltage necessary to obtain 0 and π phase shifts, corresponding to the bits 0 and

1, repspectively, are found (see Figure3.5). The rise time from 0 to π phase is observed

to be about 5 ms for LCA and about 40 ms for LCB, while the fall times are about 20

ms and 0.5 ms, respectively. For this reason, a buffer of 50 ms is set before encoding

each bit pair, in order to avoid errors due to imperfect phase setting. After encoding,

each party uses a mirror, MA for Alice and MB for Bob, to steer the photon to a second

beam splitter, BS2. Due to interference, the state of the photon after BS2 is |ψfin⟩. The

photon is then sent back to Alice (Bob) by means of an additional mirror, M1 (M2), and

detected by an avalanche photo-diode (Excelitas SPCM AQRH-13), DA (DB).
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Figure 3.6: Interferometer for the demonstration of two-way communication with a
single photon. The “laboratories” of Alice and Bob are delimited by the dashed black lines.
The photon coming from the source in Figure 3.4 is collimated by a fiber coupler (FC), and its
polarization is set to horizontal by means of a quarter-wave plate (QWP), a half-wave plate (HWP)
and a polarizer (P). Then, the photon enters a Mach-Zehnder interferometer, whose basic elements
are the 50/50 beam splitters BS1 and BS2 and the mirrors MA and MB. The liquid-crystal
phase shifters LCA and LCB are used for phase encoding, whereas the flip mirrors FMA and
FMB, when flipped up, are used to steer light to the fiber couplers FCA and FCB and the related
multi-mode fibers for the measurement of the photon’s arrival-time distributions at the users.
When this measurement is not performed, the flip mirrors are flipped down and the fibers are
disconnected from the detectors, DA and DB, which then work in free space. In this configuration,
after interference at BS2 the photon is sent back to Alice or Bob by mirrors M1 and M2, where it
is detected. The photon path is indicated by the solid red lines. A trombone delay line composed
of prism mirrors PM1, PM2, PM3, PM4 is inserted into one arm of the interferometer, within
Alice’s laboratory. This is used to finely tune the difference between the two interferometric paths
such that they are equal within the photon coherence length (3 mm). The path difference can be
tuned by ±20 mm with micrometer resolution. A fixed trombone (prism mirrors PM5, PM6, PM7,
PM8) is inserted into the other arm to compensate for the additional travel distance introduced
by the delay line. A piezo actuator (travel range: 2 µm) in the trombone delay line allows Alice
to actively stabilize the phase of the interferometer when needed.
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3.4 Demonstration of two-way signalling with one photon

The interferometer is passively stabilized by means of thermal and vibrational isolation

so that the phase between the two arms is stable for about one minute. After this time,

the phase can be re-set by means of a piezo actuator mounted on a trombone delay line

composed of four prism mirrors (PM1, PM2, PM3, PM4), which may be used to delay

one arm with respect to the other and therefore to change the interference visibility. The

piezo is re-set every 25 s to ensure high phase stability in the interferometer.

The distance between MA and BS2 is (106 ± 1) cm, whereas the distance between

MB and BS2 is (119± 1) cm. The minimum distance between the regions occupied by

Alice and Bob is (156± 1) cm, corresponding to the distance between the sides of the

liquid-crystal phase shifters. This means that the time employed by the photon to travel

from mirror MA or MB to the detectors, is shorter than the time it would take to travel

the minimum distance between Alice and Bob twice.

A direct verification of this inequality requires the photon’s arrival-time distribution

at Alice and Bob to be recorded, as described in the next section. To this purpose, two

flip mirrors, FMA and FMB, are placed at a distance of (10.0± 0.5) cm from MA and

MB, respectively. When FMA and FMB are flipped up, they steer the photon to two

fiber couplers, FCA and FCB, connected to two 2 m-long multi-mode fibers, respectively.

The distance between the flip mirrors and the couplers is also (10.0± 0.5) cm. In this

way, the photon takes the same amount of time to travel from FMA (FMB) to FCA(FCB)

when FMA (FMB) is flipped up, as it does to go from FMA (FMB) to MA (MB) when

FMA (FMB) is flipped down. For the recording of the arrival time distribution at Alice

and Bob, the flip mirrors are flipped up, and the multi-mode fibers are connected to

the detectors DA and DB. Otherwise, FMA and FMB are flipped down, and the two

detectors work in free-space configuration.

3.4 Demonstration of two-way signalling with one photon

The probability of winning the communication game described in Section 3.1 is estimated

by using a random sequence of 100 input bit pairs, one every 0.5 s.
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Figure 3.7: Success probability vs interferometric visibility. The plot shows the depen-
dence of the probability of winning the game on the quality of the single-photon interference at
BS2, quantified by the average interferometric visibility. The visibility is varied by delaying one
interferometric path with respect to the other in the trombone delay lin. At zero visibility, the two
photon wave-packets travelling in the two arms no longer overlap at the final beam splitter, and
interference is completely suppressed. The equation for the red theoretical curve is y = 0.5(x+ 1).
The error of each probability is the standard error of the mean, obtained from the statistical
variation over the sequence of input bits. For each point in the plot, a different random input
sequence of 100 bit pairs is generated.

In this time interval, an average number of photon detections of about 15 × 103 is

registered among the two detectors DA and DB. All detections are in coincidence between

DA or DB and the heralding detector DH. The success probability is computed by

counting how many detections occur at the “right” detector for each input bit pair with

respect to the total number of detections, and then by averaging this ratio over the input

sequence. Figure 3.7 shows the measured success probability for different values of the

interferometric visibility, which is averaged over the two output ports. The visibility at

each port is defined as (NMAX − NMIN )/(NMAX + NMIN ), where NMAX and NMIN

are the maximum and minimum number of detections at that port, respectively, obtained

while varying the interferometric phase. The success probability surpasses the classical

limit as soon as the visibility is greater than zero. For the maximally achieved visibility

of 0.941± 0.007, a maximal success probability of 0.961± 0.006 is observed.
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3.4 Demonstration of two-way signalling with one photon

Initial Reception Final Detection  Delay (ns)

Alice Alice 7.1  ±  0.4

Alice Bob 8.2  ±  0.4

Bob Alice 7.5  ±  0.3

Bob Bob 8.5  ±  0.4

Reference time: (10.1  ±  0.1) ns

Table 3.1: Time-measurement results. The four possible delays between the initial reception
and the final detection of the photon at Alice or Bob are shown in the table. They are compared
to the time the photon would take to travel twice the minimum distance between the two parties,
roughly equal to the diagonal of the interferometer, at the speed of light in vacuum (reference
value). For each delay, the measurements are taken by unblocking only the corresponding path
and recording the arrival-time statistical distributions for reception and final detection. The
uncertainty of each time interval is obtained from the standard deviations of the two associated
arrival-time distributions, dominated by the time jitter of the detectors. The uncertainty of
the reference value is not statistical but comes from the uncertainty of the measurement of the
minimum distance between Alice and Bob.

At zero visibility the success probability is 0.498± 0.006, compatible with the maximally

achievable value in the classical case (0.5). At this point, the effect of the quantum

superposition is totally nullified.

In order to prove that each photon cannot be exchanged more than once between

the two parties, the delay between two events - the reception of the photon before the

encoding and the final detection after the second beam splitter - is measured. Actually,

there are four delays to be measured, according to whether the initial reception and the

final detection of the photon are considered at Alice or Bob. The delays are slightly

different due to the fact that the implemented interferometer is rectangular. The results

of these measurements are shown in Table 3.1. It can be seen that, in all the cases,

the time τ necessary for the photon exchange to be completed is shorter than the time

the photon would take to travel the minimum distance between Alice and Bob twice

(reference time) by more than three standard deviations. This sets a probability of less

than 1% that the photon travels back and forth between Alice and Bob.

The procedure for the measurement of the delays reported in Table 3.1 is described as

follows. Let us call ∆tAB the time a photon takes to travel from mirror MA to detector

DB along the arms of the interferometer. Analogously, ∆tAA, ∆tBA, ∆tBB are the times

the photon takes to go from MA to DA, from MB to DA and from MB to DB, respectively.

92



Chapter 3. Experimental Two-Way Communication with One Photon

The measurement procedure for ∆tAB is summarized in the following steps:

1. All the possible paths for the photon are blocked except for the path going from

MA to DB.

2. The delay between the detection of the heralding photon and the detection of its

twin photon at DB is recorded for a large number of emitted photon pairs. In this

way, the arrival-time distribution for the final detection at DB is acquired, where the

arrival times are referred to the heralding detection, used as a trigger. The arrival

times are measured by means of a time-tagging module (RoithnerLaserTechnik

TTM8000).

3. The flip mirror FMA is flipped up, and the multi-mode fiber of coupler FCA is

connected to detector DB. The arrival-time distribution at MA is acquired, as

performed in Point 2, and is corrected for the delay introduced by the fiber.

4. The two arrival-time distributions are fitted with Gaussian functions in order to

find their mean values and standard deviations.

5. The quantity ∆tAB is calculated as the difference between the mean values of the

two distributions. Since the detections take place at the same detector with the

same time-tagging module, the difference is not affected by further electronic delays.

The error of ∆tAB is the sum in quadrature of the standard deviations of the two

arrival-time distributions.

For the measurement of ∆tAA, ∆tBA and ∆tBB the procedure is analogous. In order

to correct the delays introduced by the fibers, their lengths are measured with a fiber-

meter. A length of (2.080± 0.004) m is obtained for the fiber connected to FCA, and

of (2.088 ± 0.004) m for the fiber connected to FCB. The refractive index of the core,

made of pure silica, is taken from literature [186]. The errors of the fiber lengths and

refractive index are negligible with respect to the standard deviations of the arrival-time

distributions. Figure 3.8 shows the acquired arrival-time distributions, together with the

related Gaussian fits.
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(a)

(b)
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(c)

(d)

Figure 3.8: Arrival-time distributions. The figures are related to the four possible time
intervals ∆tAA (a), ∆tAB (b), ∆tBA (c) and ∆tBB (d). The arrival times at MA or MB (peaks on
the left), after correcting for the fiber delay, and those at the final detectors DA or DB (peaks
on the right) are reported on the x-axes. These times are expressed as delays with respect to
the heralding photon detection. The two peaks in each figure are fitted with Gaussian functions
(solid lines). The parameters of the fits are shown to the left of the corresponding peak. The black
vertical bars indicate the time windows at which the photons would arrive at DA or DB if they
travel the minimum distance between Alice and Bob twice.
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3.5 Implementation of the TWCOP-based communication protocol

In the plots, two secondary peaks for each main peak are observed, which are com-

patible with optical reflections in the setup. The counts composing the secondary peaks

are approximately 5% of those in the corresponding main peaks. In the implemen-

tation of the communication game, therefore, a coincidence window of 1 ns is set so

that the coincidences corresponding to the secondary peaks are not considered in the

measurements.

It can be observed that the arrival-time distributions at DA and DB are slightly

asymmetric. This might be due to the fact that the photons, in the free-space detection

case, hit the edge of the active area of the photo-diode, thus producing some capacitive

effect in the resulting electrical signal.

The employed detectors have a typical jitter time (standard deviation) of 0.149 ns

(data from the manufacturer). Since each peak is obtained by coincidence detection

between two APDs, a standard deviation of 0.210 ns is expected when only the effect of

the jitter is considered. This value is compatible with those obtained for fiber-coupled

detection, but is significantly lower than those obtained in the case of free-space detection.

This mismatch is again ascribed to the imperfect alignment of the beam in the case of

free-space detection.

3.5 Implementation of the TWCOP-based communication

protocol

As the single-photon source in Figure 3.4 is probabilistic, a variation of the anonymous

communication protocol detailed in Section 3.2 is implemented. In this variation, a

communication interval of 0.5 s is set for each pair of bits xi and yi, and the source

emission rate is reduced so as to have an average of approximately three detection events

per communication interval. Here, the sum of the detections recorded by Alice and Bob

is considered. If Alice (Bob) receives one or more photons during a given communication

interval, she (he) infers that ri = 0 (= 1), and ri = 1 (= 0) otherwise. The emission rate

is reduced by attenuating the pump laser with a rotating neutral density filter. Every 50
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input bit pairs, the filter is rotated back such that the maximum emission rate is restored

and the interferometric phase can be set to 0 by the piezo actuator in Alice’s laboratory.

With this variation, the protocol becomes more robust to photon loss and experimental

imperfections, as explained below. In each communication interval the source emits ne

photons at different times, of which n are detected. The photon statistics are assumed

to be Poissonian. Within this assumption, the probability that Alice and Bob together

detect n photons is:

p(n) = e−mm
n

n!
, (3.5)

with m average number of detections. An error occurs in any of the following cases: 1)

no photon is detected at all, 2) both Alice and Bob detect photons, 3) all photons travel

to the wrong output. In case 1 Alice (Bob) always infers a value of “1”(“0”) for the

parity bit, ri. The two values are swapped in case 2. Since the parity bit is random, this

produces an error in the message bit transmission 50% of the time. In case 3 the wrong

message bit is transferred 100% of the time. This results in the following probability of

error per bit, pb:

pb =
p(0)

2
+

pAB

2
+ paw, (3.6)

where p(0), pAB and paw are the probabilities of cases 1, 2 and 3, respectively. The

probabilities pAB and paw may be written as:

pAB =

∞∑
n=2

p(n)

∞∑
k=1

(
n

k

)
(1− ps)

kpn−k
s = (3.7)

= 1 + p(0)−
∞∑
n=0

p(n)pns −
∞∑
n=0

p(n)(1− ps)
n,

paw =
∞∑
n=1

p(n)(1− ps)
n = (3.8)

=
∞∑
n=0

p(n)(1− ps)
n − p(0),
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where ps is the probability of a single detection at the right output. After substituting

the last two equations in Equation 3.6, a simple expression for pb is obtained:

pb =
1

2
(1 + e−mps − e−m(1−ps)). (3.9)

This expression tends to 1
2 for m→ 0, when the term

p(0)
2 becomes dominant, and for

m→ ∞, when the main contribution to pb is given by pAB . In between these two regimes,

pb has a minimum at:

moptm =
1

2ps − 1
log(

ps
1− ps

). (3.10)

In certain situations, one might wish to optimize the probability that both Alice’s and

Bob’s bits are correctly transferred. An error in the bit-pair transmission occurs whenever

no photon is detected at all, or at least one photon in the encoding interval exits from

the “wrong” port of BS2. If pw is the probability of the latter case, the probability of

error in the bit-pair transfer, pbpair , is:

pbpair = p(0) + pw (3.11)

By replacing p(0) and pw with their explicit expressions, the previous equation becomes:

pbpair = p(0) +
∞∑
n=1

p(n)(1− pns ) = (3.12)

= 1 + e−m − e−m(1−ps).

This expression tends to 1 for m→ 0 and m→ ∞, and has a minimum for:

moptp = − log(1− ps)

ps
. (3.13)

Note that the difference between moptm and moptp tends to 0 as ps tends to 1. Since

the value of ps at maximum visibility is approximately 0.96, moptm and moptp are both
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around 3. This justifies the choice of the average number of detections per interval.

Several random sequences of 100 random input bit pairs are used to evaluate the

probability that a given message bit is correctly transferred, pc = 1− pb, which results as

pc = 0.88± 0.01. Correspondingly, the values m = 3.34± 0.06 and ps = 0.0935± 0.008

are found. From these two values, a theoretical probability pcth = 0.88 ± 0.01 can be

calculated. This value is perfectly compatible with the experimental one. Note that, for

ps = 0.0935, moptm = 3.06 and the corresponding maximum value of pc is pcmax
= 0.881.

Under the same experimental conditions, the probability pcpair = 1− pbpair is measured

to be pcpair = 0.75± 0.02.

As pb < 0.5, a majority-voting error correction procedure can be implemented. This

is performed for both N = 3 and N = 5 repetitions per message bit. The probability of

correct bit transfer is measured to be pc = 0.93± 0.02 and pc = 1.00 \ −0.01 in the two

cases, respectively. The corresponding theoretical values are pcth = 0.969 ± 0.004 and

pcth = 0.995± 0.001. All the experimental values are within 2 standard deviations from

the corresponding theoretical expectation, thus confirming the validity of the assumed

Poissonian model. An example in which Alice sends a 10 × 10 pixels image in black

and white, corresponding to 100 bits, and Bob sends a sequence of 100 random bits is

illustrated in Figure 3.9.

The described variation of the protocol with a probabilistic source does not compromise

its security, at least in the case of the resource state being |ψin⟩, for the same reason

reported in Section 3.2 with regard to error correction. In the case that the resource

state differs from |ψin⟩, in general, the protocol might not be secure. If so, the amount

of information obtained by Eve is increased due to error correction and the use of a

probabilistic source with different numbers of emissions per communication interval.

However, a large category of states leads to perfect security. In particular, for a given

total number of photon n, perfect security is attained for any state of the form:

|ψgen
in ⟩ =

n∑
k=0

αk(â
†)k(b̂†)n−k|0⟩, (3.14)
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Figure 3.9: Example of anonymous communication. An example in which Alice sends a
message in the form of a figure, and Bob a random sequence with the same length, is presented.
The three columns report,from left to right, the figure sent by Alice, the one received by Bob, and
the parity of the bits sent by Alice and Bob (the only piece of information an eavesdropper, Eve,
can obtain from the superposition state). Two cases are shown: the basic protocol, where each
bit pair is sent once with an average 88% probability of success and the error-corrected protocol,
where each bit pair is sent five times, with an average 100% probability of success.

where â† and b̂† are the photon creation operators in Alice’s and Bob’s spatial modes,

and αk are complex coefficients. In fact, after phase encoding, the state |ψgen
in ⟩ becomes:

|ψgen
in ⟩ =

n∑
k=0

αke
iπkx(â†)keiπ(n−k)y(b̂†)n−k|0⟩ = (3.15)

= eiπny
n∑

k=0

αke
iπk(x−y)(â†)k(b̂†)n−k|0⟩.

Beside the unmeasurable global phase, the state only contains the quantity x− y, which

corresponds to the parity bit r, as eiπk(x−y) = eiπkr. Eve, therefore, can only obtain the

parity bit but not the single bits x and y. Of course, even though the eavesdropper cannot

obtain any information on the message bits, deviation from the resource state |ψin⟩ leads

to an increased error probability per message bit. If n = 1, the expression in 3.14 includes

a single-photon unbalanced superposition state and superposition states with a bias

phase between the two interferometric arms of the Mach-Zehnder. These states can be

generated due to imperfections in the beam splitters, loss along the interferometric paths
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or fluctuating phase between the two arms. If n > 1, the state |ψgen
in ⟩ expresses the state

created by BS1 when a Fock state |n⟩ is sent to its input.

Perfect security is also extended to states represented by the density matrix:

ρin =
M∑
l=1

|ψgen
in ⟩l l⟨ψgen

in |, (3.16)

where |ψgen
in ⟩l is any state of the form described by Equation 3.14 for any n. The reason for

that is that the global phase, containing information on the single bits, is not measurable

for each of the |ψgen
in ⟩l, and therefore is also not measurable for their statistical mixture,

as there is no phase coherence between the different terms of the sum in Equation 3.16.

This is exactly the state that is sent to Alice and Bob in the case of an SPDC-based

source with a significant multi-photon emission, if the heralding detection is not number

resolving. On the contrary, a quantum superposition of terms with different values of

n is not secure. The typical example is coherent laser light for which, in principle, it is

possible to read the global phase, if the eavesdropper shares a phase reference with the

server.

The anonymity of the protocol is a direct consequence of its security, since Eve cannot

tell which of the parties is transmitting the message and which one random bits if she

cannot obtain the encoded bits.

3.5.1 Comparison to other quantum communication protocols

The described protocol can be considered an example of QSDC (see Section 1.6.2). The

main differences from other QSDC protocols are that the direction of the communication

is hidden from an external eavesdropper, i.e. the communication is anonymous, and

the resource state involves only a single photon in superposition, exchanged only once

between the two parties; while other protocols involve entangled states and/or ping-pong

communication [152, 153, 154, 155].

The main drawback of the TWCOP-based protocol is the assumption that the resource

state |ψin⟩ is pre-shared between the parties, or is provided by a trusted server with secure
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channels connecting the server to the parties. This sets strict limitations on the protocol

applicability, which are generally not present in other QSDC schemes. Nevertheless,

there are some situations in which the protocol could be applied. For example, in mobile

networks some repeaters connected to a central server need to exchange information

in order to make mobile communication possible [187]. This protocol offers secure and

anonymous communication between the repeaters, given that the channels to and from

the server are secure. As each bit is carried by one photon that is exchanged only once,

it is possible to save resources, in particular, energy (number of photons) and time.

Although error correction requires more photons to be exchanged per transferred bit,

each iteration of the protocol still requires only one photon, and therefore, it might be

advantageous compared to other protocols with the same level of redundancy.

Alternatively, the parties may perform resource state verification, which, however,

would require an authenticated classical channel between them and the use of more

complicated quantum devices. In order to ensure that the communication is secure, in

fact, Alice and Bob have to first verify a random subset of the ensemble of states they

share and then, if the verification is successful, transfer the bits. In order to do that,

they need quantum memories, like in all QSDC protocols developed so far (see Section

1.6.2). Unfortunately, quantum memories are still not advanced enough to allow for such

an application [125].

The TWCOP-based scheme can be converted to a QKD protocol if Alice also sends

random bits instead of a meaningful message. In this case, the verification requirements

for the state are relaxed, as this can be done after all the bits are transferred. For each

iteration of the protocol, each party should decide at random whether to perform a

measurement on the received photon, with probability pmeas, or encode and transfer one

bit, with probability pcomm = 1− pmeas. Then, the probability of bit transfer for both

parties is p2comm. This QKD protocol presents many analogies with TF-QKD (see Section

1.6.1). The advantage with respect to TF-QKD is that only one light source is needed,

as the users do not generate any quantum state. Furthermore, the protocol is based on

single photons and not coherent states. Therefore the decoy-state method explained in
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Section 1.6.1 is not required. A disadvantage is that, as the parties need to receive the

photon from the server and then send it again to each other, the distance travelled by

the photon is larger than that in TF-QKD, and therefore, the dependence of the secure

key rate on the overall transmission of all quantum channels employed is definitely worse,

even though an exact calculation has not been yet performed. Both schemes share the

same technical difficulty in terms of phase stability of the interferometric paths necessary

for the implementation, which becomes more and more challenging as the size of the

interferometer to be stabilized increases. The phase fluctuations for TF-QKD in fact were

characterized to be 2.4 rad/ms and 6.0 rad/ms (standard deviation) in a 100 km-arm

and 500 km-arm fiber interferometer, respectively [129]. These fluctuations would induce

high error rates in the TWCOP-based protocol as well, which cannot be corrected by the

error correction schemes described in the previous sections. Nevertheless, the phase noise

can be reduced by suitable stabilization techniques. Active stabilization in a fiber-based

single-photon interferometer with 6 km-long arms has shown a residual phase fluctuation

of 0.06 rad [188], even though only in laboratory environment. The same technique can

be applied to the TWCOP-based protocol, but it is not clear how this would perform in

real-world conditions and what is the maximum interferometer size to which it can be

applied.

The achieved transmission rate, without error correction is 2 bits/s, over a distance of

about 1.5 m. New developments in the realization of single-photon fast switches [189], low-

jitter and high-efficiency single-photon detectors [190], and deterministic single-photon

sources [191] can dramatically improve these values.

3.6 Summary of the results

In the experimental work described in this chapter, the following contributions have been

made:

• It was experimentally demonstrated, for the first time, that a single quantum particle

in superposition (a photon) allows for two-way communication between distant
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parties, following the theoretical proposal in [181]. The performed measurements

exclude the possibility that the particle travels back and forth between the parties

or that more than one particle are exchanged simultaneously.

• Based on the aforementioned two-way communication scheme, a novel anonymous

and secure quantum communication protocol was developed and implemented. The

basic assumption for security is that the parties share many copies of a single-photon

superposition state. The proof-of-principle implementation achieves a rate of 2

bits/s over a distance in free space of 1.5 m.

• A suitable error correction scheme for the protocol based on a probabilistic single-

photon source, in combination with bit redundancy and majority voting, was

developed and analysed.
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Chapter 4

A novel mediated SQKD protocol

based on interaction-free

measurements

The second project described in this thesis is the development and implementation of a

novel mediated SQKD protocol, in which the two users, Alice and Bob, do not need to

perform any quantum-mechanical operation nor generate quantum states, and therefore

are considered “classical”. The quantum resources are provided by an external untrusted

server, which is required to prepare single photons in superposition and send them to

the parties. Contrary to the previously proposed SQKD protocols (see Chapter 1), the

quantum resources necessary for the key distribution task are feasible within current

technology.

The following sections illustrate this work, first by describing the protocol and the

experimental setup used for its implementation, then by explaining the adopted methods

for security analysis and finally by presenting the obtained experimental results, which

mainly consist in computing the secret key rate for the implemented protocol.

The protocol was developed in collaboration with the quantum information theory

group of Prof. Paulo Mateus in Lisbon and experimentally implemented in Vienna, which
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4.1 The protocol

represents to date the first experimental demonstration of a mediated SQKD protocol.

This sets a milestone in SQKD and paves the way for the practical realization of QKD

protocols to be used in situations where the resources of the users are necessarily limited.

This chapter is an adaptation of the preprint “Experimental quantum cryptography

with classical users” by Francesco Massa et al., posted on arXiv under the identification

number 1908.01780, from which therefore large portions of text and all figures are taken.

4.1 The protocol

The protocol involves three parties: two classical users, or clients, Alice and Bob, whose

aim is to exchange a secret cryptographic key, and a quantum server, which provides the

quantum resources for this purpose. Furthermore, Alice and Bob are able to communicate

through a classical authenticated channel, while the server can send unauthenticated

classical messages to the users. The scheme consists of a key-generation step and a

verification step. In the former, the two parties exchange quantum signals with the server

with the purpose of establishing a shared raw key, in the latter, after the exchange is over,

the parties communicate to verify the server honesty and the absence of eavesdroppers.

A sketch of the scheme is depicted in Figure 4.1. In the key-generation phase, the server

sends to Alice and Bob a single photon in a balanced superposition of their respective

locations, i.e. in the resource state of Equation 3.1. Each user can independently choose

to perform two actions: “detect” (D) or “reflect” (R). In the former case, the photon

travels to a detector controlled by the user, in the latter, the photon is sent back to one

of the two inputs of a balanced beam splitter controlled by the server, at whose outputs

two detectors, D0 and D1, are placed. When both clients choose to reflect, single-photon

interference occurs at the beam splitter, with the relative phase of the two interfering

photon amplitudes tuned such that only detector D0 can click. However, in the ideal

case of perfect detection efficiency, when only one of the clients chooses to measure the

photon and does not detect any, the photon collapses into the other client’s location.

This corresponds to performing an interaction-free measurement [192, 193, 194], which
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Figure 4.1: Scheme of the protocol. Two parties, Alice and Bob, share a single-photon
superposition state distributed by a server. For each iteration of the protocol, Alice and Bob flip a
coin to randomly decide whether sending the photon to the detector DA and DB , respectively, or
reflecting it back to the server. The server controls two detectors, D0 and D1 and a beam splitter,
at which single-photon interference occurs when both parties chose to reflect. In this case, only
detector D0 can click. A click at D1 means that one of the parties decided to detect the photon
and his or her detector did not click. Consequently, a key digit is generated according to the table
in the figure. Alice and Bob communicate through an authenticated channel to verify the honesty
of the server and the absence of eavesdroppers.

suppresses single-photon interference at the server and allows both detectors D0 and D1

to click with non-zero probability. A click at detector D1, therefore, enables each user

to deduce the action of the other one, thus allowing for the establishment of a shared

secret-key digit.

The detailed steps of the key-generation phase are described below.

1) The server sends single photons in superposition to the users at predetermined

regular intervals. Each interval constitutes a single round of the protocol.

2) For each round, Alice and Bob randomly choose between the two actions R and D.

This choice determines the user’s key bit in the following way: Alice stores a key bit
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0 if she chooses to detect, and 1 if she reflects. Bob’s actions are complementary:

he stores 0 for “reflection”, and 1 for “measurement”.

3) The server measures the photon coming from Alice/Bob and announces the following

results: “0”, if detector D0 clicks, “1”, if detector D1 clicks, “v”, if no detector

clicks, and “m”, if more than one click is observed. The latter two cases can arise

due to experimental imperfections or the action of an adversary.

4) Alice and Bob only keep the key bit if the message received from the server is “1”

and they did not detect a photon, thus obtaining the raw key.

Let N be the total number of iterations. At the end of each iteration, the server

announces the result, and each user compares it with their own action. If the server

announces “1”, and a client either reflected, or measured vacuum, then the client’s action

is said to be “consistent” with the server’s result, and no information is sent to the other

client. Otherwise, the user detecting inconsistency announces it to the other one and the

corresponding round is discarded.

When the server announces “1” and both users’ actions are consistent with such

outcome, then a raw-key digit is generated. The probability of such case is indicated by

p(1). If the server announces “1” and both parties reflected or both measured vacuum,

an error in the key occurs. Note that, unlike the majority of QKD protocols, no use of

the authenticated channel is necessary for raw-key generation.

Alice and Bob choose each action (R or D) independently at random, with probability

1/2. Thus, the iterations in which the key can potentially be generated (associated to

the choices RD and DR) occur with probability 1/2. In these cases, ideally, there is a

probability of 1/2 that the photon collapses in the spatial mode associated to the user

that chooses to reflect. Finally, the reflected photon has at best a further probability

of 1/2 to reach detector D1. Therefore, p(1) is at best 1/8, which can be reduced by

experimental imperfections, eavesdropping or the action of an adversarial server.

For the rest of (1 − p(1))N iterations, the users exchange the information of their

actions and detection results. This information is used for verification purposes. In
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particular, by checking the statistics of detection in the DD case, Alice and Bob can

verify if the received state matches the resource state that the server is supposed to send.

This state, in principle, can also have a vacuum and a multi-photon component. The

former is due to loss in the quantum channels connecting the server and the users, the

latter is due to imperfections in the photon source. In practice, after a characterization

of the channels and of the source, but prior to the start of the protocol, the server can

declare the probability of sending vacuum, one or more photons. If the users do not verify

these values, they assume eavesdropping and/or a dishonest server, and, consequently,

discard the key. Additionally, Alice and Bob can use the shared information to test the

behaviour of the server after they choose their actions, i.e. whether he uses a balanced

beam splitter with balanced detectors and honestly declares the detections at D0 and D1.

Again, if the test reveals inconsistencies, it means that either the server is cheating, or

that an eavesdropper is disturbing the communication.

Note that it is enough that only one user, say Alice, performs the verification with the

information received from the other. This allows for a reduction of the communication

complexity. In addition to his action choices and results for the (1− p(1))N iterations,

Bob will also send the messages announced by the server over all the iterations. Alice

will proceed with the verification procedure only if all of Bob’s messages match with hers.

The users can exchange full information on their actions for a randomly chosen fraction

τ of Nraw iterations to perform a direct estimation of the probability of exchanging a key

digit, pkey and the probability of error in the key, perr. Alternatively, Alice can use the

information received from Bob during the verification phase to evaluate pkey and perr

without the need to discard any key digit (see Section 4.4).

4.2 Experimental setup

The experimental setup for the implementation of the protocol is depicted in Figure 4.2.

After setting its polarization to horizontal ( parallel to the optical table) a single photon is

sent to a beam splitter that creates the superposition between Alice’s and Bob’s locations.
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Figure 4.2: Setup for the implementation of the protocol. The regions of space occupied
by Alice, Bob and the server are delimited by dashed black lines. The path of the photons is
indicated by red lines. The server uses a heralded single-photon source and a beam splitter (BS1)
to produce the superposition state that is sent to Alice and Bob. Each of the parties employs a
liquid crystal phase shifter (LC) and a polarizing beam splitter (PBS) to randomly switch between
“detection” and “reflection”. The server collects the reflected photons at a second beam splitter
(BS2), where single-photon interference takes place when both parties choose “reflection”. The
server records the detections at the detectors D0 and D1 and announces the results to the parties
via a classical channel. The initial half-wave plate, quarter-wave plate and polarizers are used to
set the photon polarization to horizontal. A trombone delay line (prism mirrors PM1, PM2, PM3,
PM4), accompanied by a fixed trombone (PM5, PM6, PM7, PM8) is used to obtain full overlap at
BS2 of the two photon amplitudes travelling the interferometer. A piezo actuator is mounted on
the trombone delay line for active phase stabilization every 100 s.
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Each of the parties controls a switch composed of a liquid-crystal cell (same models as

described in Chapter 3) at 45◦ with respect to horizontal and a polarizing beam splitter.

The phase retardation between the two axes of the phase shifter can be switched between

0 and π by means of a voltage signal. Consequently, the photon polarization is rotated

by 0◦ or 90◦, respectively. In the former case, the photon is steered to a fiber-coupled

avalanche photo-diode (APD) for detection, DA for Alice or DB for Bob, otherwise it

is reflected by the PBS and travels back to the server. The photons going back to the

server impinge on a second beam-splitter, at whose outputs two fiber-coupled APDs, D0

and D1, are placed (all the APDs are Excelitas SPCM AQRH-13). The setup, therefore,

implements a folded Mach-Zehnder interferometer.

The phase between the two arms of the interferometer is set such that detector D0

clicks whenever Alice and Bob both decide to reflect back the photon. The interferometer

is passively stabilized so that the phase is constant for about 100 s. After this time,

the server re-sets the phase to the initial value by means of a piezo actuator that is

mounted on a trombone delay line. The trombone delay line is used to finely tune the

difference between the two interferometric paths so that the two photon amplitudes in

the interferometer overlap at the second beam splitter.

The single photons are provided by the source described in Section 3.3.1. The source

produces photon pairs, with a photon of each pair heralding the presence of its twin in the

inteferometer. All the detections considered in this chapter are therefore in coincidence

with the heralding detector DH .

The server sets intervals of 0.5 s in which Alice and Bob can decide to either measure

or reflect the photons. At the end of each interval, the server announces “0”, “1”, “v” or

“m”, according to the number of clicks at its detectors.

The probabilistic nature of the source implies that, in each interval, multiple non-

simultaneous single-photon emissions can occur. In some intervals, therefore, the total

number of detections results higher than one. By attenuating the pump power, the

output rate of the source is reduced so that the total average number of detections

among the four detectors of the setup is about 0.2 per interval, in order to lower the
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probability of multi-photon emission. Given this detection rate and a measured detection

efficiency of 58% at each detector (68% detector efficiency, 85% fiber-coupling efficiency),

the probability of more than two non-simultaneous single-photon emissions within one

interval is considered negligible. With this assumption, the average number of emissions

per interval is calculated to be 0.35.

During the phase stabilization stage, occurring every 100 s, the server increases the

source pump power so that about 104 photons are detected per communication interval.

Alternatively, the server might use strong laser pulses. During this process, the parties

must always reflect the received photons.

4.3 Security Analysis

4.3.1 Assumptions and Notation

Let N be the total number of rounds of the protocol and p(1) be the probability of the

server announcing “1” when no party received a click upon detection. Then Nraw = p(1)N

rounds are potentially used for key generation. Alice and Bob may choose to use a subset

of the raw key of size µ to directly estimate the QBER and, consequently, the secure key

rate. The portion of the raw key remaining after the parameter-estimation step is the

sifted key, of the length Nsift = Nraw − µ. Let the random variables RA and RB denote

Alice’s and Bob’s respective sifted keys. Completing the sifting stage, however, does not

guarantee the following requirements for the shared key to be a perfectly secure secret

key:

(i) Alice and Bob share exactly the same uniformly distributed key. The parameter-

estimation step only sets the degree of the correlation between Alice’s and Bob’s

random variables RA and RB of the sifted key.

(ii) The shared key is completely uncorrelated with Eve (including the server). Again,

the parameter-estimation step only gives upper limits to the correlation with Eve.

Both problems are treated classically, as they are applied to classical random variables.
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Problem (i) is solved using standard error correction techniques (often called information

reconciliation), which turn RA and RB into X̃A and X̃B such that X̃A = X̃B. Problem

(ii) is solved by further applying privacy amplification techniques, resulting in random

variables XA = XB uncorrelated with Eve, giving the final secret key of length Nsec.

The security of the protocol is proved under the assumption that anything outside

of Alice’s and Bob’s private laboratories, including the quantum server, is completely

untrusted. The security level of the key shared between Alice and Bob is given by the

parameter ϵ, which quantifies the deviation of the key XA = XB from a perfectly secure

key [195]. The security criterion requires ϵ to tend to zero as the number of rounds N

tends to infinity, thus obtaining perfectly secret key in the asymptotic scenario. One

can compute the sifted key rate as r′ = limN→∞Nsec/Nsif = S(A|C)− S(A|B), where

S indicates the conditional Von Neumann entropy, and A, B and C stand for Alice, Bob

and Charlie, a third party, which can be the server or an eavesdropper. In other words,

the sifted key rate is given by the difference between the amount of information that

leaks from Alice to a third party and the amount of information that is transferred from

Alice to Bob. The quantity S(A|B) can be easily computed using the probabilities pi,j

of Alice and Bob establishing the raw-key bit values i and j, respectively. Further, the

secret key rate is defined as r = Nsec/N = r′(Nsift/N), which is the same as the sifted

key rate in the asymptotic regime, as the number µ, albeit big, is still finite, and therefore

Nsif = N − µ ≈ N , for N → ∞.

In the realistic case of limited resources, however, where Alice and Bob can exchange

only a finite number of key digits, imperfect parameters must be taken into account. Let

us then denote ϵPE as a given error tolerance for the parameter estimation and define

δ(ϵPE) as the confidence interval associated to ϵPE . This means that the probability that

the observed parameters distance more than δ from the actual values is ϵPE . Furthermore,

let ϵ be the desired security of the final secret key, and ϵEC be the maximal probability

that error correction fails, i.e. that the two sequences of bits XA and XB do not coincide.

All of these are given by the users. Then, after µ rounds being wasted for direct parameter
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estimation, it can be shown that [195]:

r ≥ p(1)N − µ

N

(
S(A|C)− leakEC +∆

p(1)N − µ

)
, (4.1)

where

∆ = 2 log2

(
1

2(ϵ− ϵEC − ϵ′)

)
+ 7

√
(p(1)N − µ) log2(2/(ϵ

′ − ϵPE)), (4.2)

and ϵ′ is arbitrary, meaning that it is chosen by the user to maximize the expression but

bound by ϵ− ϵEC > ϵ′ > ϵPE ≥ 0. In the above expression, S(A|C) is minimized over all

observable statistics within the given confidence interval. The value leakEC represents

the number of (classical) bits exchanged between Alice and Bob during error correction.

It is possible to take leakEC/(p(1)N − µ) = (1.2)h(Q) [195], with h binary Shannon

entropy and Q = perr/p(1), with perr the probability to generate opposite key bits during

the entire protocol. Note that µ is also a function of ϵPE , since in order to obtain higher

precision on the parameters, a higher number of key digits needs to be sacrificed.

In order to compute the secret key rate described above, one needs to compute S(A|C).

Before proceeding with this computation, let us first define some useful terminology. Let

us denote the Hilbert spaces corresponding to Alice’s and Bob’s equipment as:

HA = span{|Dc⟩A, |Dv⟩A, |Dℓ⟩A, |D
′
ℓ⟩A, |D

′
c⟩A, |R⟩A}, (4.3)

HB = span{|Dc⟩B, |Dv⟩B, |Dℓ⟩B, |D
′
ℓ⟩B, |D

′
c⟩B, |R⟩B},

respectively. Here, |Dc⟩ and |Dv⟩ denote the states of a detector, the first corresponding

to the case of a photon causing a click, and the second corresponding to the case when

there were no photons, resulting in a no-click. The detectors’ state corresponding to the

case when an incoming photon was lost is denoted as |Dℓ⟩. The state |D′
ℓ⟩ corresponds to

a loss, while |D′
c⟩ to a click of the photon at a later time t′ > t when two non-simultaneous

photons were emitted by the source at times t and t′. Finally, |R⟩ denotes the state of a

reflecting mirror. Note that |Dc⟩ and |D′
c⟩, are not distinguishable between each other,
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since in the realized implementation, Alice and Bob do not keep track of the detection

times. The same occurs for the three states, |Dv⟩, |D′
ℓ⟩ and |D′

ℓ⟩, as Alice and Bob are

not able to distinguish whether a detector did not click because there were no photons

present, or they were lost.

The server’s Hilbert space HS = span{|0⟩S , |1⟩S , |v⟩S , |m⟩S} consists of macroscopic

orthogonal states modeling classical messages “0”, “1”, “v” (vacuum) and “m” (multiple

clicks), respectively. Additionally, the server can use an ancilla system, denoted by C

and spanned by the Hilbert space HC , and entangle it with the photons sent to Alice

and Bob to extract information on the exchanged key.

Let us assume Alice tosses a fair coin to decide whether she will detect or reflect the

photon, and set the initial state of the apparatus accordingly, resulting in a statistical

mixture of the two states, |Dv⟩A and |R⟩A, and analogously for Bob. Without loss of

generality, the coin states can always be included into the macroscopic description of the

apparatus states such that the purified initial state of Alice’s apparatus is

|φ0⟩A =
1√
2

(
|Dv⟩A + |R⟩A

)
, (4.4)

and analogously for Bob, making their joint state as

|φ0⟩AB =
1

2

(
|Dv,R⟩AB + |R,Dv⟩AB + |Dv,Dv⟩AB + |R,R⟩AB

)
. (4.5)

Note that due to possible imperfect single-photon sources, and the presence of adversaries,

the number of photons present is not necessarily fixed to be one. Thus, a number basis

will be used to describe the photonic states. The overall Fock space of the photons in

Alice’s and Bob’s arms will be decomposed as:

Ff =span{|0, 0⟩f , |1, 0⟩f , |0, 1⟩f , |2, 0⟩f , |1, 1
′⟩f , |1

′, 1⟩f , |0, 2⟩f} ⊕ Fk
f , (4.6)

where |0, 0⟩f ≡ |v⟩f represents the vacuum state, |1, 0⟩f (|0, 1⟩f ) represents the state

with a single photon in Alice’s (Bob’s) arm and no photon in Bob’s (Alice’s) arm,
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whereas |2, 0⟩f , and |0, 2⟩f , are associated to two non-simultaneous photons in Alice’

and Bob’s arms, respectively. The states |1, 1′⟩f and |1′, 1⟩f represent the case of two

non-simultaneous photons with the first one going to Alice while the second to Bob and

vice-versa, respectively. Fk
f denotes the sub-space corresponding to the multi-photon

case of k > 2 photons.

4.3.2 Extraction of the secret key

The security analysis is conducted by considering a probabilistic source, which emits

vacuum state with probability p0, a single photon with probability p1, and two non-

simultaneous photons with probability p2, within a communication interval of duration

T . The state produced by the source is then:

|φ0⟩f =
√
p0 |v⟩f +

√
p1
T

∫ T

0
â†(t) |v⟩f dt+

√
p2
T

∫ T

0

∫ T

0

(
â†(t)â†(t′)√

2
|v⟩f

)
dt dt′, (4.7)

where â†(t) and â†(t′) represent photon creation at times t and t′ > t, respectively. The

probability to emit higher numbers of photons is considered negligible and therefore not

included in the analysis, i.e., p0 + p1 + p2 ≈ 1.

However, instead of the above initial photon state, the untrusted server can prepare the

following photonic state, entangled with the ancilla,

|φ0⟩fC =
√
p0 |v⟩f |dv⟩C +

√
p1 |1⟩f |d1⟩C +

√
p2 |2⟩f |d2⟩C , (4.8)

where |v⟩f is the photon vacuum state, |1⟩f = â†(t) |v⟩f , |2⟩f = â†(t)â†(t′) |v⟩f , and the

ancilla states are |di⟩C ∈ HC . After passing through the first 50/50 beam splitter of the

interferometer, the above state becomes:

|φ0⟩fC =
√
p0 |v⟩f |dv⟩C +

√
p1
2

(
|1, 0⟩f + |0, 1⟩f

)
|d1⟩C + (4.9)

+

√
p2
2

(
|2, 0⟩f + |1, 1′⟩f + |1′, 1⟩f + |0, 2⟩f

)
|d2⟩C .
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Upon possible further action of the adversary, the above state evolves to the normalized

state:

|φ0⟩fC−→
∑
a,b≥0
a+b≤2

|a, b⟩f |ca,b⟩C (4.10)

where |ca,b⟩C ∈ HC (not necessarily orthogonal, nor normalized states) are associated

to the cases when there are a and b photons entering Alice’s and Bob’s arms, respec-

tively. Nevertheless, the states |ca,b⟩C are arbitrary and contain any number of photons.

Therefore, the overall state before the photon(s) enter Alice’s and Bob’s laboratories is:

|φ0⟩ABfC = |φ0⟩AB ⊗ |φ0⟩fC . (4.11)

Let us denote Alice’s and Bob’s respective detectors’ efficiencies as pAd and pBd , with

pAℓ = 1− pAd and pBℓ = 1− pBd . The individual actions (say, for Alice) in the practical

scenario are:

|Dv⟩ |0⟩ → |Dv⟩ |0⟩ ,

|Dv⟩ |1⟩ →
(√

pAℓ |Dℓ⟩+
√
pAd |Dc⟩

)
|0⟩ , (4.12)

|Dv⟩ |2⟩ →
(
pAℓ |DℓD

′
ℓ⟩+

√
pAℓ p

A
d |DcD

′
ℓ⟩+

√
pAℓ p

A
d |DℓD

′
c⟩+ pAd |DcD

′
c⟩
)
|0⟩ ,

|R⟩ |0⟩ → |R⟩ |0⟩ ; |R⟩ |1⟩ → |R⟩ |1⟩ ; |R⟩ |2⟩ → |R⟩ |2⟩ ,

where primed and unprimed states of the apparatuses correspond to times t′ and t,

respectively. Therefore, upon applying the operator U1, given in terms of Alice’s and

Bob’s local actions described by (4.12), the state |φ1⟩ABfC = U1 |φ0⟩ABfC is obtained.

Following this, the adversary will apply a quantum operator to the returning photon

state, whose action is defined as:

I |a′, b′⟩f |ca,b⟩C = |0⟩S |ea,ba′,b′⟩C + |1⟩S |fa,ba′,b′⟩C + |v⟩S |ga,ba′,b′⟩C + |m⟩S |ha,ba′,b′⟩C , (4.13)

where states |ea,ba′,b′⟩C , |f
a,b
a′,b′⟩C , |g

a,b
a′,b′⟩C , |h

a,b
a′,b′⟩C ∈ HC are again not necessarily normal-
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ized, nor orthogonal. Note that, due to the action of U1, the photon numbers a, b are no

longer correlated to a′, b′ ∈ {0, 1, 2}; nevertheless, the inequality a′ + b′ ≤ 2 still holds.

Only the the key-generation rounds are of interest for the computation of the secret

key rate, therefore only the events, in which the server announces “1” and neither Alice

nor Bob receives a click will be here considered. Hence, by omitting |1⟩S , the final density

operator (without the off-diagonal terms) of the system ABC is:

ρABC=
1

N

[
|Dv,R⟩AB⟨Dv,R| ⊗ |k0,0⟩C⟨k0,0|+ |R,Dv⟩AB⟨R,Dv| ⊗ |k1,1⟩C⟨k1,1|+ (4.14)

+ |Dℓ,R⟩AB⟨Dℓ,R| ⊗ |k10,0⟩C⟨k
1
0,0|+ |R,Dℓ⟩AB⟨R,Dℓ| ⊗ |k11,1⟩C⟨k

1
1,1|+

+ |D′
ℓ,R⟩AB⟨D

′
ℓ,R| ⊗ |k20,0⟩C⟨k

2
0,0|+ |R,D′

ℓ⟩AB⟨R,D
′
ℓ| ⊗ |k21,1⟩C⟨k

2
1,1|+

+ |DℓD
′
ℓ,R⟩AB⟨DℓD

′
ℓ,R| ⊗ |k30,0⟩C⟨k

3
0,0|+ |R,DℓD

′
ℓ⟩AB⟨R,DℓD

′
ℓ| ⊗ |k31,1⟩C⟨k

3
1,1|+

+ |Dv,Dv⟩AB⟨Dv,Dv| ⊗ |k0,1⟩C⟨k0,1|+ |R,R⟩AB⟨R,R| ⊗ |k1,0⟩C⟨k1,0|+

+ |Dℓ,Dv⟩AB⟨Dℓ,Dv| ⊗ |k10,1⟩C⟨k
1
0,1|+ |Dv,Dℓ⟩AB⟨Dv,Dℓ| ⊗ |k20,1⟩C⟨k

2
0,1|+

+ |Dℓ,D
′
ℓ⟩AB⟨Dℓ,D

′
ℓ| ⊗ |k30,1⟩C⟨k

3
0,1|+ |D′

ℓ,Dℓ⟩AB⟨D
′
ℓ,Dℓ| ⊗ |k40,1⟩C⟨k

4
0,1|+

+ |DℓD
′
ℓ,Dv⟩AB⟨DℓD

′
ℓ,Dv| ⊗ |k50,1⟩C⟨k

5
0,1|+ |Dv,DℓD

′
ℓ⟩AB⟨Dv,DℓD

′
ℓ| ⊗ |k60,1⟩C⟨k

6
0,1|
]
.

The states |ki,j⟩C are associated to the cases when Alice establishes the value i and Bob
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j as a key bit, and are given by:

|k0,0⟩ =
1

2

[
|f0,00,0 ⟩+ |f0,10,1 ⟩+ |f0,20,2 ⟩

]
, |k1,1⟩ =

1

2

[
|f0,00,0 ⟩+ |f1,01,0 ⟩+ |f2,02,0 ⟩

]
,

|k10,0⟩ =
1

2

√
pAℓ

[
|f1,00,0 ⟩+ |f1,10,1 ⟩

]
, |k11,1⟩ =

1

2

√
pBℓ

[
|f0,10,0 ⟩+ |f1,11,0 ⟩

]
,

|k20,0⟩ =
1

2

√
pAℓ |f1

′,1
0,1 ⟩ , |k21,1⟩ =

1

2

√
pBℓ |f1,1

′

1,0 ⟩ ,

|k30,0⟩ =
1

2
pAℓ |f2,00,0 ⟩ , |k31,1⟩ =

1

2
pBℓ |f0,20,0 ⟩ ,

|k0,1⟩ =
1

2
|f0,00,0 ⟩ , |k1,0⟩ =

1

2

[
|f0,00,0 ⟩+ |f1,01,0 ⟩+ |f0,10,1 ⟩+ |f2,02,0 ⟩+

+ |f1,1
′

1,1′ ⟩+ |f1
′,1

1′,1 ⟩+ |f0,20,2 ⟩
]
,

|k10,1⟩ =
1

2

√
pAℓ |f1,00,0 ⟩ , |k40,1⟩ =

1

2

√
pAℓ pBℓ |f1

′,1
0,0 ⟩ ,

|k20,1⟩ =
1

2

√
pBℓ |f0,10,0 ⟩ , |k50,1⟩ =

1

2
pAℓ |f2,00,0 ⟩ ,

|k30,1⟩ =
1

2

√
pAℓ pBℓ |f1,1

′

0,0 ⟩ , |k60,1⟩ =
1

2
pBℓ |f0,20,0 ⟩ .

(4.15)

The normalization constant N is the probability to obtain the result “1”, when there

were no clicks at the agents’ detectors, expressed as:

N = ⟨k0,0|k0,0⟩+⟨k10,0|k10,0⟩+⟨k20,0|k20,0⟩+⟨k30,0|k30,0⟩+⟨k1,1|k1,1⟩+

+⟨k11,1|k11,1⟩+⟨k21,1|k21,1⟩+⟨k31,1|k31,1⟩+⟨k0,1|k0,1⟩+⟨k10,1|k10,1⟩+

+⟨k20,1|k20,1⟩+⟨k30,1|k30,1⟩+⟨k40,1|k40,1⟩+⟨k50,1|k50,1⟩+⟨k60,1|k60,1⟩+⟨k1,0|k1,0⟩ .

(4.16)

In Equation (4.14), the state |Dv,R⟩ ⟨Dv,R| describes Alice detecting without a click

and Bob reflecting, and is associated to a shared key bit of 0. However, |Dℓ,R⟩ ⟨Dℓ,R|,

|D′
ℓ,R⟩ ⟨D′

ℓ,R| and |DℓD
′
ℓ,R⟩ ⟨DℓD

′
ℓ,R| also correspond to a shared key bit of 0, and

are a consequence of Alice’s imperfect detector and multi-photon events. Similarly,

|R,Dv⟩ ⟨R,Dv|, |R,Dℓ⟩ ⟨R,Dℓ|, |R,D′
ℓ⟩ ⟨R,D′

ℓ| and |R,DℓD
′
ℓ⟩ ⟨R,DℓD

′
ℓ| are associated to a

key bit 1. The remaining states correspond to errors, i.e., the cases when the two users
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establish opposite key bit values. From the definitions of kij and N :

⟨k0,0|k0,0⟩+ ⟨k10,0|k10,0⟩+ ⟨k20,0|k20,0⟩+ ⟨k30,0|k30,0⟩
N

= p(Dv,R ∨Dℓ,R ∨D′
ℓ,R ∨DℓD

′
ℓ,R|1).

(4.17)

Here, p(P|C) denotes the conditional probability that the proposition P holds (in the

above case, Alice detects and observes no clicks, while Bob reflects), given that the

condition C is satisfied (in the above case, the server announces “1”). Therefore, using

the notation ⟨ki,j |ki,j⟩ = pi,j ; ⟨kmi,j |kmi,j⟩ = pmi,j , the probability to share a key digit is given

by:

pkey= ⟨k0,0|k0,0⟩+⟨k10,0|k10,0⟩+⟨k20,0|k20,0⟩+⟨k30,0|k30,0⟩+

+ ⟨k1,1|k1,1⟩+⟨k11,1|k11,1⟩+⟨k21,1|k21,1⟩+⟨k31,1|k31,1⟩ =

= p0,0 + p10,0 + p20,0 + p30,0 + p1,1 + p11,1 + p21,1 + p31,1 = (4.18)

= p̃0,0 + p̃1,1 =

= p(Dv,R ∨Dℓ,R ∨D′
ℓ,R ∨DℓD

′
ℓ,R ; 1) + p(R,Dv ∨R,Dℓ ∨R,D′

ℓ ∨R,DℓD
′
ℓ ; 1),

where p(Dv,R∨Dℓ,R∨D′
ℓ,R∨DℓD

′
ℓ,R ; 1) represents the joint probability of the following

event: Alice detects vacuum, Bob reflects, and the server announces the result “1”; and

analogously for the other term. Note that, for simplicity, the symbol “;” is used to denote

logical AND between two propositions, instead of introducing the additional parenthesis

for the first one and the standard symbol ∧. The probability of error in the raw key is
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given by:

perr= ⟨k0,1|k0,1⟩+⟨k10,1|k10,1⟩+⟨k20,1|k20,1⟩+⟨k30,1|k30,1⟩+

+ ⟨k40,1|k40,1⟩+⟨k50,1|k50,1⟩+⟨k60,1|k60,1⟩+⟨k1,0|k1,0⟩ = (4.19)

= p0,1 + p10,1 + p20,1 + p30,1 + p40,1 + p50,1 + p60,1 + p1,0 =

= p̃0,1 + p̃1,0 =

= p(Dv,Dv ∨Dℓ,Dv ∨Dv,Dℓ ∨Dℓ,D
′
ℓ ∨D′

ℓ,Dℓ ∨Dv,DℓD
′
ℓ ∨D′

ℓDℓ,Dv ; 1) + p(RR ; 1),

where p(Dv,Dv ∨Dℓ,Dv ∨Dv,Dℓ ∨Dℓ,D
′
ℓ ∨D′

ℓ,Dℓ ∨Dv,DℓD
′
ℓ ∨D′

ℓDℓ,Dv ; 1) represents

the joint probability of the event: Alice and Bob both detect vacuum, and the server

announces the result “1”; and analogously for the other term. The probabilities p̃i,j can

be directly observed from the experiment.

To obtain the secret key rate, the following bound is considered [196]:

S(A|C) ≥ ⟨k0,0|k0,0⟩+ ⟨k1,1|k1,1⟩
N

(
h

[
⟨k0,0|k0,0⟩

⟨k0,0|k0,0⟩+ ⟨k1,1|k1,1⟩

]
− h(λ0)

)
+

+
⟨k10,0|k10,0⟩+ ⟨k11,1|k11,1⟩

N

(
h

[
⟨k10,0|k10,0⟩

⟨k10,0|k10,0⟩+ ⟨k11,1|k11,1⟩

]
− h(λ1)

)
+

+
⟨k20,0|k20,0⟩+ ⟨k21,1|k21,1⟩

N

(
h

[
⟨k20,0|k20,0⟩

⟨k20,0|k20,0⟩+ ⟨k21,1|k21,1⟩

]
− h(λ2)

)
+

+
⟨k30,0|k30,0⟩+ ⟨k31,1|k31,1⟩

N

(
h

[
⟨k30,0|k30,0⟩

⟨k30,0|k30,0⟩+ ⟨k31,1|k31,1⟩

]
− h(λ3)

)
+

+
⟨k0,1|k0,1⟩+ ⟨k1,0|k1,0⟩

N

(
h

[
⟨k0,1|k0,1⟩

⟨k0,1|k0,1⟩+ ⟨k1,0|k1,0⟩

]
− h(λ4)

)
,

(4.20)

where h is the binary Shannon entropy, and:

λi =
1

2

⎛⎝1 +

√
(⟨ki0,0|ki0,0⟩ − ⟨ki1,1|ki1,1⟩)2 + 4Re2 ⟨ki0,0|ki1,1⟩

⟨ki0,0|ki0,0⟩+ ⟨ki1,1|ki1,1⟩

⎞⎠ . (4.21)

The first four terms in S(A|C) correspond to the key digits shared between Alice and
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Bob, while the last term corresponds to errors in the key. However, the lower bound

on S(A|C) is estimated by considering only the first term since its contribution to the

entropy is far larger than that of any of the other terms.

From expression (4.21) for λ0, it is clear that minimizing S(A|C) essentially means

minimizing Re ⟨k0,0|k1,1⟩. Therefore, in addition to different probabilities obtained from

the experiment, it is also necessary to estimate Re ⟨k0,0|k1,1⟩, which is done here by

computing the lower bound for Re2 ⟨k0,0|k1,1⟩, i.e., for |Re ⟨k0,0|k1,1⟩ |. By using the

following notation for simplification:

|x⟩ = |f1,01,0 ⟩+ |f2,02,0 ⟩ ; |y⟩ = |f0,10,1 ⟩+ |f0,20,2 ⟩ , |z⟩ = |f1,1
′

1,1′ ⟩+ |f1
′,1

1′,1 ⟩ , (4.22)

Re ⟨k0,0|k1,1⟩ can be obtained as:

Re ⟨k0,0|k1,1⟩ =
1

4

[
⟨f0,00,0 |f

0,0
0,0 ⟩+Re ⟨x|f0,00,0 ⟩+Re ⟨f0,00,0 |y⟩+Re ⟨x|y⟩

]
. (4.23)

At this point, by defining ⟨k1,0|k1,0⟩ = Q/4 and considering ⟨f0,00,0 |f
0,0
0,0 ⟩ = 4 ⟨k0,1|k0,1⟩ =

4p0,1, one can write:

⟨k0,0|k1,1⟩ =
Q
8
+

p0,1
2

− 1

8
[⟨x|x⟩+ ⟨y|y⟩+ ⟨z|z⟩]− 1

4

[
⟨x|z⟩+ ⟨y|z⟩+ ⟨f0,00,0 |z⟩

]
. (4.24)

Considering that ⟨x|z⟩ = | ⟨x|z⟩ |eϕx,z , it follows:

Re ⟨x|z⟩ = | ⟨x|z⟩ | cosϕx,y = || |x⟩ || · || |z⟩ || · | cosχx,z| cosϕx,z =
√
⟨x|x⟩

√
⟨z|z⟩ cos θx,z,

(4.25)

where χx,z denotes the angle between |x⟩ and |z⟩ and cos θx,z ≡ | cosχx,z| cosϕx,z, and

analogously for Re ⟨y|z⟩ and so on.

Therefore, the final expression for Re ⟨k0,0|k1,1⟩ is:

Re ⟨k0,0|k1,1⟩ =
Q
8
+

p0,1
2

− 1

8
[⟨x|x⟩+ ⟨y|y⟩+ ⟨z|z⟩]− 1

4

[√
⟨f0,00,0 |f

0,0
0,0 ⟩
√

⟨z|z⟩ cos θf,z
]
+

− 1

4

[√
⟨x|x⟩

√
⟨z|z⟩ cos θx,z +

√
⟨y|y⟩

√
⟨z|z⟩ cos θy,z

]
. (4.26)
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To evaluate ⟨x|x⟩ and ⟨y|y⟩, Equation (4.15) can be exploited, thus obtaining:

⟨k1,1|k1,1⟩=
1

4

[
⟨f0,00,0 |f

0,0
0,0 ⟩+ ⟨x|x⟩+ 2Re ⟨f0,00,0 |x⟩

]
(4.27)

⟨k0,0|k0,0⟩=
1

4

[
⟨f0,00,0 |f

0,0
0,0 ⟩+ ⟨y|y⟩+ 2Re ⟨f0,00,0 |y⟩

]
.

Note that ⟨f0,00,0 |f
0,0
0,0 ⟩ = 4 ⟨k0,1|k0,1⟩ = 4p0,1, ⟨k0,0|k0,0⟩ = p0,0 and ⟨k1,1|k1,1⟩ = p1,1.

Therefore, solving the quadratic equations from (4.27), the following positive roots of√
⟨x|x⟩ and

√
⟨y|y⟩ are extracted:

√
⟨x|x⟩ = 2

[
−√

p0,1 cosθx,f +
√
p1,1 − (1− cos2θx,f ) p0,1

]
,√

⟨y|y⟩ = 2
[
−√

p0,1 cosθy,f +
√

p0,0 − (1− cos2θy,f ) p0,1

]
.

(4.28)

Analogously, for ⟨z|z⟩:

⟨z|z⟩+ 2
[√

⟨x|x⟩ cos θx,z +
√

⟨y|y⟩ cos θy,z + 2
√
p0,1 cos θf,z

]
  

β

√
⟨z|z⟩+

+ 4
[
p0,1 − p1,0

]
+
[
⟨x|x⟩+ ⟨y|y⟩+ 2

√
⟨x|x⟩

√
⟨y|y⟩ cos θx,y

]
+ 4

√
p0,1

[√
⟨x|x⟩ cos θx,f +

√
⟨y|y⟩ cos θy,f

]
  

γ

= 0,

(4.29)

where cos θx,z ≡ | cosχx,z| cosϕx,z and analogously for cos θy,z, cos θf,z, etc. Again,

solving the above quadratic equation, the positive root of
√
⟨z|z⟩ can be obtained. The

lower bound for Re ⟨k0,0|k1,1⟩ is estimated by minimizing with respect all the angles

defined in the above expressions.

4.4 Parameter Estimation

In order to compute S(A|C) in Equation (4.20) and eventually obtain the secret key rate

of Equation (4.1), the probabilities p0,0, p1,1 and p0,1 need to be computed. Below, two

methods of estimation are discussed: direct estimation, where Alice and Bob use part of
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the key to obtain the required probabilities, and indirect estimation, where only rounds

that do not lead to key generation are used.

4.4.1 Direct estimation

In case of direct estimation, a fraction µ of the total Nraw key-generation rounds is used

to directly compute the relevant probabilities. However, since Alice’s and Bob’s detectors

are imperfect, they cannot compute p0,0 = p(Dv,R ; 1) and p1,1 = p(R,Dv ; 1) directly,

as they cannot differentiate the event Dv,R from the events Dℓ,R, D
′
ℓ,R and DℓD

′
ℓ,R,

and analogously for R,Dv. However, the users can obtain p̃0,0 and p̃1,1 directly, which,

combined to the estimation of p10,0 = ⟨k10,0|k10,0⟩, p20,0 = ⟨k20,0|k20,0⟩ and p30,0 = ⟨k30,0|k30,0⟩,

eventually provides p0,0. From Equation (4.15) one has:

p10,0 = p(Dℓ,R ; 1) =
pAℓ
4

(
|| |f1,00,0 ⟩+ |f1,1

′

0,1′ ⟩ ||
2
)
,

p20,0 = p(D′
ℓ,R ; 1) =

pAℓ
4

⟨f1
′,1

0,1 |f1
′,1

0,1 ⟩ , (4.30)

p30,0 = p(DℓD
′
ℓ,R ; 1) =

pA
2

ℓ

4
⟨f2,00,0 |f

2,0
0,0 ⟩ .

The above probabilities can be estimated by looking at the events corresponding to the

detector clicks, using the expressions:

p(Dc,R ; 1) =
pAd
4

(
|| |f1,00,0 ⟩+ |f1,1

′

0,1′ ⟩ ||
2
)
,

p(D′
c,R ; 1) =

pAd
4

⟨f1
′,1

0,1 |f1
′,1

0,1 ⟩ , (4.31)

p(DcD
′
c,R ; 1) =

pA
2

d

4
⟨f2,00,0 |f

2,0
0,0 ⟩ .

In fact,
(
p10,0 + p20,0

)
and p30,0 can be written as:

p10,0 + p20,0=

(
pAℓ
pAd

)
p(Dc,R ∨D′

c,R ; 1), (4.32)

p30,0=

(
pAℓ
pAd

)2
p(DcD

′
c,R ; 1),
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where p(DcD
′
c,R ; 1) is obtained using the rounds when Alice gets double clicks in her

detector. The probability p(Dc,R ∨D′
c,R ; 1) is computed from the following expression:

p(Dc,R∨D′
c,R; 1) = p(Dc,R∨D′

c,R∨DℓD
′
c,R∨DcD

′
ℓ,R; 1)−p(DℓD

′
c,R; 1)−p(DcD

′
ℓ,R; 1),

(4.33)

considering that p(Dc,R ∨D′
c,R ∨DℓD

′
c,R ∨DcD

′
ℓ,R ; 1), corresponding to a single click

in Alice’s detector, can be obtained directly and that:

p(DℓD
′
c,R ; 1) =

pAℓ p
A
d

4
⟨f2,00,0 |f

2,0
0,0 ⟩ = p(DcD

′
ℓ,R ; 1). (4.34)

Therefore, the required probabilities p0,0 and p1,1 are:

p0,0 = p̃0,0 −
(
pAℓ
pAd

)
p(Dc,R ∨D′

c,R ∨DℓD
′
c,R ∨DcD

′
ℓ,R ; 1) +

(
pAℓ
pAd

)2
p(DcD

′
c,R ; 1),

p1,1 = p̃1,1 −
(
pBℓ
pBd

)
p(R,Dc ∨R,D′

c ∨R,DℓD
′
c ∨R,DcD

′
ℓ ; 1) +

(
pBℓ
pBd

)2
p(DcD

′
c,R ; 1).

(4.35)

Additionally, to compute p0,1, relation p0,1 = p̃0,1 − p10,1 − p20,1 − p30,1 − p40,1 − p50,1 − p60,1

is used. Again, applying straightforward algebra:

p0,1 = p̃0,1 −
(
pAℓ
pAd

)
p(Dc,Dv ∨Dc,D

′
ℓ ∨D′

c,Dℓ ∨DcD
′
ℓ,Dv ∨DℓD

′
c,Dv ; 1)+

−
(
pBℓ
pBd

)
p(Dv,Dc ∨Dℓ,D

′
c ∨D′

ℓ,Dc ∨Dv,DcD
′
ℓ ∨Dv,DℓD

′
c ; 1)+

− 3

(
pAℓ
pAd

)2
p(DcD

′
c,Dv ; 1)− 3

(
pBℓ
pBd

)2
p(Dv,DcD

′
c ; 1)+ (4.36)

− 3

(
pAℓ pBℓ
pAd pBd

)
p(Dc,D

′
c ∨D′

c,Dc ; 1).

4.4.2 Indirect estimation

To avoid wasting the rounds used for key-generation, the remaining rounds (when “0”,“v”

or “m” was announced or “1” was announced with click(s) at Alice’s and Bob’s detectors)
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can be used for parameter estimation. For these cases, Alice and Bob can communicate

over an authenticated channel to convey their respective action choices and resulting

states to each other. In fact:

p0,0 = p(Dv,R ; 1) = p(Dv,R)− p(Dv,R ; 0)− p(Dv,R ; v)− p(Dv,R ;m), (4.37)

where:

p(Dv,R) = p(D,R)− p(Dℓ,R)− p(D′
ℓ,R)− p(Dc,R) + (4.38)

− p(D′
c,R)− p(DℓD

′
ℓ,R)− p(DcD

′
ℓ,R)− p(DℓD

′
c,R)− p(DcD

′
c,R).

Note that p(D,R) is the probability of Alice choosing to detect and Bob to reflect. Since

Alice and Bob choose their actions at random, ideally p(D,D) = p(D,R) = p(R,D) =

p(R,R) = 1/4. However, considering the finite sample size and the inefficiency of switching

between the two actions, Alice and Bob do not take these probabilities to be 1/4 but

compute them considering only the non-useful rounds.

By combining Equations 4.37 and 4.38, one has:

p0,0 = p(D,R)− p(Dℓ,R)− p(D′
ℓ,R)− p(Dc,R)− p(D′

c,R)− p(DℓD
′
ℓ,R)− p(DcD

′
ℓ,R)+

− p(DℓD
′
c,R)− p(DcD

′
c,R)− p(Dv,R ; 0)− p(Dv,R ; v)− p(Dv,R ;m). (4.39)

Note that Alice and Bob cannot directly compute all the quantities from the above

expression. For instance, the probability p(Dv,R ; 0) is not directly observable. However,

this quantity can be obtained indirectly from p(Dv,R ∨ Dℓ,R ∨ D′
ℓ,R ∨ DℓD

′
ℓ,R ; 0),

according to the following expression:

p(Dv,R ; 0) = p(Dv,R ∨Dℓ,R ∨D′
ℓ,R ∨DℓD

′
ℓ,R ; 0)+

− p(Dℓ,R ; 0)− p(D′
ℓ,R ; 0)− p(DℓD

′
ℓ,R ; 0). (4.40)

Analogous procedures can be adopted for p(Dℓ,R ; 0),p(D′
ℓ,R ; 0) and p(DcD

′
ℓ,R ; 0), etc.
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The final expressions for p0,0 and p1,1, in terms of directly observable probabilities, are

then:

p0,0 = p(D,R)− p(Dc,R ∨D′
c,R ∨DℓD

′
c,R ∨DcD

′
ℓ,R)− p(DcD

′
c,R)+

− p(Dv,R ∨Dℓ,R ∨D′
ℓ,R ∨DℓD

′
ℓ,R ; 0) + p(Dv,R ∨Dℓ,R ∨D′

ℓ,R ∨DℓD
′
ℓ,R ; v) +

− p(Dv,R ∨Dℓ,R ∨D′
ℓ,R ∨DℓD

′
ℓ,R ;m)+

+

(
pAℓ
pAd

)[
p(Dc,R ∨D′

c,R ∨DℓD
′
c,R ∨DcD

′
ℓ,R ; 0) +

+ p(Dc,R ∨D′
c,R ∨DℓD

′
c,R ∨DcD

′
ℓ,R ; v)+ (4.41)

+ p(Dc,R ∨D′
c,R ∨DℓD

′
c,R ∨DcD

′
ℓ,R ;m)+

− p(Dc,R ∨D′
c,R ∨DℓD

′
c,R ∨DcD

′
ℓ,R)

]
−
(
pAℓ
pAd

)2 [
p(DcD

′
c,R ; 0)+

+ p(DcD
′
c,R ; v) + p(DcD

′
c,R;m)− p(DcD

′
c,R)

]
,

p1,1 = p(R,D)− p(R,Dc∨R,D′
c ∨R,DℓD

′
c ∨R,DcD

′
ℓ)− p(R,DcD

′
c)+

− p(R,Dv ∨R,Dℓ ∨R,D′
ℓ ∨R,DℓD

′
ℓ ; 0)− p(R,Dv ∨R,Dℓ ∨R,D′

ℓ ∨R,DℓD
′
ℓ ; v)+

− p(R,Dv ∨R,Dℓ ∨R,D′
ℓ ∨R,DℓD

′
ℓ ;m) +

+

(
pBℓ
pBd

)[
p(R,Dc ∨R,D′

c ∨R,DℓD
′
c ∨R,DcD

′
ℓ ; 0)+

+ p(R,Dc ∨R,D′
c ∨R,DℓD

′
c ∨R,DcD

′
ℓ ; v)+ (4.42)

+ p(R,Dc ∨R,D′
c ∨R,DℓD

′
c ∨R,DcD

′
ℓ ;m)+

− p(R,Dc ∨R,D′
c ∨R,DℓD

′
c ∨R,DcD

′
ℓ)
]
−
(
pBℓ
pBd

)2 [
p(R,DcD

′
c ; 0)+

+ p(R,DcD
′
c ; v) + p(R,DcD

′
c ;m)− p(R,DcD

′
c)
]
.

Analogously:

p̃1,0 = p(R,R ; 1) = p(RR)− p(R,R ; 0)− p(R,R ; v)− p(R,R ;m), (4.43)
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and:

p0,1 = p(1)− p̃0,0 − p̃1,1 − p̃1,0 +

−
(
pAℓ
pAd

)
p(Dc,Dv ∨Dc,D

′
ℓ ∨D′

c,Dℓ ∨DcD
′
ℓ,Dv ∨DℓD

′
c,Dv ; 1) +

−
(
pBℓ
pBd

)
p(Dv,Dc ∨Dℓ,D

′
c ∨D′

ℓ,Dc ∨Dv,DcD
′
ℓ ∨Dv,DℓD

′
c ; 1) + (4.44)

− 3

(
pAℓ
pAd

)2
p(DcD

′
c,Dv ; 1)− 3

(
pBℓ
pBd

)2
p(Dv,DcD

′
c ; 1) +

− 3

(
pAℓ pBℓ
pAd pBd

)
p(Dc,D

′
c ∨D′

c,Dc ; 1).

Note that, to compute pkey = p̃00 + p̃11 using the indirect method, one has:

p̃0,0 = p(D,R)− p(Dc,R ∨D′
c,R ∨DℓD

′
c,R ∨DcD

′
ℓ,R)− p(DcD

′
c,R)+

− p(Dv,R ∨Dℓ,R ∨D′
ℓ,R ∨DℓD

′
ℓ,R ; 0)+ (4.45)

− p(Dv,R ∨Dℓ,R ∨D′
ℓ,R ∨DℓD

′
ℓ,R ; v)− p(Dv,R ∨Dℓ,R ∨D′

ℓ,R ∨DℓD
′
ℓ,R ;m),

p̃1,1 = p(R,D)− p(R,Dc ∨R,D′
c ∨R,DℓD

′
c ∨R,DcD

′
ℓ)− p(R,DcD

′
c)+

− p(R,Dv ∨R,Dℓ ∨R,D′
ℓ ∨R,DℓD

′
ℓ ; 0)+ (4.46)

− p(R,Dv ∨R,Dℓ ∨R,D′
ℓ ∨R,DℓD

′
ℓ ; v)− p(R,Dv ∨R,Dℓ ∨R,D′

ℓ ∨R,DℓD
′
ℓ ;m).

4.5 Experimental Results

The experimental probabilities pkey and perr, computed both directly and indirectly, are

reported in Table 4.1. Direct estimation is performed both over the full data set of 105

iterations and over a subset with 104 iterations. The indirect estimation is performed

using all the iterations that do not lead to key generation, over the full data set. The

probabilities computed with the different methods are all consistent within experimental

errors, which are higher in the case of indirect estimation, due to the higher number of

measured quantities, each with its error, necessary for the computation. On the other
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Direct Method Direct Method Indirect Method

(full dataset) (subset) (full dataset)

pkey 1.55(3)× 10−2 1.5(1)× 10−2 1.5(3)× 10−2

perr 7.5(8)× 10−4 5(2)× 10−4 3(3)× 10−3

Table 4.1: Evaluation of key generation and error rates. The probabilities of raw-key
generation, pkey and error on a key digit, perr, respectively, are shown per round (in our case an
interval of 0.5 s). pkey and perr are evaluated in three different ways: direct estimation over the

full data set, direct estimation over a randomly chosen subset of 104 rounds and indirect estimation.
The latter allows the parties to avoid the loss of key digits, at a price of higher uncertainty of the
estimated values, which are calculated from several experimentally obtained quantities, each with
its error. In the table, the numbers in parentheses are the errors on the last digits, obtained with
the assumption of Poissonian uncertainty of the counts.

hand, in the case of direct estimation, the uncertainty of the final probabilities depends

on the size µ of the considered sub-sample. The choice of which method to use, therefore,

depends on the experimental situation and the length of the raw key.

The full data set is used to directly estimate the probabilities of Equations 4.35 and

4.36, and consequently the secure key rate, r, which is plotted with respect to the number

of iterations, N in Figure 4.3.

The measured probabilities necessary for the estimation of r are found to be: p0,0=

(7.3±0.3)×10−3, p1,1=(5.5±0.3)×10−3, p0,1=(1.1±0.9)×10−4 and p1,0=(5.1±0.7)×10−4.

The security parameter is taken to be ϵ=10−5, while a probability of error for information

reconciliation of ϵEC =10−10 is assumed. The optimization value ϵ′ is set to ϵ′=10−7

and the tolerance on parameter estimation to ϵPE = 10−11. Given the experimental

errors, a confidence interval of δ=10−4 is considered. The calculated secret key rate

corresponds to the minimum lower bound of the entropy S(A|C) (see Equation (4.20))

over the confidence interval of the experimental probabilities. This minimum occurs

for the highest value of the error probability perr and the lowest of pkey, and therefore

represents the worst possible key rate within the considered experimental uncertainty.

Note that these results are lower bounds and, therefore, the actual key rate could be

significantly higher. Indeed, to compute these lower bounds the strong sub-additivity

of von Neumann entropy is exploited, by actually discarding several components of the

entropy function (components which would only have increased Eve’s uncertainty). Such
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Figure 4.3: Secret key rate, r, vs number of rounds, N . For the estimation it is
assumed ϵ = 10−5, ϵEC = 10−10, ϵPE = 10−11, δ = 10−4, ϵ′ = 10−7. The key rate becomes
positive after about 5× 106 iterations and tends to an asymptotic value of about 0.001.

a method gives a worst-case computation.

One of the reasons why the secure key rate is low with respect to other QKD protocols

(see Section 1.6.1) is that, given the average number of photons per interval of 0.35, vacuum

is sent to Alice and Bob in most iterations. Further reasons are the non-simultaneous

two-photon emission from the source, due to its probabilistic nature and the errors

induced by phase fluctuations in the interferometer. Deterministic single-photon sources

and fast switches would solve all these problems but phase stability, which is definitely

an issue for scaling the protocols to large distances. Regarding this last point, the same

considerations as in Section 3.5.1 are valid.

In terms of loss, the dependence of the secure key rate on detection efficiency of Alice’s

and Bob’s detectors, pAd and pBd , assumed to be the same, is studied. The only quantity

depending on pAd and pBd is p(1), which corresponds to the normalization constant N of

Equation 4.16. By explicitly expressing this dependence in terms of the loss probabilities
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Figure 4.4: Secret key rate vs number of rounds, for different values of detection loss.
The black dashed curve refers to the experimental implementation, corresponding to a detection
loss of 42% for each Alice and Bob. The red, cyan, blue, magenta and orange curves represent the
calculated results for a detection loss of 0, 3, 25, 42 and 80%, respectively. If the detection loss
increases, the number of rounds for which r becomes positive also increases, while the asymptotic
secret key rate decreases.

pAℓ = 1− pAd and pBℓ = 1− pBd , one obtains:

N (p̃Aℓ , p̃
B
ℓ ) =⟨k0,0|k0,0⟩+

√
p̃Aℓ
pAℓ

(
⟨k10,0|k10,0⟩+⟨k20,0|k20,0⟩

)
+

(
p̃Aℓ
pAℓ

)
⟨k30,0|k30,0⟩+

+⟨k1,1|k1,1⟩+

√
p̃Bℓ
pBℓ

(
⟨k11,1|k11,1⟩+⟨k21,1|k21,1⟩

)
+

(
p̃Bℓ
pBℓ

)
⟨k31,1|k31,1⟩+

+⟨k0,1|k0,1⟩+ ⟨k1,0|k1,0⟩+

√
p̃Aℓ
pAℓ

⟨k10,1|k10,1⟩+

√
p̃Bℓ
pBℓ

⟨k20,1|k20,1⟩+

+

√
p̃Aℓ p̃Bℓ
pAℓ pBℓ

(
⟨k30,1|k30,1⟩+⟨k40,1|k40,1⟩

)
+

(
p̃Aℓ
pAℓ

)
⟨k50,1|k50,1⟩+

(
p̃Bℓ
pBℓ

)
⟨k60,1|k60,1⟩+

=p(1)(p̃Aℓ , p̃
B
ℓ ).

(4.47)

Moreover, perr = p(1) − pkey is also modified accordingly, to be used in computing

Q=perr/p(1) to obtain the secret key rate (4.1). This allows one to compute the secure

key rate for different values of detection loss, as shown in Figure 4.4.
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4.6 Summary of the results

In this Chapter the following results were presented:

• A mediated SQKD protocol was developed, which only requires the users to detect

the presence of a photon in their respective laboratories. A quantum, not necessarily

honest, server provides the parties single photons in superposition.

• The protocol is implemented by using a folded Mach-Zehnder interferometer and a

probabilistic photon source, which can emit in each communication interval 0, 1 or

2 non-simultaneous photons.

• The secure key rate of the implemented protocol is computed in the finite key-

scenario, taking into account experimental imperfections, in particular detection loss

at the users’ detectors and multi-photon emission from the source. This represents

the first security analysis of a SQKD protocol in realistic experimental condition

and in the finite-key regime.

• For a detection loss of 42% for both users and an average emission rate of 0.35

photons per communication interval (0.5 s), the secure key rate becomes positive

after about 5× 106 iterations and tends to an asymptotic value of about 0.001.
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Chapter 5

Realization of a

Narrow-Bandwidth Single-Photon

Source Tuned to Rubidium D2

Line

This chapter presents the third experimental project included in the present Ph.D.

dissertation. The project consists in the demonstration of a source of narrow-band (about

10 MHz spectral bandwidth) single photons that are tuned to Rubidium (Rb) D2 line

(780 nm) and can be efficiently coupled to Rb hyperfine transitions (having a natural

linewidth of a few MHz). The source is based on degenerate CE-SPDC. The degeneracy

in frequency allows for the realization of light-matter hybrid systems in which more

photons interact with the same Rb atom. This is necessary for multi-photon gates or

quantum memories storing multi-photon states. The source was designed in particular

for the implementation of two-photon gates [23, 27], to be performed in collaboration

with external research groups working with Rb atoms.

The chapter is structured as follows. After a review of the state of the art of narrow-

band photon generation, the realized experimental set-up and the results of the source

133



5.1 Narrow-bandwidth photons: state of the art

characterization are presented. In the end of the chapter, strategies for efficient spectral

filtering of the source, which currently operates at multiple longitudinal modes, are

described.

5.1 Narrow-bandwidth photons: state of the art

In this section, the main techniques for the generation of single photons with sub-GHz

bandwidth are discussed.

A first category of methods relies on direct photon emission from material systems

having energy transitions with sub-GHz linewidth. For instance, atoms or ions trapped

in optical cavities [197, 198, 199, 200, 201] or electromagnetically induced transparency

(EIT) in cold or warm atomic ensembles [202, 203] can be used for deterministic generation

of photons with bandwidth on the order of 1 MHz. These sources, however, require

complicated experimental setups and are typically affected by intermittent atom or ion

loads and slow dynamics, resulting into low photon-emission rates. Furthermore the

range of possible emission wavelengths is limited.

Recently the advances in nanofabrication techniques and materials science have

allowed for the development of several deterministic solid-state single-photon emitters

[204], among which quantum dots (QD) are suitable for the generation of sub-GHz-

bandwidth photons. Currently, these systems attract much interest in the quantum

photonic community, as the insights gained in the last two decades have allowed for the

realization of single-photon sources that, for the first time, surpass SPDC-based sources

in many aspects [205].

It has been shown, in fact, that QDs can generate photons that are coupled to

single-mode fibers at a rate on the order of 107 per s, with g(2)(0) below 0.05 and high

indistinguishability between consecutive emissions [206, 207, 208]. Furthermore, they can

be used for deterministic generation of entangled states of two or more photons [209,

36]. Photons emitted by QDs typically have a bandwidth ranging from a few hundreds

of MHz to a few GHz, depending on the specific type of dot and whether enhancement
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cavities are used, which makes interaction with matter possible [210].

The main drawbacks of QDs are that they require cryogenic cooling and the range

of emission wavelengths is quite limited. In fact, the most mature technology is that of

InGaAs/GaAs QD, which emit in the 900 − 970 nm range. Nevertheless, emission at

780 nm, 1300 nm and 1550 nm has also been shown for other systems [210, 211, 212].

A further problem is that it is not easy to fabricate two QDs with exactly the same

properties, even though great progress has been made in this direction, allowing for high

level of indistinguishability between photons from two different emitters [213]. Moreover,

solid state emitters do not allow for the direct generation of photons with bandwidth on

the order of 10 MHz or less. To date, the main methods for this task rely on second- or

third-order non-linear effects in optical materials.

A promising route is provided by SFWM in CMOS-compatible micro-ring resonators,

scalable systems that offer the great advantage of easy integration with electronics.

Sources based on high-index-glass and silicon-nitride microresonators have in fact achieved

single-photon emission at telecom wavelengths with bandwidths as narrow as 110 and

30 MHz [214, 215]. The silicon-nitride devices, in particular, show a spectral brightness

as high as 5 × 105 pairs/(s mW MHz), with the possibility of pumping at relatively

high power without adverse effects, thus allowing for detected counting rates on the

order of 107 counts/s. Furthermore, this platform allows for generation of frequency-time

entanglement, with visibility of about 90% [215].

The most used technique for the generation of narrow-bandwidth photons, however,

is currently CE-SPDC. Even though this technology is not easily integrable on chip, its

versatility and the high quality of the emitted photons makes it suitable for quantum

optics and quantum information experiments. After the first experimental demonstration

[216], in fact, many single-photon sources based on CE-SPDC have been realized at

different wavelengths [217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230,

231, 232].

The narrowest bandwidth ever obtained was 0.43 MHz [228, 229], for a source at 795

nm with a spectral brightness (after correcting for detection losses) of 4× 103 pairs/(s
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mW MHz) and a maximum detected coincidence rate of about 500 counts/s. The main

realizations of CE-SPDC-based sources are summarized in Table 5.1. As shown in the

table, the spectral brightness can vary significantly, according to the employed system,

the phase-matching configuration and wavelength. However, the spectral brightness alone

is not enough to compare the actual count rates provided by two different sources. In

order to have a clearer idea, in fact, the bandwidth and the maximum possible pump

power must also be considered.

Typically CE-SPDC-based sources are able to provide photons with low higher-order

contamination, as witnessed by the values of the heralded auto-correlation function

g
(2)
h (0), which, when reported, are usually below 0.1.

Previous to the implementation described in this chapter, two other sources of

degenerate photon pairs at 780 nm have been reported [219, 222]. The source realized

during this Ph.D. project, however, shows better performance, in particular regarding

brightness, as shown in Table 5.3.

Although in some cases compact monolithic resonators have been realized, with

mirrors directly coated on the facets of the employed non-linear crystals [223, 231],

CE-SPDC-based sources are still bulky and hard to miniaturize. Schemes employing

waveguides [174, 220] made of second-order non-linear material have shown easier coupling

to fiber and integrated optics but, to date, scalable devices have not yet been realized.
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Reference
Wavelength

(nm)
Bandwidth
(MHz)

Generated/Detected
Brightness

(pairs/(s mW MHz))

Pump
Power
(mW)

g
(2)
h (0)

[219] 780 9.6 6 / - < 27 -
[221] 893 2.7 330 / - < 10 < 0.01
[222] 780 21 -/2.7 1.08 -
[223] 1064 8.3 1.34× 104 / 63 < 10 -
[224] 1000− 1120 7.2− 13 1.3× 107 / 4× 103 < 0.002 < 0.2
[225] 606 + 1436 2.9 + 1.7 8× 103 / 1 < 1 -
[226] 1560 8 134/ 7× 10−4 < 200 -
[174] 890 + 1320 60 3× 104 / - < 10 0.02
[228] 795 0.43 4× 103 / - 0.5 0.032
[230] 795 4.5 3.67× 105 / 2.12× 104 0.03 -
[231] 780 + 852 6.6 1.06× 105 / 853 < 5 -
[232] 795 + 825 226 930 / 17 1.2 < 0.01

Table 5.1: Specifications of some selected CE-SPDC-based narrow-band sources real-
ized up to date. The table covers devices realized at different wavelengths and with different
schemes. Some works do not report all the considered parameters. The operating pump power
generally is bound by practical limitations of the experimental set-up, although values that are far
below 1 mW reflect a fundamental limitation of the source. This limitation is set by the threshold
of the OPO used for CE-SPDC. In these cases, the spectral brightness referred to the pump power
in mW is no longer a significant indicator for the source performance. The value of the heralded
auto-correlation function at zero delay, gh(0) is considered for a heralding rate of 5× 103 counts/s.

5.2 Experimental setup

In this section the experimental setup for the realization of the source is presented. A

sketch of the setup is outlined in Figure 5.1.

The actual source is the OPO, which is operated far below threshold, at a pump

power of at most a few mW. The OPO cavity is kept resonant to laser light (probe beam)

coming from a tapered-amplified laser (Toptica TAPro780, up to about 1.5 W of power

in single-mode fiber), which is tuned to Rb D2 line through polarization spectroscopy

[233]. The same laser is used to pump a resonant monolithic frequency-doubler (SHG

Stage), which provides the pump light for the OPO, at about 390 nm. The frequency

at which the laser is locked, and, consequently, at which the photons are emitted, may

be detuned from the Rb transitions by up to 180 MHz by means of an acousto-optic

modulator (AOM, Gooch& Housego 3080-125) in a double-pass configuration [234].

The emitted photons have orthogonal polarizations and therefore can be separated at
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Figure 5.1: Experimental setup. Laser light at about 780 nm from a tapered-amplified laser
(red lines in the figure) impinges onto the waveplates HWP1 and QWP1 and the polarizing beam
splitter PBS1. The reflected beam from PBS1 is sent to a double-pass AOM and, afterwards, to a
polarization-spectroscopy setup. This allows one to tune the laser to Rb D2 line with a variable
frequency detuning, which is set by the AOM. The transmitted beam from PBS1 is further split
into two by means of a 90:10 beam splitter (BS1), which transmits about 90% of the input power
and reflects the remaining 10%. The reflected output beam (probe beam) is used for locking
an OPO far below threshold, which constitutes the single-photon source, while the transmitted
beam is used for resonant frequency doubling, so as to provide the pump at about 390 nm for
the source (blue lines). The OPO is composed of three elements: a PPKTP crystal (PPKTP2), a
highly-reflective curved mirror and a partially reflective flat mirror with a piezo ring actuator. The
flat mirror is used both as pump input and photon output coupler. The photon pairs produced
in the OPO are separated from the pump by means of a dichroic mirror (DM2) and a long-pass
filter (LF). The two photons of each pair are split at PBS5, after compensation of polarization
misalignment (by means of QWP3 and HWP3), and finally steered to two fiber-coupled APDs
(APD1 and APD2) for photon counting. On the photon path, another 90:10 BS (BS2) samples
part of the probe beam, which perfectly overlaps with the single photons, in order to produce
the feedback signal for the cavity piezo. Two shutters (S1 and S2) are used to switch between a
cavity-locking phase and a photon-counting phase. More details about the setup are given in the
text.
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a polarizing beam splitter (PBS5). After being separated, the photons are coupled to two

single-mode fibers that are connected to avalanche photo-diodes (APD1 and APD2) for

single-photon detection, respectively. Both single counts and coincidences are observed

for the source characterization.

As the laser light used for cavity locking would make impossible single-photon

detection and damage the APDs, cavity locking and photon counting are not performed

simultaneously. The source operation cycle includes a cavity-locking phase, which lasts

0.2 s, followed by a photon-counting phase of 0.8 s. Two shutters (S1 and S2) are used to

block the probe beam during the photon-counting phase and the path to the APDs during

the cavity-locking phase, respectively. The different parts of the setup are described in

more detail below.

Double-pass AOM

The AOM is used to shift in frequency the laser beam going to the spectroscopy part of

the setup. This means that, if νt is the frequency of the selected Rb hyperfine transition

and ∆νAOM the frequency shift induced by the AOM, the laser must be locked at

ν0 = νt −∆νAOM. The AOM can apply a variable frequency shift ranging from 60 to

90 MHz. As the AOM is built in a double-pass configuration, ∆νAOM may be tuned

between 120 and 180 MHz. All the data presented in this dissertation are taken with

∆νAOM set to 180 MHz.

After reflection from PBS1, the beam is transmitted by PBS2, focused by the lens L1

and steered to the AOM by means of mirrors M1 and M2, which are used to optimize the

first-order diffraction efficiency to about 80%. The first-order-diffracted beam, which is

shifted in frequency by ∆νAOM/2, is separated from other diffraction orders by means

of the pinhole P2, then collimated by the lens L2 and reflected back with orthogonal

polarization by the combination of QWPA and M2. As a change in the AOM frequency

shift also implies a slight change of the diffraction angle, the collimation lens L2 is used to

ensure that the beam is always reflected back along the same path while tuning ∆νAOM.

After the second passage into the AOM, the beam is diffracted back to the initial path
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and reaches again PBS2, where this time is reflected to the polarization spectroscopy

setup. Pinhole P1 cuts all other undesired diffraction orders. The overall efficiency of the

double-pass AOM, defined as the power available for spectroscopy divided by the input

power of the AOM, is about 64%.

Polarization Spectroscopy and Laser Lock

The purpose of the polarization spectroscopy setup is to provide an error signal for

locking the laser to the frequency ν0, which was defined in the previous paragraph.

The beam coming from PBS2 is split into two beams with different power by means

of HWPA and PBS3. The reflected beam is the more powerful and is called “pump”, the

transmitted beam instead is indicated as “probe” and is about 10 times less powerful

than the pump. The pump polarization is set to circular by QWB, while the probe

(linear) polarization is rotated by 45◦ by means of HWB. Pump and probe beams

are both sent to a Rb vapour cell (VC) in counter-propagating directions, as in any

doppler-free-spectroscopy scheme [235]. A distinctive feature of polarization spectroscopy

is that absorption of the circularly polarized pump induces circular birefringence in the

vapour cell, which is detected by the probe. This detection is performed by means of

PBS4 and a differential photo-diode (DPD). The photo-diode provides a voltage signal

that is proportional to the difference between the optical power at the two outputs of

PBS4. In absence of the pump beam, the diagonally polarized probe beam impinging

onto PBS4 would be split into two beams with the same power and therefore determine a

zero signal. With the pump beam travelling through VC, instead, the probe polarization

is rotated by a frequency-dependent angle, which follows the spectral profile of the Rb

hyperfine transitions, as explained in detail in [236]. By scanning the laser frequency,

therefore, a signal that is proportional to the derivative of the Rb hyperfine spectral lines

is obtained from the DPD, as shown in Figure 5.2. The frequency scanning is performed

by means of a piezo that is integrated in the laser cavity.

The plot in Figure 5.2 is linear around the central frequencies of the transitions. This

feature is particularly suitable for laser locking, as, when the laser frequency drifts away
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Figure 5.2: Rb spectrum from polarization spectroscopy. The figure shows the signal from
the DPD while the laser frequency is scanned. The signal is recorded on an oscilloscope, which is
set to show only one period of the laser scan. The four groups of hyperfine transitions constitute
the D2 lines of Rb85 and Rb87, respectively, with two groups associated to each isotope. The laser
is locked at the frequency corresponding to the most prominent transition of the first group on
the left, the 52S1/2, F = 2 → 52P3/2, F

′ = 3 transition of 87Rb (from a comparison with [237]).

from a given transition frequency, the DPD produces an error signal that is proportional to

the frequency drift. The laser controller (Toptica DLPro) includes an analog Proportional-

Integral-Differential (PID) Control Loop [238] that takes this error signal as an input

and provides feedback to the laser piezo in order to compensate the drift. The slope of

the line influences the quality of the lock; ideally one wishes a steep line so that a tiny

drift in the laser frequency determines a large error signal. From this point of view, the

implemented polarization spectroscopy setup, with a PBS for detection of polarization

rotation, provides a better signal than other spectroscopic methods [236].

The selected transition for laser lock, 52S1/2, F = 2 → 52P3/2, F
′ = 3 of 87Rb,

occurs at 384.228115 THz [239], leading to ν0 = 384.227935 THz. The laser frequency

is measured to be 384.2276 THz with a wavemeter (HighFinesse WS-600) having 600

MHz accuracy, which is compatible with the expected value of ν0. The reading of the

wavemeter over an interval of several hours shows no frequency drift within the precision

of the instrument (≈ 5 MHz). The bandwidth of the laser could not be measured precisely

due to the insufficient sensitivity of the available instruments. Measurements performed
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with a Fabry-Perot spectrum analyser (Thorlabs SA200-8B) suggest that the laser has

sub-MHz bandwidth when locked, as also confirmed by the manufacturer.

The resonant frequency doubler

The pump light at 390 nm for the source is obtained by frequency doubling the frequency-

stabilized laser at 780 nm. The frequency doubling occurs in a 20 mm long, type-I

PPKTP crystal (from Raicol Crystals) whose input and output facets are mirror-coated

(the coatings were applied by LaserZentrumHannover). The facets’ dimensions are 1× 2

mm; one of them (the input one, closer to mirror M9) has a radius of curvature of 34

mm, while the other one is flat. The nominal reflectivity of the input facet is 94.0± 0.5%

at 780 nm and 99.9± 0.5% at 390 nm. The output facet has a reflectivity of 97.0± 0.5%

at 780 nm and is AR-coated for 390 nm (reflectivity lower than 0.2%). This means

that the frequency-doubling resonator is only resonant at 780 nm, the fundamental

wavelength. The second-harmonic radiation exits the resonator from the output facet

only and is separated from the fundamental light by means of dichroic mirror DM1. The

PPKTP crystal is placed in a copper oven, which is is temperature stabilized by a Peltier

element and is controlled by an analog PI temperature controller (WavelengthElectronics

PTC5K-CH) interfaced with LabView through a Digital-to-Analog Converter (DAC,

MeasurementComputing DT9847-2-2). The temperature is measured by means of a

thermistor (Epcos B57045, negative thermistor), which is located in a hole in the copper

holder. The oven is placed inside a stainless steel box with optical windows, for thermal

and vibration isolation.

The PPKTP crystal was characterized prior to the mirror coating of the facets. The

phase-matching temperature for second-harmonic generation at the laser frequency was

found to be 46.3 C◦ with a temperature bandwidth of 0.7 C◦. The group index of the

crystal for the phase-matched polarization at the fundamental wavelength is 1.917 at

46.3◦C [240]. Considering this value and the geometric parameters of the resonator, the

waist of the resonator TEM00 mode is calculated to be 62.4 µm. Lens L3 is used for

mode-matching, whereas mirrors M8 and M9 are used to align the beam to the resonator

142



Chapter 5. Realization of a Narrow-Bandwidth Single-Photon Source Tuned to
Rubidium D2 Line

axis. The fraction of the total power transmitted at the fundamental wavelength and in

the TEM00 mode is 95%.

In the single-pass configuration, a maximum SHG power of 0.5 mW was measured,

at 160 mW of power at 780 nm. After mirror coating, the maximum SHG power with

the same fundamental power was 7.2 mW, resulting in a conversion efficiency of 4.5%.

The resonator, therefore, induces an improvement of more than one order of magnitude

to the generated UV power.

This value, however, is far below the expected SHG power of about 44 mW, which is

calculated following the treatment of [241]. The potential factors contributing to this

mismatch are multiple. One of them is significant absorption of blue power in the crystal,

which was not considered in the calculation of the expected conversion efficiency. In fact,

a previous work on resonant frequency doubling in a ring resonator with a 10-mm-long

PPKTP crystal has found an overall absorption of 27% at 390 nm [242]. For the SHG

stage of the narrow-band source, an even higher absorption is expected, given the higher

length of the crystal and the standing-wave configuration of the OPO cavity.

Another cause of non-optimal emission is given by opto-thermal effects. Among them,

the most relevant are thermal lensing, which degrades the mode-matching to the resonator

TEM00 mode, and thermally-induced inhomogeneity of the crystal refractive index, due

to inhomogeneous power distribution in the cavity, which prevents the phase-matching

condition from being fully satisfied over the whole crystal. Furthermore, the dependence

of the circulating power in the monolithic resonator on the temperature is complicated

by absorption of both fundamental and frequency-doubled radiation, and the consequent

heating of the crystal. Due to this effect, it is difficult to stably keep the cavity at full

resonance.

The thermal effects represent the ultimate limiting factor to the conversion efficiency

when the power is increased. The obtained SHG power, in fact, tends to saturate for

higher fundamental power at about 7.3 mW. For a given fundamental power, the SHG

power slowly drifts with time by about 10% after a few hours.

Finally, the high power inside the resonator may induce gray tracking in the PPKTP,
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i.e. the laser-induced creation of color centers or other microscopic structural deformations

in the crystal, which significantly increases absorption [243].

After the SHG stage, the radiation at 390 nm is reflected by DM1, further cleaned

from residual radiation at 780 nm with two short-pass filters, forming a single filtering

stage (SF) with a transmission of 10−9 at 780 nm, and collimated by the lens L4. The

UV beam passes through the polarization-controlling elements QWP2 and HWP2, and

then is steered to the OPO via the mirrors M12 and M13, after transmission through

DM2. Mode-matching with the OPO is ensured by lens L5.

The OPO

The OPO is composed of a curved mirror (CM), a flat mirror (M) and a 20 mm-long

type-II PPKTP crystal, phase-matched for collinear degenerate SPDC from 390 nm to

780 nm. The curved mirror has a radius of curvature of 100 mm and a nominal reflectivity

of (99.9 ± 0.1)% at 780 nm while being AR-coated for 390 nm. The flat mirror has a

nominal reflectivity of (97 ± 1)% at 780 nm and a measured reflectivity of (30 ± 2)%

at 390 nm. The crystal facets are AR-coated for both 780 and 390 nm with a nominal

residual reflectivity at 780 nm of 0.50± 0.05%. A ring piezo-actuator (PZ) is glued to

the flat mirror for scanning and locking the OPO cavity. The maximum elongation of

the piezo is 2 µm corresponding to about 5 times the cavity FSR.

The crystal is placed in an oven (see Figure 5.3). The oven is mounted vertically on a

5-axis stage (Thorlabs PY005), which allows one to translate the crystal in all directions

in space and adjust its pitch and yaw. The temperature-controlling elements (thermistor,

Peltier, controller and related digital interface) are the same as for the SHG stage. The

accessible temperature range for both ovens is between 10◦C and 50◦C, in which the

temperature stability is about 0.001◦C. The whole OPO is inserted into a stainless steel

box for thermal and vibration isolation.

The reflected 10% output of BS1 (probe beam) is steered and mode-matched to the

OPO cavity by means of mirrors M10, M11 and lens L6, respectively. The half-wave plate

HW4 is used to rotate the polarization of the beam and thus to observe the resonant
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Figure 5.3: Opto-mechanical parts of the OPO. The crystal holder, made of copper, is fixed
to the 5-axis stage through an aluminium adapter plate. A Peltier plate providing heating or
cooling power is inserted between the holder and the 5-axis stage. Temperature is measured by
means of a thermistor, which is inserted into the thermistor hole. Peltier Plate and thermistor
are connected to a PI temperature controller, which is interfaced to LabView via a DAC. The
temperature-controlling elements are the same as used for the oven of the SHG stage. The oven
is inserted into a stainless steel box, with two holes functioning as mirror housing. The whole
system, with the addition of mirrors and crystal, thus constitutes the OPO. The other holes shown
in the box are designed for screws fixing the box to the optical table or connecting the lower part
of the box to an upper lid.

modes for both polarizations, which do not coincide due to the birefringence of the OPO.

A coupling efficiency of about 90% to the TEM00 mode of the cavity is observed. The

TEM00 mode has a calculated waist of 108 µm at mirror M for both polarizations. The

output beam from the OPO is measured at a photodiode (PD), after sampling 10% of it

at BS2. In this way, the resonance modes of the cavity can be analyzed while either the

red laser frequency or the cavity length is scanned.

The transmission peaks at PD obtained from the cavity-length scan are used to

provide the error signal for a PID controller (Toptica DigiLock), which sends feedback to

the piezo to keep the cavity resonant to the probe beam. The cavity is locked side-of-the-

fringe, with the lock intensity set at about 90% of the maximum. The locking cycle of
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the OPO is the following:

1. Shutter S2 opens while S1 is closed so that the produced photons can be safely

detected. This is the counting phase, which lasts 0.8 s. During this phase, the

PID controller is not active, meaning that the cavity length is free to drift. The

transmitted power stays within 10% of the value at lock after 1 s of free drift, which

justifies the chosen duration of the counting phase.

2. Shutter S2 closes and both shutter stay closed for 0.1 s. This waiting time is used

to prevent damage to the detector due to delays in shutter operation.

3. Shutter S1 opens, the cavity length is scanned and the side-of-the-fringe lock is

performed. This is the locking phase, whose duration is 0.2 s. This value is

determined by the time needed for scanning and locking the cavity.

4. Shutter S1 closes and both shutter stay close for 0.1 s. This phase has the same

purpose of phase 2.

5. The cycle starts again from phase 1.

The overall cycle lasts 1.2 s and can run for hours without significant changes. The

shutters are controlled by a LabView code, while the cavity lock and scan are set within

the DigiLock control software, provided by the PID manufacturer.

Photon splitting and detection

The photons exit the OPO from mirror M, which serves as output coupler for the

radiation at 780 nm. As they are produced in the OPO cavity, their spatial properties

are exactly the same as the transmitted red beam, which is therefore used for alignment

and calibration purposes. Residual pump is cut by a long-pass filter (LF), after which

the photon beam is collimated (lens L7). Part of the photons are lost at BS2 due to the

sampling of the red beam for the lock. After the shutter S2, the photons are separated by

means of a polarizing beam splitter (PBS5), preceded by two compensation waveplates,
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Figure 5.4: Phase-matching curve for the PPKTP crystal. The plot shows the generated
second-harmonic power (at about 390 nm) with respect to the crystal temperature when pumping
at 107 mW of NIR power (780 nm). The power is measured after a dichroic mirror and a short-pass
filter, whose losses are neglected. The experimental points (in blue) are fitted with a function of
the kind P = B +MSinc[A(T − T0)]

2 (red line), where P is the SHG power, T is the temperature
and B, M , A and T0 are the fit parameters. The phase-matching temperature, T0, is found to
be (27.266± 0.001)◦C. The parameter A is (2.489± 0.006)◦C−1, from which the phase-matching
bandwidth, ∆TFWHM can be extracted, according to the formula ∆TFWHM = (2π 0.4425)/A. The
maximum generated second-harmonic power, after background (B = (0.46±0.02)µW) subtraction,
is M = (12.78± 0.03)µW.

which correct for polarization misalignments or alterations. Each of the photon beams

after the beam splitter is coupled into a single-mode fiber using two mirrors and a

fiber coupler. The fibers are connected to two avalanche photo-diodes (Excelitas SPCM

AQRH-13) with about 60% detection efficiency. The fiber-coupling efficiency is measured

to be 85% for both fibers. The photons experience an additional loss of 10% between the

cavity and the detectors due to the long-pass filter and absorption or scattering at the

optical elements on their path.

5.3 Source characterization

In this section the results of the source-characterization measurements are presented.

As the properties of the emitted photons strongly depend on the OPO parameters, a

preliminary characterization of the OPO is performed with laser light. The single-photon
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Figure 5.5: Transmission peaks from the OPO. The peaks are obtained by scanning the
laser around the frequency ν0 and by measuring the transmitted power after the OPO cavity with
a photo-diode, which is connected to an oscilloscope. The figure shows a single scan of the laser
frequency in one direction. The input polarization to the cavity is set such that the horizontal
component (signal) is smaller than the vertical component (idler), so as to easily distinguish the
two sets of peaks of the birefringent cavity. Two peaks from the two different sets fully overlap at
frequency ν0, corresponding to 0 ms in the plot. The separation between the corresponding peaks
of the two sets increases with the distance from the overlapping pair. The different peaks of each
set appear to have different heights due to the limited sampling rate of the oscilloscope over the
visualized time range.

measurements are then used to confirm the results of the preliminary characterization

and to provide more information on the source performance.

5.3.1 Classical characterization of the OPO

Characterization of the PPKTP crystal

In order to efficiently operate the source, it is necessary to know exactly at what

temperature the desired SPDC process is phase-matched in the PPKTP crystal and

what is the allowed temperature mismatch. Therefore, before inserting the OPO mirrors,

the crystal was placed in the oven and type-II second-harmonic generation with the

fundamental wave at frequency ν0 was studied. This process in fact has the same phase-

matching properties as type-II degenerate SPDC that produces single photons at ν0 from
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Figure 5.6: Lorentzian fit of the OPO peaks. The fit curves of the signal peaks are indicated
in red, while those for the idler peaks in green. The fit of the central peak, for which signal and
idler modes overlap, is drawn in purple. In order to simplify the fits, the background noise voltage
has been subtracted. The function used for the fits is therefore V (t) = Vmax(1 +

1
4
γ2(t− to)2)−1,

where t represents time, V voltage and the fit parameters are the maximum voltage, Vmax, the
peak position, t0, and the width parameter γ.

an UV pump at 2ν0. The fundamental power of the near-infrared (NIR) beam was set

to 107 mW and the generated UV power was measured after the crystal, the dichroic

mirror DM2 and a short-pass filter, while varying the oven temperature. The results are

shown in Figure 5.4. The phase-matching curve has a maximum at (27.266± 0.001)◦C

and a FWHM of (1.117± 0.003)◦C. A second-harmonic conversion efficiency of about

0.1%/W can be inferred from the curve maximum.

Characterization of the cavity modes

The OPO cavity is characterized by using the laser at 780 nm. The laser frequency is

scanned by about 20 GHz and the corresponding cavity transmission is measured at the

photodiode that is placed after BS2. Prior to the measurement, the laser was locked to

the frequency ν0 and double resonance was obtained by tuning the temperature of the

crystal within the phase-matching bandwidth and by adjusting its pitch and yaw by a

few degrees at most. This adjustment set the temperature of operation to 27.52◦C.
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Figure 5.7: Peak position vs peak number for signal and idler. The experimental points
are indicated in red for the signal (a) and in green for the idler (b), respectively, while the fitted
lines are in black. The equation for the lines is, for both plots, tn = tFSR × n, where tn is
the position of the n−th peak, n is the peak number relative to the central peak and tFSR is
the time interval in which the laser frequency changes by a FSR. From the fits, it is obtained:
tFSRs = (1.36± 0.01) ms and tFSRi = (1.31± 0.01) ms. The FSR in frequency can be obtained
from the relation FSR = v × tFSR, with v scan speed.
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Figure 5.8: Signal-idler peak separation vs peak number. The experimental points are
in blue, while the fitted line is in black. The equation for the line is ∆tn = ∆tFSR × n, with
∆tFSR difference between the values of tFSR for signal and idler. From the fit it is obtained
∆tFSR = (50± 1)× 10−3 ms.

After that, the laser was scanned around ν0 and the measurement was started. As the

cavity is not locked during the measurement, the scanning period is set to 30 ms so as to

avoid any drift from the double-resonance condition within a single scan.

The signal from the photo-diode is visualized on an oscilloscope and reported in

Figure 5.5. All the peaks are fitted with Lorentzian functions such that the precise

position in time and the linewidth of each peak is obtained. An example of the fits is

shown in Figure 5.6.

In Figure 5.7 the peak positions obtained from the fits are plotted with respect to

the peak number, relative to the central peak, both for signal and idler. As expected,

the dependence is linear, as the peaks of each set are separated by a fixed distance,

corresponding to the time interval in which the frequency of the laser changes by a

cavity FSR. In order to convert this time into frequency, it is necessary to know the scan

speed. This is measured by using a wavemeter and is found to be v = (1.855± 0.002)

GHz/ms. Consequently, the values of FSR for signal and idler are calculated to be:

FSRs = (2.52±0.02) GHz and FSRi = (2.42±0.02) GHz. In order to calculate the cluster
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Figure 5.9: Expected spectrum for the SPDC signal/idler fields. The photon spectrum
(blue peaks) is obtained from the analysis of the OPO cavity transmission peaks. The frequency
difference on the horizontal axis is referred to the central mode at frequency ν0. The spectrum
is made of three clusters, separated by ∆νC , which contain each a main mode, corresponding
to full overlap of the signal and idler peaks, and a few side modes, corresponding to the partial
overlap of cavity modes with different polarizations. The central cluster represents degenerate
emission, while the side ones emission of photons at different frequencies. The red solid line is the
single-pass SPDC gain, which is obtained from Equation 2.22. The FWHM of the red curve is 125
GHz, calculated according to Equation 2.31.

separation, the difference FSRs − FSRi is needed. However, calculating this difference

from the single values of the FSR would lead to a very large relative error. Alternatively,

the signal-idler peak separation may be plotted with respect to the peak number. This

dependence is expected to be of the form: ∆tn = (tFSRs − tFSRi)× n = FSRs−FSRi
v × n.

The required difference can then be obtained with higher precision from a linear fit of the

plot. The fit is shown in Figure 5.8, from which it results FSRs − FSRi = (92± 2) MHz.

This leads to a cluster separation (see Equation 2.41) of FSRc = (66± 1) GHz. Based on

this value, it is possible to estimate the spectrum of the SPDC fields, which is shown in

figure5.9, together with the SPDC single-pass gain, obtained from Equation 2.22.

From the fit of the transmission peaks, the linewidth of the cavity modes, and

consequently the finesse of the cavity, may be extracted. The average time width

(FWHM) of the peaks is (13± 1)× 10−3 ms for the signal modes and (16± 2)× 10−3 ms
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Parameter Value Error Unit

Phase-matching temperature 27.266 0.001 ◦C

Phase-matching bandwidth 1.117 0.003 ◦C

Signal FSR 2.52 0.02 GHz

Idler FSR 2.42 0.02 GHz

Cluster Separation 66 13 GHz

Signal Finesse 107 5 -

Idler Finesse 83 11 -

Threshold power ≈ 2 - W

Table 5.2: OPO parameters. The parameters are obtained from the classical characterization
of the OPO. The phase-matching properties of the crystal are extracted from the phase-matching
curve of type-II collinear degenerate SHG from 780 nm to 390 nm. The resonator properties are
measured by means of laser light and a wavemeter.

for the idler modes. After multiplying these widths by the scan speed v, the frequency

linewidth of the cavity modes are found to be (24± 2) MHz and (30± 4) MHz for signal

and idler, respectively. This means that the finesse is Fs = 107 ± 5 for horizontally

polarized light and Fi = 83± 11 for vertically polarized light. This difference shows that

the losses in the OPO are polarization-dependent. Such a dependence might be caused by

a polarization-dependent behaviour of the coatings of mirrors and crystal facets and/or

scattering or deflection of the extraordinary polarization in the crystal due to crystal

tilting. The measured values of the finesse are compatible with the nominal finesse of

120± 30, which has a large error due to the uncertainty of the nominal values of mirror

and AR-coating reflectivities. Inserting the values of the finesse in expression 2.35, the

threshold power of the OPO is estimated to be Pth ≈ 2W . For the calculation of the

threshold power, the refractive indices of the KTP are ns = 1.80, ni = 1.92, np = 2.41

[240], the non-linear coefficient is assumed to be χ(2) = 2d15 = 3.8 pm/V [244] and the

illuminated area A is approximated as πw2
0p , with w0p = 76 µm waist of the pump beam

in the cavity. The results of the classical characterization of the OPO are summarized in

Table 5.2.
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Figure 5.10: Detection configurations for single-photon counting. The notation follows
that in Figure 5.1. In both configurations the output electronic signal of the APDs is connected to
a time-tagging module (TTM). In configuration a), two detectors are used and the TTM records
the single-detection and coincidence rates, together with the related arrival-time information.
This information is used to extract the signal-idler cross-correlation function. In configuration
b), the idler arm is split into two by means of a 50:50 fiber beam splitter, whose outputs are
connected to detectors APD1 and APD2. In this case, it is possible to record the two-fold
coincidence rate between any two detectors as well as the three-fold coincidence rate, with the
related time information. This configuration is used to measure the auto-correlation functions and
the multi-photon generation rate.

5.3.2 Single-photon measurements

The measurement with single photons are taken with the two detection configurations

shown in Figure 5.10. The signal from the APDs is connected to a time-tagging module

(TTM, RoithnerLaserTechnik TTM8000), which records the time at which each detection

occurs, relative to an internal clock, and therefore can provide single-detection rates and

coincidence rates of two or more detectors. The TTM is also used to reconstruct the

temporal profile of the coincidences.
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Figure 5.11: Single-detection (a,b) and coincidence rates (c) vs pump power. The rates
are measured in the configuration shown in Figure 5.10-a. The error bars, obtained assuming
Poissonian errors on the counts, are within the size of the experimental points. The coincidence rate
is corrected for accidentals, which are calculated as the product of the two single-detection rates
and the coincidence window (20 ns). The red lines are linear fits of the rate-power dependence.
The angular coefficients of the lines are (23 ± 2) × 103 counts/(s mW) for the signal counts,
(18± 1)× 103 counts/(s mW) for the idler counts and (0.89± 0.06)× 103 counts/(s mW) for the
coincidence counts.
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Photon rates

Figure 5.11 shows the measured single-detection and signal-idler coincidence rates with

respect to the pump power. The maximum concidence rate, obtained at 3.9 mW of

pump power entering the OPO cavity results to be 3429± 8 counts/s. The corresponding

pair generation rate, R0, can be calculated as the ratio between the product of the

two single-detection rates and the coincidence rate. The result of this calculation is

R0 = (2.022± 0.008) ∗ 106 pairs/s. This corresponds to an overall transmission of about

5% for the signal and 4% for the idler, which correspond to the heralding efficiencies

for idler and signal, respectively. Taking into account the escape probability from the

cavity (59%), the transmission of the optical elements that are placed after the OPO

(80%), the fiber-coupling and detection efficiency (85% and 60%, respectively), the

overall transmission for both fields is expected to be about 24%. This means that

significant additional losses occur in the crystal or at the interface between the crystal

and air. The bi-photon detection and generation rates normalized to the pump power are

(0.89± 0.06)× 103 counts/(s mW) and (4.6± 0.6)× 105 counts/(s mW), respectively.

In order to characterize higher-order emission from the source, the idler-idler coinci-

dence rate is recorded (with the detector configuration depicted in Figure 5.10-b). This

is shown in Figure 5.12. The highest idler-idler coincidence rate, for a pump power of 3.9

mW is (16.0± 0.3) counts/s. The coincidences scale quadratically with the power with a

scaling factor A = 1.13± 0.17 counts/(s mW2). By considering the losses, this means

that the source produces double pairs with a rate of (5.7± 0.8)× 102 counts/(s mW2).

Clearly, this rate is negligible with respect to the single-pair generation rate.

Signal-Idler Cross-correlation function

In order to obtain spectral information on the produced photons, the signal-idler cross-

correlation function is measured (see Section 2.4.1), using the setup shown in Figure

5.10-a. This function is inferred from measuring the number of coincidences between the

signal and idler arms with respect to the delay between the two single detections. The

result of the measurement is shown in Figure 5.13.
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Figure 5.12: Idler-Idler coincidence rate vs pump power. Here the coincidences between
detectors APD1 and APD2 in Figure 5.10-b are reported, after correction for accidentals and
with the coincidence window set to 20 ns. These coincidences can be only produced by double-
pair-emission (or higher) terms in the idler arm. The Poissonian error bars are visible given the
lower values of the counts. The red solid line represents a polynomial fit function, of equation
r = A ∗P 2 +B ∗P 3, with r coincidence rate and P pump power. The fit provides A = 1.13± 0.17
counts/(s mW)2 and B = −0.02± 0.05 counts/(s mW)3. The value of B is far lower than that
of A, and statistically compatible with 0, meaning that the curve is dominated by double-pair
emission.

The cross-correlation data are fitted with a double-exponential function:

c = B +M(θ(t− t0)e
−2γs(t−t0) + θ(t0 − t)e2γi(t−t0)), (5.1)

where c is the recorded number of coincidences, θ the Heaviside step function, t represents

the time delay, t0 is the time delay for which the coincidences are maximum, B is the

number of background coincidences, M is the maximum number of coincidences and

γs, γi are the decay rates for positive (signal) and negative delays (idler), respectively.
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Figure 5.13: Signal-idler cross-correlation profile. The experimental points are indicated
in gray and the error bars are obtained by assuming Poissonian statistics for the counts. Each
point expresses the number of coincidences in 300 s occurring in a time bin of 0.98 ns around
the corresponding delay, which is equal to about 2 times the coincidence time jitter of the APDs
(0.495 ns). The red line indicates the double-exponential fit, whose expression is in the main
text. The fit parameters are found to be: t0 = (2.03± 0.03) ns, B = 316± 7, M = 28460± 70,
γs = (35.0± 0.2) MHz and γi = (41.4± 0.2) MHz.

From the decay rates, it is possible to extract the time constants for signal and idler,

τs(i) =
1

2γs(i)
, thus obtaining:

τs = (14.30± 0.07)ns, (5.2)

τi = (12.08± 0.06)ns. (5.3)

The photon bandwidth (FWHM) is ∆νs(i) = 0.64 e
4πτs(i)

, leading to:

∆νs = (9.68± 0.05)MHz, (5.4)

∆νi = (11.45± 0.04)MHz. (5.5)

The correlation time τc =
2(τs+τi)

e , defined as the FWHM of the cross-correlation profile,

is τc = 19.41 ± 0.07 ns and, consequently the biphoton spectral bandwidth is ∆ν =

0.64 1
πτc

= 10.50 ± 0.04 MHz. The correction factor 0.64 comes from the fact that the
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photons are produced in a doubly resonant OPO [245].

The obtained photon bandwidths before correction are about half the values that

result from the classical characterization of the OPO cavity. This could occur for different

reasons. On the one hand, the bandwidth of the cavity modes can be overestimated due

to finite spectral bandwidth of the laser and the limited sampling rate of the oscilloscope;

on the other hand, due to an incomplete overlap of signal and idler modes at frequency

ν0, the actual photons may be spectrally narrower with respect to what results from the

classical characterization of the OPO.

Another possibility is that the cross-correlation profile is broadened by the finite

jitter time of the detectors. The actually measured profile in fact is a convolution

of the double exponential decay in Equation 5.1 and a gaussian function having the

detectors’ combined jitter as time bandwidth. This hypothesis is however excluded by

calculating the convolution of double exponential functions with different time constants

and the gaussian function expressing the time uncertainty due to detector jitter. The

time constants that better reproduce the experimental results are compatible with the

measured ones within the experimental errors.

Idler-Idler Auto-correlation function

The spectral properties of the emitted photons can be further verified by measuring the

idler-idler (or alternatively, signal-signal) second-order correlation function, as explained

in Section 2.4. This is measured in the detection configuration depicted in Figure 5.10-b

by recording the coincidences between detectors APD1 and APD2 with respect to the

time delay between the single detections. The corresponding correlation function is shown

in Figure 5.14.

The auto-correlation function, g(2)(τ) is fitted with a Lorentzian function, of equation:

g(2)(τ) = 1 +
V

1 + (12γ(τ − τ0))2
, (5.6)

with V , γ and τ0 fit parameters. The effective number of modes, N , in the signal
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Figure 5.14: Idler-Idler auto-correlation function. The coincidences are counted for about
3 hours and normalized to the value at large delays. The temporal resolution for this plot is the
same as for the cross-correlation measurement. The error bars are relatively large due to the low
counts. A Lorentzian fit curve is shown in red, whose equation can be found in the text. The fit
parameters are V = 0.30± 0.03, γ = (116± 15) MHz and x0 = (1.6± 1.5) ns.

spectrum can be obtained from the parameter V using the equation: N = 1
V . In this

case, N = 3.4 ± 0.4, which is compatible with the spectrum in Figure 5.9. The large

errors on the fit parameters come from the low number of counts recorded during the

measurement, which was performed at about 4 mW of pump power entering the cavity.

At this power, in fact, the number of double-pair emission is quite low (see Figure 5.12).

Since the only coincidences between detectors APD1 and APD2 are due to multi-photon

emission from the source, a low double-pair emission rate implies low counts for the

second-order auto-correlation function, as demonstrated here.

The information on the number of modes may be used to calculate an effective spectral

brightness per mode, by dividing the normalized count rates by N and by the biphoton

bandwidth ∆ν. A spectral brightness per mode of 25±2 counts/(s mW MHz) is detected

and a value of (1.29± 0.09)× 103 biphotons/(s mW MHz) before losses is calculated.
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Figure 5.15: g(2)(0) vs heralding rate, R3. The error bars on the experimental point come
from Poisson-distributed errors on all the rates of expression 5.7. The points are fitted with a
linear function (red solid line), which passes through all the error bars. This indicates that the
plotted dependence has the expected linear behaviour for low-power regimes. The coincidence
window for this measurement is set to 6 ns.

Heralded auto-correlation function at zero delay

The single-photon character of the source is certified by measuring the heralded second-

order auto-correlation function at zero delay, g
(2)
h (0). This is obtained from the following

expression [246]:

g
(2)
h (0) = 2

R3R123

(R13 +R23)2
, (5.7)

where R3 is the detection rate at detector APD3, R13 and R23 are the two-fold coincidence

rates between detectors APD1 and APD3, and APD2 and APD3, respectively, whereas

R123 is the three-fold coincidence rate among APD1, APD2 and APD3. The factor 2

takes into account the splitting probability at the beam splitter. Figure 5.15 shows the

dependence of g
(2)
h (0) on the heralding rate R3, which is linearly proportional to the pump

power. The value of g
(2)
h (0) at the maximum measured heralding rate, corresponding to

about 4 mW of pump power, is g
(2)
h (0) = 0.028± 0.002. This value is in line with those

reported in Table 5.1, thus confirming the good single-photon quality of the source at

this pump power.
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Parameter Value Error Unit

Signal Bandwidth 9.68 0.05 MHz

Idler Bandwidth (MHz) 11.45 0.04 MHz

Number of longitudinal modes 3.4 0.4 -

Measured brightness per mode 25 2 counts/(s mW MHz)

Generated brigthness per mode 1.29× 103 0.09× 103 pairs/(s mW MHz)

Signal/Idler heralding efficiency 3.9/4.9 0.5 %

Highest used pump power 3.9 0.1 mW

Highest value of g
(2)
h (0) 0.028 0.002 -

Table 5.3: Specifications of the realized source. The reported value of g
(2)
h (0) refers to a

heralding rate of about 100×103 counts/s. At 5×103 counts/s, g
(2)
h (0) < 0.005. The specifications

of the source are in line with those of Table 5.1.

The source specifications obtained from single-photon measurements are summarized

in Table 5.3.

5.4 Mode-selection Strategies

In this section, a few possible strategies for mode-filtering of the realized source are

discussed. The aim of these techniques is filtering out only the central cluster in Figure

5.9. The side clusters, in fact, correspond to non-degenerate emission at frequencies that

are not tuned to Rb transitions. Consequently, they represent just a source of noise when

the single photons from the source are interfaced with Rb atoms. For this reason, they

need to be suppressed.

The most natural solution is to use additional filters after the OPO. Given the cluster

separation of FSRc = (66 ± 1) GHz, volume bragg gratings [247], working either on

transmission or reflection, can be a simple and viable solution for this task, as several

companies offer devices with a bandwidth below 0.15 nm at 780 nm, which corresponds to

about 75 GHz. Such devices work at room temperature, do not require length stabilization

(even though they might require thermal stabilization) and are often sold off-the-shelf

(not as customized products), which significantly reduces costs and waiting times. The

peak transmission/reflection can reach values as high as 90%, which allows for keeping

high count rates.
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Alternatively, additional optical cavities can be used for filtering. The advantage of

this kind of filter is that they can be tuned to select even the single central mode of

each cluster, so as to completely suppress the noise from undesired longitudinal modes.

However, they present several disadvantages: they need thermal and length stabilization,

they typically introduce additional losses due to imperfect mirrors and non-optimal

mode-matching to the fundamental TEM00 mode and their realization is not a trivial

task, while buying them from companies is particularly expensive, due to the fact they

need to be customized.

Another promising option is tuning the source such that it directly emits photons in

a single cluster, or even in a single longitudinal mode. In this case, the OPO must be

configured such that only one cluster falls within the phase-matching curve. Assuming

that a cluster occurs at the center of the curve, where the SPDC gain is maximum, the

single-cluster condition is:

FSRc > ∆νSPDC, (5.8)

where ∆νSPDC is the phase-matching linewidth. A possible way of satisfying condition

5.8 is narrowing the SPDC gain profile below the cluster separation. This can be achieved

by making one of the cavity mirrors high reflective for the pump so that the effective

length of the parametric interaction is doubled and ∆νSPDC consequently halved. This

technique was used to achieve single-mode emission in monolithic CE-SPDC [223, 231].

A more versatile mode-selection method was developed in the research group in which

this Ph.D. project was conducted. This method consists in tuning FSRc independent

of ∆νSPDC by inserting a second birefringent element into the cavity, which provides

dedicated degrees of freedom for tuning the cluster separation. In this scheme, therefore,

the OPO cavity includes two birefringent elements, the parametric crystal, with length L

and group indices for signal and idler, ns and ni, respectively, and a tuning crystal, with

length L′ and indices n′s, n
′
i, as depicted in Figure 5.16. The cavity also comprises some

air gaps between the two crystals and between each crystal and the closer mirror. The

overall length of the air gaps is Lgap. Therefore:
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Figure 5.16: Scheme of a direct-single-mode OPO. The OPO in the figure includes two
birefringent crystals. The SPDC crystal has group refractive indices ns and ni for signal and idler,
respectively, and length L. The tuning crystal has parameters n′

s, n
′
i and L

′. The tuning crystal is
chosen so as to tune the birefringence of the cavity such that only a single cluster falls below the
SPDC bandwidth. The relation between the parameters of the two crystals necessary to achieve
this task is reported in the main text.

FSRx =
c

2|NxL+N ′
xL

′ + Lgap|
, (5.9)

where x = s or i, c is the speed of light in vacuum, and the group index of air is

approximated to 1. By using equations 2.41 and 5.9, the cluster separation becomes:

FSRc =
c

2|(ns − ni)L+ (n′s − n′i)L
′|
. (5.10)

The FWHM of the phase-matching profile can be obtained from Equation 2.31. By

approximating the factor 5.56/2π to 1, the SPDC bandwidth reads:

∆νSPDC ≈ c

|ns − ni|L
. (5.11)

Then, condition 5.8 becomes:

1

2

⏐⏐⏐⏐ns − ni
n′s − n′i

⏐⏐⏐⏐ < L′

L
<

⏐⏐⏐⏐ns − ni
n′s − n′i

⏐⏐⏐⏐ , (5.12)

with ns−ni
n′
s−n′

i
< 0, reflecting the fact that the tuning crystal must partially compensate the

birefringence of the parametric crystal. By suitably choosing the parameters of the tuning

crystal, therefore, single-cluster emission can be achieved. This concept was recently

used to achieve single-mode emission from a narrow-band source at 852 nm [248].
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In addition to the central brighter mode, each cluster comprises a few weaker neigh-

bouring modes, deriving from the partial overlap of signal and idler resonances, as shown

in Figure 2.5. It is clear that, if the longitudinal modes of the cavity are narrow enough,

this partial overlap is cancelled and the neighbouring modes are suppressed. A criterion

for a sufficiently low overlap can be considered:

∆νs
2

+
∆νi
2

< |FSRs − FSRi|, (5.13)

where ∆νs and ∆νi are the linewidth of the signal and idler cavity modes, respectively.

By using the relation ∆νx ≈ FSRx
Fx

, with Fx finesse of the cavity for the field x, with x

being s or i, the previous condition becomes:

1

2
(
FSRs

Fs
+

FSRi

Fi
) < |FSRs − FSRi|. (5.14)

If, as it is often the case, Fs ≈ Fi = F , a condition on the finesse F can be extracted:

F >
1

2

FSRs + FSRi

|FSRs − FSRi|
. (5.15)

Assuming that the optical path for the idler is larger than that for the signal, Equation

5.15 becomes:

F >
1

2

(ni + ns)L+ (n′i + n′s)L
′

(ni − ns)L+ (n′i − n′s)L
′ . (5.16)

This, together with fulfilment of condition 5.12, ensures generation of photons in a single

longitudinal mode without further filtering.

Frequency tuning of the OPO can be realized by controlling temperature and tilt of

the parametric crystal and/or the tuning crystal, as long as condition 5.11 is satisfied.

Additionally, a pockels cell, an electro-optic device whose refractive indices depend on the

applied voltage, can be used as a tuning crystal in order to tune the resonance condition

in a fully independent way of the phase-matching condition.
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5.5 Summary of the results

The obtained achievements can be summarized as it follows.

• A narrow-band single-photon source based on CE-SPDC in a PPKTP crystal was

set up. The crystal is phase-matched for type-II degenerate emission at 780 nm.

The cavity is kept resonant to laser light that in turn is frequency-stabilized to a

hyperfine transition of Rb D2 line. This ensures emission at the correct frequency

for interaction with Rb atoms.

• The spectral properties of the source are found both by classical characterization

of the cavity and by measuring first- and second-order correlation functions. The

spectrum of both signal and idler photons is composed of three clusters separated

by (66± 1) GHz. The main mode of each cluster has a bandwidth of (9.68± 0.05)

MHz for the signal and (11.45 ± 0.04) MHz for the idler, thus ensuring efficient

coupling to the Rb transitions (a few MHz bandwidth). The detected/generated

spectral brightness per cluster is (25± 2)/(1.29± 0.09)× 103 pairs/(s mW MHz).

The source outperforms the two other sources of degenerate photon pairs at 780

nm reported in literature [219, 222].

• The dependence of the heralded second-order correlation function at zero delay on

the pump power was obtained. A maximum value of g
(2)
h (0) = 0.028± 0.002 was

found at the highest pump power of Pmax = 3.9 mW. This ensures low multi-photon

contamination.

• Strategies for filtering out the central cluster have been individuated and will

be applied in the near future. The first technique to be attempted will be the

employment of volume bragg gratings.
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In this thesis, three experimental works have been presented, all involving generation

and manipulation of single photons for quantum information applications.

The first two works, reported in Chapters 3 and 4, respectively, consist in the

development and implementation of novel quantum communication protocols, both based

on single photons in superposition between two distant locations. An important aspect of

the theoretical and experimental investigation in both cases is the reduction of resources

for quantum communication.

In Chapter 3, in fact, it is experimentally shown that a single quantum particle, a

photon, allows for the simultaneous two-way transmission of two classical bits between

two distant parties. This concept is used to design and implement a communication

protocol that allows one of the two parties to anonymously send classical bits to the other,

employing, in the ideal case, one photon per classical bit. The demonstrated protocol

determines an advantage in terms of resources to be used, either number of particles or

time, with respect to the case where only classical particles are allowed. Such advantage

is preserved when applying suitably designed error correction techniques.

In terms of users’ hardware, instead, a resource advantage is obtained with the

semi-classical QKD protocol of Chapter 4, as, contrary to previous schemes, the users

neither need to generate quantum states nor to store quantum information in quantum

memories. Notably, the server only has to provide a feasible resource such as single

photons in superposition. The secure key rate is obtained in the finite-key scenario and

considering the main experimental imperfections of the adopted setup.
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In both cases, the realized implementations are proof-of-principle demonstrations

and as such have mostly a foundational value, showing what features are gained in

communication when quantum resources are used compared to classical ones. However,

the experiments can be improved to approach real-world applications by using state-

of-the-art phase-stabilization techniques and optical switches, as well as deterministic

single-photon sources, which can be done in future work. Further theoretical investigation

of the concept of two-way-communication-with-one-particle, moreover, can lead to relax

the assumption for the protocol security and thus increase practicality. This scheme, in

fact, represents a primitive that can be used for different communication modes, such as

QSDC and QKD. Additional applications can be found in the future.

Chapter 5 describes the realization and characterization of a narrow-band single-

photon source, which emits degenerate photon pairs capable of interaction with Rb D2 line.

The source outperforms the previous realizations of narrow-band photon-pair emitters at

780 nm and constitutes a useful piece of equipment for the research group in which it

was developed. In fact, several future directions are currently under investigation. The

first obvious one is interfacing the produced photons to Rb atoms for the demonstration

of two-photon gates and quantum memories. This will be done in collaboration with

research groups working on atomic setups. Furthermore, the possibility of increasing the

pump power and accessing a regime in which double-pair emission from the source is

non-negligible is under consideration. This would allow for the production of multi-photon

narrow-band states for the realization of more complex photon-atom hybrid systems and

for a richer characterization of atomic setups. The possibility of producing narrow-band

multi-photon entanglement will also be investigated.

168



List Of Publications

Here the list of all publications produced during the Ph.D. project is presented. The

publications related to this thesis are marked in bold.

• Hilweg, C., Massa, F. Martynov, D., Mavalvala, N., Chruściel P.T., Walther, P.,
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N., Souto, A., Walther, P., Experimental quantum cryptography with

classical users, arXiv:1908.01780.

169



Bibliography

[1] P. Benioff. “The computer as a physical system: A microscopic quantum mechanical

Hamiltonian model of computers as represented by Turing machines”. Journal of

Statistical Physics 22.5 (1980), pp. 563–591.

[2] R. P. Feynman. “Simulating physics with computers”. International Journal of

Theoretical Physics 21.6 (1982), pp. 467–488.

[3] P. W. Shor. “Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer”. SIAM Review 41.2 (1999), pp. 303–332.

[4] I. Kassal et al. “Simulating chemistry using quantum computers”. Annual Review

of Physical Chemistry 62 (2011), pp. 185–207.

[5] C. H Bennett. “Quantum crytography”. Proceedings of the IEEE International

Conference on Computers, Systems, and Signal Processing, Bangalore, India. 1984,

pp. 175–179.

[6] Q. A. Turchette et al. “Measurement of conditional phase shifts for quantum

logic”. Physical Review Letters 75.25 (1995), p. 4710.

[7] E. Knill, R. Laflamme, and G. J. Milburn. “A scheme for efficient quantum

computation with linear optics”. Nature 409.6816 (2001), p. 46.

[8] H. J. Briegel et al. “Measurement-based quantum computation”. Nature Physics

5.1 (2009), p. 19.

[9] H. J. Briegel et al. “Quantum repeaters: the role of imperfect local operations in

quantum communication”. Physical Review Letters 81.26 (1998), p. 5932.

170



Bibliography

[10] L. M. Duan et al. “Long-distance quantum communication with atomic ensembles

and linear optics”. Nature 414.6862 (2001), p. 413.

[11] K. Azuma, K. Tamaki, and H.-K. Lo. “All-photonic quantum repeaters”. Nature

communications 6 (2015), p. 6787.

[12] R. Loudon. The quantum theory of light. 3rd ed. Oxford University Press, 2000.

[13] J. J. Sakurai. Modern quantum mechanics. 2nd ed. Pearson, 1993.

[14] J. S. Bell. “On the Einstein Podolsky Rosen paradox”. Physics Physique Fizika

1.3 (1964), pp. 195–200.

[15] J.-W. Lee et al. “Quantum cryptography using single-particle entanglement”.

Physical Review A 68.1 (2003), p. 012324.

[16] A. Barenco et al. “Elementary gates for quantum computation”. Physical Review

A 52.5 (1995), pp. 3457–3467.

[17] W. K. Wooters and W. H. Zurek. “A single quantum cannot be cloned”. Nature

299 (1982), pp. 802–802.

[18] P. Krantz et al. “A quantum engineer’s guide to superconducting qubits”. Applied

Physics Reviews 6.2 (2019), p. 021318.

[19] M. Saffman. “Quantum computing with atomic qubits and Rydberg interactions:

progress and challenges”. Journal of Physics B: Atomic, Molecular and Optical

Physics 49.20 (2016), p. 202001.

[20] C. D. Bruzewicz et al. “Trapped-ion quantum computing: Progress and challenges”.

Applied Physics Reviews 6.2 (2019), p. 021314.

[21] S. Slussarenko and G. J. Pryde. “Photonic quantum information processing: A

concise review”. Applied Physics Reviews 6.4 (2019), p. 041303.
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