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Abstract 
 

Specific phobias can severely limit the quality of life of affected individuals. Given their high 

prevalence, finding feasible and evidence-based therapeutic approaches to phobias is of 

clinical importance. The current state of the art treatment is exposure therapy, where a 

therapist presents feared stimuli to the patient. 

To model and potentially automatize exposure therapy, we conceptualised it as a 

dynamic closed-loop system that assesses the patient’s fear state (sensor), and updates the 

stimulus intensity so that arousal levels are optimal for maximizing clinical efficacy 

(controller). We measured physiological signals to improve the assessment of the current fear 

state and developed an input (stimulus) – output (fear) mapping for spider phobia to provide 

the controller with stimuli: the SpiDa database. 

55 pre-screened participants were confronted with 175 luminance-matched pictures of 

spiders, while physiological signals were recorded. After each picture, they were asked to rate 

the level of fear it induced. 

Results from machine learning predictions show that two input variables are 

contributing most to predicting fear states: the average rating of the current stimulus across 

participants, and how the current participant had rated previous images. A simple model 

taking into account these two input variables can on average predict 60% of the variance of 

fear ratings for previously unseen stimuli.  

We conclude that drawing not only on current signals, but also on participants’ 

previous states and a well-defined stimulus space is most important when designing a 

controller for future closed loop approaches in therapy and fear research. In support of this, 

we will make all stimuli and the corresponding reactions publicly available. 
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Zusammenfassung 

Spinnenphobie ist eine der häufigsten Phobien und kann die Lebensqualität der Betroffenen 

deutlich beeinträchtigen. Die meistgenutzte Therapiemöglichkeit ist die Expositionstherapie, 

bei der dem Patienten wiederholt ein furchtauslösender Stimulus dargeboten wird. Wir 

formulieren dieses therapeutische Setting als ein “closed-loop-System”, das anhand des 

vorhergehenden Zustands des Patienten (gemessen mit einem “Sensor”) den nächsten 

Stimulus wählt, um ein optimales Aktivierungsniveau beizubehalten (durch einen 

“Controller”). Dies ermöglicht ein besseres theoretisches Verständnis sowie die Verbesserung 

und Automatisierung dieser Therapiemöglichkeit. 

Unsere hier vorgestellte SpiDa Database dokumentiert die Furchtreaktionen, die von 

bestimmten Stimuli ausgelöst werden. Um die Messung momentaner Furchtzustände zu 

verfeinern, setzen wir eine Reihe physiologischer Messinstrumente ein und verwenden 

maschinelles Lernen, um die ausgelöste Furcht vorherzusagen. 

Fünfundfünfzig Probanden bewerteten die Furcht, die die 175 SpiDa Bilder auslösten. 

Durch das Trainieren von Modellen versuchen wir, diese Bewertungen anhand der 

verfügbaren Information vorherzusagen. Unsere Ergebnisse zeigen, dass vorrangig zwei 

Variablen für die Vorhersage relevant sind: Das Mittel der Bewertungen des aktuellen 

Stimulus durch andere Probanden sowie das Mittel der Bewertungen der vorhergehenden 

Stimuli durch den aktuellen Probanden. Um die 60 Prozent der Varianz der Bewertungen 

lassen sich mit solch einem reduzierten Modell vorhersagen. 

Zusammenfassend lässt sich sagen, dass eine erfolgreiche Konzeption eines 

“Controller”, um closed-loop Ansätze in der Therapie aber auch Forschung möglich zu 

machen, vor allem zweierlei benötigt: Ein gut untersuchtes Set an Stimuli, von denen bekannt 

ist, welche Reaktionen sie auslösen, sowie die Berücksichtigung vorhergehender Zustände des 

Patienten zusätzlich zum momentanen Zustand. Zur Unterstützung der Open Science 

Initiative werden wir sämtliches Material der SpiDa-Datenbank öffentlich zugänglich 

machen. 
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1. Fear, Physiology & Input-Output Matching 

1.1. Fear of Spiders 

The adaptive value of emotions has long been recognized (Darwin, 1872). Throughout 

species, emotions facilitate appropriate responses to changes in the environment by activating 

specific brain regions and responses of the autonomous nervous system. For example, when a 

stimulus is perceived as threatening, the hypothalamus, and the pituitary gland consecutively, 

cause the emission of norepinephrine, which in turn leads to the activation of the sympathetic 

nervous system and facilitates fight-or-flight responses. This is accompanied by characteristic 

physiological changes such as an increased heart rate, pupil dilation, increased blood clotting 

and immunoreaction. (Critchley et al., 2013; Fendt & Fanselow, 1999; Kreibig, 2010) 

 

What to fear in a complex environment? Appropriate emotional responses can be 

acquired, either by model learning or by direct experience (Olsson & Phelps, 2007, Klinnert 

et al., 1983). The classic case of ‘Little Albert’, a child conditioned to fear an originally non-

threatening rabbit, illustrates the latter (Watson & Rayner, 1920). However, not all learning is 

equal: biological preconditions facilitate learning of emotional responses to certain stimuli 

(Garcia & Koelling, 1966), resulting in ‘prepared learning’ (Barrett & Broesch, 2012; 

Seligman, 197). In line with this argumentation, evolutionary psychologists claim that stimuli 

that make sense to be avoided in an evolutionary context, such as dangerous animals, are still 

being avoided today because it is easier to learn to fear them (Öhman & Mineka, 2001). In the 

light of signal detection theory, a ‘miss’ of such a stimulus is potentially penalized more than 

a ‘false alarm’, evolutionarily shaping our responses (Schechtman et al., 2010).  

 

The specific phobia with the highest prevalence is the fear of spiders (Fredrikson et 

al., 1996). Spiders elicit more fear and disgust in humans than any other animal, even in non-

clinical populations (Polák et al., 2019). Spider phobia occurs in approximately three percent 

of the population, and is over four times as prevalent in women than men (Oosterink et al., 

2009; Somers et al., 2006; Sichermann, 2012). 

Phobic responses to animals such as spiders can be seen as an over-reaction to this 

phylogenetic threat, and the patient’s life can be severely restricted by the phobia when their 

social or professional life becomes impaired or a great stressor (WHO, 2018). Given the 

prevalence of such disorders, finding and optimizing therapeutic treatments is important. 

 

 



	 7	

1.2. Exposure therapy as a closed-loop system 

A common and successful treatment for specific phobias is exposure therapy: patients are 

repeatedly exposed to feared stimuli and eventually re-learn the relationship between the 

stimulus and the consequences (Benito & Walther, 2015, Deacon et al., 2013, Foa et al., 

2006). 

Although exposure therapy has repeatedly been shown to be effective in clinical trials 

(Öst, 1989; Öst et al., 2001), vastly different approaches and procedures exist (Davis et al., 

2019; Davison, 1968; Levis & Krantweiss, 2004; Parsons, & Rizzo, 2008; see Abramowitz et 

al., 2019); and how a therapist proceeds in practice is arguably often based on ‘best practice’ 

and subjective impressions. A possible approach to more standardized procedures would be to 

conceptualize the patient-therapist interaction system as a closed loop system. Such a 

feedback system takes into account the current state of a system, modifies it by a given input, 

evaluates the change and delivers the next input based on the new state (Fig.1A). Many 

psychological paradigms have been described in a way to fit a closed-loop system, and closed 

loop systems have in turn been designed to interact with psychological processes (Shanechi, 

2016, 2019; Schöner, 2008). It has also been argued that the conventional open-loop approach 

in psychology should be advanced by ‘closing the loop’ of both experimental designs and 

explanatory models (Marken, 2009). Importantly, closing the loop can enhance the efficiency 

of processes (see Lorenz et al., 2016, 2019), as adaptive testing for psychological diagnostics 

demonstrates (Wang & Chang, 2011). 

If we transferred such a closed loop to an individualized exposure therapy setting, the 

system input would correspond to the feared stimulus, and the system output to the patient’s 

response. The therapist acts as a controller that compares that output to a desired reference 

and chooses the next stimulus based on this comparison (Fig. 1B). Crucially, the effectiveness 

of such sessions depends on how accurate the therapist’s experience-based judgment of the 

patient’s current state is as well as on their estimation of the response the future stimulus 

(system input) will elicit in the patient (system output). This estimation can be refined by 

input-output matching, such as examining typical reactions to different stimuli in a wide range 

of participants with certain characteristics (Fig. 1C). Judging a patient’s level of fear is 

usually based on subjective ratings, verbal reports, and non-verbal signs that the therapist 

might notice. A possibly more objective extension to monitor and judge fear states may be to 

incorporate physiological measures. 
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1.3. The physiology of fear 

Psychology traditionally offers different approaches to integrating physiological responses in 

theories of emotion, as perhaps best illustrated by the contrasting views of the classic James-

Lange and the Cannon-Bard theory of emotions (Cannon, 1927; James, 1884). Today, it is 

recognized that characteristic physiological arousal marks anxiety disorders (Brown & 

Barlow, 2002; Kogan et al, 2016; WHO, 2018), and bodily exercises such as practicing 

hyperventilation are a common practice in many exposure therapy settings (Abramowitz et 

al., 2019; Deacon et al., 2013). Thus, it seems only logical to include these physiological 

markers in the development and study of possible therapeutic approaches. For instance, 

biofeedback combined with exposure has been successfully employed in the treatment of 

anxiety disorders (Lin et al., 2019; Reiner, 2008; Schoenberg, & David, 2014). 

 

Physiological changes in response to fear and anxiety have been examined by a 

number of studies: For example, faster breathing has repeatedly been associated with fear 

states (Etzel et al. 2006; Kreibig et al., 2007; Rainville et al., 2006; Van Diest et al., 2001), 

Van Diest et al. (2001) report an elevated pulse rate as measured in the finger upon fear 

Figure 1 

Exposure Therapy as a Closed-Loop System 

 

 
Note. (A) Schematics of a closed-loop system. Figure modified from Wikimedia 

Commons. (B) Formulating a therapeutic setting as a closed loop. (C) An 

example of input-output matching. 
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induction, and an elevation in heart rate is a classic sympathetic response that has been 

reported in many fear-inducing paradigms (cf. Kreibig et al., 2007, e.g. Aue et al., 2007; 

Palomba et al., 2000). A higher skin conductance level, response rate and magnitude of 

response indicate levels of physiological arousal accompanying fear (see Kreibig et al., 2007, 

e.g. Palomba et al, 2000), and electrodermal activity reliably indicates that a feared stimulus 

has been presented to participants, even if that presentation occurred subliminally (Öhman, & 

Soares, 1994). Increased pupil size is another indicator of sympathetic arousal (Bradley et al., 

2008) and has been shown to reflect activity in certain brain areas such as the locus coeruleus, 

likely indicating non-luminance-mediated changes associated with sympathetic activity (Joshi 

et al., 2016). Changes in gazing behavior (Tolin et al., 1999) and facial muscle activity (Aue 

et al., 2007, 2012) have been implicated in emotional processing as well.  

Even if related emotions might not always be accurately distinguishable from each 

other, autonomic arousal can be reliably detected by such methods (Kreibig, 2010), and 

advances combining machine learning and deep learning with classic theories of emotion 

strive to reliably detect fear levels from physiological signals (Bălan et al., 2019). 

 

1.4. Predicting fear states 

The present study aims at identifying variables, such as physiological signals, that could help 

to predict and estimate fear states in closed-loop exposure therapy settings. Additionally, we 

plan to provide input-output matching for spider stimuli by quantifying the intensity of 

responses to perceived threats: We present SpiDa, a database of fear-inducing spider images 

and the corresponding responses. 

Fifty-five pre-screened, spider-fearful participants viewed and rated images of spiders, 

while their pupil size, skin conductance, ECG, respiration and pulse were recorded. After 

each picture, they were asked to rate the level of fear it induced. In this thesis, we will discuss 

participants’ self-evaluated fear as well as their skin conductance response, changes in pupil 

size and respiratory activity in response to different images. 

We expect that the physiological signals accurately distinguish between fear-inducing 

and neutral images and that we can predict fear ratings significantly better than a trivial 

predictor using the available signals. 

Inter-individual differences contributing to these factors will be explored, and we fit 

machine learning models trying to predict fear ratings from all available input factors. In 

doing so, we examine the relative importance different variables might have for designing 

closed-loop settings in fear research and therapeutic settings. 
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In support of the open science initiative, the SpiDa stimuli, the ratings, and the 

physiological responses to each image will be available as open-access material. Thus, SpiDa 

can serve as a well-defined stimulus space for fear research and for exposure therapy settings. 
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2. Material and methods 

2.1. SpiDa: The Spider Images Database 

We created SpiDa, a publicly available database of luminance-matched images including 175 

spider pictures and 15 neutral pictures (800x600px each). Spider pictures were obtained from 

diverse sources of free stock photos and include pictures from the Geneva Affective Picture 

Database (GAPED, Dan-Glauser & Scherer, 2011). Spider images are diverse with respect to 

categories like perspective, distance or size of the spider. (see Table 1). Neutral pictures 

include objects such as a bicycle and chairs. (Figure 2) 
 

 

The mean luminance of all pictures was normalized using the Matlab (The 

MathWorks, Natick, USA) Toolbox SHINE color (Spectrum, Histogram, and Intensity 

Normalization and Equalization, Dal Ben, 2019; Willenbockel et al, 2010). Mean HSV values 

of the pictures are 0.5614 (SD= 0.0004189), mean LAB values 728.687 (SD= 36.863). 

All pictures were first luminance matched to each other, and pictures that looked 

unnatural after that process were removed. The original pictures of the remaining set were 

then matched again to each other. This enables us and future researchers to study pupil size 

when using the stimuli as the procedure avoids confounders due to variance in luminance in 

possible future paradigms, such as changes in ERP components (Johannes, Münte, Heinze, & 

Mangun, 1995). 

  

Figure 2 

Examples of SpiDa images 

 
Note. (A) Dolomedes fimbriatus  (B) Zilla diodia 

(C) Argiope argentata  (D) Bicycle 
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Note. The categorization is based on subjective assessment of 3 members of the lab.  
  

Table 1 
Frequencies of different image contents in the SpiDa database. 
Category Attributes Number of pictures 
Spider in picture 
 

no spider 9 
Spider 162 
painted spider 4 

Cobweb in picture No cobweb 118 
Cobweb 57 

Number of spiders in picture 
 

no spiders 9 
1 spider 156 
2 spiders 4 
20-60 spiders 6 

Distance of spider 
 

Not applicable 9 
close 83 
half-distant 82 
distant 1 

Environment 
 

not applicable 6 
nature 107 
civilization 46 
human contact 16 

Texture 
 

not applicable 10 
smooth 85 
hairy 80 

Eyes 
 

not applicable 9 
non-visible 95 
visible 71 

Eating 
 

not applicable 9 
not eating prey 152 
eating prey 14 

Origin 
 

not applicable 12 
exotic 105 
native in Austria 58 

Subjective size 
 

not applicable 9 
small 42 
middle 88 
large 36 

Perspective 
 

not applicable 9 
from side 58 
from top/all legs visible 108 
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2.2. Setup and Procedure 
The experiment was programed in PsychoPy 3.2.4  (Peirce, 2007). All 190 SpiDa images 

were presented to all participants, while physiological signals were recorded. Nineteen of 

those images were presented twice to each participant. 

Participants completed four blocks, each starting with a relaxation phase (90 seconds) 

followed by 56 trials of stimulus presentation. After each block, short questionnaires 

assessing fear, disgust, and fatigue levels were filled in by the participants. After the final 

block, another relaxation phase followed. 

Each trial consisted of a fixation cross (random duration between 3 and 5 seconds), 

followed by a picture of the database (800x600px, 5 sec) and a rating phase, where 

participants indicated their level of fear on a continuous scale by clicking on it (Fig. 3). For 

the analysis, the reported position on the scale was coded between 0 (leftmost position 

indicating least fear) and 100 (rightmost position indicating maximum fear) in steps of 1. 

Pictures were presented on a 2560x1440 pixel screen. In 85.71% of all cases a spider 

picture was shown, in 7.14% of the trials a neutral picture was shown instead. In the 

remaining 7.14% of all cases – 16 times for each participant – catch trials occurred: Instead of 

a picture, a short instruction was presented, asking the participants to move the mouse to 

either the very left or right of the scale. 

A testing session consisted of briefing, the setup and sanity checks for all 

physiological measurements, five practice-trials with neutral pictures, the experiment (4 

blocks) including three breaks, the post-questionnaires and debriefing. The whole procedure 

took approximately 1,5 hours per participant. 

Figure 3 

Schematics of a Picture-Rating Trial	
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2.3. Physiological Measurements 

Five physiological measurements were applied simultaneously while participants completed 

the picture-rating-task.   

Respiration: A respiration belt (BrainProducts GmbH, Gilching, Germany) was 

attached in the lower chest/upper abdominal area to measure breathing patterns. 

Galvanic skin conductance: Electrodermal activity electrodes (Ag/AgCl, 

BrainProducts GmbH, Gilching, Germany) were applied to the intermediate phalanges of 2nd 

and 3rd digit of the inner left hand. 

Pupil Dilation: A binocular, mobile eye tracker (‘Pupil Core’, Pupil Labs, Berlin, 

Germany; Kassner et al., 2004) was employed to detect the pupils of both eyes. As opposed to 

all other measures, the eye tracker had a non-constant sampling rate. 

Electrocardiography (ECG): A single channel, 1-Lead ECG was recorded by 

attaching disposable ECG electrodes (Biopac, Los Angeles, USA) to the inner sides of the 

area just above the ankle on both legs and the back of the right hand. The right foot was used 

as the grounding, a lead placed with the left foot as the plus pole and the right hand as the 

minus pole. 

Pulse: A pulse detector (Nellcor, Minneapolis, USA) was placed on the 4th digit of the 

left hand.  

 

Physiological signals were amplified with a the 16-channel BrainAMP ExG MR 

(Brain Products GmbH, Gilching, Germany) and filtered by means of the Software 

BrainVision Recorder (Software version 1.22.0101, Brain Products GmbH, Gilching, 

Germany; upper and lower cutoff filters set at 10s and 250Hz; amplitude resolution at 0.5 µV, 

transmission rate ± 16.384 mV). All physiological measurements and the experimental stream 

were collected simultaneously and synchronized with a sampling rate of 5000 Hz. This was 

achieved via the lab streaming layer (LSL) system in Lab Recorder (Swartz Center for 

Computational Neuroscience, UCSD; Kothe et al, 2019).  

 

2.4. Questionnaires 

Prior to the experiment, participants completed three questionnaires measuring fear of spiders 

at home: The Fear of Spiders Questionnaires (FSQ, Szymanski & O'Donohue1995; German 

version: Rinck et al., 2002), the Spider Phobia Questionnaire (SPQ, Watts & Sharrock, 1984; 

German version: Rinck et al., 2002) and the four item screening Spinnenangst-Screening 
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(SAS, Rinck et al., 2002), which covers all relevant diagnostic criteria as specified in the 

DSM-IV. Additionally, participants completed the Trait-section of the State-Trait Anxiety 

Inventory (STAI, Spielberger et al., 1983; German version: Laux et al., 1981; Grimm, 2009). 

Immediately after the experiment, participants again completed the FSQ and SAS 

questionnaire. During the experiment, participants filled in four identical questionnaires 

assessing their current degree of fear, disgust, physical excitement, boredom and exhaustion, 

each on a scale of 0 to 10. 

 

2.5. Participants 

A subclinical sample of N= 55 spider-fearful individuals aged 18 to 30 years (mean age = 

21.61 years, SD= 3 years) took part in the experiment. Subjects received either course credits 

or money (20,- euro) for their participation. 

They self-reportedly had fear of spiders and on average had an FSQ-score of 54.42 

(SD= 19.39, see Fig.4) and an average SAS of 17.04 (SD= 4.04) before the experiment. Of the 

55 participants, 53 were classified as spider-fearful and none as non-anxious according to the 

screening results. This classification is based on Rinck & Becker (2007), who classify 

individuals with an FSQ above or equal to 24 as spider-fearful and those with a score equal to 

or lower than 8 as non-anxious. For the SAS, they describe participants with a score above 15 

as high fear and under 5 as low fear, resulting in 33 high fear and no low fear participants (22 

participants were close to being classified as high fear, see Fig. 4; Rinck & Becker, 2007).  

 
 
 
 

 

Figure 4 

Histogram of Participants’ FSQ and SAS Scores (pre-test). 
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2.6. Analysis 
Trimming and Deconvolution of Physiological Measurements 

Trimming of the data consisted of removing those parts of the recording where participants 

were not exposed to pictures. In addition, since the eye-tracking device did not acquire pupil 

diameter with a fixed sampling rate, pupil data points were interpolated and re-sampled to a 

250 Hz sampling rate in Matlab 9.7., and only the left eye was used. 

For each picture presented to each participant, we extracted a corresponding value (β-

value) of each physiological measurement. To do so, we used deconvolution with the Least 

Squares- Separate Approach (Mumford et al., 2012). For each trial, this approach models a 

separate GLM with the signal during presentation of that image as a first predictor against a 

nuisance regressor created from all other trials of that participant (Mumford et al, 2012). This 

enables a more precise estimation of the effect of each trial relative to all other trials. The 

extraction of β-values was conducted using the Matlab Toolbox PsPm 4.2. (Psycho-

Physiological Modeling, available at http://bachlab.org/pspm). The β-values obtained were 

used in all subsequent statistical analysis. 

Statistical Analysis 

We employed Bayesian estimation models for both independent and paired samples when 

comparing two groups and Bayesian inference of Pearson correlations. For these tests, we 

reported Bayes factors (BF, H0 against H1) rather than p-values, since they are less frequently 

misinterpreted and can be interpreted directly as the amount evidence of a hypothesis 

compared to another (Cox, 2006; Greenland et al., 2016; Held & Ott, 2018). We chose 

objective reference priors for group comparisons (Berger & Bernardo, 1989) and a uniform 

prior distribution for correlations. Conventional measures of effect size were reported. 

To predict self-reported fear, we employed a linear (least absolute shrinkage and 

selection operator [LASSO], Tibshirani, 1996), and a non-linear machine learning model 

(Extremely Randomized Trees [ET], Geurts et al., 2006).  

We used nested cross validation (90/10, 100 iterations each) and controlled for subject 

clustering (stratified cross-validation). Input variables were participant characteristics (such as 

mean disgust rating or the FSQ-score), picture characteristics (such as the size or the texture 

of the spider), and physiological signals. All 16 input variables are displayed in Figure 7, 

where permutation feature importance is depicted for each input as the proportional loss of 

overall explained variance if the input is replaced by a random (non-informative) array of that 

variable. 
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All analyses were conducted in Python 3.7.7. (Scikit-learn 0.22.2., Pedregosa et al., 

2011), IBM SPSS Statistics (version 25.0) and R (R Core Team, 2017). 
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3. Results 

3.1. Exclusions 

Catch Trials 

We rated a catch trial as successfully completed if the rating was within the leftmost 5 % of 

the scale and within the rightmost 5% of the scale when asked to move the cursor to the left or 

right respectively. On average, participants responded correctly in 98% of the trials (SD= 

5%). One person was excluded for not reacting appropriately in at least 80% of all Catch 

trials. 

Quality of Data 

Two participants were removed from all analyses because of poor quality of the physiological 

signals. 

 

3.2. Questionnaire data 

Fear and Disgust 

As depicted in figure 5, self-reported levels of fear, disgust, physical excitement and boredom 

remained fairly stable throughout the experiment, whereas ‘exhaustion’ increased notably. 

The break questionnaires further confirm that disgust is an important factor in spider phobia, 

since overall, participants reported higher levels of disgust than fear (see Fig. 5). 

Mean ratings of the fear induced by the SpiDa images (ratings) per participant highly 

correlated with the mean self-reported level of fear reported in the break questionnaire with 

R= .614 and an BF < 0.001 (N=52). The mean disgust ratings on the break questionnaire 

correlated with the mean fear ratings of SpiDa images with Pearson’s R= .366 and an BF of 

.270, thus explaining 24.30 percentage points less of the variance than the indicated fear. 

Additionally, the Bayes factors imply that the existence of a connection between ratings and 

fear is much more likely than none, which is not as pronounced for the connection between 

ratings and disgust. 
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Pre and Post: Fear of Spiders Questionnaire (FSQ) and Spinnen Angst Screening (SAS) 

Both the FSQ and the SAS were used for screening several days before the testing and 

completed again right after the testing session. Interestingly, there were numerical differences 

between the two points in time: The SAS score decreased with a mean difference of 2.21 

(SD= 3.076, BF> 0.001), and the FSQ score decreased with a mean difference of 2.08 (SD= 

14.715). Nevertheless there is no evidence in favour of group differences (BF= 5.559).  

For both questionnaires, the scores obtained after the testing sessions explained more 

of the variance of the SpiDa ratings, and the Bayes factors showed a higher probability for an 

association of the ratings with the scores obtained after the session than with those obtained 

during screening (FSQpost: R= .629, BF<0.001, FSQpre: R= .270, BF= 1.437; SASpost: R= 

.506, BF= 0.006; SASpre: R= .273, BF= 1.361; N=52). 

 

 

Figure 5 

Levels of Self-Reported Feelings 

 
Note. Mean self-reported levels of fear (blue), disgust (green), physical excitement (red), 

boredom (orange) and exhaustion (yellow) over the course of the experiment, as measured during 

the breaks in between the blocks. 95% CI depicted. 
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3.3. Rating data 

Repeated Presentation of Pictures 

To assess repetition effects, 19 spider images were presented twice to the participants. Ratings 

of these images differed between the first and second presentation, however, the differences 

were small  (N= 1026, mean difference= 3.21, BF<0.001; mean1= 53.32, SD1=29.52); mean2= 

50.11, SD1=29.84). 

 

Proof of Principle: Neutral Pictures versus Spiders 

As expected, neutral pictures of the SpiDa were rated as less fear inducing than pictures 

containing spiders or cobwebs (BF < 0.001); meanneutral = 2.55, SDneutral = 3.737, Nneutral = 832; 

meanspider = 55.30, SDspider = 13.94, Nspider = 9984). 

 

3.4. Physiological data 

 

Proof of Principle: Neutral Pictures versus Spiders 

The mean skin conductance β-values were indeed lower for neutral pictures than spider 

pictures (BF = 0.002; meanneutral = 5.2069E-4, SDneutral = 3.08799E-3, Nneutral = 832; meanspider 

= 5.03540E-5, SDspider = 3.60550E-3, Nspider = 9984). Respiration values, too, were lower for 

neutral pictures compared to spider pictures (BF = 0.001; meanneutral = 1.22829E-2, SDneutral = 

3.00662E-2, Nneutral = 832; meanspider = 1.66332E-2, SDspider = 2.64964E-2, Nspider = 9984). 

Values for pupil dilation were numerically higher in the neutral condition than for 

spider-images, however, the Bayes factors suggest that it is unlikely that these data actually 

reflect group differences (BF = 29.343; meanneutral = 5.94398E-4, SDneutral = 1.58518E-2, 

Nneutral = 832; meanspider = 3.11166E-4, SDspider = 1.38533E-2, Nspider = 9984). Thus, as 

opposed to skin conductance and respiration, the values for pupil dilation as obtained by this 

analysis do not seem to accurately reflect the fear induced by spider images.  

 

3.5. Predicting fear ratings from physiology, picture characteristics and participant 

traits 

We attempted to predict participants’ fear ratings from a range of inputs characteristic for 

each participant (such as previous ratings and physiological response) and for the picture 

(such as the number of spiders). To do so, we use a linear (LASSO) and a non-linear model 

(extremely randomized trees). 
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Our most extensive model takes into account 16 input variables and 8774 trials. On 

average, we were able to predict 49 percent of the variance if a linear model is used 

(SD=0.12; median R2= 0.48) (Fig. 6A). The non-linear models predicted on average 0.46 

percent of the variance (SD=0.14; median R2= 0.44) (Fig .6B). The mean absolute error for 

the linear model is 12.88 (root of mean squared error= 16.4) and 13.59 for the non-linear 

model (root of mean squared error= 17.23), thus, predictions can be made with  ± 13 points 

precision on the rating scale from 0 to 100. Both models perform significantly better than a 

trivial predictor (always predicting the mean of all ratings) at a 95% CI (p<0.001). 

Although the linear and non-linear models both predict a similar amount of the 

variance of the ratings, not all features were taken into account in the same way. Most 

notably, disgust ratings in the breaks do have predictive power in the non-linear models, but 

not the linear models. The same applies to the FSQ score obtained during the screening and 

the SAS score obtained after the testing session. Figure 7 shows the predictive value of each 

input factor, depicted as the proportional reduction of the explained variance if that feature is 

replaced by a random array of that feature for the linear (A) and non-linear (B) models. 

For both models, the most important predictors were how the participant had rated the 

previous pictures on average, how the picture had been rated by other participants, and the 

participant’s FSQ score obtained right after the experiment (Fig. 7). 

 

Next, we fit a minimal model that only takes into account two values that have been 

shown to be most influential in the more extensive model: The mean of all the ratings a 

participant has completed until this picture and how the current picture has been rated by all 

other participants. Less exclusions due to missing data allowed for 9741 trials to be included. 

Simple linear models with these two input factors explained on average 60 percent of 

the variance (SD=0.08; median R2= 0.61; mean absolute error= 12.93, root of mean squared 

error= 16.74). The non-linear models explained on average 0.62 percent of the variance 

(SD=0.08; median R2= 0.61; mean absolute error= 12.20, root of mean squared error= 16.05). 

Again, both models performed significantly better than a trivial predictor (p<0.001). 

Figure 6C (linear) and D (non-linear) shows the model fit for these reduced models. 
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Figure 6 

Model Fit 

 
Note. Model fit shown by plotting the regressor predicted values against the given true values for (A) 
the LASSO regression using all input variables, (B) extremely randomized trees using all input 
variables, (C) the LASSO Regression using just two input variables, and (D) extremely randomized 
trees using just two input variables: The average of the previous ratings for the participant and the 
average for the current stimulus from other participants. 
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Figure 7 

Input Feature Importance 

 
Note. Permutation feature importance of each input variable in the extensive linear (A) 

and non-linear (B) model 
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4. Discussion 
 

The present study set out to explore the role of physiological measurements in the assessment 

of fear and to find variables that are well suited to design controllers in closed-loop 

approaches for exposure therapy and fear research (see Fig. 1A). To achieve this goal, we 

created a new SpiDa database of luminance-matched spider and neutral pictures that were 

evaluated by 52 participants while physiological signals were recorded and standardized 

psychological questionnaires were administered at different points in time. 

 

In predicting the fear induced by a particular picture, we took into account 

physiological signals at the time of presentation, properties of the current picture (such as the 

size of the spider) and participant traits (such as questionnaire scores). Importantly, the most 

useful variables in making successful predictions were how the current image had been rated 

by other participants and how the participant had rated the previous images. A simple model 

with these input variables trained on other participants can on average predict 60 percent of 

the variance of how fearsome an image will be rated by a new participant (Fig. 6 C, D). All 

other variables only marginally contributed to the explained variance (see Fig. 7). Although 

containing little predictive value, physiological signals such as skin conductance response 

differed between neutral and spider images (3.4.) and also questionnaires scores correlated 

with the fear ratings (3.2.). In line with the limited predictive potential of physiological 

signals, Aue et al. (2012) reported that electrodermal activity may only reflect very high 

levels of fear, and several studies have found no meaningful changes in physiological signals 

such as respiration (Sarlo et al., 2002). Nevertheless, an overwhelming amount of studies 

documents characteristic physiological changes in response to emotional processing (cf. 

Kreibig et al., 2007). 

Notably, how other participants had rated the current input was a very important 

predictor of a new participant’s response, even though objective characteristics of that picture 

(such as the number or size of spiders) had no predictive power and did not seem to capture 

the essentials of the current input. 

 

Whilst many variables measuring the current state of the participants, such as 

respiration, did not contribute much to determining that current state, the good predictive 

value of a participant’s previous ratings emphasizes that taking previous states into account 

can help to refine a current measurement. This has been long recognized by other disciplines, 

and many technical devices operate on recursive functions (cf. Kalman filters, Welch & 
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Bishop, 1995). Psychology, too, might profit from shifting its viewpoint when measuring 

psychological states. Many psychological domains such as learning, social interactions, 

perception are in fact dynamic closed-loop systems. Incorporating not only current, but also 

previous states is a first step in taking such dynamics seriously. 
	

Our results, combined with further research, may be particularly useful for developing 

evidence-based, individualized procedures in exposure therapy and potential low-barrier 

automatized therapeutic devices for affected individuals. This is not a novel approach: 

Computerized and even self-administered exposure therapy has been successfully 

implemented before (Dewis et al., 2001; Matthews et al., 2010). Recent studies aimed at 

computerizing exposure therapy using physiological signals (Watson et al., 2019), and 

Zilverstand et al. (2015) employed closed-loop neurofeedback to regulate spider phobia. More  

easily accessible mobile applications are being developed to help with psychological 

problems such as anxiety and phobias (Bakker et al., 2016; Kertz et al., 2017). However, most 

of these applications are far from being evidence-based (Kertz et al., 2017). 

 

Interpersonal differences in fear of contamination may be crucial predictors for the 

development of spider phobia (De Jong et al., 2002). Like fear, disgust is an evolutionary 

important basic emotion that can be transmitted via different modalities (Stefańczyk & 

Oleszkiewicz, 2020), and has been found to play an important role in spider avoidance 

(Woody et al., 2005; see Fig. 5 for disgust in our sample). In our analysis, disgust has been 

found to have some predictive power with regard to how fearsome the pictures are perceived. 

However, this was only the case for non-linear models (Fig.7), indicating a complex interplay 

between disgust and fear. 

Similarly, two questionnaires measuring fear of spiders had some predictive power 

only in the nonlinear model, suggesting that the relationship between these self-assessment 

instruments and actual responses is not necessarily captured with linear models. 

 

Our sample consisted mostly of female Viennese students. While this facilitates the 

predictions for our models, it limits the generalization of our results to other samples. 

Furthermore, our spider stimuli do not equally well cover the entire fear spectrum (i.e. there 

are fewer stimuli being rated as not or very fear provoking). Adding stimuli from these fear 

intensities to the database might enhance its use for practical applications. Both limitations 

can be addressed by online rating experiments in larger samples. Collecting a sufficiently 
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large number of stimuli that score high/low on the fear scale and vice versa on the disgust 

scale might also help to disentangle the role of fear and disgust in spider phobia. 

 

In conclusion, this study identifies variables that are important in predicting future fear 

states, and represents a first step towards evidence-based practices and automated exposure 

therapy. The fact that information available from rating data seems to be most important in 

predicting future states is particularly promising for the development of easily implementable 

tools. 

The SpiDa images and the corresponding values will be made openly accessible to 

researchers and practitioners: Since the ratings of an image by other participants were one of 

the most important predictors of a participant’s response, this well-defined stimulus space is a 

valuable tool for future studies on fear responses or when investigating and implementing 

closed-loop approaches in exposure therapy.  
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