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Abstract

Nonsmoothness plays a critical role in many optimization problems. Sometimes it is
put into the model purposely to induce desirable properties in the solution, most notably
sparsity, as it is the case with the composite models we study in the first half of this thesis.
Although, the used nonsmooth functions tend to be simple, difficulty arises through the
composition with another operator. We study such problems in a classical convex setting
by proposing a randomized method and testing it on numerical experiments in image
denoising and deblurring as well as completely positive matrix factorization. Additionally
we propose a more sophisticated nonconvex formulation together with a novel method
including convergence analysis for this setting. In either case, our approach is heavily
inspired by a smoothing strategy via the Moreau envelope.

Other times the nonsmoothness originates naturally, for example due to the fact that
the objective is derived from an auxiliary maximization problem. We study such mini-
maz (a.k.a. saddle point) problems in the second half in a convex and nonconvex setting.
While these types of problems also arise from two-player zero-sum games we emphasize
applications in machine learning, in particular generative adversarial networks (GANs).
In the convex setting we propose a modification of Tseng’s method while for the noncon-
vex problem we prove novel convergence rates for the well established gradient descent
ascent method (GDA).

In general we focus on full splitting methods which aim to tackle the nonsmoothness
via the prozimal operator and avoid convoluted inner loops or the need for subproblems.
Similarly, only first-order information and preferably even only stochastic estimators
of the involved gradients. These methods do not always achieve the best theoretical
convergence rates but are nevertheless highly popular due to their simplicity and because
they also tend to be very competitive in practice. For all presented methods we provide
a rigorous analysis in terms of convergence rates.
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Zusammenfassung

Nichtdifferenzierbarkeit spielt eine kritische Rolle in vielen verschiedenen Optimierungs-
problemen. Manchmal wird sie kiinstlich hinzugefiigt um wiinschenswerte Eigenschaften
in der Losung zu erzeugen. Dies ist der Fall bei den Problemen denen wir uns in der
ersten Hélfte dieser Arbeit widmen. Obwohl die involvierten nichtglatten Funktionen ty-
pischerweise simpel sind, entsteht die Schwierigkeit dadurch, dass sie mit einem anderen
Operator hintereinander ausgefiithrt werden. Wir betrachten solche Probleme in einer
klassischen konvexen Formulierung und stellen ein neues randomisiertes Verfahren vor,
welches wir in numerischen Experimenten in der Bildverarbeitung und Matrixzerlegung
testen. Zusétzlich stellen wir eine komplexere nichtkonvexe Version desselben Problems,
gemeinsam mit einem neuen Verfahren, vor.

In anderen Féllen hingegen, entsteht Nichtdifferenzierbarkeit ganz natirlich, beispiels-
weise dadurch, dass die Zielfunktion einem inneren Maximierungsproblem entstammt.
Wir behandeln solche Sattelpunktprobleme in der zweiten Hélfte der Arbeit. Solche For-
mulierungen haben ihren Ursprung, unter anderem in Nullsummenspielen zweier kon-
kurrierender Parteien. Wir hingegen legen besonderes Augenmerk auf Anwendungen im
Maschinellen Lernen, insbesondere sogenannte generative adversarial networks (GANs).
Im konvexen Fall stellen wir eine Modifikation von dem bekannten Verfahren von Tseng
vor, wiahrend wir im Nichtkonvexen ein simples Gradientenverfahren analysieren.

Im Allgemeinen konzentrieren wir uns auf Splitting-Methoden, die sich dadurch aus-
zeichnen, dass die Nichtglattheit mittels des Proximalpunktoperators behandelt wird und
aufwendige Subroutinen vermieden werden. Diese Verfahren erreichen zwar nicht immer
die besten theoretischen Konvergenzraten, sind aber dennoch sehr beliebt aufgrund ihrer
Einfachheit und Kompetitivitdt in praxisrelevanten Anwendungen.
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1 Introduction

Nonsmoothness plays a critical role in many optimization problems. Sometimes it is
deliberately put into a model to induce desirable properties in the solution, most notably
sparsity. Typically this is done by adding a 1-norm of the decision variable to the
objective. In linear regression the resulting problem is known as Lasso [100] and through
the imposed sparsity irrelevant features can be excluded more easily. Similar applications
can be found, for example, in signal processing [81]. In inverse problems, particularly
image processing, usually sparsity is not sought in individual pixels but in the difference
of neighboring pixels. This consideration results in a problem formulation where the
I-norm is composed with a discretized gradient a.k.a. total variation regularization [94].

Other times the nonsmoothness is more intrinsic and originates, for example, from the
fact that the objective function itself is given as the solution of a maximization prob-
lem, see Chapter [5] and [6] Such minimax problems arise in various applications such
as zero-sum games in the sense of game theory |104]. More recently they attracted in-
creased interest due to their application in different machine learning tasks such as robust
adversarial learning [98|, learning with uncertain data [31], multi-agent reinforcement
learning |79|, learning with decomposable losses [39,/107] and the training of generative
adversarial networks (GANs).

(Near) optimality. In the remainder we will pool convex-concave minimax problems and
convex single-objective problems together for they similar proeperties and refer to them
as just convex. Defining optimality for such problems is elementary. Typically one is look-
ing for a global minimum in the case of single-objective optimization or a saddle point,
see , for minimax problems. In either way these notions can be equivalently charac-
terized by a first order condition. For nonconvex problems one can usually not expect to
find such global solutions and is typically content with finding stationary points. Even
for nonsmooth nonconvex problems an appropriate generalization of vanishing subgradi-
ents, see Definition is straight forward. However, since we are generally interested
in convergence rates we have to quantify how close a given point is to stationarity. For
smooth functions this can be measured via the norm of the gradient. For nonsmooth
functions such an approach fails even in the convex case. Consider, for example, the
absolute value function. Every point different from the solution, no matter how close,
will have (sub)gradients bounded away from zero. This somewhat troublesome obser-
vation can be remedied by measuring criticality in terms of closeness to a point with a
small subgradient. In the weakly convex setting the gradient of the Moreau envelope, see
Definition captures this property and additionally provides a framework [35,36| for
studying convergence.
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Solution methods. For solving nonsmooth problems a natural first approach would be
to seek to devise an appropriate generalized notion of a gradient, see Definition [2.1.

and [2:3:2] and then continue to use smooth first-order methods. It is easy to see that
subgradient descent with fixed stepsize fails to converge even on the simplest cases,
such as the absolute value function. However, by employing more sophisticated stepsize
regimes, this undesirable behavior can be circumvented [35}72], but this typically results
in slow methods. This approach also disregards the fact that nondifferentiability is often
given by a simple algebraic description of the functions involved. By making use of the
prozimal operator, which inherently relies on the fact that the nonsmoothness arises in
a structured way, we can devise faster, more problem adapted methods [9,/11}28}37].
As seen by the above mentioned applications in imaging, inverse problems or machine
learning, we generally deal with problems which possibly exhibit a large number of vari-
ables but usually do not require high precision in the solutions. For this reason we aim
to devise methods which rely on first-order information and the proximal operator only.
To further cope with the possibly large scale of the problems we further emphasis the
use of stochastic methods which only require samples of the objective function [14,36}89].

1.1 Overview

Chapter [2]is devoted to establishing notation and introducing the relevant preliminary
concepts and statements. We will recall basic elements from convex and nonsmooth anal-
ysis in order to provide a compelling and self-contained reading experience. Most notably,
the Moreau envelope which will play an intricate role in the forthcoming Chapter [3 [
and [6] is introduced.

Composition with a linear operator. The first half of the main body is devoted to prob-
lems of the type

min f(z) + g(Az) (L)

for a nonsmooth function g, composed with the linear operator A. For its desirable prop-
erties, we want to make use of the proximal operator of g, see Definition but avoid
the one of g o A, as there is typically no formula available for the latter.

Chapter [3| is concerned with the convex version of . Instead of the, by now
classical, approach via primal-dual methods [27}28}|32,|105] we make use of an accel-
eration techniques [9,/73] similarly to [101| with respect to the smoothed version. The
main convergence results are summarized in Theorem and for a deterministic
and stochastic problem formulation, proving complexity bounds of O(¢~!) and @(6_2),
respectively (O hides logarithmic terms). We finish this chapter with numerical exper-
iments in image denoising/deblurring, where g o A corresponds to the total variation
regularization [94] (the ROF model) as well as sparse completely positive matrix factor-
ization where we use our method as subroutine for the prox-linear method [37]. This
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chapter is based on the article [15].

Chapter 4] on the other hand deals with the setting where problem is assumed
to be weakly convex. This allows us to study for example sparsity inducing regularizers
which do not induce a bias, see Section We propose a simple novel method based
on vanilla gradient descent for the smoothed problem. While in the convex setting the
methods proposed in Chapter [3| competes with the well known primal-dual methods, in
the nonconvex setting there is no equivalent notion of duality. The convergence statement
for the basic version of our proposed method is analyzed in Theorem whereas the
result for the more sophisticated extension which ensured improved feasibility guarantees
is stated in Theorem Overall we prove a convergence rate of O(¢~3) which interpo-
lates nicely between the optimal rate for smooth nonconvex problem of O(e=2) and the
black box subgradient method [35] with no additional knowledge about the nonsmooth-
ness requiring O(e~*) iterations. The result is also in line with other methods dealing
with nonconvex problems where it is assumed that the nonsmoothness arises from some
particular algebraic description of the problem such as the composition of a nonsmooth
convex function with a smooth vector-valued function [37]; or due to the inner maximiza-
tion of a saddle point problem [61,/99], see also Chapter @ The article [13] is the basis
of Chapter [4]

Minimax problems. The second half of this thesis studies so-called minimax (or saddle
point) problems of the type

minmax f(z) + ®(z,y) — h(x) (SP)

x oy

for a differentiable function ® and nonsmooth, convex regularizers f,h. The implicit
assumption here is that neither the maximization nor the minimization can be solved
in closed form, and only steps based on first-order information can be taken in either
direction.

In Chapter [5| we tackle the case where the coupling function ® is convex-concave
by using the well known forward-backward-forward method by Tseng [103| and prove
novel convergence rates in the case of stochastic gradient evaluations. We also propose a
modification which recycles old gradients but turns out to be a known scheme [66| related
to optimistic gradient descent ascent [33),34.58|. We analyze both methods in a unified
way for different stepsize choices in Theorem [5.3.9 and [5.3.13] proving a convergence
rate of O(e~!) and O(e2) for the deterministic and stochastic setting, respectively. We
conclude this chapter, which is based on the article [12]|, with numerical experiments in
GAN training.

In Chapter |§| we turn to weakly convex-(strongly) concave saddle point problems.
Under these assumptions the inner maximization problem yields a weakly convex func-
tion in the remaining variable x, which keeps the problem tractable. Most of the existing
literature has focused on inner loop methods [61,78,86,99,|110] which will either re-
peatedly approximate the inner maximization or regularize the problem by adding a
quadratic proximity term and then repeatedly solve the resulting convex-concave saddle
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point problem. While these methods obtain the best convergence rates for this class
of problems, in practice, single loop methods, such as gradient descent ascent (GDA),
are still highly popular [4,41,/49]. In particular, we prove the first convergence rates
for stochastic alternating GDA outside a convex-concave setting. We show O(¢~%) and
O(e~®) for weakly convex-strongly concave (Theorem and weakly convex-concave
problems (Theorem , respectively. We furthermore close the a gap in the deter-
ministic case where [106] studied criticality of ® and [60| analyzes simultaneous GDA.
This chapter is based on [16].

The connection between and (SP). We also want to point out that problems of
type can be seen as a purely primal version of a saddle point problem where the
coupling function is bilinear. In fact, if g is convex, then can be solved by considering
instead the minimax problem

rrgnmgx f(z)+ (Az,y) — " (v),

where g* denotes the Fenchel conjugate of g. Similarly, the minimax problem (SP)) can be
seen as just a minimization task, where the objective function exhibits a max-structure.
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2 Preliminaries

We denote by R? the d-dimensional Euclidean space, with its inner product by (-, -) and
the generated norm by |[|-||, where ||z||?= (z,z) for z € R%.
2.1 Convex analysis
Definition 2.1.1. The normal cone of the nonempty and convex set C' C R? is given by
Ne(z) ={veR?: (v,u—z) <0 VYueC},
for x € C and Ne(z) =0 for z ¢ C.
Lemma 2.1.2. For o € R and every x,u € R? we have that
(1= )]z —ul? +allul® > a(l —a)|z]*.
Proof. See |6}, Corollary 2.14]. O

Definition 2.1.3. We say that an operator between to Hilbert spaces R? R" is said to
be Lipschitz with constant L, or L-Lipschitz, if

[A(z) = A(u)[lgn < Lll2 — ul|ga-

2.1.1 Convex functions

Definition 2.1.4. For an extended real valued function g : R? — RU{+o00} we introduce
the following notions.

(i) The domain of g, denoted by dom g, is defined as
domg := {z € R?: g(x) # +o0}.
(ii) We say that g is proper if its domain is nonempty.
(iii) We say that g is convex if for all z,u € R? and 0 < a < 1
glaz + (1 — a)u) < ag(z) + (1 - a)g(u).
(iv) We say that g is lower semicontinuous if for all x € R?

liminf g(u) > g(z).

uU—x
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Example 2.1.5. The indicator function 5¢ of a set C C R? is defined as

So(z) = {0, zeC

400, otherwise.

If the set C is nonempty, convex and closed, then d¢c is proper, convex and lower semi-
continuous.

Definition 2.1.6 (Fenchel conjugate). For a proper, convex and lower semicontinuous
function g : RY — RU{+o0}, its Fenchel conjugate is denoted by g* defined as a function
from R? to R U {+oc}, given by

g (p) == ;él]é)d {(p,x> - g(m)} Vp € R%.

Definition 2.1.7 (Subdifferential). For a function g : R* — R U {400} the conver
subdifferential is given by

dg(x) = {v eR?: (v,u—z)+g(x) < glu) Vue Rd}
for points 2 € R? where g(z) is finite and the empty set otherwise. We call any element
of this set a subgradient of g at x.

The (convex) subdifferential consists of all affine underestimates that touch the func-
tion at the given point.

Proposition 2.1.8 (Moreau decomposition). For a proper, conver and lower semicon-
tinuous function g : R? — R U {400} and its Fenchel conjugate g* it holds that for all
v>0

T = prox,, (z) + yprox . ., (¥/v) Vo € RY.

Proof. See |6, Theorem 14.3 (ii)] O

In particular, if we have an analytic formula for the proximal operator of g, we also
have a formula for the proximal operator of ¢g* and vice-versa.

Lemma 2.1.9 (Fermat’s rule). Let g : R — R U {+oc} be a proper function. Then,
x* € R is a minimizer of g, i.e. g(x*) < g(x) for all x € RY, if and only if 0 € dg(x*).

Proof. This follows immediately from the definition of the convex subdifferential. O
Definition 2.1.10 (Strong convexity). For some p > 0, we say that
g: R = RU{+oo} is p-strongly convex if g — (u/2)]|-||? is convex.

Lemma 2.1.11. Let g : R — R U {400} be proper, p-strongly convexr and lower semi-
continuous. Then g has a unique minimizer x* and

g(x™) + %Hx —2*|’< g(x) VaeRL
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2.2 Differentiable functions

The class of differentiable functions with L-Lipschitz continuous gradient plays an im-
portant role in optimization. For short we call them L-smooth.

Lemma 2.2.1 (Descent lemma). For an L-smooth function h : R® — R it holds that
L 2 d
h(u) < h(m)+<Vh(x),uf:c>+§||ufx|| Va,u € R

Proof. See e.g. |6, Theorem 18.15]. O

The descent lemma states that every L-smooth function can be upper bounded by a
quadratic function. By going from g to —¢g we can see that the same statement holds for
a lower bound.

The following lemma is a standard result for convex differentiable functions.

Lemma 2.2.2. For a convex and L-smooth function h : R4 — R we have that
1
h(z) + (Vh(z),u — z) < h(u) — ﬁHVh(w) — Vh(u)|? Va,u€R%

Proof. See |77, Theorem 2.1.5]. O

The previous lemma strengthens the obvious inequality we would have deduced from
the fact that the gradient is a subgradient of A which would yield that

h(x) 4+ (Vh(z),u —z) < h(u) Vaz,u e RY

Lemma 2.2.3. Let h: R — R be an L-smooth and p-strongly convex function. Then

plL 2 1 2
h(z) = Vh —u) > ——|lz — ——||Vh(z) — Vh .
(Vh(z) = Vi(u), 2 —u) 2 2 plle —ul 227 [VA@) = Vi)l

If = 0 the inequality still holds true and is known as cocoercivity.

Proof. See |77, Theorem 2.1.11] and |6, Theorem 18.15 (v)]. O

2.3 Weak convexity
Definition 2.3.1. For some p > 0, we say that
g: R = RU{+o0} is p-weakly convex if g+ (p/2)||-||? is convex.

Weakly convex functions share some desirable properties with convex functions, but
include many interesting nonconvex cases; see Section [£.1.]

The concept of subgradient of a convex function can be adapted to weakly convex
functions via the following definition.
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Definition 2.3.2 (Fréchet subdifferential). Let g : R — R U {400} be a function and
x a point such that g(x) is finite. Then, the Fréchet subdifferential of g at x, denoted by
dg(x), is the set of all vectors v € R? such that

g(u) > g(z) + (v,u —z) + o(||lu — z||) asu — x.
Lemma 2.3.3. A lower semicontinuous function g : R? — RU{+o00} is p-weakly convex
if and only if for all Fréchet subgradients v € Og(x) the subgradient inequality holds:
g(z) + (v,u —x) — gHu —z|’< g(u) Vz,ueRY

Proof. See |36, Lemma 2.1] for a proof and more equivalent notions. The idea of the proof
is to the definition of the convex subdifferential of ¢ = g + (p/2)||||> and the calculus
rule that dp(x) = dg(x) + px, see |91, Exercise 8.8|. O

The previous lemma together with the descent lemma immediately implies that every
L-smooth function is L-weakly convex.

Lemma 2.3.4. If g is differentiable at the point x € R? then its Fréchet subdifferential
consists of just the gradient 0g(z) = {Vg(z)}.

Proof. See |91, Excercise 8.8|. O

While the next result is standard for the gradient and convex subgradients we explicitly
mention the general case.

Lemma 2.3.5. For an Lg-Lipschitz continuous function g : R? — R every Fréchet
subgradient is bounded in norm by L.

Proof. See |69, Theorem 3.52]. O

2.3.1 The Moreau envelope

Definition 2.3.6. For a proper, p-weakly convex and lower semicontinuous function
g : R — RU {+o0}, the Moreau envelope of g with the parameter A € (0,p~!) is the
function from R? to R defined by

. 1 2
oa(e) = inf {gu) + 5y flu—z]?}.

The prozimal operator of the function Ag is the argmin of the right-hand side in this
definition, that is,

1
prox,, (r) := arg min {g(u) + —|lu— 3:”2} (2.1)
weRd 2\

Note that prox,, (x) is uniquely defined by ([2.1)) because the function being minimized
is proper, lower semicontinuous and strongly convex. If g is in fact convex, i.e. p = 0,
then A can be chosen in (0, +00).

10



2.3 Weak convexity

Lemma 2.3.7. Let g : R — RU{+o00} be a proper, p-weakly convex and lower semicon-
tinuous function, and let X € (0,p~1). Then the Moreau envelope gy(-) is continuously
differentiable on RY with gradient

1
Vgr(x) = X (z— Prox,, (z)) for all z € R

This gradient s max{)\_l, ﬁ}—Lipschitz continuous. In particular, a gradient step

with respect to the Moreau envelope corresponds to a proximal step, that is,
x — AVga(z) = prox,, (z), forallz € RY, (2.2)

Additionally, if g is convex, then gy is convexr as well and the gradient of the Moreau
envelope can also be characterized in terms of the prozimal operator of the conjugate

Vgs = prox, . (-/A).
A

Proof. For a proof of the first statement see |50, Corollary 3.4]. The statement for
convex g can be found in |6, Proposition 12.29], but follows immediately from the Moreau
decomposition, see Proposition [2.1.8 ]

Lemmal2.3.7 not only clarifies the smoothness of the Moreau envelope, but also gives a
way of computing its gradient via the proximal operator. Obviously, a smooth represen-
tation whose gradient could not be computed would be of only limited usefulness from
an algorithmic standpoint. The only difference between the weakly convex and convex
settings is that the Moreau envelope need not be convex in the former case.

Lemma 2.3.8. Let g : R — RU {400} be a proper, p-weakly convex, and lower semi-
continuous function, and let X € (0,p~1). Then,

Vga(z) € dg(proxy, (v)) Yz € RY. (2.3)

Proof. From Definition [2.3.6] we have that

1
0 € dg(proxy (2)) + 1 (prox,, () — x),
from which the result follows when we use ((2.2)). O

Lemma 2.3.9. Let g : R — R be a p-weakly convex function that is Lgy-Lipschitz
continuous, and let X € (0, p~1). Then the Moreau envelope gy is Ly-Lipschitz continuous
as well

9r(@) = ga(W)|< Lglle —ull  Va,u € R (2.4)

Therefore, ||Vgx(z)||< Ly and in particular

|z — prox,, (z) [[< ALy V€ RY. (2.5)

11



2 Preliminaries

Proof. By (2.3), we have for all z € R?

IVgr(@)l1< sup { o] = v € Dg(prox,, (2)) } < Ly,

where we used Lemma in the second inequality, which lets us conclude (2.4). The
bound (2.5)) follows immediately by considering the fact that x — prox,  (z) = AVgx(z)
from Lemma [2.3.7 O

(The above two lemmata are proved for the case of g convex in [37, Lemma 2.1|, with
essentially the same proof.)

2.4 Stochastics

We want to recall basic notions from measure and probability theory which can be found
in any introductory book on this matter.

Definition 2.4.1. For a set 2 and a sigma algebra A on this set we call the tuple (2,.4)
a measurable space.

Definition 2.4.2. If a measurable space (€2,.4) is additionally equipped with a proba-
bility measure P we call the triple (92, .4, P), a probability space.

A measurable mapping from a probability space to a measurable space is called a
random variable. Usually when talking about random variables we will omit the spaces
and sometimes even the probability measure, e.g. when talking about the expectation

E[X] of the random variable X.

Definition 2.4.3 (Expectation). For a random variable X : € :— R on a probability
space (€, A, P) the expected value is defined as E[X] := [, X (w) dP(w).

Definition 2.4.4 (Conditional expectation). For a random variable X on a probabil-
ity space (Q,.A,P) with finite expectation, its conditional expectation with respect to
a subsigmaalgebra S of A denoted by E[X |S], is the S measurable random variable
fulfilling

/XdIP’:/IE[X|S]d]P> VA€ S.
A A

Although this definition is not constructive it is a standard task in measure theory to
show that such a random variable exists and is unique (in an almost sure sense). We
will regularly use the notation E[X | Y] for two random variables where we mean the
conditional expectation of X with respect to the sigmaalgebra generated by Y.

Lemma 2.4.5. Let the assumptions of Definition [2.4.4 hold.
(i) If X is measurable with respect to S, then E[X |S] = X.
(i1) If X is independent of S, then E[X |S] = E[X].

12



2.4 Stochastics

The combination of the above properties culminates in the following statement.
Lemma 2.4.6 (Independence lemma). Let g be a function of two arguments such that
p(z) :=E[g(z,Y)].

If X and'Y are two independent random variables, then
Elg(X,Y) [ X] = ¢(X).
Proof. See |97, Lemma 2.5.3|. O

In the stochastic settings of Chapter 3] [ and [6] We will often deal with the case where
the objective function F : R? — R is given for all x € R? as E¢[F(z,;£)] for a random
variable § (with a slight abuse of notation). We write E¢ to emphasize that £ is stochastic
and not x, but leave it out later on. We will typically assume that the gradient of F'(z;¢)
with respect to x is an unbiased estimator for the gradient of F, i.e. that for all 2 € R¢

E¢[VF(x;6)] = VF(z).

In order to analyze algorithms, which make use of such stochastic gradients, the iterates
(zk)j>0 Will turn to be stochastic themselves. Thus, by using Lemma we get that

as long as £ is independent of xy.

Lemma 2.4.7 (Tower property). Let A and A’ be two sigma algebras such that A C A’
Then,
E[E[X | A']| A] = E[X | A].

In particular, the above lemmata implies the law of total expectation stating that
E[E[X | A]] = E[X]

for any sigma algebra A.
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3 Variable smoothing for convex composite
problems

We aim to solve a structured convex optimization problem, where a nonsmooth function is
composed with a linear operator. When opting for full splitting schemes, usually, primal-
dual type methods are employed as they are effective and also well studied. However,
under the additional assumption of Lipschitz continuity of the nonsmooth function which
is composed with the linear operator we can derive novel algorithms through regulariza-
tion via the Moreau envelope. Furthermore, we tackle large scale problems by means
of stochastic oracle calls, very similar to stochastic gradient techniques. Applications to
total variational denoising and deblurring are provided.

3.1 Problem setting

The problem at hand is the following structured convex optimization problem

min {F(x) = f() +g(Aac)}, (3.1)

zcRd

for f : RY - RU {+0o0} a proper, convex and lower semicontinuous function, g : R — R
a, possibly nonsmooth, convex and Lg-Lipschitz continuous (L, > 0) function, and
A :R?% - R" a nonzero linear operator.

Our aim will be to devise an algorithm for solving following the full splitting
paradigm (see |17,/18.20,21,28,132,|105]). In other words, we allow only proximal evalua-
tions for simple nonsmooth functions, but no proximal evaluations for compositions with
linear continuous operators, like, for instance, for g o A.

We will accomplish this feat by the means of the Moreau envelope, see Definition [2.3.6]
The approach can be described as follows: we “smooth” g, i.e. we replace it by its Moreau
envelope, and solve the resulting optimization problem by an accelerated proximal gradi-
ent algorithm (see 926l/73]). This approach is similar to those in [19}22,23,74,[76], where
a convergence rate of O(1/k) is proved. However, our techniques (for the deterministic
case) resemble more the ones in [101], where an improved rate of O(1/k) is shown. The
most notable difference between this work and ours being the fact that we use a simpler
stepsize and treat the stochastic case.

The only other family of methods able to solve problems of type are the so
called primal-dual algorithms, first and foremost the primal-dual hybrid gradient (PDHG)
introduced in [28]. In comparison, this method does not need the Lipschitz continuity
of ¢g in order to prove convergence. However, in this very general case, convergence
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3 Variable smoothing for convex composite problems

rates can only be shown for the so-called restricted primal-dual gap function. In order
to derive from here convergence rates for the primal objective function, either Lipschitz
continuity of g or finite dimensionality of the problem plus the condition that g must
have full domain are necessary (see, for instance, [17, Theorem 9|). This means, that for
infinite dimensional problems the assumptions required by both, PDHG and our method,
for deriving convergence rates for the primal objective function are in fact equal, but for
finite dimensional problems the assumption of PDHG are weaker. In either case, however,
we are able to prove these rates for the sequence of iterates (xy),~, itself whereas PDHG

only has them for the sequence of so-called ergodic iterates, i.e. (1/k Zle 7)., Which
is naturally undesirable as the averaging slows the convergence down. Furthermore, we
do not show any convergence for the iterates as these are notoriously hard to obtain for
accelerated method whereas PDHG gets these via standard fixed point arguments (see
e.g. [105]).

Furthermore, we will also consider the case where only a stochastic oracle of the prox-
imal operator of g is available to us. This setup corresponds e.g. to the case where the
objective function is given as

m
min f(x) + i(A;x), 3.2
i, (@) + ) oA (32)
where, for i = 1,...,m, R} are real Hilbert spaces, g; : R’ = R are convex and Lipschitz

continuous functions and A4; : R — R} are linear continuous operators, but the number
of summands being large we wish to not compute all proximal operators of all g;,7 =
1,...,m, for purpose of making iterations cheaper to compute.

For the finite sum case (3.2)), there exist algorithms of similar spirit such as those
in [27,183]. Some algorithms do in fact deal with a similar setup of stochastic gradient
like evaluations, see [92], but only for smooth terms in the objective function.

In Section we will cover useful identities and estimates connected to the Moreau
envelope. In Section [3.3| we will deal with the deterministic case and prove a convergence
rate of O(1/k) for the function values at the iterates. Next up, in Section 3.4 we will
consider the stochastic case as described above and prove a convergence rate of O(1/vk).
Last but not least, we will look at some numerical examples in image processing in

Section [3.51

It is important to note that the proof for the deterministic setting differs surprisingly
from the one for the stochastic setting. The technique for the stochastic setting is less
refined in the sense that there is no coupling between the smoothing parameter and the
extrapolation parameter. Whereas this technique also works for the deterministic setting
it gives a worse convergence rate of @(1/k) The tight coupling of the two sequences of
parameters, however, is not compatible with the particular stepsize requirements of the
stochastic setting.
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3.2 More properties of the Moreau envelope

3.2 More properties of the Moreau envelope

As mentioned in the introduction, we want to smooth the nonsmooth summand of the
objective function which is composed with the linear operator as this can be considered
the crux of problem . The function g o A will be smoothed via considering instead
gro A :R? - R. Clearly, by the chain rule, this function is continuously differentiable
with gradient given for every z € R? by

V(gro A) (x) = A*Vgy(Ax) = XA (Az — prox,, (Az)) = A Proxy . (/\> ,

where we used Lemma to deduce the second and third equality. The gradient of
gx o A is thus Lipschitz continuous with Lipschitz constant w, where ||A|| denotes the
operator norm of A.

The following lemmata have been presented in [101] in the finite dimensional case. We
provide proofs in order to ensure that the statements hold true even in Hilbert spaces.

Lemma 3.2.1 (see [101, Lemma 10 (a)]). Let g : R — R U {+oc0} be a proper, conver
and lower semicontinuous function. The maximizing argument in the definition of the
Moreau envelope is given by its gradient, i.e. for A > 0 it holds that

* )\ _
wrgmas{ .7}~ ") = 310l } = Vor ()

Proof. Let z € R? be fixed. Tt holds

LA 1 A .
angamae { (1) = 0°(0) = 1P b =orgmax {1l + (o) = S0l ~ 07
pER? pER?
arg ma { A Hx pH2 g*(P)}
= X _ _— J—
pERd 2 )\
~argmin )+ 35 -
-t CO Y PR
_ T
g (2
and the conclusion follows by using Lemma [2.3.7] O

Lemma 3.2.2 (see [101, Lemma 10 (a)]). For a proper, convex and lower semicontinuous
function g : R* — RU{400} and every x € R we can consider the mapping from (0, 4-00)
to R given by

A= ga(x). (3.3)

This mapping is convex and differentiable and its derivative is given by

0 1
@) = —5IVaa@)|? Vo eRIVAE (0,+0).

17



3 Variable smoothing for convex composite problems

Proof. Let x € R? be fixed. From the definition of the Moreau envelope we can see that
the mapping given in is a pointwise supremum of a family of functions which are lin-
ear in A. It is therefore convex. Furthermore, since the objective function is strongly con-
cave, this supremum is uniquely attained at Vgy(z) = arg max cga { (z,p) — g*(p) — 2pl?}-
According to the Danskin Theorem, the function A — gy(x) is differentiable and its
derivative is given by

0 0 D S
o) =55 s {5} = 97 0) = 311}
8)\ 8)\ pERd 2
1
=~ SIVa@I? VA€ (0,+00).
O
Lemma 3.2.3 (see [101, Lemma 10 (b)]). Let g : R — RU {400} be proper, conver and
lower semicontinuous. For A\, A2 > 0 and every z € R% it holds
1
In (@) < gro(2) + (A2 = M) 5[ Van ()] (3.4)
If g is additionally Lg-Lipschitz and if Ao > A1, then
L2

9 (2) < g0 (@) < gra (@) + (A2 = i) (3:5)

Proof. Let 2 € R? be fixed. Via Lemma we know that the map A\ — g)(z) is convex
and differentiable. We can therefore use the gradient inequality to deduce that

9o () Z 95 (@) + (A2 — A1) <88)\g’\(x)‘,\=,\1>

= g (&) = (2 = 20)5 1 Vo, &) P,

which is exactly the first statement of the lemma. The first inequality of (3.5)) is ob-
tained directly from the definition of the Moreau envelope whereas the second one follows

from (3.4) together with Lemma [2.3.9] O]
By applying a limiting argument it is easy to see that (3.5)) implies that for any A > 0

2
a(z) < g(z) < ga(x) + /\79 (3.6)

which shows that the Moreau envelope is always a lower approximation of the original
function.

Lemma 3.2.4 ( [101, Lemma 10 (c)]). Let g : R? — RU {+oc} be proper, conver and
lower semicontinuous. Then, for X > 0 and every x,y € R? we have that

02(2) + (Voa(e).y — 2) < g(0) — 1V
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3.3 Deterministic method

Proof. Using Lemma [3.2.1] and the definition of the Moreau envelope we get that

02(2) + (Vr(2),y — 2) = {2, Vor(2)) — 9" (Var(x)) — 2 [Vor(@)|* + (Vaa(a).y — )
= (Vor(2).9) ~ 6" (Vor(a)) — 2 |Var ()

< s {(p9) 4" ()} — 5 IVar(@)]?
pERA

= gly) — Vo @)

O

In the convergence proof of Section [3.3] we will need the inequality in the above lemma
at the points Az and Ay, namely

9(Ay) — Vgr (A7) > g2 (Az) + (Vs (Az), Ay — Ax)
= ga(42) + (4"Vg\(42),y - @) (3.7)
= ga(Az) + (V(gr 0 A)(2),y —x) Va,y € RY,

By applying Lemma with gy, Az and Ay instead of h, x and y respectively, we
obtain

ga(Az)+(V(gro A)(z),y —x) < QA(A?J)_%”VQA(Ax)_VQA(Ay)”Z va,y € RY. (3.8)

3.3 Deterministic method

The idea of the algorithm which we propose to solve (3.1]) is to smooth g and then to
solve the resulting problem by means of an accelerated proximal gradient method.

Algorithm 3.3.1 (Variable Accelerated SmooThing (VAST)). Let yo = z¢ € R, (Mk)p>0 C

(0,400), and (tx),~, a sequence of real numbers with ¢; = 1 and t; > 1 for every k > 2.
Consider the following iterative scheme

A 2
Ly = 14
_ 1
V=T,
(Vk > 1) ) .
T = prox’ykf Yk—1 — ’ykA prOX%g* (Ay§k1>
k
= B o~ ).

Remark 3.3.1. The assumption ¢t; = 1 can be removed but guarantees easier computation
and is also in line with classical choices of (t),~, in [26,73].
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3 Variable smoothing for convex composite problems

Remark 3.3.2. The sequence (ug);~; given by
Uk = Tk—1 + tk(l'k - xk,l) Vk > 1,

despite not appearing in the algorithm, will feature a prominent role in the convergence
proof. Due to the convention t; = 1 we have that

U = Xg +t1($1 — .Z‘(]) = .

We also denote
FF=f4gy,0A VE>O.

The next theorem is the main result of this section and it will play a fundamental role
when proving a convergence rate of O(1/k) for the sequence (F(zk));~-

Theorem 3.3.2. Consider the setup of (3.1)) and let (xg);~o and (yr)y>q e the sequences
generated by Algorithm|3.5.1. Assume that for every k > 1

A
Ak—AkH—%SO

k+1

and
1
<1 - t> Verithy1 = Veli-
k+1

Then, for every optimal solution x* of (3.1)), it holds

_ax]]2 L2
F _pary < oo oo
(zn) — F(z¥) < i + AN >

The proof of this result relies on several partial results which we will prove as follows.

Lemma 3.3.3. The following statement holds for every z € R and every k > 0

PR (@) + oIl — 2] <

2Yk+1

f(z) + 9t (Ayk) + <V(g)\k+1 ° A)(?Jk)v Z— yk> +

1 2
Z = Ykl -
2Vk41 | |
Proof. Let k > 0 be fixed. Since, by the definition of the proximal map, x4+ is the
minimizer of a ——-strongly convex function we deduce from Lemma [2.1.11| that for

Ve+1 B

every z € RY

f(mk-l—l) T Ires (Ayk) + <v(g)\k+1 ° A)(yk)7$k+1 - yk> =+ ||33k+1 - yk||2+

1
241

29k+1

1
w1 = 21 < f(2) + ga (Agi) + (V(9a00 © A)(Wk)s 2 — i) + L vl
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3.3 Deterministic method

Next we use the Ly i-smoothness of gy, o A and the fact that W%H = L1 to deduce
that

k41 — 2> <

1
F(@ri1) + gappr (Azpin) + 2
k41

1
f(Z) + IX\k41 (Ayk) + <v(g>\k+1 o A)(yk)a z = yk> + 1 ||Z - kazv

27k
which finishes the proof. O

Lemma 3.3.4. Let x* be an optimal solution of (3.1). Then it holds

1 (FH (21) = F(a)) + gllur = 2% < 5 l2" = o]

5|
Proof. We use the gradient inequality to deduce that for every z € R? and every k > 0
Gt (Ayk) + <v(g)\k+1 0 A)(yk)7 z = yk> < IXkt1 (AZ) < g(Az)

and plug this into the statement of Lemma to conclude that

1
|2pgr — 2]12 < F(2) + ——||z — w]|%

Fk+1 Tpit) +
(@h41) 2%k+1 2%k+1

For k = 0 we get that
Fl (1) + a1 — 22 < F(e") + || — yo?
2m - 2m '

Now we us the fact that u; = x1 and yg = x¢ to obtain the conclusion. ]

Lemma 3.3.5. Let z* be an optimal solution of (3.1). The following descent-type in-
equality holds for every k >0

* (|2 * ]2
U —x 1 U — X
Vr+1ljq k+1 Vi+1ti 1

1 A

ter1 k41

Proof. Let k > 0 be fixed. We apply Lemma |3.3.3| with z := (1 — tkL) T + ﬁx* to
deduce that

Fk+1($k+1) + ||Uk+1 - $*”2

27k+1tz+1
<f11 +1*+ (A)+1<V( A)(yg), ¥ )
—— |z — — o -
>~ tk+1 k tk+1 I\ AYk tk+1 911 Yk )» Yk
1
+ 1—> V(gree, © A Wk)s 2 — yp) + ———|lug, — ¥
( ) (Voo ) )+ o] n
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3 Variable smoothing for convex composite problems

Using the convexity of f gives

P (gp00) + w1 — z*]|?
27k+1ti+1

(1 - tl) fze) + %f(x*) + (1 - t1> Ixir (AYK)
k+1 k+1 k+1

1 (3.9)
1 < V(9rp1 © A)(Yr), zk — yk>
tht1
+ 71 + 71 VvV Huk x*HQ
A oA ,x* — S S
tiet g1 ( yk) trit < (g)\k+1 )(yk) yk> 2’7k+1t%+1

Now, we use (3.7) to deduce that

ki1 (Ayk) + <v(g)\k+1 © A)(yk)7 r*— yk> < g(Al'*) k+1 HVQ/\ICJA (Ayk)HZ <3'10)
and (3.8) to conclude that

Iresr (Auk) + (V(9rsr © A) (Wk)s T — Yi)

PV (3.11)
< G (A) = Z51Vn (Ayi) = Vg, (A
Combining (3.9), (3.10) and (3.11)) gives
U — ¥ 2
Fk+1(xk+1)+ ” k+1 - H
2Yk1ty
1 1 1 1
< 1= —— ) g (Azg) + | 1 — — ) flog) + —g(Az™) + — f(a")
lkt1 le+1 lkt1 lk+1
1 Akt1
-(1-— + HVQ)\kJrl (Ayk) vQ>\k+1 (Axlf)H2
Ukt
1 )\k+1 o, llug —2*|?
- Vaor..(Ayp) || + ————.
s Vo (Al

The first term on the right hand side is gy, , , (Azy) but we would like it to be gy, (Axy).
Therefore we use Lemma [3.2.3] to deduce that

w —1'* 2
Fk:+1( Trr1) + M
2’Yk+1tk+1
(1 - ) FF(xp) + —F( ")
k1 bt
+ <1 - 1> (Ak — )‘k+1)*va>\k+1(Axk)H2 t M
2 2Yk+1t541

A
paLa2 HVgAW(Aymn?.

1 A
= (1725 ) S () ~ Vo ()|
(3.12)

tkt1
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3.3 Deterministic method

Next up we want to estimate all the norms of gradients by using Lemma which says
that

1 1
(1= 5 ) 1900 ) = Vo (AP [ (A P

t
o 1 (3.13)
1—— \Y Azy) |2
( t,m) Vo, ()|
Combining ((3.12)) and (| gives
U — p* 2
T e
2Vt
1\ . 1, 1 1 )
S U= ) B ) + o —F (@) + (1= o ) (A = Aer1) 5 Vg, (Azi) |
tht1 U1 U1 2
Aka1 ( 1 > 2 ”uk_$*”2
- 1-—— \Y 2\ Al‘k -~ 2
(1 o) T (el +

Now we combine the two terms containing [|[Vgy, ,, (Az;)||* and get that

Fk+1($k+1) + Huk-l-l - x*HQ

2’W€+1tz+1
1 k|2
(1—) Fk(mk)—i-iF( M
thyt tht1 291t
1 Akt ) 1
" (1 N > (Ak = Akt1 — H) SV, (Ax) 2.
Trt1 tr1/ 2

By subtracting F'(z*) = f(2*) + g(Az*) on both sides we obtain the desired statement.
O

Now we are in the position to prove Theorem [3.3.2]

Proof of Theorem[3.3.3. We start with the statement of Lemma [3:3.5] and use the as-
sumption that

A
e — M1 — 2L <0
lkt1

to make the last term in the inequality disappear for every k > 0

* (|2 * ]2
U —x 1 U — &
Ve+1th4q k+1 Vi1t 11

Now we use the assumption that

I thi1 = Wth
; Ve+1lg1+1 = Tkl
k+1
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3 Variable smoothing for convex composite problems

to get that for every £ >0
*H2

% U — X
’Yk+1ti+1(Fk+l(xk+1) - F(z%)) + H+12

* |2
. Up — T
< 2 (FH(ap) - Fa®) + 1 =27

2

(3.14)
Let N > 2. Summing (3.14) from & = 1 to N — 1 and getting rid of the nonnegative
term ||uy — 2*||? gives

_ax||2
I =271 s o,

2
Since t; = 1, the above inequality is fulfilled also for N = 1. Using Lemma shows
that

Wt (FN (@) = F(z*) < m(FH(z1) - F(a*)) +

o — 22
YNt
The above inequality, however, is still in terms of the smoothed objective function. In

order to go to the actual objective function we apply (3.6)) and deduce that

FN(zn) — F(z*) < VN > 1.

N N . Ly _ o — "2 L
F(:EN)_F(:L‘)SF (I'N)—F(:E)—I—)\N—§72 N —— VNZl
2 2Nty 2

O

Corollary 3.3.6. By choosing the parameters (A)g>1, (k)15 (Vk)k>1 0 the following

way,
t1 =1, A =b||A|J%, forb>0,

and for every k > 1

t2 Ak
thl = A1+ 2, Mpg1 = My = (3.15)
Vi CR——— TP
they fulfill
A
Ao — App1 — L < (3.16)
Th+1
and .
(1 - t> Ter1ter1 = Wi (3.17)
k+1

For this choice of the parameters we have that

k]2 bL2 A 2 2
Play) - Fa) < LTI I o (22

SNt TV 6) VN 21

Proof. Since 7y and A are a scalar multiple of each other, (3.17) is equivalent to

1
<1 - > Metitesr = Mty Vb >1
U1
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3.3 Deterministic method

and further to (by taking into account that t;4q > 1 for every k > 1)

2 ten t2
Akt+1 = Ak o 1= )\kt2 " Vk > 1. (3.18)
k+1 VR4 T k+1 — Uk+1

Our update scheme in (3.15) for the sequence (Ag),~; is exactly chosen in such a way
that it satisfies this. Plugging (3.18)) into (3.16|) gives for every k& > 1 the condition

1 ) 8 te _ 3 tper +1
ter1) Gy teyr — 1 G ter — 1

1§<1+

which is equivalent to
3 2 2 2
02 thyr = tiewr — titesr — tg

and further to
2 2 2 2
togr H >t (b — t2) -
Plugging in tp11 = 4 /t% + 2t;, we get that this equivalent to
i H > tep12ty Yk > 1,

which is evidently fulfilled. Thus, the choices in (3.15) are indeed feasible for our algo-
rithm.
Now we want to prove the claimed convergence rates. Via induction we show that

k+1
% <ty <k Vk>1. (3.19)

Evidently, this holds for ¢; = 1. Assuming that (3.19)) holds for £ > 1, we easily see that

tiar = A1+ 200 < VK2 42k < VR 42kt 1=k 41

and, on the other hand,

k+1)2 1 1 k+2
tk+1=\/ti+2tk2\/(z)+k+1:2\/k2—|—6k+522\/k2+4k+4:;_.

In the following we prove a similar estimate for the sequence (Ag);~;. To this end we
show, again by induction, the following recursion for every k > 2
k—1
Lot 1
Ap = /\1#*. (3.20)
[Tt — 1) 2

For k = 2 this follows from the definition (3.18)). Assume now that (3.20) holds for k& > 2.
From here we have that

k1 k
Nos1 = )\k—ti -\ a1 ti -\ Uty 1
1 (Tt — 1) 15y (t; — 1) th tha (g = 1) [Tt — 1) tean
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3 Variable smoothing for convex composite problems

Using (3.20) together with (3.19) we can check that for every k > 1
k
H] 1 t j

Hk“(t] -1) tk+1 tk+1

P 3.21
l+1 (3:21)

zw

N1 = - =4

t]H —1)

where we used in the last step the fact that ¢5,1 <t + 1.
The last thing to check is the fact that \p goes to zero like % First we check that for

every k > 1
tr. 1
— <1l —. 3.22
thyr — 1 th1 (thy1 — 1) (3.22)

This can be seen via
(th+ Dt < (e + 1> =74 +1 VE>1.
By bringing t;1 to the other side we get that

thritn <ty — tepr + 1,

from which we can deduce (3.22)) by dividing by t% 41— bkl
We plug in the estimate (3.22)) in (3.20) and get for every k > 2

k—1
Hj 1tA 1
Ak = Al —7— o
H] St — 1)tk

1 — 1
) =< -
= 1< tjpa( t]+1_1> 1;‘[< J+2)J> 2

k—1 2 2
4\ 1 T4\ 1
<A\ — =b||A|]? —_ ] —.
( ) 1exp<6>tk A eXp<6>tk

IZI:ZII

With the above inequalities we can to deduce the claimed convergence rates. First note
that from Theorem [3.3.2] we have

o Nlwo — a*|? Ly
F —F <l - " 4+ Av—= VN >1.
(xn) — F(z*) < g TS >

Now, in order to obtain the desired conclusion, we use the above estimates and deduce
for every N > 1

e —a*® , | L3 _lao—o'|P | VLGN (4n?
2Nt 2 = 2bty 2tn 6
< |zo — ¥ N bLy|| Al 4r?
exp | —
=y(N+1) N+ P\ )
where we used that
fy = 2NN
ININ = 772 29
[IA[?
as shown in (3.21]). O
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3.4 Stochastic method

Remark 3.3.3. Consider the choice (see [73])

14 4/14 483
— Vk2>1

=1, lgt1= >

and
A = b||A||%, for b> 0.

Since
tr =tiy1 —thes1 VE>1,

we see that in this setting we have to choose
M = D||A|? and v, = b VE > 1.

Thus, the sequence of optimal function values (F(zx)) x>, approaches a b|| A||? %—approximation
of the optimal objective value F'(xz*) with a convergence rate of O(ﬁ), ie.

k]2 A2L2
Collmo = AL

Flay) =Pl < 20 ) 2

VYN > 1.

3.4 Stochastic method

The problem is the same as in the deterministic case other than the fact that at each
iteration we are only given a stochastic estimator of the quantity

1
Vign o A)) = A prox . (40)) Vhz1
Y Ak

Remark 3.4.1. Consider Algorithm for a setting where such an estimator is easily
computed.

For the stochastic quantities arising in this section we will use the following notation.
For every k > 0, we denote by o(x, ..., x)) the smallest o-algebra generated by the fam-
ily of random variables {zg,...,z;} and by Ex(:) := E[- | o(xo,...,zx)] the conditional
expectation with respect to this o-algebra.

Algorithm 3.4.1 (stochastic Variable Accelerated SmooThing (sVAST)). Let yo = xo €
R?, (Ar) p>1 & sequence of positive and nonincreasing real numbers, and (tx),~, a sequence
of real numbers with t; = 1 and t; > 1 for every k > 2. Consider the following iterative
scheme

Vk>1) | *T L
T = prox,, r (Ye—1 — Yelk—1)

_ tp—1 _
Yk =Tk + 3 (v — Tp—1),
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3 Variable smoothing for convex composite problems

where we make the standard assumptions about our gradient estimator of being unbiased,
ie.

Ek[fk] = v(g)\k+1 o A) (yk)7

and having bounded variance
Ex, [€k — V(9rpys 0 Awp) ] < 0°
for every k > 0.

Note that we use the same notations as in the deterministic case
u = Tp—1 + tg(xp — rK—1) and Fk() =f+g\0A VE>1.
Lemma 3.4.2. The following statement holds for every (deterministic) = € R? and every
k>0
2 2
x -z z— 1
Ek |:Fk+1($k+1) + H k+1 H :| < F/c—l—l(z) + H yk” + Vit (0_2 + ||AH2L§> )
29,41 29,41 2

Proof. Here we have to proceed a little bit different from Lemma[3.3:3] Namely, we have
to treat the gradient step and the proximal step differently. For this purpose we define
the auxiliary variable

2k = Yp—1 — k-1 Yk > 1.
Let k> 1 and z € R be arbitrary but fixed. From the gradient step we get

12 = 2)* = llyk—1 — Ve&r—1 — 2|2
= [lyk—1 — 211* = 29k (E—1, Yh—1 — 2) + V2l €k—1]1*

Taking the conditional expectation gives
Er—1 [llz = 2l*]= lyi—1 — 2012 = 2% (V(gx, © A)(yr—1), ye—1 — 2)+77Br—1 [ €6—1]1%]
Using the gradient inequality we deduce

Ei-1 [z = 2] < llgk—1 — 21I* = 29%((9r, © A) (¥r—1) — (g2, © A)(2))
+YeBr1 [[I1€-111%]

and therefore

(0, 0 A)yir) + 5B [z — 2]
(3.23)

1 72
< lyk—1 — 2)1* + 1 (ga, 0 A)(2) + ?’“Ek,l [1€e-117] -

Also from the smoothness of gy, o A we deduce via the descent lemma that

L
9 (Azk) < gn (Ayir) + (Vg © A1), 2 = pr-1) + 5 2 = e |
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3.4 Stochastic method

Plugging in the definition of z; and using the fact that Ly = %k we get
9 (Az) < ga (Ayr—1) — 1 (V(9r, © A)(Yr—1), Ee—1) + %H&HHQ-
Now we take the conditional expectation to obtain that
Er-1[ga, (A2)] < gx, (Aye—1) — 7 [V (9x, © A)(we-1) 1> + %Ek—l [l1€e-11?] . (3.24)
Multiplying by v and adding it to gives
VeEr—1[gx, (A2)] + %Ek—l [z = z?] <
o (A2) + gllye-r — 2l = 19 (95, © A) s )P +2Ex 1 [l l]
Now we use the assumption about the bounded variance to conclude that
YVeEr—1[gx, (Azk)] + %Ek—l [z = 2&l?] < yega, (A2) + %Hyk—l —z|> + 40 (3.25)
Next up for the proximal step we deduce
1 2 1 2
s llze — 217 < f(2) + 5 llz — =™ (3.26)

1
flxr) + —||lxr — 21 2+
(zk) 2%H | o o

Taking the conditional expectation and combining (3.25) and (3.26]) we get
1 2 1 2
Er—1 [ v(gn (Azk) + fzn)) + S llaw — 2l + 5 llzw — 2]
1

< wFH(z) + =1 = 2|1 + i,
From here, using now Lemma [2.3.9] we get that

k 1 o 1 2

By | b (wr) = mLgllAlllze — 2ll + S llze — 26l” + 5 llow — 2|
1
< FM(z) + -1 = 2|+ vio®.

Now we use
2k — 21l — Lol Allllzk — 21|

N

1 9.9 2
S RINAIP <
to obtain that

1 1
o [3F¥ ) + gllon = 212 | < WP+ Sl — 5l 4 + o L2IAIR
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3 Variable smoothing for convex composite problems

Lemma 3.4.3. Let z* be an optimal solution of[3.1 Then it holds

B[ (F (1) = F @ )] + 5l = I < Sllzo = 2°) + 30 + 222 L2) A2
Proof. Applying the previous lemma with kK = 0 and z = x*, we get that

| (@) + o = o7 2| SnF ) + gl = o7 443”4 gt E2AR,
Therefore, using the fact that yg = zg and u; = x4,

|1 (F (o) = F@) + gl =] < Gllan = o7 2 4430”4 5ot L2AP,

which finishes the proof. O

Theorem 3.4.4. Consider the setup of and let (zg);>o and (yk)x>q denote the se-
quences generated by Algorithm[3.4.1 Assume that for all k > 1

Prtt =i — thyy + tepr > 0.
Then, for every optimal solution x* of[3.1], it holds

1 4Pz &,
75 T 5 Yie (tk + Pr)
'yNtN 2 ’yNt 2 ;

1 HA||2L2
+ o tiy N > 1.
'YNt?V ( Z kY -

E[F(zn) — F(27)] <

Proof of Theorem[3.4.4 Let k > 0 be fixed. Lemma(3.4.2|for z := (1 ~ T 1) xk+tk -
gives
1 1 1P
Ei | FF (1) + o—— || —wps1 — —2%|| | <
(@ht1) 21 thar 0 e

*

1
o —
Ti+1 Ti+1

1 1 1
FRtt <<1 — > T + az*>+
i1 i1 2Vk41

From here and from the convexity of F*t1 follows

? IAl*L;

* 1 *
Ey [Fk+1(xk+1) _ Fk+1($ )] _ (1 N tkH) (Fk+l(xk) _ Fk+1(x )) <
[[ug — a*|| lug1 — 2*| ( 2 ||A||2>
2 |t {0+ |-
2Yk+1th 41 2’Yk+1ti+1 2
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3.4 Stochastic method

Let us now introduce for convenience the notation Ay, := F¥(x;,) — F¥(x*) for all k > 0.
By multiplying both sides with by tz +1, we deduce

Ek [t7 1 8k41] + (trp1 — thyy) (FF (2g) — FFH(2%)

« . 1 (3.27)
(o =12 = B [lurs = ') + s (o2 + S141°22) .

<
2Yk41

Next, by adding 2 (F*!(z;) — F*1(2*)) on both sides of (3.27), gives

1
2Vk41

B, [th 41 8%41] + prea (FF () — FFH (%) + Ex [lurs1 — 2*|%]

* * ]‘
S HR(FE (g) = FRH@) 4 ol = 2% + e <a2 + 2!!A!2L§) :

2941

Using (3.5) together with the assumption that (\;),~ is nonincreasing leads to

Bk [th418%41] + prpr (FF (2g) — FFFH(a%)) +

Ek Uk —w*2
3 B [l = 2711]
2

| ) L |
< GRAR+ et g — 2*[|* + 7 (A — )\k+1)79 + th 1 Ve <02 + 2\|A|]2L§> :

Using that ti > tz+1 — tg41, We get
Ex [th18%41] + prr (FFF () — FFH ()

1
thAk—Fi uk—x*Q—Ek Ug 1—11*2
k 2,ykﬂ(ll | [+ I¥])

2 2 2
T BT VR TN W B o + 1422
kK 9 E+1Vk+1 9 k+1\k+1 9 k+17k+1 5 g -

Multiplying both sides with %1 and putting all terms on the correct sides yields

L? 1
Ex ['Yk+1t%+1 <Ak+1 + Mgt 2g> + §||Uk+1 - x*’2] + ’Yk+1,0k+1(Fk+1(93k) - Fk+1(93*))

L? 1
< Vep1th (Ak + )\k2‘q> + §Huk — z*||?

2

L 1
+ 7k+1tk+1)\k+179 + 817 <02 + 2HA||2L§> :

(3.28)
At this point we would like to discard the term ~gy1pp11(F* 1 (zx) — F¥+1(2*)) which
we currently cannot as the positivity of FF*1(x;) — F¥+1(2*) is not ensured. So we add

2
’ykﬂpkﬂ)\kﬂ% on both sides of (3.28) and use the fact that (see (3.5]))
L2

Vh+1Pk+1 <Fk+1(xk) — FM @) + M 29> > Yer1Prst (F(2) — F(2¥)) >0
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3 Variable smoothing for convex composite problems

to deduce that

L? 1
Ey [Vkﬂtiﬂ (Ak+1 + Aet1 ;) + §||Uk+1 - 56*”1

L2 1
< Yt (Ak + Ak2g> + §||u;r<J —z*|? (3.29)
2

L 1
+ 7k+1/\k+179(tk+1 + pkt1) + th1 Vi <02 + 2HAH2LZ> .

2
Last but not least we use the that Ay + )\k% > F(x) — F(z*) > 0 and yi11 < v, to
follow that

L? L?
'Yk+1tz A+ )\k% < ’thz A+ Ak?g . (3.30)
Combining (3.29) and (3.30)) yields

L? 1
Ey [’Yk+1tz+1 <Ak+1 + Akt ;) + §\|Uk+1 - «’15*”2]

L2 1
< Wetr (Ak + )\k2g> + 5”1% —z*|? (3.31)
2

L 1
+ '}’k+1/\k+1?g(tk+l + prr1) + i (02 + 2HAH2L3> :

Let N > 2. We take the expected value on both sides (3.31) and sum from k& = 1 to
N — 1. Getting rid of the non-negative terms |Juy — x*||? gives

2 Lg Lg 1 *)|2
YNEINE AN‘F/\N? <nE A1+/\17 +§Hu1—9€ |

# Yt o) Yt (o + 5I4IPL2).
k=2 k=2

Since t; = 1, the above inequality holds also for N = 1. Now, using Lemma [3.4.3| we get
that for every N > 1

2

L 1 . N L2 N All?
INRE ANHN;] < Sllwo =t P 4 S (i) + D 7 (au” ! )
k=1 k=1

From (3.6) we follow that

L2
Nty (F(zn) — F(z*)) < ynty (AN + )\N29> ,
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3.4 Stochastic method

2

therefore, for every N > 1
N
1 * (12 Lg
Sllzo — 2|17 + ;%Ak2(tk + pr)

INAELF(e) - Fla)] <
al 1
22 2 1 2
I (R

1 \AH
. Z% tk + k)

By using the fact that A\, = ;|| A||? for every k& > 1 we deduce by dividing by yxt% that
272 N

1 1 * (12
llzo — 2|

E[F(ay) - F(a")] < —
IYNtN
e G 1||A||2L;) S vN L
’VNtN 2 pt
O
Corollary 3.4.5. Let
L+4/1+482
t1:1, tk_i_l:\/i szl,
and, for b >0,
b b
Ao = —[|Al?, and v = —  Vk> 1.
k2 k2
Then,
B[F(ay) - F(a")] < 2170210 cal laPrs L
bV N 93 f
1+ log(N

+2b 20’2+ AllPL?
) as N — +o00.

Furthermore, we have that F(xy) converges almost surely to F(
2
— IV fulfills that

Proof. First we notice that the choice of t54;
i1+t =0 Vk>1

Pri1 = th
Now we derive the stated convergence result by first showing via induction that
1 1 2
- <<= Vk>1.
kE~t ~ k -

Assuming that this holds for k£ > 1, we have that
b/ 1+4 1 T k2 1+ 1+ 4k + 4R2
< 5 < 5 =k+

2

g1 =

1
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3 Variable smoothing for convex composite problems

Lta/T4H4t  1+41+45) 14 VEE _ ke
2 = 2 = 2 = 2

Furthermore, for every N > 1 we have that

and

tpy1 =

1 AP & 4 A2L2Nb2 2bA2L2N
Wtz!\ Z tk‘|’,0k:§ IH Z 20]| A" Ly H Z
%”A”%“Q’ ik > = bAPL

VN 93 f

(3.32)

The statement of the convergence rate in expectation follows now by plugging in our

parameter choices into the statement of Theorem using the estimate (3.32)) and
checking that

Zt,ﬂk < bQZ - < b*(1+1log(N)) VN >1.

The almost sure convergence of (F(mN)) n>1 can be deduced by looking at (3.31)) and
dividing by ’Yk+1t% 41 and using that 7k+1ti 12 ’thz as well as pr = 0, which gives for
every k > 0

k+1 k+1 L2 1
F (CC k+1 ) F ( ) + >\k+17 +

Ex
2 2ty

k41 — w*\2]

. Ly 1 cio L M1 L 1
< FR(xp) — FRa) + M- + gy — 2*||> + 25220 4 (02 4 fHAﬂng )
ki thr1 2 2

Plugging in our choice of parameters gives for every k& > 0

L2 1
Ep | F¥"™ N (@p1) — FF (@) + M1 2 4+ o———5—lupyr — 27|
2 27k+1tk+1
L? 1 C
<Fk —Fk % A g 2 -
= (:Uk) (1' )+ k 9 =+ 2'7]@7%“1% T H + /{:%7
where C' > 0.

Thus, by the famous Robbins-Siegmund Theorem (see [90, Theorem 1]) we get that

L? .
(FFY (g 1) — FEFY (2%) + )‘k‘HTg)kzo converges almost surely. In particular, from the
convergence to 0 in expectation we know that the almost sure limit must also be the
constant zero. O

Finite sum. The formulation of the previous section can be used to deal e.g. with prob-
lems of the form

5 g4 3.33
min f(2) Zg ) (3.33)
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3.4 Stochastic method

for f: R4 — RU{+00} a proper, convex and lower semicontinuous function, g; : R — R
convex and Lg,-Lipschitz continuous functions and A; : R? — R? linear continuous
operators for i = 1,...,m.

Clearly one could consider

4o JRT = X RY
T = X;ilAiw

with [ A= 321, [|A:|* and

g = Xt R — RU {400}
Xty yi = 20 9i(yi)
in order to reformulate the problem as

min f(z) + g(Ax)
xER4

and use Algorithm together with the parameter choices described in Corollary
on this. This results in the following algorithm.

Algorithm 3.4.6. Let yo = z9 € R% \; = b||A||, for b > 0, and t; = 1. Consider the
following iterative scheme

i llAd?
T = =55

Aijyp—
T = Prox,, ; (yk—1 — Ve Doy Af PTOX1 o (awil))

k
(VE21) | g =/ + 2

te—1
Yr = ok + F (2p — 2-1)
t2
Aest = Aprp—th—
L A ktzH*tkH

However, problem (3.33)) also lends itself to be tackled via the stochastic version of our
method, Algorithm [3:4.1] by randomly choosing a subset of the summands. Together
with the parameter choices described in Corollary which results in the following
scheme.

Algorithm 3.4.7. Let yo = 9 € R%, b > 0, and ¢t; = 1. Consider the following iterative
scheme

_3
A= b3 1A PR
Ve = bk~ 2
7 Az _
| sy (e S A (42
k: 1

14+4/14+482

let1 = t271 :
| Yk =2kt e (Tk — Te-1),
with €; 1= (€14, €2k - -+ €mk) a sequence of i.id., {0,1}" random variables and p; =

P[EZ‘J = 1].
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3 Variable smoothing for convex composite problems

Since the above two methods were not explicitly developed for this separable case and
can therefore not make use of more refined estimation of the constant ||A||, as it is done
in e.g. [27]. However, in the stochastic case, this fact is remedied due to the scaling of
the stepsize with respect to the i-th component by p;l.

Remark 3.4.2. In theory Algorithm could be used to treat more general stochastic
problems than finite sums like (3.33]), but in the former case it is not clear anymore how
a gradient estimator can be found, so we do not discuss it here.

3.5 Numerical experiments

We will focus our numerical experiments on image processing problems. The examples
are implemented in python using the operator discretization library (ODL) [1]. We define
the discrete gradient operators D and Dy representing the discretized derivative in the
first and second coordinate respectively, which we will need for the numerical examples.
Both map from R"** to R"** and are defined by

D ) Ui — Uy 1 <1< m,
( 1u)i,j =
0 else,

and

)i w1 < <m,
(D2U)i’j - {O else

The operator norm of D; and Da, respectively, is 2 (where we equipped R"** with the
Frobenius norm). This yields an operator norm of 4/8 for the total gradient D := Dy x D
as a map from R"*% to R"*¢ x R"*5 see also |25].

We will compare our methods, i.e. the Variable Accelerated SmooThing (VAST) and its
stochastic counterpart (sVAST) to the Primal Dual Hybrid Gradient (PDHG) of |28] as
well as its stochastic version (sSPDHG) from [27]. Furthermore, we will illustrate another
competitor, the method by Pesquet and Repetti, see |83|, which is another stochastic
version of PDHG (see also [105]).

In all examples we choose the parameters in accordance with [27]:

e for PDHG and Pesquet&Repetti: 7 = 0; = Hlf”

e for sSPDHG: o; = ”77” and 7 =

0l
nmax;||A; ||’

where v = 0.99.

3.5.1 Total variation denoising

The task at hand is to reconstruct an image from its noisy observation. We do this by
solving

min o||z — b2+ Dix||1+]|| D2z ||, (3.34)
TERTXS
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3.5 Numerical experiments

(a) Groundtruth (b) Data (¢) Approximate solution

Figure 3.1: TV denoising. Images used. The approximate solution is computed by run-
ning PDHG for 7000 iterations.

105 PDHG
PDHG
2 —¥— sPDHG 10-14 —¥— sPDHG
o VAST b=0.1 2 VAST b=0.1
g SVAST b=0.1 £ 1024 SVAST b=0.1
' -3
;;’ 10 E 103
£ g
i < 107
10°4 }
10751
10° 10! 10? 10° 10" 10" 10° 10°
iterations [epochsl iterations [epochsi
. . . . . F(J?k)—F(w*)
(a) Distance to the solution. (b) Relative objective Flzo)—F(@) -
Figure 3.2: A comparison of different methods on the problem of TV denoising.
with a > 0 as regularization parameter, in the following setting: f = al|- — b||l2,91 =

g2 = |||l1, A1 = D1, A = Ds.

Figure illustrates the images (of dimension r = 442 and s = 331) used in for this
example. These include the groundtruth, i.e. the uncorrupted image, as well as the data
for the optimization problem b, which visualizes the level of noise. In Figure we can
see that for the deterministic setting our method is as good as PDHG. For the objective
function values, Subfigure this is not too surprising as both algorithms share the
same convergence rate. For the distance to a solution however we completely lack a
convergence result. Nevertheless in Subfigure we can see that our method performs
also well with respect to this measure.

In the stochastic setting we can see in Figure that, while sSPDHG provides some
benefit over its deterministic counterpart, the stochastic version of our method, although
significantly increasing the variance, provides great benefit, at least for the objective
function values.

Furthermore, Figure [3.3] shows the reconstructions of sSPDHG and our method which
are, despite the different objective function values, quite comparable.
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3 Variable smoothing for convex composite problems

(a) sVAST (b) sPDHG

Figure 3.3: TV Denoising. A comparison of the reconstruction for the stochastic variable
smoothing method and the stochastic PDHG.

3.5.2 Total variation deblurring

For this example we want to reconstruct an image from a blurred and noisy image. We
assume to know the blurring operator C' : R™*¥ — R"*5. This is done by solving

min «|Cx — bll2+|| Diz|[1+]| D2 ||1, (3.35)

xE]RTX s

for a > 0 as regularization parameter, in the following setting: f = 0,91 = «||-—bl|2,92 =
g3 = |I"ll1, A1 = C, Ay = Dy, Ay = D».

(a) Groundtruth (b) Data (c) Approximate solution

Figure 3.4: TV Deblurring. The approximate solution is computed by running PDHG for
3000 iterations.

Figure shows the images used to set up the optimization problem , in partic-
ular Subfigure which corresponds to b in said problem.

In Figure [3.5] we see that while PDGH performs better in the deterministic setting,
in particular in the later iteration, the stochastic variable smoothing method provides a
significant improvement where SPDHG method seems not to converge. It is interesting
to note that in this setting even the deterministic version of our algorithm exhibits a
slightly chaotic behaviour. Although neither of the two methods is monotone in the
primal objective function PDHG seems here much more stable.
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3.5 Numerical experiments

10
100<
< L =
. 10
2 10%4 iy
3 PDHG ° PDHG
g —— SPDHG Z 1072 — SPDHG
E Pesquet&Repetti e Pesquet&Repetti
1014 —— VAST b=0.2 03] T VAST b=02
sVAST b=0.2 sVAST b=0.2
100 10! 102 10° 10! 102
iterations [epochs] iterations [epochs]
: : . . . F(xp)—F(z*
(a) Distance to the solution. (b) Relative objective W

Figure 3.5: A comparison of different methods on the problem of TV deblurring.

3.5.3 Matrix factorization

In this section we want to solve a monconver and nonsmooth optimization problem of
completely positive matrix factorization, see |30,44]. For an observed matrix M € R**®
we want to find a completely positive low rank factorization, meaning we are looking
for z € RY® with r < s such that 272 = M. This can be formulated as the following
(robust) optimization problem
min |27z — M|, (3.36)
zeRLG®

where 27 denotes the transpose of the matrix . The more natural approach might be
to use a smooth formulation where ||-||3 is used instead of the 1-Norm we are suggesting.
However, the former choice of distance measure, albeit smooth, comes with its own set
of problems (mainly a non-Lipschitz gradient).

The so called proz-linear method presented in 37|, solves the above problem , by
linearizing the smooth (R***-valued) function x ++ 2’z inside the nonsmooth distance
function. In particular for the problem

min g(c(x))

for a smooth vector valued function ¢ and a convex and Lipschitz function g, [37] proposes
to iteratively solve the subproblem

P = argmin {g(cm) DO — ) + ol xkué} (3.37)

for a stepsize t < (LgLDC)_l. For our particular problem described in (3.36) the sub-
problem looks as follows

. 1
Tpa1 —argmm{foa:—MHl—i—QHx—ka%} , (3.38)

X8
IERZO
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3 Variable smoothing for convex composite problems

Objective function in completely positive matrix factorization

w0 K LR NS
g
—

T 107

- 1
w4 \\
10" 4

4

objective
objective

107+

w4

PDHG . PDHG
1ot | —— sPDHG 7 PDHG
WVAST VAST
—— VAST W07 e vAST
1(5“ ull‘ 1(‘!-’ 1(;-' ull‘ u‘!-’
iterations iterations
(a) Random starting point. (b) Starting point close to the solution.

Figure 3.6: Comparison of the for different starting points. We run 40 epochs with 5
iterations each. For each epoch we choose the last iterate of the previous
epoch as the linearization. For the stochastic methods we fix the number
of rows (batch size) which are randomly chosen in each update a priori and
count d divided by this number as one iteration. For the randomly chosen
initial point we use a batch size of 3 (to allow for more exploration) and
for the one close to the solution we use 5 in order to give a more accuracy.
The parameter b in the variable smoothing method was chosen with minimal
tuning to be 0.1 for both the deterministic and the stochastic version.

and therefore fits our general setup described in (3.1) with the identification f = ||- —

kag—i—%rm(m), g = | and A = .CC{ Moreover, due to its separable structure, the
>0

subproblem ([4.3)) fits the special case described in (3.33) and can therefore be tackled
by the stochastic version of our algorithm presented in Algorithm [3.4.7} In particular
reformulating (3.37) for the stochastic finite sum setting we interpret the subproblem as

- 1
Tpy1 = argmin {Z fo[z, e — M1, :]H1 + 5”1’ — kag} , (3.39)

zeRTGT Li=1

where M([i,:] denotes the i-th row of the matrix M.

In comparison to Section [3.5.1and Section [3.5.2a new aspect becomes important when
evaluating methods for solving . Now, it is not only relevant how well subprob-
lem is solved but also the trajectory taken in doing so as different paths might lead
to different local minima. This can be seen in Figure [3.6|where PDHG gets stuck early on
in bad local minima. The variable smoothing method (especially the stochastic version)
is able to move further from the starting point and find better local minima. Note that
in general the methods have a difficulty finding the global minimum 2, € R3*% (with
optimal objective function value zero, as constructed M := $¥;ue$true € RO0%60 ip a]]
examples).
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4 Variable smoothing for weakly convex
composite problems

We study minimization of a structured objective function, being the sum of a smooth
function and a composition of a weakly convex function with a linear operator. Ap-
plications include image reconstruction problems with regularizers that introduce less
bias than the standard convex regularizers. We develop a variable smoothing algorithm,
based on the Moreau envelope with a decreasing sequence of smoothing parameters, and
prove a complexity of O(e~3) to achieve an e-approximate solution. This bound inter-
polates between the O(¢~2) bound for the smooth case and the O(e~*) bound for the
subgradient method. Our complexity bound is in line with other works that deal with
structured nonsmoothness of weakly convex functions.

4.1 Problem setting and motivation

We study minimization of the sum of a smooth function A and a possibly nonsmooth,
weakly convex function g composed with a linear operator defined by the matrix A €
R™ 4 that is,

min F(z) := h(z) + g(Azx) ¢. (4.1)
z€R

Our approach makes use of the Moreau envelope (see Definition [2.3.6) gy, for a positive
scalar A, together with gradient descent. Steps of the algorithm have the form

2w —=V(h+gxo A)(z),

for some step length . For accelerated versions of this approach for convex problems see
Chapter [3] or [23][101].

4.1.1 Composite problems

We discuss several nonconvex instances of problems of the form (4.1)) as the convex case
has been discussed in Chapter

Weakly Convex Regularizers. Functions that are “sharp” around zero have a long history
as sparsity-inducing regularizers. Foremost among such functions is the ¢; norm |-||1,
which is used for example in sparse least-squares regression (also known as LASSO):

1
min —||Az — b|*+|z||:
z 2
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or the anisotropic Total Variation denoising or deblurring problems and .
However, the use of the ¢; regularizer tends to depress the magnitude of nonzero elements
of the solution, resulting in bias. This phenomenon is a consequence of the fact that
the proximal operator of the 1-norm, often called the soft thresholding operator, does
not approach the identity for larger values of its argument. For this reason, nonconvex
alternatives to ||-||; are often used to reduce bias. These include £,-norms (with 0 < p < 1)
which are not weakly convex, and the several weakly convex regularizers, which we now
describe. The minimaz concave penalty (MCP), introduced in [108] and used in [57,96],
is a family of functions 7,9 : R — R involving two positive parameters v and ¢, and

defined by
2
vliz|—-%, |z|< O,
Tl/,@(x) ::{ | | 20 | |

2 .
% , otherwise.

(Note that this function satisfies the definition of p-weak convexity with p = #~1.) The
proximal operator of this function (called firm threshold in [7]) can be written in the
following closed form when 6 > :

0, ] < By,
proxg, , (v) = { S By < [2]< 0,
x, |z|> Ov.

The fractional penalty function (cf. [57.82]) ¢q : R — Ry (for parameter a > 0) is

]

P T

The smoothly clipped absolute deviation (SCAD) |38 (cf. |57]) is defined for parameters
v >0 and 6 > 2 as follows:

vlzl, z|< v,
_ 2 9 4,2
ryo(z) = %’ v < |t|< Oy,
2
)y It]> v

(This function is (6 — 1)~ '-weakly convex.)

Since these functions approach (or attain) a finite value as their argument grows in
magnitude, they do not introduce as much bias in the solution as does the ¢; norm, and
their proximal operators approach the identity for large arguments.

These regularizers have, however, mostly been used in the simple additive setting

min h(x) + g(x)
z€R4

for a smooth data fidelity term A and nonsmooth regularizer g, for example in least
squares or logistic regression [96] and compressed sensing (cf. [7]).
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4.1 Problem setting and motivation

Weakly convex composite losses. The use of weakly convex functions composed with
linear operators has been explored in the robust statistics literature. An early instance
is the Tukey biweight function [8], in which g(Az) has the form

g(Azx) = ; o(A;x —b;), where ¢(0) = 1o (4.2)

This function behaves like the usual least-squares loss when 62 < 1 but asymptotes at
1. It is p-weakly convex with p = 6.

A different (but similar) definition of the Tukey biweight function appears in |63,
Section 2.1]. This same reference also mentions another nonconvex loss function, the

Cauchy loss, which has the form (4.2)) except that ¢ is defined by
52 92
p(f) = Elog 1+? ;
for some parameter £. This function is p-weakly convex with p = 6.

4.1.2 Complexity bounds for weakly convex problems

To put our results in perspective, we provide a review of the literature on complexity
bounds for optimization problems related to our formulation (4.1)), including weakly
convex functions. In all cases, these are bounds on the number of iterations required to
find an approximately stationary point, where our measure of stationarity is based the
norm of the gradient of the Moreau envelope (a smooth proxy).

The best known complexity for black box subgradient optimization for weakly convex
functions is O(e~*). This result is proved for stochastic subgradients in [35], but as in the
convex case, there is no known improvement in the deterministic setting. As in convex
optimization, subgradient methods are quite general and implementable for weakly con-
vex functions. However, when more structure is present in the function, algorithms that
achieve better complexity can be devised. In particular, when the proximal operator of
the nonsmooth weakly convex function can be calculated analytically, complexity bounds
of O(e=2) can be proven (see Section , the same bounds as for steepest descent meth-
ods in the smooth nonconvex case. This means that the entire difficulty introduced by
the nonsmoothness can be mitigated as long as it is treated by a proximal operator.

For convex optimization problems, bounds of O(¢!) can be obtained for gradient
methods on smooth functions and O(e~'/2) for accelerated gradient methods. These
same bounds can also be obtained for nonsmooth problems provided that the nonsmooth
function is handled by a proximal operator. When the explicit proximal operator is not
available and subgradient methods have to be used, the complexity reverts to O(e~2).

It is possible to keep the O(e~2) rate when just a local model of the weakly convex
part is evaluated by a convex operator. The paper [37] studies optimization problems of
the type

min h(z) + g(c(z)
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4 Variable smoothing for weakly convex composite problems

where h is proper, convex and lower semicontinuous, g is convex and Lipschitz continuous,
and c is smooth. (Under these assumptions, the composition goc is weakly convex.) The
O(e72) bound is proved for an algorithm in which the (convex) subproblem

min h(y) + g(e(e) + Ve(@)(y — ) + o lly — 2P (4.3)

is solved explicitly. In the more realistic case in which must be solved by an iterative
procedure, a bound of O(e~?) is obtained in [37].

Functions of the form g(c(x)) have also been studied in [56] for the case of a smooth
nonlinear vector function ¢ and a prox-regular g. This is more general than the for-
mulations consider in this paper, both in the fact that all weakly convex functions are
prox-regular, and in the nonlinearity of the inner map. The subproblems in [56| have
a form similar to , and while convergence results are proved in the latter paper, it
does not contain rate-of-convergence results or complexity results.

A different weakly convex structure is explored in Chapter [6] in which the weak con-
vexity stems from a smooth saddle point problem. We consider there

min max ®(z,y),
Ty
where ®(x,-) is concave, ®(-,y) is nonconvex, and ®(-,-) is smooth. In this setting a
bound of O(e~?) for a method that uses only gradient evaluations can be achieved [61,99].

In light of the considerations above, the complexity bound of O(e~3) for our algo-
rithm seems almost inevitable. It interpolates between the setting without structural
assumptions about the nonsmoothness (black box subgradient) and the perfect struc-
tural knowledge of the nonsmoothness (explicit knowledge of the proximal operator).

In Section we treat the simpler setting in which the linear operator from is
the identity, so that F(x) = h(x) + g(x). Similar problems have been analyzed before,
for example, in |7,96]. However, it is assumed in [7] that convexity in the data fidelity
term h compensates for nonconvexity in the regularizer g such that the overall objective
function F' remains convex. (We make no such assumption here.) The paper [96] does not
make such restrictive assumptions and proves convergence but not complexity bounds.

4.1.3 Stationarity

Recall that we say that a point z* is a stationary point for a function if the Fréchet
subdifferential of the function contains 0 at x*. The concept of nearly stationary is
not quite so straightforward. We motivate our approach by looking first at the simple
additive composite problem, also discussed in Section [£.3] which corresponds to setting

A =1T1in (4.1)), that is,
min h(z) + g(z). (4.4)

Stationarity for (4.4)) means that 0 € 9(h+g)(z*), that is, —Vh(z*) € 0g(z*). A natural
definition for e-approximate stationarity for a point x would thus be

dist(—=Vh(z),0g9(x)) <e.
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4.1 Problem setting and motivation

However, since we are running gradient descent on the smoothed problem, our algorithm
will naturally compute and detect points with that satisfy a threshold condition of the
form

[Vh(z) + Vgr(z)|| < e (4.5)

Recall Lemma which says that Vg,(z) € dg(prox,, (z)) for all . It tells us that

when (4.5 holds, then
dist(=Vh(z), dg(prox,, (v))) < ¢,

which means that the two arguments of Vi and dg do not quite match. In general,
prox, (x) might even be arbitrarily far away from x. We can remedy this issue by
requiring ¢ to be Lipschitz continuous, see Lemma [2.3.9]

When z € R? satisfies , Vh is Lyp-Lipschitz and g is Lg-Lipschitz, we have

dist(—Vh(prox,, (z)), dg(prox,, (z)))
< [[Vh(proxy, (2)) — VA()|+ dist(—VA(z), dg(prosy, (2)))
< Lyp ||z — prox,, (z) ||+€ (from (4.5 and (2.3))
< LypLgh + € (from ([2.5))).
Thus, if X\ is sufficiently small and x satisfies (4.5)), then prox, g (x) is near-stationary
for (4.4)).
4.1.4 Stationarity for the composite problem

It follows immediately from (2.3) in Lemma that for A € (0,p™!), we have for all
r € R4
V(gxo A)(z) = A*Vgy(Ax) € A*0g(prox,, (Az)). (4.6)

Extending the results of the previous section to the case of a general linear operator A
in (4.1) requires some work. Stationarity for (4.1]) requires that 0 € Vh(z) + A*0g(Ax),

so e-near stationarity requires
dist(—Vh(z), A*0g(Ax)) < e. (4.7
Our method can compute a point x such that
IVh(z) + V(gro A)(z)[| <,
which by implies that
dist(—=Vh(z), A*0g(z)) <€, for z=prox,,(Az), (4.8)
where, provided that g is Lg-Lipschitz continuous, we have
Az — 2[|< Ly (4.9)

The bound in (4.8)) measures the criticality, while the bound in (4.9)) concerns feasibility.
The bounds (4.8)), (4.9) are not a perfect match with (4.7)), since the subdifferentials of
h and g o A are evaluated at different points.
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4 Variable smoothing for weakly convex composite problems

Surjectivity of A. When A is surjective, we can perturb the x that satisfies (4.8]), (4.9)
to a nearby point * that satisfies a bound of the form (4.7). Since 2z = prox,, (Az) is in
the range of A, we can define

x* ;= arg min {Hx —2|?: A2’ = z}, (4.10)
z'eR4
which is given explicitly by
=1 — AY(AA) N Az — 2) =z — A (Az — 2)
where AT := A*(AA*)™! is the pseudoinverse of A. The operator norm of the pseudoin-

verse is bounded by the inverse of the smallest singular value oy, (A) of A, so when g is
L 4-Lipschitz continuous, we have from (4.9)) that

|2 — || < omin(A) | Az — 2||< omin(A) T L A. (4.11)

The point x* is approximately stationary in the sense of (4.7)), for A sufficiently small,
because

dist(=Vh(z"), A*0g(Az™))
< [[VA(z®) = Vh(z)|+ dist(=Vh(z), A*0g(2)) (since Az* = z = prox, , (Az))

< Lypllz — x|+ (from (|4.8]))
< Lynomin(A) ' LyA + ¢ (from ([@.11))). (4.12)

By choosing A small, z* will be an approximate solution in the stronger sense (4.7)
and not just the weaker notion of (4.8]), (4.9), which we have to settle for if A is not

surjective.

4.2 Main results

We describe our variable smoothing approaches for the problem , where we assume
that h is Lyp-smooth, g is possibly nonsmooth, p-weakly convex, and L4-Lipschitz con-
tinuous, and A is a nonzero linear continuous operator. For convenience, we define the
smoothed approximation Fj, : R — R based on the Moreau envelope with parameter Ay
as follows:

Fi(z) := h(z) + g5, (Az).
We note from Lemma and the chain rule that

1 *
VFEi(x) = Vh(z) + )\—kA (Az — prox,, , (Az)). (4.13)
The quantity Lj defined by

2 -1 P

is a Lipschitz constant of the gradient of VF}j, see Lemma When pA, < 1/2, the
maximum in (4.14) is achieved by A1, so in this case we can define

Ly := Ly, + HA”Q//\k (4.15)

46



4.2 Main results

4.2.1 An elementary approach

Our first algorithm takes gradient descent steps on the smoothed problem, that is,

Trt1 =k — VeV (1), (4.16)

for certain values of the parameter \; and stepsize ;. From (4.13]), the formula (4.16)

is equivalent to
Tyl = Tp — }\/—]ZA*(Amk — prox,, , (Azg)) — v Vh(x).

Our basic algorithm is described next.
Algorithm 4.2.1 (Variable smoothing). For an initial value z; € R? we iterate
_ -17.-1/3 . —
(Vk > 1) \‘ A = (2p)" k7/°,define Ly as in (4.15)), set v, = 1/Ly,
Trt1 = Tk — VeV EFi(zk)

We now state the convergence result for Algorithm [£.2.1] This result and later results
make use of a quantity
F* := liminf Fy(xy), (4.17)
k—o00

which is finite if F' is bounded below (and possibly in other circumstances too). When
F* = —o0, the claim of the theorem is vacuously true.

Theorem 4.2.2. Suppose that Algorithm is applied to the problem (4.1), where g
is p-weakly conver and Vh and g are Lipschitz continuous with constants Ly, and Lg,
respectively. We have for all k > 1

min dist(—Vh(z;),A"dg(prox, , (Az;)))

1<i<k
—-1/3 / 2 Ik —179
<k LVh+2pHAH \/Fl(a:l) F* + (2p) Lg,

where
| Az — proxy , (Aaj) < 57/3(2p) ' L,

and F* is defined as in {.17)). If A is also surjective, then for x := xj, — At (Azy, —
prox, , (Azy)), we have

1I§njl£k dist(=Vh(z}), A*0g(Ax}))

<k13 (\/LVh T (Qp)HAHQ\/FI(«Tl) — P+ (2p) L2+ LVthin(A)_ng>

and ||z; = 2311 omin(A) " LgAj = omin(A) " Ly(20) 757,

Before proving this theorem, we state and prove a lemma that relates the function
values of two Moreau envelopes with two different smoothing parameters. In the convex
case, such statements are well known, but in the nonconvex case this result is novel.
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4 Variable smoothing for weakly convex composite problems

Lemma 4.2.3. Let g : R” — RU{+o0} be a proper, p-weakly conver and lower semicon-
tinuous function, and let Ao and A1 be parameters such that 0 < Ay < Ay < p~'. Then,

we have
1A — X

Do) < gn(y) + = M|V, ()%
2 Ay

If, in addition, g is Lg-Lipschitz continuous, we have

11— X

< —
D) < gxn (y) + 2

Proof. By using the definition of the Moreau envelope, together with Lemma [2.3.7] we
obtain

a(s) = i {0+ -l - ul?

ML

u€ER”

- 1 , 1/1 1 )

= min o)+ 5y — a4 (5 - 5 ) o= ul?

< g(proxy,, (1)) + ——ly — proxy,, () 242 (= — L) 1y — proxy,, ) |1

1/ A=A
=@+ 5 (T ) MlVon )P,
2 A2

proving the first claim. The second claim follows immediately from ([2.4)). O

Proof of Theorem[{.2.3. Since L = 1/ is the Lipschitz constant of VFj, we have for
any k > 1 that

1
Fr(zi1) < Fi(@p) + (VEF(@r), Tos1 — a) + m”fk-i-l — x|,

By substituting the definition of x4 from (4.16]), we have
Fi(ei) < Fular) = 3 [V Fuen)] (4.18)
From Lemma we have for all z € R?

Ak
Ak41

Fa1(x) < Fi(x) + %()\k — Akt1) 1(Var ) (Az)[P< Fi(x) + (A — Aes1) L2,

M <2 We set x = ZTr+1 and substitute

where we used in the second inequality that g S

into (4.18) to obtain
Froa(@rer) < Feer) = 5 [V Eu(0) [P+ = Mesr) L.

By summing both sides of this expression over k = 1,2,..., K for K > 1, and telescoping,
we deduce

K
> %IIVFk(ka)HQS Fi(z1) = Fr(zk) + (M = Ag)L2 < Fi(wy) — F*+ M L2 (4.19)
k=1
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Since
-1
e = #2 > 13 _1(2/)) _ 13 1 .
NeLwn + 4] 2p) L + AP Lon + 20[A]
we have from (4.19)) that
1

K

. 1o . B

meglKHVFj(xj)Hng kY3 < Fi(a) — F*+ (2p) L2, (4.20)
Vh P << P

Now we observe that for all K > 1

§ -1/3 § ol —-1/3 ! -1/3 3 2/3
> — — — —

1

1
> (K+1)2/3_1Z §K2/3’

where the final inequality can be checked numerically. Therefore, by substituting into (4.20)),
we have

: Lyvn + (20)] A% -
2 Vh P * 172
min [V ()" < 4 723 (Fl(ﬂcl) — "+ (2p) Lg)

and so

1g}i§nKHVFj($j)H§ K13’

where C' := 24/Lyp, + (2p)||A||2\/F1(331) —F* 4 (2,0)_1L§. By combining this bound
with (4.8)), and defining z; := prox, g (Az;) for all j =1,...,k, we obtain

(4.21)

. . « . C
min, dist(~Vh(z;), A'0g()) < min |[VE(x))|< 1575

1<j<k

where we deduce from (2.5) that

(2P)71Lg

[Az; — 2| < vE

Vi > 1.

The second statement concerning surjectivity of A follows from the consideration made

in (1) to (112). 0

There is a mismatch between the two bounds in this theorem. The first bound (the
criticality bound) indicates that during the first k = O(e~3) iterations, we will encounter
an iteration j at which the first-order optimality condition is satisfied within a tolerance of
¢. However, this bound could have been satisfied at an early iteration (that is, j < e3),
for which value the second (feasiblity) bound, on ||Az; — prox, , (Az;) ||, may not be

39
particularly small. The next section describes an algorithm that remedies this defect.
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4.2.2 An epoch-wise approach

We describe a variant of Algorithm [£:2.1] in which the steps are organized into a series
of epochs, each of which is twice as long as the one before. We show that there is some
iteration j = O(e3) such that both dist(—Vh(a:j),A*@g(prox/\jg (Az;))) and ||Az; —
prox, (Az;) || are smaller than the given tolerance e.

Algorithm 4.2.4 (Variable smoothing with epochs).

Require: z; € R? and tolerance € > 0;
for | =0,1,... do
Set S; + o0, Set j; + 2
for k=22'4+1,...,2"%1 —1do
Set A, < (Zp)flk‘_l/g, define Ly as in ({4.15)), set g < 1/Lg;
Set wpq1 < xp — YV Fr(21);
if [VFpi1(2k41)]|< S then
Set Sj < HVF]C+1(£L‘]€+1)H; Set j; + k+1;
if S; <eand ||Azrgs1 — prox, . (Azg41) ||< € then
STOP;
end if
end if
end for
end for

Theorem 4.2.5. Consider solving (4.1)) using Algorithm where h and g satisfy the
assumptions of Theorem and F* defined in (4.17) is finite. For a given tolerance
e > 0, Algorithm generates an iterate xj for some j = O(e~3) such that

dist(—Vh(z;), A"0g(zj)) <€ and |[|Az; —zj||<e, where z; = prox, , (Az;).
Proof. As in (4.19), by using monotonicity of (Fj(2x));>; and discarding nonnegative
terms, we have that for all [ > 1

2+l

k . _
> ZIVE@)PS Fi(a) = F* + (20) ' L2,
k=2!

With the same arguments as in the earlier proof, we obtain

211 211

-1/3 F -1/3 2 -1/3 3 ol4+1,2/3 1\2/3
Zk: > Z x dz = x dx:f((2 )= (2) )
k=2 k=21 7k & 2
3 (52/3 n2/3 _1,.5.2/3
= — — > — .

)@ e

Therefore, we have
C
i (r <
RO IV EFj(z;)]I< )
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with C defined as before, that is, C' = 2/Lyp, + (2p)HAH2\/F1(a:1) — F* + (2p)_1L§.
Noting that z; := prox, (Az;), we have as in (4.21) that

: . X C
i dist(—Vh(z;), A*dg(z;)) < ) (4.22)
as previously. Further, we have for 2/ < j < 21 — 1 that
(20) 'Ly _ (2p)7'L
[Azj — 2| < LyA < ! < g, (4.23)

j1/3 - (2l)1/3

From (4.22)) and (4.23) we deduce that Algorithm must terminate before the end
of epoch 1, that is, before 2! iterations have been completed, where [ is the first non-

negative integer such that
2 > max{C?3, (2,0)73L2}e_3.
Thus, termination occurs after at most 2 max{C?, (2p)_3L§}6_3 iterations. O

For the case of A surjective, we have the following stronger result.

Corollary 4.2.6. Suppose that the assumptions of Theorem [{.2-5 hold, that A is also
surjective, and that the condition || Az — prox, . (Azg41) ||< € in Algorithm is

replaced by |zp+1 — 254 |< €, for af = z; — AT(Azj — Prox; o (Ax;)). Then for some
§' = O(e3), we have that

dist (—=Vh(x},), A*0g(Ax})) < e
and |Jzj — % ||< €.

Proof. With the considerations made in the previous proof as well as the one made
in (4.10) to (4.12), we can choose [ to be the smallest positive integer such that

21 > 9 max{C?, amin(A)_?’Lz(Qp)_?’}e_?’.
The claim then holds for some j/ < 2141, O

Although Algorithm seems more complicated than Algorithm the steps are
the same. The only difference is that for the second algorithm, we do not search for the
iterate that minimizes criticality across all iterations but only across at most the last
k/2 iterations, where k is the total number of iterations.
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4.3 Proximal gradient

Here we derive a complexity bound for the proximal gradient algorithm applied to the
more elementary problem (4.4]) studied in Section 4.1.3] that is,

min F(z) := h(z) + g(x), (4.24)

z€R4
for h : RY — R a Lyx-smooth function and g : R — RU{+o00} a possibly nonsmooth, but
proper, p-weakly convex and lower semicontinuous function. Such a bound has not been
made explicit before, to the authors’ knowledge, though it is a fairly straightforward
consequence of existing results. The bound makes a interesting comparison with the
result in Section where the nonsmoothness issue becomes more complicated due to
the composition with a linear operator. In this section, we assume that a closed-form
proximal operator is available for g, and we show that the complexity bound of O(e~?)
is the same order as for gradient descent applied to smooth nonconvex functions.

Standard proximal gradient for (4.24)), given parameter v € (0, min{p~'/2, L%}l}] and

initial point x1, is as follows:

. 1
T2 = arg min {g<x> (VA —a) + ol — ka?} S ()
R 2
= prox, (v —YVh(zg)), k=1,2,...,

where the choice of v ensures that the function to be minimized in ([#.25) is (y~! — p)-
strongly convex, so that xx1 is uniquely defined.
We have the following convergence result.

Theorem 4.3.1. Consider the algorithm defined by (4.25)) applied to problem (4.24)),

where we assume that g is p-weakly convex and that Vh is Lipschitz continuous with
constant Lygy. Supposing that v € (0, min{p~1/2, Lo} }], we have for all k > 1 that

-1
. ‘ B + Ly,
) < 1/2\/ﬁ T _T VA
2§1;1£1£1+1 dlst((),a(h—l—g)(x])) <k 2(F(x1) — F7) m’

where F* is defined in (4.17)).

Proof. Note first that the result is vacuous if F* = —oo, so we assume henceforth that
F* is finite. We have for every z € R that

1 1, _
9(@p+1) + b)) + (VA(zk), Tes1 — Ti) + %Hxlﬁl - ka2+§(7 L= p)lle =z
1
< g(@) + h(xr) + (Vh(zp), 2 — z) + %Hw — %,
By applying the inequality

1
hMzgy1) < h(zg) + (Vh(xg), g1 — zk) + %kaﬂ — kaz for all z € RY,
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4.3 Proximal gradient

obtained from the Lipschitz continuity of VA and the fact that v < L%}z, we deduce that

1 _ 1
Flein) + 507" = o)l = i l’< @) + h(en) + (Th(ae). 2 =) + 5l - i

for every x € R%. By setting & = x, we obtain

1

F(zpy1) + 5(’7—1 — ek — Tppa |’ < Flag),

which shows, together with the definition (4.17)), that

o0

2(F(xy) — F*
S — a2 2@ =) (4.26)
k=1 T

From the optimality conditions for (4.25)), we obtain
0 € Vh(zy) + 0g(wr41) + 7 (Trs1 — 71)

which also shows that
1
W41 1= ;("L‘k — xp41) + Vh(zps1) — Vh(zg) € O(h + g)(zp41), (4.27)

so that )
lwrsal< (v + Lvn) lor — zpga .
By combining this bound with (4.26)), we obtain

- 14 1,2
S i [P< 2(F ) — £y Lwn)
from which it follows that
(771 + LVh)

min [[w; ]| < A/2(F(21) — F*)

1<j<k vk /7—1 _ ,0'

The result now follows from (4.27)), when we note that

[min, dist(0,0(h + g)(j11)) < min, fwj I

O

This theorem indicates that the proximal gradient algorithm requires at most O(e~?2)
to find an iterate with e-approximate stationarity. This bound contrasts with the bound
O(e73) of Section for the case of general A. Moreover, the O(¢~2) bound has the
same order as the bound for gradient descent applied to general smooth nonconvex op-
timization.
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5 Convex-concave minimax problems

Motivated by the training of Generative Adversarial Networks (GANs), we study meth-
ods for solving minimax problems with additional nonsmooth regularizers. We do so
by employing monotone operator theory, in particular the Forward-Backward-Forward
(FBF) method, which avoids the known issue of limit cycling by correcting each update
by a second gradient evaluation. Furthermore, we propose a seemingly new scheme which
recycles old gradients to mitigate the additional computational cost. In doing so we re-
discover a known method, related to Optimistic Gradient Descent Ascent (OGDA). For
both schemes we prove novel convergence rates for convex-concave minimax problems via
a unifying approach. The derived error bounds are in terms of the gap function for the er-
godic iterates. For the deterministic and the stochastic problem we show a convergence
rate of O(1/k) and O(1/vk), respectively. We complement our theoretical results with
empirical improvements in the training of Wasserstein GANs on the CIFAR10 dataset.

5.1 About GANs

Generative Adversarial Networks (GANs) |43] have proven to be a powerful class of
generative models, producing for example unseen realistic images. Two neural networks,
called generator and discriminator, compete against each other in a game. In the special
case of a zero sum game this task can be formulated as a minimax problem.

Conventionally, GANs are trained using variants of (stochastic) Gradient Descent As-
cent (GDA) which are known to exhibit oscillatory behavior and thus fail to converge
even for simple bilinear saddle point problems, see [42]. We therefore propose the use of
methods with provable convergence guarantees for (stochastic) convex-concave minimax
problems, even though GANs are well known to not warrant these properties. Along sim-
ilar considerations an adaptation of the Extragradient method (EG) |54] for the training
of GANs was suggested in [40], whereas [33,34,[58| studied Optimistic Gradient Descent
Ascent (OGDA) based on optimistic mirror descent |87,88]. We however investigate the
Forward-Backward-Forward (FBF) method [103] from monotone operator theory, which
uses two gradient evaluations per update, similar to EG, in order to circumvent the
aforementioned issues.

Instead of trying to improve GAN performance via new architectures, loss functions,
etc., we contribute to the theoretical foundation of their training from the point of view
of optimization.

Contribution. Establishing the connection between GAN training and monotone inclu-
sions |6] motivates to use the FBF method, originally designed to solve this type of
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5 Convex-concave minimax problems

problems. This approach allows to naturally extend the constrained setting to a regular-
ized one making use of the proximal operator.

We also propose a variant of FBF reusing previous gradients to reduce the computa-
tional cost per iteration, which turns out to be a known method, related to OGDA. By
developing a unifying scheme that captures FBF and a generalization of OGDA, we re-
veal a hitherto unknown connection. Using this approach we prove novel non asymptotic
convergence statements in terms of the minimax gap for both methods in the context
of saddle point problems. In the deterministic and stochastic setting we obtain rates of
O(1/k) and O(1/vk), respectively. Concluding, we highlight the relevance of our proposed
method as well as the role of regularizers by showing empirical improvements in the
training of Wasserstein GANs on the CIFAR10 dataset.

Organization. In Section[5.2] we highlight the connection of GAN training and monotone
inclusions and give an extensive review of methods with convergence guarantees for the
latter. The main results as well as a precise definition of the measure of optimality are
discussed in Section Concluding, Section illustrates the empirical performance
in the training of GANs as well as solving bilinear problems.

5.2 GAN training as monotone inclusion

The GAN objective was originally cast as a two-player zero-sum game (see [43]) between
the discriminator D, and the generator G, given by

T

min m?jiX Epqllog(Dy(p))] + E¢pllog(l — Dy(G2(€)))],

exhibiting the aforementioned minimax structure. Due to problems with vanishing gradi-
ents in the training of such models, a successful alternative formulation called Wasserstein
GAN (WGAN) [2] has been proposed. In this case the minimization tries to reduce the
Wasserstein distance between the true distribution ¢ and the one learned by the gen-
erator. Reformulating this distance via the Kantorovich-Rubinstein duality leads to an
inner maximization over 1-Lipschitz functions which are approximated via neural net-
works, yielding the saddle point problem

min max Epq[Dy(p)] = Ecp[Dy(G2(C))]-

T

5.2.1 Convex-concave minimax problems

Due to the observations made in the previous paragraph we study the following abstract
minimax problem

min max W(z,y) := f(z) + Eenq [D(2,4:6)] = h(y), (5.1)

where the convex-concave coupling function ®(x,y) := Ee¢ug [P(,y; )] is differentiable
with L-Lipschitz continuous gradient. The proper, convex and lower semicontinuous
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5.2 GAN training as monotone inclusion

functions f : R — RU {400} and h : R® — R U {400} act as regularizers. A solution
of (5.1)) is given by a so-called saddle point (x*,y*) fulfilling for all 2 and y

U(z*,y) < W(z"y") < ¥(z,y).

In the context of two-player games this corresponds to a pair of strategies, where no
player can be better off by changing just their own strategy.

For illustrative purposes, we will restrict ourselves for now to the special case of the
deterministic constrained version of , given by

i o
REr ey

where f and h are given by indicator functions of nonempty, convex and closed sets X
and Y, respectively.

5.2.2 Minimax problems as monotone inclusions

If the coupling function ® is convex-concave and differentiable then the necessary and
sufficient optimality condition can be written as a so-called monotone inclusion using

F(l‘,y) = (qu)(xvy)7 —qu)(l',y)) (5'2)

and the normal cone Ngq of the convex set Q := X x Y. By denoting w = (x,y) € R™
where m = d + n, it reads
0 € F(w) + Ng(w). (5.3)

The normal cone mapping is given by
No(w)={veR": (v, —w) <0 Vu €},

for w € Q and Ng(w) = 0 for w ¢ Q. Here, the operators F' and N satisfy well known
properties from convex analysis [6], in particular the first one is monotone (and Lipschitz
if V& is so) whereas the latter one is maximal monotone. We call a, possibly set-valued,
operator A from R™ to itself monotone [6] if

(u—u,z2—=2"Y >0 Vue A(z),u € A(Z).

We say A is maximal monotone, if there exists no monotone operator A’ such that the
graph of A is properly contained in the graph of A’.

Problems of type have been studied thoroughly in convex optimization, with
the most established solution methods being Ezxtragradient (aka Korpelevich) |54] and
Forward-Backward-Forward (aka Tseng) |103]. Both methods are known to generate
sequences of iterates converging to a solution of . Note that in the unconstrained
setting (i.e. if £ is the entire space) both of these algorithms even produce the same
iterates.

o7
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5.2.3 Solving monotone inclusions

The connection between monotone inclusions and saddle point problems is of course not
new. The application of Extragradient (EG) to minimax problems has been studied in
the seminal paper [71] under the name of Mirror Proz and a convergence rate of O(1/k)
in terms of the function values has been proven. Even a stochastic version of the Mirror
Prox algorithm has been studied in [51] with a convergence rate of O(1/vk). Applied to
problem , with P being the projection onto €2, it iterates

wy, = Polzr — apF'(21)]

EG:
\‘ zk+1 = Polzr — ap F(wg)].

The Forward-Backward-Forward (FBF) method has not been studied rigorously for min-
imax problems yet, despite promising applications in [24] and its advantage of it only
requiring one projection, whereas EG needs two. It is given by

wy, = Polzr — apF(2)]

21 = Wi + ag(F(21) — F(wg)). (5:4)

FBF: {
Both, EG and FBF, have the “disadvantage” of needing two gradient evaluations per
iteration. A possible remedy — suggested in [40| for EG under the name of extrapolation
from the past — is to recycle previous gradients. In a similar fashion we introduce

wg = Polzi — apF(wi_1)]

FBFp:
P L 21 = Wi + ag(F(wg-1) — F(wy)),

(5.5)
where we replaced F(zp) by F(wg_1) twice in (5.4). As a matter of fact, the above
method can be written exclusively in terms of the first variable wj by incrementing the
index k in the first update and then substituting in the second line. This results in

wi41 = Py [wk — apy1F(wg) + o (F(wp—1) — F(wk))]- (5.6)

This way we rediscover a known method which was studied in [66| for general monotone
inclusions under the name of forward-reflected-backward. It reduces to optimistic mirror
descent [87,88] in the unconstrained case with constant stepsize oy = «, giving

Wit1 = wi — a(2F (wg) — F(wg—1)) (5.7)

which has been proposed for the training of GANs under the name of Optimistic Gradient
Descent Ascent (OGDA), see |33L|34)58].

All of the above methods and extensions rely solely on the monotone operator formu-
lation of the saddle point problem where the two components = and y play a symmetric
role. Taking the special minimax structure into consideration, [46] showed convergence
of a method that uses an optimistic step in one component and a regular gradient
step in the other, thus requiring less storing of past gradients in comparison to ([5.6)).

On the downside, however, by reducing the number of required gradient evaluations
per iteration, the largest possible stepsize is reduced from 1/L (see [54] or Section
to 1/2L (see [40}/65[66] or Section [5.3). To summarize, the number of required gradient
evaluations is halved, but so is the stepsize, resulting in no clear net gain.
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5.3 Main results

5.2.4 Regularizers

The role of regularizers is well studied in many fields such as statistics [100], signal
processing [81] or inverse problems [94]. They serve different purposes such as inducing
sparsity in the solution or conditioning of the problem. In the context of deep learning
this has been explored from different perspectives, e.g. in incremental convex neural
networks where neurons with zero weights are removed from the network and new ones
are inserted according to different policies, see [3,10,84,93].

In the framework of monotone operator theory the optimality condition of the regu-
larized minimax problem can be written as

0 € F(w) + or(w), (5.8)

where 7 is given by (z,y) — f(z) + h(y) and Or denotes its subdifferential, see Def-
inition The monotone inclusion generalizes in a natural way, since
Nq = 90dq. In particular, the proximal mapping of the indicator dq yields the projection
onto the set ), i.e. prox,;, = Pq.

5.3 Main results
Motivated by the considerations above we study the inclusion problem
0 € F(w) + or(w), (5.9)

where F' : R™ — R™ is a monotone and Lipschitz operator and r : R™ — R U {+o0} is
a proper, convex and lower semicontinuous function.

5.3.1 Measure of optimality

Typically in monotone inclusions, the distance to the set of solutions is used as a measure
of quality of a given point due to the lack of more specific structure in general. Asymptotic
convergence of the iterates has been established for FBF and FBFp in |6, Proposition
27.13| and [66], respectively. Furthermore, no convergence rates can be expected without
stronger monotonicity assumptions. We will therefore focus on the following gap function,
given for any w € R™ by

sup (F(z),w — z) +r(w) —r(z),

z€R™
for which we will be able to prove quantitative convergence rates. If r is the indicator
0o of the compact and convex set € it is clear that the supremum is only taken over
z €  and will thus be finite. Since the problem is in general unconstrained and
the supremum can be infinite we consider instead, as done in e.g. 75|, the restricted gap
where the above supremum is taken over an auxiliary compact set B C R™ instead of

the entire space.

G%l(w) = ilelg (F(z),w— z) + r(w) —r(z), (5.10)
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5 Convex-concave minimax problems

where we interpret the possible occurrence of co — 0o as +oo. Note that the restricted
gap is in general only a reasonable measure of optimality for elements of B.
If F arises from a saddle point problem (5.1)) meaning that F' has the form (5.2,

we want to use a more problem specific measure, the minimax gap, which for a point
w = (u,v) € R x R" is given by

Gy = ( S%pB\Il(u,y) — U(z,v). (5.11)
T,Yy)€E

In order to capture both at the same time we define the following unifying gap

Gplw) = {Sup(x’y)eB U(u,y) — V(x,v) if F' and 7 come from (/5.1))

sup,ep (F(2),w — 2) + r(w) —r(z) otherwise. (5.12)

use the following (restricted) minimax gap, common for saddle point problems, which
for a point (u,v) is given by

GB(U, U) = Ssup \Il(u7y) - \I/($,”U).
(z,y)€B

For the general case, i.e. F' being an arbitrary monotone and Lipschitz operator this is
connected to the other measure of optimality we use in , for w € R™ given by It
stems from the field of Variational Inequalities where such a function is also known as
merit function |75]. The relevance of the above two quantities will be made clear by the
following statements.

Theorem 5.3.1. Let ® : R x R® — R be continuously differentiable and f : R —
R U {400}, h : R" — R U {400} be proper, conver and lower semicontinuous and
B C R* x R™. A point (z*,y*) in the interior of B solves the saddle point problem
if and only if its minimax gap 18 zero, G%P(:U*,y*) = 0. For all other elements of
B the gap is nonnegative.

Proof. A saddle point (z*,y*) clearly fulfills that sup(, ,)cpaxrn V(2" y) — ¥(x,y*) = 0.
On the other hand let G3F(z*,y*) = 0. For an arbitrary point (x,y) we can choose
a € (0,1) large enough such that (u,v) := a(z*,y*) + (1 — «)(z,y) is in the interior of
B. Therefore,

\IJ(.%'*, U) - \Il(u7y*> - \IJ(.%'*, ay* + (1 - a)y) - \I/<Oz113* + (1 - Oé)(l?, y*) <0.
Using the convex-concave structure of ¥ we deduce that
a¥(z,y) + (1 —a)¥(z",y) —a¥(z",y") — (1 —a)¥(z,y") <0,

which implies that ¥(z*,y) < ¥(z,y*). Since (x,y) was chosen arbitrary (z*,y*) is a
saddle point. O

Similarly, an analogous statement can be shown for (5.10). The proof, however is split
up into multiple lemmas to highlight the connection to Variational Inequalities.
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Theorem 5.3.2. Let F : R™ — R™ be monotone and continuous, r : R™ — R U {+oo}
proper, convex and lower semicontinuous and B C R™. A point w* in the interior of B
solves the monotone inclusion

0 € F(w) + 0r(w) (5.13)

if and only if its restricted gap (5.10)) is zero, G} (w*) = 0. For all other elements of B
the gap is nonnegative.

Let the assumptions of Theorem hold true for the following lemmas as we break up
the proof into separate statements. We do so by making use of the associated Variational
inequality (VI)

find w such that (F(w),z —w) +r(z) —r(w) >0 VzeR™ (5.14)
Lemma 5.3.3. The monotone inclusion (5.13)) is equivalent to the VI ({5.14]).

Proof. The equivalence of (5.13)) and (5.14)) follows immediately from the definition of
the subdifferential of r. O

The formulation (5.14]) is typically referred to as the strong form of the VI, whereas
find w such that (F(2),z —w) +r(z) —r(w) >0 VzeR™, (5.15)
is known as the weak formulation.

Lemma 5.3.4. Under the given assumptions the notion of weak and strong VI are equiv-
alent.

Proof. For the monotone operator F' it is clear that if w* is a solution to the strong
formulation , it is also a solution to the weak formulation . In fact, if F is
continuous the reverse implication also holds true. To see this, let w* be a solution to
the weak VI and z = aw* + (1 — a)u for an arbitrary v € R" and a € (0,1), then

(Flow™ + (1 — a)u), (1 — a)(u — w*)) + r(aw” + (1 — a)u) —r(w*) > 0.
This implies by the convexity of r that
(1 —-a)(F(aw* + (1 —a)u),(u—w")) + (1 —a)(r(u) —r(w*)) > 0.

By dividing by (1 — «) and then taking the limit @ — 1 we obtain that w* is a solution
of the strong form ((5.14)). O

With the notion of VIs in mind, the above defined gap (5.10) becomes natural as it
measures how much the statement of ([5.15)) is violated.

Lemma 5.3.5. GEI is nonnegative on B and zero for solutions of the weak VI.
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Proof. Tt is clear that G}!(w) > 0 for w € B as z = w can be chosen in the supremum.
On the other hand if w* € B is a solution to the weak VI (5.15) then G%!(w*) = 0. This
follows from the fact that for a solution of ([5.15|) for all z € B

(F(z),w" —z) +r(w*) —r(z) <0.

Therefore the supremum over the above expression in z is also less than zero, but clearly
zero is obtained for z = w*. O

For the reverse implication to hold true, we may not use points on the boundary of B.

Lemma 5.3.6. If a point w* in the interior of B exhibits zero gap Ggl(w*) =0, then it
is a solution to the weak VI (5.15)).

Proof. Since w* is in the interior of B we can, for an arbitrary w € R™, choose o € (0,1)
large enough such that z := aw* + (1 — a)w € B. Using this z in the supremum of the
gap we deduce that

(Flaw™+ (1 — a)w),w* — aw* — (1 — a)w) + r(w*) — rlaw™ + (1 — a)w) < 0.
This implies that
(1—-a)(Flaw* + (1 —a)w),w —w*) + (1 — a)(r(w) —r(w*)) > 0.

By dividing by (1 — «) and then taking the limit & — 1 we deduce that w* solves the
strong form of the VI ([5.14)). O

Now, we can turn to proving the theorem.

Proof of Theorem[5.3.2. Combine Lemma [5.3.3] [5.3.4] [5.3.5] and [5.3.6] O

5.3.2 Methods

We now present a novel unifying scheme for solving problem , which generalizes
FBF and in addition recovers the method motivated in as FBFp. Let us point
out again that the latter algorithm was already introduced in [66] and corresponds to
OGDA [33/[34,[87) if F stems from the minimax setting (5.2).

Algorithm 5.3.7 (generalized FBF). For a starting point zp € R™ and stepsizes oy > 0
we consider for all £ > 0

{ wy, = Prox,, , (zx — axF(Or))
Zk1 = Wi + ap(F(Or) — F(w)).

For {j = zj this reduces to the well known FBF method, whereas <;, = wy_1, with the
additional initial condition w_; = 2o, recycles previous gradients (FBFp).
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Consider the scenario where F' is given as an expectation E¢[F(-;¢)], e.g. coming
from (5.1)), and only a stochastic estimator F'(-;&) is accessible instead of F' itself. In
this case we adapt Algorithm [5.3.7]in the following way.

Algorithm 5.3.8 (generalized stochastic FBF). For a starting point zp € R and step-
sizes ay, > 0 we consider for all £ > 0

{p ~ Q  (optionally ng ~ Q)
Wg = pI‘OXakr (Zk — akF(Qk; Ak))
21 = Wi + ap(F(Or; Og) — F(wi; &k)).

For {p = 2z, and A\ = n, this results in a stochastic version of FBF, whereas o = wg_1
and Ay = &1 recycles previous gradients (stochastic FBFp) with the additional initial
condition w_; = 29 and £_1 = 9.

Even though both methods encompassed by the unifying scheme Algorithm [5.3.7 have
been studied in the deterministic setting before, the stated convergence results are new.
However, we want to point out that the stochastic version of FBFp has not been consid-
ered prior to this work.

5.3.3 Convergence

Let in the following B C R™ be the compact set of the restricted (unifying) gap func-
tion with D := sup,, ,epllz — w|| denoting its diameter. For convenience in the
estimation we assume that the starting point zg of the discussed methods is in B. Lastly,
all the convergence statement will be in terms of the averaged iterates, given for K > 1
by

Theorem 5.3.9 (deterministic). Let (wy),~ be the sequence generated by Algorithm.
If -

(i) FBF, i.e. O = zp, with stepsize 0 < ay, < /L, or
(ii) FBFp, i.e. $p = wi_1, with stepsize 0 < ay, < 1/2L
is chosen, then for all K > 1 the averaged iterates Wy = 35 Zk —o wg fulfill
D2
25 o

where G'g is the restricted gap defined in ((5.12)). For constant stepsize this results in a
convergence rate of O(1/k).

GB(’U_)K)

In order to derive similar convergence statements for the stochastic algorithm we need
to assume (standard) properties of the gradient estimator F'(-;&).
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Assumption 5.3.10. Unbiasedness: E¢[F(w;§)] = F(w) Yw € R™.
Assumption 5.3.11. Bounded variance: E¢[||F(w;€) — F(w)|?] < 0?Vw € R™.

In particular we actually only need the above assumption to hold for all iterates wy.
Such an hypothesis is in practice difficult to check, but could be exploited in special cases
where additional properties of the variance and boundedness of the iterates are known a
priori.

Assumption 5.3.12. The samples &, are independent of the iterates wy, for all k > 0.
Equipped with these assumptions we are now able to prove the statement.

Theorem 5.3.13 (stochastic). Let Assumption m [5.3.11) and [5.5.19 hold and let
(wk)k>0 be the sequence generated by Algomthm . Then, with Gp bemg the restricted

gap defined in

(i) If stochastic FBF, i.e. {$p = z and Ay = ny, with stepsize ap < a < % s chosen,
then
D? +4(1 — o*L?)” ' QZk 0 ak
2 Ek:O Ok

(ii) If stochastic FBFp, i.e. $p = wi—1 and Ay = g1, with stepsize ag, < a <
is chosen, then

E[Gp(wk)] <

_1
2v/2L"

272
D2+2<5+714§QQL2> 25K 12

Gp(w
E[Gp(wk)] < 25K o

Although, the stepsize in the above statements of Theorem [5.3.13| can be chosen ar-
bitrarily close to /L and 1/(2v2L) for stochastic FBF and stochastic FBFp, respectively.
This does not mean it should be — since the constant in the convergence rate deteriorates
when the stepsize is close to its allowed upper bound. The constants in the convergence
rate for stochastic FBF(p) can, however, be combined and simplified by restricting the
upper bound for the stepsizes « further. If o < 1/y2r for FBF, or a < 1/31 for FBFp,
then
D? 4 1802 Zk 0 oF

2Zk 0 %

This statement exhibits a classical stepsize dependence [89], yielding convergence
for sequences (ag),>o that are square summable Y, < +oo but not summable
Y reoar = +oo. Additionally, if the stepsize is chosen aj = a/v/k + 1, a convergence

rate can be obtained and is given by

E[Gp(wk)] <

i

E[Gp(wx)] = O( ) (5.16)

1
N
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If the stepsize does not go to zero, the gap can usually not be expected to vanish either.
However, we can still show decrease in the gap up to a residual stemming from the
variance. In particular, for a constant stepsize aj = o we have

2

20K
Additionally, if the number of iterations K is fixed beforehand, a conclusion similar

to (5.16]) can be obtained by choosing a = 1/vK in ((5.17)).

5.3.4 Proofs

E[G(wK)] < + 900 (5.17)

We introduce the notation connected to the strong formulation of the VI ([5.14)) associated
to the monotone inclusion (5.9)), given by

g(w, z) == (F(w),w — z) + r(w) = r(2),
for g : R™ x R™ — RU {+0o0}. Next we will establish the fact that this function can be
used to bound the (restricted) unifying gap function, which we remind, is defined as

Gp (w) _ SuP(z4)eB \Il(uv y) - \I/(J}, U) if F'is "
sup,cp (F'(2),w — 2z) + r(w) — r(z) otherwise,
where in the first case (u,v) € R? x R" is identified with w € R™. In particular the
dimensions fulfill d +n = m, and r(w) is given by f(u) + h(v).
Lemma 5.3.14. [t holds that for all K > 1
1 K-1
SUp 4 —7 7 — Z arg(wg, z) p > Gp(Wk).

Proof. First we will prove the case if F' is derived from a saddle point problem. Note
that from the convex-concave structure of ® we get that

O (u,y) < ®(u,v) + (VyP(u,v),y —v)
and
O(u,v) + (Va®(u,v),x —u) < &(z,v).

By summing the two up we obtain

cea-sn={ T 170)

We can reformulate the above inequality in terms of g to see that for z = (z,y) € R¢xR"
(F(w),w—z) > ®(u,y) — (x,v).

The statement of the first case is obtained by adding r(w) — r(z) on both sides and using
the fact that ¥ is convex-concave.
If F' is a general monotone operator, then we use its monotonicity to deduce that

(F(w),w—z) > (F(2),w — z).

The desired result follows from using the linearity of the inner product. O
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5 Convex-concave minimax problems

Notation. We denote the error of the stochastic estimator via

Zy = F(Or; Ok) — F(Or) and Wy = F(wy; &) — Fwy). (5.18)
Furthermore, we will denote via E[ - | U], the conditional expectation with respect to the
random variable U.
A unified decrease result

We will start with a unifying proposition which covers the common parts of all conver-
gence proofs.

Proposition 5.3.15. For a v > 0 we have for all k > 0 and z € R™
1
arElg(wy, 2)] + SEllzk1 — z|)?

1 1 1 _
< SEllzk — 2= SEllzk — wi*+5 (1 + 7)0F LBl Ok — wi|*+2(1 + 7 ago™
(5.19)

Proof. Let k > 0 and z € R™ be arbitrary. Using the decomposition (5.18) it follows
that

(apF (wis; &), wi, — 2) = ap(Wi, wy, — 2) + o (F(wg), wy, — 2). (5.20)
Since, from the proximal operator wy + ar0r(wy) = 2 — apF(Or; Ak) we deduce that
(z —wi, wy, — 21, + R F(Or; D)) > ap(r(wy) —r(2)). (5.21)

Adding and gives that
(a(F(wy; &) — F(Or; D)) + 21 — wiy wi, — 2) > ag, (W, wy, — 2) + agg(wy, 2),
which, using the definition of zx1, is equivalent to
(z — Wk, 211 — 2k) = (Wi, w, — 2) + agg(wg, 2). (5.22)

We estimate the inner product on the left side of the inequality by inserting and sub-
tracting z; and using the three point identity twice to deduce

(z — Wk, 241 — 2k) = (2 — 2 + 2% — Wy k1 — 2k)

(5.23)

1
=5 (llz- 2P =llzk 1 = 2l 2511 — wilP =2k — will?) -

The first two summands are fine as they will telescope, so we are left with estimating
|l zk1 — w||?. By the definition of 2,1 we have that

1211 — wil® = QF|[F(Ons; k) — F(wg; &)
= o}||F(Ok) — F(wi) + Z — Wi|)?
< (L+ g [F(Or) = Flwp) [P+ + 7~ edfl| Ze — Wil?
< (1 + g L[|k — wil*+2(1 + 4~ Dag (1 Zel >+ Wil

(5.24)
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where we inserted and subtracted F({) and F'(wy) and applied Young’s inequality to
deduce. Adding (5.24)), (5.23) and (5.22]) we deduce that

1 1 1 1
g (wy, z) + §||Zk+1 —z|? < 5“% - Z||2—§||Zk - wk’|2+§(1 +Y)AGL [ O — wil|?
+ap (Wi, z = wi) + (1+ 7)o (IWell*+1Ze 1)
Taking the expectation E[-] and using the bounded variance assumption of the estimators
yields
1 2
arElg(wy, 2)] + Ellze1 — 2]
1 1 1 —
< Bl — 2P~ 5Bl ok — wrlP+ 5 (1 4+ 7)ad PE][0x — wilP+2(1 4+~ ado?

where we used that

E[(Wi, 2 — wy)] = E[E[(W, 2 = wy) | wel| = E[(E[Wp | wel, 2 — wy) | = E[0] = 0,
since “

E[Wk ‘ wk] = ]E[F(wk; fk) — F(wk) ]wk] = F(wk) — F(wk) = 0.

Here, (x) holds because of the independence and unbiasedness, see Assumption [5.3.12
and [5.3.10} respectively. O

Forward-Backward-Forward

Proof for deterministic FBF, Theorem (i). We start off by plugging {1 = 2 into (5.19)).
Since o = 0 we can discard the expectations and use v — 0 to deduce that for all £ > 0

1 1 1
ang(wp, 2) + 51 — 217 Sl — 225 (1 = aFL2) 1ok — wi*.

From this it is clear that the stepsize is constrained by ao < 1/L as stated in the theorem.
By summing up from k = 0 to K — 1 and dividing by Zf;ol ay we obtain

1 = 20 — 2I2
s E— Z ag(wg, z) < T—k_1 -
k=0 ¥k p—g 2 j—o %

The claimed statement is then derived by taking the supremum in z over B and applying

Lemma [5.3.14] O

Proof for stochastic FBF, Theorem (i). Plugging $r = z, and Ay = ny into ((5.19))
gives for all £ >0

1
arElg(wg, 2)] + §EHZk+1 — z|?

1 1
< SBllok — 2P 5 (1 — (1 +7)aR LB ]2k — wil*+2(1 + 77 ado?.
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5 Convex-concave minimax problems

By choosing y such that o = (y/T+~L) " we deduce that 1+~~! = 1/(1—a2L?). Next,
L. K_1 .
we sum up and divide by >, aj to obtain
Ellz0 — 2|*+4(1 — ?12) " '0? Y3 o}
Zkz 0 ¥ k=o B 23 g o

The final statement follows by taking the supremum in z over B and applying Lemma[5.3.14]
O

Forward-backward-forward-past

Proof for deterministic FBFp, Theorem (ii). We start off by plugging ¢ = 2z
into (5.19). Since 0 = 0 we can ignore the expectations and use 7 — 0 to conclude
that for all £k > 0

1 1 1 1
arg(wg, z) + inkH — 2|I’< §sz - ZHQ—iHZk - wk|!2+§0<%L2Hwk71 —wil?. (5.25)

Now we need to bound the term |lwy_1 — wg|? by ||z — wg|*>. Since
2|21, — w42l 2k — wy—1]*> [y, — wi—1|? (5.26)

we have for all k > 1

1
Iz — wil|* > — ||z — wkle2+5Hwk71 — wg]?

. (5.27)
> —ai_y L?||wy—1 - wk72\|2+§Hwk71 — wglf?

whereas for k = 0, since w_1 = zg, we have that
Iz — wol|*= [lw—1 — wol*. (5.28)

Plugging (5.28)) into (5.25)) for k = 0 we get that
a0g(1wo, 2) + |21 — 2P+ 5 (1~ 3Ll — wor|P< Zz0 — 2l (5.29)

Plugging (5.27) into (5.25) we get that for all k > 1

arglun, )+ gl = =1+ (5 - 0222 o = i P .

1 1
<5 llak = 2P+ 50k g L lwi-1 — wial|*.

2

In order to be able to telescope we need to ensure that for all &k > 0
1
(2 - akL2> a2 L2,
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5.3 Main results

This is equivalent to the condition aj, < /21 which was required in the statement of the
theorem. Now we sum up (5.30) from k£ =1 to K — 1 which yields

K—1
1
aww%@+wx—a+é(,ﬂ@4ﬁ)wm4—wnaﬁ
(5.31)

1
< Sl = 2P+ 5 e L2 lwo — woa)*.

Adding (5.31)) and (5.29)) and dividing by Zé{:_ol ay to deduce

- lz0 = 2|1
e D g(wk2) < C e —
k=0 % p—o 2) k=0 Q%

where we used that 1 — a3L? > a2L? to get rid of ||wg — w_1||?>. The final statement
follows by taking the supremum in z over B and applying Lemma O

Proof for stochastic FBFp, Theorem (i1). By using {p = wi_1 we deduce from ([5.19)
for all k¥ > 0 that

1
apE[g(wy, 2)] + §E||Zk+1 — 2|2

1 1 1
< §E|]zk - z”2—§Esz — wk||2+§(1 + V)i L*E||wp—1 — wi||*42(1 + 7y Hazo?.
(5.32)

Let from now on k > 1 as we will treat the case k = 0 separately. Using ([5.26)) we deduce
that

1
2k — well® > =2k — wk_1H2+§||wk_1 — wy|?
, (5.33)
> —ad ||F(wp_1; 1) — F(wk—2§€k—2)”2+§”wk—l — wy |

Now we bound the difference of the two estimators by inserting +F(wg_1), £F(wg_2)
and applying the inequality ||a + b+ c||? < 3(||a||® + ||b]|? + ||c||?) which yields

| F(wh—1; k1) — F(wy—2; &—2)|?
< 3| Wit P43 Wh—a | +3[| F (wi—2) — F(wg—1)]|*-

We conclude that
E[||F (wp—1; &k—1) — F(wi—2; &—2)|I*] < 60% + BL7E|jwj—1 — wy—2||*. (5.34)

Using ((5.34)) in (5.33]) we deduce that

1
Ell2r — wel*> =i, (60° + BLElws-1 — wial|*) + SEllwe—y —we[*,  (5.35)
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5 Convex-concave minimax problems

whereas for k£ = 0 we have (5.28]). Now we plug (5.35) into (5.32)) to conclude that

1 1/1
Blg(un, )]+ gl — 2P+ (5 - (14 ot ) Bl — wi P

(5.36)
1 1 _
§iEwk—zW+§&ﬁ_JﬂEW%_l—wbﬂp+@ﬂ+Jy5a2+&ﬁ_ﬁa?
From this we conclude that in order to be able to telescope we need to enforce
1
(2 —(1+ v)a%LQ) > 3ai L2,
which is equivalent to
— > all2
24+~) = F
Since ap < «, we can ensure this by choosing v such that
_1 _ep2 (5.37)
2(4+7)
With (5.37) in place we sum (5.36) from & =1 to K — 1 to deduce that
= 1 1/1
arElg(wg, 2)] + §EH2K - z||2+§ <2 -1+ 7)a%1L2) Elwg_1 — wg_ol?
k=1
1 K—1
< 5Ellz1 - 2|24 3a0L2Hw0 —w|P+(G+ 2y e Y o +30%ag,
k=1
(5.38)

whereas for k = 0 we have
1 1 1 _
aoE[g(wo,Z)]+§EH21—ZH2+§(1—(1+’Y)043L2)EHwo—w—l!!2§ §Hzo—2|l2+2(1+’y Dago®.

Combining ([5.38)) and (5.39) and using the fact that 3a3L? < 1—(1+7)a3L? from (5.37]
to discard the ||wg — w_1||* term, yields

=
L

1 _
>~ aElgw, 2)] < 520 — 2P +(5 + 2770 Y ok (5.40)
0

B
Il

Through (5.37)), we can estimate

1 20212

-_= . 5.41
v 1—8a2L2 (5.41)

Plugging (5.41)) into (5.40)), dividing by ZkK:_Ol oy, taking the supremum in z over B and
applying Lemma [5.3.14] deduces the final statement. O
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5.4 Experiments

5.4 Experiments

Due to the theoretical nature of this work, the aim of this section is rather to validate the
results on standard examples and not to strive to achieve new state-of-the-art results.
Instead we simply aim to show how the use of methods with convergence guarantees,
albeit only in the monotone setting, can yield better training performance.

5.4.1 2D toy example

Following [40,42, /68| we consider the canonical example min, max, zy, which illustrates
the cycling behavior of (even bilinear) minimax problems, and augment this approach
by adding a nonsmooth Ll-regularizer for one player, resulting in

min max  klz|+zy, (5.42)
z€R ye[-1,1]

with k > 0.

Figure highlights the aforementioned issue of GDA (and its proximal extension
PGDA) cycling around the solution. The other methods, for which we display the av-
eraged iterates, however do converge to a solution and show a decrease in the restricted
gap according to theory. Even though the proximal steps provide improvement towards
the solution (0,0) and FBF only uses half the amount of evaluations compared to EG,
it outperforms the competing algorithms.

—— EGa=1
—— EGpa=0.5
—— FBFa=1.0
—— FBFpa=0.5
- O(L/K)

Min Max Gap

-10 1 g —e— PGDA@=0.1
—— EGa=1

—— EGpa=05 ,
—»— FBFa=1.0
—— FBFpa=05

-15 -1.0 -05 0.0 0.5 10 15 2.0 25 10° 10* 10?
X Iterations

(a) Trajectories converging to solution. (b) Restricted gap function.

Figure 5.1: A comparison of the methods presented in Section applied to prob-
lem with kK = 0.01. PGDA denotes (alternating) gradient descent
ascent with proximal steps. As mentioned in the introduction it fails to con-
verge. EGp denotes the method presented in [40| as extrapolation from the
past. For the restricted gap we use By = By = [—1,1].
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5 Convex-concave minimax problems

5.4.2 WGAN trained on CIFAR10

In this section we apply the above proposed techniques from monotone inclusions to the
training of Wasserstein GANs making use of the DCGAN architecture [85]. All models
are trained on the CIFARI10 dataset [55] which consists of 60,000 images in 10 different
classes (with 50,000 training images and 10,000 test images) using an NVIDIA RTX
2080Ti GPU.

We choose to work with the original WGAN formulation including weight clipping,
since it includes regularizers innately (the indicator of a box for the weights of the dis-
criminator). Although more recent models like ones for example based on ResNet [47]
or SAGAN [109] architectures provide better overall performance, they usually do not
warrant the use of regularizers. We do this to highlight the difference between FBF and
EG, as without projections or proximal steps they are equivalent and their relevance
including state-of-the-art architectures has already been shown [29,40].

In addition we propose a modification of the WGAN formulation which replaces the
box constraint on the discriminator’s weights with an L1-regularization, under the name
of WGAN-LI1. This results in a soft-thresholding operation instead of the “harsh” clipping.

Inception Score (IS) Fréchet Inception Distance (FID)
Method clip prox clip prox
AltAdaml 4.12+0.06 4.434+0.03 56.4440.62 50.86£2.17
Extra Adam 4.07£0.05 4.67+0.11 56.67+0.61 47.24+£1.21
FBF Adam 4.544+0.04 4.68+0.16 45.85+0.35 46.60+0.76
Optimistic Adam 4.35%+0.06 4.63+0.13 50.41+£0.46 47.984+1.49

Table 5.1: The best Inception Score (IS) and Fréchet Inception Distance (FID), aver-
aged over 5 runs. The column denoted by clip refers the standard formulation
WGANSs where the weights of the discriminator are clipped after every gradient
step to enforce the box constraint, whereas prox refers alternative implemen-
tation using the 1-norm of the weights for regularization. The latter provides
improvement throughout all considered methods. For both formulations, the
FBF method (with Adam update) yields the best results (higher IS and lower
FID).

Given the ubiquity and dominance of Adam [52| as an optimizer for many deep learning
related training tasks, instead of using vanilla SGD we opt for Adam updates. This
results in a method we call FBF Adam. Analogous approaches have been applied in [40]
and [33] resulting in Eztra Adam and Optimistic Adam, respectively. We compare the
aforementioned methods with the status-quo in GAN training, namely alternating one
Adam step for each network: AltAdam1.

Our hyperparameter search was limited to the stepsizes when using the WGAN-L1
formulation, while all other parameters were kept the same as in [24,|40]. It seems
noteworthy that in the case of soft-thresholding bigger stepsizes performed better with
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the only exception of AltAdaml.
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Figure 5.2: Left: Mean and standard deviation of the IS averaged over 5 runs on the
WGAN objective with weight clipping. Middle: Samples from the DCGAN
generator trained with the WGAN-L1 objective using the FBF method with
Adam updates. Right: Mean and standard deviation of the IS averaged over
5 runs on the WGAN-L1 objective using the proximal operator; The WGAN-
L1 objective improves the IS in comparison to weight clipping and stabilizes
the behavior of all considered methods during the training procedure. The
advantage of using FBF Adam is most pronounced in the case of weight
clipping.

The two evaluation metrics used are the Inception Score (IS) [95] and the Fréchet
inception distance (FID) [48], both computed on 50,000 samples. In the case of the IS
we use the updated and corrected implementation from . All results are averaged over
5 runs for each method.

Table reports the best IS and FID for each method. FBF Adam outperforms all
considered competitors with respect to both evaluation metrics with the most significant
difference for WGAN with weight clipping (“clip”). One can also see that WGAN-L1
using the proximal operator (“prox”) improves the performance of all considered methods,
decreasing the absolute and relative differences. Note that the results with WGAN-L1 are
comparable for the three methods with underlying convergence guarantees in the convex-
concave case. Figure shows the training progress regarding IS for each method and
both problem formulations. The graphs suggest that making use of WGAN-L1 objective
has a stabilizing effect during training leading to a smoother and more consistent learning
curve — a property that only FBF Adam seems to exhibit for weight clipping.
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6 Weakly convex-concave minimax problems

Minimax problems of the form min, max, ¥(z, y) have attracted increased interest largely
due to advances in machine learning, in particular generative adversarial networks. These
are typically trained using variants of stochastic gradient descent for the two players. Al-
though convex-concave problems are well understood with many efficient solution meth-
ods to choose from, theoretical guarantees outside of this setting are sometimes lacking
even for the simplest algorithms. In particular, this is the case for alternating gradient
descent ascent, where the two agents take turns updating their strategies. To partially
close this gap in the literature we prove a novel global convergence rate for the stochastic
version of this method for finding a critical point of g(-) := max, V(-,y) in a setting
which is not convex-concave.

6.1 Introduction

We investigate the alternating proximal gradient descent ascent (GDA) method for
weakly convex-(strongly) concave saddle point problems, given by

min max {¥(z.y) = f(2) + B(2.y) ~ h(y)} (6.1)

for a weakly convex-concave coupling function ® : R x R* — R and proper, convex and
lower semicontinuous regularizers h : R* — R U {400} and f : R? — R U {400}, see
Assumption [6.3.1] [6.3.3] and [6.4.1] for details.

Nonconvex-concave saddle point problems have received a great deal of attention in the
recently due to their application in adversarial learning |98|, learning with nondecompos-
able losses [39,107], and learning with uncertain data [31]. Additionally, albeit typically
resulting in intricate nonconvex-nonconcave objectives, the large interest in generative
adversarial networks (GANs) [2,/43] has led to the studying of saddle point problems
under different simplifying assumptions |4,/12}|33}40,60].

In the nonconvex-concave setting inner loop methods have received much of the at-
tention [53,/60%/704/80,/99] with them obtaining the best complexity results in this class,
see Table [6.1] Despite superior theoretical performance these methods have not been as
popular in practice, especially in the training of GANs where single loop methods are still
state-of-the-art [4},33,401/41}43,149,/62]. The simplest approach is given by simultaneous
GDA, which, for a smooth coupling function ® and stepsizes 7,7, > 0, reads as:

et =z — nmvxq)(x,y)

simultaneous
( ) { yt =y +n,V,0(x,y).
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After the first step of this method, however, more information is already available, which
can be used in the update of the second variable, resulting in

zt =1x— nxvxq)(-ray)

alternatin
( &) { yt=y+n,V,o(zT,y).

It has been widely known that the alternating version of GDA has many favorable con-
vergence properties of the simultaneous one [4,41,/106]. We are naturally interested in
— and will give an affirmative answer to the question:

Does stochastic alternating GDA have nonasymptotic convergence
guarantees for nonconvex minimax problems?

This might seem surprising as it has been sufficiently demonstrated [12}40,/42} 68| that
either version of GDA fails to converge if equal stepsizes are used. We therefore want
to point out the importance of the two-time-scale approach which was also emphasized
in 48,60|.

Optimality. For convex-concave minimax problems, the notion of solution is simple. We
aim to find a so-called saddle point (z*,y*) € R? x R” satisfying for all (z,y) € R% x R"

V(™ y) < V(2" y") < V(z,y"). (6.2)

For convex-concave problems this notion is equivalent to the first order optimality con-

dition
0 V. @(z*, y* of (z*
e (V) )y (1) (6.3)
0 —Vy®(z*,y7) Oh(y*)
Similarly to the nonconvex single objective optimization where one cannot expect to find
global minima, if the minimax problem is not convex-concave the notion of saddle point
is too strong. So one natural approach is to focus on conditions such as (6.3)), as done
in [64,78,[106]. However, treating the two components in such a symmetric fashion might
not seem fitting since in contrast to the convex-concave problem min, max, # max, min,.

Instead we will focus, in the spirit of [60,[86,/99], on the stationarity of what we will refer
to as the maz function given by

o(z) = ;Ié%)é ®(z,y) — h(y), where p: R — R. (6.4)
This makes sense from the point of view of many practical applications. Problems arising
from adversarial learning can be formulated as minimax, but typically only z, which
corresponds to the classifier is relevant as y is adversarial noise. Similarly, for GANs,
one is typically only interested in the generator and not the discriminator. See Table [6.]
for a comparison of other methods using the same notion of optimality. Note that it is
possible to move from one notion of optimality to the other |60, but as both directions
are typically associated with additional computational effort a comparison is not trivial
and out of scope of this work.
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Table 6.1: The gradient complexity of algorithms for nonconvex-(strongly) concave min-
imax problems and their convergence rates for (near) stationarity of the max
function. € is the tolerance and x > 0 is the condition number.

Nonconvex-Strongly Concave Nonconvex-Concave single

Deterministic Stochastic Deterministic  Stochastic  loop
[86] O(K%e?) O(k3e™?) O(e %) O(e %) X
[99.[110] - - O(e3) - X
[61./80] O(/re?) - O(e3) - X
[60] O(k%e72) O(k3e™4) O(e79) O(e78) v
this work O(k?%e72) O(k3e™?) O(e79) O(e78) v

Contributions. We prove novel convergence rates for alternating gradient descent ascent
for nonconvex-(strongly) concave minimax problems in a deterministic and stochastic
setting. For deterministic problems, [106| has proved convergence rates for alternating
GDA in terms of the criticality of ® while we use the max function ¢, see , instead.
Our results are also more general than e.g. [60,61,/110] in the sense that they require ® to
be smooth in the first component wheres we only require weak convexity, similar to [86].
Furthermore, we allow for our method to include possibly nonsmooth regularizers, similar
to [864/110], which captures and extends the common constraint setting.

6.1.1 Related literature

For the purpose of this paper we separate the nonasymptotic study of minimax problems
into the following domains.

Convex-concave. For convex-concave problems historically the extra-gradient and the
forward-backward-forward method have been known to converge. For the former even
a rate of O(¢~1) has been proven in |71] under the name of mirror-proz. Both of these
methods suffer from the drawback of requiring two gradient evaluations per iteration.
This has led to the development fo methods such as optimistic GDA [33,34] or |12}40,
46,/66] which use past gradients to reduce the need of gradient evaluations to one per
iteration. In all of these cases, however, convergence guarantees typically do not go
beyond the convex-concave setting. Nevertheless, these methods have been employed
successfully in the GAN setting [12,33,40].

Nonconvex-concave with inner loops. Approximating the max function by running mul-
tiple iterations of a solver on the second component or convexifying the problem by
adding a quadratic term and then solving the convex-concave problem constitute natural
approaches [61[781/86,99|[110]. Such methods achieve the best known rates [61,80.99,110]
in this class. However, they are usually quite involved and have for the most part not
been used in deep learning applications.
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Nonconvex-concave with single loop. While these methods have received some atten-
tion in the training of GANs [12,33,40] most of the theoretical statement are for convex-
concave problems. In the nonconvex setting only two methods have been studied. Previ-
ous research, see [60464], has focused on the simultaneous version of the gradient descent
ascent algorithm where both components are updated at the same time. The only other
work which focuses on alternating GDA is [106]. Their results are in terms of stationarity
of ® and they do not treat the stochastic case. Note that our work is most similar to [60]
where the same notion of optimality is used and similar rates to our are obtained for
stmultaneous GDA.

Others. Clearly the above categories do not cover the entire field. However, other set-
tings have not received as much attention. Only [106] treats (strongly) convex-nonconcave
problems and proves convergence rates similar to the nonconvex-(strongly) concave set-
ting. In |102] a special stochastic nonconvex-linear problem with regularizers is solved
via a variance reduced single loop method with a significantly improved rate over the
general nonconvex-concave problem.

The most general setting out of all the aforementioned ones is discussed in [59,/62,
67], namely the weakly convex-weakly concave setting. They use however, a weaker
notion of optimality related to the Minty variational inequality formulation. We also
only mentioned (sub)gradient methods, but the restrictive assumption that the proximal
operator of a component can be evaluated has been considered as well [53)].

6.2 Preliminaries

As mentioned in the earlier we will consider optimality in terms of the max function for
any = € R? given by ¢(x) 1= maxyegn 1¥(x,y), for ¥(z,y) := ®(z,y) — h(y) as mapping
from R? x R™ to RU {—oco}. Similarly, we also need the regularized max function

g:=¢+f, where g:R? = RU{+oc}.

In the remainder of the section we will focus on the necessary preliminaries connected to
the weak convexity of the max function in the nonconvex-concave setting, see Section

6.2.1 About the stochastic setting

We discuss the stochastic version of problem ([6.1)) where the coupling function ¢ is
actually given as an expectation, i.e.

O(z,y) = Beup [B(z, ;)] V(z,y) € R x R

and we can only access independent samples of the gradient V,®(z, y; £) (or subgradient)
and V,®(z,y; (), where £ and ¢ are drawn from the (in general unknown) distribution
D.

We require the following standard assumption with respect to these stochastic gradient
estimators.
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6.3 Nonconvex-concave objective

Assumption 6.2.1 (unbiased). The stochastic estimator of the gradient is unbiased, i.e.
for all (z,y) € RY x R™
E[VO(z,y; )] = VO(z,y),

or in the case of subgradients
B[] € 00 )l(x), where ¢° € A[D(,y;0)](x).

Assumption 6.2.2 (bounded variance). The variance of the estimator is uniformly
bounded, i.e. for all (x,) € R? x R"

E[IV2® (2, ;) — Vo@(2,y)[IP] <0 and E[||V,®(z,y:€) — V,@(z,y)|]*] < 0%,
(6.5)
for a variance 0® > 0. In the setting of Section where ® is not necessarily smooth in
the first component, we make the analogous assumption for subgradients, i.e.

e[ -] < &
for a stochastic subgradient g¢ € O[®(-,y; €)](x).

6.2.2 The algorithm

Since we cover different settings such as smooth or not, deterministic and stochastic we
try to formulate a unifying scheme.

Algorithm 6.2.3 (proximal alternating GDA). Let (z0,70) € R? x R” and stepsizes
Nz, My > 0. Consider the following iterative scheme

Tyt = Prox, ; (xr — NeGa(Tk, Yi))

(¥ > 0)
Yr+1 = prox, p, (yk + nyGy(Trt1,vk))

where G, and G, will be replaced by the appropriate (sub)gradient and its estimator in
the deterministic and stochastic setting, respectively.

6.3 Nonconvex-concave objective

In this section we treat the case where the objective function is weakly convex in x, but
not necessarely smooth, and concave and smooth in y. This will result in a weakly convex
max function whose Moreau envelope we will study for criticality.

6.3.1 Assumptions

While the first assumption concerns general setting of this section, i.e. weakly convex-
concave, the latter assumptions are more of a technical nature.
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6 Weakly convex-concave minimax problems

Assumption 6.3.1. The coupling function ® is
(i) concave and Lyg-smooth in the second component uniformly in the first one, i.e.
IVy®(z,y) — Vy@(2,9)I< Lyally — ¢/l Vo e RVy,y € R™
(ii) p-weakly convex in the first component uniformly in the second one, i.e.

(-, y) + g||||2 is convex for all y € R™.

Assumption [6.3.1] is fulfilled if e.g. ® is Lyg-smooth jointly in both components, i.e.
IV®(2,y) — VO(a',9)|< Lyl (z,y) — (', )| Va,2’ € R? Vy,y € R",

in which case (ii) holds with p = Lys.
The next assumption is a classical technical assumption nonconvex optimization.

Assumption 6.3.2. The function g is lower bounded, i.e. inf cpa g(z) > —o00.

In Section [6.3] we will actually need to bound the Moreau envelope gy, but these two
conditions are in fact equivalent as for all z € R? and any A € (0, p 1)

. 1 2 .
— i _ >
g (x) = ulgé‘d {g(u) + 2>\Hx ul| } uler%d g(u)

and conversely

. 1 9] U=t
= — ||z — < .
ar(@) = inf {g(u) + golla —ul’} < ()

We also want to point out that this assumption is weaker than the lower boundedness
of W, which is usually required if stationary points of the type (6.3) are used, see for
example [64].

Assumption 6.3.3. ® is L-Lipschitz in the first component uniformly over domh in
the second one, i.e.

|®(z,y) — @', y)|< Ll — 2’| Va,2’ € R Vy € dom h.

Assumption 6.3.4. The reqularizers f and h are proper, conver and lower semicontin-
Uous.

(1) Additionally, f is either Ly-Lipschitz continuous on its domain, which is assumed
to be open, or the indicator of a nonempty, convex and closed set. Fither of those
assumptions guarantees for any v > 0 the bound

Ipros, ; (¢) — 2]|< 1L (6.7)

for all z € dom f (in the case of the indicator the statement is trivially true).

(i1) Furthermore, h has bounded domain domh such that the diameter of domh is
bounded by C,.
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6.3 Nonconvex-concave objective

6.3.2 Properties of the max function

Previous research, when concluding the weak convexity of the max function, has relied
on the compactness of the domain over which to maximize. This is done so that the
classical Danskin Theorem can be applied. This assumption is e.g. fulfilled in the context
of Wasserstein GANs |2| with weight clipping, but not in other formulations such as [45].
We provide an extension of the classical Danskin Theorem, which only relies on the
concavity and lower semicontinuity of the objective in the second component and the
boundedness of dom h, see Assumption [6.3.1] and [6.3.4, This implies that for every
x € R the set

V(o) = {y" €R": (o) = B(a.y") —h(y") = max{(z.y) ~h(w)}}  (68)

is nonempty. For brevity we will denote arbitrary elements of Y (x) by yj for all k£ > 0.

Proposition 6.3.5 (Subgradient characterization of the max function). Let Assump-
tion|6.3.1] and |6.3.4| hold true. Then, the function o, see (6.4)), fulfills for all x € R?

OB(-,y")(z) C dpla) Yy € Y(a).

In particular, ¢ is p-weakly convex.

Proof. From the p-weak convexity of ®(-,y), we have that ®(-,y) + 5]|-||* is convex for
all y € R". We define ®(z,y) = ®(z,y) + §llz[* and P(a,y) = ¥(z,y) + §]z|? for
(z,y) € RY x R™ as well as

~ N 5 _ P 2

P(z) = ;religw(w,y) pla) + 5 llz]”
Notice that zﬂ(a:, -) is concave for any = € R% and zﬁ(, y) is convex for any y € R™. Thus,
the function ¢ is convex and dom ¢ = dom¢ = R?. Therefore ¢ is continuous, which
implies that Op(z) # 0 for any z € R Let z € R, y € Y(z) and v € R?. For any a > 0
it holds

Pla +av) = §(x) _ d(z+avy) = dlay) _ 2z +av,y) - d(z,y)

« « «

9

Fav) = inp PEEONZ RO 5 g OOV Z V) _ 1y,

where [®(-,y)]'(z;v) denotes the directional derivative of ® in the first component at x
in the direction v. In conclusion,

@' (x;v) > sup [<i>(~,y)]/(a:;v) Vo € RY (6.9)
yeY (z)

and for y € Y (x) we therefore conclude

012 (-, y)l(z) € 0(x).

The first statement is obtained by subtracting pz on both sides of the inclusion. O
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6 Weakly convex-concave minimax problems

Lemma 6.3.6 (Lipschitz continuity of the max function). The Lipschitz continuity of ®
in its first component implies that ¢ is Lipschitz as well with the same constant.

Proof. Let x,2' € R% and y* € Y (z). On the one hand

p(z) — (') = (z,y") — h(y") — ¢(2)
< @(z,y") — h(y") — (2’,y") + h(y")
< Lo — ).
The reverse direction p(z') — p(z) < L||z — || follows analogously. O

6.3.3 Deterministic setting

For initial values (xg,yo) € dom f x dom h the deterministic version of alternating GDA
reads as
Thy1 = ProX, ; (Tk — Nagk)

(¥ > 0)
Y1 = proxX, , (ye + 10y Vy®(@pi1,vk))

(6.10)

for gx € O[P(-, yx)|(zk).

Theorem 6.3.7. Let Assumption [6.3.1)[6.3.9, [6.53.5 and [6.3.4] hold true. The iterates
generated by (6.10) with the stepsizes ny = O(e*) < 1/2p, ny = /Lys and X\ = 1/2p fulfill

. . 2
Jmin Vo)l

(w0) — ¥(wo, yo)
K

for K > 1, where A* := g(xo) —inf ,cpa g(x). Therefore, in order to drive the right-hand
side to O(e?) and thus to ensure that we visit an e-stationary point, at most K = O(e~)
iterations are required.

+ 8€4pL2,

A*
< 2674? +4pe* (L(L + Ly) + LyoC}) + 4,0(;7

Similarly to the proofs in [35,/60] and others, the main descent statement makes use of
the quantity prox, g (zg) for a A > 0. This is somewhat surprising as this point does not
appear in the algorithm and can in general not be computed.

But first, we need to establish the fact that Zj = prox,, () can also be written as
the proximal operator of f evaluated at an auxiliary point.

Lemma 6.3.8. For any A € (0,p™ 1) and all k > 0 the point Ty = prox, , (vx) can also
be written as

Bk = prox, ; (MeA ™ wk — novr + (1 — neA™")d)
for some vy, € Op(Ty,).

Proof. Let k > 0 be arbitrary but fixed and recall that ¢ = f + ¢. By the definition of
Zp we have that

0 € dg(&y) + %(ik —xg) =0+ f)(&x) + %(i'k: — Tp).

82



6.3 Nonconvex-concave objective

We can estimate through the continuity of ¢ and subdifferential calculus

Sk = 8) € D+ 1)) € Op(dn) + 01 ()

Thus, there exists vy, € dp(Z) such that

1 R .
X(xk — &) € v + Of (Zk).

Also,

1 . . _ TN .
Urx(xk — &1) € NOf (&) + Mevk € MeA g — npv + (1 — neA ™Y@k € Tx + 1:0f (1)

& &y, = prox, (nzA_lxk — nevp + (1 — nwk_l)fck) )

O]

With the previous lemma in place we can now turn our attention to the first step of
the actual convergence proof.

Lemma 6.3.9. With A = 1/2p and n, € [0, \] we have for all k > 0 that

1
IN(Trg1) < ga(wr) + 2pme Ay — 577I||V9A(1‘k)“2+4p77§L2,

where Ay, := @(rg) — Y(wk, yr) > 0.

Proof. Let k > 0 be fixed. As in the previous lemma we denote & := prox, (k). From
the definition of the Moreau envelope we have that

o 1 2 N L. 2
o) = min {g(@) + gylle — vl } < o) + g5 85—zl (61D

Let now vy, € dp(Z) as in Lemma We successively deduce

& — Tega |
= ||proxnzf (nm)\_lmk — g + (1 — nx)\_l)ik) — prox, ¢ (Tk — N2 gk) ||2 (6.12)
<A = neA™ ) (@ — 2k) + 12k — vi)|1? (6.13)
= (1= 1A 1|25 — 2l P20 (1 — oA~ gk — vk, B — @) + 72 g — v
< (1= oA D23k — 2l 24200 (1 = 7N "Y) gk — vk &% — 21) + 402L2 (6.14)

where ([6.12]) uses Lemma and the definition of zj. 1, inequality (6.13]) holds because
of the nonexpansiveness of the proximal operator, and (6.14]) follows from the Lipschitz

continuity of ® and ¢ (see Lemma [6.3.6)) and the fact that Lipschitz continuity implies
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6 Weakly convex-concave minimax problems

bounded subgradients. We are left with estimating the inner product in the above in-
equality and we do so by splitting it into two: first of all, from the weak convexity of ®
in x we have that

(gk, Tk — vr) < (T, y) — P(wr, yi) + g”fk — a2
. D
= ®(Tg, yr) — M) — (P(zk, y&) — hyw)) + §H$k — |2

() = (an i) + Sl — aull”

IN
S

Secondly, by the p-weak convexity of ¢
X X P
—(ok, &k — @) < plan) — (@) + 3l — ||
Combining the last two inequalities we get that

(gr — vk, Tk — 1) < p(k) — V(Tk, yr) + pll2k — 21| (6.15)

Plugging (6.15]) into (6.14) we deduce

12 — 2 [
_1\2 _ N
< [(1 — Mz 1) + 27735(1 — Nz A l)p]ka - xk||2+277mAk + 477§L2' (6'16)

N~

=(+)

Now note that
(%) = 1= 20, A7 2N 4 2n,p — 220 1p

= 1 —dnep + 43 p° + 2n.p — 40 (6.17)
=1—2n.p.
Combining (6.11)), (6.16]) and (6.17) we deduce,

. 1, .
I (Tr41) < 9(Tx) + ) (12 — 2k ||*+20. Ak — 200p| 2k — k|| > +402L?)
1
= ga(zk) + 20m: Ak — 577x||V9A($k)|!2+4P77§L2,

where we used that A = 1/2,. O

Naturally, we want to telescope the inequality established by the previous lemma. We
are left with estimating Ay, preferably even in a summable way. But first we need the
following technical, yet standard lemma, estimating the amount of increase obtained by
a single iteration of gradient ascent.

Lemma 6.3.10. It holds for all y € R™ and k > 0 that

1
Yrneny) = blaenyen) < (= wl=ly - wenl?). (638)
Y
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6.3 Nonconvex-concave objective
Proof. By the definition of yx,1 we have that

. 1
Yk+1 = argmin {h(y) + (g1, Uk) — (Vy@(Thi1, Yk), ¥ — Yk) + Tlly - Z/k||2}-
yeR” My

Let now y € R™ be arbitrary but fixed. Since yiy1 minimizes a 1/n,-strongly convex
function,

1 1
h(yr41) + @(zrg1, y) — (VyP(Trt1, Yi)s Yet1 — Ur) + %Hykntl - kaQJrﬁHy — Yot |?
Y Y

1
< hY) + @(@rr1, Yk) — (VyP(Tra1, yk) Yy — yk) + ﬁ”y — k.
Y

(6.19)
From the descent lemma (in ascent form) and the fact that 1/, = Lyg we have that

1
D(pr1,yk) + (VyP(Tht1, k), Yrtr1 — Yk) — ﬁHka — yel’< ®(@py1, yrr1).  (6.20)
Y

From the concavity of ® in its second component we get that
D(zpt1,y) < P(@pt1, Yk) + (Vy@(Thr1,Uk), Y — Uk)- (6.21)

By plugging (6.21]) and (6.20)) into (6.19)) we deduce

1 1
Q(2ry1,y) — h(y) + 7”.’9 - yk+1HQ§ D(zpr1,Ykr1) — P(yer1) + 5y — kaQ‘
2ny 21y

The statement of the lemma is obtained by rearranging the above inequality. O

We can now use the previous lemma to estimate Aj. Recall also that y; denotes a
maximizer of ¢(zy, -) for all k> 0.

Lemma 6.3.11. We have that for all 1 < m < k,
1 N "
Bi < 20 L(L A+ L)k =)+ 5 (s = vl —ilP)- (6:22)
y

Proof. Let 1 < m < k be fixed. Plugging y = v, into (6.18)) we deduce that

* 1 * *
0 < Y(zk, yi) — V(@k, yp) + 2 <||ym — e P lly — yk||2)- (6.23)
My

Starting from the definition of A, we add (6.23)) to obtain

Ak = w(xkv yZ) - ¢(xk7yk‘>

* * 1 * *
< (o ) = Wlanoyin) + 5, (i = v Pl = wil)-
Y

(6.24)
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6 Weakly convex-concave minimax problems

Due to the Lipschitz continuity of ®, terms which only differ in their first argument will
be easy to estimate. Therefore, we insert and subtract ®(zy,,y;, ;) to deduce

P(@r, yr) — V(@r, ym)

= Q(zk, yi) — h(yi) — 2(Tk, ym) + M(Yy)
= O(zg, y) — P(@m, ¥i) + P(zm. yi) — h(yf) — ©(zk, yi) + h(ys,) (6.25)
< O(zg, yi) — (T, yk) + @(zm, ym) — h(ym) — ®(xr, yy,) + h(yr)

We estimate the above expression for k& > m by making use of the Lipschitz continuity
of ®(-,y) and (6.7) deducing

k-1
< Lok — 2ml|< LY llwm — o
l=m
k—1 (6.26)
< LY (lIprox,, s (o0 = 1megi) — prox,, () [ +lpros,  (a1) — il
l=m

<N L(L + Ly)(k —m).
For k = m the inequality follows trivially. Analogously, we deduce
(2, y,’fn) - <I>(wk, y;“n) < e L(L + Ly)(k —m). (6.27)

Plugging ((6.25) - ) and ( into gives the statement of the lemma. O

In order to estimate the summation of Ag we will use a trick to sum over it in blocks,
where the size B of these blocks will depend on the total number of iterations K. Note
that w.l.o.g. we assume that the block size B < K divides K without remainder.

Lemma 6.3.12. [t holds that for all K > 1

LyoC? Ay
5 T (6.28)

K-1

1

% > Ay <nL(L+L;)B+
k=0

Proof. By splitting the summation into blocks we get that

K/B—1 (j+1)B—1

ZAk_ oY A (6.29)

§=0 k=jB

By using (6.22]) from Lemma 1{with m = 1 and the fact that ZkB Lk < B%/2 we get
that

o
-

_ . *
Ay < A0+77xL(L+Lf)BQ+72 lyo — yill®
0 My (6.30)

1
< Ao +n.L(L+L§)B*+ %Cﬁ,
Yy

B
Il
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where C}, was defined in Assumption and denotes the diameter of dom h. Analo-
gously, for j > 0 and m = jB we have that

(j+1)B—-1
> Ay <nL(L+Ly)B*+ 7”3133 =il
k=jB (6.31)
<nL(L+ Lys)B*+ 2—(}2.
My

Plugging (6.30) and (6.31) into (6.29) gives

1= 1 A
— S A <nL(L+Lj)B c+ =2,
The desired statement is obtained by using the stepsize 1y, = 1/Lvs. O

Proof of Theorem[6.3.7. From Lemma [6.3.9] we deduce by summing up

K—1 K—1
1
a(zr) < ga(xo) + 2n2p E Ap — 3l E |V ga(zp)||2+4K pn2 L2
k=0 k=0

Next, we divide by K and obtain that

o Z IV gx () I < 27 L2 Z Ay + 8pn, L*

Now, we plug in (6.28) to deduce that

qu;.C,%) 4pAQ

L2
5B % + 8nzp

K-1

1 A
=Y <2 4p(n.L(L+ Ly)B
K 2~ Vg () | KT p(nx (L+Lg)B+

With B = 1/,/7:, we have that

K- A* 4pAg
Z IV gr(zp)|?< 2777 + p/1le (4L(L +Ly)+ 2qu>02) + =+ 8nepL?.
k: X

We obtain the statement of the theorem by plugging in 1, = O(e?). O

6.3.4 Stochastic setting

For initial values (xg,yo) € dom f x dom h the stochastic version of alternating GDA is
given by

Tkl = PIOX, ; (wk - nxg,§>

(Vk > 0)
Yr+1 = proxX, , (yk + 0y Vy®(@ri1, yrs C)) »

(6.32)

for gi € 0[P (-, yk; & )] (zk) for &, (x ~ D independent from all previous iterates.
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Theorem 6.3.13. Let in addition to the assumptions of Theorem [6.5.7 also Assump-

tion|6.2. 1 and hold true. The iterates generated by (6.32)) with n, = O(e?) < 1/2Lye,
ne = O(e%) < Y2p and \ = 1/2p fulfill

min  E[[[Vg(z)]?]

0<j<K—1
A* (o) — Y(x0,y0)

2
< S 4@ (L(L + Ly +0) + Cf + 07) +4p” - +88p(L2 + 0?),

for K > 1, where A* = g(xo) — inf ,cga g(x). Therefore, in order to drive the right hand
side to O(€?) and thus to ensure that we visit an e-stationary point, at most K = O(e~8)
iterations are required.

The proof proceeds along the same lines of the deterministic case. Similarly we show
an adapted version of Lemma [6.3.9]

Lemma 6.3.14. With X\ = 1/2p we have for all k > 0 that
E <E 2ome A — EE[|V 2] 4 dpn(L? + o°
[97 (k1)) < Elga(ze)] + 2pma A — SB[ V(i) 1] + 4pnz (L7 + 0%)

where Ay :=E[p(x),) — ¢ (xk, yr)]-
Proof. Let k > 0 be arbitrary but fixed. Note that it follows easily from that

E[ g5 12| < E[llgel?] + o2 < 12 + 0%, (6.33)

where E[g,i] = g € 0:P(xg, yx). From the definition of the Moreau envelope we deduce
that

Ela (@1)] < Blg(on)] + e B[l — ae ] (6:39)

Similarly to Lemma we deduce that for v, € dp(2y) (as given in Lemma [6.3.8))

125 — xhpa ||
B 1 —1\ 4 £ 12
= [|prox,, ¢ (A" g — v 4+ (1 — 02 A™H)&k) — prox, s (ack - nxgk> I
<1 = ne A (@ — k) + (g — o)
182 A _ .
= (1= oA Nk — zil 4202 (1 — ne A1) {gf — vk, &k — o) + 12110, — vil®.

By applying the conditional expectation E[-|z,yx], then the unconditional one and

using ((6.33)), we get that

E[l|£r — zk+1])?]

< E[ll&r — zill”] + 200 (1 = n2A™DE[gr — vk, &1 — zi)] + 402 (L° + 02).

where g = E[gi] Lastly, we combine the above inequality with (6.34) and the estimate
for the inner product (6.15)) as in Lemma to deduce the statement of the lemma. [J
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Next, we discuss the stochastic version of Lemma [6.3.10] It is clear that we cannot
expect the same amount of function value increase by a single iteration of gradient ascent
if we do not use the exact gradient.

Lemma 6.3.15. With n, < /2Lvs we have for all k > 0 and all y € R

E[Y(ze11,y) — Y(@ry1, Yps1)] < 2717 (IE[Hy - yk”2] —E[Hy - Z/k+1||2]) +77y02- (6.35)
y

Proof. Let k > 0 and y € R™ be arbitrary but fixed. By the definition of y;+; we have
that

‘ 1
Yk+1 = argmin {h(y) — (Vy® (@1, Ui Ck)s ¥ — Yk) + Tlly — kaQ}-
yeR™ Ny

Therefore, as in Lemma, [6.3.10, we deduce that
1 2, 1 2
h(kt1) = (Vy@(Tra1, Yrs Co)s Ukt1 — Uk) + 5 lUkr1 — vell*+5— Ny — vesi
2ny 2ny

1
< h(y) = (Vy®(Trr1, Uk Ck)s Y — Yr) + ﬁ”y — yl|?
Yy

The term (Vy®(2k+1, Yk; Ck), Ye+1 — Yk) is problematic, because the right hand side of
the inner product is not measurable with respect to the sigma algebra generated by
(k+1,Yk), so we insert and subtract V,®(xp41,yx) to deduce

1 1
h(yYry1) + (Vy@(Trs1, Yk Cr)s Y — Yi) + %Hyk-l—l — ka2+ﬁHy — ypy1]?
y y
< h(y) + (Vy®(Trt1,Yk)s Ykt1 — Yk)

1
+ (Vy®(Ths1, Uk Gk) = Vy@(@ht1, Uk), Y1 — k) + ﬁ”y — yel*.
y
Now, using Young’s inequality we get that

(Vy® (i1, U Cr) — Vy@(Trt1, Uk)s Ykt — Uk)

1
< 77y||vy(1)($k+17yk§ Ck:) - qu)(xk—i-l’yk)nz‘i‘ﬂl‘yk—&-l - yk||2-
Y

Combining the above two inequalities and taking the conditional expectation gives

1
(Vy®(Trt1,Yr), Y — k) + E[h(yk+1) + %Hy — Y1 |I® | Ths1, yk]
y

1
< h(y) + E[<Vy‘b($k+1, Yk), Ykt+1 — Yk) — Hnyk—kl — yil? J?k-l—layk}
y

1
+ B[ Vy @ (@hr1s vk G) — V@ (@rgr, Y I” | Trrt, v ] + ﬁ”y — il %
Yy
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6 Weakly convex-concave minimax problems

And now the unconditional expectation together with the bounded variance assump-

tion (6.5)
1
E[A(yr+1) + (VyP(Trg1,Ur), ¥ — Yr)] + QE[H?J — Yot |?]
Y
1
< E[R(y) + (Vy@(@ri1, Y&), Yrr1 — Yk)] — HE[HMH — yi|?] (6.36)
y

1
to- E[lly — yxll*] + nyo™.
Ty

From the descent lemma (in ascent form) and the fact that 1, < 1/2Lvs we have that

1
Q(xkt1, Yk) + Wkt1 — Uk, Vy@(Tpt1, Ur)) — Eﬂykﬂ — el 2< @ (Tpt1, Yrot1)-
Y

We plug the above inequality into ((6.36]) and also make use of the concavity as in (6.21)
to deduce the statement of the lemma. O

We can now use the previous lemma to estimate Ag.

Lemma 6.3.16. For all 1 <m < k, we have that

A 1 * *
A <2 L(Ly + L+ 0)(k —m) + Q(E[Hym — vl?] = B[l = v 7]) + my0™.
Y
(6.37)

Proof. Let the numbers 1 < m < k be fixed. Plugging in y = ¥, into (6.35) we deduce
that

0 <E[Y(xk, yr) — V(@r, yp)] + 271,’<]E[||y;kn —yi—1l*] = E[llyp — yk||2]> + nyo”.

y
) (6.38)
Starting from the definition of Ay, we add (6.38)) to obtain

A = E[Y(zk, yi) — ¥(@k, yk)]

* * 1 * *
< E[Y(zr, yi) — ¥ (zk, ym)] + %(E[Hym — gk |*] — E[lly;, — kaQD +nyo”.
y
(6.39)
As in (6.25) we deduce that
V(e yr) — o (@r yp) < @@k, yg) — ©(@m, yr) + P(@m, Yn) — P2k Yin)-
Together with the L-Lipschitz continuity of ®(-,y) and (6.7 we estimate for k& > m that
E[®(zk, yr) — ©(xm, yi)]
k—1
< LE[|lzg — zmll] < LY Efl@isr — o]
l=m
k—1

<L Z (E[Hproxnxf (a:l - 77ng> —prox, ¢ (x1) H] + E[Hproxnxf () — xl||]>
I=

< nxL(Lf +/L? +02)(kz —m).
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6.3 Nonconvex-concave objective

For k = m the statement follows trivially. Analogously,
E[®(@ms i) — @i, yi)] < LE[lg = 2l < mL (Ly + V12 +0) (k= m).

Plugging all of these into (6.39)) gives the statement of the lemma. O

In order to estimate the summation of Ak we will use the same trick as in the deter-
ministic setting and sum over it in blocks, where the size B of these blocks will divide
the total number of iterations K.

Lemma 6.3.17. We have that for oll K > 1

2

TZyB

A
T (6.40)

K-
ZA <nL(L+Ls+0)B+ I
k:

Proof. By using (6.37) from Lemma|6.3.16|with m = 1 and the fact that Z,? Lk < B/
we get that

B—
ST AR < Ao+ L(L+ Ly +0)B? +
k=0

)_l

7 Ellvo — wil*] + Bnyo®
My (6.41)

1
< Ao+ L(L+Ls+0)B*+ ﬁc’% + Bny,o?,
)

where C}, denotes the diameter of dom h, see Assumption Analogously, for j > 0
and m = jB we have that

(j+1)B-1
> Ay<nL(L+Ls+0)B+ —E[I\ng 1 = y;5l%] + Bnyo®
k=jB (642)
<mL(L+ Ly +0)B*+ 2—0,% + Bnyo?,
Ty
Plugging (6.41)) and ( into ( gives the statement of the lemma. O

Now we can prove the convergence result for the stochastic algorithm.

Proof of Theorem |6.5.15. We sum up the inequality of Lemma to deduce that

K-1 K-1
Elga(zx)] < Elga(wo)] +2nep Y Ak — %x > E[IVoa(an)[*] + 4K pn2 (L* + 0?).
k=0 k=0

Thus, by dividing by K and 7, yields

1 2A*  dp

K-1
A 2 2
kZOE IVaxr(xg)| ] K +? Ay +8pnz(L° 4 07).
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6 Weakly convex-concave minimax problems

Now we plug in (6.40)) to obtain

K
Z [IVgr(z)11%]
k
2A* 2 Ao
< 4(LLL B+ )4—8 L2+ o2).
_nxKernx( +Lys+0) o B+ny +dpos + (L2 + 02)

With the stepsize 7, = €2, n, = €% and B = e* we have that

= ZHVQA ) |IP<

which finishes the proof. O

A
2(2L(L + Ly + o) + C} +25?) —|—4p?0 + 8peS (L? 4 o),

6.4 Nonconvex-strongly concave objective

Instead of the assumptions of Section we require only the following ones.

Assumption 6.4.1. Let ® be Lyg-smooth uniformly in both components and concave in
the second one. The regqularizers f and —h are proper, convexr and lower semicontinuous.
Additionally, either ® is p-strongly concave in the second component, uniformly in the
first one, or —h is p-strongly concave.

Assumption 6.4.2. Let g = ¢ + f be lower bounded, i.e. inf cga g(x) > —00.

Notation. In Proposition we will show that under the above assumptions ¢ =
maxycrn{P(-,y) —h(y)} is Ly,-smooth, with Ly, = (14+k)Lva, for k := max{Lve/u, 1}
denoting the condition number. In the setting without regularizers, where the strong
concavity arises from @ it is well known that p < Lyg and therefore 1 < Lve/, (which
is the standard definition of the condition number). If the strong concavity stems from
the regularizers h this is no longer true and Lve/, might be smaller than 1 which would
lead to tedious case distinctions, which is why we adapt the definition of the condition
number in order to provide a unified analysis. Additionally, the solution set Y (z) defined
in (6.8)) consists only of a single element which we will denote by y*(z). We denote the
quantity 6 := |lyx — y;|*, measuring the distance between the current strategy of the
second player and her best response according to the current strategy of the first player.

6.4.1 Properties of the max function

In the following we will show the smoothness of ¢, as well as the fact that the solution
map fulfills a strong Lipschitz property.

Lemma 6.4.3 (Lipschitz continuity of the solution mapping). The solution map y*
R — R™ which fulfills (x, y*(x)) = maxyern Y (x,y) for all x € R? is well defined and
k-Lipschitz where k = max{Lve/u,1}.
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6.4 Nonconvex-strongly concave objective

Proof. Let z,2’ € R be fixed. From the optimality condition we deduce that
0 € Oh(y™(z)) — Vy®(z,y"(x))
and
Vy@(a',y"(2')) = Vy@(z,y"(2")) € Oh(y"(2')) — Vy@(z,y" ("))
Thus by the strong monotonicity of Oh — V,®(z,-) we obtain
plly* (@) = y* (@)|? < (v (=) = y* (@), Vy@(x,y" () = V(2’5" (2')))

< [ly* (@) = y" (@) IVy@(z,y"(2) — Vy@ (', y" ()|

< ly*(z) = y* (@) | Lvellz — /.
The statement of the lemma follows. O
Proposition 6.4.4 (Smoothness of the max function). Let Assumption hold true.
Then, ¢ is smooth and its gradient is given by

Vp(r) = V@ (2, 5" (z))

and is therefore Lyg(1 + k)-Lipschitz.

Proof. Following the notation of Proposition we introduce o(z,y) = o(z,y) +
(Lve/2)l|z]*, ®(z,y) = ®(x,y) + (Lve/2)|l|* and P(z,y) = ¢(z,y) + (Lva/2)| |
for all (z,y) € R? x R™. Let z,v € R%, a4 | 0 and ¥ := = + agv for any k& > 0.
Further, let be y* = y*(2*) for any k& > 0. Then, by the Lipschitz continuity of y*(-), see
Lemma limy o0 ¥* = y*(x). In addition, for any v € R? and all k& > 0,

Pz +apv) — ¢(z) _ (@ + o, y*) — (e, y*)

@' (x;0) < <
Qay ay

&)(JZ‘ + Oék’l),yk) — (ﬁ(;p)yk)
ag,
—[®(,4")) (2 + agv; —v) < [B(,y")]) (z + agv; ).

IN

In other words, for any v € R,
@ (x;v) < (Vo ®(2F, yF),v) Vk>0.
Since the gradient of ® is continuous, this implies by letting £ — 400 that
& (2:0) < (Vo®(z,y* (2)),v), Yo e R
which, together with , yields
& (x5 0) = (Vo®(z,y* (2)),v) Yo e R
The fact that the gradient of ¢ is Lipschitz continuous follows from

V() — V(')
< IVe®@(z,y"(2)) = Va@(2',y" (2)) [+ Va2, y" () — Vo (2, y™ ()]
< Lyo|lz — &'[[+Lva|y*(z) — y*(2')I< (Lve + Lyeor)|lz — 2|,

together with the claimed constant. O
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6 Weakly convex-concave minimax problems

6.4.2 Deterministic setting
For the purpose of this section Algorithm [6.2.3] reads as

Thy1 = ProxX, ; (xr — e Va®(2k, yi))

(6.43)
Yk+1 = prox, , (ye + 10y Vy®(@pt1,vk)) |

(wczo%

We start with the main convergence result of this section.

Theorem 6.4.5. Let Assumption|6.4.1] and|[0.4.2 hold. The iterates generated by Algo-
rithm with stepsize Ny = /Lys and 1y = 1/(3(s+1)?Lye) fulfill

> A*  Lygnlly*(x0) — yol?
o < 2 Vo _
érzlclganISt( VSO(xk),@f(ﬂfk)) <6(k+1)"Lve—- +4 %

for A" = g(xo) —inf cga g(x). This means that an e-stationary point is visited in at most
O(k2%e2) iterations.
Let us start with the first lemma.

Lemma 6.4.6. There exists a sequence of points (w);~; such that wy € (Of + V) (wk)
and its morm can be bounded by

1 1 1
577m|’wk+1H2§ 9(zx) = 9(Tht1) + 5 (me + 2L 10 — n*) 2k — 1|1 +72 LY 0%
X

for all k > 0.

Proof. Let k > 0 be arbitrary but fixed. From the definition of the proximal operator we
deduce that

1
0 € 0f(xpy1) + Va®(ap, y) + —(Tp41 — zx)

T

Thus,
1
Wiy1 := — (T — Tpy1) + Vo(rrp1) — Va®(zg, yx) € Of (wp11) + Vp(mp11),

xT

as claimed. In order to prove the bound on ||wg1|| we proceed as follows:

wisl? = n3 2|2k — zpga 24205 Hak — zrt1, Vo(psr) — Vo ®(@k, yi))

5 (6.44)
+ IVe(@rt1) = Va®(zg, yi) [
The smoothness of ¢ implies via the descent lemma that
Ly
(@ri1) + (Vo(Trin), Tk — Tpr1) — T@ka—&-l — i |*< (). (6.45)

Since the proximal operator minimizes a 1/n,-strongly convex function we have that
1 1
F@rrr) + {Va®(@k, yr), Tpar — wr) + 5l 2hs1 = ok |+ 5—llzpg1 — 2|
Nz 20,

1
< flx) + (Vo ®(zp, y), © — xp) + ﬂ”x — a2

94



6.4 Nonconvex-strongly concave objective

for all z € R?. Adding this inequality at = 2, to (6.45) we deduce that

1 2
(Vﬂmwﬁ—V@@mM%m—wmﬁSg@w—g@Hﬂ+<MM—U>HMH—$M?

2 o
(6.46)
Lastly, by the Young inequality

IVo(zpi1) — Va®(zk, yp) || = [|[Vo(zrir) — V() + Vo(zy) — Vo® (g, yr) ||
< 2L2V<p||$/€+1 — $k||2+2L2V<I>5k-

Plugging (6.46)) and (6.45) into (6.44]) yields the desired statement. O

In the next lemma it remains to bound .

Lemma 6.4.7. We have that for all k > 0, then
1 3 2
Opp1 < | 1— o Ok + K |Tk+1 — k]

Proof. Let k > 0 be fixed. From the definition of y11, see (6.43)), we deduce that

Okt1 = ||y,’§+1 - yk+1H2
= Hproxnyh (yZ—H + 1y Vy®(@p+1, y;;+1)) — ProX, p (Wi + 1y Vy @ (Tpt1, Yi)) [

If ® is strongly concave in its second component we can use the nonexpansiveness of the
proximal operator and Lemma [2.2.3] which states

<Vy‘1)(xk+1, yf:+1) - qu’(karh Yk), ?JZH — Yk)

pLlye | 2
< ——|y — Ykl —

(6.47)

m”qu)(ﬂﬁkﬂ, Yi1) — Vy@(zpr1, yr)|?

to conclude

Opt1 < ”y;;_H + nyvy(b(xk+1ayZ+1) — Yk — WyVy<I>(93k+1, yk)HQ

= li1 — vkl P20y W1 — Uk V@ (@rt1, vi1) — Vy@(@re1, vr))

+ WSHVy‘I)(a?kHa Yer1) — Vy@(@h11, yi)|I?
©47) /.1
< -
(K, +1

)mal—%WSqmai—%w

2
with ¢ := (ﬁ) , where we used that 7, = /Lys. If on the other hand —h is strongly
concave we can use the fact that the proximal operator (of h) is even a contraction,

see |6, Proposition 25.9 (i)], to deduce that

ka1 < qllyier — will®-
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6 Weakly convex-concave minimax problems
Therefore, in either case dx11 < qlly;y, — yk||>. Using this, the triangle inequality and

Young’s inequality, we have

Ori1 < qllyisr — vell?
2

< (s — vill+lvi — vl

3k% —1 253

1 * 2 1 * k12
< q< t g > vk — vkl +Q< t3a-1 1) 1941 — will
=4y,

1 * * (12

S |\l-50 Ok + Kllyrr — vill” (6.48)

Due to the s-Lipschitz continuity of y*(-) we have that ||y}, | —yl|< &l|2ks1 — 2|, which
finishes the proof. O

Now we can bound the sum of d.
Lemma 6.4.8. We have that, for oll K > 1

K-1 K-1
Z 5k < 2%50 + 2/€4 Z ka’-i-l — kaQ
k=0 k=0

Proof. By recursively applying the previous lemma we obtain for k > 1

1 k k—1 1 k—j—1
T R LR Y (R R PN
=0

Now we sum this inequality from £k = 1 to K — 1 and add dg on both sides to deduce
that

K-1 K-1
5k < 2/%(50 + 2/<L4 Z ka+1 — a;kHz,
k=0 k=0

where we used that
K-1k-1 k—1—j K-1 j K-1
S5 (1-5)  lonmsls (X (1-5) (Z Jons - W) (649
k=1 j=0 §=0 k=0
and Y0 0 (1 - (26) 71 = 2x. O
We can now put the pieces together.
Proof of Theorem[6.4.5. Summing up the inequality of Lemma fromk=0to K—1
and applying Lemma we deduce that
T
3 > lwel* < g(wo) — g(ak)
k=1

K—

1 1
Ty (LVso + 2L2v@77w s + 2“4L2v¢77m) |2k11 — 2k +2 L g1 Ko
v k=0

—_
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6.4 Nonconvex-strongly concave objective

With the stepsize 1, = 1/(3(k + 1)>Lyg) it follows that

Ly, + 2LV<p77x — — + 26" Lyene = (k+1)Lye + —3(k+1)"Lve + P E—
Nz 3(/{ + 1)
2
< —g(/‘i +1)’Lye <0,

which concludes the proof. O
6.4.3 Stochastic setting
For the purpose of this section Algorithm reads as

= — ;G

(Vk > 0) Li+1 = PIox, ¢ (xk Nz 93) (6.50)

Ykt1 = prox,  (yk +myGy)

where we denote G, = ﬁ Zf‘il V. ®(z, yk;f,i) and Gy = ﬁ Zf\il V@ (Tht1, Yks C}g)

Theorem 6.4.9. Let in addition to the assumptions of Theorem also the two
properties of the gradient estimator Assumption [0.2.1] and [6.2.9 hold true. The iter-
ates generated by with stepsize 1y = 1/Lvs and 1, = 1/(4(1+x)*Lyvs) and batch size
M = O(ke™2) fulfill

2 * 2 * _ 2
min E[dist(—vsp(xk)’af(xk)) ] <98 | yLverlly(zo) — ol

4¢? 1)o?
1<k<K oK K +4e*(k+ 1)o7,

where A* = g(zo) — inf cpa g(x). This means that a e-stationary point is visited in at
most O(k?e~2) iterations resulting in O(k3e~*) stochastic gradient evaluations.

Let us start with the first lemma.

Lemma 6.4.10. There exists a sequence of points (W)~ such that wy € (Of +V)(zy)
and its norm can be bounded by

1 1
ian[HwkHHQ] < Elg(zr) — 9(zp41)] + 2 <LV@ + SLQVW% —

T

1
oo JElk = xal?]
2

ag
+ 10 Lo B[0k] + g

for all k> 0.

Proof. Let k > 0. From the definition of the proximal operator we deduce that

1
0€0f(xks1) +Ga + F(mk+1 — T).

xT

Thus,
1
Wt = F(xk — Zpy1) + Vo(rip1) — Go € 0f (p41) + Vo(Tpt1)-

T
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6 Weakly convex-concave minimax problems

In order to bound w1 we consider

k1|

= 1, 2ok — wpga [P 420,  (r — 2hg1, Vo(arg) — Ga) + [[Vo(ar) — Gol*
(6.51)
Analogously to (6.46]) we have that

1 2
(T — Tpy1, Vo(rpg1) — Go) < g(xg) — 9(Tp41) + 3 (LW - 77) |oks1 — 2xl® (6.52)

Using and
E[[[Ve(r11) — Gal*]
= E[||Ve(zr+1) — Vo(ar) + Vo(zr) — Vo®(2r, yk) + Va®(k, k) — Gal|?]
= E[||Ve(xr+1) — V() [[P+2(Ve(zr11) — Vo(ak), Volzr) — Vo®(@k, yi)) ]
+ 2E[(Ve(zrt1) — Vo(ak), Va®(2k, yi) — Go)]
+2E[(Vo(ar) = Vo@(ak, yk), Vo ®(k, k) — Go)]

=0

+E[|Ve(zr) — Vo®(@r, y) 1] + E[|Va® (2, i) — Gall?]
2
g
< BLYE[lloesr — 2il*] + 2030 B[0k] + 24

in (6.51)) yields the desired statement. O

In the next lemma it remains to bound dy.

Lemma 6.4.11. We have that for all k > 0
2

o
-

ML

Proof. Let k > 0 be fixed. We first consider the case where ® is strongly concave in its

second component from the definition of yxy1 (see (6.50)) we deduce that

1
E[6r41] < (1 - 2H>E[5k] + &2 ||zpgr — x>+

Shr1 = W1 — |l
= |lprox,, , (U1 + 1y V@ (@1, vir1)) — prox,, , (v + nyGy) |12
< Yks1 + 0y VyP(@ht1, Y1) — Y — UyGy”Q
and
1Yks1 + 7y VyP(Trt1: Yig1) — Yo — 77yGy||2
= 11 — w20y Wi 1 — Yk Vy@(ri1, ii1) — V@ (@rr1, v))
+ 2n, <yl:+1 — Yk, VyP(Thr1, Yk) — Gyz

"

~—

© (6.53)
+ 2 Vy @@kt Vi) — V@@t o) IP472 Vy @ (@ri1, i) — Gyl?
+; (Vy®(@p11, Ypar) = VyP@ri1, yn), Vy (211, 48) — Gy) -

~—

(%)
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6.4 Nonconvex-strongly concave objective

Some of the terms vanish after taking the expectation such as E[(x)] = E[E[(*) | yk, zk+1]] =
E[0] = 0 and E[(0)] = E[E[(0) | y, zx+1]] = 0. Using furthermore Lemma which
states that

<qu>(l’k+1a ylt+l) - qu)(l‘k:—kla l/k:)a yZ+1 - yk>

pLva (6.54)
—m”y;;ﬂ - yHP‘muqu’(%H’yZH) - qu’(xkﬂa yk)HZ
results in
Bl < (5 70) Bl — l?] + ~ o < B[ Iter — well?] -~ Los (655)

2
with ¢ = (KLH) , where we used that 7, = !/Lvs. If h is strongly concave then we use

the fact that the proximal operator is a contraction, see |6, Proposition 23.11], to deduce
that

E[dk11] = E[HQZH - ?/k+1||2]
= B[ lprox,,, (31 + 1 Vo @(@rs1, 5i41)) = prox,,, (us +mGy) I

= qE[HQZ—&-l — Yk + UyVy‘I)(kaH,yZH) - nyGyHQ]

(16.53]) . . N
= qE[Hyk+1 - yk||2] + 2q77yE[<yk+l — Yk, vy(b(xk-&-la yk+1) - qu’(xk+1>yk)>]

+ @i E[IVy® (21, Ui 1) — V@ (@rgr, v) IP+am | Vy @ (@1, yi) — Gyll?]
Using now (6.54) with p = 0, i.e. the cocoercivity of the gradient, we deduce that

o2
2 Y
MLGe

El0k+1] = E[llvi1 — ver11?] < allyier — will*+a

meaning that we concluded (6.55]) in both cases. Next, using (6.55]) and the considerations
made in (6.48]) we deduce that

o2

1 * *
E[6r41] < (1 - %) E[0] + KE[|lvie1 — vill*] + m-

Again, due to the k-Lipschitz continuity of y*(-) we have that |y}, —yil|< &llzg1 — 2k,
which finishes the proof. O

Now we can bound the sum of §;.

Lemma 6.4.12. We have that, for all K > 1

=
=

-1
Ko

E[5k] < 2/‘650 + 2,%4 E[”l‘]ﬁ.l - 33‘].3”2] + 2K72.
- MILZ,

B
Il

0

B
Il
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6 Weakly convex-concave minimax problems

Proof. By recursively applying the previous lemma we obtain for k > 1

L\F k-1 1\ ki1 o2
3 2
Bl (1-g.) 0+ X (1-5;) (Bl -+ ).

Now we sum this inequality from k£ = 1 to K — 1 and add &g on both sides to deduce
that

K-1 K-1
> E[6i] < 26d0 + 2KML2 + 260 E[lleprr — 2%
k=0 k=0
using the considerations made in ((6.49)). [

We can now put the pieces together.

Proof of Theorem[6.4.9 We sum up the inequality of Lemmal6.4.10/from k£ = 0 to K —1
and applying Lemma we deduce that

K
1 o2 o2
o ;E[HwkHZ] < Elg(z0) — ()] + 2nerL3g00 + et + 0o K
N 1 =
2 <Lv<p + 3LV¢7733 o + 254L2v<1>77r> E[||zg+1 — kaZ]
X
b—

[e=]

Applying the stepsize 1, = 1/(3(1+x)?Lve) it follows that

2H2ch1>

1
Ly, + 3LG 10 — ot 26 L3 one < 2(k + 1)Lye — 3(k + 1)’ Lye + 2
X

1
< fg(li+ 1)2qu> <0

which concludes the proof. O
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7 Conclusion

In this thesis we investigated different structured nonsmooth optimization problems and
iterative schemes to solve them. We studied the convergence behavior of these solution
methods in terms of quantitative global bounds, i.e. convergence rates. This kind of worst
case analysis is fundamental in giving a principled understanding of the performance of
different algorithms. Where we deemed it appropriate, these theoretical considerations
were augmented with numerical experiments.

In Chapter [3] and [4] we studied composite optimization problems where a nonsmooth
function is composed with a linear operator and highlighted applications in imaging and
machine learning. We focused on full splitting methods where the proximal operator of
the outer nonsmooth function is evaluated separately from the matrix, resulting in easy
to use algorithms.

In Chapter [3| we presented a novel (randomized) method for the convex formulation
of the aforementioned problem using stochastic accelerated gradient evaluations of the
Moreau envelope and proved state-of-the-art convergence guarantees. While the empir-
ical performance of our proposed algorithm was mostly comparable to the primal-dual
methods [27[28], it outperformed them significantly when used as a subroutine inside the
prox-linear algorithm [37] for weakly convex problems.

Chapter [f dealt with the same problem formulation but dropped the convexity assump-
tion. This enables the use of more sophisticated regularizers 38,108, possibly reducing
the bias caused by convex functions such as the 1-norm. While similar formulation have
been considered before we proposed a novel method and proved a worst case complexity
which interpolates nicely between gradient descent for smooth objectives and black-box
subgradient descent for nonsmooth problems.

In Chapter [5| we highlighted the connection between GAN objectives and monotone
inclusions and were therefore able to tackle their training via the Forward-Backward-
Forward (FBF) method which is known to converge to a solution for convex-concave
minimax problems. We deepened this theoretical understanding by proving novel con-
vergence rates in terms of the function values. Since FBF provides a natural way to deal
with nonsmooth regularizers via the proximal mapping, we modified the WGAN objective
to encompass a 1-norm instead of the usual weight clipping. We showed that this formu-
lation provides a benefit for all considered methods, smoothing the training process and
improving Inception Score and Fréchet Inception Distance. Moreover, FBF outperformed
all competitors including the commonly used gradient descent ascent (GDA) method as
well as Extragradient [40] and Optimistic GDA [33].
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7 Conclusion

Lastly, Chapter [6] was devoted to a theoretical study of the already well established
GDA method. In particular, we considered its alternating variant, where the two com-
ponents are updated in a sequential manner. In the convex setting is known that for
equal stepsizes simultaneous GDA diverges while the alternating update scheme at least
provides bounded trajectories. Although the assumptions in this chapter are some-
times rather restrictive, our obtained convergence rates were still novel outside the
convex-concave setting, albeit only a slight improvement over simultaneous GDA was
obtained [60].
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