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1. Introduction 

Machine Translation (MT) has recently gained a lot of momentum again, as deep learning 

methods based on artificial neural networks were (re-)introduced into the MT research sphere. 

During my master’s course at the Center for Translation Studies in Vienna, the way that 

Machine Translation (MT) and Computer Assisted Translation (CAT) tools were approached 

varied wildly from one lecturer to the other. One part of lecturers was very open to exploiting 

all tools available in order to provide the most efficient translation; the others warned us from 

overly relying on computer tools and focused on teaching us ‘traditional’ translation tactics and 

know-how for manual translation. This dualism is something even observed in studies regarding 

the acceptance of machine translation (see Cadwell et al. 2018). I believe that the more 

conservative stance was positive in the sense that it allowed us students to gain practical 

knowledge, skills and an understanding of the many possible issues one might face when 

translating, especially when not relying on supporting tools. However, I also believe that 

ignoring or antagonizing the developments in MT research is of no benefit and in fact very 

dangerous for translators to be. While we were taught basic concepts of machine translation, 

not a lot of time was spent with the concrete workings of how machine translation systems 

operate, and this may create a sense of alienation and threat coming from MT amongst 

Translation Studies students. Adding to this, we keep reading a fair share of doomsayer articles 

about MT systems replacing translators, as, on the face of it, it (once again) looks like machine 

translation is only a few steps away from being solved. While the rise in quality cannot be 

dismissed, it is mostly agreed upon by experts, that machine translation still has many glaring 

issues that need tackling and during our studies, we were generally promised that, as human 

translators, we will remain ‘relevant’ as machines will not be able to provide high-quality output 

any time soon. But aside from anecdotal evidence, no proper explanation as to why that is was 

provided. 

While the evaluation of translation quality is in itself a very complex topic, neural 

network-based translation methods made big strides when it comes to a fluent and therefore 

‘perceived’ high-quality output. I believe it is therefore imperative for translators to be at least 

somewhat informed on how these systems work, where they still don’t, and how the Computer 

Linguistics approach the development of such systems. In fact, I believe, that giving translators 

a deeper knowledge about machine translation systems and development can benefit not only 

the translators but also MT research and the translation industry in general. Ideally, a more 

constructive collaboration between the two camps, translators and MT developers, should be 

strived for. 
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Translators may be able to contribute greatly to improving these systems and, 

conversely, stay relevant in this time of instant translations and high-quantity, subpar-quality 

texts (think “the internet”). For this, translators need to understand and to some degree work 

with these systems. As a patent-translator myself, I have found that recent advances in neural 

machine translation are really shaping the form in which patent organizations like the EPO or 

the WIPO can offer quite usable translations by automatic means on their websites. 

Instantaneously and for free. At the same time, using these services or just perusing many of 

the translated content available today, I have also witnessed plenty of times where the automatic 

translation fails to convey the correct meaning or downright obfuscates the original content. 

The risk involved in using automatic translations remains very high, especially if there is no bi-

lingual postediting step involved. In fact, the risk is even higher today as it may not be 

immediately recognizable as a (faulty) machine translation, since the text may look correct in 

the target language. Problematic smaller nuances may even pass by undetected in a bilingual 

revision made by editors or translators, especially if the workings of neural networks are not 

well known. This is something that can be observed outside of the translation paradigm as well, 

with questionable overreliance on the so called “AI” or “Deep-Learning” solutions, that really 

seem to be omnipresent. 

While there may be some talk about these “AI-Systems” replacing hitherto human 

expertise, this scenario should be considered as rather unlikely as rather than disappearing, the 

job of translators will more likely adapt to the necessities of the times, with more focus on pre- 

and post-editing. An area where both the linguistic as well as the translational expert knowledge 

can be put to good use and will be more important as reliance on MT increases in the industry. 

However, this may prove a daunting task and turn out as pure menial work for translators that 

have no insight into how artificial neural networks and the machine translation built upon them 

works. 

This work therefore represents an attempt to have a more in-depth look into machine 

translation, especially the one powered by artificial neural networks or “AI”. The attempt is to 

form an overview from the point of view of a Translation Studies student and not an IT student. 

In this work I try to learn how neural translation models are trained and which data preparation 

steps would help with the creation of a better translation model. Since one of my main sources 

of income are patent translations for the EPO, the thesis will focus on this very specific domain. 

While in general my working languages are German-Japanese for Patents, I will focus on 

English-Japanese as this should broaden the accessibility of this thesis and, on a more pragmatic 

note, simply more parallel text data is freely available in that language pair. 
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It is not the aim of this thesis, to create a new state-of-the-art translation model, but 

rather I hope to be able to shine some light on the practices of MT research and find some 

conclusive answers as to how translators as experts in their field can be more involved in the 

research regarding this topic. The thesis will take a more down-to-earth look at the recent 

developments in MT research and should also fulfill the purpose of a sort of tutorial for anyone 

with little to no IT background and interest in exploring (N)MT.  

The thesis also aims to challenge the common conception of the MT research 

community, that more data will always equal in better results: The final part of this thesis will 

be experimental and focus on the creation of several NMT models, using freely available open 

source NMT/NLP-toolkits and patent text data provided by the NTCIR1. For creating the 

models, the data used will be manipulated in a pre-processing step to find out whether it is 

helpful to specialize a neural translation model onto a specific domain, or whether it is better to 

provide the network with as much data as possible. Furthermore, aside from the common 

automatic evaluation of the models’ performance (through the BLEU metric), a human 

evaluation based on the SAE J2450 metric will also be provided. 

In order to give a general idea about MT, all the major MT approaches as well as a short 

historical overview of MT will be provided before the more practical part of this thesis. 

 

 
1http://research.nii.ac.jp/ntcir/permission/ntcir-10/perm-en-PatentMT.html (accessed on January 20, 2019) 

http://research.nii.ac.jp/ntcir/permission/ntcir-10/perm-en-PatentMT.html
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2. A brief history and the current state of machine translation 

Machine Translation (MT) as a concrete concept arose in the late 1940’s when mostly political 

tensions between countries of different languages created the need for fast translations of texts 

from one natural language to the other. While some concepts were already quite promising and 

indeed close in theory to state-of-the-art machine translation approaches of today (see Weaver 

1949, Hutchins 2007), the first systems, like the one developed by IBM in Georgetown 

(Hutchins 2004), were mostly dictionary- and word-based, disregarding most of the 

fundamental linguistic problems translators face (see Kaiser-Cooke 1993, Hutchins 2010). As 

such, they failed to live up to the (unreasonably) high expectations culminating in the 

publications of the ALPAC report in 1966 2 , which prompted government(s) and many 

supporters to cut their funding, basically halting development of MT in the US and Britain for 

several years. 

Canadian and European investment continued however, as the need for translation 

within their bi-/multi-lingual communities became ever more prominent. In Europe this led to 

the adoption of an English-French version of the SYSTRAN3 system and the establishment of 

EUROTRA4, while Canada developed the METEO system specifically designed for translation 

of weather forecasts. These systems were built on the foundation laid in the 1960’s, however 

with linguistic rules added for the machine to follow during the translation decision. Such 

systems are regarded as Rule-based Machine Translation (RBMT) or as the ‘Classical Approach’ 

of MT and by their nature of following linguistic rules that have been defined manually by 

linguists, they offer very consistent and predictable translation quality, however at the cost of 

high-effort maintenance, sub-optimal handling of exceptions (especially exceptions to the fed 

rules) and usually rather poor fluency. 

Research regarding RBMT continued at a steady rate in Europe and Japan (Carbonell et 

al. 1994), however different approaches to MT started to emerge. While in Europe the research-

focus shifted to realizing an interlingua-based system, a system which could represent meaning 

by means of an interlingua independent of a specific language, Japan’s focus shifted to what 

might be considered the opposite of RBMT: example-based translation, which uses a bilingual 

 
2 The ALPAC report of 1966 harshly judged the performance of MT-Systems of the time, especially pointing out 

the low return despite massive funding by government and other supporters and famously cited as ‘there is no 

immediate or predictable prospect of useful machine translation” (see ALPAC 1966; Hutchins 1996:6; Cooke 

1993:18) 
3 SYSTRAN, the company, was founded by Dr. Peter Toma in 1968. SYSTRAN, the MT-System, was one of 

the few machine translation systems to survive the major decrease of funding after the ALPAC report of 1966 

and an English-Russian version of it was adopted by the US Air Force in 1970 (Koehn 2010:16). 
4EUROTRA was an ambitious machine translation project that was funded by the EC and ran from 1978 to 1992 

(Cooke 1993:43). 
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corpus with parallel texts as its main knowledge base at run-time (see Nagao 2003; Koehn 

2010:17). 

Japan’s data-driven translation approach might be considered a forerunner to the next 

big step that was to occur in MT-history… 

Approaching the end of the 1980s, the mathematical approach of IBM-scientists (Brown 

et al. 1993) of the IBM Candide project (Berger et al. 1994) laid the groundwork to the 

Statistical Machine Translation (SMT). Also based on parallel texts, machines would use 

statistical likelihood to evaluate translation possibilities. However, while the work was of major 

importance to the creation of SMT as we know it today, it was founded on a word-based 

approach. Once the source-code for IBM’s MT approach was made public, researchers soon 

realized that a word-based MT would not be able to deliver results of satisfactory quality and 

so follow-up efforts soon developed the so called phrase based models (see Marcu & Wong 

2002, Koehn, Och, & Marcu 2003), which became the de facto standard in MT research for 

over a decade. Thanks to these advancements, the increased processing power of computers, 

readily available huge amounts of data to create viable statistical results and freely accessible 

SMT-Frameworks (e.g. Moses5), studies regarding statistical machine translation gained a lot 

of momentum in the 2000’s and many very promising approaches were laid out for further 

improving SMT. 

However, the continuous adding of features to SMT also lead to stagnation in the 

development of SMT as systems started to incorporate more and more components to improve 

translation quality, but also needed a lot more maintenance to function properly. This posed a 

problem, as during recent years the need for instantaneous and effortless translation was 

bolstered by an ever-growing userbase of the internet and specifically social media as well as 

globalization in general.  

Methods to make use of highly parallelized workloads, especially such that can be run 

on GPUs (Graphics Processing Units) instead of the conventional CPUs (Central Processing 

Units) allowed a lot more performance to be extracted from current computational equipment. 

While this development at first also allowed for a more efficient way of statistical data 

elaboration, this shift in technology also made previously only theorized approaches to Machine 

Translation feasible, especially those that were mostly coined ‘AI-approaches’. However, rather 

than painstakingly trying to ‘teach machines human knowledge’ (see Kaiser-Cooke 1993:48), 

the research paradigm has shifted towards making machines ‘learn language’ on their own 

terms by using large corpora of ‘real-word’ data. 

 
5 http://www.statmt.org/moses/ (accessed March 03, 2019) 

http://www.statmt.org/moses/
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Enter Neural Machine Translation (NMT). Based on neural machine learning, which is 

often used synonymously with Deep Learning and AI in the broader media, this ‘new’ approach 

to machine translation is, at the time of writing, generally regarded as the new state-of-the-art 

in machine translation and the research surrounding it is booming (M.-T. Luong 2016:13; 

Koehn 2017:6; Dabre et al. 2017:1). While it actually still is a sort of Statistical Machine 

Translation – the machine is provided with a vast amount of data, based on which it will 

recognize statistical occurrences within said data – in a broader sense it will use this data to 

essentially learn how a given language is constructed on its own. Additionally, it can do so 

while looking at a whole sentence (or a sequence) instead of segregated phrases as was the case 

with SMT. 

While NMT brings many improvements to the table, especially in terms of fluency of 

the output and manageability of big corpora, it does also come with its fair share of problems 

as well, especially in terms of managing and controlling the output provided by the machine: 

While a lot of the time-consuming manual intervention that was needed for prior methods of 

MT is no longer required with NMT, as the machine basically learns the language by itself from 

mono- and/or bilingual corpora, a lot of the decision making during the translation process and 

training of translation models happens in what is sort of a black-box for the maintainer of the 

system, which results in errors being very hard if not impossible to track down. Approaches to 

refine NMT are therefore mostly made in a pre- or post-processing step of the translation as, 

for example, unknown words are replaced via an external dictionary look-up (Luong 2016).  

In this thesis I try to explore the impact manual preselection of training data can have 

on the results of an NMT output, especially whether it is sensible for patent translation where a 

very controlled language is used and therefore data should mostly only vary on a semantic and 

lexical level. 

In order to provide an adequate background to the experimental part of this thesis, the 

following chapters will give an overview of the major MT methods that have been described 

above. A more in-depth look at how state-of-the-art NMT models operate will be provided in 

Chapter 5. 
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3. Rule Based Machine Translation (RBMT) 

Rule-based machine translation (RBMT), or the ‘Classical Approach’ of machine translation, 

relies on linguistic information about the source and target text/language that is gathered from 

mono-, bi- or multilingual dictionaries and grammars covering the main semantic, 

morphological and syntactic regularities of each language respectively. It represents the logical 

evolution of the first MT systems developed back in the 1950s. RBMT systems may be divided 

into three major approaches: 

1) Dictionary-based or direct translation 

2) Transfer-based translation 

3) Interlingua-based translation 

The direct translation method simply maps the input of one language to the matching output 

of another language based on a dictionary lookup (hence dictionary-based) and by following 

some basic hand-written rules of word-reordering and possibly morphology. These systems are 

not built on any particular linguistic theory, instead they mostly rely on a sequential flow of 

word analysis and subsequently text generation (morphology/rearrangement). Typical stages in 

a direct translation system are as follows (Tucker 1987:23 in Kaiser-Cooke 1993:24): 

• Source text dictionary look-up and morphological analysis 

• Identification of homographs 

• Identification of compound nouns 

• Identification of noun and verb phrases 

• Processing of idioms 

• Processing of prepositions 

• Subject-predicate identification 

• Syntactic ambiguity identification 

• Generation and morphological processing of target text 

• Re-arrangement of words and phrases in target text 

 

While direct translation is arguably the least sophisticated approach, it is ideally suited for 

translation of long lists of phrases on a sub-sentence level, like inventories or simple catalogs 

of products and services. The limitations of such direct mapping strategies become apparent 

once the task is to translate full sentences, especially in languages with vastly different 

grammars. Many grammatical constructs cannot be directly mapped into a different language 

and cannot be generally treated in the ‘idiom processing’ stage. For example, a specific 
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language might lack a certain case used in the source text or use a different grammatical 

construct to express the same meaning. 

Because of these problems, RBMT development moved to different strategies that try 

to interpret the ‘meaning’ of a sentence by means of linguistical rules inherent to syntax and 

lexical components in context. Two main strategies are employed for this kind of approach: the 

transfer-based method and the interlingua-based method. See Figure 1 for an illustrated 

representation of these methods as proposed by Hutchins & Somers (1992:107). 

 

Figure 1: Direct-, transfer- and interlingua-’pyramid’ (Hutchins & Somers 1992: 107); base image taken from wiki-media 6. 

The transfer-based translation performs a morphological and syntactic analysis, trying to 

capture the ‘meaning’ of a source language (SL) on an abstract level, which is then transferred 

by applying the corresponding rules and ‘equivalent’ translations for the target language (TL). 

As such, the transfer strategy is generally language-pair specific. During the translation process 

the source language is parsed into an abstract structural representation and then transferred 

using this information as well as lexical information. During this transfer process, a bilingual 

dictionary forms the center piece of the method, as it provides ‘translation equivalents’ for the 

two languages (Kaiser-Cooke 1993:25). The translation basically consists of three steps (Popa 

2008:152-153, Tyers 2013:5):  

 
6 https://en.wikipedia.org/wiki/Transfer-

based_machine_translation#/media/File:Direct_translation_and_transfer_translation_pyramid.svg (accessed 

March 30, 2019) 

https://en.wikipedia.org/wiki/Transfer-based_machine_translation#/media/File:Direct_translation_and_transfer_translation_pyramid.svg
https://en.wikipedia.org/wiki/Transfer-based_machine_translation#/media/File:Direct_translation_and_transfer_translation_pyramid.svg
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1) Analysis: Describes the SL text linguistically while also relying on a dictionary, forming 

an SL intermediate representation of the text (SL IR). 

2) Transfer: Transforms the results of the analysis step (SL IR) into an intermediate 

representation for the TL (TL IR) by determining the linguistic and structural 

equivalents between the two languages. 

3) Generation/Synthesis: Produces a text in the TL based on the TL IR using a dictionary. 

 

ST—> SL IR—>TL IR—>TT 

 

Although it is a big step up from a direct translation, it still aims at providing a translation that 

represents a full ‘equivalent’ match of the source text in terms of lexical and structural units 

and the use of a simple bilingual dictionary with fixed ‘equivalent’ translations does limit the 

scope of this approach. Depending on the level of abstraction of the intermediate representation, 

we may group transfer-based RBMT into two groups: shallow transfer and deep transfer. 

Shallow transfer, where the intermediate representation is usually based on morphology or 

shallow syntax, may suffice for related language-pairs (Tyers 2013:4; Forcada et al. 2011). 

However, for more distant languages, like, for example, English and Japanese, a deeper analysis, 

including full syntactic or even semantic information is likely needed. Such a transfer would be 

called a deep transfer. 

The interlingua-based translation goes one step further by trying to represent meaning 

in an interlingua that is independent of the translated languages or in fact any language, making 

the intermediate representation of the text language agnostic. 

 

ST—> Interlingua—>TT 

 

This idea of representing meaning in an explicitly formal way harkens back to the 

Chomskyan notion of linguistic universals, where it is assumed that there is a definite 

underlying meaning within a linguistic construct (deep structure), no matter what the language 

or grammatical structure (surface structure) is. This sparked a research trend in the 1980s and 

1990s that was picked up by both researchers from the fields of artificial intelligence and 

computational linguistics alike (see Koehn 2010:16). The appeal of such a system makes sense, 

as translating involves the expression of meanings in different languages. However, as Koehn 

pointed out “the problem of representing meaning in a formal way is one of the grand challenges 

of artificial intelligence with interesting philosophical implications.” (Koehn 2010:17). Cooke 

also argues that it is difficult to assess just how much of the ‘meaning’ a translator, or in this 
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case the machine, would need to grasp in order to provide an adequate translation, arguing that 

“the old division between subject knowledge, linguistic knowledge and real-world knowledge” 

in MT research remained, and the approach still disregards the choices human translators make 

while relying on their expert knowledge as a translator (Kaiser-Cooke 1993:50). Of course, it 

seems plausible that it would be very difficult, if not impossible to hard-code general rules for 

the decision making a translator follows, as such decisions are mostly made on a case-by-case 

basis and indeed are quite subjective.  

Two notable projects for formal semantic representation are the UNL (Universal 

Networking Language)7 and AMR (Abstract Meaning Representation)8 projects. The UNL 

effort was started in 1996, as an initiative of the Institute of Advanced Studies (IAS) of the 

United Nations University (UNU) in Tokyo, Japan. In 2001 the UNDL Foundation was formed, 

constituted out of a world-wide network of universities and research institutes from 14 countries 

responsible for the further development and management of the UNL project. The mission of 

the project was to provide the methods and tools for overcoming the language barrier on the 

World Wide Web in a systematic way (see Hong & Streiter 1999 and 9). As such this language 

is meant to express meanings in the same standardized way as HTML presents its content. It is 

built around the concept of Universal Words (UWs), Universal Relations (URs) and Universal 

Attributes (UAs). The system therefore aims to convert the ST to the UNL by forming nodes 

(the UWs) that are a human-language independent and machine-tractable representation of the 

core meaning of a certain word and subsequently adding information about relations between 

these concepts and specific attributes of the nodes (i.e. grammatical annotation, connotations, 

etc.); this process is called enconverting. Because the process is so similar to the analysis step 

in RMBT systems, slightly modified RBMT parser and recognizer modules may be used for 

the enconversion (Hong & Streiter 1999:3-4). Usually this process is still mostly handled by 

humans that have to hand-edit the automatically generated annotations, so that they fully and 

correctly include all the needed mark-ups (Martins 2010:2). Still, some information inherent to 

the ST may be lost, as the UNL only conveys concepts that are believed to be universally 

available in all languages and that have, at some point, been modeled by hand. For example, 

the UNL did originally not possess the capability to model the speech style, the tenor (the 

speaker-hearer relation) nor the 'channel of communication', so that such properties of a natural 

language expression simply disappeared (Hong & Streiter 1999:4).  

 
7 http://www.unlweb.net/unlweb/ (Accessed March 30, 2019) 
8 https://amr.isi.edu/ (Accessed April 4, 2019) 
9 https://web.archive.org/web/20040602215955/http://www.iai.uni-sb.de/iaien/en/unl.htm (Accessed April 4, 

2019) 

http://www.unlweb.net/unlweb/
https://amr.isi.edu/
https://web.archive.org/web/20040602215955/http:/www.iai.uni-sb.de/iaien/en/unl.htm
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In summary, UNL can be seen as a kind of mark-up language which represents not the 

formatting but the core information of a text. The core information being the most common 

interpretation of the text, according to the hand-modeled UWs, UAs and URs. As such it can 

be embedded in the eXtensible Mark-up Language (XML), and as HTML/XML annotations 

already can be realized differently in the context of different applications, machines, displays, 

etc., so UNL expressions can have different realizations in different human languages. By using 

a language-specific deconverter that can generate a human-language output from the annotated 

UWs, one of the fundamental ideas behind the UNL was the creation of “globalized” versions 

of web-pages or documents, that could then be easily displayed in several languages by having 

the browser or a plug-in deconvert the UNL into a specific chosen language. So, while the UNL 

can be used as an interlingua, its primary objective is to serve as an infrastructure for handling 

knowledge in a natural-language agnostic way, rather than acting as an anchor point for 

translation between individual languages. In many ways, the UNL is not fit to cover all aspects 

of a good translation, as it always only represents one reading of an ST, which is in fact reliant 

on the interpretation hard coded in the knowledge base of the UNL. 

AMR on the other hand was from the get-go never intended to be used specifically in 

machine translation, as an interlingua between SL and TL or to generate natural language with 

a computer. That said, the effort ‘hopes to spur new research in natural language understanding, 

generation and translation’10. The idea is that one AMR representation should cover a variety 

of different formulations of sentences which convey the same meaning. It is a fairly recent 

effort, with many of the latest contributions dating back to 2016/2017. AMR is heavily geared 

towards English grammar and vocabulary and does therefore not share the strife for universality 

as UNL does. Because of that, the researchers behind AMR do officially not refer to the AMR 

as an interlingua (see 11). The AMR Bank is manually constructed by human annotators at the 

Linguistic Data Consortium, SDL, the University of Colorado's Center for Computational 

Language and Education Research (CLEAR) and the University of Southern California's 

Information Sciences Institute (ISI) and Computational Linguistics at USC. It exists to 

standardize annotation formatting and is still actively developed. The current AMR 1.2 (May 

2019) “is over-simple in many ways”, as, for example, it drops grammatical number, tense, 

aspect, quotation marks, etc., does not deeply capture many noun-noun or noun-adjective 

relations and does not include deep frames for words and concepts such as ‘earthquake’ (with 

roles for magnitude, epicenter, casualties, etc.) or ‘pregnancy’ (with roles for mother, father, 

baby gender, time since inception, etc.).12 

 
10 https://amr.isi.edu/ (accessed April 4, 2019) 
11 https://github.com/amrisi/amr-guidelines/blob/master/amr.md (accessed April 4, 2019) 
12 https://github.com/amrisi/amr-guidelines/blob/master/amr.md#amr-slogans (accessed April 4, 2019) 

https://amr.isi.edu/
https://github.com/amrisi/amr-guidelines/blob/master/amr.md
https://github.com/amrisi/amr-guidelines/blob/master/amr.md#amr-slogans
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While promising strides were made, interlingua-based RBMT systems therefore have 

yet to reach the results that are expected from machine translation today. In fact, as we saw, a 

true interlingua has yet to be fully developed. However, such an endeavor will only get 

increasingly complex the broader the language-spectrum the interlingua aims to cover. This is 

why AMR started small by mainly focusing on an abstract representation of the meaning of 

texts in English, with the hopes that the concepts and standards formulated can then be brought 

over to other languages and projects (see for example Damonte & Cohen 2018; Moreda et al. 

2018). Still, the development of interlingua systems was important for the success of bigger 

projects like the German Verbmobil, because they allowed for a standardized representation of 

semantic and syntactic features and a better interface between natural languages and machine. 

However, in later phases, Verbmobil also relied on statistical machine translation for its 

translation part (see Ney et al. 2000).  

As written in the introductory overview of the MT history, RBMT systems offer a few 

advantages over the other major MT solutions (for reference, see SYSTRAN13 Website; Tyers 

2013:5-6): 

 

+ Consistent and predictable quality  

+ Out-of-domain translation quality  

+ Are aware of grammatical rules  

+ High performance and robustness  

+ Consistency between versions  

+ Do not require vast amounts of data 

 

Conversely, there are some intrinsic disadvantages compared to the data-driven approaches: 

 

- Lack of fluency   

- Hard to handle exceptions to rules   

- High development and customization costs 

 

 

 

 
13 http://www.systransoft.com/systran/translation-technology/what-is-machine-translation/ (accessed March 20, 

2019) 

 

http://www.systransoft.com/systran/translation-technology/what-is-machine-translation/
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RBMT was used in many commercial solutions and would later go on to be implemented in 

SMT-systems as well. Some of the first systems in actual use include: 

• SYSTRAN (Used by the European Commission until 2010)14 

• METAL15 

• MÉTÉO (Used until 2001 by Environment Canada for weather forecast translation) 

• EUROTRA16 

 

With the advent of the internet and the very active computational linguistics community, many 

open-source RBMT systems also emerged. Two notable efforts are: 

• Apertium: A shallow-transfer-based RBMT (Forcada et al. 2011)17 

• GramTrans: Deep-transfer-based RBMT18 (deep-transfer only for Danish) 

Today, RBMT systems are still used in specialized environments, but in the broad sense, they 

were replaced by or are used to enhance their data-driven ‘successors’ for most commercial 

solutions. 

 
14 https://webgate.ec.europa.eu/fpfis/mwikis/thinktank/index.php/European_Commission_Machine_Translation 
(accessed March 20, 2019) 
15 http://www.ccl.kuleuven.ac.be/about/METAL.html (accessed March 20, 2019) 
16 http://www-sk.let.uu.nl/stt/eurotra1.htm (accessed March 20, 2019) 
17 https://www.apertium.org/ (accessed April 10, 2019) 
18 https://gramtrans.com/ (accessed April 10, 2019) 

https://webgate.ec.europa.eu/fpfis/mwikis/thinktank/index.php/European_Commission_Machine_Translation
http://www.ccl.kuleuven.ac.be/about/METAL.html
http://www-sk.let.uu.nl/stt/eurotra1.htm
https://www.apertium.org/
https://gramtrans.com/
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4. Statistical Machine Translation (SMT) 

This chapter about Statistical Machine Translation is based mostly on Phillip Koehn’s excellent 

Statistical Machine Translation (2010) and is an attempt to explain the workings of the different 

variations in SMT in simpler terms.  

Knowing about the basic concepts of how SMT systems work and how they are fed with 

data is going to be beneficial in understanding how state-of-the-art NMT systems work. In fact, 

many key concepts still play an important role for the neural models. With regards to NMT, 

this chapter shall also provide some insight into how SMT is used today and how it was used 

prior to the advent of NMT. 

As written in the introductory chapter, the advent of SMT – first models were pioneered 

by IBM in 1993 (Brown et al. 1993) – laid the groundwork for a new wave of research 

enthusiasm, but the wave of general hype around SMT took a little longer to take off as 

interlingua-based research was still in the center of attention. In fact, while Koehn goes as far 

as to call the emergence of SMT in the 1990s “groundbreaking”, he also notes that “in retrospect 

it seems the world was not quite ready for it” (Koehn 2010:17).  

SMT truly took off around the year 2000, as tools which made use of the IBM algorithms 

developed in 1993 were made widely available under a toolkit named GIZA (Al-Onaizan et al. 

1999). Koehn further points out, that funding by DARPA19 as well as the US response to the 

events of 9/11 played a role in the renewed interest of automatic translation of foreign 

languages, especially Arabic (2010:18). 

Another important factor, as was also mentioned in the introduction, was the increase in 

computing power, data storage and general availability of large text resources thanks to the 

growth of the internet. Generally, anyone with a somewhat recent computer system at home 

could build their own machine translation system based on these freely available resources. 

This was further bolstered by the availability of refined and free open-source frameworks like 

GIZA++20 (Och & Ney 2003) and Moses21 (Koehn et al. 2007).  

4.1 Word-based SMT 

While word-based SMT has been all but replaced by its phrase-based successor, it still 

introduced many of the basic concepts that form the foundation of SMT in general. Thanks to 

its simplicity it is easier to understand than more recent models and many key ideas are still 

relevant for phrase-based SMT and in fact NMT. This section will provide a general overview 

 
19 Leading funding agency in the US. 
20 http://www.statmt.org/moses/giza/GIZA++.html (accessed April 19, 2019) 
21 http://www.statmt.org/moses/index.php?n=Main.HomePage  (accessed April 19, 2019) 

http://www.statmt.org/moses/giza/GIZA++.html
http://www.statmt.org/moses/index.php?n=Main.HomePage
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of the tactics used in word-based SMT. For an in-depth discussion and simple enough to 

understand mathematical explanation of word-based models, Koehn’s Chapter 4 (pp. 81-125) 

in Statistical Machine Translation (2010) is highly recommended; the interested and 

mathematically adept reader may also refer to IBM’s original paper on their SMT models 

(Brown et al. 1993). 

Word-based SMT is based on lexical translation, that is the translation of isolated words. 

Basically, this requires a dictionary that maps words from one language to another. So, just as 

with direct- and transfer-based RBMT, we need clear word alignments between the language-

pairs. However, SMT does not use a fixed bilingual dictionary, but theoretically considers all 

the possible translations as they are found in the data. The data, in that case, is generally a large 

parallel corpus between two languages that is used to create a dictionary and in fact the word-

alignment on a statistical basis. But let’s first stick to Koehn’s example of Haus (Koehn 

2010:81) in a German-English dictionary22: 

 

Haus – house, building, home, household, shell. 

 

The challenge is to choose the right translation out of a variety of translations for a specific 

word; human translators would likely look at the context, domain, the definitions or eventually 

even follow their feel for a language and then decide. RBMT used a bilingual dictionary and 

then made use of hand-crafted rules to decide. Word-based SMT however relies on a so-called 

lexical translation probability distribution for the decision. What this means is that the SMT 

system first needs to align each SL word to TL word(s) in a sentence-aligned parallel corpus by 

statistical likelihood. This is achieved by the means of a statistical word-alignment model. 

After that a translation model needs to give a probabilistic score to each word-alignment. In 

formulaic terms we would look at the following function: 

𝑝𝑓: 𝑒 → 𝑝𝑓(𝑒) 

Equation 1: Probability function 𝑝𝑓  

The function 𝑝𝑓 returns a probability for each choice of TL translation e for a certain SL word 

f (in this example: Haus) (Koehn 2010:82). The function has two properties shown in Equation 

2 and Equation 3: 

 

 
22 Koehn quotes this as a simplified version of an entry in Harper-Collins (1998) (Koehn 2010:81) 
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1) The sum of all probabilities must be 1. 

 

∑ 𝑝𝑓(𝑒) = 1

𝑒

 

Equation 2: The sum of all probabilities 𝑝𝑓(𝑒) must be 1 

2) All probabilities for the different variables e (the translations) in the function must be in 

the range of 0 to 1. 

 

∀𝑒: 0 ≤ 𝑝𝑓(𝑒) ≤ 1 

Equation 3: The probabilities are expressed between 0 and 1 

With these requirements fulfilled, it is possible to find the most probable translation by simply 

counting the occurrences of a certain word-pair in a vast parallel corpus of text. If the corpus 

was several dictionaries, the word which appeared more often as the translation of Haus (which 

would probably be house) would get the highest score, while all other solutions would get a 

lower score. The idea here is simple: The more often a certain translation was chosen for a 

specific word, the more likely the meaning may be considered as ‘equivalent’. In statistical 

terms, the maximum likelihood estimation method is used for estimating the statistical 

parameters of each word. 

So, in order to generate a basic translation, we would need at least two statistical models: 

• A word-alignment model 

• A translation model 
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4.1.1 The word-alignment model 

From a mathematical perspective, SMT systems work with incomplete data, where the 

alignment of words is considered to be a hidden variable (Koehn 2010:88). As we saw, RBMT-

systems use a dictionary to find the alignment during the analysis phase and reorder the words 

during the final generative phase of the process. SMT, however, does generally not rely on a 

ready-made dictionary. Instead, probabilistic methods are used to find the most probable 

alignment of a given word by looking at parallelized text (preferably translations of a text). 

Through an alignment function a (see Equation 4) it is possible to formalize the mapping of 

every TL output word at the position i to an SL input word at the position j. In our examples, 

we will use English as our TL and German as our SL. 

 

𝑎: 𝑖 → 𝑗 

Equation 4: The alignment function 

Let’s explore this in a couple of examples: In Figure 2 the alignment is straight forward, as 

every SL word can be aligned to a TL word.  

  

 

 

 

 

𝑎: {1 → 3; 2 → 2; 3 → 1} 

 

 

But let’s look at some examples where this is not the case. In Figure 3 we see that the article in 

front of Mathematik, which is common in German, is missing in English. This was fittingly 

dropped in the translation and therefore no word aligns to the female article Die; it can simply 

be dropped in the alignment since the function is mapping English to German; i.e. the mapping 

happens opposite to the translation direction. 

 

 

 

 

 

Mathematik
1

    liebe
2

    ich
3

 

I
1
     love

2
   mathematics

3
 

Figure 2: Every SL word has a TL word alignment 
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𝑎: {1 → 4; 2 → 5; 3 → 3; 4 → 2} 

 

 

In Figure 4, we have more words in the SL text, because the German compound glasklar is 

expressed in two words in English. We can align both position 4 (crystal) and position 5 (clear) 

of the TL to the position 4 (glasklar) of the SL. Note, that it is not possible to do it the other 

way around (i.e. have one English word align to two German words; this can be a major problem 

down the road of course, and will have to be solved with additional models23). 

 

 

 

 

 

𝑎: {1 → 1; 2 → 2; 3 → 3; 4 → 4; 5 → 4} 

 

 

Lastly, in Figure 5 we see that the position 2 (do) of the TL text does not have an equivalent in 

the SL, as this verbal construct is not necessary for a negation in German. Also, (do) does not 

correspond to (nicht) in any way (i.e. has a very low probability for aligning to nicht), however 

the position still needs to be mapped to something. For these occasions a special NULL token 

is introduced for any word that is left over. 

 
23 Namely the fertility model. 

Die
1

   Mathematik
2

    liebe
3

    ich
4

   sehr
5

 

I
1
    really

2
   love

3
   mathematics

4
 

Das
1

 Wasser
2

 ist
3

 glasklar
4

 

The
1

 water
2

 is
3

 crystal
4

 clear
5

 

Figure 3: Missing article in the TT 

Figure 4: ST word with multiple alignment in the TT 
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𝑎: {1 → 3; 2 → 0; 3 → 4; 4 → 2; 5 → 1} 

 

 

All in all, this function makes it possible to have word-to-word alignments, SL word to multiple 

TL word alignments, no and dropped alignments and the so-called NULL token alignments 

(see, Koehn 2010:84-85 for a more elaborate explanation). 

But how are these alignments found? In order to find the most probable alignment of 

words, an algorithm called the Expectation Maximization algorithm (EM algorithm) is 

adopted and used with the data of a parallel corpus. 

The EM algorithm is an iterative learning method that approaches the most probable 

result in alternating steps. It works as follows (taken from Koehn 2010:88, with additional 

annotations): 

1) Initialize the model, typically with uniform distributions (all hidden variables are filled 

with equal values). Random distribution is also possible. 

2) Apply the model to the data (expectation step). 

3) Learn the model from the data using maximum likelihood estimation (maximization 

step; the values are changed according to occurrence in the data). 

4) Iterate steps 2 and 3 until convergence. 

 

Letting a computer elaborate data in a way like this is commonly called training and the results 

of such a training are then saved as a model. Once convergence is reached and therefore word-

pairs are defined on a statistical basis, we have trained an alignment model. Note that there 

have been several different approaches to alignment in SMT over the years and this is just one 

of the possible ways to achieve a simple word-alignment. 

4.1.2 The translation model 

With an alignment model trained, the system may start counting the most likely matches of SL 

to TL words in the provided data using the maximum likelihood estimation (as seen in step 3 

of the EM-algorithm) and from those results create a translation model. The resulting 

translation model for a word-based SMT is basically a probabilistic bilingual dictionary (M.-T. 

NULL
0

   Mathematik
1

    liebe
2

    ich
3

   nicht
4

 

I
1
    do

2
 not

3
   love

4
   mathematics

5
 

Figure 5: Less words in the ST 
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Luong 2016:4) that may be represented in lexical translation probability tables as shown in 

Table 1 (taken from Koehn 2010:84).  

Table 1: Example of probabilistic dictionary (Koehn 2010:84) 

 

 

Since this dictionary is taken from “real” sentences, the dictionary does in fact provide the 

corresponding surface forms of the words, i.e. inflected words / the morphology. While this 

sounds very promising and indeed makes basic SMT systems work with very little effort (i.e. 

seemingly no need for hand-crafted morphological rules), in the long run it is a shortcoming of 

simple word-based systems as the different surface forms of words might lead to data sparsity, 

which in turn leads to a less than ideal statistical interpretation of data (see Vuong et al. 2015). 

The first models presented by IBM do indeed suffer from this problem but do work as a 

showcase for how a simple word-based SMT can generate valid translations.  

4.1.3 The IBM models 

With the alignment model and the translation model in mind, we may now look at a simplified 

representation of the first working SMT model originally proposed: The IBM Model 1. The 

algorithm trains an alignment and translation model to subsequently translate a new SL-

sentence in two basic steps: 

 

In Figure 6, the first step, the length of the translation as well as the mapping of the ST-words 

to the TT-positions is chosen. 

 

         

 

                             

 

 

In Figure 7, the second step, it produces a translation by selecting the best translation for each 

ST-word according to the translation model (i.e. the probabilistic bilingual dictionary). 

Er arbeitet Zuhause 

1 2 4 3 

Figure 6: Alignment step 
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For this translation no reordering was necessary and in fact, no reordering takes place with IBM 

Model 1. While a multiple alignment is present, the single constituents for (Zuhause), (at) and 

(home), just happened to fall into the right place in this case. However, for IBM Model 1 the 

following translations would be just as probable: ‘At home he works’, ‘Home works at he’ or 

any other combination.  

To solve this and many other evident issues, IBM proposed 4 further models, that all 

build on each other and refine the translation by mostly improving the alignment model and a 

better reordering structure through additional statistical modelling. In total, IBM originally 

proposed five models (as taken from Koehn 2010:96-97): 

 

• IBM Model 1: lexical translation; 

• IBM Model 2: adds an absolute alignment model (alignment probability distribution); 

• IBM Model 3: adds a fertility model (distortion probability distribution); 

• IBM Model 4: adds a relative alignment model; 

• IBM Model 5: fixes deficiency. 

 

In simple terms this means: 

The first model is pure lexical translation according to the probabilistic translation table.  

The second model adds a statistical model for better reordering of translated words.  

The third model adds a statistical model that expresses the probability of certain SL words 

generating multiple (or NULL) TL words, which is called the fertility of a word.  

The fourth model further refines the reordering by adding a statistical model that takes some 

context into consideration.  

The fifth model fixes a problem of all prior models called deficiency, where multiple output 

words in the TL would be placed on the same position, effectively wasting probability mass on 

impossible alignments. 

Er arbeitet Zuhause 

He works home at 

Figure 7: Translation step 
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4.1.4 The language model 

To ensure a fluent output, SMT systems adapt an additional probabilistic model, called the 

language model (LM). Unlike the alignment or translation model, this model is built 

exclusively on mono-lingual data. The model essentially counts the instances of words 

occurring together and thus learns to prefer a certain word order and selection. This can help in 

achieving more “natural” sounding translations. The LM should therefore prefer something 

with a correct order over something with non-sensical or unnatural order: 

𝑝𝐿𝑀(𝐻𝑒 𝑤𝑜𝑟𝑘𝑠 𝑎𝑡 ℎ𝑜𝑚𝑒) > 𝑝𝐿𝑀(𝐻𝑜𝑚𝑒 ℎ𝑒 𝑤𝑜𝑟𝑘𝑠 𝑎𝑡) 

Equation 5: LM prefers correct word combination 

It also helps resolving some issues with ambiguity. Ambiguity may easily crop up with the 

probabilistic dictionary when words have equal or similar probability within the used text data. 

Take for example the translation for the German word ‘Hahn’24: ‘Rooster’, ‘faucet’ and ‘valve’ 

are all valid translations for the single word and may appear with the same or similar probability 

in data. Let’s assume we have the German phrase ‘Drehen sie den Hahn’ or ‘Öffnen sie den 

Hahn’; while it is a relatively common sequence of words in German, it is unlikely we would 

encounter a sentence that spells ‘turn the rooster’ or ‘open the rooster’ in English. A well-trained 

language model (LM) would therefore give a higher score to something like ‘turn the valve’ 

or ‘open the faucet’. Since LMs are mono-lingual, they are usually built only from TL sentences, 

that may also be sourced from additional text resources in that same TL, rather than just the 

parallel data used for the general training. More data generally results in higher statistical 

precision.  

Commonly so-called n-gram language models are used for the language modeling 

(Koehn 2010:95), where the n stands for the amount of words included in the statistics. 

Essentially, the language model is then a function that predicts the probability for a certain word 

𝑒𝑛 to appear in the context of n words in a specific language. For example, a trigram language 

model rates the probability of a certain word n to appear after two specific words prior to that 

(𝑒𝑛−2; 𝑒𝑛−1). The more data is used for training the LM, the longer the n-gram model can 

theoretically be made; and longer n-gram models make for better fluency. However, it is 

necessary to keep n-gram models relatively short in order to get usable statistics, as longer word 

sequences have a smaller likelihood to be found in data. Commonly the trigram language model 

is used but it can be supplemented by longer n-grams (Koehn 2010:183). As mentioned, the 

training of language models commonly consists of at least the TL-part of the parallel corpus 

 
24 This example was chosen as a homage to the mascot of the Austrian translator’s association UNIVERSITAS. 

https://www.universitas.org/de/ueber-uns/#getsub_p3 (Accessed April 10, 2019) 

https://www.universitas.org/de/ueber-uns/#getsub_p3
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but can also include separate text resources in the TL (For an in-depth explanation of how 

language models are built, see Koehn 2010:95, 181-214).  

Equation 6 through Equation 8 put all of this in formulaic terms. The probability p(e) 

for the TL word e therefore represents the likelihood of n words appearing together in a specific 

order and context. 

𝑝(𝑒) = 𝑝(𝑒1, 𝑒2, … , 𝑒𝑛) 

Equation 6: Basic function for language model p(e) 

This probability prediction can be broken up into single word predictions using the chain-rule: 

𝑝(𝑒1, 𝑒2, … , 𝑒𝑛) = 𝑝(𝑒1)𝑝(𝑒2|𝑒1) ··· p(𝑒𝑛|𝑒1, 𝑒2,···, 𝑒𝑛−1) 

Equation 7: Chain-rule applied to p(e) 

Which would look like Equation 8 for a trigram model: 

p(𝑒1)p(𝑒2|𝑒1) ··· p(𝑒𝑛|𝑒𝑛−2, 𝑒𝑛−1) 

Equation 8: Trigram language model 

This type of model, which goes through a sequence (in this case words), while considering only 

a limited number of steps (for a trigram it is three steps), is known as a Markov chain. One 

key issue this kind of model has, is that it assumes that the probability of the word 𝑒𝑛 depends 

only on the limited history before it, but in language we know that longer dependencies in 

sentences can equally influence the likelihood of a certain word appearing later in the sentence25. 

The inherent problems and the mathematical formulation aside, what a trained LM essentially 

does, is predict how likely the specific word 𝑒𝑛 is to appear after n words and this prediction 

can be used to give a score to the translated phrases. This scoring can be applied to all of the 

possible translations found by the translation model, giving high scores to coherent and ‘natural-

sounding’ translations, i.e. such translations with statistically more likely word order and 

context, and lower scores to less likely and therefore ‘unnatural’ translations. In order to create 

an SMT system with somewhat consistently natural sounding results therefore at least 3 models 

need to be trained on available text data:  

1) an alignment model  

2) a translation model  

3) a language model 

 
25 Take, for example, the sentence: “I was raised in Japan and therefore I am fluent in Japanese”; in a sentence 

like this, the long-term dependency of “raised in Japan” and “fluent in Japanese” would not likely be captured by 

an n-gram model. 
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4.1.5 Combining the models: The noisy-channel model 

To efficiently apply the language model in an SMT system, it is advantageous to combine it 

with the translation model. This may be achieved by applying the Bayes rule to add the language 

model p(e) to the translation model p(e|f).This results in the following Equation 9: 

 

 

𝑎𝑟𝑔𝑚𝑎𝑥𝑒𝑝(𝑒|𝑓) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑒

𝑝(𝑓|𝑒)𝑝(𝑒)

𝑝(𝑓)
= 𝑎𝑟𝑔𝑚𝑎𝑥𝑒𝑝(𝑓|𝑒)𝑝(𝑒) 

Equation 9: Noisy-channel model 

This way to combine the language and translation model results in the so-called noisy-channel 

model and in fact, IBM’s SMT models are referred to as an instance of the noisy-channel model 

(Collins 2011:2). What this basically does, is apply the knowledge we have about our TL, 

thanks to the LM p(e) and also the knowledge about what sort of ‘distortion’ might be possible 

when going from SL to TL thanks to our translation model p(f|e) (note that the mathematical 

direction here is actually TL to SL, opposite to the translation direction). As Koehn jokingly 

puts it, we basically assume that the foreign speaker wants to say something in the TL (message 

e), but the message gets distorted in a noisy-channel and out comes a sentence in the SL 

(message f) (Koehn 2010:96) as seen in Figure 8. Thus, what actually happens in the noisy 

channel model is a ‘reconstruction’ of the actual message e (which is assumed to be uttered in 

the TL) from the message f that was ‘received’ in the SL. 26  

 

Figure 8: The noisy-channel model (diagram taken from Sokolov 2015) 

We saw until now, that SMT is basically a combination of several statistics-based models 

combined to form the SMT model; since an output is generated at the end of each model and in 

fact at the end of the whole process, this type of modelling is called generative modeling. 

Generative modeling offers the advantage, that it is possible to break the translation problem 

up into several simpler problems, as each model generates its own output and we have the 

 
26 Interestingly, this idea is very similar to Warren Weaver’s conclusion regarding translation in one of his 1947 

letters: ‘When I look at an article in Russian, I say ‘This is really written in English, but it has been coded in 

some strange symbols. I will now proceed to decode’.”(quoted in Weaver 1949:4) and indeed the interpretation 

of what translation was to most pioneering MT researchers. 
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ability to change only parts of the whole SMT model by keeping estimation and model 

definitions independent from each other (see Sokolov 2015). This allows to pinpoint translation 

errors to individual steps within the training of the SMT-Model. Additionally, expanding the 

whole SMT pipeline by adding other models that refine the alignment, translation or ranking 

tasks is possible. The disadvantage is that every model has the same importance and the addition 

of more models is not easily achieved; so, for example, putting an emphasis on better fluency 

by putting more weight on the language model or even adding a second language model is not 

possible (Sokolov 2015:25). 

4.1.6 The limits of word-based SMT 

While all these concepts are key to the advancement of SMT (as the IBM-researchers put it: 

“The lesson to be learned (...) is that simple, statistical methods can be surprisingly successful 

in achieving linguistically interesting goals.” (Brown et al. 1993:2)), the underlying idea of 

word-based translation itself is a major bottleneck when trying to approach translation in 

general. In a sense, Brown et al. realized this, stating that the aim of SMT was never to replace 

the linguistic effort, but only to provide another approach in the machine translation paradigm. 

Coming from Translation Studies, one of the first things one learns is to watch out not 

to stick to the exact words too much and the same can be said for machine translation. Aside 

from the fundamental problem of the lack of a proper ‘equivalence’ between languages, the 

word-based approaches have several other issues to contend with, even from a purely statistical 

point of view: The need to have a word to word or word-to-multiple-word correspondence 

(‘solved’ by the arbitrary addition of a null-token and the concept of fertility) is an inherent flaw 

of the system and while language models provide reasonable results when confronted with 

contextual ambiguities, n-gram models can still often not account for special translation of 

words in context. This, of course, is something that linguists as well as translators would know 

all too well, given that meaning of words changes drastically depending on the context (idioms 

are a prime example, but also prepositions pose a big problem for word-based approaches).  

Taking idioms as an example, “Hals- und Beinbruch!” would likely translate to “Break 

a leg!”, meaning “Good Luck!”; however, since there has to be an alignment between the words, 

if a word-based model was trained on this parallel text, “Hals”, meaning “neck” would likely 

be aligned to “break”, “a” might be aligned to “und” and the composite word “Beinbruch” 

(meaning the “breaking of a leg”) would likely be aligned to leg. This would result in a quite 

nonsensical dictionary that would also not have a high probability in any bigger parallel corpus. 

For that reason, it was clear that there was still much work to be done. Brown et al. theorized 

of bringing more linguistic rules into the mix (Brown et al. 1993:296). However, it was still by 
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looking at the problem from an IT/data-engineering point of view, where researchers quickly 

found that limiting themselves to the word as the atomic unit for meaning might not be the best 

option and therefore the phrase-based approach was developed. 

4.2  Phrase-based SMT 

We saw that word-based SMT quickly falls apart with longer sentences and complex 

interrelations between these words, especially if the count of words changes from ST to TT.  

To solve these issues, phrase-based models segment the ST and TT into several so-

called phrases. This is the approach that several MT providers, like Google, Microsoft or 

SYSTRAN, employed for their machine translation services until the switch to neural network 

systems occurred in 2016. The alignment for the single words composing the phrases is 

basically still the same as we saw in the word-based models. Och and Ney found that models 

with a first-order dependence (i.e. a bigram model) and a fertility model (i.e. Model 3 and Model 

4) give better results than more simple models like the IBM Model 1 or 2 (Och & Ney 2000:1), 

while Koehn et al. found that Model 2 already provides similar performance to the much more 

complex Model 4, as long as the right alignment heuristics are chosen (Koehn et al. 2003:7). 

Whichever model is used to define the initial word-alignment, phrases are extracted from the 

resulting alignments. These phrases are not linguistically motivated; in fact, it can be any 

multiword unit. Limiting extracted phrases to linguistic phrases has even been proven to yield 

lower quality translations (see Koehn et al. 2003). In the translation process, the extracted 

phrase-pairs allow translation of ST phrases into TT phrases, with a final reordering of the 

phrases. To see how a standard phrase-based model operates, let’s look at the example provided 

by Koehn in Figure 9  (Koehn 2010:128). 

 

 

         

 

              

 

 

We can see that with phrase translations we remove the need for the concept of fertility and/or 

deletions/additions like null-tokens. Some single ST-words, like “natürlich”, that are best 

natürlich

  

hat john 

of course john fun with the has 

spass am spiel 

game 

Figure 9: Basic phrase-based SMT 
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translated into multiple words (“of course”), are simply mapped as an ST-phrase to another 

translated phrase in the TT, doing away with the need of single to multiple unit mappings. 

Looking at the phrase-pair “spass am” and “fun with the” we can also see what was shortly 

mentioned above: the phrases are not linguistically motivated. Most syntactic theories would 

likely classify “spass” / “fun” as a noun phrase and “am Spiel” / “with the game” as a 

prepositional phrase. However, learning the translation of “spass am” as “fun with the” is more 

useful data for statistical translation as German and English prepositions do not match very well. 

Looking at the statistical occurrence of “am Spiel” would likely result in a mis-translation of 

the preposition “am”, resulting in something like “at the game”. On the other hand, the statistical 

data for “spass am” would likely converge to the correct but less likely translation of “am”, e.g. 

“with the”. In a word-based SMT “am” would not have a high chance to be translated as “with 

the” at all. 

Recapping, two major pitfalls of the word-based approach are solved with phrase-based 

SMT: 

1) Words are no longer necessarily the smallest unit in a sentence, so single word to phrase 

alignments are equally possible in both directions, solving the issue of single to multi-

unit mappings. This also alleviates the need for insertion, deletion and the concept of 

fertility. 

2) By translating word-groups instead of single words, we often manage to clear up 

ambiguities that would result in a mis-translation in word-based SMT. 

 

A generative phrase-based model therefore starts out ‘simpler’ than word-based models would, 

as there are less evident problems to work around. Additionally, the larger the parallel text 

corpora, the more likely we are to find phrase-pairs that can be learned and, ideally, we might 

even be able to learn full sentence pairs from a parallel corpus. So even a simple phrase-based 

SMT will work better than most word-based translation models (Sokolov 2015:23; Koehn 

2010:136).  

For reordering the phrases, a new distance-based reordering model (d) is introduced, 

which is formulated quite similarly to the alignment probability distribution in the IBM 

Model 2. The ST is considered for calculating how expensive a reordering is, i.e. how many 

words x a phrase has to be moved so that a given ST phrase aligns to the matching TT phrase: 

 

𝑥 = 𝑠𝑡𝑎𝑟𝑡𝑖 − 𝑒𝑛𝑑𝑖−1 − 1 

Equation 10: Movement cost function 
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In Equation 10 𝑠𝑡𝑎𝑟𝑡𝑖 stands for the position of the first word in the ST phrase corresponding 

to a TT phrase at the ith position and 𝑒𝑛𝑑𝑖−1  stands for the last word of an ST phrase 

corresponding to the previous TT phrase. 

While it would be possible to learn the statistical probability of this cost, in most phrase-

based models data is not used to train the reordering model, but instead a fixed exponentially 

decaying cost function is applied: 

 

𝑑(𝑥) = 𝛼|𝑥| ;  0 < 𝛼 < 1  

Equation 11: Distance-based decaying cost function 

This approach makes longer distance reordering more expensive and therefore less likely and 

as such would not work well for language pairs with big syntactic differences. However, that is 

alleviated by the fact, that phrase-based SMT usually works with weighted models and, as we 

will see later, that allows a language model to “override” the basic reordering model if needed. 

4.2.1 The phrase translation table (phrase-based translation model) 

Learning a phrase translation table (the translation model/lexicon model for phrase-based SMT) 

generally happens in three stages: 1) word alignment, 2) phrase pair extraction and finally 3) 

phrase pair scoring. 

 

Figure 10: Building a phrase translation table - Stage 1: Word alignment (Koehn 2010:134) 

Figure 10 shows the word alignment represented in a table. With this knowledge, the machine 

can now extract phrase pairs given specific conditions. The most important condition, which is 

part of basically every phrase-pair extraction process, is that of consistency. Basically, every 

word inside of an SL phrase must align to a word within the targeted TL phrase. Unaligned 
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words may also be included since they don’t break the notion of consistency, as they have no 

other alignment point outside of the targeted phrase. This is needed to capture commas or 

articles that are nonexistent in the TL. Since these SL words are not explicitly aligned to any 

TL words, unaligned words (and punctuation marks) within a phrase-pair may lead to multiple 

translations (in the example above, we have the German comma being unaligned).  

 

Figure 11: The grey boxes symbolize the to be extracted phrase. In the first example, all words are aligned within the phrase 

and are therefore consistent. The second phrase would not be extracted, as one word would be aligned outside the phrase. 

The last box shows a phrase incorporating an unaligned word. (Koehn 2010:132) 

Let’s examine the example by looking at Figure 12 for the second stage of the table creation: 

 

Figure 12: Building a phrase translation table - Stage 2: Extraction (Koehn 2010:131) 

In this case “geht davon aus, dass” and “assumes that” may be extracted as a phrase pair, as all 

these words are aligned to each other. Other possible alignments of the marked words can be 

seen in Table 2 (Koehn 2010:134).  
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Table 2: Possible alignments 

TL SL 

assumes geht davon aus / geht davon aus , 

that dass / , dass 

Looking at the whole sentence, however, we may extract a lot of different pairs, shorter ones 

(Table 3) and longer ones (Table 4) (also taken from Koehn 2010:134): 

Table 3: Short phrase pairs 

TL SL 

michael michael 

assumes geht davon aus / geht davon aus , 

that dass / , dass 

he  er 

will stay bleibt 

in the im 

house haus 

 

Table 4: Longer phrase pairs 

TL SL 

michael assumes michael geht davon aus / michael geht davon 

aus , 

assumes that geht davon aus , dass  

assumes that he geht davon aus , dass er 

that he dass er / , dass er 

in the house im haus 

michael assumes that michael geht davon aus , dass 

michael assumes that he michael geht davon aus , dass er 

michael assumes that he will stay in the house michael geht davon aus , dass er im haus 

bleibt 

assumes that he will stay in the house geht davon aus , dass er im haus bleibt 

that he will stay in the house dass er im haus bleibt / dass er im haus bleibt , 

he will stay in the house er im haus bleibt 

will stay in the house im haus bleibt 

On closer inspection it can be observed, that the shorter pairs are indeed not so different from 

word pairs. Yet they retain their usefulness, as shorter phrases will occur more frequently and 

therefore are going to be more applicable to hitherto unseen sentences during a translation 

process. Longer phrases on the other hand contain a lot more local context and can eventually 
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help with the translation of bigger, interrelated parts of a text. In theory at least, extracting all 

possible phrases was thought of improving the translation quality. For that reason, instead of 

just simply relying on the total count of occurrences, the length of the extracted phrase is 

considered, so the frequency of appearance relative to the length of the phrase is scored 

instead of just the absolute frequency of appearance. This way, longer phrase pairs are also 

likely to be selected during the translation process even though they may appear less often than 

the shorter pairs they are composed of. 

Of course, having such a large translation table also significantly increases the memory 

requirements for SMT. For large parallel corpora with millions of sentences, the extracted table 

may well be several gigabytes in size. Luckily, disk storage capacity was one of the fastest 

growing aspects of computer hardware and as such, even if the table could not be loaded 

completely into memory (RAM), it was possible to efficiently estimate the probability 

distribution by storing and sorting the extracted phrases on disk (Koehn 2010:136). It therefore 

would not pose a real problem, except for less performant and/or mobile devices like PDAs and 

later smartphones/tablets. These changes in computer hardware trends led researchers to 

question the common wisdom of extracting all the possible phrase-pairs to use in the translation 

table. 

Quirk and Menezes later pointed out, that extracting only the shortest phrases that map 

a whole sentence, would not hurt performance (Quirk & Menezes 2006). Indeed, it might even 

help with performance, as unlikely solutions could be excluded from the search. This so-called 

pruning of the extracted data, essentially deleting certain phrases according to predetermined 

or statistical conditions, was therefore considered a viable option by several researchers; the n-

gram based variant of phrase-based SMT was also founded on this idea of reducing the extracted 

phrases (see Mariño et al. 2006; Costa-Jussà & Fonollosa 2007).  

While phrase-based models were developed, it was also soon found, that putting more 

emphasis on the results of a certain model might help with the quality of the output. If, for 

example, fluency was insufficient, it would seem helpful to put more emphasis on the language 

model to provide a more natural and fluent output. In the standard generative model however, 

all the models have the same importance or ‘weight’ and would therefore not easily allow 

adding or making good use of additional models. For that reason, phrase-based SMT moved 

away from generative modeling, like what was used in the noisy-channel model, to a new 

modeling strategy, which is ‘borrowed’ from the machine learning domain: the log-linear 

modeling or weighted models. 
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4.2.2 Weighted models (log-linear modeling) 

Log-linear models introduce the concept of weight functions to the modeling process. 

Essentially weight functions make it possible to give some elements within an SMT system 

more ‘weight’ or influence on the results than other elements have. This holds true when 

combining the separate elements by performing a sum, integral, or average. In simpler terms, 

this enables the SMT system to place higher emphasis on a particular model, for example, 

prioritizing correct word order by giving a higher bias or weight to the language model. By this 

point, phrase-based SMT essentially also consists of three separate models:  

• The phrase translation table 𝜙(𝑓�̅�|�̅�𝑖)  

• The reordering model d 

• The language model 𝑝𝐿𝑀(𝑒) 

 

However, instead of combining them with generative modeling as before, where each model 

generates its own output and gives an absolute result (“what is the BEST solution”), the models 

here are treated as so-called feature functions and each data-point (i.e. word or phrase 

translation) is fed into the system as a feature vector. The result is therefore a probability 

distribution that can be influenced by the weights (𝜆𝜙, 𝜆𝑑, 𝜆𝐿𝑀) and as such can no longer be 

seen as an absolute result. In Equation 12 we can see the formulaic expression of such a 

weighted model. 

𝑝(𝑒, 𝑎|𝑓) = 𝑒𝑥𝑝 [𝜆𝜙 ∑ 𝑙𝑜𝑔

𝐼

𝑖=1

𝜙(𝑓�̅�|�̅�𝑖) + 𝜆𝑑 ∑ 𝑙𝑜𝑔

𝐼

𝑖=1

𝑑(𝑎𝑖 − 𝑏𝑖−1)

+ 𝜆𝐿𝑀 ∑ 𝑙𝑜𝑔

|𝑒|

𝑖=1

𝑝𝐿𝑀(𝑒𝑖|𝑒1, … , 𝑒𝑖−1)] 

Equation 12: Log-linear phrase-based model 

This way of modeling gives the benefit of control by managing the importance of the separate 

models. The models remain independent from each other and can thus be trained individually. 

It also makes it much easier to add other, yet again independent models to the system, without 

disrupting the contribution of the other models in the pipeline.  

It was a big step forward for SMT, as this way of modeling would also allow rules and 

other more deliberate translation tactics to be applied in the system. In retrospect, however, it 

may also be one of the weaknesses of the system, as managing many separate models trying to 

achieve the same thing can be very hard and time-consuming. 
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Yet, log-linear modeling has and still is widely used in the machine learning community. 

As we will see in Chapter 5, NMT is based on the very same principle. In fact, Koehn also 

allures to this in his 2010 Book about SMT, when mentioning the Perceptron learning 

methods as an example for log-linear modeling (Koehn 2010:138).  

4.3 Tree-based SMT 

As seen in word-based SMT (Section 4.1) and phrase-based SMT (Section 4.2), both 

approaches were created without really taking linguistic rules into consideration for the 

translation. Without additional models, next to no consideration is given to linguistic concepts 

like word-classes, cases, flections and so on. While linguistic rules could be added as feature 

functions in the log-linear modeling, the whole pipeline itself was not designed to take linguistic 

rules into account. Relatively late in the existence of SMT a more linguistic point of view was 

taken and an attempt to build SMT models on top of linguistic ideas was made. 

As a result, a new form of SMT emerged, where the idea of syntactic trees and the notion 

of formal grammar was worked into the foundation of the statistical system by SMT researchers. 

This way, the models for statistical translation would no longer only operate on flat sequence 

representations of sentences (i.e. strings of words) but would also be able to statistically capture 

the syntactic relationships between words and phrases by considering the word-classes and 

connections of the words; essentially the grammar structures of the sentence. This method was 

coined tree-based SMT. In order to extract such information from sentences and represent it 

as a tree diagram, linguistic parsers have been worked on since the early 1990s like, for example, 

the hand-crafted Penn tree bank (Koehn 2010:47) or the statistical parser by Michael Collins 

(see Collins 2003)27. These parsers represent sentences as trees, motivated by formalisms that 

are called grammars; for SMT even sentence pairs may be represented as an aligned tree pair, 

in such a case the formalisms are called synchronous grammars. 

 

 
27 The source-code for the parser is freely available at: http://www.cs.columbia.edu/~mcollins/code.html 

http://www.cs.columbia.edu/~mcollins/code.html
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Figure 13: Two phrase structure grammar trees with word alignment for a German-English sentence pair (Koehn 2010:334) 

First attempts proved promising, with tree-based SMT systems performing similarly or slightly 

better than some state-of-the-art phrase-based systems (Koehn 2010:331).  

However, the jump in translation quality was not evident enough to warrant the amount 

of effort to manage the extracted translation and grammar rules. This made them less viable 

than a more automatic phrase-based system. Tree-based SMT therefore remained mainly in the 

academic realm, never really catching on with commercial use. Phrase-based SMT remained 

the de-facto standard in MT applications until the wide-spread adoption of NMT systems. 

4.4 Translation as decoding 

In the three prior sections, we have seen how word-, phrase-based and by extension tree-based 

SMT systems find the probability for certain translations of an SL word or phrase to occur in 

the TL. The models then provide translation suggestions or hypotheses for the individual parts 

of the whole sentence. This is the encoding part of the SMT approach. However, while it may 

seem trivial to then just pick the best translation out of all the suggested solutions, the process 

of finding the best combination of translation hypotheses and the best reordering for the whole 

sentence is one of the hardest parts in SMT, because there is an exponential number of choices 

given a specific input sentence (Koehn 2010:155). This means, that while good decoding, i.e. 

the search for the best scoring sentence translations, is crucial for optimal translation quality, it 

would be computationally too expensive to really look through all the possible translations to 

find the optimal result; even for input sentences of modest length. 

SMT research has therefore either opted for so-called heuristic beam-search 28 

algorithms or different channel models (Knight 1999:615). The problem therein lies in the fact 

that these approaches are not optimal searches and do not guarantee that they will find the best 

 
28 Beam-search essentially keeps a number of top-scoring hypotheses and continues the search for the best 

hypothesis by following each choice individually. This is in contrast to the so-called greedy search, where only 

the highest probability solution according to the model is used. 
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translation the models may have proposed. Because of the heuristic nature of the decoding, so 

called search-errors may lead to failure in finding the best translation according to the models 

in the SMT pipeline. In fact, the more models are added and the bigger the data within the 

models grows, the harder the decoding will be. Conversely, the statistically most probable 

translation of all the combined phrases, i.e. the best translation according to the models, might 

not be a good translation at all, as SMT fails to capture long-distance relationships of words 

within the whole sentence. These issues are often cited as the main reasons why SMT translation 

quality was stagnant even though a lot of research effort was put into the systems (Chiang et al. 

2009; Galley & Manning 2008; Green et al. 2013).  
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4.5 SMT today (end of 2019) 

Many large companies like IBM, Microsoft and Google, but also formerly rule-based machine 

translation providers like SYSTRAN, started to implement the probabilistic SMT algorithms in 

the early 2000s to provide efficient automatic translation services for a vast number of 

languages29.  Most companies used SMT in a very controlled environment and domain, where 

statistical likelihood was strongly favored by the controlled language of the training corpus and 

the source for the translated texts. Microsoft, for example, used its SMT service for translating 

their knowledge-base into several languages from an English source text. However, anyone 

who has ever used Google Translate prior to the year 2016, probably recalls that it often 

delivered hilarious results, especially once the sentences got longer or grammatically more 

complex and ambiguous. 

Long sentences illustrate two major weaknesses that SMT systems have. The first 

weakness is that decisions are locally determined, as they translate phrase-by-phrase or word-

by-word and so long-distance dependencies are often ignored or insufficiently captured. 

Secondly, the decoding for longer sentences would get exponentially harder, as more and more 

possible solutions would need to be searched; sub-optimal search results are therefore the 

logical consequence. 

This is especially detrimental for languages that follow completely different grammars 

and word-order, as would be the case between English (an analytic language) and Japanese (an 

agglutinating language). Additionally, as was allured to in the introduction and should have 

become sufficiently clear when looking at the several models described for even the simplest 

of SMT systems, the entire SMT pipeline was becoming increasingly complex as more and 

more features were added to the log-linear framework (Chiang et al. 2009; Galley & Manning 

2008; Green et al. 2013). 

 
29 Google today claims to support over 100 languages. https://www.blog.google/products/translate/ten-years-of-

google-translate/  (accessed May 03, 2019) 

https://www.blog.google/products/translate/ten-years-of-google-translate/
https://www.blog.google/products/translate/ten-years-of-google-translate/
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5 Neural Machine Translation (NMT) 

This chapter provides a deeper look into the current state of the art machine translation approach, 

neural machine translation (NMT) and the artificial neural networks behind the method. In a 

way, NMT is similar to SMT in that it is corpus-based machine translation or data-driven 

machine translation. Just like SMT, it is trained on huge corpora of parallel texts (ideally 

sentence-aligned translations). What differs, however, is the computational approach: the whole 

translation task is performed by artificial neural networks. As Luong summarizes in his thesis 

about NMT, the big advantage this new approach has over SMT is that the whole translation 

process can be contained in one single neural machine learning model  (Luong 2016:7). This 

means that in theory each step of the translation process, which in NMT is usually performed 

on a sentence-level, can have full access to the information of the specific words in that sentence 

and find the most likely translation of the sentence by mathematically analyzing each word in 

relation to all the other words of the sentence.  

While NMT is still corpus-based, just like SMT, and does in fact rely on statistical 

probabilities in the final classification step, the decision making and learning of translation 

probabilities is quite different and part of the reason why NMT is often used in conjunction 

with the term AI, or artificial intelligence. But how do these neural models look like and why 

are they often related to AI and coined with this intriguing term “neural”? 

5.1 A closer look 

Neural machine translation is based on so-called artificial neural networks (or ANNs, for 

simplicity, from now on I will mostly stick to the term neural networks), a term that may 

summon quite scary thoughts for most people, especially with all the talk of AI taking over 

several fields of hitherto human expertise. And while recent achievements in machine learning 

technologies are in fact quite impressive, we should take a short look at the rather long history 

of neural networks to understand why such an ominous name was chosen and just why this 

seems to now basically have made any other form of AI research obsolete. Andrey Kurenkov 

shared an excellent and easy to read overview in four parts of the history of ANNs on his web-

site30. In order to give readers an overview and in an attempt to demystify ANNs, I would like 

to provide a short historical overview myself, based in part on Kurenkov’s work. 

 
30 https://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/ (accessed May 

15, 2019) 

https://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/
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5.1.1 Linear regression and the Perceptron 

It is important to remember that artificial neural networks, while only lately coming to be at the 

center of research attention, do have a long history in academic research. In fact, artificial neural 

networks are nothing new, the main principle they and machine learning in general are based 

on is well over 200 years old! Let’s take a look at the following graph in Figure 14. 

 

Figure 14: Linear regression31 

The red line basically shows a general function that best approximates the location of the dots 

on the graph and therefore the relation between pairs of input values (x) and output values (y). 

What we are seeing here is a visual representation of a linear regression, a technique from 

statistical mathematics that was introduced well over 200 years ago by Legendre (1805) and 

Gauss (1809) (Yan & Su 2009:2). The great thing about this technique is that we can extrapolate 

a general function for data that is easy to observe but would have an incalculable amount of 

functions behind it and formulating equations directly for these would be very hard. As 

Kurenkov writes, this generalization would be very useful for finding a function that maps, for 

instance, the input of a recorded spoken word to the written output of said word. However, it is 

clear that the linear regression as we see it in Figure 14, is too simple to handle such a complex 

problem. Yet, it does show what is essentially supervised machine learning: ‘learning’ a 

function given a so-called training set of examples, where each example is a pair of an input 

and output from the function (Kurenkov 2015:3). In fact, all of this will appear quite similar to 

what has been done in SMT with the parallel corpora and indeed this means that also SMT is a 

 
31 https://upload.wikimedia.org/wikipedia/commons/3/3a/Linear_regression.svg (accessed May 16, 2019) 

https://upload.wikimedia.org/wikipedia/commons/3/3a/Linear_regression.svg
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form of machine learning: After all, the machine learns the probabilities of certain translations 

reliant on the data provided. Linear regression itself has been used to improve several SMT 

constituents as well (see Yan & Su 2009; Biçici 2011).  

It makes sense then, that one of the very first attempts to make machines learn bears 

quite some resemblance to the linear regression. One of those attempts is known under the name 

Perceptron and was so coined by the psychologist Frank Rosenblatt, who tried to create a 

simplified mathematical model of how neurons, in other words the subunits of the neural 

network in our brains, work (Rosenblatt 1958). As Kurenkov perfectly explains, the model 

“takes a set of binary inputs (nearby neurons), multiplies each input by a continuous valued 

weight (the synapse strength to each nearby neuron) and thresholds the sum of these weighted 

inputs to output a 1 if the sum is big enough and otherwise a 0 (much in the same way neurons 

either fire or do not)” (Kurenkov 2015:8). Rosenblatt’s seminal work was based on the so-called 

McCulloch-Pitts Model, that showed that a (biological) neuron could in that way, much like a 

simple logic gate with binary outputs, model the basic OR/AND/NOT functions (see 

McCulloch & Pitts 1943; Figure 15).  

 

Figure 15: Drawing of a biological neuron (left) and the mathematical perceptron model (right).32 

However, while the McCulloch-Pitts Model showed that a neuron could model the 

OR/AND/NOT functions, it did not explain a mechanism for learning. Rosenblatt solved this 

by making the weights of the inputs updatable: whenever the neuron would provide a result 

which was known to be incorrect (remember, it uses a known training set of input and output 

data for the supervised training), the weights are updated to adjust for the error. This in turn 

was based on a hugely influential theory by Donald Hebb, that stated that knowledge and 

learning occurs in the brain, primarily through the formation and change of synapses between 

neurons (Hebb 1950 as found in Kurenkov 2015:9). As Kurenkov describes, the Perceptron’s 

learning algorithm works as follows (Kurenkov 2015:11): 

 
32 http://cs231n.github.io/neural-networks-1/ (accessed May 18, 2019) 

http://cs231n.github.io/neural-networks-1/
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1) Start off with a Perceptron having random weights and a training set. 

2) For the inputs of an example in the training set, compute the Perceptron’s 

output. 

3) If the output of the Perceptron does not match the output that is known to be 

correct for the example:  

a)  If the output should have been 0 but was 1, decrease the weights that had 

an input of 1.  

b)  If the output should have been 1 but was 0, increase the weights that had 

an input of 1. 

4) Go to the next example in the training set and repeat steps 2-4 until the 

Perceptron makes no more mistakes. 

With this, one Perceptron can learn to provide a specific output, given a specific input. Of course, 

with only one Perceptron, almost no real-world problem can be solved, but by networking 

several Perceptrons together, it is possible, depending on the task, to linearly or exponentially 

increase the amount of possible outputs. 

Take, for example, the classic task of recognizing handwritten digits: To be able to 

classify each of the ten separate digits (fed to the Perceptrons as a digital scan, i.e. certain 

arrangements of pixels), we need to have 10 Perceptrons networked together. Each Perceptron 

corresponds to one of the possible digits and is trained to output a ‘1’ whenever the matching 

input (i.e. a certain arrangement of pixels representing the corresponding digit) is provided. 

Such a neural network would look a little bit like what we can see in Figure 16. 

 

 

Figure 16: A simple neural network 
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A problem with the Perceptron and its thresholding activation function is that it does not exactly 

find the best function for generalizing the data, as it stops just when all problems are solved as 

expected. While this works for the training data, real data might be more fine-grained (just think 

at all the possible handwriting variations or in fact possible word combinations in a translation 

task) and therefore the trained model would fail to properly classify certain inputs. Bernard 

Widrow and Tedd Hoff made the discovery, that it is not strictly required for the artificial 

neuron to have a thresholding activation function that simulates the binary nature of biological 

neurons like the Perceptron does. In 1960, they introduced a different neuron model called 

ADALINE (see Widrow 1960), where the output was no longer constrained to be a ‘digital’ 0 

or 1 and instead was kept ‘analog’ so that the fine-grained changes in that data would remain 

visible. With this ‘analog’ data, it is possible to measure how much the error changes when 

each weight is updated. This change of the error is called partial derivative and can be used to 

drive the error down and find optimal weight values.  

While this is essentially the right approach to make neural networks learn, two major 

limitations had to be overcome: First, the basic Perceptron is only able to learn a function for 

data that is linearly separable, ergo it can only model the functions AND/OR/NOT, but cannot 

model the simple Boolean function XOR (exclusive OR). In Figure 16 we can see, that it is 

possible to easily separate the first two examples (OR/AND-functions) with a linear line, but 

for data that requires an XOR expression this is no longer possible (Kurenkov 2015:23). 

 

Figure 17: What can be expressed through a linear function 

To overcome this issue, neural networks nowadays consist of not just one or several Perceptrons 

(i.e. neurons, nodes or units) with one input and one output each, but rather form a network of 

multiple layers (i.e. the neural network) of up to millions of neurons/units, that may also be 

placed in-between the input and output layers, as so-called hidden layers. These hidden layers 

allow a neural system to elaborate vastly more complex problems, by basically breaking up the 

very complex and possibly noisy data into several smaller features, allowing a more fine-

grained approximation function and in fact the generation of XOR functions and others. 

Mathematically neural networks were therefore quickly coined as being “universal 
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approximators” (Hornik et al. 1989), meaning that with them one can theoretically express any 

(mapping) function in a multilayer configuration.  

Figure 18 shows a simple feedforward multi-layer neural network with two hidden 

layers and one single output node in the output layer (depending on the model it can be more). 

We can see that with a network like this, the training method described above would no longer 

be possible, as the weights from the input-layer to the first hidden layer do not directly influence 

the result in the output layer. Conversely the first hidden layer is also not directly connected to 

the actual output node, meaning that the weights from hidden layer 1 to hidden layer 2 do not 

directly influence the value in the output layer. 

 

Figure 18: A simple feedforward multi-layer neural network 33 

5.1.2 Training of neural networks: Backpropagation 

As we’ve found out above, once we create a network with layers in-between the input and 

output layer the training devised for a single node is no longer applicable, because, for example, 

hidden layer 1 has no direct access to the output layer. While this put research behind artificial 

neural networks into a somewhat extended hiatus, in 1986 Rumelhart, Hinton and Williams 

popularized a method to apply the error-rate across the whole network and as such update each 

weight in the network; this method is called backpropagation (Rumelhart et al. 1986). The 

realization was made, that with a non-linear but also more differentiable activation function in 

the neurons (so something closer to ADALINE than the Perceptron), it is not only possible to 

use the derivative to minimize the error, but it is also made possible to backpropagate34 this 

derivative over all of the layers before it, essentially “splitting up the blame” for the error over 

each neuron. It is therefore possible to calculate in which way to adjust weights for each 

individual neuron. Further, to minimize the error typically the so-called stochastic gradient 

descent is used (Kurenkov 2015:27). What happens here, is that the network learns from its 

 
33 https://medium.com/@rajatgupta310198/getting-started-with-neural-network-for-regression-and-tensorflow-

58ad3bd75223 (accessed May 29, 2019) 
34 Thanks to what is essentially the chain-rule of calculus: https://en.wikipedia.org/wiki/Chain_rule (accessed 

May 29, 2019) 

https://medium.com/@rajatgupta310198/getting-started-with-neural-network-for-regression-and-tensorflow-58ad3bd75223
https://medium.com/@rajatgupta310198/getting-started-with-neural-network-for-regression-and-tensorflow-58ad3bd75223
https://en.wikipedia.org/wiki/Chain_rule
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own mistakes, by slightly adjusting the weights of each node until the closest approximation on 

the final output-layer is found. For a more picturesque explanation, I highly recommend Luis 

Serrano’s unlisted YouTube video to linear regression and stochastic gradient descent, where 

he describes the process of minimizing the error by metaphorically comparing the process of 

the stochastic gradient descent to climbing down a rather steep “Mt. Errorest” (Serrano 2016)35. 

While this way of learning is the great strength of neural networks, it is also one of their 

weaknesses: Because neural networks can be several layers deep and we never actually see the 

output of the hidden layers (and even if we would, it would not be intelligible, as the network 

creates vectors as abstract representations of the data captured), it is essentially impossible to 

tell which weight is adjusted how and therefore manual tweaking of neural networks is more or 

less a matter of trial and error; all we see is whether the produced output is correct or not.  

5.1.3 Vectors: How neural networks “think” 

The adjustment of the weights within the network by minimizing the error in the output is still 

how neural networks work and learn today. Essentially, supervised learning is learning by 

trial and error. It is important to note at this point, that all operations within the network are 

strictly mathematical, more specifically calculus based. There are little to no statistical concepts 

applied, let alone linguistic rules. Neural networks operate on a list of numbers called vectors, 

that are created by the network itself to represent the features of the input in an abstract way. 

We have seen this in SMT, but SMT uses these vectorized inputs to generate statistical data out 

of, while NMT operates on the vectors from input to output. NMT may operate on vectorized 

single words, phrases or even individual symbols (for example, in the form of byte pair 

encoding). There are several ways to represent meaning-units, such as words, as a vector. One 

option would be the so called “One-hot-encoding”, which essentially generates vectors where 

only one “1” in a certain position encodes the word (“one hot” means “one 1”). For example, it 

would be possible to represent the words “translator” and “interpreter” as the following vectors: 

 

Translator: [1, 0, 0 … 0] 

Interpreter: [0, 1, 0 … 0] 

 

While the one-hot-encoding is fairly straight-forward, it does not capture any relations or 

similarities between the words. Nothing in the encoding would suggest that “translator” and 

“interpreter” are indeed both working with languages or in fact generally human beings. The 

 
35 Linear Regression Answer: https://www.youtube.com/watch?v=L5QBqYDNJn0 (Serrano 2016) 

https://www.youtube.com/watch?v=L5QBqYDNJn0
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one-hot-encoding is therefore only used as a starting point for the vocabulary in NMT. In fact, 

before training an NMT generally a fixed vocabulary size must be defined for the network, as 

the total number of 0's and 1's in the vectors depends on the total number of words stored in the 

vocabulary. This means, that the bigger the vocabulary, the longer the training of the network 

will take. 

However, with the one-hot-encoding, no real translation task could be solved. NMT 

therefore creates a word embedding from the vocabulary: During training, the network 

attributes a list of numbers (or a vector) to every word in the vocabulary to define its position 

in a theoretical “meaning space”, however, to position the words in that space the list of 

numbers no longer only consists out of “0s” and “1s”, but of decimals in-between. This way, 

shared features and similarities between words can be represented as well.36 Since decimals can 

be used, the vector can also be a lot smaller than the actual number of words stored in the 

vocabulary. However, the longer the vector the more fine-grained the embedding can be. In 

practical use, vectors with a size of 256, 512, 1024 or similar may be chosen for the word 

embedding. “Interpreter” and “Translator” could, for example, be represented as follows: 

 

Translator: [0.33, 0.44, ...........] 

Interpreter: [0.33, 0.45, ...........] 

 

Since vectors can be read as “spatial coordinates”, you could say that the network generates a 

sort of meaning space or meaning cloud, in which related words are embedded closer together 

and words which represent other concepts are embedded farther apart from each other. Hence 

the term word embedding. Luckily, tools like tensorboard 37  exist, that enable a 3D 

visualization of said embeddings. While not terribly useful for debugging a neural network, it 

is fascinating to see where and how the machine places words within said word-embedding 

space.  

Figure 19 shows us a three-dimensional representation of a word-embedding from the 

training presented in Chapter 7. Each dot represents a word (or “token”). 

 

 
36 https://www.yamagata-europe.com/en-gb/blog/neural-machine-translation-what-s-under-the-hood-part-2 

(accessed August 13, 2019) 
37 https://www.tensorflow.org/tensorboard/get_started (accessed March 03, 2020) 

https://www.yamagata-europe.com/en-gb/blog/neural-machine-translation-what-s-under-the-hood-part-2
https://www.tensorflow.org/tensorboard/get_started
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Figure 19: A three-dimensional representation of word-embeddings in tensorboard. Each dot represents a word 

It is important to note here, that the machine which processes the text through the network, does 

NOT understand what it is reading. In fact, it “merely” analyzes the words by looking at their 

context in the training corpus and finds above mentioned patterns. This approach is based on 

the theories of distributional semantics38 and while similar to the statistical approach, it has 

the advantage that the extracted features are more fine-grained than mere statistical occurrence 

data. However, for it to work properly, an even bigger amount of parallel text data is required 

than was the case with SMT. 

The great thing about operating on vectors, is that they can, by definition, be combined 

to other vectors according to vector algebra. This would enable neural networks to generate a 

vector that essentially represents the whole sentence instead of each individual word or phrase. 

However, all the networks we have seen up until now were simple feedforward neural networks, 

which would not allow an easy connection between the individual outputs. In the next section 

we will therefore look at the different types of neural networks and see which of those network 

architectures work best for translation tasks. 

5.2 Types and variants of neural networks 

With the explanations above, it should be clear that artificial neural networks operate strictly 

on numbers, i.e. vectors, on the basis of several, relatively simple mathematical operations, like 

 
38 (see Boleda 2020 for a good overview of research in this area) 
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matrix multiplications. These are linked together to map one input to a certain form of output. 

They learn to output the desired values by “automatically” adjusting the parameters (weights) 

of the network in such a way, that the desired result is found or at least as close as possible 

(backpropagation of error).  

While all neural networks learn by these means in one way or the other, there are several 

variants of networks for several specific tasks. What we saw up until now, was mostly 

feedforward neural networks. A feedforward neural network computes a function f on a fixed 

size input x such that f(x)≈y for training pairs (x, y) (McGonagle et al. 2020). This means, that 

all connections are going from the input towards the output layer. It can therefore only present 

an output for each individual input and not for all the inputs taken together. Such a system 

would not be of big use for translation tasks. For this reason, other networks were designed, 

that allow different mappings, as seen in Figure 20. 

 

Figure 20: Some of the mapping possibilities with modern artificial neural networks39 

The ‘one to one’ and ‘one to many’ mapping is possible with feedforward networks. This is 

ideal for image classification, as you might want to recognize a certain object (the output) within 

a frame (the input). Say for example, if you provide the network with an image of a cat, you 

would like to receive the text output ‘cat’; likewise, you could train a feedforward network to 

output ‘a white cat’ for a picture that shows a white cat through the one-to-many mapping. One 

might imagine that this could work in a way similar to phrase translation tables in SMT. While 

this is true and feedforward neural networks were in fact used for creating phrase-tables (Cho, 

van Merrienboer, Gulcehre, et al. 2014), this would not fully use the potential of this new 

technique. In fact, it is the ‘many to many’ mapping enabled by the so-called recurrent neural 

networks (RNNs), that is a natural fit for sentence translations, as it allows the mapping of a 

whole sequence (of words) to another sequence (of words). That said, words do not need to be 

the smallest signifier for neural networks. The networks can operate on inputs that are on a sign 

 
39 https://medium.com/explore-artificial-intelligence/an-introduction-to-recurrent-neural-networks-72c97bf0912 

(accessed on November 15, 2019) 

https://medium.com/explore-artificial-intelligence/an-introduction-to-recurrent-neural-networks-72c97bf0912
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level (i.e. letters or characters, like the Japanese Kanji) or could in fact be trained on phrases 

(Huang et al. 2017) or even full sentences as input. Either way, neural machine translation is a 

very active research domain at the time of writing this thesis and it would be impossible to 

cover all the different approaches that were developed for improving the translation 

performance. 

In order to get a general understanding of NMT, we may look at the following four 

major architectures/models and elaborate in respect to their workings for translation: 

 

1) The MLP (Multi-Layer Perceptron) or simple feedforward network 

2) The CNN (Convolutional Neural Network) feedforward network 

3) The RNN (Recurrent Neural Network) recurrent network 

4) The Transformer 

5.2.1 Multi-Layer Perceptron (MLP) 

The term Multi-Layer Perceptron or MLP is used ambiguously, sometimes loosely to refer 

to any feedforward neural network, sometimes strictly to refer to networks composed of 

multiple layers of Perceptrons (with threshold activation). In this thesis, it is used to refer to 

multi-layer feed forward networks in general. As stated earlier, this means that the neural 

network’s flow is strictly into one direction and therefore each layer is only fed with the output 

from the layer before it. However, unlike the original Perceptron, the activation function does 

generally not have a threshold activation that changes the output of each layer to a 0 or 1 in 

order to allow for backpropagation. This means the model works very well for classification or 

labeling predictions on, for example, tabular datasets, but not too well for translation tasks. The 

reason for this is that feedforward networks are based on several major assumptions that do not 

work well for language translation or language processing in general. One of the major issues 

of this type of neural network is that the size of the input layer is fixed to the length of the input 

sequence and thus the output length also must be fixed. 

The other major issue here is the idea of independence - that different training examples 

(like the single words that make up a sentence) are independent of each other. So even if you 

were to process word for word and somehow find an equivalent solution every time, the context 

and meaning that develops over time in a sentence would be lost. Simple feedforward networks 

therefore inherently disregard two main aspects of translation: short and long temporal 

dependencies within a text and the fact that input and output length is not guaranteed to be the 

same (Agrawal & Sharma 2017:65). Additionally, even if you were to overcome these intrinsic 

issues by, for example, taking sentences as the base unit for meaning representations, this would 
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render MLPs unviable, as the amount of data for training would need to be unrealistically large 

and the network itself would have enormous memory (RAM) and processing demands because 

of the very large vectors required for capturing all that information.  

5.2.2 Convolutional Neural Network (CNN) 

Convolutional Neural Networks or CNNs are also feed forward networks, however, they 

work by making the first and some subsequent hidden layers of the network convolutional. 

This means that each hidden layer only looks at a small subset of the input data and finds certain 

features within. These extracted features are then passed on to another set of hidden 

convolutional layers, which then can work on much leaner and cleaner data than the “noisy” 

input data, again finding certain features within. These high-order features can then finally be 

used to classify the data by the last two layers (one hidden layer and the output layer) as was 

happening before with regular feed forward neural networks. This makes the networks much 

more memory efficient and feasible for big amounts of data, especially because parallelization 

is possible within layers. For that reason, it works especially well on high-dimensional data like 

image data. Yet it was traditionally not used for language processing or translation, because 

CNNs do not maintain an internal state other than the network’s own parameters. This means, 

that whenever a single sample (for example, a word from a sentence) is fed into a CNN, the 

network’s internal state, or the activation of the hidden units, is computed from scratch and is 

not influenced by the state computed from the previous sample, just like with any other 

feedforward network (Agrawal & Sharma 2017:66). We are therefore still computing a function 

f on a fixed size input x such that f(x)≈y for training pairs (x, y). The network basically still has 

no ‘memory’ as to what it has just read and can therefore not account for short and long temporal 

dependencies, if a sentence were to be processed sequentially (i.e. word for word). To capture 

context the network would need to look at the whole sentence at once and therefore run into the 

same issues as a regular MLP network, like memory constraints but more importantly general 

data sparsity in the training corpus. 
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Figure 21: Visualization of a CNN40 

As a side note, however, researches have been successful in using exclusively 

convolutional networks for neural machine translation (Gehring et al. 2017). Instead of 

producing an encoding of the whole source sentence by ingesting the embeddings of source 

words one by one, Gehring et al. devised an encoder that produces representations of each word 

by taking into account a few words (for example 2) to the left and to the right of it (similar to 

n-gram language models as seen in phrase-based SMT) (Forcada 2017:299-300; Gehring et al. 

2017). This enables the CNN to capture context in a vectorized representation. Gehring et al. 

observe better BLEU scores (see Section 7.5.2.1) in English-French, English-German and 

English-Romanian tasks than with competing networks based on the recurrent neural network 

architecture that is actually capable of looking at the whole sentence and keep a sort of “context-

memory” as shown in Section 5.2.3. Most importantly, however, Gehring et al argue that 

convolutional networks offer a higher level of parallelism than the more conventionally used 

recurrent neural networks because individual words don’t have to be processed in sequence. 

This enables shorter training times on modern GPUs, which are very fast in parallelized 

workloads. More about their effort can be found on their Facebook Engineering publication 

online.41  

5.2.3 Recurrent Neural Networks (RNN) 

Recurrent Neural Networks or RNNs are an approach to solve the memory issue mentioned 

above by simply looping the output of the network back into the network. This enables RNNs 

to ‘remember’ data from the input over time, all the while handling inputs of ‘any’ length. One 

 
40 https://sites.google.com/site/5kk73gpu2013/assignment/cnn (accessed on December 03, 2019) 
41 https://engineering.fb.com/ml-applications/a-novel-approach-to-neural-machine-translation/ (accessed on 

November 18, 2019) 

https://sites.google.com/site/5kk73gpu2013/assignment/cnn
https://engineering.fb.com/ml-applications/a-novel-approach-to-neural-machine-translation/
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of the main reasons that RNNs are more exciting than their feedforward counterparts is that 

they can operate over a sequence of vectors: Sequences in the input, the output, or in the most 

general case (translation) in both. Unlike feedforward networks, recurrent neural networks learn 

sequential data by computing g on variable length input 𝑋𝑡 = {𝑋1, … , 𝑋𝑡} such that 𝑔(𝑋𝑡) ≈ 𝑦𝑡 

for the training pairs (𝑋𝑛, 𝑌𝑛) for all 1 ≤ 𝑡 ≤ 𝑛.42 Essentially, this enables RNNs to add the 

variable of “time” into the mix, by sequentially going through the individual inputs of a 

sequence in timesteps t, while carrying over information from each individual input/timestep. 

Each word in a sentence can therefore be learned in context of everything that came before it. 

In Figure 22 we see a representation of an unrolled RNN, i.e. where we see each timestep as an 

individual network. Essentially, we are looking at the RNN as several feed-forward networks, 

where for each new input from the sequence (𝑋𝑡) a copy of the current network is generated. 

This new network is then fed the output of the network before it (called hidden-state ℎ𝑡−1, as it 

is not a visible output) and the new input from the sequence (𝑋𝑡). The exciting thing about this 

is that in RNNs each output of each individual timestep is combined into a new vector and 

finally output as one combined final vector. That vector should contain all of the information 

before it and therefore also encode what the sentence represents over time. In other words, this 

final hidden-state vector may be thought of representing the “meaning”43 each individual word 

represents in the specific order and form in which they are set in that sentence. The resulting 

vector was therefore called the thought vector or meaning vector.  

 

Figure 22: An unrolled recurrent neural network44 

In theory, this way classic RNNs can keep track of arbitrarily long-term dependencies over 

variable length sequences, making them ideal for translation tasks. However, in practice 

memory still posed a problem with classic RNNs: Because each individual timestep of an RNN 

 
42 Feedforward Neural Networks. https://brilliant.org/wiki/feedforward-neural-networks/ (accessed on November 

15, 2019) 
43 “meaning” has to be understood in a very abstract way here; the network basically captures very intricate 

patterns of languages by analyzing the vast corpus of sentences that it is fed. 
44 https://medium.com/explore-artificial-intelligence/an-introduction-to-recurrent-neural-networks-72c97bf0912 

(accessed on December 08, 2019) 

 

https://brilliant.org/wiki/feedforward-neural-networks/
https://medium.com/explore-artificial-intelligence/an-introduction-to-recurrent-neural-networks-72c97bf0912


58 
 

adds information to the next through multiplication, training through backpropagation45 of the 

error leads to “vanishing” gradients (they become smaller and smaller, approaching 0) or 

"exploding" gradients (they increase in size on every iteration towards infinity). This makes 

training with the conventional methods very difficult if not impossible. In practical terms a 

classic RNN network would therefore learn well only on smaller sequences, but long-term 

dependencies and indeed longer sequences would never be learned properly as the weights of 

the network would just not adjust well through backpropagation in longer sequences. 

Hochreiter (1991) and Yoshua Bengio et al. (1994) analyzed the problem in detail and 

proposed several approaches to try and mitigate the problem. It was not until 1997 when 

Hochreiter and Schmidhuber came up with what might be considered the solution to the 

problem: the so-called long short-term memory (LSTM) RNN model (Hochreiter & 

Schmidhuber 1997). Any real application of RNN in machine translation is based on LSTMs 

or variants thereof. In addition to the original authors, a lot of people contributed to modern 

LSTMs. In the next section we will take a short look at this variant of RNNs. 

5.2.3.1 The LSTM RNN (Long Short-Term Memory) 

Just as the name states, the LSTM RNN model (commonly just referred to as LSTM) enables 

the network to maintain a short-term memory of the context of each individual word over a 

longer sequence of words, especially over long distances within the sequence. It was 

specifically developed to mitigate the issue of exploding and vanishing gradients that may be 

encountered when training classic RNNs on longer sequences.  

LSTMs achieve this by keeping a separate flow of information outside the normal flow 

of the recurrent network in a so-called gated cell. This cell allows for information to be stored, 

written, or read and this information can then be carried over from one timestep to the next 

through the so-called cell state. Figure 23 shows a standard RNN, whereas in Figure 24 we can 

see the somewhat more complex LSTM. The gated cell of the LSTM is represented by the four 

gates: three sigmoid gates (σ), a forget gate, an input gate and an output gate, and one additional 

output gate at the top horizontal line, which is the cell state (𝑐𝑡). The cell state may also be 

called a context vector as it transports the context of all words over a long distance. 

 

 
45 For RNN an extension called Backpropagation Through Time (BPTT) is used. 
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Figure 23: A recurrent unit in a standard RNN unit46 

 

 

Figure 24: A recurrent unit in LSTMs47 

The gates allow the cell to make decisions about what to store, and when to allow reads, writes 

or deletions. This information is then passed on to the next timestep of the network as the cell 

state. This allows for information to pass through the network relatively unchanged, meaning 

that the error can also remain more constant throughout the whole flow of the neural network. 

Just like regular neural network nodes pass on certain information, the gates block or 

pass on information to the cell state, which is filtered through the gates’ own sets of weights. 

Those weights, like the weights that modulate input and hidden states, are adjusted via the 

recurrent network’s learning process. Basically, the cells learn when to allow data to enter, leave 

or be deleted through the iterative process of making guesses, backpropagating the error, and 

adjusting weights via gradient descent (see Nicholson 2019). 

Essentially, the network has more parameters (the additional weights in the LSTM) and 

data (the cell-state/context vector) to work with. Because the flow of information in the cell-

 
46 https://miro.medium.com/max/1606/1*wXEZTk3g_UiOgL6VutuBGA.png (accessed on December 03, 2019) 
47 https://miro.medium.com/max/1676/1*WOGNu3QcmDipMVPF2yA9wA.png (accessed on December 03, 

2019, edited to reflect 𝑐𝑡) 

https://miro.medium.com/max/1606/1*wXEZTk3g_UiOgL6VutuBGA.png
https://miro.medium.com/max/1676/1*WOGNu3QcmDipMVPF2yA9wA.png
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state is controlled through the gates, vanishing or exploding gradients are much less likely. The 

network therefore manages to keep a much longer memory of words that are farther apart.  

However, since more data and more mathematical operations must be processed, 

LSTMs tend to be quite a bit slower both in training, as well as in the translation process itself. 

Additionally, since each new timestep is dependent on the output of the prior timestep, 

parallelization, which is the most notable reason for the increase in computing power of the last 

decade, is not easily leveraged for improving performance. For that reason, more simplified 

gated recurrent units (GRUs) are often used in the real world and research (see Bahdanau et 

al. 2014:12). These only have two gates and one final output gate, which takes away some of 

the more granular control the network can exert over what data is transferred to the next 

timestep of the network but reduces processing load and therefore increases speed.  

While LSTMs highly improved the capacity of RNNs to work over longer sequences, 

they still have issues besides performance. For one, the network still tends to forget words or 

parts of the context of words that are far apart, since even though the context vector is updated 

in a more controlled way than the meaning vector in regular RNNs, it is still updated as a single 

vector. Therefore, the probability of finding the context of a word that is far away from the 

word currently being processed decreases exponentially with the distance between the two.48 

What we saw until now, was how the networks learn to represent meaning as vectors, 

but we haven’t quite covered how these vectors are finally translated into the TL. In the next 

sub-section, we will look a bit more closely at how the majority of these translation models do 

the actual translation under the hood. 

 
48 https://towardsdatascience.com/transformers-141e32e69591 (accessed on December 10, 2019) 

https://towardsdatascience.com/transformers-141e32e69591
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5.2.3.2 Encoder-Decoder modeling 

Like with SMT, in NMT we are, in most cases, talking about encoding and decoding. Encoding 

is what we saw up until now: The network recognizes patterns in the training data and encodes 

these as vectors that should reflect the meaning of the sentence. The task of decoding, then, is 

to transform these meaning vectors into sentences in the TL.  

The decoder in most NMT systems is built and trained in such a way that it resembles a 

text completion device (like the word prediction feature of some smartphone keyboards), which 

is informed by the meaning vector computed by the encoder. The decoder therefore provides, 

at each position of the target sentence being built, and for every possible word in the target 

vocabulary, the likelihood that the word is a continuation of what has already been produced 

(Forcada 2017:296). 

This Encoder-Decoder model for NMT was concurrently introduced by Sutskever et al. 

and Cho et al. in 2014 (Cho et al. 2014; Sutskever et al. 2014). These models may be seen as 

the break-through for NMT as they first managed to outperform statistical machine translation 

models on large translation tasks (Sutskever et al. 2014). 

Sutskever’s RNN NMT architecture consists of two LSTM models: An encoder model 

and a decoder model. In the encoder model an input sequence is read in its entirety (up to the 

end-of-sequence token (<EOS>) and encoded to a fixed-length internal representation: the 

meaning vector. The decoder part of the network then uses this internal representation to output 

a variable-length sequence of words in the TL until the end-of-sequence token is reached. 

Essentially, the encoder part is trained to create fixed-length vector representations from the SL 

training data, whereas the decoder part is an RNN language model conditioned on the vector 

representations of the encoder model and the word embeddings created from the training data. 

The two models are therefore always trained in tandem. 

A trained network can then be fed with new input data, which it would encode into 

fixed-length vectors (the meaning vector and the context vector in LSTMs). The encoder model 

stops the encoding once it reaches a pre-determined “end-of-sequence” token (<EOS>). From 

there, the vectorized sentence (meaning vector) and the context vector are input into the decoder 

model of the network: the meaning vector and the <EOS> token act as the input to the network 

and, by using the probability patterns that were learned during training, the decoder model maps 

the vector back into a sequence of words of another language. Since this whole process remains 

all within a single RNN, even the final timestep can theoretically still use information from the 

first step in the whole network. This is represented in Figure 25, where an SL sentence “ABC” 

is translated to the TL sentence “WXYZ”. We can see that the initial data essentially flows 
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through the whole neural network and may therefore still be updated in the decoder part of the 

model. 

 

Figure 25: Sutskever‘s Encoder-Decoder workflow (Sutskever et al. 2014:2) 

As noted in sub-section 5.2.3.1, the issue here is that the probability of keeping the context of 

a word that is far away from the word currently being processed decreases exponentially with 

the distance between them. So, for longer input sentences or even if the output sentence length 

would increase, the likelihood of the network still referring to and considering the right context 

for an earlier word in the timeline diminishes significantly. 

To combat this issue Sutskever et al. realized that inverting the input sentence’s word-

order would bring words in similar language-pairs49 closer together. In other words, when 

translating a sentence a,b,c to w,x,y the network would learn to translate c,b,a to w,x,y instead. 

This way, they found, the performance of the network greatly increased as a is in close 

proximity to w, b is still fairly close to x, and so on (Sutskever et al. 2014:3). 

However, it stands to reason that such a solution only works well for related language-

pairs and would likely present issues with languages that have a vastly different word order. 

Several empirical studies found that the fixed-length meaning vector acts as a bottleneck for 

the Encoder-Decoder approach (Pouget-Abadie et al. 2014; Cho, van Merrienboer, Bahdanau, 

et al. 2014). Because of this a much more robust solution was proposed to solve the memory 

issue LSTMs were still facing: the attention mechanism. 

 
49 In their case: English-French 
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5.2.3.3 Attention mechanism 

The attention mechanism was first proposed by Bahdanau et al. 2014 and Luong et al. 2015. 

The technique described in these papers essentially allows the decoder model to focus on 

relevant parts of the input sequence as needed. This may be compared to how translators focus 

their attention on the ST words and context that they are trying to translate at the moment. 

To achieve this the encoder does not pass the fully assembled meaning vector (i.e. the 

last hidden state) to the decoder, but instead passes all the hidden states (e.g. ℎ1, ℎ2, ℎ3) along 

to the decoder, so that a more controlled context vector may be computed by the decoder itself. 

Additionally, a feedforward neural network alignment model50  is jointly trained with the 

network and added to the RNN decoder for deciding on what to pay attention to. Essentially, 

this allows the decoder to search through the ST and focus on certain parts of it while decoding.  

Once the decoder is fed with the <EOS> token, it is reinitialized with a new hidden state 

(ℎ𝑖𝑛𝑖𝑡) and based on that calculates an output and new hidden state of the network (e.g. ℎ4). 

The output is discarded, as the decoder uses the hidden states from the encoder for the attention 

steps to create a new context vector: 

1) First the decoder looks at the whole set of hidden states it received from the encoder. 

Each of these hidden states is naturally most associated with the input that generated it. 

2) The hidden states are then scored according to the alignment learned in training by the 

alignment model (i.e. how well the inputs around a certain ST position fit the TT 

position). 

3) The score is then softmaxed and multiplied, which amplifies the hidden states with high 

scores, while the hidden states with low scores are drowned. 

4) Finally, these scores are summed together to create the context vector for that specific 

timestep. 

 

The context vector 𝐶4 is then concatenated with the hidden state ℎ4 of the decoder and passed 

through another jointly trained feedforward network that finally outputs the TT word (see also 

Figure 26). 

 

 
50 Note that unlike in SMT, the alignment is not considered to be a latent variable. Instead, the alignment model 

directly computes a soft alignment between ST and TT words which also allows the gradient of the cost function 

to be backpropagated. This means that it is not a separately trained model, but part of the network and therefore 

trained towards a better log-probability of producing correct translations (Bahdanau et al. 2014). 
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Figure 26: RNN with attention translating DE-EN “Ich bin Student” to “I am a student”.(Alammar 2018b) 

The big advantage of the attention mechanism is that the encoder is relieved from having to 

create one monolithic vector that contains all the information within a sentence. All the hidden 

states are passed on to the decoder and the attention mechanism allows it to pick out the parts 

that seem most relevant according to the alignment model. Bahdanau further improved upon 

this idea by deploying a Bidirectional RNN (BiRNN) for the Encoder that would read the 

sentence from left-to-right and right-to-left in order to store both the context before and after a 

certain timestep within the hidden state51 (Bahdanau et al. 2014:3). 

For a beautifully animated explanation of the attention mechanism, I highly recommend 

Jay Alammar’s blog post regarding the technique52 as the animated visualizations help a lot 

with understanding. 

 
51 Bahdanau calls the hidden states annotations 
52 https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-

attention/ (accessed on January 04, 2020) 

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
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5.2.4 The Transformer model 

Attention proved to be a very robust solution for maintaining context over long distances and 

drastically improving the quality of machine translation through RNNs. However, training the 

networks and running the translation through all of these steps is computationally quite 

expensive and, because of the sequential nature of RNNs, parallelization cannot easily be 

employed to improve performance. Therefore, there is a practical limit to network complexity 

and scalability as the individual steps are reliant on the result of the calculations before them. 

In 2017, Vaswani et al. seek to solve the performance issue with their seminal work 

titled Attention is all you need (Vaswani et al. 2017). In their paper they introduce what is now 

essentially the state-of-the-art architecture for NLP and machine translation: The Transformer 

model. 

In essence, they suggest an Encoder-Decoder network architecture that does away with 

both convolutional and recurrent networks and is instead based solely on the idea of attention. 

In order to enable parallelized encoding and decoding, the input sequence is no longer provided 

sequentially to the network, but instead the inputs are fed into the network all at once as a list 

of vectors. These vectors are created by the learned word embeddings during training. The paper 

suggests creating vectors that have a size of 512 positions for their “Transformer Base” model, 

but also explores using larger embeddings in their “Transformer Big” model, which results in 

a noticeable improvement in model accuracy at the expense of higher memory and 

computational requirements (Vaswani et al. 2017:9). 

In order to provide enough weights for handling all that input data, the paper suggests 

the use of six equal encoders and decoders stacked upon each other; however, while they are 

equal, they do not share weights with each other. Six is also an arbitrary number, in fact it is 

possible to use more, but also less stacked encoders and decoders. Each encoder is made up of 

two sub-layers: a so-called multi-headed self-attention layer and a feedforward neural 

network layer. Self-attention is a new concept, that allows the encoder to look at the different 

words within the sequence. It can be seen as a replacement to the hidden-states we had in the 

RNN Encoder-Decoder architecture. 

This is a needed addition as in the Transformer model each word or in fact vector in 

each position of the list of vectors flows through its own path in the encoder. In other words, 

each vector in the list is passed through the same feedforward neural network, but individually. 

The output of the feedforward network layer is therefore not dependent on the words that came 

before or after, so they can be computed in parallel. Additionally, thanks to the context encoding 

of the self-attention layer, the feedforward network operates on vectors which contain 
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information about other relevant words in the sequence. Figure 27 shows the flow of a simple 

example sentence “Thinking Machines”, where x1 and x2 are the vectors resulting from the 

word embedding algorithm, z1 and z2 are the self-attention annotated vectors and r1 and r2 are 

the output of the first encoder after the feedforward neural network pass. These outputs are then 

used by the second encoder to process as inputs. 

 

 

Figure 27: The vectors in the list flow through their own path in the Encoder and provide individual outputs each; the 

connection between the different parts of the sequence is made in the self-attention layer. (Alammar 2018a) 

For the most part, the decoder is made up in the same way, but between the self-attention layer 

and the feedforward layer there is an additional attention layer (called Encoder-Decoder 

attention), which is fed with the output from the encoder. This layer helps the decoder to focus 

on relevant parts of the input sentence and predict the most likely output (similar to the original 

attention mechanism described in Sect. 5.2.3.3). 

Figure 28 shows the Transformer model’s architecture from input to output. The encoder 

and decoder part are represented as single units but can be considered as stacks Nx, where N 

stands for the number of units used. 
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Figure 28: The Transformer architecture as suggested by Vaswani et al. (Vaswani et al. 2017:3) 

Notice how the illustration adds a positional encoding node between the embedding layer and 

encoder/decoder stacks. Since the list of words is processed individually and all at the same 

time, the time information we had gained through RNNs’ sequential processing is lost. 

Therefore, an additional positional encoding is required and added to the word embedding 

representations, so that the encoder and decoder can operate on positional information as well.  

In summary, the Transformer model eschews recurrent and convolutional networks in 

favor of simpler and more parallelizable feedforward networks, by “annotating” the input 

vectors with context information through the attention mechanisms and the positional encoding. 

This allows the model to be trained much faster than regular RNN Encoder-Decoder models, 

while also providing a more robust context representation than the attempted CNN models (see 

Section 5.2.2).  

At the time of writing this paper, most NMT systems, and, in the broader scope, NLP 

systems based on neural networks, operate through the Transformer architecture.  

Note that this subsection provided a highly simplified explanation of the Transformer 

architecture, as describing it in detail would be beyond the scope of this thesis. Vaswani et al.’s 

paper provides an exhaustive but very mathematical explanation. For those interested in the 
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deeper workings of the self-attention mechanisms and the Transformer in general, I would again 

recommend reading Jay Alammar’s excellent blog posts about the Transformer architecture. 53 

5.3 Summary 

This chapter offered a deep look into the workings of neural networks and presented the 

different neural network architectures developed with a main focus on machine translation. We 

have learned, that neural networks operate on input embeddings (often on a word-level), 

essentially vectorized representations of the elements that make up a sentence, i.e. the input. 

This reliance on abstract distributed representations forms the pillar of the strength of neural 

networks: to mathematically and automatically find patterns within data and learn mapping 

probabilities that are much more sophisticated than mere statistical occurrence data of 

individual words or phrases.  

We have learned that through LSTM RNNs neural networks managed to incorporate 

both the temporal aspect inherent to language (when seen as a sequence over time) as well as 

providing a means for the network to learn long distance relationships between the individual 

constituents of a sentence. We now know, that NMT mostly relies on Encoder-Decoder 

models, that act similarly to text completion devices: An encoder generates a vectorized 

representation of a sentence based on distributional semantics and the decoder predicts the most 

likely output based on that representation.  

Finally, we saw how networks learned to “pay attention” to certain parts of the input 

by using soft-alignment models and the highly annotated data from BiRNNs, which relieved 

the networks from the constraint of having to represent the whole meaning of a sentence within 

a single vector, the “meaning vector”. 

This culminated in the development of the Transformer model, which relies on the 

aforementioned attention-mechanism to annotate each vector representation with what the 

mechanism regards to be relevant for that specific embedding. The main advantage of the 

Transformer is highly improved efficiency thanks to now parallelized computing and a high 

degree of contextual representation in the meaning encodings of the network. 

We must however also remind ourselves that all of these processes for now work solely 

on a sentence-level. This means, that context beyond the sentence-level is generally NOT 

considered by neural networks at this point. Additionally, since the calculations performed by 

the neural networks are guided by the weights found through backpropagation of error along 

several layers of neural networks (i.e. the deep learning moniker), the actual “thought process” 

 
53 https://jalammar.github.io/illustrated-transformer/ (accessed January 14, 2020) 

https://jalammar.github.io/illustrated-transformer/
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or the parameters of the neural networks (i.e. the single weights within the deep neural 

networks) remain mostly a black box for researchers. This means, that while the training 

examples may be solved correctly and many real examples may be as well, it is often very hard 

to pinpoint the actual source of issues an NMT system might run into with certain translations. 

The solution is generally tweaking of hyperparameters54 (i.e. length of the embedding vectors, 

learning rate of the network, search algorithms [greedy, or beam search size], etc.), different 

input handling (i.e. word-embedding, symbol-embedding, phrase-embedding, etc.) or pre- and 

post-processing of data. 

In Chapter 6 I want to look at patent translation as a specific use case for NMT. Finally, 

in Chapter 7, I will follow this up with a practical experiment by creating two differently 

tweaked translation models using one of the several available open source NMT frameworks 

and compare their performance. The idea behind this, is to provide a sort of tutorial for other 

translators looking at getting a deeper understanding of NMT and to practically examine 

whether a translator like myself could actively contribute to NMT research. 

 
54 Hyperparameters can be set by humans before training; whereas the parameters, i.e. the weights, are 

automatically computed by the network through training. 



70 
 

6 NMT in patent translation 

One sector where NMT has found resounding success is the domain of patent translations. 

Major patent offices, like the JPO (Japan Patent Office), the EPO (European Patent Office) and 

the WIPO (World Intellectual Property Organization) are relying on NMT systems to provide 

quick translations of patent claims and descriptions to their customers. The quality of these 

translations is often astoundingly good, but at times fails spectacularly. In the following section, 

I will look at some of the major patent translation systems and make some educated guesses as 

to why quality issues remain, while also pointing out why translation works so well in certain 

other cases. 

6.1 A look at patent machine translation 

Patent language is highly standardized. There are certain expressions and syntactic structures 

that will be found over and over in different patents. And while there are differences depending 

on the formalities established by patent offices around the world, they are all generally 

structured as follows: 

• Title page: Contains most of the bibliographical data about the patent. This includes 

patent number, dates of application and approval, classification (domain) and the 

inventors or applicants. May also contain a short abstract. 

• Claims: The central part of patents, that is essential for getting a patent approved and 

therefore the most translated part of patents. These claims need to express what is new 

about the invention or what makes the invention “unique”. The novel part of the 

invention is often expressed after the short sentence “…characterized in that…”. Each 

claim can only be one sentence long (but there can be more than one claim per invention). 

• Detailed description of invention: Further elaborates the specifics of the invention in 

slightly more “human” language. The description is no longer limited to single 

sentences, as was the case with claims, and it can be further divided into the following 

sections: 

o Technical field of the invention: This section describes the technical field to 

which the invention pertains, generally using the paragraph: “The present 

invention relates to a semiconductor manufacturing device, and more 

specifically relates to …". 

o Prior Art: This section describes patents and inventions that have been 

previously made public (i.e. prior art) and generally also describes the problems 

with this prior art. 
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o Problem to be solved by the invention: In essence, this section elaborates 

further on the problem(s) already described in “Prior Art”. 

o Means for solving the problem: In this section, the central concepts of the 

invention are described, and often the language of claims is repeated. However, 

since the claims are recited in rather abstract expressions this may be 

accompanied by an easier to read explanation. 

• Preferred Embodiment: Concretely describes an invention by providing example 

realizations of the invention. For example, when describing a new type of neural 

machine translation network, the patent would describe exactly how many layers to use 

in the network, what hyperparameters to use, etc. 

• Drawing Sheets: Illustrations to visualize the invention and complement the textual 

description. 

Japanese patents have essentially the same structure, although obviously different on a 

surface level (i.e. the language is different): 

• Claims → 請求の範囲 (seikyū no han’i; literally: scope of claims) 

• Detailed description of Invention → 発明の詳細な説明  (hatsumei no shōsai na 

setsumei; quite literal) 

• Technical field of the invention → 発明の属する技術分野 (hatsumei no zoku suru 

gijitsubunya; quite literal) 

• Prior Art → 従来技術 (jūraigijitsu; quite literal) 

• Problem to be solved by the invention → 発明が解決しようとする課題 (hatsumei ga 

kaiketsu shiyō to suru kadai; quite literal) 

• Means for solving the problem → 課題を解決するための手段 (kadai wo kaiketsu 

suru tame no shudan; quite literal) 

• Preferred Embodiment → 発明の実施の形態 (hatsumei no jisshi no keinō; literally: 

form of embodiment of the invention) 

 

Of course, what is shown above can only be regarded as the most common formulations (Okuda 

2015). As mentioned, there are slight variations in the exact wording of these titles, but they 

always denote the same sections/chapters with regards to content. 

As we have seen so far, corpus-based machine translation, like SMT or NMT, works by 

recognizing patterns in parallel text data. Therefore, since essentially all patents use very 

uniform language (especially on a semantic level) and a very similar structure, the content is 

easy to line up and pattern recognition should work exceptionally well. Until recently, however, 

SMT would have a lot of issues coping with the very long sentences presented by patents. The 
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marked improvement with the switch to NMT is the ability to “capture the whole structure of 

the sentence”, as Ian Wetherbee from Google Patents55 puts it. This should help tremendously 

when translating long claims, which must be formulated in a single sentence. Another big 

advantage is that with patents we have large collections of parallel texts available. Patents are 

generally written in the inventor’s native tongue (say Japanese) and then translated to the 

accepted languages of the foreign patent offices. The patent offices can therefore work with 

vast amounts of data to train the NMT system, as they have access to the original and translation 

of many patents. The EPO (European Patent Office), for example, only approves patents in 

English, German and French, but it is possible to find foreign patents on their patent search 

engine Espacenet56 as well. All patents discoverable on Espacenet can be translated by the 

translation system on the site, either into English from one of 30 languages or from English into 

one of the other 30 languages (including Japanese). 

This makes sense as according to Martin Schaller, a member of the Enrichment 

Application Services department in the EPO57, the EPO has been partnered with Google since 

back in 2011 to offer this service and therefore, together with the general Google translation 

service, also switched to Google’s NMT system in 2017. The NMT system used for patents is 

however trained individually and not part of the same model as the one used for the general-

purpose translations on Google’s own website. 

Like the EPO, other patent offices, like the WIPO or the JPO, have already switched to 

NMT and are offering their respective “instant translation” for patents on their site. 

Testing these translation systems reveals that more often than not, the translations are 

actually very usable and especially read quite fluently (at least as fluent as patent texts can be 

read). However, on closer inspection, some issues can still become apparent. In the following 

two sub-sections a very quick look at the EPO’s Patent Translate service and the WIPO’s WIPO 

Translate service will be taken, in order to see how they compare. 

6.2 The EPO’s Patent Translate  

As shortly allured to above, the EPO works together with Google, to provide instant translation 

services on their website. According to the EPO58 a comprehensive and up-to-date corpus of 

patent (parallel-)texts is provided to Google, which is organized into abstracts, claims and 

descriptions as well as being sorted according to the international patent classification system. 

Google then trains the NMT system based on that data. However, as a customer of the service, 

 
55 https://www.youtube.com/watch?v=-ZVplhqhyYM (accessed on December 20, 2019) 
56 https://worldwide.espacenet.com/ (accessed on January 05, 2019) 
57 The source is a personal conversation over e-mail. 
58 Source is the E-Mail conversation with EPO’s Martin Schaller. 

https://www.youtube.com/watch?v=-ZVplhqhyYM
https://worldwide.espacenet.com/
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the EPO does not have insight into how the exact workflow of Google is. It is likely that Google 

draws from even more data than just the EPO’s texts. 

The most important point here, however, is that it is a closed system. This means, that 

as a user of the service, the EPO has little influence on how the translation is output. In fact, 

when using Patent Translate, it is not possible to see which choices the system made or to 

influence the system by, for example, choosing a specific domain. All is handled automatically, 

and the only thing provided is the finished translation of sentences; in the case of claims, 

potentially very long sentences. The system does also not allow for translation of text that is 

not in the Espacenet database, meaning that the system only provides translations for texts 

found through the search engine on the Espacenet website. 

Following is a short analysis of the translation of one claim from the patent JP B1 

6507295, a Japanese patent about knitting machines and needles. In order to keep it easier to 

read, color coding will be provided for respective sentence parts of the translated Claim 3. The 

translation was made in February of 2020; updates to the translation model may change the 

output of the Patent Translate service in the future. 

 

「前記 第１の段部及び前記第２の 段部が、前記柄部の長手方向において、前

記柄部 の基端 側から前記フック部側に向かうにつれて前記配列方向の幅が小さくな

るテーパー状をしている請求項１又は２に記載の編機用編針。」 

Text example 6.2-1: Claim 3 from JP B1 6507295 

Text example 6.2-2 shows the EPO’s NMT system’s English translation: 

 

“The first step portion and the second step portion have a tapered shape in which the 

width in the arrangement direction decreases from the base end side of the handle portion 

toward the hook portion in the longitudinal direction of the handle portion. The knitting needle 

for a knitting machine according to claim 1 or 2, wherein:” 

Text example 6.2-2: EPO’s NMT translation to English for claim 3 in JP B1 6507295 

For reference, Text example 6.2-3 shows my own German translation, that I recently delivered 

to the EPO: 

 

„Strick - oder Wirknadel für Strick- oder Wirkmaschinen nach Anspruch 1 und 2, bei 

denen der erwähnte Stufenabschnitt 1 und der erwähnte Stufenabschnitt 2 eine sich verjüngende 

Form aufweisen, bei der die Breite in der erwähnten Anordnungsrichtung, in Längsrichtung des 
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erwähnten Stielabschnitts, von der Basisendseite des erwähnten Stielabschnitts zur Seite des 

erwähnten Hakenabschnitts hin abnimmt.“ 

Text example 6.2-3: My own German translation of claim 3 in JP B1 6507295 

There are two observations that can be made just by looking at the surface form of the machine 

translated text. First is the fact that it added a second sentence in a claim, which is not allowed 

in patent language. This is curious, as generally neural machine translation models are trained 

on a sentence by sentence basis; meaning Google might do something different here. Second, 

it seemingly had a hard time reversing the order of the sentence; notice how the second sentence 

in the machine translated text is actually the start of the sentence in the human translation. 

Within the individual sentences, however, the system did properly rearrange the order in which 

the words (and relative sentences) relate to each other and indeed produces a translation that 

reads very much like my human translation. 

Looking closer, we can see that while the translation is actually quite good, some words 

have been dropped by the system, for example, the word 前記 (zenki), meaning “said” in 

English or “erwähnt” in German. This word is generally quite important to be translated, as it 

tells the reader whether this particular item has already been listed in the patent, but it does 

indeed hinder fluency and readability of the text. In fact, the word is often dropped in the final 

wording of English patents, as these are rewritten by patent lawyers to conform to the structure 

of the particular (national) patent standard. It is therefore likely, that Google uses published 

patent translations as training data, therefore the network learns to drop these adverbs. The same 

also happens with another word like 側 (gawa) meaning “side” which is once dropped as 

semantically it appears to make little difference.  

By testing longer sentences, like the first claim59, we can further exacerbate the issues 

observed above. The first claim of the same patent is, for example, split into 4 separate sentences. 

It can be observed, that the split happens whenever the system is not able to reorder the sentence, 

which generally seems to happen when relative sentences are quite long. Just as with the shorter 

claim, the same dropping of words can also be observed in the middle of the sentence, where 

the network fails to find the subject of a verb (有する, yū suru; meaning “possess/have”) and 

therefore drops the translation of the word completely, changing the meaning of the sentence 

drastically. 

 
59 The claim is almost a page long, so it won’t be quoted in this thesis. A copy of the ST and the translation will 

be provided on a Google Doc however, for anyone interested in comparing the two:  

https://docs.google.com/document/d/1AbF3BMOdrc3uAO5otMDCZ74zL6G7cdFeDSC3PSGitp0/edit?usp=shar

ing  

https://docs.google.com/document/d/1AbF3BMOdrc3uAO5otMDCZ74zL6G7cdFeDSC3PSGitp0/edit?usp=sharing
https://docs.google.com/document/d/1AbF3BMOdrc3uAO5otMDCZ74zL6G7cdFeDSC3PSGitp0/edit?usp=sharing
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The system produces translations that are more than good enough to give experts a good 

hunch on what the invention is about, and experts may even be able to extract the full meaning 

by looking at the illustrations. However, since the general structure is not conformant with 

patent requirements, important words are sometimes dropped and word relations may be lost, a 

post-edit would most certainly be required before the translation could be used. A mono-lingual 

post edit would likely not suffice (as generally grammar is not the problem). Arguably the 

machine translation can help experienced translators, too, as the word-choice and most of the 

inter-word relations are quite well selected by the system. On the other hand, the very high 

fluency of the text may make it harder for the translator or post-editor to see the flaws. This is 

however a whole different point of discussion, which has been elaborated and examined in other 

literature (see for example, Jia et al. 2019a, 2019b; Peris, Cebrián, et al. 2017; Sánchez-Gijón 

et al. 2019; Knowles et al. 2019). 

6.3 WIPO Translate 

The WIPO also provides an instant translation service on their website called WIPO Translate. 

It can be accessed directly from the website as a stand-alone service60. In contrast to the EPO, 

the WIPO uses an open source NMT framework called Marian NMT61. The main advantage 

of using an open source framework would be that the service can be highly customized by the 

maintainer, i.e. in this case the WIPO itself. 

In fact, it is rather apparent that some of this transparency is carried over to the users of 

the translation service on the website: Unlike the EPO’s solution, the user is able to simply copy 

and paste a text into the translation mask and either let the system choose a domain or choose 

one manually. Additionally, once a text is translated, it is possible to see what segment of the 

sentence in the ST is translated to what segment of the sentence in the TT. Essentially, it is 

possible to see the attention mechanism in action. 

What is even more interesting for us as translators, is that the system provides several 

translation suggestions when clicking on the provided translation and even accepts edits of the 

translation. Furthermore, the system allows to look up translation suggestions for individual 

terms in the ST by double-clicking on the term in question. It is also possible to segment long 

sentences at specific points, chosen by the user.  

It is clear, that the open-source approach taken by the WIPO offers some tangible 

advantages in usability and transparency compared to what is offered on the EPO’s website. 

The open-source framework in question, Marian NMT, is, however, also backed by a big 

 
60 https://www.wipo.int/wipo-translate/en/ (accessed April 25, 2020) 
61 https://marian-nmt.github.io/ (accessed February 27, 2020) 

https://www.wipo.int/wipo-translate/en/
https://marian-nmt.github.io/
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company from Silicon Valley: Microsoft. In fact, the short introduction to the framework on 

its GitHub-page reads: “Marian is an efficient, free Neural Machine Translation framework 

written in pure C++ with minimal dependencies. It is mainly being developed by the 

Microsoft Translator team.” 62  Interestingly, amongst the users of this framework, the 

European Commission is one of them. 

That said, let’s look at how the system performs with the example sentence from the 

Japanese patent JP B1 6507295 that we looked at in Section 6.2, starting out again with the 

color-coded original claim 3 from said patent in Text example 6.3-1. Like with the EPO 

evaluation, the test was done in February of 2020; results may vary as the translation models 

are updated. 

 

「前記 第１の段部及び前記第２の 段部が、前記柄部の長手方向において、前

記柄部 の基端 側から前記フック部側に向かうにつれて前記配列方向の幅が小さくな

るテーパー状をしている請求項１又は２に記載の編機用編針。」 

Text example 6.3-1: Claim 3 from JP B1 6507295 

“ the knitting needle for knitting machine according to claim 1 or 2, wherein the first step part and the 

second step part have a tapered shape in which the width in the arrangement direction becomes smaller 

from the base end side of the handle part toward the hook part side in the longitudinal direction of the 

handle part. “  

Text example 6.3-2: Claim 3 as translated by WIPO NMT 

And for reference again, my own German translation of the same claim in Text example 6.3-3: 

„Strick - oder Wirknadel für Strick- oder Wirkmaschinen nach Anspruch 1 und 2, bei 

denen der erwähnte Stufenabschnitt 1 und der erwähnte Stufenabschnitt 2 eine sich verjüngende 

Form aufweisen, bei der die Breite in der erwähnten Anordnungsrichtung, in Längsrichtung des 

erwähnten Stielabschnitts, von der Basisendseite des erwähnten Stielabschnitts zur Seite des 

erwähnten Hakenabschnitts hin abnimmt.“ 

Text example 6.3-3: My own German translation of claim 3 

Right away, we will notice that in Text example 6.3-2 the network managed to rearrange the 

sentence in a way that seems more natural to the English language and is in fact very similar to 

the way I personally chose to restructure the sentence in German. Staying on the surface-form 

of the sentence, we can notice that capitalization of letters has been removed (this can be 

 
62 See for more details https://marian-nmt.github.io/  (Accessed on April 15, 2020) 

https://marian-nmt.github.io/
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verified when testing the system with phrases or words that are generally capitalized in English, 

like languages or city names). This gives us an indication on how the model was trained, as 

removing capitalization may be beneficial by reducing the vocabulary size. In a language pair 

where casing is not essential, like English-Japanese, this makes a lot of sense; testing the System 

in German and English, however, reveals that in that case the WIPO trained the model to be 

case-sensitive. 

With regards to repeating words, like “前記“ (zenki) “said”, we can observe the same 

behavior as with EPO’s Patent Translate: The word is dropped for better fluency and readability, 

suggesting that models are trained on published translations rather than word-accurate 

translations.  

Similarly, looking at the longer claim 1 from the same JP B1 6507295 patent as before, 

we can observe, that the WIPO NMT system appears to be slightly more resilient to the issues 

observed in the EPO’s system.63 

Interestingly, the WIPO also offers their earlier non-NMT translation models, based on 

a phrase-based SMT Model. Unfortunately, those models do not offer the Japanese to English 

pair, instead offering only the English to Japanese pair. For the sake of comparison, let’s look 

at the following phrase pair from the test corpus that will be used in Chapter 7, by simply using 

the English sentence as the ST and the Japanese sentence as the TT. 

 

(ST) FIG . 3 is a circuit diagram showing a construction of the frequency multiplication 

circuit in the second embodiment . 

(TT) 図 ３ は 、 この 実施 の 形態 に 係る 周波数 逓倍 回路 の 構成 を 示す 回路 図 

で ある 。 

(WIPO SMT) 図(3)の回路図に示す構成において、周波数逓倍回路の第 2 の実施の

形態 

(WIPO NMT) 図(3)は、第 2 の実施形態における周波数逓倍回路の構成を示す回路

図である 
Text example 6.3-4: Comparing SMT to NMT output with WIPO Translate 

While this is obviously too small of a sample size to come to a definite conclusion, Text 

example 6.3-4 shows a general trend that can be observed with any other number of sentences 

and that has been largely observed by MT research (see Bentivogli et al. 2016; Moorkens 2018; 

Daems & Macken 2019). The SMT system provided solutions that are clearly recognizable as 

machine translations and can convey the gist of the meaning at best, but at worst they end up 

 
63 Find the ST and translation here: https://docs.google.com/document/d/1TjNkLHZMagiEs_S5-

C_qPBJn8r1M57y2shCTIcE6W_8/edit?usp=sharing  

https://docs.google.com/document/d/1TjNkLHZMagiEs_S5-C_qPBJn8r1M57y2shCTIcE6W_8/edit?usp=sharing
https://docs.google.com/document/d/1TjNkLHZMagiEs_S5-C_qPBJn8r1M57y2shCTIcE6W_8/edit?usp=sharing
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completely unintelligible and unrelated semantically to the ST. The example above shows this 

quite well, as while the SMT system translates parts of the sentence correctly (likely the phrases 

learned during training), it fails to reorder them in a meaningful and grammatically correct way, 

obfuscating the original message of the sentence (it translates to something like: “In the circuit 

diagram of Fig. 3., the frequency multiplication circuit of the second embodiment”). The NMT 

solution on the other hand is quite close to the reference text and does in fact only vary from it, 

because the ST states “second embodiment” instead of “this embodiment” as the reference text 

does (この実施形態; kono jisshi no keitai). These kinds of divergence between ST and 

reference texts can often be observed in parallel text corpora meant for MT training. We will 

see in Section 7.6, that it might indeed be an issue, maybe less so for training, but more so for 

the evaluation of translation models’ output. 

6.4 Summary 

The jump in quality through neural machine translation can’t be denied. Many of the downfalls 

of rule based and statistical machine translation seem to have been solved. However, it is still 

dangerous to blindly rely on the output of the NMT systems: While the results often appear 

correct and well formulated (almost like if written by a human), at times, very important items 

are either mistranslated or left out altogether. Nonetheless, the output reads very fluently and 

therefore perceived translation quality may appear quite high. 

It was interesting to analyze the different approaches the WIPO and EPO have taken 

towards implementing NMT into their systems, with arguably the WIPO system being more 

adequate for translators to work with, as the translation can be tuned slightly by the user. The 

output also seems to be slightly more precise, but the sample size used for this short overview 

is by no means big enough to give a scientific opinion about it.  

The next chapter will be about the creation of an NMT-model, in order to try and 

recreate the findings above and see how different training variables and data selection influence 

the final output of the network. 
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7 Creating a Japanese-English Patent NMT model 

In this chapter, the creation of a neural machine translation model is presented. The aim is to 

verify the hypothesis, that NMT favors fluency over adequacy and that training the system on 

domain-specific texts will enhance its performance. While these hypotheses have been 

confirmed in a broader sense by other publications before (Junczys-Dowmunt et al. 2016; 

Koehn & Knowles 2017), as of my knowledge this was not yet concretely tested in the rather 

controlled language of patent translation. In other words, in the cited publications, “domains” 

like Law, Medicine, IT and so on would also have used vastly different text-types for training, 

whereas in this thesis’ case, the language will be limited to patent texts.  

To achieve a controlled testing environment, a variety of NMT models using the state-

of-the-art Transformer model will be trained on strictly patent parallel texts and subsequently 

the translation output of these models will be compared. In order to restrict the training to a 

certain domain, the international patent classification will be used to extract a specific domain 

from the corpus. The evaluation of the training results will be done both automatically by using 

the de-facto standard for automatic translation evaluation, the BLEU metric64 (Papineni et al. 

2001), but also through human evaluation based on the SAE J2450 automotive evaluation 

metric. 

While this chapter provides an in-depth overview of the methodology, it may also be 

considered as a sort of tutorial for translators interested in getting familiar on a practical basis 

with NMT. The models will be trained on a regular gaming/multimedia personal computer. As 

mentioned often in the preceding chapters, neural networks benefit highly from a powerful GPU 

as the architecture of graphics processing units lends itself nicely to the computational 

requirements of neural networks. Gaming computers therefore offer a good platform for 

venturing into NMT research. 

For reference, all training and subsequent experiments in this chapter will be performed 

on the hardware and software listed in Table 5.  

 
64 See Section  7.5.2.1 for further explanation of the BLEU metric 
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Table 5: Computer hardware used for this chapter 

System specifications used for the experiments 

CPU Intel Core i7 2600K @ 4.4Ghz 

System memory 16GB DDR 3 1866Mhz 

GPU Nvidia GeForce RTX 2060 

Video memory 6GB GDDR6 

OS Manjaro Linux (4.19.108-1) 

Storage 256GB SSD (operating system, applications 

and training data) 

3TB HDD (additional data, data preparation) 

It is generally recommended to use a recent Nvidia GPU (GeForce GTX 9xx series or higher), 

as the GPU-acceleration in most NMT frameworks is coded using Nvidia’s proprietary CUDA 

API (Application Programming Interface). The GPU should have access to as much video 

memory (VRAM) as possible, as memory capacity is often a big bottleneck when training 

neural networks. Additionally, making sure to have an ample amount of system memory (RAM) 

(at least 16GB) is equally important, whereas the performance of the CPU itself is not that 

important when training on the GPU. 

While most of the toolkits and applications that will be presented in the next section are 

available for most current operating systems (Windows, Mac, Linux), the high transparency, 

ease of use and non-commercial nature of Linux as well as the very efficient on-board tools it 

provides, make it hard not to recommend using it. All the experiments and step-by-step guides 

found in the following sections will be based on Manjaro Linux65, which in turn is based on 

Arch-Linux. For a slightly more accessible or Windows/Mac-like experience, a distribution like 

Ubuntu66 may be used and most of the steps should still apply. The big advantage of Ubuntu is 

that most of the applications and dependencies used in the following experiments will be 

available in a pre-packaged form. 

If no access to suitable computer hardware is available, Google offers a service called 

Google Colaboratory67, where it is possible to use a virtual machine environment free of charge. 

The service even provides Free GPU acceleration for 12 hours, so it is well suited for running 

(smaller) NMT projects on it. The service can be accessed through any web-browser and runs 

completely on Google’s servers. The Vienna Scientific Cluster (VSC)68 offers a similar service 

 
65 https://manjaro.org/ 
66 https://ubuntu.com/ 
67 https://colab.research.google.com/ (Accessed on March 03, 2020) 
68 http://vsc.ac.at/home/ 

https://manjaro.org/
https://ubuntu.com/
https://colab.research.google.com/
http://vsc.ac.at/home/
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for, amongst others, students of Viennese universities. However, exploring these solutions 

would go beyond the scope of this thesis.  

For the following sections, a basic understanding and interest in learning about the usage 

of and coding in Python will also be highly beneficial, as most frameworks tested are based on 

that programming language. Before writing this thesis, I had to learn some of the basics of 

Python to be able to more efficiently prepare the data and use the NMT toolkits. In the following 

sections, the scripts and programs I have written and used will be provided (see also Appendix 

II: Code and scripts). Table 6 is a list of online documentation and resources highly 

recommended for learning the basics of the underlying concepts. 

Table 6: Python and NLP learning documents 

Publication Summary Citation URL 

NLTK Book A book about Natural 

Language Processing. 

Covers many of the Python 

basics with regards to NLP; 

great for people with even 

just very little pre-existing 

knowledge about coding. 

Bird et al. 2009 https://www.nltk.org/

book/ 

The Python 

Tutorial 

General Tutorial on Python 

to get familiar with the way 

the language works and 

understand how to write 

code. 

The Python 

Software 

Foundation 

https://docs.python.or

g/3/tutorial/index.html 

While the documentation available online is often very thorough, I will try to elaborate on issues 

I personally found difficult to wrap my head around, in the hopes of providing easier access to 

certain tools necessary for creating a neural machine translation model. When stuck, it is also 

very recommended to create an account on the website https://stackoverflow.com/ or at least 

consult it when needed. Often other people may have had exactly the same questions, so an 

answer may already be available. The community is very helpful, as long as the question is well 

researched and formulated. 

All of the example code and commands in the following sections will be based on 

Manjaro Linux, so for recreating the coding environment of this thesis it is recommended to 

use the Manjaro Linux distribution. It is possible to use other Linux distributions as well, with 

the caveat of having to look up or know the respective commands for that distribution. Since 

most of the work happens on the command line interface (CLI), the major difference will be 

https://www.nltk.org/book/
https://www.nltk.org/book/
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://stackoverflow.com/
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how to access packages (i.e. applications and programs) as each distribution uses different 

repositories (servers were the packages are stored) and package managers (applications that 

download and install the packages). For further information consult the documentation of the 

respective distribution available online. 

7.1 Procuring the training data 

As mentioned in the theoretical part of this thesis, NMT is a corpus-based machine learning 

approach and therefore is dependent on vast amounts of input data; even more so than SMT 

before it. Before starting our exploration of NMT, we should therefore make sure that we have 

access to a large corpus of parallel text. Depending on the language-pair this can be a daunting 

task, as NMT requires corpora containing at least a few million words in order to even “get off 

the ground” as Koehn and Knowles put it (Koehn & Knowles 2017:4).  

Generally, the bigger the dataset the better the results should generalize over new, 

unseen data. Using too small of a dataset also bears the risk of what is called overfitting a model, 

which means that the model will not generalize well over new data, because it is too specialized 

on the data that was provided during training. 

Browsing the web, one may find many useful text corpora; some of them will be quite 

well known by translators, as best practice suggests looking at parallel texts for coherent 

translations. Keep in mind that corpora are not necessarily parallel texts. Mono-lingual corpora 

exist as well and are often used for unsupervised training or language-model training in MT 

studies. For NMT training, we will require sentence aligned parallel texts, so this is what we 

will be looking for. Luckily, SMT already required vast amounts of parallel text data for peak 

performance, so the data collection efforts that have been ongoing ever since are perfectly 

suitable for NMT training as well. For languages of the European countries (including English) 

some very useful parallel texts exist and can be easily found online. For example, the European 

Parliament Proceedings Parallel Corpus 1996-2011 (Europarl) 69 offers a great starting point 

for a large variety of European languages. However, this thesis focuses on patent translation for 

the language pair English-Japanese, so the corpus had to be limited to patents of that specific 

language pair.  

Luckily MT research is still very active in Japan and the NTCIR-10 PatentMT (Patent 

Machine Translation) Test Collection70 was published for research use by the National Institute 

of Informatics (NII) Japan. It offers a parallel patent corpus with over 3.1 million sentence pairs 

in English and Japanese. Procuring the dataset required a written personal enquiry (by mail) to 

 
69 https://www.statmt.org/europarl/ 
70 http://research.nii.ac.jp/ntcir/permission/ntcir-10/perm-en-PatentMT.html 

https://www.statmt.org/europarl/
http://research.nii.ac.jp/ntcir/permission/ntcir-10/perm-en-PatentMT.html
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the NII and was only possible through the backing of the project by my principal advisor Prof. 

Werner Winiwarter. The data was received in the form of a link with time-limited access and 

the download size of the complete (compressed) data was around 256GB (Gigabyte) in size; 

decompressing doubled the data size. It is therefore recommended to use a big hard-disk drive 

(HDD) to archive the data and only copy the relevant training data to a solid-state drive (SSD) 

for faster data preparation.  

7.1.1 Pre-processing of data 

While one big strength of the NMT paradigm is that no extensive pre-processing of data is 

required for the machine to learn, it is still recommended to prepare the data so that the system 

may optimally ingest it (see Domingo et al. 2018). First and foremost, it is paramount that the 

data is stored in a sentence-aligned format. Luckily, this is essentially standard in parallel text 

corpora.  

However, most parallel text corpora store the aligned sentences in one single file, while 

most NMT toolkits will require separate TT and ST files, that keep the alignment by keeping 

the same line count for each file (i.e. line 1 in the TT file corresponds to the meaning of line 1 

in the ST file). These two files are generally dubbed as the training data and are usually labeled 

train with the extension representing the language that the files contain. For this thesis’ English 

and Japanese training set, we will therefore prepare a train.en file and a train.jp file. The 

training files should contain a vast number of sentences with several millions of words to be 

effective. Additionally, we will find that we need to prepare further data for the network to 

validate the training. This data must be different from the one we use in training, as it is used 

for testing the inference of the model on hitherto unseen data. Such data is often called 

validation data or development data and therefore shortened in a similar fashion to the 

training data as val.xy or dev.xy, with xy being the language of the file. Furthermore, in order 

to test the completed model, we will want to have yet another set of files, that has not been used 

in training or validation to check the translation quality of the model. These files are often 

referred to as the test data and are therefore generally labeled as test.xy, again with xy referring 

to the language they contain. The validation data should not be exceedingly large, as having too 

many sentences would only increase the training time and add significantly to the memory 

requirements of training. 

Most NMT toolkits will also require two vocabulary files (one for the source and one 

for the target language). These files can be generated from the training data with the tools 

provided by the NMT toolkits or reused from other projects. The vocabulary files will be used 

by the network to create the word-embedding and should therefore be of a good size but also 
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not too large. The default maximum vocabulary size for most toolkits is 50.000 “tokens”. 

50.000 tokens often don’t cover all the available tokens in training data, so tokens that appear 

less often are not stored in the vocabulary and simply replaced by an <unk> (unknown) token 

during training and translation. 

Now, what is a token? Token refers to a single distinguishable unit in our data. Tokens 

can therefore be words, but also phrases, word-stems, symbols, spaces, letters or other, more 

abstract sub-word units like the Byte-pair encoding (BPE). In BPE the most common pair of 

consecutive bytes of data is replaced with a byte that does not occur within that data, allowing 

for compression of the language data and therefore enabling larger vocabularies while not using 

more tokens. The abstract nature of this approach lends itself well to Neural Machine 

Translation, which is why new tokenizers, i.e. programs that segment sentences into sub-word 

tokens, started to appear for this approach. Solutions, like sentencepiece71, therefore offer a 

language agnostic way to perform tokenization of text. This has been proven as efficient or even 

more efficient than classic, linguistics based tokenizers, at least for certain language pairs (see 

Sennrich et al. 2016, Kudo & Richardson 2018 and 72). On the other hand, other experiments 

came to the contrary conclusion where classic tokenizers like the one from the SMT framework 

Moses73 or the tokenizer for the Japanese language mecab74 perform better (see Domingo et al. 

2018). Combinations of both approaches (i.e. pre-tokenizing text with a language-specific 

tokenizer and then running a second BPE pass on top of it) also yielded good results in most 

publications. While this is a very exciting topic, for our testing we will stick to the classical 

tokenization as it keeps data human-readable throughout and performs very well. 

7.1.2 Tokenization 

So why is tokenization important? Looking at how NMT systems learn the language, the 

network should be able to figure out the patterns by itself. After all, most languages naturally 

come in a pre-tokenized form, as there are spaces in-between the words that help separating 

meaning units. However, especially for the Japanese language, this base form of tokenization 

is not present naturally.  

If we were to ingest a Japanese sentence as is, the system would treat the whole sentence 

as a single token, as there are no spaces in-between words or symbols. Most tokenizers for 

Japanese therefore add spaces between Japanese words; this alone already makes the data ready 

 
71 https://github.com/google/sentencepiece 
72 https://github.com/google/sentencepiece/blob/master/doc/experiments.md 
73 https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl 
74 https://github.com/taku910/mecab 

 

https://github.com/google/sentencepiece
https://github.com/google/sentencepiece/blob/master/doc/experiments.md
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/taku910/mecab
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for processing in NMT systems, but more can be done. For instance, mecab finds known 

kanji75-composita (i.e. the meaning of the word) and hiragana76-sequences in the text and 

separates them. Let’s look at the first example sentence from the training corpus we will be 

using later on: 

 

Original: 

流体圧シリンダ３１の場合は流体が徐々に排出されることとなる。77 

 

And here is the segmentation after we let mecab process the sentence78: 

流体 | 圧 | シリンダ | ３ | １| の | 場合 | は | 流体 | が | 徐々に | 排出 | さ | れる | こ

と | と | なる | 。 

 

We can see that known composita, like 流体 literally standing for “fluid body” meaning “liquid” 

or “fluid”, or the katakana79 word シリンダ (cylinder) have been kept together; while some less 

known combinations like 流体圧 (liquid pressure) had a space added between the first two 

characters and the last. Curiously the number 31 was also spaced out to “3” and “1”, which 

theoretically enables the system to learn the pattern of digit combinations itself. 

Latin text tokenizers work in much the same way, separating punctuation from words 

and automatically marking hyphenation and other special typesetting, so the system knows the 

hyphen or typesetting is not part of the word per se. 

It is important to note here, that many NMT toolkits offer their own form of tokenization 

or have some of the tools mentioned above as a part of the whole package. It also appears that 

different toolkits have varying performance, depending on what tokenization was used. For that 

reason, it is recommended to choose one toolkit to work with and stick to one form of 

tokenization. In this thesis’ case the classic linguistic tokenization was chosen, so that it is easier 

to attain comparable results that are human-readable throughout the whole workflow. 

 
75 The adopted logographic Chinese characters used in Japanese writing, that also carry several meanings 

depending on usage. 
76 One of the 3 components of the Japanese writing system. Syllabary used mainly to write conjugational endings 

following a kanji root, various function words, including particles, and other native words for which there are no 

kanji or whose kanji form is not commonly used. 
77 The sentence translates to: “When the fluid pressure cylinder 31 is used, fluid is gradually applied.” 
78 Spaces marked manually with “ | “ 
79 The last of the 3 components in the Japanese writing systems. Used mainly to write foreign words and to 

represent onomatopoeia. 
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7.2 Which NMT toolkit to use 

Thanks to the thriving open source community around NMT and NLP in general, we have a 

large selection of tools at our disposal that we may use for creating our own NMT model. Table 

7 lists some of the most popular and updated NMT toolkits on the development platform 

GitHub80, that also offer good documentation. For this thesis all the listed tools were tested, and 

the annotations are based on personal experiences with the toolkits. Please keep in mind, that 

results may vary depending on the hardware, the operating system or even the data that is used. 

Also, since most of these toolkits are still being developed, the features they offer, as well as 

their efficiency may change over time. 

Table 7: A selection of NMT toolkits analyzed 

Toolkit Citation/URL Framework Advantages/Disadvantages 

Tensorflow 

NMT 

M.-T. Luong et al. 

2017 

 

https://github.com/ten

sorflow/nmt 

TensorFlow + Good documentation 

+ Replicates (old) Google NMT 

+ Automatic BLEU evaluation 

+ Highly tweakable 

 

- Only attention-based RNN NMT architecture (no 

Transformer) 

- No longer actively developed 

- Setup rather complex 

OpenNMT-

py 

Klein et al. 2017 

 

https://github.com/Op

enNMT/OpenNMT-py 

 PyTorch + Great documentation 

+ Offers Transformer model 

+ Good balance of customization and accessibility  

+ Actively developed 

+ Tensorboard monitoring 

+ Made for research 

+ Efficient (works well on low memory GPUs) 

+ Provides many useful tools for data preparation 

 

- No automatic BLEU evaluation 

- Slightly lower scores for same amount of training 

time as TF models 

OpenNMT-tf Klein et al. 2017 

 

https://github.com/Op

enNMT/OpenNMT-tf 

TensorFlow + Offers Transformer model 

+ Highly tweakable 

+ Actively developed 

+ Tensorboard monitoring  

+ Automatic BLEU evaluation during training 

+ Fast, if configured correctly 

+ Allows mixed-precision training on newest GPUs 

with dedicated Tensor-cores (very fast!) 

 

- Less efficient (needs more memory) 

- Setup complicated 

- Lacks some useful external tools 

- Documentation a bit scarce 

 
80 Popularity as measured by github. More stars on github indicate higher popularity 

https://github.com/tensorflow/nmt
https://github.com/tensorflow/nmt
https://github.com/OpenNMT/OpenNMT-py
https://github.com/OpenNMT/OpenNMT-py
https://github.com/OpenNMT/OpenNMT-tf
https://github.com/OpenNMT/OpenNMT-tf
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Toolkit Citation/URL Framework Advantages/Disadvantages 

nmt-Keras Peris & Casacuberta 

2018 

 

https://github.com/lva

peab/nmt-keras 

TensorFlow 

Theano 

(deprecated) 

+ Good documentation with background 

explanation 

+ Made for research 

+ Automatic BLEU evaluation 

+ Easy set up and configuration 

 

- Rather slow 

- Not geared towards creating big models 

- TensorFlow complications 

- Theano backend no longer developed 

JoeyNMT Kreutzer et al. 2019 

 

https://github.com/joe

ynmt/joeynmt 

PyTorch + Very accessible documentation 

+ Scripts and configs well commented 

+ Made for novices 

+ Very simple setup  

+ Automatic BLEU evaluation 

 

- Does not include some useful pre-processing tools 

(tokenization, length-filtering, etc.) 

- Slightly less tweakable 

- Tutorials meant for learning and less for quickly 

building a model 

- Does not cope well with large data sizes (requires 

more memory than other toolkits) 

Some of the toolkits, like OpenNMT, also explicitly allow training of cross-mediatic inputs, 

like image/audio to text or vice-versa. The NMT toolkits are in fact a means of facilitating the 

interface between human and machine, providing useful features like checkpoint saving, 

automatic evaluation and data preparation, as well as communicating with the deep learning 

framework so that it performs the calculations needed to train the network. As long as we have 

features (the input) that we can attribute to labels (the output), the underlying architecture can 

start finding patterns and associate said features to the labels (or the ST to the TT for that matter). 

As may become clear from the annotations in Table 7, the toolkits are based on different 

frameworks (TensorFlow, Theano, PyTorch). These frameworks essentially provide the 

support for neural networks/deep learning architectures, meaning they manage the vector 

calculations neural networks are based on. Since Theano is no longer actively developed, the 

only two frameworks tested in this thesis are Google’s TensorFlow 81  and Facebook AI 

Research’s PyTorch82. In the next sub-sections I will provide a short overview over the tested 

toolkits in order to explain why I decided for one particular toolkit amongst them. 

7.2.1 Tensorflow NMT 

Tensorflow NMT was authored by Thang Luong, Eugene Brevdo and Rui Zhao (M.-T. Luong 

et al. 2017). The aim was to provide a toolkit that reached state-of-the-art translation quality, 

 
81 https://www.tensorflow.org/ 
82 https://pytorch.org/ 

https://github.com/lvapeab/nmt-keras
https://github.com/lvapeab/nmt-keras
https://github.com/joeynmt/joeynmt
https://github.com/joeynmt/joeynmt
https://www.tensorflow.org/
https://pytorch.org/
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while also offering a tutorial that “gives readers a full understanding of seq2seq models and 

shows how to build a competitive seq2seq model from scratch”. The system is based on an 

attention RNN Encoder-Decoder model and aimed to replicate Google’s NMT (GNMT) system. 

Both Multi-GPU as well as CPU training are supported through the TensorFlow framework. 

The tutorial offers a great overview of NMT and the workings behind the offered RNN 

encoder-decoder architecture with attention. However, the toolkit was last updated in February 

of 201983 and is therefore the least up-to-date of the tested toolkits. For that reason, it does not 

offer the state-of-the-art Transformer model. While the tutorial is great for theoretical 

background, it is rather geared towards users with IT background and does not offer a real high-

level API to communicate with TensorFlow. Setting up a model is therefore much more 

complicated than with other frameworks and in that respect not well suited for our needs. Since 

we also want to test our hypothesis on the newest available model architecture, the Transformer, 

this toolkit will not be used for our experiments. 

Yet, it is still worthwhile reading through the documentation and following along with 

the tutorial if possible. However, the installation of TensorFlow needed for following the 

tutorial may be rather tedious, as the toolkit is built around an older nightly release and therefore 

not compatible with the newest stable releases of TensorFlow.84  

7.2.2 OpenNMT-py 

OpenNMT-py is a Python port of the original OpenNMT toolkit based on the now deprecated 

Lua version of Klein et al. (2017) and was initially created by Adam Lerer and the Facebook 

AI research team (Klein et al. 2017:3). However, OpenNMT is now generally developed as 

completely open-source at http://github.com/opennmt. The OpenNMT project is described as 

following:  

The system prioritizes efficiency, modularity, and extensibility with the goal of 

supporting NMT research into model architectures, feature representations, and source 

modalities, while maintaining competitive performance and reasonable training requirements. 

The toolkit consists of modeling and translation support, as well as detailed pedagogical 

documentation about the underlying techniques. OpenNMT has been used in several 

production MT systems, modified for numerous research papers, and is implemented across 

several deep learning frameworks.  

(Klein et al. 2017:1) 

The toolkit is therefore very approachable, and installation is quite simple as all 

dependencies are automatically fetched by the installation command. The toolkit offers many 

 
83 As of this writing, March 2020. 
84 A TensorFlow 1.4 (stable) version of the tutorial is available: https://github.com/tensorflow/nmt/tree/tf-1.4, 

that however needs a work around for a beam-search bug in the TF framework. 

 

http://github.com/opennmt
https://github.com/tensorflow/nmt/tree/tf-1.4
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templates for recreating known working architectures, like LSTM RNN Encoder-Decoder 

architecture or the Transformer. In my case, everything worked right out of the gate and I had 

model training up and running in no time after following the excellent online tutorial85 . 

OpenNMT-py also offers many useful tools as part of the package. Rather than being 

implemented as direct commands, these external tools are stored in separate folders of the 

project directory and must be called separately from the main OpenNMT program. On one hand, 

that makes it easier to run the tools separately as part of a script, but conversely it also means 

that BLEU evaluations can’t be performed during training. 

The toolkit uses PyTorch as the underlying Framework and therefore also supports CPU 

and Multi-GPU training. In my personal testing, I have found that PyTorch is less difficult to 

set up and requires much less memory than TensorFlow. Initially I therefore gravitated towards 

OpenNMT-py, but testing has shown, that the sheer speed of TensorFlow makes up for the 

higher memory requirements. A short overview over my findings will be provided in sub-

section 7.2.6. 

7.2.3 OpenNMT-tf 

OpenNMT-tf is a recent addition to the OpenNMT project “focusing on large scale 

experiments and high performance model serving using the latest TensorFlow features” (Klein 

et al. 2017:4). 

Just like OpenNMT-py, it is part of the ongoing open-source OpenNMT project and 

offers many of the same functions and features. While it also offers many pre-made 

configuration templates recreating architectures like the Transformer, I found that the setup was 

slightly more involved than with OpenNMT-py. First and foremost, the online documentation86 

is less fleshed out than that of the PyTorch counterpart and second, TensorFlow requires more 

external and more specific dependencies than PyTorch. It also required more hyperparameter 

tuning than PyTorch, as Tensorflow apparently requires more memory than an equivalent 

architecture running on PyTorch (see sub-section 7.2.6). 

However, using the latest TensorFlow features enables very fast training, especially if 

using the latest hardware. By leveraging TensorFlow’s automatic mixed-precision training it 

was possible to make use of the novel GPU architecture in the training computer’s RTX 2060, 

accessing its tensor cores. This provided a boost in training performance of almost 50%, which 

is quite a lot considering model training can take up to several days depending on architecture, 

hyperparameters and training data. At the time of writing this thesis, OpenNMT-py offered no 

 
85 Full documentation for OpenNMT-py available here: https://opennmt.net/OpenNMT-py/ 
86 Documentation for OpenNMT-tf is available here: https://opennmt.net/OpenNMT-tf/ 

https://opennmt.net/OpenNMT-py/
https://opennmt.net/OpenNMT-tf/
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such option according to documentation. Additionally, the toolkit is more integrated into the 

command line and so enables us to use BLEU evaluation during training, which in turn enables 

us to stop training automatically when the BLEU score no longer significantly improves. 

7.2.4 nmt-Keras 

nmt-Keras was developed by Álvaro Peris and Francisco Casacuberta (Peris & Casacuberta 

2018) and is based on the high-level deep-learning API Keras and their own “Multimodal Keras 

Wrapper” written in Python, which enables easy management of models and datasets as well 

as automated evaluation. The calculations were originally performed on Theano, but this has 

since shifted to TensorFlow in later releases. While theoretically the reliance on the high-level 

API Keras makes the whole package very accessible and easy to setup, complications with the 

no longer officially tested Theano framework, some not yet implemented TensorFlow features, 

the reliance on an older TensorFlow version (1.15.2 at the time of writing) and not implemented 

functions for the Transformer architecture can be detrimental when trying to work with the 

toolkit. I believe it is a shame, as the main focus of this toolkit is putting “particular emphasis 

on the development of advanced applications of neural machine translation systems, such as 

interactive-predictive translation protocols and long-term adaptation of the translation system 

via continuous learning.” (Peris & Casacuberta 2018:1), so it would appear to be the closest 

that any of the toolkits get to including post-editing and translators as a part of the equation.  

The documentation is very well made and much less IT-centric than some of the other 

toolkit’s documentations. Likewise, the comments in the different files of the toolkit, like the 

config.py, are very exhaustive and helpful. As mentioned, while the toolkit also supports the 

Transformer architecture, it does not yet fully support all of the needed functions87 and it was 

therefore not possible for me to get the toolkit up and running at an acceptable speed. In fact, 

training on the GPU was off the table for the larger patent dataset, as the toolkit used a lot more 

memory than any other toolkit for the same training data and would regularly throw up error 

messages and abort training. 

I can therefore not recommend using this toolkit for more involved projects until it is 

fully featured and uses more up-to-date dependencies. Just like with Tensorflow-NMT however, 

it is worthwhile reading the documentation and following along with the examples provided by 

the authors as they give great insight into how neural machine translation modeling works. The 

 
87 At the time of writing, 27 March 2020, it did not support the “noam” reducer function that is used by default in 

the Transformer architecture. 
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authors even provide iPython notebooks88 on Google Colab, where it is possible to run all of 

the code in a web-browser while reading the explanations of the authors.89  

7.2.5 Joey NMT 

The final toolkit I examined is Joey NMT, which is the most recent effort amongst the tested 

toolkits. It was made by Julia Kreutzer and Stefan Riezler of the Heidelberg University and 

Joost Bastings of the University of Amsterdam. The aim of the toolkit was to create a 

“minimalist neural machine translation toolkit based on PyTorch that is specifically designed 

for novices. Joey NMT provides many popular NMT features in a small and simple code base, 

so that novices can easily and quickly learn to use it and adapt it to their needs” (Kreutzer et al. 

2019). 

Installation is quite simple and can be achieved quickly by following the excellent 

documentation either online or in the handbook that was crafted for students as a script for 

lectures at university90. Despite focusing on simplicity, Joey NMT offers support for most 

important NMT architectures including LSTM RNNs and Transformer architectures. Usage is 

very similar to OpenNMT but slightly more streamlined, with a lot of configuration 

examples/templates that emulate the best models of big machine translation workshops.  

I highly recommend testing Joey NMT and following the excellent examples in their 

tutorial for really getting familiar with how NMT works. Joey NMT also incorporates many 

useful tools to visualize training progress and model characteristics: Besides tensorboard 

integration, it allows to visualize attention weights and learning curves as well, which can be 

very useful for understanding NMT.  

While theoretically it would be possible to use Joey NMT for larger projects like the 

experiment in this thesis as well, at the time of writing it is not yet optimized enough to run big 

datasets on a small memory footprint and has a bug regarding the batch_multiplier91, which 

would enable more efficient training on limited memory capacity. The toolkit has a lot of 

promise in regard to educational usage and while it will not be used for creating the models in 

this thesis, it is worth considering as an educational tool for introducing NMT to Translation 

Studies students. 

 
88 Interactive notebooks that allow the execution of code. 
89 Find the tutorial by Peris and Casacuberta here: https://colab.research.google.com/github/lvapeab/nmt-

keras/blob/master/examples/tutorial.ipynb  
90 https://readthedocs.org/projects/joeynmt/downloads/pdf/latest/ (accessed on March 12, 2020) 
91 I pointed out the issue and workaround was already suggested by one of the authors here: 

https://github.com/joeynmt/joeynmt/issues/90#issuecomment-605427609 (accessed on March 28, 2020) 

https://colab.research.google.com/github/lvapeab/nmt-keras/blob/master/examples/tutorial.ipynb
https://colab.research.google.com/github/lvapeab/nmt-keras/blob/master/examples/tutorial.ipynb
https://readthedocs.org/projects/joeynmt/downloads/pdf/latest/
https://github.com/joeynmt/joeynmt/issues/90#issuecomment-605427609
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7.2.6 Selecting the most adequate toolkit 

From the roundup above, the two OpenNMT versions provided the most accessible and feature-

complete package. They also provide high performance when creating NMT models using the 

Transformer architecture, even on relatively small video memory. In this sub-section a direct 

comparison between the two OpenNMT toolkits will be made. The section will be 

comparatively technical, but any technicalities that appear unclear now, will be further 

elaborated in Section 7.3 and up. The two toolkits were tested using the NTC7 optics-only 

dataset (see sub-section 7.4.1.5) and standard parameters for the “Transformer Base” 

architecture (Vaswani et al. 2017), with only the batch size92 being adjusted.  

Since the task is to create several models, performance and efficiency needed to be 

evaluated. The main difference is with memory consumption, which is higher on the 

TensorFlow powered OpenNMT-tf. This means, that to run training on TF, we would either 

have to use a GPU with more memory or reduce the training batch size. Popel and Bojar 

empirically found that reducing the batch size means that training will take longer and 

potentially deliver slightly worse results for the same amount of training time. However, if the 

effective batch size93 is adjusted, the results should be the same as if using a larger batch size 

(Popel & Bojar 2018). In order to get comparable results, effective batch size was therefore 

kept to the common lowest denominator of 4096 in the first test. To get the best results of each 

individual toolkit however, OpenNMT-py was also tested at an effective batch size of 6144 

(batch size 3072 x 2; the maximum that would fit the 6GB of VRAM), and in OpenNMT-tf 

mixed-precision training was utilized to speed up the training process (memory requirements 

actually grew with mixed-precision training, opposite to what might be expected; the reason for 

this seems to be, that both FP16 (Floating-point 16-bit) and FP32 (Floating-point 32-bit) values 

are kept in memory, something that may be resolved in a future TensorFlow version)94.  

 
92 Essentially the number of words/tokens the system ingests at a time. 
93 Essentially multiplying gradient updates of x individual batch sizes to get the same result as using a larger 

batch size. 
94 https://forum.opennmt.net/t/settings-for-training-transformerbig-with-mixed-precision-on-single-

gpu/3532/8?u=dixxy (accessed on 23.03.2020) 

https://forum.opennmt.net/t/settings-for-training-transformerbig-with-mixed-precision-on-single-gpu/3532/8?u=dixxy
https://forum.opennmt.net/t/settings-for-training-transformerbig-with-mixed-precision-on-single-gpu/3532/8?u=dixxy
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Table 8: OpenNMT-tf and OpenNMT-py memory consumption, accuracy and speed compared 

Transformer Base model training memory consumption and speed 

Toolkit Batch size 

(Effective) 

Speed 

(Tokens/s) 

Memory-

consumption 

BLEU after 

60k/40k* steps95 

(time needed) 

OpenNMT-tf 

(2.8.1) 

1024 

(4096) 

ST: ~6400 tok/s 

TT: ~6000 tok/s 
~ 5100MB 38.25 (~9.8h) 

OpenNMT-py 

(1.0.2) 

2048 

(4096) 

ST: ~6500 tok/s 

TT: ~6050 tok/s 
~4800MB 32.19 (~9.4h) 

OpenNMT-tf 

(2.8.1) 

Mixed-precision 

1024 

(4096) 

ST: 9500 tok/s 

TT: 8900 tok/s 

~ 5800 MB 

Non-critical 

OOM errors 

after saving 

first 

checkpoint 

37.25 (~6.5h) 

OpenNMT-py 

(1.0.2) 

3072 

(6144) 

ST: 7200 tok/s 

TT: 6700 tok/s 
~ 5900MB 33.47 (~8.6h)96 

 

As Table 8 illustrates, OpenNMT-py performs slightly faster when calculations are done using 

classical full-precision (FP32) training, since it allows a bigger batch size to fit the GPU 

memory. However, OpenNMT-tf is very fast even at half the actual batch size, suggesting that 

the TensorFlow framework is capable of very efficient calculations through the GPU, as long 

as enough video memory is available. On the other hand, OpenNMT-py’s efficient memory 

usage allows a batch size of 3072 (resulting in an effective batch size of 6144), which speeds 

up training by approximately 10.5 % from ST 6500 tok/s to 7200 tok/s and TT 6050 tok/s to 

6700 tok/s respectively and slightly improves model accuracy according to the BLEU score. 

On the other hand, OpenNMT-tf supports mixed-precision training (Micikevicius et al. 2017), 

which makes use of special hardware on the latest Nvidia GPUs (Nvidia Volta and Turing 

architectures used in the Titan V, Tesla- and RTX-series respectively) and TensorFlow’s 

automatic mixed-precision optimization to accelerate the training process. This gives an 

incredible performance increase of approximately 48.5% from ST 6400 tok/s to 9500tok/s and 

TT 6000 tok/s to 8900 tok/s, with only a slight loss in model accuracy according to the BLEU 

score (38.25 to 37.25). We can also observe that general model accuracy, as measured by BLEU, 

is higher for OpenNMT-tf than it is for OpenNMT-py. The reason for this is not quite clear, but 

 
95 1 Step = One effective batch size of tokens (4096) was processed. 60k steps means the full data has been seen 

approximately 5-6 times (5-6 Epochs completed) on a data-set with approx. 47m words.  
96 BLEU score and time for the effective batch size of 6144 was evaluated after 40k steps, which provides the 

same data coverage as 60k steps on 4096. 
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it could be down to the used frameworks, the way the toolkits prepare the input data 

(vocabulary) or slight variances in the way the Transformer architecture is implemented in the 

two toolkits. Regardless, “out-of-the-box” performance is higher for OpenNMT-tf. 

The gain in speed thanks to mixed-precision training and the higher base-line accuracy 

is essential for creating many models in a relatively short amount of time and this makes 

OpenNMT-tf the better choice over OpenNMT-py97 for this project. Additionally, OpenNMT-

tf offers some features, like BLEU evaluation during training, that help to streamline the 

training process and enables us to stop training automatically once BLEU no longer 

significantly increases. 

Unfortunately, TensorFlow offers some inherent challenges for the setup of OpenNMT-

tf. For one, as was shown in the small benchmark above, it requires more memory than PyTorch 

for the same model parameters, so some tuning will be required. In addition, there seem to be 

some unresolved bugs with newer Nvidia GPUs (RTX series), that result in aborted training 

unless the “allow_growth”-flag is specified98.  

--gpu_allow_growth 

CLI 1: Command argument needed for RTX GPUs on TensorFlow framework 

Adding the arguments in CLI 1 to our training command, something that is not documented 

well, allows training to start on RTX GPUs with OpenNMT-tf. However, since this flag 

essentially enables the framework to gradually build up memory usage on the GPU it might 

also result in an out of memory error (OOM) during training, if the GPU memory is otherwise 

utilized (by opening too many browser tabs for example) or particularly long sentences appear 

in the training batch. Therefore, utmost care must be taken when selecting training data and 

batch size. 

 
97 Mixed-precision training is still in experimental stage for openNMT-py: 

https://github.com/OpenNMT/OpenNMT-py/pull/1208 (accessed on March 25, 2020) 
98 https://github.com/tensorflow/tensorflow/issues/24496 (accessed on March 25, 2020) 

https://github.com/OpenNMT/OpenNMT-py/pull/1208
https://github.com/tensorflow/tensorflow/issues/24496
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7.3  General recommendations before starting 

Since the installation process is well explained by the documentation of each individual toolkit 

presented in this thesis, I would rather like to present the reader with some additional general 

recommendations and some of the issues I encountered when preparing my working 

environment. 

What follows are general recommendations when working with NMT toolkits and 

practical tips on how to deal with possible issues: 

 

1) Use a Python virtual environment  

 

Virtual environments enable you to install Python packages separated from the main system. 

Since most toolkits and dependencies are available as Python packages, it is possible to run 

them in different versions than what is running system-wide and this makes sure that the 

dependencies and the Python runtime of the environment remain unaffected from system 

updates. However, not all the necessary items are available through Python packages, so some 

care must be taken when updating the system (for example, Nvidia’s CUDA toolkits are 

generally only available as system packages). With Python installed, the standard Python 

command (the command starts after the “$” prompt) for creating a virtual environment on Linux 

is shown in CLI 2.99  

$ python -m venv /path/to/new/virtual/environment  

CLI 2: Standard command for creating a virtual environment 

However, to facilitate this process, I would recommend installing the virtualenvwrapper100, 

which helps tremendously with creating and organizing the virtual environments. It is 

recommended to install virtualenvwrapper system-wide. To install it in Manjaro, first switch to 

the so-called root user (often also wrongly referred to as “super user”) by typing the command 

in CLI 3. 

 

$ su - 

Password: (Type your password) 

# 

CLI 3: Switch to root user 

 
99 We assume that we will be using Python 3, so the “python” command is the same as the “python3” command: 

https://docs.python.org/3/library/venv.html (accessed on 26.03.2020) 
100 https://virtualenvwrapper.readthedocs.io/en/latest/ (accessed on 26.03.2020) 

https://docs.python.org/3/library/venv.html
https://virtualenvwrapper.readthedocs.io/en/latest/
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The prompt should now change to a “#” instead of the dollar sign “$”, indicating that you are 

now executing commands as the root user.  

 

To install virtualenvwrapper, type the command in CLI 4. 

# pacman -S python-virtualenvwrapper 

CLI 4: Install virtualenvwrapper 

After the installation, you should return to the regular user by simply typing 

# exit 

CLI 5: Log-out of current terminal session 

If you are using another distribution (like Ubuntu) you may need to use the sudo command 

instead. This installs the wrapper on a system level, enabling many useful commands for 

managing virtual environments. Some of the commands I used most during the experiment are 

listed in Table 9101: 

$ mkvirtualenv env_name  create and activate virtual environment with 

“env_name” 

$ workon env_name activate virtual environment “env_name”  

(needs to be created first) 

$ setvirtualenvproject set project folder for active virtual environment 

(automatically jump to this folder when activating 

virtual environment) 

$ deactivate deactivate active virtual environment 

$ lsvirtualenv list all available virtual environments 

$ rmvirtualenv env_name irreversibly delete virtual environment 

Table 9: Commands for virtualenvwrapper 

2) Make sure to use a supported Python distribution for TensorFlow/PyTorch 

 

By default, most Linux distributions come with the latest Python version installed. This is not 

always supported by the Deep Learning Frameworks. While PyTorch is relatively quick to 

adapt to a new Python release, TensorFlow is often one or two major versions (3.x) behind. At 

the time of writing, the stable build of TensorFlow is only compatible with Python 3.5 through 

 
101 For a full list of commands see: https://virtualenvwrapper.readthedocs.io/en/latest/command_ref.html 

(accessed on March 16, 2020) 

https://virtualenvwrapper.readthedocs.io/en/latest/command_ref.html
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to 3.7 while Python 3.8 is not supported. In order to check the Python version, just type the 

command shown in CLI 6. 

$ python --version 

CLI 6: Display Python version 

The terminal should output the version in the next line as shown in CLI 7. 

Python 3.8.2 

CLI 7: Python version 3.8.2 is installed 

If you have a supported Python version, all is well. If not, you will have to locally install the 

specific Python version you want (make sure not to install it as a system-package, as that may 

break many other things) and then specify the Python version you want to create the virtual 

environment with. What should work on Manjaro Linux (and most other Linux distributions) 

102 is the following set of commands shown in CLI 8: 

Switch to downloads folder 

$ cd /home/user/Downloads 

Download Python version from python.org 

$ wget https://www.python.org/ftp/python/3.7.7/Python-3.7.7.tar.xz 

Extract and change into directory 

$ tar xf Python-3.7.7.tar.xz 

$ cd Python-3.7.7 

run configuration (with optimizations) 

$ ./configure --enable-optimizations 

make alternate installation as root user, will be 'python3.7' 

$ sudo make altinstall 

CLI 8: Step-by-step install of Python 3.7.7 as non-system package 

This should install Python 3.7 to the /usr/local/bin/python3.7 binary folder, while leaving the 

system Python install alone. If /usr/local/bin is in $PATH103, then simply create a new virtual 

environment with Python 3.7 through virtualenvwrapper by typing the commands in CLI 9: 

$ mkvirtualenv --python=python3.7 env_name 

CLI 9: Create virtual environment with virtualenvwrapper using Python 3.7 runtime 

 
102 Linux distributions like Gentoo, will allow you to install different Python versions easily, in a so-called slot-

system. In most other distributions (and especially OS’s like Windows) the process is a bit fiddlier.  
103 $PATH is an environment variable, that indicates to the system where to look for programs. 

https://www.python.org/ftp/python/3.7.7/Python-3.7.7.tar.xz
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If this does not work, because /usr/local/bin/ is not in $PATH, either add it to your $PATH by 

following guides online or type out the absolute path to the Python 3.7 installation as shown in 

CLI 10: 

$ mkvirtualenv --python=/usr/local/bin/python3.7 env_name 

CLI 10: Alternate command for creating Python 3.7 environment 

When running the “python --version” command in the virtual environment, it should now state 

the same line as shown in CLI 11: 

Python 3.7.7 

CLI 11: Python 3.7.7 is installed 

3) Text encoding (use UTF-8) 

 

Text encoding (or code page) may seem like a small thing, but it can make working with 

different languages very challenging on computer systems. Unfortunately, text encodings were 

established in the early days of computers and are generally not inter-compatible. Even worse, 

there is no 100% accurate way to detect the text-encoding used in a document.  

For example, English documents may use the ASCII standard (American Standard Code 

for Information Interchange) which only supports encoding of 128 (!) symbols or the extended 

ANSI (American National Standards Institute) standard with support for 256 symbols. Asian 

languages would obviously never fit this limitation. Japanese texts therefore tend to use 

encodings like EUC-JP (Extended UNIX Coding – Japanese) or Shift-JIS, which extend the 

encoding possibilities but result in compatibility issues and unreadable symbols if the wrong 

decoding code page is chosen. Text example 7.3-1 shows an example of this issue. 

 

Decoder EUC-JP encoded Japanese Sentence 

ANSI ¤½¤ÎÂ¾¡¢¥¨¥Ý¥¥·¼ù»é¡¢¥¢¥¯¥ê¥ë¼ù»é¡¢¥·¥ê¥³¡¼¥ó¼ù»é¡¢¥¦¥ì¥¿¥ó

¼ù»éÅù¤¬ÊÝ î̧ÁØ£±£µ¤Îºà¼Á¤È¤·¤ÆÍÑ¤¤¤é¤ì¤ë¡£ 

EUC-JP その他、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、ウレタ

ン樹脂等が保護層１５の材質として用いられる。 

Text example 7.3-1: Decoding with wrong code-page compared to the right code-page 
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Luckily, a standardized way of encoding exists with the UTF standard. The most common is 

UTF-8, which is also the standard for Linux and Mac OSX Operating Systems104. Unfortunately, 

often text-corpora are still stored in local encodings like EUC-JP, as was the case for the patent 

data used in this thesis and this can be a major headache for working between different 

languages. It is therefore recommended to convert all text-files into UTF-8 before using the 

data in NMT training. There are several ways to do this, but for this thesis the Python script 

convert_encoding.py105 was used. 

 

4) Test small data-sets first and then run the system on real data 

 

Generally, it is advised to first get familiar with the toolkits, hyperparameters and NMT 

architectures by testing toy-examples or smaller datasets. This way, test trainings don’t take too 

long and it is much quicker and less convoluted to troubleshoot a problem. Once training runs 

without errors, it is possible to simply change the input data and, if needed, adjust 

hyperparameters like the batch size to account for the higher memory requirements of the bigger 

training data. 

 

5) Plan ahead, allow for enough checkpoints to be saved and be patient 

 

Training can take several hours and up to days depending on the used toolkit, the training 

parameters, the hardware and the training data. In order to avoid losing the whole progress of a 

training when the computer crashes or there is a power-outage, make sure to allow the toolkit 

to regularly save checkpoints, so training can resume at a later date. 

 
104 Windows is based on UTF-16, but Microsoft implemented system-wide UTF-8 support as BETA and is 

working on making Windows more UTF-8 friendly in the future. 

(https://blogs.msdn.microsoft.com/commandline/2018/07/20/windows-command-line-inside-the-windows-

console/; accessed on 30.03.2020) 
105 https://github.com/goerz/convert_encoding.py (accessed on 28.03.2020) 

https://blogs.msdn.microsoft.com/commandline/2018/07/20/windows-command-line-inside-the-windows-console/
https://blogs.msdn.microsoft.com/commandline/2018/07/20/windows-command-line-inside-the-windows-console/
https://github.com/goerz/convert_encoding.py
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7.4 Preparing the data (OpenNMT-tf) 

In Section 7.2 it was established that the toolkit of choice would be OpenNMT-tf, as it showed 

the best performance of all the available toolkits and the most convenient feature-set. 

Installation is fairly straight-forward, and I would like to point the reader towards the excellent 

QuickStart-guide of the toolkit106. Instead of the suggested virtualenv command I would suggest 

using the virtualenvwrapper to create the virtual environment as explained in Section 7.3. 

Once OpenNMT-tf is installed in the virtual environment, create a working folder for 

your toolkit, where you can store all of the models, configuration files, etc. Notice that a lot of 

dependencies and external tools are automatically installed along OpenNMT-tf, for instance, 

TensorFlow and Python-wrappers for Mecab 107  as well as an extended version of BLEU 

(SacreBLEU)108 should be installed automatically. Unfortunately, the additional tools are not 

well documented in the OpenNMT documentation, so if unsure it is best to resort to external 

tools and follow the respective documentation. 

For preparing our datasets, we will rely on the Moses Tokenizer (Perl-script) and MeCab 

to create tokenized versions of our training files and then use the OpenNMT command to 

generate the vocabulary out of these files. 

7.4.1 Preparing datasets 

In this sub-section, a step-by-step preparation of the parallel sentence data (PSD) from the 

NTCIR-10 PatentMT (Patent Machine Translation) Test Collection109 will be presented. In this 

thesis, the NTC7 training subset of the collection was used, which provides about 1.8 million 

EN-JP parallel sentences from a vast variety of patents and therefore domains. After 

decompression, the training and patent files are stored in a very deep but well-organized folder 

structure. The original patent documents themselves are stored by year and then in several sub-

directories within those year-folders. The only other folder that is relevant for this thesis is the 

“ntc8-patmt-train”-folder which contains both NTC7 and NTC8 training data. See Figure 29 

for a visual representation of the folders in question. 

 

 
106 https://opennmt.net/OpenNMT-tf/quickstart.html (accessed on January 14, 2020) 
107 https://pypi.org/project/mecab-python3/ 
108 https://github.com/mjpost/sacreBLEU 
109 http://research.nii.ac.jp/ntcir/permission/ntcir-10/perm-en-PatentMT.html (accessed on January 20, 2019) 

https://opennmt.net/OpenNMT-tf/quickstart.html
https://pypi.org/project/mecab-python3/
https://github.com/mjpost/sacreBLEU
http://research.nii.ac.jp/ntcir/permission/ntcir-10/perm-en-PatentMT.html
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The NTC7 training data is provided as a compressed file named “train.tgz”, that in turn 

contains seven separate files: train.txt, dev1.txt, dev2.txt, dev3.txt, pat-ids.txt, training-ids.txt 

and readme.txt. The reason for choosing NTC7 over NTC8, is that the training data is of a 

smaller size and more adequate for the scope of this thesis. 

The “readme”-file contains important information about where the data is from and how it is 

presented. All the data was taken from A Japanese-English patent parallel corpus (Uchiyama 

& Isahara 2007) and each sentence pair in the files is stored in five columns like shown below: 

SSR ||| DOCID ||| TID ||| JA ||| EN 

 

These fields have the following meanings: 

 

SSR: Sentence-alignment score 

DOCID: ID of the document from which the sentence pair is extracted 

TID: ID of the sentence pair in document DOCID 

JA: Japanese sentence 

EN: English sentence 

The DOCID, JA, and EN columns of the files will be used for generating the several files needed 

for the NMT toolkit to operate correctly (see Section 7.1.1). First, however, the files must be 

converted into UTF-8, as they are stored in the EUC-JP code-page. This goes for both the train 

and dev files, as well as all of the Japanese original patent files, that we will be using later on 

to determine the domain of the individual sentences in the PSD. 

 

Figure 29: Root folder structure of the NTCIR-10 PatentMT Test Collection 
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7.4.1.1 Converting files to UTF-8  

There are many ways to convert files from one code-page to another. In this thesis the Python 

script/tool convert_encoding.py110 was used, as it works great for batch processing. Usage is as 

simple as storing the convert_encoding.py in one of the directories on your $PATH111 and 

typing the command shown in CLI 12. 

$ convert_encoding.py [options] file1 file2 ... 

CLI 12: Convert encoding command with arguments 

However, since the script was written in Python 2, it might be necessary to change the so called 

hashbang or shebang112 at the beginning of the script. Use a text editor of your choice and 

change the first line of the script from the content shown in CLI 13 to what is shown in CLI 14. 

#!/usr/bin/python 

CLI 13: Hashbang pointing to system Python runtime 

#!/usr/bin/python2 

CLI 14: Hashbang pointing to Python 2 runtime 

Alternatively, it is possible to store convert_encoding.py in the same directory as the files, go 

to that directory and just type the command shown in CLI 15. 

$ python2 convert_encoding.py [options] file1 file2 ... 

CLI 15: Force python2 runtime when executing script 

Check the documentation of the script for further information regarding the possible arguments 

in [options]. For the data used in this thesis, i.e. the NTC7 PSD, the bold options in CLI 16 were 

used for the conversion. 

$ convert_encoding.py -f euc_jp -t utf_8 -r -o #.utf8 input_file(s) 

CLI 16: Arguments used for converting NTC7 PSD to UTF-8 

This tells the script to assume EUC-JP (-f or --from=) as the source encoding and tells it to 

convert the files to UTF-8 (-t or --to=), while also going into the subdirectories to convert the 

files (-r or --recursive) and adding a “.utf8” to the newly converted files (-o or --out=).  

Since there are over 50,000 files in all the directories, selecting each file individually 

would be very time consuming, but thanks to the recursive argument, it is possible to simply 

pass the wildcard “*.txt” or the individual folder name(s) as files. The script will then convert 

 
110 https://github.com/goerz/convert_encoding.py (accessed on 28.03.2020) 
111 Type “echo $PATH“ to see all the directories in PATH 
112 This line indicates which program to run the script with 

https://github.com/goerz/convert_encoding.py


103 
 

all files within the current working directory or indicated folder(s) respectively. For a more 

fine-grained selection of files, it is possible to use the Linux find command with the -exec 

argument. For the thesis, Script 1 was written and used to find all relevant files in /path/ and 

convert them: 

#!/bin/bash 

find /path/ -type f -name "*.txt" -exec \ 

convert_encoding.py -f euc_jp -t utf_8 -r -o \#.utf8 {} + 

Script 1: File selection through find command 

With all data converted to UTF-8, the next step will be preparing the training (train), 

development or validation (val) and test (test) files for each language. 

7.4.1.2 Separate languages and store the sentences in line-aligned files 

In this sub-section, the original “train.txt”, “dev1.txt” and “dev3.txt”113 will be used to create 

“train.jp” and” train.en”, “val.jp” and “val.en” and “test.jp” and “test.en” respectively. The 

easiest way to automate this, is by creating a Python script, that separates each line at a 

predetermined marker (in this PSD’s case the triple pipe symbol “|||”) and stores them in 

different output files. The following Script 2 was written and used in the thesis to create one 

output file for each of the columns in the original file (passed as the first argument to the script) 

and append the extension defined in “langs” to each output. 

#!/usr/bin/python  

import sys 

with open(sys.argv[1], encoding=”utf8”) as f:  

       columns = zip(*(l.split("|||") for l in f)) 

 

langs = (‘SSR’, ‘DOCID’, ‘TID’, ‘jp’, ‘en’) 

for lang, data in zip(langs, columns): 

        with open(‘output.’ + lang, ‘w’, encoding=’utf8’) as f: 

                f.writelines(line.strip(“\n”) + ‘\n’ for line in data) 

Script 2: Split text into separate output files 

Since the alignment is maintained in the output files, it is now possible to simply rename 

“output.jp” and “output.en” to the file needed, i.e. “train.jp” and “train.en” if “train.txt” was the 

input file. The ID files can subsequently be deleted as they will not be needed. This was done 

separately for each file, in order to keep the whole process controlled and the script as simple 

 
113 dev2.txt will not be used at this point but will be used later for the creation of the domain-specific test data. 
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as it is. “dev1.txt” was used to create “val.jp” and “val.en”, while “dev3.txt” was used to create 

“test.jp” and “test.en”. 

With this, the full NTC7 PSD would already be ready for deployment in NMT training, 

but since the original text files are not tokenized, it is highly advised to tokenize them before 

continuing. In the next sub-section, a step-for-step guide for tokenizing the files will be 

presented. 

7.4.1.3 Tokenization of the files 

As written in Section 7.3, tokenization is essential for Asian texts, but can also be very helpful 

for Latin text. For this project, the Japanese files were tokenized with MeCab114 and the English 

files with the Moses Tokenizer Perl-script115. 

Preparing the Moses Tokenizer is fairly simple: simply copy the code provided on the 

git-hub site in a file named “tokenizer.perl”, save it in a location of your choosing and make it 

executable by typing  

$ chmod +x tokenizer.perl 

CLI 17: Make script executable 

Installing MeCab can be a little more involved. On Manjaro it is only available via the AUR 

repository 116 . Installing MeCab and its dependencies therefore also requires a different 

procedure than regular packages. We will be using pamac, one of the many AUR helpers, to 

assist in the manual build process and to install all the needed packages, simply by following 

the commands shown in Table 10. 

$ pamac search -a mecab Searches for the package on AUR 

$ pamac build mecab Installs the most recent MeCab version 

$ pamac build mecab-ipadic Installs the IPA dictionary for MeCab 

Table 10: Commands for installing mecab from AUR 

Before the packages are built and installed, it is necessary to answer two questions and enter 

your password (see CLI 18, bold letters represent user input). 

Edit build files ? [y/N] n 

Apply transaction ? [y/N] y 

CLI 18: Questions when installing from AUR 

 
114 https://taku910.github.io/mecab/ (accessed on 20.04.2020) 
115 https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl (accessed on 

20.04.2020) 
116 The Arch User Repository (AUR) is a community-driven repository for Arch users. 

https://taku910.github.io/mecab/
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
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Unfortunately, packages on AUR can be outdated or just simply not working, so it is possible 

that the installation will fail. Troubleshooting would be too much to cover for this thesis. 

Luckily, it worked well for MeCab and most major dependencies117.  

With both tokenizers prepared, the files can be tokenized. The command used for the 

English text is shown in CLI 19 (change only the bold arguments; type “-h” after tokenizer.perl 

to see all possible arguments): 

$ perl tokenizer.perl -a -no-escape -l en < inputfile.en > outputfile.en.tk 

CLI 19: Command used to tokenize English text files 

For the Japanese text, MeCab was called with the arguments shown in CLI 20. 

$ mecab -O wakati -o outputfile.jp.tk inputfile.jp   

CLI 20: Command used to tokenize Japanese text files 

In order to speed up the process, Script 3 was written and used for this thesis (“#” represent 

comments; bold characters are variables to be changed for each different dataset):  

#!/bin/bash 

# Select working Folder, Dataset, Variant and Languages here 

workdir="$(pwd)" # "$(pwd)" stands for current working directory; change if you 

want to indicate specific directory 

dataset="ntc7" 

variant="" 

src="jp" 

tgt="en" 

 

# English / Latin language tokenization 

for l in en; do for f in data/$dataset$variant/*.$l; \ 

do perl tools/tokenizer.perl -a -no-escape -l $l -q < $f > $f.tk; done; done 

 

# Japanese tokenization 

for l in jp; do for f in data/$dataset$variant/*.$l; \ 

do mecab -O wakati < $f > -o $f.tk; done; done 

Script 3: Tokenization script EN-JP 

The resulting filenames for the full NTC7 PSD after the tokenization were therefore: train.en.tk, 

train.jp.tk, val.en.tk, val.jp.tk, test.en.tk and test.jp.tk. 

 
117 At the time of writing, the neologism dictionary would not install via AUR; if it is required, it can be installed 

following the guide here: https://github.com/neologd/mecab-ipadic-neologd  (accessed on 20.04.2020) 

https://github.com/neologd/mecab-ipadic-neologd
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7.4.1.4 Creating the vocabulary files 

With the files tokenized, all that remains is to create the two vocabulary files from the English 

and Japanese “train”-files. In the case of OpenNMT-tf, the base commands shown in CLI 21 

were used in a slightly modified way to create the vocabulary files: 

onmt-build-vocab --size 50000 --save_vocab train.en.tk vocab.en.tk 

onmt-build-vocab --size 50000 --save_vocab train.jp.tk vocab.jp.tk 

CLI 21: Commands for creating the vocabulary files with OpenNMT-tf 

With this, two vocabulary files (“vocab.en.tk” and “vocab.jp.tk”) are created from the 

corresponding “train” files while limiting the size of the vocabulary to 50,000 + 1 (the “unk”) 

token. As will be further elaborated later, mixed-precision training was used in this thesis, so 

the additional argument “--size_multiple 8” was specified. This automatically increases the 

vocabulary limit to 50,007 + 1, as FP16 calculations need a vocabulary divisible by 8 for 

optimal performance. 118 Mixed precision training is only advantageous on GPUs that perform 

tensor operations in dedicated hardware, like the Nvidia Volta and Turing architectures do. 

With this, the full NTC7 PSD dataset, that contains all domains and all 1.8 million 

parallel sentences is prepared and ready for training. The final files are: train.en.tk, train.jp.tk, 

val.en.tk, val.jp.tk, test.en.tk, test.jp.tk, vocab.en.tk and vocab.jp.tk. 

In the next section, I will demonstrate how a specific domain was extracted from the 

full dataset and how five different sets of data were prepared for training five different neural 

translation models. 

7.4.1.5 Creating the domain-controlled training data 

For creating the domain-controlled data, the starting point was the original, UTF-8 converted 

“train.txt.utf8” file. Only the “train” file was modified for creating the domain-specific and 

shortened datasets. 

First a broad domain was chosen according to the International Patent Classification119. 

For this experiment, optics was chosen as the domain, so the four major optics classifiers that 

appeared in most optics related patents that I had previously translated were selected. These 

were “G01”, “G02”, “G03” and “G06”. 

The idea here was to find the domain of a specific sentence by looking at the original 

patent documents that are linked to the individual training sentences in “train.txt” via the 

 
118 https://opennmt.net/OpenNMT-tf/training.html?highlight=mixed%20precision (accessed on 14.03.2020) 
119 https://www.wipo.int/classifications/ipc/ipcpub/ (accessed on 15.04.2020) 

https://opennmt.net/OpenNMT-tf/training.html?highlight=mixed%20precision
https://www.wipo.int/classifications/ipc/ipcpub/
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DOCID in “training-ids.txt”. The lines in “training-ids.txt” refer to an absolute path in the folder 

structure of the NTCIR 10 Test Collection, leading to the original patent document(s). 

For making the code simpler, this process was divided into three separate steps. 

 

1) Step 1: 

First, a script that opens and searches each and every patent document of the collection and 

exports the absolute path of only those files that contained one of the aforementioned optics-

classifiers had to be created. For this purpose, the following Script 4 was written in Python and 

used for this thesis. 

#!/usr/bin/python 

import glob 

#Define Domains 

domains = ('G01', 'G02', 'G03','G06') 

#Search for Domains and extract absolute path of file to outputfile 

outputfile = "step1out.txt" 

 

with open(outputfile,'w') as f: 

        for filename in glob.iglob('./' + '**/*.TXT', recursive=True): 

                if any(x in open(filename, encoding='utf-8').read() for x in domains): 

                        print (filename, file=f) 

Script 4: Extract absolute path of files that contain domain classifier 

This writes all the absolute paths of files containing the optics classifiers in (almost) the same 

format as found in the “training-ids.txt” to the file specified under “outputfile” (“step1out.txt”).  

The script takes quite a while to run, as it needs to open each individual file. 

 

2) Step 2:  

The next step was to have a script create another file that contains the DOCIDs of the individual 

“train.txt” sentences that align with the documents listed in the output file from Step 1. 

Additionally, the “./” in the beginning of the extracted absolute paths from Step 1 had to be 

removed, as “./” is not written in the paths in “training-ids.txt”. Script 5 outputs a file containing 
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all lines which match the paths listed in the output file from Step 1. The output filename is 

defined under “outputfile” (“step2out.txt”): 

#!/usr/bin/python 

#Pathlist to find ID 

paths = [line.rstrip("\n") for line in open("step1out.txt")] 

#Remove "./" from paths 

spath = [s.strip("./") for s in paths] 

 

outputfile = "step2out.txt" 

with open(outputfile,'w') as f: 

        for line in open("other/ntc8-patmt-train/ntc7/train/training-ids.txt"): 

                if any(x in line for x in spath): 

                        print(line, end='', file=f) 

Script 5: Create id-list from “training-ids.txt” and the step1 output 

However, since the output contains the whole line, everything but the DOCID must be removed 

from each line. Step 2 therefore actually uses a second script, Script 6, to remove the 

unnecessary information and keep one DOCID per line while outputting all of it as the file 

defined in “outputfile” (“idlist.txt”): 

#!/usr/bin/python 

#Keep only DOCIDs before first space 

l = [] 

outputfile = "idlist.txt" 

with open(outputfile,'w') as f: 

  for line in open("IDs-Optics.txt"): 

     if line.strip(): 

        l.append(line.split()[0][1:]) 

  l = '\n'.join(l) 

  print(l, file=f) 

Script 6: Only keep DOCID before first space on each line  

3) Step 3: 

The final step is to write a new file, which only contains the sentences that correspond to optics 

patents. The file will be created from the “train.txt.utf8” document prepared in Section 7.4.1.1. 

The list generated in step 2 (“idlist.txt”) was used to identify which sentences to extract from 

“train.txt.utf8”. Originally another Python script was used to create the file, but it turned out to 

be too slow. Luckily, Linux offers a great option for performing this operation with the search 



109 
 

tool grep. The command used for finding each line in “train.txt.utf8”, that matches one of the 

DOCIDs in “idlist.txt”, is shown in CLI 22. 

$ grep -f idlist.txt train.txt.utf8 

CLI 22: Find patterns from file in another file using grep 

To output the result to a file named “trainoptics.txt.utf8”, the bold command in CLI 23 was 

added:  

$ grep -f idlist.txt train.txt.utf8 > trainoptics.txt.utf8 

CLI 23: Save grep standard output to file 

With this, the optics training file is created, resulting in a document containing 684,693 lines. 

In order to use the data, the preparation steps mentioned in Section 7.4.1.2 through to 7.4.1.4 

were applied to the optics training file (trainoptics.txt.utf8) as well, meaning that vocabularies 

for the optics dataset were created separately, on the basis of the optics training file. 

7.4.1.6 Additional training data 

In order to create comparable models, three further datasets were created: 

1) The full NTC7 dataset, shortened to the same line count as the optics data, by randomly 

deleting 1,113,878 lines. 

2) A dataset, where specifically all the optics patent sentences were removed (line count: 

1,113,878). 

3) The same dataset as in 2) but shortened to optics data line count by randomly deleting 

429,186 lines. 

The random deletion script used for 1) and 3) is presented in Script 7. The script outputs a list 

of lines (amount specified under “number”) between 1 and the number of lines in the file 

specified under “filename” (inputfile.txt) as a file named “delete.lines”: 

#!/bin/bash 

filename=inputfile.txt 

number=429186 

 

line_count="$(wc -l < "$filename")" 

line_nums_to_delete="$(shuf -i "1-$line_count" -n $number)" 

 

printf '%d\n' $line_nums_to_delete > delete.lines 

Script 7: Create list to randomly delete lines 
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Then, to actually create a file without said lines the command shown in CLI 24 was used. 

awk 'FNR == NR { h[$1]; next } !(FNR in h)' delete.lines inputfile.txt \ 

 > outputfile.txt 

CLI 24: Command to exclude lines specified in delete.lines and write output to separate file 

In this way, both shortened versions of the full NTC7 PSD and the NTC7 PSD without optics 

data could be created. CLI 25 shows how the NTC7 PSD without optics data announced in 2) 

was generated by simply inverting the pattern-matching (-v) of the grep tool as presented in 

Step 3 of Section 7.4.1.5: 

$ grep -v -f idlist.txt train.txt.utf8 > trainwithoutoptics.txt.utf8 

CLI 25: Inverse pattern match with grep -v to exclude optics sentences 

Like with the optics data, the resulting training data would go through the preparation described 

in Section 7.4.1.2 through to 7.4.1.4, resulting in individually created vocabularies for each 

dataset. 

7.5 Training (OpenNMT-tf) 

With all the data prepared, training was started mainly following the official QuickStart guide 

for OpenNMT-tf. Since the GPU used for this thesis has a relatively small amount of video 

memory, some tweaking of hyperparameters had to be made, before the training could properly 

function. In general, the command for starting training with a Transformer architecture is the 

one listed in CLI 26: 

onmt-main --model_type Transformer --config data.yml --auto_config \ 

train --with_eval 

CLI 26: Default training command for OpenNMT-tf 

For this thesis, the following, slightly modified command was used:  

onmt-main --model_type Transformer --config ntc7/datatransmixedJPEN.yml \ 

config/transformer.yml --auto_config \ 

--gpu_allow_growth --mixed_precision train --with_eval 

CLI 27: Training command used for this thesis 

The bold arguments represent the modified parts of the command. Starting from the end, “--

mixed_precision” enables the aforementioned FP16 optimization for higher training 

performance on GPUs with hardware-support for tensor calculations. The “--

gpu_allow_growth” argument is necessary for the training to start, seemingly because of a bug 
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with memory allocation in the TensorFlow Framework, on the newer Nvidia RTX-Series GPUs. 

As can be noticed, it is possible to add multiple configuration files to the command, which was 

used to streamline the training of the multiple models. Luckily, OpenNMT-tf offers the “--

auto_config” argument, so only the parameters of the model that are of interest to us and the 

location of the data have to be adjusted manually in the config files. 

In the next sub-section, I will present the configuration files used for training the full 

NTC7 PSD model. The other models had the training data location adjusted accordingly.  

7.5.1 Configuration and hyperparameters 

Aside from the “--auto_config” parameters defined by the OpenNMT-tf toolkit for the base 

Transformer model 120 , the following parameters were defined in the “transformer.yml” 

configuration file: 

train: 

  batch_size: 1024 

  effective_batch_size: 4096 

  save_checkpoint_steps: 10000 

  average_last_checkpoints: 5 

  keep_checkpoint_max: 10 

  max_step: 150000 

  valid_steps: 10000 

  warmup_steps: 8000 

  report_every: 100 

 

eval: 

  batch_size: 32 

  steps: 10000 

  save_eval_predictions: true 

  external_evaluators: bleu 

#  early_stopping: 

#    metric: bleu 

#    min_improvement: 0.01 

#    steps: 4 

Script 8: Transformer configuration used for this thesis 

The batch_size: n parameter defines the maximum number (n) of tokens provided to the GPU 

at one time. The amount of 1,024 tokens was empirically found to be the maximum amount the 

 
120 Find the model catalog here: https://github.com/OpenNMT/OpenNMT-

tf/blob/master/opennmt/models/catalog.py (accessed on 14.01.2020) 

https://github.com/OpenNMT/OpenNMT-tf/blob/master/opennmt/models/catalog.py
https://github.com/OpenNMT/OpenNMT-tf/blob/master/opennmt/models/catalog.py
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GPU could hold without running into critical OOM errors. A higher batch size generally means 

faster training, as more data can be calculated in parallel. 

The effective_batch_size: n parameter defines the effective number of tokens to 

consider for one gradient update. Essentially, it multiplies the results of individual, smaller 

batch size in order to get the same result as if the GPU was able to look at the defined effective 

batch size in one pass. In this thesis’ case, the effective batch size of 4,096 was chosen, which 

means that the GPU needs to run 4 passes to get to the effective batch sizes. While this slows 

training considerably, it was found that the networks perform noticeably worse with smaller 

batch sizes, so a higher effective batch size is highly recommended (Popel & Bojar 2018:12).  

The save_checkpoints_steps: n parameter should be self-explanatory. It tells the toolkit 

to save a model checkpoint after n steps. One step is finished, when the effective batch size n 

has been calculated. Depending on training time, setting this to 5,000 or 10,000 is a good value. 

The average_last_checkpoints: n parameter allows the toolkit to automatically average 

the results of the last n checkpoints saved during training, which usually improves model 

accuracy121. 

The keep_checkpoint_max: n tells the toolkit when to start discarding old checkpoints. 

Model checkpoints can be several gigabytes in size, so saving space by deleting the oldest 

checkpoints seems sensible.  

The max_step: n and valid_step: n define the maximum training steps (n = 150,000 ~ 

18.5h of training in this thesis) and when to perform validation of the models. 

The warmup_step: n parameter defines when the learning rate of the network changes 

from linear decay to inverse square root decay. The default as found in the TransformerBase 

configuration of OpenNMT-py was used (n=8,000), in accordance with recommendations 

found in Popel & Bojar (2018). 

The report_every: n parameter tells the toolkit to report training progress every n steps. 

It reports details like speed (steps/s and tokens/s), learning rate and training loss. 

Under eval: several parameters may be set, to enable the toolkit to automatically 

evaluate the model after steps: n with the evaluation metric chosen under external_evaluators: 

x. This allows for early stopping, once the result no longer improves. Notice the early stopping 

was commented out, as in this thesis using a fixed training time was also very interesting for 

comparison. See 122 for more details about these parameters. 

 
121 https://opennmt.net/OpenNMT-tf/inference.html?highlight=average (accessed on 18.12.2019) 
122 https://opennmt.net/OpenNMT-tf/training.html?highlight=external_evaluators (accessed on 18.12.2019) 

https://opennmt.net/OpenNMT-tf/inference.html?highlight=average
https://opennmt.net/OpenNMT-tf/training.html?highlight=external_evaluators
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The data configuration file (“datatransmixedJPEN.yml”) is much more self-

explanatory: 

model_dir: /home/chris/NMT/openNMT-tf2.8.1/modelsfp16/ntc7-jpen/ 

 

data: 

  train_features_file: /home/chris/NMT/data/ntc7/train.jp.tk 

  train_labels_file: /home/chris/NMT/data/ntc7/train.en.tk 

  eval_features_file: /home/chris/NMT/data/ntc7/val.jp.tk 

  eval_labels_file: /home/chris/NMT/data/ntc7/val.en.tk 

  source_vocabulary: /home/chris/NMT/data/ntc7/onmt-tf/vocab.jp.tk 

  target_vocabulary: /home/chris/NMT/data/ntc7/onmt-tf/vocab.en.tk 

Script 9: Data configuration file example used for this thesis 

The model_dir is the directory where the model progress and all the checkpoints are saved, 

whereas the paths under data: lead to the different training, validation and vocabulary files.  

Notice the ST is identified as “features” and the TT is identified as “labels”. So, the model is 

trained in one direction, in this case being JP→EN.  

To summarize, as shown in Table 11, five Transformer NMT models were trained, with 

a separate model saved after the training step where the highest model performance was 

expected (see Section7.3). 

Table 11: Trained model description, names and training time 

Dataset Model name Training time 

Full (~1,8m sentences) 

JP→EN 

ntc7-jpen 150k steps: ~18.5h 

120k steps: ~14.7h 

Small (684,693 sentences) 

JP→EN 

ntc768k-jpen 150k steps: ~18.5h 

80k steps: ~9.8h 

Optics (684,693 sentences) 

JP→EN 

ntc7o-jpen 150k steps: ~18.5h 

80k steps: ~9.8h 

Without Optics (~1,1m 

sentences) JP→EN 

ntc7wo-jpen 150k steps: ~18.5h 

n/a123 

Small Without Optics 

(684,693 s.) JP→EN 

ntc7wo68k-jpen 150k steps: ~18.5h 

90k steps: ~11h 

 

 
123 Model metrics were best at 150k steps 
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7.5.2 Monitoring training 

While it is not possible (or feasible) to see and understand every single calculation occurring in 

all the nodes of the neural network during training, it is possible to visualize some of the data 

through the tensorboard integration of OpenNMT-tf. The command to run tensorboard is: 

$ tensorboard --logdir "path/to/model_dir" 

CLI 28: Monitor models in „model_dir” with tensorboard 

This will serve a website to http://localhost:6006/, on which it is possible to see training data 

visualized in easy to understand graphs. With this it is possible to get an idea of model 

performance even before proper external evaluation and to see when the model is likely to 

perform best. In order to display these graphs, tensorboard visualizes the scores calculated 

during the evaluation process in training; adding external evaluators will therefore also result 

in additional graphs reported on tensorboard. 

Before looking at the results, some of the metrics have to be explained, so that it is clear 

what is being measured. 

7.5.2.1 The BLEU metric 

The term BLEU stands for Bilingual Evaluation Understudy and was used several times during 

this thesis. It was shortly introduced as the de-facto standard metric for automatic translation 

quality evaluation, but this is a hotly debated definition in and of itself. The BLEU score was 

proposed by IBM researchers Kishore Papineni, et al. in their 2001 paper BLEU: a Method for 

Automatic Evaluation of Machine Translation (Papineni et al. 2001). It is widely used in most 

publications regarding machine translation as a metric to compare translation output of different 

machine translation architectures and models. The main rationale behind the metric is: “The 

closer a machine translation is to a professional human translation, the better it is.” (Papineni et 

al. 2001:1). But how does it determine “the translation closeness” and express it as a score? 

BLEU works by comparing a generated sentence, like a translation hypothesis, to one 

or many reference sentences (or translations). What is measured is the so-called precision of 

the match, essentially expressing how many of the reference sentences’ features the generated 

sentence matches. A perfect match, i.e. all the same features were used, would result in a 1, 

while a perfect-mismatch, i.e. no feature from the reference sentences was used, would result 

in a 0124. The main idea is that a good machine translation will have a surface form very similar 

to a professional human translation. Note, however, that getting a score of 1 is almost 

 
124 Note that most publications, as does this thesis, multiply the result by 100 for better readability. A BLEU 

score of 0.353 would therefore read as 35.3. 
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impossible, as that would mean the candidate sentence is the same as the reference-sentence(s). 

As translators well know, it is unlikely that even human translations ever match perfectly and 

that there are many ways to correctly translate one specific sentence.  

One big advantage is that this way of evaluation is language agnostic, as BLEU only 

checks the surface form of texts, i.e. the tokens that make up a sentence (on a lower level, the 

bytes of the characters in the sequence for the computer125). The system essentially analyzes n-

grams in the sentences, comparing tokens in the candidate sentence (the generated sentence) to 

the tokens appearing in the reference sentences. The n-gram matching is position-independent, 

so word order is NOT considered. The authors of the paper argue that this still tends to cover 

the adequacy of a text. Longer n-grams (bigrams, trigrams) are used to account for fluency by 

looking at phrase-matches, somewhat accounting for word-order. Since unigram or 1-gram 

matches are more likely than bi- or trigram matches, the BLEU metric also gives higher scores 

to sequential matching words. That is, if a string of 3 or 4 words (i.e. a 3- or a 4-gram) in the 

MT translation matches the human reference translation, it will have more of a positive impact 

on the BLEU score than a string of two matching words or a single matching word. However, 

this also means that an accurate translation will receive a lower score if it uses synonyms, or 

matching words in a different word order.  

The BLEU algorithm addresses some common problems of MT, like the 

“overgeneration” of words, by penalizing the precision score if a matching n-gram is generated 

more often than in it appears in the reference sentence (see Text example 7.5-1 taken from 

Papineni et al. 2001:2), through the so-called modified n-gram precision. 

Candidate: the the the the the the the. 

Reference 1: The cat is on the mat. 

Text example 7.5-1: Overgeneration by MT systems 

Sentence length (or brevity) is also penalized in order to not inflate scores for shorter sentences 

that are made up of only reference sentences features (because only a part of the sentence is 

predicted). 

It is clear, that the BLEU metric is a very simple algorithm that has no way to examine 

the deeper semantics of a sentence. So, a perfectly adequate translation might score poorly, 

because it uses less or other words than the reference translation. In fact, the score is highly 

dependent on the reference translations and can easily be artificially increased by simply 

providing more reference translations to the system.  

 
125 This is also why it is important to use a standardized code-page for all the text in a project. 
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BLEU also only calculates its scores on individual sentences, yet, the score is usually 

reported for a larger corpus of (generally independent) sentences, by averaging the individual 

scores of each sentence over the whole corpus. “Quantity leads to quality” is the mantra 

followed by the authors of the paper (Papineni et al. 2001:8), which is why generally corpora 

of 1000 or more individual sentences are used for the BLEU scoring. It is safe to assume, that 

since MT systems usually only work on a sentence level, sentence-level evaluation was 

accepted as a safe measure of quality. 

While there are more issues apparent from a translator’s point of view, it should already 

be abundantly clear, that the algorithm has no way of really assessing the quality of a translation. 

In fact, it was first created “as an inexpensive automatic evaluation that is quick, language-

independent and correlates highly with human evaluation” in order “to monitor the effect of 

daily changes to their systems [MT/NLP systems] in order to weed out bad ideas from good 

ideas.” (Papineni et al. 2001:1). It was therefore designed to compare similar models of the 

same MT-architecture, for incremental, global changes and not as a universal translation quality 

metric. While this may make it usable for the closed nature of this thesis’ experiment and in 

fact MT development in general, readers and especially researchers should not take the BLEU 

score as an absolute indication for translation quality. 

7.5.2.2 Loss 

Most NMT toolkits provide a loss value during training, as this is the metric used in standard 

autoregressive NMT models to tune the individual weights and find the most probable 

translation of a word in a certain position (essentially the error, that is then backpropagated). It 

is similar to BLEU in that it expresses the precision of a specific prediction by the network 

compared to the reference text (i.e. the TT/TL data used in training), but instead of providing a 

score on a sentence-level, the sentence-level log-likelihood is decomposed as a sum over 

word/token-level log-likelihoods. The training of most NMT models is hence optimized to 

finding the next perfect output token given the previous perfect output token. 

There are many ways to calculate the loss, but a common approach is the cross-entropy 

loss function shown in Equation 13126.  

 
126 Function taken from https://towardsdatascience.com/neural-machine-translation-15ecf6b0b (accessed on 

05.04.2020) 

https://towardsdatascience.com/neural-machine-translation-15ecf6b0b
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− ∑ ∑ 𝑦𝑤,𝑒 log(�̂�𝑤,𝑒)

|𝑉|

𝑒=1

|𝑆|

𝑤=1

 

|S| = Length of Sentence 

|V| = Length of Vocabulary 

�̂�𝑤,𝑒 = predicted probability of vocab entry e on word w 

𝑦𝑤,𝑒 = 1 when the vocabulary entry is the correct word 

𝑦𝑤,𝑒 = 0 when the vocabulary entry is not the correct word 

Equation 13: Cross-entropy loss function 

In essence, the closer the model gets to giving a probability of 100% to the correct word in the 

vocabulary at the point where it appears in the reference sentence, the lower the loss value will 

be. Likewise, the loss value increases exponentially, the more unlikely the model classifies the 

correct word at that specific point. This value is then commonly summed up for the whole 

sentence resulting in the full loss metric of the sentence. It may however also be summed up 

for all the tokens in a batch (i.e. multiple sentences). Lower loss values therefore typically 

correspond to better translations and the training of neural networks aims to reduce the loss of 

the predictions. Depending on the toolkits used, the loss reported may be obtained differently. 

OpenNMT-tf reports the cross entropy that is computed at the current training step (i.e. the total 

loss for all tokens in a batch) and can also report a separate loss value for predictions on the 

validation (val) dataset.127  

7.5.2.3 Perplexity 

Another value often reported by NMT toolkits and in fact machine translation or NLP tools in 

general is the perplexity metric. The perplexity is a measurement of how well a probability 

model predicts a sample. So, in the context of NLP, perplexity is one way to evaluate language 

models, and is closely related to the cross entropy or loss function described above. In fact, the 

perplexity reported by OpenNMT-tf is simply the exponential function of the loss value, 

𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑒𝑥𝑝 (𝑙𝑜𝑠𝑠) 128. Perplexity therefore gives us a linear value to how many average 

choices the network would have for a prediction (i.e. how “unsure” the network is). A lower 

perplexity generally points to a more accurate translation model. OpenNMT-tf only reports 

perplexity for predictions against the validation dataset, not for the training data. 

 
127 https://github.com/OpenNMT/OpenNMT-tf/issues/50#issuecomment-358582413 (accessed on 05.04.2020) 
128 https://forum.opennmt.net/t/perplexity-in-opennmt-tf/2290/2  

https://github.com/OpenNMT/OpenNMT-tf/issues/50#issuecomment-358582413
https://forum.opennmt.net/t/perplexity-in-opennmt-tf/2290/2
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7.5.3 Training observations 

As stated in Section 7.5.2, tensorboard is a great tool for monitoring training progress. It will 

present colored graphs for each model and allow for great comparability (unfortunately colors 

cannot be customized and are somewhat ugly). Table 12 shows the color legend used in 

following graphs and a short summary of the models. 

Table 12: Graph color legend and model summary 

Model Dataset used Training loss at 150k steps 

ntc7 Full (~1,8m sentences) JP→EN 2.165 

ntc768k Small (684,693 sentences) 

JP→EN 

2.034 

ntc7o Optics (684,693 sentences) 

JP→EN 

2.025 

ntc7wo Without Optics (~1,1m 

sentences) JP→EN 

2.089 

ntc7wo68k Small Without Optics (684,693 

sentences) JP→EN 

1.997 

Generally training for a longer amount of time will improve model accuracy for the training 

data, i.e. the loss function will continue to fall, and the model is more likely to predict the same 

sentences as the reference sentences. This can also be clearly seen in Figure 30, where all 

models yield a progressively lower loss value. Notice how the model based on the largest and 

most varied dataset (ntc7) has the highest loss value, while the optics dataset (ntc7o) has the 

lowest.  

 

Figure 30: Training loss129 

 
129 Graph smoothed by 0.9 for better readability; desaturated lines show actual value, nicely showing how the 

gradient descent works. 



119 
 

What we are seeing on the smaller models, is an effect that may result in the so-called overfitting 

of a model, which means that it would generalize less well on hitherto unseen text data. This is 

why a separate set of validation files is created for training. As a reminder, the “val.en” and 

“val.jp” were created from the “dev1.txt” and therefore contain completely different sentences 

than the “train” files. This enables evaluation of the model on hitherto unseen data during 

training. 

In Table 13 and Figure 31 it is possible to observe how, during the limited training time 

of 150.000 steps per model (~18.5h per model), the previously described effect of overfitting 

occurred only in the smaller datasets, like the “Optics” dataset (ntc7o), the “Small Without 

Optics” dataset (ntc7wo68k) and the “Small” dataset (ntc768k). We can see how the loss and 

perplexity continuously increases for these datasets after their lowest point at 80k steps. The 

BLEU score also slightly reflects this change in model accuracy. Generally, it is recommended 

to stop training once the loss and perplexity values start rising continuously during validation 

or when the BLEU score stops improving for several validations.  

 

Table 13: Effects on model accuracy / BLEU score on the validation data 

Model BLEU / Loss / Perplexity at 

80k Steps 

BLEU / Loss / Perplexity at 

150k Steps 130 

ntc7 39.09 / 1.211 / 3.421 39.35 / 1.207 / 3.344 

ntc768k 38.13 / 1.329 / 3.754 38.15 / 1.391 / 4.019 

ntc7o 36.96 / 1.446 / 4.202 36.38 / 1.524 / 4.593 

ntc7wo 38.02 / 1.279 / 3.638 37.26 / 1.305 / 3.688 

ntc7wo68k 37.78 /1.370 / 3.908 37.63 / 1.444 / 4.241 

 

Figure 31: Validation BLEU, loss and perplexity in tensorboard 

The rise in perplexity and loss, however, only reflects unfavorably on the BLEU score of the 

two smaller and domain filtered datasets (ntc7o and ntc7wo68k), while it shows no variation in 

 
130 Values smoothed with a ratio of 0.6 
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the larger datasets (ntc7 and ntc7wo) or the “Small” dataset without domain filtering (ntc768k). 

Interestingly, the “Small” dataset (ntc768k) and the “Without Optics” datasets (ntc7wo) 

perform almost the same in the BLEU metric, even though the latter corpus has 38% more data 

to work with. The tendency of overfitting by the smaller datasets does clearly reflect in the 

loss/perplexity metric. These observations confirm that more data does indeed seem to result in 

more generalized models, while it also shows that higher variety in the training data leads to 

lower model perplexity on unseen sentences of the same domains. How this explicitly 

influences the final output is, however, not easily visible. 

It is likely, that the model based on the “Optics” data (ntc7o) performs the worst in 

BLEU, because it is “specialized” (or overfitted) on the optics domain. It is therefore not as 

adept at predicting the validation sentences’ translations (or the exact words used), because the 

validation reference files contain sentences and words from all other domains as well. This 

would also explain why the model based on the more varied “Without Optics” dataset, both 

full-size and shortened (ntc7wo and ntc7wo68k), consistently performs better than the “Optics” 

model (ntc7o) and why the “Small” unfiltered dataset (ntc768k) performs about the same as the 

much larger “Without Optics” dataset (ntc7wo). 

In the next sub-section, the different models will be tested on the mixed domain patent 

test file created in Section 7.4, to validate the BLEU and loss metric results seen during training 

with the validation data. Additionally, the models will be compared on domain-specific texts 

(i.e. sentences from optics patents) to find out whether the optics model can provide better 

scores and translations for domain-specific test sentences, or if neural networks generally 

benefit more from larger or more varied training corpora. The test should also help us see, 

whether overfitting can prove useful for domain specialization when there is not enough data 

available. Both test corpora will be evaluated with BLEU and later through random sampled 

human evaluation by the author. 

7.6 Translating with the trained models and evaluation 

With all the models trained, it is possible to translate single sentences or full documents131 using 

the translation models for inference. The command used for creating the translation hypotheses 

of a specific source text file with OpenNMT-tf is listed in CLI 29. 

 
131 However, translation will only occur on a sentence level! 
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$ onmt-main --config /path/to/dataconfigofmodel --auto_config \ 

--gpu_allow_growth --checkpoint /path/to/modelcheckpoint infer \ 

--features_file /path/to/sourcetextfile > /path/to/outputfile 

CLI 29: Translate sentences with OpenNMT-tf 

Since a Japanese to English model was trained, Japanese source texts will be used: 

The first source text will be the “test.jp.tk” file created in Section 7.4, which contains 899 lines. 

The second source text will be a domain-specific test-file “testdom.jp.tk” created from 

the “dev1.txt”, “dev2.txt” and “dev3.txt” files of the NTCIR 10 PatentMT Test Collection using 

the same method as presented in Sub-section 7.4.1.5 for creating the domain-controlled training 

data. The file was shortened to 899 lines by randomly deleting 175 lines. Note, that including 

the “validation” set (made from “dev1.txt”) is not ideal, but since it is not used for training the 

network per se, the sentences are still essentially “unseen” by the model.132 

For each source text the corresponding reference text in English was also created as 

described above, resulting in the two files “test.en.tk” and “testdom.en.tk”. All the files were 

tokenized as described in Sub-Section 7.4.1.3 and have one sentence per line. 

In order to see whether the overfitting of the model adversely affects the prediction 

ability of the models, the translation tests were also run with an earlier checkpoint by passing 

the “--checkpoint” argument. The checkpoint was chosen in accordance with the highest BLEU 

score for each model during training validation. 

Each output file contains only one translation prediction per line, which is the prediction 

that has the highest probability found by the network. Also, the BLEU evaluation compares 

each prediction to only one reference sentence. For the human evaluation, eight (8) total 

sentences from both source-texts (4 each) are randomly selected and evaluated for each model 

and prediction separately. Texts are not detokenized before evaluation133. 

7.6.1 BLEU evaluation 

To run the BLEU evaluation after training, it must be run through an external command or 

script. For this, the “multi-bleu perl-script” provided by the Moses SMT toolkit was used.134 

The script is also provided in the package of the openNMT-py toolkit.  

Using the external BLEU script is fairly easy and was done by typing the command 

shown in CLI 30:  

$ perl multi-bleu.perl reference.txt < predictions.txt 

 
132 Since otherwise not enough data would have been available for creating the domain-specific test corpus, 

dev1.txt was included, but again, ideally only data not used in training or validation are used. 
133 Tokenization artifacts will be annotated. 
134 https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl 

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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CLI 30: Running the multi-bleu perl script 

Table 14 shows the BLEU scores of all models at 150k training steps for the predictions of both 

the mixed domain and the domain specific source texts (test.en.tk and testdom.en.tk). 

 

 

Table 14: BLEU scores for the models trained for 150k Steps 

Model BLEU for mixed domain BLEU for optics domain 

ntc7 40.29 37.57 

ntc768k 38.63 35.69 

ntc7o 36.95 35.45 

ntc7wo 39.85 35.68 

ntc7wo68k 38.52 34.51 

As expected, the biggest and unfiltered dataset (ntc7) performed the best of all models 

for the mixed domain test with 40.29 BLEU. Interestingly, it did also perform best in the optics 

domain test, something that will be interesting to verify in the human evaluation. The smaller 

unfiltered dataset (ntc768k) performed only about as well as the dataset of the same size without 

optics sentences (ntc7wo68k) in the mixed domain test, but outperformed it in the optics domain 

test by a margin of 1.18 BLEUs, performing as well as the bigger dataset without optics 

(ntc7wo) and the optics dataset.  

However, another interesting note is, that the optics model (ntc7o) only lost 1.5 BLEU 

in the optics domain test, while all other models’ average loss was 3.46 BLEU, with the highest 

loss seen on the ntc7wo model with a loss of 4.17 BLEU. It would be interesting to see, if an 

optics model with the same amount of data as the full ntc7 model would perform similarly to it 

or even better in the optics test. 

Table 15 now shows us what happens when training is stopped early, in order to prevent 

overfitting. Each model was stopped at a different time, where the BLEU evaluation on 

validation data was most favorable. The steps at which the training was stopped are listed next 

to the model in brackets. 
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Table 15: BLEU scores for trained at their best BLEU score 

Model BLEU for mixed domain BLEU for optics domain 

ntc7 (120k steps) 40.42 37.80 

ntc768k (80k steps) 38.73 36.24 

ntc7o (80k steps) 37.84 36.12 

ntc7wo (150k steps)135 39.85 35.68 

ntc7wo68k (90k steps) 38.81 34.94 

It can clearly be seen, that all models perform better in the BLEU metric, when training is 

stopped early and therefore before running into overfitting. While the models based on larger 

datasets expectedly show lesser variation in the BLEU score, we can see that the smaller models 

(ntc768k, ntc7o, ntc7wo68k) are more affected. Interestingly the gains are most pronounced for 

the optics dataset, which gained 0.89 BLEU in the mixed domain test and 0.67 BLEU in the 

optics domain test. This would suggest that overfitting is not helpful even for domain-specific 

applications and indeed rather destructive for general model performance. 

The next sub-section will provide a human evaluation of a selected number of sentences 

from the same texts and models. 

7.6.2 Human evaluation 

Most of the papers researching neural machine translation are content with reporting the BLEU 

scores and don’t dive deeper into analyzing the actual output of the systems. Big part of this, is 

that translation quality assessment (TQA) is no trivial matter and there is still no agreed upon 

standard in place that covers all possible text types (Koehn 2010:217-218; Mateo 2014; Bawden 

2018). Additionally, human evaluation is very time consuming and therefore expensive. 

However, there is no lack of works that point out the many insufficiencies that BLEU has as a 

TQA metric and criticize the overreliance on BLEU by the MT research community (Callison-

Burch et al. 2006; Bojar et al. 2017; Bawden 2018). This sub-section therefore aims to provide 

a manual qualitative and quantitative analysis of a very small sample of sentences predicted by 

each model. The predictions will be compared not just to a reference text, but also verified 

against the source text. Since looking at all the 899 sentences for each test corpus would be 

beyond the scope of this thesis, eight random sentences are chosen from the test corpora (four 

from test.jp.tk and four from testdom.jp.tk). 

Clearly, this is where Translation Studies theories can best be applied. Notably, the 

skopos theory of Reiß/Vermeer (Lindquist et al. 1985) can be applied to machine translation 

 
135 ntc7wo test was not stopped earlier, as BLEU score was still increasing at 150k steps 
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and in fact the evaluation itself. We can ask what the purpose (or skopos) of the output is and 

what purpose our evaluation should have (Lo Presti 2016:4). While gisting136 was generally the 

main purpose of MT translation up to SMT, NMT aims to be an end-to-end translation system, 

meaning that the output of the system is essentially to be used as-is with only slight corrections 

at best. Therefore, the purpose of the output in the patent translation paradigm, should be to be 

as informative and adequate as possible, while maintaining reasonable fluency and very 

importantly, grammatical correctness in the TT. In this thesis, the evaluation will have the 

purpose of validating or falsifying the results of the BLEU scores reported in Sub-Section 7.6.1 

and will therefore limit itself to concretely score the translations by the different models, like a 

bi-lingual post-editor would score a human translation, while keeping in mind the skopos of the 

translation as explained above, with the skopos being the clear and unaltered conveying of the 

original message. 

To provide the findings in an easier to read metric, an overall translation quality score, 

that leans on the SAE J2450137 metric first established for assessing translation quality in the 

automotive industry, will additionally be provided and its scoring reported for each individual 

hypothesis in Appendix I.138 In order to better account for issues on a semantic level, the 

improved SAE metric by Hui Liu (Liu 2017)139 will be used. See Appendix I for a full definition 

of the error-types and error-weights used for the quantitative scoring.  

For the final reported score, the overall document weighted score (ODWS) will be 

reported by combining the findings of all eight analyzed sentences into a single score for each 

individual machine translation and the reference texts. Please consider that even so, the 

evaluation is purely sentence based (as is the machine translation) and will not be taking extra-

sentential context into consideration (which the reference sentences might have). This means 

that arbitrary additions or omissions (that change the meaning) in the reference and translations 

will be treated as an error, even if extra-sentential context would warrant those decisions. Errors 

need to have an impact on the meaning of the sentence to be classified as such. Major errors are 

marked in red, minor errors in blue. Wrong terms (WT) are marked bold and color-coded by 

severity. Omissions (OM) will be additionally visualized with an underscore “_”, while 

Additions (AD) are marked by underlining. Syntactic errors (SE) are marked by italics, whereas 

misspellings (SP) are marked by putting the expression in question in angular brackets (“[]”). 

Word structure and agreement errors (SA) are expressed by a double wave around the 

 
136 Being able to understand the essence of a sentence  
137 https://www.sae.org/standardsdev/j2450p1.htm (accessed April 20, 2020) 
138 A short explanation on how score is calculated, and a definition of errors will also be provided in Appendix I. 
139 With the addition of “Wrong Meaning” error category, which is arguably the most important for our purpose, 

but missing from the original SAE J2450 metric. Style errors (WS) are not considered in the scoring. 

https://www.sae.org/standardsdev/j2450p1.htm
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expression (“~expression~”) whereas miscellaneous errors (ME) are expressed by a single wave 

in front of the expression (“~expression”). Style errors (WS) are not counted towards the total 

score and therefore not color-coded. A minor style error is shown with a dotted line and a major 

style error with a dash-dotted line. Wrong Meaning (WM) scores are assigned on a sentence 

level and evaluated on the basis of how close to the ST the meaning of the translation comes. 

First, the mixed-domain test corpus will be analyzed. The first line (ST) will be the 

source text, the second line (TT) is the reference used for BLEU scoring. The following lines 

represent the hypotheses by the trained models; the model used will be listed in parenthesis at 

the beginning of each sentence. By default, the models trained to 150,000 steps will be used, if 

there is a difference between the longer trained model and the shorter trained model, the less 

trained model’s hypothesis will also be added in the same line. The broad domain of the patent 

where the sentence is from, as well as the patent number is listed in the caption. A short textual 

analysis of each individual example will also be provided after each example. 
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(ST) １ １ は ７ の 回 動 範囲 を 制限 する ストッパ で ある 。 

(TT) Numeral 11 indicates a stopper ~for restricting the range of rotation of the lever 7 . 

(SAE J2450 Score) AD: 1*0 + 1*2; ME: 1*1; Weighted Score: 3 

(ntc7) ~A stopper 11 limits the range of rotation of the stopper 7 . 

(SAE J2450 Score) AD: 1*4; ME: 1*1; WS:1*0; (WM:1*5); Weighted Score: 10 

(ntc768k) Numeral 11 denotes a stopper ~for limiting the range of rotation of seven . 

(SAE J2450 Score) AD: 1*0; ME: 1*1; Weighted Score: 1 

(ntc768k 80k) Reference numeral 11 denotes a stopper ~for limiting the range of rotation of 7 . 

(SAE J2450 Score) AD: 1*0; ME: 1*1; Weighted Score: 1 

(ntc7o) Reference numeral 11 denotes a stopper ~for limiting a rotation range of 7 . 

(SAE J2450 Score) AD: 1*0; ME: 1*1; Weighted Score: 1 

(ntc7o 80k) A stopper 11 limits the range of pivotal movement of 7 . 

(SAE J2450 Score) WT: 1*2; WS: 1*0; (WM: 1*2); Weighted Score: 4 

(ntc7wo) Reference numeral 11 denotes a stopper ~for limiting the range of rotation 7 . 

(SAE J2450 Score) AD: 1*0; SE: 1*4; ME: 1*1; (WM: 1*2); Weighted Score: 7 

(ntc7wo68k) Reference numeral 11 designates a stopper ~for limiting the range of rotation 7 . 

(SAE J2450 Score) AD: 1*0; SE: 1*4; ME: 1*1; (WM: 1*2); Weighted Score: 7 

(ntc7wo68k 90k) Reference numeral 11 denotes a stopper ~for limiting the range of rotation of 7 . 

(SAE J2450 Score) AD: 1*0; ME: 1*1; Weighted Score: 1 

Text example 7.6-1: Line 14 from test.jp.tk; Domain: B65H - PERFORMING OPERATIONS, HANDLING OF 

THIN/FILAMENTARY MATERIALS 

(JP7251966A 1995) 

Text example 7.6-1 starts off the comparison with a short sentence taken from classification 

B65H, which includes “performing operations”, “conveying, packing, storing and handling of 

thin/filamentary materials”. Right away, we can observe a characteristic of neural machine 

translation: Each model uses different words for expressing broadly the same meaning, i.e. the 

use of synonyms is prominent, something that would be rather unusual for SMT. Interestingly, 

the “best” model as measured by BLEU, the full-dataset ntc7 model, is the only model that 

provides an objectively wrong translation. It arbitrarily adds a word that is not present in the 

ST. By looking at the reference sentence, it can be observed that it wrongly infers “7” to stand 

for another stopper, when in fact it appears to be a lever. This is however NOT visible in the 

ST were talk is simply of a numeral 7. The degree of paraphrasis is also the highest for ntc7, 

showing an example of NMT to prefer fluency over adequacy. This is further accentuated by 

the fact, that all models add words not found in the source text (like “reference numeral” or 

“numeral”) and stray quite far from a literal translation. For instance, the ST does not explicitly 

state that the “stopper 11” is there for limiting a range of rotation, but rather that it simply does 

it. This will be counted as a small miscellaneous error (ME), as it does not change the meaning 

of the sentence significantly.  

Additionally, the models (as does the reference) change the sentence structure quite 

deeply. It may be argued, that human translators, like myself, prefer a more literal translation 
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when working with patents and would rather produce something like the following sentence: 

“[Reference numeral] 11 is a stopper that limits the rotation range of 7“. This will however not 

be counted as an error, as the general meaning is unchanged by the reformulation of the sentence. 

It is interesting to observe, that all models appear to correctly find the correlation 

between the “numeral 11” and the “stopper”, as some models simply write “a stopper 11” as 

the subject. On the other hand, some models appear to have problems to find the relation of the 

numeral 7, as it is not explicitly defined in the text. As pointed out, the ntc7 model assumed 7 

to be another stopper, while models ntc7wo and ntc7wo68k assume the 7 to refer to the range 

of rotation, which is also not correct (and grammatically implied not to be so in the ST). While 

the error in the ntc7 sentence will be counted as a major addition error (AD), the errors in the 

other two models are counted as major syntax errors (SE). However, the meaning is arguably 

more obfuscated in the ntc7 model’s hypothesis, so this will be counted as a major wrong 

meaning (WM), while the ntc7wo variants will be counted as minor wrong meanings. The 

ntc7o68k model also appears to have gone for a debatable word-choice, choosing to translate 

回動 (kaidō; rotation) as “pivotal movement”, which actually changes the meaning somewhat 

depending on how you interpret the term “pivotal”. This is counted as a minor wrong term, 

resulting in a minor wrong meaning. 

Another common issue appears to be the selection of which article to use for the 

different nouns of the sentence. The definite article “the” or the indefinite “a”: In patent-

language choosing “a” is quite common, as it is the safer translation, but when a numeral is 

explicitly pointed out, “the” seems like the more sensible choice. For that reason, “a stopper 11” 

feels somewhat off, but is an acceptable solution and will therefore only be separately reported 

as a minor style error (WS). However, the ntc7 sentence is inconsistent in its use of articles, as 

it refers to “a stopper 11” but then later to “the stopper 7”; this will be classified as a minor 

miscellaneous error (ME). 
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(ST) データ の 書 込 ／ 読出 が 行なわ れ た 後 に は 、 ローカル ＩＯ 線 および グローバ

ル ＩＯ 線 は 、 列 選択 動作 完了 時 に 所定 電位 に プリチャージ ／ イコライズ さ れる 。 

(TT) After data is written / read , the local IO line and global IO lines are precharged / equalized to a 

prescribed potential at the time of the completion of the column select operation . 

(SAE J2450 Score) WT: 1*2; Weighted Score: 2 

(ntc7) After data writing / reading , local IO lines and global IO lines are precharged / equalized to a 

predetermined potential at the completion of the column selecting operation . 

(SAE J2450 Score) Weighted Score: 0 

(ntc7 120k) After data writing / reading , the local I / O lines and global I / O lines are precharged / 

equalized to a predetermined potential at the completion of the column selecting operation . 

(SAE J2450 Score) Weighted Score: 0 

(ntc768k) After data is written / read , ~ local IO line and ~ global IO line are precharged / equalized 

to a predetermined potential upon completion of ~ column selecting operation . 

(SAE J2450 Score) ME: 3*1; Weighted Score: 3 

(ntc768k 80k) After data is written / read , local I / O lines and global I / O lines are precharged / 

equalized to a predetermined potential upon completion of a column select operation . 

(SAE J2450 Score) Weighted Score: 0 

(ntc7o) After data is written / read , the local I / O lines and the global I / O lines are precharged / 

equalized to a predetermined potential when the column selecting operation is completed . 

(SAE J2450 Score) Weighted Score: 0 

(ntc7o 80k) After data is written / read , the local I / O line and the global I / O line are precharged / 

equalized to a predetermined potential when the column selecting operation is completed . 

(SAE J2450 Score) Weighted Score: 0 

(ntc7wo) After writing / reading of data , ~ local IO line and ~ global IO line are precharged / 

equalized to a predetermined potential upon completion of a column selecting operation . 

(SAE J2450 Score) ME: 2*1; Weighted Score: 2 

(ntc7wo68k) After data writing / reading , local IO lines and global IO lines are precharged / equalized 

to predetermined potentials at the completion of a column selecting operation . 

(SAE J2450 Score) Weighted Score: 0 

Text example 7.6-2: Line 380 from test.jp.tk; Domain: G11C - PHYSICS; STATIC STORES 

(JP9288888A 1997) 

Text example 7.6-2 shows a longer sentence, more representative for most sentences in patent 

documents. The classification, G11C, is somewhat related to the Optics domain, as it is part of 

the same overarching domain “Physics”. Here most models perform almost the same, providing 

a translation very close indeed to the reference text and in fact, the source text. There is only a 

slight variation in the morphological form in the beginning of the sentence (“After data is 

written / read” or “After data writing / reading”) and the choice in how to express “完了時に” 

(kanryō no toki ni; “at the time of completion”): The neural models all prefer a more 

paraphrased translation than the human reference translation. Additionally, some models add a 

slash between “IO”, which is an accepted abbreviation of “Input/Output”. Finally, another 

variation can be observed in the choice of how “列選択動作” (retsu sentaku dōsa; column 

select operation) is translated. Valid possibilities include “column select operation”, “column 

selection operation” and “column selecting operation”. The models varied between “column 
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select operation” and “column selecting operation”, it would be interesting to see whether the 

models would maintain consistency over a whole document. 

The only error that can be observed in the context of the sentence, is the omission of 

articles, which will be counted as miscellaneous errors (ME) as they have no significant effect 

on the meaning of the sentence. These errors are found once in front of the expression “column 

select operation” on the ntc768k model and in several other models in front of the “local IO” / 

“global IO”.  

In that regard another very subtle issue can be observed, which allures to the problem 

of using only sentence-level translation. In the source text, it is unclear whether there are 

multiple IO lines or only one IO line and whether there is only one predetermined potential or 

multiple potentials. We can see that the translator of the reference text chose to write it as one 

“local IO line” but multiple “global IO lines” and a single potential. This is something that can 

only be correctly translated if a broader context is taken into consideration, or, in many cases, 

the patent illustrations are studied by the translator. It can be observed that the NMT models 

chose either the singular “line” or the plural “lines” but never arbitrarily mixed the two. While 

this means that no translation is strictly speaking correct in the context of the whole patent, it 

won’t be counted as an error as it would virtually be impossible to know the correct answer 

without looking at the whole patent / illustrations. As a positive note, the choice was kept 

consistent within the hypothesis of each model, making it easier to correct in a post-editing step. 

Additionally, the choice of translation for “所定” (shotei; prescribed, fixed, predetermined) 

seems more sensible in the machine translations than the reference, at least when exclusively 

viewed in the context of this sentence. The reference appears to have relied on the first listing 

of most dictionaries (“prescribed”) and the translation is therefore regarded as a minor wrong 

term error (WT). 
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(ST) ドライバトランジスタ ＱＤ ２ は 、 記憶 ノード ＳＮ ２ と ディプリーション 型 トラ

ンジスタ ＱＤＰ ２ と の 間 に 設け られ 、 ゲート は 記憶 ノード ＳＮ １ に 接続 さ れ

る 。 

(TT) Driver transistor QD2 is placed between storage node SN2 and depletion type transistor QDP2 

and has its gate connected to storage node SN1 . 

(SAE J2450 Score) AD: 1*4; (WM: 1*2); Weighted Score: 6  

(ntc7) Driver transistor QD.sub.2 is provided between storage node SN2 and depletion type transistor 

<unk> , and has a gate connected to storage node SN1 . 

(SAE J2450 Score) AD: 1*4; WT: 1*2; (WM: 1*2); Weighted Score: 8 

(ntc7 120k) The driver transistor DB2 is provided between the storage node SN2 and the depletion 

@-@140 mode transistor <unk> , and its gate is connected to the storage node SN1 . 

(SAE J2450 Score) AD: 1*4; WT: 1*2 + 1*5; (WM: 1*2); Weighted Score: 13 

(ntc768k) Driver transistor <unk> is provided between storage node SN2 and depletion @-@ mode 

transistor <unk> , and its gate is connected to storage node SN1 . 

(SAE J2450 Score) AD: 1*4; WT: 2*2; (WM: 1*2); Weighted Score: 10 

(ntc7o) Driver transistor <unk> is provided between storage node SN2 and depletion @-@ type 

transistor <unk> , and a gate is connected to storage node SN1 . 

(SAE J2450 Score) WT: 2*2; Weighted Score: 4 

(ntc7o 80k) The driver transistor <unk> is provided between the storage node SN2 and the depletion 

@-@ type transistor <unk> , and its gate is connected to the storage node SN1 . 

(SAE J2450 Score) AD: 1*4; WT: 2*2; (WM: 1*2); Weighted Score: 10 

(ntc7wo) Driver transistor <unk> is provided between storage node SN2 and depletion transistor 

<unk> , and its gate is connected to storage node SN1 . 

(SAE J2450 Score) AD: 1*4; WT: 2*2; (WM: 1*2); Weighted Score: 10 

(ntc7wo68k) Driver transistor QD.sub.2 is provided between storage node SN2 and depletion type 

transistor <unk> , and its gate is connected to storage node SN1 . 

(SAE J2450 Score) AD: 1*4; WT: 1*2; (WM: 1*2); Weighted Score: 8 

(ntc7wo68k 90k) Driver transistor QD.sub.2 is provided between storage node SN2 and depletion 

type transistor <unk> , and has its gate connected to storage node SN1 . 

(SAE J2450 Score) AD: 1*4; WT: 1*2; (WM: 1*2); Weighted Score: 8 

Text example 7.6-3: Line 436 from test.jp.tk; Domain: G11C - PHYSICS; STATIC STORES 

(JP10154393A 1998) 

Text example 7.6-3 comes from the same domain of “Physics - Static Stores” as the example 

above and shows some of the inherent issues of NMT: Note the “<unk>” token used instead of 

the “QD” labels. Clearly, the “QD2” and “QDP2” label was not part of the vocabulary and as 

such will be covered by the “<unk>” token. As can be observed, the English tokenization did 

not separate the numeral from the letters and therefore “QD2” and “QDP2” would be stored as 

a single token in the English vocabulary, explaining why not even the numeral was written in 

the hypotheses. Only the full-size “ntc7” model and the smaller “ntc7 without optics model” 

translate one of the labels in the text: the “QD2”. Notice the added “.sub.” token, which was 

added through tokenization and is therefore not to be counted as an error. Indeed, the label 

appears in different writing form in the training data (like 𝑄𝐷2) which is expressed through the 

 
140 Hyphen marked by the Tokenizer 
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“.sub.” token by the Moses tokenizer. The “@” signs around hyphens are also added by the 

tokenizer and therefore not counted as errors as these issues could be easily resolved by 

detokenizing the data or, even better, resolving the inconsistencies in a preprocessing step for a 

more efficient vocabulary. The <unk> tokens, will be regarded as minor wrong term errors as 

there already exist several post-processing approaches to tackle this issue, by either copying the 

term in question from the ST and/or or replacing it by external dictionary look-up (see “copy 

mechanism” in M.-T. Luong 2016:40-54). However, a downright wrong denomination like the 

ntc7 120k model provides (where does the “DB2” come from?) will be regarded as major wrong 

term error (WT). 

Aside from these issues, the translation hypothesis of all models is very close to the 

reference text and, interestingly, the ntc7o model provides the most grammatically accurate 

translation of the source text: While the reference text and all other hypotheses assume that the 

“gate” is in fact of the “driver transistor QD2”, this is grammatically not stated in the Japanese 

source text, making the indefinite formulation “…and a gate is connected to …” the most 

correct translation in this context-free analysis. Since NMT translation is still sentence-based, 

seemingly arbitrary additions like these could drastically change the meaning of a sentence, 

while remaining undiscernible by monolingual revision and are thus regarded as major addition 

errors (AD) as well as being counted as minor wrong meanings (WM). 
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(ST) 図 ３ は 、 この 実施 の 形態 に 係る 周波数 逓倍 回路 の 構成 を 示す 回路 図 で あ

る 。 

(TT) FIG . 3 is a circuit diagram showing a construction of the frequency multiplication circuit in 

the second embodiment . 

(SAE J2450 Score) WT: 1*2 + 1*5; Weighted Score: 7 

(ntc7) FIG . 3 is a circuit diagram showing the configuration of a frequency multiplier _ according to 

this embodiment . 

(SAE J2450 Score) OM: 1*2; WS: 1*0; Weighted Score: 2 

(ntc768k) FIG . 3 is a circuit diagram showing the configuration of a frequency multiplying circuit 

according to this embodiment . 

(SAE J2450 Score) WS: 1*0; Weighted Score: 0 

(ntc768k 80k) FIG . 3 is a circuit diagram showing the configuration of the frequency multiplying 

circuit according to this embodiment . 

(SAE J2450 Score) Weighted Score: 0 

(ntc7o) FIG . 3 is a circuit diagram showing the structure of a frequency multiplication circuit 

according to this embodiment . 

(SAE J2450 Score) WT: 1*2; WS: 1*0; Weighted Score: 2 

(ntc7wo) FIG . 3 is a circuit diagram showing the configuration of a frequency multiplier _ according 

to this embodiment . 

(SAE J2450 Score) OM: 1*2; WS: 1*0; Weighted Score: 2 

(ntc7wo68k) FIG . 3 is a circuit diagram showing the configuration of a frequency multiplier _ 

according to this embodiment . 

(SAE J2450 Score) OM: 1*2; WS: 1*0; Weighted Score: 2 

(ntc7wo68k 90k) FIG . 3 is a circuit diagram showing the configuration of the frequency multiplier 

_ according to this embodiment . 

(SAE J2450 Score) OM: 1*2; Weighted Score: 2 

Text example 7.6-4: Line 777 from test.jp.tk; Domain: H03K - ELECTRICITY; BASIC ELECTRONIC CIRCUITRY 

(JP10322174A 1998) 

Text example 7.6-4 is taken from a patent with domain-classification H03K, which represents 

electricity and more specifically basic electronic circuitry. The issue of context is again apparent 

in this example. However, in this case the reference sentence contains information absent from 

the actual source text: The reference refers to a “second embodiment”, while the source text 

only states “this embodiment” (この実施の形態 ; kono jisshi no keitai). All models 

translated/inferred this correctly. Likewise, the word choice for 構成  (kōsei; constitution, 

configuration, structure) seems more adequate in most machine translated sentences than the 

reference sentence, undoubtedly and ironically resulting in a lower BLEU score for this 

sentence. What is interesting to note, is that the two largest models, ntc7 and ntc7wo, and the 

smaller ntc7wo68k model are again displaying the tendency of NMT to prefer fluency over 

adequacy, by omitting the word “circuit” from the “frequency multiplication circuit”. 

Otherwise different inflections of “multiplication” are used in the same expression. A varying 

use of the definite article “the” and the indefinite article “a” can also be observed throughout. 

While generally the safer way to translate is using the indefinite article “a” unless it is specified 
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that the object in question already appeared in the text before ( 前記 ; zenki; said, 

aforementioned), in this case the circuit according to a specific embodiment is cited, so “the” 

seems more appropriate, but this will only be counted as a stylistic error and not calculated into 

the score. 
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(ST) ＣＰＵ （ 中央 処理 装置 ） １ ７ は ＲＯＭ （ リードオンリメモリ ） １ ８ に 記憶 さ 

れ た プログラム に 基づい て 装置 全体 の 動作 を 制御 する 。 

(TT) The CPU _ 17 controls an overall operation of the apparatus ~on a~ program stored in a ROM 

_ 18 . 

(SAE J2450 Score) SA: 1*2; SE: 1*2; WS: 2*0; Weighted Score: 4 

(ntc7) A CPU ( Central Processing Unit ) 17 controls the operation of the entire apparatus based on 

a program stored in a ROM ( Read Only Memory ) 18 . 

(SAE J2450 Score) Weighted Score: 0 

(ntc768k) A CPU ( central processing unit ) 17 controls the operation of the entire apparatus on the 

basis of a program stored in a ROM ( read only memory ) 18 . 

(SAE J2450 Score) Weighted Score: 0 

(ntc768k 80k) A CPU ( central processing unit ) 17 controls the operation of the whole apparatus 

based on a program stored in a read @-@ only memory ( ROM ) 18 . 

(SAE J2450 Score) SE: 1*2 Weighted Score: 2 

(ntc7o) A CPU ( central processing unit ) 17 controls the operation of the entire apparatus on the 

basis of a program stored in a ROM ( read only memory ) 18 . 

(SAE J2450 Score) Weighted Score: 0 

(ntc7o 80k) A CPU ( central processing unit ) 17 controls the operation of the entire apparatus on the 

basis of a program stored in a ROM ( read @-@ only memory ) 18 . 

(SAE J2450 Score) Weighted Score: 0 

(ntc7wo) A CPU ( central processing unit ) 17 controls the overall operation of the apparatus in 

accordance with a program stored in a ROM ( read only memory ) 18 . 

(SAE J2450 Score) WT: 1*2; SE: 1*2; Weighted Score: 4 

(ntc7wo68k) A CPU ( central processing unit ) 17 controls the overall operation of the apparatus 

based on a program stored in a ROM ( read only memory ) 18 . 

(SAE J2450 Score) SE: 1*2; Weighted Score: 2 

(ntc7wo68k 90k) A CPU ( Central Processing Unit ) 17 controls the overall operation of the 

apparatus on the basis of a program stored in a ROM ( Read Only Memory ) 18 . 

(SAE J2450 Score) SE: 1*2; Weighted Score: 2 

Text example 7.6-5: Line 17 from testdom.jp.tk; Domain: G03G - PHYSICS - PHOTOGRAPHY; ELECTROGRAPHY 

(Patent JP05088550A 1993) 

Text example 7.6-5 shows the first sentence taken from the optics-domain specific corpus 

testdom.jp.tk. It is a line taken from a patent with the classification G03G, which stands for 

Photography/Electrography. This is a rather interesting example, as the machine translation 

varies significantly from the reference text. Notice how the reference text omits the explanation 

in the brackets present in the source text, while it is marked as an omission it will not be added 

to the score as it does not change the meaning of the sentence, but will be reported as a style 

error (WS). All machine translations correctly translate this, albeit with some variation in 

typesetting (capital letters, hyphens) and a curious exception of the order being flipped by the 

small domain-mixed model ntc768k at 80k steps.  

More importantly, however, some of the machine translated sentences appear both 

grammatically more correct and closer to the original meaning and wording of the sentence, 

than the reference text. The main action of the sentence in the source text is 装置全体の動作
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を制御する (sōchi zentai no dōsa wo seigyō suru), meaning “to control the whole apparatus’ 

operation”, whereas the models based on data without optics (ntc7wo and ntc7wo68k) adhere 

to the reference translation by referring 全体 (zentai; “entire”, “whole”, “overall”) to the 

operation instead of the apparatus. On the other hand, the models that had optics sentences to 

learn from (ntc7, ntc768k, ntc7o) did translate the apparatus as the object of the sentence and 

refer the adverb “whole” to it. Note that this is a somewhat ambivalent utterance in the ST, as 

the meaning is almost unchanged, but grammatically a further possessive pronounの would be 

required to refer 全体 (zentai; entire, whole) to the operations instead of the apparatus. As such, 

this is regarded as a minor syntactic error (SE). Reading the whole patent did not provide a 

conclusive answer as to what might have been intended, but in doubt sticking to grammatical 

cues in the ST is the way to go. 

One further divergence from the reference text favors all the machine translated results. 

The reference text omits the “based on” in front of a “a program stored in ROM”, which, while 

still conveying the meaning to humans, makes no sense grammatically speaking. This is 

therefore considered as a minor agreement error (SA) in the reference text. The solutions 

proposed by most neural models are objectively both grammatically and semantically better 

(“on the basis of” and “based on a”), but would again, ironically, result in a lower BLEU score 

than a solution closer to the reference text. The solution proposed by the ntc7wo model (“in 

accordance with”) is quite paraphrased from the ST (に基づく, ni motodsuku, on the basis of), 

and in this case rather unfitting. It is therefore regarded as a minor wrong term (WT). 
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(ST) また 、 ゴム が 感光 体 と の 接触 で 磨耗 し て ロール 表面 の 凹凸 が 初期 状態 から 

大きく 変化 し て 帯電 の 均一 性 が 損なわ れる という 問題 が 生じる 。 

(TT) Further , _ the rubber is worn away by contact with the photoreceptor ~to largely change~ the 

unevenness of the surface of the roll from the initial state , thereby impairing the uniformity of 

charging . 

(SAE J2450 Score) OM: 1*2; SA: 1*2; Weighted Score: 4 

(ntc7) Further , there is a problem that the rubber is abraded due to the contact with the photosensitive 

member and the unevenness of the surface of the roll is largely changed from the initial state , thereby 

impairing the uniformity of charging . 

(SAE J2450 Score) Weighted Score: 0 

(ntc7 120k) Further , there arises a problem that the rubber is worn out by contact with the 

photosensitive member and the unevenness on the surface of the roll largely changes from the initial 

state , thereby damaging the uniformity of charging . 

(SAE J2450 Score) WT: 1*2; Weighted Score: 2 

(ntc768k) Further , there is a problem that the rubber becomes worn due to contact with the 

photosensitive member and the unevenness of the roll surface largely changes from the initial state , 

thereby deteriorating the uniformity of the charging . 

(SAE J2450 Score) Weighted Score: 0 

(ntc768k 90k) In addition , there arises a problem that the rubber wears away due to contact with the 

photosensitive member , and the unevenness of the surface of the roll largely changes from the initial 

state , thereby deteriorating the uniformity of charging . 

(SAE J2450 Score) Weighted Score: 0 

(ntc7o) Further , there arises a problem that the unevenness of the surface of the roll largely changes 

from the initial state due to abrasion of the rubber due to contact with the photosensitive body and the 

uniformity of charging is deteriorated . 

(SAE J2450 Score) WS: 1*0; Weighted Score: 0 

(ntc7o 80k) Further , there arises a problem that the rubber is worn away from the photosensitive 

body by contacting with the photosensitive body and the roughness of the roll surface is largely 

changed from the initial state so that the charging uniformity is deteriorated . 

(SAE J2450 Score) SE: 1*4; (WM: 1*5); Weighted Score: 9 

(ntc7wo) In addition , there arises a problem that the rubber is worn out by contact with the 

photosensitive body , and the unevenness of the roll surface largely changes from the initial state , 

thereby damaging the uniformity of charging . 

(SAE J2450 Score) Weighted Score: 0 

(ntc7wo68k) In addition , there arises a problem that when the rubber is worn in contact with the 

photosensitive body , the projections and recesses on the surface of the roll greatly change from the 

initial state , thereby impairing the uniformity of charging . 

(SAE J2450 Score) WT: 1*2; Weighted Score: 2 

(ntc7wo68k 90k) In addition , there is a problem that the unevenness on the surface of the roll is 

largely changed from the initial state by the abrasion of the rubber in contact with the photoreceptor , 

resulting in ~ loss of the uniformity of the electrification . 

(SAE J2450 Score) WT: 1*2; ME: 1*1; Weighted Score: 3 

Text example 7.6-6: Line 432 from testdom.jp.tk; Domain: : G03G - PHYSICS - PHOTOGRAPHY; ELECTROGRAPHY 

(Patent JP08062939A 1996) 

Text example 7.6-6 is another sentence from the optics test corpus, again with the classification 

G03G, photography and electrography. It is an interesting example, in that it shows just how 

flexibly the neural models arrange the syntax and choose words/prepositions, while keeping the 
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same meaning. By and large, all models convey the meaning successfully, while also being 

grammatically correct and indeed very close to the reference text (which omits the “there arises 

a problem” part present in the source text and makes it seem like this is something that happens 

on purpose). The only exception being the early-stopped ntc7o model, which wrongly infers 

that “the rubber is worn away from the photosensitive body”. In the source text, the rubber (ゴ

ム) is not directly related to any of the other nouns in the sentence, but one would assume from 

the context available that, if anything, the “rubber” is part of the “roll”, as the “roll’s surface” 

unevenness is changed. An assumption that can only be verified when reading the patent’s 

context, which confirms that the roll possesses a conductive rubber layer (Patent JP08062939A 

1996:2). This results in a major syntactic error (SE) and subsequently a minor meaning error 

(WM). 

Again, the results for this example imply that the BLEU score cannot be taken at face 

value, as the early stopped ntc7o model consistently performed better in the BLEU metric, 

despite being the only model that mistranslated this example. That said, subjectively, the 

translations hypotheses found by both ntc7o models are arguably the least refined, as the 

sentence reordering is somewhat confusing. This is once again noted as minor wrong style (WS), 

but not considered in the overall score. 
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(ST) 写真 乳剤 層 に 入射 す べき 光 の 分光 組成 を 制御 する こと が 必要 な とき 、 写真 

感光 上 の 写真 乳剤 層 より も 支持 体 から 遠い 側 に 着色 層 が 設け られる 。 

(TT) A colored layer can be formed on the side further from the support than the photosensitive 

photographic emulsion layer , ~where~ it is necessary to control the spectral composition of the light 

which falls on the photographic emulsion layer . 

(SAE J2450 Score) SE: 1*2; SA: 1*2; Weighted Score: 4 

(ntc7) When it is necessary to control the spectral composition of the light to be incident on the 

photographic emulsion layer , a colored layer is provided on the side farther from the support than the 

photographic emulsion layer on the photographic photosensitive layer . 

(SAE J2450 Score) Weighted Score: 0 

(ntc7 120k) When it is necessary to control the spectral composition of light to be incident on the 

photographic emulsion layer , a colored layer is provided on the side farther from the support than the 

photographic emulsion layer on the photographic light . 

(SAE J2450 Score) WT: 1*5; Weighted Score: 5 

(ntc768k) When it is necessary to control the spectral composition of the light to be incident on the 

photographic emulsion layer , a colored layer is provided farther from the support than the 

photographic emulsion layer on the photographic light . 

(SAE J2450 Score) WT: 1*5; Weighted Score: 5 

(ntc768k 80k) When it is necessary to control the spectral composition of light to be incident on the 

photographic emulsion layer , a colored layer is provided on the side farther from the support than the 

photographic emulsion layer on the photographic light @-@ sensitive surface . 

(SAE J2450 Score) Weighted Score: 0 

(ntc7o) When it is necessary to control the spectral composition of the light incident on the 

photographic emulsion layer , a colored layer is provided on a portion farther from the support than 

the photographic emulsion layer _. 

(SAE J2450 Score) WT: 1*2; OM: 1*2; Weighted Score: 4 

(ntc7o 80k) When it is necessary to control the spectral composition of light incident on the 

photographic emulsion layer , a colored layer is formed on a portion farther from the support than 

the photographic emulsion layer _. 

(SAE J2450 Score) WT: 1*2; OM: 1*2; Weighted Score: 4 

(ntc7wo) When it is necessary to control the spectral composition of the light to be incident on the 

photographic emulsion layer , a colored layer is provided at a position remote from the supporting 

member rather than the photographic emulsion layer on the photographic image . 

(SAE J2450 Score) WT: 2*5; SE: 1*2; Weighted Score: 12 

(ntc7wo68k) When it is necessary to control the spectral composition of the light to be incident on 

the photographic emulsion layer , a coloring layer is provided on the side farther away from the 

support member than the photographic emulsion layer on the photographic toner . 

(SAE J2450 Score) WT: 1*5; SE: 1*2; Weighted Score: 7 

(ntc7wo68k 90k) When it is necessary to control the spectral composition of the light to be incident 

on the photographic emulsion layer , a colorant layer is provided on the side farther from the support 

than the photographic emulsion layer on the photographic light . 

(SAE J2450 Score) WT: 1*5; SE: 1*2; Weighted Score: 7 

Text example 7.6-7: Line 651 from testdom.jp.tk; Domain: G03C - PHYSICS - PHOTOSENSITIVE MATERIALS FOR 

PHOTOGRAPHIC PURPOSES 

(JP5323501A 1993) 

Text example 7.6-7 shows an example from classification G03C, photosensitive materials for 

photographic purposes. This sentence stands out as one of the more difficult to translate, as it 
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spans over a long main clause and a separate, equally long subordinate clause. It is interesting 

to note, that all models chose to adhere to the Japanese sentence order, while the human 

reference translation reversed the sentence order. This in itself does not obfuscate the meaning 

in any way. 

The main issue appears to be with the expression 写真感光上の写真乳剤層, which 

might well be a typo of the original patent document (shashinkankōjō no shashinnyūzaizō; “the 

photographic emulsion layer on the photographic light-sensitive (…) ”)141. In this occasion, 

some models provide completely non-sensical solutions like “photographic light” (ntc7 120k, 

ntc768k and ntc7wo68k 90k), “photographic image” (ntc7wo) or “photographic toner” 

(ntc7wo68k), the optics-based models simply omit the expression while keeping the essential 

meaning (ntc7o, ntc7o 80k)142, while the inference of the two models based on the varied 

domain corpus proposes the arguably most adequate solutions with “photographic light-

sensitive surface” and “photographic photosensitive layer” (ntc7, ntc768k 80k). It is fascinating 

to see how the optics-data based ntc7o model provides a very consistent output, while all other 

models are perplexed by the uncommon (and as a matter of fact, incorrect) expression. Clearly, 

in this case having less perplexity on the training data helped the model. On the other hand, the 

largest model (ntc7) achieved a solution closely resembling the reference text, while being 

closest to the ST wording. In this case, the omission of the ntc7o models seems preferable to 

the arbitrary wrong term of the other models, which is why only a minor omission (OM) was 

deducted from the ntc7o models, while the other models had a major wrong term (WT) deducted. 

What is also interesting, is that all models chose to translate the ambiguous設けられ

る (mōkerareru; “to be set up” or “can be set up”) as a passive, while it can be either the passive 

or potential form of 設ける (mōkeru; set up). Only the reference text interpreted it as the 

potential form. This is again an ambiguity in the Japanese language, which can only be cleared 

up upon further inspection of the broad context in the patent and will therefore not be counted 

as an error of any sort. 

 
141 In fact, the expression only appears one more time in the patent, in a carbon copy of above sentence. All other 

appearances state 写真感光材料 (shashinkankōzairyō) which stands for „photographic light-sensitive material”.  
142 Interestingly, the training corpus also contains the expression twice, also in the form of a carbon copy of the 

same sentence in the test data but from different patent documents. One reference (or label) sentence in the 

training corpus omits the expression in question and keeps the Japanese sentence order; the other is the same as 

the reference used in the test corpus. 
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(ST) 次いで 、 Ｓ ３ １ において 、 モード 設定 ダイアル ７ の ポジション が 変更 さ れ た 

か 否 か を 判断 する 。 

(TT) Next , in step S31 , it is determined whether or not the position of the mode setting dial 7 has 

been changed . 

(SAE J2450 Score) AD: 1*2; Weighted Score: 2 

(ntc7) _ In S31 , it is determined whether the position of mode setting dial 7 has been changed . 

(SAE J2450 Score) OM: 1*2; Weighted Score: 2 

(ntc7 120k) _ In S31 , it is determined whether the position of the mode setting dial 7 has been 

changed . 

(SAE J2450 Score) OM: 1*2; Weighted Score: 2 

(ntc768k) Then , in S31 , it is determined whether or not the position of the mode setting dial 7 has 

been changed . 

(SAE J2450 Score) Weighted Score: 0 

(ntc768k 90k) Next , in S31 , it is determined whether or not the position of the mode setting dial 7 

has been changed . 

(SAE J2450 Score) Weighted Score: 0 

(ntc7o) Next , in S31 , it is determined whether the position of the mode setting dial 7 has been 

changed . 

(SAE J2450 Score) Weighted Score: 0 

(ntc7wo) _ In S31 , whether or not the position of mode setting dial 7 is changed is determined . 

(SAE J2450 Score) SE: 1*2; OM: 1*2; Weighted Score: 4 

(ntc7wo68k) Next , at step S31 , it is determined whether the position of the mode setting dial 7 is 

changed . 

(SAE J2450 Score) SE: 1*2; AD: 1*2; Weighted Score: 4 

Text example 7.6-8: Line 508 from testdom.jp.tk; Domain: G03B - PHYSICS -   

APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM 

(JP103115A 1998) 

Finally, Text example 7.6-8 shows a shorter sentence from the classification G03B, indicating 

the invention is regarding an apparatus or arrangements for taking photographs or 

projecting/viewing them. This example just shows some seemingly arbitrary omissions of the 

conjunction 次いで (tsuide; then, next…), by some of the models, notably the ones based on 

more data (ntc7 and ntc7wo). The other thing that can be observed is the addition of the word 

“step” by the ntc7wo68k model, although it never appears in the source text. Interestingly the 

reference sentence also adds this word to the translation, indicating that at some point the 

numeral “S31” must have been identified as a step in the patent. This could however be an 

invalid addition, as there is no way to tell what S31 exactly is just by looking at the ST, so a 

minor addition error (AD) is calculated. 
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7.7 Conclusion 

The training of the translation models worked unexpectedly well. In fact, the results of the 

translation models are very close to the performance of commercially used systems like the 

EPO’s Patent Translate and WIPO Translate for the small sampled texts. This is great news for 

translators who would like to explore the option of maintaining their own neural machine 

translation system with standard home-computing equipment. 

On one hand, the automatic evaluation confirmed what is common knowledge in MT 

research: Training on bigger data appears to be generally better than on smaller, even 

specialized data-sets, and training for too long, leading to a higher model perplexity for general 

tasks, leads to worse results. However, the human evaluation also proved that it is quite 

dangerous to rely only on the BLEU score for assessing model performance. This is shown in 

the ranking presented in Table 16, which ranks the models by comparing the BLEU scores 

(higher is better) and the SAE overall weighted document scores (OWDS143, lower is better). 

Table 16: Ranking BLEU and SAE scores between the different models and test domains 

Model BLEU Rank  

mixed domain 

SAE Rank  

mixed domain 

BLEU Rank 

optics domain 

SAE Rank 

optics domain 

ntc7 40.29 (2nd) 0.047281324 (6th) 37.57 (2nd) 0.008810573 (1st) 

ntc7 (120k) 40.42 (1st) 0.059101655 (8th) 37.80 (1st) 0.039647577 (4th) 

ntc768k 38.63 (6th) 0.033096927 (3rd)  35.69 (5th) 0.022026432 (3rd) 

ntc768k (80k) 38.73 (5th) 0.026004728 (2nd) 36.24 (3rd) 0.008810573 (1st) 

ntc7o 36.95 (9th) 0.016548463 (1st) 35.45 (7th) 0.017621145 (2nd) 

ntc7o (80k) 37.84 (8th) 0.037825059 (4th) 36.12 (4th) 0.057268722 (5th) 

ntc7wo 144 39.85 (3rd) 0.049645390 (7th) 35.68 (6th) 0.088105727 (8th)  

ntc7wo68k 38.52 (7th) 0.040189125 (5th) 34.51 (9th) 0.066079295 (6th) 

ntc7wo68k (90k) 38.81 (4th) 0.026004728 (2nd) 34.94 (8th) 0.070484581 (7th) 

Ironically, the ntc7o model, which has the lowest BLEU scores, happened to be the model with 

best overall SAE J2450 score. Conversely, the ntc7 model at 120k steps, which performed best 

in the BLEU metric, is only slightly better than the worst model in the overall SAE J2450 

analysis, which is the model based on the second largest dataset, the “without optics” ntc7wo 

model. However, the optics model (ntc7o) did not perform best in the optics-domain test, where 

it performed slightly worse than the two mixed-domain models (ntc7 and ntc768k). The errors 

 
143 The overall weighted document score (OWDS) is calculated as the total weighted score divided by the 

number of words of all tested sentences. As per convention, each character is counted as a word in Japanese. 
144 ntc7wo test was not stopped earlier, as BLEU score was still increasing at 150k steps 
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made by the optics model in the optics test, mainly stem from arbitrary omissions and structural 

errors, while in the mixed domain test it made more wrong term mistakes. Ironically, the optics 

model (ntc7o) was less prone to arbitrary additions or omissions in the mixed domain test. This 

would suggest, that the less perplex an NMT model gets, the likelier it is to omit or add arbitrary 

content to a translation. Keep in mind, that the analyzed sample size is quite small and therefore 

needs further testing on larger sample sizes for a more reliable conclusion. An overview of the 

error count sorted by error type can be seen in Table 17. 

Table 17: Extended SAE J2450 based quantitative evaluation of all test sentences in Section 7.6.2. 

 

The overall result showing a large divergence between human evaluation and automatic 

evaluation does coincide largely with the findings of research that covers the topic in-depth 

(Callison-Burch et al. 2006; Lo Presti 2016; Bojar et al. 2017; Bawden 2018). There is in fact 

a need to again address one major issue of most machine translation systems and their 

evaluation: All the translation and subsequently evaluation is strictly performed on a sentence 

basis; this inherently fails to emulate a lot of the combinational work translators must do while 

translating and fails to correctly evaluate adequacy over a whole document. Even the small 

randomized sample that was analyzed showed many issues related to context outside of the 

sentence and made it very difficult to analyze it with the SAE metric. This is a well-known 

issue often ignored by the MT research sphere, as it is quite complex to realize a holistic 

context-aware machine translation and evaluation system, both in terms of general complexity 

of the concept of context and in fact the modeling capacity of even the highest performing 

neural network models.145  

 
145 An incredibly thorough overview of the situation regarding contextual machine translation and evaluation 

thereof, as well as some approaches to tackle the issue can be found in Going beyond the sentence: Contextual 

Machine Translation of Dialogue, by Rachel Bawden (Bawden 2018). 

  WT SE OM AD SA SP PE ME WM WS 

Weighted 

Score OWDS 

Weights (Serious/ 

Minor) 5 2 4 2 4 2 4 2 4 2 3 1 2 1 3 1 5 2 0 0     

  Number of Errors for Each Category Words: 423 

TT 1 2 0 2 0 1 1 1 0 3 0 0 0 0 0 1 0 1 0 2 30 0.07092199 

ntc7 0 1 0 0 0 2 2 0 0 0 0 0 0 0 0 1 1 1 0 2 22 0.05200946 

ntc7 120k 2 2 0 0 0 2 2 0 0 0 0 0 0 0 0 1 1 1 0 2 34 0.08037825 

ntc768k 1 2 0 0 0 0 1 0 0 0 0 0 0 0 0 4 0 1 0 1 19 0.04491726 

ntc768k 80k 0 2 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 13 0.03073286 

ntc7o 0 4 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 2 11 0.02600473 

ntc7o 80k 0 5 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 2 0 2 29 0.05673759 

ntc7wo 2 3 1 3 0 2 1 0 0 0 0 0 0 0 0 3 0 2 1 1 41 0.09692671 

ntc7wo68k 1 2 1 3 0 1 1 1 0 0 0 0 0 0 0 1 0 2 0 1 32 0.07565012 

ntc7wo68k 90k 1 2 0 3 0 1 1 1 0 0 0 0 0 0 0 2 0 1 0 0 27 0.06382979 
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These issues can also be observed in the evaluation of this thesis as, interestingly, even 

the reference texts often referred to information that was not available in the actual ST. 

This highlights another issue with machine translation training and evaluation. The 

human evaluation showed that the reference sentences were quite far removed from the ST 

more often than not, sometimes even containing major translation errors. The reason for this is 

likely that the parallel sentence data is built from original Japanese documents and the final 

published English patents. The published patents are not direct translations, but texts that have 

been further revised by a specialized patent lawyer. Generally, these revisions are mono-lingual, 

meaning the ST is not considered for the revision and thus it seems plausible that the texts might 

change significantly from the original ST. 

Considering the varying accuracy of the parallel data in the test and training corpus, it 

is remarkable that the translation works as well as it does, but it was clearly shown, that the 

networks may learn arbitrary translation patterns, that may refer to context not available in the 

sentence that is being translated. It would be interesting to see how the models would perform, 

if they were trained on the translations of the actual translators instead of the patent documents 

revised by patent lawyers. A more exhaustive evaluation of full patent documents translated 

with NMT models trained on published, patent lawyer revised data and then compared to a 

model trained on more literal direct translations by translators would be very interesting. 
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8 Summary 

This thesis aimed to provide an accessible introduction to machine translation and in specific 

neural machine translation, especially for Translation Studies scholars and translators. This was 

achieved by giving a broad overview of the major machine translation architectures, with a 

deep-dive into the current state-of-the-art technique dubbed neural machine translation or NMT. 

Furthermore, the thesis provides a step-by-step tutorial for creating machine translation models 

based on this recent modeling technique and accessibly introduces many concepts from the 

computational linguistics and generally IT to the reader so that they may understand the 

workings of machine translation, allowing them to make better use of the recent techniques in 

their own line of work and to eventually also contribute to research.  

OpenNMT-tf was suggested as one of the most accessible and performant toolkits 

according to testing and benchmarking of several available open-source NMT toolkits.  

In the final part of the thesis, OpenNMT-tf was used to create 5 different neural machine 

translation models, which were subsequently evaluated by translating several patent sentences. 

The models differed only in the data used for training, where the data of a single large text 

corpus (the NTC7 parallel sentence data of the NTCIR 10 PatentMT Test Collection) was 

filtered by domain using the international patent classification numbers. Two larger datasets, 

one which contained all domains (named ntc7) and the other which contained all domains 

except for “optics” (ntc7wo) were used with approx. 1.8 million parallel sentences and approx. 

1.1 million sentences respectively. Since the dataset which only contained the optics data 

(ntc7o) had only around 684,700 sentences, two shortened versions of the above-mentioned 

datasets were created by randomly deleting lines from the corpus (ntc768k and ntc7wo68k). 

The aim was to find out how such a domain specialization might affect the neural translation 

models, observe how data size and variety influence neural machine translation models and 

whether the neural models really provide better translation with more data than with more 

specifically selected data. The translation output of the models was evaluated both according to 

common practice of MT research, automatically with the BLEU metric, and manually through 

human evaluation of a small sample of sentences.  

It was shown that the data amount, variety and selection of data clearly influenced the 

output of the neural machine translation models. As expected, the model based on the largest 

dataset had the best BLEU score in all tests and also showed the most promising progress during 

training (model perplexity continued to get lower on validation dataset). However, the BLEU 

score did not converge well with the human evaluation, where, in fact, the domain specialized 

model (ntc7o) provided the best results. 
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This strengthens the belief, that the intervention by translators or Translation Studies 

experts might indeed be of great benefit to the MT research paradigm, as many of the common 

practices in the development and especially automatic evaluation of machine translation do not 

consider common practices in translation quality assurance (TQA). This also explains, why the 

automatic evaluation correlates poorly with the findings of the human evaluation. Additionally, 

solid theoretical frameworks for translation, like the skopos theory, are rarely considered for 

the modeling of translation architectures and data pre-selection steps, while this thesis has 

proven that data pre-selection can strongly influence the output of neural machine translation 

and in fact likely trim the models towards a specific skopos. 

By providing this encompassing analysis of state-of-the-art machine translation in a very 

practical and hopefully easy to understand approach, this thesis hopes to lower the hesitation of 

Translation Studies scholars, as well as translators, to deeply engage with the topic and provide 

constructive research in regards to improving machine translation, evaluation of machine 

translation, integration of the translators into the workflow and also integration of key 

translational theories, into the modeling and data-selection of NMT research. 

8.1 Summary in German 

Ein Ziel dieser Masterarbeit war es, eine zugängliche, aber dennoch umfassende und 

tiefreichende Einführung in die maschinelle Übersetzung und spezifisch in die neuronale 

maschinelle Übersetzung anzubieten. Dies soll insbesondere Translationswissenschafts-

studierenden und ÜbersetzerInnen ansprechen, die sich mit dem Thema tiefgehend 

auseinandersetzen möchten. Zu diesem Zweck wurde ein Überblick über die verschiedenen 

Architekturen der maschinellen Übersetzung (MT) gegeben, von der regel-basierten 

Übersetzung (RBMT) zur statistischen Übersetzung (SMT) bis hin zum momentanen Stand der 

Technik, der neuronalen maschinellen Übersetzung (NMT). Neben einer tiefergehenden 

theoretischen Auseinandersetzung mit der Funktionsweise von NMT bietet die Arbeit eine 

Schritt-für-Schritt-Anleitung zum Erstellen neuronaler Übersetzungsmodelle an, die dank 

open-source Software auf handelsüblichen PCs erstellt werden können. Dabei werden viele 

Konzepte aus der Computerlinguistik und generellen IT vorgestellt, die der/m LeserIn dabei 

helfen die Logik hinter maschineller Übersetzung zu verstehen und diese somit besser zum 

eigenen Vorteil zu verwenden und eventuell eigene wissenschaftliche Beiträge dazu zu 

verfassen. 

Nach tieferer Auseinandersetzung mit einer Vielzahl von open-source NMT Toolkits 

und Testung dieser Toolkits, wurde OpenNMT-tf als eines der zugänglichsten und 

leistungsfähigsten Toolkits empfohlen. Im letzten Teil dieser Masterarbeit wurden mit Hilfe 
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von OpenNMT-tf fünf verschiedene neuronale Übersetzungsmodelle trainiert, welche folglich 

anhand der Übersetzung von Patentsätzen evaluiert wurden. Die Modelle unterscheiden sich 

lediglich in den Daten die zum Training (oder zur Erstellung) dieser genutzt wurden, wobei die 

Daten aus dem NTC7 Parallelsatzcorpus der NTCIR 10 PatentMT Test Collection stammen und 

anhand der internationalen Patentklassifikationsnummer nach Domäne sortiert wurden. Zwei 

größere Datensätze, einer der alle Domänen im Corpus enthält (ntc7, ca. 1,8 Mio. Satzpaare) 

und einer der alle Domänen außer der „Optik“-Domäne enthält (ntc7wo, ca. 1,1 Mio. Satzpaare), 

wurden erstellt. Zusätzlich wurden noch ein „Optik“-Datensatz (ntc7o) mit ca. 684.700 

Parallelsätzen erstellt. Um die Größe der Datensätze einheitlich zu halten, wurden noch zwei 

weitere Datensätze (ntc768k und ntc7wo68k) aus den oben genannten, größeren Datensätzen 

erstellt, bei denen jeweils Sätze zufällig aus dem größeren Datensatz gelöscht wurden, um auf 

dieselbe Satzanzahl zu kommen wie beim „Optik“-Datensatz.  

Das Ziel war es, herauszufinden wie sich diese Domänenspezialisierung auf die 

Übersetzung der neuronalen Übersetzungsmodelle auswirken würde und zu beobachten, wie 

Datensatzgröße und Datenvarietät die Modelle beeinflussen würde bzw. ob sich die Annahme 

bewahrheitet, dass Datenmenge wichtiger als Datenselektion sei. Die Ergebnisse der 

Übersetzung zweier Testcorpora aus Patentsätzen im NTC7 Parallelsatzcorpus, wurde folglich 

nach üblichem Vorgehen der MT-Forschung automatisch mit der BLEU-Metrik und zusätzlich 

anhand einer kleinen, zufälligen Auswahl durch manuelle, humane Evaluierung ausgewertet. 

Die Ergebnisse der Evaluierung zeigen, dass die Menge der Daten, die Varietät der 

Daten und die Selektion der Daten den Output der neuronalen Modelle klar beeinflusst haben. 

Wie per allgemeiner Annahme in der MT-Forschung zu erwarten war, hatte das Modell mit 

dem größten Datenset (ntc7) die besten BLEU-Ergebnisse. Allerdings wurde auch gezeigt, dass 

die BLEU-Wertung sich kaum mit den Ergebnissen der humanen Evaluation deckte, wo 

tatsächlich das auf die Optikdomäne spezialisierte Modell (ntc7o) die besten Ergebnisse lieferte. 

Dies bestärkt weiter die Annahme, dass ein Beitrag von ÜbersetzerInnen und der 

Übersetzungswissenschaft große Vorteile für die MT-Forschung haben kann. Insbesondere 

sollte eine engere Zusammenarbeit der verschiedenen Felder in der Auswertung des 

maschinellen Outputs in Erwägung gezogen werden und theoretische Grundlagen aus der 

Übersetzungswissenschaft (wie z.B. die Skopostheorie) tiefer in die MT-Systeme und/oder 

Trainingsvorkehrungen eingearbeitet werden.  

Durch das Bereitstellen dieser praxisbezogenen und umfassenden Analyse des Stands 

der Technik der MT-Forschung und der zugänglichen Anleitung zum Erstellen solcher MT-

Systeme, erhofft sich diese Masterarbeit, Studierenden, ÜbersetzungswissenschaftlerInnen und 
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ÜbersetzerInnen einen leicht verständlichen Einstieg in die Materie zu ermöglichen und weitere 

konstruktive Beiträge zur MT-Forschung zu erleichtern. 

8.2 Discussion and outlook 

Machine translation and especially neural machine translation is still a hot research topic at the 

time of writing this thesis and seemingly every day a vast number of new works regarding the 

topic is published. Since NMT is still relatively fresh, a lot of room is left for experimentation 

and many new interesting concepts appear at the horizon every day. For example, researchers 

at Google found it is possible to train parameters of a single model on several languages, by 

only slightly modifying the ST to reflect which TL is expected. This enables them to drastically 

reduce the need of model training, as a single model can be used to cover several languages146 

and also provide higher quality output on low-resource languages (i.e. languages where only a 

small amount of parallel texts is available for the specific language pair) (Johnson et al. 2017). 

An unexpected side effect of that effort was the discovery of so-called zero-shot translation, 

which enables the network to translate between language pairs that it has not explicitly seen 

before in training. This suggests that the abstract representation through the trained parameters 

and word embeddings does in fact capture some form of semantics or meaning147. The function 

of the multi-lingual models and zero-shot translation hinges on an abstract representation of 

sentences at the tokenization step; i.e. the paper uses a tokenizer which is very similar to the 

BPE tokenization described in this thesis (it uses the so-called word-piece tokenizer).  

Google goes as far as to call the abstract representation calculated by the network to be 

a hint of an “interlingua” that is being extracted by the network from the training datasets, an 

interesting idea that would harken back to the classical approach in MT. In a way, it might be 

argued that NMT comes closer to the ideal of what translation should be than its predecessor, 

as it appears to capture more than just the surface form of texts. The results of such a zero-shot 

translation are, however, reported to be generally significantly lower than translating through 

so-called “explicit bridging”, i.e. through an intermediate language (for example, 

Japanese→English, English→Korean gives better results than Japanese→Korean). Yet, the 

zero-shot approach shows promise, as trained models can act as a baseline for incremental 

training by using comparatively small amounts of actual parallel data in a low resource language 

to enable translation into that specific language (Johnson et al. 2017:9).  

 
146 For example, instead of training two models for English→Japanese and English→ Korean, it is possible to 

train a single English→Japanese, Korean model. It was proven to work best for related languages. 
147 In fact, the paper also presents the idea of mixing the ST languages arbitrarily while still getting a proper 

translation result. 
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Going into the same direction of applying neural networks to capture the meaning of 

texts and generating a baseline model to fine-tune later, BERT or the Bidirectional Encoder 

Representation for Transformers recently made a big splash in the NLP research community 

(Devlin et al. 2018). BERT is a very large pre-trained language model based on the same 

Transformer architecture, that was also used for this thesis’ experiment. The BERT language 

model considers bi-directional word context and can be used as a baseline for fine-tuning a 

model and specialize it on a specific task like Question-Answering, text-understanding, etc. 

Attempts to incorporate BERT into NMT are currently underway and appear to have promising 

results (see Zhu et al. 2020). 

However, one of the biggest strengths of the neural approaches is also a disadvantage 

that can be observed throughout most of the research: The language understanding and 

translation process is generally fully automatic, and the models are “static” once they have been 

trained unless further “offline” training is performed. This renders NMT rather unapproachable 

to translators, as system transparency is low, and tuning is difficult to accomplish without in-

depth knowledge of neural networks and deep-learning toolkits. Even then, results can 

sometimes be quite arbitrary, as was also seen in this thesis’ experiment. 

Rare exceptions like the Interactive NMT approach (Peris, Domingo, et al. 2017) show 

that the idea of NMT as tool for the translator, that adapts to the translator’s choices rather than 

simply providing pre-determined solutions could help improving the workflow of translators, 

while at the same time improving the NMT model underneath. However, there is a strong need 

for research into the better application of NMT for post-editing by human translators and its 

integration within existing translation tools, as, for example, Daems & Macken (2019) show 

that while interactive NMT tools may provide suggestions with less errors than a similar SMT 

solution, little to no improvement can be observed in the actual translation time or effort made 

by the translators (measured in key-strokes and mouse-actions). Similar results were found by 

other studies, like Castilho et al. 2017, Jia et al. 2019a and Knowles et al. 2019. Like in this 

thesis, these studies also showed that while automatic evaluation results look very promising, 

human evaluation often showed mixed results, with NMT providing noticeable increases in 

fluency, but inconsistent results for adequacy and the post-editing effort. 

This disparity between automatic evaluation and human evaluation often remains 

unmentioned in papers regarding NMT. Translators and Translation Studies might be able to 

contribute significantly in the development of NMT systems by both raising the awareness to 

this gap and by proposing theoretical frameworks that can be applied specifically to MT 

evaluation and that can also be modeled mathematically or realized in data preparation steps to 
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improve the translation systems, similar to what Kenny and Doherty already suggested for SMT 

in 2014 (Kenny & Doherty 2014). 

Obviously, one might pose the question, whether such an effort is desirable from the 

translator’s point of view. Wouldn’t translators basically help with making themselves 

disposable by aiding in the creation of better machine translation systems? That argument could 

especially be made considering that many research papers on NMT explicitly seek the 

comparison to human translators as the gold standard, something that becomes quite clear when 

looking at how titles for NMT papers, backed by tech-giants Google and Microsoft, include 

statements like “bridging the gap between human and machine translation” (Wu et al. 2016) or 

“human parity on automatic Chinese to English news translation” (Hassan et al. 2018). It is 

sensational statements like these, that are quickly picked up by the media, which write and talk 

about the alleged universal uses of deep-learning and AI (i.e. neural networks) in a quite 

sensationalist way and see MT displacing the human translator in the near future. Especially 

financial magazines, like the Wall Street Journal, were quick to pick up the potential of flawless 

machine translation, by exclaiming that “The Language Barrier Is About to Fall” (Ross 2016), 

which in turn lead The economist to explain to its readers “Why translators have the blues” 

(Johnson 2017).  

Ripplinger wonderfully explores these sentiments in her essay “Is this the end of the era 

of human translation?”, finding that a “brave new world” for translation seems all but 

unavoidable, suggesting that “in a world, where the amalgamation of machine and human 

beings has already been realized in many fields, Translation Studies and translation practice 

need to reinvent themselves in order to survive and stay relevant” (Ripplinger 2020). 

I can’t help but agree with Ripplinger’s statement, that Translation Studies and 

translation practice needs to adapt to these new changes in the industry and remain relevant by 

providing its expertise to enable a better implementation of the systems. An implementation 

that doesn’t aim to compete with the human translator but aims to be a powerful tool for the 

future translator in the continuously growing translation market. 
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I. Appendix I: SAE J2450 evaluation 
 

According to the expanded SAE J2450 by Hui Liu (Liu 2017), there are 9 different error types, 

However, especially important for evaluating neural machine translation, I would like to specify 

another error-type: The “arbitrary addition” (AD). This will be added as a 10th error type to the 

evaluation metric and treated similarly to an omission (OM). The error definitions are as 

follows: 

❖ Wrong term (WT):  

1) a term that denotes a concept in the TL which is obviously different from the concept 

denoted by the SL term 

2) a term that is not consistent with other translations of the SL term in the same document 

or type of document only when the context for the source language term can justify the 

use of a different target language term (e.g. due to ambiguity of the source language 

term) 

3) a term that is in clear conflict with the present standard translation(s) of the SL term in 

the automotive field 

4) a term that is in violation with a client term glossary 

❖ Syntactic error (SE): 

1) the target language words are correct, but the linear order based on the syntactic rules 

of TL is wrong 

2) the TT contains an incorrect phrase structure 

3)  a source term which is assigned a wrong part of speech in its TL counterpart 

❖ Omission (OM): 

1) a graphic with ST has been removed from the TL deliverable 

2) a continuous block of text in SL which has no counterpart in TL text and therefore the 

semantics of ST is lost in the translation 

▪ At the same time, it is noteworthy that omission does not mean that the source and 

target language words should be in correspondence. 

❖ Word structure or agreement error (SA): 

1) an error of incorrect word structure occurred if an otherwise correct target language 

word (or term) is expressed in an incorrect morphological form (e.g. tense, case, number, 

gender, prefix, suffix, infix or any other inflections) 

2) a mistake related with agreement, which occurred when two or more TL words disagree 

in any form of inflection as would be required according to the grammatical rules of that 

language. 

❖ Misspelling (SP): 

1) a term in the TL violates the spelling as already stated in a client glossary 

2) a term in the TL violates the accepted norms of spelling in the TL 

3) a term in the TL is written in an incorrect or inappropriate writing system for the TL 
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❖ Punctuation (PE): 

1) the TL text contains an error according to the punctuation rules of that language 

2) Missing decimal points or commas are also regarded as punctuation errors 

❖ Miscellaneous error (ME): 

1) a linguistic error related to the TL text but cannot be clearly attributed to any other error 

categories 

❖ Wrong Meaning (WM): 

1) the meaning of TT varies greatly from that of ST. 

❖ Wrong Style (WS): 

1) there is a deviation or violation from the Style guide required in TT 

2) phraseology of TT is not idiomatic 

3) the construction of sentences is cumbersome or clumsy 

4) the translation is only a literal one. 

❖ Arbitrary Addition (AD): 

1) An incorrect and/or arbitrary term is added in the TT, which changes the meaning of the 

ST 

2) An assumption is made about word relations within the TT sentence, that is not 

explicitly specified by the ST and may be wrong 

 

Different error types are weighted differently depending on severity of the error. Weights for 

the ten error categories are:  

• 5 (a serious error) or 2 (a minor error) for a wrong term (WT) 

• 4 (a serious error) or 2 (a minor error) for a syntactic error (SE) 

• 4 (a serious error) or 2 (a minor error) for an omission (OM) 

• 4 (a serious error) or 2 (a minor error) for an incorrect addition (AD) 

• 4 (a serious error) or 2 (a minor error) for a word structure or agreement error (SA) 

• 3 (a serious error) or 1 (a minor error) for a misspelling (SP) 

• 2 (a serious error) or 1 (a minor error) for a punctuation error (PE) 

• 3 (a serious error) or 1 (a minor error) for a miscellaneous error (ME) 

• 5 (a serious error) or 2 (a minor error) for wrong meaning (WM) 

• No scores are given to style errors, as they are often argued to be very subjective (WS) 

 

The overall weighted document score (OWDS) is calculated as the total weighted score divided 

by the number of words of all tested sentences. As per convention, each character is counted as 

a word in Japanese. The error count for the mixed-domain, optics and all sentences combined 

is shown in Table 18, Table 19 and Table 20 respectively. 
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Table 18: Extended SAE J2450 based quantitative evaluation of mixed-domain sentences in Section 7.6.2 

  WT SE OM AD SA SP PE ME WM WS 

Total 

Score OWDS 

Weights (Serious/ 

Minor) 5 2 4 2 4 2 4 2 4 2 3 1 2 1 3 1 5 2 0 0     

  Number of Errors for Each Category Words: 196 

TT 1 2 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 16 0.03782506 

ntc7 0 1 0 0 0 1 2 0 0 0 0 0 0 0 0 1 1 1 0 2 20 0.04728132 

ntc7 120k 1 1 0 0 0 1 2 0 0 0 0 0 0 0 0 1 1 1 0 2 25 0.05910165 

ntc768k 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 4 0 1 0 1 14 0.03309693 

ntc768k 80k 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 11 0.02600473 

ntc7o 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 7 0.01654846 

ntc7o 80k 0 4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 2 16 0.03309693 

ntc7wo 0 2 1 0 0 1 1 0 0 0 0 0 0 0 0 3 0 2 0 1 21 0.04964539 

ntc7wo68k 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 2 0 1 17 0.04018913 

ntc7wo68k 90k 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 11 0.02600473 

 

Table 19: Extended SAE J2450 based quantitative evaluation of optics sentences in Section 7.6.2 

  WT SE OM AD SA SP PE ME WM WS 

Total 

Score OWDS 

Weights (Serious/ 

Minor) 5 2 4 2 4 2 4 2 4 2 3 1 2 1 3 1 5 2 0 0     

  Number of Errors for Each Category Words: 227 

TT 0 0 0 2 0 1 0 1 0 3 0 0 0 0 0 0 0 0 0 2 14 0.06167401 

ntc7 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.00881057 

ntc7 120k 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0.03964758 

ntc768k 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0.02202643 

ntc768k 80k 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.00881057 

ntc7o 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 0.01762115 

ntc7o 80k 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 13 0.04405286 

ntc7wo 2 1 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 20 0.08810573 

ntc7wo68k 1 1 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 15 0.0660793 

ntc7wo68k 90k 1 1 0 3 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 16 0.07048458 

 

Table 20: Extended SAE J2450 based quantitative evaluation of all test sentences in Section 7.6.2. 

  WT SE OM AD SA SP PE ME WM WS 

Weighted 

Score OWDS 

Weights (Serious/ 

Minor) 5 2 4 2 4 2 4 2 4 2 3 1 2 1 3 1 5 2 0 0     

  Number of Errors for Each Category Words: 423 

TT 1 2 0 2 0 1 1 1 0 3 0 0 0 0 0 1 0 1 0 2 30 0.07092199 

ntc7 0 1 0 0 0 2 2 0 0 0 0 0 0 0 0 1 1 1 0 2 22 0.05200946 

ntc7 120k 2 2 0 0 0 2 2 0 0 0 0 0 0 0 0 1 1 1 0 2 34 0.08037825 

ntc768k 1 2 0 0 0 0 1 0 0 0 0 0 0 0 0 4 0 1 0 1 19 0.04491726 

ntc768k 80k 0 2 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 13 0.03073286 

ntc7o 0 4 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 2 11 0.02600473 

ntc7o 80k 0 5 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 2 0 2 29 0.05673759 

ntc7wo 2 3 1 3 0 2 1 0 0 0 0 0 0 0 0 3 0 2 1 1 41 0.09692671 

ntc7wo68k 1 2 1 3 0 1 1 1 0 0 0 0 0 0 0 1 0 2 0 1 32 0.07565012 

ntc7wo68k 90k 1 2 0 3 0 1 1 1 0 0 0 0 0 0 0 2 0 1 0 0 27 0.06382979 
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II. Appendix II: Code and scripts used in this thesis 

For the convenience of the reader, this appendix provides all of the larger scripts used by the 

author in this thesis. They may be used as is or taken as inspiration for how to tackle similar 

problems when preparing data for model training. 

 

Scrip1: Bash-script for file selection through the find command and subsequent code page 

conversion with convert_encoding.py 

#!/bin/bash 

find ./1993A -type f -name "*.txt" -exec \ 

python2 convert_encoding.py -r -o \#.utf8 -f euc_jp -t utf_8 {} + 

Script 2: Python-script for splitting text into separate output files (split occurs at “|||”) 

#!/usr/bin/python  

import sys 

with open(sys.argv[1], encoding=”utf8”) as f:  

        columns = zip(*(l.split("|||") for l in f)) 

 

langs = (‘SSR’, ‘DOCID’, ‘TID’, ‘jp’, ‘en’) 

for lang, data in zip(langs, columns): 

        with open(‘output.’ + lang, ‘w’, encoding=’utf8’) as f: 

                f.writelines(line.strip(“\n”) + ‘\n’ for line in data) 
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Script 3: Bash-script for tokenization of EN and JP text using Moses and MeCab 

#!/bin/bash 

# Select working Folder, Dataset, Variant and Languages here 

workdir="$(pwd)" 

dataset="ntc7" 

variant="" 

src="jp" 

tgt="en" 

 

# English / Latin language tokenization 

for l in en; do for f in $dataset$variant/*.$l; \ 

do perl tools/tokenizer.perl -a -no-escape -l $l -q < $f > $f.tk; done; done 

 

# Japanese tokenization 

for l in jp; do for f in $dataset$variant/*.$l; \ 

do mecab -O wakati -o $f.tk $f; done; done 

Script 4: Python-script to extract the absolute path of files that contain domain classifier 

#!/usr/bin/python 

import glob 

#Define Domains 

domains = ('G01', 'G02', 'G03','G06') 

#Search for Domains and extract absolute path of file to outputfile 

outputfile = "step1out.txt" 

with open(outputfile,'w') as f: 

        for filename in glob.iglob('./' + '**/*.TXT', recursive=True): 

                if any(x in open(filename, encoding='utf-8').read() for x in domains): 

                        print (filename, file=f) 
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Script 5: Python-script for creating an id-list from “training-ids.txt” and Script 4 output 

#!/usr/bin/python 

#Pathlist to find ID 

paths = [line.rstrip("\n") for line in open("step1out.txt")] 

#Remove "./" from paths 

spath = [s.strip("./") for s in paths] 

 

outputfile = "step2out.txt" 

with open(outputfile,'w') as f: 

        for line in open("other/ntc8-patmt-train/ntc7/train/training-ids.txt"): 

                if any(x in line for x in spath): 

                        print(line, end='', file=f) 

Script 6: Python-script for only keeping DOCID before the first space on each line 

#!/usr/bin/python 

#Keep only DOCIDs before first space 

l = [] 

outputfile = "idlist.txt" 

with open(outputfile,'w') as f: 

  for line in open("IDs-Optics.txt"): 

     if line.strip(): 

        l.append(line.split()[0][1:]) 

  l = '\n'.join(l) 

  print(l, file=f) 

Script 7: Bash-script for creating list to randomly delete lines from parallel sentence files 

#!/bin/bash 

filename=inputfile.txt 

number=429186 

 

line_count="$(wc -l < "$filename")" 

line_nums_to_delete="$(shuf -i "1-$line_count" -n $number)" 

printf '%d\n' $line_nums_to_delete > delete.lines 
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Abstract 

This work strives to be an easy to understand overview of how the current state-of-the-art in 

machine translation (MT), neural machine translation (NMT), works. Using the example of 

patent translation, the thesis aims to both demystify the terms “AI” and “deep-learning”, that 

are often associated with NMT, and aims to provide an accessible guide for translators and 

Translation Studies scholars to work with, create and understand their own NMT models. 

A theoretical foundation to MT is provided on which the work presents the creation and 

evaluation of five Transformer NMT models to determine the impact of data selection before 

model training. For this purpose, the five models were trained on five different patent datasets 

sorted by domain using the International Patent Classification: A mixed dataset, an optics 

dataset, a dataset containing all domains but optics and two smaller versions of the mixed and 

optics-free dataset. 

It was found that the network’s performance varied noticeably depending on how much 

and which data was used for training. While the common conception that more data equals 

better results held true in the automatic evaluation, it was shown that the domain specific 

training can help with improving results in the human evaluation, even when using less data. In 

fact, a large discrepancy between the automatic evaluation (BLEU metric) and the human 

evaluation (extended SAE J2450 metric) could be observed, with the worst performing model 

in the automatic metric having the best results in the human evaluation. The analysis of the 

NMT output with reference to the source text also highlights several issues that post-editors 

would have to contend with when post-editing NMT generated texts.   
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Abstract auf Deutsch  

Diese Arbeit soll einen leicht verständlichen Überblick darüber geben, wie maschinelle 

Übersetzung (MT) und insbesondere die neuronale maschinelle Übersetzung (NMT) 

funktioniert. Am Beispiel der Patentübersetzung soll die Arbeit sowohl die Begriffe „KI“ als 

auch „Deep Learning“, die häufig mit NMT assoziiert werden, entmystifizieren und einen 

zugänglichen Leitfaden für ÜbersetzerInnen und ÜbersetzungswissenschaftlerInnen 

bereitstellen, mit dem sie ihre eigenen NMT-Modell erstellen können, diese verstehen und 

damit arbeiten können.  

Es wird eine theoretische Grundlage für MT bereitgestellt, auf Basis derer die Erstellung 

und Bewertung von fünf Transformer NMT-Modellen vorgestellt wird, um die Auswirkung der 

Datenauswahl vor dem Modelltraining zu bestimmen. Zu diesem Zweck wurden die fünf 

Modelle auf fünf verschiedene Patentdatensätze trainiert, die über die Internationale Patent 

Klassifizierung nach Domänen sortiert wurden: Ein gemischter Datensatz, ein Optikdatensatz, 

ein Datensatz, der alle Domänen außer Optik enthält, und zwei kleinere Versionen des 

gemischten und optikfreien Datensatzes. 

Es wurde festgestellt, dass die Leistung des Netzwerks je nachdem, wie viel und welche 

Daten für das Training verwendet wurden, erheblich schwankte. Während die gängige 

Auffassung, dass mehr Daten zu besseren Ergebnissen führen, bei der automatischen 

Auswertung zutrifft, wurde gezeigt, dass das domänenspezifische Training dazu beitragen kann, 

die Ergebnisse bei der menschlichen Auswertung zu verbessern, selbst wenn weniger Daten 

verwendet werden. Tatsächlich konnte eine große Diskrepanz zwischen der automatischen 

Bewertung (BLEU-Metrik) und der menschlichen Bewertung (erweiterte SAE J2450-Metrik) 

beobachtet werden, wobei das Modell mit der schlechtesten Leistung in der automatischen 

Metrik die besten Ergebnisse bei der menschlichen Bewertung erzielte. Die Analyse des NMT 

Outputs unter Bezugnahme auf den Quelltext hebt auch einige der Probleme hervor, mit denen 

sich Post-EditorInnen bei der Nachbearbeitung von NMT-generierten Texten 

auseinandersetzen werden müssen. 


