Lniversitat
wien

DISSERTATION /| DOCTORAL THESIS

Titel der Dissertation /Title of the Doctoral Thesis

~Automated Creation of Domain-Specific
Bilingual Corpora for Machine Translation,
focusing on Dissimilar Language Pairs*

verfasst von / submitted by

Bartholomaus Wloka MSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Doktor der Philosophie (Dr.phil.)

Wien, 2020 / Vienna 2020

Studienkennzahl It. Studienblatt / UA 792 323
degree programme code as it appears on the student
record sheet:

Dissertationsgebiet It. Studienblatt / Transkulturelle Kommunikation
field of study as it appears on the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Mag. Dr. Gerhard Budin

ToO MY FATHER
I CHERISH HIS MEMORY. HIS LAST WORDS ARE WITH ME, ALWAYS.

To MY SOULMATE
SOMETIMES THE GREATEST ACTS OF LOVE ARE THE HARDEST TO
COMMIT.

DrA MmojEGO OjcCA.
OSTATNIE JEGO SLOWA ZAWSZE BEDA ZE MNA.

DLA MOJEJ PRZYJAZNE]J DUSZY.
NIEKIEDY TE NAJWIEKSZE DOWODY MILOSCI SA TE NAJTRUDNIEJSZE
DO WYKONANIA.

il

Acknowledgments

I sincerely thank my advisor Prof. Gerhard Budin for his patience with my
chaotic work style and the understanding he had for the turbulence that my
private life caused to the work and progress of this thesis.

My heartfelt gratitude goes to Prof. Werner Winiwarter, with whom I
spent countless hours discussing research, who always motivated me by en-
couragement and example, and time and again helped me in the process of
shaping my professional and private life for the better. I thank him for crit-
ically and meticulously checking my work, and by doing so, helping me to
improve and learn. For this, he sacrificed much time and effort even if it was
often not officially recognized.

I thank my colleague Yasuko Yamamoto, who played a vital role in the eval-
uation of my results with her expertise in professional translation. I also thank
my other former and current colleagues at the Centre for Translation Studies,
Xiaochun Zhang, Vesna Lusicky, Barbara Heinisch, and Melanie Seltmann,
for stimulating discussions, giving me additional motivation in my research,
and their support in project work, organising and managing lectures and ex-
ams, freeing valuable time, which I could dedicate to this thesis.

Last but certainly not least, I thank my mother, who never missed an op-
portunity to lighten my day with a smile and an offer to help, in her self-less
and honest way. And with all my heart I thank my partner; with her tough,
resolute shell and her soft, loving core she helped me through very difficult

times.

iii

Contents

INTRODUCTION

11 Overview — Research Question and Output of the Thesis . .
LLI Challenges
2 Approachesand Solution L
.13 Language-SpecificIssues
1.4 Objectiveand Scope L.

12 Structureof Thesis

SCIENTIFIC BACKGROUND

2.1 Languagesand Translation
2.2 Machine Translation
2.3 Neural Machine Translation
2.4 Language Data in Machine Translation
2.5 The Importance of Bilingual/Parallel Corpora.
2.6 Bilingual/Parallel Corpus Acquisition
2.7 Existing Parallel Corpora for Japanese/English
2.8 Translation and Corpus Evaluation

AWCAT FRAMEWORK

30 OVerview e e
3.2 LanguageResources
3.3 Software, Programs, Tools
3.4 Hardware

DATA EXTRACTION

4.1 DataSource — Wikipedia

4.2 SelectiveCrawling

4.3 Implementation of the Data Extraction Stage
431 TopicExtractionModule
4.3.2 TranslationModule

iv

433 FormattingModule00 76

4.3.4 MatchingModule 78
4.3.5 ComparisonModule 79
43.6 TextExtractionModule 81
4.4 BuildingGlossaries 84
DATA PREPARATION 86
5.1 Cleaning and Pre-processing Data 86
5.2 Implementation of the Data Preparation Stage 88
s.2.1 Alignment Preparation Module 88
s.2.2 Language Resource Module 95
SENTENCE ALIGNMENT 98
61 Algorithm L 100
6.2 AlignmentMetrico oL 102
6.3 Example of Sentence Alignment 103
6.4 Implementation of the Sentence Alignment Stage 110
6.41 AlignmentModule 112
EVALUATION 121
7.1 Metric Score — Automatic Scoring 22
7.2 Quality Measure by a Translation Expert 123
7.3 EvaluationResults 125
7.4 Runtimes 7
CONCLUSION 132
81 Summary 132
8.2 Observations 136
8.2.1 DataExtractionStage 136
8.2.2 DataPreparationStage 138
8.3 Contributions 139
8.3.1 Theoretical Contributions 139
8.3.2 Practical Contributions 141
8.4 Application to Other Language Pairs 142
8.5 DPublications Resulting from this Research 143
8.6 Limitations 145

87 FutureWork

REFERENCES

APPENDIX A SoURCE CODE

A DataExtractionStage L
Aixr TopicExtraction Module
Function — get_topic_pairs

Function — get_pages links.

Function — extract links

A2 Translation Module
Function — get_translation

A3 Formatting Module
Function - format_topics

A4 Matching Module

...................

Function - translate_topics_into_english
Function - find_equivalents

A.s Comparison Module

Function — compare

A1.6 TextExtractionModule
Function —extract_text

A2 DataPreparationStage
A2a1 Alignment Preparation Module
Function — tokenize
Function—clean
Function — lemmatize_and_pos_tag

A2 Language ResourceModule
Function - JMnedict_to_json
Function —edict2_to_json

A3 Sentence Alignment Stage

Asx Alignment Module
Function—align

APPENDIX B ABSTRACT

vi

..................

...................

...................

I.I

2.1

2.2

3.1

4.1
4.2
4.3
4.4

5.1

6.1
6.2

6.4

Al
A2

List of Figures

Transcriptionerrors. 15
Vauqois translation triangle. 000 24
Hiddenlayers. 2.8
Stagesoverview. L 54
Wikipedia page language links. 61
Wikipedia page language links JSONfile. 62
Data Extraction Stage —overview. 66
Glossary example for the topic “Airplane”. 85
Data Preparation Stage — overview. 87
Japanese examplesentence. 104
English example sentences. 104
POS-tagging and matching visualized. 109
Sentence Alignment Stage — overview. I
Data Extraction Stage —overview. 161
Data Preparation Stage — overview. 172
Sentence Alignment Stage — overview. 178

vii

LI
L2
1.3
1.4

2.1

2.2

3.1
3.2
3.3

5.1
5.2

6.1
6.2

7.1
7.2
7-3

List of Tables

Translation polysemy examples. 12
Phonetic polysemy examples. 13
Example of particleusage. 13
Transcription possibilities. 14
Details of English-Japanese corpora. 42
URLs of English-Japanese corpora. 43
Language resources. 56
Languagetools. 57
Hardware specifications. 58
Example of URL US-ASCIl encoding. 74
English sentences, before lemmatizing. 92
English sentences, after lemmatizing. 94
PoS-tags of Japanese example sentence. 105
Japanese token translations. L0000 107
Sentences with highlighted matches. 108
Results of human expert evaluation. 126
Runtime showcase for a small dataset. 129
Comparison runtime on faster system. 131

viii

3.1
4.1
4.2
4.3

4.4

45

4.7

4.8

4.9

4.10

4.11

4.02

List of Codes

Linux Command Line: HDD reading speed test. 57
Preamble: Libraries for Data Extraction Stage. 68
Function get_topic_pairs: Extracting topics which will

be later crawled fordata., 69
Function get_topic_pairs (cont.): Using codecs to write
Japanese characters. o o oo 70
Preamble: Defining the Python environment and the utf-8
encoding. L 70
Function get_topic_pairs (cont.): English and Japanese
articles are writtentotextfiles. 71
Function get_pages_1links: Construction of an article URL

by assigning language and topic. Lo L. 71
Function get_pages_1links (cont.): Extracting links and
theirtitles. 72
Function extract_1l1inks: Extractinglinksand filtering the
CONEENE & o\ v e e e e e e e e e e e e e 75

Function get_translation: Finding article titles in an-

otherlanguage. Lo 77
Function find_equivalents: Storing equivalent articles. . 79
Function translate_topics_into_english: Storing top-

ics translationsinaJSONfile. 80
Function compare: Comparingarticles. 82

ix

4.13 Function extract_text: Scraping text of selected pages. . . 83

5.1
5.2

53
5.4
5.5

5.6

5-7

5.8

Preamble: Libraries for Data Preparation Stage. 88
Function tokenize: Sentence tokenizing with NLTK. ... 89
Vim command line: Adding white space after sentences. . . . 89
Function clean: Removing unwanted data. 90

Function lemmatize_and_pos_tag: PoStaggingandlem-
matizing English sentences. 93
Vim command line: Converting numbers from full-width

to half-width representation. 94
Function IMnedict_to_json: Converting /Mnedict to JSON
format. 96
Function edict2_to_json: Converting edictz to JSON for-

MAL. o v e e e e e e e 97
Preamble: Libraries for Sentence Alignment Stage. 2
Function align: Loading dictionary files. 12

Function align (cont.): Initializing variables and data struc-

TULES. v v e e e e e e e e e e e e e 113
Function align (cont.): Writing parallel data and scores. . . 114
Function align (cont.): Finding sentences with numerals. . 117
Function align (cont.): Checking for Latin characters. . .. 8
Function align (cont.): Dictionary lookups. 119
Function align (cont.): Finding translated matches. 120

List of Abbreviations

Al Artificial Intelligence
ANN o Artificial Neural Network
BLEU ... Bilingual Evaluation Understudy
CAT . Computer Assisted Translation
CPU Central Processing Unit
DL Deep Learning
GPU . Graphical Processing Unit
HDD .. Hard Disk Drive
HTML .. e Hypertext Markup Language
JSON L JavaScript Object Notation
M Machine Translation
NIST ... National Institute of Standards and Technology
NLP .o Natural Language Processing
NLTK .o e Natural Language Toolkit
NMT o e Neural Machine Translation
POS Part-of-Speech
RBMT . Rule-Based Machine Translation
L€ ettt e e e e e e regular expression
SMT Statistical Machine Translation
ST Source Text
T o Target Text
URI .o Uniform Resource Identifier
URL ..o Uniform Resource Locator
XML o Extensible Markup Language

xi

Introduction

1.1 Overview — Research Question and Output of

the Thesis

The goal of this thesis is to provide a step towards the answer to the question:

How can we automatically and efficiently create or extract high quality bilin-

I

gual/parallel corpora, from freely available digital sources? Can we do this se-
lectively for well-defined domains? Is it possible to find a method that can be
used for any language pair without sacrificing quality? While parts of these
questions have been answered, or are addressed in research with promising
progress, combinations of these challenges taken together become a daunting
task, especially if we consider dissimilar and low-resource languages.

In this thesis, we attempt to move closer towards a solution by addressing
some of these questions. We present a method which extracts text in Japanese
and in English from Wikipedia, based on a seed of topics. It aligns these sen-
tences based on a novel metric we propose in this thesis. This method is trans-
parentand traceable and can be adjusted and fine-tuned as needed. We present
an implementation of this method in the form of a framework describing it
in detail and with examples. The output, which we produced with this soft-
ware, is evaluated by a translation professional and allows us to conclude with
several empirical observations.

There are many multilingual digital sources available on the web. Amongst
these many possibilities we chose Wikipedia for several reasons: One of them
is simplicity. Wikipedia is well structured, so the extraction of text is straight

forward and the semantic design of the content makes access, data acquisi-

tion, and cleaning of the data fairly easy. Further, Wikipedia is dynamic, it is
constantly updated, hence repeated iterations, even with the same seed data,
potentially yield new text. Itis also highly multi-lingual and although the vol-
ume depends much on the particular language, there is a fair amount of con-
tent in most languages even in low-resourced languages and language pairs
that are otherwise underrepresented digitally.

One particularly difficult question is: From all articles about one topic in
several languages, how many are actually translated, how many are written in
parallel and how many are composed independently. In other words, how
much is parallel text, how much is merely a bilingual representation of the
knowledge, and how much is an independent description. Examining this
manually, although very time intensive, is very interesting in itself and fairly
straight forward. Making judgements in such detail in a pool of thousands
or millions of collected sentences obviously becomes impossible. Looking
for translation candidates while not being aware of their availability and vi-
ability adds another level of complexity to the search for parallel data candi-
dates. We decrease this complexity by using a transparent method to select
the Wikipedia topics for extraction.

Similar to the manual evaluation of multilingual Wikipedia content, if few

articles are selected and examined, we can make certain observations regarding
the volume of text which is translated or equivalent. Our goal, however, is
to collect as much data as possible. We attempt to strike a balance between
collected volume, computational efficiency, and a transparent and traceable
method.

Having addressed the choice of data source, and the selection of data within
it, there is the question of the language pair. As already mentioned in the ti-
tle we focus on English-Japanese. We think that this language pair provides a
good case study for our approach as it meets our requirement of being dissimi-
lar, i.e. differing significantly in surface characteristics, sociolinguistic factors,
and cultural aspects as well as type of script. It is sufhiciently represented on
Wikipedia to offer a sizable overall volume of parallel corpora candidates. At
the same time, this pair of languages still remains somehow underrepresented
compared to the digital parallel resources of other widely spoken language
pairs. In a time where the availability and quality of parallel data dictates the
success of machine translation systems we think it is important to investigate
any alternative for high quality parallel data acquisition.

The combination of all the above mentioned issues makes the problem

very complex in its entirety. With a divide and conguer approach in mind we

try to observe these closely interconnected questions separately:

» Can Wikipedia entries be considered as a reliable source for high quality

English-Japanese parallel corpora?

* How much of English-Japanese Wikipedia content is a direct transla-

tion, how much is created in parallel, how much is created independently?

* How can we automatically obtain English-Japanese bilingual content

from Wikipedia in an efficient manner?

* What is the most feasible way to automatically assess English-Japanese

content crawled from Wikipedia?

To answer these questions we propose a method, explain our assumptions
and premises, and present a proof of concept in the form of a modular frame-
work. Our conclusions are based on empirical trials of collecting data with
our software.

Our framework produces collections of bilingual text which is aligned, an-
alyzed, and interpreted. We start with crawling Wikipedia for bilingual con-
tent. The type of content is defined by choosing seed topics. The algorithm
proceeds to collect the text in both languages until a pre-set number of related
articles is met. The text collection is then aligned, and each aligned sentence
pair is assigned a score. This metric is a measurement of the equivalence be-

tween the Japanese and the English sentence. If the score is high enough, we

deem this sentence to be a parallel data candidate. The output of this empiri-

cal portion of our thesis is:

* A modular software chain to automatically create parallel English-Japanese

corpora.

* A sentence-aligned English-Japanese corpus with alignment scores for

each sentence pair.

* An evaluation of the highest scoring parallel sentence candidates by a

human expert.

1.1 Challenges

In this section, we expand upon the challenges which are mentioned in the
introduction of this chapter. First of all, Wikipedia articles in two languages
are not always translations of each other; quite on the contrary, the content
often differs greatly depending on the language pair and the topic domain.
Wikipedia article pages are often created independently in different languages.
Sometimes they are created in parallel as a rough copy by paraphrasing parts
of articles or sections. Occasionally, they are translated closely with attention

to good language and detail.

This uncertainty whether the contentis translated adhering to the original,
translated by loose paraphrasing, independently composed, or a mixture of
these three, makes the assessment very difficult. Additionally, Wikipedia con-
tent varies by many other aspects, such as culture, socio-political factors, tech-
nological advancements and simply the interest of the language representa-
tives creating the content. A very good example of this variation is the Wikipedia
entry for Judo; a traditional Japanese martial art. It is widely popular in Japan
and is practiced from an early age in high schools, in clubs, and even as part
of the physical education program. Although Judo has become an Olympic
sport and is well known in the English speaking world, the percentage of prac-
titioners and the media exposure is very small in comparison. This is very
much reflected in the volume of the Wikipedia articles related to this topic
with the Japanese entry currently covering roughly over ten times as much
information. Such asymmetric volume and detail of articles is encountered
more often if the languages are also separated by cultural, social, and histori-
cal differences. This phenomenon has a significant effect on the availability
of parallel data depending on the domain. This has to be considered when
choosing the seed topics and evaluating the collected parallel data.

Another critical issue is computational efficiency. Related to the topic of

asymmetry discussed in the previous paragraph, if the selection of sections
within articles is not done carefully most of the data will not be viable as par-
allel candidates. Such asymmetric data lowers the quality of the output and
highly increases processing time. Sentence alignment is the most computa-
tionally intensive step in our framework. Looking at two sentences, one in
English and one in Japanese, we have to compare each token of the first sen-
tence with each token of the second sentence and determine whether there is
equivalency. These comparisons alone result in an exponential runtime. Ad-
ditionally to that, finding equivalencies is much more complex than one to
one comparisons, due to polysemy, inflection, and other linguistic phenom-
ena. This requires pre-processing, such as part-of-speech tagging, word-sense
disambiguation and other methods which increase the runtime even further.

Hence, crawling large volumes of data without having at least an indica-
tion of a potentially high yield in terms of parallel data, i.e. without a certain
preselection, would not be computationally efficient. Even the simplest way
of preselecting material can make the alignment process more streamlined and
open up computational power for more likely alignment candidates.

Last but not least, there is the challenge of judging the output of the col-

lected and aligned data. Usually translation quality evaluation or translation

post-editing is done with the assumption that the source and target sentence
are indeed translations. This assumption cannot be made in the case of data
that has been crawled from Wikipedia. This uncertainty of how much of the
text is actually translated and how much was written independently or para-
phrased makes evaluation even more challenging. Once we obtain this bilin-
gual data, how can we assess translation quality, or whether they can be seen as
translations at all? It is obvious that examining every piece of data in a dataset
of thousands or even millions of entries by a human expert would not be pos-
sible, so a preselection in the form of an automated evaluation or a metric is
necessary. An automatically computed metric during the alignment process
makes a human expert evaluation feasible by selecting a manageable subset of
data for evaluation.

A recent find (August 2020) has once more highlighted the importance of
expert evaluations of Wikipedia content. A teenager from the United States
has been authoring articles in the Scots language for years without being able
to speak the language. This resulted in 27,000 Wikipedia entries which were
linguistically wrong and misleading. Itis astonishing that such alarge number
of wrong entries has gone unnoticed for years, until a perceptive reader finally

pointed out the issue on social media. Scots, being an endangered and very

low resourced language, is especially sensitive to being wrongly documented.
The impact is especially critical on a language with low volumes of digital rep-
resentation; but careless entries that go unchecked can have negative effects on
data quality even for data rich languages, not to mention readers of Wikipedia
being misled into making mistakes by faulty entries.

The conclusion is clear: black box, large scale data harvesting without qual-
ity checksis dangerous, in terms of quality and correct language. Good quality
can only be obtained by transparent processes and human expert evaluation

of at least a sample of the collected texts.

1.2 Approaches and Solution

In order to address the challenges mentioned in the previous section a method
for preselection of topics is developed, so that bilingual content is not ob-
tained randomly, but chosen according to link distance on Wikipedia.

For the assessment of the aligned sentence pairs a metric is devised and a
score is assigned to each aligned sentence pair. To further examine the quality
of the parallel data, a subset of sentence pairs with the highest score is evalu-

ated by a professional translator.

I0

1.r.3 Language-Specific Issues

Several intricacies have to be considered when collecting parallel data for Japanese
and a Germanic language such as English. The issues presented here are spe-
cific but not exclusive to this language combination. We have tried to be as
generic as possible in our description and our framework regarding the lan-
guage pair; however, it is important to keep in mind that many of the issues
are specific to English-Japanese which is our language pair of choice.

Zero anaphora constructions are very common in Japanese and often
cause problems in translation and in this case, alignment. What makes them
even more difficult is the fact that they often do not refer back to a previous
part of the text, but rather to context, such as situation, tone as well as num-
ber, gender, age and social standing of people involved. The example in Ta-
ble 1.1 shows merely a selection of possible translations of a Japanese phrase
involving an assumption of a personal pronoun. Finding the right transla-
tion in the given context would require an analysis of the semantic proximity.
This could be a neighboring sentence or even the entire paragraph.

Tokenization can be a problem in Japanese, even though the use of the
Hiragana and Katakana syllabary for various grammatical and semantic func-

tions often helps to encapsulate multi-character expressions. This multi script

II

Japanese English translation
BRNET to eat
BRI I eat.
1=3aN=Sr You eat.
BRXT I am going to eat.
ARET They will eat.

(and many other possibilities)

Table 1.1: Translation polysemy examples.

property makes tokenisation easier compared to other Asian languages, such
as Chinese, but it creates other intricacies, which are described later in this
section.

Although there are many polysemic expressions in Japanese, a large
number of them are homophones, hence do not pose a significant difficulty
when they are examined in written form. The words in Table 1.2 are examples
of this concept. Each word is pronounced “kosho”. The difficulty in this case
is limited to finding the right form according to the characters.

Grammatical structural differences are a considerable issue. Compar-
ison of equivalent expressions on a phrase level is very difhicult between En-
glish and Japanese, due to the auxiliary verb and particle structure in Japanese.

Although there are equivalents in English, finding such structures using an al-

12

Hiragana | Kanji | English translation
ZHO5L&D | X negotiation
ZH5L &S | AFE authentication
25U &5 | #Fit | historical investigation
ZOL&D | K= school badge
ZO5L&D | &M noble
ZH5L &5 | A nominal
Table 1.2: Phonetic polysemy examples.
Japanese English translation

IRDEHEIZTES

ZHUIFAD A 774 TF, | These are my glasses.

Take the next train.

Table 1.3: Example of particle usage.

gorithm is not reliable, since they often do not follow a well defined structure.
The example shown in Table 1.3 demonstrates the different ways of using the
“no” particle in Japanese, which usually indicates possession or belonging to
something and is often compared to a genitive case in English. Equating the
particle “no” with a genitive case every time would result in many mistakes.

Thus, the lack of definite equivalents for particles makes the comparison of

phrases unreliable and costly.

Japanese has adopted many words from English and other European lan-

13

’ Japanese phoneme | possible transcriptions

7 fu/hu
1 ri/li
% re/le
7 wu/bu

\. J

Table 1.4: The Japanese phonemes are written in the Katakana syllabary. Both transcriptions and
pronunciations on the right side are possible.

guages, especially when it comes to modern terminology. These terms, how-
ever, are written in the Japanese script. Transcription of these words is not al-
ways a trivial task. These borrowed words are usually written in the Katakana
syllabary and are sometimes abbreviated to the point of obscurity. Katakana
is built on a different set of phonemes, therefore a transcription quite often
results in slightly changed words. Japanese has fewer phonemes than English,
and often two different phonemes are transcribed into one representation.
This potentially leads to a situation where a transcription back to English
yields a different word. Quite often an adopted foreign term is changed to
such a degree that it makes more sense to consider it a Japanese word, rather
than a transcribed adoption of a word. See Table 1.4 for a few examples of this
phenomenon.

Such transcription problems can potentially result in rather amusing con-

14

sequences when, for example, encountered on a menu in a restaurant, as seen

in Figure I.I.

"0 SOFT DRINK
'.f?m 1-5

sty

www.engrish.com

Figure 1.1: Unfortunate transcription errors on a restaurant menu. (source: www.engrish.com)

Character encoding can be a significant problem, especially when read-
ing and writing Japanese characters to memory or into files. There are several
encoding systems used in Japan. The common denominator between digi-
tally representing Japanese and languages based on the Latin alphabet is usu-
ally ntf-8, however, decoding and encoding is often a tedious task inviting mis-
takes. Many Japanese language resources are only available in certain encoding

formats, which requires even more additional conversions.

I

1.1.4 Objective and Scope

To summarize the previous sections in this chapter, the key objectives of this

doctoral thesis are:

* An algorithm to efficiently obtain corresponding text from English and

Japanese Wikipedia pages.
* An algorithm to align the English-Japanese sentences pair candidates.

* A metric to quantify the similarity between an English and a Japanese
sentence, i.e. signifying the likelihood of these sentences being a transla-

tion or giving a rough idea of equivalence.

* Implementation of the above mentioned algorithms and the metric in

order to obtain a significant number of sentences.

» Assessment of a sample of the obtained parallel data by a human trans-

lator.

1.2 Structure of Thesis

The main body of the thesis is structured similarly to the modular nature of

the framework which was developed as its proof of concept. We describe the

16

stages, modules, and functions of this framework parallel to the theory that s
behind it.

We start with a discussion about related work, the scientific background,
and the motivation for this thesis in Chapter 2. We begin with a brief look at
languages and translation in general, followed by machine translation and its
most recent paradigm: neural machine translation. We introduce the topic of
language data, in particular parallel corpora and theirimportance, and present
a collection of existing resources. We conclude this chapter returning to the
topic translation, albeit this time from the perspective of evaluation.

In Chapter 3 — Automated Wikipedia Corpus Acquisition Tool - AWCAT
— we give an overview of the implementation of the software, which we de-
veloped as a proof of concept. We outline the architecture of the stages and
modules in this chapter, and add the specifications of the hardware which was
used in the course of developing and running the framework.

In Chapter 4 — Data Extraction— we talk about Wikipedia as a data source,
how we select data for crawling; and we describe the Data Extraction Stage.
We explain how we have created a glossary building functionality in a module
in this stage.

Chapter 5 — Data Preparation — is dedicated to the cleaning and prepara-

7

tion process of the data. We describe the Data Preparation Stage which opti-
mizes the format of the data for alignment. We also explain how we prepare
the language resources which we use in the following stage.

In Chapter 6 — Sentence Alignment — we elaborate on how the bilingual
text, which was obtained and formatted in the previous stages, is aligned to
become a corpus of parallel sentence candidates. We start with a description of
the algorithm, explain the alignment metric, break down a process of aligning
into individual steps as an example and finally explain the inner workings of
the Sentence Alignment Stage.

Chapter 7 — Evaluation — presents the various methods of assessment and
ranking, i.e. the automatic evaluation with the metric from Section 6.2 and
human expert evaluation.

In Chapter 8 — Conclusion — we summarize the results and discuss the
findings. We share our observations from the process of developing the frame-
work. We present the potential contributions of this thesis and describe what
steps need to be taken to adopt the framework to other languages. We men-
tion the limitations of our approach and our framework and finally conclude

with an outlook on future work.

18

There is no data like more data.

Robert Leroy Mercer

Scientific Background

2.1 Languages and Translation

For centuries scholars and researchers have tried to describe languages. These
endeavours were undertaken from many different perspectives, but one ma-

jor common goal was to find the underlying concept of all languages, to dis-

19

cover patterns, common structures and similarities to eventually conquer the
language barrier. It is apparent that language encodes not only what we can
perceive with our senses, e.g. our physical surroundings, but also specific con-
cepts, views and traditions and cultural idiosyncrasies. Even tangible things,
such as forms of flora and fauna, which can differ greatly depending on the
geographical location, define the properties of a language, ranging from ter-
minology to specific idioms, similes and analogies. Many other factors chang-
ing dynamically according to the political, cultural, and technological develop-
ment of its population make language extremely divers and complex. Nonethe-
less, there were many attempts to define a formal comprehensive representa-
tion of all languages, an Interlingua, a language independent representation
of concepts, serving as a hub between languages to which every language could
be converted and from which a conversion into any other language would be
possible by applying analysis and construction according to rules. In theory
this would have revolutionized machine translation, but it turned out to be
impossible to fully realize.

With the dawn of the Information Age and the dramatic change of the
way written word is processed, the perception of language has changed sig-

nificantly. Just as Johannes Gutenberg revolutionized the spread of language

20

and information by the invention of the printing press, so has the computer
and the subsequent interconnectedness of computers throughout the world,
the World Wide Web, revolutionized it once again. Thus, the perception of
language was changed once more, this time on a global scale enabling virtually
anyone to create and disseminate written content.

The digital representation of language with the electronic computer made
it possible to program machines to translate between languages. This history
of automated translation reaches back to the end of World War II. In the be-
ginning stages, it was pursued with limited success, but soon was boosted
with the availability of an ever growing volume of multilingual digital data.
A short overview of the chronological development and a selection of asso-
ciated research milestones of Machine Translation (MT) is described in the
following section, followed by the newest paradigm in MT: Neural Machine
Translation (NMT). Following this, we discuss the importance, availability,
and research in language data. We explain why it is so important and why we
rely so heavily on bilingual/parallel corpora in MT. We conclude this chapter

with a discussion about translation quality evaluation.

21

2.2 Machine Translation

The decoding of information asit was done by Alan Turingin the 1940s on the
first generation of programmable digital electronic computers has sparked the
interest of the research community, and the idea to apply a similar method to
transpose information from one language to another gave birth to Machine
Translation (M'T).

The evolution of the research field of MT has undergone many paradigm
shifts since then, as described in (Hutchins, 2012) and (Arnold et al., 1993).
Word to word translation systems, which utilized dictionaries to directly map
words from source to target language, were the first methods used, taking ad-
vantage of the speed at which a computer could look up entries in a digital dic-
tionary. Although such a translation offered a rough idea of the source text
for some language pairs, the translation was often wrong due to polysemic
words, hardly readable due to the lack of consideration of grammar and all
but reliable.

More intricate and analytic methods have been researched since then. The
next logical step after the direct word transfer approach was the analysis of
grammatical rules. Rule-based transfer systems allowed for a better transla-

tion from the source text and a more coherent representation in the target

22

language, such that the transposed content was easier to read and for the most
partsyntactically correct. The most difficult problem, however, was polysemy
in both source and target language. The disambiguation of words and phrases
has been a focus of research for decades and remains an issue until today. For
instance, to successfully identify the meaning of the word bank, one has to
observe the context to find whether a river bank is meant, or the financial in-
stitution. The transfer-based method was extended by the semantic analysis.
In theory, this analysis of the sentence by rules and meaning would result in
an Interlingua, a formal, language independent representation of the source
text. This Interlingua could then be reconstructed into the target text by es-
sentially reversing the analysis process. This Transfer-based MT approach is
visualized in a simple and intuitive way by the Vauquois triangle (Vauquois,
1968), shown in Figure 2.1.

Another paradigm in M T, Phrase-Based Machine Translation and its most
popular version Statistical Machine Translation(SMT) was introduced as early
as 1949 by (Weaver, 1955) but did not take off until the 1980s, when it was
made popular by IBM. It was around this time, that bilingual digital text data
was starting to be available in significant quantities. The statistical analysis of

large volumes of bilingual data results in probabilities for translating words

23

Semantic Semantic
Analysis Assembly
Syntactic
Syntactic Syntactic
Analysis Assembly
Transfer
Source Type Target
Language Language

Figure 2.1: The Vauquois translation triangle depicting the possible transfer levels of the
transfer-based machine translation approach.

and phrases without the machine having to analyse the semantic intricacies
of the source text. The basis for the r74ining, i.e. obtaining the probabilities
of translation of words and phrases from source to target text, are parallel
corpora. These are text corpora in two languages, where each sentence of the
source language is aligned with the sentence of the target language. The higher
this data is in quality and volume, the more accurate the probabilities of trans-
lations.

According to these probabilities obtained in the analysis step, the equiva-
lents of words and phrases (so-called 7-grams, where 7 stands for the number

of words in the sequence) with the highest probability can be selected to con-

24

struct translation candidates. This is often augmented by a language model,
a probability distribution over sequences of words, which helps to improve
the translations by correcting the word order in the target sentence.

In general, the larger the bilingual data set, the better the result, although
one must take into account structure, domain, style, and general form of the
data to best match the domain to which that system will be applied. Addition-
ally, the SMT method is very well suited to be augmented with methods from
other M T paradigms, such as rule-based systems, lexical lookups, terminology
databases, distributional semantics, etc., to become a hybrid MT system.

The most recent paradigm of machine translation is Nexral Machine Trans-
lation (NMT). This method is based on deep learning which has emerged
in Artificial Intelligence (Al) research. Deep learning mimics our brain’s net-
work of neurons and has revolutionized Al in recent years (Kochn, 2017). The
NMT paradigm had a significant impact on MT and the biggest providers of
online translation services, such as Google and Microsoft switched to NMT
several years ago. The history, technical background, implementation and the
consequences it had on M T research are discussed in Section 2.3.

It is important to point out that even though the newest candidate, the

NMT method, has taken most of the spotlight of current MT research, each

25

of the above mentioned MT methods has been used successtully until today.
The applications of these more traditional methods have specific advantages
and very often hybrid MT systems are constructed; these customized solu-
tions emphasize desired functionalities, exploit strengths, while minimizing
the impact of potential weak points.

The requirements of a system arise from the language pair being trans-
lated, the text domain, the need for accuracy, the need for coverage, and many
more aspects. A limiting factor is often the availability of corpora for a cer-
tain language pair and differences in surface characteristics between languages.
This demands a careful selection and combination of MT methods. Data pro-
cessing and analysis depth, use of lexical or semantic resources, rule-based, sta-
tistical, neural methods; all these aspects offer advantages, if combined sen-
sibly for the desired application. For example, so-called lesser resourced lan-
guages benefit from other methods than languages which are rich in digital
corpus data. The differences in surface characteristics for a language pair also
pose challenges, therefore a careful selection of the MT method is decisive for
a good result. Another important consideration is how the system is applied
and the desired goal: Is it a fully automated system for a broad audience, or

is it a Computer Assisted Translation (CAT) tool for translation profession-

26

als? Last but not least, there is the matter of the translation domain, such as
legal, medical, technical, scientific, etc. The better the training data adheres
to the desired domain, the better the result. Mercer’s quote, which headlines
this chapter, certainly benefits from this additional consideration, especially
in the context of current development, where data is abundant, but informa-

tion relatively scarce.

2.3 Neural Machine Translation

NMT, being currently the dominant paradigm in MT, deserves a separate
mention in this thesis due to its importance as a data-driven paradigm. Al-
though SMT also relies heavily on data and can be certainly described as data-
driven, the need for even larger volumes of data makes NMT stand out.

The biggest difference between these two methods is probably that NMT
is an end-to-end translation, meaning that the entire process starting from
decomposition of the words and characters into an abstract digital represen-
tation which is processed in hidden layers, until the reconstruction into char-
acters and words in the target language is a black box process. This process is
depicted schematically in Figure 2.2. This was successfully presented in (Lu-

ong and Manning, 2016), showing promising results for highly-inflected lan-

27

\VJ

N4 ' N
Y47 =\l
LS LA

N WY
R i

\ -~
N\ i

1st hidden 2nd hidden nth hidden
layer layer layer

Output layer

Figure 2.2: Schematic representation of an artificial neural network with n hidden layers.

guages with a very complex vocabulary.

The nodes in the input layer are connected in a way that represents the
data we want to process. This could be any data, ranging from image pixels
for pattern recognition in pictures to frequency values for voice recognition.
In the case of MT this is text data, i.e. sentences, words, characters in the
source language broken down into a binary representation.

In the first hidden layer these binary inputs are either conveyed further
(1), or are not relayed (o). The decision whether one signal is relayed or not is
dependent on the weight function, which was adjusted in the training process
of the neural network. The output of the first layer is relayed into the next

2.8

hidden layer, and so on. In the end the data is converted into characters, words
and sentences in the target language.

Itis obvious that these multitudes of connections and their weights, which
are based on millions of adjustments during the training phase, cannot be re-
traced for one particular choice of word or phrase in the translation process.
This means the decisions of the NMT systems cannot be logically justified,
nor can any other method be added in a meaningful way to augment the qual-
ity of the translation, unless it is done before or after the neural network.

Consequently, the most crucial aspect of a NMT system is the training,
during which the potentially millions of neurons of the hidden layers are as-
signed weights and adjusted continuously during the training process. This
means that NMT systems require an exceptionally large volume of training
data, and they cannot be supplemented easily with other paradigms.

Most recently, the Bidirectional Encoder Representations from Transform-
ers (BERT) (Devlin et al., 2018), which is a pre-trained language model, based
on neural network architecture, has been applied to NMT (Zhu et al., 2020).
Although BERT was initially envisioned for fine-tuning of tasks like text un-
derstanding and language inference, the application of these models to NMT

with the so-called BER T-fused model seems to yield promising results.

29

2.4 Language Data in Machine Translation

As described in Section 2.2 and Section 2.3 all paradigms of MT rely on data,
albeit the data requirements are different. The most recent paradigms, SMT
and especially NMT, require large volumes of parallel data and are highly de-
pendent on their quality. Hence, regardless of which method is chosen, there
is always a need for bilingual, and even better, parallel corpora.

Since the birth of the Internet and the boom of the World Wide Web, more
and more text data is freely available, partially in bilingual or even multilingual
form. Additionally, the steady increase of computational power and efhiciency
has made the processing of large volumes of text feasible.

This text data has been utilized to train M T systems and the results can be
seen readily in popular MT systems like Google Translate or Bing Microsoft
Translator. Despite the progress in utilizing large volumes of bilingual data,
the process of collecting and preparing this data remains tedious and difficul.

Quality and domain adherence as well as the evaluation of large collections
of text tend to be the most daunting tasks, being highly computationally in-
tensive and laborious. Last but not least, understanding a text, with its con-
notations, general tone, and implications is in some cases even difficult for

an expert. Hence translations often differ, depending on the translator, and

30

quality of translation is therefore very difficult to judge, even for profession-
als.

Thus, collecting bilingual resources for the use in language technologies
is a profound and intricate issue. Requirements for such corpora can differ
greatly, depending on the context and application, but it is undoubtedly true
that better quality and quantity are needed to achieve good results. This issue

is further elaborated in the next section.

2.5 The Importance of Bilingual/Parallel Corpora

To translate a text, e.g. transpose a concept from one language to another is
to carry over meaning, culture, emotions and associations into a different rep-
resentation of meaning, culture and associations. With this premise we can
safely say, at least for now, that fully automated high quality machine transla-
tion is not a realistic goal for all applications. Whether reliable, high quality,
and accurate translation of all domains will be possible with artificial intel-
ligence of the future remains a highly debated issue, but as of now, reliable
translation results have been only achieved for well defined domains or con-
trolled languages for fully automated systems. The key to success is good data

in large volumes.

31

A machine translation will only be as good as the example it was given.
Hence, whichever method we use for translation, we need example data to
achieve our goal. Even in the case of a strict rule-based system, we derive these
rules from the use of the language. In the case of SMT this is even more ob-
vious and the volume of text data needs to be very large. In fact, the more
data we use to train SMT the better the result tends to be. However, at some
point, after including a huge amount of data, available to, e.g. Google or Mi-
crosoft, we seem to reach a certain saturation and occasionally a slight decrease
in accuracy.

Mercer’s general and also bold statement seems to be at danger here, al-
though, if one considers that not all data is used for only one single system,
but instead, segments of data are intelligently selected for different systems,
depending on the application, one might argue that the statement still holds,
albeit only under certain assumptions. Thus, it is vital to put emphasis on

intelligent selection and distribution of the data at our disposal.

2.6 Bilingual/Parallel Corpus Acquisition

Cross-language text retrieval has been practiced since the early 1970s (Salton,

1971). It was not until the personal computer era and the global spread of the

32

World Wide Web, and with it the exponentially growing volume of textual
data that this area became active on a large scale. Since then, the language tech-
nology community has been stressing the importance of high quality multi-
lingual data, in particular for M T (Rapp, 1999; Kumano and Tokunaga, 20075
Zhao et al., 2008). SMT, which up until a few years ago was used by Google
Translate, requires large volumes of parallel corpora to produce adequate out-
put as established early in the SMT research (Kochn et al., 2007). The since
then emerging new MT method called Newural Machine Translation (NMT)
uses a different way to train, but requires an even larger volume of data, as
described by (Kochn, 2017).

The first experiments in multilingual document retrieval in direct combi-
nation with MT have been performed since the late 9os (Braschler and Schiu-
ble, 1998). Since then research efforts in this field have been increasing con-
stantly, no doubt, driven by the quick rise of the world wide web and its mul-
tilingual nature.

Large scale projects have been undertaken to create a comprehensive solu-
tion to fulfill the quickly growing need for parallel corpora. There have been
approaches to automatize the process of parallel corpus creation. The align-

ing process is by far the most difficult and time consuming step, so that meth-

33

ods were developed to both assist manual alignment (Grimes et al., 2012) as
well as fully automatic alignment (Chen and Eisele, 2012; Cakmak et al., 2012).
Furthermore, the importance of domain-specific corpora and hence domain-
specific crawling has been addressed, e.g. in the touristic domain (Espla-Gomis
etal., 2014).

A very efficient way to obtain large parallel data collections is to take ad-
vantage of existing translated texts from international organizations. This was
done in the Eunroparl project (Kochn, 2005) where texts from the proceedings
from the European Parliament were aligned to create large parallel resources.
Another such example is the United Nations Parallel Corpus (Ziemski et al.,
2016), a collection of consolidated and processed data from UN documents.
These projects take texts translated by professionals, which makes aligning
them fairly straightforward, especially since they are often annotated with rich
metadata.

A much more difficult source to mine parallel text is the web, but it goes
without saying that it is a bigger source and offers much more diverse data. A
large scale distributed system for parallel text mining was proposed by (Uszko-
reit et al,, 2010), and (Smith et al., 2013) suggested a method for aligning sen-

tences obtained from Common Crawl ".

*https://commoncrawl.org/ (Last accessed in August 2020.)

34

https://commoncrawl.org/

As the methods of obtaining parallel data improved and more language
pairs were included, so did the need for parallel data. Data intensive NMT
requires this data quickly on-demand, for any language pair, and for any do-
main. One example of a large scale effort which addresses this issue for Eu-
ropean languages is the ParaCrawl project, which is co-financed by the Euro-
pean Union. The ParaCrawl group published their most recent findings just
weeks before the time of writing this thesis and focuses on testing various ex-
isting alignhment methods in their corpus creation software tool chain (Banén
et al., 2020). The methods included in these tests are Hunalign, Bleualign,
and Vecalign.

The alignment with Hunalign requires a bilingual dictionary and is based
on sentence length similarity and the IBM translation model (Brown et al,,
1993), or alternatively on a dictionary-based model, enhanced by a language
modelin the targetlanguage. This algorithm was initially used for Hungarian,
Romanian, Slovenian, and English. It was published by (Varga et al., 20059).

Blenalign uses the BLEU translation assessment score, which is discussed
in Section 2.8 further down in this chapter. Instead of using BLEU as a quality
measure for translation, the scores for all sentences are computed and the high-

est scoring sentence is assigned as the parallel sentence (Sennrich and Volk,

35

2010).

Vecalign (Thompson and Koehn, 2019) is the most recent alignment method
and relies on sentence embeddings, which is also described in more detail in
Section 2.8. The pre-trained embeddings used for ParaCrawl were LASER
embeddings (Artetxe and Schwenk, 2019), which covered all ParaCrawl lan-
guages, except for Irish.

The results of the comparisons are too complex to be summarized in a few
sentences and we recommend to study the result tables provided by (Banén
et al., 2020) for further details. In a nutshell, each approach had advantages
and disadvantages, but the overall issue for all of them was the computational
costs and the resulting energy use. On a side note, albeit on a very impor-
tant one, (Bandn et al., 2020) makes this very progressive step to go beyond
a discussion of computational cost, which tends to carry with it only the con-
notation of “slow” and “we need to make it faster”. In a time of energy source
debates and climate change we might want to start thinking about “wasteful”
versus “energy efficient” instead. According to the publication, pre-processing
100TB of data to produce parallel corpus candidates consumed 50,000 CPU-
hours, which requires an estimated 750kWh. This is more than a month of

energy supply for a developed country average household. This makes com-

36

putational time one of the biggest problems in automatic parallel corpus cre-
ation, apart from issues with quality and quantity.

This high cost in computation stems from the fact that some steps in the
process have an exponential runtime. This means that the steps required to
traverse n pieces of data is n*, where k is some constant greater than 1. Hence
the number of computational steps increases progressively, the more data is
processed. One of the steps which contributes to this exponential runtime
is the alignment, where each combination of words of both source and tar-
get sentence have to be checked. Often lookups of lexical entries have to be
performed as well.

The most recent approaches with word embeddings, which can utilize the
power of Graphical Processing Units (GPUs) remedy this problem to a certain
degree. However, these approaches are used to process huge volumes of data.
Some of this data might be irrelevant for the success of these computations
and the achieved computational efficiency is thereby negated. It is always bet-
ter to pre-select data, in order to be more efficient and to process only likely
candidates or high quality sources. One example of such a focused crawling
technique has been shown by (Laranjeira et al., 2014). It seems that these ap-

proaches have been partially forgotten, in favor of Big Data.

37

The methods mentioned so far have addressed fairly similar languages in
terms of script, surface characteristics and sociolinguistic factors. Highly dis-
similar languages, and especially language pairs with scarce availability of re-
sources, pose an even greater challenge, in terms of identifying, processing,
and aligning data. One of these research efforts, which focuses on alignment,
is done by (Ma, 2006), where an approach of aligning English and Chinese
sentences based on the frequency of words is presented. Recent trends favor
approaches which address simultaneous harvesting and aligning, so parame-
ters of harvesting can be adjusted to benefit alignment, and vice versa, result-
ing in a more efficient system overall. A recent example is (Aker et al., 2012),
where the focus is efficiency of harvesting to ensure a high recall during data
collection to result in less, but better data for aligning. This is achieved by
finding potentially useful texts by title, together with time-stamps of the text
which combined, is a very good indication of equivalence. However, this is
obviously restricted to data where such information is readily available, such
as news articles.

Inspired by the previously mentioned ParaCrawl, and addressing the still
limited availability of Japanese-English parallel corpora, (Morishitaetal., 2019)

started the /ParaCrawl project and used the methods from ParaCrawl, which

38

we described before, to compile a Japanese-English corpus. This effort has re-
sulted in a collection of 8.7 million sentence pairs. Just as ParaCrawl, the data
collection is not divided into domain categories, but is a good base for generic
NMT systems.

The authors provide a comparison of JParaCrawl pre-trained, domain-
specific NMT models with additional Japanese-English corpora for fine-tuning
(ASPEC, JESC, KFTT, TED Talks, see Section 2.7).

The WikiMatrix project certainly deserves a separate mention, especially
since it used Wikipedia as its data source, as we do in this thesis. Parallel
data in 85 languages has been extracted, amongst them even dialects and low-
resource language pairs. Using the aforementioned LASER sentence embed-
dings (Artetxe and Schwenk, 2019), respectable BLEU scores were achieved
for some of these languages. However, as can be seen in the tables provided
by (Schwenk et al., 2019), some language pairs scored rather poorly. One of
these poorly scoring pairs is Japanese-English, alongside other dissimilar lan-
guage pairs. This confirms once more the shortcomings of the Big Data ap-
proach for these language pairs. Especially in these cases transparency would
be very beneficial. It would help to identify whether the problem is the data,

the alignment, or some other part of the process.

39

Exactly for that reason, neural network approaches are not always the best
approach or at the very least would benefit from traceable processes, in order
to make the path to the results more transparent. However, such transparency
is nearly impossible. Nevertheless, approaches which collect text by taking ad-
vantage of deep learning models are increasingly popular. Some models yield
adequate results even for low-resourced languages, following the Zero-Shor
approach (Johnson et al., 2016). However, an important consideration is that
if we artificially create data to make up for a resource gap, this artificially cre-
ated data will become input during the next cycle of data harvest, and will
be used to train the next generation of neural machine translation, which in
turn may become input for the next cycle, and so on. Such recursive use of
data can cause problems on many levels. Approaches which consider transpar-
ent methodologies should be considered before this feedback loop gets out of
hand.

One additional benefit of building corpora with a transparent methodol-
ogy is the application of parallel data for language learning purposes. Word
similarities, equivalent terms, topics, and proper nouns, together with the sen-
tences in which they are contained as examples, can all be used in a computer

enhanced language learning environment. Such a combination of resources

40

with language learning environments, which are integrated seamlessly into
Web content browsing is shown by (Winiwarter, 2013, 2015). Information
which is taken from the creation process of the parallel corpus with a traceable
method can be used to enhance existing language learning platforms and cre-
ate new applications for language learning and understanding; undoubtedly

an important concept in a time where technology is starting to be increasingly

black box.

2.7 Existing Parallel Corpora for Japanese/English

When it comes to parallel corpora the definition of the term “lesser resourced”
is quite vague. Whether Japanese-English falls into this category is up for de-
bate, butitis certainly true that the data currently available can be classified as
limited at best. We compiled a list of of already available parallel corpora for
this language pair. Table 2.1 shows the resources in alphabetical order. This
list is by no means exhaustive, since there are many more company-owned,
proprietary text collections. The focus of this compilation is an overview of
openly available resources, which are free for scientific use and require at most
an agreement or contract with the copyright holder or creator. Table 2.2 lists

the URLs of these resources for the reader’s convenience.

41

Resource name Sentence count Content/domain

ASPEC 3.0M Scientific abstracts
JENAAD 150k News articles
JESC - Japanese-
2.8M Subtitles
English Subtitle Corpus
JParaCrawl 8.7M Generic web content
Kyoto Wiki (KFTT) 330k Wikipedia articles
NTCIR PatentMT 3.2M Patents
TED Talks 1ook Translated subtitles from TED talks
Tanaka Corpus 150k Collected by language students

Table 2.1: Details of freely available English-Japanese parallel corpora.

42

Resource name

URL

ASPEC

http://lotus.kuee.kyoto-u.ac.jp/ASPEC/

JENAAD

(http://www.nict.go.jp/en/)

not available as of August 2020

JESC - Japanese-

English Subtitle Corpus

https://nlp.stanford.edu/projects/jesc/

JParaCrawl http://www.kecl.ntt.co.jp/icl/lirg/jparacrawl/
Kyoto Wiki (KFTT) http://www.phontron.com/kftt/
NTCIR PatentMT http://ntcir.nii.ac.jp/PatentMT/
TED Talks https://wit3.fbk.eu/
Tanaka Corpus http://www.edrdg.org/wiki/index.php/Tanaka_Corpus

Table 2.2: URLs of freely available English-Japanese parallel corpora.

The first listed resource, the ASPEC corpus, is a large collection of aligned
scientific abstracts by (Nakazawa et al., 2016). Since scientific publications of
various research areas are covered the domain is not restricted by research field
or topic, but rather by the general way of writing, namely a formal, descriptive
and narrative way, generally used in research articles. In the scope of this dis-

sertation, we used the ASPEC corpus as a reference to test our alignment met-

43

http://lotus.kuee.kyoto-u.ac.jp/ASPEC/
http://www.nict.go.jp/en/
https://nlp.stanford.edu/projects/jesc/
http://www.kecl.ntt.co.jp/icl/lirg/jparacrawl/
http://www.phontron.com/kftt/
http://ntcir.nii.ac.jp/PatentMT/
https://wit3.fbk.eu/
http://www.edrdg.org/wiki/index.php/Tanaka_Corpus

ricin the initial stages of development. JEN.4.AD, compiled by (Utiyama and
[sahara, 2003), has been built from news articles, and is in that regard similar
to ASPEC except that it covers the news domain. JESC, the Japanese English
Subtitle Corpus by (Pryzant et al., 2018) is a database of subtitles which were
crawled from movies and TV programs available on the Web. JParaCrawl!
is the largest and most recent in this collection and is created by (Morishita
etal.,2019); itis discussed in more detail in Section 2.6. The KFT'T Kyoto Free
Translation Taskis a corpus of Wikipedia articles related to Kyoto, which were
manually checked. The TED Talks corpus, described by (Cettolo et al., 2012),
is a translation of transcriptions and subtitles from TED events. The Tanaka
Corpusis a collection of parallel sentences, collected by students, and was pub-
lished by (Tanaka, 2001).

As mentioned earlier, this list does not contain all resources, but it can be
undoubtedly stated that the availability of parallel corpora for the Japanese-
English language pair for scientific research is far smaller than it is the case
for major European language pairs, or even English-Chinese. For a compre-
hensive overview of available resources for these languages we refer to ELRA

Catalogue of Language Resources™ , and the LDC Catalog. * Furthermore, it is

Thttp://catalogue.elra.info/en-us/ (Last accessed in August 2020.)
*https://catalog.ldc.upenn.edu (Last accessed in August 2020.)

44

http://catalogue.elra.info/en-us/
https://catalog.ldc.upenn.edu

important to remember that languages are dynamic and different application
scenarios demand domain-specific data, so availability of large heterogeneous
datasets is vital, but the ability to quickly and efhciently build new resources

is equally important.

2.8 Translation and Corpus Evaluation

One of the most important considerations while creating MT systems and
parallel corpora is the evaluation of translation quality. While human expert
evaluation is undoubtedly the most accurate and reliable method to judge
translation quality, the volumes of data which need to be assessed often make
a manual approach difficult and sometimes impossible. In a nutshell, quality
assessment by experts is highly accurate but time consuming since tone, regis-
ter, connotations, sociocultural nuances, and many other aspects are consid-
ered in a fine-grained analysis. Quality assessment of translation is an impor-
tant chapter in translation science and has been researched for a long time.
Automatic evaluation, which will be described in the following paragraphs,
offers standardized results, and most importantly can process data in a matter
of minutes or hours depending on the size of the data set.

Consequently, the method of evaluation depends on the requirements,

45

practicality, and feasibility. Literature translation demands experts who apply
a very precise, at the same time flexible and creative process, while the evalua-
tion of user manual translations certainly does not require deep thought pro-
cesses to decide their usefulness and accuracy. Obviously, the majority of the
translated texts which need to be evaluated fall somewhere in between these
two extremes of the spectrum. Often it is advisable to seek a compromise and
to find methods which maximize the advantages from both sides. Human ex-
pert quality assessment will not be discussed in further detail, since this would
infringe on a wide and involved research area in translation science, which is
not the focus of this thesis. Automatic evaluation however requires a closer
look for a better understanding of the thought process in this thesis.

The approach in automatic evaluation of translation comes from the per-
spective of computer science, a field much closer to mathematics than linguis-
tics. This resulted in the attempt to create a quantifiable quality measure with
a transparent and logical reasoning. Such a method is not meant to consider
any of the complicated linguistic concepts — at least not explicitly — but re-
lies purely on statistical similarity to reference data, i.e. corpora with previous
translations. This automated method was found to be useful in providing

quick, coarse estimates of translation quality.

46

One of these measures is BLEU by (Papineni et al., 2002) and the closely
related NIST metric by (Doddington, 2002). BLEU quickly became the de-
facto standard metric for evaluation of automatic translation. On one hand,
this method has been widely used in the M T research community and is men-
tioned in many if not most scientific publications; on the other hand it has
been also debated and criticised.

In order to understand this dichotomy, we need to understand what BLEU
actually measures, or rather how it compares. A comparison between a trans-
lation and a reference is done by breaking down sentences into so-called n-
grams, where n denotes the number of words in the phrase which is exam-
ined. The n-grams from the new translation are compared with the n-grams
of the reference. A perfect match between a translation and a reference would
yield a score of 1, while a lack of any similarity would be scored o. This mea-
sure of similarity is usually rounded and multiplied by 100 to make it more
readable as a score between o and 100. For example a score of 0.25421 would
be expressed as a BLEU score of 25.4. This particular score would mean that
roughly one quarter of the n-grams in the new translation corresponds with
the reference. Since we measure the similarity to a reference, or several refer-

ences, the absolute score has no real meaning in terms of translation quality

47

from a linguistic point of view. The score of one translation will change if the
reference is changed or if more references are used.

Anyone, who is proficient in a second language, is aware of the fact that
many, especially complex phrases, can be translated in different ways, so a re-
lation of 1:n between source and target language is not uncommon in terms of
acceptable translations. Needless to say, a metric based solely on the compar-
ison of patterns cannot take this into account. Therefore, one has to be very
careful about using the term “quality” when talking about BLEU scores, since
we compare to a reference translation, considering only structure and lexical
properties and not how well the meaning was carried over into its new rep-
resentation. A translation differing greatly from a reference in word choice
and word order could be an equally good alternative way to carry over that
meaning; it might be even better, but will be rated poorly by the automatic
evaluation method. Hence a good translation might potentially receive a very
low score, if it happens not to correspond with the reference (Zhang et al,,
2004).

Keeping this in mind, it is rather obvious that the popularity of BLEU is
not based on its accurate classification of good translations, but the ease of

use and the quick results even for very large volumes of data. One might ar-

48

gue that the way translations are scored by BLEU implicitly favors automated
translation, especially SM'T and NMT, since these methods rely on statistical
analysis of corpora, hence produce results which BLEU “expects to see”. One
could also argue that BLEU evaluation favors standardization of translation
by assigning higher scores to results which adhere to certain patterns. This po-
tentially leaves out many good options of translation but can be advantageous
for specific applications, for example the aforementioned user manuals.

Further, these automated methods are the only way for a quick first as-
sessment of new MT approaches, and are very efficient in helping to tweak
parameters while developing M T systems. Speed of assessment, convenience,
and financial feasibility make these methods a necessity in rapid MT develop-
ment and fine-tuning. However, one has to keep in mind the serious short-
comings, mentioned in the previous paragraphs. A deeper and more detailed
discussion of these limitations can be found in (Zhang et al., 2004).

Most recently word and sentence embeddings with BERT (Devlin et al,,
2018) have been extensively used for cross-lingual information retrieval (Jiang
et al,, 2020), and certainly can be utilized to address the issue of finding simi-
larities between sentences in two languages. These methods show very good

results and there is promising research on models which work for any language

49

pair (Feng et al., 2020). However, the same requirements apply for these mod-
els as mentioned in Section 2.3 for NMT: Large volumes of training data are
needed as well as long training times. Additionally, these models are black
box, so traceability is a problem.

The approach taken by (Utiyama and Isahara, 2003) in order to create one
of the highest quality Japanese-English parallel corpora, the JEN.AAD cor-
pus, listed in Table 2.1, was independent of example data and relied on one of
the most successful text-retrieval algorithms BA4zs, derived from the Proba-
bilistic Relevance Framework (PRF), dating back to research work in the 1970-
1980s, described in (Robertson and Zaragoza, 2009).

To summarize, all these above mentioned methods have their advantages
and disadvantages. In any case, it is important to remember that machine eval-
uation of machine translation must not be the final judgement of quality. We
should be aware that haphazard assessments of training data will result in a
propagation of low text quality, since future resources will partially be rely-
ing on previously MT processed data. As stated in the beginning of this sec-
tion, only human expert assessment can be completely relied upon, for final

judgement.

50

Simplicity is the soul of effciency.

Austin Freeman

AWCAT Framework

3.1 Overview

As stated in Section 1.1.1, one of the goals of this thesis is to empirically ex-
amine whether and how much of Wikipedia content can be used as a source

of parallel corpora for a specific language pair. By developing the framework

SI

Automated Wikipedia Corpus Acquisition Tool (AWCAT) we created a data
collection allowing for an insight into this issue for English-Japanese.

We processed this data collection into a parallel corpus, and measured the
yield. This process can be repeated and further comparisons can be made for
different domains by giving the software framework different initial seed top-
ics. Most importantly, we addressed these research challenges with a transpar-
ent and traceable approach, offering a counterbalance and potential enhance-
ment of state-of-the-art methods that often solely rely on a black box neural
network approach, and require large volumes of training data.

We present the software framework in this section with a broad overview
and name all language resources (Section 3.2) and tools (Section 3.3) which we
used to create the framework. In Chapters 4, 5, and 6 we describe each stage
and its modules in detail by listing important segments of the source code and
explain the thoughts and theory that motivated our approach. In Section 3.4
we list the specifications of the hardware used for coding and running the soft-
ware.

Functions of AWCAT are packaged in modules, which themselves belong
to stages in the overall architecture. This modular approach allows each stage

and every module to be functional by itself and offers good readability and

52

flexibility following a good software engineering practice. The good readabil-
ity makes the code easier to maintain, and the independent stages and mod-
ules allow for easier change and adjustment to other requirements such as dif-
ferent language pairs.

We segmented the software modules into three stages. The Data Extrac-
tion Stage, the Data Preparation Stage, and the Sentence Alignment Stage.
An overview of the stages and the modules assigned to them is shown in Fig-
ure 3.1.

In the Data Extraction Stage we collect the raw data from the assigned
Wikipedia pages. Rather than accessing data at random, for the performance
reasons mentioned in Section r.1.1, a seed of topic is taken as input and the
crawling process follows a topic link-based algorithm described in Section 4.2.

Once the datais collected, we pass it to the Data Preparation Stage where
it is formatted and prepared for alignment. This step allows to dispose of un-
necessary data to reduce CPU hours in the later steps.

During the Sentence Alignment Stage we compare the Japanese sen-
tences to the English sentences according to several criteria described in Chap-
ter 6. The similarity is quantified in a metric explained in Section 6.2.

The separation of modules follows a division of self-contained tasks to of-

53

Comparison Formatting Matching
Module Module Module
Data Extraction Stage
Topic . Text
Extraction Tr:ll:)scllaﬂaon Extraction
Module Module
_J
Language Data Alignment
Resource Preparation Preparation
Module Stage Module

Alignment

Module

Sentence Alignment Stage

Figure 3.1: Stages with their corresponding modules.

54

fer flexibility for adjustments such as parameter tuning, adjustments for spe-
cific domains and other language pairs. In Chapters 4, 5, and 6 we describe
the modules of this architecture in incremental levels of detail. We start with
an overview of the stage, followed by the modules, the functions within these

modules, and finally details of key parts of the source code.

3.2 Language Resources

The lexical resources used for Japanese are edictz, and [Mnedict. edictz is a
collection of over 180,000 words (at the time of writing) and common multi-
word expressions with their English translations. We considered using /A4
dict being an XML version of edictz. The reason why we chose the latter is
to avoid the XML overhead during the conversion. [Mnedict is a Japanese
multilingual named entity dictionary file. URLs to these resources are listed
in Table 3.1.

In order to achieve a performance boost, by avoiding multiple lookups, we
use the JSON file format to build dictionaries, which we then reuse through-
out the execution of the program and for subsequent program executions

with different parameters.

55

Name Version URL
| |

. current as of
edict2 http://edrdg/jmdict/edict.html

October 2019

. current as of
]Mnedlct https://www.edrdg.org/enamdict/enamdict_doc.html

October 2019

Table 3.1: Language resources used in our framework.

3.3 Software, Programs, Tools

The software is written in the Python programming language Version 2.7 and
takes advantage of libraries such as the Natural Language Toolkit (NLTK),
the Wikipedia library, the HTML/XML parsing library BeautifulSoup, and
the regular expression library re for efficient and flexible character compar-
isons. Python’s extensive and straightforward codecs library enables the en-
coding and decoding of Kanji (Japanese characters) as well as other characters
represented in Unicode. The standard NLTK libraries are used to tokenize,
lemmatize, and PoS-tag the English corpus.

The resources used for Japanese are AMeCab, which is an open-source PoS-
tagger for Japanese. The output of MeCabis used to identify signal words, for-
eign words, names and numbers. The version numbers and URL:s are listed

in Table 3.2.

http://edrdg/jmdict/edict.html
https://www.edrdg.org/enamdict/enamdict_doc.html

’ Name H Version ‘ URL
NLTK 3.5 https://nltk.org

MeCab 0.996 https://taku910.github.io/mecab

Table 3.2: Language tools used in our framework.

3.4 Hardware

We implemented the framework on a desktop computer. Especially during
the alignment process, which took the most computing time, we executed
the code on both a desktop computer, and a laptop computer. We also were
granted access to the 3rd version of the Vienna Scientific Cluster (VSC-3),
which we extensively used for much of the framework runtime. The hard-
ware specification of the two computers are shown in Table 3.3, the informa-
tion about the VSC-3 can be found online at the Vienna Scientific Cluster
website’.

Harddrive reading speeds are obtained with the linux command shown in

Code 3.1.

hdparm -tT /dev/sda

Code 3.1: Linux Command Line: HDD reading speed test.

"https://ves.ac.at/systems/ves-3/ (Last accessed in August 2020.)

57

https://nltk.org
https://taku910.github.io/mecab
https://vcs.ac.at/systems/vcs-3/

\.

Desktop Computer

Laptop Computer

Intel Core is

Intel Core i7-5500U

CPU and frequency

@ 3.6Ghz @ 2.4GHz
RAM and frequency | 8GB @1333 MHz 8GB @1600MHz
HDD reading speed 126 MB/sec 1112 MB/sec

Table 3.3: Specifications of hardware used for experiments.

58

Getting information off the Internet is like taking

a drink from a fire bydrant.

Mitchell Kapor

Data Extraction

4.1 Data Source - Wikipedia

One of the biggest challenges for collecting data is the selection of the source.
Ideally, the source should offer enough data, the desired quality, and a consis-

tent structure, which allows for easy access.

59

While Wikipedia might not be the best source for the highest quality and
accurate translations, it offers large volumes of data and is well organized, due
to its semantic HTML structure.

The Wikipedia pages in two languages for one article are semantically linked.
This eliminates the need for additional dictionary lookups, it even functions
as a dictionary, since terms are automatically disambiguated.

An example of the language link selection for an article is shown in Fig-
ure 4.1. On the left side of the page, or in a special drop-down menu for the
mobile version of Wikipedia, a list is shown with all languages in which this
article is available. Clicking on one of these language links takes the user to
the article in that language. The structure behind this functionality is coded
in JSON files, which contain link addresses to all articles in other languages.
An excerpt from such a file is shown in Figure 4.2.

The source language for the entry “Kendo” is English, and all available
language links are listed. The list in the figure is abbreviated and the Japanese
entry is added at the bottom. Itis indicated by the “lang:ja” field, whereas the
hexadecimal numbers “\us263\u9os3” are the unicode encoding, a so-called
code point, for the Japanese word “®3&” which stands for Kendo.

The semantic layout of pages is consistent, hence identifying titles, figures,

60

In other projects 7 Rules of Competition
Wikimedia Commons 8 Important Kendo competitions
9 Advancement
Print/export 9.1 Grades
Create a book 9.2 Titles
Download as PDF
10 Kata
Printable version _)) o
11 National and international organisations
Languages o 12 See also
+ Deutsch 13 References
Francais 14 External links
Hrvatski
Italiano
Magyar History [edit]
BAGE
Slovens&ina Swords
* YKpaiHcbKa kendo €
X The intr
A 44 more Naganu
#' Edit links .
H In additi
(RAET

Figure 4.1: Wikipedia page language links.

61

< > C & en.wikipedia.org/w/api.php?action=query&titles=Kendo&prop=langlinks&lllimit=5008

{
"batchcomplete": "",
"query": {
"pages": {
"17008": {
"pageid": 17098,
"ns": 0,
"title": "Kendo",
"langlinks": [
{
"lang": "ar",
RN "\ uR643\u0646\ub62f\UOB48"
I
{
"lang": "ast",
"t "Kendo"
I
{
"lang": "az",
"t "Kendo"
I
{
"lang": "be",
RN "\uf4la\u044d\u043d\ub434\ub43e”
i
{
"lang": "ja",
RN \y5263\u9053"
i

Figure 4.2: Wikipedia page language links JSON file.

62

menus, etc. can be done very easily with existing libraries. In this thesis we
took advantage of the Python library BeautifulSoup.

While structure, semantic layout and abundant data are a clear advantage,
the downside of Wikipedia for parallel corpora extraction is that an unknown
portion of the content is not translated, but rather created independently
across languages. Only a portion is translated by professionals and even those
are not always good, accurate translations.

Occasionally, translation mistakes or stylistic errors spanning over several
pages can be observed. They are sometimes very subtle and often go unno-
ticed. A notable example of this is the use of a certain tense when describ-
ing historical figures in English and French. In English, one uses past tense,
whereas in French present tense is correct. Whenever such content is trans-
lated from English to French, which happens more often than the other way
around, the past tense tends to find its way into the French version.

Such seemingly small but significant mistakes are common on Wikipedia
across many language pairs and have to be taken into consideration.

Additionally, the content of Wikipedia can be highly asymmetrical across
languages. Depending on the popularity of a topic in the given country, re-

gion, or culture, an article for a certain topic can be very extensive in one lan-

63

guage, while being scarcely represented in another. Further, due to the dy-
namic nature of Wikipedia, it is difficult to consistently examine these sym-

metries or the lack thereof.

4.2 Selective Crawling

Gathering data in such a way that we send as little useless data to the next step
as possible is a big challenge. We have addressed this challenge with selective
crawling, described in this section.

Additionally to the preselection in terms of parallel data candidates, this
method allows us to extract data within a certain domain, given a list of seed
topics.

We solved the task of efficiently identifying text, which is likely to contain
similar, same, or translated content by determining the ratio of article links
shared between the articles in Japanese and English. The bigger the ratio of
links that point to the same articles from both the Japanese and the English
article version, the more likely the content is to be paraphrased or translated.

For example, let J, be a Japanese article of topic a, and E, its English article
equivalent. If J, contains five links to J, and eight links to J,, and E, contains

four links to E, and seven links to E., the ratio would be r = 11/13 = 0.846.

64

We defined a threshold for the ratio, which is a cutoff value for the pre-
selection. This threshold value can be increased or decreased for further em-
pirical studies. A higher value results in a higher chance of a translated or
paraphrased article, a lower value yields more candidate data. The final step
is the selection of articles which score above this ratio of shared links, and the
extraction of their article text with the Python library Wikipedia.

In the process of extracting and pre-selecting articles, we noticed that the
lists of article titles in Japanese and English can very easily be converted into a
bilingual glossary of terms for a certain domain. Such a quick source of trans-
lated terms is quite handy for many applications in translation science and
industry and other language technology applications. Such a list can be ob-
tained in minutes by running the first part of the framework with a topic seed

of choice. We describe this coincidental but handy byproduct in Section 4.4.

4.3 Implementation of the Data Extraction Stage

The Data Extraction Stage consists of six modules, which are explained in de-
tail in this section. A schematic of the sequence of processing is shown in
Figure 4.3.

Each module in this schematic is highlighted with a bold face font and the

65

Topic Extraction
Module

get_topic_pairs(...)
get_pages_| Ilnks()
extract_links(..

K=

<;

Fohqmgttllng Translation Module
oaule get_translation(...)
format_topics(...)

S — Matchmg Module

Gl . find_equivalents(...) JSON
Ossaries translate_topics_ dictionaries

into_english(...)

—

Comparison
Module

compare(...)

Text Extraction
Module

extract_text(...)

Japanese corpus

English corpus

Figure 4.3: Modules of the Data Extraction Stage for selective harvesting and text extraction from

Wikipedia articles. The goal of this chain of modules is to obtain candidate sentences for a parallel

corpus. Module names are written in bold face, function names (without parameters) are shown in
small, blue font.

66

functions listed below in blue. The cylindrical containers in the graphic sym-
bolize text resources. At the beginning of the stage, dictionary resources are
used as input. The Matching Module produces a glossary and a JSON dictio-
nary. This dictionary is growing during each iteration of the framework and
allows for time savings by avoiding online lookups. Additionally, it is utilized
for efficient translation lookups in the Sentence Alignment Stage. The out-
put of the Data Extraction Stage is text data in the form of a Japanese corpus
and an English corpus. These two data collections are the candidates for a
parallel corpus.

In the following subsections, we include important pieces of source code,
libraries, and external programs; and describe their role and significance in
the framework. The displayed lines of source code are denoted with “Code”
followed by a sequential number within the chapter; they include line num-
bers for detailed referencing. For the sake of brevity, the line references are
attached to the code number with a colon; for example, Code 5.2:3 would be
line 3 of the second Code snippet in Chapter s. Itisimportant to mention that
these code snippets are not always shown as complete functions, but rather as
parts of functions. Whenever a small part of a function is presented, or it is

abbreviated by cutting out lines for the purpose of brevity and readability,

67

—

[NN

this cut is identified by “...”. Whenever this is done, the line numbers are con-
tinued in sequence as the code snippet is presented but not in the sequence
in which they are written in the implementation of the framework. The com-

plete source code can be found in the Appendix.

4.3.1 Topic Extraction Module

The first module is the Topic Extraction Module. The libraries imported at
this point are shown in Code 4.1. These libraries are also used for all following

modules, throughout the entire stage.

from bs4 import BeautifulSoup
import requests

import codecs

import re

import json

import urllib

import os

Code 4.1: Preamble: Libraries for Data Extraction Stage.

BeautifulSoup is a library for extraction of XML data. Traversal of the
Wikipedia page structure is very straightforward with this library. We use the
requests library to fetch the HTML pages from which data will be extracted.
The codecs library is important throughout the entire framework, since it is vi-
tal for the conversion of Japanese characters into a utf-8 representation. The

68

same is true for the regular expression library re for efficient and flexible char-
acter comparisons. We use the json library to read the files containing the links
to the equivalent articles in the other language. The #7llib library provides
wrappers for URL encoding, and the os library for directory changes in the
framework directory structure to sort output files at run-time, to avoid clut-
tered directory structure.

The first step in the process of extraction is the seeding with initial topics.
The function get_topic_pairs in the Topic Extraction Module takes a list
of strings, which should be valid English Wikipedia entries, see Code 4.2:1
(line 1 of Code 2), cleans the strings of unnecessary white spaces and passes
them to the function get_translation of the Translation Module, where
the equivalent Japanese articles are retrieved (Code 4.2:6). The Translation
Module is also accessed from several other modules and is described in detail

in Section 4.3.2.

1 def get_topic_pairs(topic_list):

2 # for each start topic

3 for topic in topic_code:

4 start_topic= topic.strip()

5 #get start topic in japanese by ID check

6 topic_ja = get_translation(start_topic,'ja','en'")

Code 4.2: Function get_topic_pairs: Extracting topics which will be later crawled for data.

The next step prepares the output files for the lists of topics, which are
selected for data collection (Code 4.3). Explicit utf-8 encoding has to be per-
formed during reading and writing of Japanese characters in Python. Itis also
important to note that each Python file that will process utf-8 data has to in-
clude a special line in the preamble, usually right after the definition of the
Python environment; this is shown in Code 4.4. It should be mentioned that
this is no longer necessary in Python 3, however, we still use Python 2.7 for

our implementation.

#open files to store subtopics

ftopics_en = codecs.open('data/'+start_topic+'_topics_en.\
txt','w', encoding='utf8")

ftopics_ja = codecs.open('data/'+start_topic+'_topics_ja.\
txt','w', encoding="'utf8")

Code 4.3: Function get_topic_pairs (cont.): Using codecs to write Japanese characters.

#!/usr/bin/env python
—*— coding: utf-8 —x*-

Code 4.4: Preamble: Defining the Python environment and the utf-8 encoding.

The next section of this function, shown in Code 4.5 extracts the topic
with a call to the function get_pages_11inks, which takes the initial topic
and the language parameter (‘en’ for English, ja’ for Japanese) as arguments.

The data returned by this function is then written to the previously opened

70

text files.

1 #call get_pages function to get subtopics for english
topics = get_pages_links(start_topic, 'en')

©

#write results to file and close output file

3

4 for topic in topics:

5 ftopics_en.write(topic[0]+'->"+topic[1l]+'\n")

6 ftopics_en.close()

7 #call get_pages function to get subtopics for japanese
8 topics = get_pages_Llinks(topic_ja, 'ja')

9 #write results to file and close output file

10 for topic in topics:

11 ftopics_ja.write(topic[@]+'->"+topic[1l]+'\n")

2 ftopics_ja.close()

Code 4.5: Function get_topic_pairs (cont.): English and Japanese articles are written to text
files.

We will take a closer look at the get_pages_1links function, since here
we select the pages, which are linked from the initial seed topics. They will be
selected for data extraction, determining how much data will be sent to the
next stage. The construction of the URL pointing to the page with the article

that is to be extracted is seen in Code 4.6.

1 # return all links on the topic page and all subsequent links
» def get_pages_links(topic, lang):

3 start_url = 'https://'+lang+'.wikipedia.org/wiki/'
4 domain = 'https://'+langt'.wikipedia.org'
5 start_url=start_url+topic #main topic link

Code 4.6: Function get_pages_1l1inks: Construction of an article URL by assigning language
and topic.

71

I

get own title, link titles and links for main topic

2 title, ext_titles, ext_links = extract_links(url=start_url)

3
4
5
6

7
8

9
10
1

I2

3

14
15
16
17

18
19
20

21

store in items Tlist
items.extend(zip([title]*len(ext_titles), ext_titles))
for ext_link 1in ext_links:
omitting Wiktionary entries and pronunciation links
if 'wikt' not in ext_link and 'Help:IPA' not in ext_link:
try:
resolve encoding 1issues
ext_link=urllib.unquote(ext_1link).decode('utf-8")
get own title, link titles
and links for main topic
title, ext_titles, ext_links = extract_links(domain + \
ext_Tlink)
store in items list
items.extend(zip([title]*len(ext_titles),ext_titles))
except UnicodeEncodeError, e:
print('UnicodeEncodeError at: ',ext_link,'-reason:', \
str(e))
pass
if len(items) > 2500:
break
return items

Code 4.7: Function get_pages_1links (cont.): Extracting links and their titles.

72

In Code 4.7:2 the call to the function extract_1links returns a triple of
values which are the title of the current page, a list of titles of links on the
current page, and the URLs of the links on the current page.

The next line stores these tuples in a list. For every link we have extracted
on that page (Listing4.7:5), we repeat the link extraction, so that with every it-
eration we grow the list by the set of the links from the next page. We do not
want to include Wiktionary entries and pronunciation links, since they are
highly language dependent and would introduce errors in the ratio of compa-
rable links.

The try,except block at Code 4.7:8,18 is crucial, since unexpected varia-
tions in spelling of the article name can cause this part of the program to crash.
Additionally, since URL:s are restricted to a set of characters belonging to the
US-ASCII set, passing a Japanese character as a URL string would cause an
exception and also crash the program. We use #7/lib to convert Japanese ti-
tles of articles into a URL representation of the Japanese characters, which
is a hexadecimal representation. In Table 4.1 we show an example of a URL
pointing to the article “Airplane” in English Wikipedia, the URL pointing to
the Japanese page for the same topic, and the representation of this address

in US-ASCII. The try,except block is set up so that the program will skip

73

the iteration if there is an error, such that the program can be safely run in the

background without the need for constant monitoring.

URL to English article Airplane

https://en.wikipedia.org/wiki/Airplane

URL to Japanese article Airplane (7174 =hikoki)

https://ja.wikipedia.org/wiki/ /A TH%

URL to Japanese article Airplane in US-ASCII ecoding

hetps://ja.wikipedia.org/wiki/%E9%A3%9B%E8%A1%8C%E6%A9%9F

Table 4.1: Example of URL US-ASCII encoding.

While most browsers will take care of this conversion, a direct call with the
Python reguests library does not, therefore, it needs to be done manually.

The extract_1links function is shown in Code 4.8. This function does
the actual fetching of links from the HTML document. The request call gets
the previously constructed URL and converts the content from an XML for-
mat to a BeautifulSoup object (Code 4.8:13-16). The next line filters the con-
tent by paragraphs, followed by a filter for invalid links, and a filter for the
HTML tag href, which denotes external links. The tag title is extracted

next, which is the name of the link (in our case the article topic) (Code 4.8:13-

74

1

2

3

IS

o N &N W

I0

12
13
14
15
16
17
18

return a list of links to other Wikipedia articles

def extract_links(url):

get soup with 1lxml parser
soup = BeautifulSoup(requests.get(url).content,'lxml")
p_tags = soup.findAll('p')# find all paragraph tags
gather all <a> tags

a_tags = []
for p_tag in p_tags:
a_tags.extend(p_tag.findAll('a'))

filter the 1list : remove invalid links

a_tags = [a_tag for a_tag in a_tags if 'title' in a_tag.attrs \

and 'href' in a_tag.attrs and not 'class' in a_tag.attrs]

get article titles

titles = [a_tag.get('title') for a_tag in a_tags]

get article links

links = [a_tag.get('href') for a_tag in a_tags]

get own title

self_title = soup.find('hl', {'class' : 'firstHeading'}).text
return self_title, titles, links

Code 4.8: Function extract_T1l1inks: Extracting links and filtering the content

16), and in the last line of the function the title of the current page is obtained
(in our case the current article).

The triple, returned from Code 4.8:19 to Code 4.7:13 is extracted until a cer-
tain number of pages and their links is reached (Code 4.7:22), we chose 2500
for this particular experiment. This number is arbitrary and can be chosen

depending on the available CPU-time.

75

4.3.2 Translation Module

The get_translation function in thismodule takes an article title, a source
language code, and a target language code as function parameters. The lan-
guage codes are the standard Wikipedia abbreviations, i.e. ja’ for Japanese
and ‘en’ for English. In Code 4.9:4 we build a URL with the input parame-
ters and pass this string to a request. With the returned data we create a JSON
object. We traverse the hierarchical JSON structure until we reach the “lan-
glinks” level, see Figure 4.2, and find the appropriate entry, according to the
input parameter. This entry is the article title. The try/error blocks are
important to deal with inconsistent JSON files, which tend to occur occasion-

ally.

4.3.3 Formatting Module

The format_top1ics function makes up the Formatting Module, in which
we reformat the output of the previous module. The reason why it is sepa-
rated as a distinct module is that it acts as a buffer in case a different format
is needed after the extraction. It serves in essence as a format interface. Addi-
tionally to that, it is also a preparation to the next module. In the process we

translate the Japanese article titles and the titles of the linked articles to English

76

1 # return the Wikipedia site equivalent in a target language
» def get_translation(topic,source_lang,target_lang):

3 # use Wikipedia's json database to look it up

4 json_url="https://'+source_lang+'.wikipedia.org/w/api.php?\
action=query&titles="+topic+'&prop=langlinks&lllimit=500&format)\
=json'

5 content = requests.get(json_url).content

6 json_data = json.loads(content)

7 item=""

8 # dterate through json hierarchy to find langlinks category

9 try:

10 for i in json_data["query"]["pages"]:

o} pageid=i

73 except KeyError, e:

13 print('KeyError at topic:',topic,' - reason: ',str(e))

14 pass

15 except TypeError, e:

16 pass

17 try:

18 for i in json_data["query"]["pages"][pageid]["langlinks"]:

19 # in langlinks category, find desired language

20 if i['lang']==target_lang:

21 # there is the topic equivalent

22, item = G['*"]

23 except KeyError, e:

24 print('Keyerror at topic',topic,' - reason: ',str(e))

25 pass

26 except TypeError, e:

27 pass

28 return item

Code 4.9: Function get_translation: Finding article titles in another language.

77

by passing them to the Translation Module.

4.3.4 Matching Module

In this module we identify the articles which have an equivalent in both En-
glish and Japanese with the find_equivalents function. The names of the
text files in the data directory are the titles of the articles. Each file contains a
list of articles that are linked from its text. At this point, the Japanese articles
are represented in English. We point out again that these are not translations,
but article name equivalencies obtained from Wikipedia in Code 4.9.

This simplified structure of the collected titles allows us to quickly identify
the articles which are available in Japanese and English. This check is shown
in Code 4.10. We find the matching articles in Code 4.10:12, and store them in
a separate directory for further processing.

At this point, we have a collection of English and Japanese representations
of Wikipedia articles. We take advantage of this collection to build a glos-
sary of translations by the function translate_topics_into_english
(Code 4.11), which will be very handy later. Since all the terms in this collection
relate to the seed topics, they are likely to appear often in the extracted texts

and hence during the alignment process. The glossary created at this point

78

1

S W N

o N &N W

I0
II
12
B
14

def find_equivalents():
file_list_ja=[]
file_list_en=[]
os.chdir('./data/topics') # change to data dir
for file in glob.glob('*_ja.txt'): # for every japanese file
file_list_ja.append(file[:-7]) # get topic from filename
for file in glob.glob('x_en.txt'): # for every english file
file_list_en.append(file[:-7]) # get topic from filename
#store data in pairs
for item in file_list_en:
if item in file_list_ja:
copy('./"+item+' _ja.txt','./pairs/'+item+' _ja.txt")
copy('./"+item+' _en.txt','./pairs/'+item+'_en.txt")
topic_pairs.append(item)
os.chdir('../../") # back to main dir

Code 4.10: Function find_equivalents: Storing equivalent articles.

not only serves as a quick access dictionary, but eliminates potential problems
with polysemy while using a regular dictionary. At the same time this glossary
is used in repeated executions of this stage. The locally stored JSON file is a
very quick alternative to comparatively long lookups in the online Wikipedia

JSON language directory described in Section 4.1, and depicted in Figure 4.2.

4.3.5 Comparison Module

In this module, we determine with the compare function which articles are

to be defined as parallel data candidates, as described in Section 4.2.

79

1 def translate_topics_into_english():

S W N

o N &N W

I0

II

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

file_list=[]
os.chdir('.")

if there is no dictionary file, open a new one
if not os.path.exists('./topics_dict_ja_en.json'):

empty_dict={}

f=open('topics_dict_ja_en.json','w")

json.dump(empty_dict,f)
f.close()
topic_dict_ja_en={}

with codecs.open('topics_dict_ja_en.json','r',encoding='utf8')\

as fdict:

topic_dict_ja_en=json.load(fdict)

translate sorted Japanese files

file_list=[]

for file in glob.glob('data/topics/pairs/*_ja.txt'):

file_list.append(file)
for file in file_ldist:

fout=codecs.open(file[:-4]+'_en_ja.txt','w','utf-8")

with codecs.open(file,'r','utf-8") as f:

lines=f.readlines()
for line 1in lines:
try:

fout.write(topic_dict_ja_en[line[:-1]]+'\n")

except KeyError,

print('KeyError:
trans=get_translation(line[:-1],'ja',"'en")

e:

', str(e))

fout.write(trans+'\n'")

topic_dict_ja_en[line.rstrip()]=trans
print(line.rstrip()+'->"'+trans+' added to \

dictionary')
pass

f=open('topics_dict_ja_en.json','w")

json.dump (topic_dict_ja_en,f)
f.close()

Code 4.11: Function translate_topics_into_english: Storing topics translations in a

JSON file.

8o

The corresponding files containing the article links in English and Japanese
are compared and the number of matching links is counted (Code 4.12:17).
We compute the ratio in (Code 4.12:20) with respect to the total number of
articles. If this ratio meets the threshold (Code 4.12:25), we add the article to
a list, which is returned at the end of this function and becomes the input for

the final module in this stage, the Text Extraction Module.

4.3.6 Text Extraction Module

In this module, we traverse the list of articles that have equivalents above a
certain threshold value and extract their text with the extract_text func-
tion (Code 4.13). Thanks to the convenient Wikipedia library, this process
is straightforward, and merely requires a try/else block to make sure the
program does not stop at an error caused by an inconsistency in a Wikipedia
article, or a transmission error. The result of this module are two collections
of texts, one in English, the other in Japanese, which contain the parallel can-

didates.

81

S W)

c© N &N wn

10
134
12
13
14
15
16
17
18
9

20
21

22

23

24

25

26

27
28

#open both files and compare
for item in file_list_en:
common_counter=0
topics_ja=[]
topics_en=[]
with codecs.open(item+'_ja_en_ja.txt','r','utf-8"') as fja:
lines=fja.readlines()
for line 1in lines:
topics_ja.append(line.split())
with codecs.open(item+'_en.txt','r','utf-8") as fen:
lines=fen.readlines()
for line 1in lines:
topics_en.append(line.split())
for topic_ja in topics_ja:
for topic_en in topics_en:
if topic_ja==topic_en:
common_counter+=1
break
calculating ratio, after counting extracted links for \
each topic
if len(topics_ja)>0:
scounter+=1
similar.append(item)
ratio = float(float(common_counter)/float(len(\
topics_ja)))
if ratio>0.7: # ratio threshold value
print str(common_counter)+' link matches in topic \
>'+ qtem + '< out of total '+ str(len(topics_en))+' links -> \
ratio: '+ str(round(ratio,3))
print 'Total similar pages count: '+str(scounter)
return similar
os.chdir('../../../") # back to main dir

Code 4.12: Function compare: Comparing articles.

82

I

S W S}

© N O\ o«

10
41
12
3
14
15
16
17
18
19

20

21
22
23
24
25

26

def extract_text(link_list):
os.chdir('./data/topics/pairs')
ftext=codecs.open('text_english.txt','w','utf-8")
for item in link_list:
try:
passing article name to get reference to page
p = wikipedia.page(item.strip())
ftext.write(p.content) # getting text from Wikipedia \
page
except wikipedia.exceptions.WikipediaException as e:
pass
scounter-=1
ftext.close()

same for Japanese
ftext=codecs.open('text_japanese.txt','w','utf-8'")
for ditem in link_Tldist:
wikipedia.set_lang('ja')
try:
passing article name to get reference to page
p = wikipedia.page(get_translation(item.strip(),'en',"\
ja"))
ftext.write(p.content)
except wikipedia.exceptions.WikipediaException as e:
pass
scounter2-=1
ftext.close()
os.chdir('../../../") # back to main dir

Code 4.13: Function extract_text: Scraping text of selected pages.

83

4.4 Building Glossaries

The lists of article topics in both languages derived from an initial seed of top-
ics and selected based on common link similarity (described in chapter 4.2)
results in topic related lists of words. This by-product of topic selection is a
quick way to build glossaries according to the initial seeds. These glossaries of
English-Japanese article topics offer the advantage of being semantic equiva-
lents as defined by Wikipedia in conjunction with a certain domain (as defined
by the initial seed), rather than translations from a dictionary, which often re-
quire to choose between several possible translations.

One possible application of such a collection, which can be created dynam-
ically and on-demand with any desired seed of topics, is a glossary preparation
for translators and interpreters. Thisis especially true for interpreters who pre-
pare for assignments in a specialized domain, e.g. a talk on a specific technol-
ogy, a medical topic, or a political debate, such a dynamic bilingual glossary
for a certain topic domain can potentially improve their preparation.

An example of such a glossary built by the seed topic “Airplane” is shown

in Figure 4.4.

84

---English language
Missile

(aeronaut

i

B
E-=
B-
>
#
ft 3
k
55
K
7

TR

strength

Figure 4.4: Glossary example for the topic “Airplane”.

8s

Data is a precious thing and will last longer than
the systems themselves.

Tim Berners-Lee

Data Preparation

5.1 Cleaning and Pre-processing Data

The output of the text scraping from the Python Wikipedialibrary is already
preselected data, and even though the scraping process performs well getting

only text, the data needs to be cleaned before it is sent to the next process-

86

Edict2
JMnedict

Japanese
corpus

Language

Resource Module
edict2_to_json(...)
JMnedict_to_json(...)

qedo

N—Y—

—]

English
corpus

Alignment Preparation
Module
clean...)
tokenize(...)
lemmatize_and_pos_tag(...)

-

Annotated,
lemmatized,
and cleaned

Japanese corpus

— =
\-.____________./

Annotated,

lemmatized,

and cleaned
English corpus

e

Figure 5.1: Modules of the Data Preparation Stage for cleaning the English and Japanese text
collections and preparing them for alignment. Module names are written in bold face, function
names (without parameters) are shown in small, blue font.

ing step. Apart from cleaning the data, we prepare the data by tokenizing,

lemmatizing, and part-of-speech tagging (PoS tagging). Figure 5.1 shows an

overview of the modules, functions, external resources, tools, and data used in

this stage. Code s.1lists the libraries which are required for the rest of the stage.

In addition to the libraries already discussed in Chapter 4, we also use the

sentence tokenizer sent_token1ize from niltk.tokenize, the WordNetLemma-

tizer class from nltk.stem, and the wordnet library from nltk.corpus. The use

of these libraries is explained in Section s.2.1.

87

1

©

import os

import codecs

import re

import nltk

from nltk.tokenize import sent_tokenize
from nltk.stem import WordNetLemmatizer
from nltk.corpus import wordnet

Code 5.1: Preamble: Libraries for Data Preparation Stage.

5.2 Implementation of the Data Preparation Stage

s.2.1 Alignment Preparation Module

The first step is tokenizing on a sentence level in function token1ize, shown
in Code 5.2.

Before that, however, we have to edit the data, due to the following is-
sue: Since the text output from the Wikipedia library sometimes does not
insert spaces between sentences, using the nltk sentence tokenizer function
(Code 5.2:4,11) sometimes results in mistakes. In order to avoid this problem
a small regular expression script is used to add a white space after the full stop
at the end of a sentence. This is done in the command line input of the vim

editor as shown in Code s.3.

The % applies the following command to every line of the file, the s is the

88

1

S W N

o N &N W

I0

II
12
B
14
15

—

def tokenize():
with codecs.open('corpus/text_english.txt','r','utf-8')as f:
lines=f.read()
sentences = sent_tokenize(lines)
print(len(sentences))
with open('corpus/tokenized_text_english.txt','w') as f:
for sentence in sentences:
f.write(sentence.encode('utf-8')+'\n')
with open('corpus/text_japanese.txt','r')as f:
lines=f.read()
sentences=sent_tokenize(lines.decode('utf-8'))
print(len(sentences))
with open('corpus/tokenized_text_japanese.txt','w') as f:
for sentence in sentences:
f.write(sentence.encode('utf-8')+'\n')

Code 5.2: Function token1 ze: Sentence tokenizing with NLTK.

$%s/\N(\.\)\N(TA-Z]\) /\1 \2/¢g

Code 5.3: Vim command line: Adding white space after sentences.

substitute command. The substitute command has two parts separated and
enclosed by three slashes, /original/substitute/. The first part is, in
this case, identifying the punctuation mark between sentences. The period
between the set of parentheses is the full stop of each sentence followed by
the regular expression [A-Z] being any capital letter. With a small fraction of
exceptions, this is a very easy way to identify the end of a sentence as opposed

to a period after an abbreviation, a numbering, or special expression involv-

89

ing a period, such as “...”. The second part, i.e. the substitute follows the
second slash. This part refers to the period and to the capital letter found in
the first part by \ 1 and \ 2, respectively. The white space between these two
adds a white space between every instance of this pattern in the edited text.
The backslashes used in front of the period, the parentheses and the numbers
are necessary to escape the alternative functions of the special characters. A
g character at the end of the substitute stands for “global”, which means ev-
ery instance of this pattern in a line will be processed.

Once the sentences are separated, we remove short sentences, i.e. sentences
below a character count of 30 for English, and 20 for Japanese in function

clean, shown in Code s5.4.

1 def clean():

)

3 for line in text_ja:

4 if not re.search(r'”==.x",1line):
5 if len(line)>20:

6 f_out_ja.write(line)

7 for line in text_en:

8 if not re.search(r'”==.x",1line):
9 if len(line)>30:

10 f_out_en.write(line)

II oo

Code 5.4: Function clean: Removing unwanted data.

90

We found these character counts to be practical to remove headlines, and
other short texts, which are not full sentences. The Japanese character count
is lower since Japanese characters denote more content with fewer characters.
The character counts certainly depend on the text type and other factors and
should be set as needed. The 20/30 character cutoff proved to be sufhicient to
eliminate very short sentences, titles and headers in our experiments without
removing good data. This is shown in Code 5.4. This function is also setup
to remove any other noisy data. More searches can be included analogous to
Code 5.4:4,8 if any other sentences with noisy patterns are to be identified and
eliminated.

Next, we use the lemmatize_and_pos_tag function to lemmatize and
PoS tag the data. First, we lemmatize the English text and convert each word
to lower case, unless it is a proper noun. Lemmatized forms are crucial for
finding translations during the Sentence Alignment Stage, and making proper
nouns easy to identify enables an easy look up of such signal words in the dic-
tionary. The step of lemmatizing is particularly computationally intensive;
100k English sentences took roughly 27 hours in the course of the first exper-
iment. The hardware specifications of the desktop computer on which this

runtime was observed is listed in Table 3.3, Section 3.4. Code 5.5 shows this

91

A recent study found periodic eye movements in the central bearded dragon
of Australia, leading its authors to speculate that the common ancestor

of amniotes may therefore have manifested some precursor to REMS.

Sleep deprivation experiments on non-human animals can be set up

differently than those on humans.

The “flower pot” method involves placing a laboratory animal above water

on a platform so small that it falls off upon losing muscle tone.

The naturally rude awakening which results may elicit changes in the

organism which necessarily exceed the simple absence of a sleep phase.

This method also stops working after about 3 days as the subjects

(typically rats) lose their will to avoid the water.

\. J

Table 5.1: English sentences, before lemmatizing.

process in detail. First, we word tokenize the text in Code s.5:6, then PoS tag
in the following line. By default the PoS format is a tuple with the word at
position [0] and the PoS tag at position [1]. Starting at Code s.5:11, we leave
the entry in upper case if it is a proper noun, and convert to lower case if it
is any other noun form or at the beginning of the sentence. If it is a verb
(Code 5.5:18), we convert it to its dictionary form.

An example of five sentences before this processing is shown in Table 5.1,
and the resulting changes in Table s.2.

The Japanese text is also PoS tagged, however, this is done with an external

command line tool, the AeCab open-source segmentation library, originally

92

I

def lemmatize_and_pos_tag(lang):

2 oo

3

c© N &N W

10
i
12
13
14
15
16
17
18
19
20
21

22

wl=WordNetLemmatizer ()
with codecs.open('corpus/\
english_sentences_clean_lemmatized.txt','w', 'utf-8') as f:
for line 1in lines:
text=nltk.word_tokenize(line) # tokenize words
pos=nltk.pos_tag(text) # PoS tagging
sentence=""
for word in pos:
lemma=word[0]
if word[1] != 'NNP': # if not proper noun
lemma=1lemma.lower () # to lower case
if 'NN' 1in word[1]: # if other noun
if 'NNS' in word[1]: # to lower case
lemma=1lemma. lower ()
lemmatize nouns
lemma=wl.lemmatize(lemma,wordnet.NOUN)
if 'VB' in word[1]:
lemmatize verbs
lemma=wl.lemmatize(word[0],'Vv")
sentence+=lemma+' '
f.write(sentence+'\n'")

Code 5.5: Function lemmatize_and_pos_tag: PoS tagging and lemmatizing English
sentences.

93

1

a recent study find periodic eye movement in the central beard dragon
of Australia , lead its author to speculate that the common ancestor

of amniote may therefore have manifest some precursor to REMS .

sleep deprivation experiment on non-human animal can be set up

differently than those on human .

the “flower pot” method involve place a laboratory animal above water

on a platform so small that it fall off upon lose muscle tone .

the naturally rude awaken which result may elicit change in the

organism which necessarily exceed the simple absence of a sleep phase .

this method also stop work after about 3 day as the subject

(typically rat) lose their will to avoid the water .

\. J

Table 5.2: English sentences, after lemmatizing.

developed at the Nara Institute of Science and Technology. More information
on MeCab is provided in Section 3.3.

Before that, however, we make sure to convert numerals in the Japanese
text from full-width to half-width. Half width is used in English texts, hence
comparisons will be much easier later. This is important, since numbers are
particularly good signal tokens when aligning.

This is once more done with a regular expression in the vim editor com-

mand line as seen in Code 5.6. Similar to Code 5.3, it is a substitution com-

:%s/[\uffel-\uffs5e]/\=nr2char (char2nr(submatch(0))-65248)/g

Code 5.6: Vim command line: Converting numbers from full-width to half-width representation.

94

mand. The first part, the text pattern to be replaced is the character range
with the hexadecimal identification (unicode code point): \uffe1-\uffse.
If a character is found matching this value, we convert it into its decimal repre-
sentation with char2nr. We then subtract 65248 from it and convert it back
into the code point representation with nr2char, which is the half-width

code point of the same number.

s.2.2 Language Resource Module

The second part of this stage is the Language Resource Module. Here we
transfer the dictionary files /Mnedict and edictz to a JSON format. We chose
to do this conversion for consistency, as we use the same JSON format for
other resources, and for flexibility, as it allows the selection and addition of
certain features from the resources. In Code 5.7 the conversion of [Mnedict
with function IMnedict_to_json is shown. In Code 5.7:10 we extract the
named entities in Japanese and their English equivalents and store them as
JSON objects.

In the function edict2_to_json, shown in Code 5.8, the conversion
from the edictz file is shown, which is not as well structured as the XM L-based

JMnedict, therefore, we had to apply several string operations (Code 5.8:8-17)

95

1 def IMnedict_to_json():

S W N

o N &N W

10
134
12
13
14
15
16
17
18

20

with codecs.open('resources/JIMnedict.xml','r','utf-8') as f:
lines=f.readlines()
dictJAEN={}
kanji=""
gloss=[]
for line in lines:
if '<entry>' din line:
kanji=""
gloss=[]
glossitem=""
if '<keb>' din line:
kanji = line[5:-7] # get item (Japanese NE)
if '<trans_det>' 1in line:
get glossary entry (English equivalent)
glossitem = line[11:-13]
gloss.append(glossitem)
dictJAEN[kanji]=gloss # store in list
with codecs.open('resources/JIMnedict.json','w','utf-8') as f:
json.dump(dictJAEN,f) # write to JSON file

Code 5.7: Function JMnedict_to_json: Converting JMnedict to JSON format.

to distill the content to our needs and finally also store it in JSON format.

96

1 def edict2_to_json():

2 e

3

»

© N &\ wn

I0

II
12
3
14

15
16

17
18
19
20
21

22

for line in lines:
jap_word_Tlist=[]
jap_word_list="'"'.join(line.split("' '")[0]).split(';")
get translations
translations=[]
for +didx, item in enumerate(line.split('/')):
if idx!=0 and re.search('\w+',item) and 'EntL' not in \

item:
#tremoving {} and anything in between
item=re.sub('\{[")]*\}',""',item).strip()
#tremoving ()
item=re.sub('\([")]*\)","",item).strip()
#iremoving) -because of nested parenthesis mess -1in\
edict2-

item=re.sub('\)','"',item).strip()
if not re.search('![- ~]',item) and not re.search)\
("\?'",item) and item!="":
translations.append(item)
for item in jap_word_list:
item=re.sub('\([*)]*\)","",item).strip() #removing ()
dictJAEN[item]=translations
with codecs.open('resources/edict2.json','w','utf-8') as f:
json.dump (dictJAEN, f)

Code 5.8: Function edict2_to_json: Converting edict2 to JSON format.

97

1t’s hardware that makes a machine fast. It'’s

software than makes a fast machine slow.

Craig Bruce

Sentence Alignment

In this chapter we describe our approach to aligning Japanese and English sen-
tences from a dataset which contains a mix of translations and paraphrasing;
generally speaking sentences with various levels of similarity.

In order to align these sentences, various properties of text can be consid-

ered as indicators for equivalence. Some are mostly independent of language,

98

such as sentence length, numbers, international terminology, or names. How-
ever, some of these comparisons are not always possible, due to various types
of differences between highly dissimilar language pairs. The Japanese-English
language pair is in this category and poses multiple issues, as mentioned in
Section 1.1.3.

Other alignment criteria are content words, which have to be translated,
in order to find their equivalents. Some word categories can and should be
omitted, since they do not significantly contribute to finding equivalences but
rather introduce noise, due to differences between the languages.

There are several advantages of translating from Japanese to English and
to make English the language of comparison:

* English is written with one alphabet as opposed to Japanese, which makes
comparison easier.

* Itis easier to identify foreign words and terminology in Japanese, since
they are usually written in Katakana, so they can be spotted prior to
translation.

* English is well suited as a pivot language, so modules can be adjusted for
other languages in combination with English.

The following section elucidates the procedure of assigning the alignment
scores to sentences followed by a detailed discussion of the metric itself. Fur-

ther, an example of the alignment of one Japanese sentence is broken down

99

as a showcase. In this example, five sentences represent the set of alignment
candidates in the English corpus. The chapter concludes with an explanation

of the source code in the Sentence Alignment Stage.

6.1 Algorithm

The algorithm iterates over each word, i.e. POS entity, of a Japanese sentence
and looks for equivalents within the English corpus. Particles and auxiliary
verbs are omitted for the following reasons: They are frequentin Japanese and
are less significant for the purpose of the alignment comparison than content
words, numbers, named entities, and foreign words.

Examining sentence structures according to particles and auxiliary verbs
would be possible, however it would require a deep analysis of the Japanese
sentence and an equally deep analysis of the English sentence, in order to find
a matching phrase. Additionally, varying uses of these particles can also lead
to false assumptions and false matches. This is discussed in more detail in Sec-
tion 1.1.3 on language specific issues. Although a detailed analysis of particles
and phrases might benefit the alignment, the gain versus cost ratio would be
disproportionally high compared to the ratio of simpler comparisons.

The algorithm sequence starts with a check for occurrences of numeric val-

100

ues written in Arabic numbers. This could be a measurement, a date, a quan-
tity, etc. Since Japanese also uses Arabic numbers, this is one of the easiest
and straightforward indicators for similar content. Each time a number value
equivalent is found in the English corpus, the score of the particular sentence
is increased.

The next step is finding the translation of each word in the Japanese sen-
tence into English with the help of language resources like ediczz (all resources
used for translation and comparison are discussed in Section 3.2). Asitis usu-
ally the case in translations, polysemy is the biggest problem here. A selec-
tion of the correct translation would require a semantic analysis of the entire
sentence, or maybe even paragraph, hence is not possible, given the compu-
tational restrictions of this approach. In previous work by Utiyama and Isa-
hara (2003) only two English translations were selected, using a simple heuris-
tics based on frequencies of English words. In contrast to that, every available
word in the list of possible translations is used in this algorithm. Thisincreases
the computational effort, however, it also improves accuracy significantly, so
the performance loss is justified.

The English corpusis searched for a translation of each Japanese word. Spe-

cial cases are numbers, which could be dates, measurements or quantities and

I01

named entities. Numbers are matched directly, while equivalents of named
entities are obtained from the /AMnedict language resource.

Each possible translation obtained from the dictionary resources is matched
to candidates in the English corpus and an alignment score is increased, if a
match is found. The sum of the match increments results in the alignment
metric described in the next section. After the iteration of a Japanese sentence
is complete, the English candidate sentence, i.c. the sentence with the highest

score, is marked as a potential parallel sentence.

6.2 Alignment Metric

The alignment metric depends on the number of matches identified in the
above described algorithm. It is a sum of matches, weighted and normalized

over the length of the matched sentence:

score; = Zmij (w + l_>

j=1

score; ist the score of the i target sentence. n; is the length of the source

sentence, in this case the Japanese sentence, m;, is the match value of this to-

102

ken, in this case 1 for each match and 0 (zero) for no match. w is the weight,
which can be adjusted according to how strong either a translation, a named
entity or a numerical value match are to be emphasized as an alignment indi-
cator. This value is currently a constant, since it is not changed for either of
the above mentioned cases. However, the module allows for an easy change
of the weight for each case to examine a potential improvement of the results.
This is planned to be done in future work. Finally, /; is the length of the target

sequence, in this case, the English sentence.

6.3 Example of Sentence Alignment

The alignment process iterates over the corpus of Japanese sentences. For each
sentence, the English sentence corpus is examined for similarities and a score
is assigned for each sentence based on the metric described above.

For the purpose of illustration, one Japanese sentence and five English sen-
tences represent the corpora. This would be the iteration of comparing one
Japanese sentence from the Japanese corpus to the sequence of sentences in
the English corpus, which in this example would consist of five sentences. The
Japanese sentence is shown in Figure 6.1.

The five English alignment candidate sentences are shown in Figure 6.2.

103

2003 - BEENZ T DOEDOFH - RBERPEATINT VS0 Z GBS 5
R

Figure 6.1: Japanese example sentence.

These sentences are processed and prepared as described in Section s.2.1.

I. 2003 an attempt to estimate how much new information is created

each year

2. In 2003, the United States invaded Iraq despite failing to pass a UN

Security Council resolution for authorization.

3. A 2003 study argues the common chimpanzee should be included in

the human branch as Homo troglodytes.

4. The Commonwealth’s current highest-priority aims are on the
romotion of democracy and development, as outlined in the 2003

Aso Rock Declaration.

5. An attempt to renew these efforts has be undertaken yearly, since

2003.

Figure 6.2: English example sentences.

As explained in Section s.1, the Japanese sentence is tokenized and PoS-

tagged with MeCab. The result is shown in Table 6.1.

104

"9dUdUS
s m_QEm
X
5 asaueder 4o s3
e3}-G0d :
‘T'99l9e
1

(ro303j0Y)
Q.COESW:E wmw
4 ww,wﬁ v (Terouad=uedd
1) 3
(om) % (3uapuads &
pur=nsipf (unou=rys
A e) 78) ey | (
) « spnied =1ysof (qroa= - Hee)
¢ ~ e fooyey) b sy SA=1YSOP) [- 100 ¥yt
.Lmo.:uﬂw . 3:.3@& (371 - Iouwmsay -
() o o /1ysofnsiup /wunlpe= prred=rysof o)
" ?rmpmw* \Eﬁj\ y/1ysofnsny) rysof) e g FHY
(o) :uwc&uvcﬁl‘wuﬁ\ [[(opnied= (om) Z
G 5 (opnred sapo 1=nsuf) ﬁMwm_m nred=rysol) (g
1I) o RENCRES s a
(3 s (®
(asepram) 6. - ofnyjoznsias) (qroa=rysop) [z (¥) «¢
(¥9)] Oc?ﬁsmnﬁsﬁumv 5 (spnred o (nr)
§ spuad 7 PRei=Y 2
(oyof) M4 (spnred adopur=nsipif ! sol) ety !
' 1Jed 9SBd= i) 7TE (qron= Aw
(v (v =tsolnope (KIS0P) kE V>
P) esuad=ued D LS qroATy50P)
dr) (c IsOp) (31)
TH— prred= bg | (v w
. (Gnou= =1ysol) 1 eprun) 2 v
1) 2L (wa1s qIaA 3 =[ysIow) [ut (¥8) « +
A (2%) s
o) o malpreurof qion Aregpxne oD
S e wysopol) @ = oUS) R
M@r = ?ouSmMMm e pokioy) opol) pig e
ou I=¢ u) ¥
(e)@ :chumncﬁwc&v IR 75 (unou=1ys)
P) (13 (uoner eddr) z— - (3p Hstow) e
(s10pP) 1t (opr 3nur=ere) o Pl s (eae
] . b g H =
(rysoare = nsed ounfpe= ua3) A (unou=rys)) 4k
—— (uno e (HSiau) (o)
1} uoid= [n3yny) 2 spnied= 'y @
(g IYSIawre [z (i =1ysof) (of
. ApE=OUEYIsn 1ep) 2N} (epnred=1ys H | A1) 7
4 3 =Iyso
o 05 20 [e () peg (ou) @
R n 159UU0D 2 rystow (e
yoznsiosu = AESOEI - v [EE7 ﬁv Jap.
W10§-100 uﬂdwv a0 Iﬁﬂmﬁuav - Aquﬁ :
1 ?oQESGHSNM BRI (uno e (1so) UR
: VC w«% G”MJmMDEV . : UMNEV m@u.mlm,\
qns (Gnoo= 2%
|w£mwuav [:
SOd - €007
u3j0)

10§

The result of the iteration of the Japanese sentence checking all language
resources, while omitting particles and auxiliary verbs is shown in Table 6.2.
In Table 6.3, the English sentences in their lemmatized form are matched with
the output from the iteration of the Japanese sentence. The matches are high-
lighted in Table 6.3. The first sentence contains § matching tokens, sentence
four has 4, while the others have one each. A graphical depiction of the match-
ing process is shown in Figure 6.3. The tokens which are colored red are dis-
carded, the tokens with POS-tag results in green are looked up in the lexical
resources and equivalent expressions are searched amongst the English sen-
tences. Matches are connected with lines and highlighted.

The scores are calculated according to the alignment metric in Section 6.2,
which results in:

» Sentence 1: Sentence length: 13, weight:o.5, matches:s
(0.5 + 55) * 5 = 2.885;

» Sentence 2: Sentence length: 18, weight:o.s5, matches:1
(0.54 &) = 1 =0.556;

» Sentence 3: Sentence length: 17, weight:o.5, matches:1
(0.54 &) %1 =0.559;

» Sentence 4: Sentence length: 22, weight:o.5, matches:1
(0.5 + 55) * 1 = 0.545;

* Sentence 5: Sentence length: 12, weight:o.5, matches:4
(0.5+ &) *4 =2.333

106

’ token ‘ translation

2003 2003
A
S every year, yearly, annually
(maitoshi)
o
& (ryo) progress
¥r7z (arata) new, fresh, novel
5% (joho) information, news, intelligence, advices
A X to create, to bring forth, to produce, to invent,
(umidasa) | to think up and bring into being, to give birth to, to bear
HES 5 .
. to estimate
(mitsumoru)
kA attempt, trial, experiment, endeavour (endeavor),
(kokoromi) effort, venture, initiative

Table 6.2: Translations of tokens of Japanese sentence into English.

The sentence with the highest score is considered the most likely alignment
candidate, in this case, Sentence 1. According to the needs, i.e. the type of
text, the domain, etc., the weights of the metric can be optionally adjusted
at each match, so that, e.g. numbers, names, signal words or terminology is
considered more indicative of an alignment, and such a match will resultin a
higher score. The weight is kept constant for the experiments shown in the
thesis. Adjustments of this value might result in improvements of alignment,

although it requires some experimentation, so this is reserved for future work.

107

2003-HHEENFZ T OEDOH - BRI EAH IR TVWE D%
R ® il A (2003-maitoshi dore dake no ryo no aratana joho

ga umidasa rete iru ka wo mitsumoru kokoromi)

2003 an attempt to estimate how much new information be create each year .

Alignment Score: 2.885

in 2003 , the United state invade Iraq despite fail to pass a UN Security Council

resolution for authorization .

Alignment Score: 0.556

a 2003 study argue the common chimpanzee should be include

in the human branch as Homo troglodytes .

Alignment Score: 0.559

the Commonwealth ’s current highest-priority aim be on the promotion of

democracy and development , as outline in the 2003 Aso Rock Declaration .

Alignment Score: 0.545

An attempt to renew these efforts has be undertaken yearly , since 2003.

Alignment Score: 2.333

Table 6.3: Target sentences with matches highlighted, and their resulting scores.

108

‘pazijensiA 3uiyolew pue 3uid33e}-sOd :£°9 2nSi4

paiybiyBiy suaxol Buiyarew yum asuajuas ysijbug

ﬁ Ieak H _._oa.o,H ayealn E uonewLoul H mau H yonw H.so_._ H arewnsa g idwaye Hmaauu

—— 1 synsaidnyjogj [edixa

1eaq
0} ‘03 yuiq anb
aAleniul 0} ‘Bulaq ojul [aAou Kjrenuue

‘aimuan ‘uoye Buiig pue dn e Ll ‘ysayy E S
Inonepua HUIy3 0} “Juanul B AE ‘mau 1eak fiana
‘Juawadxa 01 ‘aonpoud uolyeuLIojul

saolnpe

‘rely Ydwane 0} ‘yuoj bunq
0] ‘ajeatd o)

L ~ [)
dnyoo| _+_xm_ 0] puas ‘Euayo) piom [gubis

r L
resauah juapuadapui juapuadapul juapuadapul esauab resauab qianpe laquinu
-unou - qian - qIan - qian -unou -unou -unou -unou
2

paybyybiy m:ﬂu_ﬂ Buiyoyew Jum wo:o-=+ asauedef]
em| coww [¢ [en) 2 [u) 2mes gﬂw;@uﬁ Hﬂ = GHEH:MH&&H ~ Je00z)

JJ i S R P

(m__._,&._o._. ﬁmﬂ__mom_n_)
ﬁ ajonred H ajoned H ajoned H Xiyns H ajanred Heg.ﬁaH aponred H ajonred H ajoned H:S:EH_H =a_ﬁn==3u

wajs qIan
aAnaalpe-unou

109

6.4 Implementation of the Sentence Alignment Stage

In this section, we explain the structure and source code of this stage as shown
in Figure 6.4. The central part is the Alignment Module, which receives the
prepared Japanese and English corpus data as well as dictionary data from
JMnedict and edictz in JSON format, converted in the Language Resource
Module in the Data Preparation Stage, described in Section 5.2.2. The out-
put of this module are English and Japanese sentences in the form of a paral-
lel corpus with each sentence having assigned a score according to the metric
described in Section 6.2. For this stage we do not require any new library
imports, other than some of the ones we already explained in the previous
stages. We show a list of them in Code 6.1 for the sake of completeness and

consistency.

110

I ———
e I

English corpus

o I
— e

Japanese corpus

Alignment
Module JMnedict, edict2
align(...)
. o

English-Japanese
parallel corpus

Figure 6.4: Overview of the Sentence Alignment Stage. Module names are written in bold face,
function names (without parameters) are shown in small, blue font.

111

1

2

3

I

2

S W

c N &N W

import codecs
import json
import re

Code 6.1: Preamble: Libraries for Sentence Alignment Stage.

6.4.1 Alignment Module

This module aligns the English sentences with the best suited Japanese sen-
tences according to criteria discussed in Section 6.1 and implemented in the
align function.

In the first part of the function we load the JSON dictionaries prepared in
the Data Preparation Stage (Code 6.2). It is important to remember the use

of utf-8 encoding for reading and writing Japanese characters.

def align():
#dictionary files
H %k Kk K %k ok kK %k k kK sk ok ok k ok kK sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ke ok ok ok ok
with codecs.open('JMnedict.json','r','utf-8"') as f:
JMnedict= json.load(f)
with codecs.open('edict2.json','r','utf-8"') as f:
edict2= json.load(f)

H %k Kk Kk ok kK k k ok ok sk ok Kk ok ok ok sk ok ok ok sk ok ok ke ok

Code 6.2: Function a'lign: Loading dictionary files.

In the second part of the function, we initialize all variables and data struc-

tures that will be used (Code 6.3:1-6), in particular an array which will contain

112

®©w N &N v WP

o

10

the scores for each alignment candidate sentence (6.4:7-9).

temp_lines = f_out.readlines()
jap_counter=len(temp_T1lines)
translations=[]
match_dict={}
content_matches_list=[]
temp_counter=0
array=[] # metric values will be stored here
for didx in enumerate(eng_lemmas):
init to 0 for number of english sentences
array.append(float(0))

Code 6.3: Function align (cont.): Initializing variables and data structures.

In Code 6.4:11, we start to iterate through the elements of the PoS tags of
each Japanese sentence. The next line, although first in the code sequence, is
the code block, which is executed when we reach the end of a Japanese sen-
tence (Code 6.4:12). We explain this code block first even though it is not in
line with the chronological program flow.

Each time every token of a Japanese sentence was traversed the result is
written to two files. The first file (Code 6.4:16) contains the sequential num-
ber (in the input file) of the currently examined Japanese sentence and the
sequential number of the English sentence, which was assigned the highest
match probability, followed by the score. This file is written to allow for a

quick overview during and after the alignment process and debugging, and

113

1

2

(o) NNV S N)

I0
II
12
B
14

for idx in enumerate(eng_lemmas):
array.append(float(0))
for pos_tag in pos_tags:
if '"EOS' in pos_tag:
weighted score algorithm
Bhhhkhkhkhkhkhkhkhkhkhkkhkkkhkkkhkkkhkhkkhkkkhkhkkhkhkkhkhkkhkhkkhkkkkkkkkkk
find highest value in <array> array, index is the \
sentence number
f_out.write('<ALIGN><JAP>'+str(jap_counter)+'<ENG>'+str(\
array.index(max(array))+1)+'<SCORE>'+str(max(array))+'\n')
f_parallel.write(str(max(array))+' ||| '+text_jap[\
jap_counter-1].strip()+' ||| '+text_engl[array.index(max(array))\
l.strip()+'\n")
H 5k K %k K ok K ok K ok K ok K ok k ok K ok ok ok k ke k ke ok ke k ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok
jap_counter+=1 # japanese sentence counter
for didx,val in enumerate(array):
array[idx]=float(0)
print 'Processing sentence '+str(jap_counter)+' of '+str(\
len(text_jap))

Code 6.4: Function a'lign (cont.): Writing parallel data and scores.

for shorter loading times in general. Especially when the data volume exceeds
several dozens of Megabyte, a smaller representation of the results, which can
be opened quickly, is very useful.

The file which contains the entire aligned data is created in the next line
(Code 6.4:17). Here we write the score first, so it is visible immediately when
the file is opened followed by the Japanese sentence, and finally the English

alignment candidate.

114

The counter for accessing sentences in the data set is increased and the in-
dex for the array storing the alignment scores is reset for the iteration of the
next Japanese sentence ((Code 6.4:19-22).

In the next part of the function shown in Code 6.5, we check for matches

of numerals.

We make sure this check is performed only once per Japanese sentence with
a temporary counter in Code 6.5:4-5, and determine whether there is a nu-
meral in the sentence with a regular expression search in Code 6.5:7. If one or
more numerals are found, the for loop at Code 6.5:10 is activated which iter-
ates through the numerals in the Japanese sentence. Each one is then checked
for a match in the English sentences. When a match is found, the score is
increased, according to the metric (Section 6.2), in Code 6.5:17. The try/ex-
cept blocks for both the regular expression check and the search for the match
prevent the code from crashing if an out of bounds array member is refer-
enced.

In the next part (Code 6.6), we take advantage of another potential signal
word, the occasional use of Latin characters in Japanese.

This appears usually in acronyms and some foreign named entities. In

115

Code 6.6:3 we check for the AeCab class which identifies Latin characters.
Numbers also fall in this category, however, MeCab tends to split numbers
into individual numerals, rather than taking the entire number (for example,
the year 2015 would be split into 2,0,1, and 5). This is the reason for dealing
with numerals separately in Code 6.5. Hence, we skip further processing, if
we encounter a number at this point. We then proceed to checking every En-
glish sentence for an occurrence of the Latin string we found in the Japanese
sentence. If matches are found, the array with the scores is updated accord-
ingly.

In Code 6.7 we check for matches from the named entity dictionary /Mne-
dict and the dictionary edictz.

The named entity check is only performed, if MeCab has identified this
token as a named entity (Code 6.7:3). If the current token is not a named
entity we check for other excluded PoS tags in Code 6.7:15. A description of
which tags are omitted and the reason behind it is provided in Section 6.1. All
remaining PoS tags are checked in the dictionary.

In Code 6.8 we look for matches in English sentences, if a translation was
retrieved from the dictionaries in Code 6.7. If a match is found, the score for

that sentence is updated.

116

1 digit_matches=[]

> # do that only once per sentence (NB we're qiterating POS tags!)

3
4

0 N O o«

\o

I0

1§
12
13
14
15
16
17
18

19
20

21

if temp_counter!=jap_counter:
temp_counter=jap_counter
try:
finding sequences of numerals

digit_matches=re.findall(r'\d+',text_jap[jap_counter-1])

except:
pass

if numerals were found, looking for equivalents in english \

data
for match in digit_matches:
jap_word=match
eng_counter=0
for eng_lemma in eng_lemmas:
eng_counter+=1
try:

if re.search(r'\b'+jap_word+r'\b',eng_lemma):
array[eng_counter-1]+=float(0.5)+float(float)\

(1) /len(eng_lemma.split(' ")))
except re.error,e:
print 'passing re.error at translation:
pass

b

e

Code 6.5: Function a'lign (cont.): Finding sentences with numerals.

1y

I

N

c N &N wn

I0

II

12

3

look for romaji in japanese sentences (works badly with
numbers, since mecab tagging splits them up in single digits
if '# 7' .decode('utf-8"') 1in pos_tag and not re.search(r'\d+',\

jap_word):
if re.search('\w',jap_word):
eng_counter=0
for eng_lemma in eng_lemmas:
eng_counter+=1
try:

if re.search(r'\b'+jap_word+r'\b',eng_lemma) :
array[eng_counter-1]+=float(0.5)+float(float)\

(1) /len(eng_lemma.split(' ")))
except re.error,e:
print 'passing re.error at translation:
pass

)

@

Code 6.6: Function a'lign (cont.): Checking for Latin characters.

118

I
2

3
4

c© N &N wn

o

I0

II

12
B
14
15

translations=[]
if named entity, look for match in nedict
if '[E A 4 F ' .decode('utf-8') 1in pos_tag:
try:
translations=JIMnedict[jap_word]
except KeyError,e:
pass
else: # else look for match in regular dictionary
excluding certain japanese pos forms from dictionary lookup
#(no particle, aux verb, etc)
if not translations and 'l ii'.decode('utf-8"') not in pos_tag\
and "B @) i ' .decode('utf-8') not in pos_tag:
try:
translations=edict2[jap_word]
except KeyError,e:
pass

Code 6.7: Function a'lign (cont.): Dictionary lookups.

119

S W N

c N &N wn

I0

II

I2

3

14
15
16

17

if translations: # if any translation was found
for translation in translations:
eng_counter=0
translation=re.sub('\(.x?\)"',"'',translation)
for eng_lemma in eng_lemmas:
eng_counter+=1
try:
if re.search(r'\b'+translation+r'\b',eng_lemma\

array[eng_counter-1]+=float(0.5)+float(\
float(1l)/len(eng_lemma.split(' ')))
english_sentence_length=1len(eng_lemma)
japanese_sentence_length=len(text_jap[\
jap_counter-1].encode('utf-8"))
except re.error,e:
print 'passing re.error at translation: ', e, \
translation
pass
match_dict[jap_counter]=content_matches_1list
f_out.close()
f_parallel.close()

Code 6.8: Function align (cont.): Finding translated matches.

120

The greatest enemy of knowledge is not

ignorance, it is the illusion of knowledge.

Stephen Hawking

Evaluation

The result of extracting, preparing, and aligning data in Chapters 4, s,
and 6 is a collection of Japanese-English sentence pairs. These sentence pairs
are candidates for a parallel corpus. Whether they can be regarded as paral-

lel sentences, i.e. translations which fulfil a certain quality measure, has to

121

be evaluated. During the alignment process, each sentence pair is assigned a
score, which indicates the similarities between said sentences. Hence the first

evaluation is done automatically and inherently using the alignment metric.

7.1 Metric Score — Automatic Scoring

During the alignment process, a score is assigned according to the alignment
metric. Roughly speaking, the higher the score, the higher the number of
matches between these sentences. The quality measure given by the score for
each alignment candidate results from the number of content words which
are potentially equivalent. The possibility of additionally identifying wrong
matches cannot be excluded, since every possible translation for ambiguous
cases is considered and might result in false positives. On the other hand, there
are matches that could be missed, such as numerals which are written as num-
bers in one language and words in the other.

Another factor, which influences the score, is the sentence length. The
longer the sentence where a match was found, the lower the score. We do this
under the assumption that longer sentences inherently have a higher chance
to contain a certain word. The alignment metric adds the same weight to

the score of the sentence pair where a match was found, which means that

122

each match, regardless whether it is a content word, a number, terminology
or a proper noun, is treated equally important. This weight can be adjusted,
which is planned as future work, in order to examine alignments based on
variable weighting. Details of the metric are discussed in Section 6.2. After the
alignment is finished, the corpus is sorted by the score value. The best scoring

2000 sentences have been selected for evaluation by a translation expert.

7.2 Quality Measure by a Translation Expert

Evaluation of translations is a complex task and assigning a score can be very
intricate depending on the quality requirements.

The evaluation of the data obtained by the framework is fairly straight-
forward as opposed to translations which require evaluation of a tone or a
style. Nonetheless, the process of manually checking each sentence is labori-
ous, hence we have selected a manageable number of sentences for the expert,
based on our metric.

In order to identify potential translations as opposed to the sentence pairs
which are not, but are still viable for statistical training and other language
technology applications, three categories were used:

Sentence pairs that are not classified as translations can still be viable for

123

statistical training and other language technology applications. We created
categories that include these three possibilities.

* no equivalence,

* partially equivalent,

* good equivalence/potential translation.

The first category “no equivalence” includes sentence pairs that might con-
tain matches, but apart from that the sentence cannot be classified as a transla-
tion, and therefore cannot be used as parallel data in any way. This is usually
due to polysemy or other false positive alignment properties.

The second category “partially equivalent” includes sentence pairs contain-
ing only few correct matches between the sentences. Although they are not
good translations, we can still use them for some language applications de-
pending on the requirements.

The third category “good equivalence/potential translation” includes sentences
where the majority of signal words match, or which can clearly be qualified as
potential translations.

Quality amongst the potential translations is not scrutinized, since this is
far beyond the scope of this work.

In other words, as described in Section 6.2, components of sentences which

are equivalent and hence are indicative of a translation increase the match

124

score. This metric is the first measure of how close the Japanese sentence is
to the English sentence. Even if the score is high, this does not necessarily
mean that the sentences are good translation candidates.

Depending on the requirements of the corpus, the quality criteria can be
divided into several categories. An application which aims, for example, at ter-
minology extraction, or requires a high number of equivalent content across
sentences can purely rely on the similarity metric, described in Section 6.2. If
the application requires aligned sentences thatare translations or close enough
to be considered as such, a more strict scoring needs to be applied. From this

point on, a human expert is needed to confirm the quality.

7.3 Evaluation Results

In this section we summarize the output of our experiment and discuss our
evaluation results. We created a corpus of 66,000 sentence pairs for evalua-
tion. The 2000 highest scoring sentences, according to the alignment met-
ric, were evaluated by a human expert. The expert scored the equivalence of
the sentences with 1, 0.5, and o, corresponding to the categories presented in
Section 7.2. The percentage of good equivalence/potential translations was

roughly 1% and partially equivalent 22.5%. The low ratio of good equivalents

125

score range O CALAL e partially equivalent | no equivalence
potential translation
9.5-10.0 5 % 29% 66%
9.0-9.49 4 % 25% 71%
8.5-8.99 4% 21% 75%
8.0-8.49 3% 20% 77%
7.5-7-99 1% 10% 89%
7.0-7.49 2% 15% 83%

Table 7.1: Results of human expert evaluation.

indicates that a large portion of Wikipedia articles is not a direct translation.
The weight of the metric, which is used to generate the candidates, could be
used as a tuning measure to yield potentially higher percentages. The result
of the expert evaluation is summarized in Table 7.1.

As can be seen in Table 7.1, the percentage of good translation candidates
increases with the score assigned by the alignment metric. This confirms the
soundness of the metric. However, the overall result of good translations
candidates is rather small. This could be due to false positive hits during the
alignment (see Section 6.2 for a detailed discussion), and/or the fact that the
English-Japanese Wikipedia content for the domain does not contain many
translations, similar articles, and is more likely to have been created indepen-

dently.

126

The second category, the sentence pairs which have been evaluated to be of
similar content, also indicates the relation between the metricand human eval-
uation and is overall much higher. This can be taken as a rough indication of
the percentage of similar English-Japanese content within this domain, which

might have been created independently, but describing similar topics.

7.4 Runtimes

One of the benefits of our framework is that it can produce quick results on
regular hardware that can be found in almost anyone’s home these days. Even
a fairly modern laptop computer is enough to obtain a dataset in a reasonable
amount of time. In addition to the capability of creating potentially large
parallel text resources, this opens up the possibility for freelance translators to
quickly obtain a collection of bilingual data or a glossary of terms in a certain
domain. This also allows quick checks for availability of text on Wikipedia
for a selected set of topics.

There are many possible applications and most importantly the applica-
tion is scalable. We do not need a huge data set to get off the ground like
most deep learning applications but can work with small datasets as well as

large ones. As opposed to many other parallel data acquisition applications

127

mentioned in Section 2.7, our framework is scalable and can be run on mod-
est hardware. In this showcase, we use a rather dated piece of hardware and
demonstrate an acceptable turnaround for a small data set. In Table 7.2, we
show the runtime for each module of the framework and the corresponding
output of data, if applicable (English output is denoted with ‘en’, Japanese
with Ga’).

We do notlist The Translation Module separately in Table 7.2 sinceitis not
part of the sequential processing pipeline but is invoked on demand by the
Topic Extraction Module, the Formatting Module, and the Matching Mod-
ule, as shown in Section 4.3.2, and Figure 4.3.

We use a seed of 10 articles for this example and limit the number of col-
lected links to 2,500 per article. It is important to mention that some mod-
ules of the framework are more influenced by the performance of the hard-
ware than others. The timing showcase presented in Table 7.2 is done on the
desktop computer which is described in Section 3.4. As can be seen in this ex-
periment, the Topic Extraction, Alignment Preparation, and the Alignment
Module require the most time.

In case of the Topic Extraction Module that is due to the online lookups in

Wikipedia, which means that this depends rather on bandwidth than on the

12.8

Module Time Output

Data Extraction Stage

Topic Extraction 26ms2s | en: 801087 articles, ja: 56736 articles
Formatting Imi2s -
Matching 0.018$ -
Comparison 2M31s -

. en: 2037 lines, ja: 2072 lines
Text Extraction 18.1s

en: 85,804 tokens, ja: 75,393 tokens

Data Preparation Stage

Alignment Preparation $9mM24s | en: 3510 sentences, ja: 805 sentences

Language Resource 218 ja: 1,088,944 dictionary entries

Sentence Alignment Stage

Alignment 24mM50S 805 aligned sentences
Total
- 1h43m48s 805 aligned sentences

\.

Table 7.2: Runtime showcase for a small dataset.

129

computational capability of the machine. One option to improve the run-
time would be to download a Wikipedia dump and work offline. However
we chose an online solution in order to be able to detect the latest changes in
Wikipedia articles. As described in Section 1.1, we want to analyse the content
of Wikipedia and that includes its dynamic nature. However, if required, the
modular structure of the framework allows for a fairly straightforward adjust-
ment to process offline Wikipedia dumps.

The Alignment Preparation and Alignment Module are not dependent
on online lookups and will be processed faster on a more powerful hardware.
Running the exact same dataset on the faster laptop computer, described in
Section 3.4, we observed approximately 20% reduction in runtime for the
Alignment Module and 17% reduction for the Alignment Preparation Mod-
ule. The absolute measurements for these two modules can be seen in Ta-
ble 7.3. Apart from CPU speed, the most important factor is access time on
the hard disk drive. The laptop in our experiment is equipped with a solid
state drive with much faster access times, being crucial when many lookup
operations in different files have to be done.

Regarding file access times, the system might be implemented to run in

memory, or with the use of a temporary file system that is loaded on initial-

130

Module Time Output

Alignment Preparation | s1moss | en: 3510 sentences, ja: 805 sentences

Alignment 20m20s 805 aligned sentences

\. J

Table 7.3: Comparison runtime on faster system.

ization, however, we would have to know ahead, whether size requirements
can be met. Additionally, the storage of text files and JSON objects on HDDs
is more transparent and maintainable in the long run, and processing work-
flows can be resumed days, weeks, or even months later without having to
start the entire process from the beginning. Similar to the choice of online
versus offline processing, we chose flexibility, transparency, and sustainabil-
ity over speed.

Even in the current form, the framework is capable of quick turnarounds
for sizable datasets, but it certainly has much potential for optimization and

performance tweaks to be even better suited for large scale data harvesting.

131

In the future,

computers may weigh no more than 1.5 tonnes.

Popular mechanics, 1949

Conclusion

8.1 Summary

The goal of the research performed in this thesis has been to create a method
for automatic crveation of domain—speciﬁc pamllel corpora between

dissimilar langudge pdirs. Even though other methods for automatic cre-

132

ation of such corpora exist, almost all current approaches use a black box deep
learning approach. The quality of parallel data collected by neural methods
is not always of high quality, and due to the black box approach it is difh-
cult to improve. Further, alarge scale acquisition of data without control and
eventually human evaluation allows for the processing of erroneous data of
potentially significant volumes, as pointed out in Section r.r.1. Despite most
of the examples and our entire experiment setup being limited to Wikipedia,
itis fairly safe to extrapolate and generalize to other sources for the sake of this
argument.

A transparent method, based on language resources and rules, is certainly
more labor intensive measured in relation to the data that is created, but al-
lows for specific changes depending on the requirements and the application.
Additionally, such a method can be fused with state of the art neural network
approaches as an enhancement, specifically to bootstrap systems when little
training data is available.

In order to prove the benefits of such an approach, we created aﬁ"dme—
wor/efor pdi"ﬂﬂel data extraction. We chose English-Japanese, sinceitisa
good representation of a dissimilar language pair in many regards, as described

in Section 1.1.3. We limited the data source to Wikipedia pages, since it is well

133

structured and a good source for text, for almost any topic in many languages.
We point out the benefits and the limitations of Wikipedia in Sections r1.L.1
and 4.1. With the flexibility for adaptation to other languages in mind, we
kept the framework as modular and generic as possible, and we point out the
parts of the framework that need to be adjusted in order to be used with other
language pairs.

We explain in detail the framework that we have programmed as a proof
of concept and which we use to show our preliminary results.

As we stated in Chapter 1, we broke the problem down into several stages,

which we addressed thusly:

* We have constructed an algorithm to efficiently obtain domain-specific

parallel corpus candidates from English and Japanese Wikipedia pages.

* We present an algorithm for aligning these English-Japanese sentences

pairs.

* We propose a metric to quantify the similarity between English and Japanese

sentences.
* We have programmed a framework and used it to build a parallel corpus.

* We evaluated this data with the help of a translation professional.

134

The framework we have implemented is a chain ofmodul&x, divided
in stages. In the Data Extraction Stage (Chapter 4) we obtain domain-specific
text data. The domain of the data is determined by the user, who defines how
broad or how limited the domain shall be by choosing the seed topics. The
way the text is obtained is as selective as possible to minimize the data to con-
tain only the most likely candidates, which will be passed on for further pro-
cessing. In the process of collecting data we also create English-Japanese glos-
saries. This self-contained stage can be used to quickly obtain data for differ-
ent seed topics, or create glossaries on demand. This is potentially a powerful
tool for translators and interpretors, who need glossaries for certain domains
as well as for research applications for which quick access to domain-specific
data is needed.

In the Data Preparation Stage (Chapter 5) we clean and prepare the data for
the Sentence Alignment Stage. The preparation of the data is highly language
specific and also depends on the data collected in the previous stage. This is
the reason why this stage is also self contained and can be adjusted as needed.

In the Sentence Alignment Stage (Chapter 6) we implement the alignment
algorithm and use our metric to quantify the quality of the alignment. The

alignment method is based on dictionary lookups and transparent rules. This

135

white box approach makes it possible to trace the algorithm and make observa-
tions on the processed data, use it in a teaching environment or enhance other
applications, such as word-embedding models.

Finally, as a result of experimental runs with the framework, we obtained
60,000 pamllel sentence candidates. We selected a subset of the best

scoring sentences for expert evaluation (Chapter 7).

8.2 Observations

In the following sections we describe the observations we made while pro-
gramming the framework and running the experiments. We present our in-
terpretation of the intermediate results and describe issues and things to be
aware of. This mainly concerns the first two stages, which we will discuss in

the following two subsections.

8.2.1 Data Extraction Stage

We chose Wikipedia for harvesting parallel data largely due to its consistent
structure, its article links, and the ease of text extraction. At the same time we

tried to answer the question of how much of Wikipedia’s multilingual content

136

is translated, paraphrased, similar, or completely asymmetrical.

The results for the topic seeds used in the experimental setups of this disser-
tation showed a low number of equivalent sentences (Chapter 7). We assume
that much of the content in our experimental seed topics was either created
in parallel, or created independently. There is a strong indication that direct
translations make up a fairly low percentage of the content.

Another interesting observation was how quickly topics from various do-
mains diverged from the initial domain with increasing link distance. For ex-
ample, the topic “Tokyo” very quickly diverged into other domains, while
extracted articles starting with “Plane” seemed to stay in this general domain
longer. This is something to keep in mind when highly domain-specific data
is required. The framework is flexible enough to allow for restricting criteria
in such a case.

Overall, according to the study conducted in this dissertation, we observed
that Wikipedia is a good source for parallel corpus extraction, due to its well-
organized structure and availability of many language pairs, but a fairly poor

source when large volumes of good quality translations are required.

137

8.2.2 Data Preparation Stage

The experience we gathered from this part of the framework is that handling
encoding, and full and half-width representation can be quite challenging
and requires much attention to detail, especially for Japanese. There are sev-
eral common encodings used in Japanese, such as JIS, Shifi-JIS, EUC, and
Unicode. While Unicode is commonly used for many other scripts being a
widely used standard, many Japanese language resources are encoded differ-
ently. Dealing with language tools, such as parsers, is especially tricky when
they require input in a different encoding and output text which cannot be
displayed on a utf-8 console, or in a utf-8 file.

We encountered an interesting issue with the nitk sentence tokenizer. It
could not properly find sentence delimiters, whenever there was no white
space between sentences. Since that was the case with most of the data ex-
tracted in our framework, we used a script in the vim command line to resolve

this issue (Section s.2.1).

138

8.3 Contributions

8.3.1 Theoretical Contributions

A theoretical contribution of this thesis is the description of the framework,
which we hope to have presented well enough to be recreated as needed, be
it in the Python programming language, as it is implemented in this work, or
any other language of the reader’s choice. We hope that the descriptions of
our experiences but also the mentions of shortcomings will be helpful in such
a recreation.

We described the workflow of a comprehensive process that goes from an
initial input of topics to an output of large volumes of parallel data, adhering
to basic software engineering principles of modularity and transparency. We
chose to divide the framework into self-contained parts to allow for a trans-
parent and flexible workflow. This modularity, and flexibility is important
for debugging, analysing data in the process of running the framework and
transparent data storage and maintenance.

The Data Extraction Stage is tailored to data collection from Wikipedia,
but should another source be required, a different implementation of this

stage can be substituted; as long as the output data format is consistent, the

139

other stages, Data Preparation, and Sentence Alignment can be used requir-
ing only very minor adjustments. The Data Extraction Stage can also be used
solely for the purpose of creating glossaries, in this case all unneeded modules
can be decoupled within the stage, to improve performance. We apply the
same principle within the stages dividing the workflow into modules. While
functioning as a workflow with one input and one output, they also can be
run individually. This is particularly useful when working on large volumes
of data which can take hours or days. If the process is interrupted, it can be
picked up without much time loss due to the modularity. In this case, we
can easily decouple modules and continue the process where it was left off.
Throughout the entire stage we have used variables for the languages, which
allows for a quick adaptation to other languages, which is mentioned in more
detail in Section 8.4.

Similarly, the Data Preparation Stage is partitioned into modules. One
module is responsible solely for reading and preparing dictionary data into a
uniform JSON format, the other for cleaning, tokenizing, and PoS tagging.
The conversion of the dictionary files allows for an easy way to load the most
recent and up-to-date resources into the framework. Should these dictionary

resources have a different format in the future, an adjustment in this module

140

will be enough to ensure compatibility. Therefore, this module serves as a
language resource interface.

The Sentence Alignment Stage consists of one module. The metric for
measuring the similarity between sentences is located here. This metric allows
us to quantify the number of equivalent tokens in relation to their estimated
similarity value and the length of the sentence. These values were estimated
based on grammatical knowledge and adjusted empirically.

Another contribution lies in the potential use of this framework as an en-
hancement method for M T systems which need quick and domain-specificin-
put of data. Our framework allows for fairly speedy turnaround times, quick

analyses and adjustments.

8.3.2 Practical Contributions

The practical contributions of this thesis are the parallel corpus of 66,000 sen-
tence pairs and a selection of 2,000 sentence pairs, which are evaluated by a
translation professional.

Our open source framework can be used to obtain more domain-specific
parallel data, and can be adjusted for other language pairs and other data sources.

We are convinced that this framework, with a few additions and adjust-

141

ments to increase the ease of use, can be of great value for translation profes-
sionals, who can use it in addition to existing computer assisted translation
and terminology management tools. In particular the glossary extraction,
which is part of the first stage of the framework, can deliver quick and accurate
domain-specific data.

Lastbutnotleast, we used parts of our framework to obtain data for the de-
velopment of the EU Council Presidency Translator’, as contribution to this
international project funded by the European Union. This project was car-
ried out in conjunction with the CEF eTranslation platform . We provided
terminology data with the help of our glossary extraction function and mono-

lingual data with our Data Extraction Stage with some minor adjustments.

8.4 Application to Other Language Pairs

The framework is written for the Japanese-English language pair, however it
is meant to be flexible enough for a fairly quick adaptation to other languages.
Such an adaptation to other language pairs brings with it an entire list of

interesting research questions: How are other language pairs represented on

“https://translate2018.eu/ (Last accessed in August 2020)
Thttps://translate2018.eu/#/about (Lastaccessed in August 2020.)

142

https://translate2018.eu/
https://translate2018.eu/#/about

Wikipedia? How close is their content between languages? This method can
be an efficient way to quickly check whether parts of Wikipedia are filled in
with machine translated content. It can be used to examine the ratio of text
for certain topics within a language pair.

That being said, the difficulty of adjustment to other language pairs de-
pends on the languages. The framework was built with comparison of dis-
similar languages in mind, one of them being written in the Latin alphabet.

Changing English to another European language, which uses the same al-
phabet is very straight forward providing there are adequate POS-taggers and
lemmatizers available for this language.

In order to substitute Japanese with another language, slightly more ad-
justments have to be made. The input and output is prepared for wide-width
characters, which are used for Chinese characters and various other scripts,
but the alignment method uses language-specific properties of Japanese, such

as omission of particles, therefore this would have to be adopted.

8.5 DPublications Resulting from this Research

In the process of researching this topic we have published our preliminary

results in three peer-reviewed conferences.

143

The first publication Wloka (2015) was in the early stages of the work,
where we suggested several alignment techniques. This paper was the first
step towards this thesis and laid many foundations in terms of selective crawl-
ing and the use of language resources for this task. We explored various align-
ment techniques including the utilization of the Moses SM'T toolkit (Kochn
et al., 2007) for an experimental PoS based cluster matching method. How-
ever, this method soon became obsolete with the quickly improving NMT
methods and we decided to embark on a new course. While the quickly im-
proving NMT methods were making huge strives in translation quality for
many language pairs, they were black box, very data hungry, and still strug-
gled with dissimilar languages. We therefore decided to find a method which
is transparent and can produce results quickly, to potentially enhance data
intensive M T with knowledge-based bootstrapping methods.

Another consideration was the source from which we will harvest the data
for alignment. At this stage we examined Wikipedia and decided to focus on
the Japanese-English language pair. We presented our findings in a talk at the
2" East Asian Translation Studies Conference in Japan (Wloka, 2016), and
gained valuable insights in the resulting discussions, which we incorporated

into this thesis.

144

While making progress on the Data Extraction Stage of the framework, we
noticed the opportunity to use this part of the framework for building a tool
for quick access to domain-specific, Japanese-English glossaries. Since in the
Data Extraction Stage, the selection of domain-specific articles is determined
by the links within the articles, the list which comprises the pre-selection set is
coincidently a good collection of domain-specific terms and their translations,
taken from Wikipedia, rather than dictionaries. We published these findings

in (Wloka, 2018).

8.6 Limitations

The limitations of the approach described and implemented in this thesis
are mainly its computational requirements. Although the articles which are
scraped to obtain text are selected to maximize the probability of similar sen-
tences, the articles are not compared individually, which would increase com-
putational efficiency, but rather wholistically. The reason behind this is the as-
sumption that even though we have text from different topics, the pre-selection
yields a set of related articles, which might contain similar sentences across ar-
ticle pages. The pre-selection by topic similarity limits the data volume, but

the overall exponential increase in computational time makes this approach

145

computationally expensive. In order to limit CPU-hours we avoid process-
ing some of the grammatical structures which could contribute to marginal

accuracy improvements. This is described in Chapter 6.

8.7 Future Work

During the process of creating a parallel corpus, examining different possibil-
ities, and attempting to answer the research questions, many more follow-up
and related questions became apparent. Certainly, additional iterations of
crawling and aligning are necessary to further confirm and refine the results
presented in this thesis.

An opportunity for future work which requires some adjustments to the
framework, but is certainly very interesting, is the extension of the modules
to other languages and examining ratios of similar Wikipedia content across
other language pairs.

As mentioned in Section 8.2.1 the identification of topics in the Data Ex-
traction Stage can still be extended and refined. Due to the transparent ar-
chitecture, rules, a language model, or word embeddings could be added to
ensure the identification of data within a certain domain.

Further, a refinement of the metric can be examined by adjusting the weight,

146

according to word category or other syntactic or semantic factors. As described
in 6.1 we set the weights of the alignment metric by estimate and experimen-
tal fine-tuning. In the future this could be improved by quantitative analysis
of the text obtained in the Data Extraction Stage (Chapter 4). By knowing
how often certain categories of words, named entities, numerals, etc. appear
in the data, we can make more accurate estimates for the weight values of the
metric. Additionally, an extension to consider more grammatical structures
during the alignment would be possible, although very computationally in-
tensive, as mentioned in Section 8.6.

Especially taking into account the significant progress of deep learning
in NLP with pre-trained word embedding models, such as BERT (Devlin
et al.,, 2018), and the immense data requirements of these systems, we are con-
fident that knowledge driven and transparent systems, which can work with
little data, will complement these data hungry, opaque, and brittle deep learn-
ing approaches by allowing for quick boot strapping and much needed trans-
parency and adaptability.

Our modular software chain is built with such flexibility and interconnect-
edness in mind and we are confident that it will enrich current and future state

of the art research.

147

References

Aker, A., Kanoulas, E., and Gaizauskas, R. (2012). A light way to collect
comparable corpora from the web. In Proceedings of the Eighth Interna-

tional Conference on Language Resources and Evaluation (LREC’12), Istan-

bul, Turkey.

Arnold, D., Balkan, L., Meijer, S., Humphreys, R., and Sadler, L. (1993).

Machine Translation: an Introductory Guide. Blackwells-NCC, London.

Artetxe, M. and Schwenk, H. (2019). Massively multilingual sentence em-
beddings for zero-shot cross-lingual transfer and beyond. Transactions of the

Association for Computational Linguistics, 7:597—610.

Banén, M., Chen, P., Haddow, B., Heafield, K., Hoang, H., Espla-Gomis,
M., Forcada, M. L., Kamran, A., Kirefu, F., Koehn, P., Ortiz Rojas, S.,

Pla Sempere, L., Ramirez-Sdnchez, G., Sarrias, E., Strelec, M., Thompson,

B., Waites, W., Wiggins, D., and Zaragoza, J. (2020). ParaCrawl: Web-scale

148

acquisition of parallel corpora. In Proceedings of the s8th Annual Meeting
of the Association for Computational Linguistics, pages 4555—4567, Online.

Association for Computational Linguistics.

Braschler, M. and Schiuble, P. (1998). Multilingual information retrieval
based on document alignment techniques. In Research and Advanced Tech-
nology for Digital Libraries, volume 1513 of Lecture Notes in Computer Sci-

ence, pages 183—197. Springer Berlin Heidelberg.

Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., and Mercer, R. L. (1993).
The mathematics of statistical machine translation: Parameter estimation.

Computational Linguistics, 19(2):263—311.

Cakmak, M. T., Acar, S., and Eryigit, G. (2012). Word alignment for English-
Turkish language pair. In Proceedings of the Eighth International Conference

on Language Resources and Evaluation (LREC’1z), Istanbul, Turkey.

Cettolo, M., Girardi, C., and Federico, M. (2012). Wit®: Web inventory of
transcribed and translated talks. In Proceedings of the 16" Conference of
the European Association for Machine Translation (EAMT), pages 261-2638,

Trento, Italy.

149

Chen, Y. and Eisele, A. (2012). MultiUN v2: UN documents with multilin-
gual alignments. In Proceedings of the Eighth International Conference on

Language Resources and Evaluation (LREC’1z), Istanbul, Turkey.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). BERT:
Pre-training of deep bidirectional transformers for language understanding.

arXiv, 1810.04805 [cs.CL].

Doddington, G. (2002). Automatic evaluation of machine translation qual-
ity using n-gram co-occurrence statistics. In Proceedings of the Second In-
ternational Conference on Human Language Technology Research, HLT o2,

pages 138-14s, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Espla-Gomis, M., Klubicka, F., Ljubesic, N., Ortiz-Rojas, S., Papavassiliou,
V., and Prokopidis, P. (2014). Comparing two acquisition systems for au-
tomatically building an English-Croatian parallel corpus from multilingual
websites. In Proceedings of the Ninth International Conference on Lan-
guage Resources and Evaluation (LREC’14), Reykjavik, Iceland. European

Language Resources Association (ELRA).

Feng, F., Yang, Y., Cer, D., Arivazhagan, N., and Wang, W. (2020). Language-

agnostic BERT sentence embedding. a7Xiv, 2007.01852 [cs.CL].

150

Grimes, S., Peterson, K., and Li, X. (2012). Automatic word alignment
tools to scale production of manually aligned parallel texts. In Proceedings of

the Eighth International Conference on Language Resources and Evaluation

(LREC’12), Istanbul, Turkey.

Hutchins, J. (2012). Machine translation: General overview. In Mitkov,
R., editor, The Oxford Handbook of Computational Linguistics, chapter 27,

pages sor—si1. Oxford University Press.

Jiang, Z., El-Jaroudi, A., Hartmann, W., Karakos, D., and Zhao, L. (2020).

Cross-lingual information retrieval with BERT. 47Xiv, 2004.13005 [cs.IR].

Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu, Y., Chen, Z., Tho-
rat, N., Viégas, F., Wattenberg, M., Corrado, G., Hughes, M., and Dean,].
(2016). Google’s multilingual neural machine translation system: Enabling

zero-shot translation. a7Xiv, 1611.04558 [cs.CL].

Koehn, P. (2005). Europarl: A Parallel Corpus for Statistical Machine Trans-
lation. In Conference Proceedings: the Tenth Machine Translation Summit,

pages 79-86, Phuket, Thailand. AAMT, AAMT.

Koehn, P. (2017). Neural machine translation. 4rX7v, 1709.07809 [cs.CL].

ISI

Koehn, P., Hoang, H., Birch, A., et al. (2007). Moses: Open source toolkit
for statistical machine translation. In Proceedings of the 45th Annual Meet-
ing of the ACL on Interactive Poster and Demonstration Sessions, ACL o7,
pages 177-180, Stroudsburg, PA, USA. Association for Computational Lin-

guistics.

Kumano, T. and Tokunaga, H. T. T. (2007). Extracting phrasal alignments
from comparable corpora by usingjoint probability SMT model. In Proceed-
ings of the 11th International Conference on Theoretical and Methodological

Issues in Machine Translation, pages 95-103.

Laranjeira, B., Moreira, V., Villavicencio, A., Ramisch, C., and Finatto, M. J.
(2014). Comparing the quality of focused crawlers and of the translation
resources obtained from them. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC’14), Reykjavik,

Iceland. European Language Resources Association (ELRA).

Luong, M.-T.and Manning, C. D. (2016). Achieving open vocabulary neural
machine translation with hybrid word-character models. 47Xiv, 1604.00788

[cs.CL].

152

Ma, X. (2006). Champollion: A robust parallel text sentence aligner. In
Proceedings of the Fifth International Conference on Language Resources and

Evaluation (LREC06), pages 489—492.

Morishita, M., Suzuki, J., and Nagata, M. (2019). JParaCrawl: A large scale

web-based English-Japanese parallel corpus. arXiv, 191110668 [cs.CL].

Nakazawa, T., Yaguchi, M., Uchimoto, K., Utiyama, M., Sumita, E., Kuro-
hashi, S., and Isahara, H. (2016). ASPEC: Asian scientific paper excerpt cor-
pus. In Proceedings of the Tenth International Conference on Language Re-
sources and Evaluation (LREC 2016), pages 22042208, Portoroz, Slovenia.

European Language Resources Association (ELRA).

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-]. (2002). BLEU: A method
for automatic evaluation of machine translation. In Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics, ACL o2,
pages 311318, Stroudsburg, PA, USA. Association for Computational Lin-

guistics.

Pryzant, R., Chung, Y., Jurafsky, D., and Britz, D. (2018). JESC: Japanese-
English Subtitle Corpus. In Proceedings of the Eleventh International Con-

ference on Language Resources and Evaluation (LREC 2018).

153

Rapp, R. (1999). Automatic identification of word translations from un-
related English and German corpora. In Proceedings of the 37th Annual
Meeting of the Association for Computational Linguistics on Computational
Linguistics, ACL 99, pages s19—526, Stroudsburg, PA, USA. Association for

Computational Linguistics.

Robertson, S. and Zaragoza, H. (2009). The probabilistic relevance frame-

work: BM2s and beyond. Foundations and Trends in Information Retrieval,
3:333-389.

Salton, G. (1971). Experiments in automatic thesaurus construction for in-

formation retrieval. In JFIP Congress (1), pages 115-123.

Schwenk, H., Chaudhary, V., Sun, S., Gong, H., and Guzmin, F. (2019).
Wikimatrix: Mining 13sm parallel sentences in 1620 language pairs from

wikipedia. arXiv, 1907.05791 [cs.CL].

Sennrich, R. and Volk, M. (2010). MT-based sentence alignment for OCR-
generated parallel texts. In The Ninth Conference of the Association for Ma-

chine Translation in the Americas (AMTA 2010).

Smith, J. R., Saint-Amand, H., Plamada, M., Koehn, P., Callison-Burch, C.,

and Lopez, A. (2013). Dirt cheap web-scale parallel text from the common

154

crawl. In Proceedings of the s1st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 1374-1383, Sofia, Bul-

garia. Association for Computational Linguistics.

Tanaka, Y. (2001). Compilation of a multilingual parallel corpus. In Proceed-

ings of PACLING 2001, pages 265—268.

Thompson, B. and Koehn, P. (2019). Vecalign: Improved sentence align-
ment in linear time and space. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the gth In-
ternational Joint Conference on Natural Language Processing (EMNLP-
I[JCNLP), pages 1342-1348, Hong Kong, China. Association for Computa-

tional Linguistics.

Uszkoreit,]., Ponte, J., Popat, A., and Dubiner, M. (2010). Large scale par-
allel document mining for machine translation. In Proceedings of the 23rd
International Conference on Computational Linguistics (Coling z010), pages

1101-1109, Beijing, China. Coling 2010 Organizing Committee.

Utiyama, M. and Isahara, H. (2003). Reliable measures for aligning Japanese-

English news articles and sentences. In Proceedings of the 415t Annual Meet-

155

ing of the Association for Computational Linguistics, pages 72—79, Morris-

town, NJ, USA. Association for Computational Linguistics.

Varga, D., Haladcsy, P., Kornai, A., Nagy, V., Németh, L., and Trén, V.
(2005). Parallel corpora for medium density languages. In Proceedings of the

RANLP 2005 Conference, pages $90—596.

Vauquois, B. (1968). A survey of formal grammars and algorithms for recog-
nition and transformation in mechanical translation. In IFIP Congress (2),

pages 1114—1122.

Weaver, W. (1949/1955). Translation. In Machine Translation of Languages,
pages 15—23. MIT Press, Cambridge, MA. Reprinted from a memorandum

written by Weaver in 1949.

Winiwarter, W. (2013). Mastering Japanese through augmented browsing. In
Proceedings of the 15th International Conference on Information Integration
and Web-based Applications & Services, iiWAS ’13, pages 179:179-179:188.
ACM.

Winiwarter, W. (2015). JILL: Japanese incidental language learning. In Pro-
ceedings of the 17th International Conference on Information Integration and
Web-based Applications &5 Services, iiWAS ’15, pages 9:1-9:9. ACM.

156

Wiloka, B. (2015). Towards automated creation of high quality domain-
specific machine translation resources. In Proceedings of the 17th Interna-
tional Conference on Information Integration and Web-based Applications
&9 Services, iiWAS 2015, Brussels, Belgium, December 11-13, 2015, pages 38:1—

38:4. ACM.

Wloka, B. (2016). Is Wikipedia a good candidate for Japanese-English bilin-
gual corpus harvesting? In Proceedings of the 2nd East Asian Translation

Studies Conference, Tokyo, Japan.

Wiloka, B. (2018). Identifying bilingual topics in Wikipedia for efficient paral-
lel corpus extraction and building domain-specific glossaries for the Japanese-
English language pair. In Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC 2018), Paris, France. Eu-

ropean Language Resources Association (ELRA).

Zhang, Y., Vogel, S., and Waibel, A. (2004). Interpreting BLEU/NIST
scores: How much improvement do we need to have a better system? In
Proceedings of the Fourth International Conference on Language Resources

and Evaluation (LREC04), pages 2051-2054.

157

Zhao, S., Niu, C,, Zhou, M., Liu, T,, and Li, S. (2008). Combining multi-
ple resources to improve SMT-based paraphrasing model. In Proceedings of
the 46th Annual Meeting of the Association for Computational Linguistics:

Human Language Technologies, pages 1021-1029.

Zhu, J., Xia, Y., Wu, L., He, D., Qin, T., Zhou, W,, Li, H., and Liu, T.-
Y. (2020). Incorporating BERT into neural machine translation. 4rXiv,
14115595 [cs.CL].

Ziemski, M., Junczys-Dowmunt, M., and Pouliquen, B. (2016). The United
Nations Parallel Corpus vi.o. In Proceedings of the Tenth International Con-

ference on Language Resources and Evaluation (LREC’16), pages 3530-3534,

Portoroz, Slovenia. European Language Resources Association (ELRA).

158

Source Code

In this appendix, the source code of the program developed in the course of
this thesis is presented in a modular, sequential fashion.

The overview in Figure A.1shows the modules of the Data Extraction Stage
of the framework. Figure A.2 gives an overview of the Data Preparation Stage.

Figure A.3 depicts the modules of the Sentence Alignment Stage.

159

All schematic depictions show which functions are being called from each
module. The functions are listed below in sequential order. For the purpose
of clarity, parameters of the functions are omitted in the overview and in the
titles. All figures in the appendix are repeated and equivalent with the figures
in the chapters above. They are included in the appendix for convenience and

readability of the source code.

160

Topic Extraction
Module

get_topic_pairs(...)
get_pages_| I|nks()
extract_links(..

=

g:

=

F°':1m§“|'"g Translation Module
odule get_translation(...)
format_topics(...)

S —— Matchmg Module

Gl . find_equivalents(...) JSON
Ossaries translate_topics_ . dictionaries

into_english(...)

=

Comparison
Module

compare(...)

Text Extraction Japanese corpus
Module .]
extract text(...)

English corpus

Figure A.1: Modules of the Data Extraction Stage for selective harvesting and text extraction from

Wikipedia articles. The goal of this chain of modules is to obtain candidate sentences for a parallel

corpus. Module names are written in bold face, function names (without parameters) are shown in
small, blue font.

161

A

Data Extraction Stage

1 #! /usr/bin/env python

2 # —*%— coding: utf-8 —*-

A W

c© N &N W

A W N

o N &N W

I0
II
12
3
14
15

from bs4 import BeautifulSoup

import
import
import
import
import
import

requests
codecs
re

json
urllib
0s

A1

Topic Extraction Module

Function — get_topic_pairs

def get_topic_pairs(topic_list):

for each start topic

for topic in topic_list:

start_topic= topic.strip()

#get start topic in japanese by ID check

topic_ja = get_translation(start_topic,'ja','en'")

#open files to store subtopics

ftopics_en = codecs.open('data/'+start_topict+'_topics_en.\

txt','w', encoding='utf8")

ftopics_ja = codecs.open('data/'+start_topic+' _topics_ja.\

txt','w', encoding='utf8")

#call get_pages function to get subtopics for english

topics = get_pages_links(start_topic, 'en')

#write results to file and close output file

for topic in topics:
ftopics_en.write(topic[@]+'->"+topic[1]+'\n")

162,

16
17
18
19
20
21

22

23

ftopics_

#call ge
topics =
#twrite r
for topi

en.close()

t_pages function to get subtopics for japanese
get_pages_Tlinks(topic_ja, 'ja')

esults to file and close output file

c in topics:

ftopics_ja.write(topic[0]+'->"+topic[1l]+'\n")

ftopics_

ja.close()

Function — get_pages_links

1 # return all links on the topic page and all subsequent links

2 def

AW

c N O\ W

10
II
e
13
14
15
16

7

18

9

20

get_pages_1li
start_url =

nks(topic, lang):
'https://'+lang+' . .wikipedia.org/wiki/'

domain = 'https://'+langt+'.wikipedia.org'

start_url=start_url+topic #main topic link

items = []
get own ti

tle, link titles and links for main topic

title, ext_titles, ext_links = extract_links(url=start_url)

store in i
items.extend

tems list
(zip([title]*len(ext_titles), ext_titles))

for ext_link in ext_links:

omitti

ng Wiktionary entries and pronunciation links

if 'wikt' not in ext_link and 'Help:IPA' not in ext_Tlink:

try:

topic

resolve encoding issues
ext_link=urllib.unquote(ext_1link).decode('utf-8")
get own title, link titles and links for main \

title, ext_titles, ext_links = extract_links(\

domain + ext_link)

ext_titles))

store in items list
items.extend(zip([title]*len(ext_titles), \

163

21

22

23
24
25
26

except UnicodeEncodeError, e:
print('UnicodeEncodeError at: ',ext_link,'-reason:\
", str(e))
pass
if len(items) > 2500:
break
return items

Function — extract_links

1 # return a list of links to other Wikipedia articles
2 def extract_1links(url):

AW

c N &N W

I0
II

12

13
14
15
16
17
18
19

get soup with 1lxml parser

soup = BeautifulSoup(requests.get(url).content,'lxml")
find all the paragraph tags

p_tags = soup.findAll('p")

gather all <a> tags

a_tags = []

for p_tag in p_tags:
a_tags.extend(p_tag.findAll('a'))
filter the list : remove invalid links
a_tags = [a_tag for a_tag in a_tags if 'title' 1in a_tag.attrs\
and 'href' in a_tag.attrs and not 'class' in a_tag.attrs]
get all the article titles
titles = [a_tag.get('title') for a_tag in a_tags]
get all the article links
links = [a_tag.get('href') for a_tag in a_tags]
get own title
self_title = soup.find('hl', {'class' : 'firstHeading'}).text
return self_title, titles, links

A.1.2 Translation Module

Function — get_translation

1 # return the Wikipedia site equivalent in a target language

» def get_translation(topic,source_lang,target_lang):

3

4 json_url="'https://'+source_lang+'.wikipedia.org/w/api.php?\
action=query&titles="+topic+'&prop=langlinks&lllimit=500&format\
=json'

5 content = requests.get(json_url).content

6 json_data = json.loads(content)

7 item=""

8 # dterate through json hierarchy to find langlinks category

9 try:

10 for i in json_data["query"]["pages"]:

11 pageid=i

v except KeyError, e:

13 print('KeyError at topic:',topic,' - reason: ',str(e))

14 pass

Is except TypeError, e:

16 pass

17 try:

18 for i in json_data["query"]["pages'"][pageid]["langlinks"]:

19 # in langlinks category, find desired langauge

20 if i['lang']==target_lang:

21 # there is the topic equivalent

22 item = A['x']

23 except KeyError, e:

24 print('Keyerror at topic',topic,' - reason: ',str(e))

25 pass

26 except TypeError, e:

27 pass

28 return item

use Wikipedia's json database to look it up

165

1

S W)

c© N &N wn

I0

II
I2
3
14
15

16

17
18

19
20
21
22
23
24
25
26
27
28

A3 Formatting Module

Function - format_topics

def format_topics():
file_Tlist=[]
os.chdir('./data')

for file in glob.glob('*topics_en*.txt'):
file_list.append(file)
for file in file_ldist:
with codecs.open(file,'r','utf-8") as f:
previous_line=f.readline()
f_temp=codecs.open('topics/'+previous_Lline.split('->"')\
[0]+'_en.txt','w','utf-8")
lines = f.readlines()
counter=0
for line in lines:
counter+=1
if line.split('->"')[0]!=previous_line.split('->")\
[o]:
f_temp.close()
try:
f_temp=codecs.open('topics/"'+line.split("\
->")[0]+'_en.txt','w','utf-8")
except IOError, e:
print('cannot open file',str(e))
break
previous_line = line
f_temp.write(line.split('->")[1])

file_list=[]
for file in glob.glob('*topics_ja*.txt'):
file_list.append(file)

166

29
30
31
32

33

34

35

36

37

38

39

40

41

42

43
44

for file in file_ldist:
with codecs.open(file,'r','utf-8") as f:
previous_Lline=f.readline()
print('translating '+previous_line.split('->")[0].\
encode('utf-8"))
translation = get_translation(previous_line.split('->"\
)[0].encode('utf-8'),"'ja','en')
f_temp=codecs.open('topics/"+translation+'_ja.txt','w'\
,'utf-8")
lines = f.readlines()
for line in lines:
if line.split('->'")[0]!=previous_line.split('->")\
[0]:
f_temp.close()
previous_Lline = line
translation = get_translation(previous_Lline.\
split('->"'")[0].replace\
('Wikipedia:','').encode('utf-8'),"'ja'"\
"enl)
f_temp=codecs.open('topics/'+translation+'_ja.\
txt','w','utf-8")
f_temp.write(line.split('->")[1])
f_temp.close()

A4 Matching Module

Function - translate_topics_into_english

1 def translate_topics_into_english():

2

3
4

file_list=[]
os.chdir('.")

if there is no dictionary file, open a new one

167

6 if not os.path.exists('./topics_dict_ja_en.json'):

7 empty_dict={}
f=open('topics_dict_ja_en.json','w'")

9 json.dump (empty_dict, f)

10 f.close()

I topic_dict_ja_en={}

2 with codecs.open('topics_dict_ja_en.json','r',encoding="'utf8')\
as fdict:

13 topic_dict_ja_en=json.load(fdict)

14

Is # translate sorted japanese files

16 file_list=[]

17 for file in glob.glob('data/topics/pairs/*x_ja.txt'):

18 file_list.append(file)

19 for file in file_list:

20 fout=codecs.open(file[:-4]+'_en_ja.txt','w','utf-8")

21 with codecs.open(file,'r','utf-8"') as f:

22, lines=f.readlines()

23 for line 1in lines:

24 try:

25 fout.write(topic_dict_ja_en[line[:-1]]+'\n")

26 except KeyError, e:

27 print('KeyError: ', str(e))

28 trans=get_translation(line[:-1],'ja','en')

29 fout.write(trans+'\n')

30 topic_dict_ja_en[line.rstrip()]=trans

31 print(line.rstrip()+'->"'+trans+' added to \
dictionary')

32 pass

33

34 f=open('topics_dict_ja_en.json','w'")

35 json.dump(topic_dict_ja_en,f)

36 f.close()

168

I

®©w N &N v WP

o

I0
II
12
B
14
15

I

©w N & v A~ P

\o

I0

II

Function - find_equivalents

def find_equivalents():
file_list_ja=[]
file_Tlist_en=[]
os.chdir('./data/topics') # change to data dir
for file in glob.glob('x_ja.txt'): # for every japanese file
file_list_ja.append(file[:-7]) # get topic from filename
for file in glob.glob('*_en.txt'): # for every english file
file_list_en.append(file[:-7]) # get topic from filename
#store data in pairs
for item in file_list_en:
if item in file_list_ja:
copy('./"+item+' _ja.txt','./pairs/'+item+'_ja.txt")
copy('./"+item+' _en.txt','./pairs/'+item+'_en.txt")
topic_pairs.append(item)
os.chdir('../../") # back to main dir

A.rs Comparison Module

Function - compare

def compare():
file_list_ja=[]
file_list_en=[]
os.chdir(os.path.dirname(os.path.realpath(__file__)))
os.chdir('./data/topics/pairs')

for file in glob.glob('*_en.txt'):
file_list_en.append(file[:-7])

scounter=0

169

similar=[]
#open both files and compare
for item in file_list_en:
common_counter=0
topics_ja=[]
topics_en=[]
with codecs.open(item+'_ja_en_ja.txt','r','utf-8"') as fja:
lines=fja.readlines()
for line 1in lines:
topics_ja.append(line.split())
with codecs.open(item+'_en.txt','r','utf-8") as fen:
lines=fen.readlines()
for line in lines:
topics_en.append(line.split())
for topic_ja in topics_ja:
for topic_en in topics_en:
if topic_ja==topic_en:
common_counter+=1
break
calculating ratio, after counting extracted links for \
each topic
if len(topics_ja)>0:
scounter+=1
similar.append(item)
ratio = float(float(common_counter)/float(len(\
topics_ja)))
if ratio>0.7: # ratio threshold value
print str(common_counter)+' link matches in topic \
>'+ qtem + '< out of total '+ str(len(topics_en))+' links -> \
ratio: '+ str(round(ratio,3))
print 'Total similar pages count: '+str(scounter)
return similar
os.chdir('../../../") # back to main dir

170

A.1.6 Text Extraction Module

Function - extract_text

1 def

S W)

c© N &N wn

10
i
12
13
14
15
16
17
18
19

20

21
22
23
24
25
26

extract_text(link_1list):
os.chdir('./data/topics/pairs')
ftext=codecs.open('text_english.txt','w','utf-8")
for ditem in link_Tlist:
try:
passing article name to get reference to page
p = wikipedia.page(item.strip())
ftext.write(p.content) # getting text from Wikipedia \
page
except wikipedia.exceptions.WikipediaException as e:
pass
scounter—-=1
ftext.close()
same for Japanese
ftext=codecs.open('text_japanese.txt','w','utf-8")
for ditem in link_Tlist:
wikipedia.set_lang('ja')
try:
passing article name to get reference to page
p = wikipedia.page(get_translation(item.strip(),'en',"\
ja"))
ftext.write(p.content)
except wikipedia.exceptions.WikipediaException as e:
pass
scounter2-=1
ftext.close()
os.chdir('../../../") # back to main dir

171

1 #!/usr/bin/env python

»

A.2 Data Preparation Stage

Edict2
JMnedict

Japanese
corpus

Language

Resource Module
edict2_to_json(...)
JMnedict_to_json(...)

qed°

IN—H—

English
corpus

Alignment Preparation
Module
clean(...)
tokenize(...)
lemmatize_and_pos_tag(...)

Annotated,
lemmatized,
and cleaned

Japanese corpus

>"""l—|—-_____.——l""<
N~

Annotated,

lemmatized,

and cleaned
English corpus

e

Figure A.2: Modules of the Data Preparation Stage for cleaning the English and Japanese text
collections and preparing them for alignment. Module names are written in bold face, function
names (without parameters) are shown in small, blue font.

—*— coding: utf-8 —*-

import os
import codecs
import re
import nltk

from nltk.tokenize import sent_tokenize

from nltk.stem import WordNetLemmatizer

from nltk.corpus import wordnet

172

A1 Alignment Preparation Module

Function — tokenize

1 def tokenize():

S W N}

c N &N W

10
i
12
13
14
15
16
17
18
19

20

with codecs.open('corpus/text_english.txt','r','utf-8')as f:
lines=f.read()

sentences = sent_tokenize(lines)
print(len(sentences))

with open('corpus/tokenized_text_english.txt','w') as f:
for sentence 1in sentences:
f.write(sentence.encode('utf-8')+'\n')

with open('corpus/text_japanese.txt','r')as f:
lines=f.read()

sentences=sent_tokenize(lines.decode('utf-8"))
print(len(sentences))

with open('corpus/tokenized_text_japanese.txt','w') as f:
for sentence in sentences:
f.write(sentence.encode('utf-8')+'\n')

Function - clean

1 def clean():

2

with codecs.open('corpus/tokenized_text_japanese.txt','r','utf\
-8'") as f:

text_ja=f.readlines()
with codecs.open('corpus/tokenized_text_english.txt','r','utf\
-8') as f:

text_en=f.readlines()

173

10
151
12
13
14
15
16
17
18
19
20

21

f_out_en = codecs.open('corpus/english_sentences_clean.txt', 'w\
', 'utf-8")
f_out_ja = codecs.open('corpus/japanese_sentences_clean.txt','\
w','utf-8")

for line in text_ja:
if not re.search(r'”==.x",line):
if len(line)>20:
f_out_ja.write(line)
for 1line in text_en:
if not re.search(r'?==.x"',line):
if len(line)>30:
f_out_en.write(line)

f_out_en.close()
f_out_ja.close()

Function — lemmatize_and_pos_tag

1 def lemmatize_and_pos_tag(lang):

2

3
4

I0

II

#for english
if not lang or lang=='en':
with codecs.open('corpus/english_sentences_clean.txt','r',\
'utf-8') as f:
lines = f.readlines()
wl=WordNetLemmatizer ()
with codecs.open('corpus/\
english_sentences_clean_lemmatized.txt','w', 'utf-8') as f:
for line in lines:
text=nltk.word_tokenize(line) # tokenize words
pos=nltk.pos_tag(text) # PoS tagging
sentence=""

174

2
3
14
15
16
17
18
19
20
21
22
23
24

25

for word

in pos:

lemma=word[0]

if word[1] != 'NNP': # if not proper noun

if

if

sentence+=1lemma+'
f.write(sentence+'\n'")

lemma=1lemma.lower () # to lower case
NN' in word[1]:
if 'NNS' in word[1]: # to lower case

if other noun

lemma=1lemma. lower ()

lemmatize nouns
lemma=wl.lemmatize(lemma,wordnet.NOUN)
VB'" in word[1]:

lemmatize verbs

lemma=wl.lemmatize(word[0],'Vv")

A.2.2 Language Resource Module

Function — JMnedict_to_json

1 def IMnedict_to_json():

©w N & v A~ W

\o

I0
II
12
3
14

with codecs.open('resources/JIMnedict.xml','r','utf-8') as f:

lines=f.readlines()
dictJAEN={}

line:

kanji = line[5:-7] # get item (Japanese NE)

kanji=""
gloss=[]
for line in lines:
if '<entry>' dn
kanji=""
gloss=[]
glossitem=""
if '<keb>' 4dn line:
if '<trans_det>'

in line:

175

15
16

17
18

20

get glossary entry (English equivalent)
glossitem = line[11:-13]
gloss.append(glossitem)
dictJAEN[kanjil=gloss # store in list

with codecs.open('resources/JMnedict.json','w','utf-8') as f:
json.dump(dictJAEN,f) # write to JSON file

Function — edict2_to_json

1 def edict2_to_json():
with codecs.open('resources/edict2','r','utf-8') as f:

o N & v b~ W

o

10
I
2
3
14
15
16

17

18
19
20
21

22

23

lines=f.readlines()
dictJAEN={}

kanji=""
gloss=[]

counter=

0

for 1line in lines:

counter+=1

jap_
jap_

word_list=[]
word_list="'"'.join(line.split("' '")[0]).split(';")

get translations

translations=[]

for

item:

edict2-

idx, item in enumerate(line.split('/')):
if idx!=0 and re.search('\w+',item) and 'EntL' not in \

#removing {} and anything in between
item=re.sub('\{[")]*\}',"",item).strip()

#tremoving ()
item=re.sub('\([")]*\)","" " ,item).strip()

#removing) -because of nested paranthesis mess 1in\

item=re.sub("\)","",item).strip()

176

24

25
26
27
28
29

30

if not re.search('![- ~]',item) and not re.search)\
("\?'",item) and item!="":
translations.append(item)
for +ditem in jap_word_list:
item=re.sub('\([*)]1*\)","'",item).strip() #removing ()
dictJAEN[item]=translations
with codecs.open('resources/edict2.json','w','utf-8') as f:
json.dump (dictJAEN, f)

77

A3 Sentence Alignment Stage

e —
i M

English corpus

— —
— e

Japanese corpus

— R

Alignment
Module <:| IMnedict, edict2
align(...)

English-Japanese
parallel corpus

Figure A.3: Overview of the Sentence Alignment Stage. Module names are written in bold face,
function names (without parameters) are shown in small, blue font.

178

1 #! /usr/bin/env python

2 # —*— coding: utf-8 —*-
3 import codecs

4 import json

s import re

A3 Alignment Module

Function - align

1 def align():
#dictionary files

»

3 H % Kk K %k ok kK %k k kK k ok kK ok kK %k ok ok k ok ok ok %k ok

4 with codecs.open('JMnedict.json','r','utf-8"') as f:

5 JMnedict= json.load(f)

6 with codecs.open('JMdict_e.json','r','utf-8"') as f:

7 IMdict= json.load(f)

8 with codecs.open('edict2.json','r','utf-8') as f:

9 edict2= json.load(f)

10 Hhkhkhkkhkhkhkkkhkhkhkkkhkhkhkkkhkhkhkkkhkhkhkkkhkhkhkkkhkhkhkkkhkhkhkkkhkhkkkkhkhkkkkkkkxk

II

o) #input files

13 H %k Kk kK ok Kk ok ke k ks kK ok ok ok sk ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok

14 with codecs.open('japanese_pos.txt','r','utf-8') as f:

Is pos_tags=f.readlines()

16 with codecs.open('japanese_sentences_clean.txt','r','utf-8"') \
as f:

17 text_jap=f.readlines()

18 with codecs.open('english_sentences_clean.txt','r','utf-8') as\

f:
19 text_eng=f.readlines()

179

20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46

47

48
49

with codecs.open('english_sentences_clean_lemmatized.txt','r',\
'utf-8') as f:
eng_lemmas=f.readlines()

BrhkkhkhkhkhkhkhkhkhkhkhkA Ak kkkhkkhkhhhkhkhkhkhkhkrkhkkkkkhkkhkkhkhkhkhkkhkhkkkkxkx k%

#output files

H %k Kk K %k ok Kk k %k k kK %k kK k ok kK %k ok ok ok ok ok ok %k ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok
f_out=codecs.open('sentence_align.txt','r+a','utf-8'")
f_parallel=codecs.open('parallel.txt','a+','utf-8")

H %k Kk kK ok kK Kk k kK k kK Kk ok kK %k k ke k k ok Kk ke k ko ok ok ok kK k ok ok ke ok ok ok ok ok ok ok ok

temp_lines = f_out.readlines()
jap_counter=1len(temp_T1lines)
translations=[]
match_dict={}
content_matches_list=[]
temp_counter=0
array=[] # metric values will be stored here
for idx in enumerate(eng_lemmas):
init to 0 for number of english sentences
array.append(float(0))

for pos_tag in pos_tags:
if "EOS' in pos_tag:

weighted score algorithm

H & Kk k Kk kK k ke k kK ok k kK ke k kK ke k ke kK ok ok ke k ke ke ok ok ok ok ok ok ok ok ok ok

find highest value in <array> array, index is the \
sentence number

f_out.write('<ALIGN><JAP>'+str(jap_counter)+'<ENG>'+\
str(array.index(max(array))+1)+'<SCORE>'+str(max(array))+'\n")

f_parallel.write(str(max(array))+' ||| '"+text_jap[\
jap_counter-1].strip()+"' ||| '+text_engl[array.index(max(array))\
l.strip()+'\n")

H Kk Kk Kk Kk Kk ok k ke k ok k ok k ok ok ok ok ok ok ok k ok k ok ke ok ko ok ok ok ok ok ok ok ok ok ok ok ok

jap_counter+=1 # japanese sentence counter

180

50
ST

52

53
54
SS
56

57
58
59
60
61

62
63
64

65
66
67
68
69
70
71

72

73
74
75
76
77
78

for didx,val in enumerate(array):
array[idx]=float(0)
print 'Processing sentence '+str(jap_counter)+' of '+\
str(len(text_jap))
jap_word=pos_tag.split('\t') [0]
digit_matches=[]

do that only once per sentence (NB we're iterating POS \
tags!)
if temp_counter!=jap_counter:
temp_counter=jap_counter
try:
finding sequences of numerals
digit_matches=re.findall(r'\d+',text_jap[\
jap_counter-1])
except:
pass
if numerals were found, looking for equivalents in \
english data
for match in digit_matches:
jap_word=match
eng_counter=0
for eng_lemma in eng_lemmas:
eng_counter+=1
try:
if re.search(r'\b'+jap_word+r'\b',\
eng_lemma):
array[eng_counter-1]+=float(0.5)+float)\
(float(l)/len(eng_lemma.split(' ")))
except re.error,e:
print 'passing re.error at translation:',e
pass

look for romaji in japanese sentences (works badly with
numbers, since mecab tagging splits them up in single \

181

79

8o
81
82
83
84
85

86

87
88
89
90
91
92
93
94
95
96
97
98
29
I00
I01
102

103

104

105

106

107

digits
if "% %' .decode('utf-8') in pos_tag and not re.search(r'\\
d+',jap_word):
if re.search('\w',jap_word):
eng_counter=0
for eng_lemma in eng_lemmas:
eng_counter+=1
try:
if re.search(r'\b'+jap_word + r'\b', \
eng_lemma):
array[eng_counter-1]+=float(0.5)+float(\
float(l)/len(eng_lemma.split(' ')))
except re.error,e:
print 'passing re.error at translation:',e
pass

translations=[]
if named entity, look for match in nedict
if '[E A 4G .decode('utf-8') in pos_tag:
try:
translations=JIMnedict[jap_word]
except KeyError,e:
pass
else: # else look for match in regular dictionary
try:
translations=JIMdict[jap_word]
except KeyError,e:
pass
excluding certain japanese pos tags from dictionary \
lookup
#(no particle, aux verb, etc)
if not translations and 'BJ5i'.decode('utf-8"') not in \
pos_tag and ') @) ' .decode('utf-8') not in pos_tag:
try:
translations=edict2[jap_word]

182,

108
109
110
11
12
13
114
15
16

1y
118

119

120

I21

122

123

124
125
126
127
128

129

except KeyError,e:
pass

if translations: # if any translation was found
for translation in translations:
eng_counter=0
translation=re.sub('\(.*x?\)"',"'',translation)
for eng_lemma in eng_lemmas:
eng_counter+=1
try:
if re.search(r'\b'+translation+r'\b',\
eng_lemma) :
array[eng_counter-1]+=float(0.5)+float)\
(float(l)/len(eng_lemma.split(' ")))
english_sentence_length=1len(eng_lemma)
japanese_sentence_length=len(text_jap[\
jap_counter-1].encode('utf-8"))
except re.error,e:
print 'passing re.error at translation: ',\
e, translation
pass

match_dict[jap_counter]=content_matches_1list

f_out.close()
f_parallel.close()

183

184

B

Abstract

ABSTRACT

The significance of sentence-aligned bilingual corpora, so-called parallel
corpora, as training sets for machine translation systems and for various other
language technology applications has become more and more evident in re-
cent years. Even more desirable are collections which address a certain domain
and hence offer more precise data for training of deep learning, statistical, or
example-based approaches. The goal of this doctoral dissertation is to exam-
ine the feasibility of automated bilingual corpus creation from Wikipedia,
specifically for languages which differ significantly in surface characteristics
and other aspects. More precisely, how can Wikipedia be crawled to obtain
domain-specific corporain an efficient way, how can these corpora be sentence-
aligned, and how can these alignments be evaluated to obtain the highest pos-
sible probability of a translated or equivalent sentence.

The research questions addressed in this work are: How much of the text
on Wikipedia content can be used to build a bilingual aligned corpus for a spe-
cific language pair, and how can these texts be selected and aligned efficiently,
all with minimal human input in the process.

The question is addressed by selecting two languages, which are represen-
tative of a dissimilar pair, English and Japanese. The resulting procedure, al-
gorithms, software modules, and created corpus are a proof of concept, which
can be adjusted in order to be applied to other dissimilar language pairs.

This dissertation proposes a method for crawling from Wikipedia by topic,
aligning this data into a parallel corpus and a novel metric that measures the
relative quality of this alignment. The resulting program tool chain is pre-
sented as a generic algorithm and is implemented in the Python programming
language. The result of a first iteration of the software resulted in an English-
Japanese parallel corpus of 66,000 sentence pairs. Human expert evaluations
are presented to show the yield, feasibility, and efficiency of this method.

185

ABSTRACT AUF DEUTSCH

Die Wichtigkeit satz-alignierter bilingualer Korpora, auch paralle Korpora
genannt, als Trainingsdaten fiir maschinelle Ubersetzungsysteme und fiir eine
Vielzahl anderer Sprachtechnologieanwendungen ist in den letzten Jahren im-
mer deutlicher geworden. Sogar noch mehr gefragt sind Korpora, die eine bes-
timmte Domine abdecken und somit noch zielgerichteter fiir das Training
von Deep Learning, statistischen oder beispielbasierten Systemen sind. Das
Ziel dieser Doktorarbeit ist es, die Realisierbarkeit der automatisierten Erstel-
lung von parallelen Daten aus Wikipedia zu untersuchen. Insbesondere wer-
den Sprachpaare untersucht, die in Hinblick auf Oberflichenstruktur und
andere Aspekte sehr unterschiedlich sind. Genauer gesagt, wie kann domi-
nenspezifischer Text aus Wikipedia effizient gesammelt werden, wie kdnnen
diese Daten auf Satzebene aligniert werden und wie kénnen diese Satzpaare
evaluiert werden, um die bestmdéglichen Ubersetzungskandidaten zu bekom-
men.

Die Forschungsfragen sind: Wie viel des Wikipedia-Inhaltes kann verwen-
det werden, um bilinguale Korpora fiir ein bestimmtes Sprachpaar zu bauen
und wie kénnen diese Texte effizient aligniert werden; all das mit minimalem
menschlichem Input.

Fiir die Beantwortung dieser Frage wurden zwei Sprachen gewihlt, die
reprisentativ fur die Fragestellung sind, nimlich Englisch und Japanisch. Der
Ablauf, die Algorithmen, die Softwaremodule und das daraus resultierende
Korpus sind als Proof of Concept zu verstehen und kénnen an andere Domi-
nen und Sprachpaare angepasst werden.

Diese Arbeit schligt eine Methode fiir themenspezifisches Datensammeln
aus Wikipedia, eine Alignierungsmethode und eine Qualititsmetrik vor. Die
Algorithmen der in dem Zusammenhang entstandenen Software sind sowohl
generisch beschrieben, wie auch in Python implementiert. Das Ergebnis einer
Iteration der Software, 66,000 Satzpaare, ist der erste experimentelle Daten-
satz. Dieser Datensatz wird von Experten evaluiert, um die Ergiebigkeit, Um-
setzbarkeit und Effizienz dieser Methode zu untersuchen.

186

	Introduction
	Overview – Research Question and Output of the Thesis
	Challenges
	Approaches and Solution
	Language-Specific Issues
	Objective and Scope

	Structure of Thesis

	Scientific Background
	Languages and Translation
	Machine Translation
	Neural Machine Translation
	Language Data in Machine Translation
	The Importance of Bilingual/Parallel Corpora
	Bilingual/Parallel Corpus Acquisition
	Existing Parallel Corpora for Japanese/English
	Translation and Corpus Evaluation

	AWCAT Framework
	Overview
	Language Resources
	Software, Programs, Tools
	Hardware

	Data Extraction
	Data Source – Wikipedia
	Selective Crawling
	Implementation of the Data Extraction Stage
	Topic Extraction Module
	Translation Module
	Formatting Module
	Matching Module
	Comparison Module
	Text Extraction Module

	Building Glossaries

	Data Preparation
	Cleaning and Pre-processing Data
	Implementation of the Data Preparation Stage
	Alignment Preparation Module
	Language Resource Module

	Sentence Alignment
	Algorithm
	Alignment Metric
	Example of Sentence Alignment
	Implementation of the Sentence Alignment Stage
	Alignment Module

	Evaluation
	Metric Score – Automatic Scoring
	Quality Measure by a Translation Expert
	Evaluation Results
	Runtimes

	Conclusion
	Summary
	Observations
	Data Extraction Stage
	Data Preparation Stage

	Contributions
	Theoretical Contributions
	Practical Contributions

	Application to Other Language Pairs
	Publications Resulting from this Research
	Limitations
	Future Work

	References
	Appendix Source Code
	Data Extraction Stage
	Topic Extraction Module
	Function – get_topic_pairs
	Function – get_pages_links
	Function – extract_links

	Translation Module
	Function – get_translation

	Formatting Module
	Function – format_topics

	Matching Module
	Function – translate_topics_into_english
	Function – find_equivalents

	Comparison Module
	Function – compare

	Text Extraction Module
	Function – extract_text

	Data Preparation Stage
	Alignment Preparation Module
	Function – tokenize
	Function – clean
	Function – lemmatize_and_pos_tag

	Language Resource Module
	Function – JMnedict_to_json
	Function – edict2_to_json

	Sentence Alignment Stage
	Alignment Module
	Function – align

	Appendix Abstract

