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ABSTRACT

With the rise of machine learning in quantum chemistry, many exciting opportuni-
ties have emerged to advance the research field of photochemistry. However, the
high complexity and computational efforts associated with a description of coupled
electrons and nuclei complicate an application of machine learning techniques, such
that this research field remained mainly untouched until the beginning of this work.
The main goal of this thesis is to employ machine learning in the simulation of
photodynamics. To this aim, machine learning models are developed to describe a
manifold of molecular excited-state potentials of different spin multiplicities, their
derivatives, and couplings thereof. Central to this thesis is the identification of key
obstacles in applying efficient, yet accurate machine learning for photodynamics
and overcoming the following hurdles: (1) Excited-state properties carry an arbi-
trary sign that prohibits a meaningful fitting. These properties can be rendered
learnable with a so-called phase correction algorithm developed in this work. As an
alternative, a machine-learning intrinsic solution is implemented in a new approach
called SchNarc. (2) Couplings between electronic states are often missing in quantum
chemistry codes. Therefore, approximations based on machine-learned potentials
are provided. (3) Due to the lack of machine learning studies on this topic, many
open questions remain on how to best treat excited states. Thus, various models and
molecular representations are compared. (4) A cost-effective training set generation
is required that still allows for a desired accuracy. In order to meet this require-
ment, an existing efficient scheme for the ground state is adapted for the excited
states. The performance of all these novel strategies and methods is investigated
using several small molecules. One big achievement of this work is to enable long
time scale photodynamics with neural networks for the methylenimmonium cation.
The complex photochemistry of the amino acid tyrosine illustrates the challenges
machine learning models still need to overcome, but demonstrates the scopes and
possibilities of machine learning for excited electronic states of molecules.
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ZUSAMMENFASSUNG

Durch das Aufeinandertreffen der künstlichen Intelligenz und Quantenchemie haben
sich eine Vielzahl neuer Wege eröffnet, von denen besonders das Forschungsgebiet
der Photochemie profitieren kann. Das Zusammenspiel von Licht, Elektronen und
Atomkernen ist jedoch so komplex, dass der hohe Rechenaufwand der mit einer
akkuraten Beschreibung verbunden ist, dazu führte, dass dieses Forschungsgebiet
bis zu Beginn dieser Arbeit von maschinellem Lernen weitgehend unberührt blieb.
Das grundlegende Ziel dieser Arbeit ist es daher, die Techniken des maschinellen
Lernens für Photodynamiksimulationen anzuwenden und weiterzuentwickeln, um
eine Vielzahl von molekularen elektronischen Zuständen unterschiedlicher Spin-
multiplizitäten, deren Ableitungen und Kopplungen zu beschreiben. Im Mittelpunkt
dieser Arbeit steht die Identifizierung der Hauptprobleme, die einer Realisierung
von effizienten Modellen des maschinellen Lernens für die molekulare Photochemie
im Weg stehen, sowie deren überwindung: (1) Eigenschaften, die sich durch die
Wechselwirkung unterschiedlicher elektronischer Zustände ergeben, sind durch ein
willkürliches Vorzeichen gekennzeichnet, das eine sinnvolle, direkte Anwendung
von maschinellen Lerntechniken verhindert. Die Willkür bei Vorzeichen kann mit
einem in dieser Arbeit entwickelten Phasenkorrektur-Algorithmus beseitigt werden.
Als Alternative dazu ist eine modell-intrinsische Lösung in einem neuen Ansatz
namens SchNarc implementiert. (2) Viele quantenchemische Programme können
keine Kopplungen zwischen elektronischen Zuständen berechnen. Daher werden
Näherungen auf Basis maschinell gelernter Potentiale bereitgestellt. (3) Aufgrund
der fehlenden Studien zur Beschreiben der Photochemie mit maschinellem Lernen,
bleiben viele Fragen offen, unter anderem, welche Algorithmen und molekularen
Repräsentationen für angeregte Zustände am besten geeignet sind. Aus diesemGrund
werden mehrere solche Modell des maschinellen Lernens verglichen. (4) Aufgrund
des hohen Rechenaufwands quantenchemischer Methoden wird eine kostengünstige
Trainingssatzgenerierung benötigt. Daher wird ein effizienter Algorithmus für den
elektronischen Grundzustand für die Photochemie erweitert. Die Möglichkeiten
und Präzision all dieser neuartigen Strategien und Methoden wird anhand kleiner
Moleküle untersucht. Lange Photodynamiksimulationen werden mit neuronale Net-
zen für das Methylenimmonium-Kation ermöglicht. Die komplexe Photochemie der
Aminosäure Tyrosin fasst die Herausforderungen für Methoden des maschinellen
Lernens zusammen und demonstriert dessen Möglichkeiten, angeregte elektronische
Zustände von Molekülen zu beschreiben.
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I N TRODUCT ION 1
The research field of photochemistry focuses on reactions that are inherently associ-
ated with light. Since light is ubiquitous, it is not surprising that many processes that
are fundamental to nature and the life we know are related to reactions triggered
by light or are a direct consequence thereof.1;2 The most obvious example is pho-
tosynthesis, one of the most powerful reactions in nature, which enables plants to
convert the greenhouse gas carbon dioxide into sugar molecules and oxygen.3–5 The
ability to harness light energy, which is central to photosynthesis, can be mimicked
by nanoparticles or thin films of noble metals, such as gold or silver.6 The subsequent
transfer of energy to attached molecules at their interface has been identified as
extremely useful for photocatalysis7–9 or assays and sensor recognition.10 Other
examples of light-induced reactions are the development of skin cancer due to the
photodamage of the genetic material of our body, namely our DNA,11–14 the ultrafast,
radiationless reactions that enable us to see.15;16 or the reactions that provide the
photostability of amino acids that give rise to the multifaceted photochemistry of
proteins and peptides.17–19

These few examples already indicate that photochemistry of molecules and ma-
terials surrounds us almost everywhere and almost anytime. The knowledge of
photochemical processes that take place in our close environment and our body is
therefore extremely important to understand basic concepts of nature and life. For
example, being able to understand what triggers harmful reactions in molecules that
can lead to serious diseases such as skin cancer11;12;14;20 or cataracts20–22 can help us
to find ways to prevent such reactions from happening. In the case of skin cancer, a
concrete example is the search for better and more effective sun screens to protect our
skin from UV irradiation.23;24 In addition, the investigation of light-induced reactions
can foster the exploration of the relationships between the structure of a system
and its photochemical properties. Very early on, structure-property correlations
have been identified as very powerful to guide the creation of new compounds with
tailored properties.25;26 A design of novel molecules and materials can be of high
value for phototherapy,27 photocatalysis28 or photovoltaic devices.29;30

As diverse as the aforementioned processes might seem, as many things they
have in common: They are all governed by a manifold of excited states that become
accessible after enough energy is provided. Obviously, in the case of photochemical
reactions, the energy source is light. The basic requirement for any photo-initiated
reaction to happen is therefore the ability of a compound to absorb light and to enter
a higher electronic state, i.e., to allow for a transition from the ground state potential
energy hypersurface (PES) to an excited-state PES. The PESs are functions of nuclear
coordinates with local minima and intersections of different PESs. The dimension of
one such PES is 3𝑁 − 6, with 𝑁 referring to the number of nuclei in a system. Hence,
the larger the system under investigation, the higher dimensional and more complex
the PESs become.2;26

A dilemma arises, when the mechanistic details of light-driven reactions that
take place in realistic systems are the focus of a study. Dependent on the type of
system under investigation, at least several thousands to millions of atoms have to
be considered.31;32 The problem becomes clearer, when taking a look at our body.
Our skin as well as our eyes are primary targets of environmental stress, such as
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sunlight. One of the functions of our skin is therefore to protect our body from
photodamage and other harmful reactions, while our eyes have the main function
to enable our vision.21;33 The investigation of the underlying processes that lead
to the photostability of our cells and tissues is not a trivial task as both, our skin
and our eyes, are highly complex organizations. Only an approximate picture of
the response of our skin to certain stimuli can be obtained with experiments, such
as imaging techniques like confocal laser scanning microscopy34 or fluorescence
resonance energy transfer.35 The UV absorption can be measured for instance with
laser optoacoustics36 in vivo or via UV/visible spectroscopy ex vivo.37 In case of our
eyes, spectral sensitivity measurements can provide information on their response
to light.38 However, many experimentally probed spectra require expert knowledge
to allow for a profound interpretation and analysis of the underlying electronic
mechanistic details is difficult. Theoretical investigations can help to interpret results,
but the large size and complexity of realistic systems make the investigation of their
light-induced reactions on a molecular level not only challenging, but in most cases
not practicable, if not even impossible.26;39 In order to get an idea of what leads to
photodamage and photostability, it is therefore inevitable to take a closer look at the
composition of a system and to find smaller building blocks, i.e., chromophores, that
can be considered as the starting points of light-induced reactions.1;36;40–45
Getting back to the example of our skin, several such building blocks that can

absorb light, exist. As our skin is made up of tissue, that itself is made up of cells, it
contains not only a large amount of water and ions, but comprises several macro-
molecules. These macro-molecules are mainly carbohydrates, lipids, nucleic acids
and proteins that all can absorb UV or visible light and thus play a role in the
photochemistry of our skin.33;37 Not much is known about the exact processes
underlying the photo-initiated reactions, but what seems to be clear up to date is that
ultrafast transitions occurring in the chromophores of such systems can potentially
prevent photodamage and provide -stability.36;41–44

Especially proteins are potential targets of light as they make up about 68% of
the dry weight of our cells and tissues and are important components of our skin
and our eyes. For instance, a cis-trans isomerization of the chromophore retinal
of the protein rhodopsin is fundamental for our vision.15;45 Moreover, the amino
acids phenylalanine, histidine, tryptophane and tyrosine can provide the starting
points of photochemical reactions that take place in peptides and proteins. Their
photochemistry is mainly governed by their ability to transform absorbed UV light
into vibrational energy on an ultrashort time scale, usually in the range of femto- (fs)
to picoseconds (ps). These ultrafast radiationless transitions are assumed to provide
the photostability of these building blocks. If photodamage nevertheless occurs
and photoionization or radiative reactions cannot be quenched efficiently, harmful
reactions that can lead to the unfolding, aggregation or inactivation of enzymes and
peptides are reported. A loss of their function is the consequence, which is related to
the alteration of our skin as well as blindness due to cataracts.21;31;44;46;47
Experimentally, pump-probe experiments, transient absorption or photoioniza-

tion spectroscopy along with ultrafast electron diffraction are powerful techniques
to study their light-driven bond cleavage or the lifetime of their electronic excita-
tions.13;20;42;48–53 However, the mechanistic details of most experimental observations
are obscured by themeasured ensemble averages.54 No clear picture on the key events
that lead to photodamage or -stability can be obtained.

The picture can be completed with theoretical simulations that have the potential
to shed light on the missing details underlying light-driven reactions.26 For exam-
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ple, the theoretical simulation of UV spectra as probed by experiments can unveil
the relevant states that lead to light absorption.55–63 As the photochemistry that
surrounds us usually concerns the changes a system undergoes, excited-state molec-
ular dynamics (MD) simulations are particularly well suited to study the temporal
evolution of a system after light excitation.14;54;64–71 They can be used to explore
the high-dimensional PESs that become accessible via light absorption or to locate
relevant structures that lead to ultrafast transitions in molecules. Comprehensive
sampling of varying reaction conditions, such as starting geometries, from which
the excitation takes place, can provide a qualitative picture of reaction kinetics, reac-
tion probabilities and the accessibility of different reaction channels of a system.72
Research questions that can be tackled are for example which reactions take place as
a consequence of light excitation and with which probability do they occur? What
geometrical features are important for photostability and what triggers harmful
reactions? The qualitative results can be compared to experiments and together, a
far more comprehensive picture can be obtained.1;2;13;26;31;44;73

As the previous discussion makes clear, a complementary theoretical investigation
of experimental observables is important to provide a better understanding and
a prediction of the photostability and damage of molecules. Unfortunately, both,
experimental techniques and theoretical simulations, share the characteristic of be-
ing extremely expensive.39 While experiments require elaborate and costly setups,
theoretical simulations require high-performance computing facilities. In case of MD
simulations the large number of sequential calculations that is required to study the
temporal evolution of a system makes this process expensive from a computational
point of view. The high associated effort seriously hampers the application of con-
ventional excited-state dynamics simulation methods to long time and large length
scales. When treating all degrees of freedom of a system in the most exact way, i.e.,
exact quantum dynamics combined with high-level electronic structure calculations
of a molecular system, photodynamics studies have so far been limited to systems
containing less than 5 atoms.26;74–76

In order to allow for the simulation of systems comprisingmore degrees of freedom,
approximations become inevitable. The most fundamental approximation under-
lying almost all existing electronic structure programs is the Born-Oppenheimer
approximation, which allows a separation of the nuclear and the electronic degrees
of freedom. Another approximation that is important when larger systems are tar-
geted is the neglect of quantum effects in the nuclear motion of molecules. This
approximation led to the development of so-called mixed quantum-classical (MQC)
MD simulation techniques. As the nuclei are assumed to move classically on the
PESs made up by the electrons, MQC methods are capable of describing systems with
up to several 100s of degrees of freedom. Still, they can retain some quantum effects.
For example, nonadiabatic transitions are allowed between different PESs.1;2;26;72
With these approximations applied, simulation times of several ps become accessible
with ab initio accuracy. It should be kept in mind that the classical evaluation of the
nuclear motion then requires statistical averaging over many reaction events.1;2;26

Nevertheless, even with the approximations applied in MQC photodynamics
simulation techniques, the theoretical investigation of systems at experimentally
relevant time (in the range of nano- (ns) to milliseconds (ms)) and length scales (in
the range of thousands to millions of atoms) is beyond the realms of possibility.31;39;44
The limitation to much shorter length and time scales is a consequence of the
rapidly growing computational efforts of quantum chemical calculations with the
number of degrees of freedom of a system. The number of relevant electronic states
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additionally complicates the computation and increases computational costs.1 Even
the dynamics simulation of one single amino acid in the gas phase is not feasible
with conventional approaches at experimentally relevant time scales, let alone the
inclusion of any environmental effects. Even with massively parallel computations,
a MQC photodynamics simulation with ab initio accuracy for one ns would require
at least several years of computation.77

As things stand now, the aforementioned limitations of existing MQC photody-
namics simulations and the nonlinearly increasing computational costs with the
complexity and size of a system under investigation prohibit a viable application
of MQC simulations to realistic time and length scales. Not only environmental
effects are neglected, also a lot of approximations are applied. Only a small glimpse
of reality can be obtained with the existing techniques and computer power available.
One research field that might be able to push the boundaries of existing simulation
techniques and enable photochemical simulations of larger molecular systems on
longer time scales is machine learning (ML). ML belongs to the larger research field of
artificial intelligence and offers the possibility to learn from a massive amount of data,
which is far too complex to be analyzed with typical human reasoning.78;79 Without
knowing the underlying physics of data, ML models have the potential to explore
underlying patterns and fit highly complex relationships of given data.80–83 Due to
the growing availability of computer power and efficient algorithms, ML has gained
increasing popularity among various research fields. The powerful combination of
efficient ML models with huge amounts of data is even considered to be the fourth
big paradigm of science.84

Already more than 25 years ago, ML has entered the research field of quantum
chemistry, 85;86 but early studies were restricted to model the electronic ground state
of a molecular system.87 Therefore, many novel methods in the research field of ML
for quantum chemistry target the electronic ground state of molecular or material
systems. Up to date, ML has proven very powerful to advance quantum chemistry
for the electronic ground state in the most diverse ways.81;88;89 For example, ML
models exist that make the computation of the solution of the electronic Schrödinger
equation more efficient, by e.g. providing an ML approximation to the molecular
wavefunction, either in a molecular orbital90;91 or spin-state basis92;93, on a grid94

or within a Monte-Carlo approach.95–97 Solving the Schrödinger equation can also
be skipped by directly fitting PESs of molecules and materials to provide ML-based
force fields for energies and dipole moments.81;90;98–137 ML-fitted functions that
relate structures to certain properties further enable the search for new compounds
throughout chemical compound space.28;111;138–141

In contrast to the exciting opportunities ML models offer for simulations in the
electronic ground state, the benefits that ML models can offer for simulations in the
electronically excited states are still mostly unexplored. Some early attempts exist and
involve (modified) Shepard interpolation 142 for grid-based quantum dynamics simu-
lations, least squares fitting of excited-state PESs143, and artificial neural networks
(NNs)144;145 for MQC simulations. Besides these few seminal works, not much effort
had previously been devoted to develop ML models for the excited electronic states of
molecules. Very recently, driven by the aforementioned achievements of ML models
for the electronic ground state, the interest to advance photochemical simulation
techniques is increasing and ML is revisited for the excited states. Researchers have
started to tackle the fitting of energies, their derivatives and excited-state properties
mainly in the last few years.146–152 Pre-fitted ML-PESs are especially tantalizing for
photodynamics simulations. Their use offers the possibility to disentangle the high
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costs of electronic structure calculations from the MQC MD simulations.1;153 This
separation opens avenues to study reactions that were thought to be infeasible only
some years ago and long time scale simulations with ab initio accuracy come to the
fore. MQC MD simulations in the excited states with ML models have been pub-
lished mainly in the last three years and comprise small molecular systems or simple
reactions.77;154–160;160–163 At the current stage of research, only a few studies focus on
ML for the excited electronic states of molecules. The lack of studies concerning the
investigation of the photochemistry of molecules is also one of the main motivations
of this thesis.
The reason for the slow development of ML models for the electronic excited

states, especially for the simulation of photodynamics, compared to ML models for
the electronic ground state and Born-Oppenheimer dynamics is manifold: First of
all, an accurate investigation of the photochemistry of a molecular system requires
the treatment of many excited states of different spin multiplicity,1;2;26;164 which
makes reference computations generally more expensive. Further, derivatives of
different PESs have to be calculated and electron-nuclear couplings between different
electronic states arise. The computation of such couplings is extremely costly and
complicated, as they show singularities in conformational regions of the excited state
PESs, when two electronic states are degenerate. This degeneracy and the strong
electron-nuclear coupling lead to the break-down of the Born-Oppenheimer approxi-
mation, making it difficult to converge a quantum chemical reference calculation in
such critical regions.165 Furthermore, fitting inconsistent data with singular values
exactly is not possible with smooth ML functions. Another problem arises due to
the excess of energy as a consequence of light absorption, which results in a higher
probability of reactions involved in the formation and breaking of bonds. Many
"black-box" quantum chemical methods, which are frequently used for electronic
ground state problems, cannot be used for the excited states anymore, as they lack a
qualitative correct descriptions of such reactions. In this regard and due to the likely
contribution of many electronic configurations for the excited-states, highly accurate
and costly ab initio methods are required in many cases.26;164 The search for a proper
reference method, that is on one side accurate enough to treat processes involving
the formation and breaking of bonds, and on the other hand computationally efficient
to provide the amount of reference data needed, is a problem on its own. Many
highly precise quantum chemistry methods for the excited states do not allow for a
"black-box" use anymore and their use requires expert knowledge. These challenges,
which become apparent for the excited-state calculations, but usually do not need to
be considered for the ground state, also hamper the application of ML models.

Nevertheless, assuming that a proper method is selected carefully that meets all the
requirements for accurate reference simulations, several additional questions arise
that must be considered before computing a training set and fitting an ML model. For
example, the treatment of the excited state PESs using a finite number of electronic
states can lead to inconsistencies in the PESs, which is especially problematic when
molecules with a high density of states are treated and in conformational regions of
strong electron-nuclear couplings. How to confront these conformational regions
with ML is one of the questions to be answered. How can vectorial properties, such
as dipole or coupling vectors, be fitted that are still rotationally covariant? What is
the best way to treat many electronic states? Should all states and all properties be
trained within one ML model or is it more advantageous to treat them independently
from each other and in a single-state fashion? How can the molecules be represented
to the ML model to accurately fit a manifold of excited-state PESs and properties? Is
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it possible to describe molecules using atomic fragments in different chemical and
structural environments and to construct excited-state PESs from atomic contribu-
tions as it is done for many existing, accurate ground state PESs?
While the enumeration of (open) questions could be continued, the aforemen-

tioned questions are identified to be at the forefront of questions to be answered
when developing ML PESs for the excited states of molecules. Due to the young age
of this research field, most of the questions were unanswered in the beginning of
this work and have been targeted while conducting this thesis.

The main goal of this thesis is to provide an answer to the aforementioned ques-
tions and to find solutions for fitting the excited-state PESs and related properties
of molecules. Special focus is placed on advancing the exciting and highly active
research field of photochemistry by providing an integration of ML into existing
approaches and enabling long time scale photodynamics simulations. The central
model system of this thesis is the methylenimmonium cation, CH2NH+

2 , the smallest
member of the family of protonated Schiff bases, to which also retinal, the chro-
mophore of rhodopsin, belongs. CH2NH+

2 is used theoretically to model the ultrafast
rotation around the double bond. This rotation also plays a role in the cis-trans
isomerization of retinal, which is fundamental for vision.15;64 The methylenimmo-
nium cation accompanies almost all method developments carried out in this thesis.
Much effort is devoted to develop a method for photodynamics simulations, which
is user-friendly and can be used by researchers without expert knowledge on ML.
The developed ML methods are implemented in the Surface Hopping including AR-
bitrary Couplings (SHARC) MD code72;166 and can potentially evolve as a valuable
tool for the study of the photochemistry of molecular systems. Along the way, test
systems with different spin-multiplicities are selected. The different photochemistry
of these systems mainly serves the method development, rather than the exploration
of different reactions.
After the performance of newly developed methods and strategies is assessed

using small molecular systems, the excited-states of the amino acid tyrosine are
discussed. The investigation of the photochemistry of tyrosine with ML has been
planned since the beginning of this thesis, but has been interrupted several times
due to existing problems with quantum chemical calculations and ML models. The
related problems are illustrated. It is shown, how ML can overcome some problems
within quantum chemistry by using different quantum chemical reference methods
for the training set generation, which complement each other in terms of accuracy
and computational efficiency. Effort is devoted to generate hand-tailored excited-
state PESs and correct some problems of quantum chemical methods that prohibit a
comprehensive training set generation for the excited states of tyrosine.
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THEORY 2
The following chapter aims to summarize the theoretical background of the tech-
niques and methods that were applied in this thesis. It is divided into 2.1 Quantum
Chemistry, 2.2 MD, and 2.3 ML approaches. The execution of ML based MD (MLMD)
simulations in the excited states is one goal of this thesis. The term MLMD is used
throughout this thesis to indicate that ML models are used for respective MD simula-
tions instead of the reference quantum chemical simulations. To enable MLMD, a
comprehensive, yet accurate training set has to be provided that is at the basis of
any ML model. Therefore, a short overview of different quantum chemical methods
that are evaluated and applied for the computation of the reference data is given.
Emphasis is placed on comparison of quantum chemistry methods with respect to
their accuracy, efficiency as well as general applicability for the generation of a
training set for ML. A short description of MQC simulations follows. The chapter
concludes with a brief overview of the different types of ML models and descriptors
used. NNs, their high-dimensional variants, and kernel methods are introduced and
their respective merits and pitfalls are discussed.

2.1 quantum chemistry for electronic excited states

In a nutshell, the purpose of electronic structure theory is to provide a framework
to enable the computation of the energy of a system and its properties. The Born-
Oppenheimer approximation167 forms the basis of such calculations and is also
assumed throughout this thesis. Within the Born-Oppenheimer picture, the electrons
move much faster than the nuclei and are therefore considered to move in a constant
field of fixed nuclear charges and positions, which is a consequence of their much
lighter weight. In this way, the nuclear and electronic degrees of freedom can be
separated and electronic structure calculations can be carried out for a set of fixed
nuclear positions and a given set of electronic states. Many such independent static
calculations with different nuclear positions can then be executed to build the PESs
of a system. Having comprehensive and accurate PESs, in the best case for many
electronic states including several excited-state properties, is very powerful, because
it enables the investigation of the photochemistry of a system in a computationally
efficient way and allows for the application of many existing MD simulation methods.
However, a bottleneck is not only the search for relevant conformations of a system
for which the electronic structure is to be calculated, but also the search for a proper
method to calculate the electronic structure of a system.1;2;168;169
Existing electronic structure implementations can be differentiated in two main

approaches: Wave Function Theory (WFT) and Density Functional Theory (DFT).
This classification has been originally introduced by Kohn in his Nobel Lecture170
after he won the Nobel Prize in Chemistry in 1998 for his developments in DFT.
Complementary, Schrödinger won the Nobel Prize in Physics in 1933 for postulating
the Schrödinger equation, fundamental to WFT. Both theories have been tremen-
dously important for our understanding of many chemical problems and they have
in common, that at least in principle, an exact solution to a chemical problem can
be obtained. However, an exact solution is only reachable for systems as simple as
𝐻+
2 in case of WFT and fails even for such simple systems with DFT.171 The problem

7



theory

is that the equations are not solvable in case of WFT and that the equations to be
solved are not known in case of DFT. At this point, many approximations have been
introduced.172

2.1.1 Density Functional Theory (DFT)

The method of choice for many studies that target complex and large systems is DFT.
DFT-based methods are also the preferred workhorse for the calculation of training
sets for ML models.101;129;173–175 "That is because density functional theory, when
it works, is the most affordable way to get reasonably reliable and useful accuracy
on such problems" (H. S. Yu, et al., J. Chem. Phys.,145, 130901 (2016)). The most
widely implemented approaches of DFT and its time-dependent variant (TDDFT) to
compute excited states rely on the Hohenberg-Kohn theorems176 and the Kohn-Sham
approximation177 and are single-reference in their nature.171 Within Kohn-Sham
DFT, the energy is expressed as a functional of the electron density of a fictitious
system. This fictitious system comprises noninteracting electrons and has the same
density as the exact system. Assuming that the ground state density of a system is
known, the exact ground state energy of a system can be calculated. Unfortunately,
the ground state density of a system is generally unknown and approximations have
to be imposed to estimate the density and thus the energy of a system. Within an
orbital expression, the energy is computed as the sum of kinetic energies of the
individual electrons of the fictitious system using the density obtained from a single
Slater determinant, the Coulomb energy, and a so-called exchange-correlation energy.
The exchange-correlation energy is a functional of the electron density and contains
the electron-electron repulsion, the electron exchange, and the corrections to the
kinetic energy, i.e., the difference of the real kinetic energy to the one of the fictious
system.171;178

In theory, a unique exchange-correlation functional (also called Hohenberg-Kohn
functional) exists and the holy grail of DFT is to find the correct exchange-correlation
functional. So far, hundreds of approximations to the exchange-correlation functional
are available, which can be semi-empirical179;180 and non-empirical181–186 in nature,
but the holy grail has not been found. Some approaches also combine semi-empirical
and non-empirical approaches.187;188 The biggest challenge from a practical point of
view is to choose a suitable functional for a given problem. This task is particularly
tricky, because a more accurate solution is not guaranteed by simply choosing a more
complex functional or a functional associated with higher computational costs.172;189
The outcome of a DFT calculation thus critically depends on the type of approximated
density functional that is applied.

Indeed, DFT-based calculations with conventional exchange-correlation function-
als often fail to accurately describe systems, which are characterized by strong static
correlation. Static correlation is important in systems, which contain a lot of nearly
degenerate orbitals close to the highest occupied molecular orbital (HOMO) and low-
est occupied molecular orbital (LUMO). Such quasi-degenerate orbitals are common
in transitions states, broken bonds, and excited states. It is therefore not sufficient to
describe the electronic structure of such systems with a single Slater determinant,
i.e., a single configuration. The required wave function to properly account for
static correlation requires more configurations and differs qualitatively from the
single-reference wave function of the Kohn-Sham state configuration.190;191 More
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accurate DFT approaches exist, which are better suited for multi-configurational
problems, but have not yet entered the mainstream.192

2.1.2 Wave Function Theory (WFT)

In contrast to DFT, WFT offers a clear-cut hierarchy of methods that are systemati-
cally improvable toward the exact but unattainable solution. The time-independent
electronic Schrödinger equation193 is fundamental to WFT:

�̂�𝑒𝑙 (R, r) | Ψ𝑖 (R, r)⟩ = 𝐸𝑖 | Ψ𝑖 (R, r)⟩. (2.1)

�̂�𝑒𝑙 is the electronic Hamilton operator that is applied to the N-electron wave func-
tion Ψ𝑖 (R, r) of electronic state i, which is dependent on the electronic coordinates,
r, and parametrically dependent on the nuclear coordinates, R, within the Born-
Oppenheimer picture. This representation, in which the potential energy, 𝐸𝑖 , of a
given state is the eigenvalue of the electronic Schrödinger equation, is called the adia-
batic representation.194 An exact solution can be obtained in theory, but solving this
eigenvalue problem is anything but trivial. Approximations to the electronic wave
function have to be introduced to allow for a feasible computation of many-electron
systems.2;26;169

Within the Hartree-Fock theory the energy of a system is computed using a single
Slater determinant,195 𝜙𝐻𝐹 , and the variational principle.196 The Slater determinant
represents the ground state electronic configuration that meets the requirements of
the antisymmetry principle. The molecular orbitals of this configuration are obtained
as linear combinations of atomic orbitals (N one-electron wave functions)197 and
each atomic orbital is itself treated as an expansion of K known basis functions, 𝜃𝑢 :

𝜗𝑖 (𝑟 ) =
𝐾∑︂
𝑢=1

𝐶𝑢𝑖𝜃𝑢 (2.2)

with 𝜗𝑖 (𝑟 ) being the spatial part of the atomic orbital. The variational principle
guarantees that the energy obtained with an approximated wave function is always
higher than the exact energy of the investigated system. In this way, the coefficients
weighing the basis functions of the molecular orbitals can be iteratively optimized
to minimize the energy of the system. This can be done until self-consistency is
reached, giving this approach the name Self-Consistent Field (SCF). The use of a finite
basis set to construct the molecular orbitals and the neglect of electron correlation,
i.e., instantaneous electron-electron interactions, limit the accuracy of Hartree-Fock
theory.169 Due to the lack of electron correlation, i.e., static and dynamic correlation,
the Hartree-Fock method does not allow for a qualitatively and quantitatively correct
picture of many chemical problems.169;198

A source of error in Hartree-Fock theory is the lack of electron correlation, 𝐸𝑐𝑜𝑟𝑟 ,

𝐸𝑐𝑜𝑟𝑟 = 𝐸𝐻𝐹 − 𝐸𝑒𝑥𝑎𝑐𝑡 , (2.3)

which is the difference of the Hartree-Fock energy, 𝐸𝐻𝐹 , and the exact energy, 𝐸𝑒𝑥𝑎𝑐𝑡 ,
of a system. Besides static correlation, which has already been described, dynamic
correlation plays a role. This type of correlation is important to account for the
instantaneous interactions of electrons with each other, which are neglected in
Hartree-Fock theory, because the electrons are described in a mean field created by
all the other electrons. Additional excited-state configurations can be included to
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account for dynamic correlation.
In case of single-reference methods, the optimized wave function for the electronic

ground state can be used as a reference wave function. The different excited-state
configurations are generated by distributing the electrons among the other available
molecular spin orbitals. For many systems, the excited states can be sufficiently
accurately described with a single reference wave function, which is then obtained
as a linear combination of N-electron wave functions:

| Ψ𝑖⟩ =
∑︂
𝐼

𝐶𝐼 | 𝜙𝐼 ⟩. (2.4)

The respective methods, which are obtained by truncation of the configuration
space, are known as configuration interaction (CI) methods. The CI coefficients, 𝐶𝐼 ,
are optimized variationally by minimizing the energy of a system and keeping the
molecular orbitals fixed. The energy of a system is computed by diagonalization
of the Hamiltonian matrix in this N-electron basis. Arranging the electrons in all
possible ways and taking all possible Slater determinants into account results in a
Full CI (FCI) description. FCI yields the exact solution of a system.
As already mentioned, the exact solution is practically infeasible except for the

simplest molecular systems, such as H2, He, H3,...172 Therefore, the approximations of
a finite basis and a truncated configuration space are applied. Examples of truncated
CI methods are CIS (CI Singles), which considers only single excitations, or CISD
(CIS and Doubles), which additionally considers double excitations.26;169 As long as
conformations of a system, where the Born-Oppenheimer approximation is valid,
such as the ground state equilibrium structure, are treated, single-reference methods
are well suited.26;164;169
However, the same cannot simply be said for the excited states, as different elec-

tronic states are usually characterized by different configurations defining their
distinct nature. An example is a conical intersection, around which two electronic
states approach each other and at which point strong electron-nuclear couplings
arise leading to the so-called "break-down" of the Born-Oppenheimer approximation.
At least two electronic states become degenerate and strong mixing of the different
configurations can be observed. Static correlation has to be incorporated in the
calculation, which can be achieved with multi-configurational SCF methods.1;2;26

Within multi-configurational SCF methods, the molecular orbitals are optimized,
either in a state-specific fashion or by averaging over different states. In order to
allow for a practicable solution and to reduce the computational effort only some
orbitals are chosen, in which the occupation number is allowed to vary. Among the
most popular flavours of multi-configurational SCF methods is the Complete Active
Space SCF (CASSCF) formalism.199;200

Fig. 1 shows an example of a selection of an active space for a CASSCF calculation
of an arbitrary system. As can be seen, the orbitals are grouped into inactive and
active orbitals. The inactive orbitals are either always double occupied (c) or always
empty (a). The occupancy of the active orbitals (b) can vary between 0 and 2. FCI
is applied within the active space and all possible configurations are accounted for.
The coefficients of the active orbitals are optimized together with the CI coefficients.
The active space in Fig. 1 comprises two active orbitals (n) and two active electrons
(m), which is denoted as CASSCF(2,2) (CASSCF(m,n)).

CASSCF schemes suffer from a high computational effort that increases exponen-
tially with the number of configurations to be accounted for. State-averaging can be
applied to optimize the orbitals within the active space not for each state, but for a
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Figure 1: Exemplary scheme of an active space used in CASSCF. (a) Virtually unoccupied
orbitals are selected to be inactive. (b) The active space, in which all possible electronic
configurations are described contains two active electrons and two active orbitals, resulting
in CASSCF(2,2). (c) The inactive part that is lower in energy is always doubly occupied.

set of states that are averaged. Despite allowing for a description of static correlation,
excited state configurations have to be added to properly treat dynamic correlation.
Schemes like multi-reference CI (MR-CI)201 that additionally allow excitations out of
the active space can account for dynamic and static correlation. The CI coefficients of
eq. 2.4 and the molecular orbitals are optimized. Similarly to truncated CI methods,
also truncated MR-CI schemes exist. Among the most often applied formalism are
MR-CIS and MR-CISD.169
Another way to treat dynamic correlation is to apply Multi-Reference Perturba-

tion Theory (MRPT), i.e., applying PT, similar to Møller-Plesset PT to second order
(MP2),202;203 to multi-reference problems. In PT, the Hamiltonian is split into a solv-
able part and a part acting as a perturbation. As a consequence, the energy and the
N-electron wave function are partitioned into a zeroth order and higher-order terms.
By applying the perturbation to the known reference zeroth order wave function the
correlation energy can be estimated and added as a correction to the SCF energy of
the reference system. Dependent on the reference zeroth-order wave function, sev-
eral variants exist. If the reference zeroth-order wave function is the CASSCF wave
function, the resulting method is known as the Complete Active Space PT to Second
Order (CASPT2)204–206 approach. From a practical point of view, higher-order terms
are most often not considered as they do not guarantee a more accurate solution,
but are computationally more expensive.

Despite the high accuracy that can be achieved with multi-reference methods like
CASSCF, CASPT2 or MR-CI schemes, their bottleneck is their complex use and high
associated computational effort. Especially the latter makes the treatment of systems
that require a large active space computationally impracticable. An improper selec-
tion of active orbitals or a generally too small active space can result in inconsistent
PESs. Further problematic are intruder states, which are not considered to be relevant
at a reference molecular geometry, i.e., they are not described with the reference
space, but are close in energy to the ground state at a geometry of interest.207 In
view of preparing a training set for ML models, inconsistencies within the reference
PESs pose an additional challenge and are very difficult to identify in systems with
many degrees of freedom.26;77;208
Another PT scheme for computation of the excited states is the algebraic dia-

grammatic construction scheme for the polarization operator to second order PT
(ADC(2)).209 ADC(2) has gained popularity for the computation of excited states due
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to the good compromise between accuracy and computational efficiency. Compared
to DFT, it does not require a proper selection of any functional, but is systematically
improvable. Similarly to PT, the second-order correction usually gives the best com-
promise between accuracy and computational efficiency. This scheme, originally
based on Green’s function theory, applies the polarization propagator in order to
obtain the time evolution of the polarizability of a system.169;209 The ground state
wave function is treated as being externally perturbed and in principle, the relevant
excited state information is contained in the polarization propagator. Despite the
benefits ADC(2) offers, it is a single-reference method and only dynamic correlation
can be accounted for.209

2.2 mixed quantum-classical (mqc) photodynamics

MQC photodynamics simulations can provide valuable insights into the processes
that take place after light excitation and are thus important for our fundamental
understanding of many basic concepts taking place in our closest environment. Their
theoretical investigation requires the computation of the electronic PESs of a system,
on which the nuclei are considered to move. The underlying quantum chemical
computation of the PESs limits the applicability of photodynamics simulations to
systems comprising less than some 100s of atoms and on a time scale usually with
the upper limit being in the range of a couple of ps. The Born-Oppenheimer approxi-
mation allows to decouple the electronic motion from the classical nuclear motion,
which renders an on-the-fly evaluation of the PESs at the molecular geometries
visited during dynamics simulations possible. On-the-fly methods are particularly
powerful because they require the calculation of PESs from a quantum chemical
program only for molecular geometries that are relevant for dynamics simulations
under the given reaction conditions. In this way, the amount of necessary quantum
chemical calculations can be reduced and the PESs do not have to be computed
comprehensively in advance, which is not only expensive, but also nontrivial for
high-dimensional systems with conventional approaches.168
On-the-fly MQC simulations210 are interesting targets for the application of ML

models, because the time limiting step of a simulation is the computation of the
electronic PESs. ML models can significantly advance existing simulations by fitting
the PESs of systems in advance. Compared to conventional MQC photodynamics
simulations with pre-fitted PESs, they do not require the full relevant PESs in advance,
but can be adapted efficiently during a dynamics simulations in order to capture all
relevant conformations. Compared to on-the-fly MQC simulations with quantum
chemical methods, ML models allow for fast inferences at geometries visited during
the photodynamics simulations, while retaining the accuracy of the quantum chemi-
cal reference method if trained properly.153;211;212
Although a quantum dynamical treatment of a system would be more exact, the

benefits ML models can offer are limited due to the high costs of evaluating the
nuclear motion quantum mechanically at the current stage of research26 Throughout
this thesis, focus will be therefore set on MQC simulations. ML models are used
in this framework to replace the quantum chemical calculations of the PESs and
corresponding excited-state properties, while keeping the rest of the dynamics as
they are. In this thesis, the trajectory surface hopping approach is applied using the
SHARC method.72;166;213;214
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2.2.1 Trajectory Surface Hopping

The trajectory surface hopping method is one efficient class of MQC simulation
methods to study the photo-initiated reactions of systems on-the-fly.215 As it is
common in MQC approaches, the electrons are treated quantum mechanically and
their time evolution is investigated using the time-dependent Schrödinger equation,

𝑖ℏ
𝜕Ψ(R, r, 𝑡)

𝜕𝑡
= �̂�𝑒𝑙 (R, r)Ψ(R, r, 𝑡), (2.5)

with the time-dependent electronic wave function Ψ(R, r, 𝑡). In contrast, the nuclei
are treated classically and follow Newton’s equation of motion:168;216;217

𝑚𝐴

𝑑2

𝑑𝑡2
R𝐴 (𝑡) = −∇𝐴𝐸𝑖 (R𝐴) . (2.6)

Due to the number of excited states available, an active state i with potential energy
𝐸𝑖 has to be determined, as indicated in equation 2.6. The motion of an atom 𝐴

with mass m𝐴 is then evaluated according to this active state and the corresponding
forces, i.e. derivatives of the potential energy with respect to Cartesian coordinates,
−∇𝐴𝐸𝑖 (R𝐴), dictate in which direction the atom is pushed. At each time step, the
atoms are assumed to move adiabatically on a single electronic state. The Velocity
Verlet algorithm218 can be applied to efficiently integrate this equation and compute
the motion of the nuclei. Compared to the quantum chemical calculation of the
electrons, the propagation of the nuclei can be considered to be almost for free in
terms of computational costs.72
In order to go beyond the Born-Oppenheimer approximation and render the de-

scription of nonadiabatic effects possible, the active state has to be allowed to change,
which comes along with a hop between different states. Within surface hopping a
hop refers to a transition of the system from one state to another. The associated
hopping probability needs to be determined at each time step.72;215;217;219

Several ways exist to approximate this hopping probability. Originally, trajectory
surface hopping was developed by Tully220–222 to treat internal conversion through
conical intersections, i.e., transitions between states of same spin multiplicity. The
probability for a transition is based on a fewest switches criterion221 that constrains
the number of hops to a minimum so that toomany hops do not average the potentials
similar to a mean-field treatment. Within this original scheme, the time-dependent
coefficients, 𝑐𝑖 (𝑡), of the time-dependent electronic wave function are used to es-
timate the hopping probability and have to be propagated from one time step to
another.222 By expressing the electronic wave function as a linear combination of
the eigenfunctions of the electronic Schrödinger equation in the adiabatic basis (as
given in equation 2.1),

Ψ(R, 𝑟 , 𝑡) =
∑︂
𝑖

𝑐𝑖 (𝑡)Ψ𝑖 (R, 𝑟 )𝑒−
𝑖
ℏ

∫
𝐸𝑖 (R)𝑑𝑡 , (2.7)

and inserting this ansatz into the time-dependent Schrödinger equation (as given in
equation 2.5), the equation to propagate the expansion coefficients can be obtained:168

𝑑𝑐𝑖 (𝑡)
𝑑𝑡

= −
∑︂
𝑖

[︃
𝑖⟨Ψ𝑖 | �̂�𝑒𝑙 | Ψ𝑗 ⟩ + ⟨Ψ𝑖 |

𝑑

𝑑𝑡
| Ψ𝑗 ⟩

]︃
𝑐 𝑗 (𝑡) (2.8)

= −
∑︂
𝑖

[︁
𝑖𝐻𝑖 𝑗 + 𝐾𝑖 𝑗

]︁
𝑐 𝑗 (𝑡) .
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The Hamiltonian, 𝐻𝑖 𝑗 , is computed from the electronic structure calculation and
𝐾𝑖 𝑗 = 𝐶𝑁𝐴𝐶𝑖 𝑗

𝑣𝑅 can be obtained from the velocities 𝑣𝑅 and the nonadiabatic couplings
vectors (NACs), denoted as 𝐶𝑁𝐴𝐶𝑖 𝑗

.198;213;214 By neglecting the second order term,
the NACs can be calculated with the following equation:223;224;224

𝐶𝑁𝐴𝐶𝑖 𝑗
≈ ⟨Ψ𝑖 |

𝜕

𝜕R
Ψ𝑗 ⟩ (2.9)

=
1

𝐸𝑖 − 𝐸 𝑗
⟨Ψ𝑖 |

𝜕𝐻𝑒𝑙

𝜕R
| Ψ𝑗 ⟩ for 𝑖 ≠ 𝑗 .

By knowing the coefficients, the probability to hop out of the active state is:72;222

𝑃𝑖→𝑗 = 1 − | 𝑐𝑖 (𝑡 + Δ𝑡) |2
| 𝑐𝑖 (𝑡) |

. (2.10)

In order to obtain the population in the other states, several techniques exist. Within
Tully’s fewest switches surface hopping scheme, a hop is determined stochastically
by comparing the hopping probability from active state 𝑖 to a new state 𝑗 , which is
computed via:222

𝑃𝑖→𝑗 =
2Δ𝑡

| 𝑐𝑖 (𝑡) |2
ℜ

{︄
𝑐∗𝑖 (𝑡)

∑︂
𝑗

[︁
𝑖𝐻𝑖 𝑗 + 𝐾𝑖 𝑗

]︁
𝑐 𝑗 (𝑡)

}︄
, (2.11)

to a random number. If the hopping probability is larger than the random number,
a hop is assumed to take place, whereas otherwise the active state is retained. The
hopping probabilities computed with SHARC follow the fewest switches criterion,
but are based on the propagator matrix, 𝑃 = 𝑒 [−(𝑖𝐻𝑖 𝑗+𝐾𝑖 𝑗 )Δ𝑡 ] :72;213;214

𝑃𝑖→𝑗 =

(︃
1 −

| 𝑐 𝑗 (𝑡 + Δ𝑡) |2

| 𝑐 𝑗 (𝑡) |2

)︃ ℜ
[︂
𝑐𝑖 (𝑡 + Δ𝑡)𝑃∗𝑖 𝑗𝑐 𝑗 (𝑡)

]︂
| 𝑐 𝑗 (𝑡) |2 −ℜ

[︂
𝑐 𝑗 (𝑡 + Δ𝑡)𝑃∗

𝑗 𝑗
𝑐 𝑗 (𝑡)

]︂ . (2.12)

Besides the hopping probabilities based on the aforementioned algorithms, other
measure to approximate the transitions between different states exist.194;219;225–229
This makes MQC simulations with the surface hopping procedure not unique.230
Examples are the Landau-Zener231;232 or the Zhu-Nakamura227;229;233 theories. Both
formalisms do not require information on the couplings between adiabatic PESs,
which leads to less expensive electronic structure calculations. Originally, the Landau-
Zener and Zhu-Nakamura formalisms have been developed for two-level systems
and they have been derived in the diabatic basis.234 Subsequently, the validity has
been proven also for the adiabatic representation and the respective hops in the
adiabatic basis are determined from the energy gaps between different potentials.233
As a consequence, two different chemical problems with similar adiabatic PESs, but
significantly different couplings would yield qualitatively similar results. In addition,
systems that are characterized by a high density of states are also insufficiently
treated with these algorithms.157
Due to the aforementioned failures for some chemical problems, Tully’s fewest

switches algorithm remains the more accurate scheme, especially for larger systems
and systems, whose photochemistry is more complex. Tully’s fewest switches hop-
ping algorithm is thus often the method of choice.1;72
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As a consequence of the classical treatment of the nuclear motion and the stochastic
nature of surface hopping, a single trajectory cannot provide statistically significant
results. In order to get an estimate of the proper motion of a nuclear wave packet,
an ensemble of trajectories has to be considered.72;215;217;219;222 To this aim, different
initial conditions have to be provided from which the trajectories can be started
after vertical excitation. This sampling can be carried out from frequencies and
normal modes of molecules via a Wigner distribution235;236 for example, which
is the standard method within the applied SHARC approach in this thesis.72;166
A frequency calculation and single point calculations for each sampled molecular
configuration are prerequisites. Considering a large number of initial conditions and
consequently a large number of trajectories, the quantum behaviour of the nuclear
motion can be approximated at least to some extent. The possibility to propagate the
different trajectories independently from each other allows for parallel computations.
Different branching channels and reaction kinetics can be computed and the critical
regions that lead to ultrafast transitions can be investigated usually within a good
compromise between computational efficiency and accuracy.1;26;215 However, the
number of trajectories are often limited to a few hundred of trajectories as the costs
of the quantum chemical calculations still remains. For chemical problems, where
rare reactions are important that occur with less than 1%, no statistically significant
results can be obtained at justifiable costs. ML models can also contribute here and
provide a solution to this problem as they allow for efficient sampling of many more
trajectories.1

2.2.2 Nonadiabatic Couplings (NACs)

The outcome of a photodynamics simulation with the surface hopping approach
strongly depends on the accuracy of the regions of the PESs, around which hops take
place. Those regions are usually called critical regions of the PESs and can be for
example two-state conical intersections or interstate crossings that are schematically
represented in Fig. 2 in the spin-diabatic basis, which is the direct outcome of a
quantum chemical calculation. This basis is often referred to as the adiabatic basis,
when only one spin multiplicity is considered because the potentials then never cross
each other. However, when states of different spin-multiplicities, e.g. singlet and
triplet states, are considered together, they do cross each other and this picture is
referred to as spin-diabatic.165 As can be seen, two states of the same spin multiplicity
(singlet states 𝐸𝑖 and 𝐸 𝑗 in Fig. 2) form an avoided crossing and the corresponding
NACs (exemplified by their norm using dashed blue lines) show singularities. Thus,
this conformational region is also known as a critical region of the PESs.165;168;237
An explanation can be provided with equation 2.9, which shows that the NACs

are inverse proportional to the energy gap between two electronic states. Obviously,
they become very large, when two PESs are close to each other. Especially this
characteristic of NACs poses a real challenge to a quantum chemical calculation, as it
leads to the break-down of the Born-Oppenheimer approximation. Consequently, it is
difficult to properly converge a quantum chemical calculation in such regions. Further,
the fitting of such couplings and discontinuous PESs turns out to be challenging. An
inaccurate fit in these critical regions of the PESs can lead to qualitatively wrong
transition probabilities.165;168;237

A way to remove such inconsistencies is to use the diabatic basis instead,163;238–240
which is illustrated in Figure 3(a).
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Figure 2: One-dimensional example of an arbitrary reaction coordinate in the spin-diabatic
basis with an avoided crossing between singlet states E𝑖 and E𝑗 and a crossing of E𝑗 with
triplet state 𝐸𝑘 . The planes that cross and the cone illustrates how these critical points look
like in two dimensions. The corresponding couplings are plotted using dashed lines. The
NACs (CNAC𝑖 𝑗

, blue dashed lines) show singularities at the critical points, whereas SOCs
(CSOC𝑗𝑘

, red dashed lines) yield a smooth function along the reaction coordinate.

Within the diabatic basis, NACs are obtained as smoothly varying potential cou-
plings of nuclear coordinates, removing the singularities at conical intersections.
Similarly, the inconsistencies within the PESs of same spin-multiplicities vanish
and the states, now ordered by their character, cross. Despite the advantages that
diabatic PESs and couplings offer, the weak point of this consideration is that a
transformation from the adiabatic to the diabatic basis is not possible for polyatomic
systems. Therefore, it is only possible to fit non-unique approximated quasi-diabatic
PESs. Finding quasi-diabatic PESs is far from trivial. Moreover, the conformational
space of a molecule to be visited during a dynamics simulation usually has to be
known in advance, posing another obstacle to properly fit diabatic PESs.163;238–241 At
this point and for the sake of the goals of this thesis, i.e., to provide a generally appli-
cable ML model to simulate photodynamics of polyatomic molecules, the adiabatic
basis is preferred over the quasi-diabatic basis. Nevertheless, it should be mentioned
that if quasi-diabatic PESs of a system are known, their use is highly favoured. A
transformation from quasi-diabatic PESs to adiabatic PESs is almost always possible
by diagonalization of the quasi-diabatic Hamiltonian matrix.241

2.2.3 Spin-Orbit Couplings (SOCs)

Relativistic effects, i.e., spin-orbit (SO) effects, allow states of different spin-multiplicities
to couple with each other via spin-orbit couplings (SOCs). Without an interaction of
the orbital angular momentum with the magnetic moment of the electronic spin, the
states would be uncoupled.242–244 At the current stage of research, approximations
to the relativistic many-body equation exist, with the Breit equation245 being among
the most popular ones:245;246

𝑖ℏ
𝜕Ψ(R, 𝑟 , 𝑡)

𝜕𝑡
= �̂�𝐷𝐶𝐵Ψ(R, 𝑟 , 𝑡) . (2.13)

Instead of the electronic Hamiltonian, the Dirac-Coulomb-Breit Hamiltonian, �̂�𝐷𝐶𝐵 ,
is applied. This Hamiltonian can be decomposed into a non-relativistic part, a
mass-velocity part, and a SOC part, denoted here as �̂�𝐷𝐶𝐵−𝑆𝑂 :243;245

�̂�𝐷𝐶𝐵−𝑆𝑂 =
1
2𝑐2

⎡⎢⎢⎢⎢⎣
∑︂
𝑗

∑︂
𝐴

𝑍𝐴

𝑟 3
𝑗𝐴

(︂
𝑟 𝑗�̂� × �̂� 𝑗

)︂
· 𝑠 𝑗 −

∑︂
𝑘≠𝑗

1
𝑟 3
𝑗𝑘

(︂
𝑟 𝑗𝑘 × �̂� 𝑗

)︂
·
(︁
𝑠 𝑗 + 2𝑠 𝑗

)︁⎤⎥⎥⎥⎥⎦ (2.14)
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Figure 3: The potential energy curves of Fig. 2 in (a) the diabatic and (b) the diagonal, strictly
adiabatic, representation. (a) The singlet and triplet states are ordered by character in the
diabatic basis and the couplings (dashed lines) are delocalized. (b) The spin-mixed states
never cross and are ordered according to their energy. Couplings are localized at the critical
regions of the potential energy curves.

In equation 2.14, 𝑐 refers to the speed of light and the operators 𝑟 𝑗 , �̂� 𝑗 , and 𝑠 𝑗 refer to
the position, momentum, and spin operators of electron j, respectively. The cross-
products 𝑟 𝑗𝐴 × �̂� 𝑗 and 𝑟 𝑗𝑘 × �̂� 𝑗 give the angular momentum of electron j relative to
the atom A and the electron k, respectively. The first term of equation 2.14 is related
to the one-electron SO term, whereas the second part refers to spin-same-orbit and
spin-other-orbit terms.243–245 As given in the equation, the atomic charge, 𝑍𝐴, enters
and significantly contributes to the SOCs when the mass of the atom is large. This
relation led to the widespread assumption that SO effects would almost exclusively
be relevant in systems containing heavy atoms.247;248 Today, it is well known, that
SOCs also play a role in other systems and give rise to a multifaceted photochemistry
of a large number of chemical systems.2;213;214;249

In view of photodynamics simulations, the SOCs are used to determine the rate
of intersystem crossing. The SHARC program was the first on-the-fly trajectory
surface hopping method based on the fewest switches algorithm to include also such
relativistic SO effects.213;214 To incorporate these effects, the electronic Hamilton
operator needs to be adaptedwith the spin-orbit term, �̂�𝑆𝑂 , to form the total Hamilton
operator, �̂� 𝑡𝑜𝑡 = �̂�𝑒𝑙 + �̂�𝑆𝑂 . The two-electron integrals present in �̂�𝐷𝐶𝐵−𝑆𝑂𝐶 makes
the computation of SOCs computationally expensive and the use of an effective
SO mean-field operator249;250 is computationally more efficient while providing
reasonably accurate results.213;214;243

Due to the off-diagonal potential couplings in𝐻𝑡𝑜𝑡 , the Hamiltonian is not diagonal
anymore, which is in contrast to 𝐻𝑒𝑙 , hence the name spin-diabatic representation.
The arising potential couplings are the SOCs. As it is illustrated in Fig. 2, in contrast
to the singlet-singlet avoided state crossings, the singlet and triplet states cross
(as shown by singlet state 𝐸 𝑗 and triplet state 𝐸𝑘 ) when computed with standard
quantum chemistry. SOCs in this spin-diabatic basis are exemplified by red dashed
lines and are smoothly varying complex or real-valued properties with respect to
nuclear coordinates. Whether SOCs are obtained as real or complex valued properties
depends on the electronic structure program applied. For one described singlet and
triplet state, three SOC elements arise that are due to the different magnetic numbers
of degenerate triplet components. Real-valued SOCs can be converted into complex-
valued SOCs and vice versa.72;244

For the determination of the hopping probability between states of different spin
multiplicities with SHARC, the spin-diabatic basis is transformed to the diagonal basis
by diagonalization of the Hamiltonian matrix. As a result, the previously denoted
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singlet and triplet states are then spin-mixed states and all states are eigenvalues
of the total Hamilton operator. An example of a strict-adiabatic basis is shown in
Fig. 3(b). As it is visible, the degeneracy of the previously degenerate triplet states is
lifted.1;72;230 The obtained kinetic SOCs are localized in this diagonal basis. In view
of surface hopping simulations, the use of localized kinetic couplings, as illustrated
by reddish dashed lines, is advantageous, because they guarantee a more accurate
determination of hopping probabilities between the now spin-mixed states. The use
of the directly obtained SOCs from quantum chemical programs could induce hops
with equally large probabilities almost anywhere along the conformational space of
a molecule and would result in an inaccurate mean-field description of intersystem
crossing.214

2.2.4 Arbitrary Phase of the Wave Function

An important effect to consider for surface hopping simulations is the phase of
the wave function. Two different effects can be distinguished that can lead to a
change in the phase of the electronic wave function. The Berry phase, also known
as the geometric phase, exists.251–253 The Berry phase gives rise to path-dependent
transitions. When a closed path around a conical intersection is undertaken and
the original molecular geometry is reached, the electronic wave function differs by
a phase factor of 𝜋 . This effect can have a significant influence on the outcome of
a dynamics simulation when the nuclear motion is treated quantum mechanically.
In contrast, MQC simulations are assumed to be almost unaffected by the Berry
phase in many cases,254;255 which is demonstrated for example by the Zhu-Nakamura
approach, where the phase is neglected.233;256
In addition to the Berry phase, the arbitrary phase exists. The electronic wave

function is an eigenfunction of the electronic Schrödinger equation, but is only
defined up to an arbitrary phase, which can be seen similar to an arbitrary sign
as a pre-factor. The electronic wave function can change its phase and is still a
valid eigenfunction of the electronic Schrödinger equation.72;257 As a consequence
of this arbitrariness, also excited-state properties that result from two different
electronic states carry an arbitrary sign. Independent electronic structure calculations
of the same molecular geometry can therefore result in excited-state properties
that arbitrarily differ in their sign. This is the case for NACs or SOCs, which are
particularly relevant for computing the hopping probabilities, and transition dipole
moments.77;257 This effect is exemplified in Fig. 4 for a SOC value.

As shown in Figure 4, the SOC value, which is represented by dashed lines, can
have either positive (+𝐶𝑆𝑂𝐶 𝑗𝑘

) or negative (−𝐶𝑆𝑂𝐶 𝑗𝑘
) values. The red dashed lines

illustrate the two optimal possibilities for representing the couplings along this
reaction coordinate. However, reality looks differently and most probably more
similar to the black dashed line in-between the red dashed lines. Identifying whether
the phase changed for a given electronic state at a certain point in time or not is
therefore critical for the outcome of a photodynamics simulation. A wrong phase
factor can lead to wrong hopping probabilities and consequently wrong surface
hopping dynamics simulations.72

In many conventional surface hopping dynamics simulations the problem is solved
by carrying the phase along a trajectory. A change in a phase factor for a given
electronic state from one time step to another can be identified for example by
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Figure 4: The potential energy curves for the singlet state E𝑗 and the triplet state E𝑘 (as
already introduced in Fig. 2) are shown along with their couplings, the SOCs, 𝐶SOC

𝑗𝑘
. The red

dashed lines show how couplings will look like if the phase of the electronic wave function
is corrected for each electronic state. The direct output obtained with quantum chemistry is
exemplified as the black dashed line and illustrates the arbitrariness of the sign of coupling
values.

computing wave function overlaps, S, between the electronic wave function of the
actual time step, 𝛼 , and the electronic wave function of the previous time step, 𝛽 :258

S = ⟨Ψ𝛽 | Ψ𝛼 ⟩ (2.15)

Small enough time steps in photodynamics simulation guarantee that the two
electronic wave functions at the different molecular geometries are similar enough to
obtain overlaps for given electronic states that are either close to +1 or -1, indicating
whether a change in the corresponding phase has occurred or not. Large overlap
values are obtained as diagonal elements of the overlapmatrix inmost conformational
regions of the PESs. Off-diagonal elements become important, when a conical
intersection is in proximity.72;214;259 Also when the fitting of properties is required
or when a diabatization procedure based on NACs260 or Boys localization261 is
carried out, the phase has to be considered, because inconsistencies in the respective
excited-state properties can make the training of an ML model77 or the diabatization
procedure162;208 fail.157

2.3 machine learning (ml) in quantum chemistry

ML models are becoming increasingly important in many research fields. Especially
deep learning, i.e., the part of ML that is inspired by the human brain, is a powerful
technique to fit highly complex structure-property relationships. It allows to create
intelligent machines that learn from data without being explicitly programmed.262

In 1943, a model based on flexible functions without any direct physical meaning
was introduced to investigate the signal processing in the brain.263 Today, this study
is regarded as the birth of NNs153 and some pioneering works applying different
types of ML algorithms followed in the 1950s. After these initial studies a so-called
first "Artificial Intelligence (AI) Winter" followed. This period of time was charac-
terized by slow progress and little effort was made to further develop this research
field.262

Nevertheless, every winter is followed by a summer, and ML models were rediscov-
ered in the 1980s, which is known as the first "AI Summer". This summer was mainly
driven by the prospects of generating intelligent machines that can learn from the
increasingly available amount of data. However, the bottleneck during this time was
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the limited computational power and inefficient algorithms that prohibited the use
of deep learning models, leading to a second "AI winter" until the mid 1990s.262 Since
then, with the increasing computer power available, ML started to constantly gain
popularity among many diverse research fields. Today, it is part of our everyday
lives and used for image recognition,264 for translation of text and speech265;266 or
for holding conversations with Siri or Alexa.265;266
Even though ML models were unnoticed in the research field of quantum chem-

istry for a long time, their prospects have already been identified more than 25 years
ago:267

"The potential in neural networks for the processing of chemical infor-
mation is very far from being exhausted. In chemistry the task is often
to assign objects to certain categories or to predict the characteristics
of objects. This accounts for the dominance of the back-propagation
algorithm. A whole series of other neural network models exists, how-
ever, which could be applied successfully to the field of chemistry. This
should be explored more widely in future." (Gasteiger, J. and Zupan, J.,
Angew. Chem., Int. Ed. Engl., 32, 503 (1993))

The first ML models in quantum chemistry were almost exclusively applied in the
field of quantum dynamics.85;86 Nowadays ML models are massively booming and
have entered many other fields of quantum chemistry as well.262 For example, they
can help to solve the Schrödinger equation by providing approximations to the
electronic wave function or density of a system,90–97;174;174;268–279 they can learn from
electronic structure data to fit high-dimensional PESs or properties of molecules
and materials,77;81;86;98–110;112–115;117–130;145;154–156;159;160;162;163;208;212;280–291 and can be
used to find relations between molecules and certain properties, e.g. reaction kinetics
of photodynamics simulations, energy gaps between orbitals or electronic states
or catalytic activities.28;90;129;139;141;150;292–296 Many newly developed methods in the
research field of quantum chemistry incorporate ML models. Old concepts have
often been revisited and have been significantly advanced by an integration of ML
algorithms. However, ML in quantum chemistry is still far from being routine and
method development is pushed toward solutions that can be used without expert
knowledge on ML. In this thesis, the idea of advancing existing methods, i.e., MQC
dynamics with the surface hopping approach, with ML is maintained.

2.3.1 Training Set Generation

Supervised learning techniques can be divided into regression and classification
strategies. By applying a regression or classification model, at least in theory, almost
any input-output relation can be fitted or patterns within a data set can be explored,
respectively. The basis of any ML model for this purpose provides a labeled data set.
One data point inside of the training set needs to contain an input that is related
to one or more outputs. When using quantum chemistry data, the input is often a
molecular structure that is linked to quantum chemical properties computed with an
electronic structure method. Nowadays several public repositories exist that provide
such data sets. In the research field of quantum chemistry for molecules, exam-
ples are the QM7,280;297 QM8,146;298 QM9,173 QMspin,299 MD17,300;301 NMD-18302 or
H2O-13303 data sets that mainly include ground-state properties of molecules or first
excitation energies. These data sets are very important for the development of new
ML methods and can serve as benchmark sets.304;305
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However, available data sets that include excitation energies have been generated
mainly with the purpose of sampling the chemical space comprehensively. Most
often, molecules of different compositions were generated or extracted from existing
data bases and were optimized with an electronic structure method. In order to
obtain a training set that can be used for photodynamics simulations, a different
strategy has to be applied as more data points of the same molecule, but with different
structure have to be provided. To be more specific, the conformational space that
is visited during the dynamics simulations of at least one system under investiga-
tion has to be sampled comprehensively. Obviously, a dilemma arises, because the
important conformational regions of a molecule are not known in advance and the
transferability of excited-state PESs and couplings is not known. To this aim, an
iterative sampling procedure has been proposed by Behler153 and has been adapted
by others to generate training sets for Born-Oppenheimer MLMD simulations for
one molecular system. This scheme uses MD simulations with preliminary ML po-
tentials to automatically identify regions of the PESs that are not yet included in the
training set. In this way, the training set can be built efficiently and only relevant
conformations are included.100;106;306;307

The starting point of this automatic selection scheme is a small initial training set
that can be based on the equilibrium geometry of the molecular system under inves-
tigation. Additional geometries can be sampled with MD simulations or enhanced
sampling techniques308–311 using a cheap electronic structure method. Clustering
of data allows to select distinct molecular geometries that serve as an input for
electronic structure simulations with the reference method that determines the accu-
racy of the ML models.312 Other sampling techniques, such as random sampling or
Wigner sampling,236 can also serve for this purpose.153

In order to enlarge the training set and render efficient, yet accurate MLMD simula-
tions possible, 𝑁𝑀𝐿 preliminary ML models are trained on this training set (𝑁𝑀𝐿 ≥ 2)
and MLMD simulations are initiated. At each time step, the mean of the predictions
of energies, 𝐸

𝑀𝐿

0 , (equation 2.16) and forces, 𝐹
𝑀𝐿

0 , (equation 2.17) of the ML models
for the electronic ground-state, 𝑆0, are used to evaluate the classical equations of
motion to propagate the nuclei of the molecule. The index 𝐽 runs over all N𝑀𝐿 ML
models used in this scheme and is indicated by 𝑀𝐿𝐽 . The uncertainty of the PES
provided by the ensemble of ML models is computed from the standard deviation of
energy predictions, 𝐸𝑀𝐿𝜎0 , as specified in equation 2.18106

𝐸
𝑀𝐿

0 =
1

𝑁𝑀𝐿
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𝐽

(︂
𝐸
𝑀𝐿𝐽
0 − 𝐸𝑀𝐿0

)︂2
(2.18)

Whenever the deviation goes beyond a pre-defined threshold, the geometry at
this time step is used as an input to re-compute the PES with the reference electronic
structure method. This information is added to the training set. ML models are
re-trained with the extended training set and MLMD simulations are re-started.
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This process is computationally expensive, because firstly, data points are added
sequentially and secondly, each time a data point is added to the training set, ML
models have to be re-trained. The use of several parallel simulations initiated from
different starting conditions can reduce the computational effort. Therefore, ML mod-
els are only re-trained after all MLMD simulations have arrived at an extrapolative
region, relevant data points have been re-computed with quantum chemistry, and
the training set has been expanded.106;313 As soon as the ML models have reached
higher accuracy, the threshold is adjusted to smaller values, which is termed adaptive
sampling.106
The use of an adaptive sampling scheme is advantageous compared to random

sampling as the relevant conformational regions of the PESs are scanned comprehen-
sively, whereas a finite number of randomly sampled data points cannot guarantee
that the training set is sufficient for dynamics simulations. Less data points are
needed when sampled wisely leading to less computational costs with respect to
reference electronic structure calculations and final ML training times.

2.3.2 ML Models

With a training set at hand, the easiest way to fit a function between a molecular
input, 𝑋 , and a target output, 𝑌 , is to assume a linear relation and use a linear
function,

𝑌 = 𝑏 +𝑤 · 𝑋, (2.19)

where 𝑤 are the coefficients, often known as weights, and 𝑏 is a constant bias. In
case a linear model is selected, ordinary least squares regression can be applied to
find the coefficients that relate 𝑋 to 𝑌 in the most optimal way. During this process,
called training, a loss function, 𝐿𝑥 , is evaluated at each step:

𝐿2 =
1
𝑁𝑀

𝑁𝑀∑︂
𝛽

(︂
𝑌𝑀𝐿
𝛽

− 𝑌𝑄𝐶
𝛽

)︂2
. (2.20)

This function monitors the error between a predicted property, 𝑌𝑀𝐿
𝛽

, for a given
molecular input, 𝛽 , and the original quantum chemical value of the same input,
𝑌
𝑄𝐶

𝛽
. 𝑁𝑀 refers to the number of compounds used for training. In equation 2.20

the mean squared error (MSE) is shown as an example and the function is called 𝐿2
norm. Besides the widely used L2 norm, the L1 norm is frequently applied to monitor
the mean absolute error (MAE) during training. In principal, any type of function
that can provide a measure for the accuracy of an ML prediction is applicable. The
best practice is to report the error of a successfully trained ML model on a test
set that has not been shown to the ML model during training.82;304;314;315 Although
many chemical problems cannot simply be fit with a linear model, it is often used
as a baseline model. The accuracy that can be obtained with linear regression can
therefore be considered as a lower limit.

Kernel Methods

Kernel methods316 are one of the two main classes that are frequently used in
quantum chemistry to solve non-linear problems. Among them, Gaussian processes,
support vector regression (SVR), and kernel ridge regression (KRR) are often applied.
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Kernel methods rely on the kernel trick to fit data that cannot be represented using a
linear function. The basis provides a kernel basis function, 𝐾1, that defines the non-
linearity of themodel. Most models make use of a Gaussian kernel or Laplacian kernel.
This kernel is centered on each compound within the training set and the distance
to all other compounds is computed. In other words, kernel methods measure the
similarity between data points and save the relevant information in the kernel matrix.
Thus, the size of the kernel, i.e., the depth of the ML model, is inherently linked to the
amount of data points. Usually the kernel contains one main hyperparameter, which
is its width, 𝜎 .280;316 Hyperparameters of ML models are internal parameters that
need to be optimized for a given training set under investigation in order to allow for
meaningful performance. As kernel methods usually require less hyperparameters
to be tuned, they are relatively simple to train compared to NNs, which depend on a
large number of hyperparameters.
When fitting a KRR model, a property of an unknown compound 𝑋𝛼 can be

approximated by summing up the weighted contributions of the kernel functions
placed on each compound, 𝑋𝛽 , within the training set:

𝑌𝑀𝐿 (𝑋𝛼 ) =
𝑁𝑀∑︂
𝛽

𝑤𝛽𝐾1(𝑋𝛼 , 𝑋𝛽 ) (2.21)

For many ground-state problems, a fitted property can also be obtained as the sum
of atomic contributions. The kernel is decomposed into a sum of weighted kernels
representing atoms in their environment:

𝑌𝑀𝐿 (𝑋𝛼 ) =
𝑁𝑀∑︂
𝛽

𝑁𝐴∑︂
𝐴

𝑤𝛽𝐾1(𝑋𝛼 , 𝑋𝛽𝐴) . (2.22)

Note that in the expression in eq. 2.22, the kernel matrix is not symmetric anymore.
The need to estimate the similarity of a new input to all other samples within the
training set makes inferences relatively slow compared to predictions executed with
NNs. Still, PESs can be evaluated much faster than with quantum chemical reference
methods.
The fitting parameters of the model that best relate an input to an output can be

found with ridge regression that combines linear regression and a regularization.

𝑤 = (K1 + 𝜆1)−1X𝑄𝐶 (2.23)

Noticeably,𝑤 is a vector of size 𝑁𝑀 and X𝑄𝐶 is a vector that contains all data points
included in the training set. The penalty term (or L2 penalty), 𝜆, has the task to
prevent the model from overfitting and remains a second hyperparameter of KRR
models that is strongly dependent on the provided training set. The term overfitting
will be described in more details in chapter 2.3.4

A benefit of KRR models is their simplicity and fast training process, due to the
little amount of hyperparameters, which makes them generally easy to use. Another
main advantages is that they enable almost exact reproduction of data points that
are within a region represented by the training set.317 KRR is therefore a frequently
applied method in the research field of quantum chemistry.123 However, compared
to more complex and higher flexible models, such as NNs, conventional KRR models
can only relate a single output value to a molecular input. Hence vectorial properties
need to be fitted with several KRR models. The same accounts for the task of fitting
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several electronic states – a separate KRR model has to be used for each electronic
state to be fitted with conventional approaches. A recently proposed response
formalism exists,132 which trains and predicts forces and dipole moments together
with potential energies of a system. Forces and dipoles are treated by using the
corresponding force or dipole operator that treats forces or dipoles as derivatives of
potential energies with respect to atomic coordinates or an external electric field,
respectively. This formalism enables a prediction of a complete vector in one KRR
model. Such models are, however, only applicable to one electronic state and usually
suffer from high memory consumption, restricting the amount of data points that
can be used for training considerably.305

In general, the main drawback of conventional KRR models is that the training set
size that can be used is limited due to the fact that it directly influences the kernel
matrix size. A possible way to overcome this limitation without suffering from an
accuracy-loss is to use only a subset of training data that is mapped to all data points
within the training set.314;318 Another type of kernel methods is based on support
vector machine, often applied to classification problems, but similarly applicable
for regression problems. SVR models differ from KRR models in their loss function.
While KRR applies a minimum loss function, SVR makes use of an 𝜖-intensive loss
function, 𝐿𝜖 :319

𝐿𝜖 =

{︄
0 if | 𝑌𝑀𝐿

𝛽
− 𝑌𝑄𝐶

𝛽
|≤ 𝜖

| 𝑌𝑀𝐿
𝛽

− 𝑌𝑄𝐶
𝛽

| −𝜖 otherwise
(2.24)

As it is given in equation 2.24, a predicted value, whose absolute error is within
the range of 𝜖 , does not influence the training process. This region is also known
as 𝜖-insensitive region or 𝜖-tube and allows for a sparse solution. If the error ex-
ceeds this range the data point is taken into account. Support vectors are instances
outside the 𝜖-tube. A small number of support vectors and combinations thereof
can circumvent the huge memory requirement common with large training sets.320
Consequently, the aim of the training process is to find the tube that includes most
data points of the training set.313;321;322

Neural Networks (NNs)

In contrast to kernel methods that have a limited number of internal hyperparameters
to be fit, NNs contain a flexible number of hyperparameters.317 In other words, their
set of hyperparameters, i.e., their depth, is independent of the training set size. This
makes it possible to fit a huge amount of data. The relevant information is stored in
the fitting parameters, i.e., the weights of the network. Additionally advantageous
are fast inferences of new compounds as no similarity to all data points has to be
computed.82;315

As already mentioned, NNs were developed in order to mimic the human brain’s
information processing. Consequently, the structure of an NN is inspired by our
human brain. An example is shown in Fig. 5 (reproduced from Ref. 322 with permis-
sion from the Royal Society of Chemistry). Illustrated is a multi-layer feed-forward
(MLFF) NN, one of the simplest classes of NNs. It contains an input layer, shown
here with two input coordinates, 𝑋1 and 𝑋2, to represent a molecular system, 𝑋 .
These input nodes are connected with the weights of the NN to nodes, 𝑦1, of the first
hidden layer that are themselves connected to nodes, 𝑦2, of the second hidden layer.
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Figure 5: Example of a multi-layer feed-forward NN as used in this thesis. Shown are an
input layer comprising two input coordinates, 𝑋1 and𝑋2, two hidden layers with each hidden
layer containing 3 nodes, 𝑦, and an output layer that refers to the targeted quantum-chemical
property. Weights are denoted as𝑤 and a bias connected to each node is hidden from the
scheme. (Reproduced from Ref. 322 with permission from the Royal Society of Chemistry.)

Per hidden layer three nodes are exemplified. The number of nodes together with
the number of hidden layers can vary. Both are important parameters of the NN and
the number of nodes defines its width. The output layer contains the property to be
fitted, 𝑌 .153;315 Here, it is shown to be a single value, but due to the high flexibility of
the NN, 𝑌 could also be a vector composed of several elements. Fitting many states
in one ML model is possible – which is in contrast to conventional kernel models.

The training process attempts to find the weights minimizing a loss function with
an example given in equation 2.20 The weights,𝑤𝑟𝑠𝑚𝑛 , connect node𝑚 of hidden layer
𝑟 to node 𝑛 of hidden layer 𝑠 . The function mapping the last hidden layer to the
output layer should be linear. Basis functions (also known as activation functions) are
introduced to provide NNs with the ability to fit nonlinear relations. They process the
weights and give the network flexibility. Common types of such functions are the hy-
perbolic tangent, sigmoid, Gaussian or the shifted softplus function, 𝑙𝑛(0.5𝑒𝑥 + 0.5).
The basis functions further need to be differentiable to allow for gradient-based
optimization algorithms.153
The targeted property can then be computed for the specific example shown in

Fig. 5 using the following equation:

𝑌𝑀𝐿 = 𝑓 31

{︄
𝑏31 +

3∑︂
𝑜=1

𝑤23
1𝑜 𝑓

2
𝑜

[︄
𝑏2𝑜 +

3∑︂
𝑛=1

𝑤12
𝑛𝑜 𝑓

1
𝑛

(︄
𝑏1𝑛 +

2∑︂
𝑚=1

𝑤01
𝑚𝑛𝑋𝑚

)︄]︄}︄
(2.25)

The nested functional form of the NN in combination with non-linear basis functions
and finite numbers of hidden layers and nodes per hidden layer enables the fitting of
high-dimensional and complex relations making NNs well suited for many quantum
chemical problems. The bias values, 𝑏 𝑗

𝑖
, not shown in Fig. 5, provide additional

flexibility and can shift basis functions. They are connected to each node in every
hidden layer. In case no hidden layer is used at all and the activation function is
linear, the MLFF NN equals a linear model.153;315 Whenever several hidden layers
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and/or several nodes per hidden layer are used, a deep learning model is the result.
High-dimensional NNs comprise a set of MLFF NNs, where each single MLFF

NN represents a different atom type. This type of NN architecture was originally
introduced by Behler and Parrinello to fit PESs of the ground state.323;324 They are
based on two approaches: 1) The potential energy, 𝐸, is modeled as the sum of atomic
contributions, 𝐸𝐴, with 𝑁𝐴 being the number of atoms in a molecule:153

𝐸 =

𝑁𝐴∑︂
𝐴

𝐸𝐴 . (2.26)

2) Each atomic contribution to the energy is modelled in a separate NN. The atom
then needs to be represented in it’s chemical and structural environment using atom-
wise representations.153 The different ways to represent a molecule to a ML model
will be discussed in the next chapter.

2.3.3 Molecular Descriptors

The quality of an ML model does not only depend on the type of regressor, but is
also sensitive to the input representation. A designed descriptor should fulfill several
requirements. In the best way, it should be unique, permutationally, rotationally and
translationally invariant, differentiable,281 and generalizable with respect to other
elements.325 The latter property of a descriptor should enable anMLmodel to suggest
how an atom interacts with another type of atom by using the provided information
on interactions from the training set. This ability requires information on the atom
type to be incorporated in the descriptor in order to allow for ML generalization
across the periodic table. Common input representations used in quantum chemistry
calculations, such as xyz-coordinates or internal coordinates, are not well suited for
ML models.153

In general, descriptors can be classified into two main categories: molecule-based
descriptors and atom-wise descriptors.326 The former type treats molecules as a
whole with the matrix of inverse distances or the Coulomb Matrix280 as examples.
The matrix of inverse distances, D, is one of the simplest descriptors that can be used
and comprises elements 𝐷𝐴𝐵 between atoms 𝐴 and 𝐵:326

𝐷𝐴𝐵 =
1

| | 𝑟𝐴 − 𝑟𝐵 | | (2.27)

Elements between the same atom, 𝐷𝐴𝐴, are ill-defined and not differentiable and
the whole matrix is symmetric. Therefore, only one triangle excluding the main
diagonal of the matrix is used for the input vector that is passed to the ML model.326
Very similar to the matrix of inverse distances is the Coulomb matrix,280 C, that
additionally includes information on atomic charges and encloses diagonal elements:

𝐶𝐴𝐵 =

{︄
0.5𝑍 2.4

𝐴
if 𝐴 = 𝐵

𝑍𝐴𝑍𝐵

| |𝑟𝐴−𝑟𝐵 | |
(2.28)

In contrast to xyz-coordinates, rotational and translational invariance is given. How-
ever, these representations are not invariant to permutation as the rows of the matrix
change.325
Another drawback of such descriptors is their fixed input size. Molecules of arbitrary
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sizes cannot simply be processed using standardMLmodels and descriptors. Defining
the size of the input with respect to the largest descriptor that is included in the
training set would result in input vectors that contain zero values for all smaller
systems. This is only possible, when no preprocessing, such as scaling or centering
of the input data, is carried out as this would lead to ill-defined input vectors.153
Processing zero values otherwise would require unnecessarily large parameters to
be fitted for smaller systems and is generally not recommended for NNs.153
One solution to enable a description of molecules of arbitrary size and composi-

tion is the use of atom-wise representations in combination with high-dimensional
NNs or atomistic kernel methods. Atom-wise descriptors allow for a decomposition
of the energy of a system into a sum of atomic contributions, which makes them
applicable to high-dimensional NNs or atomistic kernel methods. In addition, per-
mutation invariance can be achieved. Examples are the atom-centered symmetry
functions,324 originally developed by Behler to fit PESs with high-dimensional NNs,
their weighted variants327;328 or the FCHL representation,123 the latter being similar
to the descriptors of Behler, but were implemented for KRR and adapted for NNs as
well.305 Atom-centered symmetry functions324 were the first developed descriptors
of this kind. These descriptors are combinations of functions, which describe atoms
in local environments using radial and angular atom-centered symmetry functions,
which account for radial and angular information to neighbouring atoms, respec-
tively. A cut-off region around a central atom defines the local environment, i.e., the
maximum distance at which an atom is allowed to interact with another atom. All
atoms that are not inside this sphere are not considered to be a neighbour of an atom
when modelling its molecular input.

The FCHL representation is very similar to the symmetry functions of Behler and
was developed recently by Faber et al.123 A set of𝑀-body expansions, usually trun-
cated after the third-body expansion, is used to describe the structural and chemical
environment of an atom. An additional first-body term, 𝐴1(𝐴) incorporates informa-
tion on the stoichiometry. Similar to the symmetry functions, the second-body term
describes the distance between atoms and the third-body term additionally includes
angular information. When standing alone, the second-body term is equal to a radial
distribution function and the third-body term to an angular distribution function.123
Representing an atom in its chemical and structural environment can result in

highly accurate ML-fitted PESs, at least for ground-state problems, but especially
for small systems, the dimension of the input vector is much larger compared to a
molecule-based descriptor, leading to longer training times.324;327 Another drawback
is that additional hyperparameters have to be optimized, e.g., the cut-off region or
widths of Gaussian functions. In case of the first-order expansion used in the FCHL
representation, the values 𝜎𝑃 and 𝜎𝐺 with𝐺 and 𝑃 denoting the group and period of
the periodic table, enter:

𝑁 (x(1) ) = 𝐴1(𝐴) = 𝑒
− (𝑃𝐴−𝜒1 )2

2𝜎2
𝑃

− (𝐺𝐴−𝜒2 )2

2𝜎2
𝐺 ; (2.29)

x(1) = {𝑃𝐴, 𝜎𝑃 ;𝐺𝐴, 𝜎𝐺 } and 𝜒1 and 𝜒2 are dummy variables.
As it is visible, handcrafted representations suffer from a large number of hyper-

parameters, which have to be tuned manually and an improper selection of such
internal hyperparameters can limit the prediction capabilities of an ML model.111;325
However, the task of tuning these hyperparameters is tedious and requires expert
knowledge.111;326 To this aim, automated ways have been provided as an alternative
route to allow for the elimination of the manual definition of a molecular representa-
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tions.
Automatic molecular descriptors can be generated for instance with message-

passing ML models in an end-to-end fashion with one example being the deep
continuous-filter convolutional NN SchNet. As the name already suggests, this
model is based on a convolutional NN, which is frequently applied to image and
speech recognition. The ability of such NNs to detect patterns makes them well-
suited for many different types of applications, such as cancer recognition329 or
autonomous driving.330 However, applying conventional convolutional NNs for
quantum chemical problems would not lead to accurate results, because the positions
of atoms in a chemical system cannot simply be placed on a grid. So to speak, the
image of the molecule would be pixelated.325

Therefore, SchNet uses a filter-tensor instead of discrete filters making this model
applicable to chemical systems. The filter tensor is part of a larger architecture of
SchNet, which is built on the DeepTensor NN.300 The molecular input is obtained
from an atomistic embedding layer that contains information on the atom types:111

𝑋 0
𝐴 = 𝑎𝑍𝐴 (2.30)

with 𝑎𝑍𝐴 representing a randomly initialized embedding. This input is processed
into an atom-wise layer:111

𝑋 1
𝐴 = 𝑤1𝑋 0

𝐴 + 𝑏0, (2.31)

which is a fully-connected layer with weights and biases. Up to now, only the atom
type is described and this preliminary representation is further refined with the
interactions between atoms obtained from the filter-generating NN. The filter-tensor
in form of a fully-connected NN processes the information of the positions of atom
𝐴 in form of distances to its neighbours 𝐵 to obtain the filter values:𝑊 (𝑟𝐴 − 𝑟𝐵). A
convolutional layer is formed by element-wise multiplication of filter values with
atomic representations:111

𝑋 2
𝐴 =

𝑁𝐴∑︂
𝐴

𝑋 1
𝐴 ◦𝑊 1(𝑟𝐴 − 𝑟𝐵) . (2.32)

A shifted softplus function is used to transform the information obtained from the
convolutional layer to an atom-wise layer. In the end, the atomic contributions are
summed to obtain the total energy of a system.
A drawback of this input generation is the larger computational effort, because it
requires additional hyperparameters to be optimized during training.111 However,
the automatic design of the most suitable descriptor for a given data set makes
an accurate fitting of complex structure-property relationships possible. As the
descriptor is designed by an NN, it offers the additional benefit of being automatically
differentiable with the tools provided by the open-source ML framework pytorch,331
which is used to set up the network architecture.116 The only human input that has
to be made regarding the descriptor is to select a cut-off region. The automatically
generated molecular representations by SchNet obey all the initially defined required
properties a molecular representation has to fulfill and therefore provide highly
accurate solutions to chemical problems.325

2.3.4 Training of ML Models

A well-defined descriptor and a comprehensive training set in combination with a
proper training of an MLmodel should be sufficient to obtain highly precise ML-fitted
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functions. A set of weight parameters is required that provides the best solution for
relating an input to an output of a training set under investigation. To find these
weight parameters, a loss function, such as the 𝐿2 loss defined in equation 2.20, has
to be computed at each step during training, i.e., the error an ML model makes on
the training instances is evaluated at each step. The purpose of training is to update
the adaptive fitting parameters of the ML model in order to minimize this error. In
case of the L2-norm, the resulting convex minimization problem for linear models,

𝑚𝑖𝑛𝑤 =

𝑁𝑀∑︂
𝛽=1

(︂
(𝑏 +𝑤𝑋𝛽 ) − 𝑌𝑄𝐶𝛽

)︂2
, (2.33)

can be solved by setting the gradient with respect to the weights to zero. Equation
2.23 is used to find the weights for KRR models. Unfortunately, in case of NNs, the
problem must be solved numerically, as NNs are highly nonlinear, flexible functions.
Stochastic gradient descent optimization algorithms can be used to achieve a step-
wise update of weight parameters, i.e., from step 𝑘 to step 𝑘 + 1:

𝑤𝑘+1 = 𝑤𝑘 − 𝑙𝑟∇𝐿2(𝑤) (2.34)

The step size, 𝑙𝑟 , also known as the learning rate, is one of the most important hyper-
parameters, which is difficult to determine. While large step sizes lead to fast and
most often sub-optimal results, small step sizes enable an NN to learn slowly, but
might trap it in local minima and generally require longer training times. Therefore,
algorithms, such as ADAM (adaptive moment estimation)332 or AdaGrad,333 have
been developed to automatically adapt the learning rate. Similarly, the same is to be
done for the adaptive bias.
A common problem when training an ML model is over-generalization of the

training samples, also known as overfitting. In other words, overfitting refers to
the case, when data inside of the training set is fitted (almost) exactly, including
(numerical) noise. This effect can lead to very small errors on the training instances,
but to large error on test samples, limiting the prediction capability mostly to data
represented in the training set. One often applied technique to mitigate this effect is
to apply regularization. This is for example the role of the parameter 𝜆 used in KRR
models as given in equation 2.23 that controls the strength of regularization. In case
of quantum chemical data, the noise is considered to be small, hence 𝜆 is also small
in most cases.123;304;334
Another way to prevent from overfitting is early stopping,82 commonly applied

when training NNs. To this aim, the data set used for training is split, often in a
ratio of 9:1, into a "direct training" set and validation set. The "direct training" set
is used to optimize the parameters by minimizing the loss function, as explained
below, but additionally the error on the validation set is monitored. As soon as this
error starts to rise for several sequential steps, the model is assumed to be overfitting.
The training process is then stopped and the set of weights, with which the smallest
error on the validation set was obtained, is stored and used for inferences.82

Additionally and separately from the fitting parameters that are automatically
optimized during training, the internal hyperparameters of an ML should be opti-
mized for a given training set. This can be done via K-fold cross-validation335 or
random grid search82 for example. All of these methods have in common that a
set of hyperparameters is sampled and respective ML models are trained. The ML
models that differ in their hyperparameters can be ranked by comparing their error
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on a separate validation set that is not used for training. These parameters can then
be optimized in several iterations by trying to minimize the error of a trained ML
model on this validation set.314
The quality of the most optimal ML model, i.e., the model with optimized hyper-

parameters and fitting parameters, can be assessed by computation of the error on
a separate test set that has neither been used for training, nor for optimization of
hyperparameters.314 The learning efficiency and behaviour of ML models can be
reported with learning curves by plotting the number of instances used for training
and the corresponding error on the test set in a logarithmic scale. A linear function
is obtained when the ML models are trained properly.336;337

In order to use an ML model for MD simulations and to guarantee that the energy
of a system is conserved, the forces need to be treated as derivatives of ML PESs.106
In case of NNs, the training process can be adapted by including the forces, 𝐹 , as NN
derivatives into the loss function:

𝐿2 =
1
𝑁𝑀

𝑁𝑀∑︂
𝛽

(𝐸𝑁𝑁
𝛽

− 𝐸𝑄𝐶
𝛽

)2 + 𝜂

3𝑁𝑀 · 𝑁𝐴

𝑁𝑀∑︂
𝛽

3𝑁𝐴∑︂
𝐴

(𝐹𝑁𝑁
𝛽𝐴

− 𝐹𝑄𝐶
𝛽𝐴

)2. (2.35)

The hyperparameter 𝜂 can additionally be optimized to balance the influence of
forces and energies during training. Remarkably, treating the forces as derivatives of
NN PESs with properly weighted forces in equation 2.35 does not only improve the
accuracy of forces, but also of energies.106

In order to compute atomic forces, F𝐴, as NN derivatives with respect to Cartesian
coordinates, R𝐴, of this atom, the chain rule can be used:

F𝐴 = − 𝜕𝐸
𝑁𝑁

𝜕R𝐴
= −

𝑁𝐷∑︂
𝜚

𝜕𝐸𝑁𝑁

𝜕𝐷𝜚
·
𝜕𝐷𝜚

𝜕R𝐴
(2.36)

The partial derivatives of the PESs with respect to the molecular descriptor of length
𝑁𝐷 are combined with the partial derivatives of each descriptor with respect to
Cartesian coordinates of an atom. The implementation of this derivation is a rather
tedious task that has to be done for each hand-crafted descriptor separately.106;313
The ability to automatically obtain the forces as derivatives when using end-to-end
architectures provides a clear advantage in this regard.325

With kernel methods, some procedures to describe forces exist, e.g., with Gaussian
Process Regression and SOAP,117 with the sGDML approach118;118 or as response
properties for KRR and FCHL.132 The latter applies a force operator, i.e., the negative
of the atomic gradient operator:132

F = 𝐹
[︁
𝐸𝐾𝑅𝑅

]︁
= 𝐹 [K1]w, (2.37)

with 𝐸𝐾𝑅𝑅 being the energy of a system obtained as a sum of atomic contributions.
By using this implementation, the accuracy of energy and force predictions increases
considerably. As a drawback, in the specific case of KRR with the FCHL representa-
tion, also the size of the kernel matrix increases from 𝑁𝑀 ×𝑁𝑀 to 3𝑁𝐴𝑁 2

𝑀
× 3𝑁𝐴𝑁 2

𝑀
,

thus increasing the computational costs of the training process and also the associated
memory requirements.
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DEVELOPED METHODS AND STRATEG IE S 3
In this chapter newly developed ML methods, strategies and adaptations of existing
algorithms for the description of the excited electronic states of molecules are pre-
sented. Since the reference data forms the basis of any developed ML model, this
chapter starts with the adaptive sampling scheme for excited states combined with
a phase correction algorithm to render excited-state properties learnable. Subse-
quently, the developed ML models to describe the excited electronic states will be
discussed that are mostly built on regressors for the electronic ground state energies
and forces of a molecule. The discussion is dedicated to the introduction of single-
state, single-property, multi-state, and multi-property ML models with KRR, MLFF
NNs and SchNet as regressors. Approximated ML NACs based on first and second
derivatives of ML PESs with respect to atomic coordinates are introduced. Reprints
of the published articles that provide detailed information and further discussion on
the method developments are part of the appendix.

3.1 adaptive sampling for excited states of molecules

The adaptive sampling scheme for excited electronic states of molecules is based on
the description of Behler153 and the algorithm of Gastegger et al.101 for the electronic
ground state of molecular systems (as described in section 2.3.1). An overview of
this scheme is illustrated in Fig. 6 with two NNs and the methylenimmonium cation,
CH2NH+

2 , as an example. Therefore, the scheme will be discussed with two NNs,
but it can be used with any number of NNs greater than one and any other type of
regressor.

As can be seen in Fig. 6, the process starts with initial quantum chemical calcula-
tions to create a small, preliminary data set. In principle, any sampling technique
to generate this initial set of data points can be used. In our case, sampling along
different normal modes and combinations thereof obtained from the equilibrium
geometry of the molecule turned out to be beneficial. In this way, conformational re-
gions close to the equilibrium structure of a system can be sampled comprehensively
and accurate initial ML PESs can be obtained, which is advantageous for the adaption
of the training set with MLMD simulations. Additionally, some reaction coordinates
that are deemed to be important for the excited-state dynamics of a molecule can
be included right from the beginning. These can comprise for instance dissociative
reaction channels. Approximately 1,000 initially sampled data points seem to be a
good starting point for small to medium-sized molecules.
If excited-state properties, such as NACs or SOCS are included to describe the

hopping probability between different electronic states with ML models, these initial
quantum chemical data points should be phase corrected to remove inconsistencies
of such properties as it is exemplified in Fig. 4 in chapter 2.2.4 as a result of the
arbitrary phase of the electronic wave function. This task can be achieved with a
phase correction algorithm that was developed during this work and will be described
in chapter 3.2.

Assuming a proper initial training set is available, at least two preliminary ML
models, denoted as NN1 and NN2 in Fig. 6, are trained on these data points. Excited-
state MD simulations are initiated using the ML models instead of the electronic
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Figure 6: Illustration of the adaptive sampling scheme for excited states with two NNs
(NN1 and NN2) and the methylenimmonium cation, CH2NH+

2 , as an example. The scheme
starts with an initial training set provided by a quantum chemical reference method that is
additionally phase corrected. Deep learning models are trained on this training set and a
molecular input obtained from an MD program can be used to start dynamics simulations.
The energies (E), gradients (G), NACs, SOCs and transition and permanent dipole moments
(𝜇) are predicted with both NNs separately. The predictions are compared to each other
and the standard deviation is computed. Whenever the two NNs predict similar values, the
mean of the independent predictions is passed to the MD program to classically propagate
the nuclei and generate the molecular input of the next time step that can be given to the
NNs again. Whenever the standard deviation of the NNs exceeds a pre-defined threshold
for one of the trained properties, a quantum chemical calculation of this data point is
carried out, the data point is phase corrected, added to the training set, NNs are re-trained
and MLMD simulations are re-started. This loop is carried out until the training set is
sufficiently large for the problem under investigation. (Reproduced from Ref. 77 under
CC-BY, https://creativecommons.org/licenses/by/3.0/.)

structure method. The starting points for simulations are obtained from the initial
sampling of geometries after vertical excitation to an excited state. The molecular
input is transformed into the chosen molecular descriptor and the NNs predict the
energies, gradients, SOCs, NACs, and, if needed, dipole moments (𝜇). The mean of
the two NNs is passed to the MD program.
Besides the phase correction algorithm, a greater amount of properties and elec-

tronic states has to be considered, which is different to the adaptive selection scheme
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3.1 adaptive sampling for excited states of molecules

proposed for the ground state of a molecular system.106;153 Each property as well as
each electronic state should be fitted accurately and should be allowed to influence
the sampling procedure. Therefore, the standard deviation of the ensemble of the
ML models is computed for energies and gradients as given in equation 3.1 and for
properties coupling two different electronic states as given in equation 3.2. 𝑁𝑆 refers
to the number of electronic states and 𝑌𝑀𝐿𝐽𝜎𝑖 indicates that a property is a result of a
single electronic state of ML model 𝐽 , which is the case for energies, gradients and
permanent dipole moments. 𝑌𝑀𝐿𝐽𝜎𝑖 𝑗 indicates that a property results from electroni-
cally different states of ML model 𝐽 , which is the case for NACs, SOCs, and transition
dipole moments. The mean of the standard deviations for each electronic state,

𝑌𝑀𝐿𝜎𝑖
=

1
𝑁𝑆

𝑁𝑆∑︂
𝑖

⎛⎜⎝
⌜⃓⎷

1
𝑁𝑀𝐿 − 1

𝑁𝑀𝐿∑︂
𝐽 =1

(︂
𝑌
𝑀𝐿𝐽
𝑖

− 𝑌𝑀𝐿𝑖
)︂2⎞⎟⎠ , (3.1)

and for each pair of states,

𝑌𝑀𝐿𝜎𝑖 𝑗
=

1
2𝑁 2

𝑆

𝑁𝑆∑︂
𝑖

𝑁𝑆∑︂
𝑗

⎛⎜⎝
⌜⃓⎷

1
𝑁𝑀𝐿 − 1

𝑀∑︂
𝐽 =1

(︂
𝑌
𝑀𝐿𝐽
𝑖 𝑗

− 𝑌𝑀𝐿𝑖 𝑗
)︂2⎞⎟⎠ , (3.2)

is considered for computing the standard deviations of the ensemble of the network
for excited-states. Consequently, also the mean of the properties, 𝑌

𝑀𝐿

𝑖 and 𝑌
𝑀𝐿

𝑖 𝑗 , has
to be computed as the average of the means of NN models resulting from different
electronic states and pairs of states, respectively.
A separate threshold is set for each of the fitted properties and is compared to

the standard deviation of the respective property. The value of each threshold is
slightly larger than the RMSE of ML predictions on the validation set that is used to
control overfitting during training of NN models. Whenever one of the thresholds
is exceeded, a molecular geometry is recomputed with quantum chemistry and
included in the training set. As it is described in Ref. 106, also here an ensemble of
independent trajectories is computed in parallel and only after all trajectories have
reached a point that belongs to an undersampled or unknown region of the PESs,
the ML models are re-trained with the considerably larger training set. After each
time that ML models are re-trained and MD simulations are re-started with more
robust ML models, the threshold is multiplied with a factor smaller than 1.

There might be cases, when the standard deviation of the ML models with respect
to the NACs exceeds the threshold to a large extent. This can happen close to conical
intersections, at which point the reference NACs should be singular. The trajectories
are aborted mostly due to the problematic NACs in these regions. The threshold for
NACs can then be set to a large value so that the NACs do not influence the sampling
procedure when passing through a conical intersection. In this way, critical regions
can also be sampled and trajectories are allowed to go beyond such critical regions.
The threshold for NACs can then be reduced again. Re-starting the adaptive sampling
from the geometry at which point the simulation was interrupted, guarantees that a
wide range of the PESs is visited.

Whenever the ML predictions for all properties are similar enough to each other,
MLMD simulations are carried out in the same way as MD simulations would be
carried out with the electronic structure reference method. Based on the active state,
the MD program extracts the relevant information from ML predictions and can
propagate the nuclei according to classical mechanics. Because Wigner sampling is

33



developed methods and strategies

often applied to generate the starting geometries for excited-state MD simulations
with SHARC, the initial training set obtained from normal mode sampling should be
comprehensive enough to allow for accurate ML PESs in the beginning of MLMD
simulations. As soon as the PESs are not accurate anymore, the adaptive sampling
procedure guarantees that relevant data points are automatically added to the training
set.
Several loops of this procedure and re-optimizations of hyperparameters of the

NNs might be necessary during this process. This has to be done in principle until the
training set is converged. Whether a training set is converged or not depends strongly
on the purpose of the study and the molecule under investigation. Flexible molecules
with a high density of states often require a lot of data points, because many different
reaction channels can be reached during an excited-state MD simulation. Molecules
with a less diverse photochemistry can lead to much faster training set convergence.
The ability to compute many consecutive time steps with ML models without having
to abort a trajectory can indicate that the PESs are converged at least to a large extent.
A comparison with the reference dynamics for a short time scale is also helpful to
assess the convergence of the ML PESs. Additionally, the prediction of reaction
coordinates that are deemed to be important can provide a measure of uncertainty. A
good indicator that ML PESs are not converged are fluctuations in the total energy of
a system along an MLMD run and the occurrence of unphysical conformations that
can fall apart. In this sense, executing the production runs with an ensemble of ML
models and comparing their predictions at each time step is beneficial to guarantee
an interpolative regime at each time step. Using an ensemble instead of a single
ML model is further advantageous, because more robust MLMD simulations can be
achieved106, while the additional costs due to the ensemble of ML models are usually
minor. The adaptive sampling scheme for excited states is described in more details
in the corresponding publication 77 in chapter A.1.

3.2 phase correction algorithm

Whenever properties are fitted that arise between different electronic states, the
arbitrariness of their signs has to be taken into account. This problem, shortly
introduced in section 2.2.4, can be solved to a large extent by applying a phase
correction algorithm to preprocess the training set. The idea and goal behind this
process is summarized in Fig. 7 (reproduced from Ref. 77).

Panel (a) shows five different conformations of CH2NH+
2 that differ in their bond

length between the carbon and the nitrogen atom. This input is given to an electronic
structure program. For each molecular geometry, the energy is computed along
with the coupling value between the S1 and S2 state, 𝑌

𝑄𝐶

12 = ⟨𝑆1 |�̂� |𝑆2⟩. The wave
function carries an arbitrary phase for each electronic state, similar to a positive or a
negative sign that does not change the characteristic of the wave function of being
an eigenfunction of the electronic Hamilton operator. Illustrating the phase of the
wave function is difficult and molecular orbitals are shown instead as replacements
of the electronic wave function in the eigenvalue equation, so that 𝑌𝑄𝐶12 = ⟨ |�̂� | ⟩.
As can be seen in panel (b), the color of the molecular orbitals can be either blue or
red, similar to carrying a pre-factor of +1 or -1. As this pre-factor is not uniquely
defined, it can switch arbitrarily along the reaction coordinate, leading to an arbitrary
sign of the coupling value, which is illustrated at the bottom of the middle panel.
A positive sign is the result of: 𝑌𝑄𝐶12 = ⟨ |�̂� | ⟩ = ⟨ |�̂� | ⟩, whereas a negative
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3.2 phase correction algorithm

Figure 7: Phase correction algorithm exemplified with molecular orbitals as placeholders
for the electronic wave functions of two excited electronic states of the methyenimmonium
cation, CH2NH+

2 . Panel (a) shows the molecular input with molecules of slightly different
bond lengths between the carbon and nitrogen atom. (b) Along this reaction coordinate,
quantum chemical solutions to a coupling value, ⟨𝑆1 |�̂� |𝑆2⟩, are shownwith the corresponding
molecular orbitals. (c) The arbitrariness with respect to the sign of the coupling value
can be removed by applying phase correction. (Reproduced from Ref. 77 under CC-BY,
https://creativecommons.org/licenses/by/3.0/.)

sign is obtained from: −𝑌𝑄𝐶12 = ⟨ |�̂� | ⟩ = ⟨ |�̂� | ⟩. Compared to the energy of
a system, where the same electronic state enters the eigenvalue equation twice, e.g.,
𝐸1 = ⟨ |�̂� | ⟩ = ⟨ |�̂� | ⟩, the phase factor does not cancel out for elements of
different states.

Indeed, both outcomes, ±𝑌𝑄𝐶12 , are equally likely and the arbitrariness in their signs
makes elements resulting from two different electronic states particularly challenging
to fit. It even prohibits the use of conventional ML training algorithms77;208;257;290
and needs to be removed in order to make the data learnable with standard ML
models. A consistent phase is further important for the computation of the hopping
probabilities in MQC dynamics simulations as arbitrary signs in the coupling values
can lead to wrong hopping probabilities.72 The learning of a consistent coupling
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surface is thus indispensable for MLMD surface hopping techniques.
How to correct the coupling values in a one-dimensional space is shown in the

bottom of panel (c) of Fig. 7 and might be straightforward in this dimension. In
case of two states, only two possible solutions exist to correct the phases, which is
clearly visible in Fig. 7. However, the complexity of this problem increases with the
number of data points that have to be phase corrected, with the degrees of freedom a
system has, and also with the amount of electronic states considered. The number of
possible solutions for one data point scales with a factor of 2𝑁𝑆−1. To eliminate the
problem of arbitrary sign jumps in coupling values that rapidly becomes infeasible to
account for manually, a phase correction algorithm was developed that automatically
corrects the coupling and transition dipole moment values and provides a consistent
sign within a data set.

The prerequisite of the phase correction algorithm is a reference computation, e.g.,
of the equilibrium geometry of the system under investigation. The wave function of
this calculation has to be stored and provides the reference to all further data points
that should be included in the training set. Every new data point that is added to
the training set is then corrected with respect to the reference phases. To this aim, a
phase vector is determined for each data point inside of the training set from the
overlap matrix, S, that is computed with SHARC according to equation 2.15258 with
respect to the reference wave function. Each entry of a phase vector, p, of length
𝑁𝑆 corresponds to a certain electronic state and determines whether a phase change
occurred or not:

𝑝𝑖 = 𝑠𝑔𝑛
(︁
𝑚𝑎𝑥

(︁
|𝑆𝑖 𝑗 |

)︁
𝑠𝑔𝑛

(︁
𝑆𝑖 𝑗

)︁ )︁
∀ |𝑆𝑖 𝑗 | ≥ 0.5; 𝑖, 𝑗 = 1, 2, ..., 𝑁𝑆 (3.3)

Single- or complex-valued properties can then be corrected by multiplication of each
value resulting from state i and j with the values of the phase vector corresponding
to state i and j. Similarly, the vectorial properties, such as NACs or transition
dipole moments, can be corrected by multiplication of the whole vector with the
corresponding values of +1 or -1:˜︁Y𝑄𝐶

𝑖 𝑗
= Y𝑄𝐶

𝑖 𝑗
· 𝑝𝑖 · 𝑝 𝑗 ; 𝑖, 𝑗 = 1, 2, ..., 𝑁𝑆 (3.4)

Similar molecular geometries often guarantee a proper phase correction. If confor-
mations differ strongly from each other, a phase correction can be prohibited. In such
cases, the wave functions do not overlap sufficiently anymore and no information
on the phase can be obtained. For every data point with wave function overlaps
smaller than a threshold of 0.5, interpolation between the reference geometry and
the geometry to be included in the training set is required. A sequence of 𝑁𝑖𝑛𝑡 wave
function overlap computations from the reference geometry to the targeted molec-
ular conformation has to be carried out and the phase vectors for each molecular
input with indices 𝑑 running from 0 to 𝑁𝑖𝑛𝑡 has to be determined. The phase vector,
𝑝𝑙𝑎𝑠𝑡 , corresponding to the molecular geometry furthest apart from the reference
geometry, is obtained by multiplication of all precedent phase vectors:

p𝑙𝑎𝑠𝑡 =
𝑁𝑖𝑛𝑡∏︂
𝑑=0

p𝑑 . (3.5)

Importantly, intruder states can influence the phase correction algorithm and can
provide a source of error. They play a crucial role in systems that have a high density
of states. Electronic states, which are high in energy at the reference geometry so
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that they are not considered in the beginning, can enter along a reaction coordinate.
Consequently, no phase information on these states can be obtained. The inclusion
of additional states for the wave function overlap computation from the beginning
can help to identify the phases of the relevant states at another molecular geometry.

A proper phase correction for systems with many close-lying electronic states can
easily require about 100 electronic states to be considered. In the form presented here,
the phase correction algorithm becomes very expensive in such cases. The strategy of
including a large number of electronic states only close to the equilibrium geometry
and reducing them along a reaction coordinate as they become irrelevant338 can
be applied to lower the computational costs for accurate phase correction. Saving
electronic wave functions of distinct conformations in addition to the electronic
wave function of the reference geometry can further reduce the computational costs,
but requires large amount of memory or hard disk space.

Nevertheless, with all these tricks in mind, the computation of a training set with
the phase correction algorithm is applicable to many molecular systems, i.e., those
systems with a moderate density of electronic states in relevant conformational
regions of the PESs. The data can be used to train conventional ML models that can
be applied to surface hopping excited-state MD simulations. Furthermore, transition
dipole moments can be fitted. The phase correction algorithm is published in Ref. 77
and part of the appendix A.1, where a detailed discussion of the problems and the
benefits of this algorithm is provided.

3.3 phase-free training

Another way to cope with the arbitrariness in the electronic structure calculations
of properties obtained from two different electronic states is to apply a phase-free
training algorithm. The phase-free training was developed in this work and was
implemented in the SchNarc approach for photodynamics157 that is discussed in
chapter 3.4.3.
In order to render a phase-free training possible, the loss function has to be

adapted. The conventional L2 loss as specified in equation 2.20 forms the basis of
the new loss-function, termed phase-less loss function, 𝐿𝑝ℎ . Several variants of the
loss function exist that depend on the number of properties that are included in
the training process. The idea is to compute the MSE of a property several times
taking all possibly relevant phase combinations into account. In all variants, the
phase-less loss function takes the minimum of all computed MSEs, {𝜀𝑝ℎ}, that arise
from different possible phase combinations:

𝐿𝑝ℎ =𝑚𝑖𝑛
(︁
{𝜀𝑝ℎ}

)︁
(3.6)

In case single- or complex-valued properties are trained (with dimension smaller
or equal to 2), i.e., SOCs, the most efficient way is to compute the entries of {𝜀𝑝ℎ}
according to the following equation:

{𝜀𝑝ℎ} = {𝜀+
𝑝ℎ
, 𝜀−
𝑝ℎ
} =| | 𝑌𝑄𝐶

𝑗𝑘
± 𝑌𝑀𝐿

𝑗𝑘
| |2 if 𝑑𝑖𝑚(Y) ≤ 2. (3.7)

As can be seen from the previous equation, theMSE is computed twice, once assuming
a positive and once assuming a negative sign for a coupling value between state j and
k. The minimum function guarantees that the sign producing the minimal error is
used for the SOC value that influences the training process. The two computed MSEs,
i.e., the one resulting from a positive sign and the one resulting from a negative

37



developed methods and strategies

sign, can further be used in another variant, which is more suitable for vectorial
properties, i.e., properties with dimension ≥ 3:

{𝜀𝑝ℎ} = 𝜀𝑝ℎ = 𝜀−
𝑝ℎ

· 𝜁 + + 𝜀+
𝑝ℎ

· (1 − 𝜁 +) if 𝑑𝑖𝑚(Y) ≥ 3 (3.8)

with

𝜁 + =
𝜀+
𝑝ℎ

𝜀−
𝑝ℎ

+ 𝜀+
𝑝ℎ

. (3.9)

𝜀±
𝑝ℎ

is computed as given in equation 3.7. Noteworthy, the relative signs of the values
within one vector remain and have to be described correctly so that the vector does
not point into an arbitrary direction.
Whenever MQC dynamics simulations with the surface hopping method should

be enhanced with ML, the phases of the NACs and SOCs can not be treated indepen-
dently from each other as inconsistent phases can potentially lead to wrong hopping
probabilities. In this case, a combined loss function should be used that computes
the error 2𝑁𝑆−1-times as given in equation 3.6 with each entry, 𝜀 𝑓

𝑝ℎ
, being computed

according to equation 3.11.

{𝜀𝑝ℎ} = {𝜀1
𝑝ℎ
, 𝜀2
𝑝ℎ
, ..., 𝜀2

𝑁𝑆−1

𝑝ℎ
} (3.10)
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− 𝑌𝑀𝐿

𝑖 𝑗,𝐴
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𝑖
· 𝑝 𝑓

𝑗
| |2 if 𝑑𝑖𝑚(Y) ≥ 3
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· 𝑝 𝑓
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· 𝑝 𝑓
𝑘
| |2 if 𝑑𝑖𝑚(Y) ≤ 2

⎫⎪⎪⎬⎪⎪⎭ (3.11)

The phase-less loss function enables the computation of the appropriate phase vector
for each data point inside of the training set and can therefore be used to describe
NACs together with SOCs for surface hopping MD simulations with ML. The whole
procedure can be seen as an ML-based internal phase correction for each data point.
The fact that ML models are defined as smooth functions allow for a consistent sign
during predictions and MLMD simulations.

3.4 ml models for excited electronic states

Since ML approaches in quantum chemistry were designed almost exclusively for
fitting ground-state energies, properties, derivatives thereof, and other single-valued
features, such as energy gaps, existing methods could only be used to train one
electronic state at a time. The treatment of a manifold of excited electronic states
with these conventional models requires as many ML models as electronic states.
New models need to be developed that can handle a manifold of excited state at once.
As the excited states are inherently linked to each other, ML models can possibly
benefit from the information provided about their interplay.

In this chapter, several terms are defined: Single-state, multi-state, single-property,
and multi-property. The first term can be used for conventional ML models that
can describe a single value. With respect to the energy of a system this is a single
electronic state. Similarly, this term is used to indicate that only one coupling value
can be fitted with one ML model, hence a vector of 𝑁𝑆 × 𝑁𝑆 entries needs 𝑁𝑆 × 𝑁𝑆
independent ML models to be fitted. Multi-state then refers to the possibility of
learning several values at once, such as the energies of different electronic states
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3.4 ml models for excited electronic states

including different spin-multiplicities or properties that couple different electronic
states or all values within one vector. Single-property is then used for single-state or
multi-state ML models that can only learn one property at once, e.g., the SOCs or
the energies of a system including their derivatives. Multi-property models would
then be able to treat coupling values in addition to energies and derivatives as well
as (transition) dipole moments.

3.4.1 Kernel Ridge Regression

KRR is per standard definition (equation 2.21) a single-state single-property model
that can relate a molecular input to a single valued property. In order to enable the
prediction of several electronic states at once, another kernel is necessary, i.e., a
Gaussian state kernel, 𝐾2(𝑆𝛼′, 𝑆𝛽′), that maps a state of interest, S𝛼′ , to all available
states:

𝑌𝑀𝐿 (𝑋𝛼 , 𝑆𝛼′) =
𝑁𝑀∑︂
𝛽

𝑁𝑆∑︂
𝛽′
𝑤𝛽𝛽′𝐾1(𝑋𝛼 , 𝑋𝛽 )𝐾2(𝑆𝛼′, 𝑆𝛽′) . (3.12)

This state kernel is similar to a conventional Gaussian kernel that maps one molecu-
lar geometry to all other geometries in the training set and measures the similarity
between them. However, the conventional KRR model only depends on the molecular
geometry as an input and can therefore only relate one value corresponding to one
state. As it is given in equation 3.12, an encoding of the electronic state by using an
additional Gaussian kernel allows for N𝑆 predictions for one molecular input.

To define the state kernel, the states also have to be presented to the model using
a state representation, similar to the molecular descriptor. In principle, the represen-
tation of the state can be almost any value, but similarly to the conventional kernel
for a molecular geometry, the width of the state kernel has to be adapted accordingly
and is dependent on the representation used. The KRR models were implemented
into the SHARC code using the QML339 toolkit. A more detailed discussion on the
state representation and KRR for excited electronic states of molecules can be found
in appendix A.2.

3.4.2 Multi-Layer Feed-Forward Neural Networks (NNs)

MLFF NNs were developed using the python library theano340 and the inverse
distance matrix, 𝐷 (equation 2.27), as a descriptor for molecular geometries. Due
to their flexibility, NNs allow for a straightforward implementation in a multi-state
fashion.
One molecular input is mapped to a vector consisting of the energies of several

states including also states of different spin-multiplicities. The energies, 𝐸, are
trained together with forces, 𝐹 , in order to conserve energy during MD simulations
and to improve the accuracy of the energies. The scheme of Ref. 106 explained in
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equation 2.35 is adapted to incorporate contributions from different electronic states
and the errors corresponding to different electronic states are averaged for training:

𝐿2 =
1

𝑁𝑀 · 𝑁𝑆

𝑁𝑀∑︂
𝛽

𝑁𝑆∑︂
𝑖

(︂
𝐸𝑀𝐿
𝛽𝑖

− 𝐸𝑄𝐶
𝛽𝑖

)︂2
(3.13)

+ 𝜂

3𝑁𝑀 · 𝑁𝑆 · 𝑁𝐴

𝑁𝑀∑︂
𝛽

𝑁𝑆∑︂
𝑖

3𝑁𝐴∑︂
𝐴

(︂
𝐹𝑀𝐿
𝛽𝑖𝐴

− 𝐹𝑄𝐶
𝛽𝑖𝐴

)︂2
.

The SOCs, NACs and dipole moments are fitted with separate NNs, whereas perma-
nent and transition dipole moments are treated together. All values of each property
that are descried with one NN are summarized in one vector. The loss function is then
the average obtained from MSEs of all values within a vector. The single-property
multi-state NNs are part of the publication given in appendix A.1.

In addition to these single-property models, NNs further allow for joint fitting of
different properties. The properties are summarized in a straightforward manner
in one vector and mapped to one molecular input. The forces can still be treated
as derivatives of ML PESs and can be included in the loss function for training as
described above. Additionally, a state-representation similar to the state kernel in-
troduced for KRR to treat several excited electronic states is defined for the NNs.
This state representation in addition to the multi-property model is summarized and
explained further in appendix A.2.
All models based on MLFF NNs can be used to execute surface hopping MQC

simulations with SHARC using coupling values to compute the hopping probabili-
ties. The formula given in equation 2.36 is used to compute forces as derivatives of
NN PESs with respect to atomic coordinates of a system and is thus expanded for
more electronic states. This has been implemented for the inverse distance matrix.
Moreover, the computation of the Hessian matrix, H, is implemented and the entries
for atoms 𝐴 and 𝐵 are calculated using the following equation:

H𝐴𝐵 =
𝜕2𝐸𝑁𝑁

𝜕R𝐴R𝐵
=

𝑁𝐷∑︂
𝜚

(︃
𝜕𝐸𝑁𝑁

𝜕𝐷𝜚
·
𝜕2𝐷𝜚

𝜕R𝐴𝜕R𝐵

)︃
+
𝑁𝐷∑︂
𝜚

𝑁𝐷∑︂
𝜍

(︃
𝜕2𝐸𝑁𝑁

𝜕𝐷𝜚 𝜕𝐷𝜍
·
𝜕𝐷𝜚

𝜕R𝐴
·
𝜕𝐷𝜍

𝜕R𝐵

)︃
. (3.14)

This equation has to be calculated for each electronic state and 𝑁𝐷 is the length of
the molecular descriptor.

3.4.3 SchNarc

The SchNarc approach for photodynamics simulations is based on the deep-learning
model SchNet111 and is made publicly available on github. The toolbox SchNet-
Pack116 was extended to allow for a description of a manifold of excited singlet,
doublet, triplet, and quartet states including their first and second derivatives, cou-
plings and dipole moments. The package comprises two main building blocks, i.e.,
a representation and a prediction block. The former has not been adapted, hence
SchNarc profits from the end-to-end architecture of SchNet that automatically de-
termines a well-suited descriptor for a given training set. The derivatives of PESs,
i.e. forces and Hessian matrices, can be obtained for the separate electronic states as
well.331

In SchNarc, each property is treated in a separate prediction block that decom-
poses a molecular property into atom-wise contributions. The forces are trained as
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3.5 ml-fitted nacs

derivatives of ML PESs. Whenever phase corrected data are provided, the 𝐿2 loss
function can be used that combines the MSEs of all different properties. A separate
tradeoff-value, 𝑡 , can be set for each property, i.e., 𝑡E for energies, 𝑡F for forces, 𝑡SOC
for SOCs, 𝑡NAC for NACs, and 𝑡𝜇 for permanent and transition dipole moments:

𝐿2 = 𝑡𝐸 | |𝐸𝑄𝐶 − 𝐸𝑀𝐿 | |2 + Λ𝑡𝐹 | |𝐹𝑄𝐶 − 𝐹𝑀𝐿 | |2+
𝑡SOC | |𝐶𝑄𝐶SOC −𝐶𝑀𝐿SOC | |

2 + 𝑡NAC | |𝐶𝑄𝐶NAC −𝐶𝑀𝐿NAC | |
2 + 𝑡𝜇 | |𝜇𝑄𝐶 − 𝜇𝑀𝐿 | |2, (3.15)

The tradeoff-values have to be assessed for each property and training set and de-
termine how strong a property influences the training process. If a tradeoff is set
to 0, then the property is not considered at all. The optional value, Λ, that is set to
1 per default, can be defined for each data point within a training set. Whenever
a data point does not contain forces, Λ is automatically set to 0. In this way, the
computational costs for the training set generation can be reduced by allowing the
inclusion of data points without forces. The training sets have to be provided in
the format of the atomic simulation environment,341 which is also compatible with
SchNetPack. The default loss functions are the phase-less loss functions defined
in equations 3.6-3.11. Depending on the properties available, SchNarc determines
automatically the most suitable loss-function, while it always resorts to the simplest
possible loss available.
In contrast to the previously mentioned representation of NACs and dipole mo-

ments with MLFF NNs and KRR models, these vectorial properties are treated in a
rotational covariant way. For completeness of the SchNarc approach, dipole moments
can be trained according to the scheme proposed in Ref. 106 using the following
relation:

𝜇𝑖 𝑗 =

𝑁𝐴∑︂
𝐴

𝑞𝑖 𝑗,𝐴R𝐶𝑀𝐴 (3.16)

with R𝐶𝑀
𝐴

being the distance in Cartesian coordinates from atom 𝐴 to the center of
mass of the molecule under investigation,. The charges, 𝑞𝑖 𝑗,𝐴, are initiated randomly
and fitted during the training process indirectly in order to match the reference
vectors for permanent and transition dipole moments rather than letting the charges
match any reference charges obtained from quantum chemistry,106 but have not
been applied yet.

3.5 ml-fitted nacs

NACs are treated as single values with KRR, in one vector all together with MLFF
NNs and as derivatives of virtual ML properties with respect to Cartesian coordinates
with SchNet. The virtual property in the latter representation is the anti-derivative
of ⟨Ψ𝑖 | 𝜕𝐻𝑒𝑙

R |Ψ𝑗 ⟩. The mathematical derivation of this formula and the experiments
proving the validity of this approach can be found in the supporting information of
Ref. 157.
Moreover, NACs can be trained in two different ways: They can be trained and

predicted as directly obtained from quantum chemistry (as specified in equation 2.9
in chapter 2.1) or can be scaled with the energy gaps between the coupling electronic
states. The idea of the latter approach is to remove the sharp peaks of NACs in
critical regions of the PESs by multiplication with the corresponding energy gaps,
Δ𝐸𝑖 𝑗 = |𝐸𝑖 − 𝐸 𝑗 | for 𝐶𝑁𝐴𝐶𝑖 𝑗

elements:˜︁C𝑄𝐶𝑁𝐴𝐶𝑖 𝑗
= C𝑄𝐶

𝑁𝐴𝐶𝑖 𝑗
· Δ𝐸𝑄𝐶

𝑖 𝑗
. (3.17)
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These values are then used for training instead of those obtained directly from
quantum chemistry. For prediction, the so-obtained smooth NACs need to be divided
by the energy gaps obtained from the ML models to capture their behaviour around
critical regions correctly:

C𝑀𝐿𝑁𝐴𝐶𝑖 𝑗
=

˜︁C𝑀𝐿𝑁𝐴𝐶𝑖 𝑗

Δ𝐸𝑀𝐿
𝑖 𝑗

(3.18)

This scheme is explained comprehensively in Ref. 158 and part of the appendix A.2.

3.5.1 Approximations to NACs

As NACs are an expensive part of an electronic structure calculation and are addition-
ally challenging to fit accurately, ML approximations to NACs were developed. These
are based on the squared energy-gap Hessians, which characterize the branching
space vectors, i.e., the NAC vectors and gradient difference vectors. The squared
energy-gap Hessian is computed from ML PESs via the following relation:

𝜕2(Δ𝐸𝑖 𝑗 )2

𝜕𝑅2
= 2

(︄
Δ𝐸𝑖 𝑗 ·

𝜕2Δ𝐸𝑖 𝑗

𝜕𝑅2
+

(︃
𝜕Δ𝐸𝑖 𝑗

𝜕𝑅

)︃2)︄
. (3.19)

The squared energy-gap Hessian can be further decomposed into a sum of symmetric
dyads of the two vectors defining the branching space 342–345:

𝜕2(Δ𝐸𝑖 𝑗 )2

8𝜕𝑅2
≈
𝜕Δ𝐸𝑖 𝑗

2𝜕𝑅
⊗
𝜕Δ𝐸𝑖 𝑗

2𝜕𝑅
+ ˜︁𝐶NAC𝑖 𝑗

⊗ ˜︁𝐶NAC𝑖 𝑗
. (3.20)

Subtracting the gradient difference vectors, which can be easily obtained from ML
models, the NAC vectors can be approximated from the eigenvector, 𝑣𝑖 𝑗 , giving rise
to the largest non-zero eigenvalue, 𝜆𝑖 𝑗 , after singular value decomposition343–345:

𝐶aNAC𝑖 𝑗
= 𝑣𝑖 𝑗 ·

√︁
𝜆𝑖 𝑗

Δ𝐸𝑖 𝑗
. (3.21)

Approximated NACs are valid close to conical intersections and same-symmetry
crossings, which are considered to be most common in polyatomic molecular sys-
tems.344;345 To compute NACs only in regions of PESs, in which they are valid, and
to avoid any computational overhead, the SchNarc model uses thresholds between
adjacent PESs that are used to form an estimate whether approximated NACs are
required or not. In case PESs are further apart than this defined threshold, no approxi-
mated NACs are computed. The default values for thresholds between singlet-singlet
gaps and triplet-triplet gaps are 0.5 eV and 1.0 eV, respectively.

3.6 manipulation of data points

For many systems, the excited states need to be treated with multi-reference methods.
Especially when homolytic bond breaking or bond formation needs to be described,
single-reference methods can fail to provide a qualitatively correct picture of the
excited states. However, the treatment of a manifold of excited states of medium-
sized to large systems with multi-reference methods can become very expensive
prohibiting an efficient and comprehensive training set generation. Therefore, the
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aim of this section is to describe the idea of using an affordable single-reference
method, such as ADC(2) or TDDFT, to compute most parts of a training set, and
to use multi-reference methods to correct single-reference data in regions of the
PESs, which are problematic for single-reference methods. This approach can be
seen similar to a hand-tailored parametrization of empirical force fields.346;347

In principle, an ML model should be able to learn from a data set, regardless of how
it is generated. The only prerequisite is that the data can be represented using smooth
functions. In order to validate the approach of generating a training set for ML-fitted
excited-state PESs with multi-reference accuracy, but single-reference costs, the
molecule tyrosine serves and its dissociative reaction coordinates.Especially in the
dissociation limit, single-reference methods often fail to reflect qualitatively correct
physical behaviour.
The training set for tyrosine contains 16654 data points and each data point

contains energies of 5 singlet states and 8 triplet states, corresponding forces, dipole
moments, and SOCs computed with ADC(2).209 The equilibrium conformation of
tyrosine is taken as a reference geometry for the generation of manually manipulated
data points. NACs are missing in ADC(2) codes, at least in open-source codes.
Noteworthy the reference for ADC(2) is restricted MP2. Compared to unrestricted
MP2 spin contamination can be avoided and SOCs between singlets and the T1 and
T2 states can be computed more reliably. With respect to homolytic bond breaking,
also unrestricted MP2 as a reference for ADC(2) would lead to qualitatively wrong
results, as perturbation terms increase in the limit of dissociation.
The equilibrium geometry of tyrosine and the 5 different reaction coordinates

that are selected to carry out unrelaxed scans are indicated in Fig 8. The hydrogen
atoms of the hydroxy group of the phenyl-ring (1), of two C-atoms (2 and 3), of the
amino group (4), and of the carboxyl group (5) are detached along the vectors they
are originally pointing to, while keeping the rest of the atoms fixed. A total number
of 105 data points are additionally added to the training set. Emphasis is placed on
keeping this number as small as possible to reduce the additional computational
overhead and manual data fitting, which can become tedious when a large number
of electronic states is described. Table 1 shows the equilibrium bond distances, r𝑒𝑞 ,
the largest bond distances used with ADC(2) data, r𝑚𝑎𝑥 , and the bond distances of
the manually added artificial data points. It is important to note that these bond-
distances have to be determined manually according to quantum chemical reference
calculations, while the bond distances for the additional manually generated data
points were set randomly. A trend regarding the optimal maximum bond lengths and
the bond lengths of the first manually added data point can be observed: For r𝑚𝑎𝑥 a
value of 1.4Å seems to be a good starting point. Further, and unsurprisingly, similar
functional groups have similar bond distances for the first manually generated data
point. Further evaluations are necessary to generalize some reference bond distances
for functional groups, e.g. if an ML force field for the excited states is targeted and
other building blocks, such as phenol or different amino acids, are to be included.
A comparison of the potential energy curves obtained with different levels of

theory, i.e., ADC(2), MS-CASPT2 (for simplicity MS-CASPT2 is referred to as CASPT2
in the following), and MP2, along the bond distance of the hydrogen located (a) at
the hydroxy group of the phenyl ring (Ph-OH) and (b) at the amino group (N-H) is
shown in Fig. 9 in the left panels. The energies are shown as relative energies with
respect to the equilibrium distance for better comparison. As it is visible, the S0/T1,
S1/T2, S2/T3, S3/T4, and S4/T5 states calculated with ADC(2) are not degenerate at
large bond distances, which is the case according to MP2, CASPT2, and chemical
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Figure 8: Equilibrium structure of tyrosine optimized at MP2 level of theory. Numbers
indicate the bonds of which hydrogen atoms are detached to generate artificial data points.

intuition. Therefore, these potential energy curves are manipulated to reproduce the
degeneracy at large bond distances.

The right panels illustrate the ADC(2) potential energy curves and the energies of
the artificially generated data points that are used for the training set. The procedure
to generate these data points is as follows: First, the energies of the S0/T1, S1/T2,
S2/T3, S3/T4, and S4/T5 pairs of states are computed with CASPT(12,11) and the S0/T1
states are further computed with unrestricted MP2 to confirm their degeneracy in
the dissociation limit. MP2 defines the energies of the S0 and T1 states. The highest
triplet states, T5, T6, and T7 relate to the ADC(2) values at r𝑚𝑎𝑥 , which is also done
for SOCs. The remaining energies are the sum of the S0 energy of artificial points
and the energy difference of CASPT2 obtained from each of the pairs of states, i.e.,
the difference between S1/T2, S2/T3, S3/T4, and S4/T5 CASPT2 energies and S0/T1
CASPT2 energies. Gram-Schmidt orthogonalization is applied to set the forces along
the dissociation coordinate to zero.

Figure 9: Potential energy curves of 5 singlets (S) and 8 triplets (T) computed with ADC(2)
(solid and dashed lines), CASPT2(12,11) (circles), and MP2 (crosses) along the bond distance
between hydrogen and oxygen of (a) the hydroxy group located at the phenyl ring and (b)
between hydrogen and nitrogen located at the amino group. Panels on the right show the data
points used for the training set, which are computed with ADC(2) for short bond distances
and manipulated at large bond distances to fit the ADC(2) energies and the qualitatively
correct behaviour according to CASPT2 and MP2.
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Table 1: Distances between the atoms X and H (X=C,N,O) with numbers as defined in Fig. 8
of the equilibrium geometry, r𝑒𝑞 , the geometry computed with ADC(2) corresponding to the
largest bond length in the training set (at r𝑚𝑎𝑥 ), and the artificially generated data points (#
1-21).

X-H: 1 [Å] 2 [Å] 3 [Å] 4 [Å] 5 [Å]
r𝑒𝑞 0.97 1.10 1.10 0.99 1.02
r𝑚𝑎𝑥 1.38 1.43 1.43 1.48 1.44
# Data point
1 1.76 3.47 3.47 2.19 1.66
2 1.96 3.57 3.57 2.37 1.70
3 2.06 3.67 3.67 2.55 1.76
4 2.16 3.77 3.77 2.73 1.84
5 2.26 3.87 3.87 2.91 1.89
6 2.35 3.97 3.97 3.09 2.06
7 2.45 4.06 4.06 3.36 2.11
8 2.55 4.56 4.56 3.45 2.37
9 2.65 5.05 5.05 3.72 2.43
10 2.75 5.55 5.55 4.07 2.49
11 2.85 6.04 6.04 4.34 13.98
12 2.95 7.03 7.03 24.88 22.64
13 3.00 8.02 8.02 28.14 26.59
14 3.50 9.01 9.01 32.10 32.72
15 3.94 10.00 10.00 38.44 44.49
16 5.92 10.99 10.99 49.52 54.58
17 10.87 20.88 20.88 60.31 62.60
18 20.77 40.66 40.66 68.72 76.16
19 40.58 80.22 80.22 75.26 79.13
20 80.19 90.11 90.11 84.06 94.77
21 100.00 100.00 100.00 99.90 97.05
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RESULTS AND D I SCUSS ION4
This chapter is dedicated to assess the performance of the developed methods and
strategies presented in chapter 3. The methylenimmonium cation, CH2NH+

2 , is given
in the upper left of Fig. 10 and serves as a test system that accompanies the main
developments. In a first attempt, a training set for this molecule is generated using
the extended adaptive sampling scheme for excited states and the phase correc-
tion algorithm. Simple MLFF NNs and the inverse distance matrix as a descriptor
demonstrate that ML can be used for photodynamics simulations by comparison to
reference photodynamics simulations and to reference PESs in critical regions. The
benefits that ML models offer to advance this research field are shown with efficient
computations of thousands of independent trajectories and with long time scale
excited-state MD simulations in the ns regime. This proof of concept is followed by
a comparison of different types of regressors and descriptors, i.e., NNs and KRR with
focus on the FCHL representation and the inverse distance matrix. Single-state and
single-property ML models are compared to their multi-state and multi-property
counterparts.

The amino acid tyrosine (bottom right corner in Fig. 10) is investigated as a repre-
sentative for molecules comprising a complex photochemistry, whose description
requires highly accurate, but mostly impracticable quantum chemical methods. This
molecule highlights the challenges ML models need to overcome in order to allow for
an automatized way of improving existing methods with ML models. The possibility
to fuse two data sets to combine the efficiency of affordable single-reference methods
with the accuracy of multi-reference methods where single-reference methods are
qualitatively inaccurate is evaluated using MLFF NNs.
Some obstacles are identified and solved with the developed SchNarc approach

for photodynamics simulations that profits from the end-to-end architecture of the
underlying deep-learning model SchNet and incorporates a phase-free training al-
gorithm to train data as directly obtained from quantum chemistry. The phase-free
training algorithm is tested along with the accuracy of ML-fitted electronic states
of different spin-multiplicities, ML-fitted SOCs, and approximated NACs using the
molecules sulfur dioxide, SO2 (right upper corner in Fig. 10), thioformaldehyde, CSH2
(bottom left corner in Fig. 10), and CH2NH+

2 . The respective studies are reprinted

Figure 10:Molecules used in this thesis to evaluate the developed methods and strategies.

in the appendix in sections A.1 to A.3. A contribution to the book titled "Machine
Learning in Chemistry: The Impact of Artificial Intelligence" edited by Hugh M.
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Cartwright is enclosed in the appendix in section A.4. An accepted perspective on
ML for excited state dynamics is enclosed in the appendix in sections A.5.

4.1 proof of concept: the excited-state dynamics of ch2nh+
2

The photodynamics of the methylenimmonium cation is used to prove that MLMD
simulations in the excited states are possible. This molecule is particularly well
suited for this purpose, because its excited-state dynamics happens fast enough and
this molecule is small enough, so that highly accurate quantum chemical reference
calculations can be carried out to validate the developed ML approach. High accuracy
is needed to accurately describe the ultrafast transitions taking place in CH2NH+

2 .
Consequently, the dynamics are challenging to reproduce also with ML and require
precisely fitted PESs.

4.1.1 Training Set Generation

The quality of the training set defines the quality of the ML model. Therefore,
the development of new methods is often accompanied with the computation of
a training set, which is also necessary for the scope of this thesis. For the sake of
enhancing MQC simulations with the fewest switches surface hopping algorithm,
a wish list is identified for the training set, which is similar to the one for training
sets for ground-state MLMD simulations:106;108;153 (i) The training set should be free
of errors, i.e., it should be computed with an accurate electronic structure method
that can describe the electronically excited states of the system under investigation
and that does not lead to artifacts within the PESs, which is, more often than not,
a problem on its own. (ii) The training set should be sampled comprehensively in
order to enable an ML model to interpolate the relevant conformational regions for
the subsequent excited-state MLMD simulations. (iii) In addition, it should contain
as few data points as possible in order to minimize the costs related to the reference
simulations and training of ML models, and to remain feasible (e.g., such that the
kernel matrix fits into the computer’s memory).
The ability of the extended adaptive sampling scheme for the excited states of

molecules to meet these requirements is evaluated using the methylenimmonium
cation. To properly describe the photochemistry of this system, a highly precise
multi-reference quantum chemical method is needed, as homolytic bond breaking
can possibly happen after light excitation.64 Therefore, MR-CISD is selected as a
reference method with the aug-cc-pVDZ basis set and an active space of six active
electrons in four active orbitals, which is chosen in accordance with literature.64
The program COLUMBUS201 is used for these reference computations. Each data
point comprises energies and forces of three singlet states, permanent and transition
dipole moments, and NACs between each pair of states. Moreover, every data point
inside of the training set is phase corrected.

In order to start adaptive sampling, an initial training set has to be provided, which
is based on the equilibrium structure of CH2NH+

2 and sampled along its 12 normal
modes. Each scan along a normal mode contributes with 100 data points to the
initial training set and additionally, 70 data points are sampled by rotation of the
molecule along its dihedral angle. 992 data points are then carefully selected from the
initially computed 1,270 data points. Emphasis is placed on removing data points that
show artifacts in the potential energy curves due to changing active spaces, intruder
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states, or not converged reference calculations. This selection is done to guarantee
that the development of an ML model capable to describe a manifold of electronic
states is not biased by erroneous or inconsistent data points. An example of artifacts
within quantum chemical simulations for the excited states is shown in panel (a) of
Fig. 11. As it is visible, at the geometry of the avoided crossing between the ground
state, S0, and the first excited singlet state, S1, a jump in the potential energy of the
second excited singlet state, S2, occurs. Unfortunately, such inconsistencies are quite
common.

Figure 11:MR-CISD/aug-cc-pVDZ (a) potential energy curves along a reaction coordinate
that incorporates two avoided state crossings, showing an artifact in the energy of the second
excited singlet state, S2, and (b) population curves obtained from 90 averaged trajectories
initiated in the second excited singlet state, S2. (c)-(f) The population curves obtained with
100 averaged trajectories with ML models trained on an increasing amount of data points
during the adaptive sampling scheme show the convergence of the ML PESs to reproduce
the reference dynamics.

The so-obtained 992 data points are used to initiate the adaptive sampling scheme
for excited states using the MD program SHARC,72;166;213 which uses NACs to esti-
mate the hopping probabilities between different electronic states. To this aim, two
MLFF NNs are trained on the energies, forces, and NACs using the initial data set
and slightly different hyperparameters for each NN. The adaptive sampling scheme
then starts with an ensemble of trajectories. These trajectories start from molecular
geometries obtained after Wigner sampling236 that are excited to the S2 state. After
4,000 data points, the PESs are considered to be converged with respect to reference
molecular dynamics simulations given in panel (b) of Fig. 11. In this plot, the popu-
lation of each singlet state is averaged over 90 trajectories and plotted against the
simulation time. It further illustrates that within around 100 fs, most of the popula-
tion is transferred back to the ground state. The same behaviour can be obtained
with ML models trained on around 3,800 data points. The convergence of the ML
PESs with increasing number of data points is visible in panels (c)-(f) of Fig. 11. As
can be seen, the PESs converge very fast at the end of the adaptive sampling proce-
dure and not much difference can be observed between dynamics obtained from ML
models trained on 3,800 data points (panel (e)) and ML models trained on 3,900 data
points (panel (f)). Therefore, after 4,000 data points, the adaptive sampling scheme
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is considered to be converged. An in depth discussion on the adaptive sampling
scheme and the network architecture of the NNs can be found in Ref. 77 reprinted
in section A.1.

The final training set of CH2NH+
2 contains 4,000 data points. With respect to the 12

degrees of freedom of the molecule, about 333 data points are included per degree of
freedom. Compared to other recently reported training sets for MQC photodynamics
simulations with ML,154–156 which easily comprise several tens of thousands of
data points, this training set is relatively small. Common training set generation
approaches are discussed in a perspective, which is reprinted in section A.5.

4.1.2 Accuracy of NNs

With the optimal data set that contains 4,000 data points the final NN models are
trained. Six hidden layers and 50 nodes per hidden layer are used for each property.
The training set is randomly split into 90% training data and 10% validation data
to employ an early stopping mechanism to prevent from overfitting. An additional
test set of 770 phase corrected data points is computed from linear combinations of
normal modes to assess the accuracy of ML-fitted PESs, forces, and NACs. In addition
to NNs, SVR and LR (as a baseline model) are used. The MAEs for energies, forces,
and NACs on the test set are reported for all models in Table 2, which is reproduced
partly from Ref. 77. As expected, LR is less accurate than NN, SVR, and KRR. SVR and
KRR are used in their standard implementation, i.e., in a single-state version using
scikit-learn348 and QML,339 respectively. While the MAE for the energies obtained
with an NN is about a factor of 39 lower compared to LR, the MAE of NACs can only
be reduced by a factor of about 1.2. This indicates that NACs might profit from better
descriptors. However, the accuracy obtained with more complex descriptors, as
summarized in Table S4 in Ref. 77, can only be improved slightly with more accurate
descriptors, hence the NNs with the inverse distance matrix are considered to be
accurate enough for the purpose of this study.

Table 2: Mean absolute errors (MAEs) on energies, gradients, and NACs, averaged over
three singlet states and pairs of states, respectively, and reported for LR, SVR, KRR, and NN
models using the inverse distance matrix as a molecular representation. (The table is adapted
from Ref. 77 under CC-BY.)

Model MAE Energy [H] MAE Gradients [H/Bohr] MAE NACs [a.u.]
NN 0.00237 0.00669 0.328
SVR 0.00618 0.01169 0.382
KRR 0.01650 0.04040 0.401
LR 0.09240 0.13902 0.471

The PESs are further evaluated with two-dimensional potential energy scans
around the minimum energy conical intersections obtained with the reference
method. It is important to describe critical regions of the PESs accurately with
ML, because transitions between states of same spin multiplicity are highly probable
around such conformational regions. The plots are given in Fig. 12 (adapted from
Ref. 77 under CC-BY) and demonstrate the accuracy of NN fitted PESs. The crossing
surfaces between the S2 and S1 states are given in the upper panels, (a) and (c), and
between the S1 and S0 states in the lower panels, (b) and (d), with NNs in the right
(panels (c) and (d)) and quantum chemistry in the left (panels (a) and (b)). Importantly,
the NNs can reproduce the the conical intersection seams and their curved shape
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Figure 12: Two-dimensional potential energy scans around minimum energy conical in-
tersections optimized at MR-CISD/aug-cc-pVDZ level of theory computed with (a,b) MR-
CISD/aug-cc-pVDZ and (c,d) NNs showing the S2 and S1 (upper panels) as well as S1 and S0
(lower panels) states. (Adapted from Ref. 77 under CC-BY.)

qualitatively correctly. The energy gaps between the approaching electronic states
are slightly larger with NNs than with quantum chemistry. This overestimation of
the energy gaps is possibly due to the fact that NN PESs are smooth functions by
definition and need to be differentiable at any point in the conformational space of a
molecule. Hence, a cone cannot be reproduced exactly, which is however, the theoret-
ically correct shape of a conical intersection. This effect is discussed comprehensively
in the enclosed reprint in section A.1. In addition, the accuracy of the fitted PESs
and NACs is discussed along with optimized minimum energy conical intersections
from NN PESs. The molecular geometries obtained from NNs are similar to those
calculated with the reference method.

4.1.3 Excited-State Dynamics with NNs

Nevertheless, the ultimate test to prove the accuracy of the NN fitted PESs, forces,
and NACs, is a photodynamics simulation. NN PESs should accurately reproduce the
results of the reference method and enable the simulation of many more trajectories,
while still maintaining computational efficiency. The envisioned goal is to go beyond
the time scales of what is feasible with the reference method. The results of the
envisioned simulations with NNs are shown in Fig. 13 (adapted from Ref. 349) and is
part of the appendix in sections A.1 and A.4.
The results of surface hopping MD simulations with the reference method MR-

CISD/aug-cc-pVDZ (abbreviated QC1 and illustrated with dashed lines) are given in
panel (a) of Fig. 13. The photodynamics are computed additionally with the same
electronic structure method, but with another double-zeta basis set, namely MR-
CISD/6-31++G** abbreviated QC2 in panel (a) and illustrated with dotted lines, to
form an estimate of what can be deemed similar dynamics. The population plots
of photodynamics with 2 NNs are illustrated in panel (b) using solid lines. As it is
visible, the NNs can accurately reproduce the ultrafast transitions from the S2 state to
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Figure 13: Population curves obtained from dynamics simulations of CH2NH+
2 excited to the

second excited singlet state, S2, using (a) 90 trajectories based on MR-CISD(6,4)/aug-cc-pVDZ
(QC1) and 88 trajectories based on MR-CISD(6,4)/6-31++G** (QC2), which are compared
to results obtained from (b) 3864 trajectories based on NNs, whereof 200 trajectories are
continued until 10 ps and (c) 2 trajectories are continued until 1 ns. (Adapted from Ref. 349
with permission from the Royal Society of Chemistry.)

the S1 state and back to the S0 state. The hopping geometries obtained with the three
different methods, which lead to transitions during the dynamics simulations, are
discussed in-depth in the published article enclosed in the reprint in section A.1, and
are similar to each other. With respect to the similarity of QC1 and QC2 population
curves and the limited number of trajectories that are computed with these methods,
the dynamics of NNs are deemed to be similar to QC1 dynamics and qualitatively
correct. These results also demonstrate the validity of the phase correction algorithm.
Only with accurate NACs in addition to accurate PESs and forces, dynamics can be
reproduced.
Besides the fact that NNs allow for an accurate description of the temporal evo-

lution of CH2NH+
2 in the excited states, the main benefit is their computational

efficiency. The fast evaluation of PESs, forces, and NACs enables a computation
of thousands of independent trajectories, which is much more than what is typi-
cally feasible with quantum chemistry methods. Indeed, the computation of 3864
trajectories for 100 fs with NNs requires about 10 times less central processing unit
(CPU) hours than 90 trajectories with the reference method require. The population
curves averaged over 3864 trajectories are illustrated in panel (b) for NNs, which are
characterized by much smoother population curves.
In addition to the enlarged statistics, longer simulation times can be reached.

Panel (c) shows populations curves that are averaged over 200 trajectories until 10
ps and over two trajectories until 1 ns. The trajectories up to 10 ps can be simulated
within 6 hours on one core, which is 300 times faster than the respective simulations
with the QC1 method on the same core. As can be obtained from the population
curves, the population is almost completely transferred to the ground state after
about 300 fs. Due to the remaining kinetic energy of the molecule, some transitions
still take place, which are visible as noise. For demonstration purposes, only two
trajectories are computed up to 1 ns.
Similar to the adaptive sampling scheme, the dynamics are achieved with 2 NNs,

whose mean is given to the MD program. The variance of the predictions of the
NNs for PESs, forces, and NACs are compared each time step in order to guarantee
an interpolative regime and accurate NN predictions. Whenever a conformational
region of the PESs is reached that is not or only sparsely sampled in the training set,
quantum chemical calculations are carried out to adapt the training set. The NNs
are then re-trained and photodynamics simulations are re-started from the point at
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which the simulations have been interrupted. The calculation of 1 ns with two NNs
considering the additional sampling and re-training steps takes approximately 59
days on one core, whereas the quantum chemical reference dynamics would require
computations of estimated 19 years on the same core. Noticeably, due to the fast
inferences of NNs, the time limiting step of MD simulations is the file I/O required
for the communication of the MD driver with the NNs (or in case of conventional
MD simulations the electronic structure program). The molecular geometry of the
next time step is written to an ascii-file by the MD program and read in by the NNs,
and the same is done for the predictions of the NNs, which are written to an ascii-file
and read in by the MD program. This file I/O usually does not affect conventional
MQC dynamics due to the high computational effort of quantum chemical calcu-
lations. With the conventional SHARC MD program, the simulation of 1 ns with
NN PESs would require at least one year of computation. A python wrapper termed
pySHARC directly interfaces the NNs with the SHARC dynamics driver, omitting
the aforementioned file I/O, and thus enables long time scale photodynamics. This
python wrapper is also used for the other implemented ML models in this thesis,
namely KRR and SchNet.

4.2 comparison of different regressors and descriptors

The MLFF NN models applied here are most probably the simplest NN models that
one can use for photodynamics simulations and the use of the inverse distance matrix
might be comparable to a minimal basis in a quantum chemical calculation. Compa-
rable to a quantum chemical calculation, a more precise method (a deeper network
architecture in the case of ML) can only compensate for a minimal basis (a minimal
descriptor) to a certain extent. The matrix of inverse distances in combination with
a deep learning model is accurate enough to allow for a description of a manifold of
excited states, energy conservation during dynamics simulations, and an accurate
computation of hopping probabilities as well as minimum energy conical intersec-
tions. In light of entering the research field of photochemistry with ML and carrying
out a proof of concept study, this architecture is well suited. Nevertheless, when a
larger molecular system with a more complex photochemistry is investigated, these
NN models most probably do not meet the requirements of efficient and accurate
photodynamics simulations anymore. Especially the matrix of inverse distances,
which is used as a molecular representation, remains problematic, as every data point
in the training set needs to be ordered accordingly. Interchanging two hydrogen
atoms, e.g., when rotating CH2NH+

2 along its dihedral angle by 180◦, should not
change the energy predicted by the networks. However, the energy will differ and
permutation invariance is not given, unless the relevant conformations are explicitly
encountered in the training set. The computational effort related to the training
set generation of a molecule with more atoms that can easily comprise 50-100s of
degrees of freedom can potentially become a limiting factor, not even thinking about
the inclusion of all possible permutations that would then lead to long training times
and huge memory requirements. Furthermore, the MAE of NACs shows that the
accuracy achieved with ML models is far from being exhausted, as the MAE is only
slightly lower than the one obtained with linear regression.

Due to these limitations and the lack of studies that focus on a description of the
excited state PESs, forces, couplings, and dipole moments with ML, a comparison
of different types of regressors and molecular representation follows the proof of
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concept that ML can advance photodynamics simulations. Yet, it is not known how
to best treat a manifold of excited states and the properties between them. Therefore,
the following questions are addressed here: (1) Is it advantageous to describe all
excited-state PESs within one ML model or can more accurate PESs be obtained with
a single-state treatment? (2) How can the accuracy of NACs be improved and what
effects does a joint learning on the quality of different properties have?
An additional motivation behind this comparison is that two154;155 out of three

very recent studies that apply MLmodels for advancing MQC dynamics in the excited
states, employ KRR models. However, during dynamics simulations it is required to
resort to quantum chemical PESs and couplings in critical regions. The remaining
third study,156 i.e., some kind of a follow-up with one of the authors from a previous
KRR study, uses NNs and can replace quantum chemistry completely during photo-
dynamics simulations. This has been achieved for two singlet states of the molecule
CH2NH with the Zhu-Nakamura hopping probabilities, which allow to omit any
computation of couplings. These findings leave the questions why some models fail
for some excited-state properties open. What are the benefits of different types of
regressors and can these benefits be combined similar to a wide and deep learning 350

concept?
To address these questions, the training set computed for the methylenimmonium

cation comprising the energies and forces of three singlet states as well as NACs and
dipole moments between them is used. MLFF NNs and KRR with the QML toolkit339
are applied and compared to each other. The latter is already implemented with
the FCHL representation and allows to treat forces as response properties, which is
important for dynamics simulations. The models are evaluated with excited-state
MLMD simulations, potential energy scans, and learning curves.

4.2.1 Photodynamics Simulations and Excited-State Properties of CH2NH
+
2

In a first attempt, KRR models are trained with the FCHL representation using the
standard implementation, i.e., each energy and NAC value is trained with a separate
KRR model in a single-state fashion and forces are treated as response properties.
Additionally, all properties are treated together in one NN model and forces are
trained as derivatives of ML potentials for energies, which is termed multi-property
model. The inverse distance matrix is used as a representation for NNs to allow for
better comparison to single-property NNs. The optimal hyperparameters for the ML
models are obtained using 5-fold cross validation. The learning curves, which show
the training set size plotted against the MAE on a separate test set, are computed as
averages from 10 independent calculations, providing a measure of uncertainty. An
in depth discussion on the ML models and the respective computations can be found
in the reprint of the published article enclosed in section A.2.
The learning curves for energies and gradients are illustrated in Fig. 14(a). As it

is visible, the MAE obtained with NNs (red curves) and KRR (blue curves) models
decreases with increasing training set size, which is the desired behaviour, which
indicates that the models can learn from the training set. The NNs with the inverse
distance matrix outperform KRR models in their accuracy for energies and gradients,
even though the FCHL representation incorporates more information on themolecule
than the inverse distance matrix. To evaluate the performance of NNs with the
FCHL representation, additional learning curves are computed that show only slight
improvements in accuracy and can be found along with an exhaustive comparison
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Figure 14: (a) Learning curves of energies, forces, and dipole moments obtained with KRR
using FCHL (blue lines) and single-property and multi-property NNs using the inverse
distance matrix (red and green lines, respectively) are compared to each other. (b) NACs are
predicted as directly obtained from quantum chemistry after phase correction (left panel)
and as smooth properties (middle and right panels). (c) The potential energy curves along
the C-N bond and the dihedral angle of CH2NH+

2 further illustrate the accuracy of ML PESs.
(Adapted from Ref. 157 under CC-BY.)

of different models and descriptors in the related publication 158 in the supporting
information. Regarding the NN model that describes all properties at once (green
curves), less accurate energies and gradients are received. In case of gradients, the
slope of the learning curve is even positive, revealing an anti-learning behaviour for
forces. However, the MAE decreases when all properties, i.e., the whole predicted
vector of the multi-property model containing energies, forces, dipole moments, and
NACs, is considered. Nevertheless, the results indicate that these models are not
sufficient for excited-state MD simulations.

The learning curves for dipole moments are shown in the rightmost panel, showing
the same result with respect to the MAE at largest training set size. Remarkably, the
learning efficiency, deduced from the slope of the learning curves, is largest for KRR.
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This observation indicates that KRR might lead to higher accurate dipole moments
for larger training set sizes, possibly due to the relation of the depth of the model
and the training set size. A larger network architecture used for NNs does not yield
more accurate results and the network architecture is supposed to be converged with
six hidden layers.

The learning curves of NACs are illustrated in panel (b), learned as directly obtained
from quantum chemistry after phase correction in the leftmost panel. The ML
models exhibit a similar learning behaviour as for dipole moments, but the single-
property and multi-property NN models are comparable to each other and a joint
learning of properties is neither beneficial, nor disadvantageous with respect to
NACs. Additionally, it is evaluated, whether learning and predicting smooth NACs,˜︁𝐶𝑁𝐴𝐶𝑖 𝑗

, i.e., their values multiplied with the corresponding energy gap as defined
in equation 3.17, leads to an improved training. The learning curves of smooth
couplings are illustrated in the middle plot of panel (b). These smooth coupling
values are then divided by the energy gap obtained from ML models, shown in the
rightmost panel. With regards to KRR, the MAE obtained for a training set size of
4,000 data points is lower, but the learning curve is not linear, indicating that the PESs
are not accurate enough to improve the accuracy of NACs considerably. The NN
models are comparable to each other and the accuracy obtained with a training set
size of 4,000 is comparable to the accuracy of NN models that learn the non-smooth
NAC values. This observation raises two assumptions: First, in order to improve
from an inclusion of energy gaps into the fitting procedure of NACs, highly accurate
ML-fitted PESs are required. Secondly, the NACs cannot simply be predicted as single
values, but their rotational covariance needs to be incorporated into the ML model.
This could be done for example with the response formalism for KRR as shortly
mentioned in chapter 2.21. Neither a single-state, nor a multi-state or multi-property
treatment can further increase the accuracy of NACs.

In order to estimate the quality of ML PESs in critical regions, scans along the C-N
bond and the dihedral angle of CH2NH+

2 are carried out with quantum chemistry
(QC), NNs, and KRR. The multi-property NN models are not sufficiently accurate for
fitting PESs, hence their ability to predict energies in critical regions is not further
assessed here. An in-depth discussion can be found in the enclosed reprint A.2. As
can be seen in panel (c), the potential energy curves can be fitted accurately and
only slight differences are visible between NN PESs and KRR PESs close to avoided
crossings between different electronic states. The KRRmodel is therefore supposed to
be accurate enough for photodynamics simulations and evaluated for its applicability
in surface hopping MD simulations using NACs from KRR and NNs.
Fig. 15(a) shows the population curves obtained from KRR models for CH2NH+

2 .
As it is clearly visible, compared to the reference dynamics and the NN dynamics
given in Fig. 13, KRR models are not accurate enough to replace quantum chemical
calculations in photodynamics simulations. As they fail to reproduce dynamics
completely, the influence of the PESs and NACs is evaluated separately. To this aim,
mixed models are used for photodynamics simulations. Panel (b) shows population
curves obtained fromNNs that predict energies and forces and KRR that predict NACs.
As it is visible, the dynamics is similar to the reference dynamics, but happens on a
shorter time scale. The photodynamics obtained with NACs from NNs and energies
and forces from KRR does not agree to the reference dynamics at all. This observation
indicates that energies and forces have a greater influence on the photodynamics than
NACs have, that are indeed only used to measure the probability of stochastically
determined hops between different states. The results obtained from photodynamics
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simulations indicate that the small differences in the PESs of KRR models and NNs
lead to such wrong dynamics, even when the same model for NACs is used. A more
detailed discussion can be found in chapter A.2.

Figure 15: Population curves of CH2NH+
2 obtained from averaging over 200 initially excited

structures to the S2 state computed with (a) KRR models using the FCHL representation,
(b) mixed ML models, where KRR is used to predict NACs and NNs are used to predict
energies and gradients, and (c) mixed ML models with KRR energies and forces and NN
NACs. Dotted lines refer to population curves that are deemed to be wrong with respect to
reference dynamics. (Adapted from Ref. 158 under CC-BY.)

4.2.2 Multi-State Representation

Since NNs describe energies, forces, and NACs in a multi-state fashion and KRR
models in a single-state fashion, it is sought to investigate the effect of a multi-state
treatment for KRR. To this aim, the developedmulti-state representation as introduced
in chapter 3.12 is used and the performance of respective models to predict energies
of CH2NH+

2 is evaluated. Due to the implementation, the forces are not described as
response properties. Also for NNs the electronic state is explicitly encoded in the
representation of molecules to allow for a better comparison and assessment of the
effect of an enlarged descriptor on the performance of NNs. Therefore, the matrix of
inverse distances is multiplied 𝑁𝑆 times with a corresponding state number.
The results for the multi-state models are given in Fig. 16. Panel (a) shows the

learning curves and corresponding scatter plots for energies obtained with the NN
and KRR models applying their standard representation and the state representation.
As it is clearly visible, the energies obtained from KRR models increase significantly
in their accuracy, while the effect of a state representation for NNs is minor. This
observation indicates that the NNs are already converged to their optimal results
and the multi-state treatment is sufficient enough using the standard representation,
while KRR models are not converged to their optimal result. The potential energy
curves compare the standard representation (with forces not described as response
properties for KRR) in panel (b) with the state representation in panel (c). Also here,
the potential energy curves become more accurate when a state representation is
used. The improved accuracy of KRR models can be a result of the larger size of the
kernel matrix, i.e., the depth of the KRR model, which increases from 𝑁𝑀 × 𝑁𝑀 for
the standard representation to 𝑁𝑀 ·𝑁𝑆 ×𝑁𝑀 ·𝑁𝑆 with the state kernel. Nevertheless,
KRR models are still slightly less accurate than NNs in critical regions of the PESs.
KRR models could be further improved by including forces as response prop-

erties.132 An improved accuracy for energies is already visible for the standard
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Figure 16: (a) Learning curves for energies computed with KRR (blue) and NNs (red) to
compare the standard (solid lines) and state representation (dashed lines). The right panels
shows scatter plots for energies using MLmodels trained on 4,000 data points. Corresponding
potential energy curves of CH2NH+

2 along its C-N bond (left panels) and dihedral angle (right
panels) are illustrated in panels (b) and (c) to further compare the standard and the state
representation, respectively. (Adapted from Ref. 158 under CC-BY.)

representation, compare Fig. 16(b), in which forces are accounted for, to Fig. 14(c),
in which forces are not accounted for with KRR models. This effect is also envi-
sioned when combining the state representation with the kernel that can account
for energies and forces in one model. However, the kernel matrix size increases
to 3𝑁𝐴𝑁 2

𝑀
𝑁𝑆 × 3𝑁𝐴𝑁 2

𝑀
𝑁𝑆 leading to large memory requirements with increasing

training set sizes. While for CH2NH+
2 about 126 GB are occupied using 4,000 data

points and 3 electronic states for training, larger systems would require even more
memory. For example, for tyrosine with 24 atoms, 22,000 data points (using a compa-
rable amount of data points per degree of freedom), and 13 states (considered to be
relevant, as will be discussed in chapter 4.4), more than 1 million GB are estimated,
which is far beyond the usual memory consumption for training. Even when only
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a subset of molecules is mapped to the complete training set, the training process
remains extremely expensive. The training of CH2NH+

2 using 4,000 data points re-
quired two weeks of computation on an 8x Intel Xeon CPU (E7-8867). The high costs
related to the training of KRR models therefore prohibits an efficient application of
hyperparameter optimization procedures, such as cross-validation or random grid
search, to obtain the optimal width for the state kernel and the Gaussian kernel for
molecules. The associated computational efforts also hamper an evaluation of NACs
as response properties, as the memory consumption would increase even more due
to a pair-wise state representation, which would be required for that purpose.
The comparison of the different ML models indicates that, in their current im-

plementations, NNs are more suitable for advancing photodynamics simulations.
A multi-state treatment of properties is favourable for NNs, but encoding of the
energy level in the representation cannot improve results significantly. Nevertheless,
it cannot be said that one model outperforms the other, as KRR models exhibit much
steeper learning curves for excited-state properties. Coupling values are therefore
supposed to profit from a multi-state treatment. Further, KRR models benefit from
their simplicity and the fact that only a few hyperparameters need to be optimized
compared to NN models. At the current stage of research, the huge memory require-
ments, however, restrict their use to single-state models and also prohibits the use of
multi-state models in photodynamics simulations.

4.3 ml descriptions of nacs

This chapter is dedicated to improving the accuracy of NACs by describing them in
a rotationally covariant manner and providing an ML based approximation to them
by using the ML-fitted PESs, their Jacobians, and Hessians.

4.3.1 NACs as Virtual Derivatives

In order to describe NACs as vectorial properties that are covariant with respect to
the rotation of a molecule, the SchNet model is used with the adaptation for excited
states. As described in section 3.5, NACs are treated as virtual derivatives of ML
PESs. These virtual properties are initiated randomly in the beginning of a training
and are optimized so that their derivatives with respect to Cartesian coordinates
of a molecule match the NACs of the reference method. The concept of learning
and predicting smooth couplings as evaluated in the previous chapter is used. The
predicted smooth couplings are subsequently divided by the corresponding energy
gaps provided by SchNet. As SchNet for excited states describes every property in
a different prediction block, but connects them by combining their losses in one
function, accurate predictions of all properties are enabled and a fast communication
between the independently described properties is possible. This architecture, which
is inspired by the underlying physics of NACs, is supposed to result in higher accurate
NACs.

Themodel is tested using the training set of CH2NH+
2 . The lowestMAE obtained for

NACs with this approach is 0.15 a.u., which is a factor of about 3.2, 2.7, and 2.2 lower
than the MAEs obtained with LR, KRR, and NNs, respectively. Noticeably, this MAE
is obtained by using only 3,000 data points for training, while the previous models
require 4,000 data points. The accuracy of this approach is further demonstrated by
photodynamics simulations obtained frommodels with the combined L2 loss function
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and 3,000 trained phase corrected data points. The population curves are shown
in Fig. 17 and ML models can accurately reproduce the dynamics of the reference
method in the left panel. More details on the performance of NACs can be found in
section A.3.
With regards to computational costs, the photodynamics simulation with the

SchNarc approach is about 15 times faster than the respective MD simulations
with the MLFF NNs. SchNarc further allows for training and inference on graphic
processing units (GPUs). However, the training of a SchNet model for energies,
forces, and NACs of 3,000 data points takes about 20 hours on a GPU, whereas the
MLFF NNs require approximately 4 hours on a CPU. Due to the different benefits of
the different ML models, MLFF NNs are more suitable for training set generation,
whereas the SchNet architecture is better suited for production runs.

Figure 17: Population curves obtained with MR-CISD/aug-cc-pVDZ for CH2NH+
2 for 100 fs

on the left and respective photodynamics using SchNarc trained on MR-CISD/aug-cc-pVDZ
phase-corrected data and trained NACs on the right. (Adapted from Ref. 157 under CC-BY.)

4.3.2 ML Approximation to NACs

Another problematic aspect of NACs is their peaky nature, which makes them
generally difficult to fit with ML models and also challenging to compute accurately
with quantum chemistry. Furthermore, NAC calculations remain one of the most
expensive parts of a quantum chemical calculation. The costs of a NAC calculation is
comparable to the costs of a force calculation, but the number of coupling vectors is
𝑁𝑆 (𝑁𝑆 − 1)/2 compared to the 𝑁𝑆 required force calculations. During excited-state
MD simulations, the number of computations of NAC vectors can be reduced by
considering only NACs between electronic states that lie close to the active state.
However, all NAC vectors need to be calculated for a training set for ML models.
Another important factor to consider when surface hopping dynamics are to be

described with ML is that NACs are often missing in quantum chemistry codes.
Consequently, a method that cannot account for NACs, cannot be used to generate
a training set for MLMD simulations with Tully’s fewest switches surface hopping
algorithm based on coupling values. Approximations to surface hopping probabilities
exist, but they are limited to systems comprising a low density of states. An alternative
way is to approximate hopping probabilities from wave function overlaps of two
sequential time steps, which is often employed in conventional MQC simulations.259
However, providing ML approximations to molecular wave functions is a difficult
task and has not been achieved for the excited states until now. The ambition to find
another route toward ML-approximated hopping probabilities remains. To make ML
applicable for many molecular systems and quantum chemical programs, a strategy
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that allows to omit the calculation of NACs for training set generation is required.
Admittedly, an approximation to NACs based on second derivatives of PESs exists,

which has been shown to be accurate for 1D systems. This approach is limited due to
the high costs of calculating the second derivatives of the required squared energy-
gap PESs with quantum chemistry methods. This limitation is not present when
using ML models instead, as accurate PESs are available, which can be efficiently
derived with respect to Cartesian coordinates. The second order derivatives are
implemented in SchNarc and for MLFF NNs. Their performance is assessed by
computation of frequencies for CH2NH+

2 , which are further compared to values
obtained from quantum chemistry in the supporting information of Ref. 157. Here,
the accurate ML PESs provided with SchNet are evaluated for their applicability to
approximate NAC vectors. Equation 3.21 and the process explained in chapter 3.5.1
are employed for the computation of squared energy-gap Hessians of ML PESs. This
approach is tested using a "one-shot" linear vibronic coupling (LVC) model241 of
SO2. The advantage of the LVC model is that it approximates the excited-state PESs
by harmonic potentials with parameters obtained from a single quantum chemical
calculation. The analytic functions of PESsmake the computations of surface hopping
dynamics highly efficient and at least as cheap as surface hopping dynamics with
ML models. They further allow for a precise comparison of analytic NACs obtained
from LVC and NACs obtained from SchNet. Hence, the LVC model of SO2 is well
suited for the purpose of this study.

The parameters for the LVC model of SO2 are obtained from Ref. 241 and is based
on MR-CISD. Three singlet and three triplet states are treated. Due to the low costs of
the LVC model 200 trajectory surface hopping MD simulations with the LVC model
are carried out for 700 fs to generate the training set, resulting in a total amount
of 280,200 data points including energies, forces, and NACs. 20,000 data points are
used for training. Dynamics with approximated NACs are compared to dynamics
with NACs that are trained as derivatives of virtual ML properties. Their accuracy is
further validated with photodynamics simulations of CH2NH+

2 .

Figure 18(a) shows potential energy curves along the asymmetric stretching mode
of SO2 of the LVC model (continuous lines) and the SchNet deep learning model
(dashed lines) for three singlet states on the left and three triplet states on the right.
Due to the symmetry of the molecule NACs arise between the S1 and S2 states and
between the T1 and T3 states and not between any other states. The singlet and
triplet states couple via SOCs that are also trained for the purpose of surface hopping
MD simulations. The NAC vectors are illustrated by their norms in both plots in
panel (a). The trained and rotationally covariantly predicted values are illustrated
using dashed lines, whereas dotted lines show norms of approximated NACs from the
squared energy-gap PESs. As it is clearly visible, the norms of approximated NACs
matches the ones obtained from the LVC model and can reproduce the peaky nature
of NACs. The approximated NACs are even closer to the LVC model than the trained
NACs. Noticeably, the trained NACs between the triplet states approach zero at the
point, where the coupled triplet states are closest to each other. This effect might be
due to the geometric phase, which is not considered when NACs are trained, but is
supposed to be negligible for MQC simulations with the surface hopping approach
in most cases. The approximated NACs are only valid close to conical intersections.
Therefore, they are set to zero when the energy gap between adjacent electronic
states exceeds a pre-defined threshold and consequently, the approximated NACs
approach zero faster than the trained NACs and reference NACs.
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Figure 18: Potential energy curves (a) and population plots (b) of SO2 computed with an
LVC model based on MR-CISD241 and SchNarc. (a) The potential energy curves are shown
for three singlet states on the left and three triplet states on the right along the asymmetric
stretching of SO2. In addition, the norms of the available NAC vectors between the S1
and S2 states and between the T1 and T3 states are shown. The LVC curves are shown by
solid lines and compared to predictions of SchNarc with NACs trained (dashed lines) and
approximated from ML PESs (dotted lines). (b) The corresponding population curves of
singlet-only dynamics and dynamics considering singlet and triplet states are illustrated.
The left, middle, and right plots are obtained from averaging 1,000 trajectories obtained
from LVC, SchNarc with trained NACs, and SchNarc with approximated NACs, respectively.
(Adapted from Ref. 157 under CC-BY.)

The quantum population curves obtained from surface hopping dynamics of 1,000
initially excited trajectories are illustrated in panel (b). The upper plots show dynam-
ics considering only singlet states, while the lower plots additionally include triplet
states, which couple between each other and additionally between the singlet states.
The population curves using trained NACs in the middle plots and approximated
NACs in the rightmost plots indicate that both ML approaches lead to comparable
dynamics as LVC models in the leftmost plots. Hence, both ML NACs variants are
assumed to be suitable to compute hopping probabilities for surface hopping MD
simulations.

Additionally, it is sought to investigate the accuracy of approximated NACs with
photodynamics of CH2NH+

2 , which is also considered to be well suited to evaluate the
applicability of approximated NACs for ultrafast population transfer. The respective
population curves can be found in Fig. 19 in the right panel and reference dynamics
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Figure 19: Population curves obtained from photodynamics simulations of CH2NH+
2 with

the reference method MR-CISD/aug-cc-pVDZ in the left panels for 100 fs. SchNarc popula-
tion curves using approximated NACs and therefore only energies and gradients show the
potential of approximated NACs for fast population transfer. (Adapted from Ref. 157 under
CC-BY.)

in the left panel. As can be seen, NACs approximated from ML PESs are valid for
photodynamics simulations and ultrafast population transfer can be reproduced.
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4.4 the excited states of tyrosine

After having developed (1) a procedure to efficiently compute a training set, (2) a
correction algorithm for making inconsistent quantum chemical data due to the arbi-
trary phase of the wavefunction learnable, and (3) the SchNarc approach for efficient
photodynamics, the necessary ingredients to tackle larger and more complex systems
are, in principle, available. To evaluate the performance of the developed methods,
the molecule tyrosine is taken as a test case. This molecule is considered a suitable
challenge, as there is evidence that intersystem crossing occurs relatively slowly, i.e.,
in the ns regime.351;352 Computing the excited-state photodynamics simulations for
1 ns with quantum chemistry is far from being feasible, but have been shown to be
feasible with ML for CH2NH+

2 .
Studying the amino acid tyrosine is important, because it is among the essential

amino acids that can absorb light and give rise to the multifaceted photochemistry
of peptides and proteins.17;18;41;353–355 Tyrosine can also serve as an example to in-
vestigate proton-coupled electron transfer reactions,356;357 which are common in
photosynthesis358;359 for example.

Several reasons led to the choice of investigating the isolated tyrosine molecule in
the gas phase rather than in solvent. The inclusion of an environment with ML as it
is done in mixed quantum mechanics/molecular mechanics simulations for example,
is associated with some additional challenges. For example, a way to let an ML model
feel any environmental changes has to be provided. Up to date, only a mechanical
embedding scheme with ML exists for ground state MD simulations360 and a lot still
remains to be done.361
Experiments of tyrosine and its chromophores in vacuum exist, which focus on

shedding light on the role of the 𝜋𝜎∗ state in the photodynamics of these mole-
cules.52;362–366 Interestingly, the photodissociation of hydrogen atoms attached to
oxygen or nitrogen via a dissociative 𝜋𝜎∗ channel was suggested as an important
nonradiative decaymechanism for phenol. Besides, C-H and C-C bond cleavage could
not be excluded. Ashfold et. al367 investigated the photodynamics of tyrosine with
total kinetic energy release measurements, but no clear picture could be obtained due
to experimental limitations and noise. A qualitative result was nevertheless suggested
by the authors, i.e., that the hydrogen dissociation decreases from p-ethylphenol, to
tyramine, and to tyrosine. This size-dependency of the photodynamics was further
observed by Tseng et. al.363;364 While phenol shows dissociation after photoexcita-
tion, C-C bond breaking is reported for p-(2-aminoethyl)phenol. The experimental
findings and supporting DFT calculations in their study suggest that the dynamics
of tyrosine might differ completely from those of phenol questioning the suitability
of phenol as a test system for the excited states of tyrosine.
Up to date, theoretical effort has mainly been devoted to the investigation of

phenol, see e.g. Refs 352;363–365;368–371, and only a few studies describe tyrosine
in its protonated or neutral form.372–374 The photodynamics of isolated tyrosine are
investigated by Tomasello et. al373 with surface hopping. The study reveals that after
photoexcitation to the bright S1 and S3 states, the molecule remains trapped in the
S1 state after 200 fs simulation time. No triplet states are considered.

Because of all these considerations and the fact that only a qualitative picture could
be obtained from experiments and theoretical investigations of tyrosine are limited
to static investigations or short dynamics, the role of the dissociative 𝜋𝜎∗ in tyrosine
is not yet fully clear. ML models are particularly well suited for tyrosine, because
in principle, a comprehensive training set of tyrosine should be extendable also to
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smaller subsystems of tyrosine. In combination with an atom-wise description of
the molecules, the investigation of the photochemistry of tyrosine and its subsystem
could be possible.

4.4.1 Choosing the Right Reference Method

The accuracy of an ML model is dependent on the reference method. Therefore, a
proper method to compute the training set has to be selected. As photodissociation
and bond-breaking can possibly take place after photo-excitation, a multi-reference
method is most suitable for this task. The reference geometry for the training set
that serves as a reference for phase correction is selected to be the lowest-energy
conformer of tyrosine. The molecular structure is taken from Ref. 375 and optimized
with MP2/TZVP along with all other 11 expected lowest energy conformers of
tyrosine. Table 3 shows the energies of the optimized conformers. The structures
are shown in Fig. 20 and are listed according to Ref. 375 where the structures are
analyzed in detail. The ORCA program is used for the geometry optimizations.376

Conformer Nr.375 Energy [kcal/mol]
1 0.00
2 0.41
3 2.34
4 2.35
5 0.65
6 0.67
7 1.29
8 1.27
9 1.54
10 1.51
11 3.62
12 3.72

Table 3: Relative energies of the conformers of tyrosine with respect to the energetically
most favorable conformer optimized at MP2/TZVP level of theory. The numbers of the
structures are in accordance to Ref. 375, which was used to obtain the initial structures of
the conformers.

The excited states of tyrosine, i.e., those of the energetically most favourable struc-
ture, are described with CASSCF(12,11)199 and CASPT2(12,11)206 as implemented in
openMolcas.377 For comparison and to evaluate the active space of CASSCF, ADC(2)
is used as implemented in Turbomole,209 because it offers a good compromise be-
tween computational efficiency and accuracy. The ano-rcc-pVDZ378 is selected as a
basis set for CASSCF and CASPT2 and cc-pVDZ is used for ADC(2) calculations. The
excitation energies of the 5 lowest singlet states and 8 lowest triplet states are given in
Table 4, which are additionally compared to energies of TD-DFT/PBE0/SV(P)373 and
experimental values estimated from an absorption spectrum in the gas phase taken
from Ref. 379. TD-DFT calculations of Ref. 373 and additional reference calculations
show that the S6 state contributes only negligibly to the absorption spectrum of
tyrosine and the S5 state is a dark state. Therefore singlet states up to the S4 state
are considered to be important for surface hopping dynamics with a total number of
8 triplet states included.
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Figure 20:Geometries of the 12 energetically most favorable structures of tyrosine optimized
at MP2/TZVP level of theory.

As can be obtained from Table 4, the CASSCF energies are furthest from CASPT2
and experimental values. As expected, the S3 and S4 states computed with CASSCF
are remarkably high in energy. The experimental values cannot be reproduced ac-
curately with any of the used methods, but a qualitative correct description can be
expected from ADC(2) or CASPT2. The TD-DFT energies are very close to each
other.

Table 4: ADC(2)/cc-pVDZ, CASSCF(12,11)/ano-rcc-pVDZ, and CASPT2/ano-rcc-pVDZ ener-
gies of the MP2-minimum energy conformation of tyrosine in the gas phase compared to
values obtained from TD-DFT and an experimental spectrum. The relative energies with
respect to the S0 state are reported. The TD-DFT computation refers to the functional and
basis set PBE0/SV(P). Note that S2 is a dark state according to ADC(2), TD-DFT, CASSCF.

State ADC(2) CASSCF(12,11) CASPT2(12,11) TD-DFT Exp.379

S1 5.00 4.94 4.63 5.11 ∼ 4.5
S2 5.92 6.43 5.99 5.51
S3 6.20 7.87 6.24 6.00 ∼ 5.5
S4 7.16 8.19 7.70 6.06 ∼ 6.5
T1 4.27 3.86 3.91
T2 4.60 4.91 4.34
T3 5.01 4.98 4.49
T4 5.58 6.10 5.32
T5 6.19 6.94 5.65
T6 6.75 7.14 7.01
T7 6.99 7.31 7.10
T8 7.03 7.47 7.15

Fig. 21(a) shows the 12 molecular orbitals that are closest to the HOMO and LUMO
computed with ADC(2). The theoretical absorption spectra are plotted along with the
experimental spectrum379 in panels (b) and (c). The theoretical spectra considering
only the most stable conformer of tyrosine and 5 singlet states are scaled according
to the lowest experimental peak and the experimentally fit spectrum is shown by
dashed lines. Panel (b) contains the ADC(2) absorption spectrum, which is obtained
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Figure 21: (a) The minimum energy conformer of tyrosine along with molecular orbitals
around the HOMO and LUMO computed for 5 singlet states using ADC(2). (b) The respec-
tive absorption spectrum computed with ADC(2) for 1000 Wigner-sampled conformations
is shown together with the experimental spectrum for tyrosine in the gas phase ("Exp.")
obtained from Ref. 379. (c) The absorption spectrum is additionally calculated with TD-
DFT/PBE0/SV(P), CASSCF(12,11), and CASPT(12,11) using 100 Wigner-sampled conforma-
tions. For comparison, the experimental spectrum and the ADC(2) spectrum is plotted. The
full width at half maximum for the Gaussian convolution was 0.2 eV in all theoretical spectra.
The absorption peaks are scaled according to the energetically lowest lying experimental
absorption peak. The corresponding vertical excitation energies are specified in Table 4.

from the average of 1,000 Wigner sampled molecular conformations. As can be
seen, the S2 state has important contributions from the lone pair orbital in N of
the NH2 group and is a dark state. The S1 and S3 states are bright and mainly 𝜋𝜋∗

configurations contribute to their character. The S4 state is mainly characterized by
a 𝜋𝜎∗ configuration and dissociation of hydrogen from the hydroxy group of the
phenyl ring cannot be excluded.
Compared to the CASPT2, CASSCF and TDDFT spectra, ADC(2) matches the

experimental spectrum qualitatively best. TDDFT shows two main peaks in the
absorption spectrum compared to three experimental peaks. CASSCF is shifted to
higher energies and the peaks of the different states cannot be distinguished in the
high-energy region. CASPT2 can correct the latter to some extent and shows three
peaks, comparable to the experimental spectrum.

In order to evaluate the relevant active space, single point calculations and scans
along different reaction coordinates are carried out with different active spaces and
different numbers of states. With respect to CASSCF, the best compromise between
computational efficiency and accuracy can be obtained with 12 active electrons in
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11 active orbitals. However, the lone pair located at the nitrogen atom of the amino
group and 𝜎 orbitals are not included in the active space, which are considered to be
relevant for the S2 and S4 states according to ADC(2). Using a larger active space than
12 active electrons in 11 active orbitals in addition to a larger amount of electronic
states does not improve results, but leads to considerably higher computational effort.
An active space up to 14 electrons in 18 orbitals is tested and the computation of
energies of 6 singlet states without any triplet states and forces already takes about
5 hours and 40 minutes on a 2x Intel Xeon E5-2650 v3 CPU, making a larger active
space impracticable, even if better results were obtained. Consequently, an active
space of 12 electrons in 11 orbitals in combination with 5 singlet states and 8 triplet
states is employed for computing potentials, but the potential energy curves are not
smooth. An example is given in Fig. 22, where the scan along the PhO-H bond is
shown with the different quantum chemistry methods.

Figure 22: Scan along the PhO-H bond distance of tyrosine for 4 singlet states and 8 triplet
states computed with (A) MS-CASPT2(12,11) and CASSCF(12,11) illustrated using solid and
dotted lines, respectively. Panel (b) shows potential energy curves computed with ADC(2).

As can be seen in panel (a) in Fig. 22, the 13 described states are very close in
energy, which makes inconsistent potential energy curves problematic to fit with
ML. CASPT2 (continuous lines) can improve results of CASSCF (dotted lines), but is
still deemed to be insufficiently accurate to compute a training set for ML models,
while additionally suffering from high computational costs. The potential energy
curves obtained with ADC(2) are far better suited for the purpose of generating a
training set and can be computed computationally more efficient. The negative side
effect of this single-reference method remains, i.e., that ADC(2) leads to qualitatively
wrong results in dissociative regions of the PESs, as it is visible in panel (b). These
observations led to the idea of using ADC(2) to compute the training set and to
correct the data points in conformational regions of the PESs, in which ADC(2)
fails to describe the qualitatively correct behaviour. Data points for ML models are
envisioned to be manipulated according to results from multi-reference methods to
capture the qualitatively correct physics with ML and to combine the benefits of
single-reference and multi-reference methods.

4.4.2 Training Set Generation

The training set is computed with ADC(2). An additional singlet and triplet state
is considered to guarantee sufficiently large wave function overlaps for phase cor-
rection. The additional computed states are not included in the training set. Scans
along normal modes and combinations thereof are carried out and a scan from the
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zwitterionic form to the neutral form of tyrosine result in 698 data points. Two
additional conformers are incorporated in the initial training set (conformers 5 and
7 of Fig. 4 in Ref. 375 with energies listed in Table 3). A total number of 1967 data
points is obtained to train preliminary ML models.
MLFF NNs are used for the adaptive sampling scheme, because they are less ex-

pensive with regard to training times. Training a SchNet model for tyrosine using 5
singlet and 8 triplet states in addition to SOCs takes several days on a GPU, while
training a MLFF NN takes a couple of hours on a CPU with the inverse distance
matrix as a descriptor (depending on the training set size 1-4 hours). For the sake of
the training set generation, MLFF NNs are thus deemed sufficient. As the NACs are
missing in ADC(2) codes and approximated NACs are neither evaluated with MLFF
NNs, nor deemed sufficiently accurate with this small initial training set at hand, the
adaptive sampling scheme is used as follows: 25 trajectories with different initial co-
ordinates and velocities obtained from a Wigner distribution are launched on each of
the different excited singlet states, i.e., the S1, S2, S3, and S4 states. The mean of 6 NNs
for energies, forces, and SOCs is used to propagate the nuclei using a time step of 0.5
fs. As SOCs are considered with MLFF NNs, the molecule can enter the triplet states,
but no internal conversion is allowed. In the beginning, the average of 2 NNs is used,
but led to unstable simulations. In general, simulations are more stable when the
average of more NNs is passed to an MD program, which has already been observed
for ground-state MD simulations106. Hyperparameters of NNs differ slightly in the
used learning rate or the random seed to shuffle the data set. After a pre-defined op-
timized number of steps the learning rate is annealed by multiplication with a factor,
usually between 0.9 and 1.0. Random grid search and optimization of the number of
hidden layers is carried out to arrive at hyperparameters for the adaptive sampling
scheme. The thresholds that are used to decide whether a data point is insufficiently
sampled or not are 25 kcal/mol (1.08 eV) for energies, 25 kcal/mol/a.u. for forces, and
0.000022 a.u. (4.83 cm−1) for SOCs. Thresholds are decreased by multiplication with a
factor of 0.95 after each iteration of the adaptive sampling scheme. When the training
set size is doubled, hyperparameters are optimized again, i.e., when approximately
4,000, 8,000, and 16,000 data points are sampled. After 16654 data points have been
sampled, the adaptive sampling scheme is stopped as the adaptive sampling scheme
has led toward conformations far from the minimum energy structure. The inclusion
of these data points is complicated by the necessity to phase correct them. Along
certain reaction coordinates, many intruder states enter, as it is for example visible
in Fig. 22, which prohibits an efficient training set generation. Already during the
last adaptive sampling steps, more and more data points required the computation
of many excited states, which should have been accounted for in the beginning. The
additionally computed singlet and triplet state are not sufficient in this case and some
conformations even required about 100 different excited singlet and triplet states for
proper phase correction. Computing this number of excited states is infeasible for
a large number of data points. Nevertheless, this training set is used to introduce
hand-tailored data points. 105 hand-tailored manipulated data points as described
in 3.6 are added leading to a total amount of 16759 preliminary data points. This
training set is assumed to be sufficient to train ML models and evaluate whether
artificial data can be used to learn the correct physics in dissociative regions or not.

16500 data points are used to train NNs with and without artificial data points to
compare their performance. An early stopping mechanism is employed and hyper-
parameters are obtained from random grid search. Focus is placed on optimization
of the learning rate, the L2 regularization rate, and the number of hidden layers.
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Figure 23: Learning curves (a) and scatter plots (b) for NNs trained on a data set of tyrosine
including ADC(2) and manually manipulated data points. Panel (a) shows the learning
curves as the mean of five calculations, in which the training and validation set is split
differently, similar to 5-fold cross validation. The error bars are obtained from the different
NN models and provide a measure of uncertainty. This process is described in more details
in the appendix A.2. Panel (b) illustrates the prediction capabilities of NNs trained on 16,500
data points on a small test set of 259 data points, i.e., 3367 energy values, 242,424 force values
and about 105,154 SOC values.

Learning curves for energies, forces, and SOCs reported on the validation set that
incorporates artificial data points are illustrated in Fig. 23(a) along with correspond-
ing scatter plots in panel (b). The plots show that the NNs can learn from the fused
training set. Noticeably, the scatter plots of the forces indicate that more data points
might be required for desired photodynamics simulations. Due to the use of the
inverse distance matrix data augmentation380;381 might also lead to improved re-
sults.325 5-fold cross validation is then used to further optimize the hyperparameters
of the NNs. A final number of 8 hidden layers and 50 nodes per hidden layer for
training of energies and forces of 13 states simultaneously and 15 hidden layers with
50 nodes per hidden layer for training SOCs, i.e. 406 complex, phase corrected values
per data point, are used. The NNs with the lowest error on the remaining test set are
used for the following predictions of potential energy scans. The MAEs of energies,
forces, and SOCs on the preliminary test set are 0.0227 eV, 0.626 eV/Bohr, and 0.971
cm−1, respectively.

4.4.3 Performance of NNs in Dissociative Regions

Fig. 24 shows potential energy curves of NNs trained on 16,500 ADC(2) data points.
For comparison, the ADC(2) and artificial reference points are shown using dashed
lines. The PhO-H bond and the N-H bond are elongated as an example. As it is
visible from panels (a) and (c) an exclusion of the artificial data points leads to wrong
energies in the dissociative regions of the PESs and the energies of all states increase
rapidly. Panels (b) and (d) indicate that the NNs can learn from the data set that
contains 105 hand-tailored data points. Additionally, predictions up to a distance of
1,000 Å are possible, which exemplifies that the NNs predict the degeneracy of certain
pairs of states also at large bond distances, which are not explicitly encountered for.
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These results demonstrate the possibility of generating hand-tailored potentials for
ML models, with which inaccuracies in different methods can be corrected.

Figure 24: Comparison of potential energy curves predicted with NNs trained on 16,500 data
points without (panels (a) and (c)) and with artificial data points (panels (b) and (d)) along the
PhO-H and N-H bonds of the minimum energy conformer of tyrosine. NNs are shown with
continuous lines and reference data (ADC(2) and artificial points) with continuous lines.

The capability of NNs to predict different reaction coordinates and to go beyond
the included reaction coordinates is assessed with the manually tuned potential.
Therefore, the hydrogen is detached in different directions and different conformers
are tested. The PhO-H and N-H bonds are illustrated as an example in Fig. 25. As
it is visible, the NNs predict correctly that singlet and triplet states are degenerate
at large bond distances (panels (a) and (c)). However, panels (b) and (d) indicate
that NNs are not yet accurate enough to predict other conformers. Noticeably, the
dissociation barrier is visible, which could be accurate enough to predict qualitatively
correctly whether dissociation takes place after excitation or not. The nonphysically
increasing potentials predicted with NNs, which are trained on pure single-reference
data (as given in Fig. 24 panels (a) and (c)) can be corrected with the hand-tailored
data points. Importantly, the energies are almost degenerate and do not increase
also for the different conformers, which are not included in the training set. A better
prediction accuracy for other conformers might be possible by augmentation of data
points as the current NN models are not invariant to permutation.
The results obtained with NNs, which are trained on a hand-tailored, partially

corrected single-reference PES of a manifold of singlet and triplet states show the
potential of ML to go beyond the accuracy of single-reference methods. The manipu-
lation of data in some dissociative regions of the molecule offers the possibility to
maintain the computational efficiency of single-reference methods and their smooth
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Figure 25: Potential energy curves of NNs trained on 16,500 data points of a data set
comprising ADC(2) and artificially generated data points. Reaction curves along the PhO-H
and N-H bonds are shown – pointing toward different directions (panels (a) and (c)) and
belonging to different conformers (panels (b) and (d)).

PESs, while their inaccurate description of some conformational regions can be
corrected according to multi-reference methods in conformational regions, in which
single-reference methods fail to describe the qualitatively correct physical behaviour.
NNs should therefore be able to learn from fused data sets and predict dissociation
barriers as well as degeneracy of states on a qualitatively correct picture.
In order to assess the performance of ML models trained on the hand-tailored

excited-state potentials, observables should be computed and compared to experi-
ments. The time constants of the transitions and the dissociation reaction should
be computed and compared to experiments.382 The scatter plots of forces and re-
action scans of different conformers of tyrosine indicate that more data points are
necessary for ML enhanced photodynamics. However, as already discussed earlier,
the phase correction procedure increases the computational effort to further expand
the training set considerably due to the amount of excited states that have to be
included from the beginning. Reducing the number of excited electronic states along
a reaction coordinate can in principle reduce the costs, but makes it difficult to
automatize the training set generation as it requires manual interaction to adapt
the number of relevant excited states. A straightforward and efficient computation
of a training set without the need to account for any phases and as little human
interaction as possible would be highly desirable. To this aim, an intrinsic ML-based
phase correction procedure as explained in 3.3 is developed and implemented in the
SchNarc approach. This approach is termed phase-free training and will be discussed
in details in chapter 4.5. The next sub-section is dedicated to the remaining problems
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that additionally limit a comprehensive ML-based study of the temporal evolution of
tyrosine in the excited states.

4.4.4 Additional Challenges of Fitting the Excited States of Tyrosine

Besides the challenge to find the right phases for excited-state properties, there are a
number of other challenges that need to be overcome, which are briefly discussed
below.
(1) Up to now, the training set is based on one conformer of tyrosine, i.e., the

minimum-energy conformer. However, there are many other conformers that are
important in order to obtain statistically significant results at a given temperature. If
possible, the photodynamics of every conformer should be investigated at different
reaction conditions, i.e., different temperature and excitation energies. Until now,
the PESs of tyrosine fitted with NNs are mainly limited to conformational regions
close to the minimum-energy conformer. It is not known, how many additional
data points are required to describe all possible conformers of tyrosine with ML. In
addition, the high density of excited electronic states further complicates the fitting
of PESs and requires consistent quantum chemical data.

(2) As it is shown for the excited states of CH2NH+
2 in section 4.1, a better descrip-

tor can reduce the amount of necessary training data for accurate photodynamics
simulations and can provide more accurate PESs. However, test runs with SchNet
reveal that the respective PESs cannot simply be constructed from atom-wise, local
contributions. The cutoff, which defines the environment an atom can perceive,
should possibly be large enough to incorporate the whole molecular system.383 As a
consequence of the enlarged molecular "image", more Gaussian functions for the ex-
pansion of the atomic distances are required to circumvent a loss in spatial resolution.
The resulting larger network architecture leads to longer training times and large
memory consumption even for very small mini-batch sizes. These problems limit
the applicability of atom-wise representations for the excited states of large systems
and indicate that molecule-wise descriptor might be beneficial for the excited states.
As a negative side effect of molecule-wise descriptors, more data points are required
and data augmentation is necessary to guarantee permutation invariance.
(3) The computation of the excited states of tyrosine along with the forces and

SOCs is expensive and it would be beneficial to reuse this training set and the trained
ML model also for smaller subsystems of tyrosine, such as phenol or tyramine, with
only a few additional reference calculations of these smaller systems. It would also
be good to treat the protonated form of tyrosine or tyrosine with capped amino and
carboxy groups to mimic this molecule in a protein environment. In order to allow
for such a description, an ML model must comply with at least two main require-
ments, which have not yet been fulfilled for the excited states: Firstly, an atom-wise
representation is needed, but a description of the excited states via atom-wise local
contributions has not yet been shown to be possible. Secondly, a quantum chemical
method is required, which can provide accurate PESs and properties thereof for all
types of systems to be treated with anMLmodel. Multi-reference methods are limited
in this respect, unless an impracticable FCI description is employed. For example,
if a training set for phenol is calculated, an active space of 10 active electrons in 9
active orbitals might be sufficient to accommodate the molecular orbitals (3× 𝜋𝜋∗ of
the phenyl ring, lone pair of oxygen, and 𝜎𝜎∗ of the hydroxy group) considered to
be relevant for the excited states. In contrast, tyrosine requires a much larger active
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space, and the inclusion of peptide bonds yet requires an even larger active space
than tyrosine and phenol. Either different active spaces or unnecessarily large active
spaces for small systems are the result. The use of single reference methods is not
only computationally more efficient, but also advantageous for describing different
molecular systems in one training set. ADC(2), for example, which does not require
the selection of a density functional or an active space, is well suited for this task.
The fusion of single reference data with artificially generated data points to obtain
correct physics in some conformational regions of PESs is therefore promising to
compromise the loss in accuracy due to the single-reference description. As it is
shown before, only a small amount of such manipulated data points is needed to
obtain a qualitatively correct description in dissociative regions of the PESs, i.e.,
about 0.6% of the training set. This small number should make the generation of
hand-tailored potentials for the excited states feasible.
Tyrosine is a good example to illustrate the existing problems, which still need

to be overcome, if a description of molecular excited electronic states with ML is
envisioned for more complex and larger systems than e.g. CH2NH+

2 or SO2. One of the
problems, which has been mentioned before and could be solved in this thesis, is the
training of excited-state properties, which carry an arbitrary sign due to the arbitrary
phase of the wave function. The performance of the phase-free training algorithm
approach, which renders the learning of such inconsistent quantum chemical data
possible, is evaluated in the next sub-section.

4.5 phase-free training for photodynamics: ch2nh+
2 and csh2

An efficient and affordable training set generation for the excited states requires an
alternative treatment of the phase of the wave function to omit the costly and time
consuming phase correction procedure. Up to date, training sets that are used to
accurately fit the excited states of molecules are either phase corrected or do not
include any properties that are influenced by the arbitrariness of the wave function
phases. The phase corrected training sets, which are available in the literature, are
partly or completely manually phase corrected,208;290 which is even more tedious
than the phase correction procedure applied here. Only one study exists, where
phase-inconsistent NACs are fitted, which leads to insufficiently accurate ML models
for photodynamics simulations.155 Therefore, training on inconsistent raw quantum
chemical data is assessed using different types of loss functions, i.e., the standard L2
loss function and the phase-less loss function as introduced in chapter 3.3.

Photodynamics simulations of CH2NH+
2 are used to prove the validity of the phase-

free training with the phase-less loss function. In a first attempt, the photodynamics
of CH2NH+

2 are evaluated, because a phase corrected training set already exists that
has been shown to be comprehensive to allow for ML-enhanced photodynamics
simulations. This training set is recomputed with the same reference method, MR-
CISD/aug-cc-pVDZ, but without applying phase correction. Deep learning models
are trained with SchNarc on 3,000 data points using the L2 loss function. NACs
are trained in a rotationally covariant way as derivatives of virtual ML properties
as explained before. In addition, the same ML model, but with the phase-less loss
function instead of the L2 loss function, is trained. Photodynamics simulations
for 100 fs are carried out after excitation to the S2 state. Results are illustrated in
Fig. 26. Panel (a) shows population curves of the reference method (dotted lines)
and of SchNarc models, which are trained using the L2 loss function (solid lines).

73



results and discussion

As it is visible, the photodynamics simulations of the reference method cannot be
reproduced. Panel (b) illustrates the population curves of SchNarc with ML models
trained with the phase-less loss function. As it is visible, the phase free training
enables the use of inconsistent quantum chemical data and the ultrafast dynamics is
correctly reproduced.

Figure 26: Photodynamics simulations of CH2NH+
2 considering three singlet states. The

reference population curves obtained from MR-CISD/aug-cc-pVDZ are plotted against pop-
ulation curves obtained from SchNarc models trained on NACs with the L2 loss function
(panel (a)) and the phase-less loss function (panel (b)). (Adapted from Ref. 157 under CC-BY.)

Additionally, the performance of this approach is evaluated for the photodynamics
simulations of CSH2, which is characterized by slow population transfer. The refer-
ence method is CASSCF(6,5)/def2-SVP. The training set for this molecule contains
4703 data points. The initial training set is computed with scans along different
normal modes of the molecule. Energies, forces, and SOCs are trained for two singlet
states and two triplet states. Adaptive sampling is applied to further expand the
training set with MLFF NNs. No phase correction is applied. For photodynamics
simulations, the adapted version of SchNet and the phase-free training algorithm
are used. NACs are approximated from PESs and their derivatives. The training
set generation and the ML models are discussed in more details along with scatter
plots and scans along the C=S bond distance in the reprint in section A.3 and the
supporting information of Ref. 157. Fig. 27 shows the population curves obtained

Figure 27: Photodynamics simulations of CSH2 are carried out with CASSCF(6,5)/def2-SVP
and SchNarc for 3 ps considering two singlet states and two triplet states. The phase-less
loss function and the NAC approximation form ML PESs is applied. (Reproduced from Ref.
157 under CC-BY.)

with quantum chemistry in panel (a) and SchNarc in panel (b). As it is illustrated in
Fig. 27, the photodynamics simulations of the reference method, which are computed
for 3 ps, can be reproduced with SchNarc. A negative side effect of the phase-less
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loss function are the longer training times, which rise with the number of excited
electronic states. More details on training times and the performance of the phase-
free training procedure can be found in Ref. 157.

The results shown here demonstrate not only the validity of the intrinsic ML-
based phase correction scheme, but also the validity of the NAC approximation
from squared energy-gap Hessian of PESs, which are usable to predict hopping
probabilities of systems comprising fast as well as slow population transfer. The
ML-based intrinsic phase correction is especially important to describe medium-
sized to large systems with a manifold of excited electronic states and to enable
an efficient and affordable training set generation. With respect to photodynamics
simulations, a consistent phase can be obtained as ML models are smooth functions
by definition. The phase-free training process thus allows for omitting the phase
correction of training data completely when MQC photodynamics simulations are to
be described.
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SUMMARY AND CONCLUS ION5
The main objective of this thesis was the investigation and development of machine
learning (ML) models for the excited electronic states of molecules and their applica-
tion in photodynamics simulations. The computational efficiency of ML models in
combination with the accuracy of the underlying quantum chemical reference meth-
ods makes ML models promising to advance the research field of photochemistry,
which is severely limited by the high complexity and computational effort involved
in the description of coupled electrons and nuclei. Unfortunately, challenges associ-
ated with this complexity limit not only mixed quantum-classical photodynamics
simulations, but also mixed ML-classical photodynamics simulations. Therefore, the
identification of key obstacles that prevent an accurate and efficient photodynamics
simulation with ML-fitted coupled electronic excited states of different spin multi-
plicities, their derivatives and their properties was central to this work, and solutions
to overcome these challenges were provided:
(1) The most severe problem with which we have been confronted, which also

distinguishes excited-state properties from ground-state properties and impedes
the use of conventional ML models, is the arbitrariness in the signs of properties
resulting from different electronic states as a consequence of the arbitrary phase of
the wave function. The need to guarantee a consistent phase during photodynamics
simulations further complicates the fitting of such properties with ML. Two different
approaches to tackle this task were developed: First, a phase correction algorithm
makes inconsistent quantum chemical data learnable and allows for a reasonable
and efficient training of excited-state properties with standard ML models. Second,
an intrinsic ML-based solution to learn from inconsistent quantum chemical data
was implemented in the new SchNarc approach developed in this thesis. The latter
enables an efficient training set generation, which is practicable for many molecular
systems and many excited electronic states. While the first approach suffers from
an expensive training set generation, the second approach is more expensive with
respect to the training of an ML model. Nevertheless, both methods are, to the
best of our knowledge, the only available phase correction algorithms that do not
require manual adjustment of data points and are therefore an important step to
allow for an integration of ML into photochemical simulation methods. They further
form the basis of all studies carried out in this thesis, without which our ML-based
photodynamics simulation would not have been possible.
(2) Many electronic structure codes do not offer the calculation of couplings

between states of same spin multiplicity, which prohibits their use as reference
methods for the training set generation if they need to be described. Therefore, an
approximation of such coupling values from ML potential energy surfaces, their
first and second derivatives, was implemented into the SchNarc approach and the
accuracy of the ML approximated coupling vectors was proven with photodynamics
simulations of SO2, CH2NH+

2 and CSH2, demonstrating their validity for slow and
ultrafast population transfer between different excited electronic states.

(3) Due to the lack of studies that focused on a description of the excited states with
ML, many questions regarding the proper choice of an ML model and a molecular
descriptor or the treatment of excited states in a multi-state or single-state fashion
remained unanswered. To this aim, several ML models and molecular representations
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were compared and results led to the following main conclusions: (i) As the excited
states of a molecule are inherently linked to each other, a multi-state treatment, i.e.,
the description of all excited states in an ML model, is advantageous compared to a
single-state treatment. (ii) Vectors that couple different electronic states should be
represented in a rotationally covariant manner. This was achieved by the definition of
virtual ML properties whose derivatives with respect to Cartesian coordinates reflect
those coupling vectors. This approach, inspired by the underlying physics, can benefit
from the inclusion of the energy gaps of the coupled potential energy surfaces, which
must be fitted accurately for this purpose. (iii) At the current stage of research, the
benefits of conventional kernel methods are their simplicity and ease of use. However,
kernel methods turned out to be less accurate for photodynamics simulations, because
they suffer from high memory consumption, which further restricts them to small
training set sizes. In contrast, artificial neural networks are more flexible and can
efficiently describe a manifold of excited states in one model, leading to more accurate
potential energy surfaces. (iv) Besides the influence of the ML model on the accuracy
of fitted potential energy surfaces, an precise and tailored molecular representation
can further improve results, while reducing the number of necessary training points
for subsequent photodynamics simulations. An optimal, ML-generated molecular
representation can be provided by SchNet, which was adapted for the excited states
and implemented in the SchNarc approach. The automatically created descriptor
describes atoms in their chemical and structural environment and eliminates the
time-consuming manual definition of a representation for molecules. Unfortunately,
it is not yet known, whether the excited states can be described with atom-wise
local contributions. The small test systems used in this thesis are not sufficiently
large enough to answer this question. Further tests are needed to evaluate whether
atom-wise local contributions can be used for excited-state potential energy surfaces,
their derivatives, and properties thereof.

(4) In order to enhance photodynamics simulations with ML, a cost effective train-
ing set generation is required, which allows for a desired accuracy. Therefore, an
efficient procedure originally developed for ground-state molecular dynamics simu-
lations was adapted for the excited states to comprehensively sample the relevant
conformational space of a molecule after photo-excitation. This scheme was used to
generate training sets for photodynamics of CH2NH+

2 and CSH2 with multi-reference
methods. ML models trained on these training sets were sufficiently accurate to re-
produce photodynamics simulations, while keeping the number of required reference
data at a minimum.

All these novel strategies have been successfully applied to the calculation of the
photodynamics of SO2, CH2NH+

2 and CSH2, allowing for excellent agreement to the
quantum chemical reference methods. Statistically significant populations in the
excited states could be obtained by efficient sampling of thousands of independent
reaction events. In addition, artificial neural networks were used to simulate the
photodynamics of CH2NH+

2 for one nanosecond. This simulation was achieved in
59 days on a single core, which would have required approximately 19 years of
computation on the same core without the use of ML.

The amino acid tyrosine, which possesses a high density of electronic states, pro-
vides a perspective on the capabilities of ML approaches developed in this thesis
and summarizes the challenges that still have to be overcome: A description of the
photochemistry of many molecular systems requires precise multi-reference meth-
ods that can accurately treat reactions, such as homolytic bond breaking. However,
multi-reference methods suffer from high computational costs and inconsistencies in
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potential energy surfaces, which was exemplified for the excited states of tyrosine.
Especially the large number of relevant and energetically close-lying excited elec-
tronic states, which need to be fitted with ML models, require smooth underlying
potential energy surfaces, which are impracticable to calculate with high-level quan-
tum chemistry methods, such as CASPT2. Single-reference methods are much better
suited for the computation of a training set for ML. However, such methods cannot
provide a physically correct picture in some conformational regions of molecules.
It was shown that artificially generated data points can, in principle, correct single
reference data in such conformational regions. Therefore, most parts of a training
set were computed with an affordable single-reference method and homolytic bond
breaking was described with artificially generated data, i.e., data points that were
manipulated to describe the multi-reference behaviour in such conformational re-
gions. Artificial neural networks could learn from this fused data set and interpolate
the qualitatively correct behaviour in dissociative regions.

The strategies and methods developed in this thesis shed light on how ML models
can be used to treat a variety and manifold of excited electronic states of molecules.
The overall developments provide a framework for an efficient and accurate study of
the photochemistry of molecules with ML and represent an important step toward
improving existing photodynamics simulations. Nevertheless, much remains to be
done and ML is not yet close to being a routine application in quantum chemistry.
Probably themost interesting question that remains unsolved is whether excited-state
potential energy surfaces can be described with local atomic contributions. Another
question, which is still unanswered, is the transferability of ML models to describe
the photochemistry of many molecular systems instead of only one, as it is currently
feasible. Especially the latter requires a quantum chemistry method, with which
a training set can be computed for many molecular systems under investigation.
However, despite the impracticable full configuration interaction method, no method
exists, which can accurately describe any molecular system.
The main bottleneck identified that prohibits a practicable application of ML

models for photodynamics simulations of many molecules is therefore the underlying
quantum chemical calculation. The unfavourable scaling of existing accurate multi-
reference methods with the number of atoms and excited electronic states of a
molecule limits their application to small molecular systems. It was demonstrated that
if a quantum chemical method exists to provide accurate underlying potential energy
surfaces, their derivatives, and properties thereof, ML can significantly advance
conventional photodynamics methods and can go beyond the time scales of them.
However, the development of quantum chemical reference methods for the excited
states of larger systems comprising a complex photochemistry cannot keep up with
the space of the extremely fast progressing ML models. The potential of ML models
to overcome the existing limitations of quantum chemical methods for describing
the photochemistry of molecules is particularly interesting in this respect and could
provide an efficient solution to obtain a photochemical description of many molecular
systems and for many applications.
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APPEND IX : REPR IN TED P UBL ICAT IONS A
In the following sections, the published and accepted articles are reprinted. In the
publication enclosed in section A.1 the proof of concept that ML can advance photo-
dynamics simulations is discussed along with the phase correction algorithm, the
adaptive sampling scheme for excited states and photodynamics of the methylen-
immonium cation for 1 ns. Section A.2 contains the publication, in which different
molecular descirptors and NN and KRR models are compared. The state encoding
for KRR models is part of this publication. The SchNarc approach for photodynamics
simulations is introduced together with the phase-free training algorithm and the
ML approximation to kinetic couplings in section A.3. A book chapter on ML for
nonadiabatic MD simulations is enclosed in section A.4, which is scheduled for
release on July 17, 2020. A just accepted Perspective on the same topic can be found
in section A.5.
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appendix a.1 machine learning enables long time scale molecu-
lar photodynamics simulations

Julia Westermayr, Michael Gastegger, Maximilian F. S. J. Menger, Sebsatian
Mai, Leticia González and Philipp Marqetand

Chem. Sci., 10, 8100-8107 (2019).
http://dx.doi.org/10.1039/C9SC01742A

Contributions:

Julia Westermayr developed the multi-layer feed-forward neural networks and
phase correction algorithm, implemented adaptive sampling for excited states, com-
puted the training set, carried out the quantum chemical reference computations,
evaluated the models, performed the production runs, and contributed to the initial
draft and final manuscript.

Michael Gastegger helped in setting up the framework for the initial developed
machine learning models and helped in identifying the assessment of the accuracy
of different machine learning models.

Maximilian F. S. J. Menger developed the pythonwrapper for the SHARCmolecular
dynamics program and contributed to the interface of the developedmachine learning
model.

Sebastian Mai contributed to the discussions concerning the phase correction
algorithm and the implementation of the machine learning model into the SHARC
molecular dynamics code.

Leticia González helped in identifying the main goals of this study and contributed
to the initial and final manuscript.

Philipp Marqetand conceived the main goals of this study, supervised method-
ological developments, computations, and data analysis, contributed to the code, and
the writing of the initial and final manuscript.

Reprinted with permission from Chem. Sci., 10, 8100-8107 (2020).
Copyright 2019 The Royal Society of Chemistry.
Published under a Creative Commons Attribution (CC-BY) license.
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Machine learning enables long time scale
molecular photodynamics simulations†

Julia Westermayr, a Michael Gastegger, b Maximilian F. S. J. Menger,ac

Sebastian Mai, a Leticia González a and Philipp Marquetand *a

Photo-induced processes are fundamental in nature but accurate simulations of their dynamics are

seriously limited by the cost of the underlying quantum chemical calculations, hampering their

application for long time scales. Here we introduce a method based on machine learning to overcome

this bottleneck and enable accurate photodynamics on nanosecond time scales, which are otherwise

out of reach with contemporary approaches. Instead of expensive quantum chemistry during molecular

dynamics simulations, we use deep neural networks to learn the relationship between a molecular

geometry and its high-dimensional electronic properties. As an example, the time evolution of the

methylenimmonium cation for one nanosecond is used to demonstrate that machine learning

algorithms can outperform standard excited-state molecular dynamics approaches in their

computational efficiency while delivering the same accuracy.

1 Introduction

Machine learning (ML) is revolutionizing the most diverse
domains, like image recognition,1 playing board games,2 or
social integration of refugees.3 Also in chemistry, an increasing
range of applications is being tackled with ML, for example, the
design and discovery of new molecules and materials.4–6 In the
present study, we show how ML enables efficient photody-
namics simulations. Photodynamics is the study of photo-
induced processes that occur aer a molecule is exposed to
light. Photosynthesis and DNA photodamage leading to skin
cancer are only two examples of phenomena that involve
molecules interacting with light.7–11 The simulation of such
processes has been key to learning structure–dynamics–func-
tion relationships that can be used to guide the design of
photonic materials, such as photosensitive drugs,12 photo-
catalysts4 and photovoltaics.13,14

Computer simulations of photodynamics typically rely on
molecular dynamics simulations of coupled nuclei and
electrons. These simulations require the computation of
high-dimensional potential energy surfaces (PESs), i.e., the
electronic energy levels of the molecule for all possible
molecular congurations, using quantum chemistry. The
calculation of these PESs is usually the most expensive part of

the dynamics simulations15 and therefore, different approx-
imations are necessary and ubiquitous. For the electronic
ground state, the time-consuming quantum chemical calcu-
lations are oen replaced with force elds16 but no standard
force elds are available to describe electronically excited
states. Another drawback of most conventional force elds is
their inability to describe the breaking and formation of
chemical bonds. Recently, increasing effort has been devoted
to ML potentials,17,18 where an accurate representation of the
ground state PES including bond breaking19 and formation is
promised.16,20–32 Similarly, modied Shepard interpolation is
used to construct PESs in low-dimensional systems and adapt
them in out-of-condence regions.33,34 However, the problem
of obtaining accurate full-dimensional PESs for excited states
in order to simulate long time photodynamics has not been
solved yet. A few studies have focused on the prediction of
excited state dynamics as well as on excited-state properties
such as spectral densities with ML.35–44 The breakdown of the
Born–Oppenheimer approximation, leading to critical
regions in the coupled excited state PESs,45 poses yet another
obstacle to quantum chemistry (QC) and consequently also
ML.39–41 Among those critical regions are conical intersec-
tions (or state crossings), where two PESs get into close
proximity. The underlying elements that become important
in such areas are nonadiabatic couplings (or spin–orbit
couplings). They induce non-radiative transitions between
two electronic states of the same (or different) spin-
multiplicities involving ultrafast rearrangements of both
nuclei and electrons. These challenges led to the need for
intermittent quantum chemistry calculations39,40 or omit-
tance of couplings between different PESs41 in ML driven
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photodynamics. Hence long time photodynamics are still
lacking and the possibility to additionally represent the
aforementioned nonadiabatic derivative couplings between
PESs fundamental to model photodynamics has not been
demonstrated yet. Here we overcome all these different
bottlenecks using deep neural networks (NNs) and achieve
the simulation of photodynamics for long time scales. We
expand on the idea of using ML to obtain potentials for
electronic excited states, as well as arbitrary couplings within
a framework that combines ML with trajectory surface
hopping molecular dynamics (Fig. 1). Our ML approach is
fully capable of describing all necessary properties for
executing nonadiabatic excited-state molecular dynamics on
the order of nanoseconds. These properties include elec-
tronic energies, gradients, spin–orbit couplings, nonadia-
batic couplings, and dipole moments of molecules.
Additionally, the underlying potentials and couplings can be
used to optimize critical points of the congurational space,
such as potential minima or crossing points, which are
important for interpreting photochemical mechanisms.

2 Theoretical background

Nonadiabatic excited-state molecular dynamics simulations are
carried out using the Surface Hopping including ARbitrary
Couplings (SHARC) method,46 which is an extension of the
fewest switches surface hopping method of Tully.47 Within
surface hopping, the nuclei are propagated according to the
classical equations of motion and the electrons are treated
quantum mechanically via interfaces to external electronic
structure program packages. The electronic structure calcula-
tions are carried out on-the-y at the nuclear geometries visited
by the classical trajectories. The probability of a molecular
system occupying a specic electronic state and population
transfer between the different electronic states – in the form of
stochastic, instantaneous hops from one electronic state to
another – are dependent on the couplings between them.

2.1 Surface hopping molecular dynamics with deep NNs

For surface hopping simulations with NNs, the idea of
retrieving electronic properties from an external source stays
the same, but instead of a quantum chemical calculation, NNs
are used to predict energies, gradients, couplings and dipole
moments. The relationships between the nuclear coordinates
and the corresponding electronic properties are learned from
a training set, in which each data point is one set of nuclear
coordinates and its associated set of quantities computed with
a reference method. In order to make the procedure usable, the
processes for generating NN potentials and their use in photo-
dynamics simulations have been automated in a development
version of the program suite SHARC.15,46,48

2.2 Training set generation and adaptive sampling for
excited states

The combination of quantum chemistry with ML requires
a cost-effective generation of a training set that, while it samples
the conformational space of a molecular system comprehen-
sively, is small enough to keep demanding quantum chemical
reference calculations feasible.27 With this in mind, we employ
an initial training set based on normal mode scans and then
switch to an adaptive sampling scheme21,24,49–51 that automati-
cally identies untrustworthy regions not covered by the initial
training set. The adaptive sampling procedure employs excited-
state dynamics simulations using two or more NNs that are
independently trained from the same training set. At every time
step, the root mean squared error (RMSE) between the predic-
tions of the different NNs of each property is compared to
a predened threshold. A separate threshold is set for each
property (initially based on the validation error of the respective
NN). Whenever any one of the thresholds is exceeded, i.e., the
different NNs make very different predictions, the correspond-
ing geometry is assumed to lie in a conformational region with
too few training points, even if the rest of the properties are
predicted reliably. It is then necessary to expand the training set
by computing the quantum chemistry data for this geometry.
Along a dynamics run, the threshold for the error between
predictions made by the NNs is adapted by multiplication with

Fig. 1 Schematic workflow of surface hopping molecular dynamics
with deep NNs: the scheme starts from a set of initial quantum
chemical calculations, which are pre-processed using a phase-
correction algorithm and constitute an initial training set. Using this set,
two deep NNs (NN1 and NN2) are trained and replace the quantum
chemical calculations of energies (E) and gradients (G), nonadiabatic
couplings (NACs), spin–orbit couplings (SOCs) and dipole moments
(m). The dynamics calculation starts with an input geometry, for which
the two NNs provide all electronic quantities. If the outcomes of both
NNs are sufficiently similar, the configurational space around this input
geometry is adequately represented by the training set and the elec-
tronic quantities are used for a propagation time step. If not, the
nuclear configuration is recomputed with quantum chemistry, phase
corrected and included in the training set – a process referred to as
adaptive sampling. The NNs are then re-trained and a new dynamics
cycle is started.

This journal is © The Royal Society of Chemistry 2019 Chem. Sci., 2019, 10, 8100–8107 | 8101
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a factor of 0.95 until the conformational space is sampled
sufficiently to make accurate predictions without any additional
reference calculations.

An ensemble of two NNs is used not only during the initial
adaptive sampling period, but also for the production dynamics
simulations in order to check the accuracy of the NN predic-
tions and to discover undersampled regions of conformational
space. Aer 10 ps, the threshold for the RMSE between NN
forecasts is not reduced anymore but kept at the previous value
when a new data point is added to the training set and NNs are
retrained. More details on criteria for the thresholds and iter-
ations are discussed in the ESI.†

2.3 Multi-layer feed-forward NNs

For the sake of making predictions of the quantum chemical
properties of molecules, multi-layer feed forward NNs are
applied.49 For training of NNs, we use as input the matrix of
inverse distances in order to achieve translational and rota-
tional invariance in the relations established between the pre-
dicted properties and the nuclear coordinates. For prediction
we use two similarly accurate NNs, with their optimal-network-
architecture identied by random grid search1 of (hyper)
parameters. Additional information on network parameters and
specications can be found in Table S1 and Section S1 in the ESI
along with NN convergence during training in Fig. S1.† We
assessed the quality of the used NNs by comparing them with
different ML models and NNs using a different molecular
descriptor on an additionally generated test set (see Section S1.3
in the ESI†). Different ML models or descriptors do not lead to
a considerable improvement of the accuracy. As a different ML
model we choose support vector machine for regression and
linear regression as a baseline model, but our NN approaches
outperform these regression models. Furthermore, the perfor-
mance of our NNs is presented in Table S5† for each electronic
state, separately. In this context, it is shown how the tendency
towards smooth interpolation of the ML models can even
correct for discontinuities present in the QC1 method (see
Fig. S2†), which demonstrates the utility of our approach.

Quantum chemical properties that were learned with NNs
are energies, gradients, permanent as well as transition dipole
moments, and NACs. Other quantities like spin–orbit couplings
can also be trained (see the analytical model in the ESI†).
Although the (transition) dipole moments are not needed for
the present dynamics simulation, calculating them on-the-y
enables the computation of pump–probe schemes, static-eld
interactions, or time-resolved spectra (see for example ref. 52
and 53). While energies are directly used for training purposes
in a single NN, forces are predicted as analytical derivatives of
the NNs,54 ensuring energy conservation.24,32,39 Similarly,
permanent dipole moments are directly used in the training.
However, couplings (as well as transition dipole moments) need
to be pre-processed as they are computed from the wave func-
tions of two different electronic states and therefore depend on
the relative phases of these two wave functions. Phase incon-
sistencies need to be eliminated in order to avoid ill-behaved
photodynamics,55 as is described in the following subsection.

2.4 Phase correction

Electronic wave functions computed with quantum chemistry
programs are usually obtained as the eigenfunctions of the
electronic Hamiltonian. However, this requirement does not
uniquely dene an electronic wave function because multi-
plying it by a phase factor still returns a valid eigenfunction.
Thus, in practice two wave functions computed for two very
similar geometries might randomly differ in their phase factor.
This problem is best visualized using molecular orbitals (see
Fig. 2). For different single point calculations along an inter-
polation coordinate (Fig. 2A), orbitals can arbitrarily switch
their sign (illustrated by their color in Fig. 2B) and so does the
complete electronic wave function. As energies are obtained
from diagonal elements of the general form hJirÔrJii in matrix
notation, the electronic wave function enters twice and any
phase is squared, thus canceling out. However, off-diagonal
elements, hJirÔrJji, such as couplings involve the wave func-
tions of two different electronic states and different phases do
not necessarily cancel out. The example of Fig. 2B shows how
the curves of such off-diagonal properties can be discontinuous,
impeding correct learning behavior in the NN. It is thus
mandatory to track the phases of all wave functions from one
reference geometry to every other data point in the training set
and apply a phase-correction algorithm that provides smooth

Fig. 2 Molecular orbitals representing two different electronic states
of themethylenimmonium cation, CH2NH2

+. Panel A showsmolecular
geometries (with slightly different bond lengths) that are given as an
input to a quantum chemistry program. The results for properties
corresponding to off-diagonal matrix elements of the Hamiltonian are
shown in panel B. Random signs are obtained due to random
assignments of the phases of the involved wave functions. As can be
seen in panel C, these random switches can be removed by phase
correction, and smooth relations between a molecular geometry and
any property can be found.
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curves (Fig. 2C). In this way, a virtual global phase convention is
applied to all data points within the training set, with the only
aim of ensuring correct NN training.

Such a global phase convention is not mathematically
possible for general polyatomic molecules due to the existence
of the so-called Berry (or geometric) phase.56 Due to the latter,
the phase depends on the path between a given geometry and
the reference point.57 Still the above phase correction is
advantageous because it removes phase jumps from almost all
parts of congurational space. This is critically necessary to
make the data learnable. Only the non-removable phase jumps
from the Berry phase remain, but occupy a small volume of
congurational space. Hence, our phase correction is assumed
to leave the dynamics mostly unaffected. For instance,
successful surface hopping algorithms without phase tracking,
such as the Zhu–Nakamura theory,58,59 exist and substantiate
the validity of this approximation. In the case of the Zhu–
Nakamura theory, dynamics are comparable to conventional
surface-hopping molecular dynamics simulations propagated
from NAC vectors.59–63 Note that the approximated phase
correction for generation of the training set above cannot be
circumvented by learning the absolute value of couplings since
the relative sign between nonadiabatic coupling vectors of each
atom in the x, y and z directions should be retained.

In order to make off-diagonal elements learnable for ML
models, phases are tracked by computing wave function over-
laps between adjacent molecular geometries.55,64,65 If the
geometries are close enough, the overlaps will be sufficiently
large and contain values close to +1 or �1, allowing a detection
of phase changes. In cases where molecular geometries are too
far apart, the overlap will generally be close to zero, offering no
information about a phase change. In this case, we resort to
interpolation between the two molecular geometries and itera-
tive computation of wave function overlaps. In principle, the
interpolation can be carried out between the new geometry and
any geometry already inside the training set as long as the
wavefunction of this previous geometry is stored. Storing the
wavefunctions for at least a few geometries and identifying the
most suitable one for interpolation via root mean square devi-
ations of the geometry should be considered for larger andmore
exible molecules.

Especially for large molecules, where many states lie close
in energy, the so-called “intruder states” might become
problematic. Such states are excluded at the reference
geometry, but are included at another geometry due to an
energy change, thus leading to small overlaps for the phase
tracking algorithm. In such situations, different possibilities
for adapting the phase correction algorithm should be
considered. For instance, additional electronic states could be
computed with QC. Those should not be included in the
training data, but only used to continuously track the phase of
all relevant states. This process then still stays affordable,
since the additional states do not require a computation of
gradients or couplings and do not have to be considered
further. Additional details on the phase correction algorithm
are given in Section S2 in the ESI.†

3 Computational details

The photodynamics simulations have been carried out with
a development version of the program suite SHARC.15,48 Besides
the newly developed modules for NN training and prediction,
this development version also employs the pySHARC Python
wrapper for the SHARC dynamics driver. This wrapper enables
communication between the driver and the NN code without
any le I/O and thus reduces the runtime of the program
substantially.

The reference quantum chemical computations were carried
out with COLUMBUS66 using the accurate multi-reference
conguration interaction method including single and double
excitations and a double-zeta basis set (abbreviated to MR-CISD/
aug-cc-pVDZ and in the following sections labelled as QC1). For
comparison, we carried out quantum chemical computations
with another basis set, 6-31++G**, using the same MR-CISD
method (abbreviated to QC2 in the following sections). NNs
were implemented in Python using the numpy67 and theano68

packages. They were trained on energies, forces, dipole
moments and nonadiabatic couplings, obtained with the QC1
method using the adaptive sampling scheme described above,
resulting in about 4000 data points (mean absolute error (MAE)
energies among all states: 0:032 eV b¼0:73 kcal mol�1; MAE
forces among all states: 0:51 eV�A

�1
b¼11:9 kcal mol�1 �A

�1
; see

also Tables S2, S4 and S5 in the ESI as well as Fig. S2† for
analysis of different states). Using each method, QC1, QC2, and
NNs trained on QC1, we simulated the dynamics of the meth-
ylenimmonium cation aer excitation from the electronic
ground state (S0) to the second excited electronic state (S2) over
100 fs using a time step of 0.5 fs.

Optimizations of minima were carried out with the SHARC
tools that utilize an external optimizer, ORCA,69 where the
computed energies and gradients70,71 from the NNs were fed in
or those from COLUMBUS for comparison.

4 Results and discussion

First, a one-dimensional model was employed to test our deep
learningmolecular dynamics approach (see Fig. S3 in Section S3
in the ESI†). In the following, the performance of the method is
demonstrated by simulating the full-dimensional photody-
namics of the methylenimmonium cation, CH2NH2

+ – the
simplest member of the protonated Schiff bases. Methyl-
enimmonium has been reported to undergo ultrafast switches
between different electronic states aer excitation with light.72 A
larger member of this family is retinal, which is fundamental
for vision73 but the methylenimmonium cation is an ideal
testbed to demonstrate the applicability of NNs in photody-
namics, because it is small enough to perform accurate refer-
ence photodynamics simulations for short time scales for
comparison.

4.1 Nanosecond molecular dynamics simulation

Our NNs were trained on data obtained using the QC1 method
(see details on active space in Section S4 and Fig. S4 in the ESI†).
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Independently with the QC1 method and with NNs, we simu-
lated the dynamics of the methylenimmonium cation aer
excitation to the second excited singlet state, S2. As can be seen
from Fig. 3A, fast population transfer from the S2 state to the
rst excited singlet state, S1, and back to the ground state, S0,
takes place. The population dynamics obtained with the NN
potentials and that obtained using the QC1 method agree very
well. These results are also in good agreement with the litera-
ture.72 Both methods describe the deactivation to the ground
state, S0, through the correct conical intersections, as will be
discussed in the next subsection. A movie of one trajectory over
100 fs along with the NN potential energy curves is part of the
ESI Movie S1.†

One of the rst advantages of the NN driven dynamics
simulations is that due to their very low computational cost,
a much larger number of trajectories (3846) was simulated than
what is typically possible with standard quantum chemistry
(90). This enlarged statistics provides smooth population curves
for the NN simulations (a comparison of the curves with an
identical number of trajectories for NNs and QC1 can be found
in Fig. S5A in the ESI along with analysis of energy conservation
in Table S11†).

In order to estimate themagnitude of the error obtained with
the NNs, we carried out a second ab initio molecular dynamics
study with an additional, very similar, quantum chemistry
method where only the double-zeta basis set is changed from
aug-cc-pVDZ to 6-31++G**. As Fig. 3B shows, the differences
between the two levels of theory are of the same order of
magnitude as those encountered between NNs and quantum
chemistry, indicating that the agreement between the methods
is very good. The MAE in population between QC1 and NNs is
0.057 and between QC1 and QC2 it is 0.099. Time constants
derived from dynamics with each method also agree well. The
time constant from S2 to S1 is 18.3 fs according to the QC1
method, which is comparable to the QC2 method with 25.0 fs
and to NN driven dynamics with 25.2 fs. The time constant
obtained for transitions from S1 to S0 is 51.0 fs for the QC1
method, which is very similar to the value obtained with NNs

(52.6 fs), whereas the QC2 method yields a time constant of 73.2
fs.

Aer nonadiabatic dynamics using deep NNs has been vali-
dated for short time scales, we show the major advantage of the
method, i.e. that it is able to overcome the problem of limited
simulation time and predict long excited-state dynamics. Fig. 4
shows the population dynamics of the methylenimmonium
cation on a logarithmic scale up to 1 nanosecond (ns), i.e., 104

times longer than they were simulated using our quantum
chemical reference method. Up to 10 ps, we simulated an
ensemble of 200 trajectories with 2 NNs using the adaptive
sampling scheme described above in order to correctly predict
events not yet learned by the NNs. Aer that, 2 trajectories are
propagated up to 1 ns for demonstration purposes using 2 NNs.
The populations are thus averaged over 200 trajectories up to 10
ps and over 2 trajectories from 10 ps up to 1 ns, respectively. As
can be seen, the molecule relaxes to the ground state aer
around 300 fs. Due to the remaining kinetic energy a few hops
between different states are recorded and can be regarded as
noise. A movie of one trajectory over 10 ps is part of the ESI
Movie S2.†

The propagation of a CH2NH2
+ trajectory for 10 ps can be

executed in less than 6 hours on one core, which is 300 times
faster than the calculation with the quantum chemical refer-
ence method. The propagation of 1 ns took 59 days employing
two deep NNs serially, whereas an estimated 19 years of
computation would have been required with the quantum
chemical reference.

4.2 Conical intersections obtained from NNs

Since NNs can provide energies, gradients, and couplings, they
can also be used to optimize important points of the PES, like
state minima or conical intersections. The identication of
conical intersections is the target of many quantum chemical
studies as they are commonly deemed as the most probable
geometries for radiationless transitions between electronic
states of the same spin multiplicity. Due to their special
topology with discontinuous rst derivatives, the surroundings
of a conical intersection pose serious challenges to the NN

Fig. 3 Population dynamics of CH2NH2
+ based on deep NNs and

traditional quantum chemistry: comparison between results obtained
from (A) QC1 (90 trajectories) and NN (3846 trajectories) and (B) QC1
(90 trajectories) and QC2 (88 trajectories). For completeness, the
populations from 90 trajectories propagated with NNs are given in
Fig. S5A in the ESI along with geometrical analysis along the trajec-
tories in Fig. S5B.†

Fig. 4 Nonadiabatic molecular dynamics simulations using deep NNs
for one nanosecond. After excitation to the S2 state, ultrafast internal
conversion to the S1 state takes place, followed by recovery of the S0
state within 300 fs. Until 10 ps, an ensemble of 200 trajectories is
analyzed, followed by the population averaged from 2 trajectories.
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training.45 As the photodynamics critically depends on a correct
representation of these surroundings, here we perform some
tests to validate their accuracy.

To this aim we optimize two minimum energy conical
intersections in CH2NH2

+, one between the S2 state and the S1
state and another one between the S1 state and the S0 state. We
use the QC1 method and NNs to perform potential energy scans
around the minimum energy conical intersections optimized at
the QC1 level of theory. As can be seen from Fig. 5A–D, typical
curved seams of conical intersections between the S2 and S1
states (Fig. 5A (QC1) and 5B (NN)) and the S1 and S0 states
(Fig. 5C (QC1) and 5D (NN)) are obtained around the minimum
energy conical intersections.74 The NNs get the shape of this
seam correct with slightly larger energy gaps between the
crossing surfaces due to the fact that NN potentials need to be
differentiable at any point. Analysis of 408 (for the S1/S0 CI) and
302 (for the S2/S1 CI) congurations around the minimum
energy conical intersections – identied by an energy gap
smaller than 0.8 eV according to the QC1 method – showed that
on average, the gaps are overestimated by 0.068 eV for S1/S0 and
by 0.014 eV for S2/S1 by our NNs. As can be seen from Fig. 5, the
potentials around the S1/S0 CI are atter than the potentials
around the S2/S1 CI, indicating that hopping geometries are
closer to the CI in the latter case and that the molecules can also
hop farther from the CI in the former case.

Fig. 6 shows the scatter plots of the optimized geometries of
the minimum energy conical intersections projected along two
important coordinates together with the hopping geometries
and the geometries contained in the training set. As can be
seen, the hopping geometries between the S2 and S1 states are
mainly located close to the optimized geometry of theminimum
energy conical intersection, while the hopping geometries in
the case of the S1/S0 crossing are more widely distributed
around the optimized geometry. As a consequence, the S2/S1
crossing is sampled more comprehensively, since more

trajectories pass by near the minimum energy conical inter-
section. This observation also explains the larger NN energy gap
obtained for the second crossing, the S1/S0 CI, in Fig. 5.

The optimizations of the minimum energy conical intersec-
tions were independently performed with the trained NN, as
well as with the QC1 and QC2 methods for comparison. The
optimized molecular geometries (shown in Fig. S6 along with
Cartesian coordinates in the ESI†) agree well. As can be seen,
the driving force for the transition from the S2 state to the S1
state is an elongation of the C–N bond in combination with
a bipyramidalization. The torsion of the molecule further leads
to internal conversion to the ground state, S0. Additionally, each
method results in a comparable distribution of hopping
geometries around the optimized points, which in practice is of
utmost importance75 for describing the population transfer in
the simulations correctly. There are very few NN hopping
geometries at either large pyramidalization angles (S1/S0 CI) or
long C–N bonds (S2/S1 CI), compared to the QC trajectories. This
nding correlates with the distribution of training set geome-
tries, which are also absent in these regions of the PES (see the
grey circles in Fig. 6). Congurations obtained via sampling of
normal modes are clearly visible by a dense alignment of data
points. However, the congurations obtained via adaptive
sampling are mostly centered in the middle of the plot for the
S1/S0 CI and close to the optimized CI for the S2/S1 crossing,
explaining the smaller distribution of NN hopping geometries.
Further analysis showed that geometries at large bond lengths

Fig. 5 Potential energy scans around the minimum energy conical
intersections obtained with QC1 of the S2 and S1 states (A and B) and S1
and S0 states (C and D). Panels A and C show the PESs calculated with
QC1, while panels B and D illustrate NN potentials. See the caption of
Fig. S7 in the ESI† for clarification of the dihedral angle.

Fig. 6 Scatter plots showing the distribution of hopping geometries
obtained with QC1, QC2, and NN as well as optimized S1/S0 (A) and S2/
S1 (B) minimum energy conical intersections (CIs) along with the
geometries that make up the training set with 4000 data points. The
actual geometry is depicted on top (geometrical parameters are given
in Fig. S7B†). A zoom-in of the regions near the optimized points is
shown in Fig. S7A in the ESI† together with a definition of the dihedral
and pyramidalization angles.
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are approximately 4 eV higher in energy than the geometries
close to the optimized minimum energy conical intersection in
the case of the S2/S1 crossing. Therefore, trajectories simulated
during adaptive sampling probably did not visit those regions of
the PES. In the case of the S1/S0 crossing, this effect is less
pronounced and the geometries with a large pyramidalization
angle are approximately 1–1.5 eV larger in energy than the
congurations close to the optimized CI, indicating again the
much atter potential.

5 Conclusions

We demonstrate that deep NNs are able to accelerate nonadia-
batic excited-state molecular dynamics simulations by orders of
magnitude, thus overcoming the constraints of limited time
scales and limited statistics. Our approach offers an automatic
learning procedure by implementation of adaptive sampling for
excited states, which opens new avenues for studying the
photodynamics of complex systems on long time scales relevant
for chemistry, biology, medicine, and materials design, for
which the PESs cannot be explored in advance with conven-
tional ab initio techniques. Offering access to the precision of
high-level quantum chemistry methods at only a fraction of the
original computational cost, we expect this setup to become
a powerful tool in several research elds.
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Am. Chem. Soc., 2016, 138, 15911–15916.

11 E. Romero, V. I. Novoderezhkin and R. v. Grondelle, Nature,
2017, 543, 355.

12 I. Ahmad, S. Ahmed, Z. Anwar, M. A. Sheraz and M. Sikorski,
Int. J. Photoenergy, 2016, 2016, 1–19.

13 S. Mathew, A. Yella, P. Gao, R. Humphry-Baker,
B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli,
U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, Nat.
Chem., 2014, 6, 242.
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Intersections: Electronic Structure, Dynamics and
Spectroscopy, WORLD SCIENTIFIC, 2004.

46 M. Richter, P. Marquetand, J. González-Vázquez, I. Sola and
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Abstract
Excited-state dynamics simulations are a powerful tool to investigate photo-induced reactions of
molecules and materials and provide complementary information to experiments. Since the
applicability of these simulation techniques is limited by the costs of the underlying electronic
structure calculations, we develop and assess different machine learning models for this task. The
machine learning models are trained on ab initio calculations for excited electronic states, using the
methylenimmonium cation (CH2NH

+
2 ) as a model system. Two distinct strategies for modeling

excited state properties are tested in this work. The first strategy is to treat each state separately in a
kernel ridge regression model and all states together in a multiclass neural network. The second
strategy is to instead encode the state as input into the model, which is tested with both models.
Numerical evidence suggests that using the state as input yields the best performance. An
important goal for excited-state machine learning models is their use in dynamics simulations,
which needs not only state-specific information but also couplings, i.e. properties involving pairs
of states. Accordingly, we investigate how well machine learning models can predict the couplings.
Furthermore, we explore how combining all properties in a single neural network affects the
accuracy. Finally, machine learning predicted energies, forces, and couplings are used to carry out
excited-state dynamics simulations. Results demonstrate the scopes and possibilities of machine
learning to model excited-state properties.

1. Introduction

Many fundamental processes in nature and life are direct consequences of excitation of molecules by light.
For example, photosynthesis [1], vision with photo-receptors in the eye [2, 3], or the root cause of diseases
such as skin cancer [4, 5] are all based on a photo-induced process. The excited-state dynamics and kinetics
of compounds can give insight into why and how these processes occur or can be used to help designing new
drugs [6] or materials [7–9].

After a molecule is irradiated with light, it can enter a higher electronic state. Several processes,
radiationless or radiative ones, may follow. These processes give rise to the photostability or photodamage of
a molecule, and hence photoreactions in general. Knowing the high-dimensional potential energy surfaces of
a molecule makes a comprehensive photochemical study possible. However, it is a challenge to find
meaningful and accurate potential energy surfaces in advance to execute excited-state molecular dynamics
simulations. A possible solution for this problem is the use of on-the-fly ab initiomolecular dynamics

© 2020 The Author(s). Published by IOP Publishing Ltd
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simulations [10–12]. The mixed-quantum classical methods—such as the surface-hopping methodology
that is used in this work—often remain the methods of choice and are a good compromise between accuracy
and computational efficiency. In this way, large molecules, i.e. with up to hundreds of atoms, can be treated.
Still, the large number of costly electronic structure calculations limits the simulation times of nonadiabatic
dynamics to the range of femto- to picoseconds [10, 13–15].

With the rise of machine learning (ML) and the amount of data and computational power available, the
fitting of potential energy surfaces of a molecule was put into spotlight. Although such approaches were used
already more than 25 years ago [16–20], the interest to speed up simulations in the field of nonadiabatic
molecular dynamics simulations has increased only in the last three years [21–30, 30–36].

The main advantage of ML models is that, at least in principle, they can predict any molecular property,
typically with much improved efficiency when compared to their quantum chemical counterpart. This can
be achieved by learning relations between a molecular structure (in the form of some translation- and
rotation-invariant representation) and some target property (provided by quantum chemistry, usually
real-valued or complex numbers) [37, 38]. The application of ML models for dynamics simulations in the
electronic ground state [39–45] or excited states [21–30, 30–36, 46, 47] already exist, and show the potential
for further developing this research field.

Nevertheless, the challenges to model excited states of molecules have not always been tackled
successfully with ML: Not only one potential energy surface has to be learned, but several, including the
couplings between them, that should also be treated in an ML model [29]. Independent works applied kernel
ridge regression (KRR) and neural networks (NNs) to enhance quantum chemical calculations in
nonadiabatic molecular dynamics simulations and show the following trend: Models based on KRR need to
resort to intermediate quantum chemistry steps in critical regions to obtain correct dynamics simulations
[22, 23], whereas NNs are able to completely replace quantum chemistry during the dynamics
[24, 26, 28, 29]. This observation raises the question why some models fail for some excited-state properties
and others do not. Our goal is to investigate relevant properties for nonadiabatic molecular dynamics
simulations by using KRR and NNs. The aim of this work is thus twofold: 1) a comparison of KRR and NNs
using different representations for the molecular structure and 2) possible improvements of existing ML
techniques for excited-state property prediction.

The methylenimmonium cation, CH2NH
+
2 , is used as model system for this purpose. This cation, like

the larger homologue retinal, belongs to the member of protonated Schiff bases, and shows isomerization of
the double bond after light excitation [48–51]. Similarly, the absorption of light in retinal leads to an
isomerization process, that is fundamental for vision [52]. The ultrafast dynamics is particularly challenging
to reproduce with ML models, but, at the same time, it remains feasible to provide quantum chemistry
reference simulations. Unlike in the isoelectronic molecule ethylene, the excited-state calculations are not
hampered by low-lying Rydberg states [53]. Therefore, the methylenimmonium cation is well suited as a test
system for this study.

2. Methods

2.1. Surface-hopping molecular dynamics
The program SHARC (Surface-Hopping including ARbitrary Couplings) [54] is used for surface-hopping
molecular dynamics simulations with interfaced ML models. Due to the stochastic nature of this method,
reliable results can only be obtained when considering an ensemble of independent trajectories. To this aim,
Wigner sampling [55] is used to obtain 200 initial configurations of the methylenimmonium cation, to start
dynamics simulations. SHARC determines nonadiabatic transitions from one potential energy surface to
another from the NAC vectors between each set of singlet states. Those transitions, or so-called hops in
surface-hopping, usually take place in conformational regions of the molecule, where two potential energy
surfaces are in close proximity. Those regions are termed conical intersection and are not only difficult to
model with ML models [23, 24, 29], but also provide a challenge to converge a quantum chemical
calculation. This can be attributed to the inverse proportionality of the NAC vectors between two coupled
states i and j, NACij, to the energy gap between these two states [14]:

NACij ≈
⟨Ψi | ∇RĤel |Ψj⟩

Ei − Ej
for i ̸= j. (1)

Ψi andΨj are the eigenstates of the electronic Schrödinger equation with Ei and Ej being the respective
eigenvalues, i.e. the potential energies of state i and j.∇R denotes the spatial derivatives with respect to the
nuclear coordinates. When the two electronic states are degenerate, NACs become infinitely large and
consequently show sharp peaks around conical intersections. In contrast, NAC values are almost zero
elsewhere. An example is illustrated in figure 1.
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Figure 1. Scan along a reaction coordinate of CH2NH
+
2 that shows a conical intersection of the Ei and Ej states. The corresponding

NAC values, NACij, taken as the norm of the NAC vectors between those states, are large at the conical intersection, but almost
zero elsewhere (red dashed line). Multiplied with the energy-difference, smoother properties can be obtained (blue dashed line).

Multiplication of NACs obtained from quantum chemistry (labelled as QC) with the corresponding
energy gaps can remove such sharp spikes and can provide smoother quantities (also referred to as interstate
couplings) [28].

Creferenceij = NACQC
ij · | EQCi − EQCj | (2)

For prediction, it is necessary to divide the learned quantity by the energy gap [28] obtained fromML
models.

NACpredictij =
CML
ij

| EML
i − EML

j | (3)

The outcome is given to the surface-hopping molecular dynamics program to compute the hopping
probability. However, this approach requires very accurate ML potentials for energies and those are also
challenging to obtain in regions near conical intersections.

2.2. Training set
The training set used here is taken from reference [29] and represents a conformational subspace of the
methylenimmonium cation, CH2NH

+
2 . This training set involves three singlet states and covers the relevant

conformational space that is visited during excited-state molecular dynamics simulations after excitation to
the bright second excited state (S2, ππ∗). It is thus considered to constitute an optimal set for analysis of
different ML models as well as common molecular representations. Triplet states are not assumed to play a
major role in the excited state dynamics of CH2NH

+
2 [29, 48–51]. In case of triplet states, additional

couplings between triplet-triplet states (NAC vectors) and singlet-triplet states (spin-orbit couplings) would
arise, that could be similarly modelled as NACs between singlet-singlet states.

The quantum chemical reference method is the multi-reference configuration interaction method
accounting for single and double excitations with the basis set aug-cc-pVDZ (MR-CISD(6,4)/aug-cc-pVDZ).
The active space consists of 4 electrons in 6 orbitals. The data set for training and validation contains 4000
data points that are obtained by randomly shuffling the complete set of 4770 points. The rest of the data set
(770 data points) is held back as a test set. Each data point contains the xyz-coordinates of a molecular
structure as well as energies for three singlet states, corresponding gradients, (transition) dipole moments,
and NACs between each state. In total, 3 energy values, 54 gradient values, 27 values for (transition) dipole
moments, and 54 values for NACs have to be predicted. Noticeably, calculating dipole moments and
transition dipole moments to reproduce absolute experimental values is difficult even with high-level ab
initiomethods [56]. However when calculating transition probabilities, e.g. oscillator strengths for the
simulation of UV spectra, absolute values are rarely important but rather relative values are of interest. The
(transition) dipole moments in this work are modelled in the simplest way—that is the direct fitting of values
obtained from quantum chemistry, without an a posteriori determination of nuclear charges [57]. For more
details on the training set and its generation, see reference [29].

3
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2.3. Machine learning models
Learning curves and scatter plots between reference data and predicted data show the quality of each ML
model. By plotting the prediction error against the training set size, N, in logarithmic scale, the learning
efficiency can be assessed [58–61].

Multi-layer feed forward NNs and KRR using the quantum machine learning (QML) toolkit [62] are
chosen as ML models. 5-fold cross-validation is applied to optimize the hyperparameters of each model with
the training set of 4000 data points. The MAE is reported on the test set of 770 data points as the mean of 10
calculations along with the standard deviations obtained from models trained on 90% of the 4000 data
points. 10% are necessary to employ early-stopping for the NNs. An analogous procedure is applied for
comparability when using KRR. A detailed description can be found in the Supplementary Information (SI),
which is available online at (stacks.iop.org/MLST/1/025009/mmedia).

The gradients are treated as derivatives of ML potentials for energies as described in reference [63] for
NNs and reference [61] for KRR. This is necessary to conserve the energy in nonadiabatic molecular
dynamics simulations. For comparison, gradients are directly trained and predicted too. Details on chosen
parameters for KRR and NNs are given in the SI in chapter S2.2 and S2.3, respectively. Learning (transition)
dipole moments and NACs in addition to energies and gradients with one model can give insights into the
influence of of joint learning of different properties. This is straightforward with NNs, therefore this effect is
investigated using NNs.

2.3.0.1. Molecular representations
As a molecular representation, the matrix of inverse distances is chosen, as it gave fair results in reference [29]
for NNs and other ML models, see for example references [45, 64, 65]. The FCHL
(Faber-Christensen-Huang-Lilienfeld) representation is used for KRR [61, 66] and a development version of
the same representation is also tested for NNs [67].

The molecule is treated as a whole with the matrix of inverse distances. The distance of an atom to all
other atoms is computed, these distances are inverted and arranged in matrix format. This representation is
probably the simplest and cheapest representation to use for ML and can be used for very efficient training
and evaluation of ML models. The FCHL representation, however, provides a more accurate description and
is computationally more expensive to apply. It does not treat the molecule as a whole, but describes an atom
in its chemical and structural environment within a pre-defined cut-off region [66]. Not only the distances
from one atom to the other atoms are taken into account as two-body terms, but also one- and three-body
terms. These account for chemical composition as well as angular contributions, respectively.

An encoding for the quantum energy level is implemented in addition to the aforementioned
representations to predict several electronic state energies at once. Several possibilities are tested to describe
the electronic state. For KRR, a representation for each electronic singlet state, S= {1, 2, 3}, containing
simply numbers of 1, 2, and 3 for the three states turns out to be beneficial. Other representations of the state
do not result in improved learning and only change the additional hyperparameter, the width of the state
kernel. Also for the NNs, several state-encoding representations are tested. Duplication of a a molecular
representation NS-times and multiplication of each copy with the corresponding state-number – 1, 2 or 3 in
this case, turns out to be best. Due to the existing implementations, gradients are only treated as response
properties for KKR with the FCHL representation [61] and as derivatives of NN potentials for energies with
the matrix of inverse distances.

2.3.0.2. Kernel ridge regression (KRR)
In KRR, a kernel basis function is placed on each compound (each molecule) in the training set, {Mk}, and
related to a property of a query compoundM, pKRR(M), by:

pKRR(M) =

NM∑

k=1

αkK(M,Mk) (4)

with NM being the number of molecules in the training set, K the kernel, and {αk} the regression coefficients,
which are obtained through linear regression:

α= (K+λI)−1preference. (5)

The regularizer, λ (multiplied with the unit matrix I), is usually small assuming that the noise in the
training set is negligible [38, 66]. Using this standard implementation, only one molecular property can be
fitted at a time, which we call single-state fitting. An additional Gaussian kernel, K2(S,Sl), which relates
information from a query state S to the set of available states {Sl}, is used to extended the representations and
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to predict all electronic states, NS, at once. This kernel is subsequently combined with the original kernel
(now denoted as K1) that maps a compound to its property.

pKRR(M,S) =
NM∑

k=1

NS∑

l=1

αl
kK1(M,Mk)K2(S,Sl). (6)

Here, pKRR(M,S) is a vector of length NM ·NS, which can be recast as a matrix of size NM ×NS. In
contrast, the predicted property pKRR(M) from equation (4) is only dependent on the molecule and is a
vector of length NM – representing only one electronic state. NS versions of KRR models with the standard
representation in equation (5) have to be used to predict NS energetic values. With the new state
representation, only one KRR model has to be trained.

2.3.0.3. Multi-layer feed forward neural networks (NNs)
Compared to KRR, NNs possess more hyperparameters and, thus, are more difficult to optimize with respect
to error convergence. However, due to the NN architecture, a benefit lies in the flexibility and possibility to
relate a molecular structure to a many-state output. In principle, this many-state output can be obtained
without additional encodings like the state kernel KS(S,Sl) in the KRR approach. For better comparison to
the KRR approach, we also used state-encoding representations as detailed above.

All NN models use the numpy [68] and theano [69] distribution implemented in python. To find
optimal hyperparameters of the models to represent the relation between a molecular geometry and its
multi-dimensional output, random grid search of different sets of hyperparameters is carried out, see
reference [29] for details. In all cases, the stochastic gradient descent optimization algorithm adaptive
moment estimation (Adam) [70] is applied and the learning rate is annealed during training.

The NN models are trained by optimizing parameters such that mean squared errors of the predicted
properties pNN and the reference properties pQC are minimized. Note that p is a vector that contains three
values, corresponding to the electronic states, in case of fitted energies. It contains 84 values if all properties
are treated together. We use the scheme of reference [40] to additionally include the forces, F, as NN
derivatives in the loss function, L2:

L2 =
1

NM
(pNN − pQC)2 (7)

+
1

NM

1

3Na

3Na∑

a

(FNNα − FQCα )2.

FNNα are the values of forces predicted with NNs and FQCα are corresponding reference values, where a runs
over all atoms, Na.

3. Results

MLmodels are trained on energies, forces, and NACs to speed up simulations and successfully reproduce
surface-hopping molecular dynamics simulations of the reference method. The populations obtained from
surface-hopping molecular dynamics simulations with chosen ML models that take gradients as derivatives
from ML energy potentials are given in figure 2.

The reference dynamics in figure 2 (A) is taken from reference [29], and so is the population scheme in
figure 2 (B), that results from an NN model with the inverse distance matrix as the molecular representation.
The average populations of the ensemble show that the time evolution is governed by fast population transfer
from the second excited state to the first excited state and back to the ground state. The agreement of these
methods is fairly good.

Panel (C) shows dynamics computed with an NN model that treats all properties together. Up to around
10 fs, the dynamics agree to the reference scheme. During this time, the population is transferred from the S2
state to the S1 state. Afterwards, there are less transitions than expected and in the end of the simulation time
only a small fraction of the population is in the S0 state. For the KRR model with the FCHL representation
given in panel (D), all of the population is transferred to the electronic ground state, S0, within the first 10 fs.
After that, there are hops from lower lying states to higher energetic states. Those hops, especially in cases of
large potential energy gaps between states, are considered to be implausible and the trajectories are not
reliable anymore. Furthermore, the molecule atomizes during the course of the simulation, which is not the
case in the quantum chemistry reference dynamics. The premature population transfer leads the molecule to
regions of the conformational subspace that are not visited with the reference method and are also not

5
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Figure 2. Populations of three singlet states as a function of time obtained from surface-hopping molecular dynamics simulations
using six different methods. Dynamics based on [A] the quantum chemistry reference1 (labeled as QC), [B] NN1 models using
the inverse distance as a descriptor, [C] NNs that treat all properties in one model, [D] KRR with the FCHL representation, and
[E]-[F] mixed NN-KRR models, where energies and gradients are taken either from the NN model of panel [B] and NACs from
KRR of panel [D] or vice versa. Dotted lines are populations that are considered to be wrong with respect to the reference or
exhibit large energy fluctuations (1 taken from reference [29]).

considered in the training set. Panels (E) and (F) show results from mixed models, i.e. KRR and NN models,
and will be discussed later.

The way ML models learn shows why dynamics is erroneous. A correct learning behaviour is given, when
the out of sample error of an ML model decreases with increasing training set size, which has been shown by
Vapnik and coworkers for KRR [58] and by Müller and coworkers for NNs [59]. The learning curves are
given in figure 3(A). While KRR (blue) and the NN model (red) for energies and gradients yield very similar
accuracy, the NNs that treat all properties together (green) are far from being accurate.

The learning curves for the NACs (left panel in figure 3(B)) as directly obtained from quantum
chemistry, i.e. as non-smooth properties, show that the learning efficiency of KRR is much higher than the
one of the NNs, which is dictated by the slope of the learning curve. The NN models are comparable in their
accuracy. The learning of the smooth NACs (as described in equation (2)) is evaluated in the middle panel
with KRR and NN models that account for each property separately. The inaccurate potential energies of the
NN model that treats all properties together prohibit the prediction of smooth NACs in this case. The
accuracy of the actual NACs obtained from the smooth couplings and the corresponding ML energy gaps (as
given in panel (A)), is already high for a small training set size and is comparable to the MAE for direct NAC
prediction with a large training set. However, increasing the training set size cannot improve prediction
accuracy anymore. For KRR, the MAE can be reduced with increasing training set size, but the learning curve
is not linear. These findings indicate that the energies must be predicted with high accuracy in order to use
smooth NACs, compare also figure S4 panels (B) and (C) in the SI. The learning curves for (transition)
dipole moments show similar trends as the ones for energies, gradients and NACs and are given in the SI in
figure S5. Furthermore, NNs with the FCHL representation as well as KRR with the inverse distance matrix
as molecular representations are discussed along with scatter plots for energies and gradients (see SI figures
S1, S2, S4, and S5).

Having analyzed the learning behavior for energies and NACs separately, their interplay is investigated in
the following. We thus return to the dynamics depicted in figure 2 in panels (E) and (F). In these panels,
population plots from mixed models are shown—once with energies and gradients obtained from NNs and
NACs obtained from KRR and once vice versa. Surprisingly, none of the cases leads to accurate population
schemes. Nethertheless, the trend of the populations in panel (E) – with energies and gradients from NNs
and NACs from KRR—is similar to the reference scheme. The dynamics only happens on a much shorter
time scale, indicating too large NACs. Plotting the potential energy curves along two different reaction

6
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Figure 3. Learning curves showing the mean absolute error (MAE) for the energies and gradients [A] and NACs [B] averaged over
all three singlet states (MAEs obtained for the separate energy levels S0, S1, and S2 are shown in the SI in figure S1). [C] Scans
along the CN-bond elongation of the methylenimmonium cation (left panel) and the rotation along the dihedral angle (right
panel) computed with quantum chemistry (QC, black continuous lines), KRR (blue dotted lines), and NNs (red dashed lines).

coordinates including a critical region (panel C in figure 3) reveals that both ML models, KRR and NNs, can
correctly reproduce the shape of the curves. However, there are small deviations in the critical regions of the
PESs. A comparison of all these findings implies that an accurate prediction of energies is more important
for reproducing the dynamics than an accurate prediction of NACs. Nevertheless, it is intuitively clear that
surface-hopping molecular dynamics requires all properties to be accurate enough: Having the correct
potentials, but wrong NAC values does also result in wrong dynamics.

3.1. Multi-state representation
A major difference between NN models and KRR models is, that the NNs can predict all electronic states at
once, whereas three independent KRR models are used for the three states. However, the PESs are not
independent from each other. Consequently, it should also be favourable to learn all states together in one
ML model. Encoding of the quantum energy level in an additional state-representation makes multi-state
outputs possible. This representation is tested for KRR with the FCHL representation and NNs with the
inverse distance matrix.

A comparison of the standard representations and the encoded state representations is given in
figure 4(A). All ML models show that learning of all state energies at once is possible and favorable. Encoding
of the quantum energy level improves the accuracy of all ML models, whereby this effect is significant for
KRR models and small for NNs. With the state representation for KRR, the kernel matrix size increases from
Nm ×Nm to NS ·Nm ×NS ·Nm. Mapping only a subset of molecules to the complete dataset for training can
reduce the memory consumption and can make the training process more efficient without a major loss in
accuracy.

Principal component analysis provides an explanation to the above observed results. Therefore, the first
principal component is plotted against the second principal component of an ML model in figure 5. The ML
models used for surface-hopping dynamics are compared to the ML models with a state representation.
Remarkably, a state representation for KRR (figures 5 (B) and (C)) leads to a clear ordering of the data
corresponding to different electronic states. Moreover, within one state, a better ordering can be obtained
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Figure 4. Learning curves showing the mean absolute error (MAE) for the energies obtained from standard and state
representations [A] along with corresponding scatter plots [B]. [C] Scans along the CN-bond elongation of the
methylenimmonium cation (left panel) and the rotation along the dihedral angle (right panel) computed with quantum
chemistry (QC, black continuous lines), KRR (blue dotted lines), and NNs (red dashed lines).

than for KRR without a representation for the electronic states (panel (A)). Similarly, NNs illustrated in
panels (D) and (E) show an improved ordering of data, when a representation for the electronic state is used.
The application of those models in surface-hopping dynamics, is assumed to lead to even more accurate
energy predictions, but requires the gradients as derivatives from ML potentials and as response properties
from KRR models. This approach needs further considerations, especially due to the high memory
consumption of KRR models, and will be the subject of future developments. Nevertheless, the results clarify
how an improved ordering of data can lead to higher prediction accuracy of ML models and thus highlight
the importance of the molecular representation in addition to the type of regressor.

4. Conclusion

In this paper, two frequently used ML regressors, namely KRR and NNs, are compared for their application
in excited-state molecular dynamics of CH2NH

+
2 . The role of the ML model in combination with different

representations of the molecular structure for the prediction of energies of the ground state as well as excited
states, corresponding forces, NACs between different states, and (transition) dipole moments, is investigated.
All ML models are able to learn the relation between a quantum chemical property and the molecular
structure, when the properties are treated separately from each other. Learning all properties at once leads to
significantly worse results and the learning of single properties can even be impeded when the cost function
includes all properties at once.

It is shown that the FCHL representation is in most cases superior to the matrix of inverse distances.
Encoding of the quantum energy level in the representation can further improve results and make multiple
outputs for KRR possible. The state encoding is shown for three electronic singlet states for KRR as well as
NNs. In both cases, the modification of the representation is necessarily accompanied by an enlargement of
the ML model, a larger kernel matrix in the case of KRR, and a larger input layer in the case of NNs. Principal
component analyses further show that an enhanced ordering of data points is obtained.
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Figure 5. Principal component analysis of the kernel matrices using the FCHL representation and the matrices obtained from the
last NN-layers with the inverse distance matrix. The left side gives results for KRR, whereas the right side shows results obtained
from NNs.

The NAC vectors pose a real challenge for ML models due to their peaked nature. The inclusion of the
energy gap of the coupled pair of states can improve the accuracy of KRR models, but does not allow for
more accurate NAC vectors in general. This is due to deteriorating effects of the errors in the energy gaps.

Finally, it is not obvious that one ML model outperforms the other. Different options, such as the size of
the training set and the computational power available, may favour different models. The faster
hyperparameter optimization for KRR and the higher model flexibility of NNs lets us recommend to use
KRR for first exploratory runs and NNs for final production runs of excited-state dynamics simulations. The
concept of wide and deep learning [71] is interesting for future applications, in the sense that different ML
models can be applied within one application to combine their distinct benefits.
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ABSTRACT: In recent years, deep learning has become a part of our everyday life and is
revolutionizing quantum chemistry as well. In this work, we show how deep learning can be
used to advance the research field of photochemistry by learning all important properties
multiple energies, forces, and different couplingsfor photodynamics simulations. We
simplify such simulations substantially by (i) a phase-free training skipping costly
preprocessing of raw quantum chemistry data; (ii) rotationally covariant nonadiabatic
couplings, which can either be trained or (iii) alternatively be approximated from only ML
potentials, their gradients, and Hessians; and (iv) incorporating spin−orbit couplings. As the
deep-learning method, we employ SchNet with its automatically determined representation of
molecular structures and extend it for multiple electronic states. In combination with the
molecular dynamics program SHARC, our approach termed SchNarc is tested on two
polyatomic molecules and paves the way toward efficient photodynamics simulations of
complex systems.

Excited-state dynamics simulations are powerful tools to
predict, understand, and explain photoinduced processes,

especially in combination with experimental studies. Examples
of photoinduced processes range from photosynthesis, DNA
photodamage as the starting point of skin cancer, to processes
that enable our vision.1−5 As they are part of our everyday
lives, their understanding can help to unravel fundamental
processes of nature and to advance several research fields, such
as photovoltaics,6,7 photocatalysis,8 or photosensitive drug
design.9

Because the full quantum mechanical treatment of molecules
remains challenging, exact quantum dynamics simulations are
limited to systems containing only a couple of atoms, even if
fitted potential energy surfaces (PESs) are used.10−26 In order
to treat larger systems in full dimensions, i.e., systems with up
to hundreds of atoms, and on long time scales, i.e., in the range
of several 100 ps, excited-state machine learning (ML)
molecular dynamics (MD), where the ML model is trained
on quantum chemistry data, has evolved as a promising tool in
the last couple of years.27−33

Such nonadiabatic MLMD simulations are in many senses
analogous to excited-state ab initio molecular dynamics
simulations. The only difference is that the costly electronic
structure calculations are mostly replaced by an ML model,
providing quantum properties like the PESs and the
corresponding forces. The nuclei are assumed to move
classically on those PESs. This mixed quantum−classical
dynamics approach allows for a very fast on-the-fly evaluation
of the necessary properties at the geometries visited during the
dynamics simulations.

In order to account for nonadiabatic effects, i.e., transitions
from one state to another, further approximations have to be
introduced.34 One method, which is frequently used to
account for such transitions, is the surface-hopping method
originally developed by Tully.35 A popular extension for this
method including not only nonadiabatic couplings (NACs)
but also other couplings, e.g., spin−orbit couplings (SOCs), is
the SHARC (surface hopping including arbitrary couplings)
approach.36−38 Importantly, NACs, also called derivative
couplings, are used to determine the hopping directions and
probabilities between states of the same spin multi-
plicity.36,37,39−41 The NAC vector (denoted as CNAC) between
two states, i and j, can be computed as39,42,43

≈ ⟨Ψ| ∂
∂ Ψ⟩ = − ⟨Ψ| ∂∂ |Ψ⟩ ≠C

E E
H

i j
R R

1
forij i j

i j
i j

NAC el

(1)

where the second-order derivatives are neglected. As a further
difficulty, NACs are often missing from quantum chemistry
implementations and hopping probabilities and directions are
thus often approximated.44−52 SOCs (denoted as CSOC) are
present between states of different spin multiplicity
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= ⟨Ψ| ̂ |Ψ⟩C Hij i j
SOC SO

(2)

and determine the rate of intersystem crossing. They are
obtained as off-diagonal elements of the Hamiltonian matrix in
standard electronic-structure calculations.37,53

Most of the recent studies involving ML dynamics deal with
ground-state MD simulations, see e.g. refs 54−78, where one
of the most promising ML models is SchNet,79,80 a deep
continuous-filter convolutional-layer neural network. In
contrast to popular ML models like RuNNer,64 n2p2,81

TensorMol,82 ANI,63 or the DeePMD model83 that require
hand-crafted molecular descriptors, SchNet belongs to the
class of message-passing neural networks.84 Other examples of
such networks are the DTNN,85 PhysNet,86 or HIP-NN.87

The advantage is that the descriptors of molecules are
automatically designed by a deep neural network and are
based on the provided data set. In this way, the descriptors are
tailored to the encountered chemical environments. Thus, we
choose SchNet as a convenient platform for our developments.
An arising difficulty compared to ground-state energies and

properties is that for the excited states not only one, but several
PESs as well as the couplings between them have to be taken
into account. Only a small but quickly increasing number of
studies deal with the treatment of excited states and their
properties using ML.15−28,31,33,88

In addition to the higher dimensionality that can be tackled
with ML,89,90 the learning of couplings proves challenging
because properties resulting from electronic wave functions of
two different states, Ψi and Ψj, have their sign dependent on
the phase of the wave functions.32,33,91,92 Because the wave
function phase is not uniquely defined in quantum chemistry
calculations, random phase jumps occur, leading to sign jumps
of the coupling values along a reaction path. Hence, the
couplings can not be learned directly as obtained from a
quantum chemistry calculation. An option is to use a phase
correction algorithm to preprocess data and remove these
random phase jumps. Assuming that the effect of the Berry
phase remains minor on the training set, smooth properties are
obtained that are learnable by ML models.32 However, this
approach is expensive and many quantum chemistry reference
computations are necessary to generate the training set. In
cases of large polyatomic molecules with many close-lying
energetic states, this approach might even be infeasible.
The aim of this Letter is to provide a framework to carry out

efficient excited-state MLMD simulations and to combine two
popular methods for this purpose: the SHARC approach for
photodynamics with states of different multiplicity and SchNet
to efficiently and accurately fit potential energies and other
molecular properties. We call this combination the SchNarc
approach and adapted SchNet for the treatment of excited-
state potentials, their forces, and couplings for this purpose.
The SchNarc approach can overcome the current limitations of
existing MLMD simulations for excited states by allowing (i) a
phase-free training to omit the costly preprocessing of raw
quantum chemistry data and, to treat (ii) rotationally covariant
NACs, which can either be trained or (iii) alternatively be
approximated from only ML potentials, their gradients, and
Hessians, and to treat (iv) SOCs. When using the phase-free
training in combination with the approximated NACs, the
costs required for the training set generation can be reduced
substantially. Further, each data point can be computed in
parallel, which is not possible when phase correction is needed.
With all these methodological advances, the SchNarc ML

approach simplifies accelerated nonadiabatic dynamics simu-
lations, broadening the range of possible users and the scope of
systems, in order to make long time scales accessible.
To validate our developments, the surface hopping dynamics

of two molecules, showing slow and ultrafast excited-state
dynamics, are investigated. The first molecule is CH2NH2

+, of
which we take a phase-corrected training set from ref 32. Using
the same level of theory (MR-CISD(6,4)/aug-cc-pVDZ) with
the program COLUMBUS,93 the training set is recomputed
without applying phase correction to train ML models also on
raw data obtained directly from quantum chemistry programs.
This training set should be used to validate our phase-free
training approach. The ML models are trained on energies,
gradients, and NACs for three singlet states using 3000 data
points.
Slow photoinduced processes are present in thioformalde-

hyde, CSH2.
94 The training set is built up of 4703 data points

with two singlet states and two triplet states after initial
sampling of normal modes and adaptive sampling with simple
multilayer feed-forward neural networks according to the
scheme described in ref 32. This scheme applied for the
training set generation is based on an uncertainty measure.
Two (or more) ML models are trained and dynamics
simulations are performed. At each time step, the predictions
of the different ML models are compared. Whenever the error
between the models exceeds a manually defined threshold, the
molecular geometry visited at this time step is recomputed
with quantum chemistry and the data added to the training set.
Our previously proposed network32 was used for this purpose
because the training set was generated before SchNarc was
developed. The sampling procedure is largely independent of
the network architecture used and could therefore also be
carried out with SchNarc but has not been tested here. The
program MOLPRO95 is used for the reference calculations
with CASSCF(6,5)/def2-SVP.
The main novelty of the phase-free training is that it

removes the influence of the arbitrary phase during the
learning process of an ML model. It can be applied to any
existing ML model capable of treating excited states and any
existing data set for excited states eliminating an expensive and
time-consuming phase correction preprocessing. The chosen
ML model here is SchNet, for which the new loss function
termed phase-less loss function is implemented and tested using
the methylenimmonium cation, CH2NH2

+. The phase-less loss
is based on the standard L2 loss, but here, the squared error of
the predicted properties is computed 2NS−1 times, with NS
being the total number of states. The value of each property, LP
(i.e., LSOC and LNAC), that enters the loss function is the
minimum function of all possible squared errors εP

k:

ε= { } ≤ ≤ −L kmin( ) with 0 2k N
P P

1S (3)
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for vectorial and nonvectorial properties, respectively. The
error εP

k for a specific phase is computed as the mean squared
error of a property P from quantum chemistry (index QC) and
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machine learning (index ML). The property P couples
different states, indicated by i and j. Because the wave function
of each of the states can have an arbitrary phase, the property
Pij that couples state i and j has to be multiplied with a product
of the phases for these states, pi·pj. The phases for all states
together form a vector p with entries of either +1 and −1.
Which of the 2NS−1 possible combinations for p is chosen is
indicated by the index k, also defined in eq 3. The possible
combination that gives the lowest error enters the loss
function. This is done for all samples inside of the training
set and can be seen as an internal ML-based phase correction.
Because of the continuity of ML fitted functions, the sign of
properties is consistent for predictions. Note that the relative
signs within one vector remain and must be predicted correctly
for successful training.
The overall loss function in this work is a combination of

such phase-less loss functions and mean squared errors for all
properties with a trade-off factor to account for their relative
magnitude. The relative magnitude of each property is defined
by a manually set trade-off factor (a detailed description of the
implementation is given in the Supporting Information).
Results are given in Figure 1, which shows the population

schemes of CH2NH2
+ obtained after excitation to the second

excited singlet state, S2. The populations obtained from
quantum chemistry are shown by dotted lines. SchNarc
models are illustrated using solid lines. Panels A and C are
obtained from SchNarc models trained on a data set that is not
phase-corrected; that is, it contains couplings that can
randomly switch their sign. Those are compared to populations
obtained from models trained on phase-corrected data (panels
B and D). As can be seen, the L2 loss function, as used in the
upper plots, leads to an accurate ML model to reproduce
ultrafast transitions only in the case of phase-corrected data
(panel B), whereas this loss can not be used when trained on
raw quantum chemistry data (panel A). In comparison, a

SchNarc simulation with an ML model that applies the phase-
less loss function is successful in reproducing the populations
for both training sets (panels C and D).
In those simulations, the NACs are multiplied with the

corresponding energy gaps, i.e., C̃ij
NAC = Cij

NAC ·ΔEij, to get rid
of singularities.21,33 These smooth couplings C̃ij

NAC are not
directly learned, but rather constructed as the derivative of a
virtual property, analogously to forces that are predicted as
derivatives of an energy-ML model. The virtual property is the
multidimensional antiderivative of the rightmost expression in

eq 1, ⟨Ψ| |Ψ⟩∂
i

H
jR

el (a derivation is given in the Supporting

Information). Compared to previous ML models for
NACs,29,30,32,33 where NACs are learned and predicted as
direct outputs or even single values, this approach provides
rotational and translational covariance, which has recently been
achieved in a similar way for the electronic friction tensor.96

However, even without the need of preprocessing the
training set, the costly computations of NAC vectors for the
training set generation remain. Approximations of NACs exist
and often involve the computation of the squared energy-gap
Hessian.11,97−101 Their use in dynamics simulations is rather
impracticable with quantum chemistry methods, especially in
the case of complex systems, because of the expenses of
computing second-order derivatives.
Here, we take advantage of the efficiency for second-order

derivative computation from ML models with respect to
atomic coordinates to obtain the Hessians of the fitted PESs:
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with R being the atomic coordinates of a molecular system.
Note that Hessians are also employed in quantum dynamics
simulations,102,103 which might open further applications for
our implementation.
The squared energy-gap Hessian can be further obtained as

the sum of two symmetric dyads, which define the branching
space.101 Hence, this Hessian can be employed to obtain the
symmetric dyad of the smooth NACs via11,104
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After singular value decomposition, the hopping direction can
be computed as the eigenvector, vij, of the largest nonzero
eigenvalue101,104,105 with the corresponding eigenvalue, λij, as
the squared magnitude of the ML smooth coupling, C̃ij

NAC. The
final approximated NAC vectors, Cij

aNAC, between two states are
then

λ= · ΔC v
Eij ij

ij

ij

aNAC

(7)

The approximated NAC vectors can be employed in the
vicinity of a conical intersection; otherwise, the output
becomes too noisy. For the latter reason, we define thresholds
of 0.5 and 1.0 eV for the energy gaps to compute approximated
NACs between coupled singlet−singlet states and triplet−
triplet states, respectively. It is worth mentioning that the ML
models slightly overestimate the energy gaps at a conical
intersection,32 because ML PESs, in contrast to quantum
chemical PESs, are smooth everywhere and can reproduce the
cones present in such critical regions only to a certain extent.

Figure 1. Populations obtained from 90 QC (MR-CISD(6,4)/aug-cc-
pVDZ) trajectories are shown by dotted lines and are compared to
populations resulting from 1000 trajectories initially excited to the S2
obtained from SchNet (solid lines) that is trained on (A) not phase-
corrected data and takes the L2 norm as loss function; (B) a similar
SchNet model, but trained on phase-corrected data; (C) a SchNet
model trained on not phase-corrected data, but using the new phase-
less loss function; and (D) a SchNet model trained on phase-
corrected data using the new phase-less loss function.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://dx.doi.org/10.1021/acs.jpclett.0c00527
J. Phys. Chem. Lett. 2020, 11, 3828−3834

3830

appendix: reprinted publications

106



In ref 105, approximated NACs were applied for a 1D system,
and their usefulness in combination with ML was already
anticipated.
We turn this idea into reality and show ML excited-state

dynamics with approximated NACs for the methylenimmo-
nium cation, CH2NH2

+, as presented before, and thioformal-
dehyde, CSH2. A detailed analysis on the reference
computations, the ab initio methods applied, as well as
information on the timing of the Hessian evaluation are given
in the Supporting Information in sections S2 and S3.1,
respectively. The quality of the approximated NACs that is
further compared to learned NACs is assessed using a linear
vibronic coupling model of sulfur dioxide. The results are given
in the Supporting Information in section S4.1 in Figures S1−
S3 and support the validity of this approximation. Scatter plots
and scans along a reaction coordinate of CH2NH2

+ and CSH2
are further computed for energies, gradients, and couplings
(and approximated NACs for CH2NH2

+) in sections S4.2
(Figures S4 and S5) and S4.3 (Figures S6 and S7),
respectively. Computed normal modes from ML Hessians
are compared to reference values in Tables S3−S5 and show
their accuracy. None of the data points from the ab initio MD
simulations, to which we compare our SchNarc models, are
included in the training sets, and thus, the dynamics
simulations can be seen as an additional test.
The populations of CH2NH2

+ are given in Figure 2. The
reference population (panel A) is compared to SchNarc

simulations trained on energies and gradients (panel B). As is
visible, CH2NH2

+ serves as a test system for ultrafast
population transfer after photoexcitation. Transitions from
the second excited singlet state back to the ground state take
place within 100 fs,32,106 which can be reproduced only with
accurate NACs.33 Those transitions can be reproduced with
SchNarc using also the approximated NACs.
The application of the NAC approximation is further tested

on CSH2, showing slow population transfer. This model also
includes triplet states; thus, SOCs are additionally treated with
SchNarc. To the best of our knowledge, for the first time,
SOCs are trained with ML as directly obtained from quantum
chemistry. The population curves are given in Figure 3, where
panel A gives the reference population for 3000 fs and panel B
the SchNarc populations. In contrast to the methylenimmo-
nium cation, the CSH2 molecule serves as a test system for
slow populations transfer and shows intersystem crossing
strongly dependent on the accuracy of the underlying
potentials.94 Inaccurate ML models would thus be unable to

reproduce the reference dynamics. Also the slow population
can be reproduced accurately, which proves the validity of the
ML approach.
In summary, the SchNarc framework combines the

SHARC37 approach for surface hopping and the SchNet80

approach for ML and introduces several methodological
developments, which simplify the use of nonadiabatic ML
dynamics substantially. SchNarc takes advantage of SchNet’s
automatic generation of representations for the molecular
structure and extends it to excited states. The training of ML
models is facilitated by using the phase-less loss and the NAC
approximation, avoiding quantum chemical NAC calculations
at all. Thus, photodynamics simulations are possible based on
solely ML PESs, their derivatives, and SOCs. Furthermore, this
method allows for an efficient computation of the Hessians of
all the excited states at each time step. Hence, SchNarc allows
for efficient nonadiabatic dynamics simulations of excited
states and light-induced processes including internal con-
version and intersystem crossing.
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4.1 Introduction
Nonadiabatic molecular dynamics simulations (NAMD) go beyond Born–
Oppenheimer molecular dynamics by including two or more electronic states
that are coupled. By doing so, many fundamental processes that are at the
origin of life and death on earth, such as photosynthesis or DNA photodamage,
can be studied.1–3 To name only a few applications, getting to know the relation
between a molecular structure and its photochemical properties can help to
design new materials for photovoltaics4,5 or drugs for phototherapy.6

Despite the importance of NAMD simulations, they are limited by the
expense of the underlying quantum chemical computation of the high-
dimensional potential energy surfaces (PESs), i.e., the energetic states for
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corresponding molecular configurations that are involved in the targeted re-
action. This computation is the most expensive part of a NAMD simulation and
hampers its application for long time scales. With contemporary approaches,
up to a couple of picoseconds can be simulated and a compromise between
accuracy and computational efficiency usually has to be made.7–9 To speed up
simulations and make long time scales as well as accurate PESs accessible, the
expensive quantum chemical calculations have to be replaced by more efficient
methods. For the electronic ground state force fields exist,10–13 but these
introduce a lot of approximations leading to less accurate potentials. Recently,
with the rise of machine learning (ML), ML potentials have been successfully
developed for the electronic ground state14–39 that allow an accurate repre-
sentation of the PES and the investigation of chemical reactions, which is not
possible with standard force fields. However, no such force fields for excited
states are available, and only a few studies have tackled the development of
ML potentials for excited-state properties.40–50 The reason for the slow devel-
opment of ML potentials for the excited state to carry out dynamics simu-
lations compared with the ML potentials for the ground state is two-fold. On
one side, not just one PES must be accurately described; more need to be taken
into account. Further, not only the energies and corresponding forces are
necessary to carry out accurate NAMD simulations, but also couplings between
different states; this leads to additional challenges for the regression with ML,
as will be explained below.

Almost all approaches in quantum chemistry are based on the Born–
Oppenheimer approximation that allows one to separate the degrees of
freedom of the electrons and the nuclei. The Born–Oppenheimer approxi-
mation is valid for many geometries of the electronic ground state, in par-
ticular for the equilibrium of most molecules. However, it breaks down
whenever two or more states are strongly coupled and the electrons and the
nuclei rearrange on an ultra-short time scale.51–53 Nevertheless, the use of
this approximation is crucial for efficient computations of NAMD. It allows
for mixed quantum-classical dynamics, where the motion of the nuclei on
the PESs made up by the electrons is treated classically, while the electronic
motion follows the time-dependent Schrödinger equation. The underlying
elements that couple different PESs show singularities in regions where PESs
are close to each other and are almost vanishing elsewhere. In the con-
formational space, where states of the same spin multiplicity get into
proximity, nonadiabatic couplings (NACs) are important, while spin–orbit
couplings play a key role for transitions between states of different spin
multiplicities. These critical regions are called conical intersections or
simply state crossings, respectively, and do not only pose an obstacle to
quantum chemistry but consequently also to the fitting of the PESs.44–46,50

The numerical difficulties that arise due to the singularities of NACs at
conical intersections lead to other approaches that focus on the diabatiza-
tion of adiabatic potentials.48,54–57 Using diabatic potentials is favourable, as
the off-diagonal coupling elements of the Hamiltonian are smoothly varying
properties. Another advantage is that effects due to the Berry (or geometric)
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phase vanish and do not influence dynamics simulations. The importance of
the Berry phase depends on the dynamics method and the chemical system
under study. While the Berry phase can be safely neglected in some
cases,50,58 it plays a vital role in others, leading to path-dependent transition
probabilities in the vicinity of conical intersections.59 For the latter cases, a
diabatic approach is desirable, but finding meaningful diabatic potentials is
often a tedious task.48 The output of a quantum chemistry calculation is
given in the adiabatic picture, as the diabatic wavefunction is not an
eigenfunction of the electronic Hamiltonian. Hence, the diabatic potentials
are not unique and it often turns out to be infeasible to find diabatic
potentials, especially for larger and more complex molecules. One reason is
that the number of electronic states within a certain energy range often
increases with the number of atoms in the molecule, therefore increasing
the computational effort to provide all desired electronic states. Recently,
some approaches were developed to improve the diabatization process by
using ML models.47–49 In large molecules, i.e., in the range of 10s to 100s of
atoms, more extensive approximations,47,60 such as the linear vibronic
coupling model,61 should be considered. As their discussion goes beyond
the scope of this chapter, the reader is referred to ref. 54 and 61–64 for more
details. Although excited-state dynamics are favourable in the diabatic pic-
ture, due to the aforementioned problems and the fact that the computation
of diabatic potentials is still a challenging task, on-the-fly NAMD in the
adiabatic representation remains often the method of choice.

Within NAMD simulations, different approximations exist to account for
nonadiabatic transitions between different adiabatic states. The surface-
hopping methodology is often a good compromise between accuracy and
efficiency because it computes the PESs and corresponding properties on-
the-fly at geometries obtained after classical propagation of the nuclei.65,66

This method has been the method of choice in recent ML-driven NAMD
simulations44–46,50 and allows for an on-the-fly exploration of the PESs with
ML models.44,50 Transitions, or the so-called hops, between different PESs
are determined stochastically. Different algorithms58,66,67 to compute the
hopping probability and its direction are available with the most popular
one being based on Tully’s fewest switching algorithm.68 In this case, the
hopping probability is dependent on the couplings between adjacent
states.65 Another commonly used algorithm is the Zhu–Nakamura approxi-
mation,58 that omits the computation of any couplings. For more infor-
mation on hopping algorithms, the reader is referred to ref. 68–77.

Here, we discuss several ML approaches for the computation of NAMD
simulations. In the following sections, different algorithms, i.e., a linear
model (LR), kernel-ridge regression (KRR), support vector regression (SVR),
and artificial neural networks (NNs), will be compared and their advantages
and disadvantages will be listed. It is further shown how to efficiently gen-
erate a training set by keeping in mind that the number of costly quantum
chemical reference calculations should be small. The problem of wave
function phases will be discussed and its impact on couplings, and in

1

5

10

15

20

25

30

35

40

45

78 Chapter 4

appendix: reprinted publications

114



general any excited-state properties corresponding to off-diagonal elements
in matrix notation, such as transition dipole moments. As an example, the
methylenimmonium cation is selected, where the training set is taken from
ref. 50 and contains energies, corresponding forces, NACs as well as per-
manent and transition dipole moments for three singlet states. However, the
latter property will not be discussed in the course of this chapter.

4.2 Methods

4.2.1 Machine Learning (ML) Models

As ML models, KRR, SVR, and NNs are discussed and compared with LR as a
baseline model. The focus of this chapter is on NNs. In case of LR, SVR, and
KRR, each electronic state is independently modelled, so for three singlet
states of the methylenimmonium cation containing six atoms, the respective
state energies must be determined in three separate fits for one molecular
geometry, the gradients (if not fitted as energy derivatives) as single values
18 times, and the NACs as single values 162 times. By using the relations
of NAC vectors between two states, i and j, where NACij¼�NACji as well as
NACii¼ 0, the parameters can be reduced to 54. As NNs can relate all ener-
getic states to one molecular geometry at once, the main focus will be on this
model, which we call a multi-state model. The gradients are treated as de-
rivatives of the PESs20 and NACs are treated together in one additional NN.

4.2.1.1 Linear Model (LR)

The central goal of supervised ML, and in general of regression, is to fit a
function to find the best possible relation between an input, i.e., the molecular
geometry, and its corresponding output,78 in our case the energies and cor-
responding forces for each state, as well as NACs between each set of states. In
the simplest case, the relationship can be approximated by a linear function,

Y¼ bþw �X, (4.1)

where Y is the output property, X is the data to be fitted, w are the co-
efficients, and b is a constant bias. Ordinary least squares regression is used
for the linear model as implemented in scikit-learn.79 To fit the PESs, a
training set is used that contains X as well as corresponding Ys. The learning
process is based on finding the parameters, w and b, where the error be-
tween a predicted property, Yp, by the model and the original value, Y, for a
given input, is minimal.80

The corresponding loss function reads

L¼
XN

i

Y p
i � Yi

� �2
(4:2)

with i running over all data points N in the training set.81 In the first step,
the parameters w and b are estimated or randomly chosen. They get
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optimized during a process termed training, in which the loss function is
minimized,

min
w

XN

i

hw;Y p
i i � Yi

� �2
: (4:3)

The resulting problem is thus a minimization problem that can be solved
by following the gradient of the function with respect to the weights.

4.2.1.2 Kernel Ridge Regression (KRR)

Kernel ridge regression (KRR) is derived from ridge regression instead of LR
in combination with the kernel trick. Ridge regression adds a penalty term to
the loss function, that is minimized according to:

min
w

XN

i

hwi;Y p
i i � Yi

� �2þ lkwk2: (4:4)

l is a regularizer, also known as L2 penalty, that is added to the weights and
used to control overfitting.78 As the noise in the training set made up by
quantum chemistry is supposed to be small when calculations are con-
verged, l is also very small in these cases.82 The kernel trick is used to map a
training set that has no linear relation between inputs and outputs into a
higher-dimensional space, where it is linearly separable. This leads to a non-
linear model with the non-linearity being determined by the type of the used
kernel, K.78 In most cases, a Gaussian kernel or Laplacian kernel is chosen,
centred on each compound (molecule), Xi, in the training set. The prediction
of a property, Yp, is then computed using eqn (4.5). The regression co-
efficients are again found via linear regression according to eqn (4.6).

Y p¼
XN

i

wiK X ;Xið Þ (4:5)

w¼ (Kþ l1)�1Y (4.6)

For KRR, the QML toolkit83 in combination with the FCHL represen-
tation82 was used relying on a Gaussian kernel function and treating gra-
dients as energy derivatives. Note that a new version of the FCHL
representation84 already exists, allowing for more efficient computations.
KRR is often the method of choice for quantum chemical ML problems. The
advantage of this method is that it can fit non-linear data sets, while still
profiting from simplicity and ease of use.82

4.2.1.3 Support Vector Regression (SVR)

Support vector machines can be used for classification as well as re-
gression problems. Here, the focus is on the latter case, also known as
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support vector regression (SVR). Like KRR, SVR makes use of the kernel
trick. Input data are mapped into a higher-dimensional feature space,
where a linear model can be constructed. However, instead of a minimum
loss function, an E-intensive loss function, LE, is employed, where E is a
margin of tolerance:85

LA¼
0 if Y p

i � Yi

�� ��rA
Y p

i � Yi

�� ���A otherwise

�
(4:7)

The E-insensitive region (where LE¼ 0) is often referred to as E-tube, where
the optimization process is based on finding the tube with most of the
training points inside. The support vectors represent the instances outside
this tube, which have the most influence in the training process.86 Hence,
the loss function is only affected by data points that are predicted with a
larger error than �E.87 The function to be minimized is then a regularized
error function:

min
w

C
XN

i

LA þ
1
2
kwk2 (4:8)

where C is a regularization parameter written in front of the error term.88

Common kernel types, or basis functions, that are placed on each training
point, are linear kernels, radial basis functions, and polynomials. For the
results given here, a radial basis function is used as implemented in scikit-
learn.79 SVR has the advantage of having the capability of good general-
ization while achieving high prediction accuracy. However, as with the
previous models that rely on basis functions that are centred on the training
compounds, the depth of the model is directly dependent on the size of the
training set.86

4.2.1.4 Neural Networks (NNs)

In contrast to LR, KRR, and SVR, neural networks (NNs) have their basic
concepts from the information processing in the human brain. As can be
seen from Figure 4.1, an NN consists of several layers, with an input layer,
that contains the input, X, several hidden layers, each comprised of a finite
number of nodes, and an output layer that gives the desired property, Y.
Similar to the neurons in our brain that are connected by synapses, the
nodes i and k in the hidden layers j and l are connected by weights, wkl

ij , that
are the fitting parameters during training. The nested functional form of the
NN with two hidden layers and three nodes per hidden layer (as given in
Figure 4.1) is presented in eqn (4.9).

Y p¼ f 3
1 b3

1 þ
X3

l¼ 1

w23
1k f 2

k b2
k þ

X3

j¼ 1

w12
jk f 1

j b1
j þ

X2

i¼ 1

w01
ij Xi

 !" #( )
(4:9)
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As can be seen from eqn (4.9), the NN model can be referred to as a set of
functional transformations. First, the linear combinations of the inputs are

generated,
P2

i¼ 1
w01

ij Xi þ b1
j . A non-linear basis function, f, is then employed

and used to transform this expression to yield the second layer of the net-
work. Frequently used basis functions are sigmoidal functions, tangent
hyperbolic, or a shifted softplus function, such as ln(0.5exþ 0.5), that was
used for the results presented here. By a series of such transformations,
the NN model can be constructed in its simple multi-layer feed-forward
(MLFF) architecture. The bias values, b j

i, are used to achieve more flexibility
by allowing basis functions to shift. In the last step, the desired properties
are obtained by using a linear basis function. Hence, if no hidden layers are
defined, the MLFF NN is equivalent to LR in its simplest form.88,89 As the
number of hidden layers and nodes per hidden layer defines the depth of
the network, the complexity and the depth of the models are independent
of the training set size.

To find the best possible relation between X and Y, the loss function to be
minimized is the sum of mean squared errors between NN predictions and
reference values, as given in eqn (4.3). Several algorithms exist, with Adam
(adaptive moment estimation)90 being one of the most popular stochastic
gradient descent optimization algorithms. To prevent the model from
overfitting, different techniques can be applied, such as the inclusion of a L1
and L2 regularization, soft weight sharing, dropout or an early stopping

Figure 4.1 A small multi-layer feed-forward NN with an input layer that contains
atomic coordinates, X¼ {Xi}, two hidden layers with 3 nodes, y, per
hidden layer, and an output layer that yields a property, Y. A bias that is
connected to each node in the hidden layers and output layer is not
illustrated here.
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mechanism.91 The latter can be applied by splitting the whole training set
into a training set and a validation set, whereas the validation set is excluded
from training, but included for prediction. This means that after each epoch,
i.e., when the weights get updated, the error on the validation set is com-
puted and recorded. Once this error increases, the model is assumed to
overfit and the training needs to be stopped.89 The NN results here were
obtained using theano.92

4.2.1.5 Training Process

Compared with LR, KRR, and SVR, NNs contain a lot more hyperparameters
that need to be optimized in order to achieve successful training and to
fit the weights to accurately predict the desired property. Hence not only
the type of basis function, its width and the regularization terms have to be
optimized, as is the case for KRR and SVR, but also the number of nodes
per layer, the number of layers and several more hyperparameters. One
commonly-used way to search the space of hyperparameters is via random
grid search.93 For some implementations and further details, see for
example ref. 9 or 50. It is further advantageous to scale inputs and outputs
of the training set by subtracting the mean and dividing by the standard
deviation. We used such a scaling for our NNs.

As already mentioned, the depth of the NN does not depend on the
number of data points, and a deep NN can be built from any training set size.
For practical reasons and memory-efficient computations, it is thus
favourable to split the training set into the so-called mini batches. The batch
size depends on the problem and no rule of thumb on its optimal value can
be given. A batch is thus a subset of the training set, which delivers a
combined gradient for the optimization of the weights via gradient descent.
Each time a batch is used for training, the weight parameters get updated.
After one pass through the complete training set, an epoch is finished; for
practical reasons, an early-stopping mechanism is recommended to prevent
overfitting.93 After one epoch, the weights can be adapted, and also the
learning rate, which defines the magnitude of change of the weights after
each epoch and is one of the most critical hyperparameters. A large initial
learning rate prevents the NN model from getting stuck at a local minimum.
It can then be decreased during the optimization process. The number of
hidden layers and nodes per hidden layer determines the depth of the NN.
Usually, up to a certain number of hidden layers and nodes per hidden layer,
the NN gets more accurate, but converges towards an optimal value in terms
of accuracy and computational costs. In addition, the L1 and L2 regular-
ization rates have to be selected and searched accordingly.

Owing to this more complex architecture, NNs are more difficult to apply
in practice than LR, KRR, and SVR. However, an NN is more flexible and
can fit more complex data. It is also straightforward to relate one molecular
input to a multi-dimensional output. In detail, one model can predict
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the values of each energetic state as well as the corresponding gradients
in one step. In this case, the training improves if the forces, F, are included
in the loss function, L. Another hyperparameter, Z, that controls the in-
fluence of forces on the loss function, as described in eqn (4.10), has to
be added.

L¼ 1
N

XN

i

Ep
i � Ei

� �2� Z
N

XN

i

1
3M

X3M

a

Fp
i � Fi

� �2
(4:10)

The same accounts for NACs, where one model can be built to match an
input to all the NAC vectors between different states of the same spin
multiplicity. The corresponding models are thus multi-state models for en-
ergies and gradients and multi-value models for NACs. LR, KRR, and SVR,
are single-state models by definition. To make multi-state predictions pos-
sible, an explicit encoding of the energetic state is necessary, i.e., a separate
kernel for this state must be defined to predict the energies of all states with
one model.

To achieve energy conservation during dynamics simulations, the forces
should be treated as derivatives from energy potentials. This can be done for
KRR by using atomistic Gaussian kernels in combination with the FCHL
representation,34,84 which will be explained in the following and is imple-
mented in the QML toolkit.83

4.2.1.6 Descriptors

To represent a molecule suitably for an ML model, a rotationally and
translationally invariant descriptor must be provided that contains all the
relevant information regarding a molecular geometry to fit a complex
property. Compared to previous ML potentials for the electronic ground
state, where a universal model is aimed for, the excited-state potentials are
molecule-specific. Hence, it is sufficient to present the molecule as a whole
to the ML models. This MLFF NN contrasts to high-dimensional NNs,94

where each atom type is represented by one NN, such as given in ref. 15, 20,
89, and 95–97 for example to construct ML potentials for the electronic
ground state. The target in our approach is to fit complex excited-state
properties and aim for long time scale photodynamics simulations. Several
types of descriptors are compared: The inverse distance matrix is the sim-
plest descriptor applied, which contains only information about the dis-
tances of the atoms. The Coulomb matrix98 additionally contains atomic
charges, and a polynomial descriptor is applied, generated via cross-
products of all entries of the inverse distance matrix.50 For KRR, the FCHL
representation is applied,82 whereas LR and SVR are trained to relate the
inverse distance matrix to a desired property. In the following, the de-
scriptors will be explained in more detail with the test molecule, methyle-
nimmonium cation, CH2NH2

1, taken as the reference.
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4.2.1.7 Distance-matrix Based Descriptors

The inverse distance matrix, D, will be abbreviated as inv.D. in this chapter.
Its entries

Dij ¼
1

Ri � Rj

�� �� (4:11)

with Ri being the position of atom i and Rj the position of atom j are very
similar to those of the Coulomb matrix,98

Cij ¼

ZiZj

Ri � Rj

�� �� if dij ¼ 0

1
2

Z2:4
i if dij ¼ 1:

8
><

>:
(4:12)

In the latter, the atomic charges of atoms i and j, Zi and Zj, are add-
itionally included. When comparing matrices, the inverse distance matrix
contains 15 features for the 6-atom molecule CH2NH2

1, i.e., the off-
diagonal elements of the upper or lower triangular matrix. The diagonal
elements of this symmetric matrix are not defined. The Coulomb matrix
additionally contains constant values for the diagonal matrix elements
resulting in 21 input features as a molecular descriptor for CH2NH2

1.
Considering the aforementioned scaling of inputs, both descriptors are
equivalent and should yield comparable results. Therefore, another de-
scriptor is computed, consisting of polynomials of the inverse distances,
abbreviated as poly.D. in the following. The dimension of this descriptor is
squared compared to inv.D., thus allowing for a more accurate represen-
tation of the molecule.

4.2.1.8 FCHL: Faber-Christensen-Huang-Lilienfeld
Representation

The FCHL (Faber-Christensen-Huang-Lilienfeld) representation34,84 has
the advantage over distance-matrix based descriptors that it is also per-
mutation invariant. This invariance is achieved by describing the molecule
atom-wise in its chemical and structural environment. To this aim, a set of
M-body expansions, AM(I), is defined for each atom, I. Here, only the first
three terms will be included, due to minor advances when accounting for
higher body terms.34 Similar to the distance-based descriptors, the FCHL
representation contains information about the interatomic distances
(second-order expansion, A2(I)), but additionally includes information
about the chemical compositions (first-order expansion, A1(I)) and angular
distributions (third-order expansion, A3(I)). The representation up to the
third-order expansion reads:

A3 Ið Þ¼N xð1Þ
� �X

ia I

N xð2ÞiI

� � X

j a i;I

N xð3ÞijI

� �
x3 diI ; djI ; y

I
ij

� �
(4:13)
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with the first-order expansion

N xð1Þ
� �

¼ A1 Ið Þ¼ e
� PI�x1ð Þ2

2s2
P
� GI�x2ð Þ2

2s2
G (4:14)

and x(1)¼ {Pi, sP; Gi, sG} accounting for stoichiometry. The corresponding
higher terms are similarly generated with x(2)

ij ¼ {diI, sd; Pi, sP; Gi, sG} and
x(3)

ijI ¼ {yI
ij, sy; Pj, sP; Gj, sG} and are similar to the atom-centred symmetry

functions for NNs of Behler99 or their weighted variants.97,100

The advantage of this descriptor compared with the previously mentioned
distance-based descriptors is that it treats the molecule atom-wise and thus
includes more information about the molecule, i.e., the atomic composition
and angular distribution. The disadvantage is a higher computational ex-
pense, which is optimized in a new version, called FCHL19.84 The previous
version FCHL18, was used to obtain the results presented here.

4.2.2 Training Set Generation

A training set that is applicable for NAMD should contain a molecular
geometry and the energies of all energetic states that are included in dynamics
simulations, corresponding gradients as well as couplings between the states.
Spin–orbit couplings are important between states of different spin-
multiplicities, whereas NACs account for transitions between states of same
spin-multiplicity. Here, the test system has three active singlet states and thus
NACs will be described. Notably, the accuracy of the ML potentials solely relies
on the quantum chemistry reference method if ML models are trained ap-
propriately. Hence it is important to choose this method thoughtfully. To keep
the number of expensive reference computations minimal, cost-effective
generation of the training set is required.50 Nevertheless, this small training
set should cover the relevant conformational space of a molecule that is vis-
ited during dynamics simulations. Therefore, it is advisable to build such a
training set by starting with an initial, small set that is generated manually
and to expand it in a meaningful way via adaptive sampling.15,20,50,89,101,102

4.2.2.1 Initial Training Set

As a starting point for generating a training set for NAMD simulations, the
equilibrium geometry of a molecule should be included and taken as a
reference point for all subsequent calculations to compute wave function
overlaps. Hence, the information of the wave function of this geometry
should be saved for further pre-processing (see Section 4.2.3). In principle,
every sampling method can be used for computing the rest of the data points
for the initial training set. For small molecules, which do not have many
degrees of freedom, a good guess is to carry out scans along each normal
mode coordinate. An even better idea is to take points from the optimization
of critical points like excited-state minima, conical intersections, and state
crossing points. For larger systems, some other approaches like Wigner
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sampling103 or sampling via molecular dynamics simulations,104,105 such as
umbrella sampling,106 trajectory-guided sampling,107 enhanced sampling108

or metadynamics,109 e.g. with the semiempirical tight-binding based quan-
tum chemistry method GFN2-xTB110 can be employed, to name only a few
recent developments. In any case, it is advantageous to consider critical
regions of the PESs or reaction coordinates that might be visited during
photodynamics simulations in advance. For example, if it is known from
literature or supposed by chemical intuition that photo-excitation can lead
to hydrogen dissociation or carbon–carbon bond cleavage, appropriate re-
action coordinates should be scanned. As soon as the initial training set is
thought to be large enough (so far, we have used approximately 1000 points),
ML models can be trained and dynamics simulations can be carried out
using adaptive sampling for excited states,50 as will be explained below.

4.2.2.2 Adaptive Sampling for Excited States

In general, an ML model used to replace quantum chemistry in NAMD
simulations is, simply said, interpolation between data points. Therefore, it
can be as accurate as the reference method while being extremely fast at the
same time in interpolative regions of the PESs. However, it fails dramatically
in extrapolative regions.78 Hence, it is not sufficient to sample a conforma-
tional subspace of a molecule in advance, but it is necessary to check
the reliability of ML predictions at any point in time along a dynamics run.
If a region is detected to be untrustworthy, it is either undersampled or
not included in the training set at all. The conformation, where the
untrustworthiness was detected, should be added to the training set and the
ML models should be re-trained from this expanded training set in order to
continue ML-NAMD simulations accurately and on long time scales. The
method of choice to expand the training set with unknown conformations
on-the-fly and check the accuracy of ML predictions is in most cases a process
termed adaptive sampling,15,20,89,101,102 which is well-established for ground
state dynamics, and modified for excited-state dynamics.50 The process is
exemplified in Figure 4.2.

Figure 4.2 Scheme of the adaptive sampling procedure adapted from ref. 32.
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In more detail, adaptive sampling for excited states starts with a NAMD
simulation, where the excited-state properties, ~Y p

j , (PESs, forces, and NACs),
are taken as the mean, Ȳp, of predictions from at least two ML models, J:

�Y p¼ 1
J

XJ

j¼ 1

~Y p
j : (4:15)

Those ML models are independently trained from the initial training set
but differ slightly in their initial hyperparameters or starting weights. At
each time step, the RMSE between the ML model forecasts, Yp

s, is computed
and compared with a predefined threshold, ep, which is set for each excited-
state property. The thresholds are defined manually and should be in
the range of the validation error of the ML models. A separate threshold
for each property is used. Whenever one of these thresholds is exceeded,
such that

Y p
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J � 1

XJ

j¼ 1

~Y p
j � �Y p

� �2

vuut � ep; (4:16)

the prediction is termed untrustworthy, and the molecular geometry is
presumed to be part of an unexplored conformational space. This geometry
is then used as an input to carry out an additional quantum chemistry
reference calculation for each property, no matter which property’s
threshold is exceeded. The training set is expanded with this additional data
point and the ML models are retrained from the expanded training set. After
one such cycle, the thresholds are adapted by multiplication with a pre-
defined factor (e.g. 0.95) to reduce the magnitude of the thresholds and
sample the conformational space comprehensively for the training set
generation. The dynamics simulations with an ensemble of newly-trained
ML models can be continued from the unknown configuration, employing
the adaptive sampling procedure until the training set covers the relevant
space for NAMD.20,50,89

For practical reasons and efficient training set generation, it is favourable
to start not one trajectory with an ensemble of ML models, but approximately
100 trajectories, as is usually done within NAMD. The ML models should then
be retrained only after each trajectory reaches an unexplored conformational
region of the PESs and the corresponding data points are all added to the
training set. Hence the training of the ML models is carried out only once for
all trajectories and not for each of the aborted trajectories separately. In this
way, the computational cost for the training of the ML models is reduced.

Furthermore, it is advisable to recalculate the thresholds according to the
error of ML models on the training set and to restart the dynamics from the
beginning when the size of the training set increases by a factor of about two.
Further, the hyperparameters of the ML models should be scanned and
optimized again, in order to find the best fit for the expanded training set.
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This procedure is advisable, because the trajectories will probably not lead to
the exact same conformational region, but might explore different subspaces
of the PESs.32,50

In general, there is no guide on how large the training set should be for
NAMDs. It is rather a matter of the size and flexibility of the targeted
molecule as well as the complexity and diversity of the photo-induced
processes that can take place. If different reaction channels are accessible
after photo-excitation, far more data points might be needed than for a
rigid molecule, where most trajectories lead towards the same reaction
channel. Another important factor is the number of active states that are
included in NAMD. By checking the convergence behaviour of the sampling
procedure, an indication can be obtained on how close the training set is to
its optimal size.50

For all those reference computations, more states might be considered
than in the actual ML-NAMD, and this fact should also be kept in mind
when choosing the reference method. This is especially important for
excited-state properties that result from wave functions of two different
electronic states, such as NACs that couple two different states or transition
dipole moments. Their sign, i.e., if the coupling value, Cij, is þCij or �Cij, is
dependent on the relative phase of the wave function of each electronic
state. For very similar geometries, the couplings can arbitrarily switch their
sign, leading to inconsistencies in the potentials formed. This makes it
difficult for an ML model to find a relation between Cij values and a mo-
lecular geometry. To allow for meaningful learning of off-diagonal elements
in terms of matrix notation, a further preprocessing, termed phase cor-
rection, is carried out such that almost all such inconsistencies are re-
moved, and a proper learning behaviour of the ML models can be achieved.
To this aim, it is necessary to compute wave function overlaps between every
geometry in the training set and the reference geometry defined at the
beginning of the training set generation, that still contains all the infor-
mation about the wave function.50,111,112 This contrasts with the generation
of a training set for Born–Oppenheimer molecular dynamics and thus will
be explained in the following.

4.2.3 Wave Function Phases

The problem of phase inconsistencies throughout a set of quantum chem-
ical reference computations can be exemplified with molecular orbitals of
the methylenimmonium cation (Figure 4.3 taken from ref. 50). As can be
seen in panel A of Figure 4.3, molecular geometries are the input of a
quantum chemical reference computation. The interpolation coordinate
here is the elongation along the C–N bond. In panel B, the molecular orbitals
obtained from each quantum chemical calculation are given for the S1 and
S2 states. As shown, they can switch their sign, illustrated by their bright-
ness – that is either dark or light. The same accounts for the electronic wave
function, which is a valid eigenfunction of the electronic Hamiltonian. If it is
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multiplied by a phase factor, it is still a valid eigenfunction. Hence, the wave
function is not uniquely defined. As a consequence, the coupling vectors
between two states, NACij, and in general any off-diagonal element in terms

Figure 4.3 A set of quantum chemical calculations of the methylenimmonium cation,
CH2NH2

1, along the C–N bond. The molecular conformations, which are
the input of a quantum chemical calculation, are given in panel A, the
orbitals of the computed two electronic states, the S1 and S2 state as well as
the corresponding off-diagonal matrix elements between those two states,
hS1|Ĥ|S2i, are given in panel B. As can be seen, the sign of those values
arbitrarily switches. Those sign jumps can be removed by applying a phase
correction algorithm. Results are given for those elements in panel C.
Reproduced from ref. 50 with permission from the Royal Society of
Chemistry.
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of matrix notation, Cij, resulting from the wave functions of those two states,
Ci and Cj,

Cij¼hCi|Ô|Cji, (4.17)

might randomly change sign along an interpolation coordinate. As a
result, these elements show discontinuous curves, as can be seen in the
bottom of panel B. To remove such phase jumps and make correct learning
of the ML models possible, a virtual global phase correction has to be
applied.50 This process allows one to correct the couplings so that smooth
curves can be obtained, as given in Figure 4.3 in panel C. This phase
correction algorithm, discussed in more detail below, is applied only to
ensure a global phase in most parts of the configurational space that is
covered within the training set in order to make it learnable and applicable
to an ML model.

It is worth mentioning that phase jumps resulting from the Berry phase
cannot be removed, see ref. 59 for more details. However, it is assumed that
those remain only in a small subspace of the training set and are thus
negligible. This is further validated by theories, such as the Zhu Nakamura
theory,58,67,80,113–115 that do not track any phase along a NAMD simulation
and still yield accurate results.

4.2.4 Phase Correction Algorithm

To carry out phase correction, the phase of each electronic state must be
tracked from a pre-defined reference geometry onward. This can be done by
computing wave function overlaps,74,111,112 S, between two adjacent
molecular geometries, k and l, as implemented for example in the WFoverlap
code:111

S¼hCk|Cli. (4.18)

The dimension of this matrix is Nstates�Nstates, with Nstates being the
number of active states included in the calculations. If the two configur-
ations k and l are very similar, the overlaps are obtained as diagonal elem-
ents with values close to �1. If the wave function overlap of a state is very
close to þ1, no phase change occurred, while a value close to �1 indicates
that the phase of the wave function switched. A phase vector, p, can then be
defined that contains a value of þ1 or �1 for each electronic state, which
indicates the change of the phase with respect to the previous geometry.
Apart from critical regions of the PESs, p usually corresponds to the diagonal
matrix elements of S.

In regions of the PESs where adiabatic potential energy curves have an
avoided crossing and NACs become large, the off-diagonal elements of S
might be larger than the corresponding diagonal elements. Then, the sign of
p for each electronic state is obtained from the largest absolute value of a
row of S.
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During adaptive sampling, there will be cases when the two configur-
ations, i.e., the one that should be included in the training set and the
reference geometry, are not similar enough to obtain overlaps larger than an
absolute value of 0.5. In such cases, no information about a phase change
can be obtained and interpolation between the two geometries in combin-
ation with iterative computation of wave function overlaps is necessary. The
entries of p can be obtained using the following equation:

pi¼ sgn max Sij

�� ��� �� �
8 Sij

�� �� � 0:5; i; j¼ 1; 2; . . . ;Nstates: (4:19)

If interpolation is necessary during phase correction, the phase vector of
the final geometry, pn, is computed as the product of all previous phase
vectors, p0 to pn� 1:

pn¼
Yn�1

b¼ 0

pb: (4:20)

If the interpolation steps, b, become very large, it is advisable to store the
wave functions of different geometries and the corresponding overlap
calculations, i.e., p. If a new geometry has to be added to the training set, the
root mean square deviations (RMSDs) of this geometry to all other geom-
etries, of which wave function information is available, can be computed
and the phases can be tracked back to the geometry with the lowest RMSD.
This intermediate calculation can reduce the number of interpolation steps
significantly and hence leads to less additional computational cost.50

Special care must be taken when molecules are treated that contain many
states lying energetically close to each other. So-called intruder states can be-
come a source of error for phase correction. These states are so high in energy at
the reference geometry that they are not computed, but possess a significantly
lower energy at another geometry during a dynamics simulation such that they
should have been included. In such cases, the relevant state for tracking the
phase is not part of the active states of the geometry that has to be added to
the training set and the result of the wave function overlap computation will
not provide any information about a phase change of this state. Therefore, it
is favourable to include more energetic states in the calculations from the
beginning. In the targeted NAMD simulations, those additional states will not
be accounted for and hence the forces and couplings that involve those states
do not need to be computed. Therefore, computations are still affordable.

When the phase vectors of the configurations in the training set are cal-
culated, the training set can be pre-processed. This should be done during
adaptive sampling on-the-fly. For the initial training set, it can be done at
any time before training. Phase correction can be employed using eqn (4.21)
for the Hamiltonian matrix, H containing e.g. SOCs, and eqn (4.22) for the
NAC vectors between a set of states, NACij. Each matrix element of H is
multiplied with the corresponding phase values of each state. In contrast, all
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values of a NAC vector between two states, NACij, (3 vectors accounting for
x, y, and z direction with Natoms entries (Natoms is the number of atoms of the
molecule)), is multiplied with the corresponding phase values, pi and pj, of
those states.

Hij¼Hij � pi � pj; 1, 2, . . .Nstates (4.21)

NACij¼NACij � pj � pj (4.22)

In contrast to NAMD simulations, ground-state dynamics simulations do
not need a pre-processing of the training set and thus also no phase cor-
rection. The reason is that energies and gradients of any electronic state are
computed as diagonal elements from the wave function of the same state,
hCi|Ô|Cii, where the phase factor enters twice and hence cancels out.

4.2.5 Surface Hopping Dynamics

To carry out NAMD simulations, the Surface Hopping including ARbitrary
Couplings (SHARC) method115 was used for the results represented here.
SHARC is an extended version of Tully’s fewest switches surface hopping
method.68 In surface hopping methods, the nuclei move on the adiabatic
PESs that are made up by the electrons and are computed with quantum
chemistry. The PESs are coupled by spin–orbit couplings or NACs, that
directly influence the hopping probability of a molecule. A hop is a non-
adiabatic transition from one electronic state to another. This event is
computed stochastically by comparing a random number between 0 and 1 to
the computed hopping probability. As surface hopping is a stochastic
approach, an ensemble of trajectories is computed to approximate the
motion of a wave packet. The results can be displayed by population plots,
showing the population transfer between the electronic states along time.

In order to execute ML surface hopping molecular dynamics, the pySHARC
Python wrapper for the SHARC dynamics driver116 can be used, that, com-
pared with the conventional NAMD program SHARC, omits the file I/O and
allows for direct communication of ML models and the driver. This reduces
the program runtime of SHARC drastically.50 Usually, conventional NAMD
codes are not limited by the duration of file I/O, as the quantum chemical
calculations of the electronic properties are generally the time-limiting step
in such simulations. However, when they are replaced by ML models that are
much faster than quantum chemistry, the file I/O can become the time-
limiting step. Moreover, as long dynamics simulations are aimed for, one
has to keep in mind that the amount of produced data increases sub-
stantially and that the analysis of the outcomes might take longer than the
production runs. In these cases, ML models can also be used to efficiently
analyze the data and explore new concepts.9 Further, it is advisable to save
only each 10th–100th time step, when the dynamics do not change much
and to save every time step, when transitions and important processes take
place. For example, when a molecule is trapped for a long time in an excited
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state, it not necessary to save each time step of each trajectory, whereas in
critical regions of the PESs, where many different processes can take place
on a very short time scale, it is important to store the information of every
time step for subsequent analysis.

The training set that is used to produce all the results mentioned in this
chapter is taken from ref. 50 and comprises a conformational subspace of
the methylenimmonium cation, CH2NH2

1, that is obtained from normal
mode scans and adaptive sampling using the SHARC program and two NNs.
It contains three active singlet states and was computed with the multi-
reference configuration interaction method that accounts for single and
double excitations (MR-CISD). The double-zeta basis set aug-cc-pVDZ was
used; in total the training set contains 4000 phase corrected data points,
where each data point contains the molecular geometry in xyz-format, en-
ergies of three singlet states, corresponding gradients, and NACs. Permanent
and transition dipole moments are also included but are not treated here. To
compare NAMD based on ML with NAMD based on quantum chemistry,
reference dynamics based on MR-CISD was carried out after excitation to the
second excited singlet state for 100 fs using a time step of 0.5 fs. The so-
obtained single points were not part of the training set for the ML models
and cannot be used as such, as no phase correction was carried out for these
points. For more details on reference dynamics, see ref. 50.

4.3 Example: Methylenimmonium Cation
As already introduced, many processes that are important for nature and life
depend on light, such as photosynthesis or the ability to see. Concerning the
latter, retinal is the molecule in the protein rhodopsin that plays a key role in
vision. The photoreactive part is the chromophore retinal, which belongs to
the family of protonated Schiff bases. The smallest member of this family is
the methylenimmonium cation, CH2NH2

1, which undergoes ultrafast
switches after photo-excitation. The nonadiabatic transition from the first
excited singlet state back to the ground state leads to a rotation of the
molecule along the HC–N–H dihedral angle.116–118

In the following, the photo-induced processes of this test molecule are
used to investigate the ability of ML models to reproduce NAMD. The ML
models are NNs taken from ref. 50. Here, the methylenimmonium cation is
used as a test system, because transitions from the second excited singlet
state back to the ground state are occurring on an ultrafast time scale, which
are challenging to reproduce. More importantly, this ultrafast nature makes
the dynamics computationally accessible for simulations based on the
quantum chemistry reference method for comparison.50

4.3.1 ML Surface Hopping Dynamics

Figure 4.4 shows the population schemes obtained after executing surface
hopping dynamics with different methods. Panel A shows results from two
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slightly different quantum chemistry methods. QC1 refers to the reference
quantum chemistry method MR-CISD(6,4)/aug-cc-pVDZ (dashed lines),
while QC2 indicates the same method, but with another double-zeta bases
set, MR-CISD(6,4)/631þþG** (dotted lines). The slightly different quantum
chemistry methods are used to demonstrate which population schemes can
be regarded as similar. As can be seen from panel A, the two quantum
chemistry methods QC1 and QC2 result in very similar population schemes,
which are obtained from dynamics simulations of 90 trajectories propagated
for 100 fs. Initially, 100% of the population is in the second excited singlet
state, S2, from which fast population transfer to the first excited singlet state,
S1, and back to the ground state, S0, takes place. This dynamics can be
successfully reproduced with NNs trained on the training set of 4000 data
points computed with the QC1 method. The results are directly compared
with each other in panel B. As can be seen, the population curves obtained
from NN computations (continuous lines) are much smoother than those
obtained with QC1 (dashed lines). This is because not only 90 trajectories
(resulting from 1000 initial conditions from Wigner sampling) were propa-
gated with NNs, but 3846 trajectories (resulting from 20.000 initial con-
ditions from Wigner sampling). This enlarged statistics is the first advantage
of NNs and is possible due to the NNs’ low computational costs. The overall
computational time of 3846 trajectories with NNs (E19 000 min) is still
about a factor of 800 lower than the overall computational time of 90 tra-
jectories obtained from QC1 calculations (E15.5 Mio. min.) when using the
same central processing unit. Comparing panels A and B further shows that
the agreement of NNs and QC1 is akin to the agreement of QC1 and QC2.

The goal of executing long NAMD simulations that are not feasible with
the QC1 method anymore is possible with two NNs by employing the
aforementioned sampling scheme to ensure accurate potentials for energies,

Figure 4.4 Surface hopping dynamics of CH2NH2
1 after excitation to the S2 state.

(A) Dynamics of 90 trajectories propagated for 100 fs with the QC1 and
QC2 method are compared with (B) NNs, which are obtained from 3846
trajectories. (C) Long excited-state dynamics from NNs were obtained
from 200 trajectories propagated for 10 ps and 2 trajectories propagated
for 1 ns.50
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forces, and NACs along the dynamics run. In contrast to the adaptive
sampling scheme described above, an iterative sampling scheme is
employed, i.e., the threshold for comparison of the different NNs is not
reduced anymore, but is fixed in the beginning and kept constant. An
ensemble of 200 trajectories was used to produce the population schemes up
to 10 ps (104 fs) and 2 trajectories were further propagated for 1 ns (106 fs). As
can be seen, the population is transferred to the electronic ground state after
around 300 fs and stays there for the rest of the simulation time. Hops that
still take place, can be regarded as noise and are due to remaining kinetic
energy. In 6 hours, a dynamics simulation of 10 ps could be achieved, while
it took around 59 days to compute the ns simulation. A simulation for 1 ns
would have taken approximately 19 years with the QC1 method.50

To make long time scale NAMD simulations possible, it is favourable to
include important processes, such as hydrogen atom dissociation or ro-
tations of different molecular groups, into the training set from the begin-
ning. This can be done to reduce the computational costs from additional
quantum chemistry calculations, which become necessary if such previously-
mentioned events take place during the long dynamics simulations. In the
case of hydrogen dissociation, for example, the trajectory might be aborted
after each time step the corresponding H-bond gets elongated and no profit
would be gained from using NNs instead of quantum chemistry. Indeed, the
dynamics would even take longer than the reference dynamics in such cases,
as the NNs have to be re-trained after each time step and the phase cor-
rection procedure might need additional interpolation steps to properly
track the phases of the wave function of each state.

4.3.2 Energy Conservation

Importantly, forces need to be computed as derivatives of NN potentials to
preserve energy conservation. To check the energy conservation along NN
dynamics, the mean and standard deviation of the total energy along the
trajectories is given in Table 4.1 as taken from ref. 50. As can be seen, the
total energy is as well conserved with QC1 as with NNs. It is evident that
energy conservation becomes slightly worse when hops are forbidden and

Table 4.1 Computation of the MAE and standard deviation (Std.) of the total energy
averaged over 90 trajectories (time step for classical propagation of 0.5 fs)
and 50 trajectories (time step for classical propagation of 0.05 fs) propa-
gated for 100 fs with the QC1 method and NNs. Values taken from ref. 50.

Method Time step [fs] MAE [eV] Std. [eV] Hops allowed?

QC1 0.5 10.63 0.047 Yes
QC1 0.5 10.77 0.059 No
QC1 0.05 10.73 0.011 No
NN 0.5 10.72 0.052 Yes
NN 0.5 10.73 0.061 No
NN 0.05 10.80 0.017 No
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when trajectories have to stay in the S2 state for the whole simulation time.
This is demonstrated by the larger standard deviation – a trend that is ob-
tained with both methods separately. By reducing the time step of classical
nuclei propagation from 0.5 fs to 0.05 fs, the standard deviation lowers
considerably, even though hops are forbidden.50

4.3.3 Further Tools of ML Models

As shown in the previous section, the NNs can be trained to reproduce
excited-state energies, forces, and NACs accurately. Hence, not only NAMD
simulations can be carried out, but also optimizations of critical regions,
such as state minima or conical intersections. The latter in particular are the
target of many quantum chemical studies, and therefore, will also be
discussed here.

Conical intersections are places of the PESs, where most of the transitions
from one state to another are assumed to take place. The specific geometries
at which the hops take place in a surface hopping molecular dynamics
simulation are called hopping geometries. At the conical intersections of two
coupled states, the NACs show a singularity and are very large. Further, the
first derivative of such an avoided state crossing is discontinuous. Therefore,
conical intersections pose a challenge to quantum chemistry as well as to ML
models. Optimization runs from hopping geometries as starting guesses can
be done to find such critical points and to additionally provide a measure of
the quality of NN potentials for energies, gradients, and NACs. Figure 4.5,
taken from ref. 50, illustrates that NN potentials are accurate enough to find
the correct minimum energy conical intersections. It shows the scatter plots
of the optimized geometries and the hopping geometries of QC1, QC2, and
NNs and further gives the distribution of the training set geometries along
two coordinates that are important for each minimum energy conical
intersection. Panel A gives the plot of the S1/S0 state crossing, which is
characterized by a rotation of the molecule along its dihedral angle (see
Figure 4.6 first row), and panel B shows the scatter plot of the S2/S1 state
crossing that leads to an elongated C–N bond in combination with a slight
bipyramidalization of the molecule (see Figure 4.6 second row).

As can be seen in the scatter plots, the minimum energy conical inter-
sections found with each method are located very close to each other,
which can be also verified in detail from the geometries given in Figure 4.6.
In the S1/S0 conical intersection (panel A), the hopping geometries are more
widely distributed around the minimum energy conical intersection than
in the S2/S1 state crossing (panel B). This indicates that the potential around
the former state crossing is smoother, allowing hops from configurations
that are further away from the minimum energy conical intersection. In the
latter case, the PESs have a steeper slope and the hopping geometries are
more similar to the minimum energy conical intersection. This trend is
obtained with each method separately and demonstrates the high accuracy
of the ML potentials for energies, gradients, and NACs.
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This assumption can be further tested by potential energy scans around
each conical intersection. The scans were independently performed with the
QC1 and NN method and the corresponding three-dimensional plots are
shown in Figure 4.7. As can be seen, the NN potentials are slightly smoother
than the QC1 potentials (compare panels B, A for the S2/S1 state crossing and
panels D, C for the S1/S0 state crossing) and show larger energy gaps between
the two approaching surfaces. These larger gaps result from the fact that the
ML potentials need to be differentiable at any point in space. Analysis of
the conducted potential energy scans around the minimum energy conical
intersections further proves the shallower PESs around the S1/S0 conical
intersection compared with the S2/S1 conical intersection and hence explains

Figure 4.5 The distribution of the hopping geometries around the minimum energy
conical intersections obtained with QC1, QC2, and NNs along with the
geometries in the training set are shown in panel A and B for the S1/S2
conical intersection and the S2/S1 conical intersection, respectively. The
geometry of the minimum energy conical intersection of QC1 is depicted
on top. The definition of the dihedral and pyramidalization angle used
to produce the scatter plots is given in panel C.
Reproduced from ref. 50 with permission from the Royal Society of
Chemistry.
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the wider distribution of hopping geometries around the S1/S0 state crossing.
Because hops occur further away from the minimum energy conical inter-
section, the training set (obtained via adaptive sampling) does not cover the
S1/S0 conical intersection as densely as the S2/S1 conical intersection. The error
of the NNs to reproduce the former conical intersection is thus also larger.50

In addition to the scans around the minimum energy conical inter-
sections, a scan was carried out along a reaction coordinate that contains
both of the state crossings. The obtained potential energy curves are com-
puted with QC1, NNs with different representations, LR, SVR, and KRR and
are given in Figure 4.8.

The NNs employed for the dynamics shown above (NN1/NN2 with inv.D.)
are compared with additional NN models with advanced descriptors and
different types of regressors. Panel B and C show NN potential energy curves
with the Coulomb matrix (NN3) and the poly.D. matrix (NN4) as a repre-
sentation, respectively. These lead to similarly accurate results and are
comparable to the results obtained with the inv.D. descriptor in panel A. The
two avoided crossings between different states are not captured as accurately
as the rest of the potentials with each method and larger energy gaps are
obtained in these regions compared with the QC1 method.

However, a comparison of the NN results with the result of the baseline
model, LR, clearly indicates the higher prediction accuracy of NNs. LR is not
able to reproduce the shape of the S2 state at all, and the avoided crossings

Figure 4.6 For each method, we could find two different conical intersections. QC1
(MR-CISD/aug-cc-pVDZ) is used as the reference method to train neural
networks (NNs) and compared with conical intersections obtained with
QC2 (MR-CISD/6-31þþG**). For the two conical intersections, the bond
length between the nitrogen (dark grey) and the carbon (light grey) atom is
shown, as well as the bond length between the carbon and one hydrogen
atom. Values are given in Angström. A dihedral angle between four atoms
marked with the dashed line is given, as well as an angle between the carbon
and a hydrogen atom (S1/S0 CI) and between two hydrogen atoms (S2/S1 CI).
Reproduced from ref. 50 with permission from the Royal Society of
Chemistry.
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show a very large energy gap. SVR in panel E is more accurate than LR, but
less accurate than NNs with the same descriptor (inv.D. – compare to panel
A). KRR given in panel F yields comparable results to NNs. Besides the
distinct regressor, the kernel methods, SVR and KRR, differ in the used
representation. As the FCHL82,84 representation could be used for KRR
compared with the inv.D. matrix for SVR, more information about the
molecule is encoded for KRR, which finally leads to more accurate potential
energy curves of KRR. The kernel size depends on the number of data points,
therefore a better descriptor can lead to higher prediction accuracy. None-
theless, the most accurate results are obtained with the NN models. There,
no significant improvement can be obtained by using a better descriptor,
because the NNs can compensate deficiencies of the descriptor by a deeper
network architecture.

As Figure 4.8 indicates, the potential energy curve of the S2 state shows an
artificial jump in the energy that is located near the avoided crossing be-
tween the S1 and S0 state. This erroneous discontinuity in the quantum
chemical potential energy curve is not reproduced by the ML models. This
ability of ML models to provide smooth interpolation between data points is
even able to correct errors in this case. Moreover, as is clear in panel A, the

Figure 4.7 The minimum energy conical intersections computed with the QC1
method were used as a centre to compute potential energy scans with
the QC1 and NN method around them. The scans around the S2/S1 state
crossing are given in panel A and B for QC1 and NN, respectively, while
the scans around the S1/S0 minimum energy conical intersection are
given in panel C and D for QC1 and NN, respectively.
Reproduced from ref. 50 with permission from the Royal Society of
Chemistry.
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two slightly different NNs with the inv.D. matrix as a descriptor for mol-
ecules (NN1 and NN2) yield very similar potential energy curves along this
reaction coordinate. This means that when NN1 and NN2 are used for
adaptive sampling, no quantum chemistry reference calculation is required
in such a region of larger artificial error of the NN models with respect to the
reference method. The trend of larger error for the S2 state is also revealed by
computing the state-specific MAE on a separate test set with 770 data points
obtained from scans along the linear combinations of normal modes (see
Table 4.2). The MAE for the S2 state is approximately doubled for energies
and gradients compared with the MAE obtained for the S0 state. The MAE of

Figure 4.8 Potential energy curves along a reaction coordinate that contains two
avoided crossings. One avoided crossing is between the S2 and S1 states,
and the other one is between the S1 and S0 states. The potential energy
curves are computed with the QC1 method (continuous line in each
panel) and are compared with different ML models (dashed and dotted
lines). (A) NN1 and NN2 indicate predictions with the inverse distance
matrix using slightly different network parameters, such as it is done in
adaptive sampling. (B) NN3 gives results from NNs using the Coulomb
matrix as a descriptor and (C) the poly.D. matrix as a descriptor. (E)
Curves obtained with LR, (F) SVR, and the inv.D. matrix, and (G) KRR
using the FCHL representation that treats gradients as derivatives and
provide the most sophisticated representation used here.34,50
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the S1 state is close to the MAE of the S0 state for energies and lies between
the MAE of the S0 and S2 states for gradients.

For the sake of completeness, the MAEs obtained with each ML model on
the same test set of 770 data points on energies, gradients, and NACs are
given in Table 4.3. Referring to the NN models, the Coulomb matrix and the
inv.D. matrix have similar MAEs for each property, which is expected due to
the similarity of the descriptors. It can, however, be observed that the poly.D.
matrix yields a slightly lower error and thus higher accuracy. The input
vector, i.e., the number of input features to represent a molecule, is squared
for the poly.D. matrix compared with the inv.D. matrix. As expected, the LR
model yields the largest MAEs for each property. The same trend as it is
assumed from potential energy curves in Figure 4.8 can be obtained for the
SVR model, which achieves higher accuracy than the LR model and lower
accuracy than the NN models and KRR.

The MAEs obtained from KRR are slightly larger than those obtained from
NNs but smaller than those from SVR and LR. This trend is again in
agreement with the accuracy of the potential energy curves given in
Figure 4.8.

For all properties, the LR baseline model yields the least accurate results.
Using the inv.D. matrix as a descriptor is sufficient for NNs, but it leads to
larger errors on energies, gradients, and NACs using SVR. In fact, the MAE
on energies is three times as large as it is for NNs, the MAE on gradients is
doubled compared with the MAE on gradients obtained with NNs, and the
MAE on NACs is also larger. In case of KRR in combination with the FCHL

Table 4.2 The MAE of each electronic state separately on a test
set containing 770 data points computed with NN1
and NN2 from Figure 4.8 with the inv.D. matrix as a
descriptor for molecules. MAEs are taken from ref. 50.

State MAE energy [H] MAE gradients [H/Bohr]

S0 0.00176 0.00444
S1 0.00200 0.00670
S2 0.00335 0.00893

Table 4.3 A test set of 770 data points of the methylenimmonium cation was used to
compute the MAE on energies [H], gradients [H/Bohr], and NACs [a.u.]
averaged over all states for LR, SVR, KRR, and NNs with the FCHL, inv.D.,
poly.D. and the Coulomb matrix as molecular descriptors. Most values are
taken from ref. 50.

Model MAE energy MAE gradients MAE NACs

NN/inv.D. (NN1/NN2) 0.00237 0.00669 0.328
NN/Coulomb (NN3) 0.00238 0.00690 0.314
NN/poly.D. (NN4) 0.00197 0.00617 0.335
LR/inv.D. 0.09240 0.13902 0.471
SVR/inv.D. 0.00618 0.01169 0.382
KRR/FCHL 0.00300 0.00866 0.351
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representation, a significant improvement compared with SVR can be ob-
tained. Still, KRR is slightly worse than NNs, which might be because NNs
can be regarded as a multi-state model and one molecular structure can be
related to all energy levels at once. In contrast, KRR can only relate one
molecular geometry to one output value. This gives the NN models more
information about the relationship between a geometry and its excited-state
properties.

4.4 Conclusion and Outlook
ML can be successfully applied to compute excited-state energies, gradients,
and NACs. With these properties at hand, much longer time scales than with
quantum chemistry-based dynamics simulations are reachable, due to the low
computational costs of ML models and the use of at least two ML models on-
the-fly to ensure accurate ML predictions. Further, not only long dynamics
simulations can be carried out, but also many more trajectories can be com-
puted than it is usually the case with quantum chemistry methods. Hence,
better statistics can be obtained, and rare reaction channels can be analyzed.

To conserve the energies along ML trajectories, the gradients should be
derived from ML PESs. As a consequence, the ML PESs are smoother than
those obtained with quantum chemistry, and the discontinuities occurring
at crossing points of the PESs can never be reproduced completely. This
drawback, in turn, becomes an advantage, when erroneous energy jumps
arise in the quantum chemistry training data due to the shortcomings of the
chosen underlying ab initio method. Such wrong discontinuities are then
corrected automatically in the smooth ML PESs.

By comparing different ML models and representations of molecules, it can
be shown that it is advisable to treat all energy levels that are included in NAMD
in one ML model. NNs are employed in this way, and we find that NN potentials
are more accurate than the potentials obtained from LR, SVR, or KRR, which
can relate the molecular input only to one energy level, when employed
straightforwardly. By using a more intricate representation of the molecule, the
accuracy of KRR can catch up with that of NNs, while using a better repre-
sentation for NNs does not improve their performance significantly.

If only energies and gradients are necessary, as is the case for Born–
Oppenheimer dynamics, a very efficient training set generation can be
achieved from a small initial training set that can include any configurations
obtained from manually conducted scans or a sampling method. To enlarge
the training set in an efficient way, it is beneficial to start with an adaptive
sampling approach as soon as the initial training set is large enough (E1000
data points) to enable molecular dynamics simulations with preliminary,
crude ML models. In this way, the relevant conformational space for pho-
todynamics can be sampled. However, if transition dipole moments or
couplings between different states are required, it is important to apply a
phase correction procedure from one reference geometry to every data point
that needs to be added to the training set.
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To conclude, using the automatic sampling technique in combination
with the phase correction algorithm to build up and expand a training set for
NAMD, new possibilities arise to study the excited-state dynamics of complex
chemical systems at nanosecond time scales. With the high accuracy of ex-
pensive quantum chemistry methods and the low computational costs of ML
models at the same time, this setup can be used to calculate NAMD that are
not feasible with conventional ab initio methods. Thus, ML-based dynamics
simulations allow exploration of new reaction channels and pathways of
molecules that are relevant in several research fields, such as medicine,
biology, chemistry, and materials design.
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Soc., 2016, 138, 15911.

4. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod,
N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin and
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26. A. P. Bartók, J. Kermode, N. Bernstein and G. Csányi, Phys. Rev. X, 2018,
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42. F. Häse, S. Valleau, E. Pyzer-Knapp and A. Aspuru-Guzik, Chem. Sci.,

2016, 7, 5139.
43. F. Liu, L. Du, D. Zhang and J. Gao, Sci. Rep., 2017, 7(8737), 1.

1

5

10

15

20

25

30

35

40

45

Machine Learning for Nonadiabatic Molecular Dynamics 105

A.4 hugh m. cartwright, the royal society of chemistry, in press (2020)

141



44. D. Hu, Y. Xie, X. Li, L. Li and Z. Lan, J. Phys. Chem. Lett., 2018,
9(11), 2725.

45. P. O. Dral, M. Barbatti and W. Thiel, J. Phys. Chem. Lett., 2018, 9, 5660.
46. W.-K. Chen, X.-Y. Liu, W.-H. Fang, P. O. Dral and G. Cui, J. Phys. Chem.

Lett., 2018, 9(23), 6702.
47. D. M. G. Williams and W. Eisfeld, J. Chem. Phys., 2018, 149(20), 204106.
48. C. Xie, X. Zhu, D. R. Yarkony and H. Guo, J. Chem. Phys., 2018,

149(14), 144107.
49. Y. Guan, D. H. Zhang, H. Guo and D. R. Yarkony, Phys. Chem. Chem.

Phys., 2019, 21, 14205.
50. J. Westermayr, M. Gastegger, M. F. S. J. Menger, S. Mai, L. González and
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Abstract. Machine learning is employed at an increasing rate in the research
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investigation of chemical systems in their electronic ground state, the inclusion
of light into the processes leads to electronically excited states and gives rise
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Machine learning and excited-state molecular dynamics 2

1. Introduction

Photosynthesis, photovoltaics, the processes that
enable our vision or photodamage of biologically
relevant molecules, such as DNA or peptides – they
all have one thing in common: The underlying
processes are governed by a manifold of excited
states after the absorption of light [1–18]. They
can be studied experimentally via several techniques,
such as UV/visible spectroscopy, transient absorption
spectroscopy, photoionization spectroscopy or ultrafast
electron diffraction [19–27]. However, experimental
techniques are to some extent blind to the exact
electronic mechanism of photo-induced reactions. In
order to get a more comprehensive understanding,
theoretical simulations can complement experimental
findings and can provide explanations for observed
reactions [9]. For instance, simulated UV spectra can
be used to unveil the states relevant for photodamage
and -stability of molecules [28–36] and the temporal
evolution of molecules can be studied via nonadiabatic
molecular dynamics (NAMD) simulations [37–46]. The
latter gives access to different reaction channels,
branching ratios, and excited-state lifetimes and will
be the main topic of discussion here.

While experimental techniques require large and
costly setups, theoretical simulations require high-
performance computing facilities due to expensive
electronic structure computations. Especially NAMD
simulations are seriously limited by the underlying
quantum chemical calculations, making long and
experimentally relevant simulation times inaccessible
with conventional ab initio methods. The larger
the molecule becomes, the more electronically excited
states are involved in reactions and the more complex
their interactions become. This leads to non-linearly
increasing costs of quantum chemical calculations and
a compromise between accuracy and computational
efficiency is indispensable. Relying on such expensive
ab initio potentials, only a couple of picoseconds can be
simulated and the exploration of rare reaction channels
is restricted due to bad statistics [17, 43, 47].

Technically, the nuclear part and the electronic
part of the calculations can be separated to a large
extent. First, the electronic problem is solved leading
to potential energies for the nuclei. Afterwards, the
nuclei move on these potentials classically or quantum
chemically [6, 8, 48–52]. These two subsequent steps
can be carried out in every time step (on-the-fly),

if classical trajectories are employed. Alternatively,
the two steps are separated as much as possible by
precomputing the potential energy surfaces (PESs) and
then using these precomputed PESs in the subsequent
nuclear dynamics. Experimental observables and
macroscopic properties can be obtained in follow-
up computations or analysis runs. Machine learning
(ML) can accelerate the overall simulation process
on different levels and at several points. A
broad classification of how to use ML models to
replace different parts of quantum chemistry to make
simulations more efficient is given in Fig. 1 [53].

The probably most fundamental way is to use

Figure 1. A broad classification of how to use machine learning
models to replace different parts of quantum chemistry [53].
Simulations can be enhanced by providing (1) a wavefunction
from a machine learning model, (2) a force field by fitting
energies and forces or (3) other properties, such as energy gaps
or reaction rates by learning the final output of a dynamics
simulation directly.machine learning model and overview of the
parts of a quantum chemical simulation.

ML to solve the Schrödinger equation. This has
been done for the ground state by representing the
molecular wavefunction on a grid, in a molecular
orbital basis or in a Monte-Carlo approach [54–62]
and has recently also been applied for the excited
states of a one-dimensional model [63]. ML can
also be used to reconstruct the wavefunction from
near-field spectra [64] or to bypass the Kohn-Sham
equation in density functional theory (DFT) [65]. The
external potential, functional, electronic density or
local density of states can be learned [53, 65–72]. Very
recently, Ceriotti and co-workers further introduced
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Machine learning and excited-state molecular dynamics 3

a smooth atomic density by defining an abstract
chemical environment [73].

By having access to the molecular wavefunction
or the electron density, the secondary output, which
are energies and forces for the ground state and
additionally couplings for the excited states, can be
derived efficiently with ML. The coefficients of the ML
wavefunctions or the density can further be used as an
input for quantum chemical simulations, reducing the
number of SCF iterations substantially [59].

Instead of learning the quantum chemistry of
systems, the so-called ”secondary outputs” [53] can
also be mapped directly to a molecular structure,
giving rise to so-called ML force fields. By training
an ML model on ab initio data, the accuracy of
quantum chemistry can be combined with the efficiency
of conventional force fields for molecular dynamics
(MD) simulations in the ground state [74–109]. For
the excited states, only a couple of studies are
available [106, 110–129]. Nevertheless, the first NAMD
simulation with ML dates back to the year 2008, where
the scattering of O2 on Al(III) was studied in a mixed
quantum-classical approach considering singlet-triplet
transitions [111, 130].

Having access to the excited state energies,
”tertiary properties”, such as UV spectra [131],
band gaps [132–134], HOMO-LUMO gaps or vertical
excitation energies [135–138] of molecules can be
derived. Again, this tertiary output can also be fit
in a direct fashion, which has been done for instance
for a light-harvesting system by learning the excitation
energy transfer properties [139] or the output of NAMD
simulations to find out about the relations of molecular
structures and dynamic properties [140]. Moreover,
ML has been successfully applied for the inverse
design of molecules and materials featuring specific
properties, such as defined HOMO-LUMO gaps or
catalytic activities. Examples range from the inverse
design of photonic materials, to (photo-)catalysts, solar
cells or (photo-active) drugs, to name only a few
applications [107, 141–150].

Despite the opportunities of ML for the devel-
opment of groundbreaking new methodologies, cur-
rent techniques are often limited to certain molecules
or specific problems. Methods exist, that extrapo-
late throughout chemical compound space, see e.g.
Refs. [59, 131, 151–160], but usually models fail to go
beyond energies and related properties, such as forces,
atomization or excitation energies. Further, it is chal-
lenging to predict compounds consisting of atom types
strongly different from those inside of the training
set. Especially the fitting of the excited-state PESs
poses another obstacle, let alone the transferability of
excited-state PESs: Not only are ML models restricted
to certain molecules or materials [106, 110–125, 127–

129], more often the different energetic states are fit
independently from each other with separately trained
ML models. As it is clear that the PESs of molecules
are not independent of each other, it might also be
unsurprising that learning them simultaneously is ad-
vantageous for various applications, such as NAMD or
spectra predictions. Only a few studies exist that in-
clude more energetic states in one ML model and even
less treat related properties, such as the vectorial dipole
moments or couplings between different PESs in one
ML model [85, 118, 131, 154, 161, 162].

However, in our view, the ”holy grail” of ML
for photochemistry is an ML model that provides
all relevant energetic states, forces and properties at
once, using derivatives where possible, rather than
learning the properties independently. At the very
best, this model should be transferable throughout
chemical compound space [163] and could be used for
molecules of any composition. Given the fact that
ML models for the electron wavefunctions of different
excited states (or related models within the DFT
framework) do not exist for polyatomic systems, this
dream has not yet come alive. Hence, we will focus this
perspective on ML models that learn the secondary
outputs, i.e., excited state PESs, corresponding forces,
and nonadiabatic and spin-orbit couplings (NACs and
SOCs, respectively) between them. We note that
our discussion holds for different spin-multiplicities,
although most studies focus on singlet states only. We
try to address the recent achievements in the fields
of photochemistry using ML and discuss the current
challenges and future perspectives to get a step further
to a transferable ML model for excited states that
treats all properties on the same footing.

We start by discussing the generation of a
training set for the treatment of excited state PESs,
corresponding forces and couplings and focus on their
use in NAMD simulations. Especially, we aim to clarify
the differences between excited-state and ground-
state properties. We therefore describe the NACs
and SOCs that couple different electronic states and
highlight their importance for NAMD simulations.
Subsequently, state-of-the-art ML models for excited-
state PESs are considered along with the challenge of
modelling a manifold of energetic states.

2. Generating a training set for excited states

The basis of any successful ML model is a comprehen-
sive and accurate training set that contains the molec-
ular geometries in combination with the corresponding
properties that need to be predicted. For the appli-
cation of ML within NAMD simulations, the training
set should contain a molecular geometry and the ener-
gies of all energetic states, corresponding forces, and
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couplings between the states. It is computed with
the quantum chemistry method, whose accuracy one
wants to obtain. The choice of the quantum chemistry
method is a problem on its own and often requires ex-
pert knowledge [18, 164]. Simply said, ML can be seen
as efficient interpolation between data points with the
accuracy of the reference method.

Before we go into detail on how to efficiently
create a training set for excited states, we will first
discuss the differences to ground state potentials and
properties that need to be considered. A major
drawback is the fact that a manifold of excited states
and thus also the properties between them have to
be accounted for. These are NACs between states
of same spin multiplicity and SOCs between states of
different spin multiplicity as well as transition dipole
moments. The fitting of such properties is problematic
due to the arbitrary phase of the wavefunction [118,
161]. Therefore, an additional pre-processing might be
necessary. Either a diabatization [106, 115–117, 119–
127], a so-called phase correction [118], or a special
learning algorithm [165] renders data learnable. The
latter two are described in the following while further
details on the former are given in section 3.2.

2.1. Making excited-state data learnable

Compared to energies and forces, NACs, SOCs as
well as transition dipole moments result from the
wavefunctions of two different electronic states. Due
to the non-unique definition of the wavefunction itself,
i.e., the fact that multiplication of the electronic
wavefunction with a phase factor still gives a valid
eigenfunction of the electronic Hamiltonian, leads to
an arbitrary phase, which is initiated randomly in a
quantum chemical calculation. Consequently, also the
sign of the couplings, Cij , can be positive or negative.
Here, i and j denote the indices of the involved
states. The resulting inconsistencies in the coupling
hypersurfaces make it challenging to find a good
relation between an ML model, which is per definition
a smooth function [166], and those discontinuous raw
outputs.

This problem can be illustrated with molecular
orbitals of the methylenimmonium cation (Fig. 2
reproduced from Ref. [118]). Panel A shows the
molecular geometries, which are given as an input to
a quantum chemical program. Two molecular orbitals
are shown as placeholders for the wavefunctions of two
electronic states, the S1 and S2 states. The color of
the orbitals can be either blue or red and changes
arbitrarily throughout the reaction coordinate. In
the same way, also the overall wavefunction (which is
difficult to plot) for the respective state changes its
phase arbitrarily. As a consequence, also the sign of the
couplings, where the product of the two wavefunctions’

signs enters, may change randomly (see panel B).

Figure 2. A set of quantum chemical calculations of the
methylenimmonium cation, CH2NH+

2 , along the C-N bond. The
molecular conformations, which are the input of a quantum
chemical calculation, are given in panel A, the orbitals of the
computed two electronic states, the S1 and S2 state, as well as
the corresponding off-diagonal matrix elements between those
two states, 〈S1 | Ĥ | S2〉, are given in panel B. As can be seen, the
sign of those values arbitrarily switches. Those sign jumps can be
removed by applying a phase correction algorithm. Results are
given for those elements in panel C. Reproduced from Ref. [118]
under CC-BY, https://creativecommons.org/licenses/by/3.0/.

In order to allow for a meaningful ML description
of elements resulting from two different electronic
states, a data pre-processing is helpful. The former
process is termed phase correction [118, 167] and is
practicable to remove almost all such inconsistencies
in the configurational space of the training set. This
phase correction makes the use of conventional training
algorithms possible.

To carry out phase correction, a wavefunction
overlap computation [168], S = 〈Ψα | Ψβ〉, has
to be carried out between the wavefunction Ψβ at
every geometry β inside the training set and the
wavefunction Ψα at a reference geometry α. The phase
thus has to be tracked from a pre-defined reference
geometry. It often happens that two geometries are
dissimilar to each other, so that interpolation between
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them is necessary, making this process generally more
expensive. So-called intruder states give rise to
additional problems, since they are so high in energy at
the reference geometry that they usually would not be
included in the initial calculation. However, they enter
the lower energy region at another geometry visited
during the NAMD simulations and thus need to be
considered in the current calculation step. Hence,
they should have been included from the beginning
for the phase correction algorithm to work. As a
solution to this problem, many electronic states need
to be computed from the start. In some cases, where
many energetic states lie close to each other and where
the photochemistry is complex, phase correction might
even be infeasible. The problem of intruder states
was also identified by Robertsson et al. and is well
explained for a diabatization procedure in Ref. [169].
For a more detailed discussion on phase correction,
the reader is referred to Ref.s [118, 167, 168, 170].
Nevertheless, as given in panel C of Fig. 2, smooth
curves are obtained if phase correction is carried out
correctly and these phase-corrected properties can be
learned with conventional ML models.

Similarly, a small set of data can be corrected
manually and afterwards a cluster growing algorithm
can be applied [125, 171]. This algorithm uses
Gaussian process regression to continuously add data
points to the initially phase-corrected data set. This
approach has been employed recently to obtain
diabatic transition dipole moments [119]. However, in
systems containing many degrees of freedom and many
electronic states, a manual correction of the sign of
couplings is tedious and the approach has only been
applied to small systems, yet [119, 126].

In contrast to the phase-correction procedures de-
scribed above, an ML-based internal phase-correction
during training renders the learning of raw quantum
chemical data possible and does not require any pre-
processing. However, it requires a modification of
the training process itself [165]. In a recent study,
we applied such a phase-free training using the deep
continuous-filter convolutional-layer NN SchNet [156,
172] that we adapted for the treatment of excited
states. In contrast to conventional algorithms, where
the hyperparameters of the network are optimized to
minimize the L1 or L2 loss function, here a phase-less
loss function is applied. The latter allows the ML
model to possess a different phase (or sign) for the
learned property than the reference data. Since ML
models intrinsically yield smooth curves, the algorithm
will then automatically choose a phase for every data
point such that smooth coupling curves are produced.
This freedom of choice is achieved by calculating the er-
rors between the ML value and all possible phase varia-
tions of the reference value and using only the smallest

of these errors. The possibilities for phase conventions
scales with 2NS−1, where NS is the number of consid-
ered states. Since the error is computed more often
than in conventional ML training, the phase-less loss
training becomes more expensive, when including more
electronic states. Mathematically, instead of comput-
ing the mean squared error, εL2

, between reference cou-

plings, CQCij , and predicted couplings, CML
ij ,

εL2
= ‖CQCij − CML

ij ‖2, (1)

the phase-free error, εph, is computed as the minimum
of 2NS−1 computed errors:

εph = ‖CQCij · pki · pkj − CML
ij ‖ with 0 ≤ k ≤ 2NS−1. (2)

pki and pkj are phase factors, giving rise to the sign of
state i and j resulting in a phase vector with index
k. This adaption of the loss function can remove the
influence of any phase during the training process,
making the use of raw data possible. A variation of
this approach with reduced cost is possible if only one
property, i.e. NACs or SOCs, are trained for NAMD
simulations. A detailed discussion can be found in
Ref. [165].

It is worth mentioning that, besides the arbitrary
phase of the wavefunction, also the Berry phase (or
geometric phase) [173] exists. Effects due to the Berry
phase can not be accounted for with phase correction.
Nevertheless, most often in mixed quantum classical
NAMD simulations, the Berry phase can be neglected.
As a drawback, some effects, such as interference of
nuclear wavefunctions might not be described correctly
with such methods, and thus prevents the application
of the corresponding ML properties if those effects
are important. In some other dynamics methods and
reactions, the Berry phase plays a crucial role and can
lead to path-dependent transition probabilities close
to conical intersections. This effect is important in
quantum dynamics simulations, where problems can
be circumvented by using diabatic potentials, which
will be described in section 3.2.

2.2. Choosing the right reference method

While many ML potentials for ground-state MD
simulations are based on DFT training sets, see
e.g. Refs. [77, 79, 86, 174, 175], the training sets for
the excited states are mainly obtained with multi-
reference methods. Examples are the complete active
space self-consistent-field (CASSCF) method [112–114,
120, 122, 127, 140, 165] or multi-reference configuration
interaction (MR-CI) schemes [115, 117–119, 126, 161,
165, 176–182]. The advantage of multi-reference
methods compared to single reference methods is that
photo-dissociation, which is likely to occur in many
molecules after their excitation by light, can be treated
accurately. In contrast, single-reference methods fail to
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do so in many cases. However, multi-reference methods
are seriously limited by their computational costs [7,
10], calling for an efficient and meaningful training
set generation. Therefore, the training set should be
as small as possible, but should cover the relevant
conformational space of a molecule that is required
for accurate NAMD simulations [183]. Accordingly,
many recent training sets for MD simulations are
built by a so-called ”active-learning” [77, 184] or
iterative/adaptive sampling scheme [85, 185] that will
be described in the following and can be adapted for
excited states [118]. From our point of view, it is most
favorable to start by computing a small initial training
set and to expand it via such an adaptive sampling
scheme [77, 85, 118, 184–186].

2.3. Initial training set

If only static calculations are targeted, data bases
can be generated efficiently by starting from already
existing data sets. As an example, Schwilk et
al. [182] constructed a large data set of 13k carbene
structures by randomly choosing 4,000 geometries
from the QM9 [187] data set (consisting of 130k
organic molecular structures). Hydrogen-atoms
were abstracted and singlet and triplet states were
optimized. The MR-CI method was subsequently used
to compute the energies of the singlet and triplet state
and a data set of 13,000 different carbene structures,
called QMspin, was obtained, opening avenues to
investigate important intermediate geometries critical
for organic reaction networks.

As a starting point for all following training-set
generation schemes aiming to investigate the temporal
evolution of a system, the equilibrium geometry
of a molecule can be computed and taken as a
reference. The initial training set can then be built
up by sampling conformations close to this molecular
configuration. In general, every sampling method
is possible. Since the normal modes of a molecule
are generally important for dynamics, scans along
these coordinates can be used to sample different
conformations. In cases of small molecules with few
degrees of freedom, this process might be a good
starting guess for an initial training set [118]. It also
makes sense to optimize critical points like excited-
state minima, conical intersections and state crossings
and to include data along such optimization runs
into the training set. The same is advisable for
larger systems, but in addition, some other approaches
like Wigner sampling [188] or sampling via MD
simulations [189, 190] can be considered. To name a
few approaches, umbrella sampling [191], trajectory-
guided sampling [192], enhanced sampling [193] or
metadynamics [194], using a cheap electronic structure
method like the semi-empirical tight-binding based

quantum chemistry method GFN2-xTB [195]), can be
employed.

Further, if literature or chemical intuition indicate
that certain reactions, like dissociation, take place after
photo-excitation, it is also favorable to include those
reaction coordinates right from the beginning. The
initial training set can easily comprise on the order
of 1,000 data points, which might seem like a lot but
is reasonable given the large number of data points
in commonly used training sets [112–114, 161]. The
quality of the initial ML potentials can be assessed
by carrying out short scans along different reaction
coordinates, such as combinations of normal modes.
As soon as the initial training set is large enough, the
training set expansion via an adaptive sampling scheme
can be started.

2.4. Adaptive sampling for excited-states

ML models fail to predict regions with scarce
training data, i.e., their extrapolation capabilities are
faint [196]. Since such regions are likely visited during
a dynamics simulation, the initial training set then
needs to be expanded. A quality control is needed
to detect whether unknown conformational regions of
the molecule are visited, such that the corresponding
structures afterwards can be added to the training set.

This concept was introduced already in 1992
as query by committee [197] and has been used in
chemistry in the so-called GROW algorithm of Collins
and coworkers [128, 129] as well as in the iterative
sampling of Behler [185]. The latter is nowadays well
adapted for the ground state [77, 85, 184, 186] and was
recently modified for the excited states [118]. The
scheme is described in more detail in the following.

To apply the procedure of adaptive sampling, at
least two ML models have to be trained independently,
e.g., with slightly different hyperparameters or starting
weights. An overview of this procedure with two neural
networks (NNs) is given as an example in Fig. 3.
At every time step during an MD simulation, the
predictions Y pM of at least two ML models, M , for a
property p (e.g., a potential energy) are compared to
each other. To this end, the standard deviation of these
predictions with respect to the mean of each property,

Y
P

, is computed according to

Y pσ =

√√√√ 1

M − 1

J∑

m=1

(Y pm − Y p)2. (3)

This standard deviation is compared to a pre-defined
threshold, εp, for each trained property. If the
standard deviation stays below the threshold, the

mean of each property, Y
P

, is forwarded to the MD
program to propagate the nuclei. If the threshold is
exceeded, the ML prediction is assumed to stem from
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Figure 3. Overview of the adaptive sampling scheme for excited
states, reproduced from Ref. [118] under CC-BY. Adaptive
sampling is illustrated exemplarily with two NNs for the
methylenimmonium cation, CH2NH+

2 . As a starting point, ML
models are trained on the initial training set and ML-based
dynamics are executed. At each time step, the predictions
of the two deep NNs (NN1 and NN2) are compared to each
other for energies (E) and gradients (G), nonadiabatic couplings
(NACs), spin-orbit couplings (SOCs) and dipole moments (µ). If
the difference between the ML models overcomes a pre-defined,
adaptive threshold, the geometry visited at this time step is
re-computed with quantum chemistry, added to the training
set after phase correction and the ML models are re-trained.
Subsequently, a new dynamics cycle is started and this process
is repeated until the ML models are deemed to be converged.

an undersampled or unknown region of the PESs and
is deemed untrustworthy. This conformation has to be
included into the training set to guarantee accurate
ML PESs. Thus, a quantum chemical reference
computation is carried out, the data point is added
to the training set and the ML models are re-trained
to execute ML-NAMD simulations on longer time
scales. It is sensible to choose a large threshold, εp,
in the beginning and adaptively make it smaller as the
robustness of the ML models increases, giving rise to
the name adaptive sampling [85].

Adaptive sampling for excited states differs from
adaptive sampling in the ground state in the number
of properties that are considered. As illustrated in
Fig. 3, not only the energies must be accurately
predicted, but also the couplings and, if necessary,
dipole moments. Since more states are considered, an
average standard deviation is taken as the mean of the
standard deviations of each state in case of energies

and gradients,

Y pσ =
1

NS

NS∑

i



√√√√ 1

M − 1

M∑

m=1

(Y pim − Y pi)2

 , (4)

and as the mean of the standard deviations of each pair
of states for couplings or dipole moments,

Y pσ =
1

2N2
S

NS∑

i

NS∑

j



√√√√ 1

M − 1

M∑

m=1

(Y
pij
m − Y pij )2


 .(5)

A separate threshold is set for each of these averaged
quantities. If any of the quantities is predicted
inaccurately, the data point is recomputed with
quantum chemistry, phase corrected and added to the
training set.

In order to make this process more efficient,
not only one MD simulation, but an ensemble of
trajectories can be computed. The ML models are only
retrained after each of the independent trajectories has
reached an untrustworthy region of the PES and after
each of the reference calculations has been finished
and included in the training set. This makes the
parallelization of many trajectories possible [85, 118,
185, 198].

The adaptive sampling scheme should be carried
out until the relevant conformational space for
photodynamics is sampled sufficiently. However, using
more than one ML model for production runs is still
favorable. One of us and coworkers observed that
the error of predictions decreases with the number of
ML models used [85, 198]. We have seen the same
trend in a recent study for NAMD simulations. With
the adaptive sampling scheme for excited states, we
generated a training set of 4,000 data points of the
methylenimmonium cation, CH2NH+

2 , to carry out
long time-scale NAMD simulations with NNs [118].

2.5. Additional sampling techniques for excited states

Further training sets for NAMD simulations were
generated for one-dimensional systems as well as
polyatomic molecules. For example, Chen et al. have
computed 90,000 data points via Born-Oppenheimer
MD simulations and NAMD simulations, where
emphasis was placed on the inclusion of geometries
after a transition from one state to another took
place [114]. Deep NNs were trained on energies and
gradients of this training set to accurately reproduce
NAMD simulations.

Hu et al. [112] used a very similar approach
and obtained around 200,000 data points of 6-
aminopyrimidine from Born-Oppenheimer MD simu-
lations. They further carried out NAMD simulations
with surface hopping [199, 200], where transitions from
one state to another were allowed via so-called hops.
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The geometries that were visited shortly before a hop
took place were used as a starting guess to optimize
conical intersections, i.e. critical points of the PESs,
where two states become degenerate. Those data
points were included to comprehensively sample the
regions around a conical intersection. However, the
ML models were not accurate enough for NAMD sim-
ulations solely based on ML potentials and the authors
had to resort to quantum chemistry calculations in crit-
ical regions of the PESs.

Dral et al. [113] generated a training set for a one-
dimensional two-state spin-boson model consisting of
10,000 data points with a grid-based method. The
training data selection was then based on the structure,
rather than on the energy of the molecules. For each
data point, a molecular descriptor was computed and
the distances of the descriptors were compared. Data
points for the training set were chosen to sample the
relevant space sufficiently [113, 201]. Compared to
random sampling, this method allowed a reduction of
training set sizes up to 90 %, which was shown for
static calculations of the methyl chloride molecule [201,
202]. A similar structure-based sampling scheme was
proposed by Ceriotti et al. [203].

Additionally, a maximum and minimum value can
be computed for each representation of a molecule
inside the training set. Every new structure that is
obtained throughout an MD run can be compared
to those values to get a measure of reliability of ML
predictions. If the configuration does not lie within the
known region, it can be added to the training set [184,
204]. Very recently, an active learning approach has
been proposed to construct PESs without the need
of running MD trajectories. The difference between
two NN potentials was computed and points were
iteratively added at the maxima of this difference
surface (or, as phrased in the study, at the minima
of the negative difference) [205].

It becomes evident from the diversity of ap-
proaches and training set sizes that a general guide on
how to compute the training set and how large it should
be for NAMD simulations can not be given. It is rather
a matter of the efficiency that should be achieved and
the computational costs that can be justified. Further,
the training set strongly depends on the molecule un-
der investigation. Especially its size, flexibility and the
complexity of the light-induced dynamics play an im-
portant role. A molecule, whose photodynamics can
be described as a two-state problem, such as in a sim-
plified case of ethylene [206, 207], or a molecule, which
is rigid, where dynamics mostly lead towards one re-
action channel, possibly requires less data points than
molecules that exhibit several different reaction chan-
nels after photo-excitation.

3. Machine learning nonadiabatic molecular
dynamics simulations (ML NAMD)

3.1. Beyond Born-Oppenheimer dynamics

With an accurate training set for excited states at
hand, NAMD simulations can be enhanced with ML
models in order to enable the dynamics on time scales
otherwise unfeasible. The most accurate way to study
the dynamics of a molecule would be the full quantum
mechanical treatment, which is, however, expensive
and limited to a few atoms, even if ML PESs are
applied [49, 115–117, 119–125, 127, 208–211]. A mixed
quantum classical treatment is thus often preferred,
where the motion of the nuclei are treated classically
on one of the ML PESs. The mixed quantum classical
MD simulation can then be interpreted as a mixed
MLMD simulation [165]. The Born-Oppenheimer
approximation allows to separate the nuclear from
the electronic degrees of freedom. However, this
approximation is not valid in the vicinity of avoided
state crossings of PESs (or conical intersections, as
mentioned before), which play an important role in
excited-state dynamics.

In these critical regions of the PESs, ultrafast
rearrangement of the motions of the electrons and the
nuclei takes place due to strong couplings. As already
mentioned, the relevant coupling elements are NACs
and SOCs. The NACs (denoted as CNAC) are vectorial
properties and can be computed as [48, 212, 213]

CNAC
ij ≈ 〈Ψi | ∂

∂RΨj〉
= 1

Ei−Ej
〈Ψi | ∂Hel

∂R | Ψj〉 for i 6= j,
(6)

neglecting the second order derivatives. Thus, in
the vicinity of a conical intersection, the couplings
become very large, whereas they are almost vanishing
elsewhere. The singularities that arise when two states
are degenerate do not only pose an obstacle to quantum
chemistry, but consequently also to PESs fitted with
ML [112–114, 118]. NACs are nevertheless important
properties to determine the direction and probability
of internal conversion – a transition from one state to
another, where the spin multiplicity does not change [8,
48, 51, 52, 214]. In contrast, the SOCs (denoted as
CSOC) are complex-valued properties that determine
the rate of intersystem crossing, i.e., the transitions
from one state to another, where spin multiplicity does
change. In standard quantum chemistry programs,
SOCs are given as the off-diagonal elements of the
Hamiltonian matrix [8, 52, 215]:

CSOC
ij = 〈Ψi | ĤSOC | Ψj〉. (7)

3.2. Fitting diabatic potentials

The numerical difficulties that arise due to discontin-
uous PESs and singularities of couplings at conical
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intersections can be circumvented by the use of di-
abatic potentials instead of adiabatic ones [116, 216–
220]. In the diabatic basis, the coupling elements are
smooth properties and the arbitrary phase of the wave-
function does not have an impact. This favors the
use of diabiatic PESs. Since the output of a quan-
tum chemistry program is generally given in the adi-
abatic basis, a quasi-diabatization procedure is neces-
sary. Strictly speaking, a diabatization procedure is
not possible because e.g. an infinite number of states
is needed for an accurate representation. If using a
finite number of states, the term quasi-diabatic is em-
ployed. For simplicity, we still use the notation of di-
abatic potentials for quasi-diabatic potentials. Those
have been generated with different methods [221] and
for small molecules up to date. Examples are the prop-
agation diabatization [222], diabatization by localiza-
tion [223] or by ansatz [115, 224], diabatization based
on couplings or other properties [225–228], configura-
tion uniformity [229], block-diagonalization [230], CI
vectors [169] or (partly) on ML [115, 116, 224, 231–234].

Since several years, (modified) Shepard interpola-
tion is used to fit diabatic potentials [129, 235–238] and
also least squares fitting was applied to study the photo
dissociation of molecules, such as NH3 and phenol [239,
240]. In a series, Guo, Yarkony and co-workers devel-
oped invariant polynomial NNs [116, 124, 231–234] to
address the excited-state dynamics of NH3 and H2O by
fitting diabatic potential energy matrix elements. Ab-
sorption spectra as well as branching ratios could be
obtained with high accuracy. The same authors fur-
ther fit the diabatic 1,21A dipole moment surfaces of
NH3, which can only be fitted accurately if the topog-
raphy of the PESs is reproduced correctly, validating
the previously fitted diabatic potentials [119].

Habershon, Richings and co-workers used Gaus-
sian process regression (in their notation equal to
kernel-ridge regression) to fit diabatic potentials to ex-
ecute on-the-fly dynamics of the butatrien cation with
variational Gaussian wavepackets [127]. In another
study, they applied an on-the-fly MCTDH scheme
(DD-MCTDH) and carried out 4-mode/2-state simula-
tions of pyrazine [120]. By improving the ML approach
with a systematic tensor decomposition of kernel ridge
regression, the study of 12-mode/2-state dynamics of
pyrazine was rendered possible. This achievement re-
mains a huge improvement over current MCTDH sim-
ulations in terms of accuracy and efficiency [241].

For the improvement of the diabatization by
ansatz procedure, Williams et al. [115] applied NNs and
enabled the fitting of the electronic low lying states of
NO3. The improvement of the diabatization procedure
itself is desirable [116, 117], since the generation of
meaningful diabatic potentials is often a tedious task
and restricts their use tremendously. Up to date,

no rigorous diabatization procedure exists that allows
the diabatization of adiabatic potentials of polyatomic
systems by non-experts in this field [116, 119].
Especially challenging for larger and more complex
systems is the number of electronic states within a
certain energy range that have to be considered for
successful diabatization. An increasing computational
effort to provide all relevant electronic states is the
result, making diabatization further challenging [169].
Often, more extensive approximations [115, 169, 242],
e.g. the linear vibronic coupling model [243] are
applied. We refer the reader to Ref.s [50, 217, 243–245]
for more details on such approaches.

Despite the advantages of diabatic potentials, due
to the before-mentioned drawbacks and the fact that
the direct output of a quantum chemical calculation is
given in the adiabatic basis, on-the-fly NAMD in the
adiabatic representation is often the method of choice
for large polyatomic systems, which will be discussed
in the following.

3.3. Fitting adiabatic potentials

In order to execute NAMD simulations in the adiabatic
basis, approximations have to be introduced to
account for nonadiabatic transitions between different
PESs. A good trade-off between accuracy and
efficiency can be achieved with the surface hopping
methodology [199, 200], which is often applied in
ML-based NAMD simulations [112–114, 118]. In
surface hopping, the transitions, or so-called hops,
between different states, are computed stochastically
and a manifold of trajectories needs to be taken into
account to analyze different reaction channels and
branching ratios [8, 51, 246] Several algorithms [52,
246–248] are frequently used to compute the hopping
probability as well as its direction, with Tully’s fewest
switching algorithm being among the most popular
ones [199, 200]. There, the couplings between adjacent
states determine the hopping probability [51]. Other
frequently applied algorithms to compute hopping
probabilities are the Landau-Zener [249, 250] and
the Zhu-Nakamura approximations [247, 248, 251, 252].
Those approximations solely rely on the PESs and
omit the computation of wavefunction coefficients and
couplings. Other flavors to account for transitions
exist, which have, however, not been used in ML
based NAMD studies yet. We thus refer the reader
to Ref.s [48, 51, 52, 170, 199, 246, 251–256] for further
information.

NAMD simulations with ML energies and forces

Based on the fewest switches algorithm, one of the
first ML NAMD simulation is carried out by Carbogno
et al. [130], where the scattering of O2 at Al(III)
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is studied [111, 130, 257]. A set of 3768 carefully
selected data points [258] allowed for interpolation
of the PESs with NNs [257]. In a first attempt,
the authors include a spin-unpolarized singlet PES
and a spin-polarized triplet state. Strictly speaking,
the output of a quantum chemistry simulation for
a singlet and triplet state is spin-diabatic [52, 215]
and NAMD simulations ideally should carry out a
diagonalization to obtain the spin-adiabatic PESs [52,
215]. The authors took advantage of the adiabatic
spin-polarized PES [259] to compute the absolute value
of couplings [130]. In this way, the transitions between
the states could be approximated using surface hopping
omitting the computation of wavefunction dynamics.
This study was extended by two-state NAMD
simulations of different multiple PESs arising from
different spin configurations. Findings suggested a
high probability of singlet-to-triplet conversion during
scattering experiments with a non-zero probability
even at low coupling values [111, 130, 257].

Other studies using the Zhu-Nakamura method [247,
248, 251, 252] to account for nonadiabatic transitions
are discussed below. This approximation is based
solely on energies and neglects the phase of the wave-
function. As a drawback, PESs are always assumed to
couple to each other, when they are close in energy.
This holds true for many cases, but one must be aware
that strongly and weakly coupled PESs can not be dis-
tinguished.

Hu et al. [112] for example trained separate
kernel ridge regression models to fit three singlet
states of 6-aminopyrimidine. For learning, they used
65,316 data points comprising the molecular structures
and energies of 6-aminopyrimidine with gradients not
fitted, but computed afterwards. The data points
were obtained from Born-Oppenheimer simulations,
which were further clustered into sub-groups, from
which the training points were selected randomly.
As mentioned before, hopping geometries obtained
from reference NAMD simulations were taken to find
minimum conical intersections and the latter were also
included in the training set. In contrast, Chen et
al. [114] trained two deep NNs on 90,000 data points of
two singlet states of CH2NH. Again, data points were
obtained from Born-Oppenheimer MD simulations and
NAMD simulations starting from hopping geometries.
In both studies, the NAMD simulations of the reference
method could be successfully reproduced.

Instead of approximating the hopping probabil-
ity, the NACs can also be approximated from PESs,
gradients and Hessians [208, 260–264]. We made use
of this relation and the fact that ML Hessians can
be computed efficiently, and carried out NAMD sim-
ulations with the surface hopping method for sulfur-
dioxide, thioformaldehyde and the methylenimmonium

cation [165].

NAMD simulations with ML energies, forces, and
couplings

In addition to energies and forces, SOCs need to be
fitted with ML models when states of different spin
multiplicities become relevant. Furthermore, when
approximative schemes for the computation of hopping
probabilities fail, the ML models need to learn NACs.
One of the first studies, where NACs were fitted, used
1,000 and 10,000 data points to train kernel-ridge
regression models to reproduce NAMD simulations
of a one-dimensional system. However, especially in
critical regions of the PESs, the ML models could not
replace quantum chemical calculations and so 13-16%
electronic structure calculations were required during
an NAMD simulation [113]. The authors highlighted
this as a drawback, because efficient simulations
should be performed purely with ML and should not
rely on intermediate quantum chemical calculations.
Moreover, each entry of the NAC vectors was fitted by
a separate kernel-ridge regression model, which turned
out to be insufficiently accurate.

As indicated before, we also aimed for reproducing
NAMD simulations with ML. We employed multi-
layer feed-forward NNs trained on 4,000 data points
of 3 singlet states of CH2NH+

2 [118]. Short reference
NAMD simulations based on electronic structure
calculations could be reproduced. With the ML
NAMD, long simulation times on the order of a
nanosecond were successfully reached. Significantly
different from previous ML NAMD approaches is the
smaller size of the training set required to reproduce
NAMD simulations. Further, a multi-output ML
model was used to fit all NAC vectors between different
states of same spin multiplicity at once. We term
such models multi-state models. Per definition, kernel-
ridge regression, and similar approaches such as linear
regression, are single-state models. In order to make
multi-state predictions of such models possible, the
energetic state has to be encoded explicitly by using
for example an additional state kernel. This procedure
enables to model several states simultaneously. We
studied the use of multi-state descriptors with the
QML toolkit [265] for kernel-ridge regression models
and showed that a multi-state description is generally
superior to a single-state description in terms of
accuracy [161].

Lastly, we want to comment on the NACs as
vectorial properties. It should be clarified that
approaches relating a molecular input directly to NAC
values do not provide rotational covariance. This
drawback is independent of a single-state treatment,
i.e., the use of a separate ML model for each coupling
value, or a multi-state treatment, where all values are
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represented in one ML model. Very recently, Zhang
et al. applied a symmetry-adapted high-dimensional
NN [266] and treated the couplings as derivatives of
NN representations. In this case, electronic friction
was modelled via ML and applied for MD simulations
of molecules at metal surfaces to treat the electron-
nuclei coupling in a rotationally covariant manner.
For the NAC vectors, we applied a similar strategy
(similar also to force-only training for potentials), and
implemented them as derivatives of virtual properties
(i.e., non-existent in quantum chemistry) built by a
deep NN [165].

3.4. Choosing the right descriptor

Many of the aforementioned studies use kernel
ridge regression models or NNs in combination with
distance-based descriptors [99, 112–114, 118, 267] such
as the matrix of inverse distances or the Coulomb
matrix [76]. It is worth mentioning that the
accuracy of the ML PESs also depends on the type
of descriptor. Molecular descriptors that represent
atoms in their chemical and structural environment
are often superior to those who treat complete
molecules [101, 154, 155]. The symmetry functions of
Behler [268, 269], their weighted counterparts [175, 270]
or the FCHL (Faber-Christensen-Huang-Lilienfeld)
representation [101, 155] work very well for NNs
and the latter also for kernel-ridge regression and
additionally provide permutation invariance.

Further improvement can be provided by message
passing neural networks [271]. Compared to hand-
crafted molecular descriptors, the representation of
molecules can be seen as a part of a deep NN and,
thus, is generated automatically. For each training set,
an accurate descriptor is intrinsically designed, which
accounts for the chemical and structural environment
of a molecule. Examples for such networks are
SchNet [156, 172], the DTNN [133], PhysNet [272],
or HIP-NN [273]. For the excited states, the
SchNarc [165] approach offers this type of descriptor.

4. Conclusion and outlook

To conclude, ML methods are very powerful and can
be used to speed up current MD approaches for the
excited states. They have been successfully applied to
circumvent existing problems due to the expenses of
the underlying electronic structure methods, but there
is still a long way ahead of us to make ML applicable for
the photodynamics simulations of large and complex
systems.

While the fitting of diabatic potentials is generally
more favorable, those methods are limited by the
challenges that arise in finding meaningful diabatic
potentials. Up to date, diabatization procedures are

tedious and often not feasible for large and complex
systems. ML models have been successfully applied
to improve these processes [115–117], but methods to
treat large and complex polyatomic systems in the
diabatic basis are still lacking.

To investigate the photodynamics of polyatomic
molecules, mixed quantum-classical MD simulations
in the adiabatic basis thus often remain the method
of choice. One advantage is that the direct output
of a quantum chemical calculation is given in the
adiabatic basis and so the obtained potential energies
and forces can be directly fitted with an ML model.
By applying approximations for the computation of
transition probabilities from one state to another, the
photodynamics can be studied efficiently with ML [112,
114, 165]. When approaches aim for additionally fitting
the coupling values between different electronic states,
inconsistencies in the data need to be considered
carefully. Those have to be either removed from
the training set or the training process itself has to
be adapted in order to achieve successful training.
Both approaches have been applied and were used for
NAMD simulations [118, 165].

Unfortunately, also mixed quantum-classical MD
simulations in the adiabatic basis have been restricted
to small, isolated systems or single reactions, when
described with ML PESs. At the current stage of
research, many challenges remain that need to be
tackled when replacing quantum chemical calculations
in photodynamics simulations of large and complex
polyatomic molecules. The most severe issue is
to identify an adequate quantum chemical reference
method. Up to date, mainly multi-reference methods
have been used to compute training sets for small
molecular systems for the excited states. However, the
computational effort increases rapidly with the number
of atoms and electronic excited states considered
making single-reference methods more viable in this
regards. The drawback of the latter methods is that
their PESs can be even qualitatively wrong in some
conformational regions. A tedious exclusion of such
regions could in principle allow for a comprehensive
training set generation and the accurate fitting of
the manifold of energetic states, forces, and couplings
between them in the remaining regions. Nonetheless,
the resulting ML models might still be inappropriate
for dynamics simulations due to the validity in only
a restricted conformational space. Furthermore,
the PESs from common single-reference methods or
approximate methods like Time-Dependent DFT based
Tight Binding are likely to be at least quantitatively
incorrect. Since even quantitatively small errors in
the potential energy can accumulate to completely
wrong dynamics over millions of time steps, the validity
of ML models based on such approximate methods
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for long time scale dynamics is questionable. It is
unclear whether such quantitatively wrong potentials
can still lead to qualitatively correct trends for the
temporal evolution of a system in some cases. Studies
comparing such long photodynamics simulations with
experimental observables could provide an answer to
this question but are not yet available.

The large number of data points that have been
required with many recent ML approaches for small
polyatomic molecules is particularly concerning in the
view of treating larger systems. Here, intelligent
algorithms for efficient training data set generation
with the smallest possible number of points are
required. In addition, energies, forces, and couplings
were often trained in separate ML models, leading to
unsatisfactory accuracy. The development of an ML
model that can treat all properties for photodynamics
simulations at once and enables a derivation of relevant
properties from ML PESs is clearly desirable. The
latter can potentially reduce the amount of required
training data to precisely fit quantum chemical
properties and further allows to omit their quantum
chemical computation during dynamics. The ultimate
solution would be an ML multi-reference wave function
of a molecular system, but this envisioned dream has
not yet been realized.

To enable a full exploitation of the advantages
of ML, an ML model should optimally be applicable
throughout chemical compound space. While current
studies struggle with fitting the excited states of
one molecule, the transferability of ML potentials for
the excited states is far from being achieved. The
description of the photochemistry of a biologically
more relevant system, such as a DNA strand or peptide
chain, from local contributions of single building
blocks, i.e., DNA bases or single amino acids, is
one of the biggest benefits an ML model can offer.
However, the construction of excited-state PESs from
local atomic contributions has not yet been shown to
hold and a description of a whole molecular system
limits the applicability of the ML model to other
systems. At the current stage of research, the small
molecules that have been successfully described in
their excited states with atom-wise descriptors are
not large enough to prove the validity of locally
constructed excited state PESs. An estimation of the
excited-state locality could also pave the way towards
excited-state ML/MM simulations, similar to QM/MM
(quantum mechanics/molecular mechanics). Further
investigations along the aforementioned avenues are
needed to gain insights into the possibilities of ML
models to describe the excited states of larger and
more complex systems and to fit more than one small,
isolated molecule.
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[208] H. Köppel, J. Gronki, and S. Mahapatra, “construction
scheme for regularized diabatic states,” J. Chem. Phys.,
vol. 115, no. 6, pp. 2377–2388, 2001.

[209] J. M. Bowman, T. Carrington, and H. Meyer, “Variational
quantum approaches for computing vibrational energies
of polyatomic molecules,” Mol. Phys., vol. 106, no. 16,
pp. 2145–2182, 2008.

[210] H.-D. Meyer, F. Gatti, and G. A. Worth, The Road to
MCTDH, ch. 2, pp. 9–15. Wiley-VCH Verlag GmbH &
co. KGaA, 2009.

[211] F. Liu, L. Du, D. Zhang, and J. Gao, “Direct learning
hidden excited state interaction patterns from ab initio
dynamics and its implication as alternative molecular
mechanism models,” Sci. Rep., vol. 7, no. 8737, pp. 1–
12, 2017.

[212] M. Baer, “Introduction to the theory of electronic non-
adiabatic coupling terms in molecular systems,” Phys.
Rep., vol. 358, no. 2, pp. 75–142, 2002.

[213] H. Lischka, M. Dallos, P. G. Szalay, D. R. Yarkony,
and R. Shepard, “Analytic evaluation of nonadiabatic
coupling terms at the MR-CI level. I. Formalism,” J.
Chem. Phys., vol. 120, no. 16, pp. 7322–7329, 2004.

[214] J.-K. Ha, I. S. Lee, and S. K. Min, “Surface hopping
dynamics beyond nonadiabatic couplings for quantum
coherence,” J. Phys. Chem. Lett., vol. 9, no. 5,
pp. 1097–1104, 2018.

[215] G. Granucci, M. Persico, and G. Spighi, “Surface hopping
trajectory simulations with spin-orbit and dynamical
couplings,” J. Chem. Phys., vol. 137, no. 22, p. 22A501,
2012.

[216] D. Tannor, Introduction to Quantum Mechanics: A Time-
Dependent Perspective. Sausalito: University Science
Books, 2006.

[217] A. W. Jasper, B. K. Kendrick, C. A. Mead, and D. G.
Truhlar, NON-BORN-OPPENHEIMER CHEM-
ISTRY: POTENTIAL SURFACES, coUPLINGS,
AND DYNAMICS, pp. 329–391. World Scientific,
2004.

[218] D. R. Yarkony, “On the connectivity of seams of
conical intersection: Seam curvature,” J. Chem. Phys.,
vol. 123, no. 20, p. 204101, 2005.

A.5 mach. learn.: sci. technol., accepted manuscript (2020)

163



Machine learning and excited-state molecular dynamics 19

[219] X. Zhu and D. R. Yarkony, “Constructing diabatic rep-
resentations using adiabatic and approximate diabatic
data - coping with diabolical singularities,” J. Chem.
Phys., vol. 144, no. 4, p. 044104, 2016.

[220] N. Wittenbrink, F. Venghaus, D. Williams, and W. Eis-
feld, “A new approach for the development of diabatic
potential energy surfaces: Hybrid block-diagonalization
and diabatization by ansatz,” J. Chem. Phys., vol. 145,
no. 18, p. 184108, 2016.

[221] W. Domcke, D. R. Yarkony, and H. Köppel, eds., Conical
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