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1
Introduction

1.1 Overview – Research Question and Output of

the Thesis

The goal of this thesis is to provide a step towards the answer to the question:

How can we automatically and efficiently create or extract high quality bilin-
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gual/parallel corpora, from freely available digital sources? Can we do this se-

lectively for well-defined domains? Is it possible to find a method that can be

used for any language pair without sacrificing quality? While parts of these

questions have been answered, or are addressed in research with promising

progress, combinations of these challenges taken together become a daunting

task, especially if we consider dissimilar and low-resource languages.

In this thesis, we attempt to move closer towards a solution by addressing

some of these questions. We present amethodwhich extracts text in Japanese

and in English from Wikipedia, based on a seed of topics. It aligns these sen-

tences based on a novel metric we propose in this thesis. This method is trans-

parent and traceable and canbe adjusted and fine-tuned as needed. Wepresent

an implementation of this method in the form of a framework describing it

in detail and with examples. The output, which we produced with this soft-

ware, is evaluated by a translation professional and allows us to concludewith

several empirical observations.

There aremanymultilingual digital sources available on theweb. Amongst

these many possibilities we choseWikipedia for several reasons: One of them

is simplicity. Wikipedia is well structured, so the extraction of text is straight

forward and the semantic design of the content makes access, data acquisi-
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tion, and cleaning of the data fairly easy. Further, Wikipedia is dynamic, it is

constantly updated, hence repeated iterations, even with the same seed data,

potentially yield new text. It is also highly multi-lingual and although the vol-

ume depends much on the particular language, there is a fair amount of con-

tent in most languages even in low-resourced languages and language pairs

that are otherwise underrepresented digitally.

One particularly difficult question is: From all articles about one topic in

several languages, howmany are actually translated, howmany are written in

parallel and how many are composed independently. In other words, how

much is parallel text, how much is merely a bilingual representation of the

knowledge, and how much is an independent description. Examining this

manually, although very time intensive, is very interesting in itself and fairly

straight forward. Making judgements in such detail in a pool of thousands

or millions of collected sentences obviously becomes impossible. Looking

for translation candidates while not being aware of their availability and vi-

ability adds another level of complexity to the search for parallel data candi-

dates. We decrease this complexity by using a transparent method to select

the Wikipedia topics for extraction.

Similar to themanual evaluation ofmultilingualWikipedia content, if few

3



articles are selected and examined, we canmake certain observations regarding

the volume of text which is translated or equivalent. Our goal, however, is

to collect as much data as possible. We attempt to strike a balance between

collected volume, computational efficiency, and a transparent and traceable

method.

Having addressed the choice of data source, and the selectionofdatawithin

it, there is the question of the language pair. As already mentioned in the ti-

tle we focus on English-Japanese. We think that this language pair provides a

good case study for our approach as itmeets our requirement of being dissimi-

lar, i.e. differing significantly in surface characteristics, sociolinguistic factors,

and cultural aspects as well as type of script. It is sufficiently represented on

Wikipedia to offer a sizable overall volume of parallel corpora candidates. At

the same time, this pair of languages still remains somehow underrepresented

compared to the digital parallel resources of other widely spoken language

pairs. In a time where the availability and quality of parallel data dictates the

success of machine translation systems we think it is important to investigate

any alternative for high quality parallel data acquisition.

The combination of all the above mentioned issues makes the problem

very complex in its entirety. With a divide and conquer approach in mind we

4



try to observe these closely interconnected questions separately:

• CanWikipedia entries be considered as a reliable source for high quality
English-Japanese parallel corpora?

• How much of English-Japanese Wikipedia content is a direct transla-
tion, howmuch is created inparallel, howmuch is created independently?

• How can we automatically obtain English-Japanese bilingual content
from Wikipedia in an efficient manner?

• What is the most feasible way to automatically assess English-Japanese
content crawled from Wikipedia?

To answer these questions we propose amethod, explain our assumptions

and premises, and present a proof of concept in the form of a modular frame-

work. Our conclusions are based on empirical trials of collecting data with

our software.

Our framework produces collections of bilingual text which is aligned, an-

alyzed, and interpreted. We start with crawling Wikipedia for bilingual con-

tent. The type of content is defined by choosing seed topics. The algorithm

proceeds to collect the text in both languages until a pre-set number of related

articles is met. The text collection is then aligned, and each aligned sentence

pair is assigned a score. This metric is a measurement of the equivalence be-

tween the Japanese and the English sentence. If the score is high enough, we

5



deem this sentence to be a parallel data candidate. The output of this empiri-

cal portion of our thesis is:

• Amodular software chain to automatically createparallel English-Japanese
corpora.

• A sentence-aligned English-Japanese corpus with alignment scores for
each sentence pair.

• An evaluation of the highest scoring parallel sentence candidates by a
human expert.

1.1.1 Challenges

In this section, we expand upon the challenges which are mentioned in the

introduction of this chapter. First of all, Wikipedia articles in two languages

are not always translations of each other; quite on the contrary, the content

often differs greatly depending on the language pair and the topic domain.

Wikipedia article pages are often created independently in different languages.

Sometimes they are created in parallel as a rough copy by paraphrasing parts

of articles or sections. Occasionally, they are translated closely with attention

to good language and detail.

6



This uncertaintywhether the content is translated adhering to theoriginal,

translated by loose paraphrasing, independently composed, or a mixture of

these three, makes the assessment very difficult. Additionally, Wikipedia con-

tent varies by many other aspects, such as culture, socio-political factors, tech-

nological advancements and simply the interest of the language representa-

tives creating the content. Avery good exampleof this variation is theWikipedia

entry for Judo; a traditional Japanese martial art. It is widely popular in Japan

and is practiced from an early age in high schools, in clubs, and even as part

of the physical education program. Although Judo has become an Olympic

sport and is well known in the English speakingworld, the percentage of prac-

titioners and the media exposure is very small in comparison. This is very

much reflected in the volume of the Wikipedia articles related to this topic

with the Japanese entry currently covering roughly over ten times as much

information. Such asymmetric volume and detail of articles is encountered

more often if the languages are also separated by cultural, social, and histori-

cal differences. This phenomenon has a significant effect on the availability

of parallel data depending on the domain. This has to be considered when

choosing the seed topics and evaluating the collected parallel data.

Another critical issue is computational efficiency. Related to the topic of

7



asymmetry discussed in the previous paragraph, if the selection of sections

within articles is not done carefully most of the data will not be viable as par-

allel candidates. Such asymmetric data lowers the quality of the output and

highly increases processing time. Sentence alignment is the most computa-

tionally intensive step in our framework. Looking at two sentences, one in

English and one in Japanese, we have to compare each token of the first sen-

tence with each token of the second sentence and determine whether there is

equivalency. These comparisons alone result in an exponential runtime. Ad-

ditionally to that, finding equivalencies is much more complex than one to

one comparisons, due to polysemy, inflection, and other linguistic phenom-

ena. This requires pre-processing, such as part-of-speech tagging, word-sense

disambiguation and other methods which increase the runtime even further.

Hence, crawling large volumes of data without having at least an indica-

tion of a potentially high yield in terms of parallel data, i.e. without a certain

preselection, would not be computationally efficient. Even the simplest way

of preselectingmaterial canmake the alignment processmore streamlined and

open up computational power for more likely alignment candidates.

Last but not least, there is the challenge of judging the output of the col-

lected and aligned data. Usually translation quality evaluation or translation
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post-editing is done with the assumption that the source and target sentence

are indeed translations. This assumption cannot be made in the case of data

that has been crawled fromWikipedia. This uncertainty of howmuch of the

text is actually translated and how much was written independently or para-

phrased makes evaluation even more challenging. Once we obtain this bilin-

gual data, how canwe assess translation quality, orwhether they can be seen as

translations at all? It is obvious that examining every piece of data in a dataset

of thousands or evenmillions of entries by a human expert would not be pos-

sible, so a preselection in the form of an automated evaluation or a metric is

necessary. An automatically computed metric during the alignment process

makes a human expert evaluation feasible by selecting a manageable subset of

data for evaluation.

A recent find (August 2020) has once more highlighted the importance of

expert evaluations of Wikipedia content. A teenager from the United States

has been authoring articles in the Scots language for years without being able

to speak the language. This resulted in 27,000 Wikipedia entries which were

linguisticallywrong andmisleading. It is astonishing that such a large number

of wrong entries has gone unnoticed for years, until a perceptive reader finally

pointed out the issue on social media. Scots, being an endangered and very
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low resourced language, is especially sensitive to being wrongly documented.

The impact is especially critical on a language with low volumes of digital rep-

resentation; but careless entries that go unchecked can have negative effects on

data quality even for data rich languages, not tomention readers ofWikipedia

being misled into making mistakes by faulty entries.

The conclusion is clear: black box, large scale data harvestingwithout qual-

ity checks is dangerous, in termsofquality and correct language. Goodquality

can only be obtained by transparent processes and human expert evaluation

of at least a sample of the collected texts.

1.1.2 Approaches and Solution

In order to address the challengesmentioned in the previous section amethod

for preselection of topics is developed, so that bilingual content is not ob-

tained randomly, but chosen according to link distance on Wikipedia.

For the assessment of the aligned sentence pairs a metric is devised and a

score is assigned to each aligned sentence pair. To further examine the quality

of the parallel data, a subset of sentence pairs with the highest score is evalu-

ated by a professional translator.
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1.1.3 Language-Specific Issues

Several intricacies have tobe consideredwhen collectingparallel data for Japanese

and a Germanic language such as English. The issues presented here are spe-

cific but not exclusive to this language combination. We have tried to be as

generic as possible in our description and our framework regarding the lan-

guage pair; however, it is important to keep in mind that many of the issues

are specific to English-Japanese which is our language pair of choice.

Zero anaphora constructions are very common in Japanese and often

cause problems in translation and in this case, alignment. What makes them

even more difficult is the fact that they often do not refer back to a previous

part of the text, but rather to context, such as situation, tone as well as num-

ber, gender, age and social standing of people involved. The example in Ta-

ble 1.1 shows merely a selection of possible translations of a Japanese phrase

involving an assumption of a personal pronoun. Finding the right transla-

tion in the given context would require an analysis of the semantic proximity.

This could be a neighboring sentence or even the entire paragraph.

Tokenizaধon can be a problem in Japanese, even though the use of the

Hiragana and Katakana syllabary for various grammatical and semantic func-

tions often helps to encapsulatemulti-character expressions. Thismulti script
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Japanese English translation
⾷べます to eat
⾷べます I eat.
⾷べます You eat.
⾷べます I am going to eat.

⾷べます
They will eat.

(and many other possibilities)

Table 1.1: Translaধon polysemy examples.

property makes tokenisation easier compared to other Asian languages, such

as Chinese, but it creates other intricacies, which are described later in this

section.

Although there are many polysemic expressions in Japanese, a large

number of them are homophones, hence do not pose a significant difficulty

when they are examined in written form. The words in Table 1.2 are examples

of this concept. Each word is pronounced “kōshō”. The difficulty in this case

is limited to finding the right form according to the characters.

Grammatical structural differences are a considerable issue. Compar-

ison of equivalent expressions on a phrase level is very difficult between En-

glish and Japanese, due to the auxiliary verb and particle structure in Japanese.

Although there are equivalents in English, finding such structures using an al-
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Hiragana Kanji English translation
こうしょう 交渉 negotiation
こうしょう 公証 authentication
こうしょう 考証 historical investigation
こうしょう 校章 school badge
こうしょう ⾼尚 noble
こうしょう 公称 nominal

Table 1.2: Phoneধc polysemy examples.

Japanese English translation
これは私のメガネです。 These are my glasses.
次の電⾞に乗る Take the next train.

Table 1.3: Example of parধcle usage.

gorithm is not reliable, since they often do not follow awell defined structure.

The example shown in Table 1.3 demonstrates the different ways of using the

“no” particle in Japanese, which usually indicates possession or belonging to

something and is often compared to a genitive case in English. Equating the

particle “no” with a genitive case every time would result in many mistakes.

Thus, the lack of definite equivalents for particles makes the comparison of

phrases unreliable and costly.

Japanese has adopted many words from English and other European lan-
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Japanese phoneme possible transcriptions
フ fu/hu
リ ri/li
レ re/le
ブ wu/bu

Table 1.4: The Japanese phonemes are wriħen in the Katakana syllabary. Both transcripধons and
pronunciaধons on the right side are possible.

guages, especially when it comes to modern terminology. These terms, how-

ever, are written in the Japanese script. Transcripধon of these words is not al-

ways a trivial task. These borrowedwords are usually written in the Katakana

syllabary and are sometimes abbreviated to the point of obscurity. Katakana

is built on a different set of phonemes, therefore a transcription quite often

results in slightly changed words. Japanese has fewer phonemes than English,

and often two different phonemes are transcribed into one representation.

This potentially leads to a situation where a transcription back to English

yields a different word. Quite often an adopted foreign term is changed to

such a degree that it makes more sense to consider it a Japanese word, rather

than a transcribed adoption of a word. See Table 1.4 for a few examples of this

phenomenon.

Such transcription problems can potentially result in rather amusing con-
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sequences when, for example, encountered on a menu in a restaurant, as seen

in Figure 1.1.

Figure 1.1: Unfortunate transcripধon errors on a restaurant menu. (source: www.engrish.com)

Character encoding can be a significant problem, especially when read-

ing and writing Japanese characters to memory or into files. There are several

encoding systems used in Japan. The common denominator between digi-

tally representing Japanese and languages based on the Latin alphabet is usu-

ally utf-8, however, decoding and encoding is often a tedious task invitingmis-

takes. Many Japanese language resources are only available in certain encoding

formats, which requires even more additional conversions.
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1.1.4 Objective and Scope

To summarize the previous sections in this chapter, the key objectives of this

doctoral thesis are:

• An algorithm to efficiently obtain corresponding text from English and
Japanese Wikipedia pages.

• An algorithm to align the English-Japanese sentences pair candidates.

• A metric to quantify the similarity between an English and a Japanese
sentence, i.e. signifying the likelihood of these sentences being a transla-
tion or giving a rough idea of equivalence.

• Implementation of the above mentioned algorithms and the metric in
order to obtain a significant number of sentences.

• Assessment of a sample of the obtained parallel data by a human trans-
lator.

1.2 Structure of Thesis

The main body of the thesis is structured similarly to the modular nature of

the framework which was developed as its proof of concept. We describe the
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stages, modules, and functions of this framework parallel to the theory that is

behind it.

We start with a discussion about related work, the scientific background,

and the motivation for this thesis in Chapter 2. We begin with a brief look at

languages and translation in general, followed by machine translation and its

most recent paradigm: neural machine translation. We introduce the topic of

language data, in particular parallel corpora and their importance, andpresent

a collection of existing resources. We conclude this chapter returning to the

topic translation, albeit this time from the perspective of evaluation.

InChapter 3 –AutomatedWikipediaCorpusAcquisitionTool –AWCAT

– we give an overview of the implementation of the software, which we de-

veloped as a proof of concept. We outline the architecture of the stages and

modules in this chapter, and add the specifications of the hardwarewhichwas

used in the course of developing and running the framework.

In Chapter 4 –Data Extraction–we talk aboutWikipedia as a data source,

how we select data for crawling; and we describe the Data Extraction Stage.

We explain howwe have created a glossary building functionality in amodule

in this stage.

Chapter 5 – Data Preparation – is dedicated to the cleaning and prepara-
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tion process of the data. We describe the Data Preparation Stage which opti-

mizes the format of the data for alignment. We also explain how we prepare

the language resources which we use in the following stage.

In Chapter 6 – Sentence Alignment – we elaborate on how the bilingual

text, which was obtained and formatted in the previous stages, is aligned to

become a corpus of parallel sentence candidates. We startwith a descriptionof

the algorithm, explain the alignmentmetric, break down a process of aligning

into individual steps as an example and finally explain the inner workings of

the Sentence Alignment Stage.

Chapter 7 – Evaluation – presents the various methods of assessment and

ranking, i.e. the automatic evaluation with the metric from Section 6.2 and

human expert evaluation.

In Chapter 8 – Conclusion – we summarize the results and discuss the

findings. We share our observations from the process of developing the frame-

work. We present the potential contributions of this thesis and describe what

steps need to be taken to adopt the framework to other languages. We men-

tion the limitations of our approach and our framework and finally conclude

with an outlook on future work.
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There ॹ no data like more data.

Robert Leroy Mercer

2
Scientific Background

2.1 Languages and Translation

For centuries scholars and researchers have tried to describe languages. These

endeavours were undertaken from many different perspectives, but one ma-

jor common goal was to find the underlying concept of all languages, to dis-
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cover patterns, common structures and similarities to eventually conquer the

language barrier. It is apparent that language encodes not only what we can

perceive with our senses, e.g. our physical surroundings, but also specific con-

cepts, views and traditions and cultural idiosyncrasies. Even tangible things,

such as forms of flora and fauna, which can differ greatly depending on the

geographical location, define the properties of a language, ranging from ter-

minology to specific idioms, similes and analogies. Many other factors chang-

ingdynamically according to thepolitical, cultural, and technological develop-

mentof its populationmake language extremelydivers and complex. Nonethe-

less, there were many attempts to define a formal comprehensive representa-

tion of all languages, an Interlingua, a language independent representation

of concepts, serving as ahubbetween languages towhich every language could

be converted and from which a conversion into any other language would be

possible by applying analysis and construction according to rules. In theory

this would have revolutionized machine translation, but it turned out to be

impossible to fully realize.

With the dawn of the Information Age and the dramatic change of the

way written word is processed, the perception of language has changed sig-

nificantly. Just as Johannes Gutenberg revolutionized the spread of language
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and information by the invention of the printing press, so has the computer

and the subsequent interconnectedness of computers throughout the world,

the World Wide Web, revolutionized it once again. Thus, the perception of

languagewas changed oncemore, this time on a global scale enabling virtually

anyone to create and disseminate written content.

The digital representation of language with the electronic computermade

it possible to program machines to translate between languages. This history

of automated translation reaches back to the end of World War II. In the be-

ginning stages, it was pursued with limited success, but soon was boosted

with the availability of an ever growing volume of multilingual digital data.

A short overview of the chronological development and a selection of asso-

ciated research milestones of Machine Translation (MT) is described in the

following section, followed by the newest paradigm inMT:Neural Machine

Translation (NMT). Following this, we discuss the importance, availability,

and research in language data. We explain why it is so important and why we

rely so heavily on bilingual/parallel corpora inMT.We conclude this chapter

with a discussion about translation quality evaluation.

21



2.2 Machine Translation

Thedecodingof information as itwas donebyAlanTuring in the 1940son the

first generation of programmable digital electronic computers has sparked the

interest of the research community, and the idea to apply a similar method to

transpose information from one language to another gave birth to Machine

Translation (MT).

The evolution of the research field of MT has undergone many paradigm

shifts since then, as described in (Hutchins, 2012) and (Arnold et al., 1993).

Word to word translation systems, which utilized dictionaries to directly map

words from source to target language, were the first methods used, taking ad-

vantage of the speed at which a computer could look up entries in a digital dic-

tionary. Although such a translation offered a rough idea of the source text

for some language pairs, the translation was often wrong due to polysemic

words, hardly readable due to the lack of consideration of grammar and all

but reliable.

More intricate and analytic methods have been researched since then. The

next logical step after the direct word transfer approach was the analysis of

grammatical rules. Rule-based transfer systems allowed for a better transla-

tion from the source text and a more coherent representation in the target
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language, such that the transposed content was easier to read and for themost

part syntactically correct. Themost difficult problem, however, was polysemy

inboth source and target language. The disambiguation ofwords andphrases

has been a focus of research for decades and remains an issue until today. For

instance, to successfully identify the meaning of the word bank, one has to

observe the context to find whether a river bank is meant, or the financial in-

stitution. The transfer-based method was extended by the semantic analysis.

In theory, this analysis of the sentence by rules and meaning would result in

an Interlingua, a formal, language independent representation of the source

text. This Interlingua could then be reconstructed into the target text by es-

sentially reversing the analysis process. This Transfer-based MT approach is

visualized in a simple and intuitive way by the Vauquois triangle (Vauquois,

1968), shown in Figure 2.1.

Another paradigm inMT,Phrase-BasedMachine Translation and itsmost

popular versionStatisticalMachine Translation (SMT)was introduced as early

as 1949 by (Weaver, 1955) but did not take off until the 1980s, when it was

made popular by IBM. It was around this time, that bilingual digital text data

was starting to be available in significant quantities. The statistical analysis of

large volumes of bilingual data results in probabilities for translating words
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Figure 2.1: The Vauquois translaধon triangle depicধng the possible transfer levels of the
transfer-based machine translaধon approach.

and phrases without the machine having to analyse the semantic intricacies

of the source text. The basis for the training, i.e. obtaining the probabilities

of translation of words and phrases from source to target text, are parallel

corpora. These are text corpora in two languages, where each sentence of the

source language is alignedwith the sentence of the target language. Thehigher

this data is in quality and volume, themore accurate the probabilities of trans-

lations.

According to these probabilities obtained in the analysis step, the equiva-

lents of words and phrases (so-called n-grams, where n stands for the number

of words in the sequence) with the highest probability can be selected to con-
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struct translation candidates. This is often augmented by a language model,

a probability distribution over sequences of words, which helps to improve

the translations by correcting the word order in the target sentence.

In general, the larger the bilingual data set, the better the result, although

one must take into account structure, domain, style, and general form of the

data to bestmatch the domain towhich that systemwill be applied. Addition-

ally, the SMTmethod is very well suited to be augmentedwithmethods from

otherMTparadigms, such as rule-based systems, lexical lookups, terminology

databases, distributional semantics, etc., to become a hybrid MT system.

Themost recentparadigmofmachine translation isNeuralMachine Trans-

lation (NMT). This method is based on deep learning which has emerged

inArtificial Intelligence (AI) research. Deep learning mimics our brain’s net-

work of neurons andhas revolutionizedAI in recent years (Koehn, 2017). The

NMT paradigm had a significant impact onMT and the biggest providers of

online translation services, such as Google and Microsoft switched to NMT

several years ago. The history, technical background, implementation and the

consequences it had on MT research are discussed in Section 2.3.

It is important to point out that even though the newest candidate, the

NMT method, has taken most of the spotlight of current MT research, each
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of the above mentioned MT methods has been used successfully until today.

The applications of these more traditional methods have specific advantages

and very often hybrid MT systems are constructed; these customized solu-

tions emphasize desired functionalities, exploit strengths, while minimizing

the impact of potential weak points.

The requirements of a system arise from the language pair being trans-

lated, the text domain, the need for accuracy, the need for coverage, andmany

more aspects. A limiting factor is often the availability of corpora for a cer-

tain language pair anddifferences in surface characteristics between languages.

This demands a careful selection and combination ofMTmethods. Data pro-

cessing and analysis depth, use of lexical or semantic resources, rule-based, sta-

tistical, neural methods; all these aspects offer advantages, if combined sen-

sibly for the desired application. For example, so-called lesser resourced lan-

guages benefit from other methods than languages which are rich in digital

corpus data. The differences in surface characteristics for a language pair also

pose challenges, therefore a careful selection of theMTmethod is decisive for

a good result. Another important consideration is how the system is applied

and the desired goal: Is it a fully automated system for a broad audience, or

is it a Computer Assisted Translation (CAT) tool for translation profession-
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als? Last but not least, there is the matter of the translation domain, such as

legal, medical, technical, scientific, etc. The better the training data adheres

to the desired domain, the better the result. Mercer’s quote, which headlines

this chapter, certainly benefits from this additional consideration, especially

in the context of current development, where data is abundant, but informa-

tion relatively scarce.

2.3 Neural Machine Translation

NMT, being currently the dominant paradigm in MT, deserves a separate

mention in this thesis due to its importance as a data-driven paradigm. Al-

though SMT also relies heavily on data and can be certainly described as data-

driven, the need for even larger volumes of data makes NMT stand out.

The biggest difference between these twomethods is probably that NMT

is an end-to-end translation, meaning that the entire process starting from

decomposition of the words and characters into an abstract digital represen-

tation which is processed in hidden layers, until the reconstruction into char-

acters and words in the target language is a black box process. This process is

depicted schematically in Figure 2.2. This was successfully presented in (Lu-

ong and Manning, 2016), showing promising results for highly-inflected lan-
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Figure 2.2: Schemaধc representaধon of an arধficial neural network with n hidden layers.

guages with a very complex vocabulary.

The nodes in the input layer are connected in a way that represents the

data we want to process. This could be any data, ranging from image pixels

for pattern recognition in pictures to frequency values for voice recognition.

In the case of MT this is text data, i.e. sentences, words, characters in the

source language broken down into a binary representation.

In the first hidden layer these binary inputs are either conveyed further

(1), or are not relayed (0). The decision whether one signal is relayed or not is

dependent on theweight function, whichwas adjusted in the training process

of the neural network. The output of the first layer is relayed into the next
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hidden layer, and soon. In the end the data is converted into characters, words

and sentences in the target language.

It is obvious that thesemultitudes of connections and theirweights, which

are based on millions of adjustments during the training phase, cannot be re-

traced for one particular choice of word or phrase in the translation process.

This means the decisions of the NMT systems cannot be logically justified,

nor can any othermethod be added in ameaningful way to augment the qual-

ity of the translation, unless it is done before or after the neural network.

Consequently, the most crucial aspect of a NMT system is the training,

during which the potentially millions of neurons of the hidden layers are as-

signed weights and adjusted continuously during the training process. This

means that NMT systems require an exceptionally large volume of training

data, and they cannot be supplemented easily with other paradigms.

Most recently, the Bidirectional Encoder Representations from Transform-

ers (BERT) (Devlin et al., 2018), which is a pre-trained language model, based

on neural network architecture, has been applied to NMT (Zhu et al., 2020).

Although BERT was initially envisioned for fine-tuning of tasks like text un-

derstanding and language inference, the application of these models toNMT

with the so-called BERT-fused model seems to yield promising results.
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2.4 Language Data in Machine Translation

As described in Section 2.2 and Section 2.3 all paradigms of MT rely on data,

albeit the data requirements are different. The most recent paradigms, SMT

and especially NMT, require large volumes of parallel data and are highly de-

pendent on their quality. Hence, regardless of which method is chosen, there

is always a need for bilingual, and even better, parallel corpora.

Since the birth of the Internet and the boomof theWorldWideWeb,more

andmore text data is freely available, partially inbilingual or evenmultilingual

form. Additionally, the steady increase of computational power and efficiency

has made the processing of large volumes of text feasible.

This text data has been utilized to trainMT systems and the results can be

seen readily in popular MT systems like Google Translate or Bing Microsoft

Translator. Despite the progress in utilizing large volumes of bilingual data,

the process of collecting and preparing this data remains tedious and difficult.

Quality and domain adherence aswell as the evaluation of large collections

of text tend to be the most daunting tasks, being highly computationally in-

tensive and laborious. Last but not least, understanding a text, with its con-

notations, general tone, and implications is in some cases even difficult for

an expert. Hence translations often differ, depending on the translator, and

30



quality of translation is therefore very difficult to judge, even for profession-

als.

Thus, collecting bilingual resources for the use in language technologies

is a profound and intricate issue. Requirements for such corpora can differ

greatly, depending on the context and application, but it is undoubtedly true

that better quality and quantity are needed to achieve good results. This issue

is further elaborated in the next section.

2.5 The Importance of Bilingual/Parallel Corpora

To translate a text, e.g. transpose a concept from one language to another is

to carry over meaning, culture, emotions and associations into a different rep-

resentation of meaning, culture and associations. With this premise we can

safely say, at least for now, that fully automated high quality machine transla-

tion is not a realistic goal for all applications. Whether reliable, high quality,

and accurate translation of all domains will be possible with artificial intel-

ligence of the future remains a highly debated issue, but as of now, reliable

translation results have been only achieved for well defined domains or con-

trolled languages for fully automated systems. The key to success is good data

in large volumes.
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A machine translation will only be as good as the example it was given.

Hence, whichever method we use for translation, we need example data to

achieve our goal. Even in the case of a strict rule-based system, we derive these

rules from the use of the language. In the case of SMT this is even more ob-

vious and the volume of text data needs to be very large. In fact, the more

data we use to train SMT the better the result tends to be. However, at some

point, after including a huge amount of data, available to, e.g. Google or Mi-

crosoft, we seem to reach a certain saturation and occasionally a slight decrease

in accuracy.

Mercer’s general and also bold statement seems to be at danger here, al-

though, if one considers that not all data is used for only one single system,

but instead, segments of data are intelligently selected for different systems,

depending on the application, one might argue that the statement still holds,

albeit only under certain assumptions. Thus, it is vital to put emphasis on

intelligent selection and distribution of the data at our disposal.

2.6 Bilingual/Parallel Corpus Acquisition

Cross-language text retrieval has been practiced since the early 1970s (Salton,

1971). It was not until the personal computer era and the global spread of the
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World Wide Web, and with it the exponentially growing volume of textual

data that this area became active on a large scale. Since then, the language tech-

nology community has been stressing the importance of high quality multi-

lingual data, in particular forMT (Rapp, 1999;Kumano andTokunaga, 2007;

Zhao et al., 2008). SMT, which up until a few years ago was used by Google

Translate, requires large volumes of parallel corpora to produce adequate out-

put as established early in the SMT research (Koehn et al., 2007). The since

then emerging new MT method calledNeural Machine Translation (NMT)

uses a different way to train, but requires an even larger volume of data, as

described by (Koehn, 2017).

The first experiments in multilingual document retrieval in direct combi-

nation withMThave been performed since the late 90s (Braschler and Schäu-

ble, 1998). Since then research efforts in this field have been increasing con-

stantly, no doubt, driven by the quick rise of the world wide web and its mul-

tilingual nature.

Large scale projects have been undertaken to create a comprehensive solu-

tion to fulfill the quickly growing need for parallel corpora. There have been

approaches to automatize the process of parallel corpus creation. The align-

ing process is by far the most difficult and time consuming step, so that meth-
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ods were developed to both assist manual alignment (Grimes et al., 2012) as

well as fully automatic alignment (Chen and Eisele, 2012; Cakmak et al., 2012).

Furthermore, the importance of domain-specific corpora and hence domain-

specific crawlinghasbeen addressed, e.g. in the touristic domain (Espla-Gomis

et al., 2014).

A very efficient way to obtain large parallel data collections is to take ad-

vantage of existing translated texts from international organizations. Thiswas

done in theEuroparl project (Koehn, 2005) where texts from the proceedings

from the European Parliament were aligned to create large parallel resources.

Another such example is theUnited Nations Parallel Corpॺ (Ziemski et al.,

2016), a collection of consolidated and processed data from UN documents.

These projects take texts translated by professionals, which makes aligning

them fairly straightforward, especially since they are often annotatedwith rich

metadata.

A much more difficult source to mine parallel text is the web, but it goes

without saying that it is a bigger source and offers muchmore diverse data. A

large scale distributed system for parallel textminingwas proposed by (Uszko-

reit et al., 2010), and (Smith et al., 2013) suggested a method for aligning sen-

tences obtained from Common Crawl *.
*https://commoncrawl.org/ (Last accessed in August 2020.)
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As the methods of obtaining parallel data improved and more language

pairs were included, so did the need for parallel data. Data intensive NMT

requires this data quickly on-demand, for any language pair, and for any do-

main. One example of a large scale effort which addresses this issue for Eu-

ropean languages is the ParaCrawl project, which is co-financed by the Euro-

pean Union. The ParaCrawl group published their most recent findings just

weeks before the time of writing this thesis and focuses on testing various ex-

isting alignmentmethods in their corpus creation software tool chain (Bañón

et al., 2020). The methods included in these tests are Hunalign, Bleualign,

and Vecalign.

The alignment withHunalign requires a bilingual dictionary and is based

on sentence length similarity and the IBM translation model (Brown et al.,

1993), or alternatively on a dictionary-based model, enhanced by a language

model in the target language. This algorithmwas initially used forHungarian,

Romanian, Slovenian, and English. It was published by (Varga et al., 2005).

Bleualign uses the BLEU translation assessment score, which is discussed

in Section 2.8 further down in this chapter. Insteadof usingBLEUas a quality

measure for translation, the scores for all sentences are computed and the high-

est scoring sentence is assigned as the parallel sentence (Sennrich and Volk,
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2010).

Vecalign (ThompsonandKoehn, 2019) is themost recent alignmentmethod

and relies on sentence embeddings, which is also described in more detail in

Section 2.8. The pre-trained embeddings used for ParaCrawl were LASER

embeddings (Artetxe and Schwenk, 2019), which covered all ParaCrawl lan-

guages, except for Irish.

The results of the comparisons are too complex to be summarized in a few

sentences and we recommend to study the result tables provided by (Bañón

et al., 2020) for further details. In a nutshell, each approach had advantages

and disadvantages, but the overall issue for all of themwas the computational

costs and the resulting energy use. On a side note, albeit on a very impor-

tant one, (Bañón et al., 2020) makes this very progressive step to go beyond

a discussion of computational cost, which tends to carry with it only the con-

notation of “slow” and “we need tomake it faster”. In a time of energy source

debates and climate change wemight want to start thinking about “wasteful”

versus “energy efficient” instead. According to thepublication, pre-processing

100TB of data to produce parallel corpus candidates consumed 50,000 CPU-

hours, which requires an estimated 750kWh. This is more than a month of

energy supply for a developed country average household. This makes com-
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putational time one of the biggest problems in automatic parallel corpus cre-

ation, apart from issues with quality and quantity.

This high cost in computation stems from the fact that some steps in the

process have an exponential runtime. This means that the steps required to

traverse n pieces of data is nk, where k is some constant greater than 1. Hence

the number of computational steps increases progressively, the more data is

processed. One of the steps which contributes to this exponential runtime

is the alignment, where each combination of words of both source and tar-

get sentence have to be checked. Often lookups of lexical entries have to be

performed as well.

Themost recent approaches with word embeddings, which can utilize the

power ofGraphical Processing Units (GPUs) remedy this problem to a certain

degree. However, these approaches are used to process huge volumes of data.

Some of this data might be irrelevant for the success of these computations

and the achieved computational efficiency is thereby negated. It is always bet-

ter to pre-select data, in order to be more efficient and to process only likely

candidates or high quality sources. One example of such a focused crawling

technique has been shown by (Laranjeira et al., 2014). It seems that these ap-

proaches have been partially forgotten, in favor of Big Data.
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The methods mentioned so far have addressed fairly similar languages in

terms of script, surface characteristics and sociolinguistic factors. Highly dis-

similar languages, and especially language pairs with scarce availability of re-

sources, pose an even greater challenge, in terms of identifying, processing,

and aligning data. One of these research efforts, which focuses on alignment,

is done by (Ma, 2006), where an approach of aligning English and Chinese

sentences based on the frequency of words is presented. Recent trends favor

approaches which address simultaneous harvesting and aligning, so parame-

ters of harvesting can be adjusted to benefit alignment, and vice versa, result-

ing in a more efficient system overall. A recent example is (Aker et al., 2012),

where the focus is efficiency of harvesting to ensure a high recall during data

collection to result in less, but better data for aligning. This is achieved by

finding potentially useful texts by title, together with time-stamps of the text

which combined, is a very good indication of equivalence. However, this is

obviously restricted to data where such information is readily available, such

as news articles.

Inspired by the previously mentioned ParaCrawl, and addressing the still

limited availability of Japanese-Englishparallel corpora, (Morishita et al., 2019)

started the JParaCrawl project and used themethods fromParaCrawl, which
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we described before, to compile a Japanese-English corpus. This effort has re-

sulted in a collection of 8.7million sentence pairs. Just as ParaCrawl, the data

collection is not divided into domain categories, but is a good base for generic

NMT systems.

The authors provide a comparison of JParaCrawl pre-trained, domain-

specificNMTmodelswith additional Japanese-English corpora for fine-tuning

(ASPEC, JESC,KFTT, TED Talks, see Section 2.7).

TheWikiMatrix project certainly deserves a separate mention, especially

since it used Wikipedia as its data source, as we do in this thesis. Parallel

data in 85 languages has been extracted, amongst them even dialects and low-

resource language pairs. Using the aforementioned LASER sentence embed-

dings (Artetxe and Schwenk, 2019), respectable BLEU scores were achieved

for some of these languages. However, as can be seen in the tables provided

by (Schwenk et al., 2019), some language pairs scored rather poorly. One of

these poorly scoring pairs is Japanese-English, alongside other dissimilar lan-

guage pairs. This confirms once more the shortcomings of the Big Data ap-

proach for these language pairs. Especially in these cases transparency would

be very beneficial. It would help to identify whether the problem is the data,

the alignment, or some other part of the process.
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Exactly for that reason, neural network approaches are not always the best

approach or at the very least would benefit from traceable processes, in order

tomake thepath to the resultsmore transparent. However, such transparency

is nearly impossible. Nevertheless, approaches which collect text by taking ad-

vantage of deep learning models are increasingly popular. Some models yield

adequate results even for low-resourced languages, following the Zero-Shot

approach (Johnson et al., 2016). However, an important consideration is that

if we artificially create data to make up for a resource gap, this artificially cre-

ated data will become input during the next cycle of data harvest, and will

be used to train the next generation of neural machine translation, which in

turn may become input for the next cycle, and so on. Such recursive use of

data can cause problems onmany levels. Approacheswhich consider transpar-

entmethodologies should be considered before this feedback loop gets out of

hand.

One additional benefit of building corpora with a transparent methodol-

ogy is the application of parallel data for language learning purposes. Word

similarities, equivalent terms, topics, andproper nouns, togetherwith the sen-

tences in which they are contained as examples, can all be used in a computer

enhanced language learning environment. Such a combination of resources

40



with language learning environments, which are integrated seamlessly into

Web content browsing is shown by (Winiwarter, 2013, 2015). Information

which is taken from the creation process of the parallel corpuswith a traceable

method can be used to enhance existing language learning platforms and cre-

ate new applications for language learning and understanding; undoubtedly

an important concept in a timewhere technology is starting to be increasingly

black box.

2.7 Existing Parallel Corpora for Japanese/English

When it comes to parallel corpora the definition of the term “lesser resourced”

is quite vague. Whether Japanese-English falls into this category is up for de-

bate, but it is certainly true that the data currently available can be classified as

limited at best. We compiled a list of of already available parallel corpora for

this language pair. Table 2.1 shows the resources in alphabetical order. This

list is by no means exhaustive, since there are many more company-owned,

proprietary text collections. The focus of this compilation is an overview of

openly available resources, which are free for scientific use and require atmost

an agreement or contract with the copyright holder or creator. Table 2.2 lists

the URLs of these resources for the reader’s convenience.
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Resource name Sentence count Content/domain

ASPEC 3.0M Scientific abstracts

JENAAD 150k News articles

JESC – Japanese-
2.8M Subtitles

English Subtitle Corpus

JParaCrawl 8.7M Generic web content

Kyoto Wiki (KFTT) 330k Wikipedia articles

NTCIR PatentMT 3.2M Patents

TED Talks 100k Translated subtitles from TED talks

Tanaka Corpus 150k Collected by language students

Table 2.1: Details of freely available English-Japanese parallel corpora.
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Resource name URL

ASPEC http://lotus.kuee.kyoto-u.ac.jp/ASPEC/

JENAAD
(http://www.nict.go.jp/en/)

not available as of August 2020

JESC – Japanese-
https://nlp.stanford.edu/projects/jesc/

English Subtitle Corpus

JParaCrawl http://www.kecl.ntt.co.jp/icl/lirg/jparacrawl/

Kyoto Wiki (KFTT) http://www.phontron.com/kftt/

NTCIR PatentMT http://ntcir.nii.ac.jp/PatentMT/

TED Talks https://wit3.fbk.eu/

Tanaka Corpus http://www.edrdg.org/wiki/index.php/Tanaka_Corpus

Table 2.2: URLs of freely available English-Japanese parallel corpora.

The first listed resource, theASPEC corpus, is a large collection of aligned

scientific abstracts by (Nakazawa et al., 2016). Since scientific publications of

various research areas are covered the domain is not restricted by research field

or topic, but rather by the general way ofwriting, namely a formal, descriptive

and narrative way, generally used in research articles. In the scope of this dis-

sertation, we used theASPEC corpus as a reference to test our alignmentmet-
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ric in the initial stages of development. JENAAD, compiledby (Utiyama and

Isahara, 2003), has been built from news articles, and is in that regard similar

toASPEC except that it covers the news domain. JESC, the Japanese English

Subtitle Corpus by (Pryzant et al., 2018) is a database of subtitles which were

crawled from movies and TV programs available on the Web. JParaCrawl

is the largest and most recent in this collection and is created by (Morishita

et al., 2019); it is discussed inmore detail in Section 2.6. TheKFTTKyoto Free

Translation Task is a corpus ofWikipedia articles related toKyoto, whichwere

manually checked. TheTED Talks corpus, described by (Cettolo et al., 2012),

is a translation of transcriptions and subtitles from TED events. The Tanaka

Corpॺ is a collection of parallel sentences, collected by students, andwas pub-

lished by (Tanaka, 2001).

As mentioned earlier, this list does not contain all resources, but it can be

undoubtedly stated that the availability of parallel corpora for the Japanese-

English language pair for scientific research is far smaller than it is the case

for major European language pairs, or even English-Chinese. For a compre-

hensive overview of available resources for these languages we refer to ELRA

Catalogue of Language Resourcॸ † , and theLDC Catalog. ‡ Furthermore, it is
†http://catalogue.elra.info/en-us/ (Last accessed in August 2020.)
‡https://catalog.ldc.upenn.edu (Last accessed in August 2020.)
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important to remember that languages are dynamic and different application

scenarios demand domain-specific data, so availability of large heterogeneous

datasets is vital, but the ability to quickly and efficiently build new resources

is equally important.

2.8 Translation and Corpus Evaluation

One of the most important considerations while creating MT systems and

parallel corpora is the evaluation of translation quality. While human expert

evaluation is undoubtedly the most accurate and reliable method to judge

translation quality, the volumes of data which need to be assessed often make

a manual approach difficult and sometimes impossible. In a nutshell, quality

assessment by experts is highly accurate but time consuming since tone, regis-

ter, connotations, sociocultural nuances, and many other aspects are consid-

ered in a fine-grained analysis. Quality assessment of translation is an impor-

tant chapter in translation science and has been researched for a long time.

Automatic evaluation, which will be described in the following paragraphs,

offers standardized results, andmost importantly can process data in amatter

of minutes or hours depending on the size of the data set.

Consequently, the method of evaluation depends on the requirements,
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practicality, and feasibility. Literature translation demands experts who apply

a very precise, at the same time flexible and creative process, while the evalua-

tion of user manual translations certainly does not require deep thought pro-

cesses to decide their usefulness and accuracy. Obviously, the majority of the

translated texts which need to be evaluated fall somewhere in between these

two extremes of the spectrum. Often it is advisable to seek a compromise and

to findmethods whichmaximize the advantages from both sides. Human ex-

pert quality assessmentwill not be discussed in further detail, since this would

infringe on a wide and involved research area in translation science, which is

not the focus of this thesis. Automatic evaluation however requires a closer

look for a better understanding of the thought process in this thesis.

The approach in automatic evaluation of translation comes from the per-

spective of computer science, a field much closer to mathematics than linguis-

tics. This resulted in the attempt to create a quantifiable qualitymeasurewith

a transparent and logical reasoning. Such a method is not meant to consider

any of the complicated linguistic concepts – at least not explicitly – but re-

lies purely on statistical similarity to reference data, i.e. corpora with previous

translations. This automated method was found to be useful in providing

quick, coarse estimates of translation quality.
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One of these measures is BLEU by (Papineni et al., 2002) and the closely

related NIST metric by (Doddington, 2002). BLEU quickly became the de-

facto standard metric for evaluation of automatic translation. On one hand,

this method has beenwidely used in theMT research community and is men-

tioned in many if not most scientific publications; on the other hand it has

been also debated and criticised.

Inorder tounderstand this dichotomy,weneed tounderstandwhatBLEU

actually measures, or rather how it comparॸ. A comparison between a trans-

lation and a reference is done by breaking down sentences into so-called n-

grams, where n denotes the number of words in the phrase which is exam-

ined. The n-grams from the new translation are compared with the n-grams

of the reference. A perfectmatch between a translation and a reference would

yield a score of 1, while a lack of any similarity would be scored 0. This mea-

sure of similarity is usually rounded and multiplied by 100 to make it more

readable as a score between 0 and 100. For example a score of 0.25421 would

be expressed as a BLEU score of 25.4. This particular score would mean that

roughly one quarter of the n-grams in the new translation corresponds with

the reference. Since we measure the similarity to a reference, or several refer-

ences, the absolute score has no real meaning in terms of translation quality

47



from a linguistic point of view. The score of one translation will change if the

reference is changed or if more references are used.

Anyone, who is proficient in a second language, is aware of the fact that

many, especially complex phrases, can be translated in different ways, so a re-

lation of 1:n between source and target language is not uncommon in terms of

acceptable translations. Needless to say, a metric based solely on the compar-

ison of patterns cannot take this into account. Therefore, one has to be very

careful about using the term “quality”when talking about BLEU scores, since

we compare to a reference translation, considering only structure and lexical

properties and not how well the meaning was carried over into its new rep-

resentation. A translation differing greatly from a reference in word choice

and word order could be an equally good alternative way to carry over that

meaning; it might be even better, but will be rated poorly by the automatic

evaluationmethod. Hence a good translationmight potentially receive a very

low score, if it happens not to correspond with the reference (Zhang et al.,

2004).

Keeping this in mind, it is rather obvious that the popularity of BLEU is

not based on its accurate classification of good translations, but the ease of

use and the quick results even for very large volumes of data. One might ar-
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gue that the way translations are scored by BLEU implicitly favors automated

translation, especially SMT and NMT, since these methods rely on statistical

analysis of corpora, hence produce results which BLEU “expects to see”. One

could also argue that BLEU evaluation favors standardization of translation

by assigning higher scores to results which adhere to certain patterns. This po-

tentially leaves outmany good options of translation but can be advantageous

for specific applications, for example the aforementioned user manuals.

Further, these automated methods are the only way for a quick first as-

sessment of new MT approaches, and are very efficient in helping to tweak

parameters while developingMT systems. Speed of assessment, convenience,

and financial feasibility make these methods a necessity in rapidMT develop-

ment and fine-tuning. However, one has to keep in mind the serious short-

comings, mentioned in the previous paragraphs. A deeper and more detailed

discussion of these limitations can be found in (Zhang et al., 2004).

Most recently word and sentence embeddings with BERT (Devlin et al.,

2018) have been extensively used for cross-lingual information retrieval (Jiang

et al., 2020), and certainly can be utilized to address the issue of finding simi-

larities between sentences in two languages. These methods show very good

results and there is promising researchonmodelswhichwork for any language
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pair (Feng et al., 2020). However, the same requirements apply for thesemod-

els as mentioned in Section 2.3 for NMT: Large volumes of training data are

needed as well as long training times. Additionally, these models are black

box, so traceability is a problem.

The approach taken by (Utiyama and Isahara, 2003) in order to create one

of the highest quality Japanese-English parallel corpora, the JENAAD cor-

pus, listed in Table 2.1, was independent of example data and relied on one of

the most successful text-retrieval algorithms BM25, derived from the Proba-

bilistic Relevance Framework (PRF), dating back to researchwork in the 1970-

1980s, described in (Robertson and Zaragoza, 2009).

To summarize, all these above mentioned methods have their advantages

and disadvantages. In any case, it is important to remember thatmachine eval-

uation ofmachine translationmust not be the final judgement of quality. We

should be aware that haphazard assessments of training data will result in a

propagation of low text quality, since future resources will partially be rely-

ing on previously MT processed data. As stated in the beginning of this sec-

tion, only human expert assessment can be completely relied upon, for final

judgement.
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Simplicity ॹ the soul of effciency.

Austin Freeman

3
AWCAT Framework

3.1 Overview

As stated in Section 1.1.1, one of the goals of this thesis is to empirically ex-

amine whether and how much of Wikipedia content can be used as a source

of parallel corpora for a specific language pair. By developing the framework
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Automated Wikipedia Corpॺ Acquisition Tool (AWCAT) we created a data

collection allowing for an insight into this issue for English-Japanese.

We processed this data collection into a parallel corpus, and measured the

yield. This process can be repeated and further comparisons can be made for

different domains by giving the software framework different initial seed top-

ics. Most importantly, we addressed these research challenges with a transpar-

ent and traceable approach, offering a counterbalance and potential enhance-

ment of state-of-the-art methods that often solely rely on a black box neural

network approach, and require large volumes of training data.

We present the software framework in this section with a broad overview

and name all language resources (Section 3.2) and tools (Section 3.3) which we

used to create the framework. In Chapters 4, 5, and 6 we describe each stage

and itsmodules in detail by listing important segments of the source code and

explain the thoughts and theory that motivated our approach. In Section 3.4

we list the specifications of the hardware used for coding and running the soft-

ware.

Functions of AWCAT are packaged in modules, which themselves belong

to stages in the overall architecture. This modular approach allows each stage

and every module to be functional by itself and offers good readability and
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flexibility following a good software engineering practice. The good readabil-

ity makes the code easier to maintain, and the independent stages and mod-

ules allow for easier change and adjustment to other requirements such as dif-

ferent language pairs.

We segmented the software modules into three stages. The Data Extrac-

tion Stage, the Data Preparation Stage, and the Sentence Alignment Stage.

An overview of the stages and the modules assigned to them is shown in Fig-

ure 3.1.

In theData Extracধon Stage we collect the raw data from the assigned

Wikipedia pages. Rather than accessing data at random, for the performance

reasons mentioned in Section 1.1.1, a seed of topic is taken as input and the

crawling process follows a topic link-based algorithmdescribed in Section 4.2.

Once thedata is collected,wepass it to theData Preparaধon Stagewhere

it is formatted and prepared for alignment. This step allows to dispose of un-

necessary data to reduce CPU hours in the later steps.

During the Sentence Alignment Stage we compare the Japanese sen-

tences to the English sentences according to several criteria described in Chap-

ter 6. The similarity is quantified in a metric explained in Section 6.2.

The separation of modules follows a division of self-contained tasks to of-
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Figure 3.1: Stages with their corresponding modules.
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fer flexibility for adjustments such as parameter tuning, adjustments for spe-

cific domains and other language pairs. In Chapters 4, 5, and 6 we describe

the modules of this architecture in incremental levels of detail. We start with

an overview of the stage, followed by themodules, the functions within these

modules, and finally details of key parts of the source code.

3.2 Language Resources

The lexical resources used for Japanese are edict2, and JMnedict. edict2 is a

collection of over 180,000 words (at the time of writing) and common multi-

word expressions with their English translations. We considered using JM-

dict being an XML version of edict2. The reason why we chose the latter is

to avoid the XML overhead during the conversion. JMnedict is a Japanese

multilingual named entity dictionary file. URLs to these resources are listed

in Table 3.1.

In order to achieve a performance boost, by avoidingmultiple lookups, we

use the JSON file format to build dictionaries, which we then reuse through-

out the execution of the program and for subsequent program executions

with different parameters.

55



Name Version URL

edict2 current as of
http://edrdg/jmdict/edict.html

October 2019

JMnedict current as of
https://www.edrdg.org/enamdict/enamdict_doc.html

October 2019

Table 3.1: Language resources used in our framework.

3.3 Software, Programs, Tools

The software is written in the Python programming language Version 2.7 and

takes advantage of libraries such as the Natural Language Toolkit (NLTK),

the Wikipedia library, the HTML/XML parsing library BeautifulSoup, and

the regular expression library re for efficient and flexible character compar-

isons. Python’s extensive and straightforward codecs library enables the en-

coding and decoding ofKanji (Japanese characters) as well as other characters

represented in Unicode. The standardNLTK libraries are used to tokenize,

lemmatize, and PoS-tag the English corpus.

The resources used for Japanese areMeCab, which is an open-source PoS-

tagger for Japanese. Theoutput ofMeCab is used to identify signalwords, for-

eign words, names and numbers. The version numbers and URLs are listed

in Table 3.2.
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Name Version URL
NLTK 3.5 https://nltk.org

MeCab 0.996 https://taku910.github.io/mecab

Table 3.2: Language tools used in our framework.

3.4 Hardware

We implemented the framework on a desktop computer. Especially during

the alignment process, which took the most computing time, we executed

the code on both a desktop computer, and a laptop computer. We also were

granted access to the 3rd version of the Vienna Scientific Cluster (VSC-3),

which we extensively used for much of the framework runtime. The hard-

ware specification of the two computers are shown in Table 3.3, the informa-

tion about the VSC-3 can be found online at the Vienna Scientific Cluster

website*.

Harddrive reading speeds are obtained with the linux command shown in

Code 3.1.

1 # hdparm -tT /dev/sda

Code 3.1: Linux Command Line: HDD reading speed test.

*https://vcs.ac.at/systems/vcs-3/ (Last accessed in August 2020.)
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Desktop Computer Laptop Computer

CPU and frequency Intel Core i5 Intel Core i7-5500U
@ 3.6Ghz @ 2.4GHz

RAM and frequency 8GB @1333 MHz 8GB @1600MHz
HDD reading speed 126 MB/sec 1112 MB/sec

Table 3.3: Specificaধons of hardware used for experiments.
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Getting information off the Internet ॹ like taking

a drink from a fire hydrant.

Mitchell Kapor

4
Data Extraction

4.1 Data Source – Wikipedia

One of the biggest challenges for collecting data is the selection of the source.

Ideally, the source should offer enough data, the desired quality, and a consis-

tent structure, which allows for easy access.
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While Wikipedia might not be the best source for the highest quality and

accurate translations, it offers large volumes of data and is well organized, due

to its semantic HTML structure.

TheWikipediapages in two languages for one article are semantically linked.

This eliminates the need for additional dictionary lookups, it even functions

as a dictionary, since terms are automatically disambiguated.

An example of the language link selection for an article is shown in Fig-

ure 4.1. On the left side of the page, or in a special drop-down menu for the

mobile version of Wikipedia, a list is shown with all languages in which this

article is available. Clicking on one of these language links takes the user to

the article in that language. The structure behind this functionality is coded

in JSON files, which contain link addresses to all articles in other languages.

An excerpt from such a file is shown in Figure 4.2.

The source language for the entry “Kendo” is English, and all available

language links are listed. The list in the figure is abbreviated and the Japanese

entry is added at the bottom. It is indicated by the “lang:ja” field, whereas the

hexadecimal numbers “\u5263\u9053” are the unicode encoding, a so-called

code point, for the Japanese word “剣道” which stands for Kendo.

The semantic layout of pages is consistent, hence identifying titles, figures,
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Figure 4.1: Wikipedia page language links.
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...

Figure 4.2: Wikipedia page language links JSON file.
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menus, etc. can be done very easily with existing libraries. In this thesis we

took advantage of the Python library BeautifulSoup.

While structure, semantic layout and abundant data are a clear advantage,

the downside ofWikipedia for parallel corpora extraction is that an unknown

portion of the content is not translated, but rather created independently

across languages. Only a portion is translated by professionals and even those

are not always good, accurate translations.

Occasionally, translation mistakes or stylistic errors spanning over several

pages can be observed. They are sometimes very subtle and often go unno-

ticed. A notable example of this is the use of a certain tense when describ-

ing historical figures in English and French. In English, one uses past tense,

whereas in French present tense is correct. Whenever such content is trans-

lated from English to French, which happens more often than the other way

around, the past tense tends to find its way into the French version.

Such seemingly small but significant mistakes are common on Wikipedia

across many language pairs and have to be taken into consideration.

Additionally, the content of Wikipedia can be highly asymmetrical across

languages. Depending on the popularity of a topic in the given country, re-

gion, or culture, an article for a certain topic can be very extensive in one lan-
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guage, while being scarcely represented in another. Further, due to the dy-

namic nature of Wikipedia, it is difficult to consistently examine these sym-

metries or the lack thereof.

4.2 Selective Crawling

Gathering data in such a way that we send as little useless data to the next step

as possible is a big challenge. We have addressed this challenge with selective

crawling, described in this section.

Additionally to the preselection in terms of parallel data candidates, this

method allows us to extract data within a certain domain, given a list of seed

topics.

We solved the task of efficiently identifying text, which is likely to contain

similar, same, or translated content by determining the ratio of article links

shared between the articles in Japanese and English. The bigger the ratio of

links that point to the same articles from both the Japanese and the English

article version, the more likely the content is to be paraphrased or translated.

For example, let Ja be a Japanese article of topic a, andEa its English article

equivalent. If Ja contains five links to Jb and eight links to Jc, andEa contains

four links to Eb and seven links to Ec, the ratio would be r = 11/13 = 0.846.
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We defined a threshold for the ratio, which is a cutoff value for the pre-

selection. This threshold value can be increased or decreased for further em-

pirical studies. A higher value results in a higher chance of a translated or

paraphrased article, a lower value yields more candidate data. The final step

is the selection of articles which score above this ratio of shared links, and the

extraction of their article text with the Python libraryWikipedia.

In the process of extracting and pre-selecting articles, we noticed that the

lists of article titles in Japanese and English can very easily be converted into a

bilingual glossary of terms for a certain domain. Such a quick source of trans-

lated terms is quite handy for many applications in translation science and

industry and other language technology applications. Such a list can be ob-

tained inminutes by running the first part of the frameworkwith a topic seed

of choice. We describe this coincidental but handy byproduct in Section 4.4.

4.3 Implementation of the Data Extraction Stage

The Data Extraction Stage consists of six modules, which are explained in de-

tail in this section. A schematic of the sequence of processing is shown in

Figure 4.3.

Each module in this schematic is highlighted with a bold face font and the
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Figure 4.3: Modules of the Data Extracধon Stage for selecধve harvesধng and text extracধon from
Wikipedia arধcles. The goal of this chain of modules is to obtain candidate sentences for a parallel
corpus. Module names are wriħen in bold face, funcধon names (without parameters) are shown in

small, blue font.
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functions listed below in blue. The cylindrical containers in the graphic sym-

bolize text resources. At the beginning of the stage, dictionary resources are

used as input. The Matching Module produces a glossary and a JSON dictio-

nary. This dictionary is growing during each iteration of the framework and

allows for time savings by avoiding online lookups. Additionally, it is utilized

for efficient translation lookups in the Sentence Alignment Stage. The out-

put of the Data Extraction Stage is text data in the form of a Japanese corpus

and an English corpus. These two data collections are the candidates for a

parallel corpus.

In the following subsections, we include important pieces of source code,

libraries, and external programs; and describe their role and significance in

the framework. The displayed lines of source code are denoted with “Code”

followed by a sequential number within the chapter; they include line num-

bers for detailed referencing. For the sake of brevity, the line references are

attached to the code number with a colon; for example, Code 5.2:3 would be

line 3 of the secondCode snippet inChapter 5. It is important tomention that

these code snippets are not always shown as complete functions, but rather as

parts of functions. Whenever a small part of a function is presented, or it is

abbreviated by cutting out lines for the purpose of brevity and readability,
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this cut is identified by “...”. Whenever this is done, the line numbers are con-

tinued in sequence as the code snippet is presented but not in the sequence

in which they are written in the implementation of the framework. The com-

plete source code can be found in the Appendix.

4.3.1 Topic Extraction Module

The first module is the Topic Extraction Module. The libraries imported at

this point are shown inCode 4.1. These libraries are also used for all following

modules, throughout the entire stage.

1 from bs4 import BeautifulSoup
2 import requests
3 import codecs
4 import re
5 import json
6 import urllib
7 import os

Code 4.1: Preamble: Libraries for Data Extracধon Stage.

BeautifulSoup is a library for extraction of XML data. Traversal of the

Wikipedia page structure is very straightforward with this library. We use the

requests library to fetch the HTML pages from which data will be extracted.

The codecs library is important throughout the entire framework, since it is vi-

tal for the conversion of Japanese characters into a utf-8 representation. The
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same is true for the regular expression library re for efficient and flexible char-

acter comparisons. We use the json library to read the files containing the links

to the equivalent articles in the other language. The urllib library provides

wrappers for URL encoding, and the os library for directory changes in the

framework directory structure to sort output files at run-time, to avoid clut-

tered directory structure.

The first step in the process of extraction is the seeding with initial topics.

The function get_topic_pairs in the Topic ExtractionModule takes a list

of strings, which should be valid English Wikipedia entries, see Code 4.2:1

(line 1 of Code 2), cleans the strings of unnecessary white spaces and passes

them to the function get_translation of the Translation Module, where

the equivalent Japanese articles are retrieved (Code 4.2:6). The Translation

Module is also accessed from several other modules and is described in detail

in Section 4.3.2.

1 def get_topic_pairs(topic_list):
2 # for each start topic
3 for topic in topic_code:
4 start_topic= topic.strip()
5 #get start topic in japanese by ID check
6 topic_ja = get_translation(start_topic,'ja','en')

Code 4.2: Funcধon get_topic_pairs: Extracধng topics which will be later crawled for data.
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The next step prepares the output files for the lists of topics, which are

selected for data collection (Code 4.3). Explicit utf-8 encoding has to be per-

formed during reading andwriting of Japanese characters in Python. It is also

important to note that each Python file that will process utf-8 data has to in-

clude a special line in the preamble, usually right after the definition of the

Python environment; this is shown in Code 4.4. It should bementioned that

this is no longer necessary in Python 3, however, we still use Python 2.7 for

our implementation.

1 #open files to store subtopics
2 ftopics_en = codecs.open('data/'+start_topic+'_topics_en.\

txt','w', encoding='utf8')
3 ftopics_ja = codecs.open('data/'+start_topic+'_topics_ja.\

txt','w', encoding='utf8')

Code 4.3: Funcধon get_topic_pairs (cont.): Using codecs to write Japanese characters.

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-

Code 4.4: Preamble: Defining the Python environment and the uĤ-8 encoding.

The next section of this function, shown in Code 4.5 extracts the topic

with a call to the function get_pages_links, which takes the initial topic

and the language parameter (‘en’ for English, ‘ja’ for Japanese) as arguments.

The data returned by this function is then written to the previously opened
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text files.
1 #call get_pages function to get subtopics for english
2 topics = get_pages_links(start_topic, 'en')
3 #write results to file and close output file
4 for topic in topics:
5 ftopics_en.write(topic[0]+'->'+topic[1]+'\n')
6 ftopics_en.close()
7 #call get_pages function to get subtopics for japanese
8 topics = get_pages_links(topic_ja, 'ja')
9 #write results to file and close output file
10 for topic in topics:
11 ftopics_ja.write(topic[0]+'->'+topic[1]+'\n')
12 ftopics_ja.close()

Code 4.5: Funcধon get_topic_pairs (cont.): English and Japanese arধcles are wriħen to text
files.

We will take a closer look at the get_pages_links function, since here

we select the pages, which are linked from the initial seed topics. They will be

selected for data extraction, determining how much data will be sent to the

next stage. The construction of theURLpointing to the page with the article

that is to be extracted is seen in Code 4.6.

1 # return all links on the topic page and all subsequent links
2 def get_pages_links(topic, lang):
3 start_url = 'https://'+lang+'.wikipedia.org/wiki/'
4 domain = 'https://'+lang+'.wikipedia.org'
5 start_url=start_url+topic #main topic link

Code 4.6: Funcধon get_pages_links: Construcধon of an arধcle URL by assigning language
and topic.
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1 # get own title, link titles and links for main topic
2 title, ext_titles, ext_links = extract_links(url=start_url)
3 # store in items list
4 items.extend(zip([title]*len(ext_titles), ext_titles))
5 for ext_link in ext_links:
6 # omitting Wiktionary entries and pronunciation links
7 if 'wikt' not in ext_link and 'Help:IPA' not in ext_link:
8 try:
9 # resolve encoding issues
10 ext_link=urllib.unquote(ext_link).decode('utf-8')
11 # get own title, link titles
12 # and links for main topic
13 title, ext_titles, ext_links = extract_links(domain + \

ext_link)
14 # store in items list
15 items.extend(zip([title]*len(ext_titles),ext_titles))
16 except UnicodeEncodeError, e:
17 print('UnicodeEncodeError at: ',ext_link,'-reason:', \

str(e))
18 pass
19 if len(items) > 2500:
20 break
21 return items

Code 4.7: Funcধon get_pages_links (cont.): Extracধng links and their ধtles.
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In Code 4.7:2 the call to the function extract_links returns a triple of

values which are the title of the current page, a list of titles of links on the

current page, and the URLs of the links on the current page.

The next line stores these tuples in a list. For every link we have extracted

on that page (Listing4.7:5), we repeat the link extraction, so that with every it-

eration we grow the list by the set of the links from the next page. We do not

want to include Wiktionary entries and pronunciation links, since they are

highly language dependent and would introduce errors in the ratio of compa-

rable links.

The try,except block at Code 4.7:8,18 is crucial, since unexpected varia-

tions in spelling of the article name can cause this part of the program to crash.

Additionally, since URLs are restricted to a set of characters belonging to the

US-ASCII set, passing a Japanese character as a URL string would cause an

exception and also crash the program. We use urllib to convert Japanese ti-

tles of articles into a URL representation of the Japanese characters, which

is a hexadecimal representation. In Table 4.1 we show an example of a URL

pointing to the article “Airplane” in EnglishWikipedia, the URL pointing to

the Japanese page for the same topic, and the representation of this address

in US-ASCII. The try,except block is set up so that the program will skip
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the iteration if there is an error, such that the program can be safely run in the

background without the need for constant monitoring.

URL to English article Airplane

https://en.wikipedia.org/wiki/Airplane

URL to Japanese article Airplane (⾶⾏機 =hikōki)

https://ja.wikipedia.org/wiki/⾶⾏機

URL to Japanese article Airplane in US-ASCII ecoding

https://ja.wikipedia.org/wiki/%E9%A3%9B%E8%A1%8C%E6%A9%9F

Table 4.1: Example of URL US-ASCII encoding.

Whilemost browsers will take care of this conversion, a direct call with the

Python requests library does not, therefore, it needs to be done manually.

The extract_links function is shown in Code 4.8. This function does

the actual fetching of links from the HTML document. The request call gets

the previously constructed URL and converts the content from an XML for-

mat to a BeautifulSoup object (Code 4.8:13–16). The next line filters the con-

tent by paragraphs, followed by a filter for invalid links, and a filter for the

HTML tag href, which denotes external links. The tag title is extracted

next, which is the name of the link (in our case the article topic) (Code 4.8:13–
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1 # return a list of links to other Wikipedia articles
2 def extract_links(url):
3 # get soup with lxml parser
4 soup = BeautifulSoup(requests.get(url).content,'lxml')
5 p_tags = soup.findAll('p')# find all paragraph tags
6 # gather all <a> tags
7 a_tags = []
8 for p_tag in p_tags:
9 a_tags.extend(p_tag.findAll('a'))
10 # filter the list : remove invalid links
11 a_tags = [a_tag for a_tag in a_tags if 'title' in a_tag.attrs \

and 'href' in a_tag.attrs and not 'class' in a_tag.attrs]
12 # get article titles
13 titles = [a_tag.get('title') for a_tag in a_tags]
14 # get article links
15 links = [a_tag.get('href') for a_tag in a_tags]
16 # get own title
17 self_title = soup.find('h1', {'class' : 'firstHeading'}).text
18 return self_title, titles, links

Code 4.8: Funcধon extract_links: Extracধng links and filtering the content

16), and in the last line of the function the title of the current page is obtained

(in our case the current article).

The triple, returned fromCode 4.8:19 toCode 4.7:13 is extracted until a cer-

tain number of pages and their links is reached (Code 4.7:22), we chose 2500

for this particular experiment. This number is arbitrary and can be chosen

depending on the available CPU-time.
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4.3.2 Translation Module

Theget_translation function in thismodule takes an article title, a source

language code, and a target language code as function parameters. The lan-

guage codes are the standard Wikipedia abbreviations, i.e. ‘ja’ for Japanese

and ‘en’ for English. In Code 4.9:4 we build a URL with the input parame-

ters and pass this string to a request. With the returned data we create a JSON

object. We traverse the hierarchical JSON structure until we reach the “lan-

glinks” level, see Figure 4.2, and find the appropriate entry, according to the

input parameter. This entry is the article title. The try/error blocks are

important to deal with inconsistent JSON files, which tend to occur occasion-

ally.

4.3.3 Formatting Module

The format_topics function makes up the Formatting Module, in which

we reformat the output of the previous module. The reason why it is sepa-

rated as a distinct module is that it acts as a buffer in case a different format

is needed after the extraction. It serves in essence as a format interface. Addi-

tionally to that, it is also a preparation to the next module. In the process we

translate the Japanese article titles and the titles of the linked articles to English
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1 # return the Wikipedia site equivalent in a target language
2 def get_translation(topic,source_lang,target_lang):
3 # use Wikipedia's json database to look it up
4 json_url='https://'+source_lang+'.wikipedia.org/w/api.php?\

action=query&titles='+topic+'&prop=langlinks&lllimit=500&format\
=json'

5 content = requests.get(json_url).content
6 json_data = json.loads(content)
7 item=''
8 # iterate through json hierarchy to find langlinks category
9 try:
10 for i in json_data["query"]["pages"]:
11 pageid=i
12 except KeyError, e:
13 print('KeyError at topic:',topic,' - reason: ',str(e))
14 pass
15 except TypeError, e:
16 pass
17 try:
18 for i in json_data["query"]["pages"][pageid]["langlinks"]:
19 # in langlinks category, find desired language
20 if i['lang']==target_lang:
21 # there is the topic equivalent
22 item = i['*']
23 except KeyError, e:
24 print('Keyerror at topic',topic,' - reason: ',str(e))
25 pass
26 except TypeError, e:
27 pass
28 return item

Code 4.9: Funcধon get_translation: Finding arধcle ধtles in another language.
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by passing them to the Translation Module.

4.3.4 Matching Module

In this module we identify the articles which have an equivalent in both En-

glish and Japanesewith the find_equivalents function. The names of the

text files in the data directory are the titles of the articles. Each file contains a

list of articles that are linked from its text. At this point, the Japanese articles

are represented in English. We point out again that these are not translations,

but article name equivalencies obtained from Wikipedia in Code 4.9.

This simplified structure of the collected titles allows us to quickly identify

the articles which are available in Japanese and English. This check is shown

in Code 4.10. We find thematching articles in Code 4.10:12, and store them in

a separate directory for further processing.

At this point, we have a collection of English and Japanese representations

of Wikipedia articles. We take advantage of this collection to build a glos-

sary of translations by the function translate_topics_into_english

(Code4.11), whichwill be very handy later. Since all the terms in this collection

relate to the seed topics, they are likely to appear often in the extracted texts

and hence during the alignment process. The glossary created at this point
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1 def find_equivalents():
2 file_list_ja=[]
3 file_list_en=[]
4 os.chdir('./data/topics') # change to data dir
5 for file in glob.glob('*_ja.txt'): # for every japanese file
6 file_list_ja.append(file[:-7]) # get topic from filename
7 for file in glob.glob('*_en.txt'): # for every english file
8 file_list_en.append(file[:-7]) # get topic from filename
9 #store data in pairs
10 for item in file_list_en:
11 if item in file_list_ja:
12 copy('./'+item+'_ja.txt','./pairs/'+item+'_ja.txt')
13 copy('./'+item+'_en.txt','./pairs/'+item+'_en.txt')
14 topic_pairs.append(item)
15 os.chdir('../../') # back to main dir

Code 4.10: Funcধon find_equivalents: Storing equivalent arধcles.

not only serves as a quick access dictionary, but eliminates potential problems

with polysemywhile using a regular dictionary. At the same time this glossary

is used in repeated executions of this stage. The locally stored JSON file is a

very quick alternative to comparatively long lookups in the onlineWikipedia

JSON language directory described in Section 4.1, and depicted in Figure 4.2.

4.3.5 Comparison Module

In this module, we determine with the compare function which articles are

to be defined as parallel data candidates, as described in Section 4.2.

79



1 def translate_topics_into_english():
2 file_list=[]
3 os.chdir('.')
4 # if there is no dictionary file, open a new one
5 if not os.path.exists('./topics_dict_ja_en.json'):
6 empty_dict={}
7 f=open('topics_dict_ja_en.json','w')
8 json.dump(empty_dict,f)
9 f.close()
10 topic_dict_ja_en={}
11 with codecs.open('topics_dict_ja_en.json','r',encoding='utf8')\

as fdict:
12 topic_dict_ja_en=json.load(fdict)
13 # translate sorted Japanese files
14 file_list=[]
15 for file in glob.glob('data/topics/pairs/*_ja.txt'):
16 file_list.append(file)
17 for file in file_list:
18 fout=codecs.open(file[:-4]+'_en_ja.txt','w','utf-8')
19 with codecs.open(file,'r','utf-8') as f:
20 lines=f.readlines()
21 for line in lines:
22 try:
23 fout.write(topic_dict_ja_en[line[:-1]]+'\n')
24 except KeyError, e:
25 print('KeyError: ', str(e))
26 trans=get_translation(line[:-1],'ja','en')
27 fout.write(trans+'\n')
28 topic_dict_ja_en[line.rstrip()]=trans
29 print(line.rstrip()+'->'+trans+' added to \

dictionary')
30 pass
31 f=open('topics_dict_ja_en.json','w')
32 json.dump(topic_dict_ja_en,f)
33 f.close()

Code 4.11: Funcধon translate_topics_into_english: Storing topics translaধons in a
JSON file.
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The corresponding files containing the article links inEnglish and Japanese

are compared and the number of matching links is counted (Code 4.12:17).

We compute the ratio in (Code 4.12:20) with respect to the total number of

articles. If this ratio meets the threshold (Code 4.12:25), we add the article to

a list, which is returned at the end of this function and becomes the input for

the final module in this stage, the Text Extraction Module.

4.3.6 Text Extraction Module

In this module, we traverse the list of articles that have equivalents above a

certain threshold value and extract their text with the extract_text func-

tion (Code 4.13). Thanks to the convenient Wikipedia library, this process

is straightforward, and merely requires a try/else block to make sure the

program does not stop at an error caused by an inconsistency in a Wikipedia

article, or a transmission error. The result of this module are two collections

of texts, one in English, the other in Japanese, which contain the parallel can-

didates.
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1 #open both files and compare
2 for item in file_list_en:
3 common_counter=0
4 topics_ja=[]
5 topics_en=[]
6 with codecs.open(item+'_ja_en_ja.txt','r','utf-8') as fja:
7 lines=fja.readlines()
8 for line in lines:
9 topics_ja.append(line.split())
10 with codecs.open(item+'_en.txt','r','utf-8') as fen:
11 lines=fen.readlines()
12 for line in lines:
13 topics_en.append(line.split())
14 for topic_ja in topics_ja:
15 for topic_en in topics_en:
16 if topic_ja==topic_en:
17 common_counter+=1
18 break
19 # calculating ratio, after counting extracted links for \

each topic
20 if len(topics_ja)>0:
21 scounter+=1
22 similar.append(item)
23 ratio = float(float(common_counter)/float(len(\

topics_ja)))
24 if ratio>0.7: # ratio threshold value
25 print str(common_counter)+' link matches in topic \

>'+ item + '< out of total '+ str(len(topics_en))+' links -> \
ratio: '+ str(round(ratio,3))

26 print 'Total similar pages count: '+str(scounter)
27 return similar
28 os.chdir('../../../') # back to main dir

Code 4.12: Funcধon compare: Comparing arধcles.
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1 def extract_text(link_list):
2 os.chdir('./data/topics/pairs')
3 ftext=codecs.open('text_english.txt','w','utf-8')
4 for item in link_list:
5 try:
6 # passing article name to get reference to page
7 p = wikipedia.page(item.strip())
8 ftext.write(p.content) # getting text from Wikipedia \

page
9 except wikipedia.exceptions.WikipediaException as e:
10 pass
11 scounter-=1
12 ftext.close()
13
14 # same for Japanese
15 ftext=codecs.open('text_japanese.txt','w','utf-8')
16 for item in link_list:
17 wikipedia.set_lang('ja')
18 try:
19 # passing article name to get reference to page
20 p = wikipedia.page(get_translation(item.strip(),'en','\

ja'))
21 ftext.write(p.content)
22 except wikipedia.exceptions.WikipediaException as e:
23 pass
24 scounter2-=1
25 ftext.close()
26 os.chdir('../../../') # back to main dir

Code 4.13: Funcধon extract_text: Scraping text of selected pages.
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4.4 Building Glossaries

The lists of article topics in both languages derived from an initial seed of top-

ics and selected based on common link similarity (described in chapter 4.2)

results in topic related lists of words. This by-product of topic selection is a

quick way to build glossaries according to the initial seeds. These glossaries of

English-Japanese article topics offer the advantage of being semantic equiva-

lents as definedbyWikipedia in conjunctionwith a certain domain (as defined

by the initial seed), rather than translations from a dictionary, which often re-

quire to choose between several possible translations.

One possible application of such a collection, which can be created dynam-

ically and on-demandwith any desired seed of topics, is a glossary preparation

for translators and interpreters. This is especially true for interpreterswhopre-

pare for assignments in a specialized domain, e.g. a talk on a specific technol-

ogy, a medical topic, or a political debate, such a dynamic bilingual glossary

for a certain topic domain can potentially improve their preparation.

An example of such a glossary built by the seed topic “Airplane” is shown

in Figure 4.4.
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Figure 4.4: Glossary example for the topic “Airplane”.
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Data ॹ a precioॺ thing and will last longer than

the systems themselvॸ.

Tim Berners-Lee

5
Data Preparation

5.1 Cleaning and Pre-processing Data

The output of the text scraping from the PythonWikipedia library is already

preselected data, and even though the scraping process performs well getting

only text, the data needs to be cleaned before it is sent to the next process-
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Figure 5.1: Modules of the Data Preparaধon Stage for cleaning the English and Japanese text
collecধons and preparing them for alignment. Module names are wriħen in bold face, funcধon

names (without parameters) are shown in small, blue font.

ing step. Apart from cleaning the data, we prepare the data by tokenizing,

lemmatizing, and part-of-speech tagging (PoS tagging). Figure 5.1 shows an

overviewof themodules, functions, external resources, tools, and data used in

this stage. Code 5.1 lists the librarieswhich are required for the rest of the stage.

In addition to the libraries already discussed in Chapter 4, we also use the

sentence tokenizersent_tokenize fromnltk.tokenize, theWordNetLemma-

tizer class fromnltk.stem, and thewordnet library from nltk.corpॺ. The use

of these libraries is explained in Section 5.2.1.
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1 import os
2 import codecs
3 import re
4 import nltk
5 from nltk.tokenize import sent_tokenize
6 from nltk.stem import WordNetLemmatizer
7 from nltk.corpus import wordnet

Code 5.1: Preamble: Libraries for Data Preparaধon Stage.

5.2 Implementation of the Data Preparation Stage

5.2.1 Alignment Preparation Module

The first step is tokenizing on a sentence level in function tokenize, shown

in Code 5.2.

Before that, however, we have to edit the data, due to the following is-

sue: Since the text output from the Wikipedia library sometimes does not

insert spaces between sentences, using the nltk sentence tokenizer function

(Code 5.2:4,11) sometimes results in mistakes. In order to avoid this problem

a small regular expression script is used to add a white space after the full stop

at the end of a sentence. This is done in the command line input of the vim

editor as shown in Code 5.3.

The % applies the following command to every line of the file, the s is the
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1 def tokenize():
2 with codecs.open('corpus/text_english.txt','r','utf-8')as f:
3 lines=f.read()
4 sentences = sent_tokenize(lines)
5 print(len(sentences))
6 with open('corpus/tokenized_text_english.txt','w') as f:
7 for sentence in sentences:
8 f.write(sentence.encode('utf-8')+'\n')
9 with open('corpus/text_japanese.txt','r')as f:
10 lines=f.read()
11 sentences=sent_tokenize(lines.decode('utf-8'))
12 print(len(sentences))
13 with open('corpus/tokenized_text_japanese.txt','w') as f:
14 for sentence in sentences:
15 f.write(sentence.encode('utf-8')+'\n')

Code 5.2: Funcধon tokenize: Sentence tokenizing with NLTK.

1 :%s/\(\.\)\([A-Z]\)/\1 \2/g

Code 5.3: Vim command line: Adding white space ađer sentences.

substitute command. The substitute command has two parts separated and

enclosed by three slashes, /original/substitute/. The first part is, in

this case, identifying the punctuation mark between sentences. The period

between the set of parentheses is the full stop of each sentence followed by

the regular expression [A-Z] being any capital letter. With a small fraction of

exceptions, this is a very easy way to identify the end of a sentence as opposed

to a period after an abbreviation, a numbering, or special expression involv-
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ing a period, such as “...”. The second part, i.e. the substitute follows the

second slash. This part refers to the period and to the capital letter found in

the first part by \1 and \2, respectively. The white space between these two

adds a white space between every instance of this pattern in the edited text.

The backslashes used in front of the period, the parentheses and the numbers

are necessary to escape the alternative functions of the special characters. A

g character at the end of the substitute stands for “global”, which means ev-

ery instance of this pattern in a line will be processed.

Once the sentences are separated, we remove short sentences, i.e. sentences

below a character count of 30 for English, and 20 for Japanese in function

clean, shown in Code 5.4.

1 def clean():
2 ...
3 for line in text_ja:
4 if not re.search(r'^==.*',line):
5 if len(line)>20:
6 f_out_ja.write(line)
7 for line in text_en:
8 if not re.search(r'^==.*',line):
9 if len(line)>30:
10 f_out_en.write(line)
11 ...

Code 5.4: Funcধon clean: Removing unwanted data.
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We found these character counts to be practical to remove headlines, and

other short texts, which are not full sentences. The Japanese character count

is lower since Japanese characters denote more content with fewer characters.

The character counts certainly depend on the text type and other factors and

should be set as needed. The 20/30 character cutoff proved to be sufficient to

eliminate very short sentences, titles and headers in our experiments without

removing good data. This is shown in Code 5.4. This function is also setup

to remove any other noisy data. More searches can be included analogous to

Code 5.4:4,8 if any other sentenceswith noisy patterns are to be identified and

eliminated.

Next, we use the lemmatize_and_pos_tag function to lemmatize and

PoS tag the data. First, we lemmatize the English text and convert each word

to lower case, unless it is a proper noun. Lemmatized forms are crucial for

finding translations during the SentenceAlignment Stage, andmakingproper

nouns easy to identify enables an easy look up of such signal words in the dic-

tionary. The step of lemmatizing is particularly computationally intensive;

100k English sentences took roughly 27 hours in the course of the first exper-

iment. The hardware specifications of the desktop computer on which this

runtime was observed is listed in Table 3.3, Section 3.4. Code 5.5 shows this
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A recent study found periodic eye movements in the central bearded dragon
of Australia, leading its authors to speculate that the common ancestor
of amniotes may therefore have manifested some precursor to REMS.
Sleep deprivation experiments on non-human animals can be set up
differently than those on humans.
The“flower pot”method involves placing a laboratory animal above water
on a platform so small that it falls off upon losing muscle tone.
The naturally rude awakening which results may elicit changes in the
organism which necessarily exceed the simple absence of a sleep phase.
This method also stops working after about 3 days as the subjects
(typically rats) lose their will to avoid the water.

Table 5.1: English sentences, before lemmaধzing.

process in detail. First, we word tokenize the text in Code 5.5:6, then PoS tag

in the following line. By default the PoS format is a tuple with the word at

position [0] and the PoS tag at position [1]. Starting at Code 5.5:11, we leave

the entry in upper case if it is a proper noun, and convert to lower case if it

is any other noun form or at the beginning of the sentence. If it is a verb

(Code 5.5:18), we convert it to its dictionary form.

An example of five sentences before this processing is shown in Table 5.1,

and the resulting changes in Table 5.2.

The Japanese text is also PoS tagged, however, this is donewith an external

command line tool, theMeCab open-source segmentation library, originally
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1 def lemmatize_and_pos_tag(lang):
2 ...
3 wl=WordNetLemmatizer()
4 with codecs.open('corpus/\

english_sentences_clean_lemmatized.txt','w', 'utf-8') as f:
5 for line in lines:
6 text=nltk.word_tokenize(line) # tokenize words
7 pos=nltk.pos_tag(text) # PoS tagging
8 sentence=''
9 for word in pos:
10 lemma=word[0]
11 if word[1] != 'NNP': # if not proper noun
12 lemma=lemma.lower() # to lower case
13 if 'NN' in word[1]: # if other noun
14 if 'NNS' in word[1]: # to lower case
15 lemma=lemma.lower()
16 # lemmatize nouns
17 lemma=wl.lemmatize(lemma,wordnet.NOUN)
18 if 'VB' in word[1]:
19 # lemmatize verbs
20 lemma=wl.lemmatize(word[0],'v')
21 sentence+=lemma+' '
22 f.write(sentence+'\n')

Code 5.5: Funcধon lemmatize_and_pos_tag: PoS tagging and lemmaধzing English
sentences.
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a recent study find periodic eye movement in the central beard dragon
of Australia , lead its author to speculate that the common ancestor
of amniote may therefore have manifest some precursor to REMS .
sleep deprivation experiment on non-human animal can be set up
differently than those on human .
the“flower pot”method involve place a laboratory animal above water
on a platform so small that it fall off upon lose muscle tone .
the naturally rude awaken which result may elicit change in the
organism which necessarily exceed the simple absence of a sleep phase .
this method also stop work after about 3 day as the subject
( typically rat ) lose their will to avoid the water .

Table 5.2: English sentences, ađer lemmaধzing.

developed at theNara Institute of Science andTechnology. More information

onMeCab is provided in Section 3.3.

Before that, however, we make sure to convert numerals in the Japanese

text from full-width to half-width. Half width is used in English texts, hence

comparisons will be much easier later. This is important, since numbers are

particularly good signal tokens when aligning.

This is once more done with a regular expression in the vim editor com-

mand line as seen in Code 5.6. Similar to Code 5.3, it is a substitution com-

1 :%s/[\uff01-\uff5e]/\=nr2char(char2nr(submatch(0))-65248)/g

Code 5.6: Vim command line: Converধng numbers from full-width to half-width representaধon.
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mand. The first part, the text pattern to be replaced is the character range

with the hexadecimal identification (unicode code point): \uff01-\uff5e.

If a character is foundmatching this value, we convert it into its decimal repre-

sentation with char2nr. We then subtract 65248 from it and convert it back

into the code point representation with nr2char, which is the half-width

code point of the same number.

5.2.2 Language Resource Module

The second part of this stage is the Language Resource Module. Here we

transfer the dictionary files JMnedict and edict2 to a JSON format. We chose

to do this conversion for consistency, as we use the same JSON format for

other resources, and for flexibility, as it allows the selection and addition of

certain features from the resources. In Code 5.7 the conversion of JMnedict

with function JMnedict_to_json is shown. In Code 5.7:10 we extract the

named entities in Japanese and their English equivalents and store them as

JSON objects.

In the function edict2_to_json, shown in Code 5.8, the conversion

from the edict2 file is shown,which is not aswell structured as theXML-based

JMnedict, therefore, we had to apply several string operations (Code 5.8:8-17)
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1 def JMnedict_to_json():
2 with codecs.open('resources/JMnedict.xml','r','utf-8') as f:
3 lines=f.readlines()
4 dictJAEN={}
5 kanji=''
6 gloss=[]
7 for line in lines:
8 if '<entry>' in line:
9 kanji=''
10 gloss=[]
11 glossitem=''
12 if '<keb>' in line:
13 kanji = line[5:-7] # get item (Japanese NE)
14 if '<trans_det>' in line:
15 # get glossary entry (English equivalent)
16 glossitem = line[11:-13]
17 gloss.append(glossitem)
18 dictJAEN[kanji]=gloss # store in list
19 with codecs.open('resources/JMnedict.json','w','utf-8') as f:
20 json.dump(dictJAEN,f) # write to JSON file

Code 5.7: Funcধon JMnedict_to_json: Converধng JMnedict to JSON format.

to distill the content to our needs and finally also store it in JSON format.
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1 def edict2_to_json():
2 ...
3 for line in lines:
4 jap_word_list=[]
5 jap_word_list=''.join(line.split(' ')[0]).split(';')
6 # get translations
7 translations=[]
8 for idx, item in enumerate(line.split('/')):
9 if idx!=0 and re.search('\w+',item) and 'EntL' not in \

item:
10 #removing {} and anything in between
11 item=re.sub('\{[^)]*\}','',item).strip()
12 #removing ()
13 item=re.sub('\([^)]*\)','',item).strip()
14 #removing ) -because of nested parenthesis mess in\

edict2-
15 item=re.sub('\)','',item).strip()
16 if not re.search('![ - ~]',item) and not re.search\

('\?',item) and item!='':
17 translations.append(item)
18 for item in jap_word_list:
19 item=re.sub('\([^)]*\)','',item).strip() #removing ()
20 dictJAEN[item]=translations
21 with codecs.open('resources/edict2.json','w','utf-8') as f:
22 json.dump(dictJAEN,f)

Code 5.8: Funcধon edict2_to_json: Converধng edict2 to JSON format.
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It’s hardware that makॸ a machine fast. It’s

software than makॸ a fast machine slow.

Craig Bruce

6
Sentence Alignment

In this chapter we describe our approach to aligning Japanese and English sen-

tences from a dataset which contains a mix of translations and paraphrasing;

generally speaking sentences with various levels of similarity.

In order to align these sentences, various properties of text can be consid-

ered as indicators for equivalence. Some are mostly independent of language,
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such as sentence length, numbers, international terminology, or names. How-

ever, some of these comparisons are not always possible, due to various types

of differences between highly dissimilar language pairs. The Japanese-English

language pair is in this category and poses multiple issues, as mentioned in

Section 1.1.3.

Other alignment criteria are content words, which have to be translated,

in order to find their equivalents. Some word categories can and should be

omitted, since they donot significantly contribute to finding equivalences but

rather introduce noise, due to differences between the languages.

There are several advantages of translating from Japanese to English and

to make English the language of comparison:

• English iswrittenwithone alphabet as opposed to Japanese,whichmakes
comparison easier.

• It is easier to identify foreign words and terminology in Japanese, since
they are usually written in Katakana, so they can be spotted prior to
translation.

• English is well suited as a pivot language, so modules can be adjusted for
other languages in combination with English.

The following section elucidates the procedure of assigning the alignment

scores to sentences followed by a detailed discussion of the metric itself. Fur-

ther, an example of the alignment of one Japanese sentence is broken down
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as a showcase. In this example, five sentences represent the set of alignment

candidates in the English corpus. The chapter concludes with an explanation

of the source code in the Sentence Alignment Stage.

6.1 Algorithm

The algorithm iterates over each word, i.e. POS entity, of a Japanese sentence

and looks for equivalents within the English corpus. Particles and auxiliary

verbs are omitted for the following reasons: They are frequent in Japanese and

are less significant for the purpose of the alignment comparison than content

words, numbers, named entities, and foreign words.

Examining sentence structures according to particles and auxiliary verbs

would be possible, however it would require a deep analysis of the Japanese

sentence and an equally deep analysis of the English sentence, in order to find

a matching phrase. Additionally, varying uses of these particles can also lead

to false assumptions and false matches. This is discussed inmore detail in Sec-

tion 1.1.3 on language specific issues. Although a detailed analysis of particles

and phrases might benefit the alignment, the gain versus cost ratio would be

disproportionally high compared to the ratio of simpler comparisons.

The algorithm sequence starts with a check for occurrences of numeric val-
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ues written in Arabic numbers. This could be a measurement, a date, a quan-

tity, etc. Since Japanese also uses Arabic numbers, this is one of the easiest

and straightforward indicators for similar content. Each time a number value

equivalent is found in the English corpus, the score of the particular sentence

is increased.

The next step is finding the translation of each word in the Japanese sen-

tence into Englishwith the help of language resources like edict2 (all resources

used for translation and comparison are discussed in Section 3.2). As it is usu-

ally the case in translations, polysemy is the biggest problem here. A selec-

tion of the correct translation would require a semantic analysis of the entire

sentence, or maybe even paragraph, hence is not possible, given the compu-

tational restrictions of this approach. In previous work by Utiyama and Isa-

hara (2003) only two English translations were selected, using a simple heuris-

tics based on frequencies of English words. In contrast to that, every available

word in the list of possible translations is used in this algorithm. This increases

the computational effort, however, it also improves accuracy significantly, so

the performance loss is justified.

TheEnglish corpus is searched for a translationof each Japaneseword. Spe-

cial cases are numbers, which could be dates, measurements or quantities and
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named entities. Numbers are matched directly, while equivalents of named

entities are obtained from the JMnedict language resource.

Eachpossible translationobtained fromthedictionary resources ismatched

to candidates in the English corpus and an alignment score is increased, if a

match is found. The sum of the match increments results in the alignment

metric described in the next section. After the iteration of a Japanese sentence

is complete, the English candidate sentence, i.e. the sentence with the highest

score, is marked as a potential parallel sentence.

6.2 Alignment Metric

The alignment metric depends on the number of matches identified in the

above described algorithm. It is a sum of matches, weighted and normalized

over the length of the matched sentence:

scorei =

ni∑
j=1

mij

(
w +

1

li

)

scorei ist the score of the ith target sentence. ni is the length of the source

sentence, in this case the Japanese sentence, mij is the match value of this to-
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ken, in this case 1 for each match and 0 (zero) for no match. w is the weight,

which can be adjusted according to how strong either a translation, a named

entity or a numerical value match are to be emphasized as an alignment indi-

cator. This value is currently a constant, since it is not changed for either of

the above mentioned cases. However, the module allows for an easy change

of the weight for each case to examine a potential improvement of the results.

This is planned to be done in future work. Finally, li is the length of the target

sequence, in this case, the English sentence.

6.3 Example of Sentence Alignment

The alignment process iterates over the corpus of Japanese sentences. For each

sentence, the English sentence corpus is examined for similarities and a score

is assigned for each sentence based on the metric described above.

For the purpose of illustration, one Japanese sentence and five English sen-

tences represent the corpora. This would be the iteration of comparing one

Japanese sentence from the Japanese corpus to the sequence of sentences in

theEnglish corpus, which in this examplewould consist of five sentences. The

Japanese sentence is shown in Figure 6.1.

The five English alignment candidate sentences are shown in Figure 6.2.
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2003 -毎年どれだけの量の新たな情報が⽣み出されているかを⾒積もる
試み

Figure 6.1: Japanese example sentence.

These sentences are processed and prepared as described in Section 5.2.1.

1. 2003 an attempt to estimate how much new information is created
each year
2. In 2003, the United States invaded Iraq despite failing to pass a UN
Security Council resolution for authorization.
3. A 2003 study argues the common chimpanzee should be included in
the human branch as Homo troglodytes.
4. The Commonwealth’s current highest-priority aims are on the
promotion of democracy and development, as outlined in the 2003
Aso Rock Declaration.
5. An attempt to renew these efforts has be undertaken yearly, since
2003.

Figure 6.2: English example sentences.

As explained in Section 5.1, the Japanese sentence is tokenized and PoS-

tagged withMeCab. The result is shown in Table 6.1.
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ōs

hi
go

ka
n=

ad
jec

tiv
ev

er
b
ste

m
)

な
(n

a)
助
動
詞

(jo
dō
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The result of the iteration of the Japanese sentence checking all language

resources, while omitting particles and auxiliary verbs is shown in Table 6.2.

InTable 6.3, the English sentences in their lemmatized form arematchedwith

the output from the iteration of the Japanese sentence. Thematches are high-

lighted in Table 6.3. The first sentence contains 5 matching tokens, sentence

four has 4, while the others have one each. A graphical depiction of thematch-

ing process is shown in Figure 6.3. The tokens which are colored red are dis-

carded, the tokens with POS-tag results in green are looked up in the lexical

resources and equivalent expressions are searched amongst the English sen-

tences. Matches are connected with lines and highlighted.

The scores are calculated according to the alignmentmetric in Section 6.2,

which results in:

• Sentence 1: Sentence length: 13, weight:0.5, matches:5
(0.5 + 1

13
) ∗ 5 = 2.885;

• Sentence 2: Sentence length: 18, weight:0.5, matches:1
(0.5 + 1

18
) ∗ 1 = 0.556;

• Sentence 3: Sentence length: 17, weight:0.5, matches:1
(0.5 + 1

17
) ∗ 1 = 0.559;

• Sentence 4: Sentence length: 22, weight:0.5, matches:1
(0.5 + 1

22
) ∗ 1 = 0.545;

• Sentence 5: Sentence length: 12, weight:0.5, matches:4
(0.5 + 1

12
) ∗ 4 = 2.333
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token translation
2003 2003
毎年 every year, yearly, annually

(maitoshi)
量 (ryō) progress
新た (arata) new, fresh, novel
情報 (jōhō) information, news, intelligence, advices
⽣み出さ to create, to bring forth, to produce, to invent,
(umidasa) to think up and bring into being, to give birth to, to bear
⾒積もる to estimate

(mitsumoru)
試み attempt, trial, experiment, endeavour (endeavor),

(kokoromi) effort, venture, initiative

Table 6.2: Translaধons of tokens of Japanese sentence into English.

The sentencewith the highest score is considered themost likely alignment

candidate, in this case, Sentence 1. According to the needs, i.e. the type of

text, the domain, etc., the weights of the metric can be optionally adjusted

at each match, so that, e.g. numbers, names, signal words or terminology is

considered more indicative of an alignment, and such a match will result in a

higher score. The weight is kept constant for the experiments shown in the

thesis. Adjustments of this valuemight result in improvements of alignment,

although it requires some experimentation, so this is reserved for futurework.
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2003-毎年どれだけの量の新たな情報が⽣み出されているかを

⾒積もる試み (2003-maitoshi dore dake no ryō no aratana jōhō

ga umidasa rete iru ka wo mitsumoru kokoromi)

2003 an attempt to estimate how much new information be create each year .

Alignment Score: 2.885

in 2003 , the United state invade Iraq despite fail to pass a UN Security Council

resolution for authorization .

Alignment Score: 0.556

a 2003 study argue the common chimpanzee should be include

in the human branch as Homo troglodytes .

Alignment Score: 0.559

the Commonwealth ’s current highest-priority aim be on the promotion of

democracy and development , as outline in the 2003 Aso Rock Declaration .

Alignment Score: 0.545

An attempt to renew these efforts has be undertaken yearly , since 2003.

Alignment Score: 2.333

Table 6.3: Target sentences with matches highlighted, and their resulধng scores.
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6.4 Implementationof the SentenceAlignment Stage

In this section, we explain the structure and source code of this stage as shown

in Figure 6.4. The central part is the Alignment Module, which receives the

prepared Japanese and English corpus data as well as dictionary data from

JMnedict and edict2 in JSON format, converted in the Language Resource

Module in the Data Preparation Stage, described in Section 5.2.2. The out-

put of this module are English and Japanese sentences in the form of a paral-

lel corpus with each sentence having assigned a score according to the metric

described in Section 6.2. For this stage we do not require any new library

imports, other than some of the ones we already explained in the previous

stages. We show a list of them in Code 6.1 for the sake of completeness and

consistency.
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Figure 6.4: Overview of the Sentence Alignment Stage. Module names are wriħen in bold face,
funcধon names (without parameters) are shown in small, blue font.
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1 import codecs
2 import json
3 import re

Code 6.1: Preamble: Libraries for Sentence Alignment Stage.

6.4.1 Alignment Module

This module aligns the English sentences with the best suited Japanese sen-

tences according to criteria discussed in Section 6.1 and implemented in the

align function.

In the first part of the function we load the JSON dictionaries prepared in

the Data Preparation Stage (Code 6.2). It is important to remember the use

of utf-8 encoding for reading and writing Japanese characters.

1 def align():
2 #dictionary files
3 #*************************************************
4 with codecs.open('JMnedict.json','r','utf-8') as f:
5 JMnedict= json.load(f)
6 with codecs.open('edict2.json','r','utf-8') as f:
7 edict2= json.load(f)
8 #*************************************************

Code 6.2: Funcধon align: Loading dicধonary files.

In the second part of the function, we initialize all variables and data struc-

tures that will be used (Code 6.3:1-6), in particular an array whichwill contain
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the scores for each alignment candidate sentence (6.4:7-9).

1 temp_lines = f_out.readlines()
2 jap_counter=len(temp_lines)
3 translations=[]
4 match_dict={}
5 content_matches_list=[]
6 temp_counter=0
7 array=[] # metric values will be stored here
8 for idx in enumerate(eng_lemmas):
9 # init to 0 for number of english sentences
10 array.append(float(0))

Code 6.3: Funcধon align (cont.): Iniধalizing variables and data structures.

In Code 6.4:11, we start to iterate through the elements of the PoS tags of

each Japanese sentence. The next line, although first in the code sequence, is

the code block, which is executed when we reach the end of a Japanese sen-

tence (Code 6.4:12). We explain this code block first even though it is not in

line with the chronological program flow.

Each time every token of a Japanese sentence was traversed the result is

written to two files. The first file (Code 6.4:16) contains the sequential num-

ber (in the input file) of the currently examined Japanese sentence and the

sequential number of the English sentence, which was assigned the highest

match probability, followed by the score. This file is written to allow for a

quick overview during and after the alignment process and debugging, and
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1 for idx in enumerate(eng_lemmas):
2 array.append(float(0))
3 for pos_tag in pos_tags:
4 if 'EOS' in pos_tag:
5 # weighted score algorithm
6 #*****************************************
7 # find highest value in <array> array, index is the \

sentence number
8 f_out.write('<ALIGN><JAP>'+str(jap_counter)+'<ENG>'+str(\

array.index(max(array))+1)+'<SCORE>'+str(max(array))+'\n')
9 f_parallel.write(str(max(array))+' ||| '+text_jap[\

jap_counter-1].strip()+' ||| '+text_eng[array.index(max(array))\
].strip()+'\n')

10 #*****************************************
11 jap_counter+=1 # japanese sentence counter
12 for idx,val in enumerate(array):
13 array[idx]=float(0)
14 print 'Processing sentence '+str(jap_counter)+' of '+str(\

len(text_jap))

Code 6.4: Funcধon align (cont.): Wriধng parallel data and scores.

for shorter loading times in general. Especially when the data volume exceeds

several dozens ofMegabyte, a smaller representation of the results, which can

be opened quickly, is very useful.

The file which contains the entire aligned data is created in the next line

(Code 6.4:17). Here we write the score first, so it is visible immediately when

the file is opened followed by the Japanese sentence, and finally the English

alignment candidate.
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The counter for accessing sentences in the data set is increased and the in-

dex for the array storing the alignment scores is reset for the iteration of the

next Japanese sentence ((Code 6.4:19-22).

In the next part of the function shown in Code 6.5, we check for matches

of numerals.

Wemake sure this check is performedonly once per Japanese sentencewith

a temporary counter in Code 6.5:4-5, and determine whether there is a nu-

meral in the sentence with a regular expression search in Code 6.5:7. If one or

more numerals are found, the for loop at Code 6.5:10 is activated which iter-

ates through the numerals in the Japanese sentence. Each one is then checked

for a match in the English sentences. When a match is found, the score is

increased, according to the metric (Section 6.2), in Code 6.5:17. The try/ex-

ceptblocks forboth the regular expression check and the search for thematch

prevent the code from crashing if an out of bounds array member is refer-

enced.

In the next part (Code 6.6), we take advantage of another potential signal

word, the occasional use of Latin characters in Japanese.

This appears usually in acronyms and some foreign named entities. In
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Code 6.6:3 we check for the MeCab class which identifies Latin characters.

Numbers also fall in this category, however, MeCab tends to split numbers

into individual numerals, rather than taking the entire number (for example,

the year 2015 would be split into 2,0,1, and 5). This is the reason for dealing

with numerals separately in Code 6.5. Hence, we skip further processing, if

we encounter a number at this point. We then proceed to checking every En-

glish sentence for an occurrence of the Latin string we found in the Japanese

sentence. If matches are found, the array with the scores is updated accord-

ingly.

In Code 6.7we check formatches from the named entity dictionary JMne-

dict and the dictionary edict2.

The named entity check is only performed, if MeCab has identified this

token as a named entity (Code 6.7:3). If the current token is not a named

entity we check for other excluded PoS tags in Code 6.7:15. A description of

which tags are omitted and the reason behind it is provided in Section 6.1. All

remaining PoS tags are checked in the dictionary.

In Code 6.8 we look for matches in English sentences, if a translation was

retrieved from the dictionaries in Code 6.7. If a match is found, the score for

that sentence is updated.
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1 digit_matches=[]
2 # do that only once per sentence (NB we're iterating POS tags!)
3 if temp_counter!=jap_counter:
4 temp_counter=jap_counter
5 try:
6 # finding sequences of numerals
7 digit_matches=re.findall(r'\d+',text_jap[jap_counter-1])
8 except:
9 pass
10 # if numerals were found, looking for equivalents in english \

data
11 for match in digit_matches:
12 jap_word=match
13 eng_counter=0
14 for eng_lemma in eng_lemmas:
15 eng_counter+=1
16 try:
17 if re.search(r'\b'+jap_word+r'\b',eng_lemma):
18 array[eng_counter-1]+=float(0.5)+float(float\

(1)/len(eng_lemma.split(' ')))
19 except re.error,e:
20 print 'passing re.error at translation: ', e
21 pass

Code 6.5: Funcধon align (cont.): Finding sentences with numerals.
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1 # look for romaji in japanese sentences (works badly with
2 # numbers, since mecab tagging splits them up in single digits
3 if '名詞'.decode('utf-8') in pos_tag and not re.search(r'\d+',\

jap_word):
4 if re.search('\w',jap_word):
5 eng_counter=0
6 for eng_lemma in eng_lemmas:
7 eng_counter+=1
8 try:
9 if re.search(r'\b'+jap_word+r'\b',eng_lemma):
10 array[eng_counter-1]+=float(0.5)+float(float\

(1)/len(eng_lemma.split(' ')))
11 except re.error,e:
12 print 'passing re.error at translation: ', e
13 pass

Code 6.6: Funcধon align (cont.): Checking for Laধn characters.
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1 translations=[]
2 # if named entity, look for match in nedict
3 if '固有名詞'.decode('utf-8') in pos_tag:
4 try:
5 translations=JMnedict[jap_word]
6 except KeyError,e:
7 pass
8 else: # else look for match in regular dictionary
9 # excluding certain japanese pos forms from dictionary lookup
10 #(no particle, aux verb, etc)
11 if not translations and '助詞'.decode('utf-8') not in pos_tag\

and '助動詞'.decode('utf-8') not in pos_tag:
12 try:
13 translations=edict2[jap_word]
14 except KeyError,e:
15 pass

Code 6.7: Funcধon align (cont.): Dicধonary lookups.
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1 if translations: # if any translation was found
2 for translation in translations:
3 eng_counter=0
4 translation=re.sub('\(.*?\)','',translation)
5 for eng_lemma in eng_lemmas:
6 eng_counter+=1
7 try:
8 if re.search(r'\b'+translation+r'\b',eng_lemma\

):
9 array[eng_counter-1]+=float(0.5)+float(\

float(1)/len(eng_lemma.split(' ')))
10 english_sentence_length=len(eng_lemma)
11 japanese_sentence_length=len(text_jap[\

jap_counter-1].encode('utf-8'))
12 except re.error,e:
13 print 'passing re.error at translation: ', e, \

translation
14 pass
15 match_dict[jap_counter]=content_matches_list
16 f_out.close()
17 f_parallel.close()

Code 6.8: Funcধon align (cont.): Finding translated matches.
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The greatest enemy of knowledge ॹ not

ignorance, it ॹ the illusion of knowledge.

Stephen Hawking

7
Evaluation

The result of extracting, preparing, and aligning data in Chapters 4, 5,

and 6 is a collection of Japanese-English sentence pairs. These sentence pairs

are candidates for a parallel corpus. Whether they can be regarded as paral-

lel sentences, i.e. translations which fulfil a certain quality measure, has to
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be evaluated. During the alignment process, each sentence pair is assigned a

score, which indicates the similarities between said sentences. Hence the first

evaluation is done automatically and inherently using the alignment metric.

7.1 Metric Score – Automatic Scoring

During the alignment process, a score is assigned according to the alignment

metric. Roughly speaking, the higher the score, the higher the number of

matches between these sentences. The quality measure given by the score for

each alignment candidate results from the number of content words which

are potentially equivalent. The possibility of additionally identifying wrong

matches cannot be excluded, since every possible translation for ambiguous

cases is considered andmight result in false positives. On the other hand, there

are matches that could bemissed, such as numerals which are written as num-

bers in one language and words in the other.

Another factor, which influences the score, is the sentence length. The

longer the sentence where a match was found, the lower the score. We do this

under the assumption that longer sentences inherently have a higher chance

to contain a certain word. The alignment metric adds the same weight to

the score of the sentence pair where a match was found, which means that
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each match, regardless whether it is a content word, a number, terminology

or a proper noun, is treated equally important. This weight can be adjusted,

which is planned as future work, in order to examine alignments based on

variableweighting. Details of themetric are discussed in Section 6.2. After the

alignment is finished, the corpus is sorted by the score value. The best scoring

2000 sentences have been selected for evaluation by a translation expert.

7.2 Quality Measure by a Translation Expert

Evaluation of translations is a complex task and assigning a score can be very

intricate depending on the quality requirements.

The evaluation of the data obtained by the framework is fairly straight-

forward as opposed to translations which require evaluation of a tone or a

style. Nonetheless, the process of manually checking each sentence is labori-

ous, hence we have selected amanageable number of sentences for the expert,

based on our metric.

In order to identify potential translations as opposed to the sentence pairs

which are not, but are still viable for statistical training and other language

technology applications, three categories were used:

Sentence pairs that are not classified as translations can still be viable for
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statistical training and other language technology applications. We created

categories that include these three possibilities.

• no equivalence,

• partially equivalent,

• good equivalence/potential translation.

The first category “no equivalence” includes sentence pairs that might con-

tainmatches, but apart from that the sentence cannot be classified as a transla-

tion, and therefore cannot be used as parallel data in any way. This is usually

due to polysemy or other false positive alignment properties.

The second category “parধally equivalent” includes sentence pairs contain-

ing only few correct matches between the sentences. Although they are not

good translations, we can still use them for some language applications de-

pending on the requirements.

The third category “goodequivalence/potenধal translaধon” includes sentences

where the majority of signal words match, or which can clearly be qualified as

potential translations.

Quality amongst the potential translations is not scrutinized, since this is

far beyond the scope of this work.

Inotherwords, as described inSection6.2, components of sentenceswhich

are equivalent and hence are indicative of a translation increase the match
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score. This metric is the first measure of how close the Japanese sentence is

to the English sentence. Even if the score is high, this does not necessarily

mean that the sentences are good translation candidates.

Depending on the requirements of the corpus, the quality criteria can be

divided into several categories. An applicationwhich aims, for example, at ter-

minology extraction, or requires a high number of equivalent content across

sentences can purely rely on the similarity metric, described in Section 6.2. If

the application requires aligned sentences that are translations or close enough

to be considered as such, a more strict scoring needs to be applied. From this

point on, a human expert is needed to confirm the quality.

7.3 Evaluation Results

In this section we summarize the output of our experiment and discuss our

evaluation results. We created a corpus of 66,000 sentence pairs for evalua-

tion. The 2000 highest scoring sentences, according to the alignment met-

ric, were evaluated by a human expert. The expert scored the equivalence of

the sentences with 1, 0.5, and 0, corresponding to the categories presented in

Section 7.2. The percentage of good equivalence/potential translations was

roughly 1% and partially equivalent 22.5%. The low ratio of good equivalents
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score range good equivalence/ partially equivalent no equivalence
potential translation

9.5-10.0 5 % 29% 66%
9.0-9.49 4 % 25% 71%
8.5-8.99 4 % 21% 75%
8.0-8.49 3 % 20% 77%
7.5-7.99 1 % 10% 89%
7.0-7.49 2 % 15% 83%

Table 7.1: Results of human expert evaluaধon.

indicates that a large portion of Wikipedia articles is not a direct translation.

The weight of the metric, which is used to generate the candidates, could be

used as a tuning measure to yield potentially higher percentages. The result

of the expert evaluation is summarized in Table 7.1.

As can be seen in Table 7.1, the percentage of good translation candidates

increases with the score assigned by the alignment metric. This confirms the

soundness of the metric. However, the overall result of good translations

candidates is rather small. This could be due to false positive hits during the

alignment (see Section 6.2 for a detailed discussion), and/or the fact that the

English-Japanese Wikipedia content for the domain does not contain many

translations, similar articles, and is more likely to have been created indepen-

dently.
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The second category, the sentence pairswhich have been evaluated to be of

similar content, also indicates the relationbetween themetric andhuman eval-

uation and is overall much higher. This can be taken as a rough indication of

the percentage of similar English-Japanese content within this domain, which

might have been created independently, but describing similar topics.

7.4 Runtimes

One of the benefits of our framework is that it can produce quick results on

regular hardware that can be found in almost anyone’s home these days. Even

a fairly modern laptop computer is enough to obtain a dataset in a reasonable

amount of time. In addition to the capability of creating potentially large

parallel text resources, this opens up the possibility for freelance translators to

quickly obtain a collection of bilingual data or a glossary of terms in a certain

domain. This also allows quick checks for availability of text on Wikipedia

for a selected set of topics.

There are many possible applications and most importantly the applica-

tion is scalable. We do not need a huge data set to get off the ground like

most deep learning applications but can work with small datasets as well as

large ones. As opposed to many other parallel data acquisition applications
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mentioned in Section 2.7, our framework is scalable and can be run on mod-

est hardware. In this showcase, we use a rather dated piece of hardware and

demonstrate an acceptable turnaround for a small data set. In Table 7.2, we

show the runtime for each module of the framework and the corresponding

output of data, if applicable (English output is denoted with ‘en’, Japanese

with ‘ja’).

Wedonot listTheTranslationModule separately inTable 7.2 since it is not

part of the sequential processing pipeline but is invoked on demand by the

Topic Extraction Module, the Formatting Module, and the Matching Mod-

ule, as shown in Section 4.3.2, and Figure 4.3.

We use a seed of 10 articles for this example and limit the number of col-

lected links to 2,500 per article. It is important to mention that some mod-

ules of the framework are more influenced by the performance of the hard-

ware than others. The timing showcase presented in Table 7.2 is done on the

desktop computer which is described in Section 3.4. As can be seen in this ex-

periment, the Topic Extraction, Alignment Preparation, and the Alignment

Module require the most time.

In case of theTopic ExtractionModule that is due to the online lookups in

Wikipedia, which means that this depends rather on bandwidth than on the
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Module Time Output

Data Extraction Stage
Topic Extraction 26m52s en: 801087 articles, ja: 56736 articles

Formatting 1m12s –

Matching 0.01s –

Comparison 2m31s –

Text Extraction 18.1s
en: 2037 lines, ja: 2072 lines

en: 85,804 tokens, ja: 75,393 tokens

Data Preparation Stage
Alignment Preparation 59m24s en: 3510 sentences, ja: 805 sentences

Language Resource 21s ja: 1,088,944 dictionary entries

Sentence Alignment Stage
Alignment 24m50s 805 aligned sentences

Total
– 1h43m48s 805 aligned sentences

Table 7.2: Runধme showcase for a small dataset.
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computational capability of the machine. One option to improve the run-

time would be to download a Wikipedia dump and work offline. However

we chose an online solution in order to be able to detect the latest changes in

Wikipedia articles. As described in Section 1.1, we want to analyse the content

ofWikipedia and that includes its dynamic nature. However, if required, the

modular structure of the framework allows for a fairly straightforward adjust-

ment to process offline Wikipedia dumps.

The Alignment Preparation and Alignment Module are not dependent

on online lookups and will be processed faster on a more powerful hardware.

Running the exact same dataset on the faster laptop computer, described in

Section 3.4, we observed approximately 20% reduction in runtime for the

Alignment Module and 17% reduction for the Alignment Preparation Mod-

ule. The absolute measurements for these two modules can be seen in Ta-

ble 7.3. Apart from CPU speed, the most important factor is access time on

the hard disk drive. The laptop in our experiment is equipped with a solid

state drive with much faster access times, being crucial when many lookup

operations in different files have to be done.

Regarding file access times, the system might be implemented to run in

memory, or with the use of a temporary file system that is loaded on initial-

130



Module Time Output

Alignment Preparation 51m05s en: 3510 sentences, ja: 805 sentences

Alignment 20m20s 805 aligned sentences

Table 7.3: Comparison runধme on faster system.

ization, however, we would have to know ahead, whether size requirements

can bemet. Additionally, the storage of text files and JSONobjects onHDDs

is more transparent and maintainable in the long run, and processing work-

flows can be resumed days, weeks, or even months later without having to

start the entire process from the beginning. Similar to the choice of online

versus offline processing, we chose flexibility, transparency, and sustainabil-

ity over speed.

Even in the current form, the framework is capable of quick turnarounds

for sizable datasets, but it certainly has much potential for optimization and

performance tweaks to be even better suited for large scale data harvesting.
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In the future,

computers may weigh no more than 1.5 tonnॸ.

Popular mechanics, 1949

8
Conclusion

8.1 Summary

The goal of the research performed in this thesis has been to create a method

for automatic creation of domain-specific parallel corpora between
dissimilar language pairs. Even though other methods for automatic cre-
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ation of such corpora exist, almost all current approaches use a black box deep

learning approach. The quality of parallel data collected by neural methods

is not always of high quality, and due to the black box approach it is diffi-

cult to improve. Further, a large scale acquisition of data without control and

eventually human evaluation allows for the processing of erroneous data of

potentially significant volumes, as pointed out in Section 1.1.1. Despite most

of the examples and our entire experiment setup being limited to Wikipedia,

it is fairly safe to extrapolate and generalize to other sources for the sake of this

argument.

A transparent method, based on language resources and rules, is certainly

more labor intensive measured in relation to the data that is created, but al-

lows for specific changes depending on the requirements and the application.

Additionally, such amethod can be fused with state of the art neural network

approaches as an enhancement, specifically to bootstrap systems when little

training data is available.

In order to prove the benefits of such an approach, we created a frame-
work for parallel data extraction. We chose English-Japanese, since it is a

good representationof a dissimilar language pair inmany regards, as described

in Section 1.1.3. We limited the data source to Wikipedia pages, since it is well
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structured and a good source for text, for almost any topic inmany languages.

We point out the benefits and the limitations of Wikipedia in Sections 1.1.1

and 4.1. With the flexibility for adaptation to other languages in mind, we

kept the framework as modular and generic as possible, and we point out the

parts of the framework that need to be adjusted in order to be usedwith other

language pairs.

We explain in detail the framework that we have programmed as a proof

of concept and which we use to show our preliminary results.

As we stated in Chapter 1, we broke the problem down into several stages,

which we addressed thusly:

• We have constructed an algorithm to efficiently obtain domain-specific
parallel corpus candidates from English and Japanese Wikipedia pages.

• We present an algorithm for aligning these English-Japanese sentences
pairs.

• Wepropose ametric toquantify the similarity betweenEnglish and Japanese
sentences.

• Wehave programmed a framework andused it to build a parallel corpus.

• We evaluated this data with the help of a translation professional.
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The framework we have implemented is a chain of modulॸ, divided
in stagॸ. In theDataExtractionStage (Chapter 4)weobtaindomain-specific

text data. The domain of the data is determined by the user, who defines how

broad or how limited the domain shall be by choosing the seed topics. The

way the text is obtained is as selective as possible to minimize the data to con-

tain only the most likely candidates, which will be passed on for further pro-

cessing. In the process of collecting data we also create English-Japanese glos-

saries. This self-contained stage can be used to quickly obtain data for differ-

ent seed topics, or create glossaries on demand. This is potentially a powerful

tool for translators and interpretors, who need glossaries for certain domains

as well as for research applications for which quick access to domain-specific

data is needed.

In theDataPreparation Stage (Chapter 5)we clean andprepare the data for

the Sentence Alignment Stage. The preparation of the data is highly language

specific and also depends on the data collected in the previous stage. This is

the reason why this stage is also self contained and can be adjusted as needed.

In the SentenceAlignment Stage (Chapter 6)we implement the alignment

algorithm and use our metric to quantify the quality of the alignment. The

alignmentmethod is based on dictionary lookups and transparent rules. This
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white box approachmakes it possible to trace the algorithm andmake observa-

tions on the processed data, use it in a teaching environment or enhance other

applications, such as word-embedding models.

Finally, as a result of experimental runs with the framework, we obtained

66,000 parallel sentence candidatॸ. We selected a subset of the best

scoring sentences for expert evaluation (Chapter 7).

8.2 Observations

In the following sections we describe the observations we made while pro-

gramming the framework and running the experiments. We present our in-

terpretation of the intermediate results and describe issues and things to be

aware of. This mainly concerns the first two stages, which we will discuss in

the following two subsections.

8.2.1 Data Extraction Stage

We chose Wikipedia for harvesting parallel data largely due to its consistent

structure, its article links, and the ease of text extraction. At the same time we

tried to answer thequestionofhowmuchofWikipedia’smultilingual content
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is translated, paraphrased, similar, or completely asymmetrical.

The results for the topic seeds used in the experimental setups of this disser-

tation showed a low number of equivalent sentences (Chapter 7). We assume

that much of the content in our experimental seed topics was either created

in parallel, or created independently. There is a strong indication that direct

translations make up a fairly low percentage of the content.

Another interesting observation was how quickly topics from various do-

mains diverged from the initial domain with increasing link distance. For ex-

ample, the topic “Tokyo” very quickly diverged into other domains, while

extracted articles starting with “Plane” seemed to stay in this general domain

longer. This is something to keep in mind when highly domain-specific data

is required. The framework is flexible enough to allow for restricting criteria

in such a case.

Overall, according to the study conducted in this dissertation, we observed

that Wikipedia is a good source for parallel corpus extraction, due to its well-

organized structure and availability of many language pairs, but a fairly poor

source when large volumes of good quality translations are required.
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8.2.2 Data Preparation Stage

The experience we gathered from this part of the framework is that handling

encoding, and full and half-width representation can be quite challenging

and requires much attention to detail, especially for Japanese. There are sev-

eral common encodings used in Japanese, such as JIS, Shift-JIS, EUC, and

Unicode. While Unicode is commonly used for many other scripts being a

widely used standard, many Japanese language resources are encoded differ-

ently. Dealing with language tools, such as parsers, is especially tricky when

they require input in a different encoding and output text which cannot be

displayed on a utf-8 console, or in a utf-8 file.

We encountered an interesting issue with the nltk sentence tokenizer. It

could not properly find sentence delimiters, whenever there was no white

space between sentences. Since that was the case with most of the data ex-

tracted in our framework, we used a script in the vim command line to resolve

this issue (Section 5.2.1).

138



8.3 Contributions

8.3.1 Theoretical Contributions

A theoretical contribution of this thesis is the description of the framework,

which we hope to have presented well enough to be recreated as needed, be

it in the Python programming language, as it is implemented in this work, or

any other language of the reader’s choice. We hope that the descriptions of

our experiences but also thementions of shortcomings will be helpful in such

a recreation.

We described the workflow of a comprehensive process that goes from an

initial input of topics to an output of large volumes of parallel data, adhering

to basic software engineering principles of modularity and transparency. We

chose to divide the framework into self-contained parts to allow for a trans-

parent and flexible workflow. This modularity, and flexibility is important

for debugging, analysing data in the process of running the framework and

transparent data storage and maintenance.

The Data Extraction Stage is tailored to data collection from Wikipedia,

but should another source be required, a different implementation of this

stage can be substituted; as long as the output data format is consistent, the
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other stages, Data Preparation, and Sentence Alignment can be used requir-

ing only very minor adjustments. The Data Extraction Stage can also be used

solely for the purpose of creating glossaries, in this case all unneededmodules

can be decoupled within the stage, to improve performance. We apply the

same principle within the stages dividing the workflow into modules. While

functioning as a workflow with one input and one output, they also can be

run individually. This is particularly useful when working on large volumes

of data which can take hours or days. If the process is interrupted, it can be

picked up without much time loss due to the modularity. In this case, we

can easily decouple modules and continue the process where it was left off.

Throughout the entire stage we have used variables for the languages, which

allows for a quick adaptation to other languages, which is mentioned inmore

detail in Section 8.4.

Similarly, the Data Preparation Stage is partitioned into modules. One

module is responsible solely for reading and preparing dictionary data into a

uniform JSON format, the other for cleaning, tokenizing, and PoS tagging.

The conversion of the dictionary files allows for an easy way to load the most

recent and up-to-date resources into the framework. Should these dictionary

resources have a different format in the future, an adjustment in this module
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will be enough to ensure compatibility. Therefore, this module serves as a

language resource interface.

The Sentence Alignment Stage consists of one module. The metric for

measuring the similarity between sentences is located here. Thismetric allows

us to quantify the number of equivalent tokens in relation to their estimated

similarity value and the length of the sentence. These values were estimated

based on grammatical knowledge and adjusted empirically.

Another contribution lies in the potential use of this framework as an en-

hancementmethod forMTsystemswhich need quick anddomain-specific in-

put of data. Our framework allows for fairly speedy turnaround times, quick

analyses and adjustments.

8.3.2 Practical Contributions

The practical contributions of this thesis are the parallel corpus of 66,000 sen-

tence pairs and a selection of 2,000 sentence pairs, which are evaluated by a

translation professional.

Our open source framework can be used to obtain more domain-specific

parallel data, and canbe adjusted forother languagepairs andother data sources.

We are convinced that this framework, with a few additions and adjust-
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ments to increase the ease of use, can be of great value for translation profes-

sionals, who can use it in addition to existing computer assisted translation

and terminology management tools. In particular the glossary extraction,

which is part of the first stage of the framework, can deliver quick and accurate

domain-specific data.

Last butnot least, weusedparts of our framework toobtaindata for thede-

velopment of the EU Council Presidency Translator*, as contribution to this

international project funded by the European Union. This project was car-

ried out in conjunction with the CEF eTranslation platform †. We provided

terminology datawith the help of our glossary extraction function andmono-

lingual data with our Data Extraction Stage with some minor adjustments.

8.4 Application to Other Language Pairs

The framework is written for the Japanese-English language pair, however it

ismeant to be flexible enough for a fairly quick adaptation to other languages.

Such an adaptation to other language pairs brings with it an entire list of

interesting research questions: How are other language pairs represented on
*https://translate2018.eu/ (Last accessed in August 2020)
†https://translate2018.eu/#/about (Last accessed in August 2020.)
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Wikipedia? How close is their content between languages? This method can

be an efficient way to quickly check whether parts of Wikipedia are filled in

with machine translated content. It can be used to examine the ratio of text

for certain topics within a language pair.

That being said, the difficulty of adjustment to other language pairs de-

pends on the languages. The framework was built with comparison of dis-

similar languages in mind, one of them being written in the Latin alphabet.

Changing English to another European language, which uses the same al-

phabet is very straight forward providing there are adequate POS-taggers and

lemmatizers available for this language.

In order to substitute Japanese with another language, slightly more ad-

justments have to bemade. The input and output is prepared for wide-width

characters, which are used for Chinese characters and various other scripts,

but the alignment method uses language-specific properties of Japanese, such

as omission of particles, therefore this would have to be adopted.

8.5 Publications Resulting from this Research

In the process of researching this topic we have published our preliminary

results in three peer-reviewed conferences.
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The first publication Wloka (2015) was in the early stages of the work,

where we suggested several alignment techniques. This paper was the first

step towards this thesis and laid many foundations in terms of selective crawl-

ing and the use of language resources for this task. We explored various align-

ment techniques including the utilization of the Moses SMT toolkit (Koehn

et al., 2007) for an experimental PoS based cluster matching method. How-

ever, this method soon became obsolete with the quickly improving NMT

methods and we decided to embark on a new course. While the quickly im-

proving NMT methods were making huge strives in translation quality for

many language pairs, they were black box, very data hungry, and still strug-

gled with dissimilar languages. We therefore decided to find a method which

is transparent and can produce results quickly, to potentially enhance data

intensive MT with knowledge-based bootstrapping methods.

Another considerationwas the source fromwhichwewill harvest the data

for alignment. At this stage we examined Wikipedia and decided to focus on

the Japanese-English language pair. We presented our findings in a talk at the

2nd East Asian Translation Studies Conference in Japan (Wloka, 2016), and

gained valuable insights in the resulting discussions, which we incorporated

into this thesis.
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Whilemaking progress on theData Extraction Stage of the framework, we

noticed the opportunity to use this part of the framework for building a tool

for quick access to domain-specific, Japanese-English glossaries. Since in the

Data Extraction Stage, the selection of domain-specific articles is determined

by the links within the articles, the list which comprises the pre-selection set is

coincidently a good collection of domain-specific terms and their translations,

taken from Wikipedia, rather than dictionaries. We published these findings

in (Wloka, 2018).

8.6 Limitations

The limitations of the approach described and implemented in this thesis

are mainly its computational requirements. Although the articles which are

scraped to obtain text are selected to maximize the probability of similar sen-

tences, the articles are not compared individually, which would increase com-

putational efficiency, but rather wholistically. The reason behind this is the as-

sumption that even thoughwehave text fromdifferent topics, thepre-selection

yields a set of related articles, which might contain similar sentences across ar-

ticle pages. The pre-selection by topic similarity limits the data volume, but

the overall exponential increase in computational time makes this approach
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computationally expensive. In order to limit CPU-hours we avoid process-

ing some of the grammatical structures which could contribute to marginal

accuracy improvements. This is described in Chapter 6.

8.7 Future Work

During the process of creating a parallel corpus, examining different possibil-

ities, and attempting to answer the research questions, many more follow-up

and related questions became apparent. Certainly, additional iterations of

crawling and aligning are necessary to further confirm and refine the results

presented in this thesis.

An opportunity for future work which requires some adjustments to the

framework, but is certainly very interesting, is the extension of the modules

to other languages and examining ratios of similar Wikipedia content across

other language pairs.

As mentioned in Section 8.2.1 the identification of topics in the Data Ex-

traction Stage can still be extended and refined. Due to the transparent ar-

chitecture, rules, a language model, or word embeddings could be added to

ensure the identification of data within a certain domain.

Further, a refinementof themetric canbe examinedby adjusting theweight,
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according toword categoryorother syntactic or semantic factors. Asdescribed

in 6.1 we set the weights of the alignment metric by estimate and experimen-

tal fine-tuning. In the future this could be improved by quantitative analysis

of the text obtained in the Data Extraction Stage (Chapter 4). By knowing

how often certain categories of words, named entities, numerals, etc. appear

in the data, we can make more accurate estimates for the weight values of the

metric. Additionally, an extension to consider more grammatical structures

during the alignment would be possible, although very computationally in-

tensive, as mentioned in Section 8.6.

Especially taking into account the significant progress of deep learning

in NLP with pre-trained word embedding models, such as BERT (Devlin

et al., 2018), and the immense data requirements of these systems, we are con-

fident that knowledge driven and transparent systems, which can work with

little data, will complement these data hungry, opaque, and brittle deep learn-

ing approaches by allowing for quick boot strapping andmuch needed trans-

parency and adaptability.

Ourmodular software chain is built with such flexibility and interconnect-

edness inmind andwe are confident that itwill enrich current and future state

of the art research.
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A
Source Code

In this appendix, the source code of the program developed in the course of

this thesis is presented in a modular, sequential fashion.

Theoverview inFigureA.1 shows themodules of theDataExtractionStage

of the framework. FigureA.2 gives an overviewof theData Preparation Stage.

Figure A.3 depicts the modules of the Sentence Alignment Stage.

159



All schematic depictions showwhich functions are being called from each

module. The functions are listed below in sequential order. For the purpose

of clarity, parameters of the functions are omitted in the overview and in the

titles. All figures in the appendix are repeated and equivalent with the figures

in the chapters above. They are included in the appendix for convenience and

readability of the source code.
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Figure A.1: Modules of the Data Extracধon Stage for selecধve harvesধng and text extracধon from
Wikipedia arধcles. The goal of this chain of modules is to obtain candidate sentences for a parallel
corpus. Module names are wriħen in bold face, funcধon names (without parameters) are shown in

small, blue font.
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A.1 Data Extraction Stage

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 from bs4 import BeautifulSoup
4 import requests
5 import codecs
6 import re
7 import json
8 import urllib
9 import os

A.1.1 Topic Extraction Module

Function – get_topic_pairs

1 def get_topic_pairs(topic_list):
2 # for each start topic
3 for topic in topic_list:
4 start_topic= topic.strip()
5 #get start topic in japanese by ID check
6 topic_ja = get_translation(start_topic,'ja','en')
7 #open files to store subtopics
8 ftopics_en = codecs.open('data/'+start_topic+'_topics_en.\

txt','w', encoding='utf8')
9 ftopics_ja = codecs.open('data/'+start_topic+'_topics_ja.\

txt','w', encoding='utf8')
10
11 #call get_pages function to get subtopics for english
12 topics = get_pages_links(start_topic, 'en')
13 #write results to file and close output file
14 for topic in topics:
15 ftopics_en.write(topic[0]+'->'+topic[1]+'\n')
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16 ftopics_en.close()
17
18 #call get_pages function to get subtopics for japanese
19 topics = get_pages_links(topic_ja, 'ja')
20 #write results to file and close output file
21 for topic in topics:
22 ftopics_ja.write(topic[0]+'->'+topic[1]+'\n')
23 ftopics_ja.close()

Function – get_pages_links

1 # return all links on the topic page and all subsequent links
2 def get_pages_links(topic, lang):
3 start_url = 'https://'+lang+'.wikipedia.org/wiki/'
4 domain = 'https://'+lang+'.wikipedia.org'
5 start_url=start_url+topic #main topic link
6 items = []
7 # get own title, link titles and links for main topic
8 title, ext_titles, ext_links = extract_links(url=start_url)
9 # store in items list
10 items.extend(zip([title]*len(ext_titles), ext_titles))
11 for ext_link in ext_links:
12 # omitting Wiktionary entries and pronunciation links
13 if 'wikt' not in ext_link and 'Help:IPA' not in ext_link:
14 try:
15 # resolve encoding issues
16 ext_link=urllib.unquote(ext_link).decode('utf-8')
17 # get own title, link titles and links for main \

topic
18 title, ext_titles, ext_links = extract_links(\

domain + ext_link)
19 # store in items list
20 items.extend(zip([title]*len(ext_titles), \

ext_titles))
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21 except UnicodeEncodeError, e:
22 print('UnicodeEncodeError at: ',ext_link,'-reason:\

', str(e))
23 pass
24 if len(items) > 2500:
25 break
26 return items

Function – extract_links

1 # return a list of links to other Wikipedia articles
2 def extract_links(url):
3 # get soup with lxml parser
4 soup = BeautifulSoup(requests.get(url).content,'lxml')
5 # find all the paragraph tags
6 p_tags = soup.findAll('p')
7 # gather all <a> tags
8 a_tags = []
9 for p_tag in p_tags:
10 a_tags.extend(p_tag.findAll('a'))
11 # filter the list : remove invalid links
12 a_tags = [ a_tag for a_tag in a_tags if 'title' in a_tag.attrs\

and 'href' in a_tag.attrs and not 'class' in a_tag.attrs]
13 # get all the article titles
14 titles = [ a_tag.get('title') for a_tag in a_tags ]
15 # get all the article links
16 links = [ a_tag.get('href') for a_tag in a_tags ]
17 # get own title
18 self_title = soup.find('h1', {'class' : 'firstHeading'}).text
19 return self_title, titles, links
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A.1.2 Translation Module

Function – get_translation

1 # return the Wikipedia site equivalent in a target language
2 def get_translation(topic,source_lang,target_lang):
3 # use Wikipedia's json database to look it up
4 json_url='https://'+source_lang+'.wikipedia.org/w/api.php?\

action=query&titles='+topic+'&prop=langlinks&lllimit=500&format\
=json'

5 content = requests.get(json_url).content
6 json_data = json.loads(content)
7 item=''
8 # iterate through json hierarchy to find langlinks category
9 try:
10 for i in json_data["query"]["pages"]:
11 pageid=i
12 except KeyError, e:
13 print('KeyError at topic:',topic,' - reason: ',str(e))
14 pass
15 except TypeError, e:
16 pass
17 try:
18 for i in json_data["query"]["pages"][pageid]["langlinks"]:
19 # in langlinks category, find desired langauge
20 if i['lang']==target_lang:
21 # there is the topic equivalent
22 item = i['*']
23 except KeyError, e:
24 print('Keyerror at topic',topic,' - reason: ',str(e))
25 pass
26 except TypeError, e:
27 pass
28 return item
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A.1.3 Formatting Module

Function – format_topics

1 def format_topics():
2 file_list=[]
3 os.chdir('./data')
4
5 for file in glob.glob('*topics_en*.txt'):
6 file_list.append(file)
7 for file in file_list:
8 with codecs.open(file,'r','utf-8') as f:
9 previous_line=f.readline()
10 f_temp=codecs.open('topics/'+previous_line.split('->')\

[0]+'_en.txt','w','utf-8')
11 lines = f.readlines()
12 counter=0
13 for line in lines:
14 counter+=1
15 if line.split('->')[0]!=previous_line.split('->')\

[0]:
16 f_temp.close()
17 try:
18 f_temp=codecs.open('topics/'+line.split('\

->')[0]+'_en.txt','w','utf-8')
19 except IOError, e:
20 print('cannot open file',str(e))
21 break
22 previous_line = line
23 f_temp.write(line.split('->')[1])
24
25
26 file_list=[]
27 for file in glob.glob('*topics_ja*.txt'):
28 file_list.append(file)
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29 for file in file_list:
30 with codecs.open(file,'r','utf-8') as f:
31 previous_line=f.readline()
32 print('translating '+previous_line.split('->')[0].\

encode('utf-8'))
33 translation = get_translation(previous_line.split('->'\

)[0].encode('utf-8'),'ja','en')
34 f_temp=codecs.open('topics/'+translation+'_ja.txt','w'\

,'utf-8')
35 lines = f.readlines()
36 for line in lines:
37 if line.split('->')[0]!=previous_line.split('->')\

[0]:
38 f_temp.close()
39 previous_line = line
40 translation = get_translation(previous_line.\

split('->')[0].replace\
41 ('Wikipedia:','').encode('utf-8'),'ja'\

,'en')
42 f_temp=codecs.open('topics/'+translation+'_ja.\

txt','w','utf-8')
43 f_temp.write(line.split('->')[1])
44 f_temp.close()

A.1.4 Matching Module

Function – translate_topics_into_english

1 def translate_topics_into_english():
2 file_list=[]
3 os.chdir('.')
4
5 # if there is no dictionary file, open a new one
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6 if not os.path.exists('./topics_dict_ja_en.json'):
7 empty_dict={}
8 f=open('topics_dict_ja_en.json','w')
9 json.dump(empty_dict,f)
10 f.close()
11 topic_dict_ja_en={}
12 with codecs.open('topics_dict_ja_en.json','r',encoding='utf8')\

as fdict:
13 topic_dict_ja_en=json.load(fdict)
14
15 # translate sorted japanese files
16 file_list=[]
17 for file in glob.glob('data/topics/pairs/*_ja.txt'):
18 file_list.append(file)
19 for file in file_list:
20 fout=codecs.open(file[:-4]+'_en_ja.txt','w','utf-8')
21 with codecs.open(file,'r','utf-8') as f:
22 lines=f.readlines()
23 for line in lines:
24 try:
25 fout.write(topic_dict_ja_en[line[:-1]]+'\n')
26 except KeyError, e:
27 print('KeyError: ', str(e))
28 trans=get_translation(line[:-1],'ja','en')
29 fout.write(trans+'\n')
30 topic_dict_ja_en[line.rstrip()]=trans
31 print(line.rstrip()+'->'+trans+' added to \

dictionary')
32 pass
33
34 f=open('topics_dict_ja_en.json','w')
35 json.dump(topic_dict_ja_en,f)
36 f.close()
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Function – find_equivalents

1 def find_equivalents():
2 file_list_ja=[]
3 file_list_en=[]
4 os.chdir('./data/topics') # change to data dir
5 for file in glob.glob('*_ja.txt'): # for every japanese file
6 file_list_ja.append(file[:-7]) # get topic from filename
7 for file in glob.glob('*_en.txt'): # for every english file
8 file_list_en.append(file[:-7]) # get topic from filename
9 #store data in pairs
10 for item in file_list_en:
11 if item in file_list_ja:
12 copy('./'+item+'_ja.txt','./pairs/'+item+'_ja.txt')
13 copy('./'+item+'_en.txt','./pairs/'+item+'_en.txt')
14 topic_pairs.append(item)
15 os.chdir('../../') # back to main dir

A.1.5 Comparison Module

Function – compare

1 def compare():
2 file_list_ja=[]
3 file_list_en=[]
4 os.chdir(os.path.dirname(os.path.realpath(__file__)))
5 os.chdir('./data/topics/pairs')
6
7
8 for file in glob.glob('*_en.txt'):
9 file_list_en.append(file[:-7])
10
11 scounter=0

169



12 similar=[]
13 #open both files and compare
14 for item in file_list_en:
15 common_counter=0
16 topics_ja=[]
17 topics_en=[]
18 with codecs.open(item+'_ja_en_ja.txt','r','utf-8') as fja:
19 lines=fja.readlines()
20 for line in lines:
21 topics_ja.append(line.split())
22 with codecs.open(item+'_en.txt','r','utf-8') as fen:
23 lines=fen.readlines()
24 for line in lines:
25 topics_en.append(line.split())
26 for topic_ja in topics_ja:
27 for topic_en in topics_en:
28 if topic_ja==topic_en:
29 common_counter+=1
30 break
31 # calculating ratio, after counting extracted links for \

each topic
32 if len(topics_ja)>0:
33 scounter+=1
34 similar.append(item)
35 ratio = float(float(common_counter)/float(len(\

topics_ja)))
36 if ratio>0.7: # ratio threshold value
37 print str(common_counter)+' link matches in topic \

>'+ item + '< out of total '+ str(len(topics_en))+' links -> \
ratio: '+ str(round(ratio,3))

38 print 'Total similar pages count: '+str(scounter)
39 return similar
40 os.chdir('../../../') # back to main dir
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A.1.6 Text Extraction Module

Function – extract_text

1 def extract_text(link_list):
2 os.chdir('./data/topics/pairs')
3 ftext=codecs.open('text_english.txt','w','utf-8')
4 for item in link_list:
5 try:
6 # passing article name to get reference to page
7 p = wikipedia.page(item.strip())
8 ftext.write(p.content) # getting text from Wikipedia \

page
9 except wikipedia.exceptions.WikipediaException as e:
10 pass
11 scounter-=1
12 ftext.close()
13
14 # same for Japanese
15 ftext=codecs.open('text_japanese.txt','w','utf-8')
16 for item in link_list:
17 wikipedia.set_lang('ja')
18 try:
19 # passing article name to get reference to page
20 p = wikipedia.page(get_translation(item.strip(),'en','\

ja'))
21 ftext.write(p.content)
22 except wikipedia.exceptions.WikipediaException as e:
23 pass
24 scounter2-=1
25 ftext.close()
26 os.chdir('../../../') # back to main dir
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A.2 Data Preparation Stage

Figure A.2: Modules of the Data Preparaধon Stage for cleaning the English and Japanese text
collecধons and preparing them for alignment. Module names are wriħen in bold face, funcধon

names (without parameters) are shown in small, blue font.

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 import os
4 import codecs
5 import re
6 import nltk
7 from nltk.tokenize import sent_tokenize
8 from nltk.stem import WordNetLemmatizer
9 from nltk.corpus import wordnet
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A.2.1 Alignment Preparation Module

Function – tokenize

1 def tokenize():
2 with codecs.open('corpus/text_english.txt','r','utf-8')as f:
3 lines=f.read()
4
5 sentences = sent_tokenize(lines)
6 print(len(sentences))
7
8 with open('corpus/tokenized_text_english.txt','w') as f:
9 for sentence in sentences:
10 f.write(sentence.encode('utf-8')+'\n')
11
12 with open('corpus/text_japanese.txt','r')as f:
13 lines=f.read()
14
15 sentences=sent_tokenize(lines.decode('utf-8'))
16 print(len(sentences))
17
18 with open('corpus/tokenized_text_japanese.txt','w') as f:
19 for sentence in sentences:
20 f.write(sentence.encode('utf-8')+'\n')

Function – clean

1 def clean():
2 with codecs.open('corpus/tokenized_text_japanese.txt','r','utf\

-8') as f:
3 text_ja=f.readlines()
4 with codecs.open('corpus/tokenized_text_english.txt','r','utf\

-8') as f:
5 text_en=f.readlines()
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6
7
8 f_out_en = codecs.open('corpus/english_sentences_clean.txt','w\

','utf-8')
9 f_out_ja = codecs.open('corpus/japanese_sentences_clean.txt','\

w','utf-8')
10
11 for line in text_ja:
12 if not re.search(r'^==.*',line):
13 if len(line)>20:
14 f_out_ja.write(line)
15 for line in text_en:
16 if not re.search(r'^==.*',line):
17 if len(line)>30:
18 f_out_en.write(line)
19
20 f_out_en.close()
21 f_out_ja.close()

Function – lemmatize_and_pos_tag

1 def lemmatize_and_pos_tag(lang):
2 #for english
3 if not lang or lang=='en':
4 with codecs.open('corpus/english_sentences_clean.txt','r',\

'utf-8') as f:
5 lines = f.readlines()
6 wl=WordNetLemmatizer()
7 with codecs.open('corpus/\

english_sentences_clean_lemmatized.txt','w', 'utf-8') as f:
8 for line in lines:
9 text=nltk.word_tokenize(line) # tokenize words
10 pos=nltk.pos_tag(text) # PoS tagging
11 sentence=''
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12 for word in pos:
13 lemma=word[0]
14 if word[1] != 'NNP': # if not proper noun
15 lemma=lemma.lower() # to lower case
16 if 'NN' in word[1]: # if other noun
17 if 'NNS' in word[1]: # to lower case
18 lemma=lemma.lower()
19 # lemmatize nouns
20 lemma=wl.lemmatize(lemma,wordnet.NOUN)
21 if 'VB' in word[1]:
22 # lemmatize verbs
23 lemma=wl.lemmatize(word[0],'v')
24 sentence+=lemma+' '
25 f.write(sentence+'\n')

A.2.2 Language Resource Module

Function – JMnedict_to_json

1 def JMnedict_to_json():
2 with codecs.open('resources/JMnedict.xml','r','utf-8') as f:
3 lines=f.readlines()
4 dictJAEN={}
5 kanji=''
6 gloss=[]
7 for line in lines:
8 if '<entry>' in line:
9 kanji=''
10 gloss=[]
11 glossitem=''
12 if '<keb>' in line:
13 kanji = line[5:-7] # get item (Japanese NE)
14 if '<trans_det>' in line:
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15 # get glossary entry (English equivalent)
16 glossitem = line[11:-13]
17 gloss.append(glossitem)
18 dictJAEN[kanji]=gloss # store in list
19 with codecs.open('resources/JMnedict.json','w','utf-8') as f:
20 json.dump(dictJAEN,f) # write to JSON file

Function – edict2_to_json

1 def edict2_to_json():
2 with codecs.open('resources/edict2','r','utf-8') as f:
3 lines=f.readlines()
4 dictJAEN={}
5 kanji=''
6 gloss=[]
7 counter=0
8 for line in lines:
9 counter+=1
10
11 jap_word_list=[]
12 jap_word_list=''.join(line.split(' ')[0]).split(';')
13
14 # get translations
15 translations=[]
16 for idx, item in enumerate(line.split('/')):
17 if idx!=0 and re.search('\w+',item) and 'EntL' not in \

item:
18 #removing {} and anything in between
19 item=re.sub('\{[^)]*\}','',item).strip()
20 #removing ()
21 item=re.sub('\([^)]*\)','',item).strip()
22 #removing ) -because of nested paranthesis mess in\

edict2-
23 item=re.sub('\)','',item).strip()
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24 if not re.search('![ - ~]',item) and not re.search\
('\?',item) and item!='':

25 translations.append(item)
26 for item in jap_word_list:
27 item=re.sub('\([^)]*\)','',item).strip() #removing ()
28 dictJAEN[item]=translations
29 with codecs.open('resources/edict2.json','w','utf-8') as f:
30 json.dump(dictJAEN,f)
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A.3 Sentence Alignment Stage

Figure A.3: Overview of the Sentence Alignment Stage. Module names are wriħen in bold face,
funcধon names (without parameters) are shown in small, blue font.
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1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 import codecs
4 import json
5 import re

A.3.1 Alignment Module

Function – align

1 def align():
2 #dictionary files
3 #*************************************************
4 with codecs.open('JMnedict.json','r','utf-8') as f:
5 JMnedict= json.load(f)
6 with codecs.open('JMdict_e.json','r','utf-8') as f:
7 JMdict= json.load(f)
8 with codecs.open('edict2.json','r','utf-8') as f:
9 edict2= json.load(f)
10 #*************************************************
11
12 #input files
13 #*************************************************
14 with codecs.open('japanese_pos.txt','r','utf-8') as f:
15 pos_tags=f.readlines()
16 with codecs.open('japanese_sentences_clean.txt','r','utf-8') \

as f:
17 text_jap=f.readlines()
18 with codecs.open('english_sentences_clean.txt','r','utf-8') as\

f:
19 text_eng=f.readlines()
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20 with codecs.open('english_sentences_clean_lemmatized.txt','r',\
'utf-8') as f:

21 eng_lemmas=f.readlines()
22 #*************************************************
23
24 #output files
25 #*************************************************
26 f_out=codecs.open('sentence_align.txt','r+a','utf-8')
27 f_parallel=codecs.open('parallel.txt','a+','utf-8')
28 #*************************************************
29
30 temp_lines = f_out.readlines()
31 jap_counter=len(temp_lines)
32 translations=[]
33 match_dict={}
34 content_matches_list=[]
35 temp_counter=0
36 array=[] # metric values will be stored here
37 for idx in enumerate(eng_lemmas):
38 # init to 0 for number of english sentences
39 array.append(float(0))
40
41 for pos_tag in pos_tags:
42 if 'EOS' in pos_tag:
43 # weighted score algorithm
44 #*****************************************
45 # find highest value in <array> array, index is the \

sentence number
46 f_out.write('<ALIGN><JAP>'+str(jap_counter)+'<ENG>'+\

str(array.index(max(array))+1)+'<SCORE>'+str(max(array))+'\n')
47 f_parallel.write(str(max(array))+' ||| '+text_jap[\

jap_counter-1].strip()+' ||| '+text_eng[array.index(max(array))\
].strip()+'\n')

48 #*****************************************
49 jap_counter+=1 # japanese sentence counter
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50 for idx,val in enumerate(array):
51 array[idx]=float(0)
52 print 'Processing sentence '+str(jap_counter)+' of '+\

str(len(text_jap))
53 jap_word=pos_tag.split('\t')[0]
54 digit_matches=[]
55
56 # do that only once per sentence (NB we're iterating POS \

tags!)
57 if temp_counter!=jap_counter:
58 temp_counter=jap_counter
59 try:
60 # finding sequences of numerals
61 digit_matches=re.findall(r'\d+',text_jap[\

jap_counter-1])
62 except:
63 pass
64 # if numerals were found, looking for equivalents in \

english data
65 for match in digit_matches:
66 jap_word=match
67 eng_counter=0
68 for eng_lemma in eng_lemmas:
69 eng_counter+=1
70 try:
71 if re.search(r'\b'+jap_word+r'\b',\

eng_lemma):
72 array[eng_counter-1]+=float(0.5)+float\

(float(1)/len(eng_lemma.split(' ')))
73 except re.error,e:
74 print 'passing re.error at translation:',e
75 pass
76
77 # look for romaji in japanese sentences (works badly with
78 # numbers, since mecab tagging splits them up in single \
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digits
79 if '名詞'.decode('utf-8') in pos_tag and not re.search(r'\\

d+',jap_word):
80 if re.search('\w',jap_word):
81 eng_counter=0
82 for eng_lemma in eng_lemmas:
83 eng_counter+=1
84 try:
85 if re.search(r'\b'+jap_word + r'\b', \

eng_lemma):
86 array[eng_counter-1]+=float(0.5)+float(\

float(1)/len(eng_lemma.split(' ')))
87 except re.error,e:
88 print 'passing re.error at translation:',e
89 pass
90
91 translations=[]
92 # if named entity, look for match in nedict
93 if '固有名詞'.decode('utf-8') in pos_tag:
94 try:
95 translations=JMnedict[jap_word]
96 except KeyError,e:
97 pass
98 else: # else look for match in regular dictionary
99 try:
100 translations=JMdict[jap_word]
101 except KeyError,e:
102 pass
103 # excluding certain japanese pos tags from dictionary \

lookup
104 #(no particle, aux verb, etc)
105 if not translations and '助詞'.decode('utf-8') not in \

pos_tag and '助動詞'.decode('utf-8') not in pos_tag:
106 try:
107 translations=edict2[jap_word]
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108 except KeyError,e:
109 pass
110
111 if translations: # if any translation was found
112 for translation in translations:
113 eng_counter=0
114 translation=re.sub('\(.*?\)','',translation)
115 for eng_lemma in eng_lemmas:
116 eng_counter+=1
117 try:
118 if re.search(r'\b'+translation+r'\b',\

eng_lemma):
119 array[eng_counter-1]+=float(0.5)+float\

(float(1)/len(eng_lemma.split(' ')))
120 english_sentence_length=len(eng_lemma)
121 japanese_sentence_length=len(text_jap[\

jap_counter-1].encode('utf-8'))
122 except re.error,e:
123 print 'passing re.error at translation: ',\

e, translation
124 pass
125
126 match_dict[jap_counter]=content_matches_list
127
128 f_out.close()
129 f_parallel.close()
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Abstract

The significance of sentence-aligned bilingual corpora, so-called parallel
corpora, as training sets formachine translation systems and for various other
language technology applications has become more and more evident in re-
cent years. Evenmore desirable are collectionswhich address a certain domain
and hence offer more precise data for training of deep learning, statistical, or
example-based approaches. The goal of this doctoral dissertation is to exam-
ine the feasibility of automated bilingual corpus creation from Wikipedia,
specifically for languages which differ significantly in surface characteristics
and other aspects. More precisely, how can Wikipedia be crawled to obtain
domain-specific corpora in an efficientway, howcan these corporabe sentence-
aligned, and how can these alignments be evaluated to obtain the highest pos-
sible probability of a translated or equivalent sentence.

The research questions addressed in this work are: How much of the text
onWikipedia content can be used to build a bilingual aligned corpus for a spe-
cific language pair, and how can these texts be selected and aligned efficiently,
all with minimal human input in the process.

The question is addressed by selecting two languages, which are represen-
tative of a dissimilar pair, English and Japanese. The resulting procedure, al-
gorithms, softwaremodules, and created corpus are a proof of concept, which
can be adjusted in order to be applied to other dissimilar language pairs.

This dissertationproposes amethod for crawling fromWikipediaby topic,
aligning this data into a parallel corpus and a novel metric that measures the
relative quality of this alignment. The resulting program tool chain is pre-
sented as a generic algorithm and is implemented in the Pythonprogramming
language. The result of a first iteration of the software resulted in an English-
Japanese parallel corpus of 66,000 sentence pairs. Human expert evaluations
are presented to show the yield, feasibility, and efficiency of this method.
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Abstract auf Deutsch

DieWichtigkeit satz-alignierter bilingualerKorpora, auch paralleKorpora
genannt, alsTrainingsdaten fürmaschinelleÜbersetzungsystemeund für eine
Vielzahl anderer Sprachtechnologieanwendungen ist in den letzten Jahren im-
mer deutlicher geworden. Sogar nochmehr gefragt sindKorpora, die eine bes-
timmte Domäne abdecken und somit noch zielgerichteter für das Training
von Deep Learning, statistischen oder beispielbasierten Systemen sind. Das
Ziel dieser Doktorarbeit ist es, die Realisierbarkeit der automatisierten Erstel-
lung von parallelen Daten aus Wikipedia zu untersuchen. Insbesondere wer-
den Sprachpaare untersucht, die in Hinblick auf Oberflächenstruktur und
andere Aspekte sehr unterschiedlich sind. Genauer gesagt, wie kann domä-
nenspezifischer Text aus Wikipedia effizient gesammelt werden, wie können
diese Daten auf Satzebene aligniert werden und wie können diese Satzpaare
evaluiert werden, um die bestmöglichen Übersetzungskandidaten zu bekom-
men.

Die Forschungsfragen sind: Wie viel desWikipedia-Inhaltes kann verwen-
det werden, um bilinguale Korpora für ein bestimmtes Sprachpaar zu bauen
und wie können diese Texte effizient aligniert werden; all das mit minimalem
menschlichem Input.

Für die Beantwortung dieser Frage wurden zwei Sprachen gewählt, die
repräsentativ für die Fragestellung sind, nämlich Englisch und Japanisch. Der
Ablauf, die Algorithmen, die Softwaremodule und das daraus resultierende
Korpus sind als Proof of Concept zu verstehen und können an andere Domä-
nen und Sprachpaare angepasst werden.

Diese Arbeit schlägt eineMethode für themenspezifisches Datensammeln
ausWikipedia, eine Alignierungsmethode und eineQualitätsmetrik vor. Die
Algorithmen der in demZusammenhang entstandenen Software sind sowohl
generisch beschrieben, wie auch in Python implementiert. Das Ergebnis einer
Iteration der Software, 66,000 Satzpaare, ist der erste experimentelle Daten-
satz. Dieser Datensatz wird von Experten evaluiert, um die Ergiebigkeit, Um-
setzbarkeit und Effizienz dieser Methode zu untersuchen.
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