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AN ENTROPIC REGULARITY APPROACH
TO THE CAFFARELLI CONTRACTION

THEOREM

Abstract

The purpose of this thesis is to give a different proof of the Caffarelli
contraction theorem, which states that the Brenier map pushing forward
the Standard Gaussian measure onto a logarithmically concave probability
measure is Lipschitz with constant 1. Caffarelli’s original proof was mostly
based on PDE theory and the fact that Brenier maps appear as solutions to
a Monge-Ampère equation and was not directed towards optimal transport
theory. In the current proof we mainly follow the research work of Fathi,
Gozlan and Prodhomme [14] who exploited a recent characterization of Lip-
schitz transport map given by Gozlan and Juillet together with a convexity
property of optimizers in the entropic transport cost minimization problem.

Zusammenfassung

In dieser Arbeit präsentieren wir einen alternativen Beweis des Kon-
traktionssatzes von Caffarelli, welcher besagt, dass die Brenier-Abbildung
zwischen einer Standardnormalverteilung und einem logarithmisch konkaven
Wahrscheinlichkeitsmass Lipschitz-stetig mit Konstante 1 ist. Der unsprüngliche
Beweis von Caffarelli ist nicht direkt mit optimalem Transport verknüpft,
sondern basiert auf der Theorie der partiellen Differentialgleichungen und
der Tatsache, dass die Brenier-Abbildung einer Lösung der Monge-Ampèreschen
Gleichung entspricht. Der Beweis dieser Arbeit folgt hauptsächlich der
Forschungsarbeit von Fathi, Gozlan und Prodhomme [14]. Diese Autoren
benutzen eine neue Charakterisierung von Lipschitz-stetigen Transport-Abbildungen
nach Gozlan und Juillet, sowie eine Konvexitätseigenschaft der Optimierer
des Minimierungsproblems, welches durch die entropischen Transportkosten
gegeben ist.
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INTRODUCTION

1. INTRODUCTION

Before we proceed, let us give a definition. We denote by γd the standard
Gaussian measure on Rd, that is γd : B(Rd)→ [0, 1] and

γd(A) =
1

(2π)
d
2

∫
A
e−
‖x‖2

2 dλd , A ∈ B(Rd)

where λd is the Lebesgue measure on Rd and ‖x‖ is the usual Euclidean
norm on Rd. Sometimes we will use Radon-Nikodym derivative notation,
so the above takes the form:

dγd
dλd

=
1

(2π)
d
2

e−
‖x‖2

2

or the form:

γd(dx) =
1

(2π)
d
2

e−
‖x‖2

2 λd(dx) .

We can now state the generalized version of Caffarelli’s theorem:

Theorem 1 (Caffarelli). Suppose µ, ν are two probability measures on Rd
of the form µ(dx) = eV (x)γd(dx) and ν(dx) = e−W (x)γd(dx) for some V
and W convex functions. Assume also that µ has finite second moment,
i.e.

∫
Rd ‖x‖

2dµ(x) <∞ and that ν is compactly supported. Then there
exists a continuously differentiable and convex function φ : Rd → R such
that ∇φ is 1-Lipschitz and ν = ∇φ#µ := µ ◦ (∇φ)−1.

The original result was only stated for the case where V = 0, but the proof
can also be generalized (see [28]). Also the assumption that ν has compact
support can be removed via approximation (See [37], Corollary 5.21).
Throughout the essay we always assume that convex functions are also
taking the value +∞ and that they are lower semicontinuous.

Caffarelli’s result enables to transfer geometric inequalities (such as the
Sobolev or Isoperimetric inequalities) from the Gaussian measure onto
probability measures having a logarithmically concave density. This is
really important for applications in statistics for example, where many
common probability densities are logarithmically concave functions (e.g.
Student’s distribution, Normal distribution, Exponential distribution etc).
The crucial point is the dimension-free nature of the above bound which
allows to preserve the dimension-independent estimates that arise from
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INTRODUCTION

these inequalities. See [7,22,23,33] and [27,28] for more applications of
Theorem 1.

As already mentioned, in this essay we will try to give a proof based on
ideas from optimal transport theory. First of all, we have to recall a result
obtained by Gozlan and Juillet in [20], which gives a variational
characterization of Lipschitz regularity of optimal transport maps. Let us
introduce some notation. Denote by P(Rd) the set of probability measures
on Rd and by Pk(Rd) the subset of P(Rd) consisting of those probability
measures having finite moment of order k, k ≥ 1, i.e.

Pk(Rd) =

{
P ∈ P(Rd) :

∫
Rd
‖x‖kdP (x) <∞

}
.

Next we define the quadratic Wasserstein distance for µ, ν ∈ P2(Rd) as
follows:

W 2
2 (µ, ν) := inf

π∈C(µ,ν)

{∫
Rd×Rd

‖x− y‖2π(dx, dy)

}
where C(µ, ν) is the set of all couplings between µ and ν, i.e. the
probability measures on Rd × Rd satisfying π(A× Rd) = µ(A) and
π(Rd ×B) = ν(B) for all Borel sets A,B ∈ Rd. Furthermore, for
η1, η2 ∈ P(Rd), we say η1 is dominated by η2 in the convex order if∫
fdη1 ≤

∫
fdη2 for all convex functions f : Rd → R. In that case we

simply write η1 ≤c η2. We can now state the variational characterization
(see [20]):

Theorem 2. Let µ, ν ∈ P2(Rd). Then the following are equivalent:

(i) There exists a continuously differentiable and convex function
φ : Rd → R such that ∇φ is 1-Lipschitz and ν = ∇φ#µ

(ii) For all η ∈ P2(Rd) such that η ≤c ν it holds

W2(µ, ν) ≤W2(µ, η)

This means that the Brenier map between µ and ν is 1-Lipschitz iff the
measure ν is the closest point to µ among all probability measures which
are dominated by ν in the convex order. Thus, in order to prove Theorem
1, it suffices to show that whenever µ and ν satisfy the assumptions of
Theorem 1, it holds that:

(1) W2(µ, ν) ≤W2(µ, η), ∀η ≤c ν .

We will prove a similar statement replacing the Wasserstein distance by
the entropic transport cost, T εH , which is defined by means of minimization
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INTRODUCTION

of the relative entropy between π and a ”reference measure” Rε (details in
the next section). So, our purpose is to prove that:

(2) T εH(µ, ν) ≤ T εH(η, µ)

for all η ≤c ν with finite ”Shannon information”. It has already been
proved by Mikami (see [31]) and Léonard (see [29,30]) that passing to the
limit we get: limε→0 εT εH = 1

2W
2
2 , so by letting ε→ 0 in (2) we

immediately get (1).

In the next section we introduce the entropic transport costs, the
Ornstein-Uhlenbeck process which gives us the reference measure Rε, the
concept of relative entropy as well as some results and representation
formulas of the relative entropy.
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ENTROPIC TRANSPORT COSTS AND RELATIVE ENTROPY

2. ENTROPIC TRANSPORT COSTS AND RELATIVE
ENTROPY

2.1. Entropic costs, their zero noise limit and other results.
Suppose we have the following stochastic differential equation:

dZt = −1

2
Ztdt+ dWt, t ≥ 0

where (Wt)t≥0 is the standard d-dimensional Brownian motion and Z0 has
distribution γd, Z0 ∼ γd. We will apply Itô’s formula to find an explicit
representation for its solution. To this end, let

f(t, x) = xe
t
2

Then:

df(t, Zt) =
∂f

∂t
(t, Zt)dt+

∂f

∂x
(t, Zt)dZt +

1

2

∂2f

∂x2
(t, Zt)dt =

=
1

2
Zte

t
2dt+ e

t
2 (−1

2
Ztdt+ dWt) = e

t
2dWt

which is equivalent to:

Zte
t
2 = Z0 +

∫ t

0
e
s
2dWs .

Finally, the solution is given by:

Zt = Z0e
− t

2 + e−
t
2

∫ t

0
e
s
2dWs, t ≥ 0 .

In order to define the entropic transport cost, we denote by Rε the law of
the random vector (Z0, Zε). If we set

Iε =

∫ ε

0
e
s−ε
2 dWs

it is known that Iε is distributed as a normal random vector with zero
mean and variance

E
( ∫ ε

0
(e

s−ε
2 )2ds

)
hence

Iε ∼ N (0, 1− e−ε) ∼
√

1− e−εN (0, 1) .

From all these we deduce that

Rε = Law(Z0, Zε) = Law(X,Xe−
ε
2 +

√
1− e−εY )
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ENTROPIC TRANSPORT COSTS AND RELATIVE ENTROPY

where X,Y are independent standard Gaussian random vectors on Rd. We
would like to argue that the measure Rε is in fact equal to:

Rε(dx, dy) = γd(dx)rεx(dy)

or equivalently,

Rε(A×B) =

∫
A

rεx(B)dγd(x)

where, for fixed x, the measure rεx(·) is defined as:

rεx(A) =

∫
A

1

(2π(1− e−ε))
d
2

e
− ‖y−xe

− ε2 ‖2

2(1−e−ε) dλd(y) .

For simplicity, we will restrict ourselves to d = 1, but of course the
argument is the same for higher dimensions. For convenience, let
c = e−

ε
2 , k =

√
1− e−ε and also

g : R2 → R2

(x, y) 7→ (x, cx+ yk)

Then we get:

Rε((−∞, a]× (−∞, b]) = P
{
ω : (X(ω), Y (ω)) ∈ g−1((−∞, a]× (−∞, b])

}
=

=

∫∫
g−1((−∞,a]×(−∞,b])

f(X,Y )dsdt =

a∫
−∞

fX(s)


b−cs
k∫

−∞

fY (t)dt

 ds =

=

a∫
−∞

fX(s)


b−cs
k∫

−∞

e−
t2

2

√
2π

dt

 ds =

a∫
−∞

fX(s)

 b∫
−∞

e−
(t−sc)2

2k2

√
2πk2

dt

 ds =

=

a∫
−∞

b∫
−∞

e−
s2

2

√
2π

e−
(t−sc)2

2k2

√
2πk2

dtds

which is the desired equality.

Another very important concept is that of the relative entropy. For a
probability measure α which is absolutely continuous with respect to
another probability measure β on some probability space (X ,A), the
relative entropy is defined by

H(α|β) :=

∫
log

(
dα

dβ

)
dα
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ENTROPIC TRANSPORT COSTS AND RELATIVE ENTROPY

If α is not absolutely continuous with respect to β, then we set
H(α|β) = +∞. Using the convention 0 · ∞ = 0, one sees that in fact we
integrate over the set where the measure α is non-vanishing. Also, it holds
that the function s(log(s))− is bounded on (0,∞) (because
limx→0+ x log x = 0), so∫ (

log

(
dα

dβ

))− dα
dβ
dβ <∞

thus H is well defined. The fact that x log(x) ≥ x− 1 with equality iff
x = 1 implies that H(α|β) ≥ 0 and H(α|β) = 0 ⇐⇒ α = β. We are ready
to give the following:

Definition 3. (Entropic transport cost) For µ, ν ∈ P(Rd), the entropic
transport cost associated to Rε is defined by

T εH = inf
π∈C(µ,ν)

H(π|Rε) .

It has already been shown by Mikami, Léonard and others (see [29,31])
that limε→0 εT εH = 1

2W
2
2 . By using intuitive arguments, we expect this to

be true since:

εT εH = ε

∫
log

(
dπ

dx

dx

dRε

)
dπ = ε

∫
log

(
dπ

dx

)
dπ − ε

∫
log

(
dRε

dx

)
dπ

Using the formula of the previous page for the density of Rε with respect
to the Lebesgue measure, this equals:

ε

∫
log

(
dπ

dx

)
dπ−ε

∫
−‖x‖

2

2
+log(

√
2π)dπ+

ε

2(1− e−ε)

∫
‖y−xe−

ε
2 ‖2dπ+

+ε(log(
√

2π) + log(
√

1− e−ε))

The last term is independent of µ, ν, π and goes to zero, when ε→ 0. Also∫
‖x‖2dπ(x, y) =

∫
‖x‖2dµ(x) <∞, when µ ∈ P2(Rd), so, for small ε,

minimizing π 7→ H(π|Rε) amounts to minimizing π 7→ 1
2

∫
‖x− y‖2dπ(x, y).

In the sequel we will say that a probability measure η is of finite Shannon
entropy if it is absolutely continuous with respect to the Lebesgue measure
and if

∫
log( dη

dλd
)dη < +∞. By splitting the derivative as before, we get

that log( dη
dλd

) = log( dηdγd ) + log( dγd
dλd

), which means that if η ∈ P2(Rd), then
it is of finite Shannon entropy iff H(η|γd) < +∞. We will also use the
following result (see Carlier, Duval, Peyré, Schmitzer [4]):

Theorem 4. (Carlier et al. ) Assume µ, ν ∈ P2(Rd) are of finite Shannon
entropy. Then it holds

εT εH(µ, ν)
ε→0−−−→ 1

2
W 2

2 (µ, ν)
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ENTROPIC TRANSPORT COSTS AND RELATIVE ENTROPY

In order to use the latter, we state a Lemma which will be proved in
Section 3:

Lemma 5. If µ, ν satisfy the assumptions of Theorem 1, then they are of
finite Shannon entropy.

2.2. Relation of entropic cost to Caffarelli’s theorem.

Theorem 6. Let µ and ν satisfy the assumptions of Theorem 1 and
additionally assume that the function V is bounded from below. If η is such
that η ≤c ν, then for all ε > 0 it holds

T εH(µ, ν) ≤ T εH(µ, η) .

Having Theorem 6 at our hands we can complete the proof of Theorem 1:

Proof of Theorem 1. Step 1: V is bounded from below. By Lemma 5, µ, ν
have finite Shannon entropy, hence if we take an η which also has finite
Shannon entropy and is η ≤c ν , we can combine Theorems 4 and 6 to
deduce that

W2(µ, ν) ≤W2(µ, η) .

We would like the above inequality to hold not only for those η ≤c ν which
have finite Shannon entropy but for every η with η ≤c ν. To this end, fix a
compactly supported probability measure ν0 of the form
ν0(dx) = e−W0(x)γd(dx), where W0 : Rd → R∪ {+∞} is convex and take an
arbitrary η ≤c ν0. For θ ∈ (0, π/2) define

νθ = Law((cos θ)X + (sin θ)Z), ηθ = Law((cos θ)Y + (sin θ)Z)

where X ∼ ν0, Y ∼ η and Z is independent of X and Y having density
1
C IB(x)e−

‖x‖2
2 , where B is the Euclidean unit ball and C is some

normalizing constant. In Lemma 14 we will prove that νθ has compact
support and is of the form νθ(dx) = e−Wθ(x)γd(dx), where Wθ is convex
and also that ηθ has finite Shannon entropy and satisfies ηθ ≤c νθ. This
means that

W2(µ, νθ) ≤W2(µ, ηθ) .

From this, we would like to pass to the limit as θ → 0 and deduce that
W2(µ, ν0) ≤W2(µ, η) and then we are done with Step 1. In Lemma 19 we

also prove that νθ
w−−−→
θ→0

ν0 and
∫
‖y‖2dνθ(y)

θ→0−−−→
∫
‖y‖2dν0(y) which are

10



ENTROPIC TRANSPORT COSTS AND RELATIVE ENTROPY

of course equivalent to W2(µ, νθ)
θ→0−−−→W2(µ, ν0). Similar facts hold for the

measures ηθ and η as well.

Step 2: V is not necessarily bounded from below. Since any convex
function can be written as a supremum of affine functions, we can find an
α ∈ Rd such that x 7→ V (x)+ < α, x > is bounded from below. Let
T : Rd → Rd with T (x) = x+ α and set µ̃ = µ ◦ T−1. Then

µ̃(A) = µ(T−1(A)) =

∫
T−1(A)

eV (x)dγd(x) =

∫
A

eV (y−α)dγd(T
−1(y)) =

=

∫
A

eV (y−α)dγd(y − α) =

∫
A

eV (y−α) e
− ‖y−α‖

2

2

(
√

2π)d
dλd(y) =

=

∫
A

eV (y−α)e〈α,(y−
α
2

)〉dγd(y) =

∫
A

eV (y−α)e〈α,(y−α)〉e
‖α‖2

2 dγd(y)

so we see that µ̃ satisfies our assumptions. Hence there exists a C1 convex
function φ̃ such that ∇φ̃ is 1-Lipschitz and ν = ∇φ̃#µ̃. By setting
φ(x) = φ̃(x+ α), we get that ν = ∇φ#µ.

In order to prove Theorem 6, we have to first discuss some important
properties of the relative entropy, which of course have their own
independent interest. These properties are the variational formula, the
factorization property, convexity and lower semicontinuity and the
Donsker-Varadhan dual representation of the relative entropy.

Proposition 7. Let (N ,A) be a measurable space, θ a probability measure
on N and k : N → R a bounded measurable function. Then the following
hold:

(α) We have the variational formula

inf
γ∈P(N )

{
H(γ|θ) +

∫
N
kdγ

}
= − log(

∫
N
e−kdθ)

(b) The above infimum is uniquely attained at γ0, which is absolutely
continuous with respect to θ and satisfies

dγ0

dθ
(x) := e−k(x) 1∫

N e
−kdθ

11



ENTROPIC TRANSPORT COSTS AND RELATIVE ENTROPY

Proof. For part (α) it suffices to restrict ourselves to the

inf

{
H(γ|θ) +

∫
N
kdγ : γ ∈ P(N ), H(γ|θ) < +∞

}
If H(γ|θ) < +∞ then γ � θ and since also θ � γ0 (the density dγ0

dθ is
strictly posiitive, so the two measures are mutually absolutely continuous)
we get that γ � γ0. Hence:

H(γ|θ) +

∫
N
kdγ =

∫
N

(
log

dγ

dγ0

)
dγ +

∫
N

(
log

dγ0

dθ

)
dγ +

∫
N
kdγ =

= H(γ|γ0)− log

(∫
N
e−kdθ

)
Now, since H(γ|γ0) ≥ 0 and is zero iff γ = γ0, the proof of both parts (α)
and (b) is complete.

In order to prove the other properties of the relative entropy, we have to
speak about the concept of a stochastic kernel. Let (N ,A) be a
measurable space, Y a Polish space and let {τ(dy|x)}x∈N be a family of
probability measures in Y parametrized by x ∈ N . We call τ(dy|x) a
stochastic kernel on Y given N if for every Borel subset E ∈ B(Y), the
function x ∈ N 7→ τ(E|x) ∈ [0, 1] is measurable. In order to establish an
equivalent condition that characterizes a stochastic kernel, we will first
state a technical lemma without proof:

Lemma 8. For E ∈ B(Y) define fE : P(Y)→ [0, 1] by fE(θ) = θ(E). Then

BP(Y) = σ

 ⋃
E∈B(Y)

f−1
E (B(R)


In other words, BP(Y) is the smallest σ-algebra with respect to which fE is
measurable for every E.

The following theorem gives a useful equivalent characterization of a
stochastic kernel:

Theorem 9. Let {τ(dy|x)}x∈N be a family of probability measures in Y.
Then τ(dy|x) is a stochastic kernel if and only if the mapping
x ∈ N → τ(·|x) ∈ P(Y) is A/BP(Y) measurable.

Proof. Let g : N → P(Y) with g(x) = τ(·|x) and define, for E ∈ B(Y),
hE : N → [0, 1] by hE(x) = τ(E|x). By Lemma 8, it holds that
hE = fE ◦ g. Then, the Theorem just states that g is A/BP(Y) measurable
iff hE is A measurable for every E.

12



ENTROPIC TRANSPORT COSTS AND RELATIVE ENTROPY

Lemma 8 implies that fE is BP(Y) measurable for every E. Since
hE = fE ◦ g, it follows that if g is A/BP(Y) measurable then hE is A
measurable for every E. Conversely, if hE is A measurable for every E,
then using Lemma 8 we get:

g−1
(
BP(Y)

)
= g−1

σ
 ⋃
E∈B(Y)

f−1
E (B(R)

 = σ

 ⋃
E∈B(Y)

g−1
(
f−1
E (B(R)

) =

= σ

 ⋃
E∈B(Y)

h−1
E (B(R)

 ⊂ A
hence g is A/BP(Y) measurable.

Our next theorem shows that a probability measure defined on some
product of spaces can be decomposed into its first marginal and a
stochastic kernel. Of course, an analogous decomposition holds in terms of
its second marginal.

Theorem 10. Let τ = τ(dx× dy) be a probability measure on N × Y with
the product σ-algebra A

⊗
BY . Denote by τ1 the first marginal of τ , i.e.

τ1(A) = τ(A× Y). Then there exists a stochastic kernel τ(dy|x) on Y
given N such that:

τ(A×B) =

∫
A

τ(B|x)τ1(dx)

for all A ∈ A and B ∈ BY . We denote this decomposition by
τ(dx× dy) = τ1(dx)⊗ τ(dy|x).

Proof. (Sketch) On the product space (N × Y,A
⊗
BY , τ) take the

coordinate functions X̃(x, y) = x, Ỹ (x, y) = y. The stochastic kernel is just
the regular conditional distribution of Ỹ given X̃ = x.

The following theorem will be used in the proof of the chain rule. It deals
with the existence of a Radon-Nikodym derivative between two stochastic
kernels which is a jointly measurable function on the product space. More
precisely we have:

Theorem 11. Let N be a Polish space and A be its Borel σ-algebra. Let
A ∈ A and σ(dy|x), τ(dy|x) be two stochastic kernels on Y given N with
the property that for every x ∈ A , σ(·|x) is absolutely continuous with
respect to τ(·|x). Then there exists a version of the Radon-Nikodym
derivative

f(x, y) =
dσ(·|x)

dτ(·|x)
(y)

which is a nonnegative measurable function of (x, y) ∈ A× Y.

13
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We are now ready to prove the most crucial Theorem of this section.

Theorem 12. Let X and Y be Polish spaces. The relative entropy H(·|·)
has the following properties:

(α) (Donsker-Varadhan formula) For each γ and θ in P(X) it holds

H(γ|θ) = sup
g∈Cb(X)


∫
X

gdγ − log

∫
X

egdθ

 =

= sup
ψ∈Ψb(X)


∫
X

ψdγ − log

∫
X

eψdθ


where Cb(X) and Ψb(X) are the spaces of continuous bounded and
measurable bounded functions on X respectively.

(b) H(γ|θ) is a convex, lower semicontinuous function of
(γ, θ) ∈ P(X)× P(X). In particular, it is convex and lower
semicontinuous on each variable separately. In addition, for each
fixed θ, H(·|θ) is a strictly convex function on the set
{γ ∈ P(X) : H(γ|θ) < +∞}.

(c) For each θ ∈ P(X) and for each M < +∞, the set
{γ ∈ P(X) : H(γ|θ) ≤M} is compact.

(d) Let α and β two probability measures on X × Y and denote by α1

and β1 their first marginals and α(dy|x), β(dy|x) the stochastic
kernels on Y given X for which we have the decompositions

α(dx× dy) = α1(dx)⊗α(dy|x) and β(dx× dy) = β1(dx)⊗ β(dy|x)

Then the mapping x ∈ X 7→ H(α(·|x)|β(·|x)) is measurable and

H(α|β) = H(α1|β1) +

∫
X

H(α(·|x)|β(·|x))α1(dx) .

In particular, let σ(dy|x), τ(dy|x) be stochastic kernels on Y given X
and θ a probability measure on X. Then the mapping
x ∈ X 7→ H(σ(·|x)|τ(·|x)) is measurable and it holds

H(θ ⊗ σ|θ ⊗ τ) =

∫
X

H(σ(·|x)|τ(·|x))dθ(x) .

14
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Proof. (b) We will use the first part. For fixed g ∈ Cb(X), the mapping

(γ, θ) ∈ P(X)× P(X) 7→
∫
X

gdγ − log

∫
X

egdθ


is convex and continuous, hence H(γ|θ) is convex and lower
semicontinuous, as a supremum over g ∈ Cb(X) of such functions. The
strict convexity of H(γ|θ) on the set {γ ∈ P(X) : H(γ|θ) < +∞} comes
from the strict convexity of s log s (for s > 0) and the fact that on the
above set we have

H(γ|θ) =

∫
X

dγ

dθ
log

(
dγ

dθ

)
dθ

(c) Let {γn}n be a sequence in P(X) satisfying supnH(γn|θ) ≤M < +∞.
Again, using the variational formula of Varadhan-Donsker we get that for
any bounded measurable function ψ : X → R it holds

∫
X

ψdγn − log

∫
X

eψdθ

 ≤ H(γn‖θ) ≤M

We will prove that the sequence {γn} is tight. To this end, let δ > 0.
Choose ε > 0 such that M+log 2

log(1+1/ε) < δ. Since the single measure θ is tight,

there exists a compact set K such that θ(Kc) ≤ ε. In the last display,
choose ψ to be 0 on K and log(1 + 1/ε) on Kc. What we get is:

γn(Kc) ≤
[

1

log(1 + 1/ε)

](
M + log

(
θ(K) + (1 +

1

ε
)θ(Kc)

))
=

=

[
1

log(1 + 1/ε)

](
M + log

(
1 +

1

ε
θ(Kc)

))
≤

≤
[

1

log(1 + 1/ε)

]
(M + log 2) < δ

and this holds for all n. By Prohorov’s Theorem, there exists γ ∈ P(X)
and a subsequence γnk such that γnk =⇒ γ. By lower semicontinuity of
H(·|θ) we deduce that H(γ|θ) ≤ lim infkH(γnk |θ) ≤M , which yields that
the set {γ ∈ P(X) : H(γ|θ) ≤M} is compact.
(a) We will first show that

sup
g∈Cb(X)


∫
X

gdγ − log

∫
X

egdθ

 = sup
ψ∈Ψb(X)


∫
X

ψdγ − log

∫
X

eψdθ


Since Cb(X) ⊂ Ψb(X), the LHS is smaller or equal than the RHS. For the
opposite inequality, given ε > 0, since γ, θ are tight, we can find a compact

15
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set K such that γ(Kc) < ε , θ(Kc) < ε. Pick ψ ∈ Ψb(X). Then ψ|K is also
a measurable function, so by weak Lusin’s theorem, since the measure γ+ θ
is finite, we can find a closed subset F ⊂ K such that the restriction ψ|F is
in fact continuous and (γ + θ)(K\F ) < ε. Let us call ψ|F = g. Since F is a
closed set, we can use Tietze’s extension theorem and find a continuous
g̃ : X → R extending g with supx∈X |g̃(x)| = supy∈F |g(y)|. Since ψ|F = g,
we actually have constructed a continuous function g̃ : X → R with the
property g̃|F = ψ|F , ‖g̃‖∞ ≤ ‖ψ‖∞ and (γ + θ)(K\F ) < ε. It follows that

γ(F c) ≤ γ(Kc) + γ(K\F ) ≤ 2ε and θ(F c) ≤ θ(Kc) + θ(K\F ) ≤ 2ε

and we claim that there is a constant C independent of ε such that:

∫
X

ψdγ − log

∫
X

eψdθ

 ≤ ∫
X

g̃dγ − log

∫
X

eg̃dθ

+ Cε

In fact, we have that∫
X

(ψ − g̃)dγ =

∫
F c

(ψ − g̃)dγ ≤ 2‖ψ‖∞γ(F c) = 4‖ψ‖∞ε

and ∫
X

eg̃dθ =

∫
F

eψdθ +

∫
F c

eg̃dθ ≤
∫
X

eψdθ + e‖g̃‖∞θ(F c) ≤

≤
∫
X

eψdθ + e‖ψ‖∞2ε

By taking logarithms and using the mean value theorem on the positive
interval (

∫
X e

ψdθ,
∫
X e

ψdθ + e‖ψ‖∞2ε) we find some ξε in this interval such
that:

log

∫
X

eg̃dθ

 ≤ log

∫
X

eψdθ + e‖ψ‖∞2ε

 =

=
1

ξε
e‖ψ‖∞2ε+ log

∫
X

eψdθ

 ≤ 1∫
X e

ψdθ
e‖ψ‖∞2ε+ log

∫
X

eψdθ


so if we take C = 4‖ψ‖∞ + 2∫

X eψdθ
e‖ψ‖∞ the claim is proved.

Now we can take first the supremum over g ∈ Cb(X) and then let ε→ 0 so
we get

∫
X

ψdγ − log

∫
X

eψdθ

 ≤ sup
g̃∈Cb(X)


∫
X

g̃dγ − log

∫
X

eg̃dθ


16



ENTROPIC TRANSPORT COSTS AND RELATIVE ENTROPY

and since ψ ∈ Ψb(X) was arbitrary, we conclude that

sup
ψ∈Ψb(X)


∫
X

ψdγ − log

∫
X

eψdθ

 ≤ sup
g̃∈Cb(X)


∫
X

g̃dγ − log

∫
X

eg̃dθ


We now define R(γ, θ) to be the common value of these suprema. Then
R(γ, θ) ≥ 0 , since we can take for example g ≡ 0. By part (α) of
Proposition 7, we get that for all k ∈ Ψb(X) it holds

H(γ|θ) ≥ −
∫
X

kdγ − log

∫
X

e−kdθ

 .

Replacing k by ψ := −k and then taking the supremum over all ψ ∈ Ψb(X)
we have:

H(γ|θ) ≥ sup
ψ∈Ψb(X)


∫
X

ψdγ − log

∫
X

eψdθ

 = R(γ, θ) .

In order to show the opposite inequality, we may of course assume that
R(γ, θ) < +∞. In that case, we will prove that γ � θ. Fix r > 0 and a
Borel set A with θ(A) = 0. Since for any ψ ∈ Ψb(X) it holds

∫
X

ψdγ − log

∫
X

eψdθ

 ≤ R(γ, θ) <∞

then for ψ := rIA we get that

∫
X

ψdγ − log

∫
X

eψdθ

 =

∫
X

ψdγ − log(1) = rγ(A) ≤ R(γ, θ) <∞

and by letting r →∞ we obtain that γ(A) = 0.
We can define the Radon-Nikodym derivative f := dγ

dθ . Suppose that f is
bounded and everywhere positive. Then ψ := log(f) is bounded and
measurable hence we may apply the above formula for this ψ to get the
desired inequality:

∫
X

log(f)dγ − log

∫
X

elog(f)dθ

 ≤ R(γ, θ) =⇒

∫
X

log(f)dγ − log

∫
X

dγ

dθ
dθ

 ≤ R(γ, θ) =⇒

17
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H(γ|θ) =

∫
X

log(f)dγ ≤ R(γ, θ)

If f is everywhere positive but not bounded, then set fn = f ∧ n and
ψ := log(fn). By monotone convergence, we obtain:

H(γ|θ) =

∫
X

log(f)dγ = lim
n→∞

∫
X

log(fn)dγ ≤

≤ R(γ, θ) + lim
n→∞

log

∫
X

fndθ

 = R(γ, θ) .

For the general case where f is neither bounded nor everywhere positive,
define for t ∈ [0, 1]:

γt = tθ + (1− t)γ and ft =
dγt
dθ

= t+ (1− t)f .

For every t ∈ (0, 1], ft is everywhere positive, so by the previous argument
we have H(γt|θ) ≤ R(γt, θ). We claim now that limt→0H(γt|θ) = H(γ|θ)
and limt→0R(γt, θ) = R(γ, θ). Indeed, since s log(s) is convex on (0,∞) it
holds that

H(γt|θ) =

∫
X

ft log(ft)dθ ≤ (1− t)
∫
X

f log(f)dθ = (1− t)H(γ|θ) .

On the other hand, since log(s) is concave and strictly increasing, it also
holds that log(ft) ≥ log(t) ∨ [(1− t) log(f)], therefore:

H(γt|θ) = t

∫
X

log(ft)dθ + (1− t)
∫
X

f(log(ft))dθ ≥ t log(t) + (1− t)2H(γ|θ)

Combining the above two displays, we get that limt→0H(γt|θ) = H(γ|θ).
Now, since R(γ, θ) ≤ H(γ|θ), it holds that R(θ, θ) = 0. Also, it is a matter
of routine calculations to show that the mapping t ∈ [0, 1] 7→ R(γt, θ) is
convex and lower semicontinuous. Hence, for t ∈ [0, 1] we have:

0 ≤ R(γt, θ) ≤ tR(θ, θ) + (1− t)R(γ, θ) = (1− t)R(γ, θ) ≤ R(γ, θ) <∞

which means that this mapping is also bounded. Since any convex, lower
semicontinuous, bounded function on a closed interval is continuous, we
obtain that t ∈ [0, 1] 7→ R(γt, θ) is continuous, and this yields that
limt→0R(γt, θ) = R(γ0, θ) = R(γ, θ). The proof of Donsker-Varadhan
variational formula is complete.

(d)Because of Theorem 9, we know that the stochastic kernels
α(dy|x), β(dy|x) are measurable functions from X into P(Y ). Since H(·|·)

18
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is lower semicontinuous (by property (b)), it is also measurable, therefore
the measurability of the mapping x ∈ X 7→ H(α(·|x)|β(·|x)) follows. We
will now prove that

H(α|β) = H(α1|β1) +

∫
X

H(α(·|x)|β(·|x))α1(dx)

Step 1: Suppose first that the RHS is finite. Under this assumption,
α1 � β1 and there is an α1-null set Γ such that H(α(·|x)|β(·|x)) is finite
for x ∈ Γc. Hence, for x ∈ Γc , α(·|x)� β(·|x) as measures on Y . By
redefining α(·|x) on the null set Γ, we can assure that α(·|x)� β(·|x) for
every x ∈ X. Let

ψ(x) :=
dα1

dβ1
(x) .

Theorem 11 ensures us that there exists a version of the Radon-Nikodym
derivative

ζ(x, y) =
dα(·|x)

dβ(·|x)
(y)

which is nonnegative and measurable on X × Y . For any Borel subsets A
of X and B of Y , using the above derivatives and Fubini’s theorem we get :

α(A×B) =

∫
A

α(B|x)α1(dx) =

∫
A

∫
B

ζ(x, y)β(dy|x)

ψ(x)β1(dx) =

=

∫
A×B

ψ(x)ζ(x, y)β(dx× dy)

This yields that α� β and

dα

dβ
(x, y) = ψ(x)ζ(x, y) .

Consequently we have:

H(α1|β1) +

∫
X

H(α(·|x)|β(·|x))α1(dx) =

=

∫
X

log(ψ(x))α1(dx) +

∫
X

∫
Y

log(ζ(x, y))α(dy|x)

α1(dx) =

=

∫
X×Y

log(ψ(x))α(dx× dy) +

∫
X×Y

log(ζ(x, y))α1(dx)⊗ α(dy|x) =
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=

∫
X×Y

log[ψ(x)ζ(x, y)]α(dx× dy) = H(α|β) .

Step 2: Suppose now that the LHS is finite. This yields that α� β so we
can define

φ(x, y) :=
dα

dβ
(x, y) .

Since α� β, we have that α1 � β1 and we may define

ψ(x) :=
dα1

dβ1
(x) .

If A ⊂ X and B ⊂ Y are Borel subsets, then∫
A

α(B|x)ψ(x)β1(dx) =

∫
A

α(B|x)α1(dx) = α(A×B) =

=

∫
A×B

φ(x, y)β(dx× dy) =

∫
A

∫
B

φ(x, y)β(dy|x)

β1(dx) .

This implies that there exists a β1-null set Γ such that for all x ∈ Γc it
holds

ψ(x)α(B|x) =

∫
B

φ(x, y)β(dy|x) .

Thus, for all x ∈ Γc ∩ {ψ > 0}, α(·|x)� β(·|x) and for such x and for all
y ∈ Y :

ζ(x, y) :=
dα(·|x)

dβ(·|x)
(y) equals

φ(x, y)

ψ(x)
.

In other words, for all x ∈ Γc ∩ {ψ > 0} the various derivatives are related
by

φ(x, y) = ψ(x)ζ(x, y) .

We have

α1({ψ = 0}) = α({ψ = 0} × Y ) =

∫
{ψ=0}

α(Y |x)ψ(x)β1(dx) = 0

thus α1({ψ > 0}) = 1, and since α1 � β1 and β1(Γc) = 1, we also have
α1(Γc) = 1. Finally we obtain:

H(α|β) =

∫
X×Y

log(φ(x, y))α(dx× dy) =

=

∫
(Γc∩{ψ>0})×Y

log(ψ(x)ζ(x, y)α1(dx)⊗ α(dy|x) =
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=

∫
Γc∩{ψ>0}

log(ψ(x))α1(dx) +

∫
Γc∩{ψ>0}

∫
Y

log(ζ(x, y))α(dy|x)

α1(dx) =

= H(α1|β1) +

∫
X

H(α(·|x)|β(·|x))α1(dx) .

For the last claim of property (d), it suffices to take α = θ ⊗ σ and
β = θ ⊗ τ .

Before we finish our discussion about these basic properties of the relative
entropy we must mention that in case where ν � µ, i.e. H(ν|µ) <∞, there
is a more useful version for the duality formula of the entropy namely that:

H(ν|µ) = sup


∫
X

udν − log

∫
X

eudµ

 :

∫
X

eudµ < +∞ ,

∫
X

u− < +∞


where u− = max{−u, 0} and

∫
udν ∈ (−∞,∞] is well defined for u with∫

X

u− < +∞. The proof of this formula relies on Fenchel transformation of

the convex function h(t) = t log(t)− t+ 1 and can be found in Proposition
B.1 on the work ”Transport Inequalities. A survey” by Gozlan and
Leonard. Informally we can explain using this formula for the entropy why
the statement of Theorem 6 is easier to prove at the level of entropic cost
than trying to prove it directly for the Wasserstein distance. If we take
u = −(V +W ), then

∫
eudµ =

∫
e−V−W eV dγd =

∫
dν < +∞, so if we also

assume that
∫

(−(V +W ))−dρ < +∞ then:

H(ρ|µ) ≥
∫
X

−(V +W )dρ ≥
∫
X

−(V +W )dν = H(ν|µ)

as soon as ρ ≤c ν. Remember that our main goal is to infer that
W2(ρ, µ) ≥W2(ν, µ), so comparison is easier in the entropy level when we
deal with a log concavity condition on the relative density.

The next proposition gives us more information about the optimal
coupling πε for T εH(µ, ν):

Proposition 13. Let µ, ν ∈ P2(Rd) be such that H(µ|γd) < +∞ and
H(ν|γd) < +∞.

(1) There exists a unique coupling πε ∈ C(µ, ν) such that

T εH(µ, ν) = H(πε|Rε) < +∞
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(2) There exist two measurable functions f ε, gε : Rd → R+ such that
log(f ε) ∈ L1(µ), log(gε) ∈ L1(ν) and

πε(dxdy) = f ε(x)gε(y)Rε(dxdy) .

Proof. We endow the set P(Rd × Rd) with the topology of weak
convergence of probability measures. Under this topology, the set C(µ, ν)
is compact and because of Theorem 12-property (b), we know that the
function π 7→ H(π|Rε) is lower semicontinuous, hence it attains its
minimum at some point πε of C(µ, ν). We claim that the coupling
π0 = µ⊗ ν is such that H(π0|Rε) < +∞. In fact, we can apply the chain
rule for the entropy (Theorem 12-property (d)) for α = µ⊗ ν, α1 = µ,
α(dy|x) = ν, β = Rε, β1 = γd, β(dy|x) = rεx. Then

H(µ⊗ ν|Rε) = H(µ|γd) +

∫
Rd

H(ν|rεx)dµ(x)

The first term on the RHS is finite due to our assumption. The second
term equals:∫
Rd

∫
Rd

log(
dν

drεx
)dν(y)

 dµ(x) =

∫
Rd

∫
Rd

log(
dν

dγd
)− log(

drεx
dγd

)dν(y)

 dµ(x) =

=

∫
Rd

H(ν|γd)dµ(x)−
∫
Rd

∫
Rd

log(
drεx
dγd

)dν(y)

 dµ(x)

Again by assumption, the first integral equals H(ν|γd) · 1. For the
finiteness of the second integral we write

rεx(dy) =
e
− ‖y−e−

ε
2 x‖2

(2π(1−e−ε))
d
2

(2π(1− e−ε))
d
2

e
‖x‖2

2

(2π)
d
2

γd(dy)

so when we take the logarithm of the derivative drεx/dγd we will have to
deal with the quantity ‖y − e−

ε
2x‖2. But it holds that

‖y − e−
ε
2x‖2 ≤ K

(
‖y‖2 + e−ε‖x‖2

)
for some constant K, so we can use the fact that the measures µ and ν
have finite second moments and deduce that also the second integral is
finite. Hence the claim is proved. Since the value H(πε|Rε) is the
minimum value of H(·|Rε), we get that H(πε|Rε) < +∞. Uniqueness
follows from the strict convexity of H(·|Rε). For the proof of the assertion
(2), see for example [9, Corollary 3.2]. In the case that matters to us,
namely when µ and ν satisfy our log-convexity/concavity assumptions we
give a self-contained proof in Section 3.
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The following result states that in the setting of Theorem 1, a lot more can
be said about the functions f ε and gε:

Theorem 14. With the same notation as in Proposition 13, let µ be a
probability measure of the form µ(dx) = eV (x)γd(dx) with finite second
moment and ν be a compactly supported probability measure of the form
ν(dx) = e−W (x)γd(dx), with V,W convex and also V bounded from below.
Then there exist a log-convex function f ε : Rd → [1,+∞) and a log-concave
function gε : Rd → (0,+∞) such that the unique optimal coupling
πε ∈ C(µ, ν) has the form πε(dxdy) = f ε(x)gε(y)Rε(dxdy). Furthermore,
log(f ε) ∈ L1(µ), log(gε) ∈ L1(ν) and it holds

T εH(µ, ν) = H(πε|Rε) =

∫
Rd

log(f ε)dµ+

∫
Rd

log(gε)dν .

In the next Section we will prove Theorem 14. Having this in our hands,
we can continue the proof of Theorem 6:

Proof of Theorem 6. We use the duality inequality of the relative entropy,
i.e. if α, β are two probability measures with H(α|β) < +∞, then for any
measurable function h such that

∫
hdα < +∞ and

∫
ehdβ < +∞ it holds

(3) H(α|β) ≥
∫
hdα− log

(∫
ehdβ

)
.

Let η be a probability measure with η ≤c ν. If for every coupling
π ∈ C(µ, η) it holds that H(π|Rε) = +∞, then obviously

+∞ = inf
π∈C(µ,η)

H(π|Rε) = T εH(µ, η) ≥ T εH(µ, ν)

so there is nothing special to prove in that case. Otherwise, pick
π ∈ C(µ, η) with H(π|Rε) < +∞. Applying the duality inequality above to
α = π, β = Rε and h(x, y) = log(f ε(x)gε(y)), we get:

H(π|Rε) ≥
∫

log(f ε(x))+log(gε(y))π(dxdy)−log

(∫
f ε(x)gε(y)dRε(x, y)

)

=

∫
log(f ε(x))µ(dx) +

∫
log(gε(y))η(dy)− log

(∫
dπε(x, y)

)
≥
∫

log(f ε(x))µ(dx) +

∫
log(gε(y))ν(dy) = H(πε|Rε) = T εH(µ, ν)

where the second inequality came from the fact that log(gε) is concave and
η ≤c ν. Minimizing over π we obtain T εH(µ, η) ≥ T εH(µ, ν).
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Before we go on to the next section, we will mention some perspectives.
One could wonder whether this idea of proof could also help us establish a
version of Caffarelli’s theorem in settings other than Rd, for example on
manifolds or free probability, e.g. see [21], [33] and [18] for the Schrödinger
problem in a wider geometric setting. Another question is about non-local
quantitative regularity estimates, such as those in [27,28]. The role of
1-Lipschitz bounds in Theorem 2 is very specific and it is not known if
there is an analogue of that equivalence adapted to other types of
regularity bounds. However, one could possibly prove stable a priori
bounds for ε log(f ε) and then pass to the limit. Of special interest is
whether we can find integrated gradient bounds for non-uniformly convex
potentials, since such bounds can be used to prove Poincaré inequalities
[32,26]. In [12] there is a stability result for Caffarelli’s theorem and one
could focus on improving the quantitative bounds.
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3. PROOFS OF THE MAIN RESULTS

In this section we develop the basic ideas needed to proof Theorem 6.
These ideas were first introduced in a paper by Fortet [15]. Fortet’s work
was revisited in [13].
We will first give some notation. For ε > 0 and for a non-negative
measurable function ψ, let P ε be the function:

P εψ(x) =
1

(2π)d/2
1

(1− e−ε)d/2

∫
Rd

ψ(y + e−ε/2x)e
− ‖y‖2

2(1−e−ε)dy , x ∈ Rd

We claim that {P ε}ε≥0 is the transition semigroup of the solution of the
Ornstein-Uhlenbeck stochastic differential equation discussed in section
2.1, namely it holds that:

P εψ(x) = E[ψ(Zε)|Z0 = x] , x ∈ Rd

Indeed, by the disintegration theorem (see for example Theorem 5.4 in [24]
) it holds that

E[ψ(Zε)|Z0 = x] =

∫
Rd

ψ(y)µ(x, dy)

where for fixed x, we have the probability µ(x, ·) = P[Zε ∈ ·|Z0 = x]. Now,
since we know the joint density of the random vector (Z0, Zε) and the
density of Z0 we can compute explicitly the measure µ(x,B):

µ(x,B) = P[Zε ∈ B|Z0 = x] =

∫
B

fZ0,Zε(x, y)

fZ0(x)
dy =

=

∫
B

e−
‖x‖2

2

(2π)d/2
e
−‖y−xe

−ε/2‖2

2(1−e−ε)

(2π(1−e−ε))d/2

e−
‖x‖2

2

(2π)d/2

dy =

∫
B

e
− ‖y−xe

−ε/2‖2

2(1−e−ε)

(2π(1− e−ε))d/2
dy

which means that

E[ψ(Zε)|Z0 = x] =

∫
Rd

ψ(y)
e
− ‖y−xe

−ε/2‖2

2(1−e−ε)

(2π(1− e−ε))d/2
dy

as desired.
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Now suppose that f ε, gε are measurable non-negative functions such that
πε(dxdy) = f ε(x)gε(y)Rε(dxdy) belongs to C(µ, ν). Writing down the
marginal conditions, we can see that f ε and gε are related to each other by
the identities:

(4) f ε(x)P εgε(x) = eV (x) and gε(y)P εf ε(y) = e−W (y) .

In fact, let us try to prove the first one (a similar argument can be applied
to the second)

µ(A) = πε(A× Rd) =

∫
A×Rd

f ε(x)gε(y)dRε(x, y) =

=

∫
A×Rd

f ε(x)gε(y)γd(x)rεx(y)d(λd × λd)(x, y) =

=

∫
A

f ε(x)
e−
‖x‖2

2

(2π)d/2

∫
Rd

gε(y)
e
− ‖y−xe

−ε/2‖2

2(1−e−ε)

(2π(1− e−ε))d/2
dλd(y)dλd(x) .

But also

µ(A) =

∫
A
eV (x) e

− ‖x‖
2

2

(2π)d/2
dλd(x)

hence
eV (x) = f ε(x)P εgε(x) .

These relations suggest to define the functional Φε as follows: for every
measurable function h : Rd → R ∪ {+∞}

Φε(h) = V − log

(
P ε
(
e−W

1

P ε(eh)

))
.

This means that a pair (f ε, gε) satisfies (4) if and only if gε = e−W 1
P ε(fε)

and f ε = eh
ε

with hε being a fixed point of Φ, i.e.

hε = Φ(hε) .

We could find the unknown function hε as a limit when n→ +∞ of a
sequence {hn}n satisfying the recursion

(5) hn+1 = Φε(hn)

and some initial condition h0. The above recursion is at the core of
Sinkhorn’s algorithm to approximate numerically the optimal transport via
entropic regularization, see also [1,10].
The next Lemma assures us that if we begin with some initial convex
function h0, then hε will be also convex:
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Lemma 15. If h : Rd → R ∪ {+∞} is convex, then Φε(h) is also convex.

Proof. Step 1: If f is log-convex, then P ε(f) is log-convex. To prove this
statement, we must check that for every x1, x2 ∈ Rd and t ∈ [0, 1]

P ε(f)(tx1 + (1− t)x2) ≤ [P ε(f)(x1)]t[P ε(f)(x2)]1−t .

For simplicity, write M(y) = 1
C e
− ‖y‖2

2(1−e−ε) where C = (2π)d/2(1− e−ε)d/2.
Then: ∫

Rd

f [y + e−ε/2(tx1 + (1− tx2))]eM(y)dy =

=

∫
Rd

f [t(y + e−ε/2x1) + (1− t)(y + e−ε/2x2)]eM(y)dy ≤

≤
∫
Rd

[f(y + e−ε/2x1)]t[f(y + e−ε/2x2)]1−teM(y)dy =

=

∫
Rd

[f(y + e−ε/2x1)eM(y)]t[f(y + e−ε/2x2)eM(y)]1−tdy

where the first inequality came from the log-convexity of f . Now we can
apply Hölder’s inequality with p = 1

1−t and q = 1
t and get that the last

expression is smaller or equal to∫
Rd

{
[f(y + e−ε/2x1)eM(y)]t

}q
dy

1/q

·

·

∫
Rd

{
[f(y + e−ε/2x2)eM(y)]1−t

}p
dy

1/p

which of course equals

[P ε(f)(x1)]t · [P ε(f)(x2)]1−t

Step 2: If ψ is log-concave, then P ε(ψ) is log-concave. This follows from
Prekopa’s Theorem (see [34]), which states that the convolution of two
log-concave functions is again log-concave. We just need to show that P ε is
in fact a convolution operator. To this end, we use the change of variables
u = −y · eε/2. Then

P εψ(x) =
(−1)d

(2π)d/2
(e−ε/2)d

(1− e−ε)d/2

∫
Rd

ψ(e−ε/2(x− u))e
− ‖u‖

2·e−ε

2(1−e−ε)du
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So if we let ψ̃(z) = ψ(e−ε/2z) and E(z) = e
− ‖z‖

2·e−ε

2(1−e−ε) , then

P εψ(x) = C · (ψ̃ ∗ E)(x), where C = (−1)d

(2π)d/2
(e−ε/2)d

(1−e−ε)d/2 We deduce than if ψ

is log-concave, then also ψ̃ is log-concave and since of course E is
log-concave we get that P εψ is log-concave.

Remark 16. A good question is if we can use this scheme of proof directly
at the level of the Kantorovich dual optimal transport problem, rather than
on the regularized version. The answer might be no, as in the limit while
the minimizers in the dual formulation of entropic transport , suitably
rescaled, converge to the Kantorovich potentials, the fixed point problem
becomes degenerate in the limit and only selects c-convex functions (here
the cost function c is just the quadratic distance), and we lose uniqueness.
This is why Sinkhorn’s algorithm approximates numerically the regularized
problem (see [10]).

The next Lemma presents two other very useful properties of the operators
Φε and P ε:

Lemma 17.

(1) The operator P ε maps L2(γd) to L2(γd) and it is symmetric.

(2) The operator Φε is monotone in the sense that if h ≤ k then
Φε(h) ≤ Φε(k).

(3) For any measurable h : Rd → R, it holds∫
exp(h(x)− Φε(h)(x))dµ(x) ≤ 1

with equality if h is bounded from above. (Here, the measure µ is the
one of Theorem 1)

Proof. (2) Let h ≤ k. Then

eh ≤ ek =⇒ 0 < P ε(eh) ≤ P ε(ek) =⇒ 0 <
e−W

P ε(ek)
≤ e−W

P ε(eh)
=⇒

=⇒ 0 < P ε
(

e−W

P ε(ek)

)
≤ P ε

(
e−W

P ε(eh)

)
=⇒

=⇒ log

(
P ε
(

e−W

P ε(ek)

))
≤ log

(
P ε
(

e−W

P ε(eh)

))
=⇒

=⇒ V − log

(
P ε
(

e−W

P ε(eh)

))
≤ V − log

(
P ε
(

e−W

P ε(ek)

))
=⇒
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=⇒ Φε(eh) ≤ Φε(ek).

(1) Take a function h ∈ L2(γd). Following the notation of Lemma 15, the

functions h̃(z) = h(e−ε/2z) and E(z) = e
− ‖z‖

2·e−ε

2(1−e−ε) are also in L2(γd).
Hölder’s inequality gives us that the convolution h̃ ∗ E is a bounded
function, which means that |P εh(x)| = C · |(h̃ ∗ E)(x)| ≤M , for some
constant M. Hence∫

Rd

|P εh(x)|2dγd(x) ≤M2γd(Rd) = M2 < +∞

so P ε : L2(γd)→ L2(γd).
For the symmetry property, we must check that

〈P εψ, g〉L2(γd) = 〈ψ, P εg〉L2(γd) .

Following the arguments of Lemma 15, denote by K = 1
(2π)d/2

1
(1−e−ε)d/2 .

〈P εψ, g〉 = K

∫
Rd

g(x)

∫
Rd

ψ̃(u) exp

{
−‖x− u‖

2e−ε

2(1− e−ε)

}
(−1)de−

dε
2 du dγd(x)

= K

∫
Rd

ψ̃(u)

∫
Rd

g(x) exp

{
−‖x− u‖

2e−ε

2(1− e−ε)

}
(−1)de−

dε
2 dγd(x) du

= K

∫
Rd

ψ(e−ε/2u)

∫
Rd

g(x) exp

{
−‖x− u‖

2e−ε

2(1− e−ε)
− ‖x‖

2

2

}
(−1)de−

dε
2 dx du

= K

∫
Rd

ψ(ξ)(−1)d
∫
Rd

g(x) exp

{
−‖x− e

ε/2ξ‖2e−ε

2(1− e−ε)
− ‖x‖

2

2

}
dx dξ

= K

∫
Rd

ψ(ξ)(−1)d
∫
Rd

g(x) exp

{
−‖x− e

ε/2ξ‖2e−ε

2(1− e−ε)
− ‖x‖

2

2
+
‖ξ‖2

2

}
dxdγd(ξ)

Similarly,

〈ψ, P εg〉 = K

∫
Rd

ψ(ξ)

∫
Rd

g̃(x) exp

{
−‖ξ − x‖

2e−ε

2(1− e−ε)

}
(−1)de−

dε
2 dx dγd(ξ)

= K

∫
Rd

ψ(ξ)

∫
Rd

g(e−ε/2x) exp

{
−‖ξ − x‖

2e−ε

2(1− e−ε)

}
(−1)de−

dε
2 dx dγd(ξ)

= K

∫
Rd

ψ(ξ)(−1)d
∫
Rd

g(y) exp

{
−‖ξ − e

ε/2y‖2e−ε

2(1− e−ε)

}
dy dγd(ξ)
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and by noticing that

−‖ξ − e
ε/2x‖2e−ε

2(1− e−ε)
= −‖x− e

ε/2ξ‖2e−ε

2(1− e−ε)
− ‖x‖

2

2
+
‖ξ‖2

2

we get the desired symmetry property.
(3) Fix some positive number α and some measurable h : Rd → R. By the
proof of property (1), we see that we used Fubini’s theorem only when we
computed the quantity 〈P εψ, g〉L2(γd), which means that for the symmetry
property it suffices to have that 〈P εψ, g〉L2(γd) < +∞. Since always

P ε(eh∧α)

P ε(eh)
≤ 1

we get that ∫
Rd

P ε(eh∧α)
e−W

P ε(eh)
dγd ≤ 1

so, by applying the symmetry property we get:∫
Rd

P ε(eh∧α)
e−W

P ε(eh)
dγd =

∫
Rd

eh∧α
(
P ε

e−W

P ε(eh)

)
dγd =

∫
Rd

eh∧α−Φε(h)dµ .

The last quantity goes to
∫
eh−Φε(h)dµ, as α→ +∞, so using the above

inequality we get that
∫
eh−Φε(h)dµ ≤ 1. In the case where h is a bounded

function, we get that

P ε(eh∧α)(x)
α→+∞−−−−−→ P ε(eh)(x) , ∀x (by dominated convergence)

and

lim
α→+∞

∫
Rd

P ε(eh∧α)
e−W

P ε(eh)
dγd =

∫
Rd

e−Wdγd = 1

as desired.

The existence of a coupling of the desired form can be established under
more general conditions on µ and ν:

Theorem 18. Let µ a probability measure of the form
µ(dx) = eV (x)γd(dx), with V : Rd → R convex and bounded from below, and
let ν a probability measure of the form ν(dx) = e−W (x)γd(dx), with
W : Rd → R ∪ {+∞} convex such that the set {W < −m} is bounded, for
m = infx{V (x)} ≤ 0. Then there exist a log-convex function
f ε : Rd → [1,+∞) and a log-concave function gε : Rd → (0,+∞) such that
the measure πε defined by πε(dxdy) = f ε(x)gε(y)Rε(dxdy) belongs to
C(µ, ν).
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Proof of Theorem 18. Let us show that there exists a convex function
h̄ : Rd → R+ such that Φε(h̄) = h̄. Then, by defining f ε = eh̄ and
gε = e−W /P ε(f ε), we see that f ε is log-convex, gε is log-concave (use the
fact that P ε preserves log-convexity) and satisfy relations (4). We define
inductively the sequence {hn}n≥0 as follows: h0 = 0 and if n ≥ 0

(6) hn+1 = [Φε(hn)]+ ∧ n .

It is clear that hn ∈ [0, n− 1]. We show inductively that hn is a
non-decreasing sequence. In fact, h1 = 0 = h0, so in particular h0 ≤ h1. If
hn ≤ hn+1 then using that Φε is monotone (Lemma 17, property (2)) we
get that:

hn+2 = [Φε(hn+1)]+∧(n+1) ≥ [Φε(hn)]+∧(n+1) ≥ [Φε(hn)]+∧(n) = hn+1

We denote by h∞ the pointwise limit of hn as n→ +∞, which takes values
in R+ ∪ {+∞}. We will prove that h∞ satisfies the following fixed point
equation:

(7) h∞ = [Φε(h∞)]+

In fact, by monotone convergence we see that P ε(ehn)(x)→ P ε(eh∞)(x)
We want to apply dominated convergence to show that

(8) P ε
(
e−W

1

P ε(ehn)

)
n→∞−−−→ P ε

(
e−W

1

P ε(eh∞)

)
.

For fixed x, we write

P ε
(
e−W

1

P ε(ehn)

)
(x) =

1

C

∫
Rd

e−W (y+xe−ε/2)

P ε(ehn)(y + xe−ε/2)
e
− ‖y‖2

2(1−e−ε)dy

and let f
(x)
n (y) be the function inside the integral. Since the sequence {hn}

is non-decreasing and bounded from below by 0, it follows that for all x:

. . .
1

P ε(ehn)(x)
≤ · · · ≤ 1

P ε(1)
=

1

C
∫
e
− ‖y‖2

2(1−e−ε)dy

= K <∞

Now, suppose that y ∈ Rd is such that y+ xe−ε/2 ∈ {z ∈ Rd : W (z) < −m}
By assumption, the last set is bounded, so we can find some radius r1 such
that y + xe−ε/2 ∈ B(0, r1). Since W is lower-semicontinuous (by
convention, all convex functions we are dealing with are
lower-semicontinuous), it attains a minimum on the set B(0, r1), hence

−W (y + xe−ε/2) ≤M, for −M = min{W (z) : z ∈ B(0, r1)}
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and we deduce that
e−W (y+xe−ε/2) ≤ eM

in that case.
If y is such that y + xe−ε/2 /∈ {z ∈ Rd : W (z) < −m}, then trivially we get
that

e−W (y+xe−ε/2) ≤ em .

Finally, by taking Λ = max{eM , em}, we get that

e−W (y+xe−ε/2) ≤ Λ, ∀y ∈ Rd

and

|f (x)
n (y)| ≤ Λ ·K · e−

‖y‖2

2(1−e−ε) ∈ L1(Rd)

so the dominated convergence theorem can be applied.
The relation (8) gives us that

[Φε(hn)(x)]+
n→∞−−−→ [Φε(h∞)(x)]+

hence
[Φε(hn)(x)]+ ∧ n n→∞−−−→ [Φε(h∞)(x)]+ .

But [Φε(hn)(x)]+ ∧ n = hn+1(x)→ h∞(x), so we deduce (7).
Now we will prove that h∞ is in fact a fixed point of Φε. This will follow if
we prove that Φε(h∞)(x) < +∞ for all x. Indeed, let’s consider this
statement as true for now. Because of (7), we get also that h∞(x) < +∞
for all x, so we can apply Lemma 17-property (3) to see that∫

eh∞−Φε(h∞)dµ ≤ 1

Again by (7) it holds that h∞ ≥ Φε(h∞), so easily we get that
h∞ = Φε(h∞) µ-almost everywhere, so this holds also λd-almost
everywhere (because µ and λd are mutually absolutely continuous). Using
the same arguments as before, one can also find that Φε(h∞) is continuous,
so, by (7), also h∞ is continuous. This means that the equality
h∞ = Φε(h∞) holds in fact everywhere. To finish the proof that h∞ is a
fixed point of Φε, it remains to prove that Φε(h∞)(x) < +∞ for all x. By
contradiction, assume there is a point x0 ∈ Rd such that
Φε(h∞)(x0) = +∞. Using the arguments above, we see that

e−W (y+x0e−ε/2) ≤ Λ

so if Φε(h∞)(x0) = +∞, then necessarily P ε(eh∞) = +∞ almost
everywhere, which in turn implies that Φε(h∞) ≡ +∞. Because
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h∞ ≥ Φε(h∞), we conclude also that h∞ ≡ +∞. Now let us show that
there exists n0 such that for all n ≥ n0

(9) inf
x∈Rd

Φε(hn)(x) ≥ 0 .

For any x ∈ Rd, we write (denote by C = (2π)d/2(1− e−ε)d/2 and
m = infx V (x) ):

P ε
(
e−W

1

P ε(ehn)

)
(x) =

1

C

∫
Rd

e−W (y) 1

P ε(ehn)
(y)e

− ‖y−xe
−ε/2‖2

2(1−e−ε) dy

=
1

C

∫
{W<−m}

e−W (y) 1

P ε(ehn)
(y)e

− ‖y−xe
−ε/2‖2

2(1−e−ε) dy

+
1

C

∫
{W≥−m}

e−W (y) 1

P ε(ehn)
(y)e

− ‖y−xe
−ε/2‖2

2(1−e−ε) dy

≤ 1

C

∫
{W<−m}

e
− ‖y−xe

−ε/2‖2

2(1−e−ε) dy sup
z∈{W≤−m}

e−W (z) 1

P ε(ehn)
(z)

+
em

C

∫
{W≥−m}

e
− ‖y−xe

−ε/2‖2

2(1−e−ε) dy

where we used the fact that P ε(ehn) ≥ 1, since hn ≥ 0. The sequence of
functions is a non-increasing of continuous functions converging pointwise
to 0 (for the continuity, write

P ε(ehn)(x) =
1

C

∫
(ehn)(y)e

− ‖y−xe
−ε/2‖2

2(1−e−ε) dy

and use that ehn ≤ en−1 together with dominated convergence). According
to Dini’s theorem, the convergence is uniform on the compact set
K := {W ≤ −m}. Since W is by convention lower-semicontinuous, it is
bounded from below on K, therefore, there exists some n0 such that
supz∈K e

−W (z) 1
P ε(ehn )

(z) ≤ em , for all n ≥ n0. Plugging this into the

above inequality, we get that

P ε
(
e−W

1

P ε(ehn)

)
(x) ≤ em .

Hence, for all n ≥ n0

inf
x∈Rd

Φε(hn)(x) = inf
x∈Rd

{
V (x)− log

(
P ε
(
e−W

1

P ε(ehn)

)
(x)

)}
≥ 0
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which is inequality (9).
Choose n0 such that Φε(hn0) ≥ 0. Then, hn0+1 ≤ Φε(hn0) ≤ Φε(hn0+1) and
since hn0+1 is bounded, again Lemma 17-property (3) gives us that∫
ehn0+1−Φε(hn0+1)dµ = 1, implying that hn0+1 = Φε(hn0+1) everywhere

(again we used continuity of Φε(hn0+1)). Now similarly we see that

hn0+2
(9)
= Φε(hn0+1) ∧ (n0 + 1) = hn0+1 ∧ (n0 + 1) = hn0+1

therefore, inductively, hn ≡ hn0+1 for all n ≥ n0 + 1. This implies that
h∞ ≡ hn0+1 ∈ [0, n0] , which is a contradiction. Thus Φε(h∞)(x) < +∞
everywhere and the claim is proved.
The function h∞ which satisfies the fixed point equation is in general not
convex. In order to produce a convex function, let k0 = h∗∗∞ be the Fenchel
transform of h∞, that is k0(x) = supy∈Rd{〈x, y〉 − h∗∞(y)} and
h∗∞(z) = supt∈Rd{〈t, z〉 − h∞(t)}. By definition, k0 ≤ h∞ and since h∞ ≥ 0
and h∗∗∞ = sup{fα : fα is affine and fα ≤ h∞} (see [35], Theorem 12.2 and
Corollary 12.1.1), we see that k0 ≥ 0. Now define inductively {kn}n≥1 by
kn+1 = max{Φε(kn), k0}. According to Lemma 15, the operator Φε

preserves convexity, hence kn is convex for all n. The sequence kn is
non-decreasing, and since Φε is monotone, it holds that kn ≤ h∞ for all n.
This means that kn converges pointwise to a limit k∞, which, as a
pointwise limit of convex functions is also convex and since kn ≤ h∞ <∞,
it is also finite valued. Reasoning as above, we see that
k∞ = max{Φε(k∞), k0} and particularly, k∞ ≥ Φε(k∞). Using again
Lemma 17-property (3), necessarily it must hold that k∞ = Φε(k∞), i.e.
k∞ is a fixed point of Φε.

Proof of Theorem 14. We wish to apply Theorem 18, and so we must
check that the set {W < −m} is bounded, where m = infx{V (x)}. Indeed,
since dν

dγd
= e−W we have the following inclusions

{W < −m} ⊆ {W = +∞}c ⊆ supp(ν)

and the latter set is bounded, since it is a compact subset of Rd. Now,
according to Theorem 18, there exists a coupling

πε(dxdy) = f ε(x)gε(y)Rε(dxdy) ∈ C(µ, ν)

such that f ε is log-convex and gε is log-concave. It remains to prove the
optimality of this coupling for T εH(µ, ν). We have that
P ε(f ε)(y)gε(y) = e−W (y), so log gε(y) = −W (y)− logP ε(f ε)(y). Since P ε

preserves log-convexity, the function logP ε(f ε) is convex, hence continuous
and bounded on the compact set supp(ν). Also, since
{W < +∞} ⊆ supp(ν), we get that the convex function W is real valued
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inside the support of ν, hence also bounded there, which gives the
integrability of log gε with respect to ν. Also, since log f ε ≥ 0, the integral∫

log f εdµ is well defined in [0,+∞]. Choose a coupling π ∈ C(µ, ν) such
that H(π|Rε) < +∞ (for example choose π = µ⊗ ν). Using inequality (3)
with α = π, β = Rε, h(x, y) = log f ε(x) + log gε(y) we get:

+∞ > H(π|Rε) ≥
∫

Rd×Rd

log f ε(x) + log gε(y)π(dxdy) =

=

∫
Rd

log f ε(x)dµ(x) +

∫
Rd

log gε(y)dν(y)

which proves also the integrability of log f ε with respect to µ. We compute
the entropy H(πε|Rε):

H(πε|Rε) =

∫
log

(
dπε

dRε

)
dπε =

∫
log f ε(x)dµ(x) +

∫
log gε(y)dν(y)

which proves the optimality of πε.

We will now state and prove two technical Lemmas that were used in the
proof of Theorem 1 (see page 11).

Proof of Lemma 5. Since µ ∈ P2(Rd), it suffices to show that
H(µ|γd) < +∞, which is the same as proving that V is µ-integrable. Now,
V is a convex function, hence it is bounded from below by some affine
function, namely there exist a, b ∈ R and w ∈ Rd such that

V (x) ≥ a · 〈x,w〉+ b, ∀x ∈ Rd .

This yields that the function [V ]− = max{−V, 0} is µ-integrable. In fact:∫
[V ]−dµ =

∫
{V≥0}

[V ]−dµ+

∫
{V <0}

[V ]−dµ = 0 +

∫
{V <0}

−V dµ ≤

≤
∫

{V <0}

|a| · 〈x,w〉+ |b| dµ(x) ≤ |a| · ‖w‖
∫

{V <0}

(‖x‖2 + 1)dµ(x) + |b|

and the last expression is finite since µ ∈ P2(Rd). Furthermore, since the
convex function V is such that

∫
eV (x)dγd(dx) = 1, we can use Lemma 2.1

of [19] to deduce that [V ]+(x) ≤ ‖x‖
2

2 , for all x, hence [V ]+ is also
µ-integrable. Similarly, to check that ν has finite Shannon entropy, we
must check that W is ν-integrable. Reasoning as above, [W ]− is
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ν-integrable because W is bounded from below by some affine function.
Also,∫

[W ]+dν =

∫
max{W, 0} · e−Wdγd =

∫
max{−(−W ) · e−W , 0}dγd =

=

∫
[log(e−W )e−W ]−dγd ≤

1

e

where the last inequality came from the fact that g(s) = s log(s) ≥ −1
e , for

all s.

The next Lemma was also used to prove Theorem 1:

Lemma 19. Let ν(dx) = e−W (x)γd(dx) with W : Rd → R ∪ {+∞} convex
and η ≤c ν. Suppose also that ν has compact support. Define, for all
θ ∈ (0, π/2),

νθ = Law((cos θ)X + (sin θ)Z) and ηθ = Law((cos θ)Y + (sin θ)Z)

where X ∼ ν, Y ∼ η and Z is independent of X,Y and the law α of Z is
given by α(dz) = 1

C IBγd(dz) , where B is the Euclidean unit ball and C an
appropriate normalizing constant. Then, for all θ ∈ (0, π/2):

(1) the probability νθ has density of the form e−Wθ with respect to γd,
with Wθ : Rd → R ∪ {+∞} convex

(2) the probability measures νθ and ηθ are compactly supported

(3) it holds ηθ ≤c νθ

(4) ηθ has finite Shannon entropy

(5) W2(µ, νθ)
θ→0−−−→W2(µ, ν0) and W2(µ, ηθ)

θ→0−−−→W2(µ, η0)

Proof. (1) We claim that the density fθ of νθ with respect to the Lebesgue
measure is given by

fθ(x) =
1

C ′

∫
B

e−W (
x−(sin θ)y

cos θ
)e−

‖x−(sin θ)y‖2

2 cos2 θ e−
‖y‖2

2 dy

where C ′ = C(cos θ)d(2π)d. Indeed, for example if we restrict ourselves in
the case d = 1, we compute the law of (cos θ)X + (sin θ)Z:

P{ω : (cos θ)X(ω) + (sin θ)Z(ω) ≤ a} =

=

1∫
−1

a−(sin θ)t
cos θ∫
−∞

1

C

1

2π
e−W (s)e−

s2

2 e−
t2

2 dλ(s)dλ(t) =
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=

1∫
−1

a∫
−∞

1

C · cos θ

1

2π
e−W (

u−(sin θ)t
cos θ

)e−
(u−(sin θ)t)2

2 cos2 θ e−
t2

2 dλ(u)dλ(t) =

=

a∫
−∞

1

C · cos θ

1

2π

1∫
−1

e−W (
u−(sin θ)t

cos θ
)e−

(u−(sin θ)t)2

2 cos2 θ e−
t2

2 dλ(t)dλ(u)

A simple calculation now shows that

e
‖x‖2

2 · fθ(x) =
1

C ′

∫
B

e−W (
x−(sin θ)y

cos θ
)e−

‖(sin θ)x−y‖2

2 cos2 θ dy

The function inside the integral is log-concave (as a function of
(x, y) ∈ Rd × Rd) so according to Prekopa’s Theorem (see [34], Theorem
6), since B is a convex set, we deduce that also the right hand side is

log-concave. Now choose log(e
‖x‖2

2 · fθ(x)) = −Wθ and the item (1) is
proved.
(2) We have that

supp[Law((cos θ)X)] = cos θ · supp[ν] ⊆ B̄(0, r)

for some appropriate radius r > 0, because supp[ν] is compact. Similarly

supp[Law((sin θ)Z)] = sin θ · supp[α] ⊆ B̄(0, sin θ)

Since the law νθ is just the convolution of the laws of (cos θ)X and
(sin θ)Z, it holds that this law is supported on the Minkowski sum of the
the above two supports, which means that

supp(νθ) ⊆ B̄(0, r + sin θ)

so νθ is compactly supported. A similar argument shows that ηθ is
compactly supported, but first we must check that the support of η is also
compact. Take the function

I(x) =

{
0, x ∈ B̄(0, r)

+∞, x /∈ B̄(0, r) .

This is a clearly a convex and nonnegative function, so since η ≤c ν we get
that

0 ≤
∫
I(x)dη(x) ≤

∫
I(x)dν(x) = 0

From this we deduce the implication

x /∈ B̄(0, r) =⇒ x /∈ supp(η)
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or equivalently
supp(η) ⊆ B̄(0, r) .

As before we prove that the support of ηθ is compact.
(3) It suffices to prove that if A,B,C are random variables with C being
independent from A and B and Law(A)≤cLaw(B), then
Law(A+C)≤cLaw(B+C). Take an arbitrary convex function f : Rd → R.
Then: ∫

Rd

f(x)d(α ∗ c)(x) =

∫
Rd

∫
Rd

f(x+ y)dα(x)dc(y) ≤

≤
∫
Rd

∫
Rd

f(x+ y)dβ(x)dc(y) =

∫
Rd

f(x)d(β ∗ c)(x)

which proves the claim. We used above that the function x 7→ f(x+ y) is
convex for every fixed y.
(4) As before, we can compute the distribution of ((cos θ)Y + (sin θ)Z), ηθ,
and see that its density with respect to the Lebesgue measure equals:

gθ(x) =
1

K

x+sin θ
cos θ∫

x−sin θ
cos θ

e−
‖(cos θ)y−x‖2

2 sin2 θ dη(y)

for some properly chosen constant K. This means that gθ ≤ 1
K . Moreover,

since s · log(s) ≥ −1
e for every s, we deduce that gθ log(gθ) ≥ −1

e . Item (2)
gives that supp(ηθ) is compact, hence:

H(ηθ|λd) =

∫
supp(ηθ)

gθ log(gθ)dλ
d < +∞ .

(5) We will prove that W2(µ, νθ)
θ→0−−−→W2(µ, ν) by showing that νθ

w−−−→
θ→0

ν

and
∫
‖y‖2dνθ(y)

θ→0−−−→
∫
‖y‖2dν(y). To show the first convergence, we can

use Scheffé lemma and check that we have almost everywhere pointwise

convergence of the respective densities, i.e. fνθ(x)
θ→0−−−→ fν(x) for λd-almost

all x. Let us fix a point x ∈ Rd which does not belong to the boundary of
the domain of W , ∂(Dom(W )), where Dom(W ) = {x : W (x) < +∞}. The
set ∂(Dom(W )) is a set of zero Lebesgue measure (it is the boundary of a
convex set). By the proof of item (1), the density fνθ equals:

fνθ(x) =
1

C ′

∫
B

e−W (
x−(sin θ)y

cos θ
)e−

‖x−(sin θ)y‖2

2 cos2 θ e−
‖y‖2

2 dy

Since y ∈ B, we see that x−(sin θ)y
cos θ ∈ x−(sin θ)·B

cos θ . For small enough θ (such
that for example cos θ > 1/2), we can find a radius R such that the ball
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B̄(2x,R) contains all the points x−(sin θ)·B
cos θ . Since W is lower

semicontinuous, it attains a minimum l on the ball B̄(2x,R), which means
that

sup
θ∈(0,π/4)

sup
y∈B

{
e−W (

x−(sin θ)y
cos θ

)
}
≤ e−l .

Similarly, the function

e−
‖x−(sin θ)y‖2

2 cos2 θ e−
‖y‖2

2

is also bounded uniformly for y ∈ B, and all these facts yield that:

sup
θ∈(0,π/4)

sup
y∈B

{
e−W (

x−(sin θ)y
cos θ

)e−
‖x−(sin θ)y‖2

2 cos2 θ e−
‖y‖2

2

}
≤M

for some constant M . Moreover we claim that the following convergence
holds for all y ∈ B:

1

C ′
e−W (

x−(sin θ)y
cos θ

)e−
‖x−(sin θ)y‖2

2 cos2 θ e−
‖y‖2

2
θ→0+−−−−→ 1

C(2π)d
e−W (x)e−

‖x‖2+‖y‖2
2

where

C =
1

(2π)d/2

∫
B

e−
‖z‖2
2 dz

In fact, the only thing we must check is that the amount W (x−(sin θ)y
cos θ )

converges to W (x), as θ → 0, (remember, we assumed that
x /∈ ∂(Dom(W )). If our point x does not belong to Dom(W ), then
W (x) = +∞, hence by the lower semicontinuity we get immediately that

lim inf
θ

W (
x− (sin θ)y

cos θ
) ≥W (x) = +∞

If the point x belongs to Dom(W ), then we write
Dom(W ) = ∂(Dom(W )) ∪Dom(W )◦. Since the points that belong to the
interior of Dom(W ) are always continuity points of W , again the
convergence holds true if x ∈ Dom◦. The set ∂(Dom(W )), as we said
before, is a set of zero Lebesgue measure, hence the above convergence
holds for λd-almost every x ∈ Rd.
Now the dominated convergence theorem yields that

lim
θ→0+

∫
y∈B

1

C ′
e−W (

x−(sin θ)y
cos θ

)e−
‖x−(sin θ)y‖2

2 cos2 θ e−
‖y‖2

2 dy =
1

(2π)d/2
e−W (x)e−

‖x‖2
2

and the right hand side is of course the density of ν with respect to the

Lebesgue measure. Hence, fνθ(x)
θ→0−−−→ fν(x) for λd-almost all x.

To prove the other claim, we note that

‖y‖2fνθ(y)
θ→0−−−→ ‖y‖2fν(y)
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for almost every y. Also, the integrals
∫
‖y‖2fνθ(y)dy can be restricted to

the compact supports of νθ, which, because of item (2), are all subsets of
B̄(0, 2r + 1). If we denote by Gθ(x, y) the function

‖y‖2 1

C ′
e−W (

y−(sin θ)z
cos θ

)e−
‖y−(sin θ)z‖2

2 cos2 θ e−
‖z‖2
2

then it holds that

sup
θ∈(0,π/4)

sup
(y,z)∈B̄(0,2r+1)×B

Gθ(z, y) = A < +∞

and of course ∫
B̄(0,2r+1)

∫
B

A dzdy < +∞

so the dominated convergence theorem yields that

lim
θ→0

∫
B̄(0,2r+1)

∫
B

Gθ(x, y) dxdy =

=

∫
B̄(0,2r+1)

∫
B

‖y‖2 1

C(2π)d
e−W (y)e−

‖y‖2
2 e−

‖x‖2
2 dxdy =

=

∫
B̄(0,2r+1)

‖y‖2e−W (y) 1

(2π)d/2
e−
‖y‖2

2 dy =

∫
supp(ν)

‖y‖2fν(y)dy

which is the desired result. All the above give us the Wasserstein
convergence

W2(µ, νθ)
θ→0−−−→W2(µ, ν)

and the same reasoning can be applied to show that

W2(µ, ηθ)
θ→0−−−→W2(µ, η)
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