

MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master‘s Thesis

„Neural Machine Translation

- How machines learn to translate patent language -

An overview, evaluation and tutorial“

verfasst von / submitted by

Christian Lang BA

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Arts (MA)

Wien, 2020 / Vienna 2020

Studienkennzahl lt. Studienblatt /

degree programme code as it appears on

the student record sheet:

UA 070 331 342

Studienrichtung lt. Studienblatt /

degree programme as it appears on

the student record sheet:

Masterstudium Translation Deutsch Englisch

Betreut von / Supervisor:

Mitbetreut von / Co-Supervisor:

ao. Univ.-Prof. Mag. Mag. Dr. Werner Winiwarter

2

3

Table of Contents
Abbreviations .. 6

Acknowledgments ... 7

1. Introduction ... 8

2. A brief history and the current state of machine translation .. 11

3. Rule Based Machine Translation (RBMT) .. 14

4. Statistical Machine Translation (SMT) ... 21

4.1 Word-based SMT .. 21

4.1.1 The word-alignment model ... 24

4.1.2 The translation model .. 26

4.1.3 The IBM models .. 27

4.1.4 The language model .. 29

4.1.5 Combining the models: The noisy-channel model .. 31

4.1.6 The limits of word-based SMT .. 32

4.2 Phrase-based SMT ... 33

4.2.1 The phrase translation table (phrase-based translation model)...................................... 35

4.2.2 Weighted models (log-linear modeling) .. 39

4.3 Tree-based SMT .. 40

4.4 Translation as decoding ... 41

4.5 SMT today (end of 2019) .. 43

5 Neural Machine Translation (NMT) ... 44

5.1 A closer look ... 44

5.1.1 Linear regression and the Perceptron .. 45

5.1.2 Training of neural networks: Backpropagation ... 49

5.1.3 Vectors: How neural networks “think” ... 50

5.2 Types and variants of neural networks .. 52

5.2.1 Multi-Layer Perceptron (MLP) ... 54

5.2.2 Convolutional Neural Network (CNN) ... 55

5.2.3 Recurrent Neural Networks (RNN) ... 56

5.2.3.1 The LSTM RNN (Long Short-Term Memory) ... 58

5.2.3.2 Encoder-Decoder modeling ... 61

5.2.3.3 Attention mechanism ... 63

5.2.4 The Transformer model ... 65

5.3 Summary ... 68

6 NMT in patent translation ... 70

6.1 A look at patent machine translation ... 70

4

6.2 The EPO’s Patent Translate... 72

6.3 WIPO Translate ... 75

6.4 Summary ... 78

7 Creating a Japanese-English Patent NMT model .. 79

7.1 Procuring the training data .. 82

7.1.1 Pre-processing of data ... 83

7.1.2 Tokenization .. 84

7.2 Which NMT toolkit to use ... 86

7.2.1 Tensorflow NMT ... 87

7.2.2 OpenNMT-py .. 88

7.2.3 OpenNMT-tf .. 89

7.2.4 nmt-Keras .. 90

7.2.5 Joey NMT .. 91

7.2.6 Selecting the most adequate toolkit ... 92

7.3 General recommendations before starting ... 95

7.4 Preparing the data (OpenNMT-tf) ... 100

7.4.1 Preparing datasets .. 100

7.4.1.1 Converting files to UTF-8 ... 102

7.4.1.2 Separate languages and store the sentences in line-aligned files 103

7.4.1.3 Tokenization of the files .. 104

7.4.1.4 Creating the vocabulary files ... 106

7.4.1.5 Creating the domain-controlled training data .. 106

7.4.1.6 Additional training data ... 109

7.5 Training (OpenNMT-tf) .. 110

7.5.1 Configuration and hyperparameters .. 111

7.5.2 Monitoring training ... 114

7.5.2.1 The BLEU metric .. 114

7.5.2.2 Loss ... 116

7.5.2.3 Perplexity ... 117

7.5.3 Training observations .. 118

7.6 Translating with the trained models and evaluation .. 120

7.6.1 BLEU evaluation ... 121

7.6.2 Human evaluation .. 123

7.7 Conclusion ... 141

8 Summary ... 144

8.1 Summary in German ... 145

5

8.2 Discussion and outlook ... 147

Bibliography .. 150

I. Appendix I: SAE J2450 evaluation ... 159

II. Appendix II: Code and scripts used in this thesis .. 162

Abstract ... 165

Abstract auf Deutsch ... 166

6

Abbreviations

AI Artificial Intelligence

ANN Artificial Neural Network

API Application Programming Interface

BPE Byte-Pair Encoding

CLI Command Line Interface

CNN Convolutional Neural Network

CPU Central Processing Unit

DL Deep Learning

EM Expectation Maximization

GPU Graphics Processing Unit

HDD Hard Disk Drive

LM Language Model

LSTM Long Short-Term Memory

MLP Multi-Layer Perceptron

MT Machine Translation

NLP Natural Language Processing

NMT Neural Machine Translation

ODWS Overall Document Weighted Score

OM Omission

PSD Parallel Sentence Data

RBMT Rule-based Machine Translation

RNN Recurrent Neural Network

SA Word Structure or Agreement Error

SE Syntactic Error

SL Source Language

SMT Statistical Machine Translation

SSD Solid State Drive

ST Source Text

TF TensorFlow

TL Target Language

TQA Translation Quality Assessment

TT Target Text

UA Universal Attributes

UR Universal Relations

UW Universal Word

WM Wrong Meaning

WT Wrong Term

7

Acknowledgments

My heartfelt gratitude goes to my primary supervisor, Prof. Werner Winiwarter. He helped me

troubleshoot several issues and gave me valuable insights into Computer Linguistics and the

mathematics behind the concepts powering machine translation. He also meticulously checked

several versions of my thesis while drawing from a seemingly endless pool of patience and

knowledge. My thanks also go to my co-supervisor, Prof. Gerhard Budin, who was always

quick to respond to my queries and provided valuable input for translation studies references

and methods that would fit the requirements of this thesis.

I would like to thank all my colleagues who shared their experience with, observations

of and questions regarding machine translation with me. The possibility to converse about the

topic with other people who are confronted with translation every day was a very big help. Big

thanks go to fellow translator, Patrick Hiehs, who helped with the human evaluation part of this

thesis and gave valuable opinions on the performance of the trained models. Likewise, talks

with those who come from the field of Computer Linguistics, like Bartholomäus Wloka, who

is now a senior researcher at the Center for Translation Studies in Vienna, really helped shape

the way I approached this thesis.

Thanks also go to my girlfriend, Maria Katzlinger, for enduring my endless ramblings

about the workings of NMT, her participation in the discussion and the understanding for my

late-night tinkering at the PC.

Last but not least, I would like to thank my parents, Sabine Raffeiner and Roland Lang,

who never stopped me from doing the things I love (tinkering with computers since the age of

5, amongst other things) and enabled me to follow my passions with the study of Japanese and

Translation.

8

1. Introduction

Machine Translation (MT) has recently gained a lot of momentum again, as deep learning

methods based on artificial neural networks were (re-)introduced into the MT research sphere.

During my master’s course at the Center for Translation Studies in Vienna, the way that

Machine Translation (MT) and Computer Assisted Translation (CAT) tools were approached

varied wildly from one lecturer to the other. One part of lecturers was very open to exploiting

all tools available in order to provide the most efficient translation; the others warned us from

overly relying on computer tools and focused on teaching us ‘traditional’ translation tactics and

know-how for manual translation. This dualism is something even observed in studies regarding

the acceptance of machine translation (see Cadwell et al. 2018). I believe that the more

conservative stance was positive in the sense that it allowed us students to gain practical

knowledge, skills and an understanding of the many possible issues one might face when

translating, especially when not relying on supporting tools. However, I also believe that

ignoring or antagonizing the developments in MT research is of no benefit and in fact very

dangerous for translators to be. While we were taught basic concepts of machine translation,

not a lot of time was spent with the concrete workings of how machine translation systems

operate, and this may create a sense of alienation and threat coming from MT amongst

Translation Studies students. Adding to this, we keep reading a fair share of doomsayer articles

about MT systems replacing translators, as, on the face of it, it (once again) looks like machine

translation is only a few steps away from being solved. While the rise in quality cannot be

dismissed, it is mostly agreed upon by experts, that machine translation still has many glaring

issues that need tackling and during our studies, we were generally promised that, as human

translators, we will remain ‘relevant’ as machines will not be able to provide high-quality output

any time soon. But aside from anecdotal evidence, no proper explanation as to why that is was

provided.

While the evaluation of translation quality is in itself a very complex topic, neural

network-based translation methods made big strides when it comes to a fluent and therefore

‘perceived’ high-quality output. I believe it is therefore imperative for translators to be at least

somewhat informed on how these systems work, where they still don’t, and how the Computer

Linguistics approach the development of such systems. In fact, I believe, that giving translators

a deeper knowledge about machine translation systems and development can benefit not only

the translators but also MT research and the translation industry in general. Ideally, a more

constructive collaboration between the two camps, translators and MT developers, should be

strived for.

9

Translators may be able to contribute greatly to improving these systems and,

conversely, stay relevant in this time of instant translations and high-quantity, subpar-quality

texts (think “the internet”). For this, translators need to understand and to some degree work

with these systems. As a patent-translator myself, I have found that recent advances in neural

machine translation are really shaping the form in which patent organizations like the EPO or

the WIPO can offer quite usable translations by automatic means on their websites.

Instantaneously and for free. At the same time, using these services or just perusing many of

the translated content available today, I have also witnessed plenty of times where the automatic

translation fails to convey the correct meaning or downright obfuscates the original content.

The risk involved in using automatic translations remains very high, especially if there is no bi-

lingual postediting step involved. In fact, the risk is even higher today as it may not be

immediately recognizable as a (faulty) machine translation, since the text may look correct in

the target language. Problematic smaller nuances may even pass by undetected in a bilingual

revision made by editors or translators, especially if the workings of neural networks are not

well known. This is something that can be observed outside of the translation paradigm as well,

with questionable overreliance on the so called “AI” or “Deep-Learning” solutions, that really

seem to be omnipresent.

While there may be some talk about these “AI-Systems” replacing hitherto human

expertise, this scenario should be considered as rather unlikely as rather than disappearing, the

job of translators will more likely adapt to the necessities of the times, with more focus on pre-

and post-editing. An area where both the linguistic as well as the translational expert knowledge

can be put to good use and will be more important as reliance on MT increases in the industry.

However, this may prove a daunting task and turn out as pure menial work for translators that

have no insight into how artificial neural networks and the machine translation built upon them

works.

This work therefore represents an attempt to have a more in-depth look into machine

translation, especially the one powered by artificial neural networks or “AI”. The attempt is to

form an overview from the point of view of a Translation Studies student and not an IT student.

In this work I try to learn how neural translation models are trained and which data preparation

steps would help with the creation of a better translation model. Since one of my main sources

of income are patent translations for the EPO, the thesis will focus on this very specific domain.

While in general my working languages are German-Japanese for Patents, I will focus on

English-Japanese as this should broaden the accessibility of this thesis and, on a more pragmatic

note, simply more parallel text data is freely available in that language pair.

10

It is not the aim of this thesis, to create a new state-of-the-art translation model, but

rather I hope to be able to shine some light on the practices of MT research and find some

conclusive answers as to how translators as experts in their field can be more involved in the

research regarding this topic. The thesis will take a more down-to-earth look at the recent

developments in MT research and should also fulfill the purpose of a sort of tutorial for anyone

with little to no IT background and interest in exploring (N)MT.

The thesis also aims to challenge the common conception of the MT research

community, that more data will always equal in better results: The final part of this thesis will

be experimental and focus on the creation of several NMT models, using freely available open

source NMT/NLP-toolkits and patent text data provided by the NTCIR1. For creating the

models, the data used will be manipulated in a pre-processing step to find out whether it is

helpful to specialize a neural translation model onto a specific domain, or whether it is better to

provide the network with as much data as possible. Furthermore, aside from the common

automatic evaluation of the models’ performance (through the BLEU metric), a human

evaluation based on the SAE J2450 metric will also be provided.

In order to give a general idea about MT, all the major MT approaches as well as a short

historical overview of MT will be provided before the more practical part of this thesis.

1http://research.nii.ac.jp/ntcir/permission/ntcir-10/perm-en-PatentMT.html (accessed on January 20, 2019)

http://research.nii.ac.jp/ntcir/permission/ntcir-10/perm-en-PatentMT.html

11

2. A brief history and the current state of machine translation

Machine Translation (MT) as a concrete concept arose in the late 1940’s when mostly political

tensions between countries of different languages created the need for fast translations of texts

from one natural language to the other. While some concepts were already quite promising and

indeed close in theory to state-of-the-art machine translation approaches of today (see Weaver

1949, Hutchins 2007), the first systems, like the one developed by IBM in Georgetown

(Hutchins 2004), were mostly dictionary- and word-based, disregarding most of the

fundamental linguistic problems translators face (see Kaiser-Cooke 1993, Hutchins 2010). As

such, they failed to live up to the (unreasonably) high expectations culminating in the

publications of the ALPAC report in 1966 2 , which prompted government(s) and many

supporters to cut their funding, basically halting development of MT in the US and Britain for

several years.

Canadian and European investment continued however, as the need for translation

within their bi-/multi-lingual communities became ever more prominent. In Europe this led to

the adoption of an English-French version of the SYSTRAN3 system and the establishment of

EUROTRA4, while Canada developed the METEO system specifically designed for translation

of weather forecasts. These systems were built on the foundation laid in the 1960’s, however

with linguistic rules added for the machine to follow during the translation decision. Such

systems are regarded as Rule-based Machine Translation (RBMT) or as the ‘Classical Approach’

of MT and by their nature of following linguistic rules that have been defined manually by

linguists, they offer very consistent and predictable translation quality, however at the cost of

high-effort maintenance, sub-optimal handling of exceptions (especially exceptions to the fed

rules) and usually rather poor fluency.

Research regarding RBMT continued at a steady rate in Europe and Japan (Carbonell et

al. 1994), however different approaches to MT started to emerge. While in Europe the research-

focus shifted to realizing an interlingua-based system, a system which could represent meaning

by means of an interlingua independent of a specific language, Japan’s focus shifted to what

might be considered the opposite of RBMT: example-based translation, which uses a bilingual

2 The ALPAC report of 1966 harshly judged the performance of MT-Systems of the time, especially pointing out

the low return despite massive funding by government and other supporters and famously cited as ‘there is no

immediate or predictable prospect of useful machine translation” (see ALPAC 1966; Hutchins 1996:6; Cooke

1993:18)
3 SYSTRAN, the company, was founded by Dr. Peter Toma in 1968. SYSTRAN, the MT-System, was one of

the few machine translation systems to survive the major decrease of funding after the ALPAC report of 1966

and an English-Russian version of it was adopted by the US Air Force in 1970 (Koehn 2010:16).
4EUROTRA was an ambitious machine translation project that was funded by the EC and ran from 1978 to 1992

(Cooke 1993:43).

12

corpus with parallel texts as its main knowledge base at run-time (see Nagao 2003; Koehn

2010:17).

Japan’s data-driven translation approach might be considered a forerunner to the next

big step that was to occur in MT-history…

Approaching the end of the 1980s, the mathematical approach of IBM-scientists (Brown

et al. 1993) of the IBM Candide project (Berger et al. 1994) laid the groundwork to the

Statistical Machine Translation (SMT). Also based on parallel texts, machines would use

statistical likelihood to evaluate translation possibilities. However, while the work was of major

importance to the creation of SMT as we know it today, it was founded on a word-based

approach. Once the source-code for IBM’s MT approach was made public, researchers soon

realized that a word-based MT would not be able to deliver results of satisfactory quality and

so follow-up efforts soon developed the so called phrase based models (see Marcu & Wong

2002, Koehn, Och, & Marcu 2003), which became the de facto standard in MT research for

over a decade. Thanks to these advancements, the increased processing power of computers,

readily available huge amounts of data to create viable statistical results and freely accessible

SMT-Frameworks (e.g. Moses5), studies regarding statistical machine translation gained a lot

of momentum in the 2000’s and many very promising approaches were laid out for further

improving SMT.

However, the continuous adding of features to SMT also lead to stagnation in the

development of SMT as systems started to incorporate more and more components to improve

translation quality, but also needed a lot more maintenance to function properly. This posed a

problem, as during recent years the need for instantaneous and effortless translation was

bolstered by an ever-growing userbase of the internet and specifically social media as well as

globalization in general.

Methods to make use of highly parallelized workloads, especially such that can be run

on GPUs (Graphics Processing Units) instead of the conventional CPUs (Central Processing

Units) allowed a lot more performance to be extracted from current computational equipment.

While this development at first also allowed for a more efficient way of statistical data

elaboration, this shift in technology also made previously only theorized approaches to Machine

Translation feasible, especially those that were mostly coined ‘AI-approaches’. However, rather

than painstakingly trying to ‘teach machines human knowledge’ (see Kaiser-Cooke 1993:48),

the research paradigm has shifted towards making machines ‘learn language’ on their own

terms by using large corpora of ‘real-word’ data.

5 http://www.statmt.org/moses/ (accessed March 03, 2019)

http://www.statmt.org/moses/

13

Enter Neural Machine Translation (NMT). Based on neural machine learning, which is

often used synonymously with Deep Learning and AI in the broader media, this ‘new’ approach

to machine translation is, at the time of writing, generally regarded as the new state-of-the-art

in machine translation and the research surrounding it is booming (M.-T. Luong 2016:13;

Koehn 2017:6; Dabre et al. 2017:1). While it actually still is a sort of Statistical Machine

Translation – the machine is provided with a vast amount of data, based on which it will

recognize statistical occurrences within said data – in a broader sense it will use this data to

essentially learn how a given language is constructed on its own. Additionally, it can do so

while looking at a whole sentence (or a sequence) instead of segregated phrases as was the case

with SMT.

While NMT brings many improvements to the table, especially in terms of fluency of

the output and manageability of big corpora, it does also come with its fair share of problems

as well, especially in terms of managing and controlling the output provided by the machine:

While a lot of the time-consuming manual intervention that was needed for prior methods of

MT is no longer required with NMT, as the machine basically learns the language by itself from

mono- and/or bilingual corpora, a lot of the decision making during the translation process and

training of translation models happens in what is sort of a black-box for the maintainer of the

system, which results in errors being very hard if not impossible to track down. Approaches to

refine NMT are therefore mostly made in a pre- or post-processing step of the translation as,

for example, unknown words are replaced via an external dictionary look-up (Luong 2016).

In this thesis I try to explore the impact manual preselection of training data can have

on the results of an NMT output, especially whether it is sensible for patent translation where a

very controlled language is used and therefore data should mostly only vary on a semantic and

lexical level.

In order to provide an adequate background to the experimental part of this thesis, the

following chapters will give an overview of the major MT methods that have been described

above. A more in-depth look at how state-of-the-art NMT models operate will be provided in

Chapter 5.

14

3. Rule Based Machine Translation (RBMT)

Rule-based machine translation (RBMT), or the ‘Classical Approach’ of machine translation,

relies on linguistic information about the source and target text/language that is gathered from

mono-, bi- or multilingual dictionaries and grammars covering the main semantic,

morphological and syntactic regularities of each language respectively. It represents the logical

evolution of the first MT systems developed back in the 1950s. RBMT systems may be divided

into three major approaches:

1) Dictionary-based or direct translation

2) Transfer-based translation

3) Interlingua-based translation

The direct translation method simply maps the input of one language to the matching output

of another language based on a dictionary lookup (hence dictionary-based) and by following

some basic hand-written rules of word-reordering and possibly morphology. These systems are

not built on any particular linguistic theory, instead they mostly rely on a sequential flow of

word analysis and subsequently text generation (morphology/rearrangement). Typical stages in

a direct translation system are as follows (Tucker 1987:23 in Kaiser-Cooke 1993:24):

• Source text dictionary look-up and morphological analysis

• Identification of homographs

• Identification of compound nouns

• Identification of noun and verb phrases

• Processing of idioms

• Processing of prepositions

• Subject-predicate identification

• Syntactic ambiguity identification

• Generation and morphological processing of target text

• Re-arrangement of words and phrases in target text

While direct translation is arguably the least sophisticated approach, it is ideally suited for

translation of long lists of phrases on a sub-sentence level, like inventories or simple catalogs

of products and services. The limitations of such direct mapping strategies become apparent

once the task is to translate full sentences, especially in languages with vastly different

grammars. Many grammatical constructs cannot be directly mapped into a different language

and cannot be generally treated in the ‘idiom processing’ stage. For example, a specific

15

language might lack a certain case used in the source text or use a different grammatical

construct to express the same meaning.

Because of these problems, RBMT development moved to different strategies that try

to interpret the ‘meaning’ of a sentence by means of linguistical rules inherent to syntax and

lexical components in context. Two main strategies are employed for this kind of approach: the

transfer-based method and the interlingua-based method. See Figure 1 for an illustrated

representation of these methods as proposed by Hutchins & Somers (1992:107).

Figure 1: Direct-, transfer- and interlingua-’pyramid’ (Hutchins & Somers 1992: 107); base image taken from wiki-media 6.

The transfer-based translation performs a morphological and syntactic analysis, trying to

capture the ‘meaning’ of a source language (SL) on an abstract level, which is then transferred

by applying the corresponding rules and ‘equivalent’ translations for the target language (TL).

As such, the transfer strategy is generally language-pair specific. During the translation process

the source language is parsed into an abstract structural representation and then transferred

using this information as well as lexical information. During this transfer process, a bilingual

dictionary forms the center piece of the method, as it provides ‘translation equivalents’ for the

two languages (Kaiser-Cooke 1993:25). The translation basically consists of three steps (Popa

2008:152-153, Tyers 2013:5):

6 https://en.wikipedia.org/wiki/Transfer-

based_machine_translation#/media/File:Direct_translation_and_transfer_translation_pyramid.svg (accessed

March 30, 2019)

https://en.wikipedia.org/wiki/Transfer-based_machine_translation#/media/File:Direct_translation_and_transfer_translation_pyramid.svg
https://en.wikipedia.org/wiki/Transfer-based_machine_translation#/media/File:Direct_translation_and_transfer_translation_pyramid.svg

16

1) Analysis: Describes the SL text linguistically while also relying on a dictionary, forming

an SL intermediate representation of the text (SL IR).

2) Transfer: Transforms the results of the analysis step (SL IR) into an intermediate

representation for the TL (TL IR) by determining the linguistic and structural

equivalents between the two languages.

3) Generation/Synthesis: Produces a text in the TL based on the TL IR using a dictionary.

ST—> SL IR—>TL IR—>TT

Although it is a big step up from a direct translation, it still aims at providing a translation that

represents a full ‘equivalent’ match of the source text in terms of lexical and structural units

and the use of a simple bilingual dictionary with fixed ‘equivalent’ translations does limit the

scope of this approach. Depending on the level of abstraction of the intermediate representation,

we may group transfer-based RBMT into two groups: shallow transfer and deep transfer.

Shallow transfer, where the intermediate representation is usually based on morphology or

shallow syntax, may suffice for related language-pairs (Tyers 2013:4; Forcada et al. 2011).

However, for more distant languages, like, for example, English and Japanese, a deeper analysis,

including full syntactic or even semantic information is likely needed. Such a transfer would be

called a deep transfer.

The interlingua-based translation goes one step further by trying to represent meaning

in an interlingua that is independent of the translated languages or in fact any language, making

the intermediate representation of the text language agnostic.

ST—> Interlingua—>TT

This idea of representing meaning in an explicitly formal way harkens back to the

Chomskyan notion of linguistic universals, where it is assumed that there is a definite

underlying meaning within a linguistic construct (deep structure), no matter what the language

or grammatical structure (surface structure) is. This sparked a research trend in the 1980s and

1990s that was picked up by both researchers from the fields of artificial intelligence and

computational linguistics alike (see Koehn 2010:16). The appeal of such a system makes sense,

as translating involves the expression of meanings in different languages. However, as Koehn

pointed out “the problem of representing meaning in a formal way is one of the grand challenges

of artificial intelligence with interesting philosophical implications.” (Koehn 2010:17). Cooke

also argues that it is difficult to assess just how much of the ‘meaning’ a translator, or in this

17

case the machine, would need to grasp in order to provide an adequate translation, arguing that

“the old division between subject knowledge, linguistic knowledge and real-world knowledge”

in MT research remained, and the approach still disregards the choices human translators make

while relying on their expert knowledge as a translator (Kaiser-Cooke 1993:50). Of course, it

seems plausible that it would be very difficult, if not impossible to hard-code general rules for

the decision making a translator follows, as such decisions are mostly made on a case-by-case

basis and indeed are quite subjective.

Two notable projects for formal semantic representation are the UNL (Universal

Networking Language)7 and AMR (Abstract Meaning Representation)8 projects. The UNL

effort was started in 1996, as an initiative of the Institute of Advanced Studies (IAS) of the

United Nations University (UNU) in Tokyo, Japan. In 2001 the UNDL Foundation was formed,

constituted out of a world-wide network of universities and research institutes from 14 countries

responsible for the further development and management of the UNL project. The mission of

the project was to provide the methods and tools for overcoming the language barrier on the

World Wide Web in a systematic way (see Hong & Streiter 1999 and 9). As such this language

is meant to express meanings in the same standardized way as HTML presents its content. It is

built around the concept of Universal Words (UWs), Universal Relations (URs) and Universal

Attributes (UAs). The system therefore aims to convert the ST to the UNL by forming nodes

(the UWs) that are a human-language independent and machine-tractable representation of the

core meaning of a certain word and subsequently adding information about relations between

these concepts and specific attributes of the nodes (i.e. grammatical annotation, connotations,

etc.); this process is called enconverting. Because the process is so similar to the analysis step

in RMBT systems, slightly modified RBMT parser and recognizer modules may be used for

the enconversion (Hong & Streiter 1999:3-4). Usually this process is still mostly handled by

humans that have to hand-edit the automatically generated annotations, so that they fully and

correctly include all the needed mark-ups (Martins 2010:2). Still, some information inherent to

the ST may be lost, as the UNL only conveys concepts that are believed to be universally

available in all languages and that have, at some point, been modeled by hand. For example,

the UNL did originally not possess the capability to model the speech style, the tenor (the

speaker-hearer relation) nor the 'channel of communication', so that such properties of a natural

language expression simply disappeared (Hong & Streiter 1999:4).

7 http://www.unlweb.net/unlweb/ (Accessed March 30, 2019)
8 https://amr.isi.edu/ (Accessed April 4, 2019)
9 https://web.archive.org/web/20040602215955/http://www.iai.uni-sb.de/iaien/en/unl.htm (Accessed April 4,

2019)

http://www.unlweb.net/unlweb/
https://amr.isi.edu/
https://web.archive.org/web/20040602215955/http:/www.iai.uni-sb.de/iaien/en/unl.htm

18

In summary, UNL can be seen as a kind of mark-up language which represents not the

formatting but the core information of a text. The core information being the most common

interpretation of the text, according to the hand-modeled UWs, UAs and URs. As such it can

be embedded in the eXtensible Mark-up Language (XML), and as HTML/XML annotations

already can be realized differently in the context of different applications, machines, displays,

etc., so UNL expressions can have different realizations in different human languages. By using

a language-specific deconverter that can generate a human-language output from the annotated

UWs, one of the fundamental ideas behind the UNL was the creation of “globalized” versions

of web-pages or documents, that could then be easily displayed in several languages by having

the browser or a plug-in deconvert the UNL into a specific chosen language. So, while the UNL

can be used as an interlingua, its primary objective is to serve as an infrastructure for handling

knowledge in a natural-language agnostic way, rather than acting as an anchor point for

translation between individual languages. In many ways, the UNL is not fit to cover all aspects

of a good translation, as it always only represents one reading of an ST, which is in fact reliant

on the interpretation hard coded in the knowledge base of the UNL.

AMR on the other hand was from the get-go never intended to be used specifically in

machine translation, as an interlingua between SL and TL or to generate natural language with

a computer. That said, the effort ‘hopes to spur new research in natural language understanding,

generation and translation’10. The idea is that one AMR representation should cover a variety

of different formulations of sentences which convey the same meaning. It is a fairly recent

effort, with many of the latest contributions dating back to 2016/2017. AMR is heavily geared

towards English grammar and vocabulary and does therefore not share the strife for universality

as UNL does. Because of that, the researchers behind AMR do officially not refer to the AMR

as an interlingua (see 11). The AMR Bank is manually constructed by human annotators at the

Linguistic Data Consortium, SDL, the University of Colorado's Center for Computational

Language and Education Research (CLEAR) and the University of Southern California's

Information Sciences Institute (ISI) and Computational Linguistics at USC. It exists to

standardize annotation formatting and is still actively developed. The current AMR 1.2 (May

2019) “is over-simple in many ways”, as, for example, it drops grammatical number, tense,

aspect, quotation marks, etc., does not deeply capture many noun-noun or noun-adjective

relations and does not include deep frames for words and concepts such as ‘earthquake’ (with

roles for magnitude, epicenter, casualties, etc.) or ‘pregnancy’ (with roles for mother, father,

baby gender, time since inception, etc.).12

10 https://amr.isi.edu/ (accessed April 4, 2019)
11 https://github.com/amrisi/amr-guidelines/blob/master/amr.md (accessed April 4, 2019)
12 https://github.com/amrisi/amr-guidelines/blob/master/amr.md#amr-slogans (accessed April 4, 2019)

https://amr.isi.edu/
https://github.com/amrisi/amr-guidelines/blob/master/amr.md
https://github.com/amrisi/amr-guidelines/blob/master/amr.md#amr-slogans

19

While promising strides were made, interlingua-based RBMT systems therefore have

yet to reach the results that are expected from machine translation today. In fact, as we saw, a

true interlingua has yet to be fully developed. However, such an endeavor will only get

increasingly complex the broader the language-spectrum the interlingua aims to cover. This is

why AMR started small by mainly focusing on an abstract representation of the meaning of

texts in English, with the hopes that the concepts and standards formulated can then be brought

over to other languages and projects (see for example Damonte & Cohen 2018; Moreda et al.

2018). Still, the development of interlingua systems was important for the success of bigger

projects like the German Verbmobil, because they allowed for a standardized representation of

semantic and syntactic features and a better interface between natural languages and machine.

However, in later phases, Verbmobil also relied on statistical machine translation for its

translation part (see Ney et al. 2000).

As written in the introductory overview of the MT history, RBMT systems offer a few

advantages over the other major MT solutions (for reference, see SYSTRAN13 Website; Tyers

2013:5-6):

+ Consistent and predictable quality

+ Out-of-domain translation quality

+ Are aware of grammatical rules

+ High performance and robustness

+ Consistency between versions

+ Do not require vast amounts of data

Conversely, there are some intrinsic disadvantages compared to the data-driven approaches:

- Lack of fluency

- Hard to handle exceptions to rules

- High development and customization costs

13 http://www.systransoft.com/systran/translation-technology/what-is-machine-translation/ (accessed March 20,

2019)

http://www.systransoft.com/systran/translation-technology/what-is-machine-translation/

20

RBMT was used in many commercial solutions and would later go on to be implemented in

SMT-systems as well. Some of the first systems in actual use include:

• SYSTRAN (Used by the European Commission until 2010)14

• METAL15

• MÉTÉO (Used until 2001 by Environment Canada for weather forecast translation)

• EUROTRA16

With the advent of the internet and the very active computational linguistics community, many

open-source RBMT systems also emerged. Two notable efforts are:

• Apertium: A shallow-transfer-based RBMT (Forcada et al. 2011)17

• GramTrans: Deep-transfer-based RBMT18 (deep-transfer only for Danish)

Today, RBMT systems are still used in specialized environments, but in the broad sense, they

were replaced by or are used to enhance their data-driven ‘successors’ for most commercial

solutions.

14 https://webgate.ec.europa.eu/fpfis/mwikis/thinktank/index.php/European_Commission_Machine_Translation
(accessed March 20, 2019)
15 http://www.ccl.kuleuven.ac.be/about/METAL.html (accessed March 20, 2019)
16 http://www-sk.let.uu.nl/stt/eurotra1.htm (accessed March 20, 2019)
17 https://www.apertium.org/ (accessed April 10, 2019)
18 https://gramtrans.com/ (accessed April 10, 2019)

https://webgate.ec.europa.eu/fpfis/mwikis/thinktank/index.php/European_Commission_Machine_Translation
http://www.ccl.kuleuven.ac.be/about/METAL.html
http://www-sk.let.uu.nl/stt/eurotra1.htm
https://www.apertium.org/
https://gramtrans.com/

21

4. Statistical Machine Translation (SMT)

This chapter about Statistical Machine Translation is based mostly on Phillip Koehn’s excellent

Statistical Machine Translation (2010) and is an attempt to explain the workings of the different

variations in SMT in simpler terms.

Knowing about the basic concepts of how SMT systems work and how they are fed with

data is going to be beneficial in understanding how state-of-the-art NMT systems work. In fact,

many key concepts still play an important role for the neural models. With regards to NMT,

this chapter shall also provide some insight into how SMT is used today and how it was used

prior to the advent of NMT.

As written in the introductory chapter, the advent of SMT – first models were pioneered

by IBM in 1993 (Brown et al. 1993) – laid the groundwork for a new wave of research

enthusiasm, but the wave of general hype around SMT took a little longer to take off as

interlingua-based research was still in the center of attention. In fact, while Koehn goes as far

as to call the emergence of SMT in the 1990s “groundbreaking”, he also notes that “in retrospect

it seems the world was not quite ready for it” (Koehn 2010:17).

SMT truly took off around the year 2000, as tools which made use of the IBM algorithms

developed in 1993 were made widely available under a toolkit named GIZA (Al-Onaizan et al.

1999). Koehn further points out, that funding by DARPA19 as well as the US response to the

events of 9/11 played a role in the renewed interest of automatic translation of foreign

languages, especially Arabic (2010:18).

Another important factor, as was also mentioned in the introduction, was the increase in

computing power, data storage and general availability of large text resources thanks to the

growth of the internet. Generally, anyone with a somewhat recent computer system at home

could build their own machine translation system based on these freely available resources.

This was further bolstered by the availability of refined and free open-source frameworks like

GIZA++20 (Och & Ney 2003) and Moses21 (Koehn et al. 2007).

4.1 Word-based SMT

While word-based SMT has been all but replaced by its phrase-based successor, it still

introduced many of the basic concepts that form the foundation of SMT in general. Thanks to

its simplicity it is easier to understand than more recent models and many key ideas are still

relevant for phrase-based SMT and in fact NMT. This section will provide a general overview

19 Leading funding agency in the US.
20 http://www.statmt.org/moses/giza/GIZA++.html (accessed April 19, 2019)
21 http://www.statmt.org/moses/index.php?n=Main.HomePage (accessed April 19, 2019)

http://www.statmt.org/moses/giza/GIZA++.html
http://www.statmt.org/moses/index.php?n=Main.HomePage

22

of the tactics used in word-based SMT. For an in-depth discussion and simple enough to

understand mathematical explanation of word-based models, Koehn’s Chapter 4 (pp. 81-125)

in Statistical Machine Translation (2010) is highly recommended; the interested and

mathematically adept reader may also refer to IBM’s original paper on their SMT models

(Brown et al. 1993).

Word-based SMT is based on lexical translation, that is the translation of isolated words.

Basically, this requires a dictionary that maps words from one language to another. So, just as

with direct- and transfer-based RBMT, we need clear word alignments between the language-

pairs. However, SMT does not use a fixed bilingual dictionary, but theoretically considers all

the possible translations as they are found in the data. The data, in that case, is generally a large

parallel corpus between two languages that is used to create a dictionary and in fact the word-

alignment on a statistical basis. But let’s first stick to Koehn’s example of Haus (Koehn

2010:81) in a German-English dictionary22:

Haus – house, building, home, household, shell.

The challenge is to choose the right translation out of a variety of translations for a specific

word; human translators would likely look at the context, domain, the definitions or eventually

even follow their feel for a language and then decide. RBMT used a bilingual dictionary and

then made use of hand-crafted rules to decide. Word-based SMT however relies on a so-called

lexical translation probability distribution for the decision. What this means is that the SMT

system first needs to align each SL word to TL word(s) in a sentence-aligned parallel corpus by

statistical likelihood. This is achieved by the means of a statistical word-alignment model.

After that a translation model needs to give a probabilistic score to each word-alignment. In

formulaic terms we would look at the following function:

𝑝𝑓: 𝑒 → 𝑝𝑓(𝑒)

Equation 1: Probability function 𝑝𝑓

The function 𝑝𝑓 returns a probability for each choice of TL translation e for a certain SL word

f (in this example: Haus) (Koehn 2010:82). The function has two properties shown in Equation

2 and Equation 3:

22 Koehn quotes this as a simplified version of an entry in Harper-Collins (1998) (Koehn 2010:81)

23

1) The sum of all probabilities must be 1.

∑ 𝑝𝑓(𝑒) = 1

𝑒

Equation 2: The sum of all probabilities 𝑝𝑓(𝑒) must be 1

2) All probabilities for the different variables e (the translations) in the function must be in

the range of 0 to 1.

∀𝑒: 0 ≤ 𝑝𝑓(𝑒) ≤ 1

Equation 3: The probabilities are expressed between 0 and 1

With these requirements fulfilled, it is possible to find the most probable translation by simply

counting the occurrences of a certain word-pair in a vast parallel corpus of text. If the corpus

was several dictionaries, the word which appeared more often as the translation of Haus (which

would probably be house) would get the highest score, while all other solutions would get a

lower score. The idea here is simple: The more often a certain translation was chosen for a

specific word, the more likely the meaning may be considered as ‘equivalent’. In statistical

terms, the maximum likelihood estimation method is used for estimating the statistical

parameters of each word.

So, in order to generate a basic translation, we would need at least two statistical models:

• A word-alignment model

• A translation model

24

4.1.1 The word-alignment model

From a mathematical perspective, SMT systems work with incomplete data, where the

alignment of words is considered to be a hidden variable (Koehn 2010:88). As we saw, RBMT-

systems use a dictionary to find the alignment during the analysis phase and reorder the words

during the final generative phase of the process. SMT, however, does generally not rely on a

ready-made dictionary. Instead, probabilistic methods are used to find the most probable

alignment of a given word by looking at parallelized text (preferably translations of a text).

Through an alignment function a (see Equation 4) it is possible to formalize the mapping of

every TL output word at the position i to an SL input word at the position j. In our examples,

we will use English as our TL and German as our SL.

𝑎: 𝑖 → 𝑗

Equation 4: The alignment function

Let’s explore this in a couple of examples: In Figure 2 the alignment is straight forward, as

every SL word can be aligned to a TL word.

𝑎: {1 → 3; 2 → 2; 3 → 1}

But let’s look at some examples where this is not the case. In Figure 3 we see that the article in

front of Mathematik, which is common in German, is missing in English. This was fittingly

dropped in the translation and therefore no word aligns to the female article Die; it can simply

be dropped in the alignment since the function is mapping English to German; i.e. the mapping

happens opposite to the translation direction.

Mathematik
1

 liebe
2

 ich
3

I
1
 love

2
 mathematics

3

Figure 2: Every SL word has a TL word alignment

25

𝑎: {1 → 4; 2 → 5; 3 → 3; 4 → 2}

In Figure 4, we have more words in the SL text, because the German compound glasklar is

expressed in two words in English. We can align both position 4 (crystal) and position 5 (clear)

of the TL to the position 4 (glasklar) of the SL. Note, that it is not possible to do it the other

way around (i.e. have one English word align to two German words; this can be a major problem

down the road of course, and will have to be solved with additional models23).

𝑎: {1 → 1; 2 → 2; 3 → 3; 4 → 4; 5 → 4}

Lastly, in Figure 5 we see that the position 2 (do) of the TL text does not have an equivalent in

the SL, as this verbal construct is not necessary for a negation in German. Also, (do) does not

correspond to (nicht) in any way (i.e. has a very low probability for aligning to nicht), however

the position still needs to be mapped to something. For these occasions a special NULL token

is introduced for any word that is left over.

23 Namely the fertility model.

Die
1

 Mathematik
2

 liebe
3

 ich
4

 sehr
5

I
1
 really

2
 love

3
 mathematics

4

Das
1

 Wasser
2

 ist
3

 glasklar
4

The
1

 water
2

 is
3

 crystal
4

 clear
5

Figure 3: Missing article in the TT

Figure 4: ST word with multiple alignment in the TT

26

𝑎: {1 → 3; 2 → 0; 3 → 4; 4 → 2; 5 → 1}

All in all, this function makes it possible to have word-to-word alignments, SL word to multiple

TL word alignments, no and dropped alignments and the so-called NULL token alignments

(see, Koehn 2010:84-85 for a more elaborate explanation).

But how are these alignments found? In order to find the most probable alignment of

words, an algorithm called the Expectation Maximization algorithm (EM algorithm) is

adopted and used with the data of a parallel corpus.

The EM algorithm is an iterative learning method that approaches the most probable

result in alternating steps. It works as follows (taken from Koehn 2010:88, with additional

annotations):

1) Initialize the model, typically with uniform distributions (all hidden variables are filled

with equal values). Random distribution is also possible.

2) Apply the model to the data (expectation step).

3) Learn the model from the data using maximum likelihood estimation (maximization

step; the values are changed according to occurrence in the data).

4) Iterate steps 2 and 3 until convergence.

Letting a computer elaborate data in a way like this is commonly called training and the results

of such a training are then saved as a model. Once convergence is reached and therefore word-

pairs are defined on a statistical basis, we have trained an alignment model. Note that there

have been several different approaches to alignment in SMT over the years and this is just one

of the possible ways to achieve a simple word-alignment.

4.1.2 The translation model

With an alignment model trained, the system may start counting the most likely matches of SL

to TL words in the provided data using the maximum likelihood estimation (as seen in step 3

of the EM-algorithm) and from those results create a translation model. The resulting

translation model for a word-based SMT is basically a probabilistic bilingual dictionary (M.-T.

NULL
0

 Mathematik
1

 liebe
2

 ich
3

 nicht
4

I
1
 do

2
 not

3
 love

4
 mathematics

5

Figure 5: Less words in the ST

27

Luong 2016:4) that may be represented in lexical translation probability tables as shown in

Table 1 (taken from Koehn 2010:84).

Table 1: Example of probabilistic dictionary (Koehn 2010:84)

Since this dictionary is taken from “real” sentences, the dictionary does in fact provide the

corresponding surface forms of the words, i.e. inflected words / the morphology. While this

sounds very promising and indeed makes basic SMT systems work with very little effort (i.e.

seemingly no need for hand-crafted morphological rules), in the long run it is a shortcoming of

simple word-based systems as the different surface forms of words might lead to data sparsity,

which in turn leads to a less than ideal statistical interpretation of data (see Vuong et al. 2015).

The first models presented by IBM do indeed suffer from this problem but do work as a

showcase for how a simple word-based SMT can generate valid translations.

4.1.3 The IBM models

With the alignment model and the translation model in mind, we may now look at a simplified

representation of the first working SMT model originally proposed: The IBM Model 1. The

algorithm trains an alignment and translation model to subsequently translate a new SL-

sentence in two basic steps:

In Figure 6, the first step, the length of the translation as well as the mapping of the ST-words

to the TT-positions is chosen.

In Figure 7, the second step, it produces a translation by selecting the best translation for each

ST-word according to the translation model (i.e. the probabilistic bilingual dictionary).

Er arbeitet Zuhause

1 2 4 3

Figure 6: Alignment step

28

For this translation no reordering was necessary and in fact, no reordering takes place with IBM

Model 1. While a multiple alignment is present, the single constituents for (Zuhause), (at) and

(home), just happened to fall into the right place in this case. However, for IBM Model 1 the

following translations would be just as probable: ‘At home he works’, ‘Home works at he’ or

any other combination.

To solve this and many other evident issues, IBM proposed 4 further models, that all

build on each other and refine the translation by mostly improving the alignment model and a

better reordering structure through additional statistical modelling. In total, IBM originally

proposed five models (as taken from Koehn 2010:96-97):

• IBM Model 1: lexical translation;

• IBM Model 2: adds an absolute alignment model (alignment probability distribution);

• IBM Model 3: adds a fertility model (distortion probability distribution);

• IBM Model 4: adds a relative alignment model;

• IBM Model 5: fixes deficiency.

In simple terms this means:

The first model is pure lexical translation according to the probabilistic translation table.

The second model adds a statistical model for better reordering of translated words.

The third model adds a statistical model that expresses the probability of certain SL words

generating multiple (or NULL) TL words, which is called the fertility of a word.

The fourth model further refines the reordering by adding a statistical model that takes some

context into consideration.

The fifth model fixes a problem of all prior models called deficiency, where multiple output

words in the TL would be placed on the same position, effectively wasting probability mass on

impossible alignments.

Er arbeitet Zuhause

He works home at

Figure 7: Translation step

29

4.1.4 The language model

To ensure a fluent output, SMT systems adapt an additional probabilistic model, called the

language model (LM). Unlike the alignment or translation model, this model is built

exclusively on mono-lingual data. The model essentially counts the instances of words

occurring together and thus learns to prefer a certain word order and selection. This can help in

achieving more “natural” sounding translations. The LM should therefore prefer something

with a correct order over something with non-sensical or unnatural order:

𝑝𝐿𝑀(𝐻𝑒 𝑤𝑜𝑟𝑘𝑠 𝑎𝑡 ℎ𝑜𝑚𝑒) > 𝑝𝐿𝑀(𝐻𝑜𝑚𝑒 ℎ𝑒 𝑤𝑜𝑟𝑘𝑠 𝑎𝑡)

Equation 5: LM prefers correct word combination

It also helps resolving some issues with ambiguity. Ambiguity may easily crop up with the

probabilistic dictionary when words have equal or similar probability within the used text data.

Take for example the translation for the German word ‘Hahn’24: ‘Rooster’, ‘faucet’ and ‘valve’

are all valid translations for the single word and may appear with the same or similar probability

in data. Let’s assume we have the German phrase ‘Drehen sie den Hahn’ or ‘Öffnen sie den

Hahn’; while it is a relatively common sequence of words in German, it is unlikely we would

encounter a sentence that spells ‘turn the rooster’ or ‘open the rooster’ in English. A well-trained

language model (LM) would therefore give a higher score to something like ‘turn the valve’

or ‘open the faucet’. Since LMs are mono-lingual, they are usually built only from TL sentences,

that may also be sourced from additional text resources in that same TL, rather than just the

parallel data used for the general training. More data generally results in higher statistical

precision.

Commonly so-called n-gram language models are used for the language modeling

(Koehn 2010:95), where the n stands for the amount of words included in the statistics.

Essentially, the language model is then a function that predicts the probability for a certain word

𝑒𝑛 to appear in the context of n words in a specific language. For example, a trigram language

model rates the probability of a certain word n to appear after two specific words prior to that

(𝑒𝑛−2; 𝑒𝑛−1). The more data is used for training the LM, the longer the n-gram model can

theoretically be made; and longer n-gram models make for better fluency. However, it is

necessary to keep n-gram models relatively short in order to get usable statistics, as longer word

sequences have a smaller likelihood to be found in data. Commonly the trigram language model

is used but it can be supplemented by longer n-grams (Koehn 2010:183). As mentioned, the

training of language models commonly consists of at least the TL-part of the parallel corpus

24 This example was chosen as a homage to the mascot of the Austrian translator’s association UNIVERSITAS.

https://www.universitas.org/de/ueber-uns/#getsub_p3 (Accessed April 10, 2019)

https://www.universitas.org/de/ueber-uns/#getsub_p3

30

but can also include separate text resources in the TL (For an in-depth explanation of how

language models are built, see Koehn 2010:95, 181-214).

Equation 6 through Equation 8 put all of this in formulaic terms. The probability p(e)

for the TL word e therefore represents the likelihood of n words appearing together in a specific

order and context.

𝑝(𝑒) = 𝑝(𝑒1, 𝑒2, … , 𝑒𝑛)

Equation 6: Basic function for language model p(e)

This probability prediction can be broken up into single word predictions using the chain-rule:

𝑝(𝑒1, 𝑒2, … , 𝑒𝑛) = 𝑝(𝑒1)𝑝(𝑒2|𝑒1) ··· p(𝑒𝑛|𝑒1, 𝑒2,···, 𝑒𝑛−1)

Equation 7: Chain-rule applied to p(e)

Which would look like Equation 8 for a trigram model:

p(𝑒1)p(𝑒2|𝑒1) ··· p(𝑒𝑛|𝑒𝑛−2, 𝑒𝑛−1)

Equation 8: Trigram language model

This type of model, which goes through a sequence (in this case words), while considering only

a limited number of steps (for a trigram it is three steps), is known as a Markov chain. One

key issue this kind of model has, is that it assumes that the probability of the word 𝑒𝑛 depends

only on the limited history before it, but in language we know that longer dependencies in

sentences can equally influence the likelihood of a certain word appearing later in the sentence25.

The inherent problems and the mathematical formulation aside, what a trained LM essentially

does, is predict how likely the specific word 𝑒𝑛 is to appear after n words and this prediction

can be used to give a score to the translated phrases. This scoring can be applied to all of the

possible translations found by the translation model, giving high scores to coherent and ‘natural-

sounding’ translations, i.e. such translations with statistically more likely word order and

context, and lower scores to less likely and therefore ‘unnatural’ translations. In order to create

an SMT system with somewhat consistently natural sounding results therefore at least 3 models

need to be trained on available text data:

1) an alignment model

2) a translation model

3) a language model

25 Take, for example, the sentence: “I was raised in Japan and therefore I am fluent in Japanese”; in a sentence

like this, the long-term dependency of “raised in Japan” and “fluent in Japanese” would not likely be captured by

an n-gram model.

31

4.1.5 Combining the models: The noisy-channel model

To efficiently apply the language model in an SMT system, it is advantageous to combine it

with the translation model. This may be achieved by applying the Bayes rule to add the language

model p(e) to the translation model p(e|f).This results in the following Equation 9:

𝑎𝑟𝑔𝑚𝑎𝑥𝑒𝑝(𝑒|𝑓) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑒

𝑝(𝑓|𝑒)𝑝(𝑒)

𝑝(𝑓)
= 𝑎𝑟𝑔𝑚𝑎𝑥𝑒𝑝(𝑓|𝑒)𝑝(𝑒)

Equation 9: Noisy-channel model

This way to combine the language and translation model results in the so-called noisy-channel

model and in fact, IBM’s SMT models are referred to as an instance of the noisy-channel model

(Collins 2011:2). What this basically does, is apply the knowledge we have about our TL,

thanks to the LM p(e) and also the knowledge about what sort of ‘distortion’ might be possible

when going from SL to TL thanks to our translation model p(f|e) (note that the mathematical

direction here is actually TL to SL, opposite to the translation direction). As Koehn jokingly

puts it, we basically assume that the foreign speaker wants to say something in the TL (message

e), but the message gets distorted in a noisy-channel and out comes a sentence in the SL

(message f) (Koehn 2010:96) as seen in Figure 8. Thus, what actually happens in the noisy

channel model is a ‘reconstruction’ of the actual message e (which is assumed to be uttered in

the TL) from the message f that was ‘received’ in the SL. 26

Figure 8: The noisy-channel model (diagram taken from Sokolov 2015)

We saw until now, that SMT is basically a combination of several statistics-based models

combined to form the SMT model; since an output is generated at the end of each model and in

fact at the end of the whole process, this type of modelling is called generative modeling.

Generative modeling offers the advantage, that it is possible to break the translation problem

up into several simpler problems, as each model generates its own output and we have the

26 Interestingly, this idea is very similar to Warren Weaver’s conclusion regarding translation in one of his 1947

letters: ‘When I look at an article in Russian, I say ‘This is really written in English, but it has been coded in

some strange symbols. I will now proceed to decode’.”(quoted in Weaver 1949:4) and indeed the interpretation

of what translation was to most pioneering MT researchers.

32

ability to change only parts of the whole SMT model by keeping estimation and model

definitions independent from each other (see Sokolov 2015). This allows to pinpoint translation

errors to individual steps within the training of the SMT-Model. Additionally, expanding the

whole SMT pipeline by adding other models that refine the alignment, translation or ranking

tasks is possible. The disadvantage is that every model has the same importance and the addition

of more models is not easily achieved; so, for example, putting an emphasis on better fluency

by putting more weight on the language model or even adding a second language model is not

possible (Sokolov 2015:25).

4.1.6 The limits of word-based SMT

While all these concepts are key to the advancement of SMT (as the IBM-researchers put it:

“The lesson to be learned (...) is that simple, statistical methods can be surprisingly successful

in achieving linguistically interesting goals.” (Brown et al. 1993:2)), the underlying idea of

word-based translation itself is a major bottleneck when trying to approach translation in

general. In a sense, Brown et al. realized this, stating that the aim of SMT was never to replace

the linguistic effort, but only to provide another approach in the machine translation paradigm.

Coming from Translation Studies, one of the first things one learns is to watch out not

to stick to the exact words too much and the same can be said for machine translation. Aside

from the fundamental problem of the lack of a proper ‘equivalence’ between languages, the

word-based approaches have several other issues to contend with, even from a purely statistical

point of view: The need to have a word to word or word-to-multiple-word correspondence

(‘solved’ by the arbitrary addition of a null-token and the concept of fertility) is an inherent flaw

of the system and while language models provide reasonable results when confronted with

contextual ambiguities, n-gram models can still often not account for special translation of

words in context. This, of course, is something that linguists as well as translators would know

all too well, given that meaning of words changes drastically depending on the context (idioms

are a prime example, but also prepositions pose a big problem for word-based approaches).

Taking idioms as an example, “Hals- und Beinbruch!” would likely translate to “Break

a leg!”, meaning “Good Luck!”; however, since there has to be an alignment between the words,

if a word-based model was trained on this parallel text, “Hals”, meaning “neck” would likely

be aligned to “break”, “a” might be aligned to “und” and the composite word “Beinbruch”

(meaning the “breaking of a leg”) would likely be aligned to leg. This would result in a quite

nonsensical dictionary that would also not have a high probability in any bigger parallel corpus.

For that reason, it was clear that there was still much work to be done. Brown et al. theorized

of bringing more linguistic rules into the mix (Brown et al. 1993:296). However, it was still by

33

looking at the problem from an IT/data-engineering point of view, where researchers quickly

found that limiting themselves to the word as the atomic unit for meaning might not be the best

option and therefore the phrase-based approach was developed.

4.2 Phrase-based SMT

We saw that word-based SMT quickly falls apart with longer sentences and complex

interrelations between these words, especially if the count of words changes from ST to TT.

To solve these issues, phrase-based models segment the ST and TT into several so-

called phrases. This is the approach that several MT providers, like Google, Microsoft or

SYSTRAN, employed for their machine translation services until the switch to neural network

systems occurred in 2016. The alignment for the single words composing the phrases is

basically still the same as we saw in the word-based models. Och and Ney found that models

with a first-order dependence (i.e. a bigram model) and a fertility model (i.e. Model 3 and Model

4) give better results than more simple models like the IBM Model 1 or 2 (Och & Ney 2000:1),

while Koehn et al. found that Model 2 already provides similar performance to the much more

complex Model 4, as long as the right alignment heuristics are chosen (Koehn et al. 2003:7).

Whichever model is used to define the initial word-alignment, phrases are extracted from the

resulting alignments. These phrases are not linguistically motivated; in fact, it can be any

multiword unit. Limiting extracted phrases to linguistic phrases has even been proven to yield

lower quality translations (see Koehn et al. 2003). In the translation process, the extracted

phrase-pairs allow translation of ST phrases into TT phrases, with a final reordering of the

phrases. To see how a standard phrase-based model operates, let’s look at the example provided

by Koehn in Figure 9 (Koehn 2010:128).

We can see that with phrase translations we remove the need for the concept of fertility and/or

deletions/additions like null-tokens. Some single ST-words, like “natürlich”, that are best

natürlich

hat john

of course john fun with the has

spass am spiel

game

Figure 9: Basic phrase-based SMT

34

translated into multiple words (“of course”), are simply mapped as an ST-phrase to another

translated phrase in the TT, doing away with the need of single to multiple unit mappings.

Looking at the phrase-pair “spass am” and “fun with the” we can also see what was shortly

mentioned above: the phrases are not linguistically motivated. Most syntactic theories would

likely classify “spass” / “fun” as a noun phrase and “am Spiel” / “with the game” as a

prepositional phrase. However, learning the translation of “spass am” as “fun with the” is more

useful data for statistical translation as German and English prepositions do not match very well.

Looking at the statistical occurrence of “am Spiel” would likely result in a mis-translation of

the preposition “am”, resulting in something like “at the game”. On the other hand, the statistical

data for “spass am” would likely converge to the correct but less likely translation of “am”, e.g.

“with the”. In a word-based SMT “am” would not have a high chance to be translated as “with

the” at all.

Recapping, two major pitfalls of the word-based approach are solved with phrase-based

SMT:

1) Words are no longer necessarily the smallest unit in a sentence, so single word to phrase

alignments are equally possible in both directions, solving the issue of single to multi-

unit mappings. This also alleviates the need for insertion, deletion and the concept of

fertility.

2) By translating word-groups instead of single words, we often manage to clear up

ambiguities that would result in a mis-translation in word-based SMT.

A generative phrase-based model therefore starts out ‘simpler’ than word-based models would,

as there are less evident problems to work around. Additionally, the larger the parallel text

corpora, the more likely we are to find phrase-pairs that can be learned and, ideally, we might

even be able to learn full sentence pairs from a parallel corpus. So even a simple phrase-based

SMT will work better than most word-based translation models (Sokolov 2015:23; Koehn

2010:136).

For reordering the phrases, a new distance-based reordering model (d) is introduced,

which is formulated quite similarly to the alignment probability distribution in the IBM

Model 2. The ST is considered for calculating how expensive a reordering is, i.e. how many

words x a phrase has to be moved so that a given ST phrase aligns to the matching TT phrase:

𝑥 = 𝑠𝑡𝑎𝑟𝑡𝑖 − 𝑒𝑛𝑑𝑖−1 − 1

Equation 10: Movement cost function

35

In Equation 10 𝑠𝑡𝑎𝑟𝑡𝑖 stands for the position of the first word in the ST phrase corresponding

to a TT phrase at the ith position and 𝑒𝑛𝑑𝑖−1 stands for the last word of an ST phrase

corresponding to the previous TT phrase.

While it would be possible to learn the statistical probability of this cost, in most phrase-

based models data is not used to train the reordering model, but instead a fixed exponentially

decaying cost function is applied:

𝑑(𝑥) = 𝛼|𝑥| ; 0 < 𝛼 < 1

Equation 11: Distance-based decaying cost function

This approach makes longer distance reordering more expensive and therefore less likely and

as such would not work well for language pairs with big syntactic differences. However, that is

alleviated by the fact, that phrase-based SMT usually works with weighted models and, as we

will see later, that allows a language model to “override” the basic reordering model if needed.

4.2.1 The phrase translation table (phrase-based translation model)

Learning a phrase translation table (the translation model/lexicon model for phrase-based SMT)

generally happens in three stages: 1) word alignment, 2) phrase pair extraction and finally 3)

phrase pair scoring.

Figure 10: Building a phrase translation table - Stage 1: Word alignment (Koehn 2010:134)

Figure 10 shows the word alignment represented in a table. With this knowledge, the machine

can now extract phrase pairs given specific conditions. The most important condition, which is

part of basically every phrase-pair extraction process, is that of consistency. Basically, every

word inside of an SL phrase must align to a word within the targeted TL phrase. Unaligned

36

words may also be included since they don’t break the notion of consistency, as they have no

other alignment point outside of the targeted phrase. This is needed to capture commas or

articles that are nonexistent in the TL. Since these SL words are not explicitly aligned to any

TL words, unaligned words (and punctuation marks) within a phrase-pair may lead to multiple

translations (in the example above, we have the German comma being unaligned).

Figure 11: The grey boxes symbolize the to be extracted phrase. In the first example, all words are aligned within the phrase

and are therefore consistent. The second phrase would not be extracted, as one word would be aligned outside the phrase.

The last box shows a phrase incorporating an unaligned word. (Koehn 2010:132)

Let’s examine the example by looking at Figure 12 for the second stage of the table creation:

Figure 12: Building a phrase translation table - Stage 2: Extraction (Koehn 2010:131)

In this case “geht davon aus, dass” and “assumes that” may be extracted as a phrase pair, as all

these words are aligned to each other. Other possible alignments of the marked words can be

seen in Table 2 (Koehn 2010:134).

37

Table 2: Possible alignments

TL SL

assumes geht davon aus / geht davon aus ,

that dass / , dass

Looking at the whole sentence, however, we may extract a lot of different pairs, shorter ones

(Table 3) and longer ones (Table 4) (also taken from Koehn 2010:134):

Table 3: Short phrase pairs

TL SL

michael michael

assumes geht davon aus / geht davon aus ,

that dass / , dass

he er

will stay bleibt

in the im

house haus

Table 4: Longer phrase pairs

TL SL

michael assumes michael geht davon aus / michael geht davon

aus ,

assumes that geht davon aus , dass

assumes that he geht davon aus , dass er

that he dass er / , dass er

in the house im haus

michael assumes that michael geht davon aus , dass

michael assumes that he michael geht davon aus , dass er

michael assumes that he will stay in the house michael geht davon aus , dass er im haus

bleibt

assumes that he will stay in the house geht davon aus , dass er im haus bleibt

that he will stay in the house dass er im haus bleibt / dass er im haus bleibt ,

he will stay in the house er im haus bleibt

will stay in the house im haus bleibt

On closer inspection it can be observed, that the shorter pairs are indeed not so different from

word pairs. Yet they retain their usefulness, as shorter phrases will occur more frequently and

therefore are going to be more applicable to hitherto unseen sentences during a translation

process. Longer phrases on the other hand contain a lot more local context and can eventually

38

help with the translation of bigger, interrelated parts of a text. In theory at least, extracting all

possible phrases was thought of improving the translation quality. For that reason, instead of

just simply relying on the total count of occurrences, the length of the extracted phrase is

considered, so the frequency of appearance relative to the length of the phrase is scored

instead of just the absolute frequency of appearance. This way, longer phrase pairs are also

likely to be selected during the translation process even though they may appear less often than

the shorter pairs they are composed of.

Of course, having such a large translation table also significantly increases the memory

requirements for SMT. For large parallel corpora with millions of sentences, the extracted table

may well be several gigabytes in size. Luckily, disk storage capacity was one of the fastest

growing aspects of computer hardware and as such, even if the table could not be loaded

completely into memory (RAM), it was possible to efficiently estimate the probability

distribution by storing and sorting the extracted phrases on disk (Koehn 2010:136). It therefore

would not pose a real problem, except for less performant and/or mobile devices like PDAs and

later smartphones/tablets. These changes in computer hardware trends led researchers to

question the common wisdom of extracting all the possible phrase-pairs to use in the translation

table.

Quirk and Menezes later pointed out, that extracting only the shortest phrases that map

a whole sentence, would not hurt performance (Quirk & Menezes 2006). Indeed, it might even

help with performance, as unlikely solutions could be excluded from the search. This so-called

pruning of the extracted data, essentially deleting certain phrases according to predetermined

or statistical conditions, was therefore considered a viable option by several researchers; the n-

gram based variant of phrase-based SMT was also founded on this idea of reducing the extracted

phrases (see Mariño et al. 2006; Costa-Jussà & Fonollosa 2007).

While phrase-based models were developed, it was also soon found, that putting more

emphasis on the results of a certain model might help with the quality of the output. If, for

example, fluency was insufficient, it would seem helpful to put more emphasis on the language

model to provide a more natural and fluent output. In the standard generative model however,

all the models have the same importance or ‘weight’ and would therefore not easily allow

adding or making good use of additional models. For that reason, phrase-based SMT moved

away from generative modeling, like what was used in the noisy-channel model, to a new

modeling strategy, which is ‘borrowed’ from the machine learning domain: the log-linear

modeling or weighted models.

39

4.2.2 Weighted models (log-linear modeling)

Log-linear models introduce the concept of weight functions to the modeling process.

Essentially weight functions make it possible to give some elements within an SMT system

more ‘weight’ or influence on the results than other elements have. This holds true when

combining the separate elements by performing a sum, integral, or average. In simpler terms,

this enables the SMT system to place higher emphasis on a particular model, for example,

prioritizing correct word order by giving a higher bias or weight to the language model. By this

point, phrase-based SMT essentially also consists of three separate models:

• The phrase translation table 𝜙(𝑓�̅�|�̅�𝑖)

• The reordering model d

• The language model 𝑝𝐿𝑀(𝑒)

However, instead of combining them with generative modeling as before, where each model

generates its own output and gives an absolute result (“what is the BEST solution”), the models

here are treated as so-called feature functions and each data-point (i.e. word or phrase

translation) is fed into the system as a feature vector. The result is therefore a probability

distribution that can be influenced by the weights (𝜆𝜙, 𝜆𝑑, 𝜆𝐿𝑀) and as such can no longer be

seen as an absolute result. In Equation 12 we can see the formulaic expression of such a

weighted model.

𝑝(𝑒, 𝑎|𝑓) = 𝑒𝑥𝑝 [𝜆𝜙 ∑ 𝑙𝑜𝑔

𝐼

𝑖=1

𝜙(𝑓�̅�|�̅�𝑖) + 𝜆𝑑 ∑ 𝑙𝑜𝑔

𝐼

𝑖=1

𝑑(𝑎𝑖 − 𝑏𝑖−1)

+ 𝜆𝐿𝑀 ∑ 𝑙𝑜𝑔

|𝑒|

𝑖=1

𝑝𝐿𝑀(𝑒𝑖|𝑒1, … , 𝑒𝑖−1)]

Equation 12: Log-linear phrase-based model

This way of modeling gives the benefit of control by managing the importance of the separate

models. The models remain independent from each other and can thus be trained individually.

It also makes it much easier to add other, yet again independent models to the system, without

disrupting the contribution of the other models in the pipeline.

It was a big step forward for SMT, as this way of modeling would also allow rules and

other more deliberate translation tactics to be applied in the system. In retrospect, however, it

may also be one of the weaknesses of the system, as managing many separate models trying to

achieve the same thing can be very hard and time-consuming.

40

Yet, log-linear modeling has and still is widely used in the machine learning community.

As we will see in Chapter 5, NMT is based on the very same principle. In fact, Koehn also

allures to this in his 2010 Book about SMT, when mentioning the Perceptron learning

methods as an example for log-linear modeling (Koehn 2010:138).

4.3 Tree-based SMT

As seen in word-based SMT (Section 4.1) and phrase-based SMT (Section 4.2), both

approaches were created without really taking linguistic rules into consideration for the

translation. Without additional models, next to no consideration is given to linguistic concepts

like word-classes, cases, flections and so on. While linguistic rules could be added as feature

functions in the log-linear modeling, the whole pipeline itself was not designed to take linguistic

rules into account. Relatively late in the existence of SMT a more linguistic point of view was

taken and an attempt to build SMT models on top of linguistic ideas was made.

As a result, a new form of SMT emerged, where the idea of syntactic trees and the notion

of formal grammar was worked into the foundation of the statistical system by SMT researchers.

This way, the models for statistical translation would no longer only operate on flat sequence

representations of sentences (i.e. strings of words) but would also be able to statistically capture

the syntactic relationships between words and phrases by considering the word-classes and

connections of the words; essentially the grammar structures of the sentence. This method was

coined tree-based SMT. In order to extract such information from sentences and represent it

as a tree diagram, linguistic parsers have been worked on since the early 1990s like, for example,

the hand-crafted Penn tree bank (Koehn 2010:47) or the statistical parser by Michael Collins

(see Collins 2003)27. These parsers represent sentences as trees, motivated by formalisms that

are called grammars; for SMT even sentence pairs may be represented as an aligned tree pair,

in such a case the formalisms are called synchronous grammars.

27 The source-code for the parser is freely available at: http://www.cs.columbia.edu/~mcollins/code.html

http://www.cs.columbia.edu/~mcollins/code.html

41

Figure 13: Two phrase structure grammar trees with word alignment for a German-English sentence pair (Koehn 2010:334)

First attempts proved promising, with tree-based SMT systems performing similarly or slightly

better than some state-of-the-art phrase-based systems (Koehn 2010:331).

However, the jump in translation quality was not evident enough to warrant the amount

of effort to manage the extracted translation and grammar rules. This made them less viable

than a more automatic phrase-based system. Tree-based SMT therefore remained mainly in the

academic realm, never really catching on with commercial use. Phrase-based SMT remained

the de-facto standard in MT applications until the wide-spread adoption of NMT systems.

4.4 Translation as decoding

In the three prior sections, we have seen how word-, phrase-based and by extension tree-based

SMT systems find the probability for certain translations of an SL word or phrase to occur in

the TL. The models then provide translation suggestions or hypotheses for the individual parts

of the whole sentence. This is the encoding part of the SMT approach. However, while it may

seem trivial to then just pick the best translation out of all the suggested solutions, the process

of finding the best combination of translation hypotheses and the best reordering for the whole

sentence is one of the hardest parts in SMT, because there is an exponential number of choices

given a specific input sentence (Koehn 2010:155). This means, that while good decoding, i.e.

the search for the best scoring sentence translations, is crucial for optimal translation quality, it

would be computationally too expensive to really look through all the possible translations to

find the optimal result; even for input sentences of modest length.

SMT research has therefore either opted for so-called heuristic beam-search 28

algorithms or different channel models (Knight 1999:615). The problem therein lies in the fact

that these approaches are not optimal searches and do not guarantee that they will find the best

28 Beam-search essentially keeps a number of top-scoring hypotheses and continues the search for the best

hypothesis by following each choice individually. This is in contrast to the so-called greedy search, where only

the highest probability solution according to the model is used.

42

translation the models may have proposed. Because of the heuristic nature of the decoding, so

called search-errors may lead to failure in finding the best translation according to the models

in the SMT pipeline. In fact, the more models are added and the bigger the data within the

models grows, the harder the decoding will be. Conversely, the statistically most probable

translation of all the combined phrases, i.e. the best translation according to the models, might

not be a good translation at all, as SMT fails to capture long-distance relationships of words

within the whole sentence. These issues are often cited as the main reasons why SMT translation

quality was stagnant even though a lot of research effort was put into the systems (Chiang et al.

2009; Galley & Manning 2008; Green et al. 2013).

43

4.5 SMT today (end of 2019)

Many large companies like IBM, Microsoft and Google, but also formerly rule-based machine

translation providers like SYSTRAN, started to implement the probabilistic SMT algorithms in

the early 2000s to provide efficient automatic translation services for a vast number of

languages29. Most companies used SMT in a very controlled environment and domain, where

statistical likelihood was strongly favored by the controlled language of the training corpus and

the source for the translated texts. Microsoft, for example, used its SMT service for translating

their knowledge-base into several languages from an English source text. However, anyone

who has ever used Google Translate prior to the year 2016, probably recalls that it often

delivered hilarious results, especially once the sentences got longer or grammatically more

complex and ambiguous.

Long sentences illustrate two major weaknesses that SMT systems have. The first

weakness is that decisions are locally determined, as they translate phrase-by-phrase or word-

by-word and so long-distance dependencies are often ignored or insufficiently captured.

Secondly, the decoding for longer sentences would get exponentially harder, as more and more

possible solutions would need to be searched; sub-optimal search results are therefore the

logical consequence.

This is especially detrimental for languages that follow completely different grammars

and word-order, as would be the case between English (an analytic language) and Japanese (an

agglutinating language). Additionally, as was allured to in the introduction and should have

become sufficiently clear when looking at the several models described for even the simplest

of SMT systems, the entire SMT pipeline was becoming increasingly complex as more and

more features were added to the log-linear framework (Chiang et al. 2009; Galley & Manning

2008; Green et al. 2013).

29 Google today claims to support over 100 languages. https://www.blog.google/products/translate/ten-years-of-

google-translate/ (accessed May 03, 2019)

https://www.blog.google/products/translate/ten-years-of-google-translate/
https://www.blog.google/products/translate/ten-years-of-google-translate/

44

5 Neural Machine Translation (NMT)

This chapter provides a deeper look into the current state of the art machine translation approach,

neural machine translation (NMT) and the artificial neural networks behind the method. In a

way, NMT is similar to SMT in that it is corpus-based machine translation or data-driven

machine translation. Just like SMT, it is trained on huge corpora of parallel texts (ideally

sentence-aligned translations). What differs, however, is the computational approach: the whole

translation task is performed by artificial neural networks. As Luong summarizes in his thesis

about NMT, the big advantage this new approach has over SMT is that the whole translation

process can be contained in one single neural machine learning model (Luong 2016:7). This

means that in theory each step of the translation process, which in NMT is usually performed

on a sentence-level, can have full access to the information of the specific words in that sentence

and find the most likely translation of the sentence by mathematically analyzing each word in

relation to all the other words of the sentence.

While NMT is still corpus-based, just like SMT, and does in fact rely on statistical

probabilities in the final classification step, the decision making and learning of translation

probabilities is quite different and part of the reason why NMT is often used in conjunction

with the term AI, or artificial intelligence. But how do these neural models look like and why

are they often related to AI and coined with this intriguing term “neural”?

5.1 A closer look

Neural machine translation is based on so-called artificial neural networks (or ANNs, for

simplicity, from now on I will mostly stick to the term neural networks), a term that may

summon quite scary thoughts for most people, especially with all the talk of AI taking over

several fields of hitherto human expertise. And while recent achievements in machine learning

technologies are in fact quite impressive, we should take a short look at the rather long history

of neural networks to understand why such an ominous name was chosen and just why this

seems to now basically have made any other form of AI research obsolete. Andrey Kurenkov

shared an excellent and easy to read overview in four parts of the history of ANNs on his web-

site30. In order to give readers an overview and in an attempt to demystify ANNs, I would like

to provide a short historical overview myself, based in part on Kurenkov’s work.

30 https://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/ (accessed May

15, 2019)

https://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/

45

5.1.1 Linear regression and the Perceptron

It is important to remember that artificial neural networks, while only lately coming to be at the

center of research attention, do have a long history in academic research. In fact, artificial neural

networks are nothing new, the main principle they and machine learning in general are based

on is well over 200 years old! Let’s take a look at the following graph in Figure 14.

Figure 14: Linear regression31

The red line basically shows a general function that best approximates the location of the dots

on the graph and therefore the relation between pairs of input values (x) and output values (y).

What we are seeing here is a visual representation of a linear regression, a technique from

statistical mathematics that was introduced well over 200 years ago by Legendre (1805) and

Gauss (1809) (Yan & Su 2009:2). The great thing about this technique is that we can extrapolate

a general function for data that is easy to observe but would have an incalculable amount of

functions behind it and formulating equations directly for these would be very hard. As

Kurenkov writes, this generalization would be very useful for finding a function that maps, for

instance, the input of a recorded spoken word to the written output of said word. However, it is

clear that the linear regression as we see it in Figure 14, is too simple to handle such a complex

problem. Yet, it does show what is essentially supervised machine learning: ‘learning’ a

function given a so-called training set of examples, where each example is a pair of an input

and output from the function (Kurenkov 2015:3). In fact, all of this will appear quite similar to

what has been done in SMT with the parallel corpora and indeed this means that also SMT is a

31 https://upload.wikimedia.org/wikipedia/commons/3/3a/Linear_regression.svg (accessed May 16, 2019)

https://upload.wikimedia.org/wikipedia/commons/3/3a/Linear_regression.svg

46

form of machine learning: After all, the machine learns the probabilities of certain translations

reliant on the data provided. Linear regression itself has been used to improve several SMT

constituents as well (see Yan & Su 2009; Biçici 2011).

It makes sense then, that one of the very first attempts to make machines learn bears

quite some resemblance to the linear regression. One of those attempts is known under the name

Perceptron and was so coined by the psychologist Frank Rosenblatt, who tried to create a

simplified mathematical model of how neurons, in other words the subunits of the neural

network in our brains, work (Rosenblatt 1958). As Kurenkov perfectly explains, the model

“takes a set of binary inputs (nearby neurons), multiplies each input by a continuous valued

weight (the synapse strength to each nearby neuron) and thresholds the sum of these weighted

inputs to output a 1 if the sum is big enough and otherwise a 0 (much in the same way neurons

either fire or do not)” (Kurenkov 2015:8). Rosenblatt’s seminal work was based on the so-called

McCulloch-Pitts Model, that showed that a (biological) neuron could in that way, much like a

simple logic gate with binary outputs, model the basic OR/AND/NOT functions (see

McCulloch & Pitts 1943; Figure 15).

Figure 15: Drawing of a biological neuron (left) and the mathematical perceptron model (right).32

However, while the McCulloch-Pitts Model showed that a neuron could model the

OR/AND/NOT functions, it did not explain a mechanism for learning. Rosenblatt solved this

by making the weights of the inputs updatable: whenever the neuron would provide a result

which was known to be incorrect (remember, it uses a known training set of input and output

data for the supervised training), the weights are updated to adjust for the error. This in turn

was based on a hugely influential theory by Donald Hebb, that stated that knowledge and

learning occurs in the brain, primarily through the formation and change of synapses between

neurons (Hebb 1950 as found in Kurenkov 2015:9). As Kurenkov describes, the Perceptron’s

learning algorithm works as follows (Kurenkov 2015:11):

32 http://cs231n.github.io/neural-networks-1/ (accessed May 18, 2019)

http://cs231n.github.io/neural-networks-1/

47

1) Start off with a Perceptron having random weights and a training set.

2) For the inputs of an example in the training set, compute the Perceptron’s

output.

3) If the output of the Perceptron does not match the output that is known to be

correct for the example:

a) If the output should have been 0 but was 1, decrease the weights that had

an input of 1.

b) If the output should have been 1 but was 0, increase the weights that had

an input of 1.

4) Go to the next example in the training set and repeat steps 2-4 until the

Perceptron makes no more mistakes.

With this, one Perceptron can learn to provide a specific output, given a specific input. Of course,

with only one Perceptron, almost no real-world problem can be solved, but by networking

several Perceptrons together, it is possible, depending on the task, to linearly or exponentially

increase the amount of possible outputs.

Take, for example, the classic task of recognizing handwritten digits: To be able to

classify each of the ten separate digits (fed to the Perceptrons as a digital scan, i.e. certain

arrangements of pixels), we need to have 10 Perceptrons networked together. Each Perceptron

corresponds to one of the possible digits and is trained to output a ‘1’ whenever the matching

input (i.e. a certain arrangement of pixels representing the corresponding digit) is provided.

Such a neural network would look a little bit like what we can see in Figure 16.

Figure 16: A simple neural network

48

A problem with the Perceptron and its thresholding activation function is that it does not exactly

find the best function for generalizing the data, as it stops just when all problems are solved as

expected. While this works for the training data, real data might be more fine-grained (just think

at all the possible handwriting variations or in fact possible word combinations in a translation

task) and therefore the trained model would fail to properly classify certain inputs. Bernard

Widrow and Tedd Hoff made the discovery, that it is not strictly required for the artificial

neuron to have a thresholding activation function that simulates the binary nature of biological

neurons like the Perceptron does. In 1960, they introduced a different neuron model called

ADALINE (see Widrow 1960), where the output was no longer constrained to be a ‘digital’ 0

or 1 and instead was kept ‘analog’ so that the fine-grained changes in that data would remain

visible. With this ‘analog’ data, it is possible to measure how much the error changes when

each weight is updated. This change of the error is called partial derivative and can be used to

drive the error down and find optimal weight values.

While this is essentially the right approach to make neural networks learn, two major

limitations had to be overcome: First, the basic Perceptron is only able to learn a function for

data that is linearly separable, ergo it can only model the functions AND/OR/NOT, but cannot

model the simple Boolean function XOR (exclusive OR). In Figure 16 we can see, that it is

possible to easily separate the first two examples (OR/AND-functions) with a linear line, but

for data that requires an XOR expression this is no longer possible (Kurenkov 2015:23).

Figure 17: What can be expressed through a linear function

To overcome this issue, neural networks nowadays consist of not just one or several Perceptrons

(i.e. neurons, nodes or units) with one input and one output each, but rather form a network of

multiple layers (i.e. the neural network) of up to millions of neurons/units, that may also be

placed in-between the input and output layers, as so-called hidden layers. These hidden layers

allow a neural system to elaborate vastly more complex problems, by basically breaking up the

very complex and possibly noisy data into several smaller features, allowing a more fine-

grained approximation function and in fact the generation of XOR functions and others.

Mathematically neural networks were therefore quickly coined as being “universal

49

approximators” (Hornik et al. 1989), meaning that with them one can theoretically express any

(mapping) function in a multilayer configuration.

Figure 18 shows a simple feedforward multi-layer neural network with two hidden

layers and one single output node in the output layer (depending on the model it can be more).

We can see that with a network like this, the training method described above would no longer

be possible, as the weights from the input-layer to the first hidden layer do not directly influence

the result in the output layer. Conversely the first hidden layer is also not directly connected to

the actual output node, meaning that the weights from hidden layer 1 to hidden layer 2 do not

directly influence the value in the output layer.

Figure 18: A simple feedforward multi-layer neural network 33

5.1.2 Training of neural networks: Backpropagation

As we’ve found out above, once we create a network with layers in-between the input and

output layer the training devised for a single node is no longer applicable, because, for example,

hidden layer 1 has no direct access to the output layer. While this put research behind artificial

neural networks into a somewhat extended hiatus, in 1986 Rumelhart, Hinton and Williams

popularized a method to apply the error-rate across the whole network and as such update each

weight in the network; this method is called backpropagation (Rumelhart et al. 1986). The

realization was made, that with a non-linear but also more differentiable activation function in

the neurons (so something closer to ADALINE than the Perceptron), it is not only possible to

use the derivative to minimize the error, but it is also made possible to backpropagate34 this

derivative over all of the layers before it, essentially “splitting up the blame” for the error over

each neuron. It is therefore possible to calculate in which way to adjust weights for each

individual neuron. Further, to minimize the error typically the so-called stochastic gradient

descent is used (Kurenkov 2015:27). What happens here, is that the network learns from its

33 https://medium.com/@rajatgupta310198/getting-started-with-neural-network-for-regression-and-tensorflow-

58ad3bd75223 (accessed May 29, 2019)
34 Thanks to what is essentially the chain-rule of calculus: https://en.wikipedia.org/wiki/Chain_rule (accessed

May 29, 2019)

https://medium.com/@rajatgupta310198/getting-started-with-neural-network-for-regression-and-tensorflow-58ad3bd75223
https://medium.com/@rajatgupta310198/getting-started-with-neural-network-for-regression-and-tensorflow-58ad3bd75223
https://en.wikipedia.org/wiki/Chain_rule

50

own mistakes, by slightly adjusting the weights of each node until the closest approximation on

the final output-layer is found. For a more picturesque explanation, I highly recommend Luis

Serrano’s unlisted YouTube video to linear regression and stochastic gradient descent, where

he describes the process of minimizing the error by metaphorically comparing the process of

the stochastic gradient descent to climbing down a rather steep “Mt. Errorest” (Serrano 2016)35.

While this way of learning is the great strength of neural networks, it is also one of their

weaknesses: Because neural networks can be several layers deep and we never actually see the

output of the hidden layers (and even if we would, it would not be intelligible, as the network

creates vectors as abstract representations of the data captured), it is essentially impossible to

tell which weight is adjusted how and therefore manual tweaking of neural networks is more or

less a matter of trial and error; all we see is whether the produced output is correct or not.

5.1.3 Vectors: How neural networks “think”

The adjustment of the weights within the network by minimizing the error in the output is still

how neural networks work and learn today. Essentially, supervised learning is learning by

trial and error. It is important to note at this point, that all operations within the network are

strictly mathematical, more specifically calculus based. There are little to no statistical concepts

applied, let alone linguistic rules. Neural networks operate on a list of numbers called vectors,

that are created by the network itself to represent the features of the input in an abstract way.

We have seen this in SMT, but SMT uses these vectorized inputs to generate statistical data out

of, while NMT operates on the vectors from input to output. NMT may operate on vectorized

single words, phrases or even individual symbols (for example, in the form of byte pair

encoding). There are several ways to represent meaning-units, such as words, as a vector. One

option would be the so called “One-hot-encoding”, which essentially generates vectors where

only one “1” in a certain position encodes the word (“one hot” means “one 1”). For example, it

would be possible to represent the words “translator” and “interpreter” as the following vectors:

Translator: [1, 0, 0 … 0]

Interpreter: [0, 1, 0 … 0]

While the one-hot-encoding is fairly straight-forward, it does not capture any relations or

similarities between the words. Nothing in the encoding would suggest that “translator” and

“interpreter” are indeed both working with languages or in fact generally human beings. The

35 Linear Regression Answer: https://www.youtube.com/watch?v=L5QBqYDNJn0 (Serrano 2016)

https://www.youtube.com/watch?v=L5QBqYDNJn0

51

one-hot-encoding is therefore only used as a starting point for the vocabulary in NMT. In fact,

before training an NMT generally a fixed vocabulary size must be defined for the network, as

the total number of 0's and 1's in the vectors depends on the total number of words stored in the

vocabulary. This means, that the bigger the vocabulary, the longer the training of the network

will take.

However, with the one-hot-encoding, no real translation task could be solved. NMT

therefore creates a word embedding from the vocabulary: During training, the network

attributes a list of numbers (or a vector) to every word in the vocabulary to define its position

in a theoretical “meaning space”, however, to position the words in that space the list of

numbers no longer only consists out of “0s” and “1s”, but of decimals in-between. This way,

shared features and similarities between words can be represented as well.36 Since decimals can

be used, the vector can also be a lot smaller than the actual number of words stored in the

vocabulary. However, the longer the vector the more fine-grained the embedding can be. In

practical use, vectors with a size of 256, 512, 1024 or similar may be chosen for the word

embedding. “Interpreter” and “Translator” could, for example, be represented as follows:

Translator: [0.33, 0.44,]

Interpreter: [0.33, 0.45,]

Since vectors can be read as “spatial coordinates”, you could say that the network generates a

sort of meaning space or meaning cloud, in which related words are embedded closer together

and words which represent other concepts are embedded farther apart from each other. Hence

the term word embedding. Luckily, tools like tensorboard 37 exist, that enable a 3D

visualization of said embeddings. While not terribly useful for debugging a neural network, it

is fascinating to see where and how the machine places words within said word-embedding

space.

Figure 19 shows us a three-dimensional representation of a word-embedding from the

training presented in Chapter 7. Each dot represents a word (or “token”).

36 https://www.yamagata-europe.com/en-gb/blog/neural-machine-translation-what-s-under-the-hood-part-2

(accessed August 13, 2019)
37 https://www.tensorflow.org/tensorboard/get_started (accessed March 03, 2020)

https://www.yamagata-europe.com/en-gb/blog/neural-machine-translation-what-s-under-the-hood-part-2
https://www.tensorflow.org/tensorboard/get_started

52

Figure 19: A three-dimensional representation of word-embeddings in tensorboard. Each dot represents a word

It is important to note here, that the machine which processes the text through the network, does

NOT understand what it is reading. In fact, it “merely” analyzes the words by looking at their

context in the training corpus and finds above mentioned patterns. This approach is based on

the theories of distributional semantics38 and while similar to the statistical approach, it has

the advantage that the extracted features are more fine-grained than mere statistical occurrence

data. However, for it to work properly, an even bigger amount of parallel text data is required

than was the case with SMT.

The great thing about operating on vectors, is that they can, by definition, be combined

to other vectors according to vector algebra. This would enable neural networks to generate a

vector that essentially represents the whole sentence instead of each individual word or phrase.

However, all the networks we have seen up until now were simple feedforward neural networks,

which would not allow an easy connection between the individual outputs. In the next section

we will therefore look at the different types of neural networks and see which of those network

architectures work best for translation tasks.

5.2 Types and variants of neural networks

With the explanations above, it should be clear that artificial neural networks operate strictly

on numbers, i.e. vectors, on the basis of several, relatively simple mathematical operations, like

38 (see Boleda 2020 for a good overview of research in this area)

53

matrix multiplications. These are linked together to map one input to a certain form of output.

They learn to output the desired values by “automatically” adjusting the parameters (weights)

of the network in such a way, that the desired result is found or at least as close as possible

(backpropagation of error).

While all neural networks learn by these means in one way or the other, there are several

variants of networks for several specific tasks. What we saw up until now, was mostly

feedforward neural networks. A feedforward neural network computes a function f on a fixed

size input x such that f(x)≈y for training pairs (x, y) (McGonagle et al. 2020). This means, that

all connections are going from the input towards the output layer. It can therefore only present

an output for each individual input and not for all the inputs taken together. Such a system

would not be of big use for translation tasks. For this reason, other networks were designed,

that allow different mappings, as seen in Figure 20.

Figure 20: Some of the mapping possibilities with modern artificial neural networks39

The ‘one to one’ and ‘one to many’ mapping is possible with feedforward networks. This is

ideal for image classification, as you might want to recognize a certain object (the output) within

a frame (the input). Say for example, if you provide the network with an image of a cat, you

would like to receive the text output ‘cat’; likewise, you could train a feedforward network to

output ‘a white cat’ for a picture that shows a white cat through the one-to-many mapping. One

might imagine that this could work in a way similar to phrase translation tables in SMT. While

this is true and feedforward neural networks were in fact used for creating phrase-tables (Cho,

van Merrienboer, Gulcehre, et al. 2014), this would not fully use the potential of this new

technique. In fact, it is the ‘many to many’ mapping enabled by the so-called recurrent neural

networks (RNNs), that is a natural fit for sentence translations, as it allows the mapping of a

whole sequence (of words) to another sequence (of words). That said, words do not need to be

the smallest signifier for neural networks. The networks can operate on inputs that are on a sign

39 https://medium.com/explore-artificial-intelligence/an-introduction-to-recurrent-neural-networks-72c97bf0912

(accessed on November 15, 2019)

https://medium.com/explore-artificial-intelligence/an-introduction-to-recurrent-neural-networks-72c97bf0912

54

level (i.e. letters or characters, like the Japanese Kanji) or could in fact be trained on phrases

(Huang et al. 2017) or even full sentences as input. Either way, neural machine translation is a

very active research domain at the time of writing this thesis and it would be impossible to

cover all the different approaches that were developed for improving the translation

performance.

In order to get a general understanding of NMT, we may look at the following four

major architectures/models and elaborate in respect to their workings for translation:

1) The MLP (Multi-Layer Perceptron) or simple feedforward network

2) The CNN (Convolutional Neural Network) feedforward network

3) The RNN (Recurrent Neural Network) recurrent network

4) The Transformer

5.2.1 Multi-Layer Perceptron (MLP)

The term Multi-Layer Perceptron or MLP is used ambiguously, sometimes loosely to refer

to any feedforward neural network, sometimes strictly to refer to networks composed of

multiple layers of Perceptrons (with threshold activation). In this thesis, it is used to refer to

multi-layer feed forward networks in general. As stated earlier, this means that the neural

network’s flow is strictly into one direction and therefore each layer is only fed with the output

from the layer before it. However, unlike the original Perceptron, the activation function does

generally not have a threshold activation that changes the output of each layer to a 0 or 1 in

order to allow for backpropagation. This means the model works very well for classification or

labeling predictions on, for example, tabular datasets, but not too well for translation tasks. The

reason for this is that feedforward networks are based on several major assumptions that do not

work well for language translation or language processing in general. One of the major issues

of this type of neural network is that the size of the input layer is fixed to the length of the input

sequence and thus the output length also must be fixed.

The other major issue here is the idea of independence - that different training examples

(like the single words that make up a sentence) are independent of each other. So even if you

were to process word for word and somehow find an equivalent solution every time, the context

and meaning that develops over time in a sentence would be lost. Simple feedforward networks

therefore inherently disregard two main aspects of translation: short and long temporal

dependencies within a text and the fact that input and output length is not guaranteed to be the

same (Agrawal & Sharma 2017:65). Additionally, even if you were to overcome these intrinsic

issues by, for example, taking sentences as the base unit for meaning representations, this would

55

render MLPs unviable, as the amount of data for training would need to be unrealistically large

and the network itself would have enormous memory (RAM) and processing demands because

of the very large vectors required for capturing all that information.

5.2.2 Convolutional Neural Network (CNN)

Convolutional Neural Networks or CNNs are also feed forward networks, however, they

work by making the first and some subsequent hidden layers of the network convolutional.

This means that each hidden layer only looks at a small subset of the input data and finds certain

features within. These extracted features are then passed on to another set of hidden

convolutional layers, which then can work on much leaner and cleaner data than the “noisy”

input data, again finding certain features within. These high-order features can then finally be

used to classify the data by the last two layers (one hidden layer and the output layer) as was

happening before with regular feed forward neural networks. This makes the networks much

more memory efficient and feasible for big amounts of data, especially because parallelization

is possible within layers. For that reason, it works especially well on high-dimensional data like

image data. Yet it was traditionally not used for language processing or translation, because

CNNs do not maintain an internal state other than the network’s own parameters. This means,

that whenever a single sample (for example, a word from a sentence) is fed into a CNN, the

network’s internal state, or the activation of the hidden units, is computed from scratch and is

not influenced by the state computed from the previous sample, just like with any other

feedforward network (Agrawal & Sharma 2017:66). We are therefore still computing a function

f on a fixed size input x such that f(x)≈y for training pairs (x, y). The network basically still has

no ‘memory’ as to what it has just read and can therefore not account for short and long temporal

dependencies, if a sentence were to be processed sequentially (i.e. word for word). To capture

context the network would need to look at the whole sentence at once and therefore run into the

same issues as a regular MLP network, like memory constraints but more importantly general

data sparsity in the training corpus.

56

Figure 21: Visualization of a CNN40

As a side note, however, researches have been successful in using exclusively

convolutional networks for neural machine translation (Gehring et al. 2017). Instead of

producing an encoding of the whole source sentence by ingesting the embeddings of source

words one by one, Gehring et al. devised an encoder that produces representations of each word

by taking into account a few words (for example 2) to the left and to the right of it (similar to

n-gram language models as seen in phrase-based SMT) (Forcada 2017:299-300; Gehring et al.

2017). This enables the CNN to capture context in a vectorized representation. Gehring et al.

observe better BLEU scores (see Section 7.5.2.1) in English-French, English-German and

English-Romanian tasks than with competing networks based on the recurrent neural network

architecture that is actually capable of looking at the whole sentence and keep a sort of “context-

memory” as shown in Section 5.2.3. Most importantly, however, Gehring et al argue that

convolutional networks offer a higher level of parallelism than the more conventionally used

recurrent neural networks because individual words don’t have to be processed in sequence.

This enables shorter training times on modern GPUs, which are very fast in parallelized

workloads. More about their effort can be found on their Facebook Engineering publication

online.41

5.2.3 Recurrent Neural Networks (RNN)

Recurrent Neural Networks or RNNs are an approach to solve the memory issue mentioned

above by simply looping the output of the network back into the network. This enables RNNs

to ‘remember’ data from the input over time, all the while handling inputs of ‘any’ length. One

40 https://sites.google.com/site/5kk73gpu2013/assignment/cnn (accessed on December 03, 2019)
41 https://engineering.fb.com/ml-applications/a-novel-approach-to-neural-machine-translation/ (accessed on

November 18, 2019)

https://sites.google.com/site/5kk73gpu2013/assignment/cnn
https://engineering.fb.com/ml-applications/a-novel-approach-to-neural-machine-translation/

57

of the main reasons that RNNs are more exciting than their feedforward counterparts is that

they can operate over a sequence of vectors: Sequences in the input, the output, or in the most

general case (translation) in both. Unlike feedforward networks, recurrent neural networks learn

sequential data by computing g on variable length input 𝑋𝑡 = {𝑋1, … , 𝑋𝑡} such that 𝑔(𝑋𝑡) ≈ 𝑦𝑡

for the training pairs (𝑋𝑛, 𝑌𝑛) for all 1 ≤ 𝑡 ≤ 𝑛.42 Essentially, this enables RNNs to add the

variable of “time” into the mix, by sequentially going through the individual inputs of a

sequence in timesteps t, while carrying over information from each individual input/timestep.

Each word in a sentence can therefore be learned in context of everything that came before it.

In Figure 22 we see a representation of an unrolled RNN, i.e. where we see each timestep as an

individual network. Essentially, we are looking at the RNN as several feed-forward networks,

where for each new input from the sequence (𝑋𝑡) a copy of the current network is generated.

This new network is then fed the output of the network before it (called hidden-state ℎ𝑡−1, as it

is not a visible output) and the new input from the sequence (𝑋𝑡). The exciting thing about this

is that in RNNs each output of each individual timestep is combined into a new vector and

finally output as one combined final vector. That vector should contain all of the information

before it and therefore also encode what the sentence represents over time. In other words, this

final hidden-state vector may be thought of representing the “meaning”43 each individual word

represents in the specific order and form in which they are set in that sentence. The resulting

vector was therefore called the thought vector or meaning vector.

Figure 22: An unrolled recurrent neural network44

In theory, this way classic RNNs can keep track of arbitrarily long-term dependencies over

variable length sequences, making them ideal for translation tasks. However, in practice

memory still posed a problem with classic RNNs: Because each individual timestep of an RNN

42 Feedforward Neural Networks. https://brilliant.org/wiki/feedforward-neural-networks/ (accessed on November

15, 2019)
43 “meaning” has to be understood in a very abstract way here; the network basically captures very intricate

patterns of languages by analyzing the vast corpus of sentences that it is fed.
44 https://medium.com/explore-artificial-intelligence/an-introduction-to-recurrent-neural-networks-72c97bf0912

(accessed on December 08, 2019)

https://brilliant.org/wiki/feedforward-neural-networks/
https://medium.com/explore-artificial-intelligence/an-introduction-to-recurrent-neural-networks-72c97bf0912

58

adds information to the next through multiplication, training through backpropagation45 of the

error leads to “vanishing” gradients (they become smaller and smaller, approaching 0) or

"exploding" gradients (they increase in size on every iteration towards infinity). This makes

training with the conventional methods very difficult if not impossible. In practical terms a

classic RNN network would therefore learn well only on smaller sequences, but long-term

dependencies and indeed longer sequences would never be learned properly as the weights of

the network would just not adjust well through backpropagation in longer sequences.

Hochreiter (1991) and Yoshua Bengio et al. (1994) analyzed the problem in detail and

proposed several approaches to try and mitigate the problem. It was not until 1997 when

Hochreiter and Schmidhuber came up with what might be considered the solution to the

problem: the so-called long short-term memory (LSTM) RNN model (Hochreiter &

Schmidhuber 1997). Any real application of RNN in machine translation is based on LSTMs

or variants thereof. In addition to the original authors, a lot of people contributed to modern

LSTMs. In the next section we will take a short look at this variant of RNNs.

5.2.3.1 The LSTM RNN (Long Short-Term Memory)

Just as the name states, the LSTM RNN model (commonly just referred to as LSTM) enables

the network to maintain a short-term memory of the context of each individual word over a

longer sequence of words, especially over long distances within the sequence. It was

specifically developed to mitigate the issue of exploding and vanishing gradients that may be

encountered when training classic RNNs on longer sequences.

LSTMs achieve this by keeping a separate flow of information outside the normal flow

of the recurrent network in a so-called gated cell. This cell allows for information to be stored,

written, or read and this information can then be carried over from one timestep to the next

through the so-called cell state. Figure 23 shows a standard RNN, whereas in Figure 24 we can

see the somewhat more complex LSTM. The gated cell of the LSTM is represented by the four

gates: three sigmoid gates (σ), a forget gate, an input gate and an output gate, and one additional

output gate at the top horizontal line, which is the cell state (𝑐𝑡). The cell state may also be

called a context vector as it transports the context of all words over a long distance.

45 For RNN an extension called Backpropagation Through Time (BPTT) is used.

59

Figure 23: A recurrent unit in a standard RNN unit46

Figure 24: A recurrent unit in LSTMs47

The gates allow the cell to make decisions about what to store, and when to allow reads, writes

or deletions. This information is then passed on to the next timestep of the network as the cell

state. This allows for information to pass through the network relatively unchanged, meaning

that the error can also remain more constant throughout the whole flow of the neural network.

Just like regular neural network nodes pass on certain information, the gates block or

pass on information to the cell state, which is filtered through the gates’ own sets of weights.

Those weights, like the weights that modulate input and hidden states, are adjusted via the

recurrent network’s learning process. Basically, the cells learn when to allow data to enter, leave

or be deleted through the iterative process of making guesses, backpropagating the error, and

adjusting weights via gradient descent (see Nicholson 2019).

Essentially, the network has more parameters (the additional weights in the LSTM) and

data (the cell-state/context vector) to work with. Because the flow of information in the cell-

46 https://miro.medium.com/max/1606/1*wXEZTk3g_UiOgL6VutuBGA.png (accessed on December 03, 2019)
47 https://miro.medium.com/max/1676/1*WOGNu3QcmDipMVPF2yA9wA.png (accessed on December 03,

2019, edited to reflect 𝑐𝑡)

https://miro.medium.com/max/1606/1*wXEZTk3g_UiOgL6VutuBGA.png
https://miro.medium.com/max/1676/1*WOGNu3QcmDipMVPF2yA9wA.png

60

state is controlled through the gates, vanishing or exploding gradients are much less likely. The

network therefore manages to keep a much longer memory of words that are farther apart.

However, since more data and more mathematical operations must be processed,

LSTMs tend to be quite a bit slower both in training, as well as in the translation process itself.

Additionally, since each new timestep is dependent on the output of the prior timestep,

parallelization, which is the most notable reason for the increase in computing power of the last

decade, is not easily leveraged for improving performance. For that reason, more simplified

gated recurrent units (GRUs) are often used in the real world and research (see Bahdanau et

al. 2014:12). These only have two gates and one final output gate, which takes away some of

the more granular control the network can exert over what data is transferred to the next

timestep of the network but reduces processing load and therefore increases speed.

While LSTMs highly improved the capacity of RNNs to work over longer sequences,

they still have issues besides performance. For one, the network still tends to forget words or

parts of the context of words that are far apart, since even though the context vector is updated

in a more controlled way than the meaning vector in regular RNNs, it is still updated as a single

vector. Therefore, the probability of finding the context of a word that is far away from the

word currently being processed decreases exponentially with the distance between the two.48

What we saw until now, was how the networks learn to represent meaning as vectors,

but we haven’t quite covered how these vectors are finally translated into the TL. In the next

sub-section, we will look a bit more closely at how the majority of these translation models do

the actual translation under the hood.

48 https://towardsdatascience.com/transformers-141e32e69591 (accessed on December 10, 2019)

https://towardsdatascience.com/transformers-141e32e69591

61

5.2.3.2 Encoder-Decoder modeling

Like with SMT, in NMT we are, in most cases, talking about encoding and decoding. Encoding

is what we saw up until now: The network recognizes patterns in the training data and encodes

these as vectors that should reflect the meaning of the sentence. The task of decoding, then, is

to transform these meaning vectors into sentences in the TL.

The decoder in most NMT systems is built and trained in such a way that it resembles a

text completion device (like the word prediction feature of some smartphone keyboards), which

is informed by the meaning vector computed by the encoder. The decoder therefore provides,

at each position of the target sentence being built, and for every possible word in the target

vocabulary, the likelihood that the word is a continuation of what has already been produced

(Forcada 2017:296).

This Encoder-Decoder model for NMT was concurrently introduced by Sutskever et al.

and Cho et al. in 2014 (Cho et al. 2014; Sutskever et al. 2014). These models may be seen as

the break-through for NMT as they first managed to outperform statistical machine translation

models on large translation tasks (Sutskever et al. 2014).

Sutskever’s RNN NMT architecture consists of two LSTM models: An encoder model

and a decoder model. In the encoder model an input sequence is read in its entirety (up to the

end-of-sequence token (<EOS>) and encoded to a fixed-length internal representation: the

meaning vector. The decoder part of the network then uses this internal representation to output

a variable-length sequence of words in the TL until the end-of-sequence token is reached.

Essentially, the encoder part is trained to create fixed-length vector representations from the SL

training data, whereas the decoder part is an RNN language model conditioned on the vector

representations of the encoder model and the word embeddings created from the training data.

The two models are therefore always trained in tandem.

A trained network can then be fed with new input data, which it would encode into

fixed-length vectors (the meaning vector and the context vector in LSTMs). The encoder model

stops the encoding once it reaches a pre-determined “end-of-sequence” token (<EOS>). From

there, the vectorized sentence (meaning vector) and the context vector are input into the decoder

model of the network: the meaning vector and the <EOS> token act as the input to the network

and, by using the probability patterns that were learned during training, the decoder model maps

the vector back into a sequence of words of another language. Since this whole process remains

all within a single RNN, even the final timestep can theoretically still use information from the

first step in the whole network. This is represented in Figure 25, where an SL sentence “ABC”

is translated to the TL sentence “WXYZ”. We can see that the initial data essentially flows

62

through the whole neural network and may therefore still be updated in the decoder part of the

model.

Figure 25: Sutskever‘s Encoder-Decoder workflow (Sutskever et al. 2014:2)

As noted in sub-section 5.2.3.1, the issue here is that the probability of keeping the context of

a word that is far away from the word currently being processed decreases exponentially with

the distance between them. So, for longer input sentences or even if the output sentence length

would increase, the likelihood of the network still referring to and considering the right context

for an earlier word in the timeline diminishes significantly.

To combat this issue Sutskever et al. realized that inverting the input sentence’s word-

order would bring words in similar language-pairs49 closer together. In other words, when

translating a sentence a,b,c to w,x,y the network would learn to translate c,b,a to w,x,y instead.

This way, they found, the performance of the network greatly increased as a is in close

proximity to w, b is still fairly close to x, and so on (Sutskever et al. 2014:3).

However, it stands to reason that such a solution only works well for related language-

pairs and would likely present issues with languages that have a vastly different word order.

Several empirical studies found that the fixed-length meaning vector acts as a bottleneck for

the Encoder-Decoder approach (Pouget-Abadie et al. 2014; Cho, van Merrienboer, Bahdanau,

et al. 2014). Because of this a much more robust solution was proposed to solve the memory

issue LSTMs were still facing: the attention mechanism.

49 In their case: English-French

63

5.2.3.3 Attention mechanism

The attention mechanism was first proposed by Bahdanau et al. 2014 and Luong et al. 2015.

The technique described in these papers essentially allows the decoder model to focus on

relevant parts of the input sequence as needed. This may be compared to how translators focus

their attention on the ST words and context that they are trying to translate at the moment.

To achieve this the encoder does not pass the fully assembled meaning vector (i.e. the

last hidden state) to the decoder, but instead passes all the hidden states (e.g. ℎ1, ℎ2, ℎ3) along

to the decoder, so that a more controlled context vector may be computed by the decoder itself.

Additionally, a feedforward neural network alignment model50 is jointly trained with the

network and added to the RNN decoder for deciding on what to pay attention to. Essentially,

this allows the decoder to search through the ST and focus on certain parts of it while decoding.

Once the decoder is fed with the <EOS> token, it is reinitialized with a new hidden state

(ℎ𝑖𝑛𝑖𝑡) and based on that calculates an output and new hidden state of the network (e.g. ℎ4).

The output is discarded, as the decoder uses the hidden states from the encoder for the attention

steps to create a new context vector:

1) First the decoder looks at the whole set of hidden states it received from the encoder.

Each of these hidden states is naturally most associated with the input that generated it.

2) The hidden states are then scored according to the alignment learned in training by the

alignment model (i.e. how well the inputs around a certain ST position fit the TT

position).

3) The score is then softmaxed and multiplied, which amplifies the hidden states with high

scores, while the hidden states with low scores are drowned.

4) Finally, these scores are summed together to create the context vector for that specific

timestep.

The context vector 𝐶4 is then concatenated with the hidden state ℎ4 of the decoder and passed

through another jointly trained feedforward network that finally outputs the TT word (see also

Figure 26).

50 Note that unlike in SMT, the alignment is not considered to be a latent variable. Instead, the alignment model

directly computes a soft alignment between ST and TT words which also allows the gradient of the cost function

to be backpropagated. This means that it is not a separately trained model, but part of the network and therefore

trained towards a better log-probability of producing correct translations (Bahdanau et al. 2014).

64

Figure 26: RNN with attention translating DE-EN “Ich bin Student” to “I am a student”.(Alammar 2018b)

The big advantage of the attention mechanism is that the encoder is relieved from having to

create one monolithic vector that contains all the information within a sentence. All the hidden

states are passed on to the decoder and the attention mechanism allows it to pick out the parts

that seem most relevant according to the alignment model. Bahdanau further improved upon

this idea by deploying a Bidirectional RNN (BiRNN) for the Encoder that would read the

sentence from left-to-right and right-to-left in order to store both the context before and after a

certain timestep within the hidden state51 (Bahdanau et al. 2014:3).

For a beautifully animated explanation of the attention mechanism, I highly recommend

Jay Alammar’s blog post regarding the technique52 as the animated visualizations help a lot

with understanding.

51 Bahdanau calls the hidden states annotations
52 https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-

attention/ (accessed on January 04, 2020)

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

65

5.2.4 The Transformer model

Attention proved to be a very robust solution for maintaining context over long distances and

drastically improving the quality of machine translation through RNNs. However, training the

networks and running the translation through all of these steps is computationally quite

expensive and, because of the sequential nature of RNNs, parallelization cannot easily be

employed to improve performance. Therefore, there is a practical limit to network complexity

and scalability as the individual steps are reliant on the result of the calculations before them.

In 2017, Vaswani et al. seek to solve the performance issue with their seminal work

titled Attention is all you need (Vaswani et al. 2017). In their paper they introduce what is now

essentially the state-of-the-art architecture for NLP and machine translation: The Transformer

model.

In essence, they suggest an Encoder-Decoder network architecture that does away with

both convolutional and recurrent networks and is instead based solely on the idea of attention.

In order to enable parallelized encoding and decoding, the input sequence is no longer provided

sequentially to the network, but instead the inputs are fed into the network all at once as a list

of vectors. These vectors are created by the learned word embeddings during training. The paper

suggests creating vectors that have a size of 512 positions for their “Transformer Base” model,

but also explores using larger embeddings in their “Transformer Big” model, which results in

a noticeable improvement in model accuracy at the expense of higher memory and

computational requirements (Vaswani et al. 2017:9).

In order to provide enough weights for handling all that input data, the paper suggests

the use of six equal encoders and decoders stacked upon each other; however, while they are

equal, they do not share weights with each other. Six is also an arbitrary number, in fact it is

possible to use more, but also less stacked encoders and decoders. Each encoder is made up of

two sub-layers: a so-called multi-headed self-attention layer and a feedforward neural

network layer. Self-attention is a new concept, that allows the encoder to look at the different

words within the sequence. It can be seen as a replacement to the hidden-states we had in the

RNN Encoder-Decoder architecture.

This is a needed addition as in the Transformer model each word or in fact vector in

each position of the list of vectors flows through its own path in the encoder. In other words,

each vector in the list is passed through the same feedforward neural network, but individually.

The output of the feedforward network layer is therefore not dependent on the words that came

before or after, so they can be computed in parallel. Additionally, thanks to the context encoding

of the self-attention layer, the feedforward network operates on vectors which contain

66

information about other relevant words in the sequence. Figure 27 shows the flow of a simple

example sentence “Thinking Machines”, where x1 and x2 are the vectors resulting from the

word embedding algorithm, z1 and z2 are the self-attention annotated vectors and r1 and r2 are

the output of the first encoder after the feedforward neural network pass. These outputs are then

used by the second encoder to process as inputs.

Figure 27: The vectors in the list flow through their own path in the Encoder and provide individual outputs each; the

connection between the different parts of the sequence is made in the self-attention layer. (Alammar 2018a)

For the most part, the decoder is made up in the same way, but between the self-attention layer

and the feedforward layer there is an additional attention layer (called Encoder-Decoder

attention), which is fed with the output from the encoder. This layer helps the decoder to focus

on relevant parts of the input sentence and predict the most likely output (similar to the original

attention mechanism described in Sect. 5.2.3.3).

Figure 28 shows the Transformer model’s architecture from input to output. The encoder

and decoder part are represented as single units but can be considered as stacks Nx, where N

stands for the number of units used.

67

Figure 28: The Transformer architecture as suggested by Vaswani et al. (Vaswani et al. 2017:3)

Notice how the illustration adds a positional encoding node between the embedding layer and

encoder/decoder stacks. Since the list of words is processed individually and all at the same

time, the time information we had gained through RNNs’ sequential processing is lost.

Therefore, an additional positional encoding is required and added to the word embedding

representations, so that the encoder and decoder can operate on positional information as well.

In summary, the Transformer model eschews recurrent and convolutional networks in

favor of simpler and more parallelizable feedforward networks, by “annotating” the input

vectors with context information through the attention mechanisms and the positional encoding.

This allows the model to be trained much faster than regular RNN Encoder-Decoder models,

while also providing a more robust context representation than the attempted CNN models (see

Section 5.2.2).

At the time of writing this paper, most NMT systems, and, in the broader scope, NLP

systems based on neural networks, operate through the Transformer architecture.

Note that this subsection provided a highly simplified explanation of the Transformer

architecture, as describing it in detail would be beyond the scope of this thesis. Vaswani et al.’s

paper provides an exhaustive but very mathematical explanation. For those interested in the

68

deeper workings of the self-attention mechanisms and the Transformer in general, I would again

recommend reading Jay Alammar’s excellent blog posts about the Transformer architecture. 53

5.3 Summary

This chapter offered a deep look into the workings of neural networks and presented the

different neural network architectures developed with a main focus on machine translation. We

have learned, that neural networks operate on input embeddings (often on a word-level),

essentially vectorized representations of the elements that make up a sentence, i.e. the input.

This reliance on abstract distributed representations forms the pillar of the strength of neural

networks: to mathematically and automatically find patterns within data and learn mapping

probabilities that are much more sophisticated than mere statistical occurrence data of

individual words or phrases.

We have learned that through LSTM RNNs neural networks managed to incorporate

both the temporal aspect inherent to language (when seen as a sequence over time) as well as

providing a means for the network to learn long distance relationships between the individual

constituents of a sentence. We now know, that NMT mostly relies on Encoder-Decoder

models, that act similarly to text completion devices: An encoder generates a vectorized

representation of a sentence based on distributional semantics and the decoder predicts the most

likely output based on that representation.

Finally, we saw how networks learned to “pay attention” to certain parts of the input

by using soft-alignment models and the highly annotated data from BiRNNs, which relieved

the networks from the constraint of having to represent the whole meaning of a sentence within

a single vector, the “meaning vector”.

This culminated in the development of the Transformer model, which relies on the

aforementioned attention-mechanism to annotate each vector representation with what the

mechanism regards to be relevant for that specific embedding. The main advantage of the

Transformer is highly improved efficiency thanks to now parallelized computing and a high

degree of contextual representation in the meaning encodings of the network.

We must however also remind ourselves that all of these processes for now work solely

on a sentence-level. This means, that context beyond the sentence-level is generally NOT

considered by neural networks at this point. Additionally, since the calculations performed by

the neural networks are guided by the weights found through backpropagation of error along

several layers of neural networks (i.e. the deep learning moniker), the actual “thought process”

53 https://jalammar.github.io/illustrated-transformer/ (accessed January 14, 2020)

https://jalammar.github.io/illustrated-transformer/

69

or the parameters of the neural networks (i.e. the single weights within the deep neural

networks) remain mostly a black box for researchers. This means, that while the training

examples may be solved correctly and many real examples may be as well, it is often very hard

to pinpoint the actual source of issues an NMT system might run into with certain translations.

The solution is generally tweaking of hyperparameters54 (i.e. length of the embedding vectors,

learning rate of the network, search algorithms [greedy, or beam search size], etc.), different

input handling (i.e. word-embedding, symbol-embedding, phrase-embedding, etc.) or pre- and

post-processing of data.

In Chapter 6 I want to look at patent translation as a specific use case for NMT. Finally,

in Chapter 7, I will follow this up with a practical experiment by creating two differently

tweaked translation models using one of the several available open source NMT frameworks

and compare their performance. The idea behind this, is to provide a sort of tutorial for other

translators looking at getting a deeper understanding of NMT and to practically examine

whether a translator like myself could actively contribute to NMT research.

54 Hyperparameters can be set by humans before training; whereas the parameters, i.e. the weights, are

automatically computed by the network through training.

70

6 NMT in patent translation

One sector where NMT has found resounding success is the domain of patent translations.

Major patent offices, like the JPO (Japan Patent Office), the EPO (European Patent Office) and

the WIPO (World Intellectual Property Organization) are relying on NMT systems to provide

quick translations of patent claims and descriptions to their customers. The quality of these

translations is often astoundingly good, but at times fails spectacularly. In the following section,

I will look at some of the major patent translation systems and make some educated guesses as

to why quality issues remain, while also pointing out why translation works so well in certain

other cases.

6.1 A look at patent machine translation

Patent language is highly standardized. There are certain expressions and syntactic structures

that will be found over and over in different patents. And while there are differences depending

on the formalities established by patent offices around the world, they are all generally

structured as follows:

• Title page: Contains most of the bibliographical data about the patent. This includes

patent number, dates of application and approval, classification (domain) and the

inventors or applicants. May also contain a short abstract.

• Claims: The central part of patents, that is essential for getting a patent approved and

therefore the most translated part of patents. These claims need to express what is new

about the invention or what makes the invention “unique”. The novel part of the

invention is often expressed after the short sentence “…characterized in that…”. Each

claim can only be one sentence long (but there can be more than one claim per invention).

• Detailed description of invention: Further elaborates the specifics of the invention in

slightly more “human” language. The description is no longer limited to single

sentences, as was the case with claims, and it can be further divided into the following

sections:

o Technical field of the invention: This section describes the technical field to

which the invention pertains, generally using the paragraph: “The present

invention relates to a semiconductor manufacturing device, and more

specifically relates to …".

o Prior Art: This section describes patents and inventions that have been

previously made public (i.e. prior art) and generally also describes the problems

with this prior art.

71

o Problem to be solved by the invention: In essence, this section elaborates

further on the problem(s) already described in “Prior Art”.

o Means for solving the problem: In this section, the central concepts of the

invention are described, and often the language of claims is repeated. However,

since the claims are recited in rather abstract expressions this may be

accompanied by an easier to read explanation.

• Preferred Embodiment: Concretely describes an invention by providing example

realizations of the invention. For example, when describing a new type of neural

machine translation network, the patent would describe exactly how many layers to use

in the network, what hyperparameters to use, etc.

• Drawing Sheets: Illustrations to visualize the invention and complement the textual

description.

Japanese patents have essentially the same structure, although obviously different on a

surface level (i.e. the language is different):

• Claims → 請求の範囲 (seikyū no han’i; literally: scope of claims)

• Detailed description of Invention → 発明の詳細な説明 (hatsumei no shōsai na

setsumei; quite literal)

• Technical field of the invention → 発明の属する技術分野 (hatsumei no zoku suru

gijitsubunya; quite literal)

• Prior Art → 従来技術 (jūraigijitsu; quite literal)

• Problem to be solved by the invention → 発明が解決しようとする課題 (hatsumei ga

kaiketsu shiyō to suru kadai; quite literal)

• Means for solving the problem → 課題を解決するための手段 (kadai wo kaiketsu

suru tame no shudan; quite literal)

• Preferred Embodiment → 発明の実施の形態 (hatsumei no jisshi no keinō; literally:

form of embodiment of the invention)

Of course, what is shown above can only be regarded as the most common formulations (Okuda

2015). As mentioned, there are slight variations in the exact wording of these titles, but they

always denote the same sections/chapters with regards to content.

As we have seen so far, corpus-based machine translation, like SMT or NMT, works by

recognizing patterns in parallel text data. Therefore, since essentially all patents use very

uniform language (especially on a semantic level) and a very similar structure, the content is

easy to line up and pattern recognition should work exceptionally well. Until recently, however,

SMT would have a lot of issues coping with the very long sentences presented by patents. The

72

marked improvement with the switch to NMT is the ability to “capture the whole structure of

the sentence”, as Ian Wetherbee from Google Patents55 puts it. This should help tremendously

when translating long claims, which must be formulated in a single sentence. Another big

advantage is that with patents we have large collections of parallel texts available. Patents are

generally written in the inventor’s native tongue (say Japanese) and then translated to the

accepted languages of the foreign patent offices. The patent offices can therefore work with

vast amounts of data to train the NMT system, as they have access to the original and translation

of many patents. The EPO (European Patent Office), for example, only approves patents in

English, German and French, but it is possible to find foreign patents on their patent search

engine Espacenet56 as well. All patents discoverable on Espacenet can be translated by the

translation system on the site, either into English from one of 30 languages or from English into

one of the other 30 languages (including Japanese).

This makes sense as according to Martin Schaller, a member of the Enrichment

Application Services department in the EPO57, the EPO has been partnered with Google since

back in 2011 to offer this service and therefore, together with the general Google translation

service, also switched to Google’s NMT system in 2017. The NMT system used for patents is

however trained individually and not part of the same model as the one used for the general-

purpose translations on Google’s own website.

Like the EPO, other patent offices, like the WIPO or the JPO, have already switched to

NMT and are offering their respective “instant translation” for patents on their site.

Testing these translation systems reveals that more often than not, the translations are

actually very usable and especially read quite fluently (at least as fluent as patent texts can be

read). However, on closer inspection, some issues can still become apparent. In the following

two sub-sections a very quick look at the EPO’s Patent Translate service and the WIPO’s WIPO

Translate service will be taken, in order to see how they compare.

6.2 The EPO’s Patent Translate

As shortly allured to above, the EPO works together with Google, to provide instant translation

services on their website. According to the EPO58 a comprehensive and up-to-date corpus of

patent (parallel-)texts is provided to Google, which is organized into abstracts, claims and

descriptions as well as being sorted according to the international patent classification system.

Google then trains the NMT system based on that data. However, as a customer of the service,

55 https://www.youtube.com/watch?v=-ZVplhqhyYM (accessed on December 20, 2019)
56 https://worldwide.espacenet.com/ (accessed on January 05, 2019)
57 The source is a personal conversation over e-mail.
58 Source is the E-Mail conversation with EPO’s Martin Schaller.

https://www.youtube.com/watch?v=-ZVplhqhyYM
https://worldwide.espacenet.com/

73

the EPO does not have insight into how the exact workflow of Google is. It is likely that Google

draws from even more data than just the EPO’s texts.

The most important point here, however, is that it is a closed system. This means, that

as a user of the service, the EPO has little influence on how the translation is output. In fact,

when using Patent Translate, it is not possible to see which choices the system made or to

influence the system by, for example, choosing a specific domain. All is handled automatically,

and the only thing provided is the finished translation of sentences; in the case of claims,

potentially very long sentences. The system does also not allow for translation of text that is

not in the Espacenet database, meaning that the system only provides translations for texts

found through the search engine on the Espacenet website.

Following is a short analysis of the translation of one claim from the patent JP B1

6507295, a Japanese patent about knitting machines and needles. In order to keep it easier to

read, color coding will be provided for respective sentence parts of the translated Claim 3. The

translation was made in February of 2020; updates to the translation model may change the

output of the Patent Translate service in the future.

「前記 第１の段部及び前記第２の 段部が、前記柄部の長手方向において、前

記柄部 の基端 側から前記フック部側に向かうにつれて前記配列方向の幅が小さくな

るテーパー状をしている請求項１又は２に記載の編機用編針。」

Text example 6.2-1: Claim 3 from JP B1 6507295

Text example 6.2-2 shows the EPO’s NMT system’s English translation:

“The first step portion and the second step portion have a tapered shape in which the

width in the arrangement direction decreases from the base end side of the handle portion

toward the hook portion in the longitudinal direction of the handle portion. The knitting needle

for a knitting machine according to claim 1 or 2, wherein:”

Text example 6.2-2: EPO’s NMT translation to English for claim 3 in JP B1 6507295

For reference, Text example 6.2-3 shows my own German translation, that I recently delivered

to the EPO:

„Strick - oder Wirknadel für Strick- oder Wirkmaschinen nach Anspruch 1 und 2, bei

denen der erwähnte Stufenabschnitt 1 und der erwähnte Stufenabschnitt 2 eine sich verjüngende

Form aufweisen, bei der die Breite in der erwähnten Anordnungsrichtung, in Längsrichtung des

74

erwähnten Stielabschnitts, von der Basisendseite des erwähnten Stielabschnitts zur Seite des

erwähnten Hakenabschnitts hin abnimmt.“

Text example 6.2-3: My own German translation of claim 3 in JP B1 6507295

There are two observations that can be made just by looking at the surface form of the machine

translated text. First is the fact that it added a second sentence in a claim, which is not allowed

in patent language. This is curious, as generally neural machine translation models are trained

on a sentence by sentence basis; meaning Google might do something different here. Second,

it seemingly had a hard time reversing the order of the sentence; notice how the second sentence

in the machine translated text is actually the start of the sentence in the human translation.

Within the individual sentences, however, the system did properly rearrange the order in which

the words (and relative sentences) relate to each other and indeed produces a translation that

reads very much like my human translation.

Looking closer, we can see that while the translation is actually quite good, some words

have been dropped by the system, for example, the word 前記 (zenki), meaning “said” in

English or “erwähnt” in German. This word is generally quite important to be translated, as it

tells the reader whether this particular item has already been listed in the patent, but it does

indeed hinder fluency and readability of the text. In fact, the word is often dropped in the final

wording of English patents, as these are rewritten by patent lawyers to conform to the structure

of the particular (national) patent standard. It is therefore likely, that Google uses published

patent translations as training data, therefore the network learns to drop these adverbs. The same

also happens with another word like 側 (gawa) meaning “side” which is once dropped as

semantically it appears to make little difference.

By testing longer sentences, like the first claim59, we can further exacerbate the issues

observed above. The first claim of the same patent is, for example, split into 4 separate sentences.

It can be observed, that the split happens whenever the system is not able to reorder the sentence,

which generally seems to happen when relative sentences are quite long. Just as with the shorter

claim, the same dropping of words can also be observed in the middle of the sentence, where

the network fails to find the subject of a verb (有する, yū suru; meaning “possess/have”) and

therefore drops the translation of the word completely, changing the meaning of the sentence

drastically.

59 The claim is almost a page long, so it won’t be quoted in this thesis. A copy of the ST and the translation will

be provided on a Google Doc however, for anyone interested in comparing the two:

https://docs.google.com/document/d/1AbF3BMOdrc3uAO5otMDCZ74zL6G7cdFeDSC3PSGitp0/edit?usp=shar

ing

https://docs.google.com/document/d/1AbF3BMOdrc3uAO5otMDCZ74zL6G7cdFeDSC3PSGitp0/edit?usp=sharing
https://docs.google.com/document/d/1AbF3BMOdrc3uAO5otMDCZ74zL6G7cdFeDSC3PSGitp0/edit?usp=sharing

75

The system produces translations that are more than good enough to give experts a good

hunch on what the invention is about, and experts may even be able to extract the full meaning

by looking at the illustrations. However, since the general structure is not conformant with

patent requirements, important words are sometimes dropped and word relations may be lost, a

post-edit would most certainly be required before the translation could be used. A mono-lingual

post edit would likely not suffice (as generally grammar is not the problem). Arguably the

machine translation can help experienced translators, too, as the word-choice and most of the

inter-word relations are quite well selected by the system. On the other hand, the very high

fluency of the text may make it harder for the translator or post-editor to see the flaws. This is

however a whole different point of discussion, which has been elaborated and examined in other

literature (see for example, Jia et al. 2019a, 2019b; Peris, Cebrián, et al. 2017; Sánchez-Gijón

et al. 2019; Knowles et al. 2019).

6.3 WIPO Translate

The WIPO also provides an instant translation service on their website called WIPO Translate.

It can be accessed directly from the website as a stand-alone service60. In contrast to the EPO,

the WIPO uses an open source NMT framework called Marian NMT61. The main advantage

of using an open source framework would be that the service can be highly customized by the

maintainer, i.e. in this case the WIPO itself.

In fact, it is rather apparent that some of this transparency is carried over to the users of

the translation service on the website: Unlike the EPO’s solution, the user is able to simply copy

and paste a text into the translation mask and either let the system choose a domain or choose

one manually. Additionally, once a text is translated, it is possible to see what segment of the

sentence in the ST is translated to what segment of the sentence in the TT. Essentially, it is

possible to see the attention mechanism in action.

What is even more interesting for us as translators, is that the system provides several

translation suggestions when clicking on the provided translation and even accepts edits of the

translation. Furthermore, the system allows to look up translation suggestions for individual

terms in the ST by double-clicking on the term in question. It is also possible to segment long

sentences at specific points, chosen by the user.

It is clear, that the open-source approach taken by the WIPO offers some tangible

advantages in usability and transparency compared to what is offered on the EPO’s website.

The open-source framework in question, Marian NMT, is, however, also backed by a big

60 https://www.wipo.int/wipo-translate/en/ (accessed April 25, 2020)
61 https://marian-nmt.github.io/ (accessed February 27, 2020)

https://www.wipo.int/wipo-translate/en/
https://marian-nmt.github.io/

76

company from Silicon Valley: Microsoft. In fact, the short introduction to the framework on

its GitHub-page reads: “Marian is an efficient, free Neural Machine Translation framework

written in pure C++ with minimal dependencies. It is mainly being developed by the

Microsoft Translator team.” 62 Interestingly, amongst the users of this framework, the

European Commission is one of them.

That said, let’s look at how the system performs with the example sentence from the

Japanese patent JP B1 6507295 that we looked at in Section 6.2, starting out again with the

color-coded original claim 3 from said patent in Text example 6.3-1. Like with the EPO

evaluation, the test was done in February of 2020; results may vary as the translation models

are updated.

「前記 第１の段部及び前記第２の 段部が、前記柄部の長手方向において、前

記柄部 の基端 側から前記フック部側に向かうにつれて前記配列方向の幅が小さくな

るテーパー状をしている請求項１又は２に記載の編機用編針。」

Text example 6.3-1: Claim 3 from JP B1 6507295

“ the knitting needle for knitting machine according to claim 1 or 2, wherein the first step part and the

second step part have a tapered shape in which the width in the arrangement direction becomes smaller

from the base end side of the handle part toward the hook part side in the longitudinal direction of the

handle part. “

Text example 6.3-2: Claim 3 as translated by WIPO NMT

And for reference again, my own German translation of the same claim in Text example 6.3-3:

„Strick - oder Wirknadel für Strick- oder Wirkmaschinen nach Anspruch 1 und 2, bei

denen der erwähnte Stufenabschnitt 1 und der erwähnte Stufenabschnitt 2 eine sich verjüngende

Form aufweisen, bei der die Breite in der erwähnten Anordnungsrichtung, in Längsrichtung des

erwähnten Stielabschnitts, von der Basisendseite des erwähnten Stielabschnitts zur Seite des

erwähnten Hakenabschnitts hin abnimmt.“

Text example 6.3-3: My own German translation of claim 3

Right away, we will notice that in Text example 6.3-2 the network managed to rearrange the

sentence in a way that seems more natural to the English language and is in fact very similar to

the way I personally chose to restructure the sentence in German. Staying on the surface-form

of the sentence, we can notice that capitalization of letters has been removed (this can be

62 See for more details https://marian-nmt.github.io/ (Accessed on April 15, 2020)

https://marian-nmt.github.io/

77

verified when testing the system with phrases or words that are generally capitalized in English,

like languages or city names). This gives us an indication on how the model was trained, as

removing capitalization may be beneficial by reducing the vocabulary size. In a language pair

where casing is not essential, like English-Japanese, this makes a lot of sense; testing the System

in German and English, however, reveals that in that case the WIPO trained the model to be

case-sensitive.

With regards to repeating words, like “前記“ (zenki) “said”, we can observe the same

behavior as with EPO’s Patent Translate: The word is dropped for better fluency and readability,

suggesting that models are trained on published translations rather than word-accurate

translations.

Similarly, looking at the longer claim 1 from the same JP B1 6507295 patent as before,

we can observe, that the WIPO NMT system appears to be slightly more resilient to the issues

observed in the EPO’s system.63

Interestingly, the WIPO also offers their earlier non-NMT translation models, based on

a phrase-based SMT Model. Unfortunately, those models do not offer the Japanese to English

pair, instead offering only the English to Japanese pair. For the sake of comparison, let’s look

at the following phrase pair from the test corpus that will be used in Chapter 7, by simply using

the English sentence as the ST and the Japanese sentence as the TT.

(ST) FIG . 3 is a circuit diagram showing a construction of the frequency multiplication

circuit in the second embodiment .

(TT) 図 ３ は 、 この 実施 の 形態 に 係る 周波数 逓倍 回路 の 構成 を 示す 回路 図

で ある 。

(WIPO SMT) 図(3)の回路図に示す構成において、周波数逓倍回路の第 2 の実施の

形態

(WIPO NMT) 図(3)は、第 2 の実施形態における周波数逓倍回路の構成を示す回路

図である
Text example 6.3-4: Comparing SMT to NMT output with WIPO Translate

While this is obviously too small of a sample size to come to a definite conclusion, Text

example 6.3-4 shows a general trend that can be observed with any other number of sentences

and that has been largely observed by MT research (see Bentivogli et al. 2016; Moorkens 2018;

Daems & Macken 2019). The SMT system provided solutions that are clearly recognizable as

machine translations and can convey the gist of the meaning at best, but at worst they end up

63 Find the ST and translation here: https://docs.google.com/document/d/1TjNkLHZMagiEs_S5-

C_qPBJn8r1M57y2shCTIcE6W_8/edit?usp=sharing

https://docs.google.com/document/d/1TjNkLHZMagiEs_S5-C_qPBJn8r1M57y2shCTIcE6W_8/edit?usp=sharing
https://docs.google.com/document/d/1TjNkLHZMagiEs_S5-C_qPBJn8r1M57y2shCTIcE6W_8/edit?usp=sharing

78

completely unintelligible and unrelated semantically to the ST. The example above shows this

quite well, as while the SMT system translates parts of the sentence correctly (likely the phrases

learned during training), it fails to reorder them in a meaningful and grammatically correct way,

obfuscating the original message of the sentence (it translates to something like: “In the circuit

diagram of Fig. 3., the frequency multiplication circuit of the second embodiment”). The NMT

solution on the other hand is quite close to the reference text and does in fact only vary from it,

because the ST states “second embodiment” instead of “this embodiment” as the reference text

does (この実施形態; kono jisshi no keitai). These kinds of divergence between ST and

reference texts can often be observed in parallel text corpora meant for MT training. We will

see in Section 7.6, that it might indeed be an issue, maybe less so for training, but more so for

the evaluation of translation models’ output.

6.4 Summary

The jump in quality through neural machine translation can’t be denied. Many of the downfalls

of rule based and statistical machine translation seem to have been solved. However, it is still

dangerous to blindly rely on the output of the NMT systems: While the results often appear

correct and well formulated (almost like if written by a human), at times, very important items

are either mistranslated or left out altogether. Nonetheless, the output reads very fluently and

therefore perceived translation quality may appear quite high.

It was interesting to analyze the different approaches the WIPO and EPO have taken

towards implementing NMT into their systems, with arguably the WIPO system being more

adequate for translators to work with, as the translation can be tuned slightly by the user. The

output also seems to be slightly more precise, but the sample size used for this short overview

is by no means big enough to give a scientific opinion about it.

The next chapter will be about the creation of an NMT-model, in order to try and

recreate the findings above and see how different training variables and data selection influence

the final output of the network.

79

7 Creating a Japanese-English Patent NMT model

In this chapter, the creation of a neural machine translation model is presented. The aim is to

verify the hypothesis, that NMT favors fluency over adequacy and that training the system on

domain-specific texts will enhance its performance. While these hypotheses have been

confirmed in a broader sense by other publications before (Junczys-Dowmunt et al. 2016;

Koehn & Knowles 2017), as of my knowledge this was not yet concretely tested in the rather

controlled language of patent translation. In other words, in the cited publications, “domains”

like Law, Medicine, IT and so on would also have used vastly different text-types for training,

whereas in this thesis’ case, the language will be limited to patent texts.

To achieve a controlled testing environment, a variety of NMT models using the state-

of-the-art Transformer model will be trained on strictly patent parallel texts and subsequently

the translation output of these models will be compared. In order to restrict the training to a

certain domain, the international patent classification will be used to extract a specific domain

from the corpus. The evaluation of the training results will be done both automatically by using

the de-facto standard for automatic translation evaluation, the BLEU metric64 (Papineni et al.

2001), but also through human evaluation based on the SAE J2450 automotive evaluation

metric.

While this chapter provides an in-depth overview of the methodology, it may also be

considered as a sort of tutorial for translators interested in getting familiar on a practical basis

with NMT. The models will be trained on a regular gaming/multimedia personal computer. As

mentioned often in the preceding chapters, neural networks benefit highly from a powerful GPU

as the architecture of graphics processing units lends itself nicely to the computational

requirements of neural networks. Gaming computers therefore offer a good platform for

venturing into NMT research.

For reference, all training and subsequent experiments in this chapter will be performed

on the hardware and software listed in Table 5.

64 See Section 7.5.2.1 for further explanation of the BLEU metric

80

Table 5: Computer hardware used for this chapter

System specifications used for the experiments

CPU Intel Core i7 2600K @ 4.4Ghz

System memory 16GB DDR 3 1866Mhz

GPU Nvidia GeForce RTX 2060

Video memory 6GB GDDR6

OS Manjaro Linux (4.19.108-1)

Storage 256GB SSD (operating system, applications

and training data)

3TB HDD (additional data, data preparation)

It is generally recommended to use a recent Nvidia GPU (GeForce GTX 9xx series or higher),

as the GPU-acceleration in most NMT frameworks is coded using Nvidia’s proprietary CUDA

API (Application Programming Interface). The GPU should have access to as much video

memory (VRAM) as possible, as memory capacity is often a big bottleneck when training

neural networks. Additionally, making sure to have an ample amount of system memory (RAM)

(at least 16GB) is equally important, whereas the performance of the CPU itself is not that

important when training on the GPU.

While most of the toolkits and applications that will be presented in the next section are

available for most current operating systems (Windows, Mac, Linux), the high transparency,

ease of use and non-commercial nature of Linux as well as the very efficient on-board tools it

provides, make it hard not to recommend using it. All the experiments and step-by-step guides

found in the following sections will be based on Manjaro Linux65, which in turn is based on

Arch-Linux. For a slightly more accessible or Windows/Mac-like experience, a distribution like

Ubuntu66 may be used and most of the steps should still apply. The big advantage of Ubuntu is

that most of the applications and dependencies used in the following experiments will be

available in a pre-packaged form.

If no access to suitable computer hardware is available, Google offers a service called

Google Colaboratory67, where it is possible to use a virtual machine environment free of charge.

The service even provides Free GPU acceleration for 12 hours, so it is well suited for running

(smaller) NMT projects on it. The service can be accessed through any web-browser and runs

completely on Google’s servers. The Vienna Scientific Cluster (VSC)68 offers a similar service

65 https://manjaro.org/
66 https://ubuntu.com/
67 https://colab.research.google.com/ (Accessed on March 03, 2020)
68 http://vsc.ac.at/home/

https://manjaro.org/
https://ubuntu.com/
https://colab.research.google.com/
http://vsc.ac.at/home/

81

for, amongst others, students of Viennese universities. However, exploring these solutions

would go beyond the scope of this thesis.

For the following sections, a basic understanding and interest in learning about the usage

of and coding in Python will also be highly beneficial, as most frameworks tested are based on

that programming language. Before writing this thesis, I had to learn some of the basics of

Python to be able to more efficiently prepare the data and use the NMT toolkits. In the following

sections, the scripts and programs I have written and used will be provided (see also Appendix

II: Code and scripts). Table 6 is a list of online documentation and resources highly

recommended for learning the basics of the underlying concepts.

Table 6: Python and NLP learning documents

Publication Summary Citation URL

NLTK Book A book about Natural

Language Processing.

Covers many of the Python

basics with regards to NLP;

great for people with even

just very little pre-existing

knowledge about coding.

Bird et al. 2009 https://www.nltk.org/

book/

The Python

Tutorial

General Tutorial on Python

to get familiar with the way

the language works and

understand how to write

code.

The Python

Software

Foundation

https://docs.python.or

g/3/tutorial/index.html

While the documentation available online is often very thorough, I will try to elaborate on issues

I personally found difficult to wrap my head around, in the hopes of providing easier access to

certain tools necessary for creating a neural machine translation model. When stuck, it is also

very recommended to create an account on the website https://stackoverflow.com/ or at least

consult it when needed. Often other people may have had exactly the same questions, so an

answer may already be available. The community is very helpful, as long as the question is well

researched and formulated.

All of the example code and commands in the following sections will be based on

Manjaro Linux, so for recreating the coding environment of this thesis it is recommended to

use the Manjaro Linux distribution. It is possible to use other Linux distributions as well, with

the caveat of having to look up or know the respective commands for that distribution. Since

most of the work happens on the command line interface (CLI), the major difference will be

https://www.nltk.org/book/
https://www.nltk.org/book/
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://stackoverflow.com/

82

how to access packages (i.e. applications and programs) as each distribution uses different

repositories (servers were the packages are stored) and package managers (applications that

download and install the packages). For further information consult the documentation of the

respective distribution available online.

7.1 Procuring the training data

As mentioned in the theoretical part of this thesis, NMT is a corpus-based machine learning

approach and therefore is dependent on vast amounts of input data; even more so than SMT

before it. Before starting our exploration of NMT, we should therefore make sure that we have

access to a large corpus of parallel text. Depending on the language-pair this can be a daunting

task, as NMT requires corpora containing at least a few million words in order to even “get off

the ground” as Koehn and Knowles put it (Koehn & Knowles 2017:4).

Generally, the bigger the dataset the better the results should generalize over new,

unseen data. Using too small of a dataset also bears the risk of what is called overfitting a model,

which means that the model will not generalize well over new data, because it is too specialized

on the data that was provided during training.

Browsing the web, one may find many useful text corpora; some of them will be quite

well known by translators, as best practice suggests looking at parallel texts for coherent

translations. Keep in mind that corpora are not necessarily parallel texts. Mono-lingual corpora

exist as well and are often used for unsupervised training or language-model training in MT

studies. For NMT training, we will require sentence aligned parallel texts, so this is what we

will be looking for. Luckily, SMT already required vast amounts of parallel text data for peak

performance, so the data collection efforts that have been ongoing ever since are perfectly

suitable for NMT training as well. For languages of the European countries (including English)

some very useful parallel texts exist and can be easily found online. For example, the European

Parliament Proceedings Parallel Corpus 1996-2011 (Europarl) 69 offers a great starting point

for a large variety of European languages. However, this thesis focuses on patent translation for

the language pair English-Japanese, so the corpus had to be limited to patents of that specific

language pair.

Luckily MT research is still very active in Japan and the NTCIR-10 PatentMT (Patent

Machine Translation) Test Collection70 was published for research use by the National Institute

of Informatics (NII) Japan. It offers a parallel patent corpus with over 3.1 million sentence pairs

in English and Japanese. Procuring the dataset required a written personal enquiry (by mail) to

69 https://www.statmt.org/europarl/
70 http://research.nii.ac.jp/ntcir/permission/ntcir-10/perm-en-PatentMT.html

https://www.statmt.org/europarl/
http://research.nii.ac.jp/ntcir/permission/ntcir-10/perm-en-PatentMT.html

83

the NII and was only possible through the backing of the project by my principal advisor Prof.

Werner Winiwarter. The data was received in the form of a link with time-limited access and

the download size of the complete (compressed) data was around 256GB (Gigabyte) in size;

decompressing doubled the data size. It is therefore recommended to use a big hard-disk drive

(HDD) to archive the data and only copy the relevant training data to a solid-state drive (SSD)

for faster data preparation.

7.1.1 Pre-processing of data

While one big strength of the NMT paradigm is that no extensive pre-processing of data is

required for the machine to learn, it is still recommended to prepare the data so that the system

may optimally ingest it (see Domingo et al. 2018). First and foremost, it is paramount that the

data is stored in a sentence-aligned format. Luckily, this is essentially standard in parallel text

corpora.

However, most parallel text corpora store the aligned sentences in one single file, while

most NMT toolkits will require separate TT and ST files, that keep the alignment by keeping

the same line count for each file (i.e. line 1 in the TT file corresponds to the meaning of line 1

in the ST file). These two files are generally dubbed as the training data and are usually labeled

train with the extension representing the language that the files contain. For this thesis’ English

and Japanese training set, we will therefore prepare a train.en file and a train.jp file. The

training files should contain a vast number of sentences with several millions of words to be

effective. Additionally, we will find that we need to prepare further data for the network to

validate the training. This data must be different from the one we use in training, as it is used

for testing the inference of the model on hitherto unseen data. Such data is often called

validation data or development data and therefore shortened in a similar fashion to the

training data as val.xy or dev.xy, with xy being the language of the file. Furthermore, in order

to test the completed model, we will want to have yet another set of files, that has not been used

in training or validation to check the translation quality of the model. These files are often

referred to as the test data and are therefore generally labeled as test.xy, again with xy referring

to the language they contain. The validation data should not be exceedingly large, as having too

many sentences would only increase the training time and add significantly to the memory

requirements of training.

Most NMT toolkits will also require two vocabulary files (one for the source and one

for the target language). These files can be generated from the training data with the tools

provided by the NMT toolkits or reused from other projects. The vocabulary files will be used

by the network to create the word-embedding and should therefore be of a good size but also

84

not too large. The default maximum vocabulary size for most toolkits is 50.000 “tokens”.

50.000 tokens often don’t cover all the available tokens in training data, so tokens that appear

less often are not stored in the vocabulary and simply replaced by an <unk> (unknown) token

during training and translation.

Now, what is a token? Token refers to a single distinguishable unit in our data. Tokens

can therefore be words, but also phrases, word-stems, symbols, spaces, letters or other, more

abstract sub-word units like the Byte-pair encoding (BPE). In BPE the most common pair of

consecutive bytes of data is replaced with a byte that does not occur within that data, allowing

for compression of the language data and therefore enabling larger vocabularies while not using

more tokens. The abstract nature of this approach lends itself well to Neural Machine

Translation, which is why new tokenizers, i.e. programs that segment sentences into sub-word

tokens, started to appear for this approach. Solutions, like sentencepiece71, therefore offer a

language agnostic way to perform tokenization of text. This has been proven as efficient or even

more efficient than classic, linguistics based tokenizers, at least for certain language pairs (see

Sennrich et al. 2016, Kudo & Richardson 2018 and 72). On the other hand, other experiments

came to the contrary conclusion where classic tokenizers like the one from the SMT framework

Moses73 or the tokenizer for the Japanese language mecab74 perform better (see Domingo et al.

2018). Combinations of both approaches (i.e. pre-tokenizing text with a language-specific

tokenizer and then running a second BPE pass on top of it) also yielded good results in most

publications. While this is a very exciting topic, for our testing we will stick to the classical

tokenization as it keeps data human-readable throughout and performs very well.

7.1.2 Tokenization

So why is tokenization important? Looking at how NMT systems learn the language, the

network should be able to figure out the patterns by itself. After all, most languages naturally

come in a pre-tokenized form, as there are spaces in-between the words that help separating

meaning units. However, especially for the Japanese language, this base form of tokenization

is not present naturally.

If we were to ingest a Japanese sentence as is, the system would treat the whole sentence

as a single token, as there are no spaces in-between words or symbols. Most tokenizers for

Japanese therefore add spaces between Japanese words; this alone already makes the data ready

71 https://github.com/google/sentencepiece
72 https://github.com/google/sentencepiece/blob/master/doc/experiments.md
73 https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
74 https://github.com/taku910/mecab

https://github.com/google/sentencepiece
https://github.com/google/sentencepiece/blob/master/doc/experiments.md
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/taku910/mecab

85

for processing in NMT systems, but more can be done. For instance, mecab finds known

kanji75-composita (i.e. the meaning of the word) and hiragana76-sequences in the text and

separates them. Let’s look at the first example sentence from the training corpus we will be

using later on:

Original:

流体圧シリンダ３１の場合は流体が徐々に排出されることとなる。77

And here is the segmentation after we let mecab process the sentence78:

流体 | 圧 | シリンダ | ３ | １| の | 場合 | は | 流体 | が | 徐々に | 排出 | さ | れる | こ

と | と | なる | 。

We can see that known composita, like 流体 literally standing for “fluid body” meaning “liquid”

or “fluid”, or the katakana79 word シリンダ (cylinder) have been kept together; while some less

known combinations like 流体圧 (liquid pressure) had a space added between the first two

characters and the last. Curiously the number 31 was also spaced out to “3” and “1”, which

theoretically enables the system to learn the pattern of digit combinations itself.

Latin text tokenizers work in much the same way, separating punctuation from words

and automatically marking hyphenation and other special typesetting, so the system knows the

hyphen or typesetting is not part of the word per se.

It is important to note here, that many NMT toolkits offer their own form of tokenization

or have some of the tools mentioned above as a part of the whole package. It also appears that

different toolkits have varying performance, depending on what tokenization was used. For that

reason, it is recommended to choose one toolkit to work with and stick to one form of

tokenization. In this thesis’ case the classic linguistic tokenization was chosen, so that it is easier

to attain comparable results that are human-readable throughout the whole workflow.

75 The adopted logographic Chinese characters used in Japanese writing, that also carry several meanings

depending on usage.
76 One of the 3 components of the Japanese writing system. Syllabary used mainly to write conjugational endings

following a kanji root, various function words, including particles, and other native words for which there are no

kanji or whose kanji form is not commonly used.
77 The sentence translates to: “When the fluid pressure cylinder 31 is used, fluid is gradually applied.”
78 Spaces marked manually with “ | “
79 The last of the 3 components in the Japanese writing systems. Used mainly to write foreign words and to

represent onomatopoeia.

86

7.2 Which NMT toolkit to use

Thanks to the thriving open source community around NMT and NLP in general, we have a

large selection of tools at our disposal that we may use for creating our own NMT model. Table

7 lists some of the most popular and updated NMT toolkits on the development platform

GitHub80, that also offer good documentation. For this thesis all the listed tools were tested, and

the annotations are based on personal experiences with the toolkits. Please keep in mind, that

results may vary depending on the hardware, the operating system or even the data that is used.

Also, since most of these toolkits are still being developed, the features they offer, as well as

their efficiency may change over time.

Table 7: A selection of NMT toolkits analyzed

Toolkit Citation/URL Framework Advantages/Disadvantages

Tensorflow

NMT

M.-T. Luong et al.

2017

https://github.com/ten

sorflow/nmt

TensorFlow + Good documentation

+ Replicates (old) Google NMT

+ Automatic BLEU evaluation

+ Highly tweakable

- Only attention-based RNN NMT architecture (no

Transformer)

- No longer actively developed

- Setup rather complex

OpenNMT-

py

Klein et al. 2017

https://github.com/Op

enNMT/OpenNMT-py

 PyTorch + Great documentation

+ Offers Transformer model

+ Good balance of customization and accessibility

+ Actively developed

+ Tensorboard monitoring

+ Made for research

+ Efficient (works well on low memory GPUs)

+ Provides many useful tools for data preparation

- No automatic BLEU evaluation

- Slightly lower scores for same amount of training

time as TF models

OpenNMT-tf Klein et al. 2017

https://github.com/Op

enNMT/OpenNMT-tf

TensorFlow + Offers Transformer model

+ Highly tweakable

+ Actively developed

+ Tensorboard monitoring

+ Automatic BLEU evaluation during training

+ Fast, if configured correctly

+ Allows mixed-precision training on newest GPUs

with dedicated Tensor-cores (very fast!)

- Less efficient (needs more memory)

- Setup complicated

- Lacks some useful external tools

- Documentation a bit scarce

80 Popularity as measured by github. More stars on github indicate higher popularity

https://github.com/tensorflow/nmt
https://github.com/tensorflow/nmt
https://github.com/OpenNMT/OpenNMT-py
https://github.com/OpenNMT/OpenNMT-py
https://github.com/OpenNMT/OpenNMT-tf
https://github.com/OpenNMT/OpenNMT-tf

87

Toolkit Citation/URL Framework Advantages/Disadvantages

nmt-Keras Peris & Casacuberta

2018

https://github.com/lva

peab/nmt-keras

TensorFlow

Theano

(deprecated)

+ Good documentation with background

explanation

+ Made for research

+ Automatic BLEU evaluation

+ Easy set up and configuration

- Rather slow

- Not geared towards creating big models

- TensorFlow complications

- Theano backend no longer developed

JoeyNMT Kreutzer et al. 2019

https://github.com/joe

ynmt/joeynmt

PyTorch + Very accessible documentation

+ Scripts and configs well commented

+ Made for novices

+ Very simple setup

+ Automatic BLEU evaluation

- Does not include some useful pre-processing tools

(tokenization, length-filtering, etc.)

- Slightly less tweakable

- Tutorials meant for learning and less for quickly

building a model

- Does not cope well with large data sizes (requires

more memory than other toolkits)

Some of the toolkits, like OpenNMT, also explicitly allow training of cross-mediatic inputs,

like image/audio to text or vice-versa. The NMT toolkits are in fact a means of facilitating the

interface between human and machine, providing useful features like checkpoint saving,

automatic evaluation and data preparation, as well as communicating with the deep learning

framework so that it performs the calculations needed to train the network. As long as we have

features (the input) that we can attribute to labels (the output), the underlying architecture can

start finding patterns and associate said features to the labels (or the ST to the TT for that matter).

As may become clear from the annotations in Table 7, the toolkits are based on different

frameworks (TensorFlow, Theano, PyTorch). These frameworks essentially provide the

support for neural networks/deep learning architectures, meaning they manage the vector

calculations neural networks are based on. Since Theano is no longer actively developed, the

only two frameworks tested in this thesis are Google’s TensorFlow 81 and Facebook AI

Research’s PyTorch82. In the next sub-sections I will provide a short overview over the tested

toolkits in order to explain why I decided for one particular toolkit amongst them.

7.2.1 Tensorflow NMT

Tensorflow NMT was authored by Thang Luong, Eugene Brevdo and Rui Zhao (M.-T. Luong

et al. 2017). The aim was to provide a toolkit that reached state-of-the-art translation quality,

81 https://www.tensorflow.org/
82 https://pytorch.org/

https://github.com/lvapeab/nmt-keras
https://github.com/lvapeab/nmt-keras
https://github.com/joeynmt/joeynmt
https://github.com/joeynmt/joeynmt
https://www.tensorflow.org/
https://pytorch.org/

88

while also offering a tutorial that “gives readers a full understanding of seq2seq models and

shows how to build a competitive seq2seq model from scratch”. The system is based on an

attention RNN Encoder-Decoder model and aimed to replicate Google’s NMT (GNMT) system.

Both Multi-GPU as well as CPU training are supported through the TensorFlow framework.

The tutorial offers a great overview of NMT and the workings behind the offered RNN

encoder-decoder architecture with attention. However, the toolkit was last updated in February

of 201983 and is therefore the least up-to-date of the tested toolkits. For that reason, it does not

offer the state-of-the-art Transformer model. While the tutorial is great for theoretical

background, it is rather geared towards users with IT background and does not offer a real high-

level API to communicate with TensorFlow. Setting up a model is therefore much more

complicated than with other frameworks and in that respect not well suited for our needs. Since

we also want to test our hypothesis on the newest available model architecture, the Transformer,

this toolkit will not be used for our experiments.

Yet, it is still worthwhile reading through the documentation and following along with

the tutorial if possible. However, the installation of TensorFlow needed for following the

tutorial may be rather tedious, as the toolkit is built around an older nightly release and therefore

not compatible with the newest stable releases of TensorFlow.84

7.2.2 OpenNMT-py

OpenNMT-py is a Python port of the original OpenNMT toolkit based on the now deprecated

Lua version of Klein et al. (2017) and was initially created by Adam Lerer and the Facebook

AI research team (Klein et al. 2017:3). However, OpenNMT is now generally developed as

completely open-source at http://github.com/opennmt. The OpenNMT project is described as

following:

The system prioritizes efficiency, modularity, and extensibility with the goal of

supporting NMT research into model architectures, feature representations, and source

modalities, while maintaining competitive performance and reasonable training requirements.

The toolkit consists of modeling and translation support, as well as detailed pedagogical

documentation about the underlying techniques. OpenNMT has been used in several

production MT systems, modified for numerous research papers, and is implemented across

several deep learning frameworks.

(Klein et al. 2017:1)

The toolkit is therefore very approachable, and installation is quite simple as all

dependencies are automatically fetched by the installation command. The toolkit offers many

83 As of this writing, March 2020.
84 A TensorFlow 1.4 (stable) version of the tutorial is available: https://github.com/tensorflow/nmt/tree/tf-1.4,

that however needs a work around for a beam-search bug in the TF framework.

http://github.com/opennmt
https://github.com/tensorflow/nmt/tree/tf-1.4

89

templates for recreating known working architectures, like LSTM RNN Encoder-Decoder

architecture or the Transformer. In my case, everything worked right out of the gate and I had

model training up and running in no time after following the excellent online tutorial85 .

OpenNMT-py also offers many useful tools as part of the package. Rather than being

implemented as direct commands, these external tools are stored in separate folders of the

project directory and must be called separately from the main OpenNMT program. On one hand,

that makes it easier to run the tools separately as part of a script, but conversely it also means

that BLEU evaluations can’t be performed during training.

The toolkit uses PyTorch as the underlying Framework and therefore also supports CPU

and Multi-GPU training. In my personal testing, I have found that PyTorch is less difficult to

set up and requires much less memory than TensorFlow. Initially I therefore gravitated towards

OpenNMT-py, but testing has shown, that the sheer speed of TensorFlow makes up for the

higher memory requirements. A short overview over my findings will be provided in sub-

section 7.2.6.

7.2.3 OpenNMT-tf

OpenNMT-tf is a recent addition to the OpenNMT project “focusing on large scale

experiments and high performance model serving using the latest TensorFlow features” (Klein

et al. 2017:4).

Just like OpenNMT-py, it is part of the ongoing open-source OpenNMT project and

offers many of the same functions and features. While it also offers many pre-made

configuration templates recreating architectures like the Transformer, I found that the setup was

slightly more involved than with OpenNMT-py. First and foremost, the online documentation86

is less fleshed out than that of the PyTorch counterpart and second, TensorFlow requires more

external and more specific dependencies than PyTorch. It also required more hyperparameter

tuning than PyTorch, as Tensorflow apparently requires more memory than an equivalent

architecture running on PyTorch (see sub-section 7.2.6).

However, using the latest TensorFlow features enables very fast training, especially if

using the latest hardware. By leveraging TensorFlow’s automatic mixed-precision training it

was possible to make use of the novel GPU architecture in the training computer’s RTX 2060,

accessing its tensor cores. This provided a boost in training performance of almost 50%, which

is quite a lot considering model training can take up to several days depending on architecture,

hyperparameters and training data. At the time of writing this thesis, OpenNMT-py offered no

85 Full documentation for OpenNMT-py available here: https://opennmt.net/OpenNMT-py/
86 Documentation for OpenNMT-tf is available here: https://opennmt.net/OpenNMT-tf/

https://opennmt.net/OpenNMT-py/
https://opennmt.net/OpenNMT-tf/

90

such option according to documentation. Additionally, the toolkit is more integrated into the

command line and so enables us to use BLEU evaluation during training, which in turn enables

us to stop training automatically when the BLEU score no longer significantly improves.

7.2.4 nmt-Keras

nmt-Keras was developed by Álvaro Peris and Francisco Casacuberta (Peris & Casacuberta

2018) and is based on the high-level deep-learning API Keras and their own “Multimodal Keras

Wrapper” written in Python, which enables easy management of models and datasets as well

as automated evaluation. The calculations were originally performed on Theano, but this has

since shifted to TensorFlow in later releases. While theoretically the reliance on the high-level

API Keras makes the whole package very accessible and easy to setup, complications with the

no longer officially tested Theano framework, some not yet implemented TensorFlow features,

the reliance on an older TensorFlow version (1.15.2 at the time of writing) and not implemented

functions for the Transformer architecture can be detrimental when trying to work with the

toolkit. I believe it is a shame, as the main focus of this toolkit is putting “particular emphasis

on the development of advanced applications of neural machine translation systems, such as

interactive-predictive translation protocols and long-term adaptation of the translation system

via continuous learning.” (Peris & Casacuberta 2018:1), so it would appear to be the closest

that any of the toolkits get to including post-editing and translators as a part of the equation.

The documentation is very well made and much less IT-centric than some of the other

toolkit’s documentations. Likewise, the comments in the different files of the toolkit, like the

config.py, are very exhaustive and helpful. As mentioned, while the toolkit also supports the

Transformer architecture, it does not yet fully support all of the needed functions87 and it was

therefore not possible for me to get the toolkit up and running at an acceptable speed. In fact,

training on the GPU was off the table for the larger patent dataset, as the toolkit used a lot more

memory than any other toolkit for the same training data and would regularly throw up error

messages and abort training.

I can therefore not recommend using this toolkit for more involved projects until it is

fully featured and uses more up-to-date dependencies. Just like with Tensorflow-NMT however,

it is worthwhile reading the documentation and following along with the examples provided by

the authors as they give great insight into how neural machine translation modeling works. The

87 At the time of writing, 27 March 2020, it did not support the “noam” reducer function that is used by default in

the Transformer architecture.

91

authors even provide iPython notebooks88 on Google Colab, where it is possible to run all of

the code in a web-browser while reading the explanations of the authors.89

7.2.5 Joey NMT

The final toolkit I examined is Joey NMT, which is the most recent effort amongst the tested

toolkits. It was made by Julia Kreutzer and Stefan Riezler of the Heidelberg University and

Joost Bastings of the University of Amsterdam. The aim of the toolkit was to create a

“minimalist neural machine translation toolkit based on PyTorch that is specifically designed

for novices. Joey NMT provides many popular NMT features in a small and simple code base,

so that novices can easily and quickly learn to use it and adapt it to their needs” (Kreutzer et al.

2019).

Installation is quite simple and can be achieved quickly by following the excellent

documentation either online or in the handbook that was crafted for students as a script for

lectures at university90. Despite focusing on simplicity, Joey NMT offers support for most

important NMT architectures including LSTM RNNs and Transformer architectures. Usage is

very similar to OpenNMT but slightly more streamlined, with a lot of configuration

examples/templates that emulate the best models of big machine translation workshops.

I highly recommend testing Joey NMT and following the excellent examples in their

tutorial for really getting familiar with how NMT works. Joey NMT also incorporates many

useful tools to visualize training progress and model characteristics: Besides tensorboard

integration, it allows to visualize attention weights and learning curves as well, which can be

very useful for understanding NMT.

While theoretically it would be possible to use Joey NMT for larger projects like the

experiment in this thesis as well, at the time of writing it is not yet optimized enough to run big

datasets on a small memory footprint and has a bug regarding the batch_multiplier91, which

would enable more efficient training on limited memory capacity. The toolkit has a lot of

promise in regard to educational usage and while it will not be used for creating the models in

this thesis, it is worth considering as an educational tool for introducing NMT to Translation

Studies students.

88 Interactive notebooks that allow the execution of code.
89 Find the tutorial by Peris and Casacuberta here: https://colab.research.google.com/github/lvapeab/nmt-

keras/blob/master/examples/tutorial.ipynb
90 https://readthedocs.org/projects/joeynmt/downloads/pdf/latest/ (accessed on March 12, 2020)
91 I pointed out the issue and workaround was already suggested by one of the authors here:

https://github.com/joeynmt/joeynmt/issues/90#issuecomment-605427609 (accessed on March 28, 2020)

https://colab.research.google.com/github/lvapeab/nmt-keras/blob/master/examples/tutorial.ipynb
https://colab.research.google.com/github/lvapeab/nmt-keras/blob/master/examples/tutorial.ipynb
https://readthedocs.org/projects/joeynmt/downloads/pdf/latest/
https://github.com/joeynmt/joeynmt/issues/90#issuecomment-605427609

92

7.2.6 Selecting the most adequate toolkit

From the roundup above, the two OpenNMT versions provided the most accessible and feature-

complete package. They also provide high performance when creating NMT models using the

Transformer architecture, even on relatively small video memory. In this sub-section a direct

comparison between the two OpenNMT toolkits will be made. The section will be

comparatively technical, but any technicalities that appear unclear now, will be further

elaborated in Section 7.3 and up. The two toolkits were tested using the NTC7 optics-only

dataset (see sub-section 7.4.1.5) and standard parameters for the “Transformer Base”

architecture (Vaswani et al. 2017), with only the batch size92 being adjusted.

Since the task is to create several models, performance and efficiency needed to be

evaluated. The main difference is with memory consumption, which is higher on the

TensorFlow powered OpenNMT-tf. This means, that to run training on TF, we would either

have to use a GPU with more memory or reduce the training batch size. Popel and Bojar

empirically found that reducing the batch size means that training will take longer and

potentially deliver slightly worse results for the same amount of training time. However, if the

effective batch size93 is adjusted, the results should be the same as if using a larger batch size

(Popel & Bojar 2018). In order to get comparable results, effective batch size was therefore

kept to the common lowest denominator of 4096 in the first test. To get the best results of each

individual toolkit however, OpenNMT-py was also tested at an effective batch size of 6144

(batch size 3072 x 2; the maximum that would fit the 6GB of VRAM), and in OpenNMT-tf

mixed-precision training was utilized to speed up the training process (memory requirements

actually grew with mixed-precision training, opposite to what might be expected; the reason for

this seems to be, that both FP16 (Floating-point 16-bit) and FP32 (Floating-point 32-bit) values

are kept in memory, something that may be resolved in a future TensorFlow version)94.

92 Essentially the number of words/tokens the system ingests at a time.
93 Essentially multiplying gradient updates of x individual batch sizes to get the same result as using a larger

batch size.
94 https://forum.opennmt.net/t/settings-for-training-transformerbig-with-mixed-precision-on-single-

gpu/3532/8?u=dixxy (accessed on 23.03.2020)

https://forum.opennmt.net/t/settings-for-training-transformerbig-with-mixed-precision-on-single-gpu/3532/8?u=dixxy
https://forum.opennmt.net/t/settings-for-training-transformerbig-with-mixed-precision-on-single-gpu/3532/8?u=dixxy

93

Table 8: OpenNMT-tf and OpenNMT-py memory consumption, accuracy and speed compared

Transformer Base model training memory consumption and speed

Toolkit Batch size

(Effective)

Speed

(Tokens/s)

Memory-

consumption

BLEU after

60k/40k* steps95

(time needed)

OpenNMT-tf

(2.8.1)

1024

(4096)

ST: ~6400 tok/s

TT: ~6000 tok/s
~ 5100MB 38.25 (~9.8h)

OpenNMT-py

(1.0.2)

2048

(4096)

ST: ~6500 tok/s

TT: ~6050 tok/s
~4800MB 32.19 (~9.4h)

OpenNMT-tf

(2.8.1)

Mixed-precision

1024

(4096)

ST: 9500 tok/s

TT: 8900 tok/s

~ 5800 MB

Non-critical

OOM errors

after saving

first

checkpoint

37.25 (~6.5h)

OpenNMT-py

(1.0.2)

3072

(6144)

ST: 7200 tok/s

TT: 6700 tok/s
~ 5900MB 33.47 (~8.6h)96

As Table 8 illustrates, OpenNMT-py performs slightly faster when calculations are done using

classical full-precision (FP32) training, since it allows a bigger batch size to fit the GPU

memory. However, OpenNMT-tf is very fast even at half the actual batch size, suggesting that

the TensorFlow framework is capable of very efficient calculations through the GPU, as long

as enough video memory is available. On the other hand, OpenNMT-py’s efficient memory

usage allows a batch size of 3072 (resulting in an effective batch size of 6144), which speeds

up training by approximately 10.5 % from ST 6500 tok/s to 7200 tok/s and TT 6050 tok/s to

6700 tok/s respectively and slightly improves model accuracy according to the BLEU score.

On the other hand, OpenNMT-tf supports mixed-precision training (Micikevicius et al. 2017),

which makes use of special hardware on the latest Nvidia GPUs (Nvidia Volta and Turing

architectures used in the Titan V, Tesla- and RTX-series respectively) and TensorFlow’s

automatic mixed-precision optimization to accelerate the training process. This gives an

incredible performance increase of approximately 48.5% from ST 6400 tok/s to 9500tok/s and

TT 6000 tok/s to 8900 tok/s, with only a slight loss in model accuracy according to the BLEU

score (38.25 to 37.25). We can also observe that general model accuracy, as measured by BLEU,

is higher for OpenNMT-tf than it is for OpenNMT-py. The reason for this is not quite clear, but

95 1 Step = One effective batch size of tokens (4096) was processed. 60k steps means the full data has been seen

approximately 5-6 times (5-6 Epochs completed) on a data-set with approx. 47m words.
96 BLEU score and time for the effective batch size of 6144 was evaluated after 40k steps, which provides the

same data coverage as 60k steps on 4096.

94

it could be down to the used frameworks, the way the toolkits prepare the input data

(vocabulary) or slight variances in the way the Transformer architecture is implemented in the

two toolkits. Regardless, “out-of-the-box” performance is higher for OpenNMT-tf.

The gain in speed thanks to mixed-precision training and the higher base-line accuracy

is essential for creating many models in a relatively short amount of time and this makes

OpenNMT-tf the better choice over OpenNMT-py97 for this project. Additionally, OpenNMT-

tf offers some features, like BLEU evaluation during training, that help to streamline the

training process and enables us to stop training automatically once BLEU no longer

significantly increases.

Unfortunately, TensorFlow offers some inherent challenges for the setup of OpenNMT-

tf. For one, as was shown in the small benchmark above, it requires more memory than PyTorch

for the same model parameters, so some tuning will be required. In addition, there seem to be

some unresolved bugs with newer Nvidia GPUs (RTX series), that result in aborted training

unless the “allow_growth”-flag is specified98.

--gpu_allow_growth

CLI 1: Command argument needed for RTX GPUs on TensorFlow framework

Adding the arguments in CLI 1 to our training command, something that is not documented

well, allows training to start on RTX GPUs with OpenNMT-tf. However, since this flag

essentially enables the framework to gradually build up memory usage on the GPU it might

also result in an out of memory error (OOM) during training, if the GPU memory is otherwise

utilized (by opening too many browser tabs for example) or particularly long sentences appear

in the training batch. Therefore, utmost care must be taken when selecting training data and

batch size.

97 Mixed-precision training is still in experimental stage for openNMT-py:

https://github.com/OpenNMT/OpenNMT-py/pull/1208 (accessed on March 25, 2020)
98 https://github.com/tensorflow/tensorflow/issues/24496 (accessed on March 25, 2020)

https://github.com/OpenNMT/OpenNMT-py/pull/1208
https://github.com/tensorflow/tensorflow/issues/24496

95

7.3 General recommendations before starting

Since the installation process is well explained by the documentation of each individual toolkit

presented in this thesis, I would rather like to present the reader with some additional general

recommendations and some of the issues I encountered when preparing my working

environment.

What follows are general recommendations when working with NMT toolkits and

practical tips on how to deal with possible issues:

1) Use a Python virtual environment

Virtual environments enable you to install Python packages separated from the main system.

Since most toolkits and dependencies are available as Python packages, it is possible to run

them in different versions than what is running system-wide and this makes sure that the

dependencies and the Python runtime of the environment remain unaffected from system

updates. However, not all the necessary items are available through Python packages, so some

care must be taken when updating the system (for example, Nvidia’s CUDA toolkits are

generally only available as system packages). With Python installed, the standard Python

command (the command starts after the “$” prompt) for creating a virtual environment on Linux

is shown in CLI 2.99

$ python -m venv /path/to/new/virtual/environment

CLI 2: Standard command for creating a virtual environment

However, to facilitate this process, I would recommend installing the virtualenvwrapper100,

which helps tremendously with creating and organizing the virtual environments. It is

recommended to install virtualenvwrapper system-wide. To install it in Manjaro, first switch to

the so-called root user (often also wrongly referred to as “super user”) by typing the command

in CLI 3.

$ su -

Password: (Type your password)

CLI 3: Switch to root user

99 We assume that we will be using Python 3, so the “python” command is the same as the “python3” command:

https://docs.python.org/3/library/venv.html (accessed on 26.03.2020)
100 https://virtualenvwrapper.readthedocs.io/en/latest/ (accessed on 26.03.2020)

https://docs.python.org/3/library/venv.html
https://virtualenvwrapper.readthedocs.io/en/latest/

96

The prompt should now change to a “#” instead of the dollar sign “$”, indicating that you are

now executing commands as the root user.

To install virtualenvwrapper, type the command in CLI 4.

pacman -S python-virtualenvwrapper

CLI 4: Install virtualenvwrapper

After the installation, you should return to the regular user by simply typing

exit

CLI 5: Log-out of current terminal session

If you are using another distribution (like Ubuntu) you may need to use the sudo command

instead. This installs the wrapper on a system level, enabling many useful commands for

managing virtual environments. Some of the commands I used most during the experiment are

listed in Table 9101:

$ mkvirtualenv env_name create and activate virtual environment with

“env_name”

$ workon env_name activate virtual environment “env_name”

(needs to be created first)

$ setvirtualenvproject set project folder for active virtual environment

(automatically jump to this folder when activating

virtual environment)

$ deactivate deactivate active virtual environment

$ lsvirtualenv list all available virtual environments

$ rmvirtualenv env_name irreversibly delete virtual environment

Table 9: Commands for virtualenvwrapper

2) Make sure to use a supported Python distribution for TensorFlow/PyTorch

By default, most Linux distributions come with the latest Python version installed. This is not

always supported by the Deep Learning Frameworks. While PyTorch is relatively quick to

adapt to a new Python release, TensorFlow is often one or two major versions (3.x) behind. At

the time of writing, the stable build of TensorFlow is only compatible with Python 3.5 through

101 For a full list of commands see: https://virtualenvwrapper.readthedocs.io/en/latest/command_ref.html

(accessed on March 16, 2020)

https://virtualenvwrapper.readthedocs.io/en/latest/command_ref.html

97

to 3.7 while Python 3.8 is not supported. In order to check the Python version, just type the

command shown in CLI 6.

$ python --version

CLI 6: Display Python version

The terminal should output the version in the next line as shown in CLI 7.

Python 3.8.2

CLI 7: Python version 3.8.2 is installed

If you have a supported Python version, all is well. If not, you will have to locally install the

specific Python version you want (make sure not to install it as a system-package, as that may

break many other things) and then specify the Python version you want to create the virtual

environment with. What should work on Manjaro Linux (and most other Linux distributions)

102 is the following set of commands shown in CLI 8:

Switch to downloads folder

$ cd /home/user/Downloads

Download Python version from python.org

$ wget https://www.python.org/ftp/python/3.7.7/Python-3.7.7.tar.xz

Extract and change into directory

$ tar xf Python-3.7.7.tar.xz

$ cd Python-3.7.7

run configuration (with optimizations)

$./configure --enable-optimizations

make alternate installation as root user, will be 'python3.7'

$ sudo make altinstall

CLI 8: Step-by-step install of Python 3.7.7 as non-system package

This should install Python 3.7 to the /usr/local/bin/python3.7 binary folder, while leaving the

system Python install alone. If /usr/local/bin is in $PATH103, then simply create a new virtual

environment with Python 3.7 through virtualenvwrapper by typing the commands in CLI 9:

$ mkvirtualenv --python=python3.7 env_name

CLI 9: Create virtual environment with virtualenvwrapper using Python 3.7 runtime

102 Linux distributions like Gentoo, will allow you to install different Python versions easily, in a so-called slot-

system. In most other distributions (and especially OS’s like Windows) the process is a bit fiddlier.
103 $PATH is an environment variable, that indicates to the system where to look for programs.

https://www.python.org/ftp/python/3.7.7/Python-3.7.7.tar.xz

98

If this does not work, because /usr/local/bin/ is not in $PATH, either add it to your $PATH by

following guides online or type out the absolute path to the Python 3.7 installation as shown in

CLI 10:

$ mkvirtualenv --python=/usr/local/bin/python3.7 env_name

CLI 10: Alternate command for creating Python 3.7 environment

When running the “python --version” command in the virtual environment, it should now state

the same line as shown in CLI 11:

Python 3.7.7

CLI 11: Python 3.7.7 is installed

3) Text encoding (use UTF-8)

Text encoding (or code page) may seem like a small thing, but it can make working with

different languages very challenging on computer systems. Unfortunately, text encodings were

established in the early days of computers and are generally not inter-compatible. Even worse,

there is no 100% accurate way to detect the text-encoding used in a document.

For example, English documents may use the ASCII standard (American Standard Code

for Information Interchange) which only supports encoding of 128 (!) symbols or the extended

ANSI (American National Standards Institute) standard with support for 256 symbols. Asian

languages would obviously never fit this limitation. Japanese texts therefore tend to use

encodings like EUC-JP (Extended UNIX Coding – Japanese) or Shift-JIS, which extend the

encoding possibilities but result in compatibility issues and unreadable symbols if the wrong

decoding code page is chosen. Text example 7.3-1 shows an example of this issue.

Decoder EUC-JP encoded Japanese Sentence

ANSI ¤½¤ÎÂ¾¡¢¥¨¥Ý¥¥·¼ù»é¡¢¥¢¥¯¥ê¥ë¼ù»é¡¢¥·¥ê¥³¡¼¥ó¼ù»é¡¢¥¦¥ì¥¿¥ó

¼ù»éÅù¤¬ÊÝ î̧ÁØ£±£µ¤Îºà¼Á¤È¤·¤ÆÍÑ¤¤¤é¤ì¤ë¡£

EUC-JP その他、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、ウレタ

ン樹脂等が保護層１５の材質として用いられる。

Text example 7.3-1: Decoding with wrong code-page compared to the right code-page

99

Luckily, a standardized way of encoding exists with the UTF standard. The most common is

UTF-8, which is also the standard for Linux and Mac OSX Operating Systems104. Unfortunately,

often text-corpora are still stored in local encodings like EUC-JP, as was the case for the patent

data used in this thesis and this can be a major headache for working between different

languages. It is therefore recommended to convert all text-files into UTF-8 before using the

data in NMT training. There are several ways to do this, but for this thesis the Python script

convert_encoding.py105 was used.

4) Test small data-sets first and then run the system on real data

Generally, it is advised to first get familiar with the toolkits, hyperparameters and NMT

architectures by testing toy-examples or smaller datasets. This way, test trainings don’t take too

long and it is much quicker and less convoluted to troubleshoot a problem. Once training runs

without errors, it is possible to simply change the input data and, if needed, adjust

hyperparameters like the batch size to account for the higher memory requirements of the bigger

training data.

5) Plan ahead, allow for enough checkpoints to be saved and be patient

Training can take several hours and up to days depending on the used toolkit, the training

parameters, the hardware and the training data. In order to avoid losing the whole progress of a

training when the computer crashes or there is a power-outage, make sure to allow the toolkit

to regularly save checkpoints, so training can resume at a later date.

104 Windows is based on UTF-16, but Microsoft implemented system-wide UTF-8 support as BETA and is

working on making Windows more UTF-8 friendly in the future.

(https://blogs.msdn.microsoft.com/commandline/2018/07/20/windows-command-line-inside-the-windows-

console/; accessed on 30.03.2020)
105 https://github.com/goerz/convert_encoding.py (accessed on 28.03.2020)

https://blogs.msdn.microsoft.com/commandline/2018/07/20/windows-command-line-inside-the-windows-console/
https://blogs.msdn.microsoft.com/commandline/2018/07/20/windows-command-line-inside-the-windows-console/
https://github.com/goerz/convert_encoding.py

100

7.4 Preparing the data (OpenNMT-tf)

In Section 7.2 it was established that the toolkit of choice would be OpenNMT-tf, as it showed

the best performance of all the available toolkits and the most convenient feature-set.

Installation is fairly straight-forward, and I would like to point the reader towards the excellent

QuickStart-guide of the toolkit106. Instead of the suggested virtualenv command I would suggest

using the virtualenvwrapper to create the virtual environment as explained in Section 7.3.

Once OpenNMT-tf is installed in the virtual environment, create a working folder for

your toolkit, where you can store all of the models, configuration files, etc. Notice that a lot of

dependencies and external tools are automatically installed along OpenNMT-tf, for instance,

TensorFlow and Python-wrappers for Mecab 107 as well as an extended version of BLEU

(SacreBLEU)108 should be installed automatically. Unfortunately, the additional tools are not

well documented in the OpenNMT documentation, so if unsure it is best to resort to external

tools and follow the respective documentation.

For preparing our datasets, we will rely on the Moses Tokenizer (Perl-script) and MeCab

to create tokenized versions of our training files and then use the OpenNMT command to

generate the vocabulary out of these files.

7.4.1 Preparing datasets

In this sub-section, a step-by-step preparation of the parallel sentence data (PSD) from the

NTCIR-10 PatentMT (Patent Machine Translation) Test Collection109 will be presented. In this

thesis, the NTC7 training subset of the collection was used, which provides about 1.8 million

EN-JP parallel sentences from a vast variety of patents and therefore domains. After

decompression, the training and patent files are stored in a very deep but well-organized folder

structure. The original patent documents themselves are stored by year and then in several sub-

directories within those year-folders. The only other folder that is relevant for this thesis is the

“ntc8-patmt-train”-folder which contains both NTC7 and NTC8 training data. See Figure 29

for a visual representation of the folders in question.

106 https://opennmt.net/OpenNMT-tf/quickstart.html (accessed on January 14, 2020)
107 https://pypi.org/project/mecab-python3/
108 https://github.com/mjpost/sacreBLEU
109 http://research.nii.ac.jp/ntcir/permission/ntcir-10/perm-en-PatentMT.html (accessed on January 20, 2019)

https://opennmt.net/OpenNMT-tf/quickstart.html
https://pypi.org/project/mecab-python3/
https://github.com/mjpost/sacreBLEU
http://research.nii.ac.jp/ntcir/permission/ntcir-10/perm-en-PatentMT.html

101

The NTC7 training data is provided as a compressed file named “train.tgz”, that in turn

contains seven separate files: train.txt, dev1.txt, dev2.txt, dev3.txt, pat-ids.txt, training-ids.txt

and readme.txt. The reason for choosing NTC7 over NTC8, is that the training data is of a

smaller size and more adequate for the scope of this thesis.

The “readme”-file contains important information about where the data is from and how it is

presented. All the data was taken from A Japanese-English patent parallel corpus (Uchiyama

& Isahara 2007) and each sentence pair in the files is stored in five columns like shown below:

SSR ||| DOCID ||| TID ||| JA ||| EN

These fields have the following meanings:

SSR: Sentence-alignment score

DOCID: ID of the document from which the sentence pair is extracted

TID: ID of the sentence pair in document DOCID

JA: Japanese sentence

EN: English sentence

The DOCID, JA, and EN columns of the files will be used for generating the several files needed

for the NMT toolkit to operate correctly (see Section 7.1.1). First, however, the files must be

converted into UTF-8, as they are stored in the EUC-JP code-page. This goes for both the train

and dev files, as well as all of the Japanese original patent files, that we will be using later on

to determine the domain of the individual sentences in the PSD.

Figure 29: Root folder structure of the NTCIR-10 PatentMT Test Collection

102

7.4.1.1 Converting files to UTF-8

There are many ways to convert files from one code-page to another. In this thesis the Python

script/tool convert_encoding.py110 was used, as it works great for batch processing. Usage is as

simple as storing the convert_encoding.py in one of the directories on your $PATH111 and

typing the command shown in CLI 12.

$ convert_encoding.py [options] file1 file2 ...

CLI 12: Convert encoding command with arguments

However, since the script was written in Python 2, it might be necessary to change the so called

hashbang or shebang112 at the beginning of the script. Use a text editor of your choice and

change the first line of the script from the content shown in CLI 13 to what is shown in CLI 14.

#!/usr/bin/python

CLI 13: Hashbang pointing to system Python runtime

#!/usr/bin/python2

CLI 14: Hashbang pointing to Python 2 runtime

Alternatively, it is possible to store convert_encoding.py in the same directory as the files, go

to that directory and just type the command shown in CLI 15.

$ python2 convert_encoding.py [options] file1 file2 ...

CLI 15: Force python2 runtime when executing script

Check the documentation of the script for further information regarding the possible arguments

in [options]. For the data used in this thesis, i.e. the NTC7 PSD, the bold options in CLI 16 were

used for the conversion.

$ convert_encoding.py -f euc_jp -t utf_8 -r -o #.utf8 input_file(s)

CLI 16: Arguments used for converting NTC7 PSD to UTF-8

This tells the script to assume EUC-JP (-f or --from=) as the source encoding and tells it to

convert the files to UTF-8 (-t or --to=), while also going into the subdirectories to convert the

files (-r or --recursive) and adding a “.utf8” to the newly converted files (-o or --out=).

Since there are over 50,000 files in all the directories, selecting each file individually

would be very time consuming, but thanks to the recursive argument, it is possible to simply

pass the wildcard “*.txt” or the individual folder name(s) as files. The script will then convert

110 https://github.com/goerz/convert_encoding.py (accessed on 28.03.2020)
111 Type “echo $PATH“ to see all the directories in PATH
112 This line indicates which program to run the script with

https://github.com/goerz/convert_encoding.py

103

all files within the current working directory or indicated folder(s) respectively. For a more

fine-grained selection of files, it is possible to use the Linux find command with the -exec

argument. For the thesis, Script 1 was written and used to find all relevant files in /path/ and

convert them:

#!/bin/bash

find /path/ -type f -name "*.txt" -exec \

convert_encoding.py -f euc_jp -t utf_8 -r -o \#.utf8 {} +

Script 1: File selection through find command

With all data converted to UTF-8, the next step will be preparing the training (train),

development or validation (val) and test (test) files for each language.

7.4.1.2 Separate languages and store the sentences in line-aligned files

In this sub-section, the original “train.txt”, “dev1.txt” and “dev3.txt”113 will be used to create

“train.jp” and” train.en”, “val.jp” and “val.en” and “test.jp” and “test.en” respectively. The

easiest way to automate this, is by creating a Python script, that separates each line at a

predetermined marker (in this PSD’s case the triple pipe symbol “|||”) and stores them in

different output files. The following Script 2 was written and used in the thesis to create one

output file for each of the columns in the original file (passed as the first argument to the script)

and append the extension defined in “langs” to each output.

#!/usr/bin/python

import sys

with open(sys.argv[1], encoding=”utf8”) as f:

 columns = zip(*(l.split("|||") for l in f))

langs = (‘SSR’, ‘DOCID’, ‘TID’, ‘jp’, ‘en’)

for lang, data in zip(langs, columns):

 with open(‘output.’ + lang, ‘w’, encoding=’utf8’) as f:

 f.writelines(line.strip(“\n”) + ‘\n’ for line in data)

Script 2: Split text into separate output files

Since the alignment is maintained in the output files, it is now possible to simply rename

“output.jp” and “output.en” to the file needed, i.e. “train.jp” and “train.en” if “train.txt” was the

input file. The ID files can subsequently be deleted as they will not be needed. This was done

separately for each file, in order to keep the whole process controlled and the script as simple

113 dev2.txt will not be used at this point but will be used later for the creation of the domain-specific test data.

104

as it is. “dev1.txt” was used to create “val.jp” and “val.en”, while “dev3.txt” was used to create

“test.jp” and “test.en”.

With this, the full NTC7 PSD would already be ready for deployment in NMT training,

but since the original text files are not tokenized, it is highly advised to tokenize them before

continuing. In the next sub-section, a step-for-step guide for tokenizing the files will be

presented.

7.4.1.3 Tokenization of the files

As written in Section 7.3, tokenization is essential for Asian texts, but can also be very helpful

for Latin text. For this project, the Japanese files were tokenized with MeCab114 and the English

files with the Moses Tokenizer Perl-script115.

Preparing the Moses Tokenizer is fairly simple: simply copy the code provided on the

git-hub site in a file named “tokenizer.perl”, save it in a location of your choosing and make it

executable by typing

$ chmod +x tokenizer.perl

CLI 17: Make script executable

Installing MeCab can be a little more involved. On Manjaro it is only available via the AUR

repository 116 . Installing MeCab and its dependencies therefore also requires a different

procedure than regular packages. We will be using pamac, one of the many AUR helpers, to

assist in the manual build process and to install all the needed packages, simply by following

the commands shown in Table 10.

$ pamac search -a mecab Searches for the package on AUR

$ pamac build mecab Installs the most recent MeCab version

$ pamac build mecab-ipadic Installs the IPA dictionary for MeCab

Table 10: Commands for installing mecab from AUR

Before the packages are built and installed, it is necessary to answer two questions and enter

your password (see CLI 18, bold letters represent user input).

Edit build files ? [y/N] n

Apply transaction ? [y/N] y

CLI 18: Questions when installing from AUR

114 https://taku910.github.io/mecab/ (accessed on 20.04.2020)
115 https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl (accessed on

20.04.2020)
116 The Arch User Repository (AUR) is a community-driven repository for Arch users.

https://taku910.github.io/mecab/
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl

105

Unfortunately, packages on AUR can be outdated or just simply not working, so it is possible

that the installation will fail. Troubleshooting would be too much to cover for this thesis.

Luckily, it worked well for MeCab and most major dependencies117.

With both tokenizers prepared, the files can be tokenized. The command used for the

English text is shown in CLI 19 (change only the bold arguments; type “-h” after tokenizer.perl

to see all possible arguments):

$ perl tokenizer.perl -a -no-escape -l en < inputfile.en > outputfile.en.tk

CLI 19: Command used to tokenize English text files

For the Japanese text, MeCab was called with the arguments shown in CLI 20.

$ mecab -O wakati -o outputfile.jp.tk inputfile.jp

CLI 20: Command used to tokenize Japanese text files

In order to speed up the process, Script 3 was written and used for this thesis (“#” represent

comments; bold characters are variables to be changed for each different dataset):

#!/bin/bash

Select working Folder, Dataset, Variant and Languages here

workdir="$(pwd)" # "$(pwd)" stands for current working directory; change if you

want to indicate specific directory

dataset="ntc7"

variant=""

src="jp"

tgt="en"

English / Latin language tokenization

for l in en; do for f in data/$dataset$variant/*.$l; \

do perl tools/tokenizer.perl -a -no-escape -l $l -q < $f > $f.tk; done; done

Japanese tokenization

for l in jp; do for f in data/$dataset$variant/*.$l; \

do mecab -O wakati < $f > -o $f.tk; done; done

Script 3: Tokenization script EN-JP

The resulting filenames for the full NTC7 PSD after the tokenization were therefore: train.en.tk,

train.jp.tk, val.en.tk, val.jp.tk, test.en.tk and test.jp.tk.

117 At the time of writing, the neologism dictionary would not install via AUR; if it is required, it can be installed

following the guide here: https://github.com/neologd/mecab-ipadic-neologd (accessed on 20.04.2020)

https://github.com/neologd/mecab-ipadic-neologd

106

7.4.1.4 Creating the vocabulary files

With the files tokenized, all that remains is to create the two vocabulary files from the English

and Japanese “train”-files. In the case of OpenNMT-tf, the base commands shown in CLI 21

were used in a slightly modified way to create the vocabulary files:

onmt-build-vocab --size 50000 --save_vocab train.en.tk vocab.en.tk

onmt-build-vocab --size 50000 --save_vocab train.jp.tk vocab.jp.tk

CLI 21: Commands for creating the vocabulary files with OpenNMT-tf

With this, two vocabulary files (“vocab.en.tk” and “vocab.jp.tk”) are created from the

corresponding “train” files while limiting the size of the vocabulary to 50,000 + 1 (the “unk”)

token. As will be further elaborated later, mixed-precision training was used in this thesis, so

the additional argument “--size_multiple 8” was specified. This automatically increases the

vocabulary limit to 50,007 + 1, as FP16 calculations need a vocabulary divisible by 8 for

optimal performance. 118 Mixed precision training is only advantageous on GPUs that perform

tensor operations in dedicated hardware, like the Nvidia Volta and Turing architectures do.

With this, the full NTC7 PSD dataset, that contains all domains and all 1.8 million

parallel sentences is prepared and ready for training. The final files are: train.en.tk, train.jp.tk,

val.en.tk, val.jp.tk, test.en.tk, test.jp.tk, vocab.en.tk and vocab.jp.tk.

In the next section, I will demonstrate how a specific domain was extracted from the

full dataset and how five different sets of data were prepared for training five different neural

translation models.

7.4.1.5 Creating the domain-controlled training data

For creating the domain-controlled data, the starting point was the original, UTF-8 converted

“train.txt.utf8” file. Only the “train” file was modified for creating the domain-specific and

shortened datasets.

First a broad domain was chosen according to the International Patent Classification119.

For this experiment, optics was chosen as the domain, so the four major optics classifiers that

appeared in most optics related patents that I had previously translated were selected. These

were “G01”, “G02”, “G03” and “G06”.

The idea here was to find the domain of a specific sentence by looking at the original

patent documents that are linked to the individual training sentences in “train.txt” via the

118 https://opennmt.net/OpenNMT-tf/training.html?highlight=mixed%20precision (accessed on 14.03.2020)
119 https://www.wipo.int/classifications/ipc/ipcpub/ (accessed on 15.04.2020)

https://opennmt.net/OpenNMT-tf/training.html?highlight=mixed%20precision
https://www.wipo.int/classifications/ipc/ipcpub/

107

DOCID in “training-ids.txt”. The lines in “training-ids.txt” refer to an absolute path in the folder

structure of the NTCIR 10 Test Collection, leading to the original patent document(s).

For making the code simpler, this process was divided into three separate steps.

1) Step 1:

First, a script that opens and searches each and every patent document of the collection and

exports the absolute path of only those files that contained one of the aforementioned optics-

classifiers had to be created. For this purpose, the following Script 4 was written in Python and

used for this thesis.

#!/usr/bin/python

import glob

#Define Domains

domains = ('G01', 'G02', 'G03','G06')

#Search for Domains and extract absolute path of file to outputfile

outputfile = "step1out.txt"

with open(outputfile,'w') as f:

 for filename in glob.iglob('./' + '**/*.TXT', recursive=True):

 if any(x in open(filename, encoding='utf-8').read() for x in domains):

 print (filename, file=f)

Script 4: Extract absolute path of files that contain domain classifier

This writes all the absolute paths of files containing the optics classifiers in (almost) the same

format as found in the “training-ids.txt” to the file specified under “outputfile” (“step1out.txt”).

The script takes quite a while to run, as it needs to open each individual file.

2) Step 2:

The next step was to have a script create another file that contains the DOCIDs of the individual

“train.txt” sentences that align with the documents listed in the output file from Step 1.

Additionally, the “./” in the beginning of the extracted absolute paths from Step 1 had to be

removed, as “./” is not written in the paths in “training-ids.txt”. Script 5 outputs a file containing

108

all lines which match the paths listed in the output file from Step 1. The output filename is

defined under “outputfile” (“step2out.txt”):

#!/usr/bin/python

#Pathlist to find ID

paths = [line.rstrip("\n") for line in open("step1out.txt")]

#Remove "./" from paths

spath = [s.strip("./") for s in paths]

outputfile = "step2out.txt"

with open(outputfile,'w') as f:

 for line in open("other/ntc8-patmt-train/ntc7/train/training-ids.txt"):

 if any(x in line for x in spath):

 print(line, end='', file=f)

Script 5: Create id-list from “training-ids.txt” and the step1 output

However, since the output contains the whole line, everything but the DOCID must be removed

from each line. Step 2 therefore actually uses a second script, Script 6, to remove the

unnecessary information and keep one DOCID per line while outputting all of it as the file

defined in “outputfile” (“idlist.txt”):

#!/usr/bin/python

#Keep only DOCIDs before first space

l = []

outputfile = "idlist.txt"

with open(outputfile,'w') as f:

 for line in open("IDs-Optics.txt"):

 if line.strip():

 l.append(line.split()[0][1:])

 l = '\n'.join(l)

 print(l, file=f)

Script 6: Only keep DOCID before first space on each line

3) Step 3:

The final step is to write a new file, which only contains the sentences that correspond to optics

patents. The file will be created from the “train.txt.utf8” document prepared in Section 7.4.1.1.

The list generated in step 2 (“idlist.txt”) was used to identify which sentences to extract from

“train.txt.utf8”. Originally another Python script was used to create the file, but it turned out to

be too slow. Luckily, Linux offers a great option for performing this operation with the search

109

tool grep. The command used for finding each line in “train.txt.utf8”, that matches one of the

DOCIDs in “idlist.txt”, is shown in CLI 22.

$ grep -f idlist.txt train.txt.utf8

CLI 22: Find patterns from file in another file using grep

To output the result to a file named “trainoptics.txt.utf8”, the bold command in CLI 23 was

added:

$ grep -f idlist.txt train.txt.utf8 > trainoptics.txt.utf8

CLI 23: Save grep standard output to file

With this, the optics training file is created, resulting in a document containing 684,693 lines.

In order to use the data, the preparation steps mentioned in Section 7.4.1.2 through to 7.4.1.4

were applied to the optics training file (trainoptics.txt.utf8) as well, meaning that vocabularies

for the optics dataset were created separately, on the basis of the optics training file.

7.4.1.6 Additional training data

In order to create comparable models, three further datasets were created:

1) The full NTC7 dataset, shortened to the same line count as the optics data, by randomly

deleting 1,113,878 lines.

2) A dataset, where specifically all the optics patent sentences were removed (line count:

1,113,878).

3) The same dataset as in 2) but shortened to optics data line count by randomly deleting

429,186 lines.

The random deletion script used for 1) and 3) is presented in Script 7. The script outputs a list

of lines (amount specified under “number”) between 1 and the number of lines in the file

specified under “filename” (inputfile.txt) as a file named “delete.lines”:

#!/bin/bash

filename=inputfile.txt

number=429186

line_count="$(wc -l < "$filename")"

line_nums_to_delete="$(shuf -i "1-$line_count" -n $number)"

printf '%d\n' $line_nums_to_delete > delete.lines

Script 7: Create list to randomly delete lines

110

Then, to actually create a file without said lines the command shown in CLI 24 was used.

awk 'FNR == NR { h[$1]; next } !(FNR in h)' delete.lines inputfile.txt \

 > outputfile.txt

CLI 24: Command to exclude lines specified in delete.lines and write output to separate file

In this way, both shortened versions of the full NTC7 PSD and the NTC7 PSD without optics

data could be created. CLI 25 shows how the NTC7 PSD without optics data announced in 2)

was generated by simply inverting the pattern-matching (-v) of the grep tool as presented in

Step 3 of Section 7.4.1.5:

$ grep -v -f idlist.txt train.txt.utf8 > trainwithoutoptics.txt.utf8

CLI 25: Inverse pattern match with grep -v to exclude optics sentences

Like with the optics data, the resulting training data would go through the preparation described

in Section 7.4.1.2 through to 7.4.1.4, resulting in individually created vocabularies for each

dataset.

7.5 Training (OpenNMT-tf)

With all the data prepared, training was started mainly following the official QuickStart guide

for OpenNMT-tf. Since the GPU used for this thesis has a relatively small amount of video

memory, some tweaking of hyperparameters had to be made, before the training could properly

function. In general, the command for starting training with a Transformer architecture is the

one listed in CLI 26:

onmt-main --model_type Transformer --config data.yml --auto_config \

train --with_eval

CLI 26: Default training command for OpenNMT-tf

For this thesis, the following, slightly modified command was used:

onmt-main --model_type Transformer --config ntc7/datatransmixedJPEN.yml \

config/transformer.yml --auto_config \

--gpu_allow_growth --mixed_precision train --with_eval

CLI 27: Training command used for this thesis

The bold arguments represent the modified parts of the command. Starting from the end, “--

mixed_precision” enables the aforementioned FP16 optimization for higher training

performance on GPUs with hardware-support for tensor calculations. The “--

gpu_allow_growth” argument is necessary for the training to start, seemingly because of a bug

111

with memory allocation in the TensorFlow Framework, on the newer Nvidia RTX-Series GPUs.

As can be noticed, it is possible to add multiple configuration files to the command, which was

used to streamline the training of the multiple models. Luckily, OpenNMT-tf offers the “--

auto_config” argument, so only the parameters of the model that are of interest to us and the

location of the data have to be adjusted manually in the config files.

In the next sub-section, I will present the configuration files used for training the full

NTC7 PSD model. The other models had the training data location adjusted accordingly.

7.5.1 Configuration and hyperparameters

Aside from the “--auto_config” parameters defined by the OpenNMT-tf toolkit for the base

Transformer model 120 , the following parameters were defined in the “transformer.yml”

configuration file:

train:

 batch_size: 1024

 effective_batch_size: 4096

 save_checkpoint_steps: 10000

 average_last_checkpoints: 5

 keep_checkpoint_max: 10

 max_step: 150000

 valid_steps: 10000

 warmup_steps: 8000

 report_every: 100

eval:

 batch_size: 32

 steps: 10000

 save_eval_predictions: true

 external_evaluators: bleu

early_stopping:

metric: bleu

min_improvement: 0.01

steps: 4

Script 8: Transformer configuration used for this thesis

The batch_size: n parameter defines the maximum number (n) of tokens provided to the GPU

at one time. The amount of 1,024 tokens was empirically found to be the maximum amount the

120 Find the model catalog here: https://github.com/OpenNMT/OpenNMT-

tf/blob/master/opennmt/models/catalog.py (accessed on 14.01.2020)

https://github.com/OpenNMT/OpenNMT-tf/blob/master/opennmt/models/catalog.py
https://github.com/OpenNMT/OpenNMT-tf/blob/master/opennmt/models/catalog.py

112

GPU could hold without running into critical OOM errors. A higher batch size generally means

faster training, as more data can be calculated in parallel.

The effective_batch_size: n parameter defines the effective number of tokens to

consider for one gradient update. Essentially, it multiplies the results of individual, smaller

batch size in order to get the same result as if the GPU was able to look at the defined effective

batch size in one pass. In this thesis’ case, the effective batch size of 4,096 was chosen, which

means that the GPU needs to run 4 passes to get to the effective batch sizes. While this slows

training considerably, it was found that the networks perform noticeably worse with smaller

batch sizes, so a higher effective batch size is highly recommended (Popel & Bojar 2018:12).

The save_checkpoints_steps: n parameter should be self-explanatory. It tells the toolkit

to save a model checkpoint after n steps. One step is finished, when the effective batch size n

has been calculated. Depending on training time, setting this to 5,000 or 10,000 is a good value.

The average_last_checkpoints: n parameter allows the toolkit to automatically average

the results of the last n checkpoints saved during training, which usually improves model

accuracy121.

The keep_checkpoint_max: n tells the toolkit when to start discarding old checkpoints.

Model checkpoints can be several gigabytes in size, so saving space by deleting the oldest

checkpoints seems sensible.

The max_step: n and valid_step: n define the maximum training steps (n = 150,000 ~

18.5h of training in this thesis) and when to perform validation of the models.

The warmup_step: n parameter defines when the learning rate of the network changes

from linear decay to inverse square root decay. The default as found in the TransformerBase

configuration of OpenNMT-py was used (n=8,000), in accordance with recommendations

found in Popel & Bojar (2018).

The report_every: n parameter tells the toolkit to report training progress every n steps.

It reports details like speed (steps/s and tokens/s), learning rate and training loss.

Under eval: several parameters may be set, to enable the toolkit to automatically

evaluate the model after steps: n with the evaluation metric chosen under external_evaluators:

x. This allows for early stopping, once the result no longer improves. Notice the early stopping

was commented out, as in this thesis using a fixed training time was also very interesting for

comparison. See 122 for more details about these parameters.

121 https://opennmt.net/OpenNMT-tf/inference.html?highlight=average (accessed on 18.12.2019)
122 https://opennmt.net/OpenNMT-tf/training.html?highlight=external_evaluators (accessed on 18.12.2019)

https://opennmt.net/OpenNMT-tf/inference.html?highlight=average
https://opennmt.net/OpenNMT-tf/training.html?highlight=external_evaluators

113

The data configuration file (“datatransmixedJPEN.yml”) is much more self-

explanatory:

model_dir: /home/chris/NMT/openNMT-tf2.8.1/modelsfp16/ntc7-jpen/

data:

 train_features_file: /home/chris/NMT/data/ntc7/train.jp.tk

 train_labels_file: /home/chris/NMT/data/ntc7/train.en.tk

 eval_features_file: /home/chris/NMT/data/ntc7/val.jp.tk

 eval_labels_file: /home/chris/NMT/data/ntc7/val.en.tk

 source_vocabulary: /home/chris/NMT/data/ntc7/onmt-tf/vocab.jp.tk

 target_vocabulary: /home/chris/NMT/data/ntc7/onmt-tf/vocab.en.tk

Script 9: Data configuration file example used for this thesis

The model_dir is the directory where the model progress and all the checkpoints are saved,

whereas the paths under data: lead to the different training, validation and vocabulary files.

Notice the ST is identified as “features” and the TT is identified as “labels”. So, the model is

trained in one direction, in this case being JP→EN.

To summarize, as shown in Table 11, five Transformer NMT models were trained, with

a separate model saved after the training step where the highest model performance was

expected (see Section7.3).

Table 11: Trained model description, names and training time

Dataset Model name Training time

Full (~1,8m sentences)

JP→EN

ntc7-jpen 150k steps: ~18.5h

120k steps: ~14.7h

Small (684,693 sentences)

JP→EN

ntc768k-jpen 150k steps: ~18.5h

80k steps: ~9.8h

Optics (684,693 sentences)

JP→EN

ntc7o-jpen 150k steps: ~18.5h

80k steps: ~9.8h

Without Optics (~1,1m

sentences) JP→EN

ntc7wo-jpen 150k steps: ~18.5h

n/a123

Small Without Optics

(684,693 s.) JP→EN

ntc7wo68k-jpen 150k steps: ~18.5h

90k steps: ~11h

123 Model metrics were best at 150k steps

114

7.5.2 Monitoring training

While it is not possible (or feasible) to see and understand every single calculation occurring in

all the nodes of the neural network during training, it is possible to visualize some of the data

through the tensorboard integration of OpenNMT-tf. The command to run tensorboard is:

$ tensorboard --logdir "path/to/model_dir"

CLI 28: Monitor models in „model_dir” with tensorboard

This will serve a website to http://localhost:6006/, on which it is possible to see training data

visualized in easy to understand graphs. With this it is possible to get an idea of model

performance even before proper external evaluation and to see when the model is likely to

perform best. In order to display these graphs, tensorboard visualizes the scores calculated

during the evaluation process in training; adding external evaluators will therefore also result

in additional graphs reported on tensorboard.

Before looking at the results, some of the metrics have to be explained, so that it is clear

what is being measured.

7.5.2.1 The BLEU metric

The term BLEU stands for Bilingual Evaluation Understudy and was used several times during

this thesis. It was shortly introduced as the de-facto standard metric for automatic translation

quality evaluation, but this is a hotly debated definition in and of itself. The BLEU score was

proposed by IBM researchers Kishore Papineni, et al. in their 2001 paper BLEU: a Method for

Automatic Evaluation of Machine Translation (Papineni et al. 2001). It is widely used in most

publications regarding machine translation as a metric to compare translation output of different

machine translation architectures and models. The main rationale behind the metric is: “The

closer a machine translation is to a professional human translation, the better it is.” (Papineni et

al. 2001:1). But how does it determine “the translation closeness” and express it as a score?

BLEU works by comparing a generated sentence, like a translation hypothesis, to one

or many reference sentences (or translations). What is measured is the so-called precision of

the match, essentially expressing how many of the reference sentences’ features the generated

sentence matches. A perfect match, i.e. all the same features were used, would result in a 1,

while a perfect-mismatch, i.e. no feature from the reference sentences was used, would result

in a 0124. The main idea is that a good machine translation will have a surface form very similar

to a professional human translation. Note, however, that getting a score of 1 is almost

124 Note that most publications, as does this thesis, multiply the result by 100 for better readability. A BLEU

score of 0.353 would therefore read as 35.3.

115

impossible, as that would mean the candidate sentence is the same as the reference-sentence(s).

As translators well know, it is unlikely that even human translations ever match perfectly and

that there are many ways to correctly translate one specific sentence.

One big advantage is that this way of evaluation is language agnostic, as BLEU only

checks the surface form of texts, i.e. the tokens that make up a sentence (on a lower level, the

bytes of the characters in the sequence for the computer125). The system essentially analyzes n-

grams in the sentences, comparing tokens in the candidate sentence (the generated sentence) to

the tokens appearing in the reference sentences. The n-gram matching is position-independent,

so word order is NOT considered. The authors of the paper argue that this still tends to cover

the adequacy of a text. Longer n-grams (bigrams, trigrams) are used to account for fluency by

looking at phrase-matches, somewhat accounting for word-order. Since unigram or 1-gram

matches are more likely than bi- or trigram matches, the BLEU metric also gives higher scores

to sequential matching words. That is, if a string of 3 or 4 words (i.e. a 3- or a 4-gram) in the

MT translation matches the human reference translation, it will have more of a positive impact

on the BLEU score than a string of two matching words or a single matching word. However,

this also means that an accurate translation will receive a lower score if it uses synonyms, or

matching words in a different word order.

The BLEU algorithm addresses some common problems of MT, like the

“overgeneration” of words, by penalizing the precision score if a matching n-gram is generated

more often than in it appears in the reference sentence (see Text example 7.5-1 taken from

Papineni et al. 2001:2), through the so-called modified n-gram precision.

Candidate: the the the the the the the.

Reference 1: The cat is on the mat.

Text example 7.5-1: Overgeneration by MT systems

Sentence length (or brevity) is also penalized in order to not inflate scores for shorter sentences

that are made up of only reference sentences features (because only a part of the sentence is

predicted).

It is clear, that the BLEU metric is a very simple algorithm that has no way to examine

the deeper semantics of a sentence. So, a perfectly adequate translation might score poorly,

because it uses less or other words than the reference translation. In fact, the score is highly

dependent on the reference translations and can easily be artificially increased by simply

providing more reference translations to the system.

125 This is also why it is important to use a standardized code-page for all the text in a project.

116

BLEU also only calculates its scores on individual sentences, yet, the score is usually

reported for a larger corpus of (generally independent) sentences, by averaging the individual

scores of each sentence over the whole corpus. “Quantity leads to quality” is the mantra

followed by the authors of the paper (Papineni et al. 2001:8), which is why generally corpora

of 1000 or more individual sentences are used for the BLEU scoring. It is safe to assume, that

since MT systems usually only work on a sentence level, sentence-level evaluation was

accepted as a safe measure of quality.

While there are more issues apparent from a translator’s point of view, it should already

be abundantly clear, that the algorithm has no way of really assessing the quality of a translation.

In fact, it was first created “as an inexpensive automatic evaluation that is quick, language-

independent and correlates highly with human evaluation” in order “to monitor the effect of

daily changes to their systems [MT/NLP systems] in order to weed out bad ideas from good

ideas.” (Papineni et al. 2001:1). It was therefore designed to compare similar models of the

same MT-architecture, for incremental, global changes and not as a universal translation quality

metric. While this may make it usable for the closed nature of this thesis’ experiment and in

fact MT development in general, readers and especially researchers should not take the BLEU

score as an absolute indication for translation quality.

7.5.2.2 Loss

Most NMT toolkits provide a loss value during training, as this is the metric used in standard

autoregressive NMT models to tune the individual weights and find the most probable

translation of a word in a certain position (essentially the error, that is then backpropagated). It

is similar to BLEU in that it expresses the precision of a specific prediction by the network

compared to the reference text (i.e. the TT/TL data used in training), but instead of providing a

score on a sentence-level, the sentence-level log-likelihood is decomposed as a sum over

word/token-level log-likelihoods. The training of most NMT models is hence optimized to

finding the next perfect output token given the previous perfect output token.

There are many ways to calculate the loss, but a common approach is the cross-entropy

loss function shown in Equation 13126.

126 Function taken from https://towardsdatascience.com/neural-machine-translation-15ecf6b0b (accessed on

05.04.2020)

https://towardsdatascience.com/neural-machine-translation-15ecf6b0b

117

− ∑ ∑ 𝑦𝑤,𝑒 log(�̂�𝑤,𝑒)

|𝑉|

𝑒=1

|𝑆|

𝑤=1

|S| = Length of Sentence

|V| = Length of Vocabulary

�̂�𝑤,𝑒 = predicted probability of vocab entry e on word w

𝑦𝑤,𝑒 = 1 when the vocabulary entry is the correct word

𝑦𝑤,𝑒 = 0 when the vocabulary entry is not the correct word

Equation 13: Cross-entropy loss function

In essence, the closer the model gets to giving a probability of 100% to the correct word in the

vocabulary at the point where it appears in the reference sentence, the lower the loss value will

be. Likewise, the loss value increases exponentially, the more unlikely the model classifies the

correct word at that specific point. This value is then commonly summed up for the whole

sentence resulting in the full loss metric of the sentence. It may however also be summed up

for all the tokens in a batch (i.e. multiple sentences). Lower loss values therefore typically

correspond to better translations and the training of neural networks aims to reduce the loss of

the predictions. Depending on the toolkits used, the loss reported may be obtained differently.

OpenNMT-tf reports the cross entropy that is computed at the current training step (i.e. the total

loss for all tokens in a batch) and can also report a separate loss value for predictions on the

validation (val) dataset.127

7.5.2.3 Perplexity

Another value often reported by NMT toolkits and in fact machine translation or NLP tools in

general is the perplexity metric. The perplexity is a measurement of how well a probability

model predicts a sample. So, in the context of NLP, perplexity is one way to evaluate language

models, and is closely related to the cross entropy or loss function described above. In fact, the

perplexity reported by OpenNMT-tf is simply the exponential function of the loss value,

𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑒𝑥𝑝 (𝑙𝑜𝑠𝑠) 128. Perplexity therefore gives us a linear value to how many average

choices the network would have for a prediction (i.e. how “unsure” the network is). A lower

perplexity generally points to a more accurate translation model. OpenNMT-tf only reports

perplexity for predictions against the validation dataset, not for the training data.

127 https://github.com/OpenNMT/OpenNMT-tf/issues/50#issuecomment-358582413 (accessed on 05.04.2020)
128 https://forum.opennmt.net/t/perplexity-in-opennmt-tf/2290/2

https://github.com/OpenNMT/OpenNMT-tf/issues/50#issuecomment-358582413
https://forum.opennmt.net/t/perplexity-in-opennmt-tf/2290/2

118

7.5.3 Training observations

As stated in Section 7.5.2, tensorboard is a great tool for monitoring training progress. It will

present colored graphs for each model and allow for great comparability (unfortunately colors

cannot be customized and are somewhat ugly). Table 12 shows the color legend used in

following graphs and a short summary of the models.

Table 12: Graph color legend and model summary

Model Dataset used Training loss at 150k steps

ntc7 Full (~1,8m sentences) JP→EN 2.165

ntc768k Small (684,693 sentences)

JP→EN

2.034

ntc7o Optics (684,693 sentences)

JP→EN

2.025

ntc7wo Without Optics (~1,1m

sentences) JP→EN

2.089

ntc7wo68k Small Without Optics (684,693

sentences) JP→EN

1.997

Generally training for a longer amount of time will improve model accuracy for the training

data, i.e. the loss function will continue to fall, and the model is more likely to predict the same

sentences as the reference sentences. This can also be clearly seen in Figure 30, where all

models yield a progressively lower loss value. Notice how the model based on the largest and

most varied dataset (ntc7) has the highest loss value, while the optics dataset (ntc7o) has the

lowest.

Figure 30: Training loss129

129 Graph smoothed by 0.9 for better readability; desaturated lines show actual value, nicely showing how the

gradient descent works.

119

What we are seeing on the smaller models, is an effect that may result in the so-called overfitting

of a model, which means that it would generalize less well on hitherto unseen text data. This is

why a separate set of validation files is created for training. As a reminder, the “val.en” and

“val.jp” were created from the “dev1.txt” and therefore contain completely different sentences

than the “train” files. This enables evaluation of the model on hitherto unseen data during

training.

In Table 13 and Figure 31 it is possible to observe how, during the limited training time

of 150.000 steps per model (~18.5h per model), the previously described effect of overfitting

occurred only in the smaller datasets, like the “Optics” dataset (ntc7o), the “Small Without

Optics” dataset (ntc7wo68k) and the “Small” dataset (ntc768k). We can see how the loss and

perplexity continuously increases for these datasets after their lowest point at 80k steps. The

BLEU score also slightly reflects this change in model accuracy. Generally, it is recommended

to stop training once the loss and perplexity values start rising continuously during validation

or when the BLEU score stops improving for several validations.

Table 13: Effects on model accuracy / BLEU score on the validation data

Model BLEU / Loss / Perplexity at

80k Steps

BLEU / Loss / Perplexity at

150k Steps 130

ntc7 39.09 / 1.211 / 3.421 39.35 / 1.207 / 3.344

ntc768k 38.13 / 1.329 / 3.754 38.15 / 1.391 / 4.019

ntc7o 36.96 / 1.446 / 4.202 36.38 / 1.524 / 4.593

ntc7wo 38.02 / 1.279 / 3.638 37.26 / 1.305 / 3.688

ntc7wo68k 37.78 /1.370 / 3.908 37.63 / 1.444 / 4.241

Figure 31: Validation BLEU, loss and perplexity in tensorboard

The rise in perplexity and loss, however, only reflects unfavorably on the BLEU score of the

two smaller and domain filtered datasets (ntc7o and ntc7wo68k), while it shows no variation in

130 Values smoothed with a ratio of 0.6

120

the larger datasets (ntc7 and ntc7wo) or the “Small” dataset without domain filtering (ntc768k).

Interestingly, the “Small” dataset (ntc768k) and the “Without Optics” datasets (ntc7wo)

perform almost the same in the BLEU metric, even though the latter corpus has 38% more data

to work with. The tendency of overfitting by the smaller datasets does clearly reflect in the

loss/perplexity metric. These observations confirm that more data does indeed seem to result in

more generalized models, while it also shows that higher variety in the training data leads to

lower model perplexity on unseen sentences of the same domains. How this explicitly

influences the final output is, however, not easily visible.

It is likely, that the model based on the “Optics” data (ntc7o) performs the worst in

BLEU, because it is “specialized” (or overfitted) on the optics domain. It is therefore not as

adept at predicting the validation sentences’ translations (or the exact words used), because the

validation reference files contain sentences and words from all other domains as well. This

would also explain why the model based on the more varied “Without Optics” dataset, both

full-size and shortened (ntc7wo and ntc7wo68k), consistently performs better than the “Optics”

model (ntc7o) and why the “Small” unfiltered dataset (ntc768k) performs about the same as the

much larger “Without Optics” dataset (ntc7wo).

In the next sub-section, the different models will be tested on the mixed domain patent

test file created in Section 7.4, to validate the BLEU and loss metric results seen during training

with the validation data. Additionally, the models will be compared on domain-specific texts

(i.e. sentences from optics patents) to find out whether the optics model can provide better

scores and translations for domain-specific test sentences, or if neural networks generally

benefit more from larger or more varied training corpora. The test should also help us see,

whether overfitting can prove useful for domain specialization when there is not enough data

available. Both test corpora will be evaluated with BLEU and later through random sampled

human evaluation by the author.

7.6 Translating with the trained models and evaluation

With all the models trained, it is possible to translate single sentences or full documents131 using

the translation models for inference. The command used for creating the translation hypotheses

of a specific source text file with OpenNMT-tf is listed in CLI 29.

131 However, translation will only occur on a sentence level!

121

$ onmt-main --config /path/to/dataconfigofmodel --auto_config \

--gpu_allow_growth --checkpoint /path/to/modelcheckpoint infer \

--features_file /path/to/sourcetextfile > /path/to/outputfile

CLI 29: Translate sentences with OpenNMT-tf

Since a Japanese to English model was trained, Japanese source texts will be used:

The first source text will be the “test.jp.tk” file created in Section 7.4, which contains 899 lines.

The second source text will be a domain-specific test-file “testdom.jp.tk” created from

the “dev1.txt”, “dev2.txt” and “dev3.txt” files of the NTCIR 10 PatentMT Test Collection using

the same method as presented in Sub-section 7.4.1.5 for creating the domain-controlled training

data. The file was shortened to 899 lines by randomly deleting 175 lines. Note, that including

the “validation” set (made from “dev1.txt”) is not ideal, but since it is not used for training the

network per se, the sentences are still essentially “unseen” by the model.132

For each source text the corresponding reference text in English was also created as

described above, resulting in the two files “test.en.tk” and “testdom.en.tk”. All the files were

tokenized as described in Sub-Section 7.4.1.3 and have one sentence per line.

In order to see whether the overfitting of the model adversely affects the prediction

ability of the models, the translation tests were also run with an earlier checkpoint by passing

the “--checkpoint” argument. The checkpoint was chosen in accordance with the highest BLEU

score for each model during training validation.

Each output file contains only one translation prediction per line, which is the prediction

that has the highest probability found by the network. Also, the BLEU evaluation compares

each prediction to only one reference sentence. For the human evaluation, eight (8) total

sentences from both source-texts (4 each) are randomly selected and evaluated for each model

and prediction separately. Texts are not detokenized before evaluation133.

7.6.1 BLEU evaluation

To run the BLEU evaluation after training, it must be run through an external command or

script. For this, the “multi-bleu perl-script” provided by the Moses SMT toolkit was used.134

The script is also provided in the package of the openNMT-py toolkit.

Using the external BLEU script is fairly easy and was done by typing the command

shown in CLI 30:

$ perl multi-bleu.perl reference.txt < predictions.txt

132 Since otherwise not enough data would have been available for creating the domain-specific test corpus,

dev1.txt was included, but again, ideally only data not used in training or validation are used.
133 Tokenization artifacts will be annotated.
134 https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl

122

CLI 30: Running the multi-bleu perl script

Table 14 shows the BLEU scores of all models at 150k training steps for the predictions of both

the mixed domain and the domain specific source texts (test.en.tk and testdom.en.tk).

Table 14: BLEU scores for the models trained for 150k Steps

Model BLEU for mixed domain BLEU for optics domain

ntc7 40.29 37.57

ntc768k 38.63 35.69

ntc7o 36.95 35.45

ntc7wo 39.85 35.68

ntc7wo68k 38.52 34.51

As expected, the biggest and unfiltered dataset (ntc7) performed the best of all models

for the mixed domain test with 40.29 BLEU. Interestingly, it did also perform best in the optics

domain test, something that will be interesting to verify in the human evaluation. The smaller

unfiltered dataset (ntc768k) performed only about as well as the dataset of the same size without

optics sentences (ntc7wo68k) in the mixed domain test, but outperformed it in the optics domain

test by a margin of 1.18 BLEUs, performing as well as the bigger dataset without optics

(ntc7wo) and the optics dataset.

However, another interesting note is, that the optics model (ntc7o) only lost 1.5 BLEU

in the optics domain test, while all other models’ average loss was 3.46 BLEU, with the highest

loss seen on the ntc7wo model with a loss of 4.17 BLEU. It would be interesting to see, if an

optics model with the same amount of data as the full ntc7 model would perform similarly to it

or even better in the optics test.

Table 15 now shows us what happens when training is stopped early, in order to prevent

overfitting. Each model was stopped at a different time, where the BLEU evaluation on

validation data was most favorable. The steps at which the training was stopped are listed next

to the model in brackets.

123

Table 15: BLEU scores for trained at their best BLEU score

Model BLEU for mixed domain BLEU for optics domain

ntc7 (120k steps) 40.42 37.80

ntc768k (80k steps) 38.73 36.24

ntc7o (80k steps) 37.84 36.12

ntc7wo (150k steps)135 39.85 35.68

ntc7wo68k (90k steps) 38.81 34.94

It can clearly be seen, that all models perform better in the BLEU metric, when training is

stopped early and therefore before running into overfitting. While the models based on larger

datasets expectedly show lesser variation in the BLEU score, we can see that the smaller models

(ntc768k, ntc7o, ntc7wo68k) are more affected. Interestingly the gains are most pronounced for

the optics dataset, which gained 0.89 BLEU in the mixed domain test and 0.67 BLEU in the

optics domain test. This would suggest that overfitting is not helpful even for domain-specific

applications and indeed rather destructive for general model performance.

The next sub-section will provide a human evaluation of a selected number of sentences

from the same texts and models.

7.6.2 Human evaluation

Most of the papers researching neural machine translation are content with reporting the BLEU

scores and don’t dive deeper into analyzing the actual output of the systems. Big part of this, is

that translation quality assessment (TQA) is no trivial matter and there is still no agreed upon

standard in place that covers all possible text types (Koehn 2010:217-218; Mateo 2014; Bawden

2018). Additionally, human evaluation is very time consuming and therefore expensive.

However, there is no lack of works that point out the many insufficiencies that BLEU has as a

TQA metric and criticize the overreliance on BLEU by the MT research community (Callison-

Burch et al. 2006; Bojar et al. 2017; Bawden 2018). This sub-section therefore aims to provide

a manual qualitative and quantitative analysis of a very small sample of sentences predicted by

each model. The predictions will be compared not just to a reference text, but also verified

against the source text. Since looking at all the 899 sentences for each test corpus would be

beyond the scope of this thesis, eight random sentences are chosen from the test corpora (four

from test.jp.tk and four from testdom.jp.tk).

Clearly, this is where Translation Studies theories can best be applied. Notably, the

skopos theory of Reiß/Vermeer (Lindquist et al. 1985) can be applied to machine translation

135 ntc7wo test was not stopped earlier, as BLEU score was still increasing at 150k steps

124

and in fact the evaluation itself. We can ask what the purpose (or skopos) of the output is and

what purpose our evaluation should have (Lo Presti 2016:4). While gisting136 was generally the

main purpose of MT translation up to SMT, NMT aims to be an end-to-end translation system,

meaning that the output of the system is essentially to be used as-is with only slight corrections

at best. Therefore, the purpose of the output in the patent translation paradigm, should be to be

as informative and adequate as possible, while maintaining reasonable fluency and very

importantly, grammatical correctness in the TT. In this thesis, the evaluation will have the

purpose of validating or falsifying the results of the BLEU scores reported in Sub-Section 7.6.1

and will therefore limit itself to concretely score the translations by the different models, like a

bi-lingual post-editor would score a human translation, while keeping in mind the skopos of the

translation as explained above, with the skopos being the clear and unaltered conveying of the

original message.

To provide the findings in an easier to read metric, an overall translation quality score,

that leans on the SAE J2450137 metric first established for assessing translation quality in the

automotive industry, will additionally be provided and its scoring reported for each individual

hypothesis in Appendix I.138 In order to better account for issues on a semantic level, the

improved SAE metric by Hui Liu (Liu 2017)139 will be used. See Appendix I for a full definition

of the error-types and error-weights used for the quantitative scoring.

For the final reported score, the overall document weighted score (ODWS) will be

reported by combining the findings of all eight analyzed sentences into a single score for each

individual machine translation and the reference texts. Please consider that even so, the

evaluation is purely sentence based (as is the machine translation) and will not be taking extra-

sentential context into consideration (which the reference sentences might have). This means

that arbitrary additions or omissions (that change the meaning) in the reference and translations

will be treated as an error, even if extra-sentential context would warrant those decisions. Errors

need to have an impact on the meaning of the sentence to be classified as such. Major errors are

marked in red, minor errors in blue. Wrong terms (WT) are marked bold and color-coded by

severity. Omissions (OM) will be additionally visualized with an underscore “_”, while

Additions (AD) are marked by underlining. Syntactic errors (SE) are marked by italics, whereas

misspellings (SP) are marked by putting the expression in question in angular brackets (“[]”).

Word structure and agreement errors (SA) are expressed by a double wave around the

136 Being able to understand the essence of a sentence
137 https://www.sae.org/standardsdev/j2450p1.htm (accessed April 20, 2020)
138 A short explanation on how score is calculated, and a definition of errors will also be provided in Appendix I.
139 With the addition of “Wrong Meaning” error category, which is arguably the most important for our purpose,

but missing from the original SAE J2450 metric. Style errors (WS) are not considered in the scoring.

https://www.sae.org/standardsdev/j2450p1.htm

125

expression (“~expression~”) whereas miscellaneous errors (ME) are expressed by a single wave

in front of the expression (“~expression”). Style errors (WS) are not counted towards the total

score and therefore not color-coded. A minor style error is shown with a dotted line and a major

style error with a dash-dotted line. Wrong Meaning (WM) scores are assigned on a sentence

level and evaluated on the basis of how close to the ST the meaning of the translation comes.

First, the mixed-domain test corpus will be analyzed. The first line (ST) will be the

source text, the second line (TT) is the reference used for BLEU scoring. The following lines

represent the hypotheses by the trained models; the model used will be listed in parenthesis at

the beginning of each sentence. By default, the models trained to 150,000 steps will be used, if

there is a difference between the longer trained model and the shorter trained model, the less

trained model’s hypothesis will also be added in the same line. The broad domain of the patent

where the sentence is from, as well as the patent number is listed in the caption. A short textual

analysis of each individual example will also be provided after each example.

126

(ST) １ １ は ７ の 回 動 範囲 を 制限 する ストッパ で ある 。

(TT) Numeral 11 indicates a stopper ~for restricting the range of rotation of the lever 7 .

(SAE J2450 Score) AD: 1*0 + 1*2; ME: 1*1; Weighted Score: 3

(ntc7) ~A stopper 11 limits the range of rotation of the stopper 7 .

(SAE J2450 Score) AD: 1*4; ME: 1*1; WS:1*0; (WM:1*5); Weighted Score: 10

(ntc768k) Numeral 11 denotes a stopper ~for limiting the range of rotation of seven .

(SAE J2450 Score) AD: 1*0; ME: 1*1; Weighted Score: 1

(ntc768k 80k) Reference numeral 11 denotes a stopper ~for limiting the range of rotation of 7 .

(SAE J2450 Score) AD: 1*0; ME: 1*1; Weighted Score: 1

(ntc7o) Reference numeral 11 denotes a stopper ~for limiting a rotation range of 7 .

(SAE J2450 Score) AD: 1*0; ME: 1*1; Weighted Score: 1

(ntc7o 80k) A stopper 11 limits the range of pivotal movement of 7 .

(SAE J2450 Score) WT: 1*2; WS: 1*0; (WM: 1*2); Weighted Score: 4

(ntc7wo) Reference numeral 11 denotes a stopper ~for limiting the range of rotation 7 .

(SAE J2450 Score) AD: 1*0; SE: 1*4; ME: 1*1; (WM: 1*2); Weighted Score: 7

(ntc7wo68k) Reference numeral 11 designates a stopper ~for limiting the range of rotation 7 .

(SAE J2450 Score) AD: 1*0; SE: 1*4; ME: 1*1; (WM: 1*2); Weighted Score: 7

(ntc7wo68k 90k) Reference numeral 11 denotes a stopper ~for limiting the range of rotation of 7 .

(SAE J2450 Score) AD: 1*0; ME: 1*1; Weighted Score: 1

Text example 7.6-1: Line 14 from test.jp.tk; Domain: B65H - PERFORMING OPERATIONS, HANDLING OF

THIN/FILAMENTARY MATERIALS

(JP7251966A 1995)

Text example 7.6-1 starts off the comparison with a short sentence taken from classification

B65H, which includes “performing operations”, “conveying, packing, storing and handling of

thin/filamentary materials”. Right away, we can observe a characteristic of neural machine

translation: Each model uses different words for expressing broadly the same meaning, i.e. the

use of synonyms is prominent, something that would be rather unusual for SMT. Interestingly,

the “best” model as measured by BLEU, the full-dataset ntc7 model, is the only model that

provides an objectively wrong translation. It arbitrarily adds a word that is not present in the

ST. By looking at the reference sentence, it can be observed that it wrongly infers “7” to stand

for another stopper, when in fact it appears to be a lever. This is however NOT visible in the

ST were talk is simply of a numeral 7. The degree of paraphrasis is also the highest for ntc7,

showing an example of NMT to prefer fluency over adequacy. This is further accentuated by

the fact, that all models add words not found in the source text (like “reference numeral” or

“numeral”) and stray quite far from a literal translation. For instance, the ST does not explicitly

state that the “stopper 11” is there for limiting a range of rotation, but rather that it simply does

it. This will be counted as a small miscellaneous error (ME), as it does not change the meaning

of the sentence significantly.

Additionally, the models (as does the reference) change the sentence structure quite

deeply. It may be argued, that human translators, like myself, prefer a more literal translation

127

when working with patents and would rather produce something like the following sentence:

“[Reference numeral] 11 is a stopper that limits the rotation range of 7“. This will however not

be counted as an error, as the general meaning is unchanged by the reformulation of the sentence.

It is interesting to observe, that all models appear to correctly find the correlation

between the “numeral 11” and the “stopper”, as some models simply write “a stopper 11” as

the subject. On the other hand, some models appear to have problems to find the relation of the

numeral 7, as it is not explicitly defined in the text. As pointed out, the ntc7 model assumed 7

to be another stopper, while models ntc7wo and ntc7wo68k assume the 7 to refer to the range

of rotation, which is also not correct (and grammatically implied not to be so in the ST). While

the error in the ntc7 sentence will be counted as a major addition error (AD), the errors in the

other two models are counted as major syntax errors (SE). However, the meaning is arguably

more obfuscated in the ntc7 model’s hypothesis, so this will be counted as a major wrong

meaning (WM), while the ntc7wo variants will be counted as minor wrong meanings. The

ntc7o68k model also appears to have gone for a debatable word-choice, choosing to translate

回動 (kaidō; rotation) as “pivotal movement”, which actually changes the meaning somewhat

depending on how you interpret the term “pivotal”. This is counted as a minor wrong term,

resulting in a minor wrong meaning.

Another common issue appears to be the selection of which article to use for the

different nouns of the sentence. The definite article “the” or the indefinite “a”: In patent-

language choosing “a” is quite common, as it is the safer translation, but when a numeral is

explicitly pointed out, “the” seems like the more sensible choice. For that reason, “a stopper 11”

feels somewhat off, but is an acceptable solution and will therefore only be separately reported

as a minor style error (WS). However, the ntc7 sentence is inconsistent in its use of articles, as

it refers to “a stopper 11” but then later to “the stopper 7”; this will be classified as a minor

miscellaneous error (ME).

128

(ST) データ の 書 込 ／ 読出 が 行なわ れ た 後 に は 、 ローカル ＩＯ 線 および グローバ

ル ＩＯ 線 は 、 列 選択 動作 完了 時 に 所定 電位 に プリチャージ ／ イコライズ さ れる 。

(TT) After data is written / read , the local IO line and global IO lines are precharged / equalized to a

prescribed potential at the time of the completion of the column select operation .

(SAE J2450 Score) WT: 1*2; Weighted Score: 2

(ntc7) After data writing / reading , local IO lines and global IO lines are precharged / equalized to a

predetermined potential at the completion of the column selecting operation .

(SAE J2450 Score) Weighted Score: 0

(ntc7 120k) After data writing / reading , the local I / O lines and global I / O lines are precharged /

equalized to a predetermined potential at the completion of the column selecting operation .

(SAE J2450 Score) Weighted Score: 0

(ntc768k) After data is written / read , ~ local IO line and ~ global IO line are precharged / equalized

to a predetermined potential upon completion of ~ column selecting operation .

(SAE J2450 Score) ME: 3*1; Weighted Score: 3

(ntc768k 80k) After data is written / read , local I / O lines and global I / O lines are precharged /

equalized to a predetermined potential upon completion of a column select operation .

(SAE J2450 Score) Weighted Score: 0

(ntc7o) After data is written / read , the local I / O lines and the global I / O lines are precharged /

equalized to a predetermined potential when the column selecting operation is completed .

(SAE J2450 Score) Weighted Score: 0

(ntc7o 80k) After data is written / read , the local I / O line and the global I / O line are precharged /

equalized to a predetermined potential when the column selecting operation is completed .

(SAE J2450 Score) Weighted Score: 0

(ntc7wo) After writing / reading of data , ~ local IO line and ~ global IO line are precharged /

equalized to a predetermined potential upon completion of a column selecting operation .

(SAE J2450 Score) ME: 2*1; Weighted Score: 2

(ntc7wo68k) After data writing / reading , local IO lines and global IO lines are precharged / equalized

to predetermined potentials at the completion of a column selecting operation .

(SAE J2450 Score) Weighted Score: 0

Text example 7.6-2: Line 380 from test.jp.tk; Domain: G11C - PHYSICS; STATIC STORES

(JP9288888A 1997)

Text example 7.6-2 shows a longer sentence, more representative for most sentences in patent

documents. The classification, G11C, is somewhat related to the Optics domain, as it is part of

the same overarching domain “Physics”. Here most models perform almost the same, providing

a translation very close indeed to the reference text and in fact, the source text. There is only a

slight variation in the morphological form in the beginning of the sentence (“After data is

written / read” or “After data writing / reading”) and the choice in how to express “完了時に”

(kanryō no toki ni; “at the time of completion”): The neural models all prefer a more

paraphrased translation than the human reference translation. Additionally, some models add a

slash between “IO”, which is an accepted abbreviation of “Input/Output”. Finally, another

variation can be observed in the choice of how “列選択動作” (retsu sentaku dōsa; column

select operation) is translated. Valid possibilities include “column select operation”, “column

selection operation” and “column selecting operation”. The models varied between “column

129

select operation” and “column selecting operation”, it would be interesting to see whether the

models would maintain consistency over a whole document.

The only error that can be observed in the context of the sentence, is the omission of

articles, which will be counted as miscellaneous errors (ME) as they have no significant effect

on the meaning of the sentence. These errors are found once in front of the expression “column

select operation” on the ntc768k model and in several other models in front of the “local IO” /

“global IO”.

In that regard another very subtle issue can be observed, which allures to the problem

of using only sentence-level translation. In the source text, it is unclear whether there are

multiple IO lines or only one IO line and whether there is only one predetermined potential or

multiple potentials. We can see that the translator of the reference text chose to write it as one

“local IO line” but multiple “global IO lines” and a single potential. This is something that can

only be correctly translated if a broader context is taken into consideration, or, in many cases,

the patent illustrations are studied by the translator. It can be observed that the NMT models

chose either the singular “line” or the plural “lines” but never arbitrarily mixed the two. While

this means that no translation is strictly speaking correct in the context of the whole patent, it

won’t be counted as an error as it would virtually be impossible to know the correct answer

without looking at the whole patent / illustrations. As a positive note, the choice was kept

consistent within the hypothesis of each model, making it easier to correct in a post-editing step.

Additionally, the choice of translation for “所定” (shotei; prescribed, fixed, predetermined)

seems more sensible in the machine translations than the reference, at least when exclusively

viewed in the context of this sentence. The reference appears to have relied on the first listing

of most dictionaries (“prescribed”) and the translation is therefore regarded as a minor wrong

term error (WT).

130

(ST) ドライバトランジスタ ＱＤ ２ は 、 記憶 ノード ＳＮ ２ と ディプリーション 型 トラ

ンジスタ ＱＤＰ ２ と の 間 に 設け られ 、 ゲート は 記憶 ノード ＳＮ １ に 接続 さ れ

る 。

(TT) Driver transistor QD2 is placed between storage node SN2 and depletion type transistor QDP2

and has its gate connected to storage node SN1 .

(SAE J2450 Score) AD: 1*4; (WM: 1*2); Weighted Score: 6

(ntc7) Driver transistor QD.sub.2 is provided between storage node SN2 and depletion type transistor

<unk> , and has a gate connected to storage node SN1 .

(SAE J2450 Score) AD: 1*4; WT: 1*2; (WM: 1*2); Weighted Score: 8

(ntc7 120k) The driver transistor DB2 is provided between the storage node SN2 and the depletion

@-@140 mode transistor <unk> , and its gate is connected to the storage node SN1 .

(SAE J2450 Score) AD: 1*4; WT: 1*2 + 1*5; (WM: 1*2); Weighted Score: 13

(ntc768k) Driver transistor <unk> is provided between storage node SN2 and depletion @-@ mode

transistor <unk> , and its gate is connected to storage node SN1 .

(SAE J2450 Score) AD: 1*4; WT: 2*2; (WM: 1*2); Weighted Score: 10

(ntc7o) Driver transistor <unk> is provided between storage node SN2 and depletion @-@ type

transistor <unk> , and a gate is connected to storage node SN1 .

(SAE J2450 Score) WT: 2*2; Weighted Score: 4

(ntc7o 80k) The driver transistor <unk> is provided between the storage node SN2 and the depletion

@-@ type transistor <unk> , and its gate is connected to the storage node SN1 .

(SAE J2450 Score) AD: 1*4; WT: 2*2; (WM: 1*2); Weighted Score: 10

(ntc7wo) Driver transistor <unk> is provided between storage node SN2 and depletion transistor

<unk> , and its gate is connected to storage node SN1 .

(SAE J2450 Score) AD: 1*4; WT: 2*2; (WM: 1*2); Weighted Score: 10

(ntc7wo68k) Driver transistor QD.sub.2 is provided between storage node SN2 and depletion type

transistor <unk> , and its gate is connected to storage node SN1 .

(SAE J2450 Score) AD: 1*4; WT: 1*2; (WM: 1*2); Weighted Score: 8

(ntc7wo68k 90k) Driver transistor QD.sub.2 is provided between storage node SN2 and depletion

type transistor <unk> , and has its gate connected to storage node SN1 .

(SAE J2450 Score) AD: 1*4; WT: 1*2; (WM: 1*2); Weighted Score: 8

Text example 7.6-3: Line 436 from test.jp.tk; Domain: G11C - PHYSICS; STATIC STORES

(JP10154393A 1998)

Text example 7.6-3 comes from the same domain of “Physics - Static Stores” as the example

above and shows some of the inherent issues of NMT: Note the “<unk>” token used instead of

the “QD” labels. Clearly, the “QD2” and “QDP2” label was not part of the vocabulary and as

such will be covered by the “<unk>” token. As can be observed, the English tokenization did

not separate the numeral from the letters and therefore “QD2” and “QDP2” would be stored as

a single token in the English vocabulary, explaining why not even the numeral was written in

the hypotheses. Only the full-size “ntc7” model and the smaller “ntc7 without optics model”

translate one of the labels in the text: the “QD2”. Notice the added “.sub.” token, which was

added through tokenization and is therefore not to be counted as an error. Indeed, the label

appears in different writing form in the training data (like 𝑄𝐷2) which is expressed through the

140 Hyphen marked by the Tokenizer

131

“.sub.” token by the Moses tokenizer. The “@” signs around hyphens are also added by the

tokenizer and therefore not counted as errors as these issues could be easily resolved by

detokenizing the data or, even better, resolving the inconsistencies in a preprocessing step for a

more efficient vocabulary. The <unk> tokens, will be regarded as minor wrong term errors as

there already exist several post-processing approaches to tackle this issue, by either copying the

term in question from the ST and/or or replacing it by external dictionary look-up (see “copy

mechanism” in M.-T. Luong 2016:40-54). However, a downright wrong denomination like the

ntc7 120k model provides (where does the “DB2” come from?) will be regarded as major wrong

term error (WT).

Aside from these issues, the translation hypothesis of all models is very close to the

reference text and, interestingly, the ntc7o model provides the most grammatically accurate

translation of the source text: While the reference text and all other hypotheses assume that the

“gate” is in fact of the “driver transistor QD2”, this is grammatically not stated in the Japanese

source text, making the indefinite formulation “…and a gate is connected to …” the most

correct translation in this context-free analysis. Since NMT translation is still sentence-based,

seemingly arbitrary additions like these could drastically change the meaning of a sentence,

while remaining undiscernible by monolingual revision and are thus regarded as major addition

errors (AD) as well as being counted as minor wrong meanings (WM).

132

(ST) 図 ３ は 、 この 実施 の 形態 に 係る 周波数 逓倍 回路 の 構成 を 示す 回路 図 で あ

る 。

(TT) FIG . 3 is a circuit diagram showing a construction of the frequency multiplication circuit in

the second embodiment .

(SAE J2450 Score) WT: 1*2 + 1*5; Weighted Score: 7

(ntc7) FIG . 3 is a circuit diagram showing the configuration of a frequency multiplier _ according to

this embodiment .

(SAE J2450 Score) OM: 1*2; WS: 1*0; Weighted Score: 2

(ntc768k) FIG . 3 is a circuit diagram showing the configuration of a frequency multiplying circuit

according to this embodiment .

(SAE J2450 Score) WS: 1*0; Weighted Score: 0

(ntc768k 80k) FIG . 3 is a circuit diagram showing the configuration of the frequency multiplying

circuit according to this embodiment .

(SAE J2450 Score) Weighted Score: 0

(ntc7o) FIG . 3 is a circuit diagram showing the structure of a frequency multiplication circuit

according to this embodiment .

(SAE J2450 Score) WT: 1*2; WS: 1*0; Weighted Score: 2

(ntc7wo) FIG . 3 is a circuit diagram showing the configuration of a frequency multiplier _ according

to this embodiment .

(SAE J2450 Score) OM: 1*2; WS: 1*0; Weighted Score: 2

(ntc7wo68k) FIG . 3 is a circuit diagram showing the configuration of a frequency multiplier _

according to this embodiment .

(SAE J2450 Score) OM: 1*2; WS: 1*0; Weighted Score: 2

(ntc7wo68k 90k) FIG . 3 is a circuit diagram showing the configuration of the frequency multiplier

_ according to this embodiment .

(SAE J2450 Score) OM: 1*2; Weighted Score: 2

Text example 7.6-4: Line 777 from test.jp.tk; Domain: H03K - ELECTRICITY; BASIC ELECTRONIC CIRCUITRY

(JP10322174A 1998)

Text example 7.6-4 is taken from a patent with domain-classification H03K, which represents

electricity and more specifically basic electronic circuitry. The issue of context is again apparent

in this example. However, in this case the reference sentence contains information absent from

the actual source text: The reference refers to a “second embodiment”, while the source text

only states “this embodiment” (この実施の形態 ; kono jisshi no keitai). All models

translated/inferred this correctly. Likewise, the word choice for 構成 (kōsei; constitution,

configuration, structure) seems more adequate in most machine translated sentences than the

reference sentence, undoubtedly and ironically resulting in a lower BLEU score for this

sentence. What is interesting to note, is that the two largest models, ntc7 and ntc7wo, and the

smaller ntc7wo68k model are again displaying the tendency of NMT to prefer fluency over

adequacy, by omitting the word “circuit” from the “frequency multiplication circuit”.

Otherwise different inflections of “multiplication” are used in the same expression. A varying

use of the definite article “the” and the indefinite article “a” can also be observed throughout.

While generally the safer way to translate is using the indefinite article “a” unless it is specified

133

that the object in question already appeared in the text before (前記 ; zenki; said,

aforementioned), in this case the circuit according to a specific embodiment is cited, so “the”

seems more appropriate, but this will only be counted as a stylistic error and not calculated into

the score.

134

(ST) ＣＰＵ （ 中央 処理 装置 ） １ ７ は ＲＯＭ （ リードオンリメモリ ） １ ８ に 記憶 さ

れ た プログラム に 基づい て 装置 全体 の 動作 を 制御 する 。

(TT) The CPU _ 17 controls an overall operation of the apparatus ~on a~ program stored in a ROM

_ 18 .

(SAE J2450 Score) SA: 1*2; SE: 1*2; WS: 2*0; Weighted Score: 4

(ntc7) A CPU (Central Processing Unit) 17 controls the operation of the entire apparatus based on

a program stored in a ROM (Read Only Memory) 18 .

(SAE J2450 Score) Weighted Score: 0

(ntc768k) A CPU (central processing unit) 17 controls the operation of the entire apparatus on the

basis of a program stored in a ROM (read only memory) 18 .

(SAE J2450 Score) Weighted Score: 0

(ntc768k 80k) A CPU (central processing unit) 17 controls the operation of the whole apparatus

based on a program stored in a read @-@ only memory (ROM) 18 .

(SAE J2450 Score) SE: 1*2 Weighted Score: 2

(ntc7o) A CPU (central processing unit) 17 controls the operation of the entire apparatus on the

basis of a program stored in a ROM (read only memory) 18 .

(SAE J2450 Score) Weighted Score: 0

(ntc7o 80k) A CPU (central processing unit) 17 controls the operation of the entire apparatus on the

basis of a program stored in a ROM (read @-@ only memory) 18 .

(SAE J2450 Score) Weighted Score: 0

(ntc7wo) A CPU (central processing unit) 17 controls the overall operation of the apparatus in

accordance with a program stored in a ROM (read only memory) 18 .

(SAE J2450 Score) WT: 1*2; SE: 1*2; Weighted Score: 4

(ntc7wo68k) A CPU (central processing unit) 17 controls the overall operation of the apparatus

based on a program stored in a ROM (read only memory) 18 .

(SAE J2450 Score) SE: 1*2; Weighted Score: 2

(ntc7wo68k 90k) A CPU (Central Processing Unit) 17 controls the overall operation of the

apparatus on the basis of a program stored in a ROM (Read Only Memory) 18 .

(SAE J2450 Score) SE: 1*2; Weighted Score: 2

Text example 7.6-5: Line 17 from testdom.jp.tk; Domain: G03G - PHYSICS - PHOTOGRAPHY; ELECTROGRAPHY

(Patent JP05088550A 1993)

Text example 7.6-5 shows the first sentence taken from the optics-domain specific corpus

testdom.jp.tk. It is a line taken from a patent with the classification G03G, which stands for

Photography/Electrography. This is a rather interesting example, as the machine translation

varies significantly from the reference text. Notice how the reference text omits the explanation

in the brackets present in the source text, while it is marked as an omission it will not be added

to the score as it does not change the meaning of the sentence, but will be reported as a style

error (WS). All machine translations correctly translate this, albeit with some variation in

typesetting (capital letters, hyphens) and a curious exception of the order being flipped by the

small domain-mixed model ntc768k at 80k steps.

More importantly, however, some of the machine translated sentences appear both

grammatically more correct and closer to the original meaning and wording of the sentence,

than the reference text. The main action of the sentence in the source text is 装置全体の動作

135

を制御する (sōchi zentai no dōsa wo seigyō suru), meaning “to control the whole apparatus’

operation”, whereas the models based on data without optics (ntc7wo and ntc7wo68k) adhere

to the reference translation by referring 全体 (zentai; “entire”, “whole”, “overall”) to the

operation instead of the apparatus. On the other hand, the models that had optics sentences to

learn from (ntc7, ntc768k, ntc7o) did translate the apparatus as the object of the sentence and

refer the adverb “whole” to it. Note that this is a somewhat ambivalent utterance in the ST, as

the meaning is almost unchanged, but grammatically a further possessive pronounの would be

required to refer 全体 (zentai; entire, whole) to the operations instead of the apparatus. As such,

this is regarded as a minor syntactic error (SE). Reading the whole patent did not provide a

conclusive answer as to what might have been intended, but in doubt sticking to grammatical

cues in the ST is the way to go.

One further divergence from the reference text favors all the machine translated results.

The reference text omits the “based on” in front of a “a program stored in ROM”, which, while

still conveying the meaning to humans, makes no sense grammatically speaking. This is

therefore considered as a minor agreement error (SA) in the reference text. The solutions

proposed by most neural models are objectively both grammatically and semantically better

(“on the basis of” and “based on a”), but would again, ironically, result in a lower BLEU score

than a solution closer to the reference text. The solution proposed by the ntc7wo model (“in

accordance with”) is quite paraphrased from the ST (に基づく, ni motodsuku, on the basis of),

and in this case rather unfitting. It is therefore regarded as a minor wrong term (WT).

136

(ST) また 、 ゴム が 感光 体 と の 接触 で 磨耗 し て ロール 表面 の 凹凸 が 初期 状態 から

大きく 変化 し て 帯電 の 均一 性 が 損なわ れる という 問題 が 生じる 。

(TT) Further , _ the rubber is worn away by contact with the photoreceptor ~to largely change~ the

unevenness of the surface of the roll from the initial state , thereby impairing the uniformity of

charging .

(SAE J2450 Score) OM: 1*2; SA: 1*2; Weighted Score: 4

(ntc7) Further , there is a problem that the rubber is abraded due to the contact with the photosensitive

member and the unevenness of the surface of the roll is largely changed from the initial state , thereby

impairing the uniformity of charging .

(SAE J2450 Score) Weighted Score: 0

(ntc7 120k) Further , there arises a problem that the rubber is worn out by contact with the

photosensitive member and the unevenness on the surface of the roll largely changes from the initial

state , thereby damaging the uniformity of charging .

(SAE J2450 Score) WT: 1*2; Weighted Score: 2

(ntc768k) Further , there is a problem that the rubber becomes worn due to contact with the

photosensitive member and the unevenness of the roll surface largely changes from the initial state ,

thereby deteriorating the uniformity of the charging .

(SAE J2450 Score) Weighted Score: 0

(ntc768k 90k) In addition , there arises a problem that the rubber wears away due to contact with the

photosensitive member , and the unevenness of the surface of the roll largely changes from the initial

state , thereby deteriorating the uniformity of charging .

(SAE J2450 Score) Weighted Score: 0

(ntc7o) Further , there arises a problem that the unevenness of the surface of the roll largely changes

from the initial state due to abrasion of the rubber due to contact with the photosensitive body and the

uniformity of charging is deteriorated .

(SAE J2450 Score) WS: 1*0; Weighted Score: 0

(ntc7o 80k) Further , there arises a problem that the rubber is worn away from the photosensitive

body by contacting with the photosensitive body and the roughness of the roll surface is largely

changed from the initial state so that the charging uniformity is deteriorated .

(SAE J2450 Score) SE: 1*4; (WM: 1*5); Weighted Score: 9

(ntc7wo) In addition , there arises a problem that the rubber is worn out by contact with the

photosensitive body , and the unevenness of the roll surface largely changes from the initial state ,

thereby damaging the uniformity of charging .

(SAE J2450 Score) Weighted Score: 0

(ntc7wo68k) In addition , there arises a problem that when the rubber is worn in contact with the

photosensitive body , the projections and recesses on the surface of the roll greatly change from the

initial state , thereby impairing the uniformity of charging .

(SAE J2450 Score) WT: 1*2; Weighted Score: 2

(ntc7wo68k 90k) In addition , there is a problem that the unevenness on the surface of the roll is

largely changed from the initial state by the abrasion of the rubber in contact with the photoreceptor ,

resulting in ~ loss of the uniformity of the electrification .

(SAE J2450 Score) WT: 1*2; ME: 1*1; Weighted Score: 3

Text example 7.6-6: Line 432 from testdom.jp.tk; Domain: : G03G - PHYSICS - PHOTOGRAPHY; ELECTROGRAPHY

(Patent JP08062939A 1996)

Text example 7.6-6 is another sentence from the optics test corpus, again with the classification

G03G, photography and electrography. It is an interesting example, in that it shows just how

flexibly the neural models arrange the syntax and choose words/prepositions, while keeping the

137

same meaning. By and large, all models convey the meaning successfully, while also being

grammatically correct and indeed very close to the reference text (which omits the “there arises

a problem” part present in the source text and makes it seem like this is something that happens

on purpose). The only exception being the early-stopped ntc7o model, which wrongly infers

that “the rubber is worn away from the photosensitive body”. In the source text, the rubber (ゴ

ム) is not directly related to any of the other nouns in the sentence, but one would assume from

the context available that, if anything, the “rubber” is part of the “roll”, as the “roll’s surface”

unevenness is changed. An assumption that can only be verified when reading the patent’s

context, which confirms that the roll possesses a conductive rubber layer (Patent JP08062939A

1996:2). This results in a major syntactic error (SE) and subsequently a minor meaning error

(WM).

Again, the results for this example imply that the BLEU score cannot be taken at face

value, as the early stopped ntc7o model consistently performed better in the BLEU metric,

despite being the only model that mistranslated this example. That said, subjectively, the

translations hypotheses found by both ntc7o models are arguably the least refined, as the

sentence reordering is somewhat confusing. This is once again noted as minor wrong style (WS),

but not considered in the overall score.

138

(ST) 写真 乳剤 層 に 入射 す べき 光 の 分光 組成 を 制御 する こと が 必要 な とき 、 写真

感光 上 の 写真 乳剤 層 より も 支持 体 から 遠い 側 に 着色 層 が 設け られる 。

(TT) A colored layer can be formed on the side further from the support than the photosensitive

photographic emulsion layer , ~where~ it is necessary to control the spectral composition of the light

which falls on the photographic emulsion layer .

(SAE J2450 Score) SE: 1*2; SA: 1*2; Weighted Score: 4

(ntc7) When it is necessary to control the spectral composition of the light to be incident on the

photographic emulsion layer , a colored layer is provided on the side farther from the support than the

photographic emulsion layer on the photographic photosensitive layer .

(SAE J2450 Score) Weighted Score: 0

(ntc7 120k) When it is necessary to control the spectral composition of light to be incident on the

photographic emulsion layer , a colored layer is provided on the side farther from the support than the

photographic emulsion layer on the photographic light .

(SAE J2450 Score) WT: 1*5; Weighted Score: 5

(ntc768k) When it is necessary to control the spectral composition of the light to be incident on the

photographic emulsion layer , a colored layer is provided farther from the support than the

photographic emulsion layer on the photographic light .

(SAE J2450 Score) WT: 1*5; Weighted Score: 5

(ntc768k 80k) When it is necessary to control the spectral composition of light to be incident on the

photographic emulsion layer , a colored layer is provided on the side farther from the support than the

photographic emulsion layer on the photographic light @-@ sensitive surface .

(SAE J2450 Score) Weighted Score: 0

(ntc7o) When it is necessary to control the spectral composition of the light incident on the

photographic emulsion layer , a colored layer is provided on a portion farther from the support than

the photographic emulsion layer _.

(SAE J2450 Score) WT: 1*2; OM: 1*2; Weighted Score: 4

(ntc7o 80k) When it is necessary to control the spectral composition of light incident on the

photographic emulsion layer , a colored layer is formed on a portion farther from the support than

the photographic emulsion layer _.

(SAE J2450 Score) WT: 1*2; OM: 1*2; Weighted Score: 4

(ntc7wo) When it is necessary to control the spectral composition of the light to be incident on the

photographic emulsion layer , a colored layer is provided at a position remote from the supporting

member rather than the photographic emulsion layer on the photographic image .

(SAE J2450 Score) WT: 2*5; SE: 1*2; Weighted Score: 12

(ntc7wo68k) When it is necessary to control the spectral composition of the light to be incident on

the photographic emulsion layer , a coloring layer is provided on the side farther away from the

support member than the photographic emulsion layer on the photographic toner .

(SAE J2450 Score) WT: 1*5; SE: 1*2; Weighted Score: 7

(ntc7wo68k 90k) When it is necessary to control the spectral composition of the light to be incident

on the photographic emulsion layer , a colorant layer is provided on the side farther from the support

than the photographic emulsion layer on the photographic light .

(SAE J2450 Score) WT: 1*5; SE: 1*2; Weighted Score: 7

Text example 7.6-7: Line 651 from testdom.jp.tk; Domain: G03C - PHYSICS - PHOTOSENSITIVE MATERIALS FOR

PHOTOGRAPHIC PURPOSES

(JP5323501A 1993)

Text example 7.6-7 shows an example from classification G03C, photosensitive materials for

photographic purposes. This sentence stands out as one of the more difficult to translate, as it

139

spans over a long main clause and a separate, equally long subordinate clause. It is interesting

to note, that all models chose to adhere to the Japanese sentence order, while the human

reference translation reversed the sentence order. This in itself does not obfuscate the meaning

in any way.

The main issue appears to be with the expression 写真感光上の写真乳剤層, which

might well be a typo of the original patent document (shashinkankōjō no shashinnyūzaizō; “the

photographic emulsion layer on the photographic light-sensitive (…) ”)141. In this occasion,

some models provide completely non-sensical solutions like “photographic light” (ntc7 120k,

ntc768k and ntc7wo68k 90k), “photographic image” (ntc7wo) or “photographic toner”

(ntc7wo68k), the optics-based models simply omit the expression while keeping the essential

meaning (ntc7o, ntc7o 80k)142, while the inference of the two models based on the varied

domain corpus proposes the arguably most adequate solutions with “photographic light-

sensitive surface” and “photographic photosensitive layer” (ntc7, ntc768k 80k). It is fascinating

to see how the optics-data based ntc7o model provides a very consistent output, while all other

models are perplexed by the uncommon (and as a matter of fact, incorrect) expression. Clearly,

in this case having less perplexity on the training data helped the model. On the other hand, the

largest model (ntc7) achieved a solution closely resembling the reference text, while being

closest to the ST wording. In this case, the omission of the ntc7o models seems preferable to

the arbitrary wrong term of the other models, which is why only a minor omission (OM) was

deducted from the ntc7o models, while the other models had a major wrong term (WT) deducted.

What is also interesting, is that all models chose to translate the ambiguous設けられ

る (mōkerareru; “to be set up” or “can be set up”) as a passive, while it can be either the passive

or potential form of 設ける (mōkeru; set up). Only the reference text interpreted it as the

potential form. This is again an ambiguity in the Japanese language, which can only be cleared

up upon further inspection of the broad context in the patent and will therefore not be counted

as an error of any sort.

141 In fact, the expression only appears one more time in the patent, in a carbon copy of above sentence. All other

appearances state 写真感光材料 (shashinkankōzairyō) which stands for „photographic light-sensitive material”.
142 Interestingly, the training corpus also contains the expression twice, also in the form of a carbon copy of the

same sentence in the test data but from different patent documents. One reference (or label) sentence in the

training corpus omits the expression in question and keeps the Japanese sentence order; the other is the same as

the reference used in the test corpus.

140

(ST) 次いで 、 Ｓ ３ １ において 、 モード 設定 ダイアル ７ の ポジション が 変更 さ れ た

か 否 か を 判断 する 。

(TT) Next , in step S31 , it is determined whether or not the position of the mode setting dial 7 has

been changed .

(SAE J2450 Score) AD: 1*2; Weighted Score: 2

(ntc7) _ In S31 , it is determined whether the position of mode setting dial 7 has been changed .

(SAE J2450 Score) OM: 1*2; Weighted Score: 2

(ntc7 120k) _ In S31 , it is determined whether the position of the mode setting dial 7 has been

changed .

(SAE J2450 Score) OM: 1*2; Weighted Score: 2

(ntc768k) Then , in S31 , it is determined whether or not the position of the mode setting dial 7 has

been changed .

(SAE J2450 Score) Weighted Score: 0

(ntc768k 90k) Next , in S31 , it is determined whether or not the position of the mode setting dial 7

has been changed .

(SAE J2450 Score) Weighted Score: 0

(ntc7o) Next , in S31 , it is determined whether the position of the mode setting dial 7 has been

changed .

(SAE J2450 Score) Weighted Score: 0

(ntc7wo) _ In S31 , whether or not the position of mode setting dial 7 is changed is determined .

(SAE J2450 Score) SE: 1*2; OM: 1*2; Weighted Score: 4

(ntc7wo68k) Next , at step S31 , it is determined whether the position of the mode setting dial 7 is

changed .

(SAE J2450 Score) SE: 1*2; AD: 1*2; Weighted Score: 4

Text example 7.6-8: Line 508 from testdom.jp.tk; Domain: G03B - PHYSICS -

APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM

(JP103115A 1998)

Finally, Text example 7.6-8 shows a shorter sentence from the classification G03B, indicating

the invention is regarding an apparatus or arrangements for taking photographs or

projecting/viewing them. This example just shows some seemingly arbitrary omissions of the

conjunction 次いで (tsuide; then, next…), by some of the models, notably the ones based on

more data (ntc7 and ntc7wo). The other thing that can be observed is the addition of the word

“step” by the ntc7wo68k model, although it never appears in the source text. Interestingly the

reference sentence also adds this word to the translation, indicating that at some point the

numeral “S31” must have been identified as a step in the patent. This could however be an

invalid addition, as there is no way to tell what S31 exactly is just by looking at the ST, so a

minor addition error (AD) is calculated.

141

7.7 Conclusion

The training of the translation models worked unexpectedly well. In fact, the results of the

translation models are very close to the performance of commercially used systems like the

EPO’s Patent Translate and WIPO Translate for the small sampled texts. This is great news for

translators who would like to explore the option of maintaining their own neural machine

translation system with standard home-computing equipment.

On one hand, the automatic evaluation confirmed what is common knowledge in MT

research: Training on bigger data appears to be generally better than on smaller, even

specialized data-sets, and training for too long, leading to a higher model perplexity for general

tasks, leads to worse results. However, the human evaluation also proved that it is quite

dangerous to rely only on the BLEU score for assessing model performance. This is shown in

the ranking presented in Table 16, which ranks the models by comparing the BLEU scores

(higher is better) and the SAE overall weighted document scores (OWDS143, lower is better).

Table 16: Ranking BLEU and SAE scores between the different models and test domains

Model BLEU Rank

mixed domain

SAE Rank

mixed domain

BLEU Rank

optics domain

SAE Rank

optics domain

ntc7 40.29 (2nd) 0.047281324 (6th) 37.57 (2nd) 0.008810573 (1st)

ntc7 (120k) 40.42 (1st) 0.059101655 (8th) 37.80 (1st) 0.039647577 (4th)

ntc768k 38.63 (6th) 0.033096927 (3rd) 35.69 (5th) 0.022026432 (3rd)

ntc768k (80k) 38.73 (5th) 0.026004728 (2nd) 36.24 (3rd) 0.008810573 (1st)

ntc7o 36.95 (9th) 0.016548463 (1st) 35.45 (7th) 0.017621145 (2nd)

ntc7o (80k) 37.84 (8th) 0.037825059 (4th) 36.12 (4th) 0.057268722 (5th)

ntc7wo 144 39.85 (3rd) 0.049645390 (7th) 35.68 (6th) 0.088105727 (8th)

ntc7wo68k 38.52 (7th) 0.040189125 (5th) 34.51 (9th) 0.066079295 (6th)

ntc7wo68k (90k) 38.81 (4th) 0.026004728 (2nd) 34.94 (8th) 0.070484581 (7th)

Ironically, the ntc7o model, which has the lowest BLEU scores, happened to be the model with

best overall SAE J2450 score. Conversely, the ntc7 model at 120k steps, which performed best

in the BLEU metric, is only slightly better than the worst model in the overall SAE J2450

analysis, which is the model based on the second largest dataset, the “without optics” ntc7wo

model. However, the optics model (ntc7o) did not perform best in the optics-domain test, where

it performed slightly worse than the two mixed-domain models (ntc7 and ntc768k). The errors

143 The overall weighted document score (OWDS) is calculated as the total weighted score divided by the

number of words of all tested sentences. As per convention, each character is counted as a word in Japanese.
144 ntc7wo test was not stopped earlier, as BLEU score was still increasing at 150k steps

142

made by the optics model in the optics test, mainly stem from arbitrary omissions and structural

errors, while in the mixed domain test it made more wrong term mistakes. Ironically, the optics

model (ntc7o) was less prone to arbitrary additions or omissions in the mixed domain test. This

would suggest, that the less perplex an NMT model gets, the likelier it is to omit or add arbitrary

content to a translation. Keep in mind, that the analyzed sample size is quite small and therefore

needs further testing on larger sample sizes for a more reliable conclusion. An overview of the

error count sorted by error type can be seen in Table 17.

Table 17: Extended SAE J2450 based quantitative evaluation of all test sentences in Section 7.6.2.

The overall result showing a large divergence between human evaluation and automatic

evaluation does coincide largely with the findings of research that covers the topic in-depth

(Callison-Burch et al. 2006; Lo Presti 2016; Bojar et al. 2017; Bawden 2018). There is in fact

a need to again address one major issue of most machine translation systems and their

evaluation: All the translation and subsequently evaluation is strictly performed on a sentence

basis; this inherently fails to emulate a lot of the combinational work translators must do while

translating and fails to correctly evaluate adequacy over a whole document. Even the small

randomized sample that was analyzed showed many issues related to context outside of the

sentence and made it very difficult to analyze it with the SAE metric. This is a well-known

issue often ignored by the MT research sphere, as it is quite complex to realize a holistic

context-aware machine translation and evaluation system, both in terms of general complexity

of the concept of context and in fact the modeling capacity of even the highest performing

neural network models.145

145 An incredibly thorough overview of the situation regarding contextual machine translation and evaluation

thereof, as well as some approaches to tackle the issue can be found in Going beyond the sentence: Contextual

Machine Translation of Dialogue, by Rachel Bawden (Bawden 2018).

 WT SE OM AD SA SP PE ME WM WS

Weighted

Score OWDS

Weights (Serious/

Minor) 5 2 4 2 4 2 4 2 4 2 3 1 2 1 3 1 5 2 0 0

 Number of Errors for Each Category Words: 423

TT 1 2 0 2 0 1 1 1 0 3 0 0 0 0 0 1 0 1 0 2 30 0.07092199

ntc7 0 1 0 0 0 2 2 0 0 0 0 0 0 0 0 1 1 1 0 2 22 0.05200946

ntc7 120k 2 2 0 0 0 2 2 0 0 0 0 0 0 0 0 1 1 1 0 2 34 0.08037825

ntc768k 1 2 0 0 0 0 1 0 0 0 0 0 0 0 0 4 0 1 0 1 19 0.04491726

ntc768k 80k 0 2 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 13 0.03073286

ntc7o 0 4 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 2 11 0.02600473

ntc7o 80k 0 5 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 2 0 2 29 0.05673759

ntc7wo 2 3 1 3 0 2 1 0 0 0 0 0 0 0 0 3 0 2 1 1 41 0.09692671

ntc7wo68k 1 2 1 3 0 1 1 1 0 0 0 0 0 0 0 1 0 2 0 1 32 0.07565012

ntc7wo68k 90k 1 2 0 3 0 1 1 1 0 0 0 0 0 0 0 2 0 1 0 0 27 0.06382979

143

These issues can also be observed in the evaluation of this thesis as, interestingly, even

the reference texts often referred to information that was not available in the actual ST.

This highlights another issue with machine translation training and evaluation. The

human evaluation showed that the reference sentences were quite far removed from the ST

more often than not, sometimes even containing major translation errors. The reason for this is

likely that the parallel sentence data is built from original Japanese documents and the final

published English patents. The published patents are not direct translations, but texts that have

been further revised by a specialized patent lawyer. Generally, these revisions are mono-lingual,

meaning the ST is not considered for the revision and thus it seems plausible that the texts might

change significantly from the original ST.

Considering the varying accuracy of the parallel data in the test and training corpus, it

is remarkable that the translation works as well as it does, but it was clearly shown, that the

networks may learn arbitrary translation patterns, that may refer to context not available in the

sentence that is being translated. It would be interesting to see how the models would perform,

if they were trained on the translations of the actual translators instead of the patent documents

revised by patent lawyers. A more exhaustive evaluation of full patent documents translated

with NMT models trained on published, patent lawyer revised data and then compared to a

model trained on more literal direct translations by translators would be very interesting.

144

8 Summary

This thesis aimed to provide an accessible introduction to machine translation and in specific

neural machine translation, especially for Translation Studies scholars and translators. This was

achieved by giving a broad overview of the major machine translation architectures, with a

deep-dive into the current state-of-the-art technique dubbed neural machine translation or NMT.

Furthermore, the thesis provides a step-by-step tutorial for creating machine translation models

based on this recent modeling technique and accessibly introduces many concepts from the

computational linguistics and generally IT to the reader so that they may understand the

workings of machine translation, allowing them to make better use of the recent techniques in

their own line of work and to eventually also contribute to research.

OpenNMT-tf was suggested as one of the most accessible and performant toolkits

according to testing and benchmarking of several available open-source NMT toolkits.

In the final part of the thesis, OpenNMT-tf was used to create 5 different neural machine

translation models, which were subsequently evaluated by translating several patent sentences.

The models differed only in the data used for training, where the data of a single large text

corpus (the NTC7 parallel sentence data of the NTCIR 10 PatentMT Test Collection) was

filtered by domain using the international patent classification numbers. Two larger datasets,

one which contained all domains (named ntc7) and the other which contained all domains

except for “optics” (ntc7wo) were used with approx. 1.8 million parallel sentences and approx.

1.1 million sentences respectively. Since the dataset which only contained the optics data

(ntc7o) had only around 684,700 sentences, two shortened versions of the above-mentioned

datasets were created by randomly deleting lines from the corpus (ntc768k and ntc7wo68k).

The aim was to find out how such a domain specialization might affect the neural translation

models, observe how data size and variety influence neural machine translation models and

whether the neural models really provide better translation with more data than with more

specifically selected data. The translation output of the models was evaluated both according to

common practice of MT research, automatically with the BLEU metric, and manually through

human evaluation of a small sample of sentences.

It was shown that the data amount, variety and selection of data clearly influenced the

output of the neural machine translation models. As expected, the model based on the largest

dataset had the best BLEU score in all tests and also showed the most promising progress during

training (model perplexity continued to get lower on validation dataset). However, the BLEU

score did not converge well with the human evaluation, where, in fact, the domain specialized

model (ntc7o) provided the best results.

145

This strengthens the belief, that the intervention by translators or Translation Studies

experts might indeed be of great benefit to the MT research paradigm, as many of the common

practices in the development and especially automatic evaluation of machine translation do not

consider common practices in translation quality assurance (TQA). This also explains, why the

automatic evaluation correlates poorly with the findings of the human evaluation. Additionally,

solid theoretical frameworks for translation, like the skopos theory, are rarely considered for

the modeling of translation architectures and data pre-selection steps, while this thesis has

proven that data pre-selection can strongly influence the output of neural machine translation

and in fact likely trim the models towards a specific skopos.

By providing this encompassing analysis of state-of-the-art machine translation in a very

practical and hopefully easy to understand approach, this thesis hopes to lower the hesitation of

Translation Studies scholars, as well as translators, to deeply engage with the topic and provide

constructive research in regards to improving machine translation, evaluation of machine

translation, integration of the translators into the workflow and also integration of key

translational theories, into the modeling and data-selection of NMT research.

8.1 Summary in German

Ein Ziel dieser Masterarbeit war es, eine zugängliche, aber dennoch umfassende und

tiefreichende Einführung in die maschinelle Übersetzung und spezifisch in die neuronale

maschinelle Übersetzung anzubieten. Dies soll insbesondere Translationswissenschafts-

studierenden und ÜbersetzerInnen ansprechen, die sich mit dem Thema tiefgehend

auseinandersetzen möchten. Zu diesem Zweck wurde ein Überblick über die verschiedenen

Architekturen der maschinellen Übersetzung (MT) gegeben, von der regel-basierten

Übersetzung (RBMT) zur statistischen Übersetzung (SMT) bis hin zum momentanen Stand der

Technik, der neuronalen maschinellen Übersetzung (NMT). Neben einer tiefergehenden

theoretischen Auseinandersetzung mit der Funktionsweise von NMT bietet die Arbeit eine

Schritt-für-Schritt-Anleitung zum Erstellen neuronaler Übersetzungsmodelle an, die dank

open-source Software auf handelsüblichen PCs erstellt werden können. Dabei werden viele

Konzepte aus der Computerlinguistik und generellen IT vorgestellt, die der/m LeserIn dabei

helfen die Logik hinter maschineller Übersetzung zu verstehen und diese somit besser zum

eigenen Vorteil zu verwenden und eventuell eigene wissenschaftliche Beiträge dazu zu

verfassen.

Nach tieferer Auseinandersetzung mit einer Vielzahl von open-source NMT Toolkits

und Testung dieser Toolkits, wurde OpenNMT-tf als eines der zugänglichsten und

leistungsfähigsten Toolkits empfohlen. Im letzten Teil dieser Masterarbeit wurden mit Hilfe

146

von OpenNMT-tf fünf verschiedene neuronale Übersetzungsmodelle trainiert, welche folglich

anhand der Übersetzung von Patentsätzen evaluiert wurden. Die Modelle unterscheiden sich

lediglich in den Daten die zum Training (oder zur Erstellung) dieser genutzt wurden, wobei die

Daten aus dem NTC7 Parallelsatzcorpus der NTCIR 10 PatentMT Test Collection stammen und

anhand der internationalen Patentklassifikationsnummer nach Domäne sortiert wurden. Zwei

größere Datensätze, einer der alle Domänen im Corpus enthält (ntc7, ca. 1,8 Mio. Satzpaare)

und einer der alle Domänen außer der „Optik“-Domäne enthält (ntc7wo, ca. 1,1 Mio. Satzpaare),

wurden erstellt. Zusätzlich wurden noch ein „Optik“-Datensatz (ntc7o) mit ca. 684.700

Parallelsätzen erstellt. Um die Größe der Datensätze einheitlich zu halten, wurden noch zwei

weitere Datensätze (ntc768k und ntc7wo68k) aus den oben genannten, größeren Datensätzen

erstellt, bei denen jeweils Sätze zufällig aus dem größeren Datensatz gelöscht wurden, um auf

dieselbe Satzanzahl zu kommen wie beim „Optik“-Datensatz.

Das Ziel war es, herauszufinden wie sich diese Domänenspezialisierung auf die

Übersetzung der neuronalen Übersetzungsmodelle auswirken würde und zu beobachten, wie

Datensatzgröße und Datenvarietät die Modelle beeinflussen würde bzw. ob sich die Annahme

bewahrheitet, dass Datenmenge wichtiger als Datenselektion sei. Die Ergebnisse der

Übersetzung zweier Testcorpora aus Patentsätzen im NTC7 Parallelsatzcorpus, wurde folglich

nach üblichem Vorgehen der MT-Forschung automatisch mit der BLEU-Metrik und zusätzlich

anhand einer kleinen, zufälligen Auswahl durch manuelle, humane Evaluierung ausgewertet.

Die Ergebnisse der Evaluierung zeigen, dass die Menge der Daten, die Varietät der

Daten und die Selektion der Daten den Output der neuronalen Modelle klar beeinflusst haben.

Wie per allgemeiner Annahme in der MT-Forschung zu erwarten war, hatte das Modell mit

dem größten Datenset (ntc7) die besten BLEU-Ergebnisse. Allerdings wurde auch gezeigt, dass

die BLEU-Wertung sich kaum mit den Ergebnissen der humanen Evaluation deckte, wo

tatsächlich das auf die Optikdomäne spezialisierte Modell (ntc7o) die besten Ergebnisse lieferte.

Dies bestärkt weiter die Annahme, dass ein Beitrag von ÜbersetzerInnen und der

Übersetzungswissenschaft große Vorteile für die MT-Forschung haben kann. Insbesondere

sollte eine engere Zusammenarbeit der verschiedenen Felder in der Auswertung des

maschinellen Outputs in Erwägung gezogen werden und theoretische Grundlagen aus der

Übersetzungswissenschaft (wie z.B. die Skopostheorie) tiefer in die MT-Systeme und/oder

Trainingsvorkehrungen eingearbeitet werden.

Durch das Bereitstellen dieser praxisbezogenen und umfassenden Analyse des Stands

der Technik der MT-Forschung und der zugänglichen Anleitung zum Erstellen solcher MT-

Systeme, erhofft sich diese Masterarbeit, Studierenden, ÜbersetzungswissenschaftlerInnen und

147

ÜbersetzerInnen einen leicht verständlichen Einstieg in die Materie zu ermöglichen und weitere

konstruktive Beiträge zur MT-Forschung zu erleichtern.

8.2 Discussion and outlook

Machine translation and especially neural machine translation is still a hot research topic at the

time of writing this thesis and seemingly every day a vast number of new works regarding the

topic is published. Since NMT is still relatively fresh, a lot of room is left for experimentation

and many new interesting concepts appear at the horizon every day. For example, researchers

at Google found it is possible to train parameters of a single model on several languages, by

only slightly modifying the ST to reflect which TL is expected. This enables them to drastically

reduce the need of model training, as a single model can be used to cover several languages146

and also provide higher quality output on low-resource languages (i.e. languages where only a

small amount of parallel texts is available for the specific language pair) (Johnson et al. 2017).

An unexpected side effect of that effort was the discovery of so-called zero-shot translation,

which enables the network to translate between language pairs that it has not explicitly seen

before in training. This suggests that the abstract representation through the trained parameters

and word embeddings does in fact capture some form of semantics or meaning147. The function

of the multi-lingual models and zero-shot translation hinges on an abstract representation of

sentences at the tokenization step; i.e. the paper uses a tokenizer which is very similar to the

BPE tokenization described in this thesis (it uses the so-called word-piece tokenizer).

Google goes as far as to call the abstract representation calculated by the network to be

a hint of an “interlingua” that is being extracted by the network from the training datasets, an

interesting idea that would harken back to the classical approach in MT. In a way, it might be

argued that NMT comes closer to the ideal of what translation should be than its predecessor,

as it appears to capture more than just the surface form of texts. The results of such a zero-shot

translation are, however, reported to be generally significantly lower than translating through

so-called “explicit bridging”, i.e. through an intermediate language (for example,

Japanese→English, English→Korean gives better results than Japanese→Korean). Yet, the

zero-shot approach shows promise, as trained models can act as a baseline for incremental

training by using comparatively small amounts of actual parallel data in a low resource language

to enable translation into that specific language (Johnson et al. 2017:9).

146 For example, instead of training two models for English→Japanese and English→ Korean, it is possible to

train a single English→Japanese, Korean model. It was proven to work best for related languages.
147 In fact, the paper also presents the idea of mixing the ST languages arbitrarily while still getting a proper

translation result.

148

Going into the same direction of applying neural networks to capture the meaning of

texts and generating a baseline model to fine-tune later, BERT or the Bidirectional Encoder

Representation for Transformers recently made a big splash in the NLP research community

(Devlin et al. 2018). BERT is a very large pre-trained language model based on the same

Transformer architecture, that was also used for this thesis’ experiment. The BERT language

model considers bi-directional word context and can be used as a baseline for fine-tuning a

model and specialize it on a specific task like Question-Answering, text-understanding, etc.

Attempts to incorporate BERT into NMT are currently underway and appear to have promising

results (see Zhu et al. 2020).

However, one of the biggest strengths of the neural approaches is also a disadvantage

that can be observed throughout most of the research: The language understanding and

translation process is generally fully automatic, and the models are “static” once they have been

trained unless further “offline” training is performed. This renders NMT rather unapproachable

to translators, as system transparency is low, and tuning is difficult to accomplish without in-

depth knowledge of neural networks and deep-learning toolkits. Even then, results can

sometimes be quite arbitrary, as was also seen in this thesis’ experiment.

Rare exceptions like the Interactive NMT approach (Peris, Domingo, et al. 2017) show

that the idea of NMT as tool for the translator, that adapts to the translator’s choices rather than

simply providing pre-determined solutions could help improving the workflow of translators,

while at the same time improving the NMT model underneath. However, there is a strong need

for research into the better application of NMT for post-editing by human translators and its

integration within existing translation tools, as, for example, Daems & Macken (2019) show

that while interactive NMT tools may provide suggestions with less errors than a similar SMT

solution, little to no improvement can be observed in the actual translation time or effort made

by the translators (measured in key-strokes and mouse-actions). Similar results were found by

other studies, like Castilho et al. 2017, Jia et al. 2019a and Knowles et al. 2019. Like in this

thesis, these studies also showed that while automatic evaluation results look very promising,

human evaluation often showed mixed results, with NMT providing noticeable increases in

fluency, but inconsistent results for adequacy and the post-editing effort.

This disparity between automatic evaluation and human evaluation often remains

unmentioned in papers regarding NMT. Translators and Translation Studies might be able to

contribute significantly in the development of NMT systems by both raising the awareness to

this gap and by proposing theoretical frameworks that can be applied specifically to MT

evaluation and that can also be modeled mathematically or realized in data preparation steps to

149

improve the translation systems, similar to what Kenny and Doherty already suggested for SMT

in 2014 (Kenny & Doherty 2014).

Obviously, one might pose the question, whether such an effort is desirable from the

translator’s point of view. Wouldn’t translators basically help with making themselves

disposable by aiding in the creation of better machine translation systems? That argument could

especially be made considering that many research papers on NMT explicitly seek the

comparison to human translators as the gold standard, something that becomes quite clear when

looking at how titles for NMT papers, backed by tech-giants Google and Microsoft, include

statements like “bridging the gap between human and machine translation” (Wu et al. 2016) or

“human parity on automatic Chinese to English news translation” (Hassan et al. 2018). It is

sensational statements like these, that are quickly picked up by the media, which write and talk

about the alleged universal uses of deep-learning and AI (i.e. neural networks) in a quite

sensationalist way and see MT displacing the human translator in the near future. Especially

financial magazines, like the Wall Street Journal, were quick to pick up the potential of flawless

machine translation, by exclaiming that “The Language Barrier Is About to Fall” (Ross 2016),

which in turn lead The economist to explain to its readers “Why translators have the blues”

(Johnson 2017).

Ripplinger wonderfully explores these sentiments in her essay “Is this the end of the era

of human translation?”, finding that a “brave new world” for translation seems all but

unavoidable, suggesting that “in a world, where the amalgamation of machine and human

beings has already been realized in many fields, Translation Studies and translation practice

need to reinvent themselves in order to survive and stay relevant” (Ripplinger 2020).

I can’t help but agree with Ripplinger’s statement, that Translation Studies and

translation practice needs to adapt to these new changes in the industry and remain relevant by

providing its expertise to enable a better implementation of the systems. An implementation

that doesn’t aim to compete with the human translator but aims to be a powerful tool for the

future translator in the continuously growing translation market.

150

Bibliography

Agrawal, R., & Sharma, D. M. 2017. Experiments on Different Recurrent Neural Networks

for English-Hindi Machine Translation. In: Computer Science & Information Technology

(CS & IT) (pp. 63–74). Academy & Industry Research Collaboration Center (AIRCC).

https://doi.org/10.5121/csit.2017.71006

Al-Onaizan, Y., Curin, J., Jahr, M., Knight, K., Lafferty, J., Melamed, D., … Yarowsky, D.

1999. Statistical Machine Translation - Final Report. StatMT ’08 Proceedings of the

Third Workshop on Statistical Machine Translation, 1–42. Retrieved from http://mt-

archive.info/JHU-1999-AlOnaizan.pdf (Accessed on: February 26, 2019)

Alammar, J. 2018a. The Illustrated Transformer. Retrieved from

https://jalammar.github.io/illustrated-transformer/ (Accessed on: February 1, 2020)

Alammar, J. 2018b. Visualizing A Neural Machine Translation Model (Mechanics of Seq2seq

Models With Attention). Retrieved from https://jalammar.github.io/visualizing-neural-

machine-translation-mechanics-of-seq2seq-models-with-attention/ (Accessed on:

February 1, 2020)

Bahdanau, D., Cho, K., & Bengio, Y. 2014. Neural Machine Translation by Jointly Learning

to Align and Translate. 3rd International Conference on Learning Representations, ICLR

2015 - Conference Track Proceedings, 1–15. Retrieved from

http://arxiv.org/abs/1409.0473 (Accessed on: February 11, 2020)

Bawden, R. 2018. Going beyond the sentence : Contextual Machine Translation of Dialogue.

Université Paris-Saclay. Retrieved from https://tel.archives-ouvertes.fr/tel-02004683

(Accessed on: March 18, 2020)

Bengio, Y., Simard, P., & Frasconi, P. 1994. Learning long-term dependencies with gradient

descent is difficult. IEEE Transactions on Neural Networks, 5/2, 157–166.

https://doi.org/10.1109/72.279181

Bentivogli, L., Bisazza, A., Cettolo, M., & Federico, M. 2016. Neural versus Phrase-Based

Machine Translation Quality: a Case Study. In: Proceedings of the 2016 Conference on

Empirical Methods in Natural Language Processing (pp. 257–267). Stroudsburg, PA,

USA: Association for Computational Linguistics. https://doi.org/10.18653/v1/D16-1025

Berger, A. L., Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., Gillett, J. R., Lafferty, J.

D., … Ureš, L. 1994. The Candide system for machine translation. In: Proceedings of the

workshop on Human Language Technology - HLT ’94 (p. 157). Morristown, NJ, USA:

Association for Computational Linguistics. https://doi.org/10.3115/1075812.1075844

Biçici, M. E. 2011. The Regression Model of Machine Translation. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.708.2672&rep=rep1&type=pd

f (Accessed on: June 30, 2019)

Bird, S., Klein, E., & Loper, E. 2009. NLTK Book. Natural Language Processing with

Python. O’Reilly Media Inc. Retrieved from http://www.nltk.org/book/ (Accessed on:

September 14, 2019)

151

Bojar, O., Graham, Y., & Kamran, A. 2017. Results of the WMT17 Metrics Shared Task. In:

Proceedings of the Second Conference on Machine Translation (pp. 489–513).

Stroudsburg, PA, USA: Association for Computational Linguistics.

https://doi.org/10.18653/v1/W17-4755

Boleda, G. 2020. Distributional Semantics and Linguistic Theory. Annual Review of

Linguistics, 6/1, 213–234. https://doi.org/10.1146/annurev-linguistics-011619-030303

Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., & Mercer, R. L. 1993. The Mathematics

of Statistical Machine Translation: Parameter Estimation. Computational Linguistics,

19/2, 263–311. Retrieved from https://www.aclweb.org/anthology/J93-2003/ (Accessed

on: February 19, 2019)

Cadwell, P., O’Brien, S., & Teixeira, C. S. C. 2018. Resistance and accommodation: factors

for the (non-) adoption of machine translation among professional translators.

Perspectives, 26/3, 301–321. https://doi.org/10.1080/0907676X.2017.1337210

Callison-Burch, C., Osborne, M., & Koehn, P. 2006. Re-evaluating the role of BLEU in

machine translation research. In: EACL 2006 - 11th Conference of the European Chapter

of the Association for Computational Linguistics, Proceedings of the Conference.

Retrieved from https://www.aclweb.org/anthology/E06-1032 (Accessed on: April 12,

2020)

Carbonell, J. G., Rich, E., Masaru, T., Johnson, D., Vasconcellos, M., & Wilks, Y. 1994.

Machine Translation in Japan. Retrieved from

http://www.wtec.org/loyola/ar93_94/mt.htm (Accessed on: February 20, 2019)

Castilho, S., Moorkens, J., Gaspari, F., Calixto, I., Tinsley, J., & Way, A. 2017. Is Neural

Machine Translation the New State of the Art? The Prague Bulletin of Mathematical

Linguistics, 108/1, 109–120. https://doi.org/10.1515/pralin-2017-0013

Chiang, D., Knight, K., & Wang, W. 2009. 11,001 new features for statistical machine

translation. In: Proceedings of Human Language Technologies: The 2009 Annual

Conference of the North American Chapter of the Association for Computational

Linguistics on - NAACL ’09 (pp. 218–226). Morristown, NJ, USA: Association for

Computational Linguistics. https://doi.org/10.3115/1620754.1620786

Cho, K., van Merrienboer, B., Bahdanau, D., & Bengio, Y. 2014. On the Properties of Neural

Machine Translation: Encoder–Decoder Approaches. In: Proceedings of SSST-8, Eighth

Workshop on Syntax, Semantics and Structure in Statistical Translation (pp. 103–111).

Stroudsburg, PA, USA: Association for Computational Linguistics.

https://doi.org/10.3115/v1/W14-4012

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., &

Bengio, Y. 2014. Learning Phrase Representations using RNN Encoder–Decoder for

Statistical Machine Translation. In: Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP) (pp. 1724–1734). Stroudsburg, PA,

USA: Association for Computational Linguistics. https://doi.org/10.3115/v1/D14-1179

Collins, M. 2003. Head-Driven Statistical Models for Natural Language Parsing.

Computational Linguistics, 29/4, 589–637.

https://doi.org/10.1162/089120103322753356

152

Collins, M. 2011. Statistical Machine Translation: IBM Models 1 and 2. Retrieved from

http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/ibm12.pdf (Accessed on:

April 11, 2019)

Costa-Jussà, M. R., & Fonollosa, J. A. R. 2007. Analysis of statistical and morphological

classes to generate weighted reordering hypotheses on statistical machine translation

systems. In: Proceedings of the Second Workshop on Statistical Machine Translation

(pp. 171–176).

Dabre, R., Cromieres, F., Nakazawa, T., & Dabre, R. 2017. Neural Machine Translation:

Basics, Practical Aspects and Recent Trends. In: Proceedings of the IJCNLP 2017,

Tutorial Abstracts (pp. 11–13). Taipei, Taiwan: Asian Federation of Natural Language

Processing. Retrieved from https://www.aclweb.org/anthology/I17-5004 (Accessed on:

March 4, 2020)

Daems, J., & Macken, L. 2019. Interactive adaptive SMT versus interactive adaptive NMT: a

user experience evaluation. Machine Translation, 33/1–2, 117–134.

https://doi.org/10.1007/s10590-019-09230-z

Damonte, M., & Cohen, S. B. 2018. Cross-lingual Abstract Meaning Representation Parsing.

Proceedings of NAACL-HLT 2018, 1/6, 1146–1155. Retrieved from

http://arxiv.org/abs/1704.04539 (Accessed on: June 5, 2019)

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. 2018. BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. Retrieved from

http://arxiv.org/abs/1810.04805 (Accessed on: May 4, 2020)

Domingo, M., Garcıa-Martınez, M., Helle, A., Casacuberta, F., & Herranz, M. 2018. How

Much Does Tokenization Affect Neural Machine Translation? Retrieved from

http://arxiv.org/abs/1812.08621 (Accessed on: March 24, 2020)

Forcada, M. L. 2017. Making sense of neural machine translation. Translation Spaces, 6/2,

291–309. https://doi.org/10.1075/ts.6.2.06for

Forcada, M. L., Ginestí-Rosell, M., Nordfalk, J., O’Regan, J., Ortiz-Rojas, S., Pérez-Ortiz, J.

A., … Tyers, F. M. 2011. Apertium: a free/open-source platform for rule-based machine

translation. Machine Translation, 25/2, 127–144. https://doi.org/10.1007/s10590-011-

9090-0

Galley, M., & Manning, C. D. 2008. A simple and effective hierarchical phrase reordering

model. In EMNLP. Association for Computational Linguistics, 848–856. Retrieved from

https://www.aclweb.org/anthology/D08-1089 (Accessed on: May 25, 2019)

Gehring, J., Auli, M., Grangier, D., Yarats, D., & Dauphin, Y. N. 2017. Convolutional

Sequence to Sequence Learning. 34th International Conference on Machine Learning,

ICML 2017, 3, 2029–2042. Retrieved from http://arxiv.org/abs/1705.03122 (Accessed

on: November 7, 2019)

Green, S., Wang, S., Cer, D., & Manning, C. 2013. Fast and Adaptive Online Training of

Feature-Rich Translation Models. 51st Annual Meeting of the Association for

Computational Linguistics, Proceedings of the Conference, 1, 311–321. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.352.2756&rep=rep1&type=pd

f (Accessed on: February 26, 2019)

Harper Collins German Dictionary: German-English, English-German, Concise Edition.

1998. Glasgow: Harper Resource.

153

Hassan, H., Aue, A., Chen, C., Chowdhary, V., Clark, J., Federmann, C., … Zhou, M. 2018.

Achieving Human Parity on Automatic Chinese to English News Translation. Retrieved

from http://arxiv.org/abs/1803.05567 (Accessed on: January 4, 2020)

Hebb, D. 1950. The organization of behavior: A neuropsychological theory. New Your: John

Wiley And Sons.

Hochreiter, J. 1991. Untersuchungen zu dynamischen neuronalen Netzen. Diplomarbeit im

Fach Informatik. Technische Universität München. Retrieved from

https://www.bioinf.jku.at/publications/older/3804.pdf (Accessed on: December 11, 2019)

Hochreiter, S., & Schmidhuber, J. 1997. Long Short-Term Memory. Neural Computation,

9/8, 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Hong, M., & Streiter, O. 1999. Overcoming the language barriers in the Web: The UNL-

Approach. In: J. Gippert & P. Olivier (Eds.), Multilinguale Corpora. Codierung,

Strukturierung, Analyse. 11. Jahrestagung der Gesellschaft für Linguistische

Datenverarbeitung (Frankfurt, 7.-10. Juli 1999). (pp. 253–262). Prague: Enigma.

Hornik, K., Stinchcombe, M., & White, H. 1989. Multilayer feedforward networks are

universal approximators. Neural Networks, 2/5, 359–366.

Huang, P.-S., Wang, C., Huang, S., Zhou, D., & Deng, L. 2017. Towards Neural Phrase-based

Machine Translation. 6th International Conference on Learning Representations, ICLR

2018 - Conference Track Proceedings, /2016, 1–22. Retrieved from

http://arxiv.org/abs/1706.05565 (Accessed on: January 21, 2020)

Hutchins, W. J. 2004. The Georgetown-IBM Experiment Demonstrated in January 1954. In:

R. E. Frederking & K. B. Taylor (Eds.), Machine Translation: From Real Users to

Research (pp. 102–114). Washington: Springer. https://doi.org/10.1007/978-3-540-

30194-3_12

Hutchins, W. J. 2010. Machine translation : a concise history. In: C. S. Wai (Ed.), Journal of

Translation Studies (Vol. 13, pp. 29–70). Hong Kong: Chinese University of Hong

Kong.

Hutchins, W. J., & Somers, H. L. 1992. An Introduction To Machine Translation. London:

Academic Press. Retrieved from http://www.hutchinsweb.me.uk/IntroMT-TOC.htm

(Accessed on: February 19, 2019)

Jia, Y., Carl, M., & Wang, X. 2019a. How does the post-editing of neural machine translation

compare with from-scratch translation? A product and process study. Journal of

Specialised Translation, /31, 60–86.

Jia, Y., Carl, M., & Wang, X. 2019b. Post-editing neural machine translation versus phrase-

based machine translation for English–Chinese. Machine Translation, 33/1–2, 9–29.

https://doi.org/10.1007/s10590-019-09229-6

Johnson. 2017. Why translators have the blues. The Economist. Retrieved from

https://www.economist.com/books-and-arts/2017/05/27/why-translators-have-the-blues

(Accessed on: May 7, 2019)

Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu, Y., Chen, Z., … Dean, J. 2017.

Google’s Multilingual Neural Machine Translation System: Enabling Zero-Shot

Translation. Transactions of the Association for Computational Linguistics, 5, 339–351.

https://doi.org/10.1162/tacl_a_00065

154

Junczys-Dowmunt, M., Dwojak, T., & Hoang, H. 2016. Is Neural Machine Translation Ready

for Deployment? A Case Study on 30 Translation Directions. Retrieved from

http://arxiv.org/abs/1610.01108 (Accessed on: March 27, 2020)

Kaiser-Cooke, M. 1993. Machine Translation and the human Factor. Doctoral thesis,

University of Vienna.

Kenny, D., & Doherty, S. 2014. Statistical machine translation in the translation curriculum:

overcoming obstacles and empowering translators. The Interpreter and Translator

Trainer, 8/2, 276–294. https://doi.org/10.1080/1750399X.2014.936112

Klein, G., Kim, Y., Deng, Y., Senellart, J., & Rush, A. 2017. OpenNMT: Open-Source

Toolkit for Neural Machine Translation. In: Proceedings of ACL 2017, System

Demonstrations (pp. 67–72). Stroudsburg, PA, USA: Association for Computational

Linguistics. https://doi.org/10.18653/v1/P17-4012

Knight, K. 1999. Decoding complexity in word-replacement translation models.

Computational Linguistics, 25/4, 606–615. Retrieved from

https://www.aclweb.org/anthology/J99-4005 (Accessed on: January 21, 2020)

Knowles, R., Sanchez-Torron, M., & Koehn, P. 2019. A user study of neural interactive

translation prediction. Machine Translation, 33/1–2, 135–154.

https://doi.org/10.1007/s10590-019-09235-8

Koehn, P. 2010. Statistical Machine Translation. Cambridge: Cambridge University Press.

Koehn, P. 2017. Neural Machine Translation. Retrieved from http://arxiv.org/abs/1709.07809

(Accessed on: February 19, 2019)

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C. Federico, M., Bertoldi, N., Cowan, B., …

Constantin, A. Herbst, E. 2007. Moses: Open Source Toolkit for Statistical Machine

Translation. ACL. Retrieved from https://www.aclweb.org/anthology/P07-2045

(Accessed on: February 26, 2019)

Koehn, P., & Knowles, R. 2017. Six Challenges for Neural Machine Translation. In:

Proceedings of the First Workshop on Neural Machine Translation (pp. 28–39).

Stroudsburg, PA, USA: Association for Computational Linguistics.

https://doi.org/10.18653/v1/W17-3204

Koehn, P., Och, F. J., & Marcu, D. 2003. Statistical Phrase-Based Translation. Proceedings of

HLT-NAACL 2003, May-June, 48–54. Retrieved from

https://www.aclweb.org/anthology/J99-4005 (Accessed on: February 19, 2019)

Kreutzer, J., Bastings, J., & Riezler, S. 2019. Joey NMT: A Minimalist NMT Toolkit for

Novices. In: Proceedings of the 2019 Conference on Empirical Methods in Natural

Language Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP): System Demonstrations (pp. 109–114). Stroudsburg, PA,

USA: Association for Computational Linguistics. https://doi.org/10.18653/v1/D19-3019

Kudo, T., & Richardson, J. 2018. SentencePiece: A simple and language independent

subword tokenizer and detokenizer for Neural Text Processing. Retrieved from

http://arxiv.org/abs/1808.06226 (Accessed on: February 19, 2019)

Kurenkov, A. 2015. A brief history of neural nets and deep learning. Retrieved from

https://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-

learning/ (Accessed on: June 30, 2019)

155

Lindquist, H., Reiss, K., & Vermeer, H. J. 1985. Grundlegung einer allgemeinen

Translationstheorie. Language, 61/3, 737. https://doi.org/10.2307/414441

Liu, H. 2017. A Study on Translation Quality Management of Automotive Information Based

on SAE J2450 Translation Quality Metric. Doctoral thesis, University of Vienna.

Lo Presti, R. 2016. Menschliche und automatische Evaluation von Übersetzungen von

Fachtexten in Google Translate. Master’s thesis, University of Vienna.

Luong, M.-T. 2016. Neural Machine Translation - A Dissertation. Standford University.

Retrieved from https://github.com/lmthang/thesis (Accessed on: February 19, 2019)

Luong, M.-T., Brevdo, E., & Zhao, R. 2017. Neural Machine Translation (seq2seq) Tutorial.

Retrieved from https://github.com/tensorflow/nmt (Accessed on: March 24, 2020)

Luong, T., Pham, H., & Manning, C. D. 2015. Effective Approaches to Attention-based

Neural Machine Translation. In: Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing (pp. 1412–1421). Stroudsburg, PA, USA:

Association for Computational Linguistics. https://doi.org/10.18653/v1/D15-1166

Marcu, D., & Wong, W. 2002. A phrase-based, joint probability model for statistical machine

translation. In: Proceedings of the ACL-02 conference on Empirical methods in natural

language processing - EMNLP ’02 (Vol. 10, pp. 133–139). Morristown, NJ, USA:

Association for Computational Linguistics. https://doi.org/10.3115/1118693.1118711

Mariño, J. B., Banchs, R. E., Crego, J. M., de Gispert, A., Lambert, P., Fonollosa, J. A. R., &

Costa-jussà, M. R. 2006. N -gram-based Machine Translation. Computational

Linguistics, 32/4, 527–549. https://doi.org/10.1162/coli.2006.32.4.527

Martins, R. 2010. UNL About. Retrieved from

http://www.unlweb.net/unlweb/index.php?view=article&catid=54%3Aunlweb&id=58%

3Aunl&format=pdf&option=com_content (Accessed on: May 23, 2019)

Mateo, R. M. 2014. A deeper look into metrics for translation quality assessment (TQA): A

case study. Miscelánea: A Journal of English and American Studies, 49, 73–94.

McCulloch, W. S., & Pitts, W. 1943. A logical calculus of the ideas immanent in nervous

activity. The Bulletin of Mathematical Biophysics, 5/4, 115–133.

https://doi.org/10.1007/BF02478259

McGonagle, J., Alonso García, J., & Saruque, M. 2020. Feedforward Neural Networks.

Retrieved from https://brilliant.org/wiki/feedforward-neural-networks/ (Accessed on:

November 15, 2019)

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., … Wu, H. 2017.

Mixed Precision Training. 6th International Conference on Learning Representations,

ICLR 2018 - Conference Track Proceedings. Retrieved from

http://arxiv.org/abs/1710.03740 (Accessed on: March 31, 2020)

Moorkens, J. 2018. What to expect from Neural Machine Translation: a practical in-class

translation evaluation exercise. The Interpreter and Translator Trainer, 12/4, 375–387.

https://doi.org/10.1080/1750399X.2018.1501639

Moreda, P., Suárez, A., Lloret, E., Saquete, E., & Moreno, I. 2018. From sentences to

documents: Extending abstract meaning representation for understanding documents.

Procesamiento de Lenguaje Natural, 60, 61–68. https://doi.org/10.26342/2018-60-7

156

Nagao, M. 2003. A Framework of a Mechanical Translation between Japanese and English by

Analogy Principle. In: Readings in Machine Translation. The MIT Press.

https://doi.org/10.7551/mitpress/5779.003.0038

Ney, H., J. Och, F., & Vogel, S. 2000. Statistical Translation Of Spoken Dialogues In The

Verbmobil System. Retrieved from

https://www.researchgate.net/publication/2440700_Statistical_Translation_Of_Spoken_

Dialogues_In_The_Verbmobil_System (Accessed on: February 26, 2019)

Nicholson, C. 2019. A Beginner’s Guide to LSTMs and Recurrent Neural Networks.

Retrieved from https://pathmind.com/wiki/lstm#recurrent (Accessed on: January 13,

2020)

Och, F. J., & Ney, H. 2000. Improved statistical alignment models. In: Proceedings of the

38th Annual Meeting on Association for Computational Linguistics - ACL ’00 (pp. 440–

447). Morristown, NJ, USA: Association for Computational Linguistics.

https://doi.org/10.3115/1075218.1075274

Och, F. J., & Ney, H. 2003. A Systematic Comparison of Various Statistical Alignment

Models. Computational Linguistics, 29/1, 19–51.

https://doi.org/10.1162/089120103321337421

Okuda, M. 2015. Description matters of the specification [Blog post]. Retrieved from

https://www.interbooks.co.jp/column/jpatent/20150219/ (Accessed on: February 11,

2020)

Papineni, K., Roukos, S., Ward, T., & Zhu, W. 2001. BLEU: a method for automatic

evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on

Association for Computational Linguistics - ACL ’02 (p. 311). Morristown, NJ, USA:

Association for Computational Linguistics. https://doi.org/10.3115/1073083.1073135

Patent JP05088550A. 1993. Japan: MURATA MACH LTD.

Patent JP08062939A. 1996. Japan: Fuji Xerox Co., Ltd.

Peris, Á., & Casacuberta, F. 2018. NMT-Keras: a Very Flexible Toolkit with a Focus on

Interactive NMT and Online Learning. The Prague Bulletin of Mathematical Linguistics,

111/1, 113–124. https://doi.org/10.2478/pralin-2018-0010

Peris, Á., Cebrián, L., & Casacuberta, F. 2017. Online Learning for Neural Machine

Translation Post-editing, 1–12. Retrieved from http://arxiv.org/abs/1706.03196

Peris, Á., Domingo, M., & Casacuberta, F. 2017. Interactive neural machine translation.

Computer Speech & Language, 45, 201–220. https://doi.org/10.1016/j.csl.2016.12.003

Popa, L. 2008. Machine translation: A survey. Professional Communication and Translation

Studies, 151–158.

Popel, M., & Bojar, O. 2018. Training Tips for the Transformer Model. The Prague Bulletin

of Mathematical Linguistics, 110/1, 43–70. https://doi.org/10.2478/pralin-2018-0002

Pouget-Abadie, J., Bahdanau, D., van Merrienboer, B., Cho, K., & Bengio, Y. 2014.

Overcoming the Curse of Sentence Length for Neural Machine Translation using

Automatic Segmentation. In: Proceedings of SSST-8, Eighth Workshop on Syntax,

Semantics and Structure in Statistical Translation (pp. 78–85). Stroudsburg, PA, USA:

Association for Computational Linguistics. https://doi.org/10.3115/v1/W14-4009

157

Quirk, C., & Menezes, A. 2006. Do We Need Phrases? Challenging The Conventional

Wisdom In Statistical Machine Translation. In: Proceedings of the Human Language

Technology Conference of the NAACL, Main Conference (Proceeding, pp. 9–16).

ACL/SIGPARSE. Retrieved from https://www.microsoft.com/en-

us/research/publication/do-we-need-phrases-challenging-the-conventional-wisdom-in-

statistical-machine-translation/ (Accessed on: November 27, 2019)

Ripplinger, M. C. 2020. Is this the end of the era of human translation? Thoughts of a human

translator at this curious time. In: M. En (Ed.), Truths, trust and translation (to be

released in 2020). Peter Lang.

Rosenblatt, F. 1958. The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, 65/6, 386–408.

https://doi.org/10.1037/h0042519

Ross, A. 2016. The Language Barrier Is About to Fall. The Wall Street Journal. Retrieved

from https://www.wsj.com/articles/the-language-barrier-is-about-to-fall-1454077968

(Accessed on: May 7, 2020)

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. 1986. Learning representations by back-

propagating errors. Nature, 323/6088, 533–536. https://doi.org/10.1038/323533a0

Sánchez-Gijón, P., Moorkens, J., & Way, A. 2019. Post-editing neural machine translation

versus translation memory segments. Machine Translation, 33/1–2, 31–59.

https://doi.org/10.1007/s10590-019-09232-x

Sennrich, R., Haddow, B., & Birch, A. 2016. Neural Machine Translation of Rare Words with

Subword Units. In: Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers) (pp. 1715–1725). Stroudsburg, PA,

USA: Association for Computational Linguistics. https://doi.org/10.18653/v1/P16-1162

Serrano, L. 2016. Linear Regression Answer [Video]. Udacity. Retrieved from

https://www.youtube.com/watch?v=L5QBqYDNJn0 (Accessed on: September 3, 2019)

Sokolov, A. 2015. Noisy Channel model Phrase-based SMT. Retrieved from

https://www.cl.uni-heidelberg.de/courses/ss15/smt/scribe4.pdf (Accessed on: April 3,

2019)

Sutskever, I., Vinyals, O., & Le, Q. V. 2014. Sequence to Sequence Learning with Neural

Networks. CoRR, abs/1409.3/January, 3104–3112. Retrieved from

http://arxiv.org/abs/1409.3215 (Accessed on: May 25, 2019)

Tyers, F. M. 2013. Feasible lexical selection for rule-based machine translation/Selecció

lèxica factible per a la traducció automàtica basada en regles. Universidad de Alicante.

Retrieved from

https://rua.ua.es/dspace/bitstream/10045/35848/1/thesis_FrancisMTyers.pdf (Accessed

on: February 19, 2019)

Uchiyama, M., & Isahara, H. 2007. A Japanese-English patent parallel corpus. In:

Proceedings of MT summit XI.

Van Bui, V., Tran, T. T., Nguyen, N. B. T., Pham, T. D., Le, A. N., & Le, C. A. 2015.

Improving Word Alignment Through Morphological Analysis. In: Integrated

Uncertainty in Knowledge Modelling and Decision Making (pp. 315–325).

https://doi.org/10.1007/978-3-319-25135-6_30

158

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … Polosukhin,

I. 2017. Attention Is All You Need. Retrieved from http://arxiv.org/abs/1706.03762

(Accessed on: February 19, 2019)

Weaver, W. 1949. Translation [Weaver Letter]. Retrieved from http://www.mt-

archive.info/Weaver-1949.pdf (Accessed on: February 20, 2019)

Widrow, B. 1960. Adaptive “adaline” Neuron Using Chemical “memistors.”. Stanford:

Stanford University.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., … Dean, J. 2016.

Google’s Neural Machine Translation System: Bridging the Gap between Human and

Machine Translation, 1–23. Retrieved from http://arxiv.org/abs/1609.08144 (Accessed

on: February 19, 2019)

Yan, X., & Su, X. G. 2009. Linear Regression Analysis. World Scientific.

https://doi.org/10.1142/6986

Zhu, J., Xia, Y., Wu, L., He, D., Qin, T., Zhou, W., … Liu, T.-Y. 2020. Incorporating BERT

into Neural Machine Translation, 1–16. Retrieved from http://arxiv.org/abs/2002.06823

(Accessed on: May 4, 2019)

159

I. Appendix I: SAE J2450 evaluation

According to the expanded SAE J2450 by Hui Liu (Liu 2017), there are 9 different error types,

However, especially important for evaluating neural machine translation, I would like to specify

another error-type: The “arbitrary addition” (AD). This will be added as a 10th error type to the

evaluation metric and treated similarly to an omission (OM). The error definitions are as

follows:

❖ Wrong term (WT):

1) a term that denotes a concept in the TL which is obviously different from the concept

denoted by the SL term

2) a term that is not consistent with other translations of the SL term in the same document

or type of document only when the context for the source language term can justify the

use of a different target language term (e.g. due to ambiguity of the source language

term)

3) a term that is in clear conflict with the present standard translation(s) of the SL term in

the automotive field

4) a term that is in violation with a client term glossary

❖ Syntactic error (SE):

1) the target language words are correct, but the linear order based on the syntactic rules

of TL is wrong

2) the TT contains an incorrect phrase structure

3) a source term which is assigned a wrong part of speech in its TL counterpart

❖ Omission (OM):

1) a graphic with ST has been removed from the TL deliverable

2) a continuous block of text in SL which has no counterpart in TL text and therefore the

semantics of ST is lost in the translation

▪ At the same time, it is noteworthy that omission does not mean that the source and

target language words should be in correspondence.

❖ Word structure or agreement error (SA):

1) an error of incorrect word structure occurred if an otherwise correct target language

word (or term) is expressed in an incorrect morphological form (e.g. tense, case, number,

gender, prefix, suffix, infix or any other inflections)

2) a mistake related with agreement, which occurred when two or more TL words disagree

in any form of inflection as would be required according to the grammatical rules of that

language.

❖ Misspelling (SP):

1) a term in the TL violates the spelling as already stated in a client glossary

2) a term in the TL violates the accepted norms of spelling in the TL

3) a term in the TL is written in an incorrect or inappropriate writing system for the TL

160

❖ Punctuation (PE):

1) the TL text contains an error according to the punctuation rules of that language

2) Missing decimal points or commas are also regarded as punctuation errors

❖ Miscellaneous error (ME):

1) a linguistic error related to the TL text but cannot be clearly attributed to any other error

categories

❖ Wrong Meaning (WM):

1) the meaning of TT varies greatly from that of ST.

❖ Wrong Style (WS):

1) there is a deviation or violation from the Style guide required in TT

2) phraseology of TT is not idiomatic

3) the construction of sentences is cumbersome or clumsy

4) the translation is only a literal one.

❖ Arbitrary Addition (AD):

1) An incorrect and/or arbitrary term is added in the TT, which changes the meaning of the

ST

2) An assumption is made about word relations within the TT sentence, that is not

explicitly specified by the ST and may be wrong

Different error types are weighted differently depending on severity of the error. Weights for

the ten error categories are:

• 5 (a serious error) or 2 (a minor error) for a wrong term (WT)

• 4 (a serious error) or 2 (a minor error) for a syntactic error (SE)

• 4 (a serious error) or 2 (a minor error) for an omission (OM)

• 4 (a serious error) or 2 (a minor error) for an incorrect addition (AD)

• 4 (a serious error) or 2 (a minor error) for a word structure or agreement error (SA)

• 3 (a serious error) or 1 (a minor error) for a misspelling (SP)

• 2 (a serious error) or 1 (a minor error) for a punctuation error (PE)

• 3 (a serious error) or 1 (a minor error) for a miscellaneous error (ME)

• 5 (a serious error) or 2 (a minor error) for wrong meaning (WM)

• No scores are given to style errors, as they are often argued to be very subjective (WS)

The overall weighted document score (OWDS) is calculated as the total weighted score divided

by the number of words of all tested sentences. As per convention, each character is counted as

a word in Japanese. The error count for the mixed-domain, optics and all sentences combined

is shown in Table 18, Table 19 and Table 20 respectively.

161

Table 18: Extended SAE J2450 based quantitative evaluation of mixed-domain sentences in Section 7.6.2

 WT SE OM AD SA SP PE ME WM WS

Total

Score OWDS

Weights (Serious/

Minor) 5 2 4 2 4 2 4 2 4 2 3 1 2 1 3 1 5 2 0 0

 Number of Errors for Each Category Words: 196

TT 1 2 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 16 0.03782506

ntc7 0 1 0 0 0 1 2 0 0 0 0 0 0 0 0 1 1 1 0 2 20 0.04728132

ntc7 120k 1 1 0 0 0 1 2 0 0 0 0 0 0 0 0 1 1 1 0 2 25 0.05910165

ntc768k 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 4 0 1 0 1 14 0.03309693

ntc768k 80k 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 11 0.02600473

ntc7o 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 7 0.01654846

ntc7o 80k 0 4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 2 16 0.03309693

ntc7wo 0 2 1 0 0 1 1 0 0 0 0 0 0 0 0 3 0 2 0 1 21 0.04964539

ntc7wo68k 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 2 0 1 17 0.04018913

ntc7wo68k 90k 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 11 0.02600473

Table 19: Extended SAE J2450 based quantitative evaluation of optics sentences in Section 7.6.2

 WT SE OM AD SA SP PE ME WM WS

Total

Score OWDS

Weights (Serious/

Minor) 5 2 4 2 4 2 4 2 4 2 3 1 2 1 3 1 5 2 0 0

 Number of Errors for Each Category Words: 227

TT 0 0 0 2 0 1 0 1 0 3 0 0 0 0 0 0 0 0 0 2 14 0.06167401

ntc7 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.00881057

ntc7 120k 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0.03964758

ntc768k 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0.02202643

ntc768k 80k 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.00881057

ntc7o 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 0.01762115

ntc7o 80k 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 13 0.04405286

ntc7wo 2 1 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 20 0.08810573

ntc7wo68k 1 1 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 15 0.0660793

ntc7wo68k 90k 1 1 0 3 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 16 0.07048458

Table 20: Extended SAE J2450 based quantitative evaluation of all test sentences in Section 7.6.2.

 WT SE OM AD SA SP PE ME WM WS

Weighted

Score OWDS

Weights (Serious/

Minor) 5 2 4 2 4 2 4 2 4 2 3 1 2 1 3 1 5 2 0 0

 Number of Errors for Each Category Words: 423

TT 1 2 0 2 0 1 1 1 0 3 0 0 0 0 0 1 0 1 0 2 30 0.07092199

ntc7 0 1 0 0 0 2 2 0 0 0 0 0 0 0 0 1 1 1 0 2 22 0.05200946

ntc7 120k 2 2 0 0 0 2 2 0 0 0 0 0 0 0 0 1 1 1 0 2 34 0.08037825

ntc768k 1 2 0 0 0 0 1 0 0 0 0 0 0 0 0 4 0 1 0 1 19 0.04491726

ntc768k 80k 0 2 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 13 0.03073286

ntc7o 0 4 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 2 11 0.02600473

ntc7o 80k 0 5 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 2 0 2 29 0.05673759

ntc7wo 2 3 1 3 0 2 1 0 0 0 0 0 0 0 0 3 0 2 1 1 41 0.09692671

ntc7wo68k 1 2 1 3 0 1 1 1 0 0 0 0 0 0 0 1 0 2 0 1 32 0.07565012

ntc7wo68k 90k 1 2 0 3 0 1 1 1 0 0 0 0 0 0 0 2 0 1 0 0 27 0.06382979

162

II. Appendix II: Code and scripts used in this thesis

For the convenience of the reader, this appendix provides all of the larger scripts used by the

author in this thesis. They may be used as is or taken as inspiration for how to tackle similar

problems when preparing data for model training.

Scrip1: Bash-script for file selection through the find command and subsequent code page

conversion with convert_encoding.py

#!/bin/bash

find ./1993A -type f -name "*.txt" -exec \

python2 convert_encoding.py -r -o \#.utf8 -f euc_jp -t utf_8 {} +

Script 2: Python-script for splitting text into separate output files (split occurs at “|||”)

#!/usr/bin/python

import sys

with open(sys.argv[1], encoding=”utf8”) as f:

 columns = zip(*(l.split("|||") for l in f))

langs = (‘SSR’, ‘DOCID’, ‘TID’, ‘jp’, ‘en’)

for lang, data in zip(langs, columns):

 with open(‘output.’ + lang, ‘w’, encoding=’utf8’) as f:

 f.writelines(line.strip(“\n”) + ‘\n’ for line in data)

163

Script 3: Bash-script for tokenization of EN and JP text using Moses and MeCab

#!/bin/bash

Select working Folder, Dataset, Variant and Languages here

workdir="$(pwd)"

dataset="ntc7"

variant=""

src="jp"

tgt="en"

English / Latin language tokenization

for l in en; do for f in $dataset$variant/*.$l; \

do perl tools/tokenizer.perl -a -no-escape -l $l -q < $f > $f.tk; done; done

Japanese tokenization

for l in jp; do for f in $dataset$variant/*.$l; \

do mecab -O wakati -o $f.tk $f; done; done

Script 4: Python-script to extract the absolute path of files that contain domain classifier

#!/usr/bin/python

import glob

#Define Domains

domains = ('G01', 'G02', 'G03','G06')

#Search for Domains and extract absolute path of file to outputfile

outputfile = "step1out.txt"

with open(outputfile,'w') as f:

 for filename in glob.iglob('./' + '**/*.TXT', recursive=True):

 if any(x in open(filename, encoding='utf-8').read() for x in domains):

 print (filename, file=f)

164

Script 5: Python-script for creating an id-list from “training-ids.txt” and Script 4 output

#!/usr/bin/python

#Pathlist to find ID

paths = [line.rstrip("\n") for line in open("step1out.txt")]

#Remove "./" from paths

spath = [s.strip("./") for s in paths]

outputfile = "step2out.txt"

with open(outputfile,'w') as f:

 for line in open("other/ntc8-patmt-train/ntc7/train/training-ids.txt"):

 if any(x in line for x in spath):

 print(line, end='', file=f)

Script 6: Python-script for only keeping DOCID before the first space on each line

#!/usr/bin/python

#Keep only DOCIDs before first space

l = []

outputfile = "idlist.txt"

with open(outputfile,'w') as f:

 for line in open("IDs-Optics.txt"):

 if line.strip():

 l.append(line.split()[0][1:])

 l = '\n'.join(l)

 print(l, file=f)

Script 7: Bash-script for creating list to randomly delete lines from parallel sentence files

#!/bin/bash

filename=inputfile.txt

number=429186

line_count="$(wc -l < "$filename")"

line_nums_to_delete="$(shuf -i "1-$line_count" -n $number)"

printf '%d\n' $line_nums_to_delete > delete.lines

165

Abstract

This work strives to be an easy to understand overview of how the current state-of-the-art in

machine translation (MT), neural machine translation (NMT), works. Using the example of

patent translation, the thesis aims to both demystify the terms “AI” and “deep-learning”, that

are often associated with NMT, and aims to provide an accessible guide for translators and

Translation Studies scholars to work with, create and understand their own NMT models.

A theoretical foundation to MT is provided on which the work presents the creation and

evaluation of five Transformer NMT models to determine the impact of data selection before

model training. For this purpose, the five models were trained on five different patent datasets

sorted by domain using the International Patent Classification: A mixed dataset, an optics

dataset, a dataset containing all domains but optics and two smaller versions of the mixed and

optics-free dataset.

It was found that the network’s performance varied noticeably depending on how much

and which data was used for training. While the common conception that more data equals

better results held true in the automatic evaluation, it was shown that the domain specific

training can help with improving results in the human evaluation, even when using less data. In

fact, a large discrepancy between the automatic evaluation (BLEU metric) and the human

evaluation (extended SAE J2450 metric) could be observed, with the worst performing model

in the automatic metric having the best results in the human evaluation. The analysis of the

NMT output with reference to the source text also highlights several issues that post-editors

would have to contend with when post-editing NMT generated texts.

166

Abstract auf Deutsch

Diese Arbeit soll einen leicht verständlichen Überblick darüber geben, wie maschinelle

Übersetzung (MT) und insbesondere die neuronale maschinelle Übersetzung (NMT)

funktioniert. Am Beispiel der Patentübersetzung soll die Arbeit sowohl die Begriffe „KI“ als

auch „Deep Learning“, die häufig mit NMT assoziiert werden, entmystifizieren und einen

zugänglichen Leitfaden für ÜbersetzerInnen und ÜbersetzungswissenschaftlerInnen

bereitstellen, mit dem sie ihre eigenen NMT-Modell erstellen können, diese verstehen und

damit arbeiten können.

Es wird eine theoretische Grundlage für MT bereitgestellt, auf Basis derer die Erstellung

und Bewertung von fünf Transformer NMT-Modellen vorgestellt wird, um die Auswirkung der

Datenauswahl vor dem Modelltraining zu bestimmen. Zu diesem Zweck wurden die fünf

Modelle auf fünf verschiedene Patentdatensätze trainiert, die über die Internationale Patent

Klassifizierung nach Domänen sortiert wurden: Ein gemischter Datensatz, ein Optikdatensatz,

ein Datensatz, der alle Domänen außer Optik enthält, und zwei kleinere Versionen des

gemischten und optikfreien Datensatzes.

Es wurde festgestellt, dass die Leistung des Netzwerks je nachdem, wie viel und welche

Daten für das Training verwendet wurden, erheblich schwankte. Während die gängige

Auffassung, dass mehr Daten zu besseren Ergebnissen führen, bei der automatischen

Auswertung zutrifft, wurde gezeigt, dass das domänenspezifische Training dazu beitragen kann,

die Ergebnisse bei der menschlichen Auswertung zu verbessern, selbst wenn weniger Daten

verwendet werden. Tatsächlich konnte eine große Diskrepanz zwischen der automatischen

Bewertung (BLEU-Metrik) und der menschlichen Bewertung (erweiterte SAE J2450-Metrik)

beobachtet werden, wobei das Modell mit der schlechtesten Leistung in der automatischen

Metrik die besten Ergebnisse bei der menschlichen Bewertung erzielte. Die Analyse des NMT

Outputs unter Bezugnahme auf den Quelltext hebt auch einige der Probleme hervor, mit denen

sich Post-EditorInnen bei der Nachbearbeitung von NMT-generierten Texten

auseinandersetzen werden müssen.

