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Abstract

As a contact structure can be equivalently viewed as a filtered manifold whose symbol
algebra is isomorphic to the Heisenberg algebra in each point, there is a natural frame
bundle associated to a contact structure, and a Lagrangean contact structure can be viewed
as a reduction of such a frame bundle. We encode the latter as a filtered G-structure, thus
obtain an equivalent description of Lagrangean contact structures.

Moreover, we will extend such a filtered G-structure to a canonical Cartan geometry,
which is parallel to the construction of a canonical Cartan connection associated to a CR
structure due to Tanaka [6] and Chern-Moser [3]. In particular, we obtain an upper bound
of the dimension of the automorphism group of a Lagrangean contact structure.

The thesis also includes as an easier analogy to the construction on Lagrangean contact
structures an equivalent description of a Riemannian manifold as a G-structure, coming
from the orthonormal frame bundle, and as a canonical Cartan geometry, coming from the
G-structure and the Levi-Civita connection.



Abstract

Eine Kontaktstruktur kann als fitrierte Mannigfaltigkeit interpretiert werden, deren Symbo-
lalgebra in jedem Punkt isomorph zur Heisenberg-Algebra ist. Dadurch kann man für eine
Kontaktsruktur ein natürliches Rahmenbündel konstruieren. Eine Lagrange-Kontaktstrukture
kann dann äquivalent als Reduktion dieses Rahmenbündels beschrieben werden. Diese
Beschreibung von Lagrange-Kontaktstrukturen ist ein filtriertes Analogon zum klassischen
Konzept einer G-Struktur.

Als nächsten Schritt erweitern wir diese filtrierte G-Struktur zu einer kanonischen Car-
tan Geometrie, was analog zu den Resultaten von Tanaka [6] und Chern-Moser [3] über die
Existenz von kanonischen Cartan Konnexionen für CR-strukturen ist. Insbesondere liefert
das eine obere Schranke and die Dimension der Automorphismengruppe einer Lagrange-
Kontaktstruktur.

Als Motivation für den Fall von Lagrange-Kontaktstrukturen werden in der Masterabeit
auch die (viel einfacheren) analogen Konstruktionen für Riemann Mannigfaltigkeiten be-
sprochen. Über das orthonormale Rahmenbündel kann man eine Riemann Metrik äquivalent
als G-Struktur beschreiben. Die Levi-Civita Konnexion macht diese G-Strukture zu einer
kanonischen Cartan Geometrie, die eine äquivalente Beschreibung der Riemann Metrik
liefert.



Acknowledgement

I would like to take this opportunity to thank my supervisor Prof. Andreas Čap for his
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Chapter 1

Introduction

Recall that a symplectic manifold is an even dimensional manifold M2n equipped with a
closed nondegenerate differential 2-form ω ∈ Ω2(M). Thus (TxM,ω(x)) at each x ∈M is a
symplectic vector space, and so they are all isomorphic. Moreover, a theorem by Darboux
implies that all symplectic manifolds of the same dimension are locally isomorphic, hence
there are no local invariants on symplectic manifolds.

As an odd dimensional analogue, a contact structure on M2n+1 is a subbundle H ⊆
TM of codimension 1 satisfying an additional condition. In particular, there is a natural
partial 2-form L ∈ Γ(L(Λ2H,TM/H)), called the Levi-bracket, such that at each x ∈ M ,
(Hx,L(x)) is a symplectic vector space. Thus (TxM/Hx⊕Hx,L(x)) at each x ∈M are all
isomorphic in an obvious sense. Analogous to the Darboux’s theorem, a theorem by Pfaff
implies that all contact structures of the same dimension are locally isomorphic, hence
there are no local invariants on contact structures either.

Observe that given a 2n-dimensional symplectic vector space (V, [ , ]), there is a (non-
unique) decomposition of V into two Lagrangean subspaces V = V1⊕V2. Recall that W ⊆
V is a Lagrangean subspace if and only if W⊥ = W , or equivalently, W is an n-dimensional
subspace such that [ , ] vanishes on W ×W . Similarly a Lagrangean contact structure is
defined as a contact structure (M2n+1, H ⊆ TM) together with a decomposition H = E⊕F
to n-dimensional subbundles such that L(x) is trivial on Ex × Ex and on Fx × Fx for all
x ∈M .

It turns out that Lagrangean contact structures do have local invariants, similar to the
curvature of a Riemannian manifold. In fact, the analogy to Riemannian manifolds goes
much further and our aim is to obtain a similarly nice description of Lagrangean contact
structures.

On an n-dimensional Riemannian manifold M , we refer to the full frame bundle of M

as the bundle of all linear isomorphisms Rn
∼=−→ TxM , x ∈M , and refer to the orthonormal

frame bundle of M as the bundle of all isometries Rn
∼=−→ TxM , x ∈ M . We will see that

the reduction of the full frame bundle to the orthonormal frame bundle is an equivalent
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encoding of a Riemannian metric. On the other hand, given a contact structure (M,H),
(Hx,L(x)) at each x ∈ M is a symplectic vector space, hence there is a frame bundle
associated to a contact structure. It turns out that a Lagrangean contact structure can
be equivalently encoded as a reduction of structure group of that frame bundle. This
yields an equivalence of the category of Riemannian manifolds (resp. Lagrangean contact
structures) and the category of G-structures (resp. filtered G-structures) with a certain
structure group.

As a fundamental result on Riemannian geometry, each Riemannian manifold has a
unique Levi-Civita connection, which leads to the curvature of a Riemannian manifold.
We will see that the Levi-Civita connection is induced by a principal connection on the
orthonormal frame bundle. This yields the description of a Riemannian n-manifold as a
normal Cartan geometry, which has the advantage of being formally very similar to the
description of Euclidean space as a homogeneous space of the Euclidean group. Hence this
Cartan geometry is of type (Euc(n), O(n)). Again, this yields a categorial equivalence. As
a direct consequence, the automorphism group of a connected Riemannian n-manifold is a
Lie group of dimension at most the dimension of Euc(n). Similarly there is a description of a
Lagrangean contact structure on a (2n+1)-dimensional manifold as a regular normal Cartan
geometry, which is formally similar to the description of the canonical Lagrangean contact
structure on the flag manifold F1,n+1(Rn+2) as a homogeneous space of PGL(n+2,R). The
construction of this canonical Cartan geometry and the resulting categorical equivalence
is the main result of this thesis. This result is parallel to the famous construction of a
canonical Cartan connection associated to a CR structure due to Tanaka [6] and Chern-
Moser [3]. As a direct consequence, the automorphism group of a connected Lagrangean
contact structure is a Lie group of dimension at most the dimension of PGL(n+ 2,R).

Overview of the text

In our parallel study of Riemannian geometry and of Lagrangean contact structures, chap-
ter 2 corresponds to chapter 3, and chapter 4 corresponds to chapter 5.

In chapter 2, we describe orthonormal frame bundles of Riemannian n-manifolds as
O(n)-structures of type Rn and establish the equivalence between the two categories.

In chapter 3, after introducing Lagrangean contact structures, we define the frame bun-
dle of a Lagrangean contact structure on a (2n+1)-dimensional manifold, which is parallel
to the orthonormal frame bundle of a Riemannian n-manifold. We describe these frame
bundles as regular filtered G0-structures of type g−, which is parallel to O(n)-structures
of type Rn. Similarly we establish the equivalence between the category of Lagrangean
contact structures on (2n + 1)-dimensional manifolds and the category of regular filtered
G0-structures of type g−.

In chapter 4, we find that a Riemannian n-manifold together with the Levi-Civita con-
nection can be described as an O(n)-structure of type Rn together with a certain principal
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connection on it. Generalizing from the homogeneous model, we describe O(n)-structures
of type Rn together with canonical principal connections as a normal Cartan geometry of
type (Euc(n), O(n)) and establish the equivalence between the category of O(n)-structures
of type Rn and the category of normal Cartan geometries of type (Euc(n), O(n)).

In chapter 5, we generalize from the homogeneous model a functor from regular Cartan
geometries of type (G,P ) to regular filtered G0-structures of type g−. We define the nor-
malising condition on regular Cartan geometries of type (G,P ) parallel to the normalising
condition on Cartan geometries of type (Euc(n), O(n)), thus establish the equivalence be-
tween the category of normal regular Cartan geometries of type (G,P ) and the category
of regular filtered G0-structures of type g−.

Throughout the text we assume that all manifolds are smooth and admits partitions of
unity. We also assume that all representations are finite dimensional.
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Chapter 2

Riemannian manifolds

As a motivation for parallel developments on Lagrangean contact structures, this chapter
recalls the description of Riemannian manifolds as G-structures with structure group O(n).

2.1 The orthonormal frame bundle

LetM be an n-dimensional manifold. We associate toM a natural frame bundleGL(Rn, TM)

whose fiber over each x ∈ M is the space GL(Rn, TxM) of all linear isomorphisms Rn
∼=−→

TxM . This is a principal bundle on M with structure group GL(n,R). Its local sections
U → GL(Rn, TM |U ) on any open subset U ⊆ M are exactly given by the local trivialisa-

tions U × Rn
∼=−→ TM |U , or equivalently, by local frames for TM defined on U .

Let g be a Riemannian metric on M . Then for each x ∈M , (TxM, g(x)) is isomorphic
to the standard inner product space (Rn, 〈 , 〉), thus we associate to (M, g) a natural frame
bundle O(Rn, TM), whose fiber over each x ∈ M is the space O(Rn, TxM) of isometries

(Rn, 〈 , 〉)
∼=−→ (TxM, g(x)). This is a principal subbundle of GL(Rn, TM) with structure

group O(n). Its local sections U → O(Rn, TM |U ) on any open subset U ⊆ M are exactly

given by those local trivialisations U × Rn
∼=−→ TM |U such that 〈 , 〉 corresponds to g,

which can be interpreted as the ordered orthonormal local frames on U of TM . We call
O(Rn, TM) the orthonormal frame bundle of (M, g).

Proposition 2.1.1. Let G ⊆ GL(Rn, TM) be a principal subbundle with structure group
O(n). Then there is a unique Riemannian metric g on M such that G is the orthonormal
frame bundle of (M, g).

Proof. Given u ∈ G lying above x ∈ M , the inner product g(x) : TxM × TxM → R is
uniquely determined by demanding u : Rn → TxM to be an isometry, thus for any tangent
vectors ξ, η ∈ TxM , g(x)(ξ, η) = 〈u−1(ξ), u−1(η)〉. The construction does not depend on
the choice of u ∈ Gx, because any element in Gx is of the form u ◦ A for some A ∈ O(n),
but 〈 , 〉 is O(n)-invariant.
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It remains to show that g(x) puts together a smooth section g ∈ Γ(S2T ∗M). Let
σ : U → G|U be a local section of G define on an open subset U ⊆M . Denote by e1, · · · , en
the standard basis of Rn, then (σ(e1), · · · , σ(en)) is a local orthonormal frame of TM . In
particular, g is smooth.

In particular, a Riemannian metric on M is equivalently encoded as a principal O(n)-
subbundle of GL(Rn, TM), i.e. by a reduction to the structure group O(n).

Now we ask that how local isometries of Riemannian n-manifolds relate to maps between
orthonormal frame bundles. As an immediate observation, each local isometry f : M →M ′

between Riemannian n-manifolds has a natural lift

F : O(Rn, TM)→ O(Rn, TM ′), u 7→ Tf ◦ u

with base map f . F is O(n)-equivariant, hence is a principal bundle map. Note that there
are other lifts of f to principal bundle maps O(Rn, TM) → O(Rn, TM ′), namely those
u 7→ F (u) ◦ ϕ(u), where ϕ : O(Rn, TM) → O(n) is a smooth map such that ϕ(u ◦ A) =
A−1 ◦ ϕ(u) ◦ A for all u ∈ O(Rn, TM), A ∈ O(n). As we will see in the next section, F
becomes the only admitted lift of f by demanding that the lift should respect the soldering
form.

2.2 O(n)-structures of type Rn

LetM be an n-dimensional manifold. Recall that the soldering form θ ∈ Ω1(GL(Rn, TM),Rn)
sends a tangent vector ξ̃ ∈ TuGL(Rn, TM) (with u ∈ GL(Rn, TxM)) which lies above
ξ ∈ TxM to

θ(u)(ξ̃) = u−1(ξ).

It is a smooth one-form because it is given by

TGL(Rn, TM)→ GL(Rn, TM)×M TM → Rn

where TGL(Rn, TM) → GL(Rn, TM) is the projection to base point, TGL(Rn, TM) →
TM is the tangent map of the natural map GL(Rn, TM)→M , and

GL(Rn, TM)×M TM → Rn

is the natural pairing, which at the fiber above each x ∈M is given by

GL(Rn, TxM)× TxM → Rn, (u, ξ) 7→ u−1(ξ).

The last map is smooth because a local section of GL(Rn, TM)×M TM defined on an open
subset U ⊆M can be expressed as a local trivialisation of TM together with a local vector
field of M , both defined on U . Thus pairing them produces a smooth map U → Rn.

The restriction of the soldering form to any principal subbundle G ⊆ GL(Rn, TM) is
also called the soldering form on G. For a discussion on Riemannian n-manifolds, we are
only concerned about soldering forms on principal O(n)-subbundles of GL(Rn, TM).

5



Definition 2.2.1. Let p : P → M be a principal bundle on an arbitrary manifold M ,
then VP := ker(Tp) ⊆ TP is called the vertical bundle of P. Let V be a vector space. A
differential form ω ∈ Ωk(P, V ) is said to be horizontal and is denoted by ω ∈ Ωk

hor(P, V )
if whenever at least one of ξ1, . . . , ξk lies in VP, then ω(ξ1, . . . , ξk) = 0. In the case
ω ∈ Ω1(P, V ), ω is said to be strictly horizontal if ker(ω) = VP.

Denote by H the structure group of P and denote by rh : P → P the principal right
action by any h ∈ H. Suppose V is an H-representation, then a smooth map Φ : P → V is
said to be H-equivariant if Φ ◦ rh = h−1 ◦Φ for all h ∈ H, and we write Φ ∈ C∞(P, V )H ;
similarly ω ∈ Ωk(P, V ) is said to be H-equivariant if (rh)∗ω = h−1 ◦ ω for all h ∈ H, and
we write ω ∈ Ωk(P, V )H .

Lemma 2.2.1. Let M be an n-dimensional manifold and G ⊆ GL(Rn, TM) a principal
O(n)-subbundle. Then the soldering form θ ∈ Ω1(G,Rn) on G is O(n)-equivariant and
strictly horizontal, i.e. ker(θ) = VG.

Proof. Denote by p : G →M the bundle projection. At each u ∈ G with base point x ∈M ,

u is a linear isomorphism Rn
∼=−→ TxM . Thus θ(u) is the map

TuG
Tup−−→ TxM

u−1

−−→ Rn

from which we see that θ is strictly horizontal and O(n)-equivariant.

In particular, a principal O(n)-subbundle G ⊆ GL(Rn, TM) together with its soldering
form θ is an O(n)-structure of type Rn, which we define below. We call (G, θ) the canonical
O(n)-structure of type Rn on G.

Definition 2.2.2. An O(n)-structure (also called a G-structure with structure group O(n))
of type Rn is a principal O(n)-bundle G together with a strictly horizontal, O(n)-equivariant
one-form θ ∈ Ω1(G,Rn).

A morphism of O(n)-structures of type Rn is a principal bundle map Φ : (G, θ)→ (G′, θ′)
such that Φ∗θ′ = θ.

Proposition 2.2.1. Any O(n)-structure (G →M, θ) of type Rn has an n-dimensional base
manifold. Moreover, there is a unique reduction ι : G ↪→ GL(Rn, TM) such that θ is the
pullback of the soldering form on G.

Proof. The dimension of the base manifold M equals the rank of TG/VG, and the latter
equals n as the trictly horizontal one-form θ induces a trivialisation TG/VG ∼= G × Rn.

Since θ is strictly horizontal, at each u ∈ G with base point x ∈ M , θ(u) : TuG → Rn

descends to a linear isomorphism TxM
∼=−→ Rn. Denote its inverse by ι(u) ∈ GL(Rn, TxM).

Thus the map ι : G → GL(Rn, TM) is the only possible reduction such that θ is the
pullback of the soldering form on G. We just need to show that ι is indeed a reduction.
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First we show that ι is O(n)-equivariant: let v ∈ Rn and ι(u)(v) =: ξ ∈ TxM .
Then θ(u)(ξ̃) = v for any tangent vector ξ̃ ∈ TuG lifting ξ. Since θ is O(n)-equivariant,
θ(uA)(Tur

A(ξ̃)) = A−1v for anyA ∈ O(n). Since Tur
A(ξ̃) ∈ TuAG is a lift of ξ, ι(uA)(A−1v) =

ξ. Hence ι(uA) = ι(u)A.
Next, ι is smooth if and only if the map F : G ×Rn → TM, (u, v) 7→ ι(u)(v) is smooth.

As θ is strictly horizontal, it induces a global trivialisation TG/VG ∼= G × Rn. Now F is
the composition of TG/VG → TM , which descends from the tangent map TG → TM , and

G × Rn
∼=−→ TG/VG, the inverse of the trivialisation. Hence F is smooth.

It’s clear that ι covers the identity on M , hence ι is a reduction.

Hence each O(n)-structure (G → M, θ) of type Rn admits a unique isomorphism cov-
ering idM to the canonical O(n)-structure of type Rn on a principal O(n)-subbundle of
GL(Rn, TM). As a principal O(n)-subbundle of GL(Rn, TM) induces a Riemannian met-
ric on M by requesting it to be the orthonormal frame bundle on M , each O(n)-structure of
type Rn has an underlying Riemannian metric on the base manifold. This can be explicitly
described as follows.

Corollary 2.2.1. Let (p : G → M, θ) be an O(n)-structure of type Rn and let g be its
induced Riemannian metric on M . Then whenever ξ̃, η̃ ∈ X(G) are p-related to ξ, η ∈
X(M), respectively, then 〈θ(ξ̃), θ(η̃)〉 ∈ C∞(G) is p-related to g(ξ, η) ∈ C∞(M).

Proof. Denote by ι : G
∼=−→ ι(G) ⊆ GL(Rn, TM) the unique isomorphism covering idM from

(G, θ) to the canonical O(n)-structure of type Rn on some O(n)-subbundle of GL(Rn, TM).

Then for any u ∈ G above x ∈ M , ι(u)−1 : TxM
∼=−→ Rn is supposed to be an isometry.

By the definition of soldering form, ι(u)−1 can be given by first taking any lift TxM →
Tι(u)ι(G) then applying the soldering form, which gives the same result as first taking any
lift TxM → TuG and then applying θ. Hence g is characterised as claimed.

Let (G, θ) be an O(n)-structure of type Rn with underlying Riemannian n-manifold
(M, g), then (G, θ) is isomorphic over idM to the canonical O(n)-structure of type Rn on
O(Rn, TM). With such an identification there is a very simple interpretation for morphisms
of O(n)-structures of type Rn:

Lemma 2.2.2. Let (M, g) and (M ′, g′) be Riemannian n-manifolds.
(i) Any morphism

Φ : O(Rn, TM)→ O(Rn, TM ′)

between the canonical O(n)-structures of type Rn on the orthonormal frame bundles with
base map f : M →M ′ is of the form u 7→ Tf ◦ u. In particular, f is a local isometry.

(ii) Conversely, a local isometry f : M → M ′ admits a unique lift to a morphism
O(Rn, TM) → O(Rn, TM ′) between the canonical O(n)-structures of type Rn on the or-
thonormal frame bundles.
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Proof. Denote the orthonormal frame bundles by p : G := O(Rn, TM)→M and p′ : G′ :=
O(Rn, TM ′)→M ′, and denote by θ resp. θ′ the soldering form on G resp. on G′.

(i) Let u ∈ G be above x ∈ M . We show that Φ(u) ∈ O(Rn, Tf(x)M
′) equals Txf ◦ u.

Indeed, for any tangent vector ξ ∈ TxM with any lift ξ̃ ∈ TuG we have θ(u)(ξ̃) = u−1(ξ).
Since the tangent vector TuΦ(ξ̃) ∈ TΦ(u)G′ lifts the tangent vector Txf(ξ) ∈ Tf(x)M

′, we
have

u−1(ξ) = θ(u)(ξ̃) = θ′(Φ(u))(TuΦ(ξ̃)) = Φ(u)−1(Txf(ξ)).

Hence Φ(u) = Txf ◦ u. In particular, Tf restricts to an isometry TxM
∼=−→ Tf(x)M

′ at each
x ∈M , hence f is a local isometry.

(ii) Let f : M → M ′ be a local isometry. We show that the principal bundle map
Φ : G → G′, u 7→ Tf ◦ u satisfies Φ∗θ′ = θ, thus by (i), Φ is the unique lift to a morphism
(G, θ)→ (G′, θ′). Indeed, let ξ̃ ∈ TuG be a tangent vector and p(u) =: x ∈M . Then by the
definition of soldering form, θ(u)(ξ̃) = u−1(Tup(ξ̃)) and since p′ ◦ Φ = f ◦ p, the soldering
form θ′ applied to the Φ-related tangent vector TuΦ(ξ̃) gives

θ′(Φ(u))(TuΦ(ξ̃)) = Φ(u)−1(TΦ(u)p
′(TuΦ(ξ̃))) = u−1 ◦ (Txf)−1 ◦ (Txf(Tup(ξ̃))) = θ(u)(ξ̃).

Hence Φ∗θ′ = θ.

Hence given two O(n)-structures (G, θ) resp. (G′, θ′) with underlying Riemannian n-
manifolds (M, g), (M ′, g′), descending to the base map yields a bijection from the space of
morphisms (G, θ)→ (G′, θ′) to the space of local isometries (M, g)→ (M ′, g′).

Corollary 2.2.2. The category of O(n)-structures of type Rn is equivalent to the category
of Riemannian n-manifolds, whose morphisms are the local isometries.

Proof. There is a functor from O(n)-structures of type Rn to Riemannian n-manifolds,
which is given by taking the underlying Riemannian n-manifold and taking the base map.
The functor is full and faithful as descending to the base map yields a bijection from the
space of morphisms between two O(n)-structures of type Rn to the space of local isometries
between the underlying Riemannian n-manifolds.

It remains to show that the functor is essentially surjective. But given an Riemannian
n-manifold (M, g), the underlying Riemannian manifold of the canonical O(n)-structure of
type Rn demands O(Rn, TM) be the orthonormal frame bundle, hence it is just (M, g).

We conclude that the functor yields a categorical equivalence.
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Chapter 3

Lagrangean contact structures

3.1 Motivation: symplectic manifolds

We briefly review some basics on symplectic manifolds in order to develop its contact
analogue.

Definition 3.1.1. A symplectic form ω ∈ Ω2(M) on a manifold M is a closed (i.e. dω = 0)
two-form such that ω(x) : TxM × TxM → Rn is a skew-symmetric nondegenerate bilinear
form for each x ∈M . In this case (M,ω) is called a symplectic manifold.

A symplectomorphism f : (M,ω) → (M ′, ω′) is a local diffeomorphism f : M → M ′

such that f∗ω′ = ω.

Recall that a symplectic vector space (V, ω) is a vector space V together with a skew-
symmetric nondegenerate bilinear form ω : ∧2V → R, and a symplectic map f : (V, ω) →
(V ′, ω′) is a linear map f : V → W such that f∗ω′ = ω. By linear algebra, a symplectic
vector space must have an even dimension, and all symplectic vector spaces of the same
dimension are isomorphic. Denote the standard 2n-dimensional symplectic vector space by
(R2n, [ , ]) with

R2n = span{e1, ..., en, f1, ..., fn}

and
[ , ] : R2n × R2n → R

defined by [fi, ej ] = −[ej , fi] = δij , [ei, ej ] = 0, [fi, fj ] = 0 for all i, j = 1, ..., n. We denote
by Sp(2n,R) the group of symplectic automorphisms on (R2n, [ , ]).

Hence a symplectic manifold (M,ω) must have some even dimension 2n, and its tangent
bundle TM is a locally trivial bundle over (R2n, [ , ]). We associate to (M,ω) a natural
frame bundle whose fiber over each x ∈M is the space of symplectic isomorphisms

(R2n, [ , ])
∼=−→ (TxM,ω(x)).
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Then its structure group is Sp(2n,R). Conversely, however, a reduction of GL(R2n, TM)
to structure group Sp(2n,R) does not induce a symplectic form on M in general. In fact,
such a reduction induces a two-form on M whose value in each point is nondegenerate, but
this form is not closed in general.

We cite a result in linear algebra, thus obtain an alternative definition of symplectic
forms:

Lemma 3.1.1. A two-form ω ∈ ∧2V ∗ on a 2n-dimensional vector space V is nondegenerate
if and only if ∧nω is a volumn form on V ([5]: 31.3).

Hence a two-form ω ∈ Ω2(M) on a 2n-dimensional manifold M is a symplectic form if
and only if dω = 0 and ∧nω ∈ Ω2n(M) is a volumn form.

Example 3.1.1. (The canonical symplectic form on the cotangent bundle) Let N be an
n-dimensional manifold and T ∗N → N be its cotangent bundle. The tautological one-form
α ∈ Ω1(T ∗N) on T ∗N maps any tangent vector ξ̃ ∈ TuT ∗N (with u ∈ T ∗xN) lying above
ξ ∈ TxN to

α(u)(ξ̃) = u(ξ).

α is smooth because it is given by

α : TT ∗N → T ∗N ×N TN → R

where TT ∗N → T ∗N is the projection to the base point, TT ∗N → TN is the tangent map
of the natural map T ∗N → N , and T ∗N ×N TN → R is the natural pairing. We claim
that dα ∈ Ω2(T ∗N) is a symplectic form on T ∗N .

Indeed, any local chart

(q1, . . . , qn) : U
∼=−→ U ′ ⊆ Rn

defined on an open subset U ⊆ N induces a local chart

(q1, . . . , qn, p1, . . . , pn) : T ∗N |U
∼=−→ U ′ × Rn

characterized by the fact that for x ∈ U and u ∈ T ∗xN , one gets u = Σipi(u)dqi(x). Thus

α = Σipidq
i

and so
dα = Σidpi ∧ dqi

with respect to the local chart. In particular we see that dα is a nondegenerate two form
on T ∗N . As ddα = 0, dα is a symplectic form on T ∗N .

Moreover, we claim that any diffeomorphism f : N → N lifts to a symplectomorphism
Φ : (T ∗N, dα) → (T ∗N, dα). Indeed, let Φ send each u ∈ T ∗xN to u ◦ (Txf)−1 ∈ T ∗f(x)N .
Clearly Φ covers f and restricts to a linear isomorphism on each fiber. To see that Φ is
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smooth, notice that Tf : TN → TN is an automorphism of vector bundle, and for any
smooth sections s ∈ Γ(T ∗N) = Ω1(N) and ξ ∈ X(N), we have Φ(s)(ξ) = s ◦ (Tf)−1 ◦ ξ ∈
C∞(N), which means that Φ is smooth. Therefore Φ is an automorphism on T ∗N . It
remains to show that Φ∗α = α, thus Φ∗(dα) = d(Φ∗α) = dα and Φ is a symplectomorphism
lifting f . Indeed, for a tangent vector ξ̃ ∈ TuT ∗N (with u ∈ T ∗xN) lying above the tangent
vector ξ ∈ TxN , TuΦ(ξ̃) is a tangent vector with base point Φ(u) = u ◦ (Txf)−1 ∈ T ∗f(x)N

and it is a lift of Txf(ξ) ∈ Tf(x)N . Hence

α(Φ(u))(TuΦ(ξ̃)) = (u ◦ (Txf)−1)(Txf(ξ)) = u(ξ) = α(u)(ξ̃)

and so Φ∗α = α.
In particular, the group of automorphisms on (T ∗N, dα) contains the group of dif-

feomorphisms N → N , hence is infinite dimensional. Since all 2n-dimensional symplectic
manifolds are locally isomorphic, this locally extends to all 2n-dimensional symplectic man-
ifolds.

Moreover, the Darboux theorem ([5]: 31.15) implies that any 2n-dimensional symplectic
manifold (M,ω) admits a symplectic atlas, i.e. an atlas with charts that have local coor-
dinates (q1, . . . , qn, p1, . . . , pn) such that ω = Σidpi ∧ dqi. In particular, all 2n-dimensional
symplectic manifolds are locally isomorphic. Therefore there are no local invariants on
symplectic manifolds.

3.2 Contact manifolds and contact structures

Now we define contact forms in analogy to the alternative definition (Lemma 3.1.1) of
symplectic forms.

Definition 3.2.1. A contact form α ∈ Ω1(M) on a manifold M of odd dimension 2n+ 1
is a one-form such that α ∧ (dα)n ∈ Ω2n+1(M) is a volumn form.

A contact form α ∈ Ω1(M) on a (2n+ 1)-dimensional manifold M is non-vanishing as
α ∧ (dα)n is non-vanishing. Hence H := ker(α) ⊆ TM is a vector subbundle of corank 1,
which is called the contact subbundle of (M,α).

By linear algebra (Lemma 3.1.1), there is an alternative definition of contact forms:

Lemma 3.2.1. A non-vanishing one-form α ∈ Ω1(M) on a manifold M is a contact
form if and only if dα is a skew-symmetric nondegenerate bilinear form on each fiber of
H := ker(α).

Proof. At each x ∈ M we may choose a basis for Hx and extend it to a basis for TxM .
With this we see that α(x)∧ (dα)n(x) is a volumn form on TxM if and only if (dα)n(x) is a
volumn form on Hx, which is equivalent to that dα(x) is a skew-symmetric nondegenerate
two-form on Hx. Hence α a contact form if and only if dα is nondegenerate on H.
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Notice that a contact subbundle determines the contact form up to a smooth scalar:

Lemma 3.2.2. Let (M,α) be a contact manifold with contact subbundle H ⊆ TM . Then
any non-vanishing one-form TM → R with kernel H is a contact form on M with contact
subbundle H.

Proof. Any one-form with kernel H is of the form fα for any non-vanishing smooth map
f ∈ C∞(M). For ξ, η ∈ Γ(H),

dα(ξ, η) = ξ.α(η)− η.α(ξ)− α([ξ, η]) = −α([ξ, η])

d(fα)(ξ, η) = ξ.(fα)(η)− η.(fα)(ξ)− fα([ξ, η]) = −fα([ξ, η])

hence d(fα) restricted to H is also nondegenerate, in particular, fα is a contact form with
contact subbundle H.

Hence we want to focus on the contact subbundle rather than on a contact form. This
yields the definition of contact structures.

Definition 3.2.2. Let M be a manifold. A contact structure (M,H) on M is a subbundle
H ⊆ TM of corank 1 such that each x ∈ M has an open neighborhood U ⊆ M , on which
there is a contact form whose contact subbundle is H|U .

A contactomorphism f : (M,H)→ (M ′, H ′) of contact structures is a local diffeomor-
phism f : M →M ′ such that Tf(H) ⊆ H ′.

From the last lemma, the local contact forms on a contact structure (M,H) are exactly
those local one-forms with kernel H, which is equivalent to a local trivialisation on TM/H.
In particular, H is the contact subbundle of a globally defined contact form if and only if
TM/H is globally trivial.

On the other hand, if α is such a local one-form, then there is a locally defined bilinear
form H × H → TM/H induced from dα and the induced local trivialisation on TM/H.
We will show that this TM/H-valued bilinear form is just the negative of the Levi bracket
when M is viewed as a filtered manifold with filtration TM = T−2M ⊇ T−1M = H. This
yields an alternative definition of contact structures.

Definition 3.2.3. A filtered manifold is a manifold M together with a filtration

TM = T−kM ⊇ T−k+1M ⊇ ... ⊇ T−1M,k > 0

of TM by vector subbundles, such that for each ξ ∈ Γ(T iM), η ∈ Γ(T jM), we have [ξ, η] ∈
T i+jM . We follow the convention that T iM = TM for i < −k and T iM = 0 for i ≥ 0.

The associated graded bundle of a filtered manifoldM is given by gr(TM) = ⊕igri(TM),
a direct sum of quotient bundles gri(TM) := T iM/T i+1M . For each i denote by qi :
T iM � gri(TM) the natural quotient map. Consider the operator

Γ(T iM)× Γ(T jM)→ gri+j(TM), (ξ, η) 7→ qi+j([ξ, η]).
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We claim that the operator is C∞(M)-bilinear, hence is a vector bundle map. Indeed, for
f ∈ C∞(M), ξ ∈ Γ(T iM), η ∈ Γ(T jM), we have

[fξ, η]− f [ξ, η] = −(η.f)ξ ∈ T iM ⊆ T i+j+1M

as j ≤ −1. Hence qi+j([fξ, η]) = qi+j(f [ξ, η]) = fqi+j([ξ, η]) as qi+j is C∞(M)-linear.
Similarly we have qi+j([ξ, fη]) = fqi+j([ξ, η]). Moreover, we observe that if ξ ∈ Γ(T i+1M)
or η ∈ Γ(T j+1M), then [ξ, η] ∈ Γ(T i+j+1M) by the property of the filtered manifold,
hence qi+j([ξ, η]) = 0. In particular, the operator descends to a tensorial map gri(TM)×
grj(TM) → gri+j(TM). Taking these maps together, we obtain a grading-preserving
tensorial map

L : gr(TM)× gr(TM)→ gr(TM)

which is called the Levi bracket on gr(TM).

Lemma 3.2.3. Let M be a manifold. A vector subbundle H ⊆ TM of corank 1 is a contact
structure on M if and only if on the filtered manifold M with filtration

TM = T−2M ⊇ T−1M = H,

the Levi-bracket L : H ×H → TM/H is nondegenerate at each fiber.

Proof. Choose a local contact form α ∈ Ω1
loc(M) defined on an open subset U ⊆ M ,

such that ker(α) = H|U , and let α descend to a map α : (TM/H)|U → R which is a
linear isomorphism at each fiber. Then (M,H) is a contact structure if and only if dα is
nondegenerate on HU for all such α. But for any ξ, η ∈ ΓU (H),

dα(ξ, η) = −α([ξ, η]) = −α ◦ L(ξ, η)

hence dα is nondegenerate on HU if and only if L is nondegenerate on H|U , and so H is a
contact structure if and only if L is nondegenerate on each fiber.

Definition 3.2.4. A graded Lie algebra is a Lie algebra g with a decomposition

g = g−k ⊕ g−k+1 ⊕ ...⊕ gl, k, l ≥ 0

into vector subspaces such that [gi, gj ] ⊆ gi+j for all i, j ∈ Z. We take the convention that
gi = 0 for i < −k and for i > l.

A graded Lie algebra homomorphism ϕ : g → h is a Lie algebra homomorphism such
that ϕ(gi) ⊆ hi for all i.

We define the (2n+ 1)-dimensional Heisenberg algebra to be the graded algebra g− :=
g−2 ⊕ g−1 where g−1 := R2n = span{e1, ..., en, f1, ..., fn} is the standard symplectic vector
space, g−2 := R and [ , ] : g−1 × g−1 → g−2 is the standard symplectic form, i.e. [ , ] is
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generated by [fi, ej ] = δij , i, j = 1, ..., n. Denote by Autgr(g−) the group of automorphisms
of graded Lie algebra on g−, which consists of all pairs (ϕ−2, ϕ−1) of linear isomorphisms

ϕ−2 : g−2
∼=−→ g−2

ϕ−1 : g−1
∼=−→ g−1

such that
[ϕ−1(X), ϕ−1(Y )] = ϕ−2([X,Y ])

for all X,Y ∈ g−1.

Corollary 3.2.1. A vector subbundle H ⊆ TM is a contact structure on M if and only if
(TxM/Hx ⊕Hx,L(x)) is isomorphic to the Heisenberg algebra g− for each x ∈M .

Thus for any contact structure H on a (2n+ 1)-dimensional manifold M , we associate
to gr(TM) = TM/H ⊕H a frame bundle P(gr(TM)), whose fiber above each x ∈ M is

the space of isomorphisms g−
∼=−→ (gr(TxM),L(x)) of graded Lie algebras, that is, all pairs

(u−2, u−1) of linear isomorphisms

u−2 : g−2
∼=−→ TxM/Hx

u−1 : g−1
∼=−→ Hx

such that
L(x)(u−1(X), u−1(Y )) = u−2([X,Y ])

for all X,Y ∈ g−1. The structure group of P(gr(TM)) is then Autgr(g−).
Observe that for each (ϕ−2, ϕ−1) ∈ Autgr(g−), ϕ−2 is completely determined by ϕ−1

as [ , ] : g−1 × g−1 → g−2 is surjective. Hence Autgr(g−) ⊆ GL(g−1) = GL(2n,R),
In particular, let GL(g−1, H) denote the full frame bundle of H whose fiber above each

x ∈ M is the space of linear isomorphisms R2n
∼=−→ Hx, then (u−2, u−1) 7→ u−1 is a reduc-

tion P(gr(TM)) ↪→ GL(R2n, H) to structure group Autgr(g−) ⊆ GL(2n,R). Conversely,
however, a reduction of GL(R2n, H) to structure group Autgr(g−) cannot be viewed as the

frame bundle of gr(TM) in general as an arbitrary isomorphism ϕ−1 : g−1
∼=−→ g−1 need

not extend to an element (ϕ−2, ϕ−1) ∈ Autgr(g−).
Let i : Sp(2n,R) ↪→ Autgr(g−) send a symplectic automorphism ϕ−1 on R2n = g−1 to

(1, ϕ−1) ∈ Autgr(g−), and let p : Autgr(g−)→ R∗, (ϕ−2, ϕ−1) 7→ ϕ−2 denote the canonical
projection. Then

Lemma 3.2.4.
1→ Sp(2n,R)

i−→ Autgr(g−)
p−→ R∗ → 1

is an exact sequence of group homomorphisms. Hence Autgr(g−) ∼= Sp(2n,R) oR∗.
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Proof. p is surjective because given ϕ−2 =: c ∈ R∗, define

ϕ−1 : g−1 → g−1,Σia
iei + bifi 7→ Σica

iei + bifi

then p sends (ϕ−2, ϕ−1) ∈ Autgr(g−) to ϕ−2.
The kernel of p is the set of all (1, ϕ−1) ∈ Autgr(g−), thus we must have ϕ−1 ∈

Sp(2n,R). As i is injective, we obtain the claimed exact sequence.

Analogous to the Darboux theorem, the Pfaff theorem ([4]: 1.9.0.56) implies that for any
contact structure (M,H) on a (2n+ 1)-dimensional manifold, M admits locall coordinates
(t, qi, pi : 1 ≤ i ≤ n) around each point, such that α = dt+ Σipidq

i is a local contact form
with kernel H. In particular, all contact structures on manifolds of the same dimension are
locally isomorphic. Therefore there are no local invariants on contact structures either.

Example 3.2.1. (Canonical contact structure on the projectivised cotangent bundle) Let
N be a manifold of dimension n ≥ 2. Denote by PT ∗N → N the projectivised cotangent
bundle of N , whose fiber above each x ∈ N are the lines in T ∗xN , hence this is a fiber
bundle with standard fiber RPn−1. Moreover, the natural projection (T ∗N \ 0N )→ PT ∗N
is a principal bundle with structure group R∗ = R − {0}. Recall from Example 3.1.1 the
tautological one-forn α ∈ Ω1(T ∗N), we claim that the kernel of α restricted to (T ∗N \ 0N )
descends to a contact structure H ⊆ TPT ∗N on PT ∗N . At each ` ∈ PT ∗N , where `
is a line in T ∗xN , H` is just the preimage by TlPT

∗N → TxN of the hyperplane in TxN
annihilated by `.

We now show that H is smooth. Indeed, ker(α) ⊆ TT ∗N has corank 1 and contains
the vertical bundle of T ∗N → N , hence ker(α)|(T ∗N−0N ) also has corank 1 and contains
the vertical bundle of (T ∗N − 0N ) → PT ∗N . Moreover, ker(α)|(T ∗N−0N ) is R∗ invariant

because each c ∈ R∗ acting on a tangent vector ξ̃ ∈ Tu(T ∗N − 0N ) (0 6= u ∈ T ∗xN) lying
above ξ ∈ TxN gives Tur

c(ξ̃) ∈ Tcu(T ∗N − 0N ) lying above cξ ∈ TxN . By

α(cu)(Tur
c(ξ̃)) = cu(x) = cα(u)(ξ̃),

ker(α)|(T ∗N−0N ) is R∗ invariant. In particular, H ⊆ TPT ∗N is smooth subbundle of
corank 1 because for each local section σ of (T ∗N \ 0N )→ PT ∗N , H equals the kernel of

TPT ∗N
Tσ−−→ TT ∗N � TT ∗N/ker(α).

It remains to show that H is a contact structure. Recall that any local chart (qi) : U
∼=−→

U ′ ⊆ Rn defined on an open subset U ⊆ N induces a local chart (qi, pi) : T ∗N |U
∼=−→ U ′×Rn,

thus α = Σipidq
i. The chart restricts to a chart

(qi, pi) : (T ∗N − 0N )|U
∼=−→ U ′ × (Rn − {0}).

15



For k = 1, ..., n choose local sections

σk : PT ∗N |U ⊇ Ũk → (T ∗N − 0N )|U

of (T ∗N − 0N )→ PT ∗N such that

(qi, pi) ◦ σk(Ũk) = U ′ × (R× ...× {1} × ...× R)

where {1} is the k-th entry of Rn. Then PT ∗N |U = ∪iŨi and (qi, pi) ◦ σk induces a local
chart of PT ∗N . By abuse of notation we denote the chart by

(q1, ..., qn, p1, ..., pk−1, pk+1, ...pn) : PT ∗N |U ⊇ Ũk
∼=−→ U ′ × Rn−1.

We show that H is a contact structure by showing that θ := α ◦ σk for any 1 ≤ k ≤ n is a
local contact form, as ker(θ) = H|Ũk

. Indeed, we have

θ = dqk + Σi 6=kpidq
i

with respect to the local chart above. In particular (dpi, dq
i)i 6=k : ker(θ)→ Rn−1 × Rn−1 is

a linear isomorphism at each fiber, hence dθ = Σi 6=kdpi ∧ dqi is nondegenerate on ker(θ)
and θ is a contact form on Ũk.

Now we claim that any diffeomorphism f : N → N lifts to a contactomorphism Φ :
(PT ∗N,H) → (PT ∗N,H). Recall that f lifts to a diffeomorphism Φ : T ∗N → T ∗N
sending u ∈ T ∗xN to u ◦ (Txf)−1 such that Φ∗α = α. Since a line Ru ∈ T ∗xN is mapped by
Φ to a line Ru ◦ (Txf)−1 ∈ T ∗f(x)N , Φ descends to a diffeomorphism Φ : PT ∗N → PT ∗N .

Φ∗α = α implies TΦ(ker(α)) = ker(α), hence TΦ(H) = H and Φ is a contactomorphism.
In particular, the automorphism group on (PT ∗N,H) also contains the diffeomorphisms

N → N , hence is infinite dimensional. Since all contact structures on manifolds of the
same dimension are locally isomorphic, this locally extends to all contact structures on
(2n− 1)-dimensional manifolds.

3.3 Lagrangean contact structures

Recall that on a 2n-dimensional symplectic vector space (V, ω), a linear subspace W ⊆ V
is said to be isotropic if ω|W×W = 0, i.e. W ⊆ W⊥; W is said to be Lagrangean if
W = W⊥. Note that an isotropic subspace W ⊆ V is Lagrangean if and only if W is
n-dimensional because by the nondegeneracy of ω, any r-dimensional isotropic subspace
W extends to a 2r-dimensional nondegenerate subspace W̃ . Thus V = W̃ ⊕ W̃⊥, and W̃⊥

is a (2n− 2r)-dimensional subspace of W⊥.
Let (M,H) be a contact structure and L : H × H → TM/H be the Levi bracket of

the filtered manifold TM = T−2M ⊇ T−1M = H. Then (Hx,L(x)) is a symplectic vector
space for each x ∈ M (Lemma 3.2.3). We call a vector subbundle F ⊆ H a Lagrangean
subbundle if Fx ⊆ Hx is a Lagrangean subspace for each x ∈M .
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Example 3.3.1. Let N be a manifold of dimension n ≥ 2. Recall the canonical contact
structure (PT ∗N,H) given in Example 3.2.1. We have shown that the vertical bundle F
of PT ∗N → N lies in H. As a vertical bundle, the Lie bracket on vector fields of PT ∗N
sends Γ(F )× Γ(F ) to Γ(F ), and since F has rank (n− 1) and H has rank (2n− 2), F is
a Lagrangean subbundle of H. Clearly, the contactomorphism Φ : PT ∗N → PT ∗N lifted
from any diffeomorphism f : N → N as given in Example 3.2.1 preserves the vertical
bundle F . Hence the group of contactomorphisms PT ∗N → PT ∗N preserving F is infinite
dimensional, and we conclude that the automorphism group of a contact structure with
one distinguished Lagrangean subbundle may have infinite dimension. In fact, all contact
structures with one distinguished involutive Lagrangean subbundle on manifolds of the same
dimension are also locally isomorphic ([1]), therefore there again are no local invariants.

Definition 3.3.1. Let (M,H) be a contact structure. Then a Lagrangean contact structure
(M,E ⊕ F ) on (M,H) is a decomposition H = E ⊕ F into two Lagrangean subbundles.

A morphism f : (M,E⊕F )→ (M ′, E′⊕F ′) of Lagrangean contact structures is a local
diffeomorphism f : M → M ′ such that Tf(E) ⊆ E′ and Tf(F ) ⊆ F ′ (which implies that
f is a contactomorphism).

Consider the (2n + 1)-dimensional Heisenberg algebra g−. The 2n-dimensional sym-
plectic vector space (g−1, [ , ]) with

g−1 = span{e1, ..., en, f1, ..., fn}

[ , ] : g−1 × g−1 → g−2

generated by [fi, ej ] = δij has a natural decomposition g−1 = gE−1⊕gF−1 into two Lagrangean
subspaces

gE−1 := span{e1, ..., en}

and
gF−1 := span{f1, ..., fn}.

Let G0 ⊆ Autgr(g−) be the subgroup of automorphisms preserving the decomposition
g−1 = gE−1 ⊕ gF−1, i.e. G0 consists of all triples (ϕ−2, ϕ

E
−1, ϕ

F
−1) of linear isomorphisms

ϕ−2 : g−2
∼=−→ g−2

ϕE−1 : gE−1

∼=−→ gE−1

ϕF−1 : gF−1

∼=−→ gF−1

such that
[ϕE−1(X), ϕF−1(Y )] = ϕ−2([X,Y ])

for all X ∈ gE−1 and Y ∈ gF−1. We claim that any pair of linear isomorphisms ϕ−2 :

g−2
∼=−→ g−2 and ϕE−1 : gE−1

∼=−→ gE−1 determines a unique (ϕ−2, ϕ
E
−1, ϕ

F
−1) ∈ G0. Indeed,

17



[ , ] : gF−1 × gE−1 → g−2 is just the standard inner product on Rn, thus for each i = 1, ..., n
there is a unique ϕF−1(fi) ∈ gF−1 such that [ϕF−1(fi), ϕ

E
−1(ej)] = ϕ−2(δij) for all j = 1, ..., n.

In particular, G0
∼= GL(g−2)×GL(gE−1) ∼= R∗ ×GL(n,R).

Let H be a contact structure on a (2n+ 1)-dimensional manifold M . Recall that there
is a frame bundle P(gr(TM)) with structure group Autgr(g−) modelling (gr(TM),L) over
the (2n + 1)-dimensional Heisenberg algebra g−. Then a Lagrangean contact structure
H = E ⊕ F induces a frame bundle G0, which is a subbundle of P(gr(TM)) modelling E
over gE−1 and F over gF−1. Then the structure group of G0 is G0.

Proposition 3.3.1. Let H be a contact structure on a (2n+ 1)-dimensional manifold M ,
and let P(gr(TM)) denote its frame bundle with structure group Autgr(g−). Then for
any principal subbundle G0 ⊆ P(gr(TM)) with structure group G0 ⊆ Autgr(g−), there is
a unique Lagrangean contact structure H = E ⊕ F on (M,H) such that G0 is the frame
bundle associated to it.

Proof. For any (u−2, u−1) ∈ G0 ⊆ P(gr(TM)) with base point x ∈ M , we must have
Ex = u−1(gE−1) and Fx = u−1(gF−1), then Hx = Ex ⊕ Fx is clearly a decomposition into
Lagrangean subspaces. Since G0 preserves the decomposition g−1 = gE−1 ⊕ gF−1, different
elements in G0 in the fiber above x induce the same subspaces Ex and Fx, thus we obtain
a Lagrangean contact structure H = E ⊕ F . The local frames of E resp. F can be given
by the local sections of G0 evaluated at any basis of gE−1 resp. gF−1, and so E and F are
smooth vector subbundles.

In particular, just like given an n-dimensional manifold M with frame bundle GL(n,R),
then principal O(n)-subbundles of GL(n,R) correspond to Riemannian metrics on M , the
contact analogue is that when (M,H) is a contact structure on (2n+ 1)-dimensional man-
ifold with frame bundle P(gr(TM)), then principal G0-subbundles of P(gr(TM)) corre-
spond to Lagrangean contact structures on (M,H).

Example 3.3.2. (Canonical Lagrangean contact structure on the flag manifold) The points
of the flag manifold F1,n+1(Rn+2) are the pairs (V1, Vn+1) such that Vn+1 ⊆ Rn+2 is a
hyperplane and V1 ⊆ Vn+1 is a line. Then there is a natural projection

F1,n+1(Rn+2)→ RPn+1 =: N

(V1, Vn+1) 7→ V1

which we may interpret as the projective cotangent bundle PT ∗N → N because for each
` = Rx ∈ N , where 0 6= x ∈ Rn+2, we may realise T`N as (TxRn+2)/` = Rn+2/`, hence
realise PT ∗` N as lines in (Rn+2/`)∗, i.e. lines in R(n+2)∗ annihilating `, which is the same
as hyperplanes in Rn+2 containing `. It’s clear that such realisation does not depend on
the choice of representative 0 6= x ∈ `.
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Consider the canonical contact structure H on PT ∗N as given in Example 3.2.1 and
the Lagrangean subbundle F ⊆ H given by the vertical bundle of PT ∗N → N as in Exam-
ple 3.3.1. Let E be the vertical bundle of the natural fiber bundle

F1,n+1(Rn+2) = PT ∗N → RP (n+1)∗

(V1, Vn+1) 7→ Vn+1

with standard fiber RPn. We see that E ⊆ H because at each (V1, Vn+1) ∈ PT ∗N , express
Vn+1 as a line Rϕ in R(n+2)∗ annihilating V1, then the image of E(V1,Vn+1) by the natural
projection TPT ∗N → TN is a subspace of TV1N annihilated by ϕ.

Since N = RPn+1 is (n+1)-dimensional, F1,n+1(Rn+2) = PT ∗N is (2n+1)-dimensional,
and E and F both has rank n. As vertical subbundles, E and F are involutive, hence are
Lagrangean subbundles. Clearly E∩F = {0}, therefore H = E⊕F is a Lagrangean contact
structure.

Later in Section 5.1 we will see that the Lagrangean contact structure on F1,n+1(Rn+2)
is homogeneous under GL(n+ 2,R), thus is homogeneous under the projective linear group
PGL(n+2,R) by an effective and transitive action. In particular, each element in PGL(n+
2,R) yields a distinct automorphism on the Lagrangean contact structure on F1,n+1(Rn+2).
After obtaining the description of a Lagrangean contact structure as a Cartan geometry, we
will see that the automorphism group on the Lagrangean contact structure on F1,n+1(Rn+2)
is exactly PGL(n + 2,R), a group of finite dimension. This will provide an upper bound
on the dimension of the automorphism group of any Lagrangean contact structure.

3.4 Regular filtered G0-structures of type g−

Recall from Section 2.2 the soldering form

TGL(Rn, TM)→ GL(Rn, TM)×M TM → Rn

on the frame bundle GL(Rn, TM) of an n-dimensional manifold M . We will construct an
analogue on the frame bundles of contact structures.

Now let (M,H) be a contact structure on a (2n + 1)-dimensional manifold M and let
P(gr(TM)) be its frame bundle. Recall that the fiber of P(gr(TM)) above x ∈M consists

of all pairs (u−2, u−1) of linear isomorphisms u−2 : g−2
∼=−→ TxM/Hx, u−1 : g−1

∼=−→ Hx such
that L(x)(u−1(X), u−1(Y )) = u−2([X,Y ]) for all X,Y ∈ g−1. Moreover, (u−2, u−1) 7→ u−1

yields a reduction P(gr(TM)) ↪→ GL(g−1, H) of the full frame bundle of H.
OnGL(g−1, H) there is an obvious partial soldering form θ−1: denote by T−1GL(g−1, H) ⊆

TGL(g−1, H) the preimage of H = T−1M under the tangent map of GL(g−1, H) → M .
T−1GL(g−1, H) is smooth because it is the kernel of

TGL(g−1, H)→ TM � TM/H.
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Let θ−1 ∈ Γ(L(T−1GL(g−1, H), g−1)) map each tangent vector ξ̃ ∈ T−1
u GL(g−1, H) (with

u : g−1
∼=−→ Hx) lying above ξ ∈ Hx to θ−1(u)(ξ̃) = u−1(ξ). θ−1 is smooth because it is

given by the natural maps

T−1GL(g−1, H)→ GL(g−1, H)×M H → g−1.

Denote by T−1P(gr(TM)) ⊆ TP(gr(TM)) the preimage of H = T−1M by the tangent
map of P(gr(TM))→M . Then the reduction P(gr(TM)) ↪→ GL(g−1, H) pulls back θ−1

to a partial soldering form

T−1P(gr(TM))→ P(gr(TM))×M H → g−1

which we still denote by θ−1. That is, for each tangent vector ξ̃ ∈ T−1
u P(gr(TM)) with

base point u = (u−2, u−1) ∈ P(gr(TM))x such that ξ̃ descends to ξ ∈ Hx, we have

θ−1(u)(ξ̃) = (u−1)−1(ξ).

On the other hand, we define a one-form θ−2 ∈ Ω1(P(gr(TM)), g−2): for each ξ̃ ∈
TuP(gr(TM)) with base point u = (u−2, u−1) ∈ P(gr(TM))x such that ξ̃ descends to
ξ ∈ TxM and further descends to ξ ∈ TxM/Hx, let

θ−2(u)(ξ̃) = (u−2)−1(ξ).

θ−2 is smooth because it is given by

TP(gr(TM))→ P(gr(TM))×M TM/H → g−2

where TP(gr(TM)) → P(gr(TM)) is the projection to base point, TP(gr(TM)) →
TM/H is the composition of the tangent map of P(gr(TM)) → M to the natural pro-
jection TM � TM/H, and P(gr(TM))×M TM/H → g−2 is the natural pairing sending
(u−2, u−1) ∈ P(gr(TM))x, ξ ∈ TxM/Hx to (u−2)−1(ξ) ∈ g−2.

Thus we define the soldering form on P(gr(TM)) as θ = (θ−2, θ−1), with θ−2 ∈
Ω1(P(gr(TM)), g−2) and θ−1 ∈ Γ(L(T−1P(gr(TM)), g−1)) as given above. Moreover,
we also call the restriction of θ to any principal subbundle G0 ⊆ P(gr(TM)) the soldering
form on G0, which is a g−2-valued one-form together with a g−1-valued partial one-form
defined on the preimage T−1G0 of H by the tangent map of G0 →M . We only discuss the
case when G0 is a reduction to the structure group G0 as it correspond to a Lagrangean
contact structure. We think of T−1G0 as the subbundle in the G0-invariant filtration

TG0 = T−2G0 ⊇ T−1G0 ⊇ T 0G0 = VG0

lifted from the filtration TM = T−2M ⊇ T−1M = H.
We describe the properties of the soldering form on G0 ⊆ P(gr(TM)). Note that G0

comes with a distinguished representation on g−2 and on g−1 via the canonical inclusions
g−2 ↪→ g− and g−1 ↪→ g−.
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Lemma 3.4.1. Let (M,H) be a contact structure on a (2n+1)-dimensional manifold with
frame bundle P(gr(TM)), and let G0 ⊆ P(gr(TM)) be a principal subbundle with structure
group G0. Denote by θ = (θ−2, θ−1) the soldering form on G0. Then

(i) θ−2 ∈ Ω1(G0, g−2) is G0-equivariant and its kernel is T−1G0, and
(ii) θ−1 ∈ Γ(L(T−1G0, g−1)) is G0-equivariant and its kernel is T 0G0.
(iii)

dθ−2(ξ̃, η̃) = −[θ−1(ξ̃), θ−1(η̃)]

for all ξ̃, η̃ ∈ Γ(T−1G0).

Proof. Denote by p : G0 → M the bundle projection and let ϕ = (ϕ−2, ϕ−1) ∈ G0 be any
element in the structure group. Let u = (u−2, u−1) ∈ G0 be any point with base point
x ∈M .

(i) θ−2(u) is given by

TuG0
Tp−→ TxM � TxM/Hx

(u−2)−1

−−−−−→∼= g−2,

from which we see that the kernel of θ−2 is exactly (Tp)−1(H) = T−1G0.
At uϕ = (u−2 ◦ ϕ−2, u−1 ◦ ϕ−1), θ−2(uϕ) is given by

TuϕG0
Tp−→ TxM � TxM/Hx

(u−2)−1

−−−−−→∼= g−2
(ϕ−2)−1

−−−−−→∼= g−2.

Since Tp is G0-invariant, θ−2 is G0-equivariant.
(ii) Similarly θ−1(u) is given by

T−1
u G0

Tp|T−1G0−−−−−−→ Hx
(u−1)−1

−−−−−→∼= g−1,

from which we see that the kernel of θ−1 is just the vertical bundle T 0G0, and θ−1(uϕ) is
given by

T−1
uϕ G0

Tp|T−1G0−−−−−−→ Hx
(u−1)−1

−−−−−→∼= g−1
(ϕ−1)−1

−−−−−→∼= g−1,

from which we see that θ−1 is G0-equivariant.
(iii) Since both sides of the claimed equation are tensorial maps T−1G0×T−1G0 → g−2,

it suffices to prove the equality at a point u ∈ G0. Indeed, for any ξ̃, η̃ ∈ Γ(T−1G0),

dθ−2(ξ̃, η̃) = ξ̃.θ−2(η̃)− η̃.θ−2(ξ̃)− θ−2([ξ̃, η̃]) = −θ−2([ξ̃, η̃])

as ker(θ−2) = T−1G0. Without loss of generality, we may assume that ξ̃, η̃ are G0-invariant
vector fields, hence descend to ξ, η ∈ Γ(H), respectively. In particular, [ξ̃, η̃] ∈ X(G0) is
a G0-invariant vector field and it descends to [ξ, η] ∈ X(M), which further descends to
L(ξ, η) ∈ Γ(TM/H). Therefore

θ−2(u)([ξ̃, η̃]) = (u−2)−1(L(x)(ξ, η))
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[θ−1(u)(ξ̃), θ−1(u)(η̃)] = [(u−1)−1(ξ), (u−1)−1(η)]

which are equal as u = (u−2, u−1) is an isomorphism g−
∼=−→ (gr(TxM),L(x)) of graded Lie

algebras. Hence

dθ−2(u)(ξ̃, η̃) = −θ−2(u)([ξ̃, η̃]) = −[θ−1(u)(ξ̃), θ−1(u)(η̃)].

In particular, a principal G0-subbundle G0 ⊆ P(gr(TM)) of the frame bundle of a
contact structure (M,H) together with the lifted filtration

TG0 = T−2G0 ⊇ T−1G0 ⊇ T 0G0 = VG0

from TM = T−2M ⊇ T−1M = H and the soldering form θ yields a regular filtered G0-
structure of type g−, which we define below. We call (G, θ) the canonical regular filtered
G0-structure of type g− on G0.

Definition 3.4.1. A regular filtered G0-structure (also called a regular filtered G-structure
with structure group G0) of type g− consists of

(i) a principal G0-bundle G0 →M ;
(ii) a G0-invariant filtration TG0 = T−2G0 ⊇ T−1G0 ⊇ T 0G0 = VG0;
(iii) a pair θ = (θ−2, θ−1), such that θ−2 ∈ Ω1(G0, g−2) is a G0-equivariant one-form

with kernel T−1G0, θ−1 ∈ Γ(L(T−1G0, g−1)) is a G0-equivariant partial one-form with
kernel T 0G0, which satisfies the regularity condition, i.e.

dθ−2(ξ̃, η̃) = −[θ−1(ξ̃), θ−1(η̃)]

for all ξ̃, η̃ ∈ Γ(T−1G0).
A morphism Φ : (G0, θ) → (G′0, θ′) of regular filtered G0-structures of type g− is a

principal bundle map Φ : G0 → G′0 such that TΦ is filtration preserving and satisfies
Φ∗θ′i = θi for i = −2,−1.

Proposition 3.4.1. The base manifold M of a regular filtered G0-structure (G0 → M, θ)
of type g− has dimension (2n+ 1). The subbundle T−1G0 in the filtration TG0 = T−2G0 ⊇
T−1G0 ⊇ T 0G0 = VG0 descends to a contact structure H on M .

Moreover, there is a unique reduction ι : G0 ↪→ P(gr(TM)) of the frame bundle of the
contact structure (M,H), such that ι pulls back the soldering form to θ.

Proof. Since for i = −2,−1, ker(θi) = T i+1G0, we have

rank(T iG0)− rank(T i+1G0) = dim(gi).
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Hence

dim(M) =rank(T−2G0)− rank(T 0G0)

=(rank(T−2G0)− rank(T−1G0)) + (rank(T−1G0)− rank(T 0G0))

=dim(g−2) + dim(g−1)

=2n+ 1.

Since T−1G0 is G0 invariant and contains the vertical bundle, it descends to a subbundle
H ⊆ TM which also has corank dim(g−2) = 1. H is smooth because whenever σ : M ⊇
U → G0 is a local section of G0 defined on an open subset U ⊆M , H|U is the kernel of

TM |U
Tσ−−→ TG0|U � (T−2G0/T

−1G0)|U .

In particular, Tσ is filtration-preserving. Define

F−1 : H|U
Tσ−−→ T−1G0|U

θ−1−−→ g−1

which is a linear isomorphism in each fiber. Similarly, the composition

F−2 : TM |U
Tσ−−→ TG0|U

θ−2−−→ g−2

has kernel H|U , hence descends to

F−2 : (TM/H)|U → g−2

which is a linear isomorphism at each fiber. We claim that for the filtered manifold given
by TM = T−2M ⊇ T−1M = H, F = (F−2, F−1) is a local trivialisation of the associated
graded bundle (gr(TM),L) over the graded Lie algebra g−. This means that H is a contact
structure on M .

Indeed, for any open subset U ⊆M , any local sections ξ, η ∈ Γloc(H) defined on U can
be lifted to some local sections ξ̃, η̃ ∈ Γloc(T

−1G0) defined on U , respectively. Then the
local section [ξ̃, η̃] ∈ Xloc(G0) is a lift of the local section [ξ, η] ∈ Xloc(M). For each x ∈ U ,
let u := σ(x) ∈ G0, then

ξ̃(u)− Txσ(ξ(x)) ∈ T 0
uG0

η̃(u)− Txσ(η(x)) ∈ T 0
uG0

[ξ̃, η̃](u)− Txσ([ξ, η](x)) ∈ T 0
uG0.

Since T 0G0 lies in the kernels of both θ−1 and θ−2,

F−1(x)(ξ) = θ−1(u)(ξ̃)

F−1(x)(η) = θ−1(u)(η̃)
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F−2(x)(L(ξ, η)) = F−2(x)([ξ, η]) = θ−2(u)([ξ̃, η̃]).

Hence

[F−1(x)(ξ), F−1(x)(η)] =[θ−1(u)(ξ̃), θ−1(u)(η̃)]

=− dθ−2(u)(ξ̃, η̃)

=θ−2(u)([ξ̃, η̃])

=F−2(x)(L(ξ, η))

so F is indeed a local trivialisation of (gr(TM),L) with fiber g−.
Finally we construct the reduction ι. For each u ∈ G0 with base point x ∈M ,

θ−1(u) : T−1
u G0 → g−1

descends to a linear isomorphism Hx
∼=−→ g−1, and we denote its inverse by

ι−1(u) : g−1
∼=−→ Hx.

Similarly
θ−2(u) : TuG0 → g−2

descends to a linear map TxM → g−2 with kernel Hx, hence it further descends to a linear

isomorphism TxM/Hx
∼=−→ g−2. We denote its inverse by

ι−2(u) : g−2
∼=−→ TxM/Hx.

Observe that if we let σ : M ⊇ U → G0 be a local section of G0 defined on an open
neighborhood U of x such that σ(x) = u, then

ι(u) = (ι−2(u), ι−1(u)) : g−
∼=−→ gr(TxM)

is the inverse of F (x) = (F−2(x), F−1(x)), which is an isomorphism (gr(TxM),L(x))
∼=−→ g−

of graded Lie algebras. Hence ι(u) ∈ P(gr(TM)).
Denote by p : G0 → M the principal bundle. Observe that for i = −2,−1, θi(u) is of

the form

θ−2(u) : TuG0
Tp−→ TxM � TxM/Hx

(ι−2(u))−1

−−−−−−−→∼=
g−2

θ−1(u) : T−1
u G0

Tp−→ Hx
(ι−1(u))−1

−−−−−−−→∼=
g−1.

Since Tp is G0-invariant and θ is G0 equivariant, we must have ιi(uϕ) = ιi(u) ◦ ϕi for
i = −2,−1 and for any ϕ = (ϕ−2, ϕ−1) ∈ G0, i.e.

ι : G0 → P(gr(TM)), u 7→ ι(u)
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is G0-equivariant.
Moreover, ι is smooth if any only if for any local section σ : M ⊇ U → G0 of G0, the

map
ι̃ : U × g− → gr(TM), (x,X) 7→ ι(σ(x))(X)

is smooth. But use σ to define F as above, then F induces an isomorphism gr(TM)|U ∼=
U × g−, whose inverse is exactly ι̃.

Since ι covers idM , it is a reduction. By construction, it is the unique reduction such
that θ equals the pullback of the soldering form on ι(G0).

Corollary 3.4.1. Each regular filtered G0-structure of type g− induces a Lagrangean con-
tact structure on its base manifold.

Proof. Let (G0, θ) be a regular filtered G0-structure of type g−. By the last proposition,
it has an underlying contact structure (M,H) on its base manifold, and there is a unique
reduction ι : G0 ↪→ P(gr(TM)) of the frame bundle of (M,H) such that ι is an isomorphism
from (G0, θ) to the canonical regular filtered G0-structure of type g− on ι(G0). In particular,
we obtain a Lagrangean contact structure H = E ⊕ F by requesting the principal G0-
subbundle ι(G0) ⊆ P(gr(TM)) to be its frame bundle.

Lemma 3.4.2. Let (M,E ⊕ F ), (M ′, E′ ⊕ F ′) be two Lagrangean contact structures on
(2n + 1)-dimensional manifolds, and let (G0, θ) resp. (G′0, θ′) their frame bundles together
with the soldering forms.

(i) For any morphism
Φ : (G0, θ)→ (G′0, θ′)

of regular filtered G0-structures of type g−, the base map f : M → M ′ is a morphism
between the induced Lagrangean contact structures. Moreover, Φ is of the form u 7→
gr(Tf) ◦ u.

(ii) Conversely, a morphism f : (M,E ⊕ F ) → (M ′, E′ ⊕ F ′) of Lagrangean contact
structures admits a unique lift to a morphism of regular filtered G0-structures of type g−
from (G0, θ) to (G′0, θ′).

Proof. (i) Put T−1M = H := E ⊕ F and T−1M ′ = H ′ := E′ ⊕ F ′. Since Φ is filtration-
preserving, so is f , i.e. f is a contactomorphism. In particular, Tf restricts to a map

gr−1(Tf) = (Tf)|H : H → H ′

and Tf descends to a map

gr−2(Tf) = Tf : TM/H → TM ′/H ′.

Thus we obtain

gr(Tf) = (gr−2(Tf), gr−1(Tf)) : gr(TM)→ gr(TM ′).
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Let u ∈ G0 have base point x ∈M , then u is an isomorphism g−
∼=−→ gr(TxM) of graded

Lie algebras.

We first check that the maps Φ(u), gr(Txf) ◦ u : g−
∼=−→ gr(Tf(x)M) agree on g−1, i.e.,

for any X ∈ g−1, let u(X) =: ξ ∈ Hx, then we have Φ(u)(X) = Txf(ξ). Indeed, for any lift
ξ̃ ∈ T−1

u G0 of ξ, we have θ−1(u)(ξ̃) = u−1(ξ). Since the tangent vector TuΦ(ξ̃) ∈ TΦ(u)G′0 is
a lift of Txf(ξ) ∈ Tf(x)M

′, we have

X = u−1(ξ) = θ−1(u)(ξ̃) = θ′−1(Φ(u))(TuΦ(ξ̃)) = Φ(u)−1(Txf(ξ))

hence Φ(u)(X) = Txf(ξ).

Next we check that Φ(u), gr(Txf) ◦ u : g−
∼=−→ gr(Tf(x)M) agree on g−2, i.e., for any

Y ∈ g−2, let u(Y ) = η ∈ TxM/Hx for a tangent vector η ∈ TxM , then we have Φ(u)(Y ) =
gr−2(Txf)(η). Indeed, recall that gr−2(Txf)(η) = Txf(η) ∈ Tf(x)M

′/H ′f(x) descends from

Txf(η) ∈ Tf(x)M
′. For any lift η̃ ∈ TuG0 of η, we have θ−2(u)(η̃) = u−1(η). Since

TuΦ(η̃) ∈ TΦ(u)G′0 is a lift of Txf(η), we have

Y = u−2(η) = θ−2(u)(η̃) = θ′−2(Φ(u))(TΦ(η̃)) = Φ(u)−1(Txf(η))

hence Φ(u)(Y ) = Tf(η) = gr−2(Txf)(η).
By Φ(u) = gr(Txf) ◦ u, we have

E′f(x) = Φ(u)(gE−1) = gr(Txf) ◦ u(gE−1) = gr(Txf)(Ex) = Txf(Ex).

Similarly Txf(Fx) = F ′f(x). Hence f is a morphism of Lagrangean contact structures.

(ii) Let f : (M,E⊕F )→ (M ′, E′⊕F ′) be a morphism of Lagrangean contact structures
and let u ∈ G0 be above x ∈M , i.e.

u : g−
∼=−→ (gr(TxM),L(x))

is an isomorphism of graded Lie algebras such that u restricts to linear isomorphisms

gE−1

∼=−→ Ex and gF−1

∼=−→ Fx. Since Tf is filtration-preserving, we define gr(Tf) as in (i).
Then

gr(Txf) : gr(TxM)→ gr(Tf(x)M
′)

restricts to linear isomorphisms Ex
∼=−→ E′f(x), Fx

∼=−→ F ′f(x) and TxM/Hx
∼=−→ Tf(x)M

′/H ′f(x).
Moreover, we claim that

(gr(Txf))∗L(f(x)) = L(x).

Indeed, let ξ, η ∈ Γloc(H) be local vector fields defined around x, ξ′, η′ ∈ Γloc(H
′) be local

vector fields defined around f(x), such that f∗(ξ′) = ξ and f∗(η′) = η (i.e. (gr−1(Tf))∗(ξ′) =
ξ and (gr−1(Tf))∗(η′) = η). Then f∗([ξ′, η′]) = [ξ, η], and so (gr−2(Tf))∗(L(f(x))(ξ′, η′)) =
L(x)(ξ, η). In particular,

gr(Txf) : (gr(TxM),L(x))
∼=−→ (gr(Tf(x)M

′),L(f(x)))
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is an isomorphism of graded Lie algebras. Hence gr(Tf)◦u ∈ G′0 and we may define a map

Φ : (G0, θ)→ (G′0, θ′), u 7→ gr(Tf) ◦ u.

Clearly, Φ is G0-equivariant and smooth. We have Φ∗θ′i = θi for i = −2,−1 because for
each tangent vector ξ̃ ∈ T−1

u G0 lying above ξ ∈ Hx and for each tangent vector η̃ ∈ TuG0

lying above η ∈ TxM and descends to η ∈ TxM/Hx, we have TuΦ(ξ̃) lying above Txf(ξ) =
gr(Txf)(ξ) and TuΦ(η̃) lying above Txf(η), which descends to Txf(η) = gr(Txf)(η) ∈
Tf(x)M

′/H ′f(x). We compute the soldering forms:

θ′−1(Φ(u))(TuΦ(ξ̃)) = Φ(u)−1(gr(Txf)(ξ)) = u−1(ξ) = θ−1(u)(ξ̃)

θ′−2(Φ(u))(TuΦ(η̃)) = Φ(u)−1(gr(Txf)(η)) = u−1(η) = θ−2(u)(η̃).

Hence Φ is a morphism lifting f . By (i), this is the unique lift.

Corollary 3.4.2. Descending to the underlying Lagrangean contact structure yields an
equivalence of the category of regular filtered G0-structures of type g− and the category of
Lagrangean contact structures on (2n+ 1)-dimensional manifolds.

Proof. By Corollary 3.4.1 and Lemma 3.4.2, taking the underlying Lagrangean contact
structure and taking the base map is clearly a functor from the category of regular filtered
G0-structures of type g− to the category of Lagrangean contact structures on (2n + 1)-
dimensional manifolds. The functor is essentially surjective because for each Lagrangean
contact structure (M,E ⊕ F ), the underlying Lagrangean contact structure of the frame
bundle of (M,E⊕F ) together with the soldering form is again (M,E⊕F ). The functor is
full and faithful because descending to base map yields a bijective correspondence between
the space of morphisms of regular filtered G0-structures of type g− and the space of mor-
phisms between the underlying Lagrangean contact structures. Hence the fuctor yields an
equivalence of categories.
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Chapter 4

Cartan geometries of type
(Euc(n), O(n))

4.1 Motivation: the Levi-Civita connection

Let (G → M, θ) be an O(n)-structure of type Rn and let G ×O(n) Rn be the associated
bundle with respect to the standard representation of O(n) on Rn. We denote the natural
projection G × Rn → G ×O(n) Rn by (u, v) 7→ [(u, v)]. Recall that the space of sections of
G ×O(n) Rn is identified with the space of O(n)-equivariant smooth maps G → Rn, such

that σ ∈ Γ(G ×O(n) Rn) corresponds to f ∈ C∞(G,Rn)O(n) if and only if σ(x) = [(u, f(u))]
for all u ∈ G with base point x ∈M .

Proposition 4.1.1. There is a natural isomorphism of vector bundles

TM
∼=−→ G ×O(n) Rn.

In the resulting identification, ξ ∈ X(M) corresponds to the O(n)-equivariant function
θ(ξ̃) ∈ C∞(G,Rn)O(n) = Γ(G ×O(n) Rn), where ξ̃ ∈ X(G) is any lift of ξ.

Proof. We may view G as a principal O(n)-subbundle of GL(Rn, TM) such that θ is the
soldering form (Proposition 2.2.1). Thus there is a natural smooth map

G × R→ TM, (u, v) 7→ u(v)

which descends to a vector bundle map

G ×O(n) R→ TM

over idM , which restricts to a linear isomorphism at each fiber. Hence it is an isomorphism
of vector bundles.

28



Let ξ ∈ X(M) and let ξ̃ ∈ X(G) be any lift of ξ. Then for each u ∈ G with base point
x ∈M , u−1(ξ(x)) = θ(u)(ξ̃(u)) by the definition of soldering form. Therefore ξ(x) ∈ TxM
corresponds to [(u, θ(u)(ξ̃))] ∈ G×O(n)R by the resulting isomorphism. Hence ξ corresponds

to θ(ξ̃) : G → Rn.

Since TM ∼= G ×O(n) Rn, any principal connection γ ∈ Ω1(G, o(n)) on G induces an
affine connection

∇ : X(M)× X(M)→ X(M)

on M as follows: denote by
X(M)→ X(G), ξ 7→ ξh

the horizontal lift corresponding to γ, then for ξ, η ∈ X(M) let Φ ∈ C∞(G,Rn)O(n) ∼=
Γ(G×O(n)Rn) correspond to η. Then ∇ξη ∈ X(M) corresponds to ξh.Φ ∈ C∞(G,Rn)O(n) ∼=
Γ(G ×O(n) Rn).

Proposition 4.1.2. ∇ is compatible with the underlying Riemannian metric g on M .

Proof. For ξ, ηi ∈ X(M), i = 1, 2, ηi corresponds to θ(ηhi ) ∈ C∞(G,Rn)O(n) by Proposi-
tion 4.1.1, and ∇ξηi ∈ X(M) corresponds to ξh.θ(ηhi ) ∈ C∞(G,Rn)O(n). By Corollary 2.2.1,

g(∇ξη1, η2) + g(η1,∇ξη2) ∈ C∞(M)

is related by G →M to

〈ξh.θ(ηh1 ), θ(ηh2 )〉+ 〈θ(ηh1 ), ξh.θ(ηh2 )〉 = ξh.〈θ(ηh1 ), θ(ηh2 )〉 ∈ C∞(G),

and the right hand side is related to ξ.g(η1, η2) ∈ C∞(M), hence g(∇ξη1, η2)+g(η1,∇ξη2) =
ξ.g(η1, η2).

It turns out that exactly one of the principal connections on G induces a torsion-
free affine connection on M , i.e. induces the Levi-Civita connection on the underlying
Riemannian manifold M , which we will show in the next section. By the end of this
section, we give the example of homogeneous affine n-space, in which there is a canonical
principal connection on a canonical O(n)-structure of type Rn, which induces the Levi-
Civita connection on the affine n-space.

First we observe that with the notations above, for ξ, η ∈ X(M), the torsion

τ(ξ, η) = ∇ξη −∇ηξ − [ξ, η] ∈ X(M)

corresponds to the O(n)-equivariant map G → Rn given by

ξh.θ(ηh)− ηh.θ(ξh)− θ([ξh, ηh])

as [ξh, ηh] is a lift of [ξ, η].
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Example 4.1.1. (The Levi-Civita connection on Euclidean n-space) There is a homoge-
neous model on the affine n-space

En =

(
1
Rn

)
⊆ Rn+1

by the natural action of

Euc(n) =

(
1 0
Rn O(n)

)
⊆ GL(n+ 1,R)

on it: if we fix a base point x0 := (1, 0, ..., 0)t ∈ En, we obtain a principal bundle

Euc(n)→ En, g 7→ gx0

whose structure group is given by the isotropy group(
1 0
0 O(n)

)
=: O(n)

of x0. Hence it descends to Euc(n)/O(n) ∼= En. We denote by euc(n) the Lie algebra of
Euc(n) and denote by

ω ∈ Ω1(Euc(n), euc(n))

the left Maurer-Cartan form on Euc(n). Thus ω is an O(n)-equivariant one-form with
respect to the adjoint action of the isotropy group on euc(n).

Notice that the representation on euc(n) =

(
0 0
Rn o(n)

)
has an O(n)-invariant de-

composition into the standard action of O(n) on Rn and the usual adjoint action of O(n)
on o(n). In particular, ω decompose to its Rn component

θ ∈ Ω1(Euc(n), o(n))O(n)

and its o(n)-component
γ ∈ Ω1(Euc(n), euc(n))O(n),

and both components are O(n)-equivariant. Clearly (Euc(n), θ) is an O(n)-structure of type
Rn on En, and its underlying Riemannian metric is just the standard Riemannian metric
on En, and γ is a principal connection on this O(n)-structure of type Rn. We claim that
γ induces an affine connection on En, whose torsion τ vanished identically. That means,
γ induces the Levi-Civita connection on En.

Indeed, as a property of the Maurer-Cartan form, the curvature two-form K ∈ Ω2(Euc(n), euc(n))
defined by

K(ξ̃, η̃) :=dω(ξ̃, η̃) + [ω(ξ̃), ω(η̃)]

=ξ̃.ω(η̃)− η̃.ω(ξ̃)− ω([ξ̃, η̃]) + [ω(ξ̃), ω(η̃)]
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for all ξ̃, η̃ ∈ X(Euc(n)) vanishes identically. This can be checked by inserting in the left
invariant vector fields of Euc(n).

Now let h : X(En) → X(Euc(n)) denote the horizontal lift corresponding to γ. Then
ω ◦ h always takes values in Rn. Hence [ω(ξh), ω(ηh)] ⊆ [Rn,Rn] = 0 for all ξ, η ∈ X(En).
In paticular, the Rn-component of K(ξh, ηh) equals

ξh.θ(ηh)− ηh.θ(ξh)− θ([ξh, ηh])

which corresponds to τ(ξ, η). As K vanishes identically, so does its Rn-component. Hence
τ(ξ, η) = 0.

4.2 Normal Cartan geometries of type (Euc(n), O(n))

We continue with the task of finding a principal connection on an O(n)-structure of type Rn
which induces the Levi-Civita connection on the underlying Riemannian manifold, this is
easier in the language of Cartan geometries. Recall that in Example 4.1.1, the left Maurer-
Cartan form ω on Euc(n) includes the information of an O(n)-structure (via the form
θ) and a principal connection γ which induces the Levi-Civita connection on En. ω can
be phrased as a Cartan connection of type (Euc(n), O(n)) on the principal O(n)-bundle
Euc(n)→ En, in the sense of the following definition.

Definition 4.2.1. Let H ⊆ G be a Lie subgroup, and denote by h ⊆ g their Lie algebras.
Consider the representation of H on g obtained from restricting the adjoint representation
of G.

A Cartan geometry (G, ω) of type (G,H) is a principal H-bundle G together with a
Cartan connection ω ∈ Ω1(G, g)H , which is an H-equivariant g-valued one-form, such that
ω is a linear isomorphism at each fiber, and ω reproduces the generators of fundamental
vector fields, i.e. for each fundamental vector field ζX generated by X ∈ h, we have
ω(u)(ζX) = X at all points u ∈ G.

Moreover, the curvature two-form K ∈ Ω2(G, g) of ω is given by

K(ξ̃, η̃) :=dω(ξ̃, η̃) + [ω(ξ̃), ω(η̃)]

=ξ̃.ω(η̃)− η̃.ω(ξ̃)− ω([ξ̃, η̃]) + [ω(ξ̃), ω(η̃)].

for all ξ̃, η̃ ∈ X(G). Equivalently, the curvature two-form can be encoded as the map

κ : G → L(Λ2g, g)

κ(X,Y ) := K(ω−1(X), ω−1(Y ))

for all X,Y ∈ g, where ω−1(X), ω−1(Y ) ∈ X(G) refer to the vector fields corresponding to
X resp. Y in the trivialisation TG ∼= G × g induced by ω. We call κ the curvature function
of ω.
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A morphism Φ : (G, ω) → (G′, ω′) between two Cartan geometries of type (G,H) is a
principal bundle map Φ : G → G′ such that Φ∗ω′ = ω.

Lemma 4.2.1. The curvature two-form K of a Cartan geometry (G, ω) of type (G,H) is
(i) horizontal and (ii) H-equivariant.

Hence κ is an H-equivariant map G → L(Λ2(g/h), g), where the action of H on g/h is
induced by the action on g coming from the adjoint action of G.

Proof. (i) Let ζX be the fundamental vector field generated by X in the Lie algebra h of
H, since

dω(ζX , ·) = iζXdω = LζXω − diζXω = LζXω =
d

dt

∣∣
t=0

(FlζXt )∗ω

=
d

dt

∣∣
t=0

(rexp(tX))∗ω =
d

dt

∣∣
t=0

(−Ad ◦ exp(tX))ω = ad(−X) ◦ ω,

we have dω(ζX(u), η(u)) = [−X,ω(η(u))], thus K(ζX(u), η(u)) = 0.
In particular, for X ∈ h, Y ∈ g we have κ(X,Y ) = K(ζX , ω

−1(Y )) = 0. Hence κ is a
map G → L(Λ2(g/h), g).

(ii) Follows from the H-equivariancy of ω and the fact that d commutes with the pull-
back of the principal right action by h for all h ∈ H.

In particular, let X,Y ∈ g, u ∈ G, h ∈ H, and define ξ := ω−1(X)(u) ∈ TuG and
η := ω−1(Y )(u) ∈ TuG. Since ω is H-equivariant, ω(uh)(Tur

h(ξ)) = Ad(h−1)(X). Hence
ω−1(Ad(g−1)(X))(uh) = Tur

h(ξ). Similarly ω−1(Ad(g−1)(Y ))(uh) = Tur
h(η). We have

κ(ug)(Ad(g−1)(X), Ad(g−1)(Y )) =K(ug)(ω−1(Ad(g−1)(X)), ω−1(Ad(g−1)(Y )))

=K(ug)(Tur
h(ξ), Tur

h(η))

=K(u)(ξ, η)

=κ(u)(X,Y )

hence κ is H-equivariant.

In Example 4.1.1, we also see that the fact that γ induces a torsion free connection
follows from the fact that K vanishes identically, more precisely that the Rn-component of
K vanishes identically.

Similarly we may also describe an O(n)-structure of type Rn together with a principal
connection as a Cartan geometry, and observe a relation between the torsion of the induced
connection and the curvature two-form.

Proposition 4.2.1. Let (G → M, θ) be an O(n)-structure of type Rn, and let γ be a
principal connection on G. Then ω := θ+ γ ∈ Ω1(G, euc(n)) is a Cartan connection of type
(Euc(n), O(n)) on G. Let K be the curvature of ω, then the o(n)-component of K is the
principal curvature of γ.
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Moreover, γ induces a torsion-free, hence the Levi-Civita connection on M if and only
if the Rn-component of K vanishes identically.

Proof. Since θ is strictly horizontal and γ reproduces the generators of fundamental vector
fields, ω is a linear isomorphism at each fiber, and it reproduces the generators of funda-
mental vector fields. Since θ and γ are both O(n)-equivariant, so is ω. Therefore ω is a
Cartan connection of type (Euc(n), O(n)) on G.

Recall that the principal curvature Ω ∈ Ω2(G, o(n)) of γ is given by

Ω(ξ̃, η̃) =dγ(ξ̃, η̃) + [γ(ξ̃), γ(η̃)]

=ξ̃.γ(η̃)− η̃.γ(ξ̃)− γ([ξ̃, η̃]) + [γ(ξ̃), γ(η̃)]

for all ξ̃, η̃ ∈ X(G). On the otherhand, we have

K(ξ̃, η̃) = ξ̃.ω(η̃)− η̃.ω(ξ̃)− ω([ξ̃, η̃]) + [ω(ξ̃), ω(η̃)]

where [ω(ξ̃), ω(η̃)] equals

[γ(ξ̃), γ(η̃)] + [γ(ξ̃), θ(η̃)] + [θ(ξ̃), γ(η̃)] + [θ(ξ̃), θ(η̃)],

whose first summand is in o(n), second and third summands in Rn, and last summand is
zero. Therefore the o(n)-component of K(ξ̃, η̃) is exactly Ω(ξ̃, η̃).

Let h : X(M) → X(G) be the horizontal lift induced by γ, and τ be the torsion of
the affine connection on M induced by γ. Then ω ◦ h takes values in Rn, hence for all
ξ, η ∈ X(M), the Rn-component of K(ξh, ηh) equals

ξh.θ(ηh)− ηh.θ(ξh)− θ([ξh, ηh]) + 0

which corresponds to τ(ξ, η). Since K is horizontal, τ vanishes identically if and only if
the Rn-component of K vanishes identically.

In this case we describe (G, ω) as a normal Cartan geometry of type (Euc(n), O(n)).

Definition 4.2.2. A Cartan geometry (G, ω) of type (Euc(n), O(n)) is said to be normal if
and only if its curvature two-form K ∈ Ω2

hor(G, euc(n))O(n) takes values in o(n), or equiv-
alently, κ is an O(n)-equivariant map G → L(Λ2(euc(n)/o(n)), euc(n)) = L(Λ2Rn, euc(n))
which takes values in o(n).

Thus we rephrase our task as finding a principal connection γ on an O(n)-structure
(G, θ) of type Rn such that ω := θ+γ is a normal Cartan connection of type (Euc(n), O(n)).
Recall that a principal connection γ on G always exists. By choosing such γ, we fix a
trivialisation

TG ∼= G × euc(n)
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induced by ω = θ+ γ. We also recall that the space of all principal connections on G is an
affine space modelled over the space Ω1

hor(G, o(n))O(n) of o(n)-valued horizontal equivariant
one-forms on G. That is, a one-form γ̃ ∈ Ω1(G, o(n)) is a principal connection on G if and
only if

γ̃ − γ : TG → o(n)

is an O(n)-equivariant one-form whose kernel contains VG. We use the trivialisation TG ∼=
G × euc(n) to identify Ω1

hor(G, o(n))O(n) with the space of O(n)-equivariant smooth maps

G → L(euc(n)/o(n), o(n)) = L(Rn, o(n)).

In particular, a principal connection γ̃ ∈ Ω1(G, o(n)) corresponds to an O(n)-equivariant
map

Φ : G → L(Rn, o(n)),

Φ(u)(X) = (γ̃ − γ)(ω(u)−1(X))

for all u ∈ G, X ∈ Rn. Conversely, an O(n)-equivariant map Φ : G → L(Rn, o(n)) =
L(euc(n)/o(n), o(n)) corresponds to a principal connection γ̃ ∈ Ω1(G, o(n)) such that for
each ξ̃ ∈ TuG,

γ̃(u)(ξ̃) = γ(u)(ξ̃) + Φ(u)(ω(u)(ξ̃)).

Let γ̃ be a principal connection on G with corresponding O(n)-equivariant map Φ :
G → L(Rn, o(n)). Then ω̃ := θ + γ̃ is a Cartan connection of type (Euc(n), O(n)). Let
K̃ ∈ Ω2(G, euc(n)) and κ̃ : G → L(Λ2Rn, euc(n)) be the curvature two-forms of ω̃, and let
K ∈ Ω2(G, euc(n)) and κ : G → L(Λ2Rn, euc(n)) be the curvature two-forms of ω.

Lemma 4.2.2. Changing from γ to γ̃ with corresponding function Φ : G → L(Rn, o(n)),
the Rn-component of κ̃− κ : G → L(Λ2Rn, euc(n)) equals ∂ ◦ Φ. Here

∂ : L(Rn, o(n))→ L(Λ2Rn,Rn)

is the linear map defined by ∂ϕ(X,Y ) = ϕ(X)Y − ϕ(Y )X for all ϕ ∈ L(Rn, o(n)), X,Y ∈
Rn.

Proof. For each u ∈ G, X,Y ∈ Rn,

κ̃(u)(X,Y ) =K̃(u)(ω̃(u)−1(X), ω̃(u)−1(Y ))

=K̃(u)(ω(u)−1(X), ω(u)−1(Y ))

because θ(u)(ω̃(u)−1(X)) = X = θ(u)(ω(u)−1(X)) implies that

ω̃(u)−1(X)− ω(u)−1(X) ∈ VuG,

and similarly
ω̃(u)−1(Y )− ω(u)−1(Y ) ∈ VuG.
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Then

(κ̃− κ)(u)(X,Y ) =(K̃ −K)(u)(ω−1(X), ω−1(Y ))

=ω−1(X)(u).Φ(Y )− ω−1(Y )(u).Φ(X)− Φ(u)(ω([ω−1(X), ω−1(Y )]))

+ [Φ(u)(X),Φ(u)(Y )] + [X,Φ(u)(Y )] + [Φ(u)(X), Y ].

Since the Lie bracket in euc(n) restricted to Rn × Rn is zero, and restricted to o(n) × Rn
is the usual matrix multiplication o(n)×Rn → Rn, the Rn-component of (κ̃− κ)(u)(X,Y )
equals

−[Φ(u)(Y ), X] + [Φ(u)(X), Y ] = −Φ(u)(Y )(X) + Φ(u)(X)(Y ) = (∂ ◦ Φ(u))(X,Y ).

Lemma 4.2.3. ∂ : L(Rn, o(n))→ L(Λ2Rn,Rn) is an O(n)-equivariant linear isomorphism.

Proof. We check that ∂ is O(n)-equivariant. Let A ∈ O(n), and let A. denote the O(n)-
representations on L(Rn, o(n)) and L(Λ2Rn,Rn) by A. Then

(A.ϕ)(X) = Ad(A)(ϕ(A−1X)) = Aϕ(A−1X)A−1

where the right hand side denotes the multiplication of three matrices, thus

(∂(A.ϕ))(X,Y )

=Aϕ(A−1X)A−1Y −Aϕ(A−1Y )A−1X

=A(∂ϕ(A−1X,A−1Y )) = (A.(∂ϕ))(X,Y ).

Now we show that ∂ is injective, hence is a linear isomorphism as ϕ maps between two
vector spaces of the same dimension. Recall that a matrix A ∈ gl(n,R) is in o(n) if and
only if 〈Av,w〉 + 〈v,Aw〉 = 0 for all v, w ∈ Rn, where 〈 , 〉 is the standard inner product
on Rn. Thus ϕ(u) ∈ o(n) for all u ∈ Rn means

〈ϕ(u)(v), w〉 = −〈ϕ(u)(w), v〉 (4.1)

for all u, v, w ∈ R. Suppose ∂ϕ = 0, i.e. ϕ(u)(v)− ϕ(v)(u) = 0 for all u, v ∈ Rn, thus

〈ϕ(u)(v), w〉 = 〈ϕ(v)(u), w〉 (4.2)

for all u, v, w ∈ R. Applying Eq. (4.1) and Eq. (4.2) alternatingly, we have

〈ϕ(u)(v), w〉 = −〈ϕ(u)(w), v〉 = −〈ϕ(w)(u), v〉 = 〈ϕ(w)(v), u〉

= 〈ϕ(v)(w), u〉 = −〈ϕ(v)(u), w〉 = −〈ϕ(u)(v), w〉

for all u, v, w ∈ R, which implies that ϕ is trivial.
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In particular, ω̃ is a normal Cartan connection if and only if the Rn-component (κ̃−κ)Rn

of κ̃ − κ, which equals ∂ ◦ Φ, coincides with the Rn-component (−κ)Rn of −κ. In this
case Φ = ∂−1 ◦ (−κ)Rn . Note that we have Φ ∈ C∞(G, L(Rn, o(n)))O(n) because both

∂−1 : L(Λ2Rn,Rn)
∼=−→ L(Rn, o(n)) and (−κ)Rn : G → L(Λ2Rn,Rn) are O(n)-equivariant.

Thus the corresponding principal connection γ̃ is the unique principal connection such that
ω̃ = θ + γ̃ is a normal Cartan connection.

Moreover, recall (Corollary 2.2.2) that a morphism of O(n)-structures of type Rn is an
equivalent description of its underlying local isometry on Riemannian n-manifolds. From
Riemannian geometry we know that a local isometry pulls back the Levi-Civita connection.
In the language of Cartan geometry, this is described as that each morphism of O(n)-
structure of type Rn is a morphism of normal Cartan geometries of type (Euc(n), O(n)).

Proposition 4.2.2. Let Φ : (G, θ) → (G′, θ′) be a morphism of O(n)-structures of type
Rn, and let γ resp. γ′ be the principal connections on G resp. G′ inducing the Levi-Civita
connections on the underlying Riemannian manifolds. Then Φ is a morphism of Cartan
geometries of type (Euc(n), O(n)) from (G, θ + γ) to (G′, θ′ + γ′).

Proof. Φ∗γ′ is a principal connection on G because Φ is O(n) equivariant, thus sends a
fundamental vector field of G to fundamental vector field of G′ with the same generator.
Since Φ∗θ′ = θ, θ + Φ∗γ′ = Φ∗(θ′ + γ′) is a Cartan connection on G. It curvature equals
the pullback of the curvature of θ′ + γ′, hence θ + Φ∗γ′ is a normal Cartan connection on
G, and we must have Φ∗γ′ = γ, so Φ is also a morphism of Cartan geometries.

Corollary 4.2.1. The category of normal Cartan geometries of type (Euc(n), O(n)) is
equivalent to the category of O(n)-structures of type Rn.

Proof. There is a functor from the category of normal Cartan geometries of type (Euc(n), O(n))
to the category of O(n)-structures of type Rn: if (G, ω) is a normal Cartan geometry of type
(Euc(n), O(n)), we may decompose ω to its Rn-component θ ∈ Ω1(G,Rn)O(n) and its o(n)-
component γ ∈ Ω1(G, o(n))O(n). Since ω reproduces the generators, so does γ, hence γ is a
principal connection on G; for the same reason, θ is horizontal, since ω is a linear isomor-
phism at each fiber, θ must be strictly horizontal, hence (G, θ) is an O(n)-structure of type
Rn. Moreover, a morphism of normal Cartan geometries of type (Euc(n), O(n)) preserves
the Cartan connections, hence preserves the Rn-component of the Cartan connections, i.e.
preserves the O(n)-structure forms.

Conversely, we know that for each O(n)-structure (G, θ) of type Rn, there is a unique
principal connection γ on G such that (G, θ + γ) is a normal Cartan geometry of type
(Euc(n), O(n)), and we also know that a morphism between two O(n)-structures of type
Rn is itself a morphism between the induced normal Cartan connections. Thus we obtain a
functor from the category of O(n)-structures of type Rn to the category of normal Cartan
geometries of type (Euc(n), O(n)).

Clearly the composition of the two functors in either order yields the identity functor.
Hence the two categories are equivalent.

36



Remark 4.2.1. We know that the group of isometries on En equals Euc(n). This can
also be concluded from the theory of Cartan geometries: we cite that
• If G→ G/H is a homogeneous structure, G/H is connected and ω is the left Maurer-

Cartan form on G, then the automorphisms on the Cartan geometry (G,ω) of type (G,H)
are exactly the left multiplications by G ([2]: Proposition 1.5.2(2)).

Hence the automorphism group on (Euc(n) → En, ω) is Euc(n). By the categorial
equivalence, this is isomorphic to the group of isometries on En. Moreover, from Rie-
mannian geometry we have that geodesics are preserved by isometries. In particular an
isometry f : M →M on a connected Riemannian n-manifold is completely determined by
f(x) and Txf : TxM → Tf(x)M . If M is connected, we see that the isometry group has
dimension at most n+dim(O(n)) = dim(Euc(n)). In the theory of Cartan geometries, we
have that
• The automorphism group of a Cartan geometry of type (G,H) over a connected man-

ifold is a Lie group of dimension at most dim(G) ([2]: Theorem 1.5.11).
Hence the automorphism group of a normal Cartan geometry of type (Euc(n), O(n))

over a connected manifold is a Lie group of dimension ≤ dim(Euc(n)). By the categorial
equivalence, the isometry group on the underlying Riemannian manifold is also a Lie group
of dimension at most dim(Euc(n)).
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Chapter 5

Cartan geometry description of
Lagrangean contact structures

5.1 The homogeneous model

Recall from Example 3.3.2 the canonical Lagrangean contact structure H = E ⊕ F on the
flag manifold F1,n+1(Rn+2), with E being the vertical bundle of

F1,n+1(Rn+2)→ RP (n+1)∗, (V1, Vn+1) 7→ Vn+1

and F being the vertical bundle of

F1,n+1(Rn+2)→ RP (n+1), (V1, Vn+1) 7→ V1.

We claim that this Lagrangean contact structure is homogeneous under PGL(n+ 2,R).
Indeed, the standard action of GL(n + 2,R) on Rn+2 maps subspaces to subspaces,

hence GL(n + 2,R) acts on F1,n+1(Rn+2). We see that the action is transitive and the
subbundles E and F are invariant under this action. An element in GL(n + 2,R) acts
trivially on F1,n+1(Rn+2) if and only if it preserves all lines in Rn+2, i.e. it is a multiple
of the identity. In particular, identifying each matrix in GL(n + 2,R) with its nonzero
multiples we obtain a group

G := PGL(n+ 2,R),

which acts transitively and effectively on F1,n+1(Rn+2). If n is odd, we realise G as SL(n+
2,R); if n is even, we realise G as elements in GL(n + 2,R) with determinant ±1 and
identify each matrix with its negative. By the realisation in either parity, G around the
identity is locally isomorphic to SL(n + 2,R) around In+2, thus the Lie algebra g of G is
sl(n+ 2,R).

Let’s fix a base point

x0 := (R× {0}n+1,Rn+1 × {0}) ∈ F1,n+1(Rn+2)
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and fix the block size (1, n, 1) on all (n+2)× (n+2) matrices. Then the isotropy subgroup
P ⊆ G fixing the base point is the image of block-upper triangular matrices under the
quotient map GL(n+ 2,R) � PGL(n+ 2,R). We obtain a principal P -bundle

p : G→ F1,n+1(Rn+2), g 7→ g.x0

which descends to an isomorphism G/P ∼= F1,n+1(Rn+2).
We decompose the Lie algebra g = sl(n+ 2,R) as g0 g1 g2

gE−1 g0 g1

g−2 gF−1 g0


indicated as block matrices. Then the Lie algebra p of P equals g0 ⊕ g1 ⊕ g2 and we have

TF1,n+1(Rn+2) ∼= G×P g/p. (∗)

At the base point we see that Tep(g
E
−1) = Ex0 and Tep(g

F
−1) = Fx0 . Hence for all g ∈ G,

x := p(g) ∈ F1,n+1(Rn+2) we have

Tgp({LX(g) : X ∈ gE−1}) = Ex

Tgp({LX(g) : X ∈ gF−1}) = Fx.

In other words, denote by g � g/p, X 7→ [X] the natural projection, then (∗) restricts to

E ∼= G×P [gE−1] and F ∼= G×P [gF−1].

We conclude that (F1,n+1(Rn+2), E ⊕ F ) is homogeneous under G. In particular, the left
multiplication by each element of G is a distinct automorphism on (F1,n+1(Rn+2), E ⊕F ).

Observe that the subalgebra g− = g−2 ⊕ gE−1 ⊕ gF−1 is exactly the Heisenberg algebra
together with a decomposition g−1 = gE−1 ⊕ gF−1 into Lagrangean subspaces as defined in
Section 3.3. Moreover, we claim that the group G0 ⊆ Autgr(g−) of isomorphisms on the
graded Lie algebra g− preserving the subspaces gE−1 and gF−1 as defined in Section 3.3 is
also isomorphic to a subgroup of G.

Indeed, with g−1 = gE−1⊕gF−1, g becomes a semisimple graded Lie algebra, with respect
to which P is the corresponding parabolic subgroup of G, meaning that

P = {g ∈ G : Ad(g)(gi) = gi ∀i}

where gi := ⊕j≥igj We denote by G0 the Levi-subgroup of P , meaning that

G0 := {g ∈ P : Ad(g)(gi) = gi ∀i}.
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Then G0 equals the image of block-diagonal matrices under the quotient projection GL(n+
2,R) � PGL(n+ 2,R). When n is odd, with the realisation G = SL(n+ 2,R) we see that
the adjoint action of G0 on g− is given by

Ad

 a
A

b

 X
β Y

 =

 a−1AX
a−1bβ Y (bA−1)

 (∗∗)

for any diag(a,A, b) ∈ G0 ⊆ G = SL(n+ 2,R). When n is even, let’s always realise a short
curve though the identity of G as a short curve in SL(n + 2,R) through In+2, thus the
conjugate action on such a curve by elements in G is realised as the conjutate action on
SL(n+2,R) by GL(n+2,R). In particular, the adjoint action of G0 on g− is computed by
the same equation (∗∗) for any representative diag(a,A, b) ∈ GL(n+ 2,R) of G0. Clearly
Ad(G0) on g− is faithful. Moreover, we may request (a−1b, a−1A) to take any value in
GL(g−2) × GL(gE−1), hence Ad is a group isomorphism from G0 to all graded Lie algebra
isomorphisms on g− preserving gE−1 and gF−1, i.e. G0 also agrees with the definition of G0

in Section 3.3.
Let P+ be the image of strictly block-upper triangular matrices under the quotient

projection GL(n + 2,R) � PGL(n + 2,R), then the Lie algebra p+ of P+ equals g1 and
we have G0

∼= P/P+.
We claim that there is a regular filtered G0-structure of type g− on the space G/P+

of cosets, whose underlying Lagrangean contact structure is (F1,n+1(Rn+2), E ⊕ F ). Note
that G/P+ does not carry a group structure.

Indeed, we see that G/P+ → F1,n+1(Rn+2) is a principal G0-bundle and G→ G/P+ is
a principal P+-bundle. The subbundle E⊕F = H ⊆ TF1,n+1(Rn+2) lifts to a G0-invariant
subbundle T−1(G/P+) ⊆ T (G/P+). Thus we obtain a G0-invariant filtration

T (G/P+) = T−2(G/P+) ⊇ T−1(G/P+) ⊇ T 0(G/P+) = V(G/P+ → F1,n+1(Rn+2)).

Consider the filtration on TG defined by T iG := ω−1(gi), where ω ∈ Ω1(G, g) is the left
Maurer-Cartan form on G. Then T−1(G/P+) lifts to T−1G, T 0(G/P+) lifts to T 0G, and
T 1G is the vertical bundle of G→ G/P+.

Notice that for each i, the adjoint representation of P+ on gi restricts to the identity on
gi; there is an adjoint representation of G0 on gi; and G → G/P+ is filtration-preserving
and G0-equivariant. Let ω−2 : TG → g−2 be the g−2-component of ω. Then ω−2 is
G0-equivariant, P+-invariant, and ker(ω−2) = T−1G ⊇ T 1G. Hence ω−2 descends along
G→ G/P+ to a G0-equivariant one-form

ω−2 : T (G/P+)→ g−2

whose kernel is T−1(G/P+). Similarly let ω−1|T−1G : T−1G→ g−1 be the g−1-component of
ω restricted to T−1G. Then ω−1|T−1G isG0-equivariant, P+-invariant, and ker(ω−1|T−1G) =
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T 0G ⊇ T 1G. Hence ω−1|T−1G descends along G→ G/P+ to a G0-equivariant one-form

ω−1 : T−1(G/P+)→ g−1

whose kernel is T 0(G/P+). We check that (ω−2, ω−1) is regular. Let ξ̃, η̃ ∈ Γ(T−1G) be

lifts of ξ, η ∈ Γ(T−1(G/P+)), respectively. Then [ξ̃, η̃] ∈ X(G) is a lift of [ξ, η] ∈ X(G/P+).
Fix g ∈ G which descends to [g] ∈ G/P+, and let X := ω(g)(ξ̃), Y := ω(g)(η̃) ∈ g−1. Then

dω−2([g])(ξ, η) =− ω−2([g])([ξ, η])

=− ω−2(g)([ξ̃, η̃])

=dω−2(g)(ξ̃, η̃)

=dω−2(g)(LX , LY )

=− ω−2(g)([LX , LY ])

=− [X,Y ]g−2

where −[X,Y ]g−2 denotes the g−2-component of [X,Y ], and

−[ω−1([g])(ξ), ω−1([g])(η)] =− [ω−1(g)(ξ̃), ω−1(g)(η̃)]

=− [Xg−1 , Yg−1 ]

=− [X,Y ]g−2

where Xg−1 , Yg−1 denote the g−1-component of X,Y , respectively. Hence G/P+ together
with (ω−2, ω−1) is indeed a regular filtered G0-structure of type g−. Since (ω−1)−1(gE−1) ⊆
T−1(G/P+) lies under (ω−1|T−1G)−1(gE−1) = ω−1(gE−1), it corresponds to E, and similar for
F , hence the underlying Lagrangean contact structure is just E ⊕ F .

We observe that the regularity of (ω−2, ω−1) is a consequence of the Maurer-Cartan
equation, more precisely, of the fact that

dω−2(ξ̃, η̃) + [ω−1(ξ̃), ω−1(η̃)] = 0

for all ξ̃, η̃ ∈ Γ(T−1G), which is the same as

K(ξ̃, η̃) ∈ g−1

for all ξ̃, η̃ ∈ Γ(T−1G), where K is the curvature form of ω. Since K is horizontal, this is
the same as saying that K has homogeneity ≥ 1 in the sense that K(T iG,T jG) ⊆ gi+j+1.

5.2 Underlying filtered G0-structures

We can generalize the construction of the underlying filtered G0-structure to Cartan ge-
ometries, provided that we impose the following condition.
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Definition 5.2.1. Let (G, ω) be a Cartan geometry of type (G,P ). Then there is a filtration
on TG given by T iG := ω−1(gi). Thus (G, ω) is said to be regular if its curvature two-form
K has homogeneity ≥ 1 in the sense that K(T iG, T jG) ⊆ gi+j+1.

Equivalently, (G, ω) is regular if its curvature function κ : G → L(Λ2(g/p), g) takes
values in L(Λ2(g/p), g)1 = {ϕ ∈ L(Λ2(g/p), g) : ϕ(gi + p, gj + p) ⊆ gi+j+1 ∀i, j}.

The generalization now reads as follows.

Proposition 5.2.1. Every regular Cartan geometry (G → M,ω) of type (G,P ) has an
underlying regular filtered G0-structure. Moreover, this construction is functorial.

Proof. Let G/P+ denote the space of orbits under the restriction to P+ of the principal
right action on G. Then G → G/P+ is a principal P+-bundle with vertical bundle T 1G.
Since T−1G is P -invariant and contains T 1G, it descends to a G0-invariant subbundle of
T (G/P+), which we denote by T−1(G/P+).

We also see that G/P+ →M is a principal G0-bundle. Since T 0G is the vertical bundle
of G → M , it descends along G → G/P+ to the vertical bundle of G/P+ → M , which we
denote by T 0(G/P+) ⊆ T (G/P+). Now we have a G0-invariant filtration

T (G/P+) = T−2(G/P+) ⊇ T−1(G/P+) ⊇ T 0(G/P+) = V(G/P+ →M).

We have already noticed that for each i, the adjoint representation of P+ on gi fixes the
gi-component; there is an adjoint representation of G0 on gi; and G → G/P+ is filtration-
preserving and G0-equivariant. For i = −2,−1, let ωi denote the gi-component of ω.
Then ω−2 : TG → g−2 is G0-equivariant, P+-invariant and has kernel T−1G ⊇ T 1G, hence
descends to a G0-equivariant one-form

ω−2 : T (G/P+)→ g−2

whose kernel is T−1(G/P+); and ω−1|T−1G : T−1G → g−1 is G0-equivariant, P+-invariant,
and has kernel T 0G ⊇ T 1G, hence it descends to a G0-equivariant partial one-form

ω−1 : T−1(G/P+)→ g−1

whose kernel is T 0(G/P+). We check that (ω−2, ω−1) is regular. Notice that K has
homogeneity ≥ 1 if and only if

dω−2(ξ̃, η̃) + [ω−1(ξ̃), ω−1(η̃)] = 0

for all ξ̃, η̃ ∈ Γ(T−1G). Hence for ξ, η ∈ Γ(T−1(G/P+)), let ξ̃, η̃ ∈ Γ(T−1G) be lifts of ξ and
η, respectively, then [ξ̃, η̃] ∈ X(G) is a lift of [ξ, η] ∈ X(G/P+). Let u0 ∈ G/P+ be lifted to
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u ∈ G, then

dω−2(u0)(ξ, η) =− ω−2(u0)([ξ, η])

=− ω−2(u)([ξ̃, η̃])

=dω−2(u)(ξ̃, η̃)

=− [ω−1(u)(ξ̃), ω−1(u)(η̃)]

=− [ω−1(u0)(ξ), ω−1(u0)(η)]

Hence (G/P+, (ω−2, ω−1)) is a regular filtered G0-structure of type g−.
Let Φ : (G, ω)→ (G′, ω′) be a morphism of regular Cartan geometries of type (G,P ). By

the P -equivariancy of Φ, it descends to a principal bundle map Φ : G/P+ → G′/P+. Since Φ
is filtration-preserving, so does Φ. Since Φ∗ω′−2 = ω−2 and Φ∗(ω′−1|T−1G′) = ω−1|T−1G , we
have Φ∗(ω′−2, ω

′
−1) = (ω−2, ω−1). Hence Φ is a morphism between the underlying regular

filtered G0-structures of type g−.

Proposition 5.2.2. Let (G0 → M, θ) be a regular filtered G0-structure of type g−. Then
there is a regular Cartan geometry of type (G,P ) inducing (G0 →M, θ).

Proof. Let G := G0×G0P , then G →M is a principal P -bundle. (This is because the cocycle
information on G0 passes along G0 ↪→ P to the cocycle information on G, making the latter
a principal P -bundle. More precisely, a trivialisation G0|U ∼= U ×G0 above an open subset
U ⊆M yields a trivialisation (G0 × P )|U ∼= U ×G0 × P , which descends to a trivialisation
(G0 ×G0 P )|U ∼= U × P by the group multiplication restricted to G0 × P → P . If there are
two such trivialisations on G0|U , they are related by U ×G0 → U ×G0, (x, g) 7→ (xϕ(x)g)
for a smooth map ϕ : U → G0, hence their induced trivialisations on G|U are related by
U × P → U × P, (x, g) 7→ (x, ϕ(g)).)

Let P op ⊆ G denote the opposite parabolic subgroup, consisting of the image of block-
lower diagonal matrices by GL(n + 2,R) � G. Its Lie algebra is g− ⊕ g0. We will first
extend the filtered one-form θ on G0 to a Cartan connection θ̃ ∈ Ω1(G0, g− ⊕ g0) of type
(P op, G0), and then extend θ̃ to a Cartan connection ω of type (G,P ) on G.

First we choose a principal connection on G0 → M and express it as an G0-invariant
decomposition TG0 = T−G0 ⊕ T0G0, where T0G0 := T 0G0 = V(G0 → M). Then choose a
projection TM → H, where H is the underlying contact structure, and denote its kernel by
Q. This yields a decomposition TM = Q⊕H, which is lifted by the principal connection on
G0 to a G0-invariant decomposition T−G0 = T−2G0⊕T−1G0. Since T−1G0 is the preimage of
H by TG0 → TM , we have T−1G0 = T−1G0⊕T0G0. Now TG0 = T−2G0⊕T−1G0⊕T0G0. Let
θ̃ restricted to TiG0 ⊆ T iG0 be given by θi for i = −2,−1, and on T0G0 be the reproduction
of generators of fundamental vector fields. Then θ̃ is a Cartan connection of type (P T , G0)
such that the g−2-component of θ̃ agrees with θ−2 and the g−1-component of θ̃|T−1G0 agrees
with θ−1.
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Let ι : G0 ↪→ G denote the canonical embedding. Then for each u0 ∈ G0, Tι(u0)G =
Tu0ι(Tu0G0) + Vu0G, and the intersection of the two subspaces consists of tangent vectors
Tu0ι(ζX(u0)) = ζX(ι(u0)) for all X ∈ g0. Since the linear map Tu0ι(Tu0G0) → g given by
Tu0ι(ξ(u0)) := θ̃(ξ(u0)) for each ξ(u0) ∈ Tu0G0 reproduces the generators of fundamental
vector fields evaluated at u0 when the generators are in g0, it extends to a linear map
ω(ι(u0)) : Tι(u0)G → g reproducing all generators of fundamental vector fields evaluated
at u0. The map is surjective, hence is bijective. Since the collection {ω(ι(u0)) : u0 ∈ G0}
is G0-equivariant, it extends to a P -equivariant one-form ω ∈ Ω1(G, g) which is again a
linear isomorphism at each fiber. It reproduces the generators of fundamental vector fields
because Trg(ζX(u)) = ζAd(g−1)X(ug) for all X ∈ p, g ∈ P, u ∈ G. Thus ω is a Cartan

connection of type (G,P ) such that ι∗ω = θ̃.
To prove that ω is regular, since the curvature K of ω is P -equivariant, it suffices to

check that
K(ι(u0))(T−1G, T−1G) ⊆ g−1

for all u0 ∈ G0. Since K is horizontal and Tι(u0)G = Tu0ι(Tu0G0) +Vu0G, it suffices to check
that

K(ι(u0))(Tu0ι(ξ), Tu0ι(η)) ∈ g−1

for all ξ, η ∈ Γ(T−1G0). But

K(ι(u0))(Tu0ι(ξ), Tu0ι(η) = dθ̃(u0)(ξ, η) + [θ̃(u0)(ξ), θ̃(u0)(η)],

whose g−2-component equals

dθ−2(u0)(ξ, η) + [θ−1(u0)(ξ), θ−1(u0)(η)] = 0

hence K(ι(u0))(Tu0ι(ξ), Tu0ι(η)) ∈ g−1 and ω is regular.
We check that the underlying regular filtered G0-structure (G/P+, (ω−2, ω−1)) is iso-

morphic to (G0, θ). Notice that ι is a lift of G � G/P+
∼= G0. For i = −2,−1, any tangent

vector ξ ∈ T iu0G0 can be lifted to Tu0ι(ξ) ∈ T iι(u0)G, and so

ωi(u0)(ξ) = ωi(ι(u0))(Tu0ι(ξ)) = (ι∗ω)(u0)(ξ) = θ̃i(u0)(ξ) = θi(u0)(ξ)

where θ̃i denotes the gi-component of θ̃. Hence the underlying regular filtered G0-structure
is indeed (G0, θ).

5.3 Some algebraic background

In the end, we want to impose restrictions on the curvature of a Cartan geometry which
uniquely characterize one of the Cartan geometries inducing a regular filtered G0-structure
of type g−. In order to do this, we first have to prove some purely algebraic results on the
Lie algebra g.
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Definition 5.3.1. Let g be an arbitrary graded Lie algebra and g− be its negative part.
Define a grading-preserving cochain complex

g
∂0−→ L(g−, g)

∂1−→ L(Λ2g−, g)

by
∂0(Z) := −ad(Z)|g−

for all Z ∈ g and

∂1ϕ(X,Y ) := [X,ϕ(Y )]− [Y, ϕ(X)]− ϕ([X,Y ])

for all ϕ ∈ L(g−, g), X,Y ∈ g−.

We see that ∂1 ◦∂0 = 0 by the Jacobi identity. Moreover, on L(g−, g) there is a grading
such that L(g−, g)k consists of maps ϕ ∈ L(g−, g) of homogeneity k, which means that
ϕ(gi) ⊆ gi+k for all i < 0. Similarly, there is a grading on L(Λ2g−, g) such that L(Λ2g−, g)k
consists of maps ϕ ∈ L(Λ2g−, g) of homogeneity k, which means that ϕ(gi ∧ gj) ⊆ gi+j+k
for all i, j < 0. It is clear that both ∂0 and ∂1 are grading-preserving by the property of
Lie bracket on a graded algebra.

We will denote by L(g−, g)k, L(Λ2g−, g)k the spaces of all elements of homogeneity ≥ k,
and recall that gk = ⊕i≥kgi.

We say that g is a full prolongation of (g−, g0) if the cochain complex is exact in
homogeneity ≥ 1, i.e. im(∂0|g1) = ker(∂1|L(g−,g)1).

Example 5.3.1. Endow euc(n) = Rn ⊕ o(n) with a grading euc(n)−1 := Rn, euc(n)0 :=
o(n). Then the cochain complex in homogeneity ≥ 1 reads

0→ L(Rn, o(n))
∂−→ L(Λ2Rn, euc(n))

for ∂ : L(Rn, o(n))
∼=−→ L(Λ2Rn,Rn) ⊆ L(Λ2Rn, euc(n)) as given in Lemma 4.2.2. Hence the

maps in the complex are O(n)-equivariant and euc(n) is a full prolongation of (Rn, o(n)),
which is usually phrased as the fact that o(n) has trivial first prolongation.

The space L(Λ2Rn, euc(n)) decomposes into the O(n)-subrepresentations

im(∂) = L(Λ2Rn,Rn)

and
N := L(Λ2Rn, o(n)).

Recall that a Cartan geometry (G, ω) of type (Euc(n), O(n)) is said to be normal if its
curvature takes values in o(n), that is, κ : G → L(Λ2Rn, euc(n)) takes values in N .

In fact,
L(Λ2Rn, euc(n)) = im(∂)⊕N
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is an orthogonal decomposition with respect to the natural inner product on L(Λ2Rn, euc(n)) =
Λ2Rn∗ ⊗ euc(n) induced by the natural inner product on Rn∗ and on euc(n). As the lat-
ter is the restriction of the standard inner product (A,B) 7→ tr(AtB) on Mat(n + 1,R)
to euc(n), clearly euc(n) = Rn ⊕ o(n) is a orthogonal decomposition. Hence so does
L(Λ2Rn, euc(n)) = L(Λ2Rn,Rn)⊕ L(Λ2Rn, o(n)).

From now on we resume the notations from the last section. Notice that g− is not a
P -invariant subspace in g, so one should actually deal with g/p instead of g−. But for the
first step, one is only interested in the G0-module structure, for which g− and g/p can be
identified. In particular, we obtain grading-preserving isomorphisms

L(g−, g) ∼= L(g/p, g)

L(Λ2g−, g) ∼= L(Λ2(g/p), g)

of G0-representations. We aim for an analogue to the example above.

Lemma 5.3.1. The maps in the complex

g
∂0−→ L(g−, g)

∂1−→ L(Λ2g−, g)

are G0-equivariant.

Proof. For g ∈ G0, A ∈ g, X,Y ∈ g−, ϕ ∈ L(g−, g), we have

∂0(Ad(g)(A))(X) =− [Ad(g)(A), X]

=−Ad(g)[A,Ad(g−1)(X)]

=Ad(g)∂0(A)(Ad(g−1)(X))

meaning that ∂0 is P -equivariant and

∂1(g.ϕ)(X,Y ) =[X, (g.ϕ)(Y )]− [Y, (g.ϕ)(X)]− [X,Y ]

=[X,Ad(g)ϕ(Ad(g−1)(Y ))]− [Y,Ad(g)ϕ(Ad(g−1)(X))]− [X,Y ]

=Ad(g)[Ad(g−1)(X), ϕ(Ad(g−1)(Y ))]−Ad(g)[Ad(g−1)(Y ), ϕ(Ad(g−1)(X))]

−Ad(g)[Ad(g−1)(X), Ad(g−1)(Y )]

=Ad(g)(∂1ϕ)(Ad(g−1)(X), Ad(g−1)(Y ))

=(g.(∂1ϕ))(X,Y )

meaning that ∂1 is P -equivariant.

Since g = sl(n+ 2,R) is |2|-graded, the positive homogeneities of L(g−, g) are 1, 2, 3, 4.

Lemma 5.3.2. g is a full prolongation of (g−, g0) in the sense that ∂1 is injective in
homogeneities 3, 4, and in homogeneities 1, 2, ∂0 is injective with im∂0 = ker∂1.
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Proof. One can easily check that ∂0 is injective, so we just show that ∂1 is injective in
homogeneities 3, 4 and ker ∂1 = im∂0 in homogeneities 1, 2.

We write ∂1 =: ∂ and think of all matrices in block size (1, n, 1). Unless otherwise
stated, we denote arbitrary elements in g by

βg−2 +XgE−1
+ YgF−1

+ (a,A, b)g0 + ZgE1
+WgF1

+ γg2 :=

 a Z γ
X A W
β Y b

 ∈ g.

(i) l = 1: Let ϕ ∈ L(g−, g)1 = L(g−2, g−1) ⊕ L(g−1, g0). We notice that there is an
element X ∈ g1 such that ϕ − ad(X) vanishes on g−2. Hence it suffices to check that if
ϕ ∈ L(g−1, g0) and ∂ϕ = 0, then ϕ = 0.

Write ϕ|g−1 = (ϕ1, ϕ2, ϕ3)g0 . Then 0 = ∂ϕ(1g−2 , ·) = [1g−2 , ϕ(·)] on g−1 implies ϕ1 =
ϕ3. Fix any XgE−1

and YgF−1
, denote

ϕ(XgE−1
) = (a,A, a)g0 and ϕ(YgF−1

) = (b, B, b)g0

with a = −tr(A)/2 and b = −tr(B)/2. Since 0 = ∂ϕ(XgE−1
, YgF−1

) = [XgE−1
, ϕ(YgF−1

)] +

[ϕ(XgE−1
), YgF−1

], we have [XgE−1
, ϕ(YgF−1

)] = [YgF−1
, ϕ(XgE−1

)], which gives

(bI−B)XgE−1
= Y (A− aI)gF−1

,

hence running XgE−1
through gE−1 we get B = bI, thus tr(B) = bn = −tr(B)n/2 and so

B = 0; similarly running YgF−1
through gF−1 we get A = 0. Hence ϕ = 0.

(ii) l = 2: Similar to the case of l = 1, each linear map in L(g−, g)2 can be written as
ϕ+ ad(X) such that X ∈ g2 and ϕ ∈ L(g−, g)2, such that

ϕ(1g−2) = (0, A,−tr(A))g0 ,

for some A ∈ GL(n,R), and it suffices to show that if ∂ϕ = 0 then ϕ = 0.
But ∂ϕ = 0 together with the given ϕ|g−2 fix the value of ϕ on gE−1 and on gF−1, namely,

by inserting 1g−2 +XgE−1
and 1g−2 + YgF−1

in 0 = ∂ϕ, we get

ϕ(XgE−1
) = (−AX)gF1

and ϕ(YgF−1
) = (Y (tr(A)I +A))gE1

.

thus
0 = ∂ϕ(XgE−1

+ YgF−1
) = (−Y (tr(A)I +A)X, ∗, ∗)g0 .

Running through all possible X and Y forces A = −tr(A)In, from which implies A = 0,
hence ϕ = 0.

(iii) l = 3 : we need to show that ∂ : L(g−, g)3 → L(Λ2g−, g)3 is injective. Let
ϕ ∈ L(g−, g)3 such that ∂ϕ = 0, and define elements

ϕ(1g−2) =: ZgE1
+WgF1

, ϕ(XgE−1
) =: bg2 , ϕ(YgF−1

) =: cg2 .
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Then
0 = ∂ϕ(1g−2 , XgE−1

) = (ZX − b,−XZ, b)g0 .

Running through all possible XgE−1
forces that b = 0 and Z = 0; similarly compute

0 = ∂ϕ(1g−2 , YgF−1
) = (−c,WY, c− YW )g0 ,

running through all possible Y forces c = 0 and W = 0. Hence ϕ = 0.
(iv) l = 4: we need to show that ∂ : L(g−, g)4 → L(Λ2g−, g)4 is injective. Let ϕ ∈

L(g−, g)4 = L(g−2, g2) such that ∂ϕ = 0. Then for all X,Y ∈ g−1 we have 0 = ∂ϕ(X,Y ) =
−ϕ([X,Y ]). Since the Lie bracket restricted to g−1 × g−1 → g−2 is surjective, we must
have ϕ = 0.

For what follows we will have to describe a P -invariant subspace in L(Λ2(g/p), g). The
first step towards this is a better description of the dual of the P -representation g/p.

Lemma 5.3.3. There is a canonical isomorphism (g/p)∗ ∼= p+ of P -representations, which
is grading-preserving.

In particular, this induces isomorphisms

L(g/p, g) ∼= p+ ⊗ g

L(Λ2(g/p), g) ∼= Λ2p+ ⊗ g

of P -representations, which are grading-preserving.

Proof. The pairing (X,Y ) 7→ tr(XY ) by the trace map is clearly a bilinear form on g
that is easily seen to be non-degenerate. Since Ad(g)(X) = gXg−1 for all X ∈ g, g ∈ G,
it follows immediately that the pairing is invariant under the adjoint action of G. Now
for X ∈ p and Y ∈ p+, XY is immediately seen to be trace free. This means that p is
contained in the annihilator of p+ under the pairing, and since dim(g/p) = dim(p+), it
follows that p coincides with the annihilator of p+. Thus the pairing factorizes to a non-
degenerate bilinear form p+× (g/p)→ R, identifying p+ with (g/p)∗. Since p+ and p both
are P -invariant subspaces of g, the invariance of the original pairing shows that the pairing
p+× (g/p)→ R is invariant for the natural P -actions on the two spaces. This implies that
p+
∼= (g/p)∗ as P -representations. Clearly the isomorphism is grading-preserving.

The (positive definite) standard inner product 〈A,B〉 := tr(AtB) on Mat(n + 2,R)
restricts to inner products on g and on p+, inducing inner products on p+ ⊗ g and on
Λ2p+ ⊗ g. Recall that, if V,W are inner product spaces, then the induced inner product
on V ⊗W is generated by 〈v ⊗ w, v′ ⊗ w′〉 = 〈v, v′〉〈w,w′〉 for v, v′ ∈ V,w,w′ ∈ W . One
can check that it is positive-definite by fixing an orthonormal basis (ei) on V , thus express
any element in V ⊗W by Σiei ⊗Wi for wi ∈ W . The induced inner product on Λ2V is
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generated by 〈v1 ∧ v2, w1 ∧ w2〉 = 〈v1, w1〉〈v2, w2〉 − 〈v1, w2〉〈v2, w1〉 for v1, v2, w1, w2 ∈ V .
It is positive-definite because an orthonormal basis on V induces an orthonormal basis on
Λ2V .

Lemma 5.3.4. The inner product on L(g−, g) ∼= L(g/p, g) ∼= p+ ⊗ g can be computed as

〈Z ⊗A,ϕ〉 = 〈A,ϕ(Zt)〉

for all ϕ ∈ L(g−, g), Z⊗A ∈ p+⊗g, and the inner product on L(Λ2g−, g) ∼= L(Λ2(g/p), g) ∼=
Λ2p+ ⊗ g can be computed as

〈Z1 ∧ Z2 ⊗A,ϕ〉 = 〈A,ϕ(Z1, Z2)〉

for all ϕ ∈ L(Λ2g−, g), Z1 ∧ Z2 ⊗A ∈ Λ2p+ ⊗ g.

Proof. For the first claim, it suffices to check in the case where ϕ corresponds to W ⊗B ∈
p+ ⊗ g, which means that ϕ(X) = tr(WX)B for all X ∈ g−. Then

〈Z ⊗A,ϕ〉 =〈Z ⊗A,W ⊗B〉 = tr(ZtW )tr(AtB)

=tr(At(tr(ZtW )B)) = tr(Atϕ(Zt)) = 〈A,ϕ(Zt)〉.

For the second claim, it suffices to check in the case where ϕ corresponds to W1∧W2⊗B ∈
Λ2p+⊗g, which means that forX,Y ∈ g−, ϕ(X,Y ) = (tr(W1X)tr(W2Y )−tr(W2X)tr(W1Y ))B.
Then

〈Z1 ∧ Z2 ⊗A,ϕ〉 =〈Z1 ∧ Z2 ⊗A,W1 ∧W2 ⊗B〉
=(tr(Zt1W1)tr(Zt2W2)− tr(Zt1W2)tr(Zt2W1))tr(AtB)

=tr(Atϕ(Zt1, Z
t
2))

=〈A,ϕ(Zt1, Z
t
2)〉.

Thus we may define N := im(∂1)⊥ ⊆ L(Λ2g−, g) and obtain an orthogonal decompo-
sition

L(Λ2g−, g) = im(∂1)⊕N .
For a better expression of N , we define the Kostant codifferential, which is the linear map

p+ ⊗ g
∂∗←− Λ2p+ ⊗ g

generated by

∂∗(Z ∧W ⊗A) = −Z ⊗ [W,A] +W ⊗ [Z,A] + [Z,W ]⊗A ∈ p+ ⊗ g

for all Z ∧W ⊗A ∈ Λ2p+⊗ g. The explicit formula immediately implies that ∂∗ is grading
preserving and P -equivariant, which is very remarkable and crucial for what follows.

Notice that in the obvious sense ∂∗ passes to a map L(Λ2g−, g) → L(g−, g) which is
grading-preserving and G0-equivariant.
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Lemma 5.3.5. For any ϕ ∈ L(g−, g), ψ ∈ L(Λ2g−, g) we have 〈∂1ϕ,ψ〉 = 〈ϕ, ∂∗ψ〉.
In particular, we have orthogonal decompositions

L(g−, g) = im∂∗ ⊕ ker∂1

and
L(Λ2g−, g) = im∂1 ⊕ ker∂∗.

The second decomposition implies that N = ker(∂∗).

Proof. For the first claim, it suffice to check for ψ = Z ∧W ⊗A ∈ Λ2p+ ⊗ g. We have

〈∂1ϕ,ψ〉 = 〈∂1ϕ(Zt,W t), A〉 = 〈[Zt, ϕ(W t)], A〉 − 〈[W t, ϕ(Zt)], A〉 − 〈ϕ([Zt,W t]), A〉

and

〈ϕ, ∂∗ψ〉 = 〈ϕ,−Z ⊗ [W,A] +W ⊗ [Z,A] + [Z,W ]⊗A〉
= −〈ϕ(Zt), [W,A]〉+ 〈ϕ(W t), [Z,A]〉+ 〈ϕ([Z,W ]t), A〉.

By −[Zt,W t] = [Z,W ]t, −〈ϕ([Zt,W t]), A〉 = 〈ϕ([Z,W ]t), A〉. Moreover, for A,B,C ∈ g,

〈[A,B], C〉 = tr(BtAtC−AtBtC) = tr(BtAtC−BtCAt) = tr(Bt(AtC−CAt)) = 〈B, [At, C]〉

hence 〈[Zt, ϕ(W t)], A〉 = 〈ϕ(W t), [Z,A]〉 and 〈[W t, ϕ(Zt)], A〉 = 〈ϕ(Zt), [W,A]〉. Hence the
equality.

Now we prove the second claim. We have (im∂∗)⊥ = ker∂1 because ϕ ∈ (im∂∗)⊥ ⇔
〈ϕ, ∂∗ψ〉 = 0 for all ψ ∈ L(Λ2g−, g) ⇔ 〈∂1ϕ,ψ〉 = 0 for all ψ ∈ L(Λ2g−, g) ⇔ ∂1ϕ = 0.
Hence L(g−, g) = im∂∗ ⊕ (im∂∗)⊥ = im∂∗ ⊕ ker∂1.

Similarly (im∂1)⊥ = ker∂∗, and so L(Λ2g−, g) = im∂1⊕ (im∂1)⊥ = im∂1⊕ ker∂∗.

Finally we pass ∂0 to a linear map g → L(g/p, g), ∂1 to a linear map L(g/p, g) →
L(Λ2(g/p), g), both being grading-preserving and G0-equivariant, and we pass ∂∗ to a linear
map L(Λ2(g/p), g) → L(g/p, g) which is grading-preserving and P -equivariant. Thus the
orthogonal decompositions in the lemma above passes to orthogonal decompositions

L(g/p, g) = im∂∗ ⊕ ker∂1

and
L(Λ2(g/p), g) = im∂1 ⊕ ker∂∗.

Corollary 5.3.1. We get that N = ker(∂∗) is a P -invariant subspace of L(Λ2(g/p), g)
which is complementary to im(∂1). Moreover, im(∂∗) ⊆ L(g/p, g) is a P -invariant subspace
which is complementary to ker(∂1). In particular, ∂1 restricts to a linear isomorphism

im(∂∗)
∼=−→ im(∂1), and ∂∗ restricts to a linear isomorphism im(∂1)

∼=−→ im(∂∗).
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5.4 Normal Cartan geometries of type (G,P ): existence

Similarly to the case of Euc(n), we want to impose a normalization condition on the
curvature of a Cartan geometry of type (G,P ) to find a canonical geometry inducing
an underlying structure. The algebraic considerations from Section 5.3 lead to such a
normality condition:

Definition 5.4.1. A regular Cartan geometry (G, ω) of type (G,P ) is said to be normal if
its curvature function κ : G → L(Λ2(g/p), g)1 takes values in N , i.e. if ∂∗ ◦ κ = 0.

For any regular filtered G0-structure (G0, θ) of type g−, by Proposition 5.2.2 there is a
regular Cartan geometry (G, ω) of type (G,P ) inducing (G0, θ). Similar to what we did to
obtain a normal Cartan connection of type (Euc(n), O(n)) which induces a certain O(n)-
structure of type Rn, we will modify ω to a normal regular Cartan connection ω̃ of type
(G,P ) on G such that (G, ω̃) also induces (G0, θ).

We look at the space of all regular Cartan connections ω̃ ∈ Ω1(G, g) such that (G, ω̃)
induces (G0, θ). Each (G, ω̃) defines the same filtration on TG, namely T iG for i = −2,−1, 0
lifts T iG0, and T iG for i = 0, 1, 2 is determined by fundamental vector fields. Thus we may
talk about the filtration on TG without specifying ω̃.

Proposition 5.4.1. The space of all regular Cartan connections ω̃ ∈ Ω1(G, g) such that
(G, ω̃) induces (G0, θ) is an affine space modelled over Ω1

hor(G, g)1,P , i.e. all g-valued, P -
equivariant horizontal one-forms on G with homogeneity ≥ 1.

Using the trivialisation TG ∼= G × g induced by ω, we may identify Ω1
hor(G, g)1,P with

the space of all P -equivariant maps G → L(g/p, g)1.

Proof. We show that a one-form ω̃ ∈ Ω1(G, g) is a regular Cartan connection of type (G,P )
such that (G, ω̃) induces (G0, θ) if and only if ω̃ − ω : TG → g is P -equivariant, horizontal,
and has homogeneity ≥ 1.

Indeed, ω̃ is P -equivariant if and only if ω̃ − ω is; ω̃ reproduces the generators of the
fundamental vector fields if and only if ω̃ − ω is horizontal; ω̃−2 = ω−2 if and only if
(ω̃−ω)(TG) ⊆ g−1; and ω̃−1|T−1G = ω−1|T−1G if and only if (ω̃−ω)(T−1G) ⊆ g0. Hence for
any regular Cartan connection ω̃ of type (G,P ) on G such that (G, ω̃) induces (G0, θ), ω̃−ω
is P -equivariant, horizontal, and has homogeneity ≥ 1; conversely, if ω̃−ω is P -equivariant,
horizontal, and has homogeneity ≥ 1, then ω̃ is a Cartan geometry of type (G,P ) such
that ω̃−2 = ω−2 and ω̃−1|T−1G = ω−1|T−1G . We claim that ω̃ is regular. Let K resp. K̃
denote the curvature of ω resp. ω̃. For ξ, η ∈ Γ(T−1G),

(K̃ −K)(ξ, η)

=ξ.(ω̃ − ω)(η)− η̃.(ω̃ − ω)(ξ)− (ω̃ − ω)([ξ, η]) + [ω̃(ξ), ω̃(η)]− [ω(ξ), ω(η)]

=ξ.(ω̃ − ω)(η)− η̃.(ω̃ − ω)(ξ)− (ω̃ − ω)([ξ, η])

+ [(ω̃ − ω)(ξ), (ω̃ − ω)(η)] + [(ω̃ − ω)(ξ), ω(η)] + [ω(ξ), (ω̃ − ω)(η)]
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whose g−2-component is zero as the six summands are in g0, g0, g−1, g0, g−1, g−1, respec-
tively. By the regularity of ω, K(ξ, η) takes values in g−1, hence so does K̃(ξ, η). Hence ω̃
is regular. Also by ω̃−2 = ω−2 and ω̃−1|T−1G = ω−1|T−1G , (G, ω̃) induces (G0, θ).

Using the trivialisation TG ∼= G × g induced by ω, a regular Cartan geometry (G, ω̃) of
type (G,P ) inducing (G0, θ) corresponds to a P -equivariant map Φ : G → L(g/p, g)1 with

Φ(u)(X) = (ω̃ − ω)(u)(ω−1(X))

for all u ∈ G, X ∈ g; conversely, a P -equivariant map Φ : G → L(g/p, g)1 corresponds to a
Cartan connection ω̃ of type (G,P ) on G such that (G, ω̃) induces (G0, θ) with

ω̃(u)(ξ) = ω(u)(ξ) + Φ(u)(ω(u)(ξ))

for all ξ ∈ X(G), u ∈ G.

Let ω̃ be a regular Cartan connection on G such that (G, ω̃) induces (G0, θ), and let
Φ : G → L(g/p, g)1 be the corresponding P -equivariant map. Let κ, κ̃ : G → L(Λ2(g/p), g)1

be the curvature functions of ω resp. ω̃.

Lemma 5.4.1. Suppose Φ takes values in L(g/p, g)l for some l ∈ {1, 2, 3, 4}, then κ̃ − κ
takes values in L(Λ2(g/p), g)l. Moreover, we have

(κ̃− κ)l = ∂1 ◦ Φl

where (κ̃− κ)l and Φl denote the homogeneity l component of (κ̃− κ) and Φ, respectively.

Proof. Recall from Section 5.3 the grading preserving linear isomorphisms L(g/p, g) ∼=
L(g−, g) and L(Λ2(g/p), g) ∼= L(Λ2g−, g). Thus Φ passes to a smooth map G → L(g−, g)l,
Φl passes to G → L(g−, g)l, and κ̃− κ passes to G → L(Λ2g−, g)1.

For u ∈ G, X ∈ g−, define ξ := ω−1(X)(u) ∈ TuG, φ := Φ(u) ∈ L(g−, g)l and
φl := Φl(u) ∈ L(g−, g)l. Then ω̃(u)(ξ) = X + φ(X). Applying ω̃(u)−1 we get

ω−1(X)(u) = ω̃−1(X)(u) + ω̃−1(φ(X))(u).

Denote by K resp. K̃ the curvatures of ω resp. ω̃. Then (κ̃− κ)(u) maps X ∈ gi, Y ∈ gj
for i, j ∈ {−2,−1} to

κ̃(u)(X,Y )− κ(u)(X,Y )

=K̃(u)(ω̃−1(X), ω̃−1(Y ))−K(u)(ω−1(X), ω−1(Y ))

=(K̃ −K)(u)(ω−1(X), ω−1(Y ))− K̃(u)(ω−1(X), ω̃−1(φ(Y ))

− K̃(u)(ω̃−1(φ(X)), ω−1(Y )) + K̃(u)(ω̃−1(φ(X)), ω̃−1(φ(Y )))
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Since K̃ has homogeneity ≥ 1 and φ has homogeneity ≥ l, the last three summands have
homogeneities ≥ l + 1, and the first summand equals

(K̃ −K)(u)(ω−1(X), ω−1(Y ))

=ω−1(X)(u).((ω̃ − ω)(ω−1(Y ))− ω−1(Y )(u).((ω̃ − ω)(ω−1(X))

− (ω̃ − ω)(u)([ω−1(X), ω−1(Y )])

+
(
[ω̃(u)(ω−1(X)), ω̃(u)(ω−1(Y ))]− [ω(u)(ω−1(X)), ω(u)(ω−1(Y ))]

)
=ω−1(X)(u).Φ(Y )− ω−1(Y )(u).Φ(X)

− φ
(
ω(u)([ω−1(X), ω−1(Y )])

)
+ ([X + φ(X), Y + φ(Y )]− [X,Y ])

=ω−1(X)(u).Φ(Y )− ω−1(Y )(u).Φ(X)

− φ
(
ω(u)([ω−1(X), ω−1(Y )])

)
+ ([X,φ(Y )] + [φ(X), Y ] + [φ(X), φ(Y )]) .

The homogeneities of the six resulting summands are at least i + l, j + l, l, l, l, 2l, re-
spectively. Hence we conclude that (κ̃− κ)(u) has homogeneity ≥ l.

Moreover, consider the third summand −φ
(
ω(u)([ω−1(X), ω−1(Y )])

)
. Its l-th homo-

geneity component equals −φl applied to the gi+j-component of ω(u)([ω−1(X), ω−1(Y )]),
which is zero unless i = j = −1. In the case i = j = −1, by the regularity condition of ω,
the g−2-components of

ω(u)([ω−1(X), ω−1(Y )])

coincides to the g−2-component of

[ω(u)(ω−1(X)), ω(u)(ω−1(Y ))] = [X,Y ].

Since [X,Y ] = 0 unless i = j = −1, we conclude that the l-th homogeneity component of
−φ
(
ω(u)([ω−1(X), ω−1(Y )])

)
is −φl([X,Y ]). Thus

(κ̃− κ)l(u)(X,Y )

equals
−φl([X,Y ]) + [X,φl(Y )] + [φl(X), Y ].

Recall from Definition 5.3.1, this is exactly (∂1 ◦ φl)(X,Y ).

Corollary 5.4.1. There exists a normal regular Cartan connection ω̃ of type (G,P ) on G
such that (G, ω̃) induces (G0, θ).
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Proof. We start with (G, ω) which induces (G0, θ). Denote by κ : G → L(Λ2(g/p), g)1 its
curvature function. Suppose ∂∗ ◦ κ has homogeneity ≥ l for some l ∈ {1, 2, 3, 4}, so

∂∗ ◦ κ : G → im(∂∗) ∩ L(g/p, g)l.

We claim that there is a regular Cartan connection ω̃ of type (G,P ) on G with curvature
function κ̃ such that (G, ω̃) induces (G0, θ) and ∂∗ ◦ κ̃ takes values in L(g/p, g)l+1. By
Lemma 5.4.1, we just need to find a P -equivariant map

Φ : G → L(g/p, g)l

such that
∂∗ ◦ ∂1 ◦ Φl = (−∂∗ ◦ κ̃)l

where Φl is the l-homogeneity component of Φ and (−∂∗ ◦ κ̃)l is the l-homogeneity com-
ponent of −∂∗ ◦ κ̃. Then we let ω̃ correspond to Φ.

Indeed, let p : G →M denote the bundle projection and let U be an open cover of M ,
such that for each U ∈ U there is a local section

σ : U → G.

We define

f : U
σ−→ G (−∂∗◦κ)l−−−−−→ im(∂∗) ∩ L(g/p, g)l.

Recall from Corollary 5.3.1 that ∂1 and ∂∗ restrict to grading-preserving linear isomor-

phisms ∂1 : im(∂∗)
∼=−→ im(∂1) and ∂∗ : im(∂1)

∼=−→ im(∂∗), which give rise to a grading
preserving linear isomorphism

ψ := (∂∗ ◦ ∂1)−1 : im(∂∗)→ im(∂∗).

Let
ΦU : p−1(U)→ im(∂∗) ∩ L(g/p, g)l

be the unique P -equivariant map such that

ΦU ◦ σ = ψ ◦ f.

Denote by ΦU
l the l-homogeneity component of Φ. Then for each x ∈ U , one has

∂∗ ◦ ∂1 ◦ ΦU
l (σ(x)) = ∂∗ ◦ ∂1 ◦ ψ ◦ f(σ(x)) = f(x) = (−∂∗ ◦ κ)l(σ(x)).

This means the following. Let ω̃U ∈ Ω1(p−1(U), g) denote the locally defined Cartan
connection corresponding to ΦU . Then its curvature function κ̃U satisfies ∂∗ ◦ κ̃U (σ(x)) ∈
L(g/p, g)l+1 for all x ∈ U . Since κ̃U is P -equivariant, ∂∗ ◦ κ̃U always takes values in
L(g/p, g)l+1. This implies that

∂∗ ◦ ∂1 ◦ ΦU
l = (−∂∗ ◦ κ)l.
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In particular, using a partition of unity subordinate to U , we patch together all ΦU and
obtain a P -equivariant map Φ : G → im(∂∗) ∩ L(g/p, g)l with homogeneity l component
Φl, such that ∂∗ ◦ ∂1 ◦ Φl = (−∂∗ ◦ κ)l.

We are able to iterate the process by describing the affine space over Ω1
hor(G, g)1,P of

all regular Cartan connections on G of type (G,P ) inducing (G0, θ) with the new center ω̃.
We also use the new trivialisation TG ∼= G × g induced by ω̃ to identify the space with the
space of P -equivariant maps G → L(g−, g)1. In particular, if l + 1 = 5, we conclude that
∂∗ ◦ κ̃ = 0, and we get a normal regular Cartan connection of type (G,P ) on G inducing
(G0, θ).

Thus we proved that for any regular filtered G0-structure of type g−, there exists a
normal regular Cartan geometry of type (G,P ) inducing it.

5.5 Normal Cartan geometries of type (G,P ): uniqueness

From last section we have that for a regular filtered G0-structure (G0, θ) of type g−, there
exists a normal regular Cartan geometry (G, ω) of type (G,P ) inducing it.

We want to show that any normal regular Cartan geometry of type (G,P ) inducing
(G0, θ) is isomorphic to (G, ω). For this we need an intermediate step of showing that
given any normal regular Cartan connection ω̃ of type (G,P ) on G such that (G, ω̃) induces
(G0, θ), then (G, ω̃) is isomorphic to (G, ω) over idG0 .

Lemma 5.5.1. A map Ψ : G → G is a principal bundle map lying above idG0 if and only
if it is of the form u 7→ uexp(f(u)) for a P -equivariant smooth map f : G → p+. In this
case, (G,Ψ∗ω) is a normal regular Cartan geometry of type (G,P ) inducing (G0, θ).

Proof. Let Ψ : G → G be a principal bundle map lying above idG0 . Since exp : p+ → P+

is a diffeomorphism, we may write Ψ as u 7→ uexp(f(u)) for a smooth map f : G →
p+. The P -equivariancy of Ψ exactly means that exp(f(ug)) = conj(g−1)(exp(f(u))) =
exp(Ad(g−1) ◦ f(u)), that is, f(ug) = Ad(g−1) ◦ f(u) for all u ∈ G, g ∈ P . Conversely, a
map Ψ : G → G, u 7→ uexp(f(u)) for a P -equivariant smooth map f : G → p+ is smooth
and P -equivariant, hence is a principal bundle map lying above idG0 .

Consider the one-form Ψ∗ω ∈ Ω1(G, g). Since Ψ is P -equivariant, Ψ∗ω is P -equivariant
and reproduces the generators of the fundamental vector fields. Since TΨ is a linear
isomorphism at each fiber, so does Ψ∗ω. Hence Ψ∗ω is a Cartan connection of type (G,P ).
Moreover, since the curvature function of Ψ∗ω equals κ ◦ Ψ, where κ is the curvature
function of ω, Ψ∗ω is normal and regular as ω is.

It remains to show that (G,Ψ∗ω) induces (G0, θ). As a morphism of Cartan geometries,
Ψ is filtration preserving. Hence (G,Ψ∗ω) induces the same filtration on TG0 as (G, ω) does.
For i = −2,−1 and ξ ∈ T iu0G0, if ξ̃ ∈ T iuG is a lift of ξ, then so does TuΨ(ξ̃) ∈ T iuexp(f(u))G.

Since (Ψ∗ω)(uexp(f(u)))(TuΨ(ξ̃)) = ω(u)(ξ̃) we see that (G,Ψ∗ω) and (G, ω) induce the
same regular filtered G0-structure of type g−, which is (G0, θ).
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Let the affine space of all regular Cartan connections of type (G,P ) on G inducing
(G0, θ) centered at ω be identified with the space of P -equivariant smooth maps G →
L(g/p, g)1 using the trivialisation TG ∼= G × g induced by ω, and let Ψ∗ω correspond to
Φ : G → L(g/p, g)1 in the space.

We are able to describe the relation between f : G → g1 and (Ψ∗ω−ω) : G → L(g/p, g)1

in the lowest homogeneity components.

Lemma 5.5.2. If f : G → p+ takes its images in gl for some l ∈ {1, 2}, then Φ takes its
images in L(g/p, g)l. Moreover, we have

Φl = ∂0 ◦ fl

where Φl and fl denote the homogeneity l component of Φ and f , respectively.

Proof. Recall from Section 5.3 the grading preserving linear isomorphisms L(g/p, g) ∼=
L(g−, g). Thus Φ passes to a smooth map G → L(g−, g)l and Φl passes to G → L(g−, g)l.

For u ∈ G, X ∈ g−, define ξ := ω−1(X)(u) ∈ TuG. We denote by δ(exp◦f) ∈ Ω1(G, p+)
the left-logarithmic derivative of exp ◦ f , by Ψ(u) = uexp(f(u)) we have

TuΨ(ξ) = Tur
exp(f(u))(ξ) + ζδ(exp◦f)(u)(ξ)(Ψ(u)).

Thus

Φ(u)(X) =(Ψ∗ω − ω)(u)(ω(u)−1(X))

=(Ψ∗ω)(u)(ξ)−X
=ω(u)(TuΨ(ξ))−X
=(Ad ◦ exp(−f(u)))ω(u)(ξ) + δ(exp ◦ f)(u)(ξ)−X

As

(Ad ◦ exp(−f(u)))ω(u)(ξ) =(Ad ◦ exp(−f(u)))(X)

=(e ◦ ad(−f(u)))(X)

=Σi≥0
1

i!
ad(−f(u))i(X)

=X + (ad(−f(u))(X) +
1

2!
ad(−f(u))2(X) + · · · ),

Φ(u)(X) = (ad(−f(u))(X) +
1

2!
ad(−f(u))2(X) + · · · ) + δ(exp ◦ f)(u)(ξ).

Since δ(exp ◦ f)(u)(ξ) ∈ gl and any map g− → gl has homogeneity ≥ l + 1,

Φl(u)(X) = (ad(−fl(u))(X).

Recall from Definition 5.3.1, this is exactly (∂0 ◦ fl)(u)(X).
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Corollary 5.5.1. (i) There is no nontrivial automorphism on (G, ω) over idG0.
(ii) Let (G, ω̃) be another normal regular Cartan geometry of type (G,P ) inducing

(G0, θ). Then there exists a unique isomorphism from (G, ω̃) to (G, ω) lying above idG0.

Proof. (i) Let Ψ be an automorphism on (G, ω) over idG0 , then Ψ is of the form u 7→
uexp(f(u)) for a P -equivariant map f : G → p+. Suppose f takes images in gl for l ∈
{1, 2}. Then its homogeneity l component fl satisfies ∂0 ◦ fl = 0 because Ψ∗ω = ω. By
Lemma 5.3.2, ∂0|p+ is injective, hence fl = 0 and f takes values in gl+1. Iterating the
argument, we conclude that f = 0, hence Ψ = idG .

Observe that this also gives the uniqueness statement in (ii) by applying this to Ψ2◦Ψ−1
1

for two isomorphisms Ψ1,Ψ2 : (G, ω̃)→ (G, ω).
(ii) Since (G, ω) and (G, ω̃) both induce (G0, θ), ω and ω̃ induce the same filtration on

TG, and ω̃ − ω : TG → g has homogeneity ≥ l for some l ∈ {1, 2, 3, 4}. In this case, ω̃
corresponds to a P -equivariant map Φ : G → L(g/p, g)l in the sense of Proposition 5.4.1.
Let’s denote by κ resp. κ̃ the curvature functions of ω resp. ω̃. By Lemma 5.4.1, κ̃−κ has
homogeneity l and

∂1 ◦ Φl = (κ̃− κ)l

where Φl and (κ̃ − κ)l are the homogeneity l components of Φ and κ̃ − κ, respectively.
Hence

∂∗ ◦ ∂1 ◦ Φl = ∂∗ ◦ (κ̃− κ)l = 0.

By Corollary 5.3.1, this implies that for all u ∈ G,

∂1 ◦ Φl(u) ∈ ker(∂∗) ∩ im(∂1) = {0},

and so Φl(u) ∈ ker(∂1). We discuss in two cases:
Case 1. If l ∈ {3, 4}, we have Φl(u) = 0 because ∂1 is injective in homogeneities 3, 4

(Lemma 5.3.2). Hence Φ takes values in L(g/p, g)l+1. Iterating the argument, we get that
Φ takes values in L(g/p, g)5 = {0}. Hence ω̃ = ω.

Case 2. If l ∈ {1, 2}, let p : G →M and p0 : G0 →M denote the bundle projection. We
claim that for any open subset U ⊆M with a local section

σ : U → G,

then there is a unique isomorphism from (p−1(U), ω̃) to (p−1(U), ω) over the identity on
p−1

0 (U).
Indeed, since for each x ∈ U , Φl(σ(x)) ∈ ker(∂1) = im(∂0) and since ∂0 is injective on

gl (Lemma 5.3.2), there is a (unique) smooth map h : U → gl such that

∂0 ◦ h = Φl ◦ σ.

Now let fU : p−1(U)→ gl be the unique P -equivariant map such that

fU ◦ σ = h.
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Then
∂0 ◦ fUl ◦ σ = Φl ◦ σ

where fUl is the homogeneity l component of fU . Define a principal bundle automorphism

ΨU : p−1(U)→ p−1(U), u 7→ uexp(fU (u)).

Then by Lemma 5.5.1 and Lemma 5.5.2, (p−1(U), ω) and (p−1(U),Ψ∗Uω) has the same un-
derlying structure, and Ψ∗Uω corresponds to a P -equivariant map Φ′ : p−1(U)→ L(g/p, g)l

such that
Φ′l = ∂0 ◦ fUl ,

where Φ′l is the homogeneity l component of Φ′. Hence

Φ′l ◦ σ = ∂0 ◦ fUl ◦ σ = Φl ◦ σ

meaning that (Φ′ − Φ)(σ(x)) ∈ L(g/p, g)l+1 for all x ∈ U . Since Φ|p−1(U) and Φ′ are both

P -equivariant, we conclude that Φ−Φ′ takes values in L(g/p, g)l+1, hence ω̃|p−1(U)−Ψ∗Uω
has homogeneity ≥ l + 1. If l + 1 = 3, from the last part we have ω̃|p−1(U) = Ψ∗Uω; if

l+ 1 = 2, we describe ω̃|p−1(U) as a P -equivariant map p−1(U)→ L(g/p, g)l+1 in the sense
of Proposition 5.4.1, but use Ψ∗Uω as the center instead of ω and use the trivialisation

(Tp)−1(U)
∼=−→ p−1(U) × g induced by Ψ∗Uω instead of by ω. Repeating the argument, we

obtain a principal bundle automorphism Ψ̂U : p−1(U) → p−1(U) such that ω̃ − Ψ̂∗UΨ∗Uω

has homogeneity l+ 2 = 3. By the last part, this implies that ω̃ = Ψ̂∗UΨ∗Uω, hence there is

an isomorphism ΨU ◦ Ψ̂U : (p−1(U), ω̃)→ (p−1(U), ω) over the identity on p−1
0 (U). By (i),

such an isomorphism is unique.
In particular, all such isomorphisms piece together to a (unique) isomorphism from

(G, ω̃) to (G, ω) over idG0 .

Now we can prove that the normal regular Cartan geometries of type (G,P ) inducing
(G0, θ) are all isomorphic.

Corollary 5.5.2. If (G′, ω′) is a normal regular Cartan geometry of type (G,P ) inducing
(G0, θ), then there is a unique isomorphism from (G, ω) to (G′, ω′) lying above idG0.

Proof. The proof is similar to that of Corollary 5.5.1. Let M denote the base manifold of G0,
then it is also the base manifold of G and G′. Choose an open cover {Ui} of M such that for
each i, the identity map on G0|Ui lifts to a principal bundle isomorphism Ψi : G|Ui → G′|Ui .
By Lemma 5.5.1, (G|Ui ,Ψ

∗
iω
′) is a normal regular Cartan geometry inducing (G0|Ui , θ).

By Corollary 5.5.1(ii), there is a morphism (G|Ui , ω) → (G|Ui ,Ψ
∗
iω
′) above the identity

on G0|Ui . Composing Ψi to this, we obtain a morphism (G|Ui , ω) → (G′|Ui , ω
′) above the

identity on G0|Ui , which we still denote by Ψi.
We claim that Ψi : (G|Ui , ω) → (G′|Ui , ω

′) is the unique morphism above the iden-
tity on G0|Ui . Indeed, let Ψ′i also be such a morphism. Being above idG0|Ui

, Ψi and Ψ′i
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are isomorphisms and Ψ−1
i ◦ Ψ′i is an automorphism on (G|Ui , ω) above idG0|Ui

. Then by

Corollary 5.5.1(i), Ψ−1
i ◦Ψ′i equals the identity on G|Ui .

Hence all the Ψi’s piece together to define an isomorphism Ψ : (G, ω) → (G′, ω′) lying
above idG0 .

Moreover, let (G, ω) resp. (G′, ω′) be normal regular Cartan geometries of type (G,P ),
and denote their underlying regular filtered G0-structures of type g− by (G0, θ) resp.
(G′0, θ′). We claim that:

Proposition 5.5.1. Any morphism Φ : (G0, θ) → (G′0, θ′) admits a unique lift to a mor-
phism Ψ : (G, ω)→ (G′, ω′).

Proof. Let f : M →M ′ denote the base map of Φ. Choose an open cover {Ui} of M such

that for each i, f restricts to an isomorphism Ui
∼=−→ f(Ui) =: U ′i and that Φ|G0|Ui

lifts to a

principal bundle map Ψi : G|Ui → G′|U ′i . Similar to the proof of Lemma 5.5.1 we verify that
(G|Ui ,Ψ

∗
iω
′) is a normal regular Cartan geometry inducing (G0|Ui , θ). By Corollary 5.5.2,

there is a morphism (G|Ui , ω) → (G|Ui ,Ψ
∗
iω
′) lying above idG0|Ui

. Composing Ψi to this,

we obtain a morphism (G|Ui , ω) → (G′|Ui , ω
′) above the identity on G0|Ui , which we still

denote by Ψi.
We claim that Ψi is the unique morphism (G|Ui , ω) → (G′|Ui , ω

′) lifting Φ|G0|Ui
. In-

deed, let Ψ′i also be such a morphism. Being with base map f : Ui
∼=−→ U ′i , Ψi and Ψ′i

are isomorphisms and Ψ−1
i ◦ Ψ′i is an automorphism on (G|Ui , ω) above idG0|Ui

. Then by

Corollary 5.5.1(i), Ψ−1
i ◦Ψ′i equals the identity on G|Ui .

Hence all the Ψi’s piece together the unique morphism (G, ω)→ (G′, ω′) lifting Φ.

Corollary 5.5.3. The category of normal regular Cartan geometries of type (G,P ) is
equivalent to the category of regular filtered G0-structures of type g−.

Proof. Recall from Proposition 5.2.1 that there is a functor from regular Cartan geometries
of type (G,P ) to regular filtered G0-structures of type g−. We restrict it to the subcategory
of normal regular Cartan geometries of type (G,P ).

From the proposition above, the resulting functor is full and faithful. The functor is
essentially surjective because for any regular filtered G0-structures of type g−, there exists
a normal regular Cartan geometry of type (G,P ) inducing it. Hence the functor yields an
equivalence of categories.

Remark 5.5.1. From the theory of Cartan geometry as cited in Remark 4.2.1, we obtain
the following consequences of this categorial equivalence:

Since G together with its Maurer-Cartan form is a normal regular Cartan geometry
of type (G,P ) inducing the canonical Lagrangean contact structure on the flag manifold
F1,n+1(Rn+2), and since F1,n+1(Rn+2) is a connected manifold as G is, from the theory of
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Cartan geometries as cited in Remark 4.2.1, we conclude that the automorphism group of
the Lagrangean contact structure on F1,n+1(Rn+2) is G.

Moreover, the automorphism group of a Lagrangean contact structure on a connected
(2n+ 1)-dimensional manifold is a Lie group of dimension at most dim(G).

60



Bibliography
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